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Abstract 

Performance analysis can help to address quantitative system analysis from the early stages 

of the system development life cycle, e.g., to compare design alternatives or to identify 

system bottlenecks. This thesis addresses the problem of performance evaluation of 

distributed systems by employing a viewpoint where analytical and simulative evaluation 

techniques are unified in the MINA tool to make use of both techniques. We suggest a 

modelling tool chain to evaluate the performance of distributed systems like computer and 

communication systems based on an MSC description of the system. 

MSC-based performance evaluation of distributed systems is an approach that uses 

performance models, which are based on an MSC description of a system to evaluate 

system performance measures. To determine the system performance, these descriptions 

can be extended by notions for time consumption and resource usage and afterwards be 

included in a system performance model. Based on this unique model specification, 

analytical as well as simulative techniques can be applied to achieve either quick mean value 

results by queueing networks analysis or confidence intervals or transient measures by 

simulation. 

The applicability to real world systems and the advantages of the tool has been 

demonstrated by a large application example in the field of mobile communication systems, 

and its effectiveness has been evaluated by comparing it with other approaches. The 

experimental results show that the tool is scalable, the way it can model simple as well as 

complex systems. Moreover, it is straightforward and has the ability to find reasonable 

solutions in an efficient manner. 
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Chapter 1  

Introduction 

1.1 Introduction 

Functional correctness as well as performance behaviour are essential properties for the 

design and development of complex systems, such as communication protocols and real 

time applications. Hence, system developers often need predictions on quantitative 

measures like throughput and response time to decide on implementation design 

alternatives. On many occasions, guarantees on performance properties concerning 

behaviour over time measures are required before system implementation [68]. 

Since a formal specification has to be as implementation-independent as possible, 

specification languages like SDL (Specification and Description Language) and MSC 

(Message Sequence Chart) do not (and should not) cover performance aspects. To obtain 

performance measures and/or verified statements on the behaviour over time of the 

system in question, quantitative properties of the design have to be specified. In other 

words, one has to move towards the implementation to obtain some kind of performance 

information from the design. Performance aspects may cover issues like performance 

characteristics of hardware devices, concurrency due to shared resources, algorithms used 

for data manipulation and scheduling, processing speeds, bandwidths of communication 

channels, buffer sizes, timeout values, and last but not least workload and traffic 

characterization [29]. 

The standard MSC language does not support the modelling of quantitative aspects. 
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While the functional requirements of an MSC specification may be examined at an early 

stage during system design, the investigation of quantitative properties can only be done at 

a much later stage in the system development process, resulting in excessive costs for the 

correction of performance related design errors. Moreover, designers are confronted with a 

methodological gap between functional and quantitative analysis of a system, as existing 

methods for quantitative system analysis require the transformation of the MSC 

specification into a different model world. Such transformations are expensive and prone 

to error. Since the design of complex systems usually is an iterative process, the results of a 

performance analysis have to be retransformed back into the MSC model world, so that 

they can be integrated into the design of the system, leading to even more costs and errors 

[69]. 

As mentioned above, it is necessary to extend MSC by a number of features to 

incorporate performance modelling. In the following, the main concepts of these 

extensions are introduced. At first, an MSC is mapped into queueing models, which are a 

widespread paradigm for performance modelling. They are used to describe and analyze the 

congestion of multiple requests for restricted resources. In the queueing model, each 

system component (represented by an instance in the MSC context) is considered as a 

queueing station providing a service to the packet or signal or the request (represented by a 

message in the MSC context). The total time a request spends in a queueing station 

depends on the amount of service required, the speed of the server and additionally the 

wait time spent in the queue. The requested amount of service is normally described by a 

random variable, whereas the speed of the server is a real positive constant. The waiting 

time spent in the queue depends on the congestion due to concurrent usage of the system 

component. Associating these queueing models by performance parameters like server 

speeds and service amount, one can evaluate the system performance by analytical or 

simulative techniques. An important topic that highly affects system performance is the 

behaviour of the traffic sources. Hence, the characterization of the workload by suitable 

traffic parameters is part of each quantitatively assessable model.  

1.2 Performance Evaluation of Computer and Communication Systems 

Performance is defined as "quality of service, provided the system is correct" [48]. 
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Performance modelling involves representing the probabilistic nature of user demands and 

predicting the system capacity to perform, under the assumption that the system structure 

remains constant. 

Performance is a key criterion in the design, procurement, and use of computer and 

communication systems. As such, the goal of computer systems engineers, software 

engineers, scientists, analysts, and users is to get the highest performance for a given cost. 

To achieve that goal, computer systems professionals need, at least, a basic knowledge of 

performance evaluation terminology and techniques. Anyone associated with computer 

systems should be able to state the performance requirements of these systems and should 

be able to compare different alternatives to find the one that best meets their requirements 

[34]. 

Performance evaluation aims at forecasting system behaviour in a quantitative way. 

Whenever new systems are to be built or existing systems have to be reconfigured or 

adapted, performance evaluation can be employed to predict the impact of architectural or 

implementation changes on the system performance [26]. 

In the following, we discuss the goals of performance evaluation of computer and 

communication systems. Types of performance measures are also discussed. Finally, we 

give an overview of some performance evaluation techniques. 

1.2.1 Goals of Performance Evaluation 

Roughly speaking, the field of performance evaluation covers three related aspects: 

Ø Determine certain performance measures for existing systems or for models of 

systems.  

Ø Develop new analytical and methodological foundations of performance evaluation, 

e.g. seek for advances in queueing theory or time series analysis of measurement 

and simulation results.  

Ø Find ways to apply theoretical approaches in creating and evaluating performance 

models. 



Chapter 1   Introduction 

 10 

Why are we interested in performance aspects of a system?  In practice, one is often faced 

to certain performance-related problems, for which we discuss some examples, which have 

been partly taken from [34 and 77]: 

Ø Some existing equipment is perceived to be too slow or not responsive enough. A 

performance evaluation study can reveal performance bottlenecks and provide 

hints on which system components should be improved. 

Ø More general, it is often important to identify bottlenecks to guide the optimization 

of an existing or planned design. 

Ø Capacity planning: given some anticipated load, how much resources should be 

assigned / bought to obtain some desired level of service quality?  As an example:  

given some estimates for the load, how much memory should an internet router 

have in order to keep the packet loss due to congestion below 0.1%? 

Ø Comparison of algorithms: Given two algorithms or protocols to solve the same 

problem, which is the better algorithm/protocol under which load situations? For 

example, when looking at an internet router carrying almost only TCP traffic, what 

is the best policy to drop packets, Drop-Tail or random early dropping? On the 

other hand, which scheduling algorithm provides the best responsiveness for a 

given system load? 

Ø Given two offers for a computer system: how to find out which one serves my 

needs best? 

Ø You made a contract with an Internet service provider, which guarantees you a 

minimum bandwidth. How can you find out if the service provider violates the 

contract? 

Sometimes these questions arise out of pure interest or are part of a research study; 

however, more often the answers are needed to make business decisions, e.g. to decide on 

investments, directions of research and development.  

1.2.2 Performance Measures 

The performance measures of interest vary from application to application and from user 
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to user. In this section, we discuss some classifications of performance measures and 

provide examples for typical measures used in many performance evaluation studies. 

We can broadly distinguish between system-oriented performance measures, which can 

be assessed independently from applications, and application-oriented performance 

measures, which belong to a specific application and might depend in complex ways on 

system-oriented measures. Let us take video-conferencing as an example. The application-

oriented performance measures might be: 

Ø Frame rate, resolution, and colour depth.  

Ø High signal-to-noise ratio and absence of distortions (dropouts, coding artefacts, 

etc.). 

Ø Interactivity, i.e. round-trip times, response time. 

The video frames have to be transported over a network, which can be characterized, 

e.g. by the following system-oriented performance measures: 

Ø Throughput. 

Ø Delay and jitter. 

Ø Losses. 

Even if we know the system-oriented measures, it is not obvious how to predict the 

application-oriented measures from these. For example, the video application might apply 

more or less clever error concealment techniques to combat packet losses and to increase 

the perceived video quality [34 and 77]. In computer networks like the Internet often the 

following performance measures are of interest: 

Ø The delay is in general concerned with time. The following delay measures are often 

used: 

ü The end-to-end delay measures the time needed by a packet to travel from the 

source via intermediate hops to the receiver. 

ü The round-trip-time includes the acknowledgement, which has to travel back 

from the receiver to the transmitter. The transmitter measures the time between 
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issuing the packet and receiving the acknowledgement. 

ü When considering OSI service primitives, the indication delay might indicate the 

time between issuing a request primitive at the transmitter and the occurrence 

of the corresponding indication primitive at the receiver. 

ü The confirmation delay indicates the time at the receiver, which passes between 

issuing the request primitive and getting the confirmation primitive. 

Ø The jitter denotes delay variation. Roughly speaking, the jitter characterizes the 

deviation from a strictly isochronous service required by control applications or 

multimedia applications. 

Ø The throughput denotes how many user bytes of data packets go through the 

network per time. The notion of goodput is similar, but explicitly excludes control 

information or control packets from the calculations. 

Ø The utilization of a communications link denotes the fraction of time by which the link 

is actually used, i.e. where it is not idle. Typically, service providers are interested in 

high utilizations to justify investments. 

Ø The blocking probability gives the probability that a service request is not served due 

to busy resources. For example, when you want to place a telephone call, you 

sometimes get no dial tone or a busy tone from the beginning on. 

The performance measures for computer systems are in some parts similar, in other 

parts different from the typical measures used in computer networking. According to [27] 

we can roughly distinguish between desktop systems, server systems and embedded systems: 

Ø In desktop systems, the most important measures reflect their principal use: such a 

system is often used only by a single user, who cares most about response times, 

not so much on throughput. The response times and the "interactiveness" are best 

served with high performance processors and graphics systems, while I/O 

bandwidth plays not such a big role. The response time denotes the time between 

issuing a request (e.g. hitting ENTER after typing a command at the console) and 

getting the answer. 

Ø In server systems, the focus is not so much to serve a single user as fast as possible, 
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but to serve multiple users as fast as possible, i.e., throughput is of greater 

importance than the response time of a single user. Furthermore, since many 

enterprises depend critically on their servers (consider a web-shop as an example); 

they have to be reliable and available. Typical reliability measures are the mean time 

between failures (MTBF) and a typical availability measure is the system downtime 

per year. 

Ø In embedded systems the following factors are often of importance: power 

consumption, since many embedded systems are battery driven; memory consumption, 

since embedded systems have to be low-cost; real-time performance measures (jitter 

for periodic traffic, frequency of deadline misses, interrupt latencies, etc.), since 

embedded computers often run control applications. 

Finally, for measures like delay, throughput, error rates, etc., we might be interested in 

the following characteristics: mean value, variance (or more general: moments), minimum 

and maximum values, the whole distribution, certain quantiles and correlation between 

different samples. 

1.2.3 Main Performance Evaluation Techniques 

To assess the performance of one or multiple systems, we have to apply performance 

evaluation techniques. We can broadly distinguish three main techniques [26, 34 and 77]: 

Ø When the system under study already exists and is accessible with reasonable effort, 

measurement-based techniques can be used.  

Ø When the system does not exist or is too large (complex, unhandy, not available, 

etc.), a performance model has to be developed.  

To develop a performance model, we should at least have an unambiguous system 

description. From this system description, we can then make an abstract model. In the context 

of performance evaluation, a model is an abstract description, based on (mathematically) well-

defined concepts, of a system in terms of its components and their interactions, as well as its 

interactions with the environment. The environment part in the model describes how the 

system is being used, by humans or by other systems. Very often, this part of the model is 

called the system workload model.  
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The process of designing models is called modelling. This can be either an analytical 

model, which uses mathematical concepts and mathematical notations to describe the model. 

In contrast, a simulation model is a computer program, which mimics the important aspects of 

the system under study. We will briefly discuss each technique in turn. 

1.2.3.1 Measurement-based 

In a measurement, the system under study (which can be a single computer or multiple 

computers, network elements, etc.) is first instrumented with so-called probes. A probe is a 

piece of hardware or software, which captures certain system states and stores them in a 

buffer. The system is then subjected to a specified workload and the measurement starts. A 

monitor system collects the data from the probes and computes performance measures, 

analyzes and displays them. 

As stated before, measurements are only possible when the system under study already 

exists and is accessible. Furthermore, it must be possible to install the probes. For example, 

when the probes are pieces of software, which need to be part of the operating system kernel, 

then you are restricted to open-source software. 

It is often not easy to interpret measurement results, since many factors influence the 

results. For example, when measuring the delay of voice-over-IP packets between a local host 

and a remote host, several factors influence the measured delays, amongst them are: 

Ø Speech coder latency. 

Ø Operating system and networking stack at the transmitter. 

Ø The network in between (bandwidths, queueing delays due to cross-traffic, etc.). 

Ø Operating system and networking stack at the receiver. 

Ø Size of play out buffer. 

Ø Speech decoder latency. 

It is not obvious how much each part influences the observed delays. However, the same 

example illustrates one key advantage of measurements: you can just take the measured 

values and declare them “your true numbers”. If you have to build an analytical or 
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simulation model, you have to come up with "reasonable delay numbers" for each of the 

elements in the transmission chain. In general, these "reasonable numbers" are often hotly 

debated and the problems in finding them lead to some feeling of mistrust in model-based 

techniques. In measurements, it is mainly the selection of the workload, which is 

questioned by others. The time needed to set up a measurement varies, but should not be 

underestimated.  

A serious measurement study can take a lot of time. Furthermore, many details have to 

be considered, e.g. the specific configuration of a computer system. Sometimes the 

measurement results can change dramatically after modifying the configuration data. 

1.2.3.2 Analytical Modelling 

Analytical modelling consists of setting up mathematical models and equations, which 

describe certain aspects of the system. Specifically for modelling of computer systems and 

communication networks, probabilistic models are often used to describe the evolution of 

systems. This choice accounts for the fact that the workloads observed in reality are often 

unpredictable, and hence are assumed random. In this text, we focus entirely on stochastic 

models of discrete-state systems. 

The big advantage of analytical modelling is that it requires a thorough understanding 

of the system. The biggest disadvantage is that many systems are too complex to be in 

reach of analytical methods. Therefore, a lot of simplifications and approximations have to 

be made during the modelling process, which lessens the accuracy of the results. However, 

analytical models can often give a rough feeling for the influence of certain factors on the 

performance measures. A second disadvantage is that the analyst needs to know the 

necessary mathematics very well, including the respective abilities to model certain 

technical phenomena. 

1.2.3.3 Simulation Modelling 

A simulation model is a computer program written in a general-purpose language or in a 

special simulation-oriented language. A simulation implements the most important aspects 

of the original, often in a simplified and abstract manner. However, the advantage of 
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simulation modelling over analytical modelling is that it allows for a greater level of detail and 

it allows avoiding too many simplifications. In analytical models, the level of detail is often 

restricted by the limited expressiveness of the analytical method, while for simulation models 

the available time and resources are the only restriction. If the simulations use stochastic input 

data, great care must be taken to achieve a desired level of statistical accuracy for the 

simulation results. In fact, one important question is for how long a simulation has to run, 

and this is often not trivial to decide and may need a long time. 

A big advantage of simulations over measurement-based techniques (which can be exploited 

even for existing systems) is that simulations are much better reproducible than 

measurements. For example, when doing measurements of the error rates on a wireless 

channel, these are not reproducible, since the errors depend very much on the propagation 

environment found by transmitted waves. Small movements of obstacles (turn around a 

monitor, close a door, etc.) can change the error behaviour dramatically. It is close to 

impossible to control the environment and to reproduce it elsewhere. Another example: if 

you measure the time needed for a certain program to run on a UNIX computer, it is 

greatly influenced by the mix of other user programs and demons currently running on the 

system. In contrast, in a simulation you have tight control over all the input to the model. 

1.2.3.4 Analytical vs. Simulation Modelling 

If the model at hand fulfils a number of requirements, we can directly calculate important 

performance measures from the model by using analytical techniques. Analytical techniques 

are of course very convenient, but not many real systems can be modelled in such a way 

that the requirements are fulfilled. However, we will spend quite some time on deriving and 

applying analytical techniques. The reasons for this are, among others, that they can give a 

good insight into the operation of the systems under study at low cost, and that they can be 

used for "quick engineering" purposes in system design. 

Within the class of analytical techniques, a sub-classification is often made. First, there 

are the so-called closed-form analytical techniques. With these, the performance measure of 

interest is given as an explicit expression in terms of the model structure and parameters. 

Such techniques are only available for the simplest models. A broader class of techniques 
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are analytic numerical techniques, or numerical techniques, for short. With these, we are 

able to obtain (systems of) equations of which the solution can be obtained by employing 

techniques known from numerical analysis, e.g. by iterative procedures. Although such 

numerical techniques do not give us closed-form formulae, we still can obtain exact results 

from them, of course within the error tolerance of the computer, which is used for the 

numerical calculations. 

For the widest class of models that can be imagined, analytical techniques do not exist 

to obtain model solutions. In these cases we have to resort to simulation techniques in 

order to solve the model, i.e., in order to obtain the measures of interest. With simulation, 

we mimic the system behaviour, generally by executing an appropriate simulation program. 

When doing so, we take time stamps, tabulate events, etc. After having simulated for some 

time, we use the time stamps to derive statistical estimates of the measures of interest. 

It is also possible to combine the above modelling approaches. This is called hybrid 

modelling. In such an approach, parts of the model are solved with one technique and the 

obtained results are used in combination with the other model parts and solved by another 

technique. 

The presented classification of solution techniques is not unique, nor beyond debate. 

Very often also, the performance models are classified after the techniques that can be used 

to solve them, i.e., one then speaks of analytical models or of simulation models. It is 

difficult to state in general terms which of the three solution techniques is best. Each has 

its own merits and drawbacks. Analytical techniques tend to be the least expensive and give 

the modeller deep insight into the main characteristics of the system. Unfortunately, real 

systems often cannot be adequately modelled by analytically tractable models. Approximate 

analytical models can be an outcome; however, their validity is often limited to a restricted 

range of parameters. Numerical techniques, as an intermediate between pure analytical and 

simulative techniques, can be applied in very many cases. Using simulation, the modeller is 

tempted to make the models too complex since the model solution technique itself does 

not bring about any restrictions in the modelling process. This might easily lead to very 

large and expensive simulation models.  
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1.3 Background and Related Work 

Several approaches for integrating performance evaluation and formal specification 

techniques have been reported in the literature. A good survey on these methods is 

reported in [53]. Mitschele-Thiel et al. [50 and 51] described a toolbox called DO-IT 

toolbox to support performance engineering of SDL/MSC-based systems including model 

derivation, model-based performance evaluation and optimization. The performance 

evaluation within the DO-IT toolbox is based on MSC rather than on SDL. An annotated 

extension of MSC is used to define the performance requirements including the workload, 

and the resource requirements for specific execution of the system. The performance 

evaluation techniques provided by the DO-IT toolbox are rather simple and based on 

deterministic service times. The proposed techniques include bottleneck analysis, critical 

path analysis and deterministic simulation. 

In [43], the Performance Message Sequence Chart (PMSC) language extends MSC-96 

by annotations to integrate performance aspects. Annotations have semantical meanings 

for performance evaluation tools as developed, e.g. at the University of Erlangen-

Nuremberg [23]; annotations are comments in the original language to allow standard tools 

to process the specification. PMSC is described in earlier versions in [19 and 20]. PMSC 

introduces a concept of time for an executed MSC by interpreting MSC events as actions 

that are executed by tasks, which need some time to complete. Every task has a start and 

completion events that occur at some point in time.  In PMSC, a system model is used that 

has two separate sub-models, namely the load model and the machine model. The load 

model includes the MSC, which describes the functional dependencies between load units, 

the machine requirements, which are annotated with every load unit (action), and the traffic 

sources, that specify the intensity of the load. The machine model consists of queueing 

stations that model processors or channels between processors. To complete the system 

model a mapping from instances on modelled processors and communication paths on 

modelled channels must be obtained. To allow flexibility, the concepts are separated in 

different documents. 

Many approaches do exist to enhance formal description techniques by non-functional 

information on time and resources. In the field of SDL and MSC, an overview on the role 
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of performance aspects is given in [49, 52 and 54].  Examples for tools combining the SDL 

and/or MSC methodology and performance evaluation are QUEST, SPEET, and SPECS 

[25, 28, 43, 52 and 54].  Much work has also been especially done with respect to Timed 

MSCs [52 and 54] and Performance MSC [43]. 

Researchers at the University of Essen developed a queuing SDL tool, called QUEST 

[16 and 17]. QUEST is based on the adjunction of time-consuming machines that model 

the congestion of processes due to limited resources. By adding workload models after 

defining a mapping of workload to machines, an assessable performance model is 

automatically generated. The language QSDL (Queuing SDL) and the tool QUEST 

support the description and construction of performance models and their evaluation. The 

language QSDL provides means for the specification of load, machines and their binding. 

QSDL processes model load by issuing time-consuming requests that are referred for 

execution to adjunct machines given by queuing stations. QSDL processes are bound to 

the machines via links and pipes. Processes and machines within the same block are 

connected with a link. The translation of the QSDL description to an executable simulation 

program is done automatically. 

There are some approaches to integrate time and performance into MSC. [70] extends 

MSC-92 (MSC-Real Time) by language constructs rather than by annotations. [72] in-

troduces an extension of MSC-96, called Timed MSC, to support performance testing. Per-

formance simulation based on formalized use cases with a language similar to MSC-96 is 

reported in [14]. A tool that uses MSC-96 for deriving performance models in early phases 

of the object-oriented software engineering process is described in [73]. In [40] a formal 

timed semantical model based on term rewriting rules is introduced for MSC-92. Most 

approaches to support specification based performance evaluation of systems in the 

SDL/MSC context extend SDL itself (e.g. the approach described in [17]). Since SDL and 

MSC are often combined in one project SDL-based and MSC-based performance 

prediction should be integrated and share common documents to support consistency 

between both specifications. 

Here, in this dissertation, we follow the ideas sketched above; in particular, we will use 

MSCs notions, which are extended by annotations to describe required resource 
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consumptions. The instances are assumed to run on resources, which have a certain 

processing speed. This way a performance model is established which could be 

quantitatively evaluated, either by discrete event simulation or by queueing network 

algorithms. Here we mainly follow the latter approach to calculate efficiently mean values 

for end-to-end delays and resource utilizations. Moreover, a simulation tool has been 

developed which allows evaluating models, which do not satisfy the necessary assumptions 

to obtain analytical solutions. Additionally to the evaluation of the steady state behaviour, 

simulation can also be used to study the dynamic performance behaviour. 

1.4 Thesis Organization 

In this work, we developed a tool called MINA to evaluate the performance of distributed 

systems by analytic as well as by simulative techniques. The rest of the thesis is organized in 

a way that describes step by step the tool chain described in Figure 1.  

 

Figure 1: An overview of the tool chain 
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The tool chain starts with describing the system workload by MSCs. Then, notions for 

time consumption and resources are added in order to extend MSCs. This produces the so-

called performance extended MSC. The “performance extended MSC” is included in a 

system performance model (Queueing Network Model). Based on this model the 

performance evaluation of the system under consideration can be done by analytical 

techniques or by discrete event simulation. Analytical techniques are used to obtain steady 

state performance measures like resource utilizations, throughput, and end-to-end delays. 

Additionally, simulation allows for the investigation of dynamic performance behaviour. 

According to this tool chain the rest of the thesis is organised as follows. Chapter 2 

discusses the approach of describing communication between distributed instances by 

MSCs and how these descriptions can be extended by notions for time consumption and 

resource usage and can be afterwards included in a system performance model. Chapter 3 

describes how such models can be evaluated under reasonable assumptions by analytical 

queueing network algorithms and how steady state performance measures like resource 

utilizations and end-to-end delays can be calculated. Chapter 4 describes how the 

simulation uses the same input like the analytical formulas and how it allows for the 

investigation of dynamic performance behaviour. Chapter 5 illustrates the basic ideas by 

simplified case studies examples taken from the field of computer systems. Modelling the 

applicability of the complete tool to model and characterize the performance of real 

industrial systems is shown by a real world example in Chapter 6. Finally, a summary of 

contributions of the work presented in this thesis is summarized in Chapter 7 and 

suggestions for future work are given. Appendix A presents in brief the JavaDEMOS 

package used to build the simulator. For the sake of completeness, Appendix B introduces 

the basics of client/server systems. A summary of the MINA tool chain is given in 

Appendix c. 



 

 

 

 



 

 

 

Chapter 2 

Describing Systems by MSCs 

2.1 Introduction 

The purpose of Message Sequence Charts (MSCs) is to provide a trace language for the 

specification and description of the communication behaviour of system components and 

their environment by means of message interchange. Communication between distributed 

instances can be described by MSCs. To determine the system performance, these 

descriptions can be extended by notions for time consumption and resources. Afterwards 

they may be included in a system performance model. Such models can be evaluated by 

discrete event simulation or under reasonable assumptions alternatively with analytical 

queueing network algorithms. 

In section 2.2, we introduce Message Sequence Chart (MSC) including the definition of 

Message Sequence Charts, the main characteristics of Message Sequence Charts, the basic 

constituents of Message Sequence Charts, the MSC language notations (the graphical and 

the textual notations) and the High Level MSC (HMSC). We also show that HMSCs 

provide a mean to graphically define how a set of MSCs can be combined to express 

scenarios that are more complicated. Section 2.3 shows how MSCs are extended with time 

and resource parameters. The mapping of the extended MSCs into a queueing performance 

model is described in section 2.4.  

Finally, in section 2.5 we show how the performance parameters together with the 

messages flow between system components are used by analytical models and simulation 
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models to evaluate the system performance measures.  

2.2 MSC (Message Sequence Charts) 

2.2.1 Introduction to MSCs 

A message sequence chart (MSC) is a high-level description of the message interaction 

between system components and their environment. A major advantage of the MSC 

language is its clear and unambiguous graphical layout, which immediately gives an intuitive 

understanding of the described system behaviour.  

The syntax and semantics of MSCs are standardized by ITU-T, as recommendation 

Z.120. Message Sequence Charts (MSC) is a language to describe the interaction between a 

set of independent message-passing instances. The main characteristics of the MSC 

language are the following, cf. [58 and 59]: 

Ø MSC is a scenario language. An MSC describes the order in which communications 

and other events take place. Additionally, it allows for expressing restrictions on 

transmitted data values and on the timing of events. 

Ø MSC is a graphical language. The two-dimensional diagrams give overview of the 

behaviour of communicating instances.  

Ø MSC is a formal language. The definition of the language is given in natural 

language as well as in a formal notation. 

Ø MSC is a practical language, which is applicable. MSC is used throughout the 

engineering process.  

Ø MSC supports structured design. Simple scenarios can be combined to form 

specifications that are more complete by means of High-Level Message Sequence 

Charts.  

Ø MSC is often used in conjunction with other methods and languages. Its formal 

definition enables formal and automated validation of an MSC with respect to a 

model described in a different language. MSC can be used, for example, in 

combination with SDL (Specification and Description Language) and TTCN (Tree 
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and Tabular Combined Notation). 

The basic constituents of Message Sequence Charts are instance, message, general 

ordering, condition, timer, action, instance creation and termination.  

Here our focus is on MSCs consisting only of instances and messages. The most 

fundamental language constructs of MSC, are instances (e.g. entities of SDL systems, blocks, 

processes and services).  

Instances are reactive entities whose communication behaviour is described by the 

MSCs. The message exchange is the only mean of communication among instances. Within 

the instance body, the ordering of events is specified. A message can be as simple as a 

signal or as complex as a sophisticated data packet. Each message is associated with a send 

and a receive event. To illustrate the basic ideas, a simple MSC-example, which has four 

instances that exchange five messages between each other, is shown in Figure 2. 

 

Figure 2: An example of an MSC (Graphical notation) 

Message Sequence Charts have both a graphical and a textual representation. The 

language is best illustrated by the graphical representation, but where the definition of a 

formal semantics is concerned, the textual representation is preferred.  

The textual notation MSC-PR can be expressed in two forms, event-oriented which 

describes the MSC using the order in which the events or instance-oriented which describes 
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msc Example 
 inst instance1, instance2, instance3, instance4; 
   instance1: out m1 to instance2; 
   instance2:  in m1 from instance1; 
   instance2: out m2 to instance3; 
   instance3:  in m2 from instance2; 
   instance3: out m3 to instance1; 
   instance3:  endinstance; 
   instance1: out m3 to instance3; 
   instance1: out m4 to instance4; 
   instance1:  endinstance; 
   instance4:  in m4 from instance1; 
   instance4:  out m5 to instance2; 
   instance4:  endinstance; 
   instance2: out m5 to instance4; 
   instance2: endinstance; 
 endmsc; 

msc Example 
inst instance1, instance2, instance3, instance4; 

   instance instance1: 
      out m1 to instance2; 
      in m3 from instance3; 
      out m4 to instance4; 
   endinstance; 
   instance instance2: 
      in m1 from instance1; 
      out m2 to instance3; 
      in m5 from instance4; 
   endinstance; 
   instance instance3: 
      in m2 from instance2; 
      out m3 to instance1; 
   endinstance; 
   instance instance4: 
      in m4 from instance1; 
      out m5 to instance2; 
   endinstance; 
endmsc; 

the MSC on an instance-by-instance basis. The syntax of both the instance-oriented form and 

the event-oriented form for the MSC mentioned above in Figure 2 is shown in Figure 3 (a) 

and Figure 3 (b) respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: MSC-PR: (a) Instance-oriented form, (b) Event-oriented form 

2.2.2 Basic MSC vs. HMSC (High level MSC) 

The core language of Message Sequence Charts is called Basic Message Sequence Charts. A 

Basic Message Sequence Chart concentrates on communications and local actions only. 

The body of a Basic Message Sequence Chart is formed by a finite collection of instances. 

An instance is an abstract entity on which message outputs, message inputs and local 

actions may be specified.  

To define more complex scenarios, the HMSC provides a mean to graphically define 

how a set of MSCs can be combined. An HMSC is a directed graph where different types 

of nodes can be found. Each node could be one of the following [58, 59 and 61]: 

Ø An HMSC reference (a component) consists of a frame with rounded corners 

enclosing the name of the referenced HMSC. 

Ø Every component has exactly one start node, indicated by an upside-down triangle. 

In addition, it may contain a number of end nodes depicted by a triangle and several 
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HMSC references. 

Ø Every node including the end-nodes within a component is reachable from the start 

node. 

Ø An arrow between two HMSC references implies that they are composed vertically. 

Ø Splitting of an arrow denotes that the successors are alternatives. 

Ø A cycle connecting a number of HMSC references expresses a repetition. In this 

case, infinite behaviour can be described. Connectors (indicated by a circle) are 

also used for combining incoming and outgoing edges. The various compositional 

operators of HMSC are sketched below. 

2.2.3 HMSC Composition 

MSCs can be composed via operators into HMSCs. MSCs are identified in HMSCs by so-

called MSC-references. To gain flexibility these HMSCs can be MSC-references themselves. 

The various compositional operators of an HMSC are described below; cf. [44 and 61]: 

Ø Sequencing: Whenever two MSCs are sequenced or concatenated, it is interpreted 

to be vertically composed (Figure 4). Two variants of sequence operators are 

described below: 

ü Strong sequencing: Ml and M2 are in strong sequencing if the transfer to M2 is 

possible only after the termination of all events in Ml. 

 

Figure 4: Vertical composition in HMSC 

M1 

M2 
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ü Weak sequencing: Let Ml and M2 be weakly sequenced in that order. Let Ml and 

M2 share the instance I. Then weak sequencing means that all events on 

instance I of Ml will come before all events on instance I from M2. For events 

on instances, which are not shared, by Ml and M2 the order is arbitrary (just like 

for parallel merge). Moreover, if Ml and M2 share instances I, and J, may be 

there still events in M2 on J occurring before events on I in M1.  

Ø Alternatives: If a node has more than one outgoing arrow this indicates a number 

of alternatives with which this node can be composed vertically. The HMSC given in 

Figure 5 shows that M1 is composed vertically with either M2 or M3. 

 

Figure 5: Alternatives in an HMSC 

Ø Parallel composition: this is also called horizontal composition, and it means 

that multiple MSCs run in parallel. There is no restriction among multiple MSCs. 

Figure 6 illustrates the graphical representation of parallel composition in an HMSC. 

 

Figure 6: Parallel composition in HMSC 

M1 M2 

M1 

M2 M3 
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Ø Loops: A "Loop" is used to represent the possible execution of an MSC an 

arbitrary number of times with the possibility of termination. A loop results by the 

vertical composition of the last node with the first node, creating the loop. Figure 7 

illustrates the graphical representation of loops in an HMSC. 

 

Figure 7: Loop in HMSC 

Other HMSC operators are repetition, option, and exception. The operators, option 

and exception are only abbreviations that can be encoded using (delayed) choice. Similarly, 

finite repetition can be encoded using (delayed) choice and (weak) sequencing essentially by 

unfolding of the loop. Through the partial order of MSC events, a set of (totally ordered) 

traces is specified by one plain MSC.  

An HMSC with only finite loops can be seen as the definition of a set of plain MSCs 

where, the sequential composition glues MSCs together, choice is a set of all possible 

branches and parallel composition is a set of all possible combinations of free merges 

where the precedence between MSC events in each MSC is preserved. 

2.3 Extending the MSC by Performance Parameters 

In order to construct quantitatively assessable models based on the MSC-notion we extend 

MSCs by performance parameters. This can be done in a rather straightforward way. Each 

message is associated with a service amount ai to be executed at the receiving instance 

(resource or station) i. Each instance has a speed gi, such that the service time is simply 

calculated by si = ai /gi. Of course we can group messages into classes and distinguish them, 
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say by index r, r = 1, ..., R; hence we get the notion sir = air /gi, describing the service time of 

a message of class r at station i, where air is the service amount of a message of class r at 

station i. Furthermore, we consider the instances to behave like queueing stations, i.e. 

messages arriving at a busy instance are stored in a queue and will have to wait for service.  

Figure 8 displays the execution of a timed MSC; each message has to spend some wait 

time at arrival at an instance (including the case of zero wait time) followed by a service 

time which depends on the speed of the instance and the required service amount. 

 

Figure 8: Wait and service times during execution of a timed MSC 

Moreover we consider MSCs to be “open“, i.e. the start of an MSC is triggered from 

the environment according to some interarrival distribution. Since we will employ analytical 

mean value formulas based on queueing network theory the interarrival distribution is 

assumed to be negative exponential. The same assumption is made for the distribution of 

service amounts. By combining MSCs using the HMSC operators of composition, traces 

that are more complex can be defined. Therefore, we can define end-to-end delays also for 

HMSCs; this is done in Chapter 6. 

2.4 Mapping the Extended MSC to a Performance Evaluation Model 

Here we describe the derivation of a model, which can be quantitatively assessed by means 

of analytical or simulative techniques. Since instances are queueing stations and messages 

can be considered as customers, we obtain a queueing network. Each queueing station 

consists of a wait queue and a server. Messages are generated according to an arrival rate ? 
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and they are served at the stations 1 through 4, and finally they leave into a sink. 

Depending on the interarrival distribution of messages, the service time distribution of 

the messages and the service disciplines of the stations such a network has the so called 

product form property and can be solved analytically, i.e. performance measures, like 

utilization of stations or response time can be derived very fast.  

Theory and algorithms are well established; indeed, in this scenario we have a queueing 

network of Jackson type [32 and 33]. More discussion about queueing networks algorithms 

is introduced in Chapter 3. 

Note that the numbering of messages defines their order of execution, here “source à 

m1à m2 à m3 à m4 à m5 à sink”. On the other hand, the queueing network 

formulas1 to be applied here do neglect the correct order of visits. What really matters 

when deriving mean performance measures, is the number of visits (not their order) and 

the amount of requested service at the stations. 

 

CPU 1 CPU 2 

CPU 4 

CPU 3 

m1 

m2 
m3 

m4 m5 Source 

Sink 

 

Figure 9: The example MSC transformed into a queueing network model 

Here we assume that each station is of type -/M/1-FCFS and MSC arrivals occur 

according to a Poisson stream and the service times of the messages are also negative 

exponentially distributed. 

In general, we assume that a system consists of n stations and m different MSCs classes, 

which arrive with an overall MSC arrival rate ? [MSCs/sec]. Each MSC consists of a certain 

number of messages, which are to be served by the different stations. The arrival rate at 

                                                      
1 In case any of these assumptions is not valid, we have to use approximation algorithms or discrete event simulation. 
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station i is hi ? [messages/sec] where, hi is the number of messages to be served by station 

i, i = 1, 2, …, N for all MSCs of the classes r, r = 1, 2, …, R. Let cir be the number of 

messages of an MSC of class r which are served at station i , then we can define hi, the total 

number of messages received and served by station i, as follows: 

,,,2,1,
1

Nich
R

r
iri Κ== ∑

=

 for all stations i (1) 

The same way, we can define the message arrival rates ?i,r [messages/sec] at station i for 

all messages of MSC class r as follows: 

RrNicirir ,,2,1,,,2,1, ΚΚ === λλ  (2) 

Hence, the overall arrival rate of message ?i at station i for all messages of all MSC 

classes is: 

Nihii ,,2,1, Κ== λλ  (3) 

Let µir be the service rate (messages of MSC class r / sec) at station i, i = 1, 2, …, N. 

The associated service rates are defined by the following equation:  

µir = 1/sir = gi /air  [messages/sec] (4) 

In Chapter 6, we have a more complex scenario that some MSCs are composed in 

parallel and the messages of these MSCs belong to different classes. 

2.5 Input Parameters 

Input parameters are the parameters used as input to the simulation model as well as input 

to the queueing network model. These input parameters are as follows: 

Ø The performance parameters:  

ü The resource parameters: Like the resource speed, this is used to determine the 

service times for messages of a certain MSC. 

ü Complexity class: As shown in the previous section messages of the same MSC 

and/or different MSCs are belonging to classes to distinguish between them. 

Each class has a different service amount and therefore a different service time.    
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ü The service time: It is the time needed to serve a message at a resource, e.g. like a 

CPU. Note that the service time does not include the queueing time, which 

arises when the resource is busy and accordingly the message waits for service 

in a queue until the resource becomes free. It depends on the previous two 

parameters, i.e. the service time is dependent on the complexity class of the 

message to be served and on the speed of the resource that will serve this 

message. 

Ø The interarrival time: The interarrival time is the time between two successive arrivals 

of a certain MSC. In the case that we have more than one MSC, which are 

composed, each MSC has its own interarrival time. 

Ø Visit counts: This is the number of messages that visit the resource to be served in 

the time unit. To compute the visit counts, we count the number of messages of 

each complexity class at each resource. The visit count is used to determine the 

utilizations of the resources and the response times for different MSCs in the case 

of the queueing network model.  

Ø Message flow parameters: 

ü Sender resource: This is defined as the resource that sends the message. It is 

important to know the resource that sends a message to free it after sending the 

message to be available for serving other messages. 

ü Receiver resource: When a resource receives a message, it spends some time to 

serve it. Therefore, it is important to keep these parameters in tables to use it to 

schedule the messages in the right order during the simulation and to get the 

right numbers of visit count to be used in the queueing network model. 

As discussed before the performance parameters together with the interarrival time 

parameters and the visit count parameters are used for calculating the system performance 

measures like the resources utilization and the response time for all MSCs in the case of 

queueing network analysis.  

All parameters are saved as text in files except the visit counts. The complexity 

parameters and the flow parameters are saved in one file and using this table, the visit 
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count parameters are calculated. The interarrival parameters are saved in another excel 

sheet and the service times parameters are saved in a third one. Parts of these sheets are 

shown in the examples of section 4.5 and Chapter 6. 

The way of reading the messages in the correct order to be scheduled in the simulation 

model will be discussed in details in the following chapters. 

2.6 Output Parameters 

Output parameters are the parameters obtained from the simulation as well as the analytical 

queueing network analysis. The output parameters of interest are as follow: 

Ø The average response time: The response time is the time needed to complete an MSC. 

This is the time between the start of the first message of an MSC until the end of 

the last message of the same MSC. 

Ø The end-to-end delay: The end-to-end delay is the time needed to complete all MSCs 

of the system, in case we have a large system described by more than one MSC. 

Ø The system throughput: The system throughput is defined as the number of MSCs that 

complete per unit of time. 

Ø The resource utilization: The resource utilization is defined as the fraction of time that 

the resource is busy.  



 

 

 

Chapter 3 

Queueing Network Analysis of MSC-based Models 

3.1 Introduction 

Queueing network models have been extensively applied to represent and analyze resource 

sharing systems such as communication and computer systems and they are powerful and 

versatile tool for system performance evaluation and prediction [6]. 

Queueing network models are used as performance evaluation models of congestion 

systems, such as production, communication and computer systems. They provide a simple 

model at a high level of abstraction, intuitively understandable and they can clearly represent 

resource contention. System performance evaluation with queueing network models 

consists in the definition and parameterization of the model to evaluate a set of figures of 

merit that are performance indices, such as resource utilization, system throughput and 

customers’ response time. Analytical techniques are of course very convenient. The big 

advantage of analytical modelling is that it requires a thorough understanding of the system.  

Analytical models can give a rough feeling for the influence of certain factors on the 

performance measures. Analytical queueing network algorithms results can be obtained very 

quickly, e.g. mostly in some seconds whereas in the case of simulation we may have runs 

for long hours or sometimes even for days. So using queueing networks algorithms in early 

design stages has a great advantage, e.g. system developers can investigate the scope of 

possible parameter settings, e.g. traffic intensity, and allow a better planning of simulation 

scenarios which include more details and are closer to reality. Of course this is difficult to 
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be done using simulation which needs more CPU time than the queueing networks 

algorithms to give the similar results.  

The rest of this chapter is organized as follows, sections 3.2 and 3.3 describes in brief 

queueing systems including both single station and queueing networks. The analysis of 

queueing stations as well as queueing networks to calculate performance measures like 

utilization of queueing stations and response times for each MSC is described in sections 

3.4-3.6. Material of sections 3.2-3.6 follows closely the literature in the queueing networks 

textbooks, cf. [1, 13 and 24].  

Section 3.6 describes the queueing network model we deal with. It is an open queueing 

network, which consists of a set of service stations. Each service station is either a 

multiclass station or a single class station with First Come First Served (FCFS) or Infinite 

Server (IS) queueing disciplines, Poisson arrival process and exponential service time 

distribution. In the case of multiclass stations, the mean service times for different 

customer classes may have different values. Each service station may have one or more 

servers. 

Section 3.6 also describes how to calculate the utilization at each queueing station in the 

queueing network model we deal with and the response times for each MSC. To do these 

calculations many methods are used. Jackson method [32 and 33] is used in the case that the 

queueing stations have a FCFS queueing disciplines, have a single class of customers and 

have a single server. An extension to the method of Jackson, the BCMP method [7], is used 

for networks that have queueing stations of queueing disciplines rather than FCFS like for 

example IS (Infinite Server) and PS (Processor Sharing). 

The open queueing networks with M/M/m queueing stations, FCFS queueing 

discipline, multiclass of customers with different service rates for different classes of 

customers do not satisfy the conditions of Jackson's method and the BCMP method and 

we can not use these methods to analyze such queueing networks. For this reason, a non-

product form approximate method called decomposition method [12, 15, 24, 41, 67, 74 and 

75] is used.  

Some remarks on how to apply the queueing networks formulas in some special cases 
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are discussed in section 3.7. A remark on how to deal with the queueing networks formulas 

in the case that messages can be distinguished not only by the complexity class of the MSC 

it belongs to but also if the message itself belongs to a certain complexity class as well.  

A discussion about the use of the SHRINK approach [2, 2, 63, 64 and 66] with the 

analytical formulas in case of the so called slow down models is described. Another remark 

about branching in an MSC and about how to calculate the response time for a certain 

predefined branch is also discussed. Finally, an overview of how to calculate the end-to-end 

delay in the case of systems described by HMSCs is given in section 3.8. 

3.2 Single Station Queueing Systems 

A single station model is described by an arrival process of incoming customers, a service 

process, a buffer space (queue) for holding the waiting customers, a scheduling algorithm 

for the queue and one server (see Figure 10) or more servers (see Figure 11) that provide 

the service to customers.  

 

Figure 10: Graphical notations for a resource and its queue 

 

Figure 11: Service station with m servers (a multiple server station) 

Figure 11 illustrates a single station with multiple servers. A server can only serve one 

customer at a time and hence, it is either in a “busy” or an “idle” state. If all servers are 

busy upon the arrival of a customer, the newly arriving customer is buffered, assuming that 

buffer space is available, and waits for its turn. When the customer currently in service 
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departs, one of the waiting customers is selected for service according to a queueing (or 

scheduling) discipline.  

Queueing stations are described by the so-called Kendall notation A/B/m/K-scheduling 

discipline. The interarrival and service time distributions are given by A and B respectively, 

m denotes the number of servers, and K is the capacity, i.e. the numbers of customers a 

queueing station can hold. The following symbols are normally used for A and B: 

Ø M: Exponential distribution (memoryless property). 

Ø Ek: Erlang distribution with k phases. 

Ø Hk: Hyperexponential distribution with k phases. 

Ø Ck: Cox distribution with k phases. 

Ø D: Deterministic distribution, i.e., the interarrival time or service time is constant. 

Ø G: General distribution. 

Ø GI: General distribution with independent interarrival times. 

Additionally a scheduling discipline may be specified. Some commonly used queueing 

disciplines are: 

Ø FCFS (First-Come-First-Served): If no queueing discipline is given in the Kendall 

notation, then the default is assumed to be the FCFS discipline. The customers are 

served in the order of their arrival. 

Ø LCFS (Last-Come-First-Served): The customer that arrived last is served next. 

Ø SIRO (Service-In-Random-Order): The customer to be served next is selected at 

random. 

Ø RR (Round Robin): If the servicing of a customer is not completed at the end of a 

time slice of specified length, the customer is preempted and returns to the queue, 

which is served according to FCFS. This action is repeated until the customer 

service is completed. 

Ø PS (Processor Sharing): This strategy corresponds to round robin with 

infinitesimally small time slices. It is as if all customers are served simultaneously 
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and the service time is increased correspondingly. 

Ø IS (Infinite Server): There are an ample number of servers so that no queue does 

exist.  

Ø Static Priorities: The selection depends on priorities that are permanently assigned 

to the customer. Within a class of customers with the same priority, FCFS is used 

to select the next customer to be processed. 

Ø Dynamic Priorities: The selection depends on dynamic priorities that alter with 

the passing of time. 

Ø Preemption: If priority or LCFS discipline is used, then the customer currently 

being processed is interrupted and preempted if there is a customer in the queue 

with a higher priority. 

Depending on the type of parameters, it is possible to derive closed analytical formulas 

for utilization, wait and response time.  

3.3 Queueing Networks 

A queueing network model is a collection of service stations representing the system 

resources that provide service to a collection of customers that represent the users. The 

customers' competition for the resource service corresponds to queueing into the service 

stations.  

A queueing network may be open, closed or mixed: 

Ø Open: A queueing network is called open when customers can enter the network 

from outside and customers can also leave the network. Customers can arrive from 

outside the network at every node and depart from the network from any node.  

Ø Closed: A queueing network is called closed when customers can neither enter nor 

leave the network. The number of customers in a closed network is constant. A 

network in which a new customer enters whenever a customer leaves the system 

can be considered as a closed one. 

Ø Mixed: If a queueing network contains both open and closed classes, then it is said 
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to be a mixed network. 

Informally, a queueing network is defined by: 

Ø Type of service stations: Service station characteristics include the service time, 

the buffer space with its queueing scheduling and the number of servers.  

Ø Customers: Customers are described by their number for closed models and by 

the arrival process to each service centre for open models, the service demand to 

each service centre and the types of customer.  

Ø Network topology: Network topology models how the service stations are 

interconnected and how the customers move between them.  

In other words, different types of customer in the queueing network model can model 

different behaviour of customers. This allows representing various types of external arrival 

of customers, different service demands and different types of network routing (or 

different visit counts). Customers may have a different service times and different routing 

probabilities. Hence, the network may have multiple customer classes (multiclass network).  

If no customers of a particular class enter or leave the network, i.e., the number of 

customers of this class is constant, then the customer class is said to be closed. A customer 

class that is not closed is said to be open. If a queueing network contains both open and 

closed classes, then it is said to be a mixed network. 

3.4 Performance Measures 

The analysis of the queueing network models consists of evaluating a set of performance 

measures, such as resource utilization and throughput and customer response time. The 

different types of queueing systems are analyzed mathematically to determine performance 

measures from the description of the system. Because a queueing model represents a 

dynamic system, the values of the performance measures vary with time.  

 Normally, however, we are content with the results in the steady state. The system is 

said to be in steady state when all transient behaviour has ended, the system has settled 

down, and the values of the performance measures are independent of time. The system is 

then said to be in statistical equilibrium, i.e., the rate at which customers enter the system is 
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equal to the rate at which customers leave the system. Such a system is also called a stable 

system. The most important performance measures are: 

Ø pk: The probability of the number of customers in the system  

Ø ?: The utilization of a queueing station and in the case of a single server it equals the 

fraction of the time in which the server is occupied. In case there is no limit on the 

number of customers in the single server queue, the server utilization is given by: 

µ
λ

ρ ==
rateservice
ratearrival

 
(5) 

In case of multi server, it is defined as follows:  

µ
λ

ρ
m

=
 

(6) 

where m is the number of servers. The previous formulas are hold only under the 

following condition (it is called the stability condition) 

1<ρ  (7) 

Ø ?: The throughput ? is defined as the mean number of customers whose processing is 

completed in a single unit of time, i.e., the departure rate. Since the departure rate is 

equal to the arrival rate ? for a queueing system in statistical equilibrium, the 

throughput is given by: 

µρλ ⋅⋅= m  (8) 

Ø T: The response time T, also known as the sojourn time, is the total time that a 

customer spends in the queueing system. 

Ø W: The waiting time W is the time that a customer spends in a queue waiting to be 

served. Therefore, we have: 

Response time = waiting time + service time. 

The mean response time T is calculated by using the following formula: 

µ
1

+= WT
 

(9) 
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Ø Q: The queue length Q is the number of customers in the queue. 

Ø K: K represents the number of customers in the queueing system.  

The mean number of customers in the queueing system K and the mean queue length 

Q can be calculated by Little’s theorem: 

TK λ=  (10) 

and 

WQ λ=  (11) 

Little’s theorem is valid for all queueing disciplines and arbitrary GI/G/m systems. 

3.5 Single Queueing Station Analysis 

In this section, we show the response times for some simple queueing stations in the steady 

state2. These results or solutions, which are called “stationary solutions3”, are available in 

closed-form. We show here the response time for queueing stations of types M/M/1, 

M/M/m and M/M/8  which we use to model our stations in both communication and 

computer systems. Transient solutions for other queueing systems like M/M/l/K, M/G/l, 

GI/M/l, GI/M/m and GI/G/l are not discussed here. 

3.5.1 Single Server Stations (M/M/1) 

In the M/M/1 systems, the arrival process is Poisson, the service times are exponentially 

distributed, and there is a single server. Assuming that the arrival rate ? and the service rate 

µ satisfy the stability condition ? < µ then the mean response time is given by the following 

formula: 

ρ
µ

−
=

1
1

T
 

(12) 

                                                      
2 The system is said to be in steady state when all transient behaviour has ended, the system has settled down, and the 
values of the performance measures are independent of time. 
 
3 Solutions obtained when a system is in a steady state are called Stationary solutions. 
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3.5.2 Multi Server Stations (M/M/m) 

In the M/M/m queueing system, we have m servers. Each server has service rate µ with 

arrival rate ?. The condition for the queueing system to be stable is ? < mµ. The individual 

server utilization, ? = ? / (mµ).  

The mean response time is given by the following formula: 
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where the steady-state probability that an arriving customer has to wait in the queue is 

given by: 
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and the steady-state probability of no customers in the system is given by: 
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3.5.3 Infinite Server Stations (M/M/8 ) 

In an M/M/8  queueing system, we have a Poisson arrival process with arrival rate ? and 

an infinite number of servers with service rate µ. The mean response time is given by the 

following formula: 

µ
1

=T  (16) 

3.6 Performance Measures of Queueing Network Models  

3.6.1 Description of Queueing Network Models 

Our queueing network model is an open queueing network, which consists of a set of 

service stations. Each service station is either a multiclass or a single class with First Come 

First Served (FCFS) or Infinite Server (IS) queueing disciplines, Poisson arrival process and 
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exponential service time distribution. In the case of multiclass stations, the mean service 

times for different customers’ classes have different values. Each service station may have 

one or more servers.  

In the following, we will show how to calculate the utilizations of each queueing station 

and the response times for different MSCs.  

3.6.2 Computing the Utilization 

Under the definitions of the arrival, rate and the service time given by equations 1-4 (see 

section 2.4) we can easily compute mean values for stationary performance measures like 

station utilizations and response times.  

The utilization ?ir of station i with respect to MSC class r in the case of single server 

queueing stations, is defined as: 
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and for a queueing station with multi-servers im , it is given by the following formula: 
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where ? is the overall MSC arrival rate and cir be the number of messages of an MSC of 

class r which are served at station i. 

The overall utilization ?i for station i with respect to all MSC classes is given by the 

following equation: 
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3.6.3 Computing the Response Times 

The response times for each MSC class and the overall end-to-end delay (E2E) for the 

execution of all MSCs can also be computed but it depends on the queueing disciplines and 

whether the queueing network is a single class or multiclass network. 
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Note that we calculate performance measures for the execution of MSCs, i.e. response 

time refers to the mean execution time of one MSC including wait times as well as service 

times. Link delays are only included if links are explicitly modelled as instances. 

Performance measures for single messages are not considered; moreover, not all messages 

belonging to the same MSC are distinguished. An extension to distinguish between 

messages would lead to a three-indexed service amount, say airk. This will be shown in 

section 3.7. 

In the following, we will show how to calculate the response time using a product form 

method like Jackson's method and the BCMP methods, which are constrained to certain 

networks. In the case of multi class of messages (customers), service rates are different 

according to different message classes, in this case, our problem does not fit to any product 

form method and we have to use some approximate formulas to get the results. 

3.6.3.1 Jackson's Method (A Product Form Method) 

Jackson's theorem [32 and 33] is concerned only with networks of single-server queues 

having exponentially distributed service times. The theorem states that the steady state 

queue occupancy distribution is the product of the individual queue distributions when 

each queue is treated as an independent M/M/1 queue with the appropriate arrival rate. 

For this reason, networks of single server queues with exponential service times and 

Poisson arrival rates from the "outside world" are called product form networks. Jackson 

examined open queueing networks and found product-form solutions [32 and 33]. The 

networks examined fulfil the following assumptions [13]: 

Ø There is only one customer class in the network. 

Ø The overall number of customers in the network is unlimited. 

Ø Each of the N nodes in the network can have Poisson arrivals from external 

sources. A customer can leave the network from any node. 

Ø All service times are exponentially distributed. 

Ø The service discipline at all nodes is FCFS. 

Ø The ith node consists of im  = 1 identical service stations with the service rates µi, i = 
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1, …, N. The arrival rates ?0i, as well as the service rates, can depend on the 

number ki of customers at the node. In this case, we have load-dependent service 

rates and load-dependent arrival rates. 

Under the previous conditions, the nodes of the network can be considered as 

independent M/M/m queues with arrival rate ?i and service rate µi. According to [32 and 

33] the overall mean response time is given by the following formula: 
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Where the steady-state probability that an arriving customer has to wait in the queue of 

node i is given by: 
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and the steady-state probability of no customers at node i is given by: 
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and ?i is given by the following equation: 
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In our model, each customer leaves the system after being served and hence the 

probability jip  that it visits the station j after service at station i is zero and hence the 

overall arrival rate from outside to an open network is: 
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3.6.3.2 BCMP Method (A modified Jackson's Method) 

The BCMP theorem takes the Jackson's idea much farther. It proves a similar result for a 

much larger class of queueing networks with several customer classes, different service 

strategies, interarrival and service time distributions and to mixed networks that contain 
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open and closed classes. The networks considered by BCMP [7] must fulfil the following 

assumptions: 

Ø The queueing disciplines FCFS, PS, LCFS-PR, IS are allowed at network nodes. 

Ø The service times of an FCFS node must be exponentially distributed and class-

independent, while PS, LCFS-PR and IS nodes can have any kind of service time 

distribution with a rational Laplace transform. For the latter three cases of queueing 

disciplines, the mean service time for different customer classes can be different. 

Ø The service rate of an FCFS node is only allowed to depend on the number of 

customers at this node, whereas in a PS, LCFS-PR and IS node the service rate for 

a particular customer class can also depend on the number of customers of that 

class at the node but not on the number of customers in another class. 

The BCMP theorem says that networks with the characteristics just described have 

product-form solution.  

For an open queueing network fulfilling the assumptions of the BCMP theorem and 

load-independent arrival and service rates, the response time irT  for an MSC of class r that 

is served by station, i is calculated by applying the M/M/1 formula as follows: 

i
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where irλ  is given by the following formula: 
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Again, as explained before, in our model each customer leaves the system after being 

served and hence the probability rjip ,  that the customer of class visits the station j after 

served at station i is zero and hence: 

riir ,0λλ =  (27) 

Let rT  denotes the overall response time for MSC of class r that is served by all 
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stations, and then rT  is as follows: 
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where the mean number of visits eir of a customer of the rth class at the ith node of an open 

network can be determined from the routing probabilities as follows: 
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where p0,ir is the probability in an open network that a customer from outside the network 

enters the ith node as a customer of the rth class, but the pjs,ir  are equal to zero because after 

a message (customer) is served it leaves the network and hence 

RrandNiforpe irir ,...,1,...,1,,0 ===  (32) 

and 
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For Type-l nodes with more than one service unit (mi > 1), the response time for an 

MSC of class r that is served by station i, is given by the following formula: 

                                                      
4 Type-l: M/M/m-FCFS. 
Type-2: M/G/l-PS.  
Type-3: M/G/8  (infinite server). 
Type-4: M/G/l-LCFS PR.  
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where the steady-state probability that an arriving customer has to wait in the queue of 

node i is given by: 
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and the steady-state probability of no customers at node i is given by: 
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3.6.3.3 Approximate Solution Methods 

As we mentioned in previous sections, the open queueing networks with M/M/m 

queueing stations, FCFS queueing discipline, multiclass of customers with different service 

rates for different classes of customers are not one of the product form queueing networks 

and hence product form methods like Jackson's method and BCMP method cannot be 

used. To calculate the performance measures for such networks, we need to use 

approximate solutions.  

In this section, we show how to deal with approximate performance analysis of these 

open non-product form queueing networks, based on the method of decomposition. 

Different methods, which are based on the method of decomposition, are due to Kühn [12 

and 42], Chylla [15], Pujolle [67], Whitt [74 and 75] and Gelenbe [24]. 

Open networks to be analyzed by the method of decomposition must have the 

following properties: 

Ø The interarrival times and service times are arbitrarily distributed and are given by 

the first and second moments. 

Ø The queueing discipline is FCFS and there is no restriction on the length of the 

queue. 
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Ø The network can have several classes of customers. 

Ø The nodes of the network can be of single or multiple server type. 

Ø Class switching is not allowed.  

With these prerequisites, the method works as follows:  

Ø Calculate the arrival rates and the utilizations of each node as follows: 
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and due to the reason that each customer leaves the system after being served and hence 

the probability rjip ,  that the customer of class r visits the station j after served at station i 

is zero, then: 
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respectively. 

Ø Calculate the mean service rate µi of node i: 
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Ø Compute the coefficient of variation cBi of the service time of node i, as follows: 
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where ci,r  is the coefficient of variation for the service time of customers of class r at node 

i. 

Ø The method is then an iterative method with the following steps: 

ü Compute the coefficient of variation of the interarrival times at each node, 

using the following equations: 
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The initial values of cij,r equal to 1. The coefficient of variation cAj,r of the interarrival 

times at node i for class r is given by: 
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and hence the coefficient of variation cAi of the interarrival times at node i is: 
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ü Compute the coefficient of variation of the interdeparture times at each node, 

using the following equations: 
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Ø Compute the mean queue length for the M/M/m-FCFS: 
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and hence the response time is: 
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To get better approximations, many authors have modified the mean queue length 

described by equation 48 and here are some examples: 
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Ø Allen-Cunneen [1] : 
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Ø Kramer/Langenbach-Belz [41]: 

KLBrACirKLBi GQQ ⋅≈ ,,  (51) 

with the correction factor: 

Note that due to the fact that we use interarrival time and service time distributions of 

type negative exponential, the coefficients of variation for the service time and interarrival 

time 2
,rAic  and 2

,rBic  are equal to 1 and hence modifications of the mean queue length in 

equations 50 and 51 do not improve the value of mMrMiQ //,  given by equation 48. These 

approximations of the mean queue length mMrMiQ //,  are very valuable and of course give 

better results in the case of using non-exponentially distributed service times. 

3.7 Remarks on Applying the Queueing Network Formulas for Some 

Special Cases 

3.7.1 Class of Messages Factor 

In the previous sections, we assumed that the service rate is affected by two factors; i, 

which indicates the node, and r which indicates the MSC class, i.e. the service rate at 

different nodes for different MSCs classes are different. However, in practice, messages of 

different MSCs are also classified into complexity classes and hence the service rates are 

different according to different messages complexity classes.  

To deal with this case, we should use a three indices service rate µisk, where s indicates 

the MSC class and k indicates the message class. Instead of using the three indices service 
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rate µisk, we simply consider two indices service rate µir, where i to point to the node and r to 

point to the class of the message where r = s·k. According to this modification, the class 

index in all formulas of the previous section should have an upper-bound equals to the 

multiplication of the MSC classes number and the message classes number. 

Let us take an example to make things more clear. In the real world example in Chapter 

6, we have 14 MSCs, 3 message complexity classes, and 4 stations. Therefore, the service 

rate µir is defined for 4 nodes and 42 classes.  

The response time Tir is then calculated for 42 classes. If we sum up Tir for classes 1, 2 

and 3, we will get the response time for MSC 1 at node i and if we do the same but for 

classes 4, 5 and 6, then we get the response time for MSC 2 at node i and so on until get 

the response time for each MSC. 

3.7.2 The SHRINK Factor 

In section 6.3.4, we have a real world mobile communication system, which has a lot of 

mobile users and the goal, is to evaluate some performance measures like for example the 

response time for some MSCs using simulation. 

To do this, we need to gather data by evaluating some thousand observations, whereas 

during the necessary observation period some hundred millions of events may occur. The 

requirement is to evaluate these measures of interest without considering the plenty of 

mobile users located elsewhere. The SHRINK approach is applied to reduce the effort for 

large-scale simulations. It has been originally propagated and applied by K. Psounis, cf. [63, 

64 and 66]. This approach can be applied in the field of simulation and measurement to 

evaluate the performance of large communication systems, for example, the MxRAN 

simulator models [2, 3 and 61]. When applying the queueing network analytical formulas to 

evaluate some performance measures some changes in the parameters should be done, to 

understand these changes we should at first explain the SHRINK approach. 

The SHRINK approach is based on scaling down the complete model. Let us take an 

M/M/1 queueing station as an example, where the arrival rate λ and the service rate µ are 

multiplied by a factor α, 0<α<1. This model is “shrinked” or “scaled down”, because it 
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works slower, i.e. arrivals are less frequent and service durations are longer, but the 

performance behaviour is identical with respect to utilization and mean number of 

population because the utilization ρ = λ/µ or equivalently ρ = αλ/αµ.. The mean response 

times R = E[N]/X , where the E[N] “mean number of customers” equals ρ/(1−ρ) and the 

arrival rate X = λ (for the fast model) and X = αλ (for the slow model) respectively, so the 

response time for the fast model is α times the slow model. According to this explanation, 

some changes should be done before applying the queueing networks formulas discussed 

in the previous sections. The arrival rates and the service rates should be multiplied by the 

SHRINK factor α After calculating the response times irT  for the slow down system, it 

should multiplied by the SHRINK factor α to get the corresponding values for the fast 

model (original model) and then summed up to get  the overall response time rT . 

3.7.3 The Branching Factor 

In some MSCs of the real world mobile communication system example in Chapter 6, the 

following situation happens, two messages are sent at the same time which leads to two 

branches in the same MSC but due to the fact that the last message of each MSC is 

predefined, there is only one path which leads to this last message and of course the 

response time for this MSC is calculated only for that path although messages of the other 

branch is served.  

When we calculate the response times for different MSCs using the analytical queueing 

network formulas, a correction must be done, otherwise the calculated response time will 

be different from response times obtained from the simulator. The correction is based on 

subtracting the summation of the service times of messages that do not belong to the 

predefined branch from the calculated the response times irT . The service times are 

calculated by multiplying the number of messages of a certain class, which does not belong 

to the predefined branch by its service time. 
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3.8 End-to-end Delay of HMSCs 

3.8.1 Strong Sequencing Composition HMSC 

In the previous sections, we assumed that Tr denotes the overall response time for MSC of 

class r that is served by all stations. In this section, we will derive a formula for calculating 

the end-to-end delay E2E. We can define the end-to-end delay to be the time between the 

arrival of the first message in the first MSC of the HMSC and the departure of the last 

message in the last MSC of that HMSC, i.e. the time needed to run a complete HMSC. In 

case that we have n MSCs that are strongly sequenced and that the calculated response 

times are N , 2, 1, r  ,Tr …= , then the average end-to-end delay E2E giving the duration of 

one execution of all MSCs is calculated by: 
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Equation 53 gives a formula to calculate the end-to-end delay, which can be applied in 

the case that two or more MSCs are vertically composed (see Figure 4, section 2.2.3). 

3.8.2 Other Types of Composition 

Now, we will discuss the end-to-end delay for different possible cases of HMSC 

composition. Note that the response times Ti  for MSC Mi do account for service times and 

wait times of all messages; since there may be additional delays due to the type of HMSC 

composition, the formulas given by equations 54 and 55 can not  generally written as 

equations (instead of relations). Note that in the formula for strong sequencing 

composition, we assumed that there is no time gap between the MSCs. 

Ø Selection: In the case of selection composition, consider that we have n MSCs (M1, 

M2,…, Mn). After all events of MSC M1 are completed then one MSC among n-1 

choices (M2, M3, …, Mn) may be selected to start. If we assume that P12, P13, …, P1n 

are the routing probabilities for different choices M2, M3, …, Mn then the end to 

end delay will take the form: 
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where T1, T2, …, Tn are the response times for M1, M2, …, Mn respectively. 

Ø Parallel Composition and Weak Sequencing: In both cases, let T1, T2 be the 

response times for M1 and M2 then the end to end delay will take the form: 

212 TTEE +≤  (55) 

Ø Loop: The example in Figure 7 shows a loop for two MSCs denoted M1 and M2 

which are vertically composed. Let T1, T2 be the response times for M1 and M2 

respectively. Due to the fact that the loop is the vertical composition of the last 

node with the first node, then the end-to-end delay in that case equals the end-to-

end delay in case that there is no loop multiplied by the repetition number, i.e., it 

equals to: 

)(2 21 TTnEE +⋅=  , (56) 

where n is the repetition number. 



 

 

 

Chapter 4 

Simulation of MSC-based Models 

4.1 Introduction 

Simulation is an alternative way to obtain performance measures of a system. Additionally 

to stationary measures, also transient measures can be determined. Using a discrete event 

simulation IDE (like JavaDEMOS, the one that we use, see Appendix A) the state of all 

objects, e.g. resources and entities, can be inspected at any time. For example, the values of 

the state variables of a certain resource, in particular the maximum queue length, the 

current queue length, the average queue length and the average wait time can be observed 

dynamically at any time during the simulation run. In addition, simulation can be used to 

evaluate models which do not satisfy the conditions necessary for analytical evaluations. In 

Sections 4.2, an introduction to simulation modelling including simulation definition, the 

purposes of using simulation and a survey of different simulation types is presented. In 

section 4.3, we concentrate on discrete event simulation and give a survey to its types and 

its structural components. The rest of this chapter describes the simulation model used to 

evaluate the performance of systems under study. 

4.2 Simulation Modelling Overview 

4.2.1 What is Simulation? 

A simulation is the imitation of the operation of a real-world process or system over time. 
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Whether done by hand or on a computer, simulation involves the generation of an artificial 

history of a system, and the observation of that artificial history to draw inferences 

concerning the operating characteristics of the real system [4].  

The behaviour of a system as it evolves over time is studied by developing a simulation 

model. This model usually takes the form of a set of assumptions concerning the operation 

of the system. These assumptions are expressed in mathematical, logical, and symbolic 

relationships between the entities, or objects of interest, of the system. Once developed 

and validated, a model can be used to investigate a wide variety of "what if" questions 

about the real world system [5]. Potential changes to the system can first be simulated in 

order to predict their impact on system performance.  

Simulation can also be used to study systems in the design stage, before such systems 

are built. Thus, simulation modelling can be used both as an analysis tool for predicting the 

effect of changes to existing systems, and as a design tool to predict the performance of 

new systems under varying sets of circumstances [5]. 

In some instances, a model can be developed which is simple enough to be "solved" by 

mathematical methods. Such solutions may be found by the use of differential calculus, 

probability theory, algebraic methods, or other mathematical techniques. The solution 

usually consists of one or more numerical parameters, which are called measures of 

performance of the system. However, many real-world systems are so complex that models 

of these systems are impossible to be solved mathematically. In these instances, numerical, 

computer-based simulation can be used to imitate the behaviour of the system over time. 

From the simulation, data are collected as if a real system was being observed. This 

simulation-generated data is used to estimate the measures of performance of the system 

[5]. 

4.2.2 Why Using Simulation 

Simulation is a useful technique for computer and communication systems performance 

analysis. If the system to be characterized is not available, as is often the case during the 

design or procurement stage, a simulation model provides an easy way to predict the 

performance or compare several alternatives. Further, even if a system is available for 
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measurement, a simulation model may be preferred over measurements because it allows 

the alternatives to be compared under a wider variety of workloads and environments [34]. 

While queueing theory is a powerful technique, many systems cannot be analyzed so easily. 

This can be for a number of reasons [65]: 

Ø Complicated distributions: Most of the straightforward queueing results hold 

only for a limited number of distributions.  

Ø Complicated dynamics: Analytical queueing network analysis has many stringent 

requirements in order to be applied. 

Ø More complicated queueing rules: There are a number of aspects of queues that 

are not handled by the models. For example, what is the advantage of processing 

the fastest jobs first? What if there, are multiple lines leading to the servers? What if 

customers, renege after, say, 10 minutes waiting? These aspects add another level of 

complexity to already complicated systems. 

Ø Transient versus long-term behaviour: The queueing results discuss long-term 

behaviour. How do systems act in the short term? Does it take a long time to reach 

steady state behaviour?  

To handle these and other issues, we need another approach for modelling system 

behaviour. One approach to this is simulation. Simulation will easily be able to handle the 

issues above. This comes at a cost, however, that may make it inappropriate for some 

situations [65].  

4.2.3 Types of Simulation Models 

A model is defined as a representation of a system for the purpose of studying the system 

[4]. There are many ways to classify simulation models [4, 30, 34 and 65], as follows (see 

Figure 12): 

Ø The first is whether the model has a stochastic (or random) aspect or not. 

According to this point simulation models are classified as follows: 

ü Deterministic simulations: Deterministic simulations are completely defined by the 

model. A system is simulated under well-determined conditions. This kind of 
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simulation is useful to observe the behaviour of system in certain particular 

cases, to discover errors in the design or in the implementations, to build 

examples, etc. In this kind of simulations, only one run is needed and there is 

no truly random variable involved. To see the behaviour of the system we need 

to "trace" the output on a file and later to see and analyze it in a textual or in a 

graphical form. 

ü Stochastic simulations: Stochastic simulations include randomness. In a statistical 

simulation, we measure the system performance. This is useful to see if the 

system has good response time under average conditions, to compare different 

implementations of the same system, or very different systems that have the 

same output. Multiple runs of the same model may generate different values. 

This random element forces us to generate many outcomes to see the range of 

possibilities. 

Ø Another aspect that is of interest is the difference between static and dynamic 

models: 

ü Static model: In a static model, time plays no essential role. Most of these models 

are called Monte Carlo models. Many portfolio selection models in finance are 

Monte Carlo models. Given a portfolio, with different probabilistic (and 

correlated payouts), it is possible to generate a possible yield. 

ü Dynamic model: Such a model might become a dynamic model if it incorporates 

changes in the portfolio over time, or if the model of payoff must be simulated 

over time. An example of a dynamic model is the analysis of a bank queue as it 

evolves over time. 

Ø A third aspect that is important is that of discrete versus continuous models. 

ü Discrete event simulation: A simulation using a discrete state model of the system is 

called a discrete event simulation. 

ü Continuous event simulation: In continuous event simulations, the state of the 

system takes continuous values. The continuous state models are, e.g. used in 

chemical simulations where the state of the system is described by the 

concentration of a chemical substance. 



Chapter 4   Simulation of MSC-based Models 

 61 

A major subclass of simulation problems is concerned with the simulation of time 

varying systems, which are controlled, by a combination of either physical, chemical, 

biological or man made laws. Such systems can be categorized by the way, in which time is 

treated in the simulation. The variation in time may be considered continuous in some 

systems whilst in others the state of the system changes at discrete time intervals. This 

phenomenon gives rise to two branches of simulation: Discrete Event Simulation and 

Continuous Simulation. Clearly, models of such systems must also be capable of changing 

their state in a similar manner. 

 

Figure 12: A classification of simulation methodology 

4.3 Discrete Event Simulation 

Discrete simulation examines problems in which the ordering and timing of events is the 

focus of interest. In such systems, the interest is on the time at which some activity 

commences or ceases. For example, in simulating a computer network to estimate the 

effective system capacity or queue sizes, we may be interested in the start time and duration 

of job processing rather than details of the signal transmission on the network. In such 

problems, it is not efficient to advance time in small fixed steps but to advance to the time 

of the next event. Since, in general, events can occur at any time, the time advance is non-

uniform and can be alternately large or small [39]. 

4.3.1 Types of Discrete Event Simulation 

Discrete simulation can be further subdivided in terms of the methodology followed as 

follows: 

Stochastic 

Simulation Model 

Deterministic 

Static Dynamic 

Continuous Discrete 
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Ø Event scheduling: Event scheduling is the first way simulations were developed. 

An event is anything that changes the system statistics (also known as the state of the 

system) other than the mere passage of time. The essential idea of event scheduling 

is to move along the time scale until an event occurs, then, depending on the event, 

modify the system state, and possibly schedule new events. We will see in the next 

section how to generate the random times needed in order to be able to generate 

such things as the service times and the arrival times. Based on this, it is a trivial 

exercise to run through a simulation of the system. The events are stored in an event 

queue, which lists all events in order. The first event in the queue is taken off, and 

other events may then be added (assuming that an event only triggers other events 

in the future). 

Ø Process-oriented: In the process-oriented approach, the simulation programmer 

composes a set of process descriptions. Each process description serves as a model 

of one kind of active entity in the simulated system. An active instance of a process 

description is called a process. In a simulation system, there is a process 

management facility, which allows processes to become active, to operate in the 

simulated environment and to eventually terminate.  

4.3.2 Discrete Event Simulation Structure 

Although there are various flavours and paradigms in discrete event simulation, there has 

evolved a basic structure that is used by most simulation packages. Regardless of how 

complex a discrete-event simulation package may be, it is likely to contain the basic 

components that we will describe in this section. 

The structural components of a discrete-event simulation include entities, activities and 

events, resources, a random number generator, a calendar, system state variables and 

statistics collectors. 

4.3.2.1 Entities 

The best way to understand the function of an entity is to understand that entities cause 

changes in the state of the simulation. Without entities, nothing would happen in a simulation. In 

fact, one stopping condition for a simulation model is the condition where there are no 
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active entities in the system. Entities have attributes. Attributes are characteristics of a given 

entity that are unique to that entity. Attributes are critical to the understanding of the 

performance and function of entities in the simulation. 

4.3.2.2 Activities and Events  

Activities are processes and logic in the simulation. Events are associated with conditions that 

occur at a point in time which cause a change in the state of the system. An entity interacts 

with activities. Entities interacting with activities create events. 

There are three major types of activities in a simulation: delays, queues and logic. The delay 

activity is when the entity is delayed for a definite period. At the point that the entity starts 

the delay, an event occurs. This event schedules the entity on the calendar (which we will get 

to later). If the delay is for d time units, then the entity is scheduled to complete the delay d 

time units after the current time of the simulation. At that time, the delay expires and 

another event is generated. Queues are places in the simulation were entities wait for an 

unspecified period. Entities can be waiting on resources (which we will get to later) to be 

available or for a given system condition to occur. Queues are most commonly used for 

waiting in line for a resource or storing material that will be taken out of the queue when 

the right conditions exist. Logic activities simply allow the entity to effect the state of the 

system through the manipulation of state variables (which we will get to later) or decision 

logic. 

4.3.2.3 Resources  

In a simulation, resources represent anything that has a restricted (or constrained) capacity. 

Common examples of resources include workers, machines, nodes in a communication 

network, traffic intersections, etc. It should also be noted that very complex resources 

could be utilized in a simulation.  

4.3.2.4 Random Number Generator  

Every simulation package has a random number generator. The random number generator 

(technically called a pseudo-random number generator) is a software routine that generates 
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a random number between zero and one that is used in sampling random distributions. 

Everything that is random in the simulation uses the random number generator as an input 

to determine values. 

4.3.2.5 The Calendar 

The calendar for the simulation is a list of events that are scheduled to occur in the future. 

In every simulation, there is only one calendar of future events and it is ordered by the 

earliest scheduled time first. In a later example, it will become more clear how the calendar 

works and why it is important in the simulation. At this point, just remember that, at any 

given point in time, every event that has already been scheduled to occur in the future is 

held on the calendar. 

4.3.2.6 System State Variables  

Depending on the simulation package, there can be several system state variables, but the 

one system state variable that every simulation package has is the current time of the 

simulation. The current time variable is updated every time an entity is taken from the 

calendar. 

4.3.2.7 Statistics Collectors  

Statistics collectors are a part of the simulation that collects statistics on certain states (such 

as the state of a resources), or the value of global variables, or certain performance statistics 

based on attributes of the entity. There are three different types of statistics that are 

collected, counts, time-persistent, and tallies. Counts, are very straightforward, they count values of 

variables. Time-persistent statistical collectors give the time-weighted values of different 

variables in the simulation. A common variable to track is the utilization of a resource. Tally 

statistical collectors take a sequence of real-valued observations and calculate the mean and 

standard derivation of the collected observations without regard to the amount of time 

between observations. 
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4.4 Simulation Model 

4.4.1 MSC-Based System Description 

As discussed before, communication between system components can be described by 

MSCs or HMSCs. The MSC basic components used to describe the system behaviour are 

instances and messages. Each message sequence chart describes message exchange between 

instances. To calculate the performance measures of such systems, these MSCs are 

extended by time consumptions and afterwards mapped to a queueing network model, 

which can be solved either by queueing network analysis or by simulation. 

In the queueing network model, instances are considered as queueing stations, which 

have one or more servers. Messages are considered as customers that visit different 

queueing stations to get service. When a message visits an instance, it is served if the server 

is empty or it waits for service in the queue of this instance and served later when the 

server is free. The service time of each message is calculated according to the speed of the 

server and the service amount assigned to this message. The service time is defined as the 

service amount divided by the server speed. 

4.4.2 Modelling of System Components 

To build a simulation model of such systems, we should define how to model the following 

system components: 

Ø Instances 

Ø Messages 

As we discussed in the previous section, each instance of the system is considered as a 

queueing station in the queueing network model. The queueing station may have one or 

more servers and one queue. When a message (a customer) arrives at a certain instance (a 

queueing station), it is served if the server is idle and the queue is empty, otherwise it waits 

in the queue of this queueing station and when the server is idle, it is scheduled according 

to a certain scheduling discipline. 
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According to the structure and behaviour of queueing stations, we can model them as 

resources in the simulation. We used a discrete event simulation package called 

JavaDEMOS to develop simulation (for details, see Appendix A). In JavaDEMOS, 

according to resource synchronizations, resources are classified into two categories, Res 

(for the mutual exclusion synchronization) and Bin (for the producer/consumer 

synchronization). 

In our simulated systems, instances (resources) are shared, but they must only be 

accessed by one message at a time, one has a mutual exclusion situation. In these situations, 

resources are requested and released by the same message. In addition, when a message 

requests an unavailable resource, it must wait (it is blocked). Messages are modelled in 

simulation as entities. Each message does the following actions: 

Ø Request the resource. 

Ø Delay, for certain period. 

Ø Release the resource. 

After that, the message schedules the next message and then it is destroyed. Each 

message spends some delay at the resource. This delay is for service process and is 

presented by a negative exponential distribution (any other kind of stochastic distributions 

is also possible). The mean service time is calculated according to the resource speed and 

the service amount assigned to this message. The service time is defined as the service 

amount divided by the server speed. Note that, other types of service distribution like 

Erlang or hyperexponential distributions can also be used. 

4.4.3 Scheduling Instances of the MSC 

To impose a relevant load onto the system, the execution rate or the interarrival, i.e. the 

number of instantiations per time unit to each MSC should be specified. The interarrival 

times for MSCs of the system may have the same values or different values, i.e. if we 

describe a system by a set of MSCs, which are composed by a certain composition operator 

to form an HMSC, each MSC may have or may have not a different mean interarrival time. 

Each MSC in such system is initiated by a certain traffic source, which generates only 
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that type of MSC according to a certain predefined mean interarrival time. This will be 

discussed in details in the following sections. 

4.4.4 How Are Messages Scheduled? 

Let us consider that the system under study is described by more than one MSC. In this 

case, these MSCs are composed either vertically or in parallel or using any other 

composition operator. It is important to know the way the MSCs are composed because 

this will affect the average end-to-end delay of the whole system. To schedule messages of 

such systems, we should distinguish between: 

Ø Initiating a new MSC 

Ø Starting a new MSC 

Ø Generating the next message of the MSC 

Each MSC has a traffic source that initiates instances of this MSC. For example if we 

have four MSCs, then we have also four traffic sources which are responsible of generating 

instances of the corresponding MSC according to a certain interarrival time. To initiate a 

new MSC, the traffic source corresponding of this MSC sends a message to the instance 

that will send the first message of the MSC. The message sent by the traffic source, is 

referred to as message zero. It is not a real message of the MSC so it does not need any 

resource time for service. It is just a green light to the instance to start the MSC and send 

the first message. Receiving the message zero is considered as an order to the receiving 

instance to start the MSC and then the first message of the MSC is sent.  

After scheduling the first message in the MSC, it starts its actions. First, it requests the 

resource, then spends some time delay for service and after that it releases the resource. 

After that, it generates the next message (the second message) and after that, it is destroyed. 

The rest of messages of the MSC are scheduled in the same way until reaching the last 

message of the MSC. 

4.4.5 Simulation Input 

As we discussed before MSC-based description of the system under study depends on 
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defining a set of MSCs that describes the communication between system components. 

These MSCs are extended by some parameters, like the complexity class annotations and 

resources speeds to define the mean service times at different resources for different 

messages of different complexity classes.  

The set of MSCs together with the complexity class annotations is called the Load 

Model. The load model shows the sender and receiver of each message, the name of the 

message and the associated complexity class. Resources and their processing properties like 

resources speeds and service amounts for different complexity classes and hence the 

calculated mean service times are called the Resource Model. 

To impose a relevant load onto the system a Traffic Model is specified. The Traffic 

Model contains the execution rates, i.e. the number of instantiations per time unit for each 

MSC. To provide these data as an input to the simulator we used a suitable representation 

as text using Excel sheets. We can summarize the input for the simulator as three different 

excel sheets, as follows: 

Ø Traffic Model: The traffic model contains the number of instantiations per time unit 

for each MSC. 

Ø Load model: The load model defines name, sender, receiver and complexity of each 

message.  

Ø Resource Model: In this sheet the following is specified: 

ü CPU speeds 

ü Service amounts 

ü Service times 

In the following section we will show the simulator package classes and how they work 

together to calculate the performance measure of the system under study. 

4.4.6 Building Blocks of the System 

In this section, we will discuss the simulation main classes and their functions in the 

simulation model. The graph in Figure 13 describes the main classes of the simulation 
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model and the relation between them.  

 

Figure 13: Simulation model structure 
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In the following, we will classify these classes according to their functions into four 

groups: 

Ø Input reading. 

Ø Resources. 

Ø Generating messages. 

Ø The simulation manager. 

4.4.6.1 Input Reading 

Class MSCdata is responsible of reading resources related data like resources speeds and 

service amounts for different complexity classes. It also reads the set of MSCs, which 

describes the system under study. It reads the name, sender, receiver and complexity of 

each message. Before starting the actual simulation tasks, the class “MSCdata” is invoked 

from within the main simulation class to save these data into arrays, to be available during 

the simulation to schedule messages of different MSCs. 

4.4.6.2 Resources  

Class CPU defines the behaviour of the resources of systems under study. This class 

extends the JavaDEMOS class Res. Class Res defines a certain kind of resources in which 

resources are shared and cannot be accessed by more than one process at a time. Objects 

of type CPU have the same characteristics like Res objects, they are requested and released 

by the message objects. If a message, requesting an unavailable resource then it must wait 

(is blocked) otherwise it is served by the CPU for a certain service time depending on the 

CPU speed and the service amount assigned to this message which depends on the 

complexity class that it belongs to. 

4.4.6.3 Generating Messages 

Messages are grouped into MSCs. Each MSC implements a certain task and all MSCs 

cooperate to form the system behaviour. As we discussed before each MSC is initiated by 

an external message sent from the traffic source of this MSC. Then the MSC schedules the 

first message. After that, this first message implements its actions and schedules the next 
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message until the last message of this MSC is reached.  

To model this behaviour we implemented three classes that schedule messages. These 

classes are: 

Ø Class Source 

Ø Class MSC 

Ø Class Message 

Class Source is responsible of initiating MSCs. It models the behaviour of the traffic 

source. For example, if the system consists of five MSCs then we have five corresponding 

“Source” objects. Each one sends a message to the corresponding MSC to start scheduling 

its first message. Class Source also schedules the next source instance according to the 

predefined interarrival time distribution (see Figure 13). 

After receiving the message of the traffic source, a new instance of the MSC is 

scheduled. This new instance schedules the first message of the MSC. The class MSC is 

responsible of modelling the behaviour of the MSCs (see Figure 13). To distinguish 

different MSCs, class MSC has an argument called index to keep the MSC number value. 

The same is done with the class Source. 

The scheduled message has some arguments, e.g. the index of the MSC that contains 

this message and the message scheduling time. These arguments help calculating the time 

needed to finish each message of this MSC. This message time is inherited to the next 

message of the same MSC and is added to the time of this new message, so when the last 

message of the MSC is ended this time will be the response time of this MSC. The 

scheduled message has information about the node to which it will be sent. Class Message 

models this behaviour (see Figure 13). It requests the CPU of the node that receives this 

message. Then some delay is spent for serving this message. This time is calculated 

according to a certain service time distribution. After being served, the message time is 

calculated and then added to the inherited time of previous messages of the same MSC. 

Then the current message schedules the next message, according to the load model, which 

is saved into arrays by the “MSCdata” class, and inherits the time to the new message. 

Finally, the current message is destroyed.  
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The same scenario is implemented by each message until it reaches the last message of 

the MSC. At this point, the response time of this MSC is modified and when the simulation 

ends, we obtain the average response times of different MSCs. 

4.4.6.4 Main Simulation Class 

The main class that manages the simulation is a java class, which extends the JavaDEMOS 

class “Entity”. This class implements the following: 

Ø It declares and initializes the simulation time attribute (parameter). 

Ø It declares the type of arrival rates distribution and initializes the mean arrival rate 

attribute for each MSC. 

Ø It also declares the response time attribute for each MSC, which is calculated using 

the batch means method.  

Ø It also defines the batch size and confidence level that will be used. 

Ø After the declaration of the attributes, the scheduling process of the traffic sources 

start. 

Ø After that, the corresponding MSCs start.  

Ø When the simulation time is over, we obtain the simulation results. 

4.5 Simulation Output 

In this section, we will discuss the simulation results for steady state measures. The 

JavaDEMOS package provides the user with a complete report about the resources used in 

the simulation, data collectors like Accumulate and Tally class objects, distributions, batch 

means objects.  

After the end of the simulation, we get a report about the resources (CPUs). This 

report contains information for each resource. The information includes name of the 

resource, start time, maximum queue length of the queue of the resource, average queue 

length, the limit of the resource, which determines how many messages can be served at 

the same time, and the utilization of the resource. 
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Here, we measure the average response times for different MSCs. To do this we 

generate confidence intervals using the batch means method. The batch means method and 

the confidence interval calculations are implemented automatically by JavaDEMOS 

package by the two classes “BatchMeans” and “ConfidenceInterval” respectively. We 

declare objects of type BatchMeans for each MSC in the system. We use a confidence level 

of value 0.9. After the end of the last message of each MSC instance, the batch mean object 

is updated and finally at the end of the simulation a report is obtained. This report contains 

the average response time, minimum and maximum response time, the estimated standard 

deviation and the confidence interval for the end-to-end delay of each MSC. In addition, 

another report that contains data about number of batches and batch size used to 

determine the average response time of each MSC is introduced. 

Another report on the distributions used in the simulation is also introduced. This 

report contains names of distributions, type of distribution, start time, the mean value for 

distributions of type negative exponential, the seed value and the next sample value. We 

used two distributions one for the MSC interarrival time and the other is for service time 

process.  

We can also make use of the so-called Traces. Trace can help us to see gradually how 

the simulation proceeds. It shows the model times, the entities and their actions. 



 

 

 

 



 

 

 

Chapter 5 

Case Studies 

5.1 Case Study One: Client-Server Systems 

Client/server (C/S) systems are composed of client processes that submit requests to one 

or more server processes. Servers passively await for client requests and may enlist other 

servers in order to reply to a request originating from a client. These processes, clients and 

servers, are usually organized in multi-tiered software architecture. Usually, clients and 

servers execute on different machines connected by networks. A brief introduction to 

client-server systems is given in Appendix B. 

5.1.1 Communication-Processing Delay Diagrams 

The communication-processing delay diagrams describe a request live cycle, which is 

generated by a client in a C/S system. Communication-processing delay diagrams are 

graphic notation to illustrate how requests spend their time at each resource including 

clients, servers, LAN segments and WANs [45]. 

 A communication-processing delay diagram (see Figure 14) is a sequence of parallel 

time axes drawn vertically with time increasing from top to bottom. There are two types of 

time axes: 

Ø Communication time axes (dashed lines), corresponding to time spent in LAN 

segments and WANs. 
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Ø Processing time axes (solid lines), corresponding to time spent processing elements 

such as client and server processors, client and server storage devices, and routers. 

Figure 14 shows time axes for a client, a server, and a LAN segment in a two-tier C/S 

configuration. Diagonal arrows in a delay diagram indicate requests going from clients to 

servers and vice versa. These arrows cross-dashed lines associated with the networks 

traversed by the request. Requests and replies are labelled by a pair of the form [id, m] where 

id identifies the request and its reply and m indicates the average size in bytes of the message 

carrying the request or reply. For example, request r in Figure 14 is m1 bytes long and its 

reply is m2 bytes long. The network transmission time in seconds is equal to the message 

size in bits divided by the network bandwidth B in bits per second (bps) [45]. 

 

Figure 14: Example for communication in a two-tier architecture (See [45]) 

5.1.1.1 A Two-tier Architecture 

In a two-tier architecture, a client talks directly to a server, with no intervening server.  It is 

typically used in small environments (less than 50 users). A common error in client/server 

development is to prototype an application in a small two-tier environment and then scale 

up by simply adding more users to the server. This approach will usually result in an 

ineffective system, as the server becomes overwhelmed. To properly scale to hundreds or 
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thousands of users, it is usually necessary to move to a three-tier architecture [45]. 

5.1.1.2 A Three-tier Architecture 

A three-tier architecture introduces a server (or an "agent") between the client and the 

server. The role of the agent is manifold. It can provide translation services (as in adapting 

a legacy application on a mainframe to a client/server environment), metering services (as 

in acting as a transaction monitor to limit the number of simultaneous requests to a given 

server), or intelligent agent services (as in mapping a request to a number of different 

servers, collating the results, and returning a single response to the client) [45]. 

 

Figure 15: Three-tier architecture (See [45]) 
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delay diagrams describing the Client/Sever systems to Message Sequence Charts. In 

addition, service parameters for different resources are discussed. Then, we describe the 

process of extending the MSC description by these parameters and then map it into a 

queueing network model and after that, some performance measures like the utilization of 

the resources and the response time for the request are calculated using either analytical 

queueing network algorithms or simulation. 

 

Figure 16: Three-tier C/S system (See [45]) 
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Within the instance body the events order is specified. To completely describe the client 

request using the MSCs notions, we should decide accurately the following: 

Ø Instances. 

Ø Events at each instance. 

Ø Message exchange order between instances. 

We can consider each resource as an instance, which has its own events (sending and 

receiving message events). For example, consider the three-tier architecture described by 

the communication-processing delay diagram (Figure 16). We have, one resource CPU at 

the client and one resource at application sever, LAN1, WAN, LAN2. At the database 

server, we have two resources CPU and IO. This way we get seven instances in the MSC-

based description of the system in Figure 16 (as shown in Figure 17).  

 

Figure 17: The MSC corresponding to the three-tier client-server system architecture 

In communication-processing delay diagrams, there are two types of time axes, 

communication time axes (dashed lines), corresponding to time spent in LAN segments 

and WANs and processing time axes (solid lines), corresponding to time spent processing 
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elements such as client and server processors, client and server storage devices, and 

routers. These time axes are equivalent to those of the instances in the MSC.  

Diagonal arrows in a delay diagram indicate requests going from clients to servers and 

vice versa. As Figure 16 shows, these arrows cross the dashed lines associated with the 

networks traversed by the request. These diagonal arrows of the communications-processing 

delay diagrams are altered by messages in the MSC-based description of the system. One 

diagonal line is substituted by a number of messages equals the number of the dashed lines 

that it crosses plus one. For example, in Figure 16 the dashed line from application server 

to database server is substituted by four messages in the MSC. These messages are m3, m4, 

m5 and m6 (Figure 17).  

In addition, internal messages between resources of the same server must be described. 

For example, in Figure 16 the database server uses the CPU and IO resources after 

receiving a signal from LAN2 and after that it sends another signal to LAN1. This situation 

is described by m6, m7 and m8 as shown in Figure 17. 

5.1.2.2 Extending the MSC-based Description by Time Consumption 

The next step is to extend the previous MSC-based description by time consumption. Two 

important parameter sets that affect the performance are: 

Ø Resource parameters: Intrinsic features of a resource that affects performance. 

Examples include disk seek times, latency and transfer rates, network band width, 

router latency, and CPU speed ratings. 

Ø Service times:  Specify the sum of all service times for a request at a resource. 

Examples include the CPU time of transactions at the database server, the total 

transmission time of replies from the database server in LAN, and the total I/O time 

at the web. 

Detailed descriptions about how to calculate service rates at different resources are 

discussed in [45]. 

We discussed how the C/S systems described by communication-processing delay 

diagram, are described by MSCs. This MSC-based description is extended with the 
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performance parameters. The next step is to map the extended MSC-based description into 

a queueing network model and after that solve this queueing network model either by 

analytical queueing networks formulas discussed in Chapter 3 or alternatively by using 

simulation. This will be discussed in the following sections. 

5.1.2.3 Mapping the Extended MSC-based Description into a Queueing 

Model 

As already discussed, requests in a C/S system, are served by several types of resources (e.g. 

processors, disks, networks, and routers). Each time a request visits a resource, it may need 

to queue for the use of the resource. The various queues that represent a distributed C/S 

system are interconnected, giving rise to a network of queues, called a queuing network 

(QN). Figure 18 shows the queuing network corresponding to the three-tier C/S system 

shown in Figure 16. 

 

Figure 18: The three-tier C/S system as a QN (Drawn with WinPEPSY-QNS [8 and 78]) 

Performance prediction is the process of estimating performance measures of a 

computer system for a given set of parameters. Typical performance measures include 

response time, throughput and resource utilization. Performance prediction requires the 

use of models. Two types of models based a unique queueing model (see Figure 18), 

simulation models and analytical models may be used. Both types of models have to 

consider contention for resources and the queues that arise at each system resource.  

5.1.3 Input Description 

One important question is how the simulator as well as the analytical queueing networks 

formulas uses the extended MSC description. The answer is that instead of using the 
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graphical presentation for the MSCs, textual tables are used. For each resource, we make a 

table. This table describes messages received by this resource. Therefore, we have a set of 

tables, each represent messages sent by each resource. Each line of the table keeps data 

about which resource sent the message and to which one it will send. The data saved in the 

table is enough to keep track of the next message of the MSC, in the same order as the 

original MSC. 

The performance parameters are also saved in other tables. For example, the service 

times for each request at different resources are saved in another table. Using these tables 

together with the arrival rates parameters for different request kinds, one can get some 

performance measures like utilization, throughput and response time either by using 

analytical formulas or by running the simulator.  

Resource Name: The corresponding message table 
Client Source 

Node: 
Source 

FE: 
Source 

ID: 
Next 
Node: 

Next 
FE: 

Next 
ID: 

 -1 -1 0 1 1 1 
 1 1 13 -1 -1 -1 

LAN1 Source 
Node: 

Source 
FE: 

Source 
ID: 

Next 
Node: 

Next 
FE: 

Next 
ID: 

 0 1 1 2 1 2 
 2 1 3 3 1 4 
 3 1 10 2 1 11 
 2 1 12 0 1 13 

Application Server Source 
Node: 

Source 
FE: 

Source 
ID: 

Next 
Node: 

Next 
FE: 

Next 
ID: 

 1 1 2 1 1 3 
 1 1 11 1 1 12 

WAN Source 
Node: 

Source 
FE: 

Source 
ID: 

Next 
Node: 

Next 
FE: 

Next 
ID: 

 1 1 4 4 1 5 
 4 1 9 1 1 10 

LAN2 Source 
Node: 

Source 
FE: 

Source 
ID: 

Next 
Node: 

Next 
FE: 

Next 
ID: 

 3 1 5 5 1 6 
 6 1 8 3 1 9 

DB Server CPU Source 
Node: 

Source 
FE: 

Source 
ID: 

Next 
Node: 

Next 
FE: 

Next 
ID: 

 4 1 6 6 1 7 
DB Server Disk Source 

Node: 
Source 

FE: 
Source 

ID: 
Next 
Node: 

Next 
FE: 

Next 
ID: 

 5 1 7 4 1 8 

Table 1: Messages table 
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Table 1 and Table 2 show the MSC description in a text form that can be read by both 

the simulator and by the analytical QN algorithms. In Table 1, we can recognize seven 

different tables corresponding to the seven resources used in the tree-tier C/S system. 

Table 2 shows service times at different resources. 

Each table, as we mentioned before describes the messages received by the resource. 

Each line inside the table describes three related parts for a message, the first one, is the 

source part, which describes the sender of this message and its ID. The second describes 

which resource will receive the next message that will be sent by this resource. Instead of 

writing the full names of the resource, we write only an ID number. In this example, the 

resources’ IDs are ranged from one to seven.  

Resources Resource Service time  
(sec) 

Resource Service rate  
(requests / sec) 

Client-CPU 0.25 4 
LAN1 0.01 100 

Application sever-CPU 0.14 7 
WAN 0.1 10 
LAN2 0.01 100 

Database server-CPU 0.25 4 
Database server-IO 0.25 4 

Table 2: Service times at different resources 

In the following the two performance models will be introduced, the analytical 

queueing networks model as well as the simulation model.  

5.1.4 Analytical Queueing Networks Algorithms and Simulation Results 

Using the formulas discussed in Chapter 3, we get the utilization of each resource and the 

response times at different resources. Alternatively, identical results are obtained using 

simulation. In our example, the simulation runs for 1000 seconds using the JavaDEMOS 

simulator (see Appendix A). The arrival rate used is 3 requests / second. 

Table 3 summarizes the results for both simulation and analytical queueing networks 

analysis. The results of interest are the utilization of each resource and the mean response 

time of the client request at different resources. Table 3 shows a 90% confidence interval 

for the mean response time of the MSC presenting the client request in the three-tier C/S 
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architecture at different resources as well as the total end-to-end delay. From Table 3 it can 

be seen that results from analytical and simulation models are approximately identical. As 

seen in Table 3 most of response time results of the analytical queueing network lie in the 

confidence interval. 

Resources Simulation Results Analytical QN Results 

 
% 

utilization 
 

Response  
Time (sec) ± 

(90% Con. Int.) 

Request 
end-to-end 

delay(sec) ± 
(90% Con. Int.) 

% 
utilization 

 

Response 
Time (sec) 

Request 
end-to-end 
delay(sec) 

Client-CPU 75.464 % 1.193±0.279 75.0 % 1.0 
LAN1 12.158 % 0.046±0.01 12.0 % 0.045 

Application 
sever-CPU 85.434 % 1.733±0.209 85.71 % 1.999 

WAN 59.922 % 0.509±0.042 60.0 % 0.499 
LAN2 6.01 % 0.021±0.0 6.0 % 0.021 

Database 
server-CPU 77.212 % 1.174±0.19 75.0 % 1.0 

Database 
server-IO 75.646 % 0.931±0.124 

5.593±0.162 

75.0 % 1.0 

5.56 

Table 3: Three-tier C/S example: Simulation vs. analytical QN results 

One important thing is that the CPU time needed to get the results of the queueing 

networks algorithm is some seconds (about 5 seconds as shown in Table 4) whereas the 

CPU time needed for the simulation to get the results is approximately an hour. 

CPU time (min : sec) 
Simulation QN Algorithm 

60:00 00:05 

Table 4: Three-tier C/S example: CPU time for JavaDEMOS vs. QN algorithm 

Evaluating these results using queueing networks algorithms in some seconds has a 

great advantage that is system developers can investigate, in early design stages, which 

amount of traffic can be carried by the planned configuration. Such analytical results show 

the scope of possible parameter settings and allow a better planning of simulation scenarios 

which include more details and are closer to reality. Of course this is difficult to be done 

using simulation which needs more CPU time than the queueing networks algorithms to 

give the same results.  



Chapter 5  Case Studies 

 85 

5.2 Case Study Two: Open Multi-class Systems 

5.2.1 Single Web Server 

We now turn our attention to the problem of modelling systems that have different kinds of 

HTTP requests with different service times at different resources. For this purpose, we 

choose the problem of a single web server (this example is taken from [47]) to present it as 

an example, to show how these kinds of systems can be modelled and can be evaluated 

using MINA tool. Figure 19 shows a typical environment with a single web server at the 

site. The web server is connected to a LAN, which is connected to a router that connects 

the site to the ISP and then to the Internet. Different HTTP requests to the web server are 

corresponding to different documents size ranges. For example, consider that the HTTP 

LOG5 of the web server shows the distribution of the document sizes and the percent of 

the requests in each category as well as the CPU time per HTTP request (see Table 5). 

 

Figure 19: A single web server (see [47]) 

Class 
Avg. File 

Size 
(KB) 

% 
request

s 

CPU time per 
HTTP requests 

(sec) 
1 5.0 35 0.00645 
2 10.0 50 0.00816 
3 38.5 14 0.01955 
4 350.0 1 0.14262 

Table 5: File size distributions 

                                                      
5 HTTP LOG records information about every access to a web Server 
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Figure 20: HMSC for the requests of the web server system 
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5.2.2 Describing the System by HMSC 

According to the data in Table 5 we can say that the web server CPU receives four 

different kinds of HTTP requests, 35% of class 1, 50% of class 2, 14% of class 3 and 1% 

of class 4. To describe the four different HTTP requests in the single web server, each class 

of HTTP request is described by an MSC and these MSCs corresponding to the different 

HTTP requests are composed in a parallel composition manner to get an HMSC that 

describes the behaviour of the different HTTP requests (see Figure 20).  

Each MSC presents one of the four different request classes. Each MSC describes the 

communication between the six instances corresponding to the incoming link, outgoing 

link, LAN, router, web server CPU and web server disk resources. The communication 

between the instances is described by eight messages.  

The different instances exchange these eight messages in a certain order as shown in 

Figure 20. The incoming link sends the request to the router, which sends it to the LAN, 

and the LAN sends the request to the web server CPU, then the web server CPU sends it 

to the web server disk. After that, the web server disk sends the answer back to the web 

server CPU, the web server CPU sends it back to the LAN, the LAN sends it to the router, 

and the router sends it to the outgoing link. 

5.2.3 Extending the System MSC-based Description by Performance 

Parameters 

As we mentioned before the message flow between system components together with the 

performance parameters, like the service times at each resource and the arrival rates for 

different classes, are saved in tables. These tables are used as input to both the analytical 

queueing network formulas and the simulator to calculate some performance measures like 

utilization of different resources and response times for the four MSCs representing the 

four HTTP request classes. Table 6 describes the Service Demand6 for different classes at 

each system component. 

                                                      
6 The service demand at a queue is defined as the product of the average number of visits made by a request to the 

queue, multiplied by the average service time per visit. 
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Table 6: Service demands (see [47])  

To get the service time for different classes at each system component, the average 

number of visits made by a request at each system component for different classes must be 

defined. 

Components 1 2 3 4 

LAN 1 1 1 1 
Router 2 2 2 2 

Outgoing link 2 2 2 2 
Incoming link 2 2 2 2 

Web server CPU 1 1 1 1 
Web server Disk 1 1 1 1 

Table 7: The visit count at each resource component for the four classes 

Table 7 shows the visits count at each system component for different classes. Table 8 

shows the arrival rate for each class. 

Class 1 2 3 4 
Arrival rate (request/sec) 2.1 3.0 0.84 0.06 

Table 8: The arrival rate for the four MSC classes 

In the following, we will show the queueing network model corresponding to extended 

HMSC description of the web server HTTP requests. 

5.2.4 Queueing Network Model for a Single Web Server 

The extended MSC description is mapped into a queuing network model (see Figure 21). 

We are assuming here that we are dealing with a web server that is publicly available on the 

Internet. Thus, there is a very large population of unknown size of clients that will access 

the web server. Thus, we can only characterize the arrival rate of requests for various 

document sizes. Therefore, we will model the web server as an open multi-class QN model. 

Components 1 2 3 4 

LAN 0.0044 0.0085 0.0325 0.2942 
Router 0.0006 0.0007 0.0017 0.0124 

Outgoing link 0.0269 0.0535 0.2055 1.8679 
Incoming link 0.0016 0.0016 0.0016 0.0016 

Web server CPU 0.0064 0.0082 0.0196 0.1426 
Web server Disk 0.0300 0.0600 0.2310 2.1000 
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The incoming, outgoing links and the LAN are represented by load-independent 

queues. The router is represented by a delay queue. The web server is represented by two 

load-independent queues: one is for the CPU and the other one is for the disk. 

5.2.5 The Analytical Queueing Network and the Simulation Results 

In this section, we will introduce the results for the single web server HTTP requests 

example. These results ate typically the response time for each HTTP request and the 

utilization of different resources. To do this, we are using either analytical queueing 

networks techniques or alternatively simulation based on the queueing network model 

described in Figure 21. 

 

Figure 21: QN model for a single web server (Drawn with WinPEPSY-QNS [8 and 78]) 

The arrival rates used are described in Table 8 and are measured in requests/sec. The 

service demands are shown in Table 6 and are measured in seconds. The parameters used 

for arrival rates and service rates are used in both the queueing network model and the 

simulation model. In this example, the simulation runs for 28 hours (the model time) using 

the JavaDEMOS simulator. Running the simulator, we can get the utilization and the 

request response times for different system components. Using the formulas discussed in 

Chapter 3, we get the utilization of each resource and the response times of the four MSC 

classes.  

Table 9 summarizes the results of the utilization of different resources. Table 9 shows 

the results for the simulation as well as the analytical queueing networks algorithms and 

compares it with the results of the example (in the textbook, see [47]). Table 10 

summarizes results of the response times of the four HTTP requests. These results are for 
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both simulation and analytical queueing networks algorithms and are compared with the 

results of the example (in the textbook, see [47]). 

% utilization 
System 

Component Simulation QN 
Analysis Example 

LAN 7.955 % 7.9 % 8.0 % 
Router 0.446 % 0.5 % 0.5 % 

Outgoing link 50.438 % 50.1 % 50.2 % 
Incoming link 0.902 % 0.9 % 0.9 % 

Web server CPU 6.33 % 6.3 % 6.3 % 
Web server Disk 56.052 % 56.3 % 56.3 % 

Table 9: Utilization for simulation, queueing network analysis and the example result  

If we have a look on these results, we find that the utilization (see Table 9) for both the 

textbook results and the queueing networks algorithm results are identical for all resources 

because they use the same exact analytical algorithm. For the same reason the response, 

time results for the four HTTP requests obtained by the textbook and the queueing 

networks algorithm is identical (see Table 10). In addition, the JavaDEMOS simulation 

results are almost identical with the queueing networks algorithm results. 

In Table 10, it can also be noticed that, there is an extreme difference in the response 

time between the JavaDEMOS simulation results and the queueing networks algorithm 

results at some resources, e.g. the outgoing link and the web server disk recourses whereas 

the results are identical at other resources, e.g. the incoming link resource. At the rest of the 

resources, the response time results are not identical but also the difference is not large. 

In the next paragraphs, we will explain why we obtained such results. At the incoming 

link resource, the response time results obtained from the JavaDEMOS simulation and the 

queueing networks algorithm are identical because the service demands used for the four 

HTTP requests are identical and hence the service times are identical and in this case the 

queueing network algorithm used produces exact results for the response time. Hence, 

these results and the results obtained from the JavaDEMOS simulator are identical. At the 

outgoing link and the web server recourses, the response time results obtained from the 

JavaDEMOS simulation and the queueing networks algorithm are extremely different. The 

reason is that service demands used for the four HTTP requests are different and hence the 
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service times are different and in this case, the queueing network algorithm used produces 

an approximate result for the response time. The difference between these results and the 

results obtained from the JavaDEMOS simulator are very large when the difference in the 

service demands for the four HTTP requests are very large. When the difference in the 

service demand is not very large the difference in the response time results are also not very 

large, e.g. at the resources web server CPU, LAN and router. 

Response time 

HTTP request 1 HTTP request 2 HTTP request 3 HTTP request 4 
System 

Component 
Sim. QN Ex. Sim. QN Ex. Sim. QN Ex. Sim. QN Ex. 

LAN 0.011 0.005 0.005 0.015 0.009 0.009 0.039 0.035 0.035 0.303 0.32 0.32 
Router 0.0 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.002 0.012 0.012 0.012 

Outgoing link 0.555 0.054 0.054 0.588 0.107 0.107 0.746 0.412 0.413 2.548 3.748 3.749 
Incoming link 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.001 0.002 0.002 

Web server CPU 0.015 0.007 0.007 0.016 0.009 0.009 0.024 0.021 0.021 0.146 0.152 0.152 
Web server Disk 1.365 0.069 0.069 1.388 0.137 0.137 1.462 0.529 0.529 2.674 4.806 4.806 

Table 10: Response times for simulation, queueing network analysis and the example result 

CPU time (min : sec) 
Simulation QN Algorithm 

300:00 00:06 

Table 11: Single web server example: CPU time for JavaDEMOS vs. QN algorithm 

Table 11 compares the CPU time needed to get the results of the queueing networks 

algorithm and simulation. It shows that the CPU time in case of the queueing network 

analysis is very low (about 6 seconds) compared with the CPU time in case of the 

simulation (approximately 5 hours). So using this queueing network analysis to decide for 

example what kind of resources are needed to carry the traffic under specified service 

levels, is easier than making a simulation runs which needs more CPU time than the 

queueing networks algorithms.  

Here, we show the results of an experiment in which we used identical service demands 

for different types of HTTP requests. Table 12 show the values of the service demand for 

the four HTTP requests at different resources. We used the same values for the visits count 

at each system component for different HTTP requests classes. In addition, the same 

arrival rates for each class are used as shown in Table 8. 
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Table 12: Identical service demands 

% utilization System 

Component Simulation QN 
Analysis 

LAN 19.415 % 19.4 % 
Router 7.383 % 7.4 % 

Outgoing link 71.59 % 71.9 % 
Incoming link 0.901 % 0.9 % 

Web server CPU 3.801 % 3.8 % 
Web server Disk 18.081 % 18.0 % 

Table 13: Utilization results for simulation and queueing network analysis 

The utilization results for both the JavaDEMOS simulation and the queueing networks 

algorithm are identical (see Table 13).  In addition, the results of the response times for the 

four HTTP requests at different resources are nearly identical although there are some 

resources that have a high utilization, e.g. the outgoing link has a utilization of 71.59 %. 

Response time 

System Component HTTP request 1 HTTP request 2 HTTP request 3 HTTP request 4 

 Sim. QN Sim. QN Sim. QN Sim. QN 

LAN 0.04 0.04 0.04 0.04 0.04 0.04 0.042 0.04 
Router 0.013 0.013 0.014 0.013 0.013 0.013 0.012 0.013 

Outgoing link 0.408 0.429 0.405 0.429 0.398 0.429 0.388 0.429 
Incoming link 0.002 0.002 0.002 0.002 0.002 0.002 0.001 0.002 

Web server CPU 0.007 0.007 0.007 0.007 0.007 0.007 0.008 0.007 
Web server Disk 0.037 0.037 0.038 0.037 0.037 0.037 0.034 0.037 

Table 14: Response time results for simulation and queueing network analysis 

As seen in Table 14, the response time results of the analytical queueing networks 

algorithm and simulation are identical for most resources. The only exception is at the 

Components HTTP request 1 HTTP request 2 HTTP request 3 HTTP request 4 

LAN 0.0325 0.0325 0.0325 0.0325 
Router 0.0124 0.0124 0.0124 0.0124 

Outgoing link 0.1200 0.1200 0.1200 0.1200 
Incoming link 0.0016 0.0016 0.0016 0.0036 

Web server 0.0064 0.0064 0.0064 0.0064 
Web server 0.0300 0.0300 0.0300 0.0300 
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“outgoing link” resource. Although, when we calculated a 90% confidence interval for the 

mean response time of the four HTTP requests at different resources, we found that the 

response time analytical results lie in the confidence intervals obtained. 

Response time 

System Component HTTP request 1 HTTP request 2 HTTP request 3 HTTP request 4 

 90% CI QN 90% CI QN 90% CI QN 90% CI QN 

Outgoing link [0.377, 0.439] 0.429 [0.376, 0.434] 0.429 [0.363, 0.433] 0.429 [0.33, 0.446] 0.429 

Table 15: QN results and CI of the response time at the “Outgoing link” 

Table 15 shows the 90% confidence interval for the mean response time of the four 

HTTP requests at the “outgoing link” resource. We can easily note that all analytical 

response time values lie in the corresponding confidence intervals. 

From the previous discussion we can conclude that using methods of open queueing 

networks to get the response time for MSCs of different classes is not efficient. Another 

technique that allows every open queueing network to be replaced by a suitably constructed 

closed network and then any method for closed queueing networks, e.g. the MVA (Mean 

Value Analysis) method, can be used [13].  

The principle of the closing method is quite simple; the external world of the open 

network is replaced by a -/G/l node with the following characteristics: 

Ø The service rate of the new node is equal to the arrival rate of 

the open network and in the case of multiple class networks, the service rate of the 

new node is given by ,0rR λ⋅ with r = 1, ..., R, where R is the number of classes. 

Ø The coefficient of variation, of service time at the new node is equal 

to the coefficient of variation of the interarrival time of the open network. 

Ø If the routing behaviour of the open network is specified by visit ratios, 

then the visit ratio of the new node is equal to 1. Otherwise the 

routing probabilities are assigned so that the external world is directly 

replaced by the new node. 
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Figure 22: A closed QN for a single web server with the additional -/G/1 node for the closing 

method (Drawn with WinPEPSY-QNS [8 and 78]) 

The idea behind this technique is shown in Figure 21 and Figure 22. A very high 

utilization of the new node is necessary to reproduce the behaviour of the open network 

with adequate accuracy. This utilization is achieved when there is a large number of 

customers K in the closed network. 

 

Figure 23: Threshold in the closing method 

Note that, the performance measures, e.g. the response times, are sufficiently accurate 

after the number of customers in the network has passed a certain threshold value Ki (see 

Figure 23). In the case of using the MVA method the proposed value for the number of 

customers is 100 customers (see [13]). This leads to the following situation, when we 

applied this technique for this case study to calculate the response times for the four HTTP 

requests; we found that the CPU time needed to calculate the results is too long compared 

with the CPU time needed by the simulation. Hence, in the case of a large open queueing 
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networks with more than one class of customers, it is better to use simulation than using 

the closing method, which has a big disadvantage that it needs a long CPU time to calculate 

the performance results.  



 

 

 

 

 

   



 

 

 

Chapter 6 

A large Application Example 

6.1 Description of the Example 

6.1.1 Introduction 

The main goal of this chapter is to show how to evaluate the performance of complex 

communication systems using both simulation and queueing network models. 

The presentation follows closely the work published in the context of the IPonAir 

project on architectures of future mobile communication systems (cf. [31]). The 

IPonAIR/MxRAN7 project aims at a flexible radio access architecture that supports multi-

band, multi-standard radio systems integration and the usage of existing and future IP-

based protocols. A part of this project is the development of a discrete event simulation 

system, which is to study the performance behaviour of different system designs. 

In [22, 55, 71 and 76] it is proposed to develop a simulation environment to analyze 

alternative network architectures and protocol stacks with respect to signalling 

performance. The authors describe a use case approach to construct a general event driven 

signalling protocol performance model. To this end Message, Sequence Charts (MSCs) are 

employed as an input of use cases to a performance simulation tool. 

In the next sections, we will describe the model concept, which is the basis of both the 

                                                      
7 MxRAN stands for Multi-band, Multi-standard Radio Access Network 
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MxRAN simulator as well as JavaDEMOS simulator. Then we present an implementation 

to derive the simulation model based on the information contained in the MSC description. 

After that, a comparison between the MxRAN simulator results and the MINA tool 

simulation results will be introduced using different models. 

6.1.2 Modelling Concept 

The physical network architecture of the system under study is shown in Figure 24. Figure 

24 shows that this system consists of four components (nodes), the UE (User Equipment), 

Node B (Base Station), RNC (Radio Network controller) and CN (Core Network) which 

are considered with respect to signalling traffic. 

 

Figure 24: Physical network architecture (see [22 and 55]) 

The UEs communicate with the corresponding Node B via a radio access link. The 

Node B has a high bandwidth (ATM) connection to the RNC, which in turn interfaces to 

the core network. All mobile terminals in one radio cell are aggregated in one UE cluster 

modelling their overall behaviour.  

The signalling traffic is defined by a set of activities named "system functions" (SFs) 

which generate the dominant signalling load (e.g. MOBILE ORIGINATED CALL 

SETUP and RELEASE, etc.) in the system.  

The relevant protocol entities involved in these activities are "Functional Entities" 

(FEs). The Functional Entities (FEs) lie inside the network nodes and they are responsible 

of exchanging SFs, which are represented by a specific sequence of signalling messages. 

Figure 25 shows the functional entities in the network nodes these sequences of messages 

can readily be described in the form of HMSCs.  
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Figure 25: Functional entities in the network nodes (see [55 and 71]) 

Each FE is mapped to a certain resource, which serves messages sent by the 

corresponding FE. The mapping of the FEs onto the resources is called the System 

Configuration Model. Therefore, the System Configuration Model defines which FE runs 

on which processor. Here we map all FEs of the same node to one resource. Figure 26 

shows the System Configuration Model. 

 

Figure 26: System configuration model (see [71]) 

The main signalling flows of the system under study are described by a set of MSCs. 

Each message of each MSC is annotated with a certain complexity class. From this, we 

derive the processing time needed on a processor.  
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Figure 27: Graphical representation of the load model (see [71]) 

The set of MSCs together with the complexity class annotations is called the Load 

Model. The graphical representation of the load model is shown in Figure 27 and the 

corresponding load model is shown in Figure 28 as an Excel sheet. 

 

Figure 28: The load model (see [55]) 

The format of the Excel sheet is defined as illustrated in Figure 28, which displays the 

Excel representation of the “RRC Connection Setup” procedure. After completing the 

Excel sheet with the signalling sequences of interest a transformation algorithm 

implemented by the VBA (Visual Basic Application) is started to generate an OPNET 
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suitable table representation of the MSCs kept in the Excel sheet. MINA tool uses this 

Excel sheet. When setting up the load model within Excel, the following must be specified: 

Ø The names of the MSCs and single signalling messages 

Ø The FEs which send and receive signalling messages 

Ø The used protocols and interfaces 

Ø The message lengths as well as complexity classes for particular signalling messages 

Ø Some information relevant for the VBA transformation of the load model. 

All messages within the SFs are ranged within three complexity classes. The resources 

and their processing properties are called the Resource Model. The resource speed factor 

together with the complexity class factor is used to calculate the resource capability for 

messages belonging to that complexity class (see Figure 29). 

 

Figure 29: The resource model (see [71]) 

To impose a relevant load onto the system a Traffic Model is specified. The Traffic 

Model contains the execution rates, i.e. the number of instantiations per time unit for each 

MSC. Part of the Traffic Model is shown in Figure 30. 

In order to clarify the modelling concept presented above, the “RRC Connection 

Setup” procedure is taken as an example. The RRC Connection Setup establishes the radio 

connection between the UE and the Node B and further connects the UE to the RNC. It 

is used in several voice and data call establishment-signalling sequences to set up a 

signalling channel between mobile terminals (UE) and the corresponding RNC via a base 

station (Node B).  
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Figure 30: The traffic model (see [71]) 

Figure 31 depicts the “RRC Connection Setup” procedure in the form of a HMSC as 

described in [59]. In Figure 31 the network elements UE, RNC and Node B communicate 

with each other by exchanging signalling messages. 

 

Figure 31: HMSC for “RRC Connection Setup” (see [22, 55, 71 and 76]) 

To model the node internal structure for each node under investigation, the relevant 

network elements and the FEs to be modelled must be identified. Those are as follows: 

Ø RRC (Radio Resource Control) protocol entity within the UE. 

Ø ALCAP (Access Link Control Application Part) and NBAP (Node B Application 
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Part) protocol entities in the Node B. 

Ø ALCAP, NBAP and RRC protocol entities within the RNC. 

Because of this identification step, the MSCs specified in standards documents have to 

be refined so that the relevant protocol entities depicted in Figure 25 explicitly 

communicate with each other.  

 

Figure 32: Refined MSC with FEs (see [22, 55, 71 and 76]) 

Figure 32 illustrates the refined MSC, which is extended by additional trigger messages 

in order to realize the exchange of signalling messages between FEs inside a node.  

6.2 System Implementation 

In this section, we describe the implemented model in some more detail. We already 

showed the network view of the OPNET model. All structural components can be 

instantiated several times to create more complex networks. The UE cluster aggregates the 

behaviour of all users. This aggregation is realized by a specific calculation of the packet 

interarrival time for each SF (e.g. MOBILE ORIGINATED CALL SETUP and 

RELEASE), depending on the number of active users. 
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Each FE keeps two tables with relevant processing and routing information for this 

particular FE in order to react as required by the MSC logic. These tables are called Action 

Table and Supplementary Action Table. These tables are derived from the refined MSCs, 

which are specified in Excel sheets. In order to derive these tables from the refined MSCs, 

the SFs are sequentially numbered and the Basic Procedures (BPs) within a SF (e.g. BP 

“RRC Connection Setup” within SF “MOBILE ORIGINATED CALL SETUP”) are 

identified, which are also numbered sequentially. Furthermore, the messages a BP consists 

of are sequentially numbered in order to identify each single message within an MSC. In 

addition, each network node and each FE get an unambiguous ID. In this context, the 

format of packets within the modelled system also has to be mentioned. It consists of the 

following: 

Ø Source Node ID 

Ø Source FE ID 

Ø Destination Node ID 

Ø Destination FE ID 

Ø System Function 

Ø Basic Procedure 

Ø Message ID 

The Source Node ID is the ID of the node, which contains the FE that sent the packet 

while the Source FE ID, is the ID of the FE that sent it. The Destination Node ID and 

Destination FE ID specify the node and FE, which is the next recipient of the packet. 

System Function and Basic Procedure specify the number of the respective SF and BP. The 

Message ID specifies the number of a single message within a BP. To see an example for 

the use of message numbers and node and FE IDs we refer to Figure 32.  

 

Figure 33: Extract from table of (FE RRC, Node RNC) (see [22]) 
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Figure 33 shows an extract of the table for FE RRC in node RNC for the SF MOBILE 

ORIGINATED CALL SETUP. In Figure 32 FE 1 (= RRC) in node 0 (= UE cluster) 

sends message 1 (= RRC Setup Request) of BP 1 (= RRC Connection Setup) within SF 1 

(= MOBILE ORIGINATED CALL SETUP) to FE 3 (= RRC) in Node 2 (= RNC). The 

content of the sent packet is as follows: Source Node ID = 0, Source FE ID = 1, 

Destination Node ID = 2, Destination FE ID = 3, SF = 1, Message ID = 1. If a FE gets a 

message, it has to extract the values of the parameters Source Node ID, Source FE ID, SF, 

BP and Message ID and compare them to its table. In this example case the table of FE 

RRC in Node RNC tells:  

If the packet mentioned above is received, the packet’s Message ID has to be changed 

from ID 1 to 2 and the Destination FE ID from 3 to 2. This means that FE 2 (= NBAP) in 

node 2 (= RNC) is the recipient of message 2 (= additional trigger message) of BP 1 (= 

RRC Connection Setup) within SF 1 (= MOBILE ORIGINATED CALL SETUP). 

Additionally the FE RRC in node RNC changes the Source Node ID of the packet from 0 

(= UE cluster) to 2 (= RNC) and the Source FE ID from 1 (= RRC in UE cluster) to 3 (= 

RRC in RNC). We call this proceeding “message handling” within a FE. The column 

“Next Action” within the routing table points to the supplementary action table of a FE, 

which has to execute supplementary actions. A supplementary action means that an 

additional packet has to be generated. This can be necessary for example if forks occur 

within the MSCs (e.g. a FE has to acknowledge one message and has to send another 

message to a different FE) which lead to parallelisms within the MSCs.  

If a FE has to execute a supplementary action there will be an integer value greater or 

equal to zero in the “Next Action” column which corresponds to the respective index of 

the row in the supplementary action table. If the value is set to –1 no supplementary action 

has to be executed. The supplementary action table provides the parameters for the 

additional packet that has to be generated. The different components of a node need 

different parameters from incoming packets in order to fulfil their routing functionality. 

We already mentioned that the FE needs the packet parameters Source Node ID, Source 

FE ID, SF, BP and Message ID.  

It should be mentioned here that the OPNET (as well as JavaDEMOS simulator) node 
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and network level models have to be modified only if new network elements are added or 

the allocation of FEs and resources is modified. Adding or modifying MSCs does not 

change the simulation model, because the impact of the SF logic is kept limited to the FE 

tables only which are loaded at simulation start. This allows for a simple data driven 

evaluation of various protocol scenarios. Results and Statistical evaluations 

6.3 Results 

6.3.1 Input Parameters 

In this section, we will derive three examples, which gradually go from simple to complex 

to more complicated model. The three examples are for the system described by the load 

model shown in Figure 28, which has fourteen SFs. Messages of these SFs are exchanged 

through the fourteen FEs of the nodes system shown in Figure 24 and Figure 25. All FEs 

in the same node are mapped to a single resource. 

In Table 16, the mapping between FEs of each node and the corresponding resource is 

defined. Table 16 also shows: 

Ø The speed of each resource. 

Ø The service amounts for complexity classes 1, 2 and 3 at each resource.  

Ø The service amounts for complexity classes 1, 2 and 3 at each resource.  

Ø The number of servers of each resource. 

message service 
amount 

CPU Service Rate 
(msg/s) 

FEs 
Of 

node 
Resource 

CC 1 CC 2 CC 3 

Speed 
(msg/s) 

CC 1 CC 2 CC 3 

No of 
Severs 

UE CPU1 1.00 1.00 1.00 10.00 10.00 10.00 10.00 10000 
NodeB CPU2 1.00 2.00 3.00 1.00 1.00 0.50 0.33 4.00 
RNC CPU3 1.00 2.00 36.00 60.00 60.00 30.00 1.67 2.00 
CN CPU4 1.00 1.00 1.00 100.00 100.00 100.00 100.00 20000 

Table 16: System parameters 

In the following, we show the results for these examples. The results will be for both 

simulation and queueing networks analysis. The model time in the three examples will be 

24 hours. We also will compare these results with the OPNET MxRAN simulator results. 
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6.3.2 Model One 

The first model is typically the model described in Figure 24, in which we have only one 

UE, one NodeB, one RNC and one CN. Table 17 and Table 18 summarize the results. 

Table 17 shows on one hand the mean response time results for both JavaDEMOS 

simulator and queueing networks analysis and on the other hand, OPNET simulator 

response time results. Table 17 also shows that the arrival rates for all SFs equal 0.03 per 

second. Table 18 shows the utilization for all resources. 

Mean response time [s] 
System Function 

Arrival 
rates 
(1/s) 

OPNET 
simulator 

JavaDEMOS 
simulator 

QN 
Analysis 

1 MO voice/CS data call 
establishment 

0.03 13.2886 13.844 12.2670 
2 MO voice/CS data call release 0.03 7.8075 8.076 6.7579 
3 MT voice/CS data call 

establishment 
0.03 13.3261 14.023 12.5673 

4 MT voice/CS data call release 0.03 3.4079 3.595 2.5744 
5 PS Data Transfer Establishment (...) 0.03 10.8287 11.24 9.9703 
6 PS Detach via power off (UE 

initiated) 
0.03 8.5165 8.999 7.7568 

7 Transition from URA_PCH to 
CELL_DCH ... 

0.03 5.7331 6.109 5.4200 
8 Transition from CELL_DCH to 

URA_PCH ... 
0.03 4.7842 4.937 4.4394 

9 MO PDP Context Activation (...) 0.03 5.8673 6.086 5.3567 
10 MO PDP Context Deactivation (...) 0.03 3.2866 3.533 2.5310 
11 IMSI Detach Signalling Flow 0.03 7.8836 8.304 7.1495 
12 Location Updating Signalling Flow 0.03 8.4477 8.864 7.5397 
13 URA Update (URAU) Signalling 

Flow 
0.03 0.3725 0.398 0.2833 

14 RA Update (RAU) Signalling Flow 0.03 0.3172 0.362 0.2100 

Table 17: Response times for different SFs (model 1) 

Utilization (standardized) [%] 
Resource OPNET 

simulator 
JavaDEMOS 

simulator 
QN 

Analysis 
UE (pure delay) 0.00 0.00 0.00 
Node B 42.84 42.86 42.75 
RNC 43.71 43.62 43.45 
CN.R (pure delay) 0.00 0.0 0.0 
CN.R1 (pure delay) 0.00 0.0 0.0 

Table 18: Resources utilization (model 1) 

As we mentioned before, the CPU time needed to get the performance measures 

results by the queueing networks algorithms is some seconds. On the other hand, you need 

some hours and may be days to get these results using simulation. This is a very important 
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point, that is one should use the results of queueing networks algorithms, which can be 

obtained very quickly, to investigate, in early design stages, which amount of traffic can be 

carried by the planned configuration. Such analytical results show the scope of possible 

parameter settings and allow a better planning of simulation scenarios which include more 

details and are closer to reality.  

Table 19 compares the CPU time needed to get the results of the queueing networks 

algorithm and simulation. It shows that we can get the performance measures using the 

queueing network analysis very quickly (about 6 seconds) compared with the CPU time in 

case of the simulation (approximately 6 hours). 

CPU time (min : sec) 
Simulation QN Algorithm 

240:00 00:06 

Table 19: Model one: CPU time for JavaDEMOS vs. QN algorithm 

6.3.3 Model Two 

The second model is the same like the first one except that instead of one UE we have 

twenty UEs (see Figure 34). 

 

Figure 34: Physical network architecture (model 2) 

Instead of modelling twenty UE nodes, we use an alternative approach called the 

SHRINK approach. As discussed before in section 3.7.2 the SHRINK-method is based on 
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scaling down the complete model, cf. [2, 3, 63, 64 and 66]. To this end both arrival rates 

and service rates parameters is multiplied by a factor a, 0 < a < 1. This factor is called the 

SHRINK factor. This new model is called the scaled down or shrinked model. This scaled 

down model works slower, i.e. arrivals are less frequent and service durations are longer, 

but the behaviour of both systems is approximately identical with respect to performance. 

Here we assume a full-scale system with 20 UEs and 20 NodeBs. For a predefined rate 

of 0.03 the rate of the SFs starting in each UE should be 0.03/20=0.0015. Scaling down 

this system the rates of the UE SFs are still 0.0015. The scaled-down rates of the SFs 

starting in RNC or CN are 0.03/20=0.0015. Therefore, we have for all SFs a rate of 0.0015. 

Mean response time [s] 
System Function 

Arrival 
rates 
(1/s) 

OPNET 
simulator 

JavaDEMOS 
simulator 

QN 
Analysis 

1 MO voice/CS data call establishment 0.03 12.8886 13.29 13.1426 
2 MO voice/CS data call release 0.03 7.2632 7.609 6.7772 
3 MT voice/CS data call establishment 0.03 12.9626 13.538 13.4120 
4 MT voice/CS data call release 0.03 3.0799 3.234 3.4418 
5 PS Data Transfer Establishment (...) 0.03 10.2919 10.848 10.1534 
6 PS Detach via power off (UE initiated) 0.03 8.1946 8.458 7.9101 
7 Transition from URA_PCH to 

CELL_DCH ... 
0.03 5.5593 5.833 5.4777 

8 Transition from CELL_DCH to 
URA_PCH ... 

0.03 4.6656 4.733 4.4726 
9 MO PDP Context Activation (...) 0.03 5.7570 5.803 5.4304 
10 MO PDP Context Deactivation (...) 0.03 3.1626 3.212 3.3411 
11 IMSI Detach Signalling Flow 0.03 7.4859 7.859 7.1989 
12 Location Updating Signalling Flow 0.03 8.1010 8.518 7.6689 
13 URA Update (URAU) Signalling Flow 0.03 0.3536 0.399 0.2833 
14 RA Update (RAU) Signalling Flow 0.03 0.3551 0.355 0.2100 

Table 20: Response times for different SFs (model 2) 

Utilization (standardized) [%] 
Resource OPNET 

simulator 
JavaDEMOS 

simulator 
QN 

Analysis 
UE (pure delay) 0.00 0.0 0.0 
Node B 2.15 2.15 2.14 
RNC 44.39 43.79 43.45 
CN.R (pure delay) 0.00 0.0 0.0 
CN.R1 (pure delay) 0.00 0.0 0.0 

Table 21: Resources utilization (model 2) 

Table 20 and Table 21 summarize the results. Table 20 shows on one hand the 
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response time results for both JavaDEMOS simulator and queueing networks analysis and 

on the other hand, OPNET simulator response time results. Table 20 also shows that the 

arrival rates for all SFs equal 0.03 per second. Table 21 shows the utilization for all 

resources. 

Table 22 compares the CPU time needed to get the results of the queueing networks 

algorithm and simulation. It shows that we can get the performance measures using the 

queueing network analysis very quickly (about 6 seconds) compared with the CPU time in 

case of the simulation (approximately 40 minutes). 

CPU time (min : sec) 
Simulation QN Algorithm 

40:00 00:06 

Table 22: Model Two: CPU time for JavaDEMOS vs. QN algorithm 

6.3.4 Model Three 

The third model is the most complicated one and in which we consider nine UEs Clusters, 

each has twenty UEs and nine NodeBs Clusters, each has twenty NodeBs as in Figure 35, 

i.e. we assume a full-scale system with 180 UEs and 180 NodeBs. 

For a predefined rate of 0.03 the rates of the SFs starting in each UE should be 

0.03/180=0.00016667. Scaling down this system the rates of the UE SFs are still 

0.00016667. With a SHRINK factor of 1/20 the scaled-down rates of the SFs starting in 

RNC or CN are 0.03/20=0.0015. The speed parameters in the parameter overview 

represent the full-scale system. They are modified according to the SHRINK factor during 

the simulation initial phase. The response time results also represent the full-scale system. 

Table 23 and Table 24 summarize the results. Table 24 shows on one hand MINA tool 

response time results for both simulation and queueing networks analysis and on the other 

hand, MxRAN simulator response time results. Table 24 also shows that the arrival rates 

for all SFs equal 0.03 per second. Table 23 shows the utilization for all resources. 
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Figure 35: Physical network architecture (model 3) 

Mean response time [s] 
System Function 

Arrival 
rates 
(1/s) 

OPNET 
simulator 

JavaDEMOS 
simulator 

QN 
Analysis 

1 MO voice/CS data call establishment 0.03 13.0316 13.338 12.2850 
2 MO voice/CS data call release 0.03 7.6317 7.692 6.7735 
3 MT voice/CS data call establishment 0.03 13.0532 13.586 12.5419 
4 MT voice/CS data call release 0.03 3.3084 3.257 3.4785 
5 PS Data Transfer Establishment (...) 0.03 10.3971 10.81 9.9822 
6 PS Detach via power off (UE initiated) 0.03 8.2124 8.368 7.8400 
7 Transition from URA_PCH to 

CELL_DCH ... 
0.03 5.5688 5.911 5.4039 

8 Transition from CELL_DCH to 
URA_PCH ... 

0.03 4.6857 4.825 4.4511 
9 MO PDP Context Activation (...) 0.03 5.7009 5.751 5.3571 
10 MO PDP Context Deactivation (...) 0.03 3.1636 3.194 3.3755 
11 IMSI Detach Signalling Flow 0.03 7.5219 7.685 7.1777 
12 Location Updating Signalling Flow 0.03 7.9470 8.546 7.6506 
13 URA Update (URAU) Signalling Flow 0.03 0.3755 0.402 0.2833 
14 RA Update (RAU) Signalling Flow 0.03 0.3349 0.357 0.2100 

Table 23: Response times for different SFs (model 3) 
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Utilization (standardized) [%] 
Resource OPNET 

simulator 
JavaDEMOS 

simulator 
QN 

Analysis 
UE (pure delay) 0.00 0.00 0.00 
Node B 0.23 0.24 0.24 
RNC 44.76 43.46 43.58 
CN.R (pure delay) 0.00 0.00 0.00 
CN.R1 (pure delay) 0.00 0.00 

0.2375 % 
0.00 

Table 24: Resource utilization (model 3) 

Table 25 compares the CPU time needed to get the results of the queueing networks 

algorithm and simulation. It shows that we can get the performance measures using the 

queueing network analysis very quickly (about 10 seconds) compared with the CPU time in 

case of the simulation (approximately one hour). 

CPU time (min : sec) 
Simulation QN Algorithm 

60:00 00:10 

Table 25: Model Three: CPU time for JavaDEMOS vs. QN algorithm 

6.3.5 Results Discussion 

In this section, we introduce some remarks on the results of the three models of sections 

6.3.2, 6.3.3 and 6.3.4. 

The first remark is that if we look at the utilization results in Table 18, Table 21 and 

Table 24 we find that the results of the utilization obtained by the OPNET simulator, 

JavaDEMOS simulator and the queueing networks analysis are identical for all resources. 

The situation is different in the case of the response time results. If we look at Table 

17, Table 20 and Table 23, we find that there is a considerable difference in the results 

between OPNET simulator, JavaDEMOS simulator and the queueing network analysis. 

This difference between the results of the JavaDEMOS simulator and the OPNET 

simulator is due to using different types of service time distribution. The OPNET 

simulator uses a deterministic service time distribution whereas the JavaDEMOS simulator 

uses a service time distribution of type negative exponential.  
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Mean response time [s] 

JavaDEMOS simulator System Function OPNET 
simulator Neg. Exp.  Deterministic 

1 MO voice/CS data call 
establishment 

13.2886 13.844 13.376 
2 MO voice/CS data call release 7.8075 8.076 7.792 
3 MT voice/CS data call 

establishment 
13.3261 14.023 13.684 

4 MT voice/CS data call release 3.4079 3.595 3.453 
5 PS Data Transfer Establishment (...) 10.8287 11.24 10.944 
6 PS Detach via power off (UE 

initiated) 
8.5165 8.999 8.662 

7 Transition from URA_PCH to 
CELL_DCH ... 

5.7331 6.109 5.817 
8 Transition from CELL_DCH to 

URA_PCH ... 
4.7842 4.937 4.792 

9 MO PDP Context Activation (...) 5.8673 6.086 5.904 
10 MO PDP Context Deactivation (...) 3.2866 3.533 3.342 
11 IMSI Detach Signalling Flow 7.8836 8.304 8.014 
12 Location Updating Signalling Flow 8.4477 8.864 8.526 
13 URA Update (URAU) Signalling 

Flow 
0.3725 0.398 0.366 

14 RA Update (RAU) Signalling Flow 0.3172 0.362 0.322 

Table 26: The response time in the case using deterministic service time distribution (model 1) 

Table 26 shows the response time results for the JavaDEMOS simulator after using 

deterministic service time distribution. We can notice that these are closer to the results 

obtained by the OPNET simulator and of course are different from the results obtained by 

the JavaDEMOS in the case of using negative exponential service time distribution. 

Mean response time [s] 

JavaDEMOS simulator System Function OPNET 
simulator Neg. Exp.  Deterministic 

1 MO voice/CS data call 
establishment 

12.8886 13.29 13.21 
2 MO voice/CS data call release 7.2632 7.609 7.477 
3 MT voice/CS data call 

establishment 
12.9626 13.538 13.545 

4 MT voice/CS data call release 3.0799 3.234 3.181 
5 PS Data Transfer Establishment (...) 10.2919 10.848 10.747 
6 PS Detach via power off (UE 

initiated) 
8.1946 8.458 8.369 

7 Transition from URA_PCH to 
CELL_DCH ... 

5.5593 5.833 5.698 
8 Transition from CELL_DCH to 

URA_PCH ... 
4.6656 4.733 4.687 

9 MO PDP Context Activation (...) 5.7570 5.803 5.803 
10 MO PDP Context Deactivation (...) 3.1626 3.212 3.152 
11 IMSI Detach Signalling Flow 7.4859 7.859 7.737 
12 Location Updating Signalling Flow 8.1010 8.518 8.279 
13 URA Update (URAU) Signalling 

Flow 
0.3536 0.399 0.38 

14 RA Update (RAU) Signalling Flow 0.3551 0.355 0.323 

Table 27: The response time in the case using deterministic service time distribution (model 2) 
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Mean response time [s] 

JavaDEMOS simulator System Function OPNET 
simulator Neg. Exp.  Deterministic 

1 MO voice/CS data call 
establishment 

13.0316 13.338 13.372 
2 MO voice/CS data call release 7.6317 7.692 7.515 
3 MT voice/CS data call 

establishment 
13.0532 13.586 13.653 

4 MT voice/CS data call release 3.3084 3.257 3.263 
5 PS Data Transfer Establishment (...) 10.3971 10.81 10.856 
6 PS Detach via power off (UE 

initiated) 
8.2124 8.368 8.458 

7 Transition from URA_PCH to 
CELL_DCH ... 

5.5688 5.911 5.742 
8 Transition from CELL_DCH to 

URA_PCH ... 
4.6857 4.825 4.722 

9 MO PDP Context Activation (...) 5.7009 5.751 5.868 
10 MO PDP Context Deactivation (...) 3.1636 3.194 3.206 
11 IMSI Detach Signalling Flow 7.5219 7.685 7.765 
12 Location Updating Signalling Flow 7.9470 8.546 8.35 
13 URA Update (URAU) Signalling 

Flow 
0.3755 0.402 0.387 

14 RA Update (RAU) Signalling Flow 0.3349 0.357 0.327 

Table 28: The response time in the case using deterministic service time distribution (model 3) 

Table 27 and Table 28 show also the response time results for the JavaDEMOS 

simulator after using deterministic service time distribution for models 2 and 3. They also 

compare those results with the results obtained by the OPNET simulator and the results of 

the JavaDEMOS simulator in the case of using negative exponential service time 

distribution. 

Now we will discuss another point that is the difference between the results of the 

JavaDEMOS simulator and the analytical queueing network formulas. The reason behind 

this difference is due to that, we use an approximate method (the method of 

decomposition) to calculate the response time because none of the product form methods 

is suitable for our problem. The decomposition method enhances the response time by 

calculating a correction factors that depends on the coefficients of variation of the arrival 

time distribution and the service time distribution. For our problem, we use arrival time 

distribution and service time distribution of type negative exponential. In this case, these 

coefficients of variation are of course equal to one and hence the calculated correction 

factor equals one. This situation makes the approximate method inefficient to produce 

better values for the response time in the case of using arrival time distribution and service 

time distribution of type negative exponential. 
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Mean response time of 
SF1 [s] 

Resource  
%utilization Arrival 

rates 
(1/s) QN 

analysis 
JavaDEMOS 
Simulation 

Error 
NodeB RNC 

0.002 12.03004 12.032 0.001956 2.137 % 2.175 % 
0.01 12.03245 12.175 0.142552 14.079 % 14.25 % 
0.02 12.0436 12.544 0.500398 28.313 % 28.808 % 
0.03 12.07615 13.376 1.299848 42.736 % 43.501 % 
0.04 12.17079 15.019 2.848206 57.233 % 58.179 % 
0.05 12.50712 18.34 5.832877 71.423 % 72.558 % 
0.06 14.6646 28.657 13.9924 85.532 % 86.886 % 

Table 29: The mean response time for SF 1 for different arrival rate values (model 1) 

We made several runs for the simulation as well as the analytical queueing network 

algorithm for model one as an example. We used a different value for the arrival rate at 

each run. The arrival rates used are the same for all SFs. The arrival rates used are shown in 

Table 29.  
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Figure 36: The mean response time of SF 1 for different arrival rate values (model 1) 

We noticed that the response time error or the difference between the response times 

obtained by simulation and analytical queueing networks algorithm grows up when the 
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value of the arrival rate increases for all system functions. The reason is that when the 

arrival rates increase the utilization of the resources increase and hence the response time 

increases. To demonstrate this fact we introduced the response time results for system 

function one as an example. Table 29 shows the obtained results from the JavaDEMOS 

simulator and the queueing networks algorithm as well as the difference between the two 

obtained results at different values of the arrival rate. Similar table can be obtained for the 

rest of the system functions. 

Figure 36 show a graph of the results in Table 29. The graph shows that the error starts 

to grow up rapidly at arrival rate 0.02 and more. At arrival rate 0.2 the utilization of the 

NodeB and node RNC are 28.313 % and 28.808 % respectively as shown in Table 29. 

When the arrival rates are 0.06, the system is under a heavy load and the utilization of 

NodeB and node RNC increase to 85.532 % and 86.886 % respectively and the error 

becomes very large. 

 

 



 

 

 

Chapter 7 

Conclusion 

7.1 Introduction 

In this work, we considered methods and techniques for the performance evaluation of 

distributed systems. We developed a tool to evaluate the performance of such systems by 

analytic as well as by simulative techniques. 

The tool chain is as follows: 

Ø The system workload is described by MSCs. 

Ø Then, notions for time consumption and resources are added in order to extend 

MSCs. 

Ø The “Performance extended MSC” is included in a system performance model 

(Queueing Network Model). 

Ø After that the performance evaluation by analytical techniques or by discrete event 

simulation can be done. 

Ø Analytical techniques are used to obtain steady state performance measures like 

resource utilizations, throughput, and end-to-end delays. 

Ø Additionally, simulation allows for the investigation of dynamic performance 

behaviour. 

In the following we will review the different chapter of the thesis. 
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7.2 Summary of the Thesis 

The system under study is initially described by means of Message Sequence Charts 

(MSCs). A Message Sequence Chart describes the message interaction between system 

components and their environment. More complex scenarios can be described by HMSCs 

which result from composing MSCs by a certain composition operator like sequential or 

parallel or loop or conditional composition parameters. A detailed discussion about MSCs, 

HMSCs and the compositional operators is given in Chapter 1. 

In Chapter 2 we show how the MSC or HMSC descriptions can be extended by 

notions for time consumption and resources and afterwards included in a system 

performance model. Each message is associated with a service amount ai to be executed at 

the receiving instance i. Furthermore, we consider the instances to behave like queueing 

stations, i.e. messages arriving at a busy instance are stored in a queue and will have to wait 

for service. Therefore, each message has to spend some wait time at arrival at an instance 

(including the case of zero wait time) followed by a service time which depends on speed 

of the instance and the required service amount. Moreover we consider MSCs to be 

“open“, i.e. the start of an MSC is triggered from the environment according to some 

interarrival distribution. Since we will employ analytical mean value formulas based on 

queueing network theory the interarrival distribution is assumed to be negative exponential. 

The same assumption is made for the service amounts. Since instances are, queueing 

stations and the messages can be considered to be customers or customers we obtain a 

queueing network. Each queueing station consists of a wait queue and a server. Here we 

assume that each station is of type -/M/1-FCFS and MSC arrivals occur according to a 

Poisson stream and the service times of the messages are also negative exponentially 

distributed. 

The tool executes either a discrete event simulation using a simulation program 

implemented by JavaDEMOS package or alternatively by a suitable queueing network 

method to get the performance results. In this way steady state performance measures like 

resource utilizations and end-to-end delays can be calculated with low effort. The 

simulation uses the same input like the analytical formulas and allows for the investigation 

of dynamic performance behaviour or for the study of models including features, which 
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cannot be handled by analytical formulas. 

Chapter 3 describes how to calculate the response times for each MSC and the 

utilization at each queueing station in the queueing network model we considered. To do 

these calculations different algorithms are used. Jackson method [32 and 33] is used in the 

case that the queueing stations have a FCFS queueing disciplines, have a single class of 

customers and have a single server. An extension to the method of Jackson, the BCMP 

method [7], is used for networks that have queueing stations of queueing disciplines rather 

than FCFS like for example IS (Infinite Server) and PS (Processor Sharing). The open 

queueing networks with M/M/m queueing stations, FCFS queueing discipline, multiclass 

of customers with different service rates for different classes of customers do not satisfy 

the conditions of Jackson's method and the BCMP method and we can not use these 

methods to analyze such queueing networks. For this reason, a non-product form 

approximate method called decomposition method [12, 15, 24, 41, 67, 74 and 75] is used. 

Some remarks on how to apply the queueing networks formulas in some special cases are 

discussed in section 3.7. A remark on how to deal with the queueing networks formulas in 

the case that we have a set of MSCs describes the system. In this case, messages can be 

distinguished not only by the complexity class of the message itself but also by the MSC it 

belongs to. A discussion about the use of the SHRINK approach [2, 3, 63, 64 and 66] with 

the analytical formulas in case of the so called slow down models is described. Another 

remark about branching in an MSC and about how to calculate the response time for a 

certain predefined branch is also discussed. An overview of how to calculate the end-to-

end delay in the case of systems described by HMSCs is given in section 3.8. 

Chapter 4 described the simulation model which can be used alternatively. We 

presented how the system components are modelled in the context of discrete event 

simulation concepts. The scheduling process of instances of each MSC according to the 

predefined traffic is also described. We explained the way of scheduling of messages of 

each MSC. Simulation input parameters and how it is used by the simulator is also shown. 

We discussed some of the developed building blocks that are responsible for the reading of 

the input parameters, the resources behaviour, the scheduling of messages and the main 

simulation class. Finally, we discussed the output of the simulation. 
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In Chapter 5, we presented two case studies to make following the tool chain more 

clear. The case studies are taken from the Client Server systems examples (textbook in 

[45]). These systems are originally described by communication process delay diagrams. We 

defined rules to transfer such diagrams into MSCs. After that, we used the same resources 

speeds as in the original example and mapped the extended MSC into a queueing network 

model. We solved it using simulation and analytical queueing networks analysis and 

compared the obtained results with results in the textbook. 

Chapter 6 shows how the tool can be used to evaluate the performance of complex 

communication systems using both simulation and queueing network models. The 

presentation follows closely the work published in the context of the IPonAir project on 

architectures of future mobile communication systems [31], see also [22, 55, 71 and 76]. A 

part of this project is the development of a discrete event simulation system, which is to 

study the performance behaviour of different system designs. The system under study is 

described by the 14 system functions (MSCs) with 482 messages exchanged between 

stations UE, NodeB, RNC and CN. We presented 3 Models, applied the tool for each one 

and obtained results identical to results obtained from the MxRAN simulator.  

7.3 Contributions 

In this thesis we suggest a tool chain, named MINA, to evaluate performance measures of 

distributed systems, e.g. communication systems and computer systems. The MINA tool 

chain describes the communication between system components by means of Message 

Sequence Charts. These system components exchange messages between each other and 

behave like queueing stations (resources) with one or more servers that serve customers 

(messages). To calculate performance measures for these systems we extend the MSC 

description by some performance parameters. These parameters are related to resources 

and their processing properties. Other parameters, e.g. message arrival rates, impose a 

relevant load onto the system. 

After that, we map this extended MSC description into a queueing model. Based on 

this unique model the performance measures of the system under study can be obtained 

either by queueing network analysis with low effort or alternatively by simulation which 
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allows for the investigation of dynamic performance behaviour or for the study of features 

which can not be handled by analytical formulas. 

The queueing network model we use is an open model and the MINA tool offers some 

methods, e.g. Jackson’s method, the BCMP method or an approximate algorithm, for 

calculating the system performance measures, e.g. the response time for different MSCs 

and the utilization of the resources.. The queueing network algorithms are useful to 

investigate in early design stages which amount of traffic can be carried by the planned 

configuration, or the other way round, what kind of resources are needed to carry the 

traffic under specified service levels. Such analytical results may be extremely helpful for a 

system developer. It can show the scope of possible parameter settings and allow a better 

planning of simulation scenarios, which include more details and are closer to reality. 

Another important point is that the analytical results require just some seconds of CPU 

time, whereas the simulation needs some hours or even some days.  

Additional to the analytical formulas a simulation system has been developed, which 

uses the same input as the analytical model and delivers the same results, i.e. approximate 

mean values and additionally confidence intervals. Of course the simulator can be used to 

evaluate models which do not satisfy the conditions necessary for analytical evaluations; 

important examples for model features which violate these conditions are non-exponential 

distributed service times (e.g. low service time variations or even deterministic service), 

non-Poisson arrivals (e.g. bursty sources) and priority scheduling. Moreover, the state of all 

objects, e.g. resources, can be inspected at any time. Observing the dynamic performance 

behaviour of the values of the state variables of the resources, in particular the maximum 

queue length, the current queue length, the average queue length and the average wait time 

parameters can be inspected at any time.  

Summarizing, the main progress of this thesis is given by the following results: 

Ø Extension of a (semi) formal description technique (these are the MSCs) by 

performance parameters,  

Ø its mapping to an executable performance model,  

Ø the development of analytical formulas yielding exact or approximate mean values 
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for performance metrics, and alternatively, 

Ø the simulative evaluation of the model by discrete event simulation. 

7.4 Future Work 

The work presented in this thesis can be extended in several directions. We propose here 

some considerations on possible future extensions of the approach previously described. 

The tool has been applied to Client/Server systems and also to mobile communication 

systems. The possibility of applying the tool to other distributed systems like for example 

mobile Ad-hoc networks, peer to peer networks, sensor networks8, sensitive networks9, or 

any other distributed system to obtain system performance is one direction that needs 

more work in the future.  

The analytical queueing network analysis is very helpful to be used in calculating the 

performance measures like resource utilizations and end-to-end delays with low effort. We 

used some methods for this purpose, but more methods are needed to cover a variety of 

situations that arises when we try to solve systems that are more complex.  

Another point is to develop a graphical user interface for the tool. This graphical user 

interface could be used to enable users to execute simulation as well as analytical queueing 

networks methods. The graphical user interface will help the user of the tool to edit input 

and obtain results in an easy way. 

 

                                                      
8 Sensor Networks are distributed networks made up of small sensing devices equipped with processors, memory, and 

short-range wireless communication. 
9 Sensitive networks are networks in which the introduction or the removal of a node/vertex dramatically changes the 

dynamic structure of the system. 



 

 

 

Appendix A: JavaDEMOS Simulator 

A.1 Introduction 

The object oriented language SIMULA and its classes SIMULATION and DEMOS have 

been used for purposes of teaching for nearly three decades. In particular, the class 

DEMOS, which implements a scenario approach providing building blocks to allows for 

the flexible and effective construction of simulation programs. 

JavaDEMOS is a Java library for discrete event simulation, which was inspired by the 

DEMOS system written by G. M. Birtwistle. JavaDEMOS is based on an implementation 

of the DEMOS features in Java. The syntax of the procedures is as close as possible to 

DEMOS, in order to simplify the translation of DEMOS programs to JavaDEMOS. 

In addition, JavaDEMOS consists of a graphical front-end which permits the 

visualization of a simulation run and which allows basic interactions with the simulation 

system. The user can observe the scheduled entities in the event list, the state of model 

components, statistical data, and a simulation trace. Simulations can be executed 

completely, in single step mode or until reaching of a certain time or entity. 

A.2 JavaDEMOS Concepts 

Here a very brief summary of the JavaDEMOS concepts are given. The basic concept is 

the entity. Entities implement behaviour patterns, may acquire and release resources, may 

wait until certain conditions are fulfilled, are able to interact with each other in a 

master/slave mode and can of course be scheduled in the event list. For a thorough 

description, we refer to the original DEMOS documentation, in particular to the book and 
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manual which are both due to Graham Birtwistle [10 and 11]. 

A.2.1 Entities and their Scheduling 

The class Entity has its local scheduling methods. JavaDEMOS implements its own event 

list. The global scheduling methods are hold () and passivate (); time () returns the 

current model time. Only JavaDEMOS entities may be queued; if you wish to queue other 

items, you will have to write the methods yourself. The types of queue implemented are as 

follows: 

Ø Queue (usually for holding several coopted entities until they are required by their 

masters), 

Ø WaitQ (master/slave synchronization), and 

Ø CondQ (waits until). 

A.2.2 Reporting Aids 

JavaDEMOS contains reporting aids like class Report, in particular all JavaDEMOS classes 

extend Tab allows Report membership. On generation, each facility object is entered into 

a special Report reserved for its type. In Report, all Tab objects are registered. Report 

offers the methods report and reset to invoke automatically the corresponding methods of 

all registered Tab objects. It is now very easy to write routines to report or reset each 

facility object created during program execution. There are data collections devices like: 

Ø Count (incidences), 

Ø Tally (time independent data), 

Ø Accumulate (time dependent data), and 

Ø Regression (for linear regressions). 

Each of these classes extends class Tab. Another one is class Histogram (Tally plus a 

bar chart) which as well extends class Tally. 

An additional feature of JavaDEMOS is the observation of time dependent behaviour 

of some performance measures. Furthermore, features for an extended output analysis 

have been developed. There are the new classes BatchMeans and Confidencelnterval 
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for the analysis of interval estimates. 

A.2.3 Random Numbers 

JavaDEMOS contains random number generators as well as its method of generating well 

spread seeds. All distribution objects are extensions of class Dist. Distributions producing 

double results (Constant, Empirical, Erlang, NegExp, Normal and Uniform). 

Distributions producing integer results (Poisson, Randint) distributions producing 

Boolean results (Draw).  JavaDEMOS contains corresponding classes for those of DEMOS. 

A.2.4 Resources “Classes Res and Bin” 

There exists a class Resource and its subclasses Res (for the mutual exclusion 

synchronization) and Bin (for the producer/consumer synchronization). 

When resources are shared, but they must only be accessed by one process at a time, 

one has a mutual exclusion situation. Examples are road intersections, tools, or file sharing by 

reading and writing processes. In these situations, resources are requested and released by 

the same process. A process requesting an unavailable resource must wait (is blocked). 

In producer/consumer synchronizations, producer processes make items available to 

consumer processes. Examples are a message sender and a message receiver, or two 

machines working on items in sequence. The synchronization here must ensure that the 

consumer process does not consume more items than have been produced. If necessary, 

the consumer process is blocked (must wait) if no item is available to be consumed. 

Producer and consumer processes are coupled by a buffer to allow asynchronous 

production and consumption. The buffer can be bounded (have a capacity limit) or 

unbounded (be able to store an unlimited number of items). 

A.3 JavaDEMOS Package 

JavaDEMOS consists of four packages:  

Ø package default 

Ø package demos 
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Ø package demosGui 

Ø package result 

 

Figure 37: The graphical user interface of JavaDEMOS 

ExecuteDEMOS is a part of the package demosGui and it is the simulation 

environment of JavaDEMOS. Firstly, we edit the program using any Java editor. Then we 

start the simulation by clicking the icon named run in the subdirectory run provided with 

JavaDEMOS package. When the simulation environment starts, the user is asked to select 

an Entity. The user selects a java class then presses the button open. After that, a new 

window appears with four options to control simulation. These four options are: 

Ø Complete Simulation: The simulation will be carried out completely. 

Ø One Step (Current Entity): The first Entity in the event list will be carried out. 

Ø Until time >= x: The simulation will be carried out until time x will be reached. 

Ø Until Entity = x: The simulation stops when the desired Entity becomes active.  
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Afterwards the Run button is pressed. Figure 37 (on the left) shows a number of 

entities which are scheduled in the event list and their associated event times. It shows that 

messages, MSCs (SFs) and the sources (Traffic sources) are entities and also shows that the 

visited stations (UE, NodeB, …) are modelled as resources. Moreover, the state of all 

objects can be inspected at any time during the simulation. Figure 37 (on the right) shows 

the current values of the state variables of the station RNC, in particular the maximum 

queue length Q-MAX, the current queue length Q-NOW, the average queue length and the 

average wait time.  

 

Figure 38: Trace-window 

In Figure 38 we can see the Trace-window in which we can see gradually how the 

simulation proceeds. It shows the model times, the entities and their actions. Finally, a 

complete report can be obtained as shown in Figure 39. In addition, we can print the 

report by clicking on the Print button and save it on disk by clicking on Save. 

 

Figure 39: Report-window for simulation environment 



 

 

 



 

 

 

Appendix B: Client Server Systems 

B.1 Introduction to Client-Server Systems  

Client/server (C/S) systems are comprised of many different hardware resources including 

client workstations, servers with their processors and disks, LANs, WANs, and routers. 

Various types of software processes including applications, middleware, database 

management systems, protocol handlers, and operating systems share the use of the 

hardware resources. The shared use of these resources gives rise to contention that 

generates waiting queues. A C/S transaction spends a portion of its time receiving service 

at various resources as well as queuing for these resources. The delays encountered by a C/S 

transaction may be decomposed into: 

Ø Service times: time spent using various resources such as processors, disks, and 

networks.  

Ø Waiting times: time spent waiting to use resources that are being held by other 

transactions. 

Client/server computing is the logical extension of modular programming. Modular 

programming has as its fundamental assumption that separation of a large piece of software 

into its constituent parts ("modules") creates the possibility for easier development and 

better maintainability. Client/server computing takes this a step farther by recognizing that 

those modules need not all be executed within the same memory space. With this 

architecture, the calling module becomes the "client" (that which requests a service), and 

the called module becomes the "server" (that which provides the service). 

The logical extension of this is to have clients and servers running on the appropriate 
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hardware and software platforms for their functions. For example, database management 

system servers running on platforms specially designed and configured to perform queries, 

or file servers running on platforms with special elements for managing files. It is the latter 

perspective that has created the widely believed myth that client/server has something to 

do with PCs or UNIX machines. 

B.1.1 A Client process 

The client is a process (program) that sends a message to a server process (program), 

requesting that the server perform a task (service). 

Client programs usually manage the user-interface portion of the application, validate 

data entered by the user, dispatch requests to server programs, and sometimes execute 

business logic. The client-based process is the front-end of the application that the user 

sees and interacts with. The client process contains solution-specific logic and provides the 

interface between the user and the rest of the application system. The client process also 

manages the local resources that the user interacts with such as the monitor, keyboard, 

workstation CPU and peripherals. One of the key elements of a client workstation is the 

graphical user interface (GUI). Normally a part of operating system i.e. the window 

manager detects user actions, manages the windows on the display and displays the data in 

the windows. 

B.1.2 A Server Process 

A server process (program) fulfils the client request by performing the task requested.  

 Server programs generally receive requests from client programs, execute database 

retrieval and updates, manage data integrity and dispatch responses to client requests. 

Sometimes server programs execute common or complex business logic. The server-based 

process "may" run on another machine on the network. This server could be the host 

operating system or network file server; the server is then provided both file system 

services and application services. Alternatively, in some cases, another desktop machine 

provides the application services. The server process acts as a software engine that manages 

shared resources such as databases, printers, communication links, or high powered-

processors. The server process performs the back-end tasks that are common to similar 
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applications. 

B.2 Characteristics of Client/Server Architecture 

The basic characteristics of client/server architectures are: 

Ø Combination of a client or front-end portion that interacts with the user, and a 

server or back-end portion that interacts with the shared resource. The client 

process contains solution-specific logic and provides the interface between the user 

and the rest of the application system. The server process acts as a software engine 

that manages shared resources such as databases, printers, modems, or high 

powered processors.  

Ø The front-end task and back-end task have fundamentally different requirements 

for computing resources such as processor speeds, memory, disk speeds and 

capacities, and input/output devices.  

Ø The environment is typically heterogeneous and multi-vendor. The hardware 

platform and operating system of client and server are not usually the same. Client 

and server processes communicate through a well-defined set of standard 

application program interfaces (API's) and RPC's. 

Ø An important characteristic of client-server systems is scalability. They can be 

scaled horizontally or vertically. Horizontal scaling means adding or removing client 

workstations with only a slight performance impact. Vertical scaling means 

migrating to a larger and faster server machine or multi-servers. 

 



 

 



 

 

 

Appendix C: Description and Usage of the MINA Tool 

C.1 Description of  the Architecture of the MINA Tool  

As we discussed before MINA tool calculates the performance measures of distributed 

systems, e.g. communication systems and computer systems by constructing a queueing 

network model, which can be solved either by simulation or by queueing network analysis. 

Figure 40 describes the MINA tool chain. It shows the steps needed to achieve the goal 

that is to calculate the system performance measures. 

The first step is to describe the communication between system components by 

Message Sequence Charts. System components, e.g. nodes, communicate by sending and 

receiving messages. In real world systems, e.g. the mobile communication system of 

Chapter 6, this MSC-based description depends on defining a set of MSCs. Each MSC 

implements a certain function and communicates with other MSCs to define HMSCs, 

which describe the whole system behaviour. Inside the node one or more functional 

entities (FEs) may lie and they are responsible of exchanging messages of an MSC (see 

Figure 40, the dotted rectangle around the instances of the MSC means that these instances 

present FEs of the same node). In complex systems also messages of different MSCs may 

be divided into classes (complexity classes). 

The next step is to consider each node as a queueing station (a resource with a server 

and a queue) and after that associate this MSC or HMSC description with parameters that 

allow calculating the performance measures of the system. These parameters (as shown in 

Figure 40) are saved in a text form as an Excel sheets. The first kind of parameters is 

related to resources and their processing properties like resources speeds and service 

amounts for different complexity classes. These parameters are used to calculate the mean 
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service rates of different complexity classes at different resources as shown in the “resource 

table” (see Figure 40). The second kind of parameters imposes a relevant load onto the 

system. This is specified in the traffic table, which contains the execution rates, i.e. the 

number of instantiations per time unit for each MSC. 

 

Figure 40: MINA tool chain  
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At this step, we have a queueing network model, which can be solved either by discrete 

event simulation or by queueing network analysis. The queueing network model we use is 

open and the MINA tool offers some methods for calculating the system performance 

measures, e.g. the response time for different MSCs and the utilization of the resources, for 

open queueing networks according to the characteristics of the queueing network. The user 

of the tool can choose between using Jackson’s method or BCMP method or an 

approximate algorithm, for more details about these methods see 3.6.3, by setting an 

argument to a certain value. The user of the MINA tool can obtain the performance 

measures results using the queueing network analysis very fast. 

On the other hand, the user of the MINA tool can observe the dynamic behaviour of 

the performance measures values as well as obtaining confidence intervals of the response 

time of the different MSCs by using simulation. The simulator is built using JavaDEMOS 

package and hence all facilities of JavaDEMOS, e.g. obtaining traces and histograms and 

other features of JavaDEMOS, are available for the user of the MINA tool. 

One important point is that the order of messages is important in the case of using the 

simulation whereas in the case of using the queueing network analysis, the most important 

is that the number of messages which visits each resource. Another point is that the load, 

which is described by the MSCs or HMSCs, is converted into an equivalent text form and 

saved in tables using Microsoft Excel sheets to be easily used by the simulator. To do this 

two tables are associated to each FE to keep track of all messages sent by this FE as shown 

in Figure 41. 

 

Figure 41: The load tables used by the simulator  

In the case that the FE sends more than one message, The “FE Suppl Table” is used 
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for keeping track of supplementary messages and the “FE Table” is used for keeping track 

of the other messages. 

C.2 MINA Tool Functionality 

MINA uses MSCs to describe the communication between components of distributed 

systems, e.g. communication systems and computer systems. To evaluate some 

performance measures, e.g. the response time of the MSCs describing these systems and 

the utilization of the system components (resources), MINA assigns values to the speed 

parameters of the resources, the arrival rates of the MSCs and also the service amounts for 

different classes of messages. Based on this combination of MSC description of the system 

and the input parameters, MINA builds a queueing network model. MINA enables the user 

to calculate the performance measures of the system in two ways either by simulation or by 

queueing networks analysis techniques. 

C.3 Necessary Knowledge of the User  and System Requirements 

To be able to use the MINA tool your system should contain Microsoft Excel, JDK 1.4 

(Java Development Kit) or higher and JavaDEMOS package. The user of the MINA tool 

should know the basics of the message sequence charts language, discrete event simulation, 

JAVA language and queueing networks algorithms. The user of the MINA should be also 

familiar with using both JavaDEMOS and Microsoft Excel. 

C.4 Preparing the Input 

The input as we described before is organized in some tables and saved as a Microsoft 

Excel sheets. We have five Excel sheets with five tables that should be filled by the user 

before starting to run the simulator or the analytical queueing network algorithm. 

The first sheet (called “CPUSpeed”) describes the speed of each resource and it 

contains a table of two columns, one is for the resource name and the second is for the 

resource speed (see Table 30). The second sheet (called “CPUServiceAmount”) describes 

the service amount assigned to each complexity class at different resources and it contains a 

table of two or more than two columns, one is for the resource name and the rest of 
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columns are for the service amount of each complexity class (see Table 31). The third sheet 

(called “CPUServiceRate”) describes the service rate assigned to each complexity class at 

different resources. The value of the service rates in this sheet are calculated by dividing the 

speed of the resource (in the “CPUSpeed” sheet) by the service amounts (in the 

“CPUServiceAmount” sheet). The “CPUServiceRate” sheet has another column that 

describes the number of servers for each resource (see Table 32). 

Resource 

Name 
Speed 

CPU1 10.00 

CPU2 1.00 

CPU3 60.00 

CPU4 100.00 

 Table 30: An example of the “CPUSpeed sheet” 

Service Amount CPU 
Name CC1 CC2 CC3 

CPU1 1.00 1.00 1.00 
CPU2 1.00 2.00 3.00 
CPU3 1.00 2.00 36.00 
CPU4 1.00 1.00 1.00 

Table 31: An example of the “CPUServiceAmount sheet” 

Service Rate CPU 
Name CC1 CC2 CC3 

Number 
of 

Servers 
CPU1 10.00 10.00 10.00 10000 
CPU2 1.00 0.50 0.33 4.00 
CPU3 60.00 30.00 1.67 2.00 
CPU4 100.00 100.00 100.00 20000 

Table 32: An example of the “CPUServiceRate sheet” 

The fourth sheet (called “msg”) describes the message flow from one node to the other 

(as shown in Figure 41). As we shown before, each node may have some FEs and it may 

also happen that the FE sends two messages at the same time. According to this structure 

the “msg” sheet has two tables for each FE. The first table contains data about all messages 

that are sent by this FE. This table contains columns for the sender of the previous 

message and the receiver of the current message. Also it contains a column about the 
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complexity class of the current message and the next action. If the value of next action field 

is -1 then the next message is a normal forwarding message, otherwise the next message is a 

supplementary message. The second table describes the supplementary messages sent by 

this FE. The user of the MINA tool should be familiar with this kind of tables to be able to 

describe his own systems in the same way. The fields of both tables are shown in Figure 41. 

The fifth sheet (called “FEtoCPU”) describes the mapping between the FEs and the 

corresponding resources. It contains a two columns table. The first column has an 

identification number consists of two digits to refer to the FE. The first digit denotes the 

node number and the second digit denoted the FE number. The second column contains 

the resource name. 

FE Name 
(Node FE) 

CPU 
Name 

0 1 CPU1 
0 2 CPU1 
1 1 CPU2 
… … 

Table 33: An example of the “FEtoCPU sheet” 

Note that the SHRINK factor parameters can be changed from the main simulation 

class “MSCsimulation.class”. The simulation time, type of arrival distribution, type of the 

service distribution can also be changed from the main simulation class 

“MSCsimulation.class”. 

C.5 Before Starting 

The next step before using the MINA tool is to set up your Excel spreadsheet as an ODBC 

(Open Data Base Connectivity) source. Using JDBC (Java Data Base Connectivity) in 

conjunction with ODBC enables the user of the MINA tool to deal with the Excel 

spreadsheets as if they were databases. After creating the Excel spreadsheet with which the 

user will interact, the user needs to register the spreadsheet as an ODBC Data Source. To 

do this, the user should open the “Windows Control Panel”. Next, open up 

“Administrative Tools”. Then, the user should double click on the “Data Sources 

(ODBC)” icon. In the “User DSN” tab, the user should choose the Excel files option and 

click Add (see Figure 42).  
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Figure 42: Add an Excel file data source 

 

Figure 43: Choose the Microsoft Excel driver 

In the subsequent driver selection page, the user should choose the "Microsoft Excel 
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Driver" option and click Finish (see Figure 43). Next, the user will be presented with a 

window in which he will select the Excel file that he wants to setup as an ODBC source. 

The user should choose the “Select Workbook” button (see Figure 44) and choose the 

spreadsheet he created (MINA-Input.xls). The user should be returned to the “ODBC 

Microsoft Excel Setup” window. The user should go ahead and name his “Data Source 

Name” as MINA-Input (see Figure 45). In the “ODBC Data Source Administrator 

screen”, the user should see the “ODBC Data Source” he just created. 

 

Figure 44: Select the workbook you want to setup as a data source 

 

Figure 45: Specifying a name for the data source 

The following two statements are used in the code of the class “MSCdata” (the class 

which is responsible of reading the Excel spreadsheets): 
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static final String DRIVER_NAME = "sun.jdbc.odbc.JdbcOdbcDriver"; 

static final String DATABASE_URL = "jdbc:odbc:MINA-Input"; 

 Note that the driver that is used to set up your Excel spreadsheet as an ODBC source 

is sun.jdbc.odbc.JdbcOdbcDriver, the JDBC-ODBC bridge driver. The user of the MINA 

tool does not have to download anything to use it. The driver is built into the JDK. 

Another important point is that the MINA-Input portion of the string of the database URL 

you specify, jdbc:odbc:MINA-Input, is the name of the data source you specified earlier. 

So, if the user of the tool likes to change this name, the name should be changed in both 

the source code as well as the “Data Source Name”. The user of the MINA tool could then 

use the JDBC-ODBC bridge driver to interact with the spreadsheet using SQL (Structured 

Query Language). Now, the user of the MINA tool is ready to get the results using either 

simulation or queueing networks analysis. 

C.6 Getting the results 

The user of MINA tool is now ready to run the simulator main class 

“MSCsimulation.class” using the JavaDEMOS package (as described in Appendix A). In 

this case the user can make use of the GUI of the JavaDEMOS to easily run the simulator 

and also to follow dynamically the actions done by each entity and also to follow the 

dynamic behaviour of the resources. In this case all facilities of JavaDEMOS are available 

for the user, e.g. showing traces, drawing histograms and also showing a complete report of 

the results. The user should run the simulation for a long enough period to get the steady 

state results. Figure 39 shows an example of a complete report that can be obtained by the 

JavaDEMOS. 

Figure 39 shows a table of results the used resources the first column header is “Title” 

which indicates the resource object name. The second is “ResetAt” which indicates the 

start time of the output evaluation. The third is “Obs” which indicates the number of 

observations. The next one is “Q-Max” which indicates the maximum queue length. Then, 

“Q-Now” which indicates the current queue length. The next column head is “Av Length” 

which indicates the average queue length. The next one is “ZeroWait” which refers to the 

number of entities which did not have to wait for a resource unit. The “Av Wait” column 
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explains the mean waiting time for resource units. The “Limit” column displays the 

capacity of the resource. Then the “Min” and “Now” columns display the minimum and 

the current number of available resources respectively. Finally, the “% Usage” column 

displays the mean resource usage. 

A similar reports are introduced for objects of type Bins, Tallies, Accumulate, Queues, 

Counts, Histograms. Also another report is introduced for distributions used during the 

simulation. 

The user also can invoke the class “performanceEval.class” in the main class 

“MSCsimulation.class” to get the analytical results. These results could be obtained in 

seconds. The user can use one of these methods: Jackson’s method, the BCMP method or 

the method of decomposition by choosing the appropriate value of the string arguments 

and call the class with this argument. The user should choose the suitable method that 

gives approximately identical results compared with the simulation results.  

The user of the MINA tool should expect the following results: 

Ø The response time of each MSC describing the system. 

Ø The utilization at each resource. 

Ø In the case of simulation, the confidence interval for the response time of each 

MSC is also obtained. 
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