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Change is hard for life insurance companies
because many policyholders have long-term
relationships with them, and they don’t like
change.

Aaron Kloch, research manager, SNL Finan-
cial, Virginia

CHAPTER 1

General introduction

1.1 Some recent challenges to the national and interna-
tional life insurance business

When taking a closer look at the gradual changes in the national and interna-
tional insurance landscape for the past decades, both the academic’s and the
practitioner’s attention has been drawn by several factors.

First, it became obvious that over the second half of the 20th century highly-
developed societies had become technically older in demographic terms. In
particular, mortality improvements have taken place more favourably than
generally assumed. On the one hand, socio-economic and demographic devel-
opments, especially the downturn of the total fertility rates and the growing
share of pensioners, increasingly endanger(ed) the financial viability of pay-as-
you-go (PAYG) statutory pension systems. More precisely, the benefits to be
expected by current premium payers will fail to sustain the labour life prosperity
level of pensioners such that the new business for supplementary private funded
pension provision has been growing for some time now. On the other hand, the
increasing life expectancy adversely affects national pension scheme projections
and the actuarial reserve formation of the underwriter’s existing business. In
this connection, one of the most important tasks is the precise construction of
life tables or population projections and hence, a prediction of mortality trends.
It requires the use of a forecasting method, which ideally satisfies a range of
quantitative and qualitative criteria. Driven by steadily increasing actuarial
needs, the survival modelling experienced a nearly 90-year development from
early static law-based projection survival models over more advanced dynamic
but deterministic models, yielding one-dimensional projections of parameters
or markers used. Some more recent articles apply stochastic time series models

1
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allowing for interval forecasts and parameter uncertainty. Nevertheless, the
appropriate choice of a sample / model, adapted to the respective application
and the desired degree of complexity, continues to be a major challenge for
forecasters and actuaries.

Secondly, the measures taken to liberate and deregulate national and interna-
tional insurance markets encouraged a noticeable crowding-out competition.
The abolition of the lengthy approval procedure by the (national) state super-
vision in 1994 provided assurers with extensive freedom in their product design.
The opening up of the European insurance market caused a growing compe-
tition concerning prices (low premium margins), product design (increasing
product / tariff variety, e.g. target group or flexible modular concepts, differ-
ent guarantee undertakings) and policy conditions (blurred products limits,
increasing degree of clauses). On the one hand, the quality in the range of
services increased and the innovation pressure created a variety of life insurance
solutions based on different allocation concepts. On the other hand, insurers
competed at the expense of their capital base and considerable capital invest-
ments whereas consumers lost a high degree of clarity and transparency. Thus,
from the customer’s point of view, there is a need for a reference standard with a
broad market acceptance1 to enable a meaningful product comparison. Within
the scope of a competent counselling the consumer’s personal risk preferences
should help to pick out suitable concepts by scrutinizing the risk-reward profiles
or the simulated yield distributions.

Thirdly, recent financial crises such as the dot-com economic bubble in 2001/
2002, the stock market crash followed by the September 11 attacks in 2001 and
the Sub-prime financial crisis in 2008/2009 threatened the insurance business
with a downstream persistent low-level interest rate phase2 and a considerable
reduction in the unit-linked new business3. The bear financial market forced
the life assurance sector to realise capital losses and high write-downs on
equity positions according to a strict lower-of-cost-or-market principle. Big
players stabilised their investment result by means of diversified long-term
vehicles with excellent credit ratings. But many small insurance companies
with a more risky investment policy ran into trouble as a result of the economic
1 Some German consultancy service providers and analysts like the Institute for Financial
Security and Planning (ITA) or Morgen&Morgen already offer (online) based broker tools
like ITA SELECT and certified standards like Volatium® that support the choice of suitable
pension products.
2 The European Central Bank (ECB) lowered the key interest rate in the period 2001–2003
from 4.75% to 2% and in 2008–2009 from 4.25% to solely 1%. A similar pattern could be
observed for the ten-year government bonds interest rate.
3 From 2008 to 2010 the share of new business for unit-linked pensions by members of the
German Insurance Association (GDV) decreased by nearly 32%.
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crises4. As a consequence, insurers reduced their profit sharing5 and contribution
refunds and / or increased expense ratios. Furthermore, new product generations
transferred parts of the potential risks back to the policyholder, for example,
through deductibles or unit-linked concepts. At the recommendation of the
German Actuary Association and the German Federal Financial Supervisory
Authority (BaFin), the German Federal Ministry of Finance (BMF) stepwise
readjusted the guaranteed interest rate to ensure the long-term financial viability
of the insurance benefits. The downturn of margins and new business as well
as the accumulation of negative valuation reserves lead to a conceiveable
challenging market environment on the suppliers side. The lessons learned
from the aftermath of the crises strengthened the demand for a sustainable
(national) solvency protection and a tightening of supervisory requirements
concerning a proper financial supervision, an effective risk management and a
more accurate and reliable financial reporting.

For this reason, and as a fourth factor, the European Insurance and Occupa-
tional Pensions Authority6 EIOPA prepares a fundamental restructuring of the
European insurance supervision. Therefore, it accompanies the introduction of
a new EU-wide directive, namely the Solvency II project, which constitutes the
most important regulation draft in recent decades. The design is based on a
three pillar approach, in which, the first pillar includes quantitative accounting
requirements, the second pillar describes the supervisory review process and
the qualitative aspect of risk management whereas the third pillar imposes pub-
lication requirements. In order to protect the policyholders’ interests, the EU
insurance regulation prescribes solvency rules for capital adequacy and hence
the amount of the required actuarial reserve. Moreover, stakeholders receive
an answer to the question of how well insurance companies are prepared for
stress (market) scenarios. The directive’s legislative implementation is planned
for the first quarter of 2013. As early as 2004 a redesign and modernisation
of (national) supervision responsibilities came into effect based on the results
of the so called Müller-report7 and prescribed binding minimum standards

4 According to the GDV, the average volume of stocks and investment shares of German
insurers since 2000 was 23%. Nevertheless, the near-collapse of the Mannheimer Lebensver-
sicherung AG in 2003 could serve as an example for irresponsible speculation in equity and
fund shares which was far above market average. Along the lines of Schiller and Weber
(2009) the balance sheets exhibited an increasing appetite for shares and equity funds from
13% to 44% proportional to the total assets for the period 1995 to 2002.
5 The GDV discloses a net investment return of 4.68% for 2002 (year 2008: 3.54%).
6 The European Insurance and Occupational Pensions Authority (EIOPA) replaced the
previously responsible European financial regulatory institution named Committee of Euro-
pean Insurance and Occupational Pensions Supervisors (CEIOPS) within a reorganisation of
supervisory authorities in 2011.
7 In 1994 the EU-parliament engaged a workgroup of representatives of different European
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for solvency protection. The quantification of the minimum solvency require-
ment should be calculated deterministically from the premiums and losses.
However, it has not considered the companies’ individual strategic business
or risk management measures nor asset strategies, in particular, non-actuarial
risks so far. Early on the readjustment process, the EU commission detected
this methodical weakness and launched a conceptional phase for an extensive
EU-wide harmonisation of solvency systems.

The fact that, since to date, small to medium sized insurance companies like
the Mannheimer Lebensversicherung AG have not performed (any) adequate
and reasonable fine-tuning of insurance business and investments induced the
European Commission to establish a (value-based) corporate management. The
approach is based on an adequate risk model as an integral part of the first
pillar requirements. Instead of using a simple and conservative standard model,
underwriters are free to develop and obtain accreditation for an individual but
cost-intensive internal risk model. The inclusion of a proper risk management
has far-reaching potential consequences: The enhanced costs of risk capital
especially for risky market sectors may result in increasing prices and cash
flow fluctuations for smaller insurance companies. As a result, the products or
guarantees could be outsourced to a few specialised providers8 which, in turn,
practise an active hedging. Efforts concerning a core business commitment in
low-risk segments as well as the usage of diversification effects are also expected
to increase. In the near future, the offering of modest unit-linked solutions,
either with an outsourced guarantee or an underwriting from a non-European
country with more liberal accounting rules, will therefore help to equally meet
the expectations of shareholders and consumers. For this and other reasons,
a combined and crisis-proof modelling of actuarial parameters marks a factor
of success for the identification, analysis and assessment of biometric, market,
credit and operational risks.

The fifth factor once again emphasises that, also at a German national level
and an early stage, several regulatory and legal changes were necessary and
have been passed. Essentially, these changes concern far-reaching requirements
for the appropriateness and documentation of the insurer’s internal risk man-
agement. Besides preventive regulation, efforts have been made concerning

supervisory authorities, which was headed by Dr. Helmut Müller as the former vice president
of the German Supervisory Office for the insurance industry (BAV). The report – finished in
1997 – compared solvency supervision among the EU countries and included amendments
and additions to the proven former solvency systems.
8 The same applies for long-term guarantees within pension products. For example, in 2007,
the Zurich Deutscher Herold Lebensversicherung AG equipped their unit-linked pension with
a premium refund guarantee exclusively provided by the DWS Investment GmbH.
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a protective regulation, too. Moreover, the case of the German bankrupt
Mannheimer Lebensversicherung AG in 2002/2003 attracted high media atten-
tion and became the first time intervention of the rescue company Protektor
Lebensversicherungs-AG. Since all efforts concerning a voluntary merger, an
acquisition or an injection of fresh capital failed, Protektor was originated in
late 2002 by the GDV and authorised by the BaFin. From the date of the
transfer of the insurance portfolio, the rescue company was responsible for the
recapitalization of the investment portfolio and the resale / transfer of running
insurance contracts. The accrued unrealised capital losses were and will be
stepwise paid off by the Mannheimer Holding. In the wake of the rescue, the
amendment of the German Insurance Supervision Act (VAG) in 2004 passed
the establishment of a guarantee fund managed by Protektor9 to pre-finance
the accumulated liabilities and handle the run-off for portfolios of insolvent life
insurance companies. However, the simultaneous collapse of two or more big
players poses, notwithstanding extra contributions payable, a non-negligible
viability risk.

Since 1999, the BaFin issued several circulars to concretise the prevailing
German Ordinance on the Investment of Restricted Assets of Insurance Under-
takings (AnlV) and the VAG part regulating the investment principles for tied
assets, in particular shares and other equity. Thereby, the investment should
follow general criteria like profitableness, security, liquidity, investment mix
and diversification. In addition, the anticipation and preparation of appro-
priate (qualitative) risk management and extended disclosure requirements –
revised in the 2008 VAG amendment – was meant to strengthen the position
of the German insurance industry within the European competition. In or-
der to ensure the binding interpretation, the BaFin published administrative
regulation sketches called minimum supervisory requirements for risk manage-
ment (MaRisk) since the year 2005. Furthermore, the profound amendment of
the German Insurance Contract Act (VVG) in January 2008 pursues the idea
of comprehensive consumer protection. It regulates qualitative requirements
concerning stakeholder information, consulting and documentation as well as
preliminary insurance coverage and exposes insurers to a certain pressure to
react. Nevertheless, there is no doubt that in periods of economic turbulences

9 The VAG contains regulations on the guarantee fund, managed by Protektor, and provides
an obligatory membership for all life insurance companies running their business in Germany
and voluntary membership for German pension funds. The necessary amount to be deposited
– market value as of 31 December 2010 was 716 million euros – is financed from the annual
contributions (up to a maximum of 0.2‰ (on the whole 1‰) of the net technical provisions)
of the members, which are at the same time the shareholders.
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and for consumer protection reasons, importance is attached to the monitoring10

of the insurers solvency.

As a sixth factor, the latest generation of unit-linked life insurance policies –
supplemented by different guarantee components – became popular in conti-
nental European since the late nineties and, meanwhile, can be found in the
product portfolios of nearly all major insurance companies. In times of volatile
financial markets, consumers prefer products yielding rich guarantees, but also
an adequate return on their risk or savings premiums11. On a national level,
the sales slump of pure unit-linked contracts stands in contrast to a lucrative
new business of those contracts offered with innovative guarantee concepts.
The insurance landscape already offers an unmanageable range of product
variants which, nevertheless, place high demands on their providers. Besides
market-wide challenges like the reduction of the guaranteed interest rate12 and
the introduction of unisex tariffs13 in 2012, the valuation14 according to the
introduction of Solvency II in 2013 and a continuing period of low interest
rates, the underwriting of “innovative insurance products” includes further
challenges.

For example, the product design of unit-linked products has already a major
impact on the resulting risk management and pricing. On the one hand, the
guarantee fulfilment itself restricts common premium flexibilities such that the
guarantee amount or fee may be adjusted due to altering market situations. On
the other hand, the design needs to be as cost-effective as possible selectively
achieved by a tailored15 range of funds and / or anchors16 in the general terms
and conditions. Furthermore, non-hedgeable financial and non-financial risks

10 The adjustments and changes concerning domestic tax and welfare state reforms, which
became necessary to accompany the realignment of the insurance supervision, will be discussed
in Chapter 6 in the second part of the thesis.
11 The market research institute YouGovPsychonomics AG and The Royal Bank of Scotland
plc published a conjoint analysis in 2009 in which 1.000 representative German customers and
190 insurance brokers took part in an online questionnaire about the most important aspects
affecting their choice of voluntary old-age provision products of the next generation. Two
thirds of the respondents preferred a high guaranteed living benefit, 60% favour a flexible
product design and a further 40%, though, expect high potential returns.
12 As a result of the persistent period of low interest rates, the BMF has decided to lower
the guaranteed interest from 2.25% to 1.75% on the first of January 2012.
13 In the first quarter of 2011 the European Court of Human Rights (ECtHR) stipulated the
application of unisex tariffs and benefits in terms of the equal treatment of men and women.
14 The Solvency II directive intends a market consistent valuation of any guaranteed benefits
or options offered within in the insurance wrapper.
15 A small range of preferably index-tracking or volatility-control funds can noticeably
reduce the hedge risk.
16 Most providers of unit-linked products arrange exit clauses that allow for a guarantee
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like policy behaviour or longevity17 must be considered in the price-setting of
products. Although, from the consumer’s point of view, the modular concept
with separately charged guarantee costs is highly transparent, whereas the
assurer sells a complex product which affords a financial valuation and hedging
of embedded guarantees.

Seventhly and finally, the securing of the guarantees included in modern capital
market-oriented products differs considerably with various product variants.
For instance, insurance concepts investing in a guarantee fund promise a certain
minimal yield or intermediate fund peak. Thus, the guarantee is secured
within the fund allocation at the expense of a lower yield compared to a
direct index-fund investment. On the contrary, (dynamic) hybrid products
utilise a conventional premium reserve stock (also available with an additional
guarantee fund stock) whereas so called variable annuity (VA) offer guaranteed
benefits which are exclusively detached from the fund investment. Therefore,
the significance of a company’s internal profitability calculations and business
cases needs to be supported by the application of a stochastic / scenario-based
simulation of maturity benefits.

The product calculation of unit-linked products including certain guaranteed
benefits requires a certain degree of personnel expertise due to the implemen-
tation of allocation algorithms and pricing / hedging according to recognised
financial principles for incomplete markets. Unit-linked pension contracts with
embedded (annuity) options or guaranteed minimum benefits demand an ac-
tively managed (dynamic) hedging by means of derivative financial instruments
since the options moneyness depends on the fund and the market interest rate
development. The financial distress18 of the British assurer Equitable Life
Assurance Society in 2000 – at least the world’s oldest life insurance company –
showed that a mispricing due to a lack of knowledge in appropriate pricing and
reserving methods and inadequacies of mortality projections can have severe
impacts on the solvency of a life insurance company.

The rather conservative German accounting principles19 prescribe a valuation

adjustment or a compulsory shift of funds in determined market or mortality scenarios.
17 According to Blake et al. (2006c) longevity describes the risk that, on average, people
live longer than anticipated.
18 In the seventies and eighties Equitable Life offered a great number of deferred annuity
contracts with an embedded option to convert the accumulated funds at retirement at a
guaranteed fixed rate. Due to reduced market interest rates in the nineties and unanticipated
mortality improvements especially for the retirement ages these guarantee undertakings
became very valuable. As a consequence, Equitable Life had to allocate additional reserves
since the company renounced an appropriate pricing and option hedging until that time.
Therefore, the insurers solvency was threatened and new business had to be closed.
19 In this context, the accounting principles according to § 11 and § 65 of the VAG as well as
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at guaranteed interest rates such that a guarantee obligation affords additional
reserves. As a consequence, hedging becomes capital-intensive and has been
unattractive for domestic insurance companies20 so far. As an alternative,
insurance companies either agreed in expensive reinsurance contracts or en-
gaged experienced and financially strong investment banks with the guarantee
provision. However, even the AXA group – one of the leading life insurance
companies and financial service providers in Germany – experienced financial
problems with the hedging of its third layer VAs product during the Sub-prime
financial crisis. As a result, the Twinstar invest product line was closed for
new business in 2009 and redesigned until early 2010. A majority of the other
providers either withdraw from the unit-linked market or raised their guarantee
fees and included exit clauses respectively. Nevertheless, one of the capital
market-oriented product’s major advantages over traditional life insurance
products is that in case of a rapid market recovery embedded guarantees in
new tariffs could be increased without any delay.

1.2 Motivation and contribution overview

The present thesis deals with the quintessences and scientific issues of the
the factors of Section 1.1 in various degrees of detail. It mainly focusses at
contributing to the research field of private pension provision related to the
challenging tasks of recent market and mortality developments. Thereby, the
following research questions are intended to be answered: Which mortality
developments have been responsible for the increase in the expected lifetime of
industrialised, developed nations and what are the implications of longevity
on actuarial, demographic and socio-political applications? Institutions may
questionnaire which evolutionary relevant mortality models are suited for a
precise description / projection of the current / future mortality pattern. Can
well-known results from other fields of applied mathematics like financial math-
ematics or time series analysis be suitable in this respect? Furthermore, what
are appropriate comparison criteria for a qualitative and quantitative measure-
ment of the goodness of fit for certain model classes? When it comes to the
pricing and reserving of pension contracts, its providers seek knowledge about
the risk potential of (long-term) mortality trends and (short-term) population
fluctuations in combination with a random capital market development. How

§ 341f of the German Commercial Code (HGB) prescribe a setting up of an actuarial reserve
in accordance with principles of proper accounting and appropriate actuarial assumptions.
20 The locational advantage was exploited by international insurance groups with subsidiaries
in Ireland, Luxembourg or Liechtenstein which follow a more liberal accounting legislation.
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has this to be interpreted / implemented in the light of a regulation intending
a market consistent valuation under an EU-wide supervision. And of course,
driven by the mentioned growing demand due to the popularity of modern
unit-linked pension products with innovative guarantee concepts, how can
different approaches for the product design, profitability and guarantee charge
calculation be established?

1.3 Structure of the thesis

The thesis can be divided into two main parts followed by an appendix. Part I
is focused upon the mathematical description and projection of the mortality
of homogeneous populations or insurance cohorts. Besides a survey of the most
important representatives we provide a comprehensive analysis and comparison
of stochastic and deterministic mortality forecasting models. In particular, the
first part is organized as follows: The introducing Chapter 2 studies the most
noticeable patterns in population ageing and recent mortality improvements
since the late 19th century illustrated by German mortality data. Due to
medical advances and improved life standards, the expected individual lifetimes
have steadily increased which has induced a noticeable shift in the national
ageing structure with corresponding consequences for the compulsory pension
schemes and pension providers.

In Chapters 3 and 4 we present a chronological survey of different mortality
models. Thereby, we assert no claim of completeness, but rather list the, from
our point of view, most landmarking approaches. With regard to deterministic
mortality modelling, which is treated in Chapter 3, we foremost describe
approaches concerning the projection of life tables via reduction factors as
well as parametric and non-parametric graduation methods21. We analyse
how these classical approaches can help to explain certain trends in mortality
evolution. Moreover, we take a critical look whether deterministic models fulfil
requirements of modern risk management. Most of the model frameworks are
additionally illustrated by German life table data from the Human Mortality
Database (2009). The subsequent Chapter 4 addresses the issue of stochastic
mortality modelling. First, we deduce a range of fundamental criteria to assess
a model’s appropriateness due to a preselected forecasting purpose. Thereafter,
we give intuition for the concept of stochastic mortality based on a demographic
visualisation of certain trends and effects inherent in German mortality data.
21 Renshaw and Haberman (1996) define graduation as the set of principles and methods by
which the observed (or crude) probabilities are fitted to provide a smooth basis for actuarial
applications.
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For this reason, we review both discrete and continuous time approaches based
on time series, short-rate and market models already, beforehand, used in
econometrics and finance.

Chapter 5 can be considered as a self-contained applied excursus on the
stochastic projection of German population mortality. The model of choice
is given by the Lee-Carter method and some of the most important modifica-
tions and multi-factor extensions. The forecasting methodologies constitute
“distribution-free” approaches sampling the bivariate central death rate for
the full age range. The parsimonious Lee-Carter model enjoys widespread
scientific and practical popularity due to the straightforward fitting procedure
by means of standard least squares or likelihood methods and practical use
for long-term forecasts given a historic stable age-specific mortality evolution.
Nevertheless, the Lee-Carter approach also suffers from drawbacks concerning
precision, forecast reliability and flexibility. A number of modifications and
extensions purposed the improvement of the fitting quality for historical data by
including additional factors or effects, the robustness of the parameter estimates
and the estimation procedure or enrich the comprehensiveness of the bivariate
correlation structure. The estimation / projection results are subjected to an
examination of a criteria catalogue including basic qualitative and a range of
quantitative criteria like residual analysis, parsimony, variance explanation,
mean squared error and fan chart comparison.

Chapter 6 forms a connection to Part II. We describe the German pension
system and clarify the need for supplementary private retirement provision. We
refrain, however, from an overly detailed discussion of additional provision forms
of the first and second retirement saving layer, i.e. Rürup and Riester pensions
as well as occupational pension schemes. Instead, we turn our attention to the
third layer, especially endowment and pension insurance solutions. From the
class of traditional pension insurance solutions we analyse a deferred life annuity
which has been a popular retirement product for decades. The combination
of a conservative and secure investment, mainly bond funds and fixed interest
securities, together with a guaranteed minimum yield augmented with non-
guaranteed bonus shares represents an advisable supplementary income for
retirement ages. In contrast, a unit-linked pension insurance of the latest
generation, e.g. a VA, offers higher potential returns but also contains elevated
risk resulting from an investment in equity and strategy funds. Depending on
the consumer’s opportunity and risk preferences, the basic framework can for
this reason be enriched by various additional guarantee components or riders
which are explicitly priced as a percentage charge of the net asset value and
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therefore exhaust a part of the return. It is meanwhile broadly understood that
actuarial applications in science and practice require a risk-adequate mortality
modelling. We therefore analyse a full stochastic model approach for both the
deferred conventional and the deferred unit-linked product as an application
example of old-age provision.

Chapter 7 analyses the combined effects of stochastic mortality and interest
rates on different pricing methods and risk capital allocation. In particular,
we analyse the systematic risk which is inherent in a portfolio of deferred
life annuities and therefore take into account stochastic mortality as well as
stochastic interest rates. Both models are calibrated to German mortality data
as well as the current Euro area yield curve. We use Monte Carlo simulations
to approximate the variance of the discounted cash flow and its decomposition
into a pooling and a non-pooling risk part. Furthermore, the principle of zero
expected utility and the quantile principle are used to consider pricing effects.
They are required since the chosen setting defines an incomplete market due
to the non-tradable nature of mortality risk. The estimated risk premiums
are benchmarked to the standard equivalence premium. Finally, we focus on
solvency requirements which are based on the investment decisions and the
associated shortfall probability of the annuity provider.

In Chapter 8 we take a closer look on deferred VAs under stochastic mortality
and investment risk. VAs describe unit-linked contracts commonly equipped
with additional guaranteed living and death benefits which are priced as
an annual fixed percentage charge of the net asset value decoupled from
management and mortality loadings. Thus, an analysis of the fair guarantee
fee in a complete market provides an option price and benchmark relative to
common charged insurance market fees. We assume a full stochastic annuity
contract with premiums invested in a mutual equity fund. In case of death
within the deferment period the insured’s dependants can enter a call option on
the greater of fund value or premium paid until the time of death. At retirement
the insured can either enter a lump-sum option or receive a minimum guaranteed
pension in case of retirement. We show the existence and uniqueness of a fair
percentage charge in accordance with the equivalence of benefits and the absence
of arbitrage. In an illustrative part we consider different profitability measures
from the customer’s perspective (rate of return, pension amount at maturity
and options moneyness) for different guarantee features offered to enhance the
guaranteed payoff amount at retirement. From an insurer’s perspective, we
perform a real-world sensitivity analysis of the fair charge and option prices for a
comprehensive selection of contract, financial and mortality process parameters
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as well as different guarantee features. Furthermore, several risk measures
(expected rate of return , conditional tail expectation, inflation quantile) are
considered.

The appendix contains calculations and detailed proofs for the applied models
and parameters of investigation. More precisely, in Appendix A we list
parameter estimation results and some statistical summaries for the Excursion
Chapter 5 on the Lee-Carter model and modifications / extensions. Appendix
B is related to Chapter 7 and, inter alia, contains calculations for the Hull-White
interest rate model and the stochastic mortality rate processes. Furthermore, we
carry out a detailed moment calculation for the discounted portfolio values and
a sensitivity analysis for the present portfolio benefit variance. Similarly, the
Appendix C comprises calculations for the Brownian Gompertz-Makeham
mortality rate process used in Chapter 8. Furthermore, the existence and
uniqueness of a fair percentage guarantee charge are proven.



Part I

Illustrated Review of
Mortality Modelling:

From the Beginnings to
Modern Approaches





One of the largest sources of risk faced by life
companies and pension funds is longevity risk:
the risk that members of some reference po-
pulation might live longer, on average, than
anticipated.

David P. Blake, professor of pension eco-
nomics and director of the Pensions Institute,
Cass Business School

CHAPTER 2

An Introductory Overview of German
Mortality Trends and Patterns since
the late 19th Century
In the course of the 20th century a considerable demographic change in popu-
lations of sophisticated industrial nations22 has taken place. Due to medical
advances and improved life standards23 the expected individual lifetimes in-
creased which induced a change in the national ageing structure. An analysis
of the German historical life expectancy from the Human Mortality Database
(2009) unfolds that since the beginning of the 20th century the expected life-
time at birth has undergone a 32-years improvement for males and even an
improvement of 34 years for females. For the so called retirement age group
we record a similar drastic trend. More precisely, the residual lifetime of a
65-year old male pensioner has risen by 5 years and even by 7 years for a senior
woman since the middle of the 20th century. Oeppen and Vaupel (2002) even
find out that since 1840 the worldwide female life expectancy increased almost
linearly when considering the respective national peak values. Olshansky et
al. (2005) hold the opposite opinion and conclude a downturn for increasing
life expectancy which emphasises that there exists high uncertainty regarding
the future mortality development. However, the increasing longevity of future
pensioners threatens the viability of PAYG pension schemes of social security
systems. But also pension funds or annuity providers need to allocate increased
risk adequate reserves due to elongated future liabilities. It is thus particularly
22 For instance, Macdonald et al. (1998) perform a comprehensive international comparison
of different trends and changes in population mortality.
23 Gallop (2007) discusses key drivers for the decrease in mortality rates in the UK in the
20th century. These are primarily changes due to smoking, diet, medical advances, infectious
diseases and social class affiliation (health care, cardiovascular diseases, housing conditions,
occupation).
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important to use appropriate mortality projections in order to avoid an un-
derestimation of deferred life-long liabilities. Rüttermann (1999) shows that
implicit safety margins in German annuity market tables were partly outrun
by recent improvements in mortality especially those of elderly women. But
also against the background of the forthcoming introduction of an EU-wide
insurance supervision in form of Solvency II, pension funds and providers are
afraid of additional capital charges to cover the longevity risk24 of their insured
parties. A vast illustration for Belgian mortality data can be found in Pitacco
et al. (2008). Benjamin and Soliman (1993) and Renshaw et al. (1996) analyse
changes in the period specific mortality rates in the United Kingdom (UK)
and the United States of America (US) mortality data. The comprehensive
paper of Macdonald et al. (1998) presents a survey of mortality data from the
United Nations for the years 1970 to 1990. In 2006 the Federal Statistical
Office of Germany (Destatis) presented the model calculations needed for the
implementation of its cohort life table for generations born between 1871 and
2004 and enriched the report with various explanations. The press report
released three years later by the Federal Statistical Office of Germany (2009)
describes the results of the 12th coordinated German population projection25.

It was Hippokrates of Kos26 who originated the phrase “declare the past,
diagnose the present, foretell the future” in one of his writings. Applied
to the prediction of future mortality forecasters therefore need to analyse
past mortality trends properly to obtain a meaningful starting point for the
projection of future mortality. For this reason, the major trends in mortality
evolution are briefly summarised and illustrated by German male mortality
data27 from the Human Mortality Database (2009) and the German Federal
Statistical Office (2010). Before the foundation of the Federal Republic of
Germany mortality data was taken from the overall German life tables 1876,
1906 and 1933. Along the lines of the procedure adopted in Babel et al. (2008)

24 Longevity risk denotes the uncertainty in future mortality trends and thus the human life
span. More specifically, mortality data has shown systematic deviations from the previously
forecasted mortality rates of older age groups, i.e. future mortality and life expectancy
improves more favourable than expected before. In contrast, mortality risk denotes the risk
stemming from mortality rates which are systematically higher than expected.
25 The projection study describes effects of the nowadays demographic trends on the future
population based on different assumptions on birth rates, life expectancy and migration.
Some of the main findings of the study were the change in the age structure especially the
reduction and ageing in the working-age structure and thus an increasing share of (oldest)
seniors.
26 Ancient Greek physician (about 460-377 B.C.); quotation from Epidemics, Bk. I, Sect. XI.
27 For reasons of simplification we assume that period life tables approximately describe the
mortality at the rounded centre of their census period, e.g. the life table 1901/1910 describes
year 1905.
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only West German life tables for later periods 1950, 1971, 1992 were used since
East German population had only little effect on overall life expectancy. After
2001 the combined current life table 2005 is considered as an explicit separation
between East and West Germany did no longer take place. The period tables
provide a basis to describe the temporal development of so called functions28

such as central death rate, annual death probability or life expectancy.

Trend 1: Shifted force of mortality curve with accidental hump

The annual death probabilities29 or respectively their logit-transforms30 (Sub-
figure (2.1.1)) show a typical “bath tube” pattern. The curve shape starts with
high rates around the pre-natal ages, minimal probabilities at childhood ages
(years 10-15) followed by higher accidental mortality at young adulthood (years
20-25), increasing mortality at adulthood and retirement ages with nearly con-
stant rate of increase. The so called “accident hump” at adolescence stands for
higher probability and increasing volatility due to accidental deaths and lethal
injuries caused by augmented risk-taking behaviour as well as increased suicide
rates. Subfigure (2.1.1) shows that this specific shape particularly developed
since World War II. For males aged 100 and older the rate of increase slows
down approaching a rather flat shape since the cohort mainly consists of healthy,
sprightly pensioners due to age selection. This effect of late-life deceleration
was analysed by Gavrilov and Gavrilova (2001). Especially the noticeable oldest
age improvement arouses discussion since demographic evidence for those ages
is quite sparse and affected by high random fluctuations. Within the periodic
specific “mortality profiles”31 the overall mortality declined by-and-by whereas
the rate of decline has not slowed down such that an end to this development
is not in sight.

Trend 2: Rectangularisation and expansion

Under closer inspection of the period specific survival probabilities in Subfigure
(2.1.2), the shape of more recent period life tables has become more rectangular
in contrast to the diagonal curve for periods until the end of the 19th century.
This phenomenon is a typical result of a simultaneous decline in mortality for

28 See Section 3.1 for a precise definition of life table functions.
29 The annual death probability at age x denotes the probability that an individual of exact
age x will die within the same year. The definition and estimation of frequency measures is
carried out in Section 3.1.1.
30 The logarithmic scale illustrates even very small changes in mortality especially for infancy
and thus is usually favoured for illustration.
31 The term mortality profile refers to the graphical illustration of the yearly evolution of
the mortality rate over time (or alternatively the central death rate and the annual death
probability respectively) of a single age group conditional on survival until that age.
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a broader range of adult age groups. A typical appearance for this era equals a
nearly uniform distribution of the probability mass over the whole time axis.
This phenomenon of rectangularisation or compression of mortality and its
degree of severity respectively can, for example, be measured by the so called
interquartile range (see Table 5.9) which was analysed by Wilmoth and Horiuchi
(1999). The authors analyse the different behaviour of the interquartile range
and thus the variability of US, Swedish and Japanese life table ages at death.
From the Human Mortality Database (2009) mortality data it follows that the
German female age at death variability fell from 67 years in 1876 to 13 years
in 2005, the male interquartile indicator range from 64 to 17. Furthermore, the
survival probabilities steadily tend to progress towards a biological maximum
age limit ω > 100 whose existence is still debated in demographic literature32.
Both phenomenons directly favour the formation of longevity.

Illustration of Mortality Trend 1 and 2
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Figure 2.1: Temporal development of the shifted force of mortality curve and an
illustration of the rectangularisation and expansion phenomenon based on German
male period life table data from 1871 to 2006.

Trend 3: Increasing concentration of deaths around the mode

Subfigure (2.2.1) depicts the so called “curve of deaths” as the difference quotient
of survival probabilities of a newborn individual for successive durations (i.e.
xp0 − x+1p0 for ages x ≥ 0). Due to extensive decrease of infant mortality
(e.g. favoured by the application of vaccination or antibiotics) and old-age
mortality (e.g. favoured by a decline in the severity of chronic diseases and
its complications) based on improvements in public health and alimentation
the function has evolved into an unimodal curve where the age at death
increased and concentrated on a smaller age interval. Approximately 81%
32 See, for example, Wachter and Finch (1997), Olshansky et al. (2001) or Waite (2005).
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of the interquartile range decline already fall within the period from 1876
until 1933. The augmented probability mass aggregation in the range of the
modal value equals a sharper decline of the survival curve in Subfigure (2.1.2).
Therefore we observe an increase in the “most probable” age at death.

Illustration of Mortality Trend 3 and 4
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Figure 2.2: Temporal development of the increasing concentration of deaths and
an illustration of the period life expectancy based on German male period life table
data from 1871 to 2006.

Trend 4: Increasing period life expectancy and ageing in the popu-
lation pyramid

Subfigure (2.2.2) illustrates that life expectancy at birth (denoted by the life
table function e0) has more than doubled since 1870. The speed of the slope
decreases when considering life expectancies e25, e50, e75 and e100 of different
age groups whereas last mentioned even shows a slight reduction over time t

due to insufficient empirical data on the expected age at death for oldest ages.
The increasing life expectancies since the fifties, especially those for older age
groups, caused a considerable increase of the share of pensioners in the total
population. More specifically, based on the population tables of the Destatis
we found out that since 2003 the proportion of people under 40 years decreased
by an annual average of 0.5% (and a standard deviation of 0.7%). In contrast,
the share of old and oldest age groups (>60 years) rose on average by 1%
annually (with a standard deviation of also 1%) and constitutes 26% of the
total population in 2009. Furthermore, we observe a decrease in the overall
population level since 2003 due to a slight decline in the German birth rate33

and a negative net migration. The demographic change illustrated in the ageing

33 According to records of the Destatis the average number of children women had given
birth to fell from 1.45 children in 1990 to 1.36 in 2009.
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pyramid chart in Figure 2.3 intensifies among other things the pressure on the
social security system planning.

Illustration of Mortality Trend 4 (continued)

Figure 2.3: Gender-specific population pyramids based on West German annual
population numbers for periods 1956 to 2008. The data originates from the Human
Mortality Database (2009).

Trend 5: Heterogeneity in gender

Subfigure (2.4.1) shows that the newborn’s mortality improved substantially for
both females and males where especially the periods 1900-1930 and 1950-1990
recorded the strongest growth. For the remaining female age groups 20 to 80
mortality decreased almost uniformly whereas male mortality improvement
stagnated or even inverted with the outbreak and progression of World War
II. This effect becomes obvious for young adults which were involved in acts
of war and generations born in the meanwhile. Since about 1970 logit rates
are falling again. The changes in the death probabilities have a direct impact
on the expected residual lifetimes for different ages. Demographic research
shows that, on average, females tend to live longer than males. The amount of
this gap becomes smaller with increasing gender-specific ages xfemale and xmale

respectively. In opposition, Subfigure (2.4.2) illustrates that life expectancy
continuously increased especially for female individuals. Hereby, the amount and
rate of improvement decreases for higher ages. A distinction by heterogeneity
for different time periods can be extended to other cohort classifications, e.g. the
socio-economic group an individual belongs to. Richards et al. (2007) observed
that members of better classes underlie a more distinct improvement of mortality
due to smoking behaviour, selection effects, nutrition, environmental conditions
or lifestyle differences.
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Illustration of Mortality Trend 5
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Figure 2.4: Temporal development of the heterogeneity-in-gender trend based on
German male period life table data from 1871 to 2006.





Life expectancy would grow by leaps and
bounds if green vegetables smelled as good as
bacon.

Doug Larson, US columnist and cartoonist

CHAPTER 3

Deterministic Mortality Modelling:
Dynamic Life Tables and Graduation
Methods
The chapter gives a classified survey of early dynamic actuarial methods used to
describe mortality patterns. According to Booth (2006) there exist three differ-
ent approaches for (demographic) forecasts: extrapolation based on statistical
models, expectation based on models including underlying biomedical processes
or expert opinions and explanation by means of causal models involving econo-
metric variables34. In the following survey, only the former method will be
considered while for the remaining methodologies we refer to the surveys of
Wong-Fupuy and Haberman (2004), Booth (2006) and Antolin (2007). Extrap-
olation frameworks should provide beneficiaries of either official projections35 or
projections for the life and pension insurance business36 with decision variables
together with convenient forecasting opportunities and uncertainty measures.
Besides approaches dealing with the projection of life tables via deterministic
reduction factors in order to capture mortality trends we focus on parametric
and non-parametric graduation. Parametric models represent mathematical
formulas which became popular amongst demographers and biologists, e.g. the
Gompertz mortality law (1825) and various extensions on it. The purpose
of non-parametric methods is mainly to provide smooth patterns of crude
mortality data.
34 Econometric variables refer to exogenous variables such as socio-economic, governmental
or health factors.
35 Official population projections which are investigated regionally (statistical offices of the
German states), nationally (Destatis) or internationally (United Nations (UN) Population
Division) provide agencies with a starting point for economic, fiscal and social policy household
planning.
36 The private-sector life and pension insurance business applies projected life tables primarily
in connection with pricing and reserving.
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We analyse how classical approaches can help to understand certain trends in
mortality evolution. Moreover, we take a critical look whether deterministic
models fulfil requirements of modern risk management. Most of the model
frameworks are illustrated by German life table data from the Human Mor-
tality Database (2009). In Section 3.1 we give an overview over discrete-time
mortality models like static and dynamic life tables as well as related life table
functions. Continuous-time models divided into parametric and non-parametric
graduation are handled in the subsequent Section 3.2. In particular, the concept
of projection via reduction factors and mortality laws as well as indirect fore-
casting methods are highlighted and illustrated. Section 3.3 concludes with a
critical discussion about the limits in the application of deterministic mortality
frameworks.

3.1 Discrete-time frameworks

The idea behind the introduction of discrete-time mortality parameters lies in
the nature of demographic population censuses and mortality registries which
are based and published for integer age groups.

3.1.1 Definition of age-discrete probabilities

If not mentioned otherwise, we assume that mortality is time-invariant such
that historical developments continue in the future. At first, we introduce some
general functions describing frequency measures for the mortality events survival
and death of an insurance portfolio or a population. Let l0, l1, ..., lω denote
the sequenced numbers of age-specific survivors based on a fictitious cohort of
individuals with l0 newborns. Furthermore, we define τ (i)

x = τx as the random
independent identically distributed residual lifetime of individual i ∈ {1,2,...,l0}
aged x such that the observed cohort is assumed to be homogeneous. For
natural numbers x,t ≥ 0 the number of individuals that died during the interval
[x,x + t] is calculated as tdx = lx − lx+t. Thus, the t-annual survival probability
conditional on survival to age x equals the number of survivors reaching age
x + t related to the number of individuals having survived at least x years, i.e.

tpx = P (τx > t) = P (τ0 > x + t | τ0 > x) = lx+t

lx
(3.1)

Accordingly, the t-annual death probability is given as tqx = 1 − tpx. From
Definition (3.1) we see that tpx can be interpreted as the tail cumulative
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distribution function of τx. In particular, for t = 1 we obtain the annual
probabilities

qx = 1 − px = lx − lx+1

lx
= dx

lx
. (3.2)

which represent common life table entries and are therefore called life table
functions.

3.1.2 Static life tables

The earliest contributions dealing with life tables as a discrete version of the
distribution of the individual37 residual lifetime τ can be traced back until the
mid of the 16th century38. Nowadays, the concept of life tables has become
a fundamental procedure in demography to describe the mortality experience
of a reference population which is embraced to be stationary in terms of a
constant cohort size for each year of birth. Due to the estimation method
of annual death probabilities (or equivalently other life table functions) two
different types of single-decrement life tables are applied.

The plain type of a life table is called a cohort or generation life table. It
contains observable long time data of a certain cohort equally aged at recording
inception and thus describes specific characteristics of one single underlying
cohort. The annual death probabilities are based on experienced survivor
numbers of sequenced observation years. While this kind of observation takes
durations up to ω + 1 years (ω denotes a biological maximum age such that
lω = 0) in form of a longitudinal section, there is little supply of consistent and
reliable data since in Germany proper mortality documentation did not start
until the end of the 19th century39. The second table form is called a period or a
current life table and records mortality data of a complete “in-force-population”
of relevant ages over several adjacent years (usually one to three years40) in form
of a cross-section41. Therefore we obtain a snap-shot of mortality throughout
the observation period. Typically, life tables are complete in the sense that

37 In the following, we assume a homogeneous population or portfolio of life insurance
policies, i.e. identically distributed lifetimes τ .
38 Graunt (1662) analysed the mortality rolls of London. Halley (1693) constructed a life
table for the city of Breslau for the time period 1687-1691. Milne (1815) presented, from
an actuarial point of view, the first correct construction of mortality tables of two English
parishes during 1779-1787. The first German general life table was set up in the German
Reich during 1871 and 1881.
39 The Federal Statistical Office of Germany (2006) has published a generation life table for
cohorts born between 1871 and 2004.
40 Before 1930, the cross-sectional censuses took up to 10 years due to problems concerning
the census and projection methods.
41 See Pitacco et al. (2008) for further explanation.
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the table entries correspond to one-year probabilities. Abridged life tables are
based on different aggregated age groups.

Moreover, national mortality data is completed by age-specific death rates
namely the central death rate mx between exact age x and x + 1. For positive,
integer time periods u it holds

umx = udx

uLx

=
u−1
i=0

dx+i

Lx+i

=
u−1
i=0

mx+i with uLx :=
u

0

lx+tdt =
u−1
i=0

Lx+i (3.3)

where uLx denotes the number of person years42 lived between ages x and
x + u. Its evaluation is based on life table data and requires distinct algebraic
approximate assumptions based on different hypotheses on the number of
survivors lx+t for non-integer ages x + t. Figure 3.1 shows that the resulting
functional forms are differentiable on the open interval 0 < t < i for each
i = 1,..., u but discontinuous at the endpoints.

Linear Interpolation

W.l.o.g. we assume that u = 1. A popular and intuitive hypothesis assumes
that lx+t is treated as a linear function between consecutive cohort ages x and
x + 1, i.e.

lx+t = (1 − t)lx + tlx+1 = lx − tdx, (3.4)

such that deaths are uniformly distributed and occur on average half the
interval, i.e. tqx = tqx. Under (3.4) the number of person-years43 reduces to

Lx =
1

0

lx+tdt =
1

0

lx − t dx dt = lx − 1
2 (lx − lx+1) = 1

2 (lx + lx+1)

and the central death rate as the average death rate over year x becomes

mx = dx
1
2 (lx + lx+1)

= lx (1 − px)
lx


1
2 (1 + px)

 = qx
1
2 (2 − qx) = qx

1 − 1
2qx

. (3.5)

Accordingly, the death probabilities are converted as follows

qx = mx

1 + 1
2mx

.

42 Lx+u is also called exposure-to-risk or exposure and refers to the number of individuals
adjusted for the duration being alive.
43 The chosen definition ignores migration effects. According to Brouhns et al. (2002b)
approximation (3.4) is still close enough for practical uses.
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Exponential Interpolation

Another approach assumes an exponential decreasing relation of the number of
survivors or a linear relation of the logarithmised number of survivals

log (lx+t) = (1 − t) log (lx) + t log (lx+1)

= log

(lx)1−t(lx+1)t


= log


lx


lx+1

lx

t 
= log


lx (px)t


, (3.6)

For death probabilities over periods less than one year tqx = 1 − (1 − qx)t we
obtain the number of person years as

Lx =
1

0

l1−t
x lt

x+1dt = lx

1
0


lx+1

lx

t

dt = lx


px − 1
ln(px)


= − lxqx

ln (px) .

Under assumption (3.6) the relation between death and mortality rates becomes

mx = − log (px) as well as qx = 1 − px = 1 − exp(− mx), (3.7)

i.e. the central death rates are independent of t and constant over [x,x + 1].

Harmonic Interpolation

For non-integer survivor numbers presume a hyperbolic44 decreasing shape

1
lx+t

= (1 − t) 1
lx

+ t
1

lx+1
or rather lx+t = lx lx+1

lx+1 + t dx

(3.8)

which is equivalent to a linear interpolation of the reciprocals of the survivor
numbers. As a consequence, we obtain a linear functional relation

1−tqx+t = −tqx + qx = (1 − t)qx for (0 ≤ t ≤ 1).

For

Lx =
1

0

lx lx+1

lx+1 + t dx

dt = lx lx+1

dx

ln


lx+1 + dx

lx+1


= − lx+1

qx

ln (px)

the central death rate becomes

mx = − (qx)2

px ln (px) .

44 The hypothesis is also called Balducci assumption since Balducci (1917) already used
hyperbolic distributions for life table models.
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Figure 3.1 illustrates the shapes for different hypotheses on the survivor dis-
tribution. Any mortality assumption produces a smooth survivor curve and
different curves are hardly distinguishable (see Subfigure (3.1.1)). In Figure
(3.1.2) the discontinuous interval endpoints become noticeable45 for the sharp
increase of central death rates at very old ages x > 85. In a complete life table

Linear, exponential and harmonic interpolation of life table functions
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(3.1.1) Survivor number interpolation
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Figure 3.1: Linear, exponential and harmonic interpolation of life table functions
based on the German male period life table of 2006 from the Human Mortality
Database (2009).

with yearly observable functions mx or qx any further function (see Subsec.
3.1.3) can be calculated. For period mortality observations the whole (synthetic)
survivor sequence has to be recursively derived from the estimated frequency
of deaths

l1 = l0(1 − q0), l2 = l1(1 − q1), ..., lx+1 = lx(1 − qx), ..., lω = lω−1(1 − qω−1).

In case of a longitudinal observation of the survivor sequence l0, l1, ... , lω, the
frequency measures can be calculated as dx = lx − lx+1, qx = dx

lx
and px = 1− qx.

A collection of period life tables enables a comparison of mortality trends over
time since each table corresponds to the mortality experience of a certain time
period. Thus, they are suitable for an application in life insurance. Due to
incomplete mortality data cohort tables consequently need to be reconstructed
by stringing together series of past period tables or projected future period
tables to so called aggregated life tables46. However most actuarial calculation
concentrates on cohort tables since the evolution of one single age group is of

45 London (1997) notes that exponential and hyperbolic interpolation seem inconvenient for
life table calculations.
46 The construction of aggregated life tables needs certain smoothing and projection proce-
dures.
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interest whenever measuring life expectancy or analysing certain age, period and
cohort effects. Cohort tables are therefore commonly used for an application in
private pension schemes and annuity insurance (see also Subsection (3.1.5)). In
general, life tables that are based on census data and published by statistical
offices serve as an import for population forecasts or medical analysis47.

3.1.3 Related life table functions

The expected total number of years lived by a reference cohort, starting with
l0 newborn individuals, after reaching year x is denoted as

Tx :=
ω−x−1

i=0
Lx+i = ω−xLx

and necessary to compute the expectation of the future lifetime as a measure
for the mortality level of a population. For an individual aged x the average
future lifetime equals

e̊x = Tx

lx
, (3.9)

such that the expected age at death amounts to x + e̊x. For a life table
environment under assumption (3.4) expression (3.9) reduces to the so called
complete expectation of life48 in terms of

e̊x = Tx

lx

∼=
ω−x

i=1 lx+i + 1
2 lx

lx
=

ω−x
i=1

ipx + 1
2 =: ex + 1

2 .

The functions Lx, Tx and e̊x denote duration measures since they are determined
in person-years. In case of exponential and hyperbolic interpolation of non-
integer age survivor numbers, no convenient analytic formulas for Tx or e̊ are
available.

Actuarial calculations involve other location measures like the Lexis point or
the median age at death which allow for a better understanding of characteristic
patterns for the curve of deaths in Figure (2.2.1). Additionally, demographers
may inspire certain variation measures like the standard deviation, the covari-
ance, the entropy or the interquartile range to get comprehensive information
about the distribution of the remaining lifetime τx (see Table 5.9).

47 For example, the expected lifetime within a country provides a development indicator for
international comparisons.
48 Here, ex denotes the curtate expectation of life E


⌊τx⌋


=
ω−x

i=0 k ipx qx+i =
ω−x

i=1 ipx

describing the number of complete integer years lived after age x. The second equation
follows by summation by parts.
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3.1.4 Dynamic life tables

According to Barrieu et al. (2010) standard life tables only give a restrictive
view in the way that they fade out potential future mortality evolution. If future
mortality evolution should be involved, e.g. for long-term insurance products
like life annuities or pension plans, the insurer can make use of projected
cohort tables. In contrast to static period tables, projected life table functions
φ(x,t) are subjected to model as well as parameter risk49. The extrapolation
task consists of an out-of-sample projection of future mortality. For a past
and possibly fragmented observation period [tpast, tpres[ (tpres current calendar
year), a dynamic mortality model provides estimates for the real-valued matrix
(φx,t)x=0,...,ω−1; t=tpres+1,...,tfut

for a projection horizon ]tpres, tfut]. The entries
φx,t equal the life table function to be projected for an individual aged x at
time t. Row vectors are derived from period life tables for a set of calendar
year observations {t1, ..., tk} (with t1 ≥ tpast, tk ≤ tpres) and different ages
{x1, ..., xl} (with x1 ≥ 0, xl ≤ ω). Alternatively, diagonal matrix vectors can
originate from cohort tables for a set of different ages of birth {y1, ..., ym} (with
y1 ≥ tpast − ω, ym < tpres). The question which observation window duration
suits best for a concrete projection application is an actuarial design50 one.
In general, graduation / projection procedures are subdivided into horizontal
(period-specific), vertical (age-specific) or diagonal (cohort-specific)) estimation
methods for the underlying life table function sequence. Therefore, forecast
methods can, inter alia, be differentiated due to their use of data. Some
dynamic models were actually introduced in the life insurance and pension
business to project the mortality of pensioners.

Projection by Extrapolation

Extrapolation can be used straightforward to project life table functions assum-
ing persistence in the experienced mortality data. This approach is equivalent to
a direct horizontal trend estimation and allows for an age-independent pattern
of two-factor life table functions like the survival function51 px(t) or the average
future lifetime e̊x(t). Which graduation / extrapolation function is chosen de-
pends, amongst other things, on the forecast purpose (e.g. age- or sex-specific),
projection horizon, data disposability and, to a certain degree, on “expert opin-
49 Parameter risk denotes the risk due to inaccurate estimation of certain model parameters.
In turn, model risk arises from an inappropriate model choice.
50 For a discussion on the optimal calibration period see Pitacco et al. (2008).
51 The survival function denotes the discrete- or continuous-time functional representation for
the survival probabilities. In other words, it defines the (cumulative) tail distribution function
of the random residual lifetime. The corresponding definitions are given in Subsections 3.1.1
and 3.2.1.
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ions” concerning the smoothness and the shape. Potential shortcomings like the
high model risk and the large amount of age-specific parameters to be estimated
have to be handled with caution since recent mortality changes themselves
are subjected to random biological, medical and environmental driving factors.
Inconsistencies in extrapolated mortality profiles make a further adjustment
necessary. Without claiming completeness, Table 3.1 gives a brief methodolog-
ical overview. We applied the extrapolation via exponential transformation
to spline smoothed German period life table data from the Human Mortality
Database (2009) and give an illustration in Figure 3.2. It is noticeable that

Exponential extrapolation of the death probability reduction factors

(3.2.1) Raw improvement rates (3.2.2) Exponential extrapolation of spline
smoothed improvements rates

Figure 3.2: Exponential extrapolation of the (spline smoothed) death probability
reduction factors for German period life tables from the Human Mortality Database
(2009) for periods 1956-2006.

compared to the initial frequency qx(1956), the probabilities for subsequent
periods are generally falling for all ages but each to a different extent. Due to
the fact that life table functions for ages 100 and older are updated annually
by simple regression, the corresponding forecasted area has a smooth surface
too. We even observe a rise of the period death probabilities to the historic
mortality level qx(1956) due to an increase in the early nineties and stagnation
afterwards. The remainder ages feature an excessive strong decline for infancy
and retirement age and slower improvement rates for death probabilities of
the age group 45-55. The projected rates continue this downward trend with
negative exponential shape.
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Projection of life table functions by extrapolation

Extrapolation via reduction factors

•the probabilities of death are proposed to follow a decreasing trend over time

• for the reduction factors 0 < r(x,tfut − tpres) = r(tfut − tpres) ≤ 1 the mortality trend
is assumed to be age-invariant (which is reasonable for a limited set of age groups
x1, x2, ..., xk)

•the annual death probabilities of future calendar years tfut > tpres are obtained
according to

qx(tfut) = qx(tpres) · r(x,tfut − tpres) for ages x = 0,..., ω − 1

•the concept of improvement scales was used for mortality forecasts in the UK and US

Extrapolation via exponential transformation
•the annual death probabilities are assumed to decline exponentially over time

•the exponential transform qx(tfut)
qx(tpres) = e−δ(x,tfut−tpres) describes a special case of reduc-

tion factor rexp(x,tfut − tpres) ≤ 1 for tfut > tpres and δ( . , . ) ≥ 0

•the extrapolation procedure then follows qx(tfut) = qx(tpres) · rexp(x,tfut − tpres)

• for an expected asymptotic mortality Ψ(x)qx(tpres) the exponential formula can be
extended by means of

qx(tfut) = qx(tpres) · (Ψ(x) + (1 − Ψ(x)) · rexp(x,tfut − tpres))

which was applied by the CMIB (1990) to allow for mortality improvements in the
CMI standard tables of mortality based on the experiences for periods 1979 to 1982

•the formula qx(tfut) = a(x) + b(x) · c(x)tfut was proposed by the Institute of Actu-
aries in London in 1924 with age-parameters a(x), b(x), c(x) estimated via observed
mortality profile values

Extrapolation via non-exponential transformation

• in case of a presumed non-exponential behaviour for death probabilities, the follow-
ing representations constitute a selection of potential extrapolation methods:
◦ a rational function: qx(tfut) = a(x) + b(x)

tfut

◦ a polynomial function qx(tfut) = a0(x) + a1(x) tfut + ... + an(x) tn
fut (n ∈ N)

◦ a polynomial representation for the logit transform of the so called mortality odds
ln


qx(tfut)
1−qx(tfut)


= a0(x) + a1(x) tfut + ... + an(x) tn

fut (n ∈ N)

•polynomials of high order describe the underlying data with high accuracy but tend
to mismatch the expected trend for extrapolation and therefore possibly show im-
plausible forecasts

Table 3.1: Projection of life table functions via reduction factors and (non-) expo-
nential transformation.
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Projection by Parameter Estimation

For vertical / diagonal estimation of life table functions the projection procedure
works indirectly since each period / cohort table is described via parameter
vectors which themselves have to be fitted in a horizontal way in order to
extrapolate future life table function parameters. On the one hand these
techniques lower the number of degrees of freedom but bring along possible
interdependencies of parameters and high model risk due to the assumption
of perfect correlation among the projections in age direction. For the vertical
approaches each observed period life table yields an estimated parameter vector.
Several indirect projection methods of the vertical / diagonal type can be found
in Tables 3.2 and 3.3. An illustration by means of so called mortality law based
vertical projection is given in Figure 3.7 and 3.8 of Subsection 3.2.2. The method
of diagonal estimation is illustrated in Figure 3.3 using the Brass relational
model presented in Table 3.2 for German generation table data from the German
Federal Statistical Office (2010) with standard table “1871”. In this context,
the cohort survival functions of decennial birth years (1870-2040) correspond
to the vertical mesh lines in the surface. Due to the linearity assumption
which prohibits variations in the level and age patterns the projection surface
turns out to be smooth and regular. Several extensions of the relational model
approach were proposed including additional parameters to capture deviations
from linearity of the logit values.

3.1.5 Life tables for actuarial practice

The calculation of smoothed projected life tables52 in a dynamic context is of
major importance for actuarial tasks like pricing and reserving of insurance
contracts especially for those paying living benefits as they underlie mortality
improvements due to long-term duration53. For practical issues assurers utilize
deterministic applied market life tables of the generation type with implicit
ad-hoc loadings capturing fluctuation and risk of chance since population and
cohort mortality commonly diverge due to selection effects. In addition, certain
trends in population mortality are indirectly calculated for annuity portfolios
and social insurance programs. To a large extent, these selective market tables
are based on mortality data from insurance portfolios. For example, German

52 The concept of projected tables includes an adjustment of life tables according to antici-
pated future mortality trends. For an overview of different projection approaches see e.g.
Pitacco et al. (2008).
53 The underestimation of mortality improvements results in unexpected losses for annuity
providers. Therefore a dynamic forecast sensitive to time changes in mortality pattern is a
basic precondition.
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Projection of life table functions by parameter estimation

Vertical mortality law-based projection
The most important representatives of period-specific force of mortality projection
methods are:

•the Makeham mortality law version mx(t) = a(t) + b(t) · c(t)x introduced by Blaschke
(1903)

•the Gompertz law version mx(t) = b(t) · cx used by Wetterstrand (1981)

•a generalised linear model as a multivariate approach proposed by Renshaw and
Haberman (1996) which considers both the age variation in mortality and periodical
changes

mx(t) = exp
 s

i=0
aiLi (x′)


exp

 r
j=1

bj t′j


with x′ = 2(x − xmin)
xmax − xmin

, t′ = 2(t − tmin)
tmax − tmin

with Legendre polynomials Li(x′) of degree i generated by

L0(x′) = 1 , L1(x′) = 1 , . . . , Li+1(x′) = 2i+1
i+1 x Li(x′) − i

i+1 Li−1(x′);

the first exponent describes a graduation formula for age effects distorted by the
second calendar-year-adjustment term

Diagonal mortality law-based projection
Cohort-specific graduation methods depend on the year of birth t − x (i.e. on the age x
at calendar year t) and are, for example, given by

•the Makeham-based model with central death rate mx(t) = a(t−x)+ b(t−x) ·c(t−x)x

applied by Davidson and Reid (1927) where c(t − x) ≡ c and a(t − x), b(t − x) are
estimated via cohort graduation for all years of birth t − x

•Kermack et al. (1934) suggest an age-cohort model mx(t) = a(x) · b(t − x) where factor
a(x) describes age effects and b(t − x) expresses cohort effects

•Tabeau et al. (2001) takes up an extension in form of an age-period-cohort model
with mx(t) = a · b(x) · c(t) · d(t − x) and parameter constraints

x ln(a(x)) = 0,


t ln(b(t)) = 0 and


t−x ln(d(t − x)) = 0

•Di Palo (2005) uses a dynamic version of the Weibull mortality law

mx(t − x) = a(t−x)xc(t−x)−1

b(t−x)c(t−x)

Limiting / optimal life tables
•Bourgeois-Pichat (1952) assumes a hypothetical (biological) limit in mortality decline

due to humans constitution

•various verifiable trend interpolations based on current and “optimal” tables as well
as expert opinions underline this assumption

• life table functions are projected with reference to that limit

• for exponential interpolation of the annual death probabilities qx it holds
qx(t) = qlimit

x +

qx(tpres) − qlimit

x


· rexp(x,t − tpres) with rexp defined as in Table 3.1

Table 3.2: Projection of life table functions using law-based models and limiting
life tables.
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Projection of life table functions by reference to model life tables and
by application of the Brass relational model and the Petrioli-Berti

resistance transform

Model life tables
•demographers relate a set of different model tables with corresponding representative

values in form of dynamic markers (e.g. life expectancy at birth)

•each marker completely determines the table specific mortality profile with reference
to an initial standard table with year of birth z0

•annual life table functions are calculated by means of estimated marker parameters

•due to limited vital statistics the United Nations presented model life tables for
underdeveloped nations in 1956 describing age and gender patterns of mortality
given by the marker “expected life at birth”

Brass relational model of mortality
•Brass (1974) analyses the time-dependent logit-transform ∆(x,t − x) =

1
2 ln


1−xp0(t−x)

xp0(t−x)


of the survival function xp0(t − x) for cohort data of successive

birth years z1,..., zn

•under a linear assumption for logit values of sequenced years of birth zk,zk+1 it holds
∆(x,zk+1) = ak + bk · ∆(x,zk) + εx for k = 1,..,n − 1

•the procedure consists of an estimation of the level of mortality ak, the shape-
parameter bk and the error term εx and an application on the inverse logit function
to yield the cohort survival function xp0(t − x) = (1 + exp (2∆(x,t − x)))−1

Petrioli-Berti resistance transform
•Petrioli and Berti (1979) address the resistance to death function defined as the ratio

∆(x,ω) = xp0 x
(1−xp0) (ω−x) =

lx

l0 (ω−x)
(l0−lx)

l0 x

representing the average number of deaths between age x and the maximum age ω
divided by the average number of deaths prior to x relative to the initial cohort size
l0

•the projection is preceded by a calibration of ∆(x,t) = a(t)xb(t)(ω − x)c(t) including
the estimation of the period parameters a(t), b(t), c(t)

•a conversion of the function ∆(x,ω) yields the formula for the survival function
xp0 = ∆(x,ω) (ω−x)

x+(ω−x) ∆(x,ω)

•the method was applied to project the Italian population mortality and adopted by
the Italian Association of Insurers for projecting market tables

Table 3.3: Projection of life table functions by reference to model life tables, the
Brass relational model and the Petrioli-Berti resistance function.
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Diagonal projection via the Brass relational model

Figure 3.3: Diagonal projection using the Brass relational model based on German
generation table data from 1871-2004 published by the German Federal Statistical
Office (2010).

insurers make use of the DAV 2004R life table issued by the German Actuarial
Society (DAV) for policies with endowment benefits and the DAV 2008T table
for life insurance contracts. These life tables include an estimation of future
mortality evolution by means of corresponding additional charges. The public
retirement system relies on the General German mortality tables (ADSTs)
(ADST 1986/88) issued by the Destatis. The so called Heubeck tables designed
by the Heubeck AG are based on data from the social security administration
system and serve as a basis for actuarial calculation of corporate pension plans
from the private business sector.

3.2 Continuous-time frameworks

Despite the fact that mortality data exists in discrete, for instance, annual
form continuous-time mortality modelling presents a natural extension since,
in reality, mortality evolves continuously. Thus, the integer life table function
values are extended for non-negative real ages x and time periods t.
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3.2.1 Definition of age-continuous probabilities

The multi-annual survival probabilities are defined as

tpx = P (τx > t) = P (τ0 > x + t | τ0 > x) = P (τ0 > x + t)
P (τ0 > x) = x+tp0

xp0
(3.10)

describing the conditional tail distribution of a newborn’s remaining lifetime
τ0 with survival function xp0. In other words, the remaining lifetime τx ∈]0, ω]
of an individual aged x has a distribution function tqx = 1 − tpx and density
function d

dt tqx = − d
dt tpx in form of an instantaneous probability measure of

death at time t ≥ 0. The relative instantaneous rate of death, i.e. the death
probability for infinitesimal small time periods divided by the tail distribution
function, is called (deterministic) force of mortality or instantaneous mortality
rate and is defined as

µx+t = −
d
dt tpx

tpx

= − d

dt
ln(tpx) (t ≥ 0). (3.11)

Equation (3.11) can be obtained as follows

µx+t = lim
u↘0

P (τx+t ≤ u)
u

= lim
u↘0

P (t < τx ≤ t + u | τx > t)
u

= lim
u↘0

P (t < τx ≤ t + u)
u · P (τx > t) = lim

u↘0

P (τx ≤ t + u) − P (τx ≤ t)
u · P (τx > t)

= lim
u↘0

tpx − t+upx

u · tpx

=
− d

dt tpx

tpx

= − d

dt
ln(tpx)

where − d
dt

(tpx) denotes the unconditional density function of death at exact
age x + t. Furthermore, it holds

µx+t =
− d

dt tpx

tpx

⇔ − d

dt
(tpx) = d

dt
(tqx) = tpx · µx+t

such that tpx · µx+t forms the conditional probability density function of τx at
time t given survival until x + t. Therefore we obtain

P (τx ≤ u) =
u

0
tpxµx+tdt =

u
0

− d

dt
(tpx) dt = 1 − upx = uqx, (3.12)

i.e. the weighted arithmetic mean of the force of mortality over the interval
[0,u] equals the probability that an individual alive between ages x and x + u

dies before attaining the exact age x + u. Conversely, the survival function for
years t ≥ 0 can be derived from Expression (3.11) by knowledge of the force of



38 Chapter 3 - Deterministic Mortality Modelling

mortality

tpx = exp
−

t
0

µx+sds

 .

Traditional static mortality models assume that µx(t) = µx = limu→0 umx for
all t ≥ 0 and x ≤ ω, i.e. future mortality rates and survival probabilities at
different ages are known and time-invariant. Forecasting the force of mortality
seems to be more intuitive in a continuous-time framework on the one hand
but demands a careful model choice / approximation54 on the other hand. Life
table functions are assumed to change continuously in the following, i.e.

udx =
u

0

lx+tµx+tdt , uLx =
u

0

lx+t dt.

Using integration by parts we obtain an expected lifetime

e̊x = E [τx] =
ω−x
0

t tpx µx+tdt =
ω−x
0

t


− d

dt
tpx


dt (3.13)

= [−t tpx]ω−x
0 +

ω−x
0

tpxdt =
ω−x
0

tpxdt. (3.14)

The graduation or adjustment of crude mortality data describes a method
which creates a smooth continuous shape together with a reasonable age-
pattern. The graduation results serve as a starting point for subsequent
forecasting applications. Actuarial and demographic literature provides various
approaches which can be classified due to their functionality regarding the
adjustment procedure, namely a distinction between parametric and non-
parametric graduation.

3.2.2 Parametric graduation using mortality law models

In Section 3.1.2 we have learned that life tables represent a demographic method
to model discrete-time table functions. For the continuous-time mathematical
representation in form of a cross-sectional mortality snapshot a large number
of approaches are available. The underlying objective is to obtain an analytic
graduation of empirical observations with of a smooth one-factor parametriza-
tion function or so called mortality law for the mortality rate, the survival
probability or any transform of age-specific probabilities by means of a small

54 In contrast to realised death probabilities the instantaneous rate of mortality is not
observable from population statistics and thus has to be estimated / approximated.
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parameter set. The estimated set of parameter is each extrapolated and used
to predict function values of the mortality law. In Tables 3.4 - 3.6 we chrono-
logically present some non-polynomial parametrisation functions modelling
the exponential shape of the force of mortality. In addition, there are further
parametric formulas for annual death probabilities, mortality odds or “cause of
death” functions available. However, their illustration is out of the scope of
this thesis55.

Historical force of mortality parametrisations

Gompertz (1825)
•widely used among biologists and demographers

•mortality rates are assumed to increase exponentially with age (especially at adult
and retirement ages)

•driven by two parameters b > 0 (scaling of the adult mortality level), c > 0 (acceler-
ating the shape)

µx+t = b ec(x+t) , tpx = exp


−b

c
ecx

ect − 1


(x > 0)

•causes a systematic underestimation at young adult ages and an overestimation at
oldest ages

Makeham (1867)
•extension of the Gompertz model with additional constant term a describing (“back-

ground”) non-senescent mortality independent of age (e.g. accidents)

•mortality rates assumed to increase exponentially with age x

•driven by three parameters a ≥ 0, b, c > 0

µx+t = a + b ec(x+t) , tpx = exp


−at − b

c
ecx

ect − 1


(x > 0)

• improvement compared to the Gompertz case for ages x > 30 but still overestimation
at oldest ages

Thiele (1871)
•the force of mortality equals a function with seven parameters a, b, c, d, f, g, h > 0

µx+t = ae−b(x+t) + c e−d((x+t)−f)2
+ geh(x+t) (x > 0)

•no explicit survival function formula; for a = b = d = 0 we obtain the Makeham law

•the first term describes younger age patterns, the second one describes the “accident
hump” at young-adult ages and the third term specifies senescent mortality at older
ages

•the formula describes the whole lifespan

Table 3.4: Historical force of mortality parametrisations.

55 See Tabeau et al. (2001) for a detailed schedule of different parametric formulas.
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Historical force of mortality parametrisations (continued)

Perks (1932)
• logistic model driven by five parameters a ≥ 0 b, c, d, f > 0 such that

µx+t = a + b ec(x+t)

1 + d ec(x+t) + f e−c(x+t)

tpx = exp


−at −


b − ad

cd


log


1 + d ec(x+t)

1 + d ecx


(for f = 0 and x > 0)

•extension of the Gompertz model, which equals the Makeham law for d = f = 0

•the denominator flattens out the exponential increase of the numerator for highest
ages (finite positive asymptotic mortality)

•the special case f = 0 was used to graduate the UK immediate annuitants a(55)
mortality table

Weibull (1951)
•originally used for reliability modelling of technical systems in engineering

•driven by the two parameters k, n > 0 whereas k describes the scale and n the shape
of the function

µx+t = k(x + t)n , tpx = exp


− k

n + 1

(x + t)n+1 − xn+1 (x > 0)

Beard (1959)
•driven by three parameters b, c, d > 0

µx+t = b ec(x+t)

1 + d ec(x+t) , tpx = exp


− b

cd
log


1 + d ec(x+t)

1 + d ecx


(x > 0)

•extension of the Gompertz model (d = 0)

•special case of the Perks model for a = f = 0

Table 3.5: Historical force of mortality parametrisations (continued).

Chapter 2 has shown that for the mortality patterns of recent decades the
exponential rate of increase declined for highest ages. Thus the classical
exponential mortality laws from Tables 3.4 and 3.5 tend to fail the representation
of increase mortality of old ages56. The logistic model variants in Tables 3.5
and 3.6 promise remedy since they consider the saturation effect of highest
ages.

In order to illustrate the parametric graduation we fit the mortality rate profile
of German male mortality data for the period 2006 provided by the Human
Mortality Database (2009) by means of parametrisations from Tables 3.4 to
3.6. More precisely, we minimized the weighted sum of squares (WSS) for the

56 See Pitacco (2004b) for a more comprehensive treatment on old age mortality under
parametric models.
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Recent force of mortality parametrisations

Siler (1979)
•the force of mortality equals the sum of three terms determining age independent,

infancy and old age mortality

•driven by the five parameters a, b, c, d, f > 0 such that

µx+t = a + b e−c(x+t) + d ef(x+t)

tpx = exp


−at − b

c


ecx − e−c(x+t)


− d

f


ec(x+t) − e−cx


(x > 0)

•extension of the Makeham model by adding a component b e−c(x+t) (b determines
the level and c the rate of decline) describing the high death risk in the first life year
which rapidly declines for proceeding infancy years

Forfar et al. (1988)
•the force of mortality equals the general Gompertz-Makeham graduation formula

GM(r,s) divided into a polynomial term with r-parameters (α0,..., αr−1) and an
exponential term with s-parameters (αr,..., αr+s−1)

µx+t =
r−1
i=0

αi(x + t)i + exp

r+s−1
j=r

αj(x + t)j−r


•the Gompertz-Makeham law equals the GM(1,2)-formula

• for r = 0 the central death rate equals the exponential term, for s = 0 only the
polynomial term is considered

•the CMIB (1990) used GM(0,2), GM(2,2) and GM(1,3) versions for graduation
purposes

Thatcher (1999)
•the force of mortality is given by a logistic function of age x based on the Perks

formula

•driven by parameters a, b, c > 0 and “background” mortality level parameter d ≥ 0

µx+t = ab ec(x+t)

1 + b ec(x+t) + d , tpx = exp


−dt − a

c
log


1 + bec(x+t)

1 + becx


(x > 0)

• for small b ec(x+t) (usually fulfilled for ages x ≤ 70 and small c < 1) the death rates
approximately follow a Gompertz-Makeham law, for advanced ages the function
shows a plateau shape

• for a = 1 the robust three-parameter model successively fits limiting age mortality
since it levels off at 1 + d

Table 3.6: Recent force of mortality parametrisations.



42 Chapter 3 - Deterministic Mortality Modelling

mortality rate residuals

WSS(x) =
ω−x
t=0

wt∆
2
x+t =

ω
t=0

wt(µx+t − µ̂x+t)2

for different sets of weights wt (ω−x
t=0 wt = 1) and crude central death rates

m̂x+t over the whole lifespan. Results are depicted in Subfigure (3.4.1) -
(3.4.3). Subfigure (3.4.1) illustrates that all laws of the exponential model class

Mortality law parametrisations fitted to period life table data

20 40 60 80 100
t

0.2

0.4

0.6

0.8

1.0

t p0

90 92 94 96 98 100 102

HMD

Siler

Thiele

Makeham

Gompertz

Weibull

Thatcher

Beard

Perks

(3.4.1) Fitted survival functions

20 40 60 80 100
t

-12

-10

-8

-6

-4

-2

logHΜtL

HMD

Siler

Thiele

Makeham

Gompertz

Weibull

Thatcher
Beard
Perks

75 80 85 90 95 100 105 110

(3.4.2) Fitted mortality curves

20 40 60 80 100
t

10-14

10-11

10-8

10-5

0.01

2×logHDtL

Siler HWSSH0L=0.0008L

Thiele HWSSH0L=0.0006L

Makeham HWSSH0L=0.0011L

Gompertz HWSSH0L=0.0032L Weibull HWSSH0L=0.0149L

Thatcher HWSSH0L=0.0006L

Beard HWSSH0L=0.0001L

Perks HWSSH0L=0.0001L
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Figure 3.4: Mortality law parametrisations fitted to the 2006 German period life
table data originated from the Human Mortality Database (2009).

(Gompertz, Makeham, Thiele, Siler) fit the survival curve in a satisfactory way
for adult ages except for the Thiele law. The Thiele parametrisation, in turn,
successfully reproduces the accident hump effect (see Subfigure (3.4.2)). The
only power function represented by the Weibull mortality law shows relatively
poor fitting results over the whole age range. Additionally, Subfigure (3.4.3)
attests good approximation results for a graduation with logistic models (Perks,
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Beard, Thatcher) in the saturation area of oldest age mortality. On the one
hand, Beard and Perks slightly overestimate survival probabilities for ages
30-85 (respectively life expectancy) but, on the other hand, adequately fit
advanced ages x > 85. Since the Beard model forms an extension of the Perks
model its fitting results are slightly worse due to a loss of flexibility. The Perks
model describes a fairly satisfactory fitting for the whole-life-span with minimal
residuals ∆t for young and oldest ages. The Thatcher law underestimates
survival probabilities for young and old ages. All logistic models neither
consider infant mortality nor the accident hump. Whereas the exponential class
mostly overestimates the real curtate life expectancy e0 = 77 of a newborn
on average by 2%, the logistic class causes minor deviations up to 1.8%. We
observe that none of the parameteric models is able to completely fit the whole
age range of the period table. Since various laws describe certain age effects
with different fitting quality Carriére (1992) uses a multi decrement mixture
xp0 = m

k=1 Ψk · xp
(k)
0 of parametric survival functions xp

(1)
0 ,xp

(2)
0 ,..., xp

(m)
0 . The

factor Ψk defines the probability that a newborn individual dies by cause
k = 1, ..., m, e.g. neonatal, childhood / teenage and adult mortality. Therefore,
the author constructs a static mortality model for the whole age range describing
all stages57 of a mortality profile.

If we are interested in the projection of parametric graduated mortality data
we could, for example, follow the vertical law-based approach presented in
Table 3.2. The procedure consists of an estimation of the period-specific law
parameters based on past mortality experience. Thereafter, the different sets
of model parameters are spline smoothed (alternatively, parametric gradua-
tion could also be considered) and projected by means of a (deterministic)
function, e.g. the exponential function class, or a stochastic process, e.g. an
autoregressive integrated moving average (ARIMA) process. A major drawback
of this approach is the noticeable amount of subjective judgement concern-
ing the choice of the smoothing parameter and projection function / process
parameters, the lengthy data requirement and the disregarded correlation
structure. Therefore the number of mortality law parameters plays a crucial
role since estimates are commonly correlated (see e.g. the obvious negative
correlation of the Gompertz-Makeham parameters b(t) and c(t) in Subfigures
(3.5.2) and (3.5.3)) and parameter risk aggregates especially for long projection
horizons. Figure 3.7 shows (deterministic) vertical law-based projections for
the Gompertz-Makeham model according to Blaschke (1903) and the Perks law

57 Inter alia, Carriére (1992) fits the US Decennial Life Table for the period 1979–1981 by a
mixture of a Weibull, Inverse-Weibull and Gompertz law. The probabilities Ψ1, ..., Ψ3 relate
to the probability of dying from childhood, teenage and adult causes respectively.
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where parameters were estimated, spline-smoothed and exponentially projected
based on German period life table data for calendar years 1956–2006.

Gompertz-Makeham survival function parameter
estimates / extrapolation
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aHtL

(3.5.1) Parameter a(t)
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cHtL
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Figure 3.5: Gompertz-Makeham survival function parameter estimates (dotted),
spline functions (solid) and exponential extrapolation (dashed) for the law-based
vertical method based on German life tables data from the Human Mortality Database
(2009) for calendar years 1960–2006.

Whereas the Gompertz-Makeham law shows the typical estimation behaviour58

already mentioned in Table 3.4, the Perks model reveals more flexibility and
minimizes residuals especially for post-retirement ages at the price of high
parameter risk due to a separate extrapolation59 of four distinct parameter sets.
Law-based approaches are partly controversially discussed in actuarial literature
due to interdependencies of the estimated parameter sets. If correlation is not
taken into account, which is obviously the case for a separate parameter extrap-
olation, forecast results may show implausible mortality patterns. Nevertheless,
the law-based approach enables a strong reduction in the forecasting dimension
combined with an “easy-to-interpret” representation. In regard to the fitting
quality of the Gompertz-Makeham and the Perks model, the residual maps in
Figure 3.8 underline the statements mentioned above. Both models fit older
mortality profiles worse than more recent ones. The Gompertz-Makeham law
graduation underestimates mortality for ages x younger than 35 and retirement
ages between 65 and 80 years. On the other hand, it overestimates ages 40-60
and oldest ages x > 80. However, the Perks model shows a similar residual
structure with lower absolute residual values and an additional underestimation
of mortality at oldest ages x > 80.

For a more appropriate extrapolation method cross-correlated time series
models have frequently been applied. In any case, according to Booth and
58 The Gompertz-Makeham law assumes a constant exponential rate of mortality increase.
Empirical observations show a decline in the slope at oldest ages. Thus the Gompertz-
Makeham model features noticeable deviations for ages x > 100.
59 We set the infancy scaling parameter f equal to zero in order to limit the parameter
uncertainty and to obtain a closed-form for the survival function.
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Perks survival function parameter estimates / extrapolation
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Figure 3.6: Perks survival function parameter estimates (dotted), spline functions
(solid) and exponential extrapolation (dashed) for the law-based vertical method
based on German life table data from the Human Mortality Database (2009) for
calendar years 1960–2006.

Tickle (2008) these methods contain a high amount of parameter as well as
model risk such that the reliability of prediction intervals is limited to a certain
degree. Furthermore, multivariate extrapolation may cause computational
difficulties.

3.2.3 Non-parametric graduation

Along the lines of Debón et al. (2006) a non-parametric estimation of smooth
initial mortality quantities excludes the risk of choosing inadequate functions
or parameters. Non-parametric graduation or smoothing does not assume
any underlying distribution but rather describes the shape of the regression
function in a data-analytic way. In the following, we only refer to the graduation
of crude central death rates mx. Alternatively, we could also smooth any
other life table function or a time series of period-specific parameter estimates
for a parametric function60. The sequence mx1 , ..., mxn denotes the crude
60 In Subsection 3.2.2 we exemplarily apply a vertical law-based extrapolation procedure
using the Gompertz-Makeham and Perks mortality law.



46 Chapter 3 - Deterministic Mortality Modelling

Fitted mortality law profiles and vertical law-based projections

(3.7.1) Gompertz-Makeham mortality sur-
face (exponential model)

(3.7.2) Perks mortality surface (logistic
model)

(3.7.3) Gompertz-Makeham survival surface
(exponential model)

(3.7.4) Perks survival surface (logistic model)

Figure 3.7: Fitted mortality / survival surfaces together with vertical law-based
projections for German life table data (dark regions) from the Human Mortality
Database (2009) for periods 1960–2006.

observed death rates for ages x1, ..., xn from a connected series of numbers
{1, 2, ..., n} ∈ [0, ω] where n denotes the cardinality of the age group set. A
standard univariate non-parametric regression model describes the relation of a
dependent variable mxi

and the independent variable xi via mxi
= Ψ (xi) + ϵ(xi)

with independent identically normally distributed error term ϵ( . ) and unknown
smoothing function Ψ . The main task is to locally approximate Ψ based on a
ideally large sample with the objective of minimizing the sum of squared errors
ϵ(x). The weighted mean estimator forms a smooth function with predictor
x. For this purpose, four prominent smoothing methods (so called smoothers)
are available to determine the local mean estimator of the regression function.
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Residuals for the fitted survival surfaces

(3.8.1) Gompertz-Makeham (exponential
model)

(3.8.2) Perks (logistic model)

Figure 3.8: Residuals for the fitted survival surfaces based on German life table
data from the Human Mortality Database (2009) for periods 1960–2006.

Residuals for the fitted mortality surfaces

(3.9.1) Gompertz-Makeham (exponential
model)

(3.9.2) Perks (logistic model)

Figure 3.9: Residuals for the fitted mortality surfaces based on German life table
data from the Human Mortality Database (2009) for periods 1960–2006.
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More precisely, we distinguish between smoothing applying generalised moving
average, kernels, regression polynomials or splines. A detailed list is given in
Tables 3.7 - 3.9.

Actuaries could apply univariate non-parametric graduation as a supplementary
and exploratory method to narrow down the range of potential parametric
choices and thus to improve statistical performance. Some authors like Pagan
and Ullah (1999) refer to semiparametric approaches which smooth estimates
obtained by parametric graduation to improve the fitting quality. We apply
this approach for the mortality law projections illustrated in Figure 3.6 and
3.9. The performance is frequently measured by the mean squared error, mean
absolute error or mean absolute percentage error for the smoothed and raw data.
This is carried out within the time series analysis in Section 5.4 of Chapter 5.
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Non-parametric graduation (moving average and kernel smoothing)

Generalised moving weighted average smoothing
Moving average graduation describes the simplest smoothing method for univariate
data. The local regression estimator is given, for example, by a weighted average of
consecutive crude central death rates which forms a popular explorative approach to
obtain an impression of underlying trends.

•based on a set of ages {x1,x2,...,xn} the k-point weighted moving average is calcu-
lated as

Ψ̂(xi) =
n

ν=1
w(xi,ν) · mxν

where N(xi,k) := [xi−k,xi+k] (k ≤ i, k ∈ N) describes the k-nearest neighbourhood of
age xi with range 2k + 1

•the weights are given as w(xi,ν) =
 1

2k+1 if − k ≤ ν − i ≤ k

0 otherwise for all ν = 1, ..., n

and sum to one

•boundary ages can be estimated under application of special reflection boundary
conditions

Kernel smoothing
Kernel smoothers represent a popular choice for the regression function estimator. The
application solely requires the specification of a bounded, symmetric kernel function K
in form of a probability density and the bandwidth b to control the smoothness of the
estimator.

•possible regression estimator choices are the Nadaraya-Watson, Priestley-Chao or
Gasser-Müller estimator using weight functions of Uniform, Normal, Gaussian, Trian-
gular, Parzen or Epanechnikov type

•the kernel K assigns weight to each data point based on the distance and the band-
width

•bandwidth selection due to subjective (e.g. rules of thumb or visual trial and error)
or data-driven methods (e.g. cross-validation or local choice) implies the risk of
under-/over-smoothing (trade-off between bias and variance of the estimator)

•small bandwidths reproduce the data, large b values result in an over-smoothed curve
in form of the averaged response variables

•an increased bias for boundary ages requires the implementation of certain boundary
kernels

Table 3.7: Univariate local moving weighted average smoothing and kernel smooth-
ing.
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Non-parametric graduation (polynomial regression smoothing)

Local polynomial weighted regression smoothing
The local polynomial weighted regression represents an generalisation of the local lin-
ear weighted regression and is based on the idea that the unknown smoothing function
Ψ can be approximated locally by a Taylor polynomial.

•fitting takes place for a smooth curve on local neighbourhood subsets N(xi,k) :=
[xi−k,xi+k] (k ≤ i ∈ {1, ..., n}) of the crude data by a local polynomial

g(a0,a1,...,ar; x) := a0 + a1 x + ... + ar xr

with fixed degree r (i.e. r = 1 generates a linear and r = 2 a quadratic regression
polynomial)

•methods includes boundary correction and addresses heteroscedastic data via differ-
ent weights

w(xi,ν) = 1
b(xi,k)K


xi − xν

b(xi,k)


for a kernel function K and bandwidth

b(xi,k) = max
j,l

xj ,xl∈N(xi,k)

{|xj − xl|}

• for every age xi (i = 1, ..., n) the parameter estimates are solved by the weighted
least square equation

â
(i)
0 ,...,â(i)

r


= argmin

a
(i)
0 ,...,a

(i)
r


ν

xν ∈N(xi,k)

w(xi,ν)


mxi
− g(a(i)

0 ,...,a(i)
r ; xν − xi)

2

such that the local polynomial least squares estimator for xi equals
Ψ̂(xi) = g(â(i)

0 ,...,â
(i)
r ; 0) = â

(i)
0

•the local polynomial weighted regression reveals certain advantages in comparison to
the kernel regression such as the Nadaraya-Watson estimator

Table 3.8: Univariate local polynomial weighted regression smoothing.
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Non-parametric graduation methods (spline smoothing)

Spline smoothing
•The Whitaker-Henderson method (see Macaulay (1931)) represents a discrete “spline

approximation”. The trade off between smoothness and goodness of fit is reached by
minimizing the residual sum of squares and a roughness penalty

n
i=1

(mxi − m̂xi)
2 + λ

n−k
i=1

 k
j=0

(−1)j


k
j


mxi+k−j

2

for a smoothing preference parameter λ and the inclusion of the k-th forward differ-
ence of the crude observed values. For λ = 0 the data is interpolated, for large λ we
obtain a global linear least-squares fitting.

•Regression splines f(a0,a1,...,ar+m; x) =
r

j=0 ajxj +
m

l=1 ar+l


[x − xl]+

r

of
order r represent a B-spline61curve composed of truncated polynomial B-spline base
functions smoothly joined together and separated by so called (inner) spline knots
ξ1,...,ξm. An ordinary least-squares minimization subjected to

m
l=1 a2

r+l ≤ c for
some c > 0 avoids an overfitting and defines the regression curve.

•The penalized likelihood approach (see Green and Silverman (1993)) describes the
most widely investigated spline method minimizing the penalized sum of squares


â0,...,âd−1


= argmin

a0,...,ad−1

n
i=1

(mxi
− f(a0,...,ad−1; xi))2 + λ

xn
x1


dkf(x)

dxk

2
dx

over all smoothing splines f(a0,...,ad−1; x) :=
d−1

i=0 aiBi(x) as a linear combination
of d = r + m + 1 B-spline base functions of degree r. The choice of k = 1 (k = 2)
evokes a quadratic (cubic) spline. The roughness of f(a0,...,ad−1; xi) is defined as the
integral of its squared k-times derivative and parameter λ penalizes the roughness of
the spline. The spline value Ψ̂(xi) = f(â0,...,âd−1; xi) yields the regression estimate
for age xi (i = 1, ..., n).

•Currie et al. (2004) apply a smoothing and projecting of mortality rates for two data
sets provided by the Continuous Mortality Investigation Bureau (CMIB).

Table 3.9: Univariate local spline smoothing.

3.3 Limits of classical frameworks

Classical projection methods assume that mortality evolves time-invariant in
the way that observations from the past will continue in the future. All kinds
of projection methods dealing with extrapolation of life table functions in both
parametric and non-parametric form are subjected to an considerable amount
of model risk since past trends do not necessarily hold for the future such
that forecasts can systematically deviate from actual mortality developments.
Traditional models provide single numerical values in combination with high
and low scenarios and ignore deviations around that estimates due to model

61 The term B-spline is short for basis spline and denotes a parametric, cubic curve similar
to Bèzier or Hermite curves.
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and parameter risk and therefore disregard stochastic evolution or random
trends of future mortality. Nevertheless, the combination of graduation and
traditional extrapolation methods is still widely applied in actuarial practice. In
particular, exponential mortality, limit life tables and law-based extrapolation
mark popular techniques in that regard.

Demographic observations show that in the long run mortality evolution features
long-term effects like rectangularisation, expansion or increasing life expectancy,
but beyond that exhibits random short to mid-term effects which deserve a
stochastic modelling. A detailed illustration of German mortality data reveals
a general increase in life expectancy with random developments dependent on
age, calendar year and birth cohort62. From this point of view, deterministic
mortality functions seem to be feasible for the construction of (best estimate)
life tables, smoothing or completion of raw data and scenario based forecasting
but inadequate for the calculation of present benefit values and actuarial
reserves. Moreover, a deterministic actuarial approach does not seem to be
the model of choice for flexible forecasting and bears the systematic risk to
misjudge mortality development especially when vertical estimation methods
are applied.

62 See Chapter 4 for a more detailed discussion on effects inherent in German mortality
data.



We have two classes of forecasters: Those who
don’t know – and those who don’t know they
don’t know.

John K. Galbraith, Canadian-American
economist and diplomat who lived from 1908 to
2006

CHAPTER 4

Stochastic Mortality Modelling – Time
Series, Short-Rate and Market
Methods
As already mentioned in Chapter 3, actuaries and demographers need to
carefully identify past trends of mortality to predict its random future evolution.
In addition to the traditional static approaches presented in Sections 3.1 and
3.2 we review stochastic models in both discrete and continuous time that are
frequently applied in actuarial literature. Based on a brief illustration of certain
effects inherent in German mortality data we give intuition for the concept
of stochastic mortality and review the most important probabilistic process
implementations. To a great extent the state-of-the-art concepts go back to
already established short-rate and market models successively used in the
field of financial mathematics due to a similar definition for the instantaneous
interest, credit default and mortality rate. For further discussion on these
similarities see Milevsky and Promislow (2001), Biffis (2003), Schrager (2006)
or Cairns et al. (2006a, 2008).

The chapter is organised as follows: Section 4.1 discloses the major shortcom-
ings of a time-invariant consideration of mortality and shows the volatility of
mortality evolution caused by different age, period and cohort effects. Further-
more, the section contains a list of quantitative and qualitative criteria that
measure a model’s degree of appropriateness in the light of a chosen forecasting
purpose. For this reason, discrete-time as well as continuous-time stochastic
models are introduced in Sections 4.2 and 4.3 in form of time series, short-rate,
forward and market models. In contrast to deterministic models which provide
single point forecasts or trajectories respectively, their stochastic counterparts
produce prediction intervals and therefore allow for a measurement of forecast-
ing and, when appropriate, parameter uncertainty. However, approaches like

53
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the market model comply with a one-to-one transfer from well known interest
rate frameworks and thus have to be checked for their suitability for mortality
modelling. Some concluding remarks on Chapters 3 and 4 are given in Section
4.4.

4.1 Stochastic mortality modelling

4.1.1 Motivation and empirical evidence

Several authors of recent actuarial and demographic literature make aware of
the random nature of (long-term) improvements in mortality especially for the
retirement age groups. For instance, Macdonald et al. (2003) observe a rapid
improvement of mortality due to unknown driving factors. In Gallop (2007)
smoking trends, increasing uncertainty at younger ages, medical advances,
infectious diseases, obesity or social class formation are, apart from further
factors, referenced as key forces for UK mortality evolution. Currie et al.
(2004) state that prediction of future mortality is problematic due to random
fluctuations as well as model and parameter risk. They disclose that for larger
time horizons the width of the confidence intervals for the future development
of mortality rates diverges and thus indicates growing uncertainty in the
projection.

The different trends in Section 2 emphasise that mortality evolves in two
dimensions namely age and time. The German logarithmic mortality odd
surface in Figure 4.1 as a function of the annual death probabilities of an
individual aged x and calendar year t shows random improvements in the
mortality profiles for the periods 1960 to 2006 (Subfigure (4.1.1)) but also
variable pattern improvements between different age groups x (Subfigure (4.1.2)).
On the one hand, these two-dimensional improvements proceed in a continuous
way due to long-term gradual developments like nutrition improvements or
lifestyle changes. On the other hand, sudden mortality shocks caused by wars,
pandemics but also medical advances or genetic discoveries occasionally appear.

A closer inspection of certain age group mortality curves in Subfigure (4.2.1)
yields that basically mortality improved non-linearly for all birth cohorts since
1876 but every individual age group underwent its own random evolution which
turned out seriously for young and only slight for highest ages (cf. Figure 3.2
in Chapter 3). Some age-specific improvement courses even show intersections
which in turn speaks in favour for an age independent evolution. Furthermore,
Subfigure (4.2.2) reveals that the most noticeable rates of change have appeared
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Mortality surface for German life table data

(4.1.1) Mortality surface (two-dimensional) (4.1.2) Mortality space (three-dimensional)

Figure 4.1: Raw mortality surface based on German period life table data from the
Human Mortality Database (2009).
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Figure 4.2: Observed period effects based on German male life tables for periods
1956-2006 from the Human Mortality Database (2009).

for old ages around the sixties and seventies and younger ages in the eighties.
The trend appears similar for varying age groups but to some extent clearly
differs in the corresponding shape. It seems that subsequent annual rates
of change are negative autocorrelated in the way that positive and negative
changes alternate due to raw mortality data used.

4.1.2 Impacts on the underwriting practice

The introduction of stochastic projection methods makes aware of systematic
mortality risk when realised mortality rates differ from anticipated. This has
been disregarded by traditional approaches so far. Pitacco (2004b) comments
that deterministic projection leads to systematic underestimation of realised
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mortality improvements. In particular, for long time horizons the longevity risk
forms an important risk factor. Underwriters as well as pension schemes lack
effective risk management and hedging63 tools and are therefore confronted with
an unexpected elongated annuity payout period due to longer living retirees.

Besides demographic evidence stochastic modelling is justified as a result of the
increasing competition through deregulation of the European insurance market
and a growing product range including with-profit / unit-links variants with or
without guaranteed options. Cairns et al. (2008) mention that actuarial appli-
cations like reserving (especially for those contracts with embedded guarantees
that demand a conventional reserve), premium calculation or the pricing of
mortality derivatives necessitates the application of stochastic simulation and
option price theory.

Although stochastic mortality modelling has still not established that much
in insurance practice64, basic internal stochastic projection models serve for
tasks like financial planning, the determination of risk capital as well as the
validation against experience and pricing assumptions.

4.1.3 Qualitative selection criteria for stochastic mortality models

The question of the general adequacy of a (stochastic) mortality model can
be answered by compliance with certain qualitative criteria. A verification
of these criteria can either take place at the time of the model choice or
immediately after the calibration of model parameters and extrapolation of
life table functions respectively. Several authors like Luciano and Vigna (2006)
or Cairns et al. (2009, 2008) agree in a set of characteristics a meaningful
mortality model or alternatively its modelled values should optimally fulfil.
In processing this criteria catalogue and further measures we get an evidence
whether a model is more appropriate for an intended application or not. As
expected there will be no single model dominating all other remaining models
under all criteria. Moreover it can be assumed that some models perform better
only under a selection of different criteria. An comprehensive verification of
both qualitative and further common quantitative selection criteria for the
well-known Lee-Carter model class is presented in Chapter 5. Qualitative

63 In contrast to the risk of chance in mortality which manifests in deviations of expected
and actual number of deaths the risk of change (e.g. longevity) cannot be diversified by an
increasing number of cohort members. Thus, pricing and risk managing methods have to
include adequate risk loadings and margins, respectively.
64 The Society of Actuaries (2009) has commissioned a survey among US life insurers
concerning their mortality risk management, inter alia, the extent of stochastic methods if
applied.
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selection criteria for mortality models are the following:

Transparency and simplicity

A mortality model which is intuitive and easy to understand minimizes the
risk of an inappropriate implementation. Since an estimation of the degree
of uncertainty is a subjective one, the demand for a transparent forecasting
procedure is of a rather general nature.

Positive force of mortality

By definition, a crucial demand concerning the behaviour of the force of
mortality is to claim positive rates which increase with age x ∈ [0, ω] for all
future time points such that survival probabilities are well defined for all ages.
Unfortunately, some stochastic short-rate processes exhibit negative mortality
rates with positive probability.

Data Consistency

If a model prescribes certain independence or distributional assumptions which
are not consistent with the structure of historical data its forecast performance
needs to be mistrusted. Conversely, insufficient data leads to a certain degree
of model risk, and, even in case of an appropriate model choice, still contains
parameter risk. However, forecasted scenarios or uncertainty measures based on
a chosen model should at least be compatible with trends or variation observed
in mortality data65. The model should ideally be flexible enough to represent
long-term trends as well as mid-term developments in mortality.

Biologically reasonable long-term dynamics

From a biological perspective, there are some requirements for a mortality
model which are more or less controversially discussed in recent literature:

• Due to the process of ageing, mortality rates should rise with increasing age.

• Several authors argue whether there is a biological limiting age which serves
as an upper bound for model considerations.

• Evolutional changes in mortality are linked to the incidence of random events,
i.e. deterministic long-run mean-reversion of mortality processes might be
unreasonable since there is no empiric evidence of a return to long-term
average mortality. Luciano and Vigna (2006) therefore suggest to apply non
mean reverting affine processes that better describe the rectangularization
phenomenon.

65 The appropriateness of forecasted scenarios or uncertainty measures can, for example, be
verified by backtesting methods.
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• There is an ongoing debate about the application of stochastic processes
with either diffusion or jump noise term. For instance, Bauer et al. (2008a)
use a Brownian motion due to distributional assumption. While short-rate
approaches often feature (affine) diffusion processes driven by Brownian
motions, some authors apply jump-diffusion or pure jump-processes. For
biological reasons, especially jump models appear reasonable if random mor-
tality shocks through pandemics, medical breakthroughs, natural disasters
or wars are taken into account. Hereby, it is assumed that these events have
a direct effect on life table functions or at least cause a subsequent impact on
the overall mortality. Since diffusion processes reproduce a smooth mortality
pattern, jump terms are foremost adequate to model short-term mortal-
ity shocks like epidemiological catastrophes or key medical breakthroughs.
Furthermore, it is often observed that calibration leads to process diffusion
parameters close to zero. For this reason somebody could argue whether to
use a diffusion term at all.

Systematic developments and correlation structure

With the last 130 years (national) mortality data has shown systematic devel-
opments in form of long- and medium-term trends. More precisely, there is
empirical evidence for age-, period- or cohort-specific66 effects relating to the
individual evolution in different (consecutive) age groups, calendar years or for
cohorts with certain years of birth. Thus, a flexible mortality model should be
sensible to such developments. In particular, improvements of mortality rates
at different age groups have not necessarily been perfectly correlated among
each other. A mortality model assuming a trivial correlation structure therefore
conveys a illusory understanding of improvement.

Parameter interpretability

Underlying model parameters should ideally be interpretable variables (e.g.
reduction factors, average mortality shape or speed of mortality decline) such
that parameter forecasts can be back-tested by means of historical mortality
data. At least, it should be possible to transform unobservable parameters into
more concrete ones.

Robust model forecasts and parameter estimation

Parameter robustness means that a change in the age range or observation
period should evoke only a rather slight adjustment for the particular parameters
66 For example, Bauer et al. (2008a) suggest to model cohort effects and a constant general
tendency of mortality evolution as diffusion coefficients of a multi-dimensional Brownian
motion.
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and thus provide a reasonable and consistent mortality forecast. A robustness
towards a selection of different models out of an appropriate model class is also
desirable in this regard.

Forecasting accuracy and levels of uncertainty

Besides the identification and the estimation of different sources of forecasting
errors (e.g. model misspecification, parameter estimation errors, random
variation, expert-related misjudgement), Booth (2006) declares the accuracy67

of a model as a main objective for forecasting methods.

Analytic/numerical implementation

The underlying model should preferably offer a good trade-off between a
straightforward analytic implementation or efficient numerical procedures on
the one hand and flexibility in combination with goodness of fit on the other
hand.

Parsimony

Within a defined class of (nested) mortality models modest representations
in regard to their parameter cardinality are more preferable to complex ones.
Parsimony can therefore be defined by the number of effective model parameters.
For example, the Bayes information criterion (BIC) measures the additional
likelihood value contributed by an additional model parameter. Thus, the
model complexity is only raised in so far as the improvement in the data fitting
is effective.

Parametrisation and sampling

Overparametrisation should in general be avoided, i.e. adding a further pa-
rameter needs to be justified by a remarkable performance augmentation. For
example, extrapolation by means of time series requires a large number of
parameters. In addition, a stochastic model should draw sample paths and
allow for a calculation of prediction intervals to access the uncertainty in future
mortality evolution. This is, for example, not the case for the spline graduation
method by Currie and Durban (2002). The forecasting performance can, for
example, be monitored by a back-testing of prediction interval charts similar
to Dowd et al. (2010).

67 The accuracy gives information how well the observed data is reproduced expressed by
certain goodness of fit measures.
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Parameter risk

Since data samples are incomplete the estimated parameters are subjected to
parameter risk which should be considered by an adequate mortality model.
Conversely, a model which disregards parameter uncertainty systematically
underestimates uncertainty in future mortality.

The choice of a certain model variant out of a general model class may vary
with different datasets or forecasting application such as

• the long-term projection of life table functions,

• the quantification of parameter and / or forecasting uncertainty,

• the valuation of insurance liabilities or

• the pricing of mortality-linked securities.

A brief verification of the qualitative selection criteria is executed in Chapter 5
based on the frequently used Lee-Carter model class. Of course, an actuaries
personal belief how strong model assumptions or trends will turn out plays
by no means an unimportant role. The bottom line is that no single model
performs best for all of the criteria listened. A ranking of different model
alternatives according to the degree of compliance with a single criterion (e.g.
goodness of fit for historical data) might therefore give a biased impression and,
at first glance, could be misleading.

4.2 Discrete-time frameworks

Discrete-time models are favourable in the way that they exactly fit the yearly
raw mortality data, e.g. in form of the central death rates, by means of reliable
statistical methods and also allow a stochastic projection into the future. In
this connection, time series models introduced in Subsection 4.2.1 turn out
to be the most promising approach. The implementation of so called market
models (addressed in Subsection 4.2.3) is still in its infancy and assumes a
liquid mortality (bond) market which currently seems far from being fulfilled.

4.2.1 Time series mortality projection models

Over the last two decades parametric time series modelling became a popular
mortality extrapolation method. Depending on the number of random factors
included, changes in mortality rates are classified into effects concerning certain
age groups, calendar years and birth cohorts. Log-linear time series models are
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relatively parsimonious and parameter estimates are based on historical mortal-
ity trends only. A stochastic extrapolation of the time-dependent parameters
based on subjective judgement and time series analysis allows for a probabilistic
measurement of forecasting uncertainty by means of confidence and prediction
intervals. Any prediction of the model implicitly assumes that past trends will
continue in the future. Conversely, a prediction of future mortality changes
due to endogenous social and biological factors is thereby not feasible. In
contrast to law-based approaches the log-linear time series framework avoids
a distributional assumption on parameter dependency. In Tables 4.1 - 4.3 we
overview the most common time series approaches. Admittedly, no claim is
made with regard to their completeness.

Two-factor Age-Period Models

Within the class of two-factor age-period models, the Lee and Carter model
(1992) constitutes a pioneering approach and the most famous representative68.
The graduation is based on an interaction of a single time-driven stochastic
factor and a deterministic age function describing the averaged mortality curve.
Most of the two-factor models assume perfect correlation for the mortality rates
over the whole age range which is equivalent to independent identical normal
distributed model residuals. Since raw mortality data is typically overdis-
persed69 the rather strong distributional assumptions on the model residuals
appear to be somewhat unrealistic. For this reason, several modifications relax
this assumption to enlarge the model flexibility and improve the fitting quality.

Multi-factor Age-Period Models

Multi-factor age-period models based on maximum likelihood parameter estima-
tion introduce an additional stochastic time factor to the Lee-Carter framework
in order to model long-term longevity risk. As a result, the multi-factor vari-
ants successfully capture the imperfect correlation phenomenon across different
ages. To be more precisely, one time factor captures the level and the other
one the slope of period-related effects caused by industrialization, improve-
ments in health care or climatic changes. While age-period models allow for
imperfect correlation and partly produce smooth forecasts (at least for the
logit-transform), they fail in reproducing the so called cohort effects.

68 For a detailed description of the Lee-Carter model see Section 5.1.
69 The residuals are called overdispersed if their observed variance is larger than the assumed
variance, i.e. in case of an age-specific residual variance greater than one.
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Age-Period-Cohort Models

Recently, several authors incorporated a cohort-related enhancement70 into
a two-factor age-period framework (see Table 4.3). Figure 4.3 reveals one
feasible presentation71 of cohort effects showing annual improvement rates for
German raw central death rates. The contour map72 shows an almost entirely
general mortality improvement for the second half of the 20th century. In
particular, juvenile and retirement ages experienced the strongest decrease in
mortality. The red coloured areas denote a continuous improvement whereas
the blue coloured cells indicate mortality deterioration compared to the previous
calendar year. The lightness of the colour indicates the extent of the change in
mortality.
Contour maps of the negative logarithmised central death improvement

rates

Figure 4.3: Shaded contour maps of the smoothed negative logarithmised central
death improvement rates for German male (left) and female (right) mortality data
from the Human Mortality Database (2009) for B-spline of the fourth order and a
smoothing factor73of 0.02.

An analysis of the contour map attests visible cohort effects for male generations
born around 1900 and 1930. Willets (2004) identifies certain driving factors for

70 Cohort effects result from impacts of wars or economic crises but also health reforms
or generation-specific lifestyles and affect the mortality evolution of individual or a few
consecutive birth cohorts.
71 Cairns et al. (2009) use contour maps for an illustration of cohort effects in the historic
mortality of England and Wales and the United States.
72 Some authors also use the term “Lexis map” which was devised by Lexis (1875) for
illustration. In fact, a Lexis diagram describes a chart methodology to analyse the mortality
of a cohort in the age-period plane.
73 A smoothing factor of 0.02 reveals that according to Table 3.9 only very small value is
attached to the penalization of roughness and that the main focus is still on the interpolation.
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UK cohort effects under a cause of death investigation. Richards et al. (2006)
highlight the importance of cohort effects (concerning the year of birth) in
addition to period effects (concerning the year of observation). According to
Andreev and Vaupel (2005)74 cohort and age-shifted effects in demographic
data are characterised not so much by random temporal fluctuations as by
systematic patterns and therefore should receive increasing interest in further
research. The authors observed that the development of German central death
rates varied with different pairs (x,t) (see contour map in Figure 4.3). More
precisely, mortality rates increased gender-independent in the late fifties until
the beginning of the seventies and declined especially for younger age groups
(dark red coloured areas). Although period and cohort effects are hard to isolate,
the “male map” shows diagonal improvement areas decreasing for cohorts aged
60 (40) in calendar year 1979 (1975). The female pattern does not exhibit
comparable cohort effects. Furthermore, Figure 4.3 depicts typical period
effects with increasing rates in the sixties and nineties (blue areas) as well as
strong decrease between the late seventies, eighties and beyond year 2000 (red
areas).

The CMIB (2007b) funded by the UK life insurance industry announced a
“library” of future cumulative reduction factors based on sampling projections
from the Lee-Carter and P-splines methodologies75 to clarify actuaries the
implications and appropriateness of stochastic approaches. Despite the last-
mentioned approaches the application of time series models is still limited to
demography and research in public health, biostatistics or epidemiology. In
particular, age-period-cohort models are faced with difficulties in empirically
estimating separate period and cohort effects based on aggregated mortality
data (see Section 5.3).

4.2.2 Definitions for the forward mortality framework

Let τx denote the residual lifetime of an individual aged x at present time t = 0
represented by a non-negative random variable. Along the lines of Biffis et al.
(2010), we define the stochastic force of mortality process on a filtered probability
space (Ω,F, P ) with filtration F = (Ft)t∈[0,ω−x] (F0 = {∅, Ω}). Furthermore,
F is assumed to satisfy the usual conditions, i.e. right continuity and (P, F)-
completeness, and to represent all available information for different times
74 The authors present a comprehensive research of mortality patterns for several developed
countries based on a smoothing technique using tensor-product splines.
75 Along the lines of Andreev and Vaupel (2005) we apply penalized spline tensor product
smoothing to graduate raw improvement rates as well as residuals (see Figure 4.3 and
Subsection 5.4.2).
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Two-factor age-period models

Dynamic distribution-free extensions of classical mortality laws are able to capture
longevity trends and allow for uncertainty in future mortality rates.

•Lee and Carter (1992) model logarithmised time series of central death rates at
different ages x and calendar years t as a stochastic log-bilinear process of the form

ln (mx(t)) = a(x) + b(x)k(t) + ε(x,t)

with non-parametric age-specific functions a(x) and b(x) expressing the averaged log-
mortality age pattern and the level change at age x when k(t) varies. The single time
index k(t) describes random period effects frequently extrapolated via an ARIMA
processes. ε(x,t) denotes a constant error term capturing residual age-time variation
with zero mean and constant variance (for more details see Section 5.1). Parameters
are estimated using singular value decomposition with a second stage re-estimation
of k(t) to ensure correspondence of the model and the raw number of deaths.

•Lee (2000) and Yang (2001) model annual death probabilities under a piecewise
constant force of mortality (see (3.7)) and normal distributed number of death

dx(t) ∼ N(Lx(t)·qx(t),Lx(t)·px(t)·qx(t)) such that qx(t) = qx(t0)·exp (Y (t)) for t ≥ t0

for a deterministic expected probability qx(t0) and a random reduction factor Y (t) =
X(t) − 1

2 σ2
Y + σY ZY (t). The stochastic overall drift X(t) follows a standard normal

white noise process

X(t) = X(t − 1) − 1
2σ2

X + σX ZX(t) (X(t0) = 0)

where ZX and ZY are unit distributed and the term σY ZY (t) expresses year-specific
environmental variations whereas the terms − 1

2 σ2
X , − 1

2 σ2
Y ensure unit expectation of

exp (Y (t)).

Table 4.1: Two-factor age-period models.

t ∈ [0, ω−x]. More precisely, filtration F contains two strict subfiltrations signed
H and M. H = (Ht)t∈[0,ω−x] with σ-algebras Ht = σ


1{τx≤s} : 0 ≤ s ≤ t


denotes the minimal filtration needed to generate τx as a F-stopping time for
the first jump of the counting process (1{τx>t})t≥0 (i.e. information whether
death occurs or not). Whereas the subfiltration M = (Mt)t∈[0,ω−x] describes
information Mt = σ ({µx+s : 0 ≤ s ≤ t}) concerning the random evolution
of the mortality state variables until time t. Furthermore, along the lines
of Miltersen and Persson (2006) we assume that the filtrations Ht and Mt

represent the minimal σ-algebras generated by the corresponding state variables.

In analogy to (3.10) the t-year survival probability under the real-world measure
P for an individual aged x at time 0 equals

tpx(0) := P (τx > t| H0 ∨ M0) = EP


1{τx>t}

H0 ∨ M0


. (4.1)
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Two-factor age-period models (Lee-Carter extensions)

There exist various extensions for the Lee-Carter model improving different aspects
like forecasting accuracy, smoothness, parsimony concerning the number of parameters
or robustness:

•Wilmoth (1993) fits the Lee-Carter model using an iterative procedure weighting
the least squares matrix equation with weights corresponding to the raw number of
deaths. Furthermore, maximum likelihood estimation (MLE) is applied based on a
Poisson distributed number of deaths. Re-estimation can therefore be omitted. The
MLE allows non-additive heteroscedastic residuals and avoids the assumption of
constant variance.

•Lee and Miller (2001) modify the Lee-Carter procedure by means of an observation
window restriction, adjustment of the period factor by matching the life expectancy
and forecasting starting with the present observation rather than an estimated value.

•Brouhns et al. (2002b) improve the estimation method by assuming a Poisson distri-
bution for the random number of deaths. The parameters are estimated by maximiz-
ing the Poisson log-likelihood function. Mixed Poisson, binomial or negative binomial
distribution constitute alternative number of death distributions.

•Booth et al. (2002) reduce the forecasting error by adjusting the period factor to the
age-specific number of deaths rather than the total number of deaths and face non
linearity in the period factor by an appropriate choice of the observation period.

•Czado et al. (2005) combine a Poisson log-bilinear regression model with a Bayesian
estimation to forego the re-estimation and to impose parameter smoothness.

•De Jong and Tickle (2006) combine B-spline smoothing and estimation by means
of the Kalman filter to fit a generalised version of the Lee-Carter model. In partic-
ular, the extension needs less parameters due to the spline representation and an
integrated estimation / forecasting procedure.

•Hyndman and Ullah (2007) generalise the Lee-Carter model and combine prior non-
parametric smoothing of the raw data with functional data analysis. In addition,
their principal component decomposition is robust against outlier mortality values.

•Delwarde et al. (2007) smooth the estimated age-specific sensitivity factors from
the Lee-Carter and Poisson log-bilinear models via a penalized least squares and
MLE procedure, respectively. The optimal smoothing parameter is obtained by cross
validation techniques.

Table 4.2: Two-factor age-period models (Lee-Carter extensions).

Therefore the random variable

tp̃x := P

τx > t

Mt


= EP


1{τx>t} | Mt


(4.2)

is called the survivor function or survivor index and describes the survival
probability conditioned on a realised mortality76 path until t. In particular,
Expression (4.1) equals the averaged value of the survivor function over all
possible mortality scenarios, i.e. by the law of total expectation we obtain

tpx(0) = EP


EP


1{τx>t}

Mt

H0 ∨ M0


= EP [ tp̃x| M0] .

76 Notice that in case of deterministic mortality, we have tp̃x = tpx(0) for all t > 0.
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Multi-factor age-period models

•Renshaw and Haberman (2003) extend the Lee-Carter framework and introduce a
double bilinear predictor

ln (mx(t)) = a(x) + b1(x)k1(t) + b2(x)k2(t) + ε(x,t)

with distinct correlated period effects ki(t) (i = 1,2) in form of appropriate stochastic
processes (e.g. bivariate random walks) and constraints

x

bi(x) = 1 and


t

ki(t) = 0 (i = 1,2)

ensuring the uniqueness of the parameter estimates.

•Cairns et al. (2006b) present an age-period model for the logit transform of the
annual death probability

ln


qx(t)
1 − qx(t)


= b1(x)k1(t) + b2(x)k2(t) + ε(x,t)

where (k1(t),k2(t)) follows a correlated bivariate random walk with drift. The time
factor k1(t) describes the level/intercept and k2(t) the slope coefficient. The model
allows for imperfect correlation of changes in the mortality “age profiles”. Further-
more, the logistic transform of the annual death probability corresponds to a special
stochastic version of the Perks law of mortality in Subsection 3.2.2 under adequate
parameter choice.

Table 4.3: Multi-factor age-period models.

The (t − s) -year conditional survival probability of an individual aged x + s at
time s ≤ t is calculated as follows

P

τx > t

Ms


= P


τx > s

Ms


· P


τx > t

Hs ∨ Ms


= EP


1{τx>s} | Ms


· EP


1{τx>t}

Hs ∨ Ms


= sp̃x · EP


EP


1{τx>t}

Hs ∨ Mt

 Ms


= sp̃x · EP

EP


1{τx>s} · 1{τx>t}

Mt


EP


1{τx>s}

Mt


Ms


= sp̃x · EP


tp̃x

sp̃x

Ms


=: sp̃x · t−spx+s(s) (4.3)

where (4.3) follows by reason of 1{τx>s} · 1{τx>t}= 1{τx>t} and

EP


1{τx>s}

Ms


= EP


1{τx>s}

Mt


for all t ≥ s.

Following Cairns et al. (2008) the (u − t) -year forward survival probability
of an individual aged x + t at time t conditional on information concerning
(individual) survival and mortality evolution until time s ≤ t can be obtained
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Multi-factor age-period-cohort models

•Currie and Durban (2002) as well as Currie et al. (2004) use the generalised linear
model (GLM) framework to apply P-splines (as a combination of (basis) B-splines
and penalties on the roughness of the estimated coefficients) in order to smooth a
surface of crude central death rates on the (x,t) -plane by

ln (mx(t)) =

i,j

αi j Bi j(x,t)

where Bi j(x,t) = Bi(x) · Bj(t) are pre-specified bivariate basis polynomials driven by
parameters αi j . The model lacks to sample paths directly since fitted and forecasted
mortality rates are estimated simultaneously. The CMIB (2006) used age- and year-
of-birth penalized spline regression to obtain a smooth cohort forecast.

•Renshaw and Haberman (2006) extend their age-period-model as follows

ln (mx(t)) = a(x) + b1(x)k(t) + b2(x)l(t − x) + ε(x,t)

where l(t − x) represents the overall mortality for the cohort born in year t − x. In
order to avoid arbitrary revaluation of the parameters the constraints

x

b1(x) =


x

b2(x) = 1 and

x,t

l(t − x) =


t

k(t) = 0

are imposed and parameters k(t) and l(t − x) are forecasted via univariate autore-
gressive time series. The model lacks smoothness in the age and cohort dimension.
The CMIB (2007a) found a satisfactory out-of-sample description of cohort effects in
UK mortality using the Renshaw-Haberman mortality model. Nevertheless, Cairns et
al. (2008) argue that the model exhibits drawbacks resulting in potential implausible
forecasts.

•Currie (2006) simplifies the discrete age-period-cohort model by Renshaw and Haber-
man (2006) taking constant age-specific improvement rates b1(x) = b2(x) = 1 for all
ages x ≥ 0, i.e.

ln (mx(t)) = a(x) + k(t) + l(t − x) + ε(x,t).

•Cairns et al. (2006b) give an age-period-cohort model for the logit transform of the
mortality odds

ln


qx(t)
1 − qx(t)


= b1(x)k1(t) + b2(x)k2(t) + b3(x)l(t − x) + ε(x,t)

together with three parametric forms due to different choices for bi(x) (i=1,...,3).
The model assumes smoothness in the mortality surface in the age direction but not
in the diagonal cohort direction.

Table 4.4: Multi-factor age-period-cohort models.
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via

P (τx > u | Ht ∨ Ms) = EP


1{τx>u}

Ht ∨ Ms


=: u−tpx+t(s). (4.4)

The quantities t−spx+s(s) and u−tpx+t(s) define spot and forward survival prob-
abilities respectively in analogy to Definitions (4.1) and (4.2). Under an
alternative risk-neutral probability measure Q the corresponding survival prob-
abilities are defined as well and, in the following, marked with the superscript
Q. In contrast to deterministic approaches, forecasts are no longer single
numerical values but rather equal realisations of random variables. Along the
lines of Cairns et al. (2008) we distinguish between four different (theoretical)
stochastic mortality rate models with former application in the field of term
structure modelling.

4.2.3 Market mortality models

Due to well known market models trading rates which are directly accessible (e.g.
from swap or LIBOR curves) the mortality market model approach attempts to
apply this traditional approach to a mortality market. At the moment it seems
that a so called mortality market is far from being perfectly liquid, frictionless
and arbitrage-free. For this reason, we refer to traded assets like index-linked
zero-coupon bonds on a hypothetical market for zero-coupon longevity bonds
traded for all ages x and terms to maturity T . In the following, we present
a filtration framework that facilitates the derivation of longevity bond prices.
Let the cash account at time t be defined as

βt,T = exp
 T

t

rϑ dϑ


compounding the instantaneous risk-free rate of interest rt. The σ-algebra
It = σ ({rs : 0 ≤ s ≤ t}) therefore describes all information concerning the spot
interest rate evolution until time t. For convenience, assume that the mortality
and interest rate dynamics are independent. In particular, the information
It and the union Ht ∨ Mt are independent for all t ≥ 0 such that an overall
filtration can be composed as F = H ∨ I ∨M for a subfiltration I = (It)t≥0.
Therefore, it is possible to split mortality-indexed bonds prices into interest
and mortality related expectation operands. Furthermore, let D(t,T ) denote
the price at time t of a zero-coupon bond paying one monetary unit at time T

and let Πt(x,T ) denote the price at time t of the zero-coupon longevity bond
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(abbreviated with (x,T )-bond77) paying T p̃x at T . If the market is arbitrage
free, the first fundamental theorem of asset pricing yields that there exists a
risk-neutral measure Q equivalent to the real world measure78 P ensuring

D(t,T ) = EQ


β0,t

β0,T

 It


= EQ


1

βt,T

 It


, (4.5)

M(x,t,T ) = EQ [T p̃x| Mt] = EQ


EQ


1{τx>T }

MT

Mt


= EQ


1{τx>T }

Mt


= tp̃x · T −tp

Q
x+t(t)

Πt(x,T ) = EQ


β0,t T p̃x

β0,T

Mt , It


= EQ


T p̃x

βt,T

Mt , It



= EQ


1

βt,T

 It


· EQ [T p̃x | Mt] = D(t,T ) · M(x,t,T ) (4.6)

such that the discounted prices M(x,t,T ) = Πt(x,T )
D(t,T ) form a martingale79 under

Q. In terms of forward survival probabilities (i.e. t ≤ T0 < T1) it holds

T1−T0pQ
x+T0(t) = T1−tp

Q
x+t(t)

T0−tp
Q
x+t(t)

= M(x,t,T1)
M(x,t,T0)

= Πt(x,T1) D(t,T0)
Πt(x,T0) D(t,T1)

and

T1−T0pQ
x+T0(t) = M(x,t,T1)

M(x,t,T0)
= Πt(x,T1)

T0 p̃x D(t,T1)
for times T0 < t < T1. (4.7)

The martingale property of M(x,t,T ) and Expression (4.7) ensure that for all
t < T

EQ


T −tp

Q
x+t(t + 1)

Mt


= 1

tp̃x

EQ


Πt+1(x,T )
D(t + 1,T )

Mt



= Πt(x,T )
tp̃xD(t,T ) = T −tp

Q
x+t(t).

An example of a discrete-time market mortality model approach is listed in
Table 4.8.

4.3 Continuous-time frameworks

The intuition associated with the introduction of stochastic models describing
the development of the instantaneous force of mortality or either the (real time)
survival function is to analyse the exact evolution for non-integer intermediate
77 The payout of the (x,T )-bond is linked to the mortality evolution until time T .
78 Note that for the real world probability measure P and a non unique equivalent measure
Q the expressions EP


1{τx>s}

Mt


and EQ


1{τx>t}

Mt


(s ≤ t) are not necessarily equal.

79 Equations (4.5) and (4.6) imply that the discounted prices D(t,T )
β0,t

and Πt(x,T )
β0,t

themselves
form Q-martingales.
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time points and to apply methods from continuous-time stochastic calculus.
Furthermore, continuous-time models can substantially support a better insight
into actuarial tasks such as the pricing of mortality-linked derivatives or the
premium and reserve calculation for (index-linked) life insurance policies. In
contrast to Subsection (3.2), the (spot) force of mortality µx+s(s) describing
the instantaneous death rate for an individual aged x + s at time s ≥ 0 evolves
stochastically over time. For the true survival probabilities under the real world
measure80 P it holds

t−sp
P
x+s(s) = EP


tp̃x

sp̃x

Ms


= EP

exp
−

t
s

µx+ϑ(ϑ) dϑ

Ms

 . (4.8)

According to Cairns et al. (2008) there exist several term structure related
modelling approaches describing the dynamics of the conditioned expected
survivor function M(x,s,t) under a risk-neutral measure Q. The martingale
M(x,s,t) forms a t-measurable expectation under Q about future mortality
evolution as a spot price of mortality risk (see Subsection 4.3.2).

4.3.1 Short-rate mortality models

According to well established continuous one-factor short-rate models for the
risk-free spot interest rate, e.g. the Vasićek, the Cox, Ingersoll and Ross or
the Hull and White model, it is possible to directly transfer this framework to
mortality modelling. Having recognised that the force of mortality and the spot
interest rate have nearly identical representations, actuarial literature81 started
to adapt and use interest rate model insights and results. Along the lines of
Dahl (2004) the instantaneous force of mortality can be defined as follows

dµx+t(t) = a(x,t) + b(x,t)T dW (t)

where W (t) denotes a standard d-dimensional Brownian motion under the
risk-neutral measure Q. The drift process a(x,t) and volatility vector b(x,t)
assign deterministic processes82. Since b(x,t) and W (t) are (d × 1) - vectors,
80 A subscripted P indicates that expectation is taken with respect to the real-world measure
P . In the following, we seek for a risk neutral valuation / pricing approach to take into
account for a market expectation of future mortality.
81 Several authors such as Milevsky and Promislow (2001), Dahl (2004) or Cairns et al.
(2008) advise of this commonalities. However, there exist some important differences between
mortality and interest rate modelling. For example, mortality rates are assumed to stay
positive and show non mean reversion behaviour. The length of each sample path for spot
interest rate models is limited by the maximum long-term zero bond maturities.
82 The one-row matrix b(x,t)T defines the transpose of the one-column matrix b(x,t). In the
following, the transpose of a matrix is designated by the superscript T .
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we are able to model age-specific short-term evolution of mortality rates by d

different driving factors. This effect of variation between different age groups
can be observed for long-term empirical data (see Figure 4.3). The drift and
the volatility function may additionally depend on underlying diffusion or jump
processes adapted to the same mortality evolution Mt. Under certain sufficient
conditions on a(x,t) and b(x,t) we obtain a closed-form affine solution for the
risk-neutral spot survival probability defined as

t−sp
Q
x+s(s) = M(x,s,t)

M(x,s,s) = EQ

exp
−

t
s

µx+ϑ(ϑ) dϑ

Ms

 . (4.9)

Without postulating completeness, the most frequently used “short-rate mor-
tality models” are listed chronologically in Table 4.5 and 4.6 due to their first
application. Furthermore, Figure 4.4 illustrates that survival functions implied
by an affine process with deterministic parameters fail to capture the complete
rectangularisation effect for more recent period life tables. On average, the
2006 survival functions in Subfigures (4.4.1) and (4.4.3) underestimate raw
survival probabilities for ages x + t < 85 and conversely overstate mortality
data for ages x + t ≥ 85. The extent of misjudgement turns out stronger
for younger age profiles where the rectangularisation as well as the expansion
phenomena is substantial. A comparison of different survival functions / profiles
based on different calibration years (Subfigures (4.4.2) and (4.4.4)) reveals
that phenomenons such as rectangularisation and expansion intensified within
the last 30 years. The intersection point of the model and raw survival curve
is still roughly at age 85. Here, again, probabilities tpx for x + t < 80 are
underestimated and vice versa overestimated for x + t ≥ 85. Both, the square
root diffusion and the compound Poisson jump process provide very similar
calibration results even in connection with the lack of flexibility in the curve
shape. The jump process shows less absolute deviations in the 2006 survival
functions of different ages.

A pragmatic heuristic vertical extrapolation83 for the short-rate framework
is addressed in Figure 4.5. In this connection, the choice of the (optimal)
observation window and especially its width has a substantial influence on the
forecasting result84. The model and parameter risk can become considerably
high due to a misspecification of the projection function and an inappropriate

83 We extrapolate the period-specific sets of parameter estimates and thus the initial
mortality rate curve µ65(t0) as well as the survival function tp65(t0) using a three parameter
exponential function similar to the parametric graduation of Subsection 3.2.2.
84 Booth et al. (2002) present systematic methods to detect the most appropriate observation
window width and location.
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choice of the observation window. In a first instance, we therefore smooth
the period-specific estimated parameters by means of P-splines (see Section
3.2.3 for further details on non-parametric graduation) to reduce noise and
increase the forecasting reliability. As already mentioned in Subsection 3.2.2 the
forecasting error grows with the number of model parameters and extrapolation
horizon. Subfigure (4.5.2) illustrates that future survival functions tp65(2056)
can show implausible behaviour (mortality deterioration) by crossing the current
survival function tp65(2006). This is a direct result of both an inappropriate
extrapolation function and a disregarded parameter correlation structure and
occurs for (narrow) observation windows starting in year 1987 and beyond.

The decision for or against the application of extrapolation via exponential
reduction factors has to be carefully thought out since graduation demands
a subjective expert judgement as well as an extensive time series analysis for
the parameter estimates which is fraught with additional risk. Furthermore,
the applicability of the resulting forecasts depends keenly on the quality of the
estimates. Another extrapolation possibility lies in the application of an au-
toregressive stochastic process. On the one hand, it also bears susceptibility to
inappropriate estimation and thus implausible forecasts. But, on the other hand,
stochastic forecasting enables an analysis of parameter as well as forecasting
uncertainty. A validation concerning the choice of a process variant and param-
eters can be double-checked using a simple backtest85. The model / parameter
is applied to historical data to evaluate the ex-post forecasting performance.

4.3.2 Forward mortality model

Under a risk-neutral martingale measure Q the forward force of mortality
surface is defined by

fµ
x+t(s) := − d

dt
ln


EQ


tp̃x

sp̃x

Ms


= − d

dt
ln


t−sp
Q
x+s(s)


(4.10)

for t ≥ s ≥ 0. Here, the random variable M(x,s,t) forms a martingale under
Q and expresses market expectation concerning future survival (cf. Bauer and
Ruß (2006)). Conversely, for the spot survival probabilities Equation (4.9)
holds such that

t−sp
Q
x+s(s) = exp

−
t

s

fµ
x+ϑ(s)dϑ

 .

85 Mortality backtesting is, inter alia, used in Dowd et al. (2010).
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Short-rate mortality models

Stochastic Mortality Law Models
•Milevsky and Promislow (2001) use an age-invariant generalised mean reverting

Gompertz process in terms of

µx+t(t) = µx(0) exp (γt + σ Y (t)) for dY (t) = −θY (t) dt + dW µ(t)

with a non mean reverting Ornstein-Uhlenbeck process Y and γ, σ, µx(0) > 0, θ ≥ 0
as well as a deterministic starting distribution Y (0) = 0. The continuous-time model
is applied for the valuation of the European option to annuitise embedded in VA
contracts.

•Korn et al. (2006) suggest to use a continuous-time Gompertz model with

µx+t(t) = α(t) exp (β(t)x)

and parameter processes

dα(t) = −γ α(t)dt and dβ(t) = δdt + σdW µ(t)

where β(0) = β0, α(0) = α0, δ, γ > 0. The risk-neutral survival probabilities are used
to price longevity bonds with coupon payments depending on the realised mortality
of a certain German age cohort.

Affine Diffusion Models
Affine models allow for the calculation of closed-form solutions for the spot survival
probabilities.

•Dahl (2004) constitutes mortality rates following an extended square root diffusion
process with a stochastic differential equation

dµx+t(t) = (θ(x,t) − γ(x,t)µx+t(t)) dt + σ(x,t)


µx+t(t)dW µ(t).

The mean reversion level is given by θ(x,t)
γ(x,t) and the deterministic positive bounded

continuous functions θ(x,t), γ(x,t) and σ(x,t) ensure the existence of an affine mortal-
ity structure which serves for the pricing of mortality-linked insurance contracts and
mortality derivatives.

•Schrager (2006) applies a Gaussian Makeham model

µx+t(t) = Y1(t) + Y2(t) cx (Y1, Y2 > 0, c > 1)

for the calculation of a market price of mortality risk and a guaranteed annuity (put)
option. The model equals a special case of a general affine mortality model class with
processes Y1, Y2 of Ornstein-Uhlenbeck type

dY1(t) = α1 (θ − Y1(t)) dt + σ1dW µ
1 (t) and dY2(t) = −α2Y2(t)dt + σ2dW µ

2 (t).

Table 4.5: Short-rate mortality models.
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Short-rate mortality models (continued)

Affine Jump Diffusion Models
•Biffis (2005) models the force of mortality by

µx+t(t) = α(t) + β(t) Y (t)

where the term α(t) > 0 describes a best-estimate assumption at time t and β(t) · Y (t)
the random deviations from α. The term Y , in turn, forms a jump-diffusion process
with dynamics

dY (t) = θ (γ̄(t) − Y (t)) dt + σdW µ(t) − dJ(t), θ, γ̄(t), σ > 0

where θ denotes the speed of mean reversion, γ̄( . ) a time-varying mean-reversion
term and σ the instantaneous volatility. The stochastic process J is a compound
Poisson jump process. The closed form survival probabilities capture the rectangu-
larization and expansion properties well and enable the fair valuation of various life
insurance contracts.

•Luciano and Vigna (2006) apply a non mean reverting Ornstein-Uhlenbeck and a
square root diffusion process of the form

dµx+t(t) = γµx+t(t) + σdW µ(t) (−dJ(t)) , γ, σ > 0,

dµx+t(t) = γµx+t(t) + σ


µx+t(t)dW µ(t) (−dJ(t)) , γ, σ > 0

optionally with an additional jump term (given in brackets).

•Biffis and Millossovich (2006) propose a general two-factor model including the
mortality evolution of different age cohorts to span a triangular Markov-random-field
µ =


µx+t(t)


0≤t≤ω−x
x≤ω

with µx+t(t) = a(x,t) + b(x,t)Y (x,t) and matrix-valued functions
a( . ), b( . ). The dynamics of the ω-dimensional diffusion process Y ( . ,t) are given by

d

dt
Y (x,t) = γ(x,t,Y (x,t))dt + σ(x,t,Y (x,t)) d

dt
W µx(t)

whereas W µx denotes a (ω − x)-dimensional Brownian motion and γ, σ are matrix-
valued functions ensuring a unique solution. The mortality model is part of a valua-
tion framework for longevity bonds and guaranteed annuity options.

•Bravo (2008) models the force of mortality by means of a non mean reverting square-
root jump diffusion process according to Luciano and Vigna (2006) extended by a
Poisson process with double asymmetric exponentially distributed jump size.

Table 4.6: Short-rate mortality models (continued).



Section 4.3 - Continuous-time frameworks 75

Illustration of German period survival data and fitted survival curves
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(4.4.1) Survival functions for period 2006
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(4.4.2) Mortality profiles for initial age 65
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(4.4.3) Survival functions for period 2006
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(4.4.4) Mortality profiles for initial age 65

Figure 4.4: Illustration of German male period survival data (dotted) from the
Human Mortality Database (2009) and fitted survival curves (solid) for a non mean
reverting square root diffusion process (upper row) and a compound Poisson jump
process (lower row). The absolute deviation between the model survival function
and the raw survival probabilities is displayed by the dashed lines. Definitions and
closed-form solutions for the survival functions of both mortality models are given in
Chapter 7.

Therefore fµ
x+t(s) can be interpreted as a best estimate of the future force of

mortality for individuals aged x + t at time t based on information Ms until
time s86. Due to the law of iterated expectations the spot price of mortality risk
{M(x,s,t)}s≥0 forms a positive Q-martingale. Therefore Itô’s formula yields a
stochastic differential equation

dM(x,s,t) = M(x,s,t) V (x,s,t)T dW µ(s),

where V (x,s,t) specifies a family of previsible vector processes. Furthermore,
let the forward force of mortality follow the Q-dynamics

dfµ
x+t(s) = α(x,s,t) dt + β(x,s,t)T dW µ(s), (fµ

x+t(0) > 0) (4.11)

86 For t = s the forward force of mortality fµ
x+s(s) equals the spot force of mortality µx+s(s).

In case of t > s, the forward rate matches the (risk-neutral) market expectation of future
spot rates.
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Exponential projection of the short-rate process parameters
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(4.5.1) Initial mortality rate
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Figure 4.5: Exponential extrapolation (orange coloured) of the initial mortality
rate (left) and survival function (right) of a non mean reverting square root diffusion
mortality rate process for year 2056. The extrapolation was executed w.r.t. a male
individual aged x = 65 based on observation windows [1965 + k, 2006] of different
length (k = 0,..., 37). Historical parameter values (survival curves) are estimated
from period life table mortality data originated by the Human Mortality Database
(2009).

with previsible processes α(x,s,t) and β(x,s,t) and a Q-Brownian motion W µ.
Possible approaches describing the relationship between V (x,s,t), α(x,s,t) and
β(x,s,t) are presented in Table 4.7.

4.3.3 Positive mortality model

A framework which ensures positive mortality rates (on the hole age range)
follows an approach87 in analogy to Flesaker and Hughston (1996). For a
probability measure P̃ equivalent to Q and a given random process {A(x,s)}s≥0

of Ms-adapted strictly positive supermartingales88 define the spot survival
probability

t−sp
Q
x+s(s) = M(x,s,t)

M(x,s,s) = EP̃


A(x,t)
A(x,s)

Ms


(4.12)

ensuring that 0 < t−sp
Q
x+s(s) ≤ 1 with t−sp

Q
x+s(s) decreasing in t > s. Therefore,

the force of mortality is, by definition, positive. In analogy to Cairns (2004),
the resulting dynamics of A(x,s) under P̃ exhibit drift −µx+s(s) A(x,s). For
a setup of the process A(x,s) see Table 4.7. Currently, however, no explicit
positive mortality model variants have been provided by actuarial research.

87 The Flesaker and Hughston approach (1996) is used for interest rate derivative pricing
such as caps or swaptions.
88 A stochastic process {A(x,s)} is called a supermartingale with respect to a filtration
M = (Mt)t∈[0,ω−x] if it holds 0 < E [A(x,t)| Ms] ≤ A(x,s) for all s, t ≥ 0 with s ≤ t.
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4.3.4 Market mortality models

In accordance with Subsection 4.2.3 the whole term-structure of mortality is
modelled under utilisation of continuous-time stochastic calculus. In contrast
to the spot rate models (Subsection 4.3.1) and forward rate model (Subsec-
tion 4.3.2) the market approach satisfies no-arbitrage conditions by directly
modelling certain forward survival probabilities or annuity prices calibrated
to (potentially) observable market prices. Table 4.9 lists different drafts of
mortality market models. Forward and market models allow for analytic
tractability. However, they require full market information about spot SCOR
rates which themselves correspond to a theoretical construct at the present
moment. In addition, the forward maturity is limited by maximum market
SCOR maturity.

4.4 Conclusion

Chapter 3 and 4 present a survey and an exemplary presentation of mortality
modelling and projection methodologies in both discrete and continuous time
with parameter estimation based on historical German period life table data
from the Human Mortality Database (2009). Whether actuaries carry out calcu-
lations concerning the pricing or reserving of pension products or demographers
carry out population forecasts, the first choice in projecting the age-pattern
of mortality90 has commonly been a graduation-extrapolation mixture. In
particular, age-specific extrapolation via reduction factors or polynomials and
period- / cohort-specific mortality laws or transforms are used frequently in
insurance practice. The former horizontal methods present a straightforward
forecast but show high parameter dimensionality and may cause implausible
forecasting results. Vertical / diagonal parametric approaches like mortality
laws or transforms of life table functions reduce the degrees of freedom but, at
the same time, introduce forecasting difficulties due to parameter dependencies.
In contrast, non-parametric graduation methods create a smooth age-pattern
but require subjective judgement from the forecaster concerning the degree of
smoothness. This circumstance implies the risk to smooth short- to mid-term
trends to extensively. Projection methods are based on the assumption that
mortality evolves time-invariant such that observations from the past will

89 According to the principle of equivalence the fair annuity rate value equals the single
premium payment and expected forward annuity contract benefits.
90 The age-pattern of mortality denotes a reporting-date-related cross-section of the mortality
of an single insurance cohort or a whole population.
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Forward and positive mortality models

Forward Mortality Models
•Cairns et al. (2006a) apply a Heath-Jarrow-Morton related framework and set the

conditions

α(x,s,t) = −V (x,s,t)T β(x,s,t) (drift condition) where β(x,s,t) = ∂

∂t
V (x,s,t)

ensuring an arbitrage free market. However, the determination of an adequate form
of V (x,s,t) is left for further research.

•Miltersen and Persson (2006) consider the case of correlated mortality and interest
rates in a Heath-Jarrow-Morton framework. The volatility β has therefore to be
estimated from historical forward force of mortality data or liquidly traded mortality
derivatives whereas, at present, only the former data source seems reliable. The
authors use the dynamics of the stochastic forward rate to model the price process of
a pure endowment insurance based on a market term structure of pure endowment
contracts.

•Zhu and Bauer (2011) demonstrate the opportunities of the forward mortality factor
model class with forward force of mortality dynamics

dfµ
x+t(s) =


∂
∂t − ∂

∂x


fµ

x+t(s) + α(x,s,t)


dt + β(x,s,t)T dW µ(s), (fµ
x+t(0) > 0)

with a multidimensional Q-Brownian motion W µ and common Heath-Jarrow-Morton
drift restriction for α(x,s,t). The volatility structure is captured by a matrix-valued
function derived from a principal component analysis and parameters are subse-
quently (re)calibrated based on MLE.

Positive Mortality Model
Cairns et al. (2006a) consider the rational lognormal model according to Flesaker
and Hughston (1996) incorporating positive mortality rates and define a state-price
deflator

A(x,s) =
∞

s

N(x,s,ϑ)dϑ,

where {N(x,s,t)} is a family of positive martingales under a measure P̃ equivalent to
Q. The family {A(x,s)}, in turn, is a strictly positive supermartingale and the spot
survival probabilities are given by the integral representation

t−spQ
x+s(s) = EP̃


A(x,t)
A(x,s)

Ms


=
∞

t
N(x,s,ϑ)dϑ∞

s
N(x,s,ϑ)dϑ

for 0 ≤ s ≤ t < ∞.

Just like the forward mortality framework the modelling of the dynamic of the
N(x,s, . ) is left for further research. In this connection, a common financial market ap-
proach aims at a calibration of initial (theoretical) values for N(x,0, . ) to the observed
mortality term structure. A differentiation with respect to the survival probability
yields

N(x,0,t) = − ∂

∂t
tp

Q
x (0) = fµ

x+t(0) · tp
Q
x (0).

Therefore, the implied survival probabilities tp
Q
x (0) which are, according to (4.9),

themselves derived from market quotes for zero-coupon (longevity) bonds, constitute
the basis for the calibration.

Table 4.7: Forward and positive mortality models.
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Discrete-time mortality market models

•Olivier and Jeffery (2004) and Smith (2005) formulate a one-factor forward-rate
model for future one-year forward survival probabilities driven by a gamma dis-
tributed deterioration factor

pQ
x+T (t + 1) = pQ

x+T (t)a(x,t+1,T ) Gt+1

where (Gi)i∈N is a sequence of Gamma independent and identically distributed
(i.i.d.) random variables with unit mean and variance δ > 0. The bias corrector a
denotes a Mt-measurable function ensuring the martingale property. The Gamma
distribution ensures closed form solutions and reasonable projected probabilities with
domain equal to the unit interval.

•Cairns (2006) extend the flexibility in the volatility term structure of the spot sur-
vival probabilities and allow for (non-trivial) correlated changes in the mortality
rates. More precisely, the approach uses a two-dimensional array of dependent
Gamma distributed variables G̃i(x,T ) ∼ Γ (δ(x,t + 1,T ),δ(x,t + 1,T )) for each age x
and each maturity T generated using multivariate Gaussian copulas. The normalis-
ing constants a(x,t + 1,T ) are derived from

a(x,t + 1,T ) = −
δ(x,t + 1,T )


pQ

x+T (t)−1/a(x,t+1,T ) − 1


log


pQ
x+T (t)

 .

Table 4.8: Discrete-time mortality market models.

continue in the future. However, a detailed illustration of German mortality
data reveals a general increase in life expectancy (especially during the course
of the 20th century) with significant random structural changes depending
on age, calendar year and birth cohort. Therefore, a deterministic approach
includes the risk to misjudge mortality developments91.

During the last two decades, modern stochastic forecasting concepts were
introduced and consider age-specific variation around an uncertain direction of
future trends (due to parameter uncertainty). In this connection, the two-factor
time series model of Lee and Carter (1992) presents a significant actuarial
milestone since it provides variability measures for future projections using the
bootstrap method by Efron (1979) based on a single mortality data sample
and unknown distribution. The method shows robustness concerning log-linear
trends of the central death rate and can basically be applied for endowment or
term life insurance calculation as long as no distinct period or cohort effects
are present. Nevertheless, due to strong (distributional) model assumptions
forecasting results have to be interpreted accordingly92. In addition, sparse
empirical data for highest ages leads to implausible parameter / projected
91 Almost all mortality projections carried out in the second half of the 20th century
underestimated the increase in life expectancy.
92 A detailed discussion of the Lee-Carter model with graduation / projection implementation
based on German mortality data is presented in Chapter 5.
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Continuous-time mortality market models

•Cairns et al. (2006a) introduce the Survivor Credit Offer Rate (SCOR) market model
as an analogue to the LIBOR market model by Miltersen et al. (1997) and Brace et
al. (1997) for pricing interest rate derivatives. More precisely, each SCOR-implied
forward rate (only spot SCORs are market observable) is modelled under its forward
arbitrage-free measure, i.e. the model is given by a vector of forward SCOR dynam-
ics for different forward rates of certain durations and maturities. The fair forward
SCOR based on zero-coupon survivor bond prices is given as

L(x,s,t,t + 1) = Πs(x,t) − Πs(x,t + 1)
Πs(x,t + 1) .

Hence, a forward SCOR equals the ratio of a portfolio of longevity bonds positions
relative to the price of the longer one which suffers as a numéraire under a measure
Pt ≈ Q. Therefore, L(x,s,t,t + 1) forms a martingale with dynamics

dL(x,s,t,t + 1) = L(x,s,t,t + 1)

σr

SCOR(x,s,t)T dW t+1,r + σµ
SCOR(x,s,t)T dW t+1, µ(t)


for independent Brownian motions W t+1,r and W t+1, µ and volatility functions
σr

SCOR, σµ
SCOR. For deterministic volatility functions the forward SCOR L(x,s,t,t + 1)

is log-normally distributed under Pt, such that the well-known Black-Formula can be
applied for pricing issues.

•Cairns et al. (2006a) additionally develop a SCOR extension eliminating some draw-
backs of their first approach and present the Perks-SCOR market model as a specific
variant assuming a stochastic Perks law for mortality modelling.

•Cairns et al. (2008) introduce an annuity market model describing the dynamics of
the price process of the so called forward annuity rates for (deferred) single-premium
life annuity contracts in analogy to the swap market model introduced by Jamshid-
ian (1996). Under contract-specific assumptions (e.g. for mortality-linked securities
and annuity futures) the fair value89of an immediate annuity rate equals

F (x,s,t) = D(s,t) M(x,s,t)∞
u=t+1 D(s,u) M(x,s,u)

=: Πs(x,t)
X(s) > 0

and forms a martingale under an equivalent pricing measure PX ≈ P . Itô’s formula
yields a stochastic differential equation

dF (x,s,t) = F (x,s,t)

σr

FR(x,s,t)T dW r(t) + σµ
FR(x,s,t)T dW µ(t)


with independent standard Brownian motions W r and W µ under PX and appro-
priate previsible interest rate and mortality rate volatility functions σr

FR(x,s,t) and
σµ

FR(x,s,t). If the latter are deterministic in s,t with s < t ≤ u the forward annuity
rate F (x,t,u) is log-normally distributed under PX . Cairns et al. (2008) extended the
approach to annuity contracts with minimum guarantee options.

Table 4.9: Continuous-time mortality market models.



Section 4.4 - Conclusion 81

values and thus additional risk resulting in wider prediction intervals. Several
modifications and extensions of the Lee-Carter framework relaxed the model
assumptions and enhanced parameter estimation efficiency. If projection aims at
reproducing an exact image of cohort- and period-specific phenomenons, multi-
factor time series models have proved to be particularly suitable. Additionally,
period and/or cohort factors improve the fitting performance and describe
longevity trends in an appropriate probabilistic way. Therefore, age-period-
cohort models are principally applicable to long term forecasts and pensions
pricing. Once again, the estimation bias and confidence interval appearance
strongly depends on the availability of lengthy series of historical (cohort)
data.





Lee-Carter is not Black-Scholes for longevity
but a real step forward!

Guido Grützner, head of Life & Modelling,
Secquaero Advisors AG, Switzerland

CHAPTER 5

Excursus on Modelling and
Forecasting Mortality using the
Lee-Carter Model and Multi-factor
Extensions

This chapter is an adapted version of Steuten (2012).

5.1 Lee-Carter age-period model

The extrapolative method proposed by Lee and Carter (1992) constitutes a
milestone of the development of stochastic mortality projection models. The
matrix of the logarithm of the central death rate is modelled assuming a
log-linear long term trend in the single time factor for different age groups.
Due to the comparably low number of parameters, which are easy to interpret
and feature a trivial correlation structure, the method is suitable for various
applications: It serves for an appropriate description of discrete life table data
and shows robustness concerning log-linear trends in the central death rate.
Furthermore, the method can principally be applied for endowment or term
life insurance calculation as long as no distinct period or cohort effects are
observable from mortality data. However, the strong (distributional) model
assumptions restrict the significance of forecasting results and thus prevent an
application for long-term projections commonly utilised in pension modelling93.
It is often used because of its straightforward applicability94 on the one hand.
93 For example, Lee-Carter population forecasts served as the basis of population forecasts
for the US Social Security System. See Lee (2000) for a further treatment.
94 It has to be admitted that there are no analytical formulas for any of the other life table
functions available. The latter are complex non-linear functions of the Lee-Carter parameters.
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On the other hand, generating bootstrapped parameter series and projecting of
the time factor using standard Box-Jenkins techniques is possible. The model
(hereafter referred to as LC92) describes the time-dependent evolution of the
central death rate (3.3) for different age groups by means of a small number of
parameters which can be easily interpreted.

In particular, the bilinear behaviour results from a distinction into the sum
of an average log-mortality rate over time a(x) and an improvement rate b(x)
sensitive to changes in the period effect k(t) (indexing the level of uncertainty).
Thus, we obtain an expression

LC92 : ln (mx(t)) = a(x) + b(x)k(t) + εLC92(x,t). (5.1)

The residual parameter εLC92(x,t) ∼ N (0, σ2
LC92) covers age-specific random

disturbances not captured by the model. The variance σ2
LC92 > 0 is assumed to

be constant thus residuals are homoskedastic. This distributional assumption
implies that temporal variation in the mortality profile are ignored and the
rate of change d ln(mx(t))

dt
stays constant respectively. However, the constraints

prevent so called mortality crossovers, i.e. an overlap of different mortality
profiles, or other biologically implausible patterns.

Lee and Carter (1992) introduce two constraints controlling a translation
(x b(x) = 1) and a scaling (t k(t) = 0) to ensure that a(x) becomes the
age-specific average shape of the log mortality rate over time and thus to get a
unique least-squares solution


â(x),b̂(x),k̂(t)


= argmin

a(x),b(x),k(t)


x,t

(ln (mx(t)) − a(x) − b(x)k(t))2 (5.2)

in case of overparametrisation. Since the parameters on the right side of
Equation (5.2) are not observable, the forecasting procedure is divided. Firstly,
parameters â(x), b̂(x) and k̂(t) are estimated by principal component analysis
as an application of the singular value decomposition95. Afterwards, the
parameters k̂(t) are iteratively reestimated in a separate step such that estimated
and observed total number of deaths coincide


x

dx(t) !=


x

Lx(t) m̂x(t) =


x

Lx(t) exp

â(x) + b̂(x) · k̂reest(t)


∀t ≥ 0

for the (raw) number of deaths dx(t) and the number of person years Lx(t).
95 More precisely, the maximum likelihood estimators are determined in terms of the singular
value decomposition of the (centred) log-mortality rate matrix. According to Girosi and
King (2007) the Lee-Carter model forms a special case of a principal component method
with a (first) single component k(t) fitting mortality rates under a loss of information.
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Figure 5.1 shows parameter estimates fitted to 1956-2006 German mortality
data from the Human Mortality Database (2009). Thereafter, the new values
k̂reest are modelled as an ARIMA process preferably as a random walk according
to the Box and Jenkins time series approach (1970) and extrapolated to obtain
mortality forecasts (see Figure (5.1.3)). The extrapolation presupposes that
observed historical trends persist in the future. However, this also means that
(short-term) deterioration of mortality evolution due to structural changes
(shocks) are not considered by the model.

5.2 Age-period(-cohort) modifications and extensions of
the Lee-Carter model

In the following, we present three different Poisson log-bilinear modifications /
extensions of the age-period model by Lee and Carter. Therefore, we focus on
different approaches by Brouhns et al. (2002a), Renshaw and Haberman (2003)
as well as Renshaw and Haberman (2006) since they share some characteristics:

•The models provide analytical graduation formulas to fit the age-period surface
of the central death rate mx(t).

•The number of deaths dx(t) is modelled as an independent response variable
following a Poisson distribution Π(Lx(t) · m̂x(t)) such that the expected
number of deaths equals Lx(t) · m̂x(t). This approach allows for a Poisson
likelihood maximization.

•The period / cohort effects can under certain conditions be extrapolated via
ARIMA(0,1,0) processes, i.e. simple random walks with drift.

•The standardised deviance residuals are appropriate in the context of (Pois-
son) bilinear regression to monitor the models’ fitting quality towards crude
mortality rates.

In order to avoid the singular value decomposition of the Lee-Carter approach
we implement an iterative Newton-Raphson algorithm according to Brouhns
et al. (2002b) to estimate the parameters. Since dx(t) ∼ Π(d̂x(t)) the density
function for the number of deaths has the form

f(k,d̂x(t)) =


d̂x(t)

k

k! exp


− d̂x(t)


for integers k ≥ 0.



86 Chapter 5 - Excursus on Modelling and Forecasting Mortality

Thus, we obtain a log-likelihood function

ln(L) = ln


x,t


d̂x(t)

dx(t)
exp


−d̂x(t)


dx(t)!



=

x,t

ln



d̂x(t)

dx(t)
exp


−d̂x(t)


dx(t)!


=

x,t

dx(t) ln

d̂x(t)


− d̂x(t) − ln (dx(t)!)

=

x,t

dx(t) ln (m̂x(t)) − Lx(t)m̂x(t) + dx(t) ln (Lx(t)) − ln (dx(t)!)  
const.

(5.3)

for estimated death rates m̂x(t). A maximization of ln(L) is realised by an
iterative stepwise update of the maximum likelihood estimates series

ξ̂(ν+1) = ξ̂(ν) − ∂ ln(L(ξ̂(ν)))/∂ξ

∂2 ln(L(ξ̂))(ν)/∂ξ2

already introduced by Goodman (1979) to estimate log-linear models with
bilinear terms.

The “second-stage” re-estimation for the Poisson log-bilinear model can be
omitted since the number of deaths is directly matched within the log-likelihood
estimation. If the algorithm converges to the maximum likelihood both the
observed and the estimated number of deaths coincide. The extrapolation task
is solved using standard Box-Jenkins methods. A replication of the original data
with Poisson noise in the number of death realizations allows for a distinction
into a sample error in the estimated parameters (see for example Subfigures
(5.2.1) - (5.2.3)) and a forecasting error related to the period-(cohort-)specific
factors (Subfigure (5.2.4)). Firstly, this is done by estimating the model
parameters for every bootstrapped replicate. Secondly, period-(cohort-)factors
are extrapolated by means of the estimated ARIMA parameters. On the whole,
we obtain insights concerning the variability of the central death rate. We
fitted central mortality rates for life tables from the Human Mortality Database
(2009) for the periods t ∈ {1960,...,2006 = t0} and an age range x ∈ {0,...,109}.
The extrapolation was exemplarily executed for an 65-year old male with a
time horizon of 50 years, i.e. until year 2056. We analyse the sampling and
forecast errors for the parameters based on 5 · 103 bootstrapped samples.
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5.2.1 Age-period model by Brouhns, Denuit and Vermunt (2002)

Brouhns et al. (2002a) model the incisive Gaussian LC92 error structure as a
heteroscedastic Poisson distribution and introduce a variant (hereafter referred
to as BDV02) with a single estimation stage using loglikelihood maximization.
The bilinear structure of the LC92 model remains, i.e. we have

BDV02 : ln (mx(t)) = a(x) + b(x) k(t) + εBDV02(x,t).

The parameter updating scheme of the iterative procedure is depicted in Table
5.1. Let d̂x(t)(ν) = Lx(t) · exp


â(x)(ν) + b̂(x)(ν) · k̂(t)(ν)


denote the estimated

number of deaths after ν parameter updates. The updating circle is repeated
Iteration procedure for the BDV02 model

Set the start values as â(x)(0) = 0, b̂(x)(0) = 1, k̂(t)(0) = 0 and the stop criterion to
limit = 10−6. The Parameter updates after iteration step ν are obtained as:

1. update â(x)(ν+1) = â(x)(ν) +


t


dx(t) − d̂x(t)(ν)




t d̂x(t)(ν)
,

2. fix b̂(x)(ν+1) = b̂(x)(ν) , k̂(t)(ν+1) = k̂(t)(ν) ,

3. update k̂(t)(ν+2) = k̂(t)(ν+1) +


x


dx(t) − d̂x(t)(ν+1)


b̂(x)(ν+1)


x d̂x(t)(ν+1)


b̂(x)(ν+1)

2 ,

4. fix â(x)(ν+2) = â(x)(ν+1) , b̂(x)(ν+2) = b̂(x)(ν+1) , k̂(t)(ν+2) = k̂(t)(ν+1) ,

5. update b̂(x)(ν+3) = b̂(x)(ν+2) +


t


dx(t) − d̂(t)(ν+2)


k̂(t)(ν+2)


t d̂x(t)(ν+2)


k̂(t)(ν+2)

2 ,

6. fix â(x)(ν+3) = â(x)(ν+2) , k̂(t)(ν+3) = k̂(t)(ν+2)

7. repeat 1. – 6. while
 ln(L(ξ̂(ν+1))) − ln(L(ξ̂(ν)))

 > limit .

Table 5.1: Iteration procedure for the BDV02 age-period model.

until the increase in the log-likelihood function (5.3) becomes negligible small
and converges respectively. In order to fulfil the LC92 model constraints

â(x) = 1
#t


t

ln (m̂x(t)) ,


x

b(x) = 1 ,


t

k(t) = 0

needed to ensure an unique likelihood maximum we apply a parameter trans-
formation

â(x) → â(x) + b̂(x) · 1
#t


t

k̂(t),
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k̂(t) →

k̂(t) − 1

#t


t

k̂(t)


x

b̂(x),

b̂(x) → b̂(x)
x b̂(x)

where #t denotes the cardinality of the observation window. The value for
d̂x(t) is not affected by this transformation since

â(x)+b̂(x)· 1
#t


t

k̂(t)+ b̂(x)
x b̂(x)


k̂(t) − 1

#t


t

k̂(t)


x

b̂(x) = â(x)+b̂(x)·k̂(t).

Mortality rates are extrapolated for future times t > t0 by means of the extra-
polated logarithmised mortality reduction factors b̂(x)


k(t) − k̂(t0)


, i.e. based

on bootstrapped forecasts {k(t)}t=2007,...,2056 and the latest available central
death rate m̂x(t0) we obtain

mx(t) = m̂x(t0) exp

b̂(x)


k(t) − k̂(t0)


.

The parametric bootstrap procedure provides an extrapolation path for every
simulated realisation dx(t) ∼ Π(d̂LC92

x (t)) were d̂LC92
x (t) denotes the fitted number

of deaths from the LC92 model. This also implies re-estimation of each
parameter â(x), b̂(x) and k̂(t) as well as the drift and diffusion parameters of
the random walks.

5.2.2 Age-period model with age-specific enhancement by Ren-
shaw and Haberman (2003)

The extension by Renshaw and Haberman (2003) (hereafter referred to by the
abbreviation RH03) introduces an additional age-specific term to ensure equality
between age-specific actual and expected total number of deaths. Due to the
additional period factor the rather strong assumption of perfect correlation of
changes across different age groups can be relaxed. The logarithmised central
death rates are calculated as

RH03 : ln (mx(t)) = a(x) + b1(x) k1(t) + b2(x) k2(t) + εRH03(x,t).

Thus, the introduction of a double bilinear predictor structure aims at capturing
age-specific systematic trends in mortality patterns. As mentioned above, the
Poisson response modelling can be extended to a multi-factor framework. The
updating scheme has therefore to be reformulated according to Table 5.2. The
univariate time series {ki(t)}t=1965,...,2006 (i = 1,2) enables a projection based
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Iteration procedure for the RH03 model

Set the start values as â(x)(0) = 0, b̂(x)(0) = 1, k̂(t)(0) = 0 and the stop criterion to
limit = 10−4. The parameter updates after iteration step ν (i=1,2) are obtained as:

1. update â(x)(ν+1) = â(x)(ν) +


t


dx(t) − d̂x(t)(ν)




t d̂x(t)(ν)
,

2. fix b̂i(x)(ν+1) = b̂i(x)(ν) , k̂i(t)(ν+1) = k̂i(t)(ν) ,

3. update k̂1(t)(ν+2) = k̂1(t)(ν+1) +


x


dx(t) − d̂x(t)(ν+1)


b̂1(x)(ν+1)


x d̂x(t)(ν+1)


b̂1(x)(ν+1)

2 ,

4. fix â(x)(ν+2) = â(x)(ν+1) , b̂i(x)(ν+2) = b̂i(x)(ν+1) , k̂2(t)(ν+2) = k̂2(t)(ν+1) ,

5. update b̂1(x)(ν+3) = b̂1(x)(ν+2) +


t


dx(t) − d̂(t)(ν+2)


k̂1(t)(ν+2)


t d̂x(t)(ν+2)


k̂1(t)(ν+2)

2 ,

6. fix â(x)(ν+3) = â(x)(ν+2) , b̂2(x)(ν+3) = b̂2(x)(ν+2) , k̂i(t)(ν+3) = k̂i(t)(ν+2) ,

7. update k̂2(t)(ν+4) = k̂2(t)(ν+3) +


x


dx(t) − d̂x(t)(ν+3)


b̂2(x)(ν+3)


x d̂x(t)(ν+3)


b̂2(x)(ν+3)

2 ,

8. fix â(x)(ν+4) = â(x)(ν+3) , b̂i(x)(ν+4) = b̂i(x)(ν+3) , k̂1(t)(ν+4) = k̂1(t)(ν+3) ,

9. update b̂2(x)(ν+5) = b̂2(x)(ν+4) +


t


dx(t) − d̂(t)(ν+4)


k̂2(t)(ν+4)


t d̂x(t)(ν+4)


k̂2(t)(ν+4)

2 ,

10. fix â(x)(ν+5) = â(x)(ν+4) , b̂1(x)(ν+5) = b̂1(x)(ν+4) , k̂i(t)(ν+5) = k̂i(t)(ν+4) ,

11. repeat 1. – 10. while
 ln(L(ξ̂(ν+1))) − ln(L(ξ̂(ν)))

 > limit .

Table 5.2: Iteration procedure for the RH03 age-period model.

on the present observation year t0 by

mx(t) = m̂x(t0) exp

b̂1(x)


k1(t) − k̂1(t0)


+ b̂2(x)


k1(t) − k̂2(t0)


.

The functionality of the bootstrap algorithm is the same as for the BDV02
model.

5.2.3 Age-period-cohort model by Renshaw and Haberman (2006)

The LC92 and BDV02 age-period models were supplemented by the cohort-
based extension of Renshaw and Haberman (2006) (referred to as RH06).
Consequently, the additional bilinear term explains cohort effects for different
years of birth t − x. Mortality rates are modelled via

RH06 : ln (mx(t)) = a(x) + b1(x) k(t) + b2(x) l(t − x) + εRH06(x,t)
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and we use the following iterative procedure (Table 5.3) with projected values

mx(t) = m̂x(t0) exp

b̂1(x)


k(t) − k̂(t0)


+ b̂2(x)


l(t − x) − l̂(t0 − x)


.

Here as well, the bootstrap procedure equals the one applied for the BDV02
model.

Iteration procedure for the RH06 model

Set the start values as â(x)(0) = 0, b̂(x)(0) = 1, k̂(t)(0) = 0 and the stop criterion to
limit = 10−4. The parameter updates after iteration step ν (i=1,2) are obtained as:

1. update â(x)(ν+1) = â(x)(ν) +


t


dx(t) − d̂x(t)(ν)




t d̂x(t)(ν)
,

2. fix b̂1(x)(ν+1) = b̂1(x)(ν) , k̂1(t)(ν+1) = k̂1(t)(ν) , b̂2(x)(ν+1) = b̂2(x)(ν) ,

l̂(t − x)(ν+1) = l̂(t − x)(ν)

3. update k̂1(t)(ν+2) = k̂1(t)(ν+1) +


x


dx(t) − d̂x(t)(ν+1)


b̂1(x)(ν+1)


x d̂x(t)(ν+1)


b̂1(x)(ν+1)

2 ,

4. fix â(x)(ν+2) = â(x)(ν+1) , b̂i(x)(ν+2) = b̂i(x)(ν+1) , l̂(t − x)(ν+2) = l̂(t − x)(ν+1) ,

5. update b̂1(x)(ν+3) = b̂1(x)(ν+2) +


t


dx(t) − d̂(t)(ν+2)


k̂1(t)(ν+2)


t d̂x(t)(ν+2)


k̂1(t)(ν+2)

2 ,

6. fix â(x)(ν+3) = â(x)(ν+2) , b̂2(x)(ν+3) = b̂2(x)(ν+2) , k̂1(t)(ν+3) = k̂1(t)(ν+2) ,

l̂(t − x)(ν+3) = l̂(t − x)(ν+2) ,

7. update l̂(t − x)(ν+4) = l̂(t − x)(ν+3) +


t,x

t−x


dx(t) − d̂x(t)(ν+3)


b̂2(x)(ν+3)


t,x

t−x
d̂x(t)(ν+3)


b̂2(x)(ν+3)

2 ,

8. fix â(x)(ν+4) = â(x)(ν+3) , b̂i(x)(ν+4) = b̂i(x)(ν+3) ,k̂1(t)(ν+4) = k̂1(t)(ν+3) ,

9. update b̂2(x)(ν+5) = b̂2(x)(ν+4) +


t


dx(t) − d̂(t)(ν+4)


l̂(t − x)(ν+4)


t d̂x(t)(ν+4)


l̂(t − x)(ν+4)

2 ,

10. fix â(x)(ν+5) = â(x)(ν+4) , b̂1(x)(ν+5) = b̂1(x)(ν+4) , k̂1(t)(ν+5) = k̂1(t)(ν+4) ,

l̂(t − x)(ν+5) = l̂(t − x)(ν+4)

11. repeat 1. – 10. while
 ln(L(ξ̂(ν+1))) − ln(L(ξ̂(ν)))

 > limit .

Table 5.3: Iteration procedure for the RH06 age-period-cohort model.
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5.3 Estimation results of the mortality models LC92–
RH06

In order to avoid localised age- and period-specific anomalies we smoothed all
historic parameter estimates with cubic P-spline interpolation96 for the illustra-
tion and the goodness of fit analysis in Subsection 5.4. Notice that according
to Brouhns et al. (2005) the computationally intensive models BDV02–RH06
allow for randomness due to a sampling fluctuation for each of the parameters
as well as a forecast error for the period- and / or cohort factors by means of
a parametric Poisson bootstrap for the number of deaths. Therefore, each of
the parameters in the Tables A.1 - A.4 in Appendix A contains (smoothed)
historic estimate values (marked with a hat) and, if available, average value
(marked with a bar), standard error (marked with SE) and 0.05- as well as
0.95-quantiles (marked with q0.05 and q0.95). Additionally, the Figures 5.1 - 5.4
present parameter sampling errors given by the confidence intervals (marked
with CI) and illustrate prediction intervals (marked with PI) for the simulated
projected period and cohort factor(s) as well as the central death rates in order
to measure the forecasting uncertainty.

LC92 parameters:

Parameter a(x) (Subfigure (5.1.1)) describes the average shape of the logarith-
mised age-specific mortality profile similar to Subfigure (2.1.1) with increasing
force of mortality for adult ages. The pattern for the “sensitivity parameter”
b(x) (Subfigure (5.1.2)) is positive, slightly undulated and monotonically de-
creasing. Since b(x) expresses the sensitivity of central death rates to changes
in the period factor k(t), we can conclude that improvements at younger ages
tend to be more rapidly and scattered. The time trend k(t) shows nearly linear
decreasing behaviour since 1970 starting with a value of 29 and ending at -61.
This supports an extrapolation by means of a random walk with drift using
data from 1970 and afterwards. The negative fitted values for k(t) indicate that
mortality improvements beyond year 1986 proceed more slowly compared to
changes in the previous observation window [1960,1986]. This is especially true
for infancy ages where parameter b(x) shows its maximum. Both parameters
b(x) and k(t) exhibit a rough shape in age and period direction respectively.
This roughness is partly owed to the Likelihood-based methods.

96 For an overview of smoothing and different choices for smoothing kernels see Subsection
3.2.3. However, we used tensor product penalized spline smoothing with parameter λ = 0.02
penalizing roughness and a spline function of fourth degree.
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Parameter estimates, projections and forecasting error for the LC92
model

(5.1.1) Age-specific component a(x) (5.1.2) Age-specific component b(x)

(5.1.3) Time-varying parameter k(t) (5.1.4) HMD mortality rates and central
death rates

(5.1.5) Confidence interval width for the projected central death rates

Figure 5.1: Parameter estimates/projections, 0.95-confidence intervals (CI, solid)
and prediction intervals (PI, dashed) for the LC92 model. The projections are based
on 5 · 103 iterations.
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BDV02 parameters:

The age dependent Poisson estimates of model BDV02 show some extreme
values97 for parameters a(x) and b(x) for ages x > 100 due to inconsistent and
sparse number of death data. In particular, we observe negative values for
parameter b(x) (see also Table A.2), i.e. an alternating mortality evolution with
a supposed age specific mortality deterioration. The prediction intervals for the
LC92 and BDV02 model are of nearly the same width such that the additional
sampling risk is negligible here. Moreover, since the assumption of normality on
the model residuals is relaxed, we observe asymmetric confidence bounds (see
Subfigure (5.2.5)). The parameter sampling uncertainty is illustrated in each
of the Subfigures (5.2.1) - (5.2.3) by means of the 0.95-prediction interval and
0.95-confidence interval of the bootstrapped historic and projected parameters.
It should be noted that due to a lack of robustness the confidence interval can
show systematic deviations from the solid historic estimates. This effect can
also be observed for the quantile values of Table A.2.

RH03 parameters:

At first, we have a look at the two distinct period factors allowing for more
flexibility in the reproduction of period effects provided that the underlying
data exhibits no regular pattern98. Factor k1(t) determines the level of the
logarithmised mortality rate curve over time and shows general period-specific
improvements for all ages. In particular, it decreases over the complete obser-
vation window with low forecasting error indicated by the prediction interval
width for projected values. In contrast, period factor k2(t) forms the slope of the
mortality profiles. k2(t) increases until year 1976 and decreases afterwards with
the same slope according to the amount. The curve shape for b2(x) proceeds
sinusoidal with ages 8, 17, 42 and 76 being sensitive to variations in the time
index k2(t). This means that for the mentioned ages mortality improvements
were more pronounced prior to the mid-seventies and rates of change became
less thereafter. Moreover, the prediction interval is wider. Parameters a(x) and
b1(x) are similar to those of the LC92 and BDV02 approach. It is remarkable
that the 0.95-prediction interval forecast of the values is considerably thinner
than in the BDV02 model. This can be explained by the fact that the forecast
errors of both time factors k1(t) and k2(t), taken together, do not reach the
uncertainty of the BDV02 period factor. Compared to the BDV02 estimates,
the central death rate estimates are better fitted to demographic data for the
97 This effect has also been observed for models RH03 and RH06.
98 For a short outline on the identifiability problem of certain period- and cohort-related
effects see Section 4.1.
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Parameter estimates, projections and forecasting error for the BDV02
model

(5.2.1) Age-specific component a(x) (5.2.2) Age-specific component b(x)

(5.2.3) Time-varying parameter k(t) (5.2.4) HMD mortality rates and central
death rates

(5.2.5) Confidence interval width for the projected central death rates

Figure 5.2: Parameter estimates/projections, 0.95-confidence intervals (CI, solid)
and prediction intervals (PI, dashed) for the BDV02 model. The projections are
based on 5 · 103 iterations.
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decades 1960-1970 and 1975-1985 (see Figure 5.5).
Parameter estimates, projections and forecasting error for the RH03

model

(5.3.1) Age-specific component a(x) (5.3.2) Age-specific component b1(x)

(5.3.3) Age-specific component b2(t) (5.3.4) Time-varying parameter k1(t)

Figure 5.3: Parameter estimates/projections, 0.95-confidence intervals (CI, solid)
and prediction intervals (PI, dashed) for the RH03 model. The projections are based
on 5 · 103 iterations.

RH06 parameters:

A glance at the parameter estimates b1(x) and b2(x) that control the age-specific
period and cohort sensitivity reveals a similar but varying behaviour especially
in the border age regions. The non-smoothness and bootstrap dispersion may
indicate an overfitting of the mortality data and result in a lack of robustness
concerning the choice of the graduation window or the initial number of deaths.
The period factor k(t) shows a change of inclination in the mid-seventies which
was already observed for the RH03 parameter analysis. Thereafter, the slope
proceeds almost linear such that a choice in favour for the random walk seems
appropriate. The additional cohort factor l(t − x) reveals a series of parameters
with distinct variation in the slope for generations born at the end of World
War I, the 1919 influenza and World War II. Willets (2004) mentions that these
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(5.3.5) Time-varying parameter k2(t) (5.3.6) HMD mortality rates and central
death rates

(5.3.7) Confidence interval width for the projected central death rates

Figure 5.3: Parameter estimates/projections, 0.95-confidence intervals (CI, solid)
and prediction intervals (PI, dashed) for the RH03 model. The projections are based
on 5 · 103 iterations.

cohorts exhibit rapid mortality improvements relative to deteriorations in times
of war or similar incidents. The prominent break in cohort year 1870 followed
by a linear decreasing trend stands for a falling cohort mortality and a period
effect independent99 of k(t). The bootstrap noise for the cohort factor up to
calendar year 1870 is accompanied by the wide CIs in that region. For the
historic central death rate estimates we record strong oscillations for the time
period 1975 until 1985 including extreme outlier values. However, the goodness
of fit for model RH03 is surpassed especially for periods since the late-seventies.
Thus, the overall absolute deviation of model and historic central death rates
is three times lower than in the default LC92 case and at least 2.4 times lower
than the RH03 total absolute deviation (see Figure 5.5). The forecasting error
measured by the confidence interval width (see Subfigure (5.4.7)) diverges
funnel-shaped and has the largest value compared to the remaining time series
models LC92–RH03.

As already mentioned, the parameter estimates of the Lee-Carter extensions
should not only undergo a reasonable smoothing procedure but rather be

99 See Cairns et al. (2009) for a comprehensive presentation of the mentioned phenomenons
illustrated by data from England and Wales as well as the US.
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Parameter estimates, projections and forecasting error for the RH06
model

(5.4.1) age-specific component a(x) (5.4.2) Age-specific component b1(x)

(5.4.3) Age-specific component b2(t) (5.4.4) Time-varying parameter k(t)

Figure 5.4: Parameter estimates/projections, 0.95-confidence intervals (CI, solid)
and prediction intervals (PI, dashed) for the RH06 model. The projections are based
on 5 · 103 iterations.

graduated by deterministic functions for age- and period-intervals where only
sparse demographic data is available, i.e. for ages beyond 100 and cohorts born
before 1870. Barrieu et al. (2010) suggest to smooth or adjust data up to age
90 and to extrapolate the raw data by a local parametric shape under certain
fitting constraints. Nevertheless, any subjective graduation of the parameters
has a hardly predictable impact on a subsequent mortality projection.

5.4 Comparison of the mortality models

When it comes to a comparison of the different models it seems plausible to
subject them to an initial verification of fifteen different qualitative benchmark
criteria already discussed in Subsection 4.1.3. To a certain extent and for a part
of the mortality models LC92–RH06, this has already been done in actuarial
literature. e.g. see Cairns et al. (2009), Cairns et al. (2008) and Plat (2009).
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(5.4.5) Cohort parameter l(t − x) (5.4.6) HMD mortality rates and central
death rates

(5.4.7) Confidence interval width for the projected central death rates

Figure 5.4: Parameter estimates/projections, 0.95-confidence intervals (CI, solid)
and prediction intervals (PI, dashed) for the RH06 model. The projections are based
on 5 · 103 iterations.

Absolute deviation between the raw mortality profile and the estimated
central death rate function for the mortality models LC92–RH06

1965 1970 1975 1980 1985 1990 1995 2000 2005
t
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Figure 5.5: Absolute deviation between the raw mortality profile
and the estimated central death rate function w.r.t. a male individual
aged 65 years and observation years 1960-2006.
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Moreover, in Subsections 5.4.2–5.4.6 we present a comprehensive treatment of
quantitative criteria and check them against the results for the nested mortality
models.

5.4.1 Comparison of qualitative model criteria

The choice in favour for or against a certain mortality model strongly depends
on the prioritization in the underlying application predefined by the user. This
means that factors like data availability, forecasting purpose and projection
horizon may effect the selection process to different degrees. Besides more or
less basic criteria like positive force of mortality, biological reasonable long-term
behaviour or consistency with historical data, model representatives should
ideally exhibit a number of additional features which are listened in Table 5.4.
The fulfilment of several of these criteria (indicated with a question mark)
can neither be verified nor negated since they are only partly fulfilled or a
subjective assessment is required. A verification of the formal features provides
the following results:

• Time series projection models provide simple, transparent and positive
Comparison of qualitative model criteria

Model selection criteria Lee-Carter variants and extensions
(in accordance with Section 4.1.3) LC92 BDV02 RH03 RH06
transparency and simplicity ? ? ? ?
positive mortality rates

√ √ √ √

data consistency ? ?
√ √

biological reasonable long-term dynamics
√ √ √ √

consideration of (period- / cohort-)effects × × √ √

non-trivial correlation structure × × √
?

parameter interpretability
√ √ √ √

robust model forecasts and parameter estimation
√ √ × ×

calculation accuracy / speed of convergence
√

? × ×
incorporation of parameter / model uncertainty

√ √ √ √

analytic / numerical implementation
√ √ √ √

parsimonious representation
√ √

? ?
path sampling and prediction interval calculation

√ √ √ √

full age range mapping ? ? ? ?
application for pricing and reserving

√ √ √ √

Table 5.4: A comparison of qualitative assessment criteria for the mortality models
LC92–RH06. The checkmark stands for a compliance with the corresponding criterion,
the cross correspondingly indicates a non-fulfilment. The question mark indicates
criteria where (non-) fulfilment cannot be definitely answered. The red coloured
characters originate from the results in Cairns et al. (2009), Cairns et al. (2008) and
Plat (2009).
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bivariate mortality rate functions with a rather intuitive parameter structure.

• Two-factor models (LC92, BDV02) are relatively parsimonious compared
to the multi-parameter extensions (RH03, RH06). Nevertheless, the fitting
quality is worse and a perfect correlation for changes in the underlying
mortality rates at different ages has to be assumed.

• The programming of the Lee-Carter model is straightforward. For the
extensions a more comprehensive programming is required. The inclusion of
age-specific enhancements or cohort-factors is accompanied by robustness
and convergence difficulties. Parameter estimates commonly lack smoothness
in the age or year of birth dimension.

• In practice, the use of multi-factor extension forecasts is limited due to
incomplete and minor quality cohort data.

• The sampling of mortality-linked cash-flows (under parameter and model
uncertainty) yields probabilistic prediction interval forecasts. Thus, the
pricing of, e.g. longevity derivatives, can be theoretically performed under a
change of measure using a risk neutral version of the model.

• None of the models tested is superior under all listed features. In order to
verify the suitability of a certain model further quantitative ranking criteria
need to be involved.

5.4.2 Analysis of the estimation error and examination of the model
assumptions

Based on the parameter estimation method there are different functional
representations available to measure the residuals and thus to monitor the
quality of the graduation. For the least-squares Lee-Carter estimation with
a Gaussian error structure the raw or response residuals dx(t) − d̂x(t) with
estimated number of deaths

d̂x(t) = Lx(t) · m̂x(t) = Lx(t) · exp

â(x) + b̂(x)k̂(t)


are standardised to ensure an unit asymptotic variance. The function

RSP (x,t) = dx(t) − d̂x(t)
d̂x(t)

(5.4)

is called the (standardised) Pearson residual for the value pair (x, t) and equals
the raw residual divided (standardised) by its asymptotic standard deviation.
Thus, the Pearson residual is approximately standard normally distributed
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due to the central limit theorem. Alternatively, the single value decomposition
residual estimate from Definition (5.1) given by

ε̂(x,t) = log


mx(t)
m̂x(t)


= log


dx(t)
d̂x(t)


(5.5)

with standardised residual function

RSSV D(x,t) = ε̂(x,t)
1

DF


x,t (ε̂(x,t))2

can be used. Hereby, DF determines the model specific degree of freedom in
terms of the number of data cells minus the number of independent parameters.
The denominator describes the unbiased standard deviation of the estimated
error term. The second equality in (5.5) is due to the adjustment step d̂x(t) =
Lx(t) · m̂x(t) from the Lee-carter estimation procedure. In case of a MLE
approach with Poisson error structure, a further residual concept which is more
likely normally distributed is favourable. The deviance residual100 is given by

RD(x,t) = sign

dx(t) − d̂x(t)


dev(x,t) with deviance

dev(x,t) = 2

dx(t) log


dx(t)
d̂x(t)


−

dx(t) − d̂x(t)


and is approximately normally distributed. The standardised variant101 has
the form

RSD(x,t) = sign

dx(t) − d̂x(t)

 dev(x,t)
1

DF


x,t dev(x,t) (5.6)

which is therefore approximately standard normally distributed. Here again,
the denominator equals the unbiased squared deviance of the Poisson likelihood.
In the following, we apply standardised Pearson residuals (5.4) for the LC92
model and standardised deviance residuals (5.6) for the likelihood models
BDV02–RH06.

For a Poisson distributed number of deaths dx(t) we have equality of mean
and variance which is only rarely the case for demographic data. Therefore,
we possibly fade out potential future variability when assuming a Poisson
distribution. Since there always exist variation not explained by the model,
mortality data is typically overdispersed102. More precisely, for the two-factor

100 Deviance residuals are e.g. applied by Renshaw and Haberman (1996), Brouhns et al.
(2005) and Cossette et al. (2007) to measure the goodness of fit.
101 Pitacco et al. (2008) suggest to use standard deviance residuals for monitoring in case of
Poisson, Binomial or Negative Binomial distributed number of deaths.
102 Overdispersion can be identified for the mortality data of several countries. Cairns et al.
(2009) explain this phenomenon as a result of estimated exposure data Lx(t). Delwarde et al.
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models LC92 and BDV02 the sample variance for the observed residuals are
larger than the model predicts (see Table 5.5) such that we observe a violation
of the standard normal distribution assumption. The goodness of fit measured
by the unbiased sample variance of the standardised residuals improves signifi-
cantly when additional period (RH03) or cohort factors (RH06) are introduced.
Demographic and actuarial literature offers various visualisation methods for
the residual analysis. The most common types are illustrated in the following
by means of the observed residual values for the mortality models LC92–RH06.

Sample moments and coefficient of variation for the standardised
residuals of the mortality models LC92–RH06

LC92 BDV02 RH03 RH06
DF 4905 4905 4750 4640
E [R(x,t)] 0.0042 -0.0003 -0.0016 0.0026
V ar [R(x,t)] 2.29 1.08 0.96 0.79
CV [R(x,t)] 361.11 -2973.33 -595.67 335.36

Table 5.5: Sample moments and coefficient of variation for the
standardised residuals of the mortality models LC92 – RH06.

Residual contour maps

We assume the (standardised) residuals to be randomly sized over the age-period
surface such that, vice versa, any structured or regular pattern indicates the
presence of systematic mortality changes. In this case, the underlying model is
unable to capture all age-, time- or cohort-specific trends appropriately. Shaded
contour maps constitute a visual demographic method to measure the fitting
precision and to illustrate systematic effects in the underlying German male
life table data for periods 1956 to 2006 originated by the Human Mortality
Database (2009). A clumping or accumulation of areas with negative (blue
coloured) or positive (red coloured) residuals conflicts with assumptions for the
residual distribution and indicates systematic false estimation of the number
of deaths. Negative residuals show an overestimation of the raw number of
deaths and, accordingly, positive residuals imply a previous underestimation of
mortality.

LC92 map:

The maps in Figure 5.6 show period-specific (vertical clustered areas) and
cohort-specific (diagonal clustered areas) effects since single-factor time series
(2006) justify the normal distribution violation with the lack of smoothness for the estimated
age factors bi(x) (i = 1, 2).
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fail to account for changes in the mortality patterns across different age groups
and years of birth. The smoothed103 contour map reveals that the LC92
model underestimates infant and oldest age mortality until the mid-seventies
and since the mid-nineties. Especially the strong improvements for the age
groups 10-25 in the time interval from 1975 to 1985 is not accounted for. We
assume two cohort effects104 apparent for male generations born around 1903
and 1930 that evoke a clustering of positive residuals and are therefore not
captured. We refer the reader to Subsection 5.4.2 for a more detailed description
of the mentioned cohort effects. The noticeable systematic diagonal lines with
alternating positive and negative residuals for generations born in 1911-1919
constitute a distinctive feature. It seems plausible that this sharp improvements
are caused by a progressing adjustment of consecutive abbreviated period life
tables105 containing incomplete or unreliable mortality data during World War
I (1914-1919) and the Spanish Flu in 1919.

Crude and smoothed standardised residuals for the LC92 model

Figure 5.6: Crude (left) and smoothed (right) standardised Pearson residuals
RSP (x,t) for the LC92 model.

103 In the following, we applied tensor product penalized spline smoothing with penalty
parameter λ = 0.02 is adopted to filter out random noise and outliers to get an impression
for systematic effects.
104 Cohort effects are determined by adjacent continuous diagonal bands of clustered positive
residuals accompanied by one or two bands with negative residuals. The (enclosed) generation
whose year of birth forms the origin of the positive band experienced stronger mortality
improvements than the surrounding cohorts. Thus, the mortality only effects a single
generation (diagonal direction) instead of an entire age group (horizontal direction).
105 During the observation window, German population census solely took place in 1961,
1970 and 1987. The resulting complete life tables were updated by abbreviated life tables for
interim periods. As time went by, this mortality projection became very unreliable especially
for young and oldest age groups.
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BDV02 map:

Compared to the LC92 model, the Poisson log-bilinear extension shows a
slightly improved fitting with reduced absolute residual amounts. In particular,
the mortality of juveniles is less strongly understated and the amounts of the
residual in this region are lowered. However, the mortality for oldest ages
x > 90 and between ages 30 and 50 is now overstated. The two diagonal
bands are diminished whereas the smoothed band from 1930 exhibits two
distinct elevations. Both the LC92 and the BDV02 model fail to reproduce the
strong time-dependent changes in the raw central death rate data especially
for childhood and adolescence.

Crude and smoothed standardised residuals for the BDV02 model

Figure 5.7: Crude (left) and smoothed (right) standardised deviance residuals
RSD(x,t) for the BDV02 model.

RH03 map:

While there are distinct period effects, recognisable by vertical bands of clumped
negative residuals for periods 1968-1970 (age groups 0-60) and 1985-1988 (age
groups 0-50), the RH03 model partly weakens this areas (cf. Figure 5.8). The
same holds for the whole childhood and adolescence age region. Furthermore,
the model attests a strong change in mortality rates over time for the end of
the age scale. i.e. age 105 and older. It should be emphasised that for this age
group raw life table values are commonly extrapolated by means of non-linear
regression due to a sparse database.

RH06 map:

By comparison, the contour map in Figure 5.9 for the RH06 model shows
model-compliant random residuals, i.e. the systematic under- and overestima-
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Crude and smoothed standardised residuals for the RH03 model

Figure 5.8: Crude (left) and smoothed (right) standardised deviance residuals
RSD(x,t) for the RH03 model.

tion of mortality for certain age groups and calendar years has largely been
eliminated106. This can partly be explained by the consideration of cohort
effects and thus age-period correlation and partly results from the successful
reproduction of pronounced period-dependent changes for juvenile mortality. In
case of the raw contour map, we still observe a slight clumping in the rectangu-
lar areas spanned by the plane coordinates (1968,25) and (1970,50), (1978,95)
and (1989,105) as well as (1984,20) and (1988,40). However, the smoothed map
shows many low-valued random elevations which are paler coloured than those
in the maps of models LC92–RH03. Vertical and diagonal bands are almost
entirely caught by (additional) model factors.

Residual scatter plots

Residual scatter plots107 denote the projection of the contour map onto the
age or period axis as well as the year of birth diagonals. In this way, age-,
period- and year-of-birth-related systematic trends which are not captured by
the underlying model can be separately identified.

LC92 scatter plots:

The crude period scatter plot in Figure 5.10 shows that residuals vary randomly
around zero but obviously with variance greater than one. The smoothed
version in Figure 5.11 reveals oscillatory behaviour with systematic understated

106 The highest age groups are generally problematic with regard to graduation.
107 A scatter plot or scattergraph visualises a dependent variable plotted against different
control parameters, e.g. age, calendar year or year of birth, inside a diagram. It reveals
correlations as clusters or linear structures.
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Crude and smoothed standardised residuals for the RH06 model

Figure 5.9: Crude (left) and smoothed (right) standardised deviance residuals
RSD(x,t) for the RH06 model.

infancy mortality (x < 5) for the periods before year 1965 and after year 2000
and overstated old age mortality (x ∈ [70,80]) until the mid-sixties. These
observations clearly indicate that residuals behave heterogeneous over time.
The single-factor time series LC92 model does not allow for sufficient flexibility
and therefore overestimates mortality for the age groups 0-5, 40-50 and 55-
70. For ages 100 and older the raw death rates are given by regressed and
extrapolated values from the Human Mortality Database (2009) such that
age-specific patterns are barely noticeable in this region (cf. Figure 5.10). A
comparison of different “year-of-birth bands” shows characteristic ripple effects
since an explanatory variable / factor is missing. In particular, there are obvious
cohort effects for generations born around 1903 and 1930 and discontinuities
between adjacent years 1919-1921 (which are eliminated after smoothing in
Figure 5.11). We can assume that the generation 1903 featured a stronger
mortality improvement compared to the generations born during times of World
War I and the Spanish Flue which are thus overstated by the LC92 model. A
similar development could have been undergone by generations born around
1930 who have not been exposed to the aftermaths of the postwar periods
and experienced stronger improvements in mortality compared to newborn
generations involved in World War II (1939-1945). Furthermore, we observe
weaker such phenomena for generations born in 1957 and during the Hong
Kong Flu 1968-1969. A likely explanation for the temporary increase of male
mortality in the fifties could be health impairments caused by World War II
especially for young men. For this reason, a model extension including an
additional cohort or at least period factor achieves better results.
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Crude scatter plots of the standardised residuals for model LC92

Figure 5.10: Crude scatter plots of the standardised Pearson residuals for the LC92
model.

BDV02 scatter plots:

In case of the BDV02 model, the systematic underestimation of infancy and old
age mortality persists as well but is to a certain extent reduced. For a Poisson
error assumption heterogeneity by age group also indicates overdispersion. The
amount of false estimation has decreased in contrast to the LC92 model. In
particular, the course of the accident hump is reproduced in an appropriate
way (see Figure 5.13). The appearance of the year-of-birth scatter diagram in
Figure 5.12 remains nearly unchanged except for slightly lower residuals that
are visible in the smoothed variant in Figure 5.13. However, we must admit
that the incomplete cohort mortality data for generations born before 1870
and after 1980 fails to provide enough meaningful quantitative information
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Smoothed scatter plots of the standardised residuals for model LC92

Figure 5.11: Smoothed scatter plots of the standardised Pearson residuals for the
LC92 model.

such that in the following these ranges are excluded from the analysis (cf. the
approach in Cairns et al. (2009)).

RH03 scatter plots:

The introduction of an additional period factor ensures that the standardised
residuals are randomly distributed over the whole period observation window.
More precisely, the continuing decrease in infant mortality and the formation of
the distinct accident hump in the course of the proliferation of motor vehicles
are sufficiently considered. For the age axis scatter plot, markable fitting
improvements can already be registered. The amount of residual deviations
is reduced especially for age ranges showing a systematic trend behaviour.
Interestingly, parts of the alleged cohort effects are captured implicitly by the
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Crude scatter plots of the standardised residuals for model BDV02

Figure 5.12: Crude scatter plots of the standardised deviance residuals for the
BDV02 model.

introduced period factor k2(t). Nevertheless, the cohort effects in the interval
1900-1950 remain although to an alleviated extent.

RH06 scatter plots:

The RH06 model shows significant fitting improvements over all the other
model variants. For all three main effects concerning age, calendar and cohort
year we observe an uniformly scattered appearance such that ripple effects are
almost completely removed. The results of the contour map and scatter plot
analysis clearly endorse the use of the RH06 time series model.
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Smoothed scatter plots of the standardised residuals for model BDV02

Figure 5.13: Smoothed scatter plots of the standardised deviance residuals for the
BDV02 model.

Residual quantile plots

The assumption of a Poisson distributed number of deaths dx(t) implies that
for large estimated values d̂x(t) (which is fulfilled for mortality data) the
Poisson distribution can be approximated by the Gaussian normal distribution.
Thus, for appropriate estimates b̂i(x), k̂i(t) (i = 1, 2), l̂(t − x) residuals are
normally distributed as well. In particular, the standardised variant (5.6) is
“standard normal” in age and calendar year direction. The Pearson residuals
(5.4) of the LC92 model are by definition approximately standard normally
distributed. For this reason, a quantile plot of normal quantiles against model
quantiles constitutes a further valid and useful diagnostic method to verify the
normal distribution assumption on the standardised residuals. If the points
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Crude scatter plots of the standardised residuals for model RH03

Figure 5.14: Crude scatter plots of the standardised deviance residuals for the
RH03 model.

deviate systematically from the target straight (benchmark) line through the
axes origin, there is statistical evidence against standard normally distributed
residuals which is the case for the underlying mortality data (cf. Figure 5.18).
We calculate “quantile-lines” for a 65-year old male and the whole period
range based on 10 different Poisson bootstrap responses (coloured) and the
historic estimation based on the raw numbers of deaths (black). A first look
at the quantile plots indicates that all models clearly show systematic regions
and extreme outliers at the outer edges. The strong deviations indicate poor
adaptability whereas goodness of fit increases with the number of period and/or
cohort factors applied. The mean of the bootstrap sampled residuals fluctuates
around zero indicated by the downward exceedance for negative residuals and
upward exceedance for positive residual values. This systematic course of the
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Smoothed scatter plots of the standardised residuals for model RH03

Figure 5.15: Smoothed scatter plots of the standardised deviance residuals for the
RH03 model.

quantile-lines is typical for data with positive kurtosis which is equivalent to
a relatively “peaked” distribution when compared to the Gaussian bell shape.
Consequently, a large part of the variance results from more rare extreme
peaks. In case of model RH06, the pattern of the quantile lines indicates an
underlying peaked and left skewed distribution. Therefore, we can assume that
the sample distribution has more pronounced tails. The quantile-lines based on
the smoothed parameter values (drawn in black) show a comparatively moderate
shape but still with deviations for quantiles in the boundary region. Therefore
the quantile plot detects an overdispersed residual distribution. Possible reasons
for the “peak behaviour” might be the already mentioned general poor fitting
results for oldest ages due to sparse or projected data, a slow convergence speed
and associated accuracy (especially for the models RH03 and RH06) and, in
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Crude scatter plots of the standardised residuals for model RH06

Figure 5.16: Crude scatter plots of the standardised deviance residuals for the
RH06 model.

particular, a lack of model robustness due to a distorted number of deaths (cf.
parameter Figures 5.1 - 5.4).

5.4.3 Analysis of the BIC

A further quantitative model criterion, often applied in the context of (stochas-
tic) parametric mortality models, is represented by the BIC. It penalizes
overparametrised models out of a certain class using MLE. Therefore, the BIC
allows a comparison of nested models with different numbers of parameters since
maximum likelihood values increase with the number of additional parameters.
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Smoothed scatter plots of the standardised residuals for model RH06

Figure 5.17: Smoothed scatter plots of the standardised deviance residuals for the
RH06 model.

The BIC-function is defined as follows

BIC(ξ̂,n,k) = −2 ln

L

ξ̂


+ k ln(n)

where ξ represents a model parameter vector and ξ̂ the corresponding maximum
likelihood estimate. The penalization function consists of the number of
observations n and the logarithmised number of free (effective) parameters k.
Hereby, lower values for the BIC are preferable either evoked by a better fitting
or parameter parsimony (results are shown in Table 5.6). Other related criteria
that account for the gain in likelihood caused by extra parameters are the
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Quantile plots of the standardised residuals for the mortality models
LC92–RH06
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(5.18.1) LC92 mortality model
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(5.18.2) BDV02 mortality model
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(5.18.3) RH03 mortality model
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(5.18.4) RH06 mortality model

Figure 5.18: Quantile plots of the standardised residuals for a 65-year old male and
mortality models LC92 – RH06.

Akaike information criterion (AIC)

AIC(ξ̂,k) = −2 ln

L

ξ̂


+ 2k

and the likelihood-ratio statistic

L2(ξ̂) = 2

x,t

dx(t) ln


dx(t)
d̂x(t)



where smaller values are preferable, too. According to Brouhns et al. (2002a)
L2(ξ̂) measures discrepancies between the fitted and the current number of
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deaths.

However, the BIC penalizes the model complexity level more severe than the
AIC for a number of observations greater than 10. Both BIC and AIC attest
that including additional period / cohort factors enhances fitting quality due to
an improvement in the log-likelihood value albeit the change is marginal in the
range of several basis points. Generally speaking, those extrapolation models
with higher likelihood exhibit lower variance in the standardised residuals
(cf. Table 5.5). The increase of model complexity in form of additional (free)
parameters is therefore acceptable. Nevertheless, the likelihood-ratio statistic
value L2(ξ̂) shows considerable improvements and a clear ranking result.

Maximum likelihood, BIC and AIC for the mortality models
LC92–RH06

model ln(L(ξ̂)) number of
observations n

number of free
parameters k

BIC(ξ̂,n,k) (rank) AIC(ξ̂,k) (rank) L2(ξ̂) (rank)

BDV02 −1.87668 · 107 5170 265 3.7535866 · 107 (3) 3.7534130 · 107 (3) 10470 (3)
RH03 −1.87649 · 107 5170 420 3.7533392 · 107 (2) 3.7530640 · 107 (2) 6645 (2)
RH06 −1.87629 · 107 5170 530 3.7530324 · 107 (1) 3.7526860 · 107 (1) 2764 (1)

Table 5.6: Model choice as a trade off between goodness of fit and parsimony for
models BDV02 – RH06 in accordance to Cairns et al. (2009). The number of free
parameters k equals the number of observations n minus the degree of freedom DF
given in Table 5.5.

5.4.4 Analysis of the coefficient of determination

The R2-square measure or coefficient of determination quantifies how much
percentage of the (overall) variance can be explained by the underlying model.
In particular, it measures the proportion of the variance of the logarithmised
central death rate (at fixed age) accounted for by variation in the period factor
k̂i(t) (i = 1, 2) and / or cohort factor l̂(t − x). Therefore, the unexplained
variation in form of the age-specific variance of the raw residuals

V arx [ε̂(x,t)] = 1
#t−1


t


ε̂(x,t) − 1

#t


t

ε̂(x,t)
2

is related to the total variance of the logarithmised raw mortality rates

V arx [ln (mx(t))] = 1
#t−1


t


ln


mx(t)
mx

2
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with average age-specific central death rate mx = 1
#t


t mx(t). Thus, the R2

coefficient equals

0 ≤ R2(x) = 1 − V arx [ε̂(x,t)]
V arx [ln (mx(t))] ≤ 1.

If R2 lies near zero, central death rate estimates are given by the rather naive
mean predictor mx = â(x) which does not account for variation at all. If R2 is
close to one, nearly all of the variation in the central death rates is explained.
For a coefficient equal to one we observe a perfect prediction in the way that
the estimate m̂x(t) completely reflects reality for all observation periods. The
coefficient of determination indicates the appropriateness of future projections,
i.e. how likely they are predicted by the underlying model. Figure 5.19 exhibits

Coefficient of determination for the mortality models LC92–RH06

age x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
LC92 0.92 0.9 0.94 0.93 0.93 0.94 0.94 0.94 0.92 0.89 0.94 0.91 0.9 0.88 0.92 0.94 0.92 0.92 0.89 0.94 0.91 0.93
BDV02 0.92 0.9 0.95 0.93 0.94 0.95 0.94 0.94 0.93 0.9 0.94 0.92 0.91 0.89 0.93 0.95 0.92 0.92 0.89 0.94 0.92 0.94
RH03 0.98 0.98 0.98 0.97 0.96 0.97 0.97 0.96 0.96 0.93 0.96 0.94 0.94 0.92 0.95 0.95 0.92 0.93 0.91 0.95 0.92 0.94
RH06 1. 0.98 0.97 0.98 0.97 0.97 0.97 0.96 0.95 0.93 0.97 0.93 0.95 0.93 0.95 0.95 0.94 0.95 0.92 0.96 0.94 0.95

age x 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
LC92 0.94 0.93 0.93 0.94 0.93 0.92 0.95 0.95 0.94 0.95 0.95 0.94 0.94 0.95 0.94 0.95 0.96 0.95 0.95 0.93 0.94 0.93
BDV02 0.95 0.94 0.94 0.95 0.94 0.93 0.96 0.95 0.95 0.95 0.95 0.94 0.94 0.95 0.94 0.95 0.96 0.95 0.95 0.92 0.93 0.92
RH03 0.95 0.94 0.95 0.96 0.95 0.94 0.96 0.95 0.94 0.95 0.95 0.94 0.94 0.94 0.94 0.95 0.96 0.96 0.95 0.95 0.94 0.95
RH06 0.96 0.94 0.95 0.94 0.93 0.93 0.95 0.95 0.94 0.95 0.95 0.95 0.96 0.96 0.96 0.97 0.97 0.96 0.96 0.97 0.96 0.97

age x 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
LC92 0.93 0.94 0.91 0.93 0.94 0.94 0.94 0.96 0.94 0.96 0.96 0.96 0.96 0.97 0.96 0.95 0.96 0.96 0.97 0.97 0.97 0.98
BDV02 0.93 0.93 0.9 0.92 0.93 0.94 0.93 0.96 0.94 0.96 0.96 0.96 0.97 0.97 0.97 0.96 0.97 0.97 0.97 0.98 0.97 0.98
RH03 0.94 0.96 0.92 0.94 0.95 0.95 0.95 0.97 0.95 0.96 0.96 0.96 0.97 0.97 0.97 0.97 0.97 0.97 0.98 0.98 0.98 0.98
RH06 0.97 0.97 0.95 0.97 0.98 0.98 0.97 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.99 1. 1. 1. 1. 1. 1. 1.

age x 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
LC92 0.98 0.97 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.97 0.98 0.97 0.97 0.97 0.97 0.96 0.96 0.96 0.97 0.95 0.95 0.93
BDV02 0.98 0.97 0.98 0.98 0.98 0.98 0.97 0.97 0.97 0.96 0.97 0.97 0.96 0.97 0.96 0.96 0.96 0.95 0.96 0.95 0.94 0.93
RH03 0.99 0.98 0.98 0.98 0.98 0.99 0.98 0.99 0.99 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.97 0.96 0.97 0.95 0.94 0.92
RH06 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0.99 0.99 0.99 0.98 0.98 0.97

age x 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
LC92 0.94 0.93 0.89 0.88 0.84 0.8 0.79 0.75 0.68 0.62 0.54 0.46 0.38 0.3 0.23 0.17 0.12 0.07 0.04 0.02 0.01 0.
BDV02 0.94 0.93 0.89 0.89 0.84 0.81 0.78 0.75 0.68 0.61 0.52 0.44 0.35 0.24 0.15 0.12 0. 0. 0. 0. 0. 0.
RH03 0.94 0.93 0.89 0.93 0.87 0.82 0.79 0.82 0.78 0.74 0.69 0.65 0.6 0.55 0.45 0.49 0. 0. 0. 0. 0. 0.
RH06 0.96 0.95 0.92 0.92 0.88 0.83 0.85 0.85 0.8 0.73 0.59 0.48 0.2 0.2 0.07 0. 0. 0. 0. 0. 0. 0.

Table 5.7: Coefficient of determination R2(x) for different ages and mortality models
LC92–RH06.

correlations across different ages with increasing proportion of temporal variance
until age 80. Moreover, we notice a consistently high coverage of at least 95%
of the total variance for retirement age groups 60-80. Thereby, the ratio of
explained variance of the multi-factor time series models RH03 and RH06
dominates the R2 values reached by the LC92 or BDV02 model especially for
infancy (x < 10) and adult ages 30-60. In particular, for the age-period-cohort
variant we observe an overall explained variance108 of 96% which is quite good
in relation to the poor fitting results leading to R2 values near zero for ages 100

108 Lee and Carter (1992) propose an overall measure for the goodness of fit relating the sum
of age-specific unexplained variances and the sum of total variance over all ages.
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and older. Interestingly, solely the LC92 model obtains visible positive values
in this age range with an overall determination of at least 93%. This effect can
be explained by the fact that the more complex models feature unreasonable
behaviour for the logarithmized central death rates towards the end of the age
scale (cf. Subfigures (5.2.1), (5.3.1) and (5.4.1) in contrast to (5.1.1)) associated
with a lack of proportion in the temporal development of the variance.

Coefficient of determination for the mortality models LC92–RH06

10 20 30 40 50 60 70 80 90
age x

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00
R

2HxL

RH06

RH03

BDV02

LC92

Figure 5.19: Coefficient of determination R2(x) for different ages and mortality
models LC92–RH06.

5.4.5 Analysis of the mortality rate fan charts

In order to capture the uncertainty in forecasts of time series models for different
mortality related functions such as survival function, life expectancy or present
values of particular annuity contracts, the concept of fan charts109 describes a
promising way of illustration. Fan charts are suitable to illustrate stress-tests
or to backtest forecast errors or to perform a (separate) parameter risk analysis.
For a future period, values in the boundary regions of the chart indicate low
probability for their incidence.

109 The illustration via fan charts was taken up by King (2004), Blake et al. (2006a) or
Dowd et al. (2007). The uncertainty in future mortality projections is visualised by means of
prediction intervals of contrasting colours for different probabilities together with the central
projection sample mean. The colour scheme is designed in such a manner that the darker the
related prediction area the higher the likelihood for the outcome. The degree of projection
risk and, if included, parameter risk is quantified by the prediction interval width. Obviously,
the uncertainty increases with growing forecasting horizon, i.e. the fan legs drift further
apart.
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Projection of the central death rate

Using the Lee-Carter model as an example, Figure 5.20 shows central death rate
estimates and prediction interval bounds (risk bounds) for different prediction
probabilities together with a central projection. Since the standard deviation
of raw central death rates strongly increases for retirement ages 60-95 and
the reduction factor exp


b̂(x)


k(t) − k̂(t)


is decreasing in x, the prediction

interval width increases for older age profiles.
Lee-Carter fan charts of the central death rate

Figure 5.20: Lee-Carter fan charts of the central death rate based on 5 · 104 sample
paths for different age groups for German male mortality data from the Human
Mortality Database (2009).

Subfigure (5.21.1) additionally illustrates the impact of the model choice on the
appearance of the fan chart. Hereby, the width of the PIs (of estimated values)
for the mortality models LC92-RH03 is almost identical. Especially the charts
of the LC92 and BDV02 model show equal prediction interval width since the
number of parameters remains unchanged. Solely the cohort variant RH06
bears a substantial projection risk which may halfway be explained by the
strong parameter uncertainty illustrated in Figure 5.4. Even more important
than the prediction interval width is the direction of the central projection
given by the bootstrap sample mean. Results show that, on average, the models
LC92-RH03 forecast the same rate of mortality improvement whereas the RH06
sample mean proceeds above the former central projections. As already noted,
the likelihood models BDV02–RH06 feature growing prediction interval width
for increasing projection horizon.
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Projection of the survival function

In principle, there exist two different calculation methods for the survival
function depending on the use of (projected) central death rates. On the one
hand, we apply the model simulated period survival function defined by

kp↑
65(t) =

t−1
j=0

p65+j(t)
(#)=

k−1
j=0

exp (−m65+j(t)) = exp
−

k−1
j=0

m65+j(t)
 .

The curve originates from mortality experience of a single period t. On the
other hand, the corresponding cohort survival function

kp↗
65(t) =

k−1
j=0

p65+j(t + j) (#)=
k−1
j=0

exp (−m65+j(t + j))

= exp
−

k−1
j=0

m65+j(t + j)


is based on the realised mortality experience of a male cohort aged 65 in year
t. Thus, the cohort variant requires comprehensive mortality projections of a
whole generation and therefore includes noticeable model as well as forecasting
risk. The superscript notations ↑ and ↗ denote calculation in vertical (period-
specific) and diagonal (cohort-specific) direction. The second equality (#) is
based on the common assumption110 of constant central death rates for non
integer ages and periods, i.e.

mx+∆x(t + ∆t) = mx(s) for ∆x, ∆t ∈ [0,1[, (5.7)

such that the annual survival probabilities of an individual aged x at time t

is px(t) = exp (−mx(t)). Subfigure (5.21.2) clarifies the difference between the
period and cohort survival function concept. While the period specific survival
probabilities p65+k(2006) are known (thick solid lines) the corresponding cohort
probabilities p65+k(2006 + k) (coloured fans) have to be projected and therefore
contain a considerable amount of forecasting uncertainty. Obviously, the period
survival function also bears risk as soon as we refer to future reference periods.

We observe that due to the use of forecasted central death rates the period sur-
vival function values proceed below the cohort life expectancies. A resampling
of the graduated central death rates yields cohort survival function fan charts
that contain additional uncertainty. Furthermore, it is noticeable that all cohort
survival function fan charts show similar patterns. The small prediction interval

110 See Subsection 3.1.2 for more details.
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width for the RH03 model might be caused by an inappropriate choice111 for the
ARIMA process parameters of the second period factor. Here again, the RH06
fan bears the most forecast uncertainty. This has to be implicitly considered
when using the age-period-cohort extension for actuarial calculations.

Projecting the life expectancy

The (future) period life expectancy (cf. Equation 3.14 of Section 3.1.3) of an
individual aged x at time t under assumption (5.7) is calculated as

e̊↑
65(t) =

110−65
0

sp
↑
65(t)ds =

110−65
k=0

kp↑
65(t)


− q65+k(t)

ln(p65+k(t))



=
45

k=0
exp

−
k−1
j=0

m65+j(t)
 · q65+k(t)

m65+k(t) . (5.8)

Thus, the 65-year-old individual in t dies in year t + e̊↑
65(t) at age x + e̊↑

65(t)
using the period life table in t. For the cohort life expectancy we allow for an
evolution of central death rates over time and obtain

e̊↗
65(t) =

110−65
0

sp
↗
65(t)ds =

110−65
k=0

kp↗
65(t)


− q65+k(t + k)

ln(p65+k(t + k))



=
45

k=0
exp

−
k−1
j=0

m65+j(t + j)
 · q65+k(t + k)

m65+k(t + k) . (5.9)

It is likely that similar to the course of the period and cohort survival function in
Subfigure (5.21.2) the period life expectancy values proceed below the cohort life
expectancies as well. Moreover, the width of the prediction intervals increases
the further the fixed calendar year t lies in the future. For the sampling of
the complete life expectancy we only make use of the period approach (5.8)
since central death rates are solely projected up to year 2056 for reasons of
computational effort. Consequently, the evaluation of Expression (5.9) would
only allow for a series of cohort life expectancies for years t ∈ [2006,2011] since
the index of the summands is limited to 2011+45=2056.

The historic German male life expectancy increased almost linearly since the
late-sixties which coincides with demographic observations made by the German
Federal Statistical Office (2010) and in Subsection 2. The projection of the
life expectancy in Subfigure (5.21.3) illustrates uncertainty in longevity and
potential tendency and direction of mortality development for the underlying

111 Subfigure (5.3.5) illustrates that the course of this factor is less linear but more quadratic
such that a random walk with drift might be unsuitable in this context.
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population. The fan charts for the different analysed forecasting models are
directly related to the shape of the corresponding survival function. All models
satisfactorily capture historic life expectancy and the parameter misspecification
is moderate. We observe only slight model-specific differences in the fan
charts for the models LC92, BDV02 and RH03 concerning the width and the
forecasting tendency. Thus the BDV02 and RH03 model only include few
parameter uncertainty. As expected, the noticeable amount of projection risk
for the RH06 model also appears for the life expectancy fan chart. All charts
have in common that the slope does not continue the linear trend of the past
but is alleviated with a slight concave curve shape.

Projection of immediate annuity present values

We calculate the projected values of an immediate starting life annuity paying
an advanced annual pension of one monetary unit for a male individual aged
x = 65 years in year t. For this purpose, we use deterministic112 discount rates
based on the (normal) euro area government bond yield curve113 (Yk)k∈[0,44].
The period annuity price is derived by the formula

ä↑
65(t) =

110−65−1
k=0

kp↑
65(t)

(1 + Yk)k = 1 +
44

k=1
(1 + Yk)−k exp

−
k−1
j=0

m65+j(t)
 .

Similarly, the cohort annuity present value under assumption (5.7) equals

ä↗
65(t) =

110−65−1
k=0

kp↗
65(t + k)

(1 + Yk)k = 1 +
44

k=1
(1 + Yk)−k exp

−
k−1
j=0

m65+j(t + j)
 .

By analogy with the projection of the life expectancy function, we only present
the period annuity present value due to the fixed forecasting horizon. A growing
average life expectancy has a considerable impact on life annuity values and
thus the reserving of an annuity provider. The latter is well-advised to use the
forecasting-extensive cohort annuity values in order to account for a temporal
variation in the central death rates. The projected values in Subfigure (5.21.4)
show a nearly identical course compared to Subfigure (5.21.3). This is not
surprising at all since both the expected lifetime and the present annuity value
mainly compose from survival function values of more recent future horizons at

112 Note that even if the assumption of deterministic interest rates over the long contract
duration might not be too realistic our primary objective lies in the illustration of uncertainty
concerning the mortality projection.
113 The euro area government bond yield curve for maturities up to 30 years is provided by
the European Central Bank (2010). We use quotes with reference date 08/10/10 and applied
logarithmic extrapolation for (integer) maturities k ∈]30,44].
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which the fan charts proceed almost uniformly. The mentioned “saturation”
effect of the life expectancy charts is slightly more pronounced for the projection
of the present annuity values.

Fan chart analysis of related functions for models LC92-RH06

(5.21.1) Central death rate projection (5.21.2) Cohort and period survival function
projection

(5.21.3) Period life expectancy projection (5.21.4) Period life annuity projection

Figure 5.21: Historic parameter estimation results with 0.95-prediction intervals
for selected related functions for mortality models LC92-RH06 and an individual
aged 65. The illustration of the projection risk is presented by means of fan charts
(with prediction probabilities (0.25,0.5,0.7,0.95)) based on 5 · 103 projections. The
period survival functions are illustrated by thick solid lines. The mortality data is
taken from the Human Mortality Database (2009).

5.4.6 Further statistical goodness of fit measures

In addition, we present further measures and markers that are suited to quantify
fitting capability and to obtain a description of the probability distribution of
the residual lifetime.
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Mean squared error

The central death rate mean squared error (MSE) measures the squared devia-
tions of the raw and the estimated logarithmised central death rates for the
calendar year t as follows

MSE(ω, t) = 1
ω

ω
x=0

(ln (mx(t)) − ln (m̂x(t)))2 .

The measure equals the second sample moment of the estimated death rates at
time t containing both the variance and the squared ordinary estimation bias.
The method is applicable for both the Lee-Carter single value decomposition
and MLE methods. A small MSE value indicates low values for graduation
bias and variance of the estimated central death rates. Figure 5.22 illustrates
the noticeable high squared errors (especially for periods 1960-1980) for the
model extensions BDV02-RH06 on the logarithmic scale when all ages are
included (i.e. ω = 109). This is a result of the poor parameter fitting of the
average mortality pattern â(x) for ages 100 and older (cf. Subfigures (5.1.1) -
(5.4.1)). Admittedly, these errors become negligible for a limiting age ω = 100.
Figure 5.22 also shows that the underestimation of mortality patterns for ages
beyond 100 years slightly improves for more recent observation periods. Table
5.8 indicates that the LC92 model features estimates that are robust in the age
range to be fitted. By comparison, we observe the lowest time average MSE
value (6.5 · 10−3) as long as the whole age range is considered for analysis of the
graduation error. An exclusion of the oldest ages with weak empirical evidence
supports in turn the multi-factor extensions (with a time average MSE level of
4.4 · 10−3 for the RH03 and 3.8 · 10−3 for the RH06 mortality model).
Time average mean squared errors for the mortality models LC92–RH06

Time average MSE level
age limit LC92 BDV02 RH03 RH06
ω = 109 6.5 · 10−3 8.1 · 10−2 1.1 · 10−1 5.4 · 10−1

ω = 100 6.9 · 10−3 6.6 · 10−3 4.4 · 10−3 3.8 · 10−3

Table 5.8: Time average mean squared errors for the period life tables 1960 to 2006
and mortality models LC92–RH06.

Location and variability measures

The goodness or appropriateness of a parametric model can furthermore be
assessed by a comparison of meaningful location and variability measures. In
Table 5.9 we give a short overview following Pitacco et al. (2008). However, we
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Mean squared error for different periods and Mortality models
LC92–RH06

1970 1980 1990 2000
period

0.005

0.010

0.050

0.100

0.500

1.000

MSEHxmax,tL

RH06

RH03

BDV02

LC92

Figure 5.22: Mean squared error MSE(t) for different periods and mortality models.
The solid lines indicate the case ω = 109, the dashed lines the truncated case ω = 100.

abstain from a concrete derivation of the presented location and variability mea-
sures for the probability distribution of the random residual lifetime. Wilmoth
and Horiuchi (1999) suggest to solely use the interquartile measure because all
other location and variability measures show strong positive correlation.
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5.5 Conclusion and critical appraisal of time series mor-
tality models

In this chapter, we have undertaken an excursus concerning the modelling and
forecasting of mortality using the classical Lee-Carter mortality model and
(multi-factor) modifications / extensions fitted to the German male life table
data for periods 1956–2006 originated by the Human Mortality Database (2009).
The Lee-Carter mortality model combines a parsimonious and intuitive inter-
pretation of the underlying age- and period-parameters with robust projected
age-specific patterns. However, it reveals several drawbacks preventing an
application for long-term mortality forecasting, for instance, pension modelling.
Since the LC92 model assumes independence between the residuals and the
age-/period-parameter estimates, it therefore introduces model risk in terms
of understated residual variance and thus comparatively narrow confidence
bounds since parameter uncertainty is not explicitly accounted for. For reasons
of manageability, the error term is further normally distributed with constant
variance for all ages and calendar years, i.e. the model error is homoskedas-
tic114. The assumption of a normally distributed error term causes a symmetric
interval forecast with possibly unrealistic (long-term) behaviour since the rate
of decline for certain age patterns stays constant over time. Furthermore, the
fitting procedure based on least-squares minimization is twofold such that the
time dependent parameters need to be re-adjusted in a second step. Thus, the
bias is inherited from the first term estimates and incoherence could arise.

Several log-bilinear extensions based on MLE produce relief in the way that
the parameters vary by distribution. For example, the Poisson regression
model used by Brouhns et al. (2002b) treats the observed number of deaths
as realisations of an univariate Poisson distribution with mean equal to the
expected number of deaths under the LC92 model115. Thus, a second stage
adjustment of the time-dependent factors becomes obsolete. Forecasts are sam-
pled by parametric bootstrapping and therefore introduce additional parameter
estimation uncertainty. Nevertheless, the overdispersion problem remains and
is expressed by excessively narrow confidence intervals. More precisely, the

114 On the basis of increasing dispersion of the logarithmic central death rates from young
to oldest ages due to a smaller number of deaths this assumption seems to be somehow
unrealistic. Actuarial literature tackled this discrepancy in different ways. For example,
the Lee-Carter extension of Koissi and Shapiro (2006) treats parameters as random fuzzy
numbers with distributions obtained by a Bayesian technique.
115 Renshaw and Haberman (2008) additionally present a joint Poisson-Gamma and a negative
Binomial extension in order to model the second moment of the number of deaths distribution.
Thus they allow for unconstrained dispersion.
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Poisson error distribution assumption of equal mean and variance conveys an
illusory degree of precision in the way that future dispersion in the central death
rate is understated. Subfigures (5.1.5) and (5.2.5) illustrate these characteristics
for the 95% confidence (CI) intervals in case of the LC92 and BDV02 model.
Over time, a number of modifications of the original Lee-Carter framework
(cf. Table 4.2) have been proposed to improve the fitting quality or robustness.
Nonetheless, all single-factor age-period models have in common that certain
systematic period effects and trends inherent in historic mortality data are
fitted unsatisfactorily.

For this reason, upgrades to multi-factor age-period models (see Table 4.3)
have been introduced and promised fitting improvements by a description of
additional deterministic period patterns not captured by the LC92 period factor.
We focussed on two extensions introduced by Renshaw and Haberman (2003,
2006) to perform a quantitative analysis of graduation as well as projection
results. The two factor age-period model RH03 showed higher flexibility due
to the additional individual bilinear term. Hereby, the second period factor
explained a major part of the variance in mortality rates for young and oldest age
groups and therefore improved the fitting quality compared to the single-factor
LC92 and BDV02 models. Nevertheless, certain characteristics for cohorts with
different year of birth remained unexplained.

In contrast, the RH06 model adds a year-of-birth dependent factor to capture
systematic cohort effects. An analysis of the standardised residuals showed that
mortality trends evoked by age, period or cohort effects are largely captured.
The year-of-birth dependence of the residuals vanished almost completely.
Admittedly, the complex multi-factor model variants (RH03, RH06) exhibit
drawbacks concerning numerical instability and a lack of robustness for the
parameter fitting although they provide a good fit for historic death rates or
related functions (see Figure 5.21). In this connection, Renshaw and Haberman
(2006), CMIB (2007b) or Cairns et al. (2009) mention that due to the linear
dependence (year of birth equals the current calendar year minus the cohort age)
the modelling might be problematic in the way that resulting parameter sets
are not unique. The iterative scheme (5.3) shows very slow convergence caused
by a flat likelihood function and / or multiple maxima such that computing time
increases considerably. Furthermore, the estimation algorithm lacks robustness
in the initial parameter values and the observation window. Especially when
the sample size is sparse, e.g. for estimated number of person years (3.3) at
oldest ages, we obtained forecasts which are (biologically) implausible. However,
caution is advised concerning the projection of the additional cohort effect
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which involves a high degree of parameter risk. Basically, log-linear model
variants with more than two non-linear stochastic factors (e.g. the Cairns-
Blake-Dowd model with a cohort effect presented in Cairns et al. (2009))) are
also conceivable but further increase estimation and forecasting uncertainty
and struggle with the same drawbacks mentioned above.

We have tested the selection of models LC92–RH06 against basic qualitative
and a range116 of quantitative criteria like residual analysis, parsimony, variance
explanation, mean squared error and fan chart comparison. As already men-
tioned, the residual inspection attests the RH06 extension the best graduation
performance. The ranking regarding the parsimony remains unchanged when
considering the proportion of the explained temporal variance. Furthermore, a
review of the fan charts for projected central death rates and related functions
shows that, on the one hand, the parameter uncertainty of the models BDV02
and RH03 is negligible in contrast to the LC92 type117. On the other hand, the
RH06 model which we preferred for fitting quality reasons reveals considerable
parameter as well as forecasting risk118 for estimated and projected life table
functions. What is more, markers such as the expected residual lifetime or a
life annuity present value measure the mortality development and provide a
decision support for state authorities or annuity providers. A (longevity) fan
chart comparison reveals homogeneous concave shape with notable differences
among the mortality models. Robustness and numerical shortcomings for the
multi-factor representatives are revealed by a comparison of the mean squared
error.

Finally, it should be noticed that a decision for or against a certain extrapolation
model must always comply with the requirements and data quality / availability
of the selected application. The stochastic models under consideration are
only able to quantify model risk and forecasting uncertainty. Other elements
of uncertainty such as process, basis or judgement risk are neglected. The
single-factor bilinear models are robust but limited in their fitting ability due
to the number of parameters. For the multi-factor extensions, precisely the
opposite is the case.

116 Any rank order based on a single criterion only might be ambiguous and, for example,
should not be limited to fitting performance of historic data only.
117 We observed similar results concerning direction and width of the fan charts for these
extrapolation models.
118 The forecast error is assessed, for example, by the (mean) absolute deviation or the mean
squared error. The width and the form of the prediction interval allows for a assessment of
the forecasting risk.
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People may live as much retired from the world
as they like, but sooner or later they find them-
selves debtor or creditor to some one.

Johann W. von Goethe, German playwright,
poet, novelist and dramatist who lived from
1749 to 1832

CHAPTER 6

The German pension system and the
need for private retirement provision
Due to the ongoing pension debates since the nineties – treating an expected
demographic adverse development on the long-term financial viability of the
German pension system – the topic of retirement provision has gained increasing
importance. When talking about retirement provision, we refer to all provision
arrangements during the period of employment that aim at maintaining the
livelihood for a subsequent retirement desirably without any forfeit of welfare.
Within the framework of Reich Chancellor Bismarck’s social legislation at the
end of the 19th century, the statutory pension system (for the time being
capital covered) has been introduced. Due to the economic aftermaths of the
Great Depression (hyperinflation), World War I/II and the currency reform, the
contribution reserves have been nearly devalued or exhausted by substantially
reduced contributions on the one hand and considerable disability and widow’s
benefit payouts on the other hand. Right before the parliamentary elections in
1957, Konrad Adenauer, the Federal Chancellor being in office at that time,
came to a decision with serious consequences: he enforced a pension reform
introducing a PAYG system despite the concerns expressed by his former
German Minister of Economic Affairs Ludwig Erhard. Among various (long
overdue) reform adjustments, this reallocation-financed system endures down
to the present day. The great reform adopted an indexation119 of the statutory
pension to the general development of the employer’s gross wages120 to ensure
119 Since the introduction of the German PAYG pension system in 1957, pensions had been
adjusted for forty-nine times (until 2010) according to the gross growth of wages. Admittedly,
due to a growing low-wage sector income-related pension increase was on average less than
one percent since the beginning of the new millennium.
120 Because age groups with low birth rates born in the seventies began their entry into the
workforce and life expectancy steadily increased, the 1992 pension reform implemented the
indexation according to the net wage development.
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participation of retirees in the increasing level of welfare of contributors. The
pension was no longer conceived as a livelihood subsidy but rather as a wage
substitution.

With the legal inclusion of the company pension scheme in 1974 under the
so called Employers’ Retirement Benefits Act, retirement provision offered by
three different carriers was rounded out. In accordance with the World Bank
model, the concept of different supporting legs was constructed as a three-pillar
concept. The first pillar denotes the statutory public pension scheme as an
integral part of the basic social security system. In 2008, 85% of the income
of persons aged 65 and older121 was made up by the statutory pension. Its
sustainability is based on a PAYG system, i.e. under the assumption of a stable
population structure a major part122 of the pension payments to current benefit
recipients is funded by the contributions of the current employees which in turn
acquire a pension benefit entitlement. It was already in 1975 when the Federal
Chancellor Adenauer was thoroughly mistaken as he defended his reform of
a dynamic pension plan with the rather flippant explanation that “People do
always have children.”. However, demographic development after that time
has upset reform plans because population sizes have been declining since the
nineties which will lead to a future mismatch in the proportion of retirees
and contributors. One of the core sentences associated with German pension
policy was stated by the former Federal Minister for Labour and Social Affairs
Norbert Blüm who announced before the elections in 1986 that “Because one
thing is certain: The legal pension.”. There have been only a few statements in
pension politics that aroused more controversial discussion. From today’s point
of view, the only thing that is for sure concerning the pension is insecurity
about the fact that the paid mandatory contributions cover future old-age
livelihood. Additionally, several circumstances123 have threatened and threaten
the long-term financial viability of the public PAYG pension system. If one is
to believe the predictions of the Commission for Sustainability in Financing
the Social Security Systems (Rürup Comission) the proportion of retirees and
contributors will continuously rise due to structural changes among the age
distribution of the German population. A higher life expectancy together with

121 The data was obtained from the supplementary report of the German Federal Ministry
of Health and Social Security (2008).
122 For the year 2007 the German Federal Ministry of Health and Social Security (2008)
recorded a total income of about 238 billion euros of which 73% were employees contributions,
26% were federal subsidies and a further 1% came from other financial resources.
123 The pension settlement within the reunification of Germany, high tax-funded state
subsidies, the growing low-wage sector in the course of the economic crisis, the high rate
of unemployment (in particular in the new federal states) and a significant proportion of
partial/early retirement have had a negative effect on the funding of statutory pensions.
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a decreasing birth rate lead to a pronounced ageing of the population with
serious impacts on the pension planning. More precisely, the proportion of the
income bracket in the age range 20-64 to pensioners 65+ is expected to shrink
from 3.25 to 1 in 2003 to a ratio of 2.2 to 1 for the year 2030. While in 2003 a
group of 100 active contributors of the statutory public pension scheme financed
the pensions to approximately 48 retirees, population forecasts yield a value of
68 for the year 2030 at the expense of the contributors. As a consequence, legal
modifications concerning the contributions, the wage adoption, the working
life as well as the amounts of the reduced earning capacity pension and the
survivor’s benefits were and are inevitable to secure the future viability of the
PAYG social system. Following the reference scenario of the Commission for
Sustainability in Financing the Social Security Systems (Rürup Comission),
the pension reform means that the standard replacement ratio124 shrinks from
48% in 2003 to 40% in the year 2030 whereas at the same time contributions
increase from 19.5% to 22% of the gross income. Against the background of a
temporary pay freeze125 of indexation of statutory pensions and legal changes
within the pension reform126, a supplementary funded private preservation in
order to maintain the pre-retirement standard of living seems more reasonable
than ever. The statutory pension will then solely suffer as a livelihood security.

In contrast, the second pillar is given by the tax-privileged voluntary occupa-
tional pension based on a funded provision. Wage earners acquire a legitimate
payment claim127 against their employers in case of the insured events retire-
ment, disability or death during the accumulation phase. Claims are either
employer-financed, employee-financed (in form of a pay conversion) or a com-
bination of both. For this purpose, a total of five permissible realisation
methods are available yielding economic incentives for both insurance takers
and providers. On the one hand, the employer directly grants defined benefits
through (reinsured) benefit funds or company-based pension schemes which

124 The standard replacement ratio describes the relation of the acquired gross pension
and the current average gross income just before retirement. It is thus a measure for the
retirement income gap. On principle, consumer groups assume that a pension amounting
to 80% of the last earned net wage is sufficient to maintain the pre-retirement standard of
living.
125 Effectively, a zero pension rate adjustment means a reduction when considering a positive
inflation rate.
126 The so called bill of pension sustainability takes account of the pronounced ageing of
the population. In particular, the bill included the introduction of a so called sustainability
factor measuring the ratio of contributors to retirees and an increased statutory retirement
age. The sustainability factor attenuates the pension increase and thus should achieve a
long-term stability in the contribution rate.
127 The achievement of a claim and its legal vesting period depends, inter alia, on the length
of the employment, the underlying wage agreement and the offered realisation method.
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is most frequently used at the moment. On the other hand, the company
indirectly engages an external provider to provide occupational retirement
provision for its employees by means of a direct insurance, a staff pension
insurance or a pension fund. Up to now, little use is being made of occupational
pension schemes since solely 5% of old-age income result from this kind of
provision form. The topic of company pension schemes shall not be discussed
any further subsequently.

The third and final pillar describes the voluntary private provision which is
funded by the contributor and at the same time beneficiary, e.g. in form of
equity fund saving plans (non-state-subsidised), government certified Riester
and Rürup pension policies (state-subsidised demand oriented basic provision),
life insurance policies (non-state-subsidised) and private home pension schemes
(Wohn-Riester is state-subsidised). The savers accumulate capital and partici-
pate from distributed profits. The resulting entitlement is paid out as a lifelong
pension or a (partial) lump-sum payment. In accordance with the German
Federal Ministry of Health and Social Security (2008) the present pension
income from private provision products lies around 10% such that there is
plenty room for a re-attachment of weight from the first to the private funded
pillar. Nevertheless, the largest part of the retirement earnings will also be
hold by the public pension scheme in the (near) future.

With the introduction of the Retirement Income Act in 2005 and the revision of
the taxation of pension provisions and retirement earnings involved, the three-
pillar system was supplemented by a three-tier model. The components in form
of three provision layers are basic provision (deferred taxation), supplementary
provision (deferred taxation) and investment products (taxed in advance)
distinguished according to the fiscal handling. Since the statutory main pillar is
about to collapse in the foreseeable future and therefore threatens the stability
of the entire pillar system, a layered arrangement with an equally distributed
provision model seems more stabilizing in this regard. Nowadays, a provision
willing person can select out of a wide range of retirement products yielding a
life-long payment and thus protection against outliving his/her accumulated
assets. However, on the supplier side the insurance sector is faced with the
challenging task to account for future changes in the demand and requirements
concerning funded provision products. In particular, due to the continuing
demographic development, products like single-premium immediate annuities
for generations 50+ and (unit-linked) deferred annuities with inherent life
phase concept128 could become a sought-after provision form. Thus, a dynamic

128 Within the life phase approach for private pension insurance the accumulation and the
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product design constitutes a significant success indicator. It has to ensure
that highly complex insurance products become both simpler (transparency)
and more consumer-friendly (cost efficiency, flexibility) to achieve a long-
term customer retention in markets that are becoming increasingly saturated.
Furthermore, the post-Global-Financial-Crisis era caused a demand for security
and long-term guarantees.

Traditional life insurance solutions like endowment life policies and private
(deferred) pension policies underlie an investment in a conventional premium
reserve stock and therefore a conservative allocation almost away from equities.
Based on the report of the GDV for the year 2010, the life or pension insurance
is still Germany’s most favoured retirement product with an overall annual
premium sum of 1.51 billion euros which equals a share in the new business of
24.6%. Hereby, especially the new business for single-premium policies with a
comparatively small premium sum of 330 million euros recorded a percentage
increase of 64% compared to business year 2009. The high ratio of a secure
investment (contractually guaranteed actuarial interest rate and annuity factor)
is bought by a low expiry yield129 and thus implicite costs within the insurance
wrapper.

Alternatively, the customer can choose in favour for a modern “state-of-the-art”
policy with (permanent) high (self-determined) fund exposure in form of a
capital market based contract enriched with selectable guaranteed benefits.
Common products are unit-linked endowment and pension policies with “guar-
antee funds” (often endorsed with a peak lock-in mechanism), (dynamic) hybrid
products or so called variable annuities. It is especially the latter product
variant which offers the highest (guaranteed) pension rates and, at the same
time, nearly 100% participation in the underlying fund portfolio. Moreover,
unit-linked annuities offer the benefit of a deferred taxation of the pension’s
profit share at a reduced retirement tax rate in comparison to a direct fund
investment130 burdened with a withholding tax. In times of decreasing guar-
anteed interest rates131 and an enhanced need for private provision, flexible

decumulation phase are no longer fixed but are fully flexible designed and can be adapted
to the policyholder’s individual needs and living conditions. Inter alia, this comprises the
inclusion/exclusion as well as the increase/reduction of benefits from certain contractual
parts or allied perils and the implementation of different (partial) lump sum payments or
retirements.
129 In 2010 the GDV announced an average regular net return of 4.13% for the life insurance
business.
130 Kling et al. (2005) show that with a correspondingly long contract duration the expiry
yield of a unit-linked pension dominates the one of a mutual fund savings plan.
131 Since its peak in 2000, the German guaranteed interest rate for insurance companies has
been stepwise reduced from 4% to 1.75% for the forthcoming year 2012 by decision of the
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and cost transparent unit-linked concepts – albeit niche products so far – may
become a serious alternative to conventional life and pension insurance products.
The proportion of unit-linked pension contracts to the overall new business
rose steadily from 11.7% in 2005 to 23.7% in 2008 and declined afterwards due
to the global economic recession to 16% in 2010. However, the “brave new
pension world” involves several new challenging actuarial tasks. Besides the
risk concerning decreasing (market) interest rates and continuing mortality
improvements the unit-linked concept introduces further market risks (concern-
ing the fund price, fund volatility and currency) as well as financially rational
policyholder behaviour which tremendously complicates risk management and
rises solvency capital requirements. The need for an adequate hedging of the
stated guarantees introduces further risks like operational, credit and basis
risks.

In the following two chapters we take a detailed account of common insurance
solutions of the conventional as well as the unit-linked form. More precisely,
two short-rate mortality models out of the stochastic framework introduced
in Section 4.3 of the first part of the thesis are each calibrated to the German
population mortality and used to model both the individual assured’s survival
and the general (insurance) cohort mortality. In combination with a full
stochastic financial market model, this necessitates the use of pricing and
reserving methods applicable in incomplete markets132. We are paying particular
attention to these issues in Chapter 7 which treats the analysis of a traditional
deferred life annuity from the perspective of the underwriter. In the subsequent
Chapter 8 we take a closer look on a deferred variable annuity contract with
guaranteed living and death benefits. On the one hand, we also tackle pricing
issues, notably the estimation of a fair guarantee percentage charge, and a
sensitivity analysis concerning process parameter misspecification. On the
other hand, we apply a profitability analysis from the point of view of the
policyholder including the simulation of the net rate of return on the premiums,
the moneyness of stated guarantees and the distribution of the total contract
value at maturity.

Federal Finance Ministry.
132 For instance, the topic of an incomplete insurance market is treated in Milevsky et al.
(2006) who describe how the law of large numbers breaks down when pricing is performed
under stochastic instead of deterministic mortality rates. The authors use a pre-specified
instantaneous Sharpe ratio to price mortality contingent claims. An alternative indifference
pricing approach is analysed in Ludkovski and Young (2008). Olivieri and Pitacco (2003,
2008) regard the adequate insurer’s capital allocation and illustrate the impacts of uncertainty
in the level of future mortality. They consider solvency requirements for life annuity portfolios
and funded pension plans. Additional references are given in Section 7.1 of Chapter 7.



Buy an annuity cheap, and make your life in-
teresting to yourself and everybody else that
watches the speculation.

Charles Dickens, English novelist and writer
who lived from 1812 to 1870

CHAPTER 7

Deferred Life Annuities -
On the Combined Effects of Stochastic
Mortality and Interest Rates

This chapter is based on Mahayni and Steuten (2013). The publisher’s version
is available at link.springer.com.

7.1 Introduction

Due to the growing importance of the private pension scheme, various annuity
insurance contracts and their analysis receive more and more attention. Besides
unit-linked annuities, the conventional annuity and pension insurance registered
the largest increase133 of German new business in 2009. The accumulation and
decumulation period of the products depend on the random residual lifetime
of the insured such that the demographic risk in the sense of mortality and
longevity risk plays a crucial role in the pricing and risk management process.

A life annuity secures lifelong annual payments to the insured. In financial
terms, the payoff to the insurance cohort can be interpreted as a portfolio of
zero-coupon bonds with stochastic maturities and face values. Therefore, the
insurance company is exposed to longevity risk and interest rate risk. This
is particularly true in the case of deferred annuities where pension payments
are postponed. Traditional pricing and valuation models which are based on a
conservative time-invariant134 mortality assumption and a deterministic flat
133 The redeemed new annuity and pension insurance business contributes regular premiums
amounting to 1.3 billion euros with an overall share of 31%. The business in force at the
end of 2009 consists of 18.3 million contracts (equals a share of 20%), see German Insurance
Association (GDV).
134 See Chapter 3 for an overview over traditional mortality modelling.
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yield curve do not adequately model the risk factors. In a deterministic model
setup, the insurance company is solely exposed to a perfectly diversifiable
risk. Because of the law of large numbers, the random number of bonds can
be replaced by deterministic survival probabilities. Admittedly, besides a
diversification or pooling risk which stems from an insufficient large insurance
cohort, there is also a non-pooling risk part which cannot be diversified135

since it affects each policyholder’s mortality in the same way. In addition,
the benefits and contributions are considerably exposed to interest rate risk
as a result of long terms to maturity. Therefore, it is neither convenient to
assume deterministic interest rates nor deterministic mortality rates. Even in
the (realistic) case that the interest rate and the mortality risk are independent,
the former risk is only (perfectly) hedgeable if one abstracts from stochastic
mortality rates. As a consequence, the pricing as well as any solvency control
must take into account the combined effects of stochastic mortality and interest
rates.

Our contributions to the existing literature on the effects of stochastic mortality
and interest rates are as follows: We calibrate state of the art models to
current interest and mortality data. The results of the stochastic models
are not considered by their own but are benchmarked to conveniently chosen
deterministic counterpart models. This allows us to quantify the effects of
different degrees of randomness. Basically, our analysis refers to four risk
scenarios: interest rates and mortality rates are both stochastic, only one of
the two is stochastic and the (benchmark) case where both are deterministic.
Due to the calibration to the same financial market and demographic data,
the expected discounted portfolio cash-flow of both, the premium income and
the pension benefit, is the same within all models/risk scenarios. However,
the risk profile which is given in terms of higher moments varies. For the
specification of the (stochastic) mortality rate, we consider a pure diffusion
model as well as a compound Poisson jump model. It turns out that the results
are rather similar for both setups. For financial modelling we apply a Gaussian
Heath, Jarrow and Morton framework. For the sake of simplicity, we use a
one-factor Hull-White interest rate process. The term structure of interest rates
is calibrated for different assumptions on the degree of randomness, i.e. we
calibrate the term structure for varying spot rate volatilities. We approximate
the higher moments of the discounted cash flows by means of Monte Carlo
simulations. One emphasis is on the variance and its decomposition into a

135 Note that at present, the mortality derivative market is almost illiquid and reinsurance
solutions are cost-intensive and tailor-made. Thus, we do not consider the non-pooling risk
to be a traded risk.
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pooling and a non-pooling part. We also consider different pricing principles
that have already been adapted successfully in incomplete markets136. The
resulting premiums are benchmarked to the equivalence premium in terms of
the (discounted) expected cash-flow. For example, we consider an utility based
(indifference) approach along the lines of Pelsser (2005) to obtain a market-
consistent valuation of insurance benefits and a quantile premium principle
which ensures a given value-at-risk condition posed on the underwriter’s loss
at the contract maturity. Both principles require assumptions on the insurer’s
investment/hedging strategy. We compare the “no hedging” case with a static
hedge consisting of an adequate number of zero bonds with different maturities.
We also consider the effects of forward starting strategies which avoid a pre-
financing of the future premiums. It turns out that the full stochastic scenario
demands a substantial risk premium. However, even in the case of stochastic
mortality, the “as good as possible hedge” with zero bonds reduces the required
risk premiums to a large extent. Finally, we also take solvency requirements
based on the shortfall probability of the annuity provider into account. In
addition, we consider the expected shortfall to measure the extent of a default.
Again, it turns out that, compared to the (deterministic) benchmark model
setup, the consideration of the combined effects of stochastic mortality and
interest rates has a substantial impact on the solvency requirements.

There are different strands of related literature. Without postulating com-
pleteness, we mention the following. A simple and illustrative example how
the law of large numbers breaks down when switching from deterministic to
stochastic mortality rates is given in Milevsky et al. (2006). The impact of
longevity risk is studied in Blake and Burrows (2001), Olivieri (2001, 2007),
Di Lorenzo and Sibillo (2002), Coppola et al. (2003) or Pitacco (2004a). They
all conclude that mortality data shows a decreasing trend with different random
developments for different ages, periods or gender (cf. Chapter 2). Some
methods to model stochastic mortality rates are, for example, given in Biffis
(2005), Schrager (2006), Dahl (2004), Pitacco (2004b), Bayraktar et al. (2009),
Dahl and Møller (2006) and Korn et al. (2006)137. A subdivision of the vari-
ance of the present benefit value was first introduced in Parker (1997) who
divides the total variance of an endowment life insurance portfolio into a sum

136 Up to now, insurance risk is neither fully hedgeable nor sufficiently traded. In contrast to
the interest rate derivatives market, which constitutes the largest derivatives market in the
world, the trading of so called mortality derivatives is still in its infancy.
137 Biffis (2005) and Schrager (2006) choose an affine mortality process, Korn et al. (2006)
use a stochastic version of the Perks-/Gompertz-Mortality law and Dahl and Møller (2006) a
square root diffusion process, whereas Bayraktar et al. (2009) analyse a general diffusion
process.
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of two components either conditioned on investment or insurance risk. The
systematic risk component which stems from permanent mortality trends is,
inter alia, considered in Olivieri (2001), Coppola et al. (2000, 2002) or Pitacco
(2004a). The authors use a finite range of future mortality scenarios instead
of stochastic realisations and differentiate between pooling and non-pooling
variance parts. In contrast, Hári et al. (2008) and De Waegenaere et al. (2010)
consider pension annuities in a generalised Lee-Carter setting. Christiansen
and Helwich (2008) use a stochastic Gompertz-model in the case of both, pure
endowment and temporary life insurance. Dahl et al. (2008) rely on a Cox-
Ingersoll-Ross square-root diffusion mortality model and simulate the risk per
policy of an endowment life insurance under different risk-minimizing strategies.
For an application of the principle of zero expected utility to the pricing of life
annuities we refer to the work of Pelsser (2005), Hainant and Devolder (2008)
and Ludkovski and Young (2008). In particular, Pelsser (2005) postulates
requirements on (meaningful) utility functions which are satisfied by functions
with double hyperbolic absolute risk aversion. Concerning the relevance of the
quantile principle we refer to Olivieri (2001, 2007) and the literature given
herein. Solvency aspects are, for example, discussed in Bauer and Weber (2008)
and Hári et al. (2008) who calculate the value-at-risk and the expected shortfall
for immediate starting life annuities under different static hedging scenarios.

The outline of the chapter is given as follows. Section 7.2 presents the contract
definition, introduces the (stochastic) discounted portfolio value and gives the
model setup for the combined mortality and interest rate model. Section 7.3
describes the calibration procedure and illustrates the calibration results. In
Section 7.4, we approximate the variance of the discounted portfolio value by
means of Monte Carlo simulations. We also illustrate the pooling and the
non-pooling risk parts w.r.t. different interest rate volatilities, cohort sizes and
deferment periods. Section 7.5 concerns the pricing. We give a brief review
of the indifference/zero expected utility and quantile pricing approaches. We
approximate and compare the resulting risk premiums for different risk scenarios
and investment / hedging assumptions. The associated shortfall probabilities
and the expected shortfall of the insurance (business) loss at maturity are
considered in Section 7.6. In addition, we simulate the solvency margins
w.r.t. exogenously postulated (maximum) shortfall probabilities. Section 7.7
concludes the chapter.
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7.2 Contract and model specification

Throughout the following, we consider a portfolio of N0 identical forward
starting life annuities with annual pension payments c starting at T > 0 as
long as the insured is living but at most until the contract expiration T̄ . We
set T̄ = ω − x where x denotes the current age of the insured and ω can
be interpreted as a biological age limit. The periodic premiums π are paid
in advance on a constant regular basis, i.e. at times t = 0,..., T − 1. All
annuity contracts under consideration are initiated at t = 0. Conditioned on
the mortality law, the residual lifetime τ (n)

x (n = 1,...,N0) of the number of
survivors are i.i.d.. The payment stream138 of a deferred life annuity with
deferment period of length T is depicted in Figure 7.1. Essentially, two different
scenarios are possible. If the insured n dies before T , i.e. the event {τ (n)

x < T},
we assume that there are no further premium payments and no delayed annuity
payments. If the insured survives T , i.e. {τ (n)

x ≥ T}, he receives an annually
payment c starting at T until his death. All premium payments contributed

Payment stream of a deferred life annuity
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)
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Figure 7.1: Payment stream of a T -deferred life annuity with periodic premium
π and pension payment c. The figure was first published in Mahayni and Steuten
(2013).

by the in-force insurance portfolio are conditioned on the event that the insured
is still living during the deferment period, i.e. π 1{τ

(n)
x >t} is the premium paid

by the insured n ∈ {1,..., N0} at time t ∈ {0,1,..., T − 1}. Summing up, the
portfolio premium income at year t is π · Nt where Nt denotes the size of the
insurance cohort at time t, i.e.

Nt :=
N0

n=1
1{τ

(n)
x >t}.

138 The accumulation phase [0,T [ represents some kind of savings plan, whereas the subsequent
decumulation phase [T,T̄ ] forms an immediate life annuity.
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On the benefits side, payments to the annuitants are conditioned on the event
that the insured is still living after retirement. Thus, the portfolio payoff
immediately after year T + t is c · NT +t.

In the following, the stochastic process β denotes the bank account, i.e.

βt,t̄ := exp

I(t,t̄)


where I(t,t̄) :=

t̄
t

ru du (t ≤ t̄ ≤ ω − x) (7.1)

and r = (rt)0≤t≤T̄ is the process of the continuously compounded spot interest
rate. For t ∈ [0,T ], the discounted 139 portfolio premium income value XΠ

t and
the discounted portfolio benefit value ZΠ

t are given by

XΠ
t = π

T −1
i=0

Ni

βt,i

and ZΠ
t = c

T̄ −1
i=T

Ni

βt,i

. (7.2)

As a consequence of the periodic premium payments, the insurer faces also the
risk of unanticipated deaths of the insureds during the accumulation phase. In
addition, notice that both the discounted income X and the discounted benefit
value Z take into account two random components: the number of survivors N

and the (stochastic) bank account β. Thus, X and Z (the underwriting loss
Z − X respectively) are convenient to analyse the effects of stochastic mortality
and stochastic interest rates on the risk profile of the annuity provider.

All stochastic processes under consideration are defined on a filtered prob-
ability space (Ω,F,P ) with filtration (information structure) F = (Ft)t∈[0,T̄ ]

(F0 = {∅,Ω}) satisfying the usual conditions, i.e. right continuity and (P,F)-
completeness. Ft represents all available information at time t ∈ [0,T̄ ]. In
particular, F contains the (sub-)information about the interest rates I, the
number of survivors H as well as the mortality rates M. To be more precise,
It = σ ({rs : 0 ≤ s ≤ t}) summarizes the information about the interest rate
evolution up to time t. The σ-algebra Ht = σ


{1{τx>s} : 0 ≤ s ≤ t}


contains

information concerning the residual lifetime indicator and thus describes the
evolution of the cohort size whereas Mt = σ ({µx+s(s) : 0 ≤ s ≤ t}) describes
the evolution of the mortality rate up to time t. The instantaneous death
probability at t is denoted by µx+t(t) and is the same for all annuitants who
are still living at t (and aged x + t), i.e. for ∆t > 0 small enough it holds

P

τ (n)

x ≤ t + ∆t | Ft


=̃ µx+t(t) · ∆t for n = 1, . . . , N0.

139 To be more precise, the discounted portfolio value is expressed by taking the stochastic
bank account as the numéraire.
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Conditioned on the mortality information until time t, the residual lifetimes
τ (n)

x are i.i.d. , i.e. for 0 ≤ s ≤ t it holds

P

τ (n)

x > t | Hs ∨ Mt


= E


1{τ

(n)
x >t} | Hs ∨ Mt


= exp

−
t

s

µx+u(u) du


(7.3)

for n = 1,..., N0. It is assumed that the interest rates and the mortality rates
are independent, i.e. I and M are independent. In addition, the “vital” status
of an annuitant (the cohort size respectively) has no impact on the financial
market, i.e. I is even independent of the union of M and H.

Remark 7.2.1. Throughout the chapter, we consider a combined model frame-
work which is specified by an interest rate and a mortality rate model. In
general, there are two models needed, one for the pricing and one for the
risk management purpose. While the pricing model is based on the so called
pricing measure, the risk management model is formulated under the real world
measure. In practice, the pricing measure is typically obtained implicitly by
calibrating the underlying asset pricing processes to liquid products quoted
in the market. In the context of mortality risk, the estimation of a pricing
measure is difficult if not impossible140. Even in the case that one appraises
the mortality derivative market as liquid (which we do not), there is still some
basis risk stemming from the differences in the underlying cohorts left. We
consider the mortality risk as a non-traded and, because of the randomness
of the mortality rates, a non-diversifiable risk. The mortality rate model is
formulated under the real world measure which is also immanent in the model
calibration to observed mortality probabilities. In contrast, the interest rate
market is assumed to be complete and we model the interest rate dynamics
under the martingale/pricing measure. Due to the incompleteness arising from
the mortality side, the risk management of annuities should take into account
the risk premium included in the interest rate derivative products. However, the
estimation of the relevant risk premiums is beyond the scope of this chapter. We
set it equal to zero such that the measures coincide. To simplify the exposition,
we state the interest rate dynamics under one measure, only.

140 For a discussion on the topic of fair valuation of insurance liabilities and the market price
of mortality risk we refer to Biffis et al. (2010).
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7.2.1 Mortality model

For the dynamics of the mortality rate, we restrict ourselves to the class of
affine processes. This assumption implies closed-form solutions for the survival
probabilities which are used to calibrate the models to the period life table data
originated by the Human Mortality Database (2009). We consider two versions
of non mean reverting processes, namely Model (I) and Model (II). Model (I) is
a Poisson jump process and Model (II) is a square-root diffusion process. Both
models are based on the initial mortality µx(0) which is of Gompertz-Makeham
type, i.e. µx(0) = α + βγx for α ≥ 0, β > 0, γ > 1.

Definition 7.2.2 (Model (I)). Model (I) is defined by a non mean reverting
Poisson jump process with dynamics

dµx+t(t) = κ1µx+t(t)dt + dJt, (κ1 > 0). (7.4)

Jt = M(t)
i=1 εi is a compound Poisson jump process141. M denotes a Pois-

son counting process with jump arrival intensity λ. The jump sizes εi are
independent and identically double asymmetric exponentially distributed with
density

f(z) = ϕ1

η1
e

− z
η1 1{z≥0} + ϕ2

η2
e

z
η2 1{z<0}.

ϕ1 and ϕ2 are the probabilities for bidirectional jumps, i.e. ϕ1, ϕ2 ≥ 0 and
ϕ1 + ϕ2 = 1. η1 > 0 denotes the average jump size of a positive jump and
η2 > 0 denotes the average (absolute) size of a negative jump, i.e. E[εi] =
ϕ1η1 − ϕ2η2. The process M and the random variables εi (i ≥ 1) are assumed
to be independent such that E [Jt] = E[Mt]E[εi] where E[Mt] = λt.

Negative jumps in J (with average size η2) can be interpreted in terms of
mortality improvements like medical breakthroughs or healthier life styles. The
result is a shift in the modal value of the curve of deaths. Positive jumps (with
average size η1) can be motivated by a biological age limit, natural catastrophes,
wars or pandemics like the bird flu. Unfortunately, processes which are specified
along the lines of Equation (7.4) imply negative mortality rates with positive
probability. However, the probability is very small in the case of the relevant
process parameters and is thus considered as negligible.

Definition 7.2.3 (Model (II)). Model (II) is defined by the dynamics of a
non mean reverting square-root diffusion process (of the Cox-Ingersoll-Ross
141 Kou (2002) introduces a compound Poisson jump-diffusion process with double asymmetric
jump size distribution in the context of option pricing. Bravo (2008) takes this approach to
model mortality rates under bidirectional shocks.
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type), i.e.

dµx+t(t) = κ2µx+t(t)dt + σµ


µx+t(t) dW µ
t , (κ2 > 0, σ µ ≥ 0). (7.5)

In particular, Model (II) ensures non-negativity.

7.2.2 Interest rate model

For the financial setting we define D(t,t̄) as the value at time t of one monetary
unit paid at time t̄ ≥ t, i.e. D(t,t̄) denotes the time t price of a zero coupon
bond with maturity t̄. Recall that r = (rt)0≤t≤T̄ denotes the continuously
compounded spot interest rate process. We assume a complete and arbitrage-
free financial market model under interest rate risk where the dynamics of
the zero coupon bonds D(.,t̄) with maturity t̄ ∈ [0,T̄ ] are lognormal, i.e. the
interest rate dynamics follow a Gaussian Heath, Jarrow and Morton model
(1992), i.e.

dD(t,t̄)
D(t,t̄) = rtdt + σt̄(t)dWt, D(t,t) = 1. (7.6)

W denotes a one-dimensional Brownian Motion independent of W µ. The vola-
tility of the zero coupon bond σt̄ is a deterministic, time-dependent function
with σt̄(t̄) = 0 and satisfies the usual regularity conditions. The zero bond price
process is I-adapted where It can be interpreted as the filtration generated by
W , i.e. It = σ({Ws : s ≤ t}). It holds

D(t,t̄) = E

exp


−I(t,t̄)

 It


= E


1

βt,t̄

 It


. (7.7)

A convenient possibility to analyse and illustrate the effects of the interest rate
volatility is given by the (one-factor) Hull and White model (1990) where the
interest rate dynamics follow

d rt = (θ(t) − a rt) dt + σspot d Wt. (7.8)

The parameter a denotes the speed of mean reversion, θ(t)
a

equals the mean
reversion level and σspot describes the spot rate volatility. The time-dependent
drift θ allows to calibrate the model to the initial interest rate curve which is
currently observed at the market. The simple model choice is convenient for
our purpose. However, the model is not able to capture all possible movements
of the term structure.
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7.3 Calibration

7.3.1 Calibration of the mortality Model (I) and (II)

In order to calibrate Model (I) and Model (II) to mortality data, it is convenient
to consider the (observable) survival probabilities instead of the mortality rates.
Let T −tpx+t(t) denote the probability at time t that an individual who is
(x + t)-aged is still living at T , i.e.

T −tpx+t(t) := E

1{τx>T }

Ft


= E

exp
−

T
t

µx+s(s) ds

Mt

 . (7.9)

W.r.t. the above models, the survival probabilities are given by the closed-form
solution of an ordinary Riccati differential equation.

Lemma 7.3.1. If the mortality dynamics are given as in

(i) Equation (7.4), then it holds

T−tp
(I)
x+t(t) = exp (A1(T − t) + B1(T − t) µx+t(t)) , (7.10)

where

A1(T − t) = λϕ1

η1 − κ1
(−κ1(T − t) + ln [1 − η1 B1(T − t)])

+ λϕ2

η2 + κ1
(κ1(T − t) − ln [1 + η2 B1(T − t)]) − λ(T − t),

and

B1(T − t) = 1
κ1


1 − eκ1(T −t)



for η1, η2 > 0, λ ≥ 0 defined for − 1
η2

< B1(T − t) < 1
η1

.

(ii) Equation (7.5), then it holds

T−tp
(II)
x+t(t) = exp (A2(T − t) + B2(T − t) µx+t(t)) , (7.11)

where

A2(T − t) = 0 and B2(T − t) = 1 − eb µ(T −t)

c µ + d µ eb µ(T −t)
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for

b µ = −


κ2
2 + 2 (σ µ)2, c µ = b µ + κ2

2 , d µ = b µ − κ2

2

and b µ, c µ, d µ < 0, η − c µ − (d µ + η)eb µ(T −t) > 0.

Proof. A proof of the results (i) and (ii) is given in the Appendix B.2 , Subsec-
tions B.2.1 and B.2.2.

Model (I) and Model (II) are now calibrated to the survival function tp45(0) of
the 2006 German period life table originated by the Human Mortality Database
(2009). We use a least-squares minimization w.r.t. the difference between
the model probabilities in terms of Equation (7.10) (Equation (7.11)) and the
probabilities observed in the data. The resulting parameter constellations are
summarised in Subtable (7.1.1) (Subtable (7.1.2)). For example, λ = 0.1 means
that, on average, there is a jump every ten years with expected jump size
E[ε] = 0.1 · 9 · 10−5 − 0.9 · 3 · 10−5 = −1.8 · 10−5. The average jump sizes η1 and
η2 are in line with the related literature.142 This holds also for the very low
estimated volatility σµ (cf. for example Luciano and Vigna (2006) or Dahl and
Møller (2006)). As illustrated in Figure 7.2, both models slightly underestimate
the multi-annual survival probabilities for durations between 20 and 40 years.
On the contrary, they tend to overestimate the curve for survival periods less
than 20 and between 40 and 60 years. The model specific expected residual
lifetimes of a 45-year-old person equal 34.30 years for Model (I) and 34.28
years for Model (II). In both cases, the demographic life expectancy of 33.29
years is exceeded by around one single year. The deviations, especially in the
“rectangularization area” at retirement age, can be reduced by the usage of time
and age dependent parameters. However, a more accurate description of the
data means cutbacks concerning an analytic formula for the survival function.

In the following, we talk about deterministic mortality whenever random
mortality evolution is neglected and only uncertainty concerning the residual
lifetime of the insureds is regarded.

Remark 7.3.2. Analogous to Definition (3.11) the deterministic counterpart

142 For example, Bravo (2008) estimates the values η1 = 2.8 · 10−2 and η2 = 9 · 10−5 for
the survival function of an 65-year-old insured and the 2004 Portuguese projected life table.
Luciano and Vigna (2006) state that negative jumps are adequate to describe mortality
variations. They estimate an average size of η = 3 · 10−5 for the calendar year 1945 and a
retiree aged 65.



150 Chapter 7 - Deferred Life Annuities

Benchmark parameters for the mortality models

α β γ κ1 λ η1 η2 ϕ1 ϕ2

5.89 · 10−4 4.46 · 10−4 1.0319 0.0957 0.1 9 · 10−5 3 · 10−5 0.1 0.9
(7.1.1): Mortality Model (I)

α β γ κ2 σµ

5.89 · 10−4 4.46 · 10−4 1.0319 0.0946 10−4

(7.1.2): Mortality Model (II)

Table 7.1: Benchmark parameters for the mortality Models (I) and (II) based on
survival data from the Human Mortality Database (2009).
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Figure 7.2: Survival functions and residuals for the mortality
Models (I) and (II) based on survival data from the Human Mortality
Database (2009). The figure was first published in Mahayni and
Steuten (2013).

of Model (I) is defined by

µx+t =
− d

dt tpx(0)
tpx(0) = − d

dt
ln (tpx(0)) = − d

dt
ln (exp (A1(t) + µx(0)B1(t)))

= − d

dt
A1(t) − µx(0) d

dt
B1(t)

= −λ


ϕ1

1 − η1
κ1

(1 − eκ1t) + ϕ2

1 + η2
κ1

(1 − eκ1t) − 1


+ µx(0) eκ1t

where the force of mortality or hazard function µx+t denotes the instantaneous
mortality rate at age x + t. The deterministic counterpart of Model (II) is

µx+t = − d

dt
A2(t) − µx(0) d

dt
B2(t) = 4µx(0)(b µ)2 eb µt

((κ2 + b µ)(b µ − κ2)eb µt)2 .

The deterministic counterpart formulas are based on the closed form solutions
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of Lemma 7.3.1 and standard differential calculus.

7.3.2 Calibration of the interest rate model

The assumption that the interest rate dynamics are given by Equation (7.8)
together with the bond pricing Equation (7.7) determines the diffusion coefficient
σt̄(t) of the bond dynamics (7.6), i.e. σt̄(t) = σspot

a


1 − e−a(t̄−t)


. The Hull-

White zero coupon bond price at time t with maturity t̄ is given by

D(t,t̄) = exp

A(t,t̄) − B(t,t̄)rt


where (7.12)

A(t,t̄) = ln


D(0,t̄)
D(0,t)


+ B(t,t̄) f(0,t) − σ2

spot

4a


B(t,t̄)

2 
1 − e−2at


, (7.13)

B(t,t̄) = 1
a


1 − e−a(t̄−t)


. (7.14)

f(0,t) = −∂ ln(D(0,t))
∂t

denotes the current instantaneous forward rate prevailing
at t. Notice that Equations (7.12)–(7.14) define the zero bond price implied by
the Hull White model. The model parameters are chosen such that the model
prices given by Equation (7.12) coincide with the ones observed at the market,
i.e. D(0,t̄) = DM(0,t̄). The superscript M indicates the reference to market
prices (rates respectively). Notice that D(0,t̄) = DM(0,t̄) is easily achieved by
plugging the market prices DM and the forward rates fM into the right hand
side of Equation (7.13). Hereby, fitting the initial term structure is possible for
arbitrary parameters a and σspot. The time-dependent (interest rate) model
parameter θ(t) is then given as in Table 7.3. We obtain DM(0,t̄) as follows.
We use financial market data in the form of current Euro London Interbank
Offered Rate (LIBOR) and swap rates to calculate the short-term LIBOR and
bootstrapped swap discount factors. The joined zero coupon or yield curve
DM(0,t̄) is interpolated and extrapolated logarithmically for maturities t̄ > 30.
Then, the forward rate function fM(0,t̄) = −∂ ln(DM (0,t̄))

∂t̄
is calculated. The

resulting term structure is presented in Figure 7.3.

The calibration procedure is completed by an estimation of the speed of mean
reversion parameter a and the spot rate volatility σspot using implied at-the-
money143 European forward swaption volatilities. More precisely, we minimize
the associated sum of squared errors w.r.t. the at-the-money swaption straddle
prices. The market prices are given by the Black formula and the model prices
by the Hull-White formula. The formula are, for example, given in Brigo
and Mercurio (2007). The calibration results are illustrated in Figure 7.4.
For the sake of completeness, the market straddle prices (implied volatilities

143 A swaption is called at-the-money if its strike equals the forward par swap rates.
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respectively) and the calibration errors are given in Table 7.2. Similar to the
Swaption straddle implied volatility quotes and calibration results

t e n o r

1Y 2Y 3Y 4Y 5Y 6Y 7Y 8Y 9Y 10Y

e 1Y 60.5 (64.%) 44.3 (39.%) 38.3 (14.%) 34.1 (0.%) 31.3 (-10.%) 29.2 (-17.%) 27.6 (-22.%) 26.5 (-26.%) 25.7 (-29.%) 24.7 (-31.%)

x 2Y 43.5 (8.%) 34.2 (5.%) 30.8 (-5.%) 28.6 (-13.%) 27.1 (-19.%) 25.9 (-24.%) 25.0 (-27.%) 24.3 (-30.%) 23.7 (-32.%) 23.3 (-34.%)

p 3Y 32.4 (-7.%) 27.4 (-7.%) 25.6 (-13.%) 24.3 (-18.%) 23.4 (-22.%) 22.8 (-26.%) 22.3 (-29.%) 21.8 (-30.%) 21.4 (-32.%) 21.2 (-34.%)

i 4Y 26.2 (-13.%) 23.5 (-14.%) 22.4 (-18.%) 21.5 (-21.%) 21.0 (-24.%) 20.5 (-26.%) 20.2 (-28.%) 19.9 (-30.%) 19.7 (-32.%) 19.6 (-33.%)

r 5Y 22.6 (-16.%) 20.8 (-16.%) 20.2 (-20.%) 19.8 (-23.%) 19.4 (-25.%) 19.1 (-27.%) 18.9 (-28.%) 18.7 (-30.%) 18.6 (-31.%) 18.5 (-32.%)

y 7Y 18.4 (-17.%) 17.8 (-18.%) 17.6 (-20.%) 17.4 (-22.%) 17.3 (-24.%) 17.1 (-25.%) 17.1 (-27.%) 17.1 (-28.%) 17.2 (-30.%) 17.3 (-31.%)

10Y 15.7 (-13.%) 15.4 (-13.%) 15.6 (-16.%) 15.7 (-18.%) 15.9 (-21.%) 16.0 (-23.%) 16.2 (-25.%) 16.4 (-27.%) 16.7 (-29.%) 16.9 (-31.%)

Table 7.2: Euro at-the-money swaption straddle implied volatility quotes taken
from Thomson Reuters (2010) with date 14/06/10. The percentage differences of the
model and the market swaption volatilities are given in brackets.

results of Park (2004) we observe quite stable volatility estimators. In contrast,
the speed of mean reversion parameter is sensitive to changes in the market
data as well as in the start values for the root search algorithm. In order to
control the long run mean and the negative spot rate behaviour, we restrict the
optimization by means of reasonable constraints. Inter alia, we want to ensure
that the forward rate and expected interest rate curve exhibit similar long term
shapes which is illustrated in Figure 7.5. The mean reversion level θ(t)

a
ensures

that the model implied volatility declines with maturity. In practice, however,
swaption volatility surfaces often show a characteristic hump between short
and medium maturity terms leading to characteristic deviations144 around this
region. The estimated model parameters are summarised in Table 7.3.

Market instantaneous forward rates and discount factors

1 10 20 30 40 50 60

0.2

0.4

0.6

0.8

1.

0.01

0.02

0.03

0.04

0.05

DM H0,tL f M H0,tL

logarithmic extrapolation

DMH0,tL market values

logarithmic extrapolation

f MH0,tL market values

Figure 7.3: Yield curve and term structure of the market discount factors
(valuation date 16/06/10) stripped from market LIBOR and Euro swap rates
from the CLP Structured Finance (2010) and the Financial Times (2010). The
figure was first published in Mahayni and Steuten (2013).

It is worth mentioning that, in the case of a sensitivity analysis in Section 7.4
we vary with respect to the spot rate volatility σspot, the adjustment in θ(t)
144 Relief is provided by introducing a time-varying volatility σspot(t) to get a better trade-off
between application and model stationarity.
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Swaption price surface and implied volatility surface

(7.4.1) Swaption prices (7.4.2) Implied volatilities

Figure 7.4: At-the-money European swaption price surface and implied volatility
surface for different swap expiries and tenors. The data is taken from Reuters / ICAP:
VCAP1 on 16/06/10. The figure was first published in Mahayni and Steuten (2013).

Long run behaviour of the spot rate process

Figure 7.5: Long run behaviour of the spot rate process (7.8) using
the (estimated) parameters given in Table 7.3. The figure was first
published in Mahayni and Steuten (2013).

Benchmark parameters for the Hull-White model

rM
0 = fM(0,0) a σspot θ(t)

0.0028 0.0709 0.0094 ∂fM (0,t)
∂t

+ a fM(0,t) + σ2
spot

2a
(1 − e−2at)

Table 7.3: Benchmark parameters for the Hull-White interest rate process.
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still ensures consistency with the current interest rate structure. However,
the implied swaption volatilities may be different. σspot → 0 is interpreted
as the deterministic counterpart of the model given by Equation (7.8), i.e.
rt = f M(0,t) for all t ∈ [0,T̄ ]. For simplicity, we use the notation σspot = 0
instead of σspot → 0.

7.4 Variance analysis

7.4.1 Distribution of the portfolio values

We consider a cohort which is currently aged x = 45, a deferment period of
T = 20 years and an contract expiration after T̄ = 75 years. The advanced
regular annuity payments amount to c = 1. The periodic premiums π are
given by the principle of equivalence which implies that at time t = 0 the
discounted benefits and liabilities coincide in expectation, i.e. E[ZΠ

0 ] = E[XΠ
0 ].

For t ∈ {0, . . . , T − 1}, the expected discounted portfolio values are given by

E[XΠ
t |Ft] = E


π

T −1
i=0

Ni

βt,i

Ft


= π

t
i=0

Ni βi,t + π Nt

T −1
i=t+1

D(t,i) i−tpx+t(t),

(7.15)

E[ZΠ
t |Ft] = E

c
T̄ −1
i=T

Ni

βt,i

Ft

 = cNt

T̄ −1
i=T

D(t,i) i−tpx+t(t). (7.16)

In particular, for t = 0 the expected discounted portfolio values are specified in
terms of the current zero bond prices D(0,t̄) (t̄ = 1,..., T̄ −1). Further moments
of the present values depend on the assumptions which are posed on the zero
bond volatilities (the spot rate volatilities respectively). Since all mortality and
interest rate models are calibrated to the same data, the periodic premium π

varies only slightly due to the calibration errors immanent w.r.t. the mortality
data. The mortality Model (I) gives π = 0.349 and Mortality Model (II) implies
π = 0.348.

First, we consider the effect of different interest rate volatilities σspot on the
distribution of the present portfolio premium income value XΠ

0 , the present
portfolio benefit value ZΠ

0 and the present portfolio underwriting loss ZΠ
0 −XΠ

0 .
Figure 7.6 illustrates the densities which are approximated by Monte Carlo
simulations. The arithmetic means, sample variances145 and coefficients of

145 Notice that in the following the expectation is given in analytic closed-form, cf. Equations
(7.15) and (7.16). The variance has a semi-analytic solution since the calculation of higher
moments of the residual lifetime requires Monte Carlo approximation.



Section 7.4 - Variance analysis 155

variation (which are marked with a hat) are summarised in Table 7.4. Due to the
model calibration, the expected discounted values are, except for the estimation
inaccuracies, unaffected by changes in the spot rate volatility. Intuitively, it
is clear that a “full stochastic model setup” exhibits much more deviation
than the deterministic interest rate case (σspot = 0). From Subfigure (7.6.1)
we observe that the distribution of the single policy loss is left skewed for the
deterministic counterpart model (σspot = 0) but it is right skewed if the spot
rate is stochastic. However, this effect is explained by a small cohort size (see
Subfigure (7.6.2)). Central limit arguments justify that the risk profile can be
measured in terms of the variance (per policy) if the cohort size is sufficiently
large.

Densities of the discounted portfolio loss value

(7.6.1) Cohort size N0 = 1 (7.6.2) Cohort size N0 = 1000

Figure 7.6: Probability density of the discounted portfolio loss value ZΠ
0 − XΠ

0
(mortality Model (I)). The histograms are based on 2 · 104 drawn samples. The solid
lines represent the Gaussian kernel density estimators. The figure was first published
in Mahayni and Steuten (2013).

Moments of the portfolio values and the portfolio loss

mortality Model (I)
σspot Ê[XΠ

0 ] V̂ ar[XΠ
0 ] ĈV [XΠ

0 ] Ê[ZΠ
0 ] V̂ ar[ZΠ

0 ] ĈV [ZΠ
0 ] Ê[ZΠ

0 − XΠ
0 ] V̂ ar[ZΠ

0 − XΠ
0 ]

0.0000 4.94 (4937) 0.45 (452) 0.14 (0.00) 4.96 (4973) 8.11 (9421) 0.57 (0.02) 0.03 (36) 6.68 (7863)
0.0094 4.98 (4973) 0.70 (244463) 0.17 (0.10) 4.85 (4835) 14.86 (4.97 · 106) 0.79 (0.46) -0.13 (−137) 11.93 (3.52 · 106)
0.0200 4.97 (4971) 1.69 (1.19 · 106) 0.26 (0.22) 4.78 (4838) 53.23 (3.53 · 107) 1.53 (1.23) -0.19 (−133.) 44.03 (2.76 · 107)

mortality Model (II)
σspot Ê[XΠ

0 ] V̂ ar[XΠ
0 ] ĈV [XΠ

0 ] Ê[ZΠ
0 ] V̂ ar[ZΠ

0 ] ĈV [ZΠ
0 ] Ê[ZΠ

0 − XΠ
0 ] V̂ ar[ZΠ

0 − XΠ
0 ]

0.0000 4.93 (4931) 0.45 (452) 0.14 (0.00) 4.97 (4967) 8.07 (9817) 0.57 (0.02) 0.04 (36) 6.65 (8232)
0.0094 4.97 (4968) 0.70 (245903) 0.17 (0.10) 4.85 (4831) 15.06 (4.96 · 106) 0.80 (0.46) -0.12 (−137) 12.08 (3.50 · 106)
0.0200 4.97 (4969) 1.71 (1.19 · 106) 0.26 (0.22) 4.84 (4821) 69.05 (3.42 · 107) 1.72 (1.21) -0.12 (−148) 59.07 (2.65 · 107)

Table 7.4: Moments of the portfolio values for different spot rate volatilities w.r.t.
an individual aged x = 45, a deferment period T = 20, a contract duration T̄ = 75
and a cohort size N0 = 1. The values implied by a cohort size of N0 = 1000 are given
in brackets. The results are based on 105 simulation runs.
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7.4.2 Variance decomposition

The law of large numbers is the core of the insurance principle. In an ideal world
where the insurance company faces independent and homogeneous policies, the
distribution of the liabilities per policy becomes more stable if the insurance
cohort increases. Without the introduction of stochastic mortality rates, the
insureds outliving their expected lifetime are matched by the ones who do not
live as long as expected. In this case, the variance per policy vanishes for a
sufficiently large cohort size. In contrast, the risk pooling breaks down if one
takes into account stochastic mortality. Assuming that the law of the residual
lifetime is stochastic implies a dependence structure. While it is still assumed
that the survival of one insured does not influence the survival probability of
another insured, a change of the mortality law effects the survival probabilities
of the whole insurance cohort at the same time. A variance decomposition
is a convenient way to quantify this effect. The pooling part is described by
the expected conditional variance, i.e. the variance which is associated with
a particular mortality law. The remaining variance part is then caused by
the dispersion (variance) of the expected values due to the different (possible)
mortality laws. This gives the non-pooling risk. To be more precise, the above
is achieved by conditioning on the mortality information which prevails at the
terminal date T̄ . It includes the mortality laws.

In general, the variance decomposition can be based on different information sets
and/or random variables. Recall that F = (Ft)t∈[0,T̄ ] is the overall information
structure. The information Ft contains the information about the cohort sizes,
the mortality rates and the interest rates up to time t. The subfiltrations It (Mt)
refer to the interest rate (mortality rate) information until time t, only. After T̄

years, when all annuities cease to exist, MT̄ contains the (whole) information
about the mortality rate evolution but not the numbers of cohort sizes Nt for
t = 0, . . . T̄ (or the interest rate information). Thus, in the case of deterministic
interest rates, the variance decomposition from the conditioning on MT̄ allows
to split the overall variance into a pooling (p) and a non-pooling (np) part
which is due to stochastic mortality. However, in the case of stochastic interest
rates, the interpretation of the variance decomposition is more demanding.
There is also a non-pooling risk part stemming from the interest rate dynamics.
Since the interest rate model is complete, i.e. the interest risk is a traded
risk, we adjust for this effect by conditioning on the combined information
consisting of the mortality and interest rate information GT̄ := IT̄ ∨ MT̄ . For
t ∈ {0, . . . , T̄ −1} and a portfolio value PVt ∈ {XΠ

t ,ZΠ
t ,ZΠ

t −XΠ
t }, the variance
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decomposition is

V ar [PVt| Ft] = E [V ar [ PVt| GT̄ ]| Ft] + V ar [ E [PVt| GT̄ ]| Ft] . (7.17)

Recall that a pooling risk is defined by the part of the per policy variance which
vanishes if the cohort size becomes large, i.e. if for some σ-algebra A it holds

lim
Nt→∞

E

V ar


PVt

Nt

AFt


= 0.

In the case of stochastic mortality and interest rates, the above is true if
(and only if) we use A = GT̄ , i.e. if we condition on both the mortality and
the interest rate information. We use the notation V arp

t to denote the first
summand of the right hand side of Equation (7.17) and V arnp

t for the second
one. Notice that for t = 0 we can omit F0 such that

V arp
0 = E


V ar


PV0

N0

GT̄


, V arnp

0 = V ar

E

PV0

N0

GT̄


. (7.18)

Remark 7.4.1 (Numerical determination of pooling and non-pooling variance).
The variance parts are approximated by nested Monte Carlo simulations.
The first and second moments are approximated by the average values of the
simulation. The conditioning on the (sub-) information about the mortality and
the interest rates implies that we need to simulate the interest and the mortality
rate path in an outer Monte Carlo simulation. For each simulated mortality
and interest rate path, we also need an inner simulation. The interest rate
path immediately gives the discount factor which is needed. The present value
is also based on the number of livings at each subsequent annuity (reference)
date. These numbers are simulated according to the mortality laws (mortality
rate path) implied by the outer simulation, cf. Equation (7.3).

In Table 7.5 we compare the variance (per policy) implied by the mortality
Model (I) and (II) and their deterministic counterpart models. Thus, one
can argue that we compare the reality in the sense of the mortality Model (I)
and (II) with the simplified deterministic setup. Obviously, the pooling risk
decreases in the cohort size while the non-pooling variance per policy increases.
Observe that a cohort size of N0 = 2 · 104 is large enough to pool the risk. Here,
the remaining variance is exclusively given in terms of the non-pooling variance.
The risk is substantial. According to Table 7.5, Model (I) gives a per policy
variance of 14.13. A similar result is true for Model (II). However, the largest
part of the non-pooling risk stems from the interest rate side. Compared to the
stochastic mortality setup, the deterministic mortality counterpart still implies
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a non-pooling variance of 13.53, i.e. 96% of the non-pooling risk is due to the
stochastic interest rates. The interest rate effect is further emphasised in Table

Influence of the cohort size on the variance (per policy)

mortality Model (I) mortality Model (II)
N0 V ar


ZΠ

0 −XΠ
0

N0


V arp

0 [%] V arnp
0 [%] V ar


ZΠ

0 −XΠ
0

N0


V arp

0 [%] V arnp
0 [%]

1 27.24 (27.24) 48.13 (50.34) 51.87 (49.66) 27.21 (27.21) 47.86 (50.41) 52.14 (49.59)
10 15.44 (14.90) 8.49 (9.20) 91.51 (90.80) 15.49 (14.86) 8.41 (9.23) 91.59 (90.77)
102 14.26 (13.66) 0.92 (1.00) 99.08 (99.00) 14.32 (13.63) 0.91 (1.01) 99.09 (98.99)
103 14.14 (13.54) 0.09 (0.10) 99.91 (99.90) 14.20 (13.51) 0.09 (0.10) 99.91 (99.90)
104 14.13 (13.53) 0.01 (0.01) 99.99 (99.99) 14.19 (13.49) 0.01 (0.01) 99.99 (99.99)
105 14.13 (13.53) 0.00 (0.00) 100.00 (100.00) 14.19 (13.49) 0.00 (0.00) 100.00 (100.00)
106 14.13 (13.53) 0.00 (0.00) 100.00 (100.00) 14.19 (13.49) 0.00 (0.00) 100.00 (100.00)

Table 7.5: Influence of the cohort size on the variance (per policy) and variance
decomposition w.r.t. an individual aged x = 45 and a deferment period of T = 20
years. The simulations are based on 5 · 105 iterations. The values implied by the
deterministic counterpart mortality models are given in brackets.

7.6 which gives the non-pooling risk for varying spot rate volatilities. Here,
the cohort size N0 = 2 · 104 is large enough such that the pooling variance
part is close to zero. Model (I) and (II) are combined with stochastic interest
rate models which differ146 w.r.t. their spot rate volatility σspot. The results
are very similar in the case of mortality Model (I) and (II). In both cases,
the non-pooling variance per policy increases exponentially with increasing
interest rate volatility. We further study the effect of postponing the deferment
period T and thus a reduction of the decumulation phase (cf. Table 7.7).
The non-pooling variance per policy therefore decreases almost linearly with
increasing deferment period. The following illustrations 7.8 and 7.9 address the
issue of dividing the non-pooling variance per policy into components regarding
both the systematic interest and mortality rate risk.

7.4.3 Detailed variance decomposition

This subsection concerns the question how to divide the non-pooling variance
further with respect to the interest and the mortality risk. Following the
approach of Christiansen and Helwich (2008), we consider a causation-oriented
variance decomposition of the portfolio value PVt into

PVt = E [PVt| GT̄ ] + (PVt − E [PVt| GT̄ ]) (7.19)

146 Recall that, according to Table 7.6, only σspot = 0.0094 is consistent with the swaption
straddle volatilities. However, for varying σspot, we nevertheless calibrate to the same initial
term structure of interest, i.e. we use the function θ(t) as in Table 7.3. Thus, we still have
the same expected values, independent of the choice of σspot.
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Influence of the interest rate volatility on the variance (per policy)

mortality Model (I) mortality Model (II)
σspot V ar


ZΠ

0 −XΠ
0

N0


V arp

0 [%] V arnp
0 [%] V ar


ZΠ

0 −XΠ
0

N0


V arp

0 [%] V arnp
0 [%]

0.0000 0.38 (0.00) 0.11 (100.00) 99.89 (0.00) 0.44 (0.00) 0.09 (100.00) 99.91 (0.00)
0.0050 3.70 (3.27) 0.01 (0.01) 99.99 (99.99) 3.76 (3.26) 0.01 (0.01) 99.99 (99.99)
0.0094 14.13 (13.53) 0.00 (0.01) 100.00 (99.99) 14.19 (13.49) 0.00 (0.01) 100.00 (99.99)
0.0150 52.77 (51.50) 0.00 (0.00) 100.00 (100.00) 52.83 (51.37) 0.00 (0.00) 100.00 (100.00)
0.0200 166.60 (163.13) 0.00 (0.00) 100.00 (100.00) 166.65 (162.70) 0.00 (0.00) 100.00 (100.00)

Table 7.6: Influence of the interest rate volatility on the variance (per policy) and
variance decomposition w.r.t. an individual aged x = 45, a deferment period of
T = 20 years and cohort size N0 = 20000. The simulations are based on 5 · 105

iterations. The values implied by the deterministic counterpart mortality models are
given in brackets.

Influence of the deferment period on the variance (per policy)

mortality Model (I) mortality Model (II)
T V ar


ZΠ

0 −XΠ
0

N0


V arp

0 [%] V arnp
0 [%] V ar


ZΠ

0 −XΠ
0

N0


V arp

0 [%] V arnp
0 [%]

15 19.09 (18.27) 0.00 (0.00) 100.00 (100.00) 19.18 (18.23) 0.00 (0.00) 100.00 (100.00)
20 14.13 (13.53) 0.00 (0.01) 100.00 (99.99) 14.19 (13.49) 0.00 (0.01) 100.00 (99.99)
25 8.62 (8.21) 0.01 (0.01) 99.99 (99.99) 8.65 (8.18) 0.01 (0.01) 99.99 (99.99)
30 4.16 (3.93) 0.01 (0.01) 99.99 (99.99) 4.18 (3.91) 0.01 (0.01) 99.99 (99.99)

Table 7.7: Influence of the deferment period on the variance (per policy) and variance
decomposition w.r.t. an individual aged x = 45 and cohort size N0 = 20000. The
simulations are based on 5 · 105 iterations. The values implied by the deterministic
counterpart mortality models are given in brackets.

where the first addend refers to the interest risk and systematic mortality risk
and the second addend determines the unsystematic mortality risk. Taking the
expectation on both sides of Equation (7.19) conditioned on information GT̄

yields

E [PVt| GT̄ ] = E [PVt| MT̄ ] + (E [PVt| GT̄ ] − E [PVt| MT̄ ]) . (7.20)

By means of this separation we isolate the systematic mortality risk and the
interest rate risk in the bracket term. Taking the variance on both sides of
(7.19) and using Expression (7.20) for the first addend we obtain a variance
decomposition

V ar [PVt| Ft] = V ar [E [PVt| MT̄ ]| Ft] + E [V ar [E [PVt| GT̄ ]| MT̄ ]| Ft]
+ E [V ar [PVt| GT̄ ]| Ft] =: V arsmr

t + V arsir
t + V arumr

t .

In doing so, we separate the risk components for systematic mortality risk
V arsm, interest risk V arsir and unsystematic mortality risk V arumr. In this
context the first two terms describe non-pooling risk whereas the third part
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equals the pooling variance part V arp. Results for different cohort sizes and spot
rate volatilities are listened in Tables 7.8 and 7.9. In the case of approximative
diversification (N0 = 2 · 104) the absolute values for both systematic mortality
(smr) and interest rate risk (sir) per policy exhibit absolute positive limits 0.38
and 13.75 for Model (I) as well as 0.44 and 13.75 for Model (II). Therefore, the
systematic mortality risk part constitutes only 3% of the systematic financial
risk which is subjected to considerably stronger fluctuations during the contract
duration. This fact has already been mentioned in the former Subsection 7.4.2.
From Table 7.9 we observe that for increasing interest rate diffusion systematic
mortality and interest risk develop symmetrically inclined in relation to each
other. Thus, the systematic deviations in the mortality rate evolution have
a visible partial impact for volatilities σspot < 0.0050, i.e. for “calm” interest
rate markets with particularly low volatility. Otherwise, the financial market
risk constitutes the determining factor. The goodness of the approximation is
measured by the standard errors implied in the variance approximation which
are at least less than 2 · 10−6 and therefore negligible small.

Influence of the cohort size on the variance (per policy) parts

mortality Model (I) mortality Model (II)
N0 V ar[ZΠ

0 − XΠ
0 ] V arumr

0 [%] V arsir
0 [%] V arsmr

0 [%] V ar[ZΠ
0 − XΠ

0 ] V arumr
0 [%] V arsir

0 [%] V arsmr
0 [%]

1 27.24 (27.24) 48.13 (50.34) 50.48 (49.66) 1.40 (0.00) 27.21 (27.21) 47.86 (50.41) 50.52 (49.59) 1.62 (0.00)
10 15.44 (14.90) 8.49 (9.20) 89.04 (90.80) 2.47 (0.00) 15.49 (14.86) 8.41 (9.23) 88.75 (90.77) 2.85 (0.00)
102 14.26 (13.66) 0.92 (1.00) 96.41 (99.00) 2.67 (0.00) 14.32 (13.63) 0.91 (1.01) 96.01 (98.99) 3.08 (0.00)
103 14.14 (13.54) 0.09 (0.10) 97.21 (99.90) 2.69 (0.00) 14.20 (13.51) 0.09 (0.10) 96.80 (99.90) 3.10 (0.00)
104 14.13 (13.53) 0.01 (0.01) 97.29 (99.99) 2.70 (0.00) 14.19 (13.49) 0.01 (0.01) 96.88 (99.99) 3.11 (0.00)
105 14.13 (13.53) 0.00 (0.00) 97.30 (100.00) 2.70 (0.00) 14.19 (13.49) 0.00 (0.00) 96.89 (100.00) 3.11 (0.00)
106 14.13 (13.53) 0.00 (0.00) 97.30 (100.00) 2.70 (0.00) 14.19 (13.49) 0.00 (0.00) 96.89 (100.00) 3.11 (0.00)

Table 7.8: Influence of the cohort size on the different (un)systematic variance (per
policy) parts w.r.t. an individual aged x = 45, a deferment period T = 20. The
simulations are based on 5 · 105 iterations. The values implied by the deterministic
counterpart mortality models are given in brackets.

Influence of the spot rate volatility on the variance (per policy) parts

mortality Model (I) mortality Model (II)
σspot V ar[ZΠ

0 − XΠ
0 ] V arumr

0 [%] V arsir
0 [%] V arsmr

0 [%] V ar[ZΠ
0 − XΠ

0 ] V arumr
0 [%] V arsir

0 [%] V arsmr
0 [%]

0.0000 0.38 (0.00) 0.11 (100.00) 0.00 (0.00) 99.89 (0.00) 0.44 (0.00) 0.09 (100.00) 0.00 (0.00) 99.91 (0.00)
0.0050 3.70 (3.27) 0.01 (0.01) 89.69 (99.99) 10.30 (0.00) 3.76 (3.26) 0.01 (0.01) 88.26 (99.99) 11.73 (0.00)
0.0094 14.13 (13.53) 0.00 (0.01) 97.30 (99.99) 2.70 (0.00) 14.19 (13.49) 0.00 (0.01) 96.89 (99.99) 3.11 (0.00)
0.0150 52.77 (51.50) 0.00 (0.00) 99.28 (100.00) 0.72 (0.00) 52.83 (51.37) 0.00 (0.00) 99.16 (100.00) 0.83 (0.00)
0.0200 166.60 (163.13) 0.00 (0.00) 99.77 (100.00) 0.23 (0.00) 166.65 (162.70) 0.00 (0.00) 99.73 (100.00) 0.26 (0.00)

Table 7.9: Influence of the spot rate volatility on the different (un)systematic
variance (per policy) parts w.r.t. an individual aged x = 45, a deferment period
T = 20 and cohort size N0 = 20000. The simulations are based on 5 · 105 iterations.
The values implied by the deterministic counterpart mortality models are given in
brackets.
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7.5 Pricing effects

7.5.1 Pricing principles

Now, we consider three different pricing principles to determine the periodic
premium π. Namely, the principle of equivalence or net premium (NP) principle,
the zero expected utility or indifference principle (IP) and the quantile principle
(QP).

The principle of equivalence

According to the principle of equivalence, the periodic premiums are determined
such that the present value of the expected discounted benefits and the present
value of the expected discounted contributions coincide, i.e.

NP =

π ∈ R+

E 
ZΠ

0


= E


XΠ

0 (π)


.

Notice that the principle of equivalence is consistent with the deterministic
mortality counterpart models, only. In this case, the mortality risk is a pooling
risk and the remaining interest rate risk is a traded risk. In general, this
premium principle serves only as a benchmark for a premium principle which
also takes into account for non-pooling and non-tradeable risk. The principle
of equivalence defines a lower bound for the premium. In other words, any
meaningful pricing principle includes a premium loading on the equivalence
premium.

The expected-utility principle

One possibility to address the pricing of risks which can neither be diversified
nor traded is based on (expected) utility. In the above context, a suitable
approach is to compare the expected utility in the case of underwriting and
not underwriting an annuity cohort. The indifference premium is indirectly
defined by the condition

IP = inf

π ∈ R+ | E [u (−LT̄ (π))] = E


u

S0 β0,T̄


(7.21)

where LT̄ (π) denotes the insurance loss at time T̄ , u denotes a non-decreasing,
concave utility function147 describing the insurers risk aversion behaviour and S0

147 A common choice for the utility function is exponential utility due to its simplicity. The
indifference pricing approach under exponential utility was already applied by Ludkovski
and Young (2008) and Hainant and Devolder (2008) for pure endowment and (temporary)
life annuity contracts.
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denotes some starting capital. Consequently, the indifference premium defines
an individual periodic premium at which the insurer is indifferent between
selling or not selling a police.

Definition 7.5.1 (Indifference pricing under DHARA utility). Let K∗ denote
the terminal wealth of the annuity provider. Along the lines of Pelsser (2005),
we assume that the insurers final utility is characterised by a double hyperbolic
absolute risk aversion (DHARA) function 148 with

u(K∗) =

 − ρ2
ρ1−1


1 + K∗

ρ2

1−ρ1 for K∗ ≥ 0
− ρ2

ρ1+1


1 − K∗

ρ2

1+ρ1 − 2ρ2
ρ2

1−1 for K∗ < 0
and ρ1, ρ2 > 0.

In particular, the Arrow-Pratt measure of absolute risk aversion149 A is given
by

A(K∗) := −u′′(K∗)
u′(K∗) =


ρ1

ρ2+K∗ for K∗ ≥ 0
ρ1

ρ2−K∗ for K∗ < 0

 > 0.

There are a two parameters ρ1 and ρ2 denoting adjustments of the utility
function in the ordinate and abscissa respectively.

As an alternative to the DHARA utility function actuarial literature commonly
applies a utility function out of the constant absolute risk aversion (CARA)
class although it might be not very realistic for a market-consistent valuation
of insurance liabilities.

Definition 7.5.2 (Indifference pricing under CARA utility). The insurers final
utility is characterised by the exponential utility function

u(K∗) = −1
ρ

exp (−ρK∗)

which has a simple functional form as it depends on the Arrow-Pratt coefficient
of the absolute risk aversion A(K∗) = ρ only. Thus, the value of the insurance
contract is independent of the initial wealth of the pension provider and the
effect of risk aversion on the annuity price can be isolated. Under the assumption
148 According to Pelsser (2005), a market-consistent valuation of insurance liabilities demands
a utility function class fulfilling certain requirements:
• The probability of negative wealth respectively positive loss at maturity is small but

positive. Therefore, we require 0 < limK∗→±0 A(K∗) = ρ1
ρ2

< ∞.
• The insurer aims at avoiding underwriting loss such that risk aversion increases finitely

for terminal wealth K∗ < 0 approaching zero.
• The risk aversion decreases asymptotically for K∗ > 0 with limK∗→∞ inf A(K∗) = 0.
149 The Arrow-Pratt measure is named after the economists Pratt (1964) and Arrow (1965).
For a terminal wealth K∗ the partial derivatives u′(K∗) and u′′(K∗) denote the marginal
utility and the curvature of the utility function respectively.
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that S0 = 0, i.e. no additional solvency loading to buffer a shortfall in the
liability payment, the premium principle (7.21) is identical to the principle of
zero utility.

An illustration of the constant relative risk aversion (CRRA), the CARA
and DHARA utility functions is given in Figure 7.7. The CARA and CRRA
utility frameworks are less suitable since they fail to meet all requirements
for a market-consistent valuation of insurance liabilities. Basically, a DHARA
utility function combines the characteristics of negative wealth from the CARA
functions (cf. Subfigure (7.7.1)) together with decreasing absolute risk aversion
behaviour for a positive wealth (cf. Subfigure (7.7.2)) from the CRRA class.

CARA, CRRA and DHARA utility functions and associate absolute
risk aversion
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K
*
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(7.7.1) Utility functions
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(7.7.2) Absolute risk aversion

Figure 7.7: CARA, CRRA and DHARA utility functions with associated absolute
risk aversion. The figure was first published in Mahayni and Steuten (2013).

The quantile premium principle

The third principle, the quantile principle, is closely linked to the topic of
solvency150 which is discussed in Section 7.6. Formally, the quantile premium
(QP) satisfies the condition that the probability of an underwriting loss (gain)
is less than ε (greater than 1 − ε), i.e.

QP = inf{π ∈ R+ | P (LT̄ (π) ≤ 0) ≥ 1 − ϵ}.

For example, we consider quantiles of order 1 − ε = 0.95 and 1 − ε = 0.99.

150 Ballotta et al. (2006) state that the quantile approach was considered by the European
Commission to be incorporated for the Solvency II agenda. A discussion of solvency aspects
is given in Section 7.6.



164 Chapter 7 - Deferred Life Annuities

7.5.2 Different hedging scenarios

Before we can give some illustration, we need an assumption on the investment
policy. In a first instance, we propose two benchmark hedging scenarios in
which the annuity provider follows a trading strategy in zero bonds given by
a F-adapted process φ =


φ

(i)
t


i=T,..., T̄ −1
t∈Φ

. The set Φ denotes discrete trading

times at which φ
(i)
t zero bonds D(t,i) are acquired.

Investment in the stochastic bank account

The first strategy simply states that the annuity provider holds only cash
positions and refrains from hedging his liabilities, i.e. for a discrete trading
strategy φ

(i)
0 = 0 with payoff dates i = T,..., T̄ − 1 the terminal accumulated

costs of the (initial) hedge at contract inception is

Cini
T̄ (φ) :=


T̄ −1
i=T

φ
(i)
0 D(0,i)


β0,T̄ = 0.

To be more precisely, its initial capital and premium income are invested or
rolled over according to the (stochastic) bank account (7.1). A straightforward
consequence of leaving the future pension payments unhedged lies in a high
uncertainty about the total duplication costs at maturity T̄

Cdup

T̄
(φ) :=

T̄ −1
i=T


cNi − φ

(i)
0


βi,T̄ = c

T̄ −1
i=T

Ni βi,T̄ .

For this reason, we call the resulting loss a roll over loss LRO, i.e.

LRO
T̄ : = Cdup

T̄
(φ) − S0 β0,T̄ − π

T −1
i=0

Ni βi,T̄ (7.22)

where S0 denotes some starting capital. In this section, we set S0 = 0.

Investment in a static zero bond hedge strategy

In contrast, we consider an annuity provider who relies on a “as good as
possible” hedge in zero bonds according to the expected number of retirees
during the decumulation phase. At contract inception the annuity provider
takes the positions φ

(i)
0 = cN0 · ipx(0) in the zero bonds D(0,i) with maturities

i = T,..., T̄ − 1. The time-T̄ value of the (initial) hedging strategy is therefore

Cini
T̄ (φ) =


T̄ −1
i=T

φ
(i)
0 D(0,i)


β0,T̄ =


T̄ −1
i=T

cN0 ipx(0) D(0,i)


β0,T̄ .
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The tracking error at time i is cNi − φ
(i)
0 and consequently the accumulated

duplication costs amount to

Cdup

T̄
(φ) =

T̄ −1
i=T


cNi − φ

(i)
0


βi,T̄ .

Thus, the (terminal) loss LZB
T̄

is

LZB
T̄ := Cdup

T̄
(φ) + Cini

T̄ (φ) − S0β0,T̄ − π
T −1
i=0

Ni βi,T̄ . (7.23)

While the benchmark case (7.22) refers to no-hedging, Equation (7.23) gives
the loss associated with a static risk-minimizing151 hedging strategy where the
zero bond positions φ

(i)
0 = cN0 ipx(0) minimize the variance of LZB

T̄
(φ0).

Remark 7.5.3. The above defined zero bond hedge is only a benchmark
example which allows us to give some meaningful illustrations. Using the
variance of the terminal loss as an optimality criterion is convenient in view
of the problem formulation of this section, i.e. the pricing of non-pooling risk.
From the perspective of the risk management, the strategies under consideration
are not satisfying. For example, one would like to consider more sophisticated
optimality criteria, allow for dynamic hedging and focus on intermediate losses,
too. However, the main focus is not on an optimal risk management policy
but on realistic hedging strategies and their outcomes which are convenient
benchmarks for the pricing and the solvency requirements. On the one hand,
“no-hedging” is the scenario which gives the worst case strategy in terms of
fluctuations in the terminal loss. On the other hand, one may argue that the
static variant of a variance minimizing zero bond hedge generates hedging
outcomes which tend to be better than the ones achieved in practice. In
practice, the hedging relies on a bucket structure, i.e. not all maturities
(zero bonds respectively) are used. A reduction of the number of hedging
instruments/maturities is therefore suboptimal. In addition, there is model
risk, i.e. in reality the hedging strategies are based on model assumptions
which deviate from the true dynamics. It is also worth to emphasise that the
provider does not borrow money for his hedging purpose. However, the static
zero bond hedge ZB in combination with a periodic premium principle implies

151 For continuous-time dynamic risk minimizing hedging strategies, we refer to Dahl (2004)
and Dahl and Møller (2006). The authors consider dynamic risk minimizing hedging strategies
under the so called minimal martingale measure introduced by Schweizer (2001). In the
following, the term risk-minimizing is equivalent to a minimization of the insurers hedge
costs. In this connection, Chen (2008) analyses the net loss of an insurance company under
discrete-time risk-minimization.
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that the (uncertain) future premium income has to be pre-financed in order to
initiate the hedge at contract inception.

Motivated by the above remark, we add a static and a dynamic forward starting
strategy which avoid the pre-financing of the future premium income. Both
strategies are initiated at the last premium date T − 1, i.e. at the time when
all premiums are collected by the provider and there exists certainty about the
number of retirees.

Investment in a forward starting static zero bond hedge stra-tegy

First, consider the forward starting version of the static zero bond hedge ZB

which we call for short fwd ZB. The premiums π are rolled over according to
the stochastic bank account (7.1) until the time T − 1. At T − 1, the annuity
provider takes the positions φ

(i)
T −1 = cNT −1 · i−T +1px+T −1(T − 1) in the zero

bonds152 D(T − 1,i) with maturities i = T,..., T̄ − 1. The time-T̄ value of the
hedging strategy is

Cini
T̄ (φ) =


T̄ −1
i=T

φ
(i)
T −1D(T − 1,i)


βT −1,T̄

=


T̄ −1
i=T

cNT −1 · i−T +1px+T −1(T − 1) · D(T − 1,i)


βT −1,T̄ . (7.24)

The resulting tracking error at time i is cNi − φ
(i)
T −1 and the accumulated

duplication costs for the forward static zero bond hedge aggregate to

Cdup

T̄
(φ) =

T̄ −1
i=T


cNi − φ

(i)
T −1


βi,T̄ .

Thus, the (terminal) loss Lfwd ZB

T̄
is

Lfwd ZB

T̄
:= Cdup

T̄
(φ) + Cini

T̄ (φ) − S0β0,T̄ − π
T −1
i=0

Ni βi,T̄ . (7.25)

Investment in a forward starting dynamic zero bond hedge strat-
egy

The (discrete time) dynamic forward starting strategy (fwd ZBd) is based on an
annual reallocation of the hedging positions, i.e. at time i (i = T − 1, . . . T̄ − 2)
the number of bonds with maturities j = i + 1 . . . T̄ − 1 is φ

(j)
i = cNi ·

152 Note that the amount of hedge positions is ex ante unknown and in case of a stochastic
mortality evolution might noticeably change over the accumulation phase.
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j−ipx+i(i). Therefore, we obtain the accumulated (initial) hedge costs (7.24)
and accumulated duplication costs

Cdup

T̄
(φ) =

T̄ −1
i=T


cNi − φ

(i)
i−1


βi,T̄ .

The discrete-time update of the hedge positions evokes additional accumulated
rebalancing costs

Creb
T̄ (φ) =

T̄ −2
i=T


T̄ −1

j=i+1


φ

(j)
i − φ

(j)
i−1


D(i,j)


βi,T̄ .

Altogether, the terminal loss is composed of

Lfwd ZBd

T̄
:= Cdup

T̄
(φ) + Cini

T̄ (φ) + Creb
T̄ (φ) − S0β0,T̄ − π

T −1
i=0

Ni βi,T̄ . (7.26)

It is worth to emphasise that we focus on the loss in terms of money paid at T̄

and not on the discounted loss in terms of money paid at contract inception.
In particular, the above dynamic hedge does not necessarily imply a lower
variance of the terminal loss LT̄ than the static counterpart version.

7.5.3 Illustration of the hedge costs and the duplication error

The application of a discrete-time hedge strategy (whether in a static or a
dynamic form) together with an incomplete annuity market introduces hedge
costs (initial hedge and rebalancing costs) on the one hand and duplication costs
on the other hand. It becomes almost impossible to completely duplicate future
liabilities and, at the same time, to stay self-financed although the financial
market is assumed to be complete. According to the Definitions (7.22)–(7.26),
the loss at maturity equals the aggregation of the initial hedge costs (originated
at the begin (t = 0) or at the end (t = T − 1) of the accumulation phase) plus
the rebalancing costs (for the dynamic variant) and duplication costs during
the decumulation phase minus the accumulated premium income and solvency
margin. Table 7.10 clarifies the allocation of the total liabilities into different
hedge component parts for the scenarios introduced in Subsection 7.5.2.

First of all, notice that under deterministic interest rates the expected total
hedge costs and corresponding variances of the benchmark strategies RO and
ZB coincide. The moments for the forward starting hedge scenarios are slightly
reduced due a time-decreasing survival function and a comparatively small
variation in the number of survivors. In other words, if the hedging decision is
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Moments of the hedge and the duplication costs

hedging parameter choice initial hedge and rebalancing costs duplication costs
decision mortality rate interest rate Ê[Cini

T̄
+ Creb

T̄
] V̂ ar[Cini

T̄
+ Creb

T̄
] Ê[Cdup

T̄
] V̂ ar[Cdup

T̄
]

deterministic 0 0 65380 1.46 · 106
deterministic

stochastic 0 0 126311 1.16 · 1010
RO

deterministic 0 0 65881 1.75 · 106
stochastic

stochastic 0 0 127534 1.28 · 1010

deterministic 65487 0 10 1.40 · 106
deterministic

stochastic 166878 205294 11 8.09 · 106
ZB

deterministic 65487 0 517 1.75 · 106
stochastic

stochastic 168353 210929 847 9.96 · 106

deterministic 64498 573341 -3 844109
deterministic

stochastic 133602 1.61 · 1010 14 4.31 · 106
fwd ZB

deterministic 64976 853111 8 862303
stochastic

stochastic 134199 1.70 · 1010 24 4.39 · 106

deterministic 64485 1.25 · 106 0 10725
deterministic

stochastic 134909 1.68 · 1010 1 64924
fwd ZBd

deterministic 64994 1.56 · 106 -12 10796
stochastic

stochastic 136066 1.75 · 1010 -21 66662

Table 7.10: Expected value and variance of the hedge and duplication costs for
the different hedging scenarios and mortality Model (II). Calculations are based on
2 · 104 sample paths drawn w.r.t. an individual aged x = 45, a deferment period of
T = 20, a cohort size N0 = 1000 and a start capital S0 = 0.

postponed to the end of the accumulation phase in T − 1, the insurer stays on
the safe side, i.e. benefits are superhedged (non-positive duplication costs) in
the mean (see also Figure 7.8 and 7.9). However, these values noticeably change
if the investment is based on a random interest rate development. Although
the expected costs (especially the hedge and rebalancing costs) for the static
zero bond benchmark lie above the expected values of the remaining strategies,
the variances of the initial hedge and rebalancing costs are considerably smaller.
The major influence comes from the (stochastic) bank account as a part of the
hedge costs153. In particular, the (total) expected hedge costs are two-and-a-half
times increased compared to the deterministic counterpart.

7.5.4 Illustration of the terminal loss distribution

The following illustrations are based on the calibration results given in Section
7.3 where both interest rate and mortality model are considered in their

153 For example, a mortality improvement accompanied with an underestimation of the
survival function evokes a subhedge in the mean of the duplication costs for the ZB scenario
(845) and a superhedge for the fwd ZB variant (-21).
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stochastic and deterministic version. Figure 7.8 shows the fan charts154 for
the portfolio loss process equipped with a start capital S0 = 0 and S0 = 500.
Observe that analogue to the previous discussion the consideration of stochastic
mortality and interest rates has a strong effect on the width of the prediction
intervals and location measures such as mean and median. Figure 7.9
illustrates the densities of the portfolio terminal loss LT̄ corresponding to
the benchmark hedging scenarios (Subfigure (7.9.1)) and the forward starting
strategies in contrast to the ZB-Hedge (Subfigure (7.9.2)). In addition, Table
7.11 contains the quantile values for all hedging scenarios. In the deterministic
setup the terminal portfolio loss distribution is approximately symmetric for
the “immediately starting” hedge scenarios (see Table 7.11 and Figure 7.8).
This is due to the fact that under deterministic mortality and interest rates
the accumulated hedge costs at T̄ for the forward starting strategies are more
favourable than for the static zero bond scenario (cf. Table 7.10) such that
the insurer stays on the safe side with high probability (see Subfigure (7.8.1)).
Whereas in the full stochastic variant without any start capital S0 the roll-over
and the forward starting strategies are left skewed and the benchmark zero
bond strategy is slightly right skewed (cf. Figure 7.8.2). The main reason
for this phenomenon is the log-normal distribution155 of the stochastic bank
account (7.1) and positive skewness respectively. Thus, the terminal loss for
the static zero bond strategy ZB is likely advantaged by the high accumulated
initial hedge costs. In contrast, the forward starting hedge strategies react
to “high-interest-scenarios” with a terminal profit while for more rarely “low-
interest-rates” paths it is precisely the other way round. As a result, the
0.95-quantile values of Table 7.11 are comparatively high when estimated for
the zero bond hedging. Accordingly, the probability densities in Figure 7.9
show the above-mentioned skewness behaviour. Subfigures (7.8.4) and (7.9.4)
reveal that the strong variation in the static zero bond terminal loss can be
counterbalanced for an additional capital S0 > 500 such that its distribution
also becomes right-skewed.

154 The terminal portfolio loss fan chart constitutes an appropriate instrument to illustrate
the uncertainty in the projections of the future cash-flow. For this purpose, the central
projections for the median and mean are enriched with a set of prediction interval bounds.
155 The low speed of mean reversion a compared to the volatility σspot causes large variation
in the accumulated hedge costs of all zero bond strategies (see Table 7.10) which has a
substantial impact on the loss at maturity values.
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Prediction interval charts for the portfolio loss process

(7.8.1) Deterministic parameters (S0 = 0)

(7.8.2) Stochastic parameters (S0 = 0)

Figure 7.8: Prediction intervals (5%, 25%, 50%, 75% and 95% intervals are marked
in different shades) and location measures mean (solid) and median (dashed) for the
loss processes under different hedging scenarios and mortality Model (II). Calculations
are based on 2 ·104 sample paths drawn w.r.t. an individual aged x = 45, a deferment
period of T = 20, a cohort size N0 = 1000 and a start capital S0 = 0.
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(7.8.3) Deterministic parameters (S0 = 500)

(7.8.4) Stochastic parameters (S0 = 500)

Figure 7.8: Prediction intervals (5%, 25%, 50%, 75% and 95% intervals are marked
in different shades) and location measures mean (solid) and median (dashed) for the
loss processes under different hedging scenarios and mortality Model (II). Calculations
are based on 2 ·104 sample paths drawn w.r.t. an individual aged x = 45, a deferment
period of T = 20, a cohort size N0 = 1000 and a start capital S0 = 0.
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Probability densities of the terminal portfolio loss

(7.9.1) Benchmark strategies (S0 = 0) (7.9.2) Forward starting strategies (S0 = 0)

(7.9.3) Benchmark strategies (S0 = 500) (7.9.4) Forward starting strategies (S0 =
500)

Figure 7.9: Probability density of the terminal portfolio loss under mortality Model
(I) w.r.t. an individual aged x = 45, a deferment period of T = 20, a cohort size
N0 = 1000 and a start capital S0 = 0. The histograms are based on 2 · 104 drawn
samples. The solid lines represent the Gaussian kernel density estimators.

Quantile values for the terminal portfolio loss

hedging parameter choice Model (I) Model (II)
scenario mortality rate interest rate Q0.05 Q0.25 Q0.50 Q0.75 Q0.95 Q0.05 Q0.25 Q0.50 Q0.75 Q0.95

deterministic -2218 -907 -4 896 2215 -2308 -974 -82 809 2129deterministic
stochastic -181031 -42246 -6923 8783 33778 -177213 -42952 -7042 8813 33569

RO
deterministic -1805 -382 611 1574 2976 -1960 -494 518 1531 2957

stochastic
stochastic -186741 -42310 -6529 9345 34148 -198381 -41419 -10421 9994 36590

deterministic -2180 -923 -5 912 2203 -2368 -1049 -120 796 2144
deterministic

stochastic -18484 -4637 116 8249 45140 -18503 -4644 130 8153 45591
ZB

deterministic -1813 -378 574 1538 2970 -1990 -509 497 1513 2988
stochastic

stochastic -16619 -3993 683 9364 47811 -17648 -4327 317 6736 38720
deterministic -3190 -1893 -1010 -112 1153 -3308 -2023 -1106 -182 1102

deterministic
stochastic -162979 -36829 -6489 8890 40964 -161813 -37253 -5922 8833 41350

fwd ZB
deterministic -2872 -1418 -432 533 1913 -2991 -1536 -532 498 1921

stochastic
stochastic -162204 -36355 -5730 9318 42047 -183613 -49175 -12853 8475 37590

deterministic -3161 -1883 -1006 -107 1198 -2818 -1597 -814 38 923
deterministic

stochastic -164770 -37214 -6148 9125 40611 -164868 -37260 -6118 8757 40558
fwd ZBd

deterministic -2813 -1390 -440 524 1907 -2925 -1488 -485 511 1893
stochastic

stochastic -163360 -37332 -5627 9476 41686 -161124 -35755 -5523 9635 43398

Table 7.11: Quantile values Q for the terminal portfolio loss. Calculations are based
on 2 · 104 sample paths drawn w.r.t. an individual aged x = 45, a deferment period
of T = 20, a cohort size N0 = 1000 and a start capital S0 = 0.
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7.5.5 Pricing for different hedging scenarios

When considering the impact on the periodic premiums, Table 7.12 summarises
the estimation results according to the three premium principles (NP), (IP)
and (QP) as well as the percentage premium loadings of (IP) and (QP) ad-
ditionally charged on the net premium (NP). First of all notice that under
the full deterministic model approach the premiums are the same for the RO

and ZB hedging/investment alternatives – except for simulation inaccuracies –
since the total hedge costs coincide (cf. Table 7.10 and Subfigure (7.8.1)). In
this regard, the forward strategies are preferable in the sense that duplication
costs are further reduced due to a deferred hedging decision. Independent of
the hedging scenario, random mortality or interest rates demand additional
premium loadings. Interestingly, a consideration of a random mortality de-
velopment only evokes an increase of the percentage loading in the range of
only 1%-3% while in connection with stochastic spot interest rates this effect
is much more pronounced. However, along the lines of the results due to the
variance decompositions, the impact of stochastic mortality is visibly smaller
than the one implied by random interest rates. With regard to the underlying
hedging/investment scenario, the zero bond investments under hedge scenario
ZB reduce the premium loading in addition to the equivalence premium to a
large extent. For example, while the premium loading implied by the indiffer-
ence price (IP) under the DHARA utility156 is 257% in the case of RO (and
the stochastic variant of mortality Model (II)), it is only 35% if the annuity
provider invests in an adequate number of zero bonds at the inception of the
contract. By comparison, the forward starting strategies which are identical
to the RO scenario during the accumulation phase imply a premium loading
of 294% in the case of the static hedge fwd ZB and 234% for the dynamic
version fwd ZBd. The corresponding charges for the 0.99-quantile prices (QP)
amount to 107% (RO), 25% (ZB), 99% (fwd ZB) as well as 98% (fwd ZBd).
Thus, it appears that the risk premium requirements vary according to the
underlying pricing principle.

7.6 Solvency effects

Currently, the topic of solvency requirements receives growing attention both
from a practical and a theoretical point of view. The EU Commission’s

156 Table 7.12 shows that indifference premiums under DHARA utility are slightly higher
than under CARA utility since losses are stronger penalized using a DHARA utility function
and the applied parameters.
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Periodic premiums for different hedging scenarios

parameter choice Model (I)hedging
(NP) (IP) (QP) (QP)scenario mortality interest rate CARA DHARA ε = 0.05 ε = 0.01

deterministic 0.349 0.361 +4.% 0.366 +5.% 0.359 +3.% 0.363 +4.%deterministic
stochastic 0.349 1.191 +242.% 1.221 +250.% 0.566 +62.% 0.719 +106.%

RO
deterministic 0.349 0.368 +6.% 0.373 +7.% 0.362 +4.% 0.366 +5.%

stochastic
stochastic 0.349 1.260 +261.% 1.370 +293.% 0.571 +64.% 0.732 +110.%

deterministic 0.349 0.360 +3.% 0.365 +5.% 0.360 +3.% 0.364 +4.%
deterministic

stochastic 0.349 0.479 +37.% 0.480 +38.% 0.412 +18.% 0.435 +25.%
ZB

deterministic 0.349 0.366 +5.% 0.372 +7.% 0.363 +4.% 0.367 +5.%
stochastic

stochastic 0.349 0.488 +40.% 0.492 +41.% 0.413 +18.% 0.437 +25.%
deterministic 0.349 0.358 +3.% 0.362 +4.% 0.355 +2.% 0.358 +3.%

deterministic
stochastic 0.349 1.032 +196.% 1.061 +204.% 0.546 +57.% 0.673 +93.%

fwd ZBd

deterministic 0.349 0.369 +6.% 0.373 +7.% 0.358 +3.% 0.362 +4.%
stochastic

stochastic 0.349 1.320 +279.% 1.345 +286.% 0.554 +59.% 0.690 +98.%
deterministic 0.349 0.358 +3.% 0.363 +4.% 0.354 +1.% 0.358 +3.%

deterministic
stochastic 0.349 1.040 +198.% 1.072 +207.% 0.549 +57.% 0.681 +95.%

fwd ZB
deterministic 0.349 0.363 +4.% 0.368 +6.% 0.358 +3.% 0.362 +4.%

stochastic
stochastic 0.349 1.081 +210.% 1.113 +219.% 0.550 +58.% 0.689 +98.%

parameter choice Model (II)hedging
(NP) (IP) (QP) (QP)scenario mortality interest rate CARA DHARA ε = 0.05 ε = 0.01

deterministic 0.348 0.360 +3.% 0.365 +5.% 0.358 +3.% 0.362 +4.%deterministic
stochastic 0.348 1.144 +228.% 1.190 +242.% 0.569 +63.% 0.714 +105.%

RO
deterministic 0.348 0.369 +6.% 0.373 +7.% 0.362 +4.% 0.366 +5.%

stochastic
stochastic 0.348 1.214 +249.% 1.243 +257.% 0.573 +65.% 0.721 +107.%

deterministic 0.348 0.365 +5.% 0.369 +6.% 0.359 +3.% 0.363 +4.%
deterministic

stochastic 0.348 0.446 +28.% 0.447 +28.% 0.410 +18.% 0.434 +25.%
ZB

deterministic 0.348 0.364 +5.% 0.368 +6.% 0.363 +4.% 0.367 +5.%
stochastic

stochastic 0.348 0.470 +35.% 0.471 +35.% 0.413 +19.% 0.436 +25.%
deterministic 0.348 0.358 +3.% 0.363 +4.% 0.354 +2.% 0.357 +3.%

deterministic
stochastic 0.348 0.995 +186.% 1.053 +202.% 0.545 +57.% 0.671 +93.%

fwd ZB
deterministic 0.348 0.363 +4.% 0.367 +5.% 0.357 +3.% 0.362 +4.%

stochastic
stochastic 0.348 1.340 +285.% 1.373 +294.% 0.547 +57.% 0.693 +99.%

deterministic 0.348 0.360 +3.% 0.364 +5.% 0.354 +2.% 0.357 +3.%
deterministic

stochastic 0.348 1.091 +213.% 1.113 +220.% 0.549 +58.% 0.685 +97.%
fwd ZBd

deterministic 0.348 0.362 +4.% 0.366 +5.% 0.357 +3.% 0.362 +4.%
stochastic

stochastic 0.348 1.134 +226.% 1.163 +234.% 0.554 +59.% 0.688 +98.%

Table 7.12: Periodic premiums for different hedging scenarios w.r.t. an individual
aged x = 45, a deferment period of T = 20, a cohort size N0 = 1000 and a start
capital S0 = 0. The DHARA parameters ρ1 = 33 and ρ2 = 3225 are fitted to
an exponential utility function with risk aversion ρ = 0.01 (see Figure 7.7). The
simulations are based on 2 · 104 iterations.

European directive Solvency II includes a standardisation and reformation of
the national insurance supervisions. Thereby, the introduction of solvency rules
concerning a (minimum) regulatory capital157 plays a major part within the
quantitative pillar and is planned for the first quarter of 2013. Additionally,
actuarial literature supports and promotes the Solvency II project progress
by developing risk-sensitive methods to measure insurance liabilities and to
construct biometric valuation bases or solvency tests (see e.g. Hári et al. (2008),
157 According to Olivieri and Pitacco (2008) the 99% confidence level margin can be seen as
the amount of required capital (in addition to the fair premium) consistent with a solvency
rule for internal models with a time horizon matching the contract duration.
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Christiansen (2010) or Hayes (2010)).

7.6.1 Definition of solvency risk measures

The first to consider is how to define the term solvency as well as solvency
requirements. For example, solvency requirements depend on the concrete asset
definition, time horizon under consideration and borrowing constraints. With
respect to a portfolio of annuity contracts, it is also important to differentiate
between a run-off and a going concern approach. In the following, we consider a
weak form of solvency (ruin respectively) which is based on a run-off approach.
While the run-off approach does not allow for new contracts in addition to the
ones of the cohort at inception, this is the case in the going concern approach.
On the one hand, this simplifies the analysis. On the other hand, allowing
new contracts (their premiums respectively) to subsidise old contracts is a very
critical point, anyway. In addition, we do not focus on a ruin event prior to
the date T̄ = ω − x where our cohort ceases to exist. This is equivalent to the
(unrealistic) assumption that it is possible to borrow unlimited prior to the
terminal date.158 In reality, there is a stronger form of solvency requirement
necessary which checks the cash flow emergence yearly or monthly and thus
records a loss as soon as it occurs. The term shortfall is to be interpreted in a
technical sense since only the maturity date is regarded and any fees and costs
within annuity products are ignored. In particular, a stronger version of solvency
affords a definition of a bankruptcy level which must not be violated together
with a pricing rule for future liabilities. The task of a capital adjustment
consists in the determination of a solvency margin S0 such that (exogenous)
solvency requirements are fulfilled. We therefore follow an indirect approach
by considering the shortfall probability, i.e. the probability that the terminal
loss value LT̄ is positive.

Definition 7.6.1 (Solvency Requirements - Weak Form). Let ϵ denote a
predefined confidence level, then the initial solvency requirements are defined
by the rule

S∗
0 := inf{S0 ∈ R+ | P (LT̄ > 0) ≤ ϵ} (7.27)

where LT̄ is the underwriters loss at time T̄ . The solvency capital S∗
0 is therefore

defined by the minimal amount which is needed to limit the (terminal) shortfall
and stay on the safe side with probability 1 − ϵ. In particular, we refer to the

158 Among other authors, Bauer and Weber (2008) stress that it might be unrealistic to
finance intermediate shortfalls against a savings account rather than money at the market
interest rate.
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probability P (LT̄ > 0) as a weak form of shortfall probability as only the loss
at maturity is considered.

To avoid the problem of specifying a pricing rule which is, in an incomplete
market, not necessarily independent of the investment decisions, we refer to
the weak form given above. Due to longevity risk, annual losses typically come
along with an overall loss at maturity as we will see subsequently. In addition to
the solvency capital S∗

0 which is implied if the periodic premiums are calculated
according to the equivalence premium (NP), we measure the extent of the
shortfall by the conditional expected shortfall given default.

Definition 7.6.2 (Expected Shortfall Given Default). The expected shortfall is
defined as the expected terminal portfolio value conditioned on the occurrence
of a shortfall. In case of a continuous net loss distribution, we have

E [LT̄ | LT̄ > 0] =
E

LT̄ 1{LT̄ >0}


P (LT̄ > 0) . (7.28)

The actuarial task lies in the minimization of the expected loss under a budget
constraint depending on the investment decision.

In contrast to the shortfall probability, the expected shortfall measure consti-
tutes a coherent risk measure and reflects both the probability and the severity
of a potential default. Note that due to the Bayes theorem, the conditional
expectation depends, inter alia, on the shortfall probability.

7.6.2 Estimation of solvency margins

In general, there is no analytic loss distribution available such that we have to
estimate (7.27) and (7.28) by Monte-Carlo simulation. For mortality Model
(II) the Monte Carlo standard error for the shortfall probability is at least
smaller than 1.1 · 10−4. The sample mean for 1000 simulated conditional
expected shortfall values159 amounts to 17578 and has standard deviation of
6.44. Therefore, the number of simulations seems appropriate. As before, the
illustrations refer to the calibration results of Section 7.3. Table 7.13 gives the
resulting solvency capital S∗

0 . Again, the results are similar for both mortality
models. Along the lines of Table 7.4, the expected discounted premiums for
Model (II) are equal to 4931. Observe that, in the full stochastic setup and
no-hedging (RO) strategy, 73% (126%) of the expected discounted premiums
159 The determination of the Monte Carlo error is based on the full stochastic RO-scenario
using 2 · 104 iterations.
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Start capital / solvency margins for different hedging scenarios

parameter choice Model (I) Model (II)
hedging premium π = 0.349 premium π = 0.348
decision

mortality rate interest rate
ϵ = 0.05 ϵ = 0.01 ϵ = 0.05 ϵ = 0.01

deterministic 135 189 135 188
deterministic

stochastic 3448 6432 3507 6153
RO

deterministic 181 240 185 248
stochastic

stochastic 3513 6521 3583 6201
deterministic 134 191 136 191

deterministic
stochastic 711 936 704 955

ZB
deterministic 181 243 187 249

stochastic
stochastic 733 958 714 961

deterministic 73 126 73 126
deterministic

stochastic 3171 5590 3169 5567
fwd ZB

deterministic 116 179 122 188
stochastic

stochastic 3308 5880 3224 5886
deterministic 70 123 72 125

deterministic
stochastic 3214 5670 3308 5718

fwd ZBd

deterministic 117 177 121 187
stochastic

stochastic 3235 5775 3253 5755

Table 7.13: Start capital / solvency margins for different hedging scenarios w.r.t.
an individual aged x = 45, a deferment period T = 20 and a cohort size N0 = 1000.
The simulations are based on 2 · 104 iterations.

are needed as solvency capital if the maximum tolerable shortfall probability is
limited to 5% (1%). Thus, no-hedging is prohibitive if one takes into account
both stochastic interest rates and stochastic mortality rates. Although the
static hedge in zero bonds reduces theses numbers to 15% (20% respectively),
the fraction of the expected discounted premium which is needed to provide an
adequate solvency condition can still be considered as (too) high. The solvency
capital requirements for the forward hedging strategies lie in between the
margins for the benchmark cases RO and ZB. On the one hand, the forward
hedging causes comparatively low duplication costs (implying a superhedge).
On the other hand, a steady mortality improvement might evoke high initial
hedge costs which form the major part of the total hedge costs. In combination
with random interest rates the forward scenarios are therefore subjected to
strong variations similar to the no-hedging scenario (cf. Subfigures (7.8.2) and
(7.9.2)).

7.6.3 Illustration of the shortfall probability and amount

The above mentioned effects are additionally emphasised by Table 7.14 which
summarises the shortfall probability for different solvency margins and hedge
scenarios. In analogy to the observations made in Subsection 7.5.4, the in-
teraction of stochastic mortality and / or interest rates causes a high shortfall
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probability such that values above 0.4 are not surprising in the absence of
additional solvency capital. However, in the case of the static ZB-hedging,
the shortfall probability is even higher for stochastic interest rates and low
additional160 solvency capital S∗

0 < 183 (mortality Model (II)). On closer in-
spection, the hedge costs of the static zero bond strategy are strongly driven by
the interest rate evolution161 throughout the long-term contract duration. For
a high interest rate level, the resulting high total hedge costs can even cause a
severe loss at maturity (cf. Table 7.11) such that for additional solvency margins
the shortfall probabilities are partially counterbalanced. In case of the forward
zero bond scenarios, we observe comparatively low shortfall probabilities for
deterministic actuarial parameters according to the hedge intention. However,
the introduction of stochastic mortality and interest rates evokes values slightly
beneath those of the RO-strategy.

Shortfall probabilities for different hedging scenarios

hedging parameter choice solvency margin S0 – Model (I) solvency margin S0 – Model (II)
decision mortality rate interest rate 0 100 250 500 1000 2000 0 100 250 500 1000 2000

deterministic 0.50 0.11 0.00 0.00 0.00 0.00 0.50 0.11 0.00 0.00 0.00 0.00deterministic
stochastic 0.40 0.38 0.35 0.30 0.23 0.12 0.41 0.39 0.35 0.31 0.22 0.12

RO
deterministic 0.66 0.24 0.01 0.00 0.00 0.00 0.66 0.24 0.01 0.00 0.00 0.00stochastic

stochastic 0.41 0.39 0.36 0.31 0.23 0.12 0.42 0.40 0.36 0.31 0.23 0.13
deterministic 0.50 0.11 0.00 0.00 0.00 0.00 0.49 0.11 0.00 0.00 0.00 0.00deterministic

stochastic 0.51 0.42 0.30 0.13 0.01 0.00 0.51 0.43 0.30 0.13 0.01 0.00
ZB

deterministic 0.66 0.23 0.01 0.00 0.00 0.00 0.65 0.24 0.01 0.00 0.00 0.00stochastic
stochastic 0.54 0.45 0.33 0.15 0.01 0.00 0.53 0.45 0.32 0.14 0.01 0.00

deterministic 0.22 0.02 0.00 0.00 0.00 0.00 0.23 0.02 0.00 0.00 0.00 0.00deterministic
stochastic 0.40 0.38 0.35 0.30 0.21 0.11 0.41 0.39 0.35 0.30 0.22 0.11

fwd ZB
deterministic 0.38 0.07 0.00 0.00 0.00 0.00 0.38 0.08 0.00 0.00 0.00 0.00stochastic

stochastic 0.41 0.39 0.35 0.30 0.22 0.11 0.41 0.38 0.35 0.30 0.22 0.11
deterministic 0.22 0.02 0.00 0.00 0.00 0.00 0.23 0.02 0.00 0.00 0.00 0.00deterministic

stochastic 0.40 0.38 0.35 0.30 0.22 0.11 0.40 0.38 0.35 0.30 0.22 0.11
fwd ZBd

deterministic 0.38 0.07 0.00 0.00 0.00 0.00 0.39 0.08 0.00 0.00 0.00 0.00stochastic
stochastic 0.41 0.39 0.35 0.30 0.22 0.12 0.41 0.39 0.36 0.31 0.23 0.12

Table 7.14: Shortfall probabilities for different hedging scenarios w.r.t. an individual
aged x = 45, a deferment period T = 20 and a cohort size N0 = 1000. The simulations
are based on 2 · 104 iterations.

Additionally, we consider the extent of a shortfall. The conditional expected
shortfalls are listed in Table 7.15. Under deterministic interest rates the forward
strategies are advantageous with regard to the minimization of the duplication
costs. Therefore, we obtain a similar pattern to the survival probability
values. In case of uncertainty in the bank account, the variation in the hedge
and rebalancing costs is noticeably with direct consequences for the shortfall
amounts. For example, observe that for mortality Model (II) the average

160 In other words, a start capital of S0 = 183 leads to the same shortfall probability of
38% for the RO and ZB scenario and equals a percentage charge of 53% on top of the total
premium income.
161 Whereas, the duplication costs are significantly lower affected.
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Conditional expected shortfall amount for different hedging scenarios

hedging parameter choice solvency margin S0 – Model (I) solvency margin S0 – Model (II)
decision mortality rate interest rate 0 100 250 500 1000 2000 0 100 250 500 1000 2000

deterministic 1067. 651. 306. 0. 0. 0. 1066. 650. 251. 0. 0. 0.deterministic
stochastic 17222. 16804. 16188. 15186. 13266. 11074. 17242. 16699. 16068. 15023. 13331. 11074.

RO
deterministic 1407. 838. 510. 0. 0. 0. 1442. 879. 534. 0. 0. 0.

stochastic
stochastic 17368. 16870. 16224. 15217. 13612. 11106. 17280. 16809. 16086. 15101. 13461. 11134.

deterministic 1080. 651. 344. 0. 0. 0. 1079. 665. 327. 0. 0. 0.
deterministic

stochastic 18711. 17304. 15607. 13083. 9056. 0. 18726. 17436. 15684. 13308. 9441. 0.
ZB

deterministic 1383. 860. 528. 0. 0. 0. 1436. 893. 480. 0. 0. 0.
stochastic

stochastic 18797. 17464. 15691. 13320. 9671. 0. 18734. 17482. 15706. 13722. 11972. 0.
deterministic 754. 481. 119. 0. 0. 0. 762. 473. 251. 0. 0. 0.

deterministic
stochastic 20263. 19791. 18982. 18086. 16309. 13614. 20118. 19664. 18952. 17885. 16110. 13622.

fwd ZB
deterministic 995. 650. 371. 0. 0. 0. 1053. 678. 390. 0. 0. 0.

stochastic
stochastic 20604. 20082. 19283. 18148. 16466. 13906. 20625. 20102. 19219. 18092. 16112. 13666.

deterministic 772. 479. 0. 0. 0. 0. 760. 494. 380. 0. 0. 0.
deterministic

stochastic 20363. 19785. 19108. 17832. 15871. 13059. 20539. 19988. 19159. 17929. 16013. 13431.
fwd ZBd

deterministic 1002. 653. 455. 0. 0. 0. 1033. 667. 654. 0. 0. 0.
stochastic

stochastic 20668. 20102. 19434. 18227. 16327. 13871. 21454. 20938. 20307. 19103. 17120. 14456.

Table 7.15: Conditional expected shortfall amount for different hedging scenarios
w.r.t. an individual aged x = 45, a deferment period T = 20 and a cohort size
N0 = 1000. The simulations are based on 2 · 104 iterations.

shortfall size for a solvency capital of 1000 (approximately 20% of the expected
total premium income) and a static zero bond hedge is still 13461 (which equals
273% of the expected total premium income). Combined with high shortfall
probabilities in case of insufficient initial solvency capital, the static zero bond
benchmark returns higher expected losses too. The corresponding values for
the forward starting strategies are even higher than in the RO-scenario whereas
the severity of a shortfall can be further reduced by means of a relatively
cost-effective dynamic rebalancing. To sum up, the outcomesalso emphasise
the magnitude of the impact of stochastic interest rates when compared to
the impact of stochastic mortality rates. However, the combined effects of
stochastic mortality and interest rates heavily affect the solvency requirements.

7.7 Conclusion

In this chapter, we have shown that the valuation, risk management and
solvency assessment of a life annuity depend on the assumptions which are
posed on the underlying mortality and interest rate dynamics. By means of
different (stochastic and deterministic) mortality models which are fitted to
the same population period life table and interest rate models calibrated to
the current market term structure we focussed on the question how important
it is to take into account for (random) changes in the mortality. We used
Monte Carlo simulations to approximate the variance of the discounted cash
flow and its decomposition into a pooling and a non-pooling risk part. We
also considered pricing effects using the principle of zero expected utility
and the quantile principle. The estimated risk premiums for a selection of
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different hedge / investment strategies were benchmarked to the equivalence
premium. Finally, we focussed on the definition of solvency requirements
and meaningful shortfall measures. The associated shortfall probability and
conditional expected shortfall of the annuity provider are sensitive to changes
in the underlying hedge strategy and degree of uncertainty with regard to the
underlying mortality and interest model. In summary, the results emphasise
that the impact of stochastic mortality is low if compared to the impact of
stochastic interest rates. To some extent, one can argue that the major risk
which is due to stochastic mortality stems from its interaction with stochastic
interest rates. However, against the background of a risk-adequate assessment
this should have a lasting effect on the insurers pricing and reserving.



But overall, these new annuity products are not
bad, [...] If they would get their total expenses
down a percent, they would be very good.

David B. Jacobs, founder and president of
Pathfinder Financial Services, LLC, Hawaii

CHAPTER 8

Deferred Variable Annuities with
Guaranteed Minimum Death and
Income Benefits under Stochastic
Mortality and Investment Risk

This chapter is an adapted version of Steuten (2011).

8.1 Introduction

Over the course of the last decades, the social pension schemes of many
industrialised countries were seriously affected by an continuing longevity trend
regarding the pensioners residual lifetimes and sustaining decreasing total
fertility rates among females of childbearing age. As a consequence, PAYG
pension schemes are expected to be unable to completely protect an ageing
society against outliving its assets. Governments therefore subsidise private
pension coverage and renew the incentive scheme through a reform of the
current social security systems. The stimulation of the demand for private
attractive capital funded life annuities should counterbalance the so called
“annuity-puzzle” phenomenon162. In case of the German insurance market,
the pension reform of the statutory pension insurance scheme in 2001, which
lowered the replacement ratio to 64%, forced current contributors to consider
additional occupational pension programs as well. Inter alia, equity-linked
policies – about one third disposed in a Riester version (as an integral part of
the 2nd pillar representing old-age retirement provision) – are state-subsidised
162 On the one hand, private pension coverage seems meaningful from an economic view.
But on the other hand, it can be observed that the annuity market is still narrow in relation
to the total number of pensioners and thus potential consumers.

181



182 Chapter 8 - Deferred Variable Annuities

as long as the insurer guarantees a deferred life annuity calculated on at least
a money-back basis, i.e. the insured receives the aggregated premiums.

In this context, a specific line of unit-linked annuity products called variable
annuities deserves a closer inspection. Variable annuity163 products (in the
following abbreviated by VAs) fill the gap left by (domestic) demand between
traditional life annuity contracts with low but guaranteed rate of return (cur-
rently 2.25%) and pure unit-linked products without any guaranteed retirement
income. From the policyholder’s point of view, VAs are characterised by a
combination of high guaranteed payments together with potential returns of
unit-linked products. Besides a successful sales launch in the US (1980), Japan
(1999), the UK (2005) or Canada (2007), VAs are also offered in Continental
Europe since 2005164. More precisely, variable annuities describe tax-privileged
deferred life annuities with equity-linked savings phase containing at least
one option on a minimal insurance benefit which is separately charged as a
percentage of the fund value. A wide range of options is offered concerning
enhanced financial flexibility and/or enhanced downside, longevity and de-
pendants protection. Commonly, policyholders are allowed to compose their
individual option package and even change it within the duration of the contract
against additional fees. The mutual fund or the mix of funds can also be shifted
and switched during the contract duration. Besides equity-linked funds, the
capital can be invested for example in fund of funds, retail funds or money
market funds. Due to the risky investment and the selling of an option with
long-dated maturity, it seems necessary that VA providers enhance internal
risk control mechanisms, apply dynamic hedging strategies and reduce their
reporting timescales.

The chapter is motivated by addressing the cost transparency165 aspect of
VAs which has been paid little attention in recent academic literature so
far. Charges relating to fund, mortality and expenses, administration or

163 In contrast to dynamic hybrid products in which capital market guarantees are outsourced
into a capital preservation fund or conventional premium reserve stock, variable annuities
allow for an almost complete investment in equity funds and are (dynamically) hedged by
means of derivative financial instruments. Variable annuities were first introduced in the
United States in 1952 without any additional guarantee rider. In 1980 the first contract with
guaranteed minimum death benefit was sold. Contracts with income guaranteed benefits
followed in 1996.
164 According to the German Insurance Association (GDV), the market share of new business
for unit-linked pension insurance increased from 15.9% in 2006 over 23.7% in 2008 to 18.5%
in 2009. Moreover, 4.88 million unit-linked endowment policies and 8.46 million unit-linked
annuity policies were underwritten by GDV members at the end of the year 2009. These
sales volumes made up 5.3% and 9.3% of the total life assurance business.
165 Besides a transparent rider charge reporting, the VA product concept renders transparency
in terms of the fund value proposition and amount of the benefits.
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guarantees are separately accounted for such that capital investment and
guarantee management fees are charged separately. For a VA contract calculated
with common market charges a direct comparison to a fund savings plan
is almost impossible. Even in the case of a traditional deferred annuity, a
comparison is meaningful only to a limited extent since the guarantee charges
can only be estimated by making assumptions due to the investment and
surplus distribution policy of the insurance company. Nevertheless, the question
whether a stated periodic charge is a fair charge has to be answered. In practice,
quoted rider charges reduce the contract gross rate of return considerably such
that their amount forms a relevant sales pitch. Insurance buyers commonly
endorse guarantees but are willing to pay for them insofar as the rate of returns
exceeds at least tax and inflation. Since insurance demand is out of the scope
of this chapter, we concentrate on a fair charge estimation which is, from
an insurer’s perspective, equivalent to a minimal charge needed to cover the
expected guarantee payout.

W.l.o.g., we assume a VA contract with premiums invested in a single mutual
fund. The equity share of the fund is assumed to be equal to 100%. In case of
death within the deferment period, the insurer guarantees the higher of the
fund value and the premiums paid to the insureds heirs. If the policyholder dies
within the decumulation phase solely the fund value is paid to the dependants.
At the agreed retirement T the insured can enter a lump-sum option either by
taking the fund value as a lump sum payment, converting the portfolio into a life
annuity calculated with respect to the prevailling annuity market conditions166

or benefiting from a life annuity paying a prespecified guaranteed periodic
amount. Moreover, the retiree can request to defer the lump-sum decision within
a so called “annuity prolongation phase”. The guaranteed annuitisation option is
also known as Guaranteed Minimum Income Benefit (GMIB). Furthermore, the
GMIB option is equipped with different enhancements features which determine
the total amount of the guarantee base. In the context of GMIBs typical
features are the return of the gross premiums paid optionally accumulated with
a guaranteed rate (roll-up), the maximum of the sum of premiums and historic
fund value peaks (ratchet) and the greater of roll-up or ratchet. Obviously, by
taking a short position in these long-dated options the insurer is exposed to risk
sources like equity, interest rate as well as mortality risk. For this reason, we
decided in favour for a full stochastic model framework. In particular, the fund
prices are driven by a geometric Brownian motion, the spot interest rates follow
a one-factor Hull-White process and the mortality rate evolution is described
166 The accumulated fund assets is annuitised according to the mortality and interest condi-
tions valid at that time.
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by a non mean reverting Ornstein-Uhlenbeck process in slight modification to
Ballotta and Haberman (2006). Furthermore, we assume a complete financial
market model which allows for correlated bond and fund prices.

The fair premium principle applied by Nielsen and Sandmann (2002) serves as
a pricing basis and combines two different risk diversification principles. On the
one hand, we have the no-arbitrage pricing principle leading to diversification
by duplication and, on the other hand, the equivalence premium principle
covering diversification through balancing within the insurance portfolio. The
principle by Nielsen and Sandmann is based on the analysis of an equity-linked
life insurance contract using no-arbitrage pricing considered in Brennan and
Schwartz (1976). An application to the guaranteed benefits of a VA contract
yields equality between the accumulated expected present charge income and
the present value difference of the accumulated expected discounted benefit
values of the VA contract and a comparable unit-linked endowment contract
without any guarantee. For the sake of completeness, the proof of the existence
and the uniqueness of a fair guarantee charge is given in analogy to Nielsen
and Sandmann (2002). Considering a contract with regular premiums, the
guaranteed minimum death benefit option and the retirement option in the so
called prolongation phase are closely related to an arithmetic Asian options. For
this reason, we calculate expected values by applying Monte Carlo techniques.
Our contribution to the existing literature on pricing and the analysis of the
return/risk profile of VAs are as follows: In a first step we take the view of
an insurance buyer and carry out an assessment concerning the contribution
return and the pension amount at maturity (distribution). In particular, the
impact of different rider features on the options moneyness and payoff value
are discussed. From the perspective of an insurance seller, we estimate the
risk-neutral prices of living and death benefit guarantees under fair charges for
a comprehensive constellation of contract, financial and mortality parameters
and different guarantee features. In a risk-neutral context charges are often
mispriced particularly in combination with different guarantee enhancement
options.

In the research field of unit-linked insurance various contract variants and
pricing approaches have been proposed. Without postulating completeness,
we mention the following: Bacinello and Ortu (1994) extend the pioneering
work of Brennan and Schwartz (1976) to simulate single up-front and periodic
premiums of an unit-linked and whole life insurance contract. The authors
assume an endogenously minimum guarantee which is a function of the total
premiums paid. Nielsen and Sandmann (1995) present numerical solutions for
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the price of an unit-linked endowment insurance including an Asian call-option
due to periodic premium payments. The authors estimate a fair premium under
random fund value and interest rate evolution with different scenarios for the
initial term structure. In Nielsen and Sandmann (2002) the existence of a fair
percentage charge for a unit-linked term and pension insurance is deduced and
price bounds are derived. Schrager and Pelsser (2004) price an unit-linked
endowment contract which guarantees a refund of the accumulated premiums
at maturity. The authors calculate price bounds under stochastic interest
rates and take the position of exogenously given charges and deterministic
survival data from a life table. The article of Ho et al. (2006) investigates the
impact of correlated equity prices and interest rates on the cost of guarantee
of a single upfront premium VA with GMIB rider. Besides lapsation and
hedging issues the authors simulate fair at-the-money guarantee values using
the extended linear path methodology for a range of correlations. Estimates
are based on an extension of the discrete two factor arbitrage-free interest
model introduced in Ho and Lee (2004) and on the exclusion of mortality
risk. Fair VA guarantee percentage charges are determined in Bauer et al.
(2008b) based on a fund price driven by a geometric Brownian motion and
deterministic assumptions on the interest and the mortality rates. Therefore,
Monte Carlo simulation provides numerical values in case of deterministic
surrender probabilities and a multidimensional finite mesh discretisation yields
values under rational policyholder behaviour. The more recent literature
concerning VAs with living benefits considers the following: the work of Jiang
and Chang (2010) applies Monte Carlo simulation to derive charges for an
annuity contract with upfront premium and guaranteed accumulation and
death benefit riders. Interest rates are driven by a square diffusion process and
the fund prices are modelled using a geometric Brownian motion. However,
mortality risk is neglected, too. The charge is subjected to a sensitivity analysis
concerning interest rate and contract parameters. A valuation of a pure GMIB
option with a greater of roll-up or ratchet clause is undertaken by Marshall et al.
(2010) who extend the model of Bauer et al. (2008b). More precisely, the paper
treats the Monte Carlo estimation of no-arbitrage prices for a term certain
annuity financed by a single upfront premium in a combined financial market,
i.e. a fund price driven by a geometric Brownian motion and a correlated
Hull-White interest rate process. Mortality risk is completely excluded and
charges are illustrated for a comprehensive choice of financial and contract
parameters.

The remainder of the chapter is organised as follows. Section 8.2 describes
the assumptions made with respect to the analysed contract. In Section 8.3 a
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stochastic complete and arbitrage-free financial market model and a stochastic
mortality model are introduced. Section 8.4 deals with the existence and
uniqueness of a fair charge for variable annuities with bundled GMDB and
GMIB rider assuming independence of financial risk and mortality risk as well
as market neutrality towards mortality risk. In Section 8.5, numerical results
are provided on the one hand for fair charges and option prices, and on the
other hand for the rate of return and the pension amount at maturity. Section
8.6 concludes the chapter.

8.2 Contract specification

8.2.1 Definition of the (mutual) fund value

The analysis is restricted to the case of constant premium payments, i.e. ei-
ther a single up-front premium or constant periodic premiums. Let tN =
T denote the deferment period of the contract and t0 = 0 the inception
date. In the case of a regular premium payment the insured aged x at
time t0 = 0 pays a gross premium πG

ti
= π · 1T (ti) at each time ti ∈ T :=

{t0, t1, ..., tN−1 ∈ N | t0 < t1 < ... < tN−1 < tN} given that the policyholder sur-
vived until ti > 0. When considering single up-front premium contracts, the
insurer solely receives πG

ti
= π · 1{t0}(ti) at inception date t0. According to

Schrager and Pelsser (2004) we assume that there exists certainty about pre-
mium payments such that policy surrender and lapsation are excluded a priori.
We do neither consider an exemption from payment nor the involvement of
additional riders. Therefore, the insurer has to hold hedge positions for the
whole insurance portfolio which leads to higher charges than under surrender or
lapse assumptions. The fixed costs167 φ are deducted from πG

ti
to obtain the net

premium πN
ti

. After an infinitesimal small time period the asset-based fee168 as
a fixed percentage ϕ of the fund value is deducted169. The resulting investment
premium πI

ti
is immediately invested into a single (third party) mutual fund.

We assume there exists no credit risk, no customer withdrawal (reducing the

167 The fixed cost building block as a percentage of the gross premium is evoked by acquisition
and selling expenses, contract and investment fees.
168 Fund value related costs are usually denoted as mortality and expense (M&E) fees
containing distribution, regular administration costs as well as the coverage of the standard
death and annuitisation risk. For any optional guarantee rider and corresponding benefit
base beyond the standard insurance protection, however, additional rider fees have to be
charged. According to Nielsen and Sandmann (2002) 1 − ϕ is called the investment share.
169 This approach is contrary to Schrager and Pelsser (2004) who charge the first asset-based
fee at payment date t1. Note that the amount of charges, each time ti withdrawn by the
insurer, is therefore exposed to equity risk in form of price fluctuations
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guarantee amount) during the deferment period and that the fund is completely
invested in shares and hence, as opposed to so called guarantee funds (frequently
offered in cooperating with life insurers), the mutual fund does not provide
any downside protection. Of course, the number of shares in a mutual fund
purchased at time ti depends on the prevailing market value Sti

of the fund
assets and is given by πI

ti
· Sti

.

Definition 8.2.1. The market value of the insureds portfolio at time t > 0
equals

A(t,π,ϕ) :=
M(x,t)

i=0
πI

ti
· St

Sti

=
M(x,t)

i=0
(1 − ϕ)M(x,t)+1−i πN

ti
· St

Sti

(8.1)

with start value A(0,π,ϕ) = 0 and summation limit

M(x,t) := n∗(min{τx,t}) (n∗(t) := max{j ∈ T | tj < t}).

According to Definition 3.1, τx denotes the random residual lifetime of an
insured aged x at time t0 = 0. The investment premium

πI
ti

:= (1 − ϕ)

πG

ti
− φ


− ϕ · A(ti,π,ϕ) = (1 − ϕ)πN

ti
− ϕ · A(ti,π,ϕ)

thus becomes path dependent.

Notice that a proof of the second Equation in (8.1) follows the argumentation
of Schrager and Pelsser (2004) and, for the sake of completeness, is given in
Appendix C.2.1. Although there is only one investment made at the inception
date t0 within single premium contracts, the withdrawals of the charge are
assumed to proceed periodically as well. For the sake of simplicity we decided
against a consideration of annual fees like acquisition, commission and selling
expenses or third-party management fees170. The basic unit-linked contract can
be extended by adding guarantees providing security for surviving dependants
and/or against times of economic downfalls or bad fund performance at maturity.
These options are called GMDB and GMIB respectively. Hereafter, they are
each described in detail.

170 Throughout the chapter we act on the assumption of a single fixed reference fund such
that investment choices for sub-accounts do not take place and therefore the investment
expenses can be neglected.
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8.2.2 The Guaranteed Minimum Death Benefit (GMDB) rider

Typically, the majority of the contracts with guaranteed income benefits include
a guaranteed minimal death benefit such that in the case of death at time t

within the deferment period ] t0,T [ the insureds dependants receive the gross
premiums paid gD(t) until time t plus a bonus amounting to the repayment
level ξ times the greater of the sum of premiums paid and current fund value
A(t,π,ϕ). In general, the GMDB option expires at retirement T .

Definition 8.2.2. Following the notation of Nielsen and Sandmann (2002)
the total guaranteed death benefit GD(t) equals

GD(t) := max {ξ A(t,π,ϕ) + (1 − ξ)gD(t),gD(t)}
= gD(t) + ξ [A(t,π,ϕ) − gD(t)]+

=
i−1
k=0

πG
tk

+ ξ


i−1
k=0

(1 − ϕ)i−k πN
tk

· St

Stk

−
i−1
k=0

πG
tk

+

(8.2)

if the insured dies in year ti−1, i.e. at any real-valued time t ∈]ti−1,ti]. The
guarantee can be interpreted as a portfolio of European call options.

For a repayment level ξ equal to one the death payment equals the maximum
of the benefit base gD(t) and portfolio value A(t,π,ϕ) paid upon the death of
the policyholder. This variant is called the return of premium death benefit
and forms the basic death benefit frequently included in VAs with GMIB rider.
For ξ = 0 the payment equals the guaranteed amount gD(t) in form of a simple
premium refund commonly offered in conventional pension contracts. In the
following, we restrict ourselves to the case ξ = 1, i.e. the full amount of the
bonus payment. A reduced level ξ ∈ [0,1[ solely leads to a decreased option
price and thus a decreased rider fee to be charged.

8.2.3 The Guaranteed Minimum Income Benefit (GMIB) rider

On expiry of the preset deferment or waiting period [0, T ] (typically at least 10
years), the insured has the contractual right to decide between four different
options. Hereby, any pension drawdown within a so called early retirement
phase will be disregarded.

(a) First of all, the insured can allow the GMIB option to lapse and make the
pension provider pay out the market value of his investment portfolio as a
lump sum (either as a cash payment or as fund shares) given by A(T,π,ϕ).
Once this opportunity has been chosen, the contract between the annuity
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provider and the insured ends immediately at maturity T .

(b) Secondly, the insured can choose to convert the market value of his portfolio
into an immediately starting life annuity calculated with the actuarial basis
in force, i.e. the pension payment is not guaranteed. The estimation of the
fair value of the prevailing “market annuity factor” äx+T (T ) and its recipro-
cal, the payout rate rx+T (T ) at time T , takes place under the risk neutral
measure171 P ∗. Hence, the fair annuity value given the information172 FT

is defined as

äx+T (T ) := EP ∗

 ω−x
j=N


βT,tj

−1
1{τx>tj}

FT

 (8.3)

where τx denotes the random residual lifetime of a cohort-representative
policyholder aged x entering the contract at time t0 = 0. βT,tj

describes
the stochastic bank account at time T with maturity tj. A definition of
the money market account follows in Subsection 8.3.2. In particular, the
annuity factor äx+T (T ) equals the expected discounted value at time T of
an immediately starting life annuity with advanced annual payments of one
monetary unit throughout the remaining lifetime of a person aged x + T at
time T . Vice versa, the market annuity payout rate rx+T (T ) specifies the
annual amount paid out by an immediately starting life annuity, negotiated
at time T for a single premium of one monetary unit. Later on, the
market factor äx+T (T ) – which is a function of both interest and mortality
rates – will be discussed more detailed.173 Under the assumption of the
market annuity factor being a fair annuity factor, the option to convert
the investment portfolio just equals the market value of the investment
portfolio, since

A(T,π,ϕ) · rx+T (T ) · äx+T (T )  
=1

= A(T,π,ϕ),

where A(T,π,ϕ) · rx+T (T ) corresponds to the market pension from the

171 Let P ∗ denote the joint probability measure of the financial market measure and the
mortality measure. Due to a complete financial market the marginal distribution concerning
the financial market is given by the unique risk-neutral measure P ∗. Mortality risk is
quantified via the real-world marginal measure P due to the (current) absence of a market
price of mortality risk.
172 A complete filtration setup for the underlying asset as well as mortality model is explained
in Section 8.3.
173 For example Boyle and Hardy (2003), Pelsser (2003) or Ballotta and Haberman (2006)
analyse a contract containing an embedded put option on the annuity factor äx+T , a so-called
guaranteed annuity option. These minimum return guarantees were commonly issued within
pension policies of British insurance companies in the seventies and eighties.
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investment portfolio174.

(c) Third, the insured can choose an immediately starting life annuity paying
out a fixed annual pension. The fixed amount is assumed to be pre-specified
at contract inception date t0 = 0. The expected discounted value (market
price) äx+T (T ) at time T of a life annuity with guaranteed benefit base
L(T ) annuitised at a fixed guaranteed rate rG

x+T (T ) is given by

gI(T,x) := L(T ) · rG
x+T (T ) · äx+T (T ) (8.4)

where the product L(T ) · rG
x+T (T ) equals the fixed annual pension payment.

The representation for the guaranteed periodic annuity amount as a certain
lump sum L(T ) times a certain guaranteed rate rG

x+T (T ) was selected to
allow for GMIBs calculated with different guaranteed interest yields δ ≥ 0.
More precisely, given a certain predetermined175 rate δ and charge ϕ, the
factors L(T,δ,ϕ) and rG

x+T (T,δ) are called GMIB payout amount and rate
respectively. Usually, the guaranteed GMIB payout L(T,δ,ϕ) is provided as
one of the guarantee features listened in Table 8.4 where variable indication
was omitted for the sake of clarity. The fixed payout rate is defined via

rG
x+T (T ) :=

ω−x
j=N

e−δ(tj−T ) · tj−T p̄x+T

−1

, (8.5)

where ω denotes the maximum attainable age from a conservative life table
at time t0 = 0 and sp̄x the corresponding s-year survival probability in
line with a prudent product design. Normally, the insurer selects a life
table which ensures that rG

x+T (T )
rx+T (T ) < 1 under current mortality expectation.

With deciding for opportunity (b) as well as (c) no further dependants
protection176 elements are assumed to be included in the contract.

(d) Finally, the insured can decide to enter an unit-linked prolongation phase
∆S, which usually lasts 7-10 years. At the beginning of the extension in
tN = T the option to hold the policy for one more year and to extend
the fund investment is available. One year later, the opportunities (a)-
(c) as well as the prolongation (d) can be selected. In general, at each
time tj ∈ T := {tN ,tN+1,...,tN+m−1 ∈ ∆S | tN < tN+1 < ... < tN+m−1} the
opportunities (a)-(d) can be chosen and at time tN+m solely the choices

174 Up to this point we are still in the case of an unit-linked pension contract.
175 The guaranteed rate δ usually exceeds the prevailing risk-free (market) interest rate.
176 In practice, current VA product generations include a minimum duration of guaranteed
annuity payments independent of the insureds survival during the pension phase. Furthermore,
the insured can write a conventional supplementary insurance providing living benefits
confined to the widow / widower.
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(a)-(c) are available177. If the policyholder exercises the option to prolongate
the contract at any time tj , we assume the insurer to withdraw the amount
of ϕA(tj,π,ϕ) from the insureds investment portfolio. Depending on the
different enhancement types from Table 8.1 the guarantee is, if necessary,
upgraded in case of an exercise of the prolongation option. In the case
of death within the annuity prolongation phase the dependants receive
the insureds portfolio value as a lump sum payment, i.e. no downside
protection elements are included.

Variable annuity guarantee features

Feature Definition of the benefit base Description
Return of
premium LRP =

N−1
i=0

πG
ti

The standard return of premium option
offers a benefit basis equal the total gross
premiums paid (corresponds to a guaran-
teed minimum yield of 0%).

Roll-up
LRO =

N−1
i=0

πG
ti

· eδ(T −ti)
The (annual) roll-up benefit equals the
respective premium amount accumulated at
a fixed roll-up rate δ. This basis represents
the standard GMIB market feature with a
minimal annual increase commonly in the
range of 3-6%.

Ratchet LRA = max
i=1,...,N

{LRP, A(ti,π,ϕ)} The (annual) ratchet benefit equals the
maximum of the guarantee amount and
the highest historic fund value at different
exercise dates, i.e. a lookback-option with
annual peak level lock-in.

Greater of
ratchet or
roll-up

LRORA = max
i=1,...,N

{LRO, A(ti,π,ϕ)} The enhancement is calculated as the
greater amount under roll-up or ratchet
feature.

Table 8.1: Common guarantee features offered within VA contracts.

Throughout the following we assume that at retirement date T the insured
behaves financially rational such that the GMIB option is exercised if it is
in the money, i.e. it exhibits positive intrinsic value. Assuming this kind of
behaviour tends to result in higher fair charges than those demanded at the
market178. With the objective of showing the existence of a fair guarantee
charge, option (d) will for the time being ignored.

Definition 8.2.3. Conditional upon the survival of the insured until maturity

177 For fiscal reasons, the time tN+m is limited from above by the tax-related maximum
retirement age derived from the applied life table.
178 A policyholder could for example choose the lump sum payment even if the guarantee is
in the money due to a personal financial shortage or a deteriorated health condition.
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T the total contract value equals

GI(T,x) := max {A(T,π,ϕ), gI(T,x)} = gI(T,x) + [A(T,π,ϕ) − gI(T,x)]+

= L(T ) · rG
x+T (T ) · äx+T (T )

+


N−1
i=0

(1 − ϕ)N−iπN
ti

ST

Sti

− L(T ) · rG
x+T (T ) · äx+T (T )

+

, (8.6)

i.e. the guarantee gI(T,x) plus the value of an European exchange option
including the right to trade / surrender the terminal fund value in exchange for
the market value of a life annuity with a guaranteed pension payment.

A conclusion on the intrinsic value at the end of the deferment period thus
depends not only on the fund performance but also on the evolution of the
annuity factors. In Figures 8.1 and 8.2 we illustrate real-world sample paths
of the guarantees (8.2) and (8.6) for a deferment period of length T = 20,
a prolongation phase of ∆S = 10 years and the different pension benefit
features listened in Table 8.1. Since rider charges increase with the rich-
ness of the benefit base L(T ) we assume a common market charge sequence
{ϕRP,ϕRO,ϕRA,ϕRORA} = {25, 40, 60, 85} for the GMDB and GMIB bundle
measured in basis points. In each case the rider fee for the guaranteed refund
of insurance premiums in case of death amounts to 10 basis points. In scenario
A the guarantee base increases due to a good fund performance. Hence, the
ratchet feature leads to the highest option strike level gI(∆S,x) (Subfigure
(8.1.3)). For the RORA case (Subfigure (8.1.4)) the higher cost deduction
caused by high fund returns decreases the option value accordingly. Conversely,
in scenario B the guarantees are in the money (especially the GMDB guarantee
rider) and claim payouts are significant especially for ages x ≤ 70. Due to the
underperforming mutual fund, the roll-up feature with a guaranteed interest δ

(Subfigure (8.2.2)) constitutes the highest downside protection for the customer.
For the ratchet benefit (Subfigure (8.2.3)) the GMIB rider is merely “out of
the money”.

8.3 Model specification

8.3.1 Combined filtration setup

In the following, we introduce stochastic processes for the fund prices, spot
interest rates, bond prices and mortality rates. All processes are defined on a fil-
tered probability space (Ω,F,P ) with filtration F = (Ft)t≥0 satisfying the usual
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Guarantee value and fund value paths for different features - scenario A
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(8.1.1) L(T ) = LRP (ϕRP = 25 bps)
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(8.1.2) L(T ) = LRO (ϕRO = 40 bps)
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(8.1.3) L(T ) = LRA (ϕRA = 60 bps)
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(8.1.4) L(T ) = LRORA (ϕRORA = 85 bps)

Figure 8.1: Real-world guarantee values for different features in case of a good
fund performance (scenario A) w.r.t. an individual aged x = 45, a contract maturity
T = 20, a prolongation phase ∆S = 10 years and a guarantee rate δ = 0.04. The
process parameters are taken from Tables 8.2-8.4.

conditions and representing all available information at different times t ≥ 0.
The filtration F is composed as an aggregation of two strict subfiltrations signed
G and H. Subfiltration H = (Ht)t∈[0,ω−x] with Ht = σ


{1{τx≤s} : 0 ≤ s ≤ t}


describes the risk of random fluctuations of the residual lifetime and corre-
sponds to the minimal filtration containing information whether death occurs
or not. Subfiltration G = (Gt)t∈[0,ω−x] contains information in form of a min-
imal σ-algebra Gt = σ ({µx+s, rs, Ss : 0 ≤ s ≤ t}) concerning the evolution
of interest rate, fund price and mortality rate state variables until time t.
Gt = It ∨ Mt equals a disjoint union of filtrations It = σ ({rs, Ss : 0 ≤ s ≤ t})
and Mt = σ ({µx+s(s) : 0 ≤ s ≤ t}) for all t ∈ [0, ω − x], i.e. the financial
risk can be decoupled from mortality risk via independence assumption.179 In

179 The independence assumption of mortality and financial risk is quite common in actuarial
literature, see e.g. Bacinello and Ortu (1994), Nielsen and Sandmann (1996), Milevsky and
Promislow (2001) or Dahl and Møller (2006).
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Guarantee value and fund value paths for different features - scenario B

45 50 55 60 65 70 75
x+t

5

10

15

20

25

30

35

value

AHt,Π,jL

AHt,Π,0L

gIHDS,xL

GIHDS,xL

GDHtL
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(8.2.3) L(T ) = LRA (ϕRA = 60 bps)
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Figure 8.2: Real-world guarantee values for different features in case of a bad fund
performance (scenario B) w.r.t. an individual aged x = 45, a contract maturity
T = 20, a prolongation phase ∆S = 10 years and a guarantee rate δ = 0.04. The
process parameters are taken from Tables 8.2-8.4.

particular, filtration It is independent of the union Ht ∨ Mt for times t ≥ 0.

8.3.2 Interest rate model

For the financial setting (cf. Subsection 7.2.2) we define βt,t̄ as the stochastic
bank account at time t with maturity t̄ of one monetary unit invested at time
t (0 ≤ t ≤ t̄ ≤ ω − x) given by

βt,t̄ = exp
 t̄

t

ru du


following the dynamics dβt,t̄ = βt,t̄ rtdt ,

where r = (rt)0≤t≤ω−x denotes the continuously compounded spot interest rate.
Let D(t,t̄) denote the time t price of a zero coupon bond with maturity t̄ defined
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by

D(t,t̄) = EP

exp


−
t̄

t

ru du

It

 = EP


βt,t̄

−1
 It


. (8.7)

In the following, we assume a complete and arbitrage-free financial market
model under interest rate risk where the dynamic of the zero coupon bonds is
lognormal. Thus, the interest rate dynamics follow a Gaussian Heath, Jarrow
and Morton model (1992), i.e.

dD(t,t̄) = D(t,t̄) (rtdt + σt̄(t)dW r
t ) , D(t,t) = 1, (8.8)

where W r denotes a one-dimensional It-adapted Brownian motion with respect
to the real world measure P , and σt̄ satisfies the usual regularity conditions.
In particular, the volatility of the zero coupon bond σt̄(t) is a time-dependent
function180 with σt̄(t̄) = 0. For illustrative purposes, we apply a (one-factor)
Hull and White model (1990) where

d rt = (θ(t) − a rt) dt + σspot d W r
t , r0 > 0 (8.9)

for speed of mean reversion a, long term reversion level θ(t)/a and spot rate
volatility σspot. In contrast to Subsection 7.3.2 the parameters a and σspot are
exogenous and not calibrated to market swaption quotes. The closed form
solution for the zero coupon bond price is given by

D(t,t̄) = exp

A(t,t̄) − B(t,t̄)rt


where

A(t,t̄) = ln


DM (0,t̄)
DM (0,t)


+ B(t,t̄) f(0,t) − σ2

spot

4a


B(t,t̄)

2 
1 − e−2at


,

B(t,t̄) = 1
a


1 − e−a(t̄−t)


.

The quantity DM(0,t̄) denotes the market discount factor181 and market in-
stantaneous forward rates are derived from fM(0,t̄) = −∂ ln(DM (0,t̄))

∂t̄
. The

benchmark parameter constellation is given in Table 8.2. The uncertainty of
the market annuity factor äx+T (T ) at retirement T as an expected discounted
value additionally exposes the contract value to interest rate risk.

180 In particular, it holds σt̄(t) = σspot

a (1 − e−a(t̄−t)) for the Hull-White interest rate model.
The time-dependent model parameter θ( . ) is used to calibrate the model to the observed
market zero bond prices DM (0,t̄).
181 For reasons of simplification and ease of use, we assume initial market prices DM (0,t̄) =
e−rM

0 t̄ resulting from a flat initial term structure at rM
0 continuously compounded.
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8.3.3 Mutual fund model

A common choice for the price process of a single mutual (reference) fund or
stock {St : t ≥ 0} is given by the geometric Brownian motion182 along the lines
of Black and Scholes (1973), i.e.

dSt = µSStdt + σSStdW S
t , S0 > 0 (8.10)

for an instantaneous rate of return µS, volatility σS and a one-dimensional
It-adapted Brownian motion with respect to P satisfying the usual regularity
conditions. Therefore, Itô’s lemma yields real world fund prices

St = S0 exp


µS − σ2
S

2


t + σSW S

t



such that future fund prices are lognormally distributed with St ∼ LN(S0e
µSt,

S2
0e2µSt(eσ2

St − 1)). As equations (8.2) and (8.6) indicate, the contract value at
time t ∈ ] 0, T ] is strongly affected by the performance of the mutual fund. In
the following, we concentrate on a single reference fund S quoted in national
currency (see Table (8.3) for the parameters used in the numerical analysis
under Section 8.5) such that the insured does not need to select out of a number
of funds. Thus, the so called right to switch or shift between different offered
mutual funds during the accumulation period should no longer be regarded.

8.3.4 Complete and arbitrage-free financial market model

In the following, we define a combined equity and interest rate market model.
Therefore the financial market consists of two traded assets, a fund and a bond.
Under the financial market measure P ∗ the risk-neutral fund and bond prices183

follow

dSt = St (rtdt + σSdW ∗
t )

dD(t,t̄) = D(t,t̄)

rtdt + σt̄(t)dW 1∗

t


where W ∗ and W 1∗ denote Brownian motions with respect to P ∗. We assume the
fund and bond returns to be correlated with cross-variation d ⟨W ∗,W 1∗⟩t = ρdt

182 For the sake of simplicity, we choose a geometric Brownian motion although it might
not be suitable to model stock prices for a long term equity-linked life insurance contract.
Furthermore, we excluded stochastic (fund) volatility. For further research on stochastic
asset volatility in the context of variable annuities see Benhamou and Gauthier (2009).
183 The Girsanov Theorem ensures the existence of dW ∗

t = dW S
t +


µS−rt

σS


dt where µS−rt

σS

denotes the classical form for the market price of risk.
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and correlation coefficient ρ ∈ [−1,1] respectively. Furthermore, the discounted
price process {St}0≤t≤u of the mutual fund as well as the discounted price
process {D(t,u)}0≤t≤u (normalised under the money market account) of all unit
face value zero coupon bonds with maturity u ∈ R+ are martingales under P ∗,
i.e.

St = EP ∗


βt,t̄

−1
St̄

 It


∀ t̄ ≥ t,

D(t,u) = EP ∗


βt,t̄

−1
D(t̄,u)

 It


∀ t̄ ∈ [t,u], ∀u ≥ t̄.

The risk-neutral martingale measure is the probability measure employing the
risk-free money-market account as the numeráire. Given an unique risk-neutral
measure, the pricing of financial instruments is applied by path dependent
computation of the expected discounted future cash flows. As a next step,
consider a Brownian motion W 2∗ independent from W 1∗ with d ⟨W 1∗,W 2∗⟩t = 0.
In order to decorrelate the interest rate and fund asset risk we express W ∗ via
the Cholesky decomposition

dW ∗
t = ρ dW 1∗

t +


1 − ρ2 dW 2∗
t ,

such that

dSt = St


rtdt + σS


ρ dW 1∗

t +


1 − ρ2 dW 2∗
t


, (8.11)

dD(t,t̄) = D(t,t̄)

rtdt + σt̄(t)dW 1∗

t


. (8.12)

Along the lines of Jamshidian (1991) or Geman et al. (1995) we change the
numeráire from the money-market account towards zero coupon bond prices
with maturity u (t ≤ t̄ ≤ u) which leads to a u-forward risk-adjusted measure
P u determined by the Radon-Nikodym derivative

dP u

dP ∗


It

= exp
 t

0

σu(s)dW 1∗
s − 1

2

t
0

(σu(t))2 ds

 .

Under this measure, expected cash flows of the financial instruments discounted
with the bond numeráire are martingales184 under P u such that

St = D(t,u) EP u


Su

D(u,u)

 It


∀ u ≥ t,

184 Nielsen and Sandmann (1996) give more details and necessary regularity conditions with
respect to the financial market.
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D(t,T ) = D(t,u) EP u


D(u,T )
D(u,u)

 It


∀ u ∈ [t,T ]

with normalised price dynamics

d


S(t)

D(t,u)


= S(t)

D(t,u)


(ρσS − σt(u)) dW 1∗,u

t +


1 − ρ2 σS dW 2∗,u
t



d


D(t,t̄)
D(t,u)


= D(t,t̄)

D(t,u)

σt(t̄) − σt(u)


dW 1∗,u

t

for Brownian motions dW 1∗,u
t = (dW 1∗

t − σt(u)) dt, dW 2∗,u
t = dW 2∗

t under
P u. Hence, the expected (forward) accumulated fund shares until time u

(T ≥ u ≥ ti ≥ 0; i = 0,...,n∗(u)) accrued against a unit premium under the
forward measure P u can be written as

EP u

n∗(u)
i=0

Su

Sti

 I0

 =
n∗(u)
i=0

EP u


Su

Sti

 I0


= 1

D(0,u)

n∗(u)
i=0

EP ∗


(β0,u)−1 Su

Sti

 I0



= 1
D(0,u)

n∗(u)
i=0

EP ∗


(β0,ti

)−1

Sti

EP ∗


(βti,u)−1 Su

 Iti

 I0



= 1
D(0,u)

n∗(u)
i=0

EP ∗


(β0,ti

)−1 Sti

Sti

 I0


=

n∗(u)
i=0

D(0,ti)
D(0,u) .

(8.13)

Therefore, application of the forward measure allows a path-independent calcu-
lation of the accumulated fund shares, which is not the case for the equivalent
martingale measure P ∗.

Parameters for the Hull-White model

rM
0 a θ(t) σspot

0.035 0.25 arM
0 + σ2

spot

2a
(1 − e−2at) 0.015

Table 8.2: Parameters for the Hull-White interest rate process. For
the sake of simplicity, we assume a flat (initial) term structure185 rM

0 .

Parameters for the fund value process

S0 µS σS ρ

100 0.08 0.2 -0.1

Table 8.3: Parameters for the mutual fund value process.

185 A calibration of the Hull and White model on the basis of the market yield curve and
swaption straddle implied volatilities was already executed in Subsection 7.3.2.
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Real-world process prediction

(8.3.1) Interest rates (8.3.2) Pre-retirement discount factors

(8.3.3) Post-retirement discount factors (8.3.4) Mutual fund prices

Figure 8.3: Real-world process prediction interval fan charts and location measures
mean (solid) and median (dashed) for 5 · 104 sample paths. The sampling is based
on the parameters listed in Tables 8.2-8.4.

8.3.5 Mortality model

The motivation and necessity of modelling mortality stochastically was given
in Section 4.1 of Chapter 4. The stochastic mortality risk model presented
by Ballotta and Haberman (2006) allows for time and age dependence of
the mortality rate and furthermore for integrated modelling of unsystematic
and systematic mortality risk. Unsystematic mortality risk describes random
fluctuations around a trend and can be diversified by enlarging the cohort
size using the law of large numbers. Ballotta and Haberman (2006) combine
a traditional mortality law, i.e. a parametric age-dependent function of the
mortality rate, with a stochastic exponential reduction factor. A reduction
factor determines the rate of change in mortality rates over time.

We assume that the initial force of mortality µx(0) is given by a standard
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Gompertz-Makeham mortality law of the form

µx+t(0) = α0 + β0 γx+t
0 α0 ≥ 0; β0, γ0 > 0.

The initial mortality law µx+t(0) equals the mortality rate of a person aged
x + t years at time 0. Combining the age-dependent mortality law with an
age-period exponential reduction factor yields

µx+t(t) = µx+t(0) exp ((α + β(x + t))t + γYt) α ≥ 0, β, γ > 0 (8.14)

(Yt)t≥0 forms an Ornstein-Uhlenbeck process with a long-run mean reversion186

level that equals zero and a speed factor κ defined by the differential equation

dYt = −κYt dt + dW µ
t , Y0 = 0, κ > 0

with a solution given by

Yt =
t

0

e−κudW µ
u such that Yt ∼ N


0,1−e−2κt

2κ


∀ t > 0.

W µ denotes a standard Wiener process under the physical measure P assumed
to be independent of random motions in the financial market. The process (8.14)
is similar to the non mean reverting Brownian Gompertz187 process introduced
in Milevsky and Promislow (2001) and the logarithmised mortality rate at time
t > 0 is normally distributed188 with mean (α + β(x + t))t + ln(µx+t(0)) and
variance γ2

2κ
(1 − e−2κt).

Lemma 8.3.1. The mortality rate (8.14) follows a diffusion process of the form

dµx+t(t) = ζ(µx+t(t),t) µx+t(t) dt + γ µx+t(t) dW µ
t , µx+t(0) > 0 (8.15)

with positive drift ζ(µx+t(t),t) defined by the equation

186 Ballotta and Haberman (2006) put the mean reversion property of mortality improvements
up for discussion. Some authors like Luciano and Vigna (2006) conclude that the use of
(positive) mean reverting affine processes which are successively used in finance implicates
some undesirable characteristics providing a non-adequate image of mortality evolutional
phenomenons like rectangularization or (high-)age expansion.
187 In contrast, the process introduced by Milevsky and Promislow (2001) does not capture
deterministic time dependence such that all period effects should be captured by the volatility
parameter γ. Stochastic reduction factor models were also used by Dahl and Møller (2006)
and Biffis et al. (2010).
188 A proof of the normal distribution for Yt and log (µx+t(t)) is given in Appendix C.1.
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ζ(µx+t(t),t) = α + β(x + 2t) + 1
2γ2 + κ ln (µx+t(0)) + κ (α + β(x + t)) t

− κ ln (µx+t(t)) .

Proof. See Appendix C.1.2.

The tail distribution of the remaining lifetime τx of a person aged x at time
t0 = 0 yields conditional survival probabilities equal to

tpx(0) = P (τx > t| H0 ∨ M0) = EP


1{τx>t}

H0 ∨ M0


= EP [ tp̃x| M0] = EP

exp
−

t
0

µx+u(u)du

M0

 ,

T −tpx+t(t) = P (τx > T | Ht ∨ Mt) = EP


1{τx>T }

Ht ∨ Mt


= EP


T p̃x

tp̃x

Mt


= EP

exp
−

T
t

µx+u(u)du

Mt

 , (8.16)

where tp̃x = EP


1{τx>t} | Mt


is called the survivor function or survivor index

and describes the survival probability conditioned on a realised mortality
path until t. Since the integral (infinite sum) of lognormal mortality rates
is not necessary lognormally distributed, the survival function T −tpx+t(t) has
no closed-form solution and thus has to be approximated by means of Monte
Carlo simulation. Within the mortality model (8.14) parameter α, if chosen
deterministically, accounts for changes in the mortality pattern over different
time periods whereas the parameter β is responsible for age specific changes in
the mortality intensity. Since systematic mortality risk describes period specific
systematic deviations from the mortality expectation, Ballotta and Haberman
(2006) introduce systematic parameter uncertainty by modelling α = α̃ as a
random variable when sampling post-retirement survival probabilities. More
precisely, in order to generate a single mortality rate path, α̃ is taken from a
certain discrete or continuous probability distribution189. The path drawn from
this α̃ yields one possible mortality evolution out of a family of future projected
mortality rates. By taking the risk-neutral expectation we implicitely consider
a different survival distribution and thus a longevity loading factor inducing
higher charge values. Vice versa, for a fixed α, model (8.14) solely allows

189 Ballotta and Haberman (2006) propose α̃ to be uniform distributed. However, since
longevity constitutes the predominant mortality trend we use an abscissa-reflected general
Gamma Γ (6,3 · 10−3,0.22) distribution which is left-skewed (i.e. longevity sensitive) and
similar to the uniform approach concerning the moments.
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for unsystematic mortality risk. In Figure 8.4 we illustrate post-retirement
multi-annual survival probabilities for a fixed α (Subfigure (8.4.1)) and an
uniformly distributed α̃ introducing systematic mortality deviations (Subfigure
(8.4.2)).

Benchmark parameters for the Brownian Gompertz-Makeham model

x ω α0 β0 γ0 α β γ κ

45 110 0 1.29 · 10−4 1.0829 −0.1051 1.25 · 10−3 0.1 0.5

Table 8.4: Parameters for the non mean reverting Brownian Gompertz-Makeham
mortality model. The Gompertz-Makeham parameters (α0, β0, γ0) were fitted to
central death rates of the 2006 German male period life table from the Human
Mortality Database (2009). Parameters γ and κ were taken from Ballotta and
Haberman (2006), α and β were fitted to the post-retirement survival curve of the
2006 period life table since these parameters represent the deterministic part of the
mortality model.

8.4 Pricing of variable annuities with bundled GMDB
and GMIB rider

When considering VA contracts there arise some elementary differences to
traditional (unit-linked) deferred annuity policies. This has implications both
on the choice of the pricing measure and definition of fair contract parameters.

8.4.1 Derivation of the market annuity factor

As an integral part of the income benefit guarantee (8.4) the market annuity
factor (8.3) has to be reviewed.

Remark 8.4.1. The independence assumption of financial and mortality risk
together with the Definition (8.16) yields

äx+T (T ) = EP ∗

 ω−x
j=N


βT,tj

−1
1{τx>tj}

FT


= EP ∗

 ω−x
j=N


βT,tj

−1
 IT

 EP


1{τx>tj}

HT ∨ MT



= T p̃x

ω−x
j=N

D(T,tj) EP

exp

−
tj

T

µx+u(u)du


MT


= T p̃x

ω−x
j=N

D(T,tj) tj−T px+T (T ). (8.17)
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Pre-retirement and post-retirement survival functions

50 55 60 65
x+t

0.88

0.92

0.96

1.00

t pxH0L

HΑ=-0.1051=constL

Gompertz-Makeham

HMD mortality data

(8.4.1) Pre-retirement survival function (cf. Eq. (8.5))

(8.4.2) Post-retirement survival function (cf. Eq. (8.17))

Figure 8.4: Survival functions without and with systematic mortality risk based
on life table data from the Human Mortality Database (2009). The random post-
retirement survival probabilities are illustrated by means of prediction intervals
against the conservative survival function used to calculate the guaranteed payout
rate (8.5).
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For the calculation of fair percentage charges and contract values we assume
survival probabilities to coincide under the real-world and risk-neutral proba-
bility measure190 (i.e. the market price of mortality risk is zero) to calculate
a fair charge according to the fair premium principle which is equal to the
assumption of the market being risk neutral with respect to systematic and
unsystematic mortality risk.

8.4.2 Existence and uniqueness of a fair percentage charge

From a life insurers point of view, the traditional role of a service provider
covering biometric risk is substituted by the role of a seller of complex financial
and mortality risk bearing options. Traditional reserving schemes had to be
replaced by hedging strategies191 in case were an actuarial reserve is completely
hold in fund shares. When considering the differences compared to traditional
annuity pricing, the common equivalence premium principle has to be reviewed.
Therefore, the fair premium principle applied by Nielsen and Sandmann (2002)
combines risk-neutral valuation and diversification arguments given by the
principle of equivalence since the contract payoff is driven by both financial and
mortality risk. An application of the fair premium principle ensures the existence
and uniqueness of a fair premium in the context of traditional equity-linked
endowment insurance contracts. Nielsen and Sandmann assume the market to
be risk-neutral towards systematic mortality risk, i.e. any insurance risk can
theoretically be fully diversified. However, this approach presupposes that a
mortality derivative market192 is complete such that there exists a dynamic self-
financing replication portfolio. More precisely, the portfolio contains liquidly
traded securities which perfectly match the payoff of the underlying VA contract.
According to the no-arbitrage principle the option price given as the expected
discounted contract payoff under the unique martingale measure and the initial

190 This approach was, for example, also considered by Milevsky and Promislow (2001),
Schrager and Pelsser (2004) or Ballotta and Haberman (2006). Dahl (2004) and Ballotta
and Haberman (2006) assume an incomplete market for mortality-linked securities. This
assumption is justified by the (current) absence of market prices of mortality risk. Hence,
there is no adequate numeráire available that allows to derive an unique artificial probability
measure, see e.g. Dahl (2004), Lin and Cox (2005) and Biffis et al. (2010).
191 Dynamic discrete hedging techniques are applied to secure the insurers solvency. The
effectiveness primarily depends on the choice of a robust and reliable underlying model.
In any case, the hedging of embedded annuity options is particularly difficult due to high
transaction costs, long-maturities and limited liquidity.
192 At the moment, a mortality derivative market is far from being complete since there are
no actively traded financial instruments suitable for a hedge of systematic mortality risk
especially longevity risk. Several bilateral tailor-made reinsurance solutions like the longevity
bond emitted in December 2010 by the Swiss Re reinsurance company represent first efforts
in longevity securitisation.
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value of the hedge portfolio coincide.

We apply the fair premium principle to the guaranteed benefit of a VA contract
defined in Section 8.2 with an exogenously given premium. The result is an
implicit equation for the fair percentage guarantee charge which can be solved
numerically. Nevertheless, the general technique and line of argumentation of
Nielsen and Sandmann (2002) can be retained. In order to price the guarantee
riders the VA contract is assumed to be compared to a pure unit-linked
endowment insurance contract without any guarantees.

Remark 8.4.2. For a given guarantee charge ϕ and a net premium πN > 0 the
risk-neutral prices CD(x,t) and CI(x,t,T ) at time t for the guaranteed death
and living benefits equal the discounted expected values of the random future
option payoffs under the forward risk adjusted measure. In particular, using
Equations (8.2) and (8.6) the prices are given as follows

CD(x,t) =
T

t

EP ∗


(βt,u)−1 ·


gD(u) + [A(u,π,ϕ) − gD(u)]+


1{τx=u}

Ft


du

=
T

t

D(t,u) EP u


gD(u) + [A(u,π,ϕ) − gD(u)]+


1{τx=u}

Ft


du

=
T

t

D(t,u) tp̃x · d
du

(u−tqx+t(t))

gD(u) + EP u


[A(u,π,ϕ) − gD(u)]+

Ft


du,

(8.18)

CI(x,t,T ) = EP ∗


(βt,T )−1 ·


gI(T,x) + [A(T,π,ϕ) − gI(T,x)]+


1{τx>T }

Ft


= D(t,T ) EP T


gI(T,x) + [A(T,π,ϕ) − gI(T,x)]+


1{τx>T }

Ft


. (8.19)

The following Lemma provides the different parts of a conditional equation for
the fair percentage guarantee charge.

Lemma 8.4.3. Let η denote the repayment level of the put option payoffs (8.2)
and (8.6). The expected discounted present value of the total rider fee (RF)
income charged from the insureds fund value is calculated as

EDPV RF(ϕ) = EP ∗


N−1
i=0

ϕA(ti,π,ϕ)
β0,ti

F0


=

N−1
i=0

ϕ EP ∗


A(ti,π,ϕ)

β0,ti

F0



=
N−1
i=0

ϕ
i−1
j=0

(1 − ϕ)i−jπN
tj

EP ∗


(β0,ti

)−1 Sti

Stj

 I0


EP


1{τx>ti}

Htj
∨ Mtj



=
N−1
i=0

ϕ
i−1
j=0

(1 − ϕ)i−jπN
tj

D(0,ti) EP ti


Sti

Stj

 I0


tj

p̃x · ti−tj
px+tj

(tj)
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=
N−1
i=0

ϕ
i−1
j=0

(1 − ϕ)i−jπN
tj

D(0,tj) tj
p̃x · ti−tj

px+tj
(tj).

As a benefit in return, the insurer guarantees a death benefit with expected
discounted present value

EDPV GMDB
η (ϕ) = EP ∗

 T
0

(β0,u)−1


η GD(u) −
n∗(u)
i=0

πN
ti

Su

Sti


1{τx=u} du

F0


=

T
0

D(0,u)


EP u


η GD(u)1{τx=u}

F0


−
n∗(u)
i=0

πN
ti

EP u


Su

Sti

 I0


d

du
(uqx(0))


du

= η CD(x,0) −
T

0

n∗(u)
i=0

πN
ti

D(0,ti) d
du

(uqx(0)) du, (8.20)

i.e. the expected discounted payoff of a VA with GMDB during the savings
phase minus the expected discounted payoff of an unit-linked life endowment
insurance. Furthermore, we obtain the expected discounted present value of the
guaranteed living benefits via

EDPV GMIB
η (ϕ) = EP ∗


(β0,T )−1


η GI(T,x) −

N−1
i=0

πN
ti

ST

Sti


1{τx>T }

F0



= D(0,T )


EP T


η GI(T,x)1{τx>T }

F0


−
N−1
i=0

πN
ti

EP T


ST

Sti

 I0


T px(0)



= η CI(x,0,T ) −
N−1
i=0

πN
ti

D(0,ti) T px(0) (8.21)

which equals the benefit related difference of the expected discounted payoff of
a variable annuity contract with GMIB feature and the expected discounted
payoff of an unit-linked assurance on survival to a stipulated age.

In the following Definition, we consider the question how to specify a fair
contract, i.e. how to specify a fair percentage guarantee charge ϕ∗ for a given
periodic net premium πN > 0.

Definition 8.4.4 (Fair Percentage Charge). Consider a variable annuity con-
tract with a bundled GMDB and GMIB rider as specified in Section 8.2, i.e.
the repayment level η equals one. For each net premium πN > 0 the percentage
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guarantee charge ϕ∗ is called a fair charge, if it forms a solution to

EDPV RF (ϕ∗) = EDPV GMDB
η=1 (ϕ∗) + EDPV GMIB

η=1 (ϕ∗), (8.22)

i.e. if the expected discounted present value of the total charge income coincides
with the difference between the expected discounted present benefit of the
variable annuity and a unit-linked endowment contract.

The object of the following investigation is the proof of the existence of a
fair charge satisfying Definition 8.4.4. The subsequent proposition presents
properties of the percentage charge in the case of extreme contract specifications
without any guarantees.

Proposition 8.4.5. Consider a net premium πN > 0 and a variable annuity
contract without any guaranteed payments, i.e. gD = gI = 0.

(a) Assume that, the repayment level η is equal to one and in the case of death
at time t ∈ ] 0,T ] during the deferment period the insurer pays out the
market value of the insureds investment portfolio A(t,π,ϕ). Furthermore,
it is assumed that, if the insured survives until retirement T , the market
value of A(T,π,ϕ) is paid out. Then the fixed percentage charge ϕ is a fair
charge if and only if ϕ = 0.

(b) Assume that the above contract representation is modified in a sense of
reduced repayments, i.e. we have payouts η A(t,α,P ) and η A(T,α,P ) re-
spectively for η ∈ ] 0,1 [ . Then there exists a unique fair charge ϕ∗ and it
holds ϕ∗ < 0.

Proof. See Appendix C.2.2.

Remark 8.4.6. With the objective of deriving a unique fair charge ϕ∗ a
restriction with respect to the total guaranteed amount for all t ∈ ] 0,T ] has
to be formulated. Assume that the expected present discounted value of the
payoff in case of a guarantee charge ϕ equal to one193 is bounded from above
by the expected present discounted payoff value of a unit-linked endowment
insurance contract without any guarantee. Otherwise, a comparison of the
VA and unit-linked endowment contract makes no sense in the way that a fair
charge cannot be uniquely determined. The relationship can be expressed by

193 A guarantee charge equal to one ensures that the full premium amount is available to
hedge the guarantee. A fund investment does not take place.
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the following inequality

T
0

D(0,u) EP u


gD(u)1{τx=u}

Ft0


du + D(0,T ) EP T


gI(T,x)1{τx>T }

Ft0



<

T
0

n∗(u)
i=0

πN
ti

D(0,ti) d
du

(uqx(0)) du +
N−1
i=0

πN
ti

D(0,ti) T px(0)

which is equivalent to

EDPV GMDB
η=1 (1) + EDPV GMIB

η=1 (1) < 0 = EDPV RF (1). (8.23)

Theorem 8.4.7 (Existence and Uniqueness of a Fair Percentage Charge).
Suppose a variable annuity contract as specified in Section 8.2, a net premium
πN > 0 and guarantees gD and gI satisfying assumption (8.23). Let the value
of the mutual fund St be continuously distributed for any time t. Then there
exist a unique fair percentage charge ϕ∗ and it holds ϕ∗ ∈ ] 0,1 [ .

Proof. See Appendix C.2.3.

8.5 Numerical analysis

8.5.1 Variable annuities with a bundled GMDB and GMIB rider
offered in the German insurance market

In September 2008 the German government introduced a bill to change the
Insurance Supervision Act which aimed at a loosening of actuarial reserve
accounting by means of close-to-market accounting rules. However, due to
growing concern after the financial crisis as from 2007 this draft was postponed
indefinitely only three months later. Until now, regulation changes that pro-
mote a VA business from a reserving point of view are still in progress. The
common reserving using a fixed guaranteed interest rate makes the offering
of VA products for German insurance companies without foreign subsidiary
companies nearly impossible under economic considerations. In particular,
even if a company is perfectly secured by a dynamic hedge portfolio194, it

194 Graf et al. (2006) analyse the concept and the effects of a dynamic delta(-rho)-hedging
exemplified by a standard Guaranteed Minimum Accumulation Benefit (GMAB) unit-linked
contract. Typically, market Guaranteed Minimum Death Benefits (GMDBs) are delta-hedged
by exchange-traded index options / futures with weekly rebalancing. Contracts with a GMIB
rider are dynamically secured by a delta-rho-hedge using equity index / bond futures as well
as interest rate futures / swaps.
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still has to establish additional actuarial reserves for strongly uncertain future
(guarantee) liabilities. Hence, foreign assurers which are not under the control
of the national state supervision represented by the BaFin benefit from this
competitive disadvantage. Despite or even because of this regulation rule the
German insurance market was one of the first European countries in which
VAs were offered.

The currently traded VA products of the third pillar with GMIB and GMDB
riders during the savings phase are the AXA TwinStar Invest (since April 2006
with sales stop in April 2009 and relaunch for the new business in January 2010)
and the Swiss Life Champion (since October 2008). The policies are processed
by AXA Life Europe Limited located in Ireland and Swiss Life Products S.A.
located in Luxembourg respectively. As of November 2010, the annual M&E-
charge for the TwinStar Invest product variant “Chance / Index” amounted to
80 basis points. The cost of the bundled195 GMDB and GMIB rider calculated
with a RO benefit base196 lay between 75 and 190 basis points197 of the fund
value. In the 2009 “Active” variant Swiss Life customers paid 10 basis points for
the GMDB amounting to the return of premiums paid in case of death during
the savings phase. For the GMIB rider 100-250 basis points were charged
depending on the selected fund composition. Both products offer individual
fund selection out of a predefined portfolio and the option of dynamic benefit
adjustments between 1 and 10 percent.

8.5.2 Calibration and parameter values

Schrager and Pelsser (2004) derive bounds for the valuation of (8.18) and (8.19)
since no closed form for the option prices exist. Nevertheless, we can estimate a
fair charge using nested Monte-Carlo simulation under the risk-neutral measure.
Similar to Vellekoop et al. (2006) we initially simulate 2 · 104 sample paths for
discretised versions of the processes (8.9), (8.10) and (8.14) using the parameters
listed in Tables 8.2-8.4. Thereafter, we calculate the discounted guarantee
payoffs and the discounted present value of the total rider fee. The differences
of the path dependent benefits of a VA and an unit-linked life endowment
insurance contract on the one hand and the rider income on the other hand

195 In the following, we use the term bundled GMDB and GMIB rider in the sense that
the guaranteed death benefits equal the refund of premiums paid and solely living benefit
enhancement features are varied.
196 At the time of the TwinStar launch in 2007 AXA granted a roll-up rate of 3-5% depending
on the respective contract duration and age at inception.
197 The exact guarantee charge values depend on the contract duration, method of premium
payment, fund investment and the policyholders age at inception.
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are gradually summed up. The root of the sum of differences yields the fair
charge estimate. Its determination is carried out by using a simple numerical
static line search method.

In the following, we assume a 45-year-old male signing a regular premium
unit-linked annuity insurance contract with a guaranteed living benefit only
at maturity T = 20. The contract is optionally provided with a guaranteed
death benefit during the accumulation period with full repayment level ξ = 1.
For reasons of simplification, we set ∆S = 0 and the net premium amount πN

equal to one, i.e. the selection phase and fixed costs are excluded. We assume
that during the savings phase the customer neither withdrawals from the fund
value, neither undertakes additional payments nor negotiates a premature
redemption. Furthermore, besides equity returns or guaranteed interest on the
living benefits, the policyholder is not allocated to any profit participation. We
neglect the common process management for the last years prior to maturity,
at which the fund shares are successively shifted into a money market fund or
comparable retail funds with low volatility. The fixed payout rate rG

x+T (T ) is
calculated using a conservative survival function containing a safety margin
of 3% on the parameter α and a guaranteed discount rate δ, if not mentioned
otherwise, amounting to 4%. The market annuity factor äx+T (T ) is simulated
using Equation (8.17). The Monte Carlo standard errors for the fair percentage
charge ϕ∗ are at least smaller than 3.1 · 10−5 for 2 · 103 simulated charges which
are themselves expected values of 2 · 104 individual simulations. The simulation
errors for the corresponding option prices CD(x,0) and CI(x,0,T ) are at least
less than 3.2 · 10−4 and 3.7 · 10−3 respectively. Therefore, the sample path
number seems appropriate.

8.5.3 Analysis of the fair charge and option price

Estimation of fair percentage guarantee charges for different guar-
antee features

Similar to the results of Bauer et al. (2008b), Table 8.5 illustrates that GMDB
options are in general overpriced198 (see e.g. Milevsky and Posner (2001)) with
market charges of 15-35 basis points (bps). Sometimes, the standard return of
premium death benefit is included without taking an explicit additional charge
for it which is the case for the TwinStar Invest policy. On the contrary, single
GMIB options (charges generally range from 15 to 75 bps) are underpriced partly
198 Common GMDB guarantees exhibit longer durations up until the tax-related maximum
retirement age. The rider equipment varies from the paid gross premiums (RP) to an annual
ratchet base (RA) and a 5%-6% annual roll-up base (RO).
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due to assumptions on the insureds irrational behaviour concerning surrender
and lump sum payment even if the option is valuable for the policyholder. More
precisely, the product pricing based on a financially rational customer behaviour
causes charges that exceed the market prices several times over especially for
those features with a common roll-up benefit base. It can be assumed that in
practice an insurer utilizes cross-subsidies in bundling products with different
riders which are less correlated among each other.

Sun (2006) points out that a bundling of the GMDB and GMIB rider (both
provided with a RORA benefit base) barely offers cost reduction or natural
hedging potential since both riders are nearly perfectly positively correlated
with regard to the option’s moneyness (cf. Figures 8.1 and 8.2). Depending on
the scope of guarantee benefits the bundled charge deduction may use up any
further cost reduction potential. In other words, the joint fund value is reduced
more severe which consequently leads to an increase in the overall option price.
For the RP variant we observe a moderate cost decrement of 6% in the bundled
rider fee compared to the (direct) sum of fees which is similar to the estimation
results in Sun (2006). In the following, we analyse the impact of variations

Fair percentage charges for different guarantee features

rider guarantee feature
composition RP RO RA RORA
GMDB (RP) 3 — — —
GMIB 32 174 78 201
GMDB (RP) + GMIB 33 171 79 196

Table 8.5: Fair percentage charges (in bps) for different guarantee features w.r.t.
an individual aged x = 45, a contract maturity T = 20 and guarantee rate δ = 0.04.
The charge estimates are based on 2 · 104 iterations.

in input factors like contract, financial market and mortality parameters on
the amount of the fair charge for a VA contract with a GMDB rider during
the savings phase and a GMIB rider valid at retirement. In other words, we
investigate relationships between the different input parameters and the fair
charges / option prices.

Sensitivity analysis of variations in the contract parameters

Intuitively, Table 8.6 indicates that higher guarantee rates δ increase the fair
percentage charge substantially since the option strike gI(T,x) is subjected
to a strong increase. This is due to a growth in both the fixed payout rate
and the roll-up benefit base. As the underlying annuity option becomes more
valuable we observe a strong increase in the fair charge. An upward movement
of the market yield rM

0 causes a decline in the post-retirement discount factors
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and hence also in the market annuity factor äx+T (T ). Thus, the option price
and fair charge decrease. This effect is intensified by the assumed negative
market correlation between the equity fund and interest rates which further
lowers the option payouts and thus fair charges. Since Euro area yield curves
recently experienced rather downturn movements, the hedging costs199 for the
VA guarantees generally increased. Notice that occasionally customary market
roll-up rates lie above the initial (market) term structure rM

0 valid at that time.
In order to provide a counterbalance, the insurer determines a fixed payout
rate rG

x+T (T ) below the anticipated market annuity payout rate rx+T (T ) at
retirement. As a consequence, the retirement option (8.6) may be still in the
money even if the guaranteed benefit base exceeds the market value of the
investment portfolio. Nevertheless, in case of low interest rates together with
high guaranteed roll-up rates and deferment periods T > 10 fair guarantee
charges according to Theorem 8.4.7 do not exist. Basically, a raise in the
accumulation period T implicates lower charges due to an increase in the option
strike. Therefore, selling contracts with long option maturity or a prolongation
phase forms a contractual way to ensure a competitive option fee enabled by a
reduced option price.

A look at the risk neutral option prices in Figure 8.5 reveals two distinct effects,
namely the “parameter effect” and the “charge effect” which in turn is indirectly
induced by the first one. In particular, a strong increase in the fair percentage
charge lowers the fund value considerably and therefore can compensate the
impact caused by a change of an underlying parameter. Subfigure (8.5.1)
shows that although CD(x,0) is parameter independent from δ the increasing
rider-fees evoke a decrease in the payout value especially for a low market
yield and a short-term deferment period. Just like the values for CI(x,0,T ), an
increasing market yield causes a reduction in the option price which is much
more pronounced in the living benefit case. A comparison of the differently
coloured price surfaces yields that a postponement of the retirement date evokes
a decrease in the risk-neutral prices primarily caused by a decreasing bond
price combined with increasing guaranteed benefit bases.

Sensitivity analysis of variations in the financial market parame-
ters

Depending on the correlation of the Brownian motions driving the zero bond and
equity fund prices, changes in the fund volatility σS and interest rate volatility
σspot have multiple effects on the cost of guarantee (Table 8.7) as well as option

199 Interest rate risk can for example be rho-hedged by swaptions or interest futures.
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Sensitivity of the guarantee charge to a variation in the contract
parameters

initial T=10 T=20 T=30
yield guarantee rate δ guarantee rate δ guarantee rate δ
rM

0 0.03 0.04 0.05 0.03 0.04 0.05 0.03 0.04 0.05
0.01 996 2137 6742 555 1385 n.a. 345 873 n.a.
0.02 416 949 1961 245 534 1278 164 332 812
0.03 172 414 896 118 249 530 81 161 322
0.04 72 186 420 57 118 246 40 77 156
0.05 30 80 185 27 58 123 19 39 78

Table 8.6: Sensitivity of the bundle guarantee charge to a variation in the contract
parameters (in bps) w.r.t. an individual aged x = 45 and a guarantee level L(T ) =
LRO. The charge estimates are based on 2 · 104 iterations. For table entries marked
with “n.a.” a fair guarantee according to Theorem 8.4.7 does not exist.

Sensitivity of the option prices to a variation in the contract parameters

(8.5.1) CD(x,0) (8.5.2) CI(x,0,T )

Figure 8.5: Sensitivity of the spline-smoothed option prices to a variation in the
contract parameters w.r.t. an individual aged x = 45, a guarantee level L(T ) = LRO

and a smoothing parameter of 0.02. The fair charges are taken from Table 8.6. The
charge estimates are based on 2 · 104 iterations.

prices (Figure 8.7). Generally speaking, increasing fund volatility on the one
hand evokes increasing annuity (call) option prices200 CD(x,0) and CI(x,0,T )
resulting in higher rider fees. On the other hand, an increase in the spot rate
volatility causes a wider range of outcomes for the annuity factor äx+T (T )
due to greater dispersion in the post-retirement discount factors and larger
fluctuation in the drift of the mutual fund process such that fair estimates also
rise though to a comparatively less extent. Under the assumption of correlation
between the development of the investment portfolio and interest rates we
observe various partial effects which drive the charge and prices respectively in

200 A higher variability in the fund price volatility σS induces higher probabilities of larger
fund values.
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different directions and thus can counterbalance or even overlie each other.
Sensitivity of the guarantee charge to a variation in the financial

parameters

spot rate ρ = −1 ρ = 0 ρ = 1
volatility fund volatility σS fund volatility σS fund volatility σS

σspot 0.10 0.15 0.20 0.25 0.30 0.10 0.15 0.20 0.25 0.30 0.10 0.15 0.20 0.25 0.30
0.005 113 140 171 199 226 113 144 172 202 232 119 145 175 205 233
0.010 110 139 167 198 224 116 144 171 201 230 122 150 177 208 233
0.015 109 136 164 195 225 114 145 173 202 228 123 154 177 203 238
0.020 108 132 161 194 222 116 145 172 203 223 124 153 183 212 242
0.025 109 129 160 193 219 118 147 172 208 228 129 160 184 213 241

Table 8.7: Sensitivity of the bundle guarantee charge to a variation in the financial
parameters (in bps) w.r.t. an individual aged x = 45, a contract maturity T = 20 and
a guarantee level L(T ) = LRO. The charge estimates are based on 2 · 104 iterations.

Sensitivity of the logarithmised fund return and the fair charge to a
variation in the financial parameters

(8.6.1) Variance of the logarithmised fund
return

(8.6.2) Fair charge estimates

Figure 8.6: Sensitivity of the logarithmised fund return at maturity and the spline-
smoothed fair charge estimates to a variation in the financial parameters w.r.t. an
individual aged x = 45, a contract maturity T = 20, a guarantee level L(T ) = LRO

and a smoothing parameter of 0.02. The fair charges are taken from Table 8.7. The
charge estimates are based on 2 · 104 iterations.

In terms of correlation only, Marshall et al. (2010) quote that the GMIB
option price constitutes an increasing201 function of the correlation coefficient.
Further notice that according to Brigo and Mercurio (2007), the variance of
the logarithmised fund returns at maturity, which is a key determinant for
the (GMIB) charge and option price estimates, also enhances with increasing
correlation coefficient. This phenomenon is illustrated in Figure 8.6. Despite
from simulation inaccuracies, the fair charge estimates show an analogous

201 Marshall et al. (2010) also assume a fund volatility of σS = 0.2 and an interest rate
volatility of σspot = 0.015.
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Sensitivity of the option prices to a variation in the financial parameters

(8.7.1) CD(x,0) (8.7.2) CI(x,0,T )

Figure 8.7: Sensitivity of the spline-smoothed option prices to a variation in the
financial parameters w.r.t. an individual aged x = 45, a contract maturity T = 20, a
guarantee level L(T ) = LRO and a smoothing parameter of 0.02. The fair charges
are taken from Table 8.7. The charge estimates are based on 2 · 104 iterations.

behaviour. The mentioned effect of changes in the annuity factor is almost
negligible for the default financial parameters listed in Tables 8.2 and 8.3. In
particular, for negative correlation the annuity provider expects equity and zero
bond prices to develop oppositionally. Therefore, if market interest rates rise,
the fund performance as well as charge and option price decrease. Although the
dispersion of the annuity market factor increases, insurance market annuities
may be even more attractive for the insured (see Subfigure (8.7.2)). In case of
uncorrelated fund and bond prices, increasing spot rate volatility causes higher
volatility in the annuity factor as well as the drift of the fund prices. The
resulting overall change can hardly be explained such that fee and option price
estimates slightly increase for low fund fluctuation but slightly decrease for high
values of σS. For perfectly correlated price processes decreasing market rates
result in an enhancement of the fund returns202 and the annuity factor. From a
policyholders point of view the annuity contract becomes more valuable. The
Brownian motion parts of Equations (8.11) and (8.12) evolve unidirectional
and thus charges and option prices are increasing in spot rate volatility as well
as fund volatility.

Sensitivity analysis of variations in the mortality parameters

A change of parameters that affect the exponential mortality reduction factor
have a direct impact on the market annuity factor äx+T (T ) and thus influence
202 It should be noted that in certain cases an option to switch the fund selection (due to
bad performance) can become highly valuable such that the annuity provider has to restrict
his offered fund selection to reduce volatility. This can be achieved by a limitation of fund
choices within the product design.
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the fair charge and the guarantee payoff values. In the following, we carry out
a separate sensitivity analysis for parameters driving the deterministic and
the stochastic part of the mortality rate process (8.15). The variation of the
“deterministic” parameter values for α and β is chosen in such a way that the
conditional expected age at death of an individual aged x = 45 at inception
lies within an age period of 82 years minus 5 plus 10-11 years203. The more
Sensitivity of the guarantee charge to a variation in the “deterministic”

mortality parameters
age specific period specific growth rate α

rate of change β -0.14 -0.12 -0.10 -0.08
0.0008 213 201 189 183
0.0010 203 189 181 175
0.0012 191 180 169 163
0.0014 185 173 166 156
0.0016 170 165 158 148

Table 8.8: Sensitivity of the bundle guarantee charge to a variation in the “deter-
ministic” mortality parameters (in bps) w.r.t. an individual aged x = 45, a contract
maturity T = 20 and a guarantee level L(T ) = LRO. The charge estimates are based
on 2 · 104 iterations.

Sensitivity of the option prices to a variation in the “deterministic”
mortality parameters

(8.8.1) CD(x,0) (8.8.2) CI(x,0,T )

Figure 8.8: Sensitivity of the spline-smoothed option prices (8.18) and (8.19) to
a variation in the “deterministic” mortality parameters w.r.t. an individual aged
x = 45, a contract maturity T = 20, a guarantee level L(T ) = LRO and a smoothing
parameter of 0.02. The fair charges are taken from Table 8.8. The charge estimates
are based on 2 · 104 iterations.

negative the logarithmic rate of period change level α, i.e. anticipations about
future mortality patterns, the stronger the post- and pre-retirement survival
203 The age period is chosen asymmetric towards older ages to consider the general trend of
increasing life expectancy.
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probabilities improve due to a downward trend of mortality rates. As a result,
the guarantee gI(T,x) increases since the product rG

x+T (T ) · äx+T (T ) increases204.
Consequently, the fair charges in Table 8.8 increase and the discounted expected
GMIB payoff increases (see Figure 8.8) whereas the GMDB payoff falls in value.
When considering the age-related logarithmic rate of change, we observe,
conversely, that a raise in the age specific parameter β lowers the estimated
rider charge since survival probabilities experience a downturn due to an
increasing exponential reduction factor. In this case, the guarantee gI(T,x)
falls and ensures that the GMDB option price increases and that the GMIB
value decreases. A variation in the parameters κ and γ driving the stochastic
reduction factor Y yields the results presented in Table 8.9 and Figure 8.9.
According to Ballotta and Haberman (2006), we observe that the variation in
charges and option prices is only marginal if not negligible.

Sensitivity of the guarantee charge to a variation in the “stochastic”
mortality parameters

speed of mean reduction factor diffusion γ
reversion κ 0.05 0.10 0.15 0.20

0.25 173 170 170 173
0.50 174 172 174 170
0.75 174 172 174 173
1.00 175 175 172 169

Table 8.9: Sensitivity of the bundle guarantee charge to a variation in the “stochastic”
mortality parameters (in bps) w.r.t. an individual aged x = 45, a contract maturity
T = 20 and a guarantee level L(T ) = LRO. The charge estimates are based on 2 · 104

iterations.

Positive changes in the speed of convergence κ towards the long run mean zero
increase the survival probabilities and therefore slightly enhance the fair charges.
We observe that the stronger the diffusion of the Brownian motion W µ the more
sensitive the mean reversion effect of κ turns out. For very small convergence
speed κ the process Y behaves almost non mean reverting and stronger diffusion
γ lowers the survival probabilities and raises the death probabilities. Apart from
simulation inaccuracies, this leads to decreasing fair charges and a decreasing
option price GI(x,0,T ) as well as an increasing value for GD(x,0). Conversely,
for a strong mean reversion effect survival probabilities do not decrease to the
same extent due to a deterioration in diffusion. Consequently, the guarantee
charges slightly decrease, the living benefits slightly increase and the death

204 Note that the value of the guaranteed payout rate has a strong impact on the income
benefits and therefore has to be carefully determined by the insurance company. In case of
the AXA Twinstar Invest policy, the calculation of the fixed payout rate rG

x+T (T ) is based
on the selection life table DAV 2004R plus a safety margin of 10%.
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Sensitivity of the option prices to a variation in the “stochastic”
mortality parameters

(8.9.1) CD(x,0) (8.9.2) CI(x,0,T )

Figure 8.9: Sensitivity of the spline-smoothed option prices (8.18) and (8.19) to a
variation in the “stochastic” mortality parameters w.r.t. an individual aged x = 45, a
contract maturity T = 20, a guarantee level L(T ) = LRO and a smoothing parameter
of 0.02. The fair charges are taken from Table 8.9. The charge estimates are based
on 2 · 104 iterations.

benefits increase although to a lesser extent.

8.5.4 Analysis of the rate of return and the pension amount at ma-
turity

Analysis of the rate of return and key risk-return figures

From a customers point of view, the desire for embedded guarantees is closely
related to a lower chance of outperformance compared to a contract without
additional guarantee riders. We illustrate this effect by simulating the discrete
annualised net yield to maturity205 (referred to as yN

a ) under the physical
measure conditioned on the insured’s survival of the deferment period. Further-
more, we determine key risk-return figures. In Subtable (8.10.1) we show the
expected (discrete) rate of return on total premiums paid denoted as E


yN

a


,

the conditional tail expectation206 at level 0.1 given as E

yN

a

 ”10%”


and the

205 The discrete annualised net yield to maturity yN
a denotes the annual discrete compounding

rate which ensures that the total gross premiums paid – each compounded at yN
a – equates

to the total contract value available at retirement date. For every sample path k ∈ N the
pathwise simulated yield yN

a,k solves the equation
yN

a,k =


ya ∈ R
VAM =

N−1
i=0 πN (1 + ya)T −ti = πN ((1+ya)T −1)(1+ya)

ya


where the value at maturity (VAM) equals A(T,π,ϕ) in case of the single GMDB rider and
GI(T,x) for the GMIB or the bundled GMDB and GMIB rider.
206 The conditional tail expectation at level 0.1 describes the expectation of the 10% worst
rate of return real world scenarios.
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inflation quantile P

yN

a < 0.02


as a shortfall measure considering scenarios
with yields below the inflation rate207 using the fair guarantee charges estimated
in Table 8.5.

Notice that in case of the return of premium feature (RP) the expected rate of
return for the different rider compositions have almost the same amount despite
the heterogeneous fee structure listed in Table 8.5. As expected, the discrete
rate of return estimates lie above the risk-neutral instantaneous expected fund
performance µS − 1

2σ2
S of 6% per annum. The choice of the benefit base has

only a minor effect on the amount of the expected return. However, relevant
differences can be found in the clustering of the bar charts in Subfigures (8.10.2)-
(8.10.4) and the inflation shortfall measure. By means of the conditional tail
expectation values we observe that in case of guaranteed income benefits the
rate of return can also become negative208. This means that in contrast to a VA
with a GMAB the guarantee (8.4) does not necessarily reach the total (gross)
premiums paid. In fact, the GMIB rider provides a minimal predetermined
annual pension income granted by a guaranteed annuity factor and benefit
base at retirement. The quantile bar chart in Subfigure (8.10.2) illustrates that
every fifth VA contract with GMDB generates a yield which is only less or
equal to the rate of inflation. For the GMIB (Subfigure (8.10.3)) and bundled
GMDB and GMIB (Subfigure (8.10.4)) rider with RP guarantee feature the
probability of suffering a real loss is even higher since the rate of return is
close to zero whenever the option is in the money. In addition, the RO and
thus the RORA feature completely exclude returns below the inflation rate
due to the high guarantee benefit bases. In combination with rather high fair
charges this ensures that for the roll-up clause nearly three out of five policies
earn a return between 2% and 6%. In contrast, the distribution of the yield
for the ratchet feature RA is more regular distributed in the range of yields
less than 8% and the probability for an outperformance (greater than or equal
8%) is 40%. Actually, the demanding hedging of the (ratchet) lookback option
becomes relatively cheap since the in-the-moneyness probability is low (see
also Subsection 8.5.4) and assumptions concerning customer lapse behavior
are commonly taken into account. Since we excluded acquisition, selling and
administrative costs (AXA TwinStar deducts 9.5% and Swiss Life Champion
deducts 11.77% of the total premium sum) for insurance coverage as well as
fund management fees (commonly 1.5% total expense ratio), the actual effective
207 A yield less than the inflation rate is synonymous to a real loss. In the following we
assume an inflation rate of 2%.
208 Note that the low-return ten percent of GMIB or bundled GMDB and GMIB contracts
exhibit an average negative yield to maturity of -0.11%. This tail expectation should become
more adverse if fixed costs φ are included.
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reduction in yield should be in the range of TwinStar values209 estimated in
Ortmann (2007, 2010). To sum up, in terms of a risk-return profile, a VA with
GMIB obtains yields above the rate of return for conventional pension policies
but also exhibits a significant probability of solely reaching the guarantee
(depending on the underlying rider equipment). Furthermore, a proper analysis
of the net return on the savings premiums or key risk-return figures constitutes
an opportunity to compare the guarantee costs for insurance products with
different guarantee concepts.
Risk-return figures and rate of return quantile bar charts for different

guarantee riders

rider risk-return guarantee feature
composition measure RP RO RA RORA

E

yN

a


0.065 — — —

GMDB (RP) E

yN

a

 “10%”


-0.026 — — —
P

yN

a < 0.02


0.193 — — —

E

yN

a


0.066 0.066 0.070 0.070

GMIB E

yN

a

 “10%”


-0.001 0.034 0.001 0.034
P

yN

a < 0.02


0.205 0.000 0.151 0.000

E

yN

a


0.065 0.066 0.070 0.070

GMDB (RP)
E

yN

a

 “10%”


-0.001 0.034 0.001 0.034
+ GMIB

P

yN

a < 0.02


0.206 0.000 0.152 0.000

(8.10.1): Risk-return figures (8.10.2): Quantile bar chart GMDB rider

(8.10.3): Quantile bar chart GMIB rider (8.10.4): Quantile bar chart bundled
GMDB and GMIB rider

Table 8.10: Risk-return figures and rate of return quantile bar charts for different
guarantee riders w.r.t. an individual aged x = 45 and a contract maturity T = 20.
The simulations are based on 105 iterations.

209 Ortmann (2007, 2010) estimates a reduction in yield due to total effective costs (contract,
investment, guarantee) for the AXA Twinstar Invest variant of 3.63% (3.65%) which lowers
the predicted gross rate of return on the premiums paid from 8% per annum (see Table 8.3)
to a rate of return of 5.87% (5.85%) as well as an effective yield (expected net return on the
savings premiums) of only 4.37% (4.35%). This rate of return is below the real expected
return of historic broad-market stock indices. The model calculations are based on a 35
year-old insured paying a monthly premium of πG = 100 over a period of T = 30 years.
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Analysis of the pension amount at maturity

At maturity, a financially rational policyholder of a VA contract with at least a
GMIB rider decides in favour for an annual guaranteed pension L(T ) · rG

x+T (T )
if and only if it exceeds the market value of the investment portfolio A(T,π,ϕ)
annuitised by the market payout rate rx+T (T ) valid at that time. In other words,
the insured exercises the annuitisation option if the fixed annual pension is higher
than the prevailing market pension. In contrast to a VA contract with GMAB
rider, we occasionally observe scenarios (especially for the return of premium
(RP) enhancement feature) in which the policyholder allows the option (8.6) to
lapse although the guaranteed benefit base L(T ) already exceeds the value of
the investment portfolio A(T,π,ϕ). Due to a comparison of the pension amounts,
the insured may decide in favour for the market pension. Figure 8.10 illustrates
that based on the insured’s survival the GMIB rider yields by definition a
minimum guaranteed pension amount at maturity T . Subfigures (8.10.1) and
(8.10.3) show that in case of the RP and RA enhancements the policyholder
receives at least an annual deferred life annuity of 1.58 against a previously paid
regular premium of 1. This minimum pension is reached approximately in 12%
(RP) and 7% (RA) of cases. For the RO and RORA scenario210 the minimum
pension amounts to 2.47 but the probability of exercising the exchange option
is even 45% (RO) and 37% (RORA). For VAs without any guaranteed living
benefits the pension amount at maturity is to a larger extent subjected to
previous fund value performance. For this reason, the guaranteed pensions 1.58
(2.47) are fallen short of by more than 11% (33%). Nevertheless, a total loss of
the survival benefit is excluded entirely for the parameter constellation of the
selected financial market model.

In addition, Table 8.11 shows the real-world “in-the-moneyness” probabilities
for different rider and enhancement feature combinations. Since in the event of
a claim approximately 67% of the GMDB contracts with premium refund are
valuable for the annuity provider, the rider is often already included in GMIB
annuities without triggering any additional guarantee charge. In this connection,
a rational policy behaviour takes place, if at all, only by surrendering a contract
which is, from the customer’s point of view, far out of the money during the
deferment period. For the single GMIB put option we observe that the more
comprehensive the benefit base L(T ) the rarer the option becomes valuable.
While for the premium refund enhancement 87% of the simulated fund values
outperform the benefit base, only every seventh contract of the RORA type

210 The density shapes under the RO (Subfigure (8.10.2)) and RORA feature (Subfigure
(8.10.4)) are quite similar since option payoffs approximately coincide in 50% of the cases.
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Frequency distributions of the pension amount at maturity for different
guarantee features

(8.10.1) L(T ) = LRP (8.10.2) L(T ) = LRO

(8.10.3) L(T ) = LRA (8.10.4) L(T ) = LRORA

Figure 8.10: Probability densities of the pension amount at maturity for different
guarantee features w.r.t. an individual aged x = 45, a contract maturity T = 20 and
charges taken of from Table 8.5. The histograms are based on 105 drawn samples.
The solid lines represent the Gaussian kernel density estimators.

does so although the corresponding fair charge is more than six times higher
(see Table 8.5). Furthermore, the increase in the option’s moneyness compared
to the GMDB and GMIB bundle is only marginal since the withdrawal of the
total guarantee charge ensures that the option is slightly earlier in the money.

Summing up, we conclude that GMIB products offer an attractive guaranteed
pension together with an expected rate of return which is still competitive. At
the same time, however, it should be noted that the probability of reaching
the minimum income is quite high especially for those enhancement features
widely sold in the market. In practice, the supply of additional features like
ratchets (RA) in GMIB contracts serves as a method to control or affect the
customer’s behaviour concerning surrender and option exercise. Whenever
the put option moves considerably out of the money, the enhancement of the
peak value guarantee reduces the risk of selective lapsation, i.e it prevents the
insured from surrendering in times of strong fund price increase. For instance,
we calculate that a financially rational insured, who has selected the bundled



Section 8.6 - Conclusion 223

GMDB and GMIB variant with ratchet clause, should decide in nearly 70% of
cases in favour for the guarantee.

In-the-moneyness probabilities

rider guarantee feature
composition RP RO RA RORA
GMDB (RP) 0.67 — — —
GMIB 0.87 0.54 0.21 0.14
GMDB (RP) + GMIB 0.88 0.55 0.21 0.15

Table 8.11: In-the-moneyness probabilities at the exercise date of the put options
(8.2) and (8.6) for different guarantee features w.r.t. an individual aged x = 45 and
a contract maturity T = 20. The probabilities are based on 5 · 104 iterations.

8.6 Conclusion

In this chapter, we have analysed a modern, flexible unit-linked pension product
providing customers with a high predetermined fund participation and optional
riders guaranteeing minimal death and living benefits. Over the last decades,
these so-called variable annuities have gained more and more attraction in the
life insurance sectors of highly-developed service societies. This is attributed
to the merits of a successful combination of downside protection as offered
in conventional pension insurance with potential returns from unit-linked
products. Insurance takers are free to select out of a range of investment
funds and guarantee riders to combine guaranteed death, living and withdrawal
benefits. We focussed on a regular-premium variant – which is typical for
the German VA market – with guaranteed minimum income benefit rider.
Most of the policies are optionally provided with a guaranteed minimum death
benefit during the savings phase which was marginally discussed in academic
literature so far. For the sake of simplification, we only considered risk stemming
from changes in the mortality and financial market evolution. We questioned
whether some features or different benefit bases are offered for contract design
or consumers’ benefit. However, a bundled sale in favour for an incentive has
a strong impact on the financially rational option exercise and the contract
profitability. We applied a risk neutral pricing approach to value the underlying
embedded options based on the approach by Nielsen and Sandmann (2002).
More precisely, we estimated a fair guarantee charge which is sufficient to
cover additional beneficial guarantees when compared to a pure unit-linked
endowment contract. By means of Monte Carlo simulation we presented charge
estimates based on common financial market parameters with GMIB and/or
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GMDB rider calibrated to mortality data from the Human Mortality Database
(2009).

We also performed a sensitivity analysis concerning parameter misspecification
for the contract, financial and mortality framework. It became evident that fair
charge estimates strongly differ from usual market fees and a variation in the
contract specific parameters leads to substantial changes in the fair percentage
guarantee charge. Hereby, a well-balanced choice of the guaranteed roll-up rate
in the presence of the prevailing market yield curve describes a key determinant
for the amount of the fee and thus its market competitiveness. The influence
of financial market parameters – in particular interest rate and fund volatility
– is no less important for the charge estimation especially against the quite
realistic assumption of correlated zero bond and fund prices. A change in the
parameters driving the deterministic part of the mortality rate process has
similar distinct effects and therefore should not be disregarded when practising
aggregated long-term portfolio risk management. Furthermore, note that the
choice of the mortality process parameters also affects the determination of the
conservative survival function used to calculate the guaranteed payout rate.

In addition, we analysed the rate of return distribution and key risk-return
figures as well as the pension amount at maturity under the real-world measure.
By means of quantile bar charts we showed that the simulated rates of return
are differently distributed among the individual yield classes depending on the
selected rider and benefit base. The policyholder principally earns a guaranteed
pension bought through a lower chance of outperformance. Since a GMIB rider
guarantees a predetermined lifelong pension payment, it does not necessarily
prevent the policyholder from a yield to maturity below the inflation rate.
A choice in favour for the so-called roll-up enhancement feature, which is
commonly selected as a protection against inflation, can counteract bearish
market scenarios. Conversely, a consumer could be interested in a lock-in of
interim fund price gains which is ensured by the ratchet clause. The effects
of both enhancement features (individually or in combination) on the rate of
return and pension amount were discussed in detail. From the perspective of
an annuity provider, the supplementary offer of certain enhancement features
provides opportunities to control the policyholder’s lapse behaviour and thus
saving potential for the quantification of necessary hedge positions. We showed
that features which increase the benefit base at maturity also increase the
option’s intrinsic value and thus its moneyness. Admittedly, with an enhanced
benefit base the probability that the annuity buyer or dependants solely receive
the guaranteed benefit also increases.



Summary and Outlook
The main focus of this thesis is on several aspects of mortality modelling and
life insurance mathematics. In particular, we discussed significant demographic
changes in mortality and, in this connection, presented a wealth of appropriate
graduation / forecasting techniques. Based on the choice of a concrete model,
we also dealed with tasks concerning the pricing, management of (longevity)
risk and risk capital allocation of private funded pension products. Special
attention was given to the interaction of (systematic) mortality and financial
market risk. Therefore, the first part of the thesis gave an illustrated overview
of mortality modelling from the beginnings to recent modern approaches. The
second part applied selected stochastic mortality models to life annuity products
in order to examine pricing or reserving issues in incomplete markets. The
results can be summarised as follows:

Summary Part I:

The introductory Chapter 1 of the thesis treated some recent challenges to the
national and international life insurance business. In particular, the modelling
and management of longevity risk motivates a contribution in terms of pricing
and reserving applied to annuity products. The chapter was rounded off by
a description of the remaining structure. Chapter 2 illustrated the different
demographic changes which have taken place more or less significant in most
industrialised nations in the course of the 20th century. Since in the first half of
the century primarily young ages have experienced an improvement in mortality
due to medical advances (e.g. a reduction of infectious diseases), this has been
the case for old ages due to improved life standards (accompanied by an apparent
decline in chronic diseases) in the second half. The overall mortality has steadily
declined with different force of improvement and significant random structural
changes depending on age, calendar year and birth cohort. In particular, the
oldest age groups have experienced a clear shift (expansion phenomenon) and
shape modification (rectangularization effect) of their period specific survival
functions. As a consequence, the expected individual lifetime increased which
induced a dramatic “upwards” shift in the national age structure with immediate
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consequences for the public pension and health care systems, life insurance
companies and annuity providers as well as life settlement investors.

A detailed chronological overview of the most important representatives of
mortality (forecasting) models in actuarial mathematics together with details
concerning respective fields of application were developed in Chapter 3. In this
context, mortality was assumed to evolve time-invariant such that observations
from the recent to medium-term past will continue in the future. Some of the
presented methods were additionally illustrated based on historical German
period life table data from the Human Mortality Database (2009). On the one
hand, we have surveyed discrete-time dynamic life table projection methods
using either a horizontal extrapolation of the projection object itself or a
vertical / diagonal extrapolation of related functional parameters. As a result,
the methods are subjected to a high parameter dimensionality and may cause
implausible forecasts. On the other hand, we dealed with continuous-time
graduation procedures in parametric as well as non-parametric form. Parametric
approaches like mortality laws or transforms of life table functions reduce the
degrees of freedom but, at the same time, introduce forecasting difficulties
due to parameter dependencies. Non-parametric graduation techniques create
a smooth age-pattern but require subjective judgement from the forecaster
concerning the degree of smoothness containing the risk to flatten short- and
mid-term trends too much. Therefore, the method of choice in projecting the
age-pattern of mortality has commonly been a consecutive combination of
graduation and extrapolation. Nevertheless, a deterministic approach includes
the risk to systematically misjudge mortality developments211 thus is subjected
to limits concerning its applicability.

In the subsequent Chapter 4 we provided a description of modern stochastic
forecasting methods which gained in importance during the last two decades.
The reasons for this are obvious: They allow for random short-term variations
(e.g. triggered by either natural catastrophes and epidemics or sudden medical
breakthroughs) and long-term mortality trends (e.g. the continuing develop-
ment of longevity). In this context, the well-known discrete-time model of
Lee and Carter (1992) describes a distribution-free approach which provides a
mean estimate together with a measure of (forecasting) uncertainty. Several
modifications and extensions of the Lee-Carter framework relaxed the rather
strong (distributional) model assumptions and enhanced parameter estima-
tion efficiency. Additional period and / or cohort factors improve the fitting

211 Almost all mortality projections carried out in the second half of the 20th century
underestimated the increase in life expectancy.
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performance and describe systematic mortality trends more detailed. Finally,
we reviewed a continuous-time mortality term structure approach recently
discussed in actuarial literature212. The approach uses stochastic processes
already applied in no-arbitrage pricing frameworks for interest rate derivatives
due to a similar definition of the spot interest and mortality rate. In analogy
to the interest rate definitions, the underlying explanatory variables are either
represented by the short, forward or market mortality rate.

In Chapter 5, we undertook a separate, illustrated excursion on the parametric
graduation and forecasting of mortality data using the classical Lee-Carter
mortality model and modifications as well as (multi-factor) extensions. More
precisely, we focussed on a Poisson regression modification treated by Brouhns
et al. (2002b) and two extensions introduced by Renshaw and Haberman (2003,
2006). We have tested different models against a range of basic qualitative
and quantitative criteria like residual analysis, parsimony, variance explanation,
mean squared error and fan chart comparison. To sum up, a decision for or
against a certain model variant must always comply with the requirements and
data quality of the selected application. The bilinear models were robust but
limited in the fitting ability due to a small number of parameters. For the
complex multi-factor extensions, precisely the opposite was the case.

Outlook Part I:

A decision which model suits best in case of a concrete application may be
deduced by verification of several suitable qualitative and quantitative criteria.
The fulfilment of qualitative aspects must therefore be considered more or less
as a basic prerequisite. Nevertheless, a comparison, which qualitative criteria
are necessary and which quantitative criteria are convincing, deserves a closer
examination.

In Chapter 4 we introduced four theoretical concepts following Cairns et al.
(2008) which originate from financial market models. For this reason, the
short-rate, market, forward mortality and positive mortality models need to
be examined carefully for their suitability for mortality modelling. At this
time, the application is very limited insofar as the estimation of risk-neutral
spot and forward survival probabilities presupposes a unique market price
for systematic mortality risk only. Furthermore, the concrete implementation
of market models which is closely related to the pricing of mortality-linked
securities is hindered so far in that a mortality derivative or life market is far

212 For an overview of risk-neutral frameworks for pricing and hedging mortality risk we refer
to Cairns et al. (2006a) or Blake et al. (2006b).
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from being perfectly liquid, transparent, arbitrage-free or frictionless contrary
to the (no-arbitrage) pricing assumptions.

Summary Part II:

The German state pension problem and the need for supplementary private
funded retirement provision was presented in Chapter 6. More precisely, we
briefly described the development from the capital covered statutory pension
system introduced during Bismarck’s social legislation at the end of the 19th
century to the pay-as-you-go pension system under the government of Chan-
cellor Adenauer in the middle of the 20th century. On the institutional side,
the following dramatic continuing age shift in the population structure necessi-
tated legal modifications concerning future contributions or benefits. On the
contributors side, the reduced state pension benefits have to be compensated
by private provision forms from savings models from all three pillars / layers
of retirement saving. Besides voluntary occupational pensions, an important
provision element is given by life insurance products of the third layer. The
benefits of deferred life annuities either with conventional or unit-linked savings
phase are, besides risk stemming from the financial market, subjected to the
risk of longevity which was the major object of research in the subsequent
chapters.

Chapter 7 treated the valuation, risk management and solvency assessment of
the traditional life annuity business which strongly depend on the assumptions
that are posed on the underlying mortality and interest rate dynamics. By
means of different (stochastic and deterministic) mortality models which are
fitted to the same mortality data and interest rate models calibrated to the
market term structure we focussed on the question how important it is to
take into account for (random) changes in the mortality. We used Monte
Carlo simulations to approximate the variance of the discounted cash-flow
and its decomposition into a pooling and a non-pooling risk part. We also
considered effects of pricing in incomplete markets using the principle of zero
expected utility and the quantile principle. The estimated risk premiums
were benchmarked to the equivalence premium for a selection of different
hedge / investment strategies. Finally, we focussed on the definition of solvency
requirements and meaningful shortfall measures. The associated shortfall
probability and conditional expected shortfall of the annuity provider are
sensitive to changes in the underlying hedge strategy and degree of uncertainty
with regard to the underlying mortality models and interest model. In summary,
the results emphasise that the impact of stochastic mortality is low if compared
to the impact of stochastic interest rates. To some extent, one can argue that the
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major risk which is due to stochastic mortality stems from its interaction with
stochastic interest rates. However, against the background of a risk-adequate
assessment this should have a long-lasting effect on the insurers pricing and
reserving.

In Chapter 8, we analysed a modern, flexible unit-linked life insurance contract.
More precisely, we dealed with a deferred variable annuity providing customers
with a high predetermined fund participation and optional riders guaranteeing
minimal death and living benefits. We focussed on a regular-premium vari-
ant with a minimum income benefit rider guarantee at retirement optionally
provided with a guaranteed minimum death benefit during the savings phase.
For the sake of simplification, we only considered risk stemming from the
underlying mortality and financial market. We applied Monte Carlo simulation
to estimate a fair guarantee charge which is sufficient to cover the additional
beneficial guarantees when the variable annuity contract is compared to a pure
unit-linked endowment contract. The charge estimates were based on common
financial market parameters and mortality parameters calibrated to mortality
data from the Human Mortality Database (2009). It became evident that fair
charge estimates clearly differ from usual market fees and a variation of the
contract specific parameters leads to substantial changes in the fair percentage
guarantee charge. In particular, we performed a sensitivity analysis of the
guarantee charges and option prices concerning parameter misspecification for
the contract, financial and mortality framework. We also analysed the rate of
return distribution as well as the pension amount at maturity. Depending on
the selected rider and benefit base, the policyholder principally earns a com-
paratively high guaranteed pension. But high guarantees are bought through a
smaller chance of attractive rates of return. In this context, the roll-up enhance-
ment feature, which is commonly selected as a protection against inflation, and
the ratchet clause ensuring an automatic lock-in of interim fund price gains are
popular variants. Since those features increase the option’s intrinsic value and
thus its moneyness, the probability of solely reaching the guaranteed benefit
also increases with different consequences for both the annuity writer and the
policyholder.

Outlook Part II:

The requirements to be met by modern risk management are multifaceted.
Firstly, the combined management of longevity and financial market risks plays a
key role in safeguarding the assurer’s solvency situation. We emphasised that life
insurers and pension providers are exposed to significant systematic mortality
risk which has a strong influence on the pricing and risk capital assessment.
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A comprehensive look at the value process of the written insurance business
helped us to determine an adequate (risk) premium and solvency margin using
simple bond hedging / investment scenarios to partly catch the financial risk.
Secondly, there is still a need for further research regarding effective dynamic
hedging (strategies) using mortality derivatives213, bulk annuity transfers for
closed pension funds, swap-like reinsurance or natural hedging approaches214.

Especially the mortality-linked financial securities have aroused increasing
interest in actuarial literature and practice since they theoretically enable an
almost perfect hedge against longevity or catastrophic risk. Typical represen-
tatives of this new asset class of derivatives are survivor bonds215 as well as
swaps216, annuity futures and further (exotic) mortality options. On the one
hand, derivative issuers like pension schemes are provided with an instrument
to hedge their longevity exposure. On the other hand, buyers like hedge funds
or other financial institutions could be interested in these derivatives because of
liquidity and low betas relative to their existing investment portfolio. However,
the practical experience has shown that investors and issuers had scarcely any
appetite for longevity risk. Hardly assessable factors217 like the high degree
of basis and credit risk (with standardised hedge instruments), the lack of
bond concepts with sufficient duration and standard valuation methodologies
(concerning the risk premium in incomplete markets where no-arbitrage pricing
is not applicable) hindered the market development so far. The main objective
of further research is therefore to thoroughly examine pricing issues and hedging
performance. Nevertheless, recent actuarial literature, e.g. Loeys et al. (2007),
Blake et al. (2008) and Bertocchi et al. (2010), agrees that, if certain entry
barriers can be overcome, a mortality market will soon evolve with an increasing
number of longevity protection willing sellers, advanced acknowledgement and
technical potential.

A further interesting point is to extend the model framework in favour for a

213 Mortality derivatives are correlated with a mortality index or number of survivors of a
reference cohort. For a detailed description see for example Blake and Burrows (2001), Lin
and Cox (2005), Dowd et al. (2006) or Blake et al. (2006b).
214 Natural hedging can be done “across time” as well as “across different lines of business”.
See Pitacco et al. (2008) for information on the topic of natural hedging.
215 In 2004 the European Investment Bank (EIB) aimed to launch a longevity bond with
a maturity of 25 years. However, the bond was withdrawn for redesign (term and model
inaccuracies) and the low demand from investors out of the pension insurance sector. Recently
in 2010, the Swiss Re launched a series of longevity risk bonds via an off-balance sheet
investment vehicle named Kortis with maturity in 2017.
216 Swiss Re issued the first longevity swap in 2007 with the UK life assurer Friends’
Provident which is valued at 1.7 billion £. Nevertheless, the mortality swap corresponded to
an reinsurance contract and was not traded on a life market.
217 See Cairns et al. (2006a) for a detailed description on risks within pricing issues.
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more complex but more customary contract. Deferred life annuities commonly
include embedded conventional death benefits218, variable periodic premium
payments or a lump-sum option at maturity. Additionally, it appears useful to
refine of the model by correlated219 future mortality and interest rates under
the pricing measure and transaction costs for rebalancing the liability portfolio.

Driven by recent market crises in the last decade and near collapses of a few
variable annuity provider, which relied on self-insurance only, the actuarial
literature agrees that a meaningful risk management demands the introduction
of a comprehensive hedge program. Therefore, the insurance company needs to
hold an actively managed hedge portfolio sensitive to changes in the actuarial
and financial factors and irrational policyholder behaviour concerning lapse,
investment and option exercise. Hedging, in turn, introduces further sources
of uncertainty (liquidity, credit and operational risk) and is rarely perfect
due to limitations concerning the long maturity and the liquidity of adequate
derivatives. For this reason, we leave the analysis of parameter uncertainty in
the curse of dynamic hedging effectiveness for further research.

We have shown that variable annuities contain quite a few different embedded
guarantees or flexibilities available to the customer. For example, at maturity,
the insured can exercise a premature retirement or a prolongation option within
certain limits to outlast periods with weak fund performance. A verification
whether the prolongation option is actually meaningful from a financial point
of view or originates from product selling reasons is left for further research. In
particular, the offering of so called guarantee riders, which admittedly enhance
the guaranteed living or death benefit base but also enhance the complexity
since look-back and barrier options are involved, has to be examined. The
question must be asked whether such flexibilities enrich an option or simply
serve as a method to control or affect the customers behaviour concerning
surrender and option exercise. Several authors consider the so called option to
lapse220 the contract during the accumulation phase. In addition, the customer

218 A standard feature is given by a term insurance amounting to a certain percentage ratio
of the overall premium sum or a premium refund.
219 Miltersen and Persson (2006) use the Heath-Jarrow-Morton framework to model the
correlated development of future term structures of forward force of mortality rates and to
price mortality derivatives.
220 Milevsky and Salisbury (2001) determine a suitable asset-based charge that funds a
variable annuity guarantee under rational surrender behaviour and a frictional deferred
surrender charge. Mudavanhu and Zhou (2002) value the GMDBs and the option to lapse
during periods of weak fund performance by means of a deterministic piecewise step surrender
charge function. In contrast, Kolkiewicz and Tan (2006) price the lapse option assuming a
lapsation behaviour depending on economic factors such as the equity volatility.
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usually receives several investment options or rights either to switch221 and / or
shift funds out of the individual basket or to pick out of a range of different
(actively managed) strategy depots. To sum up, the impact of behavioural
assumptions (surrender, selection phase, withdrawal) or contract restrictions
(fund and guarantee management) on pricing and hedging has to be investigated
more precisely.

221 See Mahayni and Schneider (2012), Mahayni and Schoenmakers (2011) or Zieling (2010)
for a more detailed treatment of the option-to-switch topic.



Zusammenfassung (Summary in German)

Die vorliegende Arbeit setzt sich mit der Untersuchung verschiedener Facet-
ten der Sterblichkeitsmodellierung und Mathematik von Lebensversicherun-
gen auseinander. Insbesondere werden nachhaltige Veränderungen innerhalb
der Bevölkerungssterblichkeit und zu deren Beschreibung eine Vielzahl un-
terschiedlicher Ausgleichs- und Extrapolationsverfahren vorgestellt. Anhand
ausgewählter Sterblichkeitsmodelle werden aktuarielle Themen wie Prämi-
enkalkulation, Management biometrischer Risiken und die Bemessung von
ausreichendem Risikokapital für private Rentenversicherungen behandelt. Ein
besonderes Augenmerk liegt dabei auf der Untersuchung des Zusammenwirkens
von Sterblichkeits- und Finanzmarktrisiko. Aus diesem Grund enthält der erste
Teil der Arbeit einen illustrierten Überblick über verschiedene Varianten von
Sterblichkeitsmodellen angefangen bei ersten parametrischen Modellen bis hin
zu moderneren Zeitreihenansätzen. Der zweite Teil hingegen beschäftigt sich
mit der Anwendung ausgewählter stochastischer Modellierungsformen zwecks
Bestimmung von Risikoprämie und -kapital für private Rentenversicherungen
in einem unvollständigem Marktumfeld. Die Ergebnisse lassen sich wie folgt
zusammenfassen:

Zusammenfassung Teil I:

Das einleitende Kapitel 1 behandelt unterschiedliche Entwicklungen, die das
Lebensversicherungsgeschäft vor große Herausforderungen stellten und auch
weiterhin stellen werden. Insbesondere die Modellierung und der Umgang mit
Langlebigkeitsrisiken motiviert zu einem Forschungsbeitrag in Form einer Un-
tersuchung der Auswirkungen auf die Kalkulation und Reservierung beliebter
Altersversorgungsprodukte. Auf die Darstellung der Motivation und Fragestel-
lung folgt eine Beschreibung der übrigen Kapitelinhalte. Kapitel 2 zeigt die
verschiedenen Entwicklungen der Bevölkerungssterblichkeit hochindustrialisier-
ter Länder im Verlauf des 20. Jahrhunderts auf. Aufgrund des anhaltenden
medizinischen Fortschrittes (z.B. bei der Bekämpfung von Infektionskrankhei-
ten) in der ersten Hälfte des Jahrhunderts haben vor allem junge Altersgruppen
eine deutliche Verbesserung der Sterblichkeitsverhältnisse erfahren. In der
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zweiten Hälfte waren vor allem die sogenannten Rentnerjahrgänge durch ei-
ne spürbare Verbesserung der Lebensbedingungen (einhergehend mit einem
Rückgang chronischer Erkrankungen) begünstigt. Es läßt sich beobachten, dass
die Gesamtsterblichkeit einer nahezu stetigen Abnahme mit unterschiedlich
starken und zufälligen zwischenzeitlichen Ausprägungen abhängig von Alter,
Beobachtungsjahr und Geburtenjahrgang unterlag. Insbesondere für die älteren
Jahrgänge läßt sich eine Verschiebung und Verformung (“Rechteckbildung”)
der periodenspezifischen Überlebensfunktion feststellen. Infolgedessen stieg die
durchschnittliche Lebenserwartung merklich an und verursachte unter anderem
Finanzierungsengpässe bei Leistungsversprechen ausgesprochen durch den ge-
setzlichen Rentenversicherungsträger, Lebensversicherungsunternehmen sowie
Zweitmarktanbieter.

Im darauffolgenden Kapitel 3 wurden die aus aktuarieller Sicht wichtigsten
Vertreter von Sterblichkeitsvorhersagemodellen chronologisch aufgearbeitet und
deren Anwendungsfeldern, sofern bekannt, beschrieben. In diesem Zusammen-
hang setzt man für die Projektion voraus, dass sich kurz- bis mittelfristig
beobachtete vergangene Sterblichkeitstrends auch in Zukunft fortsetzen wer-
den. Einige der dargestellten Methoden wurden zusätzlich anhand deutscher
Sterblichkeitsdaten der Human Mortality Database (2009) illustriert.

Zum einen wurde ein Überblick über diskrete Methoden zur Projektion dynami-
scher Sterbetafeln gegeben. Dabei bedient man sich entweder einer horizontalen
Fortschreibung der beobachteten Größe oder einer vertikalen bzw. diagonalen
Extrapolation der zu Grunde liegenden Parameter. Dadurch benötigt man
allerdings für die Fortschreibung eine hohe Anzahl an Parametern verbunden
mit dem Risiko unplausibler Extrapolationsergebnisse. Zum anderen wurden
stetige Ausgleichs- bzw. Glättungsmechanismen in parametrischer und nicht-
parametrischer Form betrachtet. Parametrische Ansätze wie Sterbegesetze
oder Transformierte von Sterbetafelfunktionen eignen sich zwar zur Reduktion
der Freiheitsgrade, erhöhen aber auch gleichzeitig den Extrapolationsaufwand
aufgrund möglicher korrelierter Modellparameter. Nicht-parametrische Aus-
gleichsverfahren erzeugen glatte altersspezifische Verläufe der Modellgröße,
deren Erscheinungsbild jedoch maßgeblich durch das subjektive Einschätzen
des Anwenders bestimmt wird. Dabei ist auch unter Anwendung bestimmter
Näherungsregeln nicht auszuschliessen, dass kurz- bis mittelfristige Trends zu
stark ausgeglättet werden. Aus diesem Grund nutzt man üblicherweise eine
Kombination aus einem Ausgleich roher altersspezifischer Sterbedaten und einer
anschliessenden parametrischer Projektion. Nichtsdestotrotz beinhaltet ein de-
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terministischer Ansatz das Risiko einer systematischen Fehleinschätzung222 der
Sterblichkeitsentwicklung und somit eine Einschränkung der Anwendbarkeit.

Kapitel 4 enthält eine Beschreibung moderner stochastischer Vorhersagemodelle,
die für die Sterblichkeitsforschung während der letzten 20 Jahre an Bedeutung
zunahmen, da unter anderem die Möglichkeit zur Modellierung zufallsbedingter
Schockszenarien (beispielsweise ausgelöst durch Naturkatastrophen, Epidemi-
en oder aber einen medizinischen Durchbruch) und Langzeiteffekte (etwa der
anhaltende Trend zur Langlebigkeit) besteht. In diesem Zusammenhang bie-
tet das wohlbekannte zeitdiskrete Modell nach Lee und Carter (1992) einen
verteilungsfreien Ansatz zur Ermittlung zukünftiger Projektionswerte mitsamt
den zugehörigen Konfidenzintervallen. Einige Modifizierungsvarianten des Lee-
Carter Modells lockern die teils starken (Verteilungs-)Annahmen und erhöhen
die Effizienz der Parameterschätzung. Zusätzliche zeitabhängige und / oder
Geburtsjahr-abhängige Faktoren verschiedener Modellerweiterungen sind dar-
über hinaus in der Lage, das Anpassungsvermögen zu verbessern und somit
systematisch bedingte Sterblichkeitstrends genauer abbilden zu können. Zu
guter Letzt wurden zeitstetige Modellvarianten zur Beschreibung der Sterb-
lichkeitsstruktur besprochen, die in diesem Zusammenhang erst kürzlich durch
versicherungsmathematische Literatur223 aufgegriffen wurden. Da Zins- und
Sterblichkeitsrate gewisse konzeptionelle Ähnlichkeiten aufweisen, verwendet
man für die Ansätze stochastische Prozesse, die bereits für arbitragefreie Model-
le zur Bewertung von Zinsderivaten verwendet werden. Analog zur Definition
der Zinsrate ist die zu Grunde liegende erklärende Sterblichkeitsrate dabei
entweder als Momentanrate, Forward-Rate oder Marktrate definiert.

In Kapitel 5 wurde ein gesonderter, illustrierter Exkurs zur parametrischen
Be- bzw. Fortschreibung von Sterbedaten unter Zuhilfenahme des Lee-Carter
Modells beziehungsweise einige der wichtigsten Modellverfeinerungen und -er-
weiterungen durchgeführt. Dies sind im Einzelnen der auf Poisson-Regression be-
ruhende Ansatz nach Brouhns u.a. (2002) und die von Renshaw und Haberman
(2003) bzw. Renshaw und Haberman (2006) dargestellten Mehrfaktormodelle.
Die getesteten Modellvarianten wurden einer ausführlichen Analyse qualitativer
und quantitativer Gütekriterien wie Residuenanalyse oder der Untersuchung
von Freiheitsgraden, Bestimmtheitsmaß, mittlerer quadratischer Abweichung
und Vorhersageintervall-Charts unterzogen. Zusammenfassend läßt sich sagen,
dass die Wahl für oder wider eine bestimmte Modellvariante in erheblichem

222 Nahezu alle in der zweiten Hälfte des 20. Jahrhunderts durchgeführten Sterblichkeitsvor-
ausberechnungen unterschätzten den tatsächlichen Anstieg der Lebenserwartung.
223 Ein Überblick über risikoneutrale Ansätze zur Bewertung und Absicherung des Sterblich-
keitsrisikos wird unter anderem in Cairns u.a. (2006) oder Blake u.a. (2006) gegeben.
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Maße davon abhängt, welche konkreten Anforderungen an die Vorhersage be-
stehen und welche Datengüte beziehungsweise -umfang der Anwendung zu
Grunde liegt. Bilineare Modelle wie das Lee-Carter Modell sind zwar robust
aber begrenzt in ihrem Anpassungsvermögen aufgrund der geringen Anzahl
an Parametern. Für die Mehrfaktor-Erweiterungen gilt hingegen das genaue
Gegenteil.

Ausblick Teil I:

Eine Einschätzung darüber, welches Modell sich für ein bestimmtes Anwen-
dungsgebiet am besten eignet, läßt sich durch eine Überprüfung geeigneter
qualitativer und quantitativer Kriterien gewinnen. Dabei ist die Erfüllung
eines Großteils der qualitativen Aspekte in den meisten Anwendungsfällen
als Grundvoraussetzung anzusehen. Nichtsdestotrotz bedarf es einer genauen
Überprüfung, welche qualitativen Kriterien zwingend notwendig und welche
quantitativen Kriterien aussagekräftig sind.

In Kapitel 4 wurden vier unterschiedliche Konzepte analog zu Cairns u.a.
(2008) vorgestellt, deren Ursprung in der Modellierung der Zinsstruktur von
Finanzmärkten liegt. Aus diesem Grund sollten die erklärenden Variablen
Momentanrate, Forwardrate oder Marktrate kritisch auf ihre Eignung zur
Modellierung der Sterblichkeit hin untersucht werden. Derzeit findet die An-
wendung lediglich auf Ebene aktuarieller Forschung statt, da die Bestimmung
risikoneutraler Momentan- und Forward-Überlebenswahrscheinlichkeiten einen
eindeutigen Marktpreis für systematisches Sterblichkeitsrisiko voraussetzt. Die
Entwicklung eines liquiden, transparenten, arbitragefreien oder reibungslosen
Marktes für Sterblichkeitsderivate befindet sich allerdings noch in den frühesten
Kinderschuhen und verhindert somit bisher auch die Anwendung von Markt-
modellen und die finanzmathematische Kalkulation sterblichkeitsindexierter
Finanzinstrumente.

Zusammenfassung Teil II:

Das Kapitel 6 stellt die Finanzierungsproblematik des deutschen Rentenver-
sicherungssystems und die daraus bedingte erhöhte Nachfrage nach privater
Altersversorgung dar. Genauer gesagt wird die Entwicklung von der Einführung
des kapitalgedeckten gesetzlichen Rentensystems im Zuge der Bismarckschen
Sozialgesetze gegen Ende des 19.Jahrhunderts bis hin zur umlagefinanzierten
Versorgung unter Kanzler Konrad Adenauer seit Mitte des 20.Jahrhunderts kurz
dargestellt. Auf institutioneller Seite beinhaltet die anhaltende, dramatische
Verschiebung der Altersstruktur innerhalb der Bevölkerung ein Erfordernis
hinsichtlich gesetzlicher Anpassungen zukünftiger Beiträge bzw. Leistungen.



Summary and Outlook (German version) 237

Für den Beitragszahler hingegen bedeutet dies, dass die sinkende Leistung
aus der gesetzlichen Rente über ein Zusatzeinkommen aus den verbleibenden
Absicherungsformen unterschiedlicher Schichten der Altersvorsorge aufgebaut
werden muss. Diesen Zweck erfüllen, neben betrieblicher Altersversorgung,
Lebensversicherungsprodukte der sogenannten dritten Schicht und bieten somit
ein wichtiges zusätzliches Standbein. Das lebenslängliche Alterseinkommen
aufgeschobener Leibrenten wahlweise mit konventioneller oder fondsgebundener
Ansparphase unterliegt jedoch in starkem Maße dem Risiko allgemeiner Lang-
lebigkeit – einem Thema, dem sich die folgenden Kapitel der Arbeit widmen.

In Kapitel 7 wurden die Bewertung, das Risikomanagement und die Risikoka-
pitalermittlung für das traditionelle Lebensversicherungsgeschäft betrachtet.
Diese hängen maßgeblich von den Annahmen hinsichtlich der Entwicklung der
Sterblichkeit und des Marktzinses ab. Mit Hilfe verschiedener (stochastischer
und deterministischer) Modelle, die jeweils an aktuelle Sterblichkeitsdaten und
die aktuelle Zinsstrukturkurve kalibriert wurden, zeigt das Kapitel, welchen
Einfluss zufallsbedingte Sterblichkeits- und Kapitalmarktentwicklungen auf die
anfangs geschilderten Versicherungsprozesse haben. Anhand von Monte Carlo
simulierten Varianzwerten für den diskontierten Geschäftsverlust des Versiche-
rers fand eine Aufteilung in einen diversifizierbaren und nicht-diversifizierbaren
Bestandteil statt. Des Weiteren wurde die Kalkulation von Risikobeiträgen
anhand des Nullnutzen- und Quantilprinzips durchgeführt. Die simulierten
Prämienaufschläge wurden für eine Auswahl verschiedener Zero-Bond Hedge-
/Investitionsstrategien in Relation zur Äquivalenzprämie gesetzt. Abschließend
wurden geeignete Solvenzkriterien und Solvenzmaße zur Bewertung der Zah-
lungsfähigkeit des Versicherers definiert. Die damit verbundene Ausfallwahr-
scheinlichkeit und die bedingte Ausfallhöhe des Cash-Flow Prozesses sind aus
Sicht des Versicherers stark abhängig von der zu Grunde liegenden Hedgestrate-
gie sowie dem Unsicherheitsgrad bezüglich des Sterblichkeits- und Zinsmodells.
In der Zusammenfassung der Ergebnisse wurde darauf eingegangen, dass die
Höhe des Sterblichkeitsrisikos im Vergleich zum Kapitalmarktrisiko eher gering
erscheint und das Potential größtenteils aus beider Zusammenspiel resultiert.
Dennoch ist der Einfluss systematischer Sterblichkeitstrends auf die Kalkulation
und die Reservierung als sehr nachhaltig anzusehen.

Das folgende Kapitel 8 beschäftigte sich mit der Analyse einer modernen und
flexiblen Variante fondsgebundener Rentenversicherungsprodukte, den soge-
nannten aufgeschobenen Variablen Annuitäten. Diese Form der Leibrente bietet
Verbrauchern eine hohe Aktienmarktpartizipation und gleichzeitig optionale
Garantien hinsichtlich Hinterbliebenenschutz und Ablaufleistung. Gegenstand
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der Untersuchung ist eine Variante gegen periodischen Beitrag mit garantierter
Altersrente zum Rentenbeginn und minimaler Todesfallleistung in der Auf-
schubzeit. Aus Gründen der Vereinfachung wurden lediglich Sterblichkeits-
und Finanzmarktrisiken betrachtet. Durch den Vergleich der Monte Carlo
simulierten Leistungsbarwerte einer Variablen Annuität mit zusätzlicher Ga-
rantiekomponente und einer fondsgebundenen Kapitallebensversicherung ohne
garantierte Leistungen konnten faire Garantiegebühren ermittelt werden. Die
Simulation der erforderlichen Garantiegebühren basierte dabei auf üblichen
Annahmen hinsichtlich der Finanzmarktparameter. Die Sterblichkeitsparameter
wurden an aktuelle Sterbedaten der Human Mortality Database (2009) ka-
libriert. Es zeigte sich, dass die Schätzer für die faire Garantiegebühr teils
deutlich von den marktüblichen Gebühren abweichen und vor allem eine Ände-
rung der Vertragsparameter (wie risikoloser Marktzins, Vertragslaufzeit oder
Garantieverzinsung) erheblichen Einfluss auf die Höhe der erforderlichen Ge-
bühr haben. Insbesondere wurde eine umfangreiche Sensitivitätsanalyse der
Garantiekosten und -optionspreise hinsichtlich einer Veränderung der Inputfak-
toren aus dem Versicherungsmantel, Finanzmodell und Sterblichkeitsmodell
durchgeführt. Des Weiteren sind auch die (Ablauf-)Renditeverteilung sowie die
Altersrente zum Rentenbeginn einer Analyse unterzogen worden. Der Versi-
cherungsnehmer erhält abhängig von der gewählten Garantieart bzw. -höhe
zwar eine vergleichsweise hohe garantierte Altersrente, die allerdings durch eine
entsprechend geringere Chance auf attraktive Ablaufrenditen erkauft wird. In
diesem Zusammenhang stellen die verzinsliche Ansammlung der eingezahlten
Beiträge als Schutz gegen Inflationsrisiken und die Absicherung zwischenzeit-
lich erreichter Fondshöchststände beliebte Garantieerhöhungsvarianten dar.
Die Wahrscheinlichkeit, im Leistungszeitpunkt lediglich den Garantiebetrag
zu erreichen, steigt durch den Einschluss bestimmter Erhöhungsvarianten, da
der innere Wert der Option und somit ihre Werthaltigkeit gesteigert werden.
Dies hat unterschiedliche Konsequenzen für den Rentenanbieter und für den
Policeninhaber.

Ausblick Teil II:

Die Anforderungen an ein modernes Risikomanagement können mitunter sehr
vielschichtig sein. Zum einen spielt die Interaktion von Langlebigkeits- und
Finanzmarktrisiken eine tragende Rolle bei der Bemessung eines angemessenen
Solvenzkapitals eines Lebensversicherers. Es wurde herausgestellt, dass Lebens-
versicherer und Rentenanbieter in hohem Maße dem Risiko systematischer
Sterblichkeitsentwicklungen ausgesetzt sind mit entsprechenden Auswirkungen
auf die Beitragskalkulation sowie Deckungskapitalbereitstellung. Eine umfas-
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sende Untersuchung des Cash-Flow Prozesses liefert dabei Aussagen über die
erforderlichen Risikobeiträge und Solvenzmittel unter Einsatz verschiedener
Hedgestrategien zur Eindämmung finanzieller Risiken. Zum anderen ist weitere
Forschungsarbeit hinsichtlich einer effektiven, dynamischen Absicherung anhand
sogenannter Sterblichkeitsderivate224, der vollständigen oder partiellen Übertra-
gung geschlossener Pensionspläne an sogenannte Bulk Annuity Provider, Swap
ähnlicher Rückversicherungslösungen oder natürlichen Hedging-Ansätzen225

erforderlich.

Besonders die Verbriefung biometrischer Risiken weckt zunehmendes Interesse
in Forschung und Versicherungspraxis gleichermaßen, da dieser Risikotransfer
zumindest theoretisch ein vollständige Absicherung gegen Langlebigkeits- oder
Katastrophenrisiken erlaubt. Typische Vertreter dieser neuen Anlageklasse sind
Langlebigkeitsanleihen wie Longevity oder Survivor Bonds226 sowie Longevi-
ty Swaps227, Annuity Futures und weitere (exotische) sterblichkeitsindexierte
Optionen. Auf der einen Seite erhalten die Emitenten solcher Papiere einen
effektiven Schutz gegen das Langlebigkeitsrisiko ihres Versichertenbestandes.
Auf der anderen Seite bietet der Kauf der Derivate Hedgefonds oder ande-
ren Finanzinstituten Liquidität und die Aussicht auf ein Investment-Portfolio
mit geringem Betafaktor. Jedoch zeigen Erfahrungen aus der Praxis, dass
mögliche Investoren und Emitenten bisher kaum an einer Verbriefung der
Langlebigkeit interessiert waren. Mögliche Gründe für diese schleppende Ent-
wicklung eines “Sterblichkeitsmarktes” liegen in den nur schwer einschätzbaren
Risikofaktoren228 wie beispielsweise hohem Basis- und Ausfallrisiko (für stan-
dardisierte Hedgeinstrumente), fehlender Bonds mit ausreichender Laufzeit und
Bewertungsstandards (hinsichtlich der Berechnung von Risikoprämien in unvoll-
ständigen Märkten). Aus diesem Grund muss das Hauptaugenmerk zukünftiger
224 Sterblichkeitsderivate sind an bestimmte Sterblichkeitsindizes oder die Anzahl der Über-
lebenden einer Referenzkohorte gekoppelt. Eine detaillierte Beschreibung wird beispielsweise
in Blake und Burrows (2001), Lin und Cox (2005), Dowd u.a. (2006) oder Blake u.a. (2006)
ausgeführt.
225 Ein natürlicher Hedge von biometrischem Risiko kann ausgleichend über die Zeit oder
über verschiedene Lebenssparten wirken. Für weitere Ausführungen zu diesem Thema siehe
Pitacco u.a. (2008).
226 Die Europäische Investitionsbank (EIB) plante 2004 die Auflage eines Longevity Bonds
mit einem Anlagehorizont von 25 Jahren. Allerdings wurde der Bond aufgrund von Design-
problemen und dadurch mangelnder Nachfrage vom Markt genommen. Die Swiss Re legte
2010 eine Reihe von Longevity Bonds mit Laufzeitende in 2017 über ein ausserbilanzielles,
strukturiertes Anlagevehikel names Kortis auf.
227 Die Swiss Re emitierte 2007 den ersten Longevity Swap zusammen mit dem britischen
Lebensversicherer Friend’s Provident über ein Volumen von 1,7 Milliarden Pfund. Allerdings
handelt es sich hierbei um einen maßgeschneiderten Rückversicherungsvertrag und keinen
gehandelten Standardkontrakt.
228 Siehe Cairns u.a. (2006) für eine detaillierte Beschreibung von Risiken verbunden mit der
Bewertung von Langlebigkeit.
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Forschungsanstrengungen auf der sorgfältigen Durchdringung der Kalkulations-
und Hedgefragestellungen liegen. Nichtsdestotrotz ist sich die derzeitige ak-
tuarielle Literatur, wie zum Beispiel Loeys u.a. (2007), Blake u.a. (2008) und
Bertocchi u.a. (2009), einig darüber, dass sich ein Sterblichkeitsmarkt mit
ansteigender Zahl an Marktteilnehmern, Methodenwissen und technischen Mög-
lichkeiten entwickeln kann, sofern bestimmte Markteintrittshürden erfolgreich
passiert wurden.

Ein weiteres interessantes Forschungsvorgehen liegt in der Ausweitung des
Modellrahmens auf einen komplexeren aber gleichzeitig praxisnäheren Versi-
cherungsvertragstyp. Aufgeschobene Leibrenten beinhalten üblicherweise einen
konventionellen integrierten Risikoschutz229, variable periodische Prämien oder
ein Kapitalwahlrecht zum Ablauf der Aufschubzeit. Zusätzlich erscheint es
sinnvoll, eine Verfeinerung des Modells hinsichtlich der Korrelation230 von
zukünftigen Sterberaten und Zinsraten unter dem Bewertungsmaß und der
Einbeziehung von Transaktionskosten für die Hedgestrategien vorzunehmen.

Aufgrund jüngster (Finanz-)Marktkrisen des letzten Jahrzehnts und der Bei-
nahe-Zusammenbruch einiger Anbieter von Variablen Annuitäten ohne echte
Risikozession vertritt die derzeitige Literatur die Meinung, dass ein sinnvol-
les Risikomanagement die Einführung eines umfänglichen Hedgeprogrammes
erfordert. Demnach sollte das Versicherungsunternehmen ein aktiv gemanag-
tes Hedge-Portfolio aufsetzen, welches hinsichtlich der Allokation sensibel auf
finanzielle oder biometrische Änderungen sowie Verbraucherverhalten (Stor-
no, Kapitalanlage oder Optionsausübung) reagiert. Ein umfassendes Hedging
birgt allerdings auch zusätzliche Risiken (wie etwa Liquiditäts-, Ausfall- oder
operationelle Risiken) mit sich und ist aufgrund der Beschränkungen hinsicht-
lich der Laufzeit und Liquidität der Hedgeinstrumente als unvollständig zu
betrachten. Aus diesem Grund ist die Analyse der Parameterunsicherheit hin-
sichtlich der Effektivität von dynamischen Hedgestrategien eine interessante
Forschungsfrage.

Es wurde gezeigt, dass Variablen Annuitäten für Versicherungsnehmer eine Rei-
he verschiedener zusätzlicher Garantien oder Flexibilitäten bereithalten. So hat
dieser etwa zum Ende der Aufschubzeit die Möglichkeit, durch einen vorzeitigen
Abruf flexibel zu verrenten oder durch eine Verlängerung der Ansparphase
eine Aktienbaisse “auszusitzen”. Die Frage, ob eine Verlängerungsoption aus

229 Als garantierten Todesfallschutz findet man häufig einen festen Prozentsatz der Gesamt-
bruttobeitragssumme oder eine Rückgewähr bereits gezahlter Bruttobeiträge.
230 Miltersen und Persson (2006) verwenden den Heath-Jarrow-Morton Ansatz unter korre-
lierter Entwicklung der Zinsstrukturkurve und der Forward Sterberaten zur Kalkulation von
Sterblichkeitsderivaten.
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finanzökonomischer Sicht auch sinnvoll erscheint oder nur vertriebliche Relevanz
besitzt ist noch zu beantworten. Insbesondere dem Angebot sogenannter Zu-
satzoptionen, die zwar die garantierte Erlebensfall- oder Todesfallleistung aber
auch die Komplexität über Look-back- und Barrier-Optionen erhöhen, sollte
weitere Aufmerksamkeit geschenkt werden. Hierbei muss man die Frage stellen,
ob solche Flexibilitäten den Optionswert aus Sicht des Kunden nachhaltig
bereichern oder als Instrument zur Steuerung beziehungsweise Beeinflussung
des Kundenverhaltens hinsichtlich Rückkauf und Optionsausübung dienen.
Einige Autoren betrachten die Option, den Vertrag je nach Werthaltigkeit
während der Aufschubzeit zu stornieren231. Zusätzlich erhält der Versicherungs-
nehmer weitere Anlageoptionen oder -rechte über Fondsswitches232 oder -shifts
innerhalb seines Fondsbaskets oder über eine Auswahl vordefinierter (aktiv
gemanagter) Strategiedepotlösungen. Zusammenfassend läßt sich festhalten,
dass zum Einfluss von Annahmen an das Kundenverhalten (bezüglich Storno,
Verlängerung, oder vorzeitigen Konsum) oder vertraglichen Beschränkungen
(für das Fonds- und Garantiemanagement) auf die Kalkulation und das Hedging
weitere Studien durchgeführt werden sollten.

231 Milevsky und Salisbury (2001) bestimmen eine geeignete fondsbasierte Garantiegebühr,
indem sie von rationalem Kundenverhalten und einer bedingten aufgeschobenen Stornogebühr
für die sogenannte “Real Option to Lapse” ausgehen. Mudavanhu und Zhou (2002) bewerten
die Stornooption innerhalb von Vertragsperioden mit schwacher Aktienperformance anhand
einer deterministischen Stufenfunktion für die Stornogebühr. Im Gegensatz dazu berechnen
Kolkiewicz und Tan (2006) die Option unter Annahme kapitalmarktabhängiger Ausführung
etwa basierend auf der Aktienvolatilität.
232 Mahayni und Schneider (2010), Mahayni und Schoenmakers (2010) oder Zieling (2010)
behandeln das Thema der Switchoption eingehender.
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APPENDIX to Chapter 5

A.1 Parameter and symbol definition for the estima-
tion results

Smoothed historic estimate values:

â(x) age-specific estimates determining the empirical average shape over time
of the age profile in age group

b̂(x), bi(x) (i = 1, 2) age-specific estimates capturing the age-specific improve-
ment rate sensitive to changes the general level of mortality

k̂(t), ki(t) (i = 1, 2) time-varying estimates representing the variation in the
general level of mortality

l̂(t − x) estimates representing additional cohort effects in the age-time surface

Measures of central tendency and dispersion:

ā(x), b̄(x), b̄i(x) (i = 1, 2), k̄(x), k̄i(x) (i = 1, 2), l̄(t − x) denote the raw
corresponding expected values

SEā, SEb̄, SEb̄i
(i = 1, 2), SEk̄, SEk̄i

(i = 1, 2), SEl̄ denote the raw standard
error of the mean

q0.05, q0.95 represent the 0.05- as well as 0.95-quantiles
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A.2 Estimation results for the age-period model by Lee
and Carter

age x â(x) b̂(x) age x â(x) b̂(x) year t k̂(t)
0 -6.0138 0.0232 55 -4.5866 0.0075 1960 28.93
1 -6.4846 0.0230 56 -4.4896 0.0077 1961 28.78
2 -6.9227 0.0229 57 -4.3924 0.0079 1962 28.68
3 -7.3068 0.0229 58 -4.2952 0.0081 1963 28.66
4 -7.6269 0.0228 59 -4.1980 0.0083 1964 28.70
5 -7.8809 0.0227 60 -4.1008 0.0084 1965 28.86
6 -8.0719 0.0225 61 -4.0039 0.0086 1966 29.13
7 -8.2052 0.0221 62 -3.9072 0.0088 1967 29.43
8 -8.2858 0.0216 63 -3.8109 0.0089 1968 29.69
9 -8.3178 0.0209 64 -3.7150 0.0090 1969 29.75

10 -8.3026 0.0201 65 -3.6195 0.0090 1970 29.52
11 -8.2417 0.0192 66 -3.5245 0.0091 1971 28.99
12 -8.1377 0.0183 67 -3.4300 0.0091 1972 28.17
13 -7.9948 0.0175 68 -3.3358 0.0091 1973 27.08
14 -7.8199 0.0167 69 -3.2419 0.0090 1974 25.72
15 -7.6238 0.0159 70 -3.1482 0.0089 1975 24.12
16 -7.4210 0.0151 71 -3.0547 0.0088 1976 22.27
17 -7.2285 0.0143 72 -2.9614 0.0087 1977 20.24
18 -7.0599 0.0136 73 -2.8682 0.0085 1978 18.10
19 -6.9254 0.0130 74 -2.7751 0.0084 1979 15.88
20 -6.8279 0.0124 75 -2.6818 0.0082 1980 13.60
21 -6.7647 0.0119 76 -2.5885 0.0080 1981 11.28
22 -6.7300 0.0115 77 -2.4951 0.0078 1982 8.89
23 -6.7165 0.0111 78 -2.4014 0.0075 1983 6.45
24 -6.7164 0.0108 79 -2.3074 0.0073 1984 3.96
25 -6.7225 0.0106 80 -2.2133 0.0070 1985 1.47
26 -6.7290 0.0104 81 -2.1192 0.0067 1986 -0.99
27 -6.7314 0.0103 82 -2.0254 0.0064 1987 -3.39
28 -6.7269 0.0102 83 -1.9321 0.0061 1988 -5.70
29 -6.7137 0.0101 84 -1.8394 0.0058 1989 -7.89
30 -6.6910 0.0100 85 -1.7475 0.0055 1990 -10.03
31 -6.6586 0.0099 86 -1.6567 0.0052 1991 -12.18
32 -6.6168 0.0098 87 -1.5670 0.0049 1992 -14.37
33 -6.5662 0.0097 88 -1.4789 0.0045 1993 -16.63
34 -6.5075 0.0096 89 -1.3924 0.0042 1994 -19.02
35 -6.4413 0.0095 90 -1.3080 0.0039 1995 -21.59
36 -6.3685 0.0093 91 -1.2260 0.0036 1996 -24.37
37 -6.2898 0.0091 92 -1.1471 0.0034 1997 -27.38
38 -6.2064 0.0088 93 -1.0714 0.0031 1998 -30.59
39 -6.1193 0.0086 94 -0.9993 0.0028 1999 -33.97
40 -6.0293 0.0083 95 -0.9307 0.0025 2000 -37.49
41 -5.9370 0.0080 96 -0.8654 0.0022 2001 -41.11
42 -5.8431 0.0078 97 -0.8034 0.0020 2002 -44.82
43 -5.7479 0.0075 98 -0.7444 0.0017 2003 -48.63
44 -5.6518 0.0073 99 -0.6886 0.0015 2004 -52.56
45 -5.5550 0.0071 100 -0.6358 0.0013 2005 -56.53
46 -5.4580 0.0070 101 -0.5860 0.0011 2006 -60.54
47 -5.3609 0.0069 102 -0.5391 0.0010
48 -5.2639 0.0068 103 -0.4949 0.0008
49 -5.1670 0.0068 104 -0.4531 0.0006
50 -5.0702 0.0068 105 -0.4135 0.0005
51 -4.9735 0.0069 106 -0.3755 0.0004
52 -4.8770 0.0070 107 -0.3389 0.0003
53 -4.7803 0.0071 108 -0.3029 0.0002
54 -4.6836 0.0073 109 -0.2673 0.0000

Table A.1: Parameter estimates for the LC92 model based on German male period
life tables 1956-2006 from the Human Mortality Database (2009).
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A.3 Estimation results for the age-period model by Brouhns,
Denuit and Vermunt

age x â(x) a(x) SE
a

qa
0.05 qa

0.95 age x b̂(x) b(x) SE
b

qb
0.05 qb

0.95

0 -6.02 -4.43 0.0006 -4.4858 -4.3822 0 0.0255 0.0245 0.0001 0.0199 0.0284
1 -6.49 -7.04 0.0023 -7.2364 -6.8651 1 0.0251 0.0198 0. 0.0165 0.0228
2 -6.93 -7.5 0.0029 -7.7471 -7.2806 2 0.0248 0.0198 0. 0.0165 0.0227
3 -7.31 -7.71 0.0032 -7.9805 -7.4631 3 0.0245 0.0197 0. 0.0165 0.0226
4 -7.63 -7.91 0.0036 -8.2247 -7.6422 4 0.0243 0.0213 0. 0.0179 0.0243
5 -7.88 -8. 0.0038 -8.3317 -7.7201 5 0.024 0.022 0. 0.0184 0.025
6 -8.07 -8.09 0.004 -8.4421 -7.7965 6 0.0237 0.0219 0. 0.0184 0.0249
7 -8.21 -8.17 0.0041 -8.5312 -7.8677 7 0.0232 0.0216 0. 0.0182 0.0245
8 -8.29 -8.19 0.0041 -8.5478 -7.8839 8 0.0226 0.0195 0. 0.0163 0.022
9 -8.32 -8.33 0.0044 -8.7213 -7.9996 9 0.0218 0.0199 0. 0.0168 0.0226

10 -8.3 -8.4 0.0046 -8.8023 -8.0605 10 0.021 0.0204 0. 0.0172 0.0232
11 -8.24 -8.34 0.0044 -8.7194 -8.0118 11 0.02 0.016 0. 0.0134 0.0182
12 -8.14 -8.29 0.0043 -8.6615 -7.9753 12 0.019 0.0155 0. 0.013 0.0176
13 -7.99 -8.2 0.0041 -8.5564 -7.8985 13 0.018 0.0152 0. 0.0127 0.0172
14 -7.82 -8.03 0.0037 -8.3476 -7.7496 14 0.0171 0.0151 0. 0.0126 0.0172
15 -7.62 -7.75 0.0032 -8.0179 -7.5068 15 0.0162 0.0136 0. 0.0114 0.0156
16 -7.42 -7.26 0.0025 -7.4749 -7.0711 16 0.0154 0.0145 0. 0.0121 0.0167
17 -7.22 -7.06 0.0022 -7.2466 -6.8836 17 0.0145 0.0137 0. 0.0114 0.0158
18 -7.05 -6.7 0.0019 -6.8541 -6.5539 18 0.0138 0.0105 0. 0.0087 0.0121
19 -6.92 -6.66 0.0018 -6.8105 -6.5155 19 0.013 0.0109 0. 0.009 0.0125
20 -6.82 -6.67 0.0018 -6.8259 -6.5294 20 0.0124 0.0106 0. 0.0087 0.0122
21 -6.76 -6.69 0.0018 -6.8402 -6.5407 21 0.0119 0.0105 0. 0.0087 0.0121
22 -6.73 -6.72 0.0019 -6.8753 -6.5716 22 0.0115 0.0101 0. 0.0083 0.0116
23 -6.71 -6.75 0.0019 -6.91 -6.6014 23 0.0111 0.0095 0. 0.0078 0.0109
24 -6.71 -6.78 0.0019 -6.942 -6.6287 24 0.0108 0.0092 0. 0.0076 0.0106
25 -6.72 -6.8 0.002 -6.9604 -6.6446 25 0.0106 0.009 0. 0.0075 0.0104
26 -6.73 -6.8 0.002 -6.9696 -6.6514 26 0.0104 0.009 0. 0.0074 0.0103
27 -6.73 -6.79 0.0019 -6.9578 -6.6415 27 0.0102 0.009 0. 0.0074 0.0103
28 -6.72 -6.77 0.0019 -6.9374 -6.6242 28 0.0101 0.0088 0. 0.0073 0.0101
29 -6.71 -6.75 0.0019 -6.9079 -6.5976 29 0.01 0.009 0. 0.0074 0.0103
30 -6.69 -6.72 0.0019 -6.8762 -6.5713 30 0.01 0.0088 0. 0.0073 0.0101
31 -6.66 -6.67 0.0018 -6.8237 -6.527 31 0.0099 0.0083 0. 0.0069 0.0096
32 -6.61 -6.63 0.0018 -6.7772 -6.4856 32 0.0098 0.0086 0. 0.0071 0.0099
33 -6.56 -6.57 0.0017 -6.7153 -6.4326 33 0.0097 0.0086 0. 0.0071 0.0099
34 -6.51 -6.51 0.0017 -6.6509 -6.3766 34 0.0095 0.0083 0. 0.0068 0.0096
35 -6.44 -6.45 0.0016 -6.5906 -6.324 35 0.0094 0.0081 0. 0.0067 0.0093
36 -6.37 -6.38 0.0016 -6.5101 -6.2535 36 0.0092 0.0079 0. 0.0065 0.0091
37 -6.29 -6.28 0.0015 -6.4079 -6.162 37 0.009 0.0081 0. 0.0066 0.0093
38 -6.2 -6.21 0.0015 -6.328 -6.0913 38 0.0088 0.0077 0. 0.0064 0.0089
39 -6.12 -6.11 0.0014 -6.2256 -5.9998 39 0.0085 0.0075 0. 0.0062 0.0087
40 -6.03 -6.02 0.0013 -6.1285 -5.9134 40 0.0082 0.0072 0. 0.0059 0.0083
41 -5.94 -5.94 0.0013 -6.0438 -5.8366 41 0.008 0.0068 0. 0.0056 0.0079
42 -5.84 -5.84 0.0012 -5.9395 -5.742 42 0.0077 0.0066 0. 0.0054 0.0076
43 -5.75 -5.74 0.0012 -5.8388 -5.6503 43 0.0075 0.0065 0. 0.0053 0.0074
44 -5.65 -5.66 0.0011 -5.7474 -5.567 44 0.0073 0.0063 0. 0.0051 0.0072
45 -5.55 -5.55 0.0011 -5.6366 -5.4653 45 0.0071 0.0061 0. 0.005 0.007
46 -5.46 -5.45 0.001 -5.5372 -5.3736 46 0.0069 0.006 0. 0.0049 0.0069
47 -5.36 -5.35 0.001 -5.4335 -5.2776 47 0.0068 0.0058 0. 0.0047 0.0067
48 -5.26 -5.26 0.0009 -5.3392 -5.1896 48 0.0068 0.0059 0. 0.0048 0.0068
49 -5.17 -5.17 0.0009 -5.2416 -5.0985 49 0.0068 0.0058 0. 0.0047 0.0067
50 -5.07 -5.06 0.0008 -5.1336 -4.9974 50 0.0068 0.0058 0. 0.0047 0.0066
51 -4.97 -4.97 0.0008 -5.0376 -4.9072 51 0.0069 0.0062 0. 0.005 0.0071
52 -4.88 -4.88 0.0008 -4.9406 -4.8156 52 0.007 0.0059 0. 0.0048 0.0069
53 -4.78 -4.79 0.0007 -4.8468 -4.7269 53 0.0071 0.0062 0. 0.005 0.0071
54 -4.68 -4.68 0.0007 -4.7415 -4.6271 54 0.0073 0.0062 0. 0.005 0.0072
55 -4.59 -4.59 0.0007 -4.6434 -4.5338 55 0.0075 0.0065 0. 0.0053 0.0075
56 -4.49 -4.49 0.0006 -4.5442 -4.4392 56 0.0077 0.0067 0. 0.0054 0.0078
57 -4.39 -4.39 0.0006 -4.4413 -4.3409 57 0.0079 0.0069 0. 0.0056 0.008
58 -4.29 -4.3 0.0006 -4.3475 -4.2508 58 0.0081 0.0071 0. 0.0057 0.0082
59 -4.2 -4.2 0.0006 -4.2455 -4.153 59 0.0083 0.0071 0. 0.0057 0.0083
60 -4.1 -4.1 0.0005 -4.1448 -4.0559 60 0.0085 0.0075 0. 0.006 0.0086
61 -4. -4. 0.0005 -4.0468 -3.9614 61 0.0087 0.0075 0. 0.0061 0.0088
62 -3.91 -3.9 0.0005 -3.9456 -3.8635 62 0.0088 0.0077 0. 0.0062 0.0089
63 -3.81 -3.81 0.0005 -3.8486 -3.7695 63 0.0089 0.0078 0. 0.0063 0.0091
64 -3.71 -3.72 0.0005 -3.7559 -3.6794 64 0.009 0.0079 0. 0.0063 0.0092
65 -3.62 -3.62 0.0005 -3.6533 -3.5797 65 0.0091 0.0079 0. 0.0064 0.0092
66 -3.52 -3.52 0.0004 -3.5578 -3.4866 66 0.0091 0.0081 0. 0.0065 0.0094
67 -3.43 -3.43 0.0004 -3.4652 -3.3961 67 0.0091 0.0079 0. 0.0063 0.0092
68 -3.34 -3.33 0.0004 -3.3686 -3.3015 68 0.0091 0.008 0. 0.0064 0.0093
69 -3.24 -3.24 0.0004 -3.2777 -3.2124 69 0.0091 0.0079 0. 0.0063 0.0092
70 -3.15 -3.15 0.0004 -3.1797 -3.1162 70 0.009 0.0078 0. 0.0062 0.0091
71 -3.05 -3.05 0.0004 -3.0832 -3.0212 71 0.0089 0.0076 0. 0.006 0.0089
72 -2.96 -2.96 0.0004 -2.9917 -2.9309 72 0.0087 0.0075 0. 0.006 0.0088
73 -2.87 -2.87 0.0004 -2.8989 -2.8393 73 0.0086 0.0075 0. 0.0059 0.0087
74 -2.77 -2.77 0.0004 -2.8045 -2.7459 74 0.0084 0.0073 0. 0.0058 0.0085
75 -2.68 -2.68 0.0004 -2.7083 -2.6506 75 0.0083 0.0071 0. 0.0056 0.0083
76 -2.59 -2.59 0.0004 -2.6182 -2.5609 76 0.0081 0.0071 0. 0.0056 0.0083
77 -2.49 -2.5 0.0004 -2.5255 -2.4685 77 0.0079 0.0068 0. 0.0054 0.008

Continued on next page . . .
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78 -2.4 -2.4 0.0004 -2.4337 -2.3768 78 0.0076 0.0067 0. 0.0053 0.0079
79 -2.31 -2.31 0.0004 -2.3408 -2.2838 79 0.0074 0.0065 0. 0.0052 0.0077
80 -2.21 -2.22 0.0004 -2.2442 -2.187 80 0.0071 0.0062 0. 0.0049 0.0072
81 -2.12 -2.12 0.0004 -2.1452 -2.0874 81 0.0069 0.006 0. 0.0047 0.007
82 -2.03 -2.02 0.0004 -2.0529 -1.9941 82 0.0066 0.0057 0. 0.0045 0.0067
83 -1.93 -1.93 0.0004 -1.9626 -1.9022 83 0.0063 0.0054 0. 0.0042 0.0063
84 -1.84 -1.84 0.0004 -1.8698 -1.8075 84 0.006 0.0052 0. 0.004 0.0061
85 -1.75 -1.75 0.0004 -1.7813 -1.7165 85 0.0056 0.005 0. 0.0038 0.0059
86 -1.66 -1.66 0.0004 -1.6906 -1.6226 86 0.0053 0.0046 0. 0.0036 0.0055
87 -1.57 -1.57 0.0004 -1.6041 -1.532 87 0.005 0.0046 0. 0.0035 0.0055
88 -1.48 -1.48 0.0005 -1.5193 -1.442 88 0.0046 0.004 0. 0.003 0.0049
89 -1.39 -1.4 0.0005 -1.4445 -1.3604 89 0.0043 0.0036 0. 0.0026 0.0043
90 -1.31 -1.31 0.0006 -1.3546 -1.263 90 0.0039 0.0033 0. 0.0024 0.0041
91 -1.23 -1.22 0.0006 -1.2728 -1.1714 91 0.0036 0.0029 0. 0.002 0.0037
92 -1.14 -1.14 0.0007 -1.2029 -1.0885 92 0.0033 0.0029 0. 0.0019 0.0037
93 -1.06 -1.06 0.0008 -1.1269 -0.9973 93 0.003 0.0028 0. 0.0018 0.0037
94 -0.98 -0.99 0.0009 -1.0721 -0.921 94 0.0027 0.0025 0. 0.0015 0.0035
95 -0.9 -0.94 0.0011 -1.0306 -0.8521 95 0.0024 0.002 0. 0.0009 0.003
96 -0.83 -0.87 0.0013 -0.9838 -0.7711 96 0.0021 0.0017 0. 0.0006 0.0029
97 -0.75 -0.81 0.0016 -0.9475 -0.6889 97 0.0017 0.0014 0. 0.0001 0.0028
98 -0.68 -0.76 0.002 -0.9209 -0.6043 98 0.0014 0.0012 0. -0.0003 0.0028
99 -0.62 -0.7 0.0024 -0.91 -0.5148 99 0.0011 0.001 0. -0.0009 0.0029

100 -0.57 -0.66 0.0031 -0.9233 -0.4198 100 0.0007 0.0007 0. -0.0016 0.0031
101 -0.54 -0.61 0.004 -0.9576 -0.3131 101 0.0003 0.0005 0. -0.0024 0.0034
102 -0.53 -0.58 0.0054 -1.048 -0.1957 102 -0.0001 0.0001 0. -0.0038 0.0039
103 -0.55 -0.57 0.0074 -1.2411 -0.0551 103 -0.0006 -0.0003 0.0001 -0.0063 0.0047
104 -0.62 -0.59 0.0107 -1.599 0.0903 104 -0.0011 -0.0011 0.0001 -0.0104 0.005
105 -0.74 -0.69 0.0168 -2.1608 0.247 105 -0.0017 -0.0029 0.0002 -0.0154 0.006
106 -0.91 -0.98 0.03 -4.338 0.4439 106 -0.0022 -0.0067 0.0003 -0.0387 0.007
107 -1.14 -2.24 0.1126 -7.5754 0.6187 107 -0.0026 -0.0141 0.0005 -0.0679 0.0072
108 -1.41 -6.48 0.2436 -41.3164 0.7236 108 -0.0028 -0.0186 0.0008 -0.09 0.0454
109 -1.7 -14.22 0.3386 -41.2898 0.8905 109 -0.0029 0.1612 0.0036 -0.0065 0.3755

year t k̂(t) k(t) SE
k

qk
0.05 qk

0.95 year t k̂(t) k(t) SE
k

qk
0.05 qk

0.95

1960 30.89 39.45 0.1341 32.831 48.4001 1983 5.36 7.66 0.0269 6.3221 9.4768
1961 30.41 34.33 0.1184 28.4931 42.2779 1984 2.93 2.33 0.0094 1.837 3.0035
1962 29.97 35.05 0.1196 29.1415 43.0455 1985 0.51 1.04 0.0046 0.7976 1.3862
1963 29.61 37.21 0.1261 30.9871 45.6265 1986 -1.87 -2.02 0.0058 -2.4018 -1.7224
1964 29.33 30.5 0.1054 25.311 37.5829 1987 -4.2 -6.49 0.0207 -7.8338 -5.4605
1965 29.18 33.05 0.1126 27.4869 40.5801 1988 -6.43 -9.83 0.032 -11.9317 -8.2527
1966 29.16 32.94 0.1125 27.3848 40.4693 1989 -8.57 -11.17 0.0372 -13.6247 -9.3314
1967 29.2 31.24 0.1069 25.9679 38.3978 1990 -10.67 -11.65 0.0391 -14.2439 -9.7138
1968 29.23 36.65 0.1237 30.5425 44.8929 1991 -12.76 -14.41 0.0485 -17.6371 -12.0132
1969 29.13 38.12 0.1288 31.7598 46.6966 1992 -14.89 -19.27 0.0647 -23.5749 -16.0781
1970 28.8 35.52 0.1206 29.577 43.5798 1993 -17.08 -19.01 0.0644 -23.2922 -15.8374
1971 28.2 33.86 0.1152 28.1816 41.5602 1994 -19.39 -23.24 0.0788 -28.5048 -19.3575
1972 27.33 32.8 0.1116 27.2918 40.2478 1995 -21.86 -24.17 0.082 -29.6503 -20.1292
1973 26.19 31.55 0.1073 26.2634 38.7161 1996 -24.52 -26.91 0.0916 -33.0308 -22.3871
1974 24.78 28.6 0.0976 23.7925 35.1279 1997 -27.38 -32.28 0.1101 -39.6542 -26.8613
1975 23.14 30.49 0.1033 25.3981 37.3824 1998 -30.41 -36.17 0.1237 -44.4617 -30.0666
1976 21.25 26.03 0.0887 21.6606 31.9594 1999 -33.59 -39.6 0.1359 -48.7228 -32.8929
1977 19.19 19.71 0.0681 16.3591 24.2986 2000 -36.9 -44.16 0.1514 -54.3017 -36.6792
1978 17.03 20.64 0.0708 17.1538 25.3873 2001 -40.3 -49.75 0.1709 -61.2005 -41.3176
1979 14.79 16.04 0.0557 13.2997 19.7903 2002 -43.77 -51.58 0.1775 -63.4862 -42.8213
1980 12.49 14.37 0.0501 11.8958 17.7556 2003 -47.33 -52.43 0.1809 -64.5891 -43.5009
1981 10.16 12.74 0.0441 10.5651 15.7061 2004 -50.99 -62.03 0.2134 -76.3555 -51.4974
1982 7.78 9.43 0.0333 7.7826 11.6879 2005 -54.7 -64.49 0.2225 -79.4428 -53.5061

2006 -58.43 -70.71 0.244 -87.099 -58.6734

Table A.2: Parameter estimates, simulation mean, standard error (SE) and quantiles
(q0.05, q0.95) for the BDV02 model based on German male period life tables 1956-2006
from the Human Mortality Database (2009).
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A.4 Estimation results for the age-period model with
age-specific enhancement by Renshaw and Haber-
man

age x â(x) a(x) SE
a

qa
0.05 qa

0.95 age x â(x) a(x) SE
a

qa
0.05 qa

0.95

0 -6.01 -4.42 0.0011 -4.4717 -4.3679 55 -4.5858 -4.59 0.0012 -4.6452 -4.5328
1 -6.48 -7.04 0.0039 -7.2357 -6.8577 56 -4.4887 -4.49 0.0011 -4.546 -4.4382
2 -6.92 -7.49 0.005 -7.7466 -7.2729 57 -4.3915 -4.39 0.0011 -4.443 -4.3399
3 -7.3 -7.7 0.0055 -7.9832 -7.4556 58 -4.2942 -4.3 0.001 -4.3489 -4.2498
4 -7.62 -7.91 0.0062 -8.2228 -7.6325 59 -4.197 -4.2 0.001 -4.2469 -4.152
5 -7.88 -8. 0.0065 -8.3366 -7.7119 60 -4.0999 -4.1 0.001 -4.1461 -4.055
6 -8.07 -8.09 0.0069 -8.4396 -7.7879 61 -4.0029 -4. 0.0009 -4.048 -3.9604
7 -8.2 -8.17 0.0072 -8.5443 -7.8611 62 -3.9063 -3.9 0.0009 -3.9468 -3.8626
8 -8.28 -8.19 0.0071 -8.5599 -7.8764 63 -3.81 -3.81 0.0008 -3.8498 -3.7686
9 -8.31 -8.32 0.0077 -8.728 -7.9926 64 -3.7142 -3.72 0.0008 -3.7569 -3.6785

10 -8.3 -8.4 0.008 -8.8132 -8.0531 65 -3.6188 -3.62 0.0008 -3.6545 -3.5789
11 -8.24 -8.33 0.0076 -8.7289 -8.0061 66 -3.5239 -3.52 0.0008 -3.5589 -3.4857
12 -8.13 -8.29 0.0074 -8.6729 -7.9701 67 -3.4294 -3.43 0.0007 -3.4663 -3.3954
13 -7.99 -8.2 0.0071 -8.5626 -7.8948 68 -3.3353 -3.33 0.0007 -3.3698 -3.3009
14 -7.82 -8.03 0.0064 -8.3584 -7.7442 69 -3.2415 -3.24 0.0007 -3.279 -3.212
15 -7.62 -7.75 0.0055 -8.0309 -7.5006 70 -3.1478 -3.15 0.0007 -3.1811 -3.1159
16 -7.42 -7.27 0.0044 -7.4898 -7.0704 71 -3.0544 -3.05 0.0007 -3.0847 -3.0211
17 -7.23 -7.06 0.0039 -7.2594 -6.8835 72 -2.9611 -2.96 0.0007 -2.9934 -2.9311
18 -7.06 -6.7 0.0032 -6.8653 -6.5556 73 -2.8679 -2.87 0.0006 -2.9007 -2.8395
19 -6.92 -6.66 0.0032 -6.8189 -6.5154 74 -2.7746 -2.78 0.0006 -2.8061 -2.7459
20 -6.82 -6.67 0.0032 -6.8329 -6.5276 75 -2.6814 -2.68 0.0006 -2.7102 -2.6509
21 -6.76 -6.68 0.0032 -6.846 -6.5382 76 -2.588 -2.59 0.0006 -2.6197 -2.5609
22 -6.73 -6.72 0.0033 -6.8815 -6.5696 77 -2.4945 -2.5 0.0006 -2.527 -2.4686
23 -6.71 -6.75 0.0033 -6.9155 -6.5989 78 -2.4008 -2.41 0.0006 -2.4351 -2.3768
24 -6.71 -6.78 0.0034 -6.9468 -6.6253 79 -2.3069 -2.31 0.0006 -2.3422 -2.2838
25 -6.72 -6.8 0.0034 -6.9667 -6.6422 80 -2.213 -2.22 0.0006 -2.2457 -2.187
26 -6.73 -6.8 0.0034 -6.9757 -6.6492 81 -2.1192 -2.12 0.0006 -2.1467 -2.0874
27 -6.73 -6.79 0.0034 -6.9627 -6.6386 82 -2.0258 -2.02 0.0006 -2.0543 -1.994
28 -6.72 -6.77 0.0034 -6.9431 -6.622 83 -1.9331 -1.93 0.0006 -1.9639 -1.902
29 -6.71 -6.75 0.0033 -6.9128 -6.5958 84 -1.8411 -1.84 0.0007 -1.871 -1.8072
30 -6.69 -6.72 0.0033 -6.882 -6.5695 85 -1.7501 -1.75 0.0007 -1.7826 -1.7161
31 -6.66 -6.67 0.0032 -6.8296 -6.5238 86 -1.66 -1.66 0.0007 -1.6919 -1.6222
32 -6.61 -6.63 0.0031 -6.7812 -6.4828 87 -1.571 -1.57 0.0008 -1.6057 -1.5316
33 -6.56 -6.57 0.003 -6.7197 -6.4296 88 -1.483 -1.48 0.0008 -1.5206 -1.4413
34 -6.51 -6.51 0.0029 -6.6565 -6.3745 89 -1.3959 -1.4 0.0009 -1.4458 -1.3595
35 -6.44 -6.45 0.0029 -6.5958 -6.321 90 -1.3095 -1.31 0.001 -1.3562 -1.2621
36 -6.37 -6.38 0.0028 -6.5155 -6.2503 91 -1.2237 -1.22 0.0011 -1.2736 -1.1694
37 -6.29 -6.28 0.0026 -6.4126 -6.1608 92 -1.1386 -1.14 0.0012 -1.204 -1.0865
38 -6.2 -6.21 0.0025 -6.3335 -6.0903 93 -1.0538 -1.06 0.0014 -1.1287 -0.9952
39 -6.12 -6.11 0.0024 -6.2302 -5.9991 94 -0.9693 -0.99 0.0016 -1.0752 -0.9194
40 -6.03 -6.02 0.0023 -6.1328 -5.9117 95 -0.8851 -0.94 0.0019 -1.0327 -0.8477
41 -5.94 -5.94 0.0022 -6.0492 -5.8359 96 -0.8017 -0.87 0.0023 -0.9869 -0.7664
42 -5.84 -5.84 0.0021 -5.9442 -5.7412 97 -0.7206 -0.81 0.0028 -0.95 -0.684
43 -5.75 -5.74 0.002 -5.8437 -5.6502 98 -0.6449 -0.75 0.0034 -0.9266 -0.5978
44 -5.65 -5.66 0.0019 -5.7518 -5.5663 99 -0.5792 -0.7 0.0043 -0.9202 -0.5067
45 -5.55 -5.55 0.0018 -5.6411 -5.4649 100 -0.5302 -0.65 0.0055 -0.9403 -0.4086
46 -5.46 -5.45 0.0018 -5.5414 -5.3732 101 -0.5072 -0.61 0.0073 -0.9908 -0.3002
47 -5.36 -5.35 0.0017 -5.4372 -5.2769 102 -0.5213 -0.59 0.0099 -1.0998 -0.1749
48 -5.26 -5.26 0.0016 -5.3432 -5.1895 103 -0.5855 -0.58 0.0143 -1.3522 -0.0354
49 -5.17 -5.17 0.0015 -5.2448 -5.0979 104 -0.7133 -0.63 0.0217 -1.9187 0.1304
50 -5.07 -5.06 0.0015 -5.1367 -4.9968 105 -0.9162 -0.78 0.0344 -2.6324 0.259
51 -4.97 -4.97 0.0014 -5.0404 -4.9065 106 -1.201 -1.24 0.0647 -4.6769 0.4628
52 -4.88 -4.88 0.0013 -4.9432 -4.815 107 -1.5647 -4.23 0.5018 -9.9448 0.6218
53 -4.78 -4.79 0.0013 -4.849 -4.7262 108 -1.9895 -14.07 1.0494 -100.266 0.6868
54 -4.68 -4.68 0.0012 -4.7438 -4.6262 109 -2.4564 -43.92 1.6913 -100.245 0.7034

age x b̂1(x) b1(x) SE
b1

qb1
0.05 qb1

0.95 age x b̂2(x) b2(x) SE
b2

qb2
0.05 qb2

0.95

0 0.03 0.041 0.0003 0.0346 0.0563 0 -0.0033 -0.01 0.0005 -0.0368 0.0058
1 0.03 0.0362 0.0003 0.0291 0.0506 1 -0.001 -0.01 0.0005 -0.0458 -0.0014
2 0.03 0.0339 0.0003 0.0261 0.0486 2 0.0014 0. 0.0004 -0.029 0.0051
3 0.03 0.0324 0.0003 0.0244 0.0472 3 0.0038 0. 0.0003 -0.0172 0.0092
4 0.03 0.0332 0.0003 0.0243 0.0489 4 0.0059 0.01 0.0002 -0.005 0.015
5 0.03 0.0331 0.0003 0.024 0.0491 5 0.0076 0.01 0.0002 0.0027 0.0186
6 0.03 0.0334 0.0003 0.0241 0.0494 6 0.0088 0.01 0.0002 0.0012 0.0174
7 0.03 0.0313 0.0003 0.0224 0.0469 7 0.0096 0.02 0.0001 0.0138 0.0236
8 0.03 0.0306 0.0003 0.0222 0.0452 8 0.01 0.01 0.0002 -0.005 0.0133
9 0.03 0.0313 0.0003 0.0228 0.0467 9 0.0102 0.01 0.0002 -0.0042 0.0137

10 0.03 0.0311 0.0003 0.0223 0.0468 10 0.0103 0.01 0.0002 0.0034 0.017
11 0.02 0.0263 0.0002 0.0191 0.039 11 0.0107 0. 0.0002 -0.0102 0.0086
12 0.02 0.0242 0.0002 0.0174 0.0362 12 0.0113 0.01 0.0001 -0.0009 0.0118
13 0.02 0.0248 0.0002 0.018 0.0367 13 0.0123 0. 0.0002 -0.0081 0.0092
14 0.02 0.0232 0.0002 0.0167 0.0345 14 0.0135 0.01 0.0001 0.0016 0.0128
15 0.02 0.0189 0.0002 0.0135 0.0284 15 0.0149 0.01 0.0001 0.0118 0.0177
16 0.02 0.0157 0.0002 0.0106 0.0245 16 0.016 0.03 0.0002 0.0257 0.045
17 0.01 0.0147 0.0002 0.01 0.0229 17 0.0165 0.03 0.0002 0.0242 0.0421
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18 0.01 0.0093 0.0001 0.0059 0.015 18 0.0164 0.03 0.0002 0.0228 0.0437
19 0.01 0.0114 0.0001 0.0078 0.0176 19 0.0155 0.02 0.0002 0.0199 0.0337
20 0.01 0.0126 0.0001 0.009 0.0189 20 0.0141 0.02 0.0001 0.0156 0.0233
21 0.01 0.0145 0.0001 0.0109 0.0212 21 0.0123 0.01 0.0001 0.0088 0.0133
22 0.01 0.0144 0.0001 0.0109 0.021 22 0.0105 0.01 0.0001 0.0059 0.0114
23 0.01 0.0142 0.0001 0.0108 0.0205 23 0.0087 0.01 0.0001 0.0021 0.0092
24 0.01 0.0143 0.0001 0.0111 0.0205 24 0.0072 0. 0.0001 -0.0011 0.0077
25 0.01 0.0146 0.0001 0.0114 0.0209 25 0.0061 0. 0.0001 -0.0045 0.0062
26 0.01 0.0146 0.0001 0.0114 0.0208 26 0.0054 0. 0.0001 -0.005 0.0059
27 0.01 0.0145 0.0001 0.0113 0.0207 27 0.0051 0. 0.0001 -0.0045 0.0062
28 0.01 0.0134 0.0001 0.0103 0.0194 28 0.0051 0.01 0.0001 0.0004 0.0079
29 0.01 0.0133 0.0001 0.0101 0.0192 29 0.0054 0.01 0.0001 0.003 0.0092
30 0.01 0.0128 0.0001 0.0097 0.0186 30 0.0059 0.01 0.0001 0.0041 0.0096
31 0.01 0.0114 0.0001 0.0085 0.0167 31 0.0064 0.01 0. 0.0073 0.011
32 0.01 0.0123 0.0001 0.0093 0.0179 32 0.0071 0.01 0.0001 0.005 0.0099
33 0.01 0.0119 0.0001 0.009 0.0174 33 0.0078 0.01 0. 0.0065 0.0105
34 0.01 0.011 0.0001 0.0082 0.0162 34 0.0085 0.01 0. 0.0081 0.0116
35 0.01 0.0111 0.0001 0.0083 0.0161 35 0.0092 0.01 0. 0.0069 0.0104
36 0.01 0.0101 0.0001 0.0075 0.0149 36 0.0099 0.01 0. 0.0092 0.013
37 0.01 0.0093 0.0001 0.0067 0.014 37 0.0106 0.01 0.0001 0.0124 0.0186
38 0.01 0.0085 0.0001 0.006 0.0129 38 0.0112 0.01 0.0001 0.0133 0.0205
39 0.01 0.0088 0.0001 0.0064 0.0131 39 0.0117 0.01 0.0001 0.0114 0.017
40 0.01 0.008 0.0001 0.0058 0.0121 40 0.0122 0.01 0.0001 0.0117 0.0177
41 0.01 0.0061 0.0001 0.004 0.0096 41 0.0125 0.02 0.0001 0.0149 0.0265
42 0.01 0.0068 0.0001 0.0048 0.0104 42 0.0127 0.01 0.0001 0.0122 0.0195
43 0.01 0.0058 0.0001 0.0039 0.0092 43 0.0127 0.02 0.0001 0.0139 0.0244
44 0.01 0.006 0.0001 0.0041 0.0094 44 0.0127 0.01 0.0001 0.0128 0.0213
45 0.01 0.0051 0.0001 0.0033 0.0082 45 0.0126 0.02 0.0001 0.0137 0.0245
46 0.01 0.0054 0.0001 0.0036 0.0085 46 0.0124 0.01 0.0001 0.0128 0.0217
47 0.01 0.0055 0.0001 0.0038 0.0086 47 0.0121 0.01 0.0001 0.012 0.0197
48 0.01 0.0052 0.0001 0.0035 0.0082 48 0.0117 0.02 0.0001 0.013 0.0224
49 0.01 0.0056 0.0001 0.0039 0.0087 49 0.0112 0.01 0.0001 0.0118 0.019
50 0.01 0.0054 0.0001 0.0037 0.0084 50 0.0106 0.01 0.0001 0.012 0.0197
51 0.01 0.0065 0.0001 0.0047 0.0099 51 0.01 0.01 0.0001 0.011 0.017
52 0.01 0.0065 0.0001 0.0047 0.0097 52 0.0093 0.01 0.0001 0.01 0.0152
53 0.01 0.0073 0.0001 0.0054 0.0108 53 0.0085 0.01 0. 0.0087 0.0125
54 0.01 0.0079 0.0001 0.0061 0.0115 54 0.0078 0.01 0. 0.0071 0.0098
55 0.01 0.0087 0.0001 0.0068 0.0126 55 0.0071 0.01 0. 0.0059 0.0088
56 0.01 0.0092 0.0001 0.0072 0.0132 56 0.0064 0.01 0. 0.0053 0.0086
57 0.01 0.0097 0.0001 0.0077 0.0139 57 0.0059 0.01 0.0001 0.0043 0.0083
58 0.01 0.0103 0.0001 0.0082 0.0146 58 0.0054 0.01 0.0001 0.0026 0.0075
59 0.01 0.011 0.0001 0.0089 0.0154 59 0.0051 0. 0.0001 -0.0008 0.0063
60 0.01 0.0112 0.0001 0.009 0.0158 60 0.005 0. 0.0001 0.001 0.0072
61 0.01 0.0113 0.0001 0.0092 0.016 61 0.005 0. 0.0001 0.0007 0.0072
62 0.01 0.0116 0.0001 0.0094 0.0163 62 0.0052 0. 0.0001 0.0003 0.0072
63 0.01 0.0113 0.0001 0.0092 0.016 63 0.0055 0.01 0.0001 0.0031 0.0084
64 0.01 0.0116 0.0001 0.0094 0.0164 64 0.006 0.01 0.0001 0.0026 0.0083
65 0.01 0.0114 0.0001 0.0092 0.0162 65 0.0066 0.01 0.0001 0.0039 0.009
66 0.01 0.0113 0.0001 0.0091 0.0161 66 0.0073 0.01 0.0001 0.0051 0.0096
67 0.01 0.0107 0.0001 0.0085 0.0153 67 0.0081 0.01 0. 0.0068 0.0104
68 0.01 0.0104 0.0001 0.0082 0.015 68 0.0089 0.01 0. 0.0082 0.0115
69 0.01 0.0099 0.0001 0.0077 0.0143 69 0.0097 0.01 0. 0.0095 0.0132
70 0.01 0.0092 0.0001 0.0071 0.0135 70 0.0105 0.01 0. 0.0108 0.0155
71 0.01 0.0086 0.0001 0.0065 0.0127 71 0.0112 0.01 0.0001 0.0117 0.0173
72 0.01 0.008 0.0001 0.0059 0.0119 72 0.0118 0.01 0.0001 0.0131 0.02
73 0.01 0.0077 0.0001 0.0056 0.0115 73 0.0123 0.02 0.0001 0.0137 0.0212
74 0.01 0.0076 0.0001 0.0056 0.0113 74 0.0127 0.01 0.0001 0.0131 0.0201
75 0.01 0.0067 0.0001 0.0047 0.0102 75 0.0128 0.02 0.0001 0.0148 0.0233
76 0.01 0.0071 0.0001 0.0052 0.0108 76 0.0129 0.01 0.0001 0.0133 0.0206
77 0.01 0.0066 0.0001 0.0048 0.01 77 0.0128 0.01 0.0001 0.0134 0.0209
78 0.01 0.0065 0.0001 0.0047 0.0099 78 0.0126 0.01 0.0001 0.0132 0.0205
79 0.01 0.0062 0.0001 0.0045 0.0095 79 0.0123 0.01 0.0001 0.0132 0.0207
80 0.01 0.0055 0.0001 0.0039 0.0084 80 0.0118 0.01 0.0001 0.0133 0.0213
81 0.01 0.0052 0.0001 0.0036 0.008 81 0.0113 0.01 0.0001 0.013 0.021
82 0.01 0.0053 0.0001 0.0039 0.0081 82 0.0106 0.01 0.0001 0.0115 0.018
83 0.01 0.0052 0.0001 0.0038 0.0078 83 0.0098 0.01 0.0001 0.0102 0.0157
84 0.01 0.0053 0. 0.004 0.0079 84 0.0089 0.01 0. 0.0089 0.0135
85 0.01 0.0052 0. 0.0039 0.0076 85 0.008 0.01 0. 0.0084 0.0128
86 0. 0.005 0. 0.0039 0.0073 86 0.0071 0.01 0. 0.0072 0.0107
87 0. 0.0047 0. 0.0036 0.0069 87 0.006 0.01 0. 0.0077 0.0119
88 0. 0.0052 0. 0.0042 0.0073 88 0.005 0. 0. 0.0039 0.0058
89 0. 0.0049 0. 0.004 0.0067 89 0.004 0. 0. 0.0025 0.0046
90 0. 0.0042 0. 0.0033 0.0057 90 0.0029 0. 0. 0.0037 0.0052
91 0. 0.0053 0. 0.0045 0.0069 91 0.0019 0. 0.0001 -0.0039 0.0015
92 0. 0.0049 0. 0.0041 0.0063 92 0.001 0. 0. -0.002 0.0021
93 0. 0.0044 0. 0.0037 0.0056 93 0.0001 0. 0. 0.0001 0.0028
94 0. 0.0031 0. 0.0025 0.0038 94 -0.0007 0. 0. 0.0027 0.004
95 0. 0.0037 0. 0.0025 0.0045 95 -0.0015 0. 0. -0.0031 0.0008
96 0. 0.0035 0. 0.0018 0.0047 96 -0.0022 0. 0. -0.0037 0.0002
97 0. 0.0032 0. 0.0008 0.0049 97 -0.0026 0. 0. -0.0041 -0.0003
98 0. 0.0028 0.0001 -0.0004 0.0053 98 -0.0026 0. 0. -0.0042 -0.0006
99 0. 0.0024 0.0001 -0.0022 0.0057 99 -0.0021 0. 0. -0.0035 -0.0003

100 0. 0.0019 0.0001 -0.0048 0.0063 100 -0.0009 0. 0.0001 -0.0031 0.0015
101 0. 0.001 0.0002 -0.0088 0.0074 101 0.0013 0. 0.0001 -0.003 0.0068
102 0. -0.0004 0.0003 -0.0142 0.0087 102 0.0045 0. 0.0003 -0.0035 0.0119
103 -0.01 -0.0036 0.0005 -0.0322 0.01 103 0.0088 0.01 0.0007 -0.0043 0.0401
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104 -0.01 -0.01 0.0009 -0.0712 0.0115 104 0.0142 0.02 0.0013 -0.0043 0.0934
105 -0.01 -0.0222 0.0014 -0.0925 0.0146 105 0.0202 0.03 0.0023 -0.0076 0.166
106 -0.02 -0.0464 0.002 -0.1264 0.0143 106 0.0263 0.05 0.0031 -0.0236 0.2356
107 -0.02 -0.0644 0.0028 -0.2024 0.0144 107 0.0314 0.02 0.0035 -0.0932 0.1789
108 -0.03 -0.0619 0.0037 -0.3194 0.0252 108 0.0343 -0.06 0.0042 -0.3742 0.0284
109 -0.03 0.0066 0.0012 0. 0.0217 109 0.0365 0. 0.0009 -0.0259 0.

year t k̂1(t) k1(t) SE
k1

qk1
0.05 qk1

0.95 year t k̂2(t) k2(t) SE
k2

qk2
0.05 qk2

0.95

1960 29.6 28.1 0.1501 20.1593 32.1077 1960 -2.3 1.37 0.0623 -1.188 3.224
1961 28.5 27.12 0.1682 18.4475 31.6335 1961 -1.32 -1.83 0.0495 -3.9411 -0.4741
1962 27.42 25.35 0.1367 18.1245 29.0132 1962 -0.31 1. 0.0552 -1.2421 2.6322
1963 26.38 24.27 0.1066 18.3827 27.1461 1963 0.72 4.16 0.0693 1.315 6.227
1964 25.41 22.71 0.1255 16.0936 26.1166 1964 1.75 0.33 0.0472 -1.6322 1.723
1965 24.53 21.32 0.0899 16.3041 23.7646 1965 2.81 4.07 0.0632 1.4255 5.9423
1966 23.75 21.48 0.0928 16.3373 24.0163 1966 3.86 3.78 0.0617 1.255 5.6289
1967 23.04 20.26 0.086 15.4719 22.5997 1967 4.88 3.76 0.059 1.3003 5.5122
1968 22.36 20.15 0.0535 16.8619 21.6521 1968 5.82 8.46 0.0887 3.9943 11.0823
1969 21.66 21.01 0.0558 17.5795 22.5183 1969 6.62 8.78 0.0923 4.137 11.5163
1970 20.85 20.14 0.0592 16.5629 21.7506 1970 7.26 7.49 0.082 3.4561 9.9571
1971 19.88 19.41 0.0594 15.8537 21.0213 1971 7.76 6.86 0.0765 3.1304 9.1723
1972 18.73 17.69 0.044 14.9608 18.8706 1972 8.15 7.84 0.0801 3.7433 10.1759
1973 17.38 17.1 0.0436 14.4014 18.2736 1973 8.46 7.4 0.0765 3.5182 9.6455
1974 15.83 15.43 0.0388 13.0274 16.4838 1974 8.7 6.73 0.0697 3.193 8.7759
1975 14.1 13.96 0.0256 12.9499 15.0681 1975 8.87 9.79 0.0881 4.9762 12.2432
1976 12.21 11.51 0.0228 10.8152 12.53 1976 8.93 8.64 0.0764 4.425 10.7327
1977 10.24 8.29 0.0199 7.6496 9.2132 1977 8.89 6.8 0.0591 3.5043 8.4079
1978 8.25 7.41 0.0327 6.3193 8.7306 1978 8.76 8.35 0.0687 4.4166 10.1335
1979 6.27 5.52 0.0285 4.554 6.6864 1979 8.52 6.58 0.0542 3.4756 7.9971
1980 4.33 3.91 0.0382 2.657 5.3862 1980 8.18 6.8 0.0539 3.652 8.1737
1981 2.46 1.93 0.0518 0.3363 4.0057 1981 7.72 7.36 0.0554 4.0311 8.6597
1982 0.68 0.22 0.0544 -1.4568 2.3826 1982 7.12 6.43 0.0473 3.5618 7.5113
1983 -0.98 -1.26 0.0614 -3.0796 1.2966 1983 6.37 6.42 0.0456 3.6222 7.4395
1984 -2.51 -2.92 0.0523 -4.5123 -0.6421 1984 5.47 4.04 0.0277 2.3327 4.598
1985 -3.92 -4.46 0.0634 -6.2724 -1.6227 1985 4.47 4.43 0.0292 2.6269 4.9998
1986 -5.2 -5.38 0.0569 -6.9722 -2.7183 1986 3.4 3.04 0.0194 1.904 3.3498
1987 -6.39 -6.13 0.0422 -7.3211 -4.0259 1987 2.29 0.61 0.0102 0.3972 1.0081
1988 -7.51 -7.14 0.0368 -8.1468 -5.1891 1988 1.21 -0.83 0.0169 -1.2815 -0.1595
1989 -8.6 -7.87 0.037 -8.8488 -5.8547 1989 0.21 -1.09 0.0208 -1.7147 -0.2546
1990 -9.7 -8.22 0.0381 -9.2579 -6.1321 1990 -0.72 -1.12 0.022 -1.7998 -0.2271
1991 -10.85 -9.2 0.036 -10.1787 -7.1643 1991 -1.6 -2.15 0.0298 -3.0455 -0.8365
1992 -12.07 -11.66 0.0413 -12.7475 -9.2459 1992 -2.43 -3.39 0.0414 -4.6219 -1.4821
1993 -13.36 -12.07 0.046 -13.3641 -9.4455 1993 -3.25 -2.87 0.04 -4.0929 -1.1055
1994 -14.73 -13.37 0.0413 -14.4978 -10.8748 1994 -4.08 -4.6 0.0528 -6.189 -2.0697
1995 -16.2 -14.75 0.0519 -16.1964 -11.6929 1995 -4.97 -4.13 0.0525 -5.7147 -1.7385
1996 -17.76 -15.9 0.0521 -17.3587 -12.7929 1996 -5.93 -4.99 0.0599 -6.7696 -2.1821
1997 -19.4 -17.91 0.0505 -19.3263 -14.8215 1997 -7. -6.86 0.0755 -9.1626 -3.161
1998 -21.1 -20.03 0.056 -21.6415 -16.6013 1998 -8.16 -7.7 0.0848 -10.2954 -3.534
1999 -22.84 -21.67 0.0582 -23.3829 -18.099 1999 -9.41 -8.6 0.0946 -11.511 -3.962
2000 -24.61 -22.6 0.0518 -24.0153 -19.4101 2000 -10.74 -10.73 0.109 -13.9413 -5.1377
2001 -26.4 -24.64 0.0518 -25.9449 -21.4778 2001 -12.12 -12.67 0.1249 -16.3231 -6.1609
2002 -28.21 -26.61 0.0627 -28.3703 -22.7657 2002 -13.54 -12.34 0.1257 -16.0743 -5.8908
2003 -30.05 -25.88 0.0547 -27.2945 -22.6365 2003 -15.01 -13.36 0.1333 -17.2913 -6.4494
2004 -31.93 -30.43 0.0639 -32.0228 -26.4915 2004 -16.54 -15.94 0.1524 -20.3004 -7.846
2005 -33.82 -31.04 0.0621 -32.5608 -27.3471 2005 -18.09 -16.94 0.1621 -21.6314 -8.3594
2006 -35.72 -33.15 0.0633 -34.5588 -29.4538 2006 -19.65 -19.16 0.1777 -24.1673 -9.5983

Table A.3: Parameter estimates, simulation mean, standard error (SE) and quantiles
(q0.05, q0.95) for the RH03 model based on German male period life tables 1956-2006
from the Human Mortality Database (2009).
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A.5 Estimation results for the age-period-cohort model
by Renshaw and Haberman

age x â(x) a(x) SE
a

qa
0.05 qa

0.95 age x â(x) a(x) SE
a

qa
0.05 qa

0.95

0 -4.1 -2.95 0.0467 -3.5284 -2.5812 55 -4.6965 -4.73 0.0171 -4.9385 -4.5971
1 -4.7 -5.77 0.0442 -6.2965 -5.4111 56 -4.6172 -4.65 0.0168 -4.8474 -4.5098
2 -5.25 -6.39 0.0435 -6.9279 -6.0212 57 -4.5388 -4.56 0.0169 -4.7615 -4.4206
3 -5.75 -6.72 0.0429 -7.2665 -6.3439 58 -4.4611 -4.5 0.0181 -4.7086 -4.35
4 -6.17 -6.98 0.0449 -7.5649 -6.5807 59 -4.3839 -4.43 0.0195 -4.6535 -4.2738
5 -6.5 -7.11 0.0456 -7.7108 -6.7046 60 -4.3069 -4.35 0.0193 -4.5651 -4.1924
6 -6.77 -7.21 0.0463 -7.8271 -6.8014 61 -4.2299 -4.28 0.0202 -4.5056 -4.1208
7 -6.97 -7.36 0.0461 -7.9812 -6.9432 62 -4.1526 -4.19 0.0198 -4.4157 -4.0384
8 -7.11 -7.34 0.046 -7.9567 -6.9388 63 -4.0748 -4.11 0.0193 -4.3262 -3.9592
9 -7.21 -7.48 0.0483 -8.1387 -7.0329 64 -3.9963 -4.04 0.0198 -4.2619 -3.8884

10 -7.25 -7.55 0.0499 -8.2286 -7.0949 65 -3.9168 -3.95 0.0192 -4.1647 -3.8034
11 -7.26 -7.62 0.0449 -8.2378 -7.2136 66 -3.8361 -3.86 0.0187 -4.0811 -3.7263
12 -7.22 -7.6 0.0459 -8.218 -7.2059 67 -3.754 -3.79 0.0193 -4.025 -3.6466
13 -7.15 -7.49 0.0462 -8.1104 -7.1069 68 -3.6704 -3.71 0.0199 -3.9741 -3.57
14 -7.05 -7.36 0.0449 -7.9466 -6.9796 69 -3.5851 -3.61 0.018 -3.8534 -3.4768
15 -6.93 -7.24 0.0388 -7.7472 -6.8922 70 -3.4984 -3.52 0.0184 -3.7861 -3.3883
16 -6.8 -6.92 0.0337 -7.3369 -6.6283 71 -3.4104 -3.4 0.0164 -3.6456 -3.2827
17 -6.67 -6.75 0.0298 -7.1275 -6.4764 72 -3.3217 -3.31 0.0173 -3.5804 -3.1952
18 -6.56 -6.54 0.0224 -6.8142 -6.3286 73 -3.2323 -3.22 0.0166 -3.4783 -3.1039
19 -6.46 -6.41 0.024 -6.722 -6.1824 74 -3.1422 -3.14 0.0164 -3.3744 -3.0223
20 -6.4 -6.37 0.0259 -6.7089 -6.1345 75 -3.0511 -3.04 0.0171 -3.2904 -2.9189
21 -6.36 -6.35 0.0283 -6.7166 -6.1106 76 -2.9587 -2.99 0.0166 -3.2054 -2.8697
22 -6.34 -6.41 0.0283 -6.7707 -6.1604 77 -2.8642 -2.88 0.016 -3.0857 -2.7696
23 -6.35 -6.45 0.0288 -6.8227 -6.2019 78 -2.7674 -2.81 0.0162 -3.0028 -2.7018
24 -6.37 -6.5 0.0288 -6.8724 -6.2492 79 -2.6683 -2.69 0.0137 -2.849 -2.5934
25 -6.39 -6.55 0.0281 -6.9143 -6.2992 80 -2.5674 -2.52 0.0105 -2.6399 -2.4436
26 -6.42 -6.58 0.0277 -6.94 -6.329 81 -2.466 -2.43 0.011 -2.557 -2.3502
27 -6.45 -6.58 0.0273 -6.9446 -6.3412 82 -2.3648 -2.35 0.0107 -2.4795 -2.2737
28 -6.47 -6.6 0.0249 -6.9369 -6.3749 83 -2.2641 -2.22 0.0088 -2.3305 -2.1598
29 -6.48 -6.59 0.0242 -6.9202 -6.3712 84 -2.1642 -2.13 0.0087 -2.235 -2.0653
30 -6.48 -6.59 0.023 -6.8971 -6.3717 85 -2.0651 -2.03 0.0084 -2.1333 -1.9655
31 -6.48 -6.56 0.0207 -6.848 -6.3652 86 -1.9669 -1.93 0.0085 -2.029 -1.8586
32 -6.46 -6.52 0.0223 -6.8204 -6.3112 87 -1.8693 -1.83 0.0082 -1.936 -1.7635
33 -6.43 -6.47 0.0215 -6.7656 -6.2738 88 -1.7722 -1.6 0.0115 -1.6872 -1.4678
34 -6.38 -6.43 0.0206 -6.7088 -6.236 89 -1.6753 -1.49 0.0103 -1.5773 -1.3769
35 -6.34 -6.38 0.021 -6.6631 -6.1867 90 -1.5781 -1.38 0.0077 -1.4462 -1.2838
36 -6.28 -6.32 0.0186 -6.5744 -6.1424 91 -1.4801 -1.3 0.0093 -1.3839 -1.1948
37 -6.21 -6.23 0.0172 -6.47 -6.068 92 -1.3795 -1.22 0.0079 -1.2933 -1.121
38 -6.14 -6.17 0.0149 -6.3759 -6.0205 93 -1.2751 -1.13 0.0072 -1.1983 -1.0365
39 -6.07 -6.08 0.016 -6.2984 -5.9253 94 -1.166 -1.03 0.0023 -1.06 -0.9961
40 -5.99 -6. 0.0142 -6.1938 -5.858 95 -1.0521 -0.99 0.0043 -1.0432 -0.9296
41 -5.91 -5.92 0.0111 -6.0801 -5.8044 96 -0.9336 -0.92 0.0037 -0.964 -0.8664
42 -5.82 -5.83 0.0129 -6.0121 -5.7055 97 -0.8133 -0.85 0.004 -0.9241 -0.8067
43 -5.73 -5.74 0.0115 -5.9044 -5.6253 98 -0.6971 -0.8 0.005 -0.8965 -0.7495
44 -5.65 -5.66 0.0128 -5.8419 -5.5426 99 -0.5949 -0.74 0.0071 -0.8854 -0.6738
45 -5.56 -5.55 0.0099 -5.6944 -5.4531 100 -0.5213 -0.69 0.01 -0.896 -0.5924
46 -5.47 -5.48 0.0123 -5.6465 -5.3614 101 -0.4964 -0.65 0.0139 -0.9425 -0.5264
47 -5.38 -5.39 0.0131 -5.5639 -5.2692 102 -0.5432 -0.61 0.0206 -1.0329 -0.4408
48 -5.29 -5.3 0.0119 -5.4603 -5.1884 103 -0.6865 -0.59 0.0302 -1.1849 -0.3411
49 -5.2 -5.21 0.012 -5.3721 -5.1028 104 -0.9514 -0.65 0.0672 -2.543 -0.2169
50 -5.11 -5.12 0.0122 -5.2785 -5.0073 105 -1.3563 -0.75 0.0988 -2.9294 -0.017
51 -5.03 -5.03 0.0127 -5.1995 -4.9243 106 -1.9108 -1.02 0.142 -3.3273 0.0786
52 -4.94 -4.96 0.0141 -5.1409 -4.8417 107 -2.6049 -1.68 0.3319 -9.2091 0.5001
53 -4.86 -4.88 0.0142 -5.0589 -4.7623 108 -3.4094 -42.49 14.7306 -413.35 0.8294
54 -4.78 -4.8 0.0153 -4.9882 -4.6747 109 -4.2915 -138.4 23.1162 -453.36 0.6931

age x b̂1(x) b1(x) SE
b1

qb1
0.05 qb1

0.95 age x b̂2(x) b2(x) SE
b2

qb2
0.05 qb2

0.95

0 0.02 0.0213 0.0005 0.0189 0.0269 0 0.0271 0.03 0.0002 0.0243 0.0297
1 0.02 0.0123 0.0004 0.0093 0.0172 1 0.0258 0.02 0.0003 0.0205 0.0268
2 0.02 0.0166 0.0005 0.0126 0.0238 2 0.0245 0.02 0.0002 0.0182 0.0236
3 0.02 0.0201 0.0006 0.0151 0.0295 3 0.0233 0.02 0.0002 0.0165 0.0211
4 0.02 0.0256 0.0008 0.019 0.0386 4 0.0223 0.02 0.0002 0.0158 0.0199
5 0.02 0.0278 0.0009 0.0203 0.043 5 0.0215 0.02 0.0002 0.0155 0.0194
6 0.02 0.0263 0.0008 0.0192 0.0405 6 0.0208 0.02 0.0002 0.0157 0.0199
7 0.02 0.0274 0.0009 0.0195 0.0428 7 0.0202 0.02 0.0001 0.015 0.0185
8 0.02 0.0163 0.0006 0.011 0.0262 8 0.0196 0.02 0.0002 0.0161 0.0212
9 0.02 0.0166 0.0006 0.0106 0.0284 9 0.0191 0.02 0.0003 0.0163 0.0218

10 0.02 0.0171 0.0007 0.011 0.0296 10 0.0185 0.02 0.0003 0.0168 0.0228
11 0.02 0.0093 0.0005 0.0061 0.0168 11 0.0177 0.02 0.0003 0.0144 0.02
12 0.01 0.0094 0.0007 0.0066 0.0169 12 0.0169 0.02 0.0005 0.0141 0.0196
13 0.01 0.0052 0.0006 0.0035 0.0104 13 0.016 0.02 0.0005 0.0153 0.0218
14 0.01 0.0065 0.0006 0.0045 0.0124 14 0.015 0.02 0.0004 0.0153 0.0208
15 0.01 0.0113 0.0006 0.0076 0.0185 15 0.0139 0.01 0.0004 0.0123 0.0155
16 0.02 0.0253 0.0009 0.0157 0.0385 16 0.0129 0.01 0.0005 0.0075 0.0094
17 0.02 0.0241 0.0007 0.0149 0.0357 17 0.0119 0.01 0.0003 0.0074 0.0089
18 0.01 0.0237 0.0007 0.0147 0.0347 18 0.0112 0. 0.0004 0.0024 0.005
19 0.01 0.018 0.0005 0.0112 0.0261 19 0.0108 0.01 0.0002 0.0066 0.0077
20 0.01 0.012 0.0003 0.0074 0.0169 20 0.0105 0.01 0.0002 0.0095 0.0113
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21 0.01 0.0078 0.0003 0.0061 0.0111 21 0.0104 0.01 0.0001 0.0113 0.0138
22 0.01 0.0073 0.0003 0.0054 0.0107 22 0.0103 0.01 0.0001 0.0111 0.0136
23 0.01 0.0053 0.0003 0.0034 0.008 23 0.0103 0.01 0.0001 0.0113 0.0139
24 0.01 0.0051 0.0003 0.0033 0.0076 24 0.0102 0.01 0.0001 0.0112 0.0139
25 0.01 0.0062 0.0004 0.0038 0.0098 25 0.01 0.01 0.0001 0.0107 0.0125
26 0.01 0.0069 0.0003 0.0045 0.0108 26 0.0097 0.01 0.0001 0.0105 0.0122
27 0.01 0.0076 0.0003 0.0051 0.0117 27 0.0094 0.01 0.0001 0.0104 0.0119
28 0.01 0.0101 0.0004 0.0073 0.015 28 0.009 0.01 0.0001 0.0087 0.0098
29 0.01 0.0116 0.0004 0.0086 0.0171 29 0.0087 0.01 0. 0.0084 0.0095
30 0.01 0.0124 0.0004 0.0095 0.018 30 0.0083 0.01 0.0001 0.0077 0.0089
31 0.01 0.0133 0.0004 0.0104 0.0191 31 0.0079 0.01 0.0001 0.0063 0.0077
32 0.01 0.0121 0.0004 0.0094 0.0173 32 0.0075 0.01 0.0001 0.0077 0.0089
33 0.01 0.0126 0.0004 0.0099 0.0179 33 0.0072 0.01 0.0001 0.0073 0.0086
34 0.01 0.0126 0.0004 0.01 0.0179 34 0.0068 0.01 0.0001 0.0069 0.0083
35 0.01 0.0112 0.0003 0.0089 0.0159 35 0.0065 0.01 0.0001 0.0075 0.0087
36 0.01 0.0128 0.0004 0.0103 0.0182 36 0.0062 0.01 0.0001 0.0061 0.0076
37 0.01 0.0145 0.0004 0.0119 0.0202 37 0.0059 0.01 0.0001 0.0052 0.0071
38 0.01 0.0154 0.0004 0.0125 0.0215 38 0.0056 0.01 0.0001 0.0037 0.0062
39 0.01 0.0133 0.0004 0.0107 0.0187 39 0.0053 0.01 0.0001 0.005 0.007
40 0.01 0.0137 0.0004 0.0113 0.0188 40 0.005 0.01 0.0001 0.0041 0.0061
41 0.01 0.0158 0.0004 0.0136 0.0212 41 0.0048 0. 0.0001 0.0022 0.0045
42 0.01 0.013 0.0003 0.0112 0.0174 42 0.0046 0. 0.0001 0.0038 0.0056
43 0.01 0.0138 0.0003 0.0122 0.0182 43 0.0045 0. 0.0001 0.0032 0.005
44 0.01 0.0122 0.0003 0.0109 0.0159 44 0.0044 0.01 0.0001 0.0044 0.0057
45 0.01 0.0135 0.0003 0.0119 0.0177 45 0.0044 0. 0.0001 0.0026 0.0044
46 0.01 0.0112 0.0002 0.0101 0.0144 46 0.0044 0.01 0.0001 0.0046 0.0056
47 0.01 0.0099 0.0002 0.009 0.0127 47 0.0045 0.01 0. 0.0053 0.0062
48 0.01 0.0108 0.0002 0.0098 0.014 48 0.0046 0.01 0.0001 0.0047 0.0057
49 0.01 0.0102 0.0002 0.0092 0.0132 49 0.0048 0.01 0.0001 0.005 0.0059
50 0.01 0.0096 0.0002 0.0086 0.0126 50 0.005 0.01 0. 0.0053 0.0062
51 0.01 0.0099 0.0002 0.0087 0.013 51 0.0053 0.01 0.0001 0.0058 0.0069
52 0.01 0.0081 0.0002 0.0073 0.0106 52 0.0056 0.01 0. 0.0068 0.0075
53 0.01 0.0081 0.0002 0.0071 0.0109 53 0.0059 0.01 0. 0.0071 0.008
54 0.01 0.0072 0.0002 0.0062 0.0097 54 0.0063 0.01 0. 0.0079 0.0087
55 0.01 0.0062 0.0001 0.0053 0.0086 55 0.0067 0.01 0. 0.0091 0.0099
56 0.01 0.0067 0.0002 0.0057 0.0094 56 0.007 0.01 0. 0.0091 0.01
57 0.01 0.0071 0.0002 0.006 0.0099 57 0.0074 0.01 0. 0.0094 0.0103
58 0.01 0.0063 0.0001 0.0052 0.0089 58 0.0077 0.01 0. 0.0102 0.0111
59 0.01 0.0056 0.0001 0.0046 0.008 59 0.0081 0.01 0. 0.0112 0.012
60 0.01 0.0062 0.0001 0.0051 0.0088 60 0.0084 0.01 0. 0.0113 0.0122
61 0.01 0.006 0.0001 0.005 0.0086 61 0.0086 0.01 0. 0.0119 0.0128
62 0.01 0.0066 0.0002 0.0054 0.0093 62 0.0088 0.01 0. 0.0119 0.0129
63 0.01 0.0071 0.0002 0.0058 0.0101 63 0.009 0.01 0.0001 0.0117 0.0129
64 0.01 0.0074 0.0002 0.0062 0.0104 64 0.0091 0.01 0. 0.012 0.0133
65 0.01 0.0078 0.0002 0.0065 0.011 65 0.0092 0.01 0.0001 0.0118 0.0133
66 0.01 0.0086 0.0002 0.0072 0.0121 66 0.0092 0.01 0.0001 0.0116 0.0133
67 0.01 0.0086 0.0002 0.0074 0.0118 67 0.0092 0.01 0.0001 0.0119 0.0133
68 0.01 0.0087 0.0002 0.0077 0.012 68 0.0091 0.01 0.0001 0.0121 0.0141
69 0.01 0.0101 0.0002 0.0089 0.0137 69 0.009 0.01 0.0001 0.011 0.0132
70 0.01 0.0103 0.0002 0.0093 0.0138 70 0.0089 0.01 0.0001 0.011 0.0136
71 0.01 0.0112 0.0002 0.0101 0.0149 71 0.0087 0.01 0.0001 0.0098 0.0125
72 0.01 0.0113 0.0002 0.0105 0.0146 72 0.0085 0.01 0.0001 0.0101 0.0128
73 0.01 0.0118 0.0002 0.0109 0.0152 73 0.0084 0.01 0.0001 0.0097 0.0125
74 0.01 0.0114 0.0002 0.0105 0.0147 74 0.0082 0.01 0.0001 0.0098 0.0121
75 0.01 0.0115 0.0002 0.0108 0.0144 75 0.008 0.01 0.0001 0.0098 0.0122
76 0.01 0.0106 0.0002 0.0097 0.0137 76 0.0079 0.01 0.0001 0.0104 0.0122
77 0.01 0.0103 0.0002 0.0097 0.0132 77 0.0076 0.01 0. 0.01 0.0116
78 0.01 0.0096 0.0002 0.0089 0.0125 78 0.0074 0.01 0. 0.0105 0.0118
79 0.01 0.0101 0.0002 0.0093 0.0131 79 0.0071 0.01 0.0001 0.0093 0.0109
80 0.01 0.0111 0.0002 0.0104 0.0141 80 0.0068 0.01 0.0001 0.0073 0.0088
81 0.01 0.0105 0.0002 0.0099 0.0133 81 0.0065 0.01 0.0001 0.0075 0.0087
82 0.01 0.0095 0.0002 0.0087 0.0121 82 0.0062 0.01 0.0001 0.0074 0.009
83 0.01 0.0094 0.0002 0.0086 0.012 83 0.0059 0.01 0.0001 0.0064 0.0081
84 0.01 0.009 0.0002 0.0082 0.0114 84 0.0056 0.01 0.0001 0.0062 0.0078
85 0.01 0.0087 0.0002 0.0079 0.0109 85 0.0054 0.01 0.0001 0.0059 0.0075
86 0.01 0.0081 0.0001 0.0074 0.01 86 0.0051 0.01 0.0001 0.0056 0.0069
87 0.01 0.0078 0.0001 0.007 0.0096 87 0.0048 0.01 0.0001 0.0051 0.0067
88 0.01 0.0083 0.0003 0.0063 0.0127 88 0.0046 0. 0.0003 -0.0004 0.0059
89 0.01 0.0076 0.0002 0.0058 0.0111 89 0.0043 0. 0.0003 -0.0006 0.0049
90 0. 0.0075 0.0002 0.0061 0.0102 90 0.0041 0. 0.0003 -0.0006 0.0038
91 0. 0.0058 0.0002 0.0043 0.0082 91 0.0038 0. 0.0003 -0.0007 0.0043
92 0. 0.0059 0.0002 0.0046 0.008 92 0.0034 0. 0.0003 -0.0007 0.0039
93 0. 0.0059 0.0001 0.0047 0.0075 93 0.0031 0. 0.0002 -0.0007 0.0036
94 0. 0.0062 0.0001 0.0056 0.007 94 0.0026 0. 0.0001 -0.0002 0.002
95 0. 0.0039 0.0001 0.0031 0.0047 95 0.0021 0. 0.0002 -0.0004 0.0029
96 0. 0.0033 0.0001 0.002 0.0045 96 0.0015 0. 0.0002 -0.0004 0.0027
97 0. 0.0028 0.0001 0.0008 0.004 97 0.0009 0. 0.0001 -0.0004 0.0025
98 0. 0.0021 0.0002 -0.0007 0.0037 98 0.0002 0. 0.0002 -0.0004 0.0028
99 0. 0.0015 0.0002 -0.0025 0.0037 99 -0.0003 0. 0.0001 -0.0004 0.0028

100 0. 0.0009 0.0003 -0.0044 0.0038 100 -0.0006 0. 0.0002 -0.0003 0.003
101 0. 0.0003 0.0004 -0.0071 0.0039 101 -0.0005 0. 0.0002 -0.0003 0.0036
102 0. -0.0004 0.0005 -0.0101 0.0043 102 0.0003 0. 0.0002 -0.0002 0.0041
103 0. -0.0013 0.0007 -0.0147 0.0052 103 0.0019 0. 0.0002 -0.0002 0.0048
104 0. -0.0027 0.0011 -0.025 0.006 104 0.0045 0. 0.0005 -0.0001 0.0191
105 -0.01 -0.0055 0.0018 -0.0418 0.0078 105 0.0084 0. 0.0007 -0.0005 0.017
106 -0.01 -0.013 0.0039 -0.0748 0.0089 106 0.0134 0.01 0.0008 -0.0014 0.0201
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107 -0.01 -0.0442 0.0133 -0.3992 0.0139 107 0.0196 0.01 0.0013 -0.014 0.023
108 -0.01 -0.0489 0.0105 -0.2054 0.0241 108 0.0266 0. 0.0022 -0.0044 0.0067
109 -0.01 0.0257 0.0129 -0.0164 0.0203 109 0.0342 0. 0.002 0. 0.0098

year t k̂(t) k(t) SE
k

qk
0.05 qk

0.95 year t k̂(t) k(t) SE
k

qk
0.05 qk

0.95

1960 -1.3 6.13 0.2827 3.7939 9.1613 1984 3.52 1.77 0.046 1.275 2.0539
1961 -0.19 2.27 0.2456 -0.2264 5.4831 1985 2.51 2.21 0.0595 1.5538 2.5709
1962 0.97 5.07 0.2502 2.9583 7.7963 1986 1.54 0.77 0.0425 0.2907 1.142
1963 2.18 8.83 0.2909 6.9551 10.9743 1987 0.64 -1.9 0.0682 -2.4862 -1.6056
1964 3.43 3.48 0.2165 1.4618 6.0399 1988 -0.15 -3.35 0.0989 -3.9594 -2.7361
1965 4.77 7.68 0.2547 6.0947 9.6073 1989 -0.84 -2.95 0.0894 -3.6052 -2.5014
1966 6.17 8.1 0.2533 6.5128 9.8498 1990 -1.45 -2.15 0.0789 -2.9361 -1.5984
1967 7.57 7.71 0.2383 6.2315 9.306 1991 -2.06 -3.08 0.0962 -3.8592 -2.4801
1968 8.91 13.83 0.3608 11.3772 14.7117 1992 -2.69 -5.63 0.155 -6.3793 -4.7443
1969 10.05 15.44 0.393 12.5087 16.2193 1993 -3.38 -4.15 0.1272 -5.0984 -3.3549
1970 10.91 13.8 0.3515 11.2195 14.5167 1994 -4.18 -6.26 0.1716 -7.1204 -5.3717
1971 11.49 13.07 0.3321 10.5792 13.7046 1995 -5.13 -5.75 0.1673 -6.8116 -4.799
1972 11.8 13.3 0.3345 10.6654 13.8111 1996 -6.28 -6.81 0.1914 -7.9086 -5.7525
1973 11.86 12.86 0.32 10.2208 13.2279 1997 -7.61 -9.69 0.2564 -10.6773 -8.273
1974 11.69 11.24 0.2776 8.9587 11.5507 1998 -9.12 -11.4 0.2969 -12.405 -9.6768
1975 11.32 14.51 0.3584 11.283 14.9026 1999 -10.77 -12.85 0.3311 -13.8902 -10.892
1976 10.75 11.9 0.2924 9.3141 12.2299 2000 -12.52 -15.22 0.3881 -16.1522 -12.7274
1977 10.03 7.76 0.1882 6.2152 8.0153 2001 -14.36 -18.32 0.4641 -19.1748 -15.1714
1978 9.23 9.74 0.237 7.5953 10.0861 2002 -16.27 -18.39 0.4674 -19.4001 -15.3639
1979 8.36 6.88 0.1643 5.4322 7.1851 2003 -18.24 -17.94 0.4564 -19.0352 -15.079
1980 7.46 6.69 0.1585 5.2148 7.0417 2004 -20.31 -23.99 0.6026 -24.864 -19.7944
1981 6.53 6.84 0.164 5.2401 7.2148 2005 -22.41 -24.57 0.6171 -25.5949 -20.299
1982 5.56 5.27 0.1244 4.0226 5.6316 2006 -24.54 -27.89 0.6963 -28.8291 -22.8863
1983 4.55 5.17 0.1244 3.8819 5.5131

⋆ l̂(t − x) l(t − x) SE
l

ql
0.05 ql

0.95 ⋆ l̂(t − x) l(t − x) SE
l

ql
0.05 ql

0.95

1851 -112.99 22.22 10. -100. 100.01 1929 19.14 20.39 1.53 9.78 37.75
1852 -102.52 10.43 9.79 -100. 100.01 1930 17.7 19.61 1.53 8.98 37.
1853 -91.79 23. 9.77 -100. 100.01 1931 15.93 18.05 1.53 7.43 35.43
1854 -80.47 22.6 10.74 -100. 100.01 1932 13.86 15.62 1.53 5.02 32.98
1855 -68.42 21.76 11.16 -100. 100.01 1933 11.54 13.28 1.53 2.72 30.61
1856 -55.89 23.47 11.1 -100. 100.01 1934 9.04 10.9 1.53 0.33 28.21
1857 -41.43 24.41 11.04 -100. 100.01 1935 6.42 12.71 1.54 2.07 30.16
1858 -24.48 20.19 11.37 -100. 100.01 1936 3.73 7.26 1.53 -3.29 24.57
1859 -5.71 31.58 10.25 -100. 100.01 1937 1.05 5.45 1.53 -5.1 22.76
1860 14.9 33.75 10.58 -100. 100.01 1938 -1.52 3.02 1.52 -7.5 20.31
1861 35.42 25.72 11.33 -100. 100.01 1939 -3.95 2.85 1.53 -7.74 20.22
1862 54.11 26.51 11.05 -100. 100.01 1940 -6.23 3.22 1.54 -7.42 20.64
1863 70.03 27.99 11.04 -100. 100.01 1941 -8.38 -2.59 1.53 -13.15 14.71
1864 82.67 19.69 11.6 -100. 100.01 1942 -10.36 -0.04 1.55 -10.68 17.4
1865 92. 20.43 11.4 -100. 99.53 1943 -12.2 -3.26 1.54 -13.9 14.16
1866 98.35 11.73 10.88 -100. 90.32 1944 -13.92 -1.16 1.56 -11.88 16.37
1867 102.22 17.72 11.6 -100. 100.01 1945 -15.52 -3.09 1.56 -13.86 14.47
1868 104.14 9.2 10.65 -100. 86.25 1946 -16.98 -11.52 1.54 -22.26 6.02
1869 104.58 10.58 8.89 -89.18 75.4 1947 -18.21 -2.18 1.58 -13.29 15.65
1870 103.96 6.51 10.38 -100. 81.31 1948 -19.28 -9.96 1.57 -21.05 7.94
1871 102.56 12.98 8.39 -86.6 71.99 1949 -20.15 -9.31 1.57 -20.41 8.54
1872 100.62 13.43 8.15 -86.31 69.13 1950 -20.85 -9.88 1.59 -21.32 8.24
1873 98.31 66.27 1.17 57.03 79.73 1951 -21.43 -8.05 1.6 -19.6 10.22
1874 95.79 65.26 1.18 56.43 78.92 1952 -21.98 -9.38 1.6 -21.04 8.98
1875 93.16 59.67 1.15 51.02 73.14 1953 -22.57 -9.94 1.6 -21.51 8.55
1876 90.51 62.26 1.28 52.9 77.14 1954 -23.27 -9.87 1.6 -21.46 8.61
1877 87.88 57.71 1.24 48.65 72.19 1955 -24.15 -9.72 1.63 -21.57 9.1
1878 85.3 57.27 1.26 48.05 72.08 1956 -25.26 -10.04 1.64 -22.06 9.06
1879 82.81 54.97 1.23 46.01 69.52 1957 -26.64 -11.33 1.63 -23.31 7.78
1880 80.41 53.75 1.23 44.81 68.26 1958 -28.3 -13.71 1.64 -25.84 5.57
1881 78.14 50.81 1.25 41.79 65.54 1959 -30.22 -15.33 1.65 -27.54 4.21
1882 76.03 50.21 1.26 41.08 65.07 1960 -32.36 -16.8 1.63 -28.91 2.66
1883 74.08 50.23 1.27 41.1 65.12 1961 -34.69 -16.59 1.64 -28.76 3.22
1884 72.28 48.62 1.28 39.39 63.68 1962 -37.16 -21.55 1.67 -34.05 -1.46
1885 70.62 47.93 1.28 38.74 62.95 1963 -39.69 -26.62 1.71 -39.43 -6.21
1886 69.09 47.78 1.28 38.61 62.85 1964 -42.18 -26.48 1.72 -39.38 -5.59
1887 67.7 45.6 1.29 36.33 60.75 1965 -44.56 -31.51 1.76 -44.73 -10.34
1888 66.46 46.12 1.3 36.81 61.44 1966 -46.79 -32.06 1.78 -45.44 -10.71
1889 65.39 44.11 1.3 34.75 59.41 1967 -48.82 -33.57 1.8 -47.11 -11.93
1890 64.5 44.23 1.33 34.73 59.79 1968 -50.65 -37.79 1.84 -51.65 -16.06
1891 63.8 44.64 1.34 35.09 60.32 1969 -52.27 -38.72 1.86 -52.68 -16.8
1892 63.27 43.97 1.35 34.3 59.8 1970 -53.7 -38.27 1.87 -52.33 -16.13
1893 62.88 43.13 1.36 33.38 59.04 1971 -55.03 -37.87 1.88 -52.06 -15.64
1894 62.62 44.78 1.39 34.93 60.96 1972 -56.35 -40.38 1.9 -54.76 -17.82
1895 62.42 44.94 1.39 35.08 61.16 1973 -57.74 -39.81 1.91 -54.31 -17.09
1896 62.23 44.44 1.41 34.47 60.81 1974 -59.25 -40.03 1.92 -54.65 -17.02
1897 62. 45.3 1.42 35.27 61.78 1975 -60.9 -45.33 1.96 -60.25 -22.06
1898 61.7 44.68 1.43 34.62 61.2 1976 -62.66 -47.13 1.98 -62.16 -23.39
1899 61.27 44.61 1.43 34.49 61.2 1977 -64.49 -49.48 2. -64.71 -25.13
1900 60.7 45.41 1.44 35.26 62.03 1978 -66.35 -51.82 2.02 -67.19 -27.34
1901 59.95 43.84 1.44 33.67 60.49 1979 -68.2 -52.93 2.04 -68.42 -28.06
1902 59.03 44.05 1.45 33.85 60.76 1980 -70.02 -55.21 2.06 -70.89 -30.03
1903 57.92 42.71 1.45 32.5 59.41 1981 -71.76 -58.31 2.08 -74.15 -32.86
1904 56.63 41.79 1.45 31.57 58.52 1982 -73.39 -60.33 2.1 -76.36 -34.52
1905 55.19 41.21 1.45 30.95 57.97 1983 -74.88 -63.26 2.13 -79.51 -37.15

Continued on next page . . .
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1906 53.59 40.03 1.45 29.77 56.78 1984 -76.23 -62.78 2.13 -79.02 -36.41
1907 51.84 39.77 1.46 29.49 56.55 1985 -77.49 -65.53 2.16 -82.01 -38.81
1908 49.94 38.55 1.46 28.23 55.37 1986 -78.69 -65. 2.16 -81.49 -38.18
1909 47.92 36.84 1.46 26.53 53.61 1987 -79.9 -64.36 2.16 -80.92 -37.3
1910 45.81 34.82 1.45 24.51 51.56 1988 -81.18 -65.9 2.17 -82.55 -38.59
1911 43.68 33.19 1.45 22.87 49.93 1989 -82.56 -68.35 2.2 -85.16 -40.81
1912 41.56 32.14 1.46 21.8 48.92 1990 -84.01 -70.28 2.22 -87.29 -42.53
1913 39.49 30.63 1.46 20.26 47.39 1991 -85.48 -72.61 2.23 -89.68 -44.63
1914 37.5 28.9 1.45 18.57 45.56 1992 -86.9 -75.12 2.26 -92.4 -46.51
1915 35.59 32.55 1.46 22.24 49.38 1993 -88.19 -76.84 2.27 -94.23 -48.11
1916 33.76 22.79 1.45 12.45 39.47 1994 -89.29 -78.63 2.29 -96.15 -49.54
1917 32.12 27.82 1.47 17.4 44.7 1995 -90.15 -79.68 2.31 -97.36 -50.37
1918 30.66 24.69 1.47 14.26 41.52 1996 -90.74 -79.82 2.31 -97.52 -50.38
1919 29.4 15.72 1.44 5.38 32.33 1997 -91.06 -79.19 2.31 -96.99 -49.5
1920 28.36 33.02 1.52 22.39 50.4 1998 -91.15 -80.87 2.34 -98.85 -50.81
1921 27.3 23.22 1.49 12.71 40.22 1999 -91.01 -79.57 2.33 -97.63 -49.43
1922 26.24 23.27 1.49 12.73 40.34 2000 -90.69 -79.25 2.34 -97.39 -48.82
1923 25.18 21.63 1.49 11.09 38.7 2001 -90.23 -76.91 2.34 -95.01 -46.32
1924 24.15 20.56 1.5 10.02 37.64 2002 -89.68 -79.47 2.36 -97.84 -48.55
1925 23.17 20.1 1.5 9.54 37.21 2003 -89.03 -78.51 2.36 -96.83 -47.64
1926 22.24 18.77 1.5 8.23 35.9 2004 -88.3 -76. 2.36 -94.46 -44.75
1927 21.31 18.58 1.51 8.03 35.75 2005 -87.53 -76.35 2.36 -94.86 -45.06
1928 20.32 19.78 1.52 9.21 37.07 2006 -86.75 -74.7 2.36 -93.22 -43.22

Table A.4: Parameter estimates for the RH06 model based on German male period
life tables 1956-2006 from the Human Mortality Database (2009) (⋆ denotes birth in
year t − x).





APPENDIX to Chapter 7

B.1 Calculations for the Hull-White interest rate model

For the Hull-White model

drt = (θ(t) − art) dt + σspot dWt (B.1)

the constants a and σspot are positive and θ( . ) is chosen to fit the market
forward rate term structure. Let fM(0,t) denote the market instantaneous
forward rate at time 0 with maturity t defined as

fM(0,t) = − d
dt

ln

DM(0,t)


where DM(0,t) denotes the market discount factor with the same maturity t.
Thus, if real market values should be depicted, θ has to be chosen as

θ(t) = d
dt

fM(0,t) + afM(0,t) + σ2

2a


1 − e−2at


. (B.2)

A derivation of Equation (B.2) is given in Lemma B.1.1.

Lemma B.1.1. The moments of the random discount factor can be obtained
analytically and expressed in terms of pure discount bonds as follows

(i) E


1
βs,t

 Is


= D(s,t) = eA(s,t)−B(s,t)rs

(ii) E


1
β2

s,t

 Is


= E


1

βs,t

 Is

2
eV ar[I(s,t)| Is] = (D(s,t))2 eV ar[I(s,t)| Is]

(iii) E


1
βs,tβs,u

 Is


= E


1

βs,t

 Is


E


1
βs,u

 Is


eV ar[I(s,t)|Is]

= D(s,t) D(s,u) eV ar[I(s,t)|Is]
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for s < t < u with

βs,t = exp (I(s,t)) = exp
 t

s

ru du


,

V (s,t) := V ar[I(s,t)|Is] (B.3)

= σ2
spot

a2


(t − s) − 2

a


1 − e−a(t−s)


+ 1

2a


1 − e−2a(t−s)


,

A(s,t) =
t

s

θ(u) B(u,t) du + σ2
spot

2

t
s

B2(u,t) du,

= ln


DM (0,t)
DM (0,s)


+ B(s,t) fM(0,s) − σ2

spot

4a
B2(s,t)


1 − e−2as


B(s,t) = 1

a


1 − e−a(t−s)


.

Proof.

(i) Since the Hull-White dynamics (B.1) forms an Itô process, the application
of Itô’s lemma for the process eat rt and subsequent integration on [s,t]
yields the solution

rt = rs e−a(t−s) +
t

s

e−a(t−v)θ(v) dv + σspot

t
s

e−a(t−v)dWv. (B.4)

From the definition of I(s,t) an easy calculation shows that

I(s,t) = B(s,t)rs +
t

s

u
s

θ(v)e−a(u−v) dvdu + σspot

t
s

B(s,u)dWu

= B(s,t)rs +
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spot
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t
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t
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α(u) − α(s)e−a(u−s) du + σspot

t
s

B(s,u)dWu

for α(s) = fM(0,s) + σ2
spot

2a2 (1 − e−as)2, i.e. for given Information Is the
random variable I(s,t) is normally distributed with

V ar [I(s,t)| Is] = E


σspot

t
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B(s,u)dWu

2 Is





Appendix 273

= E
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Using that for X ∼ N (µx,σ2
x) we have E
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(ii) In analogy to (i) it follows
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(iii) Finally we have (for s < t < u)

E

e−I(s,t) e−I(s,u)

 Is


= eE[−I(s,t)|Is]+E[−I(s,u)|Is] e

1
2 V ar[I(s,t)+I(s,u)|Is]

= eE[−I(s,t)|Is]+E[−I(s,u)|Is] e
1
2 V ar[2I(s,t)+I(t,u)|Is]

= eE[−I(s,t)|Is] eE[−I(s,u)|Is] e
1
2 (3V ar[I(s,t)|Is]+V ar[I(s,u)|Is])

= eE[−I(s,t)|Is] eE[−I(s,u)|Is] e
1
2 V ar[I(s,t)|Is] e

1
2 V ar[I(s,u)|Is] eV ar[I(s,t)|Is]

= E

e−I(s,t)

 Is


E

e−I(s,u)

 Is


eV ar[I(s,t)|Is]

= D(s,t) D(s,u) eV ar[I(s,t)|Is].

The derivation of the time-dependent Drift Expression (B.2) implies a com-
parison of model and market discount rates. Due to the fundamental partial
differential equation for zero coupon prices the functions A(s,t) and B(s,t) are
solutions to the following differential equation system

d
ds

A(s,t) + B(s,t) θ(s) + 1
2B2(s,t) σ2

spot = 0
d
ds

B(s,t) − a B(s,t) − 1 = 0
A(t,t) = B(t,t) = 0.

where the first equation forms a Riccati differential equation with closed-form
solution in case of the Hull-White model. A simple calculation provides that
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,
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Differentiating w.r.t. time t yields

d
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=
t

0

θ(u) e−a(t−u) du + σ2
spot

a2


1
2


1 − e−2at


−

1 − e−at


.

The initial yield curve is matched if and only if
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dt
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A derivation w.r.t. time t results in

d
dt

fM(0,t) = θ(t) + a
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− a e−at r0

= θ(t) − a fM(0,t) − σspot
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. (B.5)

Solving the Equation (B.5) for θ(t) gives expression (B.2).

B.2 Calculations for the mortality rate models

B.2.1 The non mean reverting affine mortality intensity jump pro-
cess (Model (I))

Lemma B.2.1. For the non-mean reverting mortality rate jump process

dµx+t(t) = κ1µx+t(t)dt + dJ(t), (κ1 > 0)

it holds
T−tp

(I)
x+t(t) = exp (A1(T − t) + B1(T − t) µx+t(t)) , (B.6)

where

A1(T − t) = λϕ1

η1 − κ1
(−κ1(T − t) + log [1 − η1 B(T − t)])

+ λϕ2

η2 + κ1
(κ1(T − t) − log [1 + η2 B(T − t)]) − λ(T − t),

B1(T − t) = 1
κ1


1 − eκ1(T −t)


η1,η2 > 0 , λ ≥ 0 , − 1

η1
< B1(T − t) <

1
η2
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The deterministic counterpart of Model (I) is defined by

µx = −λ


ϕ1

1 − η1
κ1

(1 − eκ1x) + ϕ2

1 + η2
κ1

(1 − eκ1x) − 1


+ µ0(0) eκ1x.

Proof. For simplification we set T −t = t and give a solution for the square-root
diffusion process (7.4) with a double-exponential jump term under a compound
Poisson jump process with counting intensity λ and jump size density

f(t) = ϕ1

η1
e

− t
η1 1{t≥0} + ϕ2

η2
e

t
η2 1{t<0}.

According to Duffie and Singleton (2003) the expression

tp
(I)
x (0) = E


e−
 T

0 µx+u(u)du
M0



has a solution exp (A1(t) + B1(t)µx(0)) under certain technical conditions,
where A1(t) and B1(t) follow generalized Ricatti ordinary differential equations

dA1(t)
dt

= λ (Ψ (B(t)) − 1) , A1(0) = 0 (B.7)

dB1(t)
dt

= κ1B1(t) − 1, B1(0) = 0 (B.8)

Ψ(B1(t)) =
∞
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eB1(t)udf(u) Ψ(B1(0)) = 1. (B.9)

The jump transform equation (B.9) is calculated as follows
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(B.10)

The solution to Equation (B.8) is B1(t) = 1
κ1

(e−κ1t + 1). For Equation (B.7)
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we apply the Expression (B.10)

dA1(t)
dt

= λ


ϕ1

1 − η1B1(t)
+ ϕ2

1 + η2B1(t)
− 1



which has solution

A1(t) = λϕ1

η1 + κ1
(κ1t + log (1 − η1B1(t)))

+ λϕ2

η2 + κ1
(κ1t + log (1 + η2B1(t))) − λt.

For the deterministic force of mortality it holds
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B.2.2 The non mean-reverting square-root diffusion process (mor-
tality Model (II))

Lemma B.2.2. For the non mean-reverting square-root diffusion process

dµx+t(t) = κ2µx+t(t)dt + σµ


µx+t(t)dW µ
t , (κ2 > 0, σ µ ≥ 0) (B.11)

it holds
T−tp

(II)
x+t(t) = exp (A2(T − t) + B2(T − t) µx+t(t)) ,

where

A2(T − t) = 0, B2(T − t) = 1 − eb µ(T −t)

c µ + d µ eb µ(T −t) ,

b µ = −


κ2
2 + 2 (σ µ)2, c µ = b µ + κ2

2 , d µ = b µ − κ2

2 ,

b µ, c µ, d µ < 0 and η − c µ − (d µ + η)eb µ(T −t) > 0.
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The deterministic counterpart of Model (II) is defined by

µx = 4µ0(0)(b µ)2 eb µx

((κ2 + b µ)(b µ − κ2)eb µx)2 .

Proof. Analogous to Lemma B.2.1 and due to the affine form of (B.11) the
coupled set of Ricatti equations is given by

dA2(t)
dt

= 0, A1(0) = 0 (B.12)

dB2(t)
dt

= κ2B2(t) + 1
2σµB2(t)2 − 1, B1(0) = 0 (B.13)

with solutions
A2(t) = 0, B2(t) = 1 − eb µt

c µ + d µ eb µt
.

For the deterministic force of mortality it holds

µx =
− d

dx xp0(0)
xp0(0) = − d

dx
log (xp0(0)) = − d

dx
log


eA1(x)+µ0(0)B1(x)


= − d

dx
A2(x) − µ0(0) d

dx
B2(x) = 4µ0(0)(b µ)2 eb µx

((κ2 + b µ)(b µ − κ2)eb µx)2 .

B.2.3 Sensitivity analysis for the survival function of the mortality
Models (I) and (II)

Proposition B.2.3. W.l.o.g. we assume s = 0. The survival function tpx(0)
= P (τx ≥ t)

(i) has negative directional derivative with regard to the speed factors κi (i =
1,2), i.e.

∂ tpx(0)
∂κi

= tpx(0)


∂Ai(t)
∂κi

−


∂Bi(t)
∂κi

· µx(0) + Bi(t)
∂µx(0)

∂κi


< 0.

(ii) has positive directional derivatives with regard to the “noise” factors λ, σµ,
i.e.

∂ tpx(0)
∂λ

= tpx(0)


∂Ai(t)
∂λ

−


∂Bi(t)
∂λ

· µx(0) + Bi(t)
∂µx(0)

∂λ


> 0,

∂ tpx(0)
∂σµ

= tpx(0)


∂Ai(t)
∂σµ

−


∂Bi(t)
∂σµ

· µx(0) + Bi(t)
∂µx(0)

∂σµ


> 0
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For a reasonable choice of the model parameters we also have

∂ tp̃x(0)
∂κi

< 0


∂ tp̃x(0)
∂λ

> 0 ,
∂ tp̃x(0)

∂σµ
> 0



such that for PV0 ∈ {XΠ ,ZΠ
0 }

∂ V ar [PV0]
∂κi

< 0


∂ V ar [PV0]
∂λ

> 0,
∂ V ar [PV0]

∂σµ
> 0


.

Proposition B.2.3 is left unproven since the derivation of the functions Ai(t)
and Bi(t) is complex. An illustration of the numerical directional derivatives is
given in Figure B.1.

Figure B.1 illustrates that an increasing speed factor κi induces a decrease in
the survival probabilities and therefore a reduced portfolio value variance. On
the other hand, an increase in the “noise” factors like the jump intensity λ

or the diffusion coefficient σµ causes an increase in the multi-annual survival
probabilities and consequently an upward shift in the present portfolio variance
values.

B.3 Calculations for the expected discounted portfolio
values

B.3.1 Moment calculation for the number of survivors

W.l.o.g. we assume t = 0 for simplification reasons. Due to the definition of
(7.2) we obtain

E [Ni] = E

 N0
n=1

1{τ
(n)
x >i}


and

E

(Ni)2


= E


 N0

n=1
1{τ

(n)
x >i}

2


=
N0

n=1
E

1{τ

(n)
x >i}


+ 2

N0−1
n=1

N0
k=n+1

E

1{τ

(n)
x >i}1{τ

(k)
x >i}



for times i = 0,...,T̄ . First, consider that for k, n ∈ {1,...,N0}

E

1{τ

(n)
x >i}


= E


E

1{τ

(n)
x >i}

 Mi


= E [ip̃x(0)] = ipx(0).
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Sensitivity analysis of the survival function

(B.1.1) speed factor κ1 (Model (I)) (B.1.2) jump intensity λ (Model (I))

(B.1.3) speed factor κ2 (Model (II)) (B.1.4) diffusion coefficient σµ (Model (II))

Figure B.1: Sensitivity analysis of the survival function.

Now consider the cross moments

E

1{τ

(n)
x >i}1{τ

(k)
x >i}


= E


E

1{τ

(n)
x >i}1{τ

(k)
x >i}

 Mi


= E


(ip̃x(0))2


.

Using the previous results, we have

E [Ni] = N0 ipx(0)

E

(Ni)2


= N0 ipx(0) + N0 (N0 − 1) E


(ip̃x(0))2


= N0 ipx(0) + N0 (N0 − 1) (ipx(0))2 E

 ip̃x(0)
ipx(0)

2


= N0 ipx(0)
1 − ipx(0) E

 ip̃x(0)
ipx(0)

2
+ N2

0 E

(ip̃x(0))2


V ar [Ni] = E


(Ni)2


− (E [Ni])2



Appendix 281

= N0 ipx(0)
1 − ipx(0) E

 ip̃x(0)
ipx(0)

2


+N2
0


E

(ip̃x(0))2


− (ipx(0))2


.

Notice that in case of deterministic mortality, we have p̃ = p and thus

E

(Ni)2


= N0 ipx(0) + N2

0 (ipx(0))2 − N0 (ipx(0))2

= N0 ipx(0) (1 − ipx(0)) + N2
0 (ipx(0))2 .

Furthermore, consider (for k = 0,...,T̄ )

E [Ni Nk] = E

 N0
n=1

1
τ

(n)
x >i

 N0
l=1

1
τ

(l)
x >k


= E

E

 N0
n=1

1
τ

(n)
x >i

 N0
l=1

1
τ

(l)
x >k

 MT̄


= E

E

 N0
n=1

1
τ

(n)
x >max{i,k}

 +
N0

n=1

N0
l ̸=n

1
τ

(n)
x >i

1
τ

(l)
x >k

MT̄


= N0 max{i,k}px(0) + E

 N0
n=1

N0
l ̸=n

E

1
τ

(n)
x >i

1
τ

(l)
x >k

MT̄


= N0 max{i,k}px(0) + E [N0(N0 − 1) ip̃x(0) kp̃x(0)]
= N0 max{i,k}px(0) + N2

0 E [ip̃x(0) kp̃x(0)] − N0 E [ip̃x(0) kp̃x(0)]

= N0 kpx(0) − N0 kpx(0) E


ip̃x(0) kp̃x(0)

kpx(0)


+ N2

0 E [ip̃x(0) kp̃x(0)]

= N0 kpx(0)


1 − E


ip̃x(0) kp̃x(0)

kpx(0)


+ N2

0 E [ip̃x(0) kp̃x(0)]


.

B.3.2 Moment calculation for the expected discounted portfolio
values

W.l.o.g. we assume that the dynamics of the zero bond is given by Equation
(7.6). Recall that with the binomial theorem over multiple addends and the
independence of spot and mortality rate evolution we calculate the first moments
for the present portfolio premium income and benefit value. Therefore, we
obtain

E[XΠ
0 ] = E


T −1
i=0

πi
Ni

β0,i


=

T −1
i=0

πiE


1

β0,i


E [Ni] =

T −1
i=0

πiN0 D(0,i) ipx(0),

(B.14)
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E


XΠ
0

2


= E

T −1
i=0

πi
Ni

β0,i

2
=

T −1
i=0

π2
i E


N2

i


E


1

β2
0,i


+ 2

T −2
i=0

T −1
k=i+1

π2
i E [Ni Nk] E


1

β0,i β0,k


(B.15)

=
T −1
i=0

π2
i E


N2

i


E


1

β2
0,i


+ 2

T −2
i=0

T −1
k=i+1

π2
i E [Ni Nk] D(0,i) D(0,k) eV ar[I(0,i)]

(B.16)

and

E[ZΠ
0 ] = E

c
T̄ −1
i=T

Ni

β0,i

 = c
T̄ −1
i=T

E


1

β0,i


E [Ni] = cN0

T̄ −1
i=T

D(0,i) ipx(0),

(B.17)

E


ZΠ
0

2


= E


c

T̄ −1
i=T

Ni

β0,i

2


= c2
T̄ −1
i=T

E

N2

i


E


1

β2
0,i


+ 2c2

T̄ −2
i=T

T̄ −1
k=i+1

E [NiNk] E


1

β0,i β0,k


(B.18)

= c2
T̄ −1
i=T

E

N2

i


E


1

β2
0,i


+ 2c2

T̄ −2
i=T

T̄ −1
k=i+1

E [NiNk] D(0,i) D(0,k) eV ar[I(0,i)].

(B.19)

Using (B.14) and (B.16), the variance becomes

V ar

XΠ

0


= E

T −1
i=0

πi
Ni

β0,i

2−


E


T −1
i=0

πi
Ni

β0,i

2

=
T −1
i=0

π2
i E


N2

i


E


1
β2

0,i


+ 2

T −2
i=0

T −1
k=i+1

π2
i E [Ni Nk] E


1

β0,i β0,k



−
T −1
i=0

π2
i


E [Ni] E


1

β0,i

2
− 2

T −2
i=0

T −1
k=i+1

π2
i E [Ni] E [Nk] E


1

β0,i


E


1
β0,k



=
T −1
i=0

π2
i


N0 ipx(0)


1 − ipx(0) E


ip̃x(0)
ipx(0)


+ N2

0 E

(ip̃x(0))2


· (D(0,i))2 eV ar[I(0,i)]

+ 2
T −2
i=0

T −1
k=i+1

π2
i


N0 ipx(0)


1 − E


ip̃x(0)kp̃x(0)

kpx(0)


+ N2

0 E [ip̃x(0)kp̃x(0)]


·D(0,i) D(0,k) eV ar[I(0,i)] − N2
0

T −1
i=0

(ipx(0) D(0,i))2
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− 2N2
0

T −2
i=0

T −1
k=i+1

π2
i ipx(0)kpx(0)D(0,i)D(0,k). (B.20)

In the same way, the present benefit variance follows from (B.17) and (B.19)

V ar

ZΠ

0


= E


c

T̄ −1
i=T

Ni

β0,i

2
−

E

c
T̄ −1
i=T

Ni

β0,i

2

= c2
T̄ −1
i=T

E

N2

i


E


1
β2

0,i


+ 2c2

T̄ −2
i=T

T̄ −1
k=i+1

E [Ni Nk] E


1
β0,i β0,k



−c2
T̄ −1
i=T


E [Ni] E


1

β0,i

2
− 2c2

T̄ −2
i=T

T̄ −1
k=i+1

E [Ni] E [Nk] E


1
β0,i


E


1
β0,k



= c2
T̄ −1
i=T


N0 ipx(0)


1 − ipx(0) E


ip̃x(0)
ipx(0)


+ N2

0 E

(ip̃x(0))2


· (D(0,i))2 eV ar[I(0,i)]

+ 2c2
T̄ −2
i=T

T̄ −1
k=i+1


N0 ipx(0)


1 − E


ip̃x(0)kp̃x(0)

kpx(0)


+ N2

0 E [ip̃x(0)kp̃x(0)]


·D(0,i) D(0,k) eV ar[I(0,i)] − N2
0

T̄ −1
i=T

(ipx(0) D(0,i))2

− 2c2N2
0

T̄ −2
i=T

T̄ −1
k=i+1

ipx(0)kpx(0)D(0,i)D(0,k). (B.21)

B.3.3 Systematic variance per policy

By means of expressions (B.20) and (B.21) we calculate the systematic risk per
policy for the portfolio premium income

lim
N0→∞

V ar

XΠ

0


N2

0
=

T −1
i=0

π2
i (D(0,i))2


E

(ip̃x(0))2


eV ar[I(0,i)] − (ipx(0))2



+2
T −2
i=0

T −1
k=i+1

π2
i D(0,i)D(0,k)

·

E [ip̃x(0)kp̃x(0)] eV ar[I(0,i)] − ipx(0)kpx(0)


(B.22)

and benefit value

lim
N0→∞

V ar

ZΠ

0


N2

0
= c2

T̄ −1
i=T

(D(0,i))2

E

(ip̃x(0))2


eV ar[I(0,i)] − (ipx(0))2



+2c2
T̄ −2
i=T

T̄ −1
k=i+1

D(0,i)D(0,k)
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·

E [ip̃x(0)kp̃x(0)] eV ar[I(0,i)] − ipx(0)kpx(0)


(B.23)

which is positive for V ar[I(0,i)] > 0 (i = 0,...,T̄ ) and/or p̃ ̸= p, i.e. any
uncertainty arising from mortality and/or interest rates.

B.4 Sensitivity analysis for the present portfolio benefit
variance

In particular, Subsection B.3.2 validates the intuition that the variance of ZΠ
s

is increasing in the interest rate volatility as V ar[I(s,t)|Is] is. A verification
for this assumption is given in the following lemma.

Proposition B.4.1. W.l.o.g. we assume s = 0. Standard derivative calculus
yields

∂ V ar [I(0,t)]
∂σspot

= 2σspot

a2


t + 2

a
e−at − 1

2a
e−2at − 3

2a


= 2

σspot
V ar [I(0,t)] > 0

(B.24)

∂ V ar [I(0,t)]
∂a

= −
σ2

spot

2a4 e−2at

e2at(−9 + 4at) + 4eat(3 + at) − 3 − 2at


< 0

(B.25)

whereas the latter inequality sufficiently holds in parameter cases a < 3
2t

and
t ≤ ω + 1.

Lemma B.4.2. The directional derivatives of the present portfolio benefit vari-
ance V ar


ZΠ

0


are calculated as

∂ V ar

ZΠ

0


∂σspot

= c2
T̄ −1
i=T

E

(Ni)2


(D(0,i))2 eV ar[I(0,i)] ∂ V ar [I(0,i)]

∂σspot

+ 2c2
T̄ −2
i=T

T̄ −1
k=i+1

E [NiNk] D(0,i) D(0,k) eV ar[I(0,i)] ∂ V ar [I(0,i)]
∂σ

> 0 .(B.26)

as well as

∂ V ar

ZΠ

0


∂a

= c2
T̄ −1
i=T

E

(Ni)2


(D(0,i))2 eV ar[I(0,i)] ∂ V ar [I(0,i)]

∂a

+ 2c2
T̄ −2
i=T

T̄ −1
k=i+1

E [NiNk] D(0,i) D(0,k) eV ar[I(0,i)] ∂ V ar [I(0,i)]
∂a

< 0. .(B.27)

Expressions for directional derivatives of the present portfolio premium income
value XΠ

0 are obtained in a completely analogous way.
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Proof. (B.26) is a conclusion of (B.24), (B.25) and Subsection (B.3.2).

Proposition B.4.1 is quite intuitive in the way that the greater interest rate
diffusion the greater deviations of the interest rate integral I(0, . ) turn out.
According to Subsections B.3.2 and B.3.3 the impact on the portfolio values
is therefore noticeable. On the other hand, the greater the speed of mean
reversion a (for fixed volatility σspot) the lesser the portfolio value variance
since the mean reversion revel is reached comparatively earlier. Figure B.2
highlights these relations and makes the chosen interest Model (7.8) appear
meaningful according to the criteria catalogue of Chapter 4. A sensitivity
analysis concerning the two distinct mortality Models (I) and (II) is given in
Subsection B.2.3.

Sensitivity analysis of the portfolio benefit variance
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(B.2.2) speed of mean reversion a

Figure B.2: Sensitivity analysis of the portfolio benefit variance parts w.r.t. mortal-
ity Model (II), a portfolio of N0 = 100 individuals aged x = 45 years and a contract
deferment period T = 15. In accordance with (7.17) the total variance (solid) equals
the pooling variance part (dotted) and the non–pooling variance part (dashed). The
simulations are based on 5 · 105 iterations.





APPENDIX to Chapter 8

C.1 Calculations for the non mean reverting Brownian
Gompertz-Makeham mortality rate model

C.1.1 Proof of the normal distribution assumption concerning the
stochastic mortality reduction factor process

Since Yt forms an Itô integral we can define it as a limiting Riemann sum

Yt =
t

0

e−κudW µ
u = lim

n→∞

n
i=1

e−κti


W µ

ti
− W µ

ti−1



for t0 = 0 < t1 < ... < tn−1 < tn = t partitioned into n subintervals. Since for a
Brownian motion W µ the difference W µ

t −W µ
s is normally N(0,t−s)-distributed

for 0 ≤ s ≤ t it follows

E [Yt] = E

 t
0

e−κudW µ
u

 = lim
n→∞

n
i=1

e−κtiE

W µ

ti
− W µ

ti−1


= 0,

E

(Yt)2


= E


 t

0

e−κudW µ
u

2 = E

 t
0

e−2κudu


=

− 1

2κ
e−2κu

t

0
= 1 − e−2κt

2κ

where the second moment results from Itô isometry. Furthermore, for the
logarithmised mortality rate (8.14) it holds that

E [ln (µx+t(t))] = E [ln (µx+t(0)) + (α + β(x + t)) t + γYt]
= ln (µx+t(0)) + (α + β(x + t)) t

V ar [ln (µx+t(t))] = V ar [ln (µx+t(0)) + (α + β(x + t)) t + γYt] = V ar [γYt]

= γ2

2κ


1 − e−2κt


.

�
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C.1.2 Proof of Proposition 8.3.1

Along the lines of Milevsky and Promislow (2001) and due to Itô’s lemma we
obtain

dµx+t(t) = ∂µx+t(t)
∂t

dt + ∂µx+t(t)
∂Yt

dYt + 1
2

∂2µx+t(t)
(∂Yt)2 d ⟨Y ⟩t

= (α + β(x + 2t)) µx+t(t) dt + γµx+t(t) dYt + 1
2γ2µx+t(t) dt

= (α + β(x + 2t)) µx+t(t) dt + γµx+t(t) (−κYt dt + dW µ
t ) + 1

2γ2µx+t(t) dt

= (α + β(x + 2t)) µx+t(t) dt

+ γµx+t(t)


−κ

γ


ln


µx+t(t)
µx+t(0)


− (α + β(x + t)t)


dt + dW µ

t


+ 1

2γ2µx+t(t) dt

=

α + β(x + 2t) + 1

2γ2 + κ ln (µx+t(0)) + κ(α + β(x + t))t


µx+t(t) dt

− κ ln (µx+t(t)) µx+t(t) dt + γ µx+t(t) dW µ
t

=: ζ(µx+t(t),t) µx+t(t) dt + γ µx+t(t) dW µ
t

which proofs the drift expression of Proposition 8.3.1. �

C.2 Existence and uniqueness of the fair percentage
charge

C.2.1 Proof of the fund value Equation (8.1)

By means of mathematical induction we show that for i = 1,...,N − 1

A(ti,π,ϕ) :=
i−1
j=0

πI
tj

Sti

Stj

=
i−1
j=0

(1 − ϕ)i−j πN
tj

Sti

Stj

(C.1)

for investment premiums πI
tj

= (1 − ϕ)πN
tj

− ϕ · A(tj,π,ϕ).
For i = 1 Equation (C.1) holds since

1−1
j=0

πI
tj

St1

Stj

= (1 − ϕ)πN
t0

St1

St0

=
1−1
j=0

(1 − ϕ)1−jπN
tj

St1

Stj

which constitutes the basic step. Assume that (C.1) holds for arbitrary i − 1 ≤
N − 2, i.e.

i−2
j=0

πI
tj

Sti

Stj

=
i−2
j=0

(1 − ϕ)i−1−j πN
tj

Sti

Stj

.
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Hence, for the inductive step it follows

i−1
j=0

πI
tj

Sti

Stj

= πI
ti−1

Sti

Sti−1

+
i−2
j=0

πI
tj

Sti
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Sti
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j=0

(1 − ϕ)i−1−jπN
tj

Sti

Stj

=
i−1
j=0

(1 − ϕ)i−jπN
tj

Sti

Stj

which completes induction. �

C.2.2 Proof of Proposition 8.4.5

Let η denote the repayment level and assume that the guarantee levels gD and
gI are set to zero such that the call options (8.2) and (8.6) reduce to pure
unit-linked benefits. Then the fair charge ϕ∗ is a solution to

EDPV RF (ϕ) =
N−1
i=0

ϕ
i

j=0
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tj
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px+ti
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For ϕ = 0 the lefthandside of the above equation equals zero. Then, the
righthandside can only be zero for η = 1 since

A(ti,π,0) =
n∗(ti)
j=0

πN
tj

Sti

Stj

for all i ∈ T and A(T,π,0) =
N−1
i=0

πN
ti

ST

Sti

.

The pension is solely affected by mortality risk since there are no financial
guarantees given (gD(t) = gI(t,x) = 0). Thus, the equivalence principle holds.
Otherwise, for ϕ < 0, the lefthandside is negative which implies that η has to
be less than 1. The negative charge compensates the insured for the reduced
option payoff. �

C.2.3 Proof of Theorem 8.4.7

Considering the lefthandside of Definition 8.4.4 and rewriting the difference as
a function of ϕ leads to

f(ϕ) := EDPV RF (ϕ) − EDPV GMDB
η=1 (ϕ) − EDPV GMIB

η=1 (ϕ)

Then a fair percentage charge ϕ∗ is a solution of f(ϕ∗) = 0. The case of a VA
contract without guarantees described in Proposition 8.4.5 implies

lim
ϕ→0

f(ϕ)
ϕ

= −∞ (C.2)

and for ϕ → 1 together with assumption (8.23) it holds

lim
ϕ→1

f(ϕ)
ϕ

> 0, . (C.3)

Under the contract specifications made in Sec. 8.2, the guarantees for each time
t divided by ϕ are strictly decreasing and continuous in ϕ with

lim
ϕ→∞

gD(t)
ϕ

= 0, lim
ϕ→0

gD(t)
ϕ

= ∞,

lim
ϕ→∞

EP t [gI(t,x)| F0]
ϕ

= 0, lim
ϕ→0

EP t [gI(t,x)| F0]
ϕ

= ∞.

Nevertheless, the expectations of the overall guarantees GD and GI divided by
ϕ are calculated as

EP t


GD(t)

ϕ

F0


= gD(t)

ϕ
+ EP t


1
ϕ

[A(t,π,ϕ) − gD(t)]+
F0


,
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EP t


GI(t,x)

ϕ

F0


= EP t [gI(t,x)| F0]

ϕ
+ EP t


1
ϕ

[A(t,π,ϕ) − gI(t,x)]+
F0


.

With respect to the convexity property of the embedded call options, both
expectations are strictly increasing in ϕ. Furthermore, the expected value of
the total charge withdrawn by the insurer divided by ϕ is

N−1
i=0

i
j=0

(1 − ϕ)i−j πN
tj

D(0,tj) tj−ti
px+ti

(ti)

and strictly decreasing in ϕ. Altogether, this implies that f(ϕ)
ϕ

is strictly
increasing and continuous in ϕ. By the mean value theorem there exists a
unique fair charge ϕ∗ with f(ϕ∗)

ϕ∗
= 0. �


	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations
	1 General introduction
	1.1 Recent challenges to the life insurance business
	1.2 Motivation and contribution overview
	1.3 Structure of the thesis

	2 An Introductory Overview of German Mortality Trends and Patterns
	3 Deterministic Mortality Modelling
	3.1 Discrete-time frameworks
	3.2 Continuous-time frameworks
	3.3 Limits of classical frameworks

	4 Stochastic Mortality Modelling
	4.1 Stochastic mortality modelling
	4.2 Discrete-time frameworks
	4.3 Continuous-time frameworks
	4.4 Conclusion

	5 Excursus on Modelling and Forecasting Mortality
	5.1 Lee-Carter age-period model
	5.2 Age-period(-cohort) modifications and extensions
	5.3 Estimation results
	5.4 Comparison of the mortality models
	5.5 Conclusion and critical appraisal

	6 The German pension system and private retirement provision
	7 Deferred Life Annuities
	7.1 Introduction
	7.2 Contract and model specification
	7.3 Calibration
	7.4 Variance analysis
	7.5 Pricing effects
	7.6 Solvency effects
	7.7 Conclusion

	8 Deferred Variable Annuities
	8.1 Introduction
	8.2 Contract specification
	8.3 Model specification
	8.4 Pricing of variable annuities
	8.5 Numerical analysis
	8.6 Conclusion

	Summary and Outlook
	Summary and Outlook (German version)
	Bibliography
	A Appendix to Chapter 5
	A.1 Parameter and symbol definition for the estimation results
	A.2 Estimation results for the age-period model by Lee and Carter
	A.3 Estimation results for the age-period model by Brouhns, Denuit and Vermunt
	A.4 Estimation results for the age-period model with age-specific enhancement by Renshaw and Haberman
	A.5 Estimation results for the age-period-cohort model by Renshaw and Haberman

	B Appendix to Chapter 7
	B.1 Calculations for the Hull-White interest rate model
	B.2 Calculations for the mortality rate models
	B.3 Calculations for the expected discounted portfolio values
	B.4 Sensitivity analysis for the present portfolio benefit variance

	C Appendix to Chapter 8
	C.1 Calculations for the non mean reverting Brownian Gompertz-Makeham mortality rate model
	C.2 Existence and uniqueness of the fair percentage charge


