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1. Introduction 

1.1 Benzo[a]pyrene (B[a]P) 

Benzo[a]pyrene (B[a]P) is a highly persistent environmental contaminant, known for its 

cytotoxic, mutagenic, and carcinogenic properties [1]. B[a]P first attracted wide attention in 

the 1933’s when it was revealed as the compound responsible for the 19
th

 century incidences 

of scrotal cancer among workers in the chimney sweep trade of London [2]. Since the 

discovery of its carcinogenic nature and because of its ability to accumulate in various organs 

it has become a model compound for many toxicological investigations. 

Belonging to the large family of polycyclic aromatic hydrocarbons (PAHs) [3], B[a]P 

(Figure 1) is listed among the group of chemicals known as particulate polycyclic organic 

matter that are registered as federal hazardous air pollutants [4]. Based on epidemiological 

evidence, the International Agency for Research on Cancer (IARC) has classified B[a]P-

containing mixtures such as soot, mineral oils, shale-oils, and coal tars as Group 1 

carcinogens in humans [5]. 

 

 

 

Figure 1: Chemical structure of benzo[a]pyrene. 

 

B[a]P enters the environment from multiple sources including coal–processing waste 

products, petroleum sludge, asphalt, creosote, and tobacco smoke [6]. The long half-life of 

B[a]P in soil, water, air, and subsequently our food makes it a persistent contaminant that can 

be absorbed by the oral, inhalation and dermal routes of exposure [7-9]. Many studies have 

shown the accumulation of B[a]P in liver, lung, kidney, placenta, and bladder after its uptake 

from food or aerosols [10-18]. B[a]P that enters the bloodstream is believed to be transported 

by chylomicrons and lipoproteins [19]. 
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Once inside the body, B[a]P requires activation to reactive primary and secondary metabolites 

both for mediating or protection against its toxic effects. In particular, its carcinogenic effect 

is induced by these metabolites that ultimately interact with critical cellular constituents such 

as DNA. These ultimate carcinogens are usually electrophilic intermediates that attack the 

nucleophilic sites of vital macromolecules in the cells, thus initiating the process of 

carcinogenesis. The metabolic activation of B[a]P to DNA-binding carcinogens is catalyzed 

by cytochrome P450 (CYP). Moreover, once inside the cytosol, B[a]P also initiates the 

induction of genes for CYP via a ligand-receptor mechanism [20]. The aryl hydrocarbon 

receptor (AhR) is a cytosolic receptor involved in the transcriptional regulation of drug 

metabolizing enzymes for which xenobiotics such as 2,3,7,8-tetrachlorodibenzo-p-dioxin 

(TCDD) and B[a]P act as ligands [21]. B[a]P binding to AhR induces the translocation of the 

AhR-B[a]P complex into the nucleus, where it interacts with the aryl hydrocarbon nuclear 

translocator (ARNT) forming the AhR-ARNT heterodimer. This heterodimer then binds with 

aryl hydrocarbon response elements (AhRE) in the regulatory regions of CYP and forms a 

positive feedback regulatory loop that sustains the metabolism of B[a]P [22-25] (Figure 2). 

 

 

 

Figure 2: Pictorial representation of the aryl hydrocarbon receptor (AhR). AhR ( ), a cytosolic receptor protein, 

is present in the cytoplasm as a heterodimer complex ( ) in an inactive form. B[a]P a ligand to AhR, triggers 

the “transformation” of the receptor into a DNA-binding protein ( ). The B[a]P-AhR complex translocates into 

the nucleus and dimerizes with its nuclear partner protein, ARNT ( ). The ligand-AhR-ARNT complex binds 

specific DNA sequences known as aryl hydrocarbon responsive elements (AhREs) located in the 5’-flanking 

region of target genes. This provides a platform for recruiting multiple co-activator proteins that increase or 

decrease gene transcription. Figure adapted from Denison et al., [26]. 
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1.2 Metabolism of B[a]P 

B[a]P is metabolized to approximately 20 primary and secondary oxidative metabolites and to 

a variety of conjugates by the activity of phase I and phase II enzymes (Table 1). 

Table 1: Primary and secondary metabolites of B[a]P. 

Metabolites Types Enzymes involved References 

Epoxides 

 

1,2-epoxide 
2,3-epoxide 
4,5 epoxide 
7,8-epoxide 

9,10-epoxide 

mixed-function 
oxidases 

[27-29] 

Phenols 

 

1-OH 
3-OH 
6-OH 
7-OH 
9-OH 

mixed-function 
oxidases / 
NIH shift 

[30-34] 

Quinones 

 

1,6-quinone 
3,6-quinone 

6,12-quinone 

mixed-function 
oxidases 

 
[35, 36] 

Dihydrodiols 

 

(-)-trans-4,5-diol 
(-)-trans-7,8-diol 

(-)-trans-9,10-diol 
epoxide hydratase [37-41] 

Glucuronides 

1-O-glucuronides 
3-O-glucuronides 
6-O-glucuronides 
7-O-glucuronides 
9-O-glucuronides 

4,5-diol-glucuronides 
7,8-diol-glucuronides 

9,10-diol-glucuronides 

UDP-glucuronyl 
transferase 

[42-44] 

Sulfates 

1-sulfate 
3-sulfate 
7-sulfate 
9-sulfate 
6-sulfate 

4,5-sulfate 
7,8-sulfate 

9,10-sulfate 

sulfotransferase [45-48] 

GSH conjugates 
4,5-SG 
7,8-SG 

9,10-SG 

glutathione-S-epoxide 
transferase 

[48-50] 

Diol epoxides 
7,8-diol-9,10-epoxide I 
7,8-diol-9,10-epoxide II 

epoxide hydratase [51-55] 

Tetrols 

tetrol 1 (7,10/8,9) 
tetrol 2 (7/8,9,10) 
tetrol 1 (7,9,10,8) 
tetrol 2 (7,9/8,10) 

H2O [54, 56] 

Triols 
triol (7/8,9) 
triol (7,9,8) 

non-enzymatic 
conversion + 

NADPH/NADH
+
 

[51, 54] 

 



Introduction

 
 

4 

 

These enzymes are the initial biological receptors for B[a]P after its ingestion, absorption, and 

transport into the body [57] [58]. Among all organs, liver contains most enzymes required for 

the bioactivation of B[a]P [59, 60]. Phase I reactions involve enzymes such as cytochrome 

P450 mixed-function oxidases (MFOs), epoxide reductases, and epoxide hydrolases, while 

phase II enzymes include conjugating enzymes such as glutathione transferases, UDP-

glucuronyl transferases, and sulfotransferases (Figure 3). The first step of metabolic activation 

to genotoxic metabolites is initiated by endoplasmic reticulum-based CYPs that introduce 

oxygen to the parent compound to form the most genotoxic metabolites, the 2,3-, 4,5-, 7,8-, 

and 9,10-epoxides [29]. These epoxides undergo hydration in the presence of epoxide 

hydrolase to the corresponding 4,5-, 7,8-, and 9,10-trans-dihydrodiols. B[a]P 7,8-trans-

dihydrodiol that has been reported to be carcinogenic to animal cells [56, 61] can be 

converted by the activity of dihydrodiol dehydrogenase to a catechol that is subsequently 

autoxidized to B[a]P 7,8-quinone [62]. 

Other than dihydrodiols, epoxides undergo non-enzymatic rearrangement (NIH shift) to form 

phenolic intermediates such as 1-, 3-, 6-, 7-, and 9-OH-B[a]P [63, 64]. The 3- and 6-OH 

phenolic isomers can also be formed by direct hydroxylation [65] and are further involved in 

the formation of quinones. In the presence of peroxidases or CYP, 6-OH-B[a]P undergoes 

one-electron oxidation to the toxic radical cation 6-oxy-B[a]P that is further oxidized to 1,6-, 

3,6-, or 6,12-quinones via hydroquinone and semiquinone radicals [66, 67]. On the other 

hand, 3-OH-B[a]P upon incubation with heat-inactivated microsomes can be metabolized to 

B[a]P 3,6-quinone [66-68]. Quinones are known to cause many cytotoxic effects through the 

generation of reactive oxygen species (ROS) [69, 70]. Furthermore, the phenols, quinones, 

and dihydrodiols form conjugates with glucuronic and sulfuric acid or are hydrolyzed to triols 

and tetrols [32, 65] to form water-soluble intermediates that can be excreted from the body as 

part of the detoxification process. On the other hand, B[a]P 7,8-dihydrodiol undergoes further 

oxidation to form 7,8-dihydrodiol-9,10-epoxide that is considered the most important 

carcinogenic metabolite of B[a]P due to its ability to form adducts with DNA [53, 71]. 

 

 



Introduction

 

5 

 

 
 

Figure 3: Representation of steps involved in the metabolism of B[a]P to reactive intermediates by the activity of phase I and phase II enzymes. P450: 

cytochrome P450; EH: epoxide hydrolase; AKR: aldo-keto reductases; NIH shift: hydroxylation-induced migration. Figure taken from Verma et al., 

Proteomics 2012, 12, 1731–1755. 
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1.3 Mechanisms of B[a]P-mediated toxicity 

1.3.1 DNA and protein adducts 

DNA damage is the important first step in the process of cancer development. B[a]P is a 

strong genotoxic compound, a property attributed to the ability of some of its metabolites to 

form DNA adducts. The formation of these adducts results from the presence of reactive sites 

known as bay region [72]. The bay region is an angular ring formed by fusion of a saturated 

benzene ring encompassing carbons 9-12 with the active center (α-carbon) at C-10 (Figure 4). 

These angular rings are prone to easy oxidation or radical ion formation but immune to 

conjugation and detoxification [73]. B[a]P 7,8-dihydrodiol-9,10-epoxide (BPDE), a 

compound arising from oxidation of B[a]P 7,8-dihydrodiol at the C-10 position, preferentially 

forms an adduct with DNA at the N2 position of guanine [53, 71]. These epoxides are capable 

of undergoing ring opening to form carbonium ions, electrophiles that are highly susceptible 

to nucleophilic attack by macromolecules such as DNA [63]. 

 

Figure 4: Metabolic pathways of B[a]P to different configurational isomers of B[a]P-7,8-diol-9,10-epoxide and 

formation of DNA adducts. dNu: deoxynucleotide, CYP: cytochrome P450; EH: epoxide hydrolase, DNA: 

deoxyribonucleic acid. Figure adapted from Xue et al., [74]. 
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The CYP enzymes and the microsomal epoxide hydrolase involved in B[a]P metabolism are 

highly stereoselective. BPDE itself is known to occur in four different isomers, however, (+)-

anti-BPDE, derived from (-)-B[a]P 7,8-dihydrodiol has been found to possess greater 

biological activity than the other three isomers [75] (Figure 4). In addition, B[a]P metabolites 

are also nucleotide-specific. More than 90 % of racemic anti-BPDE target deoxyguanosine 

residues [76]. However, the K region (carbon 4-5 of B[a]P) metabolite B[a]P 4,5-oxide has 

also been reported to form adducts with DNA [63]. Other than the 7,8-dihydrodiol-9,10-

epoxide and B[a]P 4,5-oxide, 9-OH-B[a]P-4,5-oxide, an intermediate of 9-OH-B[a]P, is also 

capable of binding to DNA [77]. 

These adducts when formed cause mutations by inducing changes in the nucleotide sequences 

due to misincorporation of a nucleotide opposite to the damaged base during DNA 

replication. The most common transversions associated with B[a]P exposure that cause cancer 

are G → T and C →A transversions [78, 79]. In fact, most of these transversions are 

responsible for mutations found in tumor suppressor genes in B[a]P-induced cancers [18]. A 

deficient repair of these adducts increases the rate of mutations and hence favors 

carcinogenesis. A number of different studies have revealed the formation of these adducts 

upon B[a]P exposure, but the effects are dose-, species-, tissue-, and strain-specific [80-82] 

[83]. Other than DNA adducts, hemoglobin and serum albumin are known to form stable 

adducts with anti-BPDE. These protein adducts have been suggested as biomarkers of 

cumulative human PAH exposure (Table 2) [84, 85] because of the long lifespan of these 

proteins (24 days for albumin and 120 days for hemoglobin). 

 
Table 2: Albumin and hemoglobin adducts of B[a]P. Table taken from Verma et al., Proteomics 

2012, 12, 1731–1755. 
 

Adduct Characteristics 
Number of 

subjects 

Technique 

used* 
Protein adduct levels References 

      

Albumin-

BPDE 

non-smokers 74 ELISA 4.54 (2.12-7.12) fmol/µg [86] 

non-smokers 29 3.54 (1.50-9.95) fmol/µg 

non-smokers 17 n.a. 
      

Albumin-

BPDE 

at work 13 ELISA 5.22 ± 1.49 fmol/µg [87] 

after one month 

vacation 
12 4.18 ±1.43 fmol/µg 

control 10 4.07 ± 2.14 fmol/µg 

at work 12 5.19 ± 4.02 fmol/µg 

control 12 3.28 ± 2.07 fmol/µg 
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Adduct Characteristics 
Number of 

subjects 

Technique 

used* 
Protein adduct levels References 

      

Albumin-

BPDE 

sample assessment in 

summers 
36 

ELISA 
4.34 ± 0.335 fmol/µg 

[88] 

sample assessment in 

winters 
59 3.06 ± 0.187 fmol/µg 

sample assessment in 

summers 
45 4.55 ± 0.296 fmol/µg 

sample assessment in 

winters 
48 3.04 ± 0.184 fmol/µg 

45 232 (108) fmol/mg 
      

Albumin-

BPDE 

non-smokers 26 ELISA 102 (102) fmol/mg 

318 (180) fmol/mg 

119 (109) fmol/mg 

[89] 

21 

19 
      

Albumin-

BPDE 

GSTM1+ 10 ELISA 11.1 (9.0-29.5) fmol/mg [90] 

GSTM1- 11 11.3 (6.0-18.4) fmol/mg 

GSTM1+ 11 12.0 (6.0-15.7) fmol/mg 

GSTM1- 19 9.5 (6.0-18.9) fmol/mg 
      

Albumin-

BPDE 

mothers smokers 31 ELISA 0.35 ± 0.065 fmol/µg [91] 

mothers non-smokers 56 0.17 ± 0.023 fmol/µg 

household members 

smoking 
32 0.18 ± 0.037 fmol/µg 

no smoker in household 34 0.15 ± 0.022 fmol/µg 

smokers 31 0.80 ± 0.15 fmol/µg 

non-smokers 56 0.41 ± 0.057 fmol/µg 

household members 

smoking 
34 0.49 ± 0.079 fmol/µg 

no smoker in household 32 0.31 ± 0.078 fmol/µg 
      

Albumin-

BPDE 
  

93 ELISA 0.356 ± 0.504 fmol/µg [92] 

13 0.550 ± 0.369 fmol/µg 
      

Albumin-

BPDE 

non-smokers 44 ELISA 1.76 (0.51-3.07) fmol/mg [93] 

45 
1.35 ± 0.77 (0.11-3.45) 

fmol/mg 
      

Hb-BPDE sample assessment in 

summers 
50 

GC/EC/NCI-

HRMS 
0.031 ± 0.22 fmol /mg 

[94] 

sample assessment in 

winters 
55 0.14 ± 0.38 fmol /mg 

      

Albumin-

BPDE 

high exposure 
10 

Sandwich 

ELISA 

22.4–257 (336–3800) 

fmol/mg 

[95] 

medium exposure 
10 

1.4–53.5 (21.0–801) 

fmol/mg 

low exposure 
10 

0.5–15.3 (7.5–229) 

fmol/mg 
      

Albumin-

BPDE 

occupational exposure 
207 

HPLC 34.36 (10.69–64.48) 

fmol/mg 

[96] 

control working in 

offices 
102 

21.90 (5.02–46.52 

fmol/mg 
      

Albumin-

BPDE 

rural/suburban 44 ELISA 3.38 ± 1.35 fmol/mg [97] 

city centers 56 2.81 ± 1.41 fmol/mg 

- 101 4.01 ± 1.38 fmol/mg 
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Adduct Characteristics 
Number of 

subjects 

Technique 

used* 
Protein adduct levels References 

      

Albumin-

BPDE 

 

all smokers 42 ELISA, 

HPLC 

0.020 ± 0.005 fmol/mg [98] 

non-smokers 23 0.019 ± 0.008 fmol/mg 

passive smokers 19 0.021 ± 0.007 fmol/mg 

smokers 27 0.042 ± 0.011 fmol/mg 

Hb-BPDE all smokers 42 0.068 (0.014) fmol/mg  

non-smokers 23 0.083 (0.024) fmol/mg 

passive smokers 19 0.049 (0.007) fmol/mg 

smokers 27 0.105 (0.020) fmol/mg 
      

Albumin-

BPDE 

high exposure 13 ELISA 30.7 (19-3) fmol/µg [99] 

low exposure 35 24.5 (19-4) fmol/µg 

nonexposed 45 11.2 (19 6) fmol/µg 
      

Albumin-

BPDE 

smokers 45 ELISA 0.55 (0.27-1.00) fmol/mg [100] 

non-smokers 25 0.58 (0.17-1.15) fmol/mg 

smokers 42 0.57 (0.16-1.45) fmol/mg 

non-smokers 26 0.70 (0.19-1.55) fmol/mg 
      

Hb-BPDE PAHs in air 

≤4 0 µg/m
3
 

113 
HPLC-FLD 

24.3 (2.5) fmol/mg 
[101] 

PAHs in air  

>4 0 µg/m
3
 

93 31.8 (2.3) fmol/mg 

1-HOP in urine 

≤2 0 µg/g creatinine 
139 27.2 (2.4) fmol/mg 

1-HOP in urine 

>2 0 µg/g creatinine 
64 27.7 (2.5) fmol/mg 

      

Albumin-

BPDE 

smokers 23 GC-NCI-MS 0.026 ± 0.047 fmol/mg [102] 

passive smokers 24 0.015 ±.0.040 fmol/mg 

non-smokers 22 0.016. ± 0.029 fmol/mg 
      

Albumin-

BPDE 

smokers 27 GC-NCI-MS 0.042 (0.011) fmol/mg [98] 

non-smokers 42 0.019 (0.008) fmol/mg 

passive smokers 19 0.021 (0.007) fmol/mg 

Hb-BPDE smokers 27 0.105 (0.020) fmol/mg 

non-smokers 42 0.083 (0.024) fmol/mg 

passive smokers 19 0.049 (0.007) fmol/mg 

 

 

* Hb: hemoglobin, BPDE: benzo[a]pyrene 7,8-dihydrodiol-9,10-epoxide, GC/EC/NCI-HRMS: gas 

chromatography/electron capture/negative chemical ionization high-resolution mass spectrometry, GSTM1: 

glutathione-S-transferase Ml, HPLC: high-performance liquid chromatography, ELISA: enzyme-linked 

immunosorbent assay, HPLC-FLD: high-performance liquid chromatography with postcolumn fluorescence 

derivatization, GC-NCI-MS: gas chromatography negative chemical ionization mass spectrometry 
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1.3.2 Oxidative stress 

It was believed for a long time that anti-diol epoxide-DNA adducts formed during B[a]P 

exposure are solely responsible for the mutagenic events in B[a]P-induced cancer, however, 

no mechanism could be provided for the formation of 8-hydroxy-dG and thymine glycol from 

diol epoxide. Soon it was realized that the cells were capable of converting B[a]P to redox-

active o-quinones by the activity of dihydrodiol dehydrogenase and peroxidase [62, 103] 

(Figure 5). It was observed that these enzymes compete with CYPs for trans-dihydrodiol 

proximate carcinogens [104, 105]. In the presence of dihydrodiol dehydrogenase, diols 

undergo NADP
+
-dependent oxidation to form ketols that further undergo spontaneous 

rearrangement to catechols [62]. 

 

 

 

Figure 5: Generation of reactive oxygen species by B[a]P via o-quinone. Figure adapted from Xue et al., [74]. 
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Figure 6: Generation of covalent and oxidative DNA adducts with o-quinones. (A, B) represent stable and 

depurinated adducts. (C, D) represent oxidative-DNA lesions. Figure adapted from Penning et al.,[106]. 

 

The catechols thus formed are itself unstable and undergo autoxidation in air. The first one-

electron oxidation results in the formation of an o-semiquinone anion radical (SQ) and 

hydrogen peroxide. The second one-electron oxidation produces the fully oxidized o-quinone 

and superoxide anion (O2•־) [36]. The resulting o-quinones are highly reactive and are 

capable of forming both stable and depurinated DNA adducts (Figure 6) [107, 108]. These 

adducts have the potential to give rise to the G → T transversions as observed in ras and p53 

gene mutations. Also, the o-quinone, by undergoing a two-electron non-enzymatic reduction, 

is capable of reforming the catechol or, by a one-electron enzymatic reduction, reforms the 

SQ. These events establish a futile redox cycle, which in turn leads to the amplification of 

ROS. The ROS thus generated are capable of forming 8-hydroxy-dG leading to G → T 

transversions [109]. Moreover, ROS generation can promote lipid peroxidation and thus the 

generation of reactive mutagens [110]. Likewise, ROS generation can promote the production 

of mitogens and the activation of protein kinase C to enhance tumor promotion. 
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1.3.3 Disturbance of signal transduction pathways 

Other than causing DNA damage, B[a]P is also known to interfere with signal transduction 

pathways, especially those involving calcium. Calcium, a universal second messenger, is 

involved in the regulation of a wide variety of cellular events, such as muscle contraction, 

gene expression, neurotransmission, fertilization, motility, hormone secretion, energy 

metabolism, cell growth, and cell death [111]. B[a]P has been shown to elicit an early and 

transient increase in intracellular calcium concentration (Ca
2+

)i [112]. It has been proposed 

that the rise in (Ca
2+

)i concentration is necessary for the AhR-mediated up-regulation of genes 

such as CYP or proinflammatory chemokines [113]. Other than that, it also affects cell 

proliferation and regulation by its profound effects on protein kinase C (PKC) [114]. PKC 

consists of a group of enzymes involved in controlling the functional activities of other 

proteins through phosphorylation of the hydroxyl groups of serine and threonine residues on 

these proteins [115]. B[a]P has been reported to inhibit these enzymes in a time- and 

concentration-dependent manner [116]. B[a]P is also known to interfere with epidermal 

growth factor (EGF) signaling cascades [117]. EGF is a membrane-bound tyrosine kinase 

receptor that primarily activates the Ras-MAPK signaling pathway following receptor 

autophosphorylation [118]. B[a]P is known to decrease EGF binding and hence affects 

proliferation and growth in placental cells and mouse fibroblasts [119, 120]. 

1.4 Objective 

As one of the most frequently diagnosed urologic malignancies bladder cancer accounts for 

approximately ninety percent of cancers of the urinary collecting system (renal pelvis, ureters, 

bladder, and urethra). Depending upon its occurrence, bladder cancer is further divided into 

subcategories, such as transitional cell carcinomas, squamous cell carcinomas, 

adenocarcinomas, small cell carcinomas, and leiomyomas (Pauli et al. 1983). More than 90 % 

of all bladder cancers are transitional cell carcinomas arising from the cells lining the inside of 

the hollow organ (uroepithelium), roughly 10-20 % proliferate to the layers beyond the 

epithelium, thus impairing the prognosis [121]. Although many specific agents have been 

identified as causal factors of bladder cancer, epidemiological studies indicate that 

occupational and environmental chemicals are significant determinants in many of the cancer 

incidences. Cigarette smoking is one of the main known contributors to the development of 

urinary bladder cancer [122, 123]. Among the many components of cigarette smoke, B[a]P 

that occurs in amounts of twenty to forty nanogram per cigarette is among the best studied of 

these compounds, particularly because of its mutagenic and carcinogenic properties [124]. 

http://en.wikipedia.org/wiki/Hydroxyl
http://en.wikipedia.org/wiki/Serine
http://en.wikipedia.org/wiki/Threonine
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However, epidemiological analyses have not yet documented B[a]P or any other PAH as 

significant candidates for initiating bladder cancer development. Therefore, the risk that 

exposure to any of these compounds causes bladder cancer is still uncertain [121, 125, 126]. 

Thus, the overall objective of this thesis was to investigate the B[a]P-induced effects at the 

protein level in primary urinary bladder epithelial at non-toxic doses, in an effort to identify 

proteins and pathways involved in the cellular response to this potential bladder carcinogen. 

For the studies primary urinary bladder epithelial cells (PUBEC) from pigs were chosen. 

These animals share many anatomical and physiological similarities with humans (Table 3) 

and have been one of the earliest animals used for research purposes. 

Table 3: An overview on similarities between pigs and humans. Table taken from Verma et al., 

Proteomics 2010, 11, 776–779. 
 

System Comparative Anatomy* Model system References 
    

Cardiovascular  

 

coronary artery distribution  

blood pressure higher in pigs:  

 145 - 160/105 mm Hg 

heart rate higher in pigs:  

 100 - 150 BPM  

cardiac output  

pulmonary pressure higher in  

 pigs 

cardioplegia 

ischemia 

myocardial infarction  

atherosclerosis  

cardiomyopathy 

 

[127] 

[128] 

[129, 130] 

[131, 132] 

[61, 62] 

 

    

Gastrointestinal 

 

torus pyloricus 

branching of mesenteric  

 vessels 

spiral colon (ascending colon) 

peptic ulcers 

intestinal transplant granulomatous  

 enteritis (Crohn's disease)  

ileal bypass  

[133] 

[134] 

[135] 

[136] 
    

Pulmonary  

 

submucosal glands  

striking similarities of 

 glycoprotein composition of  

 submucosal glands  

lung size 

lung functional capacity   

chronic bronchitis 

 

cystic fibrosis 

[137] 

 

[138] 

    

Renal 

 

cranial left kidney  

urine/plasma osmolal ratio 

creatinine reabsorption 

embryonal nephroma (Wilms' tumor)  [139] 

    

Immunologic  

 

Peyer's patches  

immunologically mature at 

 6 months 

major histocompatibility  

 complex (MHC) 

clotting mechanism  

von Willebrand's disease 

porcine anaphylaxis 

rheumatoid arthritis 

malignant lymphoma 

 

[140] 

[141] 

[142] 

[143] 
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System Comparative Anatomy* Model system References 
    

Endocrine    

segmental pancreatic transplants 

total pancreatectomy for type I 

 diabetes 

type II diabetes 

GM2 gangliosidosis 

malignant hyperthermia 

obesity 

[144] 

[145] 

[146] 

[147] 

[148] 

[149] 

[150, 151] 
    

Liver 

blood supply  

metabolic function  

bile duct separate from  

 pancreatic duct 

liver transplantation [152] 

    

Reproductive 

corkscrew fibromuscular penis 

accessory sex gland  

preputial diverticulum 

size of Fallopian tubes 

relaxin produced by ovaries 

cryptorchidism 

training for laser and microsurgery 

maternal-fetal interaction 

sperms 

fetal surgery 

embryo development 

[153] 

[41] 

[154] 

[155] 

[156] 

[156, 157] 

* Similar anatomy and physiology in pigs and humans unless otherwise specified. 

 

However, factors such as size, cost, ethical, and societal implications often limit the use of 

this model organism. One cost-effective alternative for this limitation can be the use of organs 

from slaughtered pigs. Organs from slaughtered pigs represent an unlimited, reliable and 

inexpensive resource of viable cell material for all fields of applied research. The method for 

isolating primary bladder epithelia cells for our toxicoproteomic studies was adopted from 

Guhe et al. [158]. It was applied to achieve the following specific aims: 

 To investigate the dynamics of B[a]P uptake and subcellular distribution in primary 

porcine urinary bladder epithelial cells (PUBEC) by using confocal laser scanning 

microscopy  

 To quantify B[a]P and its metabolites in these cells by spectrofluorometry and gas 

chromatography-mass spectrometry (GC-MS) 

 To establish proteome and phosphoproteome reference maps of PUBEC 

 To investigate B[a]P toxicity at the protein level in PUBEC 

 To analyze and compare protein complexes as downstream targets of AhR signaling in 

human bladder epithelial cells (RT4 cell line) exposed to B[a]P and TCDD 
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2. Material and Methods 

2.1 Cell Culture 

2.1.1 Pig urinary bladder epithelial cells (PUBEC) 

Primary cultures of porcine urinary bladder epithelial cells were used for the experiments to 

minimize the heterogeneity of the cellular responses observed when using cell lines. Porcine 

urinary bladders were obtained immediately after slaughter from a local slaughterhouse. For 

the isolation of the cells, the method described by Guhe and Föllmann [158] was used with 

few modifications. For aseptic transfer bladders from slaughtered pigs were transferred in 

icecold phosphate-buffered saline solution, supplemented with 100 pg/mL streptomycin and 

100 U/mL penicillin. Cells were isolated by scraping the inner wall of individual bladders 

with sterile glass slides. After washing the cells three times with PBS, cells derived from 

different bladders were pooled and resuspended in serum-free culture medium F-12, 

supplemented with 146 mg/mL glutamine, 100 U/mL penicillin, 100 µg/mL streptomycin, 

1.25 µL/amphotericin B, 5 µg/mL transferrin, 10 µg/mL insulin, 0.1 mM non-essential amino 

acids, 2.7 mg/mL glucose, 1 µg/mL hydrocortisone, and 20 ng/mL epidermal growth factor. 

Before culturing the cells, cell number and vitality were determined by the trypan blue 

exclusion assay. Trypan blue, a vital dye, is negatively charged and thus does not react with 

the cells, unless the cells are damaged. Therefore, the viable cells exclude the dye, and the 

dead cells are stained blue. For the assay, 20 µL of cell suspension were mixed with 500 μL 

of trypan blue solution plus 480 µL of PBS. The solution was thoroughly mixed, and 20 μL of 

the mixture were used for cell counting by using a hemocytometer plate. Cell numbers within 

four squares (1 mm
3
) were recorded. The total number was divided by four and multiplied by 

50 (because of the dilution with trypan blue), then multiplied by 10,000 to obtain the number 

of cells per milliliter. The cell viability was calculated by dividing the total number of viable 

cells by the total number of viable plus dead cells and multiplying the result by 100. In all cell 

experiments, starting cultures contained at least 95 % viable cells. The volume of cell 

suspension corresponding to the number of required cells was calculated and added together 

with warm F12 medium and cultured in collagen-coated culture flasks for 72 h in a 

humidified incubator in an atmosphere of 95 % air and 5 % CO2 at 37 
o
C before further use. 
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2.1.2 Evaluation of cell morphology and purity of PUBEC 

Cell morphology of isolated epithelial cells was evaluated by using microscopic images. For 

the experiment 20,000 cells/chamber were seeded onto eight-well chamber slides (BD Falcon, 

Heidelberg, Germany). After five days of culture, the cells in the chamber slides were taken to 

prepare microscopic images by using a Leica microscope attached to a charged-coupled 

device (CDD) camera and the Leica application suite version 3.5.0 software (Leica 

Microsystems CMS GmbH, Switzerland). Cell purity was evaluated by immunostaning of the 

cells with the epithelial marker MCA1907T (AbD Serotec, Kidlington, Oxford, UK). 

MCA1907T is a pan cytokeratin reagent consisting of a cocktail of clone AE1 and clone AE3 

that provides the broadest spectrum of reactivity to the 19 known human epidermal keratins 

and is known to produce positive staining in virtually all epithelial cells. For the analysis, the 

cells were fixed with icecold ethanol for 15 min at room temperature (RT). The cells were 

then washed 3 times with PBS (5 min each) and blocked by using 2 % BSA for 30 min at RT 

in a humidified chamber. After blocking, the cells were again washed three times with PBS 

for 5 min each. The cells were then incubated with 50 µL mouse anti-keratin 

(2 µg/mL/chamber) for 45 min at RT under humidified conditions. After
 
the first incubation 

with the antibody the cells were again washed with PBS and incubated with the second 

antibody (50 µL/chamber of a 1:50 diluted solution of rabbit antimouse IgG conjugated with 

Texas red) for another 45 min in a humidified chamber at RT, followed by three times 

washing with PBS and incubation for 1 min with 4',6-diamidino-2-phenylindole (DAPI) in the 

dark. The cells were again washed with PBS and placed on a glass slide with mounting 

medium for observation under the fluorescence microscope (DAPI: absorption at 358 nm, 

emission at 461 nm; Texas red: absorption at 589 nm, emission at 615 nm). 

2.1.3 RT4 cell line 

Cells of the human bladder urinary epithelial cell line RT4 were cultured in McCoy’s 5A 

medium, supplemented with 10 % fetal bovine serum, 0.74 % L-glutamine, 100 units/mL 

penicillin, and 100 mg/mL streptomycin in a humidified incubator in an atmosphere of 95 % 

air and 5 % CO2 at 37 
o
C. 
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2.2 Cell exposure 

Shortly before starting cell exposure, cells were checked under the light microscope for 

normal growth, cell shape, and absence of contaminations. The medium in the flasks were 

then discarded, and the cells were washed once with warm PBS (37 
o
C). For cell exposure 

B[a]P or 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD: used for comparative studies, see 

chapter 6) were dissolved in dimethyl sulfoxide (DMSO) and added to the fresh medium. 

Then, the cells were allowed to grow in this medium for another 24 h in a humidified 

incubator in an atmosphere of 95 % air and 5 % CO2 at 37 
o
C. 

2.3 Uptake and metabolism 

2.3.1 Determination of the time course of B[a]P uptake and subcellular 

distribution by confocal laser-scanning microscopy 

For fluorescence measurements 1.5x10
6
 cells/well were seeded onto collagen-coated glass 

coverslips (6.15 cm
2
) in six-well plates. After three days of culture, cells were exposed to 

0.5 µM B[a]P dissolved in DMSO (<0.1 % of final volume) for different time intervals (2, 6, 

12, 18, and 24 h). The same percentage of DMSO was used to expose controls in all 

experiments. At the time of measurement, pig epithelial cells were covered with 0.02 M 

HEPES-buffered H12 medium. B[a]P uptake and distribution were monitored with a laser-

scanning microscope (LSM 510, Zeiss, Oberkochen, Germany) equipped with an argon laser. 

The objective lens was a 63 × NA 1.25 plan-neofluar. The pinhole was set at 136 µm, 

producing confocal optical slices of about 1.0 µm in thickness. Blue fluorescence of B[a]P, 

excited at 365 nm by using the UV laser power supply at 80 mW, was collected through a 

389-470 nm long-pass filter. Three different areas from each chamber at all time periods were 

scanned by using the above settings. Single-cell fluorescence was determined by setting the 

region of interest (ROI) manually to the individual cells and for subcellular fluorescence to 

specific cellular compartments. Image processing and evaluation were performed by using the 

software of the LSM 510 imaging system. The intensity of B[a]P within the selected ROIs 

was evaluated and plotted over time. Experiments were carried out in triplicates with four 

different PUBEC pools prepared as described above. 

2.3.2 Quantification of B[a]P uptake by spectrofluorometry 

30x10
6
 cells in 50 mL culture medium were seeded in collagen-coated 175 cm² culture flasks. 

The cells were exposed to B[a]P after 72 h of cell culture at concentrations of 0.5 µM and 
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10 µM for 24 h. Cells at confluence were washed four times with PBS, and after every step 

PBS used for washing was stored for further analysis. Before harvesting the cells, care was 

taken to remove all of the residual PBS. The cells were collected by scraping them into a 

2 mL Eppendorf tube, and the total volume of the cells (200 µL) was adjusted to 2 mL with 

icecold medium designed to simulate the composition of the cytosol [159]. 

 

Figure 7: Spectral characteristics of B[a]P in cytosolic medium: absorbance (----) and emission spectrum (----) 

at 365 nm excitation for cell homogenate supernatant from B[a]P-loaded PUBEC (10 µM B[a]P, 24 h). Cytosolic 

medium served as blank. Figure taken from Verma et al., Archives of Toxicology 2012, 32, 3600–3611. 

 

The composition of “cytosolic medium” was: 40 % FCS, 100 mM KCl, 5 mM Na2HPO4, 

2 mM MgCl2, the full amino acid composition contained in Eagle’s minimum essential 

medium (MEM; from Sigma), 6.85 mM glucose, 1.5 mM lactate, 230 mM citrate, 138 mM 

pyruvate, 2.99 mM inorganic phosphate, 4 mM ATP, 4.5 mM glutathione (GSH) and 2 mM 

ascorbate (glutathione and ascorbate solutions freshly prepared), and 10 mM imidazole 

buffer, pH 7 2. Cells were then homogenized by using a mixer mill with steel grinding balls 

(MM200, Retsch, Haan, Germany) for 5 min at maximum frequency. After homogenization, 

the mixture was centrifuged (10 min at 30,000 g, 4 °C), and the protein content of the 

supernatant was calculated by the Bradford assay. Fluorescence spectra of the homogenate 

supernatant (Figure 7) were recorded by using a spectrofluorometer (Varian Cary Eclipse, 

Varian, Palo Alto, CA). 
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B[a]P was quantified based on the UV excitation and fluorescence emissions at 365 and 

405 nm, respectively, by using calibration curves (Figure 8) that were obtained under the 

same settings as for the sample measurements. The amount of B[a]P released from the cells, 

i.e., the intracellular B[a]P concentration, was calculated by considering a dilution factor of 

10 (total cell volume of 200 µL plus 1,800 µL “cytosolic” medium). PBS used for washing 

the cultured cells was controlled for remaining B[a]P. A total of eight independent PUBEC 

pools were prepared for the experiment. Four PUBEC pools were exposed to 0.5 µM B[a]P 

and the other four to 10 µM B[a]P. 

 

Figure 8: Calibration curves for the determination of intracellular B[a]P concentrations by spectroflurometry. 

[A] for cells exposed to 0.5 µM B[a]P; [B] For cells exposed to10 µM B[a]P). 

 

2.3.3 Quantification of B[a]P uptake by gas chromatography-mass 

spectrometry (GC-MS) 

For GC-MS analysis a 30 m Optima 5 GC column (Macherey-Nagel, Düren, Germany) 

coupled to a quadrupol mass spectrometer (HP 6890/5973, Agilent Technologies, Waldbronn, 

Germany) was used. Following preparation of the samples as described above, aliquots of 

100 µL each were spiked with 10 µL of a 100 ng/mL solution of B[a]P-d12 in toluene. To 

extract B[a]P, 100 µL of toluene were added, and the samples were shaken for one hour at 

room temperature. The organic layer was separated and used for analysis. The GC settings 

were as follows: injection of 1 µL of the analyte in the splitless mode: injector temperature 

270 °C: purge flow of 10 mL/min for 2 min: pressure 0.230 bar (23 kPa). The oven 

temperature was initially held at 80 °C for 10 min and then increased by 12 °C/min up to 

250 °C, where it was maintained for 8 min. After that, the oven was heated by 5 °C/min to 

290 °C and kept at that temperature for another 10 min. The temperature of the quadrupole 
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was set at 150 °C and that of the ion source at 230 °C. A calibration curve (Figure 9) was 

prepared by spiking a set of B[a]P standard solutions (0.5, 1, 2.5, 5, 7.5, 10, 25 µg/mL), each 

with 10 µL of a 100 ng/mL solution of B[a]P-d12. The mass spectrometer was operated in the 

single ion monitoring mode recording the molecular ions at m/z 252 and 264 for the 

nondeuterated and deuterated B[a]P species, respectively. 

2.3.4 Identification of 3-OH-B[a]P in PUBEC by GC-MS 

3-OH-B[a]P, a major hydroxylated metabolite of B[a]P, was identified in PUBEC by using 

the analytical procedure described above for the quantification of the parent compound. A 

synthetic preparation of 3-OH-B[a]P (Campro Scientific GmbH) was used as reference 

compound. Following extraction, 90 µL of the derivatizing reagent N,O-bis(trimethylsilyl)-

trifluoroacetamide (BSTFA) was added to 10 µL of the concentrated analyte. The solution 

was then heated at 80 °C for 30 min and, subsequently, the whole sample was injected into 

the GC-MS system for analysis. The mass spectrometer was operated in the single ion 

monitoring mode recording the molecular ion of the trimethylsilyl (TMS) derivative of 3-OH-

B[a]P at m/z 340. 

 

Figure 9: Calibration curve obtained from B[a]P standards (0.5, 1, 2.5, 5, 7.5, 10, 25 µg/mL) spiked with 10 µL 

of a 100 ng/mL solution of B[a]P-d12. The resulting ratios between the peak areas of the nondeuterated and 

deuterated B[a]P (F =AB[a]P/AB[a]P-d12) were used for the calculations. 
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2.4 Proteomic analysis 

2.4.1 2D gel electrophoresis 

For 2D gel electrophoresis 30x10
6
 cells were seeded in collagen-coated 175 cm² culture flasks 

in 50 mL culture medium. The cells were exposed to B[a]P after 72 h of cell culture at a 

concentration of 0.5 µM. Cells at confluence were harvested and washed three times with ice-

cold washing buffer containing 10 µM Tris-HCl and 250 µM sucrose (pH 7.0). The cell pellet 

was lyzed by adding 1 mL of lysis buffer (8 M urea, 2 M thiourea, 2 % CHAPS, 1 % DTT, 

0.8 % ampholyte, protease inhibitor cocktail). After ultracentrifugation at 30,000 rpm for 

60 min at 4 °C, the supernatant was used for 2D gel electrophoresis. The protein 

concentration was determined by the Bradford assay. The separation of the proteins was 

carried out with a GE Health Care IPGphor IEF and an Ettan DALTsix electrophoresis 

system. 500 µg of whole cell protein was mixed with 450 µL of rehydration buffer (8 M urea, 

10 % glycerol, 0.5 % CHAPS, 0.5 % ampholyte, and 0.002 % bromophenol blue). The 

rehydration step was performed with a precast 24 cm immobilized pH gradient (IPG) strip for 

2 h, with subsequent active rehydration for 12 h at a voltage of 30 V. Isoelectric focusing 

(IEF) was run following a stepwise voltage increase procedure: After starting with 500 V and 

1000 V for 1 h each, the voltage was linearly increased to 8000 V over a period of 8 h 20 min. 

After IEF, the IPG strips were subjected to a two-step equilibration in respective buffers (6 M 

urea, 30 % glycerol, 2 % SDS, 0.002 % bromophenol blue, and 50 mM Tris/HCl; pH 8) with 

1 % DTT (w/v) for the first step, and 2.5 % iodoacetamide (w/v) for the second step. The 

separation in the second dimension was performed by using 1 mm thick 12.5 % 

polyacrylamide gels (35 x 45 cm). Electrophoresis was carried out overnight with running 

conditions of 2 W/gel for 14-16 h. 

2.4.2 Precipitation of phosphoproteins 

The whole cell lysates prepared for 2D gel electrophoresis were used for precipitation of pig 

phosphoproteins with a method developed in our laboratory [160]. The precipitation of 

phosphoproteins was carried out by the addition of 3 µL LaCl3 (1 M) to 1 mg/mL protein 

sample and 2 min of vortexing, followed by the addition of 3 µL KH2PO4 (2 M). The mixture 

was vortexed and centrifuged at 2500 rcf at 4 °C for 1 min. The supernatant was decanted, 

and the pellet was resuspended in 300 µL of a solution of 8 M urea and 1 % 3-[(3-

cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS), followed by centrifuga-

tion for 30 s at 2500 rcf. The pellet was washed three times with 300 µL mili-Q water to 
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remove urea and CHAPS. Finally, a mixture of 25 %/75 % 4 M imidazole/lysis buffer 

mixture was used to solubilize the pellet, and the supernatant containing the phosphoproteins 

was collected by centrifugation for 10 min at 18,000 rcf. The protein concentration was 

estimated, and 100 µg were used for 2DE gel separation analysis by applying to a 7 cm IPG 

strip in a stepwise procedure with increasing voltage: S1: step-n-hold 50 V, 50 Vhr; S2: 

gradient 150 V, 150 Vhr; S3: step-n-hold 300 V, 300 Vhr; S4: gradient 1000 V, 325 Vhr; S5: 

gradient 5000 V, 4500 Vhr; S6: step-n-hold 5000 V, 2500 Vhr. After IEF, the IPG strips were 

subjected to a two-step equilibration as described above. The separation in the second 

dimension was performed by using 1 mm thick 12 % polyacrylamide gels (10 cm x 10 cm) 

for 2 h. 

2.4.3 Coomassie brilliant blue (CBB) staining of gels 

Gels were stained according to the Coomassie staining protocol developed in our laboratory 

[161]. The staining solution was prepared by mixing 5 % aluminium sulfate 14–18 hydrate, 

10 % ethanol, 0.02 % of CBB G-250, and 8 % phosphoric acid. The gels were stained for 3 h 

followed by destaining for 30 min in a solution containing 2 % phosphoric acid and 10 % 

ethanol. Gels were further allowed to destain in water overnight before being ready for further 

processing. 

2.4.4 Image acquisition and analysis 

The stained gels were scanned by using a ScanMaker 9800XL instrument (Microtek 

International, Inc., Willich, Germany). Spot detection, quantification (rel. % volume), and 

pattern matching were performed by using the Delta2D v4.0 software (Decodon, Greifswald, 

Germany). The background was removed from each gel, and image spots were matched, 

automatically detected, and then manually edited. The total density of each gel image was 

used to normalize the individual spot volumes to minimize variations between each gel. Each 

spot volume was normalized as relative percentage of the total volume of all spots present in a 

gel. To identify the protein spots with a consistent expression in the groups, only spots 

matching in at least 60 % of the gel images in a group were considered. 

2.4.5 In-gel enzymatic digestion 

Protein spots of interest were excised, and the gel pieces were washed and dehydrated by 

incubating them in 50 µL of pure acetonitrile (ACN, 100 %) for 5 min. Following the 

incubation the acetonitrile was removed, and the spots were digested with 30 μL of trypsin 
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solution (40 mM ammonium bicarbonate, 3 % ACN, 0.1 ng/mL trypsin) at 37 °C for three 

hours. The digestion was stopped by the addition of 20 µL of 1 % trifluoroacetic acid (TFA) 

and the digested peptides were purified by using C-18 Zip tips according to the 

manufacturer’s protocol. The first step involved the activation of Zip tips with pure 

acetonitrile (two times), followed by two times washing with 0.1 % TFA solution. Finally, the 

samples were loaded onto the C18 column by pipetting the samples 7-10 times into these tips. 

The C18 tips with absorbed peptides were then washed twice with 0.1 % TFA solution, before 

the purified peptides were eluted with matrix solution (10 mg/mL α-cyano-4-hydroxy-

cinnamic acid (CHCA) in 70 % ACN, 7 % water (Milli Q), and 0.3 % TFA) onto a MALDI 

target. The peptides were then allowed to dry for another 5-10 min before their analysis by 

MALDI-TOF-MS. 

2.4.6 MALDI-TOF-MS analysis and protein identification 

The protein analysis was performed on a Voyager-DE
TM

 STR MALDI-TOF mass spectro-

meter (Applied Biosystems, Foster City, CA, U.S.A.). Trypsin-digested samples were placed 

on a Mass-Spec-Turbo 192 CHCA Chip (Qiagen, Hilden, Germany). The mass spectrometer 

was operated in the positive-ion, delayed-extraction (200 ns delay time) reflector mode. The 

identification of the proteins was performed by peptide mass fingerprinting (PMF) using the 

Mass Spectrometry protein sequence DataBase (MSDB) and the National Center for 

Biotechnology Information (NCBInr) protein databases with the special search engine Mascot 

(http://www.matrixscience.com). Raw data of the peptide masses were queried to the 

theoretical peptide mass of the entire database of MSDB and NCBInr. The criteria for 

searching were set with assumptions that the peptides are monoisotopic, oxidized at 

methionine, and carboxyamidomethylated at cysteine residues. Only one missed trypsin 

cleavage and a peptide mass tolerance of 100 ppm was allowed for each peptide fragment. For 

the studies with pig epithelia cells the taxonomy was set to pigs, while for the studies with the 

RT4 cell line the taxonomy was set to humans. Probability-based molecular weight search 

(MOWSE) scores were estimated by comparison of the search result against an estimated 

random match population and was reported as -10*LOG10(P), where P is the absolute 

probability. Scores greater than 65 were considered statistically significant (p <0.05). 

2.4.7 TdT-mediated dUTP-X nick end labeling (TUNEL) assay 

Apoptosis, also known as programmed cell death, is a process involving a series of 

biochemical events leading to specific cell morphology characteristics and ultimately to the 
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death of cells. One of the peculiar characteristics of late stage apoptosis is the fragmentation 

of nuclear chromatin, which results in a multitude of 3’-hydroxyl termini of DNA ends. 

Terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end labeling 

(TUNEL) is a method that involves the identification of apoptotic cells by labeling the DNA 

breaks (3’-hydroxyl termini of DNA ends) with fluorescent-tagged deoxyuridine triphosphate 

nucleotides (F-dUTP). The enzyme terminal deoxynucleotidyl transferase (TdT) catalyzes a 

template-independent addition of deoxyribonucleoside triphosphates (dNTP) to the 3’-

hydroxyl ends of double- or single-stranded DNA which generates DNA strands with exposed 

3'-hydroxyl ends. The apoptotic cells can then be separated from non-apoptotic cells, as these 

cells do not incorporate much of the F-dUTP because of the absence of exposed 3’-hydroxyl 

DNA ends. 

The assay was performed by using the in situ death detection kit TMR red (Roche Diagnostics 

GmbH, Germany) according to the manufacturer’s instruction. Briefly, 20,000 cells/chamber 

were seeded onto eight-well chamber slides (BD Falcon, Heidelberg, Germany). After five 

days of culture, the cells were exposed to 0.5 µM B[a]P for 24 h. The exposed epithelial cells 

were then fixed with 4 % paraformaldehyde in PBS (pH 7.4) for one hour at RT. The fixed 

cells were then washed three times with PBS for 5 min each. After fixation, the cells were 

permeabilized with freshly prepared 0.1 % Triton X-100 in 0.1 % sodium citrate. Cells were 

subsequently labeled with the TUNEL working solution. Apoptotic cells were identified as 

red fluorescent TUNEL-positive cells by fluorescence microscopy and are given in percentage 

of the total number of cells as determined by DAPI nuclear staining. The cells were treated 

with DNAse as positive control. All experiments (n=6) were carried out in triplicates, and the 

level of statistical significance relative to control was calculated by using the one tailed t-test 

(p <0.05). 

2.4.8 Western blot 

The differentially expressed proteins, screened with 2DE, were confirmed by immune-

blotting. A total of 30 μg of total protein was resolved in a 12 % polyacrylamide gel. These 

samples were then electrotransferred onto polyvinylidene fluoride (PVDF) membranes 

(Invitrogen GmbH, Germany). After blocking with 5 % nonfat dry milk, the membranes were 

immunoblotted with PMSD4, HSP27, HSP70, Hnrnpa1, VDAC2, and β-actin antibodies at 

dilutions recommended by the suppliers. Horse radish-conjugated secondary antibodies and a 

chemiluminescence kit (Invitrogen GmbH, Germany) were used for detection. Protein 
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expression was visualized by the Versa Doc Imaging System (Bio-Rad Hercules, CA, USA). 

The intensity of the bands normalized to the band of β-actin was measured by using the 

UNSCAN-IT automated digital system version 5.1 software (Orem, USA) and given in terms 

of calculated quantitative fold change with respect to control. 

2.4.9 Comet assay 

The comet assay, also known as single-cell gel electrophoresis, is a sensitive method for 

measuring DNA strand breaks in eukaryotic cells. The method involves the lysis of cells 

embedded in agarose on a slide with a detergent and a high amount of salt, which leads to the 

formation of nucleoids containing supercoiled loops of DNA, linked to the nuclear matrix. 

The supercoiled DNA is then electrophoresed at high pH, where looped DNA becomes free 

and moves towards the anode in structures resembling comets. These structures are then 

stained and observed by fluorescence microscopy. The intensity of the comet tail relative to 

the head reflects the number of DNA breaks.  

The comet assay for the study was performed under alkaline conditions as previously reported 

[80]. Briefly, cells were exposed to different B[a]P concentrations (0.1 to 10 µM) for 24 h. 

After exposure, the cells were washed twice and detached by trypsin/ethylenediamine 

tetraacetic acid (EDTA) treatment for 5 min. The cells were collected by centrifugation, and 

20 mL of cell suspension (8000 cells) were mixed with 45 µL of low-melting agrose and 

quickly pipetted into each of eight wells of a comet slide and allowed to set for 1 h at 4 
o
C in 

the dark. The slides were then immersed in prechilled lysis solution (10 mM Tris-HCl, 

10 mM EDTA, 2.5 M NaCl, and 30 mM N-laurylsarcosine sodium salt, pH 10; 1 % Triton X 

and 10 % DMSO were added freshly) for overnight at 4 
o
C. Following the lysis, alkaline 

treatment in electrophoresis buffer (300 mM NaOH, 1 mM EDTA, and 10 mM Trizma; 

pH 13) was carried out for 30 min at 4 
o
C, and then electrophoresis was run for another 

30 min at 4 
o
C (300 mA, 25 V). After neutralization (400 mM Tris-HCl, pH 7.5) for 60 min, 

the gels were dehydrated in absolute ethanol for 2 h and stored in the dark to dry completely. 

Just before image analysis, gels on each slide were stained with SYBR
®
-Green nucleic acid 

stain (Invitrogen, Darmstadt, Germany) in the dark for 20 min. A coverslip was placed over 

the moist gel, and the gels were examined by using the comet assay IV software (Perspective 

Instruments, UK) and a Leica microscope attached to a CDD camera. Values of the olive tail 

moment (OTM) were automatically calculated by the software. As a positive control, the cells 

were treated with 1 mg/mL N-ethyl-N-nitrosourea (ENU). All experiments were carried out in 
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triplicates, and the level of statistical significance relative to control was calculated by using 

the t-test (p ≤0.001) 

2.4.10 Detection of the mitochondrial membrane potential (MMP) 

The mitochondrial potential of pig urinary epithelial cells was measured by use of the 

fluorescent dye Rodamine123. Rodamine123, a monovalent cationic dye, is used to monitor 

the mitochondrial function in living cells by its ability to distribute across the mitochondrial 

inner membrane according to the negative membrane potential [162]. The loss of potential 

due to early events during apoptosis results in a loss of the dye and, therefore, the 

fluorescence intensity.  

For the determination of the mitochondrial potential, PUBEC at a concentration of 

50,000 cells/well were plated in black 96-well plates with a clear bottom for 72 h, followed by 

exposure to 0.5 µM B[a]P for 2, 6, 12, and 24 h. Cells treated with normal cell culture 

medium were used as negative controls, while 100 μM of the ionophore valinomycin served 

as positive control. Following exposure, the cells were washed three times with warm PBS 

and exposed to 5 μM Rhodamine123 dye for 30 min at 37 
o
C. Measurements were obtained 

immediately at excitation and emission wavelengths of 488 and 535 nm by using the Tecan 

microplate reader (Tecan, Mainz, Germany). 

2.5 Two-dimensional Blue Native/SDS-PAGE (2D BN/SDS-

PAGE) 

2.5.1 Sample preparation and subcellular fractionation of RT4 cells 

For organellar enrichment ProteoExtract®, a commercially available subcellular fractionation 

kit (S-PEK), was applied. By using the kit control cells and cells exposed to B[a]P (0.5 µM) 

and TCDD (200 pM) were fractionated into four subcellular compartments: cytosol, 

membrane/organelle proteins, nuclear, and cytosolic fraction (Figure 10). Except for the 

cytosolic fraction, all other fractions were used for 2D BN/SDS-PAGE. 

3.5x10
6
 RT4 cells were seeded in 25 cm² culture flasks in 5 mL culture medium. Cells at 

confluence were harvested, mixed with 1 mL of cold extraction buffer 1 including protease 

inhibitors, and incubated at 4 °C for 10 min (all incubations were performed on an end-over-

end shaker). Insoluble material was sedimented at 1000×g at 4 °C for 10 min, and the 

resulting supernatant, the cytosolic subproteome, was removed. Then, the whole procedure 
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was repeated. The pellet was mixed with 1 mL of cold extraction buffer 2 and incubated for 

30 min at 4 °C. The insoluble material was sedimented at 6000×g at 4 °C for 10 min. The 

supernatant, the membrane/organelle subproteome, was removed, and the pellet was mixed 

with 500 μL of cold extraction buffer 3 including 1.5 μL benzoase to digest DNA. After 

10 min of incubation, the insoluble material was sedimented at 7000×g at 4 °C for 10 min, 

and the supernatant, the nuclear fraction, was removed. The final fraction, the cytoskeletal 

subproteome, was obtained by resuspending the remaining pellet in 500 μL of extraction 

buffer 4. Fractions were aliquoted and stored at -80 °C until further use. The buffer 

composition for the subcellular fractionation, as provided in the kit, was sufficient. Therefore, 

no external detergent was added to these buffers. To enrich the subcellular fractions and to 

avoid the large carryover of proteins from one fraction to another, the enrichment step on each 

fraction was repeated up to three times. These enriched fractions were then used for 

2D BN/SDS-PAGE. 
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Figure 10: Pictorial representation of subcellular extraction by using S-PEK. 

 

2.5.2 2D BN/SDS-PAGE 

Blue Native/SDS-PAGE is a kind of native electrophoresis that helps in high-resolution 

separation of enzymatically active protein complexes from tissue homogenates or cell 

fractions. The separation principle relies on binding of CBB G250, which provides negative 

charges, to the surface of the protein. During migration to the anode, protein complexes are 

separated according to their molecular mass and/or size, and high resolution is obtained by the 

decreasing pore size of a polyacrylamide gradient gel. These complexes are then separated 
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into the subunits by usual SDS gel electrophoresis (Figure 11). Thus, this technique allows 

the separation of multiprotein complexes in their native forms. 

 

 

Figure 11: Principle of 2D BN/SDS-PAGE. Figure adapted from Camacho et al., [163]. 

 

50 mg of protein sample were mixed with 5 µL of sample buffer (750 mM aminocaproic acid 

and 5 % (w/v) CBB G-250) and centrifuged at 14,000 rpm for 10 min at 4 °C. The 

supernatant was then separated on a 4–16 % Bis-Tris polyacrylamide native gradient gel by 

using the Invitrogen electrophoresis system. The outer chamber was filled with icecold anode 

buffer (50 mM Bis–Tris, pH 7.0) and the inner chamber with icecold blue cathode buffer 

(15 mM Bis–Tris, pH 7.0, 50 mM tricine, and 0.02 % CBB G-250). Electrophoresis was 

performed at 20 mA, 200 V and 10 W for approximately 4 h at 4 °C and stopped when the 

tracking line of the CBB G-250 dye had left the edge of the gel. The lanes from the first 

dimension were cut into individual strips, and before the separation in the second dimension, 

the strips were equilibrated in denaturation buffer (1 % SDS and 1 % iodoacetaamide (IAA)) 

for 30 min at RT and placed into a 12 % Bis–Tris polyacrylamide gel of the same thickness. 

The second-dimension run was performed at 150 V, 75 mA, and 5 W, until the blue front 

migrated out. At the end of the run, the gel was stained with Coomassie, and the spots were 

picked up for mass spectrometry by applying the protocol described above. 
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2.5.3 Determination of intracellular chelatable iron by Phen Green
TM

 SK 

Phen Green
TM

 SK (PG SK), a metal-sensitive probe, was used for measuring the cellular 

labile iron content of the cells. The dye can be swiftly loaded into cells via its nonfluorescent 

acetomethoxy precursor PG SK-AM. Once inside the cell, the lipophilic blocking groups are 

cleaved by nonspecific esterases, resulting in a charged form that leaks out of cells far more 

slowly than its parent compound. The PG SK-loaded cells have a fluorescence component 

(ΔF) that is quenched by intracellular iron and can be revealed by the addition of a chelator, 

e.g., phenanthroline. The rise in fluorescence is equivalent to the change in PG SK 

concentration or to the amount of cellular iron originally bound to PG SK. Thus, the change in 

PG SK fluorescence intensity is directly proportional to the labile iron pool. (Figure 12) 

For the determination of chelatable iron with PG SK, the protocol described by Petrat et al. 

was used [159]. 2x10
6
 cells/well were seeded onto collagen-coated glass coverslips (6.15 cm

2
) 

in six-well plates. After two days of culture, the cells were exposed to 0.5 µM B[a]P or 

200 pM TCDD dissolved in DMSO (<0.1 % of final volume) for 24 h. The same percentage 

of DMSO was used to expose controls in all experiments. The experiment was repeated four 

times in duplicates. The cells after exposure were washed twice with Hanks balanced salt 

solution (HBSS; 137 mM NaCl, 5.4 mM KCl, 1 mM CaCl2, 0.5 mM MgCl2, 

0.4 mM KH2PO4, 0.4 mM MgSO4 , 0.3 mM Na2HPO4, and 25 mM Hepes, pH 7.4). 
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Figure 12: Measurement of the labile iron pool by using the Phen Green
TM

 SK molecular probe. (A) PG SK-

AM, the acetomethoxy derivate of Phen Green
TM

 SK, is a nonfluorescent and membrane-permeable dye. 

(B) Upon entry into the cells, PG SK-AM is hydrolyzed to give the fluorescent PG SK that is quenched upon 

binding of iron (Fe). Phenanthroline (PHE), a strong iron chelator, evokes the fluorescence dequenching by 

competing with PG SK-bound iron. Thus, the rise in fluorescence is equivalent to the change in PG SK 

concentration or to the amount of cellular iron originally bound to PG SK. Figure adapted from 

Kakhlon et al., [164]. 

 

The cells were loaded with PG SK (20 µM) for 10 min at 37 °C in a CO2 incubator. After the 

incubation the cells were washed three times with HBSS buffer and again incubated in 5 mL 

HBSS buffer at 37 °C in a CO2 incubator for another 10 min. A laser scanning microscope 

(LSM 510; Zeiss, Oberkochen, Germany), equipped with an argon laser and a helium/neon 

laser, was used to perform the fluorescence measurements. The objective lens was a 

63×NA 1.25 plan-neofluar. The green fluorescence of PG SK, excited at 488 nm by using the 

argon laser at a power rating of 6.75 mW, was collected through a 505 nm longpass filter. 

Confocal images (scanning time 30 s) were collected with the power of the argon laser set at 

0.7 % after 3 min of PG SK loading. After establishing baseline fluorescence, cellular 

chelatable iron was removed from PG SK by adding the cell-permeant iron chelator 1,10-

phenanthroline (2 mM) to the supernatant, and the images were collected first after 2 min of 

addition and then after every 10 min for the next 50 min. Full image scans of the cells were 

determined. Image processing and evaluation were performed by using the software of the 
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LSM 510 imaging system. Experiments were carried out in triplicates with RT4 cells prepared 

as described above. 

2.5.4 Determination of NO with the Griess test 

Nitric oxide (NO) is a key biosignaling molecule produced by a family of enzymes known as 

nitric oxide synthases (NOSs). The Griess method involves the determination of nitrite and 

nitrate (as a measure of nitric oxide) by formation of a red azo dye upon treatment of a NO2
-

containing sample with the Griess reagent (Figure 13). The reagent is an acidic solution of 

sulfanilamide and alpha-naphthylamine that undergoes a diazotization reaction with nitrites, 

forming a red azo dye. 

 

The production of NO was determined by measuring the total nitrite/nitrate (NO2
−
/NO3

−
) 

concentration by means of the Griess reaction [165], using a commercially available 

photometric nitrate test (R-Biopharm, Darmstadt, Germany) with some modifications. 

4.0x10
6
 RT4 cells were seeded in 3 mL culture medium into a 6-well plate. Cells at 

confluence were exposed to 750 µL of medium containing B[a]P (0.5 and 5 µM) or TCDD 

 

Figure 13: Mechanism of nitrite detection by using the Griess reagent. Figure taken from Sun et al., [165]. 

 

http://en.wikipedia.org/wiki/Reagent
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(200 pM and 1 nM) for 24 h. The medium used for exposure was filtered (Vivaspin 500, 

MW 30,000, Sartorius Stedim Biotech, Göttingen, Germany) by centrifugation (15,000×g, 

60 min, 4 °C) subsequent to a wash step of the filters with distilled water to remove possible 

contaminating nitrate. 50 µL of the undiluted filtered sample was mixed with 

50 µL phosphate buffer (50 mM, pH 7.4), and after adding 50 µL of a NADPH/FAD solution 

and 5 μl of nitrate reductase solution (both from the nitrate test kit of R-Biopharm) the 

mixture was incubated for 20 min at RT. Afterwards, 5 μL of sodium pyruvate solution 

(12 mg/mL distilled water) and 5 μL lactate dehydrogenase solution (Roche, Mannheim, 

Germany, diluted 1:10 with distilled water.) were added to this mixture and incubated for 

another 20 min at RT. Finally, 200 µL of Griess reagent (1 % sulfanilamide plus 0.1 % N-(1-

naphthyl) ethylenediamine dihydrochloride, 1:1) was added to the mixture, and after 10 min 

of incubation the absorption was determined at 542 nm. Concentrations in micromoles were 

then assessed from calibration curves performed from standard solutions of NaNO2 (10–

1000  μM). 

2.5.5 Determination of intracellular calcium concentration 

Based upon the same principle as the Phen Green molecular probe, Fluo-4/AM and 

Rhod-2/AM are fluorescence indicators for calcium (Figure 14). Having an absorption 

spectrum that is compatible with an excitation at 488 nm by argon ion laser sources, Fluo4 

exhibits a high calcium-binding affinity and selectivity and a very large increase (>100-fold) 

of fluorescence intensity in response to calcium binding (Kd = 345 nM). Rhod-2/AM, on the 

other hand, is a cationic dye with a strong affinity for mitochondria, and thus acts as a 

selective indicator for mitochondrial calcium. It has its fluorescence excitation and emission 

maxima at 552 nm and 581 nm, respectively, and upon calcium binding the fluorescence 

intensity has been reported to increase up to more than 100-fold (Kd= 540 nM). 

To study [Ca
2+

]i modulations by B[a]P and TCDD, two Ca
2+

-sensitive dyes were used: 

Fluo-4/AM (1.4 µM) to observe changes of [Ca
2+

]i, and Rhod-2/AM (3,6 µM) to determine 

the changes of Ca
2+

 within the calcium stores. 2x10
6
 cells/well were seeded onto collagen-

coated glass coverslips (6.15 cm2) in six-well plates. After two days of culture, cells were 

exposed to 0.5 µM B[a]P or 200 pm TCDD dissolved in DMSO (<0.1 % of final volume) for 

24 h. The same percentage of DMSO was used to expose controls in all experiments. The 

experiment was repeated four times in duplicates. The cells after exposure were washed twice 

with HBSS (137 mM NaCl, 5.4 mM KCl, 1 mM CaCl2, 0.5 mM MgCl2, 0.4 mM KH2PO4, 
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0.4 mM MgSO4, 0.3 mM Na2HPO4 and 25 mM Hepes, pH 7.4). Afterwards, the cells were 

incubated with a HBSS solution containing Fluo-4/AM (1.4 µM) and Rhod-2/AM (3.6 µM) 

for 30 minutes at RT, followed by incubation for another 30 min at 37 °C. The dye solution 

was then removed and the cells were incubated for additional 30 min at 37 °C in 3 mL HBSS 

buffer supplemented with 2.5 mM probenecid (500 mM stock solution in 1 N NaOH). 

 

Figure 14: Chemical structures of intracellular calcium staining dye Fluo-4 and calcium store staining dye 

Rhod-2/AM. 

 

For measurement, the coverslips were washed once with warm HBSS (37 °C) and placed in a 

coverslip holder. The cells were overlaid with 3 mL probenecid-supplemented HBSS buffer, 

and the fluorescence was measured on a confocal laser scanning microscope equipped with an 

argon laser and a helium/neon laser. The green fluorescence of Fluo-4/AM was excited at 

488 nm by using the argon laser and was collected through a 505 nm longpass filter, whereas 

the red fluorescence of Rhod-2/AM, excited at 543 nm (by using the helium/neon laser), was 

collected through a 560 nm longpass filter. Three different areas from each chamber at all 

time periods were scanned by using the above settings. Full image scans of cells were 

determined. Image processing and evaluation were performed by using the software of the 

LSM 510 imaging system. All experiments were carried out in triplicates. 
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2.6 Bioinformatic analysis 

The Protein Analysis Through Evolutionary Relationships database (PANTHER) was used to 

elucidate the molecular function, biological process, and signaling pathway associated with 

each individual protein (http://panther.appliedbiosystems.com/) [166]. The subcellular 

location annotation of the proteins was predicted by using the clustering program 

(http://david.abcc.ncifcrf.gov/) called Database for the Annotation Visualization and 

Integrated Discovery (DAVID) [167]. 

 

http://panther.appliedbiosystems.com/
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3. Exposure of PUBEC to B[a]P: In vitro uptake, intra-

cellular concentration, and biological response
†
 

3.1 Objective 

A requirement for B[a]P to mediate its carcinogenic potential is the ability of the particular 

tissue to incorporate the chemical and to subsequently metabolize it to reactive intermediates. 

Although a basic phenomenon, the simple mechanism behind B[a]P uptake is still largely 

unknown. Moreover, the presence of B[a]P metabolites in urine has been used as gauge for 

PAH exposure in environmental toxicology for a long time, yet no information is available on 

the ability of bladder tissue for B[a]P uptake. Investigations in humans and in animal models 

suggest that the urothelium may be exposed to B[a]P both by its diffusion from the capillaries 

in the lamina propria and by its uptake from urine. 

Therefore, the aim of the present study was to investigate the dynamics of B[a]P uptake and 

its subcellular distribution in bladder epithelial tissue. To analyze these processes in a cell 

type that closely reflects the native function within the living system, the experiments were 

performed with primary urinary epithelial cells from pigs (PUBEC). As an eutherian 

mammal, pigs share many similarities with humans. PUBEC have previously been used for 

many in vitro studies and are known to maintain all functions specific to bladder epithelial 

cells [80, 168-173]. 

3.1.1 Morphologies and purity of PUBEC 

Isolated porcine urothelial cells maintain all morphological structures typical of the 

urothelium. Microscopic images were made after five days of cell culture to evaluate the 

morphology of isolated epithelial cells from pig bladders. The cultured cells formed a 

monolayer with many morphological polarities resembling the epithelium in vivo 

(Figure 15A). Moreover, immunostaining of isolated cells with MCA1907T, a pan 

cytokeratin reagent, also confirmed the epithelial characteristics of these cells (Figure 15B). 

                                                           
†
 Verma et al., Archives of Toxicology, 2012, (doi 10.1007/s00204-012-0899-y) 

 

http://dx.doi.org/10.1007/s00204-012-0899-y
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Figure 15: Establishment and characterization of porcine bladder epithelial cell culture: (A) Pig bladder epithelial 

cells were seeded onto collagen-coated plates and cultured for seven days. The cultured cells formed a monolayer 

and showed many morphological structures typical of urothelial cells. (B) Epithelial cell marker expression of 

cultured bladder epithelial cells for cell morphology and purity. (a) Positive staining shown in red; (b) DAPI was 

used to stain nucleus blue; (c) merged image of positively stained epithelial cells and DAPI-stained nucleus. 

Figure taken from Verma et al., Electrophoresis 2011, 32, 3600–3611. 

 

3.1.2 Analysis of B[a]P uptake and its subcellular distribution 

The time-dependent increase of the intracellular amount of B[a]P was monitored by using 

confocal laser scanning microscopy. (Figure 16) demonstrates the uptake of PUBEC expose 

to 0.5 µM B[a]P for different time intervals. As compared to nonexposed control cells, a time-

dependent increase in the cellular fluorescence intensity of B[a]P-exposed cells was observed, 

however, no significant uptake was measured during the initial 2 h of exposure. Only after six 

hours of exposure an initial cellular uptake of B[a]P occurred, which increased linearly with 

time but with substantial variation among the different cell pools. 
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Figure 16: Box plots representing the time-dependent increase in B[a]P fluorescence of different PUBEC pools 

exposed to 0.5 µM B[a]P. The fluorescence was monitored by using laser-scanning microscopy (λexcitation = 365 nm; 

λemission = 389-405 nm). The boxes encompass the 25th and 75th percentiles. Horizontal bars inside the box represent 

the median. Whiskers extend to the highest and lowest levels that are not outliers. (°) Outliers representing 1.5 box 

lengths from the 25th or 75th percentile. (♦) Outliers representing 3 box lengths from the 25th or 75th percentile. 

Figure taken from Verma et al., Archives of Toxicology 2012. 

 

Analysis of the subcellular distribution revealed a substantial B[a]P uptake by the plasma 

membrane as compared to other cellular compartments. A significant increase of cell 

membrane fluorescence intensity was recorded over the time period of 24 h (Figure 17A, B). 

In addition, a slight but significant increase in fluorescence intensity was observed in the 

cytosol and nucleus (Figure 17C, E). 
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Figure 17: Subcellular distribution of B[a]P in PUBEC. Cells were cultured on collagen-coated glass coverslips 

and exposed to 0.5 µM B[a]P for up to 24 h. The fluorescence was recorded by using a laser-scanning 

microscope (λexcitation = 365; λemission = 389-470 nm). (A) Intracellular distribution of B[a]P fluorescence in the 

plasma membrane after 24 h of incubation. (B) The box plot shows the time-dependent increase in B[a]P 

fluorescence in the plasma membrane of different PUBEC pools. (C) Single-cell images of the subcellular 

distribution of B[a]P fluorescence in the cytosol and nuclei of PUBEC (6-24 h). (D, E) The box plots show the 

time-dependent increase in B[a]P fluorescence in cytosol and nuclei of different PUBEC pools, respectively. C, 

cytosol; N, nucleus. Figure taken from Verma et al., Archives of Toxicology 2012. 

3.1.3 Quantification of intracellular B[a]P concentration by spectrofluoro-

metry and GC-MS 

By exploiting the fluorescence properties of B[a]P, the quantification of the intracellular 

concentration was carried out by spectrofluorometry, and the results were further verified by 

GC-MS. By using an ex situ calibration method, the intracellular B[a]P concentration was 
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determined spectrofluorometrically as a function of the released fluorescence in pig epithelial 

cells exposed to 0.5 mM  or 10 µM B[a]P for 24 h. For the ex situ calibration B[a]P 

concentrations were plotted vs. their fluorescence. The emission intensity linearly depended 

on the B[a]P concentration. The intracellular concentration of PUBEC pools (n = 4) exposed 

to 0.5 µM B[a]P ranged from 7.28 µM to 35.70 µM, whereas the concentration of B[a]P in 

cells (four other PUBEC pools) exposed to 10 µM B[a]P ranged from 29.90 µM to 406.64 

µM. At both exposure concentrations considerable variation in intracellular B[a]P 

accumulation was observed (Table 4). 

Table 4: Spectrofluorometric quantification of B[a]P concentrations in pig urinary bladder epithelial 

cells. PUBEC pools were incubated with 0.5 µM (A) and 10 µM B[a]P (B) for 24 h, respectively, and 

then homogenized. B[a]P standards (0.1–2.5 µM) were dissolved in cytosolic medium (pH 7.2, 37 °C), 

designed to simulate the composition of the cytosol as described in the text. Measurements were 

performed by using an excitation wavelength of 365 nm and an emission wavelength of 405 nm. 

Figure obtained from Verma et al., Archives of Toxicology 2012. 

 

Sample Exposure concentration 

(µM) 

Intracellular concentration 

(µM) 

Accumulation factor 

(%) 

PUBEC pool 5 0.5 7.28 14.6 

PUBEC pool 6 0.5 10.75 21.5 

PUBEC pool 7 0.5 23.17 46.3 

PUBEC pool 8 0.5 35.70 71.4 

PUBEC pool 9 10 29.95 2.9 

PUBEC pool 10 10 48.31 4.8 

PUBEC pool 11 10 373.72 37.4 

PUBEC pool 12 10 406.64 40.7 
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Figure 18: (A) A representative single ion chromatogram obtained from the supernatant of a PUBEC pool 

exposed to 0.5 µM B[a]P for 24 h. The deuterated B[a]P (─) elutes earlier than the non-deuterated compound 

(─). (B) GC-MS separation of the B[a]P metabolite 3-OH-B[a]P in unexposed samples (─) and cells exposed to 

0.5 µM (─) and 10 µM (─) B[a]P for 24 h (retention time 37.80 min). Figure obtained from Verma et al., 

Archives of Toxicology 2012. 
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By using B[a]P d-12 as internal standard, the intracellular B[a]P concentrations of the 

individual PUBEC pools as obtained by spectrofluorometry were further verified by GC-MS 

analysis. The intracellular B[a]P concentrations were measured by means of a calibration 

curve prepared by measuring the B[a]P standards in the presence of a constant B[a]P-d12 

amount. The deuterated and the non-deuterated B[a]P differ from each other in their elution 

time: B[a]P eluted after 28.87 min and B[a]P d-12 after 28.78 min (Figure 18A). The 

resulting ratios between the peak areas of the nondeuterated and deuterated B[a]P 

(F=AB[a]P/AB[a]P-d12) were used for the mathematical calculations. Thus, as observed from 

the experiment based on laser scanning microscopy, also these experiments point at distinct 

batches of PUBEC with strongly different properties in B[a]P uptake. 

3.1.4 Formation of 3-OH-B[a]P in PUBEC 

In PUBEC, the expression of CYP involved in the metabolism of B[a]P has recently been 

demonstrated [172]. To prove the actual formation of B[a]P metabolites in PUBEC, cells 

exposed to 0.5 and 10 µM B[a]P were analyzed by GC-MS. By using a commercially 

available standard of 3-OH-B[a]P, this major phenolic BaP intermediate could indeed be 

identified for the first time (Figure 18B). However, because of the unavailability of a 

deuterated reference compound, it could not be quantified. Nevertheless, it appeared from the 

peak areas of the metabolite in the exposed samples that a considerably larger quantity of 3-

OH-B[a]P was formed in PUBEC exposed 10 µM B[a]P as compared to PUBEC exposed to 

0.5 µM B[a]P. 
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4. Proteome and phosphoproteome maps of PUBEC
‡
 

4.1 Objective 

The majority of bladder cancers is transitional cell carcinomas and is thought to be caused to a 

significant part by the exposure to chemical carcinogens. In recent years, major advances in 

the culture of urinary bladder-derived cells have been achieved, and various urothelial in vitro 

models have been developed. Since culturing primary human tissues is still a difficult task, 

often because of an insufficient availability of cells required to perform large-scale studies, 

the culture of animal urothelial cells is used as an alternative. Beyond that, cell lines derived 

from transformed cells may be applied in specific investigations. With the advent of high-

throughput and multiplex proteomic technologies in recent years, a variety of cell models and 

transformed cell lines have been utilized in an effort to achieve a better understanding of 

bladder biology, in particular of bladder carcinogenesis. However, information regarding the 

expression of proteins in normal bladder tissue is essentially missing as yet. Therefore, the 

aim of the present study was to develop a 2D map of proteins expressed in normal bladder 

cells that can be used as a reference map for studying alterations in urothelial biology. 

4.2 2DE analysis and identity assignment 

Inasmuch as the porcine model bears some remarkable similarities with humans, it is 

important to recognize that there are some differences between the two species, too, which 

may lead to a divergent response to a certain experimental regime. For reducing the variability 

and interindividual differences, pooling of PUBEC from several pigs has been suggested 

[171]. To reduce the effects of polymorphism as often observed in pigs, cells from a 

minimum of 30 pig bladders were pooled. The cells were cultured, and the extracted proteins 

were used for subsequent 2DE separation. The experiment was repeated eight times (n=8), 

and the gel triplicates of eight different protein extracts representing eight different groups 

were used for establishing the proteome map. The expression of more than 1000 spots with 

molecular masses ranging from 10 to 150 kDa and pI values ranging from 4 to 10 were 

observed. To determine the significantly expressed proteins in the groups, the gels were 

compared by using the Delta2D v4.0 software. Only protein spots with an expression variance 

of no more than ±1.2 in the samples (eventually 150 proteins) from different gels were further 

                                                           
‡
 Verma et al., Electrophoresis 2011, 32, 3600–3611 

 

http://onlinelibrary.wiley.com/doi/10.1002/elps.201100220/abstract;jsessionid=B6BCD9BFA8AD854CB5D1078A7B4A7159.d03t03
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considered for inclusion in the proteome map. A representative fused gel image obtained after 

matching eight different protein lysates is shown in (Figure 19) in which all spots identified 

as consistently expressed are marked by numbered arrows. 

 

Figure 19: Representative 2DE gel 

image of PUBEC. 450 μg of proteins 

from a whole cell extract were separated 

and stained with Coomassie brilliant 

blue. Numbered spots were identified by 

mass spectrometry after in-gel digestion 

of proteins by trypsin. Figure taken from 

Verma et al., Electrophoresis 2011, 32, 

3600–3611. 

 

For assigning the identity of significantly expressed proteins as analyzed by MALDI-TOF-

MS, protein peptide mass matching was performed on Mascot by searching the MSDB and 

NCBInr protein databases with the taxonomy pig. Out of the total of 150 proteins the identity 

could only be assigned to 61 % (92 proteins) of the protein spots analyzed (Table 5). 39 % of 

the spots remained unidentified, although utilizable MS data were collected. To overcome the 

problem of poor sequence representation for proteomic identification, the pig proteins were 

matched against the protein equivalents of other species such as human, rat, and mouse. By 

that approach the rate of identification was considerably increased, and the identity of another 

28 spots could be clarified, making the total of identified proteins to 80 % (120 proteins). 

Twenty percent of spots remained unidentified, which might be due to common technical 

problems such as spot overlapping or incorrect mass identification.  
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Table 5:  Summary of the proteins of primary cultured PUBEC identified by 2DE separation and peptide mass fingerprinting. Table taken from Verma et al., 

Electrophoresis 2011, 32, 3600–3611. 

Spot no Protein name 
Gene 
name 

Theoretical 
molecular weight / pI 

Experimental 
molecular weight / pI 

Score 
Peptides 
matches 

Sequence 
coverage (%) 

GRAVY 
values 

Reference 
organism 

          

1 Gelosin* GSN 85,06/5.93 85,10/5.54 61 17 23 -0,155 Sus scrofa 

2 Gelosin* GSN 85,06/5.93 86,33/5.56 119 17 23 -0,155 Sus scrofa 

3 Beta-enolase ENO3 47,44/8.05 47,89/6.32 71 11 28 -0,209 Sus scrofa 

4 Keratin 9 KRT9 62,19/5.14 123,38/5.23 104 12 31 -0,626 Homo sapiens 

5 Lamin-A/C* LMNA 74,40/6.73 77,30/7.09 219 26 40 -0,677 Sus scrofa 

6 Lamin-A/C* LMNA 74,40/6.73 77,50/6.94 134 16 31 -0,677 Sus scrofa 

7 Lamin-A/C* LMNA 74,40/6.73 76,89/6.87 99 17 27 -0,677 Sus scrofa 

8 Lamin-A/C* LMNA 74,40/6.73 76,89/7.33 231 29 39 -0,677 Sus scrofa 

9 Lamin-A/C* LMNA 74,40/6.73 76,89/7.45 188 24 32 -0,677 Sus scrofa 

10 Lamin-A/C* LMNA 74,40/6.73 77,50/7.22 218 28 40 -0,677 Sus scrofa 

12 WD repeat-containing protein 1 WDR1 58,59/6.41 71,37/6.99 70 9 28 -0,238 Homo sapiens 

14 Lamin-A/C* LMNA 74,40/6.73 67,75/7.00 189 22 43 -0,677 Sus scrofa 

15 Lamin-A/C* LMNA 74,40/6.73 67,75/6.79 184 24 47 -0,677 Sus scrofa 

16 Lamin-A/C* LMNA 74,40/6.73 67,26/6.88 60 11 35 -0,677 Sus scrofa 

19 Purinergic receptor P2RY12 39,35/9.59 70,48/7.53 55 7 43 0,384 Sus scrofa 

20 Heterogeneous nuclear ribonucleoprotein L HNRNPL 64,13/8.46 69,44/7.46 66 20 23 -0,649 Homo sapiens 

21 Lamin-A/C* LMNA 74,13/6.57 77,09/6.81 129 20 32 -0,677 Sus scrofa 

22 Lamin-A/C* LMNA 74,13/6.57 77,30/6.81 64 12 21 -0,677 Sus scrofa 

23 Cingulin CGN 136,58/5.46 71,37/7.09 55 16 15 -1,071 Sus scrofa 

24 Lamin-A/C* LMNA 74,13/6.57 66,93/7.31 80 14 27 -0,677 Sus scrofa 

25 Involucrin IVL 36,18/4.39 73,33/3.18 64 9 19 -1,914 Sus scrofa 

26 Calreticulin CALR 48,42/4.32 73,57/3.29 212 19 52 -0,33 Sus scrofa 

27 GRP78 precursor HSPA5 72,18/5.03 73,76/4.49 147 23  -0,545 Homo sapiens 

28 Heat shock cognate 71 kDa protein isoform 1* HSPA8 70,89/5.37 71,91/4.79 183 19 43 -0,456 Homo sapiens 

29 Heat shock 70 kDa protein 1B HSPA1B 71,08/5.30 70,30/5.60 153 23 40 -0,376 Sus scrofa 

30 Heat schock cognate 71 kDa protein isoform 1* HSPA8 71,082/5.37 70,30/4.54 138 18 48 -0,859 Homo sapiens 

32 LMNB1 * LMNB1 38,28/5.37 70,13/4.45 82 11 37 -0,859 Homo sapiens 

33 LMNB1 * LMNB1 38,28/5.37 70,30/4.55 88 12 36 -0,859 Homo sapiens 

34 GRP 78 precursor HSPA5 72,40/5.07 68,25/4.52 188 22 32 -0,545 Homo sapiens 

35 Heterogeneous nuclear ribonucleoprotein K HNRNPK 47,75/5.46 66,61/4.77 104 15 34 -0,705 Homo sapiens 

36 Heat shock 70kDa protein 5, partial HSPA1A 73,93/5.68 68,25/4.70 84 13 25 0.005 Sus scrofa 
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Spot no Protein name 
Gene 
name 

Theoretical 
molecular weight / pI 

Experimental 
molecular weight / pI 

Score 
Peptides 
matches 

Sequence 
coverage (%) 

GRAVY 
values 

Reference 
organism 

          

37 Transitional endoplasmic reticulum ATPase VCP 70,43/5.41 64,87/4.48 102 13 31 -0.348 Homo sapiens 

38 
Heterogeneous nuclear ribonucleoprotein K 

isoform a variant 
HNRNPK 49,00/5.48 65,97/4.54 98 13 34 -0.701 Homo sapiens 

39 T-complex protein 1 subunit alpha TCP1 60,83/5.71 64,87/5.85 92 14 25 -0.038 Sus scrofa 

40 F-actin-capping protein subunit beta CAPZB 31,58/5.47 63,80/5.51 60 9 42 -0.558 Sus scrofa 

41 Heat shock 60 kDa protein 1 HSP60 61,04/5.71 63,09/4.80 224 25 51 -0.165 Sus scrofa 

42 Muscle and heart F-box protein 40 FBXO40 61,33/7.02 62,16/5.65 45 4 19 -0.473 Sus scrofa 

43 Cell division protein kinase5 CDK5 33.72/4.57 61,29/5.56 51 6 26 -0.286 Sus scrofa 

44 Stratifin SFN 28,03/4.78 30,03/5.00 198 26 61 -0.617 Sus scrofa 

45 D-3-phosphoglycerate dehydrogenase PHGDH 57,51/6.44 59,33/7.39 103 16 30 0.102 Sus scrofa 

46 RuvB-like 1 (49 kDa TATA box-binding protein-
interacting protein) 

RUVBL1 
50,22/6.02 56,28/6.90 109 11 41 -0.251 Sus scrofa 

47 Centrin 2 CETN2 56,41/4.00 56,54/4.01 48  28 -0.768 Sus scrofa 

49 Keratin, type II cytoskeletal 7 KRT7 51,41/5.40 55,27/5.81 107 13 23 -0.472 Homo sapiens 

50 Mitochondrial ATP synthase, H
+
 transporting F1 

complex beta subunit 
ATP5J 

47,06/4.99 54,64/4.42 221 28 62 0.015 Sus scrofa 

51 Beta-enolase ENO3 47,44/8.05 54,15/7.09 85 13 33 -0.209 Sus scrofa 

54 Heterogeneous nuclear ribonucleoprotein F 
isoform 2 

Hnrnpf 
45,98/5.31 52,35/4.46 99 12 44 -0.470 Sus scrofa 

56 NADP-Isocitrate dehydrogenase IDH1 46,65/6.53 47,25/7.32 67 7 42 -0.085 Sus scrofa 

58 Beta actin ACTB 45,16/5.29 47,36/7.54 116 14 54 -0.200 Homo sapiens 

61 Ig heavy chain variable region IGHD 42,25/8.31 44,60/6.70 54 5 33 -0.555 Homo sapiens 

62 Poly(rC)-binding protein 1 cpcG1 31,93/9.25 44,50/6.98 72 8 20 -0.505 Homo sapiens 

64 Paralemmin 2 PALM2 42,18./5.04 45,60/7.01 41 7 15 -0.830 Sus scrofa 

65 Keratin, type I cytoskeletal 19* KRT19 44,07/5.04 44,41/6.52 67 10 22 -0.532 Homo sapiens 

67 Keratin, type I cytoskeletal 19* KRT19 44,10./5.05 44,41/6.52 100 10 22 -0.532 Homo sapiens 

70 Short-chain specific acyl-CoA dehydrogenase, 
mitochondrial precursor 

ACADS 
45,22/8.36 43,72/7.06 111 16 38 -0.067 Sus scrofa 

71 Sialic acid synthase SAS 40,58/6.44 42,38/7.50 143 15 51 -0.334 Sus scrofa 

72 Tropomodulin-3 TMOD3 39,72/4.98 42,38/4.43 82 11 35 -0.583 Sus scrofa 

73 Serine proteinase inhibitor, clade B, member 5 Serpina4 43,35/6.73 42,01/6.35 86 12 37 -0.143 Sus scrofa 

74 Keratin, type II cytoskeletal 1 KRT1 66,03/8.75 41,92/5.87 59 10  -0.626 Homo sapiens 

76 Cytoskeletal beta actin ACTB 45,16/5.55 40,54/5.30 65 9 35 -0.200 Sus scrofa 

77 LOC100130354 protein LOC1001
30354 

15,92/8.70 39,73/7.51 65 4 53 -0.802 Homo sapiens 

78 Pyruvate kinase 3 isoform 2 PDK2 58,50/6.14 39,56/7.34 157 13 2 -0.245 Sus scrofa 
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Spot no Protein name 
Gene 
name 

Theoretical 
molecular weight / pI 

Experimental 
molecular weight / pI 

Score 
Peptides 
matches 

Sequence 
coverage (%) 

GRAVY 
values 

Reference 
organism 

          

79 Annexin A2* ANXA2 
ANX2 

38,79/6.49 38,42/7.28 133 16 46 -0.509 Sus scrofa 

80 Annexin A2, isoform CRA_c* ANXA2 
ANX2 

38,79/6.49 38,16/7.40 70 11 37 -0.509 Homo sapiens 

81 Dehydrogenase, glyceraldehydephosphate GAPDH 36,05/8.57 39,12/6.28 81 8 34 -0.108 Sus scrofa 

82 Annexin A2, isoform CRA_c* ANXA2 38,79/6.49 38,42/7.54 130 14 51 -0.524 Homo sapiens 

83 Chain B, tubulin alpha-beta dimer, electron 
diffraction 

- 
48,31/5.17 37,15/5.14 148 21 38 -0.390 Sus scrofa 

84 Annexin A2, isoform CRA_c* ANXA2 38,79/6.49 37,91/5.79 159 18 34 -0.524 Homo sapiens 

86 Tropomyosin alpha-4 chain isoform 2 TPM4 28,62/4.67 34,94/3.96 90 11 36 -1.021 Sus scrofa 

87 Immunoglobulin heavy chain variable region IGHD 42,25/8.30 36,24/4.34 62 9 20 -0.555 Homo sapiens 

88 Splicing factor, arginine/serine-rich 1 isoform 1* SRSF1 27,84/10.37 35,26/4.72 178 19 52 -1.152 Sus scrofa 

89 Splicing factor, arginine/serine-rich 1 isoform 1* SRSF1 27,84/10.37 34,94/4.90 117 13 54 -1.152 Sus scrofa 

91 Voltage-dependent anion-selective channel 
protein 2 

VDAC2 
32,08/7.49 32,91/7.94 105 9 50 -0.288 Sus scrofa 

92 Voltage-dependent anion-selective channel 
protein 1 

VDAC2 
30,82/8.62 33,14/8.98 177 15 67 -0.288 Sus scrofa 

94 Tropomyosin alpha-3 chain isoform 2 TPM4 29,24/4.75 28,83/4.05 200 21 50 -1.021 Sus scrofa 

96 Chloride intracellular channel protein 1 CLIC1 27,17/5.09 28,83/4.87 78 7 36 -0.284 Homo sapiens 

98 Valacyclovir hydrolase precursor BPHL 32,54/9.20 28,28/7.68 50 4 20 -0.242 Homo sapiens 

100 14-3-3 protein sigma SFN  28,03/4.78 25,87/4.13 127 17 51 -0.599 Sus scrofa 

101 Endoplasmic reticulum protein 29 ERP29 29,32/6.85 26,59/7.09 105 12 49 -0.297 Sus scrofa 

102 Phosphoglycerate mutase 2 PGAM2 28,90/6.67 25,61/7.62 163 18 59 -0.530 Sus scrofa 

103 14-3-3 protein ζ/δ YWHAZ 26,43/5.00 25,67/5.22 70 10 50 - Homo sapiens 

104 Enoyl-CoA hydratase, mitochondrial ECHS1 31,55/8.81 25,29/8.02 86 11 34 -0.056 Sus scrofa 

105 Actin, beta ACTB 41,32/5.56 24,90/4.89 68 9 48 -0.070 Homo sapiens 

106 Triosephosphate isomerase 1 TPI1 26,87/6.54 23,52/7.77 243 21 76 -0.148 Sus scrofa 

107 Gamma-actin ACTG 26,14/5.65 25,22/5.21 89 9 65 -0.199 Homo sapiens 

108 Heat shock protein beta-1* HSPB1 22,98/6.23 21,29/6.27 98 7 30 -0.556 Sus scrofa 

109 Heat shock protein beta-1* HSPB1 22,98/6.23 22,24/6.61 150 10 51 -0.556 Sus scrofa 

110 Heat shock protein beta-1* HSPB1 22,98/6.23 22,84/7.05 155 12 51 -0.556 Sus scrofa 

111 Mesoderm development candidate 2 - 21,22/4.80 22,36/8.04 61 6 56 0.023 Sus scrofa 

114 Proteasome subunit alpha type-2 PSMA2 25,99/6.92 21,34/7.75 93 10 43 -0.129 Sus scrofa 

117 Cathepsin B CTSB 37,87/5.81 21,23/4.80 60 9 21 -0.304 Sus scrofa 

118 Growth factor receptor-bound protein 2 isoform 1 GAB1 25,30/5.89 21,34/6.27 57 6 21 -0.777 Sus scrofa 

119 Chain A, structure of porcine class Pi 
Glutathione S-transferase 

GSTP1 
23,72/8.07 20,93/8.08 151 9 53 -0.334 Sus scrofa 

120 Tumor protein, translationally-controlled 1 TPT1 19,69/4.84 20,30/4.17 98 14 58 -0.427 Sus scrofa 

121 Parkinson disease protein 7 PDDC1 20,09/6.33 20,24/6.67 141 16 79 0.178 Sus scrofa 
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Spot no Protein name 
Gene 
name 

Theoretical 
molecular weight / pI 

Experimental 
molecular weight / pI 

Score 
Peptides 
matches 

Sequence 
coverage (%) 

GRAVY 
values 

Reference 
organism 

          

122 BAG family molecular chaperone regulator 2 BAG2 23,77/6.25 20,64/5.67 69 13 37 -0.592 Homo sapiens 

123 Thioredoxin peroxidase 1 PRDX2 14,27/4.70 19,10/4.71 97 6 36 0.078 Sus scrofa 

124 Glutathione S-transferase P GSTP1 23,71/8.07 19,05/8.06 74 8 36 -0.334 Sus scrofa 

125 Neuropolypeptide H3 PEBP1 16,06/8.81 17,72/8.22 74 7 45 -0.652 Homo sapiens 

128 BTF3L4 protein BTF3L4 16,46/5.41 11,20/6.46 71 8 69 -0.548 Homo sapiens 

130 Protein unidentified - - 80,24/4.78 38  85 - Sus scrofa 

131 Myosin light chain isoform LC17b MYL6 16,99/4.46 58,00/3.63 86 12 74 -0.389 Sus scrofa 

132 Myosin light polypeptide 6 isoform 1 MYL6 16,99/4.46 58,00/3.77 87 11 72 -0.389 Sus scrofa 

134 Beta-enolase* ENO3 47,44/8.05 53,65/6.54 76 9 32 -0.209 Sus scrofa 

136 Beta-enolase* ENO3 47,44/8.05 53,91/6.70 96 12 35 -0.209 Sus scrofa 

139 T-complex protein 1 subunit beta CCT2 57,75/6.09 57,98/6.76 196 22 53 -0.015 Sus scrofa 

140 Temporarily assigned gene name family member - 52,59/9.28 56,15/7.20 54 16 15 - Sus scrofa 

141 Beta-enolase ENO3 47,44/8.05 53,91/7.36 87 13 36 -0.209 Sus scrofa 

142 Proteasome subunit beta type 3 PDDC1 29,50/ 5.69 58,51/6.48 57 15 61 0.107 Sus scrofa 

143 Keratin, type II cytoskeletal 8 BAG2 53,70/5.52 58,24/6.25 70 4 27 -0.297 Sus scrofa 

145 Valosin-containing protein isoform 3 VCP 89,93/5.31 83,42/4.38 300 32 32 -0.346 Sus scrofa 

146 Beta-enolase* ENO3 47,44/8.05 53,54/6.88 74 11 30 -0.209 Sus scrofa 

147 Heat shock 60 kDa protein 1 HSPD1 61,04/5.71 50,97/5.95 76 12 30 -0.165 Sus scrofa 

148 Lamin-A/C* LMNA 74,40/6.73 76,89/6.56 80 5 25 -0,677 Sus scrofa 

149 Lamin-A/C* LMNA 74,40/6.73 76,89/6.63 188 24 40 -0,677 Sus scrofa 

Gene name, protein name, GRAVY value, theoretical molecular weight and pI entries in Uniprot Database for each protein identified by MALDI-TOF-MS. 
Sequence coverage, peptide matches, score, and reference organism entries in the Mascot search engine. 
If multiple spots were identified as the same protein, the protein is marked with an asterisk (*) 
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4.3 Physicochemical properties of identified proteins 

For the 120 proteins identified, physicochemical properties such as hydrophobicity (GRAVY 

value), pI, and molecular weight were examined. The analysis of pI distribution revealed that 

the pI of the identified proteins varied between 4 and 10. Proteins with theoretical pI values 

higher than 9.6 were not detected. The molecular mass of 70 % of the identified proteins 

varied between 20 kDa and 80 kDa. Only one protein with a molecular mass higher than 100 

kDa was identified (Figure 20). One of the most likely limitations for the identification of 

low-molecular proteins is associated with the staining method. Yet with the staining method 

developed in our laboratory that is able to stain protein in amounts as low as 2 ng [161], a few 

lower molecular mass proteins could also be stained and identified (spot no-130-132). 

 

Figure 20: Theoretical isoelectric point (pI) (A) and molecular weight (MW) distribution (B) of proteins from 

pig bladder epithelial cells in relation to the number of identified proteins. Figure taken from Verma et al., 

Electrophoresis 2011, 32, 3600–3611. 

 

For displaying the hydropathic character of a protein, grand average of hydropathy values 

(GRAVY) as annotated in the Swiss-Prot database were determined according to the method 

described by Kyte and Doolittle [174]. For the 120 proteins identified, the GRAVY values 

ranged from -1.021 to + 0.107. In the range from +2 to -2, a positive GRAVY score indicates 
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a hydrophobic nature of the protein, while a negative GRAVY score points to a hydrophilic 

property. Most of the proteins of the proteome map were hydrophilic, which is expected as the 

proteins identified by use of 2DE gels are generally hydrophilic. However, four protein spots 

with positive values were also observed (heat shock 70 kDa protein 5, partial (spot no-36), 

D-3-phosphoglycerate dehydrogenase (spot no-45), mitochondrial ATP synthase, H
+
 

transporting F1 complex beta subunit (spot no-50), and proteasome subunit beta type 3 (spot 

no-142). 

4.4 Functional and subcellular annotation of proteins 

The identified proteins represent multiple gene families and functions. To get an initial 

overview on the structural, trophic, metabolic, and signaling conditions of the tissue, the 

identified proteins were analyzed with the PANTHER classification system. This system 

grouped the identified proteins into four different functional annotations, namely biological 

functions, molecular functions, protein pathways, and protein classes (Figure 21). The 

molecular classification of these proteins revealed that they were involved in twelve different 

metabolic pathways: ion channel activity (4 %), transporter activity (1 %), translation (1 %), 

transcriptional regulatory activity (2 %), enzyme regulatory activity (5 %), catalytic activity 

(26 %), motor activity (3 %), receptor activity (4 %), antioxidant activity (1 %), structural 

molecular activity (23 %), and binding activity (30 %). The identified proteins were grouped 

into twenty-two different pathways by the annotation software: ATP synthesis (2 %), 

apoptosis signaling pathway (7 %), angiogenesis (2 %), Alzheimer disease-presenilin pathway 

(4 %), integrin signaling pathway (4 %), inflammation mediated by chemokine and cytokine 

signaling pathway (4 %), EGF receptor signaling pathway (7 %), Parkinson’s disease (11 %),  

PI3 kinase pathway (2 %), cytoskeleton regulation by Rho GTPase (7 %), PDGF signaling 

pathway (2 %), nicotinic acetylcholine receptor signaling pathway (4 %), cadherin signaling 

pathway (4 %), serine glycine biosynthesis (2 %), Huntington’s disease (7 %), p53 pathway 

(2 %), VEGF signaling pathway (2 %), glycolysis (7 %), FGF signaling pathway (4 %), TCA 

cycle (4 %), and ATP synthesis (2 %). 

The analysis of biological functional annotation revealed that the identified proteins were 

involved in diverse arrays of processes including 14 proteins (20.3 %) in cell communication, 

28 proteins (40.6 %) in cellular processes, 11 proteins (15.9 %) in transport, 13 proteins 

(18.8 %) in cellular component organization, 2 proteins (2.9 %) in apoptosis, 8 proteins 

(11.6 %) in system processes, 1 protein (1.4 %) in reproduction, 11 proteins (15.9 %) in 
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responses to stimuli, 16 proteins (23.2 %) in developmental processes, 3 proteins (4.3 %) in 

the generation of precursor metabolites and energy, 4 proteins (5.8 %) in cell cycle, 13 

proteins (18.8 %) in immune system processes, 2 proteins (2.9 %) in cell adhesion, and a 

maximum of 36 proteins (52.2 %) in metabolic processes. 

 

Figure 21: Ontological classification of the identified proteins according to the PANTHER prediction (4A). The 

proteins were classified according to their (A) biological functions, (B) molecular functions, (C) pathways, and (D) 

protein classes. Figure taken from Verma et al., Electrophoresis 2011, 32, 3600–3611. 

 

Meanwhile, the protein classes’ annotation categorized the proteins into nineteen different 

groups, among which 13 % of proteins were grouped as cytoskeleton proteins, 5 % as 

transporter proteins, 3 % as transmembrane receptor regulatory/adaptor proteins, 8 % as 

transferases, 6 % as oxidoreductases, 3 % as lyases, 8 % as nucleic acid binding proteins, 5 % 

as signaling molecules, 5 % as enzyme modulators, 3 % as calcium-binding proteins, 3 % as 

transfer/carrier proteins, 2 % as membrane traffic proteins, 11 % as chaperons, 10 % as 

structural proteins, 3 % as isomerases, 2 % as receptor proteins, 2 % as extracellular matrix 

proteins, and 5 % as proteases. 

For detailed subcellular annotation of the identified proteins, a functional annotation database 

clustering program (http://david.abcc.ncifcrf.gov/) called Database for the Annotation 

Visualization and Integrated Discovery (DAVID) was used [167] (Figure 22). According to 
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the program 31.6 % of proteins were grouped as cytosolic, 22.8 % as cytoskeleton-related, 

12.3 % as mitochondrial, 12.3 % as cytoplasmic/membrane-associated, 12.2 % as ribonucleo-

protein complex, 5.2 % as endoplasmic, and 3.5 % as nuclear proteins. 

 

Figure 22: Subcellular location of the identified proteins according to DAVID prediction. Figure taken from 

Verma et al., Electrophoresis 2011, 32, 3600–3611. 
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4.5 Phosphoproteome profiling of PUBEC 

By using the lanthanum precipitation method for phosphoprotein enrichment, 33 

phosphoproteins were identified, with minimal contamination by non-phosphopeptides 

(Table 6). The identified phosphoproteins exhibited many single or multiple phosphorylation 

sites. 

Figure 23: Classification of the 

identified phosphoproteins from 

PUBEC based on their predicted 

biological function Figure taken from 

Verma et al., Electrophoresis 2011, 

32, 3600–3611. 

Gene ontology examination of the phosphoproteins revealed 21 % proteins associated with 

cellular processes, 17 % involved in metabolic processes, 13 % in cell communication, 10 % 

in transport, 8 % in cellular component organization, 11 % in developmental processes, 4 % 

in system processes, 3 % in responses to stimuli, 3 % in immune system processes, 6 % in cell 

cycle, 3 % in generation of precursor metabolites and energy, and 1 % in apoptosis 

(Figure 23).  
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Table 6: List of phosphoproteins identified in PUBEC after precipitation by La
3+

 ions. Table taken from Verma et al., Electrophoresis 2011, 32, 

3600–3611. 
 

Accession number
a
 Protein Name Gene name Phosphorylation sites

b
 Phosphorylated amino acid

c
 

     

O75369 Filamin-B FLNB 18 S, T, Y 

P63104 14-3-3 protein zeta/delta YWHAZ 5 S, T 

P06753 Tropomyosin alpha-3 chain isoform 2 TPM3 3 S, T, Y 

Q6QAQ1 Actin, cytoplasmic 1 ACTB 8 T, Y 

P08758 Annexin A5-like, partial ANXA5 1 Y 

P83686 NADH-cytochrome b5 reductase 3-like CYB5R3 2 S, T, Y 

P19620 Annexin A2 ANXA2 11 S, T, Y 

P05787 Keratin, type II cytoskeletal 8 KRT8 33 S, T, Y 

P04175 NADPH-cytochrome P450 reductase POR 1 Y 

Q14974 Importin subunit beta-1-like KPNB1 1 S 

O43707 Alpha-actinin-4-like ACTN4 1 Y 

Q52NJ1 Ras-related protein Rab-11A
*
 RAB11A 5 S, T, Y 

Q00610 Clathrin heavy chain 1 CLTC 6 S, T, Y 

P83686 NADH-cytochrome b5 reductase 3 CYB5R3 1 Y 

P04574 Calpain small subunit 1
*
 CAPNS1 1 S 

O75665 Oral-facial-digital syndrome 1 protein-like OFD1 2 S 

P16949 stathmin isoform a STMN1 7 S 

P06753 Tropomyosin 3 TPM3 3 S, T, Y 

P80230 Enhancer of rudimentary homolog
*
 ERH 3 S, T, Y 

P84103 Serine/arginine-rich splicing factor 3 SRSF3 9 S 

P08758 Annexin A5-like, partial ANXA5 1 Y 

Q3YLA6 Serine/arginine-rich splicing factor 1 isoform 1 SRSF1 10 S, Y 

O43852 Calumenin isoform 1 CALU 3 S, T 

P02543 Vimentin-like VIM 31 S, T, Y 

P28491 Calreticulin
*
 CALR 1 Y 

P34935 78 kDa glucose-regulated protein HSPA5 1 Y 

P26234 Vinculin VCL 9 S, T, Y 

P31943 Heterogeneous nuclear ribonucleoprotein H HNRNPH1 8 S, T, Y 

P38646 Stress-70 protein, mitochondrial-like HSPA9 2 S, Y 

P31946 14-3-3 protein beta/alpha isoform 1 1433B 2 S 

P60174 Triosephosphate isomerase 1 TPI1 2 S 
aUniprot accession number 
bcPhosphorylation site and phosphorylated amino acid entries in Uniprot Database for each protein identified by mass spectrometry. 
Proteins marked with an asterisk (*) with entries for phosphorylation site and phosphorylated amino acids (S: serine, T: thymine, Y: tyrosine) in GeneCards V3 Database. 
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5. Toxicoproteomic analysis of apoptotic pathway in 

B[a]P- exposed PUBEC 

5.1 Objective 

Epidemiologic studies have indicated that, in addition to genetic factors and chronic irritation, 

occupational and environmental chemicals are significant determinants in many of the 

incidences of bladder cancer. In most populations tobacco smoking is the main known 

contributor to this malignancy: Among the many components of cigarette smoke, B[a]P which 

occurs in amounts of twenty to forty nanograms per cigarette is by far the best studied of these 

compounds and is known for its mutagenic and carcinogenic properties. However, 

epidemiological analyses have not yet documented B[a]P or any other PAH as significant 

candidates for initiating bladder cancer development. Therefore, the risk that exposure to any 

of these compounds causes bladder cancer is still uncertain. While genomic studies have 

helped in understanding the role of gene expression changes induced by B[a]P, the analysis at 

the protein level is a must to reveal the impact of these changes on cellular functions. The 

prime aim of this study was to analyze the early protein expression changes induced by B[a]P 

at low doses by using 2DE and MALDI-TOF-MS analysis in order to identify 

proteins/pathways involved in the cellular response to B[a]P-mediated toxicity. This is the 

first proteomic study using primary urinary epithelial cells for investigating the effects of 

B[a]P exposure on urothelial cell biology. 

5.2 2DE analyses of protein expression in control and B[a]P-

exposed cells 

To closely reflect the epithelial cell conditions in vivo, cultured PUBEC derived from pigs 

were used to study the effects on B[a]P-induced toxicity, particularly in respect to its potential 

role in bladder cancer development. Proteins from five whole cell lysates obtained from each 

group of B[a]P-exposed and control cells were subjected to 2DE. Over 1000 protein spots 

were quantitatively identified by using the image analysis software Decodon 4.0. The 

comparison between the B[a]P-exposed and control groups indicated a more than twofold 

expression change of 40 proteins. Representative fused gels of control and B[a]P-exposed cell 

extracts are shown in 
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(Figure 37, see annex I) in which all spots identified as consistently differentially regulated 

are marked by numbered arrows. Due to the “poor” peptide mass database for pigs, only 25 

proteins could be identified by MALDI-TOF-MS (Table 7). Among these 13 proteins (52 %) 

were up-regulated while 11 proteins (44 %) were down-regulated. Next, the biological 

networks of the identified proteins were examined by using the search tool STRING 9 (Search 

Tool for the Retrieval of Interacting Genes/Proteins). The identified proteins were searched 

with the corresponding Swiss-Prot access number for their exact gene counterpart in STRING 

9. The gene counter parts were uploaded to the STRING pathway analysis software. 

Interestingly, the software associated the differentially expressed proteins with a network that 

contains three nodes of interest involving TP53, XPC, and splicing genes (Figure 24). 

5.3 Induction of DNA repair proteins and determination of DNA 

damage 

Xeroderma pigmentosum, complementation group C, also known as XPC, is a protein that is 

involved in the recognition of bulky DNA adducts in nucleotide excision repair. One of the 

metabolite of B[a]P, 7,8-dihydrodiol-9,10-epoxide (BPDE), is known to form such adducts. 

Biological network pathways analysis using the STRING pathway analysis software showed 

significant correlations between four differentially regulated proteins (RAD23A, RAD23B, 

PMSD5, and PMSD4) and the XPC protein system. The up-regulation of these proteins points 

towards DNA damage in the urothelial cells during exposure to B[a]P for 24 h and is in 

agreement with the results obtained by the comet assay (see section-5.4) 
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Table 7: Proteins with altered expression (≥2) after B[a]P exposure compared to controls. 

ID
1
 Accession No.

2
 Gene name 

2
 Protein name 

2
 MOWSE score 

3
 Peptide matches 

3
 Regulation 

4
 

       

ID01 P10775 RNH1 Ribonuclease inhibitor 122 18 up-regulated 

ID02 Q32YV9 PMSD4 Proteasome 26S subunit non-ATPase 4 95 13 up-regulated 

ID03 A1BPP7 ACTB Beta actin 69 22 up-regulated 

ID04 F1SGG2 KRT8 Keratin 8 178 13 up-regulated 

ID05 Q6W6X2 PMSD5 Proteasome 26S subunit, ATPase, 5 213 34 down-regulated 

ID09 Q9MZ15 VDAC2 
Voltage-dependent anion selective channel 

protein 2 
177 10 up-regulated 

ID11 A3EX84 LGALS3 Lectin galactoside binding soluble 3 75 14 down-regulated 

ID16 Q3MI39 HNRPA1 Heterogeneous nuclear ribonucleoprotein 1 123 14 down-regulated 

ID18 Q29561 CMPK UMP-CMP kinase 70 8 up-regulated 

ID19 Q5S1U1 HSP27 Heat shock protein beta-1 155 12 down-regulated 

ID20 P00795 CTSD Cathepsin D 171 18 up-regulated 

ID21 P54725 RAD23A UV excision repair protein RAD23 homolog A 169 35 up-regualted 

ID22 Q06A98 SFRS2 Serine/arginine-rich splicing factor 2 178 19 up-regulated 

ID23 Q3YLA6 SFRS1 Serine/arginine-rich splicing factor 1 117 13 up-regulated 

ID24 F1SP32 RAD23B UV excision repair protein RAD23 homolog B 101 27 up-regulated 

ID29 P03974 VCP Transitional endoplasmic reticulum ATPase 88 17 down-regulated 

ID35 Q08094 CNN2 Calponin 2 108 14 down-regulated 

ID37 P34935 HSPA5 Heat shock 70 kDa protein 5 140 17 down-regulated 

ID38 P34935 HSPA5 Heat shock 70 kDa protein 5 199 24 down-regulated 

ID39 P36871 PGM1 Phosphoglucomutases 187 23 down-regulated 

ID40 Q1KYT0 ENO3 Enolase 1 108 14 down-regulated 

ID41 P15311 EZR Ezrin 145 21 up-regulated 

ID42 P28768 SOD2 Superoxide dismutase 2 103 10 up-regulated 

ID43 Q29371 TPI1 Triosephosphate isomerase 1 152 14 down-regulated 

ID44 P42639 TPM1 Tropomyosin 1 114 14 up-regulated 

1 Internal ID number, 2 Gene name and protein name in Uniprot Database for the each protein identified by MALDI-TOF-MS, 3 Peptides matches and entries in the 

Mascot search engine, 4 Protein scores greater than 66 are considered significant (p <0.05) 

 

.
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Figure 24: Potential protein-protein interactions of all differentially expressed protein species (p <0.05) 

associated with B[a]P exposure as suggested by the STRING 9 database and web resources. Uniprot gene names 

were loaded into the STRING tool (http://string-db.org/) and analyzed by using the standard settings (medium 

confidence, network depth 1, no additional white nodes). The color of the connecting lines between two protein 

species encodes the source of the information: experimental data (rose), databases (light blue), co-expression 

data (black), co-occurrence data (dark blue), and text mining. (green) The nodes of interest are marked in colored 

boxes. 
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5.4 Verification of DNA damage in PUBEC exposed to 0.5 µM 

B[a]P 

Results obtained by the comet assay indicating DNA damage in B[a]P-treated pig epithelial 

cells are shown in (Figure 25). The cells in culture were exposed to B[a]P in concentrations 

ranging from 0.1 to 10 µM for 24 h. The experiments were repeated three times with different 

PUBEC pools. The application of the comet assay revealed the presence of nuclear DNA 

forming tail-like structures in a concentration-dependent manner. The mean value of the olive 

tail moment (OTM) of the control cells was 0.35 ± 0.03 after 24 h of B[a]P exposure, while 

the mean values of the OTMs of the cells exposed to higher concentrations (5 or 10 µM 

B[a]P) were 1.72 ± 0.07 (p <0.001) and 1.13 ± 0.08 (p <0.001), respectively, indicating a 

significant level of DNA damage. The mean values of the OTMs of the bladder epithelial 

cells exposed to 0.5 µM B[a]P also showed a statistically significant increase when compared 

to control cells. 

Figure 25: Concentration-dependent 

increase in B[a]P-induced DNA damage 

evaluated with the comet assay. (A) 

Alkaline comet assay images of 

individual bladder epithelial cells with 

various degrees of DNA damage: a) 

unexposed cells, b) positive control (1 

mg/ml N-ethyl-N-nitrosourea (ENU), c) 

0.5 µM B[a]P. (B) PUBEC pools were 

incubated with increasing concentrations 

of B[a]P (0.1-10 µM) for 24 h, and ENU 

was used as positive control. As indicator 

for DNA strand breaks, the olive tail 

moment is expressed as mean ± standard 

deviation obtained in three independent 

experiments with pooled PUBEC 

cultures. The level of significance relative 

to controls was determined by using the t-

test (***p < 0.001). 
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5.5 B[a]P induced changes expression of proteins involved in 

apoptosis 

Notably, many of the identified proteins were associated with another very interesting 

network involving TP53 (Figure 24). Other than its role in genome stability, senescence, 

DNA repair, and cell cycle arrest, TP53 is known to play a major role in the induction of 

apoptosis. PUBEC exposed to B[a]P showed a differential expression of Cathepsin D, VDAC 

2, HSP27, and HSP70, proteins known to be involved in the intrinsic mitochondrial death 

receptor pathway. To find out whether B[a]P exposure indeed induced mitochondria-

associates apoptosis, changes in mitochondrial potential were assessed and the TUNEL test 

was employed. 

5.6 Analysis of mitochondrial alterations following B[a]P 

exposure 

In order to validate whether the mitochondrial dysfunction was involved in B[a]P-induced 

apoptosis, the mitochondrial membrane potential (MMP) was measured in PUBEC by using 

Rhodamine 123. As indicated by the decrease of fluorescence intensity of Rhodamine 123 

(Figure 26), the MMP was significantly impaired at a B[a]P concentration of 0.5 µM after 

exposure times of 2, 6, and 12 h, with the maximum impairment being observed after 2 h 

(p <0.001 in all experiments). However, the MMP was nearly reconstituted after 24 h of 

exposure. 

Figure 26: Determination of the MMP of 

PUBEC by using the monovalent cationic dye 

Rhodamine 123. Cells were cultured on 

collagen-coated 96-well plates with a clear 

bottom and were exposed to 0.5 µM B[a]P for 

different time periods (2, 6, 12, and 24 h). 

Valinomycin (100 µM) was used as positive 

control, while as negative control cells were only 

exposed to cell culture medium. Rhodamine 123 

(5 µM) was applied for 30 min. The measurements were performed by using an ELISA plate reader (λexcitation = 

488; λemission = 535 nm). A significant decrease in MMP in a time-dependent manner was observed. The data 

were presented as mean ± standard deviation of three independent experiments with pooled PUBEC cultures. 

The level of significance relative to the positive control was determined by using the t-test (***p <0.001). 
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5.7 Application of western blot and TUNEL assay for analysis of 

apoptosis in PUBEC 

Next, the validation of the p53-regulated apoptotic proteins modulated in response to B[a]P 

exposure was sought. The TUNEL assay and immunochemical quantification were used to 

confirm these findings. The percentage of apoptotic PUBEC was determined by counting the 

number of positively stained pig epithelial cells and total epithelial cells in a ten-field 

(Figure 27A). The number of TUNEL-positive cells noticeably increased in the presence of 

0.5 µM B[a]P (n = 6 independent experiments, p <0.05), whereas apoptotic cells were barely 

detectable in control epithelial cells (Figure 27B). 

Figure 27: Analysis of pig urinary 

epithelial cell apoptosis by the TUNEL 

assay. Control and B[a]P-exposed (0.5 to 10 

μM) PUBEC pools (n = 6) were subjected 

to the TUNEL assay. (A) A TUNEL-

positive control was obtained by incubation 

with DNase I. In control cells exposed to 

DMSO (<0.1 %), apoptotic cells were 

hardly detected. However, a marked 

increase in TUNEL-positive cells was 

observed in B[a]P-exposed (0.5-10 µM, 

24 h) epithelial cells. The white bars 

represent 50 µm. (B) Box plots (median and 

interquartile range) show the level of 

apoptosis in PUBEC pools exposed for 24 h 

to different concentra-tions of B[a]P 

compared to controls. –ve represents 

PUBEC unexposed to B[a]P, while +ve 

represents positive controls obtained by 

incubation of PUBEC with DNase I. The 

level of significance relative to control was 

determined by using the t-test (***p <0.001, *p <0.05). 

 

 



Results

 

62 

 

 

Figure 28: Immunoblot analysis of differentially expressed proteins. (A) Western blot analysis of total protein 

extracts (30 mg of protein) from three independent lysates from PUBEC exposed to 0.5 µM B[a]P and from controls 

was carried out on a 12 % SDS gel. Actin was used as loading control. (B) Densitometric analysis of gel bands after 

western blot analysis. The bars represent the mean of three SEM of gel band density determined in B[a]P-exposed 

and control PUBEC. The level of significance relative to control was determined by using the t-test (**p <0.001, 

*p <0.05). 

 

The expression of apoptosis-related proteins identified by MALDI-TOF-MS was determined 

by using immunoblot analysis. CTSD, VDAC 2, HSP27, and HSP70 were chosen for 

analysis, as these proteins play a key role in the intrinsic mitochondrial apoptotic pathway. 

The analysis confirmed the increased abundance of Cathepsin D and VDAC 2 and a 

decreased expression of proteins such as HSP27 and HSP7 in PUBEC exposed to 0.5 µM 

B[A]P when compared to control cells.  These findings are consistent with the results 

obtained by 2DE and MALDI-TOF-MS (Figure 28). 
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6. Blue Native PAGE analysis of B[a]P- and TCDD-

exposed cells 

6.1 Objective 

Multiprotein complexes are vital supramolecular assemblies involved in the regulation of 

various intracellular processes and signaling pathways. Most molecular processes in the cell 

result from interactions of different protein complexes. Therefore, a complete understanding 

of the composition and interactions of these complexes is crucial for the understanding of the 

molecular mechanisms mediated by these complexes. As detailed in the introduction, B[a]P is 

a ligand for the aryl hydrocarbon receptor complex (AhR). The same holds true for 2,3,7,8-

dibenzo-p-dioxin (TCDD), another environmental contaminant. AhR is a cytosolic receptor 

complex involved in the transcriptional modulation of cell growth and differentiation and, 

most importantly, in the transcriptional regulation of drug metabolizing enzymes such as 

cytochrome P450 (CYP). These enzymes help in the detoxification of PAH and other 

xenobiotics and are also known to affect other cellular processes by interaction with other 

protein complexes. While a lot of information is available on the interaction of these 

xenobiotics with the AhR complex, much less is known in regard to their possible effects on 

other protein complexes. 

The understanding of these complexes and the possible interactions between them can shed 

some light into the possible mechanism of B[a]P-mediated toxicity. Therefore, the present 

work was carried out to identify and characterize multiprotein complexes by using Blue 

Native PAGE (2D BN/SDS-PAGE) to elucidate the network of protein-protein interactions 

that regulate protein functions and hence the toxicity of B[a]P and TCDD. 2D BN/SDS-

PAGE permits the separation of multiprotein complexes under native conditions and thus 

maintains the intact complex. For the enrichment of the complex, subcellular fractionation 

was performed. 2D BN/SDS-PAGE and subcellular fractionation form an ideal partnership 

when it comes to the enrichment and analysis of intracellular organelles and of low-abundant 

multiprotein complexes. Nevertheless, the concurrent study on the effects of B[a]P and TCDD 

was performed to find out whether the protein expression profiles are similar or different in 

response to two different classic inducers of the AhR pathway. 

 



Results

 

64 

 

6.2 Subcellular fractionation and 2D BN/SDS-PAGE analyses of 

fractionated samples for proteome map generation 

For organellar enrichment, the commercially available subcellular fractionation kit 

ProteoExtract
®
 (Calbiochem, Darmstadt, Germany) was applied. By using this kit, the control 

cells and cells exposed to B[a]P (0.5 µM) or TCDD (200 pM) were fractionated into four 

subcellular compartments: cytosol, membrane/organelle proteins, nuclear, and cytosolic 

fraction. The method was able to enrich proteins to a certain degree, but a few carryovers 

from one fraction to another were observed. The proteins from these fractionated samples 

were then used for 2D BN/SDS-PAGE electrophoresis. 

To have an overview about the protein complexes of the RT4 cell line, a suborganellar 

proteome map was generated by analyzing the complexes of unexposed cells of different 

fractions by 2D BN/SDS-PAGE analyses. In the gels obtained from five different preparations 

approx. 200 protein spots per fraction were detected, among which only those spots were 

identified by MALDI-TOF-MS which showed a significant expression of ±1.3 in all gels. A 

total of 64 protein spots were identified in the cytosolic fraction, 65 protein spots for the 

membrane and organelle fraction and 55 protein spots for the nuclear fraction (Table 9-11, 

see annex II). Interestingly, the identified proteins were enriched; however, some proteins 

were carried over between the fractions, but with very low inter-experimental variation. 

6.2.1 Protein complexes of cytosolic fraction 

As discussed for 2D-BN/SDS-PAGE gels [163], the resulting gels showed typical patterns for 

BN-PAGE experiments, i.e. monomeric proteins within a certain hyperbolic diagonal field, 

whereas the components of stable protein complexes (subunits of the same protein) arranged 

in an vertical line under this diagonal field. 

By using the above mentioned criteria, MALDI-TOF-MS analysis of this fraction revealed 

among others many typical cytosolic proteins (Table 9, see annex II), such as proteins of the 

proteasome complex (including both α and β subunits, Figure 29, protein spots ID-5 to ID-

18), proteins of the lactate dehydrogenase (LDH) enzyme complex (Figure 29, protein spot 

ID 24-29), and the dimeric enzyme complex phosphoglycerate mutase (PGAM, Figure 29, 

protein spot ID 61-63). LDH consists of A and B chains, both of which were identified in the 

cytosolic fraction. Along with these proteins many proteins involved in glucose metabolism 
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(phosphoglycerate kinase, isocitrate dehydrogenase, glyceraldehyde-3-phosphate 

dehydrogenase, UDP-glucose 6-dehydrogenase) were also identified. 

 

Figure 29: Representative 2D BN/PAGE gel of the cytosolic fraction of RT4 cells. The gels were stained with 

Coomassie brilliant blue after 4-12 % BN-PAGE and 12 % SDS-PAGE separation followed by identification of 

the protein spots by MALDI-TOF-MS. The ID number, protein name, molecular weight, Mascot score, and 

peptide match is listed in Table 9. 

 

6.2.2 Protein complexes of the membrane/organelle fraction 

The 2D BN/SDS-PAGE analyses of this fraction revealed many mitochondria-related 

proteins, which include proteins of the respiratory chain ATP synthase complex (alpha and 

beta subunits of F1- ATP synthase, Figure 30, protein spot ID 60-62) and the alpha and beta 

subunits of the electron transfer flavoprotein complex (ETFA and ETFB). Also, many 

mitochondrial enzymes, such as mitochondrial malate dehydrogenase 2, NADPH:adrenodoxin 

oxidoreductase, mitochondrial glutamate dehydrogenase 1, mitochondrial 60 kDa heat shock 

protein, and NADP(+)-dependent isocitrate dehydrogenase, were also identified. Other than 

mitochondrial complexes, a few proteins of the endoplasmic reticulum (cyclophilin B 

complexed with cyclosporine and calreticulin (Figure 30, protein spot ID 24-25) and of the 

cytoskeleton (actin-binding ARP2/3 complex, Figure 30, protein spot ID no 7-12) were also 

detected (Table 10, see annex II). 
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Figure 30: Representative 2D BN/PAGE gel of the membrane/organelle fraction of RT4 cells. The gels were 

stained with Coomassie brilliant blue after 4-12 % BN-PAGE and 12 % SDS-PAGE separation followed by 

identification of the protein spots by MALDI-TOF-MS. The ID number, protein name, molecular weight, 

Mascot score, and peptide match is listed in Table 10. 

 

6.2.3 Protein complexes of the nuclear fraction 

In the nuclear fraction several proteins belonging to the nuclear matrix (lamins), nucleosome 

(histone core complex proteins), and proteins related to DNA processing (DNA polymerase α, 

HnRNPs) were detected (Table 11, see annex II). Lamins exist as a homodimer consisting of 

lamin A and lamin C. Of these two, lamin A along with a wide range of cytoskeletal proteins 

(cytokeratin 19, 7, 8, and 17) were identified. Other than structural proteins, proteins of the 

histone core complex were found. This complex exists as an octamer occurring at the center 

of a nucleosome core particle. It consists of two copies of each of the four core histone 

proteins (H2A, H2B, H3, and H4), and as tetramer of two copies of both H3 and H4 

complexed with two H2A/H2B dimers. In the samples both momomers and dimers of histone 

proteins were found separated in close proximity to each other. Additionally, many proteins 
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involved in DNA processing, such as subunits of Pol I complex, HnRNP/splicing factor 

(Heterogeneous nuclear ribonucleoprotein, Serine/arginine-rich splicing factor 9, and 

Heterogeneous nuclear ribonucleoproteins A2/B1 isoform A2), ribosomal protein (60s 

ribosomal protein L10a), DNA/RNA-binding proteins (ATP-dependent RNA helicase A, 

RNA-binding protein 4 isoform 3, DNA topoisomerase 2-beta, and DNA2-like helicase), and 

transcription factors (Homeobox B7) were also identified. 

6.3 2D BN/SDS-PAGE analyses of fractionated samples of 

B[a]P-and TCDD-exposed cells 

After establishing the proteome map of protein complexes in our cell model (RT4 cell line), 

2D BN/SDS-PAGE analyses was applied to reveal alterations in these complexes after 

exposure to B[a]P or TCDD. The cells exposed to 0.5 µM B[a]P or 200 pM TCDD and 

control cells were fractionated as described in the Materials and Methods chapter. After 

fractionation 2D BN/SDS-PAGE analyses of cytosolic, membrane/organelle, and nuclear 

fraction were carried out for B[a]P- and TCDD-exposed and for control cells. To reveal 

differential expressions of protein complexes in control cells and cells exposed to B[a]P or 

TCDD, gels from five different experiments for all three fractions were compared by using 

the Decodon software (as described in the Materials and Methods chapter). Only those 

proteins were considered significant which showed an expression change of ±2. The entire 

process of analysis with the Decodon software was repeated individually for all three fractions 

exposed to B[a]P or TCDD and the control samples. In total, more than 200 spots were found 

in each fraction, with a differential expression of 19 proteins in the cytosolic fraction, of 23 

proteins in the membrane/organelle fraction, and of 8 proteins in the nuclear fraction for 

TCDD-exposed cells, while 15 proteins in the cytosolic fraction, 21 proteins in the 

membrane/organelle fraction, and 18 proteins in the nuclear fraction were differentially 

expressed in the B[a]P-exposed cells (Table 11.1-11.6, see annex III). Representative images 

of 2D BN/SDS-PAGE of all three fractions are shown in (Figure 36-38, see annex IV). 

Protein spots identified as proteins with statistically significant expression differences 

between control and exposed cells were marked. 

6.4 Alterations in calcium- and iron-containing proteins 

MALDI-TOF-MS analysis of the differentially expressed proteins yielded many proteins 

involved in calcium and iron homeostasis in both TCDD- and B[a]P-exposed cells (Table 8). 
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Table 8: List of calcium- and iron-associated proteins with altered expression (≥2) after B[a]P or TCDD 

exposure compared to controls 

 

Identified calcium-containing proteins differentially regulated in control and TCDD-exposed RT4 cells. 

Representative images of 2D BN/SDS-PAGE marked with differentially expressed proteins are shown in Figure 

37 and Figure 38, annex IV 

Spot ID no 
gene 
name 

protein name subcellular fraction regulation 

ID 231 CALM1 calmodulin  cytosol 2.13139 

ID203 S100A2 protein S100-A2 cytosol 3.8684 

24 ANXA10 annexin A10 membrane/organelle proteins 1.02979 

25 ANXA5 annexin A5 membrane/organelle proteins 1.34865 

16 GSN gelsolin isoform b membrane/organelle proteins 1.08039 

 

Identified calcium-containing proteins differentially regulated in control and B[a]P-exposed RT4 cells. 

Representative images of 2D BN/SDS-PAGE marked with differentially expressed proteins are shown in 

Figure 38, annex IV 

Spot ID no 
gene 
name 

protein name subcellular fraction regulation 

31 PPIB cyclophilin B membrane/organelle proteins 1.74984 

43 PPIA cyclophilin A membrane/organelle proteins 3.41278 

30 ANXA10 annexin A10 membrane/organelle proteins -3.95467 

19 CALR calreticulin membrane/organelle proteins 2.15407 

 

Identified iron-containing proteins differentially regulated in control and TCDD-exposed RT4 cells. Representative 

images of 2D BN/SDS-PAGE marked with differentially expressed proteins are shown in in Figure 37 and 

Figure 38, annex IV 

Spot ID no 
gene 
name 

protein name subcellular fraction regulation 

ID172 HEBP2 heme-binding protein 2 cytosol 2.03805 

ID1755 FTH1 ferritin cytosol -2.68431 

ID5,6 TFRC transferrin receptor protein 1 membrane/organelle proteins 1.35857 

 

Particularly in the TCDD-exposed cells a unique cluster of three protein spots was observed 

(Figure 31) that was missing on the gels of the B[a]P- and the nonexposed cells. Two out of 

three protein spots were identified as calmodulin and protein S100-A2. Modulations of 

calcium- and iron-containing proteins upon exposure to TCDD or B[a]P have been reported 

before, however, none of the studies till date has suggested that a possible interaction between 

these two protein systems might exist. 
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Figure 31: Protein complexes differentially 

expressed in control and TCDD-exposed 

RT4 cells. [A] BN-PAGE gel from 

cytosolic fraction of TCDD-exposed cells 

subjected to SDS-PAGE in the second 

(vertical) dimension. Control and TCDD-

exposed samples were separated and 

compared by using the Delta2D v4 

software. [B] Arrows represent the gel 

image region of differential expression of 

three protein spots only in TCDD-exposed 

samples. Protein spots of interest were 

excised, trypsin-digested, and subjected to 

analysis by MALDI-TOF-MS. The 

identified proteins with ID no are listed in 

Table 11 1, annex III. 

In a few recent studies the role of calmodulin (CaM) in AhR-dependent and -independent 

genomic responses after exposure to these compounds have been indicated. Other researchers 

reported a TCDD-mediated impairment of cellular iron homeostasis due to a changed ferritin 

content associated with transferrin (TfR-1) induction. Based upon these studies and the 

expression of both calcium- and iron-containing proteins observed in the TCDD- and B[a]P-

exposed samples, it is hypothesized that these two protein systems might interact via the nitric 

oxide synthase enzyme. Accordingly, a rapid increase in intracellular calcium ion 

concentration occurs upon exposure to TCDD or B[a]P, which activates the major calcium 

sensor CaM. CaM further activates the nitric oxide synthase, which in turn modulates the 

labile iron pool through nitric oxide production (details of this hypothesis is given in the 

discussion section of the thesis). The following experiments were carried out to prove this 

hypothesis. 

6.5 Analysis of intracellular calcium changes after B[a]P and 

TCDD exposure 

To monitor whether exposure to B[a]P or TCDD for 24 h alters the intracellular calcium 

concentration the fluorescence indicators Fluo-4 and Rhod-2 were used. The fluorescence 

measurement with Fluo-4 revealed an increase of intracellular calcium by 21 % in the B[a]P-

exposed cells, whereas an elevated level of 27 % was found in the TCDD-exposed cells. The 
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determination of calcium in internal calcium stores with Rhod-2 showed significantly raised 

levels for both exposure groups. The B[a]P-exposed cells exhibited a 12 % higher calcium 

level than that of controls, while in the TCDD-exposed group an increase of 30 % was 

observed compared to control cells (Figure 32). In some studies a transient increase in [Ca
2+

]i 

that occurs 2–5 min after the addition of an apoptosis-inducing agent have been observed. 

However, such an increase in both B[a]P- or TCDD-exposed cells was not found in the 

present experiments. 

Figure 32: Alterations of cellular calcium 

homeostasis after exposure to B[a]P or TCDD. 

Cells were cultured on collagen-coated glass 

coverslips and loaded with Fluo-4/AM 

(1.4 µM) and Rhod-2 AM (3.6 µM) for 30 

minutes at room temperature, followed by 

incubation for another 30 min at 37 °C after 

exposure to 200 pM TCDD for 24 h. The 

fluorescence was recorded by using a laser-

scanning microscope (Fluo 4/AM, λexcitation = 

488; λemission = 505 nm, Rhod-2/AM, λexcitation = 

543; λemission = 560 nm). [A] Fluorescence 

images of control, TCDD- and B[a]P-exposed 

cells loaded with Fluo-4 and Rhod-2. [B] 

Statistical analysis of intracellular calcium 

levels following treatment of RT4 cells with 

0.5 µM B[a]P or 200 pM TCDD. Data are 

expressed as percentage of calcium levels 

found in unexposed cells, arbitrarily set to 

100 %. The results correspond to the mean 

±S.D of four independent experiments. The 

white bar represents 50 µm. 
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6.6 Effects of B[a]P and TCDD on the labile iron pool (LIP) and 

the possible role of calcium 

To prove whether the changes in the expression of proteins involved in iron homeostasis led 

to alterations in the LIP, the chelatable iron pool of the RT4 cell line was determined by using 

the fluorescent probe Phen Green
TM

 SK (PG SK). Control cells and the cells exposed to 

0.5 µM B[a]P or 200 pM TCDD for 3 h and 24 h, respectively, were loaded with PG SK for 

the analysis. In the cells exposed to TCDD for both 3 h and 24 h, the LIP increased 

moderately compared to control cells (about 7 % and 13 %, respectively), whereas no effect 

on the cellular LIP was observed in B[a]P-exposed cells (Figure 33). To analyze whether the 

calcium sensor protein calmodulin (CaM) was responsible for the TCDD-induced increase in 

LIP, the cells were blocked with the CaM antagonist W-7 (10 µM), followed by treatment of 

the cells with 200 pM TCDD for 3 h and 24 h. During the initial three hours, W-7 inhibited 

the TCDD-mediated increase of LIP, and to a lesser extent this effect was also observed in the 

cells exposed for 24 h. These results demonstrated that CaM was activated by TCDD and that 

it was somehow modulating the iron content of the cells. 
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Figure 33: Measurement of the chelatable iron pool by PG SK. For confocal images cells were cultured on glass 

coverslips and loaded with 20 mM PG SK (10 min, 37 °C) after exposure to 200 pM of TCDD for 24 h. Cellular 

fluorescence was excited at 488 nm by using a laser scanning microscope (LSM 510) equipped with an argon 

laser. For emission, a 505 nm longpass filter was used. Cellular microfluorographs of (A) TCDD-exposed cells 

and (B) cells after dequenching with 1,10-phenanthroline. The white bar represents 50 µm. The changes in 

intracellular iron was determined by the differences in cell fluorescence of control against [C] B[a]P- or [D] 

TCDD-exposed cells as described in Material and Methods. Data are expressed as percentage of iron levels 

found in unexposed cells, arbitrarily set to 100 %. The results correspond to the mean ±S.D of four independent 

experiments. The level of significance relative to control was determined by using the t-test (***p <0.0001). 

 

6.7 Possible involvement of nitric oxide (NO) in calmodulin-

modulated iron content of cells 

Finally, to analyze whether the changes in LIP of the cells was mediated by nitric oxide 

synthase (NOS) via calmodulin, the NO content of the cells was determined first. The 

measurement of the nitrite and nitrate concentrations (as a measure of NO) with the Griess 

regent revealed an increase of NO in B[a]P-exposed cells by 153 % (compared to control) and 

in TCDD-exposed cells by 96 % (compared to control) (Figure 34). The experiments were 

also performed at higher concentrations of B[a]P (5 µM) and TCDD (1000 pM). Here, NO 

production increased considerably at both concentrations (111 % and 78 %, respectively) 

when compared to that in control cells. 
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Figure 34: NO production after 

exposure to TCDD or B[a]P in 

normal and W-7-inhibited RT4 

cells. 4.0x10
6
 cells were exposed 

to TCDD or B[a]P alone or in a 

co-treatment with 10 µM W-7 

(for 10 min). After 24 h of 

exposure, the medium was used 

for the determination of the NO 

content by using the Griess assay. 

Data are expressed as percentage 

of NO levels found in unexposed 

cells, arbitrarily set to 100 %. The results correspond to the mean ±S.D of four independent experiments. The 

level of significance relative to control was determined by using the t-test (**p <0.001, *p <0.05). 

 

Also, as calmodulin is a key enzyme required for NOS activity, CaM was blocked by using its 

antagonist W-7. W-7 decreased the basal levels of NO both in (200 pM) TCDD- and (0.5 µM) 

B[a]P-exposed RT4 cells by 50 % and 122 %, respectively (p <0.05, Figure 34) when 

compared to non–inhibited cells. These results suggest that CaM is a necessary signal for 

NOS that, in turn, is capable of regulating iron metabolism by producing NO. 
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7. Discussion 

Benzo[a]pyrene (B[a]P), a five-ring polycyclic aromatic hydrocarbon, is a well-recognized 

environmental pollutant found in coal tar, automobile exhaust fumes (especially from diesel 

engines), in smoke resulting from the combustion of organic material (including cigarette 

smoke), and in charbroiled food. It is known to cause lung, breast, and cervical cancer; 

whether it plays a role in bladder cancer development is still discussed. The ubiquitous 

presence of B[a]P in the environment and its potential involvement in the most important 

urologic malignancy was the rationale to investigate how and to what extent it is taken up by 

urothelial cells and which are the effects induced by this environmental chemical, especially 

at the protein level. A well-established primary urinary bladder epithelial cell model 

(PUBEC), isolated from bladders of freshly slaughtered pigs were used for the major part of 

the studies. In addition, to investigate B[a]P-induced effects on protein complexes (by Blue 

Native PAGE analysis), the human urinary bladder epithelial cell line RT4 was utilized. 

7.1 Uptake and subcellular distribution of B[a]P 

As in many other instances of carcinogenic compounds, considerable attention has been given 

so far to the genotoxic effects of B[a]P and to its metabolic activation to reactive 

intermediates. In contrast, essentially no information has been gathered on its uptake and 

subcellular distribution, processes that necessarily precede all other biological events 

occurring after the exposure. Nevertheless, as the presence of small quantities of non-

metabolized B[a]P in addition to that of its hydroxylated metabolites in urine has been 

demonstrated and because B[a]P is a highly lipophilic compound, the possibility that it is 

taken up by the urothelium cannot be ignored. In this thesis, the pattern of cellular uptake and 

distribution of B[a]P in pig urinary epithelial cells is reported for the first time. 

In many studies the fluorescent properties of B[a]P, resulting from the multi-fused aromatic 

rings with delocalized π bonds, have been utilized to monitor the mixed-function oxygenase 

activity by applying flow cytometery, laser cytometry, and confocal microscopy [175-177]. 

Here, the uptake of B[a]P by pig bladder epithelial cells was analyzed by using confocal 

microscopy. This technique did not only allow to study and visualize the intracellular 

distribution of B[a]P but also helped in minimizing the photobleaching of B[a]P due to 

unwanted collateral non-confocal irradiation. In the cells exposed to 0.5 µM B[a]P (for 2, 6, 

12, 18, and 24 h), the first indication of cellular uptake of B[a]P was obtained after 6 h of 
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exposure (Figure 16), while no signs of B[a]P uptake were apparent after the initial 2 h (data 

not shown). Also, in contrast to studies with other cell lines in which a saturation of B[a]P 

uptake was observed as early as 5 min and 4 h, respectively [41, 178], there was no evidence 

of approaching uptake saturation in PUBEC during the entire exposure period of 24 h. 

Nevertheless, B[a]P uptake was markedly different in the various PUBEC pools used for the 

study (Figure 16). The variation in uptake kinetics of B[a]P in PUBEC seems to reflect the 

situation in humans where a wide variation in the toxic response to B[a]P and other PAH is 

observed. 

As reported for other cell types [179], B[a]P rapidly distributes into the cell membrane 

(Figure 17A). This rapid uptake of B[a]P can be attributed to its highly lipophilic character 

and to the wide range of lipoproteins contained in the plasma membrane. It has been 

speculated that these proteins facilitate the rapid uptake of B[a]P into the cell membrane 

[180]. A small but significantly higher amount of B[a]P compared to control cells was also 

found in the cytosol and nucleus of PUBEC (Figure 17B). The uptake of B[a]P by these cell 

compartments has been reported in a few other studies [181]. There are some indications that 

B[a]P is not only metabolized by cytosolic enzymes but also in the nuclear compartment. It 

has been shown in various studies that monooxygenases/hydroxylases are not only active in 

the cytosol but are also present in the nuclear envelope [182-184]. 

After having analyzed the time-dependent uptake and subcellular distribution of B[a]P by 

using confocal microscopy, spectrofluorometric and GC-MS techniques were applied to 

quantitatively determine the uptake by PUBEC exposed to low (0.5 µM) and high (10 µM) 

B[a]P concentrations. An ex situ calibration method was applied for which standard solutions 

of B[a]P in a cytosolic medium (as described in the Materials and Methods chapter) were 

prepared to obtain a homogenous solution and to mimic the intracellular environment. B[a]P 

does not form homogenous solutions with various organic solvents. Similar to the initial 

uptake studies, two distinct subpopulations of PUBEC were found with regard to the 

intracellular B[a]P concentrations: In cells exposed to 0.5 µM B[a]P, the intracellular B[a]P 

concentrations ranged from 7.28 µM to 10.75 µM in one subpopulation and from 23.17 µM to 

35.07 µM in the other one. The corresponding ranges of values for the two subpopulations of 

cells exposed to 10 µM B[a]P were 29.9 µM to 48.31 µM and 373.72 µM to 406.64 µM, 

respectively. An increased metabolic turnover originating in an increased induction of B[a]P-

metabolizing enzymes may be the reason for the lower intracellular B[a]P concentrations in 

one of the PUBEC subpopulations. PUBEC have been shown to express inducible 
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cytochrome P450 isoenzymes, which is of particular relevance since these enzymes contribute 

to the activation of B[a]P to carcinogenic metabolites [171, 172, 185, 186]. The formation in 

PUBEC of 3-OH-B[a]P, one of the major B[a]P metabolites, is reported for the first time. 3-

OH-B[a]P has often been used as biomarker for assessing internal exposure to PAH [187, 

188]. GC-MS analysis revealed that this metabolite is present in all of the B[a]P-exposed 

PUBEC (Figure 18B). It is the first reported proof that oxygenated B[a]P metabolites are 

actually formed in this cell model. 

In summary, the results of the uptake studies indicate that urinary bladder epithelial cells are 

able to incorporate B[a]P, which may come in contact with the epithelium either directly 

during urinary excretion or by diffusion from the capillaries in the lamina propria. The uptake 

of B[a]P by these cells and their ability to metabolize this chemical to reactive intermediates 

strongly supports the hypothesis that B[a]P may act as a urinary bladder carcinogen. 

Moreover, the uptake differences found in the studies may be one of the reasons for the 

varying carcinogenic response to PAH exposure observed in humans [189]. 

7.2 Development of a 2DE proteome map of PUBEC 

Historically, the use of cell lines is well established in proteomic research. However, the most 

important disadvantage of note while using a cell line is the loss of some critical physiological 

traits that are inherent in the process of stable cell line creation [190]. Urinary bladders from 

freshly slaughtered pigs were used for generating the first 2DE reference proteom map of 

bladder epithelial cells as a valuable reference resource for comparative studies [191]. In total, 

1000 protein spots with a molecular weight of 20-100 kDa and isoelectric points from 4-10 

were detected by using a colloidal Coomassie brilliant blue staining protocol developed in our 

laboratory. 120 of these spots were identified by tryptic digest and subsequent MALDI-TOF-

MS analysis of the peptides (Table 5). During Mascot analysis for protein identification, many 

proteins were not identified even though mass spectra of high quality were recorded. It 

became apparent that the available pig database is still incomplete and that homologous 

sequences from other species are not sufficiently identical to achieve a high enough score to 

produce a match [192]. The PANTHER classification revealed a broad range of biological 

processes in which the identified proteins were involved (Figure 35). Proteins taking part in 

biotransformation, energy metabolism, structural, signaling, and stress pathways were 

identified even under basal conditions. Of considerable interest were proteins associated with 

cell stress and detoxification (GSTP1, PRDX2, HSP60, HSP71, HSP70, HSP90, and HSP27). 
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GSTP1 and PRDX2 are proteins involved in detoxification processes (through redox 

regulation), and have emerged as significant candidates for cancer biomarker development 

[193-195]. Seven proteins related to carbohydrate metabolism were identified, which is of 

great interest for studying bladder-related diseases as there are distinct carbohydrate profiles 

in normal and tumor tissues [196]. Other than these, many cytoskeletal proteins (KRT7, 

KRT17, KRT10, KRT19) were identified which do not only provide structure stability to the 

cells but have also been implicated in malignant transformation via a differential regulation of 

the actin-based cytoskeleton [197]. 

Precipitation, a conventional and economical method of enriching proteins of interest, was 

used for isolating phosphoproteins. Phosphorylation is a posttranslational modification 

principally of serine, threonine, or tyrosine residues of proteins. Enrichment of 

phosphoproteins is essential because of their low abundance. Many methods involving 

enhancement of phosphoproteins by precipitation with calcium and barium phosphate have 

been suggested [198-200]. Often these methods are tedious and time-consuming, and the 

amount of precipitated proteins is not sufficient to be separated on gels. In our laboratory, a 

method for the enrichment of phosphoproteins by precipitation with lanthanum ions (La
3+

) 

prior to 2DE separation and mass spectrometric identification was developed [160]. Because 

of its strong electropositive properties and its preference for oxygen-containing anions, 

lanthanum ions form very tight complexes with most common biological ligands such as 

carboxyl and phosphate groups [201]. By using this method, 31 phosphoproteins were 

identified in PUBEC (Table 6). Phosphorylation of many calcium-containing proteins 

(calumenin, clathrin, calpain, and calreticulin) was observed in these cells. Among them, the 

differential regulation of calreticulin (CALR) has been reported in several cancerous tissues 

such as breast, colon, and liver tumors [202-204]. CALR has also been discussed in many 

recent studies as a suitable marker for the diagnosis of bladder cancer [205, 206]. Other than 

that of calreticulin, the phosphorylation of clathrin, a protein involved in the transactivation of 

p53 target proteins [207-210], was observed. Moreover, three proteins of the electron 

transport chain (NADH-cytochrome b5 reductase 3, NADPH-cytochrome P450 reductase, 

cytochrome b5), required by the bladder for the energy-demanding maintenance of urine 

storage and removal, were discovered [211]. Collectively, with the current work a 

comprehensive 2DE proteome map along with a phosphoproteome map of healthy bladder 

epithelial cells were reported for the first time. The map can prove as a useful source of 

information for bladder cancer studies and especially for studies involving pigs (as model 

system) where information is still very scarce. 



Discussion

 
 

78 

 

7.3 Toxicoproteomic analysis of B[a]P-mediated toxicity in 

PUBEC 

After the 2DE map of PUBEC had been established, these cells were used for analyzing the 

protein-protein interactions involved in B[a]P-mediated toxicity. After B[a]P exposure for 

24 h approx. 40 proteins showed significant changes in expression levels. Twenty-five of 

these proteins were successfully identified by MALDI-TOF-MS analysis (Table 7). When the 

biological networks of the identified and differentially expressed proteins were analyzed by 

using the STRING software, three nodes of interest involving TP53, XPC, and splicing genes 

were indicated (Figure 24). Four of the differentially associated proteins (RAD23A, 

RAD23B, PMSD5, and PMSD4) were related to the xeroderma pigmentosum, 

complementation group C (XPC) protein system. XPC is a part of the core incision complex 

of the mammalian nucleotide excision repair (NER) system that is involved in the elimination 

of a wide variety of DNA lesions, mostly of carcinogen-induced bulky DNA adducts related 

to tobacco smoke [212, 213]. B[a]P, one of the components of tobacco smoke, is known to 

cause DNA damage [214]. The sequence of events that occur during DNA repair can be 

divided into recognition, unwinding, incision, and repair synthesis [215]. RAD23, PMSD5, 

and PMSD4 play a crucial role in DNA repair [216] and are up-regulated after B[a]P exposure 

complexed with RAD4, another nuclear protein. The RAD4/RAD23 complex is involved in 

the recognition of DNA adducts [217]. The up-regulation of these proteins suggests that B[a]P 

exposure for 24 h leads to DNA damage in bladder epithelial cells. These findings were 

supported by the concentration-dependent increase in olive tail moments as determined by the 

comet assay. A significant increase (p <0.001) was observed even at a low B[a]P exposure 

concentration (Figure 25). These findings were also in agreement with the results of the 

metabolism studies, where the formation of 3-OH–B[a]P, a likely precursor of genotoxic 

B[a]P metabolites, was demonstrated in PUBEC exposed to 0.5 and 10 µM B[a]P. Overall, 

the synopsis of the results obtained by the proteomic, genotoxicity, and metabolism studies 

substantiate the hypothesis that B[a]P is capable of causing DNA damage in bladder epithelial 

cells by generation of ultimate carcinogenic intermediates [218]. 

Interestingly, for the proteins differentially regulated in B[a]P-exposed PUBEC, one node of 

interest involving TP53 was observed. One of the most dramatic responses to p53 activation is 

the induction of apoptosis [219]. DNA damage induces cell cycle arrest that as well as 

apoptosis is related to the mutation status of p53 [220]. A lack of functional p53 inactivates 

the G1 checkpoint, and the cell proceeds to the G2/M phase arrest notwithstanding DNA 
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damage. The G2/M phase arrest is only transient, however, and the cell proceeds in the 

presence of the damaged DNA to an unscheduled premature mitosis that develops into a 

mitotic catastrophe and to apoptosis [221]. Two p53-induced apoptotic pathways have been 

proposed: the intrinsic mitochondrial and the extrinsic death receptor pathway [222]. 

Generally, the cells committed to die via p53-dependent apoptosis typically follow the 

intrinsic apoptotic mitochondrial pathway. The STRING pathway analysis indicated that four 

of the differentially regulated proteins (VDAC2, CTSD, HSP27, and HSP70) were related to 

this pathway. To validate these findings, the mitochondrial membrane potential (MMP) of 

PUBEC exposed to 0.5 µM B[a]P for different time periods was measured (Figure 26). The 

MMP decreased within 2 h of exposure, however in contrast to the previous reports, it was 

nearly re-established after an exposure period of 24 h, thus indicating that B[a]P-mediated 

apoptosis is not entirely dependent on the intrinsic mitochondrial apoptotic pathway [223]. 

Consistent with the 2DE data, western blot analysis also revealed an up-regulated expression 

of VDAC2 and CTSD, while the expression of HSP27 and HSP70 was down-regulated 

(Figure 28) HSP27 and HSP70 are known for their anti-apoptotic regulation. Both proteins, 

when present in abundance, suppress mitochondrial damage and nuclear fragmentation, and 

hence apoptosis [224, 225]. Since the expression of both proteins was decreased in PUBEC 

after B[a]P exposure, they may be responsible for the B[a]P-mediated apoptosis in PUBEC. 

On the other hand, while the up-regulation of CTSD is in support of the observed B[a]P-

induced apoptosis, the up-regulation of VDAC2 is not. In addition to its role as a porin ion 

channel protein, it is also known to be involved in apoptotic signaling. The down-regulation 

of VDAC2 leads to mitochondrial membrane permeabilization and to apoptosis [226]. The 

observed up-regulation of this protein, as also supported by the results of the MMP 

measurements points towards the struggle of the cells to avoid cell death. Similar results were 

reported for 5L rat hepatoma cells exposed to TCDD [227]. The exact role of VDAC2 in 

mitochondrial apoptosis remains controversial. On the one hand, this protein has been 

implicated in forming an open pore through which cytochrome c and other proteins can be 

released from the mitochondrial intermembrane space to the cytosol to induce apoptosis 

[228]. On the other hand, it has been suggested to form a closed pore that promotes the 

permeabilization of the MMP by completely block the flux of metabolites [229]. In either 

case, further studies are required to elucidate the precise role of VDAC2 in xenobiotic-

induced apoptosis. 
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7.4 2D BN/SDS-PAGE analysis for the identification of protein 

complexes involved in B[a]P toxicity 

Interactions between different protein complexes are responsible for many biological 

processes such as cell-cell signaling, cell cycling, folding, and transport [230]. These diverse 

structures operate to boost signaling efficiency, ensure specificity, and increase sensitivity of 

the biochemical circuitry [231]. There are a variety of conventional (liquid chromatography, 

ultracentrifugation, and sucrose density gradient centrifugation) and non-conventional (co-

immunoprecipitation, epitope-tagging, tandem affinity purification, and GST-pulldown 

methods available for the isolation of these multiprotein complexes [232]. However, most of 

these techniques often separate a population of multiprotein complex assemblies. To isolate 

individual complexes, further separation is required which can be achieved by 2D BN/SDS-

PAGE. This technique involves the use of the anionic dye Coomassie brilliant blue instead of 

an ionic detergent to introduce the negative charge on the multiprotein complex. As a result, 

the multiple protein complexes are separated due to the sieving effect of the polyacrylamide 

gel, but the protein-protein interaction is still retained [233]. 

This approach was used to analyze the multiprotein complex interactions in the cells exposed 

to B[a]P and TCDD, two classic inducers of the AhR pathway, in an effort to investigate 

potentially alternate cellular mechanisms that may respond to these two xenobiotics. As 

mentioned above, B[a]P itself is nontoxic but is converted to reactive DNA adduct-forming 

metabolites by the AhR-induced cytochrome P450 enzyme system [234]. Unlike B[a]P, 

TCDD is not a substrate of this enzyme. The toxicity of this xenobiotic is related to its ability 

to initate the metabolism of other toxic compounds (such as B[a]P) and to its slow 

detoxification from the body [235].  

Before the multiprotein complexes were separated by 2D BN/SDS-PAGE, a subcellular 

fractionation of the exposed cells (0.5 µM B[a]P or 200 pM TCDD) was carried out by using 

a commercially available fractionation kit. The subcellular fractionation of the samples is 

necessary, because the multiprotein complexes are distributed in different subcellular 

compartments (such as mitochondria, Golgi apparatus, plasma membrane, and others) in 

addition to their presence in the cytoplasm. Subcellular fractionation leads to a concentration 

of these multiprotein complexes, otherwise they are difficult to identify. By using the kit, 

control, B[a]P- and TCDD-exposed RT4 cell lysates were separated into cytosolic proteins, 

membrane/organelle proteins, and nuclear proteins. Prior to the use of these fractions for 
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differential 2D BN/SDS-PAGE analysis, a proteome map of different fractions of non-

exposed RT4 cells was generated.  

MALDI-TOF-MS analysis revealed many typical protein complexes and monomeric proteins 

specific for these compartments (Table 9, Table 10, Table 11 see annex II). These proteins 

were classified according to the GO annotation of the PANTHER software and were found to 

be associated with a broad range of protein classes (Figure 35). 

  

 

Figure 35: Ontological classification of the proteins 

present in different subcellular fractions by using the 

PANTHER software. The corresponding gene names of 

the proteins identified by MALDI-TOF-MS analysis 

were searched in the Uniprot database. The gene names 

were then uploaded into the PANTHER search engine 

that assigned the identified proteins to different protein 

classes. 
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After the proteome map had been generated, the gels obtained from different fractions of the 

exposed samples were compared with the respective control gels. By MALDI-TOF-MS 

analysis of the differentially regulated proteins, the expression of many calcium-containing 

(calmodulin, protein S100-A2, annexin A10, annexin A5, gelsolin isoform b) and iron-

containing (ferritin, heme-binding protein 2, transferrin receptor protein 1) proteins were 

identified in TCDD-exposed subcellular fractions (Table 8), along with others proteins. Also, 

the expression of a unique cluster of three protein spots was observed in the cytosolic fraction 

of TCDD-exposed cells that was absent in control and B[a]P-exposed fractions. Two of these 

three protein spots were identified as calmodulin and protein S100A. Furthermore, a few 

calcium-containing proteins (cyclophilin B, cyclophilin A, and calreticulin) were identified in 

B[a]P-exposed fractions. 

The modulation of intracellular calcium and iron homeostasis upon TCDD and B[a]P 

exposure has been observed in several studies [236-239]. The induction of CYP1A1 by AhR 

agonists has been shown to be abolished by inhibition of calcium movements [240, 241]. 

However, the mechanisms behind these interactions were largely unknown until recently, 

where a few studies indicated a role of the Ca
2+
/CaM/CaMKIα pathway in AhR-dependent 

and -independent genomic responses [242-244]. The observed expression of calmodulin in 

TCDD-exposed samples is also in support of these findings. In another current study a 

TCDD-mediated impairment of the cellular iron homeostasis associated with a changed 

ferritin content coupled to TfR-1 induction was reported [245]. Similar differences in the 

expression of iron-containing proteins (ferritin (FTH1), heme-binding protein 2 (HEBP2), 

transferrin (TfR-1)) were found in the TCDD-exposed samples (Table 11.1-11.2, 

see annex II). 

Apart from this, studies indicate a cross-link between calcium and nitric oxide signaling via 

nitric oxide synthases (NOSs) [246, 247]. NOSs are a family of enzymes consisting of a bi-

domain structure: the N-terminal oxygenase and the C-terminal reductase domain [248-250]. 

These enzymes are involved in the production of NO from L-arginine for which they require 

calmodulin binding to its C-terminal reductase domain. By that, electrons could be transferred 

from the reductase domain to the oxygenase domain which subsequently generate NO and 

citrulline as products by oxygenation of arginine [251, 252]. NO, a very important signaling 

molecule, is the key mediator for a wide variety of physiological processes including 

vasodilation, neurotransmission, and platelet aggregation [253]. Other than these functions, its 
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role in Fe metabolism has also been recognized [254]. Increased production of NO species in 

cells exposed to TCDD or BaP has been reported [255, 256] 

Based upon these studies and the observed differential expression of both calcium- and iron-

containing proteins, the following hypothesis was developed (Figure 36). Upon exposure to 

TCDD or B[a]P, a rapid increase in intracellular calcium ion concentration occurs. CaM, the 

major sensor for these calcium ions, becomes active and binds to the constitutive forms of 

NOS.  

 

Figure 36: Pictorial representation of the hypothesis proposed for the interactions between calcium and iron. 

(A) Exposure to B[a]P/TCDD causes elevation of intracellular calcium which activates calmodulin (CaM). 

Activated CaM, along with the translocation of the aryl hydrocarbon receptor (AhR) for the induction of 

cytochrome P450 (CYPA1) release, is also capable of causing conformation changes in nitric oxide synthase 

(NOS). Electrons are donated by NADPH to the reductase domain of the enzyme and proceed via FAD and FMN 

redox carriers to the oxygenase domain. There, they interact with the heme iron at the active site to catalyze the 

reaction of oxygen with L-arginine, generating citrulline and NO as products. NO by interacting with iron clusters 

of IRP1 stimulates its RNA-binding activity resulting in an increase in transferrin (TfR1) mRNA levels and a 

decrease in ferritin (FTH1) synthesis. The changed ferritin and TfR1 content impairs the cellular iron homeostasis, 

ultimately leading to significant changes in the labile iron pool (LIP). 

 

This enzyme undergoes global conformational changes that enhance the rate of NO 

production. NO, except for causing cytotoxic effects, is also capable of modulating Fe-

containing proteins such as the iron regulatory proteins IRPA1 and IRPA2 by direct 

coordination to the Fe centers of IRPA1 [254, 257]. The activated IRPA1 can promote the up-
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regulation of transferrin by binding to the iron regulatory element in 3'UTR of TfR mRNA, 

whereas by binding to iron response element (IRE) in the 5'UTR of ferritin mRNA blocks the 

translation of ferritin. This ultimately leads to significant changes in the labile iron pool and 

hence in cellular toxicity [258, 259]. 

To prove this hypothesis at least in part, the intracellular calcium changes upon exposure to 

TCDD and B[a]P were monitored by using the fluorescence probes Fluo-4 and Rhod-2. As 

detailed in the results section, the transient increase in intracellular calcium concentration 

reported by several groups [113, 242, 243, 260, 261] was not observed during the exposure. 

The first changes in intracellular calcium levels were observed only after an exposure to these 

xenobiotics for 24 h. An intracellular calcium level elevated by 27 % was found in the TCDD-

exposed samples, while a 21 % increase was observed in B[a]P-exposed cells (Figure 32). A 

sustained increase in intracellular calcium concentration involving cytochrome P450-

mediated metabolism of xenobiotics with elevating intracellular activity was observed in 

some studies [179, 262, 263]. It was reported that the dihydrodiol and dihydrodiol-epoxide 

metabolites of B[a]P were more efficient in the up-regulation of intracellular calcium than the 

parent compound [254, 255 [264]. It is possible that alterations of calcium homeostasis in 

RT4 cells also depend on cytochrome P450-associated mechanisms: metabolic reactions in 

the case of B[a]P and changes in redox cycle in the case of TCDD. Moreover, it has also been 

reported that calmodulin is capable of performing its essential functions independent of 

intracellular calcium mobilization [265, 266]. In addition, the observed increases in Rhod-2 

fluorescence intensity by 30 % in the TCDD-exposed RT4 cells and by 12 % in the B[a]P-

exposed cells indicate an uptake of calcium from extracellular sources. The increased calcium 

levels in these stores may be responsible for the biological processes, which could result in 

cell death as observed by previous 2D proteomic studies on RT4 cells in our laboratory [267]. 

To find out, if the differential regulation of iron-containing proteins such as transferrin and 

ferritin leads to an alteration in iron homeostasis, the LIPs of B[a]P- and TCDD-exposed cells 

were analyzed by using the fluorescent dye PG SK. The measurements were performed after 

exposure periods of 3 h and 24 h, respectively, to ascertain a time-dependent effect. In B[a]P-

exposed cells, the LIP was not affected after either time period, however, the LIP of TCDD-

exposed cells was increased by 7 % and 13 %, respectively, after 3 h and 24 h of exposure 

(Figure 33). An AhR-mediated cellular iron load after exposure to TCDD has been observed 

in a few studies. In fact, it has been demonstrated that iron potentiates both hepatic porphyria 

and TCDD toxicity in susceptible mice in an oxidative process involving a disturbed activity 
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of iron regulatory proteins [236]. Moreover, significant changes in the expression of genes 

related to heme metabolism and iron homeostasis that were associated with liver injury were 

found in mice exposed for two or five weeks to TCDD [238, 268]. The changes in LIP as 

observed in RT4 cells are in support of these findings, although these changes were not as 

strong as reported by other groups, presumably because of the low TCDD concentrations of 

200 pM used in the studies. Furthermore, the cells were blocked with the CaM antagonist W-7 

to determine whether CaM was modulating the LIP. While the TCDD-mediated increase in 

LIP was completely inhibited in W-7-treated cells exposed to TCDD for 3 h, this inhibition 

was reverted in cells exposed for 24 h (Figure 33). The increase in intracellular calcium as 

observed after 24 h of TCDD exposure may be responsible for this effect. The experiment 

proved at least in part that CaM exerts some modulating effects on the LIP of the cells. 

As discussed earlier, CaM is also capable of triggering the production of NO via the induction 

of conformational changes in NOS. The NO thus produced is capable of modulating the LIP 

of the cells by alternating the expression of the iron-containing proteins FTH1 and TfR-1. A 

quantitative measurement of NO is hard to perform as it has a half-life of only approx. 6 s 

[269]. However, NO is rapidly oxidized to NO2
-
 and NO3

-
, which provides a means to 

indirectly measure NO production. Therefore, the increased NO2
-
 production as measured by 

using the Griess assay was indicative of an NO release triggered by treatment of the cells with 

TCDD or B[a]P. The analyses revealed a substantial increase in NO production which 

amounted to 196 % in the cells exposed to B[a]P and to 253 % in the TCDD-exposed cells 

(Figure 34). Decreased basal levels of NO both in TCDD- and B[a]P-exposed RT4 cells after 

blocking the cells with W-7 indicated that the observed effects were CaM-controlled and thus 

a further support of the above hypothesis. 
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8. Summary 

The major objective of this study was to evaluate whether the environmental contaminant 

benzo[a]pyrene B[a]P, one of the most important polycyclic aromatic hydrocarbons (PAH), is 

capable of mediating DNA damage in urinary bladder epithelial cells and hence potentially 

bladder carcinogenesis. To pursue this goal, effects of B[a]P on urinary bladder epithelial 

cells were investigated by applying a proteomic approach with the purpose of identifying 

proteins and pathways involved in B[a]P toxicity. First, the ability of bladder epithelial cells 

for B[a]P uptake and metabolism was determined. Secondly, a proteome map of primary 

porcine urinary bladder epithelial cells (PUBEC), the cell model used in the majority of the 

studies, was established as basis for comparative investigations. In the same model, 

investigations on time- and concentration-dependent expression changes of proteins after 

B[a]P exposure followed. The proteins were separated by using 2D gel electrophoresis and 

identified by MALDI-TOF-MS analysis in these studies. Finally, to elucidate mechanisms by 

which B[a]P mediates its toxicity, signaling pathways were studied in RT4 cells by using Blue 

Native PAGE analysis. Besides offering some insights into B[a]P-mediated toxic effects, the 

studies also point towards the possibility of bladder cancer development induced by B[a]P 

exposure. 

B[a]P is a ubiquitous environmental pollutant formed during the combustion of fossil fuels, 

grilling, barbecuing, and smoking of food. Although much information is available on the 

carcinogenic properties of B[a]P, the mechanism by which this chemical is taken up by cells 

is still not known. In Chapter 3 of this thesis, attempts were made to investigate the dynamics 

of B[a]P uptake, subcellular distribution, and metabolism in PUBEC. It was found that 

exposure to 0.5 µM B[a]P led to an increase in intracellular concentration of B[a]P in bladder 

epithelial cells in a time-dependent manner but without approaching saturation. Also, a 

marked difference in B[a]P uptake was observed among various PUBEC pools used for the 

studies. Subcellular partitioning studies of B[a]P by using confocal microscopy revealed that a 

significant amount of B[a]P accumulated in the cell membrane of PUBEC, while only a slight 

but significant increase in B[a]P fluorescence intensity was observed in the cytosol and 

nucleus. Quantification of B[a]P uptake by bladder epithelial cells by spectrofluorometric and 

gas chromatographic-mass spectrometric analysis yielded intracellular concentrations ranging 

from 7.28 µM to 35.07 µM in cells exposed to 0.5 µM B[a]P and from 29.9 µM to 406.64 µM 

in cells exposed to 10 µM B[a]P. The formation of 3-OH-B[a]P in all of the B[a]P-exposed 

PUBEC determined by GC-MS analysis demonstrated for the first time that oxygenated B[a]P 



Summary

 
 

87 

 

metabolites are actually formed in this cell model. These results indicate that bladder 

epithelial cells are capable of a strong accumulation and metabolic activation of B[a]P and 

suggest that B[a]P may act as a bladder cancer-inducing chemical. Also, the differences in 

B[a]P uptake by the various PUBEC pools is an explanation for the inter-individual variation 

in PAH toxicity as observed in humans. 

Urinary bladder epithelial cells (also known as transitional epithelial cells) are the innermost 

cells of the bladder which are involved in accommodating the fluctuation of liquid volume in 

this organ and also help to protect it against caustic/toxic effects of urine. These cells are also 

the first ones to come in contact with urinary toxicants and thus account for 90 % of bladder 

cancers known as transitional cell carcinomas. As a prerequisite for proteomic studies, the 

first reference proteome and phosphoproteome maps of porcine bladder epithelia cells were 

generated by applying 2DE gel electrophoresis. This is discussed in Chapter 4. A total of 

120 selected protein spots were identified by MALDI-TOF-MS analysis, among which 

31 phosphoproteins were enriched by using a method based on the precipitation with 

lanthanum ions (La
3+

). All identified proteins were bioinformatically annotated according to 

their physiochemical characteristic, subcellular location, and function. Most of the proteins 

were distributed in an area of pI 4-10 and a molecular mass range between 20 kDa and 

100 kDa. The 2DE map with the complete range of expressed proteins, especially with 

information about phosphoproteins, provides a valuable resource for comparative proteomic 

analysis of normal and pathological conditions affecting the bladder function. 

The studies described in Chapter 5 of the thesis deal with a series of events leading from 

DNA damage to apoptosis that were investigated by using a proteomic approach. 2DE gel 

electrophoresis mapped the differences between cells exposed to 0.5 µM B[a]P and control 

cells. Twenty-five differentially expressed proteins involved in DNA repair, mitochondrial 

dysfunction, and apoptosis were identified by MALDI-TOF-MS analysis. A concentration-

dependent increase in DNA damage was observed after an exposure period of 24 h. The 

expression of VDAC2, CTSD, HSP27, and HSP70 indicated towards the intrinsic apoptotic 

mitochondrial pathway, although the analysis of mitochondrial dysfunction pointed towards 

an alternate pathway of cell death: The mitochondrial membrane potential (MMP), although 

disturbed during the initial exposure period, was nearly retained after 24 h of B[a]P treatment. 

In conclusion, the studies indicated DNA damage caused by B[a]P at low concentrations 

during an exposure period of 24 h and also shed light on a possible apoptotic mechanism 

induced by DNA damage. 



Summary

 
 

88 

 

Studies on protein-protein interactions involved in B[a]P toxicity are described in Chapter 6. 

A comparative analysis of proteomic complexes involving the two AhR ligands B[a]P and 

TCDD was carried out by using 2D BN/SDS-PAGE. For the enrichment of the protein 

complexes, a subcellular fractionation of unexposed cells and cells exposed to B[a]P and 

TCDD was carried out. BN/SDS-PAGE of these fractions revealed an effective separation of 

protein species and complexes of various origins, including mitochondria, plasma membrane, 

and intracellular compartments. The major differences in the protein maps obtained from 

samples of control cells and cells exposed to B[a]P and TCDD, respectively, concerned the 

expression of many calcium- and iron-containing proteins. On the basis of these findings, the 

intracellular calcium content of cells exposed to TCDD and B[a]P was evaluated, revealing an 

increase only after 24 h of exposure but with no transient elevation. The cells exposed to 

TCDD also showed an alteration in the labile iron pool (LIP) of the cells, but no such changes 

were observed in B[a]P-exposed cells. The increase in the LIP was strongly inhibited by the 

calmodulin (CaM) antagonist W-7 (10 µM). These results point towards a possible interaction 

between the iron and calcium signaling of the cells. The analysis of nitric oxide generation by 

using the Griess assay revealed a substantial increase in NO content of both B[a]P- and 

TCDD-exposed cells. Also in these cells, the basal NO generation was inhibited when the 

cells were blocked with the CaM antagonist W-7. The results led to the conclusion that 

alterations in calcium and iron homeostasis upon exposure to TCDD and B[a]P is linked by 

NO that is produced by CaM-activated nitric oxide synthase (NOS). The NO thus produced 

by interacting with the iron centers of IRPAs modulated the activity of TfR1 and FTH1 which 

in turn changed the LIP of the cells and hence the toxicity. Although some new mechanistic 

insights into the mechanisms of B[a]P- and TCDD-induced toxicity were provided by these 

studies, further investigations are still required for the validation of these initial results. 
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10. Annex 

10.1 Annex I - Representative 2D-gel image after B[a]P exposure 

 

Figure 37: Representative 2D-gel image representing the differentially expressed proteins after B[a]P (0.5 µM) 

exposure. 450 μg of proteins from whole cell extract of control and B[a]P-exposed cells were separated by IEF 

(pH 3-10) and 12 % SDS-PAGE, and the resulting two dimensional protein arrays were detected by applying a 

Coomassie brilliant blue protocol developed in our labatory. By using the Delta2D v4.0 image analysis software, 

40 proteins (numbered spots) were identified as differentially expressed. For assigning the identity of these proteins 

as identified by MALDI-TOF-MS, protein peptide mass matching was performed on Mascot by searching the MSDB 

and NCBInr protein databases with the taxonomy pig. The proteins identified by MALDI-TOF-MS are listed in 

Table 7. 

 

 

 

 

 

3 10 pI 
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10.2 Annex II – Protein complexes of subcellular fractions of RT4 cells identified by using MALDI-

TOF-MS 

Table 9: Mass spectrometric data of proteins identified in the cytosolic fraction of RT4 cells, used for the generation of a proteome map (see map with ID numbers in Figure 29). 

 

Uniprot 
accession no

a
 

Spot no
c
 Protein name

a
 Gene name

a
 

Theoretical 
molecular weight / pI

a
 

Score
b
 

Peptide 
match

b
 

       

Q01469 ID-1 Fatty acid-binding protein, epidermal FABP5 15164.43/6.59 129 62 

P15090 ID-2 Human adipocyte fatty acid binding protein FABP4 14718.89/6.59 127 60 

P49069 ID-3 Calcium signal-modulating cyclophilin ligand CAMLG 32952.55/8.20 171 66 

P60174 ID-4 Triosephosphate isomerase isoform 1 TPI1 30791.00/5.65 262 84 

Q9UL46 ID-5 Proteasome activator complex subunit 1 isoform 2 PSME2 27401.63/5.54 85 45 

P61289 ID-6 Proteasome activator complex subunit 1 isoform 1 PSME3 29506.06/5.69 71 50 

Q9UL46 ID-7 Proteasome subunit alpha type-2 PSME2 27401.63/5.54 124 56 

Q9UL46 ID-8 Proteasome subunit alpha type-2 PSME2 27401.63/5.54 75 42 

P04792 ID-9 Heat shock protein 27 HSPB1 22782.52/5.98 103 39 

P20618 ID-10 Proteasome (prosome, macropain) subunit, beta type, 1 PSMB1 26489.37/8.27 120 65 

P49721 ID-11 Proteasome (prosome, macropain) subunit, beta type, 2 PSMB2 22836.28/6.52 103 40 

P28074 ID-12 Proteasome subunit MB1 PSMB5 21844.60/9.23 79 46 

P28074 ID-13 Proteasome subunit beta type-5 isoform 2 PSMB5 21844.60/9.23 79 64 

O14818 ID-14 Proteasome subunit alpha type-7 PSMA7 20193.01/8.54 107 48 

O14818 ID-15 Proteasome subunit alpha type-7 PSMA7 20193.01/8.54 125 57 

Q9UL46 ID-16 Proteasome activator complex subunit 2 PSME2 27401.63/5.54 130 56 

Q9UL46 ID-17 Proteasome activator complex subunit 2 PSME2 27401.63/5.54 180 49 

Q06323 ID-18 Proteasome activator complex subunit 1 isoform 1 PSME1 28723.10/5.78 135 35 

O43865 ID-19 Adenosylhomocysteinase isoform 1 AHCYL1 58951.43/6.49 138 32 

P35527 ID-20 Keratin 9 KRT9 62064.32/5.14 270 41 

P46926 ID-21 Glucosamine-6-phosphate isomerase 1 GNPDA1 32668.52/6.42 151 63 

P07195 ID-23 *L-Lactate Dehydrogenase B LDHB 36638.49/5.71 173 43 
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Uniprot 
accession no

a
 

Spot no
c
 Protein name

a
 Gene name

a
 

Theoretical 
molecular weight / pI

a
 

Score
b
 

Peptide 
match

b
 

       

P07195 ID-24 *L-Lactate dehydrogenase B LDHB 36638.49/5.71 140 35 

P07195 ID-25 *L-Lactate dehydrogenase B LDHB 36638.49/5.71 125 25 

P07195 ID-26 *L-Lactate dehydrogenase B LDHB 36638.49/5.71 166 43 

P07195 ID-27 *L-Lactate dehydrogenase B LDHB 36638.49/5.71 148 46 

P07195 ID-28 *L-Lactate dehydrogenase B LDHB 36638.49/5.71 99 27 

P00338 ID-29 Lactate dehydrogenase A variant LDHA 36688.72/8.44 165 38 

P00338 ID-30 Lactate dehydrogenase A variant LDHA 36688.72/8.44 104 35 

P53396 ID-31 ATP:citrate lyase ACLY 120839.23/6.95 165 27 

P55072 ID-32 Transitional endoplasmic reticulum ATPase VCP 89321.80/5.14 130 30 

O75891 ID-33 10-formyltetrahydrofolate dehydrogenase ALDH1L1 98829.24/5.63 284 44 

P40925 ID-34 Malate dehydrogenase 1, NAD (soluble), isoform CRA_d MDH1 27025.01/9.18 110 40 

P62258 ID-35 14-3-3 protein epsilon YWHAE 29173.90/4.63 111 49 

P31947 ID-35-2 14-3-3 protein sigma SFN 24336.24/4.77 166 68 

O60701 ID-36 UDP-glucose 6-dehydrogenase isoform 1 UDGH 55024.09/6.73 206 45 

P22234 ID-37 
Multifunctional protein phosphoribosylaminoimidazole-

succinocarboxamide synthase isoform 2 
PAICS 47079.22/6.94 173 36 

P22234 ID-38 
Phosphoribosylaminoimidazole-succinocarboxamide 

synthase 
PAICS 47079.22/6.94 148 30 

Q32Q12 ID-39 Nucleoside diphosphate kinase NME1-NME2 32641.97/8.70 158 40 

P07737 ID-40 
Human platelet profilin complexed with an L-pro10- 

iodotyrosine peptide 
PFN1 15054.23/8.44 121 66 

O76070 ID-41 Synuclein gamma SNCG 13330.80/4.86 89 60 

P60660 ID-44 Myosin light polypeptide 6 MYL6 16961.12/4.46 123 67 

P04406 ID-45 Human liver glyceraldehyde-3-phosphate dehydrogenase GAPDH 36053.21/8.57 114 31 

P35579 ID-46 Myosin-9 MYH9 226532.24/5.50 205 22 

P06744 ID-47 Glucose-6-phosphate isomerase isoform 1 GPI 63147.13/8.42 245 22 

P13798 ID-48 Acylamino-acid-releasing enzyme APEH 81224.55/5.29 134 28 

O14818 ID-49 Proteasome subunit alpha type-7 PSMA7 20193.01/8.54 167 34 

O75874 ID-51 Isocitrate Dehydrogenase IDH1 46659.30/6.53 145 44 
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Uniprot 
accession no

a
 

Spot no
c
 Protein name

a
 Gene name

a
 

Theoretical 
molecular weight / pI

a
 

Score
b
 

Peptide 
match

b
 

       

P07205 ID-52 Human phosphoglycerate kinase PGK2 44796.12/8.74 170 67 

A0AUL6 ID-53 Actin ACTB 11464.13/6.94 150 47 

P15121 ID-54 Human aldose reductase AKR1B1 35853.40/6.52 199 64 

A8K202 ID-55 AICAR formyltransferase/IMP cyclohydrolase bifunctional ATIC 64509.70/6.27 166 38 

P31939 ID-56 Bi-functional purine biosynthesis protein PURH PURH 64615.87/6.27 215 46 

P08238 ID-57 Heat shock protein HSP 90-beta HSPB1 83264.20/4.96 218 43 

O43707 ID-58 Actinin, alpha 4 ACTN4 104854.04/5.27 260 40 

P08237 ID-59 Phosphofructokinase PFKM 85182.52/8.23 113 32 

Q9BUK9 ID-60 Heat shock 70kDa protein 4 HSPA4 15689.43/4.62 186 38 

P18669 ID-61 *Phosphoglycerate mutase 1 PGAM1 28803.93/6.67 102 47 

P18669 ID-62 *Phosphoglycerate mutase 1 PGAM1 28803.93/6.67 92 44 

P18669 ID-63 *Phosphoglycerate mutase 1 PGAM1 28803.93/6.67 116 48 

P26639 ID-64 Threonyl-tRNA synthetase TARS 83435.10/6.23 95 22 

a Gene name, protein name, theoretical molecular weight, and pI entries in Uniprot database for the each protein identified by MALDI-TOF-MS. 

b Score and peptides matches in Mascot search engine. 

c Experimental ID numbers. 

* If multiple spots were identified as the same protein, the protein is marked with an asterisk. 
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Table 10: Mass spectrometric data of proteins identified in the membrane/organelle fraction of RT4 cells, used for the generation of a proteome map (see map with ID numbers 

in Figure 30). 

Uniprot 
accession 

no
a
 

Spot No
c
 Protein name

a
 Gene name

a
 

Theoretical 
molecular weight / pI

a
 

Score
b
 

Peptide 
match

b
 

       

Q9UNM1 ID-1 Chaperonin 10-related protein EPFP1 10294.93/8.98 105 49 

Q6BCY4 ID-2 Cytochrome b5 isoform 2 CYB5R2 31458.27/8.49 80 77 

Q01105 ID-3 *HLA-DR-associated protein II SET 33488.88/4.22 72 21 

Q01105 ID-5 *HLA-DR-associated protein II SET 33488.88/4.22 87 68 

P30084 ID-6 Enoyl-Coenzyme A (Coa) hydratase 1 ECHS1 31387.39/8.34 172 60 

P13645 ID-7 Actin-related protein 2/3 complex subunit 3 ARPC3 26011.07/5.67 106 48 

Q92747 ID-9 Actin-related protein 2/3 complex subunit 1 ARPC1 41568.29/8.46 144 59 

O15144 ID8 Actin-related protein 2/3 complex subunit 2 ARPC2 34333.02/6.84 158 33 

H0YM70 ID-10 Keratin 10 KRT10 58827.09/5.13 125 28 

P59998 ID-12 Actin-related protein 2/3 complex subunit 4 isoform a ARPC4 19667.01/8.3 130 23 

P06753 ID-13 Tropomyosin alpha-3 chain isoform 2 TPM3 32818.79/4.68 158 44 

P00491 ID-14 Purine nucleoside phosphorylase PNP 32117.87/6.45 153 62 

P40925 ID-15 Malate dehydrogenase 1, NAD (soluble) MDH1 36426.12/6.91 155 50 

P38117 ID-16 Electron transfer flavoprotein ETFB 27843.61/8.25 132 60 

P38117 ID-17 Mitochondrial malate dehydrogenase 2, NAD ETFB 27843.61/8.25 193 58 

P08779 ID-21 Keratin, type I cytoskeletal 16 KRT16 51267.82/4.98 103 31 

Q06830 ID-22 Peroxiredoxin-1 PRDX1 22110.36/8.27 90 49 

P22570 ID-23 NADPH:adrenodoxin oxidoreductase, mitochondrial FDXR 53836.79/8.72 82 65 

P23284 ID-24 
Chain A, Cyclophilin B complexed with  

[d-(Cholinylester)ser8]- cyclosporin 
CYPB 23742.54/9.49 86 57 

P62937 ID-25 Chain A, Cyclophilin A complexed with dipeptide gly-pro CYPA 18012.49/7.68 163 75 

Q01469 ID-26 Fatty acid-binding protein, epidermal FABP5 15164.43/6.59 84 57 

P07737 ID-27 Human profilin 1 PFN1 15054.23/8.44 157 66 

P15090 ID-28 
Adipocyte fatty acid binding protein in complex with a non-

covalent ligand 
FABP4 14718.89/6.59 105 53 

P13674 ID-29 Procollagen-proline, 2-oxoglutarate 4-dioxygenase P4HA1 61049.30/5.69 87 34 
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Uniprot 
accession 

no
a
 

Spot No
c
 Protein name

a
 Gene name

a
 

Theoretical 
molecular weight / pI

a
 

Score
b
 

Peptide 
match

b
 

       

Q96L12 ID-30 Calreticulin precursor variant CALR3 44995.61/6.19 177 43 

P60709 ID-31 Actin ACTB 11464.13/6.94 197 44 

P53396 ID-35 ATP citrate lyase ACLY 120839.23/6.95 187 27 

O75369 ID-38 Filamin B FLNB 278164.04/5.47 371 24 

P14625 ID-39 Heat shock protein gp96 precursor HSP90B1 92468.87/4.76 236 32 

P18206 ID-43 Vinculin isoform VCL VCL 123799.30/5.50 94 23 

P13798 ID-42 *Acylamino-acid-releasing enzyme APEH 81224.55/5.29 102 33 

P13798 ID-41 *Acylamino-acid-releasing enzyme APEH 81224.55/5.29 78 26 

P38117 ID-44 Electron transfer flavoprotein subunit beta isoform 1 ETFB 27843.61(8.25 73 40 

P05062 ID-45 
Muscle fructose 1,6-bisphosphate aldolase complexed 

with fructose 1,6-bisphosphate 
ALDOB 39473.02/8.01 293 74 

P13807 ID-46 Electron transfer flavoprotein subunit alpha ETFBA 35080/8.62- 92 28 

P51553 ID-47 
Heterodimeric R132h mutant of human NADP(+)-

dependent isocitrate dehydrogenase in complex with 
NADP and isocitrate 

IDH3G 42794.30/8.75 197 52 

P10809 ID-48 60 kDa Heat shock protein, mitochondrial HSPD1 61054.64/5.70 170 38 

P68402 ID-52 
Platelet-activating factor acetylhydrolase IB subunit 

gamma 
PAFAH1B2 17833.14/4.92 92 48 

P00367 ID-53 Glutamate dehydrogenase 1, mitochondrial GLUD1 61397.87/7.76 224 44 

O15533 ID-54 Chain A, Tapasin ERP57 TAPBP 47625.77/6.67 160 34 

P11021 ID-55 78 kDa glucose-regulated protein HSPA5 72332.96/5.07 98 22 

P15090 ID-57 
Adipocyte fatty acid binding protein in complex with a non-

covalent ligand 
FABP4 14718.89/6.59 116 60 

P26639 ID-58 Threonyl-tRNA synthetase, cytoplasmic TARS 83435.10/6.23 127 28 

lP25705 ID-62 
Mitochondrial ATP synthase, H+ transporting F1 complex 

beta subunit 
ATP5A1 59750.63/9.16 128 32 

P07437 ID-65 Tubulin, beta TUBB 49670.82/4.78 139 30 

a Gene name, protein name, theoretical molecular weight, and pI entries in Uniprot database for the each protein identified by MALDI-TOF-MS. 
b Score and peptides matches in Mascot search engine. 
c Experimental ID numbers. 
* If multiple spots were identified as the same protein, the protein is marked with an asterisk. 
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Table 11: Mass spectrometric data of proteins identified in the nuclear fraction of RT4 cells, used for the generation of a proteome map. 

Uniprot 
accession no

a
 

Spot no
c
 Protein name

a
 Gene name

a
 

Theoratical 
molecular weight / pI

a
 

Score
b
 

Peptide 
match

b
 

       

P62805 ID-1 Histone 4 HIST2H4B 11367.34/11.36 89 51 

Q0D2M2 ID-2 Histone 2 HIST1H2BC 13834.08/10.39 72 41 

Q0D2M2 ID-3 Histone2 HIST1H2BC 13834.08/10.39 80 34 

Q0D2M2 ID-4 Histone 2 HIST1H2BC 13834.08/10.39 102 45 

P08727 ID-5 *Keratin, type I cytoskeletal 19 KRT19 44106.00/5.05 393 68 

P08727 ID-6 *Keratin, type I cytoskeletal 19 KRT19 44106.00/5.05 377 56 

P05783 ID-7 Cytokeratin 18 KRT18 48057.81/5.34 121 32 

Q04695 ID-8 *Keratin, type II cytoskeletal 7 KRT17 48105.67/4.97 287 44 

Q04695 ID-9 *Keratin, type II cytoskeletal 7 KRT17 48105.67/4.97 178 27 

P05787 ID-10 Cytokeratin 8 KRT8 53704.25 /5.52 140 28 

P08727 ID-11 Keratin, type I cytoskeletal 19 KRT19 44106.00/5.05 360 66 

Q04695 ID-11 Keratin 17 protein KRT17 48105.67/4.97 119 42 

P08729 ID-12 *Keratin, type II cytoskeletal 7 KRT7 48105.67/4.97 296 53 

P08729 ID-13 *Keratin, type II cytoskeletal 7 KRT7 48105.67/4.97 135 29 

P02545 ID-14 Prelamin-A/C isoform 2 LMNA 74139.49/6.57 256 47 

P08729 ID-15 *Keratin, type II cytoskeletal 7 KRT7 48105.67/4.97 142 25 

Q969I0 ID-16 Keratin 8 KRT8 53704.25 /5.52 120 36 

P13645 ID-17 Keratin 10 KRT10 58827.09/5.13 91 23 

Q9UHB6 ID-18 LIM domain and actin-binding protein 1 LIMA1 85225.55/6.41 106 23 

P51530 ID-19 DNA2-like helicase DNA2 120414.71/7.95 150 20 

Q02880 ID-20 DNA topoisomerase 2-beta TOP2B 183267.17/8.14 202 36 

P08727 ID-21 *Keratin, type I cytoskeletal 19 KRT19 44106.00/5.05 107 67 

Q08211 ID-22 Plectin isoform 1e DHX9 140958.48/6.41 318 13 

P08727 ID-23 *Keratin, type I cytoskeletal 19 KRT19 44106.00/5.05 413 68 

P05783 ID-24 Cytokeratin 18 KRT18 48057.81/5.34 143 35 
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Uniprot 
accession no

a
 

Spot no
c
 Protein name

a
 Gene name

a
 

Theoratical 
molecular weight / pI

a
 

Score
b
 

Peptide 
match

b
 

       

Q04695 ID-25 Keratin, type I cytoskeletal 17 KRT17 48105.67/4.97 154 28 

Q04695 ID-26 Keratin, type II cytoskeletal 7 KRT7 48105.67/4.97 240 46 

P05787 ID-27 Keratin 8 KRT8 53704.25 /5.52 239 67 

P21796 ID-28 Porin 31HM VDAC1 30772.60/8.62 135 52 

Q9UNA4 ID-29 Human polymerase iota POLI 83005.97/5.73 156 54 

Q71DI3 ID-30 *Chain C, structure of the H3-H4 chaperone Asf1 bound to 
Histones H3 and H4 

Histone H3.2 15388.03/11.27 70 48 

Q71DI3 ID-31 *Chain C, structure of the H3-H4 chaperone Asf1 bound to 
histones H3 and H4 

Histone H3.2 15388.03/11.27 102 64 

Q71DI3 ID-32 *Chain C, structure of the H3-H4 chaperone Asf1 bound to 
histones H3 and H4 

Histone H3.2 15388.03/11.27 91 64 

Q0D2M2 ID-33 HIST1H2BC protein HIST1H2BC 13834.08/10.39 74 50 

Q99879 ID-34 Histone H2B type 1-M [Homo sapiens] HIST1H2BM 13989.27/10.31 200 48 

P19338 ID-35 Nucleolin NCL 76614.41/4.60 287 29 

Q3MI39 ID-36 Heterogeneous nuclear ribonucleoprotein A1 HNRPA1 16759.51/9.71 99 19 

P62906 ID-37 *60S ribosomal protein L10a RPL10A 24831.31/9.94 104 26 

P35579 ID-38 Myosin-9 MYH9 226532.24/5.50 272 41 

F5GWA7 ID-39 Prohibitin 2 PHB2 29226.59/9.21 137 37 

P62906 ID-40 60S ribosomal protein L10a RPL10A 24831.31/9.94 266 48 

P0C0S8 ID-41 Histone H2A type 1-B/E HIST1H2AG 14091.48/10.90 107 20 

P55036 ID-42 S5a Uim-1 ubiquitin complex PSMD4 40736.66/4.68 177 43 

Q13242 ID-43 Serine/arginine-rich splicing factor 9 SRSF9 25542.24/8.74 199 27 

Q99816 ID-44 Chain B, Tsg101(Uev) domain in complex with ubiquitin TSG101 43944.32/6.06 259 17 

Q9UNA4 ID-45 Chain B, solution structure of the human polymerase iota 
Ubm2- ubiquitin complex 

POLI 43944.32/6.06 104 45 

P0CG47 ID-46 Polyubiquitin-B UBB 25761.64/6.86 158 23 

P09629 ID-47 Homeobox B7 HOXB7 24014.62/8.83 240 34 

Q9UHB6 ID-48 LIM domain and actin-binding protein 1 isoform a LIMA1 85225.55/6.41 178 28 
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Uniprot 
accession no

a
 

Spot no
c
 Protein name

a
 Gene name

a
 

Theoratical 
molecular weight / pI

a
 

Score
b
 

Peptide 
match

b
 

       

Q9BWF3 ID-49 RNA-binding protein 4 isoform 3 RBM4 40313.84/6.61 167 26 

P21796 ID-50 Voltage-dependent anion channel VDAC1  188 21 

P22626 ID-51 Heterogeneous nuclear ribonucleoproteins A2/B1 isoform 
A2 

HNRNPA2B 37429.70/8.97 106 31 

Q9UNA4 ID-52 Human polymerase iota Ubm2- ubiquitin complex POLI 83005.97/5.73 78 23 

Q08211 ID-53 ATP-dependent RNA helicase A DHX9 140958.48/6.41 209 34 

Q15149 ID-54 Plectin isoform 1e PLEC 531790.73/5.74 89 15 

P62805 ID-55 Histone H4 HIST1H4A 11367.34/11.36 101 40 

a Gene name, protein name, theoretical molecular weight, and pI entries in Uniprot database for the each protein identified by MALDI-TOF-MS. 

b Score and peptides matches in Mascot search engine. 

c Experimental ID numbers. 

* If multiple spots were identified as the same protein, the protein is marked with an asterisk. 
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10.3 Annex III – List of protein complexes of subcellular fraction identified after exposure to B[a]P and 

TCDD 

Table 11 1: List of proteins differentially expressed in the cytosolic fraction of RT4 cells identified by MALDI-TOF-MS after exposure to 200 pM TCDD for 24 h. 

Spot no
1
 Gene name

2
 Protein name

2
 Score

3
 Peptide match

3
 

Up or down 
regulated 

Regulation
4
 

       

ID9 FLNB Filamin B 416 26 down -3.22999 

ID1755 FTH1 Chain A, recombinant human H Ferritin, K86q mutant, soaked with Zn 83 27 down -2,68431 

ID34 NPEPPS Aminopeptidase puromycin sensitive, isoform CRA_a 326 43 up 1.07601 

ID203 S100A2 Protein S100-A2 73 53 up 3.8684 

ID 231 CALM1 Chain A, trapped intermediate of calmodulin 71 31 up 2.13139 

ID12 FASN Fatty acid synthase 465 26 down -2,16001 

ID82 RBBP7 Histone-binding protein RBBP7 127 43 up 3,65179 

ID148 ANP32A ANP32A protein 160 49 up 1,75938 

ID216 KRT10 Keratin 10 144 29 up 2,15201 

ID68 TCP1 Chaperonin containing TCP1, subunit 3 93 26 up 2,32344 

ID162 CLTA Clathrin light chain A isoform a 112 32 up 3,28302 

ID172 HEBP2 Heme-binding protein 2 86 37 up 2,03805 

ID580 TCP1 Chaperonin containing TCP1, subunit 3 151 46 up 2,17571 

ID205 ARPC4 Actin-related protein 2/3 complex subunit 4 isoform a 94 46 down -2,45396 

ID117 KRT2 Keratin, type II cytoskeletal 2 epidermal 93 26 up 2,28700 

ID1756 IQGAP1 Ras GTPase-activating-like protein IQGAP1 288 26 down -2,04209 

ID1757 IQGAP1 Ras GTPase-activating-like protein IQGAP1 324 29 down -1,72557 

ID291 TSG101 Chain B, Tsg101(Uev) domain In complex with ubiquitin 83 61 up 3,12498 

ID229 KRT16 Keratin, type I cytoskeletal 16 127 47 up 1,75034 
1
: Experimental ID number. 

2
: Gene name and protein name entries in Uniprot database. 

3
: Score and peptides matches in Mascot search engine. 

4
 The values represent the ratio of the relative spot volume of treated and control cells as determined by using Delta2D v4.0 software. 
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Table 11 2: List of proteins differentially expressed in the membrane/organelle fraction of RT4 cells identified by MALDI-TOF-MS after exposure to 200 pM TCDD for 24 h. 

Spot no
1
 Gene name

2
 Protein name

2
 Score

3
 Peptide match

3
 

Up or down 
regulated 

Regulation
4
 

       

13 NPEPPSL1 PREDICTED: aminopeptidase puromycin sensitive isoform 2 250 26 up 1.13788 

37 ACTB ACTB protein 169 51 up 2.63077 

24 ANXA10 Annexin A10 129 47 up 1.02979 

25 ANXA5 Annexin A5 142 46 up 1.34865 

23 AKR1B1 Chain A, fidarestat bound to human aldose reductase 201 59 up 2.02283 

26 ANP32A Acidic (leucine-rich) nuclear phosphoprotein 32 family, member A 166 48 up 2.30848 

12 UBA1 Ubiquitin-like modifier-activating enzyme 1 325 40 up 1.01613 

15 KRT9 Cytokeratin 9 103 50 up 1.30835 

16 GSN Gelsolin isoform b 96 23 up 1.08039 

17 PDIA4 Protein disulfide-isomerase A4 precursor 303 45 up 1.18829 

19 ERO1LB Endoplasmic reticulum oxidoreductin 1 132 43 up 1.72305 

18 CHRNB1 Cholinergic receptor, nicotinic, epsilon, isoform CRA_a   up 1.49665 

20 GLUD1 Chain A, structure Of human glutamate dehydrogenase-apo form 245 51 up 1.16010 

21 SHMT2 Serine hydroxymethyltransferase, mitochondrial isoform 3 139 43 down -2.27026 

42 EIF3A Eukaryotic translation initiation factor 3, subunit A 135 19 down -2.14621 

3 NME2 Nm23 human nucleoside diphosphate kinase B complexed with Gdp 161 78 down -1.09288 

5 TFRC Transferrin receptor protein 1 91 17 up 1.35857 

6 TFRC Transferrin receptor protein 1 113 24 up 1.35857 

7 KRT1 Keratin 1 83 23 up 1.15404 

33 PSMB9 Proteasome (prosome, macropain) subunit, beta type, 1 90 51 down -1.42373 

34 PRDX1 Peroxiredoxin-1 77 49 down -1,93899 

40 PSMA3 Proteasome (prosome, macropain) subunit, alpha type, 3  78 45 down -2.34886 
1
: Experimental ID number. 

2
: Gene name and protein name entries in Uniprot database. 

3
: Score and peptides matches in Mascot search engine. 

4
 The values represent the ratio of the relative spot volume of treated and control cells as determined by using Delta2D v4.0 software 
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Table 11 3: : List of proteins differentially expressed in the nuclear fraction of RT4 cells identified by MALDI-TOF-MS after exposure to 200 pM TCDD for 24 h. 

Spot no
1
 Gene name

2
 Protein name

2
 Score

3
 Peptide match

3
 

Up or down 
regulated 

Regulation
4
 

       

ID-359867 MYH9 Myosin-9 166 20 up 3.57206 

ID-359670 HIST1H1E Histone H1.4 79 36 up 2.45941 

ID-359484 POLI Human polymerase Iota Ubm2- ubiquitin complex 83 77 up 6.25469 

ID-359483 TSG101 Chain B, Tsg101(Uev) domain in complex with ubiquitin 73 61 up 3.05263 

ID-359479 PHB Prohibitin 89 42 up 2.10602 

ID-359476 VDAC1 Porin 31HM 121 58 up 1.89122 

ID-359470 RPL10A 60S ribosomal protein L7 91 35 up 2.35149 

ID-359480 SRSF9 Serine/arginine-rich splicing factor 9 90 42 up 2.83745 
1
: Experimental ID number. 

2
: Gene name and protein name entries in Uniprot database. 

3
: Score and peptides matches in Mascot search engine. 

4
 The values represent the ratio of the relative spot volume of treated and control cells as determined by using Delta2D v4.0 software 
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Table 11 4: : List of proteins differentially expressed in the cytosolic fraction of RT4 cells identified by MALDI-TOF-MS after exposure to 0.5 µM B[a]P for 24 h. 

Spot no
1
 Gene name

2
 Protein name

2
 Score

3
 Peptide match

3
 

Up or down 
regulated 

Regulation
4
 

       

ID22326 PFN1 Profilin-1 147 58 down 1.87683 

ID22471 TBCD Tubulin-specific chaperone d, isoform CRA_c 161 24 up 1.88427 

ID22486 VCP Transitional endoplasmic reticulum ATPase 234 46 up 1.92522 

ID22491 ALDH1L1 10-formyltetrahydrofolate dehydrogenase 423 51 up 2.1961 

ID22515 KRT2 Keratin, type II cytoskeletal 2 epidermal 68 17 down -2.29904 

ID22516 CCT2 T-complex protein 1 subunit beta isoform 2 131 44 up 2.12253 

ID22545 IDH1 
Heterodimeric R132h mutant of human cytosolic 
NADP(+)-dependent isocitrate dehydrogenase in 

complex with NADP and isocitrate 
240 53 down -1.81488 

ID22596 NME2 Nucleoside diphosphate kinase B isoform a 154 73 down -1.7242 

ID22613 FABP4 Human adipocyte fatty acid binding protein 91 59 up 4.13207 

ID24295 PREP Prolyl endopeptidase 213 44 up 2.25443 

ID24958 ATIC Bifunctional purine biosynthesis protein PURH 203 50 up -2.04968 

ID25983 LDHA Lactate dehydrogenase A variant 113 31 down -1.20712 

ID22033 PRDX6 Peroxiredoxin-6 92 48 up 2.25032 

ID22510 TCP1 T-complex protein 1 subunit alpha isoform a 111 31 up 3.59029 

ID26273 PRDX6 Peroxiredoxin-6 153 64 down -2.27703 
1
: Experimental ID number. 

2
: Gene name and protein name entries in Uniprot database. 

3
: Score and peptides matches in Mascot search engine. 

4
 The values represent the ratio of the relative spot volume of treated and control cells as determined by using Delta2D v4.0 software 
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Table 11 5: List of proteins differentially expressed in the cytosolic fraction of RT4 cells identified by MALDI-TOF-MS after exposure to 0.5 µM B[a]P for 24 h. 

Spot no
1
 Gene name

2
 Protein name

2
 Score

3
 

Peptide 
match

3
 

Up or down 
regulated 

Regulation
4
 

       

BaP2-06 CLTC Clathrin heavy chain 1 isoform 6 342 27 up 1.73274 

BaP2-15 PDIA4 Protein disulfide-isomerase A4 precursor 329 47 up 2.39697 

BaP2-23 UGDH UDP-glucose 6-dehydrogenase isoform 1 167 48 up 1.82155 

BaP2-26 ALDOA 
Fructose 1,6-bisphosphate aldolase complexed with 

fructose 1,6-bisphosphate 
273 66 down -1.82195 

BaP2-30 ANXA10 Annexin A10 82 30 down -3.95467 

BaP2-33 TPM3 Tropomyosin alpha-3 chain isoform 3 103 45 down -2.92923 

BaP2-39 PPIB Cyclophilin B complexed with cyclosporin 116 57 up 1.74984 

BaP2-43 PPIA Cyclophilin A complexed with dipeptide Gly-Pro 85 67 up 3.41278 

BaP2-47 PFN1 
Profilin complexed with An L-Pro10-iodotyrosine 

peptide 
113 58 up 1.76324 

BaP2-07 UBA1 Ubiquitin-like modifier-activating enzyme 1 279 36 up 2.67377 

BaP2-16 P4HA1 Procollagen-proline, 2-oxoglutarate 4-dioxygenase 251 57 up 7.82073 

BaP2-18 UBA1 Ubiquitin-like modifier-activating enzyme 1 287 34 down -1.7525 

BaP2-19 CALR Calreticulin precursor variant 125 43 up 2,15407 

BaP2-20 GPI Glucose-6-phosphate isomerase isoform 1 123 27 down -3.0432 

BaP2-22 ATP5A1 
ATP synthase, H+ transporting, mitochondrial F1 

complex, alpha subunit 1 
182 33 up 2.54415 

BaP2-24 ATP5B 
Mitochondrial ATP synthase, H+ transporting F1 

complex beta subunit 
155 47 up 1.82857 

Bap2-31 GNPDA1 Glucosamine-6-phosphate isomerase 1 150 64 down -3.95467 

Bap2-08 UBA1 Ubiquitin-like modifier-activating enzyme 1 331 37 up 2.59967 

Bap2-42 PPIA Cyclophilin A complexed with dipeptide Gly-Pro 134 82 up 3.74312 

Bap2-45 PPIA Cyclophilin A complexed with dipeptide Gly-Pro 157 75 up 3.07921 

Bap2-48 KRT9 Keratin, type I cytoskeletal 9 108 32 up 2.62558 
1
: Experimental ID number. 

2
: Gene name and protein name entries in Uniprot database. 

3
: Score and peptides matches in Mascot search engine. 

4
 The values represent the ratio of the relative spot volume of treated and control cells as determined by using Delta2D v4.0 software 
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1
:Experimental ID number. 

2
: Gene name and protein name entries in Uniprot database. 

3
: Score and peptides matches in Mascot search engine. 

4
 The values represent the ratio of the relative spot volume of treated and control cells as determined by using Delta2D v4.0 software 

 

Table 11 6: : List of proteins differentially expressed in the nuclear fraction of RT4 cells identified by MALDI-TOF-MS after exposure to 0.5 µM B[a]P for 24 h. 

Spot no
1
 Gene name

2
 Protein name

2
 Score

3
 

Peptide 
match

3
 

Up or down 
regulated 

Regulation
4
 

2 KRT8 Keratin 8 protein 261 77 down -1.90642 

3 KRT7 Keratin, type II cytoskeletal 7 330 53 down -1.95532 

4 KRT19 Keratin, type I cytoskeletal 19 416 74 down -2.7945 

5 HNRPA1 Heterogeneous nuclear ribonucleoprotein A1 96 42 up 2.65593 

6 VDAC1 Porin 31HM [human, skeletal muscle membranes 107 53 up 2.32705 

7 HIST1H1B Histone H1.5 100 43 up 4.05107 

8 PHB Prohibitin 77 38 up 4,03869 

9 NDUFV1 
NADH dehydrogenase [ubiquinone] iron-sulfur protein 

3, mitochondrial precursor 
70 27 up 8.73903 

10 HECTD3 Chain X, E2~ubiquitin-Hect 75 77 up 8.73204 

11 RPL10A 60S ribosomal protein L10a 77 50 up 2.13607 

15 UBE2K Ubiquitin-conjugating enzyme E2 K 79 59 up 3.61185 

22 PSMB9 
Proteasome (prosome, macropain) subunit, beta type, 

9 
74 32 up 2.27713 

23 HIST1H2BM Histone H2B type 1-M 76 50 down -3.83119 

24 HIST1H2AG Histone H2A type 1-B/E 70 30 down -4.15894 

25 HIST2H3A TH3-H4 chaperone Asf1 bound to histones H3 and H4 120 66 down -3.16213 

26 MYH9 Myosin-9 253 23 up 3.06755 

27 DHX9 Nuclear DNA helicase II 152 19 up 3.10872 
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10.4 Annex IV – Representative 2D BN/PAGE gel images after exposure to B[a]P and TCDD 

 

Figure 38: 2D BN/PAGE gels representing proteins differentially expressed in the cytosolic fraction of RT4 cells after 24 h exposure to [A] TCDD (200 pM) or [B] B[a]P 

(0.5 µM). 75 μg of proteins from cytosolic fraction of control, B[a]P- and TCDD-exposed cells were separated by 4-12 % BN-PAGE and 12 % SDS-PAGE. The resulting 

protein arrays were detected by applying a Coomassie brilliant blue protocol developed in our labaratory. By using the Delta2D v4.0 image analysis software, numbered spots 

with arrows were identified as differentially expressed. For assigning the identity of these proteins, protein peptide mass matching was performed on Mascot by searching 

MSDB and NCBInr protein databases with the taxonomy homo sapiens. The proteins identified by MALDI-TOF-MS are listed in Table 11.1 (TCDD) and 11.4 (B[a]P). 

 

 

 



Annex 

 
 

124 

 

 

 

Figure 39: 2D BN/PAGE gels representing proteins differentially expressed in the membrane/organelle fraction of RT4 cells after 24 h exposure to [A] TCDD (200 pM) or [B] 

B[a]P (0.5 µM). 75 μg of proteins from cytosolic fraction of control, B[a]P- and TCDD-exposed cells were separated by 4-12 % BN-PAGE and 12 % SDS-PAGE. The resulting 

protein arrays were detected by applying a Coomassie brilliant blue protocol developed in our labaratory. By using the Delta2D v4.0 image analysis software, numbered spots 

with arrows were identified as differentially expressed. For assigning the identity of these proteins, protein peptide mass matching was performed on Mascot by searching 

MSDB and NCBInr protein databases with the taxonomy homo sapiens. The proteins identified by MALDI-TOF-MS are listed in Table 11.2 (TCDD) and 11.5 (B[a]P) 
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Figure 40: 2D BN/PAGE gels representing proteins differentially expressed in the nuclear fraction of RT4 cells after 24 h exposure to [A] TCDD (200 pM) or [B] B[a]P 

(0.5 µM). 75 μg of proteins from cytosolic fraction of control, B[a]P- and TCDD-exposed cells were separated by 4-12 % BN-PAGE and 12 % SDS-PAGE. The resulting 

protein arrays were detected by applying a Coomassie brilliant blue protocol developed in our labaratory. By using the Delta2D v4.0 image analysis software, numbered spots 

with arrows were identified as differentially expressed. For assigning the identity of these proteins, protein peptide mass matching was performed on Mascot by searching 

MSDB and NCBInr protein databases with the taxonomy homo sapiens. The proteins identified by MALDI-TOF-MS are listed in Table 11.3 (TCDD) and 11.6 (B[a]P) 
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10.5 Annex V - Cell culture media, reagents, and instrumentation 

 

Medium for PUBEC 

Medium 

472 ml (500 – 28 mL) F-12 medium C.C. Pro GmbH, Oberdorla, Germany 

Supplements 

2.5 ml Amphotericin (1.25 µg/mL) C.C. Pro GmbH, Oberdorla, Germany 

2.5 ml L-Glutamine (146 µg/mL PAA GmbH, Cölbe, Germany 

2.5 mL Transferrin (5 µg/mL) Sigma, Taufkirchen, Germany 

5.0 mL NEAA (0.1 mM) GIBCO, Darmstadt, Germany 

5.0 mL Insulin (10 µg/mL) PAA GmbH, Cölbe, Germany 

5.0 mL Glucose (2.7 mg/mL) Sigma, Taufkirchen, Germany 

5.0 mL Penicillin-streptomycin (100 U/100 µg/mL) GIBCO, Darmstadt, Germany 

0.5 mL Hydrocortisone (1 µg/mL) Sigma, Taufkirchen, Germany 

50 µL Epidermal growth factor (20 ng/mL) Sigma, Taufkirchen, Germany 

 

 

 

 

Medium for RT4 cell line 

 

 

Medium 

441.3 ml (500 – 58.7 mL) McCoy’s medium C.C. Pro GmbH, Oberdorla, Germany 

Supplements 

3.7 ml L-Glutamine (1.5 mM) Sigma, Taufkirchen, Germany 

5.0 mL Penicillin-streptomycin (100 U/100 µg/mL) GIBCO, Darmstadt, Germany 

50 mL Fetal bovine serum (10 %) GIBCO, Darmstadt, Germany 
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Instrumentation 

IPGphor isoelectric focusing unit (IEF) 

Ettan DALTsix electrophoresis system 

IPG-Stripe (3-10 NL) 

Isoelectric focusing system 

Gel-Custer 

Amersham Bioscience, Freiburg, Germany 

MALDI-TOF-MS (Voyager-STR) Applied Biosystems, Foster City (USA) 

Mass Spec Turbo 192 CHCA Chip Qiagen, Hilden 

Centrifuges: 

Allegra 6R 

Allegra X15R 

Ultracentrifuge L8-M 

Beckman Coulter, Krefeld, Germany 

Scanner (ScanMaker 9800XL) Mikrotek, Willich, Germany 

Genios Multi-Detection Microplate Reader Tecan, Mainz, Germany 

Confocal microscope LSM 510, Zeiss, Oberkochen, Germany 

Gas Chromatograph 
HP 6890/5973, Agilent Technologies, Waldbronn, 

Germany 

Leica DMLB, Fluorescence Microscope Bensheim, Germany 

Spectrofluorometer Varian Cary Eclipse, Varian, Palo Alto, CA 

 

 

Software Version Firm 

Silverfast 6.6.0r3 LaserSoft Imaging AG, Kiel, Germany 

Delta2D 4.0 Decodon, Greifswald, Germany 

Voyager Instrument Control Panel 5.1 
Applied Biosystems, Foster City, USA 

Data Explorer 4.0 

Mascot 2.2 Matrix Science, London, England 

Comet assay IV  4.3 Perspective Instruments, UK 

Leica application suite  3.5.0 Leica Microsystems CMS GmbH, Switzerland 
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Kits and dyes used for the study 

 

 

Chemicals 

1,4-Dithiothreitol (DTT) 

Bromphenol blue 

Glycine 

Agarose 

Ammonium persulphate (APS) 

Glycerine 

N,N,N',N'-Tetramethylethylendiamine (TEMED) 

Pharmalyt 3-10 

Amersham Bioscience, Freiburg, Germany 

Calibriation-Standard (MALDI-TOF) Applied Biosystems, Foster City, USA 

Acrylamid-Bis solution (30 % Acrylamid, 0,4 % Bis) BioRad, München, Germany 

Penicillin-streptomycin 

Trypsin (cell culture) 
C-C-Pro, Neustadt, Germany 

Benzo[a]pyrene (B[a]P) Fluka, Buchs, Switerzland 

Iodacetamide (IAA) GE-Healthcare, München, Germany  

Phosphate-buffered saline Gibco, Karlsruhe, Germany 

1-Butanol 

Coomassie brilliant blue G 250 

Ethanol 

Phosphoric acid 85 % 

Trifluroacetic acid (TFA) 

Merck, Darmstadt, Germany 

Fetal calf serum (FCS) PAA Laboratories, Pasching, Austria 

Dry strip cover fluid (oil for IEF) Pharmacia Biotech, Uppsala, Sweden 

Aluminium sulfate 
Riedel de Haën, Seelze  

Sigma, Taufkirchen, Germany 

Complete™, Protease Inhibitor Cocktail tablets Roche, Mannheim, Germany 

Bovine serum albumin (BSA) SERVA, Heidelberg, Germany 

Acetonitrile 

Ammonium bicarbonate 

Dimethyl sulfoxide (DMSO) 

Ethylene diamine tetraacetate (EDTA) 

Sodium dodecyl sulfate (SDS) 

Sucrose 

Sigma, Taufkirchen, Germany 

Kit 

Subcellular Proteome Extraction Kit Cat no 539790, ProteoExtract
®
, Merck KGaA, Darmstadt, Germany 

Dyes 

Phen Green™ SK, diacetate Cat no P14313, Molecular Probes
®
, Invitrogen, Darmstadt, Germany 

Calcein, AM 
Cat no C3100MP, Molecular Probes

®
, Invitrogen, Darmstadt, 

Germany 

Fluo-4/AM Cat no F-14201, Molecular Probes
®
, Invitrogen, Darmstadt, Germany 

Rhod-2/AM Cat no PK-CA707-50024, PromoKine, Heidelberg, Germany 

Rhodamine 123 Cat no R302, Molecular Probes®, Invitrogen, Darmstadt, Germany 

http://products.invitrogen.com/ivgn/product/P14313?ICID=search-product
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Chemicals 

Thiourea 

Trypsin (proteomic grade) 

Tris(hydroxymethyl-)aminomethan (Tris) 
Sigma, Taufkirchen, Germany 

USB Corporation, Cleveland, USA 

Urea 

3-[(3-Cholamidopropyl)-dimethylammonio]-1-propanesulfonate 

(CHAPS) 

USB Corporation, Cleveland, USA 
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M.Sc. (Biotechnology), M.Phil. (Biotechnology), 

PhD in Natural Sciences 
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