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Abstract

This thesis describes and characterizes an advanced range camera for the dis-
tance range from 2 m to 25 m and novel real-time 3D image processing al-
gorithms for object detection, tracking and classification on the basis of the
three-dimensional features of the camera output data.
The technology is based on a 64x8 pixel array CMOS image sensor which is
capable of capturing three-dimensional images. This is accomplished by exe-
cuting indirect time of flight measurement of NIR laser pulses emitted by the
camera and reflected by the objects in the field of view of the camera.
An analytic description of the measurement signals and a derivation of the
distance measuring algorithms are conducted in this thesis as well as a com-
parative examination of the distance measuring algorithms by calculation, sim-
ulation and experiments; in doing so, the MDSI3 algorithm showed the best re-
sults over the whole measurement range and is thus chosen as standard method
of the distance measuring system.
A camera prototype was developed with a measurement accuracy in the cen-
timeter range at an image repetition rate up to 100 Hz; a detailed evaluation
of the components and of the over-all system is presented. Main aspects are
the characterization of the time critical measurement signals, of the system
noise, and of the distance measuring capabilities.
Furthermore this thesis introduces novel real-time image processing of the out-
put data stream of the camera aiming at the detection of objects being located
in the observed area and the derivation of reliable position, speed and accel-
eration estimates. The used segmentation algorithm utilizes all three spatial
dimensions of the position information as well as the intensity values and thus
yields significant improvement compared to segmentation in conventional 2D
images. Position, velocity, and acceleration values of the segmented objects are
estimated by means of Kalman filtering in 3D space. The filter is dynamically
adapted to the measurement properties of the according object to take care of
changes of the data properties. The good performance of the image processing
algorithms is presented by means of example scenes.
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Kurzfassung

Diese Arbeit beschreibt und charakterisiert eine neu entwickelte Entfernungs-
kamera für Reichweiten von 2 m bis 25 m und spezielle 3D-Echtzeit-Bildverar-
beitungsalgorithmen zum Detektieren, Tracken und Klassifizieren von Objek-
ten auf der Grundlage der dreidimensionalen Kameradaten.
Die Technologie basiert auf einem 64x8 Pixel CMOS Bildsensor, welcher im
Stande ist, dreidimensionale Szenen zu erfassen. Dies wird mittels indirekter
Laufzeitmessung von NIR Laserpulsen, die von der Kamera ausgesandt und
an Objekten im Blickfeld der Kamera reflektiert werden, realisiert.
Eine analytische Beschreibung der Messsignale und eine darauf aufbauende
Herleitung der verschiedenartigen Entfernungsmessungsalgorithmen wird in
dieser Arbeit ebenso durchgeführt, wie die vergleichende Betrachtung der Ent-
fernungsmessungsalgorithmen durch Rechnung, Simulation und Experimente;
dabei zeigt der MDSI3-Algorithmus die besten Ergebnisse über den gesamten
Messbereich, und wird deshalb zum Standardalgorithmus des Entfernungs-
messsystems.
Ein Kameraprototyp mit Messgenauigkeiten im cm-Bereich bei einer Bild-
wiederholrate bis zu 100 Hz wurde entwickelt; eine detaillierte Evaluierung der
Komponenten und des Systems ist hier beschrieben. Hauptaspekte sind dabei
die Charakterisierung der zeitkritischen Messsignale, des Systemrauschens und
der Entfernungsmesseigenschaften.
Desweiteren wird in dieser Arbeit die neu entwickelte Echtzeit-Bildverarbeitung
des Kameradatenstroms vorgestellt, die auf die Detektion von Objekten im
Beobachtungsbereich und die verlässliche Ermittlung von Positions-,Geschwin-
digkeits- und Beschleunigungsschätzwerten abzielt. Der dabei verwendete Seg-
mentierungsalgorithmus nutzt alle drei Dimensionen der Positionsmesswerte
kombiniert mit den Intensitätswerten der Messsignale, und liefert so eine sig-
nifikante Verbesserung im Vergleich zur Segmentierung in konventionellen 2D
Bildern. Position, Geschwindigkeit und Beschleunigung werden mit Hilfe eines
Kalman-Filters im 3-dimensionalen Raum geschätzt. Das Filter passt sich dy-
namisch den Messbedingungen des jeweils gemessenen Objekts an, und berück-
sichtigt so Veränderungen der Dateneigenschaften. Die Leistungsfähigkeit der
Bildverarbeitungsalgorithmen wird anhand von Beispielszenen demonstriert.
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Chapter 1

Introduction

1.1 Motivation and Purpose

The work of this thesis was motivated by the research project UseRCams,
which is a subproject of PReVENT [1]; the PReVENT project is an activity
of the European automotive industry partly funded by the European Commis-
sion to contribute to road safety by developing and demonstrating preventive
safety technologies and applications. Within this framework UseRCams is de-
voted to vulnerable road user (VRU) protection, collision mitigation and blind
spot surveillance. Main objectives are thereby the development of an active
camera device for 3-dimensional (3D) image acquisition of traffic scenarios and
the development of adequate image processing algorithms for object segmen-
tation, tracking and classification; these objectives are also central points of
this thesis.

The following three different areas of future applications in vehicle near-to-
intermediate surrounding (0.2 m - 20 m) are basic for the camera and algorithm
development work within UseRCams (see also figure 1.1):

a) The Front-View-Application aims at the surveillance of the vehicle
frontal proximity (2 m - 20 m) while driving in urban areas. The gained
3D information is being processed in real-time to provide information
about potential dangers in this area. The protection of VRUs as well
as the mitigation of collisions with preceding or oncoming vehicles is
considered. As this scenario comprises the highest requirements to the
camera device, the main focus in this thesis is set to this application.

b) The Side-View-Application addresses the monitoring of vehicle lateral
proximity in the range from 0.2 m to 2 m; goal is the reliable detection
and tracking of objects which potentially could hit the vehicle on the
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side. This could improve the time-critical activation of airbags or other
collision mitigation features enormously; an important feature in view of
the risk potential of lateral impacts due to the poor lateral deformable
zones of most vehicles.

c) The Blind-Spot-Application aims at the surveillance of blind areas
in the surrounding of a vehicle. In UseRCams the focus is set on the
monitoring of the frontal and lateral blind areas of tracks for ’start inhibit
applications’, i.e. if any objects are identified in the near surrounding of a
truck (up to a distance of 4 m - 8 m) the driver is prevented from setting
the vehicle in motion.

a

b

c

Figure 1.1: UseRCams covered areas

According to these planned future applications of the 3D imaging system fol-
lowing central points were derived as goals of the 3D camera system develop-
ment in the specification phase of the project [2]:

• Sufficient horizontal and vertical pixel resolution to image persons up to
distances of over 20 m without violation of the sampling theorem

• Sufficient distance measuring accuracy to provide accurate distance data
for the subsequent image processing procedures

• Adequate image repetition rate to allow real-time image acquisition and
image processing
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• High dynamic range image sensor to cover the whole range of required
distance (2 m - 20 m for the front view application) and object reflec-
tivity (5% to 100% Lambertian) dynamics with a distance measurement
accuracy of 3%

As targets for the development of the image processing software were defined:

• Reliable segmentation of objects in the 3D raw data

• Tracing of objects over frame sequences

• Derivation of estimates for position, velocity and acceleration data from
sequences of measured object position data by Kalman filtering

• Object classification according to the application requirements

The here presented work describes the details of the UseRCams 64x8 pixel time
of flight (TOF) camera development and the novel image processing approach
according to the above mentioned development targets. See the following sec-
tion for a detailed survey of the contents of this thesis.

1.2 Structure of this Work

This thesis describes and characterizes the advanced 3D time of flight (TOF)
camera system and the novel image processing approach for the gained 3D
data. Its structure is as follows:

Chapter 1 introduces the subject matter by pointing out the motivation for
the work described in this thesis and gives a short overview over the contents
of this thesis.
In Chapter 2 an introduction of non-contact distance measurement tech-
niques is given; this should make clear the preeminent advantages of the here
used pulse based TOF measuring principle over other distance measurement
techniques in the considered applications.
Chapter 3 introduces the theory of pulse based distance measurement. Start-
ing from the basic concept of the TOF measurement, over the signal-theoretic
description of the distance information extraction, it leads to a description of
several distance derivation algorithms.
Chapter 4 is devoted to the description of the 3D-CMOS sensor system. In
4.1 all components are described, which are investigated using various mea-
surements in 4.2. 4.3 addresses camera calibration issues.
A close examination of the different distance measuring algorithms is presented



4 1. INTRODUCTION

in Chapter 5. Based on mathematical analysis, simulation results, and ex-
periments, the algorithms are compared to derive the best possible system
configuration. Additionally, techniques for managing the influence of adverse
effects, such as ambient light, rain, and snowfall are introduced.
Chapter 6 describes the image processing algorithms that are applied to the
distance image sequences. Main parts are here the object segmentation in
chapter 6.3 and the object tracking based on Kalman filtering in chapter 6.4.
Chapter 7 gives an overview over the variety of possible application areas of
the 3D-CMOS sensor.
Finally Chapter 8 recapitulates the main results and innovations gained
through this work and presents further approaches for promising research in
this area.



Chapter 2

Overview of Non-Contact
Distance Measurement

The measurement of distances is essential for many technical applications. The
classical direct distance measurement, which means the direct comparison of
the distance with a calibrated ruler, is the oldest and most obvious method,
but not applicable in many cases. Therefore various indirect distance measure-
ment procedures were developed throughout the centuries; here the distance is
derived of any distance depending measure which is easier to access than the
distance itself. The most important subgroup of the indirect distance measure-
ment is the non-contact distance measurement, as many technical applications
require distance measurement without any physical contact between the dis-
tance meter and the measured object. Therefore, up from the beginning of
the 20th century measurement procedures using sound waves and electromag-
netic waves to transfer the distance information to the measuring instrument
have been developed. Figure 2.1 gives an overview of todays most common
non-contact distance measuring methods, which are closer described in the
following sections.

2.1 Sonar and Radar

Sonar (sound navigation and ranging) systems derive the distance between
the sonar device and an object via time of flight (TOF) measurement [3]. As
depicted in figure 2.2, a sonic measuring impulse is emitted by the sender and
propagates through the supporting medium (air, water, etc.) with the accord-
ing propagation speed v. If the sound waves meet objects on their course of
propagation, the waves are partly reflected back. This reflections can be de-
tected by the sender/receiver device, what enables a measurement of the time
τTOF elapsed between the sending and the receiving of the sound impulse. In-
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Indirect TOF Measurement

Pulse BasedContinuous Wave

Interferometry Stereo Vision

RadarSonar Optical Methods

TOF Measurement

Direct TOF Measurement

Non-Contact Distance Measurement Methods

Figure 2.1: Non-contact distance measurement methods

serting τTOF and v in the TOF-equation (2.1) results in finding the searched
distance of the object.

TOF-equation:

d = v · τTOF

2
, (2.1)

with d being the sought-after object distance from the measurement device,
v the velocity of propagation of the used wave and τTOF the time measured
between sending and receiving of the measurement signal.
The use of several sonar sensors in parallel or scanning of a single sensor in
horizontal and/or vertical direction enables the acquisition of 3-dimensional
distance images.
Many different frequency bands are used in sonar systems depending on the
application, from 20 Hz for long distance sonars in submarines, over 40 kHz at
ultrasonic distance sensors in the automotive and industrial fields (parking aid,
etc.), up to 1 MHz - 40 MHz for diagnostic ultrasonic imaging in the medical
area.
Main disadvantages of this technology are low repetition rates of the measure-
ment resulting from the comparatively slow propagation speed of the sound
waves (compared to electromagnetic waves), as well as the poor horizontal and
vertical resolution due to the propagation behavior of sound waves.

Radar (radio detection and ranging) technology [4] again is based on TOF
measurements. But here microwaves (100 MHz - 300 GHz) are used as mea-
suring signal, whose time of flight between sender, reflecting object, and back is
determined. As the propagation velocity of electromagnetic waves is the speed
of light (c ≈ 3 ·108 m/s), the measured time delays of the emitted impulses are
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Figure 2.2: Principle of time of flight measurements

very short (6.67 ns/m). This necessitates very accurate evaluation electronics,
but on the other hand results in very fast measurement repetition rates. Hence
scanning procedures for 2D or 3D radar imaging are made feasible. Besides
the distance information, a radar system can also determine the velocity of a
target by evaluating the Doppler shift of the signal; this is e.g. used for traffic
speed control.
Radar distance measurement is used for a variety of applications over a huge
range of different distances. Examples are distance measurement for automatic
cruise control in automobiles (up to 200 m), air traffic surveillance (distance
range up to 500 km), or the mapping of planets in our solar system.
But also radar systems suffer from their poor angular resolution properties.
Complex antennas can lower this problem, but this again leads to bulky sys-
tems which are not practicable for many applications.

2.2 Optical Distance Measurement Techniques

Non-contact distance measurement methods based on light waves are common
techniques for many different distance measuring applications. In the following
the most important ones are introduced:

2.2.1 Interferometry

Interferometry is a very precise technique to measure distance [5] indirectly
from a phase shift of light waves. Figure 2.3 shows the Michelson interferom-
eter to make clear the measuring principle.

A laser source emits a coherent laser beam of a fixed frequency f onto a
semipermeable mirror that divides the beam into two parts. The first part is
deflected towards a reference target with calibrated distance, and is then partly
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Figure 2.3: Michelson interferometer

reflected into the detector from there. The second part passes the semiperme-
able mirror and illuminates a point on the measurement target. Parts of the
incident light are reflected from there towards the detector over the semiper-
meable mirror. In the detector the portions from the reference target and the
measurement target interfere with each other to a resulting signal. By moving
the beam splitter mirror a detector amplitude characteristics is derived which
contains the relative distance information for the measured target point in its
phase. By evaluating the phase shift ∆φ of this signal, the relative distance
can be determined as

∆d = c · ∆τTOF

2
= c · ∆φ

4 · π
· 1

f
. (2.2)

With up to λ/100 the achievable distance resolution is in the range of a few nm,
but unambiguous measurements are only possible within a distance range of
a half λ. This is no problem at relative distance measurements for i.e. surface
scanning, but makes absolute distance measurements impossible. To solve this
problem techniques like using several wave lengths are known.

2.2.2 Triangulation

As 2D imaging does not provide depth information of a captured scene, tri-
angulation is used to generate 3D image data of a scene using standard 2D
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imaging systems. The idea is thereby the observation of a scene from two
different camera positions, i.e. under different observation angles. On this ba-
sis different techniques are known to get 3D data; here stereo vision (section
2.2.2.1) and active triangulation (section 2.2.2.2), two very common triangu-
lation variants, are introduced.

2.2.2.1 Stereo Vision

Stereo vision [5] uses two cameras that observe a scene from two different po-
sitions, as depicted in figure 2.4a (intersection through a 3D scene). Thus the
optical centers of the two cameras and the observed object point P form a
triangle, whose basis length b and the two angles α and β are known. Con-
sequently all other quantities, including the height d – the searched object
distance – can be calculated. This is done by means of the so-called ’dispar-
ity’, which contains the distance information of the object point P . Equations
2.3 - 2.6 show the derivation of the disparity p.

������������������������������������

b, active triangulation
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f f
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Figure 2.4: Principles of stereo vision and active triangulation
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p = x1 − x2 (2.3)

= f · tan(α)− f · tan(β) (2.4)

= f · y + b/2

d
− f · y − b/2

d
(2.5)

= b · f
d

(2.6)

Resolving equation 2.6 for d and inserting equation 2.3 leads to following simple
formula for the calculation of the distance d of object point P :

d =
b · f
p

=
b · f

x1 − x2

, (2.7)

with x1 and x2 being the position of the image of object point P on the imaging
sensor of camera 1 and camera 2 respectively.

A disadvantage of the stereo vision method is the need of separating the two
cameras. The larger the distance range is, the longer the required basis width
b becomes, in order to keep the measurement error in a reasonable range (cf.
equation 2.8).

∆d =
b · f
p2

·∆p =
d2

b · f
·∆p (2.8)

This is applicable for static measurements, but not for mobile systems. Also
the necessity of having high contrast in the scene surfaces for the identification
of identical points in the two pictures is often not tolerable. Further shading
problems can occur; for scene points that are visible for only one camera, no
distance value can be calculated.
Applications for stereo vision are for example 3D vision for robot systems and
workpiece scanning in automated production lines.

2.2.2.2 Active Triangulation / CCT

Contrary to stereo vision, active triangulation [5] uses only one camera and a
light source instead of the second camera. This light source projects a light
pattern onto the observed scene which is imaged on the image sensor of the
camera (see figure 2.4b). Thus again a triangle is formed, here between the
light source, the object point and the camera. For calculation of the distance of
a scene point, the knowledge, from which direction the point was illuminated
(angle α in figure 2.4b), is required. Using a repeating pattern of different
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intensities for different illumination angles, the sensor can decode this infor-
mation and re-calculate the angles. But the repetition of the pattern leads to
an ambiguity problem, which can severely affect the resulting 3D image, espe-
cially for scenes containing complex depth information. This can be avoided
by combining several measurement steps using light patterns with different
spatial frequencies; this on the other side is a time consuming procedure. A
more advanced and effective method is the so-called color coded triangulation
(CCT) [6], which uses an unambiguously coded pattern of light stripes of dif-
ferent colors for scene illumination.

For active triangulation the formula to calculate the distance value of point P
is

d =
b · f
p

=
b · f

f · tan(α)− x2

, (2.9)

with α being the angle of the light beam illuminating object point P and x2

being the position of the image of object point P on the imaging sensor of the
camera.

Disadvantage of the active triangulation method is, besides the basis width and
shading problems described in 2.2.2.1, the presence of the scene illumination
pattern, which is disturbing in many applications, specially if humans are part
of the observed scene. Newest systems solve this problem using illumination
in the infrared spectrum, invisible to the human eye [7].
Another problem of this approach is the sensitivity towards ambient light. This
means that measurements can severely be disturbed, if light from outside the
camera system outshines the projectors light pattern. Bandpass filtering of
the incident light according to the illumination wavelength is possible to lower
that influence.
3D face recognition for security applications as well as 3D measuring tasks
for industrial application are only two of many possible applications for CCT
systems.

2.2.3 Time of Flight Distance Measurement

According to the TOF distance measurement by usage of sound waves or mi-
crowaves (cf. chapter 2.1), several TOF distance measurement procedures using
light waves are known. They all actively emit light in order to derive the dis-
tance of a reflecting object by measuring the time which the light needs to
propagate to the object and return to the combined emitter/sensor device.
The different approaches are described in the following paragraphs:
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2.2.3.1 Continuous Wave Methods

B
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Figure 2.5: Principle of continuous wave time of flight distance measurement
according to [8]

Continuous wave (CW) distance measuring systems [8,9,10] derive the desired
distance information from the phase shift of an emitted light pulse sequence.
For this purpose usually IR LEDs are modulated with a modulation frequency
fL (typically in the range of 5 MHz to 100 MHz) with a duty cycle of 50%.
Synchronized with the emitted light, photodetectors A and B are alternately
gated during the exposure time that is usually 1 ms to 50 ms (see figure 2.5).
Thus the phase shift of the received signal due to the time of flight τTOF directly
influences the amount of photocharges at the outputs of A and B (lower part
of figure 2.5). A difference signal D = A − B is calculated for cancelling of
biases. For the derivation of the phase φ a second observation of D with the
timing of the gated photodetectors A and B shifted by 90◦ is conducted. Phase
φ can then be calculated according to equation 2.10 as

φ = tan−1

(
D90

D0

)
. (2.10)

Following the object distance can be found as

d = c · τTOF

2
= c · TPW · φ

4 · π
. (2.11)
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A weak point of the continuous wave methods are ambiguity problems, i.e.
the range of uniqueness is limited to phase shifts of 0 ≤ φ ≤ π. The distance
of objects causing a higher phase shift is hence misinterpreted. As solution
algorithms combining several different modulation frequencies are used; this for
sure is a more time-consuming procedure, resulting in lower image repetition
rates. Also the sensibility towards ambient light due to the comparatively long
integration duration is a problem for CW distance measurement systems; it
causes pixel saturation that makes a distance measurement impossible. Much
effort with respect to background light suppression – like filtering the incoming
light, resetting photodector bias for A andB several times during exposure, etc.
– were taken to make these systems competitive in view of outdoor applications
[8, 11].

2.2.3.2 Pulse Based Methods

In contrast to the CW methods, the pulse based distance measurement proce-
dures utilize the time of flight of single light pulses to determine the distance
of objects. Thereby one distinguishes between two different approaches, the
’direct’ and the ’indirect’ pulse based TOF measurement.

2.2.3.2.1 Direct TOF Measurement

The direct pulse based TOF measurement physically measures the time of
flight of an emitted laser pulse. I.e., at the emission of a short light pulse a
high-speed counter is started, which is stopped when the return of a reflection
of the pulse was detected in the detector device [12]. The distance of the
reflecting object is then given as

d = c · τTOF

2
. (2.12)

Due to the complexity of the detection and evaluation electronics, a paralleliza-
tion in a high-resolution sensor array is not feasible at the present time. Hence
the available systems either provide only a few measurement points like the
lidar-systems (light detection and ranging) [13] or apply scanning techniques
by means of rotating mirrors, to measure one scene point after the other (laser
scanners [14]).

2.2.3.2.2 Indirect TOF Measurement (3D-CMOS)

Here the time of flight of the emitted light pulse is not measured directly but via
accumulation of charges on a sensor chip from which the distance information
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can be calculated. Thus the procedure is equal to the CW method from chapter
2.2.3.1 using only a very short single light pulse (typically 20 ns - 200 ns)
instead of a pulse sequence. For the derivation of τTOF several procedures are
known [15, 16]. Concept is always based on the use of imaging pixels with
extremely short exposure times in the range of the laser pulse length, which
are capable to produce TOF-dependent signals. The object distance d is then
calculated with the TOF-equation (2.1). In this thesis the so-called 3D-CMOS
sensor, which performs indirect pulse based TOF distance measurement, and
its distance derivation algorithms are addressed. See chapters 3 and 4 for a
close description of these topics.



Chapter 3

Theory of Distance
Measurement with 3D-CMOS
Sensor

3.1 Measuring Principle

Algorithm

Measurement
Pulsed

Data
Distance

Illumination

3D-CMOS
Array

Distance

Figure 3.1: 3D-CMOS measuring principle

The 3D-CMOS sensor system performs a pulse based indirect TOF measure-
ment using near infrared (NIR) laser pulses in the range of 20 ns - 200 ns.
As figure 3.1 shows, these pulses are sent by the internal illumination mod-
ule of the camera; after diffuse reflection by the observed scene objects they
return temporally delayed and with reduced amplitude to the camera device.
The camera lens passes a part of the backscattered light and thus images the
observed scene onto the surface of the 3D-CMOS sensor chip. The chip (cf.
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chapter 4.1.1) contains light sensitive pixels which are operated as electronic
short-time windowed integrators synchronized to the emitted laser pulse for
TOF dependent collection of charges generated by the incident light. Different
evaluation algorithms have been developed (chapter 3.4) to derive the pulse
delay τTOF from a specific number of single measurements. This leads to the
object distance

d = c · τTOF

2
. (3.1)

3.2 Camera Optics

A lens camera model is used for all considerations in this thesis, as shown in
figure 3.2. The camera optics is thereby defined by an imaging lens of focal
length f , a sensor plane parallel to the lens plane and an aperture limiting the
effective diameter of the lens to D. Its optical axis is defined as the straight
line through the optical center O that is perpendicular to the sensor plane.

Sensor plane

f

Lens plane

PyP

u v

P ′

F
optical axis

O

yP ′ D

Focal plane

Figure 3.2: Imaging geometry

The mapping of a point P in the object space to the image space is described
by the lens law [17]:

1

f
=

1

u
+

1

v
(3.2)

with u and v being the distances of P and P ′ normal to the lens plane, respec-
tively.

Actually, for each object distance u an unique image distance v exists, at which
the sensor has to be positioned at to obtain a sharp image P ′ of P . But here
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we assume large object distances compared to the focal length (u � f), so
that v can be approximated as

v =
1(

1
f
− 1

u

) ≈ f with u� f . (3.3)

With equation 3.3 the magnification M of the image in relation to the object
is defined as

M =
v

u
=
f

u
, (3.4)

what leads to equation 3.5, describing the perspective projection of objects on
the sensor plane:

yP ′ = −yP ·M = −yP ·
f

u
(3.5)

A further key parameter of the camera lens is the f-number f#, which is the
ratio of the focal length f to the aperture diameter D:

f# =
f

D
(3.6)

It is a measure for the photo-sensitivity of the camera optics, but also influ-
ences the imaging properties [17].

In the following considerations effects like chromatic or spherical aberrations or
blurring due to the the approximation taken in equation 3.3 are not included.
Their influence on the imaging properties of the camera is assumed as negligible
in this thesis. Justification for this assumption will be given in chapter 4.2.1.4.

3.3 Signal Generation

This section deals theoretically with the generation of signals with inherent
distance information using the 3D-CMOS camera. I.e., ideal signal shapes
(e.g. a rectangular impulse is assumed to model a laser light impulse; in reality
a laser pulse certainly has finite leading and trailing edges) and ideal signal
processing operations are applied to model the processes during the distance
acquisition procedure. To what extent these idealizations are justified, and
which adaptations have to be done in practice will be discussed in chapter 4.

3.3.1 Pulsed Illumination

The scene illumination module of the 3D-CMOS sensor generates pulses with
a pulse width in the range of some tens to hundreds of nanoseconds. Here the
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pulses are assumed to be ideal rectangular pulses according to equation A.2
in appendix A.1 with amplitude P̂L and pulse width TPw. See equation 3.7
as well as figure 3.3 for the laser modules radiant power characteristics for a
single laser pulse.

PLaser(t) = P̂L · rect
(
t− 1

2
· TPw − TDL

TPw

)
. (3.7)

0

P̂L

TDL TDL + TPw

TPw

t

PLaser(t)

Figure 3.3: Ideal laser-pulse function

The shift by 1
2
·TPw towards positive t-direction is introduced to make the pulse

start at t = 0 s, the additional shift by TDL denotes an purposely inserted delay
of the laser pulse by means of a delay component on the camera hardware (see
chapter 4.1.4). This feature is used by some of the later examined distance
derivation algorithms.

3.3.2 Reflected Signal

According to figure 3.1 the laser pulse is sent towards the scene, the distance
of which is to be determined. Following boundary conditions are postulated
regarding the illumination:

• The whole emitted radiant power illuminates an area AObject in the object
space, image of which in the image space corresponds to the active sensor
area ASensor; i.e. no light power is lost by illuminating those parts of the
scene that are not imaged onto the sensor

• The radiant power is homogeneously distributed over the area AObject

• The laser source and the sensor chip are positioned close together; thus
they can be assumed as being located at the same point
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The delay of the laser light due to the distance d between camera and object
(TOF) amounts to

τTOF =
2 · d
c

, (3.8)

so that the irradiance on the sensor surface is given by

ESensor(t, τTOF , α) =
PLaser(t− τTOF )

AObject

· ρ · κ · cos4(α) · 1

4 · f 2
#

, (3.9)

with

PLaser(t− τTOF ) radiant power of the laser module shifted by τTOF

α angle between optical axes and camera ray
AObject irradiated object area
ρ object surface reflectivity
κ optical loss factor of camera and laser module optics
f# f-number according to equation 3.6.

The cos4 dependency on the viewing direction α is closely investigated in [18].
For the following theoretical considerations α is assumed as 0, i.e. the object
area close the the optical axis is considered.

Substituting

AObject = ASensor ·
(
d

f

)2

(3.10)

in equation 3.9, ESensor(t, τTOF , α) can be calculated as

ESensor(t, τTOF , α = 0) = ESensor(t, τTOF ) =
PLaser(t− τTOF )

ASensor

·ρ ·κ · f 2

4 · f 2
# · d2

.

(3.11)

For the following parts of this chapter the amplitude of the received laser light
irradiance ESensor(t) on the sensor surface is assumed as being independent
from the object distance d and the object reflectivity ρ for reasons of trans-
parency of the line of argument. Though this assumption does not correspond
to the reality situation, it does not falsify the considerations.

3.3.3 Short Time Integration

The 3D-CMOS sensor chip implements short-time windowed integration of the
photocharge generated by the illumination of the sensor surface. The duration
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of these so-called shutter windows is in the range of the laser pulse duration,
i.e. in the nanosecond range (cf. section 4.2.1.2). The shutter windows can be
described as rectangular windows (see annex A.1) of the sensitivity value of
the sensor (figure 3.4), which relates the pixel diode current to the incident
radiant power. It is thus measured in A/W. Whilst the sensitivity is zero in
the normal case, it becomes ŜλS during the integration time TInt. For a given
wavelength λ the sensitivity thus results as

SλSensor(t) = ŜλS · rect
(
t− 1

2
· TInt − TDS

TInt

)
. (3.12)

where TDS is an additional shift of the shutter window introduced for later use
during distance measurement.

0

t

TInt

TDS TDS + TInt

SλSensor(t)

ŜλS

Figure 3.4: Ideal sensor sensitivity function

3.3.4 Integrator Output Signal

The incident light reflected by an observed scene generates a diode current
ID(t, τTOF ) in the light sensitive sensor pixels as described by following equa-
tion:

ID(t, τTOF ) = SλSensor(t) · ESensor(t, τTOF ) · APixel (3.13)

The integration of ID(t, τTOF ) at the integration capacitance CInt (which con-
sists of the diode inherent capacitance CD plus the sense capacitance Csense

as one can see in figure 4.3) during the integration time TInt generates an
integrator voltage UInt in the considered pixel:

UInt(τTOF = τ1) =
Qphoto(τTOF = τ1)

CInt

=

∞∫
−∞

ID(t, τTOF = τ1)dt

CInt

(3.14)
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Doing this calculation for all possible values of τTOF results in a function that
describes the integrator output voltage in dependence on the time of flight
of the laser pulse, i.e. in dependence on the object distance. The qualitative
characteristics of UInt(τTOF ) for given times TPw and TInt can be seen in figure
3.5; note that irradiance variations due to object distance and reflectivity are
– as already mentioned in section 3.3.2 – not considered here.

UInt(τTOF ) =

∞∫
−∞

ID(t, τTOF )dt

CInt

(3.15)

=

∞∫
−∞

SλSensor(t) · ESensor(t, τTOF ) · APixeldt

CInt

(3.16)

=
Qphoto(τTOF )

CInt

(3.17)

UInt(τTOF )

0 TInt − TPw TInt−TPw

TDL − TDS + τTOF

Figure 3.5: Ideal integrator output function for variation of the laser pulse
delay

Over readout circuitry (cf. chapter 4.1.1.1) the integrator output voltage UInt

is transferred to the output buffer of the image sensor and is then available for
further processing as sensor output signal.

3.4 Distance Derivation Algorithms

Using the sensor output signals derived in the previous section, the derivation
of an object distance to be measured from them is the first goal of the further
processing steps. For this several distance derivation algorithms exist; basic
idea of all of them is the recovery of the distance information from reflected
pulses by using short-time shutter windows that overlap the incident light pulse



22 3. THEORY OF 3D-CMOS DISTANCE MEASUREMENT

depending on the delay τTOF . Four elementary relative positions between the
incident pulse and the shutter window can be distinguished, as shown in figure
3.6:

a) The overlap decreases with increasing τTOF ; the pulse ’moves out’ of the
shutter window for increasing distances.

b) The overlap increases with increasing τTOF ; the pulse ’moves into’ the
shutter window for increasing distances.

c) Due to the long duration of the shutter window τTOF has no influence on
the overlap and thus no influence on the sensor signal. The sensor signal
is a measure for the pulse overall radiant energy. The use will become
clear in the next chapter.

d) This kind of shutter window to pulse arrangement gives an signal partly
independent of τTOF (as long as it is fully ’filled’ by the pulse) and partly
dependent on τTOF . In practice it is not used. It will thus not be taken
into account in the later details.

The lower part of figure 3.6 shows the sensor output signals Ua(τTOF ) to
Ud(τTOF ) for the above shutter window and pulse alignments with respect
to the laser impulse delay τTOF . These signals are the basis for the calculation
of the object distance one is searching for.
The following sections introduce all feasible distance acquisition algorithms
without further addressing of performance behavior or other features. An
investigation toward those issues will be given in chapter 5.

3.4.1 MDSI

The MDSI (multiple double short-time integration) algorithms yield the dis-
tance information from two single sensor signals (from the set of a), b) or c) in
figure 3.6), as the word ’double’ in the name implies. The meaning of ’multi-
ple’ will be explained later in section 4.1.1.3. Four reasonable combinations of
two of these sensor signals are possible in order to obtain the distance of the
measured object, consequently four MDSI variants exist:

MDSI1
MDSI1 extracts the necessary information from one shutter of category a), and
one of category c). Although the first shutter operation generates distance
information in the output signal Ua(τTOF ), the searched distance d can not
be retrieved directly, as the sensor output signal is also influenced by the
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Figure 3.6: Possible alignments of a shutter window relatively to the incident
light pulse
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irrandiance value of the reflected light pulse. By normalizing the signal with
the pulse overall irradiance value, which is measured by a shutter window
operation of the type c), the distance can be calculated using the MDSI1
equation stated below:

d =
c

2
·
(
TPw − TPw ·

Ua

Uc

− (TDL − TDS)

)
(3.18)

where TPw, TDL and TDS denote the width and the relative temporal position
of the according laser pulses and shutter windows as described in sections 3.3.1
and 3.3.3.

MDSI2
The MDSI2 procedure is quite similar to MDSI1. Solely a type b) instead of
the type a) shutter window is applied. Thus the distance calculation equation
changes to

d =
c

2
·
(
TPw ·

Ub

Uc

− (TDL − TDS)

)
. (3.19)

MDSI3
Here the long shutter window of type c) is substituted by the sum of two short
shutter windows of type a) and b) for the distance calculation. This is possible,
because the sum signal of a) and b) (cf. figure 3.6) equals the sensor output
of c).

d =
c

2
·
(
TPw − TPw ·

Ua

Ua + Ub

− (TDL − TDS)

)
(3.20)

MDSI4
MDSI4 corresponds to MDSI3 unless a class b) shutter window instead of class
a) is used in the enumerator of the fraction term in the d-equation:

d =
c

2
·
(
TPw ·

Ub

Ua + Ub

− (TDL − TDS)

)
(3.21)

All these algorithms deliver the identical results of the measured object dis-
tance. The measurement range is for all limited to

0 ≤ d ≤ c · TPw

2
. (3.22)
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3.4.2 Gradient Method

Contrary to the MDSI algorithms, this method does not process a TOF de-
pendent signal, which is normalized by a second ,TOF independent, signal,
but two TOF dependent shutter windows are used. Their temporal alignment
is depicted in figure 3.7. Basic principle is the use of the temporal difference
∆TInt between the two shutter windows. The distance of the pulse reflecting
object can be calculated by employing equation 3.23 below.

t

t

t

TPw

Sensor output signals:

τTOF,max

∆TInt

TPw

τTOF

Shutter alignment a1)

Ua1(τTOF )

Ua2(τTOF )

TInt,a2

TInt,a1

TInt,a1

TInt,a2

Shutter alignment a2)

PLaser(t)

SλSensor(t)

SλSensor(t)

Emitted laser pulse

Temporal laser pulse and shutter window alignment for the gradient method:

Figure 3.7: Alignment of a shutter window relatively to the incident light pulse
at the gradient method

d =
c

2
·
(
TInt,a1 − (TInt,a1 − TInt,a2) ·

Ua1

Ua1 − Ua2

)
=

c

2
·
(
TInt,a1 −∆TInt ·

Ua1

Ua1 − Ua2

)
(3.23)

Here also a variation of the method is possible with respect to the use of shutter
windows of type b), i.e. the overlap of shutter window and reflected pulse is
rising for increasing values of τTOF . The resulting equation slightly changes to
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d =
c

2
·
(
TInt,b1 −∆TInt ·

Ub1

Ub1 − Ub2

)
. (3.24)

3.4.3 CSI and DCSI

The correlated short-time integration (CSI) and difference correlated short-time
integration (DCSI) procedures differ from the previous distance calculation
methods as they utilize a sequence of shutter measurements instead of two
single measurements one range acquisition.

CSI
In this method a sequence of shutter windows is applied to a sequence of equal
shaped light pulses, whose trigger position compared to the shutter window is
shifted by known delays TDL,1, TDL,2, etc. (cf. the schematic illustration figure
3.8). Reasonable is the usage of a shutter window width in the range of the
light pulse width. Depending on the light pulse shift TDL the intensity charac-
teristics U(TDL) can be derived (see lower part of fig. 3.8). Determination of
the TDL-value TDL(U(TDL)max), where the curve reaches its maximum, leads
to the object distance by inserting into equation 3.25:

d =
c

2
· (TDS − TDL(U(TDL)max)) (3.25)

Though this procedure seems to be suitable for TOF distance measurement, its
performance turned out to be inferior when compared to the other procedures
introduced here [19]. Main disadvantage is the susceptibility to systematic
errors at the determination of TDL(U(TDL)max) that makes the procedure un-
feasible. Thus it is only mentioned here for the sake of completeness and will
not be considered in further examinations.

DCSI

The DCSI distance derivation method is an advancement of the CSI method
presented above. Two shutter signal sequences according to CSI are applied
here with two shutter windows 1 and 2, that are temporally arranged as one can
see in figure 3.9. The resulting output signal characteristics U2(TDL) of shutter
2 is then subtracted from U1(TDL) of shutter 1; this leads to the difference signal
U(TDL) = U1(TDL)− U2(TDL) shown in green color in figure 3.9. For distance
calculation the TDL-value of the zero-crossing TDL(U(TDL) = 0) = TDL0 of the
medium part of the difference curve has to evaluated. Inserting this value into
formula 3.26 yields the searched distance value.
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Figure 3.8: Example for the temporal alignment of laser pulses and shutter
windows at the CSI method

d =
c

2
·
(
TDS,1 − TDS,2

2
− TDL(U(TDL) = 0)

)
=

c

2
·
(
TDS,1 − TDS,2

2
− TDL0

)
(3.26)

The subtraction of the shutter signal curves brings many advantages com-
pared to CSI, as elimination of potential systematic influences like offsets or
nonlinearities of the shutter windows and the laser pulse; additionally the
determination of the the time of flight becomes a line fitting through the mea-
sured TDL-curve points for derivation of the zero crossing. See annex C for a
mathematical description of this procedure.

3.4.4 Conclusion

All of the above distance measuring methods are suited to derive the distance
of an scene object to be measured from an according set of sensor outputs. It is
important that in all equations 3.18-3.26 any dependence on parameters PLaser,
AObject, ρ, κ, α, and f# has been eliminated. This is valid, however, only if
none of these parameters has changed during the shutter window operations
belonging to the same distance calculation equation.
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Figure 3.9: Distance measurement principle of the DCSI method

Differences between the methods are the reachable measurement accuracy as
well as the applicability for the proposed sensor applications (cf. chapter 1).
Chapter 5 introduces investigations regarding those issues.



Chapter 4

3D-CMOS Array Sensor System

b
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Figure 4.1: 3D-CMOS array sensor system

This chapter describes the 3D-CMOS array sensor system examined in this
thesis and its performance characterization [20, 21]. As depicted in figure 4.1,
the main components of the system are:

a) Electronics boards including the array sensor chip

b) Laser illumination modules

c) Imaging optics

d) Power supply
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The following sections give a close description of the components and the
conducted experiments.

4.1 System Components

4.1.1 Novel Array Sensor

The novel 64x8 pixel 3D-CMOS array sensor is the main component of the
sensor system. It was developed by the Fraunhofer IMS within the UseRCams
project on the basis of an existing 64x4 pixel 3D-CMOS sensor chip [22, 23].
Its functionality allows the indirect measurement of the time of flight of laser
pulses in the ns-range.
Figure 4.2 shows the photograph of the sensor chip realized with a 0.5 µm
n-well CMOS process. It includes 64·8 = 512 photo diode pixels, a suitable
readout circuit per half-column including a CDS stage with analog accumula-
tion capability (see sections 4.1.1.2 and 4.1.1.3), multiplexers for selecting the
rows, as well as an analogue buffer circuit for each output channel (total 2).
The light sensitive pixel area can be seen in the center of the chip. The pixel
pitch is 130 µm in horizontal and 300 µm in vertical direction; this results in a
sensitive area of 64·130 µm · 8·300 µm = 19.97 mm2. As the whole peripheral
pixel electronics is placed in the upper and lower areas of the chip, the active
pixel areas join each other directly, i.e. the fill factor (FF ) of the active pixel
area is nearly 100 %.

4.1.1.1 Pixel Structure

The circuit diagram of the pixel circuit used in the 64x8 pixel 3D-CMOS array
sensor is shown in figure 4.3 [23]. Each pixel circuit contains a reverse biased
n-well/p-substrate photo-diode PD with a inherent capacitance CD (5.1 pF),
a reset switch (Φ1), a shutter switch (Φ7x), a sense capacitor Csense (1 pF),
a buffer SF (amplification factor gSF = 0.85), a hold capacitor CH , and a
select switch (Φ2x). Each four pixel circuits located in one half-column always
share a single readout switched-capacitor amplifier which also performs the
correlated double sampling (CDS) operation (see section 4.1.1.2). This quad-
to-single multiplex reduces considerably the hardware complexity.
Note that in the following the pixel index (0-3), as it is sometimes used in figure
4.3, is not considered, because the pixels of one row are absolutely identical.
Φ70 for example is denoted as Φ7 and so on.
The circuit operation relies on a periodical reset of the photo-diode capaci-
tance CD and the sense capacitance Csense to a fixed reference voltage (Uddpix)
and subsequent discharge due to the photo-current. The shutter switch (Φ7)
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Figure 4.2: 64x8 pixel 3D CMOS sensor

controls the integration time of the discharge process, as depicted in figure 4.4.
Then the remaining voltage stored at Csense is read out into a second capacitor
bank CH acting as a hold capacitor. The charges held at CH are read out us-
ing the correlated double sampling (CDS) stage by activating the select switch
Φ2. Meanwhile, the acquisition of the next value on Csense is performed, thus
this architecture yields quasi-continuous light acquisition with minimum dead
time.
After a signal acquisition cycle the pixel output signal after the CDS stage is
present as USensor,raw on the sensor output. Given a sensor irradiance profile
ESensor(t) and a shutter window function SλSensor(t), this voltage is given as

USensor,raw = Uref4 −
Qphoto

CD + Csense

· gSF ·
CCl

CF

, (4.1)

where

Qphoto
Eq. 3.16

= APixel ·
+∞∫
0

SλSensor(t) · ESensor(t)dt . (4.2)

Note that this equation differs from equation 3.14 due to presence of reset
voltage Uref4, the sign inversion, and the signal amplification factor gSF · CCl

CF

(gSF = 0.85, CCl = 10 pF, CF = 2.5 pF), because equation 4.1 reflects the real
hardware implementation including the pixel readout circuitry.
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Preprocessing of the sensor data in the system internal FPGA removes Uref4

of USensor,raw and inverts its sign. The result is the simplified sensor output
voltage USensor

USensor =
Qphoto

CD + Csense

· gSF ·
CCl

CF

, (4.3)

which is used as sensor output signal in all further considerations.

4.1.1.2 Correlated Double Sampling

The amount of light received from an object not only depends on the emitted
laser power PLaser(t), the reflectance ρ of the object and its distance, but also
on the amount of EBack(t) due to the incident light of other light sources.
The influence of EBack(t) is eliminated by measuring solely the background
irradiance without laser pulse, i.e. PLaser = 0, and subtraction of this value
from the measurement with laser pulse. Thus each measurement must be
performed with laser pulse ON and OFF (cf. figure 4.4) and the difference
being stored on the corresponding capacitance CF in the analog memory. The
whole procedure

1: Usense|ON ∝ ESensor(t) + EBack(t) (4.4)

2: Usense|OFF ∝ EBack(t) (4.5)

1 − 2:
CDS
=⇒ USensor ∝ ESensor(t) (4.6)

results in a pixel output signal that is independent of EBack(t) if the two
measured values of EBack are correlated. This assumption is valid, if EBack does
not change within the CDS cycle period, what is always granted in normal
environments. The corresponding control signals of the sensor are shown in
figure 4.4. Note that we do not have to carry out an additional reset sampling
in this case, we simply measure with the laser ON and OFF and subtract the
measurements.

4.1.1.3 Analog Accumulation and Adaptive Accumulation

A unique feature of the 3D-CMOS image chip is the analogue real-time on-
chip accumulation process at each individual pixel using multiple pulses for
each shutter window [15]. By this means the signal-to-noise ratio increases
and leads to an improved distance accuracy. Repetitive accumulation of nacc

laser pulses (cf. figure 4.5) is performed adaptively up to the saturation level
at each pixel element. Intelligent procedures can be employed to cover a large
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range of target distances and target surface reflectivities with this adaptive
pulse illumination method (see section 4.2.3.3).

1 2 3 4
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SλSensor(t)

t

t
Received laser pulses

Emitted laser pulses

t Shutter windows

TPw

τTOF

Sensor output signal

USensor(t resp nacc)

t resp nacc

Figure 4.5: Analog accumulation principle

The resulting pixel output signal is then ideally given by

USensor(nacc) =
nacc∑
i=1

USensor(1) = nacc · USensor(1) , (4.7)

while the standard deviation of the accumulated signal increases only with the
square root of nacc; Gaussian distributed and uncorrelated sensor signal noise
is assumed.

σUSensor
(nacc) =

√√√√nacc∑
i=1

σUSensor
(1)2 =

√
nacc · σUSensor

(1) , (4.8)

Result is an improved signal-to-noise ratio (SNR) of the pixel circuit output:

SNR(nacc) =
USensor(nacc)

σUSensor
(nacc)

(4.9)

=
nacc · USensor(1)
√
nacc · σUSensor

(1)
(4.10)

=
√
nacc · SNR(1) (4.11)
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The SNR gain factor is thus
√
nacc for nacc accumulated pulses. Certainly

analog accumulation can only be performed as long as the resulting pixel sig-
nal does not saturate. Therefore, intelligent sensor control is implemented to
adapt nacc to the corresponding pixel signal. This procedure is called adaptive
accumulation.

4.1.1.4 Nondestructive Readout

For the adaptive accumulation various laser pulses are accumulated for each
pixel of the sensor. In non-destructive mode of the sensor pixel reset is carried
out at the start of the bit pattern (see section 4.1.1.5 below) and the charge is
accumulated with every laser pulse. Data are read out intermediate without
pixel reset depending on defined integration steps. In the here examined system
they were set to 1,4,16,64 and 100. By this means only data with selected
pulse numbers are transferred into the memory, avoiding time consuming data
transfers.

4.1.1.5 Sensor Control / Bit Pattern

For sensor control a set of reference voltages and currents (cf. Uddpix, Uref3,
Iref−pixel, etc. in figure 4.3) as well as several control signals (Φ1-Φ7) are pro-
vided from peripheral components on the circuit boards and the FPGA con-
troller (see sections 4.1.4 and 4.1.5).
The signals Φ1-Φ7 entirely operate the image acquisition process, the CDS
and the readout procedure. For it a signal description table, the so-called bit
pattern, is executed in the FPGA to output the according ’high’ or ’low’ signals
at each time step (time basis is a clock cycle of 30 ns).

4.1.2 Laser Illumination

A decisive role in the distance measuring procedure with the 3D-CMOS camera
plays the scene illumination unit, since it provides the light signals, which are
the carrier of the distance information to be derived. A modular concept for
illumination using laser diodes as light emitters was developed, which allows
assembly of modules for various applications. The basic element consists of
a laser module with a variable number of laser diodes bonded directly on a
ceramic substrate. Driver electronics is also integrated. Combining several
basic modules with appropriate optical lenses for beam forming a variety of
illumination requirements can be fulfilled.
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4.1.2.1 Laser Light Source

In order to be suited for distance measuring, a laser light source was developed
accomplishing following features:

• Generation of approximately rectangular pulse shape with variable pulse
length from 50 ns to 200 ns

• Steep rise and fall times in the range of 10 ns

• Application dependent assembly of laser pulse peak power up to 2 kW

• Pulse repetition frequency up to 20 kHz

• Invisible to the human eye (wavelength of 905 nm in the NIR range)

• Fulfillment of eye safety regulations for laser class 1

4.1.2.2 Beam Forming Optics

Another important issue regarding the illumination module is the beam form-
ing optics. Its task is the precise, application specific laser beam forming with
a high degree of homogeneity by having low losses for laser wavelength of
905 mm and a compact design. For this reason especially designed cylindrical
lens arrangements are used, which perform focusing of the light emitted by
the laser diodes to illuminate exactly the area that is imaged onto the sensor.
Additionally, homogenization of the resulting beam is accomplished to obtain
constant light intensity over the whole illuminated area.
For the front-view application special demands are set to the illumination pro-
file, since higher viewing ranges are desired for the center pixels (high distance
viewing range along the road, less distance viewing range off the road) [2]. For
this reason the single laser beams – each itself providing a homogeneous beam
profile – are superposed, in order to get an overlapping region in the middle of
the viewing angle.

See section 4.2.2 for a deeper investigation of the properties of the laser mod-
ules.

4.1.3 Imaging Optics / VOV

According to the application requirements [2] two different imaging lenses with
focal lengths of 15.55 mm and 7.30 mm, yielding a horizontal opening angle of
30◦ and 60◦ respectively and a vertical opening angle of 9◦ and 18◦ respectively
(resulting from the dimensions of the sensitive area of the sensor chip in section
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4.1.1) were designed and fabricated in molding technology. In order to achieve
an optimal irradiation on the sensor following constraints had to be fulfilled:

• High optical aperture

• Resolution better than the pixel size of the 64x8 3D-CMOS array chip

• No distortion for the 64x8 3D-CMOS array chip

• Image size: 8.32 mm x 2.40 mm (active sensor area)

• Anti-reflective coating for the laser wavelength at 905 nm.

Under conformance with the other constraints the resulting customized imag-
ing lenses feature excellent light efficiency, as one can see in table 4.1.

Table 4.1: Properties of the customized imaging lenses

Parameter 30◦ lens 60◦ lens

Focal length 15.55 mm 7.30 mm

Aperture diameter 19.40 mm 7.60 mm

Resulting f# 0.8 0.96

Different from conventional 2D camera systems, where the field of view (FOV)
is a well known expression for the solid angle spanned by horizontal and vertical
opening angle of the camera, here the volume of view (VOV) of the 3D-CMOS
camera system is introduced which is defined by horizontal and vertical opening
angle and the minimum and maximum measurement distance of the camera
(i.e. for the UseRCams front view application camera the VOV is a 30◦ times
9◦ wide region in space ranging from a distance of 2 m to 20 m). Hence the
VOV of a certain 3D-CMOS camera gives the region in space where reasonable
distance measurement can be performed with this camera.

4.1.4 Electronics

The electronic design is based on a multi-board architecture. Label ’a’ in figure
4.1 shows the printed circuit boards of the sensor electronics. The so-called
CMOS Board, which is placed towards the cameras objective, contains the
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CMOS image sensor, current and voltage references for the sensor, an analog-
to-digital converter (ADC) for the conversion of the analog sensor signal, a
delay component for temporal adjustment of the laser trigger, and a FPGA for
system control and data processing. For noise optimization, special emphasis
has been put on the placement of analogue and digital components and to the
selection and design of voltage and current regulators.
The second board acts as interface board and includes the power supply sockets
for the electronics (12 V) and the laser modules (40 V - 48 V), and development
and application interfaces (100 BASE-T, RS-232, JTAG, ...).

4.1.5 Firmware / Software

For operation of the camera, firmware was designed that runs on the FPGA
included on the CMOS board (see above). It performs

• configuration of the system

• control of the CMOS sensor, i.e. sequence control of the sensors bit pat-
tern and provision of the according control signals

• control of the ADC

• synchronization of shutter window and the laser source (laser trigger)

• data processing:

– decision if a sensor output value is high enough to be a valid mea-
surement signal by comparison with the so-called noise threshold

– sophisticated evaluation of the adaptive accumulation according to
section 4.1.1.3

– distance calculation from the raw data and the calibration parame-
ters (see section 4.3) appropriate to the chosen distance derivation
algorithm

– optional averaging over nav images to reduce the noise; this on the
other hand reduces the camera frame-rate (cf. section 4.2.3.5)

Further, a software package for camera control and image processing by a PC
(connection to the 3D-CMOS camera device via LAN (100 BASE-T)) was
developed. It contains following parts:

• Camera interface library providing functions for camera control and im-
age acquisition
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• Image processing library for image processing of the camera output data
(cf. chapter 6)

• User interface application integrating the interface library and the image
processing library

With these firmware/software components full operation of the camera includ-
ing image processing can be carried out.

4.2 System Characterization

Within the UseRCams project, the described 3D camera was successfully de-
veloped and implemented. In order to characterize the camera performance
various measurements were conducted, which are described below. Single com-
ponent examination of the image sensor chip and the illumination modules was
accomplished as well as a characterization of the over-all camera system per-
formance.

4.2.1 Image Sensor Characterization

Since the properties of the image sensor chip decisively influence the perfor-
mance of the over-all camera system, special emphasis is placed on the char-
acterization of the image sensor. The examination of the basic functionalities
(responsivity, shutter function, analog integration, ...) as well as the analysis of
distortions is described. A closer noise examination is accomplished together
with the system noise measurements in chapter 4.2.3.1.

4.2.1.1 Responsivity

A measure for the light sensitivity of the image sensor chip is the spectral

responsivity in V
J/m

2 . It relates the sensors output signal USensor to the incident

radiant exposure H with

H =

TInt∫
0

ESensor(t)dt . (4.12)

Using equations 4.3, 3.13 (considering only the exposure phase of the sensor
yields SλSensor(t) = ŜλS), 3.14, and 4.12 yields for our sensor a theoretical
responsivity

Rλ =
USensor

H
=

ŜλS · APixel

CD + Csense

· gSF ·
CCl

CF

(4.13)
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for a given wavelength λ.

For the measurement of H a plain target at a distance of 1 m from the 3D-
CMOS camera was illuminated with homogeneously distributed laser pulse
light with a wavelength of 905 nm. The reflected light was acquired with the
camera and also measured with a reference photo diode [24]. The diode was
placed next to the camera and furnished with the identical objective as the
camera. Thus it was assured as good as possible that the irradiance on the
sensor plane and on the reference diode are the same. From the temporal
characteristics of the reference diode output signal, the according irradiance
characteristics

E(t) = k · UDiode(t) (4.14)

is derived, where k is a constant diode internal scaling factor. Integration over
E(t) according to equation 4.12 leads to the radiant exposureH. This was done
for several different illumination values. Simultaneously the sensor response on
the incident light was acquired. Figure 4.6 shows the measurement result; the
measured points for different illumination strengths are marked with crosses.
A straight line was fitted through the points, which is depicted as dashed line.
The gain value of this line is the sought responsivity value R 905 nm, which was
derived as

R 905 nm = 2617
V

J/m2 . (4.15)
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Figure 4.6: Sensor responsivity measurement at λ = 905 nm
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4.2.1.2 Shutter Function

In order to obtain the shape of the shutter windows of the sensor pixels, the
sensor is illuminated with very short laser pulses of about 100 ps pulse dura-
tion. As these short pulses can be regarded as Dirac impulses (see annex A.2)
compared to the length of the shutter windows, shifting these pulses over the
shutter window in small steps provides a sampled image of the shutter win-
dow, i.e. a sampling of the responsivity characteristic of the according sensor
pixel. The result of this measurement for different shutter lengths can be seen
in figure 4.7.
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Figure 4.7: Sampled shutter window function for different shutter lengths tsh

Different from the ideal rectangular shutter function the leading and trailing
edges of the shutter functions are slightly distorted here. The trailing edge be-
gins to rise about 60 ns - 70 ns before the shutter switch is closed to start the
charge collection. This is due to diffusion effects in the photo diode, that cause
charges generated by the laser pulse prior to the shutter closure to contribute
to the photo current a few tens of ns later.
The same effect causes the bending of the shutter window characteristics 60 ns -
70 ns prior to the opening of the shutter switch; i.e., charges that are generated
already by the laser pulse can not contribute to the photo current before the
charge integration ends, as they did not diffuse to the diode region fast enough.
Besides that, the shutter functions exhibits good characteristics; a stable re-
sponsivity level as it is required to get good linearity of the correlation function
of shutter-window and laser pulse is available. The influence of the non-ideal
edges will be discussed in section 4.2.3.2.
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4.2.1.3 Analog Accumulation

The adaptive accumulation technique introduced in 4.1.1.3 utilizes the capa-
bility of the sensor to accumulate charges on the output capacitance of the
CDS stage, called the analog accumulation. The accumulation characteristics
were examined with respect to the linearity of the increase of the sensor signal
for different numbers of analog accumulation (cf. figure 4.8).
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Figure 4.8: Damping of the output signal increase during analog accumulation

As one can see, the accumulation (see section 4.1.1.3) does not behave ideally
according to

USensor(nacc) = nacc · USensor(1) for nacc ∈ N (4.16)

but the increase of the sensor output is subject of a damping which lowers
the signal increase for increasing analog accumulation count nacc. For analysis
of this damping effect, a damping function d(nacc) is fitted into the measured
sensor output values of figure 4.8:

d(nacc) =
1− e−0.0153·nacc

(1− e−0.0153) · nacc

(4.17)

The real sensor output values are thus given by

USensor(nacc) = d(nacc) · nacc · USensor(1) for nacc ∈ N . (4.18)
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Though this effect does reduce the benefit of the analog accumulation, it does
not falsify the distance measurement result, as it influences all shutter signals
the same way. Thus the influence is eliminated by the quotient generation at
the distance calculation (cf. chapter 3.4).

4.2.1.4 Optical / Electrical Crosstalk

Measurements of scenes comprising strong reflectivity gradients, which induce
strong irradiance gradients between adjacent sensor pixels, revealed an intense
crosstalk influence of the highly illuminated sensor parts on the signals of
the lowly illuminated sensor areas. I.e., the output signals were distorted
towards the high sensor signals; the magnitude of this effect strongly depends
on the pitch between the observed ’low intensity’ pixel and the influencing
’high intensity’ region.
This crosstalk effect can be ascribed to optical and electrical influences:

• Optical:

– Blurring : In good approximation the camera focus can be assumed
to be set to infinity; thus the image of a point near to the camera is
blurred, i.e. is a disc on the sensor surface instead of a sharp point.
The radius of this disc is

rblur(u) =
D

2
·

((
1
f
− 1

u

)−1

− f

)
f

(4.19)

The worst case is the minimum distance to be measured, at the
here considered front-view application 2 m. The resulting blurring
disc radius is 76 µm (30◦ objective), more than half of the pixel
width of 130 µm This means that blurring can strongly influence
neighbor pixels, but no pixels that are farther away. The influences
of chromatic or spherical aberrations can be neglected here due to
the large pixel dimensions and the monochromatic illumination.

– Diffraction: Diffraction happens when the incident light passes the
objective of the camera. The diffraction image follows the Bessel
function of first kind [25]. For the front view setup, the calculation
shows, that at a distance of 3 µm from the imaged point the intensity
of the diffraction image declined below 0.1 % of the peak intensity.
Thus this effect is neglectible compared to the blurring and is not
further examinated.
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– Diffusion: Small amounts of the light entering a camera objective
are unpredictably diffused inside the objective and can thus fall on
arbitrary positions of the sensor. In literature the amount of the
diffused light is quoted between 0.5% and 4%, depending on the
quality of the lenses, the clearness of the ambient air and other fac-
tors. Nevertheless even 0.5% of very bright light can be enough
distortion for sensor regions with low signals to considerably influ-
ence the measured signal.
Another potential source of diffusion is the cover glass of the sensor
chip. Multiple reflections between the glass surface and the sensor
surface could lead to interference over distances of multiples of the
pixel width.

• Electrical:

– Global changes of reference voltages or currents can occur due to
high currents in highly illuminated pixels. Such effects can directly
influence the sensor output signals of all pixels via resistive or capac-
itive coupling. Naturally pixels with low signal amplitudes would
suffer much more than those exhibiting high signals.

Unfortunately an isolation of the effects and thus a measurement of the influ-
ence of the single effects could not be achieved. Thus it has to be assumed
that the crosstalk is a mixture of the different effects described above.

4.2.2 Laser Illumination Characterization

Besides the image sensor, the laser illumination unit is the second important
system component that directly affects the quality of the distance measure-
ments. See the following sections for basic characterization of the laser illumi-
nation module.

4.2.2.1 Pulse Shape

Pulse shape measurement yields the temporal characteristics of the laser mod-
ule output signal for different length of the laser pulses defined by trigger
lengths tTr between 30 ns and 240 ns. A calibrated photo diode [24] was used
to measure the curves which are depicted in figure 4.9.
Differing from the ideal rectangular pulse model, the module shows rise times
of about 60 ns and fall times of about 30 ns. Also the plateau level which
should be constant over a major part of the pulse duration exhibits a round
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Figure 4.9: Laser module output pulse shape

shape. See chapter 4.2.3.2 for an examination of the influences of these laser
pulse properties on the measurement performance of the system.

4.2.2.2 Output Power

To derive the optical output power of the laser modules the radiant power
PDiode on the surface of a calibrated photo diode was measured at a distance
of 100 mm. From this value the overall power of the module can be calculated
by scaling the measured value with the ratio of the illuminated area AIll to
diode area ADiode:

PModule = PDiode ·
AIll

ADiode

= 0.245 W · 3.85 · 10−3 m2

5.03 · 10−7 m2 = 1.87 · 103 W (4.20)

As this method is very imprecise and suffers from irradiance inhomogeneities
over the illuminated area, the calculated value can only be taken as approx-
imate value of the real output power. Additionally, the output power of the
laser modules varies with changing temperature (see section 4.2.2.3 and [26]).
From here a value of PModule = 2000 W for the output power of a single laser
module will be taken in later considerations and calculations.

4.2.2.3 Pulse Stability

Here two stability aspects are addressed, the short-term stability and the long-
term stability of the laser pulses.
The short-term stability describes random fluctuations of the trigger time and
the pulse amplitude; such fluctuations would directly affect the measured dis-
tance. These trigger time and amplitude jitters were tried to be analyzed
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by means of measuring the distribution of the according values for a set of
several thousands of pulses using the mentioned photo diode and a digital os-
cilloscope. But both, the trigger time jitter and the amplitude jitter turned
out to be below the noise level of the oscilloscope and could thus not be mea-
sured. Since this noise level was in the range of a few tens of picoseconds
(corresponding to an induced distance measurement error of a few mm), the
short time stability of the laser modules can be regarded as sufficiently high
for all kind of measurements to be performed with the examined sensor system.

The long-term stability of a laser module describes the characteristics of the
output power over a longer range of time. Typically a laser diode starts emit-
ting with maximal output power before the output power decreases until it con-
verges to a stable final value after a few minutes of operation. This final power
value is reached, if the laser diode reaches its thermal equilibrium; it mainly
depends on the adjusted pulse length, pulse peak power and pulse repetition
frequency (PRF ). See figure 4.10 for three example curves (PModule ≈ 2000 W,
TPw = 180 ns).
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Figure 4.10: Evaluation of the PRF dependency of the laser module output
power long-term characteristics

Attention has to be paid to the fact that the power level must not drop below
70% of the initial output power. This would harm the laser by thermal over-
straining [27]. Thus this 70% boundary limits the maximum pulse length, pulse
amplitude, and PRF . A tradeoff has to be found that fulfills this criterium as
well as the requirements of the according application as good as possible. In
the here considered case the modules were adjusted to
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Pulse amplitude: PModule ≈ 2000 W

Pulse length: TPw = 180 ns (⇔ 27 m theoretical
measurement range)

Pulse repetition frequency: PRF = 10 kHz

For these settings the equilibrium laser output power levels off at a value short
above the 70% threshold. Further increase of the PRF causes the laser output
power to drop below the 70% threshold and thus leads to thermal damage
during longer operation (see output power curve for PRF = 11 kHz ).

4.2.2.4 Eye Safety

The laser produces an intense, high directional beam of light, which can espe-
cially harm the eyes of human beings. Therefore, laser sources are classified
into laser safety classes from 1 to 4 [28]. Only class 1 guarantees the operation
of a laser source without any danger for people (especially their eyes) in the
surrounding. Thus one major goal of the laser module development was the
observance of the regulations for laser class 1. The theoretical limit between
safe and potentially harmful is called maximum permissible exposure (MPE1)
for laser safety class 1. The MPEi – the maximum permissible exposure for
laser safety class i – levels are set by the ’International Commission on Non-
Ionizing Radiation Protection’ and are internationally accepted and adopted
by the standardization committees such as IEC TC 76 and ANSI for the re-
spective laser safety standards IEC 60825-1 and ANSI Z136.1. MPEi levels
are determined as a function of

• pulse duration,

• pulse repetition frequency (PRF ),

• light emitting area, and

• laser wavelength.

To derive the laser safety class of a laser light source, a measured exposure
value at a distance of 0.1 m from the light emitter has to be compared to the
according calculated MPEi value; in the here considered case MPE1.
Figure 4.11 shows the measurement result for the UseRCams laser illumination
module. Basis for the calculation of the MPE1 are a pulse duration of 180 ns
at a PRF of 20 kHz; for the measurement of the radiant exposure coming from
the laser module, the output power was set to maximum. It homogeneously
distributes on an illumination field of 30◦x9◦. All values are normalized to the
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MPE1 (e.g. MPE1(0.1m) =0.00205J/m2), i.e. a normalized exposure value
of 1 or below fulfills the safety class 1 requirements. This condition is not
fulfilled for the specified measuring distance of 0.1 m. For measuring distances
of 0.3 m and above it is. To classify the device as class 1 device, it has to be
assured, that no human can get nearer to the laser source than 0.3 m, what
is guaranteed under normal operation conditions when the camera is mounted
behind a vehicles windshield. For additionally safety an electronic guard could
be developed that switches off the laser modules if the vehicle is not moving.
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Figure 4.11: Fulfillment of laser class 1 regulations for different observation
distances

4.2.3 Over-all System Characterization

This chapter characterizes the camera system as a whole after integration of all
components. Goal is an overall analysis of the distance measuring capabilities
of the camera by means of evaluation of different characterizing measurements,
which are closely described in the following sections.

4.2.3.1 System Noise / System NEE

Noise investigation

The system noise σU stands for the noise which is inherent to the system
output voltage USensor (cf. section 4.1.1.1). As USensor is the measure accessible
for further processing like distance calculation, this noise value significantly
influences the global system performance.
Figure 4.12 shows a model for the composition of the noise. Basic components
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are the so-called sensor noise σS and the readout noise σR. The sensor noise
voltage is here the standard deviation of the output voltage of the sensor
(i.e. sensor noise power is the variance of the sensor output voltage) for a
single accumulation. This noise contains the photodiode noise (σPD−noise),
reset switch noise (σRS−noise), shutter switch noise (σSh−noise), source follower
noise (σSF−noise), noise of the operational transconductance amplifier (OTA)
(σOP−noise), select switch noise (σSl−noise), discharge switch noise (σDS−noise),
and accumulate switch noise (σAS−noise). Reference voltages (Uddpix, Uref3, and
Uref4) also add some noise (σUddpix

, σUref3
, and σUref4

). The photodiode noise
consists of dark photodiode noise and photon shot noise. It must be noted
that all the noise generated in front of the OTA is amplified by the capacitor

ratio CCl

CF
, while the OTA noise is amplified by

(
1 + CCl

CF

)
.

The readout noise describes the noise which is added to the sensor signal during
the readout process. It includes noise contributions from the sensor readout
buffer (σReadoutBuffer), noise injected due to perturbations on the circuit board
(σBoard) and quantization noise (σQuantization) due to signal digitization by the
ADC.

σUref4

-...

σS

-σPD−noise

-σRS−noise

-σSh−noise

-σSF−noise

-σOP−noise

-σSl−noise

-σDS−noise

-σAS−noise

Sensor (nacc accumulations)

Readout

-σBoard

-σQuantization

-...

σ =
√
nacc · σ2

S
σR σU =

√
nacc · σ2

S + σ2
R

-σReadoutBufferσUddpix

σUref3

Figure 4.12: Sources of the system noise

Assuming Gaussian distribution (cf. appendix B.2) of the single noise compo-
nents, the resulting over-all noise σU is calculated as the square root of the
sum of the accumulated sensor noise and the readout noise [29]:

σU =
√
nacc · σ2

S + σ2
R (4.21)
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with

σS = f(σUddpix
, σUref3

, σUref4
, σPD−noise, σRS−noise, σSh−noise, σSF−noise,

σOP−noise, σSl−noise, σDS−noise, σAS−noise, ...)

σR = f(σReadoutBuffer, σBoard, σQuantization, ...)

A more thorough noise analysis is a quite complex task. Thus a further re-
finement of the noise analysis is not performed here. [30] gives insight into the
image sensors noise behavior.

Noise measurements

Noise measurements were conducted in order to derive the noise characteris-
tics of the system. Figure 4.13(a) shows a measurement of σU without laser
illumination for different numbers of analog accumulations and shutter length.
While the shutter length has no influence on the amplitude of the noise level,
the noise increases as expected with increasing numbers of analog accumula-
tions. The attempt to fit the function given by equation 4.21 through the
measured curves to derive σS and σR yielded no good results. The reason is
that the noise curves are subject of the same damping as it happens to the
processed photocharges (cf. chapter 4.2.1.3). Thus in advance of the curve
fitting the noise curves have to be weighted with the inverse damping func-
tion d(nacc)

−1 of chapter 4.2.1.3. Figure 4.13(b) shows the resulting inversely
damped noise curve for a shutter length of 240 ns and the fitted curve accord-
ing to equation 4.21. The parameters of the function that describe σS and σR

are:

σS = 0.379 mV (4.22)

σR = 0.442 mV (4.23)

Figure 4.14 shows the probability density function (PDF, see annex B.1) of
measured sensor signal noise values. The histogram is generated from 16000
single shutter values at 100 analog accumulations. Result is a Gaussian dis-
tribution (compare the histogram to the fitted Gaussian), what justifies the
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Figure 4.13: System dark noise mean values original and inversely damped
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assumptions given above. The Gaussian property of the signal error distribu-
tion will also be of importance for the image processing approach in chapter 6.

Another important measurement is the noise measurement in the presence of
laser illumination. Figure 4.15 shows the result of noise measurements of the
sensor output for different illumination values resp. sensor output signals for
16 analog accumulations; the illumination strength was thereby changed by
tuning the input voltage of the laser illumination module what directly tunes
the module output power.

The additional photon shot noise σPS is derived as follows:

σPS(USensor) =

r
Qphoto(USensor)·6.242·1018 1

C
6.242·1018 1

C
·(CD+Csense)

· gSF · CCl

CF
(4.24)

Eq. 4.3
=

r
USensor·(CD+Csense)· 1

gSF
· CF
CCl

·6.242·1018 1

C
6.242·1018 1

C
·(CD+Csense)

· gSF · CCl

CF
(4.25)

=

√
USensor

6.242·1018 1

C
·(CD+Csense)

·
√
gSF · CCl

CF
(4.26)

The resulting overall bright noise σ∗U(USensor, nacc) can then be computed as
equation 4.28 shows:

σ∗U(USensor, nacc) =

√√√√nacc ·

(
σ2

S +

(
σPS(USensor)√

nacc

)2
)

+ σ2
R (4.27)

=
√
nacc · σ2

S + σ2
R + σPS(USensor)2 (4.28)

Comparing this with the noise as defined in equation 4.21 gives the error in
the computation of σU(nacc) without considering the photon shot noise σPS:

σ∗U(USensor, nacc)

σUD
(nacc)

=

√
nacc · σ2

S + σ2
R + σPS(USensor)2

nacc · σ2
S + σ2

R

(4.29)

=

√
1 +

σPS(USensor)2

nacc · σ2
S + σ2

R

(4.30)
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But inserting the values of the capacitors and of the noise contributions σS

and σR known from sections 4.1.1.1 and 4.2.3.1 respectively, results in com-
paratively small errors when omitting the photon shot noise. Considering a
maximum sensor output voltage of 1.5 V results in a error of 18% for nacc = 1,
which is the maximum error value. For increasing values of nacc the error
shrinks rapidely to e.g. 2.7% at nacc = 16 and 0.46% at nacc = 100. This
shows that especially for high numbers of analog accumulations (i.e. measure-
ments where the measurement signals and thus the SNR is low) the photon
shot noise can be disregarded compared to the other noise components. For
simplicity reasons the photon shot noise is not regarded at all in the further
considerations of this thesis; the dark noise value is taken for all computations
without making much error. Basic equation for noise calculations is thus equa-
tion 4.21. This result is important in view of the later image processing, as one
can always suppose the same noise level independently from any illumination
characteristics.
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Figure 4.15: σU value of the sensor outputs for different sensor signal ampli-
tudes

NEE derivation

The sensor noise equivalent exposure NEESensor is defined as the x-coordinate
value of the intersection point between the interpolated responsivity charac-
teristics Rλ and the dark noise of the sensor, i.e. the value of radiant exposure
that generates a sensor output signal which is equal to the sensor noise σS .
Analogously a system NEESystem defines the necessary radiant exposure to
obtain a sensor output similar to the system noise level σU . As stated earlier
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in this chapter, the system noise depends on the fixed readout noise and the
nacc-dependent sensor noise; the system noise level is defined as the noise at
one analog accumulation as this case is the worst case in view of the SNR, as
here the readout noise has the largest influence.

NEESystem|nacc=1 = 225 nJ/m2 (4.31)

NEESensor = 145 nJ/m2 (4.32)
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Figure 4.16: Determination of the NEE by extrapolating the fitted sensor re-
sponsivity curve of figure 4.6

Note that these values are valid for the typical laser light wavelength of λ= 905 nm.
For other wavelengths the NEE-values can change due to the λ-dependency
of Rλ.

4.2.3.2 Shutter-Window-Pulse Correlation

The shutter-window-pulse correlation of the 3D-CMOS system was gained by
measurement and by calculation. For the measurement, the laser pulses trigger
was shifted in time by using a delay element located on the circuit board. The
resulting sensor signal plotted against the laser delay forms the measured corre-
lation curve. Additionally, the shutter-window-pulse correlation functions were
calculated as correlation integral of the measured shutter window functions (cf.
section 4.2.1.2) and the measured laser pulse shapes (cf. section 4.2.2.1). The
result of both procedures for a shutter length of 390 ns and a laser pulse length
of 180 ns is depicted in figure 4.17(a). Only the trailing edge of the function
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is shown for reasons of the recognizability of details; the results are the same
for the rest of the curve. In addition to the two curves a straight line is fitted
through the middle range of the measured curve for linearity investigation,
which is shown in figures 4.17(b).
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Figure 4.17: Shutter-window-pulse correlation investigations

Following results can be gained from the figures:

• The measured correlation curve and the calculated correlation curve
agree very well indeed. This means that the sensor model of equation
3.16 fits the real behavior of the sensor chip quite well. Thus the calcu-
lated sensor output signal can be taken for simulations or the like without
the risk of getting large deviations from real sensor signals.
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• For laser delays between 625 ns and 770 ns the correlation curve exhibits
a range of 145 ns – corresponding to a measurement range of 21.75 m, i.e.
for example 2 m - 23.75 m – in which the curve coincides with the fitted
straight line quite good; in this range distance measurement is applicable
without any further adaption.

• Figure 4.17(b) shows that within the measurement range the deviation
of the measured signal from linearity is always below 0.005 V.

• The discrepancies of the shutter functions and the laser pulse shapes from
the ideal rectangular shape, noted in chapters 4.2.1.2 and 4.2.2.1, do only
affect the begin and the end of the edges of the correlation function. In
between these corrupted regions good distance measurement is possible.

4.2.3.3 Dynamic Range

Dynamic range is defined as the ratio of the maximum level of a parameter to
a minimum detectable value of that parameter.
Thus the dynamic range of the photodiode in terms of radiant exposure is
theoretically defined as

DRPD,theor = 20 · log

(
ESensor,max · TInt,max

NEESensor

)
dB (4.33)

for a single accumulation (nacc =1).

Note that this yields (using equation 4.13)

DRPD,theor = 20 · log

(
USensor,max

Rλ ·NEESensor

)
dB (4.34)

= 20 · log

(
USensor,max

σS

)
dB . (4.35)

Taking the analog accumulation and digital averaging capabilities of the cam-
era system into account the system dynamic range in terms of radiant exposure
can be derived from this as follows:

DRSystem,theor = 20 · log

ESensor,max · TInt,max

NEESystem

nacc,max
· 1√

nav,max

 dB (4.36)

= 20 · log

 USensor,max√
nacc,max·σ2

S+σ2
R

nacc,max
· 1√

nav,max

 dB (4.37)
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Estimating ESensor,max = 1.5 V (the power supply voltage is only 3.3 V)
and taking into account the measured sensor and system noise values σS =
0.379 mV and σR = 0.442 mV and the maximum applied number of analog
accumulations nacc = 100 we obtain a dynamic range of the sensor system of

DRSystem,theor = 91.9 dB + 20 · log
(√

nav,max

)
dB . (4.38)

Now consider the required input range of the camera from the point of view of
the application specific requirements. In the UseRCams front view application
the specified target values are a range of the distance d to be measured from
2 m - 20 m and a reflectivity range from 5% - 100% (Lambertian reflectance)
at a distance accuracy σd/d of 3%.
This leads to following required input range of the camera (see equation 3.11):

20·log

(
ESensor,max · TInt,max

NEESystem,min

)
= 20·log


(
dmax

dmin

)2

︸ ︷︷ ︸
distance
dynamics

· ρmax

ρmin︸ ︷︷ ︸
reflectivity
dynamics

· USensor

σU︸ ︷︷ ︸
SNRmin


dB

(4.39)

where USensor

σU
defines the signal-to-noise ratio (SNRmin) which even the mini-

mum measured signal has to satisfy to fulfill the 3% distance accuracy require-
ment. This SNRmin is derived in the following:

With equations 3.20 and 5.6 one can express the normalized distance accuracy
σd/d (use of MDSI3 algorithm assumed, TDL = TDS = 0) as

σd

d
=

c
2
· TPw · 1

(Ua+Ub)2
·
√
U2

a + U2
b · σU

c
2
·
(
TPw − TPw · Ua

Ua+Ub

) (4.40)

=

1
(Ua+Ub)2

·
√
U2

a + U2
b · σU

Ub

Ua+Ub

(4.41)

=
1

(Ua + Ub) · Ub

·
√
U2

a + U2
b · σU . (4.42)

As the most critical measurements regarding the signal-to-noise ratio are mea-
surements of object which are far away of the camera, equation 4.42 is evalu-
ated for high target distances, i.e. Ub → Uc (see figure 3.6) and Ua → U0. This
yields
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σd

d
|Ub→Uc

Ua→U0

=
σU

Ub/c

, (4.43)

and thus

SNRmin =
USensor

σU

=
d

σd

=
1

3%
= 33.3 . (4.44)

Hence the required input range of the camera results as

20 · log

(
ESensor,max · TInt,max

NEESystem,min

)
= 20 · log

((
20 m
2 m

)2

· 100 %
5 %

· 33.3

)
dB(4.45)

= 20 · log(66.6 · 103) dB (4.46)

= 96.5 dB (4.47)

Comparison with the theoretical value shows that the system dynamic range
without digital averaging (DRSystem,theor = 91.9 dB + 0 dB = 91.9 dB) is not
sufficient to cope with the specified input range of the planned applications.
Introducing averaging over 3 camera frames (nav = 3) increases the theoretical
dynamic range to 96.7 dB. Hence the camera system fulfills the above men-
tioned application requirements if digital averaging over 3 frames or more is
applied. As the DRSystem,theor-value of 96.7 dB exceed the required 96.5 dB
(see eq. 4.47) only marginal, the better choice is an averaging value of nav = 4
– leading to DRSystem,theor = 97.9 dB – to keep some reserve. This on the other
hand lowers the camera frame rate (cf. section 4.2.3.5) by a factor of 4.

For practical examination of the dynamic range of the camera system measure-
ments were conducted for different target distances dr and different target re-
flectivities ρ with adaptive number of accumulations nacc (see section 4.1.1.3);
from these the standard deviations σdm of the measured distance values dm

were calculated. Figure 4.18 shows the measurement errors normalized to the
appropriate target distances dr, i.e. the normalized distance accuracy σdm/dr.
Distance derivation algorithm MDSI3 is used.

The curves can now be evaluated according to the above mentioned UseRCams
specifications. As no target with 100% Lambertian reflectivity could be found
(this value is only theoretical; a small fraction of the incident light is always
absorbed by the target), a white paper target with 80% reflectivity was chosen
instead. Although for calculation of the dynamic range 100% is set as ρmax,
as experiments showed that also for a reflectivity of 100% distance measure-
ment over the whole specified measurement range is possible. From figure 4.18
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Figure 4.18: Accuracy of the measured distance dm for different targets and
camera parametrizations over a measurement range from 2 m to
20 m; the according nacc is added to each data point

one can see, that the 5%-target exceeds the specified error of 3% already for
distances larger then 8 m. Thus the dynamic range is not sufficient to fulfill
the specified requirements without digital averaging, as stated already above
in the theoretical derivation of the dynamic range. But by applying averaging
over 4 subsequent frames, the accuracy can be increased what leads to a ful-
fillment of the requested values (see figure 4.18). This is a good match with
the theoretical computations.

4.2.3.4 Distance Measurement Performance

Figure 4.19 shows the distance measuring performance of the camera system.
Basis is a distance measurement of a plywood target with a reflectivity of∼50%
for distances between 3 m and 21 m; pixel 32 of sensor line 6 is examined, since
this pixel coincides with the center of the target here. Adaptive accumulation
is applied with nacc ∈ {1, 4, 16, 64}. This means that at each distance step nacc

is chosen in such way as to get the maximum non-saturated signal.

The blue curve shows the mean values of the measured distances for the dif-
ferent distance steps. Good agreement of real with measured distance values
(compare measured curve to dashed bisecting line) and good linearity of the
distance measuring characteristics (deviation from the bisecting line, see also
section 4.2.3.2) can be observed. The green line indicates the standard devia-
tion σd of the measured distance values at each distance step. The sawtooth-
shaped curve is characteristic for the adaptive accumulation. Each time nacc is
increased to the next level, the distance error drops due to the increased SNR
(cf. section 4.1.1.3). The distance error is directly proportional to the target
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Figure 4.19: Distance measurement performance using MDSI3 algorithm and
adaptive accumulation

reflectivity. Hence to derive the expected distance error for targets with other
reflectivity, the error has to be weighted accordingly.

Besides the good measurement performance described in the previous sections
also some shortcomings of the 3D-CMOS sensor system have to be mentioned
here:

• Due to the large pixel dimensions of 130 µm times 300 µm, which are
necessary to collect enough reflected photons in the extremely short in-
tegration windows, the resolution of the camera system is comparatively
low. This can cause blurred distance measurement values when one pixel
’sees’ two or more different objects. Especially on the edges of objects
these blurring effects occur.

• The sequential acquisition of the shutters is a drawback when having fast
moving objects in the observed scene, as the two shutters ’see’ actually
different images, as the objects are moving on during the acquisition
times of the shutters. Especially on object edges this leads to corrupted
distance measurement results. An improved sensor design implementing
alternating acquisition of the single accumulations of the two shutters
(what would require additional storage capacitors in the pixel readout
stage) could reduce this effect significantly.

• Scenes with large irradiance gradients on the sensor surface reveal crosstalk
between the sensor pixels. See chapter 4.2.1.4 for a deeper examination
of this topic.



4.3 Camera Calibration 61

4.2.3.5 Camera Frame Rate

The camera frame rate FR defines the number of image frames that are ac-
quired by the camera per second. The main FR-determining factors are the
PRF , the maximum number of analog integrations nmax

acc per image, and the
number of frames nav to be averaged for noise reduction. With these FR is
calculated as follows (assuming distance measurement by MDSI (see chapter
3.4.1), where 2 shutter windows are used):

FR =
PRF

2 · nmax
acc · nav

(4.48)

For the usual case, where nmax
acc = 100 and nav = 1, and a laser PRF of 10 kHz

(see section 4.2.2.3) one obtains a FR of 50 fps (frames per second).
In reality the cameras FR does not reach this calculated value, as sensor read-
out between the image acquisitions and during adaptive integration consumes
additional time that slightly lowers the FR of the camera.

4.3 Camera Calibration

Before the camera can be used for distance measurements, different calibration
steps are necessary, namely an offset calibration and a distance calibration.

4.3.1 Offset Calibration

Though the sensor internally applies CDS (4.1.1.2), fixed pattern noise (FPN)
is inherent to the sensor output signals as one can see in figure 4.20. This
’spatial noise’ badly affects the distance calculation of the distance derivation
algorithms. In order to avoid this effect, an offset calibration has to be con-
ducted. For this reason an image has to be taken without any illumination of
the sensor surface for all used steps of analog accumulation (see section 4.1.1.3);
these signals must be permanently stored for all pixels and subtracted later
from the sensor signals each time when a distance image is taken. This removes
the FPN.
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Figure 4.20: Fixed pattern noise of the sensor chip for 16 analog accumulations
and a shutter length of 240 ns

4.3.2 Distance Calibration

In order to obtain accurate distance values from the raw data of the 3D-CMOS
camera, also a distance calibration procedure has to be performed before start-
ing measurements. According to the functional principle of the 3D-CMOS
camera and the used distance derivation algorithm (cf. chapter 3.4), in the pro-
cess of distance calculation an algorithm specific function f(Ui), i ∈ {a, b, c},
of shutter signals (MDSI 1: f(Ui) = Ua

Uc
, MDSI 3: f(Ui) = Ua

Ua+Ub
, etc.) of

each pixel is interpreted as a certain distance value. The right assignment
of quotient to distance value is thereby managed by two so-called calibration
parameters per pixel, which have to be derived using the camera calibration
procedure.

In a first step images of a plain target at several known distances dr are
recorded, and the appropriate sensor signal function f(Ui) is calculated. The
second step is the fitting of a straight line through the measured quotient
values, which are plotted over the known distances. Thirdly, the slope and in-
tercept values (calibration parameters) of the fitted curve are extracted, what
allows an one-to-one mapping of each possible quotient value to a distance
value. See figure 4.21 to get an example of the above described procedure.

As the calibration parameters slightly differ for different pixels this procedure is
conducted for all 64x8 pixels of the imaging sensor at the moment. This and the
fact that the camera (or the target) has to be moved during calibration makes
this procedure fairly complex. Further investigations will show, if a simplified
calibration procedure, which simulates the different target distances by defined
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Figure 4.21: Example of a distance calibration measurement curve for 16 ana-
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delays of the laser pulse, is also feasible with respect to the measurement
accuracy of the camera system.
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Chapter 5

Optimization of the Distance
Measurement

5.1 Comparison of the Distance Measurement

Algorithms

In order achieve the best possible measurement results with respect to absolute
and relative measurement accuracy and measuring time, an intensive compari-
son of the different distance measurement algorithms (cf. section 3.4) has been
conducted and will be described in this chapter. It includes mathematical in-
vestigations, computer simulations, as well as laboratory experiments with the
3D-CMOS camera introduced in chapter 4.

5.1.1 Mathematical Investigation

As first investigation method a mathematical derivation of the expected dis-
tance measurement error σd is carried out. It enables a fast estimation of
performance of the employed algorithms, but does not consider some effects
that occur during the measurement in reality, like non-ideal shutter window
functions and laser pulse shapes, signal quantization noise, and the use of
value-discrete sensor values for distance calculation. In the following – based
on the well-known law of propagation of uncertainties – the expected distance
measurement error using the different algorithms is derived; additionally an
evaluation example is shown in figure 5.1.
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5.1.1.1 Propagation of Uncertainties

Let f = f(x1, x2, ..., xn) be a function depending on n variables x1, x2, ..., xn.
The uncertainty of each variable is given by ∆xi. Assuming uncorrelated
variables, the random uncertainty ∆f of f that results from the random un-
certainties of the variables can be calculated as:

∆f = ∆f(x1, x2, ..., xn,∆x1,∆x2, ...,∆xn) =

√√√√( n∑
1

(
∂f

∂xi

·∆xi

)2
)

(5.1)

where ∂f
∂xi

designates the partial derivative of f for the i-th variable.

This equation is the basis for the mathematical investigation and comparison
of the distance derivation algorithms. Inputs are the sensor output values
U1, U2, ..., Un, n depending on the algorithm and the according Gaussian dis-
tributed signal uncertainties. As the value of ∆Ui is not known in advance, σUi

is used as measure of the signal uncertainty, which is known from the system
noise measurements in chapter 4.2.3.1. Subsequently one obtains the expected
standard deviation of the measured distances σd as result. Thus equation 5.1
changes to

σd = σd(U1, U2, ..., Un, σU1 , σU2 , ..., σUn) =

√√√√( n∑
1

(
∂f

∂Ui

· σUi

)2
)

. (5.2)

Due to the fact that the signal amplitude Ui has no influence on the signal
noise level σUi

(cf. chapter 4.2.3.1), the noise level for a certain camera setup
is measured once and is then valid for any measurement with the according
camera settings, yielding

σU1 ≈ σU2 ≈ ... ≈ σUn ≈ σU . (5.3)

In the following, formula 5.2 is evaluated for the different distance calculation
methods described in chapter 3.4:

MDSI1

σd =

√(
c

2
· TPw ·

1

Uc

· σUa

)2

+

(
c

2
· TPw ·

−Ua

U2
c

· σUc

)2

≈ c

2
· TPw ·

1

Uc

·

√
1 +

U2
a

U2
c

· σU (5.4)
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MDSI2

σd =

√(
c

2
· TPw ·

1

Uc

· σUb

)2

+

(
c

2
· TPw ·

−Ub

U2
c

· σUc

)2
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2
· TPw ·

1

Uc

·

√
1 +

U2
b

U2
c

· σU (5.5)

MDSI3

σd =

√(
c

2
· TPw ·

Ub

(Ua + Ub)2
· σUa

)2

+

(
c

2
· TPw ·

−Ua

(Ua + Ub)2
· σUb

)2

≈ c

2
· TPw ·

1

(Ua + Ub)2
·
√
U2

a + U2
b · σU (5.6)

MDSI4

σd =

√(
c

2
· TPw ·

−Ub

(Ua + Ub)2
· σUa

)2

+

(
c

2
· TPw ·

Ua

(Ua + Ub)2
· σUb

)2
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2
· TPw ·

1
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·
√
U2

a + U2
b · σU (5.7)

Gradient Method 1

σd =

√(
c

2
· (TInt,a1 − TInt,a2) ·

−Ua1

(Ua1 + Ua2)2
· σUa1

)2
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+
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·
√
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a1 + U2
a2 · σU (5.8)
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Gradient Method 2

σd =

√(
c

2
· (TInt,b1 − TInt,b2) ·

−Ub1
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· σUb1
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·
√
U2
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b2 · σU (5.9)

DCSI

σd =
c

2
·

√(
∂TDL0

∂U1

· σU1

)2

+

(
∂TDL0

∂U2

· σU2

)2

+ · · ·+
(
∂TDL0

∂Un

· σUn

)2

(5.10)

with
∂TDL0

∂Ui
being calculated according to equation C.8 in the annex.

Figure 5.1 shows the result of the evaluation of the above σd-equations for a vir-
tual measurement of distances from 5 m to 20 m. The according shutter signal
amplitudes are calculated by means of equations 3.11 and 3.16; the noise level
is taken from the system noise measurement in chapter 4.2.3.1. For reasons of
clarity adaptive accumulation is not considered in the calculation. Though this
would lower σd for large distances for all of the examined algorithms, it would
not change the ratios of the σd. Thus the use of adaptive accumulation has no
influence on the result of the comparison of the distance derivation methods
examined here.

As a result it can be seen that especially the gradient methods denoted GRAD1
and GRAD2 exhibit bad performance in terms of σd compared to the other
methods. Also MDSI2 shows bad measurement noise behavior; the inaccuracy
is here more than twice the inaccuracy of MDSI3 and MDSI4 over long regions
of the measurement range. Thus – according to this mathematical investi-
gation – only MDSI1, MDSI3, MDSI4 and DCSI seem to be well suited for
distance measurements.
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Figure 5.1: Calculation of the expected distance measurement accuracy ac-
cording to equations 5.4-5.10

5.1.2 Investigation using Simulation

The next step of the comparison of the distance derivation algorithms is a com-
puter simulation of the distance measuring process of the 3D-CMOS camera
system. For good comparability to the mathematical investigation the range
of the simulation is again 5 m - 20 m; adaptive accumulation is not consid-
ered for the above mentioned reasons. Basis for the simulation are calculated
sensor output signal amplitudes (equations 3.11 and 3.16), to which Gaussian
distributed random signals having a standard deviation according to chapter
4.2.3.1 are added. These synthetic noisy sensor output values are then pro-
cessed for distance calculation using MDSI1, MDSI3, and DCSI, the algorithms
that showed to be suitable in the mathematical investigation above. Iteration
of this procedure for a set of 5000 values leads to the standard deviation of the
received distance values as shown in figure 5.2.

Result is that the simulation leads to the same results as the calculation, though
– in contrast to the calculation – quantization and value-discrete character of
the sensor signals are considered here. However, these factors seem to have
only marginal influence on the measured distance at the considered system
setup.

5.1.3 Experimental Results

From the three methods examined by simulation, only the MDSI algorithms
proved to be suitable for the current 3D-CMOS camera. The reasons for the
refusal of the DCSI method are the worse accuracy characteristics and partic-
ularly the complexity of the algorithm, i.e. the use of a series of laser pulses for
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Figure 5.2: Simulation of the expected distance measurement accuracy for
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a single measurement that reduces the camera frame rate below a level which
would be acceptable for the image processing described in chapter 6.
Thus the experimental exploration is directed at the comparison between mea-
surement procedures MDSI1 or MDSI3.
Until the development of the UseRCams camera prototype, MDSI1 was the
deployed distance derivation method, though the better theoretical noise per-
formance of MDSI3 was known. But MDSI3 was not applicable with the
predecessors of the UseRCams 3D image sensor due to insufficient steepness of
the trailing edge of the shutter window; thus all procedures that make use of
a pulse to shutter window alignment of type b) (according to figure 3.6: the
pulse is emitted before the shutter window ’opens’, i.e., the pulse ’moves into’
the shutter window for increasing distances resp. τTOF ) were not applicable
with this sensor generation. The trailing edge of these sensors showed a start of
increase up to 300 ns prior to reaching the final value, what made a reasonable
measurement of distance dependent sensor signals impossible. The decreased
trailing edge width of the 3D-CMOS array chip used here of about 60 ns (cp.
section 4.2.1.2) makes shutter alignment b) and thus MDSI3 applicable.
A measurement was conducted, which determined the standard deviation of
the measured distance for MDSI1 and MDSI3 at target distances between 3.0 m
and 21.0 m in steps of 1.0 m and for different numbers of analog accumulations.
Using a plywood target with a reflectivity ρ of ∼50% we got the results shown
in figures 5.3 and 5.4.
It can clearly be seen that the distance noise using MDSI3 is below the distance
noise using MDSI1 at any distance or integration step. This fact confirms the
results of the accuracy calculations and simulations of the algorithms. To what
extent the ratios between the measured distance accuracy of the two methods
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Figure 5.3: Experimental comparison of the distance measurements for MDSI1
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match with the calculated values is closer examined in figure 5.4 for a mea-
surement setup with 16 analog accumulations. The values are normalized with
respect to the measurement accuracy using the MDSI3 method, i.e. the dis-
tance noise using MDSI3 is 1.0 for any distance step. The dashed line gives the
calculated error values for the MDSI1 method, the crosses forming the blue
line the measured distance errors for MDSI1, which even exceeds the value
predicted by the calculation and the simulation.
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Thus the calculations, simulations, and measurements correspondingly showed
that the use of MDSI3 is superior due to its good distance error performance
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compared to all other distance derivation procedures. Serious disadvantages of
MDSI3 did not become evident during a considerable number of test measure-
ments under various conditions. Thus MDSI3 was chosen as distance derivation
method for the UseRCams camera system; also the camera performance mea-
surements in section 4.2.3 and the considerations in chapter 6 are based on
distance measurements using MDSI3. See also section 4.2.3.4 for evaluation of
the system distance measurement performance using MDSI3.

5.2 Further Enhancement Approaches

Besides the internal camera noise, there are also effects from outside the 3D-
CMOS camera system, that can negatively influence the measurement result.
For the road safety applications, as considered in this thesis, these are envi-
ronmental influences as well as sensor saturation caused by highly reflective
targets. In the following the handling of these perturbations is discussed.

5.2.1 Treatment of Environmental Influences

Environmental influences account for the main group of the exterior pertur-
bations of the 3D-CMOS distance image acquisition. They include all kind of
precipitation, temperature fluctuations, and ambient light.

5.2.1.1 Temperature Fluctuations

At the present state of the system development it was operated at temperatures
between 0◦C and 50◦C. The fluctuation of the ambient temperature turned
out to influence the offset of the sensor output signals; for this reason offset
calibration as described in section 4.3.1 has to be executed when large changes
of the ambient temperature (10◦C or more) occur. It has also to be considered
that the heat dissipation of the laser diodes to the surrounding becomes less
efficient for higher ambient temperatures. The diodes heat up and thus lose
output power and can even suffer damage (cf. section 4.2.2.3).
Further temperature effects are not yet known.

5.2.1.2 Ambient Light

Ambient light, i.e. light from sources different from the laser modules, con-
tributes to the photo current of the sensor pixels, and affects the measurement
signal. For this reason correlated double sampling (described in chapter 4.1.1.2)
has been introduced into the image acquisition procedure. This means that in
addition to the normal shutter measurement a second measurement with the
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same shutter parametrization, but without sending a laser pulse is performed.
Subtracting the sensor output signal of this ’dark’ measurement from the sig-
nal of the measurement with laser illumination eliminates the influence of any
ambient light sources. Prerequisite is that the light emitted by the external
sources is correlated in time over the duration of the two measurements. As
the measurements are carried out within less than 10 µs, this is obvious for
all natural and artificial light sources to be considered here (sunlight, street
lighting, automobile headlights, ...). To make this technique effective, it has to
be ensured that the amount of charges caused by the background light is only a
small fraction of the overall photo charge. Otherwise the sensor dynamic range
could be seriously reduced. The pulse based measurement technique with in-
tegration times in the range of 30 ns to 1 µs and illumination pulses, power of
which exceeds the ambient light by a multiple, ensure this at the UseRCams
sensor system. Bandpass filters for cutting the laser light wavelength from the
light spectrum – indispensable at the continuous wave approaches [8, 9, 11] –
could additionally lower the effect of the ambient light, but they are not really
necessary.

5.2.1.3 Rain / Snowfall

As it is known, precipitation like rain or snowfall badly influences optical imag-
ing systems, especially, if active illumination is used. The reason for this can
be explained by considering the distance ratio of the interfering object (rain-
drop or snowflake) and the object to be measured. Thus small objects close
to the camera can reflect more light into the camera objective than a large
object farther away from the camera (water drop radius typically varies be-
tween 102 µm and 104 µm). For clarification figure 5.5 shows the light power
on a single sensor pixel caused by a raindrop with a diameter of 6 mm and by
an object with a Lambertian reflectivity of 0.1, which coveres the whole pixel.
The raindrop is modeled as a sphere of water, partially reflecting the incident
light from its surface according to the well-known optical reflection laws. A
part of this reflected light is collected by the camera objective and imaged on
the sensor surface. It can be seen that drops at near distances (0 m - 1 m) can
easily induce higher light power than objects at the usual observation distances
(over 2 m).

The effect of such interferences on the distance measurement is shown in figure
5.6. Here the measurement result of the distance of an object with a surface
reflectivity of 0.1 at a distance of 8 m is considered under the presence of a
raindrop. The red curve shows the measured object distance in dependence
of the distance of the raindrop from the camera. The conclusion is that the
corruption of the measured value is very significant up to a distance of 1 m;
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Figure 5.5: Radiant power on the sensor surface resulting from a raindrop resp.
a Lambertian reflecting object

between 1 m and 2 m a small effect can be observed, for raindrop distances
over 2 m the influence is not significant anymore. Reason for this fast decrease
of the raindrop influence is the constant size of the raindrop in the object
space for increasing distances. As the raindrop is smaller than a pixel in the
object space, the size of its image on the sensor surface decreases according
to square law for increasing distances. So does the irradiance induced by the
raindrop. The result is a dependence of the light power on the sensor surface
generated by the drop, which is proportional to d4. In contrast to the drop the
proportionality factor is only d2 for observed objects which totally cover the
pixel area in the object space. This is guaranteed for the major part of objects
considered in the road safety applications.
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Figure 5.6: Measured distance for a object with reflectivity ρ = 0.1 with a
single raindrop in the VOV at different distances
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Thus the idea is to suppress the influences by means of shifting the shutter
window in such a manner that the light reflected from objects in near distance
range does not contribute to the shutter signal. Figure 5.7 illustrates the
procedure. The proposed shutter window shift is only possible for a distance
calculation method using two type b) shutter alignments (cf. figure 3.6). Hence
the gradient method has to be applied. In order to gate a distance range from
0 m to dG, the gating time TG has to be adjusted to

TG = 2 · dG

c
. (5.11)

Caused by the shutter alignment of the gradient method, a transition region
follows the gated region, where no measurement is possible, as only one of the
shutters gets a signal here. It reaches from dG to dT with

dT =
c

2
· (TG + ∆TInt) , (5.12)

where ∆TInt, the delay between the two shutter windows, typically lies between
5 ns and 50 ns depending on the cameras distance range. After this transition
region the normal measurement range begins. Measurements are possible up
to a distance of

dmax =
c

2
· (TG + TInt,b1) . (5.13)

Figure 5.8 shows the results of laboratory measurements of a scene consisting
of a large target at a distance of 5.0 m and a glass bead in front of the target at
a distance of 0.5 m. The 4 mm diameter glass bead acted as rain drop dummy
and was hung on a flimsy wire in the VOV of a certain pixel. Several distance
measurements were conducted for different values of the gating time TG. Ac-
cording to the theory (green curve) no influence on the distance measurement
should have been present for gating times above 3.33·10−9 s (corresponding
to the bead distance of 0.5 m). But the real measurement yields an influence
up to a TG of 10·10−9 s. This is caused by the non-ideal shape of the shut-
ter window function and the laser pulse, introduced in chapters 4.2.1.2 and
4.2.2.1. The missing rectangular shape causes blurring of the gating distance.
Nevertheless, the measurement error could be lowered by a factor of 10.5 from
1.05 m to 0.10 m by introducing a gating time TG of 10·10−9 s.

5.2.2 Saturation Treatment

Independent of the used distance derivation algorithm, sensor saturation can
adversely influence distance measurement. This happens if the sense capacitor
Csense (see chapter 4.1.1.1) is completely discharged during a single integration
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step, and thus the amount of photo charges generated by the incident light can-
not be evaluated. This means that with the actual sensor parametrization a
distance measurement is not possible for this pixel. Reason for the saturation
is a unusually high irradiance on the sensor surface, which is not covered by
the sensors dynamic range (cf. section 4.2.3.3). It is ether caused by targets
being very close to the camera system or by targets with retro-reflective target
surfaces, because they redirect the incident light to the light source, i.e., the
laser light emitted by the camera is directly reflected to the camera. Compared
to Lambertian reflecting targets, which reflect the incident light into the whole
half-sphere over the target surface, the resulting irradiance on the sensor chip
can reach values up to a few 100 times higher at equal target distances.
A technique was developed in order to manage distance measurement for sat-
urated pixels. The approach is similar to the gating approach above; also
here the gradient method is applied. In order to decrease the generated photo
charge, the overlap between laser window and shutter pulse is decreased by
shifting the laser pulse by means of a electronic delay component on the sensor
board. This procedure is done according to a certain shift pattern, until unsat-
urated sensor signals are received that allow distance calculation. Disadvantage
of this algorithm is the increased time consumption; several measurement steps
can be necessary to receive unsaturated sensor signals. Also the measurement
accuracy drops due to the use of the gradient measurement method (cf. section
5.1.1)
The procedure was successfully tested in the laboratory; yet it was not imple-
mented in the standard sensor firmware. The reason is that the above men-
tioned time consumption of the saturation mitigation algorithm is not feasible
with the presently available budget of laser pulses, i.e. the technique lowers
the frame rate of the system too much.
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Chapter 6

Novel 3D Real-Time Image
Processing Approach

Classical 3D real-time image processing is usually based on stereo images [5],
and thus suffers from the problems mentioned in 2.2.2.1. Very few applications
in 3D image processing rely on direct distance image acquisition: a rare exam-
ple are geometry acquisition systems which employ scanning methods [14], e.g.
for machine vision. They, however, are cumbersome and slow. Since the 3D
camera presented in this work provides 3D real-time images, a new approach
to real-time 3D image processing had to be developed in this work [31]. Goal
is thereby the extraction of the needed information from the raw data and
providing it in an appropriate data format. These procedures are subject of
the following chapters. Background is the use of the camera in road safety
applications as described in chapter 1; though the described procedures could
also be applied to many other tasks of todays computer vision. The basic flow
of the proposed image processing is shown in figure 6.1.

Result

Lists

Distance

Images

processing
Kalman
Filtering

Pre-
processing

Post-

Classification and
Action EstimationTrackingSegmentation

Figure 6.1: Image processing chain

The image processing chain is divided into three main tasks, which are repeated
for each image frame in real time, i.e. parallel to the image acquisition of the
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3D-CMOS camera. First part is the segmentation of the images, that mainly
aims at the isolation and position determination of objects from single 3D
images. Following the tracking module performs Kalman filtering to derive
further object properties like velocity or even acceleration extracted from the
temporal movement of an object over a sequence of frames. The last step is the
processing of the entire information for classification of the detected objects
and action prediction that should give a reliable prediction of the movements
of the object in the next moments.

6.1 Raw Data Properties

Basis for the image processing are the raw data delivered by the 3D-CMOS
camera. What differs from conventional 2D image processing, where only
amplitude values – representing gray scale values or colors of the observed
scene – are available for each pixel, is that additional distance information is
present here and can be utilized in the image processing algorithms. Further,
the raw data contain the number of analog accumulations (cf. section 4.1.1.3)
that were used for the acquisition of the corresponding pixel signal. Together
with the knowledge of the systems noise behavior described in chapter 4.2.3.1,
the expected standard deviation of the sensor signals and the resulting distance
uncertainty value can be derived (chapter 5.1.1). This capability will be utilized
in section 6.4.3.3.
Thus the pixels raw data contain the following information as input to the
image processing chain:

• Pixel position in pixel coordinates

• Distance value

• Sensor signal amplitudes

• Number of analog accumulations

6.2 Coordinate Systems and Coordinate Trans-

formations

For description of the image acquisition with the 3D-CMOS camera and the
image processing, the introduction of several different coordinate systems is
necessary. Even though each coordinate system (CS) itself enables the de-
scription of point coordinates in the 3D-space sufficiently, switching between
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different CSs during the image acquisition and processing processes is unavoid-
able for reasons of observational clearness, computational efforts or feasibility
in potential applications. If the relative position between two CSs is known,
point coordinates can be transformed arbitrarily between them. In the follow-
ing the here used coordinate systems as well as the transformation rules are
described.

6.2.1 Pixel and Sensor Coordinate System

The fundamental CS of the 3D-CMOS camera is the pixel coordinate system,
since the camera raw data on sensor level are represented in pixel coordinates.
A point position PP is here described by three coordinates (see figure 6.2):
The first two are the horizontal (defining the sensor pixel column) and the ver-
tical (defining the sensor pixel row) pixel index uP and vP respectively, which
describe the sensor plane position of the projection of a real-world object point.
Third is the distance dPP

measured for the according pixel. Thus no further
knowledge of sensor or camera geometry is necessary for a unique localization
of a point in the 3D-space. Up to the end of the segmentation, all image pro-
cessing is performed on the level of the pixel CS.

Quite similar to the pixel CS is the sensor coordinate system, which is also
depicted in figure 6.2. A point position in sensor coordinates is described by
means of two coordinates xSP

and ySP
, assigning the position of the points

image on the sensor surface, and the measured distance dSP
= dPP

. xSP
and

ySP
are measured from an arbitrary origin on the sensor plane; normally the

intersection point of the cameras optical axis and the sensor surface is assigned
as origin.

ys

u

v

M

+ (dPP
= dSP

= dP )

xs

Figure 6.2: Pixel and sensor coordinate systems

In order to convert the representation of a point P from pixel to sensor coor-
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dinates, following transformation has to be conducted:

PS =


xSP

ySP

dP

 =


(uP − uM) ·∆x

(vP − vM) ·∆y

dp

 (6.1)

where ∆x and ∆y define the horizontal and the vertical pixel pitch of the image
sensor. Thus the knowledge of the sensors geometrical parameters is necessary
for this transformation.

6.2.2 Camera and Reference / World Coordinate Sys-
tems

yW

φM

W

xW
zW

zC

yC

xC

P

f

C

Sen
sor

plan
e

P’

d = CP

xS

yS

θ

Figure 6.3: Sensor, camera, and world coordinate systems

The camera coordinate system represents points in common Cartesian coor-
dinates xC , yC and zC . As figure 6.3 shows, its origin C is located in the
optical center of the camera, i.e. in the center of the imaging lens. The x-axis
is oriented along the optical axis of the camera, the y-axis to the left, looking
in positive x-direction, and the z-axis upwards, each forming an angle of 90◦

between each other. This results in a clockwise oriented Cartesian coordinate
system. Point representation in camera coordinates is used in the tracking
module of the image processing procedure. The transformation from sensor
coordinates is described below.
With f being the focal length of the camera imaging optics one can derive the
angles φ and θ describing the angle between the view ray to a point P and the
xz-plane resp. xy-plane. Thus one obtains an polar point description PS′ of P
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based on the sensor coordinate description.

φ = arctan

(
xSP

f

)
(6.2)

θ = arctan

(
ySP

f

)
(6.3)

PS′ =


φ

θ

dP

 (6.4)

Starting with this description, the transformation from sensor to camera coor-
dinates of a scene point P is executed by following equation:

PC =


xCP

yCP

zCP

 =


d · cos(φ) · cos(θ)

d · sin(φ) · cos(θ)

d · sin(θ)

 (6.5)

As in most applications the camera coordinate system is not the reference,
which position values are related to, the point coordinates in camera coordinate
representation have to be related to a reference coordinate system. This CS –
often called world coordinate system – is also clockwise oriented and Cartesian
and is defined in the application using the 3D data. In the UseRCams front-
view application (see chapter 1) for instance, the reference system is a vehicle
inherent coordinate system with its origin being located on floor level on the
intersection point of the axes in longitudinal and transverse directions of the
vehicle; the x-axis is directed parallel to the longitudinal axis. Its relative
position to the camera CS is described by a translation vector T and a rotation
matrix R [32].

PC =


xCP

yCP

zCP

 = R ·


xWP

yWP

zWP

+ T = R · PW + T (6.6)

with T being the translation vector between the coordinate system origins W
and C represented in world coordinates
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T =


xWC

− xWW

yWC
− yWW

zWC
− zWW

 =


xWC

yWC

zWC

 , (6.7)

and R the rotation matrix describing the orientation of the camera and thus
also of the camera image with respect to the world CS. It can be assembled
from three elementary rotation around the three coordinate system axes [33].

R(ψ, θ, φ) = Rx(φ) ·Ry(θ) ·Rz(ψ) = (6.8)

=


cos(θ) cos(ψ) cos(θ) sin(ψ) − sin(φ)

sin(φ) sin(θ) cos(ψ)− cos(φ) sin(ψ) sin(φ) sin(θ) sin(ψ)− cos(φ) cos(ψ) sin(φ) cos(θ)

cos(φ) sin(θ) cos(ψ)− sin(φ) sin(ψ) cos(φ) sin(θ) sin(ψ)− sin(φ) cos(ψ) cos(φ) cos(θ)

 (6.9)

where ψ, θ and φ denote the rotation angles around the coordinate axes. The
compliance of the order of the three basic rotations is mandatory to obtain the
right rotation matrix R.

Analogous to equation 6.6, the transformation from a point in camera coordi-
nates to world coordinates is carried out by applying equation 6.10:

PW =


xWP

yWP

zWP

 = R−1 ·



xCP

yCP

zCP

− T

 = R−1 · (PC − T ) (6.10)

6.3 Object Segmentation

The first stage of the image processing chain is the spatial segmentation of
the 3D raw images on single frame level. Goal is a reliable partitioning of
the images into a set of sub-regions, each of them representing a single ob-
ject in the VOV of the camera. In contrary to 2D image segmentation [34,35],
where segmentation is based on color, signal amplitude or texture, the (x, y, z)-
information of each pixel is used here as basic decision criterion for segmenta-
tion algorithms. Thus effects of lighting conditions or object surface properties
on the segmentation results are not considered.

The proposed algorithm performs following processing steps:
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• Data preparation:
Here the raw data are preprocessed for the segmentation. First 3x1
or 3x3 median filtering [36] is performed, what proved to be useful to
reduce noise and outliers that are due to edge effects, adverse object
surface properties (reflective/retro-reflective), and other effects. For the
UseRCams front view application a subtraction of the floor level is also
accomplished, where all pixels, that are supposed to image a part of the
floor are removed from the image frame (only objects different from the
floor level are of interest in this application). The decision if a pixel is
imaging a part of the floor is done by a comparison of the pixels distance
value with a stored floor plane, which is either taken from an earlier
acquired image of the floor or calculatively derived from the knowledge
of the cameras position and rotation in the reference coordinate system.
Compare the two lower pixel lines of figures 6.5(e) and 6.5(f) to see the
effect of the floor level subtraction on example scene in figure 6.5(d).

• Segmentation:
The actual segmentation is done by a region growing algorithm [36], as
regions exhibiting similar distance values in the raw image must belong
to the same object in the cameras VOV with high probability. Starting
at an arbitrary image point (in practice one of the image corners), the
algorithm goes through the image pixel by pixel. For each pixel with a
valid distance value, the adjacent pixels are checked for region affiliation.
The criterion if the pixel belongs to the region or not is the difference
between the distance value of the pixel and the present mean distance
of the object, which has to be lower than an adjustable threshold. If
a pixel (exhibiting the measured point coordinates PPi

, i ∈ {u, v, d})
is found to be the nth member of the current object, an update of the
object position coordinates POi

is performed:

P ′
Oi

=
POi

· (n− 1) + PPi

n
, i ∈ {u, v, d} (6.11)

Analogously, also other object description parameters (see table 6.1) are
updated.
Two segmentation examples for a synthetic model scene and a real scene
are given in figure 6.5. Each starts with a 2D image of the scene (fig.
6.12(a) and fig. 6.5(d)), giving the reflectivity and shape properties of the
scenes objects. Secondly, the raw 3D images are given for both scenes (fig.
6.12(b) and fig. 6.5(e)); the distance value measured by a pixel is coded
in the pixel color. The distance measurement noise is clearly visible in
the changing pixel color within the objects. White areas do not contain
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pixels with valid distance values, which means in the most cases that
no signal was received as no object is reflecting the emitted laser light.
Last figures 6.5(c) and 6.5(f) show the segmented images. The objects
contained in the above figures are accurately isolated as image regions,
the position in pixel coordinates (u, v, d) and the number of pixel (NPix)
the object consists of are given by the associated text.

• Output:
As information source for the following image processing steps (tracking
and classification), the segmentation algorithm outputs a list contain-
ing object description records for all objects found in the current frame,
called object list (OL) of the k-th frame, OL(k). Additionally some
global parameters like the acquisition time tacqu of the corresponding im-
age frame and the number of objects NO contained in the OL are stored.
Figure 6.4 shows the basic structure of an OL and the essential contents
of a object description record; table 6.1 explains these parameters.

OL(k)

NO

tacqu

O1

O2...

...
Om

Oi

Oi

PO

US

NPix

hO

wO

NInt

Figure 6.4: Structure of the object list of an image frame
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Table 6.1: Main parameter of the description format for segmented objects

Parameter Description

PO Position of the object centroid in pixel coordinates

wO Object width in pixels

hO Object height in pixels

NPix Number of pixels the object consists of

NInt Average of the analog integrations used for image acqui-
sition over all object pixels

Us Average of the sensor signal amplitude over all object
pixels
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(a) Synthetic scene

(b) Synthetic 3D-CMOS depth image of the scene
above

(c) Result of the segmentation of the synthetic depth
image

(d) Real scene

(e) 3D-CMOS depth image of the real scene

(f) Result of the segmentation of the real depth im-
age

Figure 6.5: Segmentation examples of synthetic and real depth images
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6.4 Object Tracking

Object tracking includes all processing steps that account for the tracing and
the extraction of state parameters of moving objects based on a sequence of
observations over time. Several techniques – applied on 2D camera data, radar
data, or the like – are known in literature [37,38,34].
Accordingly the object tracking module developed in this work was designed
for the tracing and the extraction of kinematic parameters – including object
position, velocity and acceleration – of segmented objects in the image frame
sequences of the 3D-CMOS camera. The tracking procedure is divided into
three parts, namely preprocessing, Kalman filtering, and postprocessing (cf.
figure 6.1), which are addressed in the following sections.

6.4.1 Preprocessing

To provide the information necessary for the Kalman filtering, several prepro-
cessing steps have to be carried out. They include:

• Coordinate transformation from pixel to reference coordinates according
to section 6.2; in the case considered here the reference coordinate system
is a vehicle inherent coordinate system (c.f. section 6.2.2). From here any
position or distance measures are given in Cartesian coordinates.

• Evaluation of the time T elapsed between the last and the current image
frame:

T = tacqu(k)− tacqu(k − 1) , k ∈ N (6.12)

with tacqu(k) being the point of time of the acquisition of the k-th frame.

• Frame to frame object recovery

While the coordinate transformation and the evaluation of T are trivial math-
ematical operations performed on the output data of the segmentation proce-
dure, the recovery of the objects of the last frame in the current frame, requires
elaborate image processing, which is described below.

6.4.2 Frame to Frame Object Recovery

The frame to frame object recovery procedure (also known as tracing) links
the single frames of an 3D image sequence to each other. Basis are the object
lists generated during segmentation. Goal of this procedure is the reliable
assignment of objects contained in the object list OL(k − 1) of the last frame
to the objects contained in the object list OL(k) of the current frame (fig.
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6.6). This tracing of objects over a sequence of 3D image frames is an essential
part in the proposed image processing approach. Wrong assignments entirely
distort the tracking results and thus influence the scene recognition capability
of the camera system in a very severe way. Sections 6.4.2.1 and 6.4.2.2 describe
the algorithms implemented to solve this task.

OL(k + 1)

99K 99K
O1

O2

On

...

O1

O2

Om

...

O1

O2

Ol

...

NO

tacqu

OL(k)

NO

tacqu

NO

tacqu

OL(k − 1)

Figure 6.6: Series of consecutive object lists for the (k − 1)-th, the k-th, and
the (k + 1)-th time step

6.4.2.1 Inter-Object Distance Computation

The object recovery algorithm developed in this work is based on the evaluation
of the distance between the centroids of the objects of the (k − 1)-th and the
k-th frame. As distance between two centroids P and S at position ~s and ~p
respectively one could choose the Euclidean distance

aE =

√√√√ n∑
i=1

(pi − si)2, (6.13)

with n being 3 in the here considered case for the three dimensions x, y, and
z of the Cartesian space.

But using this distance computation method, it is not possible to weight the
measurements acquired for different spatial directions. This is necessary, how-
ever, since the quality of distance measurement for the different spatial dimen-
sions x, y, and z varies. A large measurement variance is an indication of noisy,
and ,therefore, inaccurate determination of that particular spatial dimension.
For this reason it should be handled in a different way than a measurement
of another spatial dimension exhibiting small variance, which is obviously less
noisy and thus more reliable. Using the Mahalanobis distance instead solves
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this problem as weighting of the distance components is performed here. The
Mahalanobis distance between P and S is computed by equations 6.14-6.15;
thereby the component distances (pi − si) are weighted with the reciprocal of
the according distance measurement noise σx, σy, or σz. This accounts for the
variations in distance measurement due to the measurement noise.

aM =

√
(~p− ~s)T S−1(~p− ~s) (6.14)

with

S−1 =


1
σx

0 0

0 1
σy

0

0 0 1
σz

 (6.15)

As shown in figure 6.7, all points with equal Mahalanobis distance aM lie on
the surface of a 3-dimensional ellipsoid with the three radii rx, ry, and rz which
correspond to the diagonal elements of matrix S.

x

x
S3

rx

x
P

rz

ry

x
S2

x
S1

z

y

Figure 6.7: Example ellipsoid of constant Mahalanobis distance
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6.4.2.2 Object to Object Assignment

For assigning an object i of OL(k−1) to an object j of OL(k) the Mahalanobis
distance (see equation 6.14) between O(i) of OL(k − 1) and O(j) of OL(k) is
computed for all j. If the lowest of these distances is lower than an adjustable
distance threshold, O(j) of OL(k) is assumed to be the same object as O(i) of
OL(k − 1).
Once an object O(j) of OL(k) is assigned, it is not available for further as-
signments anymore. As measure for the ’age’ of an object the number of
assignments, i.e. the number since how many frames the object exist is stored
in an object associated counter.
In order to prevent wrong assignments that ’snatch away’ the potential suc-
ceeding objects, prioritization rules for the order of object assignments are
implemented. Basis for the prioritization is a priority value that is computed
from

• the object age (counted in frames),

• the number of pixels NPix the object consists of, and

• the reliability of the measurement derived from US and NInt (cf. table
6.1).

As a result of the object recovery procedure each object contained in OL(k) is
either assigned to an object of OL(k − 1) or identified as a new object, that
appeared the first time in the current frame. This information is then used by
the Kalman filter introduced below.

6.4.3 Kalman Filtering

Kalman filtering [39, 40] basically yields the best possible estimation of the
present state of a time-varying system. Sources of information are thereby
knowledge about the temporal behavior of the system and state measurements,
which contain information about the system states plus inherent measurement
noise, which is unavoidable for observations of any physical process. Retrieving
the available information during minimizing the influence of the noise is thus
the goal of the Kalman filtering operation. The Kalman filtering approach of
this work is closely described below, following [41] and [42].

6.4.3.1 Process Description

The process to be estimated has to be discrete-time controlled and describable
by a linear differential equation as shown in equation 6.16. Here the considered



6.4 Object Tracking 93

process is the movement process of objects in the VOV of the camera. By
adequate choice of the equation parameter, the process is being modeled as
good as possible.

x(k) = A(k) · x(k − 1) + B(k) · u(k − 1) + w(k − 1) , (6.16)

with

x(k) : n-dimensional system state vector, x ∈ Rn at the k-th time step

u(k) : l-dimensional control input vector, u ∈ Rl at the k-th time step

w(k) : n-dimensional process noise vector, w ∈ Rn at the k-th time step

A(k) : n× n-dimensional state transition matrix at the k-th time step

B(k) : n× l-dimensional matrix relating u to x at the k-th time step

The state vector x(k) of the system is the smallest dimension vector that
contains all the parameters of the system which are of interest in the according
case of use. In the here considered application, the object position (x, y, z),
velocity (ẋ, ẏ, ż), and acceleration (ẍ, ÿ, z̈) in all three space dimensions are the
subjects of interest, i.e. a 3-dimensional accelerated object movement model is
used. This leads to the 9-dimensional state vector:

x(k) =


xx(k)

xy(k)

xz(k)


9×1

where xx =


x(k)

ẋ(k)

ẍ(k)

 , xy =


y(k)

ẏ(k)

ÿ(k)

 and xz =


z(k)

ż(k)

z̈(k)


(6.17)

The state transition matrix A(k) relates the system state at the (k − 1)-th
time step to the system state at the k-th time step according to the physical
behavior of the system. Thus for the accelerated movement model in the 3-
dimensional space one obtains by applying the well-known Newtonian motion
equations :

A(k) =


Ax(k) 0 0

0 Ay(k) 0

0 0 Az(k)


9×9

, Ai(k) =


1 T 1

2
T 2

0 1 T

0 0 1

 (6.18)

Analogously to A, B relates the optional control input u to the system state.
In the considerations of this work no control input is present at any time, i.e.
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u(k) = 09×1∀k ∈ N. This means that the expression B(k) · u(k − 1) does not
influence the equation and is thus omitted in the following.

The noise vector w(k) describes the noise of the process at the k-th time
step. It is a very important part of the process model, as it models the uncer-
tainty of the object movements, i.e. the deviation from the course described
by matrix A. For the description of process noise the piecewise constant ac-
celeration increment model [42] was chosen. This models the acceleration as a
Wiener process, i.e. process with independent increments, which are modeled
as zero-mean white noise. Thus the single noise contributions are assumed as
uncorrelated. The process noise vector is:

w(k) =


wx(k)

wy(k)

wz(k)


9×1

, wi(k) = Γ(k) · wi(k) =


1
2
T 2

T

1

 · wi(k) (6.19)

p(w) ∼ N(0,Q) (6.20)

The conducted measurements result in a measurement vector z ∈ Rm, which
is here, like in most systems, different to x, as not all system state variables
are accessible to direct measurement. The matrix H relates the state vector
to the measurement vector as described by equation 6.21.

z(k) = H · x(k) + v(k) (6.21)

with v being additive measurement noise, assumed to be white, uncorrelated
and normally distributed:

p(v) ∼ N(0,R) (6.22)

In the here considered case H is

H =


1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

 (6.23)

6.4.3.2 Basics of Kalman Filtering

State estimation based on Kalman filtering is a recursive process according to
figure 6.8, that consists of a prediction and a correction step. Basic principle
is the sophisticated combination of the knowledge about the object history
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and its expected behavior (time update) and the new information introduced
by the measurement result (measurement update). Each time a new measure-
ment result z(k) is available, a prediction/correction-cycle is performed for the
derivation of the corresponding estimate x̂(k).

Measurement Update
(Prediction)
Time Update

(Correction)

Figure 6.8: Kalman filter principle

Derivation of the Kalman Filter Equations

Let x̂− be the a priori and x̂ the a posteriori state estimate of a system state
vector x, where x̂− indicates the state determined in the time update and x̂
the result of the measurement update. The errors of the a priori and the a
posteriori state estimates, i.e. their deviations from the state x(k), are defined
by

e−(k) = x(k)− x̂−(k) (6.24)

e(k) = x(k)− x̂(k) . (6.25)

From this one obtains the a priori respectively a posteriori error covariance ma-
trix P−(k) and P (k) as autocovariance matrix of e−(k) and e(k)
(E[·]: expectation):

P−(k) = E[e−(k)e−(k)T ] (6.26)

P (k) = E[e(k)e(k)T ] (6.27)

The Kalman filter cycle starts with the time update. It contains two steps, the
prediction of the new a priori state estimate x̂−(k) state by inserting x(k − 1)
into equation 6.16 and the update of the of its error covariance matrix P−(k).
The according formulas are shown in figure 6.9 in the time update box. Initial-
ization of x̂(k − 1) and P (k − 1) has to be done at the first run of the cycle;
different procedures for that are proposed in literature [42,43].
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Following the measurement update is executed. It contains the computation of
the so-called Kalman gain K, the calculation of the a posteriori state estimate
x̂ – the actual Kalman filter output – as a linear combination of the a priori
estimate x̂−(k) and a weighted difference between an actual measurement z
and a measurement prediction (Hx̂−), as well as the update of the a posteriori
error covariance matrix P (k). The measurement update box in figure 6.9 shows
the three equations, [39,40,43] give a close description of the derivation of them,
especially of the weighting factor K (Kalman gain).

x̂(k) = x̂−(k) + K(k)(z(k)−Hx̂−(k))

Measurement Update (Correction)

Time Update (Prediction)
(1) Compute the Kalman gain

(2) Project the error covariance ahead

(1) Project the state ahead

P−(k) = A(k)P (k − 1)A(k)T + Q(k)

x̂−(k) = A(k)x̂(k − 1) (2) Update estimate with measurement zk

K(k) = P−(k)HT (HP−(k)HT + R(k))−1

(2) Update the error covariance

P (k) = (I −K(k)H)P−(k)

Figure 6.9: Kalman filter formulas

6.4.3.3 Derivation of the Noise Covariance Matrices Q(k) and R(k)

As defined in equations 6.20 and 6.22, in Kalman filtering the uncertainties
of the observed process and the uncertainty of the Kalman filter inputs, i.e.
the measurement results z(k), are described by the noise covariance matrices
Q(k) and R(k). While the process description matrix A(k) is governed by
physical laws describing the system (cf. equation 6.18) and H only contains
assignment rules between the measurement vector components and the state
vector components, Q(k) and R(k) are the two parameters that directly in-
fluence the dynamical behavior of the Kalman filter. Thus it is important to
reproduce the reality as good as possible when determining these matrices in
order to obtain good filtering results. On the other hand specific changes of
Q(k) and R(k) allow tuning of the estimation behavior of the filter (see filter
tuning in chapter 6.4.3.4). The following paragraphs show the derivation of
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Q(k) and R(k) in view of the traffic object tracking task considered in this
thesis.

The Process Noise Covariance Matrix Q(k)

Q(k) describes the random input of an observed process, i.e. the deviations
of the process from the behavior described in the process description matrix
A(k), as they are expected in almost every real system. In the here considered
case of the estimation of position, velocity and acceleration of an object in all
three dimensions of space, Q(k) is a 9× 9 matrix, that consists of three 3× 3
sub-matrices, which are located on the matrices diagonal, as shown in equation
6.28.

Q(k) =


Qx(k) 0 0

0 Qy(k) 0

0 0 Qz(k)

 (6.28)

Using the piecewise constant acceleration increment model as introduced in
6.4.3.1, the process noise covariance sub-matrix Qi results as

Qi

[29]
= E[(wi(k)− E[wi(k)]︸ ︷︷ ︸

=0

) · (wi(k)− E[wi(k)]︸ ︷︷ ︸
=0

)′] (6.29)

= E[wi(k) ·wi(k)
′] (6.30)

Eq.6.19
= E[(Γ(k) · wi(k)) · (Γ(k) · wi(k))

′] (6.31)

= Γ(k) · σ2
wi
· Γ(k)′ (6.32)

=


1
4
T 4 1

2
T 3 1

2
T 2

1
2
T 3 T 2 T

1
2
T 2 T 1

 · σ2
wi

, (6.33)

with T being the time elapsed between the (k − 1)-th and the k-th time step.
The values of the σwi

have to be closely investigated in order to determine
the parameters of the Kalman filter correctly. See chapter 6.4.3.4 for a deeper
investigation of this of this topic.
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The Measurement Noise Covariance Matrix R

To derive the measurement noise covariance matrix R, we start with a noise
analysis on sensor level, as is obvious, that the three basic measurement noise
components are related to the three dimensions of a point in sensor coordi-
nates. Thus the basic noise components are noise of the determination of the
coordinates of a point on the sensor surface (angular noises σφ and σθ accord-
ing to figure 6.3) and noise of the distance measurement (distance noise σd).
As a good approximation these values are assumed as zero mean and uncor-
related between each other. Hence one obtains following covariance matrix of
the measurement noise in polar sensor coordinates:

RS =


σ2

φ 0 0

0 σ2
θ 0

0 0 σ2
d

 (6.34)

As this representation of the measurement noise is not of use for the considered
Kalman filtering approach on the basis of object movements in a Cartesian
space (world coordinates), RS has to be translated to the world coordinate
system [44]. The result is the measurement covariance matrix R described by
equations 6.35-6.37.

R =


σ2

vx
Cov(vx,vy) Cov(vx,vz)

Cov(vx,vy) σ2
vy

Cov(vy,vz)

Cov(vx,vz) Cov(vy,vz) σ2
vz

 (6.35)

where

σ2
vi

= σ2
φi

+ σ2
θi

+ σ2
di

, i ∈ {x, y, z} (6.36)

Cov(vi,vj) = σφi
· σφj

+ σθi
· σθj

+ σdi
· σdj

, i, j ∈ {x, y, z} , i 6= j (6.37)

A noise component σpc in equations 6.36 and 6.37 represents the noise of the
measurement of coordinate p, p ∈ {φ, θ, d} in polar representation that reap-
pears in the noise of coordinate c, c ∈ {x, y, z}, in Cartesian representation.
The 9 different σpc for all possible combinations of polar and Cartesian coor-
dinates are displayed in table 6.2.
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Table 6.2: Component noise contributions σpc for σφ � 1 and σθ � 1

x y z

φ σφx = d · σφ · sin(φ) σφy = d · σφ · cos(φ) σφz = 0

θ σθx = d ·σθ ·cos(φ) ·sin(θ) σθy = d ·σθ ·sin(φ) ·sin(φ) σθz = d · σθ · cos(θ)

d σdx = σd · cos(φ) · cos(θ) σdy = σd · sin(φ) · cos(θ) σdz = σd · sin(θ)

Thus the calculation of the basic noises σφ, σθ, and σd is crucial for a proper
functionality of the Kalman filter. They depend on several system parameters,
the segmentation results of the observed object, as well as on the utilized
distance calculation procedure. 6.38-6.40 show the set of equations; use of
distance derivation method MDSI3 (cf. chapter 3.4) is assumed. Using other
distance derivation methods the deviation of the distance measurement σd has
to be adapted according to section 5.1.1.1.

σφ =

∣∣∣∣arctan

(
xs

f

)
− arctan

(
xs + σxs

f

)∣∣∣∣ (6.38)

with σxs

Eq. 6.1
= σu ·∆x

σθ =

∣∣∣∣arctan

(
ys

f

)
− arctan

(
ys + σys

f

)∣∣∣∣ (6.39)

with σys

Eq. 6.1
= σv ·∆y

σd =
c

2
· TPw ·

1

Uc

·

√√√√1 +
Ub

2

Uc
2 · σU (6.40)

with σU

Eq. 4.21
≈

√
σ2

R +NInt · σ2
S

with
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∆x, ∆y : horizontal and vertical pixel pitch of the image sensor

f : focal length of the camera lens

TPw : laser pulse width used for image acquisition

xs, ys, d : coordinates of the centroid of the observed object in sen-
sor coordinates

Ub, Uc : amplitudes of the two shutter signals averaged over all
object pixels

NInt : analog integrations averaged over all object pixels

σu, σv, σR, σS : component uncertainties on pixel/system level

Basic task for the computation of R(k) is thus the determination of the stan-
dard deviations σu, σv, σR, and σS. This has to be done experimentally.
The standard deviations σR, σS, which describe the noise of the sensor signal
amplitude, can be simply measured as described in 4.2.3.1.
The horizontal and vertical pixel uncertainty σu and σv are governed by spatial
quantization noise due to the finite pixel dimensions and by sensor signal noise,
which can induce flickering pixels, if the pixels sensor signal values are close
to the noise threshold (cf. section 4.1.5). Both effects strongly depend on the
measured objects properties (reflectivity, shape, pixel number, etc.), and thus
cannot be determined definitely in advance like σR and σS. Furthermore, the
horizontal and vertical errors of a object centroid determination do not ful-
fill the Kalman filter assumption of being normally distributed measurement
noises, due to their quantized nature.
Nevertheless it is possible to find appropriate σu- and σv-values to guarantee
a good filter functionality by means of filter tuning, which is described below.

6.4.3.4 Filter Tuning

As described in 6.4.3.1, the basic process model of the Kalman filtering ap-
proach assumes uncorrelated and normally distributed noise sources that de-
scribe the uncertainty of the objects movement process and the uncertainty of
the position measurement. For a proper functionality of the filter, knowledge
of the description parameter is necessary. The easiest way to do this was to
measure a set of test data from which the noise values can be calculated. As
mentioned in 6.4.3.3 this is possible for the distance measurement noise σd as
performed in section 4.2.3.1, but not for the horizontal and vertical measure-
ment noises σu and σv or σφ and σθ, respectively. Further it is not possible
to adjust the process noise descriptors σwx , σwy , and σwz in advance without
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any reference to the objects and scenarios to be acquired later. Another in-
compatibility to the Kalman filtering postulate is the temporal correlation of
the process noise which is typical for movement process of real objects due to
their maneuvering behavior and inertia properties [42].
Thus these parameters can only be adjusted empirically by measuring scenar-
ios that are similar to the scenarios one expects in later measurement. By
filtering these image sequences using different sets of filter parameters, and
analyzing the Kalman tracking results with respect to the deviation from the
real values that were measured, the sought-after parameter are obtained. This
procedure is called filter tuning, and is subject of the following chapter.
Note that in the following all filter estimates are written withoutˆ, i.e. x̂(k) →
x(k). To prevent confusion with the real values, they are provided with the
index r standing for ’real’.

Synthetic Camera Data

A principal problem in filter tuning is that for comparison of measured values
with real values the exact knowledge of the real values is necessary. In the
here considered case, one thus has to know the exact position, velocity, and
acceleration data of the centroid of an observed object at each time step k.
For traffic scenarios like walking persons or driving cars, this is actually not
possible. Even with major technical efforts like differential GPS for position
determination [45] and additional sensors for velocity and acceleration deriva-
tion, the required accuracy in measuring the real kinematic data can hardly
be reached.
For this reason synthetic camera sequences are used here for filter tuning, i.e.
a MATLAB c© program was developed, which generates data files similar to
the 3D-CMOS cameras files, containing predefined objects which are moving
on programmable paths. After definition of objects and paths (i.e. all posi-
tion, velocity, and acceleration parameters of the centroids of the objects at
any time step are exactly known), the software calculates for each time step
k the related virtual scene and the image of the scene on an imaginary sensor
surface. With knowledge of all parameters describing the scene (illumination,
object reflectivities, object distances, etc.) and the camera (sensor responsiv-
ity, sensor geometry, etc.) the according sensor signal amplitudes for all sensor
pixels are computed; also adaptive accumulation is considered here. Adding
noise to the sensor signals appropriate to the noise behavior of the system
introduced in chapter 4.2.3.1, leads to sensor signals and thus distance data,
which are supposed to have quite similar properties as real 3D-CMOS camera
data. Figures 6.10(a) and 6.10(b) show two example frames of synthetic cam-
era sequences.
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(a) Example image frame of the syn-
thetic ’breaking car’ scenario

(b) Example image frame of the syn-
thetic ’person crossing’ scenario

Figure 6.10: Synthetically produced camera frames

To verify the usability of the synthetic camera sequences a performance com-
parison was conducted (see figure 6.11). A plywood target of 2 m × 0.7 m size
was measured at different distances; after the segmentation of the images, the
standard deviation of the calculated x-positions of theses measurements (red
+-signs in the figure) were determined. The ’same’ target was emulated as syn-
thetic camera file and fed into the segmentation module. Again the standard
deviation values of the x-position values after segmentation were calculculated,
which are displayed as blue line. As one can see, the results are quite similar;
the synthetic data can thus be accepted as modeling a real scene sufficiently
realistic.
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Figure 6.11: Comparison of the distance measurement inaccuracy of real and
synthetic camera data
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Filter Tuning Scenarios

Figure 6.12 describes the two model scenarios that were used for Kalman filter
tuning in the here described work. Two synthetic courses of objects moving in
the VOV of the camera were used, firstly a car (as in fig. 6.10(a)) accelerating
towards the camera, secondly a person (see 6.10(b)) crossing in front of the
camera with a stop in the middle of the VOV. The sub-figures show the courses
of the objects in bird’s eye view on the left side, and the characteristic of the
examined state components over the observed time steps on the right side.

Filter Tuning in x-Direction

Starting point of the filter tuning procedure is the tuning by means of the ob-
servation of a object, centroid of which moves along the x-axis of the camera
coordinate system, as it is defined in the ’approaching car’ scenario in figure
6.12(a). This scenario was chosen, because mitigation of collisions with pre-
ceding cars is one of the main scenarios addressed in the UseRCams project
(cf. chapter 1). Goal of this filter tuning step is the derivation of the optimal
σwx that minimizes the measurement error in x-direction. Therefore, the image
sequence was fed into the image processing chain under variation of σwx several
times. See the resulting values for x(k), ẋ(k) and ẍ(k) for three selected values
of σwx and the according real values xr(k), ẋr(k) and ẍr(k) (denoted with ’real’
in the legends) in figure 6.13. The whole procedure was repeated 50 times for
50 realizations of the synthetic sequence (i.e. different noises for the different
realizations lead to slightly different image data, while the ’real’ scene remains
the same), in order to be able to make statistical calculations of the behavior
of the filter.
By this means, the residual errors rx(k), rẋ(k), and rẍ(k) at the k-th time
instance can be calculated as

rx(k) = xr(k)− E[x(k)] (6.41)

rẋ(k) = ẋr(k)− E[ẋ(k)] (6.42)

rẍ(k) = ẍr(k)− E[ẍ(k)] (6.43)

The standard deviations σx(k), σẋ(k), and σẍ(k) are calculated from the 50
iterations of the sequence as well; figure 6.14 shows the results for the example
scenario.
From the above values the second order moments – also well known as mean
square error (MSE) – of the Kalman filter outputs at each time step (k) can
be calculated according to
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ẋ
in

m
/s

t in s

0 1 2 3 4 5
−10

−5

0
ẍ
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Figure 6.12: Synthetically produced example scenarios
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ẋ
(k

)
in

m
/s

 

 

0 50 100 150 200
−20

−10

0

10

20

time step k

ẍ
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MSEx(k) = σx(k)
2 + rx(k)

2 , MSEẋ(k) and MSEẍ(k) accordingly (6.44)

Next step is the computation of an average MSE (AMSE), of the MSEs of x(k),
ẋ(k) and ẍ(k) over a observation period kmin ≤ k ≤ kmax. In the example scene
the period 40 ≤ k ≤ 160 was chosen to cut off filter transient effects at the
beginning of the sequence.

AMSEx(σwx)|k≤kmax
k≥kmin

= E[MSEx(k)]|k≤kmax
k≥kmin

(6.45)

=
1

(kmax − kmin) + 1
·

kmax∑
k=kmin

MSEx(k) (6.46)

AMSEẋ(σwx) and AMSEẍ(σwx) accordingly

Figure 6.15 depicts the AMSEs of x(k), ẋ(k) and ẍ(k) in dependence of the
adjusted σwx . Five values – namely 0.01 m/s2, 0.1 m/s2, 1 m/s2, 10 m/s2,
and 100 m/s2 – were taken. In order to get the optimal filter parameter σ̌wx

minimization over AMSEx(σwx) is now performed:

σ̌wx = min(AMSEx(σwx)) (6.47)

Analogously σ̌wẋ
and σ̌wẍ

are determined by minimizing over all AMSEẋ(σwx)
and AMSEẍ(σwx). The +-signs in figure 6.15 indicate the according minima.
In case that the results for x(k), ẋ(k), and ẍ(k) do not coincide, a trade-off
has to be found for the setting of the process noise parameter.
Here the results coincide for all three measures, a σwx of 1 m/s2 minimizes the
AMSEs of x, ẋ, and ẍ.
As the movement behavior of objects in world coordinates is normally the same
in x- and y-direction, σwy is also set to 1 m/s2 for the following considerations.
The movement in z-direction is actually of no interest in the here addressed ap-
plications. For reasons of completeness z-movement is also filtered; therefore,
σwz is also set to 1 m/s2.

Filter Tuning in y-Direction

Similar to filter tuning in x-direction, the filter must be tuned in y-direction.
But the process noise and the measurement noise have changed their roles here.
When tuning in x-direction the process noise σwx is tuned while the measure-
ment noise is fixed (measurement noise is known due to chapter 6.4.3.3), here
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Figure 6.15: Determination of the optimal process noise value by minimizing
the average normalized error of x, ẋ, and ẍ

the measurement noise adjustment is tuned for fixed process noise σwy , which
was already set after the determination of σwx above. This approach is neces-
sary as the measurement noise in y-direction cannot be determined adequately
by offline measurements. Also its properties to be non-Gaussian-distributed
and correlated (cf. chapter 6.4.3.3) make a determination of the optimal value
by filter tuning necessary. Again the procedure ends in three curves (figure
6.16) whose minima assign the optimal adjustment of the horizontal measure-
ment noise σv with respect to the errors in the estimation of y, ẏ, and ÿ.
Here the minima do not coincide; y is minimal for σu = 5 · 10−2 (pixel), ẏ and
ÿ for σu = 1.5 · 10−2. Though σu was set to 1.5 · 10−2 as the error of y is only
slightly higher for σu = 1.5 · 10−2 compared to σu = 5 · 10−2.
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direction by minimizing the average error of y, ẏ and ÿ
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As it was presented here by means of the ’approaching car’ and the ’crossing
pedestrian’ scenarios, the filter tuning procedure can be similarly executed
with any other test scenario data, what would perhaps lead to similar or even
better tuning results. It is only important to use tuning data, that resemble
the later application area of the system best possible.

6.4.3.5 Measurement Results

After the filter tuning procedure test measurements with real scenarios were
carried out in order to test the performance of the overall system including
the camera and the image processing software. An example is given in the
following. The scene is shown in figure 6.17(a); a person is walking in front of
the camera, a tree is located on the right border of the cameras VOV. Figures
6.17(b) 6.17(c) display the camera distance image and the segmented distance
image of an exemplary frame of the image sequence in color coded representa-
tion.

(a) Photograph of the exam-
ple scenario

(b) Single camera frame of
the example scenario

(c) 6.17(b) segmented

Figure 6.17: Real example scenario

The course of the walking person and the tracker outputs are given in figure
6.18. The left graph displays the projection of the x-y-positions of the seg-
mented objects over the whole scene. Starting point of the object path is the
end of the path marked with the path number (here 3 in the case of the pedes-
trian). First the person approaches the camera from the right, where it stands
still for about 1 s at a distance of 11 m; then it moves away from the camera
with another stop and a change of direction at a distance of 18 m until it is
not visible anymore to the camera at distances over 23 m.
The three diagrams on the right side of figure 6.18 show the Kalman filter
estimates for the pedestrian’s position, velocity, and acceleration in x- and y-
direction. The estimates of the z-direction are not plotted, as they are only of
low importance in the here considered scenario. In general the quality of the
results in z-direction is comparable to the quality of the results in y-direction.
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Figure 6.18: Results of the tracking of a moving person

As already remarked in section 6.4.3.4, quantitative evaluation of the measure-
ment results of real scenes could not be performed in this work. Reason is the
fact the the real values of the state vector x cannot be determined exactly for
all time steps of the examined image sequence. Only a qualitative evaluation
by inspection of the filter outputs is possible:
It can be stated that the position estimation works very good. Also the ve-
locity estimation gives reasonable values; noise is superposed to the estimates,
but the course of the real velocity is estimated well for both, the x- and the
y-direction. The acceleration estimates yield even more noise, but at least for
the x-direction the course of the real acceleration can be reconstructed quite
reliably from the filter estimates. The second stop of the walking person at
time step 220 and its moving on at time step 240 become clearly visible in a
deflection of the ẍ(k)-curve in negative resp. positive direction at the corre-
sponding time steps.
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One reason for the noise of the ẋ(k)- and ẍ(k)-estimates, is the rather low
frame repetition rate of 15 fps at the current prototype system. An improved
system yielding image sequences with 50 fps will significantly improve the re-
sults.

6.5 Object Classification and Action Recogni-

tion

Based on the results of object segmentation and object tracking, object clas-
sification and action prediction is performed.

Goal of the classification is in the case of the road safety application the dif-
ferentiation into following object classes:

• Vulnerable road users (VRUs): pedestrian, cyclist, baby buggy, ...

• Vehicles: car, truck, ...

• Obstacles: tree, wall, pole, ...

At the present state of the image processing simple evaluation algorithms were
implemented that classify the objects according to their size, shape, and kine-
matical properties. A moving object with a width of 0.4 m for example can
hardly be an obstacle, which is assumed to have a fixed position, and also no
vehicle due to its narrow horizontal dimension. Thus it is correctly classified
as VRU.
Of course this classification procedure yields only basic results and is quite
susceptible to errors (a person standing without movement is not distinguish-
able from a tree trunk or a concrete column), but more complex classification
algorithms with more object classes seem inapplicable at the present state of
the system development. Increasing the camera resolution or combined image
processing including high resolution 2D-images of the observed scene could
considerably improve the object classification capabilities.

Further prediction of future incidents is tried by means of extrapolation of the
image processing results. Main objectives are a reliable decision if there is the
risk of a collision with one of the objects observed by the camera and – if such
a risk situation emerges – the evaluation of the time to collision, which is a
very important measure in view of the actions to be conducted for collision
avoidance or mitigation. Starting with the x-distance dOC(k, t) between an
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object O and the camera C at time t, where t starts with 0 at the k-th time
step,

dOC(k, t) = (xO(k)−xC(k))−t·(ẋO(k)−ẋC(k))− t
2

2
·(ẍO(k)−ẍC(k)) , (6.48)

the time when the distance in x-direction becomes zero is

t0 =
(ẋO(k)−ẋC(k))−

√
(ẋO(k)−ẋC(k))2−2·(ẍO(k)−ẍC(k))·(x0(k)−xC(k))

(ẍO(k)−ẍC(k))
.

(6.49)
With this t0 one can check, if at this or close to this time the y-distance (yO−yC)
is also zero or close to zero. If this is the case, a collision between object O
and the camera C – or probably with the vehicle the camera is mounted in –
is predicted. The time remaining until to the collision is then

tTTC = t0 ,

which is basis for the choice of mitigation actions to be performed in future
applications.

6.6 Conclusion

As the measurement results of chapters 4 and 6 show, the 3D-CMOS array
camera system in combination with the image processing software fulfills the
application specific requirements of the UseRCams project (see chapter 1).
Thus the camera development part of the project, which was our task at
Siemens CT PS 9, was successfully accomplished with promising results in
view of future applications in the automotive and the safety sector (see chap-
ter 7 for some application examples).
A deeper analysis of the performance of the camera system is presently exe-
cuted at the UseRCams project partners of the automotive industry, including
BMW, FIAT, RENAULT, and VOLVO. They integrated the camera in test
vehicles to test the system in real traffic scenarios. Results of these evaluations
will soon be published on [1].
Further research for camera enhancement, especially by combination of the
3D image with a high-resolution 2D camera image, is presently done in the
research project MIDIAS [46].



Chapter 7

Some Examples of Applications

The combination of direct distance measurement capability with considerable
horizontal and vertical resolution represents a great advantage of the 3D-
CMOS sensor over most of the established imaging or ranging techniques.
Radar sensor data, for instance, provide good distance information with re-
spect to individual or very few well-separated objects, but poor or no lateral
resolution. Video data, on the other hand, feature excellent lateral resolution,
but no direct depth information.
This property offers a variety of areas of applications for the 3D-CMOS tech-
nology. The following sections give an overview over the most promising ap-
proaches.

7.1 Road Safety (UseRCams)

A main application area for the 3D-CMOS camera system in connection with
the 3D real-time image processing proposed in chapter 6 are the road safety
applications introduced in chapter 1. For the sake of completeness they are
shortly mentioned here again. The range of application as sensor for advanced
driver assistance systems for vehicles comprises (see scenarios depicted in fig-
ure 7.1):

• Front looking applications for pedestrian protection and mitigation of
collisions with preceeding cars

• Utilisation of a camera for recognition and mitigation of side crash situ-
ations with static objects or other vehicles

• Surveillance of the blind areas of trucks during stops for reliable recogni-
tion of objects located in this areas combined with a start inhibit function
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Figure 7.1: Sketches of potential collision mitigation, pre-crash, and blind spot
surveillance scenarios

At the present state of development, yielding a measurement range up to 20 m,
urban traffic scenarios are addressed up to a vehicle velocity of 15 m/s.
A vital component in these applications is the 3D real-time image processing
software (chapter 6), which excerpts the information required by the applica-
tions from the raw data sequences of the 3D-CMOS camera.

7.2 People Counting

Another interesting application of the 3D-CMOS array camera is the surveil-
lance of entrance areas, doors, etc. with additional counting of the people
passing by or through (figure 7.2), which cannot be realized with conventional
light barriers.
The people counting procedure is based on reliable object segmentation as well
as object tracing over image sequences, which was successfully implemented
as described earlier in this work (see chapter 6). Once the trace of an object
is tracked for the whole movement from one side (e.g. line 1) to the other side
of the sensor (line 8) it can be decided by means of a simple algorithm, if the
according object was entering or leaving the building, room or whatever.
In addition to the counting functionality further ’intelligence’ can be imple-
mented based on the 3D data. A height discrimination of the detected objects
can be introduced, to prevent the system from counting small animals or the
like; similarly the distance range close the camera can be gated, i.e. disturbing
influences of insects or birds can be avoided. Such sophisticated data evalua-



7.3 Orientation Aid for Blind People 115

tion possibilities are not available when using conventional 2D-camera or light
barrier systems.

Figure 7.2: People counting application

7.3 Orientation Aid for Blind People

In the CASBliP project [47], which aims at the development of a system capa-
ble of interpreting and managing real world information from different sources
to assist blind or visually impaired users, a portable 3D-CMOS sensor system
in the shape of eyeglasses is being presently developed. In combination with
a space/audio processing unit which maps the distance information to special
sounds [48] the sensor should act as orientation aid for blind people (see figure
7.3).
A 64x1 pixel 3D-CMOS line sensor (one pixel line of a 64x4 pixel sensor [22]
is used) is mounted together with the laser illumination unit and a circuit
board (including power supply, sensor control and raw data processing) in a
eyeglasses-like housing and serves as device for the perception of the surround-
ing. Sensor output of a single aquisition phase is a distance profile along the
observed line. Distance range of the system is from 0.5 m to 5 m with a rep-
etition rate of 25 fps. Due to the position of the sensor system on the users
head, the environment is intuitively scanned by the head movements. The
gained distance data are then transferred to a main processing unit, where
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advanced data processing is accomplished, including transformation of the 3D-
information into acoustic maps for a real world environment representation to
the blind person through earplugs. Stereo effects for left/right encoding as
well as amplitude and frequency variations of the sound signals are combined
according to a complex algorithm; care is taken that the sounds do not restrict
the hearing of the ’normal’ soundscape, which is the main information source
for blind people.
A prototype system was successfully assembled. First application tests con-
ducted by a blind test person yielded promising results.

Figure 7.3: Cognitive aid for blind people by 3D-CMOS sensor

7.4 Intelligent Light Curtain

Due to its special properties the 3D-CMOS sensor system is well suited for
safety and security applications; especially the distance measuring capabilities
paired with wide independence of ambient illumination and surface conditions
of the objects are the advantages compared to present systems as light barriers
or 2D cameras.
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Prototypes were assembled to demonstrate the capabilities of the systems as
reflector-less intelligent light curtain. Special feature is here the structured
illumination that allows to cover a defined area with a light curtain (see figure
7.4). Together with special compression optics, which images the illuminated
shape on a 64x1 pixel line sensor, curved light curtains can be realized. In this
way arbitrary surveillance fields can be realized.
The distance information can here be used for definition of active and not ac-
tive regions of the light curtain.

Figure 7.4: Intelligent light curtain

Many different applications can be envisioned for the intelligent light curtain.
Some of them are:

• Object protection in museums (glassless show case)

• Area surveillance with possibility of defining active and non-active areas;
e.g. a wall with doors and windows

• Intelligent light barrier for distances up to 100 m for small opening angles
(invisible light fence), with exact localization of intrusion events by means
of the distance information
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Chapter 8

Conclusions and Further Work

This thesis is divided into two major parts. The first deals with the description
and evaluation of the newly developed 3D-CMOS camera system, the second
addresses the image processing of the data acquired with the aforesaid camera.
The following paragraphs give a conclusion of the results of the research done
in these areas:

A novel 64x8 pixel range measurement system was successfully developed and
assembled. The system evaluation yielded good results for the basic system
parameters. A noise equivalent exposure (NEE) of the sensor of 145 nJ/m2 is
measured, the NEE of the over-all system results as 225 nJ/m2. Significant
improvement of the 64x8 pixel image sensor compared to the previous image
sensor generation is discovered in view of the rectangular shape of the shutter
window function, which is crucial for good distance measurement results.
Further we conclude that the perfomance of the developed camera system
agrees with the specified requirements (see chapter 1). Measurements show
good distance measurement linearity of the 3D-CMOS system and a distance
accuracy lower than 3% of the measured distance over a distance range from
2 m to over 20 m, for objects with surface reflectivities varying between 5%
and 100% (Lambertian reflection). This means a dynamic range of the camera
system in terms of radiant exposure of the sensor of over 96.5 dB.

The optimization of the distance measuring procedure showed that MDSI3,
which was not applicable with the previous image sensor due to afore men-
tioned insufficient shutter window properties, performs best with regard to
measurement linearity, measurement accuracy, and measurement time. This
result was verified by calculations, simulations and experiments. Thus MDSI3
has been taken as standard distance derivation algorithm for the camera sys-
tem.
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A further result of this work is a measurement technique that makes a gat-
ing of the adverse signals, which come from raindrops or snowflakes in the
close range, possible; such a feature is indispensible for outdoor applications.
Drawback is increased measurement noise due to the modified measurement
method. Measurement results show the enhancements compared to a mea-
surement without gating, but also reveal the shortcomings arising from the
non-ideal shutter window functions and laser-pulse shapes.

A main outcome of this thesis is the novel real-time image processing soft-
ware, specifically developed for the image sequences of the 3D-CMOS camera
system. It includes the segmentation, the tracking, and the classification of
objects in the cameras volume of view (VOV).
Highly robust object segmentation results as compared to the segmentation
of 2D images could be achieved. The procedure is based on a suitable region
growing algorithm utilizing the distance information provided by the range
camera.
The newly developed tracking module showed preeminent performance as well.
The object tracking is here accomplished by adaptive Kalman filtering, cus-
tomized to the output data properties of the 3D CMOS sensor system with
real-time adaption to the scene properties. The filter tuning approach and the
good results of estimation of object positions, velocities and even accelerations
are demonstrated by means of example scenes.
Based on the results of object segmentation and object tracking, object classi-
fication and action prediction is performed. The basic concepts are described
in this work.

Finally we can conclude – as the measurement results in chapters 4 and 6
show – that the 3D-CMOS array camera system in combination with the im-
age processing software fulfills the application specific requirements. Thus the
system development was successfully accomplished with promising results in
view of future applications in the automotive and the safety sector.
A deeper analysis of the performance of the camera system is presently exe-
cuted at the UseRCams [1] project partners of the automotive industry, in-
cluding BMW, FIAT, RENAULT, and VOLVO. They integrated the camera
in test vehicles to evaluate the system in real traffic scenarios.
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The work of this thesis could be extended by following further investigations:

Further investigations should address the crosstalk problem described in chap-
ter 4.2.1.4. This could improve the 3D imaging capabilities of the system,
especially for scenes with large reflectivity and/or distance dynamics.

Efforts should also be made to further decrease the noise and/or increase the
responsivity of the sensor. This could help to save laser diodes and reduce
their power, which presently are the most costly components of the camera
system, or to increase the systems VOV.

The sensor could be improved with respect to alternating shutters during ana-
log accumulation instead of the sequential shutters to reduce corruption of
measurement values on the edges of moving objects.

Efforts should be made to increase the pulse repetition rate of the laser light
source. This would increase the frame repetition rate and decrease the afore-
said edge effects on moving objects, and thus significantly improve the image
acquisition and image processing results.

The object recovery algorithm could be enhanced by shape or size comparison
of the objects in addition to the presently considered Mahalanobis distance
criterion. Also the number of previous frames used for object recovery should
be increased from a single frame to make backtracking of object merging and
splitting possible.

The tracking procedure could be improved by implementing

- autocorrelated process noise to consider the high-grade temporal cor-
relation of the process noise in reality

- adjustable level process noise that could adapt the process noise level
to the behavior of the observed object

- multiple model tracking with model switching to adapt the process
model and the state vector dimensions to the properties of the observed
object.

These improvement approaches are closely described in [42].

For improvement of the object classification capabilities of the 3D imaging sys-
tem an increase of the sensor resolution and/or a combined image processing
including high resolution 2D-images of the observed scene should be addressed.
Efforts are already undertaken in the research project MIDIAS [46].
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Appendix A

Basic Signals

A.1 The Rectangular Impulse

The standardized rectangular impulse is defined as

rect(t) =


1 , | t |≤ 1

2

0 , | t |> 1
2

for t ∈ R. (A.1)

Scaling by T and shifting by τ in direction of the t-axis leads to the general
description of a rectangular signal:

rect(t, T, τ) = rect

(
t− τ

T

)
=


1 , | t−τ

T
|≤ 1

2

0 , | t−τ
T
|> 1

2

(A.2)

A.2 The Dirac Impulse (Dirac δ-function)

The Dirac δ-function is defined by

δ(t) =


∞ , t = 0

0 , t 6= 0

mit t ∈ R (A.3)
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and ∫ ∞

−∞
δ(t)dt = 1 . (A.4)

It is appropriate to describe the sampling of signals, as the integral over the
product of a function f(t) with δ(t− τ) yields the sampled value f(τ) of f(t):

f(τ) =

∫ ∞

−∞
f(t) · δ(t− τ)dt (A.5)



Appendix B

Random Variables

B.1 Probability Density Function (PDF)

For derivation of the pdf of a discrete random variable x, which can take the
values in the set (ξi, i = 1, ..., n), firstly the probability mass function (pmf) is
introduced:

µx(ξi) = P (x = ξi) i = 1, ..., n (B.1)

with µi beeing the point masses.
By means of the Dirac impulse function (cf. chapter A.2) the discrete pdf
results as

px(ξi) =
N∑

i=1

µi · δ(x− ξi) . (B.2)

B.2 Gaussian Distribution

A continuously distributed random variable x is called Gaussian distributed
[25], if its values are distributed according to equation B.3:

fx(ξ) =
1√

2πσ2
· e−

(ξ−µ)2

2σ2 (B.3)

Its probability density function pdf(x) looks like shown in figure B.1. The two
parameter µ and σ define the shape of the resulting distribution. Thereby is
µ the offset of the function in ξ-direction; σ is a spread factor of the function
with µ beeing the center of the spread.
A short notation equivalent to B.3 is

pdf(x) ∼ (µ, σ2)
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ξ

pdf (x) = fx(ξ)

σ

µ

Figure B.1: Gaussian distributed probability density function

For a Gaussian distribution fx(ξ) of a random variable x one can keep in mind
table B.1 which displays the portions of all drawn values x lying within an
interval µ− n · σ ≤ x ≤ µ+ n · σ for different values of n.

Table B.1: Portion of x-values contained in the µ± n · σ-interval

Interval Portion

µ− 1 · σ ≤ x ≤ µ+ 1 · σ 0.683

µ− 2 · σ ≤ x ≤ µ+ 2 · σ 0.954

µ− 3 · σ ≤ x ≤ µ+ 3 · σ 0.997

These numbers count for large numbers of draws, and must be seen as approx-
imate values for small numbers.
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Line Fitting

For a given set of N observations consisting of the xi- and yi-value vectors x
and y, the line

yf = m · x+ b (C.1)

with

m =
x · y − x · y
x2 − (x)2

(C.2)

and

b =
x2 · y − x · x · y

x2 − (x)2
(C.3)

minimizes the quadratic error sum

N∑
i=1

(yi − (m · xi + b))2 . (C.4)

The intersection of the fitted line with the x-axis

x|yf=0 = x0 =
−b
m

(C.5)

results from the above derived parameters as

x0 =
x · x · y − x2 · y

x · y − x · y
. (C.6)

This can also be expressed as

x0 =

−
N−1∑
i=1

[
N∑

j=i+1

((
yi − (yi−yj)

(xi−xj)
· xj

)
· (i− j)2

)]
N−1∑
i=1

[
N∑

j=i+1

(
(yi−yj)

(xi−xj)
· (i− j)2

)] (C.7)
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which is actually a weighted mean of all possible combinations of two data
points, and thus a weighted mean of all possible MDSI3 (see chapter 3.4) dis-
tance calculations.

For accuracy calculation of the DCSI distance measuring method in chapter
5.1.1 the partial derivative ∂x0

∂yi
of x0 is required. It is computed according to

following equation:

∂x0

∂yi

=
(x · y − x · y) · (x · xi

N
− x2 · 1

N
)− (x · x · y − x2 · y) · (x · xi

N
− x · 1

N
)

(x · y − x · y)2

(C.8)
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[48] A. F. Rodŕıguez Hernández et al., “Figure perception from real and virtual
sounding surfaces,” in Proceedings Technology and Persons with Disabili-
ties Conference, Los Angeles, USA, 2003.

[49] EMVA European Machine Vision Association, “EMVA Standard 1288 -
standard for characterization and presentation of specification data for
image sensors and cameras,” Aug. 2005, Release A1.00.



List of Abbreviations

2D 2-Dimensional
3D 3-Dimensional
3D-CMOS Acronym for the sensor chip technology
ADC Analog to Digital Converter
AMSE Average Mean Square Error
CCT Color Coded Triangulation
CDS Correlated Double Sampling
CMOS Complementary Metal Oxide Semiconductor
CS Coordinate System
CSI Correlated Short-time Integration
CW Continuous wave
DCSI Difference Correlated Short-time Integration
DR Dynamic Range
FF Fill Factor
FOV Field Of View
FPGA Field Programmable Gate Array
FPN Fixed Pattern Noise
FR Frame Rate
IR Infra-Red
LASER Light Amplification by Stimulated Emission of Radiation
LED Light Emitting Diode
LIDAR LIght Detection And Ranging
MDSI Multiple Double Short-time Tntegration
MPE Maximum Permissible Exposure
MSE Mean Square Error
NEE Noise Equivalent Exposure
NIR Near Infra-Red
OL Object List
OTA Operational Transconductance Amplifier
PD Photo Diode
PDF Probability Density Function
PRF Pulse Repetition Frequency
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RADAR RAdio Detection And Ranging
SF Source Follower
SNR Signal-to-Noise Ratio
SONAR SOund Navigation Rnd Ranging
TOF Time Of Flight
VOV Volume Of View
VRU Vulnerable Road User



List of Important Symbols

A state transition matrix
AIll illuminated area
AObject object area
APixel active pixel area
ASensor active sensor area
AMSE average mean square error
C capacitance
Cacc readout capacitance
CD diode capacitance
CH hold capacitance
CInt integrator capacitance
Csense sense capacitance
D aperture diameter
DR dynamic range
E irradiance
ESensor(t) irradiance characteristic on the sensor surface (from active illumination)
EBack(t) background light irradiance characteristic on the sensor surface
F camera focus
FR camera frame rate
H measurement matrix
H radiant exposure
I identity matrix
ID photo diode current
K Kalman gain matrix
M magnification factor, shutter switch
MSE mean square error
N number variable
NEE noise equivalent exposure
P estimate error covariance matrix
PDiode incident power on the reference diode
PModule output power of a laser module
PLaser(t) ideal laser pulse function
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P̂L laser pulse amplitude
PRF pulse repetition frequency
Q process noise covariance matrix
Qphoto photo charge
R measurement noise covariance matrix
Rλ sensor responsivity for a given wavelength λ
SλSensor sensor sensitivity for a given wavelength λ
SλSensor(t) ideal shutter window functio for a given wavelength λ

ŜλS sensor sensitivity amplitude for a given wavelength λ
T discrete time period
TDL delay time of the laser pulse
TDS delay time of the shutter window
TInt integration time
TPw pulse width
UCout ideal pixel output voltage
Ui ideal sensor output signal for shutter pulse alignment i, i ∈ a, b, c, d
UInt integrator output voltage
UDiode reference diode output voltage
Uddpix reference voltage
USensor ideal sensor output voltage

aE Euclidean distance
aM Mahalanobis distance
b basis length
c speed of light
d distance
dm measured target distance
dr real target distance
d(nacc) damping function
f focal length, frequency
gSF amplification factor of the source follower
f# f-number
k discrete time step instance
nacc number of analog accumulations
nav number of averaged frames
p disparity
ri residual of varaible i
rblur radius of a blur disc
t time
tacqu acquisition time
tTr laser trigger length
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u object distance, horizontal pixel index
uSensor sensor output voltage
v measurement noise vector
v image distance, vertical pixel index
w process noise vector
x distance value in x-coordinate direction
x system state vector
y distance value in y-coordinate direction
z distance value in z-coordinate direction
z measurement vector

∆ difference operator
Φi digital control signal i

α angle variable
β angle variable
θ angle variable
κ optical loss factor
λ wavelength
µi mean value of signal i
ρ surface reflectivity
σi standard deviation of signal i
σR readout noise
σS sensor noise
σU over-all system noise
σ∗U bright noise
τTOF time of flight
φ angle variable
ψ angle variable
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