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Introduction

The finite element method (FEM) is a well established approximation method in engineering,

physics and applied mathematics. In 1956 the FEM was first applied in structural and fluid

mechanics for an aircraft wing [58]. The term finite element method was established four

years later [9]. Today the finite element method is a frequently used tool to approximate

solutions of partial differential equations (PDEs). Such approximations are inevitable since

exact solutions of partial differential equations are known only for simple PDEs and simple

geometries. In order to apply the finite element method a variational formulation is derived

from a strong form of a partial differential equation. Minimization in a finite dimensional

space then gives the finite element solution.

The discretization by finite elements leads, either directly or after linearization, to a large

linear system of equations which needs to be solved. The number of unknowns is determined

by the accuracy of the solution required for the specific application. Today the number of

unknowns can range from millions to billions of unknowns in structural mechanics simulations.

To solve linear systems of such size the use of parallel computers is necessary.

Domain decomposition methods (DDMs) are algorithms well suited for high performance

parallel computers. They are inherently parallel methods based on an overlapping or nonover-

lapping geometric decomposition of the computational domain. The solution of the original

problem is then computed in an iterative process, typically accelerated by a Krylov subspace

method such as conjugate gradients. In this work domain decomposition methods are thus

always understood as preconditioned iterative methods.

In the construction of domain decomposition methods attention has to be paid to the

different aspects of scalability. A DDM is called numerically scalable if the number of iterations

is independent of the problem size. In order to obtain numerical scalability, a small coarse

problem has to be solved in each iteration step in addition to the number of systems associated

with the local subdomains. Such a coarse problem provides a mechanism for global exchange

of information in each iteration step. Numerical scalability is a requirement to obtain parallel

scalability of DDMs. Here, we distinguish between two versions of parallel scalability, i.e.,

1



2 INTRODUCTION

strong and weak scalability. For a problem with a fixed number of unknowns, an algorithm

is called strongly scalable, if ideally, it solves the problem twice as fast if the number of

processors is doubled. An algorithm is called weakly scalable if doubling the number of

unknowns and doubling the number of processors at the same time will, ideally, keep the

solution time constant.

The convergence of preconditioned conjugate gradient methods is determined by the con-

dition number of the problem. For the convergence theory of domain decomposition methods

the derivation of condition number bounds is therefore essential. In this work new condition

number bounds for classes of problems in linear elasticity for a well-known and widely applied

family of nonoverlapping DDMs, the dual primal Finite Element Tearing and Interconnect-

ing (FETI-DP) Method, are derived. These bounds also apply to the balancing DDM by

constraints (BDDC) method, introduced by Dohrmann [13].

We focus on the equations of linear elasticity in three dimensions, where the task is to

calculate the displacement of a linear elastic domain under the action of forces; see, e.g., [8,

3, 4, 57], or more precisely, we consider linear elasticity problems with compressible and

almost incompressible components. To obtain the displacement we use dual-primal FETI

methods (FETI-DP). These methods belong to the family of Finite Element Tearing and

Interconnecting (FETI) domain decomposition methods, which have been first introduced

by Farhat and Roux in 1991; see [20]. The computational domain, on which the given

partial differential equation has to be solved, is decomposed into nonoverlapping subdomains.

The continuity of the solution across the interface is established weakly by the introduction

of Lagrange multipliers, thus enforcing continuity not before convergence of the iterative

method. In FETI-DP methods, some continuity constraints are defined to be primal, which

means that they are assembled before the iteration and therefore continuity is enforced in

each iteration step. The primal constraints should be selected such that the subproblems are

invertible and such that good condition number bounds can be derived. For the remaining

dual variables Lagrange multipliers are introduced as in standard FETI methods. The basic

idea of FETI-DP is to eliminate the primal variables by forming a Schur complement and then

iterate on the Lagrange multipliers, usually using a preconditioner. For the numerical results

presented in this dissertation only the Dirichlet preconditioner is used.

For linear elasticity problems in the plane, FETI-DP methods were introduced by Farhat et

al. in [18] and extended to the three dimensional case by Farhat, Lesoinne, and Pierson [19].

To obtain the same quality of bounds for the condition number estimate of FETI-DP in case
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of linear elasticity essential changes in the selection of primal constraints have to be made.

While selecting an appropriate set of edge averages as primal constraints is sufficient to handle

material coefficients without large jumps, for arbitrary jumps primal first-order moments and,

sometimes, constraints over vertices are required; see [37, 31].

The first analysis for scalar second- and fourth-order elliptic partial differential equations

in two dimensions was provided by Mandel and Tezaur [46] and it was extended to the three

dimensional case in [38, 39, 36] and to three dimensional linear elasticity in [37]. In [34], a

theory for irregular subdomains in 2D was introduced. In [29], FETI-DP methods for spectral

element discretizations for a polynomial degree of up to p = 32 were considered. In [32],

the weak parallel scalability of a new version of a FETI-DP method, introduced in [54],

for up to 65 000 processor cores was shown. The work in Chapter 3 of this thesis can be

understood as an extension of the theory in [37] for certain classes of problems with jumps

inside subdomains. Problems in elasticity with coefficient jumps not aligned with the interface

have been considered before in [31].

Coarse spaces for iterative substructuring methods that are robust either with respect to

exact incompressibility constraints or with respect to almost incompressibility on the com-

plete computational domain have been known for some time. For early works on Neumann-

Neumann methods for incompressible elasticity, see [23, 24, 48, 49]. For a recent Neumann-

Neumann method for almost incompressible elasticity, see [1]. A balancing domain decom-

position method (BDDC) for the Stokes equation was introduced by Li and Widlund [42];

for a FETI-DP method for the Stokes and the incompressible Navier-Stokes equation, see

Li [41, 40]. For an extension of a recent overlapping Schwarz method, see Dohrmann

et al. [14], to almost incompressible elasticity problems, see Dohrmann and Widlund [15]. This

overlapping Schwarz method borrows its coarse space from iterative substructuring methods.

For a BDDC method with a coarse space that is robust with respect to the almost incom-

pressibility, see, e.g., [13, 50, 11]. In [35, 55], a FETI-DP method for almost incompressible

elasticity in 2D was discussed.

An application of FETI-DP methods to almost incompressible problems in biomechanics

can be also found in Klawonn and Rheinbach [32], Brinkhues, Klawonn, Rheinbach, and

Schröder [6], and Böse et al. [2].

BDDC methods, see, e.g., [12, 10, 44, 43, 45, 29] for references, are closely related to

FETI-DP methods in the sense that they share essentially all eigenvalues. It was first shown

in Mandel, Dohrmann, and Tezaur [45], that FETI-DP and BDDC methods have the same
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eigenvalues, which are not zero or one. As a consequence all results presented are also valid

for BDDC methods.

This thesis is organized as follows. In Chapter 1, we introduce the problem of linear elas-

ticity. The finite element method and the discretization of the elastic domain, and a brief

summary of the domain decomposition method FETI-DP is given in Chapter 2. After this

introduction of the conceptual basics, we consider a special category of compressible and al-

most incompressible linear elasticity problems when using a FETI-DP domain decomposition

method. We introduce convergence bounds of FETI-DP methods for problems in 3D with

almost incompressible inclusions or compressible inclusions with different Young’s modulus

embedded in a compressible matrix material using the coarse space for compressible linear

elasticity. For such problems, where the material is compressible in the vicinity of the subdo-

main interface, we show a polylogarithmic condition number estimate for the preconditioned

FETI-DP system, which only depends on the thickness of the compressible hull, but is oth-

erwise independent of coefficient jumps between the hulls and the inclusions. We expand

the convergence analysis, given by Klawonn and Widlund [37] for compressible linear elastic-

ity, to the case where each subdomain contains an inclusion surrounded by a compressible

hull of thickness η. Similar results for the diffusion problem and FETI-1 are already obtained

by Pechstein and Scheichl [51, 52, 53]. The theoretical findings are numerically confirmed

and presented at the end of Chapter 3. In Chapter 4, we focus on the problem of almost

incompressible linear elasticity on the whole domain. Since in the previous chapter we used

the coarse space for compressible elasticity, we need to expand the coarse space by using

the zero net flux condition. In this approach, the face contributions need to be enforced by

projector preconditioning, but for the edge contributions it is possible to enforce the zero net

flux condition by projector preconditioning or using a transformation of basis; see [26, 33, 30].

We consider both concepts and we present numerical results for different experiments.



1 Linear Elasticity

The problem of linear elasticity consists in finding the displacement of an elastic domain

under the action of forces. An elastic solid will return to its original state after removing the

force; for example, a steel body will only show permanent deformation if very large forces are

applied. In linear elasticity the strain tensor is only a linear approximation and therefore valid

only for small displacements. Let Ω ⊂ IR3 be an elastic domain, see, e.g., Figure 1.1, on

which a volume force is applied. The deformation, or more precisely the displacement in each

meshpoint is calculated; see, e.g., Figure 1.2. In the figures the cube is fixed on the back

side and we see that it is displaced, when a volume force in the direction of the front side is

applied.

Figure 1.1:

A cube of elastic material.

Figure 1.2:

Deformation of a cube, after a volume force

is applied.

1.1 Weak Formulation

We consider an isotropic elastic domain Ω ⊂ IR3. Let u be the displacement and f a given

volume force. In the theory of linear elasticity u satisfies the partial differential equation given

5



6 1. LINEAR ELASTICITY

by

−div(σ(u)) = f in Ω

σ(u) · n = g on ∂ΩN (1.1)

u = 0 on ∂ΩD,

where the stress tensor is defined as σ(u) := G ε(u) + Gβ tr(ε(u)) I, using the mate-

rial parameters G and β. The linearized strain tensor ε = (εij)ij is defined as εij(u) =

1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
. We also use the notation

ε(u) : ε(v) :=

3∑
i,j=1

εij(u)εij(v) and (ε(u), ε(v))L2(Ω) :=

∫
Ω
ε(u) : ε(v) dx.

Note that we impose homogenous Dirichlet boundary conditions on ∂ΩD.

Assuming that equation (1.1) holds for u ∈ H2(Ω), then for all v ∈ H1
0 (Ω, ∂ΩD), we obtain

the weak formulation from integration by parts, see, e.g., [4, Chapter 11.2] or [3],∫
Ω
f · v dx = −

∫
Ω

div(σ(u)) v dx

=

∫
Ω
σ(u) : ∇v dx−

∫
∂Ω

(σ(u) · n) v ds

=

∫
Ω
σ(u) : ε(v) dx−

∫
∂ΩN

g · v ds

⇔
∫

Ω
σ(u) : ε(v) dx =

∫
Ω
f · v dx+

∫
∂ΩN

g · v ds.

We consider∫
Ω
σ(u) : ε(v) dx =

∫
Ω

(G ε(u) +Gβ tr(ε(u)) I) : ε(v) dx

=

∫
Ω
Gβ tr(ε(u)) I : ε(v) dx+

∫
Ω
G ε(u) : ε(v) dx

=

∫
Ω
Gβ div(u) div(v) dx+

∫
Ω
G ε(u) : ε(v) dx.

Then, the problem of linear elasticity is defined as follows:

Find the displacement u ∈ H1
0 (Ω, ∂ΩD), such that∫

Ω
Gε(u) : ε(v) dx+

∫
Ω
Gβ div(u) div(v) dx =< F, v > ∀v ∈ H1

0 (Ω, ∂ΩD)

with the material parameters G, β, and the right hand side

< F, v > =

∫
Ω
fT v dx+

∫
∂ΩN

gT v ds.
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Now, we can write the bilinear form for linear elasticity as

a(u, v) = (Gε(u), ε(v))L2(Ω) + (Gβ div(u), div(v))L2(Ω) .

For a domain Ω with diameter H, we use the scaled Sobolev space norm

‖u‖2H1(Ω) = |u|2H1(Ω) +
1

H2
‖u‖2L2(Ω)

with ‖u‖2L2(Ω) :=
∑3

i=1

∫
Ω |ui|

2 dx and |u|2H1(Ω) :=
∑3

i=1 ‖∇ui‖2L2(Ω) .

The continuity of the bilinear form a(·, ·) with respect to ‖·‖H1(Ω) depends on the material

parameters. For all u, v ∈ H1(Ω), we have

|a(u, v)| ≤ (1 + 3β)G |u|H1(Ω) |v|H1(Ω) ≤ (1 + 3β)G ‖u‖H1(Ω) ‖v‖H1(Ω) ;

see, e.g., [37]. The ellipticity of a(u, v) for u, v ∈ H1
0 (Ω, ∂ΩD) follows from Korn’s first

inequality, i.e., for all u ∈ H1
0 (Ω) we have

‖u‖H1(Ω) ≤ C (ε(u), ε(u))L2(Ω) ;

see for example [8, 37].

Then, as a result of the lemma of Lax-Milgram, see, e.g., [4, Theorem (2.7.7)], there exists

a unique solution of the variational formulation

a(u, v) =< F, v > .

1.2 Material Parameters

In our theory, we consider an isotropic elastic material, i.e., the material behaves identically

in all directions. An example of isotropic material is steel while wood is anisotropic. We

consider the material parameters G and β, which can be expressed using Young’s modulus E

and Poisson’s ratio ν by

G =
E

1 + ν
and β =

ν

1− 2ν
.

The Young modulus E > 0 is a measure for the stiffness of an elastic material, since it

relates strain to stress. As the value of E gets larger, the considered material becomes stiffer.

In our numerical experiments, we use, e.g., E = 21e5 for steel and E = 0.037e5 for rubber.
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The deformation by compression in one direction of an elastic domain results in an expansion

in cross direction. This effect is called the Poisson effect; see Figure 1.3. Poisson’s ratio

ν ∈ [0, 1
2) is a measure of this effect. As the value of the Poisson ratio is smaller, the

expansion is smaller. In our numerical experiments, we use ν = 0.28 for steel and ν = 0.485

for rubber; see [8].

Compressibility is a measure of the relative volume change of a solid as a response to a

Figure 1.3: Poisson’s effect

Compressing the smaller cuboid, we obtain an expansion in cross direction.

change in the pressure. Elastic material is called almost incompressible if ν tends to 1
2 , i.e.,

the volume does not change significantly under pressure. The limit of ν = 1
2 is called perfect

incompressibility and only topic of theoretical considerations.

1.3 Mixed Formulation

For almost incompressible linear elasticity, i.e., ν → 1
2 , the value of β tends to infinity, and

the discretization by standard finite elements leads to locking effects and slow convergence.

For more information about the locking effect, see, e.g., [4, 3]. As a remedy the variational

formulation of the pure displacement problem is replaced by a mixed formulation. Therefore,

we introduce the pressure p := Gβ div(u) ∈ L2(Ω) as an auxiliary variable and consider the

problem:

Find (u, p) ∈ H1
0 (Ω, ∂ΩD)× L2(Ω), such that∫

Ω
Gε(u) : ε(v) dx+

∫
Ω

div(v) p dx = < F, v > ∀v ∈ H1
0 (Ω, ∂ΩD)∫

Ω
div(u) q dx−

∫
Ω

1

Gβ
p q dx = 0 ∀q ∈ L2(Ω).

It is known, that in the case of almost incompressible linear elasticity the solution of this mixed
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formulation exists and is unique, as a result of the V−ellipticity of the bilinear form and the

inf-sup condition; see, e.g., [3, 57, 5]. The ellipticity of
∫

ΩGε(u) : ε(v) dx is ensured by the

first Korn inequality, and an inf-sup condition for
∫

Ω div(v) p dx follows from the analysis of

the Stokes problem; see [57]. The involving estimates are independent of Gβ > 0, thus, for

low-order, conforming finite elements, the solution of the finite element method converges

uniformly in Gβ; see [3].

In our numerical experiments, we will later choose for the almost incompressible part Q2−
P0 mixed finite elements. The finite space for the displacement is V h := (Q2(h))n, where Q2

is the space of triquadratic functions. The pressure space consists of discontinuous piecewise

constant functions, i.e., Uh := {q ∈ L2 : q |T∈ P0(T ) ∀T ∈ τh} . Both spaces are defined

on the same hexahedral mesh. This finite element method satisfies an inf-sup condition in

the sense that:

sup
v∈V h

bi(v, q)

ai(v, v)1/2
≥ γ ci(q, q)1/2 ∀q ∈ Uh ∩ L2,0, γ > 0,

where ai(·, ·), bi(·, ·), and ci(·, ·) are the corresponding bilinear forms of the mixed formulation;

see also the comments in Chapter 2 and [16].



2 Finite Elements and Domain

Decomposition

In this chapter, we will introduce the assumptions needed for the convergence analysis of

the FETI-DP algorithm, first for linear elasticity problems with different material components

in Chapter 3 and then for the analysis of the zero net flux condition needed, for almost

incompressible linear elasticity problems, considered in Chapter 4.

2.1 Finite Elements

The finite element method (FEM) is a numerical method to solve partial differential equa-

tions (PDEs) approximately. We consider the problem: Find u ∈ V, such that

a(u, v) = 〈f, v〉 ∀v ∈ V,

where a(·, ·) : V × V → IR is the corresponding bilinear form of the weak formulation of a

scalar partial differential equation and f : V → IR a linear functional. The infinite dimensional

space V is approximated by the discrete finite dimensional space V h and we solve the discrete

problem: Find uh ∈ V h, such that

a(uh, vh) = 〈f, vh〉 ∀vh ∈ V h.

The discrete solution uh can be written as

uh =

n∑
i=1

uiϕi,

using the shape functions ϕi, i = 1, . . . , n, of V h. This presentation leads to the linear system

Au = b,

with the stiffness matrix A = (a(ϕi, ϕj))i,j=1,...,n and the load vector b = (f, ϕi)i=1,...,n. The

matrix A is positive definite since the bilinear form a(·, ·) is symmetric and V−elliptic.

11



12 2. FINITE ELEMENTS AND DOMAIN DECOMPOSITION

The accuracy of this approximation can be improved by increasing the number of degrees of

freedom. Accordingly, the computational effort increases.

In Chapter 3, we analyze linear elasticity problems with compressible and almost incom-

pressible material components. For the compressible part, we use the standard displacement

formulation, cf. Chapter 1, i.e., we discretize the displacement by piecewise quadratic tetra-

hedral finite elements. For almost incompressible linear elasticity, i.e., ν → 1
2 , the value of

β tends to infinity, and the discretization of the displacement formulation by standard finite

elements leads to locking effects and slow convergence; for an analysis of locking effects see,

e.g., [4, 3]. Therefore, we use the mixed formulation for the almost incompressible part; cf.

Chapter 1. For the discretization of this mixed problem we can principally use any inf-sup

stable mixed finite element method. For simplicity we use Q2 − P0 mixed finite elements,

i.e., we discretize the displacement with piecewise triquadratic hexahedral finite elements and

the pressure with piecewise constant elements. To obtain again a symmetric positive definite

problem, the pressure is statically condensated element-by-element. The discretization by

Q2 − P0 elements is known to be inf-sup stable. It follows, for example, from the inf-sup

stability of the Q2−Pnc
1 discretization with nonconforming piecewise linear pressure variables

since the pressure space in the Q2 − P0 approach is smaller; see [47]. We are aware of the

fact that this is not an optimal element with respect to finite element convergence, but we

have used it due to its simple implementation. In general other elements, such as Q2 −Pnc
1 ,

i.e., piecewise triquadratic displacement and nonconforming piecewise linear pressure approx-

imations, can be used. Let us note, that at the interface between the compressible part and

the almost incompressible part a nonconformity of the finite element space can arise, because

there the piecewise quadratic finite element functions and the piecewise triquadratic finite el-

ement functions intersect; cf. Section 2.2. For our analysis of the condition number estimate

of our FETI-DP algorithm in Section 3.4, we do not need the inf-sup stability of the almost

incompressible part but the stability is of course necessary for the convergence of the finite

element solution in the almost incompressible part.

In Chapter 4, we consider a new coarse space for almost incompressible linear elasticity

problems, i.e., the zero net flux condition. The elastic domain is discretized with piecewise

triquadratic hexahedral finite elements on the whole domain. These finite elements are both,

inf-sup stable and conform.
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2.2 Nonconformity of the Combination of P2 and Q2 Finite

Elements

Finite elements are conforming if their corresponding finite element functions are contained

in the appropriate Sobolev spaces, in which the variational formulation holds. Note, that the

condition number estimate of the algorithm is independent of the conformity, but conformity

is needed for the quality of the finite element solution. It is well-known that the triangu-

lation of P2 finite elements is conforming; also using only Q2 finite elements produces a

conforming triangulation; see, e.g., [3]. We use both finite elements in our implementation,

tetrahedra for the compressible and hexahedra for the almost incompressible part. In our ge-

ometrical configuration we have an inclusion which is discretized with piecewise triquadratic

finite elements. Those are surrounded by layers of piecewise quadratic finite elements. The

tetrahedra and hexahedra coincide on the nodes on that interface and the interface is the

union of planar faces, cf. Section 2.3. To understand the nonconformity of this combination

it is sufficient to consider the continuity of the finite element functions on that interface.

Suppose, we consider a cube as one element, which is connected with a tetrahedron; see

Figure 2.5(a). We may write u(x, y, z) ∈ Q2 as a linear combination of triquadratic shape

functions ϕi(x, y, z), i = 1, . . . , 27, corresponding to the nodes in a hexahedral finite element,

i.e.,

u(x, y, z) =
27∑
i=1

uiϕi(x, y, z).

For a global function we can choose, e.g., u(x, y, z) = ϕ6(x, y, z), such that u6 = 1 and

ui = 0 for all i 6= 6. So, we have

u(x, y, z) = ϕ6(x, y, z)

=
1

8

(
x+ x2

) (
y + y2

) (
2− 2z2

)
.

Since we restrict ϕ6 to y = 1, we obtain

ϕ6(x, 1, z) |y=1 =
1

4

(
x+ x2

) (
2− 2z2

)
=

1

2

(
x− xz2 + x2 − x2z2

)
,

as a possible u(x, y, z) ∈ Q2 on the face between a hexahedron and tetrahedron; see Fig-

ure 2.3(a) for the plot of the Q2− shape function on the quadratic face, or Figure 2.3(b) for
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a restriction on a triangle. For the corresponding P2−shape function, we obtain

ϕ̂6(x, 1, z) = x− z + xz − z2;

see Figure 2.2(a) for the plot of the P2− shape function on the quadratic face, or Figure 2.2(b)

for a restriction on a triangle. This means, we have a difference already between the shape

function on one face, i.e.,

ϕ6(x, 1, z)− ϕ̂6(x, 1, z) = −1

2
x− 1

2
xz2 +

1

2
x2 − 1

2
x2z2 + z − xz + z2.

Therefore, we cannot have continuity for all finite element functions on a face between hexa-

hedral and tetrahedral finite elements; see Figure 2.4(c) for the difference on a triangle face

or Figures 2.4(a), 2.4(b) for a quadratic face. Since the shape functions do not coincide, we

do not have conformity of the combination of P2 and Q2 elements.

Figure 2.1: P2−shape function
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(a) P2- shape function on a quadratic face.
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Figure 2.2: Q2−shape function
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(a) Q2- shape function on a quadratic face.
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(b) Q2- shape function restricted to a triangle face.

Figure 2.3: Difference
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Figure 2.4: Geometrical configuration

(a) Hexahedron connected with a tetrahedron. The el-

ements coincide on the nodes on that interface.
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(b) Triangle face of the interface, with 6

nodes.
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2.3 Scott-Zhang Interpolation

As we have mentioned before, we consider linear elasticity problems with different material

components in Chapter 3. We will have an interior inclusion consisting of an almost incom-

pressible material surrounded by a compressible hull. Our analysis will be established on a

part of that hull which is bounded by straight edges and planar faces. So, on irregular meshes

it might be necessary to cut through elements. We then define a slab of width η and define a

regular mesh on this slab; see Figure 2.5. We have to assume that our irregular mesh resolves

η in the sense that the incompressible inclusion is separated from the interface by at least

one element; see Figure 2.5. For our analysis on irregular meshes we will use a Scott-Zhang

interpolation; see [56, 4].

Figure 2.5:

A slab in 2D: A slab (or a hull) is allowed to cut through finite elements. In such situations, an auxiliary

mesh with a similar mesh size h is introduced such that the completion of the slab (or the hull) can be

again represented as the union of finite elements.

We choose the operator, such that Πh
i : W (i) → Ṽ h, i.e., a map from the original finite

element trace space, into the finite element space on the regular mesh. The mesh size

remains of the order of h. We assume the property Πh
i u |∂Ωi= u and the stability of the

operator ‖Πh
i u‖2H1(Ωi)

≤ C‖u‖2H1(Ωi)
. Note that, since we cut through elements to separate

the compressible and the almost incompressible part, this is only done in the theory, but

never in the implementation. For simplicity, we assume in the proof that each slab can be

represented as the union of finite elements. The generalization to the case where the interior

boundary of a slab cuts through certain finite elements can be treated by using a Scott-Zhang

interpolation operator, cf. the comment at the end of the proof of Lemma 3.17.
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2.4 FETI-DP Domain Decomposition Method

The FETI-DP (dual-primal Finite ElementTearing and Interconnecting) Methods are nonover-

lapping domain decomposition methods which are used to solve large linear systems arising,

e.g., from finite element discretization. The problem is decomposed into smaller subproblems,

which are solved, at the best, in parallel. The solutions of the subproblems are merged to

a global solution. To obtain numerical scalability we need to solve a smaller, global coarse

problem, which is traditionally solved exactly.

But first we give a brief introduction into FETI-DP, which is essentially taken from[54, 29]; for

a complete description, see, e.g., [18, 19, 30, 31, 34]. Starting with the method, the compu-

tational domain Ω ⊂ IR3 is decomposed into N nonoverlapping subdomains Ωi, i = 1, . . . N,

with diameter Hi. We obtain variables in the interior of the subdomains and those on the

Figure 2.6:

Decomposition into 27 subdomains.

Figure 2.7:

s
s
s
s

s
s
s
s

s
s
s
s

s
s
s
s

Cross section, assembled primal vertices.

interface Γ :=
⋃
i 6=j(∂Ωi ∩ ∂Ωj) \ ∂ΩD, to which we refer to u

(i)
I and u

(i)
Γ , respectively.

Concerning the interface Γ it is geometrically clear that Γ is the union of subdomain faces,

edges, and vertices. Let us denote the sets of nodes on ∂Ω and Γ by ∂Ωh, Γh, and in Ωi, by

Ωi,h. For any interface node x ∈ Γh, we define

Nx := {j ∈ {1, . . . , N} : x ∈ ∂Ωj,h} .

Thus, Nx is the set of subdomain indices which have x in their closure. A node x belongs to a

face if x belongs to two subdomains, i.e., |Nx| = 2, a node x belongs to an edge if |Nx| ≥ 3,

and x is a vertex node if it is an endpoint of an edge. For more general meshes, i.e., outputs

of graph partitioners, we refer to the detailed definition of faces, edges, and vertices in [37,

Section 3].

Now the interface variables u(i)
Γ are partitioned into subdomain vertices, edges and faces. In

FETI-DP methods, the variables on the subdomain boundaries are divided into two classes, the
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primal and the dual variables. As primal variables u(i)
Π , we call variables which are assembled

before the iteration and in which continuity is enforced in each iteration step. For dual

variables u(i)
∆ , continuity is established weakly by the introduction of Lagrange multipliers λ,

thus enforcing continuity not before convergence.

However, we classify the variables into primal variables, associated with subdomain vertices

and edge averages, and into nonprimal variables, associated with the interior variables and

the subdomain edges and faces. For a description of the concept of primal constraints, we

refer to Section 3.2 or [37].

For each subdomain we assemble the local stiffness matrix K(i) and the corresponding load

vector f (i). Both are sorted according to the different sets of unknowns, this means the primal

and the nonprimal variables

K(i) =

[
K

(i)
BB K

(i)T
ΠB

K
(i)
ΠB K

(i)
ΠΠ

]
, f (i) =

[
f

(i)
B

f
(i)
Π

]
.

The nonprimal part is again partitioned into dual unknowns for which we later introduce

Lagrange multipliers and interior variables. Thus we obtain

K
(i)
BB =

[
K

(i)
II K

(i)T
I∆

K
(i)
I∆ K

(i)
∆∆

]
, f (i) =

[
f

(i)
I

f
(i)
∆

]
.

We define the corresponding block matrices

KII = diag(K
(i)
II ) K∆I = diag(K

(i)
∆I) K∆∆ = diag(K

(i)
∆∆)

KΠI = diag(K
(i)
ΠI) KΠ∆ = diag(K

(i)
Π∆) KΠΠ = diag(K

(i)
ΠΠ).

By assembly of the local subdomain matrices in the primal variables, such that

ũΠ = RTΠuΠ =

N∑
i=0

R
(i)T
Π u

(i)
Π

we obtain a partially assembled global stiffness matrix.

K̃ =

[
KBB K̃T

ΠB

K̃ΠB K̃ΠΠ

]
=

[
IB 0

0 RTΠ

][
KBB KT

ΠB

KΠB KΠΠ

][
IB 0

0 RΠ

]

f̃ =

[
fB

f̃Π

]
=

[
IB 0

0 RTΠ

][
fB

fΠ

]
.
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The matrix K̃ is coupled in the primal variables but has still a block structure in the nonprimal

block KBB.

Note, that the matrix K̃ is symmetric positive definite, since we choose a sufficient number

of primal variables to constrain the solution.

To enforce continuity on the remaining interface variables, we introduce a jump operator BB
with entries {−1, 0, 1} and Lagrange multipliers λ. The constraint BBuB = 0 results in the

FETI-DP saddle point problem
KBB K̃T

ΠB BT
B

K̃ΠB K̃ΠΠ 0

BB 0 0



uB

ũΠ

λ

 =


fB

f̃Π

0

 .
We obtain the FETI-DP system Fλ = d, where

F =
[
BB 0

] [KBB K̃T
ΠB

K̃ΠB K̃ΠΠ

]−1 [
BT
B

0

]

d =
[
BB 0

] [KBB K̃T
ΠB

K̃ΠB K̃ΠΠ

]−1 [
fB

f̃Π

]
,

by calculating the Schur complement with respect first to the nonprimal and then again with

respect to the assembled primal variables. The FETI-DP system is then solved iteratively

with a preconditioned conjugate gradient algorithm using the Dirichlet preconditioner

M−1 = BB,D [0 I∆]T
(
K∆∆ −K∆IK

−1
II K

T
∆I

)
[0 I∆]BT

B,D.

For a full description of the Dirichlet preconditioner, see, e.g., [29, Section 3.2] or [30, 34,

37, 32].

2.5 Projector Preconditioning/Deflation

In substructuring methods as FETI-DP it is possible to expand the coarse space by additional

constraints using projections; see, e.g., [33, 26]. For a given rectangular matrix U, which

contains the constraints as columns, the condition UTBBuB = 0 is enforced in each iteration

of the preconditioned conjugate gradient method. We define the F−orthogonal projection

P = U
(
UTFU

)−1
UTF
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onto range(U) if F is symmetric positive definite or

P = U
(
UTFU

)+
UTF,

where
(
UTFU

)+ denotes the pseudoinvers matrix of UTFU, if F is symmetric positive

semidefinite. We will then solve the projected system

(I − P )TFλ = (I − P )Td.

Since range(P) and ker(P ) are F−orthogonal the projection P is called an F−conjugate
projection. If λ ∈ range(U) we have

(I − P )TFλ = Fλ− P TFλ = FUλ̂− P TFUλ̂ = 0⇒ UT (I − P )TFλ = 0

where Uλ̂ = λ. Since U has full column rank, we have λ ∈ ker((I − P )TF ). For λ ∈
ker((I − P )TF ) we obtain λ = F+FU(UTFU)+UTFλ + (I − F+F )λ̂, with arbitrary

solutions λ̂. Using λ̂ := U(UTFU)+UTFλ + (I − F+F )λ̂ we get λ = λ̂ ∈ range(U). It

follows, that

ker((I − P )TF ) = range(U).

The matrix (I − P )TF is singular but the linear system is consistent and can therefore be

solved using the conjugate gradient method. The preconditioned system is

M−1(I − P )TFλ = M−1(I − P )Td, (2.1)

whereM−1 denotes the Dirichlet preconditioner. Let λ∗ be the solution of the original system

Fλ = d. We define

λ := PF+d

for any pseudoinverse F+ and additionally we denote by λ the solution of (2.1). The solution

of the original problem can then be written as

λ∗ = λ+ (I − P )λ ∈ ker(I − P )⊕ range(I− P).

For construction of the Krylov space only the projections of the preconditioned residuals onto

range(I− P) are relevant, since

M−1(I − P )TF = M−1F (I − P ) = M−1F (I − P )2 = M−1(I − P )TF (I − P ).
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We will include the projection (I − P )T into the preconditioner and project the correction

onto range(I− P) in each iteration. We obtain the symmetric preconditioner

M−1
PP = (I − P )M−1(I − P )T

and solve the original problem applying this preconditioner. This preconditioned system is

singular but consistent. The solution λ of this system is in the subspace range(I− P). The

solution λ∗ of the original problem is then computed by

λ∗ = λ+ λ ∈ ker(I − P )⊕ range(I− P).

If we include the computation of λ into the iteration we get the balancing preconditioner

M−1
BP = (I − P )M−1(I − P )T + U(UTFU)−1UT .

From [33] it is known, that the finite element solutions corresponding to the iterates generated

by the FETI-DP method using projector preconditioning satisfy the condition UTBBuB = 0.



3 Compressible and Almost

Incompressible Components

In this chapter we consider linear elasticity problems with varying coefficients inside subdo-

mains. For each subdomain we will define an inclusion surrounded by a hull with a thickness

of at least one element. For the inclusion we can choose either compressible or almost in-

compressible material and a different Young modulus, embedded in a compressible matrix

material, because we use a coarse space for the FETI-DP algorithm designed for compressible

linear elasticity. We expand the convergence analysis, given by Klawonn and Widlund [37]

for compressible linear elasticity, to the case where each subdomain contains an inclusion

surrounded by a compressible hull of thickness η. Similar results for the diffusion problem and

FETI-1 are already obtained by Pechstein and Scheichl [51, 52, 53].

For such problems, where the material is compressible in the neighborhood of the subdomain

interface, we show a polylogarithmic condition number estimate for the preconditioned FETI-

DP system. The condition number bound only depends on the thickness of the compressible

hull but is otherwise independent of coefficient jumps between the hull and the inclusion.

These results are already published in [22] and the presentation here follows that in [22].

3.1 Technical Assumptions

First, we gather the assumptions that are made on the geometry of the finite element dis-

cretization and the domain decomposition and make some technical definitions.

We can write the bilinear form for linear elasticity as

a(u, v) = (G(x)ε(u), ε(v))L2(Ω) + (G(x)β(x)div(u), div(v))L2(Ω) .

For a domain Ω with diameter H, we use the scaled Sobolev space norm

‖u‖2H1(Ω) = |u|2H1(Ω) +
1

H2
‖u‖2L2(Ω)

23
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with ‖u‖2L2(Ω) :=
∑3

i=1

∫
Ω |ui|

2 dx and |u|2H1(Ω) :=
∑3

i=1 ‖∇ui‖2L2(Ω) .

We assume that a triangulation τh of Ω is given with shape regular finite elements, having

a typical diameter h. In our numerical tests we use tetrahedra for the discretization of the

compressible and hexahedra for the almost incompressible part, which coincide on the element

nodes; cf. Chapter 2. We denote by W h := W h(Ω) ⊂
(
H1

0 (Ω, ∂ΩD)
)3 our finite element

space.

The domain Ω is decomposed into N nonoverlapping subdomains Ωi, i = 1, . . . , N, with

diameter Hi. For simplicity, we assume for our analysis, that the subdomains are well-shaped

parallelepipeds. The theory could be extended to more general hexahedral subdomains with

planar faces using the theory of mapped hexahedral elements in [47]. Since this would increase

the technicality of our proofs even further, we restrict ourselves to parallelepipeds. The

resulting interface is given by Γ :=
⋃
i 6=j (∂Ωi ∩ ∂Ωj) \ ∂ΩD. We assume matching finite

element nodes on the neighboring subdomains across the interface Γ. We also introduce the

local finite element trace spaces W (i) = W h(∂Ωi ∩ Γ), i = 1, . . . , N ; see also Remark 3.5.

For our analysis, we need the corresponding partition-of-unity functions.

Definition 3.1. Let θF ij , θEik , and θVil be the partition-of-unity functions associated with the

decomposition of the interface Γ into subdomain faces, edges, and vertices. These functions

are piecewise linear finite element functions on the decomposition τh/2. Here, we denote by

τh/2 the decomposition which is obtained by decomposing each tetrahedron into seven new

tetrahedra by using the midpoints of the edges of the quadratic elements as new vertices; see

Figure 3.1. Let θFij , θEik , and θVil be discrete harmonic finite element functions which are

piecewise linear on τh/2 and vanish at all nodes of Γ except of those of F ij , E ik, and V il,
respectively, where the value is 1; see [28, Section 7].

In our analysis we allow that each of the N subdomains contains an almost incompressible

part, here also called an inclusion, surrounded by a compressible hull. The inclusion may have

a different Young modulus than the hull. It may also be compressible. We will now specify

the definitions of a hull and a slab of a hull. We define the hull and the slab to be open sets.

Definition 3.2. The hull of a subdomain Ωi with width η is defined as

Ωi,η := {x ∈ Ωi : dist(x, ∂Ωi) < η} ; see Figure 3.2.

Definition 3.3. Let F ij ⊂ ∂Ωi be a face. Then a slab Ω̃i,η of the hull Ωi,η ⊂ Ωi with

F ij ⊂ ∂Ω̃i,η is defined as

Ω̃i,η :=
{
x ∈ Ωi,η : dist(x,F ij) < η

}
; see Figure 3.3.
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Figure 3.1:

Decomposition of a tetrahedron into seven tetrahedra.
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Since we made the assumption that our subdomains are parallelepipeds, the faces of a

hull and of a slab are planar. In the following we assume that the completion of a hull

and a slab are the union of finite elements. The inclusion can still be quite irregular in this

situation; see Figure 3.4. Still, if the completion of a slab is not the union of finite elements,

i.e., the boundary of a slab cuts through finite elements, then we remesh the slab with a

mesh size similar to h, such that the auxiliary mesh satisfies the assumption. Note that this

auxiliary mesh is only needed to extend our analysis to this case and is never used in the

implementation of the algorithm. In the proof of Lemma 3.17, we then use a Scott-Zhang

interpolation, cf. [56, 4], from the original finite element space to the finite element space on

the auxiliary mesh; see Figure 2.5 and the end of the proof of Lemma 3.17. We assume that

our original mesh resolves η in the sense that the inclusion is separated from the interface by

at least one element; also see Figure 2.5.

Figure 3.2: Hull

Ωi,η, hull of Ωi; see Definition 3.2.

Figure 3.3: Slab

Ω̃i,η, slab of Ωi,η; see Definition 3.3.

Figure 3.4:

The inclusion may be irregular even for a hull with planar faces if it can be encased in the hull of width η.

Now, we define the discrete elastic extension and the corresponding discrete harmonic

extension to the hull and to the slab.
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Definition 3.4. For w ∈ W (i) let Hεw be the discrete elastic extension of w from ∂Ωi to

the subdomain Ωi, i.e., Hεw ∈ Ui :=
{
v ∈

(
H1(Ωi)

)3 ∩W h(Ωi) : v |∂Ωi= w
}

defined by

|ai(Hεw,Hεw)| = inf
v∈Ui
|ai(v, v)|

and let Hηw be the discrete harmonic extension of w ∈W (i) from ∂Ωi to the hull Ωi,η with

zero boundary conditions on the interior boundary of the hull, i.e., Hηw ∈ Ui,η := {v ∈(
H1(Ωi,η)

)3 ∩W h(Ωi,η) : v |∂Ωi= w, v |∂Ωi,η\∂Ωi= 0} defined by

|Hηw|H1(Ωi,η) = inf
v∈Ui,η

|v|H1(Ωi,η).

Additionally, we have for w ∈W (i) with w(x) = 0 for all x ∈ ∂Ωi \ (∂Ω̃i,η ∩ ∂Ωi) the discrete

harmonic extension H̃ηw of w to the slab Ω̃i,η, such that

H̃ηw =


w(x), x ∈ ∂Ωi

0, x ∈ Ωi \ Ω̃i,η

discrete harmonic in Ω̃i,η.

Remark 3.5. In order to avoid an excessive use of extension operators, in the following, we

will always tacitly assume that a function u ∈ W (i) is discrete elastically extended to the

interior of the subdomain.

3.2 Coarse Space

In FETI-DP algorithms primal constraints are used to make certain local problems invertible

and to introduce a coarse problem. For simplicity, we consider FETI-DP methods with primal

vertex constraints and edge averages over all edges as primal constraints. As a result all

faces are fully primal in the sense of [37] and of Definition 3.6. For each subdomain Ωi, we

assemble the local linear system

K(i)u(i) = f (i).

Then, the FETI-DP saddle point problem is of the form[
K̃ BT

B 0

][
ũ

λ

]
=

[
f̃

0

]
,

where the matrix K̃ and right hand side f̃ are obtained from the local matrices K(i) and local

load vectors f (i) by partial assembly in the primal variables; see, e.g., [31] or Section 2.4. The
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continuity of the solution ũ across the interface Γ is enforced by the constraint Bu = 0, where

B = [B(1), . . . , B(N)] with entries from {−1, 0, 1}. The restriction of B to the interface Γ

is denoted by BΓ. In standard FETI-DP algorithms, the variables ũ are eliminated and the

resulting Schur complement system Fλ = d, with F = BK̃−1BT and d = BK̃−1f̃ , is solved

iteratively with a preconditioned conjugate gradient method. As a preconditioner we consider

here exclusively the Dirichlet preconditioner M−1, cf. [29, Section 3.2] or [30, 34, 37, 32].

For a complete description of FETI-DP algorithms, see, e.g., [18, 19, 29, 30, 31, 34]. Here

we consider, in particular, the algorithm given in [37] and [31, 30]. See the latter references

for an algorithmic description of parallel FETI-DP methods using primal edge constraints and

a transformation of basis.

For the convenience of the reader we now recall the concept of edge average primal con-

straints, as given in [37, Section 5] .

The null space ker(ε) is the space of rigid body modes. For a generic domain Ω̂ with

diameter H, a basis for ker(ε) is given by the three translations

r1 =


1

0

0

 , r2 =


0

1

0

 , r3 =


0

0

1

 , and the three rotations

r4 =
1

H


x2 − x̂2

−x1 + x̂1

0

 , r5 =
1

H


−x3 + x̂3

0

x1 − x̂1

 , r6 =
1

H


0

x3 − x̂3

−x2 + x̂2


where x̂ ∈ Ω̂.

In our proof of the condition number estimate we need to control the rigid body modes on

each face. We use the concept of fully primal faces. A face is called fully primal, if there are at

least six linearly independent constraints, given by appropriately selected averages over edges,

which belong to the boundary of that face and which control the rigid body modes on that

face. For a detailed description, see [37, Section 5]. The edge averages of the components

of the displacements define linear functionals gn, given by

gn(w(i)) =

∫
Eik w

(i)
l dx∫

Eik 1 dx
, n = 1, . . . , 6, l = 1, 2, 3

for w(i) =
(
w

(i)
1 , w

(i)
2 , w

(i)
3

)
∈ W (i) and edges E ik ⊂ ∂F ij . The edges E ik and the displace-

ment components have to be chosen, such that the rigid body modes are controlled on F ij ,
i.e., if r is an arbitrary rigid body mode and

∑6
i=1 gn(r)2 = 0, then r = 0.
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The functionals gn, n = 1, . . . , 6, provide a basis of the dual space (ker(ε))′ . There

exists a dual basis of (ker(ε))′ , spanned by the functionals f1, . . . , f6, defined by fm(rl) =

δml, m, l = 1, . . . , 6. Thus, there exist βlk ∈ IR, l, k = 1, . . . , 6, such that for w ∈W (i)

fm(w) =

6∑
n=1

βmngn(w), m = 1, . . . , 6.

For further details, see, e.g., [37, Section 5].

Using a Cauchy-Schwarz inequality, we obtain∣∣∣gm(w(i))
∣∣∣2 ≤ CH−1

i

∥∥∥w(i)
∥∥∥2

L2(Eik)
.

With Lemma 3.11 we can show that∣∣∣gm(w(i))
∣∣∣2 ≤ CH−1

i

(
1 + log

(
Hi

hi

))∥∥∥w(i)
∥∥∥2

H1(Ωi)
,

and, accordingly, ∣∣∣gm(w(i))
∣∣∣2 ≤ Cη−1

(
1 + log

(
η

hi

))∥∥∥w(i)
∥∥∥2

H1(Ω̃i,η)
,

where Ω̃i,η is a slab which contains E ik in its boundary. This motivates the definition of a

fully primal face; see [37, Definition 5.3]. In contrast to [37], where trace spaces are used, we

use standard Sobolev spaces.

Definition 3.6 (fully primal face). A face F ij is fully primal if, in the space of primal

constraints over F ij , there exists a set fF
ij

m , m = 1, . . . , 6, of linear functionals onW (i) with

the following properties:

(i)
∣∣∣fF ijm (w(i))

∣∣∣2 ≤ CH−1
i

(
1 + log

(
Hi
hi

)){∣∣w(i)
∣∣2
H1(Ωi)

+ 1
H2
i

∥∥w(i)
∥∥2

L2(Ωi)

}
(ii)

∣∣∣fF ijm (w(i))
∣∣∣2 ≤ Cη−1

(
1 + log

(
η
hi

)){∣∣w(i)
∣∣2
H1(Ω̃i,η)

+ 1
H2
i

∥∥w(i)
∥∥2

L2(Ω̃i,η)

}
(iii) fF

ij

m (rl) = δml ∀m, l = 1, . . . , 6, rl ∈ ker(ε).

Finally, we need an additional Korn inequality; see, e.g., [37, Lemma 6.2], where a corre-

sponding version for trace spaces is given. The Korn constant of a domain depends on its as-

pect ratio; for an ellipse with semi-axes H and η it is explicitly known, i.e., Ke = 2(1+(Hη )2);

see [25]. In particular, we need Korn’s inequality on a slab.
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Lemma 3.7. Let Ω ⊂ IR3 be a Lipschitz domain of diameter H, and let r ∈ ker(ε) be the

minimizing rigid body mode. Then, there exists a positive constant C > 0, independent of h

and H, such that for all u ∈ H1(Ω), we have

‖u− r‖2H1(Ω) ≤ C ‖ε(u)‖2L2(Ω) .

For an estimate on the slab Ω̃i,η, we have

‖u− r‖2
H1(Ω̃i,η)

≤ C
(
Hi

η

)2

‖ε(u)‖2
L2(Ω̃i,η)

.

Proof. For a proof of the first part, see [37, Lemma 6.2]. Here, we prove the second inequality.

The idea is to transform the slab to the smaller cube of length η, estimate by the first

inequality, and transform it back to the slab. Let us denote the cube of length η by Ωη and

let T be the transformation from the slab Ω̃i,η := [0, H]2 × [0, η] to this cube Ωη := [0, η]3,

such that

T (x, y, z) =


η
H 0 0

0 η
H 0

0 0 1




x

y

z

 .

Then we obtain

‖u− r‖2
H1(Ω̃i,η)

= |u− r|2
H1(Ω̃i,η)

+
1

H2
‖u− r‖2

L2(Ω̃i,η)

=

∫
Ω̃i,η

|∇(u− r)|2 dx+
1

H2
‖u− r‖2

L2(Ω̃i,η)

=

∫
Ωη

∇(û− r̂)TDT TDT ∇(û− r̂)|detDT−1| dx̂+
1

H2
‖u− r‖2

L2(Ω̃i,η)

≤
(
H

η

)2 ∫
Ωη

|∇(û− r̂)|2 dx̂+

(
H

η

)2 1

H2
‖û− r̂‖2L2(Ωη)

=

(
H

η

)2

|û− r̂|2H1(Ωη) +
1

η2
‖û− r̂‖2L2(Ωη)

≤ C

(
H

η

)2

‖ε(û)‖2L2(Ωη) .
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Transforming back to the slab, we get with

C

(
H

η

)2

‖ε(û)‖2L2(Ωη)

= C

(
H

η

)2 ∫
Ω̃i,η

(
∇u+∇uT

)T
DT−TDT−1

(
∇u+∇uT

)
|detDT | dx

≤ C

(
H

η

)2

‖ε(u)‖2
L2(Ω̃i,η)

a Korn inequality on a slab.

2

3.3 Technical Tools

In this section, we introduce some technical tools which we need for the analysis of the

condition number bound in Section 3.4

The following lemma is directly related to [15, Lemma 5.4].

Lemma 3.8. Let F ij be a common face of Ωi and Ωj . There exists a piecewise linear finite

element function ϑ̄F ij on Ω̃i,η, which is equal to one at the nodal points of F ij , vanishes on
Γh \ F ij , and satisfies

∣∣ϑ̄F ij ∣∣2H1(Ω̃i,η)
≤ C

(
1 + log

(
Hi

hi

))
H2
i

η
.

Proof. We follow the proof for cubes in Casarin [7, Lemma 3.3.6]; also see [57, Lemma 4.25].

In [15, Proof of Lemma 5.4] the proof is given for cubes and then, by discussing the effects

of compressing the cube, the result for cuboids is obtained. Here, we introduce a proof

directly modified for a cuboid and obtain a result which is slightly different to the one in [15,

Lemma 5.4], in the sense that we have also a dependency on the number of elements in each

slab.

Let us consider a cuboid Ω̃η which has the dimension H × H × η. The finite element

function ϑ̄Fij is equal to 1 on the face F ij and vanishes on the rest of the boundary nodes

of ∂Ω̃η \ F ij . We divide Ω̃η into 24 tetrahedra by connecting the center of the cuboid C to

all its vertices and all centers of its faces F ik and by dividing these faces by their diagonals;

see Figure 3.5. The function ϑ̄Fij associated with the face F ij is defined to take the value 1
6
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Figure 3.5:

η

H

H

C

Cik

Decomposition of the cuboid into 24 tetrahedra.

at the center of the cuboid C. All six functions ϑ̄F ik , k = 1, . . . , 6, corresponding to the six

faces of the cuboid form a partition of unity at all nodes belonging to the closure of Ω̃η except

those on the wire basket, formed by the union of the edges and vertices of the cuboid, where

ϑ̄Fij = 0. The values at the centers of the faces Cik are ϑ̄F ij (Cik) = δjk, k = 1, . . . , 6.

On the segments CCik the function ϑ̄Fij is linear, this means on the straight line CCij the

function ϑ̄Fij rises from 1
6 to 1, on the other segments CCik the function ϑ̄F ij decreases

from 1
6 to 0. The values inside each tetrahedron, formed by a segment CCik and one edge

of F ij , are defined to be constant on the intersection of any plane through that edge with

the segment CCik.

The value on the plane is given by the value of the intersection point, which we call E; see

Figure 3.6.

Figure 3.6:

ϑ̄F ij(E) = 1
12

ϑ̄F ij(C) = 1
6 C

E

ϑ̄F ij(Cik) = 0 Cik

Plane (in gray) through one edge of F ij and the point E. The point E is the intersection of the plane with

the segment CCik. The value of ϑ̄Fij is constant on this plane and defined by ϑ̄Fij (E). Since, in this

picture, the point E is the center of the segment CCik, we have ϑ̄Fij (E) = 1
12
.

Such functions may not be finite element functions on our mesh. Therefore, we have to

interpolate the functions ϑ̄F ij to obtain corresponding finite element functions. Note, that
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the interpolated functions still form a partition of unity.

We first only discuss finite elements that do not touch an edge of the cuboid. Our face

F ij is the base of the cuboid in Figures 3.7, 3.8, and 3.9. There are two possibilities for the

distance of the center of the cuboid C to the center of the different faces; either the distance

is of the order of H, see Figure 3.7 and 3.8, or the distance is of the order of η, see Figure 3.9.

Figure 3.7:

η

H

H

C

Cik

η

H

H

C

Cik

ϑ̄Fij 6= 1 on all faces of the tetrahedron.

We first consider the situations as in Figures 3.7 and 3.8, where the distance between C

and Cik is of the order of H. On the segment CCik the function ϑ̄Fij decreases from
1
6 to 0

and therefore here the Euclidean norm of the gradient can be bounded by

‖∇ϑ̄F ij‖l2 ≤
Ĉ

H
.

Let e be a point on the edge of the cuboid, see Figures 3.7 and 3.8, and consider a plane

through the points e, C, and Cik. When moving closer to the point e the segment CCik
becomes the segment AB; see Figures 3.7-3.8. Since ϑ̄Fij (C) = ϑ̄F ij (A) and ϑ̄F ij (Cik) =

ϑ̄Fij (B) the gradient grows by a factor of CCik
AB

, i.e.,

‖∇ϑ̄F ij‖l2 ≤ Ĉ

H
· CCik
AB

=
Ĉ

H
· eE
r
≤ Ĉ

H
· H
r
≤ Ĉ

r
,

where r is the distance of e to the midpoint of the segment AB. Here, Ĉ is a generic constant

independent of H, h, η and r. The tetrahedra fulfilling this bound are not critical for our

analysis since the bound does not depend on η.
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Figure 3.8:

η

H

H

C

Cik

η

H

H

C

Cik

ϑ̄Fij 6= 1 on all faces of the tetrahedron.

Figure 3.9:

η

H

H

C

η

H

H

C

ϑ̄Fij = 1 on the gray face, i.e., ϑ̄Fij (Cij) = 1 and ϑ̄Fij (C) = 1
6
.
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Next, we consider a tetrahedron, see Figure 3.9 (upper and left), which coincides on one

face with F ij , i.e., ϑ̄F ij = 1 on this face. Thus, the length of the segment CCij is of the

order of η and on the segment CCij the value of the function ϑ̄Fij increases from
1
6 to 1. This

means, ‖∇ϑ̄F ij‖l2 ≤ Ĉ
η and again the gradient grows in proportion to CCik

AB
when moving

closer to the edge of the cuboid. Thus, the norm of the gradient can be estimated by

‖∇ϑ̄Fij‖l2 ≤ Ĉ

η
· CCik
AB

=
Ĉ

η
· eE
r
≤ Ĉ

η
· H
r
,

in which Ĉ is a generic, positive constant independent of H, h, η, and r.

Next, we consider local cylindrical coordinates around the edges of the cuboid. The critical

tetrahedra are the ones where the bound depends on H/η; see Figure 3.9. It is therefore

sufficient to consider integrals in local cylindrical coordinates around edges of length H. We

need to integrate over an angle of arctan(η/H) ≤ η/H; see Figure 3.10. We split the integral

Figure 3.10:

α

η

h

H

H

✶

Integral around an edge in cylindrical coordinates.

into two parts. First one we integrate only over elements which do not touch edges of the

cuboid. In the second term we consider a thin layer of elements of thickness h touching the

edge. Note, that in the latter, the norm of the gradient of ϑ̄Fij is bounded by Ĉ
h · Hη since

ϑ̄Fij decreases to zero towards the outer boundary of the layer. Let U be a neighborhood of

the edge. Then, we obtain∣∣ϑ̄Fij ∣∣2H1(U)

≤ Ĉ

{∫ H

0

∫ H

h

∫ Cη
H

0

(
H

ηr

)2

r dα dr dz +

∫ H

0

∫ h

0

∫ Cη
H

0

(
H

ηh

)2

r dα dr dz

}

≤ Ĉ
H2

η

(
1 + log

(
H

h

))
.

The same bound applies to the tetrahedron in Figure 3.9 (lower and left), where ϑ̄F ij decreases

from 1
6 to 0 on a segment of length η.
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By considering the cases in Figure 3.7 and 3.8, we have covered 16 of the total of the

24 tetrahedra. From the cases in Figure 3.9, we obtain our bounds for the remaining cases

by symmetry, where in four cases ϑ̄Fij decreases from 1 to 1
6 and in the other cases ϑ̄Fij

increases from 1
6 to 1.

2

We also need a discrete Sobolev inequality for a rectangle in two dimensions.

Lemma 3.9. Let Ω̂i,η ⊂ IR2 be a rectangle with side lengths H and η. Then, for finite

element functions u ∈ H1(Ω̂i,η),

‖u‖2
L∞(Ω̂i,η)

≤ CH
η

(
1 + log

(η
h

))(
|u|2

H1(Ω̂i,η)
+

1

H2
‖u‖2

L2(Ω̂i,η)

)
,

where C > 0 is a constant independent of H and h.

Proof. Let Ω̃ be a square with side length η. Then we define ũ on Ω̃ as

ũ(x̃, ỹ) := (u ◦ T )(x̃, ỹ) = u(x, y)

where the transformation T maps the square Ω̃ to the rectangle Ω̂i,η, i.e., T : Ω̃→ Ω̂i,η, and(
x̃

ỹ

)
7→
(

H
η 0

0 1

)(
x̃

ỹ

)
=

(
x

y

)
.

We have

‖u‖2
L∞(Ω̂i,η)

= ‖ũ‖2
L∞(Ω̃)

.

On the square Ω̃ we may apply the standard Sobolev inequality, see, e.g., [4, Lemma (4.9.1)].

‖ũ‖2
L∞(Ω̃)

≤ C
(

1 + log
(η
h

))
‖ũ‖2

H1(Ω̃)

= C
(

1 + log
(η
h

)){
|ũ|2

H1(Ω̃)
+

1

η2
‖ũ‖2

L2(Ω̃)

}
.

By transforming back to the rectangle, we have for the first part

|ũ|2
H1(Ω̃)

=

∫
Ω̃
|∇ũ|2 dx̃

=

∫
Ω̂i,η

(∇u)T

 (
H
η

)2
0

0 1

 (∇u)
( η
H

)
dx

≤ H

η
|u|2

H1(Ω̂i,η)
,
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and for the L2 term

‖ũ‖2
L2(Ω̃)

=

∫
Ω̃
|ũ|2 dx̃ =

∫
Ω̂i,η

η

H
(u)2 dx =

η

H
‖u‖2

L2(Ω̂i,η)
.

With

|ũ|2
H1(Ω̃)

+
1

η2
‖ũ‖2

L2(Ω̃)
≤ H

η
|u|2

H1(Ω̂i,η)
+

1

ηH
‖u‖2

L2(Ω̂i,η)

=
H

η

{
|u|2

H1(Ω̂i,η)
+

1

H2
‖u‖2

L2(Ω̂i,η)

}
we obtain the Sobolev inequality on a cuboid

‖u‖2
L∞(Ω̂i,η)

≤ CH
η

(
1 + log

(η
h

))
‖u‖2

H1(Ω̂i,η)
.

2

The next lemma is a version of Casarin [7, Lemma 3.3.7], modified for cuboids; see also

Dryja, Smith, and Widlund [17, Lemma 4.5] or [57]. A version related to the first part of our

lemma can be found in [15, Lemma 5.4].

Lemma 3.10. Let F ij be a face common to Ωi and Ωj . Furthermore let Ω̃i,η be a slab

as defined in Definition 3.3. Let ϑ̄F ij be given as constructed in Lemma 3.8. Then, for

u ∈W (i),

1. |Ih(ϑ̄Fiju)|2
H1(Ω̃i,η)

≤ C
H

η

(
1 + log

(
H

h

))2

‖u‖2H1(Ωi)
(3.1)

2. |Ih(ϑ̄Fiju)|2
H1(Ω̃i,η)

≤ C

(
H

η

)2(
1 + log

(
H

h

))(
1 + log

(η
h

))
‖u‖2

H1(Ω̃i,η)
.

(3.2)

Proof. Here, we give a scalar version of the proof. In the proof of Lemma 3.8, we have estab-

lished bounds for the gradient of ϑ̄F ij . On each element let ˜̄ϑFij ∈ [0, 1] be the value of ϑ̄Fij

at an arbitrary point of that element. For convenience we can choose some kind of average of

ϑ̄Fij on each element. Then, by the mean value theorem, we obtain
∣∣∣ϑ̄Fij − ˜̄ϑFij

∣∣∣ ≤ h C H
ηr

or
∣∣∣ϑ̄F ij − ˜̄ϑFij

∣∣∣ ≤ h C
r for elements which do not touch edges, which belong to the boundary

of the face F ij and, accordingly,
∣∣∣ϑ̄F ij − ˜̄ϑFij

∣∣∣ ≤ h C H
ηh or

∣∣∣ϑ̄Fij − ˜̄ϑFij
∣∣∣ ≤ h C

h for the thin

layer of elements of thickness h touching the edge. First, we will only distinguish between

elements which touch the edge or do not touch the edge, so we denote the estimates by
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∣∣∣ϑ̄F ij − ˜̄ϑF ij
∣∣∣ ≤ h · bE and

∣∣∣ϑ̄F ij − ˜̄ϑF ij
∣∣∣ ≤ h · bI , respectively. Additionally, we denote by

ωη the union of all elements K which have a vertex on the edge E ik, which corresponds to

the face F ij . Thus, we have

|Ih(ϑ̄F iju)|2
H1(Ω̃i,η)

=
∑

K⊂Ω̃i,η

∣∣∣Ih ((ϑ̄F ij − ˜̄ϑFij + ˜̄ϑFij )u
)∣∣∣2
H1(K)

≤ 2
∑

K⊂Ω̃i,η

∣∣∣ ˜̄ϑF iju∣∣∣2
H1(K)

+ 2
∑

K⊂Ω̃i,η

∣∣∣Ih ((ϑ̄Fij − ˜̄ϑF ij )u
)∣∣∣2
H1(K)

≤ 2 |u|2
H1(Ω̃i,η)

+ 2
∑

K⊂Ω̃i,η\ωη

∣∣∣Ih ((ϑ̄Fij − ˜̄ϑF ij )u
)∣∣∣2
H1(K)

+2
∑
K⊂ωη

∣∣∣Ih ((ϑ̄Fij − ˜̄ϑF ij )u
)∣∣∣2
H1(K)

.

Using an inverse estimate for finite element functions, i.e., |vh|Ht(Ωi) ≤ Ĉhm−t|vh|Hm(Ωi),

see, e.g.,[3, p. 78 and p. 80], the H1-seminorm in the second and the third term can be

replaced by the L2-norm with an additional factor h−2. Therefore, we have to estimate∑
K⊂Ω̃i,η\ωη

h−2
∥∥∥Ih ((ϑ̄Fij − ˜̄ϑF ij )u

)∥∥∥2

L2(K)
+
∑
K⊂ωη

h−2
∥∥∥Ih ((ϑ̄F ij − ˜̄ϑF ij )u

)∥∥∥2

L2(K)

≤
∑

K⊂Ω̃i,η\ωη

(bI)
2 ‖u‖2L2(K) +

∑
K⊂ωη

(bE)2 ‖u‖2L2(K) .

So far we have used sums over elements, now we return to the integral in cylindrical coordi-

nates. For the critical tetrahedra, where the bounds depend on H/η, z is of the order of H

since the edge E ik belongs to the face F ij ; r is also of the order of H and the angle over

which we integrate is of the order of η
H .

On the critical segment, we have∑
K⊂Ω̃i,η\ωη

(
H

ηr

)2

‖u‖2L2(K) +
∑
K⊂ωη

(
H

ηh

)2

‖u‖2L2(K)

≤ C
{∫ H

0

∫ H

h

∫ Ĉη
H

0

H2

η2r2
u2 r dα dr dz +

∫ H

0

∫ h

0

∫ Ĉη
H

0

H2

η2h2
u2 r dα dr dz

}
≤ C

{∫ H

h

∫ Ĉη
H

0

H2

η2r

(∫ H

0
u2 dz

)
dα dr +

∫ h

0

∫ Ĉη
H

0

H2

η2h2
r
(∫ H

0
u2 dz

)
dα dr

}

We have to estimate the line segment
∫ H

0 u2 dz which is dependent of z, α, and r. Building

a smaller cuboid of size η × η ×H around this segment, we can estimate the line segment
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by an edge of this cuboid, which is also of the order of H. We use the presentation of the

estimate of ‖u‖2
L2(Eik)

, given in [28, Lemma A.3]; see [27, Section 5, Proof of Lemma 2] for

the proof. Combined with Lemma 3.9, we obtain

‖u‖2L2(Eik) ≤ C
H

η

(
1 + log

(η
h

))(
|u|2

H1(Ω̃i,η)
+

1

H2
‖u‖2

L2(Ω̃i,η)

)
.

From this, we obtain the estimate (3.2)

|Ih(ϑ̄F ij )|2H1(Ω̃i,η)

≤ C

(
H

η

)2 (
1 + log

(η
h

))(
1 + log

(
H

h

))(
|u|2

H1(Ω̃i,η)
+

1

H2
‖u‖2

L2(Ω̃i,η)

)
.

If we can afford to estimate with respect to the whole subdomain Ωi, we can use the

standard edge estimate, see Toselli and Widlund [57, Lemma 4.16], and obtain

‖u‖2L2(Eik) ≤ C

(
1 + log

(
H

h

))(
|u|2H1(Ωi)

+
1

H2
‖u‖2L2(Ωi)

)
.

From this, we obtain the inequality (3.1)

|Ih(ϑ̄Fiju)|2
H1(Ω̃i,η)

≤ CH
η

(
1 + log

(
H

h

))2(
|u|2H1(Ωi)

+
1

H2
‖u‖2L2(Ωi)

)
.

2

In the next lemma, we just summarize the results for the estimates of the edges obtained

in the proof of Lemma 3.10. It is therefore a combination of [57, Lemma 4.19] and [57,

Lemma 4.16], and an edge estimate in terms of the energy on a corresponding slab.

Lemma 3.11. Let E ik be an edge of Ωi, or rather an edge of Ω̃i,η of the order of Hi. Let

θEik be the finite element function which vanishes at all nodes of Γ except of those of E ik

where it takes the value 1, and which is discrete harmonically extended to Ωi. Let ϑ̄Eik be the

function that vanishes on all nodes of Ωi except on those of E ik where it takes the value 1.

By Ih(ϑ̄Eiku) we denote the extension by zeros of the values of u on E ik. Then, for u ∈W (i),

(i)
∣∣H(Ih(θEiku))

∣∣2
H1(Ωi)

≤
∣∣Ih(ϑ̄Eiku)

∣∣2
H1(Ωi)

≤ C ‖u‖2L2(Eik) ,

since it is a local argument, the estimate is also valid for the slab, i.e.,∣∣H(Ih(θEiku))
∣∣2
H1(Ω̃i,η)

≤
∣∣Ih(ϑ̄Eiku)

∣∣2
H1(Ω̃i,η)

≤ C ‖u‖2L2(Eik) ,
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(ii) ‖u‖2L2(Eik) ≤ C
(
1 + log

(
H
h

)){
|u|2H1(Ωi)

+ 1
H2
i
‖u‖2L2(Ωi)

}
,

(iii) ‖u‖2
L2(Eik)

≤ CH
η

(
1 + log

( η
h

)){
|u|2

H1(Ω̃i,η)
+ 1

H2 ‖u‖2L2(Ω̃i,η)

}
.

Furthermore, we need an extension lemma to extend a function from one slab to a neigh-

boring one.

Lemma 3.12. Let Ω̃i,η and Ω̃j,η be two cuboids of the same width η, which share a face

F ij ⊂ ∂Ω̃i,η ∩ ∂Ω̃j,η, and let

Vi := {v ∈W h(Ω̃i,η) : v(x) = 0 ∀x ∈ ∂Ω̃i,η \ F ij}
Vj := {v ∈W h(Ω̃j,η) : v(x) = 0 ∀x ∈ ∂Ω̃j,η \ F ij}.

Then, there exists an extension operator Eji : Vj → Vi with the following properties

1. (Ejiu) |
Ω̃j,η

= u ∀u ∈ Vj

2. |Ejiu|H1(Ω̃i,η)
= |u|

H1(Ω̃j,η)
∀u ∈ Vj ;

see also Figure 3.11.

Figure 3.11: Extension

Ωi Ωj

❡Ωi,η
❡Ωj,η

F ij

Eji

✵✵

✵✵

✵ ✵

✶

Cross section of two neighboring slabs. An extension from Ω̃i,η to Ω̃j,η.

Proof. Without loss of generality we suppose that F ij is a subset of the x− y−plane. Then
it is sufficient to choose a reflection for the extension operator such that

Ejiu(x, y, z) =

{
u(x, y,−z) x, y, z ∈ Ω̃i,η

u(x, y, z) x, y, z ∈ Ω̃j,η.
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We may write Ejiu(x, y, z) = u(x, y,−z) = u ◦ T with T =


x 0 0

0 y 0

0 0 −z

 for x, y, z ∈

Ω̃i,η and we obtain

|Ejiu|2H1(Ω̃i,η)
=

∫
Ω̃i,η

|∇ (Ejiu(x, y, z))|2 dx dy dz

=

∫
Ω̃i,η

|∇ (u ◦ T )|2 dx dy dz

=

∫
Ω̃j,η

(∇u)T (DT )T (DT ) (∇u)
∣∣det(DT−1)

∣∣ dx̂ dŷ dẑ
=

∫
Ω̃j,η

|∇u|2 dx̂ dŷ dẑ

= |u|2
H1(Ω̃j,η)

.

2

3.4 Convergence Analysis

In this section, we will prove our central theorem on the condition number estimate for the

FETI-DP algorithm. Let us first repeat the spaces usually used in the analysis of FETI-DP

methods. We denote byW :=
∏N
i=1W

(i) the product space associated with the spacesW (i),

i.e., W (i) = W h(∂Ωi ∩ Γ); see also Remark 3.5. Furthermore, we define

W̃ :=
{
u : ∃u(i) ∈W (i), i = 1, . . . , N, such that u =

N∑
i=1

R(i)Tu(i)
}

as the subspace of partially assembled finite element functions with an assembly in the

primal variables of FETI-DP, where R(i)T is the local assembly operator. In our analy-

sis we need the local Schur complement matrices S(i)
ε obtained from K(i) by the elimina-

tion of the interior variables in Ωi and the partially assembled Schur complement matrix

S̃ε =
∑N

i=1R
(i)TS

(i)
ε R(i).

In order to provide a condition number estimate for the preconditioned FETI-DP matrix

M−1F, we expand the convergence analysis, given in [37] for compressible linear elasticity, to

the case where each subdomain contains an almost incompressible or compressible inclusion

surrounded by a compressible hull of thickness η.
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As in [37, Section 8.1], we introduce the projection

PD : W̃ → W̃ , PD := BT
D,ΓBΓ.

Note that PD and also P TD preserve jumps for u ∈ W̃ in the sense that BΓPDu = BΓu and

BD,ΓP
T
Du = BD,Γu. In this notation we have F = BΓS̃

−1
ε BT

Γ and the Dirichlet preconditioner

M−1 = BD,ΓS̃εB
T
D,Γ. Let w ∈ W̃ , then, we have(

R(i)PDw
)

(x) =
∑
j∈Nx

δ†j

(
(R(i)w)(x)− (R(j)w)(x)

)
, x ∈ ∂Ωi,h ∩ Γh,

where δ†j(x) =
Gγ1,j∑

k∈Nx G
γ
1,k

and γ ∈ [1
2 ,∞). For the analysis, we make the following assump-

tion.

Assumption 3.13. For each subdomain, we have an inclusion which can be either almost

incompressible or compressible, surrounded by a hull Ωi,η of compressible material. The

material coefficients G(x) and β(x) have a constant value in the interior inclusion and in the

hull respectively, i.e.,

G(x) =

{
G1,i x ∈ Ωi,η

G2,i x ∈ Ωi \ Ωi,η

β(x) =

{
β1,i x ∈ Ωi,η

β2,i x ∈ Ωi \ Ωi,η.

Note, that this assumption could be easily generalized such that the Young modulus and

the Poisson ratio are piecewise constant on each finite element and have positive, arbitrarily

bounded values in the inclusion and only mildly varying values on the hull.

Remark 3.14. Note that Assumption 3.13 allows that the Young modulus in the inclusion

can be different from the one in the hull and that their quotient can be arbitrarily small or

large. Hence, we can allow for arbitrarily large coefficient jumps of the Young modulus across

the boundary of the inclusion in addition to an arbitrary Poisson ratio within the inclusion.

The following assumption allows for the improved bound (3.4) in Lemma 3.17 and Theo-

rem 3.18, respectively, which contains a linear factor H/η compared to the (H/η)4−factor
in (3.3).

Assumption 3.15. For each subdomain Ωi, i = 1, . . . , N , we assume that G1,i ≤ ki ·G2,i,

where ki > 0 is a constant independent of h,H, η,G1,i, and G2,i.



3.4. CONVERGENCE ANALYSIS 43

For the edge term estimate in the proof of Lemma 3.17, we need a further assumption.

Assumption 3.16. For any pair of subdomains (Ωi,Ωk) which have an edge in common,

we assume that there exists an acceptable path (Ωi,Ωj1 , . . . ,Ωjn ,Ωk) from Ωi to Ωk, via a

uniformly bounded number of other subdomains Ωiq , q = 1, . . . n, such that the coefficients

G1,jq of the Ωiq satisfy the condition

TOL ·G1,jq ≥ min(G1,i, G1,k), q = 1, . . . , n,

where TOL > 0 is a chosen tolerance.

For a detailed description of the concept of acceptable paths, see [37, Section 5].

Next, we formulate the central technical lemma of this section.

Lemma 3.17. Given Assumptions 3.13 and 3.16, for all w ∈ W̃ , we have

|PDw|2S̃ε ≤ C max(1, TOL)

(
1 + log

(
H

h

))(
1 + log

(η
h

))(H
η

)4

|w|2
S̃ε
, (3.3)

where C > 0 is independent of h,H, η, and the values of Gi and βi, i = 1, . . . , N, and hence

also of the values of Ei and νi, i = 1, . . . , N.

If additionally Assumption 3.15 is satisfied, we have

|PDw|2S̃ε ≤ C max(1, TOL)

(
1 + log

(
H

h

))2(H
η

)
|w|2

S̃ε
, (3.4)

where C > 0 is independent of h,H, η, and the values of Gi and βi, i = 1, . . . , N, and hence

also of the values of Ei and νi, i = 1, . . . , N.

We will prove this lemma after the next theorem.

Theorem 3.18. Given Assumptions 3.13 and 3.16, the condition number of the precondi-

tioned FETI-DP system satisfies

κ(M−1F ) ≤ C max(1, TOL)

(
1 + log

(
H

h

))(
1 + log

(η
h

))(H
η

)4

where C > 0 is independent of h,H, η and the values of Gi and βi, i = 1, . . . , N, and hence

also of the values of Ei and νi, i = 1, . . . , N.

If additionally Assumption 3.15 is satisfied, we have

κ(M−1F ) ≤ C max(1, TOL)

(
1 + log

(
H

h

))2(H
η

)
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where C > 0 is independent of h,H, η and the values of Gi and βi, i = 1, . . . , N, and hence

also of the values of Ei and νi, i = 1, . . . , N.

Proof. Using Lemma 3.17, the proof can be carried out exactly as in [37, Theorem 8.2].

For the sake of completeness, we give a sketch of the proof. We need to constrain the

smallest eigenvalue λmin(M−1F ) from below and the largest eigenvalue λmax(M−1F ) from

above. Therefore we consider the following equations in terms of the energy norm F. For all

λ ∈ range(M−1), we have

〈λ, λ〉F ≤ 〈M−1Fλ, λ〉F ≤ C max(1, TOL)

(
1 + log

(
H

h

))(
1 + log

(η
h

))(H
η

)4

〈λ, λ〉F

and accordingly

〈λ, λ〉F ≤ 〈M−1Fλ, λ〉F ≤ C max(1, TOL)

(
1 + log

(
H

h

))2(H
η

)
〈λ, λ〉F .

First we consider the lower bound

〈λ, λ〉2F = 〈λ,BD,ΓBT
Γλ〉2F

= 〈λ,BD,ΓS̃1/2
ε S̃−1/2

ε BT
Γλ〉2F

= 〈Fλ,BD,ΓS̃1/2
ε S̃−1/2

ε BT
Γλ〉2F

≤ 〈S̃1/2
ε BT

D,ΓFλ, S̃
1/2
ε BT

D,ΓFλ〉〈S̃−1/2
ε BT

Γλ, S̃
−1/2
ε BT

Γλ〉
= 〈M−1Fλ, Fλ〉〈Fλ, λ〉
= 〈M−1Fλ, λ〉F 〈λ, λ〉F

For the upper bound we just prove the first estimate. The second estimate is obtained
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analogously.

〈M−1Fλ, λ〉F
= 〈M−1Fλ, Fλ〉
= 〈BT

D,ΓBΓS̃
−1
ε BT

Γλ,B
T
D,ΓBΓS̃

−1
ε BT

Γλ〉S̃ε

=
∣∣∣PD(S̃−1

ε BT
Γλ)

∣∣∣2
S̃ε

≤ C max(1, TOL)

(
1 + log

(
H

h

))(
1 + log

(η
h

))(H
η

)4 ∣∣∣S̃−1
ε BT

Γλ
∣∣∣2
S̃ε

= C max(1, TOL)

(
1 + log

(
H

h

))(
1 + log

(η
h

))(H
η

)4

〈S̃−1
ε BT

Γλ, S̃
−1
ε BT

Γλ〉S̃ε

= C max(1, TOL)

(
1 + log

(
H

h

))(
1 + log

(η
h

))(H
η

)4

〈Fλ, λ〉

= C max(1, TOL)

(
1 + log

(
H

h

))(
1 + log

(η
h

))(H
η

)4

〈λ, λ〉F

2

Now, we will establish Lemma 3.17.

Proof of Lemma 3.17. For simplicity we first assume in this proof that each slab can be

represented as the union of finite elements. The generalization to the case where the interior

boundary of a slab cuts through certain finite elements can be treated by using a Scott-Zhang

interpolation operator, cf. the comment at the end of this proof.

Let w ∈ W̃ , Rw :=
(
R(1)w, . . . , R(N)w

)
∈ W and note that |PDw|2S̃ε = |RPDw|2Sε as

well as |w|2
S̃ε

= |Rw|2Sε . Let v(i) = R(i)PDw, then

|RPDw|2Sε =

N∑
i=1

∣∣∣v(i)
∣∣∣2
S
(i)
ε

.

We note that Rw =
(
R(1)w, . . . , R(N)w

)
=
(
w(1), . . . , w(N)

)
∈ W. Thus, it is sufficient to

prove∣∣∣v(i)
∣∣∣2
S
(i)
ε

≤ C max(1, TOL)

(
1 + log

(
H

h

))(
1 + log

(η
h

))(H
η

)4 ∑
j∈Ni

∣∣∣w(j)
∣∣∣2
S
(j)
ε

.

We consider the local bilinear form for linear elasticity

ai(u, v) = (G(x)ε(u), ε(v))L2(Ωi)
+ (G(x)β(x)div(u), div(v))L2(Ωi)

.
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Using the discrete elastic extension Hε of v(i) to Ωi and the discrete harmonic extension Hη
of v(i) to the hull Ωi,η, see Definition 3.4, we have

|v(i)|2
S
(i)
ε

= |ai(Hεv(i),Hεv(i))| ≤ |ai(Hηv(i),Hηv(i))|

=

∣∣∣∣(G1,i ε(Hηv(i)), ε(Hηv(i))
)
L2(Ωi,η)

+
(
G1,iβ1,i div(Hηv(i)),div(Hηv(i))

)
L2(Ωi,η)

∣∣∣∣
≤ (1 + 3β1,i)G1,i

∣∣∣Hηv(i)
∣∣∣2
H1(Ωi,η)

.

For the proof we use the partition-of-unity functions θFij , θEik , and θVil associated with

faces, edges, and vertices; see Definition 3.1. Since all vertices are primal, the vertex terms

vanish and we obtain

v(i) =
∑
F ij

Ih(θFijv
(i)) +

∑
Eik

Ih(θEikv
(i)).

Face terms

Let F ij be a face, shared by the subdomains Ωi and Ωj . Then, the contribution to v(i) is

Ih(θFijδ
†
j(w

(i) − w(j))), and∣∣∣Ih(θF ijδ
†
j(w

(i) − w(j)))
∣∣∣2
S
(i)
ε

≤ (1 + 3β1,i)G1,i

∣∣∣Hη (Ih(θFijδ
†
j(w

(i) − w(j)))
)∣∣∣2
H1(Ωi,η)

.

Using G1,i[δ
†
j(x)]2 ≤ min(G1,i, G1,j), for details, see, e.g., [37, Lemma 8.4], we get∣∣∣Ih(θF ijδ

†
j(w

(i) − w(j)))
∣∣∣2
S
(i)
ε

≤ (1 + 3β1,i) min(G1,i, G1,j)
∣∣∣Hη (Ih(θF ij (w

(i) − w(j)))
)∣∣∣2
H1(Ωi,η)

.

Let ϑ̄Fij be the finite element function, defined in Lemma 3.8, which is piecewise linear on

τh/2, coincides with θF ij on F ij , and vanishes on ∂Ω̃i,η \ F ij and on Ωi \ Ω̃i,η. Let H̃η be

the discrete harmonic extension to the slab Ω̃i,η, as in Definition 3.4. Then, we have

min(G1,i, G1,j)
∣∣∣Hη (Ih(θFij (w

(i) − w(j)))
)∣∣∣2
H1(Ωi,η)

= min(G1,i, G1,j)
∣∣∣Hη (Ih(ϑ̄Fij (w

(i) − w(j)))
)∣∣∣2
H1(Ωi,η)

≤ min(G1,i, G1,j)
∣∣∣H̃η (Ih(ϑ̄Fij (w

(i) − w(j)))
)∣∣∣2
H1(Ωi,η)

= min(G1,i, G1,j)
∣∣∣H̃η (Ih(ϑ̄Fij (w

(i) − w(j)))
)∣∣∣2
H1(Ω̃i,η)

.
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All faces are fully primal; cf. Definition 3.6. Thus, there exist functionals fF
ij

m with fF
ij

m (w(i)) =

fF
ij

m (w(j)), m = 1, . . . , 6, fF
ij

m (rn) = δmn, m,n = 1, . . . , 6, such that

w(i) − w(j) =
(
w(i) −

6∑
m=1

fF
ij

m (w(i))rm

)
−
(
w(j) −

6∑
m=1

fF
ij

m (w(j))rm

)
.

Using the representation of an arbitrary rigid body mode in terms of the basis (rm)m=1,...,6

of ker(ε), we obtain

r(i) =
6∑

m=1

fF
ij

m (r(i))rm.

The combination of these properties leads to

min(G1,i, G1,j)
∣∣∣H̃η (Ih(ϑ̄Fij (w

(i) − w(j)))
)∣∣∣2
H1(Ω̃i,η)

(3.5)

≤ 2 G1,i

∣∣∣∣∣H̃η
(
Ih(ϑ̄F ij (w

(i) − r(i) −
6∑

m=1

fF
ij

m (w(i) − r(i))rm))

)∣∣∣∣∣
2

H1(Ω̃i,η)

+2 G1,j

∣∣∣∣∣H̃η
(
Ih(ϑ̄F ij (w

(j) − r(j) −
6∑

m=1

fF
ij

m (w(j) − r(j))rm))

)∣∣∣∣∣
2

H1(Ω̃i,η)

.

With Lemma 3.12, we obtain for the second term

G1,j

∣∣∣∣∣H̃η
(
Ih(ϑ̄Fij (w

(j) − r(j) −
6∑

m=1

fF
ij

m (w(j) − r(j))rm))

)∣∣∣∣∣
2

H1(Ω̃i,η)

≤ G1,j

∣∣∣∣∣EjiH̃η
(
Ih(ϑ̄F ij (w

(j) − r(j) −
6∑

m=1

fF
ij

m (w(j) − r(j))rm))

)∣∣∣∣∣
2

H1(Ω̃i,η)

= G1,j

∣∣∣∣∣H̃η
(
Ih(ϑ̄Fij (w

(j) − r(j) −
6∑

m=1

fF
ij

m (w(j) − r(j))rm))

)∣∣∣∣∣
2

H1(Ω̃j,η)

.

Here, we have tacitly assumed that H̃η extends to both slabs Ω̃i,η and Ω̃j,η, respectively.

Clearly, it is sufficient to estimate the first term

G1,i

∣∣∣∣∣H̃η
(
Ih(ϑ̄F ij (w

(i) − r(i) −
6∑

m=1

fF
ij

m (w(i) − r(i))rm))

)∣∣∣∣∣
2

H1(Ω̃i,η)

≤ G1,i

∣∣∣∣∣Ih(ϑ̄F ij (w
(i) − r(i) −

6∑
m=1

fF
ij

m (w(i) − r(i))rm))

∣∣∣∣∣
2

H1(Ω̃i,η)

≤ 7 G1,i

{ ∣∣∣Ih(ϑ̄F ij (w
(i) − r(i)))

∣∣∣2
H1(Ω̃i,η)︸ ︷︷ ︸

(I)

+
6∑

m=1

∣∣∣fFijm (w(i) − r(i))
∣∣∣2︸ ︷︷ ︸

(II)

∣∣∣Ih(ϑ̄Fijrm)
∣∣∣2
H1(Ω̃i,η)︸ ︷︷ ︸

(III)

}
.
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Next, we will estimate the three terms (I), (II), and (III) separately. Let us first consider (I).

This term can be estimated by Lemma 3.10.∣∣∣Ih(ϑ̄F ij (w
(i) − r(i)))

∣∣∣2
H1(Ω̃i,η)

≤ C

(
Hi

η

)2(
1 + log

(
η

hi

))(
1 + log

(
Hi

hi

))∥∥∥w(i) − r(i)
∥∥∥2

H1(Ω̃i,η)
.

Next, we estimate (II). All faces are fully primal and with Definition 3.6, we obtain∣∣∣fFijm (w(i) − r(i))
∣∣∣2 ≤ C 1

η

(
1 + log

(
η

hi

))∥∥∥w(i) − r(i)
∥∥∥2

H1(Ω̃i,η)
.

Finally, we consider (III). Since ϑ̄Fijrm is at most piecewise quadratic on τh/2, using the

stability of the interpolation operator for piecewise quadratic functions on τh/2 into the space

of piecewise quadratic functions on τh, we can follow the arguments given in [57, Lemma 3.9]

or the detailed arguments in [28, Lemma A.1], and we obtain∣∣∣Ih(ϑ̄F ijrm)
∣∣∣2
H1(Ω̃i,η)

≤ C
{∥∥∇ϑ̄F ij∥∥2

L2(Ω̃i,η)︸ ︷︷ ︸
(a)

‖rm‖2L∞(Ω̃i,η)︸ ︷︷ ︸
(b)

+
∥∥ϑ̄Fij∥∥2

L∞(Ω̃i,η)︸ ︷︷ ︸
(c)

‖∇rm‖2L2(Ω̃i,η)︸ ︷︷ ︸
(d)

}
.

First, we consider (a) and obtain by Lemma 3.8∥∥∇ϑ̄Fij∥∥2

L2(Ω̃i,η)
≤ C

(
1 + log

(
Hi

hi

))
H2
i

η
.

Next, we consider (b). By estimating |(rm)k|2 we get the upper bound independent of Hi

|(rm)k|2 =

 1 for m = 1, 2, 3
1
H2
i

(
(xi − x̂i)2 − (−xj + x̂j)

)2 ≤ 1
H2
i
· 2CH2

i for m = 4, 5, 6

⇒ ‖(rm)k‖2L∞(Ω̃i,η)
≤ C ∀k = 1, 2, 3

⇒ ‖rm‖2L∞(Ω̃i,η)
=

3∑
k=1

‖(rm)k‖2L∞(Ω̃i,η)
≤ C.

Considering (c), we have
∥∥ϑ̄Fij∥∥2

L∞(Ω̃i,η)
= 1. Finally, we estimate (d) by

‖∇rm‖2L2(Ω̃i,η)
=

3∑
k=1

‖∇ (rm)k‖2L2(Ω̃i,η)
≤ 2

∫
Ω̃i,η

1

H2
i

dx = Cη.

Combining the estimates (a)-(d), we obtain as an estimate for (III)∣∣∣Ih(ϑ̄F ijrm)
∣∣∣2
H1(Ω̃i,η)

≤ C
(

1 + log

(
Hi

hi

))
H2
i

η
.
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Figure 3.12:

Ωi Ωj

ΩkΩl

Cross section of four subdomains sharing an edge.

Combining (I)-(III), we have

G1,i

{∣∣∣Ih(ϑ̄F ij (w
(i) − r(r)))

∣∣∣2
H1(Ω̃i,η)

+

6∑
m=1

∣∣∣fFijm (w(i) − r(i))
∣∣∣2 ∣∣∣Ih(ϑ̄Fijrm)

∣∣∣2
H1(Ω̃i,η)

}

≤ C G1,i

(
Hi

η

)2(
1 + log

(
η

hi

))(
1 + log

(
Hi

hi

))∥∥∥w(i) − r(i)
∥∥∥2

H1(Ω̃i,η)
.

With an appropriate Korn inequality, see Lemma 3.7, we obtain

C G1,i

(
Hi

η

)2(
1 + log

(
η

hi

))(
1 + log

(
Hi

hi

))∥∥∥w(i) − r(i)
∥∥∥2

H1(Ω̃i,η)

≤ C G1,i

(
Hi

η

)4(
1 + log

(
η

hi

))(
1 + log

(
Hi

hi

))∥∥∥ε(w(i))
∥∥∥2

L2(Ω̃i,η)

≤ C

(
Hi

η

)4(
1 + log

(
η

hi

))(
1 + log

(
Hi

hi

))
{
G1,i

∥∥∥ε(w(i))
∥∥∥2

L2(Ωi,η)
+G2,i

∥∥∥ε(w(i))
∥∥∥2

L2(Ωi\Ωi,η)

}
.

Under the additional Assumption 3.15 we can obtain an improved estimate following basically

the same arguments. The only difference is that we can be a bit more lenient and can always

estimate the energy on the whole subdomain Ωi instead of estimating on the slab Ω̃i,η. Then,

using Lemma 3.10, Definition 3.6, and Lemma 3.7, we obtain

G1,i

{∣∣∣Ih(ϑ̄F ij (w
(i) − r(r)))

∣∣∣2
H1(Ω̃i,η)

+

6∑
m=1

∣∣∣fFijm (w(i) − r(i))
∣∣∣2 ∣∣∣Ih(ϑ̄Fijrm)

∣∣∣2
H1(Ω̃i,η)

}

≤ C

(
Hi

η

)(
1 + log

(
Hi

hi

))2{
G1,i

∥∥∥ε(w(i))
∥∥∥2

L2(Ωi,η)
+G2,i

∥∥∥ε(w(i))
∥∥∥2

L2(Ωi\Ωi,η)

}
.
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Edge terms

Let E ik be the edge shared by the four subdomains Ωi, Ωj , Ωk, and Ωl; see Figure 3.12.

Then, the contributions of the edge terms to v(i) are

Ih
(
θEikδ

†
j(w

(i) − w(j))
)

+ Ih
(
θEikδ

†
k(w

(i) − w(k))
)

+ Ih
(
θEikδ

†
l (w

(i) − w(l))
)
. (3.6)

Let ϑ̄Eik be the finite element function, defined in Lemma 3.11, which is piecewise linear on

τh/2, coincides with θEik on E ik, and vanishes on ∂Ω̃i,η \ E ik and on Ωi \ Ω̃i,η. Let H̃η be the

discrete harmonic extension to the slab Ω̃i,η, as in Definition 3.4. We consider the first term of

(3.6). The edge E ik belongs to the boundary of the face F ij , which is common to Ωi and Ωj .

Let Ω̃i,η ⊂ Ωi be a slab, such that F ij ⊂ ∂Ω̃i,η.We assume, that H̃η
(
Ih
(
ϑ̄Eik(w(i) − w(j))

))
is trivially extended by zero on Ωi \ Ω̃i,η. Then,

min(G1,i, G1,j)
∣∣∣Hη (Ih (θEik(w(i) − w(j))

))∣∣∣2
H1(Ωi,η)

≤ min(G1,i, G1,j)
∣∣∣H̃η (Ih (ϑ̄Eik(w(i) − w(j))

))∣∣∣2
H1(Ω̃i,η)

.

The neighboring subdomains Ωi and Ωj share the face F ij and all faces are fully primal.

Thus, fF
ij

m (w(i)) = fF
ij

m (w(j)), m = 1, . . . , 6, and fF
ij

m (rn) = δmn for m,n = 1, . . . , 6.

Analogously to the estimates for the face terms, we obtain

min(G1,i, G1,j)
∣∣∣H̃η (Ih (ϑ̄Eik(w(i) − w(j))

))∣∣∣2
H1(Ω̃i,η)

≤ 2 G1,i

∣∣∣∣∣H̃η
(
Ih(ϑ̄Eik(w(i) − r(i) −

6∑
m=1

fF
ij

m (w(i) − r(i))rm))

)∣∣∣∣∣
2

H1(Ω̃i,η)

+2 G1,j

∣∣∣∣∣H̃η
(
Ih(ϑ̄Eik(w(j) − r(j) −

6∑
m=1

fF
ij

m (w(j) − r(j))rm))

)∣∣∣∣∣
2

H1(Ω̃j,η)

Here, we again have used Lemma 3.12. As before, it is sufficient to consider the first term
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on the right hand side

G1,i

∣∣∣∣∣H̃η
(
Ih(ϑ̄Eik(w(i) − r(i) −

6∑
m=1

fF
ij

m (w(i) − r(i))rm))

)∣∣∣∣∣
2

H1(Ω̃i,η)

≤ 7 G1,i


∣∣∣H̃η (Ih(ϑ̄Eik(w(i) − r(i)))

)∣∣∣2
H1(Ω̃i,η)︸ ︷︷ ︸

(I)

+

6∑
m=1

∣∣∣fF ijm (w(i) − r(i))
∣∣∣2︸ ︷︷ ︸

(II)

∣∣∣H̃η (Ih(ϑ̄Eik(rm))
)∣∣∣2
H1(Ω̃i,η)︸ ︷︷ ︸

(III)

 .

Next, we will estimate the three terms (I), (II), and (III) separately.

First, we consider (I). Using Lemma 3.11, we obtain∣∣∣H̃η (Ih(ϑ̄Eik(w(i) − r(i)))
)∣∣∣2
H1(Ω̃i,η)

≤ C
∥∥∥w(i) − r(i)

∥∥∥2

L2(Eik)

≤ C
Hi

η

(
1 + log

(
η

hi

))∥∥∥w(i) − r(i)
∥∥∥2

H1(Ω̃i,η)
.

Now, we consider (II). Again, all faces are fully primal, see Definition 3.6, and we obtain∣∣∣fFijm (w(i) − r(i))
∣∣∣2 ≤ C 1

η

(
1 + log

(
η

hi

))∥∥∥w(i) − r(i)
∥∥∥2

H1(Ω̃i,η)
.

Finally, we consider (III). Using the first inequality of Lemma 3.11, we get∣∣∣H̃η (Ih(ϑ̄Eik(rm))
)∣∣∣2
H1(Ω̃i,η)

≤ ‖rm‖2L2(Eik) ≤ C min(Hi, Hj).

Combining the estimates for (I)-(III), we obtain

G1,i

∣∣∣∣∣H̃η
(
Ih(ϑ̄Eik(w(i) − r(i) −

6∑
m=1

fF
ij

m (w(i) − r(i))rm))

)∣∣∣∣∣
2

H1(Ω̃i,η)

≤ C G1,i
Hi

η

(
1 + log

(
η

hi

))∥∥∥w(i) − r(i)
∥∥∥2

H1(Ω̃i,η)
.

The third term in (3.6) can be estimated analogously. The second term in (3.6) cannot be

reduced to face estimates, since the edge E ik is shared by the subdomains Ωi and Ωk, which

have no face in common. We have
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min(G1,i, G1,k)
∣∣∣Hη (Ih (θEik(w(i) − w(k))

))∣∣∣2
H1(Ωi,η)

≤ min(G1,i, G1,k)
∣∣∣H̃η (Ih (ϑ̄Eik(w(i) − w(k))

))∣∣∣2
H1(Ω̃i,η)

.

The neighboring subdomains Ωi and Ωj share a fully primal face F ij , thus we have fFijm (w(i)) =

fF
ij

m (w(j)). Also Ωj and Ωk have a fully primal face F jk in common, such that fF
jk

m (w(j)) =

fF
jk

m (w(k)). We have

w(i) − w(k) =
(
w(i) − w(j)

)
−
(
w(k) − w(j)

)
=

(
w(i) −

6∑
m=1

fF
ij

m (w(i))rm

)
−
(
w(j) −

6∑
m=1

fF
ij

m (w(j))rm

)

−
((

w(k) −
6∑

m=1

fF
jk

m (w(k))rm

)
−
(
w(j) −

6∑
m=1

fF
jk

m (w(j))rm

))
.

From this, we obtain

min(G1,i, G1,k)
∣∣∣H̃η (Ih (ϑ̄Eik(w(i) − w(k))

))∣∣∣2
H1(Ω̃i,η)

(3.7)

≤ 4 G1,i

∣∣∣∣∣H̃η
(
Ih(ϑ̄Eik(w(i) − r(i) −

6∑
m=1

fF
ij

m (w(i) − r(i))rm))

)∣∣∣∣∣
2

H1(Ω̃i,η)

+ 4 G1,k

∣∣∣∣∣H̃η
(
Ih(ϑ̄Eik(w(k) − r(k) −

6∑
m=1

fF
jk

m (w(k) − r(k))rm))

)∣∣∣∣∣
2

H1(Ω̃i,η)

+ 4 min(G1,i, G1,k)

∣∣∣∣∣H̃η
(
Ih(ϑ̄Eik(w(j) − r(j) −

6∑
m=1

fF
ij

m (w(j) − r(j))rm))

)∣∣∣∣∣
2

H1(Ω̃i,η)

+ 4 min(G1,i, G1,k)

∣∣∣∣∣H̃η
(
Ih(ϑ̄Eik(w(j) − r(j) −

6∑
m=1

fF
jk

m (w(j) − r(j))rm))

)∣∣∣∣∣
2

H1(Ω̃i,η)

.

(3.8)

The first part of this sum can be estimated as before. We now consider the second term.

Using Lemma 3.11, we obtain

G1,k

∣∣∣∣∣H̃η
(
Ih(ϑ̄Eik(w(k) − r(k) −

6∑
m=1

fF
jk

m (w(k) − r(k))rm))

)∣∣∣∣∣
2

H1(Ω̃i,η)
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≤ C G1,k

∥∥∥∥∥w(k) − r(k) −
6∑

m=1

fF
jk

m (w(k) − r(k))rm

∥∥∥∥∥
2

L2(Eik)

≤ C G1,k
Hk

η

(
1 + log

(
η

hk

))∥∥∥w(k) − r(k)
∥∥∥2

H1(Ω̃k,η)
.

Using Assumption 3.16 for the last two terms of (3.8), i.e., TOL · G1,j ≥ min(G1,i, G1,k),

and using again Lemma 3.11, we have

min(G1,i, G1,k)

∣∣∣∣∣H̃η
(
Ih(ϑ̄Eik(w(j) − r(j) −

6∑
m=1

fF
ij

m (w(j) − r(j))rm))

)∣∣∣∣∣
2

H1(Ω̃i,η)

≤ TOL ·G1,j

∣∣∣∣∣H̃η
(
Ih(ϑ̄Eik(w(j) − r(j) −

6∑
m=1

fF
ij

m (w(j) − r(j))rm))

)∣∣∣∣∣
2

H1(Ω̃i,η)

≤ C TOL ·G1,j

∥∥∥∥∥w(j) − r(j) −
6∑

m=1

fF
ij

m (w(j) − r(j))rm

∥∥∥∥∥
2

L2(Eik)

.

We obtain as before

min(G1,i, G1,k)

∣∣∣∣∣H̃η
(
Ih(ϑ̄Eik(w(j) − r(j) −

6∑
m=1

fF
ij

m (w(j) − r(j))rm))

)∣∣∣∣∣
2

H1(Ω̃i,η)

≤ C TOL ·G1,j
Hj

η

(
1 + log

(
η

hj

))∥∥∥w(j) − r(j)
∥∥∥2

H1(Ω̃j,η)
.

Using identical arguments we obtain the estimates for the last term of (3.8).

To conclude the proof for the edge terms we can apply the same arguments as used at the

end of the proof for the face terms.

For our analysis we have assumed that the completion of the slab can be represented

as the union of finite elements. We can generalize our theory to the case where the interior

boundary of the slab cuts through finite elements and where the completion of the slab cannot

be represented anymore exactly as the union of finite elements. Therefore, we remesh the

slab of width η using a mesh size similar to h, see Figure 2.5. Next, we use a Scott-Zhang

interpolation operator to the auxiliary mesh and the associated auxiliary finite element space,

respectively. Here, we only have to assume, that our irregular mesh resolves η in the sense

that the incompressible inclusion is separated from the interface by at least one element; see

Figure 2.5.

Let us briefly sketch the part of the proof for the face terms that is altered. The edge

estimate can be carried out completely analogously. Let us denote by Πh
i the Scott-Zhang
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operator interpolating from the original finite element spaces into the space related to the

auxiliary mesh. For a reference to the Scott-Zhang operator, see [56, 4]. We use the property

Πh
i u |∂Ωi= u to insert the interpolation into (3.5)

min(G1,i, G1,j)
∣∣∣H̃η (Ih(ϑ̄F ij (w

(i) − w(j)))
)∣∣∣2
H1(Ω̃i,η)

= min(G1,i, G1,j)
∣∣∣H̃η (Ih(ϑ̄F ij (Π

h
i (w(i) − w(j))))

)∣∣∣2
H1(Ω̃i,η)

.

We now proceed as before for the face terms. Finally, we can remove the interpolation from

the right hand side of the estimate by using the stability ‖Πh
i u‖2H1(Ω̃i,η)

≤ C‖u‖2
H1(Ω̃i,η)

.

2

3.5 Numerical Results

In this section we present our numerical results for a linear elasticity problem in three dimen-

sions, using P2 finite elements for the compressible hulls and statically condensated Q2−P0

mixed finite elements for the inclusions. We consider almost incompressible inclusions or in-

clusions with a different Young modulus in the interior of the subdomains. The inclusions are

always surrounded by a compressible hull with ν = 0.3; see Figure 3.13. We use a FETI-DP

Figure 3.13:

Decomposition into subdomains, hulls in red and inclusions in blue

algorithm with vertices and edge averages as primal constraints to control the rigid body

modes and a relative residual reduction by 1e − 10 in the cg-method. For the algorithmic

concept, see for example [37, 29, 34]. The numerical results confirm our theoretical estimates.
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Table 3.1: Growing η; H/h = 11; 1/H = 3; P2/Q2 − P0

η ] iterations condition number

1h 32 12.366

2h 32 12.250

3h 32 12.230

4h 32 12.231

5h 32 12.233

6h 31 12.233

0 50 1597.8

Growing η for 3 × 3 × 3 subdomains, E = 210 on the whole domain, ν = 0.499999 in the inclusions, and

ν = 0.3 in the hulls. The results show only a weak dependence on η.

3.5.1 Variable η

In this subsection we present results for 3 × 3 × 3 subdomains, a fixed H/h = 11, and a

fixed Poisson ratio ν = 0.499999 in the inclusions. For these computations we vary the

thickness of the compressible hull from zero to six element diameters, i.e., η = 0, h, . . . , 6h;

see Table 3.1. For almost incompressibility on the whole domain, i.e., η = 0, it is not

surprising that we obtain a large condition number, because we use a coarse space designed

for compressible linear elasticity. But it is striking that already a hull of one element, i.e.,

η = h, is sufficient to obtain a good condition number which is then not improved significantly

by further increasing η. As a result, the number of iteration steps needed does not change

significantly for η = h, . . . , 6h. From our theory, for this configuration of coefficients, we

expect an estimate of κ(M−1F ) ≤ C max(1,TOL)
(
1 + log

(
H
h

))2 H
η , i.e., a linear behavior

in H
η ; see Theorem 3.18, which we cannot see in the numerical results. This might be due to

the fact, that our meshes are not fine enough.

3.5.2 Variable 1/H - Weak Scaling

In this category of tests we vary the number of subdomains from 3×3×3 up to 10×10×10,

but we fix the number of elements in a subdomain by H/h = 3. We choose incompressible

inclusions ν = 0.499999, compressible hulls ν = 0.3, and E = 210 in each subdomain; see

Table 3.2. The results show that also in the presence of incompressible inclusions our standard

coarse space is sufficient to obtain a condition number and a number of iterations which is

bounded independently of the number of subdomains.
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Table 3.2: Growing 1/H; H/h = 3; η = h; P2/Q2 − P0

1/H ] iterations condition number

3 21 5.0324

4 23 5.5950

5 24 5.6937

6 24 5.7121

7 25 5.7529

8 25 5.7820

9 25 5.8094

10 25 5.8281

Growing 1/H; E = 210 on the whole domain; ν = 0.499999 in the inclusions, ν = 0.3 in the hulls.

3.5.3 Variable H/h

For a fixed decomposition into 3 × 3 × 3 subdomains and a Poisson ratio of ν = 0.499999

for the inclusion in each subdomain, we solve the linear elasticity problem for different H/h.

This means, we increase the number of elements in each subdomain. We consider three cases

for the thickness of the hull, namely zero, one, and two element diameters, i.e., η = 0, h, 2h;

for the results see Table 3.3.

Using a hull of a thickness of only one element, i.e., η = h, already gives a good condition

number; see Table 3.3 (center). Increasing the hull’s width by one further element, i.e.,

η = 2h, has almost no additional effect on the condition number; see Table 3.3 (right). This

is consistent with the findings in Section 3.5.1 and Table 3.5.1. From Figure 3.14, we see that

we have numerically confirmed the polylogarithmic factor in our condition number estimate,

cf. Theorem 3.18, κ(M−1F ) ≤ C max(1,TOL)
(
1 + log

(
H
h

))2 H
η . Note that here, η = h,

but we are far from the asymptotics with respect to η. In Figure 3.15 we also plot the square

root of the condition number in a semilogarithmic plot of H/h. We observe the expected

linear behavior in the plot. We do not include plots for η = 2h, since the results are nearly

identical.

For comparison, we also provide results for the case η = 0, see Table 3.3 (left), where

we have almost incompressible linear elasticity on the whole domain. Since our coarse space

is designed for compressible elasticity problems it is clear that the condition number is very

large, i.e., of the order of 1e3. In this case using a different, larger coarse space is the remedy;

see [42, 13, 50].
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Figure 3.14:
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13

H/h

κ

Least square fit of a polynomial in log
(
H
h

)
to the data from Table 3.3. Growing H/h

and a hull of one element, i.e., η = h.

Figure 3.15:
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√
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Semilog plot of x = H/h, y =
√
κ. We

have η = h,; data from Table 3.3.

Table 3.3: Growing H/h; 1/H = 3; η = 0, h, 2h; P2/Q2 − P0

η = 0 η = h η = 2h

H/h ] iterations condition ] iterations condition ] iterations condition

number number number

3 38 1272.3 21 5.0324 20 5.0043

4 39 1345.6 23 6.4258 23 5.8910

5 39 1397.9 25 7.6184 25 7.6188

6 47 1440.0 27 8.6169 27 8.6056

7 44 1475.4 29 9.5066 28 9.4768

8 47 1506.2 30 10.312 29 10.261

9 47 1533.4 30 11.050 31 10.977

10 47 1557.7 31 11.731 31 11.637

11 50 1579.8 32 12.366 32 12.250

12 52 1600.0 33 12.960 32 12.824

Growing H/h for 3× 3× 3 subdomains, ν = 0.499999 in the inclusions, ν = 0.3 in the hulls, E = 210 on the

whole domain, and η = 0, h, 2h. A thickness of the compressible hull of one element is sufficient to obtain a

good condition number;see also Figure 3.14 and 3.15.
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3.5.4 Variable ν

We fix H/h = 7 and the thickness of the hull to η = h. The Poisson ratio in the inclusions

is varied from ν = 0.4 to ν = 0.499999; see Table 3.4 (left). We see only a slight increase of

the condition number and nearly no effect on the number of iterations. The condition number

seems to approach a limit once a value of ν = 0.49999 is reached. This clearly confirms that

the condition number of the preconditioned FETI-DP method is indeed independent of the

almost incompressibility in the inclusions.

The situation is identical if we choose a large Young modulus in the inclusions, i.e., E = 1e6,

in addition to the almost incompressibility in the inclusions; see Table 3.4 (right).

It is also possible to choose more than one almost incompressible inclusion in a subdomain,

see Figure 3.16. For the results, see Table 3.5. There, we have eight inclusions in each

subdomain and we vary the Poisson ratio in all eight inclusions from ν = 0.4 to ν = 0.499999.

Also for this kind of tests the condition number is quite low and seems to approach a limit.

Figure 3.16:

Cross section of a cube with 8 inclusions in each subdomain.
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Table 3.4: Growing ν; H/h = 7; 1/H = 3; η = h; P2/Q2 − P0

inclusions: E = 210, ν variable inclusions: E = 1e6, ν variable

hulls: E = 210, ν = 0.3 inclusions: E = 1, ν = 0.3

ν ] iterations condition number ] iterations condition number

0.4 27 9.4841 29 11.188

0.49 28 9.5038 29 11.188

0.499 28 9.5063 30 11.188

0.4999 28 9.5049 30 11.188

0.49999 28 9.5066 31 11.188

0.499999 29 9.5066 32 11.187

Growing ν for 3× 3× 3 subdomains, η = h.The condition number is independent of the Poisson ratio in the

inclusions.

Table 3.5: Growing ν; H/h = 7; 1/H = 3; η = h; P2/Q2 − P0; 8 inclusions in each

subdomain

ν ] iterations condition number

0.4 27 9.4847

0.49 27 9.5015

0.499 28 9.5025

0.4999 28 9.5041

0.49999 28 9.5041

0.499999 28 9.5041

Growing ν for 3 × 3 × 3 subdomains, H/h = 7, and 8 inclusions in each subdomain for which the Poisson

ratio is varied. The distance to the subdomain boundary and the distance to between the single inclusions is

one element.
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3.5.5 Variable Young’s Modulus Combined with Almost Incompressibility

Now, we consider configurations of different E and ν as well as some “realistic” material

properties for steel and rubber; see Table 3.6.

In a last set of experiments, we consider subdomains with inclusions of a high and low Young

modulus, i.e., E = 1e+4 and E = 1e−4, either combined with a Poisson ratio of ν = 0.4 or

ν = 0.499999. The Young modulus on the hull is always E = 1 and its Poisson ratio is always

ν = 0.3. The four different parameter settings are constructed by the number of the subdo-

main modulo four; see Figure 3.17. The results in Table 3.7 show that the condition number

is quite small even if the thickness of the hull is only η = h. While this is a favorable result it

also means that it is difficult to confirm numerically whether our theoretical bounds are sharp.

Theoretically, for the most general configuration of coefficients, we could show an estimate of

the condition number κ(M−1F ) ≤ C max(1,TOL)
(
1 + log

(
H
h

)) (
1 + log

( η
h

)) (
H
η

)4
; see

Theorem 3.18.

Table 3.6: Variable Young’s modulus E; P2/Q2 − P0

material parameters in the inclusions material parameters in the hulls ] iterations condition

E ν E ν number

1e+6 0.3 1 0.3 23 6.4083

1e+6 0.3 10 0.3 23 6.3666

1e+6 0.3 1e-1 0.3 24 6.4087

1e+6 0.3 1e-2 0.3 24 6.4113

1e+6 0.3 1e-3 0.3 24 6.4136

1e+6 0.499999 1 0.3 25 6.4163

1e+6 0.499999 10 0.3 24 6.4098

1e+6 0.499999 1e-1 0.3 26 6.4188

1e+6 0.499999 1e-2 0.3 26 6.4652

1e+6 0.499999 1e-3 0.3 28 7.2075

steel rubber

21e5 0.28 0.037e5 0.485 44 18.249

rubber steel

0.037e5 0.485 21e5 0.28 22 5.651

Variable Young’s modulus E for 3 × 3 × 3 subdomains, H/h = 4 elements in each direction in each

subdomain, and η = h. The material parameters for steel and rubber are taken from Ciarlet [8].
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Figure 3.17: Table 3.7: Growing η; H/h = 7;

1/H = 3; P2/Q2 − P0

distance η ] iterations condition number

1h 36 11.956

2h 29 9.2575

3h 29 9.4767

4h 27 9.4812

0 > 250 13426

Growing η for 3 × 3 × 3 subdomains. Four different kind of material parame-

ter settings in the inclusions: E = 1e + 4, ν = 0.4, E = 1e − 4, ν = 0.4,

E = 1e+ 4, ν = 0.499999, E = 1e− 4, ν = 0.499999; and for the hulls: E = 1, ν = 0.3.

3.5.6 P2 − P0 Mixed Finite Elements

For our theory, and also for the numerical tests presented before, we use different finite

elements for the discretization of the inclusions and the hulls, namely tetrahedra for the hulls

and hexahedra for the inclusions. The discretization of Q2 − P0 mixed finite elements is

known to be inf-sup stable. We obtain similar numerical results when using P2 − P0 mixed

finite elements as a discretization of the mixed formulation for the whole domain Ω. Although

these elements are not known to be inf-sup stable in 3D. We present some numerical results

in Tables 3.8 and 3.9. Let us note that these experiments are not contained in [22] due to

space limitations.
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Table 3.8: Growing H/h; 1/H = 3; η = 0, h, 2h; P2 − P0

η = 0 η = h η = 2h

H/h ] iterations condition ] iterations condition ] iterations condition

number number number

3 >250 8.528e3 22 5.0473 22 5.0129

4 119 7.610e3 22 5.9201 22 5.8386

5 >250 8.883e3 26 6.9857 26 6.9250

6 131 8.381e3 26 7.7942 26 8.1296

7 >250 9.161e3 29 9.2377 29 9.1877

8 136 8.929e3 28 9.8677 28 9.7968

9 >250 9.468e3 31 10.775 30 10.681

10 139 9.352e3 30 11.294 30 11.182

Growing H/h for 3×3×3 subdomains. For η = 0, i.e., the complete domain is almost incompressible;

ν = 0.499999 and E = 210. The condition number is large since we use a coarse space designed

for compressible elasticity. But it is striking that a hull of thickness of one element, i.e., η = h, is

sufficient to obtain a good condition number, which is hardly improved by increasing the thickness by

one further element.

Table 3.9: Growing ν; H/h = 7; 1/H = 3; η = h; P2 − P0

inclusions: E = 210, ν variable inclusions: E = 1e6, ν variable

hulls: E = 210, ν = 0.3 inclusions: E = 1, ν = 0.3

ν ] iterations condition number ] iterations condition number

0.4 28 8.5581 29 10.681

0.49 28 8.6064 29 10.681

0.499 28 8.6997 29 10.681

0.4999 29 8.7237 30 10.681

0.49999 29 9.1683 30 10.681

0.499999 29 9.2377 31 10.681

0.4999999 29 9.2377 31 10.669

0.49999999 29 9.2378 31 10.767

0.499999999 29 9.2379 32 10.543

Growing ν for 3 × 3 × 3 subdomains, η = h.The condition number is independent of the almost

incompressibility in the inclusion.



4 A New Coarse Space for Almost

Incompressible Linear Elasticity

In the previous chapter we discussed linear elasticity problems with varying coefficients inside

subdomains. There, we had a compressible matrix material within the hulls, which means we

had a compressible neighborhood of the interface, such that we could use the standard coarse

space for FETI-DP; see [22]. Now, we expand the analysis and therein the coarse space for

the FETI-DP algorithm to the case, where we have an almost incompressible material on

the whole domain; see also [21, Section 3]. To establish again a polylogarithmic condition

number estimate for the preconditioned FETI-DP system, we need to control the rigid body

modes on each face; see, e.g., [15, 50, 42]. We consider the mixed formulation, which has

been introduced in Chapter 1. From [50, Lemma 3.1] or [15, Lemma 3.3] it follows that we

have to impose the following zero net flux constraint∫
∂Ωi

(
R(i)PDw

)
︸ ︷︷ ︸

=: v(i)

· n ds = 0 (4.1)

on each subdomain Ωi To implement these additional constraints, we discuss two strategies.

Both strategies have in common that the zero net flux condition for a subdomain is separated

into constraints for each, face and edge terms. Note, that vertex terms need not to be

considered since vertices are set to be primal. Additionally, in both approaches, we use

projector preconditioning to establish the face constraints, i.e., instead of solving BBuB =

0 with a conjugate gradient algorithm, we iterate on UTBBuB = 0, where the rows of

UT contain the net flux over faces; see [33] or Section 2.5 for the concept of projector

preconditioning and deflation in the context of FETI-DP methods. Traditionally, in FETI-DP

and BDDC methods, one normal constraint for each face is then used to enforce the zero

net flux; see [42, 35, 13, 50]. In the early works [23, 24] for Neumann-Neumann methods for

incompressible elasticity a coarse pressure was introduced on each subdomain.

In our new coarse space a single face constraint for each subdomain is sufficient. This

63
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single face constraint is obtained by summing up the face contributions of each subdomain

and therefore the generated new coarse space is much smaller; cf. Section 4.1.

The considered strategies here only differ in establishing the edge constraints. In the first

approach, cf. Section 4.2.1, we will use primal edge averages in the normal directions to

enforce the zero net flux condition for the edge terms, using a transformation of basis; see,

e.g., [30, 26]. In a second approach, cf. Section 4.2.2, the zero net flux condition for edges

is also enforced by projector preconditioning.

For the analysis of the zero net flux condition, we first assume that all vertices are primal.

Then,

v(i) =
∑

Fij⊂∂Ωi

Ih
(
θFijv

(i)
)

+
∑

Eik⊂∂Ωi

Ih
(
θEikv

(i)
)

=
∑

Fij⊂∂Ωi

Ih
(
θFijδ

†
j(w

(i) − w(j))
)

+
∑

Eik⊂∂Ωi

{
Ih
(
θEikδ

†
j(w

(i) − w(j))
)

+ Ih
(
θEikδ

†
k(w

(i) − w(k))
)

+Ih
(
θEikδ

†
l (w

(i) − w(l))
)}

.

This means for the constraint

0 =

∫
∂Ωi

(
R(i)PDw

)
· n ds

=
∑

F ij⊂∂Ωi

∫
∂Ωi

[Ih
(
θFijδ

†
j(w

(i) − w(j))
)

] · n ds

+
∑

Eik⊂∂Ωi

{∫
∂Ωi

[Ih
(
θEikδ

†
j(w

(i) − w(j))
)

] · n ds

+

∫
∂Ωi

[Ih
(
θEikδ

†
k(w

(i) − w(k))
)

] · n ds+

∫
∂Ωi

[Ih
(
θEikδ

†
l (w

(i) − w(l))
)

] · n ds
}
.

To fulfill this condition, we consider the face and edge terms separately.
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4.1 Zero Net Flux for Face Terms

We will establish the zero net flux for face constraints by projector preconditioning; see

e.g., [33, 26] for further references.

∑
Fij⊂∂Ωi

∫
∂Ωi

[Ih
(
θFijδ

†
j(w

(i) − w(j))
)

] · n ds

=
∑

F ij⊂∂Ωi

∫
∂Ωi

∑
x∈Fijh

δ†j

(
w(i) − w(j)

)
(x) ϕx · n ds

=
∑

F ij⊂∂Ωi

∑
x∈Fijh

∫
∂Ωi

δ†j


(
w

(i)
1 − w

(j)
1

)
(x) ϕ

(1)
x(

w
(i)
2 − w

(j)
2

)
(x) ϕ

(2)
x(

w
(i)
3 − w

(j)
3

)
(x) ϕ

(3)
x

 ·


n1

n2

n3

 ds

=
∑

F ij⊂∂Ωi

∑
x∈Fijh

{∫
∂Ωi

δ†j n1

(
w

(i)
1 − w

(j)
1

)
(x) ϕ(1)

x ds

+

∫
∂Ωi

δ†j n2

(
w

(i)
2 − w

(j)
2

)
(x) ϕ(2)

x ds+

∫
∂Ωi

δ†j n3

(
w

(i)
3 − w

(j)
3

)
(x) ϕ(3)

x ds

}

For all of those integrals we integrate for all x ∈ F ijh over ∂Ωi∩supp(ϕx) ⊂ F ij ; cf. Figure 4.1.
Thus, we obtain

Figure 4.1:

❡
×

× × × × ×

× × × ×

× × × ×
Ωi Ωj

F ij

1

A cross section of a face shared by two subdomains Ωi and Ωj , containing one element each. The support

of a shape function corresponding to each node on a face, here denoted by the circle, is a subset of the face.

∑
Fij⊂∂Ωi

∑
x∈Fijh

{∫
Fij

δ†j n
(j)
1

(
w

(i)
1 − w

(j)
1

)
(x) ϕ(1)

x ds

+

∫
Fij

δ†j n
(j)
2

(
w

(i)
2 − w

(j)
2

)
(x) ϕ(2)

x ds+

∫
F ij

δ†j n
(j)
3

(
w

(i)
3 − w

(j)
3

)
(x) ϕ(3)

x ds

}
,
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where n(j) specifies the outer normal in the direction of subdomain Ωj . Using the short

notation(
a, b, c

)
:=
( ∫
Fij δ

†
j n

(j)
1 ϕ

(1)
x ds,

∫
F ij δ

†
j n

(j)
2 ϕ

(2)
x ds,

∫
Fij δ

†
j n

(j)
3 ϕ

(3)
x ds

)
,

we have

∑
Fij⊂∂Ωi

∑
x∈Fijh

(
a, b, c

)
(
w

(i)
1 − w

(j)
1

)
(x)(

w
(i)
2 − w

(j)
2

)
(x)(

w
(i)
3 − w

(j)
3

)
(x)


= UTBBuB = 0,

where
∑
Fij⊂∂Ωi

∑
x∈Fijh

( ∫
Fij δ

†
j n

(j)
1 ϕ

(1)
x ds,

∫
F ij δ

†
j n

(j)
2 ϕ

(2)
x ds,

∫
Fij δ

†
j n

(j)
3 ϕ

(3)
x ds

)
builds one row in UT . Hence, the zero net flux condition for the face terms can be enforced

by one constraint for each subdomain.

Note, that the traditional strategy, as e.g., known from [13, 35, 42, 41], is to enforce a

stronger condition, i.e., a single constraint for each face. Instead of ensuring the sum over

all face contributions belonging to one subdomain to be zero, we force each additive term to

be zero independently. Then, we obtain one constraint for each face, such that

∑
x∈Fijh

(
a, b, c

)
(
w

(i)
1 − w

(j)
1

)
(x)(

w
(i)
2 − w

(j)
2

)
(x)(

w
(i)
3 − w

(j)
3

)
(x)

 = 0,

which also satisfies the zero net flux condition.

Obviously, summing up the face contributions result in a smaller coarse space.

4.2 Zero Net Flux for Edge Terms

The zero net flux condition for the face terms is always enforced by projector preconditioning.

For the edge terms we consider two possibilities to establish the zero net flux. Using the

concept of a transformation of basis with partial assembly will work as well as expected from

the theory. But using projector preconditioning, we obtain a good condition number only by

enforcing a stronger condition; cf. Section 4.2.2.
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4.2.1 Transformation of Basis

To enforce edge averages as primal constraints and hence the zero net flux condition for

edges, i.e., edge averages in each component and direction of the displacement, we use

a transformation of basis with partial assembly. In contrast to the well-known concept of

transformation of basis with partial assembly for linear shape functions, see e.g., [37, 30],

we use quadratic shape functions. The difference results in the values of the entries in the

transformation matrix; see Figures 4.2 and 4.3.

We consider one edge of the reference element [−1, 1]3, i.e., three shape functions corre-

sponding to the three nodes on that edge. Here, we consider the nodes P1 = (−1,−1,−1) , P2 =

(−1, 0,−1) , P3 = (−1, 1,−1) , where P1 and P3 are the endpoints and P2 is the midpoint

of an edge of the reference element. We integrate the corresponding shape functions over

this edge, i.e., ∫ 1
−1 ϕ1 dy∫ 1
−1 1 dy

=
1
2

∫ 1
−1 y

2 − y dy∫ 1
−1 1 dy

=
1

6∫ 1
−1 ϕ2 dy∫ 1
−1 1 dy

=

∫ 1
−1 1− y2 dy∫ 1
−1 1 dy

=
2

3∫ 1
−1 ϕ3 dy∫ 1
−1 1 dy

=
1
2

∫ 1
−1 y + y2 dy∫ 1
−1 1 dy

=
1

6
.

By assembly of the element edges, we obtain a weight of 2/3 to 1/3 from the midpoints to

the endpoints of the element edges; see Figure 4.3.

Figure 4.2:
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1

Transformation of basis for P1. Weights for element edges and the result after assembling.

This means, in our transformation matrix, we set 1/3 for the endpoints of the element

edges and 2/3 as the value for the midpoints of element edges. Using this transformation of
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basis, we automatically enforce the zero net flux condition for each edge in each direction of

the displacement.

Figure 4.3:
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Transformation of basis for P2. Weights for element edges and the result after assembling.

4.2.2 Projector Preconditioning

In a second approach we establish the zero net flux condition for the edge terms by projector

preconditioning. For simplicity, we first consider one edge and one jump direction, i.e., the

jump between Ωi and Ωk; cf. Figure 4.4. Then,∫
∂Ωi

[Ih
(
θEikδ

†
k(w

(i) − w(k))
)

] · n ds

=

∫
∂Ωi

∑
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δ†k
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)
(x)ϕx · n ds

=
∑
x∈Eikh

∫
∂Ωi
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(
w
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(k)
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)
(x) ϕ

(1)
x(

w
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(k)
2

)
(x) ϕ
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x(
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3 − w

(k)
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(x) ϕ
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x

 ·
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 ds

=
∑
x∈Eikh

∫
∂Ωi

δ†k n1

(
w

(i)
1 − w

(k)
1

)
(x) ϕ(1)

x ds+

∫
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δ†k n2

(
w

(i)
2 − w

(k)
2

)
(x) ϕ(2)

x ds

+

∫
∂Ωi

δ†k n3

(
w

(i)
3 − w

(k)
3

)
(x) ϕ(3)

x ds.

Again the integrals only have a nonzero value in the intersection of ∂Ωi with the support of

ϕx. It is supp(ϕx) ⊂ Ωi ∪ Ωj ∪ Ωk ∪ Ωl for all x ∈ E ikh since each subdomain contains one

element; see Figure 4.4. Therefore, ∂Ωi ∩ supp(ϕx) ⊂ F ij ∪ F il for the jump between Ωi

and Ωk. And we have, for one component
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Figure 4.4:
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Ωi Ωj
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A cross section of an edge shared by four subdomains. The support of a basis function corresponding to a

node on that edge, is a subset of the union of all subdomains.
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Thus, for all three components of a single jump, we obtain∑
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Considering all jumps associated with a single edge, we have∫
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+

∫
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To simplify our notation, we define

A :=

∫
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1 ϕ(1)

x ds+

∫
Fil
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Then, the zero net flux condition results in one constraint for each subdomain, i.e.,
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.

It should be sufficient to establish the zero net flux condition (4.1) for the edge terms by one

single constraint. But so far the numerical results do not correspond to this, i.e., the tests

result in a large condition number.

Enforcing a stronger condition, i.e., enforcing each face integral to be zero, results in
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=:
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,

this means, here we have six constraints for each edge. Note, that by enforcing this stronger

constraints the zero net flux condition for edge terms is also satisfied.

For our numerical results we use the implementation of six constraints for each edge.
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Figure 4.5: Outer normals of an edge
E ik

n(j)

n(l)

n(k)

1

The outer normals belonging to one edge span the corresponding normal space.

4.3 Numerical Results

For all tests we use the following parameter setting. The domain Ω is discretized by statically

condensated Q2 − P0 mixed finite elements. We consider an almost incompressible material

on the whole domain Ω, i.e., ν = 0.499999 and E = 210. Dirichlet boundary conditions

are used on ∂Ω and all vertices are chosen as primal constraints. To establish the zero net

flux condition for the face terms we always use projector preconditioning, as described in

Section 4.1. For the edge terms, we use on the one hand the transformation of basis, see

Section 4.3.1, and on the other hand we use projector preconditioning, i.e., six constraints for

each edge; see Section 4.3.2.

4.3.1 Edges by Transformation of Basis

The zero net flux condition for edges is established using a transformation of basis, see

Section 4.2.1, and for the face constraints we use projector preconditioning as described in

Section 4.1. We run all tests on the one hand with one constraint for each subdomain, i.e.,

we sum up all face contributions belonging to one subdomain, and on the other hand also

using all face constraints as several constraints, which enforces a stronger condition. Using

this stronger condition it is not surprising, that the condition number is slightly better.
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In the first set of tests, we increase the number of elements, while having a constant number of

subdomains, i.e., N = 27; see Table 4.1. We observe only a slight difference in the condition

number, but we save 50% of constraints when using our new coarse space, i.e., summing up

the face contributions. Here, our stopping criterion for the cg method is the relative reduction

of the preconditioned residual to 1e− 14. We have chosen a very small tolerance in order to

obtain an accurate eigenvalue estimate. A least square fit of the condition number estimates

with a quadratic polynomial in log(H/h) confirms our theoretical condition number estimate

of C · (1 + log(H/h))2; see Fig. 4.8.

Table 4.1: Growing H/h, 1/H = 3

New Coarse Space Standard Coarse Space

(=one constraint for each subdomain) (=one constraint for each face)

# constraints: 27 # constraints: 54

H/h # iterations condition # iterations condition

2 16 2.2118 15 1.9679

3 20 3.2485 19 3.0076

4 23 3.9686 22 3.6786

5 26 4.6184 24 4.2866

6 27 5.2073 26 4.8374

7 28 5.7442 27 5.3401

8 29 6.2369 29 5.8019

9 31 6.6920 30 6.2290

10 32 7.1150 31 6.6262

For a fixed decomposition in 3 × 3 × 3 subdomains, we increase the number of elements in each

direction in each subdomain.

In Table 4.2 we have the results for the weak scaling, i.e., we increase the number of

subdomains from 8 to 1000, but the number of elements in each direction in each subdomain

is fixed to H/h = 3. The condition number does not vary significantly and for an increasing

number of subdomains the new approach is increasingly advantageous; cf. Figure 4.6. Here

and for the following results, our stopping criterion for the cg method is the relative reduction

of the preconditioned residual to 1e− 10.

In the next set of experiments, we consider a variable incompressibility on the whole domain,

i.e., we vary the Poisson ratio from ν = 0.3 up to ν = 0.4999999999. We fix the number of

subdomains to N = 27; in Table 4.3 we choose H/h = 5 elements in each direction in each

subdomain, in contrast to Table 4.4, where we useH/h = 8 elements in each direction of each
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Table 4.2: Growing 1/H - weak scaling

New Coarse Space Standard Coarse Space

(=one constraint for each subdomain) (=one constraint for each face)

1/H # constr. # its condition # constr. # its condition constraints saved

2 8 10 1.7057 12 10 1.7057 33.3%

3 27 14 2.8989 54 14 2.5185 50.0%

4 64 16 3.4813 144 15 2.9639 55.6%

5 125 18 3.9982 300 17 3.3369 58.3%

6 216 19 4.0936 540 17 3.5887 60.0%

7 343 19 4.2320 882 18 3.7705 61.1%

8 512 20 4.2627 1344 18 3.8973 61.9%

9 729 20 4.3544 1944 18 3.9884 62.5%

10 1000 20 4.3630 2700 18 4.0554 63.0%

For a fixed number of elements in each direction in each subdomain, i.e., H/h = 3, we vary the

number of subdomains from 8 to 1000. For an increasing number of subdomains the new approach

generates increasingly higher savings; see also Figure 4.6.

subdomain. The condition number is bounded independently of the almost incompressibility

in the domain.

In comparison to Chapter 3, we now consider a possible dependency on the thickness of

a hull which has a different material parameter. We choose Young’s modulus E = 210 on

the whole domain and for the Poisson ratio ν = 0.3 in the inclusions and ν = 0.499999 on

the hulls, conversely to the parameter settings in the previous chapter. For a fixed number

of elements, i.e., once H/h = 11, once H/h = 7 and for a fixed number of 27 subdomains,

we vary the thickness of the almost incompressible hull. We cannot observe a dependency of

the condition number on the thickness of the hulls in the numerical results.
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Table 4.3: Growing ν, H/h = 5, 1/H = 3

New Coarse Space Standard Coarse Space

(=one constraint for each subdomain) (=one constraint for each face)

# constraints: 27 # constraints: 54

ν # iterations condition # iterations condition

0.3 16 3.4224 16 3.2899

0.4 16 3.3552 16 3.2246

0.49 17 3.7324 16 3.1803

0.499 18 3.8820 17 3.3007

0.4999 18 3.8991 17 3.3155

0.49999 18 3.9009 17 3.3170

0.499999 18 4.1788 17 3.3171

0.4999999 18 4.6146 18 4.2847

0.49999999 18 4.6170 18 4.2768

0.499999999 19 4.6183 18 4.2838

0.4999999999 19 4.6184 18 4.2865

For a fixed number of elements in each direction in each subdomain, i.e., H/h = 5, a fixed number

of subdomains, i.e., 1/H = 3, we vary the incompressibility on the whole domain Ω, this means

we vary the Poisson ratio from ν = 0.3 up to ν = 0.4999999999.
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Table 4.4: Growing ν, H/h = 8, 1/H = 3

New Coarse Space Standard Coarse Space

(=one constraint for each subdomain) (=one constraint for each face)

# constraints: 27 # constraints: 54

ν # iterations condition # iterations condition

0.3 20 5.9482 19 4.3907

0.4 19 4.3946 19 4.2827

0.49 21 5.7142 20 4.2219

0.499 21 5.6901 20 4.2344

0.4999 21 6.2180 21 5.7185

0.49999 21 6.2364 21 5.8000

0.499999 22 6.2367 21 5.7954

0.4999999 22 6.2369 21 5.8012

0.49999999 22 6.2369 21 5.8018

0.499999999 22 6.2369 21 5.8019

0.4999999999 22 6.2369 22 5.8019

For a fixed number of elements in each direction in each subdomain, i.e., H/h = 8, a fixed number

of subdomains, i.e., 1/H = 3, we vary the incompressibility, this means we vary the Poisson ratio

from ν = 0.3 up to ν = 0.4999999999.
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Figure 4.6:
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While increasing the number of subdomains from 8 to 1000 the number of saving constraints increases; data

from Table 4.2. The more subdomains we choose, summing up the face contributions ensures a much

smaller coarse space.

Figure 4.7: Growing H/h
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Table 4.5: Growing η

New Coarse Space Standard Coarse Space

(=one constraint for each subdomain) (=one constraint for each face)

# constraints: 27 # constraints: 54

η # iterations condition # iterations condition

0 22 7.1655 21 6.6937

h 24 7.5140 23 7.0016

2h 24 7.5196 23 7.0107

3h 24 7.5127 23 7.0011

4h 24 7.5107 23 6.9957

5h 24 7.5103 23 6.9951

6h 24 7.5103 23 6.9969

0 18 4.1834 18 4.0586

h 21 5.7601 20 5.3596

2h 20 5.7462 20 5.3356

3h 20 5.7433 20 5.3210

For a fixed number of elements in each direction in each subdomain, i.e., H/h = 11 first, in the

second part H/h = 7, we vary the thickness of the almost incompressible hull.
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4.3.2 Edges by Projector Preconditioning

In a second set of tests, we establish the zero net flux condition for faces and edges using

projector preconditioning. This means, we use six constraints for each edge and run all tests

with one face constraint for each subdomain, i.e., our new coarse space, and also with several

face constraints for each subdomain. First we again increase the number of elements in each

direction of each subdomain from H/h = 2 up to H/h = 19; see Table 4.6. We observe only

a slight effect in the condition number between the new and the standard coarse space.

Table 4.6: Growing H/h

New Coarse Space Standard Coarse Space

(=one face constraint for each subdomain (=one constraint for each face

+ several edge constraints) + several edge constraints)

# constraints: 243 # constraints: 270

H/h # iterations condition # iterations condition

2 12 2.3621 12 2.1111

3 16 4.6805 15 4.5437

4 18 5.9544 18 5.7877

5 21 7.0797 20 6.8856

6 22 8.0883 21 7.8703

7 23 9.0036 23 8.7644

8 24 9.8421 24 9.5839

9 25 10.616 25 10.341

10 27 11.336 26 11.045

For a fixed decomposition in 3 × 3 × 3 subdomains, we increase the number of elements in each

direction in each subdomain. In this case, we have 54 faces and 36 edges.

But, by establishing the edge constraints by projector preconditioning, the condition number

is larger than by using a transformation of basis, cf. Table 4.7.

The results for the tests of the weak scaling can be found in Table 4.8. Due to the fact

that we have much more edge than face constraints, using the new coarse space has only a

small effect; we still need about 90% of the single constraints.



4.3. NUMERICAL RESULTS 81

Table 4.7: Comparison

New Coarse Space

(= one face constraint for each subdomain)

edges using a transformation of basis edges using projector preconditioning

H/h # iterations condition # iterations condition

2 12 2.2118 12 2.3621

3 14 2.8989 16 4.6805

4 16 3.4495 18 5.9544

5 18 4.1788 21 7.0797

6 19 5.2044 22 8.0883

7 20 5.7437 23 9.0036

8 22 6.2367 24 9.8421

9 23 6.6920 25 10.616

10 23 7.1150 27 11.336

Comparison of the two approaches, both with the new coarse space; stopping criterion 1e− 10 in

the cg method.

Figure 4.8: Comparison
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Table 4.8: Growing 1/H - weak scaling

New Coarse Space Standard Coarse Space

(=one face constraint for each subdomain (=one constraint for each face

+ several edge constraints) + several edge constraints)

1/H # constr. # its condition # constr. # its condition constraints saved

2 43 10 1.7751 48 10 1.7751 10.4%

3 242 16 4.6805 270 15 4.5437 10.4%

4 711 19 4.8103 792 18 4.8166 10.2%

5 1564 21 5.0110 1740 20 4.6073 10.1%

6 2915 22 5.0055 3240 22 4.9109 10.0%

7 4879 22 5.1967 5418 22 5.0117 9.9%

8 7568 22 5.2402 8400 22 5.0462 9.9%

For a fixed number of elements in each direction in each subdomain, i.e., H/h = 3, we vary the

number of subdomains.
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