

Universität Duisburg-Essen, Standort Essen
Fachbereich 6 Mathematik

User Modeling Servers —

Requirements, Design,
and Evaluation

Dissertation vorgelegt zum Erwerb
des akademischen Grades Dr. rer. nat.

von Josef Fink
aus Sigmaringen

Datum der mündlichen Prüfung: 15. Juli 2003
Gutachter: Prof. Dr. Alfred Kobsa, Prof. Dr. Rainer Unland

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Duisburg-Essen Publications Online

https://core.ac.uk/display/33798385?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

i

Acknowledgements
This thesis originated from research in several scientific environments. Basic ideas have
been developed at the Universities of Konstanz and Essen within the BGP-MS project,
which was funded by the German Science Foundation (DFG). Most of the work has been
carried out at GMD, German National Research Center for Information Technology, within
the Deep Map project, which was funded by the European Media Lab (EML), Heidelberg,
Germany. The multi-disciplinary perspective to user modeling and user-adaptive systems
pursued in this thesis follows the approach taken in several projects at GMD including the
AVANTI and the HIPS project, which were partially funded by the European Commission,
and the LaboUr project, which was funded by the German Science Foundation (DFG).
Important parts of the implementation and evaluation work have been carried out at
humanIT, Human Information Technologies AG, Sankt Augustin, Germany.

It was Professor Alfred Kobsa, who attracted me to the field of user modeling and to this
thesis project many years ago. Since that time, he carefully guided me through this long-
term project even in times when I was seemingly absent. For this long-lasting mentorship, I
am especially indebted to him. I would also like to thank Professor Rainer Unland, who
swiftly accepted to act as a second supervisor and provided valuable comments on earlier
versions of this dissertation.

During my affiliation with the aforementioned scientific and commercial institutions, I was
privileged to work with and learn from many colleagues and friends; the following list does
not mention all of them: Lucian Ghitun, Jörg Höhle, Viorel Holban, Jürgen Koenemann,
Detlef Küpper, Hans-Günter Lindner, Rainer Malaka, Andreas Nill, Stephan Noller,
Reinhard Oppermann, Wolfgang Pohl, Jörg Schreck, and Ingo Schwab. Thanks to all of
them for sharing their talents with me!

In particular, I would like to thank Jürgen Koenemann, who helped me articulating and
pursuing a clear thesis statement and pointed out many shortcomings in earlier versions of
this dissertation. Any weaknesses, misunderstandings, and errors are, however, solely my
responsibility.

Apart from science, getting a dissertation project done is also a matter of focus, persistence,
and sedulity. In this vein, I would like to thank Christoph Thomas and Erich Vorwerk, who,
despite of my resistance, never stopped carefully pushing me forward.

Finally, I thank the six most important people in my life for their unlimited support in all
respects. Without their assistance, patience, and love, I would have probably never
completed this project. In regard to their unique contribution, I dedicate this work to them.

ii

Foreword

All rights reserved. The publication of this dissertation does not constitute the author’s
waiver, renunciation or relinquishment of any of his rights in this work, particularly
regarding the patenting of inventions described therein.

Preliminary versions of Chapter 2.2, Chapter 3, Chapters 7 and 8, and Chapter 9 of this
thesis have been partially published in Fink [1999], Fink and Kobsa [2000], Fink and
Kobsa [2002], and Kobsa and Fink [2003].

iii

Zusammenfassung

Softwaresysteme, die ihre Services an Charakteristika individueller Benutzer anpassen
(beispielsweise an Interessen, Präferenzen, Erfahrung und Wissen) haben sich bereits als
effektiver und/oder benutzerfreundlicher als statische Systeme in mehreren Anwendungs-
domänen erwiesen. Beispiele für solche individuellen Anpassungen sind auf die Benutzer-
expertise zugeschnittene Hilfetexte, angemessene Produktpräsentationen in elektronischen
Medien, gefilterte Ergebnisse aus Suchmaschinen im World Wide Web, pro-aktiv
angebotene Tipps zur Erweiterung von Benutzerfähigkeiten, Hinweise auf potenziell
relevante Nachrichten beziehungsweise Produkte und Empfehlungen bezüglich
individueller Lernstrategien. Um solche Anpassungsleistungen anbieten zu können, greifen
benutzeradaptive Systeme auf Modelle von Benutzercharakteristika zurück. Der Aufbau
und die Verwaltung dieser Modelle wird durch dezidierte Benutzermodellierungs-
komponenten vorgenommen.

Ein wichtiger Zweig der Benutzermodellierungsforschung beschäftigt sich mit der
Entwicklung sogenannter ‚Benutzermodellierungs-Shells’, d.h. generischen Benutzer-
modellierungssystemen, die die Entwicklung anwendungsspezifischer Benutzer-
modellierungskomponenten erleichtern. Die Bestimmung des Leistungsumfangs dieser
generischen Benutzermodellierungssysteme und deren Dienste bzw. Funktionalitäten wurde
bisher in den meisten Fällen intuitiv vorgenommen und/oder aus Beschreibungen
benutzeradaptiver Systeme in der wissenschaftlichen Literatur abgeleitet. Wegen der hohen
Affinität der Benutzermodellierungsforschung zum Forschungsgebiet der Künstlichen
Intelligenz wurde die Benutzermodellierung vornehmlich als ein Prozeß der
Wissensverarbeitung angesehen. Die in verwandten Gebieten wie Datenbank- und
Transaktionsmanagement, verteilte Informationssysteme, Informationswissenschaft und
Wirtschaftsinformatik reichlich vorhandenen Erfahrungen bez. Entwurf, Implementierung
und Einsatz von Server-Technologie wurden nicht in Betracht gezogen. Die meisten
Benutzermodellierungs-Shells fanden (vielleicht aus den vorgenannten Gründen?) keine
nennenswerte Verbreitung, nur wenige verließen die Forschungseinrichtungen, an denen sie
ursprünglich entwickelt wurden.

In der jüngeren Vergangenheit führte der Trend zur Personalisierung im World Wide Web
zur Entwicklung mehrerer kommerzieller Benutzermodellierungsserver. Die für diese
Systeme als wichtig erachteten Eigenschaften stehen im krassen Gegensatz zu denen, die
bei der Entwicklung der Benutzermodellierungs-Shells im Vordergrund standen und
umgekehrt. Kommerzielle Benutzermodellierungsserver weisen Eigenschaften auf, die für
deren Einsatz in realen Anwendungsumgebungen von essentieller Bedeutung sind,
beispielsweise die Integration extern vorhandener Benutzerinformationen, Repräsentation
von Benutzerverhalten, Skalierbarkeit im Hinblick auf eine wachsende Anzahl von
Benutzern und Unterstützung des Datenschutzes. Schon eine oberflächliche Analyse zeigt
jedoch auch bei diesen Systemen noch ein erhebliches Verbesserungspotenzial auf,
beispielsweise bezüglich (i) der eingesetzten Lerntechniken mit einem Schwerpunkt auf der
Integration von Domänenwissen und der Kombination von Lerntechniken zum Einsatz-
zeitpunkt, (ii) Erweiterbarkeit und (iii) der Integration extern vorhandener Benutzer-
informationen. Angesichts dieser komplementären Vor- und Nachteile kommerzieller
Benutzermodellierungsserver verwundert es, dass diese Systeme offenbar noch keinen
Eingang in die Benutzermodellierungsliteratur gefunden haben.

iv

Vor diesem Hintergrund ist das Ziel dieser Dissertation (i) Anforderungen an Benutzer-
modellierungsserver aus einer multi-disziplinären wissenschaftlichen und einer einsatz-
orientierten (kommerziellen) Perspektive zu analysieren, (ii) einen Server zu entwerfen und
zu implementieren, der diesen Anforderungen genügt, und (iii) die Performanz und
Skalierbarkeit dieses Servers unter der Arbeitslast kleinerer und mittlerer Einsatz-
umgebungen gegen die diesbezüglichen Anforderungen zu überprüfen.

Um dieses Ziel zu erreichen, verfolgen wir einen anforderungszentrierten Ansatz, der auf
Erfahrungen aus verschiedenen Forschungsbereichen, insbesondere Benutzermodellierung,
benutzeradaptiven Systemen, Datenbank- und Transaktionsmanagement sowie Marketing-
forschung aufbaut. Wir entwickeln zwei Anforderungskataloge, einen für eher generelle
Anforderungen an Server (wie beispielsweise Mehrbenutzersynchronisation, Trans-
aktionsmanagement und Zugriffskontrolle) und einen zweiten für Anforderungen, die
spezifisch für die Benutzermodellierung sind (wie beispielsweise Funktionalität, Daten-
akquisition, Erweiterbarkeit und Flexibilität, Integrierbarkeit externer Benutzer-
informationen, Kompatibilität zu Standards und Unterstützung des Datenschutzes). Auf
Basis des zweiten Katalogs besprechen und vergleichen wir in der Folge ausgewählte
kommerzielle Benutzermodellierungsserver. Eine vergleichbare Analyse wurde bisher im
Forschungsbereich Benutzermodellierung nicht durchgeführt.

Gestützt auf die beiden Anforderungskataloge entwickeln wir dann eine generische
Architektur für einen Benutzermodellierungsserver, die aus einem Serverkern für das
Datenmanagement und modular hinzufügbaren Benutzermodellierungskomponenten
besteht, von denen jede eine wichtige Benutzermodellierungstechnik implementiert. Um
einen geeigneten Serverkern zu finden, vergleichen und evaluieren wir in der Folge gängige
Verzeichnis- und Datenbankmanagementsysteme. Dabei beziehen wir nicht nur heutige,
sondern auch zukünftige Benutzermodellierungsszenarien in unsere Betrachtung mit ein.
Als Ergebnis kommen wir zu dem Schluss, dass Verzeichnisdienste (die bisher noch nicht
als Basis für Benutzermodellierungsserver eingesetzt wurden) generell Datenbank-
managementsystemen überlegen sind, beispielsweise im Hinblick auf Flexibilität und
Erweiterbarkeit, Verwaltung verteilter Informationen, Replikationsgrad, Performanz,
Skalierbarkeit und Kompatibilität zu Standards.

Um die Zweckmäßigkeit unserer generischen Serverarchitektur nachzuweisen, beschreiben
wir in der Folge den Benutzermodellierungsserver, den wir für ‚Deep Map’ entwickelt
haben, einem Projekt, das sich mit der Entwicklung eines portablen benutzeradaptiven
Touristenführers beschäftigt. Wir beschreiben die Benutzermodellierungskomponenten, die
wir für dieses Einsatzszenario entwickelt haben, und insbesondere die in diesen
Komponenten enthaltenen Lerntechniken, die wir aus dem Bereich des Maschinellen
Lernens für Benutzermodellierung übernommen haben. Wir zeigen, dass wir durch die
Integration dieser Benutzermodellierungskomponenten in einem Server Synergieeffekte
zwischen den eingesetzten Lerntechniken erzielen und bekannte Defizite einzelner
Verfahren kompensieren können, beispielsweise bezüglich Performanz, Skalierbarkeit,
Integration von Domänenwissen, Datenmangel und Kaltstart.

Abschließend präsentieren wir die wichtigsten Ergebnisse der Experimente, die wir durch-
geführt haben um empirisch nachzuweisen, dass der von uns entwickelte Benutzer-
modellierungsserver den zentralen Performanz- und Skalierbarkeitskriterien unserer

v

Anforderungskataloge genügt. Wir beginnen mit einer Beschreibung unseres Testansatzes
und der empirisch überprüften Arbeitslast, die wir in Anlehnung an reale Einsatz-
bedingungen simuliert haben. Wir präsentieren ausgewählte Ergebnisse unserer
Experimente und diskutieren Stärken und Schwächen unseres Benutzermodellierungs-
servers. Als Hauptergebnis stellen wir fest, dass unser Benutzermodellierungsserver die
vorbesagten Kriterien in Anwendungsumgebungen mit kleiner und mittlerer Arbeitslast in
vollem Umfang erfüllt. Die Verarbeitungszeiten für eine repräsentativ zusammengestellte
Menge an Benutzermodellierungsoperationen wachsen nur degressiv mit der Häufigkeit der
Seitenanfragen. Die Verteilung des Benutzermodellierungsservers auf mehrere Rechner
beschleunigte zusätzlich die Verarbeitung derjenigen Operationen, die parallel ausgeführt
werden können. Ein Test in einer Anwendungsumgebung mit mehreren Millionen
Benutzerprofilen und einer Arbeitslast, die als repräsentativ für größere Web Sites
angesehen werden kann bestätigte, dass die Performanz der Benutzermodellierung unseres
Servers keine signifikante Mehrbelastung für eine personalisierte Web Site darstellt.
Gleichzeitig können die Anforderungen unseres Benutzermodellierungsservers an die
verfügbare Hardware als moderat eingestuft werden. Eine vergleichbare Untersuchung
wurde bisher in der Benutzermodellierungsforschung nicht durchgeführt.

Wir erwarten, dass unsere Arbeit den Entwurf, die Implementierung und den Einsatz
benutzermodellierender und –adaptiver Systeme sowohl in Forschungs-, als auch in
kommerziellen Umgebungen beeinflussen wird. Unser Benutzermodellierungsserver wird
in kommerziellen Anwendungsumgebungen mit mehreren Millionen Benutzern bereits
erfolgreich eingesetzt.

vi

Abstract

Software systems that adapt their services to characteristics of individual users (e.g., their
interests, preferences, proficiencies and knowledge) have already proven to be more
effective and/or usable than non-adaptive systems in several application domains.
Individualized tailoring has been used to, e.g., cater help text to the user’s level of
expertise, chose appropriate product presentations in electronic offerings, filter retrieval
results of Web search engines, provide unsolicited tips to extend the user’s skills set,
present news flashes or product recommendations to users in which they are probably
interested, and recommend personalized learning strategies. For exhibiting such
personalized behavior, user-adaptive software systems rely on models of user
characteristics. Acquisition and management of these models is carried out by dedicated
user modeling components.
An important strand of user modeling research is devoted to developing so-called ‘user
modeling shell systems’, i.e. generic user modeling systems that facilitate the development
of application-specific user modeling components. The decisions as to what these generic
user modeling systems and their respective services/functionalities are were mostly based
on intuition and/or experience gained from studying user-adaptive applications as reported
in the scientific literature. Due to the strong affinity of user modeling research to artificial
intelligence in these days, user modeling was mainly considered a knowledge processing
task. The rich experience that related research areas like database and transaction
management, distributed information systems, information science, and management
information systems had acquired regarding the design, implementation and deployment of
server technology was not taken into account. Most of these user modeling shell systems
(therefore?) did not enjoy much distribution; only a few ever left the research institutions
where they were originally developed.

More recently, the trend towards personalization on the World Wide Web led to the
development of several commercial user modeling servers. Features that are deemed to be
important for these systems contrast sharply with those regarded as important for user
modeling shell systems, and vice versa. Commercial user modeling servers exhibit
deployment-supporting characteristics that are of paramount importance in real-world
environments, including integration of external user-related information, representation of
user behavior, scalability in terms of an increasing number of users, and support for user
privacy. However, even a superficial analysis reveals that these commercial systems are
lacking as well, e.g. with regard to (i) learning techniques focused on the integration of
domain knowledge and technique mix at deployment time, (ii) extensibility, and (iii)
integration of user-related information that is external to the user modeling server. Given
these complementary strengths and weaknesses of commercial user modeling servers, it is
surprising that most of them seemingly have not even been mentioned in the user modeling
literature.

Against this background, the aim of this dissertation is to (i) analyze the requirements that
user modeling servers must meet to be acceptable both from a multi-disciplinary scientific
perspective and from the viewpoint of (commercial) deployment, (ii) design and implement
a server that meets these requirements, and (iii) verify its compliance with core
performance and scalability requirements under the workload of small and medium-sized
real-world environments.

vii

In order to achieve this, we follow a requirements-driven approach, thereby drawing on
experience from a variety of research areas including user modeling, user-adaptive systems,
database and transaction management, management information systems, and marketing
research. We develop two requirements catalogues, one for more general server
requirements (e.g., multi-user synchronization, transaction management, and access
control) and the other for requirements that are specific to user modeling (e.g.,
functionality, data acquisition, extensibility and flexibility, integration of external user-
related information, compliance with standards, and support for privacy). Based on the
latter, we conduct a review of selected commercial user modeling servers and compare and
discuss our findings. A comparable analysis has not been conducted so far in user modeling
research.

Based on these requirement catalogues, we develop a generic architecture for a user
modeling server that consists of a server core for data management and several ‘pluggable’
user modeling components, each of which implements an important user modeling
technique. In order to determine an appropriate server core, we compare and evaluate
common directory and database management systems. We thereby not only take current,
but also future user modeling scenarios into account. We find that directory management
systems (which have never been used before as a basis for user modeling servers) are
generally superior to database management systems with regard to, e.g., flexibility and
extensibility, management of distributed information, replication scale, performance,
scalability, and compliance with standards.

To prove the validity of our generic server architecture, we subsequently describe the user
modeling server that we developed for ‘Deep Map’, a project that is concerned with the
construction of a portable user-adaptive tourist guide. We describe the user modeling
components that we developed for this specific deployment scenario, and specifically the
incorporated learning techniques that we adopted from the area of machine learning for
user modeling. We argue that by integrating the user modeling components into a single
server, we can leverage several synergistic effects between these techniques and
compensate for well-known deficits of individual techniques with regard to, e.g.,
performance, scalability, integration of domain knowledge, sparsity of data, and cold start.

Finally, we present the most important results of the experiments that we conducted to
empirically verify the compliance of our user modeling server with core performance and
scalability requirements introduced earlier in our requirement catalogues. We start with a
brief description of our testing approach and the empirically verified real-world workload
that we simulated. We present selected results and discuss strengths and weaknesses of our
server. As a main result, we argue that our user modeling server can fully cope with small
and medium-sized application workloads. The processing time for a representative mix of
user modeling operations was found to only degressively increase with the frequency of
page requests. The distribution of the user modeling server across a network of computers
additionally accelerated those operations that are amenable to parallel execution. A large-
scale test with several million user profiles and a page request rate that is representative of
major Web sites confirmed that the user modeling performance of our server will not
impose a significant overhead for a personalized Web site. At the same time, the hardware
demands of our user modeling server are moderate. A comparable evaluation has not been
carried out in user modeling research so far.

viii

We expect that our work impacts the design, implementation, and deployment of user
modeling and user-adaptive systems both in research and commercial environments. Our
user modeling server has already been successfully deployed to commercial application
environments with several millions of users.

ix

Contents

1 Introduction 1
1.1 History of User Modeling Servers ..1
1.2 Personalization in E-Commerce..2
1.3 Centralized vs. Decentralized User Modeling...6
1.4 Organization of This Work ...8

I Requirements for User Modeling Servers 11

2 Server-Related Requirements 13
2.1 Review Methodology ..13
2.2 Reviews of Server Requirements ..14

2.2.1 Multi-User Synchronization ..14
2.2.2 Transaction Management ..15
2.2.3 Query and Manipulation Language ...16
2.2.4 Persistency...18
2.2.5 Integrity ...18
2.2.6 Access Control ..19

2.3 Discussion ...20

3 User Modeling Requirements 22
3.1 Review Methodology ..23
3.2 Reviews of Commercial Server Systems ..25

3.2.1 GroupLens ...25
3.2.2 Personalization Server ...28
3.2.3 FrontMind..33
3.2.4 Learn Sesame ..38

3.3 Discussion ...43

II User Modeling Server Design 49

4 Server Basis – Directories versus Databases 51
4.1 Extensibility ..52
4.2 Management of Distributed Information...52
4.3 Replication Scale...54
4.4 Performance and Scalability..56
4.5 Standards ...57

5 Introduction to LDAP Directories 58
5.1 Information Model ..59
5.2 Naming Model...60
5.3 Functional Model ..62

5.3.1 Query Operations ..63
5.3.2 Update Operations ...65
5.3.3 Authentication and Control Operations...66

5.4 Security Model ..67

x CONTENTS

6 User Modeling Server Architecture 73
6.1 Overview of Server Architecture ..73
6.2 Selection of Server Foundation ...76
6.3 Support for Advanced User Modeling Scenarios..79

6.3.1 Monoatomic User Modeling ...79
6.3.2 Polyatomic User Modeling..82
6.3.3 Secure and Private User Modeling..85

III User Modeling Server Implementation 91

7 User Modeling Server for Deep Map 93
7.1 User Modeling in Deep Map...93
7.2 Overview of Server Architecture ..95

8 User Modeling Server for Deep Map: Components 99
8.1 Communication ...99

8.1.1 FIPADM Interface...99
8.1.2 LDAP Interface ...99
8.1.3 ODBC Interface...100

8.2 Representation...100
8.2.1 User Model ..103
8.2.2 Usage Model..106
8.2.3 System Model..107
8.2.4 Service Model..109

8.3 Scheduler...111
8.3.1 Introduction ...111
8.3.2 Usage Scenario ..112
8.3.3 Implementation..113

8.4 User Learning..114
8.4.1 Introduction ...114
8.4.2 Usage Scenario ..117
8.4.3 Implementation..119

8.5 Mentor Learning..121
8.5.1 Introduction ...122
8.5.2 Usage Scenario ..127
8.5.3 Implementation..130

8.6 Domain Inferences ..130
8.6.1 Introduction ...131
8.6.2 Usage Scenario ..132
8.6.3 Implementation..134

IV Evaluation and Discussion 135

9 User Modeling Server: Experiments 137
9.1 Model of Real-World Workload ...138
9.2 Test Bed...142

9.2.1 Overview ...142

CONTENTS xi

9.2.2 Workload Simulation ..145
9.2.3 Measures..147
9.2.4 Hardware and Software Configuration..148
9.2.5 Testing Procedure..149

9.3 Evaluation Results...150
9.3.1 Black Box Perspective...150

9.3.1.1 Performance and Scalability...150
9.3.1.2 Quality of Service...153
9.3.1.3 Single Platform vs. Multi-Platform155

9.3.2 White Box Perspective ..156
9.3.2.1 Performance and Scalability...156
9.3.2.2 Quality of Service...160

10 Discussion 162
10.1 Server Requirements ...162
10.2 User Modeling Requirements..166

11 Summary and Perspectives 169

xii

List of Figures
Figure 1-1: Personalization software revenues (based on Millhouse et al. [2000])4

Figure 1-2: Commercial personalization examples (based on Hagen et al. [1999])...............5

Figure 3-1: GroupLens architecture (based on Net Perceptions [2000])..............................27

Figure 3-2: ATG architecture (based on ATG [2000])...29

Figure 3-3: Personalization Control Center [ATG, 2000]. Reprinted with permission........30

Figure 3-4: FrontMind architecture (based on Manna [2000b])...33

Figure 3-5: Business Command Center [Manna, 2000b]. Reprinted with permission.........35

Figure 3-6: Incremental learning process (based on Caglayan et al. [1997])40

Figure 3-7: Architecture of Learn Sesame (based on Open Sesame [2000])42

Figure 4-1: Distributed directory (based on Howes et al. [1999])..53

Figure 4-2: Replicated directory (based on Howes et al. [1999])...54

Figure 5-1: Alias connecting two directory trees (based on Howes et al. [1999])61

Figure 5-2: LDAP search scopes (based on Shukla and Deshpande [2000])63

Figure 6-1: Overview generic server architecture ..75

Figure 6-2: Scenario monoatomic user modeling...80

Figure 6-3: Scenario polyatomic user modeling...84

Figure 6-4: Security and privacy threats in user modeling (based on Kobsa [2000])86

Figure 6-5: Scenario secure and private user modeling..89

Figure 7-1: WebGuide tour proposals [EML, 1999]. Reprinted with permission.94

Figure 7-2: User Modeling Server architecture for Deep Map...96

Figure 8-1: User Modeling Server models overview (user attributes only)101

Figure 8-2: User Modeling Server models overview (all attributes)102

Figure 8-3: User models ...103

Figure 8-4: User model query for Smith...104

Figure 8-5: Interest model of Peter Smith (all attributes) ...105

Figure 8-6: Usage model...106

Figure 8-7: System model: classifiers and demographics...107

Figure 8-8: System model: domain taxonomy..109

Figure 8-9: Service model...109

Figure 8-10: Scheduling scenario ...112

Figure 8-11: Scheduler integrated with Directory Server...113

Figure 8-12: Normal distribution of users’ interest in an object feature.............................116

CONTENTS xiii

Figure 8-13: Classification of a user’s interest ...117

Figure 8-14: Initial state of Nathan’s user model ...132

Figure 8-15: Final state of Nathan’s user model...134

Figure 9-1: Frequency of Internet session types (based on Rozanski et al. [2000])...........140

Figure 9-2: Overview User Modeling Server test bed ..142

Figure 9-3: Mean time User Modeling Server page requests ...150

Figure 9-4: Mean time User Modeling Server search operations152

Figure 9-5: Mean time User Modeling Server add operations ...152

Figure 9-6: Mean time User Modeling Server page requests for 12,500 user profiles.......155

Figure 9-7: User Modeling Server single platform vs. multi-platform deployment...........156

Figure 9-8: ULC mean time event processing ..157

Figure 9-9: MLC mean time interest prediction (excerpt)..158

Figure 9-10: MLC mean time interest prediction ...159

Figure 9-11: DIC mean time interest inferencing...160

xiv

List of Tables
Table 3-1: Summary of reviewed user modeling servers ...44

Table 5-1: LDAP search filter operator types...64

Table 5-2: Example of object class inheritance ..71

Table 6-1: Key features of native LDAP servers (based on Howes et al. [1999])78

Table 8-1: Initial interest models ..128

Table 8-2: Initial interest models with classified user interests..128

Table 8-3: Spearman correlation coefficients ...129

Table 8-4: Interest models including predictions ...129

Table 9-1: Internet session types (based on Rozanski et al. [2000])140

Table 9-2: Test composition for 2 Web page requests per second (*=figures rounded)147

Table 9-3: User Modeling Server quality of service black box perspective.......................154

Table 9-4: User Modeling Server quality of service white box perspective.......................161

1

1 Introduction

1.1 History of User Modeling Servers
Over the past two decades, a plethora of user-adaptive application systems have been
developed in user modeling research that acquire and maintain relevant information about
their users, and provide different kinds of adaptation to them (for an overview and
discussion of several systems, we refer to Kobsa and Wahlster [1989], McTear [1993],
Brusilovsky [1996], Brusilovsky et al. [1998], Jameson [1999], and Kobsa et al. [2001]). In
most of these systems, however, user modeling functionality was an integral part of the
user-adaptive application. This ‘monolithic’ approach hampered employment of user-
related information in several user-adaptive applications as well as the reuse of user
modeling functionality in further user modeling systems.

In the late eighties and early nineties, a parallel strand of user modeling research aimed at
overcoming these limitations by developing so-called ‘user modeling shell systems’ (see
Kobsa and Pohl [1995; 1998] and Kobsa [2001a]), i.e. generic user modeling systems that
facilitate the development of application-specific user modeling components. The decisions
as to what these generic user modeling components and their respective
services/functionalities are were mostly based on intuition and/or experience gained from
studying (the literature of a few) user-adaptive applications (cf. Kobsa [2001a]). Due to the
strong affinity of user modeling research in these days especially to artificial intelligence,
user modeling has been mainly considered a knowledge processing task (e.g., in Pohl
[1998]). Consequently, important features of systems like ‘UMT’ [Brajnik and Tasso,
1994], ‘BGP-MS’ [Kobsa and Pohl, 1995; Pohl, 1998], ‘Doppelgänger’ [Orwant, 1995],
and ‘TAGUS’ [Paiva and Self, 1995] include

• generality including domain independence (except for domain-dependent systems in the
area of adaptive tutoring like TAGUS),

• expressiveness (i.e., maintaining as many types of assumptions about users’
propositional attitudes1 as possible), and especially

• strong representational and inferential capabilities (e.g., reasoning in first-order
predicate logic, modal reasoning, reasoning with uncertainty).

Some of the aforementioned user modeling shells included some server features (e.g., BGP-
MS [Kobsa and Pohl, 1995; Pohl and Höhle, 1997; Pohl, 1998; Schreck, 2003] and
Doppelgänger). But again, the development of these features was mostly driven by intuition
and not by requirements that have been elicited from studying needs of several user-
adaptive applications. And to the best of our knowledge, the rich experience in server
design, implementation, and deployment from related research areas like database and
transaction management, distributed systems design, information science, and management

1 Propositional attitudes are for example a user’s interests and preferences, knowledge, beliefs, and goals. Only a few

shell systems aimed at modeling users’ behavior as well, e.g. when reading articles in an electronic newspaper
[Orwant, 1995].

2 CHAPTER 1. INTRODUCTION

information systems was not taken into account (see Fink [1996; 1999] for notable
exceptions).

Most of the aforementioned user modeling shell systems did not enjoy much distribution. A
notable exception seems to be BGP-MS, which was used at a few research sites outside of
the institutions at which it was originally developed, and especially ‘GroupLens’ [Resnick
et al., 1994; Konstan et al., 1997; Net Perceptions, 2000], which turned into a commercial
product in the late nineties (see Chapter 3.2.1).

In parallel to these research efforts, the trend towards personalization2 on the World Wide
Web led to the development of several commercial user modeling servers. The rationale
behind their development was to support companies in developing and deploying user-
adaptive Web sites. Features that are regarded as important for commercial user modeling
servers contrast sharply with those regarded as important for user modeling shell systems,
and vice versa. In general, commercial user modeling servers focus on deployment-
supporting features that seem to be of paramount importance in real-world environments
like integration of external user-related information, behavior-oriented representation,
scalability in terms of an increasing number of users, and support for user privacy. Given
these complementary strengths and weaknesses of commercial user modeling servers it is
surprising that most commercial user modeling servers seem to be not even mentioned in
the user modeling literature (a notable exception seems to be Fink and Kobsa [2000]).
Based on this, we expect that a presentation and discussion of these systems and their
features provides a valuable source of requirements for the development of our user
modeling server as well as a source of information and inspiration for further user modeling
research.

Presenting and discussing these user modeling servers seems hardly appropriate, however,
without analyzing the rationale behind their design and deployment. Especially experience
from marketing research and practice seems to have considerably shaped these systems and
motivates their deployment. In the following sub-chapter we therefore present a brief
overview of personalization in e-commerce, including customer relationship management.
Thereby, we also lay the basis for the requirements analysis we conduct in the first part of
our work.

1.2 Personalization in E-Commerce
In several application domains, user-adaptive software systems have already proven to be
more effective and/or usable than non-adaptive systems. One of these classes of adaptive
systems with clear user benefits are user-adaptive tutoring systems which were shown to
often significantly improve the overall learning progress. These systems and their benefits
have already been extensively reviewed in the user modeling literature (see e.g. most of the
papers in Brusilovsky et al. [1998] and the evaluations in Eklund and Brusilovsky [1998];
moreover, see Specht [1998] and Specht and Kobsa [1999]).

2 In e-commerce, ‘personalization’ is used as a generic term that denotes user-adaptive system features and user

modeling issues as well. Despite its ambiguity, we will employ this term throughout this thesis. In cases where it is
necessary to refer to one of the two meanings, we will use well-established and more specific terms from user
modeling research like ‘adaptivity’ and ‘user modeling’.

1.2. PERSONALIZATION IN E-COMMERCE 3

Less represented in the user modeling literature are user-adaptive (aka ‘personalized’)
systems for e-commerce including customer relationship management. A few notable
exceptions are Popp and Lödel [1996], Åberg and Shahmehri [1999], Ardissono and Goy
[1999; 2000], and Jörding [1999]. This is surprising since there already exists ample
evidence for personalization going mainstream in e-commerce. According to Manna
[2000a], Appian estimates that the revenues made by the online personalization industry,
including custom development and independent consulting, will reach $1.3 billion in 2000,
and $5.3 billion by 2003 [Appian, 2000a]. Ovum forecasts that the world-wide revenues for
personalization software will rise from $10.85 million in 2000 to $93.4 million in 2005 (see
Figure 1-1) [Millhouse et al., 2000]. Gartner predicts that “by 2003, nearly 85 percent of
global 1,000 Web sites will use some form of personalization (0.7 probability)”3 [Abrams et
al., 1999]. There are also many indications that personalization provides substantial benefits
in this application domain as well [Hof et al., 1998; Bachem, 1999; Cooperstein et al.,
1999; Hagen et al., 1999; Kobsa et al., 2001].

Utilizing personalization and the underlying ‘one-to-one’ marketing paradigm is of
paramount importance for businesses in order to be successful in today’s short-lived,
complex, and highly competitive markets [Peppers and Rogers, 1993; 1997; Allen et al.,
1998]. One-to-one builds on the basic principles of knowing and remembering a customer
and serving him as an individual. From a marketing point of view, traditional communication
channels between a company and its customers continuously decrease in efficiency due to
market saturation, product variety, and increasingly complex and autonomous behavior of
clients with respect to goods (e.g., drivers of luxury cars can at the same time be regular
customers at discount shops) and media (e.g., people use different media like television,
newspapers and the Internet, sometimes even in parallel) [Bachem, 1999]. Against this back-
ground, traditional user segmentations in marketing research with their inherent simplicity
(e.g., customer behavior can be predicted from a few key characteristics), linearity (i.e.,
future customer behavior can be predicted from past behavior), and time invariance (i.e.,
market rules always apply) provide less and less useful information for adequate person-
alization and have to be complemented by the latest information about customers directly
elicited from their (on-line) behaviors. Thereby, marketers expect to get more insights into
the many facets of customer behavior which is often fairly complex, non-linear, and time-
variant [Bachem, 1999; Cooperstein et al., 1999].

3 This follows the ranking of the world’s best performing companies that is annually carried out by Business Week

[1999].

4 CHAPTER 1. INTRODUCTION

Personalization software revenues

0

10

20

30

40

50

60

70

80

90

100

2000 2001 2002 2003 2004 2005

$
M

illi
on Asia-Pacific

Western Europe
North America

Figure 1-1: Personalization software revenues (based on Millhouse et al. [2000])4

Forrester Research reports regularly about the personalization activities of selected e-
commerce sites, for example in Hagen et al. [1999] about the efforts and resulting benefits
of 54 U.S. sites. Figure 1-2 depicts some examples of personalized information and services
these sites offer to their users. Allen et al. [1998] describe 29 personalized Web sites.
Schafer et al. [1999] reviews the personalized Web services and associated benefits of well-
known e-commerce companies like Amazon.com, CDnow, eBay, Levis, E! Online, and
Reel.com.

In general, personalization has been reported to provide benefits throughout the customer
life cycle including drawing new visitors, turning visitors into buyers, increasing revenues,
increasing advertising efficiency, and improving customer retention rate and brand loyalty
[Hof et al., 1998; Bachem, 1999; Cooperstein et al., 1999; Hagen et al., 1999; Schafer et al.,
1999]. Jupiter Communications reports that personalization at 25 consumer e-commerce
sites increased the number of new customers by 47% in the first year, and revenues by 52%
[Hof et al., 1998]. ‘Nielsen//NetRatings’ [ICONOCAST, 1999] report that e-commerce
sites offering personalized services convert significantly more visitors into buyers than e-
commerce sites that do not offer personalized services. Although the research approach
taken is not always transparent and/or satisfactory (e.g., regarding the methodology used
and the conclusions drawn5), these figures indicate that personalization offers at least in part

4 The forecasts for Asia-Pacific are very small (i.e., from $0.02 million in 2000 to $0.21 million in 2005) and therefore

hardly visible.
5 One problem for instance is that personalization is hardly ever introduced in isolation on a Web site, but in most

cases together with other company measures that may also have an effect on the addressed benefits (e.g., marketing

1.2. PERSONALIZATION IN E-COMMERCE 5

significant benefits6. Besides this evidence, there seems to be an even greater potential for
personalization improving customer retention and brand loyalty. According to Peppers and
Rogers [1993] and Reichheld [1996], improving customer retention and brand loyalty
directly leads to increased profits because it is much cheaper to sell to existing customers
than to acquire new ones (since the costs of selling to existing customers decrease over time
and since the spending of loyal customers tends to accelerate and increase over time).
Consequently, businesses today focus on retaining those customers with the highest
customer life time value, on developing those customers with the most unrealized strategic
life time value, and on realizing these profits with each customer individually [Cooperstein
et al., 1999; Peppers et al., 1999].

64%

48%

48%

23%

23%

23%

20%

16%

11%

9%

7%

5%

E-Mail alerts

Content

Account access

Tools

Wish lists

Product recommendations

Bookmarks

Express transactions

Marketing and advertising

Pricing

Content through non-PC devices

News clipping services

Figure 1-2: Commercial personalization examples (based on Hagen et al. [1999])

In parallel to the advent of personalized e-commerce sites, numerous tool systems emerged
during the last few years that aim at assisting companies in developing and deploying
personalized Web sites. As opposed to many academic user modeling systems, nearly all of
them have been developed as server systems right from the beginning. We believe that the
development of these server systems has been mainly motivated by the substantial benefits

and promotion measures, improved customer service, improved site navigation, and reduced response times
[Cooperstein et al., 1999]).

6 Despite of these success figures, there is also evidence for poorly done personalization leading to lower customer
retention, reduced profit margins, and lost sales [Hagen et al., 1999]. The authors found a personalized drugstore that
allows users to disclose allergy information, but recommended a drug that was unsuitable for people with the allergy
that the user had entered. Affected users are likely to leave this Web shop, possibly forever. Another example is a
Web store that presented an advertisement for a $19.95 surge protector to a user who had already put a $59.95 model
in her shopping cart.

6 CHAPTER 1. INTRODUCTION

of centralized user modeling. In the following sub-chapter, we substantiate these potential
benefits, thereby taking advantage of experience that motivated more than a decade ago the
shift towards centralized data management (e.g., Martin [1983], Zehnder [1985], Date
[1986]). Subsequently, we argue that centralized user modeling is one extreme within a
continuum of potential distribution schemes and that current and especially future user
modeling scenarios probably require for an architecture that comprises (elements of) both
centralized and decentralized user modeling (systems).

1.3 Centralized vs. Decentralized User Modeling
For exhibiting personalized behavior, software systems rely on a model of relevant user
characteristics (e.g., interests, preferences, proficiencies, knowledge). Acquisition and
management of these models is carried out by a dedicated user modeling component. Most of
the research prototypes that have been developed so far follow a monolithic approach with
the user modeling component being embedded in and becoming an integral part of the user-
adaptive application (see for example Finin [1989], Brajnik and Tasso [1994], Kay [1995],
and Weber and Specht [1997]). A parallel strand of research focused on centralized
autonomous user modeling7 and led to the development of a comparatively small number of
user modeling servers (see for example Kobsa and Pohl [1995], Orwant [1995], Konstan et
al. [1997], Machado et al. [1999], and Billsus and Pazzani [2000]). In contrast with this, most
current commercial user modeling systems have been designed as server systems right from
the beginning (a notable exception from this is ‘Open Sesame!’ [Caglayan et al., 1997], an
interface agent that maintains all information about the user in an embedded user modeling
component8).

Compared to embedded user modeling systems, user modeling servers seem to provide
promising advantages regarding their deployment, including the following ones (see also
Billsus and Pazzani [2000]):

• Up-to-date user information for holistic personalization. Information about the user,
her system usage, and the usage environment is maintained by a (central) user modeling
server and put at the disposal of more than one application at the same time. Such a
central repository of user information is in sharp contrast with the scattered and
partially redundant modeling of user characteristics within today’s applications
(including those on the World Wide Web). One can assume that from a user’s point of
view, such a central repository will significantly contribute to a more consistent and
coherent working environment comprising different user-adaptive applications.

• Synergistic effects with respect to acquisition and usage. User information acquired by
one application can be employed by other applications and vice versa. Examples for
such a scenario are different types of news readers [Resnick et al., 1994]; news readers
and personalized agents [Good et al., 1999]; and various sensor applications, an e-mail

7 Centralized user modeling does not necessarily imply physical centralization of user-related information (although

this has been the case in all research prototypes developed so far). A promising alternative seems to be the concept of
virtually centralized user information (see Chapter 3.3).

8 The reason for this ‘abnormality’ seems to be that Open Sesame! was originally released as a desktop learning agent
(i.e., a user-adaptive application that incorporates user modeling functionality). More recently, the development of
Open Sesame! has been abandoned in favor of the user modeling server Learn Sesame [Caglayan et al., 1997; Open
Sesame, 2000]. For more information on Open Sesame! and Learn Sesame, we refer to Chapter 3.2.4.

1.3. CENTRALIZED VS. DECENTRALIZED USER MODELING 7

filtering application and a personalized newspaper [Orwant, 1995]. Acquisition and
representation components of a user modeling server can be expected to take advantage
of synergistic effects as well [Pohl and Nick, 1999].

• Low redundancy with respect to application and domain independent information.
Information about, e.g. users’ competence in handling computers, like the ability to
manipulate interface elements within a WIMP (Windows, Icons, Menus, Pointer)
interface, can be stored with low redundancy in a user modeling server [Fink et al.,
1998] to make it available to all applications which they use.

• Low redundancy with respect to stereotypes and user group models. Information about
user groups, either available a priori as stereotypes (e.g., Rich [1979; 1983; 1989],
Paliouras et al. [1999]) or dynamically calculated as user group models (aka
‘communities’) (e.g., Orwant [1995], Paliouras et al. [1999]) can be maintained with
low redundancy in a user modeling server.

• Increased security. Known and proven methods and tools for system security,
identification, authentication, access control, and encryption can be applied for
protecting user models in user modeling servers (see Chapters 5.4, 6.3.3, Schreck
[2003], and Kobsa and Schreck [2003]).

• Increased support for the holistic design, acquisition, and maintenance of user models.
In the past, many efforts in user modeling research have been devoted to user model
representation and inference issues. In commercial settings, however, the main focus is
on leveraging the potential of user-related information on an enterprise level, e.g. for
improving customer retention rate and brand loyalty [Hagen et al., 1999]. In this vein,
areas of work include the
i. design of an enterprise-wide user model schema;
ii. development and communication of an appropriate privacy policy;
iii. acquisition of user-related information at every point of contact with the user

throughout the enterprise (e.g., Web site, retail, sales, customer service, direct
marketing, call center);

iv. integration of complementary user information that is dispersed across the enterprise
(e.g., demographic data from client databases, past purchase data from transactional
systems, available user segmentations from marketing research, regularities in past
purchase behavior found in data mining processes); and finally

v. provision of user information to different applications for personalization purposes.
User modeling servers that allow for the (virtual) integration of existing information
sources about users and enable access to information stored in user models, can provide the
basic platform for such a personalization infrastructure [Truog et al., 1999]. But there is
evidence that such an infrastructure can yield advantages in user modeling research
environments as well, e.g. for designing and validating methods and techniques in the area
of machine learning for user modeling [Pohl and Nick, 1999].

In addition to the aforementioned advantages, many more general ones of centralized systems
design (e.g., centralized user modeling servers relieve clients from user modeling tasks and
can take advantage of powerful hardware resources), as well as disadvantages (e.g., necessity
of a network connection, potential central point of failure), also apply (see for example
Goscinski [1991], Tanenbaum [1992], and Orfali et al. [1994]). A discussion must however
be omitted here for reasons of brevity.

8 CHAPTER 1. INTRODUCTION

Despite these potential benefits of centralized user modeling, we believe that current and
future usage scenarios for computing devices will require a more sophisticated architecture.
These scenarios include

i. multi-computer usage (e.g., of a PC at work, a laptop on the go, and a PC at home,
whereby the latter two are only temporarily connected to a network),

ii. mobile computing, where a user carries a small information device (e.g., a mobile
phone, palmtop, or organizer) that can be temporarily connected to a network wherever
she goes (access to a computer network, however, cannot always be guaranteed),

iii. ubiquitous information, where a user conjures up her information environment at every
point of interaction like information walls, information kiosks, and desktops, and

iv. smart appliances like intelligent car control systems and household appliances like
refrigerators that acquire and manage users’ preferences.

These scenarios demand a personalization infrastructure that comprises centralized systems
(e.g., user modeling servers), decentralized systems (e.g., ‘OPS’ profiles9, user model
gatherers [Yimam Seid and Kobsa, 2003], user modeling intermediaries between user
modeling servers and adaptive applications), and user modeling systems that are embedded
into application systems [Bertram, 2000]. More recent developments in the area of agent-
based personalization seem to provide promising concepts and technologies for such a
personalization infrastructure. Vassileva et al. [2003] point out that “we can learn from the
adaptability, robustness, scalability and reflexivity of social systems to come up with more
powerful multi-agent technologies for decentralized applications”. We believe that a person-
alization infrastructure comprises both (virtually) centralized and decentralized components.
Regarding the latter, agency may provide a promising basis and, as such, a highly desirable
complement to the concepts and technologies that underlie our user modeling server. In order
to investigate this further, we recommend future research that starts from (and hopefully
ameliorates) the benefits of (virtually) centralized user modeling we introduced at the
beginning of this sub-chapter.

1.4 Organization of This Work
Against this background, the aim of this thesis is to (i) analyze the requirements that user
modeling servers10 must meet to be acceptable both from a multi-disciplinary scientific
perspective and from the viewpoint of (commercial) deployment, (ii) design and implement
a system that meets these requirements, and (iii) verify its compliance with core
performance and scalability requirements under the workload of small and medium-sized
real-world environments.

9 OPS (Open Profiling Standard) is a privacy standard proposed by Netscape, FireFly (which has been recently

acquired and reportedly discontinued by Microsoft), and VeriSign that enables users to control the local storage and
disclosure of their personal data to Web applications [Reagle and Cranor, 1999].

10 We define a user modeling server as a centralized software system that provides user modeling functionality to
several clients. This enables them to automatically adapt their information and services to different user needs.
Application systems that adapt to users automatically at runtime are called ‘adaptive’, whereas systems that can be
tailored manually by the system designer (or possibly the user) by changing certain system parameters are called
‘adaptable’ [Oppermann, 1994].

1.4. ORGANIZATION OF THIS WORK 9

In the first part of this thesis, we analyze and discuss requirements for user modeling
servers, thereby drawing on experience from a variety of research areas including user
modeling, user-adaptive systems, database and transaction management, agent
communication, management information systems, and marketing research. We develop
two requirements catalogues, one comprising more general server requirements (e.g., multi-
user synchronization, transaction management, access control) and the other comprising
user modeling requirements (e.g., functionality, data acquisition, extensibility and
flexibility, integration of external user-related information, compliance with standards,
support for privacy). Based on the latter, we subsequently conduct a review of selected
commercial user modeling servers and compare and discuss our findings. Apart from the
novelty of such a comparison both inside and outside the classical user modeling literature,
the presentation and discussion of the core features of these commercial systems may
provide a source of information and inspiration for the design, implementation, and
deployment of future user modeling systems in research and commercial environments.

In the second part of our work, we develop an architecture for our user modeling server that
complies with the aforementioned requirements catalogues. In order to determine an
appropriate server basis, we compare and evaluate common directory and database
management systems. Based on the potential benefits directory management systems can
provide (they have never been used before as a basis for user modeling servers), we
subsequently develop a generic architecture for our user modeling server that consists of a
directory server for data management and several ‘pluggable’ user modeling components,
each of which implements an important user modeling technique. Finally, we sketch several
present and likely future avenues for user modeling and argue that our user modeling server
can support these user modeling scenarios as well.

In the third part of this thesis, we prove the validity of our generic server architecture by
instantiating a user modeling server for ‘Deep Map’, a project aimed at the development of
a portable personalized tourist guide for the city of Heidelberg. We start with a brief
presentation of the specific user modeling requirements that we identified in this project.
We subsequently describe the user modeling server we developed with a focus on the user
modeling components and the learning techniques employed therein. We argue that by
integrating these user modeling components in a single server, we can leverage several
synergistic effects between, and compensate for well-known deficits of, the learning
techniques we adopted from the area of machine learning for user modeling.

In the fourth part of our work, we present the most important results of the experiments that
we conducted to empirically verify the compliance of our user modeling server with core
performance and scalability requirements introduced earlier. We start with a brief
description of our testing approach and the empirically verified real-world workload we
simulated in our experiments. We present selected results and discuss potential strengths
and weaknesses of our server. As a main result, we argue that our user modeling server
complies with the aforementioned criteria in small and medium-sized application
environments at moderate costs in terms of hardware resources. In the following chapter,
we revisit our requirements catalogs again, thereby arguing that our server provides
adequate support for the rather broad range of requirements we collected. Although these
requirements are covered to a different degree, we believe that our server clearly excels
both the academic and commercial systems we reviewed. In the final chapter, we
summarize our main findings and present some lessons learned from deploying our server

10 CHAPTER 1. INTRODUCTION

to real-world environments. Regarding scalability, we describe an experiment we carried
out in a high-workload environment. Our results suggest that our user modeling server can
be successfully deployed to these environments as well, still at reasonable costs in terms of
hardware resources. Finally, we briefly summarize promising avenues for future work.

11

I
Requirements for

User Modeling Servers

13

In this part of our thesis, we elaborate requirements for user modeling servers. Thereby, we
distinguish between

i. server-related requirements and
ii. user modeling-related requirements.
In the following chapter, we briefly present server-related requirements that we collected
from research areas related to user modeling (e.g., database and transaction management,
distributed systems). The considerable experience these research areas already acquired
regarding design, implementation, and deployment of server technology allows us to
restrict our presentation to a rather brief overview. We show the relevance of each
requirement for user modeling and apply it to one or more academic user modeling servers.

In the subsequent chapter, we present user modeling-related requirements and apply them
to selected commercial user modeling servers. Since there seems to be very little awareness
about these commercial servers in user modeling research, we review and discuss these
systems in greater detail.

Based on these two requirements catalogues, we design, implement, and evaluate our user
modeling server in the remainder of this work.

2 Server-Related Requirements

2.1 Review Methodology
For eliciting server-related requirements, we pursued the following threads of
investigation:

• Analysis of existing user modeling servers. We screened the literature on several
research prototypes (e.g., BGP-MS [Kobsa and Pohl, 1995; Pohl, 1998], Doppelgänger
[Orwant, 1995], GroupLens [Konstan et al., 1997], and TAGUS [Paiva and Self, 1995])
and on commercial user modeling servers (e.g., ‘Advisor Solutions Suite’ [Blaze,
2000], ‘Customer Management’ [Blue Martini, 2000], ‘FrontMind for Marketing’
[Manna, 2000a], ‘GroupLens’ [Net Perceptions, 2000], ‘Gustos’ [Gustos, 2000], ‘Learn
Sesame’ [Open Sesame, 2000], ‘LikeMinds’ [Macromedia, 2000], ‘Personalization
Server’ [ATG, 2000], ‘RightPoint’ [RightPoint, 2000], ‘SelectCast’ [HNC, 2000], and
‘StoryServer’ [Vignette, 2000]).

• Collection of requirements from the literature on database, directory, and transaction
management (especially Gray [1981], Härder and Reuter [1983], Bernstein et al.
[1987], Heuer and Scholl [1991], Gray and Reuter [1993], Orfali et al. [1994], Saake et
al. [1997], and Howes et al. [1999]) and, to a less extent, on agent communication
languages [Mayfield et al., 1996; Labrou and Finin, 1997; FIPA, 1998a; FIPA, 1998b].
We selected these research areas for their considerable expertise in designing,
implementing, and deploying server systems and related interfaces for communication
and cooperation.

Whereas the first thread of investigation followed a bottom-up approach (i.e., eliciting
features from server instances), the second implemented a top-down approach (i.e.,
collecting features that are proposed for classes of server systems from the literature). In the
following sub-chapter, we briefly introduce those server requirements that we retained after

14 CHAPTER 2. SERVER-RELATED REQUIREMENTS

joining and consolidating the findings of the two threads of investigation. We illustrate each
requirement against the background of user modeling and apply it to academic user
modeling servers.

2.2 Reviews of Server Requirements

2.2.1 Multi-User Synchronization
Multi-user synchronization addresses the synchronization of several users that concurrently
operate on individual user models and group models. With ‘users’, we refer to
administrative users, ‘real’ users, applications, and to components of the user modeling
system itself (e.g., a component of the user modeling server that learns group models by
applying clustering to individual user models [Orwant, 1995; Paliouras et al., 1999]).
Basically, there are two approaches regarding multi-user synchronization reported in the
literature: iterative and concurrent servers (cf. Stevens [1990], Schmidt [1994], and
Tanenbaum [1995]).

Iterative servers typically maintain a single FIFO queue (i.e., First In First Out), which
stores clients’ requests in order of their arrival. The server accommodates incoming
requests by fetching an entry from the queue, processing it, and, if necessary, sending
results back to clients. An iterative server always executes one request at a time. Requests
that are entered into the queue have to wait until they are selected for processing. The
resources necessary for processing clients’ requests are rarely controlled by iterative
servers. In contrast, concurrent servers process several client requests at a time. In order to
provide clients a reasonable (and predictable) response time behavior, they maintain several
input queues and control the amount of server resources they use for processing client
requests.

An iterative server design is appropriate when the amounts of server resources that are
necessary for processing clients’ requests can (i) be assumed to be very small and (ii)
exhibit a rather small variance across clients’ requests. These characteristics apply, e.g., to
most implementations of the Domain Name System11. In deployment scenarios where these
characteristics do not apply, a concurrent server design can be regarded much more
appropriate. For database management and transaction management systems, a concurrent
server design can even be regarded mandatory. The same can be assumed for user modeling
servers, since their services can be assumed to not comply with the aforementioned
characteristics for such computationally simple services like the translation of domain
names of hosts to IP addresses. Especially the strong representational and inferential
capabilities of the academic user modeling servers we investigated (e.g., reasoning in first-
order predicate logic in BGP-MS) seem to mandate a concurrent server design. However,
we did not find any evidence in the user modeling literature about a concurrent design of
these academic user modeling servers; hence, we assume that most, if not all, of them are
designed as iterative servers. Such a server design, however, can be regarded as highly
inappropriate.

11 The Domain Name System (abbreviated ‘DNS’) is a server that is used by applications for translating domain names

of hosts to IP addresses.

2.2. REVIEWS OF SERVER REQUIREMENTS 15

2.2.2 Transaction Management
Transaction management deals with the synchronization (and recovery) of sets of logically
grouped user modeling operations. Transactions can be identified in user-adaptive
applications (e.g., a single adaptation is triggered by several queries to a user model) and in
internal functionality of user modeling servers as well (e.g., activation and deactivation of
stereotypes, drawing of inferences, acquisition of assumptions based on user’s behavior).
The well-known ACID properties (i.e., Atomicity, Consistency, Isolation, Durability) of
transactions can be interpreted against the background of user modeling as follows (cf.
Gray [1981], Härder and Reuter [1983], and Gray and Reuter [1993]):

• Atomicity means that a transaction is an indivisible unit of work: either all or no
accesses are processed by the user modeling server.

• Consistency means that a transaction transforms a user model from one consistent state
into another consistent state. If such a state cannot be achieved (e.g., because of
integrity constraints being violated), the user model has to be reset to the state before
the transaction started.

• Isolation means that a transaction (e.g., one that was initiated by an adaptive
application) is not affected by other, concurrently executed transactions (e.g., by
inference processes within the user modeling system, or by the simultaneous access of
other adaptive applications) with respect to shared parts of the user model. Changes
initiated by a transaction are not visible to other transactions until this transaction has
successfully ended.

• Durability means that once a transaction has been successfully completed, all changes
made to the user model are persistent, i.e. these changes survive even system failures.

In database and transaction management systems, a transaction manager supervises the
progress and state of a transaction. In order to achieve this, it interacts closely with a
scheduler that controls the relative order in which concurrent operations are executed. The
overall aim of the scheduler is to maximize potential concurrency, yet preventing
consistency problems that may arise from several transactions running in parallel (see Fink
[1999] for related examples). The synchronization of transactions preserves the properties
isolation and consistency. Synchronization can be implemented by various locking
strategies on data elements and associated protocols (e.g., the two-phase locking protocol
[Bernstein et al., 1987; Bell and Grimson, 1992; Gray and Reuter, 1993]). The preservation
of the transaction properties atomicity and durability is the main aim of the recovery
manager. Its tasks include all aspects of transaction commitment and abortion including the
rollback to a consistent database state after a system crash.

In order to provide transactions that adhere to the ACID principle, user modeling systems
have to incorporate a transaction manager, a scheduler, and a recovery manager. The
sophistication of their implementation, however, depends heavily on the intended
deployment scenario and the services offered. If the user modeling system is embedded in a
single-user application, then various internal functionality (e.g., activation of stereotypes)
has to be synchronized with transactions induced by the application. The scheduler and the
recovery manager can be implemented in this scenario in a very rudimentary form.
Synchronization can be enforced for example via one or more locks (e.g., separate locks for
read and write operations) on the whole user model and recovery can be implemented by
managing all user model updates in a persistent buffer until a transaction successfully

16 CHAPTER 2. SERVER-RELATED REQUIREMENTS

commits. User modeling servers, however, need to implement more sophisticated
techniques in order to synchronize various internal functionality with accesses to user
model content from several applications. The aforementioned lock granularity may serve as
an example. It is hardly desirable that a single transaction locks the whole user model when
operating on a relatively small part of the user model, thereby preventing all other
transactions using the same model from being executed. More fine-grained locks (e.g., on
an interest partition of the user model, on an assumption about a user’s interest) increase
potential concurrency but raise at the same time the need for a dedicated locking manager.
Its main tasks are to synchronize locking by enforcing a specific protocol (e.g., the
commonly used two phase locking protocol) and handle problems that may arise from
incompatible locking behavior (e.g. deadlocks). For further information on this subject, we
refer e.g. to Gray and Reuter [1993].

In the literature on academic user modeling servers (e.g., BGP-MS, Doppelgänger,
TAGUS), we found no evidence that any of these systems provides transactional facilities.
Hence, we assume that transaction management is a rather new research topic for user
modeling servers. In order to motivate future work in this area, we discuss this issue further
at the end of this chapter.

2.2.3 Query and Manipulation Language
Query and manipulation language refers to all aspects of external access to a user modeling
server including content language and associated protocol issues. The most important
requirements regarding a query and manipulation language include the following [Kobsa et
al., 1996; Mayfield et al., 1996; Labrou and Finin, 1997; Saake et al., 1997; FIPA, 1998a;
FIPA, 1998b]:

• Application and domain independence requires the query and manipulation language
not being specifically designed for a specific application or domain.

• Descriptiveness allows a client of a user modeling server to specify user model
operations in a descriptive manner, i.e. without having to rely on details of the user
modeling server implementation (e.g., regarding the representation sub-system used).

• Set orientation means that user model operations query and manipulate sets of
information objects hosted by the user modeling server, as opposed to a navigational
access to these information objects. Set orientation is closely related to the
aforementioned requirement of descriptiveness.

• Exhaustiveness means that the query and manipulation language should provide access
to all representational facilities of a user modeling server. A client should not be forced
to use additional languages and interfaces provided by the user modeling server for
dedicated purposes (e.g., for querying and manipulating schema information).

• Computational closure means that a client should be able to assign the result of a user
model operation to a persistent variable and subsequently use this information in further
requests to the user modeling system.

• Reaction conformity requires that syntactically correct user model operations should
terminate and return a finite amount of information from the user modeling server.

• Efficiency is related to the amount of computing resources necessary for completing a
user model operation. From a scalability point of view, the amount of computing

2.2. REVIEWS OF SERVER REQUIREMENTS 17

resources should grow moderately (e.g., in a linear or quadratic fashion [Saake et al.,
1997]) with the amount of information affected by a user model operation.

• Scalable set of generic language elements refers to the query and manipulation
language comprising a small number of language primitives (e.g., log in, search,
modify) that allow for uniformly accessing and manipulating user model content.
Primitives of the query and manipulation language should be grouped into sets, thereby
reflecting clients’ communication and cooperation needs (e.g., authentication, inter-
rogation, update). Moreover, it should be possible to enhance standard primitives of the
query and manipulation language (e.g., by adding new parameters), as well as create
custom language primitives that cater to dedicated needs of user modeling clients (e.g.,
communicating transactional contexts to the user modeling server, providing custom
functionality for creating new user models).

• Adequate set of operators that includes (i) comparison operators (e.g., =, ≠, <, ≤, >, ≥),
(ii) logical operators (e.g., ¬, ∧, ∨), and (iii) (optional) operators from relational calculi
(e.g., ∪, ∩, −, π (i.e. projection), σ (i.e. selection)).

• The semantics of the query and manipulation language should be formally defined. This
is mandatory e.g. for assessing the equivalence of user model operations.

• Layered architecture that comprises the levels of communication (e.g., TCP/IP,
UPD/IP), messaging (e.g., KQML12), and content (e.g., BGDL13).

• Security requires that the query and manipulation language should provide facilities e.g.
for authenticating user modeling servers and clients and for encrypting the flow of
information between them.

An assessment of the query and manipulation languages provided by academic user
modeling servers (e.g., BGP-MS, Doppelgänger) is quite difficult, mainly due to the lack of
related information in the literature14. Whereas research prototypes like BGP-MS seem to
rate quite well regarding more general requirements like application and domain
independence, descriptiveness, formally defined semantics, layered architecture, and
security (see for the latter requirement Schreck [2003]), they rate quite poor regarding more
practical requirements like exhaustiveness, reaction conformity, and efficiency. There is
considerable evidence in the literature that proposes even a paradigmatic clash between
requirements like reaction conformity and efficiency on one hand and the strong
representational and inferential capabilities employed by most of these research prototypes
on the other hand. Saake et al. [1997] points out that query and manipulation languages that
adhere to the requirements reaction conformity and efficiency must not be complete. The
inferential capabilities of server systems like BGP-MS that are based on reasoning in first-
order predicate logic, however, are complete, albeit the logic is only semi-decidable [Pohl,

12 KQML (Knowledge Query and Manipulation Language) is a high-level communication language which has been

proposed by Finin et al. [1993]. Further work on the KQML core including related protocol issues has been carried
out by Labrou and Finin [1997].

13 BGDL (Belief and Goal Description Language) is a high-level language for representing user model contents. BGDL
is a part of the query and manipulation language for the BGP-MS user modeling shell system (see Kobsa and Pohl
[1995] and Pohl [1998]).

14 The available literature covers mainly representational and inferential aspects of these systems. The query and
manipulation languages provided by these research prototypes are rather briefly described, if at all. The only effort
towards a standardized query and manipulation language for user modeling systems seems to be Kobsa et al. [1996].

18 CHAPTER 2. SERVER-RELATED REQUIREMENTS

1998]. The latter means that clients may have to wait for an arbitrary amount of time for
their user model operations being processed by these server systems. In order to limit this
to a reasonable extent, both BGP-MS and Doppelgänger accept a time limit from their
clients.

2.2.4 Persistency
Persistency is the property of parts of a user model to have an arbitrary lifetime other than a
transient one. Persistent user model content survives even unpredictable events such as
system breakdowns and hard disk crashes. Saake et al. [1997] propose various dimensions
for classifying persistency models, including the following:

• Definition time: persistency can be statically defined at development time by the user
model developer or dynamically assigned at runtime by clients of the user modeling
server and the server itself.

• Granularity: the persistency property can be assigned to arbitrary parts of a user model,
from the level of assumptions in the representation sub-system of the user modeling
server up to the level of user models as a whole.

• Propagation: persistency as a property may be explicitly assigned (e.g., by a user model
developer) or implicitly inherited through structural relationships between assumptions
within the user model.

The academic user modeling servers we investigated support persistency only to a very
limited extent. It seems that the only research prototype that provides basic support for
persistency is BGP-MS. Clients of this user modeling server can request the persistent
storage of complete user models on secondary storage. Besides this, no further support for
persistency is provided by BGP-MS.

2.2.5 Integrity
Integrity refers to the condition that predefined domain-dependent integrity constraints
must be obeyed for a given user model. Heuer and Saake [1995] propose various
dimensions for classifying integrity constraints, including the following:

• Granularity: integrity constraints can be distinguished regarding their scope of control,
e.g. whether they restrict single assumptions in a user model (e.g., the format of a user’s
e-mail address) or whether they restrict several related assumptions in several models
(e.g., a user’s name in her individual user model and in models of user groups the user
belongs to must be identical).

• Static versus dynamic constraints: static integrity constraints control single assumptions
(e.g., the presumable domain expertise of a user maintained in her user model being
either ‘beginner’, ‘intermediate’, or ‘expert’), whereas dynamic constraints control, e.g.,
transitions between assumptions (e.g., the presumable domain expertise of a user
maintained in her user model must not change from ‘beginner’ to ‘expert’).

• Checking time: simple integrity constraints (e.g., the aforementioned restrictions
regarding valid assumptions about user’s domain expertise) normally require immediate
checking after each presumably problematic user model operation. Checking more
complex integrity constraints, however, can often be deferred to predetermined points

2.2. REVIEWS OF SERVER REQUIREMENTS 19

in time (e.g., before closing a transaction as a sequence of user model operations) or
carried out by the user modeling server on a regular basis (e.g., at the end of the day).

• Reaction: in case of an integrity constraint being violated by a user model operation, the
user modeling server can reject it. An alternative strategy is to ‘repair’ the condition
that violates integrity (e.g., if the user completely removes her user model via an
inspection interface, the user modeling server can remove related information about this
user, e.g. in models of user groups this user belongs to15).

• Declaration: another approach for classifying integrity constraints is regarding their
integration with the representation sub-system employed by the server. Quite many user
modeling servers provide ‘model-inherent’ facilities for specifying domain constraints
(e.g., regarding allowed values for a specific assumption in BGP-MS [Pohl, 1998]). An
orthogonal (and very common) approach in database and directory management
systems is to explicitly define and maintain integrity constraints in a separate
representation, e.g. by using ECA (Event Condition Action) rules like the following (cf.
Dayal et al. [1988] and Saake et al. [1997]):

rule CheckDomainExpertise

on after User::setDomainExpertise(Expertise: string);

if ((Expertise <> “Beginner”) and

 (Expertise <> “Intermediate”) and

 (Expertise <> “Expert”));

do abort;

This rule checks assumptions about a user’s domain expertise held by the system each
time it is modified. If the new value does not comply with one of the values specified in
the body of the rule, then the modification is rejected. For more information on ECA
rules including more advanced topics like conflict resolution strategies, we refer to
Dayal et al. [1988], Bell and Grimson [1992], and Saake et al. [1997].

Plenty of work on integrity issues has already been carried out in the area of (distributed)
database and directory management systems. The academic user modeling servers we
investigated (e.g. BGP-MS) provide support for preserving integrity mainly via their
model-inherent facilities for specifying domain constraints (see the respective facilities of
BGP-MS [Pohl, 1998]). Completely missing in these server systems, however, is their
support for gracefully handling (quite common) situations that violate integrity (e.g.,
automatically deleting multiple occurrences of an object in order to preserve referential
integrity, deferred checking of integrity constraints).

2.2.6 Access Control
Access control grants or rejects access to a user model, thereby enforcing a predetermined
security and privacy policy. Access is granted and/or denied for objects (e.g., users, user
groups, roles, applications, components of the user modeling server), which carry out
specific operations (e.g., read, modify, delete) on subjects (e.g., models of individual users,
models of user groups, single assumptions in these models). The process of granting access

15 This is also known as ‘referential integrity’, a well-known integrity constraint in the area of database and directory

management systems.

20 CHAPTER 2. SERVER-RELATED REQUIREMENTS

is sometimes also called ‘(positive) authorization’. Over the last two decades, quite a few
access control models have been proposed which authorize e.g.

• explicitly (e.g., through dedicated access control rules) or implicitly (e.g., through
specialization from more general access control rules),

• positively (i.e., grant access) or negatively (i.e., deny access),
• strongly (i.e., authorization can not be overridden) or weakly (i.e., a general

authorization can be overridden by a more specific authorization), and
• by positive defaults (i.e., authorization is granted if not explicitly denied) or negative

defaults (i.e., authorization is denied if not explicitly granted).
For an overview of access control models, we refer e.g. to Castano et al. [1995], Saake et
al. [1997], Howes et al. [1999], and, more related to user modeling systems, to Schreck
[2003] and Kobsa and Schreck [2003]. The academic user modeling servers we
investigated (e.g., Doppelgänger, BGP-MS) provide basic support for access control.
Doppelgänger, the older of the two systems, takes advantage of the Kerberos16 system for
authenticating objects and provides authorization based on access control lists. BGP-MS
[Schreck, 2003] relies on the more sophisticated SSL (Secure Sockets Layer) technology
for authentication, signing, and encryption and takes advantage of a more flexible role-
based access control model for authorizing objects. Moreover, BGP-MS provides support
for anonymity, pseudonymity, and modification tracking (for more information on this
subject, we refer to Chapter 6.3.3 and Schreck [2003]). Facilities for auditing and resource
control, however, are largely lacking in both server systems.

2.3 Discussion
When comparing the findings of the two threads of investigation it became apparent that
especially transaction management seems to be a rather new challenge for academic user
modeling servers. None of the research prototypes we investigated provided transactional
facilities and associated ACID properties (i.e., Atomicity, Consistency, Isolation, Durability
[Gray and Reuter, 1993]). Due to this fact, we briefly present and discuss this presumably
new requirement for user modeling servers in the remainder of this sub-chapter. A thorough
discussion, however, goes beyond the scope of this thesis and is left as an open field for
future research.

The interfaces of the academic user modeling servers we investigated seem to have one
feature in common: each access to a user model is treated as a discrete request, i.e.
independent from former and subsequent accesses. The sophisticated internal functionality
offered by many user modeling systems (e.g., activation and deactivation of stereotypes,
drawing of inferences, preservation of model consistency and integrity) is executed
autonomously and is isolated from external accesses.

This isolation practice is in sharp contrast to the cohesion between subsequent user model
accesses, which can be found in many personalized applications. Examples from the area of

16 Kerberos is an authentication service that is based on a private key system (sometimes also called ‘shared secret’

system). As opposed to that, SSL (Secure Sockets Layer) is based on a public key system. For more information on
this subject, we refer to Smith [1997], Grant [1997], and Diffie and Landau [1998].

2.3. DISCUSSION 21

user-adaptive hypermedia which motivate the cohesion between subsequent queries to a
user model include the following:

• a single adaptation is triggered by several queries about a user’s presumed knowledge
(e.g., if one of two concepts are presumed to be known by the user then automatically
provide a comparison of the two concepts (adapted from Brusilovsky [1996]));

• an adaptation is triggered by several queries about a user’s presumed interests several
times on a Web page (e.g., if the user is presumed to be interested in historical details
then links to historical information for all points of interest are automatically provided
[Fink et al., 1998]);

• several adaptations on related Web pages are triggered by several queries about a user’s
presumed knowledge about concepts (e.g., according to the user’s presumed knowledge
about the underlying concepts of a curriculum, use a traffic light metaphor17 on one
page and, connected via a NEXT button, suggest an individual curriculum sequencing
on a second page [Weber and Specht, 1997]).

The cohesion between subsequent user model accesses stems from the associated
consistency context of an adaptation. Following the examples mentioned above, a
consistency context can comprise a single adaptation, several adaptations on a single
hypermedia page, or several adaptations on a set of related hypermedia pages. An adaptive
system needs to communicate this context to a user modeling system in order to be able to
adapt in a consistent manner. The user modeling system in turn, is expected to preserve the
cohesion between user model accesses by providing a unique ‘sphere of control’ [Gray and
Reuter, 1993]; internal functionality of the user modeling system and accesses from client
applications that read and update the same parts of the user model must not be concurrently
executed.

If functionality for communicating and preserving consistency contexts is lacking, as it is
the case in many user modeling systems today, then the consistency of adaptive
applications is jeopardized. Let’s exemplify this for the second example presented above.
Assume that the user modeling system is queried several times for the user’s presumed
interest in historical information for points of interest (e.g., churches, museums, public
places). The user modeling system, unaware of the coherence between subsequent calls for
the user’s interest, activates internal functionality (e.g., an inference) that alters this
presumed interest in historical information after the first query. Subsequent queries to the
user modeling system now return a different assumption for a user’s interest in historical
information, probably leading to inconsistent adaptations on a single hypermedia page (e.g.,
a link to historical information is only provided for the first point of interest and not for the
other points of interest and vice versa).

A static and restricted form of transaction support that focuses on the ACID properties
consistency and isolation can be found in a number of systems including the PAT-
InterBook system [Brusilovsky et al., 1997]. These systems offer applications the
opportunity to communicate user model accesses that belong to a consistency context in a

17 Several user-adaptive tutoring systems use the metaphor of traffic signals for recommending learning units, typically

red for content that is not recommended for learning, green for content that is recommended for learning, and yellow
for content that is recommended for learning, although the user is presumed to not possess all prerequisite
knowledge.

22 CHAPTER 3. USER MODELING REQUIREMENTS

package, which, in turn, is handled by these systems in a consistent and isolated manner.
Although useful in many adaptation settings, this approach is rather restricted because of
the ACID properties atomicity and durability being not provided and static because of the
scope of a consistency context being limited to a single package. More complex adaptation
contexts (e.g., adaptations on a set of related hypermedia pages) can hardly be covered by
such an approach.

So far, we argued that the loss of cohesion between user model accesses can lead to
consistency problems in adaptive applications. The consistency of the internal
representation maintained by the user modeling system, however, can be jeopardized as
well (for more information on this subject, we refer to Fink [1999]). All user modeling
systems, regardless of their architecture (e.g., embedded within the application,
client/server), that offer internal user modeling functionality and at the same time no means
for communicating and preserving consistency contexts cannot guarantee consistency. This
is especially the case for user modeling servers which are intended to serve several
applications in parallel.

The lack of transactional facilities in today’s academic user modeling servers is quite
amazing, given the potential consistency problems that may arise from missing
transactional facilities [Fink, 1999] and the paramount importance of consistency for the
overall usability of applications [Shneiderman, 1987; Nielsen, 1993; ISO, 1998a, 1998b].
The user modeling server we design, implement, and evaluate in the remainder of this
thesis caters to these requirements by providing basic transactional facilities (see Chapters
5.3.2 and 10.1).

3 User Modeling Requirements
In this chapter, we present and discuss user modeling requirements as a complement to the
aforementioned server-related ones. We illustrate their relevance by applying them to
selected commercial user modeling servers. We work out and compare the deployment-
supporting features of these systems and point out potential lines of further developments.
In general, very little information can be found about commercial user modeling servers
(see Appian [2000b] for a notable exception). Developers and vendors are not particularly
eager to supply concrete information to academic solicitors and, to the best of our
knowledge, most commercial user modeling servers were not even mentioned so far in the
user modeling literature (a notable exception seems to be Fink and Kobsa [2000]).

3.1. REVIEW METHODOLOGY 23

3.1 Review Methodology
We organized our comparison of commercial user modeling servers as follows:

• Development and validation of a requirements catalog for guiding and structuring our
review. In several validation rounds, we applied the catalog to the product information
collected until then, in order to validate its applicability. Collection of pointers to
products and companies from sources like
i. relevant portal Web sites (e.g., Marketing 1to1 [2000], Personalization18 [2000], and

1to1Web [2000]),
ii. consulting and research companies (e.g., Appian [2000a; 2000b], Forrester [2000],

Jupiter [2000], and Nielsen Media [2000]),
iii. producers’ Web sites (e.g., Autonomy [2000], Bowne [2000], Manna [2000a] and

Net Perceptions [2000]), and
iv. online (business) magazines and newspapers.
Moreover, we screened the literature on online marketing and on user modeling for
work on user-adaptive systems for e-commerce (see Chapter 1.2 for selected
references).

• Selection of a set of representative user modeling servers. Our initial research revealed
more than 50 products that provide personalization functions. Their scope of
application, however, is very heterogeneous, ranging from generic Web development
and runtime environments to off-the-shelf customer relationship management systems.
We therefore first focused on those products that solely offer user modeling
functionality and are sold separately (following this, we had to discard, e.g.,
BroadVision’s ‘One-To-One’ [BroadVision, 2000] and Microsoft’s ‘Site Server’
[Microsoft, 2000d], where the user modeling part is merely a small component in a
comprehensive e-commerce application environment). We also required a certain
minimum amount of documentation (whose quality even thereafter was poor in many
cases). A second selection criterion was based on the similarity of products and the
representativeness of a system for a whole similarity group based on its comprehen-
siveness and reputation.
Based on the acquisition and inference methods employed by these systems, we decided
to form two main groups: systems that implement collaborative filtering and systems
that adhere to a rule-based approach. From those systems that can be associated with
collaborative filtering (i.e., GroupLens [Net Perceptions, 2000], Gustos [2000],
LikeMinds [Macromedia, 2000], StoryServer [Vignette, 2000]), we decided to elect
GroupLens as the representative of the whole category. From the category of rule-based
systems (i.e., Advisor Solutions Suite [Blaze, 2000], FrontMind for Marketing [Manna,
2000a], Personalization Server [ATG, 2000]), we decided to stay with Personalization
Server and FrontMind, due to their distinctive strengths and weaknesses. From those
systems that we could not associate to one of these groups (i.e., Customer Management
[Blue Martini, 2000], Learn Sesame [Open Sesame, 2000], RightPoint [2000],

18 As of the time of writing, it seems that NetPerceptions discontinued their support of this Web site.

24 CHAPTER 3. USER MODELING REQUIREMENTS

SelectCast [HNC, 2000]), we added Learn Sesame to our review list, mainly because of
its sophisticated features and its status as an early pioneer of personalization.

• Review and quality control. After completing the reviews, producers were asked for
their assistance in validating our findings (alas with little feedback), and cross-checks
were made with other sources of information that were originally not utilized.

Below is the final version of the requirements catalog, which also features selected product
data (for more information on some of the requirements, we refer to Kobsa et al. [2001]):

I. Company profile, including name, place of business, and a brief history.
II. Product profile, including

• functionality offered (i.e., acquisition of user-related information, user modeling,
user-related adaptations);

• data acquisition including the input data, namely
- user data (e.g., demographics, interests and preferences);

- usage data:

- observable usage (e.g., selective actions, temporal viewing behavior, ratings,
purchases, other confirmative and disconfirmative actions);

- usage regularities (e.g., frequency, navigation patterns, situation-action-
correlations);

- environmental data (e.g., software platform, hardware platform, locale);

- acquisition methods (e.g., acquisition rules, statistics, case-based reasoning,
decision trees, neural networks, stereotype reasoning, group model reasoning);

• representation methods (e.g., attribute-value pairs, graph-based representations,
production rules);

• extensibility and flexibility, especially with respect to complementary acquisition
methods;

• integration of external user and usage information and domain knowledge (e.g.,
from legacy systems and OPS profiles);

• privacy and compliance with existing or forthcoming standards (e.g., technical
support for implementing standard privacy policies as defined for instance by the
TRUSTe [2000] privacy branding program, compliance with OPS and ‘P3P’19), and
related technical implications (e.g., inspectability of user model contents);

• architecture (e.g., embeddable into applications, single-tier or multi-tier server
component);

19 P3P (Platform for Privacy Preference Project) is a privacy framework that enables Web sites to communicate their

privacy practices, and users to exercise their preferences over those practices. Although similar to OPS to some
extent, the main difference is in their focus: the focal point of OPS is on the storage, disclosure, and transport of user
data, whereas P3P focuses on the mediation of privacy practices, thereby allowing users and Web services to reach an
agreement and ensure that the facilitated release of data is in accordance with that agreement. P3P was proposed by
the World Wide Web Consortium [W3C, 2000].

3.2. REVIEWS OF COMMERCIAL SERVER SYSTEMS 25

• supported software and hardware platforms and related APIs (Application
Programmer Interface);

• client base and publicly accessible Web sites that employ the product online.
III. Similar products that are not being described in detail in this survey.

3.2 Reviews of Commercial Server Systems
In the following, we review selected user modeling servers that are available as standalone
products. We thereby adhere to the requirements catalog that was presented in the previous
sub-chapter. In order to facilitate orientation, the requirements are repeated as run-in
headings in italics within each review.

3.2.1 GroupLens
Company. Net Perceptions [2000; Appian, 2000b] has its roots in work on news filtering
systems that started in 1992 at the University of Minnesota with the ‘GroupLens’ project
[Resnick et al., 1994; Konstan et al., 1997]. Group Lens provides users with Usenet news in
which they are presumably interested. Postings of low quality (e.g., spams, nonsense) or
low relevance are not proposed for reading. Automatic filtering of news is based on ratings
of Usenet postings that have been provided by like-minded users. Such affinity groups are
automatically built by the GroupLens system based on correlations in users’ anonymously
provided ratings of news articles. This approach has been called collaborative filtering and
more recently also ‘clique-based filtering’ (cf. Alspector et al. [1997] and Kobsa et al.
[2001])20. In any case, the underlying filtering approach successfully automated the problem
of finding like-minded people in the rapidly growing Usenet communities and providing
personalized recommendations from their ratings history. For an overview and an
evaluation of various filtering algorithms, we refer to Breese et al. [1998] and Herlocker et
al. [1999].

Product. After its foundation in 1996, Net Perceptions obtained an exclusive license for the
GroupLens technology from the University of Minnesota. After a short technology transfer
phase, a first prototype of the GroupLens product was released in November 1996. Since
then, the GroupLens product has been developed considerably further and is currently
available in version 4.0. Complementary products that take advantage of the GroupLens
recommendation engine are available for e-commerce, knowledge management, online
advertising, e-mail marketing campaigns, and for supporting call center personnel in
providing personalized advice and suggestions to clients. In parallel to these commercial
developments, work on related research issues is still carried out at the University of
Minnesota. In the remainder of this sub-chapter, we focus on the GroupLens
recommendation engine (sometimes also called Net Perceptions recommendation engine).

Functionality, data acquisition. The GroupLens product comprises a recommendation
engine and an associated set of APIs (see Figure 3-1). Via these interfaces, applications can
send ratings to, and receive predictions from, the GroupLens recommendation engine.
Interest predictions are generated by GroupLens from ratings explicitly provided by users

20 In the remainder of this work we will use the term ‘collaborative filtering’ rather than the more appropriate term

‘clique-based filtering’, mainly because it is commonly used in commercial settings.

26 CHAPTER 3. USER MODELING REQUIREMENTS

(e.g., in on-line forms), from implicit ratings derived from navigational data (e.g., products
that the online customer viewed or put into the shopping cart), and from transaction history
data (e.g., products purchased in the past). Whereas the first two types of user and usage
information can be processed by GroupLens at runtime, past purchase data as well as past
ratings can only be taken into consideration at startup time.

GroupLens offers three types of recommendations:

i. Personal recommendations are based on action-to-item affinities between user actions
and product attributes (e.g., a system recommends books on science fiction based on
users’ past queries for books that belong to this category).

ii. Anonymous recommendations exploit item-to-item affinities between products the user
has already expressed an interest in and potentially relevant products (e.g., the system
recommends buying recordable CD-ROM disks since the user put a CD-ROM writer
into her shopping cart).

iii. Fast lookup recommendations build on user-to-user affinities between a user and like-
minded users (e.g., the system recommends a book on programming languages because
users with similar purchase behavior also bought books on this topic in the past).

Personal recommendations are calculated for a given user from her personal history of
ratings and do not take ratings of other users into account (e.g., if a user rated science
fiction films highly or purchased several SF films in the past, then GroupLens will
recommend another SF film). Personal recommendations presuppose that the system has
already been able to collect a meaningful amount of explicit and implicit user ratings that
are indicators for a particular interest. If this is not the case, anonymous recommendations
can be provided. In this case, a sample of already available user ratings is searched for
similar users that correlate in their likes and dislikes with the current user. Based on this set
of similar users, predictions about the probable ratings of the current user can henceforth be
calculated. For those adaptations that require real-time response behavior (e.g., product up-
selling or cross-selling recommendations) fast lookup predictions are provided by
GroupLens since finding a group of similar users normally requires considerable computing
resources in real-world environments with at least ten-thousands of users. Fast lookup
predictions do not take users' ratings history into account but rely on predetermined
relations between product attributes and categories. For instance, users who put a camera
into their shopping cart will subsequently be offered recommendations on appropriate
batteries and films.

Representation, integration of external user and usage information. In order to achieve
real-time performance, GroupLens maintains all user-related data in cache memory. If this
is not possible (e.g., due to shortage in memory), performance decreases significantly.
GroupLens’ cache memory is initialized from a Ratings Database, where all user ratings are
stored. Applications that intend to communicate a priori available user data to GroupLens
(such as purchase histories) have to convert them into an appropriate format and store them
in the Ratings Database. After launching GroupLens, the database is initially sorted and
subsequently loaded into memory. Depending on the data volume, this process is reported
to take hours or even days. Besides this initial bulk loading facility for user data, no other
technical means are provided for integrating legacy data at runtime. Figure 3-1 provides an
overview of the GroupLens architecture and depicts the flow of information between the
Recommendation Engine, the Ratings Database, and an Application.

3.2. REVIEWS OF COMMERCIAL SERVER SYSTEMS 27

Ratings
Database

GroupLens
Recommendation

Engine

Application

GroupLens
API

Ratings
(run time)

Recommendations
(run time)

Ratings
(bulk load)

User data
(startup time)

Figure 3-1: GroupLens architecture (based on Net Perceptions [2000])

Extensibility. GroupLens employs various collaborative filtering algorithms for generating
predictions. Net Perceptions originally licensed algorithms from the University of
Minnesota. During the last few years, Net Perceptions developed this technology further
and now owns four pending U.S. patent applications. An example of these developments is
a component called ‘Dynamic Algorithm Selector’, which chooses one out of several
competing algorithms for generating predictions based on their performance and accuracy.
Competing algorithms operate on the same tasks and run in parallel in the background. In
general, performance is traded in for accuracy. Modifications and extensions of the
algorithms in GroupLens by third parties are currently not supported and probably also not
planned for the future. Besides collaborative filtering, Net Perceptions also claims to
employ neural networks, fuzzy logic, genetic algorithms, and rule-based expert systems.
However, these methods are not used in GroupLens but rather in the complementary
product ‘Ad Targeting’.

Privacy. Net Perceptions is actively contributing to and member of several privacy
consortia (e.g. TRUSTe). In 1997, GroupLens was one of the first commercial user
modeling products that supported the OPS proposal. In principle, GroupLens does not need
to know the identity of a person in order to provide recommendations. In practice, however,
most of the sites that employ GroupLens require a registration process, since they are not
willing to offer the benefits of personalization without a payback in the form of personal
data (a notable exception from this is the Web site of CDnow).

Architecture, software and hardware. From an architectural point of view, GroupLens
requires a dedicated server with a sufficient amount of memory (i.e., 128 MB or more
recommended) and at least one processor that runs on Windows NT or Sun Solaris (IBM
AIX support is forthcoming). A distribution of GroupLens across several computers on a
computer network is not possible. Connection to a Webserver or e-commerce server is
established via an API that is based on CORBA21. Local interface support includes Java,

21 CORBA (Common Object Request Broker Architecture) [Pope, 1997; OMG, 2001] is an industry standard software

platform for object communications. At the core of its architecture is the Object Request Broker (ORB), a component
that enables software objects to communicate, irrespective of any physical details like location, hardware, operating

28 CHAPTER 3. USER MODELING REQUIREMENTS

C/C++, Perl, COM22, and CGI23. Native database support is offered for Oracle and
Microsoft SQL Server. ODBC24 support that used to be provided by previous versions of
GroupLens has been abandoned due to performance reasons.

Client base. Net Perceptions reports more than 190 customers as of March 2000. Web sites
that employ GroupLens online include Bertelsmann-BOL, CDnow, E! Online, Kraft, and
Ticketmaster Online.

Similar products. There are quite a few commercial systems on the market that can be
associated with collaborative filtering. Among the products that are most similar to
GroupLens are LikeMinds and Firefly, which has been recently acquired and reportedly
discontinued by Microsoft. In addition, there are several companies that hold patents
regarding collaborative filtering and associated applications, including Microsoft, IBM, and
AT&T. In general, the commercial interest in collaborative filtering seems to be quite high.
Appian [2000b] reports that more than twenty U.S. patent applications explicitly discuss
collaborative filtering and that nearly 100 describe various kinds of recommender systems.
Relevant differences between GroupLens and LikeMinds include

i. its modular architecture, comprising a front-end which generates various predictions
based on a user’s relation to a set of like-minded users, and a back-end which calculates
sets of like-minded users;

ii. its faculty for distributing the aforementioned back-end across a network of computers;
iii. its recommendation engine that is separated into four isolated modules, each working

on a different type of input data employed for recommendations (namely purchase data,
navigational data, explicitly stated user preferences, and pre-defined product
similarities); and

iv. its support for ODBC as a standard interface for database access (native database access
is supported for selected database management systems, e.g. Oracle).

3.2.2 Personalization Server
Company, product. Art Technology Group (abbreviated ‘ATG’ [2000; Appian, 2000b])
was founded in 1991 as a consulting company by computer science graduates from MIT. At
the end of 1998, ATG released its product Personalization Server as a complement to their
previously released ‘Application Server’. Application Server is the indispensable platform
for all products from ATG and handles the processing of dynamic Web pages on top of a
Web server. Personalization Server extends this functionality by profile management and a

system, and programming language. The CORBA standard is defined and propagated by the OMG (Object
Management Group).

22 COM (Component Object Model) is an object-oriented component software technology that is propagated by
Microsoft. COM objects adhere to important object-oriented principles like encapsulation and reusability and can be
written in a variety of programming languages including C++, Java, Visual Basic, and COBOL.

23 CGI (Common Gateway Interface) is a standard programming interface for Web servers. CGI-compliant programs
extend the functionality of a Web server and can generate customized Web content dynamically.

24 ODBC (Open Data Base Connectivity) is an industry-standard application programming interface for accessing
relational data sources, including database management systems. In general, applications can access tabular data
sources via ODBC, irrespective, for example, of the type of data management system used. ODBC has a wide third-
party support due to Microsoft’s strong commitment to ODBC on Windows-based software platforms.

3.2. REVIEWS OF COMMERCIAL SERVER SYSTEMS 29

rule-based development and runtime personalization environment. Both products together
provide the technical basis for complementary products from ATG, e.g. ‘Commerce Server’
for creating online shops and ‘Ad Station’ for providing promotions and advertisements.
Figure 3-2 depicts the architecture of ATG’s products suite and outlines some of the
products’ interdependencies (Commerce Server and Ad Station are not depicted). In the
remainder of this sub-chapter, we mainly focus on Personalization Server, which is
currently available in version 4.5.

Application
Server External

user
data

GroupLens

Web requests
& responses

 Open
Targeting
Adapter

 Open
Profiling
Adapter

 Open
Content
Adapter

Application

Personalization
Server

Web Server External

content

Content,
rules,

profiles

Figure 3-2: ATG architecture (based on ATG [2000])

Functionality, data acquisition, representation. Two main administrative applications are
provided by Personalization Server: (i) a development environment called ‘Developer
Workbench’, for creating personalized Web pages; and (ii) an administration interface
called ‘Personalization Control Center’, to allow non-technicians the definition of
personalization rules and the maintenance of profiles. Up to and including the second
quarter of 1999, ATG had no U.S. patents concerning their rule-based personalization
technology.

Personalization Server’s group profiles comprise relevant characteristics (e.g., age, gender)
of user subgroups (e.g., family father, yuppie). Their development and maintenance has to
be carried out manually. However, this work has normally not to be started from scratch,
since existing user segmentations from marketing and feedback from Personalization
Server’s reporting facilities can serve as a basis. Rules that are associated with group
profiles allow Personalization Server to assign an individual user to one or more user
groups. These rules can take user data (e.g., demographic data like gender and age),
implicit information about system usage (e.g., pages visited, products bought) as well as
environmental information into account (e.g., domain name, browser type, operating
system, available bandwidth). Most of the basic information used within rules is
automatically captured by the system (e.g., information about the usage environment).

30 CHAPTER 3. USER MODELING REQUIREMENTS

Figure 3-3: Personalization Control Center [ATG, 2000].
Reprinted with permission.

Figure 3-3 shows the user interface for defining user groups within Personalization Control
Center. More specifically, it depicts the definition of a user group called ‘High Risk
Investors’: all users who are presumed to have certain characteristics with respect to their
‘Risk Preference’, their ‘Position’, their membership to the user group ‘Day Traders’, and
their ‘AccountStatus’, are assigned to this user group.

Group profiles and associated rules resemble very much the stereotype approach that was
taken in many research systems (e.g., Rich [1979], Moore and Paris [1992], Kobsa et al.
[1994], Ambrosini et al. [1997], Fink et al. [1998], Ardissono et al. [1999]): a group profile
forms the stereotype body (which comprises information about users to whom the
stereotype typically applies), and one or more associated personalization rules function as
activation conditions (or ‘triggers’) for assigning a group profile to an individual user.

Besides group profile activation, rules can also be employed for acquiring user information
(e.g., “When a person views Home Equity Loan Information, set DwellingStatus to
HomeOwner” [ATG, 2000]), and for providing personalized content (e.g., if a user is
interested in football, then provide an article about the prospects of the forthcoming
season). The editing and maintenance of rules is carried out via the Personalization Control
Center, which puts a graphical user interface with several message windows and drop-down
menus for defining dedicated rule parts at the disposal of the developer. Rule formats
slightly differ depending on the intended purpose.

3.2. REVIEWS OF COMMERCIAL SERVER SYSTEMS 31

Adaptation rules, for example, comprise the following information (for more details
including a guided tour of Personalization Control Center, we refer to ATG [2000]):

what; who; when(optional); conditions (optional)

What refers either to an information content category (e.g., football news) or to various
selection conditions for information content (e.g., content items whose target audience are
football fans). Who designates either a user or group profile, or contains one or more
selection conditions on profile attributes (e.g., gender is male and income > 60,000 and
number-of-visits > 3). The optional component when specifies a date for the rule becoming
active. An arbitrary number of optional conditions forms the last part of a rule (e.g.,
whether the user’s account is with AOL).

Besides this rather simple rule management interface, Personalization Control Center
provides no further support for defining and maintaining rules. More sophisticated rule
management features are, e.g., offered by ‘One-To-One’ [BroadVision, 2000] and ‘Advisor
Solutions Suite’ [Blaze, 2000]. Examples of such features include (i) grouping of rules into
rule packages (sometimes also called rule sets), (ii) a more fine-grained control over the life
span of rules, and (iii) a simulation and testing environment for fielding a rule-based
system. These mechanisms are indispensable when, for example, new rules are deployed
into a real-world system that is driven by hundreds or thousands of personalization rules.
The package mechanism then allows one to organize rules and restrict their scope to, for
example, a single package. The life cycle control allows for the control of rules over time
(e.g., by specifying an activation date, an expiration date, or a periodic activation). The
simulation environment, finally, allows for the testing, logging, and tracing of the
personalization system. Apart from this lack of more sophisticated rule management
features, another important drawback of Personalization Server seems to be that external
user information (e.g., user segmentations from marketing databases, purchase information
from transactional legacy systems) cannot be directly referenced in personalization rules.

Extensibility, integration of external user and usage information. Personalization Server
offers interfaces called ‘Open Targeting Adapters’ (see Figure 3-2) for integrating
complementary user modeling products and custom extensions into their rule-based user
modeling approach (e.g., GroupLens from Net Perceptions). Moreover, Personalization
Server provides interfaces called ‘Open Content Adapters’ and ‘Open Profiling Adapters’
(see Figure 3-2 for both adapter types) that allow for the integration of user information that
is external to ATG’s products (e.g., purchase data from legacy systems, user segmentations
from marketing databases, demographic user data from customer databases). As mentioned
above, incorporating such kinds of external information in personalization rules does
however not seem to be envisaged in Personalization Control Center.

Privacy. During our research, we found no commitment of ATG to a dedicated privacy
policy (e.g., for handling visitors’ session data on their own Web site). We also found no
information about ATG’s membership in (or active contribution to) privacy consortia, nor
about Personalization Server’s compliance with established privacy proposals in this area
(e.g. OPS). A company white paper [Singh, 2000] advocates the free collection (albeit not
release or vending) of user behavior data. When comparing these efforts to those of their
competitors (e.g., Net Perceptions, Bowne) it seems that ATG is rather insensitive with
respect to privacy and is not very well able to support customers in developing an
appropriate privacy policy and implementing appropriate technical means to enforce it.

32 CHAPTER 3. USER MODELING REQUIREMENTS

Architecture. Personalization Server’s architecture (which is backed by Application Server)
supports server clusters and associated features like

i. load balancing: in order to maintain a consistent performance, new user sessions are
delegated to available servers and, if none is available, new servers can be dynamically
added to a server cluster;

ii. over-capacity contingency: in case of traffic peaks, user requests are gradually delayed
and finally rejected in order to prevent the whole system from crashing;

iii. request fail-over: in case of a server crash, subsequent server requests are redirected to
available servers within the cluster;

iv. session fail-over: in case of a server crash, a user’s session can be transparently
migrated to another available server within the cluster without any loss of data; and

v. geographic fail-over: if an entire server cluster becomes unavailable, subsequent server
requests can be automatically redirected to another server cluster, probably running in a
different geographic location.

Software and hardware. The deployment of Personalization Server to real-world settings
seems to be supported very well. ATG’s products are entirely written in Java and run on top
of Windows NT, Sun Solaris, and IBM AIX. For storing content, personalization rules and
profile information about users and user groups (see Figure 3-2), all major JDBC25-
compliant database management systems are supported including those from Oracle,
Sybase, Informix, and Microsoft (for a detailed list of supported database management
systems, we refer to ATG [2000]).

Client base. ATG lists more than 150 customers on their Web site up to and including the
first quarter of 2000. BabyCenter, BMG Direct, living.com, and Newbridge Networks are
some of the Web sites that employ Personalization Server online. Other important
customers include Sun and Sony.

Similar products. There are several commercial systems that are similar to Personalization
Server, most notably One-To-One from BroadVision [2000] and StoryServer from Vignette
[2000]. In these systems, however, the user modeling components are embedded and form a
rather small part of the overall product functionality (which additionally includes for
example transaction handling, content management facilities for products, editorials,
advertisements, and discussion groups). Relevant criteria that distinguish Personalization
Server include

i. its Open Content and Open Profiling Adapters that allow the integration of external
user-related information,

ii. its scalable architecture that is based on server clusters, and
iii. its compliance with industry standards like Java, Java Beans, Enterprise Java Beans,

and Java Servlets (see Sun [2000a] for an overview), which seems to support
deployment to real-world settings very well.

25 JDBC (Java Data Base Connectivity) is an industry-standard application programming interface for accessing

relational data sources, including database management systems. In this aim, it is quite comparable to ODBC. The
most important difference between the two is that JDBC caters solely to the needs of application programs written in
Java. JDBC is propagated mainly by Sun.

3.2. REVIEWS OF COMMERCIAL SERVER SYSTEMS 33

Compared to Personalization Server, BroadVision’s One-To-One offers increased support
for user identification, authentication, and encryption through standards like SSL, SHTTP,
SET, X.509 digital certificates, and RSA encryption (see Schreck [2003] for an overview
and a discussion of these standards with respect to user modeling). Moreover, One-To-One
offers developers of user-adaptive applications sophisticated rule management and built-in
support for user model inspection26. The acquisition methods offered by Vignette’s
StoryServer excel by complementing rule-based personalization with collaborative
filtering. In order to achieve this, Vignette licensed a customized version of GroupLens (see
Chapter 3.2.1).

3.2.3 FrontMind
Company, product. Manna [1999a,b; 2000a-d; Appian, 2000b] was founded in 1997. The
company is headquartered in Wellesley, Massachusetts, while research and development
are located in Tel Aviv, Israel. Manna released its product FrontMind for Marketing
(abbreviated ‘FrontMind’) in the first quarter of 1999, and version 2.0 in April 2000.
FrontMind provides a rule-based development, management and simulation environment
for personalized information and personalized services on the Web. FrontMind
distinguishes itself from other rule-based products like Personalization Server (see Chapter
3.2.2) by having Bayesian networks for modeling users’ behavior integrated into their
product. Manna owns a pending U.S. patent application concerning this technology.
Although currently focused on personalizing Web applications, efforts are underway to
deploy FrontMind to call center and online direct marketing scenarios (see Chapter 1.2).

Clients and
Products
Database

FrontMind

Server

Web Application Server

FrontMind
Client

Events Adaptation
recommendations

FrontMind
Database

Figure 3-4: FrontMind architecture (based on Manna [2000b])

26 According to Appian [2000b], however, it seems that many customers of BroadVision do not take advantage of this

feature, since they do not want to put their clients in control of their profiles.

34 CHAPTER 3. USER MODELING REQUIREMENTS

Functionality, data acquisition, representation. FrontMind comprises the following
components (see Figure 3-4):

• FrontMind Client interfaces with Web application servers and communicates user-
related events (e.g., user logins, requests for information on a specific product) to, and
receives adaptation recommendations (e.g., product cross-selling recommendations)
from, the FrontMind Server.

• FrontMind Server provides a rule-based personalization environment that is based on
the sub-components Rule Evaluator and Learning and Inference Engine. The Rule
Evaluator receives (a configurable set of) user-related events from the FrontMind Client
(see above) and matches them against those adaptation rules that are active at the time
of evaluation. Information about users and products from the Clients and Products
Database and dynamically acquired information about customers’ behavior (see below)
can be taken into account during the matching process. The first two sources of
information are exploited in a deterministic way, whereas the latter one is used in a
‘non-deterministic’ (i.e., probability and similarity based) manner. After having
selected those rules that match all preconditions, their associated adaptation part is
evaluated and the results are communicated back to the FrontMind Client. The Learning
and Inference Engine acquires and maintains models of user behavior. Relevant
dimensions in these models include referral Web pages, system’s usage (e.g., product
information requests), purchase histories, and demographics (e.g., gender, age).
Internally, these models are based on Bayesian networks. Selected parts of the domain
(e.g., purchases of consumer electronics and professional products) can be represented
in single models. If appropriate, these models can be arranged in a model hierarchy,
thereby creating more comprehensive models (e.g., product purchases regarding
appliances in general). Other model topographies (e.g., model chains) can be
established as well (for more information on the agent-based background of these
behavior models, we refer to Barnea [1999]). According to Manna [1999a; 1999b],
designing and implementing behavior models is one of the main tasks that have to be
accomplished when deploying FrontMind to customer sites.
Besides employing behavior information for online adaptation purposes, FrontMind
offers a variety of tools for offline model construction, analysis (e.g., unsupervised
clustering for customer and market segmentations), simulation (e.g., ‘what-if’ decision
support), and visualization (e.g., dependency graphs).

• ‘Business Command Center’ (not depicted in Figure 3-4): an administration
environment for non-technicians that allows for the definition and maintenance of
adaptation rules and the simulation of their performance (e.g., matching rate) on the
basis of historical data. An additional component reports the performance of business
rules (e.g., their matching rate across user profiles, time periods, and product
categories) and of the FrontMind system as a whole (e.g., page views, purchase
patterns). The log files that support these simulation facilities are stored in the
FrontMind Database along with the aforementioned adaptation rules.

• ‘Business Object Developer’ (not depicted in Figure 3-4) is a tool that allows
technicians the development of business objects, the basic building blocks that
constitute every adaptation rule. Standard business objects are provided, e.g. for
accessing user profiles, behavior models, and the system’s usage history. Internally,
business objects can contain (i) database queries, (ii) calls to stored procedures hosted

3.2. REVIEWS OF COMMERCIAL SERVER SYSTEMS 35

by database management systems, (iii) calls to the Learning and Inference Engine, and
(iv) custom code written in Java for appropriately processing information from the
aforementioned sources. Business objects are stored in the FrontMind Database.

• ‘Console Manager’ (not depicted in Figure 3-4): administration tool for the FrontMind
system that allows for the configuration of the FrontMind Server, the establishment of
security policies, and for the tracking of system resource utilization.

The Business Command Center, whose main screen is shown in Figure 3-5, is the central
administration interface for controlling personalization in FrontMind. The navigation tree
in the left frame comprises the top-level sections Business Objects, Rules, Rule
Components, Reports, and Completed Reports. In the remainder of this sub-chapter, we
focus on Business Objects and Rules. For more information on FrontMind’s reporting
facilities, we refer to Manna [2000a].

Figure 3-5: Business Command Center [Manna, 2000b].
Reprinted with permission.

The section Business Objects comprises standard objects provided by FrontMind (e.g.
‘Customer’) and custom objects that may have been defined using the Business Object
Developer. The Rules section, which is unfold, contains the adaptation rules that are
currently defined in FrontMind. Rules details are shown in the right frame.

Time Frame denotes the times when a rule should become active (e.g., always, at a distinct
day, for a period in time, on recurring dates and periods). Situation specifies those sets of
usage events that trigger an adaptation rule (e.g., user login, information request for a
particular product, when a product is put into the shopping cart). An adaptation rule gets
activated by the Rule Evaluator only if the Situation matches the actual system’s state.
Profile denotes one or more conditions that refer to attributes in the current user’s profile
(e.g., whether user’s gender is female, the customer’s lifetime value is high, the customer
already ordered a particular product in the past) or to Business Objects that employ models
of users’ behavior (e.g., infer those user characteristics that describe potential buyers for a
particular product and check whether these characteristics match the current user’s profile).
Result determines the outcome of a rule, i.e. either a set of deterministic adaptations (e.g.,
show the advertisement for a particular product, propose complementary products for those

36 CHAPTER 3. USER MODELING REQUIREMENTS

already in the shopping cart) or non-deterministic adaptations that are (partially) driven by
models of users’ behavior (e.g., recommend the best-selling product for a particular
category). The other rule attributes, Name, Priority, Status and Creator, should be self-
explanatory.

Several major differences become apparent when comparing FrontMind with
Personalization Server regarding data acquisition and representation:

• FrontMind maintains dynamic models of users’ behavior, which can take arbitrary user
and usage related information into account, whereas Personalization Server relies on
rather static group profiles and associated acquisition and activation rules.

• FrontMind employs rules mainly for adaptation purposes27, whereas Personalization
Server also utilizes rules for acquiring assumptions about the user and for assigning
profiles of user groups to individual users.

• Besides static user and usage related information, FrontMind’s adaptation rules can also
take advantage of users’ behavior models.

Extensibility, integration of external user and usage information. FrontMind offers no
dedicated high-level interfaces for integrating external user-related information (e.g., from
a marketing database) and complementary user modeling products (e.g., recommendations
from a system that relies on collaborative filtering). On the programming level, however,
such external information sources can be quite organically integrated by encapsulating all
necessary access details in Business Objects. Once this has been accomplished, these
objects can henceforth be transparently employed in rules.

Privacy. Manna’s privacy efforts are comparable to those of ATG: hardly any clear
information about privacy policies, about compliance with established privacy proposals
(e.g., OPS, P3P)28, and about Manna’s membership in or active contribution to privacy
consortia. It seems that Manna does not consider privacy being a real challenge for their
business and those of their customers;29 hence, privacy efforts are rather limited and
confined to a fairly general privacy statement.

Architecture. FrontMind relies on an agent-based communication and cooperation
framework that allows for a very flexible management of software components, including
their dynamic distribution across a network of computers [Manna, 2000b]. FrontMind’s

27 In all FrontMind brochures and white papers that we had at our disposal, we found no example of a rule being

employed for a purpose other than user-related adaptation, although this should be possible from a technical point of
view.

28 In Manna [2000b], we found the following statement: “The FrondMind Framework ... has a reliable and extremely
secure server framework, which supports all major network security protocols, and privacy initiatives such as the
Platform for Privacy Preferences (P3P) Project”. Without any additional explanation and substantiation, this
statement is not very satisfactory.

29 The only comment on privacy we found was that “the main challenge e-businesses face today in implementing
solutions is not addressing customer privacy issues (best handled with a privacy statement to customers affirming
what data will be captured and how that data will be used)...” (see Manna [2000a; 2000c]).

3.2. REVIEWS OF COMMERCIAL SERVER SYSTEMS 37

exceptional flexibility is supported by a set of architectural features, including the
following:

• plug-ins: are components of the FrontMind Server (e.g., Business Objects, adaptation
rules) that can be created, executed, updated, and removed in real time without inter-
rupting the server’s operation;

• load balancing: automatically distributes user sessions according to resource
requirements across a network of computers;

• messaging: all communication between software components is established via explicit
messages that are represented in XML30;

• events: the number and type of events that are communicated from the FrontMind
Client to the server can be configured by the system administrator. All user actions that
are at the disposal of the Web application server can be selected to become input for
FrontMind.

Software and hardware. FrontMind’s sophisticated architecture and its Java-based
infrastructure seem to support its deployment to real-world settings very well. The
FrontMind Client can connect to Web application servers via Active X31, servlets32, or
sockets33, depending on the operating system platform. The FrontMind Server can run on
top of Windows NT and Sun Solaris. The minimum hardware configuration for the server
comprises a dual processor board with at least 512 MB RAM and 5 GB of free disk space.
On Solaris, the amount of memory should not fall short of 1 GB. With regard to database
management systems, FrontMind supports Oracle version 8.0 (or higher) and Microsoft
SQL Server 7.0 (or higher).

Client base. Up to and including the first quarter of 2000, Manna reports six important
customers on their Web site [Manna, 2000a]: Harcourt General, Saleoutlet.com, Get-
Outdoors.com, Entertainment Boulevard, and GourmetMarket.com. There is no
information available whether these companies really employ FrontMind online.

Similar products. For a list of products that are similar to FrontMind, we refer to the
corresponding paragraph in Chapter 3.2.2. Features that set FrontMind apart include: (i) the
integration of dynamic models of users’ behavior that are based on Bayesian networks into
a rule-based approach, (ii) an agent-based communication and cooperation framework that
allows for a flexible management of software components, and (iii) an interface for non-
technicians (i.e., Business Command Center) that provides rule management, simulation,
and reporting facilities.

30 XML (Extensible Markup Language) is a standardized markup language for the World Wide Web. Unlike HTML,

XML allows for the definition of new markup elements within documents. Defining and applying custom markup
elements to objects allows the communication of object semantics in addition to object content. XML is propagated
by the World Wide Web Consortium.

31 Active X is a software technology from Microsoft Corporation that facilitates the exchange of information between
software components, applications, and Web pages. Active X builds on another proprietary component technology
from Microsoft called COM.

32 Servlets are CGI-compliant programs that are written in Java.
33 Sockets are a widely used application programming interface for remote inter-process communication via Internet

protocols (i.e., TCP, UDP, IP) and other transport protocols (e.g., OSI TP/IP, X.25, DecNet, AppleTalk).

38 CHAPTER 3. USER MODELING REQUIREMENTS

3.2.4 Learn Sesame
Company, product. ‘Open Sesame’ [Appian, 2000b; Bowne, 2000; Open Sesame, 2000]
was a former division of Charles River Analytics, which carried out contract research for
various institutions over the last decade in the areas of intelligent agents, neural networks,
and expert systems. Their first product ‘Open Sesame!’ was launched in 1993. Open
Sesame! was a learning agent for the Macintosh platform that monitored a number of user
action types at the interface level (e.g., opening and closing folders, documents, and
applications) and proposed the automation of detected repetitive patterns [Caglayan et al.,
1997]. Patterns were found along two dimensions: time (e.g., a user’s Web browser is
opened every day at 9:00 a.m.) and action sequences (e.g., the user usually launches a
dictionary application before opening a text document).

Despite some successes of Open Sesame! (the company claims having shipped more than
35,000 copies), further developments aimed at significantly broadening the scope of
deployment beyond a single hardware and software platform. The overall aim was to
diversify Open Sesame! towards a user modeling server that could be easily integrated in
applications, particularly in Web applications. Besides architectural requirements, this
objective challenged especially Open Sesame!’s learning functionality with issues like
scalability, robustness, demand for efficient incremental learning, and controllability by
client applications. Subsequent developments led to a new generation of learning
algorithms, a corresponding U.S. patent application, and to a new product called Learn
Sesame that was launched in 1997. During the second quarter of 1998, Open Sesame was
acquired by Bowne Inc. The rationale behind this takeover was to strengthen Bowne’s
Consulting and Development branch by integrating Open Sesame’s personalization
experience. Learn Sesame was available from Bowne both as a standalone product and as a
component that was integrated into their Internet applications for the financial sector. In
March 2000, Allaire corporation [Allaire, 2000] announced the purchase of Open Sesame
from Bowne34. In the following, we mainly focus on Learn Sesame (for more details of
Open Sesame!, Learn Sesame, and a brief description of the transition from Open Sesame!
to Learn Sesame, see Caglayan et al. [1997]).

Functionality, data acquisition, representation. Learn Sesame relies on applications for
collecting implicit and explicit user, usage, and environmental data. Relevant usage
characteristics (e.g., keywords of requested hypermedia pages, ratings of products,
keywords entered in a search form) have to be collected by applications and sent to the user
modeling server along with relevant user characteristics (e.g., user id, age, gender, sex,
income). Learn Sesame analyzes this stream of time-stamped events for recurrent patterns,
and supplies applications with evidences for regularities (e.g., a user’s presumed interest in
outdoor clothing, a correlation between the amount of money spent and suitable product
categories, a correlation between product category and user demographics like age, gender,
income, and formal education for a group of users).

Learn Sesame’s learning algorithms are based on incremental hierarchical clustering35.
Clusters of events and sequences are identified, analyzed, and so-called ‘facts’ are

34 The consequences of this acquisition for the product are unclear as yet. As of the time of writing, it seems that Allaire

discontinued the development of Learn Sesame.
35 In contrast, Open Sesame! used neural networks that were based on adaptive resonance theory [Caglayan and

Snorrason, 1993; Snorrason and Caglayan, 1994].

3.2. REVIEWS OF COMMERCIAL SERVER SYSTEMS 39

generated that describe relevant characteristics of clusters found. Examples include the
number of events that ‘support’ (i.e. are in) a cluster, or the relative size of a cluster in
comparison to the other clusters as an indicator of confidence. In this learning process,
recent events have a higher impact on evidences for regularities than older ones. The
process of identifying, analyzing, and communicating clusters can be controlled by
applications. A few examples may illustrate this:

• A timer interval specifies the amount of time between subsequent clustering stages.
Choosing a higher value results in less resource consumption but also in the generation
of less timely facts, and vice versa.

• A learning threshold specifies the minimum number of events that are required for
creating a cluster (see below for an example). Choosing a higher threshold results in the
slower generation of more solid facts, whereas a lower threshold results in faster
generation of less solid facts.

• A confidence threshold specifies the minimum confidence for a cluster to be
communicated to applications (see below for an example). Choosing a higher value
results in the communication of less facts with a higher confidence, whereas a lower
value results in more facts with a lower confidence.

As already mentioned earlier, Learn Sesame provides support for incremental learning of
user-related characteristics. Figure 3-6 depicts the six steps that make up every learning
stage (the numbers used refer to those in the figure):

1. An application generates events comprising user and usage data, e.g. the following five
events about users’ interest in products, each of them comprising a list of four attribute-
value pairs:

UserId=12, ProductId=47, Price=Medium, Trendiness=Low
UserId=47, ProductId=97, Price=High, Trendiness=High
UserId=12, ProductId=17, Price=Medium, Trendiness=Low
UserId=12, ProductId=31, Price=Medium, Trendiness=Low
UserId=10, ProductId=99, Price=Low, Trendiness=Low

2. Incoming events are buffered by Learn Sesame in an event queue, until the next
clustering stage starts (which is controlled by timer interval).

3. New clusters of events are identified and previously identified clusters are refined.
4. Clusters identified in the previous step are analyzed, as to whether they comply with the

predefined quality requirements (see above), e.g.
• a learning threshold of 2 events, and
• a confidence threshold of 0.5.

5. Facts and related attributes that represent the clusters identified in the previous step are
generated and stored in a fact repository. The following fact plus attributes can be
generated from the events and the learning parameters:

UserId=12, Price=Medium, Trendiness=Low (support=3, confidence=0.6).
The cluster described by this fact contains 3 events and the relative size of the cluster as
an indicator for confidence is 3 out of 5 events, hence 0.6.

6. The application can employ facts learned by Learn Sesame for adaptation purposes.

40 CHAPTER 3. USER MODELING REQUIREMENTS

 2.

Cluster
identification

Application Learn Sesame

Event queue

Events

Facts

Cluster
analysis

Fact re-
pository

1.

3.

4.

5.

6.

Figure 3-6: Incremental learning process (based on Caglayan et al. [1997])

As can be seen from Figure 3-6, applications and Learn Sesame communicate in an
asynchronous manner: events are buffered in the Event Queue for further processing by
Learn Sesame and facts are buffered in the Fact Repository for further processing by
applications. This allows both applications and Learn Sesame to carry out most of the
processing concurrently. In practice, most processes can even be executed in parallel since
applications and Learn Sesame normally run on different computers. Likewise, Learn
Sesame exploits the inherent concurrency in the cluster identification and cluster analysis
processes by delegating concurrent tasks to different program threads whenever possible
(see the ‘concurrent’ arrows on the right side of Figure 3-6). The architecture of Learn
Sesame therefore seems to support deployment to real world settings with their inherent
demand for performance and scalability in terms of user modeling workload very well36.

A feature that sets Learn Sesame apart from other commercial user modeling systems is its
support for domain modeling by means of a model definition language (MDL). In Learn
Sesame, a domain model comprises objects and events. Objects represent domain entities
(e.g., the user who is assigned the id number 12, a Web document describing a particular
product). Object type definitions represent categories of domain entities and their possible
object attributes (e.g., attributes of a Web document like name, creator, modifier, size, date,
keywords). Events typically affect one or more objects and are described in terms of
changes to objects (e.g., buying a specific product, requesting a Web document describing a
particular product). Event types define categories of related events (e.g., buying products,
requesting Web documents).

36 In practice, scalability is often more important than absolute performance since scalability refers to the system’s

performance relative to an increasing workload (e.g., in terms of number of users, number of events and facts
submitted per second, and the size and complexity of the domain model).

3.2. REVIEWS OF COMMERCIAL SERVER SYSTEMS 41

The domain model is the indispensable basis for both the applications and Learn Sesame.
Applications rely on Learn Sesame’s domain model for appropriately assembling and
communicating events. Learn Sesame’s domain independent learning algorithms rely on
the domain model for seizing relevant information about the domain at hand. Especially the
meaning of comparability, similarity, and proximity of events is of paramount importance
for the clustering process (in the simple example presented earlier, we implicitly assumed a
semantics for these concepts). In fact, comparability is defined by the object types of the
domain model (i.e., two objects are comparable if they belong to the same object type).
Similarity is defined by a subset of object attributes and associated values (i.e., two objects
are similar if they are comparable and if they are identical with respect to a subset of
attributes). Proximity is defined by the distance between attribute values, measured for
example with domain-specific distance metrics (e.g., the time stamps of two Web page
requests are regarded as close to one another if they differ by less than a minute, and are
assumed to be identical if they differ by less than fifteen seconds)37. It seems that despite (or
perhaps because) of this expressiveness of MDL, domain modeling has been rigorously
restricted in recent versions of Learn Sesame (i.e., versions greater than 1.2) to a fixed
model that only comprises a single pre-defined object type (namely ‘Web document’) and a
single event type (namely ‘Web document request’). The rationale behind this step was
probably to simplify the domain modeling process for Web-based applications.

Extensibility, integration of external user and usage information. Due to the MDL
restrictions recently introduced by Bowne, Learn Sesame’s learning is confined to the
identification and analysis of single attributes only. No further technical means (e.g. APIs)
are provided for integrating complementary user modeling products and implementing
custom extensions. Integration of events from user and usage information that is external to
Learn Sesame (e.g., purchase data from legacy systems, demographic data from a client’s
database) is supported via a bulk loading interface (see Figure 3-7). As already mentioned,
it is however in the responsibility of applications to collect, assemble, and communicate
appropriate event vectors from external data. Exporting user and usage data for use with
applications other than Learn Sesame (e.g., software for reporting and visualization) is
supported via a reporting facility (see Figure 3-7). This facility also provides access to
conventional reports.

Privacy. Open Sesame, and now Bowne, committed themselves to a strong privacy policy
which is based on the following principles [Open Sesame, 2000; Bowne, 2000]:

• informed consent: request permission from a user before acquiring, using, and
especially sharing personal data with third parties;

• anonymity: a user has the right to remain anonymous (e.g., when visiting a Web site);
• profile termination: a user has the right to access, control, and erase any personal

information stored about her at any time38;
• information security: all personal information about a user has to be maintained within

a secure system.

37 For more information on Learn Sesame’s domain modeling and clustering algorithms, we refer to Caglayan et al.

[1997].
38 For example, Learn Sesame’s API offers functionality for deleting selected parts of a user model including the model

as a whole.

42 CHAPTER 3. USER MODELING REQUIREMENTS

Bowne is a participant in the P3P project of the World Wide Web Consortium (W3C)39. The
company claims that Learn Sesame will not only comply to the OPS specification, but to
the entire P3P standard after its completion. Bowne encourages its customers to adopt a
privacy policy that is similar to their own.

Events &
Facts

Database

Learning
Engine

Application

Ambassador

Events & Facts
(bulk load)

Facts
(run time)

Knowledge
Manager

Events
(run time)

Events
(run time)

Facts
(run time)

Reports

Figure 3-7: Architecture of Learn Sesame (based on Open Sesame [2000])

Architecture, software and hardware. Figure 3-7 depicts the architecture of Learn Sesame,
which comprises the following components:

• Ambassador: integrates with applications (e.g., Web server, e-commerce server) by
offering various APIs for communicating events and facts at runtime;

• Knowledge manager: transfers events and facts between the Ambassador and the
Learning Engine, implements the Event Queue and the Fact Repository (see Figure
3-6), provides a bulk loading interface for legacy data, and reporting facilities;

• Learning Engine: analyzes events for patterns and reports facts describing regularities
found.

The communication between these components is carried out via CORBA. The minimum
hardware configuration required by Learn Sesame is a single server with a Pentium II
processor running at 266 MHz, 64 MB of RAM, and 50 MB of free disk space. Bowne
recommends a configuration of at least two servers, each of them being better equipped
than the one listed above. Supported operating systems are Windows NT and probably SGI

39 The World Wide Web Consortium (W3C) develops common Web protocols and aims at ensuring their

interoperability. Their freely available specifications called ‘Recommendations’ have a high impact on the further
development of the Web. W3C has more than 400 member organizations from around the world.

3.3. DISCUSSION 43

Irix and Sun Solaris as well40. Connection to a Web server or e-commerce server is
established via the Ambassador component, which provides local interfaces for Java,
C/C++, and Active X. All ODBC-compliant databases including those from Oracle,
Sybase, Informix, and Microsoft can be accessed by Learn Sesame.

Client base. Learn Sesame customers are not listed (nor even mentioned) on the Web sites
of Bowne and Open Sesame, with the exception of Ericsson. We assume that the reason for
this is a rather small customer base compared, e.g., to the ones of Net Perceptions and
ATG. The only Web site that is reported to employ Learn Sesame online is its showcase
‘eGenie’.

Similar products. Open Sesame can be considered an early pioneer of personalization, both
in research and commercial environments. Despite its early market entry and its
sophisticated features, there is, to the best of our knowledge, no commercial system on the
market that is comparable to Learn Sesame. In user modeling research, similar work was
conducted for example by Orwant [1995] and more recently by Zukerman et al. [1999] in
the field of navigation patterns on the World Wide Web. Outside the user modeling
community, plenty of related work was carried out in the area of (Web) log file mining.
Recent research prototypes are described, e.g., in Fuller and de Graaf [1996], Spiliopoulou
and Faulstich [1999], and Cadez et al. [2000]. Examples of commercial products include
‘Accrue’ [2000] and ‘Knowledge Web Miner’ from Angoss [2000]. The main difference
between these systems and Open Sesame! lies in their focal points: Open Sesame! (and
later Learn Sesame) were designed for unsupervised and online learning in (near) real time.
Applications can control the nature of patterns learned by Open Sesame! as well as the
learning process itself. In contrast, many of the related research prototypes and commercial
products have been designed for supervised learning of a relatively small (and often fixed)
number of patterns that takes place offline. The implications of this difference are manifold,
for example regarding data acquisition and representation (see Chapter 3.3).

3.3 Discussion
In Table 3-1, we summarize the commercial servers reviewed so far along the user
modeling requirements introduced in Chapter 3.1 (for reasons of brevity, we omit the
requirements ‘client base’ and ‘similar products’). In order to facilitate orientation, we copy
the requirement names as run-in headings in italics.

40 Open Sesame [1998] claims that Learn Sesame supports all three operating systems, whereas Open Sesame [1999]

reports that Learn Sesame supports only Windows NT.

44 CHAPTER 3. USER MODELING REQUIREMENTS

Product

Requirement

GroupLens Personalization
Server

FrontMind Learn Sesame

Functionality User modeling User modeling,
adaptation control

User modeling,
adaptation control

User modeling

Data acquisition:

Input

Methods

Predefined usage
data, mainly about
navigation, ratings,
shopping cart
operations, and
purchases

Collaborative filter-
ing

Predefined user,
usage, and environ-
mental data
(extensible by
custom
programming)

Simple production
rules, stereotypes

Configurable set of
usage, user, and en-
vironmental data
(extensible by sys-
tem configuration)

Simple production
rules, Bayesian
networks

Arbitrary usage,
user, and environ-
mental data,
modeled in MDL41
and encoded in
event vectors

Hierarchical
clustering (single
attributes)

Representation Implicit, in cache
memory

Explicit and rela-
tional, in JDBC-
compliant databases

Group models: im-
plicit in proprietary
files; other user-
related data:
relational, in dedi-
cated database
management sys-
tems

Explicit and rela-
tional, in ODBC-
compliant data-
bases; it is recom-
mended to access
this information via
APIs only

Extensibility No Via Open Targeting
Adapters

Via custom pro-
grammed Business
Objects

No

Integration of
external user and
usage information

Bulk load at startup
time

Via Open Content
Adapters and Open
Profiling Adapters,
dynamically and bi-
directional

Anytime, via exist-
ing or custom
Business Objects;
dynamically and bi-
directional

Bulk load at any
time

Privacy Company policy,
contribution to
privacy consortia,
OPS compliance

No commitment Vague policy,
declared P3P
compliance

Company policy,
contribution to
privacy consortia,
commitment to
OPS and P3P

Architecture Two-tier server Two-tier server
(deployable in a
server cluster)

Multi-tier server
based on agents that
communicate in
XML

Three-tier server
based on CORBA

Software

Java, C/C++, Perl,
COM, and CGI

Java (servlets)

Java (servlets),
Active X, and
sockets

Java, C/C++, and
Active X

Hardware Windows NT, Sun
Solaris, IBM AIX
(announced)

Windows NT, Sun
Solaris, IBM AIX

Windows NT, Sun
Solaris

Windows NT,
probably Sun So-
laris and SGI Irix

Table 3-1: Summary of reviewed user modeling servers

41 For more information on MDL (Model Definition Language), we refer to Chapter 3.2.4.

3.3. DISCUSSION 45

Functionality and input data. For GroupLens and Personalization Server, input data are
restricted to predefined information about the system’s usage, and, in the case of
Personalization Server, also about the user and the usage environment. Custom extensions
can be implemented for Personalization Server on top of the monitoring facilities already
provided by Application Server. Compared to the restricted set of input data for GroupLens
and the rather tight integration of Personalization Server with a single user-adaptive
application (environment), FrontMind’s configuration facilities for input data and Learn
Sesame’s domain modeling facilities with their inherent application independence and
flexibility seem to be clearly superior. With Learn Sesame, application programmers can
communicate information about the domain at hand and control the associated learning
process at an appropriate level of abstraction. It is hardly understandable why these
powerful domain modeling facilities have been severely restricted. The provision of a
transparent MDL wrapper layer that eases domain model development, along with sample
configurations for selected deployment scenarios, would have been a more appropriate
technical solution to facilitate deployment.

Acquisition methods and representation. With regard to acquisition methods, the reviewed
products implement complementary rather than competing approaches. GroupLens uses
collaborative filtering, Personalization Server offers (simple) production rules that mainly
operate on individual user profiles and stereotypes, FrontMind employs (simple) production
rules that take advantage of Bayesian networks, and Learn Sesame employs hierarchical
clustering. In the following, we briefly discuss these different acquisition methods along a
few key requirements for deployment to real-world settings:

• Scope of applicability. Despite the fact that GroupLens supports commonly required
user modeling tasks in commercial settings (e.g., predicting user interests and
preferences from selected data about system usage), its scope of applicability is rather
limited. The acquisition methods used by the other products cover a broader range of
user modeling tasks (e.g., Learn Sesame can also learn recurrent patterns of
observations in usage data) and can take advantage of a broader range of input data
types (namely also data about the user and the usage environment).

• Facility for incremental learning. Business practices can often be implemented straight-
forwardly in rule-driven personalization environments. Moreover, rule-driven
personalization allows businesses to be very explicit. From a user’s point of view,
however, the effects of a solely rule-driven personalization are often found to be quite
deterministic [Bachem, 1999; Net Perceptions, 2000]. Unlike non-deterministic
recommendations, rule-driven personalization leaves barely any room for users’
serendipity42. This is mainly due to the fact that the underlying representation system for
user information can hardly deal with uncertainty and with changes in user behavior.
Keeping track of changing user interests and preferences in real time is, however, a
main motivation for user modeling from a marketing point of view (see Chapter 1.2).
Even worse, rule design, update and management is primarily a manual process and

42 With serendipity, we refer to a well-known phenomenon in hypermedia where users, stimulated by unexpected

interesting information provided by the system, abandon or sidetrack from the original search goal [Conklin, 1987;
Nielsen, 1990]. Similar effects are reported for non-deterministic recommendations provided e.g. by collaborative
filtering systems, as opposed to more deterministic recommendations provided e.g. by rule-based systems [Bachem,
1999; Net Perceptions, 2000].

46 CHAPTER 3. USER MODELING REQUIREMENTS

therefore cumbersome and error-prone.
Considering (i) the enormous size of real-world Web sites; (ii) the heterogeneous
personalization requirements of a large number of different users and user groups; (iii)
the necessity to regularly update both content and personalization behavior; and (iv) the
paramount importance of consistency for the overall usability of applications, user
modeling servers like Personalization Server that solely rely on rule-based
personalization and stereotypes seem to have severe shortcomings. Systems like
FrontMind that exhibit both deterministic and non-deterministic personalization
behavior seem to have a significant competitive advantage.

• Explicitly represented knowledge. In GroupLens, user-related information including
dynamically calculated groups of users with similar interests and preferences is
represented implicitly in cache memory. Applications can access this information only
via pre-defined APIs (see Chapter 3.2.1). Personalization Server and FrontMind
maintain their user profiles explicitly in databases. If necessary, applications can access
these databases directly, which usually allows for more general exploitation. As
opposed to this, FrontMind maintains its models of users’ behavior in proprietary files.
Likewise, Learn Sesame represents a priori available and dynamically acquired user-
related information including related evidences (e.g., support, confidence) in
proprietary databases. In any case, it is highly recommended to access these proprietary
information sources only via the associated APIs.

• Employing domain knowledge in the learning process. As already pointed out earlier
(see Chapter 3.2.4), Learn Sesame is unique in employing domain knowledge for
guiding the learning process, which significantly contributes to the efficiency and
scalability of the overall user modeling process.

Extensibility. GroupLens and Learn Sesame do not allow for custom extensions to their
acquisition methods, nor do they provide interfaces for user modeling products that offer
such kind of functionality. In contrast, Personalization Server allows for such an integration
via its pre-defined Open Targeting Adapters (e.g., for GroupLens). Similarly, FrontMind
allows for the incorporation of complementary user modeling functionality by custom
programming Business Objects. We believe that Manna will make up for this deficiency
and offer a dedicated set of Business Objects for integrating complementary user modeling
products (e.g., for GroupLens and LikeMinds) in the near future. On ATG’s Web site,
Accrue [2000] and Macromedia are mentioned as additional technology partners. Both
companies offer supplemental products for Web site traffic analysis and reporting (e.g., for
investigating the effectiveness of personalization features). We believe that ATG
showcases that a focused product which offers open interfaces for complementary tools can
successfully cope with the broad scope of requirements for a personalization platform
(which range from acquiring user and usage data to user modeling, the provision of user-
related adaptations, user model inspection and analysis, and reporting).

Integration of external user and usage information. Leveraging the assets of user-related
information that is dispersed across the enterprise (e.g., client profiles, past purchase data,
user segmentations from database marketing) seems to be of paramount importance for
businesses [Hagen et al., 1999]. The products reviewed support this only to a very limited
extent. GroupLens and Open Sesame provide mainly bulk loading facilities for legacy data,
whereas Personalization Server and FrontMind can directly integrate user-related
information from external sources and vice versa at runtime (in the case of Personalization

3.3. DISCUSSION 47

Server, this is only of limited value since this information cannot be incorporated in
personalization rules). In general, central user modeling servers that allow for the
integration of existing information sources about users and, vice versa, enable direct access
to information stored in user models, can provide the platform for more holistic
personalization from a user’s point of view (see Chapter 1.2). In order to achieve this, all
relevant user-related information including meta-data has to be (virtually) fused into a
single source, regardless of physical details like representation, management system,
location, operating system, and network protocol [Truog et al., 1999]. LDAP43-compliant
Directory Servers and associated meta-directory facilities (e.g., from iPlanet [2000b] and
Persistent [2000]) provide such functionality and therefore seem to offer a promising
platform for implementing user modeling servers. On top of this platform, dedicated user
modeling components can be implemented that communicate with the server platform via
CORBA. From a client’s and application programmer’s point of view, this allows for a
transparent access to user-related information and associated user modeling services with
commonly available applications (e.g., WWW browsers, e-mail clients) and tools (e.g.,
directory browsers) via a standardized protocol (e.g. LDAP). For more information on such
a user modeling scenario, we refer to Chapter 6.3.1. In Part Two and Three of our thesis
work, we design and implement a user modeling server that can integrate various sources of
external user and usage information.

Privacy. ATG, and to a lesser extent also Manna, seem to be rather careless regarding
privacy, compared for example to the efforts undertaken by Net Perceptions and Bowne.
This is somewhat surprising since many tool vendors, their customers and the (online)
marketing industry actively propagate and contribute to self-regulation with regard to
privacy, in order to prevent governments from passing probably more restrictive privacy
laws. The overall aim of self-regulation is to increase customer confidence. Means to this
end include (i) privacy initiatives (in the U.S., e.g. from the Federal Trade Commission
[FTC, 2000], the Network Advertising Initiative [NAI, 2001], and the Direct Marketing
Association [DMA, 2000]), (ii) practices and policies (e.g., Amazon [2000], Bowne [2000],
Electronic Privacy Information Center [EPIC, 2000], Net Perceptions [2000], TRUSTe
[2000]), and (iii) technologies and standards (e.g., cookies44 [Kristol and Montulli, 1997],
OPS [W3C, 2000], P3P [W3C, 2000]). For an overview on security and privacy issues in
user modeling, we refer to Kobsa [2001b], Schreck [2003], and to Chapters 5.4 and 6.3.3.

Architecture. In order to achieve flexibility and scalability, the reviewed user modeling
servers take different architectural approaches. GroupLens and Personalization Server both
rely on a two-tier architecture (namely a database tier and a user modeling tier), Learn
Sesame relies on an additional third tier (for the Knowledge Manager), and FrontMind is
based on a multi-tier architecture. Although Learn Sesame takes advantage of an additional
third tier, its granularity of distribution and the associated scalability hardly surpasses that
of GroupLens and Personalization Server. The main reason is that in all three systems, the
‘critical’ user modeling functionality is incorporated into a single tier and hence cannot be

43 LDAP (Lightweight Directory Access Protocol [Howes and Smith, 1997b; Howes et al., 1999; Wilcox, 1999]) is a

standardized application programmer interface for accessing information about relevant characteristics of users,
devices and services on a network.

44 Cookies are short pieces of textual information (e.g., a unique ID, a user password) that are used for identifying a
computer (i.e., not necessarily a specific user) each time a Web site is visited. Cookies are sent by Web servers and
locally stored by browsers.

48 CHAPTER 3. USER MODELING REQUIREMENTS

distributed over a network of computers. Likewise, the employment of differently
configured instances of the same user modeling components is currently not supported and,
to the best of our knowledge, not planned to be available in the near future. An example
that motivates this requirement are different learning strategies that can be accomplished by
using differently configured instances of the same learning engine: assumptions about
users’ interests and preferences can be acquired through rather quick and volatile learning
in one Learning Engine, whereas assumptions about users’ knowledge that probably require
a slower and more solid learning process can be acquired in a second Learning Engine.

A user modeling server thus should allow for (i) the flexible distribution of components
across a network of computers, according to resource and availability requirements, (ii) the
employment of differently configured instances of a user modeling component, and (iii) the
integration of complementary user modeling server products. Due to its sophisticated agent-
based architecture, FrontMind should be clearly superior regarding flexibility and
scalability (the XML-based communication between agents may not be very efficient
though). However, and to the best of our knowledge, FrontMind does not provide
replication facilities and Business Objects for integrating complementary user modeling
products at the moment. For a user modeling server that caters to these architectural
requirements, we refer to Parts Two and Three of this work.

Software and hardware. The APIs supported by the reviewed user modeling servers reflect
the targeted kind of user-adaptive applications. Personalization Server provides interface
support for Java only (i.e., the programming language used in ATG’s products) and, via
Application Server, for dedicated Web servers (namely ‘Apache HTTPD’, Microsoft’s
‘Internet Information Server’, and Netscape’s (and iPlanet’s) ‘Enterprise Server’ and
‘FastTrack Server’). Group Lens, FrontMind, and Learn Sesame provide a variety of
interfaces for several programming languages (e.g., Java, C/C++, Perl). Moreover, they
support common component frameworks, e.g. Active X, COM, CGI-compliant Web
servers, and one or more e-commerce servers (e.g., BroadVision’s One-To-One, Vignette’s
StoryServer [Vignette, 2000], Microsoft’s Site Server, Allaire’s ‘ColdFusion’ [Allaire,
2000], and IBM’s ‘Net.Commerce’ [IBM, 2000a]).

Concluding, we found that the reviewed commercial user modeling servers offer in part
sophisticated deployment-supporting features, e.g. regarding the offered acquisition
methods and the supported platforms (although the degree of sophistication varies from
product to product). Given the potential of centralized user modeling we briefly introduced
in Chapter 1.3, we believe that there is considerable room for future improvements of these
servers, especially regarding (i) acquisition methods, with a focus on the integration of
domain knowledge and method mix at deployment time, (ii) extensibility, and (iii)
integration of user-related information that is external to the user modeling server. In the
remainder of this thesis, we design, implement, and evaluate a user modeling server that
caters to these requirements.

49

II
User Modeling Server

Design

51

When considering the quite extensive list of requirements we collected so far, it becomes
evident that the development of a user modeling server can hardly be carried out from scratch
in a single dissertation project. Such an endeavor seems also redundant, given the fact that
there are already many server platforms available that cover to some extent the requirements
we introduced in Chapters 2 and 3. Following this, we decided to investigate available server
systems as to whether they can serve as a basis for our user modeling server. Those
requirements that can not be covered by available systems are regarded as necessary
extensions. With respect to server systems worthwhile to investigate, we decided to consider
(mainly relational) database management systems and directory management systems.

In the following chapter, we compare and evaluate directories and database management
systems (abbreviated databases in the following45) against the background of our
requirements catalogues. We find that especially LDAP-based directories are generally
superior to databases. Based on this finding, we subsequently introduce directory
management systems (abbreviated directories), since they are not as commonly known as,
e.g., relational database management systems. Subsequently, we design a generic architecture
for our user modeling server that comprises an LDAP server for data management and
several ‘pluggable’ user modeling components, each of which implements an important user
modeling technique. Finally, we show that this architecture not only caters to present, but
also to likely future user modeling scenarios.

4 Server Basis – Directories versus Databases
Directories are specialized database management systems that maintain information about
relevant characteristics of users, devices, and services on a network. With historical roots in
the sixties and early seventies, two main groups emerged since then (for more information
about the history of directories, we refer e.g. to Howes et al. [1999]):

• Application-specific directories (e.g., Lotus Notes Address Book [IBM, 2000b],
Microsoft Exchange [Microsoft, 2000d]), network operating system directories (e.g.,
Microsoft Active Directory [Microsoft, 2000c], Novell Directory Services [Novell,
2000]), and special-purpose Internet directories (e.g., Bigfoot [2000], Switchboard
[2000]).

• General-purpose and standards-based directories (e.g., X.500 DAP46 [Chadwick, 1996;
ITU-T, 2001a], LDAP [Howes and Smith, 1997b; Howes et al., 1999, Loshin, 2000]).

Only the latter group seems relevant for our endeavor, since these systems are not limited to a
specific purpose, a particular application, or a specific operating system. General-purpose and
standards-based directories are designed to meet the needs of a wide range of applications.
They are based on standard protocols that allow for interoperability even between
implementations of different vendors and research institutions. Over the last decade, LDAP
emerged from this category of directories, because it removed unneeded complexity from
X.500 DAP, significantly reduced related resource requirements, and took advantage of the
popular TCP/IP, instead of the OSI protocol stack. Nevertheless, LDAP still maintained

45 We will use the terms directories and databases as short forms for the more appropriate terms directory management

systems and database management systems in the remainder of this work.
46 DAP is an abbreviation for Directory Access Protocol.

52 CHAPTER 4. SERVER BASIS – DIRECTORIES VERSUS DATABASES

many strengths of X.500, including its information model (see Chapter 5.1), its versatility,
and its openness.

Comparing databases with LDAP directories, several differences become evident that
recommend an LDAP-based system as a basis for our user modeling server. We briefly
review the most important differences in the following sub-chapters.

4.1 Extensibility
LDAP directories provide built-in support for storing and retrieving a variety of user-
related information including names, postal addresses, phone numbers, salaries,
photographs, videos, digital certificates, passwords, preferences data, and even mobile ‘user
agents’ written in Java (see Kobsa [2001a] for an associated user modeling scenario) in a
standardized way. Moreover, support is provided for representing presumably relevant real-
world objects like organizations (e.g. ‘GMD’), groups (e.g. administrators), and devices
(e.g. printers). Directories are not limited to a fixed schema: based on predefined standard
types and vendor-specific types of information, arbitrary extensions can be defined in order
to cater to specific modeling needs. This includes not only new types of information (e.g.,
descriptions of user modeling services, user locale), but also custom primitive data types
with new semantics (e.g., German telephone numbers, probabilities of users’ interest) and
behavior (e.g., transient information about user locale that must be periodically refreshed in
a user model by a localization application [Yaacovi et al., 1999]).

Comparing LDAP with today’s databases, the number of predefined user-related
information types and related extension facilities clearly excels those offered by today’s
database systems. Only a few database systems provide user-related information types and
facilities for defining new primitive data types via low-level extensions to the database
nucleus (e.g. Informix [2000]). To the best of our knowledge, these facilities are in any case
proprietary and therefore hamper interoperability between different database systems and
their clients.

4.2 Management of Distributed Information
LDAP directories can manage information that is dispersed across a network of several
servers. Historically, this facility catered for deployment scenarios, where administration
responsibilities and authorities for directory information are distributed (e.g., the German
branch of an international organization is responsible for information about employees in
German subsidiaries). To the outside world, however, this distribution is transparent, i.e.
the directory appears as a single and consistent source of information. The design and
maintenance of large-scale directories provides another important motivation for
distributing information. It is often more appropriate to design a large-scale directory as a
network of smaller parts (see Figure 4-1). Such a distributed topography often provides a
much better performance, scalability, availability, and reliability of the overall service,
compared to a single large directory. Moreover, a distributed directory is in many cases
cheaper to implement and simpler to manage. For more information on LDAP’s
distribution facilities, we refer to Howes et al. [1999].

4.2. MANAGEMENT OF DISTRIBUTED INFORMATION 53

Directory on Server A

Directory on Server B Directory on Server C

Figure 4-1: Distributed directory (based on Howes et al. [1999])

Database systems can handle data distribution too. The potential granularity and scale of
distribution, however, is quite different from LDAP. Databases often restrict the granularity
of distribution to the level of database tables and the scale of distribution to a rather small
number of sites. LDAP directories are not limited in these respects and support arbitrary
levels of granularity and distribution scales.

Against the background of user modeling, LDAP’s facilities for managing distributed
information seem to be very promising, since they do not only support our aim of
developing a user modeling server, but corroborate at the same time promising future user
modeling scenarios including the following (cf. Kobsa [2001a]):

• User models for smart appliances that maintain relevant user characteristics (e.g.,
interests and preferences) and adapt their functionality accordingly will come into
reality soon. Examples of such appliances include (i) car radios, which store a driver’s
pre-set stations, volume and tone, and traffic news, (ii) car keys, which adjust the driver
seat and the mirrors, and adapt the modality and conciseness of the recommendations
provided by their GPS47-based navigation system, (iii) mobile phones, which pre-load
hypertext pages that are presumably relevant (e.g., stock quotes), (iv) video recorders,
which proactively record presumably interesting television programs according to a TV
viewer’s preferences, and (v) refrigerators, which manage the food stored therein and
reorder food that ran out of stock via Internet, thereby taking a user’s preferences into
account. In order to enable appliances to access an LDAP server, the Connection-less
Lightweight Directory Access Protocol (abbreviated ‘CLDAP’ [Young, 1995]) was
proposed as an Internet standard. CLDAP was designed for light-weighted client
applications that require access to small amounts of information from an LDAP server.
Even more powerful access facilities are at the disposal of those appliances that support
a full-fledged LDAP client interface.
For those appliances that exhibit LDAP server functionalities, LDAP’s facilities for
managing distributed information can be employed for seamlessly integrating user-
related information that is dispersed across several appliances (e.g., preferences

47 GPS (i.e., Global Positioning System) is a satellite-based system that allows for localizing objects in physical space

(e.g., the position of a car, a computer, a hiker).

54 CHAPTER 4. SERVER BASIS – DIRECTORIES VERSUS DATABASES

regarding pre-set stations maintained by a car radio, preferences regarding types of food
managed by a refrigerator, preferences for TV channels maintained by a video
recorder).

• Mobile user models are motivated by recent trends like ubiquitous computing48,
ubiquitous information49, and agent-based computing, especially in the area of
telecommunication and ‘intelligent networks’ [Magedanz, 1997]. LDAP servers can
cater to these scenarios via (i) their remote access protocols (i.e., LDAP and CLDAP),
(ii) their facilities for managing distributed information (see above), and (iii) their
capability for storing dynamic user modeling functionality (i.e., user agents, either
maintained as references to CORBA objects [Ryan et al., 1999a] or as Java objects
[Ryan et al., 1999b]).

• Multiple-purpose user models have already been extensively discussed in Chapter 3.
LDAP servers can fuse user-related information from a variety of sources (e.g., client
profiles, purchase information from legacy systems, user segmentations from
marketing) in a single (virtual) source, thereby providing the basic platform for a
personalization infrastructure (see also Chapter 6.3).

4.3 Replication Scale
LDAP’s replication facilities allow for populating and synchronizing a considerable
number of copies of directory information (see Figure 4-2).

Directory on Server A

Replica on Server B Replica on Server C

Replica protocol

Figure 4-2: Replicated directory (based on Howes et al. [1999])

Historically, replication was mainly motivated by availability and performance
considerations when deploying directories to real-world environments. Maintaining replicas

48 Portable information devices like laptops, palmtops, organizers, next generation mobile phones, etc. provide

computing facilities wherever a user goes.
49 A user can access her personal information environment at every point of interaction (e.g., information kiosk, desktop

computer, ‘interactive wall’).

4.3. REPLICATION SCALE 55

of directory information can significantly increase the availability and performance of a
directory service from a client’s point of view. These benefits can also be leveraged when
deploying directories to user modeling scenarios:

• Reliability. If a source of user-related information is unavailable (e.g., in case of a local
user modeling server being down for maintenance reasons), a client can access another
user modeling server that maintains a replica of the user-related information maintained
by the unavailable server.

• Availability. If the network connecting a remote user modeling server and a user-
adaptive application becomes (temporarily) unavailable, access to a local replica of
user-related information still enables a user-adaptive application to provide
personalized information and services. This benefit can be considered to increase e.g.
the autonomy of mobile users, smart appliances, and user agents, by reducing their
dependence from the availability of a network connection.

• Locality. The closer user-related information is to consumer applications, the better the
quality of service and, in some cases, the level of security that can be obtained. Creating
a local replica of a user model may positively contribute to the security of user-related
information, since network communication can be reduced to the amount of
communication necessary for keeping replicas synchronized. For a related user
modeling scenario, we refer to Chapter 6.3.3.

• Performance. Performance may be increased by adding additional replicas to the
overall system. E.g., user agents avoid network traffic by taking advantage of a local
replica or a user modeling server nearby, instead of accessing a remote user modeling
server.

It is worthwhile to note that LDAP’s replication and distribution facilities may yield
disadvantages as well (e.g., consistency problems in user-adaptive applications that stem
from temporary inconsistencies between a user model and its replicas, computing resources
needed for resolving replication conflicts). Furthermore, directory replication requires
careful planning and deployment. For more information on this topic, we refer to Howes et
al. [1999].

Two main differences become apparent when comparing LDAP’s replication facilities with
those offered by today’s databases, namely scale of replication and replication strategy.
LDAP directories are replicated on a far greater scale than databases. In a large
international organization for example, directory information about employees may have
hundreds or thousands of replicas, which are distributed in subsidiaries all over the world.
In contrast with this, only a few databases support replication, typically with a few number
of replicas. The second important difference is replication strategy. Replication between
directories is normally loosely consistent, i.e. temporary inconsistencies between replicas
are acceptable. Presupposing a limited amount of computing resources available, applying a
weak consistency strategy is the sine qua non for directory replication on a larger scale.
Databases in contrast, normally support strong consistency, i.e. database replicas have to be
in sync at all times. Maintaining such a strong consistency, however, requires a
considerable amount of system resources (we refer also to our discussion of transactional
consistency in Chapter 2). This is one of the main reasons why databases normally support
only a small number of replicas.

56 CHAPTER 4. SERVER BASIS – DIRECTORIES VERSUS DATABASES

4.4 Performance and Scalability
Directories are designed to cater to the requirements of a wide variety of applications (e.g.,
e-mail servers and clients, Web server applications and browsers, groupware servers and
clients, lightweight database applications). Performance and scalability is of paramount
importance for directories, since the number of applications that take advantage of directory
information is often not known at deployment time. From a workload point of view,
directories are optimized for processing search operations; their performance regarding
updates is considered less important. Another factor that differentiates directories from
databases is their lack of sophisticated transactional facilities. Only a few directories
provide simple support for transactional consistency, the scope of synchronization,
however, does rarely exceed a single LDAP operation (for more information on this topic,
we refer to Chapter 5.3).

Databases on the other hand, are designed for a relatively small set of dedicated
applications. Performance and scalability is important for database systems too. Their
presumable workload, however, differs considerably from the one for directories.
Databases are designed for a workload with rather balanced ratios for search and update
operations (as this is the case in many merchandise transactions). Regarding search
performance, Shukla and Deshpande [2000] report that databases excel directories with (i)
an increasing number of entries that match a certain query and (ii) an increasing result set
for a certain query. If the number of matching entries and the overall result set is small,
however, directories have shown in their evaluation a far better search performance than
databases. Apart from performance considerations, databases are assumed to offer
sophisticated facilities for safeguarding transactional consistency (see also our discussion of
these facilities in Chapter 2).

Against the background of our endeavor of designing and implementing a user modeling
server, it seems of paramount importance to decouple server design as much as possible
from the one of its applications. And reflecting the rather tight coupling between databases
and their client applications, directories seem to be provide a more open basis for our user
modeling server than databases do. To the best of our knowledge, there is no evidence in
the current user modeling literature that motivates (i) a high update frequency for user data
(e.g., demographics, skills and capabilities, knowledge, interests and preferences), (ii) the
need for retrieving large amounts of user information, and (iii) more sophisticated
transactional facilities (see also Fink [1999]). A quite different situation may be
encountered when processing information about a systems usage (e.g., temporal viewing
behavior, navigation patterns, ratings, purchases, situation-action-correlations, software
platform, hardware platform, locale). Usage data, however, are normally not persistently
stored, but (more or less) immediately processed by associated user modeling functionality.
See Kobsa et al. [2001] for an overview of related systems and Chapter 8.4 for a user
modeling component that processes certain types of usage data.

4.5. STANDARDS 57

4.5 Standards
The last important area where directories significantly differ from databases is standards.
The most important areas of standardization for LDAP include the following:

• LDAP protocol specifications for version 2 and 3, i.e. RFCs50 1777-1779 [Yeong et al.,
1995; Howes et al., 1995; Kille, 1995] and 2251-2256 [Wahl et al., 1997a; Wahl et al.,
1997b; Wahl et al., 1997c; Howes, 1997; Howes and Smith, 1997a; Wahl, 1997]. Some
of these standards are, in turn, based on X.500 standards, e.g. RFC 2256, which defines
the syntax and matching rules to be used for attribute types and object classes in a
LDAP user schema is based on X.501 [ITU-T, 2001b], X.520 [ITU-T, 2001c], and
X.521 [ITU-T, 2001d].

• Proposed extensions to LDAP version 3 include RFC 2589 [Yaacovi et al., 1999] for
managing dynamic LDAP entries that need to be periodically refreshed by client
applications in order to persist, RFC 2820 [Stokes et al., 2000] for common require-
ments towards interoperable LDAP access control models, RFC 2713 [Ryan et al.,
1999a] for LDAP schema elements that represent Java objects, and RFC 2714 [Ryan et
al., 1999b] for schema elements that host CORBA object references.

• Related Internet standards or proposed standards that have been adopted by LDAP
include RFC 2222 [Myers, 1997], which specifies SASL (Simple Authentication and
Security Layer). SASL is a generic framework for negotiating security parameters (e.g.,
for authentication, encryption, and signing) between applications. LDAP version 3
provides native support for SASL.

• Besides the aforementioned SASL, LDAP employs additional security standards such
as X.509 certificates (as defined in RFC 2559 [Boeyen et al., 1999a] and RFC 2587
[Boeyen et al., 1999b]) and the SSL (i.e., Secure Sockets Layer) and TLS (Transport
Layer Security) protocol. The latter is defined in RFC 2246 [Dierks and Allen, 1999].

• A common, text-based format for representing and exchanging directory content called
LDIF (i.e., LDAP Data Interchange Format) has been proposed recently for
standardization. LDIF is specified in RFC 2849 [Good, 2000].

• An LDAP programming interface for C has been proposed in RFC 1823 [Howes and
Smith, 1995], an API for Java is available as an Internet Draft [Weltman et al., 2001].
Moreover, there are a number of proprietary and (mostly) freely available SDKs
(Software Development Kit) for a variety of languages including C, C++, Java, Perl,
and Basic. Examples include the Directory SDKs from Netscape [2000b], JNDI (Java
Naming and Directory Service) from Sun [2000b], and ADSI (Active Directory
Services Interface) from Microsoft [2000c].

Although there are a few standards for databases (e.g., for SQL [ISO, 1989; 1999]), their
number and scope falls far short of those for directories. The implications of this lack of
standardization are manifold, the most important seeming that no real interoperability can
be achieved between database systems of different vendors (e.g., an Oracle client
application can be presumed to not work with a Sybase database).

50 RFCs (Request for Comments) describe many aspects of Internet-based computer communication, e.g., networking

protocols, procedures, programs, and architectural concepts [IETF, 2000]. RFCs may also contain meeting notes
(e.g., of the IETF) and opinions regarding the aforementioned topics.

58 CHAPTER 5. INTRODUCTION TO LDAP DIRECTORIES

Adherence to open standards, however, can be considered crucial for user modeling clients
and servers, since this fosters their interoperability. On a more technical level, this is
mainly achieved by decoupling

• the design and development of user-adaptive applications from the one for user
modeling servers,

• particular design and development decisions that have been taken during the
development process of clients and servers (e.g., regarding security of user-related
information), and by decoupling

• the design process for user modeling servers and clients from decisions about a
particular implementation (e.g., clients are not affected by the server being migrated to
a server product of a different vendor).

Until recently, only a few standardization efforts have been undertaken in the user
modeling community, mainly regarding the application programming interface to user
modeling systems. Kobsa et al. [1996] propose an interface that is based on KQML, and
Kummerfeld and Kay [1997] discuss common interfaces including LDAP for user
modeling purposes. Interestingly, Kummerfeld and Kay ruled out LDAP, mainly because of
its lack of client-side schema retrieval and manipulation features. Meanwhile, these features
have found their way into LDAP version 3 (see RFC 2252 [Wahl et al., 1997b]).

Summarizing the aforesaid, directories seem to excel databases regarding extensibility,
management of distributed information, replication scale, performance and scalability, and
adherence to standards. User modeling servers and clients that take advantage of directory
technology can be assumed to exhibit a considerable degree of openness and flexibility. In
Chapter 6.3, we further substantiate this claim by showcasing the deployment of our
directory-based user modeling server to several present and (potential) future user modeling
scenarios.

5 Introduction to LDAP Directories
In the previous chapter, we argued that LDAP-based directories provide a promising basis
for our user modeling server. Therefore, we present LDAP now in a more stringent manner
and focus especially on those features we did not cover so far. In the following, we
introduce LDAP by means of the following four models:

• Information model, which defines the types of data that can be stored in a directory.
• Naming model, which describes how to organize and refer to directory data.
• Functional model, which prescribes how to access directory data.
• Security model, which defines how to control access to directory data.
For more information on LDAP, we refer to Howes and Smith [1997b], Howes et al.
[1999], and to the RFCs mentioned in Chapter 4.5.

5.1. INFORMATION MODEL 59

5.1 Information Model
The basic unit of information in an LDAP directory is an entry. An entry represents
information about a (real-world) object (e.g., users, servers, printers, organizational units).
Associated with an entry are attribute-value pairs, which describe relevant object properties
(e.g., name, address, description). An example is the user model entry for the hypothetical
user Peter Smith, which looks in LDIF format as follows (for a more thorough discussion
of a slightly different version of this entry, we refer to Chapter 8.2.1):

dn: cn=Peter Smith, cn=User Model, ou=UMS, o=gmd.de

objectclass: top

objectclass: person

cn: Peter Smith

age: 36

sex: m

continent: eu

description: department manager

Each attribute (e.g. description) is associated with an attribute type, which defines (i) a
name and an object identifier (abbreviated ‘OID’), (ii) an indicator whether one or more
values are allowed for an attribute, (iii) an attribute syntax, (iv) a set of matching rules, (v)
an indicator whether an attribute is intended to be used by the system or the user (i.e.,
category operational or user), and (vi) possible restrictions on the range or size of attribute
values.

For the aforementioned attribute description for example, the attribute type definition
looks as follows (in ASN.1 notation [ITU-T, 1997]):

description ATTRIBUTE ::= {

WITH SYNTAX

DirectoryString {1024}

EQUALITY MATCHING RULE caseIgnoreMatch

SUBSTRINGS MATCHING RULE caseIgnoreSubstringsMatch

ID 2.5.4.13 }

This type definition

• restricts values for description to a single text string with a maximum length of
1,024 characters (as specified by the ASN.1-based syntax description
DirectoryString {1024}),

• associates the matching rules caseIgnoreMatch for equality and
caseIgnoreSubstringsMatch for substring matching to attribute values (both
ASN.1-based matching rules specify that case of letters and leading, trailing, and
multiple spaces are ignored), and

• assigns 2.5.4.13 as an OID to this type definition (actually, this OID has been
assigned to this standard attribute type by the X.500 standards committee).

60 CHAPTER 5. INTRODUCTION TO LDAP DIRECTORIES

Each directory entry belongs to one or more object classes (e.g. person). Each object
class defines (i) a class type, (ii) a set of mandatory attribute types, (iii) a set of optional
attribute types, and (iv) an object identifier. For example, the object class person already
mentioned earlier is defined as follows (in ASN.1 notation):

person OBJECT-CLASS ::= {

SUBCLASS OF {top}

MUST CONTAIN {sn | cn}

MAY CONTAIN {description | seeAlso | telephoneNumber |

 userPassword}
ID 2.5.6.6}

This object class definition

• specifies that person is a subclass of top,
• defines sn (i.e., surname) and cn (i.e., common name) as mandatory attribute types,
• determines description, seeAlso, telephoneNumber, and userPassword

as optional attribute types, and
• assigns 2.5.6.6 as an OID to this class definition (person is a standard object class

defined by the X.500 standards committee).
If an entry belongs to more than one object class (e.g., printer and server), then the set of
applicable mandatory and optional attributes is simply calculated as the union of the two
object class definitions. Potential inheritance conflicts are avoided by (i) prioritizing
mandatory over optional attributes, (ii) not providing overriding, and (iii) maintaining a flat
namespace (i.e., inheritance is only structural). The same principles apply also to
inheritance between object classes in LDAP.

5.2 Naming Model
The LDAP naming model mandates the organization of LDAP entries representing users,
organizations, services, etc. in an inverted tree structure. In this respect, LDAP’s naming
model resembles a hierarchical file system (e.g., in UNIX), where each directory comprises
files and sub-directories. Besides this similarity, however, there are also a few differences
between LDAP’s naming model and a hierarchical file system:

• The root entry of an LDAP tree is a special entry that contains server-specific
information (e.g., about LDAP versions supported, operations provided, entries hosted,
security features implemented, and alternative servers that can be contacted in case of a
breakdown). Besides this information, no application-specific data can be placed in the
root entry of an LDAP tree. In a hierarchical file system, however, the root directory is
the common ancestor and comprises all files and directories contained therein.

• A second difference is that entries in an LDAP tree contain data (represented in
attribute-value pairs) and can have at the same time child entries underneath them. In a
hierarchical file system, however, each node is either a file or a directory, but not both.
Only files may contain data and only directories may contain sub-directories. Compared
to this, directory entries exhibit file and directory characteristics at the same time.

5.2. NAMING MODEL 61

• The final difference between LDAP and a hierarchical file system is regarding naming
of individual nodes within the tree. LDAP naming is in little-endian order (i.e., the least
significant component is written first), whereas naming in a hierarchical file system is
in big-endian order (i.e., the most significant component is written first). In other words
LDAP naming is backward relative to file system naming. An example in LDAP can be
given as follows:

cn=Peter Smith, cn=User Model, ou=UMS, o=gmd.de

This name, also called ‘distinguished name’ or abbreviated ‘DN’, refers to the user
model of Peter Smith. The whole name is constructed by appending the names of the
parent entries of Peter Smith and separate them by commas, back to the root entry. The
leftmost name component of an entry is called ‘relative distinguished name’ or
abbreviated ‘RDN’ (i.e., cn=Peter Smith in our example). For unambiguously
referring to an entry, all RDNs that share the same immediate parent entry have to be
unique (e.g., no second entry named cn=Peter Smith is allowed below cn=User
Model).

LDAP supports a hierarchical organization of directory entries. No further restrictions, e.g.
regarding specific hierarchy topographies or object classes for entries, apply51. Non-
hierarchical topographies can be represented by employing so-called ‘alias entries’.
Applying the analogy to the UNIX file system again, aliases are comparable to symbolic
links. In LDAP, aliases point to other entries that can be located in the same or a remote
directory tree (see Figure 5-1 for an example).

Directory on Server A Directory on Server B

Alias

Figure 5-1: Alias connecting two directory trees (based on Howes et al. [1999])

The part of the directory tree that is hosted by a server is called ‘partition’ (or ‘naming
context’ in X.500). Taking a search operation on the partition hosted by Server A as an
example, Server A has to contact Server B as soon as the alias entry has to be checked
whether it matches the given search criteria. Additional queries to external servers,
however, can be assumed to be quite expensive in terms of resources; hence, not all
directory servers support aliases.

Although aliases can be used for connecting partitions that reside on different LDAP
servers, LDAP’s facility of choice for ‘intra-linking’ a distributed directory are ‘referrals’.

51 This is quite different from LDAP’s ancestor X.500 [Chadwick, 1996; ITU-T, 2001a], where the topography of a

directory is much more mandated (e.g., only entries representing countries, localities, and organizations can be placed
immediately below the root entry).

62 CHAPTER 5. INTRODUCTION TO LDAP DIRECTORIES

Quite comparable to aliases, referrals are explicit references that connect the different
partitions of a distributed directory (for an example of a distributed directory, we refer to
Figure 4-1). The main advantage of referrals is that they are standardized as a part of the
LDAP v3 specification [Wahl et al., 1997a].

In a distributed directory, each partition is hosted by a dedicated directory server. If a client
queries an arbitrary server that hosts a partition of a distributed directory (e.g., Server A in
Figure 4-1), the server passes back to the client the result along with referrals that point to
additional relevant information hosted by other directory servers (e.g., Server B and C).
Subsequently, it is up to the client whether to stay with the returned result or to chase the
referrals by re-submitting the query to the additional servers. An alternative approach is that
the directory server automatically chases referrals on behalf of the client. In this case, the
server forwards the query to potentially relevant servers, collects the results, and passes
them back to the client. This approach is called ‘chaining’.

Referring and chaining have both advantages and disadvantages. Clients that take
advantage of referrals benefit from a fine-grained control regarding their distributed
directory operations and can keep their users informed about the progress of their directory
operations, although at the cost of increased client complexity. Chaining significantly
relieves clients from the complexity of accessing a distributed directory. From a client’s
perspective, the whole directory appears as a single and homogeneous source of
information. On the server side, however, the workload can be assumed to be significantly
higher, since servers have to accomplish additional tasks like querying remote servers,
collecting results, and sending them back to their clients.

To the best of our knowledge, there are no servers available that support both referring and
chaining. Most of today’s LDAP servers support referring, whereas many X.500 servers
support chaining. Another approach is to implement the handling of referrals at the client
side within the application programmer interface (e.g., using the Netscape Directory SDK
[Netscape, 2000b]), thereby relieving clients as well as servers.

5.3 Functional Model
The LDAP functional model comprises operations for accessing a directory. These
operations constitute three groups:

• query operations allow for searching and retrieving information,
• update operations allow for adding, deleting, renaming, and modifying entries,
• authentication and control operations allow for authenticating clients and servers and

for controlling previously initiated LDAP operations.
Besides these predefined operations, custom ones can be defined by taking advantage of the
‘extended operation’ facility. This framework allows for extending the LDAP protocol in a
standardized manner [Wahl et al., 1997a].

5.3. FUNCTIONAL MODEL 63

5.3.1 Query Operations
For searching the directory and retrieving data, LDAP provides the operations search and
compare. LDAP search allows for searching a directory and retrieving matching entries. It
takes the following parameters (regarding parameter names, we adhere to RFC 2251 [Wahl
et al., 1997a]):

• BaseObject specifies the entry where the search should start. The base object is
described with its DN, e.g. cn=User Model, ou=UMS, o=gmd.de.

• Scope specifies the search space, starting from the base object. Three types of scopes
can be specified: base, one level, and subtree. Figure 5-2 depicts these scopes and the
resulting search spaces for a particular directory tree.

Scope = base Scope = one level Scope = subtree

Figure 5-2: LDAP search scopes (based on Shukla and Deshpande [2000])

A scope of base limits the search operation to the base object (e.g., search for
cn=Peter Smith, cn=User Model, ou=UMS, o=gmd.de and retrieve the
value of the attribute sex for this person). A scope of one level limits the search to the
base object including those entries immediately beneath it (e.g., start searching at
cn=User Model, ou=UMS, o=gmd.de and retrieve the value of the surname
attribute of all entries of type person immediately beneath this entry). A scope of
subtree limits the search to the base object and the entire sub-tree beneath it (e.g., start
searching at cn=User Model, ou=UMS, o=gmd.de and retrieve the value of the
surname attribute of those entries of type person that show a significant interest in
football).

• DerefAliases controls the dereferencing of aliases during the search operation (e.g.,
whether the alias depicted in Figure 5-1 is chased during a search operation or not). The
LDAP server can be instructed to either chase aliases for the base object, the entries
beneath it, or both.

• Sizelimit specifies the maximum number of matching entries that should be returned by
the server. A size limit of zero indicates that the client requests for all matching entries.
Server-side limits, however, may apply and further restrict the maximum number of
matching entries returned by the server.

• Timelimit defines the maximum time a client can afford to wait for a search operation to
complete. A time limit of zero indicates that a client imposes no limit. As already
mentioned for size limit, server-side limits may apply and further restrict the time limit.
Both limits, size limit and time limit, can be employed by administrators for preventing

64 CHAPTER 5. INTRODUCTION TO LDAP DIRECTORIES

the directory against threats like (i) excessively resource-consuming operations, (ii)
software bugs, and (iii) denial-of-service attacks.

• TypesOnly determines whether the search result should contain either attribute types or
attribute names and values. This feature is useful, e.g., when a client wants to check
which attributes are actually available for a specific entry.

• Filter can contain one or more filter terms. Each term comprises an attribute, an
operator, and an attribute value. The term (sn=smith*) for example, denotes those
directory entries that contain an attribute surname starting with the string ‘smith’. The
following table provides an overview of standard LDAP filter operator types along with
some examples (for a more thorough presentation of LDAP search filters, we refer to
RFC 2254 [Howes, 1997]):

Filter Operator Type Example Comment
Presence (sn=*) Matches any entry that has

at least one value in its
attribute surname.

Equality (sn=Smith) Matches those entries that
have exactly this value in
their attribute surname.

Substring (sn=*mit*) Matches those entries that
have the string ‘mit’ some-
where in their attribute
surname.

Approximate (sn~=Smithh) Matches those entries that
have an attribute surname
that sounds like the value
given. The matching
algorithm that implements
this operator depends on
the server vendor and the
languages supported by an
LDAP server.

Comparison (sn>Smith) Matches those entries that
have a value in their
attribute surname which is
lexicographically greater
than the value given.

Table 5-1: LDAP search filter operator types

An additional filter operator not contained in Table 5-1 is the extensible match filter.
Quite comparable to the extended operation facility discussed earlier, this operator
provides a standardized framework for defining custom filters (for more information on
this subject, we refer to RFC 2251 [Wahl et al., 1997a]).

5.3. FUNCTIONAL MODEL 65

In order to constitute more complex LDAP search filters, filter terms can be combined
with Boolean operators, i.e. AND (abbreviated ‘&’), OR (abbreviated ‘|’), and NOT
(abbreviated ‘!’). The following example illustrates this:

(&(objectclass=person)

 (organizationalrole=client)

 (!(sn=Smi*)))

This search filter matches those entries of type objectclass person whose organizational
role is client and who have an attribute surname that does not start with the string ‘Smi’.

• Attributes specifies the list of attributes that should be returned for matching entries. If
no attributes are specified or if this parameter contains the wildcard character ‘*’ then
all attributes are returned by the server.

The second of the two query operations is LDAP compare. It allows a client to check
whether a directory entry contains a particular attribute value. LDAP compare takes the
following parameters:

• Entry specifies the DN of the entry to be checked (e.g., cn=Peter Smith,
cn=User Model, ou=UMS, o=gmd.de).

• Ava (i.e., attribute-value assertion [Yeong et al., 1995]) contains an attribute name and a
value the entry is to be compared with (e.g., sn and Smith).

If the entry contains the specified attribute-value assertion, then the server returns an
affirmative response to the client. Other possible cases are (i) the specified attribute does
not exist or (ii) the attribute exists, but does not contain the specified value. In any case, the
server returns a respective indication to the client. From a programmer’s point of view, this
ability is the main motivation for preferring the compare operation over the search
operation.

5.3.2 Update Operations
LDAP provides four operations for modifying directory contents: add, delete, rename (or
modify DN), and modify. It is worthwhile to note that update operations are atomic, i.e.
either all modifications of a single operation or, if not possible (e.g., in case of a potential
directory schema violation), no modification are performed by the server. For a review of
the conditions that have to be met in order for a specific update operation to succeed, we
refer to RFC 2251 [Wahl et al., 1997a] and Howes et al. [1999].

The add operation allows for creating new directory entries. It has two parameters:

• Entry specifies the DN of the entry to be added. Aliases are not dereferenced when
locating the new entry to be added.

• Attributes contains a list of attributes and associated values that constitute the new
entry. Mandatory attributes must be included in this list (e.g., those determining the
RDN and the objectclass of an entry), operational attributes (e.g., createTimestamp,
creatorsName) must not be included, since they are exclusively maintained by the
LDAP server.

66 CHAPTER 5. INTRODUCTION TO LDAP DIRECTORIES

The delete operation removes leaf entries from a directory tree. It takes a single parameter,
the DN of the entry to be deleted. Aliases are not dereferenced when locating the entry to
be deleted.

The rename (or modify DN) operation can be used for renaming an entry (i.e., changing its
RDN) or for moving a whole sub-tree within the directory topography. It has four
parameters:

• Entry specifies the DN of the entry to be renamed (e.g., cn=Peter Smith,
cn=User Model, ou=UMS, o=gmd.de).

• Newrdn contains the new RDN for this entry (e.g., cn=Peter J. Smith).
• Deleteoldrdn controls whether the old RDN is to be deleted or to be retained within a

multiple value attribute.
• NewSuperior specifies the DN of the new parent entry. If the parent entry remains the

same, this parameter can be left blank.
The modify operation can be used for updating attributes of a directory entry. It has the
following parameters:

• Entry specifies the DN of the entry to be modified. Aliases are not dereferenced when
locating the entry to be modified.

• Attributes specifies for each attribute the requested operation (i.e., add, delete, rename),
the respective attribute name and associated values.

As already mentioned earlier, an update is performed by the server as an atomic operation.
Although single attribute modifications may temporarily violate the directory schema, the
modified entry has to comply with the schema after the update operation has been executed.
If this is not the case, all modifications are automatically rolled back by the LDAP server.

5.3.3 Authentication and Control Operations
LDAP offers the operations bind and unbind for authenticating clients and servers. The
abandon operation is endowed for controlling previously initiated LDAP operations.

The bind operation allows for exchanging authentication information (e.g., passwords,
certificates) between a client and a server. It takes the following parameters:

• Version specifies the LDAP version to be used during a session (e.g., version 3).
• Name contains the DN of the directory entry the client wishes to bind as (e.g.,

cn=Peter Smith, cn=User Model, ou=UMS, o=gmd.de). An anonymous
bind can be accomplished by providing no DN.

• Authentication contains a client’s credentials, e.g. a password in case of a simple
authentication or a request for Kerberos authentication in case of a SASL-based
authentication. As already mentioned earlier, SASL is a generic and extensible
framework for negotiating authentication, encryption, and signing services.

The server subsequently verifies a client’s credentials for the given DN and, if its identity is
approved, grants certain access privileges to the client. These privileges persist until the end
of a session or until the client re-authenticates again.

5.4. SECURITY MODEL 67

The client can terminate a session at any time using the unbind operation. Upon receipt of
an unbind, the server terminates all outstanding LDAP operations, discards any
authentication information related to the client, and closes the connection.

The abandon operation can be used by a client for terminating an ongoing LDAP operation
(e.g., a long-running search). The abandon operation takes a single parameter MessageID,
which identifies the operation that should be abandoned by the server.

5.4 Security Model
In this sub-chapter, we start with a brief discussion of potential threats to directory security
and user privacy. For a more thorough discussion of security and privacy issues in user
modeling, we refer to Schreck [2003] and Kobsa and Schreck [2003]. Besides this, there is
plenty of literature, Internet standards, and commercial products that cover various aspects
of (directory) security (e.g., Myers [1997], Smith [1997], Diffie and Landau [1998],
Boeyen et al. [1999a; 1999b], Dierks and Allen [1999], Howes et al. [1999], Netegrity
[2001]).

The purpose of the LDAP security model is to complement general security and privacy
guidelines, policies, (best) practices, and laws in protecting directory information against
threats like the following (see Schreck [2003] for an overview and Chapter 3.3 for
additional references):

• Unauthorized access, e.g. through
- forged or stolen credentials (e.g., passwords, private keys),

- connection hijacking, where a hijacker (program) pro-actively responds to server
requests addressed to authorized clients, thereby preventing them from replying,

- network sniffing, where an attacker eavesdrops on the information exchanged
between an authorized client and a server,

- ‘Trojan horses’, which imitate legitimate client programs and, once activated,
perform actions compromising security and privacy, e.g. by recording a user’s
password and sending it to an illegitimate third party,

- backdoor access, where an attacker uses non-standard access mechanisms to storage
systems (e.g., by browsing and searching the database underlying a directory) or
gains access to import/export sources of directory data (e.g., customer databases,
LDIF files),

- physical access to the directory server or parts of it (e.g., console, hard disk,
directory backups on archive media), and

- software bugs (e.g., in the directory server, operating system, network management
system) that allow attackers to bypass or tunnel security mechanisms (e.g., booting
the server from floppy disk or CD-ROM, thereby bypassing standard authentication
procedures of the operating system).

68 CHAPTER 5. INTRODUCTION TO LDAP DIRECTORIES

• Unauthorized tampering, e.g. through
- a ‘man in the middle’, i.e. an attacker (program) who interjects itself between a

client and a directory server, and

- various forms of masquerading, where attackers (or attacker programs) imitate
directory clients and servers as well.

• Non-accessibility, e.g. through
- illegitimate consumption of directory services, e.g. by a client continuously

executing resource-consuming search operations or inserting vast amounts of
information into the directory, and

- illegitimate consumption of hardware resources, e.g. by an attacker absorbing
inordinate amounts of CPU time, network bandwidth, or disk space.

A variety of technologies are available for safeguarding against most of the aforementioned
security and privacy threats. For a better overview, we associate the more prevailing ones
(e.g., SSL (TLS52), Kerberos) to one or more of the following categories:

• Authentication allows a party to verify another’s identity. LDAP’s security model offers
a standardized interface (see the previous chapter) to various authentication schemes
including (i) anonymous authentication (i.e., no authentication), (ii) simple passwords,
either communicated as plain text or encrypted via an SSL-secured connection, (iii)
X.509 certificate authentication via SSL, and (iv) SASL-based authentication and
encryption using e.g. Kerberos. It is important to note that there is an inherent trade-off
between the level of security achieved by a certain authentication technology and the
computational and organizational efforts necessary for establishing it. Using X.509-
based authentication, e.g., requires managing a public key infrastructure. Moreover,
there may be additional implications regarding deployability of a directory-based
solution. Certain directory clients, e.g., may get disclosed from a directory service,
because they do not support a specific security technology. For more information on
this topic, we refer to Howes et al. [1999] and Wilcox [1999].

• Signing ensures the authenticity and integrity of information exchanged between clients
and servers. LDAP’s security model supports signing, e.g. through SSL. Within an SSL
connection, each block of information is accompanied by a cryptographic checksum
that allows clients and servers to (i) verify the sender and (ii) check whether the data
has been tampered with while in transit.

• Encryption allows for encoding all information exchanged between parties. During the
negotiation phase of an SSL connection, e.g., a client and a server agree on an
algorithm (e.g., RC4, DES, IDEA) that is to be used for encrypting the flow of
information. Besides SSL’s encryption facilities, LDAP’s security model provides
support for alternative encryption services (e.g. MD-5) via its SASL interface. For more
information on this topic, we refer to Wilcox [1999].

52 As of the time of writing, there is very little difference between TLS and SSL; hence, we use the older and more

widespread term SSL as a generic term for both technologies in the remainder of this work.

5.4. SECURITY MODEL 69

• Access control grants anonymous and authenticated clients access to directory
information. Besides the requirements for an access control model defined in RFC 2820
[Stokes et al., 2000], there is currently no standard access control mechanism for
LDAP53. In our implementation, we decided to take advantage of the access control
model offered by iPlanet Directory Server [iPlanet, 2000b]54, since we employ this
commercial server as a basis for our user modeling server (see Chapter 6.2 for further
information). iPlanet Directory Server establishes access control via a set of access
control lists (abbreviated ‘ACL’s in the following). Each ACL implements an access
control rule and is usually attached to a directory entry via the special attribute aci
(i.e., Access Control Information). An ACI grants access to the directory entry it is
attached to and to all entries beneath it (i.e., its children). Its granularity can be very
fine-grained; if necessary, down to a single attribute of a single entry. In general, an
ACI comprises the following information (for a more formal presentation of this
subject, we refer to the online documentation of iPlanet Directory Server [iPlanet,
2000b]):
- directory resources (i.e. objects) the ACI applies to (e.g., entries in a particular sub-

tree, entries that match a given search filter, specific entries, specific attributes),

- access rights granted (e.g., read, write, search, compare, add, delete), and

- directory clients (i.e. subjects) the ACI applies to (e.g., specific users, anonymous
users, non-anonymous (i.e. known) users, all members of a user group, users
specified in attributes of object entries, users from a specific IP address or a specific
domain, users accessing the directory during a period in time).

By default, all users are denied access to the directory of any kind. Starting from this,
ACIs implement access control rules that grant or deny access. The following ACI,
which is presented in LDIF format, allows directory administrators to access and
modify the attributes of all directory entries that are below the entry o=gmd.de:

aci: (target=”ldap:///o=gmd.de”)

 (targetattr=”*”)

 (version 3.0; acl “allow everything for administrators”;

 allow(all)

 groupdn=”ldap:///cn=Directory Administrators,ou=Groups,o=gmd.de”;)

Due to the paramount importance of access control for directory security and user
privacy, we discuss the access control model of iPlanet Directory Server further at the
end of this sub-chapter.

53 Although the access control models offered by today’s LDAP servers share some commonalities, there are still many

differences that hamper interoperability (e.g., when replicating and migrating access control information from one
LDAP server product to another).

54 During the first quarter of 2002, iPlanet was acquired by Sun. iPlanet Directory Server is now marketed as Sun ONE
Directory Server [Sun, 2002a].

70 CHAPTER 5. INTRODUCTION TO LDAP DIRECTORIES

• Auditing allows for keeping track of all communication between clients and directory
servers. Auditing is indispensable, since it allows for determining whether directory
security and user privacy has been compromised and in what manner. Comparable to
access control, there is currently no auditing standard within LDAP’s security model
(e.g., for maintaining and searching various log files, monitoring server activity). For
the purpose of our work, we rely on the auditing facilities provided by iPlanet Directory
Server (for more information, we refer to the online documentation [iPlanet, 2000b]).

• Resource control is an appropriate means for preventing the directory server from
denial-of-service attacks (e.g., by consecutively executed resource-consuming search
operations) and trawling attempts (e.g., by unauthorized bulk downloads of directory
data). Like for access control and auditing, we rely for our user modeling server on the
controlling facilities of iPlanet Directory Server [iPlanet, 2000b]. A directory
administrator can impose various constraints on the amount of resources that are
dedicated for processing clients’ requests (e.g., the maximum number of entries to be
searched, the maximum number of entries returned for a single search, the maximum
number of seconds a single search operation can take).

In conclusion, LDAP’s security model provides standardized support for authentication,
signing, and encryption, while providing no standard facilities for access control, auditing,
and resource control. For the latter group, we rely on the respective facilities offered by
iPlanet Directory Server.

We conclude this sub-chapter with a few examples for access control, thereby (i) ‘gluing’
together the four LDAP models we introduced so far and (ii) showcasing some access
control scenarios our user modeling server can support. The first feature we would like to
further explore is using search filters in ACIs (for more information on search filters, we
refer to Chapter 5.3.1). In the following example, read and search access to users’
(presumably public) coordinates (i.e., a set of specific user attributes as shown below) is
granted to anyone, i.e. anonymous users and authenticated users, depending on an user’s
permission. The latter condition is controlled by the hypothetical attribute
coordinatesAccess in users’ profiles. This attribute can be managed by each user,
probably starting from a default value set by an administrator. The following two ACIs
implement this policy:
aci: (target=”ldap:///cn=User Model,ou=UMS,o=gmd.de”)

 (targetfilter=”(coordinatesAccess=public)”)

 (targetattr=”sn||cn||postalAddress||telephoneNumber||mail||jpegPhoto”)

 (version 3.0; acl “publish users’ coordinates”;

 allow(read, search, compare) groupdn=”ldap:///anyone”;)

aci: (target=”ldap:///cn=User Model,ou=UMS,o=gmd.de”)

 (targetfilter=”(coordinatesAccess=private)”)

 (targetattr=”sn||cn||postalAddress||telephoneNumber||mail||jpegPhoto”)

 (version 3.0; acl “keep users’ coordinates private”;

 allow(none) groupdn=”ldap:///anyone”;)

The first ACI grants access (i.e., read, search, and compare) to a user’s coordinates to
anyone, if the condition coordinatesAccess=public is true. The second ACI
explicitly denies access, if the condition coordinatesAccess=private is true. If
neither of these conditions is satisfied, access to these attributes is controlled by additional

5.4. SECURITY MODEL 71

ACIs or, if not present, access is denied by default. The targeted attributes in these ACIs
(e.g., mail, jpegPhoto) are partially defined by the object class inetOrgPerson, a
proprietary class defined by iPlanet [Smith, 2000]. InetOrgPerson takes in turn
advantage of the respective object classes organizationalPerson and Person, as
defined in X.521 [ITU-T, 2001d] and in LDAP version 3 [Wahl, 1997]. The following table
summarizes the relation between the aforementioned object classes and their respective
attributes (for more information on this topic, we refer to Chapter 5.1):

Object class Inherits from… Attributes
required

Attributes
allowed

Person Top sn
55
,cn

56
 telephoneNumber

OrganizationalPerson Person postalAddress

InetOrgPerson organizationalPerson mail, jpegPhoto

UmsPerson inetOrgPerson coordinatesAccess

Table 5-2: Example of object class inheritance

The last row in Table 5-2 shows the object class umsPerson, which we defined for our
user modeling server. umsPerson subclasses several standard object classes, thereby
inheriting a set of required and allowed attributes. This preserves compatibility with
existing directory-enabled applications as much as possible, while still catering for new
attributes like coordinatesAccess.

Using search filters in ACIs offers a variety of advantages. First, it allows users to control
access to their profile information without having to explicitly (i.e., using LDAP tools like
‘Globus Browser’ [Gawor, 1999]) or implicitly (using mediation applications like
‘SiteMinder’ [Netegrity, 2001]) specify ACIs. Second, it considerably reduces the number
of ACIs that have to be inserted and maintained in a directory, thereby considerably
relieving administrators from administrative burden.

Search filter-based ACIs can be employed in a variety of access control scenarios including
the following:

• Access is granted to entries that belong to certain object classes (e.g.,
objectclass=person, objectclass=group, objectclass=interests).

• Access is conceded to entries that are associated with a companies’ organizational
structure (e.g., ou=Development57, ou=Sales).

55 sn (i.e. surname) is a standard attribute that contains the family name of a person (see RFC 2256 [Wahl, 1997]).
56 cn (i.e., common name) is a standard attribute that holds the name of an object. If the object is a person, this attribute

contains her full name (see RFC 2256 [Wahl, 1997]).
57 ou (i.e., organizational unit) is a standard attribute that denotes the name of an organizational unit (see RFC 2256

[Wahl, 1997]).

72 CHAPTER 5. INTRODUCTION TO LDAP DIRECTORIES

• Access is granted to entries according to an established workflow model (e.g.,
organizationalRole=HelpDesk-of-the-Day).

So far, we presented scenarios, where search filters determine the set of entries and/or
attributes an access control rule applies to. Additional flexibility regarding the subjects an
access rule applies to can be achieved by relying on attributes in object entries. If we
assume, e.g., the need for establishing proxies for all users in our directory, who can access
and update specific profile information on behalf of other persons, we can implement this
policy with the following ACI:

aci: (target=”ldap:///cn=User Model,ou=UMS,o=gmd.de”)

 (targetattr=”*”)(version 3.0; acl “allow proxy access”;

 allow(read, search, compare, write)

 userdnattr=”proxy”;)

The subjects to whom this rule applies are determined by the proxy attribute of cn=User
Model,ou=UMS,o=gmd.de and its children. Thomas Cook, for example, is granted
access to the profile of Peter Smith, if (i) he is successfully authenticated and (ii) if Peter
Smith’s profile designates him as a proxy as follows:

dn: cn=Peter Smith,cn=User Model,ou=UMS,o=gmd.de

objectclass: top

objectclass: person

cn: Peter Smith

proxy: cn=Thomas Cook,cn=User Model,ou=UMS,o=gmd.de

coordinatesAccess: private

In our example, the single ACI shown above is equivalent to a set of ACIs that explicitly
denote proxies. The size of this set can be assumed proportional to the number of proxies in
an organization (i.e., a potentially huge set). Following this, the main advantage of access
control based on attribute values is a significantly reduced number of ACIs and, related to
this, considerably less administrative efforts for establishing and maintaining an access
policy like the aforementioned one. A smaller number of ACIs implies also less errors,
more flexibility in case of reorganization, and better performance of the directory server.
Moreover, access control that is based on attribute values can be regarded mandatory in
deployment scenarios where users control access to their personal information (e.g., by
maintaining the mentioned proxy information in their profile).

When a subject accesses a directory entry, the directory server checks the ACIs attached to
this entry and subsequently those ACIs attached to all its parents in the directory tree. As
we have seen earlier, ACIs can grant as well as deny access (see our first scenario above,
where the second ACI denies access to users’ coordinates). In case of a conflict, the ACI
that denies access always takes precedence over the ACI that grants access. This means for
example that although Peter Smith has appointed Thomas Cook as his proxy and proxies
have been given access to all attributes, Thomas Cook will not be able to access all
attributes of Peter Smith, because his attribute coordinatesAccess=private
activated an ACI that denies access to his coordinates. In general, it is highly recommended
to (i) minimize the number of access control rules that contain explicit denies, mainly
because rules overriding can be considered hard to oversee and administer, (ii) restrict the
scope of explicit grants to the smallest possible set of entries and/or attributes (i.e., adhering

6.1. OVERVIEW OF SERVER ARCHITECTURE 73

to the principle of parsimony regarding data access), and (iii) minimize the number and
complexity of ACIs in general58. For more information on designing and implementing
security policies, we refer to the online documentation of iPlanet Directory Server [iPlanet,
2000b], to Howes et al. [1999], and to RFC 2820 [Stokes et al., 2000].

From a theoretical point of view, the access control model we presented is based on access
control lists (i.e., the aforementioned ACLs), although with many provisions for role-based
access control. Following Schreck [2003], role-based access control seems especially
promising for user modeling purposes, since it allows for the implementation of a variety of
established security policies (for more information, we refer to Schreck [2003]). This is
also demonstrated by Howes et al. [1999], who present and discuss several case studies,
where role-based access policies have been implemented using the LDAP-based access
control model we presented earlier.

6 User Modeling Server Architecture
In this chapter, we start with a brief presentation of a few basic principles that guided our
design and implementation work. Against this background, we describe the generic
architecture we developed for our user modeling server. We restrict our presentation to an
overview, since we describe in greater detail an instantiation of our generic server
architecture in Chapters 7 and 8. Subsequent to that, we motivate our decision for
employing the commercial product iPlanet Directory Server as a foundation for our user
modeling server.

In the last part of this chapter, we explore several present (and future) avenues for user
modeling and the contribution our user modeling server can make to them. Thereby, we
draw on advanced server facilities like (i) meta-directory facilities for integrating
heterogeneous sources of user information, (ii) LDAP’s distribution and replication
facilities for supporting distributed user models, and (iii) LDAP’s security model including
iPlanet Directory Server’s access control model for covering security and privacy issues
(cf. Kobsa [2001b], Schreck [2003], and Kobsa and Schreck [2003]).

6.1 Overview of Server Architecture
We designed our user modeling server on top of an existing LDAP server as a ‘cooperative
network application’ (cf. Mohr [1999]), i.e. an application that is built of autonomous
components that loosely cooperate in order to establish the overall user modeling service.
Each component can be transparently accessed, irrespective of network system, operating
system, and programming language issues. This is accomplished by designing components
as distributed objects that communicate via CORBA and LDAP (see Chapter 5.3). When

58 RFC 2820 [Stokes et al., 2000] states for example: “Usability is a security issue, not just a nice design goal and

requirement. If it is impossible to set and manage a policy for a secure situation that a human can understand, then
what was set up will probably be non-secure. We all need to think of usability as a functional security requirement.”

74 CHAPTER 6. USER MODELING SERVER ARCHITECTURE

designing our components, we adhered to established design principles like the following
(for more information, we refer to Orfali et al. [1994] and Mohr [1999]):

• Coarse-grained components that follow the notion of services. Choosing an appropriate
level of granularity can be considered of paramount importance for a component-based
application. In our user modeling domain, server functionality like collaborative
filtering and domain-based inferences (i.e., inferences that take advantage of a domain
taxonomy of interests and preferences) can be assumed to yield useful services at an
appropriate level of abstraction. For more information on the mentioned services and
related components, we refer to Chapters 8.5 and 8.6.

• Encapsulate legacy systems with a component wrapper in order to hide implementation
details. This approach can be assumed to increase flexibility, since it simplifies the
substitution of legacy systems during the lifetime of an application. Within our user
modeling server, we wrapped iPlanet Directory Server with a component interface in
order to hide this particular implementation detail from other components. From their
point of view, the directory component provides dedicated services that are compliant
with LDAP standards and, in case of no standard being available (e.g., for access
control model), with best practices in this area (e.g., the fine-grained access control
model offered by iPlanet Directory Server). For more information on our directory
interface, we refer to Chapter 8.3.

• Publicly accessible component interfaces allow clients and servers to easily invoke
methods of other components and meta-data enable them to handle input data in a
sovereign manner (e.g., as opposed to the ‘expectation-based’ interpretation of
incoming data in cases where no such information is available). Using XML, each
discrete data element can be marked with a label that represents meta-information (e.g.,
that a certain number is a customer id). Moreover, a set of delimiters marks the
respective begin and end of a data element (e.g. <CustomerID>13
</CustomerID>). For further examples and case studies, we refer to Mohr [1999].
Regarding our component interfaces, we rely on CORBA’s static and dynamic
invocation interfaces. CORBA maintains all object interface definitions in a dedicated
‘Interface Repository’. All CORBA objects can access this repository via dedicated
APIs (for an overview of this facility, we refer e.g. to Orfali et al. [1994]).

• Dynamic location of components at runtime contributes to location transparency,
which, in turn, leads to an increased flexibility of the overall application system.
Dynamic location allows components, e.g., to be transparently migrated (or to
autonomously migrate) from one computer to another (cf. the notion of user model
agents [Kobsa, 2001a]). The dynamic location of components is motivated by (i) the
administrator’s and/or the system’s ability to launch a variable number of component
instances and balance the overall workload between them in order to improve the
overall quality of service (e.g., fewer and/or smaller delays in service provision) and (ii)
the capability to dynamically create customized services (e.g., one service acquiring
assumptions about users’ interests through rather quick learning and another service
acquiring assumptions about users’ knowledge through rather slow learning). All
components of our user modeling server locate another at runtime by taking advantage
of CORBA’s respective facilities.

• Components provide their service on a transient basis. In order to cater to this,
components should maintain only information that is absolutely necessary for

6.1. OVERVIEW OF SERVER ARCHITECTURE 75

establishing their service. Moreover, they should rely as little as possible on the
availability of other components. Adhering to these principles leads to a robust
application system that degrades gracefully in case of single components being
temporarily not available. If a learning component in our user modeling server becomes
unavailable, e.g., then the directory component persistently buffers the input data for
this component in a specific part of the usage model. As soon as this learning
component becomes available again, it retrieves those data, processes them, and
continues providing its service. Apart from the outage of this single service, no other
service is affected and no data get lost. For more information on such a learning
component, we refer to Chapter 8.4.

Against the background of these design principles and the requirements we presented in
Chapters 2 and 3, we developed our user modeling server as a directory server that is
complemented by several ‘pluggable’ user modeling components. Figure 6-1 depicts an
overview of this architecture.

1st User Modeling
Component

2nd User Modeling
Component

3rd User Modeling
Component

C
o
m
m
u
n
i
c
a
t
i
o
n

Directory Component

R
e
p
r
e
s
e
n
t
a
t
i
o
n

S
c
h
e
d
u
l
e
r

User Modeling Components

User Modeling Server

...

Legend:

CORBA

LDAP

Figure 6-1: Overview generic server architecture

The left side of Figure 6-1 shows the Directory Component comprising the sub-systems
Communication, Representation, and Scheduler. The Communication sub-system is
responsible for managing communication with external clients of the user modeling server
(i.e., user-adaptive applications) and internal clients of the Directory Component (i.e., User
Modeling Components). The Representation sub-system is in charge of managing directory
content (i.e., mainly user-related information). Main tasks of the Scheduler are (i) to wrap
the LDAP server with a component interface and (ii) to mediate between the different sub-
systems and components of the User Modeling Server. On the right side of Figure 6-1, we

76 CHAPTER 6. USER MODELING SERVER ARCHITECTURE

see several User Modeling Components. Each of these components performs a dedicated
user modeling task (e.g., collaborative filtering, domain-based inferences). Because of their
specificity, we do not elaborate them further in this overview. For more information on
these components, we refer to Chapters 7 and 8.

Directory Component and User Modeling Components communicate via CORBA and
LDAP. These two orthogonal communication layers are used at runtime as follows:

• The CORBA-based software bus is used for the uni-directional distribution of events
and associated data from the Directory Component to User Modeling Components (e.g.,
an event that communicates the insertion of an interest assumption into the user model
of Peter Smith). Components can register filter instructions with the Directory
Component in order to control the dissemination of events and associated data on an
individual basis. Event filter instructions are stored in plain text format in the directory
and can be updated at any time. For more information on event filter instructions and
related processing issues, we refer to Chapters 8.2.4 and 8.3, respectively. From a
theoretical point of view, this communication resembles a ‘filtered broadcast’, a
combination of the standard paradigms ‘filters’ and ‘broadcast algorithms’ for process
interaction in distributed programming environments (cf. Andrews [1991]).

• LDAP is employed by User Modeling Components for accessing and manipulating
information that is hosted by the Directory Component (e.g., retrieving a specific piece
of information from the user model of Peter Smith).

This communication infrastructure does not mandate a specific distribution topography;
components can be flexibly distributed across a network of computers, e.g., according to
available computing resources. The separation of event handling and information access on
different layers provides for maximum flexibility. This allows, e.g., to replace the LDAP-
based information management with an SQL-based one, while still maintaining the
CORBA-based communication layer.

6.2 Selection of Server Foundation
The selection of an LDAP server product as a basis for our Directory Component was
based on the following requirements:

• The server requirements we elaborated in Chapter 2, including (i) multi-user
synchronization, (ii) transaction management, (iii) query and manipulation language,
(iv) persistency, (v) integrity, and (vi) access control.

• The directory server requirements we adopted from Howes et al. [1999] and (to a less
extent from) Wilcox [1999]. These requirements include (i) support for LDAP core
features (see Chapter 5), (ii) performance and scalability, (iii) security and access
control, (iv) standards conformance, (v) interoperability, and (vi) flexibility and
extensibility.

6.2. SELECTION OF SERVER FOUNDATION 77

Before applying these requirements to directory server products, we fused them into a
single catalog. We discarded the requirement multi-user synchronization, since this can be
regarded a ‘sine qua non’ for directory server products. Transaction management was
retained as a requirement for reasons we already explained in Chapter 2. Query and
manipulation language was mapped to support for LDAP core features. This seems
reasonable, given our aim of selecting one out of several LDAP server products.
Persistency and integrity have been retained due to their paramount importance for a server
product. Finally, access control has been discarded, since it is already contained in the
target catalog. As opposed to the requirement query and manipulation language, the access
control and security facilities offered by today’s LDAP directory servers clearly excel those
provided by databases (compare, e.g., SQL’s grant and revoke operations with iPlanet
Directory Server’s fine-grained access control model we presented in Chapter 5.4).
Our final catalog contained the following requirements: (i) support for LDAP core features,
(ii) transaction management, (iii) persistency, (iv) integrity, (v) performance and scalability,
(vi) security and access control, (vii) standards conformance, (viii) interoperability, and (ix)
flexibility and extensibility59.
We started our evaluation of directory server products in the first quarter of 1999. At that
time, only a few native LDAP directory server products were commercially available (for a
list of proprietary and X.500-based directory server products that offered an LDAP gateway
at that time, we refer to Howes et al. [1999]). Our market survey revealed eight products,
all of them being listed in Table 6-1 along with some of their key features. The
abbreviations ‘v2’ and ‘v3’ used in this table refer to the respective LDAP language
versions.

Selecting an appropriate directory server product from that list was fairly easy. We started
focusing on those products that provide support for LDAP core features, especially LDAP
version 3 (for a motivation of this decision, we refer to Chapter 5). Applying this
requirement, we could exclude four products that support LDAP v2, either with or without
some provisions for LDAP v3 extensions. From the remaining four products, we discarded
Active Directory Server from Microsoft, because it was not available (i.e. shipping) at that
time. When comparing the remaining three products, iPlanet’s Directory Server clearly
excels all others (although to a different degree, as we discuss in Chapter 10). Therefore,
we selected this directory server as a basis for our user modeling server.

59 The order in which requirements are listed does not mandate any priority.

78 CHAPTER 6. USER MODELING SERVER ARCHITECTURE

Server Name Vendor Key features

Active Directory
Server
[Microsoft, 2000c]

Microsoft LDAP v3 support; sophisticated replication
features; support for dynamic entries

DSSeries
[IBM, 2000c]

IBM LDAP v2 support; partial support for LDAP
v3; security through SSL; replication
features

Innosoft Distributed
Directory Server
(IDDS)
[Innosoft, 2000]

Innosoft LDAP v3 support; standards compliance;
security through TLS

Internet Directory
Server (IDS)
[Lucent, 2000]

Lucent
Technologies

LDAP v3 support; standards compliance;
security through SSL; replication, dynamic
entries; performance; scalability

iPlanet Directory
Server
[iPlanet, 2000b]

iPlanet
(formerly
Netscape, now
Sun)54

LDAP v3 support (with roots back to
SLAPD); standards compliance; security
through SSL and SASL; fine-grained access
control; replication; performance;
scalability; multi-language support; open
architecture including a virtual directory
facility60

OpenLDAP [2000] OpenLDAP LDAP v2 support (based on SLAPD, see
below); partial support for LDAP v3; open
source, freely available

SLAPD
[University of
Michigan, 2000b]

University of
Michigan and
others

LDAP v2 support; partial support for LDAP
v3; freely available

Sun Directory Services
[Sun, 2000c]

Sun LDAP v2 support

Table 6-1: Key features of native LDAP servers (based on Howes et al. [1999])

Today the evaluation would not be as clear-cut, since the number and maturity of directory
server products considerably increased since then. Especially the open source movement

60 A virtual directory is a directory that holds no data. It translates and reroutes LDAP calls from clients to other data

stores (e.g., relational database management systems), collects results, and passes them back to its clients. To the
outside world, the virtual directory appears like any other directory.

6.3. SUPPORT FOR ADVANCED USER MODELING SCENARIOS 79

gained considerable momentum since then. This is demonstrated by the freely available
OpenLDAP server, which can be considered a challenging alternative to many commercial
directory server products (see also Wilcox [1999] and Shukla and Deshpande [2000]).

6.3 Support for Advanced User Modeling Scenarios
The aim of this sub-chapter is to demonstrate the support our server can offer for more
advanced present and (potential) future user modeling scenarios. We also deemed this
presentation necessary, since the custom user modeling server we developed for Deep Map
(see Chapter 7) does not take advantage of some of the more interesting facilities of our
server. In this vein, we discuss the following three scenarios:

• ‘Monoatomic user modeling’, which focuses on the physical integration of distributed
and heterogeneous information about a client within a company.

• ‘Polyatomic user modeling’, which demonstrates how distributed and homogeneous
user-related information can be virtually fused in a single user model.

• ‘Secure and Private User Modeling’, which focuses on selected security and privacy
issues.

In the following, we sketch each scenario and briefly present selected facilities of our
server against this background. Thereby, we leave out other server facilities that may be
also relevant or even mandatory, mainly for reasons of brevity. A further elaboration of
these scenarios goes beyond the scope of this thesis and is left for future research in this
area.

6.3.1 Monoatomic User Modeling
Integrating client-related information that is scattered across an enterprise in a single
repository can be regarded of paramount importance for businesses (see Chapter 1.2). This
allows for leveraging many of the advantages of a central source of client information (e.g.,
up-to-date information for holistic personalization, synergistic effects with respect to
acquisition and usage, support for the holistic design, acquisition, and maintenance of client
information), while still preserving important benefits of their decentralized management
(e.g., high quality, up-to-dateness, low maintenance costs). We already covered these issues
in Chapters 1.2 and 1.3.

Figure 6-2 depicts a scenario, where meta-directory facilities enable our User Modeling
Server to physically integrate two sources of client-related information: a Marketing
Database and an ERP (i.e. Enterprise Resource Planning) System from vendors like SAP
[2001] or Baan [2001]. The Marketing Database is depicted at the left bottom of our figure
and comprises two sections. The first section contains information about individual clients’
names, interests, CLTV (i.e., Customer LifeTime Value) forecasts (see Chapter 1.2), and
clients’ association to available client segmentations. The second section encompasses
client segmentations, which have been acquired by employing clustering and classification
techniques on the aforementioned clients’ interests (for more information on such software
products, we refer e.g. to Woods and Kyral [1997]). The ERP System is depicted at the
right bottom and contains administrative information about clients’ names, addresses,
accounts, invoices, and some statistics including clients’ (total) turnover. The User
Modeling Server is depicted on the top. It maintains information about client segmentations

80 CHAPTER 6. USER MODELING SERVER ARCHITECTURE

and information about individual clients’ names, passwords, addresses, and their
association to available client segmentations. Moreover, the User Modeling Server acquires
and maintains assumptions about clients’ interests and preferences (see Chapter 8 for more
information on this issue).

1st User Modeling
Component

2nd User Modeling
Component

User Modeling Server

Name
Password
Addresses
Associations

Interests

Users Segmentations

Name
Interests
CLTV

Associations

Segmentations

Marketing Database

Name
Addresses
Accounts
Invoices
Turnover

ERP
System

Synchronization

 . . .

Figure 6-2: Scenario monoatomic user modeling

Looking at the client information available in the different repositories, we see that some
information seems to be redundant (e.g., clients’ interests, addresses, and client
segmentations). In fact, this redundancy is established by directory synchronization
software from vendors like Persistent [2000] and Critical Path [2000]. Employing
synchronization software turns our User Modeling Server into a meta-directory, a single
(physical) source of client-related information.

In order to achieve this, the synchronization software mirrors selected client information
between the different repositories and henceforth keeps these mirrors in sync with their

6.3. SUPPORT FOR ADVANCED USER MODELING SCENARIOS 81

original sources. The administrative responsibilities (including the question of ownership)
regarding client information can be assumed in our scenario as follows:

• User modeling server: clients’ names, passwords, interests.
• Marketing Database: CLTV forecasts, client segmentations, and their association to

individual clients.
• ERP System: clients’ names, addresses, accounts, invoices, and turnover.
Assuming certain requirements regarding frequency, direction, and security of the
synchronization process, we can subsequently configure the synchronization software for
establishing the necessary information flows between the different repositories (e.g., client
segmentations and clients’ respective associations from the Marketing Database to the User
Modeling Server, clients’ interests from the User Modeling Server to the Marketing
Database). As soon as these information flows are established, clients’ interests acquired
and maintained by the User Modeling Server can be used by the marketing department, e.g.
for assessing individual client’s lifetime value (e.g., by following a CLTV approach like the
one proposed by Cooperstein et al. [1999]). And vice versa, client segmentations can be
used by the User Modeling Server for supporting its learning processes (see Chapter 8.5 for
an example). In our scenario, we used clients’ names as a key for joining the different data
sources, since they are contained in all repositories61.

In general, synchronization products allow for establishing the following types of
synchronization schemes:

• One-way synchronization periodically updates a target repository with information from
a source62. The flow of information is uni-directional, from the source to the target.
Update can be either total or incremental. In case of a total update, all information in the
target is deleted and replaced with the information from the source. An incremental
update applies only those changes to the target that occurred in the source since the last
synchronization. The advantages and disadvantages of both approaches are apparent:
total updates can require a substantial amount of computing and networking resources,
but do not mandate sophisticated change tracking mechanisms in repositories; and vice
versa for incremental updates. Examples of one-way synchronization in our scenario
include (i) the update of client segmentations and clients’ respective membership in the
User Modeling Server from the Marketing Database and (ii) the update of clients’
interests in the Marketing Database from the User Modeling Server.

• Two-way synchronization periodically propagates changes among several repositories.
Such an approach provides maximum organizational flexibility since it allows a piece
of information to be changed in any of the synchronized repositories. In our scenario for
example, clients may change their addresses via a Web interface in the User Modeling
Server and call center staff can update clients’ addresses in the User Modeling Server as
well as in the ERP system. Irrespective of the source that has been changed, the
synchronization software takes care of keeping all repositories in sync (i.e., the User

61 We leave aside for the moment the more practical problems of such an approach (e.g., duplicate names). For more

information on this topic, we refer to Howes et al. [1999].
62 One-way synchronization may happen only once (e.g., when initially populating the User Modeling Server with

clients’ names and addresses from the ERP system).

82 CHAPTER 6. USER MODELING SERVER ARCHITECTURE

Modeling Server and the ERP system in our example). This advantage, however, comes
at the price of increased computational complexity. Update conflicts may occur, when
the repositories and the synchronization software do not support tight synchronization
schemes, as provided e.g. by a two-phase commit protocol (see Chapter 2.2.2).

• N-way join synchronization allows for periodically updating a target with information
that is obtained by joining several sources. In our example, clients’ addresses from the
ERP system and clients’ associations to segmentations from the Marketing Database
can be joined via the common name attribute, before propagating the result (i.e., a set of
information triples, each of them comprising a client’s name, addresses, and
segmentation associations) to the User Modeling Server. The efforts necessary for
establishing an n-way join synchronization can be regarded considerable, mainly
depending on the amount of information to be joined and the respective facilities
offered by the repositories involved in the synchronization effort.

The synchronization schemes that are at the disposal of system designers are mainly
determined by the respective facilities offered by synchronization products. The various
technical and organizational aspects of a meta-directory require in any case careful
planning. At runtime, a meta-directory can be assumed to require a considerable amount of
computing and network resources, mainly depending on the direction, frequency, and
complexity of the synchronization processes. For more information on meta-directories,
related case studies, and pointers to additional resources, we refer to Howes et al. [1999].

6.3.2 Polyatomic User Modeling
An alternative approach for leveraging the advantages of centralized and decentralized
management of user-related information is their virtual integration into a single polyatomic
source. We exemplify this in the following by linking an LDAP-based repository and two
models of user-related information through referrals (see Chapter 5.2)63. Compared to the
scenario presented in the last sub-chapter, the main difference is that integration is not
established through moving information between sources and targets, but through linking
information in the repositories involved in the synchronization process. In other words,
proactive moving of information between repositories is traded in for retrieving information
at runtime. We assume that linking can be regarded a sine qua non for many integration
scenarios, since this does not raise problems of information ownership and administrative
responsibility. On a technical level, linking does not require additional software products.
Referrals can be regarded the mechanism of choice regarding linking implementation, since
they are a part of the LDAP v3 specification [Wahl et al., 1997a].

Figure 6-3 depicts a scenario, where User Modeling Server A virtually integrates two
external sources of client-related information: a Domain Server and a second User
Modeling Server (i.e., Server B). The Domain Server depicted at the left bottom is owned
by a company, which is specialized in leasing computer hardware. Their Domain Server
hosts plenty of information about machines owned by that company, but maintains at the
same time information about users, devices, and applications. This server is based on

63 We thereby assume that the different sources of our polyatomic user model comply with the four LDAP models we

introduced in Chapter 5. Apart from this requirement, these sources can be quite heterogeneous, e.g. regarding their
representation system, content, and physical location.

6.3. SUPPORT FOR ADVANCED USER MODELING SCENARIOS 83

Microsoft’s Active Directory64 [Microsoft, 2000c]. The second source of information is
User Modeling Server B, which is depicted at the right bottom of our figure. User Modeling
Server B is employed by an online book store for acquiring and maintaining clients’
interests and preferences regarding books. A second server (i.e., User Modeling Server A)
is employed by this book store for acquiring and maintaining employees’ interests and
preferences regarding information available on their intranet (e.g., product news, job
offerings).

Against this background, employees can ask their IT department for linking their various
user models with the user model hosted by Server A. If this is feasible from a technical and
organizational point of view (e.g., sources are based on LDAP, at least read access is
granted), an administrator adds appropriate referrals to an employee’s user model. In our
case, two referrals are added to the user model hosted by Server A. These referrals point to
the machine model hosted by the Domain Server and the interest and preferences model
hosted by User Modeling Server B. From a technical point of view, these referrals are
simple URLs65 like the following:

ldap://ad.company.com:389/cn=Laptop123,ou=Machines,o=company.com

As soon as these links are established, an employee can use an arbitrary (Web-based)
directory application (e.g., Publisher from Oblix [2000]) or directory browser66 (see Chapter
8.2) for inspecting these models, starting from the model hosted by Server A. If
appropriately authorized, users can also block, rectify, and erase directory entries in these
models (see Kobsa [2001b], who claims these user rights from a privacy point of view).

Moreover, User Modeling Server A can take advantage of this additional information as
well. Its learning components, if appropriately authorized and configured, can use the
machine information as well as users’ interests and preferences regarding books, e.g. for
finding groups of like-minded users (e.g., users that utilize a laptop from the same vendor,
users that share a common interest in SF literature). For more information on such a
learning component, we refer to Chapter 8.5.

64 Active Directory is an integral part of the Windows 2000 operating system.
65 LDAP URLs (i.e. Uniform Resource Locator) are defined in RFC 2255 [Howes and Smith, 1997a].
66 Most directory browsers seem to offer low-level access to directory information only and are therefore hardly

appropriate for end users.

84 CHAPTER 6. USER MODELING SERVER ARCHITECTURE

1st User Modeling
Component

2nd User Modeling
Component

User Modeling Server A

Name: Smith
Password: …

Books

Users

Referrals

 . . .

company.com

 . . .

Machines

Laptop123
Vendor: ABC

Interests &
Preferences

Laptop

Hardware

1st User Modeling
Component

2nd User Modeling
Component

User Modeling Server B

Name: 4711

Science Fiction

Users

Preferences
 . . .

Domain Server

Figure 6-3: Scenario polyatomic user modeling

From a user’s point of view, different levels of transparency can be provided regarding
referrals. In the simplest case, neither the LDAP server, nor the LDAP client, nor the
directory application automatically chases a referral returned by User Modeling Server A.
In this case, it is left to the user to point her directory application to the address indicated by
the referral and to provide appropriate authentication credentials to the new repository. On
the other extreme of the transparency continuum, the whole polyatomic user model appears
to the user as a single uniform repository of user-related information. All low-level details
including referrals are hidden from the user. This is accomplished by either the server, the
LDAP client, or the directory application automatically chasing referrals, handling
authentication, and appropriately assembling the result sets returned by the different
servers.

Although this uniformity can be considered appropriate for some real-world scenarios (e.g.,
where users’ convenience seems important and the involved repositories can be considered
trustworthy), such an approach can severely affect at the same time systems’ security and
users’ privacy. Regarding security for example, it is of paramount importance that only a
few people (e.g., selected administrators) are allowed to maintain referrals. Many (LDAP)
clients automatically chase referrals and simply resubmit their credentials to the server they
are referred to (i.e., in case of simple authentication, they resubmit their passwords as plain
text over the network to the server). If an attacker is able to place a referral to herself into
the directory, then she can record the credentials of all those clients that automatically
chase this referral. Subsequently, the attacker can use these credentials for impostering as

6.3. SUPPORT FOR ADVANCED USER MODELING SCENARIOS 85

legitimate clients. This replay of credentials will become ineffective, however, as soon as
SSL or Kerberos are used for individually signing each message exchanged between client
and server (see Chapter 5.4)67. Regarding privacy, an important motivation to not
automatically chase referrals is to communicate to the user the current and future server
environment. This enables a user to assess a server’s trustworthiness and adapt her
interaction accordingly (i.e., refuse or chase a referral).

In conclusion, the degree of linking transparency provided to end users requires careful
consideration for a polyatomic user model. Given the potential implications for systems’
security and users’ privacy, completely hiding referrals from end users seems hardly
desirable, since this precludes their awareness regarding the server environment. This is
mandatory, however, for enabling users to act according to the presumed trustworthiness of
their computing environment.

6.3.3 Secure and Private User Modeling
In Chapter 5.4, we discussed the following security and privacy threats in user modeling:

• Unauthorized access, e.g. through Trojan horses, connection hijacking, network
sniffing, and backdoor access.

• Unauthorized tampering, e.g. through ‘man in the middle’ attacks and various forms of
masquerading.

• Non-accessibility, e.g. through illegitimate consumption of directory services and
hardware resources.

In the remainder of this sub-chapter, we focus on the first two categories. For safeguarding
our server against non-accessibility attacks, we refer to Chapter 5.4, where we briefly
presented auditing and resource control facilities.

In the following scenario, we showcase selected security and privacy threats to user
modeling (cf. Kobsa [2000]). Figure 6-4 depicts two users (i.e., User 1 and User 2) that take
advantage of two user modeling servers (i.e., User Modeling Server X and User Modeling
Server Y) via several Web-based applications (i.e., User-Adaptive Application 1 to 4). All
connections between the applications shown can be subject to unauthorized access and
tampering attacks. This is exemplified for the connections between User 1 and User
Modeling Server X. Between User 1 and User Interface A, for example, a Trojan horse can
imitate a login screen and try to steal the credentials of User 1. The connection between
User Interface A and User-Adaptive Application 1 might be subject to network sniffing and
the connection between User-Adaptive Application 1 and User Modeling Server X can be
jeopardized by hijacking attempts. Shaded boxes depict various imposterers that try to
masquerade as legitimate applications (i.e., user interfaces, user-adaptive applications, and
user modeling servers).

67 SSL and Kerberos attach to each message an authentication code that contains a sequence number.

86 CHAPTER 6. USER MODELING SERVER ARCHITECTURE

User 1

User 2

User Interface A
(e.g., Web Browser)

User Interface B
(e.g., News Reader)

User Interface C
(e.g., Web Browser)

User Interface B
(e.g., News Reader)

User Interface D
(e.g., User Agent)

User-Adaptive
Application 1

User-Adaptive
Application 2

User-Adaptive
Application 3

User-Adaptive
Application 4

User Modeling
Server Y

User Modeling
Server X

Unauthorized access
and tampering

Unauthorized access
and tampering

Imposterer
Application

Imposterer
User Interface

Imposterer
Server

Unauthorized access
and tampering

Figure 6-4: Security and privacy threats in user modeling (based on Kobsa [2000])

In order to safeguard client-server communication against these security threats68, our user
modeling server offers support for authentication, signing, and encryption. This is
established by (mainly) relying on SSL and, in any way, on established or proposed
Internet standards (see Chapter 5.4 for more information on directory security). Custom
extensions (e.g., a private key authentication system like Kerberos, an encryption algorithm
like MD-5) can be integrated into our server via the SASL framework. Additional facilities
of our server include support for access control, auditing, and resource control. These
iPlanet Directory Server facilities can be regarded best practice for directory servers
[Howes et al., 1999; Mohr, 1999; Wilcox, 1999; Shukla and Deshpande, 2000]. For more
information on these facilities, we refer to Chapter 5.4. For more information on respective
facilities of our CORBA-based communication layer, we refer to Chapter 8 and to the
VisiBroker documentation from Inprise [2000].

Regarding users’ privacy, Schreck [2003] points out that the sensitivity of a piece of user-
related information mainly depends on its associability with an individual person. This is

68 It is important to note that the security facilities provided by our user modeling server can not safeguard against all

threats we presented. Additional precautions have to be taken (e.g., antivirus software, organizational regulations) for
protecting against threats like Trojan horses on users’ desktops.

6.3. SUPPORT FOR ADVANCED USER MODELING SCENARIOS 87

also reflected by many privacy regulations69, guidelines, policies, and best practices in this
area focusing on information that can be associated with individuals. The stronger a piece
of information can be associated with an individual, the more restrictions are applied to its
processing, storing, and sharing with third parties. The restrictions applied are driven by
two basic principles: parsimony and purpose-specificity (cf. Kobsa [2000]). Parsimony
restricts the amount of user-related information according to a dedicated purpose (e.g.,
paving the way for a contract, fulfillment of a contract). This implies that user-related
information must not be stored longer than necessary. Purpose-specificity restricts the
storage and processing of user-related information to a dedicated purpose and prohibits its
exploitation for orthogonal purposes. Additional restrictions may apply in case of sensitive
user-related information (e.g., users’ case histories, religious or philosophical beliefs, racial
or ethnic origins)70.

As opposed to that, many real-world personalization environments seem to violate the
aforementioned principles, since

• “as many data as possible is being collected and ‘laid in stock’” and
• “data are exploited for purposes other than those for which they were originally

collected” [Kobsa, 2000].
This is perhaps motivated by companies’ investments in personalization infrastructures and
related customer relationship management platforms (see Hagen et al. [1998] and
Millhouse et al. [2000]). Following this, many sites expect a payback for their
personalization efforts in the form of personal data (we already mentioned this in Chapter
3.2.1). However, acquisition and processing of personal data should (i) be amenable to
applicable privacy regulations and/or authorized by users’ voluntary and informed consent,
(ii) provide users means to inspect, block, rectify, and erase personal data, (iii) employ
state-of-the-art security mechanisms according to the sensitivity of the personal data, (iv)
conform to users’ expectations, and (v) be outweighed by the usefulness of the personalized
services offered [Hagen et al., 1999].

From a personalization point of view, maintaining the relation between a piece of user-
related information and an individual person is rarely necessary. Exceptions where this
deems necessary include prevailing real-life personalization scenarios, where potentially
sensitive information (e.g., e-mail addresses, mobile phone numbers, users’ addresses) is
indispensable for establishing a service (e.g., sending tailored alerts via e-mail or SMS71,
support express transactions).

69 Privacy regulations restrict the processing, storing, and sharing of user-related information in many countries. For an

overview, we refer e.g. to Kobsa [2001b] and Schreck [2003].
70 Some of these restrictions can be waived upon explicit consent of the user. For more information, we refer to Kobsa

[2000].
71 SMS (i.e., Short Message Service) allows for asynchronously exchanging short messages in written form, e.g. via

mobile phones.

88 CHAPTER 6. USER MODELING SERVER ARCHITECTURE

The user modeling server we developed puts several facilities at the disposal of
administrators and user model developers that allow them to cater to the sensitivity of user-
related information. These facilities include all of the following (for more information on
these facilities, we refer to Chapter 5):

• Access control can be used for restricting access to user-related information in a fine-
grained manner (e.g., grant access to users’ e-mail address only to specific applications
and users, restrict access to a single user’s address to a period in time).

• Distribution allows for segregating parts of the user model according to their potential
sensitivity (e.g., demographic information about users can be stored on one server,
whereas interest sub-models can be stored on other servers that may be less secure).
Where necessary, referrals can be used for linking the segregated parts of a user model
together.

• Replication allows for the regular duplication of parts of a user model from one server
to another. This can be used, e.g., for maintaining potentially sensitive information
about users (e.g., name, age, sex) on a secure server and to replicate potentially less
sensitive information (e.g., users’ interests and preferences) to a server that is open to
the public.

• Modification tracking records all changes to a user model entry in special attributes
(i.e., attributes creatorsname, createtimestamp, modifiersname, modifytimestamp).
These so-called ‘operational’ attributes are exclusively maintained by the server for
each user model entry. Clients are granted read and search access to these attributes.
‘Back door’ modifications, however, are prohibited, since clients (including
administrators) are not able to modify operational attributes.

• Chaining of communication (see also Chapter 5.2) between clients and user modeling
servers allows for establishing various degrees of procedural anonymity72 and
pseudonymity (cf. Schreck [2003]). All servers that support chaining (e.g., X.500
servers) and super-identification73 (either via SSL, TLS, or a private key system like
Kerberos) can be used as intermediate servers. We believe, however, that such an
approach is restricted to the rather small number of personalization scenarios, where the
time (including its variance) needed for delivering a message is not critical. An example
of such a scenario is the assembling and sending of personalized messages via e-mail
and SMS.

• Support for dynamic contents allows for the maintenance of potentially sensitive user
information within a user model on a transient basis. Dynamic user model entries are
not persistent and need to be periodically refreshed by a client application. An e-mail
address for example, which is appropriately protected by access control information, is
kept only as long in a user model as needed for assembling a personalized e-mail; if this
service does not periodically refresh this e-mail address, then it vanishes from the user

72 Procedural anonymity can be established for clients and servers by passing a message between them through a set of

intermediaries, thereby keeping the original sender and receiver secret (e.g., by encrypting their identities on a
content level). For more information, we refer to Schreck [2003].

73 With super-identification, communication partners take advantage of an external authority for authenticating the
identity of one another. The X.509 standard we mentioned earlier is an example of a super-identification service.

6.3. SUPPORT FOR ADVANCED USER MODELING SCENARIOS 89

model). For more information on this proposed extension to LDAP version 3, we refer
to RFC 2589 [Yaacovi et al., 1999].

The following scenario, which is depicted in Figure 6-5, demonstrates some of these
facilities from a user’s point of view. Thereby, we also revisit and integrate parts of former
scenarios.

1st User Modeling
Component

2nd User Modeling
Component

User Modeling Server A

Name: Smith
Password: …

Software

Users

Referral

 . . .

Interests &
Preferences

Laptop

Hardware

1st User Modeling
Component

2nd User Modeling
Component

User Modeling Server B

Name: 4812

Device Drivers

Users

Preferences
 . . .

Name: Smith
E-mail: …

Users
 . . .

Corporate Directory Server A

Replica

Firewall

Figure 6-5: Scenario secure and private user modeling

User Modeling Server A hosts information about employees in a company. The user model
of Mr. Smith, an experienced programmer, contains several demographic attributes, an
interests and preferences sub-model, and information about the computer hardware
currently used by him (i.e., a single Laptop). Once in a while, Mr. Smith checks in at an
external online software shop which is specialized in component software. Mr. Smith
remembers very well his first visit to that shop. At that time, he was offered plenty of
information about their privacy policy, about the user-related information they collect, the
rationale and purpose for collecting each piece of information, the personalized services
they offer based on that information, etc. After a final question whether an account should
be created for him or not, he decided to create one using the pseudonym ‘4812’ and a
simple password (at that time he wondered a little bit about their promise to provide access
to their shop anyway). This account was created for him on User Modeling Server B.

Since then, each time Mr. Smith checks in, he gets personalized recommendations
regarding potentially interesting Device Driver software. Mr. Smith is also offered a tool

90 CHAPTER 6. USER MODELING SERVER ARCHITECTURE

for inspecting and editing his user model. He used this tool once for checking out the
systems assumptions about his interests and preferences. Since then, he knows that (i) the
shop only stores his pseudonym, password, interests and preferences and that (ii) their tool
for user model inspection was a bit clumsy, compared to the one he is using for maintaining
the user model in his company. Therefore, he recently asked his administrator to setup a
link from his local user model to that external one, thereby allowing him to inspect both
models from a single starting point with his favorite tool. Since then, each time he comes
across that link he gets (i) a notification that the trusted server environment is about to
change and (ii) an authentication request from the external server. After entering the
credentials for his pseudonym 4812, he is granted access to the external user model.

When Mr. Smith recently contacted his administrator, he also asked him to periodically
replicate a few attributes (mainly Name and E-mail address) from his local user model to
the corporate directory in front of the firewall, which is hosted by Corporate Directory
Server A. Since then, the number of clients, colleagues, and friends asking for his (new)
coordinates dramatically decreased.

In conclusion, we believe that our server exhibits facilities that enable administrators and
user model developers to safeguard against many security threats in user modeling and to
account for the sensitivity of user-related information. The interests and preferences models
hosted by User Modeling Server B, for example, can hardly be related to individuals, since
(i) they contain barely any sensitive information and (ii) the elicitation of combinations of
user-related information that would facilitate deanonymization can be assumed very
difficult (cf. Schreck [2003]), since the number of interests and preferences models can be
assumed quite large.

Some of the security and privacy facilities of our server correspond to facilities developed
by Schreck [2003]. In his work on security and privacy issues in user modeling, he
proposes the following facilities:

• Regarding authentication, signing, and encryption, he proposes an SSL-enhanced
version of KQML (see Finin et al. [1993] and Labrou and Finin [1997]) for
communication between user-adaptive applications and user modeling servers.

• As regards access control, he proposes a role-based access control model.
• For establishing procedural anonymity and pseudonymity, he proposes a KQMLmix

implementation. This allows for hiding senders’ and receivers’ identity by (i)
encrypting it on the message layer and by (ii) routing messages through a set of
intermediaries, where each intermediary only has knowledge about its immediate
neighbor.

• Regarding modification tracking, he proposes a mechanism that allows for storing
information about the origin of user model entries.

The most important difference between our security facilities and the ones Schreck
proposes is that we focus on LDAP as a basis for our user modeling server, whereas he
does not make such an assumption. His facilities are intended for a rather broad range of
user modeling servers (e.g., regarding their representational and inferential capabilities).

91

III
User Modeling Server

Implementation

93

7 User Modeling Server for Deep Map
In this part of our work, we demonstrate the validity of our generic server architecture by
instantiating a user modeling server for the Deep Map project. In the following chapter, we
briefly describe the project context, the specific user modeling requirements we found, and
the architecture of the user modeling server we developed.

In a subsequent chapter, we describe the User Modeling Components that we developed for
Deep Map and specifically the incorporated learning techniques that we adopted from the
area of machine learning for user modeling. We argue that by integrating these User
Modeling Components into a single server we can leverage several synergistic effects
between these techniques and compensate for well-known deficits of individual techniques.

7.1 User Modeling in Deep Map
Deep Map [Malaka and Zipf, 2000; Deep Map, 2001] is part of a family of long-term
research projects aimed at developing personal Web-based and mobile tourist guides,
thereby integrating research from various areas of computer science: geo-information
systems, data bases, speech input and output, multilingualism, intelligent user interfaces,
knowledge representation, and user modeling (see EML [1999; 2000], Malaka [1999], and
Malaka and Zipf [2000] for more details about the project aims). In order to enable Deep
Map and other components to provide personalized behavior, a model of relevant
characteristics of individual users (namely users’ individual interests and preferences) and
of user groups has to be acquired and maintained by a user modeling server (abbreviated
‘UMS’ in the following).

A central aim of the Deep Map sub-project ‘WebGuide’ [2001] is the provision of
personalized tour recommendations for the city of Heidelberg that cater to an individual
user’s interests and preferences. WebGuide identifies geographical points of interest and
computes a tour that connects these points via presumably interesting routes based on the
following pieces of information:

• geographical information about Heidelberg,
• information about relevant points of interest (e.g., the Heidelberg Castle),
• information about selected means of transport (e.g., car or bike),
• individual user’s interests and preferences, and
• tour restrictions specified by the user (e.g., regarding distance and duration).
Tour recommendations that meet the above requirements are then presented to the user.
Figure 7-1 depicts two proposals for walking tours that were prepared for the same user by
a first prototype of WebGuide. The tour proposal on the left side does not take individual
user interests and preferences into account, while the proposal on the right respects
particularly the user’s dislike of environmental burden. Although both tours contain the
same points of interest (indicated by black dots), the proposed routes between these points
(depicted by bold lines) differ especially in the encircled areas. In the personalized tour,
routes that are presumably problematic with respect to environmental burden (e.g., routes
along streets with high traffic) are substituted by more appropriate paths (e.g., by routes
through pedestrian zones, parks, and forests), if possible.

94 CHAPTER 7. USER MODELING SERVER FOR DEEP MAP

Figure 7-1: WebGuide tour proposals [EML, 1999]. Reprinted with permission.

In addition to the more generic user modeling requirements we introduced in Chapters 2
and 3, we elicited the following more specific user modeling requirements in a number of
scenario-based design sessions [Carroll, 1995; 2000]:

• User characteristics that need to be taken into account include interests and
preferences, and selected demographic data (e.g., users’ age, gender, and continent of
origin74).

• A priori knowledge about users (e.g., from other user-adaptive systems or smartcards
that store users’ interests [Fink et al., 1998]) is generally not available.

• The explicit acquisition of user information at runtime must be restricted to a brief
initial interview. The emphasis must lie on the implicit (i.e. unobtrusive) acquisition of
user interests and preferences, e.g. from user feedback, usage data, models of similar
users, and inferences based e.g. on domain heuristics.

• Adaptation should be relatively quick. For instance, the provision of personalized
information and services should already be possible during the user’s first session with
Deep Map. In subsequent sessions, the system should be able to cater to a user’s
changing interests and preferences.

• Long-term user modeling should be supported (which implies that the lifetime of
individual user models in Deep Map must extend beyond a single user session).

• Security and privacy, and related technical implications (e.g., scrutability of user model
contents by Deep Map users) should be taken into account.

Other identified requirements result from related user modeling research, or simply
conform to best practice in the design of software systems:

• Easy access to the user modeling server should be possible from different applications,
and different software and hardware platforms.

• Different user model acquisition techniques should complement each other and
synergistic effects between methods should be exploited. For instance, an acquisition
method that predicts user characteristics based on similarities between user profiles
should be able to take interests and preferences into account that were explicitly

74 The importance of acquiring and maintaining selected demographic data is underlined by Kaul [1999]. Her empirical

work on tourism in Heidelberg revealed that the interest of tourists in 17 out of 19 touristic activities significantly
depends on their age, and that 14 out of 19 interests significantly depend on their continent of origin.

7.2. OVERVIEW OF SERVER ARCHITECTURE 95

provided by users, as well as interests and preferences that were implicitly acquired by
other acquisition methods.

• The user modeling server must be open with respect to
- new or evolving user modeling requirements and their implications for the

acquisition and representation of user models, for learning methods, and for
inferences on the basis of user models,

- external data sources about users that may become available in the future (e.g., P3P
profiles [Reagle and Cranor, 1999]), and

- tools for user model analysis (e.g., visualization tools, data mining tools) and
associated interface standards like ODBC.

• User models must be upwards compatible between existing and future Deep Map
prototypes.

• The quality of service of the user modeling system is very important (e.g., its
performance, responsiveness, and robustness).

• The management of arbitrary information about Deep Map components (their
configuration, location, etc.) should be possible within the user modeling system. This
enables especially mobile and location-aware applications of Deep Map to flexibly
adapt their services to the available computing resources (locally available resources on
mobile devices are usually much more limited than server resources through a
network).

• The user modeling system should comply as much as possible with existing and
emerging de jure and de facto standards (e.g., from organizations like ISO and W3C).

These requirements substantially influence the architecture and the properties of our user
modeling server along with the more general requirements we presented in Chapters 2 and
3. The user modeling demands we collected in Deep Map are, however, not unusual, but
fairly typical for user-adaptive information systems that are being used in short interactions
only.

7.2 Overview of Server Architecture
Figure 7-2 depicts the architecture of the UMS for Deep Map, which is an instantiation of
the generic architecture we presented in Chapter 6.1. Several External Clients are shown on
the left side (e.g., Deep Map Agents, Browsers). The remaining part of this figure
delineates the UMS, which comprises a Directory Component (in the middle of the figure)
and a set of User Modeling Components (on the right). Sub-systems of the Directory
Component are depicted in the middle of the figure (e.g., Communication, Scheduler). User
Modeling Components of the UMS are depicted on the right (e.g., User Learning). External
communication with the UMS is established via standard protocols (e.g., LDAP, ODBC)75.
Within the UMS, there are two levels of communication that are based on CORBA and
LDAP. In the remainder of this sub-chapter, we briefly describe each group of external
clients, UMS sub-systems and components.

75 Not all communication links are depicted, many more are possible (e.g., Browsers accessing the UMS via ODBC).

96 CHAPTER 7. USER MODELING SERVER FOR DEEP MAP

Analysis

Visualization

Browser

Application

User Learning
Component (ULC)

Mentor Learning
Component (MLC)

Domain Inference
Component (DIC)

L
D
A
P

C
o
m
m
u
n
i
c
a
t
i
o
n

F
I
P
A

O
D
B
C

Directory Component
Deep Map Agent

R
e
p
r
e
s
e
n
t
a
t
i
o
n

S
c
h
e
d
u
l
e
r

User Modeling Components

External Clients User Modeling Server

...

Legend:

CORBA

LDAP

ODBC

FIPA

Figure 7-2: User Modeling Server architecture for Deep Map

Deep Map Agents are autonomous software components that provide tour
recommendations, analyze spoken input and generate speech output, interface to the World
Wide Web, etc. Deep Map Agents communicate to the UMS various data about the user’s
interaction with the system and user characteristics. Examples of the user’s interaction
include user requests for information on environmental burden in Heidelberg, or gothic
works of art in a specific church. An example of user characteristics is a user’s explicit
statement in an initial interview that she is heavily interested in information about churches.
Conversely, Deep Map Agents query the UMS for user characteristics (e.g., retrieve from
the model of the current user an assessment regarding her interest in information about the
Early Middle Ages, or retrieve all interests and preferences with a probability greater than
0.7) and for information about the system environment (e.g., which User Modeling
Components are currently available, or where Deep Map sub-systems are currently
located). From an architectural point of view, Deep Map Agents loosely adhere to the agent

7.2. OVERVIEW OF SERVER ARCHITECTURE 97

specifications released by FIPA (Federation for Intelligent Physical Agents), especially to
FIPA [1998a; 1998b]76.

System administrators carry out user model management tasks (e.g., configure UMS
components, manage access control, maintain assumptions in models of individual users)
via an LDAP Browser. Within its interface, standard LDAP operations (e.g., add, update,
and remove entries) can be applied to the models hosted by the UMS. Additional tools can
be used for administering the UMS, e.g. commercially available access control
management tools [Baltimore, 2001; Netegrity 2001].

Users and applications that take advantage of the UMS can inspect user model contents
(e.g., search for a specific user, list individual interests and preferences) using a variety of
LDAP-compliant Applications, including the following ones:

• Web browsers (e.g., Microsoft Internet Explorer [Microsoft, 2000a], Netscape
Communicator [Netscape, 2000a]);

• e-mail clients (e.g., Eudora from Qualcomm [2000]);
• standard LDAP browsers (e.g., Globus browser [Gawor, 1999], Active Directory

Browser from Microsoft [2000b]), which allow for browsing, modifying, and searching
user model contents (e.g., adding an interest in museums with a probability of 0.9);

• HTML-based (end) user interfaces for LDAP servers (e.g., from Oblix [2000]);
• server applications that cooperate with LDAP servers (e.g., Web servers and security

servers from iPlanet [2000a], Web development environments like ‘WebObjects’ from
Apple [2000], e-commerce application environments like One-To-One from
BroadVision [2000], commercially available user modeling servers like Personalization
Server from ATG [2000]).

Application designers may decide, however, to provide a custom UMS interface in their
applications. Custom interfaces may, e.g., restrict browsing to dedicated parts of a user
model. In order to develop such an interface, programmers can take advantage of a variety
of (mostly) freely available LDAP SDKs and interface components, e.g. the LDAP C SDK
from the University of Michigan [2000a], various Directory SDKs from Netscape [2000b],
LDAP-X from Boldon James [2000], JNDI (Java Naming and Directory Service) from Sun
[2000b], and ADSI (Active Directory Services Interface) from Microsoft [2000b].

The last two groups of potential UMS clients depicted in Figure 7-2 comprise Analysis and
Visualization tools. Important research communities like visualization, data mining, and
machine learning developed a plethora of methods and tools in the last years (for an
overview of academic and commercial resources, we refer to Card et al. [1999], About.com
[2000], GMD AiS [2000], KDnuggets [2000], Russell [2000], Kobsa [2001c], and for a
discussion of several commercial data mining tools to Woods and Kyral [1997]). Although
many of these tools have been originally developed outside of the user modeling
community, many of them have been more recently applied to user modeling tasks as well
(e.g., segmentation of a customer population using clustering algorithms, analysis of
customers’ shopping behavior from past purchase data by learning decision rules, learning

76 More precisely, Deep Map’s agent-based communication framework shows minor extensions to, and omissions from,

the corresponding FIPA standards for a variety of reasons including performance and ease of programming (we refer
to EML [1999; 2000] for a more detailed discussion).

98 CHAPTER 7. USER MODELING SERVER FOR DEEP MAP

relevant characteristics of users that typically respond to particular advertisements by
training neural networks [Woods and Kyral, 1997]). It is worthwhile to note that these tools
are not limited to model analysis and inspection, but allow for assessing the adequacy of the
user modeling techniques employed in the UMS as well. This can be accomplished, for
example, by applying competing or alternative methods from data mining products to user
model contents and evaluate their results regarding key dimensions like performance and
accuracy (cf. Herlocker et al. [1999]).

In the middle of Figure 7-2, we find three sub-systems of the Directory Component:

• Communication allows UMS clients to access the UMS via FIPADM 77, LDAP, and
ODBC (for more information on these modules, we refer to Chapter 8.1):
- The FIPADM interface module mediates between Deep Map’s messaging framework

and the functionally structured LDAP interface of the UMS.

- The LDAP communication module is provided by Directory Server.

- A commercially available ODBC/LDAP gateway accepts ODBC requests and
transforms them into standard LDAP operations and vice versa.

• The Representation sub-system hosts models about (i) relevant characteristics of
individual users, (ii) usage of user-adaptive applications, (iii) a domain taxonomy, and
(iv) various configuration information. For more information on these models, we refer
to Chapter 8.2. The Representation sub-system of the UMS is provided by Directory
Server from iPlanet.

• The main task of the Scheduler is to mediate between the Directory Component and the
User Modeling Components depicted on the right side of Figure 7-2. A second task of
the Scheduler is the provision of LDAP-compliant user modeling functionality (e.g., for
creating and deleting user models). For more information on this sub-system, we refer
to Chapter 8.3.

On the right side of Figure 7-2, we find those User Modeling Components that are currently
implemented in the UMS for Deep Map (for more information on these components, we
refer to Chapters 8.4, 8.5, and 8.6):

• The User Learning component (abbreviated ‘ULC’) learns user interests and
preferences from usage data and updates individual user models with associated
probabilities (e.g., a user has a presumed interest in churches with a probability of 0.8).

• The Mentor Learning component (abbreviated ‘MLC’) predicts missing values in
individual user models from models of a set of similar users.

• The Domain Inferences component (abbreviated ‘DIC’) infers interests and preferences
in individual user models by applying domain inferences to assumptions that were
explicitly provided by users and implicitly acquired by the ULC and the MLC.

Techniques employed in these components include univariate significance analysis (cf.
Mitchell [1997], Pohl et al. [1999], and Schwab and Pohl [1999]), memory-based
Spearman correlation, various weighted prediction algorithms from the area of

77 We use the term FIPADM (i.e., FIPA Deep Map) in the following for referring to Deep Map’s limited degree of FIPA

compliance (see Chapter 8.1.1 for a brief discussion).

8.1. COMMUNICATION 99

collaborative filtering (cf. Herlocker et al. [1999]), and domain inference rules that take
advantage of the domain taxonomy (cf. Kobsa et al. [1994]). These methods seem to be
appropriate for the mainly content-based learning tasks we identified in WebGuide. Their
tuning, extension, and even replacement may become necessary, however, as soon as user
modeling needs evolve (e.g., in case of additional Deep Map components adding to the
range of user modeling tasks for the UMS).

8 User Modeling Server for Deep Map: Components
In the following sub-chapters, we present and discuss each of the aforementioned sub-
systems and components in greater detail.

8.1 Communication

8.1.1 FIPADM Interface
From a software engineering point of view, it seems advisable for a long-term research
project like Deep Map to adhere to a software design paradigm that allows for maximum
flexibility. In this vein, agent-based software design seems to be the paradigm of choice.
Designing autonomous software agents that communicate via high-level messages
significantly reduces coupling between different modules (as opposed to a rather tight
coupling between modules when employing established component frameworks like COM)
and therefore allows for evolutionary software development. In accordance with FIPA and
earlier knowledge sharing initiatives and standards around KQML, Deep Map messages are
structured into the three layers communication, messaging, and content. A major difference
between many FIPA/KQML implementations and Deep Map is the fact that messages in
Deep Map are encoded as Java objects. Since all Deep Map agents are written in Java or,
like the FIPADM interface for the UMS, are encapsulated with a Java wrapper, Java’s built-
in object serialization capabilities are employed for communicating messages between the
different agents. This greatly eliminates the need for parsing messages and improves at the
same time the overall performance of the system. The transport of messages is established
via the messaging framework JAMFrame [Chandrasekhara, 1999], which is in turn based
on the object request broker ‘Voyager’ from ObjectSpace [2000]. For more information on
Deep Map’s communication infrastructure, we refer to EML [1999; 2000].

Based on this, the main aim of the FIPADM interface is to mediate between Deep Map’s
message-oriented communication framework and the functionally structured LDAP
interface of the UMS. Messages sent from Deep Map modules to the UMS are transformed
into one or more calls to the LDAP interface of the UMS and vice versa. An example is a
query for a user’s interest in churches, which is accomplished by calling the search method
of the LDAP class LDAPConnection in Java (see also Wilcox [1999]). Proactive
communication can also be established by the UMS (e.g., the UMS alerts WebGuide that a
user’s interest in buildings has significantly increased).

8.1.2 LDAP Interface
Native LDAP connectivity is directly provided by iPlanet’s Directory Server (abbreviated
‘DS’ in the following). DS supports both major revisions of the LDAP protocol, LDAP

100 CHAPTER 8. USER MODELING SERVER FOR DEEP MAP: COMPONENTS

version 2 and 3. For an overview and a discussion of related RFCs, we refer to Chapters 4
and 5.

In order to ease model management (e.g., the creation and deletion of user models), several
extensions to the LDAP protocol have been implemented using LDAP’s extended operation
facility. The rationale behind this was to relieve administrators and applications from
laborious and error-prone administration tasks (e.g., create the initial topography for new
user models, set appropriate access control rights, and populate new user models with
default assumptions). Another motivation for these user modeling extensions was the
preservation of model consistency. New user models, e.g., should become correctly created
and initialized, even in case of system breakdowns.

8.1.3 ODBC Interface
ODBC access to the UMS is facilitated via the commercially available product ‘PSEnList’
from Persistent [2000]. Its interface allows to (i) define relational mappings for the
hierarchical LDAP representation used within the UMS (see Chapter 8.2), (ii) access these
mappings from a variety of applications via ODBC, and (iii) periodically monitor user
model content for certain conditions (e.g., creation of new user models, change of user
model content). Appropriate actions can be invoked in such a case (e.g., a re-computation
of user group models in a background process when user model contents change).

Due to the wide support for ODBC on Windows-based software platforms, the ODBC
interface enables many desktop applications (e.g., Microsoft Excel) and a variety of data
analysis and visualization tools (e.g., ‘sphinxVision’ from ASOC [2000], ‘InfoZoom’ from
humanIT [2001]) to directly access the models hosted by the UMS.

8.2 Representation
In the following sub-chapters, we present several examples of the most important models
the UMS for Deep Map maintains in its Representation sub-system. We present several
screen shots from an LDAP editor/browser [Gawor, 1999], which accesses a development
version of the UMS. In each of the following scenarios, we initially identified and
authenticated ourselves as an administrator to the UMS. In accordance with the (weak)
security and privacy policy currently implemented in this development server, this enabled
us to access all test models and retrieve all information contained therein. Presenting the
real-world models that are hosted by the UMS at EML’s premises would have been a far
more intriguing alternative. User privacy, however, required us to restrict ourselves to the
development server running at GMD’s premises. Please note that the models presented in
the following have been developed for the first prototype of WebGuide. Extensions and
modifications of the current modeling needs can be anticipated with additional Deep Map
components adding to the range of user modeling tasks for the UMS.

The formal definition of the models hosted by the UMS is based on standard LDAP object
class and attribute definitions. Nearly all schema elements used in the Representation
component are part of the standard LDAP protocol, which is in turn based on the X.500
standard. When modeling the schema for the UMS, we tried to adhere as much as possible
to standard schema elements in order to facilitate the deployment of the UMS to other user
modeling scenarios.

8.2. REPRESENTATION 101

The current version of the UMS for Deep Map hosts a User Model, a Usage Model, a
System Model, and a Service Model. These models can be seen in the left frame of the
browser screen shot presented in Figure 8-1.

Figure 8-1: User Modeling Server models overview (user attributes only)

In the right frame of the browser, we see various attributes and associated values for the
currently selected root entry gmd.de. The most prominent attribute aci (i.e., access
control information) controls access to the models hosted by the UMS. The last value of
this multi-valued attribute defines for example that all entries beneath and including
gmd.de can be accessed by anonymous users (e.g., users that access the UMS
anonymously via a Web browser). By default, anonymous users are allowed to perform the
LDAP operations read, search, and compare on all entries that are hosted by the UMS78.
The full access control information that implements this (weak) policy is not entirely
visible in Figure 8-1 and looks as follows:

(targetattr != “userPassword”)

(version 3.0; acl “Anonymous access”;

allow (read, search, compare)

userdn = ”ldap:///anyone”;)

Other attributes currently visible in the right frame are the relative distinguished name (i.e.
gmd.de) and the standard LDAP object classes that are associated with the root entry
gmd.de (i.e., top and organization). Each of these object classes defines a list of
attributes that are either required or allowed. The list of applicable attributes for an entry
like gmd.de is defined by the list of its object classes, where each object class adds its
attributes to the overall list. Object class top is the root class and allows for additional
object classes to be associated with gmd.de. Object class organization adds several
required and optional attributes including organization name, postal address, and telephone
number. Only those attributes for gmd.de that actually contain one or more values are

78 Such a weak access control policy (i.e., anonymous users are allowed to access all entries that are hosted by the

UMS) seems only adequate for a development server that contains no real user data.

102 CHAPTER 8. USER MODELING SERVER FOR DEEP MAP: COMPONENTS

shown in Figure 8-1. For more information on LDAP’s Information Model and Naming
Model, we refer to Chapters 5.1 and 5.2.

Those attributes of gmd.de we presented so far are so-called user attributes, i.e. attributes
that may be modified by clients of the UMS, presupposed that they have appropriate access
permissions. Figure 8-2 depicts all attributes of the root entry gmd.de, including the
operational attributes createtimestamp, creatorsname, modifiersname, and
modifytimestamp.

Figure 8-2: User Modeling Server models overview (all attributes)

DS updates these attributes each time an entry is modified. Creators and modifiers of an
entry include ‘real’ users, client programs, and also User Modeling Components of the
UMS. Operational attributes are a valuable and reliable79 source of administrative
information about model entries. The UMS exploits the information contained in
operational attributes for various purposes, e.g. for prioritizing assumptions about a user’s
interest depending on their origin (similar prioritization schemes can be found, e.g., in the
user modeling shell system BGP-MS [Kobsa and Pohl, 1995]). Operational attributes are
normally not returned to clients of the UMS, unless clients explicitly request for them.

In the following sub-chapters, we briefly describe each of the models introduced so far.
Unless explicitly mentioned, we restrict ourselves to the presentation and discussion of user
attributes for model entries.

79 Neither ordinary users nor administrators are able to modify operational attributes.

8.2. REPRESENTATION 103

8.2.1 User Model
Figure 8-3 depicts in the left frame three user models, one for Peter Smith, one for
George Brown, and one for a stereotype called Kunstliebhaber (i.e., art lover). In
general, user models comprise a demographic part, which is mainly based on standard
LDAP object class and attribute definitions, and a part for users’ interests and preferences.
The demographic attributes for Peter Smith (his entry is currently selected in the left
frame) are shown in the right frame of Figure 8-3.

Figure 8-3: User models

Based on the assignment of the entry Peter Smith to the object classes top and
person, the demographic part comprises required attributes (i.e., common name and
surname, abbreviated cn and sn) and optional attributes (e.g. userpassword80). And as
already mentioned for the object class organization, some more attributes (e.g., description,
telephone number) are inherited from the object class person, but not filled with values
for Peter Smith yet. Other visible attributes that have been added to meet the specific
information needs of WebGuide include age, continent, and sex.

So far, we used an LDAP editor/browser for inspecting the models hosted by the UMS. In
Figure 8-4 we contrast this with an interface that facilitates searching model contents. The
interface shown there is a part of the e-mail client application ‘Eudora’ from Qualcomm
[2000]. After launching Eudora, we created an LDAP data source called UMS at
ums.gmd.de and selected this source for subsequent queries. This is indicated in the
bottommost frame on the right by the cross in front of the line UMS at ums.gmd.de.
Subsequently, we entered the string Smith into the field named Query on the left and
pressed the button labeled Start. The frame below the query field indicates that one
record matches this query. Its contents is shown in the frame below. The number of
attributes, their naming within the interface, and the visualization of attribute values can be
widely adapted by the user and does not require any programming efforts.

80 The user password shown here is an encrypted representation of the actual one.

104 CHAPTER 8. USER MODELING SERVER FOR DEEP MAP: COMPONENTS

Figure 8-4: User model query for Smith

The major portion of a user model is devoted to users’ interests and preferences. The
topography and terminology of this part corresponds to the domain taxonomy of Deep
Map81, which is maintained in the System Model (see Chapter 8.2.3). The reference
language used in the domain taxonomy for Deep Map is German. This is the reason why all
identifiers for interests and preferences used within the UMS for Deep Map are in German.

Within a user model, the top entry for the interests part is labeled interests. Figure 8-5
depicts the user model of Peter Smith with his interests being unfolded in the left
frame. Interests can be hierarchically ordered, e.g. interests comprises interest in
Geschichte (i.e. history), Gastronomie (i.e. gastronomy), Wirtschaft (i.e.
economy), Kunst (i.e. art), Gebaeude (i.e. buildings), Sport, and Natur (i.e. nature).

81 In order to cater to deployment scenarios where a domain taxonomy is not completely specified a priori (i.e., an open

corpus of terms), this compliance can be weakened or even abandoned. Compliance with the domain taxonomy can
be controlled via several configuration parameters (see Chapter 8.4.3).

8.2. REPRESENTATION 105

Figure 8-5: Interest model of Peter Smith (all attributes)

The interest in Umweltbelastung (i.e., environmental burden), which is a sub-entry of
Natur, is currently selected. User attributes and operational attributes for this entry are
shown in the right frame82. The most important attributes include the following:

• Predicted_probability is a prediction about a user’s interest based on his
similarity with other users or stereotypes. In our scenario, Peter Smith was found to
be similar to the stereotype Kunstliebhaber (i.e., art lover). This prediction was
calculated based on the presumable interest of this user group in Umweltbelastung,
and the degree of similarity between him and this group (see Chapter 8.5 on the MLC).

• Classification indicates whether a user’s normalized_probability (see
below) of interest is significantly high, significantly low, or not significant. Peter
Smith’s interest in Umweltbelastung was considered to be significantly high (as
indicated by ’yes’). This assumption was calculated by the ULC (see Chapter 8.4).

• Individual_probability is an assumption about a user’s interest based on the
types of information she retrieves from the system (see Chapter 8.4 on the ULC). The
probability of Peter Smith’s interest in Umweltbelastung is considered to be
quite low (namely 0.04).

• Normalized_probability rates an individual user’s interest, as indicated by
individual_probability, in relation to the interests of the whole user
population. For Peter Smith, this probability is considered to be fairly high (namely
0.8), since most other users are presumed to have a much lower interest in
Umweltbelastung than him (see Chapter 8.4 on the ULC).

• Creatorsname indicates the creator of this entry (namely the User Modeling
Component ULC).

82 If no specific sorting order is specified by the client, the server returns attributes in an arbitrary order.

106 CHAPTER 8. USER MODELING SERVER FOR DEEP MAP: COMPONENTS

• Createtimestamp contains the time of creation.
• Modifiersname indicates the user who last modified this entry (namely Peter

Smith himself).
• Modifytimestamp contains the time at which the last modification occurred.
The list of attributes for a user’s interest we presented is not complete, several more are
defined in the schema of the UMS for Deep Map (e.g., an attribute for inferring additional
interests by applying domain inferences to assumptions about a user’s interests and
preferences). For more information on the role of the User Model in the user modeling
process, we refer to Chapters 8.4, 8.5, and 8.6.

8.2.2 Usage Model
The Usage Model acts as a persistent storage for usage-related data within the UMS. It
comprises usage data communicated by WebGuide, and information related to the
processing of these data in User Modeling Components (e.g., a counter for Peter
Smith‘s interface events related to Umweltbelastung). Access to the Usage Model is
granted to WebGuide and those User Modeling Components that process usage data (e.g.,
the ULC). Users of WebGuide are not allowed to inspect their usage model. In the left
frame of the editor depicted in Figure 8-6, we see the Usage Model from an administrator’s
point of view.

Figure 8-6: Usage model

The Usage Model comprises the following parts:

• DMI Events contains usage data communicated by WebGuide83. Each entry in this
sub-tree describes a WebGuide interface event in terms of one or more interests from
the domain taxonomy that can be attributed to the user based on this event. For
instance, Peter Smith’s request for a document about the environmental impacts of
tourism is described in terms of an attributed interest called Umweltbelastung. The
currently selected entry in the left frame and the associated information in the right
frame illustrate this.

83 As the label DMI Events (i.e., Deep Map Interface Events) for this sub-tree suggests, we anticipate a much broader

range of input data for the UMS in the near future.

8.2. REPRESENTATION 107

• DMI Events Processed includes information that is required for, and results
from, processing usage data contained in DMI Events (e.g., the aforementioned event
counter for Umweltbelastung).

• Backup and Backup History may contain events from DMI Events that have
already been processed by User Modeling Components. The main motivation for stock-
piling interface events is to preserve them for further processing and analysis, e.g. by
employing external visualization and data mining tools (see Figure 7-2).

For more information on the Usage Model and its role in the user modeling process, we
refer to Chapter 8.4 that deals with learning about the user.

8.2.3 System Model
The System Model encompasses information about the application domain that is relevant
for User Modeling Components of the UMS. Its most important content is the
aforementioned domain taxonomy. Access to the System Model is granted to
administrators and all User Modeling Components of the UMS (e.g., the MLC). Users of
WebGuide are not allowed to inspect the System Model.

Figure 8-7: System model: classifiers and demographics

In the current version of the UMS for Deep Map, the System Model comprises the
following parts (see Figure 8-7):

• Classifiers contains templates that control the discretization of continuous
attribute values (e.g., for discretizing users’ age into appropriate groups). The MLC
uses these templates for preprocessing attribute values before computing correlations.
An example template is shown in Figure 8-7 for the entry probabilityclass,
which is currently highlighted in the left frame. probabilityclass is associated,
e.g., to the attribute Umweltbelastung in the domain taxonomy (see Figure 8-8).
The interpretation of the first part of this template (i.e., [0.00,0.10)=0.05) can be
outlined as follows: probabilities between 0.00 (inclusive) and 0.10 (exclusive) are
associated with the class’s mean 0.05. The remainder of the template can be interpreted
accordingly.

108 CHAPTER 8. USER MODELING SERVER FOR DEEP MAP: COMPONENTS

In general, the syntax used for classification templates is as follows (in EBNF, i.e.
Extended Backus Naur Form):

attribute-classifier ::= classifier {”;” classifier}*

classifier ::= (range | limit) ”=” number

range ::= (”(” | ”[”) limit ”,” limit (”)” | ”]”)

limit ::= number | string | ”*”

number ::= {digit}+ [”.” {digit}*]

string ::= ””” {digit | alpha}+ ”””

The creation and management of these templates, however, can be presumed a cumber-
some task. Additional support for this task can be provided through a dedicated
administration interface and additional syntax checks within the Representation sub-
system. In the current version of the UMS, however, such a support is not provided. We
recommend to consider this issue for further work on the UMS.

• Demographics specifies those attributes (e.g. age) in the demographic part of a user
model that can be used for finding groups of similar users. In the current
implementation of the UMS for Deep Map, this information is mainly relevant for the
MLC (see Chapter 8.5). With further components of Deep Map adding to the range of
user modeling tasks for the UMS, however, this information might get also relevant for
user modeling components that compute models of user groups based on similar
characteristics in individual user models, irrespective of the techniques they employ for
this task (e.g., Bayesian clustering for acquiring explicit models of user groups [Orwant,
1995; Paliouras et al., 1999])84.

• Interests mirrors the domain taxonomy from the Deep Map database. In its current
version, the domain taxonomy covers seven areas of interest (namely restaurants,
buildings, history, art, nature, sports, and economy). The interests sub-tree
comprises five levels with nearly 500 leaf entries. Figure 8-8 shows a small portion of
the domain taxonomy. Umweltbelastung is currently selected in the left frame and
its attributes are shown in the right frame. The attribute value for classifier
specifies the classification template to be used for discretizing interest probabilities for
Umweltbelastung. The attributes mentor_prediction and
mentor_finding control whether predictions based on similar users should be
computed for this interest and whether this attribute should be included in the mentor
finding process. Both flags are on for Umweltbelastung.

84 This is in contrast to the MLC, which predicts missing entries in individual user models from entries in a set of

similar user models (i.e., no models of user groups are computed).

8.2. REPRESENTATION 109

Figure 8-8: System model: domain taxonomy

For more information on the System Model including a usage scenario, we refer to Chapter
8.5.

8.2.4 Service Model
The Service Model contains information that is required for establishing communication
between the Directory Component and the User Modeling Components. Access to the
Service Model is restricted to administrators and User Modeling Components (e.g., the
DIC). Users of WebGuide are not allowed to inspect the Service Model.

The Service Model is divided into three parts, each of them being dedicated to a single User
Modeling Component (e.g., the ULC). Each of the entries contained in these parts
represents a description of a server-internal event type in which a User Modeling
Component is interested. Figure 8-9 depicts an example of such a subscription.

Figure 8-9: Service model

The entry currently selected in the left frame specifies a subscription for additions to the
Usage Model (more precisely, a subscription for notification regarding such additions). The
attributes shown in the right frame specify this notification request. The value for attribute

110 CHAPTER 8. USER MODELING SERVER FOR DEEP MAP: COMPONENTS

umscomponentobjectname refers to the User Modeling Component that induced this
request (i.e. the ULC)85. The attributes cn and objectname denote the type of LDAP
request that should be monitored (namely add operations). Two types of events can be
raised for a single LDAP operation, one before and one after an LDAP operation has been
executed by the server. The first type is prefixed with PRE, the second with POST. In our
example, all additions to the Usage Model are first executed by the server and then
communicated to the ULC (as indicated by POST_ADD). Post-notifications allow a User
Modeling Component to react on the outcome of an LDAP operation (e.g., start learning a
persistent entry, invoke an undo operation). Pre-notifications enable a User Modeling
Component to get invoked before an LDAP operation is executed by the server (e.g.,
carrying out consistency checks, preparing for rollback). In general, the following LDAP
operations can be tracked by the Scheduler before and after execution: bind, unbind, search,
modify, add, delete, rename, compare, and abandon. User modeling operations that are
implemented as extensions to the LDAP protocol can also be monitored and communicated
to User Modeling Components (e.g., for creating and deleting user models).

An important attribute of an event subscription is basefilter. Its value allows to restrict
the portion of the overall directory tree that is to be monitored. In the example depicted in
Figure 8-9, this monitoring space is defined as cn=DMI Events, cn=usage model,
ou=UMS, o=gmd.de. Based on this, the Scheduler communicates all additions of entries
that take place in the hierarchy below this entry to the ULC. Additional attributes of an
event subscription are (i) synchtype, which specifies whether the Scheduler
communicates an event in a synchronous or asynchronous manner, (ii) priority, which
directly maps to the priority used for communicating events via the ORB, and (iii)
checkresult, which specifies whether the Scheduler should check for each event being
successfully communicated to a User Modeling Component before resuming processing.
For more details on how the Service Model is used by the Scheduler, we refer to Chapter
8.3.

The centralization of configuration information in the Service Model can be assumed to
considerably ease the administration of the UMS, as opposed to the efforts necessary for
maintaining a plethora of (potentially distributed) configuration files. Further work on the
Service Model may additionally take advantage of

i. LDAP’s facilities for replicating parts of a directory tree across several servers,
ii. more recent proposals for LDAP standards that aim at representing Java objects (see

Ryan et al. [1999a]) and CORBA object references (see Ryan et al. [1999b]) in LDAP
representations, and

iii. a recent proposal for LDAP entries with a transient lifetime [Yaacovi et al., 1999].

85 This name denotes also the service name a component uses for registering to the ORB. At runtime, the Directory

Component dynamically binds to User Modeling Components based on their service names.

8.3. SCHEDULER 111

These facilities would allow for (temporarily) replicating models hosted by the UMS (e.g.,
user models) and associated user modeling functionality (e.g., the ULC) across a network
of computers. Together with today’s facility of the UMS for remotely ‘plugging’ new user
modeling components into the server at runtime, this infrastructure provides a promising
basis for a new generation of user modeling applications, which supports, e.g., nomadic
user models and associated user modeling functionality (cf. Kobsa [2001a]).

8.3 Scheduler
In the following sub-chapters, we first describe the main tasks of the Scheduler. After that,
we present an example that demonstrates the processing of event subscriptions from the
Service Model and the communication of events to User Modeling Components. Finally,
we briefly sketch some implementation details.

8.3.1 Introduction
The main task of the Scheduler is to mediate between the Directory Component and the
User Modeling Components. User Modeling Components can subscribe to certain types of
UMS events by maintaining event subscriptions in the Service Model (see Chapter 8.2.4).
This approach limits the amount of communication, allows for adding and removing user
modeling components at runtime, and distributing them dynamically across a network of
computers. After the launch of the UMS, the Scheduler loads event subscriptions from the
Service Model. Subsequently, the Scheduler periodically checks the Service Model for new
entries and, if necessary, updates its internal subscription tables accordingly. Henceforth,
the Scheduler acts as a kind of event broker that supervises LDAP events within the UMS
and communicates them together with associated data to User Modeling Components. In
the current version of the UMS for Deep Map, communication between the Scheduler and
User Modeling Components is established via the commercially available ORB
‘VisiBroker’ from Inprise [2000].

A second task of the Scheduler is the provision of user modeling extensions to the LDAP
protocol. If a new user model has to be created, e.g., this comprises the execution of several
standard LDAP operations in a particular order, namely (i) checking for an already existing
model, (ii) establishing the basic topography of a new model, (iii) setting appropriate access
rights, and (iv) populating the model with default values. Moreover, rollback mechanisms
have to be provided that preserve model consistency in case of potential problems during
the creation process. Centralizing these administration tasks in the Scheduler preserves
model consistency and relieves administrators and application programmers from laborious
and error-prone administration and programming tasks. In the current version of the UMS
for Deep Map, we implemented two operations for creating and deleting a user model using
the standard mechanisms for adding custom extensions to the standard LDAP protocol.

112 CHAPTER 8. USER MODELING SERVER FOR DEEP MAP: COMPONENTS

8.3.2 Usage Scenario
In the following, we briefly describe a scenario in which the Scheduler communicates the
addition of a usage event to the ULC. Figure 8-10 depicts the most important components
that are involved in this example, namely the Directory Server, the Scheduler, and the ULC.

 iPlanet Directory
Server

Scheduler ULC

1. Addition to
 Usage Model

2. Identify subscribers

3. Communicate addition

4. Process result

Receive event

Figure 8-10: Scheduling scenario

The following steps constitute our scenario (the numbers in the following list refer to those
in the figure):

1. A user’s request for a Web document results in the communication of an event vector to
the UMS that includes the term Umweltbelastung86. This vector is inserted into the
DMI Events part of the Usage Model using an LDAP add operation (see also Figure
8-6).

2. Subsequently, the add event is handed over to the Scheduler, which starts scanning its
internal subscription tables for matching entries87. The event type and the basefilter
(namely cn=DMI Events, cn=usage model, ou=UMS, o=gmd.de) of the
ULC subscription depicted in Figure 8-9 match the current event; hence, the Scheduler
prepares this event for communication to the ULC (in the case of several matching
subscriptions, the event is communicated to all subscribers).

3. The Scheduler communicates the add event and associated data (mainly the event
vector) to the ULC, thereby following the processing specification contained in the
subscription (as specified by the attributes synchtype, priority, and
checkresult). Taking the event filters applied in the previous step and the
operational attribute creatorsname of a usage event into account, the Scheduler can
avoid potential recursion problems that may result from the ULC adding entries to the
Usage Model hosted by the UMS.

86 This term can be regarded as characterizing the content of the requested hypermedia document (there may be more

than one descriptive term for a page). It could come from the HTML ‘description’ and ‘keywords’ tags, or it could
have been selected using a term significance measure such as DF/ITF [Sparck Jones, 1972].

87 The Scheduler uses a quite similar subscription mechanism for integrating with DS. The Scheduler transforms event
subscriptions from User Modeling Components into event subscriptions to DS. This approach successfully minimizes
the amount of system resources necessary for event management purposes (see also the results of our empirical
experiments in Chapter 9).

8.3. SCHEDULER 113

4. The Scheduler reports the successful event submission to DS, which resumes
processing the LDAP add operation.

8.3.3 Implementation
In order to operate as efficient as possible, the Scheduler is tightly integrated with DS (see
Figure 8-11).

LDAP
Client

Default
database

ldbm

Directory Server
front-end

Scheduler
pre-operation plug-in

Directory Server
back-end

Scheduler
post-operation plug-in

Entry/fetch
plug-in

iPlanet
Directory Server

Figure 8-11: Scheduler integrated with Directory Server

On the top, we see an LDAP Client accessing the server. Immediately below that, the
Directory Server front-end is depicted. Its main tasks include processing of incoming
LDAP requests, calling the back-end for database access, and sending results back to the
client. Below that, the Scheduler is depicted as a pre-operation and as a post-operation
plug-in. Beneath these plug-ins, we see the Directory Server back-end, which is mainly
responsible for database access. An additional plug-in handles all low-level entry/fetch
operations just before the database is accessed.

114 CHAPTER 8. USER MODELING SERVER FOR DEEP MAP: COMPONENTS

In the current version of the UMS for Deep Map, we use the standard Entry/fetch plug-in of
DS, which interfaces to the default database management system ldbm. A potential line of
further development is the replacement of this plug-in with a custom one, thereby enabling
access to a relational database management system (e.g., from Oracle). Besides a different
performance characteristics (i.e., read performance is traded in for update performance),
this would enable the UMS to take advantage of the transactional facilities provided by a
database management system.

From an implementation point of view, the Scheduler takes advantage of several dynamic
link libraries provided by DS. The programming language used for implementing the
Scheduler is C++. Access to the ORB is facilitated via the commercially available product
‘VisiBroker for C++’ from Inprise [2000].

8.4 User Learning
In this sub-chapter, we start with a brief overview of related work on acquiring user
interests from usage data. Based on this review and the user modeling requirements we
identified in WebGuide, we subsequently discuss the selection of a specific technique for
learning user interests. After that, we present an example that demonstrates the acquisition
of user interests within the ULC (i.e. User Learning Component). In the last part of this
sub-chapter, we describe various design and implementation decisions we have taken
against the background of performance and scalability requirements.

8.4.1 Introduction
A currently very active strand of user modeling research is devoted to learning users’
interests from relevant features of objects that users have viewed, rated, put in electronic
shopping carts, bought, etc. The resulting assessment is often used for recommending and
filtering objects (cf. Oard [1997]). This kind of filtering is called feature-based filtering (or
sometimes content-based filtering)88, since it is based on object features. For instance,
assume that users’ interest in movies is determined by movie features like genre, actors,
director, etc. A learning algorithm would then attempt to learn a user’s preferences with
respect to these features based on her interaction with movies and related information, and
thereafter rate new movies whether they are presumably interesting to this user. The result
can be exploited, e.g., for recommending movies that this user will presumably rate highly,
and for supplying and emphasizing features about movies that are presumably relevant.

Plenty of work has already been carried out in the area of learning about users’ interests.
An early system by Jennings and Higuchi [1993] employed neural networks for filtering
Internet news before presenting them to users. Other work includes ‘Fab’ [Balabanovic,
1997; Balabanovic and Shoham, 1997], ‘Letizia’ [Lieberman, 1995], and ‘LaboUr’ [Pohl et
al., 1999; Schwab and Pohl, 1999; Schwab et al., 2000]. While these systems used a single
technique for a specific learning task, a parallel strand of research evaluated the application
of alternative techniques to the same learning tasks (e.g., Pazzani and Bilsus [1997], Breese
et al. [1998], Herlocker et al. [1999]). In ‘Syskill & Webert’ [Pazzani and Billsus, 1997],
for example, several machine learning techniques (namely the nearest-neighbor algorithm

88 The term content-based filtering is mainly used in domains where the objects of interest are documents. In this case,

the features are those terms of a document that are considered to be representative for the content of the document.

8.4. USER LEARNING 115

and its PEBLS variant [Cost and Salzberg, 1993], induction of decision trees with
algorithms like ‘ID3’ [Quinlan, 1986], two neural network approaches, and the naive
Bayesian classifier [Duda and Hart, 1973]) were evaluated regarding their performance and
accuracy in acquiring interest profiles from explicit user ratings on a set of biomedical
documents. Based on this evaluation, the naive Bayesian classifier was chosen as the
default algorithm for Syskill & Webert. Further improvements regarding learning accuracy
have been achieved by emphasizing those features that are particularly relevant for
classifying biomedical documents (e.g., by letting the user select and rate the importance of
document features for classification).

Many of the algorithms discussed in the literature (e.g., those evaluated for Syskill &
Webert) had to be discarded in our project because of their reliance on negative evidences
of user interest. Users are meanwhile known for not giving very much feedback on the
appropriateness of presented items, particularly not negative feedback (see the discussion in
Schwab and Pohl [1999] and Schwab et al. [2000]). Some systems like Letizia [Lieberman,
1995] compensate this by utilizing those options (namely Web links) that the user did not
select as negative evidences of user interest. This however seems hardly appropriate for
Web-based systems. If a user clicks on some links on a Web page but not on others, this
does not imply that the other links are not interesting to her. This is especially true in cases
where a Web page does not fit on a computer screen, e.g. due to screen size, screen
resolution, or excessive page length. There is evidence in the hypermedia literature that
those parts of a hypermedia page that do not fit on a physical screen (and thus require
scrolling in order to be seen) are only viewed (and therefore perceived) by a relatively
small number of users [Nielsen, 1996]. For all these reasons, we decided to use learning
algorithms that solely rely on positive evidences of user interest.

Of those algorithms that have been developed and evaluated in the literature to determine
whether a user is interested in specific object features, we selected the univariate
significance analysis (cf. Mitchell [1997] and Schwab and Pohl [1999]). The main reason
for this choice is the ability of this algorithm to

i. learn incrementally, which allows for keeping up with users’ changing interests and
preferences,

ii. represent learning results explicitly, which allows for leveraging synergistic effects
between different learning techniques,

iii. employ a domain taxonomy, which can considerably improve the learning process (both
in terms of computational complexity and the quality of the learning results),

iv. rely on positive learning examples only, which relieves WebGuide from being forced to
collect negative evidences of user interest, and

v. demonstrate scalability, e.g. when the number of users, system’s usage, and document
features increase.

116 CHAPTER 8. USER MODELING SERVER FOR DEEP MAP: COMPONENTS

Univariate significance analysis is a statistical technique that is based on the assumption
that the occurrence of an object feature (e.g. Umweltbelastung) in users’ usage
histories is normally distributed (see Figure 8-12)89. If a feature appears in an individual
user’s usage history less frequently than in a random sample, the user can be considered not
to be interested in it. If a feature appears more frequently than in a random sample, the user
can be assumed to be interested in this feature.

Number of feature
occurrences

Probability to
encounter a
number of fea-
ture occurrences

Figure 8-12: Normal distribution of users’ interest in an object feature

In order to determine those non-interests and interests that are statistically significant, we
introduce two confidence limits cl and cu for the lower and upper limit, respectively. If the
actual number of feature occurrences in a user’s navigation history is below cl, we classify
her as not being interested. If the value is between the two limits, then no assumption is
justified. If the number of occurrences is above cu, we classify her as being interested in an
object feature. The three cases are depicted in Figure 8-13.

In conclusion, ULC maintains the following assumptions about a user’s interest in an object
feature:

• the probability of the user’s interest based on feature occurrences in her usage history
(henceforth called individual probability pi),

• the probability of the user’s interest based on feature occurrences in her usage history in
relation to the occurrences distribution for all users (henceforth called normalized
probability pn), and

• a classification whether the user can be assumed to be interested in an object feature,
whether we can assume the user as not being interested, or whether an assumption is not
justified.

89 For future versions of the ULC, we aim at investigating and evaluating alternative statistical distributions. The ‘Beta

distribution’ seems to be especially promising, since it allows for approximating a variety of probability distributions
(e.g., linear, normal, exponential, parabola) with a single stochastic model and a few model parameters. An early
system that employed the Beta distribution for modeling user interests was the ‘Doppelgänger’ user modeling server
[Orwant, 1995]. In marketing research, the Beta distribution is employed as a stochastic model for quite similar
purposes, e.g. for modeling consumer behavior [Lilien et al., 1992].

8.4. USER LEARNING 117

Not interested

cl cu µ cl cu µ cu cl µ

Not significant Interested

Figure 8-13: Classification of a user’s interest

In the following sub-chapter, we introduce a scenario from WebGuide and describe in more
detail how the ULC acquires the aforementioned probabilities and the interest
classification.

8.4.2 Usage Scenario
In the following scenario, we want to determine whether and to what extent Peter Smith is
interested in the feature Umweltbelastung. WebGuide sends event vectors containing
this feature to the UMS, e.g. whenever a user requests documents that discuss environ-
mental burden in Heidelberg (for an example of such an event vector, we refer to Figure
8-6). We further assume that the UMS already collected in its Usage Model n = 216
occurrences of Umweltbelastung for all users, and a total of N = 715 occurrences of all
features for all users. Thus, the probability p to randomly select this feature is90

3.0
715
216 ===

N
np

Formula 8-1: Probability for ‘Umweltbelastung’ over all features and users

We further assume that WebGuide reported Na = 30 occurrences of all features for Peter
Smith, na = 15 of them for the feature Umweltbelastung; hence, the individual
probability pi for Peter Smith is

5.0
30
15 ===

aN
an

ip

Formula 8-2: Individual probability for ‘Umweltbelastung’

90 For bootstrapping purposes, we start with a very small p.

118 CHAPTER 8. USER MODELING SERVER FOR DEEP MAP: COMPONENTS

Based on this, the ULC calculates the normalized probability pn for Peter Smith as follows:

72.0

307.03.0
303.0154.0

1

1

)1(
4.0

1

1 =

⋅⋅
⋅−⋅−

+

=

⋅−⋅
⋅−

⋅−
+

=

eaNpp
aNpan

e

np

Formula 8-3: Normalized probability for ‘Umweltbelastung’

In order to determine whether or not a user’s interest is statistically significant, we
introduce two confidence limits cl and cu:

aNppzulc ⋅−⋅⋅=)1(/ µ

Formula 8-4: Confidence limits

μ is the means of the distribution and equals to the overall probability p multiplied by the
total number of users’ event vectors (aNp ⋅), while z is the critical value. It determines the
area under the standard normal distribution that falls within the confidence interval. For a
confidence rate of 95%, the critical value z is 1.9604. This means that 95% of random
samples fall within this interval and 5% lie outside. In order to increase confidence, we
have to increase z accordingly (e.g., for a confidence of 99%, z is 2.5762).

The ULC calculates the 95% confidence limits for classifying Peter Smith’s interest in
Umweltbelastung as follows:

07.4307.03.09604.1303.0 =⋅⋅⋅−⋅=lc

92.13307.03.09604.1303.0 =⋅⋅⋅+⋅=uc

Formula 8-5: Peter Smith’s confidence limits for ‘Umweltbelastung’

After rounding, cl and cu can be interpreted with respect to Peter Smith’s interest in
Umweltbelastung as follows:

• If there are 4 or fewer events with this feature, he can be considered to have no interest
in it.

• If the number of events is 14 or above (this is the case in our example with na = 15), he
can be considered to be interested in this feature.

• Otherwise, we cannot assume a significant interest or non-interest of him.

8.4. USER LEARNING 119

Concluding, the ULC assesses Peter Smith’s interest in Umweltbelastung as follows
(see also Figure 8-5, where different probability values are shown):

• an individual probability of 0.5,
• a normalized probability of 0.72, and
• a classification that he can be assumed to be interested in this feature.
After computing these probabilities and classifying Peter Smith’s interest, the ULC checks
whether his user model already contains an entry for Umweltbelastung and whether
the attributes individual_probability, normalized_probability, and
classification are present. If the entry Umweltbelastung exists, the ULC checks
whether Peter Smith (or an administrator on behalf of him) recently inserted or modified
this entry, as reported by the attributes creatorsname and modifiersname (see
Chapter 8.2.1). Based on the outcome of these checks, the ULC proceeds as follows:

• If there is no entry for Umweltbelastung, the ULC inserts it. If necessary, the ULC
also inserts superordinate entries according to the domain taxonomy (e.g., the more
general interest in Natur, see Figure 8-8).

• If Peter Smith (or an administrator on behalf of him) recently inserted or modified
assumptions about his interest in Umweltbelastung, an update of these assumptions
is not performed. The rationale behind this is that the ULC gives higher priority to user-
initiated modifications than to system-initiated ones (a similar prioritization can be
found, e.g. in Kay [1995] and Kobsa and Pohl [1995]). Trust in a source is thereby
given priority over recency of information when resolving the conflict between an
existing user model entry and a newly acquired assumption91.

• If an entry about the user’s interest in Umweltbelastung is already present in the
user model and does not strongly differ from the new system-generated value, the
update (which is relatively costly in terms of system resources) is also not performed92.

8.4.3 Implementation
The design and implementation of the User Modeling Components follows established
software design principles like transparency, flexibility, and scalability (see also Chapter
6.1 and Tanenbaum [1992]). In order to illustrate this, we briefly present selected design
and implementation decisions in this sub-chapter.

91 See Fink [1999] for a discussion of related consistency problems and their impact on the overall usability of user-

adaptive applications.
92 In general, an update seems dispensable in user modeling scenarios that assign the performance of the user modeling

system a higher priority than the recency and accuracy of the user-related information maintained by these systems.

120 CHAPTER 8. USER MODELING SERVER FOR DEEP MAP: COMPONENTS

Transparency (of service provision) is achieved by adhering as much as possible to
established standards: communication with the Scheduler is accomplished via an LDAP-
based CORBA interface and communication with the Directory Component is established
via standard LDAP access facilities. CORBA and LDAP offer a variety of advantages, the
most notable one is location transparency (i.e., communicating components do not rely on
location information that is available a priori); hence, components can be flexibly
distributed across a network of computers, even at runtime93. For relevant communication
details (e.g., server names, passwords, names of CORBA services, models’ location), the
ULC relies on the Service Model (see Chapter 8.2.4) and on a local configuration file.
Based on the information therein, the ULC dynamically locates the Scheduler and binds to
DS as an ordinary user. In a subsequent step, the event registrations in the Service Model
(e.g. POST_ADD) are checked as to whether they comply with current monitoring needs
(see Chapter 8.2.4).

Flexibility is accomplished by putting an extensive list of configuration parameters at the
disposal of system designers and administrators. These parameters control for example the

• synchronization with the Directory Component (e.g., host name, port number, delay and
synchronization interval in case of DS and Scheduler running on the same computer),

• login into the Directory Component (e.g., user name, password),
• location of relevant (sub-) models hosted by the UMS (e.g., User Model, Usage Model,

domain taxonomy within the System Model, and Service Model),
• univariate significance analysis (e.g., a timer interval and a minimum number of event

vectors for starting the computation, internal precision used for computing and storing
probabilities, size of the confidence interval),

• synchronization of the ULC-internal cache with models hosted by the UMS (e.g.,
handling of updates in the domain taxonomy, handling of features in event vectors that
are not contained in the domain taxonomy, attribute names to be used in the User Model
for individual and normalized probabilities and the classification, replication of more
general interests from the domain taxonomy, forced update of unchanged interests,
prioritization of user-modified assumptions over system-modified ones),

• system’s logging (e.g., log file device, different levels of logging granularity), and
• backup and recovery details (e.g., deletion of processed event vectors, creation of one

or more backups of processed event vectors in a dedicated part of the Usage Model).
See Chapter 8.2.2 for more information on this topic.

Configuration parameters allow system designers and administrators to (i) keep pace with
minor changes in user modeling needs, (ii) employ differently configured versions of the
ULC within the same deployment scenario, and (iii) facilitate the deployment of learning
components to new user modeling scenarios. In future versions of the ULC, we foresee to
migrate most of these parameters from the local configuration file to the Service Model.
This can be expected to further ease the administration of the UMS, since configuration
information can then be remotely administered with commonly available software tools
(e.g., LDAP browsers). We also aim at reflecting changes in service descriptions from the

93 Based on that, further work on the UMS may aim at automatically distributing user modeling components across a

network of computers according to resource requirements.

8.5. MENTOR LEARNING 121

Service Model to the ULC at runtime; hence, shutting down parts of the system for
activating a new configuration can then be avoided in most cases.

Scalability of the ULC is supported by a variety of design decisions including the following
ones:

• The amount of synchronous communication between the ULC, the Directory
Component, and other User Modeling Components is reduced to a minimum (see the
event subscription mechanism we described in Chapter 8.2.4).

• All relevant models hosted by the UMS (e.g., User and Usage Models, Service Model)
are replicated in an internal cache.

• Event vectors submitted by the Scheduler are concurrently managed in a separate queue
before being periodically processed.

• Univariate significance analysis is computed only for those users that are currently
active. Likewise, model caching is restricted to active users only. This approach does
not only increase scalability, but also contributes to the consistency of the user model
from a user’s point of view (i.e., assumptions about a user’s interests do not change
without the user actually interacting with the system).

• User model update can be restricted to those cases, where recently acquired interests
differ from the ones stored in the User Model.

Against this background, we believe that the processor requirements of the ULC are
moderate. And regarding scalability, we assume that its response times linearly grow with
the number of user profiles and the workload in small and medium-sized real-world
environments. For related feedback from our performance experiments, we refer to Chapter
9.3.

In the current version of the UMS for Deep Map, the ULC runs as a system service on
Windows NT and Sun Solaris94. The implementation language used is Java 1.2. The
communication with the Scheduler is established via the commercial ORB VisiBroker for
Java [Inprise 2000]. Access to DS is facilitated via standard LDAP access facilities (i.e.,
Directory SDK from Netscape [2000b]).

8.5 Mentor Learning
A different approach to the prediction of unknown characteristics of the current user
(particularly her interests and preferences) is to compare her with similar users (so-called
‘mentors’)95. In research and commercial environments, this approach is mostly called
‘collaborative filtering’ [Goldberg et al., 1992] and more recently also ‘clique-based
filtering’96 [Alspector et al., 1997; Kobsa et al., 2001].

In the following, we motivate our selection of collaborative filtering algorithms by the user
modeling requirements that we elicited for Deep Map. After that, we exemplify the learning

94 The ULC can be easily deployed to other platforms.
95 We stick to the term ‘mentor’ in the remainder of this paper.
96 The main argument for the renaming is that the term ‘collaborative filtering’, which was originally coined by

Goldberg et al. [1992], is hardly appropriate anymore, mainly due to the emphasis of more recent systems on implicit
acquisition techniques and their limited or non-existent support for user collaboration.

122 CHAPTER 8. USER MODELING SERVER FOR DEEP MAP: COMPONENTS

approach taken in the MLC (Mentor Learning Component) based on a hypothetical
scenario from WebGuide. Finally, we briefly describe selected implementation details.

8.5.1 Introduction
The employment of collaborative filtering in our UMS compensates for some shortcomings
of the approach pursued in the ULC, namely frequency analysis and classification of
features occurrence (see also Herlocker et al. [1999], Billsus and Pazzani [2000], and
Kobsa et al. [2001]):

• The user has to interact with the user-adaptive system for a while before the ULC can
determine user interests based on feature occurrence. This may be a critical restriction,
e.g. in applications where a user model is maintained during a single session only and in
scenarios where users expect immediate personalized services in return for, e.g.
granting permission that their personal data may be stored and processed for adaptation
purposes.

• Content-based features may be not the main determinants for users’ interest in objects.
This is particularly true when users’ personal tastes, esthetical judgements, etc. come
into play.

• Arbitrary restrictions (e.g., limited bandwidth and online fees in case of a modem
connection) or simply unawareness may prevent a user from requesting interesting
objects.

And, vice versa, core problems of collaborative filtering (e.g., sparse population of the
matrix of users and content features, startup problems in scenarios where new objects and
features are frequently added to the system) that are reported in the literature [Soboroff et
al., 1999; Billsus and Pazzani, 2000; Kobsa et al., 2001] can be partially alleviated in our
architecture by

i. interests and preferences acquired by the ULC,
ii. user models that represent stereotypes97 (i.e., standard assumptions that a system

designer makes about members of a category like art lovers [Rich, 1979; 1983; 1989]),
and

iii. information explicitly provided by users (e.g., demographic information, probabilities
of interest).

Early work on the inclusion of models of similar users into the user modeling process was
carried out by, e.g. Orwant [1995]. His system ‘Doppelgänger’ is a user modeling server
that periodically (like every night) applies a clustering algorithm to models of individual
users. Clusters found during this process are represented in models of user groups. As is the

97 The availability of empirical data about tourists’ interests in Heidelberg also motivated this decision. Future research

may prove, however, whether this approach is viable (i.e., users’ interests may deviate according to different task foci
when visiting the ‘real’ and the virtual city of Heidelberg on the Web).

8.5. MENTOR LEARNING 123

case with stereotype methods (see e.g. Rich [1979; 1983; 1989]), information from group
models can henceforth be employed when information in individual models is missing. An
important difference to stereotype reasoning is that changes in individual user models can
be taken into account by regularly re-applying the clustering procedure. This is not likely to
occur often though since clustering is known to be computationally expensive [Fisher,
1987; 1996] and in practice needs to be supervised by experts who analyze the clusters and
iteratively refine the clustering process. More recently, Paliouras et al. [1999] followed a
dual approach by integrating stereotypes that had been acquired in a supervised learning
stage and clusters acquired in an unsupervised learning stage from individual user models.
As opposed to Fisher [1987], however, Paliouras et al. [1999] did not report problems
stemming from the computational complexity of their clustering processes.

A computationally more manageable and currently prevalent group of algorithms for
clique-based filtering follows a correlation-based neighborhood approach (see e.g. Resnick
et al. [1994], Hill et al. [1995], Shardanand and Maes [1995], and Konstan et al. [1997]). Its
basic idea is to first select a subset of users that are similar to the current user based on
known characteristics, and to subsequently compute predictions for unknown
characteristics based on a weighed aggregate of their ratings. Alternative algorithms for
clique-based filtering include Bayesian networks, vector-based similarity techniques, and
induction rule learning (see Breese at al. [1998] and Herlocker et al. [1999] for an overview
and evaluation). Bayesian networks are reported to compute predictions faster and to have
less resource requirements than correlation-based approaches. They require however a
dedicated learning phase before they can be employed for clique-based filtering (i.e., they
cannot learn incrementally in real time). Deployed to real-world scenarios, this implies that
the “...learning phase ... can take up to several hours and results in a lag before changed
behavior is reflected in recommendations” [Breese at al., 1998]. Such a system behavior,
however, seems inappropriate for the usage scenario of WebGuide (see Chapter 7.1) and
hardly appropriate for many other real-world user modeling scenarios as well.

We decided to employ Spearman correlation for determining the proximity between users
in the MLC, which is based on ranks rather than values. The transformation of values into
ranks uses the aforementioned classifiers in the System Model (see Figure 8-7), which
replace values by class means. Although this approach requires an initial classification step
for several attribute types (e.g., characters, strings), it considerably increases at the same
time the number of user characteristics that can be leveraged for finding similarities
(including e.g. demographic attributes like sex and age). Another advantage of Spearman
correlation is that it does not rely on model assumptions (e.g., regarding the probability
distribution of attribute values), as opposed to the widely used Pearson correlation [Breese
at al., 1998; Herlocker et al., 1999]. Regarding coverage and accuracy98, Spearman
correlation performs similar to Pearson correlation, as long as there are a meaningful
number of ranks (in general: the fewer ranks, the more information gets lost).

98 Coverage indicates the percentage of characteristics across all users for which the system was able to produce

predictions. The accuracy of predictions generated by the system can be assessed using measures e.g. from statistics
(like mean absolute error and root mean square error) and decision-support (e.g., receiver operating characteristic).

124 CHAPTER 8. USER MODELING SERVER FOR DEEP MAP: COMPONENTS

The overall mentor learning process is then carried out in the following three steps
[Herlocker et al., 1999]:

i. Finding similar users
Similarity between two users is determined by computing the (linear) Spearman
correlation coefficient for the two user models (see Formula 8-6).

∑
=

−∑
=

−

∑
=

−−
=

m

i
urankiurank

m

i
arankiarank

m

i
urankiurankarankiarank

uaw

1
),(2

1
),(2

1
),)(,(

,

Formula 8-6: Spearman correlation

wa,u thereby is the similarity weight for the active user a and a neighbor u based on m
assumptions that are available for a and u. ranka,i represents the rank of the value of
assumption i for user a. arank is the mean rank for all assumptions about user a.

In the current implementation of the MLC, the correlation coefficient is calculated for
active users and all available user models. This approach seems to be appropriate for the
small taxonomy of nearly 500 leaf entries and the rather small user population we
anticipate for WebGuide in the near future. If the user population grows, however, such
an approach can be assumed to become quickly impractical (see the results of our
performance evaluation in Chapter 9.3). For further work on the MLC, we propose to
restrict the search space for neighbors to a set of users. In this vein, relevant techniques
that seem worthwhile to investigate include statistical sampling methods, singular value
decomposition [Deerwester et al., 1990], and the employment of clusters of user profiles
instead of individual users [Herlocker, 1999].

Another simplifying assumption that underlies the current implementation of the MLC
is that all users and all assumptions contained in their models are treated evenly when
computing the correlation coefficient. Assumptions that have been maintained by the
user can e.g. be associated a higher weight than assumptions that have been acquired
from usage data by the ULC. Following this, assumptions that have been predicted from
stereotype models can be associated with the lowest weight. Such an approach is quite
similar to the prioritization of assumptions from individual users’ models over
assumptions that are inherited from stereotypes in earlier user modeling work, e.g. in
Kobsa and Pohl [1995]. Moreover, there are several proposals in the literature for
differentiating the weighting of single assumptions. Herlocker et al. [1999] propose
variance weighting, where assumptions with a high variance across the user population
are emphasized and assumptions with a low variance are de-emphasized. This results in
higher weights for assumptions that presumably segregate a user population more than
assumptions, where users exhibit very similar characteristics. An example from the
domain of WebGuide is users’ interest in nightlife, which shows a much higher variance
across Heidelberg tourists than users’ interest in the castle of Heidelberg, which can be

8.5. MENTOR LEARNING 125

presumed high for all users in the population [Kaul, 1999]99. Although quite convincing
at first glance, Herlocker et al. [1999] could not report a significant effect on the
accuracy of their prediction algorithm with and without variance weighting. Breese et
al. [1998] propose inverse user frequency, which is motivated by the inverse document
frequency measure from information retrieval [Salton and McGill, 1983]. Applied to
user modeling, Breese et al. associate those assumptions that are contained in only a few
user models with a higher weight than assumptions that are contained in many user
models. The correlation-based approach that Breese et al. [1998] employed in their
evaluation was enhanced by inverse user frequency. Moreover, they employed
additional refinements like default voting and case amplification. Concluding, it seems
worthwhile to further refine our approach of finding similar users, e.g. by considering
the aforementioned extensions reported in the literature. In order to substantiate this,
however, we highly recommend further empirical work in the Deep Map domain.

ii. Selecting mentors
Once the Spearman correlation coefficients have been computed for a given user, a
relatively small number of most similar neighbors (the so-called mentors) must be
selected from the set of similar users. In general, prediction accuracy increases with an
increasing neighborhood. The increment in accuracy was however often found to
decrease and even to turn negative at some point when more neighbors become added
[Shardanand and Maes, 1995; Herlocker et al., 1999; Sarwar et al., 2000]. From a
performance point of view it also seems advisable to restrict the number of potential
neighbors to a reasonable number in real-world environments with millions of users.
The current version of the MLC can be configured to follow a correlation-thresholding
or a best-n-neighbors approach when selecting mentors. Correlation-thresholding selects
all those neighbors as mentors that have a correlation coefficient greater than a
predefined threshold [Shardanand and Maes, 1995]. Depending on the situation,
however, there may be too few or too many mentors remaining. The best-n-neighbors
approach is to pick a fixed number of most similar neighbors as mentors. If there are
only few highly correlated neighbors, this approach may select many neighbors as
mentors whose correlation is low, thereby possibly reducing the prediction accuracy.
And in case of many highly correlated neighbors, neighbors may be excluded that could
have added to the accuracy of the prediction. The current version of the MLC for Deep
Map uses the best-n-neighbors approach (with n = 20) as a default, which showed a
good performance with regard to coverage and accuracy in the empirical evaluation of
Herlocker et al. [1999].

99 In other words: Heidelberg castle seems to be ‘a must’ for every visitor, as opposed to nightlife.

126 CHAPTER 8. USER MODELING SERVER FOR DEEP MAP: COMPONENTS

iii. Computing predictions
A variety of approaches have been discussed in the literature for computing predictions
from a set of mentors. In the MLC, an assumption i about the active user a is predicted
using the following deviation-from-mean approach over the selected mentors (n is the
number of mentors, wa,u is the similarity weight for the active user a and a mentor u)100.

∑
=

∑
=

⋅−
+= n

u
w ua

n

u
w uarankurank iu

rank ap ia

1
,

1
,),(

,

Formula 8-7: Deviation-from-mean prediction

The deviation-from-mean approach takes into account that users’ means may vary.
Therefore, u’s ranks are normalized by their means, and the prediction for a is
normalized by a’s means. In classical collaborative filtering scenarios with explicit
ratings, this approach is motivated by the observation that an individual user’s rating
distributions often center around a mean, i.e. “one user may tend to rate items higher,
with good items getting 5s and poor items getting 3s, while other users may give
primarily 1s, 2s, and 3s. Intuitively, if a user infrequently gives ratings of 5, then that
user should not receive many predictions of 5 unless they are extremely significant”
[Herlocker et al., 1999]. We were not able to validate this hypothesis in data we had
available from the domain of WebGuide [Kaul, 1999]. From 348 Heidelberg tourists
that were asked to rate their interest in 19 topics, nearly 80% of the respondents used the
whole rating scale. Nevertheless, converting mentors’ interest distribution as an average
from the mean into an individual user’s rating distribution by adding it to the user’s
mean seems to be a reasonable approach anyway.

If no mentors were found for a given user, we compute the prediction as the average of
the deviation-from-mean across all users, i.e.:

n

n

u
rankurank iu

rank ap ia

∑
=

−
+= 1

),(

,

Formula 8-8: Average deviation-from-mean prediction

100 This approach has been taken in the original GroupLens system [Resnick et al., 1994; Konstan et al., 1997]).

8.5. MENTOR LEARNING 127

This approach exhibited a good coverage and accuracy in the evaluations by Herlocker
et al. [1999] and performed much better than the following simple mean across all
users:

n

n

u
rank iu

p ia

∑
== 1

,

,

Formula 8-9: Average prediction

In the MLC, this simple mean is only calculated when the User Model of the current
user does not contain any assumptions at all (neither ones that were explicitly provided
by the user, nor ones acquired by the ULC).

In summary, the method for clique-based filtering that is employed in the MLC

i. allows for incremental learning and can thus keep up with a user’s changing interests
and preferences (cf. Chapter 8.4.1 for a discussion of the same quality for the ULC),

ii. represents learning results explicitly (also cf. Chapter 8.4.1 for the ULC),
iii. is able to adapt to a variety of user modeling needs (e.g., it allows designers to

differentiate between mentors and stereotypes and to assign different weights, and can
integrate algorithmic extensions like default voting, inverse user frequency, and case
amplification [Breese et al., 1998]), and

iv. performs well in terms of predictive coverage and accuracy, responsiveness, and
resource consumption.

We believe that there is further potential for synergistic effects between feature-based and
collaborative filtering approaches that has not yet been fully investigated yet (for recent
work on this topic, we refer to Balabanovic and Shoham [1997], Claypool et al. [1999],
Condliff et al. [1999], and Mooney and Roy [1999]. Likewise the same can be anticipated
for the application of clustering and partitioning algorithms to the matrix of users and
content features (for recent work on this topic, we refer to Herlocker [1999] and O’Conner
and Herlocker [1999]).

8.5.2 Usage Scenario
Table 8-1 shows part of the interest models of the fictitious users Joe, John, and Al. Their
models already contain many assumptions about the probability of their interest in different
types of buildings in Heidelberg. This information has been either explicitly provided by
them or acquired by the ULC from WebGuide usage data. During design time, the user
model developer added the stereotype ‘Art Lover’ to the set of user models available to
the MLC that contains some presumably typical characteristics of art lovers. At this point it
was unclear, however, whether an interest in bridges can be attributed to this user group.

128 CHAPTER 8. USER MODELING SERVER FOR DEEP MAP: COMPONENTS

Therefore, the developer decided to let the MLC predict this interest at runtime, based on
the similarity of this stereotype to models of individual users. Another missing piece of
information is the probability of John’s interest in mansions.

Interests
Users Churches Restaurants Mansions Bridges

Joe 0.80 0.30 0.90 0.70

John 0.30 0.90 ? 0.50

Al 0.40 0.40 0.70 0.30

Art Lover 0.90 0.10 0.90 ?

Table 8-1: Initial interest models

Before computing the Spearman correlation, the MLC has to convert the interest
probabilities into ranks, thereby utilizing the classifier for the respective interests in the
System Model (see Figure 8-7). Table 8-2 depicts the resulting interest models with
associated means for the case in which the classifier divides the interval [0,1] into ten
equal classes.

Interests
Users Churches Restaurants Mansions Bridges Mean

Joe 0.85 0.35 0.95 0.75 0.72

John 0.35 0.95 ? 0.55 0.61

Al 0.45 0.45 0.75 0.35 0.50

Art Lover 0.95 0.15 0.95 ? 0.68

Mean 0.65 0.47 0.88 0.55

Table 8-2: Initial interest models with classified user interests

In order to find similar users, the MLC calculates the Spearman correlation coefficients for
all pairs of users. The result is shown in Table 8-3.

8.5. MENTOR LEARNING 129

Wa,u Joe John Al Art Lover

Joe 1.00 -0.98 0.47 0.98

John 1.00 0.18 -1.00

Al 1.00 0.50

Art Lover 1.00

Table 8-3: Spearman correlation coefficients

The next task for the MLC is to select mentors for John and Art Lover from their neighbor-
hoods. Applying a threshold of 0.3 to the correlation coefficients, the MLC cannot find an
appropriate mentor for John since Al’s similarity seems too weak101, and since Joe and Art
Lover even exhibit interest probabilities that are nearly the opposite of John’s. For the
stereotype Art Lover, the MLC identifies Joe and Al as good mentors. John is not
considered, since his correlation coefficient is below the threshold.

Finally, the prediction algorithm can be selected and predictions can be computed. Since no
mentor has been found for John, the MLC calculates the prediction for his interest in
mansions as a deviation-from-mean average across all users. The interest in bridges for the
stereotype Art Lover can be predicted as a deviation-from-mean with Joe and Al as
mentors. Table 8-4 shows the resulting complemented interest models.

Interests
Users Churches Restaurants Mansions Bridges

Joe 0.80 0.30 0.90 0.70

John 0.30 0.90 0.86 0.50

Al 0.40 0.40 0.70 0.30

Art Lover 0.90 0.10 0.90 0.64

Table 8-4: Interest models including predictions

101 The correlation coefficient lies between [–1, +1] and can be interpreted as follows: (i) a positive correlation

coefficient indicates that high ranks for one user are associated with high ranks for another user (and vice versa), (ii)
a negative correlation coefficient indicates that high ranks for one user are associated with low ranks for another user
(and vice versa), and (iii) the closer the correlation coefficient is to 0, the weaker is the relationship.

130 CHAPTER 8. USER MODELING SERVER FOR DEEP MAP: COMPONENTS

8.5.3 Implementation
The design and implementation of the MLC follows the same principles we already
discussed for the ULC (see Chapter 8.4.3). In fact, great parts of ULC’s infrastructure (e.g.,
access to the Directory Component, internal cache management) are employed in the MLC
with only minor modifications. Therefore, we focus in this sub-chapter on relevant
differences between the ULC and the MLC.

In order to achieve flexibility, the MLC maintains a comprehensive list of parameters for
controlling the learning process. Besides the more general control parameters we already
presented in Chapter 8.4.3, there are several MLC-specific ones that control e.g.

• the location of relevant (sub-) models hosted by the UMS (e.g., User Models, Service
Model, demographic characteristics, domain taxonomy, and classifiers within the
System Model) and

• the collaborative filtering process (e.g., mentor selection strategies, various thresholds
and counters).

Regarding scalability, we assume that the current version of the MLC linearly scales with
the number of user profiles and the workload in small real-world environments (see
Chapter 9.3 for related results from our experiments). We base this assumption upon our
decision to not maintain the correlation matrix as a whole in main memory, but selected
vectors only that represent (i) users that have been selected as mentors or (ii) users that are
currently logged in to the UMS. In an additional effort, we restricted vector contents to
those assumptions that are leaf entries in the domain taxonomy. The handling of the more
general interests is left over as a task for the DIC, which can be assumed to require less
system resources than the MLC (see also Chapter 8.6).

The current version of the MLC is searching for similar users in the whole user population.
Against the enormous size of many real-world environments, this seems to be an important
shortcoming (see the results of our performance experiments in Chapter 9.3). Future work
may aim at overcoming this important limitation, e.g. by applying statistical sampling
methods that narrow the search space to a reasonably sized sample of user profiles (see
Chapter 8.5.1).

In the current version of the UMS for Deep Map, the MLC runs as a system service on
Windows NT and Sun Solaris (i.e., like the ULC). The implementation language used is
Java 1.2. The communication with the Scheduler is established via VisiBroker for Java and
access to DS is facilitated via standard LDAP access facilities.

8.6 Domain Inferences
In this sub-chapter, we start with a brief motivation for the DIC (Domain Inferences
Component), which complements the user modeling functionality provided by ULC and
MLC. We present a hypothetical scenario from WebGuide that exemplifies how DIC’s
domain inferences are applied to user models hosted by the UMS. We close this sub-
chapter with a few remarks on selected implementation details.

8.6. DOMAIN INFERENCES 131

8.6.1 Introduction
The DIC complements the user modeling functionality provided by ULC and MLC by
applying domain inferences to individual user models. User interests that were explicitly
provided by users or implicitly acquired by ULC and MLC can give rise to additional
assumptions about user interests that can be inferred using the hierarchical structure of
interests in the domain taxonomy (see Chapter 8.2.3) as follows102:

• Sidewards propagation: if the user is interested in a minimum percentage s of direct
sub-interests of a given interest, then the user is assumed to be also interested in the
remaining sub-interests, with a probability that equals the means of the probabilities of
the current sub-interests103.

• Upwards propagation: if the user is interested in a minimum percentage u of direct sub-
interests of a given interest, then the user is presumed to also hold this interest, with a
probability that equals the means of the probabilities of the current sub-interests (cf.
Kobsa et al. [1994]).

By using domain inferences, individual user models can become populated more quickly
with additional assumptions, which allows applications like WebGuide to come up sooner
with personalized information and services (e.g., personalized tour recommendations like
the ones presented in Chapter 7). Personalization speed seems not only mandatory for user
modeling in Deep Map, but for many other user modeling scenarios as well (e.g., in Web-
based e-commerce). A second advantage of applying domain inferences to individual user
models is the efficiency of this process in terms of system resources, especially when
comparing resource requirements of the DIC with those of the MLC (see Chapters 8.5.3
and 9.3). Another motivation for domain inferences is related to the richness of user model
contents: over time, a variety of assumptions about a user’s interest are acquired by the
UMS from different sources (e.g., user-supplied information, ULC, MLC including
stereotypes, DIC) and put at the disposal of user-adaptive applications. This enables
applications to take the origin of assumptions about users’ interests for adaptation purposes
into account (e.g., user-supplied information, individual probabilities of interests,
normalized probabilities of interests, predicted probabilities of interests, inferred
probabilities of interests). Moreover, this constitutes a valuable source of information for
further refinements of user modeling functionality and for further empirical work in this
area (e.g., the performance of different user modeling components in terms of accuracy and
coverage).

The inference rules presented above have been adapted from those employed in the
adaptive hypermedia system ‘KN-AHS’ [Kobsa et al., 1994]. In its user modeling
component, inference rules exploit sub- and super-relationships (e.g., ‘GUMS’ and ‘BGP-
MS’ are ‘User Modeling Shell Systems’) and ‘associated-concept’ relationships between
fields and their respective terminology (e.g., ‘BGP-MS’ is associated with the concept
‘Stereotype Reasoning’) for inferring a user’s presumable knowledge about a specific

102 Please note that assumptions inferred by the DIC (so-called secondary assumptions [Kobsa et al., 2001]) are not

taken into account by the ULC and MLC. The latter two focus solely on so-called primary assumptions for user
model acquisition (i.e., assumptions that have been explicitly or implicitly provided by the user).

103 Further (empirically driven) work on the DIC may aim at improving this rather simple algorithm, e.g., by
investigating the prediction algorithms we already proposed for the MLC (e.g., deviation-from-mean, deviation-from-
mean-average), including our proposals for further work on these algorithms.

132 CHAPTER 8. USER MODELING SERVER FOR DEEP MAP: COMPONENTS

concept. Relevant differences between the domain inferences implemented in the DIC and
those in KN-AHS include the following:

• User modeling in KN-AHS focuses on users’ terminological knowledge, whereas user
modeling in Deep Map (currently) focuses (mainly) on interests and a set of
demographic attributes.

• The representation sub-system of the user modeling component in KN-AHS maintains
either a user’s familiarity or unfamiliarity with a certain concept, whereas the
Representation sub-system in the UMS for Deep Map maintains a set of probabilistic
assumptions and a related classification for a user’s interest.

• The domain taxonomy employed in KN-AHS employs two types of relationships,
whereas the one employed in the UMS for Deep Map represents only sub-/super-
relationships.

• Additional inference rules in KN-AHS take advantage of the ‘associated-concept’
relationships.

• Domain inferences in KN-AHS can be controlled by two percentage thresholds,
whereas domain inferences in the DIC can be controlled by several configuration
parameters (see Chapter 8.6.3).

8.6.2 Usage Scenario
In the following, we briefly exemplify the domain inferences carried out by the DIC using a
hypothetical scenario from WebGuide. We assume that the interest part of Nathan’s user
model comprises assumptions about his interests in buildings and architectural styles in
Heidelberg. The initial state of his profile is depicted in Figure 8-14.

Restaurants
pn = 0.1

Bridges
pn = 0.5

Buildings

Churches
pn = 0.9
pp = 0.75

Architecture

Gothic
pn = 0.3

Romanesque
pn = 0.5
pp = 0.75

Styles

Mansions

Baroque

Figure 8-14: Initial state of Nathan’s user model

Based on Nathan’s interaction with WebGuide (he previously browsed through several
documents about buildings and monuments in Heidelberg), the ULC and the MLC already
acquired several normalized and predicted probabilities (abbreviated pn and pp) for
Nathan’s presumable interests. The DIC, which is subscribed to additions by the MLC (see

8.6. DOMAIN INFERENCES 133

Chapter 8.3), now starts applying its domain inferences. This process is controlled by
several configuration parameters in the Service Model, including the following ones:

• upwards propagation is enabled,
• sidewards propagation is enabled,
• a threshold of u = 60% for upwards inferences,
• a threshold of s = 75% for sidewards inferences,
• a weight of 100% is assigned to interest probabilities computed by the ULC, and
• a weight of 70% is assigned to interest probabilities predicted by the MLC.
The percentage of direct sub-concepts of Buildings in which the user is interested is 75%,
which is equal to s and greater than u. Since both upwards and sidewards inferences are
enabled, the DIC calculates the probability of Nathan’s interest (abbreviated pi for inferred
probability) in Buildings and Mansions as follows:

47.0
3

5.01.0
7.01

)7.075.0(9.0

=
++

+
⋅+

=ip

Formula 8-10: Inferring Nathan’s interest in buildings and mansions

The percentage of direct sub-concepts of Styles in which the user is interested is
approximately 66%, which is smaller than s but greater than u. The DIC therefore does not
compute a probability for Baroque style. Nathan’s presumable interest in Styles, however,
is calculated as follows:

45.0
2

7.01
)7.075.0(5.03.0

=+
⋅++

=ip

Formula 8-11: Inferring Nathan’s interest in styles

Finally, the percentage of direct sub-concepts of Architecture in which the user is interested
is 100%. The DIC calculates the presumable interest in Architecture as a simple means of
the inferred interests in Buildings and Styles and updates the user model accordingly.
Figure 8-15 depicts the final state of Nathan’s user model.

134 CHAPTER 8. USER MODELING SERVER FOR DEEP MAP: COMPONENTS

Restaurants
pn = 0.1

Bridges
pn = 0.5

Buildings
pi = 0.47

Churches
pn = 0.9
pp = 0.75

Architecture
pi = 0.46

Gothic
pn = 0.3

Romanesque
pn = 0.5
pp = 0.75

Styles
pi = 0.45

Mansions
pi = 0.47

Baroque

Figure 8-15: Final state of Nathan’s user model

8.6.3 Implementation
The design and implementation of the DIC follows the same principles we already
discussed for the ULC and the MLC. In the remainder of this sub-chapter, we focus on a
few relevant differences between the DIC and the other two learning components.

In order to provide flexibility, the DIC can be controlled via the more general parameters
we already presented for the ULC in Chapter 8.4.3 and via several DIC-specific ones,
which control e.g.

• the location of relevant (sub-) models hosted by the UMS (e.g., User Model, Service
Model, domain taxonomy within the System Model) and the

• process of drawing domain inferences (e.g., propagation direction, propagation
thresholds, interest weights).

Regarding scalability, we assume that the current version of the DIC linearly scales with
the number of user profiles and the workload in small and medium-sized real-world
environments. For related feedback from our performance experiments, we refer to Chapter
9.3. Depending on the system configuration, however, performance problems may occur in
case of the propagation speed in (sparsely populated) user models being too high (e.g., if
the thresholds for upwards and sidewards propagation are too low). Such problems should
not persist, however, since once a user model has been populated, the DIC henceforth
updates the user model from its internal cache only if an inferred probability has
significantly changed. The resource requirements of the DIC can be assumed moderate.

The implementation environment for DIC, ULC, and MLC is the same (i.e., Java 1.2.,
communication with the Scheduler via VisiBroker for Java, and access to DS via standard
LDAP access facilities).

135

IV
Evaluation and Discussion

137

In the following chapter, we present selected results of the performance evaluation that we
conducted. The main aim of these experiments was (i) to obtain empirical evidence
regarding the runtime behavior of our server in small and medium-sized application
environments, and (ii) to point out potential strengths as well as limitations of its design
and implementation. In the subsequent chapter, we revisit our server and user modeling
requirements again and discuss our server against this background. In the final chapter of
this thesis work, we summarize our main findings and briefly present some lessons learned
from deploying our server to real-world environments. Regarding scalability, a large-scale
test with several million user profiles and a workload that is representative of major Web
sites confirms that the user modeling performance of our server will not impose a
significant overhead for a personalized Web site.

9 User Modeling Server: Experiments
The main aim of our experiments is to experimentally test the runtime behavior of our user
modeling server under realistic workload conditions to ascertain its satisfactory
performance in the target application environments. Based on empirical Web usage
research, we develop a model of real-world workload that allows us to simulate workload
conditions that closely resemble the target application environments. More specifically, we
simulate users‘ interaction with a hypothetical personalized Web site to test the
performance of our user modeling server under different workload conditions. The content
of each Web page is characterized by 1-3 terms taken from the Deep Map Taxonomy. Web
page requests by a user lead to add and query operations in her user profile on the user
modeling server: the terms of the requested Web page are processed and added to her
interest model, and the user‘s interests in terms of the domain taxonomy are queried to
personalize the requested Web page. As a shortcut though, we omit the Web server and
application server in our simulation and represent Web pages by their characteristic terms
only.

This approach is in sharp contrast to the one taken in the few existing performance studies
of user modeling servers (e.g., VanderMeer et al. [2000], Datta et al. [2001]) and of
directory servers (e.g., Keung and Abbott [1998], Wang et al. [2000]), who all employed
synthetic workload models that are not based on empirical findings about Web usage
behavior.

In the first part of this chapter, we briefly describe our model of real-world workload. In the
second part, we describe the test bed that we developed, and thereafter the simulated real-
world Web site and the measures we recorded during our tests. After that, we describe our
hardware and software configuration and outline our testing procedure. In the third part of
this chapter, we discuss selected results and their implications on performance and
scalability on a global server level (i.e., black box perspective) and on the level of single
User Modeling Components (i.e., white box perspective). Based on our findings and the
testing approach chosen, we point out potential strengths as well as weaknesses in the
current design and implementation of our UMS.

138 CHAPTER 9. USER MODELING SERVER: EXPERIMENTS

9.1 Model of Real-World Workload
A model of real-world workload for user modeling servers fundamentally hinges on
empirical findings about Web usage behavior. In the literature on Web traffic
characterization and prediction, however, such findings are rather scarce. Most of the work
reported in the literature has been based on traffic data from relatively small departmental
servers, typically at universities (e.g., Almeida et al. [1996], Arlitt and Williamson [1996],
Zukerman et al. [1999]). These data however may not be very representative for the typical
online behavior of Web users, mainly for a combination of two reasons:

i. The bulk of Web traffic today is served by large commercial Web sites like MSNBC
[2001], CNN [2001], and Yahoo! [2001]. Computer Scope [1999], e.g., found that 35%
of users’ surfing time is spent on merely 50 (commercial) sites.

ii. The user audience at these more typical sites is quite different in terms of size and
online behavior from the one visiting the small departmental Web servers that have
been analyzed in previous work (cf. Padmanabhan and Qiu [2000]).

Another drawback of many characterizations and predictions of Web traffic is the fact that
they are based on proxy logs104 (e.g., Duska et al. [1997], Gribble and Brewer [1997],
Wolman et al. [1999a], Wolman et al. [1999b]) or Web server logs (e.g., Almeida et al.
[1996], Padmanabhan and Qiu [2000]). The information contained in these logs seems
especially useful for evaluating and improving caching and prefetching strategies. For
analyzing usage behavior, however, both types of logs are of rather limited value since they
do not reflect all communication that takes place between browsers and Web servers. For
instance, clients may connect to Web servers via several proxies, and numerous caches may
affect the amount of traffic between browsers and Web servers.

In order to avoid these limitations, we adopted findings from recent empirical research on
usage behavior on the Internet. We expect that these findings constitute a more promising
basis for our model of real-world workload than those mentioned before, since they provide
an authentic view of users’ online behavior, as opposed to the keyhole perspective of
previous proxy- and server-based studies.

Rozanski et al. [2000] recently conducted a comprehensive analysis of click-stream data
collected by ‘Nielsen//NetRatings’105. The data was collected at the client side from a panel
of 2,466 Internet users between July and December 2000. In a first step, Rozanski et al.
identified 186,797 user sessions. They defined a session as the total time from when a user
signs on to the Internet to when she signs off, or to the point when her activity ceases for
more than an hour. All Web page requests induced by a user during that time became part
of a user session. In a subsequent step, Rozanski et al. tested a variety of session
characteristics (e.g., session length, number of Web sites visited) with regard to their

104 Proxies aim at improving the communication between a set of clients and Web servers, mainly by caching and/or pre-

fetching frequently requested Web contents.
105 Nielsen//NetRatings is an audience measurement service provided by Nielsen Media [2000] and NetRatings [2000].

Their U.S. media research panel is one of the largest in the world and comprises 62,000 users at home and 8,000
users at work.

9.1. MODEL OF REAL-WORLD WORKLOAD 139

suitability for clustering user sessions. The most differentiating session characteristics they
found were the following:

• Session length is defined as the length of a user session on the Internet.
• Time per page denotes the time between consecutive Web page requests.
• Category concentration is defined as the percentage of time a user stays at Web sites of

the same category (e.g., news, sports, entertainment, real estate).
• Site familiarity is determined by the percentage of time a user stays at familiar sites, i.e.

sites she had previously visited four or more times.
Based on these session characteristics, Rozanski et al. carried out a cluster analysis and
identified the following patterns of Web usage:

• Quickie sessions are short (1 minute) visits to 1 or 2 familiar sites, to extract specific
bits of information (e.g., stock quotes, sports results). Users visit 2.2 pages per site on
average, and spend about 15 seconds on a page.

• Just the Facts sessions aim at finding and evaluating specific pieces of information at
related sites (e.g., compare product offers). Sessions last 9 minutes on average. Users
visit 10.5 sites and 1.7 pages per site, with about 30 seconds per page.

• Single Mission sessions focus on gathering specific information or completing concrete
tasks (e.g., finding the Web site of a scientific conference and registering for it). They
visit 2 Web sites on average, which belong to the same category (e.g., search engines or
portals). Users quite carefully read the content of (frequently unfamiliar) Web pages in
approximately 90 seconds. The average session length is 10 minutes, and 3.3 pages per
site are being visited.

• Do It Again sessions are strongly focused on sites with which the user is very familiar
(e.g., online banks, chat rooms). Users stay approximately 2 minutes at each Web page.
The average session length is 14 minutes, with 2.1 visited sites and 3.3 page requests
per site.

• Loitering sessions visit familiar 'sticky' sites, such as news, gaming, tele-
communications, and entertainment. Sessions last 33 minutes, with 8.5 sites and 1.9
pages per site being visited (2 minutes per page on average).

• Information Please sessions gather broad information from a range of often unfamiliar
Web sites belonging to several categories (e.g., they collect facts about a specific car
model, find a dealer, negotiate a trade-in, and arrange a loan). Users visit 19.7 Web sites
and 1.9 pages per site. The average session length is 37 minutes, and pages are viewed
for 1 minute on average.

• Surfing sessions appear random, with users visiting nearly 45 sites in 70 minutes on
average (about 1 minute per page and 1.6 pages per site).

Over time, users can engage in several, if not all, session types depending on how different
their task contexts are. Rozanski et al. found, e.g., that two-third engaged in five or more
session types and 44 percent in all seven session types. Table 9-1 summarizes the aforesaid
by listing the defining and complementary characteristics of all session types. Their relative
frequencies within the 186,797 distinct user sessions are depicted in Figure 9-1.

140 CHAPTER 9. USER MODELING SERVER: EXPERIMENTS

 Defining characteristics
Complementary
characteristics

Variables

Types

Session
length

Time per
page

Category
concen-
tration

Site
famil-
iarity

Number
of sites

Pages per
site

Time per
site

Quickies 1 min 15 sec 90% 90% 1.8 2.2 0.6 min

Just the Facts 9 min 30 sec 47% 88% 10.5 1.7 0.9 min

Single
Mission 10 min 90 sec 85% 11% 2.0 3.3 4.9 min

Do It Again 14 min 120 sec 87% 95% 2.1 3.3 6.7 min

Loitering 33 min 120 sec 66% 90% 8.5 1.9 3.9 min

Information
Please 37 min 60 sec 41% 14% 19.7 1.9 1.9 min

Surfing 70 min 60 sec 26% 85% 44.6 1.6 1.6 min

Table 9-1: Internet session types (based on Rozanski et al. [2000])

Quickies
8%

Just the Facts
15%

Single Mission
7%

Do It Again
14%

Loitering
16%

Information Please
17%

Surfing
23%

Figure 9-1: Frequency of Internet session types (based on Rozanski et al. [2000])

9.1. MODEL OF REAL-WORLD WORKLOAD 141

In order to further refine our model of real-world workload, we assume Zipf-like
distributions of the frequencies in which

• terms from the Deep Map Taxonomy (see Chapter 8.2.3) become characteristic terms
for Web pages,

• users engage in new sessions with our hypothetical Web application, and
• Web pages are requested by users (i.e. ‘page popularity’).
Our first assumption is based on the fact that term frequency distributions in documents
tend to follow Zipf's law [Zipf, 1949], which expresses the fact that in general few words
occur extremely often (e.g., ‘the’, ‘and’), many words quite often (e.g., ‘client’, ‘server’),
and most words hardly ever appear (e.g., ‘Zipf’, ‘User Modeling Server’). The second
assumption is an estimate based on several studies regarding the frequency and duration of
people’s Internet usage (e.g., Patrick and Black [1996]). Our last assumption is based on the
observation that Web page popularity tends to follow a Zipf-like distribution 1/iα, where i is
the popularity rank of the Web page and α an adjustment for the server environment and
the domain [Nielsen, 1997; Breslau et al., 1999; Allaire and Bestavros, 2000; Padmanabhan
and Qiu, 2000]. Regarding an appropriate α, we follow Padmanabhan and Qiu [2000] who
analyzed the MSNBC news site and recommend an α between 1.4 and 1.6. We therefore
opted for α=1.5 and use this value for all three distributions.

We assume further that our UMS has to process the following user modeling operations for
personalizing a requested Web page106:

• Three LDAP search operations with Zipf-distributed terms from the Deep Map
Taxonomy, namely for personalizing the page header (e.g., user-tailored banner
advertisements), the navigation section (e.g., personalized links), and the content part
(e.g., personalized news and product recommendations). We assume that one search is
an exact one (i.e., it contains fully specified terms from the Deep Map taxonomy in the
LDAP search filter) and two are substring searches (i.e., they contain randomly right-
truncated terms from the Deep Map Taxonomy plus a wildcard character in the LDAP
search filter). All search operations take place over the cn attribute. Examples are
(cn=Umweltbelastung) and (cn=Umwelt*), respectively.

• One LDAP add operation for communicating a user’s hyperlink selection as an interest
event to the UMS. Each event characterizes the hypermedia document selected by a
random number of up to three Zipf-distributed terms from the Deep Map Taxonomy.
For instance, the keywords Umweltbelastung, Fauna, and Flora describe a
user’s request of a document about the environmental impacts of tourism (see also
Chapter 8.2.2).

In the following sub-chapter, we present the test bed that we developed for simulating our
real-world workload and describe the testing procedure we followed in our experiments.

106 In contrast, many personalized Web sites do not provide personalized information and services on all Web pages,

which lowers the load of the UMS.

142 CHAPTER 9. USER MODELING SERVER: EXPERIMENTS

9.2 Test Bed

9.2.1 Overview
Figure 9-2 depicts our test bed. On the right side, we see the UMS for Deep Map. Below its
Directory Component, several models are shown that constitute the representational basis
of the UMS, namely the User Model, Usage Model, System Model, and Service Model (see
Chapter 8.2). We retained the latter three models from the Deep Map project without
modification (i.e., including the taxonomy described in Chapter 8.2.3), but varied the size
of the User Model in our experiments, since it can be considered as an important server
workload factor. We further discuss this in Chapter 9.2.2.

 User Modeling Server

User Model

Usage Model

System Model

Service Model

M
a
s
t
e
r

G
e
n
e
r
a
t
o
r
s

C
o
n
t
r
o
l
l
e
r

1st Client

2nd Client

.

.

.

3rd Client

Test Bed

Test Results

Log Files

Transaction Plans

User Model

User Learning
Component (ULC)

Mentor Learning
Component (MLC)

Domain Inference
Component (DIC)

L
D
A
P

C
o
m
m
u
n
i
c
a
t
i
o
n

F
I
P
A

O
D
B
C

Directory Component

R
e
p
r
e
s
e
n
t
a
t
i
o
n

S
c
h
e
d
u
l
e
r

User Modeling Components

...

Legend:

CORBA

LDAP

Figure 9-2: Overview User Modeling Server test bed

9.2. TEST BED 143

On the left side of Figure 9-2, we see the components that constitute our Test Bed, namely
the Controller, Generators, Master, and Clients. In the following, we briefly describe the
main tasks of each component. In order to facilitate orientation, we list components’ names
as run-in headings in italics.

Controller. Its main tasks are

i. creating the different experimental workload conditions (by, e.g., generating and
initializing the required number of simultaneously operating Clients, and the number of
user profiles hosted by the UMS),

ii. executing test cases within given constraints (e.g., test runtime and ratio of different
types of LDAP operations), and

iii. collecting and recording client-side measures (e.g., mean response times for LDAP add
operations, average number of entries affected by LDAP search operations).

In order to achieve this, the Controller employs all of the following components.

Generators create

i. User Model contents (i.e., a preset number of user profiles whose object type is
person, organizationalPerson, or inetOrgPerson),

ii. Transaction Plans, which specify the mix of LDAP operations to be sent to the UMS,
and

iii. Log Files, which contain various information about the generation processes.
Attributes in the demographic part of the generated user profiles are initialized with values
that are randomly selected from lists of permissible attribute values (e.g., from a list of
valid surnames or a list of U.S. ZIP codes). The interests part of the generated user profiles
is initially empty. The generation of Transaction Plans can be controlled by a variety of
parameters (such as the ratio of exact vs. substring LDAP searches, or the number of LDAP
operations that are being submitted to the UMS during a session). The selection of (i) users
from the set of generated user profiles and (ii) interests from the Deep Map Taxonomy is
controlled by our Zipf distribution.

For an example of the operation of generators, we start with an excerpt of the user model
Peter Smith (in LDIF format):

dn: cn=Peter Smith, cn=User Model, ou=UMS, o=gmd.de

uid: Peter Smith

userpassword:: e1NIQX1XMmxYVDErTUp3VHhpdCtDdSt2b09xS3BPU0E9

objectclass: top

objectclass: person

sn: Smith

cn: Peter Smith

144 CHAPTER 9. USER MODELING SERVER: EXPERIMENTS

A transaction plan for a single session of Peter Smith that is generated within the
constraints specified by the Controller could then look as follows (in Directory Mark
format, see Mindcraft [2001]):

bind_as

cn=Peter Smith,cn=User Model,ou=UMS,o=gmd.de

htimSm

ldap_search

cn=Peter Smith,cn=User Model,ou=UMS,o=gmd.de

LDAP_SCOPE_SUBTREE

(cn=Umwelt*)

Rest of search operations removed

ldap_add

dn:’cn=20010123_150841_0,cn=DMI Events,cn=Usage Model,ou=UMS,o=gmd.de’

objectclass: ’top’ ’dmi event’

cn: ’20010123_150841_0’

userid: ’Peter Smith’

keywords: ’Umweltbelastung’

Rest of search and add operations removed

ldap_unbind

This transaction plan specifies that a Client should log in to the UMS as Peter Smith,
using the LDAP bind operation. The password for authentication is provided in the third
line. After that, a recursive search with the filter template (cn=Umwelt*) is to be
submitted that starts from the base entry of Peter Smith. The remaining search
operations are omitted for reasons of brevity. The next part of this transaction plan specifies
the submission of an interest event for Umweltbelastung to the usage model of Peter
Smith. After some more searches and additions, a final unbind operation terminates the
session.

Master. Its main tasks are

i. starting and initializing a preset number of Clients, each with a dedicated transaction
plan,

ii. managing Clients at the time of testing, and
iii. compiling Clients’ individual performance measures into a single uniform report.
Clients execute their transaction plan (thereby submitting and monitoring LDAP requests),
and report their performance measures back to the Master.

9.2. TEST BED 145

For implementing Generators, Master, and Clients, we took advantage of ‘Directory Mark’,
a benchmark suite for LDAP servers from Mindcraft [2001]107. Directory Mark simulates
clients that simultaneously access an LDAP server and reports a variety of performance
indicators, including latency and throughput. Latency refers to the time the server needs to
complete LDAP operations of a specific type (e.g., mean response time for search
operations). Throughput is the number of LDAP operations of a specific type that the UMS
completes within a period of time (e.g., average number of add operations per second). All
performance indicators reported by Directory Mark are measured from a client’s point of
view. Therefore, they do not only indicate the performance of the UMS, but also the
performance of the network and, to a limited degree, the performance of the client
computer. Integrating Directory Mark into our Test Bed was fairly easy, due to the
compliance of our user modeling server with established LDAP standards. Only a few
modifications had to be applied to Directory Mark, which were mainly motivated by (i) our
user modeling extensions to standard LDAP object types (e.g., regarding interests and
preferences) and (ii) the necessity for submitting interface events to the UMS. These
modifications were realized by a wrapper around Directory Mark. This allowed us to inject
event submissions with randomly generated numbers of Zipf-distributed terms from the
Deep Map Taxonomy into the Transaction Plans generated by Directory Mark. These plans
can then be executed by standard Directory Mark Masters and Clients.

9.2.2 Workload Simulation
So far, we described our model of real-world workload, a hypothetical Web usage scenario,
and the means our Test Bed offers for simulating it (e.g., Transaction Plans). Our first
experiment was a two-factor design with the following parameters:
• number of user profiles: 100, 500, 2,500, and 12,500;
• number of Web page requests per second: 0.5, 1, 2, and 4.
The first parameter refers to the number of user profiles hosted by our UMS. The overall
user population of a Web site can be assumed to be considerably larger in size, since in
general only a certain percentage of visitors opt for personalization108. The second
parameter determines the number of page requests to our hypothetical Web application and,
by derivation from the workload assumptions introduced in Chapter 9.1, also the number,
type, and complexity of LDAP operations to be processed by the UMS. In the remainder of
this dissertation, we use the term ‘small and medium-sized workload’ as referring to a
workload that is not higher than four Web page requests per second on average109.

107 Directory Mark seems to be the only benchmark suite that is currently available for LDAP servers.
108 A large German news portal estimates that merely 5% of their user population registers and actively benefits from

personalized services [personal communication]. Applying this rate to our maximum number of 12,500 user profiles
leads to an overall user population of 250,000. Other personalization rates for active users reported in the literature
include 25% in an early version of AltaVista [Schrock, 1999] and 64% for Excite [2002]. Applying these rates to our
maximum number of 12,500 user profiles leads to a total user population of about 50,000 and 19,500, respectively.

109 Based on the Web traffic statistics of IVW [2001] for November, one can estimate that three of four German Web
sites receive not more than four page requests per second on average.

146 CHAPTER 9. USER MODELING SERVER: EXPERIMENTS

The four values for each of our two parameters lead to 16 different test cases. For each
value combination, we generated a test plan containing N user profiles (i.e., 100, 500,
2,500, and 12,500). To avoid starting a test run with all user profiles being empty, we
introduced a warm-up phase during which the profiles became initially populated. In order
to obtain (nearly) the same filling degree in all test cases, we increased the warm-up time
proportional to the number of user profiles (i.e., 10 minutes for 100 user profiles, 50
minutes for 500 user profiles, etc.). The simulated Clients that are associated with these
profiles are partitioned into seven classes. Each class i represents one of the aforementioned
session types and comprises ci Clients. Every Client exhibits the Web page request behavior
that is characteristic of her class. The ci Clients of a particular class i simulate a total
workload of wi page requests per second. The total workload W of all C Clients
corresponds to the preset frequency of page requests (i.e., 0.5, 1, 2, or 4 per second), the
ratio wi/W approximates the observed type frequency of each class110.

Table 9-2 shows the test plan for the workload of W=2 page requests per second. In the left
part, we see the seven session types from Table 9-1, along with their relative frequencies
from Figure 9-1 and the viewing times per page from Table 9-1. Quickies, for example,
represent 8 percent of all sessions and spend just 15 seconds for skimming each requested
Web page. The right part of Table 9-2 shows the numbers ci of Clients that are needed to
generate target workloads of wi page requests per second. Regarding Quickies, e.g., we
employed ci=2 Clients with a total workload of wi≈0.13 page requests per second in our
Test Bed. For simulating all seven session types with a total workload of W=2 Web pages
per second, we employed seven differently configured test environments with a total
number of C=146 Clients.

At runtime, each Quickie client consecutively simulates a session as follows (see also the
transaction plan we presented earlier for Peter Smith):

• log in (i.e., LDAP bind) to the UMS111,
• simulate a Web page request (i.e., submit three LDAP search operations and one LDAP

add operation as described earlier),
• wait for 15 seconds,
• simulate another Web page request,
• wait again for 15 seconds, and finally
• log off from the UMS111.

110 Since we do not have an empirical distribution of the session types from Table 9-1 for the level of single Web sites or

types of Web sites at our disposal, we adopt for our hypothetical Web site the distribution of session types from the
panel level without any further modification (e.g., normalizing the distribution according to the different numbers of
requested Web pages). This selection is also motivated by empirical evidence regarding the frequency of Quickies
and Just the Facts sessions we obtained from deployments of our server to several German news sites (see e.g. Fink et
al. [2002]). With regard to the resulting workload, this means that our server has to provide its user modeling services
also for Quickies and Just the Facts sessions (which can be regarded rather demanding, due to their short viewing
times and session lengths). As opposed to that, the relative percentage of these session types can be regarded lower
for many personalized Web sites, which in turn lowers the load of the UMS.

111 We assume that many Quickie applications (e.g., retrieval of stock quotes or sports scores) will acquire and
authenticate users’ credentials (at least semi-) automatically (e.g., via cookies, smartcards, and/or passwords) and
automatically handle user logins/logoffs by forwarding users’ credentials to the user modeling server.

9.2. TEST BED 147

 Session type
characteristics

Test bed
settings

Variables

Types

Relative
frequency

Time per
page

Number of
Clients*

Page
requests

per second*

Quickies 8% 15 sec 2 0.13

Just the
Facts 15% 30 sec 9 0.3

Single
Mission 7% 90 sec 13 0.14

Do It Again 14% 120 sec 34 0.28

Loitering 16% 120 sec 39 0.33

Information
Please 17% 60 sec 21 0.35

Surfing 23% 60 sec 28 0.47

 100% 146 2

Table 9-2: Test composition for 2 Web page requests per second (*=figures rounded)

In all our tests, Clients send their LDAP operations synchronously to the UMS. This means
that after invoking an LDAP operation, they wait until this operation has been completed
and the reply has been received from the server. In real-world applications, waiting is often
inadequate though, e.g., when a client has to respond to user interface events. Using
asynchronous LDAP operations may reduce waiting and improve the overall performance
of a client, especially when several threads of operations can be concurrently managed.

9.2.3 Measures
During our tests, we recorded and collected 269 measures for Clients and components of
our UMS. In the following, we provide a brief overview of the most important ones:

• Measures related to test cases as a whole include:
- Parameter values (i.e., number of user profiles and number of Web page requests

per second).

- Topography of the Test Bed and the UMS (i.e., single platform, multi-platform).

- Hardware used for clients and server(s).

148 CHAPTER 9. USER MODELING SERVER: EXPERIMENTS

• Measures related to Clients include:
- Search performance: number of search operations, minimum and maximum search

time, mean time, standard deviation, number of entries affected by searches.

- Add performance: number of add operations, minimum and maximum response
time, mean time, standard deviation, number of entries added to user profiles.

• Measures for every UMS component (i.e., DS, ULC, MLC, DIC) include:
- Configuration: process priority112, type of events to be processed, maximum loop

delay113, minimum event counter114, LDAP client settings (e.g., protocol version, size
and time limits).

- Performance: overall test duration, queue statistics (e.g., number of events
processed; mean, minimum, and maximum processing time, and its standard
deviation), LDAP statistics (e.g., number of search operations; mean, minimum, and
maximum search time, and its standard deviation; number of user model entries
affected; number of failed operations).

- Resources: amount of CPU time and main memory used for the startup phase and
for the whole test run.

Most of these measures were automatically recorded by our Test Bed in several Log Files.

9.2.4 Hardware and Software Configuration
We tested our UMS in a single platform and a multi-platform deployment scenario. In the
single platform scenario, the whole UMS (i.e., Directory Component, ULC, MLC, and
DIC) was running on a single computer. The server hardware we used can be regarded
typical for small and medium-sized application environments: a PC with two 800 MHz
processors, 1 GB RAM, a RAID controller with two 18.3 GB UW-SCSI hard disks, and a
network card running at 100 MB per second. The software used was Windows NT 4.0,
iPlanet Directory Server 4.13, and VisiBroker 3.4. The learning components of our UMS
were compiled with Java 1.2.2 and took advantage of the Java Hot Spot Server Virtual
Machine 2.0. In the multi-platform scenario, we installed only the Directory Component on
the aforementioned dual processor computer. The User Modeling Components were
deployed to additional PCs as follows:

• ULC was installed on a PC with an 800 MHz processor, 256 MB RAM, and a network
card running at 100 MB per second. The operating system was Windows NT 4.0.

• MLC was running on a PC with a 600 MHz processor, 384 MB RAM, and a network
card running at 100 MB per second. The operating system was Windows NT 4.0.

• DIC was deployed to a PC with a 600 MHz processor, 256 MB RAM, and a network
card running at 100 MB per second. The operating system was Windows NT 4.0.

112 This parameter refers to the process priority on the operating system level.
113 This parameter defines the maximum amount of time a component should wait for incoming events before starting a

new processing loop.
114 This parameter specifies the minimum amount of events necessary for a component to start a new processing loop.

9.2. TEST BED 149

It is important to note that these low-end PCs were not homogeneously equipped. Future
testing rounds may aim at overcoming this anomaly.

Regarding software configuration, we changed a few standard parameters of DS as follows:

• Threadnumber was changed to 60. This setting instructed DS to create 60 threads
during startup for simultaneously processing incoming requests.

• Maxthreadsperconn was set to 60. This value allowed each LDAP connection to use up
to 60 threads at runtime, if necessary.

• Db_durable_transactions was disabled. This setting disabled logging of recovery
information.

• Cachesize was set to approximately 250,000 for the main database and to 2,000 for the
event database. These values instructed DS to maintain the aforementioned numbers of
LDAP entries in cache memory.

• Dbcachesize was set to approximately 200 MB for the main database and to 1.8 MB for
the event database.

Finally, we present the most important configuration settings of our User Modeling
Components:

• Deleteeventsafterprocessing was set to true. This setting enabled the deletion of
processed interest events in the Usage Model.

• Lazyupdate was set to 0.1. This setting instructed our learning components to persist a
newly calculated interest probability only when it differs more than 10% from the value
stored in the user profile.

• Maxinterests and maxpredictions was set to 6. This value instructed the ULC and the
MLC to maintain in every user profile the 6 most evident interests and preferences only.

Furthermore, we restricted the amount of memory that is available for the DIC and the ULC
to 100 MB, and the memory for the MLC to 150 MB. All components were running with
the same priority on the operating system level.

Our Test Bed was installed on a single PC with an 800 MHz processor, 512 MB RAM, and
a network card running at 100 MB per second. The operating system was Windows NT 4.0,
and our Test Bed employed DirectoryMark 1.2.

9.2.5 Testing Procedure
In all experiments, we adhered to the same sequence of procedures:
1. Generate a User Model (which comprises a predefined number of user profiles) and

Transaction Plans for every Client group (each group exhibits the page request behavior
of one session type).

2. Populate all user profiles in an initial warm-up phase (the runtimes for each test case
ranged from 10 minutes for 100 user profiles to 1,250 minutes for 12,500 user profiles).

3. Reboot the servers.
4. Run each test case for 300 minutes.
Finally, we collected the aforementioned measures from the Log Files generated by our
Test Bed and compiled them into a single file.

150 CHAPTER 9. USER MODELING SERVER: EXPERIMENTS

9.3 Evaluation Results
In the following, we present selected results from the evaluation of our user modeling
server. To guide our presentation and discussion, we start with a black box perspective that
represents a client’s point of view, and then switch to a white box-perspective where we
analyze the behavior of the User Modeling Components in more detail. In order to facilitate
orientation, we note the different testing scopes (i.e., Web application, ULC, MLC, DIC) as
run-in headings in italics.

9.3.1 Black Box Perspective

9.3.1.1 Performance and Scalability
Web application. Figure 9-3 depicts the mean response times of our UMS for processing
the four user model operations that personalize a Web page from the viewpoint of our
hypothetical application (namely three LDAP search and one add operations, see Chapter
9.1). Mean times are shown for all 16 test cases.

Mean time page requests (ms)

0

10

20

30

40

50

60

0 0.5 1 1.5 2 2.5 3 3.5 4

Page requests per second

M
ea

n
tim

e
pa

ge
 re

qu
es

ts
 (m

s)

No. of user profiles: 100
No. of user profiles: 500
No. of user profiles: 2,500
No. of user profiles: 12,500

Figure 9-3: Mean time User Modeling Server page requests

In general, mean times increase only degressively with the number of page requests and
user profiles. In two cases (namely for 100 and 500 user profiles), the mean times for 4
page requests per second are even slightly lower than those for 2 page requests per second.
This advantageous response time behavior is mainly due to database caching in the
Directory Component (see also Figure 9-4 and the related discussion). The more user model
operations are sent to the server for a given number of user profiles, the faster this cache
gets filled with entries of different popularity (see our Zipf distribution in Chapter 9.1) and
the more operations can therefore be directly served from cache memory, thereby avoiding
rather costly accesses to secondary storage. Another effect that is related to database

9.3. EVALUATION RESULTS 151

caching can be observed for a given number of page requests and varying numbers of user
profiles: the mean times for 100, 500, and 2,500 user profiles are quite similar (except for
2,500 users and 4 page requests per second), but the mean times for 12,500 users are
notably higher. We assume that this behavior results mainly from a higher hit rate (i.e., a
higher probability that a specific piece of information is contained in cache memory) in test
cases with smaller numbers of user profiles. High numbers of user profiles lead to more
frequent accesses to secondary storage, with negative effects on the performance of the
server.

In a small to medium-sized application scenario, the overall performance and scalability of
our UMS seems as highly satisfactory. The mean response times for processing four user
model operations and returning the results to up to 288 Clients in parallel (in the case of 4
page requests per second) is always smaller than 53 milliseconds. From a usability point of
view, such a low user modeling overhead should enable a personalized Web-based
application to provide its services within the desirable response time limit of 1 second and,
in any case, below the mandatory limit of 10 seconds [Nielsen, 1993]115. The moderate
surge of the mean response time when the number of clients and user profiles increases
does not suggest looming performance and scalability limits.

The above figures reflected the performance of our server for a mix of three LDAP search
and one add operations. In the following, we look at the results for each type of operation
separately.

Searches. Figure 9-4 depicts the mean response times of our server when processing LDAP
search operations from the viewpoint of our hypothetical Web application. The search
performance and scalability resembles very much the one in Figure 9-3. As noted earlier,
this response time behavior is mainly due to the generously sized database cache (see
Chapter 9.2.4). The Directory Component was seemingly able to serve many search
requests directly from cache memory, especially when many Clients access our server
simultaneously. With all mean response times being smaller than 15 milliseconds (even in
the case of 288 simultaneous Clients), the search performance of our server seems
excellent.

Additions. Figure 9-5 depicts the mean response times of our server for processing LDAP
add operations from the viewpoint of our hypothetical Web application. They increase only
degressively with the number of page requests, and even decrease for 100 user profiles and
4 page requests per second. The mean response times for 100, 500, and 2,500 user profiles
appear quite similar.

115 A response time below one second allows most users to retain their flow of thought. Ten seconds is about the limit

for most users keeping their attention focused on the dialogue with an application system (cf. Nielsen [1993]).

152 CHAPTER 9. USER MODELING SERVER: EXPERIMENTS

Mean time searches (ms)

0

2

4

6

8

10

12

14

16

0 0.5 1 1.5 2 2.5 3 3.5 4

Page requests per second

M
ea

n
tim

e
se

ar
ch

es
 (m

s)

No. of user profiles: 100
No. of user profiles: 500
No. of user profiles: 2,500
No. of user profiles: 12,500

Figure 9-4: Mean time User Modeling Server search operations

Mean time additions (ms)

0

1

2

3

4

5

6

7

8

9

10

0 0.5 1 1.5 2 2.5 3 3.5 4

Page requests per second

M
ea

n
tim

e
ad

di
tio

ns
 (m

s)

No. of user profiles: 100
No. of user profiles: 500
No. of user profiles: 2,500
No. of user profiles: 12,500

Figure 9-5: Mean time User Modeling Server add operations

Since all response times are smaller than 9 milliseconds, the add performance of our server
can be regarded as superior. The excellent response time behavior is mainly due to a lean
server configuration that takes advantage of a generously-sized database cache, several

9.3. EVALUATION RESULTS 153

physical databases with optimized index structures for dedicated purposes (e.g., for
maintaining event submissions), and the fact that recovery logging was disabled (see
Chapter 9.2.4). Based on this streamlined configuration, our UMS can swiftly process
many directory updates in cache memory.

Recovery logging becomes compulsory though in deployment scenarios where persistency
is mandatory (see Chapter 2.2.4). Despite of increased efforts for recovery logging, we do
not expect a significant drop in add performance (we found evidence for this in tests where
recovery logging was enabled). Although directories are not optimized for update
operations (see Chapter 4), their performance and scalability can be regarded as highly
satisfactory for user modeling purposes.

9.3.1.2 Quality of Service
In this sub-chapter, we revisit our tests from the viewpoint of quality of service. The two
most important technical factors that contribute to quality of service are the response times
and response rates of our server from the perspective of client applications. As far as the
response rate is concerned, no user model operation ever timed out or failed in any of our
tests. Hence this factor seems optimal and we will not further look into it.

Table 9-3 analyzes the measured response times in more detail:

• The first two columns contain the independent parameters of our tests (namely the
number of user profiles and page requests per second).

• The third column lists the mean response times for processing the four user model
operations that personalize a Web page (namely three LDAP search and one add
operations, see Chapter 9.1).

• The fourth and fifth column indicate for each test case the confidence interval for the
means at the 99% level116.

• The sixth column shows the means plus one standard deviation, and the last column the
means plus two standard deviations.

From a usability point of view, our UMS exhibits an excellent response time behavior: all
mean times plus one standard deviation are smaller than 78 milliseconds, and all means
plus two standard deviations are smaller than 103 milliseconds (due to the small standard
deviations and the huge sample size, the confidence intervals for the means are extremely
narrow). This small user modeling overhead should enable client applications to stay well
below the desirable response time limit of 1 second and, in any case, below the mandatory
limit of 10 seconds. If we additionally take into account that no user model operation timed
out or failed, we can conclude that the quality of service that our UMS offers can be
regarded as highly satisfactory.

116 Starting from the mean request times x and their standard deviations σ, we calculate the confidence interval for the

mean response times of our user modeling server
n

zx σ± . The central limit theorem and the fairly high number of

page requests (our smallest n was 8,970) allows us to use a normal distribution for determining our z as 2.5762 (cf.
Bleymüller et al. [1983]).

154 CHAPTER 9. USER MODELING SERVER: EXPERIMENTS

 Performance
 results

No.
of user
profiles
and page
requests/sec

Mean time
page

requests
(ms)

Lower
confidence
limit mean
time page
requests

(ms)

Upper
confidence
limit mean
time page
requests

(ms)

Mean time
page

requests
plus one
standard
deviation

(ms)

Mean time
page

requests
plus two
standard
deviations

(ms)

0.5 11.15 11.04 11.26 15.27 19.38

1 19.28 19.12 19.44 27.55 35.81

2 30.84 30.64 31.04 45.34 59.84
100

4 29.44 29.31 29.57 42.87 56.31

0.5 11.71 11.59 11.83 16.29 20.88

1 17.29 17.15 17.43 24.62 31.95

2 28.44 28.26 28.62 42.03 55.62
500

4 27.15 27.03 27.27 39.65 52.14

0.5 11.00 10.88 11.12 15.58 20.17

1 17.43 17.28 17.58 25.04 32.64

2 29.30 29.12 29.48 42.87 56.43
2,500

4 44.58 44.37 44.79 66.13 87.69

0.5 15.00 14.84 15.16 20.71 26.41

1 25.71 25.50 25.92 36.73 47.75

2 45.72 45.52 45.92 66.74 87.76
12,500

4 52.57 52.33 52.81 77.49 102.42

Table 9-3: User Modeling Server quality of service black box perspective

Figure 9-6 analyzes the response time behavior for the four most challenging test cases in
more detail. They all comprise 12,500 user profiles, and their workloads range from 0.5 to
4 page requests per second. In general, mean times and associated standard deviations
increase only degressively with the workload. In all cases, mean response times plus one

9.3. EVALUATION RESULTS 155

standard deviation are smaller than 78 milliseconds (and means plus two standard
deviations are smaller than 103 milliseconds). Our simulated workload seemingly has not
pushed the server to its performance limits.

Figure 9-6: Mean time User Modeling Server page requests for 12,500 user profiles

9.3.1.3 Single Platform vs. Multi-Platform
In this sub-chapter, we briefly present the results from a deployment of the UMS to a multi-
platform environment, and compare these results with the ones presented earlier for the
single platform deployment scenario. The workload for this test was our most challenging
one, i.e. 12,500 user profiles and 4 page requests per second. In the multi-platform scenario,
only the Directory Component was running on the mentioned dual processor computer, and
each learning component (i.e., ULC, MLC, and DIC) was deployed to a dedicated PC (for
details regarding the hardware used, we refer to Chapter 9.2.4).

Figure 9-7 compares the resulting mean times and associated standard deviations on the
levels of a Web application and of search and add operations. Each measure is shown for
the single platform and the multi-platform scenario. Starting on the application level, we
see that the mean time for processing the four user model operations that personalize a Web
page plunges to 22.44 from 52.57 milliseconds (i.e., approximately 57% less), and its
standard deviation to 10.54 from 24.92 milliseconds (i.e., approximately 58% less). The
single most important reason for this improved performance is the considerably better
search performance. The mean time needed for processing search operations falls to 5.29
from 14.57 milliseconds (i.e., approximately 64% less), and its standard deviation to 5 from
13.57 milliseconds (i.e., approximately 63% less). Less impressive is the performance gain
for additions to the usage model: the mean time drops to 6.57 from 8.86 milliseconds (i.e.,
approximately 26% less), and its standard deviation to 6 from 8.29 milliseconds (i.e., 28%
less).

Mean time page requests (ms)
12,500 user profiles

0

10

20

30

40

50

60

70

80

90

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Page requests per second

M
ea

n
tim

e
pa

ge
 re

qu
es

ts
 (m

s)

156 CHAPTER 9. USER MODELING SERVER: EXPERIMENTS

Single platform vs. multi-platform deployment
12,500 user profiles and 4 page requests per second

52.57

24.92

14.57 13.57
8.86 8.29

22.44

10.54
5.29 5.00 6.57 6.00

0

10

20

30

40

50

60

Mean time
page requests

(ms)

Standard
deviation page
requests (ms)

Mean time
searches (ms)

Standard
deviation

searches (ms)

Mean time
additions (ms)

Standard
deviation

additions (ms)

Single platform
Multi-platform

Figure 9-7: User Modeling Server single platform vs. multi-platform deployment

The distribution of our UMS across a network of four computers improved its performance
considerably. In the multi-platform scenario, search performance benefits most from the
relieved dual processor computer, since search operations can be concurrently processed by
DS. Compared to that, additions with their inherent need for multi-user synchronization
(see Chapter 2.2.1) can take less advantage of the additional hardware resources.

9.3.2 White Box Perspective
In this sub-chapter, we take a closer look at the User Modeling Components of the UMS,
i.e. the ULC, the MLC, and the DIC. These components become triggered by LDAP update
operations, and they operate concurrently to the Directory Component. On single-processor
platforms, these components however compete with the Directory Component for hardware
resources (especially processor time) and therefore impact the processing time for LDAP
operations indirectly.

9.3.2.1 Performance and Scalability
ULC. The main purpose of the ULC is to acquire user’s interests and preferences from
features of objects a user has seen, rated, bought, etc. User-adaptive applications acquire
these object features and communicate them as event vectors to the UMS. Within the
server, the Scheduler forwards them to the ULC for further processing. The ULC maintains
incoming event vectors in a dedicated queue and, as soon as a predefined number of vectors
is available, starts processing them in a separate thread. After processing has been
completed, the interest probabilities are persistently stored in the User Model. Due to the
concurrent nature of the receiving and processing phase, the ULC can receive event vectors
at any time. Other important advantages of this queue-based approach include (i) the
graceful degradation of the ULC should it receive more events than it can process in a
certain time interval and (ii) the avoidance of costly updates of the User

9.3. EVALUATION RESULTS 157

Model in secondary storage by maintaining interim learning results in main memory and
persistently storing only the final interest probabilities in the User Model. For more
information on the ULC, we refer to Chapter 8.4.

Figure 9-8 depicts the mean processing times of the ULC for acquiring users’ interests and
preferences. Mean times are shown for all 16 test cases.

Mean time event processing (s)

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

0 0.5 1 1.5 2 2.5 3 3.5 4

Page requests per second

M
ea

n
tim

e
(s

)

No. of user profiles: 100
No. of user profiles: 500
No. of user profiles: 2,500
No. of user profiles: 12,500

Figure 9-8: ULC mean time event processing

In general, mean times seem to mainly depend on the number of user profiles. They
degressively grow with the number of page requests, which is mainly due to the mentioned
queue-based architecture of the ULC (which allows for bulk processing of submitted events
and for maintaining interim interest probabilities in main memory, thereby saving costly
updates of the User Model).

Regarding performance, all recorded mean times are smaller than 4 seconds. This speed of
learning can be regarded as highly satisfactory, since it permits keeping track of users’
changing interests even between consecutive page requests. Interests that can be learned
based on a page request are available to the Web application at the time of the subsequent
page request, and can be used for adapting the latter page (for related requirements, we
refer to Chapter 7.1). The ULC fully supports this ‘inter-request’ learning for all session
types and test cases.

MLC. The MLC aims at predicting unknown characteristics in individual user profiles from
known ones in profiles of a set of similar users. Assumptions about interests and
preferences have either been provided by the users or were acquired by the ULC based on
users’ application system usage. The Scheduler, which is aware of all login operations to
the UMS, forwards an event to the MLC for each user who logs into the system. Starting
from this set of active users, the MLC searches for similar users in the User Model. As soon
as the so-called neighbors are found, the MLC checks the profiles of active users for

158 CHAPTER 9. USER MODELING SERVER: EXPERIMENTS

unknown interests and preferences and computes predictions for these ‘holes’ based on
known interests and preferences in profiles of neighbors. In a final step, the MLC stores its
predictions in active users’ profiles. On an implementation level, the MLC employs a
queue-based architecture like the ULC, which allows for the execution of queue
management tasks concurrently with learning tasks. For more information on the MLC, we
refer to Chapter 8.5.

Figure 9-9 shows the mean processing times of the MLC for predicting the interests and
preferences of active users. Mean times are depicted for 13 of our 16 test cases.

Mean time interest prediction (s)

0

5

10

15

20

25

30

0 0.5 1 1.5 2 2.5 3 3.5 4

Page requests per second

M
ea

n
tim

e
(s

)

No. of user profiles: 100
No. of user profiles: 500
No. of user profiles: 2,500
No. of user profiles: 12,500

Figure 9-9: MLC mean time interest prediction (excerpt)

For 100, 500 and 2,500 user profiles, all mean times are smaller than 24 seconds, but show
a progressive growth with increasing page requests. This performance can be regarded as
satisfactory, since it allows for intra-session prediction of user interests and preferences for
all seven session types and, except for Quickies, allows for the prediction of user interests
and preferences even between consecutive page requests. Likewise acceptable are the 19
seconds mean time for 12,500 user profiles and 0.5 page requests per second.

In contrast, the mean processing time deteriorates considerably for 12,500 user profiles and
higher numbers of page requests (which are no more depicted in Figure 9-9): 141 seconds
for 1 page request per second, but 2:07:45 hours for 2 and 2:06:29 hours for 4 page requests
per second. This is depicted in more detail in Figure 9-10, where the mean processing times
of all 16 test cases are shown on a logarithmic scale. It seems that for 2 and 4 page requests
per second, the MLC could not keep pace with the stream of user arrivals and approaches
its performance limits. The convergence of the two mean times seems to support this
assumption.

9.3. EVALUATION RESULTS 159

Mean time interest prediction (s)

1

10

100

1,000

10,000

0 0.5 1 1.5 2 2.5 3 3.5 4

Page requests per second

M
ea

n
tim

e
(s

)

No. of user profiles: 100
No. of user profiles: 500
No. of user profiles: 2,500
No. of user profiles: 12,500

Figure 9-10: MLC mean time interest prediction

We believe that the performance and scalability of the MLC can still be regarded as
satisfactory, though. This is due to the fact that the MLC we used in our tests searches
similar users in the whole user population and does not restrict its search to a subset of user
profiles, e.g. by applying statistical sampling methods. If we interpret the 100, 500, and
2,500 profiles used in our tests as samples from a larger set of user profiles, then the
performance and scalability of the MLC seems again satisfactory. We highly recommend
future work on the MLC that focuses on the employment of statistical sampling and/or
singular value decomposition methods (see also our recommendation for future work in
Chapter 8.5).

DIC. The main aim of the DIC is to quickly populate and update user models with inferred
assumptions about users’ interests and preferences. In order to achieve this, the DIC takes
advantage of primary assumptions explicitly provided by users and implicitly acquired by
the ULC and the MLC and propagates them upwards and sideways along the domain
taxonomy.

From a technical point of view, the DIC registers with the Scheduler for additions, updates,
and deletions in users’ interest models. Subsequently, the DIC receives notifications from
the Scheduler about relevant user model operations (e.g., the ULC inserts an assumption
about a user’s interest in Umweltbelastung, i.e. environmental burden), checks
whether certain conditions apply (e.g., whether a minimum percentage of interests is
available for sideways propagation), possibly draws domain inferences (e.g., the user is
now assumed to be also interested in Klima, i.e. climate), and updates the user model
accordingly. From an implementation point of view, the DIC relies on a queue-based
architecture as the ULC and the MLC. For more information on the DIC, we refer to
Chapter 8.6.

160 CHAPTER 9. USER MODELING SERVER: EXPERIMENTS

Figure 9-11 depicts the mean processing times of the DIC for inferring assumptions about
users’ interests and preferences. Mean times are shown for all 16 test cases.

Mean time interest inferencing (s)

0

1

2

3

4

5

6

0 0.5 1 1.5 2 2.5 3 3.5 4

Page requests per second

M
ea

n
tim

e
(s

)

No. of user profiles: 100
No. of user profiles: 500
No. of user profiles: 2,500
No. of user profiles: 12,500

Figure 9-11: DIC mean time interest inferencing

The processing time behavior of the DIC resembles that of the ULC. Mean times depend on
the number of user profiles and degressively grow (or even decrease in two cases) with the
number of page requests. Like for the ULC, this behavior is mainly due to the queue-based
architecture of the DIC.

All mean times that we collected are below 6 seconds. This learning speed can be regarded
as highly satisfactory since it permits keeping track of users’ changing interests even
between consecutive page requests.

9.3.2.2 Quality of Service
We briefly present and discuss in the following the quality of service the User Modeling
Components of our server exhibited during the tests. Following the definition we provided
in Chapter 9.3.1.2, we define quality of service by the processing times and processing rates
of the User Modeling Components from the perspective of the Directory Component (and
indirectly also from the perspective of client applications). As far as the processing rate is
concerned, no User Modeling Component ever timed out or failed in any of our tests;
hence, we will not further look into this factor.

Table 9-4 analyzes the measured processing times in more detail:

• The first two columns contain the independent parameters of our tests (namely the
number of user profiles and page requests per second).

• The third, fourth, and fifth column show for each component the upper limits of the
confidence intervals for the mean processing times at the 99% level.

9.3. EVALUATION RESULTS 161

• The sixth, seventh, and eighth column list for each component the mean processing
times plus one standard deviation, and the last three columns the means plus two
standard deviations.

 Upper confidence limit
mean processing time

(sec)

Mean processing time plus
one standard deviation

(sec)

Mean processing time plus
two standard deviations

(sec)

Components
No.
of user
profiles
and page
requests/sec

ULC MLC DIC ULC MLC DIC ULC MLC DIC

0.5 0.47 1.08 2.24 0.77 1.96 3.70 1.08 2.91 5.30

1 0.71 1.15 2.57 1.19 2.03 4.20 1.69 2.97 5.95

2 1.07 1.49 3.52 1.97 2.89 6.36 2.88 4.40 9.40
100

4 1.01 1.26 3.09 1.84 2.82 5.99 2.68 4.47 9.04

0.5 0.48 1.47 2.16 0.77 2.27 3.40 1.07 3.13 4.75

1 0.76 1.76 2.60 1.26 2.82 4.12 1.78 3.96 5.75

2 1.04 1.92 3.82 1.68 3.34 6.40 2.33 4.83 9.12
500

4 1.37 2.17 4.02 2.24 3.83 6.79 3.11 5.55 9.68

0.5 0.58 4.66 2.05 0.93 7.13 3.18 1.29 9.81 4.41

1 1.12 7.65 3.27 1.86 12.81 5.45 2.62 18.28 7.77

2 2.06 11.66 5.08 3.44 19.47 8.40 4.84 27.63 11.86
2,500

4 2.34 24.30 4.85 3.90 50.15 8.14 5.47 76.85 11.53

0.5 0.86 20.42 2.21 1.57 32.46 3.60 2.30 45.49 5.10

1 1.83 146.87 3.58 3.08 244.73 6.01 4.36 348.36 8.58

2 3.39 7813.93 5.49 5.53 12729.10 9.04 7.68 17793.61 12.69
12,500

4 3.58 7733.90 5.83 5.95 12577.07 9.70 8.35 17565.26 13.68

Table 9-4: User Modeling Server quality of service white box perspective

162 CHAPTER 10. DISCUSSION

Against the background of the learning speed requirements we postulated in Chapter 7.1,
the measured processing times of the ULC and the DIC seem very promising: all mean
times plus one standard deviation are smaller than 10 seconds, and all means plus two
standard deviations are smaller than 14 seconds (due to the small standard deviations and
the huge sample size, the confidence intervals for the means are very narrow). This speed
of learning permits keeping track of users’ changing interests even between consecutive
page requests for all session types and test cases. If we additionally take into account that
no User Modeling Component ever timed out or failed in any of our tests, we can conclude
that the quality of service that the ULC and the DIC offer can be regarded as highly
satisfactory.

With regard to the MLC, the learning speed for 100 and 500 users seems satisfactory: all
mean times plus one standard deviation are smaller than 4 seconds, and all means plus two
standard deviations are smaller than 6 seconds. This performance allows for inter-request
prediction of user interests and preferences for all seven session types. For 2,500 users, the
learning speed of the MLC is less satisfactory: mean times plus one standard deviation are
smaller than 51 seconds, and means plus two standard deviations are smaller than 77
seconds. This performance still allows for inter-request prediction of user interests and
preferences for Single Mission, Do It Again, and Loitering sessions. Intra-session
personalization is additionally supported for Information Please and Surfing sessions.

For 12,500 users, however, the learning speed of the MLC deteriorates considerably: the
mean processing time plus one standard deviation rises from 32.46 seconds for 0.5 page
requests per second to approximately 3:32:09 hours for 2 and the mean plus two standard
deviations from 45.49 seconds for 0.5 to approximately 4:56:33 hours for 2 page requests
per second. This unacceptable performance underlines our recommendation for future work
on the MLC we made in Chapter 8.5.

10 Discussion
In this chapter, we revisit the requirements catalogs that we worked out in Chapters 2 and 3
and discuss our user modeling server against this background. We organize our discussion
according to the structure we introduced earlier, i.e.

i. server-related requirements and
ii. user modeling-related requirements.
In order to facilitate orientation, we list the requirements as run-in headings in italics.

10.1 Server Requirements
Multi-user synchronization. In Chapter 2 we argued that a concurrent server design can be
regarded as highly suitable for user modeling servers. Concurrent servers maintain several
threads for processing requests, and control the amount of server resources that they utilize
for processing requests. Our user modeling server adheres to these principles. On the
component level, the Scheduler mediates between the concurrently operating components
of our server. And within each component, several concurrent processing threads are
maintained for communication and learning tasks. The Directory Component of our server
uses a configurable number of threads for processing incoming requests. In the experiments

10.1. SERVER REQUIREMENTS 163

we described in Chapter 9, we used sixty concurrent threads for processing incoming
requests. Likewise, each of our learning components maintains a configurable number of
processing threads. The results of the experiments in Chapter 9.3 demonstrate the positive
effect of our design decisions on the performance and scalability of our user modeling
server.

Transaction management. The transaction management offered by our user modeling
server is relatively poor in comparison to current database and transaction management
systems (see Chapter 2). Our server provides transactional semantics (i.e., ACID
properties) for update operations only. Each update operation is an indivisible unit of work,
which either modifies all or none of the attributes of an entry to which it is applied
(Atomicity). The compliance of the User Model with the directory schema is strictly
preserved (Consistency), and concurrently executed LDAP operations do not affect update
operations (Isolation). Only successful updates are made persistent (Durability) and become
visible for subsequent operations.

When comparing the transaction management of our user modeling server with those of the
PAT-InterBook system (the only academic user modeling system of which we are aware
that provides transaction management [Brusilovsky et al., 1997]), we find several
advantages as well as disadvantages (see Chapter 2). Advantages of our approach include
that (i) all users of user-related information (e.g., administrative users, ‘real’ users,
applications, components of the user modeling system) can take advantage of our facilities
and that (ii) full transactional support (i.e., Atomicity, Consistency, Isolation, and
Durability) is provided for update operations. A disadvantage of our current design is that
the scope of a consistency context is restricted to a single update operation (see Chapter
5.3.2).

The basic transactional facilities of our user modeling server seem adequate for user-
adaptive applications with rather moderate consistency requirements (e.g. WebGuide). If
needed, however, these transactional facilities can be easily matured, e.g. by employing the
respective facilities of a database management system. In this case, the interface of our user
modeling server has to be extended by custom user model operations that allow for
communicating consistency contexts. Examples of such operations are
‘BeginOfTransaction’, ‘EndOfTransaction’, and ‘RollbackTransaction’. A consistency
context is communicated by BeginOfTransaction and EndOfTransaction, whereas the
rollback of a user model to the state before the transaction started is communicated by
RollbackTransaction. From an implementation point of view, these custom operations can
be implemented using the extended operation facility of DS (see Chapter 5.3). The standard
entry/fetch plug-in of DS for accessing the default database management system has to be
replaced by a custom one that interfaces to an appropriate database management system.
Finally, the aforementioned custom operations for communicating consistency contexts
have to be connected with the custom entry/fetch plug-in (see Chapter 8.3).

Query and manipulation language. There is considerable evidence in the literature that
recommends LDAP as a query and manipulation language for a broad range of applications
(e.g., Howes et al. [1999], Shukla and Deshpande [2000]). Clients can access our server via
a variety of LDAP SDKs (see Chapter 8). Custom operations that facilitate user model
management (e.g., for creating and deleting user models) relieve administrators and
application programmers from laborious and error-prone administration and programming
tasks (see Chapter 8.3).

164 CHAPTER 10. DISCUSSION

The client interface of our user modeling server caters quite well to the requirements that
we introduced in Chapter 2. Due to LDAP’s design for a broad range of applications and its
compliance with many standards (see Chapter 4), our client interface can be assumed to
meet the requirements of application and domain independence very well. The functional
model of LDAP (see Chapter 5.3) comprises a scalable set of generic language elements
(e.g., search, add, delete, rename, modify) with comparison operators (e.g., presence,
equality, greater, approximate) and logical operators (and, or, not). Operators from
relational calculi (e.g., union, intersection) are however not supported. LDAP allows for a
descriptive specification of user model operations in a set-oriented manner (see Chapters
5.3 and 8.2). The LDAP client APIs are available for a variety of languages (e.g., C/C++,
Java, Perl) and operating systems (e.g., Windows NT, Linux, Solaris). Most of these APIs
can be assumed to support computational closure. The API for the C programming
language (as defined in RFC 1487 [Howes et al., 1995]), e.g., encapsulates results from
LDAP operations in a common data structure called LDAPMessage. This structure can be
filled by, e.g., a search operation, and subsequently be used in an add operation without any
modifications. With regard to exhaustiveness, LDAP version 2 had several shortcomings,
most notably its lack of client-side schema retrieval and manipulation features. In version 3
(see RFC 2252 [Wahl et al., 1997b]), however, these features are included; hence, we can
assume the requirement exhaustiveness being covered as well. Regarding performance and
quality of service, the results of our experiments propose that LDAP caters to these
requirements very well (see Chapter 9.3). And regarding security, the LDAP SDKs from
Netscape [2000b] we used provide sophisticated facilities for authenticating clients and
servers and for encrypting the flow of information between them (see Chapter 5.4). The
only requirement that is not supported by our client interface is a layered architecture. We
assume that such an architectural characteristic has been dispensable due to the
predominance of TCP/IP as a communication protocol and LDAP’s extended operation
feature successfully covering requirements for custom extensions.

Persistency. If the persistency feature of our user modeling server is enabled, all
information hosted by our server can be assumed to survive even unpredictable events such
as system breakdowns and hard disk crashes. In order to achieve this, our server takes
advantage of respective Directory Server facilities, which record each internal database
operation in a database transaction log (for more information, we refer to iPlanet [2000b]).
If the server were to experience a failure, such as power outage and abnormal shut down, it
automatically detects the error condition after its restart and uses the database transaction
log for recovering its database. After recovery has been completed, clients can continue
accessing the server, ideally without any loss or damage of information117.

The support for persistency our server offers can be characterized as (i) static, since the
respective facilities of DS need to be enabled before starting the server, and (ii) (very)
coarse-grained, since persistency can only be associated with all models hosted by our
server, i.e. without providing any further means for differentiating this association (e.g.,
only for Usage Model contents).

Integrity. Based on LDAP’s information and naming model (see Chapters 5.1 and 5.2) and
on complementary features provided by DS, our user modeling server can preserve

117 One precondition for a successful recovery is that the database transaction log is not corrupted.

10.1. SERVER REQUIREMENTS 165

integrity on different levels of granularity. On the level of single assumptions, the object
classes of an LDAP entry specify the set of applicable mandatory and optional attributes.
Each attribute is associated with an attribute type, which denotes its representation format
(e.g., Integer, DirectoryString) and related operations (e.g., integerMatch). In
Chapter 5.1, we exemplified this for the attribute type description, which restricts all
attribute values to a DirectoryString with a maximum length of 1,024 characters and
associates them the matching rules caseIgnoreMatch for equality and
caseIgnoreSubstringsMatch for sub-string matching.

For preserving referential integrity between related assumptions, DS can automatically
reflect updates to related entries. If a user removes her User Model from the directory, e.g.,
then related entries in groups the user belongs to are also removed by the server. If the
referential integrity facility is not enabled, these related entries would remain in the
directory tree. In order to preserve referential integrity, DS records each delete or modify
operation to the referential integrity log. After a configurable amount of time, the server
processes this log as follows:

• if an entry was removed, then DS also removes related entries;
• if an entry’s attributes have been changed, then DS changes attributes of related entries

accordingly.
By default, referential integrity is enabled and preserves integrity for the member,
uniquemember, owner, and seeAlso attributes immediately after a delete or modify
operation is carried out. Administrators can remove attributes from or add new attributes to
this list.

For preserving custom integrity constraints between related assumptions, DS provides
programmers the following interfaces for hooking custom functionality into its processing
loop (see Chapter 8.3):

• Pre-operation: DS calls these plug-ins before performing an LDAP operation. This
allows programmers to apply custom integrity constraints (e.g., whether the presumable
domain expertise of a user changes either from ‘beginner’ to ‘intermediate’ or from
‘intermediate’ to ‘expert’) and, depending on the outcome of these checks, prevent the
server from (e.g., reject an update from ‘beginner’ to ‘expert’) or allow the server to
execute an LDAP operation (e.g., permit an update from ‘beginner’ to ‘intermediate’).

• Post-operation: DS calls these plug-ins after performing an LDAP operation. This
allows programmers to preserve integrity after an LDAP operation has been executed
(e.g., since a user’s presumable expertise in one domain changed from ‘intermediate’ to
‘expert’, her presumable expertise in a closely related domain has to be modified
accordingly).

These pre- and post-operation facilities are not limited to integrity preservation, but can be
used for implementing a rather broad range of custom tasks (e.g., integrating a database
management system, encrypting and decrypting directory content, implementing extended
operations, implementing extensible matching filters).

Access control. The access control facilities of our user modeling server can be regarded
highly suitable for user modeling purposes. As already discussed in Chapter 5.4, the
respective mechanisms of our server rely on the fine-grained access control model provided
by DS. It is based on access control lists and allows for implementing a broad range of

166 CHAPTER 10. DISCUSSION

access control models. Together with the sophisticated security and distribution
mechanisms of our user modeling server, these facilities can be assumed to cater to a wide
range of security and privacy requirements (see Chapter 6.3.3).

10.2 User Modeling Requirements
Functionality and input data. Many specific requirements that guided the design of our
UMS stem from the Deep Map project (see Chapter 7.1). Today, WebGuide is the only
Deep Map component that takes advantage of our user modeling server. In the near future,
however, the number of clients can be assumed to significantly increase [EML, 2000]. The
range of potential input data that our user modeling server can manage comprises
information about the user (i.e., demographic characteristics, interests and preferences), the
system’s usage (e.g., navigational behavior), and the usage environment (e.g., hardware and
software environment). Apart from that, LDAP’s versatility regarding input data and the
high degree of directory standardization (e.g., RFC 2251 [Wahl et al., 1997a], RFC 2252
[Wahl et al., 1997b], RFC 2256 [Wahl, 1997], and related X.500 standards like X.520
[ITU-T, 2001c] and X.521 [ITU-T, 2001d]) increase the range of potential input data even
further. In this regard, our user modeling server seems to clearly excel the commercial user
modeling servers we presented in Chapter 3.2 (e.g., GroupLens, Personalization Server).

Acquisition methods and representation. Our user modeling server for Deep Map
implements three complementary acquisition methods. The ULC acquires users’ interests
and preferences from features of objects users have seen, rated, bought, etc. The MLC
predicts unknown characteristics in users’ profiles from sets of profiles that are similar with
regard to the known characteristics. And the DIC applies domain inferences to individual
user models, thereby propagating interests in users’ profiles sideways and upwards along
the domain taxonomy. As already pointed out earlier, the combination of these acquisition
methods leverages several synergistic effects between the employed learning techniques
and compensates for well-known deficits of individual techniques with regard to, e.g.,
performance, scalability, integration of domain knowledge, sparsity of data, and cold start.
For more information, we refer to Chapters 8.4, 8.5, and 8.6.

In the following, we briefly discuss these acquisition methods along the deployment
requirements we presented in Chapter 3:

• Scope of applicability. Our acquisition methods seem to cover a wide range of user
modeling tasks (e.g., acquisition of users’ interests and preferences from usage data,
prediction of users’ demographic characteristics from models of similar users, inference
of interests and preferences by applying domain inferences). The support for user
modeling tasks that our server provides goes far beyond that of the commercial user
modeling servers we discussed in Chapter 3.2 (e.g., GroupLens, Personalization
Server). The same can be anticipated for the range of input data types.

• Facility for incremental learning. The acquisition methods provided by our server
support incremental learning. The user-related information maintained by our server
can keep pace with a user’s changing interests and preferences, which is a main
motivation for personalization from a marketing point of view (see Chapters 1.2 and
9.3). Quite comparable to commercial systems like FrontMind (see Chapters 3.2.3 and
3.3), our server exhibits both deterministic and non-deterministic (i.e., probability and
similarity based) personalization behavior. Deterministic behavior is exhibited by the

10.2. USER MODELING REQUIREMENTS 167

domain inferences of the DIC, and non-deterministic behavior is exhibited by the
usage-based learning of the ULC and the collaborative filtering of the MLC.

• Explicitly represented knowledge. Our user modeling server takes advantage of a
widely used information repository for explicitly representing its models. In this regard,
our approach is comparable to the one taken by commercial systems like
Personalization Server and FrontMind118. Whereas Personalization Server and
FrontMind rely on relational database management systems (e.g., from vendors like
Microsoft and Oracle) for storing (most of) their models, our server takes advantage of
an LDAP-based directory. We believe that our decision for LDAP provides significant
advantages with regard to extensibility, management of distributed information,
replication scale, performance and scalability, and compliance with standards (for more
information, we refer to Chapter 4). Our choice of an LDAP-based directory also
facilitates the access to user-related information for user-adaptive applications via
standard interfaces like LDAP and ODBC. This openness clearly contrasts with the
proprietary models hosted by systems like GroupLens, which can only be accessed via
custom APIs.

• Employing domain knowledge in the learning process. In our server, domain knowledge
is represented in the domain taxonomy and can be employed for guiding learning
processes. As a part of the System Model, the domain taxonomy comprises assumptions
about users’ demographic characteristics and their interests and preferences (see
Chapter 8.2.3). Apart from the domain taxonomy, the System Model also contains
information that controls learning. Examples include Classifiers, which control
the discretization of continous attribute values (e.g., age, income) and attributes like
mentor_prediction and mentor_finding, which control whether predictions
are computed from a set of similar users and whether specific attributes are included in
the process of finding mentors, respectively. Compared to Learn Sesame’s MDL
facilities that we discussed in Chapters 3.2.4 and 3.3, however, our domain modeling
mechanisms seem less generic, although with the benefit of reduced administrative
burden.

Extensibility. The open architecture of our user modeling server allows custom user
modeling functionality ‘to be plugged’ into our server at any time. Examples of such
functionality include the identification of recurrent patterns in usage data (cf. the learning
scenario we described for Learn Sesame in Chapter 3.2.4) and the computation of models
of user groups from similar characteristics in individual user models (e.g., by applying
Bayesian clustering [Orwant, 1995; Paliouras et al., 1999]). In order to support the
integration of custom functionality into our server, we put stub components at the disposal
of developers that simplify the communication with our Directory Component. Additional
tasks that have to be accomplished are the registration of event subscriptions with the
Scheduler (see Chapter 8.3) and the creation of accounts for the new learning components
(see Chapter 8.2.4). We assume that all these tasks can be easily accomplished by an
experienced programmer.

Besides this rather tight integration of custom user modeling functionality into our server,
quite a few complementary software products can be loosely integrated via their LDAP and

118 FrontMind relies on proprietary files for maintaining models of users’ behavior.

168 CHAPTER 10. DISCUSSION

ODBC interfaces (see Chapter 8). Throughout this thesis project, we took advantage of
these facilities several times, e.g. (i) for administering user model contents via an LDAP
editor/browser (see Chapter 8.2), (ii) for visualizing and analyzing user model contents via
InfoZoom, and (iii) for integrating Directory Mark into our Test Bed (see Chapter 9.2.1).
This seems to verify the statement we made in Chapter 3.3 that a user modeling server with
open interfaces for complementary tools can successfully cope with the broad range of
requirements for a personalization platform.

Integration of external user and usage information. The distribution, replication, and meta-
directory facilities of our user modeling server allow for the integration of user-related
information into a (virtually) centralized user model (e.g., client profiles from ERP systems,
client segmentations from database marketing). From the viewpoints of a client and an
application programmer, this enables common applications (e.g., WWW browsers, e-mail
clients) and tools (e.g., directory browsers) to transparently access user-related information
and associated user modeling services. We introduced the integration facilities of our server
in Chapter 4 and demonstrated their support for three advanced user modeling scenarios in
Chapter 6.3. Together with the access facilities to user model contents we presented earlier,
we believe that this (i) allows organizations to leverage the assets of user-related
information (see Chapter 1.2) and (ii) allows for a more holistic personalization, both from
the viewpoint of organizations and users (see Chapter 1.3). In this vein, the integration and
access facilities of our server seem to excel even those provided by commercial servers like
Personalization Server and FrontMind (see Chapter 3.2).

Privacy. Our user modeling server provides support for authentication, signing, encryption,
access control, auditing, and resource control. We introduced these features in Chapter 5.4,
and demonstrated their use for safeguarding security and privacy in a scenario presented in
Chapter 6.3.3. Based on these features, user model developers should be able to design and
implement appropriate security and privacy policies.

Architecture. The user modeling server we developed relies on a component-based multi-
tier architecture (see Chapters 6, 7, and 8). The main advantages of this architecture include
performance, scalability, and flexibility. In our experiments, we empirically verified that
our server can fully cope with small and medium-sized application workloads (see Chapter
9). The processing time for a representative mix of user modeling operations was found to
only degressively increase with the frequency of page requests. The distribution of the user
modeling server across a network of computers considerably improved its performance.

The granularity of distribution and the associated scalability surpasses that of GroupLens,
Personalization Server, and Learn Sesame. In all these systems, the ‘critical’ user modeling
functionality is incorporated into a single tier. The employment of differently configured
instances of user modeling components is likewise not supported by these commercial user
modeling servers and, to the best of our knowledge, not planned to be available in the near
future. We already presented an example that motivates this requirement in Chapter 3.3, i.e.
dedicated learning strategies that can be accomplished by using differently configured
instances of the same learning engine.

Regarding the architectural requirements we discussed in Chapter 3.3, we conclude that our
user modeling server allows for (i) the flexible distribution of components across a network
of computers, according to resource and availability requirements, (ii) the employment of

10.2. USER MODELING REQUIREMENTS 169

differently configured instances of user modeling components, and (iii) the integration of
complementary software products.

Software and hardware. We already mentioned in Chapter 7 that our user modeling server
can be accessed via LDAP and ODBC. Programmers can accomplish this by taking
advantage of a variety of SDKs and interface components, e.g. the LDAP C SDK from the
University of Michigan, various Directory SDKs from Netscape, built-in LDAP support in
Java from Sun and Microsoft, JNDI from Sun, and ADSI from Microsoft. These SDKs and
interface components integrate with common component frameworks (e.g., Active X,
COM) and programming languages (e.g., C/C++, Java, Basic, Perl). As of the time of
writing, the number of e-commerce servers (e.g., BroadVision’s One-To-One, Vignette’s
StoryServer), (generic) Web development environments (e.g., Allaire’s ColdFusion,
Apple’s WebObjects [Apple, 2000]), and ERP systems (e.g., SAP [2001], Baan [2001])
that support LDAP is rapidly increasing. Truog et al. [1999] predicts that all major systems
will support LDAP soon. Compared to the access facilities provided by the commercial
user modeling servers we reviewed in Chapter 3.2, this support seems quite comprehensive.

The current version of our user modeling server relies on iPlanet’s Directory Server and
runs on Windows NT and Solaris. Porting our user modeling server to other directory
servers (e.g., Active Directory Server) and operating systems (e.g., Linux, AIX) can be
assumed a rather easy task, since most of our server components are written in Java (except
for the Scheduler, which is written in C/C++) and communication between components is
established via CORBA and LDAP.

11 Summary and Perspectives
The user modeling server that we developed in this thesis is an open, standards-based, and
platform-independent tool that provides essential user modeling services to user-adaptive
applications. While previous user modeling systems stored data about users in database and
knowledge representation systems, our server employs a directory management system for
this purpose. This offers significant advantages with respect to the

• management and retrieval of (user-related) information, in a way that is compliant with
established standards;

• definition of new (user-related) information types;
• distribution of information across a network, which often leads to better performance,

scalability, availability, and reliability of the user modeling service;
• replication of information, which may enhance the performance and availability of the

overall service, and is particularly useful in mobile applications where clients can
become disconnected from the network; and the

• security of information and users’ privacy, by providing facilities for authentication,
signing, encryption, access control, auditing, and resource control.

Applications can take advantage of a set of core techniques for drawing assumptions about
users. By integrating these techniques into a single server, synergistic effects between them
can be leveraged, thereby compensating for shortcomings of individual techniques (e.g., in
case of performance or scalability problems, or when data is sparse or not yet available).
New techniques can be easily ‘plugged into’ the server at any time.

170 CHAPTER 11. SUMMARY AND PERSPECTIVES

We argued that our user modeling server provides at least basic support for the rather broad
range of requirements that we collected. Our empirical evaluation verified that our server
can fully cope with the workloads of small and medium-sized application environments.
We found that the processing time for a representative real-world mix of user modeling
operations only degressively increases with the frequency of page requests. The distribution
of the user modeling server across a network of computers additionally improved its
performance. At the same time, the hardware demands of our server are moderate.

More recent experience that we gained from deploying our user modeling server to large
commercial Web sites suggests that our server can be deployed to high-workload
environments as well. The most notable large-scale experiment that we conducted
comprised 8 million user profiles119 and a workload of approximately 42 Web page requests
per second120. In order to realize this workload, we employed a total of 1,794 simultaneous
Clients in several Test Beds. The UMS was installed on a ‘Fire V880’ from Sun’s entry-
level server segment [Sun, 2002b]. This computer was equipped with eight 750 MHz
processors, 8 MB cache per processor, 32 GB of RAM, and more than 200 GB disk space.
The software used was Solaris 8 and iPlanet Directory Server 5.1. In order to take full
advantage of the generous hardware resources available, we increased the cache settings for
the Directory Component and each of our learning components to 2 GB. As for the rest, the
design of this experiment was very comparable to the one we described in Chapters 9.1 and
9.2.

The results were very encouraging. From the black box perspective of a client application,
our UMS showed a mean response time of 35 ms for personalizing a Web page (i.e., for
processing three LDAP search and one add operations). This user modeling performance
should easily allow a personalized application to stay well below the desirable response
time limit of 1 second and, in any case, below the mandatory limit of 10 seconds. None of
the several million search and add operations that were submitted by our simulated users
failed or timed out.

Another lesson we learned from deploying our server to real-world environments was in
terms of hardware sizing. We found that the sizing characteristics of our server closely
resemble those reported in the literature for its Directory Component. For example, Nelson
[2002] mentions the following rules of thumb for the number of CPUs that are necessary
for processing LDAP operations: “With Directory Server 4.0, search performance will scale
almost linearly with the addition of up to 4 CPUs. In this range, you can expect to see 500-
1,000 queries per second for each CPU. Beyond 4 CPUs, the resulting increase in
performance per CPU is less but still significant”.

The resource needs of our User Modeling Components depend on the number of these
components (each can be present or absent, and instantiated multiple times) as well as on
several parameters that determine, e.g., the learning frequency, the size of the correlation
space, etc. As far as the allocation of processor resources is concerned, we found that an
even distribution between the Directory Component and the User Modeling Components is
a good approximation. A constant amount of main memory is needed for hosting the

119 MSN had about 8 and AOL 34 million subscribers at the end of July 2002 [Jupitermedia, 2002].
120 This workload roughly equals that of the largest German news portal with nearly 15 million unique users

[NetRatings, 2002], which is about 15-20% the size of the top three U.S. portals.

10.2. USER MODELING REQUIREMENTS 171

components of our user modeling server and the operating system. Variable amounts of
memory are required for the various caches that are maintained by Directory Server and our
User Modeling Components. The optimal sizes of these caches depend mainly on the
number of user profiles, their mean number of entries, the mean size of a user profile entry,
the access frequency of individual user profile entries, and the evenness of users’ login into
the user modeling server. Similar considerations apply to the required amount of disk
space. Nelson [2002] gives further advice on the estimation of these values.

We believe that our work impacts the design, implementation, and deployment of user
modeling and user-adaptive systems both in research and commercial environments. Our
user modeling server has been already successfully deployed to commercial application
environments with several millions of users. We regard our empirically founded approach
of simulating the user modeling workload of real-world application environments as highly
promising. It allows us to experimentally verify and predict the deployment characteristics
of a user modeling server under various workload conditions. Our experience with actual
installations of our server in commercial environments confirmed that this approach and the
developed simulation test bed were an indispensable tool for real-world personalization.

Throughout this thesis, we pointed out several avenues for future work that we deem
worthwhile to investigate. Especially promising are refinements of the learning techniques
we used in our User Modeling Components (especially in the MLC) and the employment of
complementary learning techniques.

173

Bibliography
1to1Web (2000). One-to-One Web Marketing. C. Allen, D. Kania and B. Yaeckel.

http://www.1to1web.com

Åberg, J. and Shahmehri, N. (1999). Web Assistants: Towards an Intelligent and Personal Web
Shop. In Proceedings of Second Workshop on Adaptive Systems and User Modeling on the
World Wide Web at WWW-8 and UM99. Toronto (Canada) and Banff (Canada), 5-12.
http://www.contrib.andrew.cmu.edu/~plb/WWWUM99_workshop/aberg/aberg.html

About.com (2000). Artificial Intelligence. About.com. http://www.ai.about.com

Abrams, C., Bernstein, M., deSisto, R., Drobik, A. and Herschel, G. (1999). E-Business: The
Business Tsunami. In Proceedings of Gartner Group Symposium/ITxpo. Cannes (France).

Accrue (2000). Accrue Software. http://www.accrue.com

Allaire (2000). ColdFusion. Allaire.
23. July 2000. http://www.allaire.com/Products/ColdFusion
30. September 2003. http://www.macromedia.com/software/coldfusion/

Allaire, J. and Bestavros, A. (2000). Advanced Profiling and Personalization Strategies.
Personalization Summit, San Francisco (CA).

Allen, C., Kania, D. and Yaeckel, B. (1998). Internet World Guide to One-To-One Web Marketing.
New York (NY): John Wiley and Sons.

Almeida, V., Bestavros, A., Crovella, M. and Oliveira, A. (1996). Characterizing Reference
Locality in the WWW. In Proceedings of the Fourth International Conference on Parallel
and Distributed Information Systems. IEEE Computer Society, 92-103.

Alspector, J., Kolcz, A. and Karunanithi, N. (1997). Feature-based and Clique-based User Models
for Movie Selection: a Comparative Study. User Modeling and User-Adapted Interaction
7(4): 279-304.

Amazon (2000). Amazon.com Privacy Notice. Amazon.com.
http://www.amazon.com/exec/obidos/subst/misc/policy/privacy.html

Ambrosini, L., Cirillo, V. and Micarelli, A. (1997). A Hybrid Architecture for User-Adapted
Information Filtering on the World Wide Web. In A. Jameson, C. Paris and C. Tasso, eds.,
User Modeling: Proceedings of the Sixth International Conference. Wien, New York (NY):
Springer, 59-61. http://www.cs.uni-sb.de/UM97/gz/AmbrosiniL.ps.gz

Andrews, G. (1991). Paradigms for Process Interaction in Distributed Programs. ACM Computing
Surveys 23(1): 49-90.

Angoss (2000). Angoss Software. http://www.angoss.com

Appian (2000a). Appian. http://www.appiancorp.com

Appian (2000b). Appian Web Personalization Report. Appian.
9. January 2000. http://www.appiancorp.com/awpr.asp

Apple (2000). WebObjects. Apple. http://www.apple.com/webobjects

Ardissono, L. and Goy, A. (1999). Tailoring the Interaction with Users in Electronic Shops. In J.
Kay, ed., UM99 User Modeling: Proceedings of the Seventh International Conference.
Wien, New York (NY): Springer, 35-44.

Ardissono, L., Goy, A., Meo, R. and Petrone, G. (1999). A Configurable System for the
Construction of Adaptive Virtual Stores. World Wide Web 2(3): 143-159.

http://www.1to1web.com/
http://www.contrib.andrew.cmu.edu/~plb/WWWUM99_workshop/aberg/aberg.html
http://www.ai.about.com/
http://www.accrue.com/
http://www.allaire.com/Products/ColdFusion
http://www.macromedia.com/software/coldfusion/
http://www.amazon.com/exec/obidos/subst/misc/policy/privacy.html
http://www.cs.uni-sb.de/UM97/gz/AmbrosiniL.ps.gz
http://www.angoss.com/
http://www.appiancorp.com/
http://www.appiancorp.com/awpr.asp
http://www.apple.com/webobjects

174 BIBLIOGRAPHY

Ardissono, L. and Goy, A. (2000). Tailoring the Interaction with Users in Web Stores. User
Modeling and User-Adapted Interaction 10(4): 251-303.

Arlitt, M. and Williamson, C. (1996). Web Server Workload Characterization: The Search for
Invariants. In Proceedings of the ACM SIGMETRICS Conference on Measurement and
Modeling of Computer Systems. New York (NY): ACM, 126-137.

ASOC (2000). sphinxVision – Knowledge Processing Tool. ASOC.
23. January 2000. http://www.asoc.com/e_home.html

ATG (2000). ATG Products. Art Technology Group (ATG).
http://www.atg.com/products

Autonomy (2000). Autonomy Systems. http://www.autonomy.com

Baan (2001). Baan.com. http://www.baan.com

Bachem, C. (1999). Profilgestütztes Online Marketing. In S. Tjoa, ed., Personalisierung im E-
Commerce. Hamburg (Germany), Section 13.

Balabanovic, M. (1997). An Adaptive Web Page Recommendation Service. In Proceedings of the
1st International Conference on Autonomous Agents. Marina del Rey (CA), 378-385.

Balabanovic, M. and Shoham, Y. (1997). Fab: Content-based, collaborative recommendation.
Communications of the ACM 40(3): 66-72.

Baltimore (2001). Baltimore Technologies. http://www.baltimore.com

Barnea, G. (1999). Intelligent Agent Communities. Manna.
19. January 2000. http://www.mannainc.com/downloads/intlagnt.zip

Bernstein, P., Hadzilacos, V. and Goodman, N. (1987). Concurrency Control and Recovery in
Database Systems. Reading (MA): Addison-Wesley.

Bertram, F. (2000). VerBose – Verteilte Architektur für Benutzermodellierungssysteme. Master
Thesis, Dept. of Computer Science, University of Koblenz-Landau (Germany).

Bell, D. and Grimson, J. (1992). Distributed Database Systems. Reading (MA): Addison-Wesley.

Bigfoot (2000). Bigfoot. Bigfoot Communications. http://www.bigfoot.com

Billsus, D. and Pazzani, M. (2000). User Modeling for Adaptive News Access. User Modeling and
User-Adapted Interaction 10(2/3): 147-180.

Blaze (2000). Blaze Software. 19. January 2000. http://www.blazesoftware.com

Bleymüller, J., Gehlert, G. and Gülicher, H. (1983). Statistik für Wirtschaftswissenschaftler.
München: Vahlen.

Blue Martini (2000). Blue Martini Software. http://www.bluemartini.com

Boldon James (2000). LDAP-X toolkit. Protek Boldon James.
19. January 2000. http://www.bj.co.uk/ldapx.htm
30. September 2003. http://www.innosoft.com/ldap_survey/vendor/bj/sr_emdua.txt

Boeyen, S., Howes, T. and Richard, P. (1999a). Internet X.509 Public Key Infrastructure
Operational Protocols – LDAP v2. http://www.ietf.org/rfc/rfc2559.txt?number=2559

Boeyen, S., Howes, T. and Richard, P. (1999b). Internet X.509 Public Key Infrastructure LDAP v2
Schema. http://www.ietf.org/rfc/rfc2587.txt?number=2587

Bowne (2000). Bowne & Co. http://www.bowne.com

http://www.asoc.com/e_home.html
http://www.atg.com/products
http://www.autonomy.com/
http://www.baan.com/
http://www.baltimore.com/
http://www.mannainc.com/downloads/intlagnt.zip
http://www.bigfoot.com/
http://www.blazesoftware.com/
http://www.bluemartini.com/
http://www.bj.co.uk/ldapx.htm
http://www.innosoft.com/ldap_survey/vendor/bj/sr_emdua.txt
http://www.ietf.org/rfc/rfc2559.txt?number=2559
http://www.ietf.org/rfc/rfc2587.txt?number=2587
http://www.bowne.com/

BIBLIOGRAPHY 175

Brajnik, G. and Tasso, C. (1994). A Shell for Developing Non-Monotonic User Modeling Systems.
International Journal of Human-Computer Studies 40:31-62.

Breese, J., Heckerman, D. and Kadie, C. (1998). Empirical Analysis of Predictive Algorithms for
Collaborative Filtering. In Proceedings of the Fourteenth Annual Conference on
Uncertainty in Artificial Intelligence (UAI-98). San Francisco (CA): Morgan Kaufmann,
43-52.

Breslau, L., Cao, P., Fan, L., Phillips, G. and Shenker, S. (1999). Web Caching and Zipf-Like
Distributions: Evidence and Implications. In Proceedings of INFOCOM’99. IEEE
Computer Society, 126-134. http://www.research.att.com/~breslau/pubs/zipf.ps.gz

BroadVision (2000). BroadVision. http://www.broadvision.com

Brusilovsky, P. (1996). Methods and Techniques of Adaptive Hypermedia. User Modeling and
User-Adapted Interaction 6(2-3): 87-129.

Brusilovsky, P., Ritter, S. and Schwarz, E. (1997). Distributed Intelligent Tutoring on the Web. In
B. du Boulay and R. Mizoguchi, eds., Proceedings of AI-ED'97. Amsterdam (Netherlands),
482-489.

Brusilovsky, P., Kobsa, A. and Vassileva, J., eds. (1998). Adaptive Hypertext and Hypermedia.
Dordrecht: Kluwer Academic Publishers.

BusinessWeek (1999). Global 1000. BusinessWeek online. 3. March 2000.
http://www.businessweek.com/1999/99_28/g1000.htm

Cadez, I., Heckerman, D., Meek, C., Smyth, P. and White, S. (2000). Visualization of navigation
patterns on a Web site using model-based clustering. In Proceedings of the Sixth ACM
Conference on Knowledge Discovery and Data Mining. New York (NY): ACM, 280-284.

Caglayan, A. and Snorrason, M. (1993). On the Relationship between Generalized Equality
Clustering and ART 2 Neural Networks. World Congress on Neural Networks. Portland
(OR).

Caglayan, A., Snorrason, M., Jacoby, J., Mazzu, J., Jones, R. and Kumar, K. (1997). Learn
Sesame – a Learning Agent Engine. Applied Artificial Intelligence 11: 393-412.

Card, S., Mackinlay, J. and Shneiderman, B. (1999). Information Visualization. In S. Card, J.
Mackinlay and B. Shneiderman, eds., Readings in Information Visualization: Using Vision
to Think. San Francisco (CA): Morgan Kaufmann, 1-34.

Carroll, J., ed. (1995). Scenario-based Design: Envisioning Work and Technology in System
Development. New York (NY): Wiley and Sons.

Carroll, J., ed. (2000). Making Use: Scenario-based Design of Human-Computer Interactions.
Cambridge (MA): MIT Press.

Castano, S., Fugini, M., Martella, G. and Samarati, P. (1995). Database Security. Reading (MA):
Addison-Wesley.

Chadwick, D. (1996). Understanding X.500: The Directory. London: Thomson.

Chandrasekhara, V. (1999). JAMFrame – Java Agent Modules. European Media Laboratory,
Heidelberg (Germany).

Claypool, M., Gokhale, A., Miranda, T., Murnikov, P., Netes, D. and Sartin, M. (1999). Combining
Content-Based and Collaborative Filters in an Online Newspaper. In Proceedings of the
ACM SIGIR ’99 Workshop on Recommender Systems: Algorithms and Evaluation. New
York (NY): ACM. http://www.csee.umbc.edu/~ian/sigir99-rec/papers/claypool_m.ps.gz

http://www.research.att.com/~breslau/pubs/zipf.ps.gz
http://www.broadvision.com/
http://www.businessweek.com/1999/99_28/g1000.htm
http://www.csee.umbc.edu/~ian/sigir99-rec/papers/claypool_m.ps.gz

176 BIBLIOGRAPHY

CNN (2001). CNN.com. Cable News Network LP. http://www.cnn.com

Computer Scope (1999). 35 Percent of Surfing Time is Spent on 50 Sites. Computer Scope.
http://www.nua.com/surveys/index.cgi?f=VS&art_id=905355323&rel=true

Condliff, M., Lewis, D., Madigan, D. and Posse, C. (1999). Bayesian Mixed-Effects Models for
Recommender Systems. In Proceedings of the ACM SIGIR ’99 Workshop on Recommender
Systems: Algorithms and Evaluation. New York (NY): ACM.
http://www.csee.umbc.edu/~ian/sigir99-rec/papers/condliff_m.ps.gz

Conklin, J. (1987). Hypertext: An Introduction and Survey. IEEE Computer September 1987: 17-
41.

Cooperstein, D., Delhagen, K., Aber, A. and Levin, K. (1999). Making Net Shoppers Loyal.
Cambridge (MA): Forrester Research.

Cost, S. and Salzberg, S. (1993). A weighted nearest neighbor algorithm for learning with symbolic
features. Machine Learning 10: 57-78.

Critical Path (2000). Critical Path. http://www.cp.net

Datta, A., Dutta, K., VanderMeer, D., Ramamritham, K. and Navathe, S. (2001). An Architecture to
Support Scalable Online Personalization on the Web. The VLDB Journal 10: 104-117.

Date, C. (1986). An Introduction to Database Systems. Reading (MA): Addison-Wesley.

Dayal, U., Buchmann, A. and Mc Carthy, D. (1988). Rules are Objects too: A Knowledge Model
for an Active Object-Oriented Database System. In K. Dittrich, ed., Advances in Object-
Oriented Database Systems, Proceedings of the 2nd Int. Workshop on Object-Oriented
Database Systems. Berlin, Heidelberg: Springer-Verlag.

Deep Map (2001). Deep Map: Intelligent, Mobile, Multi-Media and Full of Knowledge. European
Media Laboratory (EML). http://www.eml-development.de/english/Research/Memory/1

Deerwester, S., Dumais, S., Furnas, G., Landauer, T. and Harshman, R. (1990). Indexing by latent
semantic analysis. Journal of the American Society for Information Science 41(6): 391-407.

Dierks, T. and Allen, C. (1999). The TLS Protocol.
http://www.ietf.org/rfc/rfc2246.txt?number=2246

Diffie, W. and Landau, S. (1998). Privacy on the Line: The Politics of Wiretapping and Encryption.
Cambridge (MA): MIT Press.

DMA (2000). Direct Marketing Association. http://www.the-dma.org

Duda, R. and Hart, P. (1973). Pattern Classification and Scene Analysis. New York (NY): Wiley
and Sons.

Duska, B., Marwood, D. and Feeley, M. (1997). The Measured Access of World Wide Web Proxy
Caches. In Proceedings of the 1st USENIX Symposium on Internet Technologies and
Systems. Monterey (CA).

Eklund, J. and Brusilovsky, P. (1998). The Value of Adaptivity in Hypermedia Learning
Environments: A Short Review of Empirical Evidence. In P. Brusilovsky and P. De Bra,
eds., Proceedings of Second Adaptive Hypertext and Hypermedia Workshop at the Ninth
ACM International Hypertext Conference Hypertext'98. Pittsburgh (PA), 11-17.
http://wwwis.win.tue.nl/ah98/Eklund.html

Excite (2002). Excite Network Online Media Kit. Excite.
http://www.excitenetwork.com/advertising/index/id/Directmarket|ListRental|3|1.html

http://www.cnn.com/
http://www.nua.com/surveys/index.cgi?f=VS&art_id=905355323&rel=true
http://www.csee.umbc.edu/~ian/sigir99-rec/papers/condliff_m.ps.gz
http://www.cp.net/
http://www.eml-development.de/english/Research/Memory/1
http://www.ietf.org/rfc/rfc2246.txt?number=2246
http://www.the-dma.org/
http://wwwis.win.tue.nl/ah98/Eklund.html
http://www.excitenetwork.com/advertising/index/id/Directmarket|ListRental|3|1.html

BIBLIOGRAPHY 177

EML (1999). Annual Report 1998/1999. Heidelberg (Germany): European Media Laboratory
(EML).

EML (2000). Annual Report 2000. Heidelberg (Germany): European Media Laboratory (EML).

EPIC (2000). Electronic Privacy Information Center. http://www.epic.org

Finin, T. W. (1989). GUMS: A General User Modeling Shell. In A. Kobsa and W. Wahlster, eds.,
User Models in Dialog Systems. Berlin, Heidelberg: Springer-Verlag, 411-430.

Finin, T., Weber, J., Widerhold, G., Genesereth, M., Fritzson, R., McKay, D., McGuire, J., Pelavin,
R., Shapiro, S. and Beck, C. (1993). Specification of the KQML Agent-Communication
Language. http://www.cs.umbc.edu/kqml/papers/kqmlspec.ps

Fink, J. (1996). A Flexible and Open Architecture for the User Modeling Shell System BGP-MS. In
S. Carberry, D. Chin and I. Zukerman, eds., Proceedings of UM96: Fifth International
Conference on User Modeling. West Newton (MA): User Modeling Inc., 237-239.

Fink, J., Kobsa, A. and Nill, A. (1998). Adaptable and Adaptive Information Provision for All
Users, Including Disabled and Elderly People. The New Review of Hypermedia and
Multimedia 4: 163-188.

Fink, J. (1999). Transactional Consistency in User Modeling Systems. In J. Kay, ed.: UM99 User
Modeling: Proceedings of the Seventh International Conference. Wien, New York (NY):
Springer, 191-200.

Fink, J. and Kobsa, A. (2000). A Review and Analysis of Commercial User Modeling Servers for
Personalization on the World Wide Web. User Modeling and User-Adapted Interaction
10(2-3): 209-249.

Fink, J. and Kobsa, A. (2002). User Modeling for Personalized City Tours. Artificial Intelligence
Review 18: 33-74.

Fink, J., Noller, S., Koenemann, J. and Schwab, I. (2002). Putting Personalization into Practice.
Communications of the ACM 45(5): 41-42.

FIPA (1998a). FIPA 98 Specification Part 1: Agent Management. Foundation for Intelligent
Physical Agents (FIPA), Geneva (Switzerland).
http://www.fipa.org/specifications/index.html

FIPA (1998b). FIPA 98 Specification Part 8: Human Agent Interaction. Foundation for Intelligent
Physical Agents (FIPA), Geneva (Switzerland).
http://www.fipa.org/specifications/index.html

Fisher, D. (1987). Knowledge Acquisition Via Incremental Conceptual Clustering. Machine
Learning 2(2): 139-172.

Fisher, D. (1996). Iterative Optimization and Simplification of Hierarchical Clusterings. Journal of
Artificial Intelligence Research 4: 147-179.

Forrester (2000). Forrester Research. http://www.forrester.com

FTC (2000). Federal Trade Commission. http://www.ftc.gov

Fuller, R. and de Graaf, J. (1996). Measuring User Motivation from Server Log Files. In
Proceedings of the Microsoft Conference Designing for the Web – Empirical Studies.
Redmond (WA). http://www.microsoft.com/usability/webconf/fuller/fuller.htm

Gawor, J. (1999). LDAP Browser/Editor. http://www-unix.mcs.anl.gov/~gawor/ldap

http://www.epic.org/
http://www.cs.umbc.edu/kqml/papers/kqmlspec.ps
http://www.fipa.org/specifications/index.html
http://www.fipa.org/specifications/index.html
http://www.forrester.com/
http://www.ftc.gov/
http://www.microsoft.com/usability/webconf/fuller/fuller.htm
http://www-unix.mcs.anl.gov/~gawor/ldap

178 BIBLIOGRAPHY

GMD AiS (2000). AI Publications & Links. GMD – German National Research Center for
Information Technology, Institute for Autonomous intelligent Systems.
http://ais.gmd.de/services/AI-Conferences/ai-journals.html

Goldberg, D., Nichols, D., Oki, B. and Terry, D. (1992). Using Collaborative Filtering to Weave an
Information Tapestry. Communications of the ACM 35(12): 61-70.

Good, N., Schafer, J., Konstan, J., Borchers, A., Sarwar, B., Herlocker, J. and Riedl, J. (1999).
Combining Collaborative Filtering with Personal Agents for Better Recommendations. In
Proceedings of the 1999 Conference of the American Association of Artificial Intelligence
(AAAI-99). Cambridge (MA): MIT Press, 439-446.
http://www.cs.umn.edu/Research/GroupLens/papers/pdf/aaai-99.pdf

Good, G. (2000). The LDAP Data Interchange Format (LDIF) – Technical Specification.
http://www.ietf.org/rfc/rfc2849.txt?number=2849

Goscinski, A. (1991). Distributed Operating Systems: The Logical Design. Sydney: Addison-
Wesley.

Grant, G. (1997). Understanding Digital Signatures: Establishing Trust over the Internet and Other
Networks. New York (NY): McGraw-Hill.

Gray, J. (1981). The Transaction Concept: Virtues and Limitations. In Proceedings of the Seventh
Conference on Very Large Data Bases (VLDB’81). 144-154.

Gray, J. and Reuter, A. (1993). Transaction Processing: Concepts and Techniques. San Mateo
(CA): Morgan Kaufmann.

Gribble, S. and Brewer, E. (1997). System Design Issues for Internet Middleware Services:
Deductions from a Large Client Trace. In Proceedings of the 1st USENIX Symposium on
Internet Technologies and Systems. Monterey (CA).

Gustos (2000). Gustos Software. http://www.gustos.com

Härder, T. and Reuter, A. (1983). Principles of Transaction-Oriented Database Recovery. ACM
Computing Surveys 15(4): 287-317.

Hagen, P., Manning, H. and Souza, R. (1999). Smart Personalization. Cambridge (MA): Forrester
Research.

Herlocker, J., Konstan, J., Borchers, A. and Riedl, J. (1999). An Algorithmic Framework for
Performing Collaborative Filtering. In M. Hearst, F. Gey and R. Tong, eds., Proceedings of
the 22nd Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval. New York (NY): ACM, 230–237.
http://www.cs.umn.edu/Research/GroupLens/papers/pdf/algs.pdf

Heuer, A. and Scholl, M. (1991). Principles of Object-Oriented Query Languages. In H.-J.
Appelrath, ed., Proceedings GI-Fachtagung “Datenbanksysteme in Büro, Technik und
Wissenschaft” (BTW’91). Berlin, Heidelberg: Springer-Verlag, 178-197.

Heuer, A. and Saake, G. (1995). Datenbanken – Konzepte und Sprachen. Bonn: Thomson.

Hill, W., Stead, L., Rosenstein, M. and Furnas, G. (1995). Recommending and evaluating choices in
a virtual community of use. In Proceedings of ACM CHI’95 Conference on Human Factors
in Computing Systems. New York (NY): ACM, 194-201.

HNC (2000). HNC Software. http://www.hnc.com

Hof, R., Green, H. and Himmelstein, L. (1998). Now it’s YOUR WEB. Business Week, October 5:
68-74.

http://ais.gmd.de/services/AI-Conferences/ai-journals.html
http://www.cs.umn.edu/Research/GroupLens/aaai-99.pdf
ftp://ftp.isi.edu/in-notes/rfc2849.txt
http://www.gustos.com/
http://www.cs.umn.edu/Research/GroupLens/algs.pdf
http://www.hnc.com/

BIBLIOGRAPHY 179

Howes, T. and Smith, M. (1995). The LDAP Application Program Interface.
http://www.ietf.org/rfc/rfc1823.txt?number=1823

Howes, T., Kille, S., Yeong, W. and Robbins, C. (1995). The String Representation of Standard
Attribute Syntaxes. http://www.ietf.org/rfc/rfc1778.txt?number=1778

Howes, T. (1997). The String Representation of LDAP Search Filters.
http://www.ietf.org/rfc/rfc2254.txt?number=2254

Howes, T. and Smith, M. (1997a). The LDAP URL Format.
http://www.ietf.org/rfc/rfc2255.txt?number=2255

Howes, T. and Smith, M. (1997b). Ldap: Programming Directory-Enabled Applications with
Lightweight Directory Access Protocol. Indianapolis (IN): Macmillan.

Howes, T., Smith, M. and Good, G. (1999). Understanding and deploying LDAP directory services.
Indianapolis (IN): Macmillan.

humanIT (2001). humanIT. http://www.humanit.de

IBM (2000a). Portals – Commerce - Personalization. IBM.
http://www-3.ibm.com/software/info/portal-commerce/index.jsp

IBM (2000b). Lotus Notes. IBM.
http://www.lotus.com/products/r5web.nsf/webpi/Notes?opendocument

IBM (2000c). DSSeries. Directory Server. IBM.
http://www-3.ibm.com/software/network/help-directory/

ICONOCAST (1999). Brand conversion. ICONOCAST.
29. January 2000. http://www.iconocast.com/issue/1999102102.html
30. September 2003. http://groups.yahoo.com/group/iconocast/message/38

IETF (2000). IETF RFC Page. IETF (Internet Engineering Task Force).
http://www.ietf.org/rfc.html

Informix (2000). Informix.
29. July 2000. http://www.informix.com
30. September 2003. http://www-3.ibm.com/software/data/informix/

Innosoft (2000). Innosoft. http://www.innosoft.com

Inprise (2000). Inprise.
20. February 2000. http://www.inprise.com
30. September 2003. http://www.borland.com/

iPlanet (2000a). iPlanet E-Commerce Solutions. iPlanet.
15. March 2000. http://www.iplanet.com/products/index.html
30. September 2003. http://wwws.sun.com/software/

iPlanet (2000b). iPlanet Directory Server. iPlanet.
15. March 2000. http://www.iplanet.com/products/infrastructure/dir_security/dir_srvr
30. September 2003.
http://wwws.sun.com/software/product_categories/directory_servers_identity_mgmt.html

ISO (1989). Database Languages -- SQL. ISO/IEC 9075:1989. International Standardization
Organization.

ISO (1998a). Ergonomic Requirements for Office Work with Visual Display Terminals (VDTs) --
Part12: Presentation of Information. ISO 9241-12:1998.

http://www.ietf.org/rfc/rfc1823.txt?number=1823
http://www.ietf.org/rfc/rfc1778.txt?number=1778
http://www.ietf.org/rfc/rfc2254.txt?number=2254
http://www.ietf.org/rfc/rfc2255.txt?number=2255
http://www.humanit.de/
http://www-3.ibm.com/software/info/portal-commerce/index.jsp
http://www.lotus.com/products/r5web.nsf/webpi/Notes?opendocument
http://www-3.ibm.com/software/network/help-directory/
http://www.iconocast.com/issue/1999102102.html
http://groups.yahoo.com/group/iconocast/message/38
http://www.ietf.org/rfc.html
http://www.informix.com/
http://www-3.ibm.com/software/data/informix/
http://www.innosoft.com/
http://www.inprise.com/
http://www.borland.com/
http://www.iplanet.com/products/index.html
http://wwws.sun.com/software/
http://www.iplanet.com/products/infrastructure/dir_security/dir_srvr
http://wwws.sun.com/software/product_categories/directory_servers_identity_mgmt.html

180 BIBLIOGRAPHY

ISO (1998b). Ergonomic Requirements for Office Work with Visual Display Terminals (VDTs) --
Part13: User guidance. ISO 9241-13:1998.

ISO (1999). Database Languages -- SQL. ISO/IEC 9075:1999. International Standardization
Organization.

ITU-T (1997). Information Technology – Abstract Syntax Notation One (ASN.1): Specification of
Basic Notation. X.680. International Telecommunication Union.

ITU-T (2001a). Information Technology – Open Systems Interconnection – The Directory:
Overview of Concepts, Models and Services. X.500. International Telecommunication
Union.

ITU-T (2001b). Information Technology – Open Systems Interconnection – The Directory: Models.
X.501. International Telecommunication Union.

ITU-T (2001c). Information Technology – Open Systems Interconnection – The Directory: Selected
Attribute Types. X.520. International Telecommunication Union.

ITU-T (2001d). Information Technology – Open Systems Interconnection – The Directory: Selected
Object Classes. X.521. International Telecommunication Union.

IVW (2001). Online Usage Data November 2001 (in German). IVW.
http://www.ivwonline.de/ausweisung/suchen.php

Jameson, A. (1999). User-Adaptive Systems: An Integrative Overview. Tutorial presented at the
Seventh International Conference on User Modeling and at the Sixteenth International Joint
Conference on Artificial Intelligence.
http://dfki.de/~jameson/um99-tutorial-index.html

Jennings, A. and Higuchi, H. (1993). A user model neural network for a personal news service.
User Modeling and User-Adapted Interaction 3(1): 1-25.

Jörding (1999). Temporary User Modeling for Adaptive Product Presentations in the Web. In J.
Kay, ed.: UM99 User Modeling: Proceedings of the Seventh International Conference.
Wien, New York (NY): Springer, 333-334.

Jupiter (2000). Jupiter. http://www.jup.com

Jupitermedia (2002). MSN Hits 300 Million Unique Monthly Users. Jupitermedia.
http://cyberatlas.internet.com/big_picture/traffic_patterns/article/0,,5931_1457661,00.html

Kaul, E. (1999). Soziokulturelle Kategorisierung der Touristen in Heidelberg. Master Thesis,
Geographical Institute University of Heidelberg (Germany).

Kay, J. (1995). The um Toolkit for Reusable, Long Term User Models. User Modeling and User-
Adapted Interaction 4(3): 149-196.

Keung, S. and Abbott, S. (1998). LDAP Server Performance Report.
http://www.bnelson.com/sizing

KDnuggets (2000). KDnuggets: Data Mining, Web Mining, and Knowledge Discovery Guide.
KDnuggets. http://www.kdnuggets.com

Kille, S. (1995). A String Representation of Distinguished Names.
http://www.ietf.org/rfc/rfc1779.txt?number=1779

Kobsa, A. and Wahlster, W., eds. (1989). User Models in Dialog Systems. Berlin, Heidelberg:
Springer-Verlag.

http://www.ivwonline.de/ausweisung/suchen.php
http://dfki.de/~jameson/um99-tutorial-index.html
http://www.jup.com/
http://cyberatlas.internet.com/big_picture/traffic_patterns/article/0,,5931_1457661,00.html
http://www.bnelson.com/sizing
http://www.kdnuggets.com/
http://www.ietf.org/rfc/rfc1779.txt?number=1779

BIBLIOGRAPHY 181

Kobsa, A., Müller, D. and Nill, A. (1994). KN-AHS: An Adaptive Hypertext Client of the User
Modeling System BGP-MS. In Proceedings of the Fourth International Conference on User
Modeling. Hyannis (MA), 99-105. Reprinted in M. Maybury and W. Wahlster, eds. (1998).
Intelligent User Interfaces. San Mateo (CA): Morgan Kaufman, 372-378.
http://www.ics.uci.edu/~kobsa/papers/1994-UM94-kobsa.pdf

Kobsa, A. and Pohl, W. (1995). The User Modeling Shell System BGP-MS. User Modeling and
User-Adapted Interaction 4(2): 59-106.

Kobsa, A., Pohl, W. and Fink, J. (1996). A Standard for the Performatives in the Communication
between Applications and User Modeling Systems (Draft).
http://www.ics.uci.edu/~kobsa/papers/1996-kobsa-pohl-fink-rfc.pdf

Kobsa, A. (2000). User Modeling, Privacy, and Security. Invited talk held at the First International
Conference on Adaptive Hypermedia and Adaptive Web-Based Systems, Trento (Italy).
http://www.ics.uci.edu/~kobsa/talks/privsecum/index.htm

Kobsa, A. (2001a). Generic User Modeling Systems. User Modeling and User-Adapted Interaction
10(4), Ten Year Anniversary Issue, 49-63.

Kobsa, A. (2001b). Tailoring Privacy to Users’ Needs. In M. Bauer, P. Gmytrasiewicz and J.
Vassileva, eds., Proceedings of the Eighth International Conference on User Modeling.
Berlin, Heidelberg: Springer-Verlag, 303-313.
http://www.ics.uci.edu/~kobsa/papers/2001-UM01-kobsa.pdf

Kobsa, A. (2001c). ICS 280: Advanced Topics in Information Visualization.
http://www.ics.uci.edu/~kobsa/courses/ICS280/01S.htm

Kobsa, A., Koenemann, J. and Pohl, W. (2001). Personalized Hypermedia Presentation Techniques
for Improving Customer Relationships. The Knowledge Engineering Review 16(2):
111-155. http://www.ics.uci.edu/~kobsa/papers/2001-KER-kobsa.pdf

Kobsa, A. and Fink, J. (2003). Performance Evaluation of User Modeling Servers under Real-World
Workload Conditions. In P. Brusilovsky, A. Corbett and F. de Rosis, eds., Proceedings of
the Ninth International Conference on User Modeling. Berlin, Heidelberg: Springer-Verlag,
143-153.

Kobsa, A. and Schreck, J. (2003). Privacy through Pseudonymity in User-Adaptive Systems. ACM
Transactions on Internet Technology 3(2): 149-183.
http://www.ics.uci.edu/~kobsa/papers/2003-TOIT-kobsa.pdf

Konstan, J., Miller, B., Maltz, D., Herlocker, J., Gordon, L. and Riedl, J. (1997). GroupLens:
Applying Collaborative Filtering to Usenet News. Communications of the ACM 40(3):
77-87. http://www.acm.org/pubs/citations/journals/cacm/1997-40-3/p77-konstan

Kristol, D. and Montulli, L. (1997). HTTP State Management Mechanism.
http://www.ietf.org/rfc/rfc2109.txt?number=2109

Kummerfeld, R. and Kay, J. (1997). Remote Access Protocols for User Modelling. In Proceedings
and Resource kit for Workshop User Models in the Real World. Chia Laguna (Sardinia),
12-15.

Labrou, Y. and Finin, T. (1997). Proposal for a new KQML Specification, TR CS-97-03, Computer
Science and Electrical Engineering Department, University of Maryland Baltimore County.
http://www.csee.umbc.edu/~jklabrou/publications/tr9703.pdf

http://www.ics.uci.edu/~kobsa/papers/1994-UM94-kobsa.pdf
http://www.ics.uci.edu/~kobsa/papers/1996-kobsa-pohl-fink-rfc.pdf
http://www.ics.uci.edu/~kobsa/talks/privsecum/index.htm
http://www.ics.uci.edu/~kobsa/papers/2001-UM01-kobsa.pdf
http://www.ics.uci.edu/~kobsa/courses/ICS280/01S.htm
http://www.ics.uci.edu/~kobsa/papers/2001-KER-kobsa.pdf
http://www.ics.uci.edu/~kobsa/papers/2003-TOIT-kobsa.pdf
http://www.acm.org/pubs/citations/journals/cacm/1997-40-3/p77-konstan
http://www.ietf.org/rfc/rfc2109.txt?number=2109
http://www.csee.umbc.edu/~jklabrou/publications/tr9703.pdf

182 BIBLIOGRAPHY

Lieberman, H. (1995). Letizia: An Agent That Assists Web Browsing. In Proceedings of the
International Joint Conference on Artificial Intelligence, Montreal (Canada). San Mateo
(CA): Morgan Kaufmann, 924-929.
http://lcs.www.media.mit.edu/people/lieber/Lieberary/Letizia/Letizia-Intro.html

Lilien, G., Kotler, P. and Moorthy, K. (1992). Marketing Models. Englewood Cliffs (NJ): Prentice
Hall.

Loshin, P. (2000). Big Book of Lightweight Directory Access Protocol (LDAP) RFCs. San Diego
(CA): Morgan Kaufmann.

Lucent (2000). Lucent Technologies. http://www.lucent.com

Machado, I., Martins, A. and Paiva, A. (1999). One for All and All in One: A Learner Modeling
Server in a Multi-Agent Platform. In J. Kay, ed., UM99 User Modeling: Proceedings of the
Seventh International Conference. Wien, New York (NY): Springer, 211-221.

Macromedia (2000). LikeMinds. Macromedia.
5. December 2000. http://www.macromedia.com/products/likeminds/

Magedanz, T. (1997). Mobile Agents – An Overview. Tutorial presented at the ACTS IS&N
Conference, Cernobbio (Como), Italy.

Malaka, R. (1999). Deep Map: The Multilingual Tourist Guide. C-Star Workshop, Schwetzingen
(Germany). http://www.eurescom.de/~pub/fusenetd/Malaka.pdf

Malaka, R. and Zipf, A. (2000). DEEP MAP – Challenging IT Research in the Framework of a
Tourist Information System. In D. Fesenmaier, S. Klein and D. Buhalis, eds., Information
and Communication Technologies in Tourism 2000: Proceedings of ENTER 2000. Wien,
New York (NY): Springer, 15-27.

Manna (1999a). FrontMind for Marketing. Manna.
19. January 2000. http://www.mannainc.com/downloads/fmwhite.zip

Manna (1999b). Automated Distributed Intelligence. Manna.
19. January 2000. http://www.mannainc.com/downloads/adiwhite.zip

Manna (2000a). Manna. 19. January 2000. http://www.mannainc.com

Manna (2000b). FrontMind. Manna.
4. April 2000. http://www.mannainc.com/downloads/whitepaper.zip

Manna (2000c). Online Personalization for E-commerce: The Manna Advantage. Manna.
4. April 2000. http://www.mannainc.com/downloads/personalization.zip

Manna (2000d). FrontMind Components. Manna.
4. April 2000. http://www.mannainc.com/products_stage_technical.html

Marketing 1to1 (2000). Marketing 1to1 – Marketplace1to1. Peppers and Rogers Group.
5. March 2000. http://search.marketplace1to1.com

Martin, J. (1983). The Data-Base Environment. Englewood Cliffs (NJ): Prentice Hall.

Mayfield, J., Labrou, Y. and Finin, T. (1996). Evaluation of KQML as an Agent Communication
Language. In M. Wooldridge, J. Müller and M. Tambe, eds., Intelligent Agents Volume II --
Proceedings of the 1995 Workshop on Agent Theories, Architectures, and Languages.
Berlin, Heidelberg: Springer-Verlag, 347-360.

McTear, M. (1993). User Modelling for Adaptive Computer Systems: a Survey. Artificial
Intelligence Review 7(3-4): 157-184.

Microsoft (2000a). Internet Explorer. Microsoft. http://www.microsoft.com/windows/ie

http://lcs.www.media.mit.edu/people/lieber/Lieberary/Letizia/Letizia-Intro.html
http://www.lucent.com/
http://wwwebusiness.macromedia.com/products/likeminds/
http://www.eurescom.de/~pub/fusenetd/Malaka.pdf
http://www.mannainc.com/downloads/fmwhite.zip
http://www.mannainc.com/downloads/adiwhite.zip
http://www.mannainc.com/
http://www.mannainc.com/downloads/whitepaper.zip
http://www.mannainc.com/downloads/personalization.zip
http://www.mannainc.com/products_stage_technical.html
http://search.marketplace1to1.com/
http://www.microsoft.com/windows/ie

BIBLIOGRAPHY 183

Microsoft (2000b). Active Directory Service Interfaces. Microsoft.
http://www.microsoft.com/windows2000/server/evaluation/news/bulletins/adextension.asp

Microsoft (2000c). Active Directory Architecture. Microsoft.
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/prodtechnol/ad/windo
ws2000/deploy/projplan/adarch.asp

Microsoft (2000d). Product and Technology Catalog. Microsoft.
http://www.microsoft.com/products

Millhouse, C., Brash, C. and Chapple, D. (2000). E-CRM: Personalisation Technologies for the
Web. London: Ovum.

Mindcraft (2001). Mindcraft. http://www.mindcraft.com

Mitchell, T. (1997). Machine learning. New York (NY): McGraw-Hill.

Mohr, S. (1999). Designing Distributed Applications. Birmingham: Wrox Press.

Mooney, R. and Roy, L. (1999). Content-Based Book Recommending Using Learning for Text
Categorization. In Proceedings of the Workshop on Recommender Systems: Algorithms and
Evaluation at the 22nd International Conference on Research and Development in
Information Retrieval. Berkeley (CA).
http://www.csee.umbc.edu/~ian/sigir99-rec/papers/mooney_r.ps.gz

Moore, J. and Paris, C. (1992). Exploiting User Feedback to Compensate for the Unreliability of
User Models. User Modeling and User-Adapted Interaction 2(4): 331-365.

MSNBC (2001). MSNBC. http://www.msnbc.com

Myers, J. (1997). Simple Authentication and Security Layer (SASL).
http://www.ietf.org/rfc/rfc2222.txt?number=2222

NAI (2001). Self-Regulatory Principles for Online Preference Marketing by Network Advisers.
Network Advertising Initiative.
http://www.networkadvertising.org/images/NAI_Principles.pdf

Nelson, B. (2002). Sizing Guide for Netscape Directory Server.
http://www.bnelson.com/sizing/doc2/Directory4_0-SizingGuide.html

Net Perceptions (2000). Net Perceptions. http://www.netperceptions.com

Netegrity (2001). Netegrity. http://www.netegrity.com

NetRatings (2000). NetRatings. http://www.netratings.com

NetRatings (2002). Top 10 Web Properties for the Month of October 2002.
NetRatings. 15. November 2002.
http://epm.netratings.com/de/web/NRpublicreports.toppropertiesmonthly.html

Netscape (2000a). Netscape Browsers. Netscape. http://www.netscape.com/browsers

Netscape (2000b). Netscape Directory SDK. Netscape.
http://developer.netscape.com/tech/directory/downloads.html

Nielsen, J. (1990). The Art of Navigating through Hypertext. Communications of the ACM 33(3):
296-310.

Nielsen, J. (1993). Usability Engineering. San Diego (CA): Academic Press.

Nielsen, J. (1996). Top Ten Mistakes in Web Design. http://www.useit.com/alertbox/9605.html

Nielsen, J. (1997). Zipf Curves and Website Popularity. http://www.useit.com/alertbox/zipf.html

http://www.microsoft.com/windows2000/server/evaluation/news/bulletins/adextension.asp
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/prodtechnol/ad/windows2000/deploy/projplan/adarch.asp
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/prodtechnol/ad/windows2000/deploy/projplan/adarch.asp
http://www.microsoft.com/products
http://www.mindcraft.com/
http://www.csee.umbc.edu/~ian/sigir99-rec/papers/mooney_r.ps.gz
http://www.msnbc.com/
http://www.ietf.org/rfc/rfc2222.txt?number=2222
http://www.networkadvertising.org/images/NAI_Principles.pdf
http://www.bnelson.com/sizing/doc2/Directory4_0-SizingGuide.html
http://www.netperceptions.com/
http://www.netegrity.com/
http://www.netratings.com/
http://epm.netratings.com/de/web/NRpublicreports.toppropertiesmonthly.html
http://www.netscape.com/browsers
http://developer.netscape.com/tech/directory/downloads.html
http://www.useit.com/alertbox/9605.html
http://www.useit.com/alertbox/zipf.html

184 BIBLIOGRAPHY

Nielsen Media (2000). Nielsen Media Research. http://www.nielsenmedia.com

Novell (2000). Novell eDirectory. Novell. http://www.novell.com/products/nds/

O’Conner, M. and Herlocker, J. (1999). Clustering Items for Collaborative Filtering. In Proceedings
of the Workshop on Recommender Systems: Algorithms and Evaluation at the 22nd
International Conference on Research and Development in Information Retrieval. Berkeley
(CA). http://www.csee.umbc.edu/~ian/sigir99-rec/papers/oconner_m.pdf

Oard, D. (1997). The State of the Art in Text Filtering. User Modeling and User-Adapted
Interaction 7(3): 141-178.

ObjectSpace (2000). ObjectSpace. 15. August 2002. http://www.objectspace.com
30. September 2003. http://www.recursionsw.com/

Oblix (2000). Oblix. http://www.oblix.com

OMG (2001). Object Management Group (OMG). http://www.omg.org

OpenLDAP (2000). OpenLDAP. http://www.openldap.org

Open Sesame (1998). Open Sesame. 16. July 1998. http://www.opensesame.com

Open Sesame (1999). Open Sesame. 26. November 1999. http://www.opensesame.com

Open Sesame (2000). Open Sesame. 18. June 2000. Bowne & Co. http://www.opensesame.com

Oppermann, R. (1994). Adaptive User Support - Ergonomic Design of Manually and Automatically
Adaptable Software. Hillsdale (NJ): Lawrence Erlbaum.

Orfali, R., Harkey, D. and Edwards, J. (1994). Essential Client/Server Survival Guide. New York
(NY), Singapore: Wiley and Sons.

Orwant, J. (1995). Heterogeneous Learning in the Doppelgänger User Modeling System. User
Modeling and User-Adapted Interaction 4(2): 107-130.

Padmanabhan, V. and Qiu, L. (2000). The Content and Access Dynamics of a Busy Web Site:
Findings and Implications. In Proceedings of ACM SIGCOMM 2000. New York (NY):
ACM, 111-123.

Paiva, A. and Self, J. (1995). TAGUS – A User and Learner Modeling Workbench. User Modeling
and User-Adapted Interaction 4(3): 197-226.

Paliouras, G., Karkaletsis, V., Papatheodorou, C. and Spyropoulos, C. (1999). Exploiting Learning
Techniques for the Acquisition of User Stereotypes and Communities. In J. Kay, ed., UM99
User Modeling: Proceedings of the Seventh International Conference. Wien, New York
(NY): Springer, 169-178.

Patrick, A. and Black, A. (1996). Implications of Access Methods and Frequency of Use for the
National Capital Freenet. 18. October 2000.
http://debra.dgbt.doc.ca/services-research/survey/connections/

Pazzani, M. and Billsus, D. (1997). Learning and revising user profiles: The identification of
interesting Web sites. Machine Learning 27: 313-331.

Peppers, D. and Rogers, M. (1993). The One to One Future: Building Relationships One Customer
at a Time. New York (NY): Currency Doubleday.

Peppers, D. and Rogers, M. (1997). Enterprise One to One: Tools for Competing in the Interactive
Age. New York (NY): Currency Doubleday.

Peppers, D., Rogers, M. and Dorf, B. (1999). The One to One Fieldbook. New York (NY):
Currency Doubleday.

http://www.nielsenmedia.com/
http://www.novell.com/products/nds/
http://www.csee.umbc.edu/~ian/sigir99-rec/papers/oconner_m.pdf
http://www.objectspace.com/
http://www.recursionsw.com/
http://www.oblix.com/
http://www.omg.org/
http://www.openldap.org/
http://www.opensesame.com/
http://www.opensesame.com/
http://www.opensesame.com/
http://debra.dgbt.doc.ca/services-research/survey/connections/

BIBLIOGRAPHY 185

Persistent (2000). Persistent Systems Private Limited. http://www.pspl.co.in

Personalization (2000). personalization.com. 18. June 2000. http://www.personalization.com

Pohl, W. and Höhle, J. (1997). Mechanisms for Flexible Representation and Use of Knowledge in
User Modeling Shell Systems. In A. Jameson, C. Paris and C. Tasso, eds., User Modeling:
Proceedings of the Sixth International Conference. Wien, New York (NY): Springer, 403-
414.

Pohl, W. (1998). Logic-Based Representation and Reasoning for User Modeling Shell Systems.
Sankt Augustin (Germany): infix.

Pohl, W. and Nick, A. (1999). Machine Learning and Knowledge-Based User Modeling in the
LaboUr Approach. In J. Kay, ed., UM99 User Modeling: Proceedings of the Seventh
International Conference. Wien, New York (NY): Springer, 179-188.

Pohl, W., Schwab, I. and Koychev, I. (1999). Learning About the User: A General Approach and Its
Application. In Proceedings of IJCAI'99 Workshop Learning About Users. Stockholm
(Sweden). http://www.cs.rutgers.edu/ml4um/mirrors/lau-1999/papers/pohl.ps

Pope, A. (1997). The Corba Reference Guide: Understanding the Common Object Request Broker
Architecture. Sydney: Addison-Wesley.

Popp, H. and Lödel, D. (1996). Fuzzy Techniques and User Modeling in Sales Assistants. User
Modeling and User-Adapted Interaction 5(3-4): 349-370.

Qualcomm (2000). Qualcomm. http://www.qualcomm.com

Quinlan, J. (1986). Induction of decision trees. Machine Learning 1(1): 81-106.

Reagle, J. and Cranor, L. (1999). The Platform for Privacy Preferences. Communications of the
ACM 42(2): 48-55.

Reichheld, F. (1996). The Loyalty Effect. Boston (MA): Harvard Business School Press.

Resnick, P., Iacovou, N., Sushak, M., Bergstrom, P. and Riedl, J. (1994). GroupLens: An Open
Architecture for Collaborative Filtering of Netnews. In Proceedings of the Conference on
Computer Supported Cooperative Work. New York (NY): ACM, 175-186.
http://www.acm.org/pubs/citations/proceedings/cscw/192844/p175-resnick/

Rich, E. (1979). User Modeling via Stereotypes. Cognitive Science 3: 329-354.

Rich, E. (1983). Users are Individuals: Individualizing User Models. Journal of Man-Machine
Studies 18: 199-214.

Rich, E. (1989): Stereotypes and User Modeling. In A. Kobsa and W. Wahlster, eds.: User Models
in Dialog Systems. Berlin, Heidelberg: Springer-Verlag, 35-51.

RightPoint (2000). RightPoint Software. 8. February 2000. http://www.rightpoint.com

Rozanski, H., Bollman, G. and Lipman, M. (2000). Seize the Occasion – Usage-based
Segmentation for Internet Marketers. McLean (VA): Booz-Allen & Hamilton. 26. March
2000. http://www.strategy-business.com/enews/032001/03-20-01_eInsight.pdf

Russell, S. (2000). AI on the Web. http://www.cs.berkeley.edu/~russell/ai.html

Ryan, V., Seligman S. and Lee R. (1999a). Schema for Representing Java(tm) Objects in an LDAP
Directory. http://www.ietf.org/rfc/rfc2713.txt?number=2713

Ryan, V., Seligman S. and Lee R. (1999b). Schema for Representing CORBA Object References in
an LDAP Directory. http://www.ietf.org/rfc/rfc2714.txt?number=2714

http://www.pspl.co.in/
http://www.personalization.com/
http://www.cs.rutgers.edu/ml4um/mirrors/lau-1999/papers/pohl.ps
http://www.qualcomm.com/
http://www.acm.org/pubs/citations/proceedings/cscw/192844/p175-resnick/
http://www.rightpoint.com/
http://www.strategy-business.com/enews/032001/03-20-01_eInsight.pdf
http://www.cs.berkeley.edu/~russell/ai.html
http://www.ietf.org/rfc/rfc2713.txt?number=2713
http://www.ietf.org/rfc/rfc2714.txt?number=2714

186 BIBLIOGRAPHY

Saake, G., Türker, C. and Schmitt, I. (1997). Objektdatenbanken – Konzepte, Sprachen,
Architekturen. Bonn: Thomson.

Salton, G. and McGill, M. (1983). Introduction to Modern Information Retrieval. New York (NY):
McGraw-Hill.

SAP (2001). SAP. http://www.sap.com

Sarwar, B., Karypis, G., Konstan, J. and Riedl, J. (2000). Analysis of Recommendation Algorithms
for E-Commerce. In Proceedings of the 2nd ACM Conference on Electronic Commerce.
New York (NY): ACM, 158–167.
http://www.cs.umn.edu/Research/GroupLens/papers/pdf/ec00.pdf

Schafer, J., Konstan, J. and Riedl, J. (1999). Recommender Systems in Electronic Commerce. In
Proceedings of the ACM Conference on Electronic Commerce (EC-99). New York (NY):
ACM, 158-166. http://www.cs.umn.edu/Research/GroupLens/papers/pdf/ec-99.pdf

Schmidt, D. (1994). A Domain Analysis of Network Daemon Design Dimensions. C++ Report
6(3/4).

Schreck, J. (2003). Security and Privacy in User Modeling. Dordrecht: Kluwer Academic
Publishers (forthcoming).

Schrock, R. (1999). AltaVista Announcement. Compaq.
http://www.compaq.com/newsroom/presspaq/012699/schrock.html

Schwab, I. and Pohl, W. (1999). Learning Information Interests from Positive Examples. In UM99
Workshop Machine Learning for User Modeling. Banff (Canada). 16. October 1999.
http://fit.gmd.de/~schwab/Papers/ml4um-um99.ps

Schwab, I., Kobsa, A. and Koychev, I. (2000). Learning about Users from Observation. In Adaptive
User Interfaces: Papers from the 2000 AAAI Spring Symposium. Menlo Park (CA): AAAI
Press, 102-106. http://www.ics.uci.edu/~kobsa/papers/2000-AAAI-kobsa.pdf

Shardanand, U. and Maes, P. (1995). Social information filtering: Algorithms for automating “word
of mouth”. In Proceedings of ACM CHI’95 Conference on Human Factors in Computing
Systems. New York (NY): ACM, 210-217.

Shneiderman, B. (1987). Designing the User Interface: Strategies for Effective Human-Computer
Interaction. New York (NY), Tokyo: Addison-Wesley.

Shukla, S. and Deshpande, A. (2000). LDAP Directory Services – Just Another Database
Application? In C. Weidong, J. Naughton and P. Bernstein, eds., Proceedings of the 2000
ACM SIGMOD International Conference on Management of Data. New York (NY):
ACM, 580.

Singh, J. (2000). Privacy, Information, and Consumer Value. ART Technology Group. 23. June
2000. http://www.atg.com/news/white-papers/privacy.html

Smith, R. (1997). Internet Cryptography. Reading (MA): Addison-Wesley.

Smith, M. (2000). Definition of the inetOrgPerson LDAP Object Class.
http://www.ietf.org/rfc/rfc2798.txt?number=2798

Snorrason, M. and Caglayan, A. (1994). Generalized ART2 Algorithms. World Congress on Neural
Networks. San Diego (CA).

Soboroff, I., Nicholas, C. and Pazzani, M. (1999). Workshop on Recommender Systems:
Algorithms and Evaluation – Workshop Summary.
http://www.csee.umbc.edu/~ian/sigir99-rec/summary.html

http://www.sap.com/
http://www.cs.umn.edu/Research/GroupLens/papers/pdf/ec00.pdf
http://www.cs.umn.edu/Research/GroupLens/ec-99.pdf
http://www.compaq.com/newsroom/presspaq/012699/schrock.html
http://fit.gmd.de/~schwab/Papers/ml4um-um99.ps
http://www.ics.uci.edu/~kobsa/papers/2000-AAAI-kobsa.pdf
http://www.atg.com/news/white-papers/privacy.html
http://www.ietf.org/rfc/rfc2798.txt?number=2798
http://www.csee.umbc.edu/~ian/sigir99-rec/summary.html

BIBLIOGRAPHY 187

Sparck Jones, K. (1972). A Statistical Interpretation of Term Specificity and its Application to
Retrieval. Journal of Documentation 28: 11-21.

Specht, M. (1998). Empirical Evaluation of Adaptive Annotation in Hypermedia. In Proceedings of
the ED-MEDIA98. Freiburg (Germany), 1327-1332.

Specht, M. and Kobsa, A. (1999). Interaction of Domain Expertise and Interface Design in
Adaptive Educational Hypermedia. In Proceedings of the Second Workshop on Adaptive
Systems and User Modeling on the World Wide Web at WWW-8 and UM99. Toronto
(Canada) and Banff (Canada), 89-93.
http://www.ics.uci.edu/~kobsa/papers/1999-WWW8UM99-kobsa.pdf

Spiliopoulou, M. and Faulstich, L. (1999). A Tool for Web Utilization Analysis. In Proceedings of
the International Workshop on the Web and Databases – WebDB'98. Berlin, Heidelberg:
Springer-Verlag, 184-203.

Stevens, W. (1990). UNIX Network Programming. Englewood Cliffs (NJ): Prentice Hall.

Stokes, E., Byrne, D., Blakley, B. and Behera, P. (2000). Access Control Requirements for LDAP.
http://www.ietf.org/rfc/rfc2820.txt?number=2820

Sun (2000a). Java Technology. Sun.
http://wwws.sun.com/software/java/index.html

Sun (2000b). Java Naming and Directory Interface (JNDI). Sun.
http://java.sun.com/products/jndi/index.html

Sun (2000c). Sun Directory Services. Sun. 13. September 2000.
http://www.sun.com/solstice/telecom/LDAP.html

Sun (2002a). Sun ONE Directory Server. Sun.
http://wwws.sun.com/software/products/directory_srvr/home_directory.html

Sun (2002b). Sun Microsystems – Entry-Level Servers. Sun.
http://www.sun.com/servers/entry/

Switchboard (2000). Switchboard: The Internet Directory – YellowPages – WhitePages –
PhoneBook. Switchboard. http://www.switchboard.com

Tanenbaum, A. (1992). Modern Operating Systems. Englewood Cliffs (NJ): Prentice Hall.

Tanenbaum, A. (1995). Distributed Operating Systems. Englewood Cliffs (NJ): Prentice Hall.

Truog, D., Bernoff, J., Ritter, T. and Goldman, H. (1999). Centralize Access Control Now.
Cambridge (MA): Forrester Research.

TRUSTe (2000). TRUSTe. http://www.truste.org

University of Michigan (2000a). Lightweight Directory Access Protocol – Clients. University of
Michigan. 13. September 2000. http://www.umich.edu/~dirsvcs/ldap/ldclients.html

University of Michigan (2000b). Slapd Manual Page. University of Michigan. 13. September 2000.
http://www.umich.edu/cgi-bin/ldapman?slapd

VanderMeer, D., Dutta, K. and Datta, A. (2000). Enabling Scalable Online Personalization on the
Web. In Proceedings of the Second ACM Conference on Electronic Commerce. New York
(NY): ACM, 185-196.

Vassileva, J., McCalla, G. and Greer, J. (2003). Multi-Agent Multi-User Modeling in I-Help. User
Modeling and User-Adapted Interaction (forthcoming).

Vignette (2000). Vignette. http://www.vignette.com

http://www.ics.uci.edu/~kobsa/papers/1999-WWW8UM99-kobsa.pdf
http://www.ietf.org/rfc/rfc2820.txt?number=2820
http://wwws.sun.com/software/java/index.html
http://java.sun.com/products/jndi/index.html
http://www.sun.com/solstice/telecom/LDAP.html
http://wwws.sun.com/software/products/directory_srvr/home_directory.html
http://www.sun.com/servers/entry/
http://www.switchboard.com/
http://www.truste.org/
http://www.umich.edu/~dirsvcs/ldap/ldclients.html
http://www.umich.edu/cgi-bin/ldapman?slapd
http://www.vignette.com/

188 BIBLIOGRAPHY

W3C (2000). Platform for Privacy Preferences (P3P) Project. W3C. http://www.w3.org/P3P

Wahl, M. (1997). A Summary of the X.500 (96) User Schema for use with LDAP v3.
http://www.ietf.org/rfc/rfc2256.txt?number=2256

Wahl, M., Howes, T. and Kille, S. (1997a). Lightweight Directory Access Protocol (v3).
http://www.ietf.org/rfc/rfc2251.txt?number=2251

Wahl, M., Coulbeck, A., Howes, T. and Kille, S. (1997b). Lightweight Directory Access Protocol
(v3): Attribute Syntax Definitions.
http://www.ietf.org/rfc/rfc2252.txt?number=2252

Wahl, M., Kille, S. and Howes, T. (1997c). Lightweight Directory Access Protocol (v3): UTF-8
String Representation of Distinguished Names.
http://www.ietf.org/rfc/rfc2253.txt?number=2253

Wang, X., Schulzrinne, H., Kandlur, D. and Verma, D. (2000). Measurement and Analysis of
LDAP Performance. In Proceedings of the ACM SIGMETRICS Conference on
Measurement and Modeling of Computer Systems. New York (NY): ACM, 156-165.
http://www.cs.columbia.edu/~xinwang/public/paper/ldap_sigmetrics.pdf

Weber, G. and Specht, M. (1997). User Modeling and Adaptive Navigation Support in WWW-
Based Tutoring Systems. In A. Jameson, C. Paris and C. Tasso, eds., User Modeling:
Proceedings of the Sixth International Conference. Wien, New York (NY): Springer,
289-300.

WebGuide (2001). EML Deep Map – GIS – WebGuide. European Media Laboratory (EML). 10.
August 2001. http://www.eml.org/english/research/deepmap/deepgis/webguide.html

Weltman, R., Tomlinson, C., Kekic, M., Sonntag, S., Sermersheim, J., Smith, M. and Howes, T.
(2001). The Java LDAP Application Program Interface.
http://www.ietf.org/internet-drafts/draft-ietf-ldapext-ldap-java-api-18.txt

Wilcox, M. (1999). Implementing LDAP. Birmingham: Wrox Press.

Wolman, A., Voelker, G., Sharma, N., Cardwell, N., Brown, M., Landray, T., Pinnel, D., Karlin, A.
and Levy, H. (1999a). Organization-based Analysis of Web-Object Sharing and Caching. In
Proceedings of the 2nd USENIX Symposium on Internet Technologies and Systems.
Boulder (CO).

Wolman, A., Voelker, G., Sharma, N., Cardwell, N., Brown, M., Landray, T., Pinnel, D., Karlin, A.
and Levy, H. (1999b). On the Scale and Performance of Cooperative Web Proxy Caching.
In Proceedings of the 17th ACM Symposium on Operating System Principles. New York
(NY): ACM, 16-31.

Woods, E. and Kyral, E. (1997). Ovum evaluates : Data Mining. London: Ovum.

Yaacovi, Y., Wahl, M. and Genovese, T. (1999). Lightweight Directory Access Protocol (v3):
Extensions for Dynamic Directory Services.
http://www.ietf.org/rfc/rfc2589.txt?number=2589

Yahoo! (2001). Yahoo!. http://www.yahoo.com

Yeong, W., Howes, T. and Kille, S. (1995). Lightweight Directory Access Protocol.
http://www.ietf.org/rfc/rfc1777.txt?number=1777

Yimam Seid, D. and Kobsa, A. (2003). Expert Finding Systems for Organizations: Problem and
Domain Analysis and the DEMOIR Approach. Journal of Organizational Computing and
Electronic Commerce 13(1): 1-24.
http://www.ics.uci.edu/~kobsa/papers/2003-JOCEC-kobsa.pdf

http://www.w3.org/P3P
http://www.ietf.org/rfc/rfc2256.txt?number=2256
http://www.ietf.org/rfc/rfc2251.txt?number=2251
http://www.ietf.org/rfc/rfc2252.txt?number=2252
http://www.ietf.org/rfc/rfc2253.txt?number=2253
http://www.cs.columbia.edu/~xinwang/public/paper/ldap_sigmetrics.pdf
http://www.eml.org/english/research/deepmap/deepgis/webguide.html
http://www.ietf.org/internet-drafts/draft-ietf-ldapext-ldap-java-api-18.txt
http://www.ietf.org/rfc/rfc2589.txt?number=2589
http://www.yahoo.com/
http://www.ietf.org/rfc/rfc1777.txt?number=1777
http://www.ics.uci.edu/~kobsa/papers/2003-JOCEC-kobsa.pdf

BIBLIOGRAPHY 189

Young, A. (1995). Connection-Less Lightweight X.500 Directory Access Protocol.
http://www.ietf.org/rfc/rfc1798.txt?number=1798

Zehnder, C. (1985). Informationssysteme und Datenbanken. Stuttgart: Teubner.

Zipf, G. (1949). Human Behavior and the Principle of Least Effort. Reading (MA): Addison-
Wesley.

Zukerman, I., Albrecht, D. and Nicholson, A. (1999). Predicting Users’ Requests on the WWW. In
J. Kay, ed., UM99 User Modeling: Proceedings of the Seventh International Conference.
Wien, New York (NY): Springer, 275-284.

http://www.ietf.org/rfc/rfc1798.txt?number=1798

	Introduction
	History of User Modeling Servers
	Personalization in E-Commerce
	Centralized vs. Decentralized User Modeling
	Organization of This Work
	
	
	
	
	
	
	Requirements for�User Modeling Servers

	Server-Related Requirements
	Review Methodology
	Reviews of Server Requirements
	Multi-User Synchronization
	Transaction Management
	Query and Manipulation Language
	Persistency
	Integrity
	Access Control

	Discussion

	User Modeling Requirements
	Review Methodology
	Reviews of Commercial Server Systems
	GroupLens
	Personalization Server
	FrontMind
	Learn Sesame

	Discussion
	
	
	
	
	
	
	User Modeling Server�Design

	Server Basis – Directories versus Databases
	Extensibility
	Management of Distributed Information
	Replication Scale
	Performance and Scalability
	Standards

	Introduction to LDAP Directories
	Information Model
	Naming Model
	Functional Model
	Query Operations
	Update Operations
	Authentication and Control Operations

	Security Model

	User Modeling Server Architecture
	Overview of Server Architecture
	Selection of Server Foundation
	Support for Advanced User Modeling Scenarios
	Monoatomic User Modeling
	Polyatomic User Modeling
	Secure and Private User Modeling
	
	
	
	
	
	User Modeling Server�Implementation

	User Modeling Server for Deep Map
	User Modeling in Deep Map
	Overview of Server Architecture

	User Modeling Server for Deep Map: Components
	Communication
	FIPADM Interface
	LDAP Interface
	ODBC Interface

	Representation
	User Model
	Usage Model
	System Model
	Service Model

	Scheduler
	Introduction
	Usage Scenario
	Implementation

	User Learning
	Introduction
	Usage Scenario
	Implementation

	Mentor Learning
	Introduction
	Usage Scenario
	Implementation

	Domain Inferences
	Introduction
	Usage Scenario
	Implementation
	
	
	
	
	
	Evaluation and Discussion

	User Modeling Server: Experiments
	Model of Real-World Workload
	Test Bed
	Overview
	Workload Simulation
	Measures
	Hardware and Software Configuration
	Testing Procedure

	Evaluation Results
	Black Box Perspective
	Performance and Scalability
	Quality of Service
	Single Platform vs. Multi-Platform

	White Box Perspective
	Performance and Scalability
	Quality of Service

	Discussion
	Server Requirements
	User Modeling Requirements

	Summary and Perspectives

