
 1 

 

 

Experimental and modelling studies of the 
adsorption of acetone on ice surfaces 

at temperatures around 200 K 
 
 
 

Dissertation 
 
 

submitted to 
 

Fachbereich Chemie 
University of Duisburg-Essen 

 
in partial fulfilment of the 

requirements for a 
 

Doctor of Natural Sciences 
(Dr. rer. nat.) 

 
 
 
 
 

Atanas Terziyski 
from 

Plovdiv / Bulgaria 
 
 

March 2006 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Duisburg-Essen Publications Online

https://core.ac.uk/display/33798615?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 2 

 

 

 

 

 

 

 



 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tag der mündlichen Prüfung: 29.03.2006 

Vorsitzender: Prof. Dr. R. Boese 

1. Gutachter: Prof. Dr. R. Zellner 

2. Gutachter: Prof. Dr. E. Hasselbrink 



 4 

 

 

 

 



 5 

 

Acknowledgements 

 

I would like to thank all the people who have helped me on my thesis and my 

nearly five years’ stay in Germany. Time does fly but you all made this period 

of time the best experience in my life. Especially the people I mention below, 

without them this thesis will never exist. 

 

I would like to thank Prof. Reinhard Zellner who allowed me to join his group 

and to carry out this work. I hope my achievements here would be 

appreciated, although sometimes my English is blurred. I do hope that you 

could accept my deep respect to you.  

 

I would like to thank Prof. George Andreev, my Bulgarian chief. He is the first 

person who got the idea of obtaining my Ph.D. degree in Germany, and then 

began the discussion with Prof. Zellner. He also allowed me to take a quite 

long leave from my employment at the University of Plovdiv. Prof. Andreev, I 

think you will be quite satisfied by the result (it is worth to wait for). 

 

And I would also like to thank Dr. Peter Behr, who was my supervisor and was 

like my father during my stay in Germany. We have become friends before 

we were colleagues. Thank you Peter for all your help in these years. 

 

I received help from Prof. Anton Iliev (University of Plovdiv) for my theoretical 

efforts and understanding of the differential equations and Maple. Petar 

Dimov, a student in University of Dusiburg-Essen (one of my best friends in 

Germany) helped me with programming and mathematical algorithms. 

Chelsea Lai, from the same university who read and polished my English, and I 

also want to mention Ani and Yanka, who provided disinterested support 

during the years. 

 



 6 

 

 

 

 

 

 

 

 



 7 

Contents 

 

Contents..................................................................................................................................... i 

1. Introduction ........................................................................................................................ 1 

1.1. Heterogeneous processes in the atmosphere ........................................................ 1 

1.2. Importance of ice surfaces ........................................................................................ 2 

1.3. Experimental studies of gas uptake on ice surfaces............................................... 4 

1.4. Motivation of present work......................................................................................... 5 

2. Experimental setup ............................................................................................................ 7 

3. Experimental principles and performance of measurements................................... 11 

3.1. Preparation of mixtures ............................................................................................. 11 

3.2. Generation of ice films.............................................................................................. 11 

3.3. Flow profiles................................................................................................................. 12 

3.4. Concentration calculations ..................................................................................... 13 

3.5. Concentration profiles and typical measurements.............................................. 14 

4. Model development and description .......................................................................... 17 

4.1. Langmuir adsorption in tubular flow reactors ........................................................ 17 

4.2. The coated wall flow system model........................................................................ 19 

4.3. Mathematical treatment of the data..................................................................... 21 

4.3.1. Instantaneous gas injection at the upstream end....................................... 22 

4.3.2. Gas injection through a sliding injector ......................................................... 25 

4.3.3. Injector sliding with different speeds.............................................................. 32 

4.4. Adsorption at two different surface sites................................................................ 35 

4.5. Model reliability and a mathematical approach................................................. 37 

4.6. Additional models...................................................................................................... 40 

4.6.1. Penetration into bulk ice.................................................................................. 41 

4.6.2. Cluster model .................................................................................................... 47 

4.7. Data fits and sensitivity tests of the model ............................................................. 49 

4.7.1. Initialization of fits .............................................................................................. 50 

4.7.2. Variation of the adsorption rate coefficient................................................. 51 

4.7.3. Variation of the desorption rate coefficient ................................................. 53 

4.7.4. Variation of the maximum surface coverage.............................................. 55 

4.7.5. Sensitivity analysis of the kinetic model ......................................................... 56 

i 

 



 8 

4.7.6. The two adsorption sites model ...................................................................... 59 

5. Adsorption measurements of acetone on ice surfaces............................................. 61 

5.1. Langmuir adsorption isotherms ................................................................................ 61 

5.2. Adsorption / desorption processes and ageing effects ...................................... 64 

5.3. Adsorption isotherms for differently aged ice surfaces........................................ 68 

5.4. Ice thickness influence on adsorption / desorption processes ........................... 74 

5.4.1. Ice thickness influence on hexagonal ice sites ............................................ 75 

5.4.2. Ice thickness influence on cubic ice sites ..................................................... 77 

5.5. Sensitivity of the thermodynamic fits....................................................................... 82 

6. Error analysis...................................................................................................................... 84 

7. Discussions and comparison with literature data........................................................ 87 

8. Summary of numerical results......................................................................................... 95 

9. References........................................................................................................................ 97 

Curriculum vitae................................................................................................................... 104 

List of publications................................................................................................................ 105 

Papers ................................................................................................................................ 105 

Conferences ..................................................................................................................... 105 

 

 

 

ii 



 1 

 

1. Introduction 

 

This introductory chapter is intended to provide general background 

information related to the present work. It is separated into several chapters 

each of which aims to present a more detailed literature overview of the 

topic, as well as our motivation for the relevance to it. 

1.1. Heterogeneous processes in the atmosphere 

Studies of the interaction of atmospheric trace gases with surfaces have 

become an important subject of atmospheric chemistry ever since the 

discovery of larger regional atmospheric changes such as the springtime 

Antarctic ozone hole (Crutzen and Lelieveld, 2001; Farman, 1985; Lelieveld et 

al., 1999; Solomon, 1999) or tropospheric ozone depletion in the Artic 

(Lorenzen-Schmidt et al., 1998; Platt and Honninger, 2003; Wessel et al., 1998). 

The characteristics of each of these events is the rapid change of gas phase 

chemical composition due to the adsorption and chemical reaction of 

halogen and/or nitrogen containing trace gases with the surfaces of liquid or 

solid particles leading to the release of so called activated trace gases which 

upon submission to solar radiation are transferred into ozone depleting free 

radicals (Zellner, 1999). 

 

The rates of heterogeneous reactions in the atmosphere are generally 

expressed by a collision number with the available surface area multiplied by 

a reactive uptake coefficient. The latter is a composite of all individual 

processes that are sequentially encountered in a heterogeneous reaction, i.e. 

adsorption, thermal equilibration, desorption, surface reaction, phase 

boundary transition and bulk reaction (Dankwerts, 1951; Kolb, 1995). The 

concept of a reactive uptake coefficient is driven by experimental studies 

since it is this quantity which can be determined by selected experimental 

techniques using either analysis of the gas or the condensed phase (Kolb, 
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1995; Zondlo et al., 1998). The separation of the individual elementary 

processes of a reactive uptake coefficient has only been possible in selective 

cases (Behr et al., 2001; Nathanson et al., 1996; Rudich, 1996; Wagner, 2004). 

Moreover, the theoretical framework has just begun to be developed 

(Galashev et al., 2002; Marx, 2000; Slovak et al., 2003). 

An important part of heterogeneous interaction in the atmosphere, apart 

from chemical reaction, is the adsorption of trace gases on surfaces. The 

extent to which this may occur depends on the amount of surface area 

available and the strength of the interaction, i.e. the adsorption enthalpies. 

1.2. Importance of ice surfaces 

In recent years ice surfaces in the atmosphere have received considerable 

attention. The reason is that these surfaces are more common than hitherto 

expected and that they may play an important role in some of the reactive 

trace gas modifications encountered in large scale perturbations of 

atmospheric chemical composition. Ice surfaces occur as polar stratospheric 

clouds (PSCs) at temperatures below the lower stratospheric frost point 

(Fahey, 1989; Larsen et al., 2002; Toon, 1989) in the form of cirrus clouds 

(Pruppacher and Klett, 1996; Seinfeld, 1998) as well as condensation trails 

(contrails) of commercial jet aircraft (Gierens, 2003; Gleitsmann and Zellner, 

1998) both at temperatures in the regime 190 – 220 K as appropriate to the 

upper troposphere / lower stratosphere (Seinfeld, 1998). Moreover, ice 

surfaces are generated regularly during strong precipitation events of 

thunderstorms where rapid vertical motions of air masses lead to super 

cooling events in which ice nucleation becomes the favourite form of 

condensation (Blyth et al., 2001; Dash and Wettlaufer, 2003). 

As a result of their increased importance, studies of chemical reactions and 

adsorption on ice surfaces have received substantial interest. This interest 

focuses on reactive uptake coefficient on one hand (see review by Abbatt, 

(Abbatt, 2003)) as well as on the kinetics and thermodynamics of adsorption 

processes. The latter have recently been suggested to impact on oxygenated 

trace gases such as CH2O, CH3OH, C2H5OH, CH3COCH3 and others due to the 
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expected strong interactions with ice surfaces at the low temperatures of the 

UTLS region and because of the occurrence of these compounds at 

surprisingly high concentrations in this part of the atmosphere (Arnold et al., 

1997; Singh et al., 2000). Since such compounds are expected to impact on 

the concentration levels of the HOx oxidation system (Bedjanian and Poulet, 

2003; Jaegle, 2001; Mckeen et al., 1997), investigations of their phase 

partitioning are important prerequisites of the assessment of their atmospheric 

chemical behaviours. 

 

Studies of gas adsorption on surfaces have a long tradition (Duke, 1994; Ertl, 

1991), both on well defined and well characterized surfaces in ultra-low 

pressure systems (Lass, 2004; Wang, 2003; Zambelli, 1997) as well as on real 

surfaces with largely undefined surface properties (Grassian, 2001; Groen, 

2003; Reinhardt, 2003). The aims of studies in each case, however, are largely 

identical with the focus being on the thermodynamics of adsorption 

(adsorption enthalpies, Langmuir constants, fractional surface coverages) as 

well as on kinetic quantities such as adsorption and desorption rate constants. 

More recently dynamical studies on surface collisions such as energy 

thermalization and dissipation (Isakson and Sitz, 1999; Klassen et al., 1997) as 

well as dynamic residence time studies (Behr et al., 2001; Ertl, 1991; Morris et 

al., 2000) have been added to the list of approaches to investigate surface / 

gas interactions. Needless to say that important contributions have also been 

provided by molecular configurational studies of adsorbat / surface structures 

using different levels of theory (Girardet and Toubin, 2001; Picaud and Hoang, 

2000). 

 

Ice surfaces represent a special kind of surface due to their relatively high 

vapour pressure. Under equilibrium conditions with the vapour phase ice 

surfaces are extremely dynamic with simultaneous condensation and 

evaporation events. This is particularly the case at temperatures above 200 K, 

where desorption of water molecules is sufficiently rapid. As a consequence, 

in this temperature region ice surfaces are constantly renewed and the 
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adsorption of trace gases occurs simultaneously with adsorbing and 

desorbing water molecules. Only at extremely low temperatures where the 

rate of desorption of water is low, ice surfaces become more stable and 

adsorption of trace gases occurs without simultaneous water condensation.  

 

The uptake of atmospheric pollutants on ice surfaces has been extensively 

studied during the last years. However uptake coefficients and surface 

coverage reported from different groups are not in a good agreement and 

may differ by an order of magnitude i.e. HCl uptake on ice in temperature 

range 90-210K (Hanson, 1992; Abbatt, 1992; Leu et al., 1997b; Liang T. Chu, 

1993). This shows that surface roughness and ice preparation may play an 

important role and influences the measured uptake coefficient. 

Under these conditions ice surfaces have been found to be polycrystalline 

(Petrenko and Whitworth, 1999) with cubic (Ic) and hexagonal (Ih) ice being 

the most relevant structures. Both phases have very similar physical properties, 

i.e. density and interatomic distances (Hobbs, 1974; Dowell and Rinfret, 1960). 

However, cubic ice is a metastable phase which tends to transform into the 

thermodynamically stable hexagonal phase on a time scale of several 10 

minutes at temperatures around 200 K (Chaix et al., 1998; Davy and Somorjai, 

1971; Keyser and Leu, 1993; Dowell and Rinfret, 1960; Kumai, 1968). 

1.3. Experimental studies of gas uptake on ice surfaces 

Adsorption studies on ice surfaces have frequently been performed in coated 

wall tube reactors (Behr et al., 2004; Journet et al., 2005; Sokolov, 2002; Winkler 

et al., 2002). The advantage of this technique is that, in addition to adsorption 

equilibrium, the exposure time can be varied and hence adsorption rate 

coefficients can also be determined. Moreover, the interaction of the gas 

phase with the surface can be kept kinetically controlled and is not diffusion 

limited, at least in the low pressure operational mode (Howard, 1979). It has 

been found (Behr et al., 2003; Winkler et al., 2002), that temporal profiles of 

gas phase components show complex  shapes due to the interaction of 

adsorption and desorption processes. As a result the derivation of 



 5 

thermodynamic and kinetic data is complicated and an un-biased 

theoretical framework is called for to facilitate such analysis. 

 

Other methods, such as Knudsen cells (Hudson et al., 2002), volumetric 

(Domine and Rey-Hanot, 2002) and chromatographic (Guimbaud et al., 

2003) are equally applicable for adsorption studies of acetone on ice. The 

Knudsen cell technique has been first described by Golden et al. (1973) and 

has been used in recent years to study the kinetics of chemical reactions of a 

wide variety of systems. The advantage of this technique is that it operates at 

very low pressures where collisions in the gas phase can be excluded. It is 

assumed that the measured signal is a result of heterogeneous interactions 

with the sample only. Chromatography in combination with QMS is a new 

and very sensitive technique which allows measurements under high pressure 

i.e. conditions closer to those in the atmosphere.  

1.4. Motivation of present work 

Ammann’s group (Bartels-Rausch et al., 2005) have developed a kinetic 

model for adsorption of acetone on ice in coated flow tube reactors using a 

Monte Carlo simulation. Their model produces some discrepancies between 

measured and simulated data at low temperatures which they assign to 

changes of the ice structure. Another kinetic model has recently been 

published (Cox et al., 2005). These authors simulated adsorption processes of 

HNO3 and HCl on ice in a flow tube reactor by a kinetic model powered by 

the Facsimile program. 

 

In this thesis a model to derive kinetic and thermodynamic data of adsorption 

experiments in tubular flow reactors is presented. To our knowledge the effect 

of changing the adsorption capacity for acetone adsorption on ice surfaces 

as a result of ageing has not been reported before. We explain the higher 

adsorption rates at low temperature and for fresh ice with the presence of 

more cubic sites than at high temperatures and for aged ice i.e. the simple 

Langmuir model is not applicable in such cases. With the help of the model 
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we can extract kinetic parameters which describe our processes in terms of 

rate coefficients and maximal number of surface sites. Moreover, it is 

suggested that the ageing effect of the ice surfaces is due to the 

transformation of cubic to hexagonal ice structures. This process changes the 

total adsorption rate of acetone on ice by more than a factor of two. 

Together with the dependence of adsorption capacity on the ice thickness 

(Leu et al., 1997a) we provide a complete kinetic and thermodynamic 

overview of acetone adsorption on ice surfaces in the temperature range 190 

to 230 K. 
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2. Experimental setup 

 

The heterogeneous adsorption of acetone on ice surfaces has been studied 

in a coated wall flow tube reactor (CWFT) with quadruple mass spectrometry 

(QMS) as a detection method of the gaseous species at the end of the 

reactor tube. 

 

The flow tube reactor consists of a stainless steel coated flow tube with inner 

diameter of 24mm and total length of 60 cm. A mixture of methanol and 

ethanol with mixing ratio 1:1 was used as a cooling liquid. A differential 

pumping technique, which reduces the pressure from typically 1 to 5 mbar in 

the flow system to less than 10-6 mbar in the mass chamber spectrometer was 

applied. The lowest accessible temperature is around 188 K using an Ultra 

Kryomat Lauda 90.  

The following figure (fig. 2.1) shows the scheme of the coated wall flow tube 

reactor: 

1

2

3

MS Carrier 
gas inlet

 
Figure 2.1. Scheme of the coated wall flow tube reactor. 1 and 2 are the in- and 
outlets of a cooling liquid.  3  is the carrier gas flow. 
 

An overview of the experimental set-up including three different pumping 

systems (P1, P2, and P3) is seen on the following figure (Fig. 2.2). 
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Figure 2.2. Extended scheme of the coated wall flow tube reactor. 1: movable 
injector, 2: coated flow tube, 3: head of the injector and injection flow, 4: 1 skimmer, 
5: pre- vacuum chamber, the chopper and the 2 skimmer and 6: the mass 
spectrometer chamber. P1, P2 and P3 are the three  pumping  systems. 
 

The trace gas (injection flow) was injected through a specially designed 

movable injector (Fig. 2.3). 

+ -

1 2
3 4 5

 
Figure 2.3. Scheme of the movable injector. 1: injection flow, 2: injector tube, 3: inner 
heating tube, 4: heating wire, 5: the injector head 
 

The movable injector consists of a glass tube with the outer diameter of 6 mm 

and an injector head with a series of injection holes. In order to prevent the 

freezing of the trace gas (injection flow), the glass tube was externally wired 

by an inert metal wire (heating resistor). This wire was connected to a voltage 

of 35 V and a current of 0.5 A. A local injector temperature of about 400 C 

had been reached. This prevents the freezing the gas even at temperatures 

as low as -800 C of the coated flow tube. 

The injection speed of the trace gas (injection flow) was varied from 0.25 to 10 

standard cubic centimetres per minute (sccm); the carrier gas is Helium at a 
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flow between 100 to 800 sccm. In order to keep the reactor pressure constant 

at 1 to 5 mbar the total input flow must be pumped away (pumping system 

P1). Thus a rotary pump, (Pfeiffer Balzers Uni 120A) with high pumping speed 

at about 120 m3/min was used to maintain a steady state flow. 

 

The first skimmer (Fig. 2.2 – 4) contains a small nozzle (radius of 1 mm) which 

forms a molecular beam downstream. The idea of skimming the flow is, on 

one hand, to stop the chemical processes at the end of the reactor, and on 

the other hand, to reduce the pressure of by about 4 to 5 orders of 

magnitude i.e. from 1 to 5 mbar to 10-4 to 10-5 mbar.  

The pressure in the pre-vacuum chamber is kept constant by the pumping 

system P2. This has to have a similar pumping speed as the flow of molecules 

that enter the chamber from the reactor. Thus the turbomolecular pump 

Pfeiffer Vacuum MTH 1601P with pumping speed of 1380 L/s and the pre-

pump Balzers Duo 065D with pumping speed of 65 m3/h and minimal 

reachable pressure of 10-4 mbar were used. 

 

The mass spectrometer chamber (Fig. 2.2 – 6) is the chamber where the QMS 

is located. The pressure here must be kept in the range of 10-6 to 10-7 mbar 

since higher pressures will lead to filament burning. The system consists of a 

Preiffer Vacuum TMH 1601P turbomolecular pump with a pumping speed of 

330 L/s and a minimum pressure of 10-8 mbar as well as a pre-pump Balzers 

Duo 016B with a pumping speed of 16 m3/h. 

The final stage represents the detection of the molecules which left the 

tubular reactor and passed through the first and second skimmer in front of 

the mass spectrometer. A quadrupole mass spectrometer with electron 

ionization (Van Bramer, 1998) was used for detection. The main ionization 

reaction of acetone can be expressed by the following processes: 

CH3COCH3 + e-   CH3COCH3*+ + 2e- 

The ionized radical of the acetone molecule gives a signal at 58 in the mass 

spectrometer. Afterwards it may fragment with the following process: 
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CH3COCH3*+   CH3* + CH3CO+ 

yielding a CH3 radical and CH3CO ionized fragment with mass peak of 43. The 

CH3 radical can be ionized alternatively: 

CH3COCH3*+   CH3+ + CH3CO* 

The intensity of the CH3CO (mass 43) fragment is higher than that of CH3 (mass 

15) or even than that of the mother peak (mass 58). Thus the measurements 

discussed later in this thesis are taken at m/z ratio 43. The figure 2.4 presents 

the mass spectrum of acetone (NIST Webbook, 2005). 

 
Figure 2.4. Mass spectrum of acetone for 70 eV electron ionization.(NIST Webbook, 
2005) 
 

The substance (acetone) molecules which entered the mass spectrometer 

chamber must be separated from the background molecules. As shown in 

figure 2.2 (5), a chopper interrupts the beam which entered through the 

second skimmer with a frequency of about 157 Hz. By subtracting the non-

chopped signal from the chopped signal we can calculate the exact value 

of the acetone molecules. The system consisting of the QMS and the chopper 

is connected to a personal computer. 
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3. Experimental principles and performance of measurements 

 

Based on the previous chapter, which explains briefly the experimental set-up 

and apparatus used in the experiment, this chapter will provide more details 

of the reactor as well as the approximations made for its operation as a 

tubular flow reactor. 

3.1. Preparation of mixtures 

As explained in the previous chapter, acetone is injected through the 

movable injector. The injector is connected through a flow controller to a 

mixture flask of 20 L volume. 

The preparation procedure of the mixture in the flask is as follows: After the 

flask is pumped out, acetone was evaporated up to a certain pressure 

(about 10 mbar - pb). After this Helium up to 2 bar (pt) is added. In case a 

lower concentration is needed we dilute the mixture and add helium again. 

The mixture is ready for use after 30 to 60 minutes where upon the helium-

acetone mixture has been assumed to be homogeneously mixed. 

3.2. Generation of ice films 

Surface ice films were generated by deposition of gaseous water upon 

injection of water vapour through the sliding injector at temperatures of the 

reactor wall of around 200 K. During this procedure the injector is slowly 

moved in order to generate an approximately uniform surface film. It was 

estimated  that  the  ice  film depth  is  approximately 50 to 100 microns 

(about 4 104 mono-layers) for our flow of 150 sccm of water vapour at room 

temperature and a reactor pressure of about 3.5 mbar. The ice depth was 

varied by different coating times from 6 to 180 minutes of deposition. 

During normal uptake studies additional water has not been added through 

the injector and the ice film is usable for a few hours of a day once it has 
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been prepared. Usually there are more than 30-40 single measurements 

performed on the same ice film. 

Thus an important question arises: How stable is this ice film? And how to 

ensure that ice coverage for the reactor is still the same? To avoid/solve those 

problems, the tube has been coated on an additional length of about 3 to 5 

cm which plays an important buffer role. The water evaporated from this 

buffer enters the region of the measuring area to keep the ice surface in 

equilibrium with its vapour (fig 3.1). 

0.0
0.2
0.4
0.6
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1.2
1.4
1.6
1.8
2.0

20155 10
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zone (5 cm) reactor zone for uptake measurements
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Figure 3.1. Water vapour distribution along the reactor tube. 
 

The calculations show that under the experimental conditions the 

evaporation process will take a few hours for 1cm buffer length. 

3.3. Flow profiles 

The flow speed is given by the total volume flow rate passing through a cross 

section of the reactor tube as described by the following equation 

st

st
2

ci
flow pT

Tp
r
FFv

π
+

=  

where Fc and Fi are carrier and injector gas flows, respectively, pst and Tst are 

standard pressure and temperature, respectively (1013 mbar and 273.15 K), p 

is the reactor pressure and T is the coated wall temperature. 

According to the experimental conditions, the flow speed in this experiment 

varies from about 80 to 600 cm s-1. Assuming a reactor pressure of 3 mbar we 

can calculate the Reynolds number using the equation 
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η
ρ

=
r2vRe flow  

where ρ is the density of the gas and η is the viscosity. If we assume that the 

flow in the experiments consists of about 99% of helium, the viscosity and 

density of helium (McCarty and Arp, 1990) can been used, and we calculate 

Reynolds number between 1 and 8. Since the lower limit in Re for laminar flow 

to exist is Re≤2300, we can assume that laminar flow is operative.  

a) b)  
Figure 3.2. A scheme of flow profiles in a tubular reactor. a) Laminar and b) plug flow. 
 

Laminar flow consists of separated parallel layers of flow, each with the same 

speed, forming a parabolic shape (fig 3.2 –a). A plug flow (fig 3.2 – b) is a 

more simple way to present flow tube systems. Essentially no back mixing is 

assumed and the fluid passes through the reactor with a constant averaged 

speed. Mathematical evidence for the plug flow approximation for our 

conditions is given by the absence of a radial concentration gradient (see 

next chapter 3.4). 

3.4. Concentration calculations 

The gas phase concentration of acetone in the reactor has been calculated 

using the following equation: 

TR
pN

c pa
g =  

where pp is the ratio of the substance in the total flow, expressed by: 

ci

i

t

b
p FF

F
p
ppp

+
=  

Typically the concentration was in the range from 1010 to 1013 cm-3. In order to 

estimate whether a radial concentration gradient might build up as a result of 

wall adsorption, the total mass transferred radially from the gas phase to the 
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surface must be considered. To do this a segment has been separated from 

the tube reactor with fixed volume and area which has been assumed as a 

closed system. Typical conditions of concentration and temperature for the 

measurements in this experiment have been chosen and the resulting loss to 

the surface has been estimated. The result for fresh ice surfaces (the highest 

possible adsorption) showed that less than 2% of the absolute number of gas 

phase molecules in this segment have been adsorbed on the surface, which 

corresponds to insignificant radial mass transfer. Thus no difference in 

concentration between the centre of the tube and close to the wall has 

been assumed. Therefore a plug flow without radial concentration gradients 

will be assumed for further modelling calculations. 

In case the wall loss would be larger one would have to consider the rate of 

mass transfer into the outer region of the flow reaction. The diffusion 

coefficient of acetone a estimated by interpolation in helium at temperature 

200 K and 3 mbar of total pressure was found to be D = 175 cm2/s (Reid et al., 

1987). Hence, the characteristic time of diffusion (t=<Δx>2/2D) for the reactor 

radius of 1.2 cm is estimated to be 4.11 ms. For flow speeds in our experiments 

from about 80 to 600 cm/s the time for the total axial mass transfer is between 

15 to 2 ms per 1.2 cm reactor length. Hence, concentration gradients are in 

principal possible only for very high flow speeds. 

3.5. Concentration profiles and typical measurements 

The experiments were performed by consecutively moving the injector 

backwards and forwards with a constant speed in the range of about 5 to 20 

mm/s. After each movement a certain time has to elapse during which the 

adsorption equilibrium is re-established. The areas of adsorption and 

desorption peaks shown on the next figure represent the total number of 

adsorbed and desorbed molecules for the measurement conditions. The 

profiles are plotted as a function of the laboratory time. 

The complete picture of a typical measurement is presented by sub-dividing 

the temporal profiles into five different stages, depending on each position of 

the movable injector. A short description of these stages is given below: 
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Figure 3.3. Scheme of a concentration profile of a typical measurement. 
 

Stage 0: The movable injector is located just in front of the QMS (i.e. the end 

of the reactor). The detected signal is constant and the highest value of the 

MS signal, which corresponds to the initial gas phase concentration. This value 

is assumed to be 100% signal or 1.0. 

Stage 1: This is the beginning of the actual adsorption processes. It starts with 

continuous movement of the injector with constant speed, which can be 

varied between 1 to 3 cm/s. During this movement the trace gas will be 

exposed to a fresh ice film, which causes an initial (highest) drop of the 

measured signal. The movement is stopped after the end of the programmed 

distance has been reached. 

Stage 2: During this stage the injector is at a fixed outside position. This stage 

refers to the completion of the uptake process until saturation of the trace 

gas. The signal increases continuously until the equilibrium between the gas 

phase and coverage has been established. At this point the adsorption and 

desorption rates are equal and the total mass balance is zero. 
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As shown in the figure, the signal corresponding to equilibrium conditions is 

equal to the initial one from the stage 0. 

Stage 3: This is the first desorption stage. It represents a continuous movement 

of the injector backwards in the direction of the MS. It refers to an instant 

increase of the gas phase concentration due to desorption from the ice 

surfaces. 

Stage 4: The injector is located at the end of the reactor (as in Stage 0). The 

detected signal from the QMS is a sum of the molecules from the injector flow 

and the previously adsorbed molecules in the reactor which are desorbing. 

The desorption process lasts as long as the detected signal is larger than the 

signal measured in the Stage 0. The remaining amount of adsorbed 

molecules in the reactor is now low enough to assume the surface as being 

fresh. 

The shape and the time scale of the signal change in each stage strongly 

depends on the rate coefficients, ice film thickness, concentration range, 

temperature range, flow speed, injector speed, etc. These dependences will 

be discussed in the next chapter. 
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4. Model development and description 

 

The developed kinetic model is based on adsorption/desorption processes in 

a coated wall flow tube reactor. The model consists of an axial sequence of 

individual flow tube segments of equal volumes and surface areas in which 

the gas phase is homogeneously mixed without concentration gradient. The 

interactions with the reactor wall occur by adsorption and desorption 

exclusively; reactions on the surface do not occur. Simulations were 

performed for the temporal behaviour of the gas phase concentration at the 

end of the reactor tube as a function of laboratory time for the typical 

operation procedures like instantaneous injection of the gas, instantaneous 

termination of the gas flow and movements of the injector with constant 

velocities. The model simulations presented in this chapter were done at 

parameters typical for our measurements. 

4.1. Langmuir adsorption in tubular flow reactors 

The developed kinetic model comprises kinetically controlled gas adsorption 

in individual homogenously mixed volume sections of a tubular flow reactor. 

Chemical reactions in the gas phase as well as on the surface are not 

considered. In this case the rate of adsorption of a gas phase component to 

the surface is given by the Langmuir theory 

( )smax,sgads
s ccck

dt
dc

−=  

In here cg is the gas phase concentration in units of cm-3 and cs,max (cs) is the 

maximum (temporal) surface concentration in units of cm-2. The rate 

coefficient for adsorption is considered independent of previous adsorption 

events and is given by the kinetic theory of gases expression for wall collisions  

0

_

ads c
4
1k γσ=  
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where 
M
kT8c

_

π
=  is the average speed of thermal gas molecules and γ is the 

sticking or accommodation probability (uptake coefficient). In the form kads 

corresponds to a second order rate coefficient in cm3 s-1 with σ0 being the 

collision cross section of a surface adsorbed molecule. The adsorption rate 

coefficient kads has generally a complex temperature dependence 

originating from the individual factors in the previous equation. To a first 

approximation, however, and in good agreement with some of our 

experimental data (Behr et al., 2003) we only consider in the following the T0.5 

dependence of the molecular velocity. 

Due to mass balance considerations the rate of change of concentration in 

the gas phase is related to that on the surface by  

dt
dc

S
V

dt
dc gs =−  

where V and S are the volume and the surface area of each part of the 

segmented flow system, respectively. As a consequence gas phase and 

surface rate changes are proportional and differ by a factor which is given by 

the reactor’s geometry, e.g. 1/2r for a tubular reactor. As opposed to 

adsorption the inverse process of desorption is considered as a first order 

process with the rate given by 

sdes
s ck

dt
dc

=−  

where the rate coefficient for desorption kdes in units of s-1 is again assumed to 

be independent of other desorption events. However, unlike kads the rate 

constant for desorption is assumed to have an Arrhenius temperature 

dependence with 

⎟
⎠

⎞
⎜
⎝

⎛−=
RT

EexpAk act
des  

where Eact corresponds roughly to the heat of adsorption for both, 

physisorption and non-activated chemisorption. Under the conditions of 

reversible uptake the net change of both gas and surface concentrations in 

a homogenously mixed volume in contact with a wall is given by 
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( )
dt

dc
V
Sckccck

dt
dc s

sdessmax,sgads
g =−−−  

This equation may be transformed into a corresponding expression for the 

fractional surface coverage (Θ = cs/cs,max) as convenient in Langmuir theory. 

In this case one obtains 

( ) Θ−Θ−=
Θ

desgads k1ck
dt
d  

which upon integration leads to 

( ) ( )( )tkckexp
kck

ck
kck

ck
t desgads

desgads

gads
ini

desgads

gads +−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
−Θ+

+
=Θ  

This equation describes the temporal evolution of the surface coverage for 

fixed rate constants of adsorption and desorption starting from an initial 

surface coverage Θini. As can be seen the surface coverage changes 

exponentially with time where the characteristic time is given by the sum of 

the time constants of adsorption and desorption. This equation is used in the 

present kinetic model to calculate concentration changes in the gas phase 

and on the surface in the flow tube reactor. Apparently it is simplified and 

derived under assumption for constant gas concentration within the 

differential time. The complete differential solution and discrepancies 

between both simplified and compete are presented in the sensitivity tests of 

the model in this chapter. 

4.2. The coated wall flow system model 

The equation giving the time dependent change of the surface coverage 

Θ(t) can be easily solved explicitly (under the assumption of a constant gas 

concentration and for infinitively small times) for a given gas phase 

concentration and fixed values of kads and kdes in a given volume with wall 

contact. In a flow system, however, the situation becomes more complicated 

since there are concentration gradients along the reactor distance and the 

resulting surface change in one volume element is affected by that in the up-

stream volume element. Therefore, an iterative procedure must be used to 

derive the net gas phase concentration at the end of the flow tube which is 
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the quantity normally measured in CWFT studies. To do this we have 

developed a flow system model in which the total length of the flow reactor is 

subdivided into a larger number (usually around 200) individual volume 

elements or segments i of equal length for which each segment is assumed to 

be homogeneously mixed, i.e. concentration gradient do not exist. 

Δl

i-1 i i+1

cgas(i-1,j) cgas(i,j) cgas(i+1,j)

cs(i-1,j) cs(i,j) cs(i+1,j)

kad kde

r

 
Figure 4.1. Processes connecting gas and surface concentrations in a volume 
element of the CWFT reactor. 
 

In these segments the gas phase concentration changes with time during the 

time interval j is as a result of adsorption and desorption. Whether this 

concentration change leads to increased or decreased surface coverage 

depends on the initial concentration in this volume element and hence 

whether the up-stream gas phase concentration is larger or smaller. Therefore 

the Θ(t) expression developed above has different starting conditions in each 

volume element and after each time interval j. Hence, the general expression 

which accounts for this effect is given by: 

( )( )
( )

( )
( ) ( )( )( )tkckexpc

kck
ck

t desj,igadsj,i
desj,igads

j,igads
j,i Δ+−+

+
=Θ  

with the integration constant given by 

( ) ( )( )
( )

( ) desj,igads

j,igads
1j,ij,i kck

ck
tc

+
−Θ= −  
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The integration time Δt in this equation corresponds to the average residence 

time of molecules in the individual segments i, which is determined by the 

length of each segment divided by the flow velocity. The integration constant 

c(i,j) for each segment i and time interval j contains the initial surface 

coverage from the previous time interval j-1. 

At this stage of development of the numerical integration scheme it is 

appropriate to convert from surface coverages and concentrations into 

absolute numbers of molecules, both in the gas phase and on the surface. 

The total number of molecules in the gas phase in a segment of length Δl and 

at time t is 

( ) ( ) lrcN 2
j,igj,igas Δπ=  

Similarly, the number of adsorbed molecules in one segment i and at time j is 

related to the surface concentration by 

( ) ( ) lr2cN max,sj,ij,iads ΔπΘ=  

The change in total number of gas phase molecules upon entering segment 

i+1 and during the time interval j is then given by the change of the number 

of surface adsorbed molecules in segment i+1 during this time interval as a 

result of adsorption, expressed by the equation 

( ) ( ) ( ) ( )( )1j,iadsj,iadsj,igasj,1igas NNNN −+ −−=  

A similar equation holds for the change of the surface concentration. In 

general, however, the sign of this equation (increase or decrease in 

concentration) depends on the specific situation in the flow reactor and the 

position of the injector. This will be demonstrated below for different cases of 

operation of CWFT reactors. 

4.3. Mathematical treatment of the data 

In this section we present the resulting modelling predictions for different 

operational procedures of CWFT reactors assuming conditions for Langmuir 

adsorption and desorption kinetics. Since measurements in such reactors 

normally focus on the down-stream end of the reactor where the detector is 
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placed, our studies only consider this situation. The reactor parameters for 

each simulation are chosen to be typical for our experiments. 

4.3.1. Instantaneous gas injection at the upstream end 

One of the normal operations of a CWFT reactor is to monitor the 

concentration response of a gaseous adsorbat following gas injection at the 

up-stream end of the coated region of the flow tube. This situation is depicted 

graphically in Fig. 5.2. 

1               2                   i                the last    the last+1

QMS

d

carrier

carrier

trace

 
Figure 4.2. Schematic drawing of the processes occurring in different segments of the 
CWFT reactor when the movable injector is located at the beginning of the reactor 
tube. The different lengths of the arrows indicate different fluxes. 
 

In this case the injected gas is initially exposed to an entirely fresh surface with 

the result that there is rapid uptake of gas in volume elements of the flow tube 

immediately down-stream of the injection point, provided the adsorption 

kinetics is sufficiently rapid. With time, however, the surface coverages in 

these segments are saturating and net adsorption occurs only in segments 

further down-stream. The gas phase concentration at the exit of the reactor 

therefore evolves only slowly, where the time constant of this evolution 

depends on both the adsorption and desorption rates. The maximum value of 

the concentration corresponds to the initial gas phase concentration up-

stream of the coated wall and is reached after complete surface 

equilibration with no net adsorption or desorption. The results from the 
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numerical simulation of gas phase and surface concentration in each of 20 

segments of our model reactor together with the resulting net gas phase 

concentration is shown in the next figure. 

1    2    3   4    5    6    7    8   9   10  11 12  13  14  15  16  17 18  19  20 QMS

 

t [s] N
gas

 N
ads

 
  0   0 
  1   
  2   
  3   
  4   
  5   

Segments

Θ

cg

 

 
 
 
 
 
 
 
 
 

a) 
 

0 1 2 3 4 5 6 7 8 9 10

 
N

or
m

al
iz

ed
 s

ig
na

l

Lab Time [s]

QMS time [s]
 0
 1
 2
 3
 4
 5
 to infinity

 

 

 

 

 

 

 

 

b) 

Figure 4.3. Instantaneous gas phase concentrations and surface coverages as well 
as their temporal evolutions in different volume elements of the coated wall flow 
tube reactor (a) and corresponding signal intensity at the downstream end of the 
flow reactor as a function of laboratory time (b). 
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As can be seen from this figure the gas phase concentration in each segment 

of the flow reactor is evolving slowly on the time scale of several seconds. As 

discussed above this is a reflection of the chosen adsorption/desorption 

kinetics, for which the sum kadscg + kdes of our model system equals 0.95 s-1 at 

the temperature of the experiment 200 K. 

A similar picture applies to the surface coverage. Whereas, however, this 

coverage is rapidly saturating in the first few segments of the flow tube, there 

is substantial delay in surface adsorption in the segments further down-stream. 

In fact more than half of the segments do not attain complete surface 

coverage during the first 5 s of the experiment. 

The effect of temperature on the evolution of the gas phase concentration at 

the downstream end of the flow reactor has been modelled in independent 

simulations, the results of which are presented graphically in Fig.4.4. Whereas 

for the higher temperatures there is rapid penetration of gas through the flow 

reactor, a considerable delay is observed at lower temperatures. This effect is 

a reflection of both the adsorption/desorption kinetics as well as the amount 

of adsorbat on the surface which is increasing with decreasing temperature. 
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Figure 4.4. Temporal evolution of the normalized QMS signal (proportional to the gas 
phase concentration) at the downstream end of the flow reactor for different 
temperatures between 190 and 215K. 
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The total number of adsorbed molecules at each temperature in equilibrium 

conditions can be derived from the I(t) curves by integrating the area above 

each curve for time from zero to infinity. As can be shown by this procedure, 

the number of molecules adsorbed reflects Langmuir behaviour for the 

particular gas phase concentration considered. 

4.3.2. Gas injection through a sliding injector 

The standard operational procedure of a flow system is to inject gases whilst 

the injector is moved in either up-stream or down-stream direction in which 

case the reaction times between the point of injection and the point of 

detection are either increased or decreased. In the special case of a wall 

coated reactor with a loss of gas phase species by surface adsorption these 

situations correspond to systematic increases or decreases of the available 

surface areas. 

Increasing surface area (stage 1) 

In this simulation case the injector is moved with constant velocity (e.g. 1.5 

cm/s) in opposite direction of the flow starting from close to the detection 

point of the QMS system. During the course of this procedure the surface area 

to which the injected gas is exposed is constantly increasing. This means that 

new surface area is permanently made available and that high adsorption 

rates are maintained in the immediate downstream vicinity of the injector tip. 

The resulting profiles for the gas phase concentration at the downstream end 

of the flow reactor are shown in Figure 4.5. In case where desorption is 

neglected exponential decay curves of the normalized concentration signal 

as a function of time are observed, at least for gas phase concentrations 

below 1 1012 cm-3 . In this case surface adsorption over the entire time is in the 

linear region of the adsorption isotherm and adsorption is not saturating. 

The same is not the case for higher gas phase concentrations (e.g. 1.4 1013 

cm-3). Due to the beginning of saturation of the surface, the temporal 

evolution of the normalized gas phase concentration is no longer 
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exponential. Rather we predict levelling off of the decaying signal to a steady 

state value. 
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Figure 4.5. Computed evolution of normalized gas phase concentration at the 
downstream end of the flow reactor as a function of laboratory time for conditions 
under which the injector is moved with constant speed (e.g.1.5 cm/s) in counterflow 
direction. The different curves represent different initial gas phase concentrations for 
both finite desorption (kdes=0.87s-1) and negligible desorption (kdes=0). 
 

The effect of saturating adsorption becomes even more pronounced if 

desorption from the surface is also permitted. In this case the temporal profiles 

level off rapidly with little distinction between the curves for different 

concentrations at least for the lower concentration ranges. Only for the 

highest concentration applied a difference is noted. The level of the plateau 

which is reached depends on the ratio of kads/kdes as well as on the gas flow 

velocity. Increasing velocities generate higher steady state levels and vice 

versa (see below). 

These findings clearly indicate that adsorption measurements in CWFT 

reactors have to be conducted with great care if rate coefficients for 

adsorption are to be determined. Firstly, the gas phase concentration should 
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be chosen so that surface saturation is avoided. Secondly, if adsorption 

cannot be separated from desorption and both processes occur 

simultaneously there is no easy way to extract the surface adsorption rate. 

0 10 20 30 40 50 60 70 80 90
0.0

0.2

0.4

0.6

0.8

1.0

1.2

d = 20 cm
injector stops

d = 0 cm
injector starts

N
or

m
al

iz
ed

 s
ig

na
l

Lab time [s]

 210K
 205K
 200K
 195K
 190K

 
Figure 4.6. Computed profiles of the normalized gas phase concentration at the 
down-stream end of the CWFT reactor as a function of laboratory time and for 
different temperatures. The injector has been moved between 10 and 23 s from its 
down-stream to its up-stream position. The rate coefficients as well as the ratio 
kads/kdes have been assumed to change as described in subchapter 4.1. 
 

In interesting situation occurs when the injector is stopped at the far end of 

the coated surface and the evolution in time of the gas phase concentration 

at the downstream end of the flow reactor is continuously monitored. The 

result for this model experiment is depicted graphically in fig.4.6. The initial 

parts of the profiles in this figure are essentially identical to those presented in 

the previous figure for the case of reversible adsorption. Moreover, it is shown 

in this figure that the level of the plateau reached during movement of the 

injector also depends on temperature, with the plateau being lower at lower 

temperatures. This corresponds to increasingly stronger adsorption because of 

a decreasing desorption rate. The behaviour in time after the injector is 

stopped at the up-stream end of the reactor also depends on temperature. 
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Whereas at the highest temperature of 210 K there is rapid recovery of the 

unattenuated gas phase signal, which corresponds to complete saturation of 

the entire surface, this recovery is much slower at lower temperatures. 

The areas under the profiles of fig. 4.6 correspond to the total number of 

molecules lost to the surface over the entire time. With the known surface 

area and the gas phase concentration such areas can be converted into 

specific surface coverages in molecules/cm2 and hence can be used to 

construct adsorption isotherms (Behr et al., 2003). 

Decreasing surface area (stage 3) 

An interesting situation also evolves when, following complete surface 

saturation (e.g. after about 90 s of exposure with the injector at the up-stream 

end of the CWFT), the injector is re-inserted and is moved in flow direction with 

constant speed. In this case the gas phase concentration behind the injector 

tip tends to decrease. The rate of decrease, however, is moderated by 

surface desorption. This in turn increases the gas phase concentration down-

stream of the injector tip with the effect that there is additional adsorption. As 

a net result the temporal profiles of the gas phase concentration at the 

down-stream end becomes quite complex (see below). 

The same complexity applies to the spatial distribution of concentrations 

along the CWFT axis at a certain point in time. A snapshot of this distribution 

when the sliding injector tip reaches x=10 cm (e.g. the middle of the length of 

the coated wall of the reactor) is shown in figure 4.7. 
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Figure 4.7. Spatial (axial) distribution of gas phase (⎯⎯) and surface (.......) 
concentration for a sliding injector at position x=10 cm. The „injected“ gas phase 
concentration (1 1012 cm-3 ) and the equilibrium surface coverages θ are denoted by 
horizontal dashed lines. Figures a, b and c refer to different temperatures between 
190 and 210 K. 
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As can be seen the gross shape of the gas phase concentration is 

determined by the gas injection at the tip of the sliding injector which 

generates a step-wise increase in down-stream concentration. The more 

detailed shapes of the axial distributions, however, vary strongly with 

temperature. Whereas at the highest temperature there is only a small 

overshoot and only little tailing downstream and up-stream, respectively, of 

the injector tip, these effects become more pronounced at lower 

temperatures. This is mainly caused by the attenuation effect of the surface 

layer. However, only at lower temperatures the total amount of adsorbent is 

large enough and its desorption rate sufficiently delayed that the gas phase 

concentration is significantly affected. 

The computational results for a model experiment in which the injector has 

been moved with constant speed to the far down-stream end of the CWFT 

and then brought to a halt is shown in figure 4.8. The model runs performed at 

different temperatures produce desorption signals with entirely different 

shapes. At the higher temperature we observe a rapid but moderate 

increase in signal to reach a slight plateau. This is caused by rapid desorption 

of a small amount of adsorbat once the injector is moved into the down-

stream direction. Upon halt of the injector at the down-stream end of the 

CWFT the desorbing amount is rapidly decaying. At the lower temperature, 

however, this behaviour is strongly modified. Instead of rapid increase we 

observe a much more delayed increase with, however, larger amplitude. The 

peak concentration is only observed once the injector is at its most down-

stream position. In each case, however, the peak area under the desorption 

curves corresponds to the total amount of adsorbat at different temperatures. 
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Figure 4.8. Normalized desorption signal of an adsorbat as observed upon and after 
moving the injector from the up-stream end to the down-stream end of the CWFT. 
The initial gas phase concentration is around 1.5⋅1012 cm-3; the different curves are for 
different temperatures. 
 

The decay part of the desorption peak can be used to extract the rate 

coefficient for desorption. As shown in Figure 4.9 the decay curves obtained 

for all three different temperatures are exponential. However, a more 

quantitative analysis of these decay curves indicates that only at the higher 

temperature, e.g.210 K, the time constants for decay are almost identical with 

the time constants for desorption. At lower temperatures on the other hand 

there is substantial underestimate of the desorption constant caused by 

successive re-adsorption in the flow reactor. 

 



 32 

0 10 20 30 40 50 60 70 80 90 100
-14
-13
-12
-11
-10
-9
-8
-7
-6
-5
-4
-3
-2
-1
0

8

42.6

21.3

10.6

5.3

2.6

1.3

190K

200K

210K

Ln
 (I

/I 0)

Lab time [s]

 
Figure 4.9. Logarithmic representation of the desorption signals of Fig.4.8. The bold 
lines refer to different temperatures and for a standard flow velocity of 2.6 m/s. The 
thin lines for T=190 K are for different flow velocities. The slopes of these lines 
converge to a maximum slope as appropriate for infinite flow velocity. 
 

The extent of this underestimate depends on the flow velocity and hence the 

residence time in the flow reactor. Only for extremely high flow rates the time 

constant for the decaying concentration profiles becomes identical with the 

time constant for desorption. 

4.3.3. Injector sliding with different speeds 

Another parameter which influences the measured profile is the speed of 

sliding the injector. For the same conditions this changes the adsorption / 

desorption processes and also the gas phase and surface concentrations. In 

order to present the injector speed influence we have performed simulations 

in which the injector speed varied stepwise as 2.3, 7.5 and 22.6 mm/s. The 

simulations were made at temperature 200 K, initial gas phase concentration 

of 2 1011cm-3 and maximal surface concentration cs,max = 1 1014 cm-2. A 

snapshot of this simulation when the injector tip reached the middle of the 

reactor tube (10 cm) is shown on the next figure. 



 33 

0 2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

100

7.5 mm/s
 cs

 cg

22.6 mm/s
 cs

 cg

C
on

ce
nt

ra
tio

n 
[%

 o
f m

ax
im

um
]

Reactor length [cm]

2.3 mm/s
 cs

 cg

 
Figure 4.10. Axial distribution of gas phase and surface concentration for a sliding 
injector in stage 1. The simulations were performed at different speeds of the sliding 
injector. cs and cg are the concentrations on the surface and in the gas phase. 
 

For simplicity the surface concentration is expressed by lines and the gas 

phase concentration by points. It is seen that at higher speeds the initial drop 

of the gas phase concentration is higher and the increase of the surface 

coverage along the reactor is slower compared to lower injector speeds. The 

explanation of this observation is in the different time scales for the three 

simulations. The time the injector needs to reach the middle of the coated 

tube at three different injector speeds of 2.3, 7.5 and 22.6 mm/s are, 

respectively, 44.2, 13.3 and 4.4 s. In other words, the fastest injector speed 

(shortest time) leads to more instantaneous exposure of the measured gas to 

the fresh surface and causes a higher change of the gas phase and  surface 

concentration. The same mathematical treatment was applied to desorption 

experiments (stage 3). The result is shown on the following figure. 
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Figure 4.11. Axial distribution of gas phase and surface concentration for a sliding 
injector in stage 3. The simulations are for different sliding speeds of the injector. 
 

The figure clearly shows that for the fastest speed the gas phase and surface 

concentrations have the highest values. The relaxation time of the axial 

surface and gas phase concentration to equilibrium is the most important 

point of the explanation. In other words, simulations for the slowest speed 

reflect the latest (in time) snapshot of reaching the equilibrium between gas 

phase and surface concentration under the experimental conditions.  

The gas phase concentration at the end of the tube is the observed 

measured signal (see the next figure). As has been explained the measured 

signal for the fastest injector speed has the steepest drop and the steepest 

increase at stages 1 and 3. 
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Figure 4.12. Computed profiles of the normalized gas phase concentration at the 
down-stream end of the CWFT reactor as a function of laboratory time and for 
different sliding speeds of the injector. 
 

The total adsorption and desorption peaks reflect the same number of 

adsorbed (and desorbed) molecules which corresponds to the equilibrium 

(Langmuir) constant and the maximum surface coverage. Both are fixed for 

the simulations. 

4.4. Adsorption at two different surface sites 

The present kinetic model based on Langmuir adsorption / desorption 

equilibrium was found to be applicable only for cases such as on fresh or 

aged ice surfaces. Thus further development of the model was needed in 

order to explain the effect of ageing. We decided to use a two-site dynamic 

adsorption model. According to Langmuir theory, in this model the total 

adsorption of acetone on the ice film is supposed to be governed by two 

different adsorption sites: cubic (Ic) and hexagonal (Ih) ice, respectively. Each 

of these crystallographic forms has their own individual Langmuir parameters 

KL and cs,max as well as their own adsorption and desorption kinetics (Figure 
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4.13). The effect of ageing and hence the change of adsorption capacity is 

then attributed to a change of Ic into the more stable Ih form. 
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Figure 4.13. Schematic representation of the kinetic model. Adsorption on one a) 
and adsorption on two different sites b). 
 

The figure 4.13 (b) presents schematically the adsorption of two different 

surface sites. The hexagonal and cubic sites are shown by straight and zigzag 

arrows with maximum site numbers cs,max(Ih) and cs,max(Ic). The adsorption rate 

coefficients for the two sites are kads(Ih) and kads(Ic) and the desorption rate 

coefficients are kdes(Ih) and kdes(Ic).  

The rates of surface coverage under conditions of reversible adsorption to 

each of the two different adsorption sites are given by the following 

equations: 

( ) )Ic(s)Ic(des)Ic(s)Icmax(,sg)Ic(ads
)Ic(s ckccck

dt
dc

−−=  

and 

( ) )Ih(s)Ih(des)Ih(s)Ihmax(,sg)Ih(ads
)Ih(s ckccck

dt
dc

−−=  

where cs(Ih), cs(Ic), cs,max(Ih) and cs,max(Ic) are the surface concentrations and 

their maximum values, respectively, for hexagonal and cubic adsorption sites 

in molecules/cm2 and cg is the gas phase concentration of acetone. 

The total rate of adsorption as expressed by the overall rate of surface 

coverage is given by the sum of the two terms, i.e. 

dt
dc

dt
dc

dt
dc )Ih(s)Ic(ss +=  
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The corresponding change of the gas phase concentration cg of acetone is 

related to this surface change by the relation 

dt
dc

r
2

dt
dc sg −=  

which is valid for tubular reactors. Since in our experiment only cg (or its 

proportional MS signal) has been monitored in the above equations and their 

integrals have been used to extract the desired parameter, namely kads, kdes 

and cs,max for each of the two adsorption sites. This is done by fitting of the 

calculated gas phase concentration as a function of laboratory time to the 

measured adsorption and desorption profiles. As will be shown below, only 

the above parameter cs,max(Ic) is concluded to change with time as a result of 

ageing and hence of the conversion of Ic to Ih adsorption sites. 

4.5. Model reliability and a mathematical approach 

The reliability of the kinetic model was tested using a one site adsorption 

model. However the results are also applicable to the two surface sites 

adsorption case. As described in 4.2 we assume the gas phase concentration 

in each segment to be constant in the differential time period. The complete 

relation between gas phase molecules and adsorbed molecules in time can 

be given by the following system of ordinary differential equations (ODE) 

( )

( )( )sdessmax,sgads
g

sdessmax,sgads
s

ckccck
r
2

dt
dc

ckccck
dt

dc

−−−=

−−=
 

The differential time for our experimental conditions is 1.25 10-2 and 1.67 10-3 s, 

respectively, when the flow velocity is between 80 and 600 cm/s and the 

segment length is 1 cm. The outputs for the two cases are presented in the 

next figure 4.14. The ODE system was solved by the Runge-Kutta method 

(Enright et al., 1986; Fehlberg, 1970; Forsythe et al., 1977; Shampine, 2000) and 

Maple program. 
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Figure 4.14. Calculation of the surface coverage as a function of time in a reactor 
segment with radius 1.2 and length 1 cm. Calculations were performed for an initial 
gas phase concentration of 1.4 1013 cm-3. 
 

The simulation output shown with dashed line corresponds to the assumption 

for constant gas phase concentration of 1.4 1012 cm-3 (the upper dashed 

line). In this case the time dependent surface coverage is calculated by the 

analytical solution of the following ODE 

( ) sdessmax,sgads
s ckccck

dt
dc

−−=  

where the differential time was changed in stepwise from 0 to 0.01 s. 

The bold lines express the simultaneous time change of both surface and gas 

phase concentrations. The calculations in this case were done by numerically 

solving the system of ODEs mentioned above. As can be clearly seen the 

increase of the surface coverage is lower compared to the simulation with 

the constant gas concentration. The discrepancies in the gas phase and 

surface concentrations for the two calculations are presented in percents 

with “g” and “s” symbols on figure 4.14. It is seen that the precision increases 
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by decreasing the differential time. Experimentally this time is fixed by the ratio 

between the segment length and flow velocity, i.e. precision can be 

increased by decreasing the segment length. The usual segment length for 

this experiment is 10 times smaller (0.1 cm) than the one used for calculating 

figure 4.14 i.e. the time was 0.0001 s, which makes insignificant difference in 

gas phase concentration for this time. 

In the next figure a comparison between the output of the model run under 

conditions of ODE and a system of ODEs with a segment length of 0.5 cm is 

shown. 
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Figure 4.15. Simulations calculated by ODE and a system of ODEs for 200K and a gas 
phase concentration of 1.4 1012 cm-3. 
 

In order to estimate how much these differences influence the final result we 

subtracted from the final simulation plot as calculated for a system of ODEs 

three simulations performed at segment lengths 1, 0.5 and 0.1 cm, 

respectively. 
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Figure 4.16. Result of subtracting the default simulation from figure 4.15 and three 
simulations performed at segment length 1, 0.5, and 0.1 cm. 
 

It is obvious that the calculation error from the analytical approximation of the 

system with differential equations is insignificant. 

4.6. Additional models 

It was found that the two kinetic models (adsorption on one and on two 

different surface sites) are the most applicable to explain acetone adsorption 

on ice at our conditions. Evidences in the literature like ice diffusion, solution 

and also formation of gas clusters have lead us to create and test a few 

additional models. These additional processes can be presented as an 

extended model which influences the main adsorption / desorption 

equilibrium. For simplicity the developed models will be presented together 

with the simple Langmuir adsorption model. The simulations in the next 

chapters (4.6 and 4.7) were done for 200K, cg = 2 1011 cm-3 and injector speed 

of 1.5 cm/s with the following parameters according to the simple Langmuir 

model as kads = 6.1 10-13 cm3s-1, kdes = 0.2 s-1 and cs,max = 1014 cm-2. 
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4.6.1. Penetration into bulk ice 

An extensive theoretical research (Batista and Jonsson, 2001; Girardet and 

Toubin, 2001; Ikeda-Fukazawa et al., 2002; Livingston and George, 2001; 

Livingston et al., 2002; Livingston et al., 1998) about bulk penetration processes 

has been published recently. The processes like bulk and pore diffusion and 

solution have been treated with different mathematical approaches in order 

to explain the physical processes. This chapter will present the application of 

these processes to our adsorption/desorption kinetic model and show how 

the bulk loss of molecules could influence the equilibrium of gas phase 

concentration and the measured signal. 

Batista and Jonsson in their work (Batista and Jonsson, 2001) explain an 

additional bulk loss of water molecules as sequent bulk diffusion on the base 

plane surface of an ice Ih crystal. Their calculations are based on interaction 

potential and diffusion barriers simulated with Monte Carlo calculations at 140 

K. Girardet and Toubin (Girardet and Toubin, 2001) performed a dynamic 

analysis of the diffusion processes. The molecular dynamic simulations show 

different transfer times to the ice sub-layers in times of picoseconds. 
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kin kout

 
Figure 4.17. Schematic representation of the kinetic model which accounts for an 
additional loss of adsorbed molecules into the ice bulk. 
 

Based on these theoretical assumptions for stepwise bulk diffusion, a kinetic 

model has been developed which accounts for an additional loss of 

adsorbed molecules by penetration into the bulk as presented in the figure 

4.17. The adsorbed molecules on the ice surfaces can penetrate into the ice 

bulk with rate coefficient kin and will return to the surface with kout. The 
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dimensions of kin and kout correspond to first order process with rate coefficient 

in units of s-1. The bulk is defined by a fixed number of free sites (cb) 

proportional to the depth of the ice layer. The adsorption and desorption 

processes together with bulk penetration can be expressed completely with 

the following system of differential equations. 

( )( )

( ) ( )

( ) boutbmax,bsin
b

boutbmax,bsinsdessmax,sgads
s

sdessmax,sgads
g

ckccck
dt

dc

ckccckckccck
dt

dc

ckccck
rdt

dc

−−=

+−−−−=

−−−=
2

 

where the first two ODEs are for gas and surface concentration-time change, 

and the third is for the bulk penetration process. The model can also be 

applied freely to pore diffusion, as explained by Keyser et al. 1993. 

The effect of this model in comparison with the simple Langmuir model is 

presented on the next figure (4.18). The calculations were done using the 

following parameters: kin = 10-15 s-1, kout = 0.01 s-1 and the maximal adsorption 

capacity of the bulk layer of 7 1013 cm-2. As can be seen from the figure, the 

simulated profile, which includes bulk penetration processes from figure 4.17 

(dashed line), has larger adsorption / desorption area compared to the one 

calculated only for the simple Langmuir model. The higher number of 

adsorbed (respectively desorbed) molecules corresponds to the maximal bulk 

concentration cb and the ratio between kin and kout. In stage 2, the difference 

between the slopes is caused by the increment of the gas concentration 

which represents different adsorption kinetics (see chapter 4.8.2). The 

desorption drop in stage 4 clearly shows two different desorption kinetics. The 

first one, which is faster, corresponds to the initial desorption from the surface 

(A to B form figure 4.18) and the second one is slower due to segregation from 

the bulk phase to the gas phase as accounted for by the kout rate coefficient. 
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Figure 4.18. A comparison between combined surface/bulk model and the simple 
Langmuir model. 
 

Based on the same theoretical assumption the model has been further 

improved by creating a model which accounts for bulk processes separated 

into two layers, so that the stepwise bulk penetration (Girardet and Toubin, 

2001) can be allowed for. 

cg

kdeskads

cs

cb1

cb2

kin1

kin2 kout2

kout1

 
Figure 4.19. A scheme of a multilayer bulk penetration. 
 

The processes shown are fully described mathematically with the equations: 
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( )( )

( ) ( )

( ) ( )

( ) 2b2out1bmax,1b1b2in
2b

2b2out1bmax,1b1b2in1b1outsmax,ss1in
1b

1b1outsmax,ss1insdessmax,sgads
s

sdessmax,sgads
g

ckccck
dt

dc

ckccckckccck
dt

dc

ckccckckccck
dt

dc

ckccck
r
2

dt
dc

−−=

+−−−−=

+−−−−=

−−−=

 

where the unit of the coefficients related to the layer bulk penetration kin1, 

kout1, kin2, and kout2 is s-1. It is very hard to extract valuable experimental results 

from the bulk parameters, which is the main reason not to develop the model. 

 

The next kinetic model is based on sequential Henry solution of the adsorbed 

molecules in a quasi-liquid surface layer of the ice. 
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Figure 4.20. A scheme of a Henry solution model 
 

The solution and segregation coefficients together with the bulk 

concentration represent the bulk processes. The complete mathematical 

expression of the processes is given by the system 

( )( )

( )

bsegssol
b

bsegssolsdessmax,sgads
s

sdessmax,sgads
g

ckck
dt

dc

ckckckccck
dt

dc

ckccck
r
2

dt
dc

−=

+−−−=

−−−=
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The bulk concentration cb is given by the dissolved molecules in the ice bulk 

volume which is proportional to the ice depth and the geometry of the 

reactor. The dissolved molecules correlate with the ratio between solution 

and segregation rate coefficients. 
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Figure 4.21. A comparison between surface adsorption / Henry solution model 
(dashed line) and the simple Langmuir model (bold line). 
 

The simulation shown in the figure was calculated with the following 

parameters: ksol = 103 cm-1s-1, kseg = 3 10-3 s-1 and an ice depth of 10-4 cm. The 

area between the bold and dashed line in stage 2 corresponds to the 

additional number of penetrated molecules from the surface to the ice bulk. 

As can be seen the time of about 200 s is not enough to establish equilibrium 

between the totally removed molecules from the gas phase and those that 

have been injected through the movable inlet. Thus longer simulation has also 

been performed (figure 4.22). 
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Figure 4.22. The same as Figure 4.21 with enlarged time scale. 
 

The marked zones in the figure 4.22 represent the surface processes. As can 

be seen they are about 2 orders of magnitude faster than the bulk solution. 

 

George’s group (Livingston et al., 2002) measured bulk and surface diffusion 

in ice of NH3, CH3COOH, CH3OH, HCl and HCOOH and found a diffusion 

coefficient for these substances between 10-16 to 10-9 cm2/s in the 

temperature range of 140 to 200 K. Abbatt et al. (Cox et al., 2005) have 

developed a kinetic model (using Facsimile program) including ice diffusion. 

Relying on this literature observation a kinetic model which accounts for ice 

bulk diffusion has also been created based on the following scheme 
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Figure 4.23. Schematic representation of adsorption on ice with subsequent bulk 
diffusion as expressed by the diffusion coefficient 
 

The diffusion theory indicates that we have a bulk concentration gradient i.e. 

the bulk concentration is a function of the ice depth. Relying on this the 

processes can be described mathematically with the following system of 

ODEs. 

( )

( )( )

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
=

−−−=

−−=

Dt2
xherf

Dt2
xherf

2
1

)0,x(c
)t,x(c

ckccck
r
2

dt
dc

ckccck
dt

dc

0,b

b

sdessmax,sgads
g

sdessmax,sgads
s

 

where the cb is the depth dependent bulk concentration, D is the diffusion 

coefficient, and x is the ice depth. 

The total gas uptake is probably a complicated bulk process which depends 

on several factors like pore diffusion, solvation and ice diffusion, taken with a 

different weight. 

4.6.2. Cluster model 

The background of this model is based on the desorption energies of acetone 

and water molecules from ice surfaces which are, respectively, about 29 and 

48 kJ/mol. The desorption of initially adsorbed acetone molecules on the ice 

surfaces could occur accordingly by two processes 1) acetone desorption 
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from ice with a rate coefficient kdes1 and 2) desorption of clusters of acetone 

and water with rate coefficient kdes2. In the second case acetone molecules 

leave the surface together with one water molecule. The bond energy 

between water and acetone molecules in the cluster is about 29 kJ/mol. The 

concentration of desorbed clusters and single acetone molecules in the gas 

phase is cg2 and cg1, respectively, and their further adsorption is with 

adsorption rate constants kads2 and kads1, respectively. 
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Figure 4.24. A scheme of the cluster model 
 

Once adsorbed on the surface, the clusters or acetone molecules are no 

longer distinguishable, so the surface concentration cs is given by the number 

of adsorbed species per area. These processes are fully described by the 

following system of ordinary differential equations 

( )( )

( )( )

( )( ) ( ) s2des1dessmax,s2g2ads1g1ads
s

s2dessmax,s2g2ads
2g

s1dessmax,s1g1ads
1g

ckkccckck
dt

dc

ckccck
r
2

dt
dc

ckccck
r
2

dt
dc

+−−+=

−−−=

−−−=

 

The gas phase concentration of acetone (cg1) and their clusters (cg2) are not 

detectable separately, i.e. the observed signal is a sum of species. However, 

their contributions can be simulated during the calculation. 
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Figure 4.25. Simulated profiles of temporal evolution of adsorption/desorption 
processes with a cluster model in a CWFT reactor. The dotted lines represent the gas 
phase concentration of acetone molecules and clusters, and the dashed line the 
observed signal. 
 

The profile shape of the sum line strongly depends on the kinetic parameters 

chosen for the simulation. The model has not been completely tested yet, 

however, it explains some particular measurements which cannot be 

explained by the models reported above. 

4.7. Data fits and sensitivity tests of the model 

The measured signal, i.e. gas phase concentration at the end of the reactor 

tube, can be considered as a function of parameters for the respective 

measurement. There are two types of parameters: experimental parameters 

and kinetic parameters. Experimental measurable parameters include 

temperature, pressure, flow rates etc. Kinetic parameters include adsorption 

and desorption rate constants as well as maximum surface coverages. 

Whereas experimental parameters can be easily measured within narrow 

error limits, this is not the case for the kinetic parameters. 
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The developed kinetic model can be considered as a mathematical function 

fmath(exp, kinetic), analogous to the experimental one fexp(exp, kinetic). We 

assume that the values of the kinetic parameters kads, kdes and cs,max 

describing the adsorption desorption processes are accurate, when the two 

functions fexp and fmath have equal output. By data fit we understand a 

consecutive change of the kinetic parameters so that the calculated output 

fmath has as shape identical to the measured one fexp. This procedure has 

been performed manually for the present study. In this chapter more detailed 

information and the most important steps of the fitting procedure are 

presented. 

4.7.1. Initialization of fits 

The typical measured data (fexp) are contained in a table where the change 

of the mass spectrometer signal in laboratory time has been stored. Typically, 

the time step for lab time, where the averaged count pulses is about 0.2 sec; 

2 minutes of typical measurement time will result in about 600 measured 

points. As has been described, the actual timing (moments) of when and how 

the movable injector should move have been defined manually. Thus these 

parameters including temperature, reactor pressure, initial gas phase 

concentration, gas flows, molecular weight of the substance, count pulses 

step and the geometry of the reactor must be entered in the model. 

A typical measurement is presented on the next figure. The times t1 and t2 are 

the starting times for moving the injector forward and backward, respectively. 

These timings were given manually when the measurement has been 

performed. The pointed slopes on the figure 4.26 reflect the kinetic processes. 

Together with this, these parts of the spectrum (stage 2 and 4) are the most 

sensible; therefore by varying the rate coefficients we influence the simulated 

output fmath in order to fit the data.  
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Figure 4.26. A profile of a typical measurement. 
 

4.7.2. Variation of the adsorption rate coefficient 

As was presented, the adsorption coefficient is proportional to the uptake 

coefficient, the average speed of gas molecules and the area of one 

molecule. Whereas the last two terms are theoretically calculated, the 

uptake coefficient is assumed to be a variable for the fitting procedure. 

Therefore varying kads must be considered as the same as varying the uptake 

coefficient. 

The next figure represents the kinetic simulations performed by varying the 

adsorption rate coefficient while keeping the desorption rate coefficient and 

the surface coverage constant. 
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Figure 4.27. Model simulations performed by varying only the adsorption rate 
coefficient by factors 2 and 10. 
 

The simulated spectra were calculated by multiplying the kads parameter by 

factors of 0.1, 0.5, 1, 2 and 10. The desorption rate coefficient and the 

maximal surface coverage were kept constant for the simulations and were 

assumed to have values of 0.05 s-1 and 9 1013 cm-2, respectively. The 

adsorption areas, and hence the total number of the adsorbed molecules 

are proportional by the same factor, because the adsorption capacity KL is 

proportional to kads and kdes, and KL is the ratio between the two. 

Increasing the signal due to the adsorption in stage 2 or the adsorption when 

the injector tip is located at the beginning of the tube (or slope1) is also 

proportional to the adsorption coefficient, i.e. higher kads leads to faster 

completion of the equilibrium conditions in the tube and vice versa. In other 

words, the slope1 is the most sensitive to the kads value. 

An analysis of the desorption drop (or slope2) in dependence on kads change 

is represented on the next figure. 
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Fig 4.28. Logarithmic representation of the desorption signals performed for different 
adsorption rate constants. 
 

The figure clearly shows that the measured drop of the signal during 

desorption is first order only for low values of the adsorption rate coefficient. 

Although the desorption drop is mostly dependent on kdes, some conclusions 

on kads can hence be made as well. 

4.7.3. Variation of the desorption rate coefficient 

The desorption rate coefficient is linearly proportional to the frequency factor 

and exponentially proportional to -Eact/RT. The activation energy Eact can be 

calculated from the Arrhenius plot of kdes versus 1/T. Therefore the value of kads 

which is being varied is the frequency factor. 
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Figure 4.29. Model simulations performed by varying the desorption rate coefficient 
by different factors between 0.1 and 10.0. 
 

The plots were calculated by varying the desorption coefficient by factors 0.1, 

0.5, 1, 2 and 10. The kads value and the maximum surface coverage were kept 

constant. The number of adsorbed molecules is inversely proportional to the 

value of kdes . As can be seen from the figure, the slope of the signal (slope1) is 

only slightly dependent of desorption coefficient. The desorption rate 

influences mostly the measured signal in stage 4 (static desorption). This is 

shown on the next figure. 
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Fig 4.30. Logarithmic representation of the desorption signals performed for different 
desorption rate coefficients. 
 

The plots are similar to lines with slopes proportional to the desorption 

coefficients for each. This part of the measured profiles (stage 4) is the most 

relative to varying kdes. 

4.7.4. Variation of the maximum surface coverage 

Even when both, slope1 (mostly for extracting kads) and slope2 (for kdes), are 

well fitted, one more parameter, usually the maximum surface coverage 

(cs,max), is still needed. Since the areas correlate to the number of adsorbed 

(respectively desorbed) molecules it is this parameter which is supposed to be 

varied. 

The next figure represents the simulations performed for varying the maximum 

surface coverage while the adsorption / desorption rates are kept constant. 
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Figure 4.31. Model simulations performed by varying the maximum surface 
concentration  by different factors. 
 

The simulations show that adsorption and desorption slopes are not 

influenced by changing the maximum surface coverage. The maximum 

surface coverage should be changed however, in order to adjust the kinetic 

fit when the adsorption and desorption coefficients are fixed. 

4.7.5. Sensitivity analysis of the kinetic model 

The demonstrated change of the three kinetic parameters clearly shows their 

influence to the calculated signal. However, the adsorption capacity and the 

absolute number of adsorbed molecules strongly depend on the Langmuir 

equilibrium constant KL which is the ratio between the adsorption and 

desorption coefficients (KL=kads/kdes). The next figure shows the default fit (the 

bold line) and how the adsorption/desorption rates varied by keeping KL 

unchanged. 
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Figure 4.32. Sensitivity of adsorption/desorption peak profiles of acetone on ice 
surfaces on the rate coefficients kads and kdes at T = 198 K. The areas under the peaks 
have been fixed at 7.3x1013 molecules/cm2 as given by the Langmuir constant and a 
gas phase concentration of acetone of cgas = 2x1011 molecules/cm3. 
 

The performed simulations are clearly distinguishable from the measured 

data, although their ratios have been kept constant. The different kinetic 

profiles refer to the same number of adsorbed molecules, which correlates 

only with KL and cs,max. Another sensitivity test is by simultaneous variation of 

the adsorption rate coefficient and the maximal surface coverage in order to 

keep the adsorbed molecules constant. The simulation (of next figure) clearly 

shows different slopes in the time dependent saturation of the tube when the 

injector tip is located at the beginning of the tube reactor (slope1). The reason 

for this, as was discussed above, is that the adsorption rate coefficient kads 

mostly modifies the shape of the adsorption peak rather than that of the 

desorption peak. The slope1 is clearly distinguishable from the three 

simulations within the error interval of less than 50%. 
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Figure 4.33. Model simulations performed by varying the maximum surface 
concentration and adsorption rate coefficient by different factors and keeping the 
number of adsorbed molecules constant. 
 

The last sensitivity test can be made by keeping the equilibrium adsorption / 

desorption rates constant while varying kdes and cs,max. The next figure shows 

the influence of the desorption coefficient to the simulated profile as 

calculated for three different conditions. The bold line is the default fit and the 

next two, are for maximum surface coverages of 0.65 1013 and 1.35 1013 cm-2 

with the desorption coefficients divided and multiplied by factor 2, 

respectively. The graph presented in the next figure clearly shows the 

distinction between the spectra in the desorption area and slope2 on the 

diagram. The change of kdes influences mostly the desorption signal while, the 

adsorption peak shape is more independent of this kinetic parameter. 
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Figure 4.34. Model simulations performed by varying the maximum surface 
concentration and desorption rate coefficient by different factors while keeping the 
number of adsorbed molecules constant. 
 

4.7.6. The two adsorption sites model 

In this case the number of variables is twice as large with kads, kdes and cs,max 

for each of the two surface sites and the fitting procedure is also much more 

complicated. 

Measurement conditions Approximations 
Gas phase 
Concentration 

Temperature Age of the ice 
surface 

 

Low Low Fresh Adsorption only on ice cubic 
sites (Ic) 

Low High Aged Adsorption only on 
hexagonal ice sites (Ih) 

High High Aged Adsorption mostly on Ih 
 

Table 4.1. Connections between measured conditions and acceptable assumptions. 
 

The simulated profile is a function of all six parameters as well as their 

influences and interactions which lead to a more unclear and complicated 
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output. However the measurements under the conditions of only three 

parameters have been selected and this therefore simplified the task. As it is 

comprehensively described in the next chapter, the following general 

conditions are assumed as described in table 4.1. 

Initially reliable kinetic parameters based on these extreme cases have been 

extracted. The second iteration of the fitting was to apply the extracted 

parameters to the other cases. 
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5. Adsorption measurements of acetone on ice surfaces 

 

One of the purposes of the present work was to measure adsorption isotherms 

for acetone on ice in order to extract the enthalpy of interaction and to 

predict the amount of acetone adsorbed on ice surfaces under different 

temperature conditions. The temperature range has been varied between 

190 – 223 K, and the gas phase concentration of acetone was between 5 1010 

to 5 1013 cm-3. Moreover, additional influences to the adsorption capacity of 

acetone on ice such as ageing and ice thickness effects have also been 

studied. The kinetic model described above was used to extract the kinetic 

parameters such as adsorption and desorption rate coefficients and the 

surface coverage, respectively. 

5.1. Langmuir adsorption isotherms 

In phase partitioning the gas phase (cg) and surface concentration (cs) are in 

dynamic equilibrium. The connection between cs and cg is given by the 

Langmuir theory and can be expressed by the following relation: 

max,s
gL

gL
s c

cK1
cK

c
+

=  

where KL is the temperature dependent equilibrium constant for the 

adsorption / desorption processes (KL=kads/kdes) and cs,max is the maximal 

possible concentration of surface sites. A graphical plot of this equation as 

calculated for two different maximum surface coverages of 1 1014 and 0.5 

1014 cm-2 and for two different values of KL (3 10-11 and 1 10-11 cm3) is shown on 

the next figure. 
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Figure 5.1. A theoretical plot of Langmuir isotherms for different values of the 
parameters cs,max and KL. 
 

The diagram shows a faster increase of the number of adsorbed molecules 

(cs) for higher Langmuir constants. Keeping the gas phase concentration 

constant (for example at 2 1011 cm-3), the surface concentration is 

proportional only to the Langmuir constant, and the absolute number of 

adsorbed molecules is higher for the higher maximum surface coverage. By 

increasing the gas phase concentration to infinity in a theoretical case, the 

number of molecules that can be adsorbed on the surface i.e. cs,max, has 

been reached. It is important to note that the equilibrium between cs and cg 

depends only on the ratio between the two kinetic parameters kads/kdes and 

not on their absolute values. 

 

A large number (between 1500 and 2000) of measurements were performed 

in order to extract reproducible data of thermodynamic parameters which 

describe acetone adsorption for different gas concentrations and 

temperatures. The absolute number of adsorbed molecules was initially found 
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by evaluating the adsorption peak (stage 1 and 2) of each measurement. 

The area under this peak represents the total number of adsorbed molecules 

corresponding to the equilibrium condition at fixed gas phase and maximum 

surface concentration and temperature. These areas were calculated by 

integrating each point as shown on the next figure. 
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Figure 5.2. Schematic representation of the procedure of calculating the total area 
the adsorption peak. 
 

The sum of the gray color lines, multiplied by the total number of acetone 

molecules which have entered the reactor (Fmax) will give the total number of 

adsorbed molecules (Nads) in the reactor tube during the Stages 1 and 2. This 

can be presented by the equation 

( )∑ −=
end

0

t

t
maxads Signal1

timestep
1FN  

where “Signal” is the measured and normalized (from 0 to 1) signal, t0 and tend 

are the integration times, respectively, and Fmax is the maximum number of 
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molecules which have entered the reactor tube in the time interval (tend-t0), 

calculated with the equation 

)tt(cvrF 0endgasflow
2

max −= π  

The time step is the step of discrete increase of the laboratory time. For this 

experimental setup and the typical measurements performed it is about 0.2 s, 

i.e. about 5 measured points per second. The absolute numbers of adsorbed 

molecules (Nads) divided to reactor area gives the surface concentration 

r

ads
s lr2

Nc
π

=  

where lr is the reactor length. The surface concentrations derived for constant 

temperature have been plotted against the gas phase concentration. Further 

fit of the data was made in order to extract the Langmuir constant and the 

maximum surface coverage. 

Desorption peaks were analyzed in the same way as applied to the 

adsorption peaks. The areas corresponding to the total number of adsorbed 

and desorbed molecules are identical within the experimental error interval. 

Hence the conclusion can be made that the thermodynamical processes 

which occur in the reactor are fully reversible. No evidence for a permanent 

loss of acetone molecules have been found under these experimental 

conditions. 

5.2. Adsorption / desorption processes and ageing effects 

An important conclusion based on Langmuir theory is that the surface 

coverage and maximum number of adsorbed molecules are proportional 

only to the temperature Langmuir constant, the gas phase concentration 

and the maximum number of free active sites on the surface. In other words, if 

the gas concentration and the temperature are constant, the number of 

adsorbed molecules correlating with the surface coverage on the same ice 

surface shall be constant as well. Usually the daily measurements were 

performed with the same ice film. 

Large discrepancies have been found in the adsorption capacity of acetone 

on fresh ice surfaces compared to aged ice at the end of the day. 
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Depending on the temperature and the gas phase concentration, the 

adsorption ability has been found to decrease by a factor of 8 for aged ice, 

compared to fresh ice. In this chapter a more detailed experimental proof for 

different conditions will be given. The two typical measurements performed 

on fresh and aged ice surfaces are presented on figure 5.3. 
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Figure 5.3. Adsorption and desorption profiles for acetone on ice at T = 198 K and cg 
= 2x1011 cm-3 as obtained by moving the injector sequentially in up-stream and 
down-stream direction. The two profiles are for different ages of the ice surface and 
correspond to a total number of adsorbed molecules of 7.3 1013 cm-2 and 2.4 1013 
cm-2, respectively. 
 

The figure compares two measurements taken under the same conditions 

with the time difference of 280 minutes. The profile taken on fresh ice is the first 

one registered on a surface immediately after it has been generated. The 

adsorption capacity drops by a factor of 3 after 280 min of ageing. The 

estimated surface coverages for both measurements on fresh and aged ice 

surface are calculated to be about a few percent. The analysis of the 

logarithmic drops of the two desorption profiles is presented on the next 
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figure. It clearly shows the existence of two different first order desorption 

processes. 
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Figure 5.4. Logarithmic plot of the decay of the desorption signal for fresh and aged 
ice. 
 

The same experiment was repeated for a one order of magnitude higher gas 

phase concentration (Figure 5.5.). The area corresponding to the absolute 

number of adsorbed molecules for aged ice is about 25% less compared to 

the fresh ice case. This number is nearly identical to the one observed in the 

experiment for lower acetone concentrations, although in that case the 

ageing effects affected the total number of adsorbed molecules by about 

33%.  

The observed ageing effect in the experiments at lower temperatures occurs 

on the time scale of hours. In order to study ageing processes of the ice 

surfaces, the ageing time or the relative laboratory time (RLT) between the 
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measurements have been systematically varied by keeping other parameters 

constant. 
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Figure 5.5. Same as for Figure 5.4 but for an acetone concentration of 1.6 1013 cm-3. 
The change of the adsorption capacity due to ageing amounts to approximately 5 
1013 cm-2. 
 

The resulting adsorption capacity has been measured in each single 

measurement, i.e. the number of acetone molecules adsorbed. The resulting 

variation of this capacity as a function of relative laboratory time is shown in 

Figure 5.6. 

As can be seen from these experiments, this capacity decreases with a time 

constant of ~50 min, and hence an ageing rate constant of ~0.02 min-1, at T = 

198 K. About 60% of the initial capacity has been lost after ageing. The figure 

also shows the result of a simulation study for the temporal change of the 

maximum number of cubic adsorption sites (cs,max(Ic)) using a dynamic two-

site model as described in chapter 4. The parameters used to describe this 

change are kads(Ic) = 5.4 10-13 cm3s-1, kads(Ih) = 3.0 10-14 cm3s-1, kdes(Ic) = 0.31 s-1, 
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kdes(Ih) = 0.1 s-1, cs,max(Ic) up to 1.0 1014 cm-2 (depending on RLT) and      

cs,max(Ih) = 6.0 1014 cm-2. 
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Figure 5.6. Temporal variation of the adsorption capacity (no. of molecules of 
acetone adsorbed per cm2) of ice as a function of the age of the ice surface as 
expressed by the relative laboratory time (RLT). T = 198 K, cg = 2.0 1011 cm-3. 
Comparison of measured (•) and simulated data (+) using a two-adsorption site 
model. 
 

As can be seen from the figure, the adsorption capacity is influenced by the 

ageing only up to 150 minutes of RLT and stays constant at about 2 1013 cm-2 

of equilibrium surface concentration afterwards. The time of reaching 

constant ice surface conditions is shorter at higher temperatures. 

5.3. Adsorption isotherms for differently aged ice surfaces 

Measuring the adsorption isotherms for differently aged surfaces at different 

concentration and temperature ranges became one of the major objectives 

of the present work. The next figure presents the isothermal change for 193K 

on fresh ice surface for a concentration range of up to 3.5 1013 cm-3 of 

acetone molecules. 
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Figure 5.7. Adsorption isotherm of acetone on fresh ice surfaces at 193 K (black dots) 
and thermodynamical fit of the data. 
 

The dashed line represents the adsorption of acetone on cubic ice surface 

sites, calculated for KL = 11.6 10-12 cm3 and cs,max = 9 1013 cm-2 and the dotted 

line accounts for the adsorption of acetone on hexagonal ice with the 

parameters KL = 8 10-14 cm3 and cs,max = 5.3 1014 cm-2. The bold line is a sum of 

both adsorption on cubic and hexagonal sites, hence the total 

thermodynamic equation is 

)I(max,s
g)I(L

g)I(L
)I(max,s

g)I(L

g)I(L
s h

h

h

c

c

c c
cK1

cK
c

cK1
cK

c
+

+
+

=  

As can be seen, for lower gas phase concentrations adsorption is mainly on 

cubic sites, because the adsorption rate is higher for these sites. By increasing 

the concentration the adsorption occurs more and more on hexagonal sites, 

because the cubic surface sites are lower in total number (cs,max for Ic is one 

order of magnitude smaller than cs,max for Ih). In the higher concentration 

range the resulting isotherm is shifted parallel with the maximum number of 



 70 

cubic sites. The next figure is a magnification of the previous one in the 

concentration range up to 2 1012 cm-3. 
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Figure 5.8. The Same as fig 5.7 zoomed in the concentration interval up to 2 1012 cm-3. 
 

The adsorption of hexagonal sites does not occur in the low gas phase 

concentration range. 

The next figure shows the measured adsorption isotherm at T = 193 K for a 

range of acetone concentrations of less than 2.3 1012 cm-3 and for a number 

of different ages of the ice surface. The measured data are enormously 

scattered if taken as measured and if the age of the ice surface is left 

unconsidered. After sorting by relative lab time, single isotherms become 

clear from which Langmuir constants (KL) and maximum coverages (cs,max) 

can be extracted. 
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Figure 5.9. Langmuir plot for acetone adsorption on ice surfaces at T = 193 K and gas 
phase concentration below 2 1012 cm-3. The data encompassed by the different 
curves are (a) for a fresh ice surface (~ 30 min) and (b) an aged ice surface (~220 
min). Within each of the shaded areas cs,max(Ic) changes from 9.5 1013 to 8 1013 cm-2 in 
case (a) and from 5 1013 to 2 1013 cm-2 in case (b). 
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Figure 5.10. Same as Fig. 5.9 but for an extended scale of the concentrations. The 
data shown are obtained for ages of the ice surface between 5-300 min. The upper 
and lower boundary of the shaded area correspond to cs,max(Ic)=10 1013 cm-2 and 2 
1013 cm-2, respectively. In each case cs,max(Ih)=3 1014 cm-2. 
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This figure presents an extension of the data from the previous figure (5.9) up 

to 3.2 1013 cm-3 of acetone gas phase concentration. An important point here 

is that for the aged isotherm the maximum surface concentration is almost 

reached (more than 80% surface coverage). The curves represent the upper 

and lower boundaries of the isotherms, which correlate with the ageing 

effect. They have been calculated from a two-site dynamic model in which 

the maximum number of adsorption sites for cubic ice changes from 10 1013 

cm-2 to 2 1013cm-2 over the time interval 5 to 300 min, whereas the 

corresponding number for hexagonal sites is left time invariant at 3 1014 cm-2. 
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Figure 5.11. Adsorption isotherms for acetone on ice surfaces for temperatures of 198, 
208 and 218 K. The upper and lower boundaries of the isotherms at 198 and 208 K 
reflect fresh (0-5 min) and aged (300 min) ice surfaces, respectively. 
 

As opposed to the adsorption isotherms measured at low temperatures, those 

measured at higher temperatures showed a much weaker ageing effects. 

This is shown in 5.11 where the adsorption isotherms for 198, 208 and 218 K has 

been presented. All the data presented have been taken at ages of the ice 

surface between 10 and 250 min. As opposed to the data at 198 K for which 
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there is still substantial ageing, the effect is becoming smaller at 208 K and no 

longer noticeable for 218 K. The upper boundaries for the isotherms at 198 

and 208 K corresponding to initial maximum numbers of adsorption sites of 

cubic structure at 9 1013 cm-2 and 4 1013 cm-2, respectively. For the lower 

boundaries this number has been set to zero in each case, corresponding to 

complete conversion of cubic into hexagonal sites after ageing. 

The rate coefficients for desorption from the two different sites are presented 

graphically in Arrhenius form in the next figure. 
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Figure 5.12. Arrhenius representation of desorption rate coefficients of acetone from 
cubic and hexagonal surface sites of ice 
 

The most interesting information of this plot is the difference in activation 

energies. Whilst the value for cubic sites is in the order of 49 kJ/mol, the 

corresponding value for hexagonal ice is only around 30 kJ/mol. If the reverse 

process of adsorption is assumed to occur without any barrier, as is indicated 

from our measurements of the temperature dependence of kads, then this 

difference is clearly a reflection of the enthalpies of adsorption which is larger 
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in the case of cubic ice. This is shown in the next figure where we present the 

van t`Hoff plot of the Langmuir constants for each of the crystalline phases. 
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Figure 5.13. Van t’Hoff representation of the Langmuir constants of acetone on 
cubic and hexagonal surface sites of ice. 
 

5.4. Ice thickness influence on adsorption / desorption processes 

Ice thickness is a parameter which is proportional to the coating time of our 

flow reactor (chapter 3.2). Here we will refer to a coating time instead of mass 

of ice per reactor area for simplicity. However, it was found that one hour of 

coating time (for temperature 203K, pressure in the reactor of 3.5 mbar and 

flow of water vapour of 150 sccm) corresponds to 1 gram of ice in the 

reactor. In order to study the ice thickness influence on the adsorption 

capacity we have performed an additional set of measurements for different 

coating times (from 6 to 180 min of coating), temperature and concentration 

ranges. The results, together with a theoretical treatment, will be presented for 

hexagonal and cubic sites, respectively. 
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5.4.1. Ice thickness influence on hexagonal ice sites 

The ice thickness dependence on the maximum number of hexagonal sites 

(cs,max (Ih)) has been studied for experimental conditions at which we assume 

only adsorption on hexagonal sites (mainly aged ice surfaces). The next figure 

presents two measurements of acetone on aged ice (210 min) at 213 K and a 

gas phase concentration of about 2 1011 cm-3. 
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Figure 5.14. Measurements and simulations of acetone adsorption on ice surfaces 
with  different thicknesses for 213 K 
 

The open circles present adsorption of acetone on a thinner ice film (30 min 

of coating) whereas bold circles refer to a thicker film (90 min of coating). The 

two simulated lines were calculated at constant kinetic parameters (kads and 

kdes) and different maximum number of hexagonal sites (assuming 

cs,max(Ic)=0). The figure clearly shows that the adsorption / desorption kinetics is 

independent of the ice thickness, the adsorption capacity, however, is not. 

Hence we cannot explain the increased adsorption capacity by bulk 

penetration (chapter 4.6.1). Therefore for the simulations in figure 5.14 the 

values of 3 1014 and 9 1014 cm-2 were assumed for the maximum number of 
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hexagonal sites cs,max(Ih), respectively for 30 and 90 minutes of coating. The 

next figure summarizes the relation between the maximum number of 

hexagonal sites and coating time at different temperatures. The cs,max(Ih) 

values were extracted by data fitting using the developed kinetic model 

(chapter 4) applied to adsorption measurements of acetone on aged ice. As 

can be clearly seen, the maximum number of hexagonal surface sites is 

proportional to the ice depth (coating time). For still thicker ice films, however, 

the adsorption capacity, respectively, the maximum number of hexagonal 

sites tend to become constant. 
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Figure 5.15. Maximum number of hexagonal sites as a function of the ice thickness. 
Results obtained from  kinetic fits of adsorption / desorption profiles. 
 

Keyser and Leu (Keyser and Leu, 1993) consider an increase of the adsorption 

surface capacity of thicker ice surfaces to be proportional to the increased 

surface porosity. The calculated pore diffusion coefficient is significantly 

higher than the adsorption rate coefficient; hence the surface porosity can 

be included in the kinetic model for which increased adsorbed surface sites 
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has been assumed. In other words, the adsorption / desorption kinetics is not 

influenced by the much faster pore diffusion. 

5.4.2. Ice thickness influence on cubic ice sites 

The same thickness dependence has also been found for the cubic sites. A 

similar data treatment has been done for adsorption of acetone with low gas 

phase concentration on fresh ice surfaces. For these conditions we assume 

preferable adsorption on cubic sites. The next figure presents two 

measurements of acetone on fresh ice surfaces performed at the same gas 

phase concentration of 2 1011 cm-3 and temperature of 198 K. The open 

circles profile corresponds to adsorption on thinner (15 minutes of coating) 

and bold circles on thicker (60 minutes of coating) ice film. 

0 30 60 90 120 150 180 210 240 270
0.0

0.5

1.0

1.5

2.0

2.5

M
S

 S
ig

ba
l [

a.
u.

]

Lab time [min]

 simulation
 60 min of coating
 15 min of coating

 
Figure 5.16. Measurements and simulations of acetone adsorption on ice surfaces 
with  different thicknesses for 198 K 
 

The kinetic model has been applied to the two measurements shown on 

figure 5.16 (the bold lines). For both fits the kinetic parameters for acetone 

adsorption on cubic sites are as follows: kads = 5.4 10-13 cm3s-1 and kdes = 0.1 s-1. 

The maximum surface coverage cs,max(Ic) was calculated to be 7.5 1013 and 

12 1013 cm-2 for both thinner and thicker ice film, respectively. Therefore it can 
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be concluded that the ice thickness influences both the numbers of 

hexagonal and cubic surface sites. Whereas the number of hexagonal sites 

depends only on ice thickness, the number of cubic sites is also time 

dependent. The ageing effect under the experimental conditions was also 

found to be influenced of the ice film thickness. A theoretical explanation of 

this experimental observations can be given by the parcel model (Murphy, 

2003) in which the formation of both cubic and hexagonal ice forms as a 

function of relative humidity have been suggested. The following three 

processes (the next figure) will schematically explain the formation of Ic ice 

and its conversion into Ih. 

 

321

A B C D  
Figure 5.17. A scheme of Ic and Ih formation as suggested by the parcel model. 
 

State “A” from the figure corresponds to relative humidities between 100 to 

160%. Such condition of supersaturated water vapour exists in the reactor 

during the ice film generation where the water vapour (at room temperature) 

has been injected into the cooled tube reactor. For this condition of low 

temperature, entered water vapour in the reactor can be considered as 

super saturated vapour, and to cause instant freezing on the surface. The 

processes 1 and 2 from figure 5.17 correspond to ice film generation. The 

deposition of gaseous water forms ice cubic crystals, and their size increases 

during the coating procedure. The crystal growing process is proportional to 

the water vapour pressure and the sticking coefficient of water on ice which 

has been assumed to be averaged value of 0.15 (Murphy, 2003). In other 

words higher relative humidity contributes to fast crystal growing as well as 

thicker ice film. The crystal size or edge under the experimental coating 

conditions varies between 7 and 15  μm for coating times from 6 to 60 minutes 

(figure 5.18) as shown later. It is important to notice that hexagonal crystals 
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form also at higher relative humidity, so more or less our fresh ice consists of a 

mixture of cubic and hexagonal ice crystals. 

State “C” corresponds to the surface condition right after generating the ice 

film. At this stage cubic ice crystals have the biggest size (edge) and this is so 

called fresh ice surface. The ageing (process 3) starts as soon as the relative 

humidity is being decreased. Cubic ice crystals have a higher vapour pressure 

(Murphy, 2003) i.e. they evaporate by a rate corresponding to their volume to 

surface ratio. Under these conditions the water vapour concentration in the 

gas phase is not enough to form cubic crystals any more and this is the reason 

why Ic transfers to Ih.  
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Figure 5.18. Applying the parcel model to ageing measurements performed at T=198 
K, cg=2 1011 cm-3 and ice film generated for one hour of coating. 
 

Figure 5.18 presents an application of the parcel model to an ageing 

measurement at 198 K, and for an initial gas phase concentration of 2 1011 

cm-3 and 60 minutes of generating the ice film. The open circles represent the 

measured adsorbed molecules on cubic surface sites in units of cm-2 which 

correspond to cs,max(Ic). The dashed line is a logarithmic plot for a rate 

constant of 0.014 min-1 which represents first order transformation of cubic to 
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hexagonal sites. The bold line is the best fit calculated using the parcel model 

and with the edge of cubic ice crystals as a variable parameter of 15  μm. As 

can be concluded from the figure, the Ic to Ih transition can not be explained 

with first order transformation. 
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Figure 5.19. Ageing measurements at constant ice depth and different temperatures. 

 

The ageing effect at different temperatures is presented in fig 5.19. As can 

clearly be seen the cubic sites drop is inversely proportional to temperature. 

As was explained above the Ic to Ih change is proportional to the evaporation 

rate of cubic sites which is proportional to temperature. The measured surface 

concentrations cs(Ic) and theoretical fits for RLT=0 for the three temperatures 

are shifted according to the Langmuir constant. In other words when the 

maximum surface coverage is constant the adsorbed molecules are 

proportional to the Langmuir constant and inversely proportional to the 

temperature. According to the parcel model the relative humidity (RH) is the 

reason for Ic to Ih transformation. On the other hand the RH is proportional to 

the water vapour pressure and respectively, the kads/kdes ratio of water. The 
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kads coefficient is also slightly temperature dependent and we can assume it 

to be a constant at a sticking coefficient fixed to 0.15. 
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Figure. 5.20. Arrhenius representation of the conversion energy of cubic to 
hexagonal ice. The slope corresponds to 47 kJ/mol 
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Figure 5.21. Ice thickness (coating time) influence on the ageing at 198 K 
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Hence we can conclude that the Arrhenius plot will produce the conversion 

energy from cubic to hexagonal ice (figure 5.20). The slope of the fitted line 

through the data points corresponds to a conversion energy of about 47 

kJ/mol. The ageing effects for different ice thicknesses but constant 

temperature of 198 K are presented in figure 5.21. The measured data have 

been fitted using the parcel model. Water vapour for 198 K has been taken 

0.2 Pa (NIST Webbook, 2005). As variable we used crystals edge for cubic 

crystals. The result values of the fit shown in fig 5.20 are 7, 8.8 and 15  μm for 

ice coating time of 6, 15 and 60 minutes, respectively. 

The measured surface concentrations cs(Ic) and theoretical fits for RLT=0 for 

the three different coating times (ice thicknesses) are shifted according to the 

size (edge) of cubic ice crystals. 

5.5. Sensitivity of the thermodynamic fits 

The thermodynamic fits are made by plotting a regression line through the 

data points corresponding to equilibrium conditions. The adsorption isotherms 

in this chapter were fitted by applying the Langmuir adsorption / desorption 

theory, respectively, for adsorption on one and two different adsorption sites. 

The fit was done by varying the equilibrium Langmuir constant and the 

maximal number of active surface sites. The result is cs versus cg. In this 

chapter we show the reliability of the fits by testing the sensitivity of the 

parameters that have been varied. For simplicity, the Langmuir model which 

accounts for adsorption on one type surface sites has been chosen. 
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Figure 5.22. Sensitivity tests and measurements at 193 K. 
 

The figure shows the sensitivity of the parameters Langmuir constant (KL) and 

maximum surface coverage (cs,max(Ic)) for cubic ice. The default fit (the bold 

line) is the best fit through the data points (the black dots). Four additional 

simulations have been performed by varying KL by a factor a 2 (the dotted 

lines) and cs,max(Ic) by a factor of 2 (the dashed lines). The numbers in the 

squares show the RLT for each of the measurements taken. As can be seen 

the discrepancies between the default (the best) fit and measured data 

increase with increasing gas phase concentration. Varying the parameters by 

a factor of 2 shows that they are clearly distinguishable. Hence the 

thermodynamic fits and extracted parameters like KL and cs,max are reliable 

within the experimental error. 
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6. Error analysis 

 

To estimate the errors and the reliability of the final results and the conclusions 

the scheme presented in the next figure was used. In this chapter the errors 

and inaccuracy will be shown and discussed for each step of the present 

study. 

Input data

Pressure
Temperature
Flow rate
MS Signal

Dependent
  variables

Gas phase
concentration

Flow velocity

Kinetic model

Cubic ice
kads, kdes, cs,max
Hexagonal ice
kads, kdes, cs,max

Experiments

T, p, F, cg,...
 

Figure 6.1. A typical block scheme of the experiments 
 

The input parameters (Input data) include the measurable quantities. Each of 

them has a statistical error of about 1% reported from the manufacturer. The 

measured values were respectively the pressure of the reactor (p [mbar]), the 

pressure of the substance in the flask (pb [mbar]), the total pressure of the 

bottle (pt [mbar]), injector flow (Fi [sccm]), carrier gas flow (Fc [sccm]) and the 

temperature of the reactor (T [K]). The complete set of measured equipment 

was calibrated and further systematical errors will not be taken into account 

nor discussed in this chapter.  

The inaccuracy of the calculated gas phase concentration and flow velocity 

can be given by the following two equations for the gas phase 

concentration: 
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and the flow velocity:  
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where the single statistical errors  Δ are multiplied by the first derivation of the 

equation for cg, and respectively vflow discussed in chapter 3. Calculated 
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intervals of indefiniteness are for Δcg = 10% and for vflow less than 2%. In order 

to estimate how much the cg error influence the observed signal a simulation 

at 200K has been performed, and gas phase concentration 2 (±10%) 1011 cm-3 

(figure 6.2). 
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Figure 6.2. A simulation at T=200K, and cg=2 1011 cm-3 (the bold line). The dotted 
accounts the change of the observed signal when the gas concentration is varied 
with 10%. The dashed line is simulation for on order higher gas concentration. 
 

As can be seen the 10% errorbar in the gas phase concentration leads to 

insignificant change of the resulting signal. The change of the surface 

concentration concerning the cg change of 10% is about 5% according to 

figure 6.2. 

The third stage is the one where experiments were carried out. For the present 

work nearly 2000 single measurements were taken and more than 1000 were 

analyzed and fitted with the kinetic model. However it must be noted that the 

adsorption/desorption areas for experiments at high gas phase concentration 

or high temperature were relatively smaller (figure 6.2 – dashed line). Such are 

most of the conditions for describing the processes affecting adsorption on 

hexagonal sites. 
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Fitting the adsorption and desorption slopes (slope 1 and slope 2) is more 

inexact compared to the cubic sites, therefore reported values (such as 

kads(Ih), kdes(Ih) and cs,max(Ih)) are comparatively more inaccurate than those 

for Ic. Considering these values and error intervals, at last desorption energies 

are derivable kinetically from Arrhenius by the equation: 

( )desads klnTH −=Δ  

and thermodynamically from Van t’Hoffs plot: 

( )Lads KlnTH −=Δ  

where the energetic barrier ΔHads is described in chapter 5.3. 
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7. Discussions and comparison with literature data 

 

Acetone adsorption on ice has been investigated in two directions: 

experimentally and theoretically. The results of the different experimental 

techniques such as coated wall flow tubes (CWFT) (Behr et al., 2003; Behr et 

al., 2004; Peybernes et al., 2004; Winkler et al., 2002), chromatography 

(Bartels-Rausch et al., 2004; Bartels-Rausch et al., 2005; Guimbaud et al., 

2003), Knudsen cells (Hudson et al., 2002) and volumetric methods (Domine 

and Rey-Hanot, 2002) together with some theoretical studies using quantum 

chemical and molecular dynamical approaches (Girardet and Toubin, 2001; 

Marinelli and Allouche, 2001; Picaud and Hoang, 2000; Picaud et al., 2000) 

are summarized in table 7.1 with respect to adsorption enthalpies (ΔHads) 

and the maximum numbers of adsorption sites (cs,max). The most important 

fact to note from this table is the inconsistency/variability of the enthalpy of 

adsorption which differs by almost a factor of two between the different 

studies. Since this quantity reflects the energy change upon interaction of gas 

phase acetone with an ice surface it will depend on a number of parameters 

(surface coverage, surface morphology and porosity, surface 

crystallographic phases and imperfections), none of which can be 

considered as genuinely invariant between these studies. Moreover, since 

there is no easy method or technique available by which such variations 

could be quantified or controlled the comparison between these results can 

at best be qualitative. Nevertheless, one of the experimental parameters 

which can be reasonably well controlled is surface coverage. As seen from 

table 7.1 most of the experiments performed at low surface coverages (0.01 % 

< θ < 7%) yield “high” values of adsorption enthalpies in the order of -50 ± 6 

kJ/mol. This is consistent with the value obtained in the present work for a fresh 

ice surface and a low gas phase concentration (< 1011 cm-3) and which is 

attributed to adsorption on cubic ice. Similarly high values of ΔHads  were also 

obtained in a series of chromatographic studies using different ice 
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(polycrystalline, single crystal) and snow samples (Bartels-Rausch et al., 2004). 

Although the experiments were performed on ice samples of different origin 

and thermal history, preferred adsorption on dislocations and imperfections 

on the ice surfaces cannot be excluded. 

T / K ΔHads / kJ mol-1 cs,max / 1014 cm-2 Technique 

0 -31,2d  Ab initio 

 -53,4e   

0 -49 2,45 MD 

50 -46,3 2,45 MD 

150 -41,8 2,45  

175  -38,9  1,27  

Average -43,8c  Semi  

193-213 -55 ± 7 - Volumetric  

198-223 -46 ± 7 2,7 ± 0,7 CWFT 

190-223 -43,7 ± 7,9 14g CWFT 

193-223 -48,1 ± 3,1 1,37 ± 0,13 CWFT/Langmuir 

193-223 -50,3 ± 2,5 1,30 ± 0,18 CWFT/BET 

203-223 -46 ± 3 < 5%f CWFT 

205-243 -54,4 ± 7,6i 
-56,0 ± 2,8j 
 

< 5%f Chromatography  

198-223 -52c 0,1-6%f Chromatography 

130-180 K -35 ± 2a 100%f TD 

 -40 ± 2b 100%f,h  

190-220 K -49±3 ≤ 1g,h CWFT 

 -32±6 6g  

Table 7.1. Summary of literature studies for the adsorption enthalpies (Hads) and 
maximum umber of surface sites (cs,max) for the adsorption of acetone on ice 
surfaces. 
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a α State. b β State. c Average value (4 diff. types of ice). d Adsorption on a 

non defective surface. e Adsorption on a defective surface. f Value obtained 

at this % of the full surface coverage (2.5 1014 [cm-2]) g Adsorption capacity 

depends on ice mass. h Annealing reduces adsorption capacity. i Ice spheres. 
j Aged snow. CWFT: Coated Wall Flow Tube. TD: Thermal Desorption. MD: 

Molecular Dynamic 

 

Ageing effects, however, have not been reported. From more systematic 

investigations of the dependence of ΔHads on the extent of surface coverage 

Crowley’s group (Winkler et al., 2002) suggest a systematic trend to 

decreasing values of ΔHads for increasing coverages even below total surface 

coverages of 0.07%. This trend could easily be reconciled if coverages were 

approaching or even exceeding a monolayer. They are difficult to 

understand though if surface coverages are extremely low and in a range 

where consecutive adsorption events do not influence each other 

energetically. In contrast to all other experimental techniques Knudsen cell 

experiments by Tolbert’s group (Hudson et al., 2002) produce a much lower 

value for the enthalpy of adsorption (ΔH°ads = - 28 ± 7 kJ). This is difficult to 

explain solely on the basis of surface coverages since Knudsen cells operate 

by definition at very low concentrations and coverages.  

In the present investigation a “low” value for the adsorption enthalpy was 

obtained for an aged ice surface which accounts the adsorption of acetone 

on ice with hexagonal structure. This finding is in agreement with a 

theoretically predicted result for the adsorption of acetone on a proton 

ordered ice surface (Marinelli and Allouche, 2001). Moreover, direct 

observations of the molecular surface structure under experimental conditions 

similar to those described by Hudson et al. support the assumption, that the 

value of ΔH°ads = - 28 ± 7 kJ was measured on a ordered hexagonal ice 

surface. This structure has a “full-bilayer termination”, meaning that molecules 

in the outer layer are bound to the three molecules in the layer below and 

have just one dangling bond pointing outward, the typical termination of the 
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upper surface of the hexagonal ice structure (Braun, 1998; Materer et al., 

1997). 

Further evidence for the energetic and structural details of gas phase 

acetone interacting with an ice surface has been obtained from MD 

calculations. From investigations of this interaction on proton-ordered ice at 0 

K Girardet’s group (Picaud et al., 2000) found that under these conditions 

acetone forms an ordered layer on the ice surface with 2 molecules of 

acetone per surface unit cell of ice. Hence a monolayer of acetone on ice 

was found to consist of 2.45⋅1014 cm-2, adsorbed with an energy ΔUads = - 49 

kJ/mol. Using the same approach, Picaud and Hoang (Picaud and Hoang, 

2000) performed calculations at temperatures between 50 and 150 K, 

whereupon ΔUads was found to decrease to -46.3 kJ/mol and -41.8 kJ/mol at 

50 and 150 K, respectively. The temperature dependence of the adsorption 

enthalpy was assigned to the increasing flexibility of the surface molecules 

with increasing temperature. As opposed to MD calculations ab initio 

calculations as performed by Marinelli and Allouche (Marinelli and Allouche, 

2001), indicate quite different adsorption enthalpies with -53,4 kJ/mol for the 

adsorption on molecular defects on the ice surface in comparison to -31.2 

kJ/mol on proton ordered hexagonal ice. 

In summary, whilst the majority of experiments performed at low coverages, 

including our own, produce a high value of the adsorption enthalpy, there is 

also experimental evidence for lower values. The theoretical results indicate 

high values only in the presence of surface imperfections whilst lower values 

correspond to adsorption on perfectly ordered hexagonal structures. Except 

for our own work ageing effects have as yet not been reported. 

A further inconsistency in the literature data of table 7.1 is the maximum 

surface coverage cs,max for which values between 1.3 1014 to 1.4 1015 cm-2 

have been found. From gas phase vapour deposition under our experimental 

conditions and for a coating time in the order of one hour a total number of 

active surfaces sites in the order of about 1 1015 cm-2 is found in our present 

experiments. This is in agreement with the ESEM and BET studies of Keyser and 

Leu (Keyser and Leu, 1993) and Leu et al. (Leu et al., 1997a) and a previous 



 91 

value from our group (Behr et al., 2003). As opposed to these results all 

experiments performed on frozen liquid water films produced much lower 

maximum numbers of active surface sites. This difference is most likely due to 

surface morphology for which vapour deposition produces a larger roughness 

and hence larger specific surface areas. 

A major finding of the present work is the effect of ageing of the adsorption 

capacity. When generating ice films from the condensation of water vapour 

at low temperatures ( ≤ 200 K ) cubic ice seems to be the preferentially 

formed ice modification (Hobbs, 1974; Keyser and Leu, 1993). Moreover, there 

is evidence from a number of other observations that Ic forms easily at lower 

temperatures. For instance, supercooled water preferentially freezes to cubic 

ice at sufficiently cold temperatures (Huang and Bartell, 1995). Clusters of 

4000–6000 water molecules have been shown to nucleate exclusively to Ic 

when cooled by evaporation to 200 K (Huang and Bartell, 1995). Rapid 

quenching of 3 μm droplets on a cryoplate led to Ic at 190 K but to Ih at 200 K 

(Mayer, 1987). However, cubic ice is a metastable phase which tends to 

transform into the thermodynamically stable hexagonal phase on a time 

scale of several 10 minutes at temperatures around 200 K (Chaix et al., 1998; 

Davy and Somorjai, 1971; Keyser and Leu, 1993; Dowell and Rinfret, 1960; 

Kumai, 1968). 

Different adsorption behaviour of acetone on ice surfaces depending on the 

thermal history of the ice has previously been observed in thermal desorption 

(TPD) experiments under ultrahigh vacuum (UHV) conditions (Schaff and 

Roberts, 1994; Schaff and Roberts, 1996; Schaff and Roberts, 1998). From the 

preparation of thin ice films (10-100 monolayers) by condensation of water 

vapour onto the cold (90-130 K) metal substrate two desorption peaks of 

acetone at 140 and 157 K, designated α- and β-acetone, respectively, were 

observed during TPD. Assuming first-order desorption kinetics and frequency 

factors of 1013 s-1 (Yates, 1985) the corresponding activation energies were 

approximately 35 and 40 kJ mol-1, respectively. Annealing of the ice surface 

leads to irreversible change of the desorption behaviour for which only the 

lower temperature state (α-acetone) was observed, very much in agreement 
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with the present findings on the kinetics of acetone adsorption under surface 

ageing conditions. These authors, however, differ from us in assigning the 

higher temperature desorbing ß-acetone to correspond to an adsorption on 

amorphous ice rather than cubic ice. Whilst the existence of a thermally 

metastable cubic ice phase has i.e. been suggested from electron 

microscopy and electron diffraction studies (Kumai, 1968) other observations 

favour the existence of amorphous ice at temperatures below 140 K (Burton, 

1935). IR-spectroscopic studies performed by Schaff and Roberts (Schaff and 

Roberts, 1994; Schaff and Roberts, 1996; Schaff and Roberts, 1998) also 

indicated differences in the surface chemical structure of the two ice phases. 

Experiments reported by Chaix et al. (Chaix et al., 1998) for the adsorption of 

D2O on ice suggest that both the method of preparation and the thermal 

history of the ice sample influence the morphology and the microstructure of 

the sample and hence its adsorption kinetics. For instance, it was found that 

the annealing of cubic ice, prepared by condensing water vapour at 140 K, 

reduces the γ value for adsorption of D2O irreversibly by a factor of two.  

As discussed in the above sections of this work we suggest that the observed 

ageing behaviour of our ice films, as noted at lower temperatures, is caused 

by a change of the crystallographic phase of available surface sites, namely 

from cubic to hexagonal. Any other explanation for the observed ageing 

effect, i.e. a change of surface topography or morphology, is left 

unconsidered, albeit not unlikely. Moreover, since we have no direct 

evidence for the assumed crystallographic change we have attempted to 

relate our observations to other evidence reported in the literature (Dowell 

and Rinfret, 1960; Murphy, 2003).  

One of the more significant and characteristic observations of cubic to 

hexagonal ice conversions that have been reported is the rate of change 

and its temperature dependence (Bertie et al., 1963; Dowell and Rinfret, 

1960). Measurements in the temperature range 160 – 220 K indicate 

activation energies in the order of 34 kJ/mol and characteristic times 

between 104 and 10 min (Dowell and Rinfret, 1960). This is very much 

consistent with the findings of the present work and therefore lends 
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independent support for our conclusions. Formation of metastable cubic ice 

and its subsequent thermal conversion into stable hexagonal ice is supposed 

to occur because the rate of surface reconstruction to a structure of lower 

potential energy is slow in comparison to the rate of condensation. In 

addition, cubic ice may have a more energetic and reactive surface with 

highly irregular surface structure and a substantial fraction of incompletely 

coordinated surface water molecules. Indeed computer simulation suggest 

significant modification of the ice surface structure with respect to the cubic 

crystalline interior, toward loss of lateral order at 200 K (Devlin and Buch, 1995). 

During annealing a transition of the ice structure from cubic to hexagonal is 

expected (Dowell and Rinfret, 1960; Murphy, 2003). 

The next figure represents a literature comparison for the temperature 

dependent transformation of cubic to hexagonal ice. The dashed line is 

calculated by first order assumption of Ic to Ih change.  

 
Figure  7.1. Transformation half time of cubic to hexagonal ice (Murphy, 2003). 
 

The points on the figure express the half life time of cubic to hexagonal sites 

transformation. The two dotted and bold lines were calculated by edges of 

the cubic crystal, of 5 and 20 μm, respectively. The black dots present 

calculated (chapter 5.4.2) points of our work with cubic crystals size of 15 μm 

i.e. ice thickness corresponds to a coating time of about 1 hour. 
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The results of our study have not unravelled all of the discrepancies / 

inconsistencies in the set of available literature studies on the adsorption 

behaviour of acetone on ice surfaces. These discrepancies are thought to be 

jointly caused by insufficient experimental control over parameters such as 

surface morphology, total available surface area, number of active 

adsorption sites, crystallographic phases and their imperfections etc. 
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8. Summary of numerical results 

 

The results in table 8.1 present our kinetic rate coefficient as calculated 

adsorption from the application of a kinetic model for acetone on ice. The 

activation energy for desorption is also presented for both cubic and 

hexagonal sites, calculated form the Arrhenius dependence of ln(kdes) versus 

1/T. 

 Cubic Ice Hexagonal Ice 
T kdes / s-1 kads / 10-13 cm3s-1  kdes / s-1 kads / 10-14 cm3s-1 
193 0.04 5.30 - - 
198 0.09 5.37 0.31 4.03 
203 0.18 5.44 0.55 4.08 
208 0.39 5.50 0.64 4.13 
213 0.67 5.57 1.08 4.18 
218 - - 1.66 4.22 
γ (8±1) 10-2 (6±1) 10-3 
 Eact, des /kJ mol-1 Eact, des / kJ mol-1 
 48±3 29±6 
Table 8.1. Summary of kinetic rate coefficients for the interaction of acetone 
(adsorption, desorption) with ice surfaces in the temperature range T = 193 – 218 K 
differentiated for cubic (Ic) and hexagonal (Ih) ice. 
 

 Cubic Ice Hexagonal Ice 
 KL / 10-12 cm3 

(Th) 
KL / 10-12 cm3 
(Km) 

KL / 10-14 cm3 
(Th) 

KL / 10-14 cm3 
(Km) 

193 11.6 13.3 - - 
198 6.7 6.0 15.1 13.0 
203 3.4 3.0 7.4 7.4 
208 1.2 1.4 6.4 6.5 
213 0.7 0.8 3.2 3.9 
218 - - 2.5 2.5 
 Eact / kJ mol-1 (Th) Eact / kJ mol-1 (Km) 
 49±3 32±6 
 cs,max / cm-2 cs,max / cm-2 
 ≤1 1014 6±1 1014 
Table 8.2. Summary of adsorption constants (KL, cs,max) for the interaction of acetone 
(adsorption, desorption) with ice surfaces in the temperature range T = 193 – 218 K 
differentiated for cubic (Ic) and hexagonal (Ih) ice. Th = Thermodynamics, Km=Kinetic 
Model 
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Table 8.2 summarizes the calculated adsorption constants using both 

thermodynamical (Th) and kinetic model (Km) with respect to hexagonal and 

cubic sites. 

Table 8.3 presents the calculated lifetimes of cubic to hexagonal ice 

transformation for an ice thickness corresponding to a coating time of 1 hour. 

T [K] Half time [min] 
213 4 
208 8 
203 17 
198 50 
193 89 
188 178 
 
Table 8.3. Transformation of cubic to hexagonal ice for ice depth corresponding to 1 
hour of coating time 
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