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Deutsche Zusammenfassung

In dieser Arbeit untersuchen wir hauptsächlich den Transport durch wechselwirkende
Quantenpunkte. Dafür erweitern wir eine bereits existierende Theorie, um mit dieser
den elektrischen Transport durch proximisierte Quantenpunkte mit normalen- und
supraleitenden Zuleitungen zu beschreiben. Dadurch sind wir in der Lage, den Einfluss
einer starken Coulombwechselwirkung auf Josephson- und Andreevströme zu studieren.
Dies ist eine besonders interessante Themenstellung, da hier zwei gegensätzliche Mecha-
nismen aufeinandertreffen: In Supraleitern erfahren Elektronen paarweise eine anzie-
hende Wechselwirkungskraft, wodurch sie sich zu Cooper-Paaren zusammenschließen,
wohingegen sich zwei Elektronen auf dem Quantenpunkt durch die Coulomb-Kraft
gegenseitig abstoßen. Das suggeriert, dass elektrische Transportprozesse, die Cooper-
Paare involvieren, unterdrückt sein müssten. Allerdings ist es möglich, den supraleiten-
den Proximityeffekt in Nichtgleichgewichtssituationen auf dem Dot zu induzieren.

Zunächst untersuchen wir ein System, das aus einem Quantenpunkt besteht, der
an eine normale-, eine ferromagnetische- und eine supraleitende Zuleitung gekoppelt
ist. Im Limes einer unendlich großen Energielücke des Supraleiters wird die Kopplung
zum Supraleiter durch die vorgestellte Theorie exakt beschrieben. In diesem Limes
formieren sich Andreev-gebundene Zustände (ABS), die es erlauben, einen Spinstrom,
der durch keinen Ladungsstrom begleitet wird, zu generieren.

Als nächstes führen wir, ausgehend vom Limes unendlich großer Energielücken, eine
Störungsentwicklung des Gaps um unendlich durch. Anhand der Josephson- und An-
dreevströme überprüfen wir, wie gut die Vorhersagen der Rechnungen im Limes un-
endlich großer Energielücken für reale Systeme mit kleinen Energielücken sind. Wir
finden Hinweise auf eine Renormierung der ABS und stellen einen Resummationsansatz
vor, der es erlaubt, die ABS für eine endliche Energielücke abzuschätzen. Da abgesehen
von der Renormierung die Änderungen der Ströme relativ klein sind, folgern wir, dass
mit den Rechnungen im Limes unendlich großer Gaps auch für Systeme mit endlichen
Gaps verlässliche Vorhersagen getroffen werden können. Neben den endlichen Gaps
ist es auch möglich, Renormierungen durch die Kopplung des Quantenpunkts an eine
normale Zuleitung herbeizuführen. Um diese zu untersuchen, berechnen wir die Kor-
rekturen, die sich durch die Kopplung an die normale Zuleitung ergeben und identi-
fizieren Renormierungen der 0 − π-Übergänge des Josephsonstroms, der Extrema des
Andreevstroms und der gemittelten Ladung auf dem Quantenpunkt.

In unserer letzten Arbeit betrachten wir ein hybrides System, bestehend aus einem p-
dotierten Halbleiter, der sich an einer Grenzfläche zu einem Supraleiter befindet. Dieses
System untersuchen wir auf mögliche Andreevreflexionen von leichten- und schweren
Löchern für beliebige Injektionswinkel. Dazu lösen wir die Bogoliubov-de Gennes-
Gleichung für ein 6 × 6-Kane-Modell und entdecken, dass sowohl leichte Löcher, wie
auch schwere Löcher Andreev reflektiert werden und dabei auch ineinander umgewan-
delt werden können. Es stellt sich heraus, dass senkrecht injizierte schwere Löcher
nicht Andreev reflektiert werden können, und dass es zweierlei kritische Winkel gibt.
Einen kritischen Winkel für umwandlungsfreie Andreevreflexionen und einen kriti-
schen Winkel, oberhalb dem schwere Löcher nicht mehr in leichte Löcher umgewandelt
werden können.
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English abstract

We mainly investigate transport through interacting quantum dots proximized by su-
perconductors. For this purpose we extend an existing theory to describe transport
through proximized quantum dots coupled to normal and superconducting leads. It
allows us to study the influence of a strong Coulomb interaction on Andreev currents
and Josephson currents. This is a particularly interesting topic because it combines two
competing properties: in superconductors Cooper pairs are formed by two electrons
which experience an attractive interaction while two electrons located on a quantum
dot repel each other due to the Coulomb interaction. It seems at first glance that
transport processes involving Cooper pairs should be suppressed because of the two
competing interactions. However, it is possible to proximize the dot in nonequilibrium
situations.

At first, we study a setup composed of a quantum dot coupled to one normal,
one ferromagnetic, and one superconducting lead in the limit of an infinitely-large
superconducting gap. Within this limit the coupling between dot and superconductor
is described exactly by the presented theory. It leads to the formation of Andreev-
bound states (ABS) and an additional bias scheme opens in which a pure spin current,
i.e. a spin current with a vanishing associated charge current, can be generated.

In a second work, starting from the infinite-gap limit, we perform a systematic ex-
pansion of the superconducting gap around infinity and investigate Andreev currents
and Josephson currents. This allows us to estimate the validity of infinite-gap cal-
culations for real systems in which the superconducting gap is usually a rather small
quantity. We find indications that a finite gap renormalizes the ABS and propose a
resummation approach to explore the finite-gap ABS. Despite the renormalization ef-
fects the modifications of transport by finite gaps are rather small. This result lets us
conclude that the infinite-gap calculation is a valuable tool to study transport through
proximized interacting quantum dots. Not only does a finite superconducting gap
give rise to renormalization effects but also the coupling to the normal lead can evoke
renormalizations. To explore these we calculate the correction terms arising from the
coupling to the normal lead and identify renormalizations of the 0−π transitions of the
Josephson current, the extrema of the Andreev current, and the average dot charge.

In the previous works the occurring normal conducting leads are assumed to be
metallic so that the shape of the band structure can be neglected. If the normal
conducting region is a semiconductor, the shape of the band structure plays an impor-
tant role. In our last calculation we consider a p-type semiconductor–superconductor
interface and study oblique injections of light holes and heavy holes. Solving the
Bogoliubov-de Gennes equations for a 6 × 6 Kane model we find that light holes and
heavy holes can be Andreev reflected and in this process converted into each other.
Moreover, in perpendicular incidence heavy holes cannot be Andreev reflected. Two
types of critical angles occur. First, a critical angle above which conversion-less An-
dreev reflection is no longer possible and, second, a critical angle above which heavy
holes cannot be converted into light holes anymore.
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1 Introduction

In superconductors electrons experience an attractive interaction and form Cooper
pairs. At the Fermi energy Cooper pairs are energetically more favorable than single-
particle excitations so that the formation of Cooper pairs is accompanied by the for-
mation of an energy gap inside which no single-particle excitations exist. Electrical
sub-gap transport between a superconductor and a normal conductor is thus not car-
ried by single electrons but sustained by a process known as Andreev reflection. In
an Andreev reflection process a Cooper pair of the superconductor is split and two
electrons with opposite spin and momentum are transferred into the normal conductor
or vice versa. We are interested in studying the impact of Coulomb repulsion be-
tween electrons on Andreev reflection. In superconductors the two electrons forming
a Cooper pair are usually spatially separated. Therefore, the experienced Coulomb
repulsion between the two electrons is rather small. This motivates the inclusion of
quantum dots between the superconductor and the normal conductor: quantum dots
are small systems that confine occupying electrons to effectively zero dimensions. In
fact, quantum dots can be so small that the Coulomb repulsion between two electrons
on the dot can become the dominating energy scale of the system. It makes hybrid sys-
tems composed of quantum dots coupled to superconducting and normal conducting
reservoirs especially interesting setups to study because here the competition between
the attractive interaction of the Cooper pairs and the Coulomb repulsion of the dot
can be investigated. Such hybrid superconductor-quantum dot systems have frequently
been studied during past years.1,2

Experimentally, highly controllable quantum dots have been realized e.g. in semi-
conducting two-dimensional electron gases (2DEG).3 Since superconductivity usually
cannot be found in semiconductors, 2DEGs are rather inappropriate to create quantum
dots contacted to superconducting reservoirs. Experimental groups were nevertheless
able to couple quantum dots to superconductors in realizing quantum dots in semicon-
ductor nanowires or carbon nanotubes which can be contacted to superconductors.1

Recent examples of experiments involving superconductor-dot-normal conductor junc-
tions are the search for signatures of Majorana fermions,4 Cooper pair beam split-
ters,5–8 and the investigation of Andreev-bound states (ABS).9,10 The formation of
the last mentioned ABS is a direct consequence of the superconducting proximity ef-
fect, which will be in the focus of this thesis. Carbon nanotubes can also be coupled
to ferromagnetic electrodes11–13 so that even hybrid superconducting-ferromagnetic
quantum dot systems can be investigated14 to study the interplay of spin-dependent
currents and superconductivity in combination with the Coulomb interaction.

From the theoretical point of view transport through non-interacting quantum dots
can be solved exactly by means of a scattering approach.15 To get an impression of how
the finite Coulomb interaction acts on transport it can be treated on a perturbative
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1 Introduction

level.16–21 However, in systems where the Coulomb interaction is large compared to
other quantities this approach is no longer justified. In these systems transport can
be calculated in the weak-coupling limit, where the coupling between dot and leads is
treated perturbatively.22 The aim of this thesis is to investigate strongly proximized
interacting quantum dots in which ABS are formed. Since the formation of ABS
requires tunneling processes of high order, the weak-tunneling limit for the coupling
between dot and the superconductors is not an appropriate choice. One possible regime
that can account for a large on-site Coulomb interaction as well as a large coupling
between dot and superconductors is the infinite-gap limit. In Ref. 23 it has been shown
that in this limit the coupling between dot and superconductors can be resummed
exactly for arbitrary Coulomb interactions.

In the present thesis we reformulate the diagrammatic language introduced in Ref. 23
in the eigenbasis of an effective Hamiltonian24–32 which already includes the coupling
between dot and superconductors. It has the great advantage that the rather lavish
resummation can be skipped.

In the first result chapter we demonstrate how the formation of ABS can lead to a
pure spin current. To this end we consider a hybrid setup composed of an interacting
quantum dot coupled to a superconducting, a normal and a ferromagnetic lead in the
infinite-gap limit and identify a biasing scheme which enables the generation of pure
spin currents, i.e. a finite spin current with no associated charge current, in the normal
lead.

In real systems the superconducting gap is usually not the largest energy scale so
that it is not clear whether the infinite-gap limit enables an appropriate description of
real systems. To address this question we perform an expansion of the superconducting
gap around infinity to arrive at a first estimation of the influence of a finite gap. It
turns out that a finite gap renormalizes the ABS and that despite this renormalization
the infinite-gap calculations already lead to quantitatively good results. Furthermore,
we present a resummation approach that allows to explore the finite-gap ABS. We
compare the so obtained ABS with the Hartree-Fock approximation of Ref. 9 and
with the NRG data of Ref. 33, 34. In the above mentioned works the coupling to
the normal conducting leads is always assumed to be weak and only leading-order
tunneling processes are being accounted for. To study the impact of a normal lead
on the superconducting proximity effect induced on an interacting quantum dot we
perform a perturbation expansion in the coupling to the normal lead to determine
the corrections arising from the coupling to the normal lead. In our analyses of the
results we focus on renormalization effects occurring in the Josephson current, Andreev
current and the average dot charge.

Despite the issue of how Andreev reflection processes are influenced by an on-site
Coulomb repulsion an other interesting aspect to investigate is the question of how
Andreev reflections depend on the band structure of the normal conductor. The
shape of the band-structure of typical normal conducting metallic electrodes can usu-
ally be neglected, but for semiconductors, which have a much smaller Fermi energy,
it is important. Blonder et al. have formulated a scattering approach35 based on
the Bogoliubov-de Gennes equations36 to study the scattering amplitudes of normal
conductor–superconductor interfaces. Further studies analyzed oblique Andreev re-
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1 Introduction

flections and found that critical angles may occur above which Andreev reflection is
no longer possible. Here, we turn our attention to a p-type semiconductor directly
contacted to a superconductor. In p-type semiconductors transport is mediated by
quasiparticle holes which possess a spin-3/2 degree of freedom. Particles with spin pro-
jection of 1/2 are light holes, while particles with spin projection 3/2 are heavy holes.
The holes stem from the semiconductor’s valence band and mix with conduction-band
states which enables them to be Andreev reflected. We investigate the conditions re-
quired for light holes and heavy holes to be Andreev reflected and determine the angle
dependence of the possible Andreev processes. Hereby, we identify two different types
of critical angles.

This thesis is structured as follows. In Chapter 2 we start with a short introduction
to superconductivity. In particular, we focus on the BCS theory including the Bogoli-
ubov transformation and on the Josephson effect and the process of Andreev reflection.
Furthermore, in this chapter we motivate the use of quantum dots with a special focus
on hybrid systems containing quantum dots coupled to superconductors. We will give
several examples of experimental realizations of such systems as well as a short sum-
mary of the theoretical investigation of a three-terminal setup composed of a quantum
dot coupled to one normal and two superconducting leads. The theory describing in-
teracting quantum dots coupled to normal, superconducting, and ferromagnetic leads
is presented in Chapter 3. It includes the formulation of the diagrammatic technique in
the basis of the above mentioned effective Hamiltonian. In Chapter 4 a hybrid system
composed of an interacting quantum dot coupled to one normal, one ferromagnetic,
and one superconducting lead is investigated in the infinite-gap limit with the objective
of finding a pure spin current in the normal lead. Renormalization effects arising from
a systematic 1/∆ expansion on the one hand and from the corrections arising from the
coupling to the normal lead on the other hand is presented in Chapter 5. Next, in a
hybrid system composed of a p-type semiconductor–superconductor interface we study
the circumstances under which light holes and heavy holes can undergo the process of
Andreev reflection. These results are given in Chapter 6. In the final Chapter 7 the
conclusions will be drawn.
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2 Hybrid systems containing quantum
dots and superconductors

2.1 superconductivity

Certain materials completely loose their electrical resistance below a critical temper-
ature Tc. These materials are called superconductors. From the discovery of super-
conductivity in 1911 by H. K. Onnes37 until today the field of superconductivity is of
great interest for scientific researches. About 22 years after its discovery W. Meißner
and R. Ochsenfeld were able to prove that superconductivity is not just the effect of
vanishing electrical resistance but superconductivity is a thermodynamical state: when
a magnetic field penetrates a superconducting material in its normal state and then
the material is cooled down below the critical temperature the magnetic field will be
repelled from this material.

Superconductors divide into the two subgroups: type I and type II superconduc-
tors. Type I superconductors have only one critical temperature Tc that separates
the superconducting state from the normal conducting state. In the superconducting
state the magnetic field inside the superconductor vanishes. Examples of type I super-
conductors are metallic superconductors like aluminum, mercury or lead. In contrast
to type I superconductors type II superconductors possess two critical temperatures
Tc1 and Tc2. Below the lower critical temperature Tc1 the material is superconducting
and magnetic fields are repelled completely. Between the two critical temperatures
the superconductor is in a mixed state, the so called vortex state. Here the material
is still superconducting but, additionally, magnetic fields can penetrate into the su-
perconductor in form of vortices. For temperatures above Tc2 the material is normal
conducting. Examples of type II superconductors are the high-temperature ceramic
superconductors38 and the iron-based superconductors.39

In this thesis we mainly consider setups containing superconductors tunnel coupled
to quantum dots. In order to be able to calculate the transport properties of such
systems it is important to have a microscopic theory for the superconductors. The
BCS theory is just such a microscopic theory, and in this work we will solely focus on
conventional superconductors that can be described with the BCS theory.

2.1.1 BCS-theory

In this section we will give a short summary of the derivation of the mean-field BCS
Hamiltonian following Ref. 40. We start from the Fröhlich Hamiltonian

H =
∑

k,σ

εkc
†
k,σck,σ+

∑

k,q,σ

[
M(q)c†k+q,σck,σbq +M(−q)c†k−q,σck,σb†q

]
+
∑

q

~ωqb†qbq, (2.1)

5



2 Hybrid systems containing quantum dots and superconductors

where c
(†)
k,σ are annihilation (creation) operators for electrons with momentum k and

spin σ, εk the corresponding single-particle energies, b
(†)
q the annihilation (creation)

operators for phonons with momentum q, ~ωq the corresponding energies and M(q)
is the electron-phonon coupling. In second order perturbation theory an effective
Hamiltonian for the electrons can be derived from the Fröhlich Hamiltonian:

H =
∑

k,σ

εkc
†
k,σck,σ −

Vk,k′,q
2

∑

σ,σ′

∑

k,k′,q

c†k+q,σc
†
k′−q,σ′ck′,σ′ck,σ, (2.2)

with

Vk,k′,q = |M(q)|2 −2~ωq
(εk+q − εk)2 − (~ωq)2

. (2.3)

The second sum of Eq. (2.2) describes an effective electron-electron interaction that
results from the electron-phonon coupling. For |εk+q − εk| < ~ωq this electron-electron
interaction becomes attractive. Two electrons attracting each other are called Cooper
pair. A Cooper pair can be the energetically more favorable state for two electrons close
to the Fermi energy. As a consequence the Fermi sea becomes unstable and electrons
close to the Fermi energy condense into a macroscopic state formed by Cooper pairs.
It can be shown40 that the optimal condition for Cooper pairs to be formed is that
the participating electrons have opposite momenta. Furthermore, since the total wave
functions of the participating electrons need to be antisymmetric the two electrons
must have opposite spins. Though in general triplet superconductivity41,42 is possible,
in this thesis we will always consider the common case where Cooper pairs consist of
spin singlets.

The preceding considerations lead to the BCS43,44 Hamiltonian

H =
∑

k,σ

εkc
†
kσckσ − V

∑

k,k′

c†k′↑c
†
−k′↓c−k,↓ck↑, (2.4)

where the phonon-mediated interaction V is assumed to be independent of k, k′, and
q. Applying the mean-field theory to the BCS Hamiltonian and introducing the pair
potential ∆ = V

∑
k′〈c−k′↓ck′↑〉 yields the mean-field BCS Hamiltonian

H =
∑

k,σ

εkc
†
kσckσ −∆∗

∑

k

c−k↓ck↑ −∆
∑

k

c†k↑c
†
−k↓ +

|∆|2
V

. (2.5)

With respect to the Fröhlich Hamiltonian of Eq. (2.1) the mean-field BCS Hamilto-
nian has simplified a lot. It will be the Hamiltonian that we will use to model the
superconductors appearing in the context of this thesis. The pairing of electrons to
Cooper pairs is captured by the terms containing two annihilation or accordingly two
creation operators. A problem of the mean-field BCS Hamiltonian is that it is not
conserving the number of particles. For this reason we take the Fermi energy of the
occurring superconductors always as reference energy, i.e. ESF = 0. This guarantees
energy conservation even if the number of particles is not being conserved.

6



2.1 superconductivity
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Figure 2.1: Density of states in a BCS superconductor.

The mean-field Hamiltonian can be diagonalized to

H =
∑

k

Ek

(
γ†k↑γk↑ + γ†k↓γk↓

)
, (2.6)

by transforming the electronic operators into quasiparticle operators with the Bogoli-
ubov transformation

γk↑ = ukck↑ − vkc†−k↓ (2.7)

γ−k↓ = ukc−k↓ + vkc
†
k↑. (2.8)

In Eq. (2.6) we have introduced the quasiparticle energy Ek =
√
ε2k + |∆|2 and ne-

glected additive constants. The quasiparticle operators γkσ behave like fermionic op-
erators if |vk|2 + |uk|2 = 1 holds.

The superconducting density of states is then given by

ρbcs = ρN
|E|√

E2 − |∆|2
Θ(|E| − |∆|), (2.9)

where ρN is the normal state density of states.

For large energies |E| � |∆| the density of states of the quasiparticles converges
towards the normal state density of states, see Fig. 2.1. At the points E = ±|∆|
the density of states of the quasiparticles diverges and in between the two points a
gap is formed. This means that directly at the Fermi level of the superconductor,
i.e. E = 0, single-particle excitations are suppressed and there transport is carried
solely by Cooper pairs. Thus, the superconducting pair potential ∆ determines the
size of the energy gap and in the course of this thesis we will often refer to it as the
superconducting gap.

7



2 Hybrid systems containing quantum dots and superconductors

2.1.2 DC Josephson effect

In this section we study transport between two superconductors. In a so-called Joseph-
son junction two superconductors are coupled to each other via a non-superconducting
barrier. The Cooper pairs on each side can be described by macroscopic wave functions
ψL and ψR, respectively, which obey the time-dependent Schrödinger equation

i~
∂

∂t
ψL = ELψL +KψR (2.10)

i~
∂

∂t
ψR = ERψR +KψL, (2.11)

with K being the coupling between the two superconductors. The resulting current
flowing from the left into the right superconductor is then given by

IL = e
∂

∂t
|ψL|2 (2.12)

=
K

i~
(ψ∗1ψ2 − ψ∗2ψ1) , (2.13)

which can be simplified to

IL =
2eK

~
|ψL||ψR| sin(φR − φL), (2.14)

where φL(R) is the phase of the wave function in the left (right) lead. Eq. (2.14) tells
us that without applying a bias voltage a Cooper-pair current can flow between the
two superconductors that depends on the phase difference. This effect is known as the
dc Josephson effect.45

2.1.3 Andreev reflection

How is transport sustained between a superconductor and a normal conductor? At the
Fermi level single electrons from the normal conductor cannot enter the superconduc-
tor due to the superconducting gap. However, two electrons with opposite spin and
opposite momentum can be transferred into the superconductor in form of a Cooper
pair. Such a combined process is known as Andreev reflection.46,47 Technically, it
is useful to interpret the process as a reflection process rather than a process where
two electrons approach the interface at the same time: an electron with spin σ and
momentum k impinging at the normal conductor–superconductor interface from the
normal-conducting side can be retroreflected, i.e. the momentum is reversed, as a time-
reversed electron with reversed spin, often referred to as “hole” that has all properties
of the time-reversed partner of the incident particle. During this reflection process two
electrons with opposite spin and momentum are removed from the normal conducting
side and injected into the superconducting side as a Cooper pair. In literature the
reflected time-reversed electrons are often referred to as “holes” but we will avoid this
nomenclature and reserve the term hole to always refer to a state in the valence band
of semiconductor materials. From the BCS Hamiltonian the Bogoliubov-de Gennes

8
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Figure 2.2: Probability of Andreev reflection through a normal metal – superconductor inter-
face with a finite scattering parameter Z = |∆|/2.

equation, which is similar to the Schrödinger equation formulated in Nambu space,
has been derived.36 The Bogoliubov-de Gennes equation reads

(
H0 ∆
∆∗ −H∗0

)(
u(r)
v(r)

)
= E

(
u(r)
v(r)

)
, (2.15)

where H0 is the single-particle Hamiltonian and u(r) and v(r) are the Nambu space
components of the wave function. In a fundamental work by Blonder et al.35,48 scat-
tering amplitudes of normal-superconductor junctions with a barrier height of Z have
been investigated. From the Bogoliubov-de Gennes equation the probabilities for an
injected particle with energy E < ∆ to be Andreev reflected A and to be normal
reflected B have been determined to

A =
∆2

E2 + (∆2 − E2) (1 + 2Z2)2 , (2.16)

B = 1−A. (2.17)

A vanishing barrier, which corresponds to a perfectly clean interface without a mis-
match of Fermi wave vectors, causes the probability for Andreev reflection to be one.
For finite barrier strengths the probability for Andreev reflection starts for E = 0 at
1/
(
1 + 2Z2

)2
and approaches one for E → ∆, see Fig. 2.2.

2.2 Quantum dots

Similar to electrons in single atoms, where the electrons are distributed on quantized
energy levels, in quantum dots the occupying electrons are confined in all three spatial
dimensions resulting in a quantized energy spectrum. The great advantage of quan-
tum dots is the possibility to control their properties such as the level positions or

9
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ΓL ΓR

L R
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Figure 2.3: Two normal metals are tunnel coupled to a quantum dot. The quantum dot’s
energy levels can be controlled by the chemical potential of the gate electrode.

the couplings to external electrodes. Due to their small size the Coulomb repulsion
between electrons located on the dot can become the dominating energy scale. There-
fore, quantum dots have proved to be an ideal device to explore interaction effects
in experiments. In order to study the influence of these interaction effects on the
transport properties in various situations quantum dots have been tunnel coupled to
different kinds of conducting materials such as semiconductors, metallic reservoirs or
superconductors.

2.2.1 Basic concepts

Exemplary, we focus on a quantum dot tunnel coupled to two normal electrodes, see
Fig. 2.3. The voltages VL and VR determine the chemical potential of the left and right
electrode, respectively, and the energy levels of the dot can be tuned by the gate voltage
VG. Then the capacitance of the quantum dot can be assumed to be the sum of the
single capacitances induced by the proximity of the electrodes, i.e. C = CL+CR+CG.
Here CL(CR) is the capacitance arising from the tunnel couplings to the left (right)
reservoir and CG is the capacitance evoked by the gate electrode. The applied voltages
induce an external charge Q0 = eN0 = CLVL + CRVR + CGVG on the quantum dot.
Changing the dot occupation by one electron requires the energy E = e2/2C and, thus,
the charging energy for the dot being occupied by N electrons is given by

Ech(N,N0) =
e2

2C
(N −N0)2. (2.18)

In Fig. 2.4(a) we show a graphical representation of the charging energy of the quantum
dot. The charging energy for N electrons occupying the quantum dot that results from
an external charge Q0 is indicated by the dotted lines. The lowest energies correspond
to the ground state and are displayed as straight lines. At integer values of the number
of external charges N0 a maximal amount of energy is required to change the number
of electrons occupying the dot by one. In this case electronic transport through the
quantum dot is Coulomb blockaded. But in contrast, at the degeneracy points of half-
integer values of N0 no energy is required to change the dot occupation by one electron.
The latter situation is favorable for transport situations because tunneling of electrons
onto and off the dot is required in order to drive a current through a quantum dot.
This statement is illustrated by the conductance49 shown in Fig. 2.4(b): at half-integer

10
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Figure 2.4: Plot of (a) the charging energy of the quantum dot for occupations of N electrons
and (b) the normalized conductance of the quantum dot according to Ref. 49 as a
function of the number N0 of external induced electrons on the dot.

values of the external number of electrons electrons can tunnel onto and from the dot
giving rise to a large conductance while at integer values the number of electrons on
the dot is fixed and the conductance through the quantum dot is suppressed. The
resulting conductance shows oscillations, which are named Coulomb oscillations. It
implies that a current flowing through the quantum dot can be switched on and off
just by varying the external charge by the gate voltage. Such a geometry is called
single-electron transistor.

2.2.2 Transport through single-level quantum dots

A quantum dot in which the splitting of energy levels is so large that only a single
energy level can be accessed in transport situations is called single-level quantum dot.
Theoretically, the single-level quantum dot can be modeled by the Anderson Hamilto-
nian50

Hdot =
∑

σ

εd†σdσ + Un↑n↓, (2.19)

where ε is the spin-degenerate single-particle energy and U is the on-site Coulomb re-
pulsion arising at double occupancy. Electrons of spin σ are being annihilated (created)

by the dot’s operators d
(†)
σ , and nσ = d†σdσ is the corresponding number operator. The

single-level quantum dot has the four eigenstates |χ〉 ∈ {|0〉, | ↑〉, | ↓〉, |d〉 ≡ d†↑d
†
↓|0〉}

corresponding to an empty dot, to the dot being singly occupied by an electron of

11
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Figure 2.5: Eigenstates and eigenenergies of an interacting single-level quantum dot. The dot
can either be empty with eigenenergy E0 = 0, singly occupied with a spin-up
electron or a spin-down electron with eigenenergy E↑ = E↓ = ε or it can be doubly
occupied with eigenenergy Ed = 2ε+ U .

spin σ, and a doubly occupied dot, respectively. The corresponding eigenenergies are
E0 = 0, E↑ = E↓ = ε, and Ed = 2ε+ U , see Fig. 2.5.

In order to drive an electrical current through the dot, external electrodes are being
tunnel coupled to the dot and the system’s total Hamiltonian is then given by

H = Hdot +
∑

η

Hη +Htunn,η. (2.20)

Here, the contacted electrodes can be treated as non-interacting reservoirs

Hη =
∑

kσ

εηkc
†
ηkσcηkσ, (2.21)

with the single-particle energies εηk and the annihilation (creation) operators c
(†)
ηkσ for

electrons with momentum k and spin σ in lead η. Tunneling between the dot and the
leads is modeled by the spin-conserving tunneling Hamiltonian

Htunn,η = Vη
∑

kσ

(
c†ηkσdσ + H.c.

)
, (2.22)

where the tunnel-matrix elements Vη are assumed to be spin- and energy independent.
With the tunnel-matrix elements and the density of states ρη in lead η, that we assume
to be energy independent, we define the tunnel-coupling strengths as Γη = 2π|Vη|2ρη.
In this work we will perform a perturbation expansion in the tunnel-coupling strengths
which allows us to treat the on-site Coulomb repulsion exactly.

Though the quantum dot under consideration has only a single level contributing
to transport, different tunneling processes can arise. The most fundamental transport
process is sequential tunneling. Here a single electron tunnels from one of the elec-
trodes onto the dot or vice versa, see Fig. 2.6(a). Since energy needs to be conserved
an electronic state with energy ε is initially required to be occupied or, respectively, to
be available in the electrode. Sequential tunneling is of first order in the tunnel cou-
pling strength Γη and is usually the dominating transport process in systems where a
quantum dot is weakly tunnel coupled to the electrodes. If no excitation energy lies
inside the transport window sequential tunneling is exponentially suppressed.

12
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(a) (b)

Figure 2.6: Tunneling processes of a single-level quantum dot. In (a) a sequential-tunneling
process is depicted, where an electron tunnels from the left lead onto the quantum
dot, and (b) shows an elastic-cotunneling process, where an electron from the left
lead tunnels through the dot via a virtual intermediate state into the right lead.

In contrast, higher order tunneling is only suppressed algebraically so that cotunnel-
ing, which arises from second-order perturbation theory, can dominate over sequential
tunneling. Cotunneling causes a level broadening as well as a renormalization of the
excitation energies. One distinguishes between elastic cotunneling and inelastic co-
tunneling. In an elastic cotunneling process the initial and final dot states have the
same energy while in an inelastic cotunneling process the energies of initial and final
dot states differ. Inelastic cotunneling may occur e.g. in multi-level quantum dots and
gives rise to an additional resonance at the energy difference of initial and final state.51

Fig. 2.6(b) shows an example of an elastic cotunneling process: an initial electron in
the left lead tunnels via an intermediate virtual state on the dot into the right lead.

For temperatures below the Kondo temperature TK the Kondo effect52 may arise. If
the dot is occupied with a single electron then this electron can form a singlet state53,54

with electrons at the Fermi energy of the leads causing the zero-bias conductance to
increase.55 In the present thesis we consider sequential-tunneling processes as well as
higher-order tunneling processes but we always assume the temperature to be higher
than the Kondo temperature so that the Kondo effect does not play a role.

2.3 Quantum dots coupled to superconductors

By coupling superconducting reservoirs to a quantum dot the correlation of electrons,
that leads to the formation of Cooper pairs, can be induced on quantum dots giving
rise to a variety of interesting effects.2 Since the present thesis mainly deals with
quantum dots coupled to superconductors we demonstrate the relevance of such sys-
tems in this section. During recent years experimental groups succeeded in coupling
quantum dots to superconductors,5–7,9, 10,56–68 and some prominent examples shall be
presented in the next subsections. After that, we give an introduction into the theo-
retical investigation of quantum dots attached to superconducting leads in the limit of
infinitely-large superconducting gaps which defines the starting point for most of the

13
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Figure 2.7: Scanning tunneling microscope image of a quantum dot coupled to two supercon-
ducting leads. The two superconductors enclose a magnetic flux to form a SQUID.
Reprinted by permission from Macmillan Publishers Ltd: Nature 442, 667, copy-
right 2006.

calculations appearing in this thesis.

2.3.1 Experiments on quantum dots coupled to superconductors

Supercurrent reversal in quantum dots

In 2006 van Dam et al.68 explored the Josephson current flowing from one super-
conductor through an interacting quantum dot into another superconductor. The
quantum dot was defined by two gate electrodes in an InAs nanowire that connected
the two superconductors, see Fig. 2.7. At the other ends the two superconductors were
connected via another nanowire so that a superconducting quantum interference de-
vice (SQUID) was obtained. The phase difference of the macroscopic superconducting
phases between the two superconductors can be controlled by the magnetic flux en-
closed in the SQUID. It has been found that the sign of the Josephson current depends
on the dot occupation, see Fig. 2.8. For even occupations the Josephson current has
a positive sign, while for odd dot occupations the Josephson current has a negative
sign. This behavior is called 0 − π transition. It can be explained by looking at the
cotunneling processes of Cooper pairs from one superconductor to the other. Cooper
pairs consist of two electrons forming a spin-singlet state. If the dot is occupied by
an even number of electrons the spin singlet can be transferred through the quantum
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Figure 2.8: In (a) a plot of the critical super current through the quantum dot as a function of
the gate voltage is shown and (b) is a density plot of the differential conductance
dI/dV as a function of the gate voltage VL and the bias voltage V . Reprinted by
permission from Macmillan Publishers Ltd: Nature 442, 667, copyright 2006.

dot without changing its phase. However, for an odd number of electrons on the dot a
spin singlet gets transferred through the dot by gathering a phase factor of π resulting
in a sign change of the Josephson current.

Cooper pair beam splitter

Three experiments on splitting of Cooper pairs5–7 show the importance of the on-site
Coulomb repulsion on a quantum dot. The idea is to couple a superconducting lead
via two quantum dots with strong on-site Coulomb repulsion to two normal leads.
In a non-equilibrium situation an Andreev current is driven from the superconductor
through the quantum dots into the two normal conductors. Due to the on-site Coulomb
repulsion it is energetically favorable for the Cooper pairs to split up onto the two dots
rather than tunneling onto the same. The splitting causes a pair of entangled electrons
to tunnel non-locally into the two normal leads. Splitting efficiencies of nearly 50%
have been reported,6 but still the nonlocal entanglement of the electrons needs to be
measured.

Observation of Andreev-bound states in quantum dots

A normal conducting region enclosed by two superconductors can show the occurrence
of Andreev-bound states (ABS). If the normal conducting region is a quantum dot the
formation of ABS modifies the physical properties of the quantum dot and one way
to detect the presence of ABS is a measurement of the proximized quantum-dot spec-
trum.9,10 In the first experiment9 a quantum has been realized in a carbon nanotube
coupled to two superconducting leads and a normal lead, see Fig. 2.9(a) and in the
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Figure 2.9: Observation of ABS in quantum dots. The quantum dot has been realized (a)
in a carbon nanotube9 and (c) in graphene.10 The density plot in (b) depicts a
measurement of the density of states in the carbon-nanotube quantum dot and (d)
shows the measured differential conductance of the graphene quantum dot. (a)-(b)
Reprinted by permission from Macmillan Publishers Ltd: Nature Phys. 6, 965,
copyright 2010. (c)-(d) Reprinted by permission from Macmillan Publishers Ltd:
Nature Phys. 7, 386, copyright 2011.

second experiment a graphene quantum dot10 has been coupled to two superconduct-
ing leads, see Fig. 2.9(c). In both experiments it has been found that the excitation
energies of the proximized dot are greatly different from the normal dot’s spectrum.
Instead of showing the Coulomb diamonds3 expected in the normal conducting case
the excitation energies exhibit an avoided crossing with the additional property that
all excitation energies are bound on the interval [−∆,∆].

This short presentation of experiments is not supposed to be a complete review but
it shall illustrate that quantum dots coupled to superconductors are an interesting
topic which is investigated frequently.

2.3.2 Interacting quantum dots in the infinte-gap limit

Also from the theoretical point of view transport through quantum dots tunnel coupled
to superconducting leads is a promising field.2 In these setups effects like Josephson
transport,19,69–71 Andreev transport16,17,21,57,72–77 including multiple Andreev reflec-
tion57,76,77 as well as the Kondo effect in superconducting systems18,20,24,78–81 have
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Figure 2.10: Setup of a quantum dot tunnel coupled to two superconductors and one normal
conducting lead.

been studied. The limit of vanishing Coulomb repulsion on the dot can be solved ex-
actly, e.g. by means of a scattering approach. However, this is no longer possible for
systems that contain interacting quantum dots. A possible alternative is to treat the
Coulomb repulsion16,17,19–21,74 or the tunnel coupling strength22 perturbatively.

Another important approach is the infinite-gap limit,22–32 where quasiparticle tun-
neling is suppressed so that only Cooper pairs contribute to transport. In this limit
the Coulomb interaction and the tunnel-coupling strengths to the superconductors can
be treated exactly. In the present subsection we want to introduce to this infinite-gap
limit for an exemplary system composed of a quantum dot tunnel coupled to one nor-
mal lead and two superconducting leads following Ref. 23. This work is of particular
interest for the present thesis because it is its fundament and starting point.

Model

The system considered contains an interacting single-level quantum dot tunnel coupled
to a normal lead and two superconducting leads, see Fig. 2.10. The Hamiltonians are
the ones given in Sec. 2.2.2 except that the leads are described by the BCS Hamiltonian

H =
∑

k,σ

εkc
†
ηkσcηkσ − gη

∑

k,k′

c†ηk′↑c
†
η−k′↓cη−k,↓cηk↑, (2.23)

where εk are the single-particle energies, c
(†)
ηkσ denote the annihilation (creation) op-

erators for electrons in lead η with momentum k and spin σ, and gη describes the
superconducting pairing which vanishes for the normal lead, i.e. gN = 0. Since we are
only interested in stationary currents here, we assume that the two superconductors
are on the same chemical potential which we choose as the reference for the occurring
energies, i.e. µL = µR = 0. The BCS Hamiltonian can be diagonalized after applying
mean-field theory and carrying out the Bogoliubov transformation to

Hη =
∑

kσ

Eηkγ
†
ηkσγηkσ, (2.24)

17
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where the operators γ
(†)
ηkσ describe the quasiparticles. The quasiparticle energy Eηk =√

ε2k + |∆η|2 shows the expected superconducting gap and ∆η ≡ |∆η|eiΦη is the super-

conducting pair potential in lead η and eiΦη its phase. For the two superconductors
we assume a symmetric situation, where ΓL = ΓR ≡ ΓS and ΦL = −ΦR ≡ Φ/2.

Reduced density matrix and current formula

The fermionic degrees of freedom of the leads can be integrated out by means of a
diagrammatic technique82–84 that has been extended to account also for supercon-
ducting leads.22,23 It results in an effective description of a reduced system that is
determined by the reduced density matrix ρred of the single-level quantum dot. The
Hilbert space of the reduced system is spanned by the four eigenstates of the dot
|χ〉 ∈ {|0〉, | ↑〉, | ↓〉, |d〉 ≡ d†↑d

†
↓|0〉} with eigenenergies E0 = 0, E↑ = E↓ = ε, and

Ed = 2ε + U . With the dot states the elements of the reduced density matrix can be
expressed as Pχ1

χ2 ≡ 〈χ1|ρred|χ2〉. In the limit of infinitely-large superconducting gaps
(|∆η| → ∞) quasiparticles are not accessible so that only Cooper pairs contribute to
transport. In this limit the current in the superconducting leads simplifies23 to

Jη = −2e

~
Γη|〈d↓d↑〉| sin(Φχ − Φη), (2.25)

where 〈d↓d↑〉 = |〈d↓d↑〉| exp(iΦχ) is the dot pair amplitude and Φχ its phase. This
current formula already contains contributions of the Josephson current as well as
Andreev current.

Isospin

The dot pair amplitude is given by23 〈d↓d↑〉 = P 0
d . Since the full current in the

superconductors is only determined by the dot pair amplitude we introduce the isospin
which is particularly useful to differentiate between the Josephson current and the
Andreev current. We define the dot isospin as22

Ix =
P d0 + P 0

d

2
, Iy = i

P d0 − P 0
d

2
, Iz =

Pd − P0

2
. (2.26)

With the isospin the master equation can be brought into a Bloch equation

0 =
dI

dt
= A−R · I + I×B. (2.27)

Here, A represents the accumulation term, R · I the relaxation term, and I × B the
rotation term. Then, the isospin components can be determined by solving the Bloch
equation.

In the isospin notation the current formula of Eq. (2.25) reads

JR,L =
2e

~
ΓS

(
Iy cos

Φ

2
± Ix sin

Φ

2

)
. (2.28)
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Due to the fact that for a vanishing phase difference Φ the Josephson current vanishes,
in Eq. (2.28) we can identify the Andreev current with the isospin’s y-component and
the Josephson current with its x-component:

Jjos =
2e

~
ΓSIx sin

Φ

2
, (2.29)

Jand = −4e

~
ΓSIy cos

Φ

2
. (2.30)

The Josephson current is a pure supercurrent and it starts already in zeroth order
in the coupling to the normal lead ΓN , while the Andreev current involves both a
normal lead and a superconducting lead so that the Andreev current starts in first
order ΓN . From the definition of the z-component and from probability conservation
1 = P0 + P↑ + P↓ + Pd follows

Q = −e(1 + 2Iz) (2.31)

for the average charge located on the quantum dot.

Andreev bound states

In the limit of infinitely-large superconducting gaps |∆| → ∞ the coupling to the
superconducting lead can be resummed exactly.23 It turns out that the excitation
energies of the proximized dot differ greatly from the excitation energies of a quantum
dot that is only coupled to normal leads. In the normal case the dot has two excitation
energies located at ε and ε+U . The proximity of a superconductor leads to a splitting of
these excitation energies into the infinite-gap Andreev bound states 1 that are located
at

EAγ′γ = γ′
U

2
+ γ

√(
δ

2

)2

+ Γ2
S cos2

Φ

2
, (2.32)

with γ, γ′ ∈ {±1} and the detuning δ = 2ε + U . A plot of the Andreev bound states
as a function of the level position ε is shown in Fig. 2.11. In contrast to the normal
excitation energies that are straight lines as a function of ε, the Andreev bound states
kink at the symmetry point of ε = −U/2. There are several ways to map out the
Andreev bound states, for example the Josephson current, the Andreev current, or
the average charge located on the quantum dot, see Fig. 2.12. The plots presented
here can be calculated with the diagrammatic technique given in Ref. 23, though, as
we will show in the following Chapter 3 the calculations simplify tremendously. As
expected from Eq. (2.32) the positions of the excitation energies of the proximized dot
depend on the tunnel coupling strengths to the superconducting leads. In particular,
in Figs. 2.12 (a) and (b) the Josephson current is depicted. For small detuning δ and
small chemical potential of the normal lead µN the dot is in the Coulomb-blockade
regime and, thus, the Josephson current is suppressed in this limit. The Coulomb
blockade can be overcome to enable a Josephson current by either bringing the dot

1A slightly more precise denotation would be Andreev excitation energies. For simplicity, however,
we use the term Andreev bound state energy throughout the paper.
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Figure 2.11: Plot of the normal excitation energies (black lines) and of the Andreev bound
states (colored lines) as a function of the level position ε.

out of equilibrium by means of the voltage applied to the normal lead or by changing
the level position ε. A 0− π transition can be driven in two different ways. First, for
a fixed detuning δ 6= 0 the chemical potential of the normal lead µN can be varied
to result in a π transition. The second way to drive a π transition is to control the
level position while the chemical potential of the normal lead is kept above or below
all Andreev bound states, i.e. µN > EA,+,+ or µN < EA,−,−. In the second case the π
transition occurs at zero detuning.

Figs. 2.12 (c) and (d) show the Andreev current. Similar to the Josephson current
also the Andreev current is suppressed for small detuning and small chemical potential
of the normal lead due to the Coulomb blockade. The Andreev current requires finite
transport voltages because here a normal conductor is involved into transport. The
Andreev current is largest for small detunings because there the superconductors are
in resonance with the dot, i.e. the energies of zero occupation and double occupation
match so that Cooper pair tunneling between dot and superconductors is energetically
favorable.

The average charge on the dot is presented in Figs. 2.12 (e) and (f). In the Coulomb
blockade regime the average dot charge is equal to one as expected. Increasing the
level position and reducing the chemical potential of the normal lead lowers the av-
erage charge down to values of zero occupation while reducing the level position and
increasing the chemical potential of the normal lead leaves the dot being doubly oc-
cupied. The situation of zero detuning forms an exception. As stated in the previous
paragraph superconductors and dot are in resonance at zero detuning. This causes the
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2.3 Quantum dots coupled to superconductors

Figure 2.12: Density plot of (a)-(b) the Josephson current, (c)-(d) the Andreev current, and (e)-
(f) the average charge on the quantum dot as a function of the level position ε and
the chemical potential of the normal lead µN . The coupling to the superconductor
ΓS = 0.2U for (a), (c), and (e) is chosen smaller than for (b), (d), and (f), which is
ΓS = 0.5U . The other parameters are kBT = 0.01U , ΓN = 0.005U , and Φ = π/2.
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2 Hybrid systems containing quantum dots and superconductors

dot to be in an equally balanced superposition of the states |0〉 and |d〉 resulting in an
average dot charge of one.
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3 Diagrammatic technique

In this thesis we consider different setups of interacting single-level quantum dots
coupled to external leads. It is our objective to treat the on-site Coulomb repulsion
exactly and to allow for arbitrary couplings to the superconducting leads while we
assume a weak coupling between the dot and the normal conducting leads. Here, we
present a diagrammatic real-time technique that accounts for an arbitrary number of
normal leads, ferromagnetic leads, and superconducting leads. To this end we combine
the theories of Ref. 23 and Ref. 85 to formulate a comprehensive theory in a basis
which we will introduce as ±-basis. We will demonstrate that the great advantage of
the ±-basis is that it already contains the couplings to the superconductors in the limit
of infinitely-large superconducting gaps.

3.1 Model

We consider an interacting single-level quantum dot that is coupled to an arbitrary
number of normal leads, ferromagnetic leads, and superconducting leads. The system’s
total Hamiltonian is given by

H = Hdot +
∑

η

Hη +Htunn,η, (3.1)

where η ∈ {N,F, S} and N , F , and S are the sets of normal, ferromagnetic, and
superconducting leads, respectively. The quantum dot is modeled by the Anderson
Hamiltonian

Hdot =
∑

σ

εd†σdσ + Un↑n↓, (3.2)

with the annihilation (creation) operators d
(†)
σ for electrons on the dot with spin σ, the

Coulomb repulsion U , and the number operators for dot electrons nσ = d†σdσ. We treat
the leads as reservoirs of non-interacting electrons and include BCS-pairing terms for
the superconducting leads

Hη =
∑

kσ

εηkσc
†
ηkσcηkσ − δη,S

∑

k

(∆ηcη−k↓cηk↑ + H.c.) , (3.3)

where the single-particle energies εηkσ are spin dependent only for ferromagnets, c
(†)
ηkσ

are the annihilation (creation) operators for electrons in lead η, and ∆η = |∆η|eiΦη is
the superconducting pair potential of lead η, and Φη is the related macroscopic phase.
The BCS-pairing term is non-vanishing only for superconducting leads, i.e. η ∈ S.
Throughout the entire thesis we will choose the Fermi level of the superconductors as

23



3 Diagrammatic technique

reference for the energies, i.e. µη = 0 for η ∈ S. Tunneling between dot and leads is
modeled by the tunneling Hamiltonian

Htunn,η = Vη
∑

kσ

(
c†ηkσdσ + H.c.

)
, (3.4)

with Vη being the (real) spin- and momentum independent tunnel-matrix elements.
We define the tunnel-coupling strengths which we assume to be energy independent as
Γησ = 2π|Vη|2ρησ, where ρησ is the density of states of electrons with spin σ in lead η.
We then introduce the mean-level broadening as Γη = 1

2

∑
σ Γησ. Furthermore, we de-

scribe the ferromagnets by the Stoner model and define the degree of spin polarization
at the Fermi energy as p = (ρF↑ − ρF↓) / (ρF↑ + ρF↓).

3.2 Effective Hamiltonian

We start by rewriting the total Hamiltonian which will turn out to be very convenient
later on:

H = Hdot +
∑

η

(Hη +Htunn,η) +Hp −Hp, (3.5)

where Hp = χ∗d↓d↑ + χd†↑d
†
↓ and χ = 1

2

∑
η∈S Γηe

iΦη . With the definition of the
effective Hamiltonian

Heff = Hdot −Hp (3.6)

=
∑

σ

εd†σdσ + Un↑n↓ − χ∗d↓d↑ − χd†↑d
†
↓ (3.7)

the total Hamiltonian can be written as

H = Heff +
∑

η

(Hη +Htunn,η) +Hp. (3.8)

In comparison to the Anderson Hamiltonian the effective Hamiltonian has very different
properties. Its new set of eigenstates is given by

| ↑〉
| ↓〉

|+〉 =
1√
2

[
−e−iΦχ/2

√
1− δ

2εA
|0〉+ eiΦχ/2

√
1 +

δ

2εA
|d〉
]

|−〉 =
1√
2

[
e−iΦχ/2

√
1 +

δ

2εA
|0〉+ eiΦχ/2

√
1− δ

2εA
|d〉
]
,

where Φχ = arg(χ) and εA =
√

( δ2)2 + |χ|2, with eigenenergies {ε, ε, E+ = δ
2 +√

( δ2)2 + |χ|2, E− = δ
2 −

√
( δ2)2 + |χ|2}. Here, we have used the detuning δ = 2ε + U .

24



3.3 Reduced density matrix

Along with new eigenenergies and eigenstates the effective Hamiltonian has also a
different set of excitation energies ±(E± − ε), the Andreev-bound states

E∆→∞
A,γ′,γ = γ′

U

2
+ γεA, (3.9)

with γ′, γ = ±. Note that the tunneling Hamiltonian Htunn,η couples only the states
of odd occupation |σ〉 to the states of even occupation |±〉, while the artificially added
Hamiltonian Hp only couples the states of even occupation |±〉 with each other.

3.3 Reduced density matrix

The quantum mechanical expectation value of an observable A can be expressed in
terms of the density matrix ρ as

〈A〉(t) = Tr [ρ(t)A]. (3.10)

The density matrix is defined as

ρ(t) ≡
∑

i

pi|αi(t)〉〈αi(t)|, (3.11)

with pi being the probability of the system to be in state |αi(t)〉. For the unperturbed
system at time t0, i.e. tunnel coupling is switched off, the system’s total density matrix
factorizes

ρ(t0) = ρleads(t0)⊗ ρred(t0), (3.12)

where ρleads = ΠηZ
−1
η exp [−(Hη − µηNη)/(kBT )] is the density matrix of the reservoirs

with the partition function Zη and ρred is the reduced density matrix describing the
degrees of freedom of the quantum dot. The idea is to obtain a reduced system given
by the reduced density matrix which is defined as

ρred = Trleads(ρ), (3.13)

where Trleads(x) describes the trace only over the states of the leads. The elements Pχ
′

χ

of the reduced density matrix are given by Pχ
′

χ = 〈χ′|ρred|χ〉. The diagonal elements
of the reduced density matrix Pχ ≡ Pχχ are the probability to find the system in state
χ. Thus,

∑
χ Pχ = 1 holds due to probability conservation. Introducing a coupling of

the dot to the external reservoirs in terms of the tunneling Hamiltonian may result in
off-diagonal elements of the reduced density matrix. For instance, the coupling to a
superconductor may give rise to the formation of a finite dot pair amplitude P 0

d .

3.4 Interaction picture and Keldysh time

Since the quantum dot is a strongly interacting system we cannot calculate transport
through the setup exactly. Therefore, we switch into the interaction picture and per-
form a perturbation expansion in the tunnel-coupling strengths formulated in Keldysh
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3 Diagrammatic technique

time. The choice of employing Keldysh time is motivated by the problem that in a
non-equilibrium situation the final state of the whole system is unknown because a
large number of electrons has been transferred between the leads. Therefore, it makes
sense to consider Keldysh time, which starts at time t0 = −∞ and evolves up to time
t and from time t back again to time t0. Thus, the concept of Keldysh time avoids the
problem of the unknown final state. In the interaction picture the time evolution of
the elements of the reduced density matrix is determined by

Pχ
′

χ = Tr

[
ρ0TK

[
exp

(
− i
~

∫

K
dt1VI(t1)

)
|χ〉〈χ′|(t)

]]
, (3.14)

with TK being the time-ordering operator along Keldysh time. VI is the part of the
Hamiltonian that introduces the interaction into the system. In our case VI is given
by VI =

∑
ηHtunn,η +Hp. Expanding Eq. (3.14) in a power series yields

Pχ
′

χ (t) =
∞∑

n=0

(
− i
~

)n ∫

K
dt1...

∫

K
dtnTr

[
ρ0TK

[
VI(t1)...VI(tn)|χ〉〈χ′|(t)

]]
, (3.15)

where the times t1 > ... > tn are ordered with respect to the Keldysh time. The lead
operators arising from VI can be contracted pairwise by means of Wick’s theorem.86

For normal and ferromagnetic leads it yields
〈
c†ηkσ(t)cη′k′σ′(t

′)
〉

= δηη′δkk′δσσ′e
i
~ εηkσ(t−t′)f+

η (εηkσ)
〈
cηkσ(t′)c†η′k′σ′(t)

〉
= δηη′δkk′δσσ′e

i
~ εηkσ(t−t′)f−η (εηkσ),

with f+
η (x) = [exp(

x−µη
kBT

)+1]−1 being the Fermi function in lead η and f−η (x) = 1− f+
η (x).

In superconductors the density of states exhibits an energy gap around the Fermi en-
ergy and, additionally, contractions between two creation operators or two annihilation
operators are possible. The contractions can be calculated by performing the Bogoli-
ubov transformation of Eqs. (2.7) and (2.8). For superconductors they are given by

〈
c†ηkσ(t)cη′k′σ′(t

′)
〉

= δηη′δkk′δσσ′e
i
~Eηk(t−t′)f+

η (Eηk)
〈
cηkσ(t′)c†η′k′σ′(t)

〉
= δηη′δkk′δσσ′e

i
~Eηk(t−t′)f−η (Eηk)

〈
c†ηkσ(t)c†η′k′σ′(t

′)
〉

= δηη′δkk′δσσ′ukv
∗
k(−1)δσ↓

[
e−

i
~Eηk(t−t′)f−η (Eηk)− e

i
~Eηk(t−t′)f+

η (Eηk)
]

〈
cηkσ(t)cη′k′σ′(t

′)
〉

= δηη′δkk′δσσ′u
∗
kvk(−1)δσ↑

[
e−

i
~Eηk(t−t′)f−η (Eηk)− e

i
~Eηk(t−t′)f+

η (Eηk)
]
.

Here, Eηk is the quasiparticle energy of Eq. (2.24), uk and vk are the coefficients of the
Bogoliubov transformation, and k ≡ −k as well as σ ≡ −σ.

To allow for a systematic and consistent expansion in VI we formulate a diagram-
matic language that is capable of describing the dynamics of the reduced density ma-
trix. The unperturbed time evolution along Keldysh time that starts at time t0 = −∞
is symbolized by a Keldysh contour, i.e. an upper and a lower branch, corresponding
to a forward and backward propagation in time, respectively, that are connected at
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Figure 3.1: Example of the visualization of tunneling processes on the Keldysh contour.

time t. The perturbations arising from VI are symbolized by vertices. Whenever the
perturbation arises from Hp we choose the vertex to be a cross and when it arises
from Htunn,η we choose it to be a bullet. A bullet vertex may be an incoming ver-

tex symbolizing a term Vηd
†
σcηkσ or it may be an outgoing vertex representing a term

Vηc
†
ηkσdσ. Each two bullet vertices are connected by a tunneling line containing arrows

pointing towards incoming vertices and away from outgoing ones (Two arrows on a
single line pointing in the same direction can be abbreviated by a single arrow). These
tunneling lines illustrate the respective contractions arising from Wick’s theorem. We
will refer to lines containing a single arrow as normal lines and lines containing two
arrows (pointing into different directions) as anomalous lines.23 In Fig. 3.1 we show
an example of tunneling processes containing normal lines as well as anomalous lines
and a cross vertex.

3.5 Generalized master equation

We define the free propagator Π(0)(t, t′) as a section of the Keldysh contour that
contains no vertices

Πχ1(0)
χ2

(t, t′) =

χ1

χ2
t� t

Π(0) (3.16)

as well as irreducible sections W
χ1χ′1
χ2χ′2

(t, t′) that cannot be “cut” by any vertical cut

into two sections without cutting a tunneling line

W
χ1χ′1
χ2χ′2

(t, t′) =

χ1

χ2
t� t

χ�
1

χ�
2

W =

χ1

χ2
t� t

χ�
1

χ�
2

+

χ1

χ2
t� t

χ�
1

χ�
2

+

χ1

χ2
t� t

χ�
1

χ�
2

+ ... .

(3.17)
The full propagator is determined by the sum over all possible combinations of the free
propagator and all irreducible sections. It can be written in terms of a diagrammatic
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3 Diagrammatic technique

Dyson equation

Π = Π(0) + Π Π(0)W . (3.18)

From the Dyson equation a generalized master equation that determines the elements
of the reduced density matrix can be derived. In the stationary limit d

dtP
χ1
χ2 (t) = 0 it

reads

i (Eχ1 − Eχ2)Pχ1
χ2

=
∑

χ′1χ
′
2

W
χ1χ′1
χ2χ′2

P
χ′1
χ′2
, (3.19)

where we have used the generalized rates W
χ1χ′1
χ2χ′2

=
∫ 0
−∞ dtW

χ1χ′1
χ2χ′2

.

3.6 Current formula

In this thesis we are mainly interested in calculating electrical currents through inter-
acting quantum dots. The current flowing out of lead η is given by the change of the
number of particles

Jη(t) = e
d

dt
nη(t) = e

i

~
[H,nη](t) = −e i

~
∑

kσ

Vη

[
c†ηkσdσ − d†σcηkσ

]
, (3.20)

where nη is the number operator for electrons in lead η. The current operator is
very similar to the tunneling Hamiltonian. It differs merely by the prefactors and
a relative minus sign from the latter. In addition to the diagrams that contribute
to general rates also diagrams occur in which the rightmost vertex is caused by the
current operator. These current diagrams contribute to the generalized current rates

W
χχ′1 Iη
χχ′2

. The stationary current flowing out of lead η can then be expressed as

Jη = − e
~
∑

χχ′1χ
′
2

W
χχ′1 Iη
χχ′2

P
χ′1
χ′2
. (3.21)

3.7 Diagrammatic rules

From Eq. (3.19) follows that in order to determine the elements of the reduced density

matrix one needs to calculate the generalized rates W
χ1χ′1
χ2χ′2

. In this section we give the

diagrammatic rules87 required to evaluate the generalized rates. We have started from
the diagrammatic rules of Ref. 85 and Refs. 23,29 and formulated them in the ±-basis
introduced in Sec. 3.2. Additionally, we added a paragraph that describes how to deal
with the perturbation arising from the additional Hamiltonian Hp.

(1) Draw all topologically different diagrams with fixed ordering of the vertices in
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3.7 Diagrammatic rules

the real axis. The vertices may be bullets or crosses. The bullets are connected in
pairs by tunneling lines carrying energy ωi while crosses are not connected by tun-
neling lines. The tunneling lines can be normal or anomalous. For each anomalous
line, choose the direction (forward or backward with respect to the Keldysh contour)
arbitrarily.
(2) For each vertical cut between two vertices, assign a factor 1/(∆E + i0+), where
∆E is the difference between the left-going and the right-going energies, including the
energy of the dot states Eχ and the tunneling lines ωi.
(3) For each tunneling line, assign a factor 1

2πΓησDη(ωi)f
±
η (ωi), where f+

η (ω) = fη(ω) =

{1+exp [(ω − µη) /kBT ]}−1 and f−η (ω) = 1−fη(ω), andDη(ω) = |ω|√
ω2−|∆η |2

Θ (|ω| − |∆η|).
The upper (lower) sign applies for lines going backward (forward) with respect to the

Keldysh contour. For anomalous lines, multiply an additional factor ±sign (ωi)
|∆η |
|ωi| .

Moreover, assign a factor eiΦχ e−iΦη for an outgoing and e−iΦχ eiΦη for an incoming
anomalous line, where Φχ = arg (χ) and χ = 1

2

∑
η∈S Γηe

iΦη . [For normal leads, only
normal lines with Dη(ωi) ≡ 1 appear.]
(4) Every bullet vertex connects a dot state |α〉, with α ∈ {+,−}, to another dot
state |σ〉, with σ ∈ {↑, ↓}, and to a tunneling line describing a tunneling electron of

spin σ′ ∈ {↑, ↓}. For each bullet vertex assign a factor
√

1− SαSσSσ′ δ
2εA

/
√

2, where

Sα=+ = Sσ=↑ = Sσ′=↑ = 1 and Sα=− = Sσ=↓ = Sσ′=↓ = −1.
(5) Each cross vertex connects a state |α〉 with α ∈ {+,−} to a state |α′〉 with

α′ ∈ {+,−}. For each cross vertex with α = α′ assign a factor (−1)Sα
√

1− δ2

4ε2A
|χ|

and for α 6= α′ assign a factor δ
2εA
|χ|.

(6) Assign an overall prefactor −i.
Furthermore, assign a factor −1 for each
(a) vertex on the lower propagator;
(b) crossing of tunneling lines;
(c) outgoing (incoming) bullet vertex ending (starting) in the state |+〉 or | ↑〉;
(d) outgoing (incoming) anomalous tunneling line, in which the earlier (later) tunnel
vertex with respect to the Keldysh contour is connected to a tunneling spin-up elec-
tron.
(7) For each tunneling line, integrate over the energy ωi. Sum over all diagrams.

The generalized current rates W
χχ′1 Iη
χχ′2

are evaluated in the following way:

(8) Multiply each diagram that contributes to the corresponding generalized rate W
χχ′1
χχ′2

and where the rightmost line is associated with lead η with a factor:
(a) for the rightmost line being a normal line: 1 if the line is going from the lower to
the upper propagator, -1 if it is going from the upper to the lower propagator, and 0
otherwise;
(b) for the rightmost line being an anomalous line: 1 for incoming lines within the
upper and outgoing lines within the lower propagator, −1 for outgoing lines within the
upper and incoming lines within the lower propagator, and 0 otherwise.
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3 Diagrammatic technique

3.8 Large-gap limit

In this section we demonstrate that the effective Hamiltonian of Eq. (3.7) is partic-
ularly useful in the limit of infinitely-large superconducting gaps, i.e. |∆| → ∞. In
this limit quasiparticles are inaccessible and only Cooper pairs contribute to trans-
port. In Ref. 23 it has been shown that for large gaps only anomalous lines with the
superconductors exist. Both vertices of these anomalous lines are required to be in
the same propagator and no other vertex can be between them. Now we compare the
effect of superconducting tunneling lines with that of the cross vertices. Tunneling
lines associated with the superconductors as well as cross vertices connect a dot state
χ′ ∈ {|+〉, |−〉} to a dot state χ ∈ {|+〉, |−〉}. Since the calculations are very similar
even for different starting and ending states and for different propagating energies we
exemplarily present two calculations for each, tunneling lines associated with the su-
perconductor and cross vertices. The first calculation regards the connection of equal
states χ′ = χ while the second regards the connection of different states χ′ 6= χ. We
find

+

− −σ

ω

ω�

=
∑

σ

∫ ∞

∆

dω′

2π

|χ|
E+ − ε− ω − ω′

|∆|√
ω′2 − |∆|2

√
1 +

δ2

4ε2A

= −|χ|
2

√
1 +

δ2

4ε2A
,

− −σ

+

ω

ω�
= −|χ|

2

√
1 +

δ2

4ε2A
,

− −

+

ω

× 
= |χ|

√
1 +

δ2

4ε2A
,

so that

+

− −σ

ω

ω�

+

− −σ

+

ω

ω�
+

− −

+

ω

× 
= 0. (3.22)
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3.8 Large-gap limit

Analogously we find for the connection of different states

−σ

+

ω

ω�
+

=
|χ|
2

(
1− δ

2εA

)
,

−σ

+

ω
ω�
+

= −|χ|
2

(
1 +

δ

2εA

)
,

−

+

ω

× 
+

=
δ

2εA
|χ|,

so that again

−σ

+

ω

ω�
+

+

−σ

+

ω
ω�
+

+

−

+

ω

× 
+

= 0. (3.23)

By means of similar calculations Eqs. (3.22) and (3.23) can be generalized for all differ-
ent starting and ending states and propagating energies. For the forward propagator
and the backward propagator we obtain

σ

ω

ω�
χ1χ�

1

χ2

+

σ

ω

ω�
χ1χ�

1

χ2

+
ω

× 
χ�

1 χ1

χ2

= 0, (3.24)

σ

ω

ω�

χ1

χ�
2 χ2

+

σ

ω

ω�

χ1

χ�
2 χ2

+
ω

× 

χ1

χ�
2 χ2

= 0, (3.25)
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3 Diagrammatic technique

respectively. Note that Eqs. (3.24) and (3.25) are valid for an arbitrary number of nor-
mal lines with arbitrary directions. Since these incoming- and outgoing anomalous lines
are the only possible tunneling lines involving superconductors in the limit of infinitely-
large gaps the effect of all occurring tunneling lines associated with superconducting
leads is cancelled by the effect of the cross vertices in this limit. This argument holds
in every order so that the coupling to the superconducting leads is treated exactly.
The consequence is that the effective Hamiltonian Heff already contains the tunneling
dynamics of the superconductors so that only transition rates involving the normal
conducting leads need to be evaluated in the large-gap limit. Nevertheless, in order
to calculate the current in a superconducting lead current rates that include tunneling
lines associated with this lead still need to be accounted for. For example, the rather
lavishly resummation of diagrams according to Ref. 23 could be skipped and the same
results could be obtained just by calculating the first-order rates in the ±-basis. If
there is only one superconductor in the setup, the large-gap currents can be calculated
by Fermi’s golden rule allowing a quick access to the results.
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4 Generation of pure spin currents by
superconducting proximity effect in
quantum dots

In this chapter we focus on a three-terminal hybrid system, composed of an interact-
ing quantum dot tunnel coupled to one superconducting, one ferromagnetic, and one
normal lead in the infinite-gap limit in order to find pure spin currents.
Hybrid systems containing ferromagnetic materials are of interest for the possibilities
they open up to generate and control spin currents. The current between two tunnel-
coupled ferromagnets depends strongly on the relative magnetization direction of the
two ferromagnets. For parallel alignments the tunneling current is enhanced, while for
antiparallel alignments the current is suppressed. This effect is known as the tunneling
magneto resistance (TMR).88

In quantum dots connected to ferromagnets, spin accumulation in the dot plays an im-
portant role. Theoretically, for such systems complex transport properties as negative
differential conductance89,90 and spin precession85,91 have been predicted. Experi-
mentally, quantum dots realized in carbon nanotubes have already been coupled to
ferromagnets.11–14

Cooper pairs in a BCS superconductor are made up of a spin up and spin down elec-
tron in a singlet state. Hence the combination of superconducting and ferromagnetic
materials in a nano-structure is expected to give rise to rich spin physics and to non-
local effects due to the entanglement intrinsic to the Cooper pairs. A good example is
crossed Andreev reflection in three terminal setups consisting of a superconductor and
two ferromagnets.92–96

Recently, S. Das et al. have proposed a scheme for pure spin currents in a three-
terminal setup, where a ferromagnet, a superconductor, and a normal conductor are
connected via quantum wires.97 In the present work, we consider a similar setup,
however involving a quantum dot. In particular, we consider an interacting, single-
level quantum dot tunnel coupled to a superconducting, a ferromagnetic, and a normal
lead, see Fig. 4.1. We exploit the tunability of the quantum-dot spectrum and non-
equilibrium to generate a pure spin current in the normal lead, i.e. a spin current with
no charge current.
The contents of this chapter have been published in Ref. 98.
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Figure 4.1: Setup: a quantum dot is tunnel coupled to one superconducting, one ferromagnetic,

and one normal lead.

4.1 Model and method

In the limit of an infinite-large superconducting gap, i.e. |∆| → ∞, the Hamiltonian
of Eq. (3.8) simplifies for the three-terminal system depicted in Fig. 4.1 to

H = Heff +
∑

η=N,F

(Hη +Htunn,η), (4.1)

with χ = ΓS/2, where ∆ has been chosen to be real. Since this system only contains
a single superconductor all occurring currents be calculated without the current rates
for the superconductor so that the complete dynamics of the superconductor is already
contained in the effective Hamiltonian. In this chapter we consider the regime |δ| <√
U2 − Γ2

S , for which the inequality EA,−,− < EA,−,+ < 0 < EA,+,− < EA,+,+ holds.

We consider only the case of weak coupling to the non-superconducting leads, ΓN ,ΓF .
kBT and we compute results up to first order in these couplings. We also assume that
ΓN ,ΓF � εA. When these conditions are fulfilled, we need to retain only the diagonal
elements of the density matrix in the ± basis introduced in Sec. 3.2. The generalized
rates required to determine elements of the reduced density matrix can be calculated
either with the diagrammatic technique presented in Chapter 3 or by means of Fermi’s
golden rule.

The current of electrons with spin σ out of lead η can be expressed as

Jησ =
1

~
∑

χχ′

W ησ
χ′χPχ, (4.2)

where W ησ
χ′χ ≡

∑
s sW

ησ
χ′χ, and W ησ

χ′χ is the sum of all rates that describe transitions
from χ to χ′ in which in total s electrons of spin σ are removed from lead η. The
charge current and the spin current out of lead η are given, respectively, by

JQη ≡ cQ (Jη↑ + Jη↓) , (4.3)

JSη ≡ cS (Jη↑ − Jη↓) , (4.4)

where cQ = e and cS = ~/2.

34



4.2 Results

4.2 Results

We discuss the case of equal tunnel-coupling strengths to the normal and ferromagnetic
leads, ΓN = ΓF ≡ Γ . kBT , and focus on the regime of positive bias, µN > 0. The case
µN < 0 is obtained from the symmetry transformation µN → −µN , µF → −µF , δ →
−δ, and JN → −JN .

The spin current in the normal lead

JSN = −SzΓN
[[
f−N (EA,−,+) + f+

N (EA,+,+)
](

1 +
δ

2εA

)

+
[
f+
N (EA,+,−) + f−N (EA,−,−)

](
1− δ

2εA

)]
, (4.5)

is proportional to the spin accumulation Sz ≡ (P↑ − P↓) /2, where f+
N (ω) = fN (ω) =

[1 + exp(ω−µNkBT
)]−1 is the Fermi function of the normal lead and f−N (ω) = 1 − fN (ω).

In Eq. (4.5), the effect of the voltage bias applied to the ferromagnetic lead, µF , is
contained in the spin accumulation Sz. For small chemical potentials applied to the
normal lead, EA,−,+ < µN < EA,+,−, the spin current is exponentially suppressed.
For intermediate chemical potentials of the normal lead, EA,+,− < µN < EA,+,+, and
arbitrary µF , the spin current simplifies to

JSN ≈ −SzΓ
(

1− δ

2εA

)
. (4.6)

In the same bias regime, the charge current is given by the expression

JQN ≈ Γ

[
1

2

(
1− δ

2εA

)
P1 +

(
1 +

δ

2εA

)
P− −

δ

εA
P+

]
, (4.7)

where P1 = P↑ + P↓ is the probability for the dot to be singly occupied. We note that
the charge current in intermediate bias regime can be tuned to zero by means of the
dot-level position ε.
On the other hand, in the large-bias regime for the normal lead, EA,+,+ < µN , where
processes with electrons entering the normal conductor are exponentially suppressed,
there will always be a finite Andreev charge current flowing out of the normal lead
into the superconductor, i.e., the charge current will be finite for any value of the level
position.

In conclusion, a pure spin current is only possible in the intermediate-bias regime,
which we will focus on in the following.

How to tune the system parameters to obtain a pure spin current is illustrated in
Fig. 4.2, where the charge and spin currents are plotted as a function of the level po-
sition (tunable by the gate voltage) and of the chemical potential of the ferromagnetic
lead µF (tunable by the bias voltage). For the value of the level position corresponding
to the thin line, the charge current vanishes for EA,+,+ < µF , while the spin current
remains finite. The level position ε0 that tunes the charge current in the normal lead to
zero, is a function of the charging energy U , the polarization p, and the tunnel-coupling
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(a) (b)

Figure 4.2: Density plot of (a) the charge current and (b) the spin current in the normal lead
as a function of the level position ε and the chemical potential of the ferromagnetic
lead µF . The thin line indicates the value of the level position for which the charge
current vanishes in the high-bias regime for the ferromagnetic lead. The other
parameters are µN = 0.5U , ΓS = 0.2U , Γ = 0.001U , p = 0.6, and kBT = 0.01U .

strength to the superconductor ΓS :

ε0 = −U
2

+
ΓS
16

√
−p4 + 27p2 − 18 + (9− p2)

√
p4 − 36p2 + 36

1− p2
. (4.8)

The equation is valid for the normal lead being in the intermediate-bias regime,
EA,−,−, EA,−,+, EA,+,− < µN < EA,+,+, and the ferromagnetic lead being in the large-
bias regime, EA,+,+ < µF . For its derivation we have assumed that all occurring Fermi
functions can be approximated to either zero or one, i.e. that |µN − EA,γ′,γ |, |µF −
EA,γ′,γ | � kBT for all possible values of γ and γ′.

Increasing the polarization p increases the spin accumulation on the dot and reduces
the proximization of the dot by the superconductor. Thus the probability for the dot
to be singly occupied, P1, is increased, while the probability for the dot to be in state
|+〉, P+, is reduced. In order to keep the charge current in the normal lead tuned to
zero for increased polarizations the prefactor of P1, i.e. (1 − δ/2εA), in Eq. (4.7) has
to be reduced by increasing ε = ε0.

For moderate values of the polarization p the monotonically increasing function ε0(p)
grows slowly. Only for large polarizations ε0(p) grows fast.

When ε0 becomes of the same order of the single-particle level spacing in the quan-
tum dot, the single-level model for the dot ceases to be valid. However, for the system
under consideration this situation is not realized for realistic polarizations of the fer-
romagnetic lead. In fact, for ΓS = 0.2U and p = 0.995 we find that the level position
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Figure 4.3: Spin current JS
N and charge current JQ

N as a function of the chemical potential of
the ferromagnetic lead µF for ε = ε0, µN = 0.5U,ΓS = 0.2U,Γ = 0.001U, p = 0.6,
and kBT = 0.01U .

that tunes the charge current in the normal lead to zero only reaches ε0 ≈ 0.

The pure spin current for ε = ε0 is independent of the tunnel-coupling strength to
the superconductor ΓS (though a finite ΓS is required to establish the spin current and
the Andreev current tuning the charge current to zero).

Figure 4.3 shows the spin and charge currents in the normal lead for ε = ε0, as a
function of the chemical potential of the ferromagnetic lead µF . The dependence of
the pure spin current on the polarization of the ferromagnet is shown in Fig. 4.4. With
increasing polarization the spin current increases until a maximum is reached. For
stronger polarizations, the charge current flowing out of the ferromagnet is reduced
due to the spin accumulation, leading to reduction of the spin current in the normal
lead.

The occurrence of a pure spin current can be understood examining the transport
processes between dot and ferromagnetic / normal lead. Since the ferromagnetic and
normal leads are only weakly coupled to the quantum dot, corresponding currents are
carried by sequential electron tunneling.
The possible transport processes between dot and ferromagnetic lead in the large bias

regime, i.e. EA,+,+ < µF , are illustrated in Figure 4.5 a). The processes involving
minority spins, depicted by shorter arrows, are suppressed. In all the processes elec-
trons are transferred from the ferromagnetic lead to the dot. All four dot states can
be occupied. Due to the spin polarization of the ferromagnetic lead, an imbalance in
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Figure 4.4: Spin current in the normal lead as a function of the polarization of the ferromagnet
p for ε = ε0, µN = 0.5U,ΓS = 0.2U,Γ = 0.001U , and kBT = 0.01U .
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Figure 4.5: Possible tunneling processes between dot and a) ferromagnetic lead with large
chemical potential EA,+,+ < µF and b) normal lead with intermediate chemical
potential EA,+,− < µN < EA,+,+: the arrow direction depicts transitions of dot
states. With black (white) arrows an electron leaves (enters) the corresponding
lead. Tunneling of minority spins (short arrows) is suppressed.
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the occupation of the dot states |↑〉 and |↓〉, and thus a finite spin accumulation Sz, is
generated.
The possible transport processes between dot and normal lead in the intermediate bias
regime, i.e. EA,+,− < µN < EA,+,+, are shown in Figure 4.5 b). Because of the spin
accumulation on the dot, i.e. P↑ > P↓, transitions from state |↑〉 to state |−〉 take place
more frequently than transitions from |↓〉 to |−〉. This leads to a finite spin current in
the normal lead. Black arrows represent processes where an electron flows out of the
normal lead, while white arrows indicate processes where electrons enter the normal
lead. The latter processes require the dot to be in state |+〉. The occupation of dot
state |+〉 is provided by the ferromagnet. By controlling the gate voltage, and thus
the occupation of the different dot states, the charge current in the normal lead can
be tuned to zero yielding a pure spin current. This pure spin current is generated
by the interplay of superconductivity, non-equilibrium, and spin-dependent transport:
the superconducting lead proximizes the quantum dot, leading to the superposition
states |−〉 and |+〉. The biased ferromagnetic lead first provides occupation of the dot
state |+〉, which gives the possibility to tune the charge current in the normal to zero.
Second, it causes spins to accumulate on the dot inducing a spin current in the normal
lead.

4.3 Conclusions

Spin-dependent transport in a three-teminal structure consisting of a quantum dot
tunnel coupled to a superconducting, a ferromagnetic and a normal lead has been
investigated in the large-superconducting-gap regime, by means of a master-equation
approach. It has been established that such a system can be used to generate a pure
spin current in the normal lead, exploiting the tunability of the dot’s spectrum, non-
equilibrium driven by finite bias voltages, spin accumulation due to the ferromagnet,
and the Andreev bound states induced by the superconductor.
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5 Renormalization effects in interacting
quantum dots coupled to
superconducting leads

An exact theoretical treatment of the transport properties of hybrid systems coupled
to superconducting leads requires to account for Coulomb interaction, superconduct-
ing correlations, and non-equilibrium at the same time. To circumvent this challenge,
various approximation schemes have been proposed. In the case of vanishing Coulomb
interaction, an exact solution can be obtained within a scattering approach.15 As a first
step beyond, Coulomb interaction has been treated perturbatively,16–21 which, how-
ever, is not justified for the large charging energies that are typical for small quantum
dots. An alternative possibility is to allow for strong Coulomb interaction but per-
form a perturbation expansion in the strength of the tunnel coupling between dot and
leads.22,23 However, in the limit of an infinitely-large superconducting gap, an exact
treatment of both the Coulomb interaction and the tunnel coupling between quantum
dot and superconducting leads is possible.23–27 In this case, quasiparticle tunneling is
completely suppressed and transport from and to the superconducting leads is fully
sustained by Cooper pairs. The formation of Andreev-bound states (ABSs) in the
quantum dot indicates that superconducting correlations are induced via the proxim-
ity to superconducting leads. The dependence of the ABS energies on the quantum
dot’s level position is directly reflected in the transport spectrum of the system.

A diagrammatic real-time approach to transport through quantum dots coupled both
to normal and superconducting leads has been introduced in Ref. 23. This method has
been applied in the limit of an infinitely-large superconducting gap, ∆→∞, to study
a variety of transport phenomena in different quantum-dot setups,28–32,98–100 includ-
ing, for example, pure spin-current generation,98 shot-noise suppression,99 Cooper-pair
splitting,30,31 and time dependent driving.32

The calculations in the infinite-gap limit neglect quasiparticle contributions to trans-
port. They, furthermore, approximate the ABS energies since the latter are a function
of the superconducting gap. In the experiments, the superconducting gap ∆ is often of
the same order of magnitude as other energy scales such as charging energy or tunnel-
coupling strength. For this reason, it is quite natural to investigate the quality of the
approximation introduced by considering the infinite-gap limit. This is the main goal
of this chapter. Furthermore, we analyze the effect of next-to-lowest order corrections
in the tunnel coupling to the normal leads.

A finite superconducting gap in the leads affects the Andreev and Josephson trans-
port through quantum dots in two ways. First, it modifies the ABSs. This affects the
position of bias or gate voltages at which a new transport channel is opened. Second,
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Figure 5.1: (Color online) Setup: a quantum dot is tunnel coupled to one normal and two
superconducting leads.

the value of the current away from these threshold voltages is changed. To address
the effect of a finite ∆, we start by performing a systematic expansion in 1/∆ around
∆ → ∞. Exemplarily, we will focus on a quantum dot tunnel coupled to one normal
and two superconducting reservoirs and compare the currents obtained by the 1/∆
expansion with the ∆ → ∞ limit.23 We find that away from the threshold voltages,
both the Andreev and the Josephson currents are hardly modified, i.e., the ∆ → ∞
limit provides quite an accurate description of subgap transport. The 1/∆ expansion,
furthermore, indicates a renormalization of the ABS energies. It can, however, only
predict the direction towards which the energies are shifted. To determine the posi-
tion of the ABS, we go beyond the 1/∆ expansion and perform a partial resummation
of diagrams. The results within this approach are considerably more accurate than
those obtained by a simple Hartree-Fock treatment and compare favorably with the
numerical renormalization group (NRG) data of Mart́ın-Rodero and Levy Yeyati.33

Finally, we present (for the ∆ → ∞ limit) results from a systematic perturbation
expansion to next-to-lowest order in the tunnel coupling to the normal leads. In
this way, we go beyond the regime of weak tunnel coupling but do not cover Kondo
correlations.14,16–19,66,67,101–112 We find that the next-to-leading correction leads to
a renormalization of the gate-voltage position at which a 0 − π transition occurs in
the Josephson current. This renormalization also affects the Andreev current and the
average quantum-dot charge. The contents of this chapter have been published in
Ref. 87.

5.1 Model and Method

5.1.1 Hamiltonian

We focus on a three-terminal setup composed of a normal conductor and two super-
conductors tunnel coupled to an interacting single-level quantum dot, see Fig. 5.1. The
system’s Hamiltonian is given by H = Hdot +

∑
ηHη + Htunn,η, with η ∈ {L,R,N}.

We assume the normal lead to be a reservoir of noninteracting electrons and model
the superconductors with the mean-field BCS Hamiltonian

Hη =
∑

kσ

εηkc
†
ηkσcηkσ − δη,S

∑

k

(
∆eiΦηcη−k↓cηk↑ + H.c.

)
, (5.1)
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with εηk being the single-particle energies and c
(†)
ηkσ are the annihilation (creation) op-

erators for electrons in lead η with momentum k and spin σ. Here, ∆ is the modulus
of the superconducting pair potential, which we assume to be the same in both super-
conductors, and Φη is the corresponding phase in lead η = S with S ∈ {L,R}. We
measure all occurring energies with respect to the Fermi level of the superconductors,
i.e. µL,R = 0. Furthermore, we assume all occurring excitation energies of the dot
to lie inside the superconducting gap of the leads so that only subgap transport takes
place.

The Anderson Hamiltonian describing the single-level quantum dot reads

Hdot =
∑

σ

εd†σdσ + Un↑n↓, (5.2)

where ε is the energy of the spin-degenerate single-particle level, and U the on-site
Coulomb repulsion. The dot’s annihilation (creation) operators of spin σ are given by

d
(†)
σ , and nσ = d†σdσ is the corresponding number operator. Tunneling between dot

and leads is described by the tunneling Hamiltonian

Htunn,η = Vη
∑

kσ

(
c†ηkσdσ + H.c.

)
, (5.3)

with the spin and momentum independent tunnel matrix elements Vη. We define the
tunnel-coupling strengths as Γη = 2π|Vη|2ρη, where ρη is the density of states in lead
η that we assume to be independent of spin and energy.

5.1.2 Diagrammatic Technique

Effective Dot Hamiltonian

The main idea of the diagrammatic real-time technique is to integrate out the leads’
degrees of freedom to arrive at a reduced density matrix for the quantum dot. As
a basis for the reduced density matrix one may use the eigenstates of the decoupled
quantum dot, Hdot. This is a convenient choice for weak tunnel couplings to the
superconductors.22 In the opposite limit of strong coupling to the superconductor, a
resummation of an infinite number of diagrams is required. This resummation can be
carried out exactly in the ∆→∞ limit.23 For a systematic 1/∆-expansion, however,
it is more convenient to work in the eigenbasis of Heff = Hdot −Hp, with the pairing

Hamiltonian Hp = χ∗d↓d↑ + χd†↑d
†
↓ and χ = 1

2

∑
η=L,R Γηe

iΦη . The remaining part of
the Hamiltonian

H −Heff = Hp +
∑

η

Hη +Htunn,η, (5.4)

is treated diagrammatically as a perturbation. Thereby, Hp has been chosen such
that in the ∆ → ∞ limit the diagrammatic contributions stemming from Hp exactly
cancel those from the tunneling to the superconducting leads, i.e., Heff describes the
hybrid system of quantum dot and superconducting leads in the limit of an infinite
superconducting gap.
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Figure 5.2: Example diagrams contributing to the rate W ↑+↑− .

The eigenstates of Heff are |↑〉, |↓〉, and

|±〉 = 1√
2

[
∓e−iΦχ/2

√
1∓ δ

2εA
|0〉+ eiΦχ/2

√
1± δ

2εA
|d〉
]
, with eigenenergies ε, ε, and

E± = δ
2 ± εA, respectively. Here, Φχ = arg(χ), εA =

√
( δ2)2 + |χ|2, and δ = 2ε + U is

the detuning between the energies for empty and doubly-occupied quantum dot. The
superconducting proximity effect is indicated by the fact that |0〉 and |d〉 are no longer
eigenstates but appear as linear combinations in |±〉. The mixing between |0〉 and |d〉
becomes largest around zero detuning, δ ∼ 0.

The excitation energies associated with Heff are given by the differences of the
eigenenergies of states with even and odd dot occupation numbers,

E∆→∞
A,γ′,γ = γ′

U

2
+ γεA, (5.5)

with γ′, γ = ±. They are nothing but the Andreev bound state (ABS) energies

Generalized Master Equation

The system’s dynamics is determined by a generalized master equation for the reduced
density matrix ρred, which is obtained by integrating out the lead’s degrees of freedom.
Its matrix elements Pχ1

χ2 = 〈χ1|ρred|χ2〉 obey, in the stationary limit, the generalized
master equation

i (Eχ1 − Eχ2)Pχ1
χ2

=
∑

χ′1χ
′
2

W
χ1χ′1
χ2χ′2

P
χ′1
χ′2
, (5.6)

where W
χ1,χ′1
χ2,χ′2

are generalized rates that can be computed in a diagrammatic way,

see Chapter 3. To illustrate what types of diagrams need to be included we show
two exemplary diagrams here. The first example is a diagram containing one line
associated with the normal lead and one line associated with the left superconductor,
see Fig. 5.2 (a), and it reads

−i
∫
dωL
2π

∫
dωN
2π

ΓNΓSe
i(ΦL−Φχ)f+

N (ωN )f−(ωL)

× 1

ωN + E− − ε+ i0+

1

ωN + ωL + i0+

1

ωN + E+ − ε+ i0+

× sign(ωL)
∆√

ω2
L −∆2

Θ(|ωL| −∆)

(
1− δ

2εA

)2

.
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The second example is a diagram, see Fig. 5.2 (b), containing a line associated with
the right superconductor and a cross vertex and it yields the following expression

i

∫
dωR
2π

ΓSe
i(ΦR−Φχ)f−(ωR)

1

E− − ωR − ε+ i0+

× 1

E+ − ωR − ε+ i0+
sign(ωR)

∆√
ω2
R −∆2

× Θ(|ωR| −∆)
δ|χ|
2εA

√
1− δ2

4ε2A
.

As explained in the previous section, we work in the basis {↑, ↓,+,−}. This has the
consequence that the off-diagonal matrix elements on the right hand side of Eq. (5.6)
vanish to lowest order in ΓN and 1/∆ as long as εA & ΓN . Only their next-order
correction remains finite.

Superconducting correlations in the quantum dot are associated with coherent su-
perpositions of an empty and a doubly-occupied dot. This motivates the following
definition of an isospin,22,23

Ix =
P d0 + P 0

d

2
, Iy = i

P d0 − P 0
d

2
, Iz =

Pd − P0

2
, (5.7)

formulated in the basis {↑, ↓, 0, d} (the transformation to the basis {↑, ↓,+,−} is
straightforward). A finite value of the isospin components Ix and/or Iy indicates
the presence of superconducting proximity effect.

It turns out that the generalized master equations for the isospin components do
not couple to the probabilities of the quantum dot to be singly occupied with either
spin. They can be written in the form of a Bloch-like equation

0 =
dI

dt
= A−R · I + I×B, (5.8)

where the terms with A, R, and B describe the generation, relaxation, and coherent
rotation of the isospin.

Current formulae

The current in lead η is given by

Jη = − e
~
∑

χχ′1χ
′
2

W
χχ′1 Iη
χχ′2

P
χ′1
χ′2
, (5.9)

with W
χχ′1 Iη
χχ′2

being the generalized current rates. For a systematic perturbation ex-

pansion in powers of ΓN and 1/∆ one needs to expand P , W , and W Iη in Eqs. (5.6)
and (5.9).

We refer to the current flowing out of the normal lead as the Andreev current and to
the difference of the currents between left and right superconductor as the Josephson

45



5 Renormalization effects in interacting quantum dots

-1.5 -1.0 -0.5 0.0 0.5
Ε �U

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Μ
N

�U
0.38

0

-0.38

Ñ Jjos�HeGSL

Figure 5.3: (Color online) Density plot of the Josephson current in the limit of ∆ → ∞ as a
function of the level position ε and the chemical potential of the normal lead µN .
The other parameters are ΓS = 0.2U , ΓN = 0.001U , Φ = π/2, and kBT = 0.01U .

current. In the limit ∆ → ∞, the Andreev current and the Josephson current are
directly connected to the isospin via23

J∆→∞
jos =

2e

~
ΓSI

∆→∞
x sin

Φ

2
, (5.10)

J∆→∞
and = −4e

~
ΓSI

∆→∞
y cos

Φ

2
. (5.11)

For the 1/∆ corrections to the currents, however, one needs to use the more general
Eq. (5.9).

5.2 Finite-gap effects

5.2.1 1/∆ Expansion

We assume symmetric tunnel couplings to the superconducting leads, ΓL = ΓR = ΓS .
Furthermore, we choose a gauge such that ΦL = −ΦR = Φ/2. For both the Josephson
and the Andreev current we calculate the value for the ∆→∞ limit and the correction
to first order in 1/∆. The tunnel coupling to the normal lead, ΓN is accounted for in
lowest non-vanishing order, i.e., to zeroth order for the Josephson current and to first
order for the Andreev current.

Figures 5.3 and 5.4 show the Josephson current and the Andreev current in the
limit of ∆→∞ as a function of the level position ε and the chemical potential of the
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Figure 5.4: (Color online) Density plot of the Andreev current in the limit of ∆ → ∞ as a
function of the level position ε and the chemical potential of the normal lead µN .
The other parameters are ΓS = 0.2U , ΓN = 0.001U , Φ = π/2, and kBT = 0.01U .

normal lead µN . This is the limit considered in Ref. 23 and is used as a reference for the
present discussion. A cut through the density plots at a fixed level position ε = −0.4U
is shown in Fig. 5.5 (solid blue line). The currents display a step-like behavior with the
position of the steps reflecting the ABS energies. This is compared with the currents
expanded up to first order in 1/∆, dashed red lines in Fig. 5.5. From this comparison,
we can draw two conclusions.

First, away from the ABS, the solid and dashed curves almost coincide, i.e., the
1/∆ correction to the current is small. This leads to the conclusion that the ∆ →
∞ calculations provide a useful and quantitatively accurate description of sub-gap
transport also for finite values of the superconducting gap.

Second, we find peaks at the positions of the ABSs in the 1/∆ correction to the
current. While the peaks themselves are artefacts of the 1/∆ expansion, they carry
important physical information about the renormalization of the ABSs as compared
to their ∆ → ∞ value. This can be understood in the following way. The currents
vary stepwise at the position of the ABSs. The latter are renormalized due to finite
∆. Therefore, a systematic expansion in the small parameter with which the renor-
malization scales gives rise to the occurrence of peaks at the original position of the
steps. The sign of the peaks relative to the sign of the steps indicates the direction of
the renormalization. The ABS is renormalized towards (away from) zero if step and
peak have the same (the opposite) sign. In the examples plotted in Fig. 5.5 the curves
indicate a renormalization of all four ABSs towards zero.
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Figure 5.5: (Color online) Plot of (a) the Josephson current and (b) the Andreev current as a
function the chemical potential of the normal lead µN . The solid (blue) curve shows
the ∆ → ∞ limit, the dashed (red) curve includes the first 1/∆ correction. The
other parameters are ε = −0.4U , ΓS = 0.2U , ΓN = 0.001U , ∆ = 5U , Φ = π/2,
and kBT = 0.01U .
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5.2.2 Renormalization of Andreev Bound States

The 1/∆ expansion indicates that the ABSs are renormalized as compared to the
∆ → ∞ limit. It even predicts the sign of the renormalization. It does, however,
not provide a possibility to calculate the ABSs at finite ∆. For this task, alternative
approaches are required. In the limit of vanishing Coulomb interaction, the problem
can be solved exactly.15,107 A mean-field treatment of the Coulomb interaction pro-
vides easily an estimate of the ABSs.9,33 Numerical renormalization group (NRG)
calculations are exact but numerically demanding.33,113–116 Instead, we propose a re-
summation approach that is more accurate than mean field but less computationally
heavy than NRG.

In the following, we consider the limit of weak tunnel coupling to the normal lead,
i.e., we discuss the spectrum to zeroth order in ΓN . Furthermore, we choose Φ = 0
without loss of generality (to consider the case of a finite Φ one has to replace ΓS
by ΓS cos(Φ/2); to model the case of a single superconducting lead, ΓS needs to be
replaced by ΓS/2).

Exact Green’s function for the noninteracting dot

For a noninteracting dot, U = 0, the exact Green’s function for spin σ is given, in
Nambu space, by

Ĝr =
(
ω · I2×2 − ĥσ(U = 0)− ΣS

)−1
, (5.12)

with In×n being the identity matrix in n dimensions. The matrix

ĥσ(U = 0) =

(
εσ 0
0 −ε−σ

)
(5.13)

accounts for the single-particle energies, and the self-energy due to tunneling reads

Σ̂S = ΓS

(
− ω√

∆2−ω2
∆√

∆2−ω2

∆√
∆2−ω2

− ω√
∆2−ω2

)
. (5.14)

The ABSs, i.e. the excitation energies, are found as the real part of the poles of the
Green’s function’s determinant. An example is shown in Fig. 5.6. In the noninteracting
case, there are only two ABSs. Their energies for finite ∆ are reduced as compared
to the ∆ → ∞ limit. In particular, the curvature of the energy as a function of the
bare level position ε changes for large |ε|, such that the ABSs lie within the window
[−∆,∆].

Hartree-Fock approximation

A Hartree-Fock (HF) treatment of the Coulomb interaction has been used in Ref. 9
to fit the experimental data. This HF approach corresponds to replace ĥσ(U = 0) in
Eq. (5.12) by

ĥσ(U) =

(
ε̃σ 0
0 −ε̃−σ

)
, (5.15)
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Figure 5.6: (Color online) Plot of the U = 0 Andreev-bound states for a tunnel-coupling
strength to the superconducting lead of ΓS = 0.25∆ as a function of the level
position ε. All energies are normalized to ∆. The solid (blue) line shows the exact
result, the dashed (black) line the bound states computed by means of the ∆→∞
expression, which in the non-interacting case is simply ±εA.

where ε̃↓ = ε̃↑ + U . For U = 0, the exact Green’s function Eq. (5.12) is recovered.
Furthermore, it reproduces the exact ABSs in the ∆→∞ limit.

An improved version is self-consistent HF, in which the dot occupations are calcu-
lated self-consistently.33 In the following, however, we use the simpler version of HF
for comparison with the results from the resummation approach.

Resummation Approach

An important feature of the diagrammatic technique presented in this paper is that
Coulomb interaction can be included beyond the mean-field level. The downside is that
for an exact solution one has to sum up infinitely many diagrams. A great simplification
is achieved by working in the basis {↑, ↓,+,−}. As discussed above, in the ∆ → ∞
limit, all diagrams that contain superconducting lines are cancelled by cross vertices.
This means that all contributing diagrams contain normal tunnel lines only.

At finite ∆, the situation is different. Now, both superconducting lines and cross
vertices dress the original normal tunnel lines. We define the propagator Π(ω) as the
diagram part between two vertices that are connected by a normal tunnel line with
energy ω running from right to left. This propagator obeys a Dyson equation

Π(ω) = Π(0)(ω) + Π(ω) Σ(ω) Π(0)(ω), (5.16)

where Π(0)(ω) is the free propagator (without superconducting lines and cross vertices)
and Σ(ω) the self energy.

In the ∆ → ∞ limit, the self energy is exactly zero. For an approximative treat-
ment of the case of finite ∆, we now include all self energy parts that contain one
superconducting tunnel line or one cross vertex. Examples are shown in Fig. 5.7.
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Figure 5.7: Examples for diagrams that contribute to the self-energy.

Since the Hilbert space is four dimensional, the dimension of the corresponding
Liouville space and, thus, of the matrices appearing in Eq. (5.16) is, in general, 16.
However, as a consequence of spin and charge conservation while tunneling, the Dyson
equation decouples into blocks of 4×4 matrices. The presence of the normal tunneling
line running from right to left which carries a definite charge and spin puts constraints
on the possible states at the beginning and end of the upper (χ1) and lower (χ2)
contour. In the following, we choose, without loss of generality, (χ1, χ2) ∈ {(−, ↑), (↓
,+), (↓,−), (+, ↑)}, which is the relevant case when the normal tunneling line carries
spin ↓. Then,

(
Π(0)(ω)

)−1
=

ω · I4×4 − diag(EA,+,−, EA,−,−, EA,−,+, EA,+,+) (5.17)

for the inverse free propagator, and the self energy

Σ(ω) =




W−−↑↑ (ω) W−↓↑+ (ω) W−↓↑− (ω) W−+
↑↑ (ω)

W ↓−+↑ (ω) W ↓↓++(ω) W ↓↓+−(ω) W ↓++↑ (ω)

W ↓−−↑ (ω) W ↓↓−+(ω) W ↓↓−−(ω) W ↓+−↑ (ω)

W+−
↑↑ (ω) W+↓

↑+ (ω) W+↓
↑− (ω) W++

↑↑ (ω),




(5.18)

is given by the generalized rates W
χ1χ1′
χ2χ2′ (ω) that contain a left-going external line with

energy ω.
We solve Eq. (5.16) for the full propagator to obtain

Π(ω) =

[(
Π(0)(ω)

)−1
− Σ(ω)

]−1

. (5.19)

The excitation energies of the proximized dot are probed by the external energy ω
and they are given by the real poles of the full propagator. As mentioned above, we
approximate the self-energy Σ(ω) by including only diagrams that contain a single
superconducting tunneling line or one cross vertex, in addition to the external line of
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5 Renormalization effects in interacting quantum dots

energy ω, see Fig. 5.7. In Appendix B we exemplarily show how the rate W−−↑↑ (ω) is
calculated.

Although the resummation scheme does not define a controlled approximation, its
results are with a few limitations quantitatively accurate, as we discuss in the following.
It is clear that, by construction, the ∆→∞ limit is reproduced exactly. Also for the
noninteracting case, U = 0, the resummation approach yields the exact solution. As an
artifact, however, the resummation scheme produces for U = 0 two extra, unphysical,
solutions in addition to the two correct ones shown in Fig. 5.6.

The most interesting regime, however, is the case of finite U and finite ∆. Results
obtained from the resummation approach for different values of ΓS and U are presented
in Fig. 5.8 as solid (blue) curves. Depending on the values of the parameters of the
model, we find either two or four solutions. The ABSs are renormalized as compared
to the ∆ → ∞ solution. The sign of the renomalization agrees with the prediction of
the 1/∆ expansion of Sec. 5.2.1. For comparison, we also show the results from HF
as dashed (black) lines. While qualitatively similar, there are substantial quantitative
deviations. First, HF seems to underestimate the renormalization of the ABSs. Second,
the position of the crossing points of the ABS energies in the resummation scheme is
shifted as compared to the HF and the ∆→∞ result, see Fig. 5.8(c).

A reliable quality check of the proposed approximation, however, is only given by
the comparison with the full NRG results.34 We find a remarkably good agreement
between NRG data, dotted (red) lines in Fig. 5.8, and resummation approach. The
ABS spectrum is quantitatively reproduced in almost the entire parameter space. The
main difference is that the resummation scheme sometimes yields four solutions when
NRG only predicts two. Furthermore, sometimes the resummation approach produces
solutions with finite imaginary part. Since the ABSs in the absence of coupling to a
normal reservoir are sharp due to the gap in the quasiparticle spectrum, these solutions
are discarded. This gives rise to the small gaps in the solid (blue) line in Fig. 5.8(a)
and (b). Both features (extra pair of solutions and poles with finite imaginary part)
are artifacts of the approximation employed.

5.3 Beyond weak coupling to the normal lead

In the previous section we have discussed how a finite superconducting gap in the
leads renormalizes the ABSs of a quantum dot weakly tunnel-coupled to a normal
lead. Now, we want to address the influence of the tunnel coupling to the normal
lead beyond the weak-coupling limit. For this, we go back to ∆ → ∞ but include
next-to-leading order corrections in ΓN . To distinguish the contributions of different
order in ΓN , we introduce in the following an index (n) for n-th order. We study
the Josephson and the Andreev current as well as the average charge of the quantum
dot. Within a perturbation expansion, they start to zeroth, first, and zeroth order,
respectively, i.e., the next-to-leading order corrections are of first, second, and first
order, respectively. To evaluate them we have to include diagrams with two tunneling
lines from the normal lead. This increases the number of diagrams considerably and
we generate and evaluate them by means of a computer code.
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Figure 5.8: (Color online) Plot of the Andreev-bound states from the resummation approach,
NRG,34 and the Hartree-Fock approximation as a function of the level position ε
for (a) U = ∆ and ΓS = 0.5∆, (b) U = ∆ and ΓS = 0.2∆, and (c) U = 4∆ and
ΓS = 0.2∆.
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5 Renormalization effects in interacting quantum dots

It is natural for a systematic perturbation expansion in a small parameter that
higher-order corrections are quantitatively small. Therefore, we focus, in the following,
on qualitative features that appear in the region close to the point of zero detuning
δ = 2ε + U = 0 when going beyond the weak-coupling limit. Around zero detuning,
the weights of the states |0〉 and |d〉 entering the coherent superpositions |±〉 become
equal, indicating a large proximization of the quantum dot. For bias voltages large
enough such that the quantum dot has a finite probability to be either empty or doubly
occupied, Josephson and Andreev currents set in.

In the regime of large bias voltage, the Josephson current changes sign as function of
the quantum dot’s level position ε. This indicates a transition from a 0- to a π-junction
behavior. In the limit ∆ → ∞ and weak tunnel coupling to the normal lead,23 this
0 − π transition happens exactly at zero detuning, ε = −U/2, and then bends when
the bias voltage approaches the highest ABS, see Fig. 5.3. When including the next-
order correction in ΓN , the position of this 0 − π transition becomes renormalized,
Fig. 5.9 (a). The origin of this renormalization can be understood in terms of an
effective, tunnel-coupling induced field that acts on the isospin introduced in Eq. (5.7).
A finite bias voltage leads to the generation of the z-component of the isospin. The
tunnel coupling to the superconductors leads to an effective field along the x-direction.
This causes the isospin to rotate and acquire a finite y-component. According to
Eq. (5.10), however, a finite x-component of the isospin is needed for a Josephson
current. This is accomplished with an additional finite z-component of the effective

field. To lowest order, this component is given by the detuning, B
(0)
z = δ, which

explains the position of the 0 − π transition in Fig. 5.3. The next-order correction,

B
(1)
z , renormalizes this position.

We remark that this renormalization of the 0 − π transition has already been pre-
dicted in Ref. 22, in which the tunnel couplings to both the superconductors and the
normal leads as well as the detuning δ have been simultaneously treated as small pa-

rameters, i.e., the systematic perturbation expansion included already both B
(0)
z and

B
(1)
z . On the other hand, the formation of ABSs could not be treated in that expan-

sion. In Ref. 23, on the other hand, no constraints were put on ΓS and δ, i.e., the ABSs

could be described, but the renormalization B
(1)
z did not contribute to lowest order in

ΓN . Only the present calculation, with arbitrary ΓS and δ and next-to-leading order
on ΓN enables us to address both the ABSs and the renormalization of the position of
the 0− π transition.

While the Josephson current changes sign at small detuning, the Andreev current
becomes extremal as a function of ε, see Fig. 5.4. In Fig. 5.9 (b) we show the position of
this extremum in the ε-µN -plane. (We do not show the position of the extremum in the
Coulomb-blockade regime). To lowest order and for large bias voltage, the extremum
is at zero detuning. The next-order correction, however, leads to a renormalization of
this position, for the same reason as the renormalization of the 0− π transition in the
Josephson current.

Finally, we address the average quantum dot charge Q, which is related to the z-
component of the isospin via Q = −e (1 + 2Iz). Again, we focus on the region of small
detuning where the proximity effect is most pronounced. In the Coulomb-blockade
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Figure 5.9: (Color online) Plot of (a) the position of the 0 − π transition of the Josephson
current and (b) the extreme values of the Andreev current. The chosen parameters
are kBT/U = 0.05, ΓN/U = 0.05, ΓS/U = 0.2, and Φ = π/2. The thin black lines
show the position of the ABS.
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Figure 5.10: (Color online) Plot of the average dot charge. The chosen parameters are
kBT/U = 0.05, ΓN/U = 0.05, ΓS/U = 0.2, and Φ = π/2.

regime (at small bias voltage), the dot is preferably singly occupied, Q = −e. A
larger bias voltage has the tendency to inject a second electron into the quantum dot.
Superconducting correlations, however, mix the states of empty and double occupation
and, thus, reduce the average number of electrons. For zero detuning δ and to zeroth
order in ΓN , the charge Q remains −e even for large bias voltage. Only when increasing
|δ| the number of charges increases above 1. In the intermediate-bias regime for finite
detuning values the average charge tends towards 0 or −2e, depending on the sign of
the detuning. This effect can easily be understood by looking at the eigenstates |±〉: in
the intermediate-bias regime for positive values of µN , i.e. EA,+,− < µN < EA,+,+, the
state |−〉 can already be excited while state |+〉 is still inaccessible. From the definition
of state |−〉 it follows that a positive (negative) detuning causes the weight of the zero
component to dominate over (be dominated by) the double component resulting in an
decrease (increase) of the average number of electrons.

In Fig. 5.10 we show the position of Q/(−e) = 1, or equivalently Iz = 0, for both
zeroth and first order. (We do not plot the position in the Coulomb-blockade regime.)
As discussed above, the position of Q(0)/(−e) = 1 is at zero detuning in the large-bias
regime and splits in the intermediate-bias regime, with Q(0)/(−e) < 1 between and
Q(0)/(−e) > 1 outside the two lines. When including the next-order correction, the
situation changes. Now, the line of [Q(0) + Q(1)]/(−e) = 1 is split even for the large-
bias regime, opening a region with [Q(0) +Q(1)]/(−e) < 1 in between. To understand
this, we analyze Iz at zero detuning, δ = 0. Solving the generalized master equation1

immediately yields23 I
(0)
z (δ = 0) = 0 and I

(1)
z (δ = 0) = −A(1)

y /B
(0)
x , where B

(0)
x = 2|χ|

1Please note that in Ref. 23 A
(1)
y has mistakenly been taken to be zero. For Ref. 23 this error has

no influence on the results because all investigated quantities have been independent of A
(1)
y .
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and

A(1)
y =

1

4
Im
[
W
−−(1)
+− +W

−+(1)
++ +W

+−(1)
−− +W

++(1)
−+

]
,

=
ΓN
4π

√
1− δ2

4ε2A

∑

γ,γ′=±
Re

[
ψ

(
1

2
+ i

EA,γ′,γ − µN
2πkBT

)]
.

Here W
χ1χ′1(1)

χ2χ′2
are generalized rates in first order in ΓN and ψ(x) is the digamma

function. It is, thus, the isospin generation term A
(1)
y , describing combined Andreev

processes that involve both the normal and the superconducting leads, which reduce
Q/(−e) below 1.

5.4 Conclusions

The theoretical description of sub-gap (Josephson and Andreev) transport through
quantum dots with strong Coulomb interaction coupled to normal and superconducting
leads simplifies substantially in the limit of infinitely-large superconducting gap ∆ and
weak tunnel coupling ΓN to the normal lead. For experimental devices with finite ∆
and larger ΓN these calculations may still be used as an approximation. The assessment
of the quality of this approximation to describe sub-gap transport has been the focus of
this chapter. In particular we came to the following conclusions. The positions of the
ABSs strongly depend on ∆, i.e., a ∆→∞ approximation is insufficient. These ABSs
define threshold voltages in the current-voltage characteristics at which new transport
channels open. The numerical values for the Josephson and Andreev current between
these threshold voltages, however, seem to be nicely approximated by the ∆ → ∞
limit.

Similarly, we find that the next-to-leading order correction in the tunnel coupling
ΓN to the normal lead mainly yields small quantitative corrections. But there are also
qualitative differences: the position of the 0 − π transition in the Josephson current
and the peak positions in the Andreev current are shifted.

In conclusion, we find that the ∆ → ∞ and weak-coupling calculations provide a
very good approximation for sub-gap transport with the limitation that the positions
of the ABSs for finite ∆ are not properly described. To address the latter, we proposed
a resummation approach that substantially improves over mean-field treatments and
favorably compares with more elaborate NRG calculations.
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6 Band-mixing-mediated Andreev
reflection of semiconductor holes

In all previous result chapters we have focused on the case that the normal conducting
leads all have metallic character. This allowed us to neglect the influence of the band
structure on the investigated transport properties. The aim of this chapter is to explore
Andreev reflections in a system where the normal conducting region is a semiconductor
so that the band structure cannot be neglected.

Mesoscopic superconductivity has developed strongly over recent years.117–122 Start-
ing from the early theoretical studies of superconductor–normal-metal (S-N) inter-
faces,46,47 the interplay of pair correlations and quantum transport in phase-coherent
conductors has attracted a lot of interest.117–120 As the charge carriers’ mean free
path can be much longer in semiconductors than it typically is in metals, hybrid
structures of semiconductor materials are ideal for investigating the regime of ballistic
transport.121,123 Most recently, opportunities for realizing quantum-logical circuits and
investigating fundamentals of quantum physics in these systems have been explored.122

In most previous studies, the band electrons in the normal-conducting part of S-
N hybrid systems were simple in the sense that their properties could be modeled
using quantum states of free spin-1/2 particles. In the fundamentally interesting and
practically relevant124 situation where the normal carriers are from the valence band,
their electronic and spin properties are much richer.125,126 States in the upper-most
valence bands of common semiconductor materials carry a spin-3/2 degree of freedom
and also exhibit a strong coupling between this larger spin and their orbital motion.
In our work presented here, we address the question how these peculiar features that
have been seen to result in interesting mesoscopic-transport effects127–132 will affect
the physical properties of p-type semiconductor–superconductor hybrid systems.

Many of the interesting phenomena exhibited by S-N structures are fundamentally
due to the process of Andreev reflection,46,47 which is the conversion of a charge carrier
incident on the interface from the normal side into its charge-conjugated and time-
reversed copy. This counter-intuitive effect fundamentally results from the fact that
the two electrons forming a Cooper pair in the superconducting condensate are from
time-reversed states.36 A superconductor in close proximity to a normal conductor
induces pair correlations between such states also on the normal side of the hybrid
system. As a result, a charge carrier with energy below the gap for quasiparticle
excitations in the superconductor can, upon incidence on the S-N interface, combine
with its appropriate partner to enter the superconducting side as a Cooper pair. In
the process, the normal conductor is left with a missing carrier, usually referred to as
a “hole”, that has all attributes of the time-reversed partner of the incident particle.
As this “hole” is really a quasiparticle excitation of the Fermi sea of nearly-free band
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6 Band-mixing-mediated Andreev reflection of semiconductor holes

electrons in the normal conductor, we avoid this nomenclature here and reserve the
term “hole” to always refer to a state in the valence band of the semiconductor material
making up the normal-conducting part of the hybrid structure.

Based on the Bogoliubov-de Gennes formalism,36 a theory for scattering at non-
ideal S-N interfaces was developed by Blonder, Tinkham, and Klapwijk35 (BTK). Later
works have generalized this approach to describe oblique incidences of the charge carrier
from the normal side133–135 and to discuss the case of small values of Fermi energies
typically realized in semiconductors.136 It turns out that a finite angle of incidence
(measured with respect to the interface normal) reduces the probability of Andreev
reflection, and a critical angle exists above which no Andreev reflection is possible in
a semiconductor. The BTK model has also been adapted to situations without spin-
rotational symmetry, e.g., when the normal-conducting side of the hybrid system is
ferromagnetic.137–142 In the extreme case of a half-metallic ferromagnet where only
one spin-polarized band contributes to transport and pairing seems to be impossible,
spin-flip processes still enable Andreev reflections.140,142

In the present work, we incorporate a 6 × 6 Kane-type Hamiltonian126 into the
Boguliubov-de Gennes theory to model a hybrid p-type semiconductor/superconductor
structure. States in the lowest conduction and uppermost (heavy-hole and light-hole)
valence bands are included, as is the coupling between them. We focus on the situation
where the chemical potential lies in the valence band of the semiconducting side and
calculate the normal and Andreev-reflection probabilities when either light holes or
heavy holes are incident at an angle on the interface. In general, states from the su-
perconductor’s conduction band will be incompatible with those from the semiconduc-
tor’s valence band due to their different orbital character and no direct coupling will be
possible. Nevertheless, we find that the mixing between valence- and conduction-band
states in the semiconductor mediates a coupling to the superconducting pair potential
and thus enables Andreev reflection of holes. Even the valence-band states with spin
projection ±3/2 (heavy holes) can have a finite probability to be Andreev-reflected,
even though the pair potential in the superconductor is between states having spin
projection ±1/2. The wave-vector dependence of band mixing is reflected in the varia-
tion of the Andreev-reflection amplitudes as a function of the holes’ angle of incidence
onto the S-N interface.

The remainder of this chapter is organized as follows: we introduce our model for a p-
type-semiconductor/superconductor hybrid structure and discuss its relevant physical
parameters in the following Section 6.1. Results for normal and Andreev-reflection
probabilities for different scenarios of incident heavy-hole and light-hole carriers are
presented in Sec. 6.2. A summary and conclusions of our work are given in the final
Section 6.3.

The contents of this chapter have been published in Ref. 143.

6.1 Model

We consider a hybrid p-type semiconductor/superconductor structure with an ideal
interface. To calculate the transport properties of the system, we solve the Bogoliubov-
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6.1 Model

De Gennes equation with the single-particle Hamiltonians on the normal conducting
and superconducting side formulated in Nambu space. In order to avoid confusions
with valence-band carriers we do not use the term “Nambu-hole”. Instead, we will
address the corresponding states as “time-reversed” states, indicated by a “tilde”, so
that solely valence-band carriers are referred to as “holes”. The relevant Hamiltonians
will be invariant under time reversal, Ĥ = ΘĤΘ−1, where Θ is the time-reversal
operator, thus 〈α̃|Ĥ|β̃〉 = 〈β|Ĥ|α〉 holds.

We model the semiconductor using a 6 × 6 Kane-Hamiltonian126 within the spherical
approximation in the basis of the k = 0-band-edge states {|12 1

2 〉c, |12 −1
2 〉c, |32 3

2 〉v, |32 1
2 〉v,

|32 −1
2 〉v, |32 −3

2 〉v}, representing conduction electrons, heavy holes, and light holes, re-
spectively, and the corresponding time-reversed states, so that we get

HN =




H6c6c
0 H6c8v

0

H8v6c
0 H8v8v

0
0

0
−(H6c6c

0 )T −(H8v6c
0 )T

−(H6c8v
0 )T −(H8v8v

0 )T


 , (6.1)

with

H6c6c
0 =

(
~2k2
2m′ + ENF + E0 0

0 ~2k2
2m′ + ENF + E0

)
, (6.2a)
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Figure 6.1: (Color online) Schematic dispersions of conduction electrons (ce), heavy holes (hh)
and light holes (lh).

H6c8v
0 = (H8v6c

0 )†

=


−

1√
2
Pk+

√
2
3Pkz

1√
6
Pk− 0

0 − 1√
6
Pk+

√
2
3Pkz

1√
2
Pk−


 , (6.2c)

and 0 being the zero matrix of the appropriate dimensions. The spherical approxima-
tion implies that the terms arising from bulk inversion asymmetry can be neglected
and that γ′1 → γ1− 1

3
2m0
~2

P 2

E0
and γ′2,3 → 2γ2+3γ3

5 − 1
6

2m0
~2

P 2

E0
. We have used the abbrevi-

ations m′ = m0

(
m0
m∗ − 2

3
2m0
~2

P 2

E0

)−1
, where m∗ is the effective mass of conduction band

electrons, k2 = k2
x + k2

y + k2
z , k± = kx ± iky, and K̂ = k2

x − k2
y. The Fermi energy of

the semiconductor is ENF , E0 is the energy gap between conduction band and valence
bands, P is the coupling parameter between the conduction band and the valence band
and γ1,2,3 are parameters generating the effective masses in the valence band. Figure
6.1 schematically shows the dispersion resulting from the 6 × 6 Kane-Hamiltonian,
exemplarily calculated with the parameters of InAs, which will be discussed in more
detail in Sec. 6.2, and a Fermi energy of ENF = 110meV corresponding to a carrier
concentration n of n = 1020cm−3.

In the superconductor we assume the gap between the conduction band and the
valence bands to be very large, so that valence-band states of the superconductor are
irrelevant. In order to be able to match the wave function in the superconductor with
the wave function in the semiconductor, we write HS also in the 12 × 12-basis of the
k = 0-band-edge states and shift the valence bands in the superconductor to minus
infinity. Then the Hamiltonian HS of the superconductor is given by

HS =




HS
0 0 ∆ · I2×2 0

0 −∞ · I4×4 0 0
∆∗ · I2×2 0 −(HS

0 )T 0
0 0 0 −∞ · I4×4


 , (6.3)
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where

HS
0 =

(
~2k2
2mS
− ESF 0

0 ~2k2
2mS
− ESF

)
, (6.4)

with In×n being the identity matrix in n dimensions, mS being the effective mass of
the superconductor and ESF its Fermi energy. Without loss of generality, we choose
the superconducting order parameter ∆ = ∆0 to be real. It follows from Eq. (6.3)
that only states of the semiconductor with non-zero |12 ±1

2 〉c-component couple to
the superconductor. In the following we consider either the injection of a light hole,
abbreviated by lh, or the injection of a heavy hole, abbreviated by hh, from the
semiconducting side. For oblique reflections it is sufficient to consider all particles to
move in a plane, which we choose to be the x-y-plane. This choice block-diagonalizes
the Kane-Hamiltonian and thus, reduces the full Bogoliubov-de Gennes Hamiltonian
from 12 × 12 to 6 × 6. We assume the N-S interface to be in the y-z-plane at x = 0.
For an injected light hole, ξ = lh, (heavy hole, ξ = hh) in the semiconductor we make
the following Ansatz:

ψξ(x) =
1√
|vξ(kiξ)|

uξ(k
i
ξ)e

ikiξ,⊥x⊥+ik‖x‖

+
∑

χ

rχ/ξ√
|vχ(krχ)|

uχ(krχ)eik
r
χ,⊥x⊥+ik‖x‖ , (6.5)

where x⊥ (x‖) is the component perpendicular (parallel) to the junction, uχ(k) is the

eigenvector corresponding to state χ and momentum k and vχ(k) = uχ(k)T v̂⊥uχ(k),
with v̂⊥ = i

~ [H,x⊥], denotes the velocity perpendicular to the junction. The reflection
coefficient, describing the reflection amplitude from state ξ into state χ is labeled rχ/ξ.

The index χ ∈ {ce, hh, lh, c̃e, h̃h, l̃h} denotes a combination of the band (conduction
band, heavy-holes band, light-holes band) and the Nambu-state (non-time-reversed,
time-reversed). Due to the fact that in scattering processes the momentum parallel
to the interface needs to be conserved, all parts of the wave function have the same
momentum parallel to the scattering interface, k‖. With k‖ and kiξ,⊥ (krχ,⊥) the angle
θ of the injected (reflected) particle is determined, where θ = 0 corresponds to the
case of normal incidence. Note, that we explicitly allow for a conversion between
conduction electrons, light holes, and heavy holes, i.e. we allow for light holes to be
normal reflected as heavy holes and conduction electrons, and Andreev reflected as
heavy holes and conduction electrons and analogously, we allow for heavy holes to be
normal reflected as light holes and conduction electrons and Andreev reflected as light
holes and conduction electrons. Since the semiconductor’s conduction band lies above
the Fermi energy, only evanescent conduction-electron modes exist. But nevertheless,
these modes are important for matching the wave functions at the boundary.

We restrict ourselves to excitation energies inside the superconducting gap, |E| < ∆0,
which implies that only evanescent quasiparticle-wave functions exist in the supercon-
ductor. For the wave function in the superconductor we set
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ψS(x) =
cce√

Re[qce]




γ∗

0
0
γ
0
0



eiqce,⊥x⊥+ik‖x‖ +

cc̃e√
Re[qc̃e]




γ
0
0
γ∗

0
0



eiqc̃e,⊥x⊥+ik‖x‖ , (6.6)

with

γ = exp

[
− i

2
arccos

(
E

∆0

)]
, (6.7)

where cce and cc̃e are transmission coefficients and qce (qc̃e) is the complex wave vector
of the (time-reversed) evanescent quasiparticle wave function.

At the junction the wave function and the velocity need to be continuous:

ψN (x⊥ = 0) = ψS(x⊥ = 0) (6.8)

v̂⊥ψN (x⊥ = 0) = v̂⊥ψS(x⊥ = 0), (6.9)

with ψN being ψlh or ψhh, respectively.

6.2 Results

The results shown in this section have been calculated for InAs-Al. InAs is a commonly
used material that meets the requirements of a large mixing between conduction band
and valence bands, described by a large value of P and a small energy gap E0 between
conduction band and valence bands as well as a large spin-orbit coupling so that the
spin split-off band can be neglected and Al is often used by experimentalists as a
superconducting material. We use the band structure parameters for InAs given in
Ref. 126, which are E0 = 0.418 eV, P = 9.197 eVÅ,m∗ = 0.0229 m0, γ1 = 20.40, γ2 =
8.30, and γ3 = 9.10. Typical carrier concentrations n of p-type InAs range from about
1016 cm−3 up to about 1020 cm−3. This corresponds to Fermi energies ranging from
about 0.2 meV up to about 120 meV. For Al we set mS = m0 and ESF = 11.63 eV.

It follows from Eqs. (6.2) that all semiconductor states with k = 0 are orthogonal
to each other. This implies that the valence-band states at k = 0 are orthogonal to
the (k = 0) conduction-band states |12 ±1

2 〉c. They are, therefore, decoupled from the
superconductor and Andreev reflections are not possible. Only valence-band states
with finite momentum k can have a finite |12 ±1

2 〉c-component so that these states can
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Figure 6.2: (Color online) Plot of the conversion-less Andreev-reflection probabilities as a func-
tion of the Fermi energy of the semiconductor EN

F or the corresponding carrier con-
centration of the semiconductor. The other parameters are ∆0 = 0.1 meV, θ = π/8
and E = 0.
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Figure 6.3: (Color online) Plot of the reflection probabilities for an injected light hole as a
function of the injection angle θ for different excitation energies E. The other
parameters are ∆0 = 0.1 meV and EN

F = 53.6 meV, which corresponds to n =
3 · 1019cm−3.

participate in Andreev-reflection processes. At carrier concentrations in the range of
1016 cm−3 in the semiconductor the Fermi energy is smaller than 1 meV causing the
injected hole to have a small Fermi momentum. In this situation Andreev-reflection
probabilities are strongly suppressed, see Fig. 6.2. At larger carrier concentrations the
Fermi energy is shifted away from the band edge causing the Fermi momentum to be
increased and the probability of Andreev reflection is finite, see Fig. 6.2.

Light holes and heavy holes are distinguished by the projection of their total angular
momentum in the direction of motion. If a heavy hole is incident onto a scattering
interface at a finite angle with the surface normal, the reflected state would have a
different spin-quantization axis and would, therefore, be a mixture of heavy-hole and
light-hole components. As a result, it is possible to convert heavy holes into light holes
and vice versa in oblique scattering processes. This conversion also occurs in Andreev-
reflection processes, so that heavy holes may also be Andreev reflected as light holes
and vice versa. For normal incidence, heavy holes are decoupled from light holes and
conduction electrons. This can be seen by setting kx and ky to zero in Eq. (6.1). For
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Figure 6.4: (Color online) Plot of the reflection probabilities for an injected heavy hole as a
function of the injection angle θ for different excitation energies E. The other
parameters are ∆0 = 0.1 meV and EN
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perpendicular (and, in principle, also parallel) incidence, the motion of incoming and
reflected particles is collinear so that in this case a conversion is not possible and,
additionally, for heavy holes it is not possible to be Andreev reflected. This effect
is independent of the semiconductor’s carrier concentration and independent of the
excitation energy of the incident hole. Figures 6.3 and 6.4 show an exemplary sequence
of plots of the reflection probabilities of an injected light hole or injected heavy hole,
respectively, as a function of the angle of injection for different excitation energies. In
general, the conversion between heavy holes and light holes via normal reflection and
Andreev reflection is possible but not in the limits of perpendicular incidence (θ = 0)
or parallel incidence (θ = π/2). For heavy holes also the probability for Andreev
reflection without conversion vanishes in these limits, so that we get |rhh/hh|2 = 1 and
|rχ/hh|2 = 0, for χ 6= hh. In contrast to Andreev-reflection probabilities of conduction
electrons, which in general get reduced by increased angles of injection we find that
heavy holes require a non-zero angle of injection to be Andreev reflected.
For perpendicularly incident light holes we are able to derive analytical results in
the limit of the Andreev approximation, i.e. |E| � EN,SF and ∆0 � EN,SF . This
is a reasonable assumption as long as the semiconductor is doped such that its Fermi
energy is large compared to the pair potential ∆0. The Andreev approximation implies
qce ≈ −qc̃e as well as kilh ≈ −krlh ≈ kr

l̃h
and krce ≈ krc̃e. In this limit, we find that the

Andreev-reflection probability of light holes is of the BTK form35

|rl̃h/lh|2 =
∆2

0

E2 + (∆2
0 − E2)(1 + 2Z2)2

, (6.10)

with all materials-specific quantities entering into a single interface parameter given
by

Z =




(
mS
m0
kilh − m′

m0
qce

)2
−
(
mS
m0

+
~2kilhqce

2m0

1
ENF +E0

)2
(krce)

2

4mSm0
kilhqce

(
m′

m0
+ ~2(krce)

2

2m0

1
ENF +E0

)




1
2

. (6.11)

Since no conversion between light holes and heavy holes occurs in the case of normal
incidence, we get |rlh/lh|2 = 1 − |rl̃h/lh|2. For energies close to the superconducting

gap, |E| → ∆0, the probability for Andreev reflection approaches unity, |rl̃h/lh|2 → 1,
i.e. only Andreev reflections take place.

In addition to the above-discussed effects we find two different types of critical
angles. On the one hand, a critical angle occurs above which an injected hole cannot
be Andreev reflected without conversion, see Fig. 6.5. Furthermore, for an incident
heavy hole, there is a critical angle for reflections associated with a conversion to a light
hole, see Figs. 6.4 a) and 6.4 b). Both types of critical angle have the same physical
origin: the momentum component parallel to a planar interface needs to be conserved
in the scattering process. If this parallel component of the incident particle is larger
than the total momentum available at a given energy for a particular type of reflected
particle, the associated process of reflection is not possible. In contrast to the critical
angle of conduction electrons discussed by Mortensen et al.,136 the critical angle for
conversion-less Andreev reflection of holes occurs for negative excitation energies (as
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Figure 6.5: (Color online) Plot of the conversion-less Andreev-reflection probabilities as a func-
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measured from the Fermi energy of the hole carriers). Due to the shape of the dispersion
in the semiconductor, see Fig. 6.1, an injected hole with excitation energy below the
Fermi energy has a larger momentum than the corresponding time-reversed hole, thus,
a critical angle exists at which the parallel component of the total momentum of the
injected light hole (heavy hole) equals the total momentum of the time-reversed light
hole (heavy hole):

sin θ
lh(hh)
cl =

|kl̃h(h̃h)|
|klh(hh)|

. (6.12)

This critical angle requires finite excitation energies (otherwise the injected hole and
the reflected time-reversed hole have the same magnitude of the momentum) and is
more pronounced for small Fermi energies because then the ratio of |kl̃h(h̃h)|/|klh(hh)|
becomes smaller. These considerations are in very good agreement with the plotted
results, see Fig. 6.5: the critical angle is visible at negative excitation energies for light
holes as well as for heavy holes and has a smaller value for smaller Fermi energies.

The second type of critical angle can also be understood by looking at the semi-
conductor’s dispersion shown in Fig. 6.1. Close to the Fermi energy a heavy hole has
a much larger total momentum compared to a light hole of the same energy. Thus,
a critical angle exists, at which the parallel component of the total momentum of an
injected heavy hole equals the total momentum of the corresponding (time-reversed)
light hole:

sin θlh(l̃h)
c =

|klh(l̃h)|
|khh|

. (6.13)

This critical angle is to a good approximation a constant function of the Fermi energy
of the semiconductor and of the excitation energy of the injected hole. In Figures 6.4 a)
and 6.4 b) it is clearly seen that the probabilities for a heavy hole to be normal-reflected
or Andreev-reflected as light hole vanish nearly independently of the excitation energy
at some critical angle.

6.3 Conclusions

We have studied reflection of light holes and heavy holes at subgap energies from the
interface of a p-type semiconductor with a conventional superconductor. It turns out
that Andreev reflection of light holes as well as heavy holes is possible and depends
strongly on the angle of incidence and the Fermi energy (i.e., the carrier density) in
the semiconductor. In particular, we find that
(i) light holes as well as heavy holes require a finite coupling to the conduction-band
states to experience Andreev reflection and that this coupling can be increased by
doping the semiconductor,
(ii) in the special case of perpendicular incidence, there is no coupling of heavy-hole
states to light-hole or conduction-band states. Therefore, heavy holes can only be
normal-reflected as heavy holes and the conversion between heavy holes and light
holes is impossible, and
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(iii) critical angles exist for conversion-less Andreev reflection and for the conversion
of heavy holes into light holes and time-reversed light holes.
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7 Conclusions

We have presented a diagrammatic real-time technique that is capable of describ-
ing non-equilibrium transport through interacting quantum dots strongly coupled to
superconducting leads and weakly coupled to normal and ferromagnetic leads. The
hybrid system of a quantum dot strongly coupled to superconducting leads is exactly
described by an effective Hamiltonian in the limit of an infinitely-large superconduct-
ing gap. The strong proximization of the quantum dot by the superconductors leads
to the formation of ABS, which are the excitation energies of the effective Hamilto-
nian. In contrast to non-proximized dots where only two different biasing schemes are
possible (small bias and large bias) for proximized dots additionally the intermediate
bias regime occurs, which opens new transport situations.

In a hybrid system composed of an interacting quantum dot coupled to one normal,
one ferromagnetic, and one superconducting lead where (1) the superconductor is kept
on zero chemical potential, (2) the ferromagnetic lead is in the large bias regime, and
(3) the normal lead is in the intermediate bias regime, the possibility of a pure spin
current is given. We found that the spin current is proportional to the average spin
accumulated on the dot and we gave an analytical expression for the level position
required to achieve a pure spin current as a function of both, the tunnel-coupling
strength to the superconducting lead and the polarization of the ferromagnetic lead.

Since in real systems the superconducting gap is usually a small parameter we have
carried out an expansion of the gap around infinite with the objective of testing the
validity of infinite-gap calculations for systems with finite gap. Therefore, we have
considered a three terminal setup consisting of a quantum dot coupled to one nor-
mal lead and to two superconductors. This setup has the advantage that it allows to
study Josephson currents as well as Andreev currents. We calculated the corrections
arising from an expansion of the superconducting gap around infinity to these cur-
rents and compared the results with the infinite-gap currents. The comparison yielded
indications that a finite gap causes a renormalization of the ABS. By means of a re-
summation approach we estimated the positions of the finite-gap ABS which turned
out to be bounded on the interval [−∆,∆]. The predicted shape of the finite-gap
ABS compares favorably with the NRG data.33 Despite the renormalization of the
ABS the corrected currents and the infinite-gap currents appeared to be very similar.
This allowed us to conclude that the infinite-gap calculation is a valuable tool even for
calculating finite-gap currents.

In the same three-terminal device we have studied the influence of the normal lead
on the proximity effect on the dot. For this purpose we calculated the first corrections
arising from the coupling to the normal lead to the leading terms of the Josephson
current, the Andreev current, and the average dot charge. We have identified some
qualitative changes that occur in the direct vicinity of zero detuning, i.e. a situation
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where the superconductors are in resonance with the dot. It turns out that the position
of the π transition occurring in the Josephson current and the positions of the extrema
of the Andreev current experience a renormalization. In the average dot charge the
presence of the normal lead causes an unexpected behavior: for large positive (negative)
chemical potentials of the normal lead the average dot charge is reduced (enhanced).
This effect is caused by the accumulation term of the isospin’s y-component.

Despite the influence of a finite Coulomb interaction on Andreev transport we have
investigated Andreev reflection processes involving valence-band charge carriers. For
this purpose we have considered a p-type semiconductor–superconductor interface and
calculated the reflection amplitudes of light holes and heavy holes injected at subgap
energies under an angle. We found that Andreev reflection of light holes and heavy
holes is in general possible and that light holes and heavy holes can be converted into
each other in this process. All reflection processes strongly depend on the injection
angle. The requirement for holes to be Andreev reflected is a finite mixing with the
conduction band, otherwise there would be no coupling to the states in the supercon-
ductor. Perpendicularly injected heavy holes decouple from the conduction-band and
light-hole states. In this case heavy holes can only be normal reflected as heavy holes.
At last, we have identified two different critical angles: first, a critical angle above
which conversion-less Andreev reflection is not possible and, second, a critical angle
for the conversion from heavy holes into light holes and time-reversed light holes.
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A Calculating diagrams via
Mathematica

Since the number of required diagrams for the 1/∆ expansion (> 25.000) and for the
corrections arising from the coupling to the normal lead (> 2.500) is exceedingly large
it is very convenient to calculate these diagrams with the computer. Exemplarily,
we give the source code for diagrams containing two tunneling lines associated to the
superconducting leads.

The program is divided into several functions. The first function CreateDiagram
is the core of the program. Its task is to construct the desired diagram from the
parameters given to this function like starting- and ending states of the diagram,
tunneling lines, position of the vertices, etc. and to return the analytical expression
the diagram stands for. However, before constructing the diagram CreateDiagram
checks via the second function DiagramPossible whether the diagram exists or not.
An example for CreateDiagram is

CreateDiagram [{plus,plus,plus,plus}, {u,u,u, u},
{{incoming,down}, {backward, down}}, 3, {plus,plus}]

=
i2ΓS∆

√
1− δ

2εA

(
1 + δ

2εA

)3/2
|χ|ω2

8π2(ω1 + ε− E+)(ω2 + ε− E+)(ω1 + ω2)
√
ω2

1 −∆2
√
ω2

2 −∆2
.

After the diagram is created, the function ExpandDiagram expands the expression in
1/∆ and the function IntegrateDiagram integrates out the energies ω1 and ω2. The
final function CalculateRates sums over all diagrams contributing to a rate.
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Function CreateDiagram

Clear@CreateDiagramD
H* Remark: CreateDiagram works for two tunneling lines associated

to the superconductors. The gaps are so large that the Fermi
functions can be assumed to be 0 or 1,

respectively. We have chosen all directions of the occurring
tunneling lines as 'forward' so that the integrals run from +D to ¶

*L

H* SYNTAX *L
H* c: Vector containing the four states assigned to the diagram

along the Keldysh contour @e.g.: 8minus,up,plus,down<D *L
H* v: vector containing the four vertices which are either

located on the top propagator HoL or on the bottom propagator
HuL @e.g.: 8u,o,u,o<D *L

H* L: a two-dimensional vector whose components contain each a two-
dim vector, the first component containing the type of line

and the second the spin tunneling at the line's leftmost
vertex @e.g: 88forward,up<,8incomig,down<<D *L

H* v1c: Vertex 1 is connected to Vertex 3 or 4 @e.g.: 3D *L
H* Epm: two-dim vector. Determines which state is connected to vertex

when it can be either 'plus' or 'minus'. The first component
determines the first choice occurring along the Keldysh contour

@e.g.: 8plus,minus<D
*L

CreateDiagram@c_, v_, L_, v1c_, Epm_D :=

ModuleB8Leftgoing, Rightgoing, E, Vertices, TransitionVorwaerts,

TransitionRueckwaerts, aktuellerZustand, v2c, sigma1, sigma2,
sigma1Quer, sigma2Quer, uebrigeObereVertices, uebrigeUntereVertices,
CounterVonEpm, w, vconnected, propagierendeEnergien, lineFactors,
vertexFactors, vertexFactorsSign, GlobalSigns, Ergebnis<,

H* diagram will be calculated only in case DiagramPossible
returns True *L

IfBDiagramPossible@c, v, L, v1c, EpmD ã True,

H* initialising the result variable 'Ergebnis' *L
Ergebnis = 1;

w = 8w1, w2<;

H* Leftgoing@@iDDêRightgoing@@iDD contains the i-
th segment from the left of the propagating energies *L

Leftgoing = ConstantArray@0, 3D;
Rightgoing = ConstantArray@0, 3D;

H* 'Vertices' contains four vectors of four dimensions
each. Each of the vectors describes one vertex. The first
component contains the starting state,
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component contains the starting state,
the second contains the ending state the third gives the
direction of tunneling and the fourth gives the spin of
the tunneling electron *L

Vertices = ConstantArray@1, 84, 4<D;

CounterVonEpm = 0;
uebrigeObereVertices = 0;
For@i = 1, i < 5, i++,
If@vPiT ã o, uebrigeObereVertices = uebrigeObereVertices + 1,
uebrigeObereVertices = uebrigeObereVerticesDD;

uebrigeUntereVertices = 4 - uebrigeObereVertices;
H* The function TransitionVorwaerts determines the state
following a vertex *L

TransitionVorwaerts@c1_, direction_, spin_, vertexIndex_D :=
Switch@vPvertexIndexT,
o, uebrigeObereVertices = uebrigeObereVertices - 1;
VerticesPvertexIndex, 2T = If@uebrigeObereVertices ã 0,

cP2T,
Switch@c1, plus, Switch@direction, incoming, spin,

outgoing, Switch@spin, up, down, down, upD, _,
Print@
"direction in transtion function is not properly chosen"DD,

minus, Switch@direction, incoming, spin, outgoing,
Switch@spin, up, down, down, upD, _,
Print@
"direction in transtion function is not properly chosen"DD,

up, CounterVonEpm = CounterVonEpm + 1; EpmPCounterVonEpmT,
down, CounterVonEpm = CounterVonEpm + 1; EpmPCounterVonEpmT,
_, Print@"c in trasition function is not an allowed state"DD

D,
u, uebrigeUntereVertices = uebrigeUntereVertices - 1;
VerticesPvertexIndex, 2T = If@uebrigeUntereVertices ã 0,

cP4T,
Switch@c1, plus, Switch@direction, incoming, spin,

outgoing, Switch@spin, up, down, down, upD, _,
Print@
"direction in transtion function is not properly chosen"DD,

minus, Switch@direction, incoming, spin, outgoing,
Switch@spin, up, down, down, upD, _,
Print@
"direction in transtion function is not properly chosen"DD,

up, CounterVonEpm = CounterVonEpm + 1; EpmPCounterVonEpmT,
down, CounterVonEpm = CounterVonEpm + 1; EpmPCounterVonEpmT,
_, Print@"c in trasition function is not an allowed state"DD

D,
_, Print@"vPvertexIndexT is not correct"DD;

E@minusD := Em; E@plusD := Ep; E@upD := e; E@downD := e;

;
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H* Determining, wheter the vertices 1 and v1c are incoming
or outgoing and determining the spin of the tunneling electron *L

VerticesP1, 4T = LP1, 2T;
sigma1 = LP1, 2T;
sigma1Quer = Switch@LP1, 2T, up, down, down, up, _,

Print@"Spin of first line not correct"DD;
Switch@vP1T,
o, Switch@LP1, 1T, backward,
8VerticesP1, 3T = incoming, VerticesPv1c, 3T = outgoing,
VerticesPv1c, 4T = sigma1<, incoming,

8VerticesP1, 3T = incoming, VerticesPv1c, 3T = incoming,
VerticesPv1c, 4T = sigma1Quer<, forward,

8VerticesP1, 3T = outgoing, VerticesPv1c, 3T = incoming,
VerticesPv1c, 4T = sigma1<, outgoing,

8VerticesP1, 3T = outgoing, VerticesPv1c, 3T = outgoing,
VerticesPv1c, 4T = sigma1Quer<,

_, Print@"Line 1 not well defined"DD,
u, Switch@LP1, 1T, backward,
8VerticesP1, 3T = outgoing, VerticesPv1c, 3T = incoming,
VerticesPv1c, 4T = sigma1<, incoming,

8VerticesP1, 3T = incoming, VerticesPv1c, 3T = incoming,
VerticesPv1c, 4T = sigma1Quer<, forward,

8VerticesP1, 3T = incoming, VerticesPv1c, 3T = outgoing,
VerticesPv1c, 4T = sigma1<, outgoing,

8VerticesP1, 3T = outgoing, VerticesPv1c, 3T = outgoing,
VerticesPv1c, 4T = sigma1Quer<D

, _, Print@"vP1T not well defined"D
D;
H* Determining, wheter the vertices 2 and v2c are incoming
or outgoing and determining the spin of the tunneling electron *L

VerticesP2, 4T = LP2, 2T;
sigma2 = LP2, 2T;
sigma2Quer = Switch@LP2, 2T, up, down, down, up, _,

Print@"Spin of second line not correct"DD;
v2c = Switch@v1c, 3, 4, 4, 3, _, Print@"v1c not correct"DD;
Switch@vP2T,
o, Switch@LP2, 1T, backward,
8VerticesP2, 3T = incoming, VerticesPv2c, 3T = outgoing,
VerticesPv2c, 4T = sigma2<, incoming,

8VerticesP2, 3T = incoming, VerticesPv2c, 3T = incoming,
VerticesPv2c, 4T = sigma2Quer<, forward,

8VerticesP2, 3T = outgoing, VerticesPv2c, 3T = incoming,
VerticesPv2c, 4T = sigma2<, outgoing,

8VerticesP2, 3T = outgoing, VerticesPv2c, 3T = outgoing,
VerticesPv2c, 4T = sigma2Quer<,

_, Print@"Line 2 not well defined"DD,
u, Switch@LP2, 1T, backward,
8VerticesP2, 3T = outgoing, VerticesPv2c, 3T = incoming,
VerticesPv2c, 4T = sigma2<, incoming,

8VerticesP2, 3T = incoming, VerticesPv2c, 3T = incoming,
VerticesPv2c, 4T = sigma2Quer<, forward,
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8VerticesP2, 3T = incoming, VerticesPv2c, 3T = outgoing,
VerticesPv2c, 4T = sigma2<, outgoing,

8VerticesP2, 3T = outgoing, VerticesPv2c, 3T = outgoing,
VerticesPv2c, 4T = sigma2Quer<D

, _, Print@"vP2T not well defined"D
D;

H* determining the propagating w's *L
vconnected = 8v1c, v2c<;
Switch@vP1T,
o, RightgoingP1T = RightgoingP1T + w1;
RightgoingP2T = RightgoingP2T + w1;
If@v1c ã 4, RightgoingP3T = RightgoingP3T + w1;D,
u, LeftgoingP1T = LeftgoingP1T + w1; LeftgoingP2T = LeftgoingP2T + w1;
If@v1c ã 4, LeftgoingP3T = LeftgoingP3T + w1;D,
_, Print@"Problem at determining propagating w1"DD;

Switch@vP2T,
o, RightgoingP2T = RightgoingP2T + w2;
If@v2c ã 4, RightgoingP3T = RightgoingP3T + w2;D,
u, LeftgoingP2T = LeftgoingP2T + w2;
If@v2c ã 4, LeftgoingP3T = LeftgoingP3T + w2;D,
_, Print@"Problem at determining propagating w2"DD;

H* Determining the states connected to a vertex and the
propagating dot energies *L

aktuellerZustand = cP1T;
For@i = 1, i < 5, i++,
If@vPiT ã o, 8VerticesPi, 1T = aktuellerZustand,

TransitionVorwaerts@aktuellerZustand, VerticesPi, 3T,
VerticesPi, 4T, iD, aktuellerZustand = VerticesPi, 2T<D;

If@i < 4, RightgoingPiT = RightgoingPiT + E@aktuellerZustandD;D
D;
aktuellerZustand = cP3T;
For@i = 4, i > 0, i--,
If@vPiT ã u, 8VerticesPi, 1T = aktuellerZustand,

TransitionVorwaerts@aktuellerZustand, VerticesPi, 3T,
VerticesPi, 4T, iD, aktuellerZustand = VerticesPi, 2T<D;

If@i > 1, LeftgoingPi - 1T = LeftgoingPi - 1T + E@aktuellerZustandD;D
D;

propagierendeEnergien =
1

LeftgoingP1T - RightgoingP1T

1

LeftgoingP2T - RightgoingP2T

1

LeftgoingP3T - RightgoingP3T
;

H* Setting the factors for the tunneling lines *L

;
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lineFactors =
1

4 p2
1

w12 - D2

1

w22 - D2
;

For@i = 1, i < 3, i++, Switch@LPi, 1T, backward,
lineFactors = lineFactors wPiT SumGS, forward,
lineFactors = lineFactors wPiT SumGS, incoming,
lineFactors = lineFactors H-1L D 2 cBetrag, outgoing,
lineFactors = lineFactors H-1L D 2 cBetrag, _,
Print@"Problem at setting the lineFactors"DDD;

H* Setting the factors for the Vertices *L
vertexFactors = 1;
vertexFactorsSign = ConstantArray@1, 4D;
For@i = 1, i < 5, i++, vertexFactorsSignPiT = H

Switch@VerticesPi, 1T, plus, 1, minus, -1, up, 1, down, -1,
_, Print@"Problem at setting the vertexFactors"DD

Switch@VerticesPi, 2T, plus, 1, minus, -1, up, 1, down,
-1, _, Print@"Problem at setting the vertexFactors"DD

Switch@VerticesPi, 4T, up, 1, down, -1, _,
Print@"Problem at setting the vertexFactors"DDL

D;

ForBi = 1, i < 5, i++,

vertexFactors = vertexFactors
1

2
1 - vertexFactorsSignPiT

d

2 eA
F;

H* Determining the signs *L
GlobalSigns = 1;
H* rule: H-1L for each vertex on the lower propagator *L
For@i = 1, i < 5, i++,
GlobalSigns = GlobalSigns Switch@vPiT, o, 1, u, -1, _,

Print@
"Problem at setting signs for Vertices on the

lower propagator"DD
D;
H* rule: H-1L for each crossing of tunneling lines *L
H* If vertex 1 is connected to vertex 3 then a crossing
exists whenever vertex 2 and vertex 3 are located on the
same propagator *L

H* If vertex 1 is connect to vertex 4 then a crossing
existes whenever vertex 2 and vertex 3 are located on
different propagators *L

GlobalSigns = GlobalSigns
Switch@v1c,
3,
Switch@vP2T, o, Switch@vP3T, o, -1, u, 1D, u,
Switch@vP3T, o, 1, u, -1D, _,
Print@"Problem with signs for crossing of tunneling lines"DD,

4,
Switch@vP2T, o, Switch@vP3T, o, 1, u, -1D, u,

D, _,
;
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Switch@vP3T, o, -1, u, 1DD, _,
Print@"Problem with signs for crossing of tunneling-lines"DD;

H* rule: signs for Vertices *L
For@i = 1, i < 5, i++, GlobalSigns = GlobalSigns

Switch@VerticesPi, 3T,
outgoing,
Switch@VerticesPi, 2T, plus, -1, minus, 1, up, -1, down, 1D,
incoming,
Switch@VerticesPi, 1T, plus, -1, minus, 1, up, -1, down, 1D,
_,
Print@"Problem at signs for Vertices"DD

D;
H* rule: outgoing HincomingL anomalous line,
where earlier HlaterL tunneling electron is of spin up *L
For@i = 1, i < 3, i++, GlobalSigns = GlobalSigns

Switch@LPi, 1T,
incoming,
Switch@vPiT, o H* i.e. v@@iDD is the earlier vertex *L,
Switch@VerticesPi, 4T, up, 1, down, -1D, u
H* i.e. v@@iDD is the later vertex *L,
Switch@VerticesPi, 4T, up, -1, down, 1DD,
outgoing,
Switch@vPiT, o, Switch@VerticesPi, 4T, up, -1, down, 1D,
u, Switch@VerticesPi, 4T, up, 1, down, -1DD ,

forward, 1,
backward, 1,
_, Print@"Problem with signs for anomalous lines"DD

D;

Ergebnis = -Â GlobalSigns propagierendeEnergien lineFactors
vertexFactors;

Ergebnis
+ H* this term solves the d-fcts *L

-Â GlobalSigns
1

LeftgoingP1T - RightgoingP1T

1

LeftgoingP3T - RightgoingP3T
lineFactors vertexFactors

1

D
H* the factor of 1

D
is introduced because otherwise

there will be a D too much in the following substitution
of w1 Ø x D *L

H Switch@vP1T, o, Switch@vP2T, u, -Â p , o, 0D, u,
Switch@vP2T, o, -Â p , u, 0DDL

ê. Solve@LeftgoingP2T - RightgoingP2T ã 0, w1DP1T

, 0F

F;
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, 0F H* End If@DiagramPossibleD *L

F;

Function DiagramPossible

Clear@DiagramPossibleD
H* DiagramPossible checks,
whether a diagram is required and whether it is possible
regarding spin conservation, particle conservation etc. L
*L

DiagramPossible@c_, v_, L_, v1c_, Epm_D :=
Module@8CounterVonEpm, uebrigeObereVertices, uebrigeUntereVertices,

AnzahlObererVertices, TransitionVorwaerts, Vertices, sigma1,
sigma1Quer, sigma2, sigma2Quer, v2c, aktuellerZustand, cNumber,
VerticesNumber, ZwischenUrteil, Urteil<,

H* BEGIN of initializing the vertices *L
Vertices = ConstantArray@1, 84, 4<D;
CounterVonEpm = 0;
uebrigeObereVertices = 0;
For@i = 1, i < 5, i++,
If@vPiT ã o, uebrigeObereVertices = uebrigeObereVertices + 1,
uebrigeObereVertices = uebrigeObereVerticesDD;

uebrigeUntereVertices = 4 - uebrigeObereVertices;
H* The function TransitionVorwaerts determines the state
following a vertex *L

TransitionVorwaerts@c1_, direction_, spin_, vertexIndex_D :=
Switch@vPvertexIndexT,
o, uebrigeObereVertices = uebrigeObereVertices - 1;
VerticesPvertexIndex, 2T = If@uebrigeObereVertices ã 0,

cP2T,
Switch@c1, plus, Switch@direction, incoming, spin, outgoing,

Switch@spin, up, down, down, upD, _,
Print@
"direction in transtion function is not properly chosen"DD,

minus, Switch@direction, incoming, spin, outgoing,
Switch@spin, up, down, down, upD, _,
Print@
"direction in transtion function is not properly chosen"DD,

up, CounterVonEpm = CounterVonEpm + 1; EpmPCounterVonEpmT,
down, CounterVonEpm = CounterVonEpm + 1; EpmPCounterVonEpmT,
_, Print@"c in trasition function is not an allowed state"DD

D,
u, uebrigeUntereVertices = uebrigeUntereVertices - 1;
VerticesPvertexIndex, 2T = If@uebrigeUntereVertices ã 0,

cP4T,
Switch@c1, plus, Switch@direction, incoming, spin, outgoing,

Switch@spin, up, down, down, upD, _,
Print@
"direction in transtion function is not properly chosen"DD,

minus,
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minus, Switch@direction, incoming, spin, outgoing,
Switch@spin, up, down, down, upD, _,
Print@
"direction in transtion function is not properly chosen"DD,

up, CounterVonEpm = CounterVonEpm + 1; EpmPCounterVonEpmT,
down, CounterVonEpm = CounterVonEpm + 1; EpmPCounterVonEpmT,
_, Print@"c in trasition function is not an allowed state"DD

D,
_, Print@"vPvertexIndexT is not correct"DD;

H* Determining, wheter the vertices 1 and v1c are incoming
or outgoing and determining the spin of the tunneling electron *L

VerticesP1, 4T = LP1, 2T;
sigma1 = LP1, 2T;
sigma1Quer = Switch@LP1, 2T, up, down, down, up, _,

Print@"Spin of first line not correct"DD;
Switch@vP1T,
o, Switch@LP1, 1T, backward,
8VerticesP1, 3T = incoming, VerticesPv1c, 3T = outgoing,
VerticesPv1c, 4T = sigma1<, incoming,

8VerticesP1, 3T = incoming, VerticesPv1c, 3T = incoming,
VerticesPv1c, 4T = sigma1Quer<, forward,

8VerticesP1, 3T = outgoing, VerticesPv1c, 3T = incoming,
VerticesPv1c, 4T = sigma1<, outgoing,

8VerticesP1, 3T = outgoing, VerticesPv1c, 3T = outgoing,
VerticesPv1c, 4T = sigma1Quer<,

_, Print@"Line 1 is not well defined"DD,
u, Switch@LP1, 1T, backward,
8VerticesP1, 3T = outgoing, VerticesPv1c, 3T = incoming,
VerticesPv1c, 4T = sigma1<, incoming,

8VerticesP1, 3T = incoming, VerticesPv1c, 3T = incoming,
VerticesPv1c, 4T = sigma1Quer<, forward,

8VerticesP1, 3T = incoming, VerticesPv1c, 3T = outgoing,
VerticesPv1c, 4T = sigma1<, outgoing,

8VerticesP1, 3T = outgoing, VerticesPv1c, 3T = outgoing,
VerticesPv1c, 4T = sigma1Quer<D

, _, Print@"vP1T ist not correct"D
D;
H* Determining, wheter the vertices 2 and v2c are incoming
or outgoing and determining the spin of the tunneling electron *L

VerticesP2, 4T = LP2, 2T;
sigma2 = LP2, 2T;
sigma2Quer = Switch@LP2, 2T, up, down, down, up, _,

Print@"Spin of second line not correct"DD;
v2c = Switch@v1c, 3, 4, 4, 3, _, Print@"v1c is not correct"DD;
Switch@vP2T,
o, Switch@LP2, 1T, backward,
8VerticesP2, 3T = incoming, VerticesPv2c, 3T = outgoing,
VerticesPv2c, 4T = sigma2<, incoming,

8VerticesP2, 3T = incoming, VerticesPv2c, 3T = incoming,
VerticesPv2c, 4T = sigma2Quer<, forward,

8VerticesP2, 3T = outgoing, VerticesPv2c, 3T = incoming,
<, outgoing,
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VerticesPv2c, 4T = sigma2<, outgoing,
8VerticesP2, 3T = outgoing, VerticesPv2c, 3T = outgoing,
VerticesPv2c, 4T = sigma2Quer<,

_, Print@"Line 2 is not well defined"DD,
u, Switch@LP2, 1T, backward,
8VerticesP2, 3T = outgoing, VerticesPv2c, 3T = incoming,
VerticesPv2c, 4T = sigma2<, incoming,

8VerticesP2, 3T = incoming, VerticesPv2c, 3T = incoming,
VerticesPv2c, 4T = sigma2Quer<, forward,

8VerticesP2, 3T = incoming, VerticesPv2c, 3T = outgoing,
VerticesPv2c, 4T = sigma2<, outgoing,

8VerticesP2, 3T = outgoing, VerticesPv2c, 3T = outgoing,
VerticesPv2c, 4T = sigma2Quer<D

, _, Print@"vP2T ist not correct"D
D;
H* Determining the states connected to a vertex *L
aktuellerZustand = cP1T;
For@i = 1, i < 5, i++,
If@vPiT ã o, 8VerticesPi, 1T = aktuellerZustand,

TransitionVorwaerts@aktuellerZustand, VerticesPi, 3T,
VerticesPi, 4T, iD, aktuellerZustand = VerticesPi, 2T<D

D;
aktuellerZustand = cP3T;
For@i = 4, i > 0, i--,
If@vPiT ã u, 8VerticesPi, 1T = aktuellerZustand,

TransitionVorwaerts@aktuellerZustand, VerticesPi, 3T,
VerticesPi, 4T, iD, aktuellerZustand = VerticesPi, 2T<D

D;
H* END of initializing the vertices *L

H* testing, whether the diagram is required *L
ZwischenUrteil = True;

H* preventing diagrams to occur twice caused by the variable Epm:
Whenever EpmPiT does not affect the diagram only EpmPiT=

plus will be created
*L

Switch@CounterVonEpm,
0, Switch@EpmP1T,
plus, Switch@EpmP2T, plus, ZwischenUrteil = True, minus,
ZwischenUrteil = False, _,
Print@"Problem with Epm decision in DiagramPossible"DD,

minus, ZwischenUrteil = False, _,
Print@"Problem with Epm decision in DiagramPossible"DD,

1, Switch@EpmP2T, plus, ZwischenUrteil = True, minus,
ZwischenUrteil = False, _,
Print@"Problem with Epm decision in DiagramPossible"DD,

2, ZwischenUrteil = True, _,
Print@"Problem with Epm decision in DiagramPossible"DD;

H* excluding diagrams that contain a superposition of states '
with other states *L
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up' and 'down' with other states *L
While@ZwischenUrteil ã True,
cNumber = ConstantArray@0, 4D;
For@i = 1, i < 5, i++, cNumberPiT =

Switch@cPiT, up, 1, down, 2, plus, 3, minus, 4, _,
Print@
"Problem at testing, wheter

diagram contains forbidden superpositions"DD
D;
For@i = 1, i < 3, i++, If@cNumberP1T ã i && cNumberP4T ! i,

ZwischenUrteil = False; Break@DDD;
For@i = 1, i < 3, i++, If@cNumberP4T ã i && cNumberP1T ! i,

ZwischenUrteil = False; Break@DDD;
For@i = 1, i < 3, i++, If@cNumberP2T ã i && cNumberP3T ! i,

ZwischenUrteil = False; Break@DDD;
For@i = 1, i < 3, i++, If@cNumberP3T ã i && cNumberP2T ! i,

ZwischenUrteil = False; Break@DDD;

H* excluding diagrams with all vertices in one propagator
while on the other propagator the states are changed.
E.g.: CreateDiagram@8plus,minus,minus,plus<,8o,o,o,o<,

88incoming,up<,8outgoing,up<<,3,8plus,plus<D*L
AnzahlObererVertices = 0;
For@i = 1, i < 5, i++,
If@vPiT ã o, AnzahlObererVertices = AnzahlObererVertices + 1,
AnzahlObererVertices = AnzahlObererVerticesDD;

If@AnzahlObererVertices ã 4,
If@cNumberP3T ! cNumberP4T, ZwischenUrteil = False; Break@DDD;

If@AnzahlObererVertices ã 0,
If@cNumberP1T ! cNumberP2T, ZwischenUrteil = False; Break@DDD;

Break@D
D;
H* end of while *L

H* Introducing VerticesNumber for easier handling *L
VerticesNumber = Vertices;
For@i = 1, i < 5, i++, VerticesNumberPi, 1T =

Switch@VerticesPi, 1T, up, 1 , down, 2, plus, 3, minus, 4, _,
Print@
"Problem at initialising VerticesNumber in DiagramPossible"DD

D;
For@i = 1, i < 5, i++, VerticesNumberPi, 2T =

Switch@VerticesPi, 2T, up, 1 , down, 2, plus, 3, minus, 4, _,
Print@
"Problem at initialising VerticesNumber in DiagramPossible"DD

D;
For@i = 1, i < 5, i++, VerticesNumberPi, 4T =

Switch@VerticesPi, 4T, up, 1 , down, 2, _,
Print@
"Problem at initialising VerticesNumber in DiagramPossible"DD

D;
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H* testing, whether diagramm is possible *L
While@ZwischenUrteil ã True,
H* testing, whether starting state and ending state of a
vertex have different parity *L

For@i = 1, i < 5, i++,
Switch@VerticesNumberPi, 1T,
1,
If@VerticesNumberPi, 2T ã 1 »» VerticesNumberPi, 2T ã 2,
ZwischenUrteil = False; Break@DD,

2,
If@VerticesNumberPi, 2T ã 1 »» VerticesNumberPi, 2T ã 2,
ZwischenUrteil = False; Break@DD,

3,
If@VerticesNumberPi, 2T ã 3 »» VerticesNumberPi, 2T ã 4,
ZwischenUrteil = False; Break@DD,

4,
If@VerticesNumberPi, 2T ã 3 »» VerticesNumberPi, 2T ã 4,
ZwischenUrteil = False; Break@DD,

_,
Print@
"Problem at testing the parity of starting- and ending states"DD

D;

H* testing, whether the vertices conserve spin *L
For@i = 1, i < 5, i++,
Switch@VerticesNumberPi, 3T,
incoming,
If@VerticesNumberPi, 1T ã VerticesNumberPi, 4T,
ZwischenUrteil = False; Break@DD;

Switch@VerticesNumberPi, 4T,
1, If@VerticesNumberPi, 2T ã 2, ZwischenUrteil = False; Break@DD,
2, If@VerticesNumberPi, 2T ã 1, ZwischenUrteil = False; Break@DD,
_, Print@"Problem at testing the spin conservation"D

D,
outgoing,
If@VerticesNumberPi, 2T ã VerticesNumberPi, 4T,
ZwischenUrteil = False; Break@DD;

Switch@VerticesNumberPi, 4T,
1, If@VerticesNumberPi, 1T ã 2, ZwischenUrteil = False; Break@DD,
2, If@VerticesNumberPi, 1T ã 1, ZwischenUrteil = False; Break@DD,
_, Print@"Problem at testing the spin conservation"DD,

_, Print@"Problem at testing the spin conservation"DD
D;
Break@D
H* end of while*L

D;

Urteil = ZwischenUrteil;
Urteil
D;

Function ExpandDiagram
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Function ExpandDiagram

Clear@ExpandDiagramD
H* Remark: ExpandDiagram creates the Diagramm with CreateDiagram

und subtracts, if necessary CreateDoubleDiagram

Jin odrer to prevent double counting,

in case the inner diagram is of 0th order in 1
D
N.

The resulting expression will be expanded up to 1st order in 1
D
. *L

ExpandDiagram@c_, v_, L_, v1c_, Epm_D := ModuleB8Ergebnis<,

Ergebnis =

NormalB

SeriesB
1

z2
CreateDiagram@c, v, L, v1c, EpmD ê.

:D Ø
1

z
, w1 Ø

x

z
, w2 Ø

y

z
> , 8z, 0, 1<FF;

IfBv1c ã 4,

Ergebnis = Ergebnis -

NormalB

SeriesB

NormalBSeriesB
1

z1

1

z2
CreateDoubleDiagram@c, v, L, v1c, EpmD ê.

: D1 Ø
1

z1
, D2 Ø

1

z2
, w1 Ø

x

z1
, w2 Ø

y

z2
> , 8z2, 0, 0<FF ,

8z1, 0, 1<FF ê. 8z1 Ø z<

, 0F;

Ergebnis

F;

Function IntegrateDiagram

H* IntegrateDiagram performs solves all integrals *L
Clear@IntegrateDiagramD
IntegrateDiagram@Integrand_D := Module@8Ergebnis<,

Ergebnis = Integrate@Integrand, 8x, 1, ¶<, Assumptions Ø 8y > 0<D;
Ergebnis = Integrate@Ergebnis, 8y, 1, ¶<D;
Ergebnis

D;
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Function CalculateRate

H* Here, the arguments of CreateDiagram get assign numbers so
that summations can be performed *L

Clear@c, cAusgabeD
c@j_D := HcAusgabe = ConstantArray@1, 4D;

For@i = 1, i < 5, i++,
cAusgabePiT = Switch@jPiT, 1, up, 2, down, 3, plus, 4, minus,

_, Print@"Problem in summing over c"DDD; cAusgabeL;
Clear@v, vAusgabeD
v@j_D := HvAusgabe = ConstantArray@1, 4D;

For@i = 1, i < 5, i++,
vAusgabePiT = Switch@jPiT, 1, o, 2, u, _,

Print@"Problem in summing over v"DDD; vAusgabeL;
Clear@L, LAusgabeD
L@j_D := HLAusgabe = ConstantArray@1, 82, 2<D;

For@i = 1, i < 3, i++,
LAusgabePi, 1T = Switch@jPi, 1T, 1, backward, 2, forward, 3,

incoming, 4, outgoing, _,
Print@"Problem in summing over the line types"DDD;

For@i = 1, i < 3, i++,
LAusgabePi, 2T = Switch@jPi, 2T, 1, up, 2, down, _,

Print@"Problem in summing over the line types"DDD;
LAusgabeL;

Clear@v1cD
v1c@j_D := Switch@j, 1, 3, 2, 4, _, Print@"Problem in summing over v1c"DD;
Clear@Epm, EpmAusgabeD
Epm@j_D := HEpmAusgabe = ConstantArray@1, 2D;

For@i = 1, i < 3, i++,
EpmAusgabePiT = Switch@jPiT, 1, plus, 2, minus, _,

Print@"Problem in summing over Epm"DDD;
EpmAusgabeL;
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H* CalculateRate calculates all diagrams for a given combination
of two lines and integrates the result. Afterwards a sum over
all line combinations is carried out. *L

Clear@CalculateRateD
CalculateRate@c_D := Module@8Ergebnis<, Ergebnis = H*Sum@*L

IntegrateDiagram@
Simplify@Sum@

ExpandDiagram@c, v@8v1, v2, v3, v4<D, L@88L11, L12<, 8L21, L22<<D,
v1c@v1c1D, Epm@8Epm1, Epm2<DD

, 8v1, 2<, 8v2, 2<, 8v3, 2<, 8v4, 2<, 8L11, 1, 4<, 8L12, 2<,
8L21, 1, 4<, 8L22, 2<, 8v1c1, 2<, 8Epm1, 2<, 8Epm2, 2<D

D
D;

Simplify@ErgebnisD
D;
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B Diagrams contributing to the
resummation approach

In this appendix we exemplarily give all diagrams including the analytical expressions
they represent for the rate W−−↑↑ (ω) appearing in the resummation approach discussed
in Sec. 5.2.2. We assume the temperature low enough to ensure f(ω1 < −∆) ≈ 1 and
f(ω1 > ∆) ≈ 0. All diagrams that appear here are only segments of a superordinate
diagram so that all diagrams in this appendix must not get the general prefactor (−i).
Diagrams, where the line associated with the superconductors is a backward line, are
given by

↑ ↑

− −

�

�

ω

ω1

=
∑

σ

∫ ∞

∆

dω1

4π

(
1 + δ

2εA

)
ω1
∑

S ΓS
√
ω2

1 −∆2(ω − ω1)
, (B.1)

↑ ↑

− −E−

ω

E±

ω1

=

∫ ∞

∆

dω1

4π

(
1± δ

2εA

)
ω1
∑

S ΓS
√
ω2

1 −∆2(ω + ω1 + E± − E−)
. (B.2)

In case of the line being a forward line, the diagrams correspond to the expressions

↑ ↑

− −

�

�

ω

ω1

=
∑

σ

∫ ∞

∆

dω1

4π

(
1− δ

2εA

)
ω1
∑

S ΓS
√
ω2

1 −∆2(ω − ω1)
, (B.3)

↑ ↑

− −E−

ω

E±

ω1

=

∫ ∞

∆

dω1

4π

(
1∓ δ

2εA

)
ω1
∑

S ΓS
√
ω2

1 −∆2(ω + ω1 + E± − E−)
. (B.4)
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Additonally, the line could be an incoming line

↑ ↑

− −

�

�

ω

ω1

=
∑

σ

∫ ∞

∆

dω1

2π

∆
√

1− δ2

4ε2A
|χ|

√
ω2

1 −∆2(ω − ω1)
, (B.5)

↑ ↑

− −E−

ω

E±

ω1

= ±
∫ ∞

∆

dω1

2π

∆
√

1− δ2

4ε2A
|χ|

√
ω2

1 −∆2(ω + ω1 + E± − E−)
, (B.6)

or an outgoing line

↑ ↑

− −

�

�

ω

ω1

=
∑

σ

∫ ∞

∆

dω1

2π

∆
√

1− δ2

4ε2A
|χ|

√
ω2

1 −∆2(ω − ω1)
, (B.7)

↑ ↑

− −E−

ω

E±

ω1

= ±
∫ ∞

∆

dω1

2π

∆
√

1− δ2

4ε2A
|χ|

√
ω2

1 −∆2(ω + ω1 + E± − E−)
. (B.8)

Besides, a diagram exists that contains a cross vertex instead of a tunneling line asso-
ciated with the superconducting leads. This diagram should have the width of a point,
which is difficult to realize graphically. The expression evoked by the cross vertex is
given by

↑ ↑

− −

�

ω

E− E−×
=

√
1− δ2

4ε2A
|χ|. (B.9)
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026403 (2006).
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D. Futterer, M. Governale, Z. Zülicke, and J. König, Phys. Rev. B 84, 104526 (2011).

(E) Renormalization effects in proximized interacting quantum dots,
D. Futterer, J. Swiebodzinski, M. Governale, and J. König, Phys. Rev. B 87,
014509 (2013).

Parts of this thesis have been published. The contents of Chapter 4 have been published
in Ref. (A). The results presented in Chapter 5 have been published in Ref. (E) and
the results of Chapter 6 have been published in Ref. (D).

99





Acknowledgements

I wish to express my greatest thanks to the following people:

Prof. Dr. Jürgen König for being a great supervisor and for opening the possibility
for my PhD studies in his group. He has always been open for physical discussions
which typically turned out to be expedient and he gave me the opportunity to
be part of the physical community.

Prof. Dr. Michele Governale for inviting me to Victoria University of Wellington,
New Zealand at the first place. Furthermore, for our scientific discussions and
collaborations over the last years as well as for the fine time we spent together
in Wellington.

Dr. Björn Sothmann, Dr. Jacek Swiebodzinski, and Prof. Dr. Ulrich
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