
SCTP

Strategies to Secure End-To-End Communication

D I S S E R T A T I O N

to obtain the academic grade
doctor rerum naturalium

(Dr. rer. nat.)
in Computer Science

Submitted to the
Faculty of Economics and Business Administration

Institute for Computer Science and Business Information Systems
University of Duisburg-Essen

by
Robin Seggelmann, M.Sc.

born on July 29th, 1982, in Oelde, Germany

Reviewers:

1. Prof. Dr.-Ing. Erwin P. Rathgeb

2. Prof. Dr. Bruno Müller-Clostermann

Date of Disputation: October 22nd, 2012

Abstract

The Stream Control Transmission Protocol (SCTP) is a fairly recent generic trans-
port protocol with novel features, like multi-streaming, multi-homing, and an ex-
tendable architecture. This, however, prevents existing approaches to secure end-
to-end connections from being used without limiting the supported SCTP features.
New solutions also exist, but require extensive modifications that are di�cult to re-
alize and deploy. Hence, there is no widely deployed solution to secure SCTP-based
connections.

In this thesis, possible strategies to secure end-to-end SCTP connections are
analyzed. For each strategy, a viable solution that does not limit the features of
SCTP is presented, with a focus on deployability in terms of standardization as
well as implementation. Implementations based on common open source tools are
developed and used to conduct functionality and performance measurements, with
simulated and real systems, to prove the usefulness of the suggested approaches.

Keywords: SCTP, Security, DTLS, SSH, Tunneling

I

II

Acknowledgements

This thesis is the result of my work as a research associate in the Network Pro-
gramming Lab of the Department of Electrical Engineering and Computer Science
at the Münster University of Applied Sciences.

First and foremost, I would like to thank Prof. Dr. Erwin P. Rathgeb for his
support and supervision of this thesis and his invaluable comments on my work. I
also thank Prof. Dr. Bruno Müller-Clostermann for the review of this thesis.

I would like to gratefully acknowledge the enthusiastic support and inspiration
of Prof. Dr. Michael Tüxen at the Münster University of Applied Sciences. Fur-
thermore, I am grateful to my colleague Dr. Irene Rüngeler, as well as Dr. Thomas
Dreibholz, Martin Becke and Thomas Beermann for their assistance, the technical
discussions and motivation.

In addition, I would also like to thank the Deutsche Forschungsgemeinschaft (DFG)
for supporting this project.

III

IV

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Goals . 3
1.3 Organization of this Work . 3

2 Network and Transport Protocols 5
2.1 Internet Protocol . 5
2.2 Transmission Control Protocol . 6
2.3 User Datagram Protocol . 6
2.4 Datagram Congestion Control Protocol 6
2.5 Stream Control Transmission Protocol 7

2.5.1 Protocol Design . 7
2.5.2 Association Setup and Teardown 8
2.5.3 Data Transfer . 9
2.5.4 Streams . 10

2.5.4.1 Sender Scheduling 10
2.5.4.2 Receiver Scheduling 11

2.5.5 Multi-homing . 12
2.5.6 Notifications . 12
2.5.7 Extensions . 13

2.6 Mobility Solutions . 14

3 Security Protocols 17
3.1 Internet Protocol Security . 17
3.2 Transport Layer Security . 18

3.2.1 Record Layer . 19
3.2.2 Handshake and ChangeCipherSpec Protocol 19
3.2.3 Session Resumption . 20
3.2.4 Alert Protocol . 21

3.3 Datagram Transport Layer Security 22
3.3.1 Record Layer Modifications 22
3.3.2 Handshake Message Modifications 23
3.3.3 Client Verification with Cookies 24

V

3.3.4 Handshake Reliability . 24
3.3.5 Alert Protocol . 26

3.4 Secure Shell . 26
3.4.1 Transport Layer . 26
3.4.2 Authentication Protocol . 27
3.4.3 Connection Protocol . 28

4 Tools and Software 31
4.1 Simulation . 31

4.1.1 OMNeT++ . 32
4.1.2 INET Framework . 32

4.2 OpenSSL . 33
4.2.1 Architecture . 33
4.2.2 Context Objects . 34
4.2.3 Session Objects . 34
4.2.4 Basic Input/Output Objects 34
4.2.5 DTLS Implementation . 35

4.3 OpenSSH . 35

5 Securing SCTP-based Applications 37
5.1 Security-aware Applications . 38

5.1.1 Integrated Mechanisms . 38
5.1.2 External Mechanisms . 38

5.2 Security-agnostic Applications . 39
5.2.1 Network Protocol Tunneling 39
5.2.2 Transport Protocol Tunneling 40
5.2.3 Application Protocol Tunneling 41

5.3 Comparison . 42
5.4 Existing Security-aware Solutions for SCTP 43

5.4.1 TLS over SCTP . 43
5.4.2 DTLS over SCTP . 44
5.4.3 Secure SCTP . 44
5.4.4 Secure Socket SCTP . 44

5.5 Existing Security-agnostic Solutions for SCTP 45
5.5.1 Internet Protocol Security . 45
5.5.2 TLS/DTLS-based Tunneling 45

5.6 Conclusion . 45

6 SCTP-aware DTLS 47
6.1 General Considerations . 47
6.2 Open Issues and Proposed Solutions 47

6.2.1 Encryption and Authentication 48
6.2.2 Ensuring Order and Reliability 48
6.2.3 Message Loss Prevention . 49

VI

6.2.4 Renegotiations . 49
6.2.5 Shutdown . 50
6.2.6 Session Resumption . 51
6.2.7 Generic Adaptations . 51
6.2.8 SCTP Extensions . 52

6.3 Implementing SCTP-aware DTLS . 53
6.3.1 Existing Implementation . 53
6.3.2 BIO Object . 53
6.3.3 SSL Object . 54

6.4 Performance Evaluation . 55
6.4.1 Single Core Throughput Measurements 55
6.4.2 Dual Core Throughput Measurements 57
6.4.3 Renegotiations . 58

6.5 Optimizations . 60
6.5.1 Handshake Message Synchronization 61
6.5.2 Avoiding Duplicate HMACs 62
6.5.3 Allowing Multiple Epochs . 62

6.6 Conclusion . 64

7 DTLS-based Tunneling 65
7.1 General Considerations . 65
7.2 Heartbeat Extension . 66
7.3 Path MTU Discovery . 67
7.4 Mobility Extension . 69

7.4.1 General Considerations . 69
7.4.2 Concept . 71
7.4.3 Security Considerations . 73
7.4.4 ICMP Considerations . 74

7.5 Implementing Heartbeats and DTLS Mobility 75
7.6 Evaluation and Measurements . 77

7.6.1 Direct Use . 77
7.6.2 Tunneling . 80

7.7 Conclusion . 83

8 SSH Tunneling 85
8.1 SSH Forwarding of SCTP . 85

8.1.1 SSH Modifications . 85
8.1.2 Limitations . 87

8.2 Forwarding over SCTP . 87
8.2.1 Usage of Multi-Homing . 88
8.2.2 Usage of Multi-Streaming . 88

8.2.2.1 Security Considerations 91
8.2.2.2 SCTP Data Chunk Header Encryption 91

8.2.3 Stream Scheduling Considerations 92

VII

8.2.3.1 First-Come, First-Served Scheduling 92
8.2.3.2 Round-Robin Scheduling 92
8.2.3.3 Fair Bandwidth Scheduling 93
8.2.3.4 Priority Scheduling 94
8.2.3.5 Per Packet Scheduling 95
8.2.3.6 Preemptive Scheduling 95

8.2.4 Congestion Control Considerations 95
8.2.5 Flow Control Considerations 96

8.3 Forwarding other Transport Protocols 96
8.3.1 SCTP Forwarding Characteristics 97
8.3.2 UDP Forwarding Characteristics 98
8.3.3 DCCP Forwarding Characteristics 98

8.4 Implementing Forwarding in OMNeT++/INET 98
8.4.1 Stream Scheduling . 99
8.4.2 Forwarding Application . 99

8.5 Implementing SSH over SCTP . 99
8.5.1 Adding Support for SCTP . 99
8.5.2 Adding Support for Multi-Streaming 100
8.5.3 Forwarding Other Transport Protocols 100
8.5.4 Pluggable Schedulers in the Kernel 100

8.6 Performance Evaluation . 101
8.6.1 Simulation and Real Setup 101
8.6.2 Reliability with Multi-Homing 102
8.6.3 Throughput with Multi-Homing and CMT 104
8.6.4 Delay with Mapping Channels onto Streams 106
8.6.5 Delay with Di↵erent Stream Schedulers 107

8.7 Conclusion . 109

9 Conclusion 111
9.1 Achieved Results . 111
9.2 Future Work . 113

List of Figures 115

List of Tables 117

List of Abbreviations 119

Bibliography 123

VIII

Chapter 1

Introduction

The Internet is ubiquitous nowadays, and security has become a major concern.
This is not anymore an issue concerning only applications for which security re-
quirements are obvious, like online banking or confidential business communication.
There is a highly dynamic evolution of applications providing a wide variety of ser-
vices, which attract enormous numbers of users in a very short time, as exemplified
by Skype, YouTube, Facebook or Twitter. All of these distributed applications in-
volve massive communication and create many new possibilities for fraud, identity
theft and data misuse. Besides securing the applications as such against attacks
and securing the data storage, the exchange of potentially critical data also has to
be secured. Depending on the application scenario, mechanisms like encryption to
prevent eavesdropping, integrity checks to prevent tampering with the exchanged
data and authentication to confirm the identity of each involved party have to
be provided. One obvious way to provide the appropriate level of security is to
integrate the required security functionality directly into the application design.
However, in a situation where everyone can create and easily deploy applications
on a global scale, it cannot be assumed that all application programmers have the
highly specific knowledge to ensure secure operation and communication of their
applications – apart from the e↵ort required on an application per application ba-
sis. Therefore, mechanisms have to be provided that o✏oad the task of securing
end-to-end communication from the application developers. Considering the lay-
ered protocol architectures used today, a variety of strategies to do this exist and
are actually deployed in today’s networks.

The Stream Control Transmission Protocol (SCTP) is a recent transport pro-
tocol standardized by the Internet Engineering Task Force (IETF) in 2000 and is
currently described in RFC 4960 [96]. Initially, it has been developed to migrate
telephone signaling to Internet Protocol (IP) [69] based networks, but evolved into
a general-purpose transport protocol during its development process. As an alter-
native to the established transport protocols, Transmission Control Protocol (TCP)
[70] and User Datagram Protocol (UDP) [67], SCTP o↵ers more features than both

1

2 Introduction

of these combined, since its design allows it to be extended easily, without modi-
fying the base specification. Implementations of SCTP are available for all major
operating systems by now.

Although security and privacy being such an important issue, there is no actually
deployed solution for SCTP yet.

1.1 Motivation

The need for security solutions for SCTP is urgent, because insecure data transmis-
sion, over the Internet in particular, is not acceptable anymore. The main issue,
however, is that there are many di↵erent scenarios in which SCTP-based applica-
tions can be used, which cannot be covered all by a single strategy.

The first scenario in which SCTP was used, and for which it has been de-
veloped initially, is the telephone signaling network with the Signaling System
No. 7 (SS7) [20] protocols. These protocols have been developed for proprietary
networks, but have been ported to SCTP for the use in IP-based networks. Since
their original area of deployment were closed networks with proprietary hardware,
no security features have been considered.

Reliable Server Pooling (RSerPool) [17] is an architecture to manage a pool of
servers, to increase the reliability or available performance with distributed com-
puting. The protocols to manage the available servers and to assign tasks to them
are based on SCTP. Security has been an issue during the design, so appropri-
ate features can be used with the protocols directly, when available. The same is
true for IP Flow Information Export (IPFIX) [103], which is used to export flow
information from routers and similar devices, which is used for billing for instance.

Another scenario is to provide encryption and authentication to single connec-
tions, for example to grant access to an internal network from a remote location
securely, without the need to expose the services to the Internet. This can be
realized for TCP with Secure Shell (SSH), but no solution is available for SCTP.

The available security solutions for TCP, for example, have been developed
before SCTP had been introduced and thus do not take its specific characteristics
into account. Other approaches proposed until today also have drawbacks, which
limit the features of SCTP that can be used, or are di�cult to realize and deploy.
Additionally, the existing solutions are only suitable for applications, for which
security has been considered in their design, and thus are able to use these features.
Such applications are called security-aware in the following, while applications for
which security was not considered at all, are called security-agnostic. To prevent
any attacker from eavesdropping or tampering with the data of security-agnostic
applications, some kind of tunneling is required. Tunneling means to encapsulate
the application data, alone or with underlying protocols in a security protocol.
The encapsulated data is then transmitted and unpacked at its destination, instead
of being sent directly. Unfortunately, existing tunneling solutions have not been

1.2. Goals 3

developed with SCTP in mind either, and thus are not supporting it or only with
limitations.

1.2 Goals

The existing suggestions to secure SCTP all have serious drawbacks, which pre-
vented them from being widely deployed so far. They either limit the number
of features of SCTP that can be used, for instance to only those also available
with TCP, or are unlikely to be realized and deployed, because they require ex-
tensive modifications, for instance of the SCTP implementation in the operating
system kernel. Additionally, all existing proposals assume that the applications are
security-aware, that is implement a mechanism to protect their connections. All
other applications, for which security has not been considered in their design, are
not regarded and thus there is no approach how to tunnel single connections. The
only available option to provide security for those applications is to set up a generic
tunnel on or below the IP layer, which is called a Virtual Private Network (VPN).

Therefore, the main goal of this work is to suggest new solutions for securing
both kinds of applications using SCTP, by collecting generic requirements and ex-
amining the drawbacks of already available solutions. In the process, the focus is
on easy deployability, while still supporting all features of SCTP. A further goal is
to optimize the suggested solutions to achieve an equal or even better performance
than the commonly used options for securing TCP. The highest potential has the
tunneling for generic applications, since there are multiple approaches possible, one
even being to use SCTP itself to realize a tunnel and thus making use of its extended
features.

To verify feasibility and functionality and to measure the performance, imple-
mentations are necessary. These can then be tested either in a simulation envi-
ronment or with a real setup, depending on what is to be measured. In this way
it is ensured that the proposed solutions can actually be used, and also have an
adequate performance compared to TCP. As a result, applications using SCTP can
be secured without limitations or performance issues.

1.3 Organization of this Work

The next Chapters 2 and 3 provide an introduction to SCTP and other common
transport and security protocols, respectively. The real and simulated implemen-
tations were realized with open source tools, described in Chapter 4. Chapter 5
discusses the general considerations on securing SCTP-based applications, as well
as the motivation for the solutions proposed subsequently. Security-aware applica-
tions are addressed and a new approach is suggested in Chapter 6. Subsequently,
Chapters 7 and 8 are concerned with security-agnostic applications and propose
two di↵erent tunneling solutions. The conclusion and an outlook on future work
are given in Chapter 9.

4 Introduction

Chapter 2

Network and Transport
Protocols

The Internet model [35] provides an abstraction of the communication system and
is structured into logical layers as shown in Figure 2.1. Each layer provides a certain
service to the layer above, which is provided by using the capabilities of a specific
protocol. Common protocols for the network and transport layer will be described
in the following sections.

Application Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

TCP, SCTP, UDP, DCCP...

IPv4, IPv6

Ethernet, IEEE 802.11...

Cable, Radio

Figure 2.1: The Internet Model

2.1 Internet Protocol

The most widely deployed network protocol is the Internet Protocol Version 4 (IP,
IPv4) [69], which is gradually superseded by Version 6 (IPv6) [12]. The purpose of
the protocol is the routing of data packets between two hosts, which are identified
by unique source and destination addresses. Version 4 of the protocol supports
32 bit addresses, which equals about 4.3 billion possible values. All addresses have
already been assigned until January 2011, so the successor IPv6 features 128 bit

5

6 Network and Transport Protocols

addresses, with about 3.4 ⇤ 1038 possible values to solve this issue. Packets have
an identifier displaying their type of data. The service provided by IP is a simple,
unreliable message delivery. Fragmentation is possible for large messages and the
boundaries are preserved. IP provides no reliability mechanisms, so messages may
get lost, duplicated, reordered, or even corrupted.

2.2 Transmission Control Protocol

A reliable connection can be provided by the transport protocol Transmission Con-
trol Protocol (TCP) [70]. A three-way handshake is used to establish a connection
between two peers. This is realized with flags, a packet with the SYN flag set initi-
ates a new connection, which is responded with a packet having the SYN flag set,
and also the ACK flag to acknowledge the initial packet. This is again acknowledged
and the connection is established. Port numbers are used to di↵erentiate multiple
connections between the same hosts and a checksum is used to detect corrupt pack-
ets. The data transfer is bytestream-oriented, so there are no message boundaries,
and received data is acknowledged. Lost packets are repeated until acknowledged,
or the sender has given up after too many unsuccessful attempts and terminated
the connection. TCP also restores the order in which the data has been sent, in
case it was reordered. Furthermore, a Flow Control [95] prevents overloading the
receiver by limiting the amount of data that is allowed to be sent. Network over-
loading is also prevented with a Congestion Control [108] and Explicit Congestion
Notification (ECN) [72], which reduce the throughput when packets are lost. A
detailed introduction to the protocol can be found in [27].

2.3 User Datagram Protocol

The User Datagram Protocol (UDP) [67] is a connectionless and unreliable trans-
port protocol. Hence, data can be sent to arbitrary destinations at any time, even
to all hosts on the same network segment at once, which is called broadcasting.
Like TCP, port numbers are also used to allow multiple data transfers between the
same hosts, and a checksum detects transmission errors. It is message-based, so
message boundaries are preserved during transfer, but fragmentation is not avail-
able. There is no protection against overloading either the network or the receiver.
Lost messages are not repeated and the order is not retained.

2.4 Datagram Congestion Control Protocol

Also an unreliable and message-oriented transport protocol is the Datagram Con-
gestion Control Protocol (DCCP) [45]. Contrary to UDP, a reliable handshake is
performed to establish a connection between two hosts. DCCP also supports multi-
ple Congestion Control algorithms and ECN to prevent network overloading. This

2.5. Stream Control Transmission Protocol 7

requires the acknowledgement of received messages, but there is no retransmission
for lost ones.

2.5 Stream Control Transmission Protocol

Although initially developed for telephone signaling, the Stream Control Transmis-
sion Protocol (SCTP) had evolved to a generic purpose transport protocol when
its first specification [100] has been released in 2000 by the Internet Engineer-
ing Task Force (IETF). Seven years later, the current revised specification, RFC
4960 [96], has been published. SCTP is reliable and connection-oriented like TCP,
but message-oriented and features multi-streaming as well as multi-homing. With
multi-streaming, multiple unidirectional channels can be used within a connection.
With multi-homing, multiple addresses can be used for a single connection to allow
a failover for increased reliability. Furthermore, the protocol design is extendable
to allow adding new features without changing the base specification. A detailed
introduction to the protocol has been given in [102] and more recently also in [19].

2.5.1 Protocol Design

Every SCTP packet starts with a Common Header, as shown in Figure 2.2. This
header consists of the source and destination port numbers, a 32 bit Verification
Tag, and a Checksum to detect corrupted packets. The Verification Tag is a random
value, which is unique per direction and exchanged during the connection establish-
ment. The tag chosen for each direction has to be used for all packets sent during
the connection lifetime. This mitigates the risk of blind attacks, where an attacker
guesses the port numbers used for a connection and tries to insert packets. With
the Verification Tag, this has to be guessed as well.

Chunk #1

Source Port Number Destination Port Number

Verification Tag

Checksum

Chunk #2

Chunk #N

...

Common
Header

Figure 2.2: SCTP Packet Format with Common Header and Chunks

8 Network and Transport Protocols

The Common Header is followed by an arbitrary number of chunks, as illustrated
in Figure 2.2. A chunk can either be a control chunk or contain user data. Control
chunks are used to manage the connection, called “association” in SCTP. Hence,
there are di↵erent chunk types for setup and teardown of the association, keep-
alive, and error handling. The information within chunks is usually stored in Type-
Length-Value (TLV) parameters. This design allows extending the protocol easily
by defining new chunks and parameters.

2.5.2 Association Setup and Teardown

SCTP uses a four-way handshake to establish a new association, which is shown in
Figure 2.3. Either endpoint can initiate the handshake with an INIT chunk, which is
answered with an INIT-ACK chunk. These chunks exchange the Verification Tags,
additional IP addresses or hostnames for multi-homing, the number of streams
that can be used, and supported extensions. The INIT-ACK chunk also contains
a cookie, which consists of all the information necessary for this association. This
cookie has to be returned unmodified in a COOKIE-ECHO chunk. By using this
additional exchange during the handshake, the receiver of an INIT chunk does not
need to allocate any resources for the new association immediately, it just stores all
necessary information in the cookie. This is contrary to TCP, which has to allocate
resources for each SYN packet immediately. A malicious user can therefore send
many faked SYN packets with di↵erent source addresses to a host until its resources
are exhausted, thus performing a Denial-of-Service (DOS) attack [64]. The attacker

INIT

INIT-ACK

Endpoint A Endpoint B

COOKIE-ECHO

COOKIE-ACK

Figure 2.3: SCTP Association Establishment

2.5. Stream Control Transmission Protocol 9

also has to store resources for the association to be able to return the cookie and
cannot use faked addresses, so this attack is not possible anymore. To avoid attacks
based on cookie manipulations, the cookie should also contain a signature calculated
over the association data and a secret key. Before processing a received cookie,
the signature can be verified to ensure the integrity. If the verification has been
successful, the handshake is concluded with a COOKIE-ACK chunk.

Since SCTP is connection-oriented and reliable, a method to gracefully tear-
down an association is necessary, which also has to ensure that all outstanding
data has been received. The message flow is depicted in Figure 2.4. When one
of the endpoints wants to end the association, no more data is accepted from the
application, and after all still outstanding data has been acknowledged, a SHUT-
DOWN chunk is sent. After receiving this chunk, the other endpoint also stops
accepting any data from the application and awaits the acknowledgement of all still
outstanding data. Then, a SHUTDOWN-ACK is sent, which is acknowledged with
a SHUTDOWN-COMPLETE and the association is closed.

SHUTDOWN

SHUTDOWN-ACK

Endpoint A Endpoint B

SHUTDOWN-COMPLETE

Figure 2.4: SCTP Association Teardown

2.5.3 Data Transfer

The data transfer of SCTP is reliable, therefore the successful reception is ac-
knowledged with selective acknowledgment chunks (SACK). Every DATA chunk
containing user data, illustrated in Figure 2.5, has a Transmission Sequence Num-
ber (TSN) assigned, which is used for the acknowledgement. The SACK chunks not
only report the highest TSN of continuous data, but also the TSNs of out-of-order
data chunks that have already been received in so-called gap reports. Selective
acknowledgments have been introduced as an option for TCP in [49] to reduce the
number of retransmissions. The space available for TCP options is limited, so only

10 Network and Transport Protocols

User Data

Chunk Type Flags Length

TSN

Stream Identifier Stream Sequence Number

Payload Protocol Identifier

Reserved

Figure 2.5: SCTP Data Chunk Format

very few out-of-order packets can be acknowledged. SCTP, on the other hand, sup-
ports an arbitrary number of gap reports until an entire packet is filled, because
this feature has been integrated from the very beginning. Due to the message-
orientation of SCTP, every user message is sent in its own DATA chunk, if possible.
Large messages that exceed the maximum packet size will be fragmented and sent
with multiple DATA chunks, each in its own packet. The receiver reassembles the
message using the TSNs to restore the order. Multiple smaller messages can be
sent in a single packet, which is called bundling, to reduce the otherwise necessary
overhead.

2.5.4 Streams

A distinctive feature of SCTP is multi-streaming, hence its name. Streams are
unidirectional logical channels within the data transfer. The user can assign a
message to a stream by setting the Stream Identifier (SID). The SID is 16 bit,
so the possible number of streams is 216 or 65,536. The order of the messages is
only retained within a single stream, so when a message is lost, only the following
messages of the same stream have to be delayed until a retransmission has been
received. Otherwise, the original order of the messages could not be restored.
Without streams, all messages have to be delayed, which is a common issue with
TCP and called head-of-line blocking. A Stream Sequence Number (SSN), which
is maintained per stream and increased for every message, is used to restore the
order of the messages, if necessary. The user can, however, choose to leave messages
unordered even within a stream, in which case the SSN is ignored and usually set
to 0.

2.5.4.1 Sender Scheduling

After messages have been assigned to di↵erent streams, all of them still have to
be transmitted over a single association. This requires a scheduler, which decides
on the order in which messages of di↵erent stream queues are sent, as depicted
in Figure 2.6. The specification of SCTP does not state any requirement for such

2.5. Stream Control Transmission Protocol 11

Application

Message (SID: 1)

Message

Message

Message Message

Message

Message

SCTP

. . .

Stream Scheduler

St
re

am
 0

St
re

am
 1

St
re

am
 N

Se
n

d
 Q

u
eu

e

Message (TSN: 1043, SID: 0, SSN: 23)

Message (TSN: 1042, SID: 1, SSN: 7)

Internet Protocol (IP)

Figure 2.6: SCTP Sender Stream Scheduling

a scheduler; therefore it is up to the implementation to choose an appropriate
approach. Commonly used algorithms are first come, first-served (Linux, Solaris) or
round-robin (FreeBSD, Mac OS X). However, since the order in which the messages
are sent can a↵ect the behavior on the wire, specialized scheduling may be a benefit
in certain scenarios. This will be discussed in further detail in Section 8.2.3.

2.5.4.2 Receiver Scheduling

After messages have been received and added to the appropriate stream queue,
a scheduler is again necessary to decide on the order in which the messages are
passed to the application. This is shown in Figure 2.7. Contrary to the scheduling
before sending, which influences the message order on the network, the received
messages are passed to the application immediately. Therefore, di↵erent scheduling
algorithms have little to no e↵ect, so all implementations just use first-come, first-
served here.

12 Network and Transport Protocols

Application

Msg (SSN: 3)

Msg (SSN: 4)

Msg (SSN: 5)

SCTP

Stream Scheduler

O
rd

er
ed

 Q
ue

ue
 S

ID
 0

Message (TSN: 1041, SID: 1, SSN: 5)

Internet Protocol (IP)

Msg (SSN: 0)

Msg (SSN: 0)
U

no
rd

er
ed

 Q
ue

ue
 S

ID
 0

Msg (SSN: 4)

O
rd

er
ed

 Q
ue

ue
 S

ID
 1 Msg (SSN: 0)

Msg (SSN: 0)

Msg (SSN: 0)

U
no

rd
er

ed
 Q

ue
ue

 S
ID

 1

Figure 2.7: SCTP Receiver Stream Scheduling

2.5.5 Multi-homing

SCTP supports multi-homing, that is multiple addresses can be used for a single
association. Each pair of addresses of both peers represents a path usable for the
association, as shown in Figure 2.8. Only one of the paths is actually used for data
transfer, and is called primary path, while the others remain idle. Every destination
address is frequently tested for its availability with HEARTBEAT chunks. In case
the primary path is not available anymore, one of the idle paths will become the
new primary path as a failover mechanism, and the association remains alive.

2.5.6 Notifications

The Application Programming Interface (API) of SCTP supports so-called noti-
fications to communicate information to the user about events or errors that oc-
curred. The SCTP sockets API specification [99] lists various events that the user
can subscribe to receive the corresponding notifications. This can be for example
SCTP ASSOC CHANGE, which invokes a notification every time an association
has been set up or closed, or SCTP REMOTE ERROR, which gives more detailed
information in case an error occurs. The notifications are passed to the applica-

2.5. Stream Control Transmission Protocol 13

Internet Protocol

SCTP

Internet Protocol

SCTP

IP A1 IP B1

IP B2

SCTP AssociationEndpoint A Endpoint B

IP A2 IP B3

Paths

Primary

Figure 2.8: SCTP Multi-homing

tion through the recvmsg() call, but with the MSG NOTIFICATION flag set, to
distinguish them from regular messages.

2.5.7 Extensions

The extensible protocol design allows adding new features to SCTP easily. Various
extensions have been standardized and implemented already. The most notable are
PR-SCTP, SCTP-AUTH, ADD-IP and CMT.

SCTP provides reliable data transfer, but with the Partial Reliability (PR-
SCTP) extension [98], this can be limited. The extension allows defining policies for
when messages may be discarded, such as a maximum number of retransmissions
or a maximum lifetime. The new chunk FORWARD-TSN is used to notify the
receiver to ignore the absence of discarded messages.

The Authenticated Chunks for SCTP (SCTP-AUTH) extension [106] adds a
new parameter to the INIT and INIT-ACK, with which each peer can announce
that it will only accept certain types of chunks with protected integrity. This is
realized by adding a new chunk carrying a Hash-based Message Authentication
Code (HMAC) [3] that has been calculated over all the chunks following it in the
same packet. The shared key necessary for the HMAC is either calculated with
random numbers also added to the INIT and INIT-ACK, or can be set by the user.

Additional addresses can be added or removed dynamically after the association
has already been established with the Dynamic Address Reconfiguration (ADD-
IP) extension [101]. Additionally, the user can change the primary path, which
is usually chosen by SCTP automatically. To prevent attacks that for example
remove all valid addresses or the primary path is changed to hijack the connection,
the ASCONF and ASCONF-ACK chunks introduced with this extension have to
be protected with SCTP-AUTH.

14 Network and Transport Protocols

Although SCTP supports multiple paths per association, only one is used for
data transfer. The Concurrent Multipath Transfer (CMT) extension [36] allows
using all existing paths simultaneously to maximize the possible throughput. The
extension has not yet been standardized since research is still in progress, but the
benefit of using multiple paths simultaneously has already been proven [18].

2.6 Mobility Solutions

With the increasing popularity of mobile Internet access, the necessity for mobile
connections becomes more and more urgent. A smartphone user, for instance,
frequently has access to multiple di↵erent networks, since he can use local Wi-Fi
networks and the cell phone network in between. Every time he connects to another
network, the IP address of his device changes and until today this causes the loss
of all established data connections until a reconnect is done with the new address.
Several approaches to provide mobility have already been proposed and some even
standardized. The most important ones will be introduced in this section.

Virtually all data services o↵ered to end-users are based on the Internet Proto-
col, so making it mobile seems natural. Mobile IP [65] as well as Mobile IPv6 [38]
have already been defined for this purpose. It is assumed that a host, called Mobile
Node, has a permanent address in its home network, and di↵erent ones in foreign
networks. Therefore, a Home Agent in the home network keeps track of the current
foreign address of the host that is provided by a Foreign Agent. The Mobile Node
announces every new address, called Care-of Address, to its Home Agent, which
will provide a tunnel to it. So, whenever the Mobile Node is not in its home net-
work, the Home Agent will forward any data sent to the home address. With IPv4
the host will tunnel its response back through the home agent, while IPv6 allows
continuing a direct communication with the sender. Similar to Mobile IP is the
MSOCKS [47] approach using transport layer mobility. It uses a TCP proxy in the
home network to relay the data to mobile hosts. The proxy accepts incoming con-
nections, connects to the mobile host and forwards the data transparently. This is
done by modifying the TCP packets. The forwarding connection is combined with
the original one, so they appear as a single ongoing connection. Unfortunately, the
deployment of these solutions needs not only support on the mobile device but also
infrastructure support. A Home Agent or proxy in the home network has to be set
up and has to be available at any time. Common middleboxes, such as firewalls or
routers with NAT, have to allow the mobile host’s connection attempt to the home
agent for address announcement and have to pass through connections forwarded
by the home agent. Hence, because of these issues neither solution has been widely
deployed.

TCP Redirection (TCP-R) [28] realizes mobility by using new TCP options to
notify and authenticate an address change. When the mobile host detects an ad-
dress change, it notifies the peer, which requests an authentication. A drawback of
this approach is that the mobile devices need an operating system with the modified

2.6. Mobility Solutions 15

TCP implementation. NAT is also an issue because the mobile device may not no-
tice that its public address changed. The address change is done without a SYN flag
set, which is necessary to enable NAT for TCP and to open a firewall port for the
connection. Also based on the transport layer is SCTP Mobility [80], using SCTP’s
multi-homing features with the ADD-IP extension. This allows reconfiguring the
multiple paths for an established association, if necessary. When the host gets a
new address after joining a new network, it simply adds the new address as a new
possible path for its connections, while addresses that are not used anymore will be
removed. Unfortunately, there is no SCTP support on common mobile devices yet.
Furthermore, middleboxes performing NAT still cause issues with SCTP’s multi-
homing, because they can modify the addresses in the IP header, but not those in
the INIT, INIT-ACK, and ASCONF (ADD-IP) chunks. This would require a mod-
ified NAT implementation that is able to modify these chunks, and also calculate a
new checksum after doing so. Multipath-TCP (MP-TCP) [25] adds multi-homing
features to TCP. To handle NATs, the connection is set up over a single path first
and then additional paths are added. This is similar to SCTP’s ADD-IP extension
and therefore can be used for mobility in the same way. This concept is, however,
still experimental and not fully specified yet.

16 Network and Transport Protocols

Chapter 3

Security Protocols

In this chapter, several common security solutions are introduced. All of them
are standardized, but use di↵erent approaches to secure end-to-end connections.
The support of security features can either be included in an application, or added
externally by using secure tunneling for the application protocol. Most security
solutions do not rely on specific algorithms for key exchange, encryption and hash
computation, but rather support arbitrary algorithms. This allows to add more
secure algorithms and abandon weak ones without changing the protocol. A com-
bination of key exchange, encryption and hash algorithms is called a cipher suite.
A common cipher suite, for instance, is an RSA key exchange [81], encryption with
AES-256 [24], and SHA-1 [23] for hashes. Hence, the protocols can be discussed
independently of the algorithms.

3.1 Internet Protocol Security

Internet Protocol Security (IPsec) [43] is a security suite for the Internet Pro-
tocol (IP) providing authentication and encryption features. It consists of two
protocols, the Authentication Header (AH) [41] and Encapsulating Security Pay-
load (ESP) [42], which extend IP packets. The key used for the security features
can for example be pre-shared or negotiated with the Internet Key Exchange (IKE)
protocol [40]. The Authentication Header ensures integrity and allows authentica-
tion for the payload and header of IP packets. A sliding window for sequence
numbers is also maintained, so old or duplicated packets can be discarded to pre-
vent an attacker from eavesdropping and resending packets, called replay attacks.
Confidentiality with encryption, and optionally also authentication and integrity
for the payload can be achieved with Encapsulating Security Payload. Yet the ESP
does not secure the IP header.

The protocol architecture does not explicitly specify the algorithms that have
to be used for key exchange, encryption and hash calculation, but provides a frame-
work for arbitrary cipher suites. When establishing a connection, both peers ex-
change their supported algorithms to negotiate a mutually supported one. IPsec

17

18 Security Protocols

IP
Header AH Transport &

Application Protocol

IP
Header

ESP
Header

Transport &
Application Protocol

ESP
Trailer

ESP
Auth

IP
Header AH Transport &

Application Protocol

IP
Header

ESP
Header

Transport &
Application Protocol

ESP
Trailer

ESP
Auth

New IP
Header

New IP
Header

Transport Mode

Tunnel Mode

Figure 3.1: IPsec Transport and Tunnel Modes

maintains a Security Policy Database (SPD) to handle established connections, also
called Security Associations (SA).

Two di↵erent modes are available for each association, transport and tunnel
mode, which are illustrated in Figure 3.1. In transport mode, the original IP packet
is extended with AH and ESP, but encryption is limited to the payload. The tunnel
mode can be used to encrypt the IP header as well. In this mode the entire original
IP packet is sent as the payload of a new IP packet with IPsec features. This
mode also allows realizing a VPN, because the source and destination addresses in
the original and the new IP header do not have to be identical. Hence, a SA in
tunnel mode can be used to transport IP packets between two di↵erent network
segments, for example over the Internet. A comprehensive introduction to IPsec is
given in [16].

3.2 Transport Layer Security

Transport Layer Security (TLS) [14] is a security suite that adds an additional
layer between the transport and application protocol to provide authentication and
encryption for the application protocol. It has been designed for reliable trans-
port protocols, so it requires the transport layer to retain the message order and
retransmit lost messages. These requirements are met by TCP, and by limiting
its usable features also by SCTP. A TLS connection between two hosts is called
session. A session can remain alive over multiple actual connections, because it can
be resumed to avoid a new full handshake.

3.2. Transport Layer Security 19

3.2.1 Record Layer

The Record Layer is the basis for application data exchange and also for three
sub-protocols, the Handshake, ChangeCipherSpec and Alert protocol, illustrated
in Figure 3.2.

TLS Record Layer

Handshake

Transport Protocol (TCP)

Internet Protocol (IP)

ChangeCipherSpec Alert Application Data

Figure 3.2: TLS Protocol Structure

The header of the Record Layer consists of the Content Type that indicates
which sub-protocol it is carrying, the Protocol Version and its Length, depicted in
Figure 3.3. It retains message boundaries, in case the transport layer does not.
Each Record message has a unique sequence number that is increased with every
message sent. This number is not transmitted; each peer maintains it internally
instead. Nonetheless, it is used for the calculation of the HMAC, which is used to
ensure the integrity of the message. If a received message does not have the expected
sequence number, the hash cannot be verified and the connection is dropped. This
is done because the transport protocol is expected to be reliable, so the only case
where messages may be reordered is after manipulation by an attacker.

Message

Content Type Protocol Version Length

Length

Figure 3.3: TLS Record Header

3.2.2 Handshake and ChangeCipherSpec Protocol

To set up a new connection and negotiate the security parameters, like cipher
suite or compression algorithm, the Handshake protocol is used. The message
format is depicted in Figure 3.4, and Figure 3.5 shows the message sequence. The
client initiates the handshake by sending a ClientHello message to the server. This
message contains the supported cipher suites, compression algorithms and a random
number. The server is supposed to respond with a ServerHello, which contains the

20 Security Protocols

Message

Message Type Message Length

Figure 3.4: TLS Handshake Message Header

cipher suite and algorithms the server has chosen from the ones the client o↵ered
and also a random number. Both random numbers will be used, among other data,
to calculate the master secret. The server may continue with a ServerCertificate
with its certificates to authenticate itself, if necessary. In that case it can also
send a CertificateRequest, to provoke the client to authenticate, too. For some
cipher suites, additional data is necessary for the calculation of the secret, which
can be sent with a ServerKeyExchange. Since the last three messages mentioned
are optional, a ServerHelloDone indicates when no more messages follow from the
server.

After the ServerHelloDone, the client has to send its certificates with a ClientCer-
tificate if the server requested authentication. This is followed by a ClientKeyEx-
change that contains its public key or other cryptographic data, depending on the
cipher suite used. Also depending on the cipher suite is whether a CertificateVerify
to verify a signed certificate has to be sent. At this point both peers have enough
information to calculate the master secret. Thus, the client sends the ChangeCi-
pherSpec, to announce that the negotiated parameters and the secret will be used
from now on. Its last message is the Finished that contains a hash calculated over
the entire handshake and is encrypted already. If the Finished can be decrypted,
the negotiation of the cipher suite and shared key was successful. The included hash
value is used to verify the integrity of the handshake, so potential manipulations
of the messages by an attacker can be detected. If the decryption and verification
fails, the connection must be terminated. The server concludes the handshake by
also sending the ChangeCipherSpec and the Finished.

3.2.3 Session Resumption

TLS supports session resumption, that is using the already negotiated parameters
from an earlier connection to avoid a costly full negotiation. The ClientHello of
every new session contains the session identifier 0, which causes the server to assign
a new one and communicate it with the ServerHello. If the client still has the
information of the previous session, it may reuse the identifier in its ClientHello. If
the server still recognizes the client’s session identifier, an abbreviated handshake, as
shown in Figure 3.6, can be performed and the cipher suite parameters of the former
connection are used further on without full negotiation, but with the new random
numbers of the ClientHello and ServerHello, respectively. So no more messages are

3.2. Transport Layer Security 21

ClientHello

ServerHello

Client Server

ClientCertificate

ChangeCipherSpec

ServerCertificate

ServerKeyExchange

CertificateRequest

ServerHelloDone

ClientKeyExchange

CertificateVerify

ChangeCipherSpec

Finished

Finished

Figure 3.5: TLS Handshake

necessary, and the server sends the ChangeCipherSpec and a Finished immediately
after the ServerHello. The client also sends its ChangeCipherSpec and Finished to
conclude the handshake.

3.2.4 Alert Protocol

The Alert protocol is used to exchange notifications on warnings or errors that might
have occurred, for example when a certificate could not be verified. While errors
are always fatal and lead to the immediate shutdown of the connection, warnings

22 Security Protocols

are informational and the connection can remain established. Additionally, alert
messages are also used to gracefully shut down the connection. When a peer has
nothing to send anymore, it should send a CloseNotify alert. The connection is
closed after both peers have sent it.

3.3 Datagram Transport Layer Security

Since TLS is limited to reliable protocols, Datagram Transport Layer Security
(DTLS) [78] has been developed to secure unreliable protocols, such as UDP or
DCCP. It is a modification of TLS developed with the intention to make as few
changes as possible. The main issues with TLS over an unreliable transport pro-
tocol are reordering and loss of messages, because it relies on messages arriving
reliable and in sequence and otherwise assumes an error or attack and simply drops
the connection.

3.3.1 Record Layer Modifications

The DTLS Record Layer is basically the same as the one of TLS, but had to
be extended to tolerate message loss and reordering. Figure 3.7 illustrates the
extended header. The sequence number used for the HMAC calculation is added to
the record header to allow the verification of the integrity independent of the order

ClientHello

ServerHello

Client Server

ChangeCipherSpec

ChangeCipherSpec

Finished

Finished

Figure 3.6: TLS Handshake for Session Resumption

3.3. Datagram Transport Layer Security 23

in which the message has been received. The sequence numbers are reset after
every successful handshake, so di↵erent records with the same sequence number
may arrive. To distinguish identical numbers, an Epoch is also added, which is
increased with every successful handshake and also used for the calculation of the
HMAC.

Message

Content Type Protocol Version Epoch

Epoch Sequence Number

Sequence Number Length

Length

Figure 3.7: DTLS Record Header

To prevent a replay attack, where an attacker intercepts and resends valid mes-
sages, for example in attempt to reissue a command, a replay check is also done. A
window of acceptable sequence numbers is maintained and every sequence number
that is outside the window or has been marked as received within the window will
be discarded.

3.3.2 Handshake Message Modifications

Another issue is that most protocols other than TCP are message-oriented, while
TCP is bytestream-oriented. TCP does not care how large a TLS Record is; it will
just split it in as many parts as necessary to send it. Message-oriented protocols, on
the other hand, conserve the message boundaries, but may not have a mechanism to
fragment and reassemble messages, which is the case with UDP, for instance. The
consequence is that only messages smaller than the current Path-MTU can be sent.
The Path Maximum Transmission Unit is the maximum message size every router
on the path between the peers can handle. Especially the messages containing
certificates may be larger than the current Path-MTU. To still be able to transfer
these messages, DTLS has to provide its own fragmentation mechanism. This is
achieved by extending the Handshake Message Header, as shown in Figure 3.8.
With TLS every handshake message starts with its Message Type and its Length.
For DTLS a Fragment O↵set and Fragment Length entry is added.

DTLS also has to deal with reordered messages, which can likely occur with un-
reliable transport. To handle handshake messages arriving in the wrong order, the
Handshake Message Header is further extended and a Message Sequence Number
is added. This allows restoring the correct sequence of the handshake.

24 Security Protocols

Message

Message Type Message Length Msg Sequence No

Msg Sequence No Fragment Offset

Fragment Length

Figure 3.8: DTLS Handshake Message Header

3.3.3 Client Verification with Cookies

A new connection is always initiated by the client sending its ClientHello. The
server responds with its ServerHello, Certificate, maybe the optional ServerKeyEx-
change and CertificateRequest, followed by the ServerHelloDone. This part of the
handshake is a problem with connectionless transport protocols, because there is
no transport connection setup necessary, and an attacker could just send an arbi-
trary number of ClientHellos to a server. This could be used for a Denial-of-Service
attack against the server, which will start a new session, thus allocating resources,
for every ClientHello. It could also be used against another victim by redirecting
the much larger response of the server to it, thus multiplying the attacker’s band-
width. To prevent this issue, DTLS uses an additional handshake message, called
HelloVerifyRequest. The extended handshake is depicted in Figure 3.9. It can be
sent optionally in response to the ClientHello and contains a so-called cookie of ar-
bitrary data. If this message is used, the server will not allocate any resources yet.
It requires the client to repeat its ClientHello with the unmodified cookie attached.
This allows the server to verify that the client uses a valid address and responds.
To prevent manipulations or reusing an old cookie, the cookie should contain infor-
mation about the client, like its address, a timestamp and a signature to ensure the
integrity of the data. If the verification was successful, the server can process the
ClientHello, allocate the necessary data and continue with the regular handshake.
With this mechanism the server’s resources cannot be exhausted with many faked
ClientHellos, because they won’t be repeated with a valid cookie. A bandwidth
multiplication is also prevented, because the HelloVerifyRequest is smaller than a
ClientHello.

3.3.4 Handshake Reliability

The handshake cannot be completed if one or more messages are missing, so it
has to be performed reliable. With an unreliable transport, DTLS has to ensure
the reliability of handshake messages itself. Therefore, it needs a timer to retrans-
mit lost messages. For increased e�ciency, DTLS does not use a timer for every
message, but for bundles of messages, called flights. A flight contains all messages

3.3. Datagram Transport Layer Security 25

ClientHello

ServerHello

Client Server

ClientCertificate

ChangeCipherSpec

ServerCertificate

ServerKeyExchange

CertificateRequest

ServerHelloDone

ClientKeyExchange

CertificateVerify

ChangeCipherSpec

Finished

Finished

HelloVerifyRequest

ClientHello

Figure 3.9: DTLS Handshake

26 Security Protocols

before the sending side changes, so for example all messages from ServerHello to
ServerHelloDone form a flight (compare Figure 3.9). For every flight sent, a timer
is started, and if there is no response until the timer expires, the entire flight will
be retransmitted. The retransmission is limited to handshake messages and cannot
be used for application data.

3.3.5 Alert Protocol

Because of the connectionless transport protocol, DTLS sends some errors just
as warnings. This is done when the HMAC of a message could not be verified
(BadRecordMAC), the Record length is too large (RecordOverflow), or the decryp-
tion failed (DecryptionFailed). Otherwise an attacker could just send random data
to one of the peers to cause an error that immediately terminates the connection.

3.4 Secure Shell

Secure Shell (SSH)[113] is a security protocol providing bidirectional channels for
various services over a single secure connection. Possible services are data transfer,
interactive remote shells, X11 forwarding and connection forwarding.

3.4.1 Transport Layer

The SSH Transport Layer [114] runs on top of a reliable transport protocol, typically
TCP, and provides an encrypted and integrity ensured transport for the two other
SSH sub-protocols, the Authentication and the Connection protocol. The structure
of SSH and its sub-protocols is illustrated in Figure 3.10.

SSH Transport Layer

SSH Authentication Protocol

Transport Protocol (TCP)

Internet Protocol (IP)

SSH Connection Protocol

Channel N

User Data

Channel 1

User Data ...

...

Figure 3.10: SSH Protocol Structure

The SSH Transport Layer performs host-based authentication, and security
parameters as well as the shared key are negotiated as shown in Figure 3.11. The
connection establishment is always initiated by the client sending a Protocol Version
message. This is also done by the server and after that Key Exchange Init messages
are exchanged, which list the supported cypher suites and key exchange algorithms.

3.4. Secure Shell 27

Depending on the mutually supported algorithms, a shared key is negotiated with
messages corresponding to the chosen algorithm, which is usually the Di�e-Hellman
method [15], since it requires no certificates or other data that has to be provided
in advance. The New Keys messages announce the use of the previously negotiated
parameters and key, and conclude the connection setup.

(Cipher Suite specific Messages)

Key Exchange Init

Key Exchange Init

Client Server

New Keys

New Keys

Protocol Version

Protocol Version

Figure 3.11: SSH Key Exchange Message Flow

3.4.2 Authentication Protocol

The SSH Authentication [111] protocol is used by the client to request the per-
mission to use a specific service. It will provide a username, and the server o↵ers
acceptable authentication methods, by default host-based, password, or public-key.
The client can use any o↵ered authentication method in arbitrary order until the
authentication is successful, or the server has disconnected because of too many
failed attempts, or a timeout occurred.

28 Security Protocols

3.4.3 Connection Protocol

Upon successful authentication, the client is allowed to actually request a service,
such as data transfer, interactive remote shells, connection forwarding, or the for-
warding of the X Window System (X11) [9], the GUI of many UNIX- and Linux-
based systems. The services are realized with the SSH Connection [112] protocol.
This protocol provides channels for each o↵ered service, which can be opened and
closed arbitrarily within the secure connection.

The connection forwarding supports TCP connections only, and is illustrated
in Figure 3.12. An SSH connection is set up between two hosts, and one of them
is configured to accept TCP connections on a specific local port. The destination
to where all data should be forwarded has to be configured as well. The data
received from connections accepted on the local port will be forwarded over the SSH
connection to the other SSH endpoint, which will establish a new TCP connection
to deliver the forwarded data to the previously configured destination host. Every
accepted incoming TCP connection triggers the opening of a forwarding channel
within the SSH connection, and the establishment of a new TCP connection to
the configured destination by the other SSH endpoint. The data transmission is
now separated into three segments. The payload of the initial TCP connection is
received by the first SSH endpoint, sent over the forwarding channel to the other
SSH endpoint, which sends it over the new TCP connection to the destination and
vice versa. This service can be used to secure an otherwise unsecured connection,
since the SSH connection is encrypted, or to tunnel a connection to a protected
host, since SSH requires authentication.

SSH maintains a Flow Control for every data transmission channel, realized with
a window indicating the amount of data that is allowed to be sent on this channel.
The size of the window is initially announced during the channel opening and
then continuously adjusted with the SSH MSG CHANNEL WINDOW ADJUST
message. This allows slowing down the transfer rate of a forwarded sender, in case
the receiver cannot deliver the incoming data to the destination quickly enough or
not at all.

3.4. Secure Shell 29

Lo
ca

l
Po

rt
De

st
.

Po
rt

De
st

in
at

io
n

So
ur

ce
 #

1

So
ur

ce
 #

2

SS
H

En
dp

oi
nt

SS
H

En
dp

oi
nt

Ap
pD

at
a #

1
TC

P
#1

Ap
pD

at
a #

2

TC
P

#2

Ap
pD

at
a

#1

TC
P

#3
Ap

pD
at

a
#2

TC
P

#4

1.
 S

eg
m

en
t

2.
 S

eg
m

en
t

3.
 S

eg
m

en
t

SS
H

Tu
nn

el

Ap
pD

at
a

#2

Ch
an

ne
l #

2

Ap
pD

at
a

#1

Ch
an

ne
l #

1

Figure 3.12: SSH Forwarding

30 Security Protocols

Chapter 4

Tools and Software

To evaluate the functionality and possible benefits of the solutions proposed in this
thesis, appropriate tools and software are necessary. Measurements can either be
done by simulation to analyze the behavior of network connections in a controlled
environment, or on real systems, to investigate the impact of external influences,
such as hardware limitations, for instance.

4.1 Simulation

A widely used method to examine the behavior of a proposed solution to a problem
is a simulation [115]. For networks, a discrete event simulation is usually used,
which simulates a sequence of events occurring at a certain time. Each event alters
the state of the system and may trigger other events [83]. The simulation allows per-
forming repeatable and deterministic measurements in a controlled environment, in
which selected parameters can be varied without external influences, like hardware
limitations. Hence, the impact of the proposed changes can be measured without
possible side e↵ects to evaluate potential benefits under optimal conditions.

There are only few network simulation tools providing SCTP implementations.
The most notable are the commercial OPNET Modeler [63] and QualNet [86], as
well as the open source tools Network Simulator 2 (NS-2) [56] and OMNeT++
[107] with its INET framework [34]. To avoid expensive licensing and to allow
easier bug tracking, if necessary, an open source solution is preferred. While NS-2
contains the base specification of SCTP provided by the University of Delaware, the
implementation in OMNeT++ with INET has been completed with all available
SCTP features and extensions by our research collaboration of Münster University
of Applied Sciences and the University of Duisburg-Essen. The source code has
been provided to the OMNeT++ developers and is included in the o�cial releases.
Therefore, OMNeT++ is the tool of choice for simulations and will be introduced
in the following section.

31

32 Tools and Software

4.1.1 OMNeT++

OMNeT++ is a discrete event simulation environment. The program provides the
infrastructure to develop functional modules interacting with each other, which are
written in C++ with the interfaces provided by OMNeT++. Parameter config-
uration and analysis methods support the creation of parameter studies and the
evaluation of the results.

The simulations can either be run from the command line, or with a Graphical
User Interface (GUI), as depicted in Figure 4.1. This allows e�cient use of resources,
but also the possibility to monitor single events and the state of the system at any
given time.

Figure 4.1: OMNeT++ Graphical User Interface

Furthermore, we have developed an extension [87] that manages the parallel
computation of simulation runs with a multi-core CPU or multiple computers in a
network with Xgrid [1] based on Mac OS X Server.

4.1.2 INET Framework

The INET framework provides models and implementations of networking protocols
for OMNeT++. The support includes link layer protocols, such as Ethernet, Point-
to-Point (PPP), and IEEE 802.11 (Wi-Fi), network layer protocols, such as IPv4

4.2. OpenSSL 33

and IPv6, various routing protocols, and the transport protocols TCP, UDP, and
SCTP.

Models of basic devices typically found in an IP-based network are also avail-
able. This includes hosts and routers, which consist of a full link layer, IPv4/IPv6, a
transport protocol stack and routing capabilities, respectively. The network config-
uration, IP addresses and routing information for example, can either be provided
manually or configured automatically. There are some default applications a host
can run, for instance simple tra�c generators, but more advanced applications can
be added.

4.2 OpenSSL

The OpenSSL toolkit [60] is the most widely used library for TLS-based security
and is available for Windows, most UNIX- and Linux-based, and other operat-
ing systems [37]. Furthermore, it also contains the most advanced open source
DTLS implementation. It was first added by the developer of DTLS, Nagendra
Modadugu [51], for release 0.9.8 [61] and has been maintained and extended by
us since 2008 [53]. Hence, prototype implementations for TLS- or DTLS-based
security will be based on OpenSSL.

4.2.1 Architecture

The architecture of OpenSSL is separated into multiple objects interacting via
abstracted interfaces. Figure 4.2 illustrates the architecture and relations between
the di↵erent objects of OpenSSL. Generic parameters, such as the used protocol, are
stored in Context objects (CTX). For every new connection, a new Session object
(SSL) is derived from the context. Each session uses Basic Input/Output objects
(BIO) to communicate via networking sockets or read and write files. The relations
are one-to-one, so every session object is derived from a single context and has
BIO objects for both reading and writing, although this can also be handled by a

Context (TLS) Context (DTLS)

Session Session Session Session

Socket BIO Socket BIO File BIO

Buffer BIO

Socket BIOSocket BIO

Figure 4.2: OpenSSL Architecture

34 Tools and Software

single BIO object. There are di↵erent kinds of BIO objects, they can either access a
networking socket or file, or have a special intermediate functionality, like bu↵ering,
in which case they will use another BIO object for the actual I/O operation.

4.2.2 Context Objects

Before any connection can be established, a context has to be created to store
the necessary parameters. The most obvious is which protocol should be used.
OpenSSL currently supports TLS 1.2 (since release 1.0.1), TLS 1.0, Secure Sockets
Layer (SSL) 2.0 and 3.0, as well as DTLS 1.0. Upon creation of a context object with
a protocol, an SSL METHOD object will be assigned. Every protocol has its own
object, it contains protocol-specific functions for sending, receiving, handshaking,
and so forth. The certificates and private keys for RSA [81] or parameters for
Di�e-Hellman key exchanges that should be used for all sessions derived from this
context, can then also be specified.

If session resumption should be allowed, this can be activated for the context,
which also caches the session information of previous connections, so they can be
reused with a new session object. Furthermore, generic parameters can also be set,
such as timeouts or the allowed cipher algorithms.

4.2.3 Session Objects

For every new connection, a session object is derived from an appropriate context.
The session object holds all parameters and information necessary for the connec-
tion. It also provides a generic and protocol-independent API to perform tasks like
connection establishment, or sending and receiving data with the protocol-specific
functions inherited from the context. Furthermore, options can be changed from
the inherited default values for the connection handled by it.

The session object holds two BIO objects, which have to be assigned before
usage. One is used for receiving data and the other for sending data. It does not
matter to the session object whether the BIO objects use networking sockets or files,
and whether two di↵erent or a single object is used for both sending and receiving.
However, it is assumed that everything read and written from and to these BIO
objects belongs to the connection the session object is managing.

4.2.4 Basic Input/Output Objects

All input and output operations are handled with BIO objects. This ensures that
the upper layers do not need any knowledge about di↵erent transport protocols or
file formats. BIO objects can also be chained, so a bu↵ering or filter BIO can be
used before the actual I/O operation is performed with a file BIO, for instance.

Every kind of BIO object provides options to retrieve and set parameters for
its provided functionality. In case of a transport protocol like TCP, this may be
socket errors or even an interface for accepting new connections.

4.3. OpenSSH 35

4.2.5 DTLS Implementation

OpenSSL has originally been developed for SSL and later TLS, so the addition of
DTLS required more extensive modifications than just adding the protocol speci-
fications. Adding a new SSL METHOD object with DTLS-specific functions does
the latter. That is already enough to use the DTLS protocol, although only over
TCP, because only BIO objects for handling TCP connections were available at
this point. Hence, for an additional transport protocol like UDP, a new kind of
BIO object is necessary to handle its characteristics.

While UDP supports one-to-many style sockets, that is a single socket can be
used to communicate with multiple peers, the opposite is true for TCP where
multiple connections are handled with a separate socket for each. SSL and TLS are
based on TCP, so the one-to-one approach was adopted to the OpenSSL architecture
(compare Figure 4.2). Therefore, one-to-many style sockets cannot be realized
without modifying considerable parts of the architecture and API, to allow multiple
session objects share a single BIO object handling all their UDP communication.
The use of connected UDP sockets is necessary to simulate a one-to-one behavior,
which can be realized just as TCP. Connecting a UDP socket means binding it to
an address and port, thus limiting the communication to this destination.

Additionally, as part of my work the API has been extended to support the
new cookie mechanism of DTLS. Creating a new session object and thus allocat-
ing resources for every incoming ClientHello can be used for DOS attacks (compare
Section 2.5.2). Therefore, a new listening API was necessary that responds to Clien-
tHellos with HelloVerifyRequest messages only, until they return a valid cookie. The
cookie creation and verification mechanism also required extending the API, so I
added appropriate callback methods. The user has to implement the functions and
register them for callback, so the amount of security measures used can be adapted
to the application’s needs.

4.3 OpenSSH

The Secure Shell protocol [113] has been developed by Tatu Ylönen as a more
secure replacement for remote login protocols, such as Telnet [71], and was first
released as freeware, but still proprietary software. Based on version 1.2.12, the
last one released as freeware, a fork was developed with many bug fixes by Björn
Grönvall, called OSSH and was also released as freeware. This again was forked
by the OpenBSD project and integrated into their system as OpenSSH [59]. Since
then, it has been developed as an open source project under the BSD license and
became part of many UNIX- and Linux-based systems, so it is now the most widely
deployed SSH implementation.

The implementation of OpenSSH is separated into client, server and common
parts. The latter include the basic handling of encryption and decryption of SSH
packets, as well as the management and services realized with channels. The client-

36 Tools and Software

and server-specific parts handle initiating and accepting new connections, respec-
tively, and also the corresponding handshaking behavior for the connection estab-
lishment. Both allow configuration via command line parameters or config files.
The server uses separate sockets for every address it is supposed to listen on, and
forks itself for every incoming connection. This ensures that each connection is
handled by its own process, which allows to restart the SSH server while staying
logged in remotely, for example.

Chapter 5

Securing SCTP-based
Applications

Existing security solutions, such as TLS, have been developed based on the as-
sumption that TCP is used as transport protocol. While SCTP is rather similar
to TCP in some aspects, it o↵ers distinct features that limit the applicability of
these existing solutions severely. Therefore, adaptations, extensions and even new
approaches are necessary to define optimized security solutions for SCTP-based
communication.

To identify applicable strategies for securing application protocols, the appli-
cations can be categorized into two distinct classes with respect to their ability
to contribute to securing their end-to-end communication. The first class contains
applications that provide functionality, or at least support, for securing their com-
munication and will be called “security-aware”. For these applications, security
was already considered to some extent during their design and development. This
can range from integrating security features directly into the application and its
communication protocol to simply defining, or adapting and extending, the lower
layer interface to enable the cooperation with external security mechanisms. Ex-
amples for such applications are web browsers and email clients, which can secure
their protocols Hypertext Transfer Protocol (HTTP) [76] and Internet Message Ac-
cess Protocol (IMAP) [10], respectively. Applications belonging to the other class
are called “security-agnostic”, meaning that they are totally unaware of the com-
munication security issue, like Telnet, or intentionally rely on other mechanisms,
like Virtual Network Computing (VNC) [79]. This is not typical anymore for the
majority of newly designed applications. However, most of the widely used legacy
applications and protocols fall into this category. As adding security support may
require significant redesign, standardization activities and could compromise com-
patibility, this is not always the preferred option. The same holds for cases where
the source code is not open in the first place or the user has specific security re-
quirements and is providing own security policies. Therefore, flexible and e�cient
strategies to secure the communication of security-agnostic applications are defi-

37

38 Securing SCTP-based Applications

nitely still needed. My detailed analysis of possible strategies to secure end-to-end
connections in this chapter has also been published in [92].

5.1 Security-aware Applications

Security-aware applications provide or at least support security mechanisms for
their data exchange. To do this, the required functions and mechanisms can either
be integrated directly into the application, or make use of an external library or the
operating system to provide such features. In either case, this does not require any
modifications of the transport protocol and the lower layers, since the application
data is already secured before handing it down to the transport layer. However,
this does not secure the transport protocol itself. All information contained in the
headers of the transport protocol and the lower layers remains exposed to attacks.

5.1.1 Integrated Mechanisms

One strategy to secure the communication protocol used by an application is to
integrate security features right into it. This has the advantage, that the security
solution is custom-made to perfectly fit the application’s needs. Furthermore, there
is no dependency on external libraries or any other kind of support, because the
application comes with everything necessary already. This strategy has been used
for Skype [50], for instance, whose proprietary protocol is secured with RC4 and
AES encryption [5]. The disadvantage of integrating such a custom-made solution
is that the design and implementation of the protocol and its security features have
to be repeated for every single application. This requires not only an extensive
amount of work for the design and implementation, but also for testing, since this
strategy is more prone to flaws in concept and realization, which may lead to severe
security issues.

5.1.2 External Mechanisms

Rather than designing and implementing security features for every specific appli-
cation, generic mechanisms provided by an external library or the operating system
can be used. This reduces the necessary e↵ort of development and testing, because
such solutions are usually standardized or at least already widely deployed. Since
generic solutions have to be independent of the application protocol that is to be
secured, the realization can either be done by adding an additional layer between
the application and transport protocol or by using features of a transport protocol
providing security features. Figure 5.1 illustrates these two generic methods. As a
consequence, the transport protocol chosen by the application limits the possible
solutions. In both cases, the application has to be aware of the external security
mechanisms and has to access them via appropriate interfaces.

The approach to insert a security layer is used by TLS for TCP and DTLS for
UDP, respectively. Common protocols, which make use of TLS, are HTTP [44] or

5.2. Security-agnostic Applications 39

Network Protocol (IP)

Transport Protocol (TCP, UDP...)

Security Protocol (TLS, DTLS)

Security-aware
Application Protocol

Network Protocol (IP)

Secure Transport Protocol (S-SCTP)

Security-aware
Application Protocol

Figure 5.1: External Security

IMAP [57]. Transport protocols with inherent security functionality are not readily
available yet. However, the Secure SCTP [22] concept described in Section 5.4.3 is
an example for such a protocol, which demonstrates the potential advantages.

5.2 Security-agnostic Applications

Many widely used legacy applications were designed without considering security
features, because at the time of their development or in their designated field of use
security was not an issue. To secure their protocols with the methods described in
the previous sections, these applications have to be modified and extended, which
has already been done for most popular applications like Simple Mail Transfer Pro-
tocol (SMTP) [30], File Transfer Protocol (FTP) [26], and many others. However,
in some cases this may not be possible or would create compatibility problems.
Hence, another common strategy is to leave the application and its protocol un-
touched, and to use a tunnel instead that provides the necessary security features.
Such a tunnel can be realized in several ways, depending on the network layer on
which it is located.

5.2.1 Network Protocol Tunneling

The most generic approach is to tunnel the network protocol, since de facto there
is only the Internet Protocol that has to be considered. The IP packet will be
encapsulated in a security layer instead of being sent directly. This can be either
an IP packet extended with security features or an upper layer protocol, as shown
in Figure 5.2. The former is typically realized with the tunnel mode of IPsec, which
encapsulates the original IP packet in another IP packet. The latter can be done
with several protocols, for example TLS, which is partly used by OpenVPN [62], or
DTLS, which is used by the Cisco VPN software [6]. The TLS- and DTLS-based
solutions create more overhead than IPsec, but can be realized in an application
without support of the operating system that is necessary for IPsec.

40 Securing SCTP-based Applications

Network Protocol (IP)

Network Protocol (IP)

Secure Layer (IPsec)

Network Protocol (IP)

Transport Protocol (TCP, UDP...)

Security-agnostic
Application Protocol

Transport Protocol (UDP)

Secure Layer (DTLS...)

Network Protocol (IP)

Transport Protocol (TCP, UDP...)

Security-agnostic
Application Protocol

Figure 5.2: Network Protocol Tunneling

A tunnel realized by these methods is often referred to as a Virtual Private Net-
work (VPN). This setup has the advantage that it does not matter which protocols
are used above IP, so it basically works with every application protocol on an arbi-
trary transport protocol. This solution, however, requires a manual configuration
and setup of the tunnel in advance, which includes the distribution of a shared
secret and, in case of IPsec, an appropriate configuration for firewalls and routers
with Network Address Translation (NAT). This limits the possible application sce-
narios significantly, so this approach is usually used to link two networks and tunnel
an arbitrary number of connections between them, rather than tunneling a single
connection between two hosts.

IPsec also supports a transport mode, which adds an authentication and en-
cryption layer to protect the payload of an IP packet, that is the upper layers,
without the encapsulation of the tunnel mode. Hence, this method can only be
used for direct connections between two hosts, but still has the disadvantages of
the manual setup and issues with routers and firewalls, and will therefore not be
discussed in more detail.

5.2.2 Transport Protocol Tunneling

A tunnel can also be created for the transport protocol that the application chose
to send its messages on. This is realized by adding a secure layer, usually with its
own transport protocol, between the network and transport layers. For the secure
layer, the common protocols TLS and DTLS can be used. A benefit of this method
is that the transport protocol and all its information, which may be helpful for an
attacker, are secured as well. Furthermore, the once established secured layer could
be used for di↵erent transport protocols without additional renegotiation. This
is especially helpful when the Interactive Connectivity Establishment (ICE) [84]

5.2. Security-agnostic Applications 41

protocol had to be used to connect through firewalls and NAT routers, and thus
every reconnect is costly. This approach to security is illustrated in Figure 5.3.

Network Protocol (IP)

Transport Protocol (TCP, UDP...)

Secure Layer (TLS, DTLS)

Transport Protocol (TCP, UDP...)

Security-agnostic
Application Protocol

Figure 5.3: Transport Protocol Tunneling

In [74] this concept is used to improve the performance of The Onion Routing
(TOR), a network that makes TCP connections anonymous. Additionally, the
“Real-Time Communication in WEB browsers” (RTCWeb) working group at the
IETF is currently evaluating how direct and secure communications between web
browsers can be realized [75]. Since the focus is on Voice over IP (VoIP), but
generic data transfer should be possible as well, this security technique was chosen
to support multiple transport protocols. After a DTLS connection is established
with ICE, it can either be used with SCTP to transfer generic data or only its key
material for the Secure Real-time Transport Protocol (SRTP) [2] to transfer media
streams.

The realization, however, requires support of the operating system for the nec-
essary encapsulation of the transport protocol into a secure layer, which is currently
not available. Otherwise, the application has to be modified to use a user-space im-
plementation of the tunneled transport protocol. This strategy for security is only
beneficial in very specific scenarios, because it requires more e↵ort than simply
using TLS or DTLS directly.

5.2.3 Application Protocol Tunneling

The application protocol itself can be tunneled directly as well, which is commonly
called forwarding. The end-to-end connection is segmented in this case, because
the application’s transport protocol connection is terminated at one of the tunnel
endpoints, which forwards only the payload (the application data) to the other end-
point of the tunnel, from where a new transport protocol connection is established
to the actual destination. This setup is illustrated in Figure 5.4.

The tunnel does not necessarily have to be realized with the same transport
protocol that has been used by the application. However, explicit support for the

42 Securing SCTP-based Applications

Network Protocol (IP)

Transport Protocol

Security Protocol (SSH)

Security-agnostic
Application Protocol

Network Protocol (IP)

Transport Protocol

Security-agnostic
Application Protocol

Network Protocol (IP)

Transport Protocol

Security-agnostic
Application Protocol

Figure 5.4: Application Protocol Tunneling

transport protocol originally used by the application is necessary, otherwise some
transport protocol features may be unavailable. For reliable protocols in general a
Flow Control is necessary, because if one host stops receiving data from the tunnel
and the sender does not reduce its transmission rate, the bu↵ers within the tunnel
will run full and data may be lost. If the transport protocol has specific features, like
the streams of SCTP, these have to be explicitly supported, since the information
has to be preserved within the tunnel and used again for the connection at the far
end. The setup is static, so the tunnel can only be established for a connection
between two hosts, and has to be done in advance. This kind of tunneling is
currently done with Secure Shell (SSH) [113], which supports forwarding for TCP
connections.

5.3 Comparison

Each of the previously introduced strategies to secure the communication of an
application has its pros and cons. Depending on the applications, security require-
ments and usage scenario, di↵erent approaches will be preferred. If the application
in question can be modified and adapted, then basically all solutions can be con-
sidered. However, extending the application’s protocol with security features is
usually not desirable, because of the significant e↵ort for every single application.
Tunneling, on the other hand, often requires specific support by the operating sys-
tem or manual configuration in advance. Therefore, the use of external mechanisms
to add an additional security layer, such as TLS, is usually the method of choice. If
the application is security-agnostic and cannot be modified, then tunneling is the
preferred strategy. Which kind of tunneling is optimal for a scenario depends on the
given circumstances, for example, which features are supported by the operating
system. Table 5.1 provides an overview of the pros and cons of each solution and
lists some of the major aspects to be considered when choosing the most appropriate
strategy for a specific scenario.

5.4. Existing Security-aware Solutions for SCTP 43

Security-aware Security-agnostic
Applications Applications (Tunneling)

Internal External Network Transport Application

Application protocol - x x x x
remains untouched
Application can - - x x1 x
remain untouched
Reusable for - x x x x
di↵erent applications
No operating system x x - x1 x
support required
Transport protocol - - x x x
features are secured
Transport protocol x x x x -
independent
Connections can be x x - x -
set up on demand
No overhead for x - x x x
multiple connections
Examples Skype HTTP, IMAP, IPsec, Cisco RTCWEB SSH

XMPP VPN, OpenVPN
1
either operating system support or modifications of the application required

Table 5.1: Comparison of Security Solutions

5.4 Existing Security-aware Solutions for SCTP

The common security-aware solutions TLS and DTLS, developed for TCP and
UDP, respectively, can also be used with SCTP. Yet the features of SCTP have
to be limited to the ones of the originally supported protocols. Additionally, two
approaches to extend SCTP with security features have been proposed.

5.4.1 TLS over SCTP

The most obvious solution to secure SCTP-based communication is using TLS,
which has been standardized in 2002 [39]. However, this solution is not widely
deployed because of some severe limitations. The main issue is that TLS has been
defined assuming reliable and in order transport as o↵ered by TCP. As a conse-
quence, successive TLS data units depend on each other and it is not possible any
more to process them at the receiver if loss or reordering occurs. SCTP only re-
tains the order of messages within a stream, not across multiple streams in order
to minimize the head of-line blocking e↵ect. This leads to systematically occurring
reordering at the receiver if multiple streams are used. To avoid this situation, the
multi-streaming feature of SCTP cannot be used in combination with TLS – unless
a separate TLS connection is managed for every active stream. Unreliability with
PR-SCTP cannot be used at all. Furthermore, TLS encrypts each application mes-

44 Securing SCTP-based Applications

sage separately while SCTP can bundle several small application messages into one
SCTP packet to increase transport e�ciency. Therefore, TLS encryption leads to
unnecessary overhead for small messages. Since cryptographic security with TLS is
provided above SCTP, the transport protocol itself and its control messages remain
unprotected, and thus a target for eavesdropping and tampering.

5.4.2 DTLS over SCTP

Using DTLS to secure SCTP associations has been discussed in [31]. DTLS has
been developed to tolerate reordering and packet losses that occur with unreliable
transport protocols. So contrary to TLS, the use of multiple streams and partial
reliability is possible. However, since with DTLS it is assumed that packet loss
is acceptable, it may discard messages under certain circumstances, for example
because they cannot be processed immediately while a handshake is in progress.
This counteracts the reliability of SCTP, because the messages are discarded after
being successfully delivered by SCTP. The same limitations as with TLS regarding
the overhead for small messages and an unprotected transport layer still apply.

5.4.3 Secure SCTP

Secure SCTP [22] integrates encryption and authentication features into the SCTP
protocol. Di↵erent levels of security are supported, ranging from no security (level 0)
to authentication, encryption for all chunks, and integrity checks for all packets
(level 3). The integration of security features has the advantage that not only
application data, but transport protocol information as well is secured. By allow-
ing to encrypt chunks selectively with a flag (level 2) or all at once (level 3), the
necessary computational e↵ort is minimized. The main issue with this solution,
however, is that it would require major extensions to the SCTP standards and to
their implementations in the various operating system kernels. Additionally, the
key and certificate management is vulnerable to Denial-of-Services attacks as it may
be used to block the kernel and so stop the entire system, in case only one CPU
core is available.

5.4.4 Secure Socket SCTP

With combining di↵erent approaches, Secure Socket SCTP [46] tries to avoid the
drawbacks of the other solutions. Integrity is provided with the SCTP-AUTH
extension for all chunks, while the negotiation of parameters and the encryption
is done with TLS functions. However, an issue of this approach is the use of the
Payload Protocol Identifier (PPI) in the DATA chunk header to determine whether
this chunk is encrypted and which key and algorithm have been used. The PPI
actually indicates which upper layer protocol is used. This prevents the use of
several protocols which require a specific PPI to be set. Another major issue is an
elaborate implementation and standardization of the entirely new protocol.

5.5. Existing Security-agnostic Solutions for SCTP 45

5.5 Existing Security-agnostic Solutions for SCTP

A common solution to provide security for security-agnostic applications is to tunnel
their connections. This is usually done at the network or application layer. While
network tunneling basically supports all transport protocols that run on top of the
network protocol, that is SCTP as well in case of IP, application layer tunneling
requires explicit support for each protocol.

5.5.1 Internet Protocol Security

SCTP over IPSec [4] has also been standardized shortly after SCTP in 2002. The
security protocol suite IPsec is an extension for IP to secure IP and the layers
above without specific requirements concerning the transport protocol. Therefore,
securing SCTP with IPSec is possible and there is no hard limitation of SCTP’s
features. However, the multi-homing support of SCTP is still an issue, because
multiple IP addresses are used. To enable multi-homing, an IPsec connection has
to be established for every possible pair of addresses, which results in an excessive
overhead in the SPD. As a solution, the SCTP over IPsec standard suggests lists of
multiple addresses for an IPsec connection, but there is no implementation available
yet. SCTP supports fragmentation to split up large messages for sending them in
multiple IP packets. IPsec encrypts each IP packet individually, so sending large
messages creates additional overhead.

5.5.2 TLS/DTLS-based Tunneling

As an alternative to IPsec, network tunneling can also be realized over TLS or
DTLS. OpenVPN and the Cisco VPN software use this technique for instance. The
advantage is that no support of the operating system is required, besides virtual
interfaces to route the network tra�c. Since the network layer or even the link
layer (optional for OpenVPN) is tunneled, SCTP is also supported. The same
limitations as with IPsec, however, still apply. Multi-homing is not supported
without the setup of multiple tunnels, although it may be realized based on DTLS
with its connectionless transport protocol UDP.

5.6 Conclusion

The importance of security is well known nowadays, so it will be considered in the
design of most newly developed applications. Therefore, a security-aware solution
to secure such applications using SCTP is inevitable. The existing ones, however,
have severe limitations regarding usable SCTP features and deployability so a new
approach is still necessary. Tunneling SCTP-based tra�c of security-agnostic ap-
plications is basically possible by using a VPN, and only multi-homing remains
an issue. Application protocol tunneling, on the other hand, which is commonly
realized with SSH, is still not available.

46 Securing SCTP-based Applications

Chapter 6

SCTP-aware DTLS

To overcome the limitations of the existing security solutions for security-aware
applications, a new approach is still necessary. The focus has to be on deployability,
and feature limitations have to be avoided. This can be achieved by analyzing the
relevant characteristics of SCTP and adjusting the new concept to them. In this
chapter, a new solution for security-aware applications using SCTP is introduced,
which has been developed as part of this project and also been published in [88].

6.1 General Considerations

The need for encryption, authentication and integrity for the payload is obvious,
but SCTP is also a reliable transport protocol, so the reliability should be ensured as
well. Contrary to TCP, SCTP does not necessarily retain the order of all messages.
They can be reordered across streams or can even be sent unordered explicitly.
This means the solution has to ensure the order of messages sent in order, but
also be able to handle unordered messages. Like DCCP, SCTP uses a Congestion
Control to protect the network, so the possibility of unnecessary retransmissions
overloading the network has to be considered as well. The solution also has to allow
the usage of any other SCTP feature, like multi-homing, streams and the various
extensions.

Additionally, it has to be avoided to modify the SCTP protocol itself, since this
would require an elaborate standardization process and the corresponding adap-
tion of existing implementations. This would make a wide deployment much more
di�cult. The same applies to the encryption layer that preferably relies on ex-
isting work to also prevent an elaborate standardization and a new and therefore
error-prone implementation.

6.2 Open Issues and Proposed Solutions

With the requirements identified above, it is now possible to design a solution that
meets all of them. The most promising candidate to start with is DTLS as proposed

47

48 SCTP-aware DTLS

in [31], since it is already standardized and does not prevent any SCTP features
from being used. However, it has some issues with reliability and providing the
required security features, like protecting the transport protocol.

6.2.1 Encryption and Authentication

DTLS is an adaptation of TLS, so it provides the same encryption, authentication,
and compression features. An HMAC is calculated of the compressed application
data and both are encrypted and sent as the payload of the transport protocol,
which itself is unprotected. The DATA chunks of SCTP contain more information
than a TCP packet, that is the stream information and the Payload Protocol Iden-
tifier (PPI). This data can remain unencrypted, because an attacker cannot use this
information to presume the application data, and otherwise the encryption would
have to be realized as part of SCTP in the kernel. However, in [31] it is suggested
to use SCTP-AUTH to ensure the integrity of control chunks and DATA chunk
headers. This is discussed in the following section.

6.2.2 Ensuring Order and Reliability

TLS ensures the order and reliability of TCP by maintaining internal sequence
numbers for every record and using them for hash calculations. This approach
cannot be used with SCTP because of streams and the possibility to send messages
unordered. However, with DTLS these sequence numbers are part of the record
header to allow hash calculation independently of the order of the messages, so no
ensuring is done at all anyway. An attacker could tamper with SCTP’s sequence
numbers to manipulate the order of messages as shown in Figure 6.1.

Sender

TSN 42
SID 2
SSN 6

Receiver

TSN 41
SID 2
SSN 5

TSN 41
SID 2
SSN 5

TSN 42
SID 2
SSN 6

Attacker

#2 #1 #2 #1

Figure 6.1: Switching TSNs for Reordering Attack

In [31] it is suggested to use SCTP-AUTH for DATA, SACK and FORWARD-
TSN chunks to ensure their integrity, since DTLS cannot protect any parts of the
transport protocol. Unfortunately, there is no reasoning why these chunks have
to be protected. The DATA chunk is obvious, because an attacker must not be
able to modify any sequence numbers or stream information to cause reordering or

6.2. Open Issues and Proposed Solutions 49

change the assigned stream of a message. Regarding the base specification, it is
proposed to not protect other chunks, because their modification would not have
an impact on the content to be transmitted. Requirements for SCTP extensions
are discussed in Section 6.2.8. The key required for SCTP-AUTH can be derived
from the negotiated master secret as described in [77].

6.2.3 Message Loss Prevention

DTLS does not rely on reliable transfer and can discard out of order messages.
This is no problem with the unreliable UDP, but with SCTP a reliable service is
expected. To avoid message loss, certain situations require in order delivery, for
instance when application data might arrive after the epoch already changed and
therefore the message became invalid.

Although SCTP o↵ers in sequence transfer, this only applies to messages within
a stream. Messages of di↵erent streams may be reordered and can still arrive late.
To allow the use of multiple streams anyway, in [31] it is suggested to enforce the
message sequence across streams in such situations. That is basically ensuring that
all previous messages have been received, and continue on a single stream as long
as necessary until application data can be transferred normally again.

It is proposed to maintain the message sequence across all streams by using
the SENDER DRY event notification we added to SCTP. This notification occurs
as soon as every sent message has been acknowledged and there are no further
messages pending or still in flight. Every time before protection against message
loss is required, the SENDER DRY event can be used to wait until there is no data
left on any stream. Then sensitive messages can be sent on one stream only and
the order is retained by SCTP. This ensures in sequence transfer, even if multiple
streams are used.

Unfortunately, this does not cover all possibilities of reordering, because it does
not ensure the in sequence reception of the messages for the application. There can
still be messages of other streams in the receive bu↵er, which have not been read
by the application when the first message after the SENDER DRY event arrives. It
may occur that the SCTP stack passes the latest message arrived to the application
first, for example because it cycles through streams during delivery, so the messages
are reordered again. Therefore, whenever a SENDER DRY event is awaited on the
sender side, it is proposed that the receiver has to read everything from the socket
to empty the receive bu↵er first.

6.2.4 Renegotiations

A handshake can also be performed for an already established connection to rene-
gotiate key material and cipher suite. This also changes the key for SCTP-AUTH,
which is derived from every new key, except for the initial handshake, which is
performed unprotected. Contrary to the initial handshake, application data has
already been sent when renegotiating. This is critical when multiple streams are

50 SCTP-aware DTLS

used, since data across di↵erent streams is likely to be unordered. If application
data arrives after a ChangeCipherSpec, the key for SCTP-AUTH already changed
and the packet gets dropped because its HMAC cannot be verified anymore.

To avoid such a message loss, it has to be ensured that there is no application
data in flight when changing keys. This has been described in [31], although with-
out specifying when the message loss prevention is necessary during a handshake.
The new key material is used after the ChangeCipherSpec, so it is proposed that
before sending it, a SENDER DRY event should be awaited. For the client this
is after sending the CertificateVerify and for the server before sending the Server-
HelloDone, because after that the client continues and the server’s next message is
the ChangeCipherSpec. However, it is recommended that the client still sends its
Finished with the old SCTP-AUTH key. The Finished is part of the same flight as
the ClientKeyExchange, which is required for the key computation. Since messages
of the same flight are sent virtually at the same time, the server may not be able to
compute the new key before the Finished arrives. In this case, it will be discarded
by SCTP-AUTH because the new key that has been used for it is still unknown,
and a retransmission becomes necessary. Furthermore, to prevent application data
from being processed after the ChangeCipherSpec in the socket, the server has to
read all pending messages from its bu↵er after the CertificateVerify, and the client
after the ServerHelloDone before continuing.

The server concludes the handshake with the Finished and resumes sending
application data. Since the client has already computed the new key, it can be
used with SCTP-AUTH for the Finished already. Unfortunately it cannot start
sending application data immediately, because di↵erent streams can cause it to
pass the Finished, which is a protocol violation. The client may then discard the
application data or drop the entire connection, which has to be avoided.

It is advised that the server also waits for a SENDER DRY event after sending
the Finished, to ensure the client has received it before continuing with application
data. Since there is also still a small chance that application data passes the
Finished in the receive bu↵er of the client, it is also advised that the client bu↵ers all
application data arriving between ChangeCipherSpec and Finished, and processes
it after the Finished has been read and thus the handshake is completed. The
client cannot just read all data after the ChangeCipherSpec, because this would be a
security risk. If the client would pass all messages to the application without having
seen the Finished, an attacker could intercept the server’s Finished to prevent the
verification of the handshake with its hash value. Sending application data after
manipulating the handshake may then be possible.

6.2.5 Shutdown

To gracefully shut down a DTLS connection, CloseNotify alerts are used. A peer
announces that it finished sending data with the CloseNotify alert, but continues
reading. The connection is shut down and the sockets can be closed once the
other peer also confirmed to have finished sending. After receiving a CloseNotify,

6.2. Open Issues and Proposed Solutions 51

a peer will discard every following message arriving. This can lead to data loss
when shutting down a connection, because application data arriving after the alert
message will be dropped. This has to be avoided, so it is suggested to await a
SENDER DRY event before sending a CloseNotify alert. Additionally, all pending
messages in the read bu↵er have to be processed at the receiver side, before changing
the state to ‘CloseNotify received’.

6.2.6 Session Resumption

DTLS supports session resumption like TLS, that is using the already negotiated
parameters from an earlier connection. If the server still recognizes the client’s
session identifier, an abbreviated handshake can be performed and the cipher suite
parameters of the former connection are used further on without negotiation.

This kind of handshake is not only shorter than the normal full handshake,
the sequence of messages also di↵ers in such a way that the client sends the last
Finished. Hence, the precautions against losing data have to be changed, what has
not been considered before. It is proposed that the client awaits a SENDER DRY
event notification before sending application data after the Finished in this case,
while the server has to bu↵er messages arriving between ChangeCipherSpec and
Finished. The server sends a single flight including the ChangeCipherSpec and
Finished, so it is recommended to use the old key for SCTP-AUTH also for the
Finished. Otherwise the client may not have the appropriate key computed in
time.

This is su�cient if the abbreviated handshake is done for session resumption. If
it is done just to refresh the key material while the connection remains established,
more measures have to be taken. Application data has likely been sent before,
which has to be kept from getting discarded because of arriving after the Change-
CipherSpec message. Before the client sends the ClientHello message, it is advised
to await a SENDER DRY event to ensure no application data is in flight anymore.
The server has to read all pending messages from the receive bu↵er and has to await
a SENDER DRY event before answering with the ServerHello message. Because
the ServerHello message is followed by the ChangeCipherSpec and Finished, the
client has to read all pending application data before both handshake messages can
be processed.

6.2.7 Generic Adaptations

SCTP already performs retransmission and replay checks, so these have to be de-
activated in DTLS, as suggested in [31]. Otherwise a lost message may be retrans-
mitted twice, which causes unnecessary load on the network. This also solves the
problem that DTLS may trigger a retransmission despite the message is only de-
layed because of a network congestion. Fragmentation is also provided by SCTP,
so DTLS can make use of it and does not need to discover the Path MTU. It is
proposed to achieve this by increasing the maximum message size for DTLS to 214

52 SCTP-aware DTLS

bytes, which is equal to the limitation of the record length caused by the encryption
algorithms of TLS. Handshake messages are mostly smaller, so the fragmentation
of DTLS will rarely be used.

6.2.8 SCTP Extensions

SCTP extensions also have to be considered for a solution with DTLS, in case they
can pose a security risk. According to [31], the DATA, SACK, and FORWARD-
TSN chunks have to be protected with SCTP-AUTH. The PR-SCTP extension,
which limits the reliability, can be a possible target for attacks. An attacker could
drop a message by intercepting it and sending a fake FORWARD-TSN chunk to
the receiver, so it ignores the loss, as shown in Figure 6.2

Sender DATA TSN 142 Receiver

Attacker

Forward-TSN
142

SACK TSN 142

Figure 6.2: Message Drop Attack with PR-SCTP

To successfully drop a packet, an attacker would have to modify a FORWARD-
TSN and a SACK chunk. The FORWARD-TSN chunk has to convince the receiver
that it is ok that the message is missing and the modified SACK chunk has to
contain the acknowledgement of reception for the sender, so it does not detect the
loss and retransmits the message. With the protection of the FORWARD-TSN
chunk this attack is already impossible, because although SACK chunks could still
be modified, the receiver would still await the missing data and not continue before
receiving it. Having SCTP-AUTH calculate an HMAC for every SACK chunk is
therefore no security benefit and only costs performance. Therefore, it is proposed
to only secure the FORWARD-TSN and DATA chunks with SCTP-AUTH.

The ADD-IP extension [101] adds or removes addresses of an established asso-
ciation. Multiple addresses are no issue with DTLS, so this extension can be used.
Its ASCONF chunk, which is used to add or remove addresses for an established
association, is protected by SCTP-AUTH by default, so DTLS does not need to
take any measures. It also cannot be used for content modification or message
dropping. The same applies to the Stream Reset extension [97] that just resets the
SSN.

6.3. Implementing SCTP-aware DTLS 53

6.3 Implementing SCTP-aware DTLS

To evaluate the performance of SCTP-aware DTLS, an implementation is necessary.
Since the OpenSSL toolkit contains the only open-source implementation of DTLS
available at this time, this will be the basis for my further developments. In the
following, the necessary adaptations to make the UDP-based implementation aware
of SCTP are described.

6.3.1 Existing Implementation

The implementation of DTLS in OpenSSL has been introduced with release 0.9.8 [61].
While some improvements have been made in the security updates until 0.9.8i, the
state of the implementation was still rather experimental than productive. There-
fore, the development of an SCTP-aware prototype required at first fixing numer-
ous issues with the base implementation, before the new features could actually be
added. My fixes have been included in the recent stable release 1.0.1, as well as
in 0.9.8 and 1.0.0 with the latest security updates [53]. The development for an
SCTP-aware implementation was done for 1.0.1, which was the next stable release.
Modifications were necessary for BIO and SSL objects, as illustrated in Figure 6.3.

Context

Session

UDP Socket BIO SCTP Socket BIO

SCTP specific

Session

SCTP specific

UDP SCTP

Figure 6.3: Modifications to OpenSSL to support DTLS-aware SCTP

6.3.2 BIO Object

The BIO objects are used to provide an abstraction layer of the underlying socket
to an SSL object, which implements the security protocol layer of OpenSSL. For
DTLS, a new BIO object type to support UDP-specific features has been intro-
duced. Accordingly, as part of my work, an additional object type for SCTP to
handle SCTP-specific features has been created. This object has to activate SCTP-
AUTH for DATA and FORWARD-TSN chunks. It also has to provide methods for
the SSL object to add keys derived from the master secret and their activation and

54 SCTP-aware DTLS

deactivation, respectively. Also necessary are methods to await a SENDER DRY
event, to read everything pending in the receive bu↵er, and to ignore all stream
information set by the application to enforce the in order transfer on a single stream
during handshakes. Since the application uses the API calls provided by OpenSSL
to send and receive messages instead of system calls, an interface to set and read
stream information and the PPI have to be provided. SCTP supports notifications
that are passed to the application with read calls and the MSG NOTIFICATION
flag set. The BIO object has to recognize notifications and avoid passing them to
the SSL object, as shown in Figure 6.4, because they would be handled as a corrupt
record message and therefore discarded. The BIO object should rather allow the
application to access the notifications by adding callback methods the application
can register and which are called whenever a notification occurs.

Read Message
from Socket

Is
Notification?

No

Is Sender
Dry event?

Yes

Pass Notification
to Callback

No

Mark Socket
as Dry

Yes

Read Message

Process Message

Figure 6.4: Read SCTP Message Flow Chart

6.3.3 SSL Object

The protocol implementation of DTLS is realized with protocol-specific functions
used by the SSL objects. In the course of my work they have been extended to check
the type of the underlying BIO object and in case of SCTP behave accordingly.
Whenever a new master secret has been negotiated, a key for SCTP-AUTH has
to be derived and passed to the BIO object. After sending the ClientVerify or

6.4. Performance Evaluation 55

before sending the ServerHelloDone, the SENDER DRY event has to be awaited
and everything still in the receive bu↵er has to be processed. The beginning and
completion of a handshake have to be notified to the BIO object, so that the use of a
single stream can be enforced. The replay check, handshake message fragmentation
as well as retransmission timers have to be deactivated.

6.4 Performance Evaluation

To measure the performance of SCTP-aware DTLS, multiple series of measure-
ments have been taken. The setup consisted of two identical hosts connected by
1000 MBit/s links with an MTU of 9000 bytes over a switch, illustrated in Fig-
ure 6.5. Each host was equipped with a Core 2 Duo 3.3 GHz CPU and running
FreeBSD 10.0 (CURRENT). To avoid unpredictable scheduling e↵ects with two
CPU cores, one of them was disabled at first, but the measurement was repeated
with both CPU cores enabled for comparison. In each measurement, one host
sent as many messages as possible, while the other received them and recorded the
throughput. The duration of the measurements was always 60 seconds and the
length of the messages was constant for a single measurement, but increasing in
a series. To be able to calculate 95% confidence intervals, each measurement has
been repeated 25 times.

Cicso Catalyst 2900
Sender Receiver

1 Gbit/s

9000 Bytes MTU

1 Gbit/s

9000 Bytes MTU

Figure 6.5: Measurement Setup

These measurements have been chosen to determine the impact of DTLS on the
possible throughput the hosts can handle and how the additional computing power
necessary for the security features slows the connection down. Di↵erent network
conditions or certain features of SCTP like PR-SCTP, multi-homing or multiple
streams were ignored. While just transferring data, DTLS does not care about
reordering or message loss, so it has no influence and only the behavior of SCTP
would be relevant in these scenarios.

6.4.1 Single Core Throughput Measurements

The first measurements were done with standard (unsecured) SCTP and TCP con-
nections as a reference, illustrated in the both topmost graphs in Figure 6.6. Since
modern CPUs were used, enough computing power was available to fully load the

56 SCTP-aware DTLS

link, which limited the throughput. The throughput was measured for the appli-
cation layer, and can be calculated for SCTP according to [33] by considering the
overhead of the IP and SCTP headers and of SCTP’s message bundling feature.
With the given link, this resulted in a maximum throughput of about 995 MBit/s or
121,527 KBytes/s. For very small messages, however, SCTP was less e�cient than
TCP, because of its message-orientation, so every single message requires its own
DATA chunk with an eight bytes header, resulting in more overhead per packet.

Ϭ ϮϬϬϬ ϰϬϬϬ ϲϬϬϬ ϴϬϬϬ
Ϭ

ϮϬϬϬϬ

ϰϬϬϬϬ

ϲϬϬϬϬ

ϴϬϬϬϬ

ϭϬϬϬϬϬ

ϭϮϬϬϬϬ

hƐĞƌ DĞƐƐĂŐĞ ^ŝǌĞ @�ǇƚĞƐD

dŚ
ƌŽ
ƵŐ

ŚƉ
Ƶƚ
@<�Ǉ

ƚĞ
ƐêƐĞ

ĐD

�d>^ ê ^�dW H��^ϮϱϲLd>^ ê d�W H��^ϮϱϲL^�dW H�hd,L^�dW
d�W

Figure 6.6: SCTP-aware DTLS and TLS / TCP (Single Core)

The next step was to activate SCTP-AUTH for DATA chunks to determine the
impact on the performance of this solution to ensure the integrity. The slightly
lower graph in Figure 6.6 shows that the use of SCTP-AUTH already reduces the
throughput by about 20%. This is mainly because the data was not just passed
to the network interface but also processed in advance, in this case to calculate
an HMAC and add the AUTH chunk. The varying throughput up to 4500 bytes
message size was due to the message-orientation of SCTP in combination with its
bundling feature [33]. As many small messages are bundled into one SCTP packet
as possible, and the drops indicate the message lengths where one message less
can be bundled – which decreased the overall throughput by resulting in smaller
packets and more overhead. This also constantly changed the amount of data the
HMAC had to be calculated over, and resulted in a varying CPU load to process a
packet. At 4500 bytes message size only a single one could fit into a packet, using
only about 50% of the possible packet size. Therefore, the throughput dropped

6.4. Performance Evaluation 57

and continued to increase steadily with the increasing message size, because the
number of messages in a packet could not be increased anymore. A fully secured
DTLS connection, represented by the lowest graph, reduced the throughput again
to about 25% of an unsecured SCTP connection. The steep increase at 512 bytes
message size is because OpenSSL uses a di↵erent algorithm for larger messages as
an optimization.

Finally, TLS over TCP was added for comparison, which was significantly faster
than DTLS over SCTP. This was because TCP requires less computing power and
there was no calculation of AUTH chunks necessary.

6.4.2 Dual Core Throughput Measurements

Modern CPUs usually have at least two cores, so measurements with both CPU
cores activated were interesting, too. Using multiple cores had no noticeable e↵ect
when the application did not consume any significant computing power and only
passed data to the SCTP socket. This also applied to SCTP-AUTH, which is
processed in the kernel. When DTLS was enabled, the application needed much
more computing power to perform the encryption that can be done on the other
core. This resulted in a slightly higher performance with dual cores as seen in
Figure 6.7. So when more than one CPU core was available, SCTP-aware DTLS
came closer to TLS over TCP, because of the additional computing power.

Ϭ ϮϬϬϬ ϰϬϬϬ ϲϬϬϬ ϴϬϬϬ
Ϭ

ϮϬϬϬϬ

ϰϬϬϬϬ

ϲϬϬϬϬ

ϴϬϬϬϬ

ϭϬϬϬϬϬ

ϭϮϬϬϬϬ

hƐĞƌ DĞƐƐĂŐĞ ^ŝǌĞ @�ǇƚĞƐD

dŚ
ƌŽ
ƵŐ

ŚƉ
Ƶƚ
@<�Ǉ

ƚĞ
ƐêƐĞ

ĐD

�d>^ ê ^�dW H��^ϮϱϲLd>^ ê d�W H��^ϮϱϲL^�dW H�hd,L^�dW
d�W

Figure 6.7: SCTP-aware DTLS and TLS / TCP (Dual Core)

58 SCTP-aware DTLS

6.4.3 Renegotiations

Because of the inevitable synchronization of handshake messages, renegotiations
may cause a slowdown of the data transfer. If there is a high amount of data to be
sent on multiple streams, all of them have to be drained before the handshake can
be performed successfully.

To determine the impact of renegotiations, at first the duration of a full hand-
shake had to be identified. The timing of the messages is listed in Table 6.1. Since
the actual timing depends on the latency of the network, the timings are given in
multiples of the Round-Trip Time (RTT). An RTT is the time necessary to send
a message to the other endpoint and receive its response, therefore it is equal to
twice the delay of the network. According to Table 6.1, it takes four times the RTT
until application data is sent again.

Time [RTT] Msssages

0 ClientHello
0.5 ServerHello, Certificate
1.0 SACK (Sender Dry)
1.5 ServerHelloDone
2.0 ClientKeyExchange
2.5 SACK (Sender Dry)
3.0 ChangeCipherSpec, Finished
3.5 ChangeCipherSpec, Finished
4.0 Application Data

Table 6.1: DTLS Handshake Timing

The maximum throughput that is possible depends on multiple factors. At first,
and obvious, it is limited by the link speed, which was 1000 MBit/s, resulting in
about 120,000 KBytes/s for the application (compare Section 6.4.1) in the scenario
used to measure DTLS. The next limiting factor for the throughput is the CPU. Ac-
cording to Section 6.4.2, the maximum throughput of an SCTP association secured
with DTLS was about 53,000 KBytes/s on the hardware used. The last limiting
factor is the link delay in combination with the Flow Control. The overall delay
of the link is considered, so the specific reason for it, for example a long distance
link or queueing e↵ects, can be neglected. The Flow Control prevents the overload-
ing of the receiver by maintaining a window size that equals the amount of data
the sender is allowed to send. With an increasing link delay, a larger window is
necessary, because it takes longer to acknowledge the received data and increase
the window again. This dependency can be described with T = Window

RTT

, with T

being the possible throughput. Since the maximum window size is usually fixed,
a large delay can therefore also be a limiting factor. With the CPU limit and the
default window size of 1820 KBytes, the maximum delay that does not a↵ect the
bandwidth can be calculated as in Equation 6.1, according to Little’s Law.

6.4. Performance Evaluation 59

T =
Window

RTT

) RTT =
Window

T

=
1820

53, 000
= 0.034 s = 34 ms (6.1)

As a consequence, for delays smaller than 34 ms the throughput was limited
by the CPU, while otherwise the delay became the limiting factor. This allows
to calculate the expected throughput with a given delay and a given number of
renegotiations performed per minute. The duration of a handshake is four times the
RTT, so with n renegotiations performed per minute the time spent renegotiating
is n

60

⇤ 4 ⇤ RTT per second. During this time, no data transfer is allowed. This
allows to calculate the throughput T

n

for n renegotiations per minute, depending
on the RTT, and with the given CPU limit and window size as in Equation 6.2.

T

n

= T ⇤ (1� (
n

60
⇤ 4 ⇤RTT)) with T =

⇢
53, 000 for RTT 34ms

1820

RTT

for RTT > 34ms

(6.2)

Figure 6.8 shows graphs for the delays 0 ms, 5 ms, 25 ms, and 50 ms. Without
any delay, the renegotiation takes no time to complete, and therefore does not
a↵ect the achieved throughput. With 5 ms delay the CPU is still the limit, but
an increasing number of renegotiations has a noticeable e↵ect already. The delays
25 ms and 50 ms result in an RTT larger than 34 ms, so the maximum throughput is
reduced even without any renegotiation. Due to the longer time it takes to complete

Ϭ ϭϬϬ ϮϬϬ ϯϬϬ ϰϬϬ ϱϬϬ
Ϭ

ϭϬϬϬϬ

ϮϬϬϬϬ

ϯϬϬϬϬ

ϰϬϬϬϬ

ϱϬϬϬϬ

ϲϬϬϬϬ

ZĞŶĞŐŽƚŝĂƚŝŽŶƐ ƉĞƌ DŝŶƵƚĞ

dŚ
ƌŽ
ƵŐ

ŚƉ
Ƶƚ
@<�Ǉ

ƚĞ
ƐêƐĞ

ĐD

�d>^ ê ^�dW - ϱϬ ŵƐ ĚĞůĂǇ
�d>^ ê ^�dW - Ϯϱ ŵƐ ĚĞůĂǇ
�d>^ ê ^�dW - ϱ ŵƐ ĚĞůĂǇ
�d>^ ê ^�dW - ŶŽ ĚĞůĂǇ

Figure 6.8: Expected Throughput with Renegotiations

60 SCTP-aware DTLS

a handshake with a larger delay, the impact of renegotiations is quite significant.
With 150 renegotiations per minute there is no throughput possible anymore with
a delay of 50 ms. With 25 ms delay at least 300 renegotiations per minute are
possible until no time is left for data transfer.

The maximum number of renegotiations per minute can also easily be calculated
as in Equation 6.3. Hence, with 5 ms delay no throughput would be possible
anymore with 1500 renegotiations per minute.

n

max

=
60

4 ⇤RTT

with RTT > 0 (6.3)

To confirm the validity of the calculations above, the throughput depending on
the number of renegotiations per minute with the same delays of 0 ms, 5 ms, 25 ms,
and 50 ms has also been measured. The results can be seen in Figure 6.9, and are
exactly as predicted with Little’s Law. As a consequence, many renegotiations can
reduce the throughput significantly, in particular if the link has a large delay, as
characteristic for cell phone networks or intercontinental connections for instance.

Ϭ ϭϬϬ ϮϬϬ ϯϬϬ ϰϬϬ ϱϬϬ
Ϭ

ϭϬϬϬϬ

ϮϬϬϬϬ

ϯϬϬϬϬ

ϰϬϬϬϬ

ϱϬϬϬϬ

ϲϬϬϬϬ

ZĞŶĞŐŽƚŝĂƚŝŽŶƐ ƉĞƌ DŝŶƵƚĞ

dŚ
ƌŽ
ƵŐ

ŚƉ
Ƶƚ
@<�Ǉ

ƚĞ
ƐêƐĞ

ĐD

�d>^ ê ^�dW - ϱϬ ŵƐ ĚĞůĂǇ
�d>^ ê ^�dW - Ϯϱ ŵƐ ĚĞůĂǇ
�d>^ ê ^�dW - ϱ ŵƐ ĚĞůĂǇ
�d>^ ê ^�dW - ŶŽ ĚĞůĂǇ

Figure 6.9: Measured Throughput with Renegotiations

6.5 Optimizations

With the modifications of DTLS identified in the previous sections, it can be used
for SCTP-based applications without limiting the possible features. However, en-
forcing the order during handshakes can reduce the performance significantly, as

6.5. Optimizations 61

shown in Section 6.4.3. Additionally, having an HMAC calculation done twice,
once by DTLS and again by SCTP-AUTH is also detrimental to the performance.
Therefore, although SCTP-aware DTLS is a viable concept, there is still room for
optimizations.

6.5.1 Handshake Message Synchronization

A problem besides the draining of the data transfer on all streams for a handshake
is that the receiver, according to the SCTP standard, waits 200 ms for another
message to arrive before sending an acknowledgment. This prevents sending selec-
tive acknowledgments (SACKs) for every single message. In the case of DTLS, the
next message while handshaking may not follow until the previous one has been
acknowledged because of the SENDER DRY event. If that occurs, the receiver
always waits the full 200 ms period before sending its SACK to acknowledge the
previous message, and the handshake can continue.

1

0.01

C
li

e
n

t
H

e
ll

o

S
e

r
v
e

r
H

e
ll

o

C
e

r
ƟĮ

c
a

t
e

C
e

r
ƟĮ

c
a

t
e

R
e

q
u

e
s
t

S
e

r
v
e

r
H

e
ll

o
D

o
n

e

C
e

r
ƟĮ

c
a

t
e

C
li

e
n

t
K

e
y

E
x
c
h

a
n

g
e

C
e

r
ƟĮ

c
a

t
e

V
e

r
if

y

C
h

a
n

g
e

C
ip

h
e

r
S

p
e

c

F
in

is
h

e
d

C
h

a
n

g
e

C
ip

h
e

r
S

p
e

c

F
in

is
h

e
d

0.5

0.005

Default

KƉƟŵŝzed (i-Bit)

T
ŝŵ

Ğ�
Ɛ
ĞĐ

Figure 6.10: DTLS/SCTP Handshake with SACK Immediately Optimization

62 SCTP-aware DTLS

This problem can be mitigated with the SACK Immediately extension [104].
It allows the sender to set a so-called I-bit to request the receiver to acknowledge
the respective data immediately, regardless of any timer or other condition. It is,
therefore, proposed to set this I-bit for every handshake message, if available in
the current implementation. This is done by the OpenSSL implementation, so the
impact can be measured by tracking the time elapsed since the handshake has been
initiated for each handshake message. Figure 6.10 shows the resulting graphs for a
default handshake and again with the SACK Immediately extension. The 200 ms
delays because of the delayed acknowledgements are clearly visible for the default
handshake and resulted in a total time of about 1 second until the handshake has
been completed. The same handshake, optimized by setting the I-bit for every
handshake message, only took about 5 ms to finish, because no delays had to be
awaited and the messages followed each other almost instantaneous.

6.5.2 Avoiding Duplicate HMACs

A further optimization is to define cipher suites with NULL HMAC algorithms,
that is using no separate HMAC for DTLS. DTLS does not need to calculate its
own HMAC to ensure integrity, because this is done by SCTP-AUTH for the entire
message anyway. Although the HMAC is now calculated after encryption and is
not encrypted itself anymore, this does not a↵ect security because an attacker still
cannot alter any data without recalculating the HMAC, which is impossible without
knowing the secret key. This is expected to reduce the necessary computing power
for every packet.

The result with one CPU core can be seen in Figure 6.11, SCTP-aware DTLS
became much faster and had almost a comparable performance to TLS over TCP.
The di↵erence narrowed even more when two CPU cores were used, as shown in
Figure 6.12. This proved that this optimization is a significant improvement for
the performance and makes SCTP secured with DTLS a viable alternative to TLS
with TCP. The DTLS measurements showed a gap at 4500 bytes message size,
which was again caused by SCTP’s message-orientation. Only a single one fit into
a packet when the message size was 4500 bytes or larger. The OpenSSL algorithms
used for encryption and hash computation were more e�cient with fewer but larger
message sizes, hence the increase for the unoptimized measurement. The HMAC
algorithm of SCTP-AUTH, however, is less optimized and performs better with
multiple smaller messages. Therefore was the throughput reduced with SCTP-
AUTH only, as well as for optimized DTLS without the second HMAC calculation.

6.5.3 Allowing Multiple Epochs

When renegotiations are frequently performed, an epoch usually does not last very
long, so as another optimization, messages of the previous epoch can be accepted
as well. The DTLS specification allows the last epoch still to be used for up to 120
seconds. Unfortunately, this does not guarantee that there will not be any messages

6.5. Optimizations 63

Ϭ ϮϬϬϬ ϰϬϬϬ ϲϬϬϬ ϴϬϬϬ
Ϭ

ϮϬϬϬϬ

ϰϬϬϬϬ

ϲϬϬϬϬ

ϴϬϬϬϬ

ϭϬϬϬϬϬ

ϭϮϬϬϬϬ

hƐĞƌ DĞƐƐĂŐĞ ^ŝǌĞ @�ǇƚĞƐD

dŚ
ƌŽ
ƵŐ

ŚƉ
Ƶƚ
@<�Ǉ

ƚĞ
ƐêƐĞ

ĐD

�d>^ ê ^�dW H��^Ϯϱϲ͕ ŶŽ ,D��L�d>^ ê ^�dW H��^ϮϱϲLd>^ ê d�W H��^ϮϱϲL^�dW H�hd,L^�dW

Figure 6.11: SCTP-aware DTLS with HMAC Optimization (Single Core)

Ϭ ϮϬϬϬ ϰϬϬϬ ϲϬϬϬ ϴϬϬϬ
Ϭ

ϮϬϬϬϬ

ϰϬϬϬϬ

ϲϬϬϬϬ

ϴϬϬϬϬ

ϭϬϬϬϬϬ

ϭϮϬϬϬϬ

hƐĞƌ DĞƐƐĂŐĞ ^ŝǌĞ @�ǇƚĞƐD

dŚ
ƌŽ
ƵŐ

ŚƉ
Ƶƚ
@<�Ǉ

ƚĞ
ƐêƐĞ

ĐD

�d>^ ê ^�dW H��^Ϯϱϲ͕ ŶŽ ,D��L�d>^ ê ^�dW H��^ϮϱϲLd>^ ê d�W H��^ϮϱϲL^�dW H�hd,L^�dW

Figure 6.12: SCTP-aware DTLS with HMAC Optimization (Dual Core)

64 SCTP-aware DTLS

arriving even later and will be discarded as discussed in Section 6.2.3. Since message
loss subverts the reliable transfer of SCTP, without any other measures, this is an
unacceptable approach.

To avoid message loss, the previous one or more epochs can be always acceptable.
Before handshaking, it has to be ensured that all messages of the allowed previous
epochs have been received. The more epochs are still accepted, the higher is the
probability that all past messages have been received and no delay is necessary.
However, the more epochs are accepted, the higher is the risk of a successful attack.
Therefore, as few epochs as possible should be permitted, and this optimization is
not recommended for connections with rare renegotiation. Especially the first epoch
for connection establishment is critical since it is completely unsecured. Hence,
application data sent with epoch 0 parameters must not be accepted at any time.

6.6 Conclusion

In this chapter, SCTP-aware DTLS has been proposed as a new security solution
for security-aware applications. The basic idea in [31] has been extended with
respect to some crucial aspects, for example regarding message loss prevention.
The change of key material and association shutdowns are critical with respect to
data loss, because SCTP messages on di↵erent streams do not have to be kept in
sequence. The suggested solution uses SENDER DRY event notifications to drain
the data transfer.

Performance measurements proved that an optimized SCTP-aware DTLS can be
almost competitive to TLS over TCP. The presented solution based on DTLS allows
to use encryption and authentication with SCTP features fully supported without
security issues but with a reasonable performance. It can be realized in a user-space
library, such as OpenSSL. This has been done and the maintainers of OpenSSL have
accepted the implementation described in Section 6.3 and integrated it into stable
release 1.0.1 [61]. The adaptations have also been introduced to the IETF for
standardization, which has accepted and published them in RFC 6083 [105].

Chapter 7

DTLS-based Tunneling

One possibility to secure security-agnostic SCTP applications is to tunnel the net-
work protocol (IP) underneath the SCTP associations over DTLS. This is done
with Cisco’s VPN software and discussed in Section 5.2.1. The unreliability of
DTLS provides an e�cient transport for the likewise unreliable network protocol,
without adding unnecessary retransmissions. DTLS is a protocol that has almost
no requirements to its lower and upper layers that have to be considered, so it can
rather easily be extended with new features to increase the e�ciency of the transfer
even further. The extensions proposed in this chapter have been published in [90].

7.1 General Considerations

DTLS has been specified for the use with unreliable and connectionless transport
protocols, but is session-oriented itself. That causes the issue that despite the trans-
port protocol being connectionless, a handshake is necessary for the establishment.
It has to be determined if the peer is still available or became unreachable, so
the session must be closed. Additionally, if there has been no data transfer for a
certain time, intermediate firewalls or NAT routers may discard the corresponding
state that opened the necessary ports. Therefore, a mechanism used periodically
to check the peer’s availability and to keep the state of possible middleboxes is
required. The only mechanism DTLS o↵ers is to perform a handshake for renego-
tiation, which is a costly operation. A more e�cient keep-alive mechanism would
have to be implemented for the application protocol.

Furthermore, UDP is a message-oriented protocol, so determining the maxi-
mum possible message size is crucial. If the Maximum Transmission Unit (MTU)
is assumed too high, then intermediate routers may discard messages, or IP frag-
mentation will be used. If it is assumed too low, the transmission is less e�cient
than actually possible. To address this issue, the DTLS specification requires per-
forming a Path MTU Discovery [52] to determine the maximum message size each
router on the path between the peers can handle. Unfortunately, unlike the also
message-oriented SCTP, UDP has no mechanism to perform such a discovery.

65

66 DTLS-based Tunneling

Another generic problem with tunneling is the lack of mobility. With modern
mobile devices having multiple network interfaces, such as Wi-Fi and Universal
Mobile Telecommunications System (UMTS, 3G) [85], the points of attachment
frequently change, which at the current state always terminates every connection
and all have to be reestablished. Although there are several approaches to this
issue, as discussed in Section 2.6, because of various drawbacks none has been
widely deployed so far.

7.2 Heartbeat Extension

Due to the connectionlessness and lack of a keep-alive mechanism of UDP, the
availability of the peer can only be determined by performing a handshake or im-
plementing a keep-alive mechanism for every application protocol. To provide an
application protocol independent mechanism, an extension for DTLS that provides
the required functionality is suggested here. A request and response protocol is
most suitable to realize a keep-alive method, because each peer can send requests
periodically and await the response. Therefore such messages have to be added
with a new extension and since keep-alive is also known as heartbeating, the exten-
sion is named the Heartbeat extension. It consists of the two mentioned messages,
which are called HeartbeatRequest and HeartbeatResponse accordingly. Upon re-
ception of a HeartbeatRequest, a HeartbeatResponse must immediately be sent as
the answer. A timer similar to the handshake timers is started for every request,
and if no response has been received until the timer expires, the HeartbeatRequest
is retransmitted. This is done until the maximum number of retransmissions is
reached and the connection is closed. Requests can be sent at any time during the
connection lifetime, except when a handshake is in progress, because the handshake
and its timers will perform the same task.

Payload

Padding

HB Message Type Payload Length

Figure 7.1: Heartbeat Message

The format of the new messages can basically be arbitrary, because for keep-
alive no further information than the message type is necessary. However, to make
the extension as versatile as possible, an arbitrary payload and a random padding
is preferred, illustrated in Figure 7.1. The payload of the HeartbeatRequest can be

7.3. Path MTU Discovery 67

chosen by the implementation, for example simple sequence numbers or something
more elaborate. The HeartbeatResponse must contain the same payload as the
request it answers, which allows the requesting peer to verify it. This is necessary
to distinguish expected responses from delayed ones of previous requests, which can
occur because of the unreliable transport. The padding, on the contrary, always has
to be of random data and is not sent back. The length of the padding is arbitrary,
but should always be 16 bytes or more for security reasons, to prevent statistical
attacks in case the payload is predictable. This can be the case if an implementation
only uses sequence numbers for the payload of its requests. Without additional
random bytes this payload can be guessed easily, thus making it prone to a Known-
Plaintext Attack (KPA) [94].

The support of the extension is negotiated with Hello-Extensions, an additional
parameter for the ClientHello and the ServerHello, depicted in Figure 7.2. This
is done for backward compatibility in case one of the peers does not yet support
this protocol extension. The Hello-Extensions also contain a Mode field to either
allow or forbid the peer to use this protocol extension. This can be used to avoid
continuous requests by the server that could drain the battery of mobile devices,
for instance.

HB Extension Type Length = 1

Mode

Figure 7.2: Heartbeat Hello-Extension

The Heartbeat Protocol can be used to test if the peer is still alive, by sending
a HeartbeatRequest periodically. If no HeartbeatResponse has been received after
a certain time, the peer can be considered unreachable and the DTLS session can
be closed. The protocol can also be used to perform a Path MTU Discovery, as
described in the next section.

This extension is also crucial for DTLS Mobility, introduced in Section 7.4.

7.3 Path MTU Discovery

A generic mechanism to perform the necessary Path MTU Discovery for DTLS is
preferred to having every application implement their own. The proposed Heartbeat
extension can be used to realize a Path MTU Discovery for packet-based protocols,
as described in [48]. Only the payload of a HeartbeatRequest is returned in the re-
sponse, so varying the padding of HeartbeatRequests, while keeping the padding of
HeartbeatResponses at minimum, can be used to determine the maximum message
size of one direction of the current path.

68 DTLS-based Tunneling

The Path MTU is the minimum MTU of all involved devices on a path, therefore
it can never be larger than the MTU of the local network interface. Hence, trying to
send a HeartbeatRequest of the size of the local MTU is a good start. The message
has to be sent with the Don’t Fragment bit to disable automatic IP fragmentation.
This is not necessary with IPv6, which does not allow intermediate routers to
perform IP fragmentation anyway. If the HeartbeatResponse is returned, the path
can handle messages of this size and no further actions are necessary. If any of the
devices on the path signals a Fragmentation needed error via the Internet Control
Message Protocol (ICMP) [68], the Path MTU is smaller than the local one. The
ICMP message can contain the MTU of the relevant device, which then should be
tested next. However, to read ICMP messages administrator privileges are usually
required. Most applications are run with lesser privileges, to limit the possible
damage in case they become compromised, so this information may not be available.
Security issues with ICMP messages in general are discussed in Section 7.4.4. If an
ICMP message contains no MTU value or cannot be read, there is only a limited
number of possible MTU values, so it is more e�cient to keep a list of these values
and continue with the next smaller one instead of decreasing the request message
size byte by byte. Table 7.1 shows a list of some common values. If ICMP is
disabled or the message was lost, a too large HeartbeatRequest will simply be
dropped without any notification. In this case a timer has to be started every time
a request is sent. If it expires because of no response, the discovery can be continued
with a decreased request size. This process is illustrated in Figure 7.3.

MTU Protocol

65535 Maximum specified by RFC 791
65535 Hyperchannel
17914 IBM Token Ring
9000 Ethernet Jumbo Frames
4352 FDDI
2048 Wideband Network
1500 Ethernet, PPP
1492 IEEE 802.3, PPPoE
1460 L2TP
1372 PPTP
576 x.25, SLIP
68 Minimum specified by RFC 791

Table 7.1: Some Possible MTU Values

As soon as a HeartbeatResponse has been received, the Path MTU has been
found and can be used. Since it can be di↵erent for each direction of the path, both
peers have to determine this value independently. The Path MTU Discovery should
be performed periodically, in case the routing and therefore the path between the
hosts changes.

7.4. Mobility Extension 69

Detect
local MTU

Send
HeartbeatRequest

Got
response?

Got ICMP?

No

MTU in
ICMP?

Yes

Timer expiresNo

Try next lower
MTU in list

No

Try received
MTU

Yes

Done
Yes

Figure 7.3: Path MTU Discovery Flow Chart

7.4 Mobility Extension

Several solutions to provide mobility for end-to-end connections have been intro-
duced in Section 2.6. Because of the drawbacks of the present approaches, the
requirements for a more easily deployable solution will be analyzed in the follow-
ing and an approach based on DTLS will be introduced. A rough draft has been
described in [109], yet lacking any security mechanisms and other details necessary
for an actual realization. DTLS Mobility o↵ers a secure connection based on UDP
and can be used directly for data transmission, or as a tunnel for the actual ap-
plication protocol. It can be implemented in a library and deployed together with
the application that wants to make use of it. No infrastructure support is required,
and middleboxes performing NAT are supported.

7.4.1 General Considerations

Whenever a host changes its point of attachment, it should be able to keep its
connections alive and continue the communication without reconnecting. This can
be achieved either by an infrastructure that knows the location of a device and
routes the data to its address accordingly, or by the hosts themselves, by being able

70 DTLS-based Tunneling

to handle changing addresses. The problem with mobility-aware infrastructure, like
cell phone networks, is that the connection is still lost as soon as another network
with a di↵erent infrastructure, like a Wi-Fi network, is joined. Hence, only possible
solutions that allow mobility across di↵erent kinds of networks will be considered.

An essential requirement for handling changing addresses is a unique identifier,
because the address obviously cannot be used for the distinction of multiple con-
nections anymore. This identifier only has to be unique per direction, so both peers
can either use the same or di↵erent identifiers for the same connection.

The notification of an address change can be either explicit or implicit. An ex-
plicit notification uses a designated message carrying the new address, while with an
implicit notification the receiver determines the address change by a di↵erent source
address of a specific or an arbitrary message. The advantage of explicit notifica-
tions is that within a secured connection the notification messages will be secured
as well, while with implicit notifications additional security measures have to be
taken. They are necessary because the source address is usually unprotected and
can easily be modified by an attacker. However, the explicit notification requires
knowledge of the current address, that is it needs layer 3 and 4 information. This
is not only a violation of the layer model, it also does not work with NAT, because
a middlebox performing NAT will overwrite the source address of the endpoint,
but not the addresses that may be carried in the payload of a message. Even a
customized NAT implementation would not be able to modify the payload because
of the encryption and integrity checks that are used. Finally, the address change
has to be known before it occurs in order to send a notification, which is impossible
to realize in most circumstances.

Therefore, it is suggested here to use implicit notifications, either with a des-
ignated message or an arbitrary one. Using a specific message has similar issues
as the explicit notification, since the host must be aware of the address change in
order to send the notification. This is not the case with NAT middleboxes, which
are quite common in today’s networks. So the only reasonable solution is to use an
implicit notification with all messages, although this requires an additional mecha-
nism to secure the address change. The unprotected source address can easily be
modified by an attacker, which can be used to drop the connection with an invalid
source address or to perform a Denial-of-Service attack. The attacker establishes a
regular connection, requests a large amount of data and changes the source address
to the victim’s one, so all the data will be sent to the victim.

An address change likely results in a di↵erent path to the peer, so a Path MTU
Discovery has to be performed to determine if the MTU has changed. This prevents
packet losses and less e�cient transfer, respectively.

A new approach introduced in the next section is to use DTLS for mobility as
discussed above. The benefit of integrating mobility into a security solution is that
applications already having secured connections can be mobile without additional
measures. This is particularly important for mobile devices where resources are
limited. Since DTLS is designed for unreliable and connectionless protocols, it

7.4. Mobility Extension 71

can use any given address for a connection. Therefore, the only issue is to verify
an address change before the transmission can continue with the new destination.
DTLS is implemented in a library, like OpenSSL, so if an application wants to use
mobility, it just needs to include the library. These advantages, especially the easy
integration, make DTLS Mobility a promising solution to be actually deployed. An
overview of the features of this suggestion compared to existing solutions is given
in Table 7.2.

Mobile IP MSOCKS TCP-R SCTP MP-TCP DTLS Mobility

No specific infra- - - + + + +
structure required

Operating system - + - - - +
independent

Deployable as - + - - - +
part of application

NAT support - 1 - 1 - - 2 + +

Reliable transfer - + + + + -

Unreliable transfer + - - + 3 - +

Multi-homing - + - + + -

1
explicit configuration of NAT required -

2
UDP encapsulation and ADD-IP extension required -

3
PR-SCTP extension

Table 7.2: Comparison of Di↵erent Approaches to Mobility

7.4.2 Concept

To extend DTLS with mobility, an identifier is required to map an incoming message
to a specific connection even if the source address changes. This can be achieved
by adding a new Connection Identifier (CID) to the Record header, as illustrated
in Figure 7.4. A length of 32 bit is considered appropriate here, but it could be
extended if necessary. The CID is placed before the length field to allow network
packet analyzers to distinguish between regular and extended headers more easily.
In case the analyzer has only seen an excerpt of a connection or only single messages,
it may not know if the extended header is used and thus a heuristic is necessary.
This can be done by verifying the Length field of the regular Record header. If the
value of the field does not match the length of the message, then the extended header
is probably used, with the actual length field in a di↵erent position due to the CID.
We implemented this strategy for the network packet analyzer Wireshark [110] and
tests proved it to be very reliable.

For backward compatibility, the modified header can only be used after both
peers have announced their mobility support. This can be done by adding a Hello-
Extension to the ClientHello and the ServerHello, respectively. If both support the
extension, the modified header can be used as soon as the sending side changes,

72 DTLS-based Tunneling

Message

Content Type Protocol Version Epoch

Epoch Sequence Number

Sequence Number Connection ID

Connection Identifier Length

Length

Figure 7.4: DTLS Record Header with Added Connection Identifier

that is after the ClientHello for the client and after the ServerHelloDone for the
server (compare Figure 3.9).

The CID of the modified header has to be unique for each connection on both
sides. Since the peers cannot know which values are already in use on the opposite
side, the Hello-Extension can be used to provide an available identifier, as illustrated
in Figure 7.5, which the receiver uses subsequently for its messages.

Mobility Extension Type Length = 4

Connection Identifier

Figure 7.5: Mobility Hello-Extension

An address change will be notified implicitly, which is prone to attacks since the
source address is not secured by DTLS. However, it can be secured by using the
Heartbeat extension to verify the new address. Whenever a di↵erent source address
is detected, the endpoint sends a HeartbeatRequest to the new address, but contin-
ues sending everything else to the previous one. After a valid HeartbeatResponse
has been received, the endpoint will start using the new address.

If the mobile host is not sending any data that would allow the peer to notice
the address change, periodic Heartbeats can be sent. Observing the local interfaces
and sending a HeartbeatRequest immediately after the address has changed can
also optimize this. However, periodic requests are still necessary to handle address
changes of intermediate routers performing NAT.

An address change with Heartbeat verification is illustrated in Figure 7.6. The
address of one host is overwritten by a NAT router, which then changes its address,
for example because it had to reconnect to the Internet and got a di↵erent dynamic
address assigned. In this case the first data message after the router changed its
address will be lost, because the new address has not been verified yet, and therefore

7.4. Mobility Extension 73

Data to 209.85.149.106

From 10.0.0.42

Data to 209.85.149.106

From 62.67.23.42

Data to 10.0.0.42

From 209.85.149.106

Data to 62.67.23.42

From 209.85.149.106

Router Address Change

Data to 209.85.149.106

From 10.0.0.42

Data to 209.85.149.106

From 62.67.100.5

HeartbeatRequest to 10.0.0.42

From 209.85.149.106

HeartbeatRequest to 62.67.100.5

From 209.85.149.106

Data to 62.67.23.42

From 209.85.149.106

HeartbeatResponse to 209.85.149.106

From 10.0.0.42

HeartbeatResponse to 209.85.149.106

From 62.67.100.5

Data to 209.85.149.106

From 10.0.0.42

Data to 209.85.149.106

From 62.67.100.5

Data to 10.0.0.42

From 209.85.149.106

Data to 62.67.100.5

From 209.85.149.106

Figure 7.6: Implicit Address Change with Verification

the old one has to be used. In case another host started using the previous address,
it may send an ICMP error message, which has to be ignored as discussed in the
next section.

7.4.3 Security Considerations

The 32 bit Connection Identifier is used to map incoming messages with varying
source addresses to a known connection. For this task, the identifier could simply be
set to 1 for the first connection and increased for every other one. The knowledge of
the CID does not help an attacker in terms of injecting messages or manipulating the
address changes because of DTLS’ security features. An attacker can, however, send
random messages with valid CIDs but faked source addresses to a server to waste
computing power. While every message with an unknown CID will be discarded
immediately, those with valid CIDs will be processed until the decryption and MAC

74 DTLS-based Tunneling

validation failed. So with many concurrent connections and therefore the possibility
to send many manipulated messages to all of them, a considerable amount of CPU
load can be generated. To mitigate this risk, the CIDs should rather be random
than sequential, thereby impeding the guessing of valid ones.

Securing the address change with Heartbeats is su�cient, since they are fully
secured by DTLS. The endpoint must have knowledge of the previously negotiated
master secret to be able to respond correctly, which is impossible without the private
keys. Also, a previously captured valid HeartbeatResponse cannot be resent by an
attacker because of the replay check done by DTLS. A Denial-of-Service attack,
where a malicious user requests a large amount of data before changing the address
to a victim’s one, is also prevented, because the victim would never send a valid
response. A man-in-the-middle can perform a Denial-of-Service attack by changing
the address to an invalid one, thus basically shutting down the connection. This is
possible by modifying the source addresses of regular messages and the Heartbeat
exchange. However, with the privileges necessary for this, the attacker could rather
drop all messages more easily for the same e↵ect.

According to the specification of the Heartbeats, only a single one can be in
flight at a time. A timer has to be used to retransmit a lost one until a response
arrives or the connection is dropped because of too many failed attempts. When
securing an address change, retransmissions must obviously not be done, because
a single message with a random source address, from where no valid response can
be expected, will lead to the termination of the connection. Hence, only a single
HeartbeatRequest should be sent for each verification attempt. The limitation that
only a single request can be in flight can then not be enforced, because if there is
no response, a timer has to expire before a new address change verification can be
done with a new HeartbeatRequest. This could also be used to perform a Denial-of-
Service attack against the address change. When an attacker sends so many faked
messages, that a request is always in flight, or more specifically a timeout is always
awaited, a real address change cannot be validated. Sending a single request for
every single message with a di↵erent source address can prevent this. The payload
can be used to carry all the necessary information, so no resources have to be
allocated. Once a valid HeartbeatResponse has been received, the new address can
be accepted. This also serves to increase the reliability, because otherwise there are
no retransmissions for lost verification requests. Although this increases the load
on the network, it cannot be used for attacks, because only valid DTLS messages
will trigger a request.

7.4.4 ICMP Considerations

The Internet Control Message Protocol (ICMP) and its version for IPv6, ICMPv6 [8],
are used for signaling at the IP layer, for example that a message is undeliverable
for some reason. Although these messages are usually handled by the operating
system, the Destination Unreachable messages result in failing send/receive calls

7.5. Implementing Heartbeats and DTLS Mobility 75

and are thus notified to the application layer, if connected sockets are used. The
application has to behave according to the reason why this error occurred.

If Fragmentation needed or Packet Too Big is received, a Path MTU Discov-
ery should be performed, because the routing and thus the Path MTU probably
changed. In the other cases the peer is not available anymore. Without mobility,
these errors should rarely occur as soon as the connection has been established,
since either the network has to go down or the peer has to decline messages. An
attacker, however, could easily fake such ICMP messages in an attempt to drop
the connection. Hence, they should be ignored and the reachability of the peer
tested otherwise, for example by sending a HeartbeatRequest or with the applica-
tion protocol, if possible. With mobility these errors are more likely to occur, for
example if the mobile client joins a network with limited connectivity. Hence, with
DTLS Mobility an ICMP error indicating unreachability of the peer must trigger a
HeartbeatRequest to check the connectivity.

7.5 Implementing Heartbeats and DTLS Mobility

As part of this work, the Heartbeat extension has been implemented for OpenSSL,
which was rather straightforward as illustrated in Figure 7.7. The new message
types had to be added, as well as the Hello-Extensions. The handling of incoming
messages had to be extended to answer every reception of a HeartbeatRequest with
a HeartbeatResponse immediately. An API had to be provided to send a Heart-
beatRequest. The retransmission timer for DTLS handshake messages was also
used for Heartbeat messages. The connection is closed if there are too many unsuc-
cessful retransmissions, so by using the same timer this also applied to Heartbeats
and no further action was required.

Context

Session

UDP Socket BIO

CID Management

Lookup Table

UDP

Heartbeats

Figure 7.7: Modifications to OpenSSL to support Heartbeats and DTLS Mobility

76 DTLS-based Tunneling

Read Message

Is CID
known?

Copy Message to
Session

Yes

Lookup CID
NoDoes CID

match?

Process Message

Yes

Drop Message

No

Wake up Thread

Decrypt Message Decryption
possible?

Send HB Request

No

Is HB
Response?

Yes

No

Change Address

Yes

Figure 7.8: DTLS Mobility Flow Chart

The modifications for the DTLS Mobility prototype required the session objects
to handle both the default and the extended Record Header. Additionally, a lookup
table was necessary, which was added to the context objects similar to the session
caching functionality for session resumption.

Figure 7.8 shows how mobility messages are processed within the implementa-
tion. Every time a new connection has been successfully set up, the Connection
Identifier, the corresponding session object and the thread used to handle the con-
nection have to be added to the lookup table. Usually, each established connection
using connected sockets, that is they are bound to a fixed destination, is handled
by its own thread. The kernel automatically passes incoming data to the proper
socket, and so also to the proper session. If the source address changes, the kernel
cannot match the socket anymore and the message ends up at the listening socket
for new connections, which receives everything else. The lookup table is used to
find the appropriate session by comparing the CID. If the lookup is successful, the

7.6. Evaluation and Measurements 77

message can be copied into an additional bu↵er that had to be added to the ses-
sion object, which is checked and processed every time before a new message is
read from the socket. In the case the socket is in a blocking read call waiting for
incoming messages, a signal is sent to the thread, so the read call is interrupted,
and the new message can be processed. If the message is valid and has been suc-
cessfully decrypted, a HeartbeatRequest is sent to the new address for verification.
The response will again end up at the listening socket and has to be passed to the
appropriate session object, but now that the new address has been verified, the
connected socket of the corresponding session can be changed to the new address.

These changes to realize DTLS Mobility allow an easy deployment, since the
resulting library is all that is necessary. The DTLS library can be provided by the
system and linked dynamically by applications. If not yet available it can also be
linked statically, that is bundled with an application.

7.6 Evaluation and Measurements

DTLS with the mobility extension can either be used directly for an application
protocol or as a tunnel. By tunneling the IP layer, this can be used to provide
security to generic connections (compare Section 5.1.2), or to connect two separated
networks in a secure way, that is a VPN (compare Section 5.2.1). With the mobility
extension, such a tunnel can even be mobile and thus add mobility to generic
connections transparently. Compare the protocol stacks in Figure 5.1 and 5.2 for
an application protocol using DTLS directly and being tunneled, respectively.

To verify the functionality, direct connections have been tested in common sce-
narios with address changes. Once it was ensured that everything worked as ex-
pected, the tunneling could be examined as well by measuring a connection over a
mobile tunnel.

7.6.1 Direct Use

To validate the concept and verify the functionality of DTLS Mobility and the
Heartbeat extension, three common scenarios with network address changes have
been set up. The time necessary until the DTLS connection was fully operational
again has also been measured. The prototype implementation for OpenSSL was
used with an echo server and client, the latter sending messages continuously, which
were returned by the server, a Mac Mini running Mac OS X 10.6.4. For every
address change, the server measured the time until the transmission continued,
that is until the physical link was reestablished, and DTLS had verified the new
address. The measurements were repeated 10 times to calculate an average value.
The Wi-Fi networks used were connected via a high speed connection to the server
over the internet, which added almost no latency to the connection.

Common scenarios for mobility are the address change of a middlebox, usually
unnoticed by the client, the change from one Wi-Fi network to another, either

78 DTLS-based Tunneling

because of a location change or a failure, and the change between Wi-Fi networks
using the cell phone network in between. The first scenario was measured with
a laptop running Ubuntu Linux 10.04 LTS, connected to a Wi-Fi network. The
router of the network was an Apple Airport Extreme that performed NAT and was
connected to the internet via Digital Subscriber Line (DSL) with a dynamic IP
address that was likely to change with every reconnect. The client did not notice
this, because it only knew its address in the local network. The setup is illustrated
in Figure 7.9.

Internet

DSL Router

Figure 7.9: Laptop Connected over a NAT Middlebox

In the second scenario, shown in Figure 7.10, there were two Wi-Fi networks,
and the client changed from one to the other, because the first either went down
or moved out of range. For the measurement, one router was turned o↵ manually
for the loss of connectivity during the measurement. The same laptop was used
and for comparison an iPod touch (iOS 4.2.1) and an Android 2.1 smartphone,
both with Wi-Fi networking enabled. The client application had to be ported to
these two devices. Both are able to run applications written in C, so this was done
by implementing a User Interface using their native development environments
(Objective-C and Java) for the original program, and linking the OpenSSL library
statically.

Internet

Wi-Fi Router Wi-Fi Router

Figure 7.10: Laptop Moving to Another Wi-Fi Network

7.6. Evaluation and Measurements 79

The third scenario was basically the same as the second one, but this time with
an iPhone with 3G capabilities, to make use of the cell phone network when no
Wi-Fi connection was available, as depicted in Figure 7.11. As before, one Wi-Fi
router was turned o↵ manually.

Internet

3G

Wi-Fi Router Wi-Fi Router

Figure 7.11: Cell Phone Moving to Another Wi-Fi Network with 3G

All scenarios worked as expected, and the connection was continued despite the
address changes. The necessary time to reestablish the physical link, as well as
performing the DTLS address change verification is listed for each measurement in
Table 7.3. While the time for verifying the new address roughly equaled a Round-
Trip Time (RTT) in the given network, the time to reestablish the physical link
was depending on the device and network used. This is particularly true for the
time necessary to detect the loss of a Wi-Fi connection, which di↵ered significantly
between the laptop and the handheld devices. This was most likely because the
handheld devices are optimized to use as little power as possible for increased
battery lifetime, and therefore check the availability of the Wi-Fi network less
frequently. The use of 3G as an always-available fallback shortened the downtime
to the detection of a connection loss and was used until a new Wi-Fi connection had
been established. So while DTLS Mobility is basically suitable even for time-critical
applications, such as audio and video, the time necessary for the hardware and the

Device Link DTLS

Laptop DSL Router Reconnect 6.6 s 42.0 ms
Wi-Fi ! Wi-Fi 5.5 s 3.2 ms

iPod touch Wi-Fi ! Wi-Fi 17.8 s 16.5 ms

HTC (Android) Wi-Fi ! Wi-Fi 14.8 s 7.1 ms

iPhone Wi-Fi ! 3G 13.3 s 273.5 ms
3G ! Wi-Fi 0.1 s 15.0 ms

Table 7.3: Mobility Delays

80 DTLS-based Tunneling

operating system to reestablish the physical connectivity has yet to be optimized
to avoid outages of several seconds. This, however, is a generic problem for any
mobility solution.

7.6.2 Tunneling

After the tests with a connection making direct use of DTLS Mobility have proven
that everything works as expected, and the di↵erent kinds of address changes are
handled easily, DTLS can be used as a tunnel for other connections.

To examine the behavior of a tunneled connection, a tunnel between two hosts
has been set up, which was used by two additional hosts communicating over it,
as shown in Figure 7.12. The tunnel server was a Mac Pro connected to the in-
ternet directly via a high speed link and the tunnel client a MacBook Pro (MBP)
connected to the Internet via a 100 MBit/s cable, a Wi-Fi connection, and also via
the cell phone network with 3G. The tunnel was realized with divert sockets, which
redirected the IP packets to be tunneled to the tunnel applications. After passing
the tunnel, the IP packets were sent with a raw socket to their actual destination.

A second Mac Pro was connected to the tunnel server and hosted a server
accepting TCP connections and logging their throughput each second. A Mac
Mini connected to the MacBook Pro runs the TCP client that connected to the
server over the tunnel and sent as much data as possible. All hosts were running
Mac OS X 10.7.3 and all measurements were repeated 10 times to calculate average
values and 95% confidence intervals.

Internet

Tunnel
Endpoint

Tunnel
Endpoint

TCP
Client

TCP
Server

3G

Wi-Fi Router

Figure 7.12: TCP Connection over a Mobile DTLS Tunnel

7.6. Evaluation and Measurements 81

At first, the time necessary to change from the cable to the Wi-Fi connection
and again to the 3G link in this setup was measured, in the same way as in the
previous measurements. The results listed in Table 7.4 are necessary to interpret
the behavior of the tunneled connection.

Device Link DTLS

MacBook Pro Cable ! WLAN 2.0 s 20.3 ms
WLAN ! UMTS 13.3 s 121.4 ms

Table 7.4: Mobility Delays with a DTLS Tunnel

The MBP had three links to the Internet and was set up to always prefer the
fastest possible method. Hence, at first the cable link was used when the TCP
connection was established over the tunnel. After 15 seconds the cable link was
lost by pulling the cable, and the DTLS connection changed to the Wi-Fi link and
performed an address change verification. According to the results in Table 7.4
this took about 2 seconds. The Wi-Fi network was lost 60 seconds later by turning
o↵ the Wi-Fi router, so only the 3G link was available anymore. It took about
13 seconds for the MBP to notice the loss of the connectivity before it started to
use the cell phone network.

The graph in Figure 7.13 shows that while the 100 MBit/s cable link was avail-
able, the throughput was accordingly at about 11 MByte/s, which is slightly lower
than the theoretical maximum because of the additional overhead due to the tun-
neling. When the cable link was lost, the Wi-Fi link was used as expected about
2 seconds later. The achieved throughput varied between 1 and 2 MByte/s and in-
creased only slowly, because the signal strength and link quality varied, which also
resulted in large confidence intervals. When this link was lost as well, as shown in
Figure 7.14, it took about 15 seconds until there was noticeable throughput over
the 3G link. This is slightly longer than the 13 seconds of the address change itself,
and was caused by the retransmission timers of TCP that had to expire before
the sending of data resumed. The transfer continued on the 3G link with about
0.2 MByes/s.

This measurement shows not only that DTLS is a viable option to realize a
VPN by tunneling IP packets, but also that mobile tunnels are possible without
any limitations, even for reliable transport protocols. The tunneled connection re-
sumes immediately after the first retransmission was successfully sent over the new
link. This is significantly faster than awaiting a timeout to realize the connectivity
changed and reconnect with a new address. The limitation is again the time neces-
sary for the hardware and the operating system to detect the loss of connectivity,
and to restore it with a di↵erent network interface.

82 DTLS-based Tunneling

Ϭ ϭϬ ϮϬ ϯϬ ϰϬ ϱϬ ϲϬ
Ϭ

ϮϬϬϬ

ϰϬϬϬ

ϲϬϬϬ

ϴϬϬϬ

ϭϬϬϬϬ

ϭϮϬϬϬ

dŝŵĞ @ƐĞĐD

dŚ
ƌŽ
ƵŐ

ŚƉ
Ƶƚ
@<�Ǉ

ƚĞ
ƐêƐĞ

ĐD �ĂďůĞ ůŽƐƚ͕ ƐǁŝƚĐŚ ƚŽ t>�E

d�W �ŽŶŶĞĐƚŝŽŶ

Figure 7.13: Throughput of the TCP Connection, Cable to WLAN Change

ϲϬ ϳϬ ϴϬ ϵϬ ϭϬϬ ϭϭϬ ϭϮϬ
Ϭ

ϱϬϬ

ϭϬϬϬ

ϭϱϬϬ

ϮϬϬϬ

ϮϱϬϬ

ϯϬϬϬ

ϯϱϬϬ

dŝŵĞ @ƐĞĐD

dŚ
ƌŽ
ƵŐ

ŚƉ
Ƶƚ
@<�Ǉ

ƚĞ
ƐêƐĞ

ĐD t>�E ůŽƐƚ͕ ƐǁŝƚĐŚ ƚŽ hDd^

d�W �ŽŶŶĞĐƚŝŽŶ

Figure 7.14: Throughput of the TCP Connection, WLAN to UMTS Change

7.7. Conclusion 83

7.7 Conclusion

In this chapter new extensions for DTLS have been suggested to improve to protocol
by adding new features. The DTLS specification requires performing a Path MTU
Discovery because of UDP’s message-orientation. Unfortunately, neither UDP nor
DTLS provide any mechanism to determine the maximum message size. Further-
more, checking the availability of the peer is necessary because UDP is connec-
tionless, but DTLS has no mechanism other than a costly renegotiation for this
task. These issues can be solved with the Heartbeat extension and its request and
response protocol, which can be used for keep-alive checks and also to perform a
Path MTU Discovery. The extension has been implemented for OpenSSL and has
been integrated in stable release 1.0.1 [61]. The TLS working group at the IETF
has accepted it for standardization and has published it in RFC 6520 [93].

The second proposed extension is DTLS Mobility, to add mobility features for
DTLS connections. With this extension, connections can be continued even if the
used IP addresses change, which allows a host to move between multiple networks
without reconnecting. The mobility features can be used for direct connections
or transport tunnels realized with DTLS. The functionality has been evaluated in
Section 7.6 for several scenarios, with a prototype implementation for OpenSSL,
as described in Section 7.5. This has shown that, after a new physical link has
been established, DTLS handled the address change and resumed data transfer
within a single RTT. Connection-oriented and reliable protocols, like TCP, can also
benefit from the mobility features with tunneling. After an address change, the
data transfer continues immediately with the first successful retransmission, which
is more e�cient than reconnecting after detecting the connection was lost.

84 DTLS-based Tunneling

Chapter 8

SSH Tunneling

Another method to secure security-agnostic applications is to use application pro-
tocol tunneling, which is commonly called forwarding, and has been discussed in
Section 5.2.3. It has the advantage that no support by the operating system is
necessary. Secure Shell (SSH) is an often-used solution to realize such a forwarding
for TCP, but does not support SCTP yet. The necessary modifications to the SSH
protocol for SCTP support are presented, and possible benefits by running SSH
over SCTP are examined. The adaptations for SSH suggested in this chapter have
been published in [91].

8.1 SSH Forwarding of SCTP

The connection-forwarding feature of SSH is only specified for TCP, but it can
basically also be used with SCTP associations. The corresponding protocol stack
can be found in Figure 5.4. The SSH endpoints have to be modified to accept
and establish SCTP associations rather than TCP connections. However, since
only the payload is forwarded, any information about the transport protocol will
be lost. That prevents SCTP and TCP from being used concurrently, because the
endpoint establishing the connection to the destination host cannot know which
protocol has to be used for each forwarded connection. Furthermore, additional
information of the transport protocol will be lost, too. This includes the informa-
tion for multi-streaming, multi-homing, unordered transfer and SCTP’s Payload
Protocol Identifier, indicating which upper protocol is used. Therefore, the SCTP
association would be limited to a single address and a single ordered stream, that
is basically the same features a TCP connection has.

8.1.1 SSH Modifications

To overcome these limitations, the additional information has to be retained. The
extension of the SSH protocol by adding new channel types for SCTP forwarding is
suggested, such as direct-sctpip for local and forward-sctpip for remote forwarding,

85

86 SSH Tunneling

MSG_CHANNEL_DATA Recipient Channel

Recipient Channel Unordered Stream Identifier

Payload Protocol Identifier

Data

Figure 8.1: SSH Data Message Extended for SCTP

to follow the naming of the existing types for TCP [112]. Multi-streaming, un-
ordered transfer and the Payload Protocol Identifier can be supported by prepend-
ing this information at the beginning of the SSH data messages carrying the payload,
as depicted in Figure 8.1.

SCTP supports using multiple addresses of a multi-homed destination when
establishing an association, as a failover in case one of them is currently unreach-
able. This is part of SCTP’s multi-homing features for increased reliability. With
SSH, only a single destination address can be provided, which is transmitted when
requesting the forwarding service. To support multiple destination addresses, the

MSG_GLOBAL_REQUEST Request Name Length

Request Name (“direct-sctpip”...)
Req. Name Length

Port Number

Want Reply Address Length

Address
Address Length

Number of Additional Addresses

Address #1 Length

Address #1

Address #N Length

Address #N

...

Figure 8.2: SSH Request Message Extended for SCTP

8.2. Forwarding over SCTP 87

service request message also has to be extended, as depicted in Figure 8.2. The
SSH endpoint can then use theses addresses when connecting to the destination.

8.1.2 Limitations

Despite SCTP’s multi-homing support and the support for SSH to use multiple
addresses for the destination, the multi-homing support with SSH forwarding is
still limited. The initial SCTP association to the first SSH endpoint may use multi-
homing, as well as the final SCTP association from the other SSH endpoint to the
destination, compare Figure 8.3. The forwarding SSH connection, however, uses
TCP and is therefore single homed. This can result in a single point of failure,
despite the additional reliability of the SCTP associations.

Source DestinationSSH
Endpoint

SSH
Endpoint

SCTP SCTPTCP

Figure 8.3: SCTP Forwarding over SSH

The extension PR-SCTP is also only partially supported. To enable it, both
endpoints must announce their support during the association establishment. With
SSH forwarding, the SCTP associations from the source and to the destination both
have an SSH endpoint as their direct peer, as seen in Figure 8.3 Hence, these SSH
endpoints must be configured to enable PR-SCTP, in order to use it. Both source
and destination hosts can use arbitrary PR-SCTP policies when sending to their
forwarding SSH endpoint, but the SSH endpoints will always send reliable, unless
manually configured otherwise. The forwarding SSH connection itself uses TCP
and is therefore always reliable. This can be detrimental if PR-SCTP is used to
avoid retransmissions to reduce the message delay.

8.2 Forwarding over SCTP

Although TCP is commonly used, the specification of the SSH Transport Layer
only requires a transport protocol that protects against transmission errors (lost
messages are repeated) [114] and preserves the order of the messages. SSH uses
multiple channels to realize its services, but they are multiplexed for the secured
connection provided by the SSH Transport Layer. As a result, the protocol expects
a single ordered transport channel for its SSH Transport Layer from the trans-
port protocol. This corresponds to a single-homed SCTP association with a single
stream, which behaves just like TCP.

88 SSH Tunneling

8.2.1 Usage of Multi-Homing

The immediate benefit of using SCTP is the multi-homing support that increases
the reliability or bandwidth of SSH connections. The necessary modifications are
limited to changing the sockets to SCTP and extending the configuration, to al-
low specifying multiple addresses for multi-homing support. With its message-
orientation, every SSH packet will be sent in an SCTP message. Although this re-
veals the message boundaries, that is not a security issue. Message boundaries are
visible for interactive remote shells anyway, due to the disabled Nagle’s algorithm.
Every input is sent immediately, instead of awaiting enough data to fill a packet.
And for bulk transfer, always the maximum message size will be used, which is 32
KBytes in the current OpenSSH implementation. The ADD-IP extension for SCTP
[101] that allows adding and removing addresses of already established connections,
can even be used to realize mobility as described in [80].

8.2.2 Usage of Multi-Streaming

The multi-streaming feature of SCTP is a concept similar to the channels of an
SSH connection, both are used to separate logically independent data. The SCTP
streams are not only used to mitigate the impact of head-of-line blocking on lossy
links. With specialized stream schedulers a fair distribution of the available band-
width or the prioritization of specific streams, like those carrying interactive remote
shells, can also be achieved, and will be discussed in Section 8.2.3.

Although the message order across multiple SSH channels is arbitrary, they are
multiplexed before being carried by the SSH Transport Layer, which prevents any
further reordering. This is shown in Figure 8.4. Since SCTP does not preserve the
order of messages across multiple streams, the reordering of messages of multiple
channels must be possible at any time to allow the mapping. Therefore, the SSH

SSH

Ch
an

ne
l 1

Message

Message

Ch
an

ne
l 2

Message

Message

Ch
an

ne
l N

Message

SSH Transport Layer

Encrypted
Message 9

Encrypted
Message 10

Encrypted
Message 11

Message

...

Transport to other
SSH Endpoint

Figure 8.4: SSH Channel to SSH Transport Layer Multiplexing

8.2. Forwarding over SCTP 89

Key Exchange Msg

Subprotocol Auth Authentication Msg

Key Exchange Msg

Subprotocol Auth Authentication Msg

Subprotocol Channel Channel 1 Channel Message

Subprotocol Channel Channel 2 Channel Message

Subprotocol Channel Channel 1 Channel Message

Subprotocol Auth Authentication Msg

Key Exchange Msg

7 – 1 – 1

7 – 2 – 1

7 – 1 – 2

8 –1 – 0

9 – 0 – 0

6 – 2 – 0

6 – 1 – 0

5 – 0 – 0

4 – 0 – 0

Transport Layer Subprotocol Layer Channel Layer Sequence No.

Figure 8.5: SSH Sequence Numbers with SCTP

Transport Layer needs to be adapted to tolerate reordering across multiple channels,
while still requiring the messages within a single channel and of the other sub-
protocols to stay in order.

SSH uses a sequence number for each message for the calculation of the Mes-
sage Authentication Code (MAC) to ensure integrity. This sequence number is not
transmitted; both endpoints keep track of it instead. If a message arrives out of
order, the assumed sequence number is di↵erent, and the verification of the MAC
and therefore the entire connection fails. To prevent this, the message header of
the SSH Transport Layer has to be extended with the sequence number to transfer
it explicitly, like it is done with DTLS or the Authentication Header of IPsec. Con-
trary to these protocols, the entire SSH header is encrypted, so the sequence number
will not be revealed. Additionally, the sequence number has to be extended to dif-
ferentiate between messages that have to arrive in order or that may be reordered.
As a possible solution it is suggested to use multiple sequence numbers, one for the
SSH Transport Layer, one representing the sub-protocol or channel, and one for
the messages within a channel. Figure 8.5 illustrates how three sequence numbers
can be used to ensure the order of the messages with the new constraints. The first
sequence number is increased for every SSH Transport Layer message, such as key
exchange messages. Every time a di↵erent sub-protocol is used, the first sequence
number is also increased but stays the same for all messages of the sub-protocol,
and the second sequence number is used for the messages of the sub-protocol. In
case of channels, every channel has its own second sequence number, and the third
number is used for each of its messages. The order can be verified as follows:

90 SSH Tunneling

• If only the first sequence number is set, they have to be in order.

• If the first and second sequence numbers are set, the second number has to
be in order for each first number.

• If all three sequence numbers are set, the third number has to be in order for
each second number.

Each sequence number has to have a size of 32 bit, like the original sequence
number, so it is also ensured that a wrap around and thus a number reuse still only
occurs after at least 232 messages.

A similar issue is caused by cipher suites that are depending on the message
order, for instance because a counter (counter mode) or data from the previous
message (cipher-block chaining) is used as the Initialization Vector (IV) for the en-
cryption. Generating random IVs, which are then prepended to the SSH Transport
Layer message, can solve the dependency, like it has been done for DTLS. The SSH
Transport Layer message format with the extensions is illustrated in Figure 8.6.

Payload
(Packet Length - Padding Length - 1)

Packet Length

Padding Length

Random Padding

Message Authentication Code (MAC)

Initialization Vector (IV)

Sequence Number 1

Sequence Number 2

Sequence Number 3

Figure 8.6: Extended SSH Transport Layer

The SSH connection is established with a key exchange of the SSH Transport
Layer. This negotiation can be repeated at any time to refresh the key material of
an existing connection. No other messages are allowed during the negotiation, and
the message sequence of the key exchange has to be preserved. This is the same
issue that had to be dealt with for SCTP-aware DTLS. Sending all corresponding
messages on the same SCTP stream can retain the order. When mapping channels
onto streams, however, channel messages on other streams may arrive during the
exchange if they arrive too late or too early, respectively. To prevent this, the mes-
sage order has to be enforced across all streams while a key exchange is performed.

8.2. Forwarding over SCTP 91

This requires to drain the transfer on all streams except the one the key exchange
is performed on. Hence, before sending the Key Exchange Init and before resuming
the regular data transmission after the New Keys message (compare Figure 3.11),
the reception of all previous messages has to be awaited before continuing. The
same is necessary before shutting down the SSH connection. The SENDER DRY
event of SCTP can be used to realize this, similar to DTLS.

The packet size of SSH channel messages should be limited to the Maximum
Transmission Unit (MTU), the maximum possible message size on the path between
the peers. The default packet size of SSH may be larger and therefore messages have
to be fragmented by SCTP, which limits the e↵ect of stream scheduling, because all
fragments have to be transmitted before the scheduler can select the next stream.

8.2.2.1 Security Considerations

The mapping of channels onto streams, however, causes a confidentiality issue that
has to be considered. The header of SCTP data messages is not encrypted. There-
fore, an attacker knows how many streams are used and thus can estimate the
number of channels. SSH supports 232 channels, but SCTP only 216 streams. So
there may be more channels used than streams are available, and multiple channels
have to be mapped onto each stream. This would avoid the disclosure of the exact
number of channels, but the use of more than 216 channels should occur rarely.
Hence, revealing the number of channels can hardly be avoided.

8.2.2.2 SCTP Data Chunk Header Encryption

Using encryption for the transport protocol to protect the header information can
solve this issue. Since there is no such solution available, a new extension called the
SCTP Encryption Chunk is recommended. With the Encryption Chunk extension,
each peer can announce which encryption algorithms it supports and which types
of chunks it will only accept encrypted. This is done during the handshake for
the connection establishment, similar to SCTP-AUTH. The relevant chunks will
then be encapsulated in a new encrypted chunk, rather than being sent as plain
text. The receiver decrypts the content of the encryption chunk and can process
the resulting original chunks as usual.

Common
Header

SACK Chunk

DATA Chunk

Common
Header

SACK Chunk

DATA Chunk

Common
Header

Encryption
Chunk

Figure 8.7: SCTP Encryption Chunk

92 SSH Tunneling

This process is shown in Figure 8.7. The necessary shared secret has to be
provided by the user, and can be derived from the secret that is negotiated for
the SSH connection. This concept is similar to Secure SCTP introduced in [22],
although this extension requires rather small changes, since it resembles SCTP-
AUTH in many aspects. Additionally, it only provides additional confidentiality
and can therefore be considered optional.

However, with the use of the encryption chunk, the already encrypted SSH
packet will be encrypted again, which most likely results in a rather poor per-
formance. Therefore, the encryption of SSH should be disabled. This may even
increase the performance for small messages, common with remote shells, because
the encryption is done only once for all chunks bundled into a packet, while SSH
would encrypt every message separately.

8.2.3 Stream Scheduling Considerations

Multiple streams are defined in the SCTP specification [96], but it is not mentioned
how the scheduling should be done. Di↵erent implementations are using di↵erent
strategies, for example FreeBSD is using a round-robin algorithm, while Linux and
Solaris are using first-come, first-served. From this it follows that there are several
degrees of freedom, which can be used for optimization with specialized scheduling
approaches. In the following sections, several common scheduling algorithms [66]
are discussed. This discussion of the topic has also been published in [89].

8.2.3.1 First-Come, First-Served Scheduling

The first-come, first-served scheduling is the simplest stream scheduling algorithm.
Messages are processed in the order supplied by the application or their arrival.
Therefore, the application can decide on the order messages are sent.

However, this influence is limited since the application cannot modify queues or
change the way bundling is done. This makes it impossible for the application to
realize scheduling strategies that prefer messages of a certain kind or any preemptive
algorithms that require queue modification.

Because behavior of this scheduler depends on the application, which can for
example send messages in a round-robin fashion, there is no unique characteristic.

8.2.3.2 Round-Robin Scheduling

For its simplicity, the round-robin algorithm is one of the most used scheduling
algorithms. Its concept is just to cycle through all available queues, that is streams
in the case of SCTP, and always choose a single message per stream. This kind
of scheduling is always fair regarding the number of messages sent per stream, but
there is no consideration of other aspects like the length of the messages. This can
lead to an unfair distribution of the available bandwidth, if messages sent on one
stream are significantly larger than on another.

8.2. Forwarding over SCTP 93

8.2.3.3 Fair Bandwidth Scheduling

When forwarding multiple connections, a fair distribution of the available band-
width is usually desired. The round-robin approach cannot always guarantee this,
so when the message size di↵ers, another solution is necessary to achieve a fair
treatment of all streams. This can be realized with the fair bandwidth algorithm,
which has been introduced in [55].

400 200

800

300 600

Stream 0

Stream 1

Stream 2

400

800

300

= 400

= 800

= 300

Schedule Stream 2 (300 Bits)

Queued Messages Number of Rounds

400 200

800

300 600

Stream 0

Stream 1

Stream 2

400 - 300

800 - 300

600

= 100

= 500

= 600

Schedule Stream 0 (100 Bits)

400 200

800

300 600

Stream 0

Stream 1

Stream 2

200

500 - 100

600 - 100

= 200

= 400

= 500

Schedule Stream 0 (200 Bits)

400 200

800

300 600

Stream 0

Stream 1

Stream 2

400 - 200

500 - 200

= 200

= 300

Schedule Stream 1 (200 Bits)

400 200

800

300 600

Stream 0

Stream 1

Stream 2 300 - 200 = 100

Schedule Stream 2 (100 Bits)

Figure 8.8: Fair Bandwidth Scheduling Implementation

94 SSH Tunneling

A fair bandwidth algorithm can be implemented for SCTP based on the formal
definition in [13]. It is based on the idea of a bit-by-bit round-robin algorithm.
A single bit of a stream is sent before moving on to the next stream. This is
impracticable, so the cycling through the streams will just be realized as a packet-
or message-based algorithm. The selection of the message to be sent next is done
by determining the message that can be finished in the least number of virtual
bit-by-bit rounds.

Figure 8.8 illustrates how the determination of the next stream is done. In the
first step no data has been sent yet. Thus, the number of rounds of bits necessary
to finish a message is the message length itself. The lengths of the first message
in the send queue of each stream are considered. In this case the smallest message
demands the least number of rounds to be done and its stream is scheduled.

The number of virtual rounds already done is moved to the end of the message
just sent. In the figure the red dashed line represents this. The rounds necessary
to finish one of the other messages are decreased. For the just scheduled stream
the next message in the queue will now be taken into consideration. This time the
message that needs the least number of rounds is not necessarily the smallest one.
The following steps in the figure depict how the algorithm will process the messages
in the queues by maintaining the number of rounds of bits relative to the virtual
amount of rounds already done.

This results in a fair bandwidth at any time, since this implementation is time
independent. Idle streams will be ignored until there are messages to consider again.
Simple bandwidth counting per stream, on the other hand, becomes unfair when
there are idle streams. Idle streams have no messages to increase their counters. If
a stream that has been idle for a certain time has messages to send again, it will be
chosen again and again, because its counter value is far lower than of those streams
that had messages continuously. So the previously idle stream will be preferred
until its counter is evened again with the other streams, even if there are messages
of other streams waiting to be sent, too.

8.2.3.4 Priority Scheduling

In some cases fairness is less important, rather not wanted at all to prefer a specific
kind of data. An example would be to assign interactive services of SSH, like remote
shells or X11 forwarding, a higher priority than simple data transfer that may be
done over the same connection.

This can be realized with priority scheduling [7] as described in [29], where each
stream gets a priority ID. The higher this ID is, the less important is the data. An
ID of 0 has therefore the highest priority and is the most preferred. Per default all
streams have the highest priority, so a lower priority has to be assigned explicitly.
This is to maintain the normal behavior when the feature is not used.

The scheduling algorithm is simple. It always sends from the stream with the
highest priority, that is the one with the lowest ID first. When multiple streams
have the same priority, the default scheduling should be used for them, that is

8.2. Forwarding over SCTP 95

either first-come, first-served or round-robin. There also has to be a part of all
relevant queues reserved for higher priorities, otherwise a queue can be filled with
low priority data, and high priority data cannot be accepted anymore and has to
be delayed.

8.2.3.5 Per Packet Scheduling

Sending small messages with a round-robin scheduling has the disadvantage that
data of multiple streams is bundled into a single packet. This results in head-of-line
blocking for all bundled streams when the packet is lost, which in worst case can
be all used streams. Hence, the concept of streams to prevent head-of-line blocking
is made ine↵ective.

As a solution for this issue it is suggested to bundle only messages of the same
stream in a single packet, so if it gets lost only one stream is a↵ected and therefore
the delivery of its messages delayed. This is expected to improve the average end-
to-end delay on a lossy link. As discussed in [89], this scheduler indeed improved
the average delay with a saturated sender. A disadvantage, however, is that it may
be worse than standard round-robin if there are not enough messages on a single
stream to fill an entire packet, which leads to delays until there is additional data
or the packet is sent with the smaller size.

8.2.3.6 Preemptive Scheduling

Priority scheduling can still delay important messages if a large and maybe even
fragmented low priority message has to be finished first. In very time-critical envi-
ronments, even these usually small delays can be unacceptable. This can be solved
with preemptive priority scheduling [54]. It allows the implementation to abort the
sending of any lower priority data instantly to pass through high priority messages.
The aborted messages have to be dropped with PR-SCTP, because otherwise there
would be a new message within the fragments, which is impossible for the peer to
recognize. If the peer doesn’t support partial delivery or can abort it, the message
can just be counted as lost and retransmitted later. The behavior is the same as
with priority scheduling but without any delay of any kind for important data.

8.2.4 Congestion Control Considerations

SSH allows the forwarding of multiple connections over a single encrypted connec-
tion. This has the advantage that an attacker cannot know to how many connec-
tions are forwarded. On the other hand, this has the disadvantage that the SSH
connection only gets the amount of bandwidth for a single connection, if there are
competing connections. The Congestion Control always maintains the fairness with
other connections in the same network. This is regardless of how many connections
are actually forwarded, although the multiple forwarded connections may allow SSH
to claim a larger part of the available bandwidth.

96 SSH Tunneling

By default, TCP and SCTP use a similar Congestion Control for a fair behavior
of multiple connections sharing a limited bandwidth on a link. To optimize the
forwarding, an alternative algorithm can be used, which allows to increase the
bandwidth claimed by the SSH connection by the number of forwarded connections.
Such an algorithm has been described in [11]. This allows to significantly improve
the performance of forwarding, if several connections are forwarded simultaneously.

8.2.5 Flow Control Considerations

SSH maintains a Flow Control per channel to slow down a fast sender if the receiver
reads the incoming data too slow and the bu↵ers might run full. As described in [73],
the receiver window size in older implementations was only 128 KBytes, a remnant
from the times before window scaling was used for TCP and thus the maximum
TCP window size was only 64 Kbytes. With modern networking infrastructure and
the available computing power, however, this is a severe bottleneck resulting in a
far lower throughput than expected. The authors of [73] suggest a window size that
is at least 1000 times larger to make use of the capabilities of modern hardware.
The default window size has been raised to at least 2 MBytes in current versions
of OpenSSH to address this issue, so no further considerations are necessary.

8.3 Forwarding other Transport Protocols

The specification of SSH only describes the forwarding of TCP, but as already sug-
gested in Section 8.1, SCTP can be forwarded as well. With SCTP as the transport
protocol for SSH, more features of forwarded SCTP associations can be supported.
Beyond that, the forwarding of unreliable transport protocols should be possible
as well. However, forwarding them over a reliable TCP connection will increase
the average message delay because of retransmissions and the preservation of the
message order. An e↵ect, which was to be avoided by using an unreliable protocol
in the first place. This issue can be mitigated by using SCTP with its unreliabil-

TCP SCTP UDP DCCP

Protocol information - x - -
needs to be preserved

Ordered transfer x x - -

Reliable transfer x x - -

Unordered transfer - x x x

Unreliable transfer - x x x

Connectionless - - x -

Table 8.1: Forwarding Characteristics of Transport Protocols

8.3. Forwarding other Transport Protocols 97

ity features for the forwarding SSH connection. Table 8.1 lists the characteristics
of several transport protocols, which are relevant for forwarding. In the following
sections it is discussed how SSH can be modified to support the forwarding of vari-
ous transport protocols with their specific characteristics. These modifications have
been implemented in a prototype based on OpenSSH, except for DCCP forwarding,
because of its scarce deployment and availability. The implementation is described
in Section 8.5.

8.3.1 SCTP Forwarding Characteristics

Characteristics of SCTP relevant for forwarding that have not been discussed in
Section 8.1 are its multi-streaming features and unordered transfer. Furthermore,
unreliability with PR-SCTP was only partially supported. By default, a separate
channel is used for each forwarded connection. With SSH over SCTP, the channels
can be mapped onto the streams of SCTP, as described in Section 8.2.2, to mitigate
the impact of head-of-line blocking. When an SCTP association is forwarded,
however, the entire association with all its streams would be forwarded over a single
channel and thus mapped onto a stream of the underlying association. To improve
the mitigation, the streams of forwarded SCTP associations can be mapped onto
the streams of the SCTP association of SSH, as illustrated in Figure 8.9. With
this approach more streams can be used, which makes less data a↵ected by delays
in case of losses. Additionally, an attacker cannot guess the number of forwarded
connections anymore, because the number of streams used by the SCTP association
of SSH only reveals how many streams all forwarded SCTP associations combined
are using.

Forwarded SCTP Association #1 Forwarded SCTP Association #2

SSH

Stream N

Channel 2

Stream 0 ...Stream 1

Channel 1

Stream 0

SCTP

Stream 1Stream 0 Stream MStream 2 ...

Figure 8.9: Streams and Channel Mapping for SCTP Forwarding

SCTP also supports unordered transfer, so the order is not retained even within
streams. This is done to avoid delays, but when forwarding SCTP over SSH with
TCP, the order of the messages will always be restored. With SSH over SCTP,
however, unordered messages can also be forwarded unordered, so there will be
no additional delays. Unreliability with PR-SCTP can be configured for the SSH
endpoints, and with SSH over SCTP not only for the associations to the source and
destination, respectively, but also for the forwarding association.

98 SSH Tunneling

8.3.2 UDP Forwarding Characteristics

The User Datagram Protocol (UDP) is unreliable and connectionless. New channel
service types have to be added, but no information has to be preserved. It can be
forwarded with unordered transfer and deactivated retransmissions (PR-SCTP).
However, the protocol is connectionless, so a host can send messages to arbitrary
destinations at any time. To successfully forward the protocol, a channel has to
be opened for every pair of source and destination addresses and ports. Without
connection-orientation, there is also no shutdown mechanism, therefore no signal
that the forwarding channel can be closed again. A possible solution is to use a
timer that closes UDP forwarding channels automatically if they have been idle for
a certain time. This does not a↵ect the forwarding, because if further messages
arrive, a new channel would be opened immediately. The channel opening for every
pair of source and destination addresses, however, is a major security risk and
prone to Denial-of-Service attacks. An attacker can easily send as many messages
as necessary to open the maximum number of channels, so no other messages can be
forwarded and the forwarding service is basically not available anymore. To reduce
the risk, this kind of forwarding should only be allowed in trusted environments
unless there is an additional mechanism to authorize the messages to be forwarded
before opening a channel.

8.3.3 DCCP Forwarding Characteristics

The Datagram Congestion Control Protocol (DCCP) is connection-oriented, but
unreliable and features a Congestion Control. DCCP can be forwarded by simply
adding appropriate service types for the forwarding channel, there is no additional
information that has to be preserved. For an e�cient transfer, the messages of the
corresponding channels can be sent unordered and without any retransmissions.

8.4 Implementing Forwarding in OMNeT++/INET

To evaluate the possible benefits of SSH over SCTP, measurements made in a sim-
ulation are helpful. They allow to test whether the assumed improvements actually
ensue, without dealing with possible side e↵ects or influences that competing pro-
cesses and network tra�c in a real environment may have. The INET framework
already contains a working SCTP implementation including extensions, such as
PR-SCTP and CMT. One advantage of SCTP’s multi-streaming feature is that
di↵erent scheduling algorithms can be used. Since the INET framework only had a
default scheduler, which could not be changed, it had to be extended to allow the
selection of multiple algorithms. To measure delays and throughputs of forwarded
connections, an application behaving exactly like that had to be added as well.

8.5. Implementing SSH over SCTP 99

8.4.1 Stream Scheduling

To allow the user to select a certain algorithm for the scheduler, the scheduling
had to be made pluggable at first, that is the implementation of the scheduling
method had to be separated and realized as a module that can be exchanged.
Each algorithm was then implemented as such a module, and the user could choose
in the configuration which one is used. In this way, the algorithms described in
Section 8.2.3 could be used for measurements.

8.4.2 Forwarding Application

To simulate forwarding, an application with the corresponding behavior has been
added. A client and a server were required, which communicate with multiple
channels over a single transport connection. The channels had to be opened and
closed arbitrarily and were used for data transfer. The client sent messages over
open channels, while the server recorded delays and the achieved throughput. The
transport protocol of the main connection was either SCTP or TCP. In case of
SCTP, the channels were mapped onto streams and multi-homing was possible.
Due to deficiencies of the TCP implementation in the simulation, the forwarding
TCP connection has been realized with a single homed, single streamed SCTP
association with parameters set to the default values of TCP. This is acceptable
because SCTP and TCP use the same algorithms to be fair on shared links.

8.5 Implementing SSH over SCTP

To evaluate SSH over SCTP in a real environment, a prototype had to be im-
plemented. Commonly used on most UNIX-like systems is OpenSSH, which was
therefore the basis. The implementation of SSH over SCTP could be separated
into three parts. The first was just using SCTP as the transport protocol without
modifications of the SSH protocol. The second, and more extensive, was to add
mapping of channels onto streams, which required adaptations of the SSH Trans-
port Layer. The third was to add forwarding support for other transport protocols
than TCP.

8.5.1 Adding Support for SCTP

To use SCTP as the transport protocol, the socket creation had to be modified.
For backward compatibility, the use of SCTP should be additional to TCP and
configurable. OpenSSH uses multiple sockets one for each listening address, so
adding SCTP sockets for the same addresses was rather straightforward. When
using multi-homing, however, multiple addresses have to be bound to a single socket.
Therefore, the configuration had to be extended to allow the di↵erentiation between
multiple addresses bound to separate sockets or to a single one. The handling of
TCP-specific socket options had to be changed appropriately, if an SCTP socket is

100 SSH Tunneling

used. With these comparably small modifications, SSH can already be used over
SCTP including its multi-homing features.

8.5.2 Adding Support for Multi-Streaming

The mapping of channels onto streams required tracking a socket’s protocol if TCP
and SCTP should be supported concurrently. In case SCTP is used, the appropriate
stream had to be set according to the current channel, and the modified SSH
Transport Layer had to be used. The latter includes the di↵erent handling of
sequence numbers, as well as the generation of a random IV for the encryption
instead of using data of the previous message to allow the reordering of channel
messages, as described in Section 8.2.2. The message order had to be enforced
during key exchanges, so before sending a Key Exchange Init and before resuming
normal transmission after a New Keys message, the reception of all data still in
flight had to be awaited. The same needed to be done before shutting down the
SSH connection. So instead of sending the Key Exchange Init message or the next
channel data, the SENDER DRY event had to be activated with a socket option.
When the SCTP stack sent a notification that no data was outstanding anymore,
the actual action could be performed. Finally, the maximum packet size had to
be limited to avoid fragmentation, which is set in the channel opening messages.
After these modifications, SSH can already benefit from being less susceptible to
head-of-line blocking. A specialized stream scheduler, like prioritization, can be
activated with a single socket option.

8.5.3 Forwarding Other Transport Protocols

To forward other transport protocols than TCP, new channel service types had
to be defined for each additional protocol. The sockets used to accept incoming
connections and to establish connections to the destination have to be created with
the appropriate transport protocol. In case of UDP, connected sockets have been
used to simplify the integration, since they can be used similar to TCP sockets. To
support the forwarding of di↵erent protocols simultaneously, each protocol required
its own configuration parameters. To address UDP’s connectionlessness, a timer
was added to close sockets that have been idle for some time. For SCTP forwarding
the data messages had to be adapted to retain the streaming information and the
PPI.

8.5.4 Pluggable Schedulers in the Kernel

The FreeBSD kernel, as well as the Network Kernel Extension (NKE) of Mac OS X,
use a round-robin like stream scheduler by default. To measure the impact of di↵er-
ent scheduling methods, the kernel (extension) had to be extended to add multiple
algorithms. This was done similar to the approach for the simulation by realizing

8.6. Performance Evaluation 101

the scheduler as an exchangeable module. Additional configuration parameters al-
low setting the default scheduler system wide for all, or by an application for each
of its associations.

8.6 Performance Evaluation

The use of SCTP as the transport layer for SSH promises several performance
improvements, like smaller delays, increased throughput and failover features. To
examine the possible benefits, measurements had to be done. At first with a simu-
lation, to evaluate the maximum improvements that can be expected in a controlled
environment, then with real systems to assess the influences of factors like hardware
limitations on the expected results.

8.6.1 Simulation and Real Setup

For comparable results, the measurement setup within the simulation and with the
real systems had to be identical. Two hosts have been used that were connected
with four links having configurable bandwidths, delays and packet loss rates. Each
real host had two quad-core 2.4 GHz Xeon CPUs. They were also equipped with
four 1000 MBit/s interfaces and running FreeBSD 9.0 (Beta2). Dummynet [82, 21]
was used to limit the bandwidth, increase the delays or add packet loss. A for-
warding SSH connection was set up between the hosts and one or multiple TCP
connections were forwarded over it from one host to the other. This setup is de-
picted in Figure 8.10. For simplicity and to avoid additional delays, the senders and
the SSH client were running on one host, and the SSH server and the receiver on
the other. Because each host had eight CPU cores and all applications were single-

Sender #3

Sender #4

Sender #2

Sender #1

Receiver

Link 1 (1-1000 Mbit/s, 0-25ms, 0-1% Loss)

Link 2 (1-1000 Mbit/s, 0-25ms, 0-1% Loss)

Link 3 (1-1000 Mbit/s, 0-25ms, 0-1% Loss)

Link 4 (1-1000 Mbit/s, 0-25ms, 0-1% Loss)
SSH

Client
SSH

Server

Figure 8.10: SSH Measurement Setup

102 SSH Tunneling

threaded, this did not a↵ect the performance. The delays and achieved throughput
of each forwarded connection were measured.

Multiple configurations have been used for the series of measurements to cover
the scenarios in which SCTP behaves di↵erent to TCP. Each measurement has been
repeated 25 times to calculate average values and 95% confidence intervals.

8.6.2 Reliability with Multi-Homing

SCTP o↵ers increased reliability by using multiple network links for a single associ-
ation. If the primary link fails, another one can be used to continue the association.
To compare this to TCP, two links were used, limited to 100 MBit/s to avoid side
e↵ects from a maximum load of the CPUs on the real systems. One host tried to
send 100 MB of data to the other, and 5 seconds after the transfer was started the
primary link failed, which was achieved by increasing the packet loss rate to 100%.
The duration of the outage before the link was available again was increased during
the measurement. While SSH over TCP can only use a single link, SSH over SCTP
is dual homed, so a fallback is possible.

Ϭ ϭϬ ϮϬ ϯϬ ϰϬ ϱϬ ϲϬ ϳϬ
Ϭ

ϮϬ

ϰϬ

ϲϬ

ϴϬ

KƵƚĂŐĞ dŝŵĞ @ƐĞĐD

dƌ
ĂŶ

ƐĨ
Ğƌ

dŝ
ŵ
Ğ
@ƐĞĐ
D

^�dW

d�W

Figure 8.11: Simulation of Transfer with Link Outage

The results of the simulation of this scenario are shown in Figure 8.11. Without
any network failures, the transmission lasted about 9 seconds with both TCP and
SCTP. If there was an outage, TCP retransmitted the last packet until the link was
available again, so the transfer time was prolonged by at least the duration of the
outage. However, since TCP’s timers are increased exponentially, the prolongation

8.6. Performance Evaluation 103

was not linear, because even when the network was already available again, the
time until the next retransmission still had to be awaited. This caused the graph to
increase in steps, because as long as the duration of the outage did not require an
additional retransmission, the time until the data transfer resumed stayed the same.
In the simulation the initial RTO is 200 ms and doubled for every retransmission,
as stated by the specification. This can be described with (0.2 ⇤ 2n�1) s, where
n is the number of retransmissions. Therefore, the overall time necessary until
retransmission n can be described with Equation 8.1.

nX

x=1

0.2 ⇤ 2x�1

s (8.1)

So if the link outage lasts 4 seconds for example, the first packet arrives after
5 retransmissions or 6.2 seconds. After 60 seconds of network outage, the SSH
connection over TCP was terminated because of too many unsuccessful retransmis-
sions.

SCTP was measured with its Quick Failover extension [58] activated, so the fail-
ure of the primary network link was assumed after a single Retransmission Time-
out (RTO). For SCTP, this is by default one second compared to only 200 ms for
TCP. Therefore, the time to complete the transfer was only prolonged by the time
necessary to detect the failure and change to a fallback link, which was done within
a second, no matter how long the primary link was actually unavailable.

Ϭ ϭϬ ϮϬ ϯϬ ϰϬ ϱϬ ϲϬ ϳϬ
Ϭ

ϮϬ

ϰϬ

ϲϬ

ϴϬ

KƵƚĂŐĞ dŝŵĞ @ƐĞĐD

dƌ
ĂŶ

ƐĨ
Ğƌ

dŝ
ŵ
Ğ
@ƐĞĐ
D

^�dW

d�W

Figure 8.12: Real System Measurement of Transfer with Link Outage

104 SSH Tunneling

The same measurement has also been done on real systems and the results
are shown in Figure 8.12. While the behavior of SCTP is exactly the same as in
the simulation, the time necessary to complete the transfer with TCP was slightly
better. This was because FreeBSD uses a di↵erent retransmission strategy to lower
the time between the retransmissions. By default, the initial value is 30 ms and is
doubled for every retransmission, but in addition 200 ms is added, which can be
described as 0.2 + (0.03 ⇤ 2n�1) s. The overall time necessary until retransmission
n can be described with Equation 8.2.

nX

x=1

0.2 + (0.03 ⇤ 2x�1) s (8.2)

In Table 8.2 this approach is compared to that of the specification. So if the link
outage lasts again 4 seconds, with the approach of FreeBSD the transfer resumes
after 8 retransmissions or 5.31 seconds. Hence, FreeBSD is more time e�cient in
resuming the transfer after an outage, but uses significantly more retransmissions,
which can worsen the situation in case the losses are caused by a network congestion.

Retransmission # 1 # 2 # 3 # 4 # 5 # 6 # 7 # 8

TCP Specification 0.200s 0.400s 0.800s 1.600s 3.200s 6.400s 12.800s 25.600s

TCP in FreeBSD 0.230s 0.260s 0.320s 0.440s 0.680s 1.160s 2.220s 4.040s

Table 8.2: Retransmission Timings

8.6.3 Throughput with Multi-Homing and CMT

The second possible benefit of multi-homing is to increase the throughput by using
multiple network links simultaneously with the CMT extension [36] for SCTP. Only
the basic features of the extension were used, since maintaining fairness was not
an issue in this scenario. To evaluate how the throughput increases with multiple
links, a saturated TCP connection was forwarded over an SSH connection using
multiple links with SCTP and a single one with TCP. The configured bandwidth
of the links was increased from 1 to 200 MBit/s during the measurement and was
always the same for all links.

The simulation results in Figure 8.13 show that as TCP can only make use of
a single link, the achieved bandwidth increases linearly with the configured band-
width. This is identical to SCTP with a single link, but with multiple links, SCTP
uses all available links with CMT simultaneously, so the throughput is the config-
ured bandwidth times the number of links used, up to almost 800 MBit/s with four
links at 200 Mbit/s.

The comparison with the real systems, displayed in Figure 8.14, basically shows
the same results, although the hardware limitation becomes visible. The possible

8.6. Performance Evaluation 105

Ϭ ϱϬ ϭϬϬ ϭϱϬ ϮϬϬ
Ϭ

ϮϬϬ

ϰϬϬ

ϲϬϬ

ϴϬϬ

�ĂŶĚǁŝĚƚŚ ƉĞƌ >ŝŶŬ @D�ŝƚêƐD

dŚ
ƌŽ
ƵŐ

ŚƉ
Ƶƚ
@D�

ŝƚêƐD

^�dW ǁŝƚŚ �Dd ŽŶ ϰ >ŝŶŬƐ

^�dW ǁŝƚŚ �Dd ŽŶ Ϯ >ŝŶŬƐ

d�W ê ^�dW ǁŝƚŚŽƵƚ �Dd

Figure 8.13: Simulation of Throughput with Multiple Links

Ϭ ϱϬ ϭϬϬ ϭϱϬ ϮϬϬ
Ϭ

ϮϬϬ

ϰϬϬ

ϲϬϬ

ϴϬϬ

�ĂŶĚǁŝĚƚŚ ƉĞƌ >ŝŶŬ @D�ŝƚêƐD

dŚ
ƌŽ
ƵŐ

ŚƉ
Ƶƚ
@D�

ŝƚêƐD

^�dW ǁŝƚŚ �Dd ŽŶ ϰ >ŝŶŬƐ

^�dW ǁŝƚŚ �Dd ŽŶ Ϯ >ŝŶŬƐ

d�W ê ^�dW ǁŝƚŚŽƵƚ �Dd

Figure 8.14: Real System Measurement of Throughput with Multiple Links

106 SSH Tunneling

throughputs only increase until the CPU cannot perform the encryption and de-
cryption fast enough. This limit is reached at about 550 MBit/s, slightly more
without CMT and slightly less with CMT. This is because CMT requires more
computing power and the implementation is still experimental, so optimizations
have not been done yet.

The measurement shows that until a hardware limitation is reached, which can
be mitigated by using multiple CPU cores for the cryptographic calculations of
SSH as described in [73], the possible throughput can be increased with additional
network links, which is especially e↵ective on low bandwidth links, such as Internet
connections.

8.6.4 Delay with Mapping Channels onto Streams

SCTP’s multi-streaming mitigates the impact of head-of-line blocking. To allow
SSH to benefit from this feature, its channels can be mapped onto the streams of
SCTP. To examine how much the delay improves, four saturated TCP connections
were forwarded over SSH with a single link that had a delay of 25 ms and a packet
loss rate of 1% configured. These values were chosen to represent a 3G Internet
link with High Speed Downlink Packet Access (HSDPA) [32], which is common
nowadays. The delay of each message of the forwarded connections, from being
sent to its reception, was measured. Figure 8.15 shows the distribution function of
the message delays for the simulation.

Ϭ ϱϬ ϭϬϬ ϭϱϬ ϮϬϬ ϮϱϬ
Ϭ͘Ϭ

Ϭ͘Ϯ

Ϭ͘ϰ

Ϭ͘ϲ

Ϭ͘ϴ

ϭ͘Ϭ

DĞƐƐĂŐĞ �ĞůĂǇ @ŵƐĞĐD

Wƌ
Žď

Ăď
ŝůŝ
ƚǇ

�ŝ
Ɛƚ
ƌŝď

Ƶƚ
ŝŽ
Ŷ
&Ƶ

ŶĐ
ƚŝŽ

Ŷ

^�dW

d�W

Figure 8.15: Simulation of Message Delays

8.6. Performance Evaluation 107

With the configured delay and packet loss rate, 1% of the packets are expected
to be lost and therefore delayed until their retransmission, while the others should
arrive after the link latency of 25 ms. With TCP, however, almost 15% of the
messages were delayed, because the order of the messages had to be preserved.
Therefore, already received messages could not be delivered until previous ones had
been retransmitted. The steps of the graph represent the retransmissions performed
after each Round-Trip Time (RTT).

This issue is mitigated by SCTP’s multi-streaming, which only requires the
delay of messages of the same stream in case of a loss. Four connections were
forwarded in this scenario, so four streams were used. This resulted in a delay of
only about 5% of the messages on the same link.

Ϭ ϱϬ ϭϬϬ ϭϱϬ ϮϬϬ ϮϱϬ
Ϭ͘Ϭ

Ϭ͘Ϯ

Ϭ͘ϰ

Ϭ͘ϲ

Ϭ͘ϴ

ϭ͘Ϭ

DĞƐƐĂŐĞ �ĞůĂǇ @ŵƐĞĐD

Wƌ
Žď

Ăď
ŝůŝ
ƚǇ

�ŝ
Ɛƚ
ƌŝď

Ƶƚ
ŝŽ
Ŷ
&Ƶ

ŶĐ
ƚŝŽ

Ŷ

^�dW

d�W

Figure 8.16: Real System Measurement of Message Delays

These results were confirmed with the real systems in Figure 8.16. The mea-
surement therefore shows that SCTP can improve the message delay on lossy links,
which is a benefit for time critical applications, such as interactive remote shells or
real-time monitoring tra�c.

8.6.5 Delay with Di↵erent Stream Schedulers

Multi-streaming also allows using specialized stream schedulers. SCTP supports
the selection of a specific scheduler for each association and as already published in
[89], all standard scheduling algorithms can be used. Scenarios in which this can
be beneficial is priority scheduling to prefer time critical data, like remote shells

108 SSH Tunneling

or X11 forwarding, for instance. Such a scenario was measured by forwarding four
TCP connections, three of which were saturated and one was only sending a mes-
sage every 500 ms. This simulates using a remote shell while transferring files or
forwarding other connections with the same SSH connection. For the measurement,
a single link at 10 MBit/s was used without delay or packet loss, forming a bot-
tleneck for the SSH connection. Hence, all forwarded connections had to share the
reduced bandwidth. TCP was measured as a reference and compared to SCTP with
first-come, first-served (FCFS), round-robin and priority scheduling. The message
delay of the unsaturated “interactive” connection was measured.

ϱϬ ϭϬϬ ϭϱϬ ϮϬϬ ϮϱϬ ϯϬϬ
Ϭ͘Ϭ

Ϭ͘Ϯ

Ϭ͘ϰ

Ϭ͘ϲ

Ϭ͘ϴ

ϭ͘Ϭ

DĞƐƐĂŐĞ �ĞůĂǇ @ŵƐĞĐD

Wƌ
Žď

Ăď
ŝůŝ
ƚǇ

�ŝ
Ɛƚ
ƌŝď

Ƶƚ
ŝŽ
Ŷ
&Ƶ

ŶĐ
ƚŝŽ

Ŷ

^�dW HWƌŝŽƌŝƚǇL
^�dW HZŽƵŶĚ-ZŽďŝŶL
^�dW H&�&^L
d�W

Figure 8.17: Simulation of Stream Scheduling Benefits

Figure 8.17 illustrates the results of the simulation. In this scenario all messages
were delayed because of the bottleneck, so they remained in the send bu↵er until
they could be transmitted. With FCFS scheduling, all messages were processed
in the order in which they arrived from the application. The same was true for
TCP, which does not support multi-streaming at all. Because the majority of the
messages on the SSH connection belonged to the saturated connections, which filled
up the send bu↵er, the interactive messages had to wait a considerably long time
until they could be sent, resulting in the large delay of about 200 ms for TCP and
SCTP with FCFS scheduling.

A round-robin scheduler on the other hand cycles through all available streams
when choosing the next message that will be sent. In this case there were four
streams, so the stream with the interactive messages was chosen every fourth time.
Whenever an interactive message was available, there were never more than three

8.7. Conclusion 109

messages that were sent first, so the delay was about 110 ms and so significantly less
than with FCFS scheduling or with TCP. With priority scheduling, a higher priority
can be assigned to the streams with interactive service channels. Even if there are
many other messages already in the send bu↵er, a high priority message will always
be sent first. This results in the smallest possible delay, which is especially e↵ective
when many streams are used, or the transmission of a single message takes a long
time because of large delays or a very low bandwidth. In this case only four streams
have been used, so the di↵erence to round-robin scheduling was still very small.

The same behavior could be observed with the real systems with only small
deviations, as shown in Figure 8.18.

ϱϬ ϭϬϬ ϭϱϬ ϮϬϬ ϮϱϬ ϯϬϬ
Ϭ͘Ϭ

Ϭ͘Ϯ

Ϭ͘ϰ

Ϭ͘ϲ

Ϭ͘ϴ

ϭ͘Ϭ

DĞƐƐĂŐĞ �ĞůĂǇ @ŵƐĞĐD

Wƌ
Žď

Ăď
ŝůŝ
ƚǇ

�ŝ
Ɛƚ
ƌŝď

Ƶƚ
ŝŽ
Ŷ
&Ƶ

ŶĐ
ƚŝŽ

Ŷ

^�dW HWƌŝŽƌŝƚǇL
^�dW HZŽƵŶĚ-ZŽďŝŶL
^�dW H&�&^L
d�W

Figure 8.18: Real System Measurement of Stream Scheduling Benefits

8.7 Conclusion

SSH is the most common protocol for application protocol tunneling or forwarding.
It is only specified for TCP, so extending it for SCTP support has been suggested
in Section 8.1. Only minor modifications were necessary to prevent SCTP-specific
information from getting lost during the forwarding.

Since the SSH specification does not limit it to TCP as its transport protocol,
using SSH over SCTP has been proposed in Section 8.2. Without further mod-
ifications, this allows to use SCTP’s multi-homing features for SSH connections
to increase the reliability, or to increase the throughput with the CMT extension.

110 SSH Tunneling

SCTP supports multi-streaming to mitigate the impact of head-of-line blocking and
by mapping SSH’s channels onto the streams, SSH can benefit from it. This also
allows the use of specialized stream schedulers. By extending the OMNeT++ sim-
ulation and OpenSSH with prototype implementations, these benefits have been
proven with measurements in Section 8.6. Additionally, SCTP’s unreliability fea-
tures can be used to support the forwarding of unreliable transport protocols, as
suggested in Section 8.3.

Chapter 9

Conclusion

In this final chapter, the previously achieved results on the stated goal to analyze
strategies and propose solutions for securing end-to-end connections with SCTP
are recalled. Additionally, an outlook is given on possible future work and research
that can still be done on this topic.

9.1 Achieved Results

The analysis of possible security strategies for SCTP in Chapter 5 resulted in two
categories: applications can either be security-aware and make direct use of secu-
rity features, or security-agnostic, and security has to be provided via tunneling
mechanisms.

A common approach for security-aware applications is to use external libraries,
to avoid starting all over again for every new application. Libraries, such as
OpenSSL, can provide TLS or DTLS security for TCP and UDP, respectively. Un-
fortunately, these security protocols have not been developed with SCTP in mind,
so they can only be used with several limitations. Therefore, an adaptation of
DTLS for SCTP has been introduced in Chapter 6 that is able to secure SCTP as-
sociations without limiting the features that can be used, and can still be realized
with a library. Performance measurements in Section 6.4 have shown that with
optimizations, this approach can even be a viable alternative to TLS over TCP,
despite the additional computing power necessary for SCTP. The adaptations have
been contributed to the IETF for standardization, which has accepted and pub-
lished them in RFC 6083 [105]. The implementation described in Section 6.3 has
been accepted by the maintainers of OpenSSL and is included since stable release
1.0.1 [61].

Security-agnostic applications are usually secured by tunneling their connec-
tions, which avoids modifications to both the application and its protocols. Tun-
neling can be realized on di↵erent layers, either network, transport, or application
layer. Network layer tunneling is often called VPN and common examples are
IPsec or the DTLS-based Cisco VPN software. This approach supports arbitrary

111

112 Conclusion

transport protocols, which includes SCTP. The same applies to transport protocol
tunneling, which can also be done with DTLS.

DTLS-based tunneling, however, can still be improved by extending the DTLS
protocol, which has been done in Chapter 7. Since DTLS is used with the message-
oriented UDP, a Path MTU Discovery is necessary and also required by the speci-
fication, although UDP does not provide such a feature, and also DTLS itself does
not have any suitable mechanisms. Additionally, UDP is connectionless, but there
is no mechanism other than a costly renegotiation to check the availability of the
peer. Both issues can be solved with the Heartbeat extension proposed in Section
7.2. It adds a request and response protocol to DTLS that can be used for keep-
alive checks and also to perform a Path MTU Discovery, because it allows to vary
the message size. We have presented this extension to the TLS working group at
the IETF. It has been accepted for standardization and is published in RFC 6520
[93]. The implementation has been accepted by the OpenSSL maintainers and is
included since stable release 1.0.1 [61]. Another extension proposed in Section 7.4,
which makes use of the Heartbeats, is DTLS Mobility, to add mobility features for
DTLS connections. This allows continuing the connection regardless of changes of
the used IP addresses and therefore enables a mobile host to move between net-
works, for example Wi-Fi and 3G, without reconnecting. This can be used for mo-
bile direct connections or also mobile network or transport tunnels. Functionality
evaluations in Section 7.6 for several scenarios with the prototype implementation
for OpenSSL, described in Section 7.5, have proven that the connection stays alive
even with multiple address changes, and is restored within a single RTT after a new
physical link has been established. With tunneling it is also possible to add mobility
to connection-oriented and reliable protocols like TCP. If the address has changed
and the link has been reestablished, the data transfer continues immediately with
the first successful retransmission. This is far more e�cient than to reconnect to
the new address after waiting until the loss of connectivity is detected because the
connection is given up when the maximum number of retransmissions is reached.

Application protocol tunneling, or forwarding, requires explicit support of the
transport protocol used by the forwarded connection. The most common applica-
tion tunneling protocol SSH, however, is only specified for TCP-based connections.
The use of SSH for and with SCTP has been considered in Chapter 8. An exten-
sion to the protocol for SCTP forwarding support has been suggested in Section
8.1, which requires only minor modifications to retain SCTP-specific parameters,
like multi-streaming information, during the forwarding.

The SSH specification does not explicitly require TCP to be used as the trans-
port protocol for SSH connections, only a reliable service and message order preser-
vation is necessary. This can also be provided by SCTP, so the use of SCTP has
been proposed as an alternative in Section 8.2, with the immediate advantage that
its multi-homing features become available. This enables not only to realize an
increased reliability with additional links for failover, but also increased through-
put with the CMT extension for SCTP, using all available links simultaneously.

9.2. Future Work 113

With manageable modifications, SSH’s channels can be mapped onto the streams
of SCTP, which reduces the impact of head-of-line blocking and therefore leads to
smaller delays. Additionally, this allows to make use of specialized stream sched-
ulers as described in Section 8.2.2, like fair bandwidth scheduling, to distribute the
available bandwidth equally to every forwarded connection, or priority scheduling,
to prefer interactive remote shells over plain data transfer. These expected benefits
with SCTP have been proven with measurements in simulations as well as with real
systems in Section 8.6. To achieve this, the OMNeT++ simulation environment
and the open source tool OpenSSH have been extended as described in Sections
8.4 and 8.5. Lastly, the use of SCTP with its unordered transfer and PR-SCTP
extension also supports the forwarding of unreliable transport protocols, like DCCP
or UDP, as suggested in Section 8.3.

9.2 Future Work

The Heartbeat extension for DTLS has already been standardized and included in
OpenSSL. The Path MTU Discovery based on Heartbeats is available as a proto-
type implementation, but has not yet been provided to the OpenSSL maintainers
for inclusion in an upcoming release. The same is true for the Mobility extension,
which first has to be introduced to the IETF for standardization, so the Internet
Assigned Numbers Authority (IANA) will assign the necessary type values for the
new parameters. The modifications for OpenSSH to support SCTP-based SSH
connections have to be introduced to the project maintainers, so they can be in-
cluded in an upcoming release. However, further research is still required for the
forwarding of UDP communication before a deployment is possible.

The suggested SCTP Encryption Chunk needs to be realized and its impact on
the performance of SCTP associations analyzed. Possible security issues also have
to be discussed, to determine whether there are possible attacks and if counter-
measures are necessary, for example by adding random values. Furthermore, the
benefits of a specialized Congestion Control for SCTP with multi-channel proto-
cols, such as SSH, also still need to be examined. Claiming a larger share of the
bandwidth for forwarding connections is a possible optimization, but there may be
also other algorithms that can be beneficial in specific scenarios.

The work done for this thesis will also be the basis for our next project,
which is real-time communication between web browsers. The IETF working group
RTCWeb is currently discussing the standardization of the necessary protocols. The
proposed architecture includes generic data transfer with SCTP over a transport
protocol tunnel based on DTLS over UDP. Hence, the gathered expertise in using
these protocols is not only helpful in supporting the standardization activities, there
are also several open questions where further research is necessary. Since this is the
first application for this tunneling approach, a significant amount of work is still
necessary to examine the impact of this decision. No prototype implementations
are available yet, and it is not known if there may be possible performance as well

114 Conclusion

as security issues that have to be addressed. Additionally, it would be interesting
to investigate the possibilities of using this approach to security in other scenarios
after it becomes available.

List of Figures

2.1 The Internet Model . 5
2.2 SCTP Packet Format with Common Header and Chunks 7
2.3 SCTP Association Establishment . 8
2.4 SCTP Association Teardown . 9
2.5 SCTP Data Chunk Format . 10
2.6 SCTP Sender Stream Scheduling . 11
2.7 SCTP Receiver Stream Scheduling 12
2.8 SCTP Multi-homing . 13

3.1 IPsec Transport and Tunnel Modes 18
3.2 TLS Protocol Structure . 19
3.3 TLS Record Header . 19
3.4 TLS Handshake Message Header . 20
3.5 TLS Handshake . 21
3.6 TLS Handshake for Session Resumption 22
3.7 DTLS Record Header . 23
3.8 DTLS Handshake Message Header 24
3.9 DTLS Handshake . 25
3.10 SSH Protocol Structure . 26
3.11 SSH Key Exchange Message Flow . 27
3.12 SSH Forwarding . 29

4.1 OMNeT++ Graphical User Interface 32
4.2 OpenSSL Architecture . 33

5.1 External Security . 39
5.2 Network Protocol Tunneling . 40
5.3 Transport Protocol Tunneling . 41
5.4 Application Protocol Tunneling . 42

6.1 Switching TSNs for Reordering Attack 48
6.2 Message Drop Attack with PR-SCTP 52
6.3 Modifications to OpenSSL to support DTLS-aware SCTP 53
6.4 Read SCTP Message Flow Chart . 54

115

116 LIST OF FIGURES

6.5 Measurement Setup . 55
6.6 SCTP-aware DTLS and TLS / TCP (Single Core) 56
6.7 SCTP-aware DTLS and TLS / TCP (Dual Core) 57
6.8 Expected Throughput with Renegotiations 59
6.9 Measured Throughput with Renegotiations 60
6.10 DTLS/SCTP Handshake with SACK Immediately Optimization . . 61
6.11 SCTP-aware DTLS with HMAC Optimization (Single Core) 63
6.12 SCTP-aware DTLS with HMAC Optimization (Dual Core) 63

7.1 Heartbeat Message . 66
7.2 Heartbeat Hello-Extension . 67
7.3 Path MTU Discovery Flow Chart . 69
7.4 DTLS Record Header with Added Connection Identifier 72
7.5 Mobility Hello-Extension . 72
7.6 Implicit Address Change with Verification 73
7.7 Modifications to OpenSSL to support Heartbeats and DTLS Mobility 75
7.8 DTLS Mobility Flow Chart . 76
7.9 Laptop Connected over a NAT Middlebox 78
7.10 Laptop Moving to Another Wi-Fi Network 78
7.11 Cell Phone Moving to Another Wi-Fi Network with 3G 79
7.12 TCP Connection over a Mobile DTLS Tunnel 80
7.13 Throughput of the TCP Connection, Cable to WLAN Change 82
7.14 Throughput of the TCP Connection, WLAN to UMTS Change . . . 82

8.1 SSH Data Message Extended for SCTP 86
8.2 SSH Request Message Extended for SCTP 86
8.3 SCTP Forwarding over SSH . 87
8.4 SSH Channel to SSH Transport Layer Multiplexing 88
8.5 SSH Sequence Numbers with SCTP 89
8.6 Extended SSH Transport Layer . 90
8.7 SCTP Encryption Chunk . 91
8.8 Fair Bandwidth Scheduling Implementation 93
8.9 Streams and Channel Mapping for SCTP Forwarding 97
8.10 SSH Measurement Setup . 101
8.11 Simulation of Transfer with Link Outage 102
8.12 Real System Measurement of Transfer with Link Outage 103
8.13 Simulation of Throughput with Multiple Links 105
8.14 Real System Measurement of Throughput with Multiple Links . . . 105
8.15 Simulation of Message Delays . 106
8.16 Real System Measurement of Message Delays 107
8.17 Simulation of Stream Scheduling Benefits 108
8.18 Real System Measurement of Stream Scheduling Benefits 109

List of Tables

5.1 Comparison of Security Solutions . 43

6.1 DTLS Handshake Timing . 58

7.1 Some Possible MTU Values . 68
7.2 Comparison of Di↵erent Approaches to Mobility 71
7.3 Mobility Delays . 79
7.4 Mobility Delays with a DTLS Tunnel 81

8.1 Forwarding Characteristics of Transport Protocols 96
8.2 Retransmission Timings . 104

117

118 LIST OF TABLES

List of Abbreviations

ADD-IP Dynamic Address Reconfiguration Extension for SCTP

AES Advanced Encryption Standard

AH Authentication Header

API Application Programming Interface

BIO Basic Input/Output

CID Connection Identifier

CMT Concurrent Multipath Transfer

CTX Context

DCCP Datagram Congestion Control Protocol

DFG Deutsche Forschungsgemeinschaft

DOS Denial-of-Service attack

DSL Digital Subscriber Line

DTLS Datagram Transport Layer Security

ECN Explicit Congestion Notification

ESP Encapsulating Security Payload

FCFS First-Come, First-Served

FTP File Transfer Protocol

GUI Graphical User Interface

HMAC Hash-based Message Authentication Code

HSDPA High Speed Downlink Packet Access

HTTP Hypertext Transfer Protocol

119

120 LIST OF ABBREVIATIONS

IANA Internet Assigned Numbers Authority

ICE Interactive Connectivity Establishment

ICMP Internet Control Message Protocol

IETF Internet Engineering Task Force

IKE Internet Key Exchange

IMAP Internet Message Access Protocol

IP, IPv4 Internet Protocol

IPFIX IP Flow Information Export

IPsec Internet Protocol Security

IPv6 Internet Protocol Version 6

IV Initialization Vector

KPA Known-Plaintext Attack

MAC Message Authentication Code

MBP MacBook Pro

MP-TCP Multipath-TCP

MTU Maximum Transmission Unit

NAT Network Address Translation

NKE Network Kernel Extension

NS-2 Network Simulator 2

PPI Payload Protocol Identifier

PPP Point-to-Point Protocol

PR-SCTP Partial Reliability Extension for SCTP

RFC Request for Comments

RSerPool Reliable Server Pooling

RTCWeb Real-Time Communication in Web Browsers

RTO Retransmission Timeout

RTT Round-Trip Time

LIST OF ABBREVIATIONS 121

SA Security Association

SACK Selective Acknowledgment

SCTP Stream Control Transmission Protocol

SCTP-AUTH Authenticated Chunks for SCTP Extension

SHA Secure Hash Algorithm

SID Stream Identifier

SMTP Simple Mail Transfer Protocol

SPD Security Policy Database

SRTP Secure Real-time Transport Protocol

SS7 Signaling System No. 7

SSH Secure Shell

SSL Secure Sockets Layer

SSN Stream Sequence Number

TCP Transmission Control Protocol

TCP-R TCP Redirection

TLS Transport Layer Security

TLV Type-Length-Value

TSN Transmission Sequence Number

UDP User Datagram Protocol

UMTS Universal Mobile Telecommunications System

VNC Virtual Network Computing

VPN Virtual Private Network

VoIP Voice over IP

Wi-Fi Wireless Fidelity (IEEE 802.11)

X11 X Window System (Version 11)

122 LIST OF ABBREVIATIONS

Bibliography

[1] Apple. Xgrid: High Performance Computing for the Rest of Us. http: //

developer. apple. com/ hardwaredrivers/ hpc/ xgrid_ intro. html , Re-
trieved February, 6th 2012.

[2] M. Baugher, D. McGrew, M. Naslund, E. Carrara, and K. Norrman. The
Secure Real-time Transport Protocol (SRTP). RFC 3711, March 2004.

[3] M. Bellare, R. Canetti, and H. Krawczyk. Keying Hash Functions for Mes-
sage Authentication. Proceedings of the 16th Annual International Cryptology
Conference on Advances in Cryptology (CRYPTO ’96), 1109:1–15, 1996.

[4] S. Bellovin, J. Ioannidis, A. Keromytis, and R. Stewart. On the Use of Stream
Control Transmission Protocol (SCTP) with IPsec. RFC 3554, July 2003.

[5] T. Berson. Skype Security Evaluation. IEEE Transactions on Neural Net-
works, 10, October 2005.

[6] Cisco. Release Notes for Cisco AnyConnect VPN Client. http:

// www. cisco. com/ en/ US/ docs/ security/ vpn_ client/ anyconnect/

anyconnect24/ release/ notes/ anyconnect24rn. html , Retrieved July,
12th 2011.

[7] Computer Systems Research Group and K. Sevcik. Priority Scheduling Dis-
ciplines in Queueing Network Models of Computer Systems. University of
Toronto, 1977.

[8] A. Conta, S. Deering, and M. Gupta. Internet Control Message Protocol
(ICMPv6) for the Internet Protocol Version 6 (IPv6) Specification. RFC
4443, March 2006.

[9] D. Converse, J. Gettys, A. Mento, and R. Scheifler. X Window System: Core
and Extension Protocols. Digital Press, 1997.

[10] M. Crispin. Internet Message Access Protocol – Verison 4rev1. RFC 3501,
March 2003.

123

http://developer.apple.com/hardwaredrivers/hpc/xgrid_intro.html
http://developer.apple.com/hardwaredrivers/hpc/xgrid_intro.html
http://www.cisco.com/en/US/docs/security/vpn_client/anyconnect/anyconnect24/release/notes/anyconnect24rn.html
http://www.cisco.com/en/US/docs/security/vpn_client/anyconnect/anyconnect24/release/notes/anyconnect24rn.html
http://www.cisco.com/en/US/docs/security/vpn_client/anyconnect/anyconnect24/release/notes/anyconnect24rn.html

124 BIBLIOGRAPHY

[11] J. Crowcroft and P. Oechslin. Di↵erentiated End-to-End Internet Services
using a Weighted Proportional Fair Sharing TCP. SIGCOMM Comput. Com-
mun. Rev., 28:53–69, July 1998.

[12] S. Deering and R. Hinden. Internet Protocol, Version 6 (IPv6) Specification.
RFC 2460, December 1998.

[13] A. Demers, S. Keshav, and S. Shenker. Analysis and simulation of a fair
queueing algorithm. SIGCOMM Comput. Commun. Rev., 19(4):1–12, 1989.

[14] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol
Version 1.2. RFC 5246, August 2008.

[15] W. Di�e and M. Hellman. New directions in cryptography. IEEE Transac-
tions on Information Theory, 22(6):644 – 654, November 1976.

[16] N. Doraswamy and D. Harkins. IPSec (2nd Edition). Prentice Hall, 2003.

[17] T. Dreibholz. Reliable Server Pooling – Evaluation, Optimization and Exten-
sion of a Novel IETF Architecture. PhD thesis, University of Duisburg-Essen,
Faculty of Economics, Institute for Computer Science and Business Informa-
tion Systems, March 2007.

[18] T. Dreibholz, M. Becke, E. P. Rathgeb, and M. Tüxen. On the Use of Con-
current Multipath Transfer over Asymmetric Paths. Proceedings of the IEEE
Global Communications Conference (GLOBECOM), December 2010.

[19] T. Dreibholz, I. Rüngeler, R. Seggelmann, M. Tüxen, E. P. Rathgeb, and
R. Stewart. Stream Control Transmission Protocol: Past, Current, and Fu-
ture Standardization Activities. IEEE Communications Magazine, 49(4):82–
88, April 2011.

[20] L. Dryburgh and J. Hewett. Signaling System No. 7 (SS7/C7): Protocol,
Architecture, and Services (Networking Technology). Cisco Press, 2004.

[21] Dummynet. Tra�c Shaper, Bandwidth Manager and Delay Emulator. http:
// info. iet. unipi. it/

~

luigi/ ip_ dummynet/ , Retrieved April, 16th
2012.

[22] U. Esbold, E. Rathgeb, and A. Jungmaier. Secure SCTP: A versatile secure
transport protocol. Telecommunication Systems, 27(2–4):273–296, 2004.

[23] FIPS 180-2. Secure Hash Standard. National Institute of Standards and
Technology (NIST), August 2002.

[24] FIPS 197. Advanced Encryption Standard (AES). National Institute of Stan-
dards and Technology (NIST), November 2001.

http://info.iet.unipi.it/~luigi/ip_dummynet/
http://info.iet.unipi.it/~luigi/ip_dummynet/

BIBLIOGRAPHY 125

[25] A. Ford, C. Raiciu, M. Handley, S. Barre, and J. Iyengar. Architectural
Guidelines for Multipath TCP Development. RFC 6182, March 2011.

[26] P. Ford-Hutchinson. Securing FTP with TLS. RFC 4217, October 2005.

[27] B. A. Forouzan. TCP/IP Protocol Suite. McGraw-Hill Medical Publishing,
2010.

[28] D. Funato, K. Yasuda, and H. Tokuda. TCP-R: TCP mobility support for
continuous operation. Proceedings of the International Conference on Network
Protocols (ICNP), pages 229–236, October 1997.

[29] G. Heinz II and P. Amer. Priorities in Stream Transmission Control Protocol
(SCTP) Multistreaming. Master’s thesis, Protocol Engineering Laboratory,
University of Delaware, January 2003.

[30] P. Ho↵man. SMTP Service Extension for Secure SMTP over Transport Layer
Security. RFC 3207, February 2002.

[31] C. Hohendorf, E. P. Rathgeb, E. Unurkhaan, and M. Tüxen. Secure end-to-
end transport over SCTP. JCP, 2(4):31–40, 2007.

[32] H. Holma and A. Toskala. HSDPA/HSUPA for UMTS: High Speed Radio
Access for Mobile Communications. Wiley, 2006.

[33] I. Rüngeler. SCTP – Evaluating, Improving and Extending the Protocol for
Broader Deployment . Dissertation Universität Duisburg-Essen, December
2009.

[34] INET Framework. Networks simulation package. http: // inet. omnetpp.

org , Retrieved February, 3rd 2012.

[35] International Organization for Standardization. Information technology –
Open Systems Interconnection – Basic Reference Model: The Basic Model.
ISO/IEC 7498-1, November 1994.

[36] J. R. Iyengar, R. D. Amer, and R. Stewart. Concurrent Multipath Transfer
Using SCTP Multihoming Over Independent End-to-End Paths. IEEE/ACM
Transactions on Networking, 14(5):95–964, 2006.

[37] V. J, M. Messier, and P. Chandra. Network Security with OpenSSL. O’Reilly
Media, 2002.

[38] D. Johnson, C. Perkins, and J. Arkko. Mobility Support in IPv6. RFC 3775,
June 2004.

[39] A. Jungmaier, E. Rescorla, and M. Tüxen. Transport Layer Security over
Stream Control Transmission Protocol. RFC 3436, December 2002.

http://inet.omnetpp.org
http://inet.omnetpp.org

126 BIBLIOGRAPHY

[40] C. Kaufman. Internet Key Exchange (IKEv2) Protocol. RFC 4306, December
2005.

[41] S. Ken. IP Authentication Header. RFC 4302, December 2005.

[42] S. Ken. IP Encapsulating Security Payload (ESP). RFC 4303, December
2005.

[43] S. Kent and K. Seo. Security Architecture for the Internet Protocol. RFC
4301, December 2005.

[44] R. Khare and S. Lawrence. Upgrading to TLS Within HTTP/1.1. RFC 2817,
May 2000.

[45] E. Kohler, M. Handley, and S. Floyd. Datagram Congestion Control Protocol
(DCCP). RFC 4340, March 2006.

[46] S. Lindskog and A. Brunstrom. An End-to-End Security Solution for SCTP.
Proceedings of the 2008 Third International Conference on Availability, Reli-
ability and Security (ARES), pages 526–531, 2008.

[47] D. Maltz and P. Bhagwat. MSOCKS: An Architecture for Transport Layer
Mobility. Proceedings of the Seventeenth Annual Joint Conference of the
IEEE Computer and Communications Societies, 3:1037–1045, 1998.

[48] M. Mathis and J. He↵ner. Packetization Layer Path MTU Discovery. RFC
4821, March 2007.

[49] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. TCP Selective Acknowl-
edgment Options. RFC 2018, October 1996.

[50] Microsoft Skype Division. Skype. http: // www. skype. com , Retrieved June,
14th 2012.

[51] N. Modadugu and E. Rescorla. The Design and Implementation of Datagram
TLS. Proceedings of the Network and Distributed System Security Symposium
(NDSS), February 2004.

[52] J. Mogul and S. Deering. Path MTU Discovery. RFC 1191, November 1990.

[53] Münster University of Applied Sciences. DTLS bugfixes and sample code.
http: // sctp. fh-muenster. de , Retrieved November, 17th 2011.

[54] R. R. Muntz and E. G. Co↵man Jr. Preemptive Scheduling of Real-Time
Tasks on Multiprocessor Systems. Journal of the ACM, 17(2):324–338, April
1970.

[55] J. Nagle. On Packet Switches with Infinite Storage. Communications, IEEE
Transactions on, 35(4):435–438, April 1987.

http://www.skype.com
http://sctp.fh-muenster.de

BIBLIOGRAPHY 127

[56] Network Simulator 2 (NS-2). Discrete event simulator. http: // www. isi.

edu/ nsnam/ ns , Retrieved February, 3rd 2012.

[57] C. Newman. Using TLS with IMAP, POP3 and ACAP. RFC 2595, June
1999.

[58] Y. Nishida and P. Natarajan. Quick Failover Algorithm in SCTP. IETF
draft-nishida-tsvwg-sctp-failover-05 (work in progress), March 2012.

[59] OpenSSH Project. Project History and Credits. http: // openssh. com/

history. html , Retrieved February, 3rd 2012.

[60] OpenSSL Project. The Open Source toolkit for SSL/TLS. http: // openssl.
org , Retrieved January, 25th 2011.

[61] OpenSSL Project. ChangeLog. http: // openssl. org/ news/ changelog.

html , Retrieved November, 17th 2011.

[62] OpenVPN Technologies Inc. OpenVPN. http: // www. openvpn. net , Re-
trieved June, 14th 2012.

[63] OPNET Technologies. OPNET Modeler. http: // www. opnet. com/

solutions/ network_ rd/ modeler. html , Retrieved February, 3rd 2012.

[64] C. Patrikakis, M. Masikos, and O. Zouraraki. Distributed Denial of Service
Attacks. Internet Protocol Journal, Cisco Systems, 7(4):13–35, July 2004.

[65] C. Perkins. IP Mobility Support for IPv4. RFC 3344, August 2002.

[66] M. L. Pinedo. Scheduling: Theory, Algorithms, and Systems. Springer, 2012.

[67] J. Postel. User Datagram Protocol. RFC 768, August 1980.

[68] J. Postel. Internet Control Message Protocol. RFC 792, September 1981.

[69] J. Postel. Internet Protocol. RFC 791, September 1981.

[70] J. Postel. Transmission Control Protocol. RFC 793, September 1981.

[71] J. Postel and J. Reynolds. Telnet Protocol Specification. RFC 854, May 1983.

[72] K. Ramakrishnan, S. Floyd, and D. Black. The Addition of Explicit Conges-
tion Notification (ECN) to IP. RFC 3168, September 2001.

[73] C. Rapier and B. Bennett. High speed bulk data transfer using the SSH
protocol. Proceedings of the 15th ACM Mardi Gras conference (MG ’08),
pages 11:1–11:7, 2008.

[74] J. Reardon. Improving Tor using a TCP-over-DTLS Tunnel. Master 0s thesis,
University of Waterloo, September 2008.

http://www.isi.edu/nsnam/ns
http://www.isi.edu/nsnam/ns
http://openssh.com/history.html
http://openssh.com/history.html
http://openssl.org
http://openssl.org
http://openssl.org/news/changelog.html
http://openssl.org/news/changelog.html
http://www.openvpn.net
http://www.opnet.com/solutions/network_rd/modeler.html
http://www.opnet.com/solutions/network_rd/modeler.html

128 BIBLIOGRAPHY

[75] E. Rescorla. RTCWEB Security Architecture. IETF draft-ietf-rtcweb-
security-arch-00 (Work in Progress), January 2012.

[76] E. Rescorla. HTTP Over TLS. RFC 2818, May 2000.

[77] E. Rescorla. Keying Material Exporters for Transport Layer Security (TLS).
RFC 5705, October 2009.

[78] E. Rescorla and N. Modadugu. Datagram Transport Layer Security Version
1.2. RFC 6347, January 2012.

[79] T. Richardson, Q. Sta↵ord-Fraser, K. Wood, and A. Hopper. Virtual network
computing. Internet Computing, IEEE, 2(1):33–38, January 1998.

[80] M. Riegel and M. Tüxen. Mobile SCTP — Transport Layer Mobility Man-
agement for the Internet. Proceedings of the SoftCOM 2002, International
Conference on Software, Telecommunications and Computer Networks, pages
305 – 309, 2002.

[81] R. L. Rivest, A. Shamir, and L. M. Adleman. Cryptographic communications
system and method. Patent US 4405829, September 1983.

[82] L. Rizzo. Dummynet: a simple approach to the evaluation of network proto-
cols. ACM SIGCOMM Computer Communication Review, 27(1):31–41, 1997.

[83] S. Robinson. Simulation: The Practice of Model Development and Use. Wiley,
2004.

[84] J. Rosenberg. Interactive Connectivity Establishment (ICE): A Protocol for
Network Address Translator (NAT) Traversal for O↵er/Answer Protocols.
RFC 5245, April 2010.

[85] A. Samukic. UMTS universal mobile telecommunications system: develop-
ment of standards for the third generation. IEEE Transactions on Vehicular
Technology, 47(4):1099 –1104, November 1998.

[86] Scalable Networks. QualNet. http: // www. scalable-networks. com , Re-
trieved April, 10th 2012.

[87] R. Seggelmann, I. Rüngeler, M. Tüxen, and E. P. Rathgeb. Parallelizing
OMNeT++ simulations using Xgrid. Proceedings of the 2nd International
Conference on Simulation Tools and Techniques (Simutools ’09), pages 69:1–
69:8, 2009.

[88] R. Seggelmann, M. Tüxen, and E. P. Rathgeb. Design and Implementa-
tion of SCTP-aware DTLS. Proceedings of the International Conference on
Telecommunication and Multimedia (TEMU 2010), July 2010.

http://www.scalable-networks.com

BIBLIOGRAPHY 129

[89] R. Seggelmann, M. Tüxen, and E. P. Rathgeb. Stream Scheduling Considera-
tions for SCTP. Proceedings of the 18th International Conference on Software,
Telecommunications and Computer Networks (SoftCOM), Sept. 2010.

[90] R. Seggelmann, M. Tüxen, and E. P. Rathgeb. DTLS Mobility. Proceedings of
the 13th International Conference on Distributed Computing and Networking
(ICDCN 2012), January 2012.

[91] R. Seggelmann, M. Tüxen, and E. P. Rathgeb. SSH Over SCTP – Optimizing
a Multi-Channel Protocol by Adapting It to SCTP. Proceedings of the 8th
International Symposium on Communication Systems, Networks and Digital
Signal Processing (CSNDSP 2012), July 2012.

[92] R. Seggelmann, M. Tüxen, and E. P. Rathgeb. Strategies to Secure End-to-
End Communication – And Their Application to SCTP-Based Communica-
tion. PIK – Praxis der Informationsverarbeitung und Kommunikation, 34(4),
December 2012.

[93] R. Seggelmann, M. Tüxen, and M. Williams. Transport Layer Security (TLS)
and Datagram Transport Layer Security (DTLS) Heartbeat Extension. RFC
6520, February 2012.

[94] W. Stallings. Cryptography and Network Security: Principles and Practice
(5th Edition). Prentice Hall, 2010.

[95] W. R. Stevens. TCP/IP Illustrated, Vol. 1: The Protocols. Addison-Wesley
Professional, 1994.

[96] R. Stewart. Stream Control Transmission Protocol. RFC 4960, September
2007.

[97] R. Stewart, P. Lei, and M. Tüxen. Stream Control Transmission Proto-
col (SCTP) Stream Reset). IETF draft-ietf-tsvwg-sctp-strrst-13 (Work in
Progress), December 2011.

[98] R. Stewart, M. Ramalho, Q. Xie, M. Tüxen, and P. Conrad. Stream control
transmission protocol (SCTP) Partial Reliability Extension. RFC 3758, May
2004.

[99] R. Stewart, M. Tuexen, K. Poon, P. Lei, and V. Yasevich. Sockets API
Extensions for the Stream Control Transmission Protocol (SCTP). RFC 6458,
December 2011.

[100] R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. Schwarzbauer, T. Taylor,
I. Rytina, M. Kalla, L. Zhang, and V. Paxson. Stream Control Transmission
Protocol. RFC 2960, October 2000.

130 BIBLIOGRAPHY

[101] R. Stewart, Q. Xie, M. Tüxen, S. Maruyama, and M. Kozuka. Stream Con-
trol Transmission Protocol (SCTP) Dynamic Address Reconfiguration. RFC
5061, September 2007.

[102] R. R. Stewart and Q. Xie. Stream Control Transmission Protocol (SCTP): A
Reference Guide. Addison-Wesley Professional, 2001.

[103] B. Trammell and E. Boschi. An introduction to IP flow information export
(IPFIX). Communications Magazine, IEEE, 49(4):89–95, April 2011.

[104] M. Tüxen, I. Rüngeler, and R. Stewart. SACK-IMMEDIATELY extension
for the Stream Control Transmission Protocol. IETF draft-tuexen-tsvwg-sctp-
sack-immediately-02 (work in progress), July 2009.

[105] M. Tüxen, R. Seggelmann, and E. Rescorla. Datagram Transport Layer Secu-
rity (DTLS) for Stream Control Transmission Protocol (SCTP). RFC 6083,
January 2011.

[106] M. Tüxen, R. Stewart, P. Lei, and E. Rescorla. Authenticated Chunks for
the Stream Control Transmission Protocol (SCTP). RFC 4895, August 2007.

[107] A. Varga. The OMNeT++ discrete event simulation system. Proceedings of
the European Simulation Multiconference (ESM 2001), 2001.

[108] M. Welzl. Network Congestion Control: Managing Internet Tra�c. John
Wiley & Sons, 2005.

[109] M. Williams and J. Barrett. Mobile DTLS. IETF draft-barrett-mobile-dtls-00
(work in progress), March 2009.

[110] Wireshark. Network protocol analyzer. http: // www. wireshark. org , Re-
trieved February, 15th 2012.

[111] T. Ylonen and C. Lonvick. The Secure Shell (SSH) Authentication Protocol.
RFC 4252, January 2006.

[112] T. Ylonen and C. Lonvick. The Secure Shell (SSH) Connection Protocol.
RFC 4254, January 2006.

[113] T. Ylonen and C. Lonvick. The Secure Shell (SSH) Protocol Architecture.
RFC 4251, January 2006.

[114] T. Ylonen and C. Lonvick. The Secure Shell (SSH) Transport Layer Protocol.
RFC 4253, January 2006.

[115] B. P. Zeigler, H. Praehofer, and T. G. Kim. Theory of Modeling and Simula-
tion, Second Edition. Academic Press, 2000.

http://www.wireshark.org

Curriculum Vitae

Name Robin Seggelmann

29.07.1982 born in Oelde, Germany

08.1993 – 06.2002 High School Graduation
Gymnasium Laurentianum, Warendorf

12.2002 – 09.2003 Alternative civilian service

09.2003 – 10.2006 B.Sc. in Applied Computer Science
Münster University of Applied Sciences

01.2006 – 05.2006 Exchange Student
Juniata College, Huntingdon, USA

10.2006 – 08.2008 M.Sc. in Information Technology
Münster University of Applied Sciences

since 09.2008 Research Associate
Network Programming Lab of the Department of
Electrical Engineering and Computer Science
Münster University of Applied Sciences

since 09.2009 Ph.D. Student
University of Duisburg-Essen

131

132 CURRICULUM VITAE

Selbstständigkeitserklärung

Hiermit erkläre ich, die vorliegende Arbeit selbstständig ohne fremde Hilfe verfasst
und nur die angegebene Literatur und Hilfsmittel verwendet zu haben.

Robin Seggelmann
22. Oktober 2012

133

	Introduction
	Motivation
	Goals
	Organization of this Work

	Network and Transport Protocols
	Internet Protocol
	Transmission Control Protocol
	User Datagram Protocol
	Datagram Congestion Control Protocol
	Stream Control Transmission Protocol
	Protocol Design
	Association Setup and Teardown
	Data Transfer
	Streams
	Sender Scheduling
	Receiver Scheduling

	Multi-homing
	Notifications
	Extensions

	Mobility Solutions

	Security Protocols
	Internet Protocol Security
	Transport Layer Security
	Record Layer
	Handshake and ChangeCipherSpec Protocol
	Session Resumption
	Alert Protocol

	Datagram Transport Layer Security
	Record Layer Modifications
	Handshake Message Modifications
	Client Verification with Cookies
	Handshake Reliability
	Alert Protocol

	Secure Shell
	Transport Layer
	Authentication Protocol
	Connection Protocol

	Tools and Software
	Simulation
	OMNeT++
	INET Framework

	OpenSSL
	Architecture
	Context Objects
	Session Objects
	Basic Input/Output Objects
	DTLS Implementation

	OpenSSH

	Securing SCTP-based Applications
	Security-aware Applications
	Integrated Mechanisms
	External Mechanisms

	Security-agnostic Applications
	Network Protocol Tunneling
	Transport Protocol Tunneling
	Application Protocol Tunneling

	Comparison
	Existing Security-aware Solutions for SCTP
	TLS over SCTP
	DTLS over SCTP
	Secure SCTP
	Secure Socket SCTP

	Existing Security-agnostic Solutions for SCTP
	Internet Protocol Security
	TLS/DTLS-based Tunneling

	Conclusion

	SCTP-aware DTLS
	General Considerations
	Open Issues and Proposed Solutions
	Encryption and Authentication
	Ensuring Order and Reliability
	Message Loss Prevention
	Renegotiations
	Shutdown
	Session Resumption
	Generic Adaptations
	SCTP Extensions

	Implementing SCTP-aware DTLS
	Existing Implementation
	BIO Object
	SSL Object

	Performance Evaluation
	Single Core Throughput Measurements
	Dual Core Throughput Measurements
	Renegotiations

	Optimizations
	Handshake Message Synchronization
	Avoiding Duplicate HMACs
	Allowing Multiple Epochs

	Conclusion

	DTLS-based Tunneling
	General Considerations
	Heartbeat Extension
	Path MTU Discovery
	Mobility Extension
	General Considerations
	Concept
	Security Considerations
	ICMP Considerations

	Implementing Heartbeats and DTLS Mobility
	Evaluation and Measurements
	Direct Use
	Tunneling

	Conclusion

	SSH Tunneling
	SSH Forwarding of SCTP
	SSH Modifications
	Limitations

	Forwarding over SCTP
	Usage of Multi-Homing
	Usage of Multi-Streaming
	Security Considerations
	SCTP Data Chunk Header Encryption

	Stream Scheduling Considerations
	First-Come, First-Served Scheduling
	Round-Robin Scheduling
	Fair Bandwidth Scheduling
	Priority Scheduling
	Per Packet Scheduling
	Preemptive Scheduling

	Congestion Control Considerations
	Flow Control Considerations

	Forwarding other Transport Protocols
	SCTP Forwarding Characteristics
	UDP Forwarding Characteristics
	DCCP Forwarding Characteristics

	Implementing Forwarding in OMNeT++/INET
	Stream Scheduling
	Forwarding Application

	Implementing SSH over SCTP
	Adding Support for SCTP
	Adding Support for Multi-Streaming
	Forwarding Other Transport Protocols
	Pluggable Schedulers in the Kernel

	Performance Evaluation
	Simulation and Real Setup
	Reliability with Multi-Homing
	Throughput with Multi-Homing and CMT
	Delay with Mapping Channels onto Streams
	Delay with Different Stream Schedulers

	Conclusion

	Conclusion
	Achieved Results
	Future Work

	List of Figures
	List of Tables
	List of Abbreviations
	Bibliography

