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Introduction

Standard graded algebras over a field K are called Koszul if they have the nice
homological property that the residue class field, considered as a graded module over
the algebra, has a linear free resolution. These algebras have been introduced by
Priddy in 1970 (see [44]) and occur in many research areas of commutative and non-
commutative algebra, such as algebraic geometry and combinatorial commutative
algebra. Many classical results which are known for polynomial rings have been
extended to commutative Koszul algebras: All finitely generated modules have finite
Castelnuovo-Mumford regularity [7],[8] and the Poincaré series of K is a rational
function [39]. A comprehensive survey on this subject is given by Froberg in [29].

This thesis is concerned with the Koszul property of commutative, standard
graded algebras, in other words, algebras of the form R = K[X1,...,X,]/I where
K[X,...,X,] is the polynomial ring over K with standard grading deg(X;) = 1
and [ a graded ideal.

In the first chapter we introduce notation and recall some well-known facts about
Koszul algebras, Grébner bases, simplicial complexes, matroids, integral polyma-
troids and semigroup rings.

Chapter 2 is devoted to the study of a specific class of Koszul algebras which
admit a certain Koszul filtration. These filtrations have been introduced by Conca,
Trung and Valla in [21] and form an effective concept to find classes of Koszul al-
gebras. We call a K-algebra R initially Koszul (i-Koszul for short) with respect to
a sequence xy,...,Z, of 1-forms in R if the flag F = {(z1,... ,2;): i =10,... ,n}
forms a Koszul filtration for R. Conca, Rossi and Valla have proved that i-Koszulness
implies that the defining ideal has a quadratic Grébner basis with respect to the
reverse lexicographic order on K[X,...,X,] induced by X; < ... < X, (see [20]).
We give a condition on the initial ideal in(/) which characterizes the i-Koszul prop-
erty with respect to the sequence X; + I,..., X, + [ in R (see Theorem 2.2.1).
Using this criterion we consider some examples of i-Koszul algebras. We show that,
for an algebra R, generic flags form a Koszul filtrations if and only if the defining
ideal I has a 2-linear resolution (see Proposition 2.4.1). Furthermore we discuss
algebras which are i-Koszul with respect to every K-basis of R;. This leads to the
notion of universally initially Koszul algebras. We classify these algebras in Theo-
rem 2.4.4 for algebraically closed fields K with char(K) # 2 showing that I = (0)
or I = (Xy,...,X,)? or I = (g?) for some linear form g. A homogeneous semigroup
ring is said to be i-Koszul if it is i-Koszul with respect to an ordering of the semi-
group generators. Using a lemma by Hibi we obtain that an i-Koszul semigroup ring
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has shellable divisor posets. We observe that a semigroup ring which is i-Koszul for
all permutations of the semigroup generators is already a polynomial ring.

In the third chapter we study Koszul algebras which arise from combinatorics.
The bases of a matroid M with ground set [d] = {1,... ,d} define a standard graded
semigroup ring Ry C K[17, ... ,Ty] which is generated by those square-free mono-
mials whose support forms a basis of M. Rp(yy) is called the basis monomial ring of
M and was introduced in 1977 by N. White, who showed that for every matroid the
ring Rp(yr is normal and thus Cohen-Macaulay (see [51]). Motivated by the ques-
tion whether Rp(yr) is Koszul, we introduce the notion of sortability for a system V of
equicardinal subsets of [d]. To such a system V we associate a graded semigroup ring
Ry, which is generated by the square-free monomials in K7}, ... ,T,] with support
in V. As a tool for studying rings of the form R, we generalize matroid operations
such as deletion, contraction, duality and parallel extension to systems V of equicar-
dinal sets. This extends the concept of combinatorial pure subrings introduced by
Herzog, Hibi and Ohsugi in [42]. We use a result by Sturmfels (see [49, Theorem
13.4]) to observe that the toric ideal of Ry has a quadratic Grébner basis provided
V is sortable. This is a sufficient condition for Ry to be Koszul and gives rise to
the introduction of the class of base-sortable matroids, which are matroids for which
the basis monomial ring is sortable. We obtain that this class contains all matroids
of rank less or equal to 2 and characterize all base-sortable rank-3 matroids by an
infinite list of excluded deletions in Theorem 3.3.11. Moreover, it is shown that
the class of graphic base-sortable matroids consists of direct sums of parallel-series
networks, whose excluded minors are M(K,) and Uy 4 (see Theorem 3.4.1). Here
M (K,) is the graphic matroid of the complete graph K, on four vertices. Let Cy4
denote the regular d-gon in the plane whose vertices are labeled clockwise from 1 to
d. We prove in Theorem 3.4.2 that a transversal matroid M on [d] is base-sortable if
M has a presentation A = (A;,...,A,) such that every set A; labels a consecutive
set of vertices of Cjy.

We classify the class of matroids for which the basis monomial ring is strongly
Koszul. This Koszul property has been introduced by Herzog, Hibi and Restuccia
in [32]. A matroid M = M; & ... ® M belongs to this class if every connected
component M; is either isomorphic to U, for some £ > 1, to U, 4 or to a parallel
extension at a single point of U, ,, for some 7 > 2 (see Theorem 3.6.5).

Chapter 4 is concerned with the study of standard bigraded Koszul algebras.
Let R =S/J where S = K[Xy,...,X,,Y1,...,Y,] is a polynomial ring with stan-
dard bigrading deg(X;) = (1,0) and deg(Y;) = (0,1) and J C S a bigraded ideal.
For such an algebra we consider two kinds of subalgebras. Let a,b > 0 be two
integers with (a,b) # (0,0). Then the (a,b)-diagonal subalgebra is the standard
graded subring Ra = ;> Ria,i) Where R(; ;) denotes the (3, 4)™ bigraded compo-
nent of R. Moreover, a generalized bigraded Veronese subring Rz = @Z >0 Fia,jb)
is defined by Romer in [46]. During the last years, diagonal subalgebras have been
intensively studied. In [22] Conca, Herzog, Trung and Valla discussed many alge-
braic properties. In particular, they proved that for an arbitrary bigraded algebra
R, the diagonals R are Koszul, provided one chooses a and b large enough. They
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asked two questions in this article, of which one has been positively answered by
Aramova, Crona and De Negri, who showed that the defining ideal of Ro has a
quadratic Grobner basis for a,b > 0 (see [4]). This is a stronger property than
Koszulness. The main result of Chapter 4 is the positive answer to the second ques-
tion posed in [22]: Suppose R is a Koszul algebra, then all diagonal subalgebras Ra
are Koszul. Moreover, we prove that all generalized Veronese subrings Rz inherit the
Koszul property (see Theorem 4.2.1). In the proof we generalize techniques used
by Aramova, Barcanescu and Herzog in [3], where they obtain upper bounds for
rates of modules over arbitrary Veronese algebras. For a finitely generated bigraded
R-module and two integers ¢,d > 0 we define a sidediagonal module Mg’d) as the
Ra-module with graded components (M(Ac’d))i = M(ia+civ+q) and similarly modules
M(Ac’d). Provided R is Koszul, we get upper bounds for the Castelnuovo-Mumford
regularity of these modules, which become small for a,b > 0 (see Theorem 4.2.6).

There are several applications to symmetric algebras and Rees algebras. Let A
be a standard graded K-algebra and M be a finitely generated graded A-module.
Provided the symmetric algebra S(M) is Koszul, we show that all symmetric pow-
ers of M have linear resolutions. For the graded maximal ideal m of A, we prove
that S(m) is a Koszul algebra if the defining ideal of A has a 2-linear resolution.
Under the weaker assumption that A is Koszul, we obtain that all symmetric pow-
ers of m have a linear A-resolution. Let I C A be a graded ideal generated in
one degree. Provided the Rees ring R(I) is Koszul, all powers of I have linear A-
resolutions. Generalizing the notion of matroidal ideals in [24] we study the class
of polymatroidal ideals for which all powers and all symmetric powers have linear
resolutions. Moreover, we recover some well-known results that were first proved
by Backelin and Froberg in [10] saying that the Koszul property is preserved under
tensor products over K, Segre products and Veronese subrings. Interpreting our
result for bigraded semigroup rings we observe that the Cohen-Macaulay property
of certain divisor posets (see [35] and [45]) is compatible with taking diagonals and
generalized Veronese subrings.

The results in Chapter 2 have been published in [12], most of the contents of
Chapter 3 and 4 is submitted (see [13],[14]).

Stefan Blum

February 2001






CHAPTER 1

Background

In this chapter we introduce notation, give basic definitions and recall some
well-known results about Koszul algebras, matroid theory, integral polymatroids
and graded semigroup rings.

A detailed exposition on the fundamental facts in Sections 1.1, 1.2 and 1.5 can be
found in the book by Bruns and Herzog [15] or in Eisenbud’s book [26]. Section 1.3,
which is concerned with several results about Koszul algebras, is based on Froberg’s
survey given in [29]. In Section 1.4 we consider the powerful tool of Grobner bases
(see e.g. [26]). The aim of Section 1.6 is to recall some basic facts about matroid
theory. For a detailed introduction to matroids refer to Oxley’s book [41]. Integral
polymatroids, which we consider in Section 1.7, have been studied by Welsh in [50].
Finally we describe the fundamental properties of graded semigroups rings for which
Sturmfels provides further details in [49].

1.1. Standard graded algebras

We start by giving central definitions and notation. Let K be a field and S =
K[Xi,...,X,] the polynomial ring with standard grading deg(X;) = 1 for i =
1,...,n. We have a decomposition S = €,,5; (as a Z-module) where S; is the
K-vector space spanned by all monomials of degree 7. A polynomial f € S; is called
homogeneous of degree i or said to be an i-form. We write deg(f) = i. An ideal
I C S which has a system of homogeneous generators is called a graded ideal. Let
I; denote the K-vector space spanned by all i-forms of I. Then the quotient ring
R = S/I has a natural decomposition R = @, , R; where R; = S;/I;. Clearly, each
graded component R; is a finite dimensional K-vector space and Ry = K. We have
R;R; C R;y; for all integers 4,5 > 0 and R is finitely generated as a K-algebra by
elements of R;.

Definition 1.1.1. A K-algebra R is called standard graded if it is of the form
R = S/I where I C S is a graded ideal.

Let R be a standard graded algebra. A finitely generated R-module M is said
to be Z-graded (or simply graded) if it has a decomposition M = P, , M; (as a
Z-module) such that R;M; C M, ; for all integers 7, j with ¢ > 0.

Similarly, every M; forms a finite dimensional K-vector space, which we call the
i graded component of M. An element x € M; is said to be homogeneous of degree
1.

Notation 1.1.2. Throughout this thesis R will always denote a standard graded
K-algebra of the form R = S/I where S = K[Xi,...,X,] is the polynomial ring
and I C S a graded ideal. Let m C R be the graded maximal ideal of R, that is

11
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the ideal generated by the residue classes of the variables Xi,..., X,,. We will use
Mz(R) to denote the collection of finitely generated graded R-modules.

Let M € My(R). Since every graded component M; has a finite K-vector space
dimension, the following generating function is well-defined.

Definition 1.1.3. Let M € Mz(R). The formal power series
Hy(t) =) (dimg M)t

icZ
is called the Hilbert series of M.

It is well-known that the Hilbert series Hj; of a non-zero module M is always
a rational function of the form Hy(t) = Qu(t)/(1 — t)¢ where Qy € Z[t,t Y,
@ (1) # 0 and d denotes the Krull-dimension of M (see [15, Corollary 4.1.8]). We
consider an example.

Example 1.1.4. The set of all monomials of degree 7 forms a K-basis for S;. Thus
dimg S; = (“;’:1) and the Hilbert series of S is given by

t+mn—1Y\,
Hs(t)—;< n_1 )t
Let M € Mgz(R). Then, for a € Z, the twisted module M (a) is defined as the
graded R-module with components M(a); = M,; for all ¢ € Z. For two modules
M, N € Mz(R) an R-module homomorphism ¢ : M — N is said to be homogeneous
of degree a if p(M;) C N;y, is satisfied for all i € Z. We call a complex

C.: ..s0%c 5. 5080,50

of finitely generated, graded R-modules C, graded, provided every homomorphism
0, : C, — C,_; is homogeneous of degree 0. Note that My(R) together with
the homogeneous homomorphisms of degree 0 forms a category. For every j € Z,
the restriction to the j** graded component defines a complex of finite dimensional
K -vector spaces

(C) 0 o= (C); B (€)= . = (1) B (Cy); —

1.2. The minimal graded free resolution

Let M € My(R). Then every module Torf*(M, K) is naturally standard graded
and M has a minimal graded free resolution F . which is unique up to a base change.
It has the form

o PR o @ R(—5)PEM — @@ R(—5)P M — M — 0

JEZ JEZ JEZ

where the §7{(M) = dimgk Torl (M, K); are non-negative integers and, for every

fixed 7 > 0, there are only finitely many j such that 5(M) # 0.
Definition 1.2.1. The numbers §/7(M) are called the graded Betti numbers of M.
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The resolution F. can be constructed in the following way. Let mq,...,m,
be a minimal system of homogeneous generators for M with deg(m;) = a; for
j =1,...,7. We define the graded free module Fy = @;_, R(—a;) with basis
elements ey, ... , e, such that deg(e;) = a;. Let ¢o : Fy = M be the homomorphism
with p(e;) =m; for j =1,...,7. Then ¢y is surjective and homogeneous of degree
0. We take ¢, to be the first map of the resolution. The module (M) = ker(yp)
is called the first syzygy module of M. 1t is a graded submodule of F and, since
my,...,m, is a minimal system of generators of M, we have ker(¢g) C mFj. In a
similar way we find a finitely generated graded free module F; and an epimorphism
1 : F1 — ker(pg). Let i : ker(¢g) < Fp be the inclusion map. Then jopq : F; — Fy
is the second map of the minimal graded free resolution F. and this construction
can be continued inductively.

Example 1.2.2. Let S be the standard graded polynomial ring and K = S/m
the residue class field. It is well-known that the Koszul complex gives the (finite)
minimal graded free S-resolution of K (see [15, Section 1.6] for more details):

F.: 0— S(—n)(Z) — S(—n+ 1)(ni1) — ... S(—l)(Tf) —-S—->K—0.
Thus we have 85(K) = (}) and 8;(K) = 0 for i # j.
The data given by the graded Betti numbers §;(M) in the minimal graded free

resolution is collected in a generating function, the Poincaré series.

Definition 1.2.3. Let M € My(R). The graded Poincaré series Py (t,z) of M is
defined as the formal power series

PMtz Z

Let M # 0. We set t;(M) = sup{j: B}(M) # 0} with t;(M) = —oc if (M) =0
for all j € Z. The Castelnuovo-Mumford reqularity is given by

regp(M) = sup{t;(M) —i:i > 0}.
The integer min{i: M; # 0} is called the initial degree indeg(M) of M. Moreover,
the module M has an i-linear (or just linear) resolution if regp (M) = indeg(M) = i.

Note that the initial degree of M equals the least degree of a homogeneous

generator of M, i.e. indeg(M) = min{j: Bji(M) # 0}. In a way the regularity
measures the complexity of the minimal graded free resolution. In the most simple
case the resolution is linear. Then the entries of the maps in the resolution are linear
forms.
Remark 1.2.4. Let M € My(R) with indeg(M) = d. From the construction of
the minimal graded free resolution it is easy to see that /(M) = 0 for all j € Z
such that 7 <1+ d.

We conclude this section with an example.

Example 1.2.5. By 1.2.2 the graded Poincaré series of K equals

PE(t,2) = i (?)t = (14t

1=0
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The field K = S/m has a 0-linear resolution over S and regg(K) = 0.

In general, for an arbitrary K-algebra R, the Poincaré series P§ of the residue
class field is not a rational function. A concrete example can be found in [47].

1.3. The Koszul property

In this section we define the Koszul property for standard graded K-algebras
and recall some well-known facts. Note that the notion of Koszulness exists in a
more general context for associative K-algebras which need not to be commutative.
A good survey is given by Froberg in [29]. We always assume that R is standard
graded.

Definition 1.3.1. A K-algebra R is said to be Koszul if the R-module K = R/m
has a linear minimal free resolution over R.

The definition can be formulated in several equivalent ways. We collect them in
the following proposition, which is a direct consequence of the definitions above and
Remark 1.2.4.

Proposition 1.3.2. The following statements are equivalent.

(a) R is a Koszul algebra.

(b) regp(K) = 0.

(c) Torf(K,K); =0 for all i # j.

There is a further characterization of the Koszul property. Let R be Koszul and
F., be the minimal graded free R-resolution of K. For every j > 0 the restriction
(F.); to the j graded components is a finite exact complex of finite dimensional
K-vector spaces. Since the alternating sum of the K-vector space dimensions in
(F.); equals 0, we get Hg(t)PK(—1,t) = 1. In fact, this equality is equivalent to R
being Koszul (see [39]). We summarize.
Theorem 1.3.3. A K-algebra R is Koszul if and only if Hg(t)Px(—1,t) = 1.

This theorem immediately implies that the Poincaré series of K over a Koszul
algebra is always a rational function. We return to our favorite example.

Example 1.3.4. The polynomial ring S is Koszul as we observed in Example 1.2.5.
We have already computed the Poincaré series PX(t,2) = (1 +t2)" and the Hilbert
series Hg(t) = D .o, (“;ﬁ_ll)tz By Theorem 1.3.3 we see that Hg(t) = 1/(1 — t)"
which can also be checked directly.

Let R = S/I be standard graded. The condition that Tor (K, K) is concentrated
in degree 2 is equivalent to I being generated by forms of degree < 2. Therefore, we
get the following observation.

Proposition 1.3.5. If R = S/I is Koszul, then the ideal I is generated by forms of
degree < 2.

In fact, we may always assume that I does not contain linear forms. Then [ is
generated by quadrics. In this case the algebra R is called quadratic. The converse
of Proposition 1.3.5 is false. We take a concrete example from [29].

Example 1.3.6. The K-algebra K[Xi, Xo, X3]/(X%, X2X3, X1 X3 + X2) is qua-
dratic, but not Koszul.
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We recall some constructions which naturally occur in algebraic geometry. Let
R and R' be two standard graded K-algebras. For an integer d > 1 the d** Veronese
subring R of R is the subalgebra

R(d) = @ Rid-

i>0
The Segre product which we denote with R * R’ is defined as the graded algebra

i>0

Let S = K[X3,...,X,] and T = K[Y},...,Y,,] be two polynomial rings and let
R=S/(fi,...,f;) and R =T/(g1,...,9s) be two standard graded algebras. The
tensor product R ®x R’ is naturally standard graded with components

(R®k R)i = €P Rk ®k Ri.
k+1=:

It has a presentation of the form R ®x R' = K[X1,... ,Xp, Y1,...,Yy]/Q where
Q= (fi,-- s fr,91,---,9s). We define the fiber product R o R' as the quotient ring
K[Xy,..., X, Y1,...,Y,]/Q" where

QI:(fla"'af?",gl,"' agsaXiY}:i:]-,"'an ]:1, :m)'

An i-form f € R is called a non-zerodivisor of R if the multiplication map

R(—1) 5 Ris injective. The following results were proved by Backelin and Froberg
in [10].

Theorem 1.3.7. Let R and R' be two K -algebras.

(a) R is Koszul if and only if the Veronese subalgebra R is Koszul for all
d>1.

(b) If R and R' are Koszul, then R R' is Koszul.

(¢c) R®xk R is Koszul if and only if R and R' are Koszul.

(d) Ro R' is Koszul if and only if R and R’ are Koszul.

(e) Let f € R be a homogeneous element of degree 1 or 2. The algebra R is
Koszul if and only if R/(f) is Koszul.

We will recover the statements of (a),(b) and (c) in Chapter 4 when we discuss
bigraded algebras.

Example 1.3.8. Let R = S/(f1,---, fr) be a complete intersection where fi,... , f,
are homogeneous elements of degree 1 or 2. By Theorem 1.3.7(e) R is Koszul.

At the end of this section we quote a result from [29] which is important for the
role of Grobner bases in the discussion of Koszul algebras.

Theorem 1.3.9. Let I C S be an ideal which is generated by monomials of degree
2. Then R = S/I is Koszul.
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1.4. Grobner bases

An effective method to prove the Koszul property of a K-algebra R = S/I is
to compute a quadratic Grobner basis for the defining ideal I. Therefore, we give
a brief introduction to the theory of Grobner bases and recall some tools which we
will need for the forthcoming chapters. For more details [26] serves as a reference.

In this section F' = @;_, Se; denotes a graded free S-module of rank r with
homogeneous basis elements ey,...,e,. A monomial m € F is an element of the
form we; where v € S is a monomial in the usual sense and 7 € {1,...,r}. Every
f € F has a unique presentation as a K-linear combination of monomials. In other
words, the set of monomials forms a K-basis for F.

Definition 1.4.1. A total order < on the set of monomials in F' is called a (degree
refining) monomial order on F if two conditions are satisfied. For all monomials
ue;, ve; € I and every monomial w € S we have:

(a) If deg(ue;) > deg(ve;), then ue; > ve,.
(b) If ue; > ve;, then wue; > wwe;.

Note that one can define monomial orders which do not respect the partial order
given by the degree. Since we only consider the graded case, we restrict to degree
refining monomial orders.

A term in F is an element of the form aue; € F' where a € K\ {0} is a non-zero
scalar and ue; a monomial. Every monomial order < on F' extends naturally to a
total order on the terms of F' by neglecting the scalars, i.e. we set aue; > bve; if
ue; > ve;j. Such an order is called a term order.

Definition 1.4.2. Let f € F' and < be a monomial order on F. Then the largest
term of f with respect to < is called the initial term of F. We denote it with in.(f).
For a graded submodule U C F the initial module in.(U) is the module generated
by the set {in.(f): f € U}.

We simply write in(f) and in(U) when the given monomial order < is obvious
from the context. The following well-known result was first proved by Macaulay.

Theorem 1.4.3. Let U be a graded submodule of F' and < a monomial order on
F. Then the residue classes of the monomials which do not belong to in.(U) form
a K-basis for F/U.

The monomials which do not belong to in.(U) are called standard with respect
to the order <. Theorem 1.4.3 has the consequence that the modules F/U and
F/in(U) have the same Hilbert series. In particular, for a graded ideal I C S we
obtain

Hg1(t) = Hg/inn (t)-

There are many possible monomial orders on F. We give two important ex-
amples for the case F' = S. To simplify notation we use multi-indices. Let
a=(o,...,a,) € N* beavector. Then we write X for the monomial X{* - - - X2».
It will be useful in the forthcoming chapters to identify the vector « the correspond-
ing multiset, that is for every i € {1,2,...,n} the component «; counts the multi-

plicity of the element 7. The cardinality of « is given by |a| = Z?Zl a;. The multiset
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« is called the support of X, which we denote with supp(X®). If the monomial X
is square-free, then « is just a subset of {1,...,n}.

Examples 1.4.4. For a fixed order X; > X, > --- > X, of the variables and two
monomials X%, X# € S we have

(a) the degree reverse lezicographic order: We set X <o, X7 if the last non-

zero component of the vector (81 — au, ... , By — an, |a] — |B]) is negative.
(b) the degree lezicographic order: We set X® < X? if the first non-zero
component of the vector (]3| — |&f, 81 — au,. .., By — ) is positive.

There are some characteristic properties of these term orders which turn out to
be useful for computing the corresponding initial ideals. They follow directly from
the definitions.

Proposition 1.4.5. With the notation of 1.4.4 we have:

(a) If f is homogeneous and in.,(f) € K[Xs,...,X,] for some s < n, then
feK[Xs,...,X,]

(b) If f is homogeneous and in.  (f) € (Xs,...,X,) for some s < n, then
fe X oo, Xp).

(c) Let I C S be a graded ideal. Then in., (I + (X,)) =inc, (I)+ (X,) and
inc,,, (1) (X)) = (inc,, (1): (X0).

We come to the central definition of this section.

Definition 1.4.6. Let U C F' be a graded submodule and < a monomial order on
F. Aset G ={g1,...,9} C F is said to be a Grébner basis for U if in.(U) is
generated by the set {in(g1),...,in(g:)}.

A Grobner basis G is said to be reduced if for any two distinct elements ¢, ¢’ € G,
no term of ¢’ is divided by in.(g). To decide whether a set G forms a Grdébner basis
the Buchberger criterion serves as an important computational tool. We will describe
it in the sequel.

Let f, g € F be homogeneous elements and < a monomial order on F. We write
in(f) = ue; and in(g) = ve; where u,v € S are two monomials and ¢,j € {1,... ,7}.
If the monomials in(f) and in(g) involve the same basis element, i.e. ¢ = j, then the
S-pair S(f, g) is defined as

U v

S(f,g9) = gcd(u’v)f

" ged(u,v)”

where gecd denotes the greatest common divisor of two monomials in S. If ¢ # j, we
set S(f,g) = 0.

Theorem 1.4.7. (Buchberger)
Let < be a monomial order on F. The following statements are equivalent.

(a) g1,...,9t € F form a Grébner basis (for the submodule that they generate).
(b) For all1 <i < j <t the S-pair S(gi,9;) has a presentation of the form

t
S(9i-95) = > _ hgi
k=1
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with polynomials hy € S such that in(S(g;,9;)) > in(hegi) for all k =
1,... t.
A sum satisfying the condition in (b) is called a standard expression of f with

respect to g1, ..., g The following is well-known (see e.g. [30]).

Proposition 1.4.8. Let U C F be a graded submodule and < a monomial order on
F. Then we have a coefficientwise inequality of graded Poincaré series

PV (t,s) < PE™D)y g).

We use this to prove a lemma which we will need in a forthcoming chapter.

Lemma 1.4.9. Let deg(e;) =d fori=1,...,r and < be a monomial order on F.
IfU C F is a graded submodule such that in(U) = Ly, ex, + Li, €, + - - .+ Ly, €, where
Ly, C S are ideals generated by linear forms, then the S-module U has a d-linear
resolution.

We sketch the proof of this proposition.

Proof. By Proposition 1.4.8 it suffices to show that F//in(U) has a linear resolution.
The hypothesis implies that in(U) = @;Zl Ly;(—d). Since every Ly, is generated
by linear forms, the Koszul complex is a (linear) minimal graded free S-resolution
for Ly,. Therefore in(U) has a d-linear resolution. O

We return to the Koszul property. Let < be a monomial order on S and I C S
a graded ideal. There is a relationship of Poincaré series (see [1] or [16])

P;;I(s,t) < Pgin(l)(sat)-
If the initial ideal in(7) is generated in degree 2, then Proposition 1.3.9 implies

that S/in(7) is Koszul. These two results have a well-known consequence.

Proposition 1.4.10. Let R = S/I and let < be a monomial order on S. If I has
a quadratic Grébner basis, then R is Koszul.

The converse of Proposition 1.4.10 is false. We give a concrete example which is
taken from [27].

Example 1.4.11. Let R = K[X7, X5, X3]/I where
I = (X12 +X1X2,X22 +X2X3,X§ +X1X3)

Since R is a complete intersection, R is a Koszul algebra. In [27] it is shown that
for any ordering, even after any linear change of coordinates, I does not have a
quadratic Grobner basis.

Let R be a standard graded K-algebra. In [9] Backelin showed that the d™
Veronese subring R(? is Koszul provided d > 0. Even stronger is the result of
Eisenbud, Reeves and Totaro in [27]:

Theorem 1.4.12. The defining ideal of the d* Veronese subring R has a qua-
dratic Grobner basis for d > 0.



1.4. GROBNER BASES 19

In the following we discuss a class of ideals which have a special quadratic
Grobner basis. For this, we recall the definition of the generic initial ideal. Re-
fer to [26] for a detailed exposition. Let GL(n, K) be the general linear group of
invertible n X n matrices over K.

Theorem and Definition 1.4.13. Let K be an infinite field and <.ex denote the
reverse lexicographic term order on S induced by X1 > ... > X,,. For every graded
ideal I C S there erists a non-empty Zariski open subset U C GL(n, K) and a
monomial ideal gin(I) such that in. _ (gI) = gin(I) for all g € U.

The ideal gin(7) is called the generic initial ideal of I with respect to >yjex.

To collect some fundamental properties of gin(/) we introduce a partial order on
the natural numbers. Let p be a prime number. For a,b € N we set a <, b if each
digit in the p-base expansion of a is less or equal to the corresponding digit of b.
Moreover, we denote the usual order on N with <.

Proposition 1.4.14. Let char(K) =p and I C S be a graded ideal. We have
(a) The ideal gin(I) is p-borel: If u is a monomial generator of gin(I) which is
divisible by X; but by no higher power of X;, then (X;/X;)°u € gin(I) for
allt < j and s <, t.
(b) It is regg(gin({)) = regg(1).
We recall the stable property for set of monomials.

Definition 1.4.15. Let m € S be a monomial with m # 1. We write max(m) for
the largest index 7 such that X; divides m.

(a) A set M of monomials is called (combinatorially) stable if for every m € M
and ¢ < max(m) the monomial X;m/Xnaxm) € M.

(b) We call a set M of monomials strongly stable if for every m € M and
i < j < max(m) the monomial X;m/X; € M.

If I € S is a monomial ideal, then there exists a unique minimal system of
generators for /. We denote it with G(I). The ideal I is said to be stable if the set
of monomials which belong to I is stable.

As a consequence of Proposition 1.4.14 we obtain a result for ideals with a 2-
linear resolution.

Lemma 1.4.16. Let K be an infinite field with char(K) # 2, and I C S a graded
ideal. If I has a 2-linear resolution, then gin(I) is generated by monomials of degree
2 and G(gin([)) is stable, i.e.

If X;X; € gin(I) withi <j and k < j, then X;X; € gin([).
In particular, R = S/I is a Koszul algebra.

We note here that an algebra R is said to be Golod if the Poincaré series P§
satisfies a certain equality (see [2, p. 44]) and it is well-known that I has a 2-linear
resolution if and only if R = S/I is Koszul and Golod.

An often used technique to compute Grobner bases of subalgebras is the follow-
ing.

Lemma 1.4.17. Let S = K[X;,...,X,] be the polynomial ring, < a monomial
order on S, I C S a graded ideal and A C {1,...,n} a subset. We set S' =
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K[X,: a € A]. Suppose that I has a Grébner basis G with the property:
Ifge G andin.(g) € S', theng e S'.
Then G N S" is a Gréobner basis for I NS’ with respect to restricted order <.

Proof. Let f € INS'. Then there exists a g € G such that in.(g) divides in.(f). In
particular, in.(g) € S’. By hypothesis we get g € S’ which concludes the proof. [

Definition 1.4.18. With the notation and hypothesis of Lemma 1.4.17, S'/I N S’
is said to be a consistent subalgebra of S/I.

Note that a Grobner basis g1, ... , g; for an ideal I is said to square-free if in(g;)
is a square-free monomial for : =1,... 7.

1.5. Simplicial complexes

This section is devoted to a short introduction to simplicial complexes. We need
some basic properties for the study of semigroup rings in the forthcoming chapters.
For a detailed exposition on simplicial complexes refer to [15]. To simplify notation
we write [n] for the set {1,...,n}.

Definition 1.5.1. A simplicial complez T on [n] is a collection of subsets of [n]
which satisfies: If F € ' and G C F, then G € T.

The elements of I' are called faces of I', the dimension of a face F', denoted with
dim F, equals |F| — 1 and the dimension of I" is the maximum of all numbers dim F
with F' € T

Let I' be a simplicial complex. We call the maximal faces under inclusion facets
of I'. Moreover, I' is said to be pure if all facets of [' have the same dimension. We
consider an example.

Example 1.5.2. Let P be a finite set which is partially ordered by <. The order
complex I'(P) is the simplicial complex whose faces are the totally ordered subsets
of P,i.e. aset FF'={py,...,p} C P is a face of I'(P) provided p; < ps < --- < p;.
If the chain F is unrefinable, then F' forms a facet of I'(P).

To every simplicial complex we associate a ring R[I'] = S/Ir, where I is the
ideal generated by the square-free monomials X, - - - X, such that {i;,... i} ¢ T.
We call R[T'] the Stanley-Reisner ring of T.

Definition 1.5.3. A simplicial complex I' is said to be Cohen-Macaulay over K, if
the associated Stanley-Reisner ring R[['| = S/Ir is Cohen-Macaulay.

Note that this property depends on the base field of the polynomial ring S =
K[Xy,...,X,]. It is known that a Cohen-Macaulay simplicial complex is always
pure.

Definition 1.5.4. Let I" be a pure simplicial complex with facets Fi,..., F;. As-
sume that the facets are linearly ordered by < such that Fy < Fy < ... < F;. Then
< is said to be a shelling order for T if for all 4, j € [t] with i < j there exists a k < i
such that F; N F; C Fy N F; and |F, N F;| = |F}| — 1.

If there exists a shelling order for I', then I' is called shellable.
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Shellability is a stronger property than Cohen-Macaulayness as the next theorem
shows (see [15, Theorem 5.1.13]).

Theorem 1.5.5. A shellable simplicial complex 1s Cohen-Macaulay over every field.

1.6. Matroids

In this section we give a brief introduction to the theory of matroids. Matroids
form a special class of simplicial complexes which occur in several fields of combi-
natorics. They will be the main topic of Chapter 3. A detailed exposition can be
found in Oxley’s book [41]. We start with basic definitions.

Definition 1.6.1. A matroid M on [d] = {1,...,d} is a pair ([d],Z) where Z is
a pure simplicial complex on [d] whose facets, called bases of M, satisfy the basis
exchange property: If B, B' are two bases of M, then for every x € B\ B’ there
exists an element y € B’ \ B such that (B — z) Uy is also a basis of M.

The equal cardinality of all bases of M is said to be the rank of M. We denote
it with rank(M). We write B(M) = {Bjy, ..., B,} for the collection of bases of M.
The faces of the complex Z are called the independent sets of the matroid M. A
subset A C [d] is said to be dependent if A is not an independent set of M.

There are several equivalent axiom systems for matroids. We restate two of
them.

Proposition 1.6.2. We have:

(a) (Axiom for independent sets): A collection T of subsets of [d] forms the
collection of independent sets of a matroid if and only if T is a simplicial
complezx and: For oll I,1' € T with |I| < |I'| there exists an element z € I'\I
such that IUx € T.

(b) (Dual exchange property): Let B be a collection of subsets of [d] which all
have the same cardinality. Then B is the collection of bases of a matroid if
and only if the following exchange property holds: For B, B' € B and every
x € B\ B’ there exists an element y € B'\ B such that (B' —y) Uz € B.

Examples 1.6.3. We give two examples.

(a) Let r,d be two integers such that 0 < r < d and let Z be the collection of
all sets I C [d] with [I| < 7. Then U, 4 = ([d],Z) is a matroid. A set A C [d]
is a basis of U, 4 if |[A| = r. It is a dependent set provided |A| > 7. U, 4
is called the uniform matroid on [d] of rank 7. A matroid M is said to be
uniform if M = U, 4 for some 0 <7 < d.

(b) Take the matrix A with rational entries

1100 01

A=1(0 0 01 1 1

011100
and let V' be the column Q-vector space of A. We label the columns of A with
the numbers 1,... ,6 from the left to the right. We set Z to be the collection

of sets {i1,...,4;} C{1,2,...,6} such that the column vectors with labels
i1,12,--. ,i; form a Q-linear independent set in V. Then W? = ([6],7) is
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a matroid on [6] and the bases of W3 correspond to the bases of V' which
consist of column vectors of A. Here the basis exchange property of W3
corresponds to the Steinitz exchange theorem for vector spaces. In general,
matroids which are defined by matrices over a field are called representable.

A circuit C' of M is a dependent set such that C — x is independent for all z € C.
We recall that every matroid M has a unique rank function rky, : 29 — R which
counts, for every A C [d], the cardinality of a maximal independent set contained in
A. If it is clear from the context which matroid M is meant we simplify the notation
by using rk instead of rk,,;. In Chapter 3 we will need the following basic fact.

Lemma 1.6.4. The rank function rky of a matroid M on [d] satisfies the condition:
If X, Y C [d] are two subsets, then

A subset F' C [d] is called a flat of M if it is closed under the rank function of M,
ie. itis F = {z € [d]: rk(FUz) = rk(F)}. We call a flat F with rk(F') = rank(M)—1
a hyperplane of M and F' is proper if F # (), [d]. For a flat of rank k£ we simply write
k-flat.

Moreover an element i € [d] is said to be a loop of M if it is not contained in
any basis of M. Dually, an isthmus of M is an element ¢ € [d] which is contained
in every basis of M. We call two non-loops 4, j € [d] parallel if rk({i,j}) = 1. Being
parallel defines an equivalence relation on the set of non-loops of M, the equivalence
classes of this relation are called parallel classes. We call a parallel class trivial if it
consists of only one element.

Note that every matroid M of small rank has a geometric or affine representation,
which we describe now. Let r = rank(M) and r < 4. We draw a picture in the
affine (r — 1)-space, where the ground set of M is represented as points. A set of
points is joined by a possibly curved line if the corresponding subset in the ground
set is dependent. Affinely independent sets of points which are not explicitly joined
by a line correspond to independent sets of M. Parallel classes are visualized by
multiple points.

Example 1.6.5. We return to the matroids from Example 1.6.3. W? and U, 5 have
the geometric representations:

5

W26/ \4
*—o—0—0—0 ,
12345

1 2 3
The matroid W? has dependent 2-flats {1,2,3},{3,4, 5}, {1,5,6}. All these sets are
also circuits.

There are some standard operations for matroids which we will shortly recall (see
[41] for more details). Let M be a matroid on [d] with independent sets Z(M) and
A asubset of [d]. Then {I € Z(M): I C [d]\ A} forms the collection of independent
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sets of a matroid on [d] \ A which we denote with M \ A. It is called the deletion
of A or the restriction of M to [d]\ A. In a geometric representation this operation
corresponds to the deletion of the points which are labeled with elements of A. If
A = {p} only consists of one element, then we simply write M \ p. The dual matroid
M* of M is the matroid on [d] with bases B(M*) = {[d] — B: B € B(M)}. Clearly,
we have rank(M*) = d — rank(M). We define now the operation which is dual to
the deletion. For A C [d] the matroid M/A = (M* \ A)* is called the contraction
of M by A. A matroid N which can be obtained from M by a finite sequence of
contractions and deletions of M is a minor of M. To illustrate the definitions we
give some examples.

Examples 1.6.6. Let U, ; and W? be as in Example 1.6.3.

(a) Forpe[d]itisUgg\p=U,q1 and U, q/p =Ur_1,4-1.
(b) The matroids W3\ 1 and W?3/1 have geometric representations of the form:

3 9 3 6
W3\l oo o — - W1
3 4 5 2 5 4

Let M be a matroid on [d]. Then M denotes the underlying simple matroid of
M, that is the matroid which we obtain by deleting parallel points such that every
parallel class is trivial and by deleting all loops. We call a matroid simple if M = M.

Example 1.6.7. The matroids W? and U, 5 are simple.

A matroid N = M +p p is said to be the principal extension of M along a
proper flat F' if there exists an element p in the ground set of N such that N has
bases B(N) = B(M)U{(B —i)Up: B € B(M) andi € BN F}. In case that M
is representable over the reels this operation corresponds to placing a new point
generically into the subspace spanned by the elements of F'. More specific, if F' is
a flat of rank 1 containing a non-loop i € [d], N is called a parallel extension of M
at the point i. We write N = M +; p. We use M +; A for the matroid which is
obtained by the iterated parallel extension of the elements in A at the point 7. The
corresponding dual operation of a parallel extension is a series extension.

Let M; and M, be two matroids with disjoint ground sets. The matroid with
bases {B; U By: B; € B(My), By € B(M,)} is called the direct sum of My and M.
We denote it with M; @ M.

Example 1.6.8. The matroid M = (W? & {8}) +5) 7 has a geometric represen-
tation of the form:
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We will need the concept of connectivity for matroids. We first recall the defini-
tion.

Definition 1.6.9. A matroid M on [d] is said to be connected if, for all p,q € [d],
there exists a circuit of M containing both p and q.

For every matroid there is a direct sum decomposition into connected matroids:

Theorem 1.6.10. Let M be a matroid. Then M has a decomposition of the form
M=M,& My ---H M, where every matroid M; is connected. The decomposition
s unique up to the numbering of the summands M,;.

The summands M; are called connected components of M. We state a further
well-known fact.

Theorem 1.6.11. Let M be a matroid and p € [d]. If M is connected, then M/p
or M \ p is connected.

We call a set A C [d] a separator of M if M = (M \ A) & (M \ ([d] — A)). We
collect some observations.

Lemma 1.6.12. Let M be matroid on [d].

(a) A set A C [d] is a separator of M if and only if rkpr(A) +rky([d] — A) = d.
(b) M is connected if and only if the underlying simple matroid M is connected.

At the end of this section we recall two classes of matroids which we study in
Chapter 3. For this, we need some standard notation from graph theory.

Let G be a graph. A closed path of minimal length in G is called a cycle. A
connected subgraph 7" of G is said to be a tree if T has no cycles. A graph G which
is a union of trees is called a forest. Let G be a graph with edge set [d]. Then
the cycles of G correspond to the circuits of a matroid M(G). Equivalently, the
spanning forests in G form the bases of M(G). The matroid M(G) is called the
cycle matroid of G. We call a matroid M on [d] graphic it M = M(G) for some
graph G. The class of graphic matroids is closed under minors. A graphic matroid
M (QG) is called a series-parallel network if the graph G can be obtained from one of
the two connected single-edge graphs G or G4

e O
Ga

by a sequence of operations, each of which is either a series or a parallel extension.
For a graphic matroid M (G) these operations correspond to adding vertices of degree
2 in G or adding parallel edges in G.

Examples 1.6.13. To illustrate we give two examples.

(a) A parallel and a series extension of Gj:

— N
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(b) The matroid M(G) is a series-parallel network.

o 1 6
6
G . M(G)
2 5 2
3
[
4 5 7
4

We recall the definition of transversal matroids. Let A = (A;,...,A,) be a
finite sequence of non-empty subsets A; C [d]. Note that the members of the family
A need not to be distinct. A transversal or system of distinct representatives of
(Ay,...,A,) is a subset {i1,...,4,} C [d] such that i; € A; forall j =1,...,r
and 7; # i for all 7 # k. The transversals of A form the collection of bases of
a matroid denoted with M[A]. We call A a presentation of M[A]. A matroid M
on [d] is said to be transversal if there exists a family A = (Ay,..., A,) of subsets
of [d] such that M = M|[A]. We note that the class of transversal matroids is not
closed under contraction. The smallest class of matroids containing all minors of
transversal matroids is the class of gammoids (see [41]). We conclude this section
with an example.

Example 1.6.14. Let 4; = {1,2,6}, A, = {2,3,4} and A3 = {4,5,6}. Since
W3 = M[(A1, As, A3)], the matroid W? is transversal.

1.7. Integral polymatroids

The axiom system for the independent sets of a matroid (Proposition 1.6.2(a))
can be generalized to multisets. This leads to the notion of an integral polymatroid.
There are several equivalent axiom systems for polymatroids. We recall the defini-
tion first introduced by Edmonds in [25]. A detailed exposition is given by Welsh
in [50, Chapter 18].

As before we identify multisets with vectors. Let A = (A(1),...,A(d)) € N
where A(i) is the multiplicity of an element i € [d] in the multiset A. The cardinality
of A is given by |A| = Y.% | A(i). For two vectors A, A" € N¢ we set A < A’ if
A(i) < A'(d) for all 4 € [d]. Moreover, let AV A’ be the vector in N¢ such that
(AV A" (i) = max{A(3), A’ (i)} for all 7 € [d].

Definition 1.7.1. An integral polymatroid on [d] is a pair P = ([d],Z) such that
T C N is a finite collection of multisets satisfying:
(a) f I'eZTand I <X I', then I € T.
(b) If I, I' € T are two multisets such that |I’| < |I|, then there exists a J € T
such that I < J < IV I.

Analogously to the matroid case the multisets in Z are called independent. Ele-
ments of maximal cardinality are called bases of P. It follows from the property (b)
that all bases have the same cardinality. If all elements of Z are 0-1-vectors, then P
is simply a matroid on [d].
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Let A € N* be a vector. To simplify notation we set A +i = A + &; where ¢,
denotes the 7" unit vector in N?. There is an analogon to the exchange property for
matroid bases.

Proposition 1.7.2. Let B(P) denote the collection of bases of an integral polyma-
troid. If B, B' € B(P) are two bases such that B(i) > B'(i), then there exists an
element j € [d] such that B'(j) > B(j) and B — i + j € B(P).

Proof. Apply condition (b) of Definition 1.7.1 to the multisets [ = B—i and I' = B'.
Then the assertion follows immediately. Il

The following is proved in [40, Theorem 3].

Theorem and Definition 1.7.3. Let Py,..., P, be integral polymatroids on |[d]
and let T = {I1 + ...+ I,: I; € Z(P)}. Then T is the collection of independent
multisets of an integral polymatroid P.

P is called the polymatroid sum of Py,... , P,. We write P =P, V...V P,.

Example 1.7.4. Let My, ... , M, be matroids on [d] and Z(M;), ... ,Z(M,) denote

their independent sets. We identify a subset of [d] with the corresponding incidence
vector in N¢. Then by Theorem 1.7.3

is the collection of independent multisets of an integral polymatroid.

1.8. Graded semigroup rings

A specific class of standard graded K-algebras which we study in this thesis
are semigroup rings. We introduce the corresponding terminology and state some
well-known facts.

Definition 1.8.1. Let A C N’ be a finitely generated semigroup. We call A graded
if the following conditions are satisfied:

(a) A is the disjoint union J;sq Ai-

(b) Ag =0, A; + A; C Ay for all integers 4,5 > 0.

(c) A is generated by elements of A;.

We call the elements of A; homogeneous of degree 7. Let A be a standard graded
semigroup which is minimally generated by a4,...,a, € Ay and let K[Ty,...,T,]
denote the polynomial ring. To every semigroup element A = (aq,...,aq) € A we
associate the monomial 7* = T{*Ty2 - - - T74. Recall that the semigroup ring K[A]
is the K-algebra generated by the monomials 7% for ¢ = 1,...,n. Consider the
presentation

0 : S — K[A] X; = T,
Then I, = ker(y) is called the toric ideal of the semigroup ring K[A]. It is easy
to show that I, is generated by all binomials of the form u — u' € S such that
o(u) = p(u'). If A is graded, then K[A] = S/I is a standard graded K-algebra. We
restate a criterion for A to be graded (see [45]).

Lemma 1.8.2. Let ay,...,a, € N® and A be the semigroup which they generate.
The following statements are equivalent:
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(a) A is graded.
(b) The elements ay, ...,y lie in an affine hyperplane of R?.

The divisibility relation of the monomials in K[A] defines a partial order < on
A: For p, A € A we set p < A if A = 0 4+ p for some 0 € A. Then the open and
closed intervals

(1, \) ={o e A: p <0< A}, i, A ={oceA: u<o <A}

are partially ordered with the induced ordering. For a finite partially ordered set
(P, <) let I'(P) be the corresponding order complex (see Example 1.5.2). For A € A
we denote the order complex of the interval (0, \) with I'y. The following is stated
in [45, Corollary 2.2] and [35].

Proposition 1.8.3. K[A] is Koszul if and only if Ty is Cohen-Macaulay over K
for all A € A.

This result together with Theorem 1.5.5 implies:
Proposition 1.8.4. If Ty is shellable for all X € A, then K[A] is Koszul.
At the end of this section we give some examples of graded semigroup rings.

Example 1.8.5. Let S = K[1},T5,...,T,] be the polynomial ring in n variables.
Then the d**-Veronese subring S@ is the semigroup ring generated by all monomials
of degree d in S. The corresponding semigroup A is generated by all & € N* which
lie in the affine hyperplane

H={zeR": inzd}.
i=1

By Lemma 1.8.2 the algebra S® is standard graded. In [32] it is shown that all
divisor posets I'y with A € A are shellable.

In [49, Chapter 14] Sturmfels studies a certain class of semigroup rings. Fix an
integer d > 0 and numbers si,...,s, > 0 and let

A:{(’Ll,lg,,Zn)Eanl++Zn:d, ilgsl,... ,ingsn}.

The semigroup A which is generated by the elements in A is graded and the semi-
group ring R4 = KJ[A] is said to be of Veronese type. Let I, denote the toric ideal
of R4. The following is proved in [49].

Theorem 1.8.6. The toric ideal 14 has a quadratic Grobner basis. In particular,
every algebra of Veronese type is Koszul.

Refer also to [43] where Hibi and Ohsugi generalize this concept to algebras of
Segre-Veronese type.

1.9. Standard bigraded algebras

In Chapter 4 we will study K-algebras of the form R = S/J where S =
K[Xy,...,X,,Y1,...,Y,]is the polynomial ring with standard bigrading deg(X;) =
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(1,0), deg(Y;) = (0,1) and J C S is a bigraded ideal of S. Then R has a decompo-

sition of the from
R =P Ry
i,j>0
where R ;) = T;;)/J,) is a finite dimensional K-vector space. We call such an
algebra standard bigraded. In analogy to the graded case one defines a bigraded,
finitely generated R-module M. Then the Tor!(M, K)-groups are standard bi-
graded, and the bigraded Poincaré series of M is given by

PY(s,t,2) = Zﬁf(j’k)(M)sjtkzi.
irjok
where ,Bf(j,k)(M) = dimg Torf (M, K) () are the bigraded Betti numbers of M.
Every bigraded K-algebra R is also naturally graded with /* component R; =
&P k=i L2k)- Similarly, every bigraded R-module M can be considered as graded.
Therefore all definitions which we have given for graded rings and modules are also
valid for the bigraded objects.

Notation 1.9.1. Let R be a standard bigraded K-algebra. Then Mz:(R) denotes
the collection of finitely generated, bigraded R-modules.



CHAPTER 2

Initially Koszul algebra

This chapter is devoted to a certain class of K-algebras, the initially Koszul al-
gebras. To give the definition we recall the concept of Koszul filtrations (see [21]).
Then we characterize these algebras in terms of Grobner bases, discuss applica-
tions to graded semigroup rings and study algebras which are initially Koszul after
a generic choice of coordinates. This leads to the notion of universally initially
Koszulness.

In the sequel R = S/I always denotes a standard graded algebra where S =
K[Xi,...,X,] is the standard graded polynomial ring and I a graded ideal which
does not contain linear forms, that is I C (Xi,...,X,)>

2.1. Koszul filtrations

Conca, Trung and Valla have introduced an effective way to show that a K-
algebra is Koszul (see [21]). We recall the definition.

Definition 2.1.1. Let R be a graded K-algebra. A family F of ideals in R is called
a Koszul filtration of R, if

(a) every ideal J € F is generated by linear forms,

(b) the ideal (0) and the graded maximal ideal of R belong to F and

(c) for every J € F, J # 0, there exists an ideal L € F such that L C J, J/L
is cyclic and L: J € F.

The naming Koszul filtration is justified with the following proposition which is
stated in [21].

Proposition 2.1.2. Let F be a Koszul filtration of R. Then Tor*(R/J, K); =0 for
1 # j and for all J € F. In particular, the graded mazimal ideal of R has a system
of generators x1,. .. ,x, such that all ideals (x1,...,z;) with j = 1,...,n have a
linear R-free resolution and R is Koszul.

Koszul filtrations have been studied in various contexts (see [5], [17], [20], [21],
and [32]). We recall some concepts which we will discuss in the forthcoming sections.

Examples 2.1.3. There are several concepts of specific Koszul filtrations. We
consider some of them. Let R be a K-algebra.
(a) Let L(R) be the collection of ideals in R which are generated by linear forms.
According to Conca’s definition in [17] the algebra R is called universally
Koszul if L(R) forms a Koszul filtration for R.
(b) Herzog, Hibi and Restuccia have introduced the class of strongly Koszul
algebras in [32]. Let z1,...,z, € R; be a minimal system of generators for

29
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R. Then R is said to be strongly Koszul, if the collection
F= {(xjm s 7$jr): {j17 <. ;jr} C [n]}

is a Koszul filtration for R.

(c) In [5] Aramova, Herzog and Hibi have defined sequentially Koszul algebras.
Such an algebra R has a Koszul filtrations which consists of (not neces-
sarily all) ideals of the form (z;,,...,z; ) where {ji,...,j;} C [n] and
Z1,...,%, € R denotes a minimal system of generators.

In a sense a universally Koszul algebra has the largest possible Koszul filtration,
which is £(R). We consider the opposite case.

Definition 2.1.4. Let z1,...,x, € R;. We call R initially Koszul (i-Koszul for
short) with respect to z1,... ,z, if

F={(x1,...,2;):9=0,...,n}
forms a Koszul filtration for R.

In order to simplify notation we say that R = S/I is i-Koszul if R is initially
Koszul with respect to X; +1,...,X, + I. Koszul filtrations as in Definition 2.1.4
which are generated by a flag of linear subspaces of R, first considered in [20], are
called Grobner flags. The reason for this naming is the following result.

Theorem 2.1.5. [20, Conca, Rossi, Valla] Let R = S/I be i-Koszul. Then I has
a quadratic Grobner basis with respect to the reverse lexicographic order induced by
X< Xo<...<X,.

By Proposition 2.1.2 any Koszul filtration of R contains a flag. Thus i-Koszulness
is equivalent to the existence of a Koszul filtration which is as small as possible.

2.2. Characterization of i-Koszulness

Throughout this section < denotes the reverse lexicographic order induced by
X; < Xy < ... < X,. The following result, which was shown independently in [20],
characterizes i-Koszulness in terms of initial ideals.

Theorem 2.2.1. The following statements are equivalent:
(a) R=S/I is i-Koszul.
(b) R' = S/in (1) is i-Koszul.
(¢) I has a quadratic Grébner basis with respect to < and if X;X; € in.(I) for
some i < j, then X; Xy € in(I) for all i < k < j.

For the proof of Theorem 2.2.1 we need a property of the chosen reverse lexico-

graphic term order <.
Lemma 2.2.2. Let I C S be a graded ideal and set S = K[Xy,...,X,]. Let
o:8 — S be the K-algebra homomorphism with X1 — 0 and X; — X; for i > 1.
Suppose that g1, ... ,q; 1s a Grobner basis for I with respect to < such that X, does
not divide in(g;) for i = 1,...,r and Xy divides in(g;) for i = r +1,...,t. Then
o(g1),...,0(gr) is a Grobner basis for the ideal I = (o(f): f € I) with respect to
the induced order on S. In particular, we have in(I) = in([).
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Proof. We use the Buchberger criterion (see Theorem 1.4.7). Since < is a reverse lex-
icographic order, we may apply Proposition 1.4.5. Thus if f € S is a polynomial and
X divides in(f), then X divides f. This implies that S(o(g:),0(g;)) = o(S(gi, g5))
for all 4,5 € {1,...,r} with 7 # j, and the assertion follows immediately. O

We return now to the proof of Theorem 2.2.1.

Proof of Theorem 2.2.1. We prove the equivalence of (a) and (b) by induction on n.
The case n =1 1is trivial. Let z; = X;+ [ and 2} = X; +in(/) fori =1,... ,n. Note
that R is i-Koszul if and only if

(i) R/x1R is i-Koszul, and

(ii) 0: 2y = (x1,...,z) for some k.
Using in(X; + I) = (X1) + in(Z) (see Proposition 1.4.5) and Lemma 2.2.2 we see
that (i) is equivalent to R'/z|R’' being i-Koszul. Since in(I : X;) = in(J) : Xj
(see Proposition 1.4.5), we get 0 : 2} = (24,...,z}) if and only if (ii) holds. This
shows the equivalence of (a) and (b). For the equivalence of (b) and (c) we need the
following proposition. U

Proposition 2.2.3. Let R = S/I where I = (my,... ,m,) is generated by monomi-
als of degree 2. Then the following statements are equivalent:

(a) R is i-Koszul.
(b) If X;X; € I for some j > 1, then X; X, € I for allit <k < j.

Proof. Let xy = Xy + [ for k=1,... ,nand J; = (z1,... ,2;) for i =0,... ,n.

Let us assume (a). If X;X; € I with ¢ < j, then z;2; = 0 and so z; € J;_y : J;.
Since R is i-Koszul, we have J;_; : J; = J; for some [ > 7 — 1. But then for each
1 < k < j we get x;x, € J;_1. Therefore X; X, — X; X, € I for some [ < i — 1 and
some s. Since I is a monomial ideal, this implies X; X} € I. This is condition (b).

Conversely, we assume (b). Then we have to show that J;_1 : J; = (21,... , Zku))
foreachi =1,...,n. Let u € J;_; : (z;), v # 0. Since I is a monomial ideal, we
may assume that v is a monomial. It is clear that J;_; C J;_1 : J;. So we assume
u ¢ J;_1. It follows that uz; = 0. There are indices k¥ < [ such that X; X, € [
and X X; | uX;. If i # k and i # [, we have u = 0 which is a contradiction.
Since u ¢ J;_1, it follows that ¢+ = k£ and u € (z;). Condition (b) implies that
(i, ... ,x;) C Ji_1 : z; which yields the assertion. O

2.3. Applications and examples

In this section we use the criterion of Section 2 to show that certain algebras are
i-Koszul. We start with algebras whose defining ideal is generated by monomials.
From Proposition 2.2.3 we see immediately the following fact.

Corollary 2.3.1. Let I be generated by monomials of degree 2 and G(I) be the set
of minimal generators for I. If G(I) is stable, then R = S/I is i-Koszul.

Moreover, we observe that i-Koszulness is compatible with tensor products.

Proposition 2.3.2. If R = K[Xy,...,X,]/I and R' = K[Y1,...,Y,]/J are i-
Koszul algebras, then R @k R' is also i-Koszul.
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Proof. By Theorem 2.2.1 there are Grobner bases { f1, ..., fx} for I and {g1,..., 9}
for J, such that in(/) and in(J) satisfy the condition 2.2.1(c). The tensor product
R®R' has a presentation of the form T/Q where T = K[X1,... ,X,,,Y1,...,Y,] and
Q = IT+JT. We take the reverse lexicographic order on 7" induced by the ordering
Xi <...<X, <Y <... <Y, It follows immediately from the Buchberger
criterion (see Theorem 1.4.7) that {f1,..., f, 91, .-, g} forms a Grébner basis of
Q. Thus condition (b) of 2.2.3 is satisfied for in(Q). By Theorem 2.2.1 we get the
assertion. O

The i-Koszul property is preserved under taking Veronese subrings of algebras
whose defining ideal is generated by monomials.

Theorem 2.3.3. Let I be generated by monomials. If R = S/I is i-Koszul, then
the d Veronese subring R\Y is i-Koszul for every d > 0.

Proof. We first consider the case R = S. Let M be the set of all monomials
of degree d in S. Let <jx denote the lexicographic term order on S induced by
X1 > ...> X,. We order the elements of M such that m; >iex M2 >tex - - - lex Mt
Writing S = K[Y;,...,Y;]/J each monomial m; can be identified with a residue
class y = Y, + J. Thus we define J, = (mq,... ,my) for [ = 0,...,t. We have to
show that for every [ =1, ... ,t the ideal J;_;: J; is generated by an initial sequence
of the m;’s. We set

M;={m € M: X,|m for some r < [}

for i =1,...,t and My = (). The elements of each M, form an initial sequence
my, My, ..., m;. As in Chapter 1 we write max(m) = max{i: X; divides m}. We
claim that

Ji1: (ml) = (Mmax(ml)—l)
which yields the assertion. For the case [ = 1 there is nothing to prove, thus
we may assume [ > 1. Let s = max(m;) — 1. We write m;y = X, ---X;, with

ih <...<ig=s+1. Let u € J_1: (m;). We may assume that u is a monomial.
Then we have um; = wm, for some monomial w and r € {1,...,l —1}. We write
m, = X; ---X;, with j; < ... < j4. Since m, >x my, there exists an integer

g € {1,...,d} such that j,, = i, for all m < ¢ and j, < i, < s+ 1. The equation
um; = wm, implies

UXZ . de = ’UJqu . "de
and thus we have X |u which yields u € (M,). Conversely, let u € M,. Then there

exists a number 7 € {1,...,s} such that X,|u. We define w = X;, --- X;,  X,. It
follows w >1ex m; and hence w € J;_;. Since

d—1

u

ZXid)w,

um; = (

we obtain u € Jj_y : (my).
We now consider the general case R = S/I. Let x; = X; + [ fori =1,... n.
Since I is a monomial ideal, the set of all monomials which do not belong to I
forms a K-basis of R. Thus each monomial u = z;,z;,...2; € R is either 0 or
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has a unique presentation u = X; X, ... X; + I. Therefore we may identify each
monomial with its residue class. We have the following relations:

(¥) For any two non-zero monomials m, m' € R we have mm’ = 0 if and only if
there are 7,7 € {1,... ,n} such that X; | m, X; | m' and X, X; € I.

R is generated as a K-algebra by the set M of all non-zero monomials of
degree d in R. As in the first case we order the monomials of M by m; >jex Mo >1ex
... >1ex My and set J; = (my, ... ,my;) fori=0,...,t. We define

N (my) = {m € M.: there exists i < j with X;|m,; , X;|m and X;X, € I'}

and assert that
Ji_1: (ml) = (Mmax(ml)flaN(ml))

forl=1,...,t. Let a € Ji_1 : (my), a # 0. We may assume that a is a monomial.
There are two cases to consider:

(a) amy = 0. We have a relation as in (x). If @ ¢ (Mmax(m,)-1), then, for each
index ¢ with X; | a, it holds that t > max(m;). Thus, if X; | m; and X | a with
X;X; €I, it follows that 7 < j which yields a € N'(m).

(b) amy # 0. We have am; = bm; for some monomial b € R and some i < .
There is a K-linear, injective map o : R = S/I — S with m + I — m for all
non-zero monomials m € R. If mm’ # 0 for two monomials m,m’ € R, we get
that o(m)o(m') = o(mm’). Let 7 : S — R = S/I be the natural epimorphism.
Then 7 o o0 = idg holds. Since ¢ and 7 respect the standard grading, these maps
restrict to R and S respectively. We apply o to the equation above and, since
am; # 0, obtain that o(a)o(m;) = o(b)o(m;) in S@. The case R = S yields
U(CL) € (Mmax(a(ml))fl)' App]ylng ™ we get a € (Mmax(ml)fl)'

The converse inclusion (Mmax(m,)—-1, N (my)) C Ji—1 : (my) follows immediately
from the case R = S and the relations in ().

It remains to show that for all [ = 1,... ¢ the ideal J;_; : (my) is generated by
an initial sequence my,... ,my. Since the elements of Muyax(m,)—1 form already
an initial sequence, it suffices to prove the following: If m, € N (m;) for some s,
then m,_1 € Mumax(m)-1 UN (my). Let my = X;, ... X;, with 4; < ... <ig. Itis
iq = max(my). Since m; € N'(my), there are i < j with X;|m;, X;|m, and X;X; € I.
By the chosen order we have m;_1 >ex ms. Thus there exists a k with X}, | m;_; and
k<j. Ifk <i4, we have my_1 € Mpax(m,)—1- Otherwise we have ¢+ < k < j. Since R
is i-Koszul, we have X; X} € I by Proposition 2.2.3. This yields m, ; € N'(m;). O

In [6] Aramova, Herzog and Hibi study algebras which arise from lattices. Recall
that a lattice is said to be distributive if the two operations join and meet satisfy
the distributivity rule.

Definition 2.3.4. Let L be a finite, distributive lattice and K[{X,}aer] the poly-
nomial ring over K. Consider the ideal I;, = (XoXpg — XongXavs: @, 8 € L) of
K[{X4}acr]- The quotient algebra

Ri[L] = K[{Xa}aerl/1L
is called the Hibi ring of L over K.
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Hibi has shown that I has a quadratic Grobner basis for any term order which
selects, for any two incomparable elements «, 8 € L, the monomial X,Xz as the
initial term of X, X3 — XangXavs (see [37]). Such a term order < is, for example,
the reverse lexicographic term order induced by a total ordering of the variables
satisfying X, < X3, if rank(c) > rank(f) (see [6]) where here rank(«) denotes the
rank of « in the lattice L. We get the following characterization.

Remark 2.3.5. Let L be a finite distributive lattice and < be a term order on
S = K[{Xa}acr] as above. Then the Hibi ring R = S/I;, is i-Koszul if and only if
R is a polynomial ring.

Proof. If I, # (0), we have X, X3 € in(/) where o and  are some elements of L,
say Xo < Xp. Since R is i-Koszul, it follows that X2 € in(I) by Theorem 2.2.1.
This yields a contradiction because both monomials in a relation X, Xg— Xo1sXavs
are square-free. O

2.4. u-i-Koszulness

Let R be i-Koszul. In Proposition 2.1.2 we have seen that K has a linear R-free
resolution. If we consider R = S/I as an S-module, we can study the minimal S-free
resolution of R. In the next statement gin(I) denotes the generic initial ideal with
respect to the reverse lexicographic order induced by X; > ... > X, (see Section
1.4).

Proposition 2.4.1. Let K be an infinite field, char(K) # 2, I C S a graded ideal
and I # (0). The following statements are equivalent:

(a) I has a 2-linear S-resolution
(b) S/gin(I) is i-Koszul.
(c) S/gin(I) is Koszul.

Proof. Let us assume (a). By Lemma 1.4.16 gin(]) is generated by quadratic mono-
mials and the set G(gin(I)) is stable. Using Corollary 2.3.1 we obtain that S/gin(/)
is i-Koszul. This is condition (b) which implies (c¢) by Proposition 2.1.2.

Assuming (c) it follows from Proposition 1.3.5 that gin(I) is generated in degree
2. Since by hypothesis K is an infinite field and char(K) # 2, the set of monomials
in gin([), is stable by Proposition 1.4.14. We apply [27, Proposition 10] which
yields that gin([) is 2-regular. Since we assume that I C (X3,...,X,)?, we obtain
reg(gin(I)) = 2 =reg(I). Thus I has a 2-linear resolution. O

Proposition 2.4.1 can be interpreted as follows:

Corollary 2.4.2. I has a 2-linear resolution if and only if all generic flags are
Grobner flags.

We may now ask for which algebras all flags are Grobner flags. This leads us to
a new definition.

Definition 2.4.3. A K-algebra R = S/I is called universally initially Koszul (for
short u-i-Koszul) if R is i-Koszul with respect to every K-basis z1,... ,x, € R;.
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If an algebra R is u-i-Koszul, then the i-Koszul property is preserved under any
change of coordinates in R;. Since this is a strong condition, we can classify all
u-i-Koszul algebras in the following case:

Theorem 2.4.4. Let K be algebraically closed, char(K) # 2 and I C (X4,...,X,)%
Then R = S/I is u-i-Koszul if and only if I = (¢*) for some linear form g € S; or
I=(X4,... X2

We divide the proof of Theorem 2.4.4 into several lemmata.
Lemma 2.4.5. Let R be u-i-Koszul and x € R;\{0}. Then R/zR is also u-i-Koszul.

Proof. Let R = R/zR and zo, ... ,x, € Ry be an arbitrary K-basis of R;. We have
to show that R is i-Koszul with respect to this sequence. Since R is u-i-Koszul, R
is i-Koszul with respect to x, zs, ... ,x,. This yields the assertion. ]

Lemma 2.4.6. Let R be u-i-Koszul, char(K) # 2 and let N C Ry denote the set of
all zerodivisors in Ry. Then N is a linear subspace of Ry and N? = 0.

Proof. Since R is u-i-Koszul, we have (z) C 0 : (z) for all z € N. This implies
z? =0 for all z € N. Thus for z,y € N we have (z +y)(z — y) = 2> — y* = 0 and
therefore x +y € N. Since char(K) # 2, it follows that N2 = 0. O

Note that dimg R, = n because we always assume that I does not contain linear
forms.

Lemma 2.4.7. Let I = (L?) for some linear subspace L of Si. Then R = S/I is
u-i-Koszul if and only if dimg L € {0,1,n}.

Proof. Let R be u-i-Koszul. After a change of coordinates we may assume that
L = (Xl,... 7Xz) with ¢ = dlmKL and I = (Xl,... ,Xi)Z. If 4 ¢ {0,1,77,}, we
interchange X; and X;,;. We obtain a new defining ideal J with X;X;,; € J, but
X, X; ¢ J which is a contradiction to the i-Koszulness of S/J by Proposition 2.2.3.

Conversely, let i = dimg L € {0,1,n}. If 4 = 0, there is nothing to prove. If
i = 1, then I = (g?) for some g € S;. For any transformation we obtain a new
defining ideal J = (h?) with h € S;. We observe that in(h?) is a square. The

assertion follows from Theorem 2.2.1. If 1 = n, we have I = (X1,...,X,)% In this
case the defining ideal does not change for any transformation and we get the claim
by Theorem 2.2.1. U

Lemma 2.4.8. Let K be algebraically closed, char(K) # 2 and R = S/I. If I C
(X1,...,X,)?% 1s a principal ideal, then R is u-i-Koszul if and only if I = (g°) for
some g € 5.

Proof. If I = (g?) for some g € Sy, then R is u-i-Koszul by Lemma 2.4.7. Let R be
u-i-Koszul. Since K is algebraically closed and char(K) # 2, there exists a K-basis
Yi,...,Y, of Sy such that the generator of I is of the form Y + ...+ Y;? for some
i <n (see [38]). We claim that ¢ = 1 and argue by contradiction.

If i > 1, we apply ¥; 1 — Y; 1 ++/—1Y; and Y; — Y; for j # i — 1. Then the
generator f in the new coordinates has in(f) = —2v/—1Z, 17, and thus R is not
i-u-Koszul by Theorem 2.2.1. Therefore we have i = 1, and f = Y. U
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Remark 2.4.9. Let I C S have a quadratic Grobner basis and let fi,..., fr be a
minimal system of generators of I. Then there exists a minimal Grobner basis of
which consists of K-linear combinations of fi,..., fx.

Proof of Theorem 2.4.4. In Lemma 2.4.7 and Lemma 2.4.8 we have already observed
that R is u-i-Koszul, if I = (¢%) or [ = (X1,...,X,)%

Conversely, let R be u-i-Koszul. By Lemma 2.4.6 the set N of all zerodivisors
in R, is a linear subspace of R; and N> = 0. Thus in the case that dim(R) = 0 we
have N' = R, and therefore I = (Xi,...,X,)?.

Let now dim(R) > 0. We have to show that I = (¢?) for some g € R;. We use
induction on d = dim(R). Let d = 1. We have two cases:

(a) N = 0. In this case R is a 1-dimensional Cohen-Macaulay ring with minimal
multiplicity and every | € R; is a non-zerodivisor. Suppose that I # (0). We show
that R must be a domain and deduce a contradiction.

Since dim(R) = 1 and I # (0), we have embdim(R) > 1. Let z; = X; + I for
i =1,...,n. x is a non-zerodivisor of R. Since dim(R/x;R) = 0 and R/x,R is
u-i-Koszul by Lemma 2.4.5, we get that R/z1R = K[Xo,... , X,]/ (X, ..., X,)? as
we have already observed above. Since z; is a non-zerodivisor of R, we have X7 ¢ I.
By Theorem 2.2.1 the algebra S/in(I) is i-Koszul. The term order of Theorem 2.2.1
implies that X? ¢ in(I). By Proposition 2.2.3 we get in(/) = (Xy,...,X,)% Itisa
general fact that the set of monomials which do not belong to in(I) forms a K-basis
of R. In our case z'x1,... 7z, forms a K-basis of R;;; for all i > 0. If a € R;,
i > 2, is a homogeneous element, we have a € (1)L

Suppose that ar = 0 for some r € R. We can write a = 2] with some linear
form [ € Ry. It is ar = xzfllr = 0. Since z; and [ are non-zerodivisors by the
assumption, it follows that » = 0. Thus every homogeneous element of R is a
non-zerodivisor which implies that R is a domain. Since K is algebraically closed
and [ is graded, R is a polynomial ring in one variable. This is a contradiction to
embdim(R) > 1.

(b) N # 0. Tt is I # (0). We start induction on n = embdim(R). Let n = 2.
By Theorem 2.2.1 and Remark 2.4.9 the ideal I C K[X, X,| has a minimal system
of generators fi, ..., fy which forms a minimal Grobner basis. Since we are in the
case that d = dim(R) = 1, we have I # (X1,...,X,)? and thus k < 2. If k = 0,
then R is a polynomial ring. For £ = 1 we get the assertion by Lemma 2.4.8. If
k = 2, we deduce a contradiction. Since R is i-Koszul, we obtain by Theorem 2.2.1
that in(/) = (X?, X1 X,) with respect to the term order of 2.2.1. Tt follows that
I = (X%, X, X,) because X%, X; X, are the smallest two monomials of degree two.
Thus, by interchanging X; and X, we get the defining ideal J = (X;X,, X2). By
Theorem 2.2.1 S/J is not i-Koszul which is a contradiction to R being u-i-Koszul.

Let n > 2. We choose z € N, z # 0. We may assume that z = z; = X;+I. Since
2? = 0 by Lemma 2.4.6, we have that dim(R/z;R) = 1 and embdim(R/z; R) = n—1.
R/z1 R is u-i-Koszul by Lemma 2.4.5. Let A be the set of all zerodivisors of R/z; R.
If N # 0, by induction hypothesis on n, if N' = 0, by case (a), it follows that
R/z1R is a hypersurface ring of the form R/x R = K[X,,...,X,]/(¢?) for some
g€ K[Xy,...,X,]1.
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Let L C S; be the linear subspace with (I : X;); = L. Then we have I =
(X1L, g?> + X,l) for some linear form [ € S;. By Lemma 2.4.6 we get X; € L and
thus X; € Rad(I). It follows that g € Rad(/) which implies g + I € N. Again by
Lemma 2.4.6 we get ¢ € I and X;g € I. This implies that g,/ € L and therefore
I = (L?). Since d = 1, we have (L?) = I # (X1,...,X,)% By Lemma 2.4.7 we get
the assertion.

We finish now the induction on d. Let d > 1. Then we have ' # R;. Thus there
exists an element x € Ry \ NV, z # 0. We may assume z = z; = X; + [. By Lemma
2.4.5 R/z1 R is u-i-Koszul. We have dim(R/z;R) = dim(R) — 1 > 1 and thus by
induction hypothesis R/z1R = K[X,, ..., X,]/(g%). It follows that I = (¢*> + X;l)
for some [ € Ry. If I # (0), we obtain the assertion by Lemma 2.4.8. O

For K-algebras which are defined by monomial ideals we can classify the u-i-
Koszul property also for base fields K of characteristic 2.
Proposition 2.4.10. Let I C S be a proper monomial ideal. R = S/I is u-i-Koszul
(X2) if char(K) # 2

(X? ,X?) if char(K) =2

TRERE

if and only if I = (X1, ..., X,)? or I has the form

Proof. In the case that I = (X3,...,X,)? or I is of the form (X?) for some i the al-
gebra R is u-i-Koszul by Lemma 2.4.7. Now let char(K) =2and I = (X7?,...,X})
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for some indices i; < ... < 4,. For any transformation X, — 2?21 a;;X; with
i =1,...,n we obtain a new defining ideal J = (g1,...,9,) with gy = 377 | a% X7
for k =1,...,r. Then J has a minimal system of generators which forms a Grobner

basis of J. In the term order of Theorem 2.2.1 in(J) is of the form (X7,...,X?)
for some indices j; < ... < js. By Theorem 2.2.1 S/.J is i-Koszul and thus R = S/I
is u-i-Koszul. Conversely, let us assume that R is u-i-Koszul. There are two cases:

If char(K) # 2, then by Lemma 2.4.6 and Lemma 2.4.7 we get [ = (X?) for
some i or I = (Xy,...,X,)%

Let char(K) = 2 and let G() be the set of the minimal generators of I. We need
some facts which follow immediately from Proposition 2.2.3. R is not u-i-Koszul if

(i) X;X; € G(I) with i < j and X; X ¢ G(I) for some k > j or if
(ii) X;X; € G(I) with i < j and X? ¢ G(I) for some k > i or if

(i) X2, X;Xin, XiX, € G(I), X2,..., X2 € G(I) and Xy Xizo ¢ G(I) for

some ¢ < n — 1 or if

(iv) X7, X;X;41, X2, € G(I) and X,_1X; ¢ G(I) for some 1 < i < n.

We have to show the following: If T # (Xi,...,X,)? and [ is not of the form
(X7,...,X7), then R is not u-i-Koszul. Under this assumption we have X;X; €
G(I) for some i < j. By Proposition 2.2.3 and (i) we have X2, ..., X;X,, € G(I). By
(ii) we get X2 ,... , X2 € G(I). Then (iv) implies that X; 1 X; € G(I). By iteration
and using (iii) we obtain that I = (X, ..., X,,)?, which is a contradiction. O

As a direct consequence from Theorem 2.4.4 and Proposition 2.4.10 we observe.

Corollary 2.4.11. Let char(K) # 2 and K be algebraically closed. If R = S/I is
u-i-Koszul, then R' = S/in(I) is also u-i-Koszul.
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The converse of Corollary 2.4.11 is not true. For example, take n = 3 and
I = (X;X3 — X3). Since in(I) = (X32), the algebra R’ is u-i-Koszul by Proposition
2.4.10, but R is not u-i-Koszul by Theorem 2.4.4. We also get from Theorem 2.4.4:

Corollary 2.4.12. Let K be algebraically closed, char(K) # 2 and R = S/I an
u-i-Koszul domain. Then I = (0).

The statements in Theorem 2.4.4 and Corollary 2.4.12 are not true for more
general base fields. Take, for example,

1
R = QIX;, X,/ (X} - 5 X3).
Then X7 — %X% is not a square in Q[X;, X,] and R is an u-i-Koszul domain. More-

over,

is u-i-Koszul. Therefore the hypothesis char(K) # 2 of Theorem 2.4.4 cannot be
omitted. The concept of universally Koszul algebras in [17] (see Examples 2.1.3(a))
has no direct relation to i-Koszulness. Since on the one hand the algebra

K[X1, Xp]/(X1Xa)
is u-Koszul by [17, 1.5.], but not i-Koszul by Proposition 2.2.3. On the other hand
K[Xi,..., X,/ (X?,...,X2)

is i-Koszul due to Proposition 2.2.3, but not u-Koszul if n > 3 and char(K) # 2 (see
[17]).

2.5. i-Koszulness of semigroup rings

In this section we want to study i-Koszul semigroup rings. Let A be a graded
semigroup of N¢ which is minimally generated by the set G = {a1,...,a,}. We
identify here a monomial X* with the corresponding exponent A € N¢. A semigroup
ring R = K[A] (see section 1.8 for more details) is called i-Koszul if R is i-Koszul
with respect to the sequence aq, ... ,q,. R is said to be u-i-Koszul if R is i-Koszul
with respect to (1), - .. , Qx(n) for any permutation 7 of {1,2,... ,n}. We will see
that i-Koszulness implies a certain shellability of the finite intervals in the divisor
poset of R.

The set X of all monomials in R is partially ordered by divisibility. If there is
an injective map 7 : G — II where II is a totally ordered set, then all unrefineable
finite divisor chains

Cido B3 A=
are labeled by 7(C) = (v(as),---,7(a;,)) € II". Let < denote the lexicographic
order on II" induced by the order on II.

Definition 2.5.1. (see [5],[11]) R is called naturally shellable if for every monomial
A € X the order complex I'([1, a]) is shellable with order v(C}) < - - - < 4(C,) where
{C},...,C,} is the set of all unrefineable chains in the interval [1, A].
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Let R = S/I where [ is the toric ideal of the semigroup ring R. Natural shella-
bility can be translated into a condition on in(/) with respect to the reverse lexico-
graphic order induced by X; < --- < X,,.

Proposition 2.5.2. (T. Hibi) The following statements are equivalent:

(a) R is naturally shellable.

(b) in([) is quasi-poset, i.e. if i <k < j and X;X; € in([l), then it follows that

Xi Xy € in(l) or Xy X; € in(J).

Consequently, by Theorem 2.2.1 the following is evident:
Corollary 2.5.3. An i-Koszul semigroup ring is naturally shellable.

By Proposition 1.8.4 the corollary above gives us an alternative proof for the
statement that an i-Koszul semigroup ring is Koszul. We have seen in Proposition

2.3.2 that i-Koszulness is preserved under tensor products. This is not true for Segre
products of semigroup rings. For example,

(]-) R= K[XI}/'leI}/'ZvXZ}/leQ}/Z] = K[Z17 Z27 Z37 Z4]/(Z1Z4 - Z2Z3)

is not i-Koszul with respect to any permutation of the semigroup generators by The-
orem 2.2.1. But it can be shown that R is naturally shellable (see [11]). Therefore
the converse of Corollary 2.5.3 is not true in general.

We now compare i-Koszulness with the strongly Koszul and the sequentially
Koszul properties (see Examples 2.1.3). We recall a characterization for strongly
Koszul semigroup rings from [32].

Proposition 2.5.4. Let R = Klay, ..., ] be a standard graded semigroup ring.
The following statements are equivalent:
(a) R is strongly Koszul.

(b) The ideal (0;) N (oj) C R is generated in degree 2 for all i # j.

It is also proved in [32] that the divisor posets I'y (see Section 1.8 for the
definition) of a strongly Koszul semigroup ring are shellable for all A and the
strongly Koszul property is preserved under Segre products. Thus the ring R =
K[X;, X5]x K[Y1, Ys] in Example (1) is strongly Koszul. Evidently a strongly Koszul
algebra is sequentially Koszul. It is obvious from the definition that:

Remark 2.5.5. Any i-Koszul algebra R is sequentially Koszul.

The example in (1) shows that the converse is not true in general. Furthermore
i-Koszulness does not imply the strongly Koszul property. Take, for example,

T=K[X}, X} Xy, X1 X2, X1 X5 X3, X2 X3, X, X2].
If we order the generators lexicographically decreasing, we get by a computation
with MACAULAY?2 [31] that T is i-Koszul. However, T is not strongly Koszul by
Proposition 2.5.4 because
(X1X5X3) o (X3) = (X3, X7 X X3).
We observe that the only u-i-Koszul semigroup rings are polynomial rings.

Proposition 2.5.6. Let R = Klay,... ,a,] C S be a graded semigroup ring. If R
15 u-i-Koszul, then R is a polynomial ring.



40 2. INITIALLY KOSZUL ALGEBRA

Proof. We may assume that a3 >pex ... >1ex Qn Where >, is the lexicographic
order on N¢. Let R = S/I with a; = X; +1 for i = 1,... ,n. By hypothesis R
is i-Koszul with respect to this sequence. We argue by contradiction. If I # (0),
we get by Theorem 2.2.1 that I has a quadratic Grobner basis with respect to the
reverse lexicographic term order induced by X; < ... < X,,. The toric ideal I is
minimally generated by binomials of degree 2. By Remark 2.4.9 the ideal I has a
quadratic Grobner basis G which consists of binomials. The chosen order of the
semigroup generators implies that every f € G is of the form f = X;X; — X; X]
with £ < ¢ < j < | where in(f) = X;X;. We choose the smallest index ¢ such
that X;X; € in(I) for some j > i. Since R is i-Koszul, we have X? € in(I)
by Theorem 2.2.1. Thus there exists f € G such that f = X? — X;_, X;,, for
some r,s > 0. Interchanging X; and X;_, we get a new defining ideal J and an
element g = X?  — X;X;,, € J. Taking the same term order on S/J we get that
in(g) = X;X;s. Since S/J is i-Koszul, it follows that X? € in(J) by Theorem
2.2.1. Thus there exists a binomial h € J such that h = Xf — X, X, for some
a,b € {1,...,n}. But then, there is a relation v = X2, — X, Xy € G for some
¢,d € {1,...,n} and the order of the semigroup generators implies ¢ < i — 7 < d.
Thus we have in(u) = X2, € in(I), which is a contradiction to the choice of 7. O



CHAPTER 3

Sortable semigroup rings

In this chapter we study a class of graded semigroup rings with a minimal system
of generators which satisfies a certain sorting condition. A result by Sturmfels
implies that the defining ideals of these algebras have a quadratic Grobner basis
(see [49, Theorem 14.2 case s = (1,1,...,1)]). Thus sortable semigroup rings are
Koszul. The concept of sortability is motivated by the conjecture of N. White that
basis monomial rings, which are defined by the bases of a matroid, have quadratic
relations (see [52]). Since sortability is compatible with several matroid operations,
we can determine some classes of matroids for which the basis monomial ring is even
Koszul. Moreover, we classify the matroids which define strongly Koszul semigroup
rings.

3.1. Sortability

We start by introducing some notation.

Notation 3.1.1. Let V = {Vi,...,V,,} be a collection of subsets of [d] such that
Vil =7 foralli=1,... ,n. Then Ry C K[T},...,T,] denotes the semigroup ring
generated by the n square-free monomials

CMZ:H’TJ

JEV;

in K[Ty,...,Ty| of degree r fori =1, ... ,n. In other words, it is Ry = K|ay, ... ,ay)
where supp(a;) =V; fori=1,... ,n.

Let Sy = K[Xy,,...,Xy,] be the polynomial ring in the variables indexed by the
sets in V. Then Ry has a presentation ¢ : Sy — Ry with Xy, — a; fori=1,... ,n.
We write I, = ker(¢p) for the toric ideal of Ry. Since all sets in V have cardinality
r, the K-algebra Ry is standard graded by Proposition 1.8.2.

To simplify notation we identify a set V; = {i1,... i} C [d], i1 < iy... < iy,
with the ordered tuple V; = (i1,...,%,) in N'. We may always assume that Vi >,
Vo >lex +* >lex Vi Where >, is the lexicographic order on N'.

Let ¥ be the set of monomials in Sy. For every u € ¥, deg(u) = k and u =

le ---Xvik, we order the indeterminates such that ; < iy < ... < 4, is satisfied.
To u we associate a k x r matrix A(u) = [V;-I,Viz, e ,V;k]t, whose rows are the
corresponding vectors V;,, ..., V;, (cf. [23]). Since A(u) is unique, we may identify

with the corresponding set of matrices {A(u): u € ¥£}. Moreover, we define supp(A)
to be the multiset consisting of all entries of A(u). For all binomial generators
u — u' € Iy, in the toric ideal we have supp(A(u)) = supp(A(u')) (see Section 1.8).

41
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Definition 3.1.2. Let A = (a;;) be a k x r matrix with entries in [d] and <, a
linear order on [d]. Then A is said to be sorted with respect to <, if

a1 <y 021 Sy <y g1 Sy 012 Sy A2 Sy Sy Qo Sy v <y Qe

For an arbitrary matrix A, we define sort, (A) to be the unique sorted matrix of the
same size such that supp(sort,(A)) = supp(A4).

In case that <, is the usual order 1 < 2 < ... < d we simply use < to denote
the order and write sort(A) instead of sort,(A4). To illustrate the sorting operator
we give an example. Let 1 <2 < -+ <7 < 8 be the usual linear order and

124 8
A_{3678]'

Then we have supp(A) = {1,2,3,4,6,7,8,8} and

1 3 6 8
sort(A) = [2 47 8] .
Definition 3.1.3. Let V = {Vj,...,V,} be a system of r-element subsets of the
ground set [d]. A linear order <, on [d] is called a sorting order for the pair (V, <)

if the following condition is satisfied:

(S) Let V;,V; € V with i < j and let A = [V, Vﬂt denote the corresponding
matrix. Then the row vectors of the matrix sort,(A) are also elements of
the system ).

V is called a sortable system if there exists a linear order <,, on [d] such that <, is
a sorting order for (V, <,).

Note that sortability can be defined more generally for systems of multisets.
Since we mainly study rings arising from matroids, we only consider sortable sets.
The following definition first appeared in [51].

Definition 3.1.4. Let M be a matroid on [d] of rank r and B(M) its bases. Then
the semigroup ring Rp(ar) is called the basis monomial ring of M. We denote the
toric ideal of RB(M) with IB(M)-

In other words, if B(M) = {B,...,B,}, then the Rp) = Klay,..., o] is
generated as an algebra by the monomials o; = Hjqu; T;fori=1,... ,n.

Example 3.1.5. Let U, 4 be the uniform matroid of rank r on [d]. Then Rpy, ,) is
the semigroup ring which is generated by all square-free monomials of degree r in
K[T,...,Ty]. In particular, Rp(, , is of Veronese type (see Theorem 1.8.6).

d

N. White has studied some algebraic properties of basis monomial rings in [51].
We summarize his results:

Theorem 3.1.6. Let M be a matroid on [d] and let (M) denote the number of
connected components of M. Then the Krull dimension of the basis monomial ring
Rp(my equals d — (M) 4 1 and the algebra Rpy is normal. In particular, R
1s a Cohen-Macaulay ring.
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In [52, Conjecture 12] N. White formulated a conjecture in terms of exchange
properties for matroids which encourages us to consider the Koszul property of basis
monomial rings. We rephrase it.

Conjecture 3.1.7. (N. White) Let M be a matroid. Then the toric ideal Igar of
the basis monomial ring of M is generated by quadrics.

The study of basis monomial rings motivates to the extension of matroid opera-
tions to the systems V. Note that the induced operations on the semigroup rings Ry
generalize the concept of combinatorial pure subrings which has been introduced by
Herzog, Hibi and Ohsugi in [42].

We always assume that V = {V;,...,V,} is a system of r-element subsets on
[d]. In case that V is the collection of bases of a matroid M on [d], the following
operations coincide with those defined for matroids (see Section 1.3).

Let i € [d]. We define the deletion of i, denoted with V \ i, to be the following
collection of subsets in {1,...,i—1,i+1,...,d}

Y\i= {Vies- o, Vi } if i ¢ V; for some j € [n],
{Vi—d,...,V,—i} ifieVforallj=1,...,n
where in the first case {V},,...,V],} is the collection of subsets in V such that

Vj, C [d] —i. For an arbitrary set A C [d] with |A| > 1 we define inductively
V\A = (V\(A—-a)))\ a for some element ¢ € A. In the case that there is a
V; € V such that V; C [d] — A, the semigroup ring Ry\ 4 is a combinatorial pure
subring of Ry, as defined in [42]. We call V* = {[d] — V4, ... ,[d] — V,.} the dual of
V. If Ry = K|oy, ... ,qy] is the associated homogeneous semigroup ring, then Ry«
is generated by the n square-free monomials o of degree d —r in K[T7,... ,T,] such
that supp(a) = [d] — V;, i.e

*

T.Ty Ty
a,l: =

87
fori =1,...,n. Since all monomials have the same degree d—r, Ry is also standard
graded.

Remark 3.1.8. The semigroup rings Ry, and Ry- are isomorphic as K-algebras.
Proof. Let Ry = Klay,...,0,]. Then the map ¢ : Ry — Ry« with ¢(a;) = of
extends to an isomorphism of K-algebras. O
Let A C [d]. We define V/A = (V*\ A)* to be the contraction of V at A. We
call a system V' of r'-element subsets of [d'] a minor of the system V if V' can be

obtained from V by a finite sequence of contractions and deletions. Let i € [d] such
that ¢ € V; for some j € {1,... ,n}. We define

Vi (d+1)={Vi,...,V,Ju{V;—iu(d+1):i € V;}

to be a parallel extension of V at i. Moreover, a system of the form (V* +; (d+1))*
is called a series extension of V at i. Let V; and V, be two systems of r;-subsets
of [di] and ro-subsets of [ds] respectively. We identify the subsets of [dy] with the
subsets of set {d; +1,d; +2,...,d; + do}. Then the direct sum

V1€BV2:{V1L-JV21V1€V1;V2€V2}
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is a system of subsets of [d; +dz]. We note that the associated semigroup ring Ry, gy,
is the Segre product Ry, * Ry, of the rings Ry, and Ry,.

3.2. The class of sortable systems and their semigroup rings

In this section we study the class S of sortable systems V. Considering this
class form the algebraic point of view we first observe that the associated semigroup
ring Ry is Koszul. Then we show that S is closed under the generalized matroid
operations which have been defined in the preceding section.

Proposition 3.2.1. IfV is a sortable system, then the toric ideal I, of the semigroup
ring Ry has a square-free quadratic Grobner basis. In particular, Ry is Koszul.

For the proof of Proposition 3.2.1 we use a result from [49] (see also [23]). As we
have observed in Example 3.1.5, the algebra Rpy, ,) coincides with the rt* square-
free Veronese subring of K[Ti,...,Ty]. We reformulate [49, Theorem 14.2 case
s=(1,1,...,1)].

Theorem 3.2.2. (Sturmfels) Let SB(U, ) be the polynomial ring with indeterminates
indezed by the bases of Uy 4 and X be the set of monomials in Spw, ;). Then there ex-
ists a term order <, on Spw, ;) such that Iy, ;) has a square-free quadratic Grobner
basis

G={u—u":uu €X Au) =sort(A(u))}.
Moreover, the standard monomials with respect to <, correspond to the sorted ma-
trices of X.

Proof of Proposition 3.2.1. Let V = {V1,... ,V,} be a sortable system of subsets of
[d] with |V;| =7 for all i = 1,... ,n. We consider the semigroup ring Ry as a K-
subalgebra of Ry, ;). Renumbering the set [d] we may assume that 1 <2 <--- < d
is a sorting order for V. By Theorem 3.2.2 the ideal Iy, ,) C Spw,,) has a square-
free quadratic Grobner basis G with respect to a term order <, such that sort(X)
forms the set of standard monomials. If < is a sorting order for V, then Lemma
1.4.17 implies that G N Sy is a Grobner basis for the toric ideal I,. Il

As a direct consequence of the results above we observe:

Remark 3.2.3. Let V be a sortable system. Then Ry is a consistent subalgebra
(see Definition 1.4.18) of Ry, ,. Moreover, the sorting property extends to arbitrary
matrices A € X, i.e. every row of sort,(A) € ¥ is the support of a monomial
generator of Ry.

We study now the class S of sortable systems with respect to the generalized
matroid operations as defined in Section 3.1.
Proposition 3.2.4. The class S of sortable systems is closed under the following
operations:

(a) duality,
b) contraction and deletion,

(b)
(c) parallel and series extension,
(d) direct sums.
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Proof. Let V = {Vi,...,V,} be a sortable system of subsets of [d]. By renumbering
we may assume that 1 <2 < ... < d is a sorting order for V.

(a): Let V* = [d] —V; fori =1,...,n. Weshow that 1 <2 < ... < dis a
sorting order for the dual V* = {Vj*,...,V*} verifying condition S of Definition
3.1.3. Let A = [V;,Vj]t where V;,V; € V and 7 < j. Since V has sorting order <,
the row vectors ¢; and ¢y of the matrix C' = sort(A) are again elements of V. Thus
[d] — ¢1 and [d] — ¢, belong to V*. We set sort(A)* = [[d] — ca, [d] — cl]t and claim
that sort(A)* = sort( [V}, ‘/Z*]t) which yields condition (S) for V*.

By definition we have supp(sort(4)) = V; U V; and therefore supp(sort(A)*) =
Vi UV} Since sort(A) is sorted, we observe that sort(A)* is also sorted which
concludes the proof.

(b): Sortability is trivially preserved under deletion. By (a) the same holds for
the contraction.

(c): Let i € [d] be an element such that i € V; for some j € {1,... ,n}. Let
V' =V +; (d + 1) denote a parallel extension at i. We extend the old ordering
of the ground set [d] to an ordering of the ground set [d + 1] in such a way that
d 4+ 1 occurs between the elements previously labeled 7 and 7 + 1 and show that
1<2<...<i<d+1<i+1<...<dis asorting order for V'.

Let V/,V} € V' with i < j be two vectors and A" = [V}, V;-']t the corresponding
matrix. We replace each entry d + 1 by 7. By definition of V' we obtain a matrix A
whose row vectors belong to V. Since < is a sorting order for V), the rows of sort(A)
are again elements of V. Without losing the sorting property we can replace the
corresponding number of i-entries by d+ 1, this gives us sort<(A’). The row vectors
belong to V' which yields condition (S) for V'. Since parallel and series extension
are dual operations, (a) implies the assertion for series extensions.

(d): Let ¥V = V; &V, where V; and V, are sortable systems on [d;] and [ds]
respectively. We may assume that 1 < 2 < ... < d; a sorting order for V;. We
extend the given linear orders to a linear order <, on [d; + ds] in a way that i <, j
for all 4, j where i is an element of the ground set of [d;] and j an element of the
ground set of [dy]. By the chosen order we obtain immediately that (S) is satisfied
for V. O

Example 3.2.5. In [23] the following semigroup rings are considered. Let %, be
the set of monomials of degree r in K[T1,...,T,]. For a monomial v € %, let B(v)
denote the smallest strongly stable (see Definition 1.4.15) subset of ¥ which contains
v. We write Byp(v) = {o,...,a,} for the set of square-free monomials in B(v).
Suppose that ¥V = {Vi,...,V,} where V; = supp(«;) for i = 1,... ,n. De Negri
has shown in [23] that V belongs to the class S. All semigroup rings which can be
obtained by the operations in Proposition 3.2.4 have sortable generators and thus a
quadratic Grobner basis.

3.3. Base-sortable matroids of rank less or equal to 3

In this section we study the class of matroids M for which the collection of
bases is a sortable system. We give necessary and sufficient conditions for a matroid
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to belong to this class and classify all base-sortable rank 3 matroids by excluded
minors.

An ordered matroid (M, w) consists of a matroid M and a linear order <, on the
ground set [d]. As in Section 3.1 we denote the usual linear order 1 < 2 < --- < d
with <. Let B = {By,...,B,} be the collection of bases of a matroid M. In
the following we always identify a basis B; = {by,...,b.} with the ordered tuple
B; = (by,...,b,) where by < by < ... < b,. Moreover, we may always assume that
By >1ex By >ex -+ >1ex B, where > denotes the lexicographic order in N'.

Definition and Notation 3.3.1. Let (M,w) be an ordered matroid on [d] with
bases B. The linear order <, is called a base-sorting order for M if <, is a sorting
order for B. We call an arbitrary matroid M base-sortable if there exists a linear
order <, of the ground set [d] of M which is a sorting order for B and denote the
class of all base-sortable matroids with BS.

Proposition 3.2.1 implies that, for a base-sortable matroid M, the basis monomial
ring Rp(yr) is Koszul. By Proposition 3.2.4 we have:

Corollary 3.3.2. The class BS is closed under taking minors, parallel and series
extensions and direct sums of matroids. In particular, BS forms a hereditary class.

The following corollary is a direct consequence of Corollary 3.3.2.

Corollary 3.3.3. A matroid M is base-sortable if and only if the underlying simple
matrotd M has this property. In particular, every matroid of rank 2 is base-sortable.

Proof. The first assertion is clear since loops do not effect base-sortability, and paral-
lel elements can be created and deleted by Proposition 3.3.2. Every matroid of rank
2 is a parallel extension of a uniform matroid which is base-sortable by Theorem
3.2.2. O

The class of rank-2 matroids coincides with the class of complete multipartite
graphs. Therefore Corollary 3.3.3 was first observed by Hibi and Ohsugi in [43,
Theorem 1.1 and Corollary 1.3].

For the next statement we need some notation. Let Cy be the regular d-gon in
the plane whose vertices are labeled clockwise from 1 to d. A set F' is said to be
consecutive modulo d if the elements of F' label a consecutive set of vertices of Cy.
The class BS is closed under certain principal extensions along flats of rank 2.

Proposition 3.3.4. Let (M, <) be a base-sortable matroid and F' be a proper inde-
pendent flat of rank 2 which is consecutive modulo d. Then the principal extension
N = M +5 (d+ 1) is base-sortable.

Proof. Using Lemma 3.3.6 we may assume that F' = {1,2}. Then a similar argument
as in the proof of Proposition 3.2.4(c) shows that 1 <d+1<2<3<---<disa
sorting order for N. U

In the following we study necessary and sufficient conditions for base-sortability.
We note that loops and isthmes do not effect base-sortability.

Proposition 3.3.5. Let (M, <) be an ordered matroid of rank r without loops and
isthmes. If all proper dependent flats of M are consecutive modulo d, then < is a
base-sorting order for M.
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For the proof we use the following lemma.

Lemma 3.3.6. Let (M, <) be an ordered matroid and o = (1...d) denote the cyclic
permutation of size d. For a vector V. = (i1,49,... %) with 11 < iy < ... < i, we
set oV = (0(i5,),...,0(i5,)) where o(ij,) < ... <o(ij,).
(a) Suppose that B;, B; with i < j are two bases of M and C = sort([B;, B,]")
s the corresponding sorted matriz with rows ¢y and co. Then the matriz
[0c1,0¢9] has the same set of rows as the matriz sort([oB;, 0 B;]*). In par-
ticular, if (M, <) is base-sortable, then the same is true for (oM, <).
(b) The reversed order 1 > 2 > ... > d is also a base-sorting order for M.

Proof. (a): Let M be of rank r. Since C'is sorted, we have ¢, < ¢g,. If both entries

are either strictly less than d or both are equal to d, then [UCl,O’CQ}t is sorted,

otherwise [002, acl]t is sorted. Both matrices have support 0 B; U 0 B;.
(b): We get the sorted matrices of A with respect to 1 > 2 > ... > d by reversing
the order of the entries in sort(A). O

Proof of Proposition 3.3.5. Suppose that all proper dependent flats are consecutive
modulo d. We argue by contradiction and assume that M is not base-sortable with
respect to <. Then there are bases B;, B; € B with 7 < j such that at least one of

the rows of C' = sort [BZ-, Bj}t is not a basis of M. This row is contained in some
proper dependent flat F' with rk(F) < r — 1. F is consecutive modulo d and, by
Lemma 3.3.6, we may assume the following situation: 1 € F,d ¢ F and ¢; C F. We
have ¢;; € B; because B; >1ex B; by our general assumption. Since F' is consecutive
modulo d, we get B; C F if ¢y, € B;, and B; C F otherwise. This is a contradiction
because both B; and B; are bases of M. O

Example 3.3.7. We consider the rank » whirl W".

wr %—4 8

This matroid is not graphic, but has the edges of the r-spoked wheel W, as
ground set (see the picture above). The collection of bases of W™ consist of the
rim and all edge sets which form spanning trees in W,. To be precise, W’ is the
unique relaxation of the graphic matroid M(W,), i.e. we obtain W' from M (W,)
by removing the circuit-hyperplane which consists of all edges of the rim (see [41,
p. 293] for more details). We label the edges of W, as shown in the figure. Then all
proper dependent flats of W™ are consecutive modulo d. Thus by Proposition 3.3.5
the matroid W" is base-sortable.
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We give a necessary condition for the property of base-sortability.

Proposition 3.3.8. Let M be a matroid without loops and isthmes. If < is a base-
sorting order for M, then all circuit-hyperplanes of M are consecutive modulo d and
the same holds for all minors of M which have no loops and isthmes.

Proof. We argue by contradiction. Since BS is closed under taking minors, we may
assume that M has a circuit-hyperplane C' which is not consecutive modulo d. Let
rank(M) = r. Applying Lemma 3.3.6(a) we may assume that 1 € C and d ¢ C.
Since C'is not consecutive modulo d, there exists a j < d such that {1,... ,j—1} C C
and j ¢ C. Moreover, we have that |C| > r because C is dependent. We define the
matrix

A= 1 2 ... j:—2 j—l ] 11 (A
12 ... =2 4 49 ... %41 d
where j < 41,...,4,_; < d and {i,4s,...,4_;} C F. Since C is a circuit-
hyperplane, the rows of A are bases of M. We get
I U S R e RO RPIP I S
Sort(A)_L 2 . =2 i e ey d |

But the first row of sort(A) is contained in F, thus it is not a basis of M which is a
contradiction. O

We believe that Proposition 3.3.8 gives also a sufficient condition for base-
sortability:

Conjecture 3.3.9. Let (M, <) be an ordered matroid without loops and isthmes.
Then < is a sorting order for M if and only if all circuit-hyperplanes of M are
consecutive modulo d and the same holds for all minors of M, which have no loops
and isthmes, with respect to the restricted order.

We know that Conjecture 3.3.9 is true for matroids of rank 2 or 3 by the following
Proposition 3.3.10, and can prove it for rank 4 matroids in a brutal case by case
computation.

In the specific case of rank 3 matroids, the sufficient condition in Proposition
3.3.5 is also necessary.

Proposition 3.3.10. Let < be the usual linear order on [d] and (M, <) an ordered
matrotd of rank 2 or 3. Suppose that M has no loops and isthmes. Then the following
statements are equivalent:

(a) < is a base-sorting order for M.

(b) All proper dependent flats are consecutive modulo d.

(c) The circuit-hyperplanes of M are consecutive modulo d and the same hold
for all minors of M in the restricted order.

Proof of Proposition 3.3.10. By Proposition 3.3.5 we already know that (b) implies
(a) and by Proposition 3.3.8 that (a) implies (¢). It remains to show the following:
If M has a proper dependent flat ' which is not consecutive modulo d, then M or
a minor of M has a non-consecutive circuit-hyperplane. Applying ¢ as in Lemma
3.3.6, we may assume that {1,3} C F and 2 ¢ F.
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We first consider the case that rank(M) = 2. Then rk(F) = 1. By a suitable
deletion one has one of the following minors on {1, 2,3,4} which both have a non-
consecutive circuit-hyperplane:

«—e ®o—eo—9o
13 24 13 2 4
M N,

This is a contradiction.

Let now rank(M) = 3. We have two cases: rk(F) = 1 and rk(F) = 2. We
consider the case rk(F') =1 first. By a suitable deletion we get one of the following
minors with vertex set {1,2,3,4,5}:

a ae

he

N NI NII

Deleting vertices a and b of N we get N,. If we contract the matroids N’ and
N'" at a, then we obtain N; and N, respectively.

Now let rk(F") = 2. We may assume that all dependent 1-flats of M are consec-
utive modulo d in the restricted order. Then by a suitable deletion we obtain one
of the following matroids on {1,2,3,4,5}:

[ J
3 3 »
20 2
1 1
In both cases there is a non-consecutive circuit-hyperplane, a contradiction. O

We can now use this result to characterize all base-sortable matroids of rank 3.

Theorem 3.3.11. Let M be a matroid on [d]| of rank 3. Then M is base-sortable
if and only if the underlying simple matroid M has a geometric realization which
either consists of a k-gon, k > 3, whose lines are formed by the dependent 2-flats
of M, or of a collection of paths, which consist of the dependent 2-flats of M, and
generic points.

We reformulate Theorem 3.3.11 in terms of excluded deletions.

Corollary 3.3.12. Let M be a matroid on [d] of rank 3. Then M is base-sortable
if and only if M has not a deletion N with geometric representation:



50 3. SORTABLE SEMIGROUP RINGS

(a) A k-gon, k > 3, whose edges are rank 2 circuits, and an additional generic
point, i.e.

(b) One of the following:

X HE

where M (Ky) is the graphic matroid defined by Ky, the complete graph on
4 wvertices.

Q<< L

Proof of Theorem 3.3.11 and Corollary 3.3.12. If M has an isthmus, then M is iso-
morphic to a matroid of lower rank. Thus by Corollary 3.3.3 we may assume that
M has no isthmes and, additionally, that M is a simple matroid. According to
Proposition 3.3.10, 1 < 2 < --- < d is a base-sorting order for (M, <) if and only if
all proper dependent 2-flats are consecutive modulo d.

It is tedious, but straightforward to check that, for any labeling of the ground
set [d], the matroids in (a) and (b) do not satisfy this condition. Thus they are
excluded deletions for base-sortability.

Conversely, if M has no deletion listed in (a) and (b), then one can check out
that M has a geometric representation which consists either of a k-gon, £ > 3, whose
lines are formed by proper dependent 2-flats, or a collection of paths consisting of
proper dependent 2-flats and generic points. In both cases, we can label the vertex
set such that all proper dependent 2-flats are consecutive modulo [d]. ]

The preceding result implies:
Remark 3.3.13. The hereditary class BS has infinitely many excluded minors.

Proposition 3.3.10 is not true for matroids of higher rank. Take, for example,
the matroid, M = (W?* & {1}) +{1,3; 2 which has base-sorting order 1 < 2 < --- <
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7 < 8 by Example 3.3.7, Proposition 3.3.2 and Proposition 3.3.4. However, the flat
{1,5,6,7} is not consecutive modulo d.

3.4. Classes of base-sortable matroids

In this section we characterize the class of graphic base-sortable matroids and
show that transversal matroids with certain presentations are base-sortable. Com-
pared to the general case, it turns out that for graphic matroids base-sortability is
much easier to characterize.

We recall some notation from graph theory. Let G be a graph. A subgraph H
of G said to be homeomorphic from G if H can be obtained from G by removing
vertices of degree 2. We have the following classification:

Theorem 3.4.1. Let M be a matroid on [d] of rank r and K, the complete graph
on four vertices. Then the following conditions are equivalent:

(a) M is base-sortable and M = M (Q) is graphic for some graph G.

(b) M has no minor isomorphic to M(Ky) or to Us.

(¢) M is a direct sum of series-parallel networks.

(d) M = M(G) is graphic and G has no subgraph homeomorphic from Kj.

Proof. The equivalence of (b),(c) and (d) is stated in [41, Theorem 13.4.9].

Corollary 3.3.2 we get that any direct sum of series-parallel networks is base-sortable,
which shows that (c) implies (a). Let us assume (a). Since M is graphic, M has
no minor isomorphic to Us4. Moreover, by Theorem 3.3.12 M (K,) is one of the
excluded minors for BS. This yields (b). d

Now we study the class of transversal matroids (see Section 1.6). Let Cy be the
regular d-gon in the plane whose vertices are labeled clockwise from 1 to d. We
recall that a set A C [d] is said to be consecutive modulo d if the elements of A label
a consecutive set of vertices of Cj.

Theorem 3.4.2. Let A= (Ay,...,A;) be a family of subsets of [d]. If all sets A;
are consecutive modulo d, then the matroid M[A] is base-sortable.

To prove Theorem 3.4.2 we show that 1 < 2 < ... < d is a sorting order for
M][A]. For this, we introduce some notation.

Let A be a non-empty subset of [d] which is consecutive modulo d and a,a’ € A.
If A # [d], then we write (a,a’)s for the subset of A whose elements label the
consecutive vertices of Cy which lie strictly between a and a'. If A = [d], then there
are two consecutive sets of vertices of C; which lie strictly between a and a’. We use
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the convention that (a,a’)4 denotes the set of minimal cardinality or, if both sets
have the same cardinality, we choose the set containing the position min{a,a'} + 1.
Let [a,d'|4 = (a,a’) 4U{a, a’'}. We define the distance between a,a’ € A with respect
to A by dista(a,d') = |[a,d']a| — 1.

A marking is an element of the set M = {o, x} x {4, As,... , A, } where o and
x are considered as different symbols. We call a subset C' C M X [d] a configuration
of markings which are placed at the vertices of Cy. If (m,p) € C, we say that the
marking m is placed at the position p of Cy. Let [B, B']" with B >}, B’ be a matrix
whose row vectors B, B’ are bases of M[A]. We write the two bases B = {by,... ,b,}
and B’ = {b},...,b.} so that b; and b respectively are representatives for the set
A;. Note that b; < b1 resp. b < b, ; does not hold necessarily. We associate a
configuration of markings by

C(B,B') = {((x, 4i),b:), ((0, Ay),bY): i =1,... 7}
Such a configuration C' = C(B, B') of markings satisfies the following conditions:
(a) For every set A; with i € {1,...,r} there is a unique element ((o, 4;),p1) €
C and a unique element ((x, 4;),p2) € C where p1, py € A; are some posi-
tions.
(b) If (m,p) and (m/,q) are two elements in C such that the markings m and

m' have the same first component, x or o, then it follows that p # ¢, i.e. m
and m' are placed at different positions p and g.

We call C valid if it satisfies (a) and (b). Conversely, for every valid configuration C,
we have C = C(B, B’) for some matrix [B, B']" of bases in M[A] with B >1x B'. We
call a valid configuration C'(B, B') sorted if the matrix [B, B]" is sorted with respect
tol<2<...<d IfC={(my,p1),...,(ma,pe)} is a configuration, then the
multiset {p1, s, ... ,por} is said to be the support of C. In case that C = C(B, B’)
is valid the support of C' coincides with the multiset supp([B, B']) = BU B'.

It is our aim to show that 1 < 2 < ... < d is a sorting order for M[A]|. Using
the notation defined above we formulate this goal as follows:

Lemma 3.4.3. For every valid configuration C there ezists a (valid) sorted config-
uration C' such that C and C" have the same support.

In order to prove Lemma 3.4.3 we give an algorithm which is defined for configu-
rations of markings. Unfortunately it is not enough to consider valid configurations.
A configuration C is called almost valid if it satisfies:

(a) For every set A; with ¢ € {1,...,r} there is a unique element ((o, 4;),p1) €
C' and a unique element ((x, 4;),p2) € C for some positions py, ps € A;.
(b") For every p € [d] there are at most two markings placed at the position p,
ie. [{(m,p) e C:me M} <2
Clearly, every valid configuration is also almost valid. We say that an almost valid
configuration C has twisted markings, if the following condition is satisfied:

(T') There are elements i, j € [r] with 7 # j such that the corresponding markings

((0, 45),p1), (%, Ai),p2), ((0,45),q1), ((X,4;),q2) in C satisfy: One of the
positions ¢i, g2 belongs to (py, p2) 4, and the other one of the positions ¢i, ¢
does not belong to [p, p2]4,- In this case C is said to be (i, j)-twisted.
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Example 3.4.4. To illustrate the notation we give an example for d = 8 with two
consecutive sets A; = {1,2,3,6,7,8} and A, = {1,2,3,4,5}.

(0,A2)
1 - .\."'\._

8 2%

\.
: v
- \.

(%, A1) 7 31 (0, A))
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| /
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. /
-6 5 il/ (XaAQ)
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The configuration C' = {((o, A2), 1), ((x, A1), 7), ((o, A1),3), ((X, A2),4)} is valid.
The marking (o, As) is placed at 1 which belongs to (3,7)4, = {1,2,8} and the
marking (x, Ag) is placed at 4 which does not lie in [3,7]4, = {1,2,3,7,8}. Thus
the markings are twisted.

The next statement is a first step to prove Lemma 3.4.3.

Lemma 3.4.5. For every valid configuration C there exists an almost valid config-
uration C' without twisted markings such that C and C' have the same support.

For the proof we define the following exchange operation for an almost valid
configuration C'

(E) Let 1 € {1,...,r} and ((o, 4;),p1), ((X,A4;),p2) in C be the two elements
with component A;. Then the configuration

C' = (C - {((o’ Ai)’pl)’ ((X’ Ai)’pQ)}) U {((O’Ai)’pQ)’ ((X’Ai)’pl)}

is also an almost valid configuration and C' and C’ have the same support.

The operation (E) exchanges the positions of marking (o, A;) and (x, A;) for some
i € [r]. Let C be an almost valid configuration. For every i = 1,...,r, we set
d;(C) = dist 4, (p1, p2) where p; and po are the positions of the elements ((o, 4;), p1),
((x,4;),p2) € C. If C is the configuration in the figure of Example 3.4.4, we have
d1(C) = dist4,(3,7) = 4 and do(C) = dista,(1,4) = 3.

Proof of Lemma 3.4.5. We define an algorithm for almost valid configurations. We
start with the configuration C' = C(B, B’).

(1): If C does not have twisted markings, then we are done. Otherwise, C
is (¢, j)-twisted for some indices ¢ # j. Let ((o, Ai),p1), ((X,4:),p2), ((0, 45),q1),
((x,Aj),g2) in C be the corresponding markings. Using (E) we may assume that
¢1 € (p1,p2) 4, and go ¢ [p1,p2]a,. Then exactly one of the markings (o, 4;), (x, 4;)
lies in (g1, g2)4,, i-e. p1 or py belongs to (q1,¢2)4,. Using (E) we may assume that
this position is p;. Since both sets A; and A; are consecutive modulo d, we can
change the positions of (o, 4;) and (o, 4;) and get an almost valid configuration C’
which is not (i, j)-twisted, that is
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¢ = C- {((oaAi):pl)’ ((XaAi)’p2)ﬂ ((OﬂAj)’QI)’ ((X’Aj)7QQ)}
U{((O’Ai)aql)’ ((X’Ai)’p2)’ ((O’Aj)’pl)’ ((X’Aj)’QQ)}'

We have d;(C") < d;(C), d;(C") < d;(C) and di(C") = di(C) for all k # i,j. The
support of C" is BU B'. We repeat step (1) with the configuration C.

The loop in (1) terminates because in every repetition two of the non-negative
entries in the tuple (di(C), ... ,d,(C)) are strictly decreased. O

Example 3.4.6. To apply the algorithm of Lemma 3.4.5 to Example 3.4.4 we ex-
change the positions of the markings (o, A;) and (o, A3). Thus we get a configuration
C" without twisted markings and d;(C") = 2, do(C") = 1.

To conclude the proof of Lemma 3.4.3 it remains to show the following:

Lemma 3.4.7. For every almost valid configuration C' without twisted markings
there is a (valid) sorted configuration C' such that C and C' have the same support.

Proof. Let C = {(m1,p1),---, (Mo, p2r)} be an almost valid configuration without
twisted markings. We assume that p; < p;,, is satisfied for all j = 1,...,2r — 1.
Let S = {p1,...,por} denote the support of C. Since C is almost valid, there are
at most two markings at a fixed position p;,.

If all markings m;, m; ;1 with succeeding indices have different first components
x or o, then C = C(By, By) is valid and the matrix [By, Bs]" of bases in M[A] is
sorted. In this case we are done.

Otherwise, we possibly have to modify the given numbering. In case that the
two markings m; and my with second components A; and A; respectively are both
placed at the least position p;, we choose m; so that d;(C') > d;(C). Let m;, with
k > 1 be the marking such that the markings m; and m; have the same second
component A;. We need that the numbering satisfies the following condition:

(%) If my, my are two markings in C' which have the same second component A;
for some j # i, then it follows that either 1 < s,t < kor 1 < k < s,t.

If the given numbering does not satisfy (x), then there are markings mg, m; with the
same second component A;, j #7and 1 < s < k < ¢. Since C does not have twisted
markings, we have p; = ps, ps = px or pr = p;. By the choice of m; it follows that
Ps = P O P = p¢. The numbering implies that either s =k —1ort =k 4+ 1. We
exchange either the indices of my_; and my or the indices of my and my,1. Then
condition (x) is satisfied for all markings in C.

Let symb € {o, x}. We use induction on r = rank(M[A]) to show that there
exists a sorted configuration C" = {(m/,p1), ..., (m),, ps)} for the given support S
so that the marking m/ has the first component symb. If r = 1, then every almost
valid configuration C' = {(mq, p1), (m2, p2)} is trivially sorted. If the first component
of my is not symb, we use (E) and get the desired sorted configuration C’. Let now
r > 1 and set

A; = (A;: A; is the second component of m; for some 1 < s < k) and

Ay = (A;: A; is the second component of m; for some k£ < t < 2r).
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By (*) the families 4; and Ay are presentations of transversal matroids M[A, |
and M[A;] on [d] such that rank(M|[A,]), rank(M[As]) < r. The configurations
Cy = {(ma,p2), ..., (Mp—1,pk—1)} and Co = {(Mr11,Pk41),--- , (Mar, P2,)} are al-
most valid with support S; = {ps, ... ,pe_1} and Sy = {pk41,--- , por }. For simplic-
ity we may assume that the first component of m; is o. By induction hypothesis
there exist configurations C] and C) with support S; and Sy such that the first
marking of C] has x as the first component and the first marking of C/ has o as the
first component. Then

C" = {(ma, p1)} U CT U {(mu; k) } U Cy
is a sorted configuration with support S. U

We cannot generalize Theorem 3.4.2 to arbitrary transversal matroids. Take,
for example, the family A = ({1,2,6},{2,3,4},{4,5,6},{2,5,7}). Then the set
{1,2,6} is not consecutive modulo 7 and the matroid M[A] is not base-sortable,
because by Corollary 3.3.12 its dual M[A]* is one of the minimal excluded rank-3
minors for base-sortable matroids:

MIAJ*

The result above cannot be generalized to truncations of transversal matroids. For
a matroid M on [d] with bases B the principal truncation of M is defined as the
matroid T'(M) with bases {B —i: B € B,i € B}. Take the presentation A =
({2,3},{1,2,3,4},{5,6},{7,8,9,10}, {8,9}) of consecutive subsets of {1,2,...,10}.
By Theorem 3.4.2 the matroid M|[.A] has base-sorting order 1 < 2 < ... < 10. This
is not true for T(M[.A]) because the matrix

135 7

4 6 8 10|’
whose rows are bases of T'(M|[A]), does not satisfy the sorting condition with respect
to 1 < 2 < ... < d. This example also shows that the class BS of base-sortable
matroids is not naturally closed under principal truncation. Moreover, if the sets

A; in Theorem 3.4.2 are not all consecutive modulo d, then 1 < 2 < ... < d can fail
to be a base-sorting order for M[A]. Take, for example, the sets A; = {1,2,3,4}

and Ay = {2,4}. The matrix 2} is not sortable with respect to 1 < 2 < 3 < 4.

1

3 4
We can interpret the corresponding rank 2 matroid M[A] as a matroid union of
the two rank 1 matroids M; and Ms whose bases are the 1-element subsets of A;
and As. These two matroids have base-sorting order 1 < 2 < 3 < 4, but not the
union M[A]. Thus the class of base-sortable matroids is not naturally closed under
matroid union.

Example 3.4.8. Theorem 3.4.2 generalizes the result in Example 3.2.5. Let v =
T, T, ...T;, with i; < iy < --- < i, be a square-free monomial in KI[T},... ,Ty].
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We set A; = {1,...,4;} for j =1,...,r and A = (Ay,...,A4;). Then the basis
monomial ring R4 is generated by the monomials in B,s(v). By Theorem 3.4.2
M|[A] is base-sortable.

3.5. Some open questions

The observations in the preceding sections give motivation to study matroid op-
erations in a more general context for graded semigroup rings R which are generated
by square-free monomials of the same degree. Let I denote the toric ideal of R. We
introduce some notation.

Let QG be the collection of all graded semigroup rings such that I has a quadratic
Grébner basis for some term order, K be the collection of Koszul semigroup rings,
and @ the collection of those rings for which I is generated by quadrics. The
inclusions @G C K C Q are known in general (see Chapter 1). In [42, Section 1]
Herzog, Hibi and Ohsugi have observed that the classes QG, K and Q are closed
under deletion. We have:

Proposition 3.5.1. The classes QG, K and Q are closed under taking minors. IC
and Q are also closed under Segre products.

Proof. Remark 3.1.8 implies immediately that the classes @G, I and Q are closed
under taking minors. Koszulness is preserved under Segre products for arbitrary ho-
mogeneous K-algebras (see Theorem 1.3.7). A straightforward computation shows
that the same holds for the class Q. O

Finally, we give a survey on the preceding observations:

S Qg K Q
closed under closed under closed under closed under
deletion deletion deletion deletion
contraction contraction contraction contraction
duality duality duality duality
Segre product Segre product Segre product

The class of basis monomial rings of matroids which belong to Q bas been
considered by N. White in [52]. He has shown that this class is also closed under
taking minors and direct sums. So far, we do not know of any counter example to
his Conjecture 3.1.7 that all basis monomial rings of matroids belong to Q.

It seems to be difficult to determine all basis monomial rings of matroids in 9G.
We discuss some examples. By Theorem 3.3.12 M (K,) is the smallest matroid which
is not base-sortable. Naturally the question arises whether there exists some term
order such that Insk,) has a quadratic Grobner basis. There is a positive answer.
For this, we consider the toric ideal Iy, ;. Let Sp,q) be the polynomial ring with
variables indexed by the bases of Usg and let <)o denote the lexicographic term
order on Sp(y, ) induced by the following ordering. Here we use ajasas for the set

{ah az, CL3}.
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X123 > Xise > Xaus > Xose > Xoge > Xige > Xaus > Xize > Xoga > Xosg
> Xigs > Xiga > Xy > Xogs > Xizs > Xase > Xias > Xise > Xioa > Xous.

With the help of the computer program MACAULAY2 (see [31]) we obtain that
I, ) has a lexicographic Grobner basis with respect to <jex. We label the ground
set of M(K,) and W? in the following way:

4 M(K4) 3
) 9
W2 s 6 1
f
5
1 2 3 6

By eliminating the three largest variables we get a quadratic Grobner basis for
I3y (see Proposition 1.4.5 and Lemma 1.4.17). If we eliminate the next largest
variable, we obtain a quadratic lexicographic Grobner basis for Igas(xk,))-

Remark 3.5.2. The defining ideals of the basis monomial rings Rpv, ), Rs(a(k.))
and Rp(ysy have a lexicographic Grébner basis. In particular, M(K,) € QG.

It seems to be difficult to answer one of the open questions:
Questions 3.5.3. Let M be a matroid on [d].

(a) Has the toric ideal I(a) a quadratic Grobner basis with respect to some
term order or even with respect to a lexicographic one?
(b) Is the basis monomial ring Rp() Koszul?

Note that a positive answer to one of the questions would imply N. White’s
Conjecture 3.1.7.

3.6. Strongly Koszul basis monomial rings

In this section we give a classification of the matroids M for which the basis
monomial ring R, is strongly Koszul. We denote this class with SK.

In Example 2.1.3(b) we have recalled the concept of strongly Koszul algebras
(introduced in [32]). By Proposition 2.5.4 the algebra Ry = Klag,. .., o) is
strongly Koszul if and only if the ideals (c;) N (o) C Rp(um) are generated in degree
2 for all 7 # j. Since this is a relatively strong condition, one might expect that
only few basis monomial rings are strongly Koszul. In [43] Hibi and Ohsugi have
determined all strongly Koszul edge rings of complete multipartite graphs. Since the
class of complete multipartite graphs coincides with the class of rank-2 matroids,
we can reformulate their result in the following way.

Theorem 3.6.1. Let M be a matroid of rank 2. Then M belongs to SKC if and only
if M is isomorphic to one of the matroids:

(a) Urp @ Uy for some natural numbers p,q > 1.
(b) Uy or Uss +3{4,5,... ,p} for somep > 4.
(C) U2’4.
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Here U, 4 denotes the rank-r uniform matroid on [d] (see Examples 1.6.3), and
we write M +; {r +1,...,r + p} for the matroid which is obtained from M by an
iterated parallel extension of the elements in {r +1,... ,7 + p} at the point 7 (see
Section 1.6). To illustrate the result we give an example.

Example 3.6.2. The matroids Ml = Ul,g & U1’3 and M2 = U2’3 +3 {4, 5} belong to
SK, while Uy 5 is an excluded minor of SK.

M,

1 3 3
2' 84 —eo—§4 —eo—9o oo
5 1 2 5 Uy

)

Using Theorem 3.6.1 we determine the class SK. We start with a first observa-
tion.

Proposition 3.6.3. The class SKC is closed under taking minors and direct sums.

Proof. By Proposition 2.5.4 it is evident that SKC is closed under taking minors. The
strongly Koszul property is preserved under Segre products of semigroup rings (see
[32]). Since we have Rgp,) * Ra(m) = Rp(mem,) for two matroids My and M, the
class S is closed under direct sums. [l

Recall that every matroid has a unique decomposition M = M @ My B - - - B My,
into its connected components M; (see Theorem 1.6.10). The previous proposition
implies that a matroid M belongs to SK if and only if every connected component of
M belongs to SK. Therefore the following statement is crucial for our classification.

Proposition 3.6.4. Let M be a connected matroid with rank(M) = r > 3 having
no loops. Then M belongs to SK if and only if M is isomorphic to U, .1 or to
Upps1 +ra {r+2,...,7+p} for somep > 2.

The main result of this section follows immediately from Proposition 3.6.3,
Proposition 3.6.4 and Theorem 3.6.1.

Theorem 3.6.5. A matroid M without loops belongs to SK if and only if every
connected component of M is isomorphic to one of the following matroids:

(a) Uy, for somel > 1.

(b) Uza.

(€) Uppgr or Uppyr +rp1 {r+2,... .7+ p} for somep> 2.
In other words, M has a decomposition M = M, & - -- & My where every matroid
M; is isomorphic to one of the matroids in (a),(b) or (c).

For the proof of Proposition 3.6.4 we need several technical lemmata. In the
following we write p(M) for the number of parallel classes of M.
Lemma 3.6.6. Let M be a simple matroid on [d] with rank(M) = r > 3. If

p(M) =r+1 and M has a dependent k-flat for some 1 < k < r, then M is not
connected.

Proof. To deduce a contradiction we assume that F'is a dependent k-flat with 1 <
k <r. We have d = r + 1 = p(M) because M is simple. Since k < r, there exists
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an element ¢ € [d] — F such that rky (F' U i) = k + 1. Moreover, we have
rk([d] — 1) = rk(FU([d] — (FU17))) < 1k(F)+rk([d] — (FU?) < k+(r+1)—(k+2).
Therefore, we get that rk(|d] — i) =r — 1. Since M is simple, we have rk(i) = 1.

1
Thus 7 is a separator by Lemma 1.6.12, that means M = (M \ i) & (M \ ([d] — 7))
This is a contradiction to the connectedness of M. O

Lemma 3.6.7. Let M be a simple matroid on [d| with rank(M) > 3 and i € [d].

Then
k

p(M/i)=(d=1) = (F]-1)+I
i=1
where {F1, ..., Fy} is the collection of dependent 2-flats of M which contain the
point i.
Proof. Let A C [d] be a subset. The formula rkas/;(A) = rka(A U 7) —rky(d) is a
general fact (see [41]). Since M is simple, we observe that

for all A C [d]. Let {P4,..., P} be the collection of parallel classes of M/i. We may
assume that P, ..., P are non-trivial while P4, ... , P, are trivial parallel classes.
We want to determine [. Since M is simple, M /i has no loops and d—1 = Z§:1 |P;l.
By the definition a parallel class P € {P,..., P} is a maximal subset of [d] — i
such that rk;/;(P) = 1. By (2) this is equivalent to P U4 being a 2-flat of M and
P is trivial if and only if P U4 is an independent set of M. Therefore, we obtain
! k
d—1=Y "[P| =) |P[+ (k-1
7j=1 Jj=1
This concludes the proof. O

For a matroid M, we recall that M denotes the underlying simple matroid of M
(see Section 1.6).
Lemma 3.6.8. Let M be a connected matroid of rank r > 3 without loops. If M
belongs to SK, then M is isomorphic to Uy 4 for some d.

Proof. Let M € SK. We have to show that M has no dependent k-flats for 1 < k <
r. By Lemma 1.6.12 we may assume that M is simple, i.e. M = M. Since M is
connected, we have p(M) = d > r + 1. We use induction on d. If d = r + 1, the
assertion follows from Lemma 3.6.6.

Let now d > r + 1. We use induction on k. Let k¥ = 2. Since M is connected
and d > 5, there exist at least two elements of [d] which do not belong to F. Thus
one of the matroids M; or M, in the picture below is a deletion of M.

12 3 My 123 My

e 5 'i:' 35
M, o e o—eo—o—§ M, —3—3
45 1234 45 12 4
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By Theorem 3.6.1 the matroids M; and Mj do not belong to SIC. Applying Propo-
sition 3.6.3 M; and M, are not in SK. Therefore, the matroid M has a minor which
is not in SKC, a contradiction to Proposition 3.6.3.

Let now 2 < k < r. To deduce a contradiction we suppose that F'is a dependent
k-flat. By induction on k£ we may assume that M has no dependent flat of smaller
rank than k. Since k < r, there is an element i € [d] — F. By Theorem 1.6.11 M/i
or M \ i is connected. If M /i is connected, we have p(M /i) > r using Lemma 3.6.7.
We apply the induction hypothesis on d to M/i. Thus M has a minor which does
not belong to SK, a contradiction. Otherwise, if M \ i is connected, the induction
hypothesis implies that M \ i does not belong to S, a contradiction. This concludes
the proof. O

Lemma 3.6.9. Let M be a connected matroid with r = rank(M) > 3 without loops.
If M € SK, then M = U, .1 and M has at most one non-trivial parallel class.

Proof. By Lemma 3.6.8 we have M = U, 4 for some d > r. If d > r + 2, then M has
Urri2 as a deletion. Using r > 3 and Theorem 3.6.1 the matroid U:,r+2 = U0
does not belong to SK. This is a contradiction to Proposition 3.6.3.

Therefore we have M = U, r+1. To get a contradiction we suppose that there are
two distinct parallel classes P, P, of M such that |Pi|,|P,| > 1. After a suitable

deletion we may assume that M = Us 4, |P,| = |P,| = 2 and all other parallel classes
are trivial. Then M is of the form
6
5 %
M 4 4 5
e 8 —8 8 /1
1 3 2 36
By Theorem 3.6.1 the matroid M/1 does not belong to SK, a contradiction to
Proposition 3.6.3. O

Finally, we use the preceding lemmata to show:

Proof of Proposition 3.6.4. Let M € SK be a connected matroid of rank r > 3
without loops. Lemma 3.6.9 implies that M is isomorphic to U, ;41 or to Uy ;414,41
{r+2,...,r+ p} for some p > 2.

It remains to show that the matroids U, ,;+1 and Uy pq1 +pi1 {7 +2,... ,7 + p}
belong to SK. First we observe that Uy, = Uy y41. Thus the basis monomial ring
Rpw, ) is isomorphic to Rpy, ,,,), which is a polynomial ring. Therefore U,
belongs to SK.

We consider the matroid M = U, ;11 4,41 {r+2,... ,r+p} where p > 2. Let N
be the rank-1 matroid with bases B(N) = {{r + 1},...,{r + p}}. Then the basis
monomial ring of the matroid M’ = U,_;, @ N is strongly Koszul by Proposition
3.6.3. The collection of bases of M has the form B(M) = B(M') U {{1,2,...,7}}.
In other words, we have Rgnry = Rgvry[T1T2 -+ - T;]. It is straightforward to check
that the monomial 7T} - - - T; is an indeterminate over Rp(yry. Thus Rp(ary is strongly
Koszul, and therefore M € SK.



CHAPTER 4

Subalgebras of bigraded Koszul algebras

Bigraded algebras form the topic of this chapter. As the main result we show
that diagonals and generalized bigraded Veronese subalgebras of a bigraded Koszul
algebra inherit the Koszul property. Moreover, we obtain upper bounds for the
regularity of sidediagonal and bigraded Veronese modules. Notice that our results
also hold with similar proofs if one considers multigraded K-algebras and the cor-
responding multigraded subalgebras.

In the last three sections we consider several applications of which some appear
in the study of Rees rings and symmetric algebras. Polymatroidal ideals form a
class of monomial ideals for which all powers and symmetric powers have linear
resolutions. These ideals extend the notion of matroidal ideals in [24]. We also
recover some well-known results for standard graded algebras (see Theorem 1.3.7)
and interpret our main theorem for bigraded semigroup rings.

4.1. Diagonals and bigraded Veronese subrings

In the sequel we always assume that S = K[Xy,...,X,, Y1,...,Y.,] is the poly-
nomial ring with standard bigrading deg(X;) = (1,0) and deg(Y;) = (0, 1) and that
R denotes a bigraded K-algebra of the form R = S/J where J is a bigraded ideal
of S. We recall that for two integers a,b > 0 with (a, b) # (0,0) the (a,b)-diagonal
is the subset A = {(sa,sb): s € Z} of Z?. As in [22] the diagonal subalgebra of R
along A is defined as the positively graded algebra

RA = @ Ria,iv)

i>0

where Ry; ;) denotes the (¢, 7)™ bigraded component of R. The algebra R is gener-
ated by the residue classes of all monomials which have degree (a, b) in S. Therefore,
RA admits a standard grading. For two integers a,b > 0 with (a,b) # (0,0) we de-
fine, according to [46], the bigraded generalized Veronese subring of R along the set
A = {(sa,th): s,t € Z} by
Ri = D Riia,iv).
i,j>0

Here the bigraded components are (Rz)i ;) = R(iaj5- The algebra Rj is generated
by the residue classes of all monomials which have degree (a,0) or (0,b) in S. Thus
Rj has the structure of a standard bigraded algebra. Note that R = Rx for (a,b) =
(1,1). In the case that n = 0 or m = 0, the algebra R is simply standard graded and
the subrings Ra and Rjx are the ordinary Veronese subrings of R. We also observe
that the (1,1)-diagonal of R5 equals Ra.

61
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Let M € My2(R) and A be the (a,b)-diagonal. For two integers ¢,d > 0 we
define M(Ac’d) to be the finitely generated, Z-graded Ra-module with components
(M(Ac’d)),- = Miatcib+a)- For (c,d) = (0,0) we simply use M, instead of Mﬁ“’).
We call M(Ac’d) the (c, d)-sidediagonal module of M. Similarly, we write M(Ac’d) for

the bigraded Rz-module with components (Mg’d))(i,j) = Miatc,jbra) and call it the

relative (c, d)-Veronese module of M. If n = 0 or m = 0, then these modules coincide
with the relative Veronese modules defined in [3]. We need two index sets

Z(a,b) = {(c,d) e N¥:c<aord<b} and

{(c,d) eN°:c<aandd<b} ifa,b>1,
Z(a,b) = < {(c,0) e N°: ¢ < a} ifa>1andb=0,
{(0,d) e N°: d < b} ifa=0and b> 1.

Note that the index set Z(a,b) is infinite while Z(a, b) is a finite set. For (c,d) €
Z(a,b) the module R(Ac’d) is generated in degree 0 and, for arbitrary c,d > 0, it is
R(Ac’d) = R(Acl’dl)(—l) for some integer [ > 0 and some (¢, d') € Z(a,b). An analogous
fact holds for the modules R(Ac’d). We have the decomposition

R= P RL

(e,d)€Z(a,b)

Analogously, if a,b > 1, then R is the finite direct sum of the R(Ac’d) with (¢, d) €

Z(a,b).
The maps M — Mg’d) and M — M(Ac’d) define exact functors from Mpy2(R) to

Mz (Ra) and to Myz2(RR) respectively. In particular, we consider a bigraded free
resolution of a module M:

F.: ...—>F,—>...F—>F—>M=—0

where every free module F; decomposes into a finite direct sum ®p, ‘ R(—p, —q)bwa.
Here, R(—p, —¢q) denotes the bigraded R-module with components R(—p, —¢q) ;) =
R(;_qj—q- Then we get an exact complex of Ba-modules

(F)D o )Y = s ()0 = (F)EY - MEY =0

with (Fi)(Ac’d) = D, ,(E(—p, —q)g’d))bi’@’q). Analogous statements are true for the

functor —(Af’d). It will be important for the main result of this chapter to write every

module R(—p, —q)g’d) as a shifted sidediagonal module of the form R(Ac”d’) for some
(c,d) € Z(a,b). For a reel number o we use [«] for the smallest integer z such that
z > «. We observe:

Remark 4.1.1. Let A be the (a, b)-diagonal. For z € Z let a(z) € {0,... ,a — 1}
be the integer such that a(z) = 2z mod a and f(z) € {0,...,b— 1} with f(z) = z
mod b.
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(a) (i) Let a > 0,b=0and (c,d) € Z(a,b). Then

0 ifg>d
R —p, — (C7d) — ) a 5 ’
(—=p, —9)a {R(Aa(c p),d q)(_l)’ if g <d,
where [ = max{0, [*—“]}.
(ii) Let a =0, b > 0 and (¢, d) € Z(a,b). Then

)(cd) 0, if p>ec,

R(—p,—q REeP6-0) ()

, ifp<eg,

where [ = max{0, [<%]}.
(iii) Let a,b > 1 and (¢, d) € Z(a,b). Then

)
R(=p,~q)5¥ = Ry P00 (),
where [ = max{0, [*=*], [* d]}.

(b) (i) Let @ > 0, b= 0 and (c,0) € Z(a,b). Then

0, if ¢ > 0,
R POk 0), ifg=0,

where £ = max{0, [2=°1}.
(ii) Let a = 0, b > 0 and (0,d) € Z(a,b). Then

0 ifp>0
-R(—P"q)gd)::{ (0,6(d—a) ~ ’
RY (0,-1), ifp=0,

where [ = max{0, [ < d}}.
(iil) Let a,b > 1 and (c, d) € Z(a,b). Then

R(=p, —q) & = RECPPa) (g )

where k = max{0, [2¢]} and | = max{0, [£¢]}.
Recall that every blgraded K-algebra R is also naturally N-graded with i** com-
ponent R; = P k=i L(jk)- Similarly, every bigraded R-module M can be considered

as Z-graded. We say that M has a bigraded a-linear resolution if Tor (M, K)jr
= 0 for all ¢, j, k such that j + k£ # i + a.

4.2. The Koszul property

In this section we prove the main rNesult of this chapter. We fix a pair (a,b)
together the corresponding sets A and A.
Theorem 4.2.1. If R is a Koszul algebra, then every diagonal subalgebra Ra and
every generalized Veronese subring Rzis a Koszul algebra.

For the proof we need several lemmata. Let n, = (z1,...,2,) C R and n, =

(Y1,--- ,Ym) C R be the ideal generated by the residue classes of all X; and all Y}
respectively.



64 4. SUBALGEBRAS OF BIGRADED KOSZUL ALGEBRAS

Lemma 4.2.2. If R is Koszul, then the ideals n, and n, have bigraded 1-linear
R-resolutions.

Proof. By symmetry it is enough to show that n, has a bigraded linear resolution.
The residue class field K has a O-linear minimal free R-resolution F. because R is
Koszul. Let A the (1,0)-Veronese set. Applying the functor —; we get the exact
complex (F.)z — K — 0. By Remark 4.1.1(b) the i module (F})z is a direct sum
of copies of Rj shifted by (—i,0). Thus Rj is a standard bigraded Koszul algebra.

Let p : R —+ Rz be the projection map and ¢ : Ry — R be the inclusion. Note
that both maps p and ¢ are bigraded homomorphisms. Via p we consider Rz = R/n,
as a bigraded R-module. Since p is a ring epimorphism and p o i = idg,, the map s
is a bigraded algebra retract. We may apply a result from [33] to the bigraded case.
It yields that PE = P}?API?A. Since R and Rj are Koszul, the equality of bigraded
Poincaré series implies that n, has a bigraded 1-linear R-resolution. This concludes
the proof. [l

Proposition 4.2.3. Let c,d > 0 be two integers. If n, and n, have bigraded linear
resolutions, then
(a) the sidediagonal module R(Ac’d) has a linear R-resolution.
(c.d)
A
For the proof of the proposition we need a fact which is stated in [22].
Lemma 4.2.4. Let A be a standard graded K-algebra and let

(b) the relative Veronese module R’ has a bigraded linear Rx-resolution.

... > N, —>N,_1—...o> N —>Ny—>M—=0

be an exact complex of finitely generated graded A-modules. We have:

(a) Let h € N and a € Z such that ts(N,) < a+r+s for all0 <r < h and
0<s<h-—r. Thent,(M) < a+ h.
(b) reg (M) < sup{reg,(V;) —i: i € N}.

Proof of Proposition 4.2.3. Since the proofs of (a) and (b) are similar, we only
consider part (a). Moreover, it is enough to show that all modules R(Ac’d) with
(¢c,d) € Z(a,b) have linear resolutions. Let G. be the minimal bigraded free R-
resolution of n,. Since n, has a bigraded 1-linear resolution by hypothesis, every

free module G, is of the form
G,,. = @ R(—p’ —q)’gﬁ(l’ﬂ)
p+g=r+1, p>1

where (3, (4 are the bigraded Betti numbers of n,. Observe that for ¢ > 1 and
(c,d) € Z(a,b) we have (n,)(&?) = R(Ac’d). Applying the functor —X’d) we obtain an

acyclic complex (G .)(Ac’d) — R(Ac’d) — 0 where
(Gr)x’d) = @ R(Acp’q’dp’q)(_lp,q)ﬁ"(”’q)

p+g=r+1, p>1
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By Remark 4.1.1(a) all occurring shifts [,, are at most r. Similarly, let H. be
the minimal bigraded free resolution of n,. Then we observe that for d > 1 and

(c,d) € I(a,b) it is (ny)(Ac’d) = R(Ac’d), and the shifts in (HT)(AC’d) are bounded by 7.
To conclude the proof we show by induction that th(Rg’d)) < hforall h € N
and (c,d) € Z(a,b). First we use induction on h. The modules R are generated

in degree 0, thus tO(R(AC’d)) = 0. Let now A > 1. We apply the induction hypothesis
on ¢+ d where (¢,d) € Z(a,b). For ¢+ d = 0 it follows that c = 0 = d = 0 and
therefore trivially ¢, (Ra) < h. Let now ¢+ d > 0. Then ¢ > 1 or d > 1.

We discuss the case ¢ > 1 first. In order to apply Lemma 4.2.4(a) to the exact
complex (G.)X’d) — R(Ac’d) — 0 we show that ts((Gr)ﬂj’d)) <r+sforall0 <r < hand
0 < s < h—r. Observe that (GO)(AC’d) is a direct sum of n copies of (R(Ac_l’d)). Since
(¢ —1,d) € Z(a,b), the induction hypothesis on ¢ + d implies that ts((Go)gAc’d)) <s
forall 0 < s < h. For1<r<hand 0<s<h-—r, wehave

t:((Gr)R”) < ts< . R(AC”’Q’dW) +r<s+r

ptg=i+1, p>1
where the first inequality holds because [, , < r for all occurring p, ¢ and the second

inequality holds by induction on A. Now Lemma 4.2.4 implies that th(R(Ac’d)) < h.

If c =0 and d > 1, then the argument above can similarly be applied to the

complex (H.)X’d) — R(Ac’d) — 0. O

As a direct consequence of Lemma 4.2.2 and Lemma, 4.2.3 we obtain:

Corollary 4.2.5. Let ¢,d > 0 be two integers. If R is Koszul, then all sidediagonal
modules R(Ac’d) have linear Ra-resolutions and all relative Veronese modules R(Ac’d)
have bigraded linear Rx-resolutions.

We use this corollary to get upper bounds for the regularity of sidediagonal and
relative Veronese modules.

Theorem 4.2.6. Let R be a bigraded Koszul algebra and M € Mgz2(R) such that
regp(M) =1 and indeg(M) = 0.

(a) Let (c,d) € Z(a,b). Then
max{0, [=<]}, ifb=0 and a > 0,
regp, (MO?) < { max{0, [554]}, ifa=0andb >0,
max{0, [222], [554]},  if a,b > 1.
(b) Let (c,d) € Z(a,b). Then

max{0, [ 71}, ifb=0 and a > 0,
regRA(Mg’d)) < maX{O, [%—'}7 Zfa =0 and b > 0,
min{r, [2=¢ - ¢ + 17}, if1<a<b.

In particular, if 1 < a <b, then regp (M) < min{r, [ + 11}
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Proof. Let F. be the minimal bigraded free R-resolution of M. Since reggp(M) =
r, we have F;, = ®i<p+q<i+r R(—p, —q)P:@ where Bip,q are the bigraded Betti
numbers of M. For the proof of part (a) we restrict to the case a,b > 1. The other
cases follow similarly. By Remark 4.1.1(a) and Corollary 4.2.5 we observe that
regp, (%) < max{0, [#£=2], [#2=4]} < max{0, [22], [534]} + 1.
Now Lemma 4.2.4(b) yields the claim. For part (b) we also restrict to the case a > 1
and b > 1. Use Remark 4.1.1(b) and Corollary 4.2.5 to observe that
reg, (F5?) < max{max{0, [2¢]} + max{0, [54]}: i <p+ g <i+r}.
The claim follows from an easy case by case computation using 1 < a < b and Lemma
4.2.4(b). Since M decomposes into the finite direct sum M = B, 4cfupn M @) we

ab) A
obtain the upper bound for regp (M). O

As a direct consequence of Theorem 4.2.6 the modules Ma and Mgz have small
regularities for a,b > 0. More concrete, we have:

Corollary 4.2.7. Let M € My:(R).
(a) If max{a,b} > regp(M), then regy, (Ma) < min{l,reg,(M)}.
(b) Let a,b > 1. If min{a, b} > regp(M), then regp (M) < min{2, regp(M)}
and regp (M) < min{2, regp(M)}.

Theorem 4.2.1 is an immediate consequence of the results above.

Proof of Theorem 4.2.1. We note that a graded K-algebra A is Koszul if and only
if reg,(K) = 0. Since Ko = K and Kz = K, the claim follows from Theorem
4.2.6. ]

Note that the converse of Theorem 4.2.1 is false for diagonals. Take, for example,
the algebra R = K[X;,Y;]/(X,Y?). Since the defining ideal of R is generated in
degree 3, R is not Koszul. But every diagonal R, is Koszul because Ra is either
isomorphic to the field K, to the polynomial ring K|[T] or to the Koszul algebra
KI[T]/(T?).

4.3. Rees algebras

An intensively studied class of bigraded algebras are Rees algebras. In the fol-
lowing sections we set S, = K[X3,...,X,] and S, = K[Y3,...,Y,,] to be standard
graded polynomial rings. A will always denote a standard graded algebra of the form
A =5;/Q where Q C S; is a graded ideal. We write m for the graded maximal
ideal of A.

Let I C A be a graded ideal which is minimally generated by homogeneous
elements fi, fo, ..., fm of the same degree d. Recall that the Rees ring R(I) = A[IT]
of I admits a standard bigrading by assigning the degree (1,0) to the generators
of m C A and by setting deg(f;T) = (0,1) for i = 1,... ,m. As a consequence of
Theorem 4.2.1 we observe:

Corollary 4.3.1. If R(I) is Koszul, then A is Koszul and the ideal I’ has a linear
A-resolution for all 7 > 0.



4.3. REES ALGEBRAS 67

Proof. Let A be the (1,0)-diagonal. Then R(I)a = A and ' = R(I)%7(—dj).
Thus, by Corollary 4.2.2 the ideal I7 has a linear A-resolution. U

The converse of Corollary 4.3.1 is not true. To give a counter example we use
the well-known fact that an ideal I C S, which is generated in one degree by a
stable set of monomials has a linear resolution (see [28]). Since all powers I’ are
also generated by a stable set of monomials, the results in [28] imply:

Proposition 4.3.2. Let I C S, be an ideal which is generated by a stable set G(I)
of monomials which all have the same degree. Then I’ has a linear resolution for
all 5 > 1.

The semigroup ring K[G(I)] is the (0,1)-diagonal of the Rees algebra R(I).
Conca and De Negri have communicated several examples where I has the form as
in Proposition 4.3.2, but the defining ideal of K[G(I)] is not quadratic and therefore
K[G(I)] is not Koszul. In this case the algebra R(I) is not Koszul by Theorem 4.2.1.
A concrete example is ([18]):

Example 4.3.3. Let S, = K[X, X,...,X;] and
I = (X%, X2X,, X0 X2, X3, X2 X5, X1 X0 X5, X2X5, X0 X2, Xo X2, X3, X2X,
X1X2X4aX22X4:X1X3X45X2X3X4:X12X5aX1X2X5aX22X55X1XZaX1X3X5)'

Then R(I) is not Koszul, but I’ has a linear resolution for all j > 1.

If m C A is the graded maximal ideal of a Koszul algebra A, then the Rees
algebra R(m) is always Koszul because it is a Segre product of two Koszul algebras.
In [34] Herzog, Popescu and Trung have proved that the defining ideal of R(m) has
a quadratic Grobner basis provided the defining ideal ) has a quadratic Grobner
basis.

We study a class of ideals for which all powers have linear resolutions. These
ideals arise from integral polymatroids (see Section 1.7). Extending the notion of
matroidal ideals in [24] and [48], we set:

Definition 4.3.4. Let P be an integral polymatroid on [n] with bases B(P). Then

Ipy C Sy denotes the ideal minimally generated by the monomials whose support
forms a basis of P, that is

Igpy = (u € S;: supp(u) € B(P)).

A monomial ideal I C S, is said to be polymatroidal if I = Ipp) for some integral
polymatroid P.

In the case that [ is generated by square-free monomials the definition above
is equivalent to I being a matroidal. It is well-known that matroidal ideals have
linear resolutions (see [24, Proposition 7]). The minimal graded free resolution of
matroidal ideals is studied in [48]. We obtain the follwoing statement.

Proposition 4.3.5. If I C S, is a polymatroidal ideal, then I’ has a linear resolu-
tion for all j > 1.

For the proof we need the following lemma. Let 1 # u € S, be a monomial. We
set u(i) = max{l: X! divides u}.
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Lemma 4.3.6. Let I C S, be a monomial ideal minimally generated by G(I) =
{uy, ..., um} where deg(u;) = d for i = 1,... ,m. Moreover, assume that F' =
Sy(—d)™ is the free module with basis ey, ... ey, and that ¢ : F' — I is the pre-
sentation of I with o(e;) = u; fori = 1,...,m. Suppose that G(I) satisfies the
condition:

(%) For u,u’ € G(I) with u(j) > u'(j) there exists an element i € [n] such that

u'(3) > u(?) and uX,;/X; € G(I).

Then G = {Xes — X,e.: Xjus = Xjuy for some s,t € [m]} is a Grébner basis for
ker(p) = Qy(I) with respect to some monomial order. In particular, I has a linear
Sy-resolution.

Proof. The first syzygy module Q;(I) = ker(¢p) is the submodule of F' generated by
all relations of the form

(3) f=Xi X e — Xj - X e

where X;, -+ X; us = Xj, -+ X, u; for some s,¢t € [m] (see [26]). We may always
assume that X; ---X; and Xj ---X; have nocommon factor and that 4; < ... <1,
and j; < ... < j,. Let <je denote the reverse lexicographic term order on S,
induced by X; < X3 < ... < X,,. We define a term order < on F' by ve; > we; if
vV >hex W Or if v = w and 7 < j. We will show that the set

G = {Xies — Xje,: Xjus = Xju, for some s,t € [m]}

is a Grobner basis for € (/) with respect to <. Then in(€2;(I)) satisfies the hypoth-
esis of Lemma 1.4.9 which gives the second assertion.

Let f € Q4(I) be a relation as in (3) with in(f) = X, --- X;,e;. By the cho-
sen monomial order we have 7, > j; for all [ = 1,...,r. Since X;, --- X, us =
X, -+ Xjup, we get ug(j1) > ui(j1). By condition (%) there exists an element
i € [n] such that u,(¢) > us(¢) and a generator u, € G(I) with u,X; = v, X;,. It
follows that ¢ = 4, for some [ € [r]. Then g = Xj e, — Xj e, belongs to G and
in(g) = i;es divides in(f). Thus G is a Grébner basis for Q4 (7). O

Proof of Proposition 4.3.5. By Proposition 1.7.2 the generators of I’ satisfy the hy-
pothesis of Lemma 4.3.6 which gives the assertion. ]

As a direct consequence of Theorem 1.7.3 we obtain:

Corollary 4.3.7. Let I = I Ian) - - I8, be a product of matroidal ideals.
Then I is polymatroidal and I’ has a linear resolution for all j > 1.

To illustrate the result above we give an example.

Example 4.3.8. Let [1,... ,I; C S, be ideals which are generated by a subset of
the variables. Then every ideal I; = I(as;) 1s a matroidal ideal where M is a rank-1
matroid for 57 = 1,...,k. By Corollary 4.3.7 we get that all powers of the ideal
I =1,1,---1I; have a linear resolution.

Conca and Herzog have shown with different methods that the same statement
holds provided all ideals I; are generated by arbitrary linear forms (see [19]).

We study a class of monomial ideals for which the Rees algebra is Koszul.
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Theorem 4.3.9. Let M be a base-sortable matroid on [n] and Igary C Sy the
corresponding matroidal ideal. Then the defining ideal of the Rees algebra R(Igr))
has a quadratic Grobner basis. In particular, R(Igr)) is Koszul.

Proof. Let B(M) = {Bu,...,B,} be the collection of bases of M and let S =
K[Xy,...,X,,Ys,...,Yg | bestandard bigraded polynomial ring. Define ¢ : S —
R(Ip(ar)) as the epimorphism with ¢(X;) = X; for i = 1,... ,n and ¢(Yp,) = ;T
for j =1,...,m, where o; =[], B; X, is the square-free monomial associated to
the basis B; of M. The ideal J = ker(yp) is generated by bihomogeneous binomials
of the form w;v; — ugve with monomials ui,us € S; and vi,v2 € Sy such that
o(uiv1) = p(ugve) (see Section 1.8). Since M is base-sortable, there exists a term
order <y on S, such that JNS, has a quadratic Grébner basis G (see Proposition
3.2.1). Let <jex denote the lexicographic term order on S, induced by X; > ... > X,,.
We define a term order on S by uiv1 > ugvg if g > us or if uy = ug and v1 >gor V.
We set
G2 = {XiYBS _XjYBt: BSUZ: BtUj and 1 ?éj}

and show that G = G; U Gy is a Grobner basis for J with respect to <.

Let f = wujv; — ugvs be a binomial such that ¢(uiv) = @(ugvse). It follows
that s = deg(v;) = deg(ve) > 0. We may assume that u; and us (resp. v; and
v9) have no common factor. Let in(f) = wujv;. We write v; = Ve, Yp,, - Vg,
with k; < ... < k; and vy = YBllYBlz---YBlS with [y < ... < [,. If the matrix
A = [By,, ..., By,]", which is associated to vy, is not sorted, then v; € in(J N S,)
and there exists an element ¢g; € G; such that in(g;) divides v; (see Proposition
3.2.1) and therefore also in(f).

We may now assume that the matrices associated to v; and vy are both sorted and
that r = deg(u1) = deg(ug) > 0. We write uy = X;, X, --- X, with iy < ... <4,
and uy = X; Xj,---X;, with 53 < ... < j,. By the chosen term order we have
i1 < jy foralll = 1,...,r. There are indices p,q € [s] such that i; € B, \ By,.
Since both associated matrices [By,, ... , Bg,|" and [By,, ... , B;,]* are sorted, 4, is the
least element of the symmetric difference B;, ABy,. The dual exchange property for
matroids (see Proposition 1.6.2) implies that there exists an element j € By, \ By,
such that B' = (B, —j) Uiy is a basis of M. Thus the relation g = X;, Y5, —X;Yp
belongs to G and in(g) = X;,Yp, because i1 < j. Therefore in(g) divides in(f)
which concludes the proof. Il

4.4. Symmetric algebras

In this section we present some applications which arise naturally in the study
of symmetric algebras. Let M be a graded A-module with homogeneous generators
fi,..., fm and let (a;;) be the corresponding relation matrix of size ¢ x m. The
symmetric algebra

S(M) = P s7(M)
j=20
of M has a presentation of the form S(M) = A[Y4,...,Yy,]/J where J = (g1,... ,gt)
and g = Y 7" @Y fori=1,... ,t. If fi,..., fr, have the same degree, then S(M)
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is standard bigraded by assigning the degree (1,0) to the residue class of X; for
i=1,...,n and by setting deg(Y;) = (0,1). Note that S7(M) is a graded A-module.
As an application of the main result of this chapter we obtain:

Corollary 4.4.1. If S(M) is Koszul, then A is Koszul and the module S?(M) has
a linear resolution for all j > 0.

Proof. Let A be the (1,0)-diagonal. Then S(M)a = A, and S4(M) = S(M){.
Thus A is Koszul and, by Corollary 4.2.5 the module S (M) has a linear A-resolution.
U

As one might expect it seems to be a strong condition that the symmetric algebra
S(M) is Koszul. In a more specific case however, when M = m is the graded maximal
ideal of a Koszul algebra, we have a sufficient condition.

Theorem 4.4.2. Let A = S;/Q and K be an infinite field with char(K) # 2. If
Q@ has a 2-linear resolution over Sy, then the defining ideal of S(m) has a quadratic
Grébner basis with respect to a reverse lexicographic term order. In particular, S(m)
15 Koszul.

To show that the defining ideal of S(m) has a quadratic Grobner basis we need
some notation taken from [34]. Let S = K[X1,...,X,, Y1, ... ,Y,] be the standard

degree (d,0). We set
F) = Z irigeig Xir Xia Xy Yig o Yia

for k = 0,...,d. Note that f*) is bihomogeneous of degree (d — k, k). Moreover,
let 6;; = X;Y; — XY, for i # j and L = {d;;: ¢ # j}. We need the following lemma.
Lemma 4.4.3. Let < denote the reverse lexicographic term order on S induced by
Xi>Xo>...>X, > >...>Y,and p : S — S be the homomorphism
with o(X;) = X; and ¢(Y;) = X; for i = 1,...,n. Assume that f € S is a
bihomogeneous polynomial of degree (s,t) such that in(f) = X;, X;, --- X, Y5, --- Y,
satisfies iy < ip < ... < 4y < j1 < ... < ji. Then in(p(f)) = ¢(n(f)) and
in(f) = p(in(f))®.

Proof. With the condition 7, < iy < ... < i, < j; < ... < j; it is easy to see that
o(in(f)) > ¢(v) for all monomials v of f with v < in(f). O

Proof of Theorem 4.4.2. By Lemma 1.4.16 we may assume that the defining ideal
@ of A has a quadratic Grobner basis g1,... ,g; with respect to the reverse lexico-
graphic term order induced by X; > X, > ... > X,, and that in(Q) satisfies the
condition in 1.4.16. It is easy to see that S(m) has a presentation S(m) = S/J where
J = (gl, s ,gt,g§1)a s ,gt(l)a L)

Let < denote the reverse lexicographic term order on S induced by X; > X5 >
o> X, >Y > ... >Y,. Wewill show that the set G = {gy, . .. ,gt,g§1),... ,ggl)}u
L is a Grobner basis for J with respect to < which concludes the proof of the theo-
rem.
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Let f € J be a bihomogeneous polynomial of degree (s, ). Then s > 1. We show
that in(f) is divided by some in(g) with g € G. Let in(f) = X;, X;, --- X,,Yj, - - - Y],
where i1 <1y < ... <14, and j; < jo < ... < j;. If there exist indices p, g such that
ip > jq, then in(d;,;,) divides in(f) which is the claim.

Otherwise we have 11 < 49 < ... < 43 < j1 < Jo < ... < j. Let ¢ denote
the homomorphism from Lemma 4.4.3. Since f € J, it follows that ¢(f) € Q. By
Lemma 4.4.3 we have in(f) = in(¢(f))® where in(p(f)) = X3, Xi, - - Xi, X, -+ X,
Since ¢y, ... , g is a Grobner basis for @, there exists a a polynomial g € {g1,... ,9:}
such that in(g) divides in(¢(f)). By the condition in Proposition 1.4.16 we may
assume that in(g) = X;, X;, if s > 1, or in(g) = X;, X, if s = 1. Now in(g) or
in(g() divides in(f). O

Under the strong assumption of Theorem 4.4.2 it follows from Corollary 4.4.1
that S7(m) has a linear resolution for all j > 1. Actually we have:

Proposition 4.4.4. Let j > 1. If A is Koszul, then S7(m) has a linear A-resolution.

In the proof we use results from [36] and some basic facts about the Koszul
complex (see [15, Section 1.6] for details).

Proof. Let A = S,/Q. We may assume that the defining ideal @) of A does not
contain linear forms. Then (@ is generated in degree 2. Let m = (z1,...,2,) C A
be the graded maximal ideal of A. We denote the Koszul complex of the sequence
Z1y...,2, € A with K. . Let H;(K.) be the first homology group of this complex.
Recall that S(m) = A[Yy,...,Y,]/J for some bihomogeneous ideal J and that S7(m)
is generated by the residue classes of all monomials in degree (0,j). We consider
S7(m) as an A-module generated in degree j. For j > 1, there exists the downgrading
homomorphism «; : $7(m) — mS7~"(m) which maps a residue class of ¥;,Y;, ...V},
to the residue class of X;Y;,...Y; (see [36, Section 2]). Note that it does not
matter which of the factors Y;, is replaced by Xj,.

To show that S’(m) has a linear resolution for all 5 > 1 we use induction on j.
For j = 1, we have S'(m) = m which has a linear resolution because A is Koszul.
Let now 7 > 1. We have the short exact sequence

(4) 0= U — S (m) B ms Y(m) =0

where U = kerco;. By [36, Lemma 2.2] U is a subquotient of the module N =
H,(K.) ®4/m [(A/m)(—j +2)]° for some integer s > 1. The module N is annihilated
by m. Since @ is generated in degree 2, it follows that H;(K.) = Tor{*(A, K) is
generated in degree 2. Therefore, U = K(—j)! for some integer ¢ > 0 and U has a
j-linear A-resolution because A is Koszul. By the induction hypothesis S7~!(m) has
a (j — 1)-linear A-resolution. Thus by [22, Lemma 6.4] the module mS?~!(m) has a
j-linear A-resolution. The assertion follows when we apply the long exact sequence
of the functor Tor?(—, K) to the sequence (4). O

The hypothesis of Theorem 4.4.2 cannot be weakened to the assumption that A
is only Koszul. A counter example is the algebra A = K[X;, X5]/(X2,X2). As a
complete intersection A is Koszul, but with the help of the program MACAULAY?2
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we find that S(m) is not Koszul. This example shows also that the converse of
Corollary 4.4.1 is false because by Proposition 4.4.4 all symmetric powers S’(m)
have a linear resolution.

We study the symmetric powers of polymatroidal ideals. We observe:

Proposition 4.4.5. If I C S, is a polymatroidal ideal, then SP(I) has a linear
resolution for all p > 1.

Proof. Let G(I) = {u1, ..., uy}. With the notation of Lemma 4.3.6 we know that
G = {Xies — Xje,: Xjus = Xju, for some s,t € [m]}

is a Grobner basis for €2, (I) with respect to some monomial order. Therefore S([)
has the form S(I) = S/J where S = K[X3,...,X,,Y1,...,Y,] and

J = (XiY; — X;Y;: Xjus = Xju, for some s,t € [m]).

Let F' = ®|a|=p Sze” be the free S-module with the basis consisting of all monomials
e® in the variables ey, ... , e, with deg(e®) = p and ¢ : ' — SP(I) be the presenta-
tion with ¢(e*) = Y*+ J. Then the syzygy module ,(SP(I)) C F is generated by
the set

H = {X;e%,; — X;e%;: X;us = Xjup with s,t € [m] and |a| =p — 1}.

Let <.ex denote the reverse lexicographic term order on S, induced by X; <
Xy < ... < X, and < be a degree refining monomial order on Kley, ... ,e,] such
that e; > ... > e,,. Extending the order in the proof of Lemma 4.3.6 we define a
term order on F by ve® > we? if v >y w or if v = w and e* >y ep.

We will show that H is a Grobner basis for §2;(S?(7)) which concludes the proof
by Lemma 1.4.9.

We already know this for S*(I) = I. For p > 1 we use the Buchberger criterion
(see Theorem 1.4.7). Let hy = X, e%e; — X,,e%¢; and hy = X;,ele, — Xj:,eﬁev with
lal,|8] = p— 1 and with 41 > ji, i > jo be two elements in H. It is in(hy) =
X;,e%, and in(hy) = X;,e’e;. We have to compute a standard expression for the
S-pair S(hy, hy) provided the initial terms involve the same basis elements, that is
e%es = ePey. If iy =iy, then S(hy, ho) = Xj e%e; — Xj,€Pe, is a standard expression
by the chosen term order. We may now assume that i; # is.

First we consider the case s = u. It follows that e®* = e®. The elements ¢; =
X, es — Xje; and go = Xj,e, — Xj,e, belong to G. Since G is a Grobner basis for
Q,(I), we have a standard expression S(g1,92) = Y., hegr With g, € G. With
respect to the chosen term order for F' the presentation S(g1, g2) = 22:1 hi(e®gr)
is standard and e“g, € H for all k.

Let now s # u. Then e, divides e® and e, divides e®. Let e? = e /eu. We have

(5) S(hi,he) = Xj, X,€7ener — Xy, Xj€7ese, = X hg — X, ha

where hy = X, (e"e)e, — Xj,(e7er)e, and hy = X; (e7e,)es — Xj, (e7e,)e,. The
elements hy and hy belong to H. Since in(Xj; h3) = X;, X, e7ee, and in(X,hy) =
X, Xi, €7eyes, the presentation in (5) is standard. This concludes the proof. O
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4.5. Further applications

As direct consequences of Theorem 4.2.1 we get some known facts about standard
graded Koszul algebras. Let d > 1 be an integer. In Chapter 1 we have defined the
d"™ Veronese subring A of A and the tensor product of two standard graded K-
algebras A and B which has the structure of a standard bigraded algebra, AQx B =
®i,j>0 A; ®k Bj. The Segre product of A and B, denoted with A * B, is the (1, 1)-

diagonal of A ®x B. We recover some well-known results (see Theorem 1.3.7).

Corollary 4.5.1. Tensor products, Segre products and Veronese subrings of Koszul
algebras are Koszul.

Proof. Let F. and G. be the minimal graded free resolution of K over A and B
respectively. Then the tensor product G. ®x F. forms the minimal graded free
resolution of K over A®g B. Thus, if A and B are Koszul, A ®x B is Koszul. Now
the Segre product A x B is the (1, 1)-diagonal A ® x B which is Koszul by Theorem
4.2.1.

Let A be a positively graded Koszul algebra and consider A as a standard bi-
graded algebra where all generators have degree (1,0). Then A is a diagonal of A
and by Theorem 4.2.1 A is Koszul. O

Let A be an arbitrary standard graded algebra and M € My(A). Recall from [3]
that the rate of M is given by rates(M) = sup{@: i > 0}. A similar definition
can be found in [9] where Backelin proves that A is Koszul for d > 0. Note that
an A-module M is naturally an A“-module. Aramova, Barcanescu and Herzog
have proved in [3] that

(6) rate 4 (M) < [ratea(M)/d]

for an arbitrary K-algebra A and all d > ¢ where ¢ is a constant depending on A.
Moreover, they showed that ¢ = 1 if A is a polynomial ring. For this, they used
that the relative Veronese modules A% = .., Aiay; for j = 0,...,d — 1 have
linear A-resolutions. Since the relative Veronese modules coincide with sidediagonal
modules, it follows from Corollary 4.2.3 that (6) is valid for d > 1 provided A is
Koszul. We get similar upper bounds for the regularity over Koszul algebras.

Corollary 4.5.2. Let A be Koszul and M € My(A). Then

reg @ (M) < [rega(M)/d]
for all d > 1. In particular, reg @) (M) < 1 if d > reg,(M).
Proof. Consider A as a bigraded algebra generated in degree (1,0). Let A be the
(d,0)- diagonal of A. Then A® = A, and, as an A@-module, we have M =
Pl M. By Theorem 4.2.6 the claim follows. O

Finally, we study the consequences of Theorem 4.2.1 for bigraded semigroup
rings. The following definition is an analogon to Definition 1.8.1.
Definition 4.5.3. Let A C N? be a finitely generated semigroup. We call A standard
bigraded if
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(a) A is the disjoint union (J; ;54 Agi ),

(b) A(O,O) =0, A(iyj) + A(Ic,l) C A(z’+k,j+l) for all integers 7, 7, k,1 > 0, and

(c) A is generated by elements of Aq gy and A ).
We call the elements of A(; jy bihomogeneous of degree (,j). Let A be a stan-

dard bigraded semigroup which is minimally generated by ai,...,a, € Ay ) and
Biy--- s Bm € A,y and let K[Ty,...,Ty] denote the polynomial ring. To a semi-
group element A = (ay,...,aq) € A we associate the monomial 7% = T{" T2 - - - T4,

Recall that the semigroup ring K[A] is the K-algebra generated by the monomials
T% TP where i = 1,... ,nand j = 1,...,m. Let ¢ : S — KJ[A] be the epimor-
phism with ¢(X;) = T% and ¢(Y;) = T%. Set J = ker(y) to be the toric ideal of
the semigroup ring K[A]. If A is bigraded, then K[A] = S/J is a standard bigraded
algebra.
Example 4.5.4. If I C S, is a monomial ideal generated in one degree, then the
Rees algebras R([) is a standard bigraded semigroup ring.

Let A be a bigraded semigroup. In analogy to the definition for graded K-
algebras we set

Ap = U A(ia,ib) and AA = U A(ia,jb)
i>0 i,j>0

for the (a,b)-diagonal A and the (a,b)-Veronese set A respectively. Note that A
is graded and partially ordered by the induced ordering. If A € A(q ), then we use
(T'x)a for the order complex of the induced open interval (0,\) C Aa. Similarly, we
define (I'y)x for A € A(q ). Finally, we reformulate our main result for semigroup
rings. By Proposition 1.8.3 the Koszul property of a semigroup ring is equivalent to
the Cohen-Macaulay property of the finite divisor intervals. Therefore, we obtain:

Corollary 4.5.5. Let A C N be a bigraded semigroup, A a diagonal and A a
Veronese set. If I'y is Cohen-Macaulay for all A € A, then:

(a) (T'x)a is Cohen-Macaulay for all X\ € Ax.

(b) (Tx)x is Cohen-Macaulay for all A € Aj.
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