Untersuchungen zur Radionuklidbelastung von Oberflächenwässern, Sedimenten und Böden als Folge des Steinkohlebergbaus im Ruhr-Revier

Inaugural-Dissertation

zur

Erlangung des Doktorgrades

Dr. rer. nat.

des Fachbereichs Bio- und Geowissenschaften, Landschaftsarchitektur an der Universität Essen

vorgelegt von

Simone Schmid

aus Essen

Februar 2001

Die der vorliegenden Arbeit zugrundeliegenden Experimente wurden in der Abteilung Geologie der Universität Essen durchgeführt.

1. Gutachter:	Prof. Dr. U. Schreiber
2. Gutachter:	PD Dr. J. Wiegand
3. Gutachter:	Prof. Dr. P. Neumann-Mahlkau
Vorsitzender des Prüfungsausschusses:	Prof. Dr. W. Kuttler

Tag der mündlichen Prüfung: 13.7.2001

Besonderer Dank gilt Herrn Prof. Dr. U. Schreiber für die Möglichkeit zur Durchführung dieser Arbeit, für die Vergabe des interessanten Themas sowie für seine Unterstützung und Betreuung.

Herrn Priv. Doz. Dr. J. Wiegand danke ich für die Themenfindung, die wissenschaftliche Unterstützung und für die ständige Diskussionsbereitschaft, aus der viele Anregungen hervorgingen.

Für die Möglichkeit, an der Universität Essen im Fach Geologie promovieren zu können, möchte ich mich nochmals bei Herrn Prof. Dr. U. Schreiber und Herrn Priv. Doz. Dr. J. Wiegand ausdrücklich bedanken.

Bei Herrn Dipl. Phys. Klös von Landesumweltamt in Düsseldorf bedanke ich mich für die gute Zusammenarbeit, die zahlreichen Diskussionen und die Möglichkeit die γ -spektrometrischen Untersuchungen im Landesumweltamt durchführen zu können.

Herr Dr. D. E. Meyer sei für seine nützlichen Anregungen und Gespräche gedankt.

Mein besonderer Dank gilt auch Frau Dr. Helga Maaßen für die stets angenehme Zusammenarbeit. Durch ihre Hilfsbereitschaft bei der Probenahme und durch zahlreiche, konstruktive Diskussionen hat sie mich sehr unterstützt.

Bei Herrn Stefan Tackmann und Herrn Markus Paster möchte ich mich ebenfalls für die Unterstützung bei der Probenahme und für ihre Hilfsbereitschaft bedanken.

Bedanken möchte ich mich auch bei allen anderen Mitarbeitern des Faches Geologie für ihre kollegiale Zusammenarbeit, wobei ich besonders Frau V. Schneider und Herrn Sebastian Feige erwähnen möchte.

Mein größter Dank gilt meinen Eltern, die mir in allen Situationen dieser Arbeit mit Rat und Tat zur Hilfe standen und mich während meines Studiums finanziell unterstützt haben. Erst sie haben diese Arbeit ermöglicht.

Auch bei Personen, die hier nicht namentlich erwähnt sind und zu dieser Arbeit beigetragen haben, möchte ich mich bedanken.

Meiner Familie.

Zusammenfassung

In dieser Arbeit wurde die Radionuklidbelastung von Oberflächenwässern, Sedimenten und Böden, sowie der Radionuklidtransfer in Flora und Fauna in zwei durch den Steinkohlenbergbau beeinflußten Gebieten untersucht. Beide Untersuchungsgebiete, zum einen die rechtsrheinische Lipperegion und zum anderen das linksrheinische Niederrhein-Gebiet (Fossa Eugeniana), liegen im sogenannten Ruhr-Revier. Das Untersuchungsgebiet in der Lipperegion umfaßte neben der Lippe noch einen kleineren Zufluß, den Sickingmühlenbach, der neben häuslichen Abwässern große Mengen zu Tage gefördertes Grubenwasser der Schachtanlage *Auguste Victoria* transportiert. Die Untersuchungen im Niederrhein-Gebiet beschränkten sich auf Proben aus der Fossa Eugeniana, in die ebenfalls große Mengen radionuklidbelasteter Grubenwässer der Zeche *Rossenray* eingeleitet werden.

In allen grubenwasserbeeinflußten Wasserproben, die aus beiden Flußsystemen über einen Zeitraum von 14 Monaten regelmäßig (monatlich) entnommen wurden, sind bis zu 13-fach erhöhte ²²⁶Radiumaktivitätskonzentrationen gemessen worden. Besonders hohe Aktivitätskonzentrationen des Nuklides ²²⁶Radium wurden im Sickingmühlenbach (max. 163 mBq/L) und in Proben aus dem Einleitungsbauwerk der Zeche *Rossenray* (max. 132 mBq/L) analysiert. Auch in der Lippe und in der Fossa Eugeniana liegen die ²²⁶Radiumaktivitätskonzentrationen mit mittleren Werten von 20 bzw. 30 mBq/L deutlich höher als in unbelasteten Oberflächenwässern (4 mBq/L). Die Abnahme der Radionuklidbelastung im weiteren Verlauf der beiden zuvor genannten Flüsse beruht zum einen auf Verdünnungseffekte, daher auch die stärkere Abnahme in der größeren Lippe, und zum anderen auf Ausfällungen des Radiums als Radiobaryt ((Ba,Ra)SO₄). Es wird allerdings davon ausgegangen, daß die angegebenen Maximalkonzentrationen höher sind, da aufgrund der günstigeren Nachtstromtarife insbesondere während der Nacht größere Mengen Grubenwasser zu Tage gefördert werden, was sich auch anhand von 24-Stunden-Messungen belegen läßt.

Bedingt durch die erhöhten Radionuklidaktivitätskonzentrationen in den Oberflächenwässern wurden auch in den untersuchten Sedimenten und hochwasserbeeinflußten Böden merklich erhöhte Konzentrationen der untersuchten Nuklide (²²⁶Ra, ²²⁸Ra, ²¹⁰Pb) analysiert. Im Gegensatz zu den Wässern, deren mittlere Aktivitätskonzentrationen des Nuklides ²²⁶Radium in beiden Flüssen abstromig der Einleitungen nahezu konstant bleiben, sinken die Aktivitätskonzentrationen in den Sedimenten abstromig der Einleitungen wieder deutlich ab. Im Falle der Lippe liegen die Konzentrationen im Mündungsbereich des Rheins sogar wieder im geogenen Hintergrundniveau. Ebenso wie die Änderung der Konzentrationen verändern sich auch die Bindungsformen des ²²⁶Radiums in den Sedimenten: Während ²²⁶Radium in den einleitungsnahen Sedimenten nahezu vollständig residual als Radiobaryt gebunden ist, wird es in den weiter entfernten Sedimenten immer mehr adsorptiv festgehalten.

Die höchsten Radionuklidgehalte wurden in Sedimenten des Sickingmühlenbaches analysiert. Diese weisen mit Maximalkonzentrationen von 15.000 Bg/kg²²⁶Radium ähnliche Werte auf, wie sie auch in Altlasten des ostdeutschen Uranbergbaus ermittelt wurden. In den hochwasserbeeinflußten Böden der Untersuchungsgebiete wurden ebenfalls deutlich höhere Aktivitätskonzentrationen als in vergleichbaren unbelasteten Böden analysiert. In beiden Untersuchungsgebieten nehmen die Aktivitätskonzentrationen mit zunehmender Entfernung zum Ufer aufgrund von weniger häufigen Überschwemmungen ab. Analog dazu verhalten sich auch die Ortsdosisleistungen. Diese resultieren aus den umfangreichen Kontaminationen der Sedimente und Böden in den Untersuchungsgebieten. Die höchsten Ortsdosisleistungen sind über Sedimenten des Sickingmühlenbaches mit Maximalwerten von 6.000 nSv/h ermittelt worden. Diese Werte liegen höher, als die von BIESOLD et al. (1996) festgestellten, maximalen Ortsdosisleistungen des ostdeutschen Uranbergbaus (4.660 nSv/h). Selbst im Mündungsbereich des Sickingmühlenbaches wurden Ortsdosisleistungen von bis zu 1.700 nSv/h über Sedimenten messen. Eine vergleichbare Belastung von 1.730 nSv/h auf Absetzanlagen und Halden der Wismut GmbH im Erzgebirge hat dazu geführt, daß diese mit einem Aufwand von 13 Milliarden DM saniert werden mußten (BUNDESMINISTERIUM FÜR WIRTSCHAFT 1995).

Neben diesen Radionuklidbelastungen wurden auch Transferfaktoren in Flora und Fauna bestimmt. Die Aufnahme des Radiums in aquatische Pflanzen hängt stark von der Bindungsform des Radiums ab. Je mehr Radium residual (Radiobaryt) gebunden ist, um so geringer ist die Aufnahme durch Pflanzen. In terrestrischen Pflanzen wurden nur in Ufernähe geringfügig erhöhte Radionuklidgehalte nachgewiesen. Die Einleitung radionuklidbelasteter Grubenwässer in natürliche Flußsysteme führt zu einer deutlich erhöhten Strahlenbelastung dieser Gebiete, insbesondere durch erhöhte Ortsdosisleistungen. Unter Berücksichtigung der Empfehlungen der deutschen Strahlenschutz Kommission (SSK) fallen beide Untersuchungsgebiete in die Klasse der standortspezifisch zu untersuchenden Objekte. Die Situation wird sich im Laufe der nächsten Jahre ohne weitere Maßnahmen deutlich verschlechtern, da sich in den relativ jungen Sedimenten noch kein radioaktives Gleichgewicht zwischen ²²⁶Radium und ²⁰⁶Blei eingestellt hat. Damit ist davon auszugehen, daß die Aktivitätskonzentrationen der extrem toxischen Blei-Isotope mit der Zeit nachwachsen und die Größenordnung der ²²⁶Radiumaktivitätskonzentrationen erreichen.

Iı	Inhaltsverzeichnis Seit			
1	Einl	Einleitung		
2	Gru	ndlagen der Radioaktivität	3	
	2.1	Historie	3	
	2.2	Definition	3	
	2.3	Arten der Strahlung	3	
		2.3.1 α -Strahlung	4	
		2.3.2 β-Strahlung	4	
		2.3.2.1 β -Strahlung	4	
		2.3.2.2 β^+ -Strahlung	5	
		2.3.3 γ-Strahlung	5	
	2.4	Zerfallsgesetz	6	
	2.5	Natürliche Zerfallsreihen	7	
	2.6	Radiometrische Größen	10	
		2.6.1 Aktivität	10	
		2.6.2 Aktivitatskonzentration	10	
		2.6.5 Tohendosis 2.6.4 Energiedosis	10	
		2.6.5 Äguivalentdosis	11	
		2.6.6 Organspezifische Äquivalentdosis	12	
		2.6.7 Effektive Dosis	12	
		2.6.8 Effektive Ortsdosisleistung	14	
3	Rad	ium – chemische und physikalische Eigenschaften	15	
	3.1	Geschichtliches	15	
	3.2	Chemische und physikalische Eigenschaften	16	
	3.3	Radium-Isotope	16	
	3.4	Radium in der Umwelt	17	
	3.5	Geochemie	17	
	3.6	Aufnahme durch den Menschen	18	
4	Geol	ogie und Hydrogeologie der Untersuchungsgebiete	19	
	4.1	Geologischer Überblick	19	
		4.1.1 Steinkohlengebirge	20	
		4.1.2 Deckgebirge	21	
	4.2	Hydrogeologischer Uberblick	24	
5	Gen	ese und chemische Zusammensetzung der Gruberwässer	29	
	5.1	Genese	29	
	5.2	Chemismus der Tiefenwässer	34	

6	Mate	erial ur	nd Methoden	41
	6.1	Wasse	erproben	41
		6.1.1	Probenahme	41
		6.1.2	Vor-Ort-Analytik	41
		6.1.3	Labor-Analytik	42
	6.2	Sedim	ente und Böden	46
		6.2.1	Probenahme	46
		6.2.2	Messung der Ortsdosisleistung	46
		6.2.3	Probenaufbereitung und Korngroßenbestimmung	4/
		0.2.4	Ermittlung der Elementzusammensetzung mittels	4/
		0.2.5	Röntgenfluoreszenzanalyse	49
	63	Flore	non-gennuoreszenzanaryse	50
	0.5	631	Probenahme	50
		6.3.2	Probenvorbereitung	51
		6.3.3	y-Spektroskopie	51
	6.4	Aufba	u eines Meßprofils	51
	6.5	Seque	ntielle Extraktion	52
		6.5.1 Bestimmung der ²²⁶ Radiumaktivitäskonzentration der		
		Extraktionslösungen		55
		6.5.2	Bestimmung der Elementkonzentrationen des Extraktionslösungen	
			mittels ICP-OES-Analytik	55
	6.6	Fehler	betrachtung der eingesetzten Analysenvefahren	57
		6.6.1	Emanometrie	57
		6.6.2	Röntgenfluoreszenzspektroskopie	57
		6.6.3	γ-Spektroskopie	58
7	Erge	Ergebnisse		
	7.1	Westf	älischer Raum (Lippe)	59
		7.1.1	Wasser	60
			7.1.1.1 Lage der Probenahmestellen	61
			7.1.1.2 pH-Werte und Temperaturen	63
			/.1.1.3 En-Werte 7.1.1.4 Elektrische Leitföhigkeit	64 65
			7.1.1.5 ²²⁶ Padiumaktivitätskonzentration	03 66
			7.1.1.6 Barium und Strontium	67
			7 1 1 7 Chlorid und Sulfat	68
		7.1.2	Sedimente	70
			7.1.2.1 Lage der Probenahmestellen	70
			7.1.2.2 Radionuklidgehalte	73
			7.1.2.3 Haupt- und Spurenelementchemismus	75
			7.1.2.3.1 Hauptelementchemismus	75
			7.1.2.3.2 Spurenelementchemismus	76
			7.1.2.4 Korngrößenverteilung	79

7	Ergebnisse	(Fortsetzung)	Seite
	7.1.3	Böden	81
		7.1.3.1 Lage der Probenahmestellen	81
		7.1.3.2 Radionuklidgehalte	83
		7.1.3.3 Haupt- und Spurenelementche	mismus 84
		7.1.3.3.1 Hauptelementchen	nismus 84
		7.1.3.3.2 Spurenelementche	mismus 84
		7.1.3.4 Korngrößenverteilung	87
	7.1.4	Ortsdosisleistung	88
	7.1.5	Tiefenprofile	91
		7.1.5.1 Lage der Probenahmestellen	91
		7.1.5.2 Radionuklidgehalte	91
	7.1.6	Flora und Fauna	96
		7.1.6.1 Flora	96
		7.1.6.1.1 Aquatische Pflanze	en 96
		7.1.6.1.2 Terrestrische Pflan	izen 99
		7.1.6.2 Fauna	99
	7.2 Niede	rheingebiet (Fossa)	102
	7.2.1	Wasser	103
		7.2.1.1 Lage der Probenahmestellen	103
		7.2.1.2 pH-Werte und Temperaturen	104
		7.2.1.3 Eh-Werte	105
		7.2.1.4 Elektrische Leitfähigkeit	106
		7.2.1.5 ²²⁶ Radiumaktivitätskonzentrat	ion 107
		7.2.1.6 Barium und Strontium	108
		7.2.1.7 Chlorid und Sulfat	109
	7.2.2	Sedimente	111
		7.2.2.1 Lage der Probenahmestellen	111
		7.2.2.2 Radionuklidgehalte	112
		7.2.2.3 Haupt- und Spurenelementche	mismus 113
		7.2.2.3.1 Hauptelementchen	nismus 113
		7.2.2.3.2 Spurenelementche	mismus 114
	5 2 2	7.2.2.4 Korngrößenverteilung	116
	7.2.3	Böden	117
		7.2.3.1 Lage der Probenahmestellen	117
		7.2.3.2 Radionuklidgehalte	
		7.2.3.3 Haupt- und Spurenelementche	mismus II9
		7.2.3.3.1 Hauptelementchen	nismus 119
		7.2.3.3.2 Spurenelementche	mismus 120
	724	7.2.3.4 Korngrobenverteilung	122
	7.2.4	Tisfammafila	123
	1.2.5	1 leienprofile	125
		7.2.5.2 Dedicryskildgehalte	123
	776	1.2.3.2 Radionukilagenaite	123
	1.2.0	FIOIA UIIA FAUIIA 7.2.6.1 Eloro	128
		72611 Aquatische Dfleme	128 129
		7.2.6.1.2 Torrestrische Pflanz	-II 120 Izen 120
		7.2.0.1.2 Terresulsche Plian	12011 125 120
		1.2.0.2 Faulla	130

7	Erg	ebnisse (Fortset	tzung)	Seite
	7.3	Bindungsform	en einiger ausgewählter Elemente in Sedimenten	
		und Böden		132
		7.3.1 Sedime	ente	132
		7.3.1.1	²²⁶ Radiumverteilung	132
		7.3.1.2	Bariumverteilung	134
		7.3.1.3	Strontiumverteilung	137
		7.3.2 Boden	226 D 1:	140
		/.3.2.1	Radiumverteilung	140
		7373	Strontiumverteilung	141
		1.3.2.3	Subilitumvertendig	142
8	Disł	kussion		145
	8.1	Kontamination	n der Oberflächenwässer	145
	8.2	Kontamination	n der Sedimente	150
	8.3	Kontamination	n der Böden	156
	8.4	Bewertung der	Ortsdosisleistungen	157
	8.5	Transfer in Flo	ora und Fauna	159
		8.5.1 Transfe	er aus Sedimenten in Wasserpflanzen	159
		8.5.2 Transfe	er aus Böden in Landpflanzen	163
		8.5.3 Transfe	er in die aquatische Fauna	165
	8.6	Datierungen de	er Sedimentproben aus den Tiefenprofilen	167
9	Risi	koabschätzung		171
	9.1	Belastungspfac	d Wasser \rightarrow Sediment \rightarrow Aquatische Pflanzen	
		\rightarrow Aquatische	Fauna	171
	9.2	Belastungspfac	d Wasser \rightarrow Boden \rightarrow Terrestrische Pflanzen	172
	9.3	Ortsdosisleistu	$ng \rightarrow Mensch$	173
1() Emj	ofehlungen		177
11	Lite	raturverzeichn	is	179
12	2 Anh	ang		189

Abbildungsverzeichnis

Abb. 2.1:	Die natürlichen Zerfallsreihen.	9
Abb. 4-1:	Geologische Übersichtskarte des Ruhr-Reviers mit abgedecktem Quartär.	20
Abb. 4-2:	Aufbau der Deckgebirgsschichten von Westfalen von Westen nach Osten im nördlichen Ruhr-Revier.	23
Abb. 4-3:	Schematischer Schnitt durch das Ruhr-Revier (nicht maßstäblich) mit den drei Grundwasserprovinzen.	25
Abb. 7-1:	Übersichtskarte der Untersuchungsgebiete.	59
Abb. 7-2.:	Chloridkonzentrationen von 9 Einzelmessungen.	61
Abb. 7-3:	Übersichtskarte der Wasserprobenahmestellen entlang derLippe.	62
Abb. 7-4:	Mittlere Eh-Werte in den Wasserproben der Lippe-Probenahmestellen über einen Zeitraum von 14 Monaten an der Lippe (n=14).	64
Abb. 7-5:	Mittlere Leitfähigkeiten in den Wasserproben der Lippe- Probenahmestellen über einen Zeitraum von 14 Monaten (n=14).	65
Abb. 7-6:	Mittlere ²²⁶ Radiumaktivitätskonzentrationen in den Wasserproben der Lippe-Probenahmestellen über einen Zeitraum von 14 Monaten (n=14).	66
Abb. 7-7:	Mittlere Barium- und Strontiumkonzentrationen in den Wasserproben der Lippe-Probenahmestellen über einen Zeitraum von 14 Monaten (n=14).	67
Abb. 7-8:	Mittlere Chloridkonzentrationen in den Wasserproben der Lippe- Probenahmestellen über einen Zeitraum von 14 Monaten (n=14).	68
Abb. 7-9:	Mittlere Sulfatkonzentrationen in den Wasserproben der Lippe- Probenahmestellen über einen Zeitraum von 14 Monaten (n=14).	69
Abb. 7-10:	Übersichtskarte über die Sedimentprobenahmestellen entlang der Lippe.	70
Abb. 7-11:	Korngrößenverteilung der Lippesedimente.	80
Abb. 7-12:	Lage der Bodenprobenahmestellen an der Lippe.	81
Abb. 7-13:	Korngrößenverteilung der Lippe-Bodenproben.	87
Abb. 7-14:	Gemessene Ortsdosisleistungen [nSv * h ⁻¹] an der Lippe.	89
Abb. 7-15:	Gemessene Ortsdosisleistungen [nSv * h ⁻¹] am Sickingmühlenbach.	90
Abb. 7-16:	Radionuklidaktivitätskonzentrationen (2σ-Fehler) der Proben des Tiefenprofils LT1-1 an der Lippe.	92
Abb. 7-17:	Radionuklidaktivitätskonzentrationen (2σ-Fehler) der Proben des Tiefenprofils LT1-2 an der Lippe.	92
Abb. 7-18:	Radionuklidaktivitätskonzentrationen (2σ-Fehler) der Proben des Tiefenprofils LT2-1 an der Lippe.	93
Abb. 7-19:	Radionuklidaktivitätskonzentrationen (2σ-Fehler) der Proben des Tiefenprofils LT2-2 an der Lippe.	94
Abb. 7-20:	Radionuklidaktivitätskonzentrationen (2σ-Fehler) der Proben des Tiefenprofils LT3-1 an der Lippe.	95
Abb. 7-21:	Radionuklidaktivitätskonzentrationen (2σ-Fehler) der Proben des Tiefenprofils LT3-2 an der Lippe.	95

Abb.	7-22:	Übersichtskarte über die Pflanzenprobenahmestellen an der Lippe.	96
Abb.	7-23:	Übersichtskarte der Wasserprobenahmestellen entlang der Fossa Eugeniana.	104
Abb.	7-24:	Mittlere Eh-Werte in den Wasserproben der Fossa Eugeniana-Probe- nahmestellen über einen Zeitraum von 14 Monaten (n=14).	105
Abb.	7-25:	Mittlere Leitfähigkeiten in den Wasserproben der Fossa Eugeniana- Probenahmestellen über einen Zeitraum von 14 Monaten (n=14).	106
Abb.	7-26:	Mittlere ²²⁶ Radiumaktivitätskonzentrationen in den Wasserproben der Fossa Eugeniana-Probenahmestellen über einen Zeitraum von 14 Monaten (n=14).	107
Abb.	7-27:	Mittlere Barium- und Strontiumkonzentrationen in den Wasserproben der Fossa Eugeniana-Probenahmestellen über einen Zeitraum von 14 Monaten (n=14).	108
Abb.	7-28:	Mittlere Chloridkonzentrationen in den Wasserproben der Fossa Eugeniana Probenahmestellen über einen Zeitraum von 14 Monaten (n=14).	- 109
Abb.	7-29:	Mittlere Sulfatkonzentrationen in den Wasserproben der Fossa Eugeniana- Probenahmestellen über einen Zeitraum von 14 Monaten (n=14).	110
Abb.	7-30:	Übersichtskarte der Sedimentprobenahmestellen entlang der Fossa Eugeniana.	111
Abb.	7-31:	Korngrößenverteilungen der Fossa Eugeniana-Sedimente.	116
Abb.	7-32:	Übersichtskarte der Bodenprobenahmestellen an der Fossa Eugeniana.	117
Abb.	7-33:	Korngrößenverteilung der Fossa Eugeniana-Bodenproben.	122
Abb.	7-34:	Gemessene Ortsdosisleistungen $[nSv * h^{-1}]$ an der Fossa Eugeniana.	124
Abb.	7-35:	Radionuklidaktivitätskonzentrationen (2σ-Fehler) der Proben des Tiefenprofils FT1-1 an der Fossa Eugeniana.	126
Abb.	7-36:	Radionuklidaktivitätskonzentrationen (2σ-Fehler) der Proben des Tiefenprofils FT1-2 an der Fossa Eugeniana.	126
Abb.	7-37:	Radionuklidaktivitätskonzentrationen (2σ-Fehler) der Proben des Tiefenprofils FT1-3 an der Fossa Eugeniana.	127
Abb.	7-38:	Prozentuale ²²⁶ Radiumanteile in den unterschiedlichen Extraktions- lösungen der untersuchten Lippesedimente.	133
Abb.	7-39:	Prozentuale ²²⁶ Radiumanteile in den unterschiedlichen Extraktions- lösungen der untersuchten Sickingmühlenbach-Sedimente.	133
Abb.	7-40:	Prozentuale ²²⁶ Radiumanteile in den unterschiedlichen Extraktions- lösungen der untersuchten Fossa Eugeniana-Sedimente.	134
Abb.	7-41:	Prozentuale Bariumanteile in den unterschiedlichen Extraktions- lösungen der untersuchten Lippesedimente.	135
Abb.	7-42:	Prozentuale Bariumanteile in den unterschiedlichen Extraktions- lösungen der untersuchten Sickingmühlenbach-Sedimente.	136
Abb.	7-43:	Prozentuale Bariumanteile in den unterschiedlichen Extraktions- lösungen der untersuchten Fossa Eugeniana-Sedimente.	137
Abb.	7-44:	Prozentuale Strontiumanteile in den unterschiedlichen Extraktions- lösungen der untersuchten Lippesedimente.	138
Abb.	7-45:	Prozentuale Strontiumanteile in den unterschiedlichen Extraktions- lösungen der untersuchten Sickingmühlenbach-Sedimente.	139

: Prozentuale Strontiumanteile in den unterschiedlichen Extraktions- lösungen der untersuchten Fossa Eugeniana-Sedimente.	140
: Prozentuale ²²⁶ Radiumanteile in den unterschiedlichen Extraktions- lösungen der untersuchten Böden.	141
: Prozentuale Bariumanteile in den unterschiedlichen Extraktions- lösungen der untersuchten Böden.	142
: Prozentuale Strontiumanteile in den unterschiedlichen Extraktions- lösungen der untersuchten Böden.	143
Tageszeitlicher Verlauf der ²²⁶ Radiumaktivitätskonzentration (2σ-Fehler) am 22./23.09.99 (Meßpunkt LW3).	146
Radionuklidaktivitätskonzentration (2σ -Fehler) und das 226 Ra/ 228 Ra-Verhältnis der Lippe-Sedimente.	150
Absolutverteilung von ²²⁶ Ra in den extrahierten Fraktionen der Lippesedimente.	151
Radionuklidaktivitätskonzentration (2σ -Fehler) und das 226 Ra/ 228 Ra-Verhältnis der Fossa Eugeniana-Sedimente.	153
Radionuklidaktivitätskonzentration (2σ-Fehler) in Sedimenten und Wasserpflanzen (<i>Myriophyllum ss. heterophyllum</i>) aus der Lippe.	160
Sediment-Transferfaktoren und der Anteil des residual gebundenen ²²⁶ Radium im Sediment.	163
Radionuklidaktivitätskonzentrationen (2σ-Fehler) in Böden und Gräsern an der Fossa Eugeniana.	164
	 Prozentuale Strontiumanteile in den unterschiedlichen Extraktions- lösungen der untersuchten Fossa Eugeniana-Sedimente. Prozentuale ²²⁶Radiumanteile in den unterschiedlichen Extraktions- lösungen der untersuchten Böden. Prozentuale Bariumanteile in den unterschiedlichen Extraktions- lösungen der untersuchten Böden. Prozentuale Strontiumanteile in den unterschiedlichen Extraktions- lösungen der untersuchten Böden. Prozentuale Strontiumanteile in den unterschiedlichen Extraktions- lösungen der untersuchten Böden. Prozentuale Strontiumanteile in den unterschiedlichen Extraktions- lösungen der untersuchten Böden. Tageszeitlicher Verlauf der ²²⁶Radiumaktivitätskonzentration (2σ-Fehler) am 22./23.09.99 (Meßpunkt LW3). Radionuklidaktivitätskonzentration (2σ-Fehler) und das ²²⁶Ra/²²⁸Ra-Verhältnis der Lippe-Sedimente. Absolutverteilung von ²²⁶Ra in den extrahierten Fraktionen der Lippesedimente. Radionuklidaktivitätskonzentration (2σ-Fehler) und das ²²⁶Ra/²²⁸Ra-Verhältnis der Fossa Eugeniana-Sedimente. Radionuklidaktivitätskonzentration (2σ-Fehler) in Sedimenten und Wasserpflanzen (<i>Myriophyllum ss. heterophyllum</i>) aus der Lippe. Sediment-Transferfaktoren und der Anteil des residual gebundenen ²²⁶Radium im Sediment. Radionuklidaktivitätskonzentration (2σ-Fehler) in Böden und Gräsern an der Fossa Eugeniana.

Tabellenverzeichnis

Tab. 2-1:	Werte des Strahlungs-Wichtungsfaktors.	11
Tab. 2-2:	Werte der Gewebe-Wichtungsfaktoren.	12
Tab. 2-3:	Mittlere effektive Dosis der Bevölkerung der BRD im Jahre 1999.	13
Tab. 3-1:	Die vier natürlich vorkommenden Radiumisotope, die Art ihrer Strahlung mit zugehörigen Energien und die Halbwertszeiten.	17
Tab. 5-1:	Br ⁻ /Cl ⁻ -Verhältnisse unterschiedlicher Wässer.	31
Tab. 6-1:	Übersicht über die benötigte Probemenge und über durchgeführte Konservierungs- und Präparationsmaßnahmen.	41
Tab. 6-2:	Analysenlinien, Meßbereiche und Nachweisgrenzen in Wasser gelöster Elemente mittels ICP-OES.	45
Tab. 6-3:	Ausgewertete Nuklide und die zugehörigen Gamma-Linien.	49
Tab. 6-4:	Angewandte Meßmethoden zur Bestimmung der Elementzusammensetzung mittels RFA.	50
Tab. 6-5:	Nachweisgrenzen der untersuchten Elemente in den Extraktions- Matrices für die sequentielle Extraktion mittels ICP-OES.	56
Tab. 6-6:	Vergleich der eigenen Meßergebnisse (und der Fehler) mit denen aus dem Institute for Reference Materials and Measurements.	58
Tab. 7-1:	Bezeichnung der Probenahmestellen mit zugehörigen Ortsdaten, Gauß-Krüger-Koordinaten und Flußkilometer an der Lippe.	62
Tab. 7-2:	Mittlere pH-Werte und Temperaturen der unterschiedlichen Probenahmestellen an der Lippe (n=14).	63
Tab. 7-3:	Bezeichnung der Probenahmestellen mit zugehörigen Ortsdaten, Gauß-Krüger-Koordinaten und Flußkilometer an der Lippe.	71
Tab. 7-4:	Radionuklidaktivitätskonzentrationen (2σ-Fehler) der Lippe-Sedimente.	74
Tab. 7-5:	Hauptelementchemismus der Sedimentproben aus der Lippe [Gew.%].	75
Tab. 7-6:	Spurenelementchemismus der Sedimentproben aus der Lippe.	77
Tab. 7-7:	Bezeichnung der Probenahmestellen mit zugehörigen Gauß-Krüger- Koordinaten und Flußkilometer an der Lippe.	82
Tab. 7-8:	Lage der einzelnen Proben der jeweiligen Meßstellen an der Lippe.	82
Tab. 7-9:	Aktivitätskonzentrationen (2σ-Fehler) der analysierten Lippe- Bodenproben.	83
Tab. 7-10:	Hauptelementchemismus der Lippe-Bodenproben [Gew.%].	84
Tab. 7-11:	Spurenelementchemismus der Lippe-Bodenproben.	86
Tab. 7-12:	Bezeichnung der Probenahmestellen mit zugehörigen Gauß-Krüger- Koordinaten und Flußkilometer an der Lippe.	91
Tab. 7-13:	Radionuklidaktivitätskonzentrationen (2 σ -Fehler) der Wasserpflanzen- proben aus der Lippe.	97
Tab. 7-14:	Aktivitätskonzentrationen (2σ-Fehler) der untersuchten Wollhandkrabbe.	101
Tab. 7-15:	Bezeichnung der Probenahmestellen mit zugehörigen Gauß-Krüger- Koordinaten und die Flußkilometer an der Fossa Eugeniana.	104

Tab. 7-16:	Mittlere pH-Werte und Temperaturen der unterschiedlichen Probenahmestellen an der Fossa Eugeniana (n=14).	105
Tab. 7-17:	Bezeichnung der Sedimentprobenahmestellen mit zugehörigen Gauß- Krüger-Koordinaten und die Flußkilometer an der Fossa Eugeniana.	112
Tab. 7-18:	Radionuklidkonzentrationen (2σ-Fehler) der Fossa Eugeniana- Sedimentproben mit unterschiedlicher Entfernung zum Ufer.	112
Tab. 7-19:	Radionuklidkonzentrationen (2σ-Fehler) der Fossa Eugeniana-Sedimente.	113
Tab. 7-20:	Hauptelementchemismus der Fossa Eugeniana-Sedimentproben [Gew.%].	114
Tab. 7-21:	Spurenelementchemismus der Fossa Eugeniana-Sedimente.	115
Tab. 7-22:	Bezeichnung der Probenahmestellen mit zugehörigen Gauß-Krüger- Koordinaten und die Flußkilometer an der Fossa Eugeniana.	118
Tab. 7-23:	Lage der einzelnen Proben der jeweiligen Meßstellen an der Fossa Eugeniana.	118
Tab. 7-24:	Aktivitätskonzentrationen (2σ-Fehler) der analysierten Fossa Eugeniana-Bodenproben.	119
Tab. 7-25:	Hauptelementchemismus der Fossa Eugeniana-Bodenproben.	120
Tab. 7-26:	Spurenelementchemismus der Fossa Eugeniana-Bodenproben.	121
Tab. 7-27:	Aktivitätskonzentrationen (2σ-Fehler) der analysierten Wasserpflanzenproben aus der Fossa Eugeniana.	128
Tab. 7-28:	Aktivitätskonzentrationen (2σ-Fehler) der analysierten terrestrischen Pflanzenproben aus der Fossa Eugeniana.	130
Tab. 7-29:	Aktivitätskonzentrationen (2σ-Fehler) der untersuchten Gammariden aus der Fossa Eugeniana.	131
Tab. 8-1:	Grubenwasserabgaben und ²²⁶ Raium-Jahresfrachten ausgewählter Schachtanlagen im Ruhr-Revier.	147
Tab. 8-2:	Korrelationskoeffizienten nach Spearman-Rho der Lippewasserproben mit N=136.	148
Tab. 8-3:	Korrelationskoeffizienten nach Pearson der Lippe-Sedimente mit N=20.	155
Tab. 8-4:	Errechnete Sediment-Transferfaktoren für Wasserpflanzen aus der Lippe ohne Berücksichtigung des Wassertransfers.	161
Tab. 8-5:	Errechnete Transferfaktoren für Gräser und der residuale ²²⁶ Ra-Anteil im Boden (Fossa Eugeniana).	164
Tab. 8-6:	Errechnete Transferfaktoren für Aal-Innereien aus der Lippe mit einer mittleren ²²⁶ Radiumaktivitätskonzentration von 0,02 Bq/L im Wasser.	166
Tab. 8-7:	²²⁶ Radium- und ²²⁸ Radiumaktivitätskonzentrationen und die daraus berechneten Alter der Sedimente am Tiefenprofil LT1 an der Lippe.	168

Inhalt des Anhangs

Abbildungen

Abb. A-1:	Mittlere Calcium- und Natriumkonzentrationen in den Wasserproben der Lippe-Probenahmestellen über einen Zeitraum von 14 Monaten.	A-1
Abb. A-2:	Mittlere Magnesium- und Kaliumkonzentrationen in den Wasserproben der Lippe-Probenahmestellen über einen Zeitraum von 14 Monaten.	A-1
Abb. A-3:	Mittlere Calcium- und Natriumkonzentrationen in den Wasserproben der Fossa Eugeniana-Probenahmestellen über einen Zeitraum von 14 Monaten.	A-2
Abb. A-4:	Mittlere Magnesium- und Kaliumkonzentrationen in den Wasserproben der Fossa Eugeniana-Probenahmestellen über einen Zeitraum von 14 Monaten.	A-2

Tabellen

Tab. A-1:	Gemessene Analysendaten der untersuchten Lippewasserproben am Meßpunkt LW1.	A-3
Tab. A-2:	Gemessene Analysendaten der untersuchten Lippewasserproben am Meßpunkt LW2.	A-4
Tab. A-3:	Gemessene Analysendaten der untersuchten Lippewasserproben am Meßpunkt LW3.	A-5
Tab. A-4:	Gemessene Analysendaten der untersuchten Lippewasserproben am Meßpunkt LW4.	A-6
Tab. A-5:	Gemessene Analysendaten der untersuchten Lippewasserproben am Meßpunkt LW5.	A-7
Tab. A-6:	Gemessene Analysendaten der untersuchten Lippewasserproben am Meßpunkt LW6.	A-8
Tab. A-7:	Gemessene Analysendaten der untersuchten Lippewasserproben am Meßpunkt LW7.	A-9
Tab. A-8:	Gemessene Analysendaten der untersuchten Lippewasserproben am Meßpunkt LW8.	A-10
Tab. A-9:	Gemessene Analysendaten der untersuchten Lippewasserproben am Meßpunkt LW9.	A-11
Tab. A-10:	Gemessene Analysendaten der untersuchten Lippewasserproben am Meßpunkt LW10.	A-12
Tab. A-11:	Gemessene Analysendaten der untersuchten Lippewasserproben am Meßpunkt LW11.	A-13
Tab. A-12:	Gemessene Analysendaten der untersuchten Fossa-Eugeniana-Wasserproben am Meßpunkt FW1.	A-14

Tab. A-13: Gemessene Analysendaten der untersuchten Fossa-Eugeniana-Wasserproben am Meßpunkt FW2.	A-15
Tab. A-14: Gemessene Analysendaten der untersuchten Fossa-Eugeniana-Wasserproben am Meßpunkt FW3.	A-16
Tab. A-15: Gemessene Analysendaten der untersuchten Fossa-Eugeniana-Wasserproben am Meßpunkt FW4.	A-17
Tab. A-16: Gemessene Analysendaten der untersuchten Fossa-Eugeniana-Wasserproben am Meßpunkt FW5.	A-18
Tab. A-17: Gemessene Ortsdosisleistungen und dazugehörige Gauß Krüger-Koordinaten an der Lippe.	A-19
Tab. A-18: Gemessene Ortsdosisleistungen und dazugehörige Gauß Krüger-Koordinaten am Sickingmühlenbach.	A-20
Tab. A-19: Gemessene Ortsdosisleistungen und dazugehörige Gauß Krüger-Koordinaten an der Fossa-Eugeniana.	A-21
Tab. A-20: Radionuklidkonzentrationen (2σ-Fehler) der Tiefenprofile an der Lippe.	A-23
Tab. A-21: Radionuklidkonzentrationen (2σ-Fehler) der Tiefenprofile an der Fossa Eugeniana.	A-24
Tab. A-22: Radionuklidkonzentrationen (2σ-Fehler) der analysierten Lippe-Grasproben.	A-25
Tab. A-23: Radionuklidkonzentrationen (2σ-Fehler) der analysierten Fischproben.	A-26
Tab. A-24: Elementkonzentrationen [ppm] und prozentuale Anteile in d	en
unterschiedlichen Extraktionslösungen des Lippe-Sedimente	es LS3. A-29
Tab. A-25: Elementkonzentrationen [ppm] und prozentuale Anteile in d	en
unterschiedlichen Extraktionslösungen des Lippe-Sedimente	es LS7. A-30
Tab. A-26: Elementkonzentrationen [ppm] und prozentuale Anteile in d	en
unterschiedlichen Extraktionslösungen des Lippe-Sedimente	es LS9. A-31
Tab. A-27: Elementkonzentrationen [ppm] und prozentuale Anteile in d	en
unterschiedlichen Extraktionslösungen des Lippe-Sedimente	es LS10. A-32
Tab. A-28: Elementkonzentrationen [ppm] und prozentuale Anteile in d	en
unterschiedlichen Extraktionslösungen des Lippe-Sedimente	es LS11. A-33
Tab. A-29: Elementkonzentrationen [ppm] und prozentuale Anteile in d	en
unterschiedlichen Extraktionslösungen des Lippe-Sedimente	es LS12. A-34
Tab. A-30: Elementkonzentrationen [ppm] und prozentuale Anteile in d	en
unterschiedlichen Extraktionslösungen des Lippe-Sedimente	es LS14. A-35
Tab. A-31: Elementkonzentrationen [ppm] und prozentuale Anteile in d	en
unterschiedlichen Extraktionslösungen des Lippe-Sedimente	es LS15. A-36
Tab. A-32: Elementkonzentrationen [ppm] und prozentuale Anteile in d	en
unterschiedlichen Extraktionslösungen des Lippe-Sedimente	es LS17. A-37
Tab. A-33: Elementkonzentrationen [ppm] und prozentuale Anteile in d	en
unterschiedlichen Extraktionslösungen des Lippe-Sedimente	es LS19. A-38
Tab. A-34: Elementkonzentrationen [ppm] und prozentuale Anteile in d	en
unterschiedlichen Extraktionslösungen des Lippe-Sedimente	es LS21. A-39

Tab.	A-35:	Elementkonzentrationen [ppm] und prozentuale Anteile in den unterschiedlichen Extraktionslösungen des Lippe-Sedimentes LS22.	A-40
Tab.	A-36:	Elementkonzentrationen [ppm] und prozentuale Anteile in den unterschiedlichen Extraktionslösungen des Sickingmühlenbach- Sedimentes LS5.	A-41
Tab.	A-37:	Elementkonzentrationen [ppm] und prozentuale Anteile in den unterschiedlichen Extraktionslösungen des Sickingmühlenbach- Sedimentes LS6.	A-42
Tab.	A-38:	Elementkonzentrationen [ppm] und prozentuale Anteile in den unterschiedlichen Extraktionslösungen des Fossa Eugeniana- Sedimentes FS1.	A-43
Tab.	A-39:	Elementkonzentrationen [ppm] und prozentuale Anteile in den unterschiedlichen Extraktionslösungen des Fossa Eugeniana- Sedimentes FS4.	A-44
Tab.	A-40:	Elementkonzentrationen [ppm] und prozentuale Anteile in den unterschiedlichen Extraktionslösungen des Fossa Eugeniana- Sedimentes FS5.	A-45
Tab.	A-41:	Elementkonzentrationen [ppm] und prozentuale Anteile in den unterschiedlichen Extraktionslösungen des Lippe-Bodens LB3-1.	A-46
Tab.	A-42:	Elementkonzentrationen [ppm] und prozentuale Anteile in den unterschiedlichen Extraktionslösungen des Lippe-Bodens LB3-2.	A-47
Tab.	A-43:	Elementkonzentrationen [ppm] und prozentuale Anteile in den unterschiedlichen Extraktionslösungen des Fossa Eugeniana-Bodens FB1-1.	A-48
Tab.	A-44:	Elementkonzentrationen [ppm] und prozentuale Anteile in den unterschiedlichen Extraktionslösungen des Eossa Eugeniana-Bodens EB2-1	Δ_49
Tab.	A-45:	Korrelationskoeffizienten nach Spearman-Rho der Sickingmühlenwasserproben mit N=55.	A-50
Tab.	A-46:	Korrelationskoeffizienten nach Spearman-Rho der Fossa Eugenianawasserproben mit N=51.	A-50
Tab.	A-47:	Korrelationskoeffizienten nach Spearman-Rho des Einleitungsbauwerkes an der Fossa Eugeniana mit N=12.	A-51
Tab.	A-48:	Korrelationskoeffizienten nach Pearson der Lippe-Sedimentproben mit N=20.	A-52
Tab.	A-49:	Korrelationskoeffizienten nach Pearson der Fossa Eugeniana-Sedimentproben mit N=5.	A-53

Abkürzungsverzeichnis

allgemeine Abkürzungen

n.b.	nicht bestimmt
n.n.	nicht nachweisbar
E	Ost
ENE	Ost-Nord-Ost
Gew.%	Gewichtsprozent
TG	Trockengewicht
W	West
WSW	West-Süd-West

Bezeichnungen der Lippe-Proben (incl. Sickingmühlenbach)

LB	Bodenproben an der Lippe
LK	Wollhandkrabben aus der Lippe
LPfL	Terrestrische Pflanzen an der Lippe
LPf_W	Aquatische Pflanzen aus der Lippe
LS	Sedimentproben aus der Lippe
LT	Tiefenprofile an der Lippe
LW	Wasserproben aus der Lippe

Bezeichnungen der Fossa-Eugeniana-Proben

FB	Bodenproben an der Fossa Eugeniana
FG	Gammariden aus der Fossa Eugeniana
FPf_L	Terrestrische Pflanzen an der Fossa Eugeniana
FPf _W	Aquatische Pflanzen aus der Fossa Eugeniana
FS	Sedimentproben aus der Fossa Eugeniana
FT	Tiefenprofile an der Fossa Eugeniana
FW	Wasserproben aus der Fossa Eugeniana

1 Einleitung

Eines der größten Probleme des Steinkohlenbergbaus stellt das anfallende Grubenwasser dar. Nicht nur die hohen Kosten, die für die Hebung anfallen oder die Gefahr plötzlicher Wassereinbrüche, sondern die hohe Salinität und die Kontamination dieser Wässer mit natürlichen Radionukliden stellen die größten Probleme dar.

Nach WEDEWARDT (1995) fallen in den betriebenen Bergwerken des Ruhr-Reviers mehr als 40 Millionen m³ Grubenwasser an, wobei der Anteil an hochsalinaren Tiefenwässern ca. 5 % beträgt. Die zu Tage geförderten Grubenwässer enthalten neben größeren Mengen gelöster Kationen und Anionen, wie z. B. Natrium, Kalium, Barium, Strontium und Chlorid auch hohe Konzentrationen der beiden Radiumisotope ²²⁶Radium und ²²⁸Radium.

Untersuchungen von KLÖS et al.(1979), GANS et al. (1984), SCHWEER (1995), WIEGAND et al. (1996) und FEIGE (1997) haben gezeigt, daß die Einleitung dieser Grubenwässer in die Vorfluter zu Kontaminationen der Sedimente und hochwasserbeeinflußter Böden führt. Im Ruhr-Revier erfolgt die Ableitung dieser Wässer über mehrere kleine Vorfluter im wesentlichen über die größeren Flüsse Lippe, Emscher und Fossa Eugeniana in den Rhein.

Ziel dieser Arbeit ist es, die Radionuklid-Mobilität und den Transfer dieser Radionuklide in Böden, Sedimenten, Flora und Fauna in zwei ausgewählten Gebieten zu untersuchen. Hauptaugenmerk wird dabei, aufgrund der langen Halbwertszeit, auf das radiotoxische Isotop ²²⁶Radium gelegt. Durch die chemische Verwandtschaft zum Calcium ist Radium in der Lage, Calcium aus Knochen zu verdrängen und dessen Platz einzunehmen, worauf unter anderem seine Radiotoxizität beruht.

Die Untersuchungen werden in zwei bergbau-beeinflußten Gebieten des Ruhr-Reviers durchgeführt: Dabei handelt es sich zum einen um die rechtsrheinisch gelegene Lipperegion und zum anderen um das linksrheinische Niederrhein-Gebiet (Fossa Eugeniana). Die Proben der Wässer, Böden und Sedimente sowie die Pflanzen - sowohl terrestrische als auch aquatische - und der Fauna (Fische, Krebse) werden auf ihre chemische Zusammensetzung und insbesondere auf ihre Radionuklidbelastung analysiert. Ferner werden an einem Teil dieser Proben Altersbestimmungen durchgeführt, um so Aussagen über die Entstehungsgeschichte dieser Proben treffen zu können (KLÖS et al. 1993a).

Um das Mobilitätsverhalten von Radium untersuchen zu können, werden auch sequentielle Extraktionsversuche zur Ermittlung der Bindungsform durchgeführt, die Aussagen über die verschiedenen Bindungsformen von Radium zulassen. Diese Untersuchungen zeigen zum einen die "Ausbreitung" von Radium in den betroffenen Gewässern auf und zum anderen welche Reichweite eine Einleitung von radiumbelasteten Wässern hat.

Messungen der Ortsdosisleistungen schließen die Meßreihen ab und erlauben eine Gefahrenabschätzung für die Bevölkerung, hinsichtlich der Empfehlungen der Strahlenschutzkommission (SSK). Sie werden sowohl entlang der Flußläufe als auch an den Sedimentproben durchgeführt.

Begleitend werden Vergleiche mit den "Hinterlassenschaften" des ostdeutschen Uranbergbaus vorgenommen, wobei besonders deren Sanierungsaufwand bemerkenswert ist.

Abschließend werden - basierend auf den ermittelten Ergebnissen – Empfehlungen ausgesprochen, wie mit den "Hinterlassenschaften" des Ruhrbergbaues verfahren werden sollte, wenn man Sie aus strahlenschutztechnischer Sicht betrachtet.

2 Grundlagen der Radioaktivität

2.1 Historie

Im Jahre 1896 entdeckte H. BECQUEREL, daß Uranyldoppelsulfat eine Strahlung aussendet, die eine Photoplatte schwärzt, obwohl sie zuvor Papier, Glas oder andere Substanzen durchdrungen hat. BECQUEREL und andere Forscher faßten die gewonnenen Ergebnisse 1898 zusammen, in dem Jahr, in dem PIERRE und MARIE CURIE den Schluß zogen, daß die ausgesendete Strahlung nichts mit dem chemischen oder physikalischen Zustand zu tun hat, sondern ein charakteristisches atomares Phänomen darstellt. Dieses Phänomen nannten sie Radioaktivität.

Die Radiochemiker beobachteten, daß manche natürliche Uranminerale stärker radioaktiv waren als reines Uran oder künstlich hergestellte "Erze". Durch chemische Zersetzung und Fraktionierung entdeckte und isolierte das Ehepaar CURIE, das in BECQUERELS Laboratorium arbeitete, zwei neue Elemente, das Polonium und das Radium. Dies ist eine erstaunliche Leistung, da sie aus 2 Tonnen Pechblende nur 0,1 g Radiumchlorid isolierten (HOLLEMANN - WIBERG 1985, FRIEDLANDER - KENNEDY 1962).

2.2 Definition

Eine spontane Kernumwandlung instabiler Kerne, die die Aussendung energiereicher Strahlung zur Folge hat, wird als radioaktiver Zerfall bezeichnet. Radioaktivität tritt häufig bei schweren Kernen (Z > 83) auf, was vermutlich auf die Anhäufung von Protonen zurückzuführen ist (RIEDEL 1994).

2.3 Arten der Strahlung

Beim radioaktiven Zerfall können drei Strahlungsarten – α -, β - und γ -Strahlung – emittiert werden.

2.3.1 α-Strahlung

 α -Strahlung besteht aus Heliumkernen (Gl.1). Beim Emittieren eines α -Teilchens tritt ein Massendefekt auf, wobei die nach der Einsteinschen Relativitätstheorie dem Massendefekt äquivalente Energie dem emittierten Teilchen als kinetische Energie mitgegeben wird.

$${}^{226}_{88}\text{Ra} \rightarrow {}^{222}_{86}\text{Rn} + {}^{4}_{2}\text{He}$$
Gl. 1

Der α -Zerfall tritt vor allem bei schweren Kernen auf. Die resultierende α -Strahlung besitzt sehr hohe Energien von durchschnittlich 6 Millionen eV. Als Strahlung schwerer, geladener Teilchen hat sie die stärkste Wechselwirkung mit Materie und daher die geringste Reichweite. Diese beträgt in Luft nur wenige Zentimeter und in lebendem Gewebe einige hundertstel Millimeter (BORSCH et al. 1996). Bei äußerer Bestrahlung sind α -Strahlen harmloser, bei Inkorporation dagegen gefährlicher als alle anderen Strahlenarten. Zur vollständigen Abschirmung von α -Strahlen reicht ein ca. 0,1 mm dickes Blatt Papier aus.

2.3.2 β-Strahlung

Bei der β -Strahlung wird zwischen der β^- und der β^+ -Strahlung unterschieden, wobei die β^+ -Strahlung beim Zerfall natürlicher Radionuklide seltener auftritt (PHILIPSBORN 1997).

2.3.2.1 β⁻-Strahlung

Die β -Strahlung besteht aus Elektronen, die im Kern durch Umwandlung von Neutronen entstehen (Gl.2).

$$n \rightarrow p^+ + e^-$$
 Gl. 2

Da die emittierten Elektronen keine scharfen Energiewerte besitzen, postulierte PAULI 1930, daß ein weiteres Teilchen, das Antineutrino (v), das weder Ladung noch Ruhemasse besitzt, entsteht (Gl.3, Gl.4). Unter Berücksichtigung des Energieerhaltungssatzes muß die Summe der Energien des Elektrons und des Antineutrinos konstant sein.

$$n \rightarrow p^+ + e^- + v$$
 Gl. 3

$${}^{40}_{19}\text{K} \rightarrow {}^{40}_{20}\text{Ca} + e^- + v$$
 Gl. 4

Der β^{-} Zerfall tritt vor allem bei Kernen mit hoher Neutronenzahl (Verhältnis Protonen zu Neutronen) auf. Die durchschnittliche Energie der β^{-} -Teilchen beträgt 1 Million eV. β^{-} -Strahlen besitzen in der Luft eine Reichweite von einigen Metern, in lebendem Gewebe, je nach Energiegehalt, Reichweiten von einigen Millimetern bis Zentimetern. Vollständig abgeschirmt werden β^{-} -Strahlen z. B. von ca. 5 cm dicken Aluminiumplatten (BORSCH et al. 1997).

2.3.2.2 β^+ -Strahlung

 β^+ -Strahlung besteht aus Positronen e⁺, welche die Antiteilchen zu Elektronen darstellen, die im Kern durch Umwandlung von Protonen entstehen. Wie auch bei der β^- -Strahlung wird ein weiteres Teilchen erzeugt, das Neutrino (v) (Gl.5, Gl.6).

$$p^+ \rightarrow n + e^+ + v$$
 Gl. 5

$${}^{22}_{11}\text{Na} \rightarrow {}^{22}_{10}\text{Ne} + e^+ + v$$
 Gl. 6

Die emittierte β^+ -Strahlung ist sehr kurzlebig. Die entstehenden Positronen vereinigen sich mit freien Elektronen unter Aussendung von zwei γ -Quanten von je 0,511 MeV. Dieser Vorgang wird als Zerstrahlung oder Paarvernichtung bezeichnet (NACHTIGALL 1971).

2.3.3 γ-Strahlung

Die γ -Strahlung ist eine energiereiche elektromagnetische Strahlung, die häufig als Begleitstrahlung der α - und der β -Strahlung vorkommt. Sie tritt immer dann auf, wenn bei einem Zerfall ein angeregter Atomkern entsteht, der durch Emission von γ -Quanten in den Grundzustand, oder einen energetisch niedrigeren Zustand übergeht (RIEDEL 1994). Die durchschnittliche Energie der γ -Strahlen beträgt wie bei den β -Strahlen ca. 1 Million eV (HOLLEMANN - WIBERG 1985). Sie besitzen in der Luft sehr große Reichweiten und durchdringen biologisches Gewebe leicht (NACHTIGALL 1971). Zur Abschirmung werden dicke Schichten aus Materialien mit hoher Dichte, wie z. B. Blei benötigt. γ -Strahlung ist nie vollständig abschirmbar, sie kann nur stark abgeschwächt werden (BORSCH et al. 1996)

2.4 Zerfallsgesetz

Der radioaktive Zerfall ist ein spontaner statistischer Vorgang, der weder durch physikalische noch durch chemische Prozesse beeinflußbar ist. Pro Zeiteinheit zerfällt immer die gleiche Anzahl vorhandener Kerne. Diese Anzahl ist proportional der Gesamtzahl radioaktiver Kerne und der Zerfallskonstante (λ), die nuklidspezifisch ist (Gl.7).

$$-\frac{\mathrm{dN}}{\mathrm{dt}} = \lambda * \mathrm{N}$$
Gl. 7

 $-\frac{dN}{dt} = Anzahl zerfallender Kerne$ $\lambda = Zerfallskonstante$

N= Gesamtzahl radioaktiver Kerne

Durch Integration erfolgt das Zerfallsgesetz (Gl.8, Gl.9):

$$\ln \frac{N_0}{N_t} = \lambda * t$$
 Gl. 8

$$N_t = N_0 * e^{-\lambda * t}$$
Gl. 9

- $N_o = Anzahl der Teilchen zur Zeit t=0$
- N_t = Anzahl der Teilchen zur Zeit t
- t = Zeit

Die Geschwindigkeit des radioaktiven Zerfalls entspricht der einer monomolekularen Reaktion, wobei die Geschwindigkeit einer Zerfallsreaktion mit der Zeit immer weiter abnimmt (HOLLEMANN - WIBERG 1985).

Ein Maß für die Stabilität eines Radionuklides ist die Halbwertszeit. Das ist die Zeit in der die Hälfte eines Radionuklides zerfallen ist.

$$N_{t_{1/2}} = \frac{N_0}{2}$$
 Gl. 10

Durch Kombination der Gleichungen 9 und 10 folgt Gleichung 11.

$$t_{1/2} = \frac{\ln 2}{\lambda} = \frac{0,693}{\lambda}$$
 Gl. 11

 $t_{1/2}$ = Halbwertszeit

2.5 Natürliche Zerfallsreihen

Die natürlich vorkommenden Nuklide (ca. 80) werden in primordiale und kosmogene Radionuklide unterteilt. Die kosmogenen Nuklide (ca. 15) werden ständig durch Wechselwirkung der primären kosmischen Strahlung mit Gasatomen der Luft in der Hochatmosphäre gebildet. Sie besitzen fast alle relativ kurze Halbwertszeiten. Die primordialen Nuklide dagegen, die während der Nukleosynthese vor der Entstehung der Erde gebildet wurden, sind aufgrund ihrer sehr hohen Halbwertszeiten noch nicht völlig zerfallen. Mit Ausnahme der isolierten primordialen Nuklide, deren erster Zerfall zu einem stabilen Kern führt (z. B. ⁴⁰K), sind die beim natürlichen radioaktiven Zerfall entstehenden Elemente meist auch radioaktiv und bilden so die Zerfallsreihen. In der Natur sind drei Zerfallsreihen (Abb. 2-1) (Actinium- ($^{235}_{92}$ U), Uran- ($^{238}_{92}$ U) und Thorium- ($^{232}_{90}$ Th) Zerfallsreihe) bekannt, an deren Ende immer inaktives Blei entsteht.

Zwischen einem Radionuklid und seinem Zerfallsprodukt (Tochternuklid) besteht ein radioaktives Gleichgewicht. Zu Beginn des Zerfalls ist die Bildungsgeschwindigkeit des Tochternuklides größer als dessen Zerfallsgeschwindigkeit, bis schließlich nach ca. 7 Halbwertszeiten des Tochternuklides ein Gleichgewicht entsteht (Gl.12).

Zerfallsgeschwindigkeit Mutternuklid = Bildungsgeschwindigkeit Tochternuklid = Zerfallsgeschwindigkeit Tochternuklid Gl. 12

Unter Berücksichtigung von Gleichung 10 ergibt sich:

$$\frac{N_1}{N_2} = \frac{\left(\frac{t_{1/2}}{2}\right)_1}{\left(\frac{t_{1/2}}{2}\right)_2}$$
Gl. 13

N₁ = Anzahl Mutternuklide N₂ = Anzahl Tochternuklide $\begin{pmatrix} t_{\frac{1}{2}} \end{pmatrix}_1$ = Halbwertszeit Mutternuklid $\begin{pmatrix} t_{\frac{1}{2}} \end{pmatrix}_2$ = Halbwertszeit Tochternuklid

Wie aus Gleichung 13 ersichtlich wird, verhalten sich die Atommengen radioaktiver Elemente im Gleichgewicht wie ihre Halbwertszeiten. Durch unterschiedliche chemische und physikalische Eigenschaften der Nuklide (z. B. Lösungsverhalten, Aggregatzustand) kann es zu ausgeprägten Ungleichgewichten kommen (RIEDEL 1994, HOLLEMANN - WIBERG 1985, KEMSKI et al., 1996).

Abb. 2-1: Die drei natürlichen Zerfallsreihen (a und b nach SURBECK 1995).

2.6 Radiometrische Größen

Aufgrund der Wechselwirkung ionisierender Strahlung mit Materie – insbesondere biologischer Materie – wurden zahlreiche Ansätze entwickelt, um die Strahlenwirkung zu messen bzw. um sie bewerten zu können.

2.6.1 Aktivität

Ein Maß für die Radioaktivität ist die Aktivität, die die Anzahl der radioaktiven Zerfälle pro Sekunde wiedergibt (Gl.14). Ihre SI-Einheit ist das Becquerel [Bq].

$$1 \text{ Bq} = 1 \text{ s}^{-1}$$
 Gl. 14

Eine veraltete Einheit, die von der Aktivität des ²²⁶Radiums ausgeht, ist das Curie (Ci) (1 g ²²⁶Radium besitzt eine Aktivität von 1 Ci). Die Umrechnung erfolgt nach Gleichung 15.

$$1 \text{ Ci} = 3,7 * 10^{10} \text{ Bq}$$
 Gl. 15

2.6.2 Aktivitätskonzentration

Um die Aktivität unabhängig von der Probenmenge auszudrücken, wurde die Aktivitätskonzentration eingeführt. Sie kann sowohl Massen als auch Volumen bezogen angegeben werden, ihre Einheiten lauten Bq/kg, Bq/L bzw. Bq/m³ (PHILIPSBORN 1997).

2.6.3 Ionendosis

Durch Wechselwirkung von Strahlung mit Materie werden Ladungsträger erzeugt. Die erzeugte Ladung je Masseneinheit heißt Ionendosis (I), deren Einheit das Coloumb pro Kilogramm [C/kg] ist. Eine veraltete Einheit ist das Röntgen, benannt nach W. C. RÖNTGEN, dem Entdecker der Röntgenstrahlung, wobei 1 Röntgen 2,58 * 10⁻⁴ C/kg entsprechen.
2.6.4 Energiedosis

Als Energiedosis (D) wird die pro Masseneinheit absorbierte Energiemenge bezeichnet. Sie stellt die wesentliche Größe zur Messung der Wirkung ionisierter Strahlung dar. Ihre SI-Einheit ist das Gray (Gy, 1 Gy = 1 J/kg). Früher wurde die Einheit rad (rd, radiation absorbed dose) verwendet, wobei 1 rd 0,01 Gy entsprechen.

2.6.5 Äquivalentdosis

Für die Beurteilung der biologischen Strahlenwirkung muß neben der Energiedosis noch ein Strahlungs-Wichtungsfaktor (w_R), der aus strahlenbiologischen und epidemologischen Daten berechnet wird, (Tab. 2-1) berücksichtigt werden (BORSCH et al. 1996, PHILIPSBORN 1997).

Tab. 2-1:Werte des Strahlungs-Wichtungsfaktors (aus: ICRP PUBLICATION 68, 1995).

Strahlung	WR	
Röntgen-, Gammastrahlung	1	
Betastrahlung	1	
Neutronenstrahlung	5 - 20	
Alphastrahlung	20	

Durch Multiplikation der Energiedosis (D) mit dem Strahlungs-Wichtungsfaktor (w_R) erhält man die Äquivalentdosis (H), deren Einheit das Sievert [Sv] ist (Gl. 16).

$$H = D * w_R GI. 16$$

Eine veraltete Einheit ist das rem (roentgen equivalent man), wobei 100 rem 1 Sv entsprechen.

2.6.6 Organspezifische Äquivalentdosis

Da die verschiedenen Organe unterschiedliche Empfindlichkeiten für Strahlenspätschäden aufweisen, wurden empirisch abgeleitete organspezifische Gewebewichtungsfaktoren w_T eingeführt (Tab. 2-2). Das Produkt aus Äquivalentdosis des Organs (D_T*w_R) und des Gewebewichtungsfaktors (w_T) bezeichnet man als organspezifische Äquivalentdosis (Gl. 17), deren Einheit ebenfalls das Sievert ist.

$$H_t = W_T * W_R * D_T$$
Gl. 17

Gewebe oder Organ	WT
Gonaden	0,20
Knochenmark (rot)	0,12
Dickdarm	0,12
Lunge	0,12
Magen	0,12
Blase	0,05
Brust	0,05
Leber	0,05
Speiseröhre	0,05
Schilddrüse	0,05
Haut	0,01
Knochenoberfläche	0,01
andere Organe oder Gewebe	0,05

Tab. 2-2: Werte der Gewebe-Wichtungsfaktoren (aus: AMTSBLATT DER EG/EURATOM 1996).

2.6.7 Effektive Dosis

Die Summe aller organspezifischen Äquivalentdosen ergibt die effektive Dosis (E) mit der Einheit Sievert. Für die Festlegung von Grenzwerten werden in den ICRP-Empfehlungen (International Commission of Radiological Protection) und in der deutschen Strahlenschutzverordnung die effektiven Dosen verwendet.

Sowohl die Äquivalentdosis als auch die effektive Dosis gilt nur für den Menschen oder für menschliche Organe und Gewebe, da die Wichtungsfaktoren ausschließlich dafür festgelegt wurden. Für einzelne Zellen, Tiere oder Pflanzen muß die Dosis immer als Energiedosis angegeben werden.

Die mittlere effektive Dosis der Bevölkerung setzt sich aus der Strahlenexposition durch natürliche Radionuklide und den Strahlendosen aus der zivilisatorischen Nutzung von Radionukliden und Röntgenstrahlung zusammen. Tab. 2-3 gibt einen Überblick über die einzelnen Komponenten der effektiven Dosis, die 1999 für die Bevölkerung der BRD ca. 4,6 mSv betrug (BUNDESMINISTERIUM FÜR UMWELT, NATURSCHUTZ UND REAKTOR-SICHERHEIT, JAHRESBERICHT 1999).

einzelnen Komponenten	Dosis [mSv]
Kosmische Strahlung in Meereshöhe	0,3
Terrestrische Strahlung	0,4
Ingestion natürlicher radioaktiver Stoffe	0,3
Inhalation von Radon und Folgeprodukten	1,4
Natürliche Strahlenbelastung	2,4
Ionisierende Strahlung und Stoffe aus der Medizin	2,0
Reaktorunfall Tschernobyl	< 0,02
Kerntechnische Anlagen	< 0,01
Berufliche Strahlenexposition	0,17
Ionisierende Strahlung und Stoffe in der Umwelt	< 0,01
Niederschlag von Kernwaffenversuchen	< 0,01
Zivilisatorische Strahlenbelastung	ca. 2,2

 Tab. 2-3: Mittlere effektive Dosis der Bevölkerung der BRD im Jahre 1999 (BUNDESMINISTERIUM FÜR UMWELT, NATURSCHUTZ UND REAKTORSICHERHEIT, Jahresbericht 1999).

Die 1996 verabschiedete Richtlinie 96/29 EURATOM (Abl. 1996, L 1559,1) enthält Empfehlungen, die in der neuen Strahlenschutzverordnung, die frühestens im Mai 2001 erscheinen wird, umgesetzt werden müssen.

Danach soll die zusätzliche effektive Dosis der Bevölkerung 1 mSv pro Jahr nicht überschreiten. In Einzelfällen werden höhere Werte zugelassen, wenn der Mittelwert von fünf aufeinanderfolgenden Jahren 1 mSv nicht übersteigt.

Für beruflich strahlenexponierte Personen wird ein Grenzwert von 20 mSv (Kategorie A) festgesetzt, wobei über einen Zeitraum von 5 Jahren 100 mSv nicht überschritten werden dürfen.

2.6.8 Effektive Ortsdosisleistung

Für die Beurteilung von allgemeinen Strahlenfeldern z. B. im Umkreis von starken Quellen aber auch auf natürlichen Flächen in bezug auf Kontaminationen durch γ -Strahlung wird die Ortsdosisleistung verwendet. Sie ist die effektive Gesamtkörper-Äquivalentdosis an einem Ort, ihre Einheit ist Sv * h⁻¹. Weiterhin dient sie zur Ermittlung der möglichen Strahlenexposition, die eine Person erhält, wenn sie sich an dem betreffenden Ort für eine bestimmte Zeit aufhält.

3 Radium - chemische und physikalische Eigenschaften

In der vorliegenden Arbeit werden die Auswirkungen des Steinkohlenbergbaus im Ruhr-Revier unter dem Aspekt des Radiums in gehobenen Grubenwässern betrachtet. Die Untersuchungen umfassen unter anderen die Verteilung von ²²⁶Radium in Wässern, Sedimenten und Böden von der Einleitungsstelle ausgehend. Weiterhin wird der Transfer des ²²⁶Radiums in Flora und Fauna untersucht.

In diesem Kapitel werden zunächst einige Eigenschaften des Radiums näher aufgeführt, um so einen Einblick in dessen Verhalten und Wirkung zu erhalten.

3.1 Geschichtliches

Im Dezember 1898 entdeckte und publizierte MARIE CURIE das Element Radium, von dem sie im Jahre 1903 erstmals soviel isolierte, daß sie dessen Molekulargewicht bestimmen konnte. Bald wurde das Element "berühmt" und fand Einsatz in der Medizin zur Behandlung von Krankheiten, wie z. B. Gelenk- und Nervenentzündungen, für die es keine bekannten Behandlungsmöglichkeiten gab. Schon kurz nach der Entdeckung des Radiums wurde auch dessen gesundheitsschädliche Wirkung erkannt. So beschrieb MARIE CURIE bereits in ihrer aus dem Jahre 1903 stammenden Doktorarbeit die zerstörerische Wirkung radioaktiver Strahlung auf lebendes Gewebe. Im Jahre 1911 veröffentlichte PUSEY eine Zusammenfassung über die biologischen Effekte des Radiums. So wies er unter anderem darauf hin, daß Radium ebenso wie Röntgenstrahlung krebserregend wirkt. Trotz dieser Veröffentlichungen und weiteren Hinweisen auf die "Gefährlichkeit" des Radiums, fand es weiter großen Einsatz in der Medizin. Die "Berühmtheit" des Radiums starb erst in den 30er Jahren.

Neuen Ruhm erlangte das einst magische Element im Jahre 1941, diesmal allerdings nicht als Standard der Radioaktivität, sondern der Radiotoxizität (WILLIAMS & KIRCHMANN 1990).

3.2 Chemische und physikalische Eigenschaften

Radium ist mit seiner Ordnungszahl von 88 das schwerste Erdalkalimetall. Diese, in der zweiten Hauptgruppe des Periodensystems der Elemente stehenden Metalle, besitzen die Valenzelektronenkonfiguration s². In stabilen Verbindungen treten sie nur in der Oxidationsstufe +2 auf. Sowohl im festen als auch im gelösten Zustand sind die zweiwertigen Kationen trotz ihrer hohen 2. Ionisierungsenergie stabil, da sie durch Gitter- und Hydratationsenthalpien stabilisiert werden (RIEDEL 1994).

Radium ist als Erdalkalimetall ein reaktionsfähiges, elektropositives Metall. Wie die anderen Erdalkalimetalle auch, ist Radium ein starkes Reduktionsmittel. Es bildet Hydroxide mit stark basischen Eigenschaften. Aus der Elektronegativität von 0,9 läßt sich erkennen, daß Radium zu den "unedelsten" Elementen gehört, was sich in seiner Affinität zu elektrophilen Elementen zeigt.

Radiumionen sind in Wasser mittelmäßig löslich, sofern weder Sulfat- noch Carbonat-Ionen anwesend sind. Mit diesen bildet es, wie auch die anderen Erdalkalien, schwer lösliche Sulfate und Carbonate. Dagegen sind die Chloride, Bromide und Nitrate leicht lösliche Verbindungen. Radiumsalze sind im allgemeinen schlechter löslich als die äquivalenten Bariumsalze. Aufgrund dieser Tatsache ist die Trennung von Radiumsalzen von Bariumsalzen durch fraktionierte Kristallisation möglich.

In Mineralien kann Radium mit einem Ionenradius von 1,43 Å die Elemente K (1,33 Å), Ba (1,34 Å), Pb (1,20 Å) und Rb (1,47 Å) aufgrund ähnlicher Ionenradien ersetzen. Mit Barium bildet es häufig Radiobaryt ((Ba,Ra)SO₄). Bei Sedimentationsprozessen wird das Radium neben der Mitfällung hauptsächlich an Eisen- und Manganhydroxiden adsorbiert (GMELIN 1977).

3.3 Radium-Isotope

Von Radium sind 25 Isotope mit Ordnungszahlen zwischen 206 und 230 bekannt, von denen allerdings nur vier Isotope in der Natur vorkommen. Dabei handelt es sich um ²²⁶Ra aus der ²³⁸Uran-Zerfallsreihe, ²²⁸Ra und ²²⁴Ra aus der ²³²Thorium-Zerfallsreihe und ²²³Ra aus der ²³⁵Uran-Zerfallsreihe (Tab. 3-1) (Abb. 2-1).

Isotop	Halbwertszeit	Strahlungsart	Energie [MeV]
²²³ Ra	11,2 d	α	5,4-5,7
²²⁴ Ra	3,64 d	α	5,68, 5,45
²²⁶ Ra	1622 a	α	4,79
²²⁸ Ra	5,7 a	β⁻	0,012

 Tab. 3-1: Die vier natürlich vorkommenden Radiumisotope, die Art ihrer Strahlung mit zugehörigen Energien und die Halbwertszeiten.

Aufgrund seiner hohen Halbwertszeit ist das Radiumisotop²²⁶Ra das bedeutendste der vier natürlich vorkommenden Nuklide (MOLINARI & SNODGRASS 1990).

3.4 Radium in der Umwelt

Wie im vorherigen Kapitel beschrieben, entstehen die verschiedenen Radiumisotope als Zerfallsprodukte von Thorium und Uran. Daher findet sich Radium in Mineralien und Gesteinen zusammen mit seinen Mutternukliden. Wie in Kap. 3.1 aufgeführt, wurde Radium erstmals aus Uranerzen isoliert. Anschließend wurde es in weiten Teilen der Umwelt nachgewiesen. In größeren Mengen konnte es in den 50er Jahren als Folge der Uranindustrie in der Umwelt gefunden werden (TSIVOGLOU et al. 1958). Spätere Untersuchungen fanden weitere Umweltbelastungen durch Uranbergbau in Form von Wasserkontaminationen durch Radium (HAVLíK 1970). Ebenfalls erhöhte Radiumaktivitätskonzentrationen wurden in Wässern und Böden im Einflußbereich von Phosphatindustrien beobachtet (KIRCHMANN et al. 1973).

3.5 Geochemie

Radium bildet keine eigene Mineralien. Es kann lediglich andere Elemente diadoch ersetzen oder es befindet sich in Stör- und Fehlstellen von Uranmineralien. Auslaugungsvorgänge bei der Verwitterung von Mineralien und Gesteinen können eine Trennung von Radium und seinen Mutternukliden bewirken. So gelangt Radium in die wasserhaltigen Kapillaren der Gesteinen und von dort aus in Gravitationswässer, zirkulierende Grundwässer und in Oberflächenwässer. Der Chemismus von Radium in Tiefenwässern (Grundwässern) wird detailliert in Kap. 5.2 beschrieben.

3.6 Aufnahme durch den Menschen

Die zwei Aufnahmewege von Radium in den menschlichen Körper sind Ingestion und Inhalation. Ein gewisser Anteil des aufgenommenen Radiums wird mit dem Blut transportiert. Der wesentliche Anteil wird zügig ausgeschieden und der im Körper verbleibende Anteil zu ca. 85 % in den Knochen abgelagert. Dort kann Radium das in den Knochen enthaltene Calcium verdrängen und an dessen Stelle vor allem bei Kleinkindern mit aktivem Knochenbau (SCHMIDT 1994) im Knochen verbleiben (STATHER 1990). Die kritischen Knochenteile sind dabei die Knochenoberfläche und das rote Knochenmark. Sind ca. 12 bis 100 µg Radium für längere Zeit im Körper deponiert, kann es zu Spätschäden durch die erzeugte α -Strahlung kommen (HAUSCHILD 1973). Die natürliche Strahlenexposition auf die inneren Organe eines Menschen von innen wird zu einem großen Anteil durch ²²⁶Ra und seinen Töchternukliden verursacht (BERLICH & GLÖBEL 1985).

4 Geologie und Hydrogeologie der Untersuchungsgebiete

Im Rahmen dieser Arbeit wurden Radionuklidmobilitäten in zwei bergbau-beeinflußten Gebieten untersucht. Beide Untersuchungsgebiete liegen im niederrheinisch-westfälischen Steinkohlengebiet, dem sogenannten Ruhr-Revier.

4.1 Geologischer Überblick

Das niederrheinisch-westfälische Steinkohlengebiet, das zum paralischen Steinkohlengürtel Nordwesteuropas gehört, ist ein Teil der subvariszischen Saumtiefe, die mit mächtigen Molasse-Sedimenten des Oberkarbon, gefüllt ist.

Geologisch gehört der Nordteil des Ruhr-Reviers zum Münsterländer Becken, wobei die Schichtenfolge nach Norden immer tiefer abtaucht. Begrenzt wird es im Osten durch das Lippstädter- und im Westen durch das Krefelder-Gewölbe. Die natürliche Grenze im Süden ist das zutagetretende flözführende Oberkarbon (DROZDZEWSKI et al. 1980).

Die Mächtigkeit des Deckgebirges nimmt nach Norden hin beträchtlich zu. Nördlich einer W-E streichenden Linie durch die Städte Mülheim – Essen – Bochum – Dortmund wird der größte Teil des Steinkohlengebirges durch Oberkreide Sedimente überdeckt. Dagegen treten am Niederrhein neben Zechstein- und Bundsandsteinablagerungen vorwiegend oligozäne Deckschichten auf (Abb. 4-1).

Abb. 4-1: Geologische Übersichtskarte des Ruhr-Reviers mit abgedecktem Quartär (HAHNE & SCHMIDT 1981).

4.1.1 Steinkohlengebirge

Die oberkarbonische Schichtenfolge setzt sich vorwiegend aus klastischen Sedimenten unterschiedlicher Korngröße zusammen. Ein charakteristischer Zyklus beginnt meist mit einem mehr oder weniger stark durchwurzelten Boden, der aus Ton- oder Siltsteinen aufgebaut ist. Darauf folgt ein Kohleflöz, das wiederum von feinklastischen Sedimenten überdeckt wird. Dies können sowohl Ton als auch Siltsteine sein, welche unter dem Sammelbegriff Schieferton zusammengefaßt werden. Dieser Begriff beruht nicht auf einer tektonischen Schieferung, sondern wurde aufgrund der häufig feingebänderten Schichtung eingeführt.

Unregelmäßig kommt es zur Einschaltung konglomeratischer Sandsteine, die je nach Sortierung und Korngröße aus Flußrinnen oder Deltas abgelagert wurden (WEDEWARDT 1995). Durch Einlagerungen von inkohlten Pflanzenresten bekommt das Sediment ein streifiges Aussehen.

Tektonik und Lagerungsverhältnisse

Die flözführenden Oberkarbon-Serien wurden während der asturischen Phase der variszischen Gebirgsbildung in WSW-ENE streichende (ca. 60°) Hauptsättel und –Mulden sowie einer Vielzahl von Spezialfalten gefaltet, wobei die Faltungsintensität in nordwestlicher Richtung abnimmt (HESEMANN 1975). Daher sind die Schichten im Norden in weiten Bereichen flach gelagert.

In vertikaler Richtung kennzeichnet ein tektonischer Stockwerkbau das Ruhrkarbon, der sich in drei Stockwerke, deren Übergänge in vertikaler und lateraler Richtung fließend sind, unterscheiden läßt. Das obere Stockwerk ist charakterisiert durch eine flache Lagerung der Schichten mit weitspannigen Falten. Im mittleren Stockwerk sind die Falten kurzspanniger. Im Gegensatz zum oberen und unteren Stockwerk, in denen es nur wenige Überschiebungen gibt, treten im Mittleren zahlreiche Überschiebungen auf. Das untere Stockwerk zeichnet sich durch Spezialfalten aus (DROZDZEWSKI 1980).

Eine weitere tektonische Untergliederung erfolgt durch Quer- und Diagonalstörungen. Allerdings gibt es bis heute kein allgemeingültiges Ergebnis über die Altersstellung der Bruchtektonik, die sich bis in die Gegenwart fortsetzt. Entlang der Störungsbahnen entstanden während des Oberkarbon lokale, hydrothermale Blei-Zink-Vererzungen, die im Bereich der Zeche *Auguste Victoria* im Zeitraum 1938 bis 1962 abgebaut wurden (BUSCHENDORF et al. 1951).

Die Richtung der Klüfte steht im genetischen Zusammenhang zum tektonischen Bau. Durch Auflockerung des Gebirges, zum Beispiel unter Abbaueinwirkung, öffnen sich diese Klüfte, wobei es zu verbesserten Wasserwegsamkeiten kommen kann.

4.1.2 Deckgebirge

Das Steinkohlengebirge wird bis auf den südlichen Teil des Ruhr-Reviers von Deckgebirgsschichten überlagert (Abb. 4-2). Die ältesten Schichten, welche aus einer Wechselfolge von Tonen, marinen Evaporiten (Anhydrit bzw. Gips, Steinsalz) und Plattendolomit bestehen, gehören dem Zechstein an. Vereinzelt haben sich am östlichen Beckenrand

100 m mächtige, aus porösen Kalken und Dolomiten bestehende Riffe gebildet, die direkt auf dem Karbon lagern (SCHLIMM & THIERMANN 1988). Im Hangenden folgen Schichten des unteren und mittleren Buntsandstein mit mehr oder weniger verfestigten, fein- bis mittelkörnigen Sand- und Tonsteinen, wobei der tonige Anteil nach Osten zunimmt. Die Basis des oberen Buntsandstein bildet das aus geringmächtigen Anhydrit-Bänken und Tonschichten zusammengesetzte Röt-Salinar. In diesem sind weiter nördlich am Niederrhein Steinsalzablagerungen bekannt. Der Übergang zum Muschelkalk kündigt sich durch vermehrtes Auftreten von Mergelbänken im Hangenden an. Ablagerungen des Keuper und des Jura sind nur lokal in Gräben erhalten geblieben. Die wichtigsten Deckgebirgseinheiten stellen aufgrund ihrer flächendeckenden Verbreitung und der nach Norden zunehmenden Mächtigkeit, die Oberkreide-Schichten dar. Im Norden bildet der Flammenmergel, der bereits im Alb abgelagert wurde, die Basisschichten. Im Süden werden diese von einem basal konglomeratisch ausgebildeten Glaukonit-führenden Sandstein (Essener Grünsand) gebildet. Den Basisschichten aufgelagert sind Kalk- und Kalkmergelsteine (Cenoman). Über den Schichten des Cenoman folgen die Plänerkalke (überwiegend kalkige Mergelsteine und tonige Kalksteine) des Turon, in denen zwei glaukonitische Sandstein-Horizonte (Bochumer und Soester Grünsand) eingelagert sind.

Abb. 4-2: Aufbau der Deckgebirgsschichten von Westfalen von Westen nach Osten im nördlichen Ruhr-Revier (aus HAHNE & SCHMIDT 1982).

Die Mächtigkeiten der abgelagerten Cenoman- und Turon-Schichten nehmen in südwestlicher und westlicher Richtung ab. In den Stufen Coniac bis unterer Mittelsanton kommt es zu Ablagerungen einer einheitlich aufgebauten Schichtenfolge aus Mergelsteinen (Emscher-Mergel), die im nördlichen Revier Mächtigkeiten bis zu 500 m erreichen. Im höheren Santon und Campan überwiegt eine sandig-mergelige Fazies, zu der unter anderem auch die Kalksandsteinbänke der Recklinghäuser Sandmergel und die Haltener Sande gehören.

Nur im Niederrhein-Gebiet treten Schichten des Tertiär auf. Die mesozoischen Schichten werden transgressions-diskordant von oligozänen Sanden überlagert, denen sich im Hangenden Ton- und Siltsteine anschließen.

Die auftretenden quartären Ablagerungen bestehen hauptsächlich aus eiszeitlichen Sedimenten sowie aus Terrassensanden und -schottern (HAHNE & SCHMIDT 1982).

Tektonik und Lagerungsverhältnisse

Die Deckgebirgsschichten lagern diskordant auf dem Karbon. In nördlicher bis nordwestlicher Richtung, in die sie flach einfallen, ist eine stetige Mächtigkeitszunahme zu verzeichnen.

Auch in den Deckgebirgsschichten sind Querstörungen vorhanden, allerdings sind die Verwerfungsbeträge meist geringer als im Karbon. Im Westen und Nordwesten haben salztektonische Vorgänge in Bereichen mit Zechsteinunterlagerungen zu Lagerungsanomalien geführt. Kreidemulden und -sättel sind aus dem Bereich der Lippe-Mulde bekannt, deren Entstehung im Zusammenhang mit der Aufwölbung des Teutoburger Waldes gesehen wird (HAHNE & SCHMIDT 1982).

4.2 Hydrogeologischer Überblick

Im Ruhr-Revier müssen drei unterschiedliche Tiefenwasserprovinzen nach Auftreten und Mächtigkeit der Deckgebirgsüberdeckung unterschieden werden (Abb. 4-3).

Abb. 4-3: Schematischer Schnitt durch das Ruhr-Revier (nicht maßstäblich) mit den drei Grundwasserprovinzen (nach HAHNE UND SCHMIDT 1982).

A Im südlichen deckgebirgsfreien Raum des Ruhr-Reviers infiltrieren meteorische Wässer direkt in das aufgelockerte Steinkohlengebirge. Die geringmächtigen quartären Deckschichten bilden nur unbedeutende Grundwasservorkommen, welche nur in den Terrassenablagerungen der Ruhr und ihrer Nebenflüsse zu finden sind (SCHMIDT 1981).

Die den Grubenbauen zusitzenden Wassermengen sind stark niederschlagsabhängig und erreichen Mengen von 40 m³ * min⁻¹ (WEDEWARDT 1995). Bei diesen oberflächennahen Wässern handelt es sich um gering mineralisierte Hydrogencarbonat-Wässer (Gesamtmineralisation meist < 1000 mg/L). Bis zu einer Teufe von ca. 500 m treten lokal auch Sulfatwässer auf (Gesamtmineralisation einige 1000 mg/L) (SCHMIDT 1981). Die erhöhten Sulfatkonzentrationen sind durch Pyritoxidation bedingt, die im durch Abbaueinwirkung zerklüfteten Gebirge verstärkt abläuft (JÄGER et al. 1990).

B Im mittleren Revier mit Deckgebirgsmächtigkeiten von bis zu 400 m treten vermehrt Wässer vom NaCl-Typ auf. Durch den Steinkohlenabbau kommt es örtlich zum Zerreißen des Grundwasserstauers des Cenoman und des geringmächtigen Emschermergel und somit partiell zum Zufluß von Hydrogencarbonat-Wässern. In dieser Zone existiert noch eine stark verzögerte, bis zu mehreren Monaten dauernden Niederschlagsabhängigkeit der anfallenden Grubenwässer. Bereits in diesem Gebiet muß aufgrund des Sulfatgehaltes zwischen zwei Sole-Aquiferen unterschieden werden. Während die Deckgebirgssole aus den Schichten des Turon zwischen den Aquitarden des Cenoman und des Emschermergel Sulfatgehalte aufweist, ist die Karbonsole unter dem wasserstauenden Cenoman-Mergel sulfatfrei (MICHEL 1994).

C Im nördlichen Revier mit mächtigen Deckgebirgsschichten (> 400 m) stammen die Grubenwässer hauptsächlich aus dem Steinkohlengebirge, ein Niederschlagseinfluß ist hier nicht mehr zu erkennen. Es handelt sich um Wässer vom NaCl-Typ, deren Chloridkonzentrationen Maximalwerte von 128.000 mg/L erreichen (WEDEWARDT 1995). Das Bestreben des Bergbaus liegt auf einer möglichst bruchlosen Senkung des Deckgebirges, um die wasserstauenden Schichten der Oberkreide zu erhalten (MICHEL 1994). Es kommt daher auch nur vereinzelt zu Deckgebirgszuflüssen (WEDEWARDT 1995).

Zusätzlich setzen den Grubenbauen, insbesondere entlang von Querstörungen, Tiefenwässer aus dem tieferen Grundgebirge zu. Nach MICHEL (1994) beträgt ihr Anteil an den Grubenwasserzuflüssen maximal 1 %. Diese thermalen Tiefensolen weisen neben erhöhten Chloridkonzentrationen (PATTEISKY 1954) auch hohe Konzentrationen der Erdalkalien, insbesondere Barium (ca. 2550 mg/L) (WEDEWARDT 1995) auf.

Die Gesteinsdurchlässigkeit der diagenetisch hoch verfestigten karbonischen Sandsteine spielt nur eine untergeordnete Rolle. Eine Ausnahme sind die Sandsteine des jüngeren Oberkarbon, wo in den Horster-, Dorstener- und Lembecker-Schichten Porenvolumen von 10 - 15 % gemessen wurden. Dagegen beträgt das nutzbare Porenvolumen der Sandsteine des unteren Oberkarbon 1 bis 3 % und das der Schiefertone unter 1 %. Die Wasserführung findet in erster Linie auf Klüften und Störungen statt. Unter Abbaueinwirkung kommt es zur Auflockerung des Gebirges, wodurch zusätzliche Klüfte geöffnet werden. Weitere

Wasserwegsamkeiten werden durch bergbauliche Hohlräume, wie z. B. ausgekohlte Strebe oder abgeworfene Strecken, geschaffen (JÄGER et al. 1990).

Daneben kommt der Tektonik eine besondere Bedeutung zu. Das Ruhrkarbon weist neben einer starken Faltung zahlreiche Querstörungen auf, die das Gebirge in Horste und Gräben zerlegen. Hydrologisch sind vor allem die großen Querstörungen, die bis zu mehreren hundert Metern Saigerverwurf erreichen, wirksam. Einen Sonderfall stellen die vererzten Sprünge des Ruhr-Reviers da. Die Wasserwegsamkeit ist hier im allgemeinen größer als bei nicht vererzten Störungen (SCHMIDT 1981).

Regionale Hydrogeologie des Münsterländer Beckens

Nach einer hydrologischen Systemanalyse bildet das Münsterländer Becken ein Dreischicht – Aquifersystem (STRUCKMEIER 1990). Es unterscheidet sich in:

- einen unteren Aquifer, der an den Rändern ausstreicht und zum Beckeninneren hin abtaucht
- eine nahezu undurchlässige Trennschicht (Emschermergel)
- mehrere lokal auftretende, oberflächennahe Aquifere

Innerhalb des Münsterländer Beckens können zwei benachbarte Subsysteme mit unterschiedlicher chemischer Zusammensetzung der Grundwässer unterschieden werden. Dies sind zum einen der zentrale, tiefe Bereich, der von einem Salzwasser / Sole-Subsystem eingenommen wird und zum anderen die randlichen Bereiche mit einem Süßwassersubsystem. Beide Systeme stehen miteinander im dynamischen Gleichgewicht, wobei das randliche Süßwassersystem dem zentralen System aufsitzt.

Das Süßwasser-Subsystem wird durch den hohen Grundwassereintrag über den großflächigen Ausbiß der Kalk- und Mergelsteine des Cenoman und Turon sowie durch die Niederschläge im Einzugsgebiet gespeist. Es überschichtet das Sole-Subsystem etwa entlang des Ausbisses des Emschermergels.

Das Salzwasser-Subsystem wird durch die undurchlässige Trennschicht des Emschermergels vor Aussüssung durch infiltrierendes Niederschlagswasser geschützt. Die Solen verharren aufgrund ihrer höheren Dichte in den Aquiferen des Turon. In beiden Subsystemen herrschen gespannte bis artesische Verhältnisse. Durch die langjährige intensive Grubenwasserhebung der Solen durch den Steinkohlenbergbau ist es zu tiefgreifenden Veränderungen beider Teilsysteme gekommen. Durch die Verlagerung der Süßwasser - Salzwassergrenze sind zahlreiche Solequellen, einst Zeuge der artesischen Verhältnisse, am Emschermergelrand versiegt. Dies zeigt, daß sich das randliche Süßwassersystem auf Kosten des zentralen Solesystems zur Mitte des Beckens hin ausdehnt (STRUCKMEIER 1990).

5 Genese und chemische Zusammensetzung der Grubenwässer

5.1 Genese

Schon im letzten Jahrhundert beschäftigten sich unter anderem schon HUYSSEN (1855) und JÜTTNER (1887) mit den "Soolquellen" in Westfalen. Über die Herkunft der Tiefenwässer im Ruhrgebiet existiert seit 100 Jahren eine angeregte Diskussion. KRUSCH (1904) war einer der Ersten, der hohe Salzgehalte in Abwässern von Zechen, die in der Nähe von Zechsteinformationen Kohle abbauten, beobachtet hat. Er bringt den erhöhten Salzgehalt mit Zechsteinevaporiten in Verbindung. Die ebenfalls beobachteten hohen Bariumkonzentrationen führte er, wie auch ZIMMERMANN (1926) auf eine Auslaugung im Buntsandstein zurück. Die letzten umfangreichen Untersuchungen der Tiefenwässer fanden neben WEDEWARDT (1995) vor allem in den 50er und 60er Jahren durch BAECKER (1953), PATTEISKY (1954), SEMMLER (1960) FRICKE (1961, 1964), KÜHN (1964), PUCHELT (1964) und MICHEL (1964, MICHEL et al. 1974) statt.

Über die Herkunft der Grubenwässer bildeten sich unterschiedliche Theorien heraus. Zum einen existiert die klassische Lehrmeinung über die Subrosion der Salzlagerstätten des Zechstein, Röt und Malm im Norden und Nordwesten des Münsterländer Beckens und Migration der Ablaugungssolen auf Störungsbahnen und Kluftzonen (KUKUK 1933, FRICKE 1961).

Demgegenüber unterscheidet PATTEISKY (1954) zwischen bariumfreien Solen, die nach ihm nicht häufig vorkommen, und bariumhaltigen Solen. Die bariumfreien Solen spricht er als Subrosionssolen, die bariumhaltigen Solen als juvenile Wässer an, wobei das Barium aus der Tiefe kommt.

SEMMLER (1960) stimmt PATTEISKY (1954) zu, deutet die Solen allerdings als Mischung von Subrosionssolen und thermalen Tiefenwässern.

Das Vorhandensein unterschiedlicher Grundwassertypen in verschiedenen Regionen und Tiefen spricht laut MICHEL (1963) für schichtgebundenes konnates Wasser. PUCHELT (1964) vertritt die Ansicht, daß es sich bei den Solen um diagenetisch verändertes, fossiles Meerwasser handelt. Die hohe Gesamtmineralisation erklärt er durch Ionensiebfiltration mittels Tonlagen, und die erhöhten Bariumgehalte führt er auf Sulfatreduktion zurück.

Auch SCHMIDT (1981) sieht das Grubenwasser als fossiles Meerwasser an. Eine hohe Bedeutung spricht er den thermalen Tiefensolen zu. MICHEL (1994) bezeichnet die Solen als "konnates Wasser im weitesten Sinne des Wortes". Er beschreibt ein Wasser, das an Ort und Stelle gebildet wurde, jedoch im Laufe der Zeit einer chemischen Veränderung unterlag. Dies beinhaltet unter anderem die Infiltration von Niederschlägen und die Zufuhr migrierender Subrosionssolen.

Eine sehr umfangreiche Arbeit über die Herkunft und Genese der Grubenwässer lieferte WEDEWARDT (1995). Er deutet die salinaren Tiefenwässer als Ablaugungssolen der Salzlagerstätten des Niederrheins.

Es ist aber bis heute noch nicht gelungen, die Genese der Tiefenwässer eindeutig zu klären. Für die hohen Salzfrachten der Tiefenwässer gibt es drei Erklärungsmöglichkeiten, die nachfolgend vorgestellt werden.

- <u>Evaporationsprozesse</u> führen, neben ausgefallenen Salzen, zu hoch salinaren Restlösungen (Mutterlaugen). Diese Mutterlaugen sind an manchen Elementen verarmt, andere sind aber darin wieder angereichert. Bei der Identifikation der Restlösungen kommt dem Bromid eine besondere Bedeutung zu. Da Bromid nur geringfügig in Minerale eingebaut wird und keine eigenen Salze bildet, können Rückschlüsse auf den Grad der Eindampfung über die Bromidkonzentration des Porenwassers gezogen werden (CARPENTER 1978). Die Bromidkonzentration in rezentem Meerwasser beträgt ca. 67 mg * L⁻¹ (MATTHES 1990).
- Durch infiltrierende Niederschläge oder Meerwasser kann es im geologischen Untergrund zur <u>Ablaugung von Evaporiten</u> (meistens Halit) kommen. Diese Subrosionssolen zeichnen sich durch charakteristische Ionenverhältnisse aus, wobei die Verhältnisse von Natrium zu Chlorid und von Bromid zu Chlorid besonders wichtig sind. Das Natrium-Chlorid-Verhältnis beträgt in diesen Solen ca. 1,0 und im Meerwasser 0,87. Für die Entstehung der Tiefenwässer des Ruhr-Reviers können zwei Salzvorkommen in Betracht gezogen werden. Zum einen die westlich gelegenen Zechsteinsalze am Niederrhein und zum anderen die weiter entfernten Zechstein-, Röt- und Malm-Salze in nördlicher und nordöstlicher Richtung.

Bei der Ablagerung von Sedimenten kommt es zum Einschluß von Meerwasser. Diese Porenwässer werden auch als konnate Wässer bezeichnet. Durch diagenetische Prozesse werden diese Wässer, vor allem aus Tonen, in darüberliegende Schichten ausgepreßt und unterliegen durch verschiedenen Gesteins-Wasser-Wechselwirkungen, wie z. B. Adsorption, Desorption, Lösung oder Fällung, hydrochemischen Veränderungen. Durch Verfestigung der Tonsteine kommt es durch Tonmembraneffekte und einer Art Membranfiltration zur <u>Aufkonzentrierung der Porenwässer</u>. Die hohen Salinitäten der Tiefenwässer erfordern sehr hohe Drücke, die bei kleinsten Bewegungen des Gesteins wieder abgebaut würden. Nach WEDEWARDT (1995) ist die Genese der Tiefenwässer des Ruhr-Reviers durch Tonmembraneffekte als sehr unwahrscheinlich anzusehen.

Auch eine Auslaugung des Gesteins reicht allein nicht aus, um die hohen Salzgehalte der Tiefenwässer zu erklären.

Im Ruhr-Revier treten unterschiedliche Solen auf, z. B. unterscheidet MICHEL (1963) zwei Solen im Zentrum des Münsterländer Beckens. Dort tritt zum einen eine sulfathaltige, höher gelegene und eine sulfatfreie Sole auf. Auch PUCHELT (1964) berichtet über unterschiedliche Solen auf ein und derselben Zeche.

Ein wichtiges Genesemerkmal hoch mineralisierter Wässer ist, wie schon erwähnt, die Bromidkonzentration im Verhältnis zur Chloridkonzentration. Tab. 5-1 zeigt die zu vergleichenden Br⁻/Cl⁻-Verhältnisse.

Wasser	Br ⁻ /Cl ⁻
Meerwasser	0,0034
Mutterlauge	> 0,0034
Ablaugungssole	< 0,0034
Ablaugungssalz	0,001-0,004 ^x

Tab. 5-1: Br/Cl-Verhältnisse unterschiedlicher Wässer (RITTENHOUSE 1967).

^x: je nach Bromidkonzentration

Ablaugungssolen besitzen demnach kleinere Br⁻/Cl⁻-Verhältnisse als Mutterlaugen oder Meerwasser, da das Bromid in Mutterlaugen angereichert wird. Subrosionssolen sind somit nicht, wie MICHEL (1974) vermutet, durch höhere Bromidkonzentrationen, sondern durch geringe Bromidkonzentrationen gekennzeichnet, da Halit, das häufigste Ablaugungssalz, wenig Bromid enthält.

WEDEWARDT (1995), der umfangreiche Grubenwasseranalysen durchführte, kommt zu dem Schluß, daß allein auf der Basis des Br⁻/Cl⁻-Verhältnisses die Grubenwässer als Ablaugungssolen mit einem geringen Restanteil an Mutterlauge anzusehen sind. Für reine Ablaugungssolen ist das von ihm ermittelte Verhältnis etwas zu hoch.

Ein weiteres wichtiges Indiz ist das Molekularverhältnis von Natrium zu Chlorid, das bei Ablaugungssolen von Halit ca. 1 und bei Meerwasser 0,87 beträgt. Laut WEDEWARDT (1995) schwankt dieses Verhältnis zwischen 0,65 und 1,19 mit einem Mittelwert von 0,86. Die höheren Werte wurden vermehrt im Niederrhein-Gebiet und somit am dichteren Kontakt zum Ablaugungssalz ermittelt. Die im Westfälischen Raum analysierten niedrigeren Werte können durch Calcium-Austausch erklärt werden. Die Solen des Niederrheingebietes weisen zudem höhere Sulfatgehalte auf, was auf einen Kontakt mit dem Anhydritwall der Niederrheinischen Salzpfanne hinweist. Die Sulfatgehalte können aber durch verschiedene Prozesse verändert werden. Zum einen werden sie durch bakterielle Sulfatreduktion vermindert und zum anderen durch Pyritoxidation erhöht.

Für sich allein genommen sind die Molekularverhältnisse keine beweiskräftigen Indizien für die Herkunft der Wässer. Daher muß zusätzlich die Entstehungsgeschichte der Sole mit erdgeschichtlichen Zyklen in Verbindung gebracht werden (MICHEL 1994). Ein solcher Zyklus beginnt mit einer Meerestransgression und der Bildung von Sedimenten, Sedimentwasser und Porenwasser. Die anschließende Regression und Abtragung führt zur Bildung von Infiltrationswasser. Mit der folgenden Meerestransgression beginnt der nächste Zyklus.

Im Niederrhein-Gebiet lassen sich fünf, im Westfälischen Raum zwei hydrogeologische Zyklen unterscheiden.

In beiden Gebieten begann der erste Zyklus bereits im Devon und reichte bis ins Westfal. Bis ins Namur herrschten marine Verhältnisse vor, gefolgt von einer sudetischen Phase, in der eine Sedimentation mit gelegentlich marinen Einschaltungen einsetzte. Vor allem im Westfal bildeten sich unter humidem Klima die Kohleflöze. Die marinen Porenwässer wurden durch infiltrierende Wässer teilweise verdrängt, so daß die Poren und Kluftwässer des Oberkarbons hauptsächlich aus Süßwasser bestanden. Während der asturischen Gebirgsfaltung fand eine Hebung der Sedimente statt. Nach PILGER (1956) erfolgte in dieser Phase die Ausscheidung der Erze im Ruhrgebiet.

In dieser Phase beginnt auch die unterschiedliche geologische Entwicklungsgeschichte der Untersuchungsgebiete, die nach PILGER (1956) wie folgt beschrieben werden können:

Im <u>Niederrhein-Gebiet</u> dauerten die kontinentalen Verhältnisse nur bis zur Zechstein-Transgression an. Die zunehmend arider werdenden Klimaverhältnisse bis zur Transgression lassen eine Versalzung des oberflächennahen Grundwassers vermuten.

Der zweite Zyklus beginnt mit der Transgression des Zechstein-Meeres. In diesem Zyklus kam es unter Meeresregime bis zum Ende des Muschelkalk, mit Unterbrechung im unteren Buntsandstein, zur Bildung von konnaten Porenwässern in den frisch abgelagerten Sedimenten. Während der Bildung der mächtigen Evaporitlager blieben große Mengen hoch-konzentrierter, mariner Reliktlösungen übrig, die aufgrund ihrer hohen Dichte meist in tiefere Schichten absanken. Nach der Ablagerung kam es zu Ablaugungsprozessen im Untergrund und zur Mobilisierung dieser Subrosionssolen. Die Subrosion der Zechsteinsalze ist während der gesamten Folgezeit anzunehmen. Somit sind im zweiten Zyklus marine Porenwässer, Mutterlaugen und Subrosionssolen entstanden. Während der kurzen Festlandsperiode im Keuper sind aufgrund des ariden Klimas vermutlich nur geringe Mengen Sedimentationswasser durch Infiltrationswasser verdrängt worden.

Der dritte Zyklus setzt mit der Rhät-Transgression ein, wobei die marinen Verhältnisse bis zum Malm andauerten. Die folgende Festlandsperiode, die durch humides Klima gekennzeichnet war, reichte bis zur Unterkreide. Die Poren- und Kluftwässer bestanden am Ende des dritten Zyklus vorwiegend aus höher mineralisierten Wässern, wobei oberflächennah Süßwasser infiltriert wurde.

Der vierte Zyklus, die Cenoman-Transgression, erfaßte nicht das gesamte Niederrhein-Gebiet, sondern vermutlich nur den Nordwesten und Westen dieser Region.

Im fünften Zyklus, der mit der Oligozän-Transgression begann, wurden wieder im gesamten Niederrhein-Gebiet Sedimente mit marinen Porenwässern abgelagert. Seit dem oberen Tertiär herrschten terrestrische Bedingungen vor, die mit Unterbrechung in den Kaltzeiten, in denen keine größeren Grundwasserneubildungen zu erwarten sind, bis heute die Bildung meteorische Infiltrationswässer zur Folge haben.

Im <u>Westfälischen Raum</u> begann der zweite Zyklus mit der Cenoman-Transgression, die bereits im Alb einsetzte. Dabei wurden mächtige Kalk- und Mergelschlämme mit großen Mengen salinarer Porenwässer abgelagert, die im Zuge der Diagenese ausgepreßt wurden. Es ist zu vermuten, daß ein Teil der im Karbon infiltrierten Süßwässer durch marine Wässer ausgetauscht wurde. Das Gebiet wurde während der saxonischen Bruchtektonik festländisch. Dabei kam es während des Tertiär und Quartär zur Infiltration meteorischer Wässer, wobei ein kompletter Austausch aus hydraulischen Gründen nicht möglich war.

Die vorgestellten Entwicklungsräume dürfen jedoch aus hydrogeologischer Sicht nicht getrennt werden, so daß die Subrosionssolen des Niederrheingebietes auch einen hydrochemischen Einfluß auf den Westfälischen Raum ausüben.

WEDEWARDT (1995) kommt nach Auswertung aller Daten zu dem Schluß, daß die hohe Mineralisierung der Tiefenwässer durch Subrosion der Zechsteinsalze am Niederrhein verursacht wird. Zusätzlich zu diesen Subrosionssolen sind vor allem während der Kreide marine Porenwässer entstanden. Ebenfalls treten Tiefenwässer mit Meerwasserkonzentrationen auf, wobei es sich aber vermutlich um verdünntes hoch mineralisiertes Tiefenwasser handelt. Die nach Norden zunehmenden Salinitäten sind auf das Absinken der Karbonschichten zurückzuführen und somit eine Funktion der Tiefe (SEMMLER 1960).

5.2 Chemismus der Tiefenwässer

Die hochmineralisierten Solen des Ruhr-Reviers sind meist Natriumchlorid-Wässer, deren Kochsalz-Sättigungsgrad ca. 60 % beträgt. Zwischen einer Teufe von – 300 m NN bis – 450 m NN nimmt der Salzgehalt linear zu (WEDEWARDT 1995). Das häufigste Kation in den Tiefenwässern ist <u>Natrium</u> mit einer Maximalkonzentration von 73.000 mg/L (WEDEWARDT 1995). Die hohen Natriumkonzentrationen können nur durch Anreicherungs- oder Subrosionsprozesse erklärt werden. Eine Veränderung der Natriumkonzentration kann durch Ionenaustauschprozesse an Tonmineralen im Laufe der Diagenese stattfinden, wobei häufig Natrium durch Calcium ausgetauscht wird (MATTHES 1990).

Daneben treten noch <u>Calcium</u> als zweithäufigstes Kation und <u>Magnesium</u> in bedeutenden Konzentrationen auf. Im Gegensatz zum Calcium, das generell in hohen Konzentrationen auftritt, unterschreitet die Magnesiumkonzentration häufig die in Meerwasser enthaltene Konzentration. Eine Erklärung dafür liefert die Dolomitisierung von Calcit im Spätstadium der Diagenese, wobei Calcium durch Magnesium ersetzt wird (Gl. 18) (CARPENTER 1978, WEDEPOHL 1978).

$$2 \operatorname{CaCO}_3 + \operatorname{Mg}^{2+} \Rightarrow \operatorname{CaMg}(\operatorname{CO}_3)_2 + \operatorname{Ca}^{2+}$$
 Gl. 18

In größeren Mengen ist auch <u>Kalium</u> enthalten, dessen Konzentration aber bei der Ionenbilanz keine Rolle spielt. Wie auch die Natriumkonzentration steigt die Kaliumkonzentration ebenfalls mit der Tiefe an. Das Verhältnis Natrium zu Kalium in den Tiefenwässern ist meistens größer als das in Meerwasser auftretende Verhältnis (WEDEWARDT 1995). Da Kalium leicht an Tonmineralen adsorbiert oder auch in Mineralgitter eingebaut wird, verarmen die Wässer stärker an Kalium als an Natrium.

Sowohl die <u>Barium</u>- als auch die <u>Strontium</u>konzentrationen sind vom Sulfatgehalt abhängig. Wie alle zuvor erwähnten Elemente nehmen auch die Barium- und Strontiumkonzentrationen mit der Tiefe zu, was im Falle des Bariums auf die bakterielle Sulfatreduktion zurückzuführen ist. Nach PUCHELT (1964) stammt das Barium aus Baryt, das durch Reduktion gelöst wird. Möglichkeiten der Herkunft von Strontium sind z. B. die Rekristallisation von Aragonit zu Calcit oder die Lösung von Coelestin (SrSO₄) (CARPENTER 1978). Die geringen Löslichkeiten der beiden Erdalkalisulfate werden durch bestimmte Chloride erhöht.

Das dominierende Anion in den Tiefenwässern ist das <u>Chlorid</u>, dessen Maximalkonzentration von WEDEWARDT (1995) mit 128.000 mg/L bestimmt wurde. Diese extrem hohen Chloridkonzentrationen können nur durch Ablaugungs- und Anreicherungsvorgänge, z. B. durch Tonmembraneffekte (PUCHELT 1964) erklärt werden.

Die <u>Sulfat</u>konzentrationen der Tiefenwässer hängen im wesentlichen von bakteriellen Vorgängen ab und stehen nicht mit der Gesamtmineralisation im Zusammenhang. Die Hauptquelle der Sulfatkonzentration ist die Oxidation von Metallsulfiden, vor allem die Pyritoxidation. Des weiteren können die Sulfatgehalte durch Subrosion von Evaporiten erhöht werden. Vermindert wird die Sulfatkonzentration durch Ausfällungen der schwerlöslichen Erdalkalisulfate.

Bei den Nebenbestandteilen treten vor allem <u>Eisen</u>, <u>Mangan</u> und <u>Zink</u> auf. Die Eisen- und Mangankonzentrationen variieren stark in den Wässern, allerdings treten beide Elemente nicht immer im gleichen Verhältnis auf (WEDEWARDT 1995). Zink tritt in den Tiefenwässern mit Maximalkonzentrationen von mehr als 10 mg/L (WEDEWARDT 1995) auf, wobei die Konzentrationen nicht tiefenabhängig sind.

Neben den beschriebenen Elementen beobachtete PATTEISKY (1954) eine erhöhte Radionuklidfracht der gehobenen Tiefenwässer. Grubenwasseranalysen von KLÖS (1979) und SCHWEER (1995) ergaben, daß die Nuklide ⁴⁰K, ²²⁶Ra, ²¹⁴Pb, ²¹⁴Bi, ²²⁸Ra und ²²⁸Th in den Tiefenwässern enthalten sind.

Uranisotope sind in den gehobenen Wässern nicht nachgewiesen worden. Dies ist darauf zurückzuführen, daß Uran unter den im Gesteinsverband herrschenden reduzierenden Bedingungen in der Oxidationsstufe +IV vorliegt und diese Verbindungen immobil sind (KEMSKI 1993, IVANOWICH & HARMON 1992).

Thorium, das ebenfalls zu den immobilen Elementen gehört (HURST et al. 1991), ist bis auf das Nuklid ²²⁸Th nicht in den Wässern enthalten. Das Thoriumnuklid ²²⁸Th ist vermutlich erst nach der Hebung der Tiefenwässer durch Zerfall seines Mutternuklides ²²⁸Ra nachgewachsen.

Als erstes Nuklid der ²³⁸U-Zerfallsreihe tritt ²²⁶Ra mit den ²²²Rn-Töchtern ²¹⁸Po, ²¹⁴Pb und ²¹⁴Bi auf. Aufgrund des niedrigen Löslichkeitsproduktes (10⁻²⁸ mol²/L²) fällt ²¹⁰Pb unter den herrschenden reduzierenden Bedingungen als Bleisulfid (PbS) aus. Auch im oxidierenden Milieu würde ²¹⁰Pb als Bleichlorid (PbCl₂) in den chloridhaltigen Grubenwässer ausfallen, somit kann aus dem Fehlen des ²¹⁰Pb kein Hinweis auf das Alter der Tiefenwässer gezogen werden.

Aus der Thoriumzerfallsreihe tritt als erstes das Isotop $\frac{228}{\text{Ra}}$ auf. Da sowohl KLÖS (1979) als auch SCHWEER (1995) die Grubenwässer γ -spektroskopisch untersucht haben, gibt es aufgrund der geringen Intensität der γ -Linien keine Angaben über die 224 Radiumaktivitätskonzentration. Es ist aber davon auszugehen, daß dieses Nuklid auch in den Wässern enthalten ist.

Die Radiumisotope ²²⁸Ra und ²²⁶Ra stehen nach SCHWEER (1995) in den Grubenwässern in einem konstanten Verhältnis von 0,5. Dieses Verhältnis wurde auch in hochmineralisierten Solen von Erdgasfeldern in karbonischen Gesteinen gefunden. Anders sieht die Nuklidverteilung in Solen von Erdölfeldern aus, wo ²²⁸Ra das dominierende Element ist (KOLB & WOJCIK 1995). Auch in den Grubenwässern des oberschlesischen Kohlenreviers wurden, im Gegensatz zu den Wässern des Ruhr-Reviers, andere Verhältnisse ermittelt. ²²⁸Ra liegt hier in vergleichbaren oder höheren Konzentration vor (²²⁸Ra/²²⁶Ra = 1-2) (WYSOCKA et al. 1996). Im oberschlesischen Kohlenrevier treten zwei unterschiedliche Tiefenwassertypen auf, zum einen Wässer, die Radium, Barium aber kein Sulfat enthalten (Typ A) und zum anderen solche, die Radium und Sulfat in Konzentrationen bis zu 5 g/L aber kein Barium beinhalten (Typ B). Das dominierende Radiumnuklid in den Typ B-Wässern ist ²²⁸Radium, wobei die Radiumaktivitätskonzentrationen geringer sind als in den Typ A-Wässern (LEBECKA et al. 1996).

Basierend auf dem ²²⁸Ra/²²⁶Ra-Verhältnis lassen sich nur sehr eingeschränkt Aussagen über die Herkunft und das Alter der Tiefenwässer machen. Das in Grundwässern mittlere Verhältnis von 1,7 (IVANOWICH & HARMON 1992), das auch in etwa dem durchschnittlichen Th/U-Verhältnis in Gesteinen entspricht, kann durch variable Thorium- und Uranaktivitätskonzentrationen in Gesteinen verändert werden. Das zum Zeitpunkt des Lösens herrschende Verhältnis wird durch die unterschiedlichen Halbwertszeiten permanent verändert. Die relativ kurze Halbwertszeit von 5,7 a des ²²⁸Ra im Gegensatz zu 1600 a des ²²⁶Ra führt zu einem immer kleiner werdenden Verhältnis.

Die hohen Radionuklidaktivitätskonzentrationen in den Grubenwässern können durch zwei Theorien erklärt werden. Die erste setzt das Vorhandensein einer Uran- und Thorium-Anomalie voraus. Dabei wird ²²⁶Ra durch Rückstoß-Effekte des α-Zerfalls (recoil) aus uranreichen Schichten freigesetzt. Eine "Uranquelle" müßte ²³⁴U an das zirkulierende Wasser durch recoil-Effekte abgeben. Ein Indiz, das gegen diese Theorie spricht, ist das Fehlen von ²²⁷Ac in den Tiefenwässern. Ein Urangehalt von beispielsweise 50 ppm entspricht unter Einbeziehung des üblichen ²³⁵U/²³⁸U-Verhältnis von ¹/₂₂ ca. 2 ppm ²³⁵U und diese Konzentration würde meßbare ²²⁷Ac-Aktivitätskonzentrationen nach sich ziehen (SURBECK 1991). Die zweite Theorie erklärt die Radionuklidaktivitätskonzentrationen über eine Auslaugung von Gesteinen mit "normalen" Uranaktivitätskonzentrationen, aber sie ist auch auf Gesteine mit erhöhten Uranaktivitätskonzentrationen anwendbar.

Die Radiumaktivitätskonzentrationen der Tiefenwässer setzen zunächst einmal die Freisetzung des Radiums aus den Mineralen voraus. Diese Freisetzung kann zum einen durch Lösung (Zerstörung der Minerale) und zum anderen durch Auslaugung (selektive Lösung einzelner Elemente aus Mineralen) erfolgen. Im Falle des Auslaugens wird Radium häufig an den umgebenen Gesteinsoberflächen, bevorzugt an Tonmineralen, adsorptiv gebunden. Durch Lösungsvorgänge würde auch Uran als Mutternuklid in Lösung gehen, unter den herrschenden reduzierenden Bedingungen aber wieder neue Minerale bilden. Das entstehende Radium wird auch in diesem Falle nach Migration an Mineraloberflächen adsorbiert (GMELIN 1977).

Unter oxidierenden Bedingungen geht Uran in Lösung, der Radiumtransport dagegen wird durch Adsorption an Hydroxiden erschwert (GMELIN 1977). Reduzierende Bedingungen begünstigen die Auslaugung von Radium aus Gesteinen.

Die Freisetzung des Radiums durch Auslaugungsprozesse untergliedert sich in folgende Schritte:

- durch recoil-Effekte gelangt Radium in die wassergefüllten Kapillaren der Gesteine und Minerale
- an der Grenzfläche Gestein/Wasser bzw. Mineralkorn/Wasser stellt sich ein Adsorptions/Desorptions-Gleichgewicht ein
- durch Diffusionsvorgänge stellt sich ein Gleichgewicht zwischen den Radiumaktivitätskonzentrationen im Kapillarwasser und im Porenwasser ein.

Die an den Gesteinsoberflächen adsorbierten Radiumionen können durch Ionenaustausch in Lösung gehen. Die desorbierte Radiummenge hängt stark von der Gesamtmineralisation und der Zusammensetzung der zirkulierenden Wässer ab (YU CHIA CHUNG 1981). Besonders Barium ist durch seine chemische Ähnlichkeit zum Radium in der Lage, dieses von den Adsorberplätzen zu verdrängen. Dieser Einfluß auf die Radiumaktivitätskonzentration nimmt in folgender Reihenfolge der Kationen $Ba^{2+} > Pb^{2+} > Sr^{2+} > Ca^{2+} > Na^{+} > K^{+}$ ab (GMELIN 1977). Zweiwertige Kationen besitzen demnach ein größeres Bestreben zum Ionenaustausch als einwertige (WACHINSKI & ETZEL 1997). Laut KUSCHKOWITZ (1998) werden Radiumionen ca. dreimal besser durch Barium- als durch Natriumionen mobilisiert. Dieses zeigen auch Untersuchungen von RITCEY (1990), der folgende Reihe zur Mobilisierbarkeit durch Elutionslösungen aufstellte.

 $BaCl_2 > SrCl_2 > CaCl_2 > HCl > KCl > NaCl \cong MgCl_2 \cong H_2O$

Bereits in Lösung gegangene Radiumionen können wieder readsorbiert oder als schwerlösliche Sulfate ausgefällt werden (DICKSON 1985). Jedoch gibt es eine Abhängigkeit zum Salzgehalt der Wässer, denn je höher die Salinität der Wässer ist, um so weniger Radium wird wieder an der Oberfläche gebunden.

Die hohe Gesamtmineralisation der Tiefenwässer erschwert eine Resorption der Radiumionen, so daß diese in Lösung bleiben, da die Adsorptionsplätze auf den Mineraloberflächen von anderen Ionen besetzt sind (REID & KRAMER 1984). Zum Beispiel enthält eine Lösung mit einer Aktivitätskonzentration von 100 Bq/L ²²⁶Ra 7,22 * 10¹² Teilchen pro Liter. In den Tiefenwässern des Ruhr-Reviers wurden Bariumkonzentrationen von 2500 mg/L analysiert, was 6,44 * 10²¹ Teilchen pro Liter entspricht. Beim Vergleich dieser Zahlen wird deutlich, daß bereits niedrige Bariumkonzentrationen Radiumionen in Lösung halten können. Sorptionsversuche von JURADO-VARGAS et al. (1997) an Zeolithen haben gezeigt, daß die Adsorption von Radium stark von der Bariumbelegung der Zeolithe abhängt. Während bariumfreie Zeolithe Radium zu fast 100 % adsorbieren, nimmt dieser prozentuale Sorptionsanteil mit zunehmender Bariumbelegung der Zeolithe ab.

Daß eine hohe Chloridkonzentration die Radiumlöslichkeit erhöht (IVANOVICH & HARMON 1992), liegt wohl eher an der damit verbundenen erhöhten Kationenkonzentration (TANNER 1964).

Im Ruhr-Revier nimmt die Gesamtmineralisation mit der Teufe zu (WEDEWARDT 1995), somit auch die Freisetzung und das in Lösung Verbleiben der Radiumionen. Wässer, die auf Störungen aus Tiefen unterhalb des Abbauniveaus aufsteigen, besitzen höhere Salinitäten und höhere Bariumkonzentrationen. Damit wäre auch die Auslaugung großer Mengen an Radium aus Gesteinen mit durchschnittlichen Uranaktivitätskonzentrationen möglich (FEIGE et al. 1998). Zusätzlich weisen diese Wässer erhöhte Temperaturen auf und können daher generell höhere Konzentrationen aufnehmen, da mit zunehmender Temperatur die Löslichkeit von Radium- und Bariumverbindungen zunimmt. Mit Ausnahme migrierender Subrosionssolen ist die Radiumkonzentration ebenfalls als eine Funktion der Tiefe zu sehen.

Für die Radiumaktivitätskonzentrationen der Tiefenwässer sind keine uranreichen Gesteine nötig, da die Auslaugung von Gesteinen mit durchschnittlichen Uranaktivitätskonzentrationen ausreichend ist. Für die Entstehung der radiumreichen Tiefenwässer des oberschlesischen Steinkohlenreviers wird ähnliches vermutet (TOMZA & LEBECKA 1981).

6 Material und Methoden

Im Rahmen dieser Arbeit sind unterschiedliche Proben entnommen und analysiert worden. Neben Oberflächenwässern, Sedimenten und Böden wurden auch Pflanzen und Tiere beprobt.

6.1 Wasserproben

6.1.1 Probenahme

Die Probenahme der untersuchten Oberflächenwässer erfolgte in Anlehnung an die DIN 38 402, in Polyethylenflaschen mit unterschiedlichem Fassungsvermögen (Tab. 6-1). Bei jeder Probenahme wurden vor der Konservierung die Parameter Temperatur, pH-Wert, Eh-Wert und elektrische Leitfähigkeit direkt vor Ort bestimmt. Insgesamt wurden 219 Proben analysiert. Ferner wurden in einer 24-Stunden-Messung 25 Proben entnommen, um tageszeitliche Schwankungen zu erfassen.

 Tab. 6-1:
 Übersicht über die benötigte Probemenge und über durchgeführte Konservierungs- und Präparationsmaßnahmen.

Parameter	Probenmenge [ml]	Präparation
Kationen außer Radium, Cl ⁻ , SO ₄ ²⁻	100	Konservierung mit 1 ml konz. HNO ₃ , Membranfiltration (0,45 µm)
²²⁶ Ra ²⁺	1000	Konservierung mit 10 ml konz. HCl, Filtration über Schwarzband- Filter

6.1.2 Vor-Ort-Analytik

pH-Werte

Der pH-Wert der Wässer wurde vor Ort mit einer WTW-pH-Elektrode (Typ SenTix50) und einem WTW-pH-Meter (Typ 320) gemessen. Die Zweipunktkalibration der Elektrode des pH-Meters erfolgte mittels Pufferlösungen bei pH 4 und 7.

Elektrische Leitfähigkeit

Die elektrische Leitfähigkeit ist ein Maß für die Salinität von Lösungen, das heißt, je mehr Ionen gelöst sind, desto höher ist die Leitfähigkeit. Dies gilt allerdings nur bedingt, da die Ionenbeweglichkeit in hochkonzentrierten Lösungen abnimmt und somit auch die elektrische Leitfähigkeit. Die elektrische Leitfähigkeit entspricht dem Reziprokwert des Widerstandes, ihre Einheit ist das Siemens [S]. Für Lösungen wird in der Regel die spezifische Leitfähigkeit, deren Einheit das Siemens pro Zentimeter [S * cm⁻¹] ist, angegeben (NAUMER & HELLER 1990).

Die Leitfähigkeiten der Wässer wurden vor Ort mit dem Leitfähigkeitsmeßgerät GLM 020A der Firma Greisinger electronic bestimmt.

Redoxpotential

Das Redoxpotential ist ein Maß für das Reduktions- bzw. Oxidationsvermögen verschiedener Redoxsysteme. Eine starke Oxidationskraft eines Systems wird durch einen hohen Wert des Redoxpotentials charakterisiert.

Die Messung des Redoxpotentials erfolgte im Gelände mit einer Mettler Toledo Redoxelektrode (Typ Pt 4805-S7/120) und einem WTW-Meßgerät (Typ 320).

6.1.3 Labor-Analytik

²²⁶Radiumaktivitätskonzentrationen in Wässern

Die Bestimmung der ²²⁶Radiumaktivitätskonzentration erfolgte in Anlehnung an die MEßANLEITUNGEN UMWELTRADIOAKTIVITÄT H-RA-226-AWASS-01-01 durch Emanations-Messung seines Tochternuklides ²²²Radon. Diese Methode ist außerordentlich selektiv und empfindlich.

Zur Anreicherung des Elementes wurden die Proben, nachdem sie über Schwarzbandfilter (Firma Schleicher & Schuell, Typ 589¹) abgenutscht wurden, auf 150 – 100 ml eingeengt. Die weitere Vorgehensweise war probenabhängig:

 Hochsalinare Wässer: Ein Aliquot von 40 ml wurde direkt in radondichte Gaswaschflaschen überführt. 2) Oberflächenwässer: Die eingeengte Lösung wurde mit 1 ml BaCl₂-Lösung (28,4 g BaCl₂*2H₂O auf 1 L) versetzt und auf 80 °C erhitzt. Anschließend wurden vorsichtig unter Rühren 5 ml konz. Schwefelsäure zugetropft und die Lösung 5 Minuten weitergerührt. Dabei fällt Radium zusammen mit Barium als (Ba,Ra)SO₄ aus. Die nachfolgende Zugabe weiterer 100 µl BaCl2-Lösung gewährleistet die vollständige Fällung. Die Proben wurden über Nacht zur Alterung der Niederschläge stehen gelassen. Die überstehende Lösung wurde bei 1700 U/min 5 min abzentrifugiert und verworfen. Der Niederschlag wurde zweimal mit 0,1 m Schwefelsäure gewaschen, wobei das Waschwasser ebenfalls verworfen wurde. Anschließend wurden die Niederschläge mit 15 ml 0,4 m EDTA und 5 ml konz. Ammoniak in der Wärme ca. 3 Stunden gelöst. Verbleibende Rückstände konnten in fast allen Fällen durch weitere Zugabe von 5 ml Ammoniak gelöst werden. Die klaren Lösungen wurden dann in radondichte Gaswaschflaschen überführt.

Nach einer Wartezeit von 14 Tagen wurde das Radon (²²²Rn) in evakuierte Lucas-Zellen, deren Nulleffekt vor jeder Messung bestimmt wurde, mittels gealterter, ²²²Rn-freier Luft überführt. Nach einer Wartezeit von ca. 3,5 Stunden, um die Einstellung des Gleichgewichtes zwischen ²²²Rn und seinen Folgeprodukten zu gewährleisten, wurden die Proben mit einem Luk4 der Firma Ing Jiri Plch gemessen. Die α-Zerfälle der Radionuklide (²²²Rn, ²¹⁸Po, ²¹⁴Po) erzeugen in der silberdotierten Zinksulfid-Schicht der Lucas-Zellen eine Szintillation, die durch einen Photomultiplier registriert, in ein elektrisches Signal umgewandelt und verstärkt wird (LUCAS 1957). Anschließend wurden die ermittelten Daten mittels geeigneter Software ausgewertet.

In die Berechnung (Gl. 19) (nach MEßANLEITUNGEN UMWELTRADIOAKTIVITÄT H-RA-226 TWASS-01-01) der ²²⁶Radium-Konzentration gehen folgende Faktoren ein:

gemessene ²²²Rn-Konzentration im überführten Luftvolumen, die Versieglungsdauer, das Probenvolumen, der Anreicherungsfaktor und der Transferfaktor. Die Nachweisgrenze des Verfahrens liegt bei ca. 15 mBq/L.

$$c_{226}_{Ra} = \frac{(N_g - N_B)}{2,3 * t_v * e^{(-L_{Rn} * t_r)} * V} * \frac{1}{1 - e^{(-L_{Rn} * t_w)}} * \frac{V_2}{V_1}$$
Gl. 19

mit	$L_{Rn} = \frac{l}{t}$	$\frac{n2}{\frac{1}{2}}$ t $\frac{1}{2}$ = Halbwertszeit von ²²² Rn
C 226	_{Ra} =	²²⁶ Radiumkonzentration der Probe [Bq/L]
Ng	=	gemessene Impulse
N _B	=	gemessene Backgroundimpulse
t _v	=	Meßintervall [s]
t _r	=	Zeit zwischen Probenahme und Messung [s]
t _w	=	Zeit zwischen Versieglung und Deemanation [s]
V	=	Volumen der versiegelten Probe [L]
V_1	=	Volumen der Probe bei der Probenahme [mL]
V_2	=	Volumen der Probe nach dem Eindampfen [mL]

Bestimmung der Elementkonzentrationen mittels ICP-OES

Bei der ICP-OES-Meßtechnik wird die zerstäubte Lösung durch ein induktiv gekoppeltes Plasma angeregt und die emittierte Strahlung mittels eines Spektrometers zerlegt. Als Detektoren dienen Photomultiplier. Eine quantitative Analyse ist nach vorheriger Kalibration mit Bezugslösungen möglich, da zwischen den Intensitäten der Elementlinien und den Elementkonzentrationen über einen gewissen Konzentrationsbereich ein linearer Zusammenhang besteht (HEIN & KUNZE 1994).

Die quantitative Analyse der Konzentrationen an Natrium (Na), Kalium (K), Magnesium (Mg), Calcium (Ca), Strontium (Sr), Barium (Ba), Eisen (Fe) und Schwefel (S) erfolgte mittels ICP-OES mit einem sequentiellen Meßgerät der Firma Spectro (Spectro-Flame-EOP) in Anlehnung an die DIN 38406 Teil 22. Die gemessenen Schwefelkonzentrationen wurden auf Sulfatkonzentrationen umgerechnet. Als Zerstäuber wurde ein Crossflow-Zerstäuber verwendet.

Die im Gelände genommenen, angesäuerten Proben wurden zur Abtrennung von Schwebstoffen im Labor membranfiltriert (0,45 µm). Die eingestellten Plasmabedingungen sind nachfolgend aufgeführt:

Plasmaleistung:	1200 W
Kühlgas:	14 L/min (Argon)
Hilfsgas:	0,5 L/min (Argon)
Zerstäubergas:	1 L/min (Argon)

Die ausgewählten Analysenlinien, Meßbereiche und Nachweisgrenzen sind in Tab. 6-2 aufgeführt.

Element	Analysenlinie [nm]	max. Meßkonzentration [ppm]	NWG [ppm]
Na	589,592	20	0,1
K	766,491	20	0,1
Mg	285,213	20	0,1
Ca	317,933	20	0,1
Sr	430,545	20	0,1
Ba	455,403	2	0,1
Mn	257,610	7	0,1
Fe	259,940	20	0,1
S	182,040	100	0,1

Tab. 6-2: Analysenlinien, Meßbereiche und Nachweisgrenzen in Wasser gelöster Elemente mittels ICP-OES.

Bestimmung der Chloridionenkonzentration

Die Chloridkonzentrationen der Wässer wurden mittels ionenselektiver Potentiometrie bestimmt. Bei diesem Verfahren wird mit Hilfe einer ionenselektiven Meßelektrode und einer potential-konstanten Bezugselektrode eine elektrochemische Zelle aufgebaut, deren Spannung E von der Aktivität der freien, nicht gebundenen Meßionen abhängt (NAUMER & HELLER 1990).

Die Messungen erfolgten mit einem Meßgerät pH 340/Ion der Firma WTW und einer Elektrode vom Typ 94-17b der Firma Orion. Vor der Messung wurde die Elektrode mit Chloridstandards der Firma Orion kalibriert. Je 20 ml der membranfiltrierten Wässer wurden abpipettiert und zur Einstellung vergleichbarer Ionenstärken 400 µl Ionen-Einstell-Lösung (Ionic Strength Adjustor der Firma Ionplus) zugegeben.

6.2 Sedimente und Böden

6.2.1 Probenahme

<u>Böden</u>

Die Probenahme erfolgte in Anlehnung an die Richtlinien des VERBANDES DEUTSCHER LANDWIRTSCHAFTLICHER UNTERSUCHUNGS- UND FORSCHUNGSANSTALTEN (1991). Bodenproben (18 Proben) wurden aus den obersten 5 cm mit Hilfe eines Spatens entnommen, wobei die Grasnarbe vorher vorsichtig entfernt wurde.

Sedimente

Die Entnahme der 27 Sedimentproben erfolgte durch zwei unterschiedliche Methoden. Zum einen wurden Sedimente vom Ufer aus mit einem Pfahlkratzer, zum anderen vom Boot aus mit Hilfe eines Bodengreifers entnommen (SCHWOERBEL 1994). Beprobt wurden ebenfalls die obersten 5 cm, wobei auch hier darauf geachtet wurde, daß keine Vegetation mitbeprobt wurde.

Tiefenprofile

Die Sedimentproben der insgesamt neun Tiefenbohrungen wurden mit Hilfe eines Spiralbohrers in unterschiedlichen Tiefen entnommen. Sowohl die Bodenproben als auch die Sedimentproben wurden bis zur weiteren Bearbeitung in PE-Beuteln gelagert.

6.2.2 Messung der Ortsdosisleistung

Die Gamma-Aktivität wurde an jeder Boden-Probenahmestelle und zusätzlich an weiteren Profilen entlang der Lippe und der Fossa Eugeniana ermittelt. Bei dieser Meßmethode wird
die kosmische Höhenstrahlung mitgemessen. Da die Messung stark von der Meßgeometrie abhängt, wurde die Gamma-Aktivität immer durch Aufsetzen des Detektors auf den Untergrund für eine Meßdauer von ca. 10 s gemessen. Die Ortsdosisleistung wird in 1 m Höhe über Grund gemessen, da die Meßunterschiede zur aufgesetzten Oberflächenmessung aber relativ gering sind, werden die hier erhaltenen Daten auch als Ortsdosisleistung angegeben. Das Gerät ist so kalibriert, daß ein Meßwert von 10 kcpm einer Ortsdosisleistung von ca. 100 nSvh⁻¹ entsprechen.

Die γ-Aktivitäten der Böden und Sedimente wurden mit einem tragbaren γ-Szintillometer (M3 16-3 Gate Frisker der Firma Ludlum/Texas) bestimmt. Der Analysatorkristall des Szintillometers ist ein 2" * 2" großer NaI-Kristall.

Gemessen werden unter anderem ⁴⁰K und Nuklide aus der ²³⁸U-, ²³²Th- und ²³⁵U-Zerfallsreihe, insbesondere: ²¹⁴Pb, ²¹⁴Bi, ²²⁸Ac und ²⁰⁸Tl.

6.2.3 Probenaufbereitung und Korngrößenbestimmung

Die im Gelände genommenen Proben wurden bis zur Gewichtskonstanz im Trockenschrank bei 105°C getrocknet. Nach dem Trocknen wurde eine Trocken-Siebanalyse (SCHLICHTING et al. 1995) zur Bestimmung der Korngröße durchgeführt. Der eingesetzte Siebsatz bestand aus folgenden Sieben: 6,3; 2; 0,63; 0,2; 0,063 mm. Nach der Siebanalyse wurde die gesamte Fraktion < 2 mm abgetrennt, um alle nachfolgenden Analysen mit dieser Fraktion durchzuführen.

6.2.4 Bestimmung natürlicher Radionuklide mittels γ-Spektroskopie

Die Analyse der natürlichen Radionuklide erfolgte mittels Gamma-Spektrometrie (MURRAY et al. 1987). Bei diesem Meßverfahren wird die emittierte γ -Strahlung von einem Detektorsystem (Halbleiterdetektoren) und nachfolgender Elektronik erfaßt, verstärkt und in ein Pulshöhenspektrum umgewandelt. Durch Energie- und Ausbeute-Kalibrationen werden Gammaspektren mit Aktivitätskonzentrationen erhalten. Die Kalibrierung erfolgt mit Kalibrierstrahlern, diese enthalten Gemische von Radionukliden bekannter Aktivitäten und mit Linien bekannter Energien und Emissionswahrscheinlichkeiten. Kalibrierstrahler

müssen dieselbe Geometrie, Dichte und räumliche Nuklidverteilung wie die Meßproben besitzen, um Selbstadsorptionen und andere Effekte zu erfassen.

Nicht alle Nuklide, so zum Beispiel ²²⁶Ra, lassen sich problemlos und direkt mit der γ -Spektroskopie analysieren. Da die direkte Bestimmung über die 186 keV-Linie durch ebenfalls in den Proben enthaltenes ²³⁵U (Linie bei 185,72) gestört wird, kann die ²²⁶Ra-Konzentration entweder unter Berücksichtigung der ²³⁵U-Konzentration rechnerisch ermittelt werden oder, wie in dieser Arbeit angewendet, über seine Tochternuklide ²¹⁴Pb und ²¹⁴Bi bestimmt werden. Hierzu wurden ca. 500 g Substanz in einem, den Detektor koaxial umgebenen Ringschalen-Becher (Marinelli-Becher) eingewogen und dieser radondicht verschlossen. Nach der Einstellung des radioaktiven Gleichgewichtes zwischen ²²⁶Ra und seinen Tochternukliden (Wartezeit ca. drei Wochen) konnte mit der Messung begonnen werden. Stark gestört ist auch die 210 Pb-Bestimmung, da die niederenergetische γ -Strahlung (46,540 keV) durch Selbstadsorption sowohl in der Probenmatrix als auch im Detektorgehäuse stark geschwächt wird. Der so entstehende Fehler konnte im Rahmen dieser Arbeit zum einen durch Standards (KLÖS & SCHOCH 1996) und zum anderen durch ein spezielles Rechnerprogramm (GammaTool, Fa. Amersham) größtenteils eliminiert werden. Die Messung der Aktivitätskonzentrationen erfolgte im Landesumweltamt NRW, Dezernat 323. Die dort eingesetzten handelsüblichen Detektoren sind Germaniumdetektoren vom N-Typ mit Aluminiumfenster zur Erfassung niederenergetischer y-Strahlung in quasikoaxialer Form mit einem Ansprechvermögen von 23 % und 44 % eines 3" * 3" NaI-Detektors gegenüber der ⁶⁰Co-Linie. Die Proben wurden in Marinelli-Bechern vermessen, wobei die Probenmenge ca. 500 g betrug. Die Meßzeit variierte je nach Aktivitäten der Proben zwischen 25.000 und 80.000 s. In Tab. 6-3 sind die genutzten Analysenlinien aufgeführt.

Nuklid	Energie der Linien	Nuklid	Energie der Linien
	[keV]		[keV]
⁷ Be	477,60	²¹⁴ Bi	609,31
⁴⁰ K	1460,81	²²⁶ Ra	295,21 351,92
			609,31
¹³⁷ Cs	661,66	²²⁸ Ac	911,21 968,97
²⁰⁸ Tl	583,19 860,56	²²⁸ Th	84,37
²¹⁰ Pb	46,54	²³⁰ Th	67,67
²¹² Pb	238,63	²³⁴ Th	63,28 92,79
²¹⁴ Pb	295,21 351,90	²³⁵ U	143,76 163,60
²¹² Bi	727,33 893,34		

Tab. 6-3: Ausgewertete Nuklide und die zugehörigen Gamma-Linien.

6.2.5 Ermittlung der Elementzusammensetzung mittels Röntgenfluoreszenzanalyse

Die Analyse der Elementzusammensetzung erfolgte mit einem energiedispersiven Röntgenspektrometer der Firma Spectro (X-LAB 2000). Bei Einwirkung energiereicher Röntgenstrahlung (Primärstrahlung) auf Materie entsteht durch Elektronenübergänge im Bereich der inneren Schalen eine elementspezifische Röntgenfluoreszenzstrahlung (Sekundärstrahlung). Die charakteristische Röntgenstrahlung wird durch ein Detektorsystem (lithiumdotierter Siliciumdetektor) auf ihre Intensität und spektrale Verteilung hin untersucht. Zwischen der Konzentration und der Strahlungsausbeute besteht ein direkter Zusammenhang.

Durch Einsatz verschiedener Targets ist eine gezielte Anregung, entweder durch polarisierte oder monochromatische Röntgenstrahlung möglich. Dies hat deutlich geringere Nachweisgrenzen zur Folge sowie weniger Störeffekte, als sie sonst bei der energiedispersiven Röntgenfluoreszenzanalytik auftreten. Für die Röntgenfluoreszenzanalysen (RFA) wurden die Proben mittels einer Scheibenschwingmühle der Firma Herzog (Typ HSM 100 H, Wolfram-Carbid Einsatz) aufgemahlen. Ca. 4 g der aufgemahlenen Probe und ca. 0,9 g Hoechst Wachs C (zur Verbesserung der Tablettenstabilität) wurden eingewogen, gemörsert und anschließend mittels einer Presse der Firma Herzog unter einem Preßdruck von 200 kN und einer Preßzeit von 20 s zu 32 mm Tabletten gepreßt.

Nachfolgend sind die vier angewandten Meßmethoden zur Bestimmung der Elementzusammensetzung aufgeführt (Tab. 6-4).

	1. Methode	2. Methode	3. Methode	4. Methode
Elemente	K-Linie:	K-Linie	Cl-Mn	Na-S
	Mo-Nd	Fe-Nb	Cr, V, Mn (Spuren)	
	L-Linie:	L-Linie	K, Ca, Ti	
	U	Hf, Yb, Th		
Spannung U [kV]	49,5	38	30	10
Strom I [mA]	6	5	5	5
Target	Barkla Streuer,	Barkla Streuer,	Sekundär Target,	Bragg Streuer,
	Korund	Borcarbid	Kobalt	HOPG
Meßzeit [s]	1000	1000	1000	1000
Peakzeit [µs]	30	30	30	30

Tab. 6-4: Angewandte Meßmethoden zur Bestimmung der Elementzusammensetzung mittels RFA.

6.3 Flora und Fauna

Zur Ermittlung der Kontaminationen und zur Berechnung von Transferfaktoren wurden unterschiedliche Flora- und Fauna-Proben untersucht.

6.3.1 Probenahme

Wasserpflanzen sind mit der Hand vom Boot aus entnommen worden, wobei die Wurzeln zur Vermeidung von Kontaminationen abgetrennt wurden. Grasproben wurden mit Hilfe eines Handmähgerätes gesammelt, auch hierbei wurden keine Wurzeln mitbeprobt. Krebse sind mit Hilfe eines Siebes gefangen worden. Fische und Wollhandkrabben wurden geangelt.

6.3.2 Probenvorbereitung

Sämtliche Pflanzenproben wurden zuerst gründlich gewaschen und anschließend im Ultraschallbad gereinigt. Nach dem Trocknen bei 105° C wurden sie mittels eines Häckslers zerkleinert.

Die geangelten Fische wurden gereinigt und anschließend in die Fraktionen Haut, Fleisch, Innereien und Gräten separiert. Danach sind auch diese bei 105° C getrocknet und anschließend gemörsert worden.

6.3.3 γ-Spektroskopie

Die Analyse der Radionuklide erfolgte, analog der in Kap. 6.2.4 beschriebenen Sedimentbestimmung, mit einem γ -Spektrometer. Aufgrund der geringeren Masse wurden allerdings vor allem bei den Fisch- und Krebsproben andere Meß-Geometrien (10 mL, 100 mL) verwendet. Des weiteren wurde die Meßzeit auf mindestens 80.000 s erhöht, bei extrem niedrigen Aktivitätskonzentrationen betrug sie maximal eine Woche (ca. 600.000 s).

6.4 Aufbau eines Meßprofils

Der Aufbau eines Meßprofils, das in der Regel aus drei Meßpunkten besteht, sieht folgendermaßen aus:

- der erste Meßpunkt liegt unmittelbar am Ufer und erfaßt somit die Kontamination der Ufersedimente
- die zweite Meßstelle liegt in einem Bereich, der von Hochwasser beeinflußt wird
- und der dritte Meßpunkt befindet sich außerhalb des hochwasserbeeinflußten Bereiches, er dient zur Ermittlung der geogenen Hintergrundstrahlung.

An jedem Meßpunkt sind neben der Bestimmung der γ -Aktivität, Boden- und Pflanzenproben entnommen worden.

Zusätzlich wurden, wie in Kapitel 6.2.2 erwähnt, noch Profile zur großräumigen Bestimmung der γ -Ortsdosisleistung entlang der Flußsysteme gelegt. Hierbei wurde die γ -Ortsdosisleistung in unmittelbarer Nähe des Ufers und auf den dazugehörigen hochwasserbeeinflußten Flächen gemessen.

6.5 Sequentielle Extraktion

Zur Bestimmung der Bindungsformen ist im Rahmen der vorliegenden Arbeit das Extraktionsverfahren nach ZEIEN angewendet worden [ZEIEN 1995].

Das ursprünglich sieben Extraktionsschritte umfassende Verfahren wurde anwendungsbezogen abgewandelt. Auf den letzten Extraktionsschritt, bei dem ein Komplettaufschluß der Residualfraktion vorgenommen wird, ist verzichtet worden, da er zur Bestimmung des Gesamtgehaltes der zu bestimmenden Elemente dient. Dieses Ziel wird jedoch bereits durch Analyse mittels Röntgenfluoreszenzanalyse erreicht.

Im Gegensatz zum Extraktionsverfahren von ZEIEN wurde mit vierfachem Ansatz, sowohl des zu untersuchenden Probenmaterials als auch der Extraktionslösungen gearbeitet, da ansonsten die Konzentrationen in den erhaltenen Extraktionslösungen für die Elementbestimmung mittels ICP-OES, und vor allem für die emanometrische ²²⁶Ra-Bestimmung nicht ausgereicht hätte.

Für die Ermittlung der Bindungsformen der zu bestimmenden Metalle und Halbmetalle mit Hilfe des sequentiellen Extrationsverfahrens wurden ca. 8 g luftgetrockneter Feinboden (< 2 mm) in säuregespülten 250 ml Polypropylen-Zentrifugenbecher eingewogen.

Durch sukzessive Zugabe verschiedener Lösungsmittel werden die in unterschiedlichen Bindungsverhältnissen vorliegenden Metalle und Halbmetalle schrittweise gelöst. Nach jedem Extraktionsschritt (mit Ausnahme der 1. Fraktion) werden Waschvorgänge nachgeschaltet. Diese Prozedur dient neben der vollständigen Erfassung der zu untersuchenden Elemente der Entfernung etwaiger Lösungsrückstände des vorherigen Extraktionsschrittes sowie der Minimierung von Readsoptionsprozessen. Zur Herstellung der Lösungen wurde immer bidestilliertes Wasser, sowie Chemikalien des Reinheitsgrades p. a. verwendet.

1. Mobile Fraktion

Die eingewogene Probensubstanz wurde mit 200 ml 1 m NH₄NO₃-Lösung versetzt und 24 h im Überkopfschüttler bei Raumtemperatur extrahiert. Zur Gewinnung der Extraktionslösung wurde anschließend 6 min mit 4200 U×min⁻¹ zentrifugiert, anschließend die überstehende Flüssigkeit über einem Membranfilter (Porengröße 0,45 µm) abdekantiert und danach in 200 ml Polyethylenflaschen überführt. Zur Stabilisierung der Filtrate wurden 2 ml konz. HNO₃ p.a. zugegeben.

2. Leicht nachlieferbare Fraktion

Vor dem zweiten Extraktionsschritt empfiehlt ZEIEN bei carbonathaltigen Proben zur Neutralisation die Zugabe äquivalenter Mengen an HCl oder HNO₃, um die notwendige pH-Konstanz von pH 6 zu gewährleisten. Um die Bildung leicht löslicher Chloro-Schwermetallkomplexe zu verhindern, wurde in diesem Schritt eine 5 m HNO₃-Lösung verwendet.

Die im Zentrifugenbecher verbliebene Sedimentprobe wurde zur Erfassung der leicht nachlieferbaren Fraktion mit 200 ml 1 m NH₄Ac (pH 6)- Lösung versetzt und wie auch die mobile Fraktion 24 h im Überkopfschüttler bei Raumtemperatur extrahiert. Nach dem wie in Schritt eins durchgeführten Zentrifugieren und Filtrieren, wurde das Filtrat in einer säuregespülten 500 ml PE-Flasche gesammelt. Nach der Gewinnung der Extraktionslösung folgte eine 10-minütige Ausschüttlung der Sedimentprobe mit 100 ml 1 m NH₄NO₃- Lösung. Nach Zentrifugieren (6 min, 4200 U×min⁻¹) und Filtrieren wurden die beiden Filtrate vereinigt und mit 2 ml konz. HNO₃ stabilisiert.

3. In Mangan-Oxiden okkludierte Fraktion

Der Rückstand wurde zur Extraktion der in Manganoxiden okkludierten Elementanteile mit 200 ml des bei pH 6 gepufferten Reduktionsmittels 0,1 m NH₂OH-HCl + NH₄Ac versetzt und 30 min bei Raumtemperatur im Überkopfschüttler geschüttelt. Nach dem Zentrifugieren (6 min, 4200 U×min⁻¹) und Filtrieren (Membranfilter 0,45 μ m) wurde die Sedimentprobe zweimal mit jeweils 100 ml 1 m NH₄Ac (pH 6) 10 min geschüttelt,

anschließend zentrifugiert (6 min, 4200 U×min⁻¹), filtriert und die gewonnenen Filtrate in säuregespülten 500 ml PE-Flaschen vereinigt. Zur Stabilisierung wurde den Filtraten 2 ml konz. HCl zugesetzt.

4. Organisch gebundene Fraktion

Die im Zentrifugenbecher verbliebene Probe wurde anschließend mit 200 ml 0,025 m NH₄EDTA (pH 4,6) versetzt und 90 min bei Raumtemperatur im Überkopfschüttler extrahiert. Anschließend wurde 10 min bei 4200 U×min⁻¹ zentrifugiert, mittels Membranfilter (0,45 μ m) abfiltriert und die Probe in eine säuregespülte 500 ml PE-Flasche überführt. Um die in der Sedimentprobe verbliebene Restlösung mit den darin enthaltenen Elementen zu erfassen, wurde die Probe mit 100 ml 1 m NH₄Ac (pH 4,6)- Lösung versetzt, 10 min geschüttelt, 6 min bei 4200 U×min⁻¹ zentrifugiert, erneut filtriert und die gewonnenen Filtrate vereinigt. Die Lösung wurde unter Kühlung aufbewahrt und nicht mit Säure versetzt, um eine Ausfällung von EDTA zu vermeiden.

5. In schlecht kristallinen Eisen-Oxiden okkludierte Fraktion

Zur Erfassung der in schlecht kristallinen Eisenoxiden okkludierten Elementanteile wurde der Rückstand mit 200 ml 0,2 m NH₄-Oxalatlösung (pH 3,25) vier Stunden im Dunkeln bei Raumtemperatur im Überkopfschüttler extrahiert und anschließend 6 min bei 4200 U×min⁻¹ zentrifugiert. Die überstehende Flüssigkeit wurde über Membranfilter abfiltriert und das Filtrat in eine säuregespülte 500 ml PE-Flasche überführt. Da die Sedimentproben meist erhöhte Eisenkonzentrationen aufwiesen, wurde dieser Extraktionsschritt wiederholt. In einem anschließenden Waschvorgang wurde die Probe einmal mit 100 ml 0,2 m NH₄-Oxalatlösung (pH 3,25) versetzt und 10 min im Dunkeln geschüttelt, danach 6 min bei 4200 U×min⁻¹ zentrifugiert, abfiltriert und die Filtrate vereinigt. Aufgrund ihrer Lichtempfindlichkeit wurden die Extraktionslösungen unter Kühlung im Dunkeln aufbewahrt.

6. In kristallinen Eisen-Oxiden okkludierte Fraktion

Die verbliebene Sedimentprobe wurde mit 200 ml einer Lösung aus 0,1 m Ascorbinsäure und 0,2 m NH₄-Oxalatlösung (pH 3,25) versetzt und im Wasserbad bei 96°C 30 min lang behandelt. Anschließend wurde 6 min bei 4200 U×min⁻¹ zentrifugiert und die überstehende

Lösung über Membranfilter in säuregespülte 500 ml PE-Flaschen überführt. Dieser Vorgang wurde aufgrund der hohen Eisengesamtgehalte noch einmal wiederholt. Im anschließenden Waschvorgang wurden der Probe 100 ml 0,2 m NH₄-Oxalatlösung (pH 3,25) zugesetzt und 10 min im Dunkeln geschüttelt. Die Proben wurden 6 min bei 4200 U×min⁻¹ zentrifugiert und abfiltriert. Die vereinigten Proben wurden aufgrund ihrer Lichtempfindlichkeit ebenfalls unter Kühlung im Dunkeln aufbewahrt.

6.5.1 Bestimmung der ²²⁶Radiumaktivitätskonzentration der Extraktionslösungen

Die Bestimmung der ²²⁶Radiumaktivitätskonzentrationen der Extraktionslösungen erfolgte emanometrisch. Dazu wurden jeweils 40 ml der unterschiedlichen Extraktionslösungen versiegelt. Die Bestimmung erfolgte analog der zuvor beschriebenen Radiumbestimmung in Wässern (Kap. 6.1.3).

6.5.2 Bestimmung der Elementkonzentrationen der Extraktionslösungen mittels ICP-OES-Analytik

Im Gegensatz zur Analyse der Wasserproben sind bis auf wenige Ausnahmen die Extraktionslösungen mit einem simultanen ICP-Spektrometer (Ciros CCD) der Firma Spectro vermessen worden. Dieser Gerätewechsel erfolgte aufgrund schwerwiegender technischer Defekte des zuvor genutzten Gerätes. Die ICP-OES-Analytik ist stark matrixabhängig, so daß für jeden Extraktionsschritt eine matrix-angepaßte Kalibration entwickelt wurde. Tab. 6-5 faßt die genutzten Analysenlinien und die Nachweisgrenzen der einzelnen Elemente zusammen.

Element	Linie		Nachweisgrenzen der Fraktionen [ppm]						
	[nm]	1.	2.	3.	4.	5.	6.		
Al	167,078	0,05	0,05	0,1	0,01	0,1	0,1		
As	193,759	0,01	0,01	0,01	0,01	0,01	0,01		
Ba	455,404	0,1	0,01	0,01	0,01	0,01	0,1		
Ca	317,933	0,1	0,1	0,1	0,1	n.b.	n.b.		
Cr	267,716	0,005	0,01	0,005	0,05	0,01	0,05		
Cu	324,754	0,05	0,01	0,05	0,05	0,02	0,02		
Fe	259,941	0,1	0,1	0,1	0,1	1	0,1		
K	766,491	0,1	0,1	0,1	0,1	0,1	0,1		
Mg	280,269	0,1	0,1	0,1	0,1	0,1	0,1		
Mn	257,611	0,1	0,1	0,1	0,1	0,1	0,1		
Мо	379,825	0,01	0,01	0,01	0,01	0,01	0,01		
Na	589,592	1	1	0,1	0,1	0,1	0,1		
Ni	341,476	0,01	0,01	0,01	0,01	0,01	0,01		
Pb	220,353	0,01	0,01	0,02	0,01	0,01	0,01		
Sr	421,552	0,1	0,1	0,05	0,1	0,1	0,1		
V	309,311	0,01	0,01	0,01	0,01	0,01	0,05		
Zn	213,856	0,01	0,01	0,01	0,01	0,01	0,01		

 Tab. 6-5: Nachweisgrenzen der untersuchten Elemente in den Extraktionsmatrices für die sequentielle Extraktion mittels ICP-OES.

n.b. nicht bestimmt

6.6 Fehlerbetrachtung der eingesetzten Analysenverfahren

6.6.1 Emanometrie

Der relative statistische Gesamtfehler (τ) der emanometrischen Radiumanalysen berechnet sich nach:

$$\tau = \sqrt{\frac{\frac{N_g}{t_v} + \frac{N_B}{t_v}}{(N_g - N_B)^2}} + \left(\frac{s(\varphi)}{\varphi}\right)^2 + \left(\frac{s(V)}{V}\right)^2}$$
Gl. 20

N_g = gemessene Impulse

N_B = gemessene Backgroundimpulse

 $t_v = Me\betaintervall [s]$

 $s(\phi)$ = Standardabweichung der Efficiency der Lucas-Zellen

 φ = Efficiency der Lucas-Zellen

s(V) = Standardabweichung der Volumenmessung

V = Volumen

Der linke Term der Wurzel beschreibt den zählstatistischen Fehler der registrierten Impulse. Der rechte Summenterm beinhaltet die Fehler der einfließenden Meßgrößen (Volumen, Efficiency der Lucas-Zellen) die unabhängig voneinander sind. Daher folgt dieser Gesamtfehler der Fehlerfortpflanzung nach Gauß (WIEGAND 1999, MEßANLEITUNG UM-WELTRADIOAKTIVITÄT H-RA-226 TWASS-01-01 1994).

6.6.2 Röntgenfluoreszenzspektroskopie

Die Fehler der Röntgenfluoreszenzanalytik sind sowohl von den Proben als auch von den Elementen abhängig. Durchschnittlich betragen die Fehler (σ) zwischen 5 und 10 %, wobei die Fehler der Hauptelementbestimmung (Na, K, Mg, Ca, Al, P, Si, Mn, Fe, Ti) etwas größer sind, da auf die Herstellung von Glastabletten verzichtet wurde. Die Richtigkeit der

Kalibrationsgeraden des Röntgenspektrometers ist durch erfolgreiche Teilnahmen an Ringversuchen überprüft worden.

6.6.3 γ-Spektrometrie

Die Meßfehler der γ -Spektrometrie (angegeben als 2 σ) hängen ebenfalls von der Probenmatrix und den untersuchten Nukliden ab.

Die Richtigkeit der Ergebnisse wurde durch eine Vergleichsmessung mit der Fachhochschule Aachen, Institut für Nuklearchemie (Prof. Dr. Scherer) und dem Institute for Reference Materials and Measurements (IRMM) in Belgien, überprüft. Tab. 6-6 gibt einen Überblick über die erhaltenen Ergebnisse.

 Tab. 6-6: Vergleich der eigenen Meßergebnisse (und der Fehler) mit denen aus dem Institute for Reference Materials and Measurements.

Probe	226	Ra	228	Ra	²¹⁰ Pb		
	Essen	IRMM	Essen	IRMM	Essen	IRMM	
	2σ -Fehler	σ -Fehler	2σ -Fehler	σ-Fehler	2σ-Fehler	σ -Fehler	
Sediment	$109 \pm 1,2$	$112 \pm 2,0$	$43,4 \pm 2,4$	$40,3 \pm 1,4$	35,8 ± 6,2	$34,2 \pm 3,1$	
Pflanze	$27 \pm 1,6$	26 ± 0.8	$17,3 \pm 4,5$	$14,8\pm0,9$	$5,8 \pm 3,4$	$5,6\pm2,5$	
Fisch	$29 \pm 5,0$	$27,9\pm0,8$	$22,8\pm10$	$11,8\pm0,8$	< 56	< 190	
Gamma- riden	305 ± 30	412 ± 12	249 ± 76	137 ± 7,0	< 343	38 ± 10	

Die Ergebnisse der Sediment- und Pflanzenproben stimmen sehr gut überein. Die kleineren Fehler des belgischen Institutes beruhen auf längeren Meßzeiten in einem unterirdischen Meßlabor. Die größeren Abweichungen der Meßergebnisse der Gammaridenprobe beruhen auf der extrem geringen Probenmenge, größenordnungsmäßig stimmen aber auch sie überein.

7 Ergebnisse

Der Einfluß der durch den Steinkohlenbergbau gehobenen Grubenwässer auf die Umweltkompartimente Wasser, Boden, Sediment, Flora und Fauna ist im Rahmen dieser Arbeit an zwei Regionen in Nordrhein-Westfalen untersucht worden. Beide, im Ruhr-Revier liegende Untersuchungsgebiete, sind über einen Zeitraum von 3 Jahren regelmäßig beprobt worden (Abb. 7-1).

Abb. 7-1: Übersichtskarte der Untersuchungsgebiete.

7.1 Westfälischer Raum (Lippe)

Die nachfolgend dargestellten Ergebnisse wurden im Gewässerverlauf der Lippe erhoben, wobei sich das Hauptuntersuchungsgebiet auf die ca. 60 km lange Lipperegion zwischen Haltern und Wesel erstreckt.

Die Lippe mit einer Gesamtlänge von 237,4 km, die in der Senne bei Bad Lippspringe entspringt und bei Wesel in den Rhein mündet, ist als größter Fluß des nördlichen Industriereviers einer der wichtigsten Vorfluter, der unter anderem auch häusliche und industrielle Abwässer aufnimmt. Mit ihren Nebenflüssen entwässert die Lippe ein Gesamtgebiet von 4891 km² (ANT 1966). Als Vorfluter für die Landschaften südlich der Beckumer Berge und der Baumberge nimmt sie in diesem Bereich auch den in dieser Arbeit untersuchten Sikkingmühlenbach auf. Dieser ist wie auch fast alle anderen größeren Zuflüsse im Untersuchungsgebiet kanalisiert.

Der Siedlungsraum in dem untersuchten Gebiet wird vor allem durch den Steinkohlenbergbau geprägt. Hieraus ergeben sich große Einleitungen von Grubenwässern in die Lippe bzw. deren Zuflüsse.

In diesem Untersuchungsgebiet fanden unterschiedliche Meßkampagnen sowohl an der Lippe als auch an dem Vorfluter Sickingmühlenbach statt. Voruntersuchungen durch FEIGE (1997) haben gezeigt, daß z. B. die Entwässerung hochsalinarer Grubenwässer der Zeche *Auguste Victoria* in Marl über den Silvertbach erfolgt. Dieser vereinigt sich in Marl mit dem Loemühlenbach zum Sickingmühlenbach. Da der Silvertbach nicht frei zugänglich ist, wurde eine Probenahmestelle am Sickingmühlenbach eingerichtet.

7.1.1 Wasser

Über einen Zeitraum von 14 Monaten sind an 10 Probestellen der Lippe sowie an einer Probenahmestelle am Sickingmühlenbach monatlich Wasserproben entnommen worden. Diese Proben sind auf folgende Parameter untersucht worden:

Temperatur, pH-Wert, Eh-Wert, elektrische Leitfähigkeit, Konzentrationen an ²²⁶Radium, Natrium, Kalium, Magnesium, Calcium, Barium, Strontium, Sulfat und Chlorid.

Es ist festzuhalten, daß es sich immer nur um reine Momentaufnahmen handelt. Aufgrund von Regenfällen, Einleitungen aus Kläranlagen und Grubenwasser oder Kauenwasser kann sich die Zusammensetzung des Wassers sehr schnell ändern. Nachfolgend werden deshalb nur die Mittelwerte der 14 Einzelmessungen, deren Test auf Normalverteilung positiv ausfällt, aufgeführt und interpretiert. Die Analysenergebnisse der Einzelproben befinden sich im Anhang in den Tab. A1 bis A11. Es werden bei der Fehlerbetrachtung nur Fehler der Probenahme und Analytik berücksichtigt. Standardabweichungen der Mittelwerte werden nicht angegeben, da die Meßwerte aufgrund unterschiedlicher Zusammensetzung schwanken. Werden die einzelnen Meßtage einzeln aufgeführt, kann festgestellt werden, daß die Kurvenverläufe gleich sind, und sich nur die Absolutwerte an den einzelnen Meßstellen ändern. Dies ist exemplarisch in Abb. 7-2 für 9 Kurvenverläufe der Chloridkonzentration dargestellt.

Abb. 7-2: Chloridkonzentrationen von 9 Einzelmessungen.

7.1.1.1 Lage der Probenahmestellen

Die Meßpunkte LW1 und LW2 befinden sich 13 km bzw. 6,1 km flußaufwärts nordöstlich der Mündung des Sickingmühlenbaches in die Lippe (Abb. 7-3). Da sie nahezu unbelastet von Einleitungen der Steinkohlenindustrie sind, werden sie nachfolgend als geogener Hintergrund eines durch Bergbau unbelasteten Gewässers angesehen. Die Meßstelle LW3 liegt am Sickingmühlenbach, daher werden die analysierten Ergebnisse dieser Meßstelle in den Diagrammen versetzt dargestellt. Die Meßstelle LW4 befindet sich an der Mündung des Baches in die Lippe (Lippekilometer 45,4). Alle anderen Meßstellen liegen abstromig der Einmündung des Sickingmühlenbaches. Zusätzlich kommt es vor der Meßstelle LW7 zu einer weiteren Grubenwassereinleitung des *Bergwerkes Lippe*. Tab. 7-1 beinhaltet neben den Ortsdaten die zugehörigen Gauß-Krüger Koordinaten der einzelnen Meßstellen sowie die Flußkilometer. Die Zählung der Kilometer beginnt mit der Mündung der Lippe in den Rhein. Bei dem Sickingmühlenbach fängt die Kilometrierung mit der Mündung in die Lippe pe an.

Abb. 7-3: Übersichtskarte der Wasserprobenahmestellen entlang der Lippe.

Tab. 7-1: Bezeichnung der Probenahmestellen r	nit zugehörigen	Ortsdaten,	Gauß-Krüger K	Coordinaten
und Flußkilometer an der Lippe.				

Proben- punkt	Ort	Fluß- kilometer	Gauß- Krüger	Bemerkung
		[km]	Koordinaten	
LW1	Flaesheim zu Haltern	58,4	$r = {}^{25}85504$ h = {}^{57}32665	
LW2	Bergbossen- Dorf zu Hal- tern	51,5	$r = {}^{25}80926$ h = ${}^{57}33037$	
LW3	Sickingmühle Zu Marl	1,2	$r = {}^{25}77254$ h = {}^{57}29497	Vorfluter, umfangreiche Ein- leitungen von Grubenwässern und häuslichen Abwässern
LW4	Sickingmühle Zu Marl	45,4	$r = {}^{25}76790$ h = {}^{57}30549	Mündung des Sickingmühlen- baches in die Lippe
LW5	Mersch zu Haltern	43,8	$r = {}^{25}75436$ h = {}^{57}29998	
LW6	Hervest zu Dorsten	37,0	$r = {}^{25}71224$ h = {}^{57}26872	
				Einleitung Bergwerk Lippe
LW7	Dorsten	33,1	$r = {}^{25}67248$ h = ${}^{57}26272$	
LW8	Schermbeck	22,7	$r = {}^{25}59625$ h = {}^{57}26990	

Proben- punkt	Ort	Fluß- kilometer [km]	Gauß- Krüger Koordinaten	Bemerkung
LW9	Krudenburg zu Hünxe	14,6	$r = {}^{25}52479$ h = {}^{57}24239	
LW10	Fusternberg zu Wesel	4,0	$r = {}^{25}44747 \\ h = {}^{57}24091$	
LW11	Wesel	0,9	$r = {}^{25}42772$ h = {}^{57}23549	vor der Mündung der Lippe in den Rhein

Tab.7-1: Fortsetzung: Bezeichnung der Probenahmestellen mit zugehörigen Ortsdaten, Gauß-Krüger Koordinaten und Flußkilometer an der Lippe.

7.1.1.2 pH-Werte und Temperaturen

Die pH-Werte (Tab. 7-2) zeigen sowohl über den gesamten Beprobungszeitraum als auch über das komplette Meßprofil der Lippe relativ konstante Werte. Sie schwanken zwischen 7,4 und 7,7. Auch die gemittelten Temperaturen der Lippewasserproben zeigen relativ konstante Werte mit Ausnahme der Proben des Sickingmühlenbaches (LW3), bei denen niedrigere Temperaturen und die geringsten pH-Werte gemessen wurden.

Probenpunkt	mittlere pH-Werte	mittlere Temperatur [°C]						
LW1	7,6	13,7						
LW2	7,6	13,8						
LW3	7,4	12,3						
LW4	7,7	14,9						
LW5	7,7	14,7						
LW6	7,6	14,6						
LW7	7,7	14,7						
LW8	7,6	14,4						
LW9	7,6	14,6						
LW10	7,7	13,4						
LW11	7,6	14,5						

 Tab. 7-2: Mittlere pH-Werte und Temperaturen der unterschiedlichen Probenahmestellen an der Lippe (n=14).

7.1.1.3 Eh-Werte

Im Gegensatz zu den pH-Werten unterscheiden sich die Eh-Werte (Abb. 7-4) des Vorfluters (LW3) deutlich von den in der Lippe gemessenen Eh-Werten. Im Vorfluter weisen sie deutlich geringere Werte auf (262 mV). Abstromig der Einleitung steigen die Eh-Werte wieder an, erreichen aber nicht mehr die Werte wie sie vor dem Einleiter gemessen wurden.

Abb. 7-4: Mittlere Eh-Werte in den Wasserproben der Lippe-Probenahmestellen über einen Zeitraum von 14 Monaten an der Lippe (n=14).

7.1.1.4 Elektrische Leitfähigkeiten

Die gemessenen elektrischen Leitfähigkeiten sind in Abb. 7-5 dargestellt. Auffallend ist die erhöhte Leitfähigkeit im Sickingmühlenbach (LW3), was auf eine hohe Ionenkonzentration im Wasser hinweist. Die gemessenen Leitfähigkeiten nehmen rasch wieder ab, sinken aber bis zur Mündung der Lippe in den Rhein nicht mehr auf das Ausgangsniveau ab.

Abb. 7-5: Mittlere Leitfähigkeiten in den Wasserproben der Lippe-Probenahmestellen über einen Zeitraum von 14 Monaten (n=14).

7.1.1.5 ²²⁶Radiumaktiviätskonzentration

Die ²²⁶Radiumaktivitätskonzentrationen der beiden unbelasteten Vergleichsprobenahmestellen (LW1, LW2) liegen unterhalb einer Nachweisgrenze von 0,015 Bq/L. Dagegen weist die Aktivitätskonzentration im Vorfluter mit einer Maximalkonzentration von 0,163 Bq/L und einem Mittelwert von 0,059 Bq/L deutlich höhere Werte auf. 1,5 km abstromig der Einmündung des Sickingmühlenbaches in die Lippe beträgt die mittlere Radiumaktivitätskonzentration nur noch 0,020 Bq/L. Dieser Wert nimmt auch im weiteren Verlauf nicht wesentlich weiter ab (Abb. 7-6). Der Gesamtfehler dieser Messungen beträgt maximal 10 %.

Abb. 7-6: Mittlere ²²⁶Radiumaktivitätskonzentrationen in den Wasserproben der Lippe-Probenahmestellen über einen Zeitraum von 14 Monaten (n=14).

7.1.1.6 Barium und Strontium

Der Verlauf der Barium- und Strontiumkonzentrationen (Abb. 7-7) ähnelt dem der 226 Radiumaktivitätskonzentration. Auch hier wurden im Vorfluter deutlich erhöhte Konzentrationen gemessen, die direkt nach der Mündung in die Lippe stark abfallen. Im weiteren Verlauf der Lippe bleiben auch die Barium- und Strontiumkonzentrationen nahezu auf konstantem Niveau. Auffallend ist allerdings, daß die Erhöhung der Strontiumkonzentration im Vorfluter im Vergleich zum unbelasteten Lippeabschnitt um den Faktor 6,9 deutlich höher ist als die Erhöhung der Bariumkonzentration mit einem Faktor von 3,3. Der Fehler aller Meßdaten liegt bei < 5%.

Abb. 7-7: Mittlere Barium- und Strontiumkonzentrationen in den Wasserproben der Lippe-Probenahmestellen über einen Zeitraum von 14 Monaten (n=14).

Die Analysen der Wasserproben auf die Elemente Magnesium, Calcium, Natrium und Kalium zeigen identische Konzentrationsverläufe entlang der Lippe. Wie auch bei den Elementen Barium und Strontium sind die Konzentrationen im Sickingmühlenbach deutlich erhöht und nehmen abstromig der Einmündung des Baches in die Lippe wieder ab, ohne allerdings das Ausgangsniveau wieder zu erreichen. Die entsprechenden Diagramme sind im Anhang (Abb. A-1 und A-2) aufgeführt.

7.1.1.7 Chlorid und Sulfat

Die mittlere Konzentration an Chloridionen (Abb. 7-8) zeigt einen ähnlichen Verlauf wie die zuvor beschriebenen Kationenkonzentrationen. Auch hier wurden deutliche höherer Chloridkonzentration im Vorfluter ermittelt. Abstromig der Einleitung sinken die Chloridkonzentrationen wieder, allerdings bleiben sie bis zur Mündung der Lippe in den Rhein im Vergleich zu den unbelasteten Proben um den Faktor 1,6 erhöht.

Abb. 7-8: Mittlere Chloridkonzentrationen in den Wasserproben der Lippe-Probenahmestellen über einen Zeitraum von 14 Monaten (n=14).

Die mittleren Sulfatkonzentrationen (Abb. 7-9) sind zwar auch im Vorfluter erhöht, allerdings nicht so stark wie alle anderen zuvor beschriebenen Elemente. Im weiteren Verlauf der Lippe nehmen auch sie zunächst wieder ab. Jedoch sind die Sulfatkonzentrationen nicht so konstant wie die Konzentrationen der anderen Elemente.

Abb. 7-9: Mittlere Sulfatkonzentrationen in den Wasserproben der Lippe-Probenahmestellen über einen Zeitraum von 14 Monaten (n=14).

7.1.2 Sedimente

Sedimentproben sind über den Verlauf des untersuchten Probenahmegebietes, wie im Kapitel 6.1.2.1 beschrieben, entweder vom Boot oder vom Ufer aus entnommen worden.

7.1.2.1 Lage der Probenahmestellen

Die Probenahmestellen LS1 bis LS4 befinden sich anstromig der Mündung des Sickingmühlenbaches in die Lippe und können somit als unbelastete Vergleichsmeßstellen betrachtet werden (Abb. 7-10). Die Meßstellen LS5 und LS6 liegen im Verlauf des Sickingmühlenbaches, alle anderen befinden sich abstromig der Mündung des Baches in der Lippe. Diese Meßpunkte unterliegen damit einem möglichen Einfluß von Grubenwassereinleitungen. Zusätzlich zum Sickingmühlenbach kommt es zwischen den Probenahmepunkten LS11 und LS12 zu einer weiteren Einleitung von Grubenwässern der Zeche *Bergwerk Lippe*. Tab. 7-3 enthält zu jeder Probenahmestelle die dazugehörigen Ortsdaten, Gauß-Krüger Koordinaten sowie die Flußkilometer.

Abb. 7-10: Übersichtskarte über die Sedimentprobenahmestellen entlang der Lippe.

Proben-	Ort	Flußkilometer	Gauß-Krüger	Bemerkung
punkt		[km]	Koordinaten	
LS1	Flaesheim zu Haltern	58,4	$r = {}^{25}85504 \\ h = {}^{57}32665$	linkes Ufer
LS2	Bergbossendorf zu Haltern	51,5	$r = {}^{25}80926$ h = {}^{57}33037	linkes Ufer
LS3	Bergbossendorf zu Haltern	48,5	$r = {}^{25}79125$ h = {}^{57}32392	Boot, Flußmitte
LS4	Lippramsdorf zu Haltern	46,7	$r = {}^{25}77747$ h = ${}^{57}31395$	Boot, Flußmitte
LS5	Sickingmühle zu Marl	1,2	$r = {}^{25}77254 \\ h = {}^{57}29497$	linkes Ufer, Sicking- mühlenbach
LS6	Sickingmühle zu Marl	0,1	$r = {}^{25}76862$ h = ${}^{57}30497$	linkes Ufer, Sicking- mühlenbach
LS7	Sickingmühle zu Marl	45,1	$r = {}^{25}76505 \\ h = {}^{57}30548$	Boot, Flußmitte
LS8	Mersch zu Haltern	43,8	$r = {}^{25}75436 \\ h = {}^{57}29998$	rechtes Ufer
LS9	Mersch zu Haltern	42,2	$r = {}^{25}74125 \\ h = {}^{57}29479$	Boot, Flußmitte
LS10	Lippe zu Marl	39,8	$r = {}^{25}72627 \\ h = {}^{57}28651$	Boot, Flußmitte
LS11	Hervest zu Dorsten	36,3	$r = {}^{25}70337$ h = {}^{57}26645	Boot, Flußmitte
LS12	Dorsten	34,3	$r = {}^{25}68620$ h = ${}^{57}26139$	Boot, Flußmitte
LS13	Dorsten	33,1	$r = {}^{25}67248 \\ h = {}^{57}26272$	linkes Ufer
LS14	Dorsten	31,6	$r = {}^{25}65833$ h = {}^{57}26274	Boot, Flußmitte

Tab. 7-3: Bezeichnung der Probenahmestellen mit zugehörigen Ortsdaten, Gauß-Krüger Koordinaten und Flußkilometer an der Lippe.

Proben-	Ort	Flußkilometer	Gauß-Krüger	Bemerkung	
punkt		[km]	Koordinaten		
LS15	Gahlen zu Schermbeck	27,5	$r = {}^{25}62812 \\ h = {}^{57}26685$	Boot, Flußmitte	
LS16	Gahlen zu Schermbeck	27,1	$r = {}^{25}62450 \\ h = {}^{57}26600$	Boot, Flußmitte	
LS17	Gahlen zu Schermbeck	24,1	$r = {}^{25}60688$ h = {}^{57}27329	Boot, Flußmitte	
LS18	Schermbeck	22,7	$r = {}^{25}59625 \\ h = {}^{57}26990$	rechtes Ufer	
LS19	Schermbeck	22,2	$r = {}^{25}58863$ h = {}^{57}26883	Boot	
LS20	Fusternberg zu Wesel	4,05	$r = {}^{25}44731$ h = ${}^{57}23995$	linkes Ufer	
LS21	Fusternberg zu Wesel	4,0	$r = {}^{25}44747 \\ h = {}^{57}24091$	linkes Ufer	
LS22	Wesel	0,9	$r = {}^{25}42772 \\ h = {}^{57}23549$	linkes Ufer	

Tab. 7-3: Fortsetzung: Bezeichnung der Probenahmestellen mit zugehörigen Ortsdaten, Gauß-Krüger Koordinaten und Flußkilometer an der Lippe.

Im Gegensatz zu den Wasserdaten, die nur Momentaufnahmen widerspiegeln, können aus den Analysendaten der Sedimentuntersuchungen langjährig gemittelte Aussagen zu der Radionuklidkontamination des Untersuchungsgebietes getroffen werden.

7.1.2.2 Radionuklidgehalte

Die Analyse der Sedimentdaten zeigt, daß die Radionuklidaktivitätskonzentrationen nach der Einmündung des Sickingmühlenbaches in die Lippe deutlich ansteigen. Während im nahezu unbelasteten Gebiet die durchschnittliche ²²⁶Radiumaktivitätskonzentration ca. 29 Bq/kg beträgt (Tab. 7-4), steigt sie direkt nach der Mündung des Vorfluters, der Grubenwässer der Zeche *Auguste Victoria* transportiert, fast um das 15-fache auf 425 Bq/kg an. Im weiteren Verlauf nimmt die Kontamination bis zum Probenahmepunkt LS11, der östlich von Dorsten und vor einer weiteren Zecheneinleitung (*Bergwerk Lippe*) liegt, kontinuierlich ab. Nachfolgend steigt die ²²⁶Radiumaktivitätskonzentration zunächst bis auf ca. 370 Bq/kg an, und fällt danach bis zur Mündung wieder auf 35 Bq/kg ab. Extrem hohe Radionuklidaktivitätskonzentrationen sind in den Sedimenten des Vorfluters gemessen worden, dort beträgt die ²²⁶Radiumaktivitätskonzentration bis zu 15.000 Bq/kg. Auch im Vorfluter nimmt die Aktivitätskonzentration über den Verlauf (LS5 und LS6) ab.

Die Aktivitätskonzentration des Isotopes ²²⁸Radium zeigt einen ähnlichen Verlauf. Zunächst sehr geringe Werte im unbelasteten Flußverlauf, gefolgt von deutlich erhöhten Aktivitätskonzentrationen im Vorfluter, wobei auch hier im Verlauf des Vorfluters die Aktivitätskonzentrationen sinken. Abstromig der Einmündung des Sickingmühlenbaches in die Lippe wurden erhöhte Aktivitätskonzentrationen, die im weiteren Verlauf abnehmen, analysiert. Allerdings sind hier vermehrt Abweichungen gemessen worden, was an der im Vergleich zum ²²⁶Radium sehr geringen Halbwertszeit von 5,7 Jahren liegt. Das heißt, daß Proben mit einem größeren Verhältnis von ²²⁶Radium zu ²²⁸Radium älter sind. Somit sagt die Aktivitätskonzentration des ²²⁸Radiums weniger über die ursprüngliche Belastung aus als die durch ²²⁶Radium. Auch die ²¹⁰Blei-Belastung ist komplizierter zu beurteilen. Allerdings zeigt sich auch hier ein ähnlicher Verlauf wie bei den zuvor beschriebenen Elementen. ²¹⁰Blei ist nur bei den unbelasteten Proben mit ²²⁶Radium im Gleichgewicht. Bei allen anderen Proben liegt die Aktivitätskonzentration unterhalb der des ²²⁶Radiums.

Proben- punkt	²²⁶ Ra [Bg/kg]	²²⁸ Ra [Bg/kg]	²¹⁰ Pb [Ba/kg]
LS1	$42,7 \pm 0,8$	$16,9 \pm 1,5$	$35,2 \pm 4,7$
LS2	53,8±0,9	$27,5 \pm 2,1$	$48,9 \pm 6,5$
LS3	$9,9 \pm 0,4$	$6,3 \pm 0,9$	$6,1 \pm 3,1$
LS4	$10,4 \pm 0,4$	$6,7 \pm 0,9$	$12,2 \pm 2,9$
LS5	15000 ± 18	6480 ± 35	153 ± 65
LS6	10990 ± 91	5671 ± 24	47,6 ± 28
LS7	$425 \pm 3,0$	$187 \pm 6,0$	147 ± 13
LS8	353 ± 2,6	$141 \pm 4,8$	89,0 ± 11
LS9	331 ± 2,2	59,7 ± 3,3	118 ± 11
LS10	211 ± 1,6	$59,2 \pm 2,8$	$54,0 \pm 8,2$
LS11	$109 \pm 1,2$	$43,4 \pm 2,4$	$35,8 \pm 6,2$
LS12	365 ± 0.7	$99,3 \pm 1,2$	$124 \pm 3,6$
LS13	$367 \pm 2,6$	$146 \pm 5,0$	104 ± 12
LS14	$296 \pm 2,1$	$66,0 \pm 3,2$	111 ± 9,3
LS15	$266 \pm 2,0$	76,5 ± 3,3	$98,2 \pm 8,5$
LS16	$441 \pm 3,0$	$163 \pm 5,5$	147 ± 13
LS17	204 ± 1.8	79,9±3,4	$64,7 \pm 8,0$
LS18	$130 \pm 1,3$	$29,0 \pm 1,9$	$37,0 \pm 5,8$
LS19	$146 \pm 1,4$	$61,6 \pm 2,8$	41,3 ± 7,3
LS20	$71,0 \pm 1,0$	$27,8 \pm 1,9$	31,1 ± 5,1
LS21	97,6 ± 12	$59,4 \pm 2,1$	32,6±5,7
LS22	$34,8 \pm 0,7$	15,0±1,3	14,6 ± 3,7

Tab. 7-4: Radionuklidaktivitätskonzentrationen (20-Fehler) der Lippe-Sedimente.

7.1.2.3 Haupt- und Spurenelementchemismus

7.1.2.3.1 Hauptelementchemismus

Hauptbestandteil der Sedimentproben ist, mit Ausnahme der Sedimente des Sickingmühlenbaches, Silicium (dargestellt als SiO₂) (Tab. 7-5). Die SiO₂-Konzentrationen schwanken zwischen 29 und 99 Gew.%. Daneben treten noch Calcium, Aluminium und Magnesium in höheren Konzentrationen auf. Die Natrium- und Kaliumgehalte der Lippesedimente schwanken um 1 Gew.%. Mangan und Titan sind nur in Spuren enthalten. Eine andere Zusammensetzung zeigen die Sedimente des Sickingmühlenbaches (LS5, LS6). Hier beträgt die SiO₂-Konzentration nur 6,4 Gew.% und weiter flußabwärts, kurz vor der Einmündung in die Lippe, steigt sie auf 27 Gew.% an. Erhöht sind die Gehalte an Natrium (dargestellt als Na₂O) mit bis zu 2,9 Gew.% und Titan (dargestellt als TiO₂) mit 2,1 Gew.%. Da im Sickingmühlenbach stark erhöhte Bariumkonzentrationen auftreten, wurde Barium (dargestellt als BaO) in die Tab. 7-5 aufgenommen.

Proben- punkt	Na ₂ O [%]	K ₂ O [%]	MgO [%]	CaO [%]	BaO [%]	Al ₂ O ₃ [%]	SiO ₂ [%]	P ₂ O ₅ [%]	Fe ₂ O ₃ [%]	MnO [%]	TiO ₂ [%]
LS 1	1,0	0,9	1,0	3,7	a	4,0	63	0,5	1,5	0,04	0,2
LS 2	1,0	1,0	1,0	3,9	а	4,4	61	0,7	2,1	0,07	0,2
LS 3	0,4	0,5	0,2	0,5	а	1,2	99	<0,008	0,4	0,01	0,1
LS 4	0,4	0,5	0,2	0,9	а	1,2	98	<0,008	0,4	0,01	0,03
LS 5	2,9	0,2	0,8	1,2	63,41	1,5	6,4	0,8	3,6	0,04	2,1
LS 6	2,6	0,9	0,8	3,6	40,89	4,8	27	0,4	4,4	0,05	0,7
LS 7	0,2	1,5	1,0	7,1	a	8,4	47	1,1	5,2	0,2	0,5
LS 8	1,3	1,1	1,3	4,4	а	5,3	58	0,6	3,0	0,09	0,3
LS 9	<0,2	0,8	0,4	2,8	а	3,9	71	0,9	2,1	0,05	0,2
LS 10	<0,2	0,9	0,2	1,2	а	3,6	92	0,1	1,3	0,06	0,2
LS 11	0,6	0,6	0,3	2,0	а	1,8	95	0,1	1,2	0,04	0,1
LS 12	<0,2	0,9	0,4	2,9	a	4,0	77	0,6	2,8	0,07	0,3
LS 13	1,0	1,0	1,2	3,4	а	4,9	60	0,8	2,6	0,1	0,3

Tab. 7-5: Hauptelementchemismus der Sedimentproben aus der Lippe [Gew.%].

Proben- punkt	Na ₂ O [%]	K ₂ O [%]	MgO [%]	CaO [%]	BaO [%]	Al ₂ O ₃ [%]	SiO ₂ [%]	P ₂ O ₅ [%]	Fe ₂ O ₃ [%]	MnO [%]	TiO ₂ [%]
LS 14	<0,2	1,0	0,4	2,9	a	4,4	76	0,7	2,7	0,09	0,2
LS 15	0,6	0,8	0,5	2,4	а	3,1	84	0,4	2,0	0,08	0,2
LS 16	0,8	1,6	3,0	6,1	а	10	47	0,7	7,0	0,2	0,9
LS 17	0,5	0,9	0,5	3,2	а	2,6	81	0,3	3,1	0,08	0,2
LS 18	1,3	0,7	1,1	2,1	а	2,7	77	0,3	1,8	0,04	0,1
LS 19	<0,2	1,0	0,3	3,1	а	2,8	82	0,3	3,1	0,06	0,3
LS 20	1,0	1,2	1,1	3,5	а	4,2	66	0,3	2,1	0,05	0,2
LS 21	0,7	1,0	0,5	1,7	а	3,1	89	0,2	1,8	0,03	0,2
LS 22	0,2	1,0	1,0	1,4	а	3,0	74	0,1	1,4	0,03	0,1

Tab. 7-5: Fortsetzung: Hauptelementchemismus der Sedimentproben aus der Lippe [Gew.%].

a: Werte siehe Tab. 7-6, Spurenelementchemismus

7.1.2.3.2 Spurenelementchemismus

Bei der Betrachtung der Konzentrationen der Spurenelemente (Tab. 7-6) zeigen die Sedimente des Sickingmühlenbaches deutlich höhere Werte als die der Lippe. Besonders auffallend sind die Barium- und Strontiumkonzentrationen. Hauptbestandteil der Sedimentproben LS5 und LS6 ist Barium. Mit Ausnahme der Elemente Arsen, Cadmium und Uran sind die Konzentrationen der anderen Elemente im Vergleich mit den Konzentrationen in den Lippesedimenten deutlich erhöht. Im Verlauf des Sickingmühlenbaches nehmen die Konzentrationen an Barium, Strontium, Zinn, Tellur, Vanadium und Zirkon ab.

Die Bariumgehalte der Lippesedimente steigen abstromig der Einmündung des Sickingmühlenbaches um den Faktor 13 (Vergleich LS7 zu dem Mittelwert LS1-LS4) an und nehmen dann kontinuierlich bis zum Probenahmepunkt LS11 ab. Ähnlich wie die ²²⁶Radiumaktivitätskonzentration steigt die Bariumkonzentration abstromig der Einleitung des *Bergwerkes Lippe* wieder an und fällt anschließend bis zur Einmündung in den Rhein ab. Analog dazu verhalten sich die anderen gemessenen Elemente ausgenommen Arsen, Cadmium und Uran.

Proben-	As	Ba	Cd	\mathbf{Cr}	Cs	Cu	Ż	Pb	Sn	Sr	Te	\mathbf{Th}	Ŋ	Λ	Zn	Zr
punkt	[mdd]	[mdd]	[mdd]	[mdd]	[mdd]	[mdd]	[mdd]	[mdd]	[ppm]	[mqq]	[ppm]	[mdd]	[mdd]	[ppm]	[mdd]	[mdd]
LS 1	4,2	1041	1,6	88	4,1	44	9,5	32	10	185	2,4	3,9	3,5	34	205	337
LS 2	7,3	1393	1,3	110	5,6	71	12	44	15	233	2,2	$<\!\!1,\!\!1$	0,9	46	294	228
LS 3	2,4	208	<0,1	46	6,2	4,5	1,9	5,4	1,5	34	1,6	<0,9	2,3	11	24	254
LS 4	3,1	267	<0,1	7,8	6,3	4,1	3,3	6,9	1,7	54	2,1	<0,9	<0,5	<15	33	31
LS 5	<4,5	q	<4,9	136	1582	16	<11	<7,8	124	41510	183	53	<24	2719	366	429
LS 6	10	q	<2,8	318	1170	98	37	120	86	17430	130	27	<14	1182	1378	153
LS 7	18	9762	4,4	129	78	175	44	108	40	1006	15	12	<0,9	112	766	246
LS 8	11	8745	3,5	75	89	92	21	69	22	625	13	10	1,8	88	437	163
LS 9	13	7834	3,9	92	62	76	18	75	24	521	13	5,4	1,1	43	568	142
LS 10	5,7	4019	<0,2	63	47	27	16	20	5,9	267	7,1	1,8	<0,7	43	141	161
LS 11	19	2253	0,4	73	19	14	7,7	15	4,2	191	4,9	$<\!\!1,\!0$	2,7	28	110	390
LS 12	16	8134	3,7	06	64	73	19	74	21	561	14	3,2	4,1	59	510	413
LS 13	10	7270	2,8	107	45	69	16	73	19	503	12	7,7	2,2	81	396	203
LS 14	12	7013	2,9	128	53	82	22	62	27	600	12	3,8	1,1	62	497	174
LS 15	11	5482	1,9	145	41	51	15	46	13	417	8,8	1,8	<0,9	48	334	232

Tab. 7-6: Spurenelementchemismus der Sedimentproben aus der Lippe.

Zr [ppm]	201	281	172	350	177	168	66	
Zn [ppm]	603	237	196	210	148	145	65	-
V [ppm]	175	70	48	64	48	31	26	
U [ppm]	<1,0	1,6	<0,7	0,8	0,6	<0,7	<0,7	_
Th [ppm]	10	0,7	3,5	<1,1	4,6	0,7	2,7	
Te [ppm]	12	6,9	6,4	5,8	2,4	4,3	<0,2	
Sr [ppm]	840	359	235	311	184	210	62	
Sn [ppm]	29	8,5	8,6	7,9	4,5	4,2	7	
Pb [ppm]	161	31	28	28	22	18	9,8	
Ni [ppm]	48	12	5,0	14	11	14	9,7	
Cu [ppm]	114	35	29	30	21	21	7,7	
Cs [ppm]	93	30	22	28	9,3	27	\vee	smus
Cr [ppm]	205	56	75	81	63	50	35	ntchemis
Cd [ppm]	3,1	1,0	<0,2	0,9	0,7	0,4	<0,1	pteleme
Ba [ppm]	8624	4221	3626	3710	1769	2700	644	7-5, Hau
As [ppm]	17	14	7,7	15	6,6	8,1	4,1	she Tab.
Proben- punkt	LS 16	LS 17	LS 18	LS 19	LS 20	LS 21	LS 22	b: Werte si

Tab. 7-6: Fortsetzung: Spurenelementchemismus der Sedimentproben aus der Lippe.

7.1.2.4 Korngrößenverteilung

Die 22 Sedimentproben aus der Lippe und dem Sickingmühlenbach sind wie in Kap. 6.2.3 beschrieben auf ihre Korngrößenverteilung hin untersucht worden.

Die Proben der unbelasteten Vergleichsmeßstellen LS1 bis LS4 zeigen unterschiedliche Korngrößenverteilungen. Die beiden ufernahen, mit einem Pfahlkratzer entnommenen Sedimentproben (LS1, LS2) weisen deutlich höhere Schluff- und Tonanteile (< 0,063 mm) auf, als die vom Boot genommenen (LS3, LS4), deren Hauptfraktion Mittelsand darstellt. Die Schluff- und Tonanteile der Lippesedimente nehmen abstromig der Einmündung des Sickingmühlenbaches in die Lippe von 13,1 Gew.% (LS7) auf 1,1 Gew.% am Probenahmepunkt LS11 ab. Im Gegensatz dazu steigt die Sandfraktion (0,063 – 2 mm) dieser Proben an, wobei die Mittelsandanteile dominieren. Abstromig der Einleitung des *Bergwerkes Lippe* (LS12) steigt die Schluff- und Tonfraktion wieder auf 7,6 Gew.% an. Mit Ausnahme der Sedimente LS16 und LS18 sinkt diese bis in den Mündungsbereich der Lippe in den Rhein (LS22) auf 1,3 Gew.% ab. Hauptfraktion dieser Sedimente ist ebenfalls Sand, deren Hauptbestandteil mit Ausnahme der Probe LS16 Mittelsand darstellt. Kies (> 2 mm) spielt mit Ausnahme der Sedimente LS7, LS8 und LS16 eine untergeordnete Rolle.

Anders sieht die Korngrößenverteilung der Sedimente des Sickingmühlenbaches mit wesentlich höheren Schluff- und Tonanteilen aus. Diese betragen im Sediment LS5 28,1 Gew.% und in der Probe LS6 stellen sie mit 54,5 Gew.% die Hauptfraktion dar. Die Sandanteile weisen Gehalte zwischen 59,9 Gew.% und 43,2 Gew.% auf, wobei der Feinsandanteil von LS5 nach LS6 zunimmt.

7.1.3 Böden

Insgesamt zehn Bodenproben wurden aus einem Tiefenbereich von 0 bis 5 cm jeweils einmal in den Jahren 1998 und 1999 an drei Meßstellen entlang der Lippe entnommen.

7.1.3.1 Lage der Probenahmestellen

Der Meßpunkt LB1 ist nur im Jahr 1998 beprobt worden, da es sich hierbei um einen unbelasteten Vergleichspunkt handelt (Abb. 7-12). Die Probenahme erfolgte in unmittelbarer Ufernähe, an einem Punkt, der regelmäßig vom Lippewasser überflutet wird. Meßpunkt LB2 liegt ca. 1,6 km abstromig der Einmündung des Sickingmühlenbaches in die Lippe.

Abb. 7-12: Lage der Bodenprobenahmestellen an der Lippe.

In beiden Beprobungsjahren wurde jeweils eine Probe in unmittelbarer Ufernähe (LB2₉₈-1, LB2₉₉-1) und eine außerhalb des hochwasserbeeinflußten Bereiches (ca. 15 m vom Ufer) (LB2₉₈-2, LB2₉₉-2) entnommen. Meßpunkt LB3 ist ca. 1 km abstromig der Einleitung vom Grubenwasser des *Bergwerkes Lippe* plaziert. An diesem Meßpunkt wurden im Jahr 1998 insgesamt drei Proben entnommen, wovon eine direkt in Ufernähe (LB3₉₈-1), die zweite in ca. 3 m Entfernung im hochwasserbeeinflußten Bereich (LB3₉₈-2) und die dritte außerhalb

(ca. 30 m vom Ufer) des hochwasserbeeinflußten Bereiches (LB3₉₈-3) liegen. Im Jahr 1999 wurde auf die Probenahme der hochwasserbeeinflußten Stelle verzichtet, so daß nur zwei Proben genommen worden sind (LB3₉₉-1, LB3₉₉-3). Die Lage der Meßstellen mit zugehörigen Gauß-Krüger Koordinaten und Flußkilometern enthält Tab. 7-7. Die Daten der unterschiedlichen Proben der einzelnen Meßstellen sind in Tab. 7-8 aufgeführt.

Meßstelle	Ort	Flußkilometer [km]	Gauß-Krüger Koordinaten	Bemerkung
LB1	Flaesheim zu Haltern	58,4	$r = {}^{25}85504 \\ h = {}^{57}32650$	linkes Ufer
LB2	Mersch zu Haltern	43,8	$r = {}^{25}75391$ h = {}^{57}29991	rechtes Ufer
LB3	Dorsten	33,0	$r = {}^{25}67218$ h = ${}^{57}26256$	linkes Ufer

Tab. 7-7: Bezeichnung der Probenahmestellen mit zugehörigen Gauß-Krüger Koordinaten und Flußkilometer an der Lippe.

Tab. 7-8: Lage der einzelnen Proben der jeweiligen Meßstellen an der Lippe.

Meßstelle	Proben	Lage
LB1	LB1	Ufernähe
LB2	LB2 ₉₈ -1	Ufernähe
	LB2 ₉₈ -2	außerhalb des hochwasser- beeinflußten Bereiches
	LB299-1	Ufernähe
	LB299-2	außerhalb des hochwasser- beeinflußten Bereiches
LB3	LB3 ₉₈ -1	Ufernähe
	LB3 ₉₈ -2	hochwasserbeeinflußter Bereich
	LB3 ₉₈ -3	außerhalb des hochwasser- beeinflußten Bereiches
	LB399-1	Ufernähe
	LB399-3	außerhalb des hochwasser-
		beeinflußten Bereiches
7.1.3.2 Radionuklidgehalte

In den Bodenproben wurden ebenfalls keine erhöhten Aktivitätskonzentrationen der Mutternuklide des ²²⁶Radiums und des ²²⁸Radiums analysiert. Die ²²⁶Radiumaktivitätskonzentrationen sind, im Gegensatz zur unbelasteten Probe (LB1), in den in Ufernähe entnommenen Proben der beiden beeinflußten Meßstellen deutlich erhöht (Tab. 7-9).

Probenpunkt	²²⁶ Ra [Bq/kg]	²²⁸ Ra [Bq/kg]	²¹⁰ Pb [Bq/kg]
LB1	39,6±0,8	23,4 ± 1,8	37,0 ± 5,4
LB2 ₉₈ -1	$159 \pm 1,7$	$48,1 \pm 2,9$	$104 \pm 8,4$
LB2 ₉₈ -2	$22,8\pm0,6$	$20,9\pm1,7$	$24,0\pm4,6$
LB299-1	659 ± 17	188 ± 10	34,6 ± 2,6
LB299-2	$94,0 \pm 2,5$	$38,3 \pm 2,3$	$13,5 \pm 1,1$
LB3 ₉₈ -1	$521 \pm 3,2$	$187 \pm 5,7$	114 ± 13
LB398-2	$393 \pm 2,6$	$104 \pm 4,1$	124 ± 11
LB3 ₉₈ -3	66,6 ± 1,1	$35,5 \pm 2,5$	$65,4 \pm 7,7$
LB399-1	913 ± 23	195 ± 10	$42,8 \pm 2,8$
LB399-2	$95,1 \pm 2,6$	$48,2 \pm 2,9$	11,6±1,1

Tab. 7-9: Aktivitätskonzentrationen (2o-Fehler) der analysierten Lippe-Bodenproben.

Im hochwasserunbelasteten Bereich nimmt die ²²⁶Radiumaktivitätskonzentration wieder deutlich ab. Besonders gut zu sehen ist diese entfernungsbedingte Abnahme an den Proben LB3₉₈-1 bis LB3₉₈-3. Hier nimmt die Aktivitätskonzentration von 521 Bq/kg in unmittelbarer Ufernähe auf 66,6 Bq/kg im unbelasteten Bereich ab. Deutlich höhere ²²⁶Radiumaktivitätskonzentrationen sind im Jahr 1999 analysiert worden. Ähnlich verhalten sich auch die ²²⁸Radium- und ²¹⁰Bleiaktivitätskonzentrationen. Auch hier sind die Aktivitätskonzentrationen der ufernahen Proben im Gegensatz zur unbelasteten Probe deutlich erhöht. Ebenso nehmen die Aktivitätskonzentrationen an einer Meßstelle mit der Entfernung zur Wasserlinie ab. Auch diese beiden Nuklide weisen wie auch die ²²⁶Radiumaktivitätskonzentration im Jahr 1999 deutlich höhere Werte auf.

7.1.3.3 Haupt- und Spurenelementchemismus

7.1.3.3.1 Hauptelementchemismus

Hauptbestandteil der Bodenproben ist erwartungsgemäß Silicium (dargestellt als SiO₂), wobei die Gehalte zwischen 42 Gew.% und 84 Gew.% schwanken (Tab. 7-10). In höheren nennenswerten Konzentrationen treten noch Calcium, Aluminium und Eisen auf. Die Natriumgehalte der Bodenproben liegen in den meisten Fällen unterhalb der Nachweisgrenze und die Kaliumgehalte, dargestellt als K₂O, schwanken zwischen 1 und 2 Gew.%. Die Elemente Mangan, Titan und Phosphor sind in den untersuchten Proben nur in Spuren enthalten.

Proben- punkt	Na ₂ O [%]	K ₂ O [%]	MgO [%]	CaO [%]	Al ₂ O ₃ [%]	SiO ₂ [%]	P ₂ O ₅ [%]	Fe ₂ O ₃ [%]	MnO [%]	TiO ₂ [%]
LB1	<0,2	0,8	0,3	3,1	3,2	84	0,2	1,5	0,04	0,2
LB2 ₉₈ -1	<0,2	1,4	0,7	3,5	7,1	64	0,5	3,9	0,09	0,4
LB2 ₉₈ -2	<0,2	1,4	0,4	0,4	6,5	81	0,2	3,0	0,05	0,4
LB299-1	0,9	1,7	1,4	6,1	8,1	42	0,9	5,5	0,2	0,5
LB299-2	0,5	1,4	1,1	3,0	6,3	56	0,4	2,7	0,06	0,3
LB3 ₉₈ -1	<0,2	1,1	0,5	3,9	5,0	66	0,8	3,8	0,1	0,3
LB3 ₉₈ -2	<0,2	1,1	0,5	4,2	5,1	67	0,6	3,4	0,1	0,3
LB3 ₉₈ -3	<0,2	1,8	0,9	4,0	8,6	62	0,3	3,7	0,2	0,4
LB399-1	0,9	1,2	1,3	3,9	5,9	50	1,3	3,4	0,1	0,3
LB399-2	0,5	1,6	1,0	2,1	7,2	47	0,6	4,6	0,1	0,4

Tab. 7-10: Hauptelementchemismus der Lippe-Bodenproben [Gew.%].

7.1.3.3.2 Spurenelementchemismus

Die Konzentrationen der Spurenelemente in der Bodenprobe der Vergleichsmeßstelle sind deutlich geringer als die der beeinflußten Proben (Tab. 7-11). Besonders auffallend sind die hohen Bariumkonzentrationen der ufernahen Probestellen LB2 und LB3, die mit zunehmender Entfernung vom Ufer wieder deutlich abnehmen. So sinkt die Bariumkonzentration der Meßstelle LB3 von 13.400 ppm in unmittelbarer Ufernähe auf 1.552 ppm im hochwasserunbeeinflußten Boden. Bis auf Arsen, Cadmium, Thorium, Uran und Vanadium verhalten sich die anderen Spurenelemente äquivalent dazu.

V Zn Zr	[mdd] [ppm] [ppm]	100 201 202		201 201 38 543 212	201 201 201 38 543 212 54 105 361	201 201 201 38 543 212 54 105 361 29 788 218	543 201 201 543 512 361 54 105 361 29 788 218 57 269 178	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	38 543 212 54 105 361 54 105 361 29 788 218 57 269 178 00 <7,1 304 81 527 239	201 201 201 38 543 212 34 105 361 29 788 218 57 269 178 57 269 178 00 $<7,1$ 304 81 527 239 01 358 182	201 201 201 38 543 212 34 105 361 29 788 218 37 269 178 31 269 178 31 527 239 31 527 239 01 358 182 16 669 239
N 11	pm] [pp]	2,6 32		1,2 88	1,2 88 3,3 6 ⁶	1,2 88 3,3 66 1,6 12	1,2 88 3,3 62 0,7 6 ⁻	1,2 8% 3,3 6¢ 0,7 6′ 2,8 10	1,2 85 3,3 66 0,7 67 0,9 80 0,9 80	1,2 86 3,3 66 0,7 6 0,9 8 0,9 8 0,7 10	1,2 8 3,3 6 3,3 6 0,7 6 0,9 8 0,7 10 0,7 10 7,2 11
, Th	[d] [mdd	0,5 2		2,3 1	2,3 1 4,9 3	2,3 1 4,9 3 20 0	2,3 1 4,9 3 20 0 11 △	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2,3 1 2,3 1 1 1 6,6 6,6 6,1 5,1 20 6,1 5,1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Te	[mdd]	2,9	-	5,7	5,7 1,4	5,7 1,4 13	5,7 1,4 13 2,0	5,7 1,4 13 2,0 20	5,7 1,4 13 2,0 20 13	5,7 1,4 13 2,0 2,0 2,4 2,4	5,7 1,4 13 2,0 2,4 2,4 2,4
S.	[mdd]	196		414	414 69	414 69 866	414 69 866 178	414 69 866 178 958	414 69 866 178 958 647	414 69 866 178 958 647 159	414 69 866 178 958 647 159 794
Sn	[mdd]	9,0	00	7.7	22 2,7	22 2,7 42	22 2,7 42 9,1	22 2,7 42 9,1 35	22 2,7 9,1 35 23	22 2,7 9,1 35 23 23	22 2,7 42 9,1 35 23 23 12 36,1
hh	[mdd]	30	110		44	44 194	44 194 95	44 194 95 108	44 194 95 8,3	44 194 95 8,3 155	44 194 95 8,3 155 106
Ż	[mdd]	11	26		11	11 36	11 36 18	11 36 18 38	11 36 18 38 25	11 36 18 38 25 29	11 36 18 38 25 29 25 25
J	[mdd]	42	91		16	16 171	16 171 48	16 171 48 123	16 171 48 123 87	16 171 48 123 87 87	16 171 48 123 87 76 128
Š	[ppm]	15	32		9,4	9,4 62	9,4 62 13	9,4 62 13 96	9,4 62 13 96 63	9,4 62 96 63 20	9,4 62 96 63 91 91
Ċ	[mdd]	56	117	l	90	56 130	50 130 83	56 130 83 135	56 130 83 135 97	56 130 83 83 135 97 97	56 130 83 83 97 97 121
PC C	[mdd]	0,8	2,3	5 0	<i>.</i> , ,	5,1	5,1 1,2	5,1 1,2 5,2	5,1 1,2 5,2 2,9	5,1 5,1 5,2 2,9 1,5	5,1 5,2 5,2 2,9 1,5 6,4
Ва	[mdd]	988	3776	380	100	9806	9806 1330	9806 1330 13400	9806 1330 13400 8719	9806 1330 13400 8719 1552	9806 1330 13400 8719 1552 13450
Ās	[mdd]	6,5	20	17		17	17 10	17 10 19	17 10 19 25	17 10 19 25 22	17 10 19 25 14
Prohen-	punkt	LB1	LB2 ₉₈ -1	LB2 ₉₈ -2		LB299-1	LB299-1 LB299-2	LB2 ₉₉ -1 LB2 ₉₉ -2 LB3 ₉₈ -1	LB2 ₉₉ -1 LB2 ₉₉ -2 LB3 ₉₈ -1 LB3 ₉₈ -2	LB2 ₉₉ -1 LB2 ₉₉ -2 LB3 ₉₈ -1 LB3 ₉₈ -2 LB3 ₉₈ -3	LB2 ₉₉ -1 LB2 ₉₉ -2 LB3 ₉₈ -1 LB3 ₉₈ -2 LB3 ₉₈ -3 LB3 ₉₉ -1

Tab. 7-11: Spurenelementchemismus der Lippe-Bodenproben.

7.1.3.4 Korngrößenverteilung

Wie aus den Korngrößenverteilungen (Abb. 7-13) ersichtlich wird, weist die Bodenprobe der Vergleichsmeßstelle (LB1) die niedrigsten Kiesanteile auf. Hauptfraktion dieser Probe ist Sand, wobei Mittelsand überwiegt. Die Bodenproben der Meßstelle LB2 besitzen besonders in den ufernahen Bereichen höhere Kiesanteile mit bis zu 60,4 Gew.%. In den hochwasserunbeeinflußten Proben überwiegt die Sandfraktion, vor allem die Fein- und Mittelsande. Ebenfalls weisen diese Proben höhere Schluff- und Tonanteile auf als die ufernah entnommenen Proben. In den Proben des Jahres 1998 ist die Schluff- und Tonfraktion wie auch die Feinsandfraktion höher als in den Proben aus dem Jahre 1999. Diese höheren Feinanteile wurden an der Meßstelle LB3 ebenfalls in den Proben aus dem Jahre 1998 festgestellt. An diesem Probenahmepunkt nehmen die Schluff- und Tonanteile allerdings von den ufernahen zu den hochwasserunbeeinflußten Bodenproben ab. Hauptfraktion aller Bodenproben der Meßstelle LB3 ist Sand, wobei die Feinsandanteile mit zunehmender Entfernung zum Ufer abnehmen.

Abb. 7-13: Korngrößenverteilung der Lippe-Bodenproben.

7.1.4 Ortsdosisleistung

Die gemessenen Ortsdosisleistungen betragen entlang des unbelasteten Gewässerverlaufes der Lippe sowohl direkt am Ufer als auch im vom Hochwasser unbeeinflußten Boden, ca. 60 nSv * h⁻¹ (Abb. 7-14). Abstromig der Mündung des Sickingmühlenbaches steigen die Ortsdosisleistungen auf bis zu 300 nSv * h⁻¹ an. Bis zur Mündung in den Rhein bleiben die gemessenen Ortsdosisleistungen in direkter Ufernähe deutlich erhöht. Mit zunehmendem Abstand zur Lippe sinken sie wieder ab. So sinkt z.B. die Ortsdosisleistung in dem Meßprofil bei Dorsten von 300 nSv * h⁻¹ an der Uferkante auf 140 nSv * h⁻¹ in 20 m Entfernung von der Lippe. Alle in Abb. 7-14 eingetragenen Ortsdosisleistungen und deren Gauß-Krüger Koordinaten, die im Anhang (Tab. A-7) aufgeführt sind, wurden mit Ausnahme einer (Dorsten) auf bewachsenen Flächen gemessen. Wie auch schon WIEGAND et al. 1996 festgestellt hat, wurde auf der unbewachsenen Fläche eine geringere Ortsdosisleistung als auf einer direkt daneben liegenden bewachsenen Fläche bestimmt.

Die Ortsdosisleistungen im Bereich des Sickingmühlenbaches weisen deutlich höhere Werte als im Bereich der Lippe auf (Abb. 7-15). Abstromig der Vereinigung des Silvertbaches mit dem Loemühlenbach wurden über den Sedimenten Ortsdosisleistungen von $6.000 \text{ nSv} * \text{h}^{-1}$ gemessen, die weiter flußabwärts bis auf 1.400 nSv * h^{-1} abnehmen. Im Bereich der Sedimentprobenahmestelle LS 5 betragen die Ortsdosisleistungen in unmittelbarer Ufernähe 850 nSv * h^{-1} . Mit zunehmendem Abstand zum Bach nehmen sie wieder deutlich ab. Im Mündungsbereich des Baches schwanken die Ortsdosisleistungen am Ufer zwischen 250 nSv * h^{-1} und 500 nSv * h^{-1} . Die hier über den Sedimenten gemessenen sind mit 1.700 nSv * h^{-1} deutlich erhöht.

Abb. 7-15: Gemessene Ortsdosisleistungen [nSv * h⁻¹] am Sickingmühlenbach.

7.1.5 Tiefenprofile

An drei Meßpunkten entlang des Lippeverlaufes wurden mittels Spiralbohrer aus Tiefenprofilen Proben entnommen und deren Radionuklidgehalte bestimmt. Die Ergebnisse der Einzelmessungen sind im Anhang (Tab. A-20) zusammengefaßt.

7.1.5.1 Lage der Probenahmestellen

Tab. 7-12 enthält die Ortsdaten mit zugehörigen Gauß-Krüger Koordinaten sowie die Flußkilometer der drei Meßpunkte. An allen Meßpunkten wurden sowohl Proben in Ufernähe (LTX-1) als auch im hochwasserbelasteten Bereich (LTX-2) entnommen.

Tab. 7-12: Bezeichnung der Probenahmestellen mit zugehörigen Gauß-Krüger Koordinaten und Flußkilometern an der Lippe.

Probe- nahmestelle	Ort	Flußkilometer [km]	Gauß-Krüger Koordinaten	Bemerkung
LT1	Mersch zu Haltern	43,8	$r = {}^{25}75391$ h = {}^{57}29991	rechtes Ufer
LT2	Dorsten	33,0	$r = {}^{25}67218$ h = ${}^{57}26256$	linkes Ufer
LT3	Fusternberg zu Wesel	4,0	$r = {}^{25}44753$ h = ${}^{57}23956$	rechtes Ufer

7.1.5.2 Radionuklidgehalte

Die ²²⁶Radiumaktivitätskonzentrationen der ufernahen Proben des Meßprofils LT1-1 schwanken in den ersten sechs Beprobungstiefen zwischen 305 ± 8 und 379 ± 10 Bq/kg, wobei die höchste Konzentration in einer Tiefe von 80 - 95 cm gemessen wurde (Abb. 7-16). Dagegen wurde in einer Tiefe von 95 - 110 cm nur noch eine Aktivitätskonzentration von ca. 65 Bq/kg analysiert. In den Proben der hochwasserbeeinflußten Probenahmestelle LT1-2 schwanken die Gehalte des Nuklids ²²⁶Radium in den obersten 60 cm um einen Wert von ca. 200 Bq/kg (Abb. 7-17). In einer Tiefe von 60 - 75 cm ist eine Konzentration von 371 ± 10 Bq/kg analysiert worden, die anschließend bis zu einer Tiefe von 90 - 105 cm auf ca. 30 Bq/kg abnimmt. Die ²²⁸Radiumaktivitätskonzentrationen nehmen

sowohl im ufernahen als auch im hochwasserbeeinflußten Profil mit zunehmender Tiefe ab. Im Gegensatz zur ²²⁸Radiumaktivitätskonzentration verhalten sich die ²¹⁰Bleiaktivitätskonzentrationen ebenso wie die ²²⁶Radiumaktivitätskonzentrationen. Diese beiden Nuklide stehen mit Ausnahme der obersten Probe des Profils LT1-1 in allen anderen Proben der zwei Profile im Gleichgewicht.

Abb. 7-16: Radionuklidaktivitätskonzentrationen (2σ-Fehler) der Proben des Tiefenprofils LT1-1 an der Lippe.

Abb. 7-17: Radionuklidaktivitätskonzentrationen (2σ-Fehler) der Proben des Tiefenprofils LT1-2 an der Lippe.

93

In den ufernahen Proben der Meßstelle LT2, die aufgrund des Wasserspiegels nur bis zu einer Tiefe von 35 cm beprobt werden konnte, steigt die ²²⁶Radiumaktivitätskonzentration von ca. 230 Bq/kg in der obersten Beprobungstiefe auf ca. 450 Bq/kg in den nachfolgenden Tiefen an (Abb. 7-18). Im hochwasserbeeinflußten Profil dagegen nimmt die ²²⁶Radiumaktivitätskonzentration mit zunehmender Tiefe von ca. 300 Bq/kg in den oberen Horizonten auf ca. 75 Bg/kg in einer Tiefe von 70 – 74 cm ab (Abb. 7-19). Die ²²⁸Radiumaktivitätskonzentrationen schwanken im Profil LT2-1 zwischen ca. 90 Bq/kg und ca. 140 Bq/kg. Im zweiten Profil dieser Meßstelle nehmen die ²²⁸Radiumaktivitätskonzentrationen mit zunehmender Tiefe von ca. 95 Bq/kg im obersten Horizont auf ca. 10 Bq/kg in einer Tiefe von 70 cm ab. Anders als in den Tiefenprofilen der Meßstelle LT1 ist die ²¹⁰Bleiaktivitätskonzentration an dieser Meßstelle im ufernahen Profil nicht mit der ²²⁶Radiumaktivitätskonzentration im Gleichgewicht. Im Profil LT2-2 nimmt die 210 Bleiaktivitätskonzentration auf ca. 260 Bq/kg in einer Tiefe von 7 – 20 cm zu. Anschließend geht sie mit leichten Schwankungen bis zu einer Tiefe von 70 - 74 cm auf ca. 60 Bq/kg zurück. Ab einer Tiefe von 46 cm stehen die Nuklide ²²⁶Radium und ²¹⁰Blei im Gleichgewicht.

Abb. 7-18: Radionuklidaktivitätskonzentrationen (2σ-Fehler) der Proben des Tiefenprofils LT2-1 an der Lippe.

Abb. 7-19: Radionuklidaktivitätskonzentrationen (2σ-Fehler) der Proben des Tiefenprofils LT2-2 an der Lippe.

Die ²²⁶Radiumaktivitätskonzentrationen im Tiefenprofil LT3-1 nehmen bis zu einer Tiefe von 46 – 56 cm kontinuierlich auf ca. 640 Bq/kg zu. Nachfolgend sinken die Gehalte bis zu einer Tiefe von 97 – 106 cm wieder auf ca. 90 Bq/kg ab (Abb. 7-20). Im Profil LT3-2 wurden in den obersten drei Horizonten ²²⁶Radiumaktivitätskonzentrationen von ca. 230 Bq/kg analysiert (Abb. 7-21). Bis zu einer Tiefe von 43 – 55 cm nehmen sie auf ca. 60 Bq/kg ab. Die Probe aus einer Tiefe von 63 – 69 cm weist die höchste ²²⁶Radiumaktivitätskonzentration mit einem Wert von ca. 280 Bq/kg auf. Nachfolgend fällt sie wieder bis auf ca. 70 Bq/kg ab. Im Gegensatz dazu nehmen die ²²⁸Radiumaktivitätskonzentrationsverlauf im Tiefenprofil LT3-1 ist dem ²²⁶Radiumaktivitätskonzentrationsverlauf sehr ähnlich Ab einer Tiefe von 66 cm stehen die beiden Nuklide im Gleichgewicht. Im Profil LT3-2 hat sich über das gesamte Profil bereits das Gleichgewicht zwischen ²²⁶Radium und ²¹⁰Blei eingestellt.

Abb. 7-20: Radionuklidaktivitätskonzentrationen (2σ-Fehler) der Proben des Tiefenprofils LT3-1 an der Lippe.

Abb. 7-21: Radionuklidaktivitätskonzentrationen (2σ-Fehler) der Proben des Tiefenprofils LT3-2 an der Lippe.

Allen Tiefenprofilen ist gemeinsam, daß die Aktivitätskonzentrationen der untersuchten Nuklide ab einer Tiefe von ca. 80 cm sprunghaft abnehmen. Die tiefer gelegenen Schichten sind im Gegensatz zu den darüberliegenden noch nicht vom Bergbau beeinflußt.

7.1.6 Flora und Fauna

7.1.6.1 Flora

7.1.6.1.1 Aquatische Pflanzen

Die Entnahme der Pflanzenproben erfolgte zum einen vom Boot und zum anderen vom Ufer aus. Die Beprobung beschränkte sich auf Tausendblatt (*Myriophyllum ssp. hetero-phyllum*) (SCHMEIL et al. 1996), da diese Pflanze gleichmäßig verteilt auf dem beprobten Lippeabschnitt auftritt.

Lage der Probenahmepunkte

Abb. 7-22 gibt einen Überblick über die Lage der Probenahmepunkte, die dazugehörigen Flußkilometer sind in Tab. 7-13 aufgeführt. Die Meßpunkte LPf_w1 bis LPf_w4 liegen anstromig der Mündung des Sickingmühlenbaches und können somit als unbelastete Vergleichsproben angesehen werden. Meßstelle LPf_w5 liegt ca. 0,3 km abstromig der Mündung des Baches in die Lippe. Zwischen den Meßpunkten LPf_w14 und LPf_w15 kommt es zu der beschriebenen Zecheneinleitung des *Bergwerkes Lippe*.

Der Meßpunkt LPf_w19 befindet sich im Hambach, einem grubenwasserfreien Zufluß der Lippe, so daß diese Meßstelle ebenfalls als unbelastete Vergleichsmeßstelle angesehen werden kann. Die westlichste Meßstelle LPf_w25 befindet sich ca. 15 km anstromig der Lippemündung in den Rhein.

Abb. 7-22: Übersichtskarte über die Pflanzenprobenahmestellen an der Lippe.

Radionuklidgehalte

Nachfolgend dargestellte Anaysenergebnisse beziehen sich auf das Trockengewicht der Pflanzenproben. Die ²²⁶Radiumaktivitätskonzentrationen der Pflanzenproben an den Vergleichsmeßstellen LPfw1 bis LPfw4 und LPfw19 schwanken zwischen 17 und 23 Bg/kg. Abstromig der Einmündung des Sickingmühlenbaches steigen die Aktivitätskonzentrationen zunächst bis auf 78 Bq/kg an. Im weiteren Flußverlauf nehmen sie relativ konstant mit leichten Schwankungen bis zum Probenahmepunkt LPfw17 auf 30 Bq/kg ab. Die Grubenwassereinleitung des Bergwerkes Lippe, die abstromig des Meßpunktes LPfw14 liegt, ist in den Pflanzenproben erst am Meßpunkt LPfw18 nachweisbar, wo die ²²⁶Radiumaktivitätskonzentrationen erneut auf 70 Bq/kg ansteigt. Abstromig dieses Punktes nehmen die Aktivitätskonzentrationen wieder deutlich ab. Sie schwanken im weiteren Verlauf zwischen 20 und 40 Bq/kg. In allen Proben, mit Ausnahme der Probe LPf $_{\rm W}$ 17, ist mehr ²²⁶Radium als ²²⁸Radium in den Pflanzen nachgewiesen worden. Das Nuklid ²²⁸Radium konnte nur in zwei unbelasteten Proben mit Aktivitätskonzentrationen von ca. 13 Bq/kg nachgewiesen werden. Abstromig der Einmündung des Sickingmühlenbaches steigt die Aktivitätskonzentration auf 49 Bq/kg an. Wie die ²²⁶Radiumaktivitätskonzentration sinkt auch die ²²⁸Radiumaktivitätskonzentration bis zum Meßpunkt LPfw16 auf 13 Bq/kg ab. Jedoch schwanken die ²²⁸Radiumaktivitätskonzentrationen deutlich stärker als die des ²²⁶Radiums. Die am Meßpunkt LPf_w18 analysierten 36 Bq/kg ²²⁸Radium nehmen im weiteren Verlauf nur geringfügig ab.

Das Nuklid ²¹⁰Blei ist nur in der Probe LPf_w14 nachgewiesen worden. In allen anderen lagen die Aktivitätskonzentrationen unterhalb der Nachweisgrenze .

Proben- punkt	Flußkilometer [km]	²²⁶ Ra [Bq/kg]	²²⁸ Ra [Bq/kg]	²¹⁰ Pb [Bq/kg]
LPf _W 1	58,4	$20,6 \pm 2,6$	< 17	< 60
LPf_W2	51,5	$17,5 \pm 2,5$	< 17	< 59
LPf _w 3	50,7	$23,3 \pm 3,3$	< 22	< 79
LPf _w 4	48,5	$22,0\pm0,5$	$13,4 \pm 1,2$	< 6
LPf _w 5	45,1	69,8 ± 2,7	33,2 ± 6,9	< 44

Tab. 7-13: Radionuklidaktivitätskonzentrationen (2σ-Fehler) der Wasserpflanzenproben aus der Lippe.

Lonpi						
Proben-	Flußkilometer	²²⁶ Ra	²²⁸ Ra	²¹⁰ Pb		
punkt	[km]	[Bq/kg]	[Bq/kg]	[Bq/kg]		
LPf _w 6	44,8	$78,1 \pm 2,4$	$49,0 \pm 6,1$	< 37		
LPf_W7	43,8	$50,0\pm2,7$	$35,3 \pm 7,8$	< 51		
LPf _w 8	43,8	$48,0 \pm 2,4$	$32,8 \pm 7,6$	< 37		
LPf _w 9	42,2	49,0 ±4,7	$31,1 \pm 1,3$	< 93		
LPf _w 10	41,3	51,4±0,7	$28,1 \pm 1,7$	< 30		
LPf _w 11	39,8	$54,4\pm1,5$	31,7 ± 3,9	< 23		
LPf_W12	37,7	$32,5\pm0,6$	$20,7 \pm 1,8$	< 27		
LPf _w 13	37,0	$24,2 \pm 1,8$	$21,0 \pm 9,1$	< 33		
LPf _w 14	36,3	$27,0 \pm 1,6$	$17,3 \pm 4,5$	58,6 ± 13		
LPf _w 15	34,3	$31,7 \pm 1,2$	$24,1 \pm 3,5$	< 34		
LPf _w 16	33,5	$13,5 \pm 1,0$	13,0 ± 3,2	< 23		
LPf_W17	33,1	$30,2 \pm 1,8$	$36,0 \pm 5,7$	< 35		
LPf _w 18	31,6	$69,8\pm4,6$	$36,2 \pm 11$	< 72		
LPf _w 19	29,5	$16,7 \pm 0,6$	$12,2 \pm 1,8$	< 12		
LPf _w 20	27,5	$38,3 \pm 1,1$	$32,1 \pm 3,2$	< 20		
LPf _w 21	24,9	$28,4\pm1,4$	$25,0 \pm 4,5$	< 28		
LPf _w 22	24,1	$20,3\pm0,9$	$17,4 \pm 3,0$	< 9		
$LPf_W 23$	22,7	$23,7 \pm 2,8$	< 19	< 67		
LPf _w 24	22,2	$36,2\pm0,5$	$34,1 \pm 1,4$	< 17		
LPf _w 25	14,6	$39,5 \pm 3,5$	32,8 ± 10	< 75		

Tab. 7-13: Fortsetzung: Radionuklidaktivitätskonzentrationen (2σ-Fehler) der Wasserpflanzenproben aus der Lippe.

7.1.6.1.2 Terrestrische Pflanzen

Die Belastung terrestrischer Pflanzen mit natürlichen Radionukliden wurde anhand von einigen Gräsern untersucht. Die Probenahme erfolgte parallel mit der Bodenprobenahme.

Lage der Probenahmepunkte

Die Pflanzenprobenahmestelle (LPf_L1) ist identisch mit der Bodenprobenahmestelle LB1, es handelt sich um eine Vergleichsmeßstelle (Abb. 7-12). Im belasteten Gebiet wurden Pflanzenproben ca. 1,6 km abstromig der Einmündung des Sickingmühlenbaches (LPf_L2, identisch mit LB2) sowie an einem Meßpunkt, der ca. 1 km abstromig der Einleitung des *Bergwerkes Lippe* plaziert ist (LPf_L3, identisch mit LB3), entnommen. An beiden Meßstellen wurden Gräser in unmittelbarer Ufernähe und im hochwasserunbeeinflußten Bereich beprobt.

Radionuklidgehalte

Mit einer Ausnahme ist in allen Pflanzenproben keines der in dieser Arbeit untersuchten Radionuklide in Konzentrationen oberhalb der Nachweisgrenze bestimmt worden. Die ufernahe Pflanzenprobe des Meßpunktes LPf_L3 weist Aktivitätskonzentrationen von 17 Bq/kg TG ²²⁶Radium und 9 Bq/kg TG ²²⁸Radium auf. Dieses Ergebnis konnte allerdings im folgenden Beprobungsjahr nicht bestätigt werden. Die Darstellung der Einzelergebnisse erfolgt im Anhang in Tab. A-22.

7.1.6.2 Fauna

Am Probenahmepunkt LW10 wurden neben unterschiedlicher Fischarten zwei Wollhandkrabben (*Eriocheir sinensis*) gefangen. Insgesamt wurden 25 Fische untersucht, dabei handelte es sich um:

11 Aale (Anguilla anguilla), 5 Rotaugen (Rutilus rutilus), 5 Brassen (Abramis brama), 2 Karpfen (Cyprinus carpio), 1 Regenbogenforelle (Oncorhynchus mykiss) und 1 Kaulbarsch (Gymnocephalus cernua). Wie im Kapitel 6.3.2 beschrieben, wurde jeder Fisch in die

folgenden Fraktionen separiert: Fleisch, Gräten, Haut und Innereien. Die zwei Wollhandkrabben wurden unter flüssigem Stickstoff gemörsert und komplett analysiert.

Radionuklidgehalte

Alle untersuchten Karpfen-, Brassen-, Regenbogenforellen- und Kaulbarsch-Proben enthalten keines der untersuchten Radionuklide (²²⁶Ra, ²²⁸Ra, ²¹⁰Pb) in Konzentrationen oberhalb der Nachweisgrenze. Lediglich zwei der fünf untersuchten Rotaugen enthalten ²²⁶Radium in folgenden Fraktionen:

Haut (Fisch 1):	105 ± 36,4 Bq/kg TG
Innereien (Fisch 2):	150 ± 50,5 Bq/kg TG.

Keine Fleisch- bzw. Hautprobe der analysierten Aale weist Aktivitätskonzentrationen von ²²⁶Radium, ²²⁸Radium und ²¹⁰Blei oberhalb der Nachweisgrenze auf. Auch in den Gräten der untersuchten Aale wurde nur in einer Probe ²²⁶Radium mit einer Aktivitätskonzentration von $63,8 \pm 11,7$ Bq/kg TG nachgewiesen. Dagegen weisen 7 von 11 Proben erhöhte ²²⁶Radiumaktivitätskonzentrationen in den Innereien auf. Diese schwanken zwischen 22,9 \pm 3,0 Bq/kg TG und 188 \pm 32,9 Bq/kg TG mit einem Mittelwert von 73,4 \pm 11 Bq/kg TG.

Die relativ hohen Fehler der Meßergebnisse (Tab. A-23) beruhen auf den geringen Probemengen der untersuchten Fischproben. Die Analysenergebnisse der untersuchten Wollhandkrabben sind in Tab. 7-14 aufgeführt. Beide Proben enthalten sowohl ²²⁶Radium als auch ²²⁸Radium in ähnlichen Aktivitätskonzentrationen.

Tab. 7-14: Aktivitätskonzentrationen (2o-Fehler) der untersuchten Wollhandkrabben.

Probenbe- zeichnung	²²⁶ Ra [Bq/kg TG]	²²⁸ Ra [Bq/kg TG]	²¹⁰ Pb [Bq/kg TG]
LK1	$19,8 \pm 2,8$	$24,2 \pm 5,7$	< 43
LK2	$13,8 \pm 2,2$	$19,9 \pm 4,6$	< 35

7.2 Niederrhein-Gebiet (Fossa)

Der linksrheinische Steinkohlenbergbau im Raum Rheinberg entwässert über die Fließsysteme Moersbach und Fossa Eugeniana, die sich in Rheinberg zum Rheinberger Altrhein vereinen. Im Rahmen dieser Arbeit ist aufgrund von Voruntersuchungen von FEIGE (1997) der Moersbach nicht beprobt worden, da ²²⁶Radium in diesen Wasserproben nicht nachweisbar war.

Die Fossa Eugeniana ist ein ca. 5 m breiter von der spanischen Königin Isabella zu Handelszwecken angelegter Kanal. Westlich des Stadtzentrums von Rheinberg vereinigt sich die bis dahin in nordöstlicher Richtung fließende Fossa Eugeniana mit dem in nördlicher Richtung fließendem Moersbach zum Rheinberger Altrhein. In ihrem Verlauf durchschneidet die mit Geotextilien ausgebaute Fossa Eugeniana pleistozäne Sedimente der Rhein-Niederterrassen, sie ist aber aufgrund des Ausbaus fast vollständig vom geologischen Untergrund abgekoppelt (WIEGAND et al. 1996). Außerhalb von Rheinberg fließt die Fossa Eugeniana in Geländehöhe, aber innerhalb der Ortschaft befindet sich der Gewässerspiegel durch Eintiefung des Kanals deutlich unterhalb der Geländeoberfläche. Im weiteren Verlauf erfolgt der Zufluß des Jenneckes Gatts, der durch eine Schleuse abriegelbar ist. Ab hier trägt das Gewässer den Namen Alter Rhein und fließt wieder auf Geländeniveau, eingerahmt von zwei Deichen, deren Abstand zum Gewässer variiert. Der Abstand schwankt zwischen wenigen Metern entlang des Prallhangs (westliches Ufer) und 200 m im unteren Flußverlauf. Das westliche (linke) Ufer des Alten Rheins wird durch Niederterrassensedimente aufgebaut, das östliche (rechte) als Gleithang ausgebildete Ufer dagegen befindet sich in holozänen Auelehmen.

Weiter östlich von Ossenberg wird der Altrheinarm durch eine Schleuse abgeriegelt. Von dort fließt das Gewässer kanalartig eingetieft bis zu seiner Mündung in den Rhein.

In Höhe der Schachtanlage *Rossenray* werden ca. 7,8 * 10^6 m³/a Grubenwässer der Schachtanlage *Niederberg* 1/2/5 und *Rossenray* 1/2 in die Fossa Eugeniana eingeleitet (LINEG 1995). Wenige 100 Meter flußabwärts wird das Wasser der Fossa Eugeniana abgepumpt und unterirdisch zum Pumpwerk Krumsteg geführt, wo es erneut in die Fossa Eugeniana eingeleitet wird. Zusätzlich werden auf Werkshöhe der Solvay-Betriebe unbestimmte Abwässer dem Alten Rhein zugeführt. Neben diesen Einleitungen industrieller Abwässer kommt es im Mündungsbereich des Jenneckes Gatt und auf der Höhe der Schleuse Ossenberg zur Einleitung kommunaler Abwässer.

7.2.1 Wasser

Uber einen Zeitraum von 14 Monaten wurden an der Fossa Eugeniana, fünf Probestellen regelmäßig einmal pro Monat beprobt. Die Wasserproben wurden analog der Lippe (Kap. 7.1.1) auf folgende Parameter untersucht: pH, Eh, elektrische Leitfähigkeit, Konzentrationen an ²²⁶Radium, Natrium, Kalium, Magnesium, Calcium, Barium, Strontium, Sulfat und Chlorid. Auch hierbei handelt es sich, wie schon in Kap. 7.1.1 beschrieben, um reine Momentaufnahmen, es werden daher auch hier nur die Mittelwerte aufgeführt und später diskutiert. Die Ergebnisse der einzelnen Proben sind im Anhang (Tab. A-12 bis Tab. A-16) dargestellt.

7.2.1.1 Lage der Probenahmestellen

Die Meßstelle FW1 liegt ca. 0,3 km anstromig der Einleitung des Bergwerkes *Rossenray* (Abb. 7-23) und kann daher als unbelastete Vergleichsstelle angesehen werden. Der Meßpunkt FW2 liegt direkt am Einleitungsbauwerk der oben genannten Zeche und wird daher in den nachfolgenden Diagrammen abgehoben dargestellt, da es sich hierbei um reine Zechenabwässer handelt. Diese Zechenabwässer können sowohl Grubenwasser als auch Kauen- oder andere anfallenden Wässer oder Gemische dieser sein. Alle anderen Meßpunkte befinden sich abstromig dieser Einleitung. So liegt Punkt FW3 am Pumpwerk Krumsteg, wo die Fossa Eugeniana wieder oberirdisch verläuft. Meßpunkt FW4 befindet sich ca. 0,2 km anstromig des Jenneckes Gatt und FW5 ca. 0,5 km anstromig der Schleuse Ossenberg.

Tab. 7-15 beinhaltet die Gauß-Krüger Koordinaten der einzelnen Meßstellen sowie die Flußkilometer. Die Kilometrierung beginnt mit der Mündung des Gewässers in den Rhein.

Abb. 7-23: Übersichtskarte der Wasserprobenahmestellen entlang der Fossa Eugeniana.

Tab. 7-15: Bezeichnung der Probenahmestellen mit zugehörigen Gauß-Krüger Koordinaten					
und die Flußkilometer an der Fossa Eugeniana.					
Probenpunkt	robenpunkt Flußkilometer Gauß-Krüger				
	[]1	V			

Probenpunkt	Flußkilometer [km]	Gauß-Krüger Koordinaten	Bemerkung
FW1	8,4	$r = {}^{25}38226$ $h = {}^{57}09416$	
FW2	8,1	$r = {}^{25}38570$ $h = {}^{57}09700$	Einleitungsbauwerk
FW3	7,3	$r = {}^{25}39162$ h = ${}^{57}10270$	
FW4	3,2	$r = {}^{25}41579$ h = ${}^{57}13222$	
FW5	1,1	$r = {}^{25}40857$ h = ${}^{57}14959$	

7.2.1.2 pH-Werte und Temperaturen

Die pH-Werte der analysierten Wasserproben zeigen wie auch schon die Daten der Lippeproben sowohl über das Meßprofil als auch über den Beprobungszeitraum relativ konstante Werte, die zwischen 7,3 und 7,5 schwanken (Tab. 7-16), wobei die niedrigsten pH-Werte (7,3) am Einleitungsbauwerk gemessen wurden. Anders sieht es hier bei den gemittelten Temperaturen aus. So beträgt die mittlere Wassertemperatur der Probestelle FW1 nur 10,8 °C, im Gegensatz zu den anderen gemessenen Temperaturen von 14,7 bzw. 13,8 °C abstromig des Einleitungsbauwerkes. Die mittlere Wassertemperatur der Proben aus diesem Einleiter betrug 20,1 °C.

Probenpunkt	mittlere pH-Werte	mittlere Temperatur [°C]
FW1	7,5	10,8
FW2	7,3	20,1
FW3	7,4	14,7
FW4	7,5	13,3
FW5	7,5	14,7

Tab. 7-16: Mittlere pH-Werte und Temperaturen der unterschiedlichen Probenahmestellen an der Fossa Eugeniana (n=14).

7.2.1.3 Eh-Werte

Die Eh-Werte der unbelasteten Probenahmestelle sind im Gegensatz zu allen anderen geringfügig höher (Abb. 7-24). Der niedrigste Mittelwert einer Probenahmestelle wurde bei FW3 gemessen. Abstromig davon steigen die Werte wieder an, erreichen aber nicht mehr den an der Stelle FW1 gemessenen Wert.

Abb. 7-24: Mittlere Eh-Werte in den Wasserproben der Fossa Eugeniana-Probenahmestellen über einen Zeitraum von 14 Monaten (n=14).

7.2.1.4 Elektrische Leitfähigkeiten

Die mittlere gemessene, elektrische Leitfähigkeit der Vergleichsmeßstelle FW1 beträgt 3,1 mS/cm im Gegensatz zu den Proben der Einleitung der Zeche *Rossenray*, wo ein Durchschnittswert von 39,3 mS/cm ermittelt wurde. Abstromig der Einleitung nimmt die Leitfähigkeit bis zur Schleuse in Ossenberg wieder bis auf 5,8 mS/cm ab, sinkt also somit nicht mehr auf die anstromig des Einleitungsbauwerkes gemessenen Werte ab (Abb. 7-25).

Abb. 7-25: Mittlere Leitfähigkeiten in den Wasserproben der Fossa Eugeniana-Probenahmestellen über einen Zeitraum von 14 Monaten (n=14).

7.2.1.5 ²²⁶Radiumaktivitätskonzentration

²²⁶Radium ist in den Wasserproben der Vergleichsmeßstelle FW1, die vor der Einleitung der Zeche *Rossenray* liegt, mit Aktivitätskonzentrationen unterhalb einer Nachweisgrenze von 0,015 Bq/L bestimmt worden. Die ²²⁶Radiumaktivitätskonzentration am direkten Einleiter (FW2) weist mit einer Maximalkonzentration von 0,132 Bq/L und einem Mittelwert von 0,07 Bq/L deutlich höhere Aktivitätskonzentrationen auf. Nach Zutagetreten der Fossa Eugeniana am Pumpwerk Krumsteg ist die ²²⁶Radiumaktivitätskonzentration auf 0,03 Bq/l abgesunken. Im weiteren Verlauf bis zur Einmündung in den Rhein bleibt die ²²⁶Radiumaktivitätskonzentration relativ konstant mit einem Mittelwert von 0,03 Bq/L (Abb. 7-26).

Abb. 7-26: Mittlere ²²⁶Radiumaktivitätskonzentrationen in den Wasserproben der Fossa Eugeniana-Probenahmestellen über einen Zeitraum von 14 Monaten (n=14).

7.2.1.6 Barium und Strontium

Der Verlauf der Barium- und Strontiumkonzentration (Abb. 7-27) ist analog dem der ²²⁶Radiumaktivitätskonzentration. Somit wurden auch die höchsten Konzentrationen dieser Elemente am direkten Einleiter gemessen. Ab der Meßstelle FW3 am Pumpwerk Krumsteg sinken die Konzentrationen beider Elemente wieder deutlich, gehen jedoch nicht auf ihre unbelasteten Ursprungswerte zurück. Ähnlich wie die Analyse der Lippewasserproben gezeigt hat, steigt auch an der Fossa Eugeniana die Strontiumkonzentration. Die Strontiumkonzentration in den Zechenwässern ist um den Faktor 13 im Vergleich zu den unbelasteten Proben erhöht, die der Bariumkonzentration dagegen nur um den Faktor 5,8.

Abb. 7-27: Mittlere Barium- und Strontiumkonzentrationen in den Wasserproben der Fossa Eugeniana-Probenahmestellen über einen Zeitraum von 14 Monaten (n=14).

Neben den zuvor beschriebenen Elementen zeigen auch die Magnesium-, Calcium-, Natrium- und Kalium-Konzentrationen ähnlich Verläufe (Abb. A-3, Abb. A-4). Hier wurden in den Zechenwässern ebenfalls deutlich erhöhte Konzentrationen dieser Elemente analysiert. Im weiteren Verlauf der Fossa Eugeniana nehmen alle Konzentrationen wieder stark ab und erreichen mit Ausnahme der Natriumkonzentration am Meßpunkt FW5 annähernd das geogene Ausgangsniveau. Die Natriumkonzentration sinkt zwar auch, allerdings wurden an der Meßstelle FW5 noch deutlich erhöhte Natriumkonzentrationen ermittelt.

7.2.1.7 Chlorid und Sulfat

Die mittlere Chloridkonzentration der Zechenabwässer beträgt 17 g/L und ist damit 12,3 mal so hoch wie die Konzentration, die in den Wässern der Vergleichsmeßstelle FW1 gemessen worden ist (Abb. 7-28). Abstromig des Pumpwerkes Krumsteg, wo 5 g/L bestimmt wurden, ist sie deutlich gesunken. Die Chloridkonzentration, die im weiteren Verlauf des Gewässers abnimmt, ist aber bis zur Mündung in den Rhein, im Vergleich mit den Daten der Meßstelle FW1, noch merklich erhöht (Faktor 2,5).

Abb. 7-28: Mittlere Chloridkonzentrationen in den Wasserproben der Fossa Eugeniana-Probenahmestellen über einen Zeitraum von 14 Monaten (n=14).

Auch die Sulfatkonzentrationen steigen in den Wässern der Zeche *Rossenray* (FW2) an, allerdings nicht so stark, wie alle zuvor beschriebenen Elemente. Nach dem Zutagetreten der Fossa Eugeniana am Pumpwerk Krumsteg sind die Konzentrationen nur noch leicht erhöht und betragen 220 ppm im Gegensatz zu 170 ppm am Meßpunkt FW1. Abstromig des Pumpwerkes treten kaum noch Konzentrationsänderungen auf, so daß der Verlauf der Sulfatkonzentration relativ konstant bleibt (Abb. 7-29).

Abb. 7-29: Mittlere Sulfatkonzentrationen in den Wasserproben der Fossa Eugeniana-Probenahmestellen über einen Zeitraum von 14 Monaten (n=14).

7.2.2 Sedimente

Sedimentproben sind an der Fossa Eugeniana bzw. am Alten Rhein vom Ufer aus unter Verwendung eines Pfahlkratzers entnommen worden.

7.2.2.1 Lage der Probenahmestellen

Die Probenahmestellen sind alle im mit Grubenwasser belasteten Gewässerabschnitt plaziert worden. Abb. 7-30 gibt einen Überblick über die Lage der Probestellen, deren Gauß-Krüger Koordinaten sowie die Flußkilomter in Tab. 7-17 aufgeführt sind.

Meßstelle FS1 liegt direkt am Pumpwerk Krumsteg, es handelt sich hierbei um eine kleine Sandbank, die regelmäßig überflutet wird. An diesem Meßpunkt fand zusätzlich noch eine entfernungsabhängige Meßreihe statt. Das heißt, das Sediment wurde im Abstand von 0,5; 1 und 1,5 m vom Ufer beprobt. Meßpunkt FS2 liegt ca. 1,5 km abstromig des Pumpwerkes in der Fossa Eugeniana. Alle anderen befinden sich abstromig dieses Punktes im Rheinberger Altrhein bzw. Alten Rhein. Am Meßpunkt FS5 wurde wie am Punkt FS1 das Sediment in unterschiedlicher Entfernung (1; 2; 2,5 m) vom Ufer beprobt.

Abb. 7-30: Übersichtskarte der Sedimentprobenahmestellen entlang der Fossa Eugeniana.

Probenpunkt	Flußkilometer [km]	Gauß-Krüger Koordinaten	Bemerkung
FS1	7,3	$r = {}^{25}39152$ h = ${}^{57}10280$	linkes Ufer
FS2	5,6	$r = {}^{25}40302$ $h = {}^{57}11288$	rechtes Ufer
FS3	3,2	$r = {}^{25}41574$ $h = {}^{57}13222$	Gewässermitte
FS4	1,2	$r = {}^{25}40894$ $h = {}^{57}14905$	rechtes Ufer
FS5	1,1	$r = {}^{25}40847$ $h = {}^{57}14958$	linkes Ufer

Tab. 7-17: Bezeichnung der Sedimentprobenahmestellen mit zugehörigen Gauß-Krüger Koordinaten und die Flußkilometer an der Fossa Eugeniana.

7.2.2.2 Radionuklidgehalte

Die abstandsabhängigen Messungen an dem Meßpunkt FS5 zeigen, daß die Aktivitätskonzentrationen der Nuklide ²²⁶Ra, ²²⁸Ra und ²¹⁰Pb sich kaum mit dem Abstand vom Ufer unterscheiden (Tab. 7-18). Somit ist die Entnahmestelle an einem Meßpunkt unabhängig von der Entfernung zum Ufer. Ähnliches wurde auch an der Meßstelle FS1, jedoch mit größeren Unterschieden, festgestellt.

Proben- punkt	²²⁶ Ra [Bq/kg]	²²⁸ Ra [Bq/kg]	²¹⁰ Pb [Bq/kg]
FS1 (0,5 m)	8824 ± 53	1650 ± 14	339 ± 32
FS1 (1,0 m)	7427 ± 75	1733 ± 15	339 ± 40
FS1 (1,5 m)	7855 ± 40	1379 ± 11	304 ± 22
FS5 (1,0 m)	140 ± 13	$47,4 \pm 2,4$	$70,0\pm6,7$
FS5 (2,0 m)	166 ± 12	$43,9 \pm 2,3$	$45,3 \pm 6,3$
FS5 (2,5 m)	157 ± 12	$43,2 \pm 2,3$	$36,7 \pm 6,2$

 Tab. 7-18: Radionuklidaktivitätskonzentrationen (2σ-Fehler) der Fossa Eugeniana-Sedimentproben mit unterschiedlicher Entfernung vom Ufer.

Ähnlich wie die untersuchten Lippesedimente enthalten auch die Sedimente der Fossa Eugeniana keine Mutternuklide des ²²⁶Radiums und des ²²⁸Radiums in erhöhten Konzentrationen.

Über den untersuchten Flußverlauf nimmt die ²²⁶Radiumaktivitätskonzentration fast kontinuierlich ab (Tab. 7-19). So sinkt die am Meßpunkt FS1 bestimmte Aktivitätskonzentration von 8824 Bq/kg bis zum Meßpunkt FS3, der sich ca. 0,2 km anstromig des Zuflusses des Jenneckes Gatt befindet, auf 761 Bq/kg. Am Meßpunkt FS4 ist eine Aktivitätskonzentration von 1183 Bq/kg gemessen worden, die bis zum Meßpunkt FS5 auf 140 Bq/kg abnimmt. Die ²²⁸Radiumaktivitätskonzentration dagegen sinkt kontinuierlich von 1650 Bq/kg am Meßpunkt FS1 auf 47 Bq/kg am Meßpunkt FS5. Die Aktivitätskonzentrationen des Nuklides ²¹⁰Blei sinken ebenfalls, allerdings wie auch schon die ²²⁶Radiumaktivitätskonzentration nicht über den gesamten Flußverlauf. So wurde die maximal gemessene ²¹⁰Bleiaktivitätskonzentration von 572 Bq/kg an der Meßstelle FS4 bestimmt.

Proben- punkt	²²⁶ Ra [Bq/kg]	²²⁸ Ra [Bq/kg]	²¹⁰ Pb [Bq/kg]
FS1	8824 ± 53	1650 ± 14	339 ± 32
FS2	2024 ± 52	453 ± 23	$34,2 \pm 2,8$
FS3	761 ± 20	$152 \pm 7,9$	$14,9 \pm 1,6$
FS4	$1183 \pm 7,3$	$115 \pm 8,4$	572 ± 29
FS5	140 ± 13	$47,4 \pm 2,4$	$70,0 \pm 6,7$

Tab. 7-19: Radionuklidaktivitätskonzentrationen (2o-Fehler) der Fossa Eugeniana-Sedimente.

7.2.2.3 Haupt- und Spurenelementchemismus

7.2.2.3.1 Hauptelementchemismus

Silicium ist wie auch in den untersuchten Lippe-Sedimentproben Hauptbestandteil der Sedimente des Niederrheingebietes (Tab. 7-20). Ebenfalls in hohen Konzentrationen treten noch Aluminium und Eisen auf. Die Proben der Meßstellen FS1, FS2, FS3 und FS5 weisen ähnliche Konzentrationen der oben genannten Elemente auf. Die Sedimentprobe der Meßstelle FS4 hat einen deutlich geringeren Siliciumgehalt, dafür ist sie aber wesentlich reicher an Aluminium und Eisen.

Die Konzentrationen an Natrium, Kalium, Magnesium und Calcium liegen um 1 bis 2 Gew.%, Mangan, Titan und Phosphor sind dagegen nur in Spuren enthalten.

Proben punkt	Na ₂ O [%]	K ₂ O [%]	MgO [%]	CaO [%]	BaO [%]	Al ₂ O ₃ [%]	SiO ₂ [%]	P ₂ O ₅ [%]	Fe ₂ O ₃ [%]	MnO [%]	TiO ₂ [%]
FS 1	2,1	1,4	0,8	2,0	23,38	4,8	54	0,09	1,8	0,1	0,4
FS 2	2,0	1,7	1,5	1,4	а	6,3	64	0,2	2,4	0,1	0,3
FS 3	1,3	1,5	1,4	2,9	а	4,9	64	0,2	2,0	0,2	0,2
FS 4	0,5	2,1	1,1	1,3	а	11	32	0,6	4,2	0,1	0,4
FS 5	0,4	1,3	0,5	2,0	а	4,4	77	0,1	2,2	0,09	0,2

Tab. 7-20: Hauptelementchemismus der Fossa Eugeniana-Sedimentproben [Gew.%].

a: Werte siehe Tab. 7-21, Spurenelementchemismus

Analog zu den Lippe-Sedimentproben wurde auch bei den Sedimentproben der Fossa Eugeniana Barium mit in die Tabelle des Hauptelementchemismus (Tab. 7-20) aufgenommen.

7.2.2.3.2 Spurenelementchemismus

Wie auch schon die Ergebnisse des Hauptelementchemismuses gezeigt haben, unterscheidet sich die Probe der Meßstelle FS4 von den anderen (Tab. 7-21). Die Konzentrationen der Spurenelemente insbesondere die von Barium, Chrom, Kupfer, Blei, Strontium und Zink sind deutlich erhöht.

Die Betrachtung der anderen Proben zeigt den erwarteten Verlauf. So wurden die höchsten Konzentrationen der Elemente Barium, Chrom, Cäsium, Strontium, Tellur und Zink in der Probe der Meßstelle FS1 analysiert. Auffallend sind die hohen Konzentrationen der Elemente Barium, Cäsium, Strontium und Zink. Wie auch schon in den Lippesedimenten beobachtet, ändern sich die Arsen-, Cadmium- und Urangehalte über das gesamte Untersuchungsgebiet kaum.

Proben-	\mathbf{As}	Ba	Cd	\mathbf{Cr}	\mathbf{Cs}	Cu	ż	Pb	Sn	\mathbf{Sr}	Te	$\mathbf{T}\mathbf{h}$	U	٧	Zn	Zr
punkt	[mdd]	[mdd]	[mdd]	[ppm]	[ppm]	[ppm]	[ppm]	[mdd]	[ppm]	[ppm]	[ppm]	[mdd]	[mdd]	[ppm]	[mdd]	[mdd]
FS1	<1,7	q	<2,3	181	940	38	21	32	55	10520	<i>L</i> 6	16,3	<12	703	633	70
FS2	5,3	33940	8,7	41	273	28	18	42	24	1633	46	14	12	14	424	152
FS3	5,9	9051	4,1	51	64	29	11	39	8,4	492	15	6,9	3,2	63	664	72
FS4	14	19920	6,2	119	141	102	50	147	26	1227	24	9,9	1,3	151	1053	112
FS5	8,0	3106	1,5	40	25	23	19	38	2,9	227	3,9	0,5	2,0	37	424	79
b: Wert sie	he Tab.	7-20, Hau	ipteleme	ntchemis	smus											

Tab. 7-21: Spurenelementchemismus der Fossa Eugeniana-Sedimente.

7.2.2.4 Korngrößenverteilung

Die Korngrößenverteilung der Sedimente der Fossa Eugeniana ist in Abb. 7-31 dargestellt.

Abb. 7-31: Korngrößenverteilung der Fossa Eugeniana-Sedimente.

Mit Ausnahme der Probe FS4 überwiegt in allen Proben die Sandfraktion, vor allem die Mittelsande (Abb. 7-31). Der Kiesanteil nimmt in den Sedimenten FS1 bis FS4 von 0,5 Gew.% bis auf 54,5 Gew.% zu, wogegen die Probe FS5 nur einen Anteil von 9,5 Gew.% aufweist. Die Ton- und Schlufffraktionen der Sedimente schwanken zwischen 1 Gew.% und 10,7 Gew.%. Ein stetiger Verlauf ist hierbei allerdings nicht erkennbar.

7.2.3 Böden

Bodenproben wurden jeweils einmal im Jahr 1998 und 1999 an zwei Meßstellen entlang der Fossa Eugeniana bzw. am Alten Rhein entnommen.

7.2.3.1 Lage der Probenahmestellen

Am Meßpunkt FB1, der am Pumpwerk Krumsteg liegt, sind in beiden Beprobungsjahren jeweils zwei Proben entnommen worden. Davon wurde eine in unmittelbarer Ufernähe (FB1₉₈-1, FB1₉₉-1) und eine andere (ca. 10 m vom Ufer) im vom Hochwasser unbeein-flußten Bereich (FB1₉₈-2, FB1₉₉-2) genommen.

Meßpunkt FB2 ist ca. 0,5 km anstromig der Schleuse Ossenberg plaziert. Auch an diesem Punkt wurden jeweils zwei Stellen beprobt, eine in unmittelbarer Ufernähe (FB2₉₈-1, FB2₉₉-1) und eine andere, welche ca. 40 m vom Ufer entfernt liegt, wo sie vom Hochwasser kaum erreicht wird (FB2₉₈-2, FB2₉₉-2). Der letztgenannte Meßpunkt wird nur bei extremen Rheinhochwässern überflutet, da sich das Wasser dann vor der geschlossenen Schleuse staut. Einen Überblick über die Lage der Meßstellen gibt Abb. 7-32, die dazugehörigen Gauß-Krüger Koordinaten sowie die Flußkilometer enthält Tab. 7-22, die Daten der unterschiedlichen Proben der zwei Meßstellen sind in Tab. 7-23 aufgeführt.

Abb. 7-32: Übersichtskarte der Bodenprobenahmestellen an der Fossa Eugeniana.

Meßstelle	Flußkilometer [km]	Gauß-Krüger Koordinaten	Bemerkung
FB1	7,3	$r = {}^{25}39171$ h = ${}^{57}10296$	linkes Ufer
FB2	1,1	$r = {}^{25}40851$ h = ${}^{57}14988$	linkes Ufer

Tab. 7-22: Bezeichnung der Probenahmestellen mit zugehörigen Gauß-Krüger Koordinaten und Flußkilometern an der Fossa Eugeniana.

Tab. 7-23: Lage der einzelnen Proben der jeweiligen Meßstellen an der Fossa Eugeniana.

Meßstelle	Proben	Lage
FB1	FB1 ₉₈ -1	Ufernähe
	FB1 ₉₈ -2	außerhalb des hochwasser- beeinflußten Bereiches
	FB199-1	Ufernähe
	FB199-2	außerhalb des hochwasser- beeinflußten Bereiches
FB2	FB2 ₉₈ -1	Ufernähe
	FB2 ₉₈ -2	außerhalb des hochwasser- beeinflußten Bereiches
	FB299-1	Ufernähe
	FB2 ₉₉ -2	außerhalb des hochwasser- beeinflußten Bereiches

7.2.3.2 Radionuklidgehalte

Ebenso wie die Sedimentproben enthalten auch die Bodenproben keine Mutternuklide der beiden Radionuklide ²²⁶Radium und ²²⁸Radium. Die ²²⁶Radiumaktivitätskonzentrationen sind in den ufernahen Proben deutlich höher als in den vom Hochwasser unbeeinflußten Proben (Tab. 7-24). Wie auch schon an den Bodenproben der Lippe festgestellt wurde, sind auch hier in den 1999 entnommenen Proben höhere Aktivitätskonzentrationen analysiert worden.

Auch die Nuklide ²²⁸Radium und ²¹⁰Blei nehmen an den einzelnen Meßstellen mit zunehmender Entfernung vom Ufer ab. Die ²²⁸Radiumaktivitätskonzentration der Meßstelle FB2
im Jahre 1998 nimmt von 106 Bq/kg in unmittelbarer Ufernähe auf 35 Bq/kg im hochwasserunbeeinflußten Bereich ab.

Probenpunkt	²²⁶ Ra [Bq/kg]	²²⁸ Ra [Bq/kg]	²¹⁰ Pb [Bq/kg]		
FB1 ₉₈ -1	61,7 ± 0,9	20,8 ± 1,8	44,9 ± 6,1		
FB1 ₉₈ -2	$40,6 \pm 0,7$	$16,4 \pm 1,5$	$39,5 \pm 5,1$		
FB199-1	$271 \pm 7,0$	$61,1 \pm 3,5$	$19,7 \pm 1,4$		
FB199-2	$48,3 \pm 1,3$	$27,5 \pm 1,7$	$8,4\pm0,8$		
FB2 ₉₈ -1	683 ± 3,6	$106 \pm 5,0$	229 ± 17		
FB2 ₉₈ -2	$137 \pm 1,5$	$35,1 \pm 2,6$	$53,7\pm8,6$		
FB299-1	834 ± 21	214 ± 11	$38,9 \pm 2,7$		
FB299-2	$42,9 \pm 1,2$	< 1,6	5,1 ± 0,8		

Tab. 7-24: Aktivitätskonzentrationen (2o-Fehler) der analysierten Fossa Eugeniana-Bodenproben.

7.2.3.3 Haupt- und Spurenelementchemismus

7.2.3.3.1 Hauptelementchemismus

Der Hauptbestandteil der Bodenproben ist Silicium, dessen Gehalte in SiO₂ umgerechnet zwischen 36 und 89 Gew.% variieren (Tab. 7-25). In nennenswerten Konzentrationen treten noch Aluminium und Eisen auf. Die Oxide der Alkalielemente Natrium und Kalium sowie der Erdalkalien Magnesium und Calcium treten in Konzentrationen um 1 Gew.% auf. Mangan, Phosphor und Titan sind nur in Spuren enthalten.

Proben- punkt	Na ₂ O [%]	K ₂ O [%]	MgO [%]	CaO [%]	Al ₂ O ₃ [%]	SiO ₂ [%]	P ₂ O ₅ [%]	Fe ₂ O ₃ [%]	MnO [%]	TiO ₂ [%]
FB1 ₉₈ -1	0,5	1,5	0,4	0,4	5,2	89	0,05	1,6	0,04	0,2
FB1 ₉₈ -2	0,2	1,5	0,4	0,4	5,3	89	0,07	1,6	0,03	0,2
FB199-1	1,5	1,6	1,4	0,6	5,6	72	0,2	1,9	0,1	0,2
FB199-2	1,3	1,6	1,3	0,4	5,9	70	0,1	1,6	0,04	0,2
FB2 ₉₈ -1	0,5	1,9	1,1	2,4	8,3	51	0,4	3,8	0,1	0,4
FB2 ₉₈ -2	<0,1	1,5	0,8	2,4	5,6	59	0,1	2,8	0,09	0,3
FB2 ₉₉ -1	1,3	1,5	1,4	4,5	6,6	36	0,6	4,4	0,2	0,3
FB299-2	1,2	1,8	1,6	2,6	6,4	62	0,2	2,6	0,09	0,3

Tab. 7-25: Hauptelementchemismus der Fossa Eugeniana-Bodenproben.

7.2.3.3.2 Spurenelementchemismus

Bei der Betrachtung der Spurenelementkonzentrationen fallen die extrem hohen Bariumgehalte der Bodenproben auf. So beträgt dieser z. B. in der ufernahen Probe der Meßstelle FB2 9.955 ppm (Tab. 7-26). Mit zunehmender Entfernung zum Ufer nehmen die Barium-, ebenso wie die Cäsium-, Strontium- und Zinkkonzentrationen deutlich ab. Auch alle anderen Spurenelemente bis auf Arsen, Cadmium und Uran weisen in den ufernahen Proben erhöhte Konzentrationen auf.

V Zn Zr	[mdd] [mdd] [mdd]		29 74 125	29 74 125 35 69 113	29 74 125 35 69 113 55 306 105	29 74 125 35 69 113 55 306 105 35 69 116	29 74 125 35 69 113 55 306 105 35 69 116 81 586 127	29 74 125 35 69 113 55 306 105 35 69 116 81 586 127 58 248 115	29 74 125 35 69 113 55 306 105 35 69 116 35 69 116 81 586 127 58 248 115 121 1132 103
	[mdd] [mdd] [2,9 29		1,0 35	1,0 35 0,4 55	1,0 35 0,4 55 1,0 35	1,0 35 0,4 55 1,0 35 1,7 81	1,0 35 0,4 55 1,0 35 1,7 81 0,6 58	1,0 35 0,4 55 1,0 35 1,7 81 0,6 58 2,3 121
	n] [ppm]	1,2		2,2	2,2	2,2 10 4,1	2,2 10 5,2 4,1	2,2 2,4,1 5,2 2,0	2,2 2,4,1 2,0 8,8 8,8
pm] [ppm]	17 3.8	`	85 2,3		262 7,1	262 $7,1$ 80 < 0,2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} 262 & 7,1 \\ 80 & < 0,2 \\ 556 & 15 \\ 91 & 3,1 \\ \end{array}$	262 7,1 80 < 0,2
in [mmn]	Idl [midd]	3,3 1	2,5 8		5,8 20	5,8 2, 2,4 8	5,8 2,1 2,4 8 12 6	5,8 2 2,4 8 12 6 4,0 1	5,8 2, 2,4 8 2, 12 6, 8 4,0 1, 13 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
	[mdd]	23	34		41	41 29	41 29 75	41 29 75 58	41 29 75 58 100
	[mdd]	15	12		18	18 13	18 13 35	18 13 35 27	18 13 35 27 30
	[mdd]	11	12		24	24 12	24 12 48	24 12 48 27	24 12 48 27 81
	[mdd]	15	9,6		47	47 2,6	47 2,6 73	47 2,6 73 20	47 2,6 73 20 64
	[mdd]	48	61		90	90 44	90 44 90	90 90 60	90 90 92
	[mdd]	0,4	< 0,1		0,6	0,6 0,3	0,6 0,3 3,1	0,6 0,3 3,1 0,9	0,6 0,3 3,1 0,9 3,9
1	[mdd]	1982	1004		4405	4405 770	4405 770 9955	4405 770 9955 1901	4405 770 9955 1901 9964
	[mdd]	8,2	8,4		8,2	8,2 7,0	8,2 7,0 14	8,2 7,0 14 12	8,2 7,0 14 12 15
	punkt	FB1 ₉₈ -1	FB1 ₉₈ -2		FB1 ₉₉ -1	FB1 ₉₉ -1 FB1 ₉₉ -2	FB1 ₉₉ -1 FB1 ₉₉ -2 FB2 ₉₈ -1	FB199-1 FB199-2 FB298-1 FB298-2	FB199-1 FB199-2 FB298-1 FB298-2 FB299-1

Tab. 7-26: Spurenelementchemismus der Fossa Eugeniana-Bodenproben.

7.2.3.4 Korngrößenverteilung

Die Korngrößenverteilung der Bodenproben der Meßstelle FB1 zeigen in etwa die gleichen Verläufe (Abb. 7-33). Hauptfraktion dieser Proben ist Sand, dessen dominierender Bestandteil Mittelsand bildet. Die Kiesgehalte schwanken zwischen 21,2 Gew.% und 17,9 Gew.%, wobei die ufernahen Proben etwas höhere Gehalte aufweisen. Der Anteil der Schluff- und Tonfraktion ist dagegen in den hochwasserunbeeinflußten Proben größer. Er liegt hier zwischen 5,1 Gew.% und 6,6 Gew.% im Gegensatz zu 3,1 Gew.% und 4 Gew.% in den ufernahen Proben. Auch in den Bodenproben der Meßstelle FB2 ist Sand, insbesondere die Mittelsandfraktion Hauptbestandteil. Wie die ufernahen Proben der Meßstelle FB1 weisen auch hier die ufernahen Proben etwas höhere Kiesgehalte, die insgesamt zwischen 32,4 Gew.% und 50,9 Gew.% schwanken, auf. Mit Ausnahme der Probe FB2-1 aus dem Jahre 1999 ist die Schluff- und Tonfraktion in den Proben des Jahres 1998 höher als in den Proben aus dem Jahre 1999. Diese weisen dagegen höhere Feinsandanteile auf.

Abb. 7-33: Korngrößenverteilung der Fossa Eugeniana-Bodenproben.

7.2.4 Ortsdosisleistung

In Anlehnung an WIEGAND et al. (1996) wurden die Ortsdosisleistungsmessungen entlang der Fossa Eugeniana wiederholt und ergänzt (s. Tab. A-19). Die geogene Ortsdosisleistung, inklusive der kosmischen Höhenstrahlung, an der Fossa Eugeniana beträgt je nach geologischem Untergrund zwischen 50 und 120 nSv * h⁻¹ (Abb. 7-34). Im Bereich zwischen dem Pumpwerk Krumsteg und der Schleuse in Ossenberg wurden deutlich erhöhte Ortsdosisleistungen gemessen. Die Ablagerungen im Einleitungsbauwerk der Zeche *Rossenray* weisen Werte von 1.200 nSv * h⁻¹ auf. Der Maximalwert von 3.200 nSv * h⁻¹ wurde auf einer Sandbank am Pumpwerk Krumsteg ermittelt. Abstromig der Einmündung des Jenneckes Gatt wurden auf den Flächen der rechten Uferseite höhere Ortsdosisleistungen (mit Werten bis zu 600 nSv * h⁻¹) als auf der linken Uferseite (bis zu 300 nSv * h⁻¹) gemessen. Wie auch schon bei den Daten der Lippeflächen beobachtet, sinken die Ortsdosisleistungen mit zunehmendem Abstand zum Gewässer. Mit Ausnahme eines Meßpunktes wurden auch hier nur bewachsene Flächen beprobt.

Unterhalb der Schleuse in Ossendorf sinkt die Ortsdosisleistung wieder auf das geogene Hintergrundniveau ab.

Abb. 7-34: Gemessene Ortsdosisleistungen [nSv * h⁻¹] an der Fossa Eugeniana (Aktualisierung von WIEGAND et al. 1996).

7.2.5 Tiefenprofile

7.2.5.1 Lage der Probenahmestellen

An der Fossa Eugeniana wurden anstromig der Schleuse Ossenberg (Lage wie FS4) drei Tiefenprofile erbohrt. Die erste Probenahmestelle (FT1-1) befindet sich direkt am Ufer, so daß hier die Proben direkt mit einem Messer entnommen werden konnten. Aufgrund des Wasserspiegels konnte dieses Profil nur bis zu einer Tiefe von 36 cm beprobt werden. Der zweite Probenahmepunkt (FT1-2) liegt parallel dazu in 3 m Entfernung vom Ufer im hochwasserbeeinflußten Bereich. Als Vergleichsmeßstelle (FT1-3) wurde ein Tiefenprofil in ca. 200 m Entfernung gebohrt. Hier konnten allerdings nur Proben bis zu einer Tiefe von 33 cm entnommen werden, da aufgrund von Kieslagen ein tieferes Bohren nicht möglich war.

7.2.5.2 Radionuklidgehalte

Die höchsten ²²⁶Radiumaktivitätskonzentrationen wurden an den beiden beeinflußten Probenahmestellen (FT1-1, FT1-2) im obersten Beprobungsabschnitt mit Werten bis zu 1.100 \pm 30 Bq/kg analysiert (Abb. 7-35, Abb. 7-36, Tab. A-21)). Mit zunehmender Tiefe nehmen die Gehalte des Nuklides ²²⁶Radium bis zu einer Tiefe von 36 – 38 cm auf ca. 18 Bq/kg ab. In tieferen Proben (FT1-2) konnte kein ²²⁶Radium mehr nachgewiesen werden. Eine Ausnahme stellt der Anstieg der ²²⁶Radiumaktivitätskonzentration im Profil FT1-1 in einer Tiefe von 22 cm auf ca. 100 Bq/kg dar. Aber auch hier fällt der Gehalt sofort wieder deutlich auf ca. 40 Bq/kg ab. Die ²²⁸Radiumaktivitätskonzentrationen nehmen ebenfalls mit der Tiefe stark ab. Die höchsten Konzentrationen wurden auch im obersten Horizont mit Werten von 98 \pm 10 Bq/kg (FT1-1) und 172 \pm 12 Bq/kg (FT1-2) gemessen. Ab einer Tiefe von 7 cm im Profil FT1-1 bzw. 20 cm im Profil FT1-2 weisen die ²²⁸Radiumaktivitätskonzentration geringere Werte als die der unbelasteten Vergleichsmeßstelle auf.

Die ²¹⁰Bleiaktivitätskonzentration verhält sich äquivalent zu den zuvor beschriebenen Nukliden. Ab einer Tiefe von 25 cm ist im Profil FT1-2 kein ²¹⁰Blei mehr nachweisbar.

An der Vergleichsmeßstelle FT1-3 sind andere Konzentrationsverläufe der Nuklide 226 Radium, 228 Radium und 210 Blei ermittelt worden. Die 226 Radiumaktivitätskonzentration schwankt über das gesamte Tiefenprofil zwischen 23 ± 1 Bq/kg und 40 ± 1 Bq/kg

(Abb. 7-37). Auch die ²²⁸Radiumaktivitätskonzentration zeigt keine deutliche Abnahme mit zunehmender Tiefe. Im Gegensatz dazu nimmt die ²¹⁰Bleiaktivitätskonzentration von ca. 50 Bq/kg im obersten Beprobungsabschnitt auf ca. 25 Bq/kg in 30 cm Tiefe ab. Dies ist auf die trockene (Staub) und nasse Deposition (Regen) von ²¹⁰Blei zurückzuführen.

Abb. 7-35: Radionuklidaktivitätskonzentrationen (2σ-Fehler) der Proben des Tiefenprofils FT1-1 an der Fossa Eugeniana.

Abb. 7-36: Radionuklidaktivitätskonzentrationen (2σ-Fehler) der Proben des Tiefenprofils FT1-2 an der Fossa Eugeniana.

Abb. 7-37: Radionuklidaktivitätskonzentrationen (2σ-Fehler) der Proben des Tiefenprofils FT1-3 an der Fossa Eugeniana.

Beim Vergleich der unbelasteten Vergleichsmeßstelle mit den Beeinflußten (FT1-1, FT1-2) fällt auf, daß bei diesen bis zu einer Tiefe von ca. 25 - 30 cm eine deutliche Abnahme der untersuchten Radionuklide meßbar ist. Im Gegensatz zu den Lippedaten (80 cm) ist hier schon ab einer Tiefe von 25 - 30 cm kein Einfluß durch den Bergbau mehr nachweisbar.

7.2.6 Flora und Fauna

7.2.6.1 Flora

7.2.6.1.1 Aquatische Pflanzen

Aus der Fossa Eugeniana wurden Wasserpflanzen an nur einem Meßpunkt beprobt. Die Entnahme erfolgte ca. 0,4 km abstromig des Einleitungsbauwerkes der Zeche *Rossenray* aus einem Container. In diesen Container gelangen die Pflanzen durch einen automatischen Rechen, der dem Wasser Feststoffe entzieht, bevor dieses unterirdisch abgepumpt wird. Nach Zutagetreten der Fossa Eugeniana am Pumpwerk Krumsteg sind bis zur Mündung in den Rhein keine weiteren Wasserpflanzen vorhanden. Insgesamt wurden drei Pflanzenproben entnommen, wobei es sich um eine Algenart (*Cladophora spec.*) und eine Wassersternart (*Callitricháceae spec.*) handelt.

Radionuklidgehalte

Die Pflanzenprobe FPf_w1 enthält sehr hohe Aktivitätskonzentrationen der Nuklide ²²⁶Radium, ²²⁸Radium und ²¹⁰Blei, wobei ²²⁶Radium die höchste Aktivitätskonzentration aufweist (Tab. 7-27). Im Gegensatz zu den anderen beiden Proben, die wesentlich geringere Aktivitätskonzentrationen der untersuchten Nuklide aufweisen, befindet sich ²²⁶Radium nicht im Gleichgewicht mit ²¹⁰Blei.

Tab. 7-27: Aktivitätskonzentrationen (2σ-Fehler) der analysierten Wasserpflanzen-Proben aus der Fossa Eugeniana.

Probenbe- zeichnung	Probenbe- Art zeichnung		²²⁸ Ra [Bq/kg TG]	²¹⁰ Pb [Bq/kg TG]	
FPf _W -1	Alge	4141 ± 29	832 ± 8,5	512 ± 5,9	
FPf_W-2	Wasserstern	$40 \pm 1,5$	17 ± 3,6	50 ± 12	
FPf _w -3	Wasserstern	47 ± 0.9	$37 \pm 2,4$	$26 \pm 8,0$	

7.2.6.1.2 Terrestrische Pflanzen

Als terrestrische Pflanzen wurden Gräser gewählt, da im gesamten Untersuchungsgebiet in unmittelbarer Ufernähe oder im vom Hochwasser beeinflußtem Bereich kein anderer Bewuchs - wie z. B. Getreide - angepflanzt wird. Die Gräser wurden parallel zu den Bodenproben entnommen (Beprobung einmal im Jahr 1998 und 1999). Die erste Meßstelle FPf_L1 befindet sich am Pumpwerk Krumsteg, wo in beiden Jahren jeweils zwei Proben genommen wurden. Eine liegt in unmittelbarer Ufernähe, so daß die Gräser bei erhöhten Wasserständen mit diesen in Berührung kommen (FPf_L1₉₈-1, FPf_L1₉₉-1) und eine im Hochwasser unbeeinflußtem Gebiet (FPf_L1₉₈-2, FPf_L1₉₉-2).

Die Meßstelle FPf_L2 ist ca. 0,5 km flußaufwärts der Schleuse in Ossenberg plaziert. Die Proben FPf_L2₉₈-1 und FPf_L2₉₉-1 wurden in unmittelbarer Nähe zur Fossa Eugeniana, und die anderen FPf_L2₉₈-2 und FPf_L2₉₉-2 wurden in solch großem Abstand genommen, daß das Probenmaterial vom Hochwasser kaum erreicht wird.

Radionuklidgehalte

In den analysierten Grasproben liegen die Aktivitätskonzentrationen der untersuchten Nuklide ²²⁶Radium und ²²⁸Radium in 5 von 8 Fällen unterhalb der Nachweisgrenze. Dagegen ist ²¹⁰Blei bis auf eine Ausnahme in allen Proben enthalten (Tab. 7-28). ²²⁶Radium ist nur in den beiden ufernahen Proben der Meßstelle FPf_L1 und in einer der Meßstelle FPf_L2 enthalten. Wie auch schon die Bodenanalysen gezeigt haben, nimmt die ²²⁶Radiumaktivitätskonzentration mit zunehmender Entfernung zum Ufer ab. Die deutlich erhöhten ²²⁶Radiumaktivitätskonzentrationen der ufernahen Proben aus dem Jahr 1999 sind vermutlich auf ein sehr lange andauerndes Hochwasser zurückzuführen, welches erst zwei Wochen vor der Probenahme beendet war. Das Ausmaß und die Dauer dieses Hochwassers war am Meßpunkt FPf_L2 deutlich stärker ausgeprägt als am Meßpunkt FPf_L1.

Auch das Nuklid ²²⁸Radium wurde nur in den ufernahen Proben nachgewiesen, allerdings in geringeren Aktivitätskonzentrationen als ²²⁶Radium.

 $11 \pm 4,5$

 $17 \pm 5,5$

< 21

< 20

Fossa Eugeniana.								
Proben- bezeichnung	Art	²²⁶ Ra [Bq/kg]	²²⁸ Ra [Bq/kg]	²¹⁰ Pb [Bq/kg]				
FPf _L 1 ₉₈ -1	Honiggras (Holcus lanatus)	8,3±0,4	$4,3 \pm 1,2$	$25 \pm 4,4$				
FPf _L 1 ₉₈ -2	Schmiele (Deschampsia flexuosa)	< 4,7	< 5,4	30 ± 6,9				
FPf _L 199-1	Schwingel (Festuca pratensis)	28 ± 1,9	$14 \pm 3,2$	25 ± 12				
FPf _L 199-2	Schwingel (Festuca pratensis)	< 3,8	< 4,2	37 ± 10				

< 2.6

< 1,9

 $31 \pm 1,2$

< 3,2

< 2,8

< 3,5

 $11 \pm 3,1$

< 5,9

Reitgras (Calamagrostis epigeios),

Quecke (Agropyron repens)

Quecke (Agropyron repens)

Knäuelgras (Dactylis glomerata)

Segge (*Carex spec.*)

Tab. 7-28: Aktivitätskonzentrationen (2σ-Fehler) der analysierten terrestrischen Pflanzenproben der

7.2.6.2 Fauna

FPf_L2₉₈-1

FPf_L2₉₈-2

FPf_L2₉₉-1

FPf_L299-2

Zusätzlich wurden an der Fossa Eugeniana zweimal Bachflohkrebse (Gammarus spec.) beprobt. Die erste Probe wurde aus einem Container, der ca. 0,4 km abstromig der Einleitung des Bergwerkes Rossenray plaziert ist, im Zusammenhang mit der Algenprobe entnommen. Die zweite wurde am Pumpwerk Krumsteg mit Hilfe eines Siebes gesammelt.

Radionuklidgehalte

Beide Analysen der Bachflohkrebse zeigen vergleichbare Ergebnisse (Tab. 7-29). So ist in beiden Proben kein ²¹⁰Blei nachgewiesen worden. Die ²²⁶Radiumaktivitätskonzentration ist in den untersuchten Proben größer als die ²²⁸Radiumaktivitätskonzentration. Die großen Fehler dieser Messungen beruhen auf der geringen Masse der analysierten Proben.

Probenbe- zeichnung	²²⁶ Ra [Bq/kg]	²²⁸ Ra [Bq/kg]	²¹⁰ Pb [Bq/kg]
FG1	213 ± 16	141 ± 55	< 182
FG2	305 ± 30	249 ± 96	< 343

Tab. 7-29: Aktivitätskonzentrationen (2σ-Fehler) der untersuchten Gammariden aus der Fossa Eugeniana.

7.3 Bindungsformen einiger ausgewählter Elemente in Sedimenten und Böden

Wie in Kap. 6.5 beschrieben, wurden ausgewählte Sediment- und Bodenproben sequentiell extrahiert, um Rückschlüsse auf die Bindungsformen der Elemente zu ziehen. Nachfolgend werden die Ergebnisse der Erdalkalien Strontium, Barium und ²²⁶Radium dargestellt. Die Ergebnisse der übrigen Elemente sind im Anhang (Tab. A-24 bis A-44) aufgeführt.

7.3.1 Sedimente

7.3.1.1 ²²⁶Radiumverteilung

²²⁶Radium ist in der unbelasteten Lippe-Vergleichsprobe (LS3) zu 96 % residual gebunden (7. Extraktion), die übrigen 4 % liegen in der mobilen Fraktion (1. Extraktion) vor (Abb. 7-38). Abstromig der Einmündung des Sickingmühlenbaches zeigt sich eine andere Verteilung der Bindungsformen. Die Anteile in der mobilen Fraktion steigen mit zunehmender Entfernung von der Einmündung des Baches von 5 % (LS7) auf 13 % (LS11) an. Abstromig der Einmündung der Grubenwässer des Bergwerkes Lippe sinkt der mobile Anteil zunächst auf 5 % (LS12) bzw. 3 % (LS15) und steigt nachfolgend bis zum Probenahmepunkt LS22 auf 36 % an. In der leicht nachlieferbaren Fraktion (2. Extraktion) steigt der prozentuale ²²⁶Radiumanteil ebenfalls von 3 % (LS7) auf 4 % (LS11) an. Abstromig dieser Probenahmestelle nimmt der ²²⁶Radiumanteil in der leicht nachlieferbaren Fraktion auf 3 % ab, steigt dann wieder mit Ausnahme der Probe LS21 kontinuierlich bis zur Probenahmestelle LS22 auf 19 % an. Die Verteilung der ²²⁶Radiumaktivitätskonzentration in den nachfolgenden Extraktionen (Manganoxide, organische, schlecht kristalline Eisenoxide, kristalline Eisenoxide) schwankt über den gesamten beeinflußten Flußverlauf. In den untersuchten Lippesedimenten überwiegt residual gebundenes ²²⁶Radium, dessen Anteil allerdings von 83 % (LS7) auf 74 % (LS11) abnimmt. Abstromig der Einleitung der Einleitung des Bergwerkes Lippe steigt er erneut auf 86 % (LS12) an und fällt anschließend kontinuierlich bis auf 31 % (LS22) ab.

Abb. 7-38: Prozentuale ²²⁶Radiumanteile in den unterschiedlichen Extraktionslösungen der untersuchten Lippesedimente.

In den Sedimenten des Sickingmühlenbaches ist ²²⁶Radium zu 99 % residual gebunden (Abb. 7-39). Das restliche ²²⁶Radium verteilt sich auf die übrigen sechs Fraktionen.

Abb. 7-39: Prozentuale ²²⁶Radiumanteile in den unterschiedlichen Extraktionslösungen der untersuchten Sickingmühlenbach-Sedimente.

Auch in den Fossa Eugeniana-Sedimenten ist das meiste ²²⁶Radium residual gebunden, wobei auch hier dieser Anteil mit zunehmender Entfernung zur Einleitung von 99 % (FS1) auf 66 % (FS5) abnimmt (Abb. 7-40). Im Gegensatz dazu steigt der Anteil in der mobilen Fraktion von 0,4 % (FS1) auf 17,1 % (FS5). Die ²²⁶Radiumanteile der anderen Fraktionen erhöhen sich ebenfalls mit zunehmender Entfernung vom Einleiter.

Abb. 7-40: Prozentuale ²²⁶Radiumanteile in den unterschiedlichen Extraktionslösungen der untersuchten Fossa Eugeniana-Sedimente.

7.3.1.2 Bariumverteilung

In der Sedimentprobe der Vergleichsmeßstelle LS3 ist Barium zu 49 % in der mobilen Fraktion nachgewiesen worden (Abb. 7-41). In der leicht nachlieferbaren Fraktion beträgt der prozentuale Bariumanteil 10 %. Residual gebunden sind 38 % des Bariums und die restlichen 3 % verteilen sich auf die beiden an Eisenoxiden gebundenen Fraktionen (5. und 6. Extraktion). Im beeinflußten Gewässerverlauf steigt der mobile Bariumanteil von 4,8 % (LS7) auf 23,2 % (LS11) an. Abstromig des *Bergwerkes Lippe* steigt der auf 6,4 % (LS12) abgesunkene Anteil bis zum Probenahmepunkt (LS22) wieder auf 34,2 % an. Ähnliche Verläufe zeigen auch die Bariumanteile in der leicht nachlieferbaren Fraktion. Ebenso wie die ²²⁶Radiumverteilung schwankt auch die Bariumverteilung in den vier folgenden Fraktionen (Manganoxide, organische, schlecht kristalline Eisenoxide, kristalline Eisenoxide) über den gesamten beeinflußten Flußverlauf. Das residual gebundene Barium überwiegt mit Ausnahme der Probe LS22 in allen anderen Sedimentproben. Auch hier nimmt der Anteil mit zunehmender Entfernung von Einleitungen (LS7 \rightarrow LS11, LS12 \rightarrow LS22) ab.

Abb. 7-41: Prozentuale Bariumanteile in den unterschiedlichen Extraktionslösungen der untersuchten Lippesedimente.

Barium ist in den Sickingmühlenbach-Sedimenten zu 98 % residual gebunden (Abb. 7-42). Die übrigen 2 % verteilen sich auf die anderen sechs Fraktionen.

Abb. 7-42: Prozentuale Bariumanteile in den unterschiedlichen Extraktionslösungen der untersuchten Sickingmühlenbach-Sedimente.

Der Anteil des mobilen Bariums steigt in den Sedimenten der Fossa Eugeniana mit zunehmender Entfernung von der Einleitung von 0,4 % (FS1) auf 14,8 % (FS5) an (Abb. 7-43). Auch die Anteile der folgenden fünf Fraktionen steigen mit Ausnahme der 6. Fraktion der Meßstelle FS5 mit der Entfernung. Dagegen sinkt der Anteil des residual gebundenen Bariums von 96 % (FS1) auf 45 % (FS5).

Abb. 7-43: Prozentuale Bariumanteile in den unterschiedlichen Extraktionslösungen der untersuchten Fossa Eugeniana-Sedimente.

7.3.1.3 Strontiumverteilung

Strontium ist in der Lippe-Vergleichsprobe mit 52 % hauptsächlich in der mobilen Fraktion nachgewiesen worden (Abb. 7-44). 11 % des Strontiums liegen als leicht nachlieferbare Fraktion vor und die restlichen 37 % sind residual gebunden. In den beeinflußten Lippesedimenten nimmt der Strontiumanteil in der mobilen Fraktion mit zunehmendem Abstand zu den Grubenwassereinleitungen zu. Der Strontiumgehalt in der mobilen Fraktion ist in der Sedimentprobe LS22, die ca. 1 km anstromig der Mündung der Lippe in den Rhein liegt, auf 50 % angestiegen. In der leicht nachlieferbaren Fraktion tritt auch Strontium in den einleitungsnahen Proben in geringeren Anteilen auf. Wie auch schon bei den zuvor beschriebenen Elemente nimmt der prozentuale Anteil des residual gebundenen Strontiums mit der Entfernung zu den Einleitungen ab.

Abb. 7-44: Prozentuale Strontiumanteile in den unterschiedlichen Extraktionslösungen der untersuchten Lippesedimente.

In den Sedimenten des Sickingmühlenbaches ist Strontium zu 97 % bzw. 94 % residual gebunden, wobei auch hier der Anteil mit zunehmender Entfernung zur Einleitung abnimmt (Abb. 7-45). Im Gegensatz dazu steigen die Strontiumanteile der übrigen Fraktionen mit der Entfernung.

Abb. 7-45: Prozentuale Strontiumanteile in den unterschiedlichen Extraktionslösungen der untersuchten Sickingmühlenbach-Sedimente.

In den Fossa Eugeniana-Sedimenten steigt der mobile Anteil von 0,9 % (FS1) auf 17,9 % (FS5) an (Abb. 7-46). Wie auch schon die Bariumverteilung gezeigt hat, steigen die Anteile in den folgenden fünf Fraktionen mit Ausnahme der 6. Fraktion der Meßstelle FS5 mit zunehmender Entfernung vom Einleiter an. Dagegen sinkt der Anteil des residual gebundenen Strontiums von 95 % (FS1) auf 54 % (FS5).

Abb. 7-46: Prozentuale Strontiumanteile in den unterschiedlichen Extraktionslösungen der untersuchten Fossa Eugeniana-Sedimente.

7.3.2 Böden

7.3.2.1 Radiumverteilung

Der prozentuale Anteil des residual gebundenen ²²⁶Radiums schwankt in den von der Lippe beeinflußten Böden zwischen 85 und 88 % und in den durch die Fossa Eugeniana beeinflußten zwischen 92 und 80 % (Abb. 7-47). Während dieser residuale Anteil in den Lippeböden vergleichbar mit dem in dem entsprechenden Lippesediment (LS12, 86 %) ist, weisen die residualen Anteile in den Fossa-Eugeniana-Böden unterschiedliche Werte auf: ²²⁶Radium ist in der Bodenprobe FB1-1 zu 92 % residual gebunden, in dem entsprechendem Sediment zu 99 %. Im Gegensatz dazu weist die Bodenprobe FB2-2 einen residualen Anteil von 80 % auf, das entsprechende Sediment allerdings nur einen von 60 %. Das mobile ²²⁶Radium schwankt in den Lippesedimenten um einen Wert von 3 %, wobei der Anteil mit größerem Abstand zur Wasserlinie leicht abnimmt (3,3 % \rightarrow 3,0 %). Ebenfalls nehmen auch die Anteile der leicht nachlieferbaren, der an organischem Material und der an den beiden an Eisenoxiden gebundenen Fraktionen ab. In den Böden der Fossa Eugeniana nehmen der mobile und der leicht nachlieferbare ²²⁶Radiumanteil mit zunehmender Entfernung zur Einleitung von Grubenwässern, wie auch bei den Sedimentproben beobachtet, zu. Das restliche ²²⁶Radium verteilt sich auf die übrigen vier Fraktionen.

Abb. 7-47: Prozentuale ²²⁶Radiumanteile in den unterschiedlichen Extraktionslösungen der untersuchten Böden.

7.3.2.2 Bariumverteilung

Die prozentualen Bariumanteile der ersten sechs Fraktionen der Lippeböden nehmen zu Ungunsten des residual gebundenen Bariums mit zunehmendem Abstand zur Wasserlinie zu. So steigt z. B. der Anteil des mobilen Bariums von 2,4 % (LB1-1) auf 4,9 % (LB1-2) an (Abb. 7-48). In den Böden der Fossa Eugeniana sinkt das residual gebundene Barium mit der Entfernung vom Einleiter von 65 % (FS1-1) auf 48,2 % (FS2-1) ab. Im Gegensatz dazu steigen die Anteile der restlichen sechs Fraktionen.

Abb. 7-48: Prozentuale Bariumanteile in den unterschiedlichen Extraktionslösungen der untersuchten Böden.

7.3.2.3 Strontiumverteilung

Residual gebundenes Strontium stellt in allen untersuchten Bodenproben die Hauptfraktion dar (Abb. 7-49). Die Lippeböden zeigen insgesamt eine vergleichbare Verteilung, allerdings nimmt der Anteil des mobilen Strontiums mit zunehmender Entfernung zum Ufer ab. In den Fossa-Eugeniana-Böden weist die Probe FB2-1, wie auch bei den anderen beschriebenen Erdalkalien, einen höheren mobilen und einen niedrigeren residualen Anteil auf.

Abb. 7-49: Prozentuale Strontiumanteile in den unterschiedlichen Extraktionslösungen der untersuchten Böden.

8 Diskussion

8.1 Kontamination der Oberflächenwässer

In allen untersuchten Wasserproben, die mit Grubenwässern aus dem Steinkohlenbergbau verunreinigt sind, wurden erhöhte ²²⁶Radiumaktivitätskonzentrationen (bis zu ca. 13-fach) analysiert. Dagegen liegen in den unbelasteten Proben die Aktivitätskonzentrationen unterhalb einer Nachweisgrenze von 0,015 Bq/L. Diese Konzentrationen entsprechen denen, die in unbelasteten Oberflächenwässern (ca. 0,004 Bq/L, UNSCEAR 1982) auftreten. Im Sikkingmühlenbach, in den Grubenwässer des Bergwerkes Auguste Victoria eingeleitet werden, sind die Aktivitätskonzentrationen mit Maximalwerten von bis zu 0,163 Bq/L ebenso wie in den Wässern der Einleitung der Zeche Rossenray mit Maximalwerten bis zu 0,132 Bq/L deutlich höher als in den Flüssen Lippe und Fossa Eugeniana (Tab. A-1 bis Tab. A-16). In diesen beiden Flüssen beruht die Konzentrationsabnahme zum einen auf Verdünnungseffekten und zum anderen auf Ausfällungen von Radium als Radiobaryt ((Ba,Ra)SO₄) (Tab. 7-4, Tab. 7-19). Sowohl in der Lippe als auch in der Fossa Eugeniana sind die ²²⁶Radiumaktivitätskonzentrationen unmittelbar abstromig der Einleitungen wesentlich verringert, ändern sich bis zur Mündung in den Rhein dann aber kaum noch (Abb. 7-6, Abb. 7-26). In der deutlich kleineren Fossa Eugeniana ist sie um den Faktor 7,5 im Gegensatz zu unbelasteten Oberflächenwässern (UNSCEAR 1982) auf 0,030 Bq/L erhöht. In der Lippe dagegen sinken die Konzentrationen durch größere Verdünnungseffekte auf 0,020 Bq/L, was einer Erhöhung der ²²⁶Radiumaktivitätskonzentration gegenüber unbelasteten um den Faktor 5 entspricht. Abstromig des Bergwerkes Lippe konnte keine Erhöhung der ²²⁶Radiumaktivitätskonzentration festgestellt werden. Da die Zecheneinleitung nicht direkt beprobt werden konnte, ist der zuvor beschriebene Effekt der Konzentrationsabnahme aufgrund von Ausfällungen und Verdünnungseffekten hier nicht direkt zu beobachten.

Untersuchungen von GANS et al. (1982) an der Lippe ergaben ähnliche Mittelwerte der ²²⁶Radiumaktivitätskonzentrationen. Die Autoren berichten von 0,005 Bq/L ²²⁶Radium anstromig von Marl, während im weiteren Verlauf 0,037 Bq/L analysiert wurden.

Vergleichbare ²²⁶Radiumaktivitätskonzentrationen treten auch in Flüssen des oberschlesischen Steinkohlenbergbaus mit Konzentrationen von 0,040 Bq/l auf (WARDASZKO 1996). Ähnlich wie im Ruhr-Revier kann für das oberschlesische Steinkohlenrevier, dessen Deckgebirge (Trias bis Quartär mit mächtigen Salzablagerungen im Tertiär) relativ undurchlässig gegenüber meteorischen Wässern ist, ein Zusammenhang der Radionuklidbelastung mit zirkulierenden, salinaren Tiefenwässern angenommen werden.

Obwohl jede Probenahmestelle über 14 Monate beprobt worden ist, kann davon ausgegangen werden, daß die Maximalkonzentrationen vermutlich höher liegen: Aufgrund der günstigeren Nachtstromtarife werden größere Mengen Grubenwasser in der Nacht zu Tage gefördert. Diese Annahme konnte in einer 24-Stunden-Messung am Sickingmühlenbach (LW3) bestätigt werden (Abb. 8-1). Sowohl die ²²⁶Radiumaktivitätskonzentrationen (um den Faktor 6,7) als auch die Wassermenge im Sickingmühlenbach stiegen im Laufe der Nacht deutlich an.

Abb. 8-1: Tageszeitlicher Verlauf der ²²⁶Radiumaktivitätskonzentration (2σ-Fehler) am 22./23.09.99 (Meßpunkt LW3).

Neben diesen tageszeitlichen Schwankungen variieren die Konzentrationen auch von Tag zu Tag sehr stark, da die geförderten Wässer aus unterschiedlichen Teufen und aus verschiedenen Zechen stammen können. Besonders hohe ²²⁶Radiumaktivitätskonzentrationen treten in den aus größeren Tiefen zufließenden Tiefensolen der Störungen auf. Die Zuflüsse dieser thermalen Tiefensolen sind allerdings im Vergleich mit den Zuflüssen aus dem Hangenden und aus den angefahrenen Schichten relativ klein, so daß in der Regel Wässer mit mittleren ²²⁶Radiumkonzentrationen gefördert werden.

Wie die in Kap. 4 beschriebene Schichtenfolge des Oberkarbon zeigt, kommt es im Zuge der Nordwanderung des Steinkohlenbergbaus zu immer größeren Teufen, in denen Kohle abgebaut werden kann. Aufgrund der größeren Tiefen werden die zufließenden Wassermengen deutlich reduziert, da kein Niederschlagseinfluß mehr erkennbar ist. Allerdings steigt mit der Tiefe der Salzgehalt der Solen, so daß mit steigenden ²²⁶Radiumkonzentrationen gerechnet werden muß.

Unter Zuhilfenahme der jährlichen Grubenwasserabgaben (EMSCHERGENOSSENSCHAFT 1991, LINEG 1995) können folgende Gesamtjahresfrachten an ²²⁶Radium abgeschätzt werden (Tab. 8-1, FEIGE 1997).

Schachtanlage	Grubenwasserabgabe	²²⁶ Ra-Konzentration	²²⁶ Ra-Jahresfracht
	$* 10^{6} [m^{3}/a]$	[Bq/L]	[GBq/a]
Niederberg/Rossenray ^x	7,80	0,57	4,5
Schlägel & Eisen ^x	0,76	8,50	6,5
Concordia ^{xx}	2,84	1,35	3,8
Consolidation ^{xx}	1,36	4,22	5,7
General Blumenthal ^{xx}	1,56	1,15	1,8
Haardt ^{xx}	2,55	2,00	5,1
Auguste Victoria ^x	2,65	12,00	31,8
Summe			59,2

 Tab. 8-1:
 Grubenwasserabgaben und
 ²²⁶Radium-Jahresfrachten ausgewählter Schachtanlagen im Ruhr-Revier (nach FEIGE 1997).

^x: Messungen nach FEIGE (1997), ^{xx}: Messungen nach SCHWEER (1995), 1/3 von sechs Wochenmittelwerten

Die ausgewählten Schachtanlagen emittieren pro Jahr ca. 60 GBq ²²⁶Radium, womit die von GANS et al. (1984) berechnete Gesamtjahresfracht von 40 GBq/a bereits um 20 GBq /a überschritten wird.

Durch den Steinkohlenbergbau werden nach STRUCKMEIER (1990) pro Jahr 20 * 10^6 m³ höher konzentrierte Grubenwässer gefördert. Nimmt man eine ²²⁶Radiumaktivitätskonzentration von ca. 10 Bq/L an, so beträgt die Gesamtjahresfracht durch höher mineralisierte Tiefenwässer 200 GBq/a. Addiert man noch die Aktivitätskonzentrationen der weniger mineralisierten Deckgebirgssolen hinzu, werden möglicherweise über 300 GBq/a ²²⁶Radium emittiert.

Im oberschlesischen Steinkohlenrevier, in dem ebenfalls große Mengen mit Radionukliden verunreinigter Grubenwässer anfallen, wird vermutet, daß durch die Förderung einer Million Tonnen Kohle ca. 2 GBq ²²⁶Radium in die Umwelt abgegeben werden (SKUBACZ et al. 1991).

Neben den beschriebenen ²²⁶Radiumaktiviätskonzentrationen sind in den Wässern auch alle anderen untersuchten Ionen (Ba²⁺, Sr²⁺, Ca²⁺, Mg²⁺, K⁺, Na⁺, Cl⁻, SO₄²⁻) deutlich erhöht.

Korrelationsanalyse

Aufgrund der Datenverteilung, die für die meisten Elemente keiner Normalverteilung entspricht, wurde die folgende Korrelation nach Spearman-Rho durchgeführt (JANSSEN & LAATZ 1994). Exemplarisch sind diese Ergebnisse für die Lippewasserproben in Tab. 8-2 dokumentiert, die übrigen Daten sind im Anhang (Tab. A-45 bis A-47) aufgeführt.

Parameter	Leitfähig- keit	226 Ra ²⁺	Ba ²⁺	Sr ²⁺	Ca ²⁺	Mg ²⁺	\mathbf{K}^+	Na ⁺	SO4 ²⁻	Cl
Leitfähig- keit	1,000	0,332	0,792	0,975	0,768	0,951	0,890	0,982	0,930	0,958
226 Ra $^{2+}$	0,332	1,000	0,406	0,361	0,258	0,329	0,315	0,358	0,331	0,328
Ba ²⁺	0,792	0,406	1,000	0,830	0,547	0,751	0,728	0,780	0,694	0,819
Sr ²⁺	0,975	0,361	0,830	1,000	0,771	0,963	0,889	0,977	0,923	0,959
Ca ²⁺	0,768	0,258	0,547	0,771	1,000	0,834	0,742	0,764	0,826	0,748
Mg^{2+}	0,951	0,329	0,751	0,963	0,834	1,000	0,926	0,962	0,968	0,929
\mathbf{K}^+	0,890	0,315	0,728	0,889	0,742	0,926	1,000	0,893	0,919	0,857
Na ⁺	0,982	0,358	0,780	0,977	0,764	0,962	0,893	1,000	0,939	0,962
SO_4^{2-}	0,930	0,331	0,694	0,923	0,826	0,968	0,919	0,939	1,000	0,897
Cl	0,958	0,328	0,819	0,959	0,748	0,929	0,857	0,962	0,897	1,000

Tab. 8-2: Korrelationskoeffizienten nach Spearman-Rho der Lippewasserproben mit N= 136.

²²⁶Radium ist weder positiv noch negativ mit allen anderen untersuchten Elementen korreliert, wobei die größte Ähnlichkeit zum Barium besteht. Dieses Ergebnis, wenn auch deutlich besser, ist aufgrund der chemischen Ähnlichkeit dieser beiden Elemente, erwartet worden.

Mit Ausnahme des schon erwähnten ²²⁶Radiums sind die anderen Elemente untereinander und die Leitfähigkeit positiv korreliert, wobei Barium in allen untersuchten Fällen die kleinsten Korrelationskoeffizienten aufweist. Die schlechten Koeffizienten der beiden Erdalkalien ²²⁶Radium und Barium beruhen auf den unterschiedlichen Lösungs-Fällungs-Verhalten im Vergleich zu den anderen Elementen. Wenn die hoch salinaren Tiefenwässer in die Vorfluter gelangen und dort mit sulfathaltigen Oberflächenwässern gemischt werden, fällt Bariumsulfat aus, welches ²²⁶Radium mitfällt, so daß Radiobaryt entsteht. Alle anderen Elemente verbleiben in Lösung und da sie prozentual den Hauptanteil ausmachen, nimmt auch die Leitfähigkeit nicht meßbar ab.

Die übrigen Erdalkalien Strontium, Calcium und Magnesium sind sowohl untereinander mit Korrelationskoeffizienten von 0,77 bis 0,96 als auch mit den Elementen Natrium (0,76-0,98) und Kalium (0,74-0,93) positiv korreliert. Wie zu erwarten war, sind die beiden Alkalielemente untereinander ebenfalls positiv mit einem Koeffizienten von 0,89 korreliert.

Die beiden analysierten Anionen Chlorid und Sulfat korrelieren ebenfalls sehr gut mit den untersuchten Kationen mit Ausnahme von Barium und Radium. Im Falle des Chlorids ist allerdings eine positive Korrelation zum Radium, wie sie auch von SCHWEER (1995) in Grubenwässern festgestellt wurde, angenommen worden. Im Gegensatz zum Grubenwasser, in dem das Radium noch keinen Kontakt zu sulfathaltigen Oberflächenwässern hatte, unterliegt es im Verlauf der Lippe schon einigen chemischen Prozessen, wie Fällungen oder Adsorptionen, so daß der kleine Korrelationskoeffizient (0,328) darauf zurückzuführen ist. Beim Sulfat hingegen ist eine negative Korrelation mit Barium und Radium vermutet worden, da die Anwesenheit von hohen Sulfatmengen die beiden genannten Elemente ausschließt. Daß der Korrelationskoeffizient nicht negativ ist, kann verschiedene Gründe haben. So werden z. B. den Grubenwässern Steinschutzmittel zugegeben, die Ausfällungen verhindern sollen (mündl. Mitteilung KLÖS 1998).

8.2 Kontamination der Sedimente

Im Vergleich zu den unbelasteten Sedimenten zeigen die durch Grubenwasser beeinflußten Sedimentproben deutlich erhöhte Radionuklidkonzentrationen. Die Proben LS1 bis LS4, die anstromig der Grubenwasserzuflüsse der Zeche *Auguste Victoria* entnommen wurden, liegen mit Aktivitätskonzentrationen zwischen 10 und 50 Bq/kg²²⁶Radium im Bereich unbelasteter Sedimente (Abb. 8-2) (BARTH et al. 1998). Abstromig des Sickingmühlenbaches steigen die Aktivitätskonzentrationen der untersuchten Nuklide deutlich an. So beträgt die ²²⁶Radiumaktivitätskonzentration am Meßpunkt LS7 425 Bq/kg, was einer 15-fachen Konzentrationserhöhung entspricht. Abstromig dieses Meßpunktes sinken die Konzentrationen bis zur erneuten Einleitung von Grubenwässern des *Bergwerkes Lippe* in Dorsten bis auf 109 Bq/kg und steigen dann wieder bis auf 365 Bq/kg an. Bis zur Mündung in den Rhein sinkt die ²²⁶Radiumaktivitätskonzentration wieder auf das geogene Hintergrundniveau ab.

Abb. 8-2: Radionuklidaktivitäskonzentrationen (2σ-Fehler) und das ²²⁶Ra/²²⁸Ra-Verhältnis der Lippe-Sedimente.

Die entfernungsbedingte Abnahme der Radionuklidkonzentration beruht auf dem Ausfallen des Radiums und Bariums mit Sulfat zum Radiobaryt. Besonders im Sickingmühlenbach ist Radium zu 99 % residual als Radiobaryt gebunden (Abb. 7-39).

Da mit zunehmender Entfernung zum Einleiter der residual gebundene Anteil des Radiums abnimmt (Abb. 7-38, 7-40), ist davon auszugehen, daß das Radium im weiteren Flußverlauf in größerem Maße adsorptiv aus dem Wasser entfernt wird, was auch die Extraktionsversuche gezeigt haben. In den vom Einleiter weiter entfernten Sedimenten nimmt zwar die ²²⁶Radiumaktivitätskonzentration ab, allerdings steigt der Anteil der mobilen Fraktion an. Verbindet man die ermittelten Radiumaktivitätskonzentrationen (Tab. 7-4) mit den Ergebnissen der Extraktionsversuche (Abb. 7-38) so ergibt sich eine absolute Radiumverteilung, die zeigt, daß sich hauptsächlich die residuale Fraktion ändert (Abb. 8-3). Die anderen Fraktionen nehmen, absolut gesehen, ebenfalls ab, allerdings deutlich langsamer. Das zeigt, daß eingeleitetes ²²⁶Radium – wie die nicht residualen Fraktionen belegen – weiter stromabwärts gelangt, als die residuale Fraktion dies vermuten lassen würde.

Abb. 8-3: Absolutverteilung von ²²⁶Ra in den extrahierten Fraktionen der Lippesedimente.

Da die Aktivitätskonzentration von ²²⁶Radium in der Sedimentprobe LS3 mit ca. 10 Bq/kg sehr gering ist, konnte in den meisten Extraktionslösungen (Fraktion 2 bis 6) kein

²²⁶Radium nachgewiesen werden. Um Fehlaussagen in der Nähe der Bestimmungsgrenze zu vermeiden, wird in Abb. 8-3 für den Probenahmepunkt LS3 die Gesamtkonzentration als residualer Teil angegeben.

Ähnlich wie in den Lippe-Sedimenten, sinken auch die Aktivitätskonzentrationen in den Sedimenten der Fossa Eugeniana (Abb. 8-4). Diese zeigen im Gegensatz zu unbelasteten Sedimenten erhöhte Aktivitätskonzentrationen, die ebenfalls mit zunehmender Entfernung zur Einleitung der Grubenwässer wieder abnehmen. Einzige Ausnahme bildet das Sediment der Probenahmestelle FS4 (Tab. 7-19), bei dieser Probe kann davon ausgegangen werden, daß sie älter als alle anderen ist. Wie schon in Kapitel 7.1.2.2 beschrieben, kann über das Verhältnis ²²⁶Radium zu ²²⁸Radium bei bekannter Wasserzusammensetzung ein ungefähres Alter der Sedimente abgeschätzt werden. Da die Wässer des Ruhr-Reviers ein annähernd konstantes ²²⁶Radium/²²⁸Radium-Verhältnis von 2 (SCHWEER 1995) besitzen, kann zumindest das relative Alter der unterschiedlichen Sedimente abgeschätzt werden. Das heißt je größer das Verhältnis wird, um so älter ist das Sediment.

Das durchschnittliche ²²⁶Ra/²²⁸Ra-Verhältnis in Grundwässern beträgt ca. 0,59, was auch annähernd dem der natürlichen Uran/Thorium-Verteilung in Gesteinen entspricht (IVANOWICH & HARMON 1992). Das von SCHWEER ermittelte Verhältnis von 2 kann mit einer anderen, wenn auch unwahrscheinlichen, Uran/Thorium-Verteilung in den Gesteinen des Ruhr-Reviers oder mit dem Abschluß des Lösens der Nuklide ²²⁶Radium und ²²⁸Radium vor ca. 10 Jahren erklärt werden (WIEGAND et al. 1996).

Die Sedimente aus der Lippe weisen im unbelasteten Verlauf ein Verhältnis von ca. 2 auf. Im belasteten Bereich wird dieses Verhältnis mit Ausnahme zweier Proben größer, im Mittel beträgt es hier ca. 3, mit einem Maximalwert von 5,5. Anders hingegen ist das ²²⁶Ra/²²⁸Ra-Verhältnis in den Fossa Eugeniana-Sedimenten, wo es mit Ausnahme der Probe FS4 ca. 5 beträgt. Im Vergleich zum Sediment FS4 mit einem Wert von 10 ist das mittlere Verhältnis der Fossa Eugeniana-Sedimente nur halb so groß, was auf ein höheres Alter dieses Sedimentes hindeutet. Daher ist zu vermuten, daß vor einigen Jahren größere Radionuklidfrachten zu Tage gefördert wurden.

Abb. 8-4: Radionuklidaktivitätskonzentrationen (2σ-Fehler) und das ²²⁶Ra/²²⁸Ra-Verhältnis der Fossa Eugeniana-Sedimente.

Die mit Abstand höchsten Radionuklidgehalte wurden im Sickingmühlenbach ermittelt. Dort betragen die Aktivitäten der Nuklide ²²⁶Radium und ²²⁸Radium 15.000 Bq/kg bzw. 6.480 Bq/kg. Ebenfalls 15.000 Bq/kg ²²⁶Radium wurden in Altlasten des ostdeutschen Uranbergbaus ermittelt (RöHNSCH 1996). In Sedimenten, die durch Ölförderungen beein-flußt sind, wurden wie im Sickingmühlenbach ähnlich hohe ²²⁶Radiumaktivitäts-konzentrationen mit Werten bis zu 21.000 Bq/kg analysiert (PARDUE et al 1998). Auch hier ist das Radium mit Barium als schwerlösliches Radium-Bariumsulfat (Radiobaryt) gebunden.

Die Konzentrationen der Lippe- bzw. Fossa Eugeniana-Sedimente liegen in der gleichen Größenordnung, wie die der Sedimente aus der Zwickauer Mulde (durch Uranbergbau beeinflußt), die ²²⁶Radiumaktivitätskonzentrationen von 640 Bq/kg aufweisen (JURK et al. 1995).

Das Verhältnis der beiden Radiumisotope in den Sickingmühlenbach-Sedimenten ist vergleichbar mit dem in den Lippesedimenten gefundenen, denn auch hier beträgt es ca. zwei. Nur in den unbelasteten Sedimenten (LS1 bis LS4) befindet sich ²²⁶Radium mit ²¹⁰Blei im radioaktiven Gleichgewicht, während dieses in allen anderen Proben noch nicht erreicht ist. Dies hat mehrere Ursachen: Zum einen sind die belasteten Sedimente noch nicht so alt, daß genügend Blei nachgewachsen ist und zum anderen kann dieses Gleichgewicht durch Radonemanation aus den Sedimenten gestört sein.

Ebenso wie die untersuchten Radionuklide sind auch die Erdalkalien Barium und Strontium sowie einige Schwermetalle, wie z. B. Blei, Vanadium und Zink in den kontaminierten Sedimenten deutlich erhöht. Aber auch diese Konzentrationen nehmen im Verlauf der beiden untersuchten Flüsse wieder bis auf das Ausgangsniveau ab (Tab. 7-6, 7-21). Die Konzentrationen aller genannten Elemente liegen unter den Grenzwerten nach der Klärschlammverordnung §4 Abs. 12 (1992). Ebenso sind die Konzentrationen der untersuchten Elemente unterhalb der Prüfwerte nach § 8 Abs. 1 Satz 2 Nr. 1 des Bundes-Bodenschutzgesetzes (BBodSchV 1999).
Korrelationsanalyse

Für die Korrelationsanalyse der Sedimentdaten wurde aufgrund einer Normalverteilung der Daten das Verfahren nach Pearson gewählt (JANSSEN & LAATZ 1994). Tab. 8-3 enthält exemplarisch einige Korrelationskoeffizienten ausgewählter Elemente der Lippesedimente. Alle anderen Elemente sowie die Daten der Fossa Eugeniana-Sedimente sind im Anhang (Tab. A-48, Tab. A-49) aufgeführt.

Parameter	²²⁶ Ra	²²⁸ Ra	²¹⁰ Pb	Ba	Sr	Pb	V	Zn
²²⁶ Ra	1,000	0,866	0,962	0,986	0,940	0,871	0,770	0,902
²²⁸ Ra	0,866	1,000	0,796	0,840	0,866	0,764	0,785	0,752
²¹⁰ Pb	0,962	0,796	1,000	0,949	0,952	0,918	0,750	0,963
Ba	0,986	0,840	0,949	1,000	0,946	0,848	0,729	0,921
Sr	0,940	0,866	0,952	0,946	1,000	0,921	0,838	0,962
Pb	0,871	0,764	0,918	0,848	0,921	1,000	0,896	0,914
V	0,770	0,785	0,750	0,729	0,838	0,896	1,000	0,729
Zn	0,902	0,752	0,963	0,921	0,962	0,914	0,729	1,000

Tab. 8-3: Korrelationskoeffizienten nach Pearson der Lippe Sedimente mit N= 20.

Im Gegensatz zu den Wassserproben korreliert ²²⁶Radium in den Sedimentproben sehr gut mit den anderen untersuchten Elementen. Die beste Korrelation tritt, wie zu erwarten, aufgrund der chemischen Ähnlichkeit wieder mit dem Barium auf. Die vergleichsweise schlechte Korrelation zwischen ²²⁶Ra und ²²⁸Ra ist auf die größeren Unterschiede der Halbwertszeiten beider Isotope zurückzuführen. Die anderen Elemente wie z. B. Zink verhalten sich ähnlich wie die Radionuklide. Da die gehobenen Grubenwässer große Elementfrachten zu Tage bringen, fallen die enthaltenen Elemente vergleichbar aus, was durch die guten Korrelationskoeffizienten deutlich wird.

8.3 Kontamination der Böden

Die aus hochwasserbeeinflußten Böden entnommenen Proben zeigen in den durch Grubenwässer kontaminierten Gewässerverläufen deutlich höhere Radionuklidgehalte als Proben aus hochwasserunbeeinflußten Bereichen (Tab. 7-9, 7-24). In den unbeeinflußten Proben beider Untersuchungsgebiete liegen die ²²⁶Radiumaktivitätskonzentrationen auf dem Niveau der geogenen Hintergrundaktivität, die für ²²⁶Radium je nach Region in Deutschland zwischen 13 Bq/kg und 48 Bq/kg (IYENGAR 1990) angegeben wird (Tab. 7-9, Tab. 7-24). Dagegen liegen die Aktivitätskonzentrationen der beeinflußten Proben mit Maximalkonzentrationen von 913 Bq/kg ²²⁶Ra und 195 Bq/kg ²²⁸Ra an der Lippe bzw. 834 Bq/kg ²²⁶Ra und 214 Bq/kg ²²⁸Ra an der Fossa Eugeniana wesentlich höher. Die gemessenen Aktivitäten der beiden Radiumisotope sind, anders als bei den Sedimenten, geringer als die Aktivitäten in Böden der Zwickauer Mulde, wo Maximalkonzentrationen von 4.242 Bq/kg ²²⁶Ra und 195 Bq/kg ²²⁸Ra ermittelt wurden (BARTH et al. 1998).

Mit zunehmender Entfernung zur Wasserlinie nehmen die Konzentrationen aufgrund der weniger häufigen Überschwemmungen und der kürzeren Dauer der Überflutungen ab. Auch die im Jahre 1999 ermittelten höheren Konzentrationen der Proben sind auf vermehrt auftretende, langanhaltende Hochwässer im Frühjahr 1999 zurückzuführen.

Wie schon bei den Sedimentproben festgestellt wurde, steht ²¹⁰Pb auch in den Bodenproben nur in den unbeeinflußten Proben im radioaktiven Gleichgewicht mit ²²⁶Ra. Allerdings weisen auch die im Jahre 1999 aus nahezu hochwasserunbeeinflußten Bereichen entnommenen Proben ein Ungleichgewicht auf, das darauf schließen läßt, daß die enormen Hochwässer auch diese Bereiche kurzfristig überschwemmt haben. Darauf deuten auch die höheren Konzentrationen im Gegensatz zu denen des Jahres 1998 hin.

Auch die Konzentrationen der meisten anderen Elemente, vor allem die Barium-, Chrom-, Kupfer-, Blei-, Strontium- und Zinkkonzentrationen, sind in den beeinflußten Böden deutlich erhöht und überschreiten in den Böden an der Lippe sogar die Grenzwerte nach der Klärschlammverordnung §4 Abs. 8 (1992). Der Grenzwert für Blei wird maximal 2-fach, der für Kupfer 3-fach und der Zinkgrenzwert sogar 6-fach überschritten. Wird das Bundes-Bodenschutzgesetz zur Beurteilung herangezogen, so überschreitet lediglich eine Bleikonzentration den strengsten Prüfwert nach § 8 Abs. 1 Satz 2 Nr. 1 (BBodSchV 1999). Ebenso wie die Radionuklidkonzentrationen nehmen die Konzentrationen der untersuchten Elemente mit zunehmendem Abstand vom Ufer ab.

8.4 Bewertung der Ortsdosisleistungen

Spätestens bei der Einleitung hochsalinarer Grubenwässer in Oberflächengewässern kommt es zur Ausfällung von Radiobaryt ((Ba,Ra)SO₄), wenn barium- und radiumhaltiges Tiefenwasser mit sulfatreichen Oberflächenwässern in Berührung tritt. Im Verlauf des Sikkingmühlenbaches treten mächtige Absätze des Radium-Bariumsulfates auf, was sich durch sehr hohe Ortsdosisleistungen bemerkbar macht. Die höchsten Ortsdosisleistungen mit 6.000 nSv/h wurden in der Nähe des Einleitungsbauwerkes der Zeche *Auguste Victoria* über Sedimenten ermittelt. Diese Ortsdosisleistungen sind höher als die maximalen Ortsdosisleistungen im Bereich des ehemaligen ostdeutschen Uranbergbaus, wo Maximalwerte von 4.660 nSv/h gemessen wurden (BIESOLD et al. 1996). Aber auch weiter stromabwärts, ca. 100 m vor der Mündung des Sickingmühlenbaches in die Lippe, betragen die Ortsdosisleistungen entsprechen denen auf Absetzanlagen, Halden und Schlämmteichen der Wismut GmbH im Erzgebirge (1730 nSv/h, BUNDESUMWELTMINISTERIUM 1993), die mit einem Aufwand von 13 Milliarden DM saniert wurden (BUNDESMINISTERIUM FÜR WIRTSCHAFT 1995).

Ebenso weisen auch die bei Hochwasser überfluteten Böden entlang des Baches erhöhte Ortsdosisleistungen mit Maximalwerten von bis zu 850 nSv/h auf, die im Vergleich zum bundesdeutschen Durchschnittswert (100 nSv/h) (RÖHNSCH 1996) um den Faktor 8,5 erhöht sind.

Die großen Radionuklidfrachten der eingeleiteten Grubenwässer des Steinkohlenbergbaus führen im weiteren Gewässerverlauf zu erhöhten Radionuklidkonzentrationen in Sedimenten und hochwasserbeeinflußten Böden und somit zu deutlich höheren Ortsdosisleistungen. Bereits KLÖS (1979) und SCHWEER (1995) haben über erhöhte Radionuklidkonzentrationen in Böden und Sedimenten im rechtsrheinischen Steinkohlenrevier entlang der Lippe berichtet. Die Lippe tritt regelmäßig bei Hochwasser über die Ufer, so daß abgelagerte Sedimentationsschichten im hochwasserbeeinflußten Bereich detektiert wurden (Abb. 7-14). Während die unbelasteten Probenahmestellen Ortsdosisleistungen von ca. 60 nSv/h aufweisen, wurden im beeinflußten Gewässerverlauf Werte von bis zu 350 nSv/h in unmittelbarer Ufernähe gemessen. Bei Ortsdosisleistungen > 300 nSv/h spricht die Strahlenschutzkommission von radiologisch signifikanten Werten. Diese nehmen mit zunehmendem Abstand zum Gewässer aufgrund der weniger häufigen Überschwemmung wieder deutlich ab. Die häufig überschwemmten Böden akkumulieren demnach mehr Radionuklide, was auch durch die gammaspektroskopische Analyse der Bodenproben bestätigt wurde. Im Mündungsbereich der Lippe in den Rhein wurden immer noch sehr hohe Ortsdosisleistungen gemessen, da diese Flächen im Jahresverlauf am häufigsten und am längsten vom Lippewasser überflutet werden.

Im linksrheinischen Steinkohlenbezirk entlang der Fossa Eugeniana kommt es ebenfalls zu deutlich erhöhten Ortsdosisleistungen auf Sedimenten und Böden. Allerdings sind diese im Einleitungsbauwerk der Zeche *Rossenray* mit Ortsdosisleistungen von 1.200 nSv/h niedriger als im Sickingmühlenbach. Am Pumpwerk Krumsteg wurden dagegen Ortsdosisleistungen von bis zu 3.200 nSv/h gemessen, was vermutlich mit dem längeren Kontakt des Wassers mit sulfathaltigen Wässern zusammenhängt.

Abstromig des Pumpwerkes Krumsteg ist in der kanalartig eingetieften Fossa Eugeniana eine Sedimentation nur in Stillwasserzonen möglich, wogegen im Alten Rhein die Sedimentation fast vollständig ist (WIEGAND et al. 1996).

Eine sehr starke Kontamination der Böden wurde im Gebiet zwischen Rheinberg und Ossenberg (Alter Rhein) festgestellt, da es hier häufig zu starken Überflutungen kommt. Wie auch schon bei den Lippeböden beobachtet, nehmen die in Ufernähe deutlich erhöhten Ortsdosisleistungen mit zunehmender Entfernung vom Gewässer ab (Abb. 7-38). Abstromig der Schleuse Ossendorf ist die Ortsdosisleistung wieder auf das geogene Hintergrundsniveau abgesunken, da diese Flächen häufiger bei Rheinhochwässern überflutet werden.

Die Ergebnisse der Sediment- und Bodenanalysen (Kap. 7.1.2, 7.1.3, 7.2.2, 7.2.3) haben gezeigt, daß ²²⁶Radium und ²¹⁰Blei in den beeinflußten Proben noch nicht im radioaktiven Gleichgewicht stehen, so daß mit der Zeit die Aktivitätskonzentrationen der extrem radio-toxischen Pb-Isotope ansteigen werden.

Wie auch schon WIEGAND et al. (1996) festgestellt haben, besitzt die Vegetation einen großen Einfluß auf die gemessenen Ortsdosisleistungen. Sowohl an der Lippe als auch an der Fossa Eugeniana wurden an Flächen mit vorwiegend dichtem Gräserbewuchs höhere Werte als über unbewachsenen Flächen gemessen (Abb. 7-16, Abb. 7-38). Diese erhöhten Aktivitäten bleiben auch nach Entfernen der Pflanzen unverändert, so daß sich die Radionuklide nicht in den Pflanzen angereichert haben können, was durch die Analyse der von Schwebstoffen befreiten Pflanzenproben bestätigt wurde (Kap. 7.1.6.1.2, Kap. 7.2.6.2.1). Es ist wohl eher davon auszugehen, daß die an Schwebstoffen transportierten Radionuklide bei abfließendem Hochwasser von den Gräsern zurückgehalten werden und sich zwischen diesen anreichern (WIEGAND et al. 1996).

8.5 Transfer in Flora und Fauna

8.5.1 Transfer aus Sedimenten in Wasserpflanzen

Die Analyse der Wasserpflanzen hat gezeigt, daß auch diese durch die eingeleiteten Grubenwässer in ihren Radionuklidgehalten stark beeinflußt werden. Die höchsten Radionuklidaktivitätskonzentrationen wurden in einer Algenprobe (*Cladophora spec.*) aus der Fossa Eugeniana mit Werten von 4.000 Bq/kg²²⁶Ra und 800 Bq/kg²²⁸Ra ermittelt. Da leider keine unbelastete Algenvergleichsprobe entnommen werden konnte, wird im folgenden ein Vergleich mit unbelasteten Pflanzenproben aus der Lippe vorgenommen, wobei dies nur eine Näherung darstellt. Die unbelasteten Pflanzenproben (*Myriophyllum ssp. heterophyllum*) aus der Lippe weisen²²⁶Radiumaktivitätskonzentrationen von ca. 20 Bq/kg auf, womit es sich um eine 200-fache Erhöhung der Konzentration in der Algenprobe handelt. Dieser Wert ist, wie bereits weiter oben angemerkt, nur eine Näherung, er zeigt allerdings, daß die Algenprobe wesentlich mehr²²⁶Radium enthält als unbelastete Pflanzen. Ähnlich hohe Faktoren von 60 bis 110 wurden in Algen aus Colorado in durch Uranbergbau beeinflußten Flüssen ermittelt (TSIVOGLOU et al. 1960).

In den Wasserpflanzen der Lippe steigt die ²²⁶Radiumaktivitätskonzentration von ca. 20 Bq/kg im unbelasteten Gewässerabschnitt bis auf maximal 78 Bq/kg an, was einer 4-fachen Erhöhung entspricht (Abb. 8-5). Anders als bei den Sedimenten nimmt diese Konzentration aber nicht so gleichmäßig mit zunehmender Entfernung zum Einleiter ab,

sondern bleibt über einen längeren Zeitraum erhöht. Auch die Einleitung des *Bergwerkes Lippe* in Dorsten macht sich erst ca. 3,5 km abstromig in den Pflanzenproben bemerkbar.

Abb. 8-5: Radionuklidkonzentrationen (2σ-Fehler) in Sedimenten und Wasserpflanzen (*Myriophyllum* ssp. heterophyllum) aus der Lippe.

Im Gegensatz zu Algen, die neben Nährstoffen z. B. Radionuklide nur über das Wasser aufnehmen, geschieht dies bei höheren Pflanzen sowohl durchs Wasser als auch über das Sediment, wobei sich die Aktivitätskonzentration in der Pflanze nach Gleichung 21 (multiple source model aus WILLIAMS 1992) ergibt.

$$c_{iP} = B_{iS} * c_{iS} + B_{iW} * c_{iW}$$
 Gl. 21

 c_{iP} = Aktivitätskonzentration in Pflanzen

- $c_{iS} = Aktivitätskonzentration im Sediment$
- c_{iW} = Aktivitätskonzentration im Wasser
- B_{iS} = Transferkoeffizient für die Aufnahme in Pflanzen aus dem Sediment
- B_{iW} = Transferkoeffizient für die Aufnahme in Pflanzen aus dem Wasser

Im Rahmen dieser Arbeit wird allerdings nur der Transfer aus dem Sediment berücksichtigt, da die Aktivitätskonzentrationen im Wasser über den gesamten untersuchten Flußverlauf nahezu konstant sind. Das heißt, eine Änderung der Aktivitätskonzentration in der Pflanze wird hauptsächlich durch den Sedimentanteil der Gleichung 21 bestimmt. Für die Berechnung der Transferfaktoren bedeutet diese Vereinfachung zwar einen Fehler, bei der relativen Bewertung der Transferfaktoren untereinander spielt sie allerdings eine untergeordnete Rolle, da alle denselben systematischen Fehler aufweisen.

Damit vereinfacht sich Gleichung 21 zum single compartment model (WILLIAMS 1992):

$$B_{iS} = \frac{c_{iP}}{c_{iS}}$$
Gl. 22

Die so ermittelten Transferfaktoren sind in Tab. 8-4 dargestellt.

Proben	B _{is} -226	B _{iS} -228
PF1 / LS1	0,48	-
PF2 / LS2	0,33	-
PF4 / LS3	2,22	2,13
PF5 / LS7	0,16	0,18
PF7 / LS8	0,14	0,25
PF9 / LS9	0,15	0,52
PF11 / LS10	0,26	0,53
PF14 / LS11	0,24	0,16
PF15 / LS12	0,09	0,24
PF17 / LS13	0,08	0,25
PF18 / LS14	0,24	0,55
PF20 / LS15	0,14	0,42
PF22 / LS17	0,11	0,22
PF23 / LS18	0,18	-
PF24 / LS19	0,25	0,55

Tab. 8-4: Errechnete Sediment-Transferfaktoren für Wasserpflanzen aus der Lippe ohne Berücksichtigung des Wassertransfers.

Die ermittelten ²²⁶Radium-Transferfaktoren sind für die unbelasteten Proben deutlich höher. Bei diesen Proben muß allerdings berücksichtigt werden, daß die relativen Analysenfehler der niedrigen ²²⁶Radiumaktivitätskonzentrationen sowohl in den Sedimenten als auch Pflanzen sehr groß sind. In diesen Sedimentproben ist eine Aussage über die Bindungsformen nur schwer möglich, da die Aktivitätskonzentrationen in den Extraktionslösungen im Bereich oder unterhalb der Nachweisgrenze sind. Aus diesem Grund wird dieser Probenahmepunkt auch nicht in der weiteren Diskussion betrachtet und nicht in Abb. 8-6 dargestellt.

Die Aufnahme des Radiums durch Pflanzen aus dem Sediment hängt stark mit der Bindungsform des Radiums zusammen. Je mehr Radium residual im Sediment gebunden wird, um so geringer ist die Aufnahme durch die Pflanze, da es in dieser Bindungsform für Pflanzen nicht mehr verfügbar ist (Abb. 8-6). Im Verlauf der belasteten Lippe nehmen die Transferfaktoren zunächst auf 0,15 ab und steigen dann bis vor der Einleitung des *Bergwerkes Lippe* wieder auf 0,25 an. Im Gegensatz dazu fällt der residuale Anteil in diesen Proben von 83 % auf 73 % ab. Abstromig der Einleitung des *Bergwerkes Lippe* nehmen die Transferfaktoren sogar bis auf 0,09 ab und der residuale Anteil ist hier wieder erhöht. Nachfolgend steigen die Transferfaktoren wieder an, allerdings kommt es hier zu stärkeren Schwankungen.

Die ²²⁸Radium-Transferfaktoren sind bis auf eine Ausnahme immer höher als die des ²²⁶Radiums. Vermutlich hängt dies mit der größeren Meßungenauigkeit der niedrigen ²²⁸Radiumaktivitätskonzentrationen zusammen.

Abb. 8-6: Sediment-Transferfaktoren und der Anteil des residual gebundenen ²²⁶Radium im Sediment.

8.5.2 Transfer aus Böden in Landpflanzen

Obwohl die untersuchten Bodenproben zum Teil deutlich höhere Aktivitätskonzentrationen der beiden Radiumisotope als in den Sedimenten aufweisen, wurden diese in den meisten analysierten Gräsern nicht nachgewiesen. Nur die ufernahen Grasproben an der Fossa Eugeniana weisen meßbare Aktivitätskonzentrationen auf (Abb. 8-7).

Die nach ZACH (1980) ermittelten Transferfaktoren (Tab. 8-5) sind aber im Vergleich zu denen der Sedimente und unter Berücksichtigung des residual gebundenen ²²⁶Radiums im Boden relativ klein. Die Transferfaktoren für den Übergang Boden – Gras weisen eine gute Übereinstimmung mit den in der Literatur veröffentlichten Werten von 0,06 (HÖLZER & WICHTEREY 1995), 0,08 (IAEA TECHNICAL REPORT SERIES NO. 364) und 0,015 (SCHÜTTELKOPF et al. 1982) auf. Faktoren in dieser Größenordnung (0,07) wurden von SHAWKI et al. (1988) auf unbelasteten Flächen bestimmt. In Gebieten, die durch den Uranbergbau beeinflußt werden, errechneten sie allerdings Faktoren zwischen 0,15 und 0,3.

Es kann davon ausgegangen werden, daß die erhöhten Aktivitätskonzentrationen in den Wasserpflanzen zum größten Teil auf die Gehalte der Nuklide im Wasser zurückzuführen sind, da aquatische Pflanzen "Nährstoffe" zum großen Teil durch die Blätter aufnehmen (KREEB 1983, STRASBURGER 1991).

Abb. 8-7: Radionuklidkonzentrationen (2o-Fehler) in Böden und Gräsern an der Fossa Eugeniana.

 Tab. 8-5: Errechnete Transferfaktoren für Gräser und der residuale
 ²²⁶Ra-Anteil im Boden (Fossa Eugeniana).

Proben	B _{iv} -226	Residual gebunde- nes ²²⁶ Ra [%]	B _{iv} -228
PF ₉₈ -1 / FB1 ₉₈ -1	0,13	91,7	0,21
PF99-1 / FB199-1	0,10	91,7	0,23
$PF_{98}-2 / FB1_{98}-2$	-	n. b.	-
PF99-2 / FB199-2	-	n. b.	-
PF ₉₈ -1 / FB2 ₉₈ -1	-	79,3	-
PF99-1 / FB299-1	0,04	79,3	0,05
PF ₉₈ -2 / F B2 ₉₈ -2	-	n. b.	-
PF99-2 / FB299-2	-	n. b.	-

n. b. : nicht bestimmt

8.5.3 Transfer in die aquatische Fauna

Im Gegensatz zu Wasserpflanzen nehmen Fische ²²⁶Radium und andere Radionuklide bedeutend langsamer auf (JUSTIN et al. 1985). Dies konnte durch die Ergebnisse der untersuchten Fischproben bestätigt werden. Auch daß Fische, die bevorzugt sedimentnah leben (z. B. Aale), mehr Radium akkumulieren als solche, die vorwiegend im Freiwasser leben, zeigen die Untersuchungen. Wie in Kap. 7.1.6.2 bereits aufgeführt, wurden die höchsten Radionuklidgehalte in den Innereien von Aalen, die in Sedimentnähe leben, analysiert. In allen anderen Fischarten bzw. Fischfraktionen wurde nur vereinzelt ²²⁶Radium nachgewiesen. Die Konzentrationen der anderen untersuchten Isotope lagen jeweils unterhalb der Nachweisgrenze.

Der Transferfaktor in Fischen errechnet sich nach Gl. 23.

$$B_{iV} = \frac{c_{iF}}{c_{iW}}$$
Gl. 23

 B_{iV} = Transferkoeffizient für die Aufnahme in Fischen aus dem Wasser

 c_{iF} = Aktivitätskonzentration in Fischen

c_{iW} = Aktivitätskonzentration im Wasser

Die in Tab. 8-6 aufgeführten Transferfaktoren sind nur als Näherungswerte zu beurteilen, da die ²²⁶Radiumaktivitätskonzentration im Wasser nur einen Mittelwert widerspiegelt (Kap. 8.1). Des weiteren sind die Analysenergebnisse der Fischproben mit großen Meßfehlern behaftet, da es sich hierbei um sehr geringe Probemengen gehandelt hat. Ein weiterer Unsicherheitsfaktor ist durch die Mobilität der aquatischen Fauna gegeben, da die geangelten Fische nicht ortsgebunden sind. Unter Berücksichtigung dieser Einschränkungen und der geringen Probenanzahl sind die ermittelten Ergebnisse für die aquatische Fauna mit einer großen Unsicherheit behaftet, sie zeigen aber dennoch einen Trend auf.

Probe	²²⁶ Ra-Konz. [Bq/kg]	B_{iV}
Aal 1	23	1145
Aal 2	53	2670
Aal 4	35	1765
Aal 5	125	6250
Aal 7	188	9400
Aal 10	29	1465
Aal 11	60	2985

Tab. 8-6:Errechnete Transferfaktoren für Aal-Innereien aus der Lippe mit einer mittleren226Radiumaktivitätskonzentration von 0,02 Bq/L im Wasser.

Im Vergleich mit bisher veröffentlichten Daten sind die ermittelten Transferfaktoren deutlich höher. In Gebieten mit erhöhter natürlicher Radioaktivität liegt der Transferfaktor für Fische bei ca. 18 (SCHÜTTELKOPF et al. 1982). Dagegen veröffentlichten STEGNAR & KOBAL (1982) Faktoren von 42-137 aus uranbergbaubeeinflußten Gebieten in Jugoslawien, die durch die Beeinflussung des Uranbergbaus schon deutlich höher sind, als die zuvor von SCHÜTTELKOPF et al. (1982) genannten. Im Gegensatz zu den Literaturdaten sind die in dieser Arbeit ermittelten Faktoren nicht auf den gesamten Fischkörper, sondern nur auf die Innereien bezogen. Aufgrund der kleinen Konzentrationen in den übrigen Fischfraktionen, die in dieser Berechnung aufgrund der Nachweisgrenze nicht einbezogen werden konnten, wären die vergleichbaren Transferfaktoren auch an der Lippe deutlich kleiner.

Deutlich mehr Radionuklide werden laut STEGNAR & KOBAL (1982) von Gammariden akkumuliert. In den Gammariden-Proben aus der Fossa Eugeniana wurden wesentlich höhere Aktivitätskonzentrationen der beiden Isotope ²²⁶Ra und ²²⁸Ra mit Aktivitäten von ca. 259 bzw. 195 Bq/kg nachgewiesen als in den untersuchten Aalinnereien (73 Bq/kg ²²⁶Ra).

In den untersuchten Wollhandkrabben betragen die gemessen ²²⁶Radium- bzw. ²²⁸Radiumaktivitätskonzentrationen ca. 16,8 bzw. 22,1 Bq/kg. Ähnliche Aktivitätskonzentrationen des Nuklides ²²⁶Ra (48,1 Bq/kg) ermittelten STEGNAR & KOBAL (1982) in Gammariden-Proben.

8.6 Datierungen der Sedimentproben aus den Tiefenprofilen

²²⁸Ra/²²⁶Ra-Datierungsmodell

Nach SCHWEER (1995) treten die Radiumisotope ²²⁸Ra und ²²⁶Ra in den Grubenwässern des Ruhr-Reviers in einem konstanten Aktivitätsverhältnis von 0,5 auf. Aufgrund der unterschiedlichen Halbwertszeiten und der sich dadurch zeitlich ändernden Verhältnisse, kann auf das Alter der abgelagerten Sedimentschichten geschlossen werden.

Infolge der niedrigen Zerfallskonstante des ²²⁶Radiums (4,332 * 10⁻⁴ / a) kann die ²²⁶Radiumaktivität innerhalb einer Zeitspanne von 15 Jahren als konstant angesehen werden. Das immer kleiner werdende ²²⁸Ra/²²⁶Ra-Verhältnis beschreibt demzufolge die Abnahme des ²²⁸Radiums. Somit können Ablagerungen, die jünger als 15 Jahre sind, bestimmt werden. In älteren Proben der beiden Untersuchungsgebiete sind die Meßfehler zu groß, um die noch verbliebene ²²⁸Radiumaktivitätskonzentration eindeutig zu bestimmen. Die Berechnung zur Datierung der Sedimente erfolgt nach Gl. 24.

$$=\frac{\ln\left(\frac{A_0}{A_1}\right)}{\lambda_{Ra-228}}$$
Gl.24

mit:

t = Alter A_0 = Ausgangskonzentration²²⁸Ra, berechnet mit 0,5 * A_{Ra-226} A_1 = gemessene²²⁸Radiumaktivitätskonzentration λ_{Ra-228} = 0,122/a, Zerfallskonstante

t

Exemplarisch sind die Ergebnisse der Datierungen der Sedimentproben aus den Tiefenprofilen LT1 an der Lippe in Tab. 8-7 aufgeführt. Der angegebene Fehler des Alters in Tab. 8-7 berücksichtigt nur die Meßfehler der Radiumbestimmung. Andere Fehlerursachen, die nicht abgeschätzt werden können, wie z. B. Umlagerungen der Sedimente durch Bioturbationen oder wechselnde Ablagerungsbedingungen sowie die Annahme des konstanten ²²⁸Ra/²²⁶Ra-Verhältnisses im Wasser von 0,5 haben einen erheblichen Einfluß auf die Genauigkeit dieser Altersbestimmung.

Probenahmestelle	c (²²⁶ Ra)	c (²²⁸ Ra)	Alter	
	[Bq/kg]	[Bq/kg]	[a]	
LT1-1				
0-15	$305\pm7,9$	$74 \pm 2,9$	$5,9\pm0,5$	
15-30	251 ±6,6	$35 \pm 2,0$	$10{,}5\pm0{,}7$	
30-45	230 ±6,0	$33 \pm 1,6$	$10{,}3\pm0{,}6$	
45-60	$284 \pm 7{,}8$	$35 \pm 2,9$	$11,5 \pm 0,9$	
60-80	$335 \pm 9,1$	$29\pm2,\!6$	$14{,}4\pm1{,}0$	
80-95	$379 \pm 9{,}8$	$23 \pm 1,3$	> 15	
95-110	$65 \pm 1,9$	$9,5 \pm 1,4$	> 15	
LT1-2				
0-20	$186 \pm 5,2$	$35 \pm 2,6$	$7{,}8\pm0{,}9$	
20-35	$212\pm5{,}7$	$29\pm2,0$	$10{,}5\pm0{,}8$	
35-45	$157 \pm 4,1$	$21 \pm 1,0$	$10{,}6\pm0{,}6$	
45-60	$181\pm4{,}8$	$15 \pm 1,2$	$14,\!6\pm0,\!9$	
60-75	371 ±4,9	$28\pm2,3$	$15{,}5\pm0{,}8$	
75-90	123 ±3,5	$26\pm2,0$	> 15	
90-105	$26 \pm 0,72$	$15 \pm 0,75$	>15	

 Tab. 8-7:
 ²²⁶Radium- und ²²⁸Radiumaktivitätskonzentrationen und die daraus berechneten Alter der Sedimente am Tiefenprofil LT1 an der Lippe.

Neben dem ²²⁸Ra/²²⁶Ra-Datierungsmodell wäre eine Altersbestimmung über das ²¹⁰Pb-Modell hilfreich, um auch ältere Proben datieren zu können. Des weiteren könnte dieses Modell auch zur Überprüfung der errechneten Alter dienen. Da ²¹⁰Blei zum einen über die Atmosphäre kontinuierlich der Erdoberfläche zugeführt wird und zum anderen ständig aus natürlich vorhandenen ²²⁶Radium im Boden nachgebildet wird, müssen diese beiden Aktivitätskonzentrationen bekannt sein (KLÖS & SCHOCH 1993a, KLÖS & SCHOCH 1993b). Dieses Verfahren kann leider nicht angewendet werden, da die Bestimmung des ²¹⁰Blei-Eintrages aus der Atmosphäre nicht ermittelt werden konnte, weil die aufgestellten Meßeinrichtungen (Bergerhoff-Gefäße) wiederholt zerstört worden sind. Des weiteren ist die Datierung über das ²¹⁰Blei-Modell aus unterschiedlichen Gründen nicht immer möglich, da die Aktivitätskonzentrationen z. B. durch Bioturbationen oder durch chemische Remobilisierungen verändert werden können (VON GUNTEN et al. 1993). Auch das ²²⁸Ra/²²⁶Ra-Datierungsmodell ist mit einigen Fehlern behaftet. So ist das von SCHWEER (1995) ermittelte Verhältnis von 0,5 nur ein Mittelwert aus unterschiedlichen Grubenwässern, wobei die Einzelverhältnisse zwischen 0,37 und 0,55 schwanken. Vermutlich ändert sich die Zusammensetzung der Grubenwässer auch mit der Abbautiefe und durch den Zufluß hochsalinarer Solen aus tieferen Schichten.

Es bleibt demnach unter Einbeziehung des errechneten Alters der Sedimentschichten festzuhalten, daß das Alter der Schichten mit zunehmender Tiefe zunimmt, und daß vor ca. 15 Jahren Wässer mit höheren Radionuklidfrachten oder größere Mengen Grubenwasser zu Tage gefördert wurden.

In der nachfolgenden Risikoabschätzung werden alle in der Diskussion betrachteten Aspekte nochmals zusammengefaßt und dabei die von den Grubenwässern ausgehende Gefährdung bewertet.

9 Risikoabschätzung

9.1 Belastungspfad Wasser → Sediment → Aquatische Pflanzen → Aquatische Fauna

Die hohen ²²⁶Radiumaktivitätskonzentrationen im Wasser nehmen, wie in Kap. 8.1 beschrieben, in den Flüssen Lippe und Fossa Eugeniana nach den Einleitungen schnell auf relativ konstante Werte von 0,02 bzw. 0,03 Bq/L ab. Diese Konzentrationen sind im Gegensatz zu unbelasteten Proben um das 5- bis 7,5-fache erhöht. Ein Großteil der Radionuklidfracht lagert sich in den Sedimenten der untersuchten Flüsse ab, so daß eine entfernungsbedingte Abnahme der Aktivitätskonzentrationen in den Sedimenten beobachtet wurde. Mit der Entfernung zum Einleiter ändert sich auch die Bindungsform des ²²⁶Radiums in den Sedimenten. Während ²²⁶Radium in den Sedimenten des Sickingmühlenbaches fast ausschließlich residual als Radiobaryt gebunden ist, nimmt dieser Anteil im Verlauf der Lippe ab. Das heißt, daß in den hoch belasteten Sedimenten des Sickingmühlenbaches eine Gefährdung durch Radionuklide "nur" über die erhöhten Ortsdosisleistungen besteht, da die Radionuklide unter den gegebenen Umständen nicht mobilisiert werden können. Anders sieht dies in den Sedimenten der Lippe und Fossa Eugeniana aus. Dort sind die Radionuklide insbesondere mit zunehmender Entfernung zu den Einleitungsbauwerken in größeren Mengen auch adsorptiv gebunden, was bedeutet, daß diese Fraktionen leichter mobilisiert werden können. Es konnte im Rahmen dieser Arbeit gezeigt werden, daß der residuale Bindungsanteil im Verlauf der untersuchten Flüsse - abstromig der Einleitungen - schnell abnimmt, wogegen die nicht residualen Fraktionen nur sehr langsam absinken. Im Vergleich zu unbelasteten Proben zeigt sich, das auch über große Entfernungen eine deutliche ²²⁶Radium-Belastung durch den Steinkohlebergbau nachweisbar ist. Diese Fraktionen stellen ein deutlich höheres Gefährdungspotential als die residualen Fraktionen dar, da sie erstens mobilisierbar und zweitens über größere Entfernungen verteilt sind.

Ansonsten stellen die erhöhten Aktivitätskonzentrationen in den Sedimenten nur dann eine Gefährdung da, wenn die Sedimente infolge einer Gewässerrenaturierung ausgebaggert und auf andere Flächen aufgebracht werden.

Die Konzentrationen der Nuklide ²²⁶Radium und ²²⁸Radium in aquatischen Pflanzen ist im Bereich der belasteten Gewässerabschnitte deutlich höher, jedoch nimmt der

Transferfaktor zwischen Sediment und Pflanze ab. Dies hängt mit den unterschiedlichen Bindungsanteilen zusammen, da residual gebundenes ²²⁶Radium nicht pflanzenverfügbar ist.

In Fischproben konnten bis auf Aalinnereien keine Radionuklide nachgewiesen werden, so daß dieser Belastungspfad, der letztendlich beim Menschen enden würde, hier schon unterbrochen ist.

9.2 Belastungspfad Wasser \rightarrow Boden \rightarrow Terrestrische Pflanzen

Die im Wasser enthaltenen Radionuklide lagern sich auch in hochwasserbeeinflußten Böden ab. So wurden die höchsten Aktivitätskonzentrationen in den ufernahen Proben ermittelt. Das größte Gefährdungspotential der Bodenproben stellt deren deutlich erhöhte Ortsdosisleistung dar (Kap. 9.3). Auch in diesen Proben ist der größte ²²⁶Radiumanteil residual gebunden, so daß nur kleine Mengen der Radionuklide mobilisiert werden können.

Ein Transfer in terrestrische Pflanzen (Gräser) konnte ebenfalls nur in den ufernahen Proben ermittelt werden. Die errechneten Transferfaktoren sind aber im Vergleich zu den Faktoren des Überganges "Sediment \rightarrow Pflanze" unter Einbeziehung der Aktivitätskonzentrationen im Boden und der Bindungsformen relativ klein. Es ist daher zu vermuten, daß die erhöhten Radionuklidkonzentrationen in aquatischen Pflanzen zum größten Teil durch die Aufnahme der Nuklide aus dem Wasser resultieren. Für diese These sprechen auch die enorm hohen Aktivitätskonzentrationen in der Algenprobe aus der Fossa Eugeniana, da Algen im Gegensatz zu den Tausendblatt-Proben alle "Nährstoffe" aus dem Wasser entnehmen.

Ein Belastungspfad in Getreide oder Gemüse kann in beiden Untersuchungsgebieten ausgeschlossen werden, da diese erst in größerer Entfernung zu den Flüssen angebaut werden und somit weder auf belasteten Böden stehen, noch mit dem Wasser in Berührung treten. Ebenfalls ist zum heutigen Standpunkt ein Transfer in Milch nicht möglich, da weder an der Lippe noch an der Fossa Eugeniana Milchvieh in Flußnähe weidet.

9.3 Ortsdosisleistung \rightarrow Mensch

Wie in Kap. 2.6.6 beschrieben, müssen in der neuen Strahlenschutzverordnung die Empfehlungen aus der 1996 verabschiedeten Richtlinie 96/29 EURATOM (Abl. 1996, L 1559,1) umgesetzt werden. Danach soll die zusätzliche effektive Dosis der Bevölkerung 1 mSv pro Jahr nicht überschreiten. Dieser Wert wird von der Strahlenschutzkommission (SSK) der Bundesrepublik Deutschland zur Bewertung von Flächen aus Hinterlassenschaften des Uranerzbergbaus zur Folgenutzung bereits angewendet. Da dieser Richtwert von der Aufenthaltszeit der Bevölkerung auf diesen Flächen abhängt und die resultierenden Risiken somit nicht unmittelbar zu bewerten sind, wurden von der SSK auch Richtwerte für leicht meßbare Größen empfohlen (RÖHNSCH 1996). Die Nutzung von Verdachtsflächen des ostdeutschen Uranerzbaues bei bestimmten ²²⁶Radiumaktivitätskonzentrationen (oder anderen Nukliden der ²³⁸U-Zerfallsreihe) im Boden ist nach Empfehlung der SSK wie folgt geregelt:

< 200 Bq/kg	uneingeschränkte Nutzung möglich
> 200 Bq/kg	Nutzung eingeschränkt möglich, z. B. landwirtschaftliche Grünflächen, Forstwirtschaft, gewerbliche Nutzung
> 1.000 Bq/kg	standortspezifische Untersuchungen nötig, um über die Nutzungsmöglichkeiten anhand des primären Dosisricht- wertes zu entscheiden.

Neben den ermittelten Aktivitätskonzentrationen muß zur Bewertung der Flächen auch noch deren Größe berücksichtigt werden.

Um eine standardisierte Bewertung bergbaulicher Hinterlassenschaften zu ermöglichen, wurde 1993 vom Bundesamt für Strahlenschutz ein Entscheidungsbaum entwickelt (BUNDESUMWELTMINISTERIUM 1993).

Bei Anwendung dieses Entscheidungsbaumes auf die Untersuchungsgebiete, fallen beide aufgrund maximaler ²²⁶Radiumaktivitätskonzentrationen > 1.000 Bq/kg und Ortsdosisleistungen > 300 nSv/h in die Klasse 2. Zusätzlich erfolgt die Einstufung der kontaminierten Gebiete über deren Größe, wobei als Schwellwert eine Fläche von 10.000 m² angenommen wird. Bei den Kontaminationen der Untersuchungsgebiete handelt es sich keineswegs um kleinräumige Flächen. Im Niederrhein-Gebiet ist im Bereich des Alten Rheins an beiden Uferseiten eine Fläche von ca. 25.000 m² (WIEGAND et al. 1996) und im rechtsrheinischen Steinkohlengebiet entlang der Lippe abstromig des Sickingmühlenbaches eine Fläche von ca. 180.000 m² kontaminiert. Zuzüglich der belasteten Flächen entlang des Sickingmühlenbaches und der Fossa Eugeniana anstromig des Jenneckes Gatt kann von einer zu untersuchenden Fläche von ca. 250.000 m² ausgegangen werden.

Aufgrund der großen Flächenausdehnung und der hohen ²²⁶Radiumaktivitätskonzentration fallen beide Untersuchungsgebiete in die Klasse der standortspezifisch zu untersuchenden Objekte.

Da das Alter der Sedimente noch relativ gering ist (Kap.8.6), kann davon ausgegangen werden, daß die Ortsdosisleistungen weiter ansteigen, weil das Gleichgewicht zwischen ²²⁶Radium und ²⁰⁶Blei noch lange nicht erreicht ist. Zum heutigen Zeitpunkt wird die gemessene γ-Aktivität vorwiegend durch die kurzlebigen Folgeprodukte ²¹⁴Pb und ²¹⁴Bi, die nach wenigen Tagen mit ²²⁶Ra im Gleichgewicht stehen, verursacht. Mit der Zeit werden auch die Aktivitätskonzentrationen der extrem radiotoxischen Pb-Isotope nachwachsen und die Größenordnung der ²²⁶Radiumaktivitäskonzentrationen erreichen.

Besonders Angler, Spaziergänger und vor allem kleine Kinder, die gerne in der Umgebung von Wasser spielen, können den von der SSK verwendeten Grenzwert von 1 mSv/a leicht erreichen und in Einzelfällen sogar überschreiten, wie das folgende Berechnungsbeispiel an der Fossa Eugeniana zeigt:

max. ermittelte Ortsdosisleistung = 3200 nSv/hangenommene Aufenthaltszeit pro Tag = 1 h \Rightarrow **1,2 mSv/a**

Neben dieser externen Strahlenexposition ist auch noch vor allem bei Kindern die Gefahr der internen Exposition gegeben. Bäche, wie z. B. der Sickingmühlenbach, werden häufig von Kindern als Spielplätze benutzt und somit besteht die Gefahr, daß sie ²²⁶Radium inkorporieren, indem sie Wasser oder Sedimente verschlucken (WILLIAMS 1992). Eine zusätzliche Gefahr besteht durch die Inhalation gasförmiger Radionuklide, vor allem ²²²Rn, dem ²²⁶Ra-Tochternuklid. Untersuchungen über die ²²²Radonaktivitätskonzentrationen wurden in den Untersuchungsgebieten nicht durchgeführt, so daß über diesen Belastungspfad keine Aussagen getroffen werden können.

10 Empfehlungen

Der Vergleich der erhaltenen Daten mit den Altlasten des ostdeutschen Uranbergbaus zeigt, daß in beiden Untersuchungsgebieten Handlungsbedarf besteht:

- Die Aktivitätskonzentrationen der Radiumnuklide im eingeleiteten Grubenwasser ser sollte durch Fällungsmaßnahmen minimiert werden. Das heißt, bereits untertage sollte das radiumhaltige Grubenwasser mit sulfathaltigen Wässern versetzt werden, um eine Radiobaryt-Ausfällung untertage durchzuführen. In Polen wird dieses Verfahren bereits mit guten Ergebnissen durchgeführt (CHALUPNIK et al. 2000).
- Die belasteten Flächen sollten katastermäßig aufgenommen und falls notwendig näher untersucht werden.
- Die belasteten Flächen sollten so abgesperrt werden, daß ein direkter Kontakt mit der Bevölkerung, vor allem mit Kindern, ausgeschlossen werden kann.
- Sedimente aus den untersuchten Flüssen sollten keineswegs ausgebaggert und vor allem nicht umgelagert werden, so daß eine noch größere Verteilung dieser kontaminierten Sedimente verhindert wird.

Diese Maßnahmen werden nicht leicht umzusetzen sein, vor allem aber sollte die Bevölkerung sachgerecht über die Belastungen der beiden Untersuchungsgebiete informiert werden.

11 Literaturverzeichnis

- ANT, H. (1966): Die Benthos-Biozönosen der Lippe.- Gutachten herausgegeben vom Ministerium f
 ür Ern
 ährung, Landwirtschaft und Forsten des Landes Nordrhein Westfalen, 91S., D
 üsseldorf.
- BAECKER, P. (1953): Sohlevorkommen und Grubenwasser im Raum Westfalen.- Vom Wasser, **20**: 209-251, Weinheim.
- BARTH, A., SEEHAFER, M. & WEIB, D. (1998): Die Auswirkungen des Uranbergbaus in Sachsen und Ostthüringen auf Radionuklidkonzentrationen in Sedimenten und Auenböden.- Uranium Mining and Hydrogeology II: 515-526, Freiberg.
- BUNDES BODENSCHUTZ- UND ALTLASTENVERORDNUNG (BBodSchV) VOM 12. JULI 1999, Berlin.
- BERLICH, J. & GLÖBEL, B. (1985): Strahlenexposition durch ²²⁶Ra im Knochen.- Strahlenexposition der Bevölkerung, 18. Jahrestagung des Fachverbandes für Strahlenschutz, 69-75, Lübeck-Travemünde.
- BIESOLD, , H., KINDT, A. & ETTENHUBER, E. (1996): Bewertung bergbaulicher Hinterlassenschaften.- atw 41.Jg., Heft 2: 181-183.
- BORSCH, P., FEINENDEGEN, L. E., FELDMANN, A., MÜNCH, E. & PASCHKE, M. (1996): Radioaktivität und Gesundheit.- 224 S., Bayerisches Staatsministerium für Landesentwicklung und Umweltfragen [Hsrg.], München.
- BUNDESAMT FÜR STRAHLENSCHUTZ (1995): Jahresbericht 1995.- 375 S., Salzgitter.
- BUNDESMINISTERIUM FÜR UMWELT, NATURSCHUTZ UND REAKTORSICHERHEIT (2000): Jahresbericht 1999.- 77 S., Bonn.
- BUNDESMINISTERIUM FÜR WIRTSCHAFT (1995): Wismut- Fortschritte der Stillegung und Sanierung.- Dokumentation Nr. 370, 34 S., Bonn.
- BUNDESUMWELTMINISTERIUM [Hsrg.] 1993: Umweltradioaktivität und Strahlenbelastung, Jahresbericht 1993.- 43-45, Bonn.
- BUSCHENDORF, F., HESEMANN, J., PILGER, A. & RICHTER, M. (1951): Die Blei-Zink-Erzvorkommen des Ruhrgebietes und seiner Umrandung.- Beihefte zum geologischen Jahrbuch Heft 3: 184 S., Hannover.
- CARPENTER, A. B. (1978): Origin and chemical evolution of brines in sedimentary basins.-Oklahoma Geological Survey Circular, **79**: 60-77, Oklahoma.

- CHALUPNIK, S. & WYSOCKA, M. (2000): Purification of Radium-Bearing Waters in Underground Coal Mines – A Year of the Experience.- 2nd Dresden Symposium on Radiation Protection, 10 S., Dresden.
- DICKSON, B. L. (1985): Radium isotopes in saline seepages, south-western Yilgarn, Western Australia.-Geochimica et Cosmochimica Acta Vol 49: 361-368, Pergamon Press, Oxford.
- DROZDZEWSKI, G., BORNEMANN, O., KUNZ, E., WREDE, V. (1980): Beiträge zur Tiefentektonik des Ruhrkarbons.- 236 S., GLA Nordrhein-Westfalen, Krefeld.
- EG EURATOM (1996): Richtlinie 96/29 Euratom des Rates vom 13. Mai 1996.- 182 S., Brüssel.
- EMSCHERGENOSSENSCHAFT (1991): Konzept zur Grubenwasserableitung im Emschergebiet.- Materialien zum Umbau des Emscher-Systems, Heft **4**: 57 S., Essen.
- FEIGE, S. (1997): Radionuklid-Kontamination von Wässern, Sedimenten und Böden durch den Steinkohle- und Braunkohlebergbau.- 147 S., Diplomarbeit Universität GH Essen.
- FEIGE, S. & WIEGAND, J. (1998): Einfluß des Kohlebergbaus auf das Radon-Potential.- In: WINTER, M., HENRICHS, K. & DOERFEL, H. [Hsrg.]: Radioaktivität in Mensch und Umwelt - Fortschritte im Strahlenschutz, Band II: 930-935, TÜV-Verlag, Köln.
- FEIGE, S. & WIEGAND, J. (1999): The influence of coal mining on Radon potential.-Proceedings 4th International Conference of Rare Gases Geochemistry ICRGG-II Nuovo Cimento Section Geophysics and Space Physics), Vol. 22 (3-4): 345-352, Bologna.
- FRICKE, K. (1961): Tiefenwasser, Solquellen und Solewanderung des Münsterschen Bekkens.- Z. dt. geol. Ges., **113**: 37-41, Hannover.
- FRICKE, K. (1964): Bemerkungen zu den Solequellen des Hellwegs.- Z. dt. geol. Ges., **116**: 76-87, Hannover.
- FRIEDLANDER KENNEDY (1962): Lehrbuch der Kern- und Radiochemie.- 415 S., Verlag Karl Thiemig, München.
- GANS, I., FUSBAN, K., WELLER, E. & WOLLENHAUPT, H. (1982): Radium in waste water from coal mines and other sources in the Federal Republic of Germany.- Natural Radiation Environment, 444-451, Wilay Eastern Ltd., Neu Delhi.
- GANS, I., FUSBAN, H. U., MILDE, K., WELLER, E. & WOLLENHAUPT, H. (1984): Technologically enhanced radiation exposure of population due to radium 226 in waste water.-6th International Congress of the International Radiation Protection Association, 8 S., Berlin.

- GANS, I., FUSBAN, H. U., WOLLENHAUPT, H., KIEFER, J., GLÖBEL, B., BERLICH, J. & PORSTENDÖRFER, J. (1987): Radium 226 und andere natürliche Radionuklide im Trinkwasser und in Getränken in der Bundesrepublik Deutschland.- WaBoLu Hefte, 4/1987.
- GMELIN (1977): Gmelins Handbuch der Anorganischen Chemie: System 31 Radium, Ergänzungsband 1.- 435 S., Verlag Chemie, Berlin.
- VON GUNTEN, H. R. & MOSER, R. N. (1993): How reliable is the 210Pb dating method? Old and new results from Switzerland.- Journal of Paleolimnology **9**: 161-178, Belgien.
- HAHNE, C. & SCHMIDT, R. (1982): Die Geologie des niederrheinisch-westfälischen Steinkohlegebietes.- 106 S., Verlag Glückauf GmbH, Essen.
- HAUSCHILD, F. (1973): Pharmakologie und Grundlagen der Toxikologie.- 4. Aufl., 1251 S., VEB Georg Thieme Verlag, Leipzig.
- HAVLÍK, B. (1970): Radioactive pollution of rivers in Czechoslovakia.- Health Phys., **19**: 617-624, Hershey, Pa..
- HEIN, H. & KUNZE, W. (1994): Umweltanalytik mit Spektrometrie und Chromatographie.-262 S., VCH, Weinheim.
- HESEMANN, J. (1975): Geologie Nordrhein Westfalens.- 416 S., Schoeningh, Paderborn.
- HÖLZER, F. & WICHTEREY, K. (1995): Ermittlung des Transfers natürlicher Radionuklide vom Boden in die Pflanze in Gebieten natürlich erhöhter und anthropogen erhöhter Radioaktiviät.- BfS Jahresbericht 1994, Salzgitter.
- HOLLEMANN WIBERG (1985): Lehrbuch der Anorganischen Chemie.- 1451 S., 100 Aufl., Walter de Gruyter, Berlin New York.
- HOPPE, T., KLUGE, A., JURK, M. & SCHKADE, U. (1996): Radioaktive Isotope in Sedimenten Freiberger Mulde, Zwickauer Mulde, vereinte Mulde.- UWSF- Z. Umweltchem. Ökotox. 8 (2): 83-88, ecomed Verlagsgesellschaft AG & Co. KG, Landsberg.
- HURST, S., EICHINGER, L., FORSTER, M., BUHEITEL, F. (1991): Radium- und Radonuntersuchungen an Grundwässern der KTB-VB.- KTB Report 91-1, Forschungsergebnisse im Rahmen des DFG-Schwerpunktprogrammes KTB, 437-447, Projektgruppe Kontinentales Tiefbohrprogramm der BRD am Niedersächsischen Landesamt für Bodenforschung.
- HUYSSEN, A. (1855): Die Soolquellen des westfälischen Kreidegebirges, ihr Vorkommen und mutmasslicher Ursprung.- Z. dt. geol. Ges., **7**: 17-252, 567-654, Berlin.
- IAEA TECHNICAL REPORT SERIES NO. 364 (1994): Handbook of Parameter Values for the Prediction of Radionuclide Transfer in the Temperate Environments.-IAEA, Wien.

- ICRP PUBLICATION 68 (1995): Dose Coefficients for Intakes of Radionuclides by Workers, Replacement of ICRP Publication 61.- 83 S., 1st edition, Pergamon Press, Oxford.
- IVANOWICH, M. & HARMON, R.S. (1992): Uranium-series Disequilibrium.- 910 S., 2nd edition, Clarendon Press, Oxford.
- IYENGAR, M. A. R. (1990): The natural Distribution of Radium.- The environmental behaviour of Radium Vol. 1: 59-128, IAEA, Wien.
- JÄGER, B., OBERMANN, P. & WILKE, F. L. (1990): Studie zur Eignung von Steinkohlenbergwerken im rechtsrheinischen Ruhrkohlenbezirk zur Untertageverbringung von Abfall und Reststoffen.- 1 Anlagenband, "Machbarkeitsstudie" im Auftrag des Landesamt für Wasser und Abfall NW, [unveröff.].
- JANSSEN, J. & LAATZ, W. 1994: Statistische Datenanalyse mit SPSS für Windows.- 642 S., Springer Verlag, Heidelberg.
- JÜTTNER, F. (1887): Über die Soolquellen in den Münsterschen Kreidebecken und den westfälischen Steinkohlengruben.- Verh. preuß. Rheinl. u. Westf., 44: Correspondenzblatt Nr. 1, 41-55, Bonn.
- JURADO-VARGAS, M., Olguin, M. T., Ordonez-Regil, E. & Jimenez-Reyes, M. (1997): Ion exchange of Radium and Barium in zeolithes.- Journal of Radioanalytical and Nuclear Chemistry, Vol. 218, No. 2: 153-156, Elsevier Science B. V., Amsterdam.
- JURK, M., SCHKADE, U. K., HOPPE, T. & KLUGE, A. (1995): Untersuchungen zur Kontamination von Sedimenten aus der Freiberger Mulde, Zwickauer Mulde und Vereinigten Mulde,.- BfS Jahresbericht 1994, Salzgitter.
- JUSTIN, J., OLIVA, O., PIVNICKA, K. & SVATORA, M. (1985): Accumulation of natural radionuclides and growth of selected fish species in contaminated waters.- Vest. cs. Spolec. Zool., 49, 253-266.
- KEMSKI, J. (1993): Radonmessungen in der Bodenluft zur Lokalisierung von Störungen im Neuwieder Becken (Mittelrhein).- Bonner geowissenschaftliche Schriften 8: 144 S., Bonn.
- KEMSKI, J., KLINGEL, R., & SIEHL, A. (1996): Die terrestrische Strahlung durch natürliche Elemente in Gesteinen und Böden.- in SIEHL, A. [Hsrg.]: Umweltradioaktivität, 69-96, Verlag Ernst & Söhne, Berlin.
- KIRCHMANN, R., LAFONTAINE, A., CANTILLON, G., BOULENGER, R. (1973): Etude du cylce biologique parcouru par la radioactivité.- Rep. BLG-477, Belgian Nuclear Center (CEN/SCK), Mol, Belgien.
- KLÄRSCHLAMMVERORDNUNG (1992): Klärschlammverordnung vom 15. April 1992.- Bundesgesetzblatt, Jahrgang 1992, Teil I.

- KLÖS, H. & SCHOCH, C. (1979): Untersuchung radiumhaltiger Grubenwässer im Lippeeinzugsbereich vor Inbetriebnahme des THTR-300 Kernkraftwerkes Schmehausen.- in: BMI [Hsrg.], Fachgespräch Überwachung der Umweltradioaktivität, 24-33, Karlsruhe.
- KLÖS, H. & SCHOCH, C. (1993)a: Einfache Methoden zur Radiodatierung limnischer Sedimente.- Zeitschrift für Umweltchemie und Ökotoxikologie, **5**(1): 2-6, Landsberg.
- KLÖS, H. & SCHOCH, C. (1993)b: Altersklassierung von Gewässersedimenten.- Zeitschrift für Umweltchemie und Ökotoxikologie, **5**(5): 253-258, Landsberg.
- KLÖS, H. & SCHOCH, C. (1996): Schnelle, direkte Immissionskontrolle von Uraneinleitern.- Zeitschrift für Umweltchemie und Ökotoxikologie, **8**(1): 7-15, Landsberg.
- KOLB, W. & WOJCIK, M. (1995): Strahlenschutzprobleme bei der Gewinnung und Nutzung von Erdöl und Erdgas in der Bundesrepublik Deutschland.- PTB-Bericht Ra-17: 69 S., Braunschweig.
- KREEB, K.-H. (1983): Vegetationskunde. 331 S., Verlag Eugen Ulmer, Stuttgart.
- KRUSCH, P. (1904): Die Zusammensetzung der westfälischen Spaltenwässer und ihre Beziehung zu rezenten Schwerspatbildungen.- Z. dt. geol. Ges., **56**: S. 36, Hannover.
- KÜHN, R. (1964): Chemische Gesichtspunkte zur Frage der Herkunft der Solen im Ruhrgebiet.- Z. dt. geol. Ges., 116: 254-255, Hannover.
- KUKUK, P. (1933): Geologie des niederrheinisch-westfälischen Bezirk.- Glückauf, **69**: 645-651 Essen.
- KUSCHKOWITZ, T. (1998): Experimentelle Untersuchung zur Radium-Mobilität in salinaren Wässern.- 96 S., Diplomarbeit Universität GH Essen.
- LEBECKA, J., CHALUPNIK, S., MIELNIKOW, A., WYSOCKA, M., LUKASIK, B., MOLENDA, E., & CICHY, T. (1996): Ultilisation of Industrial Waste Products for Purification of Mine Waters of Radium.- Proceedings Technology enhanced natural Radiation caused by non-uranium mining, 321-330, Poland.
- LINEG (1995): Jahresbericht 1995 der Linksniederrheinischen Entwässerungs-Genossenschaft.- 119 S., Kamp-Lintfort.
- LUCAS, H. F. (1957): Improved low-level alpha-scintillation counter for radon.- Rev. Sci. Instrum., **28**: 680-683, New York.
- MATTHES, G. (1990): Die Beschaffenheit des Grundwassers.- Lehrbuch der Hydrogeologie, Bd 2, 498 S., Borntraeger, Berlin.
- MEßANLEITUNGEN UMWELTRADIOAKTIVITÄT H-RA-226 TWASS-01-01 (1992): Verfahren zur Bestimmung von Radium-226 in Trinkwasser und Grundwasser.- 1. Lfg., Gustav Fischer Verlag, Stuttgart Jena.

- MEßANLEITUNG UMWELTRADIOAKTIVITÄT H-RA-226-AWASS-01-01 (1994): Verfahren zur Bestimmung von Radium-226 im Abwasser. 2. Lfg., Gustav Fischer Verlag, Stuttgart Jena.
- MICHEL, G. (1963): Untersuchungen über die Tiefenlage der Grenze Süßwasser-Salzwasser im nördlichen Rheinland und anschließenden Teilen Westfalens, zugleich ein Beitrag zur Hydrogeologie und Chemie des tiefen Grundwassers.- Forsch.-Ber..Land NRW, **1239**: 131 S., Köln.
- MICHEL, G. (1964): Betrachtungen zur Hydrochemie des tieferen Grundwassers im Ruhrgebiet.- Z. dt. geol. Ges., **116**: 161-166, Hannover.
- MICHEL, G. (1974): Mineralwasser in NRW.- Zbl. Geol. Pal., T. 1, H. 9/10: 647-664, Stuttgart.
- MICHEL, G. (1994): Wie kommt die Sole ins Revier?.- Mitt. d. geolog. Ges. Essen, H. 12: 65-81, Essen.
- MICHEL, G., RABITZ, A. & WERNER, A. (1974): Betrachtungen über die Tiefenwässer im Ruhrgebiet.- Fortschr. Geol. Rheinl. u. Westf., **20**: 215-236, Krefeld.
- MOLINARI, J. & SNODGRASS, W. J. (1990): The chemistry and radiochemistry of Radium and the other elements of the uranium and thorium natural decay series.- The environmental behaviour of Radium, **Vol. 1**: 11-56, IAEA, Wien.
- MURRAY, A. S., MARTEN, R., JOHNSTON, A. & MARTIN, P. (1987): Analysis for naturally occuring radionuclides at environmental concentrations by gamma spectrometry.- Journal of Radioanalytical and nuclear chemistry, articles, Vol. 115, No. 2: 263-288.
- NACHTIGALL, D. (1971): Physikalische Grundlagen für Dosimetrie und Strahlenschutz.- 1. Aufl., 280 S., Karl Thiemig Verlag, München.
- Naumer, H., Heller, W. (1990): Untersuchungsmethoden in der Chemie. 2. Aufl., 387 S., Georg Thieme Verlag, Stuttgart New York.
- PARDUE, J. H. & GUO, T. Z. (1998): Biogeochemistry of 226Ra in Contiminated Bottom Sediments and Oilfield Waste Pits.- Journal Environmental Radioaktivity, Vol. 2, No. 3, 239-253, Elsevier Science Ltd., Amsterdam.
- PATTEISKY, K. (1954): Die thermalen Solen des Ruhrgebietes und ihre juvenilen Quellgase.- Glückauf, **90**: 1334-1348, 1508-1519, Essen.
- PHILIPSBORN, H. (1997): Strahlenschutz: Radioaktivität und Strahlungsmessung.- 218 S., Bayerisches Staatsministerium f
 ür Landesentwicklung und Umweltfragen [Hsrg.], M
 ünschen.
- PILGER, A. (1956): Über die Teufenlage der Plutone im Ruhrgebiet.- N. Jb. f. Mineralogie, Mh: 161-169, Stuttgart.

- PUCHELT, H. (1964): Zur Geochemie des Grubenwassers im Ruhrgebiet.- Z. dt. geol. Ges., **116**: 167-203, Hannover.
- PUSEY, W. A. (1911): The biological effects of Radium.- Science XXXIII: 1001-1005.
- REID, D. F.& KRAMER, T. F. (1984): The occurrence and behaviour of Radium in saline formation water of the U. S. Gulf coast region.- Isotope Geoscience 2: 153-174, Elsevier Science Publishers B. V., Amsterdam.
- RIEDEL, E. (1994): Anorganische Chemie.- 921 S., 3. Aufl., Walter de Gruyter, Berlin New York.
- RITCEY, G. M. (1990): Weathering Processes in uranium tailings and the migration of contaminants.- The environmental behaviour of Radium Vol. 2: 27-82, IAEA, Wien.
- RITTENHOUSE, G. (1967): Bromine in oil-field waters and ist use in determining possibilities of origin of these waters. – AAPG Bull., **51**: 2430-2440, Houston.
- RÖHNSCH, W. (1996): Radioaktive Umweltkontaminationen durch den Bergbau in Deutschland.- in SIEHL, A. [Hsrg.]: Umweltradioaktivität, 223–232, Verlag Ernst & Söhne, Berlin.
- SCHLICHTING, E., BLUME, H.-P., STAHR, K. (1995): Bodenkundliches Praktikum.- 2. Aufl., 295 S., Blackwell Wissenschaftseverlags-Verlag, Berlin Wien.
- SCHLIMM, W. & THIERMANN, A. (1988): Geologie am Niederrhein, Perm.- In. geologisches Landesamt Nordrhein-Westfalen [Hsrg.], ALBERT, B., HAGER, H., HEIDE, G., HILDEN, H. D., KLOSTERMANN, J., KNAPP, G., PELZING, R., PRÜFERT, J., QUERFURTH, H., SCHLIMM, W., THIERMANN, A., WREDE, V., KNAUFF W. & REICHMANN, C. [Bearb.]: Geologie am Niederrhein, 4. Aufl., 18-23, Krefeld.
- SCHMEIL, O. & FITSCHEN, J. (1996): Flora von Deutschland und angrenzender Länder.- 90. Aufl., 806 S., Quelle und Meyer Verlag, Wiesbaden.
- SCHMIDT, G. & KÜPPERS, CH. (1994): Stellungnahme zu den Meßergebnissen des Bundesamtes für Strahlenschutz aus Proben im Raum Ronneburg.- Öko-Institut e. V., 36 S., Darmstadt.
- SCHMIDT, R. (1981): Stellungnahme zum Problem der Barium-Ausfällung auf der Schachtanlage Auguste Victoria, Gutachten Minimierung Radioaktivität.- Westfälische Bergwerkskasse, Abteilung Wasserwirtschaft und Hydrogeologie, Bochum.
- SCHÜTTELKOPF, H. & KIEFER, H. (1982): Radium-226Contaminations of the black forest and the radioecological behaviour of Radium.- Environmental Migration of long-lived radionuclides, 345-352, IAEA, Wien.
- SCHWEER, G. (1995): Aktivitätsmessungen an Sedimenten des Ruhrgebietes in Hinblick auf deren Datierung.- Diplomarbeit Fachhochschule Aachen.

- SCHWOERBEL, J. (1994): Methoden der Hydrobiologie Süßwasserbiologie.- 368 S., 4. Auflage, Gustav Fischer, Stuttgart Jena.
- SEMMLER, W. (1960): Die Herkunft der Grubenwasserzuflüsse im Ruhrgebiet.- Glückauf, **96**: 502-511, Essen.
- SHAWKI, A., IBRAHIM & WARD WHICKER, F., (1988): Plant/soil concentration ratio of ²²⁶Ra for contrasting sites around an active U Mine-Mill.- Health Physics, Vol. 55, No. 6: 903-910, Hershey, Pa..
- SKUBACZ, K., LEBECKA, J., CHALUPNIK, S. & WYSOCKA, M. (1991): Possible changes in the background radiation of the natural environment caused by coal mining activity.-Nuclear Techniques in the exploration and exploitation of energy and mineral resources, 425-429, IAEA, Wien.
- SIEHL, A. (1996): Grundlagen und geowissenschaftliche Aspekte der Umweltradioaktivität.- in SIEHL, A. [Hsrg.]: Umweltradioaktivität, 1–30, Verlag Ernst & Söhne, Berlin.
- STATHER, J. W. (1990): The behaviour, effects and radiation dosimetry of Radium in man.-The environmental behaviour of Radium Vol. 2: 297-343, IAEA, Wien.
- STEGNAR, P. & KOBAL, I. (1982): Uptake and distribution of Radium and Uranium in the aquatic food chain.- Environmental Migration of long-lived radionuclides, 345-352, IAEA, Wien.
- STRASBURGER, E. (1991): Lehrbuch der Botanik für Hochschulen. 1030 S., 3. Aufl., Fischer-Verlag, Stuttgart.
- STRUCKMEIER, W. (1990): Wasserhaushalt und hydrologische Systemanalyse des Münsterländer Beckens.- LWA Schriftenreihe, **45**: 72 S. Düsseldorf.
- SURBECK, H. (1991): Radium und Radon im Boden, messtechnische und geologische Aspekte.- in VÖLKLE H. & BORCHARDT D. [Hsrg.]: Messung von Radon und Radon-Folgeprodukten, Tagungsband, 132-142, Puiblikationsreihe Fortschritte im Strahlenschutz.- TÜV Rheinland, Köln.
- SURBECK, H. (1995): Determination of natural radionuclides in drinking water; a tentative protocol.- The Science of total Environmental, **173/174**, 91-99, Elsevier Science BV, Amsterdam.
- TANNER, A. B. (1964):Radon migration in the ground: A review.- In: ADAMS, J. A. S. & LOWDER, W. M. [Eds.]: The natural radiation environment I: 161-190, University of Chicago Press, Chicago.
- TOMZA, I. & LEBECKA, J. (1981): Radium-bearing waters in coal mines: occurence methods of measurement and radiation hazard.- Proceedings International Conference on Radiation Hazards in Mining, **Chapter 141**: 945-948, Golden.

- TSIVOGLOU, E. C., BARTSCH, A.F., RUSHING, D.E., HOLADAY, D.A. (1958): Effects of uranium ore refenery wastes on receiving waters.- Sewage Industrial Wastes, 30, 1012-1027.
- TSIVOGLOU, E. C., STEIN, M. & TOWNE, W. W. (1960): Control of radioactive pollution of the animal river.- Journal WPCF, Vol. 32, No. 3: 262-287.
- UNSCEAR (1982): Ionizing Radiation: Sources and Biological Effects.- Unscear-Report, New York.
- VERBAND DEUTSCHER LANDWIRTSCHAFTLICHER UNTERSUCHUNGS- UND FORSCHUNGS-ANSTALTEN (1991): Methodenbuch I, Die Untersuchung von Böden.- VDLuFA-Verlag, Darmstadt.
- WACHINSKI, A. M. & ETZEL, J. E. (1997): Environmental Ion Exchange.-CRC Press LLC.
- WEDEPOHL, K.H. [Hrsg.] (1978): Handbook of Geochemistry, Vol. II.- Springer Verlag, Berlin.
- WEDEWARDT, M. (1995): Hydrochemie und Genese der Tiefenwässer im Ruhr-Revier.-172 S., Dissertation Universität Bonn.
- WIEGAND, J. (1999): Radon in urbanen Gebieten, geogene und anthropogene Einflüsse auf das ²²²Rn-Potential dargestellt am Beispiel des Ruhrgebietes.- 234 S., Habilitationsschrift, Universität Essen.
- WIEGAND, J., FEIGE, S. & SCHMID, S. (1996): Bericht zum Untersuchungsvorhaben "Messungen von ²²²Rn, und ²²²Rn-Folgeprodukte im Alten Rhein bei Ossenberg nach Zufluß des Moersbaches, nördliches Rheinberg".- Unveröffentlichter Abschlußbericht an das Landesumweltamt NRW, 18 S..
- WIEGAND, J & KUSCHKOWITZ, T. (1998): Die Radium-Mobilisierung in Tiefenwässern.-Terra Nostra **98/3**: 204-205, Berlin.
- WILLIAMS, A. R. (1992): Biological uptake and transfer of Radium-226: A Review.- Environmental Migration of long-lived Radionuklides, 207-222, IAEA, Wien.
- WILLIAMS, A. R. & KIRCHMANN, R. J. (1990): Radium A historial introduction.- The environmental behaviour of Radium Vol. 1: 3-10, IAEA, Wien.
- WYSOCKA, M., LEBECKA, J., SKUBACZ, K., MIELNIKOW, A., CHALUPNIK, S. & MICHALIK, B. (1996): Behaviour of radium isotopes realeased from coal mines to rivers.- Proceedings Technology enhanced natural Radiation caused by non-uranium mining, 295-306, Poland.
- YU CHIA CHUNG (1981): Radium-226 and Radon-222 in southern California groundwaters: spatial variations and correlations.- Geophysical Research Letters, Vol. 8, No. 5: 457-460, Washington, DC.

- ZACH, R. (1980): Tranfer coefficients to terrestrial food products in equilibrium assessment models for nuclear installations.- 47 S., Atomic Energy of Canada limited.
- ZEIEN, H. (1995): Chemische Extraktionen zur Bestimmung der Bindungsformen von Schwermetallen in Böden.- Diss. Universität Bonn, 285 S..
- ZIMMERMANN, E. (1926): Das Vorkommen und die Unschädlichmachung des im Grubenwasser der linksrheinischen Zechen auftretenden Bariumsulfats.- Glückauf, Jahrg. 62, **Nr. 9**: 270-274, Essen.

mündliche Mitteilungen:

KLÖS, H (1998): Mündliche Mitteilung von Herrn Klös, Landesumweltamt Nordrhein Westfalen, Düsseldorf.

12 Anhang

Abb. A-1: Mittlere Calcium- und Natriumkonzentrationen in den Wasserproben der Lippe-Probenahmestellen über einen Zeitraum von 14 Monaten.

Abb. A-2: Mittlere Magnesium- und Kaliumkonzentrationen in den Wasserproben der Lippe-Probenahmestellen über einen Zeitraum von 14 Monaten.

Abb. A-3: Mittlere Calcium- und Natriumkonzentrationen in den Wasserproben der Fossa Eugeniana-Probenahmestellen über einen Zeitraum von 14 Monaten.

Abb. A-4: Mittlere Magnesium- und Kaliumkonzentrationen in den Wasserproben der Fossa Eugeniana-Probenahmestellen über einen Zeitraum von 14 Monaten.

es	
b n	
fde	
s au	
, bi	
iegt	
te l	
wei	
Aeß	
er N	
er d	
ehle	
er F	
Đ	
V1.	
LV.	
inkt	
ndg	
Me	
am	
nen	
prof	
serp	
was	
per	
Lil	
ıten	
uch	
ters	
un	
der	
ten .	
nda %)	
lyse er 5	
vnal unte	
ne A ns, ı	
sser liun	
eme Rad	
ษัล	
A-1	
ab.	
Ë	

Datum der	Ηd	Eh	Leitf.	Na	K	Mg	Ca	\mathbf{Sr}	Ba	226 Ra	2 0 -	Fe	S04	CI
Probenahme	1		[mS/cm]	[ppm]	[mdd]	[mdd]	[mdd]	[ppm]	[mdd]	[Bq/L]	Fehler	[ppm]	[ppm]	[g/L]
LW1														
28.07.98	7,6	454	2,2	288	15,4	16,0	149	3,3	0,48	0,012	0,0046	0,11	112	0,84
20.08.98	7,7	451	2,5	294	15,9	18,2	163	3,8	0.98	0,014	0,0056	0,46	138	0,90
86.00.70	7,4	505	2,0	251	15,2	16,0	134	3,1	0,74	0,019	0,0056	0,29	125	0,69
29.10.98	7,7	512	0,8	49	10,0	7,3	106	1,0	0,22	0,006	0,0035	0,70	58,7	0,13
21.11.98	7,9	587	1,0	99	9,5	8,8	148	1,3	0,30	0,001	0,0052	0,32	84,5	0,23
29.12.98	7,6	493	1,2	104	10,4	10,1	144	1,7	0,42	0,011	0,0047	0,39	83,2	0,30
21.01.99	7,3	292	1,1	71	11,3	10,4	147	1,5	0,32	0,003	0,0041	0,48	97,9	0,20
13.02.99	7,6	378	1,0	82	8,6	8,7	142	1,2	0,17	0,006	0,0037	$0,\!42$	81,5	0,24
30.03.99	7,6	382	1,1	66	10,7	10,4	145	1,5	0,22	0,002	0,0050	0,20	99,1	0,27
05.05.99	8,0	421	1,5	172	14,0	14,1	153	2,2	0,46	0,009	0,0045	0,37	141	0,37
Mittelwert	7,6	447,5	1,42	147,3	12,1	12,0	143,1	2,06	0,43	0,0083		0,37	102,2	0,42
Standardabw.	0,21	83,7	0,59	96,0	2,74	3,76	14,9	1,00	0,26	0,006		0,16	26,84	0,28

Tab. A-2: Gemessene Analysendaten der untersuchten Lippewasserproben am Meßpunkt LW2. (Der Fehler der Meßwerte liegt, bis auf den des ²²⁶Radiums, unter 5 %).

nums, unter 2 /0).	Eh	:	T aitf	٩N	И	Ма	£	÷.	Вa	²²⁶ D.a	ų	цо	NO2	٤
pri Eur Leut. Na [mS/cm] [ppm]	EII LEIU. Na [mS/cm] [ppm]	[mS/cm] [ppm]	[mdd]		[mqq]	[mdd]	[ppm]	[mqq]	Da [ppm]	Bq/L]	20- Fehler	ге [ppm]	POC [ppm]	
7,3 445 1,2 154	445 1,2 154	1,2 154	154		11,3	12,3	119	2,2	0,50	0,014	0,0055	0,23	92,3	0,45
8,0 366 2,1 246	366 2,1 246	2,1 246	246		17,2	17,1	156	3,4	0,90	0,022	0,0058	0,12	118	0,73
7,6 408 1,5 168	408 1,5 168	1,5 168	168		13,3	11.7	118	2,4	0,61	0,006	0,005	0,08	98,6	0,46
7,6 456 1,6 193	456 1,6 193	1,6 193	193		13,9	12,7	123	2,6	0,62	0,008	0,0043	0,27	104	0,52
7,7 434 2,1 278	434 2,1 278	2,1 278	278		14,8	15,4	145	3,1	0,52	0,010	0,0045	0,06	113	0,82
7,8 428 2,2 269	428 2,2 269	2,2 269	269		16,0	17,1	153	3,5	0,86	0,019	0,0052	0,23	132	0,81
7,5 513 2,0 240	513 2,0 240	2,0 240	240		16,7	15,2	132	3,0	0,71	0,011	0,0051	0,32	118	0,69
7,7 470 0,6 34	470 0,6 34	0,6 34	34		9,7	6,1	95	0.9	0,18	0,014	0,0046	1,2	52,3	0,09
7,9 512 1,2 79	512 1,2 79	1,2 79	79		10,4	9,2	143	1,4	0,46	0,010	0,0051	0,70	78,4	0,29
7,5 464 0,9 56	464 0,9 56	0,9 56	56		9,0	7,8	128	1,1	0,21	0,012	0,0048	0,42	77,0	0,16
7,6 477 1,0 74	477 1,0 74	1,0 74	74		9,5	9,5	134	1,5	0,36	0,007	0,0044	0,65	85,3	0,20
7,6 400 0,8 54	400 0,8 54	0,8 54	54		7,8	7,5	126	0.9	0,15	0,011	0,0043	0,45	72,7	0,16
7,2 346 1,0 70	346 1,0 70	1,0 70	70		7,6	7,2	100	0.9	0,13	n. n.	0	0,13	66,4	0,17
8,0 420 1,6 180	420 1,6 180	1,6 180	180		14,1	13,4	149	2,4	0,46	0,015	0,0047	0,11	132	0,42
7,6 438,5 1,42 149,8	438,5 1,42 149,8	1,42 149,8	149,8		12,2	11,6	130,1	2,09	0,48	0,011		0,36	95,6	0,43
0,23 48,93 0,53 87,3	48,93 0,53 87,3	0,53 87,3	87,3		3,32	3,76	18,7	0,97	0,25	0,005		0,33	24,8	0,26

les
en d
ıf d
s au
, bi
iegt
te l
wei
Aeß
er N
er d
ehle
er F
Õ
V3.
FL
ınkt
Bpu
Me
am
ben
prol
serJ
was
ppe
, T
hter
suc
nter
r u
ı de
ater).
end 5 %
alys ter :
Ani, un
ene, ums,
ness
Gen ²⁶ R:
-3: (2
. A
[at

Dotum dor	Чч	ЧЛ	Loitf	No	Λ	Ma	ې	۲. د	Βo	226 D.o.	ļ	Γv	201	ξ
Probenahme	TTd		[mS/cm]	[mdd]	[mqq]	[mdd]	[ppm]	[mqq]	[mdd]	[Bq/L]	20- Fehler	[mdd]	[mqq]	[g/L]
LW3														
31.12.97										0,123	0,016			
12.03.98	7,3	251	11,5	788	48,7	49,0	271	10,7	1,72	0,007	0,0056	2,47	182	2,6
23.04.98	7,4	237	10,5	1700	46,1	101,2	492	29,3	1,68	0,026	0,0062	1,08	166	6,7
26.05.98	7,7	213	1,1	66	11,7	15,1	139	1,3	0,58	0,011	0,001	0,93	188	0,28
11.06.98	7,4	335	5,3	844	27,2	44,7	268	16,4	2,47	0,163	0,0197	1,15	101	3,6
15.07.98	7,2	251	18,2	3190	92,2	149,8	671	54,9	2,47	0,036	0,0075	1,69	130	10,6
28.07.98	7,2	312	1,5	161	17,6	16,8	136	2,0	0,51	0,024	0,0055	0,89	190	0,47
20.08.98	7,5	232	3,3	412	19,2	27,6	206	6,4	0,57	0,058	0,0088	1,21	203	1,60
07.09.98	7,3	251	9,5	1580	45,4	74,0	442	24,3	1,95	0,083	0,0114	1,70	161	5,74
29.10.98	7,1	304	5,9	947	30,2	50,2	297	16,0	1,40	0,142	0,0175	1,31	143	3,38
21.11.98	7,5	309	5,3	656	29,6	41,9	281	10,3	1,17	0,036	0,0067	0,97	179	2,82
29.12.98	7,3	200	4,6	647	27,9	37,4	259	9,4	2,06	0,048	0,0078	0,14	172	2,55
21.01.99	7,5	334	3,3	450	21,0	29,3	204	7,4	1,74	0,043	0,0081	0,94	171	1,46
13.02.99	7,4	263	3,6	506	25,2	33,2	230	7,7	1,46	0,031	0,0057	0.93	187	1,85
30.03.99	7,5	212	4,5	651	28,7	38,6	256	10,3	1,22	0,018	0,0057	1,65	172	2,63
05.05.99	7,4	222	4,3	593	34,3	36,0	257	8,7	1,63	0,088	0,0069	1,01	220	1,88
Mittelwert	7,4	261,7	6,16	881,6	33,7	49,65	293,8	14,34	1,50	0,0586		1,20	170,8	3,21
Standardabw.	0,15	45,7	4,52	775,6	19,38	35,13	140,92	13,49	0,62	0,048		0,53	29,13	2,67

Tab. A-4: Gemessene Analysendaten der untersuchten Lippewasserproben am Meßpunkt LW4. (Der Fehler der Meßwerte liegt, bis auf den des ²²⁶Radiums, unter 5 %).

Datum der Probenahme	Ηd	Eh	Leitf. [mS/cm]	Na [ppm]	K [ppm]	Mg [ppm]	Ca [ppm]	Sr [ppm]	Ba [ppm]	²²⁶ Ra [Bq/L]	2σ- Fehler	Fe [ppm]	SO4 [ppm]	Cl [g/L]
LW4														
31.12.97										0,038	0,0074			
16.01.98										0,02	0,0063			
23.04.98	7,8	368	8,8	1444	37,5	63,8	358	18,4	0,69	0,028	0,0064	26'0	441	4,97
26.05.98	7,8	329	4,0	626	23,6	29,4	202	7,4	1,34	0,023	0,0059	0,49	257	1,81
11.06.98	7,5	376	1,7	199	14,6	13,2	128	2,9	0,83	0,009	0,0056	0,10	108	0,58
15.07.98	7,8	373	2,1	250	16,5	15,5	137	3,6	0.92	0,013	0,0053	0,14	112	0,76
28.07.98	7,8		2,3	307	15,7	16,1	146	3,7	0,74	0,019	0,0052	0,14	125	0,89
20.08.98	7,6	360	2,6	318	16,3	18,7	162	4,0	1,12	0,018	0,0053	1,12	141	0,97
07.09.98	7,2	395		286	14,4	17,1	137	3,5	0,75	0,009	0,0048	0,15	135	0,82
29.10.98	7,5	387	0,8	59,7	11,2	8,0	110	1,2	0,99	0,03	0,0066	1,80	61,4	0,16
21.11.98	7,8	448	1,1	69,5	9,5	8,7	139	1,4	0, 49	0,038	0,007	0,29	84,4	0,26
29.12.98	7,6	366	1,0	81,1	9,3	8,4	133	1,4	0,32	0,018	0,0059	0,27	79,6	$0,\!24$
21.01.99	7,6	419	1,2	97,7	10,9	10,7	139	1,8	0,37	0,013	0,0046	0,37	89,8	0,29
13.02.99	7,5	379	0,9	66,6	8,6	7,8	127	1,1	$0,\!24$	0,015	0,0042	0,38	76,7	0,19
30.03.99	7,7	413	1,3	141	11,5	11,3	144	1,9	0,34	0,011	0,0047	0,33	95,5	0,39
05.05.99	7,9	551	1,8	229	19,7	21,8	390	4,0	0.53	0,035	0,0123		146	0.57
Mittelwert	7,7	397,3	2,28	298,0	15,66	17,89	175,0	4,02	0,69	0,0211		0,51	139,41	0,92
Standardabw.	0,19	55,0	2,16	362,9	7,58	14,56	87,04	4,46	0,33	0,010		0,51	99,15	1,25

les	
en d	
ıf d	
s at	
, bi	
iegt	
tel	
wei	
Aeß	
er N	
er d	
ehle	
ĽΕ	
ē	
V5.	
t LV	
ınk	
ßpi	
M	
am	
ben	
pro	
ser	
was	
ppe	
ı Li	
hter	
Suc	
nter	
r u	
n de	
ateı	<u>.</u>
end	5 %
alys	ter
An	, un
ene	Ims
Jess	adiı
Gen	$\mathbf{\tilde{R}}$
-5:0	.4
J. A	
Tal	

CI	[g/L]		0,79	1,14	0,77	0,91	1,00	1,30	0,95	0,10	0,35	0,26	0,40	0,26	0,44	0,57	0,66	0,37
S04	[mdd]		144	157	128	120	144	148	156	53,9	91,2	82,6	99,4	80,7	0,06	150	118,1	33,40
Fe	[mdd]		1,53	2,3	0,15	0,07	0,39	0,11	0,45	0,80	0,39	0,32	0,59	0,97	0,68	0,78	0,68	0,61
2 . 6-	Fehler		0,0054	0,0056	0,0064	0,0047	0,0047	0,0052	0,0061	0,0042	0,0073	0,0048	0,0056	0,0056	0,005	0,0054		
226 Ra	[Bq/L]		0,018	0,019	0,028	0,016	0,015	0,024	0,026	0,01	0,038	0,024	0,019	0,022	0,016	0,023	0,0213	0,007
Ba	[ppm]		0,91	1,11	1,07	26'0	0,85	0,92	68'0	0,25	0,50	0,38	0,58	65'0	0,62	0,48	0,72	0,27
Sr	[ppm]		3,9	4,8	3,6	4,1	4,2	5,0	4,0	0,9	1,7	1,4	2,2	1,4	2,2	3,1	3,03	1,37
Ca	[ppm]		169	175	151	141	159	159	145	103	147	132	142	123	132	149	144,8	18,72
Mg	[mdd]		19,3	22,3	15,1	16,7	17,7	20,2	19,1	6,5	9,9	8,7	11,7	8,6	12,1	16,3	14,59	5,00
К	[ppm]		16,8	21,5	15,3	14,9	16,5	16,8	16,2	11,3	11,2	9,7	12,0	9,3	12,4	16,4	14,31	3,43
Na	[ppm]		243	400	255	287	345	405	315	36,8	98,4	82,9	129	80,6	139	247	221,22	126,31
Leitf.	[mS/cm]		2,0	2,8	2,0	2,3	2,5	3,0	2,5	0,7	1,1	1,0	1,4	1,1	1,4	2,0	1,83	0,73
Eh			386	333	374	396	361	350	244	317	417	455	222	379	196	449	348,5	79,9
Ha	T T		7,6	8,0	7,5	7,7	T,T	8,3	7,3	7,6	7,8	7,6	7,6	7,5	7,6	8,0	7,7	0,25
Datum der	Probenahme	LW5	23.04.98	26.05.98	11.06.98	15.07.98	28.07.98	20.08.98	86.00.70	29.10.98	21.11.98	29.12.98	21.01.99	13.02.99	30.03.99	05.05.99	Mittelwert	Standardabw.

Tab. A-6: Gemessene Analysendaten der untersuchten Lippewasserproben am Meßpunkt LW6. (Der Fehler der Meßwerte liegt, bis auf den des ²²⁶Radiums, unter 5 %).

	1	r	-	-	-	-	-				-						· · · · ·
CI [g/L]		0,72	1,3	0,65	0,97	66'0	1,29	0.93	0,12	0,35	0,32	0,39	0,25	0,41	0,68	0,67	0,38
SO4 [ppm]		144	159	121	122	143	148	153	57,8	104	85,0	98,1	85,1	109	154	120,15	31,41
Fe [ppm]		0,59	0,19	0,20	0,26	0,90	0,30	0,66	0,39	0,36	0,42	0.51	0,39	0,30	0,23	0,41	0,20
2σ- Fehler		0,0047	0,0057	0,0059	0,0071	0,0044	0,0045	0,0059	0,0041	0,0041	0,0053	0,005	0,0042	0,0049	0,0054		
²²⁶ Ra [Bq/L]		0,014	0,022	0,025	0,036	0,014	0,013	0,03	0,004	0,007	0,018	0,017	0,013	0,014	0,021	0,0177	0,009
Ba [ppm]		0,78	1,17	0,87	1,12	0,78	1,04	0.93	0,45	0,72	0,54	0,43	0,36	0,50	0,54	0,73	0,27
Sr [ppm]		3,4	5,2	3,2	4,2	3,8	5,3	3,9	0.8	1.9	1,6	2,1	1,3	2,0	3,5	3,01	1,41
Ca [ppm]		156	175	155	139	155	161	145	95.1	149	139	142	133	139	153	145,46	18,28
Mg [ppm]		18,0	22,4	14,3	16,9	17,4	21,0	18,8	6,7	10,4	9,2	11,4	8,5	11,7	17,3	14,58	4,93
K [ppm]		16,0	21,0	14,9	15,0	17,2	17,8	21,6	15,0	11,6	9,8	12,0	10,2	12,0	17,7	15,14	3,72
Na [ppm]		215	423	225	309	332	427	347	42,4	106	101	129	86,9	143	288	226,62	128,56
Leitf. [mS/cm]		1,9	3,0	1,9	2,4	2,5	3,1	2,6	0,7	1,3	1,2	1,4	1,0	1,4	2,1	1,88	0,76
Eh		378	330	365	402	351	357	407	347	458	471	266	318	334	409	370,9	55,1
Ηd		7,6	7,8	7,6	7,5	7,6	L'L	7,4	7,3	7,8	7,4	7,6	7,5	7,7	8,3	7,6	0,24
Datum der Probenahme	LW6	23.04.98	26.05.98	11.06.98	15.07.98	28.07.98	20.08.98	07.09.98	29.10.98	21.11.98	29.12.98	21.01.99	13.02.99	30.03.99	05.05.99	Mittelwert	Standardabw.

<u>A-8</u>

Der Fehler der Meßwerte liegt, bis auf den des	
en Lippewasserproben am Meßpunkt LW7. (D	
ab. A-7: Gemessene Analysendaten der untersucht	²²⁶ Radiums, unter 5 %).

Datum der	μd	Eh	Leitf.	Na	K	\mathbf{Mg}	Ca	\mathbf{Sr}	Ba	226 Ra	2 σ -	Fe	S04	CI
Probenahme	I		[mS/cm]	[ppm]	[mdd]	[ppm]	[ppm]	[ppm]	[mdd]	[Bq/L]	Fehler	[ppm]	[ppm]	[g/L]
LW7														
23.04.98	7,6	387	1,9	219	16,5	17,8	157	3,0	0,68	0,005	0,0041	0,45	150	0,75
26.05.98	7,7	379	3,1	434	21,5	23,6	184	5,1	1,03	0,013	0,0046	0,30	170	1,33
11.06.98	7,6	368	1,9	212	15,1	14,1	126	3,1	0,87	0,023	0,0061	0,27	124	0,75
15.07.98	7,5	403	2,5	318	16,2	17,8	146	4,1	1,10	0,023	0,0051	0,45	128	0,98
28.07.98	7,7	372	2,7	380	18,5	19,6	168	4,0	0,82	0,011	0,0056	1,62	151	1,01
20.08.98	7,7	364	3,2	459	18,8	22,4	170	5,3	1,16	0,020	0,0054	0,84	158	1,43
07.09.98	7,4	275	2,6	372	16,8	19,5	152	3,8	0,83	0,026	0,0053	0,30	152	0,99
29.10.98	7,4	422	0,6	38,9	14,4	6,9	89,0	0,6	0,17	0,002	0,0035	0,74	89,0	0,09
21.11.98	7,8	420	1,3	105	11,4	10,3	149	1,6	0,43	0,021	0,0059	0,36	103	0,37
29.12.98	7,6	450	1,1	108	10,2	9,1	139	1.5	0.52	0,033	0,0062	0.51	89,7	0,32
21.01.99	7,6	432	1,4	138	13,3	12,2	145	2,0	0,39	0,017	0,0048	0,48	115	0,41
13.02.99	7,4	317	1,1	92,0	10,3	9,2	135	1,3	0,28	0,015	0,0047	0,41	98,5	0,27
30.03.99	7,7	347	1,3	140	13,0	12,2	147	1,9	0,45	0,016	0,0054	0,37	120	$0,\!42$
05.05.99	8,5	362	2,2	296	18,7	18,0	166	3,3	0,48	0,020	0,0055	0,30	157	0,70
Mittelwert	7,7	378,4	1,93	236,43	15,33	15,19	148,35	2,89	0,66	0,0175		0,53	128,99	0,70
Standardabw.	0,27	46,73	0,81	138,85	3,45	5,32	22,78	1,48	0,32	0,008		0,35	27,49	0,41

Tab. A-8: Gemessene Analysendaten der untersuchten Lippewasserproben am Meßpunkt LW8. (Der Fehler der Meßwerte liegt, bis auf den des ²²⁶Radiums, unter 5 %).

									_			_	_	_	_		
Cl [g/L]		0,85	1,28	0,81	0.93	1,04	1,38	0,99	0,14	0,35	0,29	0,44	0,24	0.52	0,68	0,71	0,39
SO4 [ppm]		140	164	116	130	155	153	147	58,0	91,7	86,8	100	90,0	112	161	121,83	33,11
Fe [ppm]		2,20	0,30	0,30	0,15	0,29	0,15	0,28	1,01	0,44	0,46	0,39	0,44	0,26	0,35	0.50	0,53
2σ- Fehler		0,0075	0,0066	0,0055	0,0056	0,0058	0,0052	0,0055	0,0054	0,0048	0,0052	0,0051	0,0053	0,006	0,0056		
²²⁶ Ra [Bq/L]		0,036	0,034	0,014	0,023	0,017	0,019	0,018	0,021	0,014	0,019	0,017	0,012	0,027	0,019	0,0207	0,007
Ba [ppm]		0,86	1,04	0,86	0,89	0,70	0,86	0,83	0,68	0,37	0,44	0.52	0,27	0.53	0,49	0,67	0,23
Sr [ppm]		3,3	5,0	3,3	3,8	4,0	5,0	3,7	1,0	1,4	1,4	2,1	1,2	2,2	3,2	2,90	1,37
Ca [ppm]		163	178	159	142	166	161	148	102	142	137	147	130	148	158	148,73	18, 49
Mg [ppm]		19,6	22,2	15,4	17,1	20,0	21,9	18,6	7,0	9,7	8,6	12,5	8,8	13,1	18,3	15,20	5,23
K [ppm]		17,8	20,7	15,8	15,2	18,1	18,0	16,4	11,0	11,1	9,8	12,9	9,9	13,3	19,5	14,96	3,66
Na [ppm]		252	422	264	293	407	439	356	48,5	98,0	92,9	146	80,5	169	287	239,48	135,20
Leitf. [mS/cm]		2,0	3,0	2,1	2,3	2,8	3,1	2,5	0,7	1,2	1,1	1,5		1,5	2,2	2,00	0,76
Eh		393	333	368	485	362	375	371	352	442	256	365	315	385	342	367,4	53,84
Hd		7,5	7,7	7,6	7,4	7,8	7,6	7,4	7,6	7,8	7,6	7,6	7,3	7,6	8,3	7,6	0,24
Datum der Probenahme	LW8	23.04.98	26.05.98	11.06.98	15.07.98	28.07.98	20.08.98	07.09.98	29.10.98	21.11.98	29.12.98	21.01.99	13.02.99	30.03.99	05.05.99	Mittelwert	Standardabw.

auf den des	
erte liegt, bis	
der Meßw	
Der Fehler	
lkt LW9. (1	
m Meßpun	
erproben a	
Lippewass	
tersuchten	
iten der un).	
Analysenda unter 5 %	
emessene 1 ¹⁶ Radiums,	
Fab. A-9: G	

								1									
C	[g/L]		0,90	0,74	1,09	1,00	1,35	1,09	0,15	0,35	0,30	0,40	0,29	0,49	0,72	0,68	0,38
S04	[mdd]		137	113	133	148	153	149	60,0	89,7	82,1	92.1	89,8	110	150	115,79	31,06
Fe	[mdd]		0.50	0,41	0,19	0,24	0,16	0,26	0,75	0,40	0,48	0,36	0.52	0,26	0,41	0,38	0,16
2 0 -	Fehler		0,0051	0,0046	0,0056	0,0048	0,0046	0,0069	0,0055	0,0048	0,0047	0,0051	0,0049	0,0047	0,0046		
²²⁶ Ra	[Bq/L]		0,002	0,013	0,019	0,013	0,017	0,037	0,022	0,017	0,017	0,018	0,022	0,019	0,015	0,0178	0,008
Ba	[mdd]		0,68	0,84	0,86	0,73	0,84	0,83	0,30	0,41	0,39	0,48	0,38	0,51	0,53	09'0	$0,\!20$
\mathbf{Sr}	[mdd]		3,2	3,1	3,7	4,2	5,2	3,8	1,0	1,5	1,4	1,9	1,3	2,1	3,4	2,74	1,31
Ca	[ppm]		159	153	139	169	158	149	102	143	135	142	132	147	161	145,28	16,95
Mg	[mdd]		19,1	14,9	16,7	20,2	21,0	18,8	7,3	9,9	8,9	11,7	9,9	12,6	19,7	14,66	4,86
K	[ppm]		17,3	15,3	15,4	18.5	18,2	23,4	11,2	12,7	9,7	12,3	11,0	13,8	18,8	15,20	3,92
Na	[ppm]		238	244	293	405	427	367	54,9	99,5	97,7	129	99,2	158	301	223,92	127,38
Leitf.	[mS/cm]		1,9	2,0	2,3	2,9	3,1	2,6	0,8	1,2	1,1	1,4	1,0	1,4	2,2	1,83	0,75
Eh			393	394	458	367	231	369	461	442	393	367	413	377	480	395,8	62,95
Hq			7,6	7,6	7,2	7,9	7,8	7,5	7,5	7,8	7,6	7,6	7,3	7,5	8,4	7,6	0,30
Datum der	Probenahme	6M1	23.04.98	11.06.98	15.07.98	28.07.98	20.08.98	86.00.70	29.10.98	21.11.98	29.12.98	21.01.99	13.02.99	30.03.99	05.05.99	Mittelwert	Standardabw.

Tab. A-10: Gemessene Analysendaten der untersuchten Lippewasserproben am Meßpunkt LW10 . (Der Fehler der Meßwerte liegt, bis auf den des ²²⁶Radiums, unter 5 %).

	6cmmm		•(• /											
Datum der	Hq	Eh	Leitf.	Na	K	Mg	Ca	\mathbf{Sr}	Ba	226 Ra	2 0 -	Fe	S04	C
Probenahme	1		[mS/cm]	[ppm]	[mdd]	[mdd]	[ppm]	[ppm]	[ppm]	[Bq/L]	Fehler	[ppm]	[ppm]	[g/L]
LW10														
16.01.98										0,011	0,0047			
19.03.98	7,6	439	1,1	150	10,5	12,0	149	1,8	0,50	0,022	0,0056	0,69	7,99	0,42
22.04.98	7,9	435	1,7	206	16,2	17,2	153	2,9	0,67	0,014	0,0051	0,23	134	0,70
26.05.98	7,9	380	2,6	366	22,3	21,9	170	4,4	06'0	0,024	0,0056	0,18	159	1,13
11.06.98	7,6	398	1,9	234	15,4	13,9	124	3,0	0,79	0,022	0,0063	0,37	113	0,74
15.07.98	7,1	461	2,2	277	15,4	16,2	136	3,6	0,83	0,023	0,0054	0,39	130	0,88
20.08.98	7,9	402	3,1	422	18,3	21,6	164	5,0	0,77	0,023	0,0055	0,13	152	1,34
07.09.98	7,6	381	2,4	340	15,8	18,1	147	3,6	0,73	0,019	0,0043	0,19	149	0,94
29.10.98	7,5	295	0,8	51,4	10,9	7,2	102	1,0	0,40	0,02	0,0047	0,91	61,0	0,15
21.11.98	7,8	434	1,2	6'26	10,4	9,5	142	1,7	0,68	0,008	0,0043	0,34	90,1	0,33
29.12.98	7,6	417	1,1	92,1	9,7	8,7	133	1,4	0,50	0,015	0,0046	0,69	80,5	0,30
21.01.99	7,5	418	1,2	108	11,6	10.9	139	1,7	0,48	0,015	0,0046	0,36	92,3	0,33
13.02.99	7,6	387	1,1	96,9	10,4	9,8	131	1,4	0,38	0,01	0,0039	0,40	89,2	0,29
30.03.99	7,7	313	1,3	149	12,2	12,2	146	2,0	0,51	0,021	0,0051	0,36	107	0,45
05.05.99	8,5	463	2,2	322	18,8	19,4	156	3,6	0,55	0,018	0,0050	0,23	151	0,76
Mittelwert	7,7	401,6	1,70	207,96	14,12	14,19	142,11	2,647	0,621	0,0177		0,392	114,77	0,62
Standardabw.	0,31	49,38	0,71	119,63	3,89	4,88	17,20	1,25	0,17	0,005		0,22	30,98	0,36

des
den
auf
t, bis
liegt
erte
leßw
er M
ler d
Fehl
Der
11.(
ΓW
unkt
leßpi
m
en a
prob
ISSEL
рема
Lipl
hten
rsuc
unte
der 1
aten).
send: 5 %
naly: nter
ne A: ns, u
esse
Gem ²⁶ Ra
11: (
- A -
_

-			-						-	-	-				
CI [^{2/1}]	[J]	0,38	0,72	1,17	0,75	0,88	1,36	0,15	0,30	0,30	0,21	0,45	0.58	0,60	0,38
S04	ſındd1	96,7	133	159	117	131	153	62,4	80,7	85,6	75,1	106	127	110,53	31,23
Fe	ſmddl	0,43	0,41	0,16	0,24	0,12	0,12	1,72	0,54	0,14	0,26	0,28	0,40	0,40	0,44
26- Foblor	r enter	0,0066	0,0058	0,0062	0,0055	0,0057	0,0062	0,0045	0,0052	0,0068	0,004	0,0051	0,0043		
²²⁶ Ra	[ˈˈɪ/hɑ]	0,019	0,020	0,024	0,025	0,019	0,025	0,007	0,016	0,038	0,016	0,019	0,014	0,0202	0,008
Ba	[mdd]	0,49	0,68	68'0	0,74	$0'_{,0}$	LL'0	0,83	0,45	0,35	0,23	0.50	0,46	0,59	0,21
Sr	լուղ	1,7	2,9	4,3	3,2	3,6	5,0	1,1	1,4	1,7	1,1	2,0	2,9	2,57	1,30
Ca	լուզվ	147	152	169	147	136	159	104	132	130	118	140	138	139,24	17,49
Mg	ſındd1	11,6	16,9	22,2	14,5	15,9	21,5	7,5	8,7	10,2	8,8	12,5	17,0	13,95	4,90
K	[mdd]	10,3	16,2	23,1	15,7	18,6	17,3	11,5	9,7	12,0	9,4	12,2	16,0	14,33	4,19
Na	ſmddl	135	205	371	244	277	443	54,6	94,3	104	72,5	147	234	198,48	121,38
Leitf.		1,0	1,8	2,6	2,0	2,2	2,9	0,8	1,1	0,6	0,9	1,4	1,8	1,57	0,75
Еh		449	399	353	376	744	368	248	464	355	398	193	468	376,3	84,3
μd		7,6	7,3	$0^{\circ}8$	9'L	0'L	8,0	7,2	7,5	7,3	7,8	7,8	8,5	7,6	0,42
Datum der Drohonohmo	LW11	19.03.98	22.04.98	26.05.98	11.06.98	15.07.98	20.08.98	29.10.98	29.12.98	21.01.99	13.02.99	30.03.99	05.05.99	Mittelwert	Standardabw.

	au		
•			
1	2		
:	Ĩ		
	Ele		
To C	A LE		
7	5		
PIY			
Ē	4		
Ě	Ē		
5	i		
1	Y		
	Ind		
je je			
2			
5	ä		
40,4	ne.		
1	<u>P</u>		
	, No.		
X O C			
je g	2-2		
	S.		
2020	j G G G G G G		
Ē	2		
0000	222		
Ē			
404	e		
400			
	Ē		
		_	
10.0	E	6	2
2		ų	0
405	nar	111	
	Sell	5	4
	ALV.		
~	ł	100	
	elle	226n	4
2000	COD		
	Ē	100	
ζ	2	7	Ĵ
,	11		
•	F I		
Ē	2		

Datum der	Ηd	Eh	Leitf.	Na	К	Mg	Ca	\mathbf{Sr}	Ba	226 Ra	2 σ-	Fe	S04	CI
Probenahme			[mS/cm]	[mdd]	[mdd]	[ppm]	[mdd]	[ppm]	[mdd]	[Bq/L]	Fehler	[mdd]	[mdd]	[g/L]
FW1														
29.10.98	7,6	580	3,8	598	33,4	32,2	154	1,5	0,25	0,0190	0,0060	0,30	198	1,94
21.11.98	7,6	425	2,9	410	22,4	26,8	169	1,1	0,46	0,0009	0,004	9,6	164	1,31
29.12.98	7,3	437	2,8	406	23,0	25,7	140	1,1	0,13	0	0	0,33	138	1,29
21.01.99	7,4	421	2,0	251	19,3	21,6	137	0,8	0,19	0,007	0,004	0,46	179	0,67
13.02.99	7,7	354	2,5	362	24,1	24,9	145	1,0	0,14	0,010	0,006	0,28	164	1,13
30.03.99	7,2	334	3,1	495	26,3	28,8	151	1,2	0,35	0,018	0,005	0,77	180	1,47
05.05.99	7,7	315	4,2	632	31,8	32,9	161	1,6	0,15	0,010	0,004	0,21	192	1,85
Mittelwert	7,5	409,4	3,1	450,5	25,8	27,6	151,0	1,19	0,24	0,009		1,70	173,53	1,38
Standardabw.	0,20	89,36	0,74	134,06	5,14	4,05	11,38	0,31	0,13	0,01		3,47	20,23	0,43

auf	
, bis	
liegt)
verte	
Meßv	
der N	
hler	
er Fe	
6.	,
FW	
unkt	
Ießp	•
am N	
ben	
erpro	•
Vass	
ana-V	
geni)
a Eu	
Foss	
hten	
ersuc	
. unte	
n der	r 5 %
date	untei
lysen	ims.
Ana	Sadiu
sene	S 226
emes	en de
3: G	d£
. A-1	
Tab	

ncm		ı (dili bila	10/ c 12111											
Datum der	Hq	Еh	Leitf.	Na	К	Mg	Ca	\mathbf{Sr}	Ba	226 Ra	2 σ-	Fe	S04	CI
Probenahme			[mS/cm]	[mdd]	[mdd]	[mdd]	[mdd]	[mdd]	[mdd]	[Bq/L]	Fehler	[ppm]	[ppm]	[g/L]
FW2														
18.03.98	7,1	386	60,0	10890	289	326	757	28,1	2,04	0,0672	0,007	1,45	698	25,5
29.04.98	7,5	403	55,9	10230	267	244	513	9,4	0,847	0,0373	0,004	0,70	672	22,0
25.05.98	7,3	409	71,0	11880	420	431	939	38,9	3,517	0,024	0,002	0,38	212	26,6
11.06.98	7,1	390	45,2	3593	253	294	660	24,9	3,407	0,100	0,013	0,05	260	23,1
15.07.98	7,4	416	31,1	3181	138	124	323	6,4	1,411	0,057	0,009	0,14	525	6,01
20.08.98	7,7	346	18,5	4025	125	101	306	4,4	0,4794	0,132	0,016	0,33	561	12,8
07.09.98	7,5	374	29,0	5325	163	128	340	5,6	0,512	0,123	0,015	0,33	502	12,36
29.10.98	7,6	284	31,1	4890	154	141	372	7,6	1,031	0,129	0,0160	0.96	486	12,36
21.11.98	7,2	455	55,2	8213	345	305	707	21,5	1,824	0,029	0,005	0,13	252	32,1
21.01.99	7,0	398	15,0	2590	84,7	84,5	282	5,8	0,526	0,029	0,006	0,20	298	8,19
13.02.99	7,1	327	54,7	8876	339	338	76,4	31,1	1,157	0,023	0,011	0,30	272	24,0
30.03.99	6,7	378	14,4	2962	82,8	89,1	290	6,5	0,557	0,066	0,009	0,23	320	7,52
05.05.99	7,6	321	29,5	4216	129	126	404	11,2	0,729	0,082	0,011	0,27	355	7,47
Mittelwert:	7,3	375,9	39,3	6221	214,6	210,2	459,2	15,49	1,387	0,069		0,42	416,4	16,92
Standardabw.	0,29	45,86	18,74	3320,1	110,34	116,89	241,01	11,81	1,05	0,04		$0,\!40$	165,96	8,87

Ę	
au	
bis	
ët.	ò
lie	
rte	
we	
Ieß	
L N	
de	
ller	
Feh	
er]	
ē	,
V3.	
FV	
kt	
unc	
eßt	•
Ž	
am	
en	
Ř	
rpr	•
sse	
Wa	
la-	
ian	
gen	h
Eu	•
Sa	
Fos	
[us	
hte	
suc	
ter	
un	<i></i>
ler	%
en e	н С
late	nte
enc	s. u
lvs	, m
v na	libi
e A	$\mathbf{\tilde{R}}_{a}$
sen	55
Jes	de
jen	len
 .::	0
-14	
Α.	
Lab	

CI	[g/L]				8,145	5,29	11,06	8,25	2,63	5,46	4,80	2,02	5,22	2,53	1,43	4,09	1,69	3,12	4,70	2,84
SO4	[ppm]				353	252	271	203	218	333	253	199	167	166	166	169	169	217	224,02	61,72
Fe	[mdd]				1,01	0,35	0,66	0,27	0,57	0,96	0,47	0,43	0,20	0,44	1,46	0,35	0,23	0,35	0,553	0,36
2 σ-	Fehler		0,007	0,007	0	0,0019	0,0007	0,008	0,007	0,008	0,007	0,0050	0,0130	0,006	0,004	0,006	0,005	0,007		
226 Ra	[Bq/L]		0,043	0,037	0	0,019	0,007	0,036	0,036	0,045	0,032	0,013	260'0	0,025	0,013	0,027	0,019	0,035	0,030	0,02
Ba	[ppm]				1,36	0,38	2,47	1,00	0,43	0.54	0,49	0.30	1,52	0,25	0,27	0.58	0,33	0,30	0,729	0,65
\mathbf{Sr}	[ppm]				7,6	2,5	10,4	7,1	1,6	3,2	2,8	1,4	4,8	1,6	1,3	4,0	1,4	2,9	3,75	2,78
Са	[mdd]				316	210	335	266	146	210	184	152	237	162	148	208	153	193	208,5	61, 10
$\mathbf{g}\mathbf{M}$	[mdd]				113,3	58,0	135	93,4	37,0	64,4	56,2	29,9	63,4	35,1	15,7	54,6	28,5	44,1	59,2	33,87
К	[mdd]				103.5	49,0	123	83,3	34,3	76,3	59,0	27,5	56,5	31,8	24,7	47,7	26,4	42,2	56,1	30,31
Na	[ppm]				3076	3510	3051	1480	£69L	1718	1416	712	1381	<i>L</i> 6 <i>L</i>	515	1368	592	1129	2031,3	1890,6
Leitf.	[mS/cm]				21,0	9,1	16,7	12,1	5,1	9,2	8,6	4,3	9,4	4,8	3,3	7,6	3,5	6,6	8,6	5,10
Еh					n. b.	400	377	398	425	344	371	393	231	296	285	389	252	324	345	62,09
Hq					7,4	2°L	7,4	7,3	0'L	7,4	7,4	2°L	2°L	7,4	7,1	7,4	7,4	7,4	7,4	0,14
Datum der	Probenahme	FW3	18.08.97	11.11.97	18.03.98	29.04.98	25.05.98	11.06.98	15.07.98	20.08.98	07.09.98	29.10.98	21.11.98	29.12.98	21.01.99	13.02.99	30.03.99	05.05.99	Mittelwert:	Standardabw.

verte liegt, bis auf	
Der Fehler der Meßv	
n Meßpunkt FW4. (]	
na-Wasserproben ar	
hten Fossa Eugenia	
daten der untersuc	ullter o 70).
remessene Analyser	ell des Naululls ,
Tab. A-15: G	5

				_										
Datum der	Ηd	Eh	Leitf.	Na	K	Mg	Ca	\mathbf{Sr}	Ba	226 Ra	2 σ-	Fe	S04	CI
Probenahme			[mS/cm]	[ppm]	[mdd]	[ppm]	[mdd]	[ppm]	[mdd]	[Bq/L]	Fehler	[ppm]	[mdd]	[g/L]
FW4														
13.11.97										0,042	0,007			
29.04.98	7,7	400	8,3	1487	47,9	65,7	223	3,5	0,84	0,067	0,01	0,27	241	5,13
25.05.98	7,6	407	10,2	1875	63,8	74,6	249	5,9	2,27	0,099	0,013	0,45	228	6, 19
11.06.98	7,6	409	5,0	834,2	31,3	42,2	179	2,6	0,47	0,033	0,007	0,23	269	2,78
15.07.98	7,0	434	6,0	938	34,1	46,6	181	3,2	1,32	0,042	0,008	0,22	208	3,19
20.08.98	7,5	352	9,6	1814	62,9	74,1	249	5,7	1,57	0,065	0,01	0,20	300	5,84
07.09.98	7,7	368	5,7	1097	35,7	39,5	166	2,1	0,46	0,029	0,006	0,23	235	3,06
29.10.98	7,5	381	3,1	468	20,2	25,9	145	1,2	0,33	0,021	0,0060	0,43	206	1,48
21.11.98	7,7	419	5,6	823	34,4	39,9	188	2,6	0,67	0,029	0,005	0,21	192	2,91
29.12.98	7,5	348	2,5	365	21,1	23,8	145	0,9	0,24	0,015	0,005	0,37	170	1,13
21.01.99	7,3	387	3,7	518	25,7	29,2	155	1,4	0,25	0,023	0,006	0,40	185	1,70
13.02.99	7,5	365	5,3	882	36,8	42,7	192	2,7	0,37	0,024	0,006	0,22	197	2,82
30.03.99	7,7	424	3,3	532	27,0	28,0	158	1,3	0,25	0,024	0,006	0,39	197	1,54
05.05.99	7,2	299	2,9	461	23,2	25,2	156	1,3	0,19	0,013	0,004	0,19	217	1,13
Mittelwert:	7,5	384,1	5,5	930,3	35,9	42,9	183,4	2,64	0,711	0,038		0,292	218,96	2,99
Standardabw.	0,22	37,54	2,53	509,64	14,89	18,05	36,27	1,62	0,64	0,02		0,10	35,98	1,73

-	
2	
8	
bi	
ť	
ieg	
еľ	
Ť	
WE	
eß	
Σ	
er	
Ð	
ler	
eh	
Ŧ.	
)er	
Ξ	
ы.	
ž	
t F	
лk	
E	
B	
Чe	
ľ	
an	
n e	
ğ	
ž	
lia	
SSE	
Va	
2	
na	
nia	
Je	
Ĩ	
E	
ŝ	
Foss	
n Foss	
iten Foss	
ichten Foss	
suchten Foss	
tersuchten Foss	
untersuchten Foss	
er untersuchten Foss	%).
der untersuchten Foss	5 %).
en der untersuchten Foss	er 5 %).
aten der untersuchten Foss	nter 5 %).
ndaten der untersuchten Foss	unter 5 %).
sendaten der untersuchten Foss	ns. unter 5 %).
alysendaten der untersuchten Foss	ums. unter 5 %).
nalysendaten der untersuchten Foss	diums. unter 5 %).
Analysendaten der untersuchten Foss	Radiums. unter 5 %).
ne Analysendaten der untersuchten Foss	²²⁶ Radiums. unter 5 %).
ssene Analysendaten der untersuchten Foss	ss ²²⁶ Radiums, unter 5 %).
aessene Analysendaten der untersuchten Foss	des ²²⁶ Radiums, unter 5 %).
emessene Analysendaten der untersuchten Foss	en des ²²⁶ Radiums, unter 5 %).
Gemessene Analysendaten der untersuchten Foss	den des ²²⁶ Radiums. unter 5 %).
6: Gemessene Analysendaten der untersuchten Foss	den des ²²⁶ Radiums, unter 5 %).
1.16: Gemessene Analysendaten der untersuchten Foss	den des ²²⁶ Radiums. unter 5 %).
. A-16: Gemessene Analysendaten der untersuchten Foss	den des ²²⁶ Radiums. unter 5 %).
ab. A-16: Gemessene Analysendaten der untersuchten Foss	den des ²²⁶ Radiums. unter 5 %).

Datum der	Hq	Eh	Leitf.	Na	К	Mg	Ca	\mathbf{Sr}	Ba	226 Ra	2 σ -	Fe	SO4	CI
Probenahme	1		[mS/cm]	[ppm]	[mdd]	[mdd]	[mdd]	[ppm]	[mdd]	[Bq/L]	Fehler	[ppm]	[ppm]	[g/L]
FW5														
05.09.97										0,035	0,007			
11.11.97										0,048	0,008			
18.03.98	7,6	422	4,7	1178	37,9	47,1	192	2,8	0,65	0	0	2,55	239	3,17
18.03.98	7,6	417	4,5	1110	35,7	45,6	187	2,6	0,78	0,0133	0,0013	0,36	219	2,97
29.04.98	7,6	398	9,1	1504	55,8	77,0	227	4,1	1,03	0,073	0,01	0,23	251	5,55
25.05.98	7,6	355	10,6	1842	70,8	82,2	257	6,4	2,06	0,094	0,013	0,30	248	6,34
11.06.98	7,6	375	6,6	1126	40,5	51,7	196	3,4	0,58	0,033	0,006	0,24	260	3,80
15.07.98	7,1	422	9,0	1508	53,7	73,1	135	5,6	1,77	0,043	0,007	0,24	241	5,18
20.08.98	7,6	356	10,5	2076	71,7	84,5	268	6,6	1,48	0,055	0,009	0,34	253	6,61
07.09.98	7,7	371	6,3	1136	41,5	47,2	186	3,7	1,20	0,034	0,007	0,31	226	3,32
29.10.98	7,6	434	2,5	348	18,2	20,9	119	1,0	0,25	0,007	0,0050	0,33	161	1,19
21.11.98	7,6	242	4,3	591	31,9	32,9	163	1,6	0,38	0,027	0,006	0,12	187	2,19
29.12.98	7,2	449	2,1	308	19,7	23,1	145	1,0	0,40	0,018	0,005	0.57	171	0.88
21.01.99	7,2	386	4,7	708	31,0	37,7	172	2,3	0,46	0,028	0,006	0,81	174	2,23
13.02.99	7,4	388	2,9	454,7	27	25,6	148	1,2	0,15	0,017	0,005	0,19	164	1,37
30.03.99	7,8	245	4,82	715	35,1	39,7	187	2,5	0,71	0,026	0,006	0,13	191	2,33
05.05.99	7,3	267	3,99	612	28,4	31,7	171	1,9	0,24	0,028	0,006	0,20	225	1,71
Mittelwert:	7,5	368,5	5,8	1014,4	39,9	48,0	183,6	3,115	0,808	0,034		0,461	213,97	3,26
Standardabw.	0,21	66,73	2,81	543,83	16,43	21,58	42,04	1,85	0,58	0,02		0,60	35,62	1,87

Gauß Krüger	Koordinaten	Ortsdosisleistung	Standort	Bemerkung
r	h	[nS/h]		
²⁵ 85504	⁵⁷ 32650	60	HB	Lage wie LB1
		60	HU	
²⁵ 80926	⁵⁷ 33037	60	U	Lage wie LS2
²⁵ 76760	⁵⁷ 30543	180	U	Lage wie LW4
²⁵ 75391	⁵⁷ 2991	180	HB	Lage wie LB2
		160	HU	
²⁵ 75355	⁵⁷ 29950	250	U	
²⁵ 75250	⁵⁷ 29900	300	U	
²⁵ 75128	⁵⁷ 29940	80	HU	unbelastetes Nebengewässer
²⁵ 70696	⁵⁷ 26680	200	U	
²⁵ 67218	⁵⁷ 26256	250	U	Lage wie LB3, ohne Bewuchs
		300	U	mit Bewuchs
		250	HB	1 m Entfernung zum Ufer
		200	HB	2 m Entfernung zum Ufer
		180	HB	4 m Entfernung zum Ufer
		160	НВ	8 m Entfernung zum Ufer
		140	HU	20 m Entfernung zum Ufer
²⁵ 67169	⁵⁷ 26270	250	U	
		160	HB	
		60	HU	
2562935	5726120	250	U	
		180	HB	
		110	HU	
²⁵ 61111	⁵⁷ 26702	250	U	
²⁵ 58263	⁵⁷ 26763	180	U	
		60	HU	
²⁵ 57033	⁵⁷ 26439	200	U	
²⁵ 54992	⁵⁷ 26126	180	U	
²⁵ 52789	⁵⁷ 24825	200	U	
²⁵ 51281	⁵⁷ 23893	250	U	
²⁵ 44717	⁵⁷ 23864	140	U	
²⁵ 44750	⁵⁷ 24026	200	U	Lage wie LW11
²⁵ 44789	⁵⁷ 24047	190	U	Lage wie LW10
		140	HB	
		120	HU	

Tab. A-17: Gemessene Ortsdosisleistungen und dazugehörige Gauß Krüger Koordinaten an der Lippe.

	11001 41	aten an att sipper		
Gauß Krügen	Koordinaten	Ortsdosisleistung	Standort	Bemerkung
R	h	[nS/h]		
²⁵ 44724	⁵⁷ 24165	120	U	
²⁵ 43242	⁵⁷ 23559	200	U	
²⁵ 42699	⁵⁷ 23491	350	U	
²⁵ 42087	⁵⁷ 23974	250	U	
		160	HB	
		90	HU	

Fortsetzung Tab. A-17: Gemessene Ortsdosisleistungen und dazugehörige Gauß Krüger Koordinaten an der Lippe.

Tab. A-18: Gemessene Ortsdosisleistungen und dazugehörige Gauß Krüger Koordinaten an dem Sickingmühlenbach.

Gauß Krüger	Koordinaten	Ortsdosisleistung	Standort	Bemerkung
R	h	[nS/h]		
²⁵ 77787	⁵⁷ 27999	6000	S	
²⁵ 77249	⁵⁷ 29392	600	HB	
²⁵ 77249	⁵⁷ 29412	600	HB	
²⁵ 77271	⁵⁷ 29488	1400	S	Lage wie LS5
		850	U	
		700	HB	1 m Entfernung vom Ufer, Deichkante
		600	HB	1,5 m Entfernung vom Ufer
		300	HU	3 m Entfernung vom Ufer
		200	HU	5 m Entfernung vom Ufer
		160	HU	8 m Entfernung vom Ufer, Beginn eines Weges zur Straße
		120	HU	13 m Entfernung vom Ufer
		100	HU	18 m Entfernung vom Ufer
		80	HU	23 m Entfernung vom Ufer
		100	HU	30 m Entfernung vom Ufer, Straße
²⁵ 76916	⁵⁷ 30454	500	U	
		300	HB	
²⁵ 76875	⁵⁷ 30478	1700	S	Lage wie LS6
²⁵ 76833	⁵⁷ 30516	250	HB	

Gauß Krüger	Koordinaten	Ortsdosisleistung	Standort	Bemerkung
r	h	[nS/h]		
²⁵ 38570	⁵⁷ 09700	1200	U	Absätze im Einleitungsbauwerk
²⁵ 39143	⁵⁷ 10264	3200	U	
		850	HB	
²⁵ 39163	⁵⁷ 10250	750	HB	
²⁵ 39173	⁵⁷ 10256	400	U	
		200	HB	
		120	HU	
²⁵ 39171	⁵⁷ 10296	600	U	Lage wie FB1
		300	HB	
		80	HU	
²⁵ 40687	⁵⁷ 11659	200	U	
		65	HB	
		75	HU	
²⁵ 40117	⁵⁷ 11165	200	U	
²⁵ 40785	⁵⁷ 11733	160	U	
		75	HU	
²⁵ 41217	⁵⁷ 12181	170	U	
²⁵ 41344	⁵⁷ 12501	130	U	
²⁵ 41517	⁵⁷ 12909	160	U	
²⁵ 41584	⁵⁷ 13220	190	U	
²⁵ 41176	⁵⁷ 13530	300	U	
		110	HB	
		110	HU	
²⁵ 41163	⁵⁷ 13600	500	U	
		300	HB	
		110	HU	
²⁵ 41026	⁵⁷ 13779	600	U	
		350	HB	
		110	HU	
²⁵ 40886	⁵⁷ 14009	500	U	
		300	HB	
		110	HU	
²⁵ 40775	⁵⁷ 14640	200	U	
²⁵ 40781	⁵⁷ 14725	200	U	
²⁵ 40796	⁵⁷ 14746	200	U	
²⁵ 40870	⁵⁷ 14769	500	U	
		130	HB	
		110	HU	
²⁵ 40809	⁵⁷ 14812	120	U	

Tab. A-19: Gemessene Ortsdosisleistungen und dazugehörige Gauß Krüger Koordinaten an der Fossa Eugeniana.

Gauß Krüger	r Koordinaten	Ortsdosisleistung	Standort	Bemerkung
R	Н	[nS/h]		
²⁵ 40822	⁵⁷ 14852	300	U	
		250	HB	
		160	HU	
²⁵ 40849	⁵⁷ 14908	400	U	mit Bewuchs
		350	U	ohne Bewuchs
²⁵ 40851	⁵⁷ 14988	300	U	Lage wie FB2
		160	HB	2 m Entfernung vom Ufer
		140	HB	4 m Entfernung vom Ufer
		120	HB	6 m Entfernung vom Ufer
		100	HB	12 m Entfernung vom Ufer
		80	HU	52 m Entfernung vom Ufer
²⁵ 40955	⁵⁷ 15263	350	U	
		120	HB	
		80	HU	
²⁵ 41192	⁵⁷ 15588	140	U	
		140	HB	
		100	HU	
²⁵ 41157	⁵⁷ 15822	130	U	
²⁵ 41250	⁵⁷ 16111	80	U	
²⁵ 41306	⁵⁷ 16223	50	U	Mündungsbereich

Fortsetzung Tab. A-19: Gemessene Ortsdosisleistungen und dazugehörige Gauß Krüger Koordinaten an der Fossa Eugeniana.

Tiefe	²²⁶ Ra [Bq/kg]	²²⁸ Ra [Bq/kg]	²¹⁰ Pb [Bq/kg]	Alter [a]
TL1-1				
0-15	305 ± 7.9	$74,2 \pm 2,9$	$243 \pm 17,2$	$5,9 \pm 0,5$
15-30	$251 \pm 6,6$	$34,8 \pm 2,0$	$224 \pm 17,3$	$10,5 \pm 0,7$
30-45	$230 \pm 6,0$	$32,8 \pm 1,6$	$228 \pm 15,5$	$10,2 \pm 0,6$
45-60	$284 \pm 7,8$	$34,8 \pm 2,9$	$385 \pm 26,8$	$11,5 \pm 0,9$
60-80	$335 \pm 9,1$	29,0 ± 2,6	330 ± 31,5	$14,4 \pm 1,0$
80-95	$379 \pm 9,8$	$23,1 \pm 1,3$	$371 \pm 20,2$	> 15
95-110	$65,2 \pm 1,9$	$9,5 \pm 1,4$	$70,1 \pm 9,4$	$10,1 \pm 1,5$
TL1-2				
0-20	$186 \pm 5,2$	$35,5 \pm 2,6$	$189 \pm 19,8$	$8,0 \pm 0,9$
20-35	$2112 \pm 5,7$	$29,4 \pm 2,0$	$226 \pm 17,9$	$10,6 \pm 0,8$
35-45	$157 \pm 4,1$	$21,5 \pm 1,0$	$172 \pm 9,6$	10,8 ±0,6
45-60	$181 \pm 4,8$	$15,3 \pm 1,2$	$204 \pm 14,0$	$14,7\pm0,9$
60-75	371 ± 9,8	$28,0 \pm 2,3$	$399 \pm 26,3$	$15,5 \pm 0,8$
75-90	$123 \pm 3,5$	$26,0 \pm 2,0$	$157 \pm 17,3$	> 15
90-105	$25,6 \pm 0,7$	$14,5 \pm 0,8$	31,9 ± 4,0	> 15
TT 2 1				
0.5	227 + 6.0	100 + 6.0	79.0 ± 23.0	0.3 ± 0.8
5 25	227 ± 0.9 458 ± 12.8	$109 \pm 0,9$ 140 ± 8.1	$79,0 \pm 23,0$ 163 + 30.0	$0,3 \pm 0,8$ 4.0 ± 0.7
25-25	$438 \pm 12,8$ 449 ± 12.5	140 ± 0.1 865 ± 62	$105 \pm 30,0$ 236 ± 34.8	$4,0\pm0,7$ 7 8 ± 0 8
25 55	<u>++) ± 12,5</u>	00,5 ± 0,2	250 ± 54,0	7,0 ± 0,0
TL2-2				
0-7	303 ± 8.9	94.5 ± 6.7	123 ± 26.3	3.9 ± 0.8
7-20	330 ± 9.5	74.9 ± 5.5	262 ± 38.5	6.5 ± 0.9
20-30	284 ± 8.3	36.9 ± 3.9	181 ± 27.9	11.0 ± 1.2
30-40	267 ± 7.8	$30,7 \pm 3,5$	$202 \pm 28,3$	$12,0 \pm 1,2$
40-46	$198 \pm 6,0$	$23,6 \pm 2,9$	$138 \pm 21,8$	$11,8 \pm 1,3$
46-57	$169 \pm 5,2$	$27,3 \pm 2,9$	$164 \pm 24,0$	$9,3 \pm 1,2$
57-67	$127 \pm 4,0$	$21,5 \pm 2,6$	146 ± 21,3	8,9 ± 1,3
67-70	$76,8 \pm 2,7$	$11,5 \pm 1,8$	78,1 ± 15,9	$9,9 \pm 1,7$
70-74	$72,5 \pm 2,6$	$36,2 \pm 3,2$	60,0 ± 15,3	$0,0 \pm 1,0$
TL3-1				
0-10	$266 \pm 8{,}8$	$95,2 \pm 8,3$	$131 \pm 36,7$	$2,7 \pm 1,0$
10-19	$324 \pm 9,8$	$88,9 \pm 7,1$	$162 \pm 38,8$	$4,9 \pm 0,9$
19-27	$380 \pm 11,1$	$106 \pm 7,4$	$216 \pm 37,8$	$4,8 \pm 0,8$
27-34	$359 \pm 10,5$	$62,9 \pm 5,6$	226 ± 38,3	8,6 ± 1,0
34-46	$497 \pm 14,0$	$50,2 \pm 5,6$	297 ± 38,2	13,1 ± 1,2
46-56	$638 \pm 17,6$	$45,3 \pm 5,2$	511 ± 53,3	> 15
56-66	507 ± 14,0	$39,0 \pm 4,4$	324 ± 38,6	> 15
66-77	354 ± 10,3	$28,2 \pm 4,7$	338 ± 41,9	> 15
77-85	$229 \pm 7,0$	$21,8 \pm 3,7$	234 ± 34,2	13,6 ± 1,8
85-97	115 ± 3,8	< 8,0	106 ± 18,9	n.b.
97-106	$91,9 \pm 3,2$	11.0 ± 1.9	84.3 ± 1.7	11.7 ± 1.8

Tab. A-20: Radionuklidkonzentrationen (2o-Fehler) der Tiefenprofile an der Lippe.

A-24	

Tiefe	²²⁶ Ra [Bq/kg]	²²⁸ Ra [Bq/kg]	²¹⁰ Pb [Bq/kg]	Alter [a]
TL3-2				
0-10	$220 \pm 6,9$	$23,2 \pm 3,7$	$210 \pm 33,7$	$12,8 \pm 1,7$
10-23	$239 \pm 7,1$	$32,0 \pm 3,8$	$217 \pm 31,5$	$10,8 \pm 1,3$
23-36	$238 \pm 7,1$	$25,2 \pm 3,3$	$197 \pm 27,3$	$12,7 \pm 1,4$
36-43	$127 \pm 4,1$	$21,4 \pm 2,8$	$151 \pm 2,4$	$8,9 \pm 1,4$
43-55	$59,9 \pm 2,3$	$14,6 \pm 2,0$	$76,7 \pm 15,3$	> 15
55-63	$242 \pm 7,1$	$24,0 \pm 3,0$	$270 \pm 30,8$	$13,3 \pm 1,3$
63-69	$281 \pm 8,3$	$23,0 \pm 3,3$	$300 \pm 35,2$	$14,8 \pm 1,5$
69-80	$200 \pm 6,0$	$9,8 \pm 2,1$	$203 \pm 24,6$	> 15
80-90	$72,6 \pm 2,7$	$10,4 \pm 1,8$	86,9 ± 17,3	> 15
90-100	$77,6 \pm 2,5$	$5,6 \pm 1,1$	$88,2 \pm 13,4$	> 15

Fortsetzung Tab. A-20: Radionuklidkonzentrationen (2**o**-Fehler) der Tiefenprofile an der Lippe.

Tab. A-21: Radionuklidkonzentrationen (2σ-Fehler) der Tiefenprofile an der Fossa Eugeniana.

Tiefe	²²⁶ Ra [Bq/kg]	²²⁸ Ra [Bq/kg]	²¹⁰ Pb [Bq/kg]	Alter [a]
TF1-1				
0-7	$1186 \pm 31,4$	$98,3 \pm 9,5$	623 ± 60,4	$14,7 \pm 1,0$
7-9	$328 \pm 9,6$	$29,9 \pm 5,8$	$260 \pm 36,7$	$14,0 \pm 2,0$
9-12	$58,5 \pm 3,4$	< 15	$120 \pm 33,2$	n.b.
12-15	$42,6 \pm 2,9$	< 12	$123 \pm 30,2$	n.b.
15-22	$20,5 \pm 2,6$	< 12	$58,3 \pm 26,6$	n.b.
22-29	$103 \pm 4,4$	< 17	$169 \pm 35,6$	n.b.
29-34	$39,1 \pm 2,7$	< 13	$57,0 \pm 26,3$	n.b.
34-36	$18,9 \pm 1,8$	21,1 ±3,6	$33,8 \pm 18,7$	> 15
TF1-2				
0-5	1118 ± 30.0	172 ± 11.5	569 ± 59.4	9.7 ± 0.8
5-20	$685 \pm 18,5$	$74,1 \pm 7,0$	338 ± 38,9	$12,5 \pm 1,0$
20-25	$180 \pm 5,4$	< 13	$96,4 \pm 22,2$	n.b.
25-32	33,1 ± 1,9	17,7 ± 3,3	< 29	n.b.
32-38	$10,2 \pm 1,6$	< 7,1	< 23	n.b.
38-48	< 3,8	< 8,3	< 24	n.b.
48-58	< 3,2	$12,9 \pm 2,8$	< 21	n.b.
58-70	< 3,3	$11,6 \pm 2,7$	< 21	n.b.
70-80	< 3,8	$14,0 \pm 3,2$	< 25	n.b.
80-90	< 3,9	< 7,2	< 25	n.b.
90-100	< 3,6	< 6,6	< 23	n.b.
TF1-3				
0-5	$33,4 \pm 1,4$	41,1 ± 3,0	$50,0 \pm 12,5$	n.b.
5-16	$40,2 \pm 1,3$	41,5 ± 2,4	48,9 ± 10,0	n.b.
16-25	$30,7 \pm 1,1$	$35,7 \pm 2,1$	$28,9 \pm 8,0$	n.b.
25-30	$25{,}4\pm0{,}9$	31,3 ± 2,0	$23,0 \pm 7,5$	n.b.
30-33	$23,0 \pm 0,9$	$25,6 \pm 1,9$	$24,9 \pm 9,0$	n.b.

Probe	Art	²²⁶ Ra [Bq/kg]	²²⁸ Ra [Bq/kg]	²¹⁰ Pb [Bq/kg]
LPf_L1	Weidelgras (Lolium perenne)	< 1,7	< 2,9	< 11
	Glatthafer (Arrhenatherum elatius)			
LPF _L 2 ₉₈ -1	Weidelgras (Lolium perenne)	< 4,3	< 5,6	< 12
LPF _L 2 ₉₈ -2	Weidelgras (Lolium perenne)	< 1,5	< 1,9	< 13
	Straußgras (Agrostis spec.)			
LPF _L 2 ₉₉ -1	Weidelgras (Lolium perenne)	< 2,7	< 4,1	< 17
LPF _L 2 ₉₉ -2	Weidelgras (Lolium perenne)	< 1,7	< 3,9	< 16
	Straußgras (Agrostis spec.)			
LPF _L 3 ₉₈ -1	Reitgras (Calamagrostis epigeios)	16,7 ± 0,6	8,6 ± 1,8	<12
LPF _L 3 ₉₈ -2	Weidelgras (Lolium perenne)	< 2,9	< 4,3	< 14
LPF _L 3 ₉₈ -3	Weidelgras (Lolium perenne	< 1,2	< 2,4	< 36
	Knäuelgras (Dactylis glomerata)			
LPF _L 3 ₉₉ -1	Reitgras (Calamagrostis epigeios)	< 3,4	< 6,7	< 24
LPF _L 3 ₉₉ -2	Weidelgras (Lolium perenne)	< 5,7	< 9,2	< 35

 $Tab. \ A-22: \ Radionuklidkonzentrationen \ (2\sigma-Fehler \) \ der \ analysierten \ Lippe-Grasproben.$

Tab. A-23: Radion	uklidkonzentratione	en (2σ-Fehler) der	r analysierten Fiscl	ıproben.
Fisch	Art der Probe	²²⁶ Ra [Ba/kg]	²²⁸ Ra [Ba/kg]	²¹⁰ P

Fisch	Art der Probe	²²⁶ Ra [Bq/kg]	²²⁸ Ra [Bq/kg]	²¹⁰ Pb [Bq/kg]
Aal 1	Fleisch	< 3,8	< 8,0	< 15
m = 284,2 g	Gräten	< 4,0	< 8,4	< 16
1 = 61,2 cm	Haut	< 5,5	< 7,1	< 19
	Innereien	$22,9 \pm 3,0$	$22,3\pm10$	< 34
Aal 2	Fleisch	< 2,5	< 5,1	< 9,7
m = 132,0 g	Gräten	< 9,4	< 20	< 37
1 = 43,8 cm	Haut	< 35	< 74	< 143
	Innereien	53,4 ± 3,0	< 87	< 90
Aal 3	Fleisch	< 7,1	< 11	< 25
m = 164,9 g	Gräten	< 70	< 144	< 274
1 = 41,8 cm	Haut	< 54	< 97	< 105
	Innereien	< 18	< 39	< 72
Aal 4	Fleisch	< 9,7	< 12	< 29
m = 203,3 g	Gräten	< 8,3	< 19	< 35
1 = 45,5 cm	Haut	< 21	< 42	< 83
	Innereien	35,3 ± 7,9	$59,8\pm17$	< 90
Aal 5	Fleisch	< 11	< 24	< 76
m = 64,6 g	Gräten	< 19	< 37	< 72
1 = 33,2 cm	Haut	< 14	< 27	< 48
	Innereien	125 ± 37	< 89	< 95
Aal 6	Fleisch	< 11	< 23	< 64
m = 98,7 g	Gräten	< 23	< 28	< 136
1 = 38,5 cm	Haut	< 69	< 147	< 407
	Innereien	< 65	< 146	< 264
Aal 7	Fleisch	< 27	< 29	< 64
m = 59,2 g	Gräten	63,8 ± 12	< 75	< 99
1 = 30 cm	Haut	< 283	< 283	< 917
	Innereien	188 ± 33	< 165	< 219
Aal 8	Fleisch	< 14	< 25	< 82
m = 88,0 g	Gräten	< 26	< 51	< 152
1 = 35,4 cm	Haut	< 71	< 129	< 432
	Innereien	< 30	< 62	< 118
Aal 9	Fleisch	< 14	< 26	< 83
m = 74,5 g	Gräten	< 30	< 53	< 168
1 = 34,4 cm	Haut	< 68	< 112	< 212
	Innereien	< 89	< 148	< 351
Aal 10	Fleisch	< 4,2	< 13	< 16
	Gräten	< 13	< 28	< 51

For setzung Tab.	Art dan Draha	$\frac{226}{2}$ D D D C D D C D D C D D C D D C D D D C D D D C D D D D D D D D D D		$\frac{210}{2}$ Db [D α /l/a]		
r iscn	Art uer Probe	ка [Бұ/кg]		го [Бц/кд]		
	Haut	< 7,3	< 11	< 62		
	Innereien	$29,3 \pm 5,0$	< 30	< 56		
Aal 11	Fleisch	n. b.	n. b.	n. b.		
m = 92,8 g	Gräten	n. b.	n. b.	n. b.		
1 = 40,1 cm	Haut	n. b.	n. b.	n. b.		
	Innereien	59,7 ± 4,7	< 75	< 113		
Rotfeder 1	Fleisch	< 56	< 106	< 323		
m = 47,1 g	Gräten	< 46	< 98	< 267		
l = 15,5 cm	Haut	105 ± 36	< 93	< 225		
	Innereien	< 134	< 275	< 532		
Rotfeder 2	Fleisch	< 20	< 42	< 88		
m = 74,5 g	Gräten	< 22	< 46	< 85		
1 = 18,5 cm	Haut	< 30	< 62	< 124		
	Innereien	150 ± 51	< 189	< 311		
Rotfeder 3	Fleisch	< 12	< 26	< 51		
m = 115,0 g	Gräten	< 11	< 21	< 42		
1 = 21,2 cm	Haut	< 20	< 40	< 81		
	Innereien	< 35	< 53	< 101		
Rotfeder 4	Fleisch	< 8,5	< 9,7	< 42		
m = 222,5 g	Gräten	< 9,7	< 11	< 37		
1 = 26,5 cm	Haut	< 9,9	< 13	< 64		
	Innereien	< 37	< 79	< 60		
Rotfeder 5	Fleisch	< 7,5	< 15	< 44		
m = 301,8 g	Gräten	< 9,1	< 16	< 52		
1 = 28,8 cm	Haut	< 7,2	< 15	< 28		
	Innereien	< 14	< 27	< 42		
Brasse 1	Fleisch	< 2,7	< 3,4	< 11		
m = 1034,2 g	Gräten	< 3,4	< 5,0	< 17		
1 = 45,5 cm	Haut	< 5,4	< 6,2	< 11		
	Innereien	< 5,4	< 11	< 21		
Brasse 2	Fleisch	< 2,1	< 3,7	< 14		
m = 973,6 g	Gräten	< 2,5	< 3,9	< 17		
1 = 45,2 cm	Haut	< 4,0	< 6,0	< 21		
	Innereien	< 5,7	< 11	< 21		
Brasse 3	Fleisch	< 2,1	< 3,8	< 14		
m = 1337,5 g	Gräten	< 3,5	<4,3	< 12		
1 = 46.5 cm	Haut	< 4.9	< 5.1	< 14		
	Innereien	< 4,3	< 5,6	< 13		

Fortsetzung Tab. A-23: Radionuklidkonzentrationen (2σ-Fehler) der analysierten Fischproben.

Fisch	Art der Probe	²²⁶ Ra [Bq/kg]	²²⁸ Ra [Bq/kg]	²¹⁰ Pb [Bq/kg]
Brasse 4	Fleisch	< 2,4	< 3,2	< 17
m = 1038,2 g	Gräten	< 3,9	< 4,8	< 25
1 = 43,4 cm	Haut	< 6,0	< 11	< 39
	Innereien	< 8,9	< 12	< 39
Brasse 5	Fleisch	< 2,6	< 3,9	< 12
m = 1325,2 g	Gräten	< 3,8	< 4,1	< 6,9
1 = 48,2 cm	Haut	< 2,2	< 7,1	< 16
	Innereien	< 7,2	< 11	< 24
Karpfen 1	Fleisch	< 2,7	< 4,6	< 15
	Gräten	< 2,8	< 5,7	< 14
	Haut	< 7,6	< 9,2	< 19
	Innereien	< 9,2	< 12	< 29
Karpfen 2	Fleisch	< 5,2	< 10	< 14
	Gräten	< 7,2	< 12	< 24
	Haut	< 4,7	< 8,4	< 16
	Innereien	< 3,9	< 4,9	< 17
Forelle 1	Fleisch	< 1,7	< 3,4	< 12
m = 1112,6 g	Gräten	< 1,5	< 2,9	< 10
	Haut	< 4,5	< 6,1	< 11
	Innereien	< 7,6	< 15	< 27
Kaulbarsch 1	Fleisch	< 7,4	< 10	< 24
m = 134,4 g	Gräten	< 29	< 34	< 32
1 = 22,0 cm	Haut	< 21	< 28	< 48
	Innereien	< 16	< 27	< 52

Fortsetzung Tab. A-23: Radionuklidkonzentrationen (2o-Fehler) der analysierten Fischproben.

				r	r	[
LS3 Element	1. Fraktion	2. Fraktion	3. Fraktion	4. Fraktion	5. Fraktion	6. Fraktion	7. Fraktion
Al gemessen	n.n.	0,41	0,13	0,61	0,84	1,9	
Al berechnet		15	6,7	23	52	118	6009
%-Anteil		0,25	0,11	0,37	0,84	1,90	96,54
Ba gemessen	4,1	0.58	n.n.	n.n.	0.059	0,041	
Ba berechnet	102	22			3.7	2,5	78
%-Anteil	48,94	10,43			1,76	1,22	37.65
Ca gemessen	107	5.3	0.29	1.7	n.b.	n.b.	,
Ca berechnet	2678	197	14	63			684
%-Anteil	73,64	5,43	0,39	1,73			18,82
Cr gemessen	0.02	0.016	n.n.	0.010	n.n.	n.n.	- , -
Cr berechnet	0.5	0.61		0.39			45
%-Anteil	1.09	1.33		0.84			96.96
Cu gemessen	0.019	n.n.	0.11	0.028	n.n.	0.19	
Cu berechnet	0.47		5.5	1.1		12	
%-Anteil	9,35		109,20	21,30		242,63	
Fe gemessen	0.040	1.1	1.4	4.0	5.6	9,9	
Fe berechnet	0,99	42,2	69,5	151	351	620	1822
%-Anteil	0,03	1,38	2,27	4,96	11,49	20,28	59,59
K gemessen	0.52	0.66	n.n.	n.n.	0.26	0.74	,
K berechnet	13	25			16	46	3737
%-Anteil	0,34	0,64			0.43	1,20	97,41
Mg gemessen	0.62	0.36	0.091	0.15	0.12	0.61	,
Mg berechnet	15	14	4.5	5.7	7.7	38	1042
%-Anteil	1.38	1,21	0,40	0,50	0.68	3.37	92,42
Mn gemessen	0.57	0.41	0.009	0.058	0.024	0.067	,
Mn berechnet	14	16	0.45	2.2	1.5	4.2	44
%-Anteil	17,23	18,96	0,55	2,67	1,79	5,11	53,43
Na gemessen	1.3	0.89	0.36	0.61	0.26	n.n.	,
Na berechnet	33	33	18	23	16		3067
%-Anteil	1,05	1,04	0,56	0,71	0,50		96,13
Ni gemessen	0.040	0.020	0.0032	0.021	0.0086	0.023	,
Ni berechnet	0.98	0,74	0,16	0.79	0,54	1.4	
%-Anteil	49,13	36,75	8,00	39,19	26,88	70,94	
²²⁶ Ra	0.0028	n.n.	n.n.	n.n.	n.n.	n.n.	
gemessen							
²²⁶ Ra	0,36						6,3
berechnet							
%-Anteil	3,6						96,4
Sr gemessen	0,70	0,10	n.n.	n.n.	n.n.	n.n.	
Sr berechnet	17	3,7					12
%-Anteil	51,93	11,07					36,99
V gemessen	0,030	0,043	0,010	0,028	n.n.	0,042	
V berechnet	0,76	1,6	0,49	1,1		2,7	4
%-Anteil	6,95	14,93	4,50	9,77		24,31	39,54
Zn gemessen	0,056	0,30	n.n.	0,058	0,10	0,12	
Zn berechnet	1,4	11		2,2	6,5	4,6	
%-Anteil	5.94	48.32		9.18	27.69	19.77	

Tab. A-24: Elementkonzentrationen [ppm] und prozentuale Anteile in den unterschiedlichen Extraktionslösungen des Lippe-Sedimentes LS3.

LS7							
Element	1. Fraktion	2. Fraktion	3. Fraktion	4. Fraktion	5. Fraktion	6. Fraktion	7. Fraktion
Al gemessen	n.n.	0,23	0,21	23	40	49	
Al berechnet		8,6	10	873	2496	3063	37927
%-Anteil		0,02	0,02	1,97	5,62	6,90	85,46
Ba gemessen	19	16	6,0	8,4	25	21	
Ba berechnet	468	593	299	317	1536	1296	5255
%-Anteil	4,79	6,07	3,06	3,24	15,74	13,28	53,83
Ca gemessen	373	930	34	21	n.b.	n.b.	
Ca berechnet	9345	34875	1695	793			3835
%-Anteil	18,49	69,00	3,35	1,57			7,59
Cr gemessen	0,022	0,0093	n.n.	0,12	0,24	0,19	
Cr berechnet	0,54	0,35		4,5	15	11	97
%-Anteil	0,42	0,27		3,51	11,75	9,00	74,82
Cu gemessen	0,30	n.n.	0,042	2,0	0,47	0,18	
Cu berechnet	7,5		2,1	75	29	11	50
%-Anteil	4,31		1,19	42,73	16,63	6,25	28,83
Fe gemessen	0,15	0,28	7,2	203	135	126	
Fe berechnet	3,6	11	361	7620	8469	7856	12097
%-Anteil	0,01	0,03	0,99	20,92	23,25	21,57	33,22
K gemessen	14	2,9	n.n.	n.n.	1,2	5,0	
K berechnet	345	108			73	314	11628
%-Anteil	2,77	0,86			0,59	2,52	93,25
Mg gemessen	14	9,2	0,67	4,0	4,2	12	
Mg berechnet	348	346	33	151	261	726	4094
%-Anteil	5,83	5,80	0,56	2,53	4,37	12,18	68,72
Mn gemessen	5,1	17	2,7	2,6	1,6	0,68	
Mn berechnet	127	641	134	99	97	43	211
%-Anteil	9,38	47,40	9,94	7,32	7,21	3,14	15,57
Na gemessen	31	4,26	0,48	0,68	0,70	0,21	
Na berechnet	770	160	24	25	44	13	203
%-Anteil	62,15	12,89	1,95	2,04	3,55	1,06	16,36
Ni gemessen	0,047	0,092	0,020	0,12	0,13	0,17	
Ni berechnet	1,2	3,5	0,97	4,4	7,9	10	15
%-Anteil	2,68	7,97	2,23	10,11	18,23	24,09	34,69
²²⁶ Ra	0,17	0,090	0,053	0,11	0,085	0,069	
gemessen							
²²⁰ Ra	21	11	6,7	13	11	8,6	353,1
berechnet							00.0
%-Anteil	4,9	2,6	1,6	3,2	2,5	2,0	83,2
Sr gemessen	7,7	5,9	1,1	1,1	0,62	0,91	
Sr berechnet	193	222	56	39	39	57	399
%-Anteil	19,18	22,11	5,56	3,93	3,88	5,65	39,70
V gemessen	0,035	0,059	0,076	0,24	0,061	0,15	
V berechnet	0,87	2,2	3,8	9,0	3,8	9,4	83
%-Anteil	0,78	1,97	3,41	8,00	3,40	8,36	73,73
Zn gemessen	0,11	4,0	1,7	3,5	2,6	1,5	
Zn berechnet	2,8	150	85	132	163	56	177
%-Anteil	0,37	19,62	11,10	17,21	21,27	7,35	23,11

 Tab. A-25: Elementkonzentrationen [ppm] und prozentuale Anteile in den unterschiedlichen Extraktionslösungen des Lippe-Sedimentes LS7.

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Al berechnet 5.3 7.5 281 498 503 19263 %-Anteil 0,03 0,04 1,37 2,42 2,45 93,70 Ba gemessen 24 15 4,4 4,8 16 11 Ba berechnet 596 521 181 1021 698 4548 %-Anteil 7,60 7,27 2,82 2,31 13,04 8,90 58,06 Ca genessen 210 128 4,0 4,7 n.b. n.b. 9842 %-Anteil 25,93 23,62 0.98 0,87 48,59 48,59 Cr berechnet 0,47 0,38 3,4 5,8 3,4 78 %-Anteil 0,51 0,42 3,67 6,29 3,69 85,21 Cu genessen 0,30 n.n 0,043 0,48 0,089 0,17 Cu genessen 0,31 0,22 3,1 40 37 25 Fe gemessen 0,3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Cu gemessen 0,30 n.n. 0,043 0,48 0,089 0,17 Cu berechnet 7,6 2,2 18 5,6 11 32 %-Anteil 9,93 2,83 23,66 7,26 13,81 42,51 Fe gemessen 0,31 0,22 3,1 40 37 25 Fe berechnet 7,8 8,1 156 1489 2293 1539 8922 %-Anteil 0,05 0,06 1,08 10,33 15,90 10,67 61,90 K gemessen 1,7 1,1 n.n. n.n. 0,51 1,28 K berechnet 42 42 32 80 6678 %-Anteil 0,61 0,61 0,46 1,16 97,16 Mg gemessen 2,3 2,1 0,25 0,50 0,69 1,9 Mg berechnet 58 77 13 19 43 119 1890 %-Anteil 2,63 3,48
Cu berechnet7,62,2185,61132%-Anteil9,932,8323,667,2613,8142,51Fe gemessen0,310,223,1403725Fe berechnet7,88,11561489229315398922%-Anteil0,050,061,0810,3315,9010,6761,90K gemessen1,71,1n.n.n.n.0,511,28K berechnet424232806678%-Anteil0,610,610,461,1697,16Mg gemessen2,32,10,250,500,691,9Mg berechnet58771319431191890%-Anteil2,633,480,570,851,945,3785,17Mn gemessen1,11,860,530,230,300,15107Mn herechnet2870278,8199,6197%-Anteil7,8819,427,382,455,222,6754,86Na gemessen6,71,30,410,560,52n.n.Na berechnet16849202132970%-Anteil13,343,861,621,652,5676,96Ni gemessen0,0510,0460,00390,0330,0410,054Ni berechnet1,31,70,201,22,63,47
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
Fe gemessen0,310,223,1403725Fe berechnet7,88,11561489229315398922%-Anteil0,050,061,0810,3315,9010,6761,90K gemessen1,71,1n.n.n.n.0,511,28K berechnet424232806678%-Anteil0,610,610,461,1697,16Mg gemessen2,32,10,250,500,691,9Mg berechnet58771319431191890%-Anteil2,633,480,570,851,945,3785,17Mn gemessen1,11,860,530,230,300,15197%-Anteil7,8819,427,382,455,222,6754,86Na gemessen6,71,30,410,560,52n.n.10Na berechnet16849202132970%-Anteil13,343,861,621,652,5676,96Ni gemessen0,0510,0460,00390,0330,0410,054Ni berechnet1,31,70,201,22,63,47%-Anteil7,169,651,106,8714,5019,0741,662267,93,66,41,8273,96*************************************
Fe berechnet7,88,11561489229315398922%-Anteil0,050,061,0810,3315,9010,6761,90K gemessen1,71,1n.n.n.n.0,511,28K berechnet424232806678%-Anteil0,610,610,461,1697,16Mg gemessen2,32,10,250,500,691,9Mg berechnet58771319431191890%-Anteil2,633,480,570,851,945,3785,17Mn gemessen1,11,860,530,230,300,150,15Mn berechnet2870278,8199,6197%-Anteil7,8819,427,382,455,222,6754,86Na gemessen6,71,30,410,560,52n.n.0Na berechnet16849202132970%-Anteil13,343,861,621,652,5676,96Ni gemessen0,0510,0460,00390,0330,0410,054Ni berechnet1,31,70,201,22,63,47%-Anteil7,169,651,106,8714,5019,0741,66 25 Ra0,210,0940,0630,0290,0510,014gemessen 25 Ra2612
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
K gemessen1,71,1n.n.n.n.0,511,28K berechnet424232806678%-Anteil0,610,610,461,1697,16Mg gemessen2,32,10,250,500,691,9Mg berechnet58771319431191890%-Anteil2,633,480,570,851,945,3785,17Mn gemessen1,11,860,530,230,300,15197%-Anteil7,8819,427,382,455,222,6754,86Na gemessen6,71,30,410,560,52n.n.107%-Anteil13,343,861,621,652,5676,96Ni gemessen0,0510,0460,00390,0330,0410,054Ni berechnet1,31,70,201,22,63,47%-Anteil7,169,651,106,8714,5019,0741,66 2^{26} Ra0,210,0940,0630,0290,0510,014gemessen 2^{26} Ra26127,93,66,41,8273,96
K berechnet424232806678%-Anteil0,610,610,610,461,1697,16Mg gemessen2,32,10,250,500,691,9Mg berechnet58771319431191890%-Anteil2,633,480,570,851,945,3785,17Mn gemessen1,11,860,530,230,300,15197%-Anteil7,8819,427,382,455,222,6754,86Na gemessen6,71,30,410,560,52n.n.107Na berechnet16849202132970%-Anteil13,343,861,621,652,5676,96Ni gemessen0,0510,0460,00390,0330,0410,054Ni berechnet1,31,70,201,22,63,47%-Anteil7,169,651,106,8714,5019,0741,66 2^{26} Ra0,210,0940,0630,0290,0510,014166 2^{26} Ra26127,93,66,41,8273,96
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
No Finter 0.01
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Mil genessen $1,1$ $1,66$ $6,53$ $6,25$ $6,56$ $6,76$ Mn berechnet 28 70 27 $8,8$ 19 $9,6$ 197 %-Anteil $7,88$ $19,42$ $7,38$ $2,45$ $5,22$ $2,67$ $54,86$ Na gemessen $6,7$ $1,3$ $0,41$ $0,56$ $0,52$ $n.n.$ Na berechnet 168 49 20 21 32 970 %-Anteil $13,34$ $3,86$ $1,62$ $1,65$ $2,56$ $76,96$ Ni gemessen $0,051$ $0,046$ $0,0039$ $0,033$ $0,041$ $0,054$ Ni berechnet $1,3$ $1,7$ $0,20$ $1,2$ $2,6$ $3,4$ 7 %-Anteil $7,16$ $9,65$ $1,10$ $6,87$ $14,50$ $19,07$ $41,66$ 226 Ra $0,21$ $0,094$ $0,063$ $0,029$ $0,051$ $0,014$ 226 Ra 26 12 $7,9$ $3,6$ $6,4$ $1,8$ $273,96$
Nill berechnet 26 16 21 66 19 19 19 19 %-Anteil $7,88$ $19,42$ $7,38$ $2,45$ $5,22$ $2,67$ $54,86$ Na gemessen $6,7$ $1,3$ $0,41$ $0,56$ $0,52$ $n.n.$ Na berechnet 168 49 20 21 32 970 %-Anteil $13,34$ $3,86$ $1,62$ $1,65$ $2,56$ $76,96$ Ni gemessen $0,051$ $0,046$ $0,0039$ $0,033$ $0,041$ $0,054$ Ni berechnet $1,3$ $1,7$ $0,20$ $1,2$ $2,6$ $3,4$ 7 %-Anteil $7,16$ $9,65$ $1,10$ $6,87$ $14,50$ $19,07$ $41,66$ 226 Ra $0,21$ $0,094$ $0,063$ $0,029$ $0,051$ $0,014$ gemessen 2^{226} Ra 26 12 $7,9$ $3,6$ $6,4$ $1,8$ $273,96$
Na gemessen $6,7$ $1,3$ $0,41$ $0,56$ $0,52$ $n.n.$ Na berechnet16849202132970%-Anteil13,343,861,621,652,5676,96Ni gemessen $0,051$ $0,046$ $0,0039$ $0,033$ $0,041$ $0,054$ Ni berechnet1,31,7 $0,20$ 1,22,63,47%-Anteil7,169,651,106,8714,5019,0741,66 226 Ra $0,21$ $0,094$ $0,063$ $0,029$ $0,051$ $0,014$ $gemessen$ $gemesse$
Na berechnet16849202132970 $\%$ -Anteil13,343,861,621,652,5676,96Ni gemessen0,0510,0460,00390,0330,0410,054Ni berechnet1,31,70,201,22,63,47 $\%$ -Anteil7,169,651,106,8714,5019,0741,66 226 Ra0,210,0940,0630,0290,0510,014gemessen 226 Ra26127,93,66,41,8273,96berechnet126127,93,66,41,8273,96
Na berechnet1001020215276 $\%$ -Anteil13,343,861,621,652,5676,96Ni gemessen0,0510,0460,00390,0330,0410,054Ni berechnet1,31,70,201,22,63,47 $\%$ -Anteil7,169,651,106,8714,5019,0741,66 226 Ra0,210,0940,0630,0290,0510,014gemessen 226 Ra26127,93,66,41,8273,96berechnet127,93,66,41,8273,96
No Finder 160° 160° 160° 160° 160° 160° 160° 160° Ni gemessen $0,051$ $0,046$ $0,0039$ $0,033$ $0,041$ $0,054$ Ni berechnet $1,3$ $1,7$ $0,20$ $1,2$ $2,6$ $3,4$ 7 %-Anteil $7,16$ $9,65$ $1,10$ $6,87$ $14,50$ $19,07$ $41,66$ ^{226}Ra $0,21$ $0,094$ $0,063$ $0,029$ $0,051$ $0,014$ gemessen ^{226}Ra 26 12 $7,9$ $3,6$ $6,4$ $1,8$ $273,96$ berechnet ^{226}Ra 26 12 $7,9$ $3,6$ $6,4$ $1,8$ $273,96$
Ni berechnet1,31,70,201,22,63,47%-Anteil7,169,651,106,8714,5019,0741,66 226 Ra0,210,0940,0630,0290,0510,014 226 Ra26127,93,66,41,8273,96berechnet </td
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
²²⁶ Ra 26 12 7,9 3,6 6,4 1,8 273,96 berechnet
berechnet
%-Anteil 7,8 3,5 2,4 1,1 1,9 0,5 82,8
Sr gemessen 3,7 1,5 0,46 0,39 0,42 0,41
Sr berechnet 91 57 23 15 27 26 283
%-Anteil 17,51 10,92 4,44 2,80 5,09 4,94 54,30
V gemessen 0.027 0.048 0.024 0.073 n.n. 0.058
V berechnet 0.67 1.8 1.2 2.7 3.6 33
%-Anteil 1.54 4.17 2.82 6.32 8.37 76.78
Zn gemessen 0.23 3.1 0.38 0.93 0.97 0.69
Zn berechnet 5.6 115 19 35 60 26 307
%-Anteil 0.99 20.28 3.38 6.15 10.65 4.56 54.00

Tab. A-26: Elementkonzentrationen [ppm] und prozentuale Anteile in den unterschiedlichen Extraktionslösungen des Lippe-Sedimentes LS9.

	1	1	r	1		r	
LS10 Flement	1 Fraktion	2 Fraktion	3 Fraktion	4 Fraktion	5 Fraktion	6 Fraktion	7 Fraktion
Al gemessen	n n	2. I laktion	0.24	4. I Taktion	3.1 Taktion	5.7	7. 1 Taktion
Al berechnet		40	12	202	209	357	18420
%-Anteil		0.21	0.06	1.05	1.09	1.85	95 74
Ba gemessen	26	18	4.5	3.5	1,05	6.3	,,,,
Ba berechnet	660	670		130	878	396	1061
%-Anteil	16.42	16.67	5 55	3 24	21.85	9.86	26.41
Ca gemessen	182	58	0.84	0.63	n h	n h	20,11
Ca berechnet	4553	2175	42	23	11.0.	11.0.	1491
%-Anteil	54 96	2175	0.50	0.28			18.00
Cr gemessen	0.018	0.02	n n	0.033	nn	0.036	10,00
Cr berechnet	0.46	0.75		1.2		2.3	58
%-Anteil	0.73	1.19	0.00	1.93		3.61	92.53
Cu gemessen	0.064	n n	0.025	0.14	0.018	0.15	,
Cu berechnet	16		13	53	11	96	8
%-Anteil	5.85		4.63	19.43	4.02	35.13	30.93
Fe gemessen	0.079	2.0	59	22	18	22	
Fe berechnet	2.0	73	297	842	1133	1404	5335
%-Anteil	0.02	0.81	3.27	9.27	12.47	15.45	58.72
K gemessen	2.1	1.1	n.n.	n.n.	0.35	1.1	
K berechnet	52	42			22	67	7666
%-Anteil	0.67	0.53			0.28	0.85	97.67
Mg gemessen	2.1	2.2	0.15	0.27	0.44	1.6	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Mg berechnet	53	83	7 4	10	28	1,0	787
%-Anteil	4.93	7.77	0.69	0.94	2.60	9.36	73.75
Mn gemessen	2.2	2.2	0.12	0.099	0.20	0.16	,
Mn berechnet	56	82	5.9	3.7	12	9.98	292
%-Anteil	12,16	17.76	1,28	0.80	2,65	2,16	63,25
Na gemessen	6.8	1.3	0.60	0.55	0.30	n.n.	
Na berechnet	169	50	30	21	19		1270
%-Anteil	10.83	3,18	1.93	1,32	1,20		81,54
Ni gemessen	0.054	0.060	0.0034	0.058	0.020	0.0415	*
Ni berechnet	1.3	2,2	0,17	2,2	1.3	2,5	6
%-Anteil	8,54	14,28	1,08	13,78	8,08	16,12	38,11
²²⁶ Ra	0,10	0,065	0,026	0,031	0,044	0,042	
gemessen							
²²⁶ Ra	13	8,1	3,2	3,9	5,5	5,3	172,14
berechnet							
%-Anteil	5,9	3,9	1,5	1,8	2,6	2,5	81,7
Sr gemessen	2,9	1,3	0,50	0,23	0,44	0,40	
Sr berechnet	72	49	25	8,6	28	25	60
%-Anteil	27,11	18,17	9,33	3,22	10,36	9,40	22,42
V gemessen	0,031	0,049	0,026	0,051	n.n.	0,061	
V berechnet	0,78	1,8	1,3	1,9		3,8	34
%-Anteil	1,8	4,2	3,0	4,4		8,8	78
Zn gemessen	0,12	1,6	n.n.	0,18	0,37	0,37	
Zn berechnet	3,1	61		6,6	23	14	33
%-Anteil	2,20	43,21		4,70	16,32	9,98	23,59

 Tab. A-27: Elementkonzentrationen [ppm] und prozentuale Anteile in den unterschiedlichen Extraktionslösungen des Lippe-Sedimentes LS10.

LS11							
Element	1. Fraktion	2. Fraktion	3. Fraktion	4. Fraktion	5. Fraktion	6. Fraktion	7. Fraktion
Al gemessen	n.n.	0,24	0,10	2,7	2,6	5,3	
Al berechnet		8,9	4,8	101	164	332	8663
%-Anteil		0,10	0,05	1,09	1,77	3,58	93,42
Ba gemessen	21	12	2,2	2,4	6,9	2,4	
Ba berechnet	522	468	109	91	429	151	483
%-Anteil	23,16	20,77	4,85	4,04	19,03	6,72	21,44
Ca gemessen	207	239	1,6	2,4	n.b.	n.b.	
Ca berechnet	5180	8974	79	91			106
%-Anteil	35,90	62,19	0,55	0,63			0,73
Cr gemessen	0,018	0,019	n.n.	0,021	n.n.	0,039	
Cr berechnet	0,45	0,70		0,80		2,4	68
%-Anteil	0,61	0,96		1,09		3,27	93,66
Cu gemessen	0,058	0,28	0,038	0,11	0,021	0,16	
Cu berechnet	1,5	11	1,9	4,3	1,3	10	
%-Anteil	10,32	75,48	13,43	30,59	9,33	72,77	
Fe gemessen	n.n.	0,83	3,9	36	21	35	
Fe berechnet		31	197	1357	1287	2215	3439
%-Anteil		0,37	2,31	15,92	15,09	25,98	40,33
K gemessen	1,9	1,0	0,34	n.n.	0,073	0,57	
K berechnet	47	37	17		4,5	35	4847
%-Anteil	0,95	0,74	0,34		0,09	0,71	97,16
Mg gemessen	1,8	2,3	0,17	0,34	0,41	1,2	
Mg berechnet	46	87	8,3	13	26	74	1712
%-Anteil	2,35	4,43	0,42	0,64	1,32	3,76	87,07
Mn gemessen	2,9	2,8	0,23	0,29	0,24	0,16	
Mn berechnet	72	106	12	11	15	9,7	56
%-Anteil	25,67	37,67	4,12	3,84	5,35	3,44	19,85
Na gemessen	6,4	1,6	0,69	0,66	0,23	n.n.	
Na berechnet	161	61	35	25	14		4512
%-Anteil	3,34	1,27	0,72	0,52	0,30	0,00	93,84
Ni gemessen	0,038	0,035	0,025	0,024	0,030	0,036	
Ni berechnet	0,95	1,3	1,2	0,89	1,9	2,3	
%-Anteil	12,34	17,14	15,97	11,54	24,59	29,30	
²²⁶ Ra	0,12	0,039	0,012	0,037	0,021	0,0050	
gemessen							
	14	4,8	1,5	4,6	2,6	0,63	80
berechnet	10.0		1.4				72.0
%-Anteil	13,2	4,4	1,4	4,3	2,4	0,6	73,8
Sr gemessen	2,7	1,3	0,27	0,18	0,14	0,11	
Sr berechnet	67	50	13	6,7	8,8	6,9	38
%-Anteil	35,14	26,13	/,05	3,53	4,63	3,61	19,95
V gemessen	0,038	0,058	0,024	0,073	n.n.	0,081	
V berechnet	0,96	2,2	1,2	2,7		5,0	16
%-Anteil	3,46	7,81	4,37	9,81		18,19	56,36
Zn gemessen	0,12	1,4	0,073	0,27	0,35	0,28	
Zn berechnet	2,9	53	3,6	10	22	11	8
%-Anteil	2,67	47,94	3,31	9,36	19,72	9,70	7,30

Tab. A-28: Elementkonzentrationen [ppm] und prozentuale Anteile in den unterschiedlichen Extraktionslösungen des Lippe-Sedimentes LS11.

LS12							
Element	1. Fraktion	2. Fraktion	3. Fraktion	4. Fraktion	5. Fraktion	6. Fraktion	7. Fraktion
Al gemessen	n.n.	0,16	0,12	6,7	11	16	
Al berechnet		6,0	6,2	251	657	1026	19184
%-Anteil		0,03	0,03	1,19	3,11	4,85	90,79
Ba gemessen	21	13	6,3	5,4	16	18	
Ba berechnet	520	493	317	201	985	1101	4518
%-Anteil	6,39	6,06	3,89	2,48	12,11	13,53	55,54
Ca gemessen	232	285	3,3	5,8	n.b.	n.b.	
Ca berechnet	5798	10676	167	218			3867
%-Anteil	27,97	51,51	0,81	1,05			18,66
Cr gemessen	0,021	0,018	0,0048	0,056	0,13	0,11	
Cr berechnet	0,51	0,68	0,24	2,1	8,3	6,7	72
%-Anteil	0,57	0,76	0,27	2,32	9,26	7,39	79,88
Cu gemessen	0,20	0,29	0,054	0,55	0,13	0,18	
Cu berechnet	5,0	11	2,7	21	8,4	11	14
%-Anteil	6,81	15,11	3,71	28,41	11,51	15,33	18,72
Fe gemessen	n.n.	0,31	3,3	63	87	57	
Fe berechnet		12	166	2363	5444	3556	7749
%-Anteil		0,06	0,86	12,25	28,22	18,44	40,18
K gemessen	3,3	1,1	0,28	n.n.	0,22	1,5	
K berechnet	83	39	14		14	92	7406
%-Anteil	1,08	0,51	0,18	0,00	0,18	1,20	96,83
Mg gemessen	3,7	2,7	0,36	0,96	1,3	3,4	
Mg berechnet	93	101	18	36	80	212	1613
%-Anteil	4,30	4,71	0,83	1,67	3,73	9,85	74,90
Mn gemessen	2,5	4,0	0,55	0,50	0,72	0,28	
Mn berechnet	62	148	28	19	45	18	204
%-Anteil	11,82	28,39	5,26	3,59	8,56	3,39	39,09
Na gemessen	7,4	1,5	0,63	0,76	0,38	n.n.	
Na berechnet	184	56	32	29	24		1159
%-Anteil	12,40	3,80	2,14	1,93	1,62		78,12
Ni gemessen	0,067	0,057	0,032	0,041	0,070	0,075	
Ni berechnet	1,7	2,1	1,6	1,5	4,4	4,7	3
%-Anteil	8,72	11,06	8,21	7,89	22,73	24,26	17,14
²²⁶ Ra	0,15	0,091	0,049	0,032	0,053	0,030	
gemessen							
²²⁰ Ra	19	11	6,1	4,0	6,6	3,8	314
berechnet							
%-Anteil	5,3	3,1	1,7	1,1	1,8	1,0	86,0
Sr gemessen	3,6	1,8	0,57	0,50	0,35	0,60	
Sr berechnet	90	68	28	19	22	38	297
%-Anteil	16,02	12,05	5,04	3,34	3,87	6,70	52,99
V gemessen	0,037	0,053	0,030	0,11	0,035	0,10	
V berechnet	0,94	2,0	1,5	4,0	2,2	6,3	42
%-Anteil	1,60	3,40	2,60	6,85	3,78	10,79	70,99
Zn gemessen	0,14	3,0	0,44	1,1	1,4	1,1	
Zn berechnet	3,5	113	22	39	86	42	205
%-Anteil	0,68	22,19	4,34	7,72	16,78	8,19	40,12

 Tab. A-29: Elementkonzentrationen [ppm] und prozentuale Anteile in den unterschiedlichen Extraktionslösungen des Lippe-Sedimentes LS12.

LS14							
Element	1. Fraktion	2. Fraktion	3. Fraktion	4. Fraktion	5. Fraktion	6. Fraktion	7. Fraktion
Al gemessen	n.n.	0,058	0,12	8,3	13	19	
Al berechnet		2,2	5,9	309	798	1189	20800
%-Anteil		0,01	0,03	1,34	3,45	5,15	90,03
Ba gemessen	19	14	5,0	6,5	18	16	
Ba berechnet	485	508	249	243	1127	1028	3374
%-Anteil	6,92	7,24	3,56	3,46	16,07	14,65	48,10
Ca gemessen	227	351	5,8	9,4	n.b.	n.b.	
Ca berechnet	5675	13163	288	351			1172
%-Anteil	27,48	63,75	1,39	1,70			5,68
Cr gemessen	0,021	0,021	0,0061	0,13	0,31	0,16	
Cr berechnet	0,53	0,80	0,31	4,7	19	10	93
%-Anteil	0,41	0,63	0,24	3,70	14,93	8,04	72,37
Cu gemessen	0,17	0,18	0,050	0,75	0,16	0,17	
Cu berechnet	4,2	6,9	2,5	28	10	11	19
%-Anteil	5,09	8,41	3,02	34,48	12,39	13,08	23,41
Fe gemessen	n.n.	0,22	2,8	73	65	61	
Fe berechnet		8,1	138	2753	4044	3831	8272
%-Anteil		0,04	0,72	14,45	21,23	20,12	43,43
K gemessen	4,6	1,1	0,31	n.n.	0,27	1,8	
K berechnet	114	43	15		17	111	7873
%-Anteil	1,39	0,53	0,19		0,21	1,35	96,33
Mg gemessen	5,4	3,1	0,49	1,6	1,9	4,1	
Mg berechnet	134	117	25	59	118	257	1672
%-Anteil	5,62	4,92	1,03	2,48	4,97	10,80	70,18
Mn gemessen	3,2	6,9	1,4	1,1	0,83	0,34	
Mn berechnet	81	260	72	42	52	21	182
%-Anteil	11,45	36,55	10,11	5,92	7,27	2,97	25,67
Na gemessen	19	2,0	0,72	0,74	0,42	n.n.	
Na berechnet	478	76	36	28	26		766
%-Anteil	33,92	5,40	2,54	1,96	1,87		54,32
Ni gemessen	0,040	0,058	0,027	0,060	0,073	0,081	
Ni berechnet	0,99	2,2	1,4	2,2	4,5	5,0	5
%-Anteil	4,55	10,03	6,22	10,29	20,81	23,14	24,97
²²⁶ Ra	0,089	0,091	0,029	0,032	0,047	0,040	
gemessen							
²²⁰ Ra	11	11	3,6	4,0	5,9	5,0	254,82
berechnet		2.0	1.0	1.0	2.0	1.7	061
%-Anteil	3,8	3,9	1,2	1,3	2,0	1,7	86,1
Sr gemessen	5,2	2,4	0,51	0,64	0,38	0,53	272
Sr berechnet	130	90	26	24	24	33	273
%-Anteil	21,67	15,08	4,28	4,01	4,00	5,53	45,42
V gemessen	0,040	0,056	0,033	0,11	0,022	0,10	4.5
v berechnet	0,99	2,1	1,6	4,1	1,4	6,4	46
%-Anteil	1,60	3,57	2,62	6,60	2,26	10,29	/3,58
Zn gemessen	0,12	3,2	0,61	1,5	1,4	0,91	1 ~ 4
Zn berechnet	3,1	121	31	56	87	34	164
%-Anteil	0,62	24,35	6,16	11,53	1/,54	6,86	33,06

Tab. A-30:Elementkonzentrationen [ppm] und prozentuale Anteile in den unterschiedlichen
Extraktionslösungen des Lippe-Sedimentes LS14.

LS15							
Element	1. Fraktion	2. Fraktion	3. Fraktion	4. Fraktion	5. Fraktion	6. Fraktion	7. Fraktion
Al gemessen	n.n.	0,13	0,15	7,1	8,9	13	
Al berechnet		4,9	7,4	267	559	833	14600
%-Anteil		0,03	0,05	1,64	3,43	5,12	89,73
Ba gemessen	20	14	5,7	4,6	17	14	
Ba berechnet	508	521	287	173	1048	859	2086
%-Anteil	9,27	9,49	5,24	3,16	19,11	15,68	38,06
Ca gemessen	210	250	3,1	5,6	n.b.	n.b.	
Ca berechnet	5253	9356	156	210			1964
%-Anteil	31,01	55,24	0,92	1,24			11,60
Cr gemessen	0,019	0,016	n.n.	0,053	0,089	0,083	
Cr berechnet	0,48	0,60		2,0	5,5	5,2	131
%-Anteil	0,33	0,41		1,37	3,81	3,56	90,59
Cu gemessen	0,12	0,22	0,042	0,43	0,099	0,17	
Cu berechnet	3,1	8,3	2,1	16	6,2	11	5
%-Anteil	5,97	16,16	4,11	31,36	12,09	20,79	9,51
Fe gemessen	0,0074	0,28	2,8	56	46	50	
Fe berechnet	0,19	10	138	2096	2871	3150	6023
%-Anteil	0,00	0,07	0,96	14,67	20,09	22,04	42,15
K gemessen	3,3	1,2	0,31	n.n.	0,23	1,5	
K berechnet	82	43	16		15	92	6696
%-Anteil	1,17	0,63	0,23		0,21	1,32	96,45
Mg gemessen	2,9	2,8	0,33	0,80	1,2	3,0	
Mg berechnet	72	105	16	30	74	185	2291
%-Anteil	2,60	3,79	0,59	1,08	2,68	6,67	82,58
Mn gemessen	4,7	7,1	0,58	0,71	0,59	0,26	
Mn berechnet	116	267	29	27	37	16	111
%-Anteil	19,32	44,29	4,83	4,42	6,10	2,69	18,37
Na gemessen	5,9	1,7	0,69	0,75	0,37	n.n.	
Na berechnet	148	63	35	28	23		3976
%-Anteil	3,46	1,48	0,81	0,66	0,54		93,05
Ni gemessen	0,040	0,052	0,026	0,049	0,053	0,056	
Ni berechnet	1,0	1,9	1,3	1,8	3,3	3,5	3
%-Ante11	6,56	12,59	8,44	11,83	21,35	22,69	16,54
²²⁰ Ra	0,073	0,046	0,090	0,023	0,038	0,026	
gemessen			1.1	•	1.0		220
	9,2	5,7	11	2,9	4,8	3,3	230
berechnet	2.4	0.1	4.2	1 1	1.0	1.0	96.1
%-Anteil	3,4	2,1	4,2	1,1	1,8	1,2	80,1
Sr gemessen	3,8	1,9	0,48	0,43	0,34	0,60	152
Sr berechnet	94	/1	<u> </u>	10	<u> </u>	38	153
%-Anten	22,03	16,93	5,78	3,83	5,15	9,04	30,00
v gemessen	0,043	0,056	0,031	0,10	0,0036	0,11	22
v berechnet	1,1	<u> </u>	1,0	3,8	0,23	12 (7	20 50
%-Anten	2,22	4,38	3,27	/,88	0,47	13,0/	08,52
Zn gemessen	0,14	2,9	0,34	0,92	0,92	0,6/	07
Zn berechnet	5,6	20.62	I/	10.29	28 17 22	25	8/
%-Anteil	1,06	52,63	5,14	10,28	17,22	1,53	26,08

 Tab. A-31: Elementkonzentrationen [ppm] und prozentuale Anteile in den unterschiedlichen Extraktionslösungen des Lippe-Sedimentes LS15.
LS17							
Element	1. Fraktion	2. Fraktion	3. Fraktion	4. Fraktion	5. Fraktion	6. Fraktion	7. Fraktion
Al gemessen	n.n.	0,51	0,14	5,1	5,6	11	
Al berechnet		19	6,9	191	348	709	12520
%-Anteil		0,14	0,05	1,38	2,52	5,14	90,76
Ba gemessen	19	14	9,3	7,7	5,2	7,8	
Ba berechnet	474	540	463	290	323	485	1646
%-Anteil	11,23	12,79	10,97	6,88	7,66	11,49	38,99
Ca gemessen	201	414	2,6	5,0	n.b.	n.b.	
Ca berechnet	5028	15533	132	187			2085
%-Anteil	21,89	67,64	0,58	0,81			9,08
Cr gemessen	0,018	0,029	n.n.	0,038	0,053	0,11	
Cr berechnet	0,44	1,1		1,4	3,3	6,8	43
%-Anteil	0,79	1,95		2,58	5,89	12,26	76,53
Cu gemessen	0,071	0,14	0,035	0,21	0,045	0,027	
Cu berechnet	1,8	5,2	1,8	7,8	2,8	1,7	14
%-Anteil	5,09	15,08	5,09	22,39	8,15	4,76	39
Fe gemessen	n.n.	1,11	4,9	46	29	72	
Fe berechnet		42	244	1742	1778	4513	13042
%-Anteil		0,19	1,14	8,15	8,32	21,13	61,06
K gemessen	3,4	0,76	n.n.	n.n.	0,22	5,2	
K berechnet	86	29			14	322	6985
%-Anteil	1,15	0,38			0,19	4,33	93,95
Mg gemessen	2,8	3,8	0,27	0,57	0,95	4,0	
Mg berechnet	71	141	13	21	59	250	2598
%-Anteil	2,24	4,48	0,42	0,68	1,88	7,91	82,38
Mn gemessen	4,0	6,4	0,43	0,46	0,34	0,27	
Mn berechnet	101	239	22	17	21	17	192
%-Anteil	16,60	39,23	3,54	2,81	3,48	2,80	31,57
Na gemessen	4,9	2,0	0,64	0,85	0,29	0,37	
Na berechnet	123	74	32	32	18	23	3237
%-Anteil	3,46	2,10	0,90	0,90	0,51	0,65	91,47
Ni gemessen	0,033	0,059	0,0061	0,031	0,017	0,045	
Ni berechnet	0,81	2,2	0,31	1,2	1,1	2,8	3
%-Anteil	6,94	18,88	2,61	9,87	9,13	24,25	28,31
²²⁰ Ra	0,21	0,11	n.n.	0,058	0,048	0,018	
gemessen							
	27	13		7,3	6,0	2,3	149
berechnet	12.0	<u> </u>		2.6	2.0	1 1	72.0
%-Anteil	13,0	6,4	0.40	3,6	2,9	1,1	/3,0
Sr gemessen	3,2	2,2	0,49	0,34	0,12	0,32	101
Sr berechnet	79	84	24	13	7,3	20	131
%-Anteil	22,08	23,46	6,/8	3,56	2,04	5,50	36,60
V gemessen	0,034	0,072	0,04	0,086	0,040	0,19	17
v berechnet	0,85	2,7	2	3,2	2,5	17.00	47
%-Anteil	1,21	5,84	2,86	4,61	3,50	17,00	67,12
Zn gemessen	0,10	2,3	0,17	0,40	0,44	0,43	
Zn berechnet	2,6	86	8,5	15	27	27	70
%-Anteil	1,08	36,33	3,58	6,30	11,57	11,28	29,69

Tab. A-32: Elementkonzentrationen [ppm] und prozentuale Anteile in den unterschiedlichen Extraktionslösungen des Lippe-Sedimentes LS17.

A-38	A	-38	
------	---	-----	--

LS19							
Element	1. Fraktion	2. Fraktion	3. Fraktion	4. Fraktion	5. Fraktion	6. Fraktion	7. Fraktion
Al gemessen	n.n.	0,63	0,14	4,9	6,8	8,9	
Al berechnet		23,55	7,035	182,2875	423,125	555	13561
%-Anteil		0,16	0,05	1,24	2,87	3,76	91,92
Ba gemessen	16	5,9	6,7	5,3	9,7	4,1	
Ba berechnet	393	222	336	198	609	259	1693
%-Anteil	10,58	5,99	9,06	5,35	16,41	6,98	45,64
Ca gemessen	210	188	1,8	5,6	n.b.	n.b.	
Ca berechnet	5260	7058	90	210			9395
%-Anteil	23,89	32,06	0,41	0,96			42,68
Cr gemessen	0,016	0,014	n.n.	0,033	0,046	0,073	
Cr berechnet	0,4	0,54		1,2	2,9	4,6	71
%-Anteil	0,49	0,67		1,50	3,53	5,66	88,01
Cu gemessen	0,065	0,13	0,034	0,17	0,047	0,024	
Cu berechnet	1,6	4,7	1,7	6,2	3,0	1,5	11
%-Anteil	5,39	15,78	5,68	20,63	9,85	5,00	37,67
Fe gemessen	n.n.	1,3	4,5	44	40	83	
Fe berechnet		50	227	1667	2516	5169	12268
%-Anteil		0,23	1,04	7,61	11,49	23,60	56,03
K gemessen	2,8	0,79	n.n.	n.n.	0,25	3,7	
K berechnet	70	29			15	233	7662
%-Anteil	0,87	0,37			0,19	2,91	95,66
Mg gemessen	2,7	3,6	0,26	0,61	1,7	3,4	
Mg berechnet	68	136	13	23	109	214	1493
%-Anteil	3,30	6,63	0,63	1,12	5,30	10,42	72,62
Mn gemessen	2,4	3,8	0,23	0,28	0,70	0,25	
Mn berechnet	59	143	11	11	44	16	162
%-Anteil	13,26	32,16	2,56	2,36	9,78	3,51	36,30
Na gemessen	4,9	1,9	0,67	0,77	0,35	0,21	
Na berechnet	123	72	34	29	22	13	1266
%-Anteil	7,89	4,62	2,15	1,86	1,38	0,85	81,25
N1 gemessen	0,034	0,048	0,0041	0,026	0,017	0,039	
N1 berechnet	0,85	1,8	0,21	0,96	1,1	2,4	6
%-Anteil	6,14	13,15	1,49	6,93	/,/4	17,53	47,02
Ra	0,19	0,09	0,031	0,1	0,023	0,011	
gemessen ²²⁶ D a	24	11	2.0	12	2.0	1 4	00
Kä berechnet	24	11	5,9	15	2,9	1,4	90
%-Anteil	16.3	77	27	8.6	2.0	0.9	61.8
Sr gemessen	2.6	1.8	0.37	0.26	0.27	0.18	01,0
Sr berechnet	2,0	67	18	9.6	17	0,18	122
%-Anteil	21.13	21.61	5 89	3 10	5 42	3 62	39.27
V gemessen	0.032	0.048	0.033	0.078	0.050	0.14	57,21
V berechnet	0,032	1 8	1 7	20	2 2	0,14 & 0	15
%-Anteil	1 25	2 82	2 58	<u> </u>	4 92	13.89	70 14
70-7 million 7n gemessen	0.00/	0.80	0.11	0.20	0.46	0.35	70,14
Zn berechnet	2 1	30	5 3	11	20,40	0,33	110
%-Δnteil	2,4	14 21	2,5	5 25	13 75	10 37	52.60
/0-111011	1,12	14,41	2,55	5,45	15,75	10,57	52,00

 Tab. A-33: Elementkonzentrationen [ppm] und prozentuale Anteile in den unterschiedlichen Extraktionslösungen des Lippe-Sedimentes LS19.

LS21							
Element	1. Fraktion	2. Fraktion	3. Fraktion	4. Fraktion	5. Fraktion	6. Fraktion	7. Fraktion
Al gemessen	n.n.	0,15	0,10	2,7	6,0	9,0	
Al berechnet		5,69625	5,17	100,9125	373,75	561,875	15117
%-Anteil		0,04	0,03	0,62	2,31	3,48	93,52
Ba gemessen	11	12	7,9	5,8	8,1	3,7	
Ba berechnet	286	446	397	216	509	230	617
%-Anteil	10,58	16,50	14,70	7,99	18,84	8,53	22,85
Ca gemessen	139	169	1,8	4,5	n.b.	n.b.	
Ca berechnet	3485	6353	89	170			2361
%-Anteil	27,98	51,00	0,71	1,37			18,95
Cr gemessen	0,018	0,0009	n.n.	0,012	0,056	0,068	
Cr berechnet	0,46	0,034		0,44	3,5	4,3	41
%-Anteil	0,92	0,07		0,88	7,04	8,54	82,37
Cu gemessen	0,046	0,033	n.n.	0,11	0,040	0,018	
Cu berechnet	1,2	1,2		4,1	2,5	1,1	11
%-Anteil	5,56	5,98		19,95	12,20	5,40	50,92
Fe gemessen	n.n.	0,18	2,5	28	26	49	
Fe berechnet		6,8	124	1051	1619	3076	6888
%-Anteil		0,05	0,97	8,24	12,68	24,10	53,96
K gemessen	4,0	0,25	n.n.	n.n.	0,24	1,8	
K berechnet	101	9,3			15	109	7737
%-Anteil	1,27	0,12			0,19	1,37	97,05
Mg gemessen	1,6	2,1	0,050	0,28	0,68	4,4	
Mg berechnet	40	79	2,5	11	42	275	2354
%-Anteil	1,44	2,83	0,09	0,38	1,50	9,81	83,94
Mn gemessen	0,96	1,9	0,27	0,16	0,24	0,23	
Mn berechnet	24	73	14	6,0	15	14	88
%-Anteil	10,21	31,14	5,79	2,58	6,54	6,06	37,74
Na gemessen	3,2	1,2	0,19	0,57	0,34	0,70	
Na berechnet	81	43	9,7	21	21	43	5018
%-Anteil	1,54	0,83	0,19	0,40	0,40	0,82	95,81
Ni gemessen	0,041	0,030	n.n.	n.n.	0,011	0,061	
Ni berechnet	1,0	1,1			0,71	3,8	7
%-Anteil	7,28	7,88			5,13	27,34	52,37
²²⁶ Ra	0,13	0,016	0,032	0,059	0,018	0,012	
gemessen							
²²⁶ Ra	16	2,0	4,0	7,4	2,3	1,5	65
berechnet							
%-Anteil	16,0	2,0	4,1	7,6	2,3	1,5	66,4
Sr gemessen	1,7	1,4	0,38	0,28	0,23	0,16	
Sr berechnet	41	51	19	11	15	10	63
%-Anteil	19,70	24,38	9,15	5,08	6,95	4,83	29,86
V gemessen	0,039	0,011	0,018	0,054	0,044	0,095	
V berechnet	0,98	0,40	0,88	2,0	2,8	5,9	18
%-Anteil	3,18	1,29	2,87	6,60	9,00	19,36	57,70
Zn gemessen	0,10	1,4	0,13	0,22	0,38	0,29	
Zn berechnet	2,6	51	6,6	8,4	24	18	34
%-Anteil	1,79	35,45	4,58	5,82	16,24	12,63	23,49

Tab. A-34: Elementkonzentrationen [ppm] und prozentuale Anteile in den unterschiedlichen Extraktionslösungen des Lippe-Sedimentes LS21.

LS22							
Element	1. Fraktion	2. Fraktion	3. Fraktion	4. Fraktion	5. Fraktion	6. Fraktion	7. Fraktion
Al gemessen	n.n.	1,2	0,15	1,2	2,2	8,0	
Al berechnet		44	7,7	46	139	503	15145
%-Anteil		0,28	0,05	0,29	0,88	3,16	95,35
Ba gemessen	14	6,3	0,71	1,3	5,0	0,44	
Ba berechnet	344	237	35	47	313	28	1
%-Anteil	34,24	23,61	3,51	4,68	31,13	2,76	0,08
Ca gemessen	186	57	0,82	1,1	n.b.	n.b.	
Ca berechnet	4653	2141	41	42			3000
%-Anteil	47,10	21,68	0,41	0,43			30,38
Cr gemessen	0,0165	0,037	n.n.	0,011	0,025	0,093	
Cr berechnet	0,39	1,4		0,41	1,5	5,8	25
%-Anteil	1,12	3,97		1,19	4,45	16,79	72,49
Cu gemessen	0,035	0,075	0,031	0,066	0,020	0,018	
Cu berechnet	0,88	2,8	1,5	2,5	1,2	1,1	
%-Anteil	11,36	36,33	19,94	32,00	15,91	14,85	
Fe gemessen	n.n.	3,7	2,4	8,9	13	50	
Fe berechnet		138	120	332	796	3123	5051
%-Anteil		1,45	1,26	3,48	8,33	32,66	52,83
K gemessen	1,2	0,43	n.n.	n.n.	0,18	1,4	
K berechnet	30	16			11	88	8098
%-Anteil	0,37	0,20			0,14	1,07	98,22
Mg gemessen	1,6	1,1	0,13	0,18	0,78	3,5	
Mg berechnet	41	40	6,3	6,6	49	216	5570
%-Anteil	0,68	0,67	0,11	0,11	0,82	3,64	93,97
Mn gemessen	1,1	1,9	0,76	0,10	0,18	0,19	
Mn berechnet	27,7	71	38	3,9	11	12	73
%-Anteil	11,68	30,05	15,95	1,65	4,79	5,02	30,90
Na gemessen	3,1	1,0	0,66	0,67	0,17	0,21	
Na berechnet	77	38	33	25	12	13	1167
%-Anteil	5,64	2,79	2,42	1,84	0,86	0,96	85,50
Ni gemessen	0,032	0,033	0,0051	0,026	0,014	0,051	
Ni berechnet	0,80	1,2	0,26	0,96	0,88	3,2	2
%-Ante11	8,27	12,64	2,63	9,90	9,02	32,80	24,74
²²⁰ Ra	0,1	0,052	0,005	0,005	0,03	0,001	
gemessen 226p	12		0.62	0.62		0.12	11
²²⁰ Ra	13	6,5	0,63	0,63	3,8	0,13	11
04 Antoil	35.0	197	1 9	1.9	10.8	0.4	30.7
70-Anten	33,9	0.40	1,0	1,0	10,8	0,4	30,7
SI gemessen	1,0	0,49	0,033	0,13	0,14	0,013	1
% Antoil	39 10 70	19 72 11	2,8 2,19	4,8	0,/	0,78	5 1 2
V gomassar	47,78	23,44 0.074	3,48 0.019	0,00	0.010	0,99	3,12
v gemessen V berechnet	0,027	0,074	0,018	0,037	0,019	0,091	12
v berechnet	0,09	2,8	2.52	1,4 5 27	1,2	3,/ 21.90	50.09
70-Anten	2,03	10,07	3,32	3,37	4,04	21,00	50,98
Zii gemessen Zn borochnot	0,055	0,00	0,040	0,11	0,20	0,22	2
2.11 Derechnet	1,4	20 26	2,0	4,1	10	14 21 14	2 60
%-Anten	2,12	38,26	3,13	6,39	23,23	21,10	3,69

 Tab. A-35: Elementkonzentrationen [ppm] und prozentuale Anteile in den unterschiedlichen Extraktionslösungen des Lippe-Sedimentes LS22.

LS5							
Element	1. Fraktion	2. Fraktion	3. Fraktion	4. Fraktion	5. Fraktion	6. Fraktion	7. Fraktion
Al gemessen	n.n.	0,52	0,15	3,7	3,2	1,9	
Al berechnet		19	7,5	137	198	121	7212
%-Anteil		0,25	0,10	1,78	2,58	1,58	93,71
Ba gemessen	20	27	23	20	27	43	
Ba berechnet	488	1015	1162	737	1717	2668	560113
%-Anteil	0,09	0,18	0,20	0,13	0,30	0,47	98,63
Ca gemessen	84	20	1,1	2,4	n.b.	n.b.	
Ca berechnet	2100	731	56	90			5763
%-Anteil	24,02	8,37	0,64	1,03			65,93
Cr gemessen	n.n.	n.n.	n.n.	n.n.	0,022	0,014	
Cr berechnet					1,4	0,90	134
%-Anteil					0,99	0,66	98,35
Cu gemessen	n.n.	0,027	0,0079	0,064	0,033	0,013	
Cu berechnet		1,0	0,40	2,4	2,1	0,83	9
%-Anteil		6,18	2,44	14,77	12,89	5,09	58,63
Fe gemessen	0,0051	12	13	171	149	12	
Fe berechnet	0,13	467	667	6420	9281	761	7505
%-Anteil	0,00	1,86	2,66	25,58	36,98	3,03	29,90
K gemessen	1,7	0,52	n.n.	n.n.	0,53	0,73	
K berechnet	43	20			33	46	1691
%-Anteil	2,32	1,07			1,81	2,49	92,33
Mg gemessen	2,7	1,1	0,076	0,18	0,46	0,69	
Mg berechnet	67	43	3,8	6,8	28	43	4596
%-Anteil	1,39	0,89	0,08	0,14	0,60	0,91	96,00
Mn gemessen	0,53	2,5	1,8	0,16	0,15	0,041	
Mn berechnet	13	92	92	5,9	9,7	2,6	96
%-Anteil	4,28	29,57	29,53	1,91	3,10	0,82	30,89
Na gemessen	5,2	1,2	0,35	0,49	0,45	0,86	
Na berechnet	129	45	17	18	28	54	21224
%-Anteil	0,60	0,21	0,08	0,08	0,13	0,25	98,65
Ni gemessen	0,0087	0,028	0,0073	n.n.	n.n.	0,0092	n.n.
Ni berechnet	0,22	1,06	0,37			0,58	
%-Anteil							
²²⁶ Ra	0,18	0,16	0,06	0,067	0,078	0,16	
gemessen							
²²⁰ Ra	23	20	7,5	8,4	9,8	20	14912
berechnet	0.1.7	0.10	0.07	0.0.6	0.05	0.10	
%-Anteil	0,15	0,13	0,05	0,06	0,07	0,13	99,4
Sr gemessen	16	7,6	2,3	2,4	2,3	5,1	
Sr berechnet	395	287	116	89	142	316	40164
%-Anteil	0,95	0,69	0,28	0,21	0,34	0,76	96,76
V gemessen	0,0061	0,0011	0,018	0,065	0,045	0,011	
V berechnet	0,15	0,041	0,9	2,5	2,8	0,69	2712
%-Anteil	0,01	0,00	0,03	0,09	0,10	0,03	99,74
Zn gemessen	0,088	2,9	0,42	0,64	0,62	0,12	
Zn berechnet	2,2	109	21	24	39	7,5	164
%-Anteil	0,60	29,90	5,73	6,59	10,55	2,06	44,68

Tab. A-36: Elementkonzentrationen [ppm] und prozentuale Anteile in den unterschiedlichen Extraktionslösungen des Sickingmühlenbach-Sedimentes LS5.

LS6							
Element	1. Fraktion	2. Fraktion	3. Fraktion	4. Fraktion	5. Fraktion	6. Fraktion	7. Fraktion
Al gemessen	n.n.	7,6	0,68	14	32	18	
Al berechnet		285	34	522	1993	1128	21212
%-Anteil		1,13	0,13	2,07	7,92	4,48	84,26
Ba gemessen	15	17	19	20	30	37	
Ba berechnet	370	648	926	734	1863	2301	359357
%-Anteil	0,10	0,18	0,25	0,20	0,51	0,63	98,13
Ca gemessen	283	183	4,6	12	n.b.	n.b.	
Ca berechnet	7083,5	6855	229	468			11080
%-Anteil	27,54	26,66	0,89	1,82			43,09
Cr gemessen	0,020	0,040	n.n.	0,032	0,15	0,12	
Cr berechnet	0,51	1,5		1,2	9,5	7,6	298
%-Anteil	0,16	0,48		0,37	2,97	2,38	93,64
Cu gemessen	0,13	0,24	0,036	0,52	0,22	0,030	
Cu berechnet	3,3	9,0	1,8	20	14	1,9	49
%-Anteil	3,41	9,15	1,85	19,97	13,97	1,93	49,51
Fe gemessen	0,032	13	10	116	182	51	
Fe berechnet	0,81	469	501	4358	11394	3169	11114
%-Anteil	0,00	1,51	1,62	14,05	36,75	10,22	35,85
K gemessen	6,3	0,79	n.n.	n.n.	0,80	2,5	
K berechnet	157	30			50	153	6675
%-Anteil	2,22	0,42			0,71	2,17	94,48
Mg gemessen	5,5	5,8	0,92	3,7	7,8	5,4	
Mg berechnet	139	217	46	137	486	335	3645
%-Anteil	2,77	4,34	0,92	2,74	9,72	6,69	72,82
Mn gemessen	1,0	2,5	0,12	0,67	1,3	0,35	
Mn berechnet	26	94	5,9	25	84	22	127
%-Anteil	6,82	24,52	1,55	6,56	21,91	5,72	32,96
Na gemessen	62	4,8	0,70	0,92	1,2	1,2	
Na berechnet	1545	180	35	35	75	77	19272
%-Anteil	7,28	0,85	0,17	0,16	0,35	0,36	90,83
Ni gemessen	0,050	0,098	0,0083	0,050	0,031	0,071	
Ni berechnet	1,3	3,7	0,42	1,9	2,0	4,4	23
%-Anteil	3,40	9,91	1,12	5,03	5,28	11,99	63,26
²²⁶ Ra	0,18	0,078	0,062	0,10	0,11	0,12	
gemessen							
²²⁶ Ra	23	9,8	7,8	13	14	15	10908
berechnet							
%-Anteil	0,21	0,09	0,07	0,12	0,13	0,13	99,3
Sr gemessen	10	4,9	2,2	2,5	1,6	3,8	
Sr berechnet	249	184	110	93	99	235	16460
%-Anteil	1,43	1,05	0,63	0,54	0,57	1,35	94,43
V gemessen	0,040	0,075	0,18	0,72	0,82	0,12	
V berechnet	1,0	2,8	9,2	27	51	7,6	1083
%-Anteil	0,09	0,24	0,78	2,30	4,33	0,64	91,63
Zn gemessen	1,5	14	1,0	2,7	3,0	0,66	
Zn berechnet	37	518	50	100	186	41	446
%-Anteil	2,66	37,61	3,63	7,27	13,49	2,98	32,36

Tab. A-37: Elementkonzentrationen [ppm] und prozentuale Anteile in den unterschiedlichen Extraktionslösungen des Sickingmühlenbach-Sedimentes LS6.

FS1							
Element	1. Fraktion	2. Fraktion	3. Fraktion	4. Fraktion	5. Fraktion	6. Fraktion	7. Fraktion
Al gemessen	n.n.	0,80	0,31	3,1	5,8	9,2	
Al berechnet		30	16	117	360	575	30433
%-Anteil		0,09	0,05	0,37	1,14	1,82	96,52
Ba gemessen	29	23	18	14	26	42	
Ba berechnet	718	844	922	536	1643	2633	170004
%-Anteil	0,41	0,48	0,52	0,30	0,93	1,49	95,89
Ca gemessen	131	54	2,2	8,0	n.b.	n.b.	
Ca berechnet	3265	2029	108	302			9220
%-Anteil	21,88	13,59	0,72	2,02			61,78
Cr gemessen	0,02	0,0049	n.n.	0,0025	0,045	0,050	
Cr berechnet	0,5	0,18		0,094	2,8	3,1	380
%-Anteil	0,13	0,05		0,02	0,72	0,81	98,26
Cu gemessen	0,045	0,072	n.n.	0,067	0,052	0,016	
Cu berechnet	1,1	2,7		2,5	3,2	1,0	37
%-Anteil	2,34	5,61		5,27	6,72	2,11	77,94
Fe gemessen	n.n.	0,77	4,7	27	60	46	
Fe berechnet		29	234	1025	3738	2861	9375
%-Anteil		0,17	1,35	5,94	21,65	16,57	54,31
K gemessen	4,9	0,16	n.n.	n.n.	0,35	1,0	
K berechnet	123	6,2			22	64	12728
%-Anteil	0,95	0,05			0,17	0,50	98,34
Mg gemessen	3,6	4,4	0,49	3,0	6,4	4,6	
Mg berechnet	89	165	25	114	398	285	3646
%-Anteil	1,89	3,49	0,52	2,41	8,43	6,04	77,23
Mn gemessen	13	20	3,4	1,2	2,0	0,61	
Mn berechnet	320	740	172	46	123	38	449
%-Anteil	16,93	39,21	9,09	2,42	6,52	2,01	23,79
Na gemessen	55	3,3	0,27	0,45	0,48	0,80	
Na berechnet	1385	125	13	17	30	50	12401
%-Anteil	9,88	0,89	0,09	0,12	0,22	0,36	88,44
Ni gemessen	0,067	0,067	0,0099	0,019	0,029	0,055	
Ni berechnet	1,7	2,5	0,50	0,72	1,8	3,5	22
%-Anteil	5,15	7,72	1,53	2,23	5,61	10,68	67,07
²²⁰ Ra	0,26	0,11	0,051	0,083	0,11	0,10	
gemessen							
	32	14	6,4	10	14	13	7991
berechnet	0.4	0.2	0.1	0.1	0.2	0.2	08.0
%-Anteil	0,4	0,2	0,1	0,1	0,2	0,2	98,9
Sr gemessen	3,3	1,8	1,0	0,77	0,64	2,4	0751
Sr berechnet	84	6/	51	29	40	148	8/51
%-Anteii	0,91	0,73	0,00	0,31	0,44	1,01	95,44
V gemessen	0,037	0,012	0,0068	0,033	0,048	0,060	F (2)
v berechnet	0,91	0,46	0,34	1,2	3,0	3,7	563
%-Anteil	0,16	0,08	0,06	0,21	0,52	0,65	98,32
Zn gemessen	2,3	12	0,59	0,69	1,2	0,43	0.7.5
Zn berechnet	58	467	30	26	75	27	256
%-Anteil	6,19	49,73	3,17	2,75	8,03	2,83	27,27

Tab. A-38: Elementkonzentrationen [ppm] und prozentuale Anteile in den unterschiedlichen Extraktionslösungen des Fossa Eugeniana-Sedimentes FS1.

FS4							
Element	1. Fraktion	2. Fraktion	3. Fraktion	4. Fraktion	5. Fraktion	6. Fraktion	7. Fraktion
Al gemessen	n.n.	0,17	0,14	9,0	19	41	
Al berechnet		6,4	6,8	339	1218	2567	54192
%-Anteil		0,01	0,01	0,58	2,09	4,40	92,91
Ba gemessen	20	17	14	12	20	19	
Ba berechnet	488	622	711	453	1232	1200	15215
%-Anteil	2,45	3,12	3,57	2,28	6,18	6,02	76,38
Ca gemessen	186	56	5,9	15	n.b.	n.b.	
Ca berechnet	4640	2104	295	566			1587
%-Anteil	50,48	22,89	3,20	6,16			17,26
Cr gemessen	0,020	0,0008	0,003	0,030	0,104	0,14	
Cr berechnet	0,51	0,03	0,15	1,1	6,5	8,4	102
%-Anteil	0,43	0,03	0,13	0,95	5,43	7,08	85,96
Cu gemessen	0,19	0,13	0,026	0,94	0,27	0,035	
Cu berechnet	4,7	5,0	1,3	35	17	2,2	37
%-Anteil	4,56	4,94	1,29	34,45	16,44	2,15	36,17
Fe gemessen	0,0033	0,14	5,0	120	139	104	
Fe berechnet	0,083	5,3	252	4500	8700	6488	9325
%-Anteil	0,00	0,02	0,86	15,37	29,72	22,16	31,86
K gemessen	9,5	0,41	n.n.	n.n.	0,72	2,4	
K berechnet	238	15			45	149	16772
%-Anteil	1,38	0,09			0,26	0,87	97,41
Mg gemessen	14	10	1,1	4,5	6,9	11	
Mg berechnet	344	384	55	168	429	690	4406
%-Anteil	5,32	5,94	0,85	2,59	6,62	10,65	68,04
Mn gemessen	2,8	7,4	2,9	1,1	1,7	0,70	
Mn berechnet	69	278	146	41	106	44	133
%-Anteil	8,45	34,01	17,88	5,04	12,94	5,37	16,32
Na gemessen	68	3,6	0,27	0,52	0,85	0,96	
Na berechnet	1698	136	14	20	53	60	1745
%-Anteil	45,58	3,65	0,37	0,53	1,42	1,61	46,85
Ni gemessen	0,059	0,10	0,017	0,049	0,058	0,13	
Ni berechnet	1,5	3,9	0,85	1,8	3,6	7,9	31
%-Anteil	2,92	7,75	1,69	3,62	7,14	15,74	61,16
²²⁶ Ra	0,21	0,06	0,10	0,12	0,054	0,074	
gemessen							
²²⁶ Ra	25,8	7,5	12,9	15,3	6,8	9,3	1106
berechnet							
%-Anteil	2,2	0,6	1,1	1,3	0,6	0,8	93,5
Sr gemessen	4,5	2	1,0	0,87	0,44	0,92	
Sr berechnet	113	75	52	33	27	57	870
%-Anteil	9,19	6,11	4,23	2,67	2,22	4,68	70,91
V gemessen	0,034	0,030	0,014	0,094	0,12	0,18	
V berechnet	0,85	1,1	0,72	3,5	7,8	11	126
%-Anteil	0,56	0,74	0,48	2,32	5,14	7,47	83,41
Zn gemessen	0,42	9,6	1,6	2,3	4,3	1,5	
Zn berechnet	10	360	80	88	267	92	156
%-Anteil	0,99	34,15	7,59	8,32	25,39	8,74	14,82

Tab. A-39:Elementkonzentrationen [ppm] und prozentuale Anteile in den unterschiedlichen
Extraktionslösungen des Sickingmühlenbach-Sedimentes FS4.

ES5			-				
F 55 Flement	1 Fraktion	2 Fraktion	3 Fraktion	4 Fraktion	5 Fraktion	6 Fraktion	7 Fraktion
	1. Flakuon	2. Flaktion	0.22	4. Flakuoli 1 2	2.171aKtioli		7. 1 ⁻¹ aktion
Al gennessen	11.11.	0,39	0,23	1,3	2,0	8,0 501	22/05
$\%_{-}$ Anteil		0.06	0.05	0.21	0.76	2 15	96 77
70-Anten	19	0,00	5.2	0,21	5.9	2,13	90,77
Da gemessen Da baraabnat	18	296	3,5	2,7	3,8	2,0	1408
04 Antoil	14.82	12 41	203	3 28	11 57	4 10	1408
70-Anten	14,02	12,41	0,47	3,28	11, <i>J</i> 7	4,10	45,54
Ca berechnet	2743	3405	2,7	9,1	п.о.	п.о.	6707
% Anteil	26.08	23 73	0.03	2 53			46.73
Cr. gomosson	20,00	0.002	0,75	0.0037	0.030	0.053	40,75
Cr berechnet	0,018	0,002	11.11.	0,0037	0,039	0,055	34
% Anteil	0,44	0,073		0,14	2,3 6.09	3,3 8 30	83.07
/o-Anten	0.027	0,19	n n	0,33	0,09	0,0076	03,97
Cu gemessen	0,027	0,030	11.11.	0,020	0,022	0,0076	19
% Antoil	0,07	1,13		0,73	1,4	0,48	80.66
70-Anten	2,94	4,93	4.2	3,31	0,00	2,08	80,00
Fe gemessen	<u> 11.11.</u>	0,74	4,5	20	2426	47	8047
⁰ / ₄ Antoil		20	1 30	708	2430	10.24	0947 58 31
70-Anten	2.2	0,18	1,39	5,00	13,88	19,24	56,51
K gemessen K berechnet	2,2	0,030	n.n.	n.n.	0,32	0,41	11072
N Derecillet	0.40	1,1			20	0.22	00.10
%-Anten	0,49	0,01	0.72	2.2	0,18	0,23	99,10
Mg gemessen	2,2	7,0	0,72	3,3	5,0	4,2	1090
Mg berechnet	1.92	284	30	124	10.11	203	1989
%-Anten	1,82	9,21	1,17	4,04	10,11	8,00	04,94
Mn gemessen	3,7	0,5	3,2	0,40	0,03	0,27	120
Will berechnet	93	243	22.42	2 45	556	2.40	10.68
%-Anten	13,12	34,32	22,43	2,43	5,50	2,40	19,08
Na gemessen	17	1,2	0,20	0,61	0,45	0,29	2545
Na berechnet	423	43	9,8	23	28	18	2343
%-Anten	13,73	1,43	0,52	0,74	0,90	0,39	82,20
Ni berechnet	0,072	0,048	n.n.	n.n.	0,010	0,043	12
NI berechnet	1,0	1,0			1,0	2,7	62 12
²²⁶ D a	9,51	9,30	0.027	0.029	3,23	13,92	02,15
Ka	0,19	0,089	0,037	0,028	0,014	0,022	
	24	11	1.6	3.5	1.9	28	03
Na berechnet	24	11	4,0	5,5	1,0	2,0	55
%-Anteil	17.1	7.9	33	2.5	13	2.0	65.9
Sr gemessen	16	0.75	0.30	0.16	0.17	0.083	05,7
Sr berechnet	41	28	15	61	10	5.2	121
%-Anteil	17 94	12.44	6 55	2.71	4 62	2.29	53 50
V gemessen	0.036	0.021	0.0058	0.021	0.030	0.059	55,50
V berechnet	0,030	0,021	0,0030	0,021	1 8	37	29
%-Anteil	2 39	2.12	0,29	2.09	4 96	9.85	77 82
Zn gemessen	0.52	2,12	0.15	0.27	0.71	0.23	11,02
Zn berechnet	13	<u>2,0</u> 96	7 A	10	<u> </u>	14	239
%-Anteil	3 05	22.55	1 74	2.42	10.41	3 42	56 45
	5,05	,00	1 ,71	2, .2		5,12	

Tab. A-40:Elementkonzentrationen [ppm] und prozentuale Anteile in den unterschiedlichen
Extraktionslösungen des Sickingmühlenbach-Sedimentes FS5.

LB3-1							
Element	1. Fraktion	2. Fraktion	3. Fraktion	4. Fraktion	5. Fraktion	6. Fraktion	7. Fraktion
Al gemessen	n.n.	n.n.	n.n.	18	40	49	
Al berechnet				675	2506	1838	21371
%-Anteil				2,56	9,50	6,96	80,98
Ba gemessen	13	11	11	18	26	34	
Ba berechnet	325	413	550	675	1625	1275	8538
%-Anteil	2,43	3,08	4,10	5,04	12,13	9,51	63,71
Ca gemessen	272	507	26	29	n.b.	n.b.	
Ca berechnet	6800	19013	1300	1088			
%-Anteil	24,60	68,79	4,70	3,93			
Cr gemessen	n.n.	n.n.	n.n.	0,098	0,27	0,27	
Cr berechnet				3,7	17	10	104
%-Anteil				2,70	12,50	7,50	77,20
Cu gemessen	0,21	0,090	n.n.	1,5	0,29	0,056	
Cu berechnet	5,3	3,4		56	18	2,1	38
%-Anteil	4,28	2,74		45,84	14,77	1,71	30,66
Fe gemessen	n.n.	n.n.	1,7	166	125	149	
Fe berechnet			85	6225	7813	5588	7060
%-Anteil			0,32	23,25	29,18	20,87	26,37
K gemessen	8,7	0,37	0,23	1,3	0,72	3,4	
K berechnet	218	14	12	49	45	128	8908
%-Anteil	2,32	0,15	0,12	0,52	0,48	1,36	95,05
Mg gemessen	7,3	2,6	0,34	3,9	4,6	8,5	
Mg berechnet	183	98	17	146	288	319	2141
%-Anteil	5,72	3,06	0,53	4,58	9,01	9,99	67,10
Mn gemessen	4,2	8,7	5,2	4,5	2,3	0,83	
Mn berechnet	105	326	260	169	144	31	86
%-Anteil	9,37	29,10	23,19	15,05	12,82	2,78	7,68
Na gemessen	34	2,5	0,29	0,96	0,82	0,92	
Na berechnet	850	94	15	36	51	35	220
%-Anteil	65,38	7,21	1,12	2,77	3,94	2,65	16,92
Ni gemessen	0,019	0,037	0,016	0,078	0,080	0,17	
Ni berechnet	0,48	1,4	0,81	2,9	5,0	6,4	21
%-Anteil	1,30	3,60	2,10	7,70	13,20	16,80	55,35
²²⁶ Ra	0,14	0,057	0,065	0,11	0,090	0,17	
gemessen							
²²⁶ Ra	17	7,1	8,1	13	11	21	443
berechnet							
%-Anteil	3,30	1,40	1,60	2,50	2,20	4,00	85,00
Sr gemessen	5,9	3,2	0,96	1,3	0,79	1,3	
Sr berechnet	148	120	48	49	49	49	495
%-Anteil	15,40	12,53	5,01	5,09	5,16	5,09	51,73
V gemessen	0,031	0,028	0,054	0,31	0,23	0,31	
V berechnet	0,78	1,0	2,7	12	14	12	57
%-Anteil	0,78	1,04	2,71	11,68	14,45	11,68	57,66
Zn gemessen	0,17	2,2	1,800	7,3	3,2	2,3	
Zn berechnet	4,3	83	90	274	200	86	
%-Anteil							

 Tab. A-41: Elementkonzentrationen [ppm] und prozentuale Anteile in den unterschiedlichen Extraktionslösungen des Lippe-Bodens LB3-1.

I R3_2							
Element	1 Fraktion	2 Fraktion	3 Fraktion	4 Fraktion	5 Fraktion	6 Fraktion	7 Fraktion
Al gemessen	n n	n n	n n	11	27	0. 1 Taxtion	7.1 Tuktion
Al berechnet				413	1688	1650	22990
%-Anteil				1 54	6 31	6.17	85.98
Po gomosson	17	10	0	1,54	10	0,17	05,70
Ba barachnat	17	375	450	450	119	825	5006 5
$\%_{-}$ Anteil	423	4 30	5 16	5 16	13.62	9.46	57.42
Co gomosson		4,30	5,10	18	n h	,40	57,42
Ca berechnet	6425	18000	700	675	п.о.	11.0.	4060
%_Anteil	21.52	60.28	2 34	2.26			13.60
Cr. gemessen	n n	n n	n n	0.069	0.18	0.22	13,00
Cr berechnet			11.11.	2.6	11	83	74.8
%-Anteil				2,0	11 61	8 51	77.21
Cu gemessen	0.12	0.030	nn	2,07	0.21	0.056	//,21
Cu berechnet	3.0	0,039	11.11.	38	13	0,030	29.9
%-Anteil	3,0	1,5		43.05	15 07	2,1	34 35
Fe gemessen	n n	n n	14	45,05 90	89	150	54,55
Fe berechnet			70	3375	5563	5625	9088
%-Anteil			0.30	14 23	23.45	23 71	38 31
K gemessen	2.5	0.11	0.23	1 1	0.47	23,71	50,51
K berechnet	63	4 1	12	41	29	105	9173
%-Anteil	0.66	0.04	0.12	0.44	0.31	1 11	97 31
Mg gemessen	4 3	23	0.31	2.5	3.1	7.4	77,51
Mg berechnet	108	86	16	94	194	278	2196
%-Anteil	3 62	2 90	0.52	3 16	6.52	9 34	73.93
Mn gemessen	11	33	7.2	1.5	0.93	0.57	15,75
Mn berechnet	28	124	360	1,5 56	58	21	227
%-Anteil	3 15	14 16	41 19	6 44	6 65	2.45	25.97
Na gemessen	3.2	1 4	0.26	0.81	0.61	0.72	20,77
Na berechnet	80	53	13	30	38	27	1059
%-Anteil	615	4 04	1 00	2.34	2.93	2.08	81.46
Ni gemessen	n n	0.021	0.014	0.085	0.037	0.14	01,10
Ni berechnet		0.78	0.70	3.2	23	53	13.2
%-Anteil		3.07	2.74	12.55	9.10	20.67	51.87
²²⁶ Ra	0.094	0.037	0.12	0.035	0.051	0.023	
gemessen	0,091	0,057	0,12	0,035	0,001	0,025	
²²⁶ Ra	12	4.6	16	4.4	6.4	2.9	348
berechnet		.,-		- , -	-,-	_,-	
%-Anteil	3,00	1,20	3,90	1,10	1,60	0,70	88,40
Sr gemessen	3,7	2,4	0,6	0,71	0,55	0,78	
Sr berechnet	93	90	30	27	34	29	344
%-Anteil	14,30	13,91	4,64	4,12	5,31	4,52	53,21
V gemessen	0,016	0,011	0,021	0,15	0,17	0,29	
V berechnet	0,40	0,40	1,0	5,6	11	11	52
%-Anteil	0,50	0,53	1,27	6,99	13,20	13,51	64,00
Zn gemessen	0,088	1,4	1,1	3,4	1,4	1.9	
Zn berechnet	2,2	53	55	128	88	71	131
%-Anteil	0.42	9.97	10.44	24.20	16.61	13.53	24.84

 Tab. A-42:
 Elementkonzentrationen [ppm] und prozentuale Anteile in den unterschiedlichen

 Extraktionslösungen des Lippe-Bodens LB3-2.

FB1-1							
Element	1. Fraktion	2. Fraktion	3. Fraktion	4. Fraktion	5. Fraktion	6. Fraktion	7. Fraktion
Al gemessen	n.n.	n.n.	n.n.	5,6	29	50	
Al berechnet				210	1813	1875	31293
%-Anteil				0,60	5,15	5,33	88,92
Ba gemessen	4,7	7,7	9,5	12	18	27	
Ba berechnet	118	289	475	450	1125	1013	6495
%-Anteil	1,18	2,90	4,77	4,52	11,29	10,16	65,19
Ca gemessen	316	399	13	20	n.b.	n.b.	
Ca berechnet	7900	14963	650	750			7838
%-Anteil	24,61	46,61	2,02	2,34			24,42
Cr gemessen	n.n.	n.n.	n.n.	n.n.	0,065	0,21	
Cr berechnet					4,1	7,9	80
%-Anteil					4,44	8,60	86,97
Cu gemessen	0,091	0,020	n.n.	0,48	0,17	n.n.	
Cu berechnet	2,3	0,76		18	11		49
%-Anteil	2,83	0,95	0,00	22,36	13,20		60,67
Fe gemessen	n.n.	n.n.	2,6	151	115	172	
Fe berechnet			130	5663	7188	6450	10990
%-Anteil			0,43	18,61	23,63	21,20	36,13
K gemessen	10	0,41	0,23	1,4	0,59	2,4	
K berechnet	250	15	12	53	37	90	11984
%-Anteil	2,01	0,12	0,09	0,42	0,30	0,72	96,33
Mg gemessen	15	3,7	0,42	6,0	8,1	15	
Mg berechnet	375	139	21	225	506	563	6382
%-Anteil	4,57	1,69	0,26	2,74	6,17	6,85	77,73
Mn gemessen	8,5	14	4,5	2,6	1,5	1,2	
Mn berechnet	213	525	225	98	94	45	620
%-Anteil	11,68	28,86	12,37	5,36	5,15	2,47	34,10
Na gemessen	120	7,9	0,29	0,96	0,88	1,0	
Na berechnet	3000	296	15	36	55	38	6171
%-Anteil	31,22	3,08	0,15	0,37	0,57	0,39	64,21
Ni gemessen	0,038	0,048	0,011	0,14	0,055	0,19	
Ni berechnet	0,95	1,8	0,55	5,3	3,4	7,1	11
%-Anteil	3,16	6,02	1,83	17,44	11,42	23,67	36,47
²²⁰ Ra	0,11	0,057	0,12	0,11	0,088	0,069	
gemessen							
	13	7,1	16	14	11	8,6	92
berechnet	1.6		1.0	1.6	1.0	1.0	0.0
%-Anteil	1,6	0,9	1,9	1,6	1,3	1,0	8,3
Sr gemessen	3,8	2,2	0,66	0,74	0,33	0,91	140
Sr berechnet	12.07	11.26	53	28	21	34	440
%-Anten	12,97	11,20	4,50	3,79	2,82	4,00	60,01
v gemessen	0,063	0,014	0,015	0,16	0,15	0,32	00
v berechnet	1,0	0,5	0,//	6,0	9,4	12	90
%-Anteil	1,31	0,45	0,64	4,98	/,/8	9,96	/4,89
Zn gemessen	0,58	3,5	2,400	/,0	3,4	1,9	045
2.11 Derechnet	13	19.00	10.60	203	10 77	/1	243
%-Anten	1,28	18,22	10,00	23,19	10,//	0,29	21,04

 Tab. A-43: Elementkonzentrationen [ppm] und prozentuale Anteile in den unterschiedlichen Extraktionslösungen des Fossa Eugeniana-Bodens FB1-1.

FB2-1							
Element	1. Fraktion	2. Fraktion	3. Fraktion	4. Fraktion	5. Fraktion	6. Fraktion	7. Fraktion
Al gemessen	n.n.	0,20	0,21	5,1	16	36	
Al berechnet		7,5	11	191	1000	1350	27181
%-Anteil		0,03	0,04	0,64	3,36	4,54	91,39
Ba gemessen	17	9,5	6,5	5,9	8,1	12	
Ba berechnet	425	356	325	221	506	450	2121
%-Anteil	9,65	8,09	7,38	5,02	11,49	10,22	48,16
Ca gemessen	61	9,5	0,83	1,9	n.b.	n.b.	
Ca berechnet	1525	356	42	71			2254
%-Anteil	35,90	8,39	0,98	1,68			53,06
Cr gemessen	n.n.	n.n.	n.n.	n.n.	0,037	0,14	
Cr berechnet					2,3	5,3	82
%-Anteil					2,58	5,86	91,56
Cu gemessen	n.n.	n.n.	n.n.	0,19	0,072	n.n.	
Cu berechnet				7	4,5		12
%-Anteil				30,32	19,15		50,53
Fe gemessen	n.n.	n.n.	1,5	17	50	97	
Fe berechnet			75	638	3125	3638	6125
%-Anteil			0,55	4,69	22,98	26,75	45,04
K gemessen	3,1	n.n.	0,19	0,81	0,29	1,4	
K berechnet	78		10	30	18	53	13052
%-Anteil	0,59		0,07	0,23	0,14	0,40	98,58
Mg gemessen	7,0	1,1	n.n.	0,37	1,2	8,2	
Mg berechnet	175	41		14	75	308	7827
%-Anteil	2,07	0,49		0,16	0,89	3,64	92,74
Mn gemessen	3,3	3,4	8,3	0,80	0,98	0,74	
Mn berechnet	83	128	415	30	61	28	169
%-Anteil	9,04	13,96	45,45	3,29	6,71	3,04	19
Na gemessen	17	n.n.	0,21	0,59	0,51	0,74	
Na berechnet	425		11	22	32	28	10793
%-Anteil	3,76		0,09	0,20	0,28	0,25	95,43
Ni gemessen	0,014	0,021	0,015	0,091	0,026	0,11	
Ni berechnet	0,35	0,79	0,76	3,4	1,6	4,1	7,2
%-Anteil	1,91	4,32	4,15	18,65	8,88	22,54	39,54
²²⁶ Ra	0,21	0,065	0,034	0,05	0,025	0,061	
gemessen							
	26	8,1	4,3	6,3	3,1	7,6	79
berechnet							
%-Anteil	9,40	3,00	1,60	2,30	1,20	2,80	20,30
Sr gemessen	2,4	0,66	0,29	0,27	0,25	0,39	
Sr berechnet	60	25	15	10	16	15	123
%-Anteil	22,87	9,43	5,53	3,86	5,95	5,57	46,79
V gemessen	0,029	n.n.	n.n.	0,056	0,13	0,22	
V berechnet	0,73			2,1	8,1	8,3	36
%-Anteil	1,33			3,84	14,85	15,08	64,90
Zn gemessen	0,31	1,6	0,850	0,82	0,54	1,1	
Zn berechnet	7,8	60	43	31	34	41	90
%-Anteil	2,54	19,64	13,91	10,07	11,05	13,50	29,30

 Tab. A-44: Elementkonzentrationen [ppm] und prozentuale Anteile in den unterschiedlichen

 Extraktionslösungen des Fossa Eugeniana-Bodens FB2-1.

Parameter	Leitfähig- keit	²²⁶ Ra ²⁺	Ba ²⁺	Sr ²⁺	Ca ²⁺	Mg ²⁺	K ⁺	Na ⁺	SO4 ²⁻	Cl
Leitfähig- keit	1,000	0,067	0,561	0,960	0,954	0,961	0,966	0,949	0,776	0,958
226 Ra $^{2+}$	0,067	1,000	0,177	0,009	0,003	0,050	0,049	0,033	0,067	0,012
Ba ²⁺	0,561	0,177	1,000	0,612	0,560	0,562	0,598	0,480	0,624	0,578
Sr^{2+}	0,960	0,009	0,612	1,000	0,985	0,993	0,969	0,971	0,806	0,994
Ca ²⁺	0,954	0,003	0,560	0,985	1,000	0,989	0,964	0,984	0,750	0,989
Mg^{2+}	0,961	0,050	0,562	0,993	0,989	1,000	0,972	0,981	0,766	0,992
\mathbf{K}^+	0,966	0,049	0,598	0,969	0,964	0,972	1,000	0,957	0,766	0,970
Na ⁺	0,949	0,033	0,480	0,971	0,984	0,981	0,957	1,000	0,752	0,982
SO_4^{2}	0,776	0,067	0,624	0,806	0,750	0,766	0,766	0,752	1,000	0,791
Cl	0,958	0,012	0,578	0,994	0,989	0,992	0,970	0,982	0,791	1,000

Tab. A-45: Korrelationskoeffizienten nach Spearman-Rho der Sickingmühlenwasserproben mit N= 55.

Tab. A-46: Korrelationskoeffizienten nach Spearman-Rho der Fossa Eugeniana-Wasserproben mit N= 51.

Parameter	Leitfähig- keit	226 Ra ²⁺	Ba ²⁺	Sr ²⁺	Ca ²⁺	Mg ²⁺	\mathbf{K}^+	Na ⁺	SO4 ²⁻	Cl-
Leitfähig- keit	1,000	0,621	0,810	0,955	0,877	0,974	0,972	0,974	0,744	0,988
226 Ra ²⁺	0,621	1,000	0,553	0,595	0,462	0,582	0,571	0,562	0,429	0,610
Ba ²⁺	0,810	0,553	1,000	0,863	0,727	0,840	0,777	0,786	0,587	0,824
Sr ²⁺	0,955	0,595	0,863	1,000	0,869	0,968	0,947	0,933	0,710	0,958
Ca ²⁺	0,877	0,462	0,727	0,869	1,000	0,884	0,874	0,867	0,652	0,882
Mg^{2+}	0,974	0,582	0,840	0,968	0,884	1,000	0,971	0,970	0,763	0,986
K^+	0,972	0,571	0,777	0,947	0,874	0,971	1,000	0,966	0,744	0,976
Na ⁺	0,974	0,562	0,786	0,933	0,867	0,970	0,966	1,000	0,795	0,982
SO_4^{2-}	0,744	0,429	0,587	0,710	0,652	0,763	0,744	0,795	1,000	0,759
Cl	0,988	0,610	0,824	0,958	0,882	0,986	0,976	0,982	0,759	1,000

Parameter	Leitfähig- keit	²²⁶ Ra ²⁺	Ba ²⁺	Sr ²⁺	Ca ²⁺	Mg ²⁺	\mathbf{K}^+	Na ⁺	SO4 ²⁻	Cl
Leitfähig- keit	1,000	0,375	0,799	0,792	0,883	0,886	0,900	0,872	0,084	0,788
226 Ra ²⁺	0,375	1,000	0,242	0,399	0,364	0,329	0,431	0,270	0,452	0,375
Ba ²⁺	0,799	0,242	1,000	0,797	0,755	0,748	0,699	0,497	0,336	0,634
Sr ²⁺	0,792	0,399	0,797	1,000	0,937	0,881	0,755	0,678	0,420	0,729
Ca ²⁺	0,883	0,364	0,755	0,937	1,000	0,979	0,916	0,853	0,329	0,837
Mg ²⁺	0,886	0,329	0,748	0,881	0,979	1,000	0,951	0,874	0,308	0,886
\mathbf{K}^+	0,900	0,431	0,699	0,755	0,916	0,951	1,000	0,874	0,315	0,914
Na ⁺	0,872	0,270	0,497	0,678	0,853	0,874	0,874	1,000	0,028	0,760
$\mathbf{SO_4}^{2-}$	0,084	0,452	0,336	0,420	0,329	0,308	0,315	0,028	1,000	0,417
Cl	0,788	0,375	0,634	0,729	0,837	0,886	0,914	0,760	0,417	1,000

Tab. A-47:Korrelationskoeffizienten nach Spearman-Rho der Wasserproben des Einleitungsbauwerkes an der Fossa Eugeniana mit N= 12.

	Zr	0,127	0,256	0,156	0,086	0,014	0,133	0,214	0,003	0,004	0,010	0,159	0,116	0,149	0,534	0,118	0,224	0,244	0,059	0,111	0,046	0,076	0,097	0,136	0,035	0,042	0,656	0,033	0,140	1,000
	Zn	0,902	0,752	0,963	0,089	0,652	0,415	0,799	0,802	0,724	0,913	0,782	0,830	0,698	0,668	0,921	0,948	0,755	0,837	0,953	0,848	0,914	0,985	0,962	0,893	0,731	0,006	0,729	1,000	0,140
	>	0,770	0,785	0,750	0,097	0,823	0,774	0,831	0,901	0,729	0,549	0,970	0,930	0,943	0,580	0,729	0,526	0,763	0,759	0,757	0,894	0,896	0,731	0,838	0,620	0,758	0, 191	1,000	0,729	0,033
	D	0,111	0,206	0,106	0,185	0,410	0,091	0, 196	0,127	0,161	0,051	0,256	0,176	0,013	0,074	0,059	0,237	0,087	0,069	0,021	0,130	0,036	0,017	0,001	0, 141	0,118	1,000	0, 191	0,006	0,656
	\mathbf{Th}	0,668	0,776	0,626	0,102	0,731	0,637	0,862	0,856	0.923	0,762	0,715	0,772	0,690	0,501	0,684	0,701	0,538	0,685	0,838	0,747	0,763	0,781	0,781	0,606	1,000	0,118	0,758	0,731	0,042
	Te	0,972	0,792	0,932	0,023	0,496	0,280	0,547	0,621	0,517	0,671	0,638	0,691	0,549	0,661	0,988	0,910	0,567	0,921	0,788	0,721	0,790	0,859	0,906	1,000	0,606	0,141	0,620	0,893	0,035
	Sr	0,940	0,866	0,952	0,040	0,723	0,469	0,826	0,847	0,698	0,798	0,860	0,914	0,780	0,718	0,946	0,868	0,753	0,906	0,947	0,917	0,921	0,957	1,000	0,906	0,781	0,001	0,838	0,962	0,136
	Sn	0,867	0,746	0,930	0,077	0,657	0,431	0,814	0,820	0,742	0,920	0,769	0,847	0,688	0,614	0,888	0,921	0,749	0,812	0,977	0,853	0,910	1,000	0,957	0,859	0,781	0,017	0,731	0,985	0,097
	Pb	0,871	0,764	0,918	0,131	0,736	0,682	0,807	0,908	0,757	0,785	0,893	0,896	0,886	0,615	0,848	0,790	0,857	0,838	0,882	0,915	1,000	0,910	0,921	0,790	0,763	0,036	0,896	0,914	0,076
	Ni	0,810	0,797	0,841	0,086	0,864	0,625	0,835	0,944	0,710	0,642	0,928	0.950	0,914	0,626	0,787	0,671	0,774	0,832	0,879	1,000	0,915	0,853	0,917	0,721	0,747	0,130	0,894	0,848	0,046
	Cu	0,821	0,771	0,882	0,054	0,726	0,479	0,883	0,865	0,793	0,898	0,797	0,891	0,722	0,587	0,839	0,856	0,733	0,778	1,000	0,879	0,882	0,977	0,947	0,788	0,838	0,021	0,757	0,953	0,111
	Cs	0,944	0,819	0,879	0,046	0,627	0,460	0,601	0,739	0,545	0,544	0,745	0,759	0,719	0,618	0,950	0,832	0,599	1,000	0,778	0,832	0,838	0,812	0,906	0,921	0,685	0,069	0,759	0,837	0,059
	C	0,700	0,616	0,791	0,192	0,634	0,621	0,708	0,784	0,641	0,621	0,776	0,810	0,791	0,567	0,656	0,487	1,000	0,599	0,733	0,774	0,857	0,749	0,753	0,567	0,538	0,087	0,763	0,755	0,244
	Cd	0,873	0,589	0,904	0,052	0,395	0,269	0,563	0,630	0,607	0,875	0,509	0,610	0,466	0,334	0,906	1,000	0,487	0,832	0,856	0,671	0,790	0,921	0,868	0,910	0,701	0,237	0,526	0,948	0,224
;	Ba	0,986	0,840	0,949	0,169	0,567	0,349	0,658	0,704	0,575	0,726	0,732	0,770	0,655	0,700	1,000	0,906	0,656	0,950	0,839	0,787	0,848	0,888	0,946	0,988	0,684	0,059	0,729	0,921	0,118
	\mathbf{As}	0,700	0,781	0,698	0,071	0,421	0,189	0,585	0,470	0,317	0,362	0,681	0,641	0,558	1,000	0,700	0,334	0,567	0,618	0,587	0,626	0,615	0,614	0,718	0,661	0,501	0,074	0,580	0,668	0,534
	TiO_2	0,706	0,725	0,718	0,065	0,837	0,782	0,795	0,915	0,697	0,503	0,945	0,887	1,000	0,558	0,655	0,466	0,791	0,719	0,722	0,914	0,886	0,688	0,780	0,549	0,690	0,013	0,943	0,698	0,149
	MnO	0,806	0,841	0,831	0,029	0,839	0,652	0,889	0,925	0,754	0,666	0,937	1,000	0,887	0,641	0,770	0,610	0,810	0,759	0,891	0.950	0,896	0,847	0,914	0,691	0,772	0, 176	0.930	0,830	0,116
	$\mathrm{Fe}_2\mathrm{O}_3$	0,756	0,768	0,773	0,046	0,872	0,726	0,875	0,905	0,747	0,570	1,000	0,937	0,945	0,681	0,732	0,509	0,776	0,745	0,797	0,928	0,893	0,769	0,860	0,638	0,715	0,256	0,970	0,782	0,159
	P_2O_5	0,694	0,536	0,807	0,057	0,484	0,314	0,749	0,684	0,757	1,000	0,570	0,666	0,503	0,362	0,726	0,875	0,621	0,544	0,898	0,642	0,785	0,920	0,798	0,671	0,762	0,051	0,549	0,913	0,010
	SiO_2	0,569	0,558	0,623	0,336	0,830	0,776	0,899	0,872	1,000	0,757	0,747	0,754	0,697	0,317	0,575	0,607	0,641	0,545	0,793	0,710	0,757	0,742	0,698	0,517	0.923	0,161	0,729	0,724	0,004
	Al_2O_3	0,729	0,726	0,769	0,131	0,917	0,793	0,894	1,000	0,872	0,684	0,905	0,925	0,915	0,470	0,704	0,630	0,784	0,739	0,865	0,944	0,908	0,820	0,847	0,621	0,856	0,127	0,901	0,802	0,003
	CaO	0,651	0,723	0,710	0,170	0,852	0,667	1,000	0,894	0,899	0,749	0,875	0,889	0,795	0,585	0,658	0,563	0,708	0,601	0,883	0,835	0,807	0,814	0,826	0,547	0,862	0, 196	0,831	0,799	0,214
	MgO	0,396	0,451	0,402	0,366	0,724	1,000	0,667	0,793	0,776	0,314	0,726	0,652	0,782	0,189	0,349	0,269	0,621	0,460	0,479	0,625	0,682	0,431	0,469	0,280	0,637	0,091	0,774	0,415	0,133
	K_2O	0,581	0,623	0,605	0,076	1,000	0,724	0,852	0,917	0,830	0,484	0,872	0,839	0,837	0,421	0,567	0,395	0,634	0,627	0,726	0,864	0,736	0,657	0,723	0,496	0,731	0,410	0,823	0,652	0,014
	Na_2O	0,118	0,025	0,057	1,000	0,076	0,366	0,170	0,131	0,336	0,057	0,046	0,029	0,065	0,071	0,169	0,052	0,192	0,046	0,054	0,086	0,131	0,077	0,040	0,023	0,102	0,185	0,097	0,089	0,086
	210 Pb	0,962	0,796	1,000	0,057	0,605	0,402	0,710	0,769	0,623	0,807	0,773	0,831	0,718	0,698	0,949	0,904	0,791	0,879	0,882	0,841	0,918	0,930	0,952	0,932	0,626	0,106	0,750	0,963	0,156
	²²⁸ Ra	0,866	1,000	0,796	0,025	0,623	0,451	0,723	0,726	0,558	0,536	0,768	0,841	0,725	0,781	0,840	0,589	0,616	0,819	0,771	0,797	0,764	0,746	0,866	0,792	0,776	0,206	0,785	0,752	0,256
	226 Ra	1,000	0,866	0,962	0,118	0,581	0,396	0,651	0,729	0,569	0,694	0,756	0,806	0,706	0,700	0,986	0,873	0,700	0,944	0,821	0,810	0,871	0,867	0,940	0,972	0,668	0,111	0,770	0,902	0,127
	Parameter	²²⁶ Ra	²²⁸ Ra	210 Pb	Na_2O	K_2O	MgO	CaO	Al_2O_3	SiO_2	P_2O_5	$\mathrm{Fe}_2\mathrm{O}_3$	MnO	TiO_2	As	Ba	Cd	Cr	Cs	Cu	Ni	Pb	\mathbf{Sn}	Sr	Te	Th	U	Λ	Zn	Zr

Tab. A-48: Korrelationskoeffizienten nach Pearson der Lippe Sedimentproben mit N= 20.

negative Korrelation

	Zr	0,262	0,240	0,010	0,187	0,592	0,572	0,737	0,469	0,189	0,367	0,419	0,359	0,221	0,032	0,308	0,903	0,325	0,195	0,196	0,262	0,290	0,013	0,315	0,034	0,340	0,803	0,448	0,061	1,000
	Zn	0,005	0,098	0,849	0,355	0,765	0,123	0,210	0,828	0,926	0,872	0,787	0,097	0,581	0,851	0,010	0,158	0,497	0,027	0,935	0,824	0,878	0,229	0,011	0,029	0,161	0,549	0,162	1,000	0,061
	٧	0,962	0,937	0,459	0,492	0,222	0,353	0,027	0,153	0,297	0,237	0,267	0,216	0,651	0,919	0,973	0,025	0,928	0,945	0,068	0,053	0,151	0,895	0,978	0,880	0,610	0,654	1,000	0,162	0,448
	U	0,808	0,977	0,465	0,909	0,001	0,610	0,308	0,192	0,252	0,322	0,323	0,150	0,051	0,621	0,806	0,738	0,480	0,850	0,416	0,382	0,417	0,416	0,688	0,854	0,697	1,000	0,654	0,549	0,803
	Th	0,748	0,746	0,331	0,822	0,286	0,424	0,335	0,183	0,473	0,059	0,022	0,150	0,756	0,034	0,706	0,992	0,622	0,776	0,169	0,111	0,013	0,876	0,702	0,872	1,000	0,697	0,610	0,161	0,340
	Те	0,971	0,974	0,290	0,800	0,117	0,018	0,170	0,142	0,246	0,277	0,310	0,278	0,693	0,180	0,955	0,980	0,781	0,983	0,048	0,054	0,247	0,961	0,952	1,000	0,872	0,854	0,880	0,029	0,034
	Sr	0,997	0,989	0,342	0,642	0,263	0,267	0,024	0,229	0,205	0,337	0,360	0,259	0,635	0,109	1,000	0,978	0,864	0,991	0,053	0,054	0,267	0,926	1,000	0,952	0,702	0,688	0,978	0,011	0,315
	Sn	0,937	0,914	0,542	0,645	0,105	0,043	0304	0,111	0,492	0,021	0,052	0,343	0,858	0,405	0,923	0,902	0,896	0,947	0,227	0,217	0,024	1,000	0,926	0,961	0,876	0,416	0,895	0,229	0,013
	Pb0,	0,279	0,362	0,803	0,540	0,904	0,098	0,553	0,974	0,853	0,980	0,985	0,204	0,520	0,948	0,287	0,264	0,227	0,275	0,975	0,957	1,000	0,024	0,267	0,247	0,013	0,417	0,151	0,878	0,290
	Ni	0,074	0,158	0,906	0,473	0,826	0,097	0,684	0,933	0,860	0,891	0,940	0,442	0,678	0,961	0,074	0,238	0,406	0,064	0,967	1,000	0,957	0,217	0,054	0,054	0,111	0,382	0,053	0,824	0,262
	Cu	0,066	0,156	0,905	0,413	0,875	0,064	0,531	0,953	0,938	0,944	0,931	0,213	0,669	0,935	0,074	0,279	0,435	0,067	1,000	0,967	0,975	0,227	0,053	0,048	0,169	0,416	0,068	0,935	0,196
	Cs	0,997	0,995	0,312	0,717	0,219	0,177	0,093	0,208	0,207	0,332	0,354	0,286	0,659	0,135	0,993	0,967	0,830	1,000	0,067	0,064	0,275	0,947	0,991	0,983	0,776	0,850	0,945	0,027	0,195
	Cr	0,846	0,789	0,751	0,299	0,131	0,283	0,173	0,219	0,621	0,140	0,106	0,268	0,840	0,934	0,852	0,222	1,000	0,830	0,435	0,406	0,227	0,896	0,864	0,781	0,622	0,480	0,928	0,497	0,325
	Cd	0,994	0,859	0, 191	0,711	0,665	0,798	0,566	0,484	0,463	0,389	0,330	0,139	0,651	0,029	0,982	1,000	0,222	0,967	0,279	0,238	0,264	0,902	0,978	0,980	0,992	0,738	0,025	0,158	0,903
1 1 1 1 1	Ba	0,998	0,992	0,321	0,657	0,276	0,258	0,019	0,245	0,187	0,355	0,378	0,255	0,624	0,068	1,000	0,982	0,852	0,993	0,074	0,074	0,287	0,923	1,000	0,955	0,706	0,806	0,973	0,010	0,308
	As	0,127	0,506	0,974	0,714	0,708	0,324	0,497	0,857	0,815	0,874	0,934	0,383	0,736	1,000	0,068	0,029	0,934	0,135	0,935	0,961	0,948	0,405	0,109	0,180	0,034	0,621	0,919	0,851	0,032
	TiO_2	0,641	0,584	0,850	0,281	0,553	0,000	0,627	0,594	0,820	0,466	0,466	0,489	1,000	0,736	0,624	0,651	0,840	0,659	0,669	0,678	0.520	0,858	0,635	0,693	0,756	0,051	0,651	0,581	0,221
	MnO	0,242	0,233	0,397	0,085	0,120	0,517	0,827	0,237	0,127	0,063	0,274	1,000	0,489	0,383	0,255	0,139	0,268	0,286	0,213	0,442	0,204	0,343	0,259	0,278	0,150	0,150	0,216	0,097	0,359
	${\rm Fe}_2{\rm O}_3$	0,368	0,442	0,727	0,554	0,917	0,127	0,638	0,977	0,783	0,970	1,000	0,274	0,466	0,934	0,378	0,330	0,106	0,354	0,931	0,940	0,985	0,052	0,360	0,310	0,022	0,323	0,267	0,787	0,419
	P_2O_5	0,337	0,414	0,715	0,463	0,953	0,289	0,496	0,979	0,848	1,000	0,970	0,063	0,466	0,874	0,355	0,389	0,140	0,332	0,944	0,891	0,980	0,021	0,337	0,277	0,059	0,322	0,237	0,872	0,367
	SiO_2	0,207	0,123	0,909	0,088	0,844	0,214	0,469	0,876	1,000	0,848	0,783	0,127	0,820	0,815	0,187	0,463	0,621	0,207	0,938	0,860	0,853	0,492	0,205	0,246	0,473	0,252	0,297	0,926	0, 189
	Al_2O_3	0,225	0,299	0,770	0,371	0,971	0,256	0,653	1,000	0,876	0,979	0,977	0,237	0,594	0,857	0,245	0,484	0,219	0,208	0,953	0,933	0,974	0,111	0,229	0,142	0,183	0,192	0,153	0,828	0,469
	CaO	0,036	0,013	0,524	0,061	0,620	0,013	1,000	0,653	0,469	0,496	0,638	0,827	0,627	0,497	0,019	0,566	0,173	0,093	0,531	0,684	0,553	0,304	0,024	0,170	0,335	0,308	0,027	0,210	0,737
	MgO	0, 199	0, 179	0,209	0,429	0,475	1,000	0,013	0,256	0,214	0,289	0,127	0,517	0,000	0,324	0,258	0,798	0,283	0,177	0,064	0,097	0,098	0,043	0,267	0,018	0,424	0,610	0,353	0,123	0,572
	$\rm K_2O$	0,242	0,303	0,648	0,217	1,000	0,475	0,620	0,971	0,844	0,953	0,917	0,120	0,553	0,708	0,276	0,665	0,131	0,219	0,875	0,826	0,904	0,105	0,263	0,117	0,286	0,001	0,222	0,765	0,592
	Na_2O	0,695	0,744	0,236	1,000	0,217	0,429	0,061	0,371	0,088	0,463	0,554	0,085	0,281	0,714	0,657	0,711	0,299	0,717	0,413	0,473	0,540	0,645	0,642	0,800	0,822	0,909	0,492	0,355	0,187
	210 Pb	0,317	0,227	1,000	0,236	0,648	0,209	0,524	0,770	0,909	0,715	0,727	0,397	0,850	0,974	0,321	0,191	0,751	0,312	0,905	0,906	0,803	0,542	0,342	0,290	0,331	0,465	0,459	0,849	0,010
	²²⁸ Ra	0,995	1,000	0,227	0,744	0,303	0, 179	0,013	0,299	0,123	0,414	0,442	0,233	0,584	0,506	0,992	0,859	0,789	0,995	0,156	0,158	0,362	0,914	0,989	0,974	0,746	0,977	0,937	0,098	0,240
	226 Ra	1,000	0,995	0,317	0,695	0,242	0,199	0,036	0,225	0,207	0,337	0,368	0,242	0,641	0,127	0,998	0,994	0,846	0,997	0,066	0,074	0,279	0,937	0,997	0,971	0,748	0,808	0,962	0,05	0,262
T 400 T	Parameter	226 Ra	228 Ra	210 Pb	Na_2O	K_2O	MgO	CaO	Al_2O_3	SiO_2	P_2O_5	Fe_2O_3	MnO	TiO_2	As	Ba	Cd	Cr	Cs	Cu	Ni	Pb	Sn	Sr	Te	Th	U	v	Zn	Zr

Tab. A-49: Korrelationskoeffizienten nach Pearson der Fossa Eugeniana Sedimenturohen mit N= 5.

negative Korrelation