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Abstract

In this work, magnetic, magnetocaloric and structural properties are investigated in Ni-

Mn-based martensitic Heusler alloys with the aim to tailor these properties as well as

to understand in detail the magnetic interactions in the various crystallographic states

of these alloys. We choose Ni50Mn34In16 as a prototype which undergoes a marten-

sitic transformation and exhibits field-induced strain and the inverse magnetocaloric

effect. Using the structural phase diagram of martensitic Ni-Mn-based Heusler alloys,

we substitute gallium and tin for indium to carry these effects systematically closer to

room temperature by shifting the martensitic transformation. A magneto-calorimeter

is designed and built to measure adiabatically the magnetocaloric effect in these alloys.

The temperature dependence of strain under an external magnetic field is studied

in Ni50Mn50−xZx (Z: Ga, Sn, In and Sb) and Ni50Mn34In16−xZx (Z: Ga and Sn). An

argument based on the effect of the applied magnetic field on martensite nucleation

is adopted to extract information on the direction of the magnetization easy axis in

the martensitic unit cell in Heusler alloys. Parallel to these studies, the structure in

the presence of an external field is also studied by powder neutron diffraction. It is

demonstrated that martensite nucleation is influenced by cooling the sample under a

magnetic field such that the austenite phase is arrested within the martensitic state.

The magnetic interactions in Ni50Mn37Sn13 and Ni50Mn40Sb10 are characterized by

using neutron polarization analysis. Below the martensitic transformation tempera-

ture, Ms, an antiferromagnetically correlated state is found. Ferromagnetic resonance

experiments are carried out on Ni50Mn37Sn13 and Ni50Mn34In16 to gain more detailed

information on the nature of the magnetic interactions. The experimental results in

Ni50Mn40Sb10 show good agreement with those of density functional theory calculations.

The effect of hydrostatic pressure on the structural and magnetic properties of

Ni50Mn50−xInx (x= 15 and 16) and Ni50Mn40Sb10 is studied by temperature-dependent

magnetization, calorimetry and polarized neutron scattering experiments. When a mag-

netic field is applied, Ms of Ni50Mn34In16 shifts to lower temperatures by about 10 KT−1,

whereas, an applied pressure shifts Ms to higher temperatures by about 4 K kbar−1. Po-

larization analysis shows that antiferromagnetic correlations are particularly enhanced

in Ni50Mn34In16 on applying pressure.
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Kurzzusammenfassung

In dieser Arbeit wurden die magnetischen, magnetokalorischen sowie die strukturellen

Eigenschaften Ni-Mn- basierender Heusler-Legierungen mit martensitischer Umwand-

lung untersucht. Ziel der Arbeit war es, die physikalischen Eigenschaften gezielt durch

Modifikationen der Legierungszusammensetzung zu beeinflussen und ein Verständnis

der zugrundeliegenden magnetischen Wechselwirkungen in verschiedensten kristallo-

graphischen Phasen zu erlangen. Als Ausgangspunkt wurde die Legierung Ni50Mn34In16

gewählt. Im martensitischen Zustand wird eine magnetfeldinduzierte Rückumwand-

lung beobachtet, die mit Dehnungen und einem inversen magnetokalorischen Effekten

einhergehen. Unter Benutzung des strukturellen Phasendiagrammes martensitischer

Ni-Mn-basierender Heusler-Legierungen wurde Indium durch Gallium und Zinn ersetzt.

Ziel war es, die in Ni50Mn34In16 beobachteten Umwandlungstemperaturen und die damit

einhergehenden Effekte zu Temperaturen nahe Raumtemperatur zu verschieben. Die

unter adiabatischen Bedingungen bestimmten magnetokalorischen Eigenschaften wur-

den mit Hilfe eines neu konzipierten Magnetokalorimeters bestimmt.

Ferner wurden Legierungen der Konzentrationsreihen Ni50Mn50−xZx (Z: Ga, Sn, In

and Sb) und Ni50Mn34In16−xZx (Z: Ga and Sn) hinsichtlich der Temperaturabhängigkeit

der Dehnung unter dem Einfluss externer Magnetfelder untersucht. Hierbei wurde der

Einfluss des Magnetfeldfeldes auf die Nukleation martensitischer Domänen ausgenutzt.

So konnten Informationen über die Richtung der leichten Achse der Magnetisierung

erhalten werden. Ergänzend dazu wurden im Detail die Kristallstrukturen unter dem

Einfluss eines Magnetfeldes mit Neutronen-Pulverdiffraktometrie untersucht. Hierdurch

konnte gezeigt werden, dass die Austenitphase durch Kühlen im Magnetfeld in ihrer

Umwandlung gehemmt ist und die Nukleation des Martensits unterdrückt wird.

Mit Hilfe der Analyse polarisierter Neutronen wurden für die Legierungen

Ni50Mn37Sn13 und Ni50Mn40Sb10 die magnetischen Wechselwirkungen untersucht. Es

zeigte sich, dass knapp unterhalb der martensitischen Umwandlungstemperatur Ms

ein antiferromagnetisch korrelierter Zustand vorliegt. Um weitere detaillierte Infor-

mationen über die Natur der magnetischen Wechselwirkungen zu erlangen, wurden

für Ni50Mn37Sn13 und Ni50Mn34In16 Untersuchungen mit ferromagnetischer Resonanz

durchgeführt. Damit sind die experimentell gefundenen Ergebnisse in guter Überein-

stimmung mit Dichtefunktionaltheorierechnungen, die für die Legierung Ni50Mn40Sb10

angefertigt wurden.

Des Weiteren wurden die Auswirkungen hydrostatischer Drücke auf die struk-

turellen und magnetischen Eigenschaften der Legierungen Ni50Mn50−xInx (x=15 and 16)
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sowie Ni50Mn40Sb10 untersucht. Hierzu wurde als Funktion der Temperatur die Mag-

netisierung und die Wärmetönung bestimmt sowie die Analyse polarisierter Neutronen

durchgeführt. Bei Anlegen eines Magnetfeldes wurde für Ni50Mn34In16 eine Verschiebung

der Ms-Temperatur von -10 KT−1 beobachtet. Im Gegensatz dazu verschieben hydro-

statische Drücke Ms mit +4 K kbar−1 zu höheren Temperaturen und stabilisieren den

martensitischen Zustand. Die Analyse polariserter Neutronen zeigte, dass hydrostati-

sche Drücke antiferromagnetische Korrelationen begünstigten.
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List of abbreviations

Af austenite finish temperature

As austenite start temperature

AF antiferromagnet or antiferromagnetic

bcc body-centered cubic

bct body-centered tetragonal

Bres resonance field (Bres = µ0Hres)

DFT density functional theory

DSC differential scanning calorimetry

EDX energy dispersive X-ray analysis

FC field-cooled

fcc face-centered cubic

FH field-heated

FI ferrimagnetic

FM ferromagnetic

FMR ferromagnetic resonance

Mf martensite finish temperature

Ms martensite start temperature

MCE magnetocaloric effect

MR magnetoresistance

NSF non-spin-flip

MSME magnetic shape memory effect

PM paramagnetic

RF flipping ratio

SF spin-flip

SMA shape memory alloys

SME shape memory effect

SPODI structure powder diffractometer

SQUID superconducting quantum interference device

TA
C Curie temperature of the austenite phase

TM
C Curie temperature of the martensite phase

TP premartensitic transition temperature

XRD X-ray diffraction

ZFC zero-field-cooled

ZFH zero-field-heated
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List of symbols

a lattice constant

C heat capacity

dσ/dΩ differential scattering cross-section

e elementary charge (= 1.602×10−19 C)

e/a valance electron concentration

H magnetic field strength

P polarization vector

q scattering wave vector

S entropy

α shear angle

γ gyromagnetic ratio

G Gibb’s free energy

∆l/l relative-length-change

∆Tad adiabatic temperature change

∆S isothermal entropy change

ε strain

K magnetic anisotropy

µ magnetic moment (µB/atom)

µB Bohr magnetron (= 9.274096×10−24 J/T)

µ0 vacuum permeability (=4π × 10−7 H/m)

σtw twinning stress

σcoh coherent scattering cross-section (Bragg scattering)

σn nuclear spin-incoherent scattering cross-section

σm magnetic scattering cross-section

χ′′ imaginary part of the ac susceptibility

ω angular frequency

ω/γ isotropic resonance field
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1. Introduction

Heusler alloys are named after the German mining engineer and chemist Friedrich

Heusler who discovered ferromagnetism in Cu-Mn-Al in which the constituent elements

are non-ferromagnetic. Heusler alloys are ternary intermetallic compounds with the sto-

ichiometry X2YZ, known as ”full-Heusler” with L21 cubic structure, and with the stoi-

chiometry XYZ, known as ”half-Heusler” with C1b crystal structure. Off-stoichiometric

compositions in many cases are also referred to as Heusler alloys. In this thesis, the

magnetic and structural properties of Ni-Mn-based full-Heusler and off-stoichiometric

Heusler alloys will be considered. In full-Heusler alloys, when the Y atom is Mn, the

resulting alloy is magnetic. In such Mn-based Heusler alloys, X sublattices are occu-

pied by transition elements, and Z can be one of the elements in group IIIA-VA of

the periodic table. At off-stoichiometric compositions, Ni-Mn-based Heusler alloys un-

dergo a martensitic transformation from a cubic austenite phase to a phase of lower

crystallographic symmetry.

Some martensitic Heusler alloys can exhibit the magnetic shape memory effect

(MSM). In such alloys, an external magnetic field applied in the martensitic state leads

to large strains. Such shape memory alloys are promising smart materials for tech-

nological applications, and recent developments on actuators and sensors emphasize

their importance even stronger. Since the discovery of magnetic shape memory in the

martensitic Ni2MnGa Heusler alloy in 1996 [1,2], Ni-Mn-based Heusler alloys have at-

tracted much interest. In Ni-Mn-Ga, the strength of the magnetoelastic coupling in

the martensitic state is responsible for large strains in the order of 10% [3], which is

considerably larger than those in piezoceramics and magnetostrictive materials showing

strain of about 0.2% on applying an electric or magnetic field.

Initial studies on structural and magnetic properties of off-stoichiometric Heusler

alloys Ni2Mn1−xZx (Z: In, Sn) were investigated in detail by T. Krenke within the

scope of a Ph.D. study [4]. Many of these alloys undergo martensitic transformations

and exhibit various magnetic-field-driven properties such as magnetic superelasticity

and the magnetocaloric effect [5,6]. Further investigations showed that Ni2Mn1−xSbx

alloys are also martensitic and show similar effects [7]. These effects in Heusler-based

systems are related to field-induced magneto-structural transformations, in which the

structural and magnetic degrees of freedom are coupled to one another.

Magnetic superelasticity is observed when the martensitic transformation temper-

ature shifts to lower temperatures under an applied magnetic field. Application of
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magnetic field produces large strains which are caused by field-driven transitions from

the matrensitic to the austenitic state.

In 1997, the discovery of the giant magnetocaloric effect (MCE) at room tempera-

ture in Gd5Si2Ge2 [8] offered a promising development of economical and enviromental-

friendly magnetic refrigerants working near room temperature. The refrigerant operates

on the principle that the application of a magnetic field adiabatically causes the sam-

ple to warm. More recently, the so-called inverse MCE has been observed near room

temperature in martensitic Ni-Mn-Sn Heusler alloys [9] which cool in a magnetic field

applied in the martensitic state.

The development of materials that exhibit large magnetoresistance (MR) is important

for many technological applications. Strong changes in the magnetization and in the

electrical resistivity are found around the martensitic transformation in Ni-Mn-based

ferromagnetic shape memory alloys. In 2006, a large MR effect of about 60% was

reported at room temperature [10]. At temperatures lower than room temperature, in

the martensitic state, this value increases up to 80%. Several publications can be found

that deal with the MR effect in Ni-Mn-based Heusler alloys [11–13].

In addition to their technological relevance, martensitic Heusler alloys are particularly

interesting for fundamental investigations on the interplay between their complex crystal

structures and their magnetism. Most of the novel properties of martensitic Heusler

alloys are related to the martensitic transformation. This naturally stimulates interest

in understanding the magnetism of these materials particularly in the transformation

region. The observation of exchange-bias in Ni-Mn-based Heusler alloys led to more

focus on research on magnetic properties. The presence of exchange-bias suggests that

antiferromagnetic coupling is to be expected in the martensitic state although, until

now, no significant proof about the nature of magnetic interactions in the martensitic

state has been provided [14–16].

To understand the mechanism of these materials and to design magnetic shape mem-

ory materials a priority program supported by the Deutsche Forschungsgemeinschaft

(SPP1239) and entitled ”Change of microstructure and shape of solid materials by

external magnetic fields” has been established in 2006 [17]. A close interdisciplinary

collaboration is communicated within this program under three main topics: Funda-

mentals, bulk materials and applications, films and microsystems. The present thesis is

prepared within a subproject under fundamentals, and the task is to investigate mag-

netic, magnetoelastic and dynamic properties of newly designed martensitic Heusler
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alloys.

The work presented in this thesis is a study of magnetic, magnetocaloric and struc-

tural properties of Ni-Mn-based Heusler alloys. In Section 2, we give a brief introduc-

tion on the fundamental background of martensitic transformations, the magnetic shape

memory effect and structural properties of Heusler alloys. The magnetocaloric effect is

described within thermodynamics. The experimental methods and a short overview of

different experimental setups used in this work are described in Section 3. Section 4

presents the experimental results, which are discussed under four main topics. In the

first part, methods for tailoring the properties of martensitic Heusler alloys are dis-

cussed. The second part deals with the effects of external magnetic field on strain in

Ni-Mn-Z alloys (Z: Ga, In, Sn, Sb). Here, a method is presented to estimate the easy

magnetization direction using polycrystalline samples, and also the results of neutron

diffraction experiments under magnetic field and structural changes related to the ap-

plied field are presented and discussed. The third part presents the results on polarized

neutron scattering and ferromagnetic resonance. The experiments are carried out to de-

termine the nature of the magnetic interactions in the austenitic and martensitic states

of Ni-Mn Heusler alloys. In the fourth part, we study the effect of pressure on the mag-

netic properties of martensitic Heusler alloys. In particular, we report on the results of

pressure-dependent magnetization and polarized neutron experiments under pressure.

A conclusion is provided in Section 5.
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2. Fundamental Background

2.1 Martensitic Transformations

Martensitic transformations are solid-state first order structural phase transformations

which are displacive, diffussionless and dominated by the strain-energy arising from

shear-like displacements. There is no long-range movement of the atoms. They move

less than their interatomic distances maintaining their local neighborhood during the

phase transition. The first studies on martensitic transformations were undertaken by

Adolf Martens on steels at the end of the 19th century. The name ”martensite” was

used to describe the microstructure found in quenched steels. The gamma phase iron in

steel above the critical eutectoid temperature was described as austenite, named after

Sir William Chandler Roberts-Austen. Other than in steels, martensitic transforma-

tions occur in various types of materials such as nonferrous alloys, ceramics, minerals,

polymers, etc. Martensite is also the description of the product phase of a marten-

sitic transformation. During the formation of the new product phase from the parent

phase (austenite), different regions of the material transform at high velocity so that the

transformation occurs in general by nucleation and growth. During nucleation, a new

phase develops within the austenite, and an interface is formed between the austenite

and the martensite which is parallel to the habit plane and contains areas separated by

dislocations or twin boundaries.

In some cases, a volume-change accompanies the phase transition, and this leads to

large lattice distortions and tensions. Figure 2.1(a) shows a simple homogenous Bain

deformation where the lattice deformation proceeds from fcc to bcc (or bct). This

deformation involves the smallest principle strains of about 20% contraction along the

z-direction and 12% expansion along x- and y-directions. The lattice distortion occurs

by a shear mechanism and causes a degenerate martensitic structure with different

oriented variants, known as twinning. Figure 2.1(b) and (c) show an inhomogenous

shear performed by twinning and slip with a shear angle α, respectively.

A characteristic feature of a martensitic transformation is the transformation hys-

teresis. The temperature dependence of various physical parameters such as strain,

magnetization, electrical conductivity etc., can be schematically described as in Fig.

2.2. On cooling, the martensitic start and finish temperatures, Ms and Mf , and on

heating, the austenite start and finish temperatures, As and Af can be identified as

indicated in the graph. Austenite is represented as a square lattice and martensite as
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Figure 2.1: (a) The Bain distortion of martensite and the inhomogeneous shear performed
by (b) twinning and (c) slip with an angle α.

a rhombic lattice derived from the distortion of austenite. The formation of martensite

progresses between Ms and Mf , and in the reverse transformation, austenite formation

progresses between As and Af . The width of the hysteresis is given by the difference

between Af and Ms.

In general, the free energy difference at the martensitic transformation is given by,

∆GA→M = ∆GA→M
C + ∆GA→M

NC (1)

where ∆GA→M
C and ∆GA→M

NC are the differences in the chemical free energy and the non-

chemical energy, respectively. The latter consists of elastic strain and surface energies

[18]. A and M denote austenite and martensite. In the case of twinning, a large part

of the strain energy and the interfacial energy is stored elastically in a thermoelastic
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Figure 2.2: Temperature-dependent physical properties for the forward martensitic trans-
formation on cooling and the reverse transformation on heating. Arrows show the direction
of cooling and heating. The characteristic temperatures are indicated with vertical arrows:
austenite start and finish temperatures, As and Af , martensite start and finish temperatures,
Ms and Mf .

transformation, in which case ∆GA→M
NC dominates and gives a positive contribution to

the total free energy.

Fig. 2.3 shows the temperature-dependence of the Gibb’s free energy around a

martensitic transformation. T0 is the thermodynamic equilibrium temperature where

the chemical free energies of martensite and austenite are equal. At T > T0, austenite is

stable thermodynamically relative to martensite, and at T < T0, martensite is more sta-

ble. In the forward martensitic transformation region, ∆GA→M <0, and in the reverse

transformation-region, ∆GM→A >0. The difference in free energies between austenite

and martensite at Ms is indicated by ∆GA→M
Ms

. The Gibb’s free energy of the martensite

phase is less then that of the austenite phase below T0.
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Figure 2.3: Schematic diagram of the Gibb’s free energy of martensite (GM ) and austenite
(GA) in the martensitic transformation region.

2.2 Magnetic Shape Memory Effect

The shape memory effect (SME) occurs when a material is deformed mechanically in

the martensitic state and regains its original shape when it is heated up to a higher tem-

perature within the austenitic state. Materials known as shape memory alloys (SMA)

are able to recover their original shape that they had before the deformation. When the

deformation is caused by magnetic field rather than external stress, the materials are

named magnetic shape memory alloys.

The magnetic shape memory effect (MSME) occurs in the ferromagnetic martensite

phase when an external magnetic field is applied. The martensite phase consisting of

multi-variant twin-related domains has a large magneto-crystalline anisotropy, and un-

der an applied field, the structure can be strongly affected so that twins can rearrange or

detwinning can occur. These magnetically induced changes can lead to a shape-change

of the material. This is shown schematically in Fig. 2.4. When the temperature is

lowered to below Mf , the martensitic transformation takes place, and when the tem-
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deformed structuretwinned structure
MartensiteLow temperature phase

heatingcooling

Martensite

Austenite

High temperature phase

Magnetic Field

l l' >l

Figure 2.4: Schematic representation of the magnetic shape-memory effect.

perature is raised to above Af , the reverse martensitic transformation occurs. When

a magnetic field is applied to a twin-related martensitic structure for which the mag-

netocrystalline anisotropy energy of the material is high, the magnetic moments rotate

together with the structure to align the easy-axis along the field direction, and the mo-

bile twin boundaries move. As a result, a single variant is formed, and the length of the

material increases from l to l′. If the field direction is reversed, the sample regains its

original shape with the twinned structure. This is called MSME. On the other hand,

when the deformed sample is heated to the austenitic state, the shape is recovered by

the reverse martensitic transformation as in the conventional SME.

Basically, a magnetic field induces stress on the twin boundaries as a result of the

difference in the Zeeman energies, ∆M · H, between the two variants. Here H is the

internal magnetic field and M is the magnetization. To obtain strain, the magnetic

anisotropy should be greater than the Zeeman anisotropy energy density difference K ≥
(∆M · H). If (∆M · H)À K, the magnetic moments in the two variants align with

the field and the energy difference vanishes. Under external stress and in a saturating
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twinned structure
Martensite Austenite

Magnetic Field

T=constant

Figure 2.5: Schematic representation of magnetic-field-induced reverse martensitic transfor-
mation.

magnetic field, the magnetically induced stress is expressed as [19,20],

σmag =
K

ε0

≥ σtw + σext, (2)

where σtw is the twinning stress and σext is the external stress. σext is applied in the

direction perpendicular to the magnetic field direction. ε0=1-c/a is the tetragonal dis-

tortion where a and c are the lattice parameters of the tetragonal martensite phase.

According to equation 2, when the magnetic stress is larger than the zero-field σtw, the

large magnetic field-induced strain can be observed as a result of the higher magnetic

anisotropy energy. When the anisotropy is weak, the Zeeman energy difference across

the twin boundary is small, and only limited strain can be achieved.

Field-induced strain does not occur only by twin boundary motion. When a material

undergoes a structural transformation under an applied external field, large strains

can also be obtained. The magnetic-field-induced reverse martensitic transformation is

illustrated in Fig. 2.5. When a magnetic field is applied in the martensitic state at a

temperature close to As, the martensite structure transforms to austenite at constant

temperature and, in most cases, it is accompanied by a length-change. This effect

is known as magnetic superelasticity (also referred to as pseudo-elasticity). When the

magnetic field is removed, the structure reverts to martensite, and the strain is recovered.

The magnetic shape memory effect was first observed in a non-stoichiometric Ni-

Mn-Ga single crystal showing 0.2% strain [1]. Later, with single variant Ni2MnGa

crystals, up to 10% strain has been reached at room temperature [21–23]. Compared

to these values, the magnetostrictive material ”Terfenol-D” (Tb0.33Dy0.67Fe2) shows a
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field-induced strain of about 0.24% [24], and industrially used piezoceramics show 0.1%

strain [25].

The field-induced reverse martensitic transformation and magnetic superelasticity

have been previously reported for polycrystalline Ni50Mn34In16 [5]. In this material,

applying a magnetic field at 180 K, which is close to As, induces a reverse structural

transformation. The material partially transforms to austenite at 5 T and 0.15% strain is

obtained as a result of the reverse transformation. When the magnetic field is removed,

the strain is recovered.

2.3 Structural Properties of Ni-Mn-based Heusler Alloys

In general, the occurrence of the MSME is strongly related to the crystallographic

structure in the martensitic state, and there are several related studies on the structure

of Ni-Mn-based Heusler alloys. These alloys have a cubic L21 structure in the austenitic

state and display a sequence of intermediate modulated martensite structures appearing

at T < Ms with (c/a) <1; and non-modulated tetragonal structures with c/a >1 [26].

On solidifying, Ni2MnZ (Z: Ga, In, Sn, Sb) Heusler alloys form a disordered bcc phase

(A2), and on cooling, they transform to a partially ordered intermediate B2 phase where

the Ni atoms occupy the corners of the cubic cell and the Mn and Z atoms occupy

randomly the body-centered position. On further cooling, the structure transforms to

the L21 phase, where the Ni atoms occupy the same sublattice, and the other atoms

occupy the body centered position with similar atoms as second nearest neighbors. The

B2→ L21 transition temperature is around 1070 K for Ni2MnGa.

Fig. 2.6 shows the L21 structure for Ni2MnGa with a unit cell parameter a. If

the alloy composition is off-stoichiometric (Ni50Mn50−xGax) and the alloy undergoes a

martensitic transformation, the martensite phase can take up various modulated or non-

modulated structures as a result of the decrease of symmetry. The structure depends

on the composition of the alloy. At low x, the L21 structure generally transforms to the

L10 tetragonally distorted structure which can be visualized to occur through a Bain

lattice distortion. In the L10 state, the c-axis of the unit cell is longer than the a′-axis,

(c/a′) >1 as shown in Fig. 2.6. A variety of modulated martensitic structures have been

observed as well as the non-modulated L10 structure at higher x concentrations [26–29].

In Ni50Mn50−xZx (Z: Ga, In, Sn) alloys, the modulated structures are 10M (or 5-

layered) and 14M (or 7-layered) monoclinic, but in Ni50Mn50−xSbx, the 4O orthorhombic

structure is observed instead of 10M. These modulated structures are shown in Fig. 2.7
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Figure 2.6: The austenitic L21 and non-modulated L10 martensitic structure of Heusler
alloys for the case of Ni2MnGa. Light grey: Ni; white: Mn; black: Ga. In the L21 structure,
Ni atoms occupy the corners of the unit cell, and the Mn and Ga atoms occupy the body-
centered-cubic positions. The L10 structure is obtained from the L21 structure, and in the
new periodic order, Mn and Ga atoms occupy face-centered positions.

which are formed by shearing the (110) planes along the [11̄0] direction, and the crystal

structure can be described either as a long period stacking of close-packed (110) planes

or as the periodic shuffling of (110) planes along [11̄0] direction [27,28].

The phase diagram of off-stoichiometric Heusler alloys are shown in Fig. 2.8 for (a)

Ni-Mn-Ga, (b) Ni50Mn50−xInx, (c) Ni50Mn50−xSnx and (d) Ni50Mn50−xSbx [30]. The

structural (Ms) and magnetic transition temperatures are plotted as a function of e/a.

TA
C and TM

C are the Curie temperatures of the austenite and martensite phases, re-

spectively. Above TA
C , all systems are paramagnetic (PM). As the concentration of the

Z-element decreases, ferromagnetic (FM) exchange weakens, and eventually vanishes.

Ms increases linearly with increasing e/a (decreasing x) in all systems, and the slope of

the curve increases from Ni-Mn-Ga to Ni50Mn50−xSbx (Fig. 2.8 (a)-(d)). The smaller

closed circles in Fig. 2.8 (a) indicate the premartensitic transformation temperature TP

which increases linearly with increasing e/a.

In Fig. 2.8 (a)-(c), the structure develops as cubic→10M→14M→L10 with increasing

e/a. In Fig. 2.8 (d), the martensitic state is observed in a narrower e/a-range where

mixed 4O and 7-fold modulated structures are found [31–34]. However, some studies

report the martensitic structure of Ni50Mn50−xSbx as 10M-modulated [35]. At lowest Z

concentrations, the structure is tetragonal non-modulated L10 in all systems.
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Figure 2.7: The observed modulated 10M (5M), 14M (7M) monoclinic and 4O orthorhombic
martensitic structures in Ni50Mn50−xZx (Z: Ga, In, Sn and Sb) alloys. Light grey: Ni; white:
Mn; black: Z. The tetragonal non-modulated unit cell with lattice parameters a′ and c
becomes modulated by shearing or shuffling of the (110) planes along the [11̄0] direction.
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2.4 Application of Magnetic Shape Memory Alloys

MSM materials have recently been used as actuators to produce mechanical motion

and force. Manufacturing automation, microsurgical instruments, micro-sensors [36],

micro-actuators such as micro-valves [37], and stepper motors are potential application

areas of MSM actuators. Since the material produces motion without any additional

component, the material itself acts as a machine. The structure of a basic MSM actuator

is presented in Fig. 2.9. Typically, the actuating material is aligned with its short c-axis

(easy magnetization axis) along the direction of pre-stress in zero-magnetic field. A

magnetic field is subjected to the MSM material. When the magnetic field is applied

perpendicular to the c-axis, the twin variants reorient such that the short c-axis rotates

parallel to the field direction. This leads to an elongation of ∆l.

Magnetic-field-induced strains in MSM single crystalline Ni-Mn-Ga alloys have

reached values of ∼10%, and the response time is less than a millisecond. For this

reason, the Ni-Mn-Ga single crystals are so far the most investigated prototypical mag-

netic actuating materials. The achievable strain is over 4% in grain-oriented polycrystals

B>0B=0

Actuating
 material

Strain

Stress

l

a

c

c

a B>0B=0

Figure 2.9: Schematic view of a single crystalline magnetic shape memory actuator.
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[38]. Ni-Mn-Ga composites [39,40], fibers [41] and textures [42] are also investigated as

alternatives to expensive single crystals to overcome some disadvantages related to brit-

tleness, preparation difficulties, and cost. Recently, polycrystalline Ni-Mn-Ga foams

have been found to exhibit high magnetic-field-induced strains which are related to the

pore size of the foams. When the pore size is smaller than the grain size, a MFIS around

9% is achieved [43]. Magnetic field-induced reorientation has been found in Ni-Mn-Ga

free-standing thin films [44–46]. These are expected to find potential applications for

linear actuators, sensors and micromotors [47]. Since the new Heusler alloys such as Ni-

Mn-In exhibit magnetic superelasticity in the martensitic state, they have also become

good candidates for the actuating technology [48].

MSM alloys have also been considered as magnetic refrigerator materials. These

alloys exhibit large magnetocaloric effects, and in the following section, the details of

this effect is discussed.
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2.5 Magnetocaloric Effect (MCE)

Most Ni-Mn-based Heusler alloys undergo a second-order magnetic phase transition at

TA
C and a first-order martensitic phase transition below Ms. Accordingly, they exhibit

two types of MCE; a conventional MCE around TA
C and an inverse MCE around Ms.

These two effects are discussed.

2.5.1 Conventional MCE

In general, the MCE is a change of magnetic entropy and temperature of a magnetic

material under application of a magnetic field. The MCE was discovered by Warburg

in 1881 in iron, which was found to warm under an applied magnetic field [49]. The

reversible temperature change caused by magnetizing a paramagnet was first demon-

strated by Langevin [50]. Afterwards, adiabatic demagnetization using paramagnetic

salts were used to reach low temperatures in the mK range [51–53].

In the process of adiabatic demagnetization for a paramagnet, the entropy can be

considered as a sum of two contributions: Entropy related to magnetic ordering and

entropy related to lattice vibrations. In the paramagnetic state at T0, all magnetic

moments are aligned randomly by thermal agitation in the absence of a magnetic field.

When a magnetic field is applied isothermally, the magnetization increases with preferred

orientation of the magnetic moments along the field direction, so that the entropy related

to magnetic ordering decreases, and the total entropy decreases since the temperature

remains constant. Subsequent removal of the magnetic field under adiabatic conditions

raises magnetic disorder to preserve the total entropy of the system. The vibrational

entropy decreases causing the temperature of the system to decrease to T1. In this case,

the adiabatic temperature change is defined as ∆Tad=T0-T1.

The MCE occurs around temperatures where rapid changes in the magnetization

with respect to temperature are observed. As in PM salts at low temperatures, such

rapid changes can be found around first and second-order phase transitions at practically

any temperature. Here, the MCE around a second-order phase transition is considered

firstly since it resembles the case of the MCE in a PM salt discussed above.

In second-order phase transitions, the first derivative of the thermodynamic potential

with respect to temperature or magnetic field gives continues functions, and there is no

latent heat related to the transition. The temperature dependence of the total entropy

S(T ) of a FM material is shown schematically in Fig. 2.10 for a second-order transition
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Figure 2.10: Schematic representation of the temperature dependence of the total entropy
of a ferromagnetic material in zero-field and under an applied field. The entropy decreases by
∆S on applying a field isothermally, and adiabatic demagnetization leads to a temperature-
decrease, ∆Tad.

for H = 0 and at H > 0. The isothermal application of a magnetic field decreases

the entropy from S0 to S1 and the adiabatic removal of the magnetic field causes a

temperature change from an initial temperature T0 to a final temperature T1. ∆Tad and

∆S are shown in Fig. 2.10. The magnetocaloric properties of a magnetic material can

be characterized by the magnitude of ∆S and ∆Tad.

The total entropy of a magnetic material, considering the pressure p, the absolute

temperature T , and the magnetic field H as independent thermodynamic variables, can

be written as [54,55],

S(p, T,H) = Sm(p, T, H) + Slat(p, T ) + Se(p, T ), (3)

where Sm is the magnetic entropy, Slat is the lattice entropy and Se is the electronic

entropy. Sm strongly depends on the magnetic field, while, usually, Slat and Se are

magnetic-field-independent. The full differential of the total entropy in a closed system
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is given by,

dS(p, T,H) =

(
∂S

∂p

)

T,H

dp +

(
∂S

∂T

)

p,H

dT + µ0

(
∂S

∂H

)

p,T

dH. (4)

At constant pressure and temperature, the total entropy changes only with magnetic

field so that,

dS(p, T, H)p,T = µ0

(
∂S

∂H

)

p,T

dH. (5)

The relation between the temperature derivative of the magnetization and the field

derivative of the entropy is given by the Maxwell relation,

(
∂M(p, T,H)

∂T

)

p,H

=

(
∂S(p, T, H)

∂H

)

p,T

. (6)

The integral of Eq. 6 for an isothermal (and isobaric ) process gives,

∆Sm(T, ∆H) = µ0

H2∫

H1

(
∂M(T, H)

∂T

)

p,H

dH, (7)

where the magnetic field varies from H1 to H2 (∆H=H2-H1).

Under adiabatic and isobaric conditions (dS = dp =0), Eq. 4 is given by

dT = −µ0

(
∂T

∂S

)

H

(
∂S

∂H

)

T

dH. (8)

The heat capacity C is defined by C = dQ/dT where dQ is the heat quantity changes

the system temperature by dT . Using the second law of thermodynamics, C can be

written as C = T (dS/dT ). When this equation is used in Eq. 8 together with Eq. 6,

the temperature change can be written as,

dT = −µ0

(
T

C

)(
dM

dT

)

T

dH. (9)

By integrating Eq. 9, the adiabatic temperature change (∆Tad=T0-T1) can be calculated

using the relation,



2.5 Magnetocaloric Effect (MCE) 19

TH=0

TH>0

Si

S=Sf-Si < 0 

Tf

H =0 

En
tr
op

y 

Temperature

H > 0

Ti

T=Tf-Ti > 0 Sf

Figure 2.11: Schematic representation of the temperature dependence of the total entropy
in H = 0 and H > 0 of a material which exhibits the conventional magnetocaloric effect
around a first-order transformation. When a magnetic field is applied isothermally at Tf , the
entropy decreases from Si to Sf . When a magnetic field is applied adiabatically at Ti, the
temperature increases by a value of ∆T .

∆Tad(T, ∆H)∆H = −µ0

H2∫

H1

(
T

C(T, H)

)

p,H

(
∂M(T, H)

∂T

)

p,H

dH. (10)

In first-order phase transitions, the first derivative of the thermodynamic potential

varies discontinuously. There is a jump at the transition temperature in the entropy or

in the magnetization because of the presence of latent heat [56,57]. Figure 2.11 shows

schematically S(T ) for a first-order transition under H = 0 and H > 0, whereby an

application of a magnetic field shifts the transition temperature to higher values. TH=0

and TH>0 are indicated as the transition temperatures at H = 0 and H > 0 respectively.
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The enthalpy E of the first-order transition increases the total entropy by a value of

∆E/TH=0 at H = 0 (or ∆E/TH>0 at H > 0). The jumps at the transition temperatures

resulting from the transition enthalpy causes a large change in the entropy.

In Ni-Mn-based Heusler alloys, a typical prototype for the MCE is the Ni-Mn-Ga

system. Ferromagnetic Ni50Mn50−xGax Heusler alloys exhibit a second-order transition

at TA
C which varies between 315 and 380 K according to Fig. 2.8(a). The martensitic

transformation varies in the range 175≤ Ms ≤220 K depending on the composition. A

large ∆S = −20.7 Jkg−1K−1 has been observed in Ni54.5Mn20.5Ga25 at 333 K under a

1.8 T magnetic-field-change [58]. At a slightly different composition, Ni52.6Mn23.1Ga24.3,

a MCE of similar magnitude was reported close to room temperature (301 K), under a 5

T magnetic-field-change [59]. An optimum value of MCE for the Ni-Mn-Ga is obtained

when Ms and TA
C coincide [60].

2.5.2 Inverse MCE

Figure 2.12 shows schematically S(T ) for H = 0 and H > 0, whereby applying a

magnetic field shifts the transformation temperature to lower temperatures and gives

rise to the inverse MCE. TH=0 and TH>0 are indicated as the transition temperatures

at H = 0 and H > 0 respectively. The austenite-to-martensite transformation paths at

H = 0 and H > 0 are shown, and the transformation hysteresis is omitted for clarity.

At temperatures well within austenitic and martensitic states, SH=0(T ) > SH>0(T ),

whereas within the temperature range of the shift, SH=0(T ) < SH>0(T ) so that when a

magnetic field is applied at Ti, the entropy increases from Si to Sf . When a magnetic

field is applied adiabatically at Ti, the temperature decreases from Ti to Tf . This means

that the magnetic field can cause the material to release heat so that ∆S >0 and

∆Tad <0. This is known as the inverse MCE.

Further investigations on Heusler alloys led to the discovery of a MCE in Ni2MnGa

that has a positive ∆S with a value 10.7 Jkg−1K−1 [61]. More recently, other Ni-Mn

based Heusler alloys such as Ni-Mn-In [5,62,63], Ni-Mn-Sn [9], and Ni-Mn-Sb [34,35]

have also shown large inverse MCE.
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Figure 2.12: Schematic representation of the temperature dependence of the total entropy
in H = 0 and H > 0 of a material which exhibits the inverse magnetocaloric effect around a
first-order transformation. When a magnetic field is applied at Ti, the entropy increases from
Si to Sf . When a magnetic field is applied adiabatically at Ti, the temperature decreases by
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3. Experimental Methods

3.1 Sample Preparation

Approximately 3 g polycrystalline alloys were prepared in an arc-melting furnace under

argon atmosphere in a water cooled Cu crucible. The components used were high

purity elements (Nickel: 99.99%, Manganese: 99.99%, Tin: 99.99%, Indium: 99.99%,

Antimony: 99.999%, Gallium: 99.99%). The melting process was repeated 5-6 times

to attain homogeneous compositions. The ingots were encapsulated under argon in a

quartz glass and annealed at 1073 K for 2 hours followed by quenching in ice-water.

The chemical compositions of the alloys were determined by energy dispersive x-ray

photoluminescence analysis (EDX) using scanning electron microscopy. For the analysis,

one surface of the alloys was polished with 1200 grid SiC abrasive, and the average

compositions of the alloys were determined from three different areas (250µm × 250µm).

The resulting compositions were used to calculate the valance electron concentration

(e/a) which is the concentration weighted sum of the number of 3d and 4s electrons of

Ni and Mn and the number of 4s and 4p electrons of the Z element (Z: Ga, In, Sn and

Sb). The values are listed in Tab. 3.1 and Tab. 3.2 for ternary and quaternary Heusler

alloys respectively.

3.2 Calorimetric Studies

The method of differential scanning calorimetry (DSC) allows to determine Ms, Mf , As,

Af , the transformation enthalpy (H), and the entropy (S). For the DSC measurements,

one side of the samples was polished with 1200 grid SiC abrasive to insure proper thermal

contact. The measurements were carried out in the temperature range 120 ≤ T ≤ 830 K

in a standard calorimeter MDSC 2920 (TA Instruments) at Barcelona University, Spain.

The cooling and heating rates were 2-5 K/min. A second high-sensitivity calorimeter

[64] was used for measuring in the temperature range 100 ≤ T ≤ 350 K for determining

of the transformation parameters. The heating and cooling rates in these measurements

were 1-2 K/min.

3.3 Magnetization Measurements

The magnetization as a function of temperature M(T ) in external magnetic fields of 5

mT and 5 T and the magnetization as a function of magnetic field M(H) up to 5 T
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Sample at% Ni at% Mn at% Z e/a

Ni50Mn27Ga23 49.6 27.3 23.1 7.564

*Ni50Mn34In16 50.3 33.7 16.0 7.869

*Ni50Mn34In16-N 49.7 34.3 16.0 7.851

Ni50Mn35In15 48.5 36.4 15.1 7.851

Ni50Mn35In15-P 49.5 35.5 15.0 7.885

Ni50Mn35In15-F 49.2 35.4 15.4 7.860

Ni50Mn35Sn15 49.8 34.7 15.5 8.029

*Ni50Mn35Sn15-N 49.6 35.1 15.3 8.029

Ni50Mn37Sn13 49.9 37.0 13.1 8.104

Ni50Mn36Sb14 50.3 35.9 13.8 8.233

Ni50Mn37Sb13 49.6 37.3 13.1 8.226

Ni50Mn40Sb10 50.3 39.6 10.1 8.307

Table 3.1: Concentrations of the Ni50Mn50−xZx (Z : Ga, In, Sn, Sb) alloys determined by
EDX analysis and their valence electron concentrations (e/a). F, N and P refer to the alloys
which were used in ferromagnetic resonance, neutron scattering experiments, and polarized
neutron scattering under pressure, respectively. The samples marked with an asteriks have
been introduced by T. Krenke [4].

Sample at.-% Ni at.-% Mn at.-% In at.-% Z e/a

Ni50Mn34In14Ga2 49.7 34.0 14.1 2.2 7.839

Ni50Mn34In12Ga4 50.9 33.5 11.6 4.2 7.909

Ni50Mn34In15Sn1 51.7 32.1 15.0 1.2 7.915

Table 3.2: Concentrations of quaternary alloys Ni50Mn34In16−xZx (Z: Ga and Sn) deter-
mined by EDX analysis and their valance electron concentrations (e/a).

were carried out in a SQUID (Superconducting Quantum Interference Device) MPMS

XL magnetometer (Quantum Design). For the M(T ) measurements, the sample was

cooled down in a zero-field-cooled state (ZFC) from 380 K to 5 K in the absence of a

magnetic field and measured under an applied field up to 380 K. Then, without removing

the external field, the data were taken on decreasing temperature from 380 K to 5 K,

namely field-cooled (FC), and again, from 5 K to 380 K, the magnetization was measured

on increasing temperature (field-heated; FH).

Magnetic susceptibility measurements were carried out in an AC susceptometer
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(LakeShore 7120A at Barcelona University, Spain) in the temperature range 150 ≤ T ≤
320 K on cooling and heating. The working parameters were 500 Am−1 (6.28 Oe) applied

field and 389 Hz frequency.

Magnetization measurements under pressure up to 10 kbar were performed in a

SQUID magnetometer equipped with a pressure cell in the temperature range 5-340

K and in fields up to 5 T at IFW, Dresden.

3.3.1 Calculation of entropy change

In this work, the entropy change ∆S is determined by numerical integration using

Eq. 7 from isothermal field-dependent magnetization measurements M(H). Numerical

integration of Eq. 7 is performed by using the trapezoidal rule [65], so that

∆S(Tav) = µ0
δH

2δT

(
δM1 + 2

n−1∑

k=2

δMk + δMn

)
. (11)

Here, ∆S(Tav) is proportional to the enclosed area between two measured field de-

pendent magnetization isotherms at T0 and T1, and Tav is the average temperature

(T1+T0)/2 in a magnetic field changing from H1 to H2 at a constant step δH. δT is

the temperature difference between the two isotherms, and n is the number of measured

data points from H1 (first M1) to H2 (last Mn).

The accuracy of ∆S depends on the accuracy in the differentials of the measured

magnetization, temperature and magnetic field (δM , δT and δH). The relative error in

the determination of ∆S(T ) is 3-10% [66,67].

3.4 Adiabatic Magneto-calorimeter

The adiabatic magneto-calorimeter is designed for measuring the adiabatic temperature

change ∆Tad directly. When the magnetocaloric material is subjected to a magnetic

field, its temperature changes from an initial temperature Ti to a final temperature Tf ,

and ∆Tad is the difference between Tf and Ti under an adiabatic magnetic field change

∆H=Hf -Hi.

A schematic drawing of the magneto-calorimeter used in the present experiments is

shown in Fig. 3.1. The whole apparatus is placed into a helium cryostat which incor-

porates a superconducting magnet delivering fields up to 5 T. The sample is hung with
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Figure 3.1: Schematic drawing of the low temperature part of the experimental setup for
adiabatic temperature-change measurements using a differential thermocouple.

threads from the copper frame located in the inner container, which can be evacuated or

filled with exchange gas. The space between the inner and outer containers is evacuated

to obtain adiabatic conditions during a measurement. To heat or cool the sample to

a desired temperature, this space is filled with exchange gas, and it is evacuated again

before a measurement. A heater is located on the copper frame in the inner container. A

calibrated and nearly field-insensitive GaAlAs diode thermometer (LakeShore TG-120-

P) and the heater are used to measure and control the temperature of the copper frame.

One leg of a differential thermocouple (copper-constantan) is placed into a drilled hole

in the button-like sample weighing around 4 g. The other leg is referenced to 0◦ C.

Prior to the measurement the exchange gas in the inner container is evacuated. The

outer container remains under vacuum to prevent heat exchange with the environment
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Figure 3.2: Determination of ∆Tad (a) in an inverse and (b) a conventional magnetocaloric
sample.

so that the conditions are adiabatic. This setup allows to determine the temperature

change caused by applying or removing a magnetic field.

Fig. 3.2(a) and (b) show schematically the monitoring of the temperature in time

before and after a magnetic field is applied to samples showing inverse and conventional

magnetocaloric effects, respectively. The temperature of the calorimeter is monitored

during the pre-measurement phase t < ti, and, at a temperature Ti, a magnetic field

is applied. The temperature is recorded as the magnetic field reaches its set value at

t = tf and is further monitored for t > tf . To correct for non-adiabatic conditions, the

time dependence of T are extrapolated linearly and ∆Tad is estimated by selecting equal

shaded areas.

3.5 Strain Measurements

The thermal expansion and magnetostrictive properties of the alloys have been examined

using strain gauges. The gauge consists of a parallel coiled wire encapsulated in epoxy.

The type of strain gauge used was SK-00-031CF-120 (Vishay). The strain ∆l/l is directly

proportional to the relative change in the resistance ∆R/R through the relationship

∆l

l
= GF · TO · ∆R

R
, (12)
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where the gauge factor (GF ) and the thermal output (TO) are intrinsic parameters

of the strain gauge. The temperature dependence of GF and TO are supplied by the

producer. Slices from the samples with a thickness of about 1 mm were used in the strain

measurements. Both sides of the sample were polished with 1200 grid SiC abrasive. The

strain gauges were fixed onto the slices using a low temperature epoxy resin (M-bond

610-1 Adhesive Single Mix Kit by Vishay). The resistance of the strain gauge was

measured with the four-point method.

Temperature-dependent strain measurements at constant magnetic field up to 5 T

in a temperature range of 100 ≤ T ≤ 300 K and magnetic-field-dependent strain mea-

surements at constant temperature were carried out. The samples were first cooled to

T < Mf without magnetic field and then heated up to the desired temperature where

the magnetic field was applied. The relative length change is given by ∆l/l = (l− l0)/l0,

where l0 is the length at room temperature. In magnetic field dependent strain measure-

ments the strain is defined as ∆l/l = (lh− l0)/l0. Here, l0 is the length in the absence of

field and lh is the length in the presence of field. Details of the strain gauge geometry

are given in reference [4].

3.6 Elastic Neutron Scattering

The SPODI spectrometer is a thermal, high resolution structural powder diffractometer

at the Forschungs-Neutronenquelle Heinz-Maier Leibnitz (FRM-II), Munich, Germany

[68]. Figure 3.3 shows a schematic view of the spectrometer. The detector array consists

of 80 position-sensitive 3He dedector tubes with fixed collimators. The collimators with

10′ horizontal divergence are located in front of each detector. The detectors span

an angular range of 2θ= 160◦, and the scattering range of each detector is 2◦. The

data collection is performed with a step-width of ∆(2θ) = 0.05◦. The vertical focusing

monochromator consists of 17 Ge crystals with (551) orientation. The experiments have

been performed with a neutron wavelength λ=1.549 Å. We used a closed-cycle cryostat

and a superconducting magnet in the sample environment. The cryostat operates from

4 to 450 K, and the magnet can reach up to 5 T.

The powder alloys were placed in a thin-walled vanadium container and pressed with

a cadmium-roller. For each alloy, diffraction data were collected in the angular range

5◦ ≤ 2θ ≤155◦ at 300 K and 5 K under zero-magnetic-field and under a 5 T cooling-
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Figure 3.3: Layout of the powder diffractometer SPODI at the FRM-II reactor, Munich.

field. All diffraction patterns were analyzed using the Fullprof Suit program, and the

estimated errors for lattice parameters are about ±0.0030 Å.

3.7 The D7 Polarized Neutron Spectrometer

D7 is a long-wavelength diffuse scattering spectrometer at the ILL, Grenoble, France

[69]. Figure 3.4 shows a schematic view of the spectrometer. Neutrons from the cold

neutron source are monochromated by a focusing pyrolitic graphite monochromator

crystal array. The take-off angle from the monochromator crystal is 2θ= 92.3◦, and the

wavelength is 4.8 Å. Neutrons are polarized by a supermirror bender polarizer and spins

can be flipped using a Mezei π-spin-flipper [70,71]. The polarized neutron flux is 1.8 ×
106 cm−2s−1. Neutrons enter a neutron guide field of around 1 mT and then interact

with the sample which is placed in the center of 3 orthogonal XYZ field coils. Some of

the scattered neutrons are flipped by the sample and enter the detector banks with an

array of supermirror analyzers.

The D7 spectrometer provides the opportunity to separate nuclear-coherent (Bragg)

σcoh ≡ (dσ/dΩ)coh, nuclear spin-incoherent σn ≡ (dσ/dΩ)n and magnetic σm ≡
(dσ/dΩ)mag scattering differential cross-sections experimentally using full 3-directional
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Figure 3.4: Schematic view of the D7 spectrometer at ILL, Grenoble.

XYZ polarization analysis [72,73]. In addition to the differential cross-sections, the flip-

ping ratio (RF ) of the neutrons traversing the sample is also measured. RF is defined as

the ratio of the number of spin-up (n↑) to spin-down (n↓) eigenstates and is a measure

of the neutron depolarization.

RF =
1 + n↑
1 + n↓

. (13)

In a sample where the net magnetization is zero, the neutron polarization state and,

thus, RF is not affected by the sample. However, in a sample with FM domains, a

neutron spin will experience a torque causing it to precess around the magnetization

direction of the FM domains that are inhomogeneously distributed across the beam

profile. This causes a non-adiabatic depolarization of the neutron state with a resultant

drop in RF . The depolarization measurement is, therefore, a very sensitive tool for the

determination of ferromagnetic domain formation.

Annealed powder-samples (about 3 g) are used for the polarization analysis experi-
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ments. The particle size of the powder is about 10 µm. The cross sections are corrected

for detector efficiency and calibrated via a vanadium sample. Vanadium has a very

small coherent and a large nuclear spin-incoherent scattering cross section (0.0184 and

5.187 barn respectively) and, thus, its scattering is isotropic. The analyzer efficiency

is corrected via a quartz glass sample. Having no nuclear spin, quartz glass gives only

coherent diffuse scattering. All data analysis are carried out using the program LAMP

(Large Array Manipulation Program) provided by the ILL.

Polarized neutron scattering measurements under hydrostatic pressure were per-

formed on the D7 spectrometer using a clamp-type pressure cell shown schematically

in Fig.3.5. The powder sample is encapsulated inside an Al sample holder. The cell is

then pressed and clamped. To achieve hydrostatic conditions we use fluorinert (FC-87)

as the pressure transmitting medium. Flourinert contains no hydrogen so that it is used

conveniently in high-pressure neutron diffraction experiments [74].

3.7.1 Polarization Analysis

To separate the nuclear and magnetic scattering from the total scattering, two mea-

surements, spin-flip (SF) and non-spin-flip (NSF), are performed with the polarization

sequentially along the x, y and z axis. The incident neutrons are polarized in the z-
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Figure 3.6: The geometry of the XYZ neutron polarization analysis experiment with initial
polarization, P, (a) in the z-direction, (b) in the x-direction and (c) in the y-direction. The
scattering wavevector, Q, is chosen to be in the y-direction. M indicates the magnetization
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direction, and with the spin turner coils, the polarization of the neutrons can be rotated

in the x and y directions.

The polarization vector P along each axis is plotted in Fig. 3.6. The rotation of P

perpendicular or parallel to the scattering vector leads to different scattering conditions

[75]. The basic scattering conditions are listed below followed with an example.

• Coherent nuclear scattering (σcoh) is always NSF scattering.

• The magnetic scattering and the nuclear-spin incoherent scattering (σm and σn)

are NSF if the effective spin components are along the neutron polarization direc-

tion, and the scattering is SF if the effective spin components are perpendicular

to the polarization direction.

• If the neutron polarization is along the scattering vector, then all magnetic scat-

tering is SF scattering.

• If the magnetization vector is along the scattering vector, no SF scattering is

observed.

Figure 3.6 shows the magnetization vector of the nuclear or the electronic moment ~µ

(whichever one being in question), the scattering vector Q and the polarization vector
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P. Q is chosen in the y-direction. The unit vectors of the Cartesian coordinates are

given as x̂, ŷ, and ẑ. If for example, P is parallel to ẑ, P ‖ ẑ (Fig.3.6(a)), SF scattering

occurs from the nuclear spin components perpendicular to P (σn
x and σn

y ) and from the

magnetization components perpendicular to the P (σm
x ). No SF scattering occurs along

the y-direction because Q ‖ µyŷ. NSF scattering is caused by the nuclear spin and

magnetic components parallel to P (σn
z + σm

z ).

P ‖ ẑ SF: σm
x +σn

x+σn
y =σm+2σn

NSF: σm
z +σn

z +σcoh=σm+σn+σcoh

Similarly, for P ‖ x̂ and P ‖ ŷ one has:

P ‖ x̂ SF: σm
z +σn

z +σn
y =σm+2σn

NSF: σm
x +σn

x+σcoh=σm+σn+σcoh

P ‖ ŷ SF: σm
x +σm

z +σn
x+σn

z =2σm+2σn

NSF: σn
y +σcoh=σn+σcoh

In this manner, it is possible to separate the magnetic and nuclear magnetic scattering

components from the total scattering. Detailed formulations of the separation of cross

sections can be found in Appendix A1.

3.8 Ferromagnetic Resonance

Ferromagnetic resonance (FMR) is a spectroscopic technique of probing the magnetiza-

tion of ferromagnetic materials by detecting the precessional motion of the magnetization

in an external magnetic field. The magnetic field exerts a torque on the magnetization

which causes the magnetic moments of electrons to precess. The magnetic sample is

mounted in a microwave resonant cavity fixed at a high frequency (GHz) between the

poles of the electromagnet while the magnetic field is swept. When measuring the ab-

sorption of the microwave by the magnetic material, the resonance field is found at

maximum absorption. The measured FMR signal is proportional to the field derivative

of the imaginary part of the transverse suseptibility (∂χ”/∂H) [76–78]. From the reso-

nance position, intensity and the line shape, it is possible to extract information on the

magnetic interactions and magnetic anisotropy energies [79].
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sured FMR signal.

FMR experiments were carried out at a microwave frequency of 9.29 GHz in the

temperature interval 5 ≤ T ≤ 300 K on powdered polycrystalline samples. The external

magnetic field was swept up to 1.8 T and resonance spectra were recorded as a function

of temperature. The external magnetic field was modulated at a frequency of 100 kHz

using modulation amplitudes up to 3 mT. As an example, a schematic representation of

a FMR spectrum is shown in Fig. 3.7. The dashed lines show the peak-to-peak width

∆Hpp, and the central line is placed at the position of the resonance field Hres.

The isotropic value of the resonance field is given as ω/γ≈ 330 mT, where ω is the

microwave frequency and γ is the gyromagnetic ratio. For a paramagnet, the resonance

field is Hres=ω/γ. For ferromagnetically coupled spins, Hres is located below ω/γ as

a result of the anisotropy field which is randomly oriented over the polycrystalline FM

material. When the material is antiferromagnetic, the spins are coupled by an exchange

field and the resonance field is above ω/γ. Therefore, ferromagnetic resonance is a

powerful method for investigating the magnetic interactions in martensitic Heusler alloys
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for which mixed FM and AF coupling is expected to occur below and above Ms.
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4. Results and Discussions

4.1 Tailoring Magnetic Properties of Martensitic Ni-Mn-based

Heusler Alloys

Recently, much interest has developed in the study of quaternary Ni-Mn-based Heusler

systems, where either the transition metal or the group IIIA-VA p-element is substituted

with another transition metal or another p-element [12,80–84]. The aim of substitution

is to shift the transformation temperature to a desired temperature or to improve the

properties related to the magnetocaloric effect, the magnetic shape memory effect, etc.

and, thereby, to design new alloys. As a guide for a systematic substitution, one can

make use of the diagram in Fig. 4.1 showing the valance electron concentration (e/a)

dependence of Ms in Ni-Mn-Z Heusler alloys (Z: Ga, In, Sn and Sb) [85]. The e/a

dependence of Ms is linear but the slope for each Ni-Mn-based series increases with

respect to that of the Ni-Mn-Ga line with increasing number of p electrons of the Z-

element. The different slopes could be related to the different atomic radii of the Z-

elements. For example, by replacing Ga by In atoms with larger atomic radius (rGa=

1.81×10−10 m and rIn= 2.00×10−10 m), the covalent bonds between Ni 3d-states and

In 4p-states can strengthen, and lead to a stabilization of the L21 structure. Therefore,
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Figure 4.1: The dependence of Ms on the valance-electron-concentration for Ni-Mn-Z (Z:
In, Sn and Sb) Heusler alloys.
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at constant electron concentration, one can expect a lower Ms.

Ni50Mn34In16 undergoes a martensitic transformation and exhibits large field-induced

strains and the inverse magnetocaloric effect [5,86]. It would be desirable to bring these

favorable properties close to room temperature for technological purposes. We use Fig.

4.1 as a guide for manipulating the properties of this material by replacing various Z-

elements with one another, thereby controlling e/a. In and Ga are isoelectronic elements,

whereas In, Sn and Sb are in the same period in the periodic table, and the number of p

electrons increase from In to Sb. We choose two different paths to vary the properties:

1. Ms can be controlled not only by varying e/a, but also by holding e/a constant,

such as by replacing In by Ga. In this case, Ms can be shifted to higher tempera-

tures.

2. Ni50Mn37Sn13 shows a large inverse MCE around room temperature. Therefore, Sn

substitution for In in Ni50Mn34In16, which increases e/a at constant Ms, can lead

to an increase in the inverse MCE in this material without altering the working

temperature.

In the following, the results of Ga and Sn substitutions in Ni50Mn34In16 will be pre-

sented separately in two parts. The first parts deal with the magnetic characterization

of the substituted samples and the magnetocaloric properties, and the second parts in-

clude the field-induced strain measurements. In the summary, Ga and Sn substitution

will be compared.

4.1.1 Ga substitution: Ni50Mn34In14Ga2

Magnetic and magnetocaloric properties

Figures 4.2(a) and (b) show M(T ) under a 5 mT magnetic field measured in ZFC,

FC and FH sequences for Ni50Mn34In16 and Ni50Mn34In14Ga2. These samples are FM

below TA
C =308 K for Ni50Mn34In16, and 293 K for Ni50Mn34In14Ga2. For Ni50Mn34In16,

the ferromagnetism extends down to Ms=243 K, below which the magnetization rapidly

decreases. In the vicinity of this temperature, FC and FH-data show a narrow hysteresis

which is associated with the martensitic transformation (Fig. 4.2(a)). Splitting between

the ZFC and the FC data in the martensitic state is observed about TM
C ≈225 K which

is related to the strong magnetic anisotropy of the martensite phase and the pinning of
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the FM spin configurations caused by coexisting AF exchange. On the other hand, Ms

increases to 275 K for Ni50Mn34In14Ga2, and the FM austenite region becomes narrower

than in the parent Ni50Mn34In16 sample. However, TM
C decreases to about 210 K.

FC-M(T ) measured in high magnetic fields of 5 T for Ni50Mn34In16 and

Ni50Mn34In14Ga2 are shown in Fig. 4.3(a). Open and closed symbols represent the

data for Ni50Mn34In16, coded as Ga0, and Ni50Mn34In14Ga2, coded as Ga2. The Ms as

a function of applied magnetic field is plotted in Fig. 4.3(b). The slope of the lines

representing the shift of Ms are estimated as dMs/dH≈-6 KT−1 for Ni50Mn34In16 and

dMs/dH≈-1 KT−1 for Ni50Mn34In14Ga2. M(T ) measured in 5 T and the hysteresis re-

lated to the martensitic transformation between FC and FH measurements can be seen

in Fig. 4.4. The thermal hysteresis for Ni50Mn34In14Ga2 narrows with respect to that
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Figure 4.2: ZFC, FC, and FH M(T ) in 5 mT of (a) Ni50Mn34In16 and (b) Ni50Mn34In14Ga2.
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FC-M(T ) for Ni50Mn34In16 and Ni50Mn34In14Ga2. (b) Ms as a function of external cooling
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for Ni50Mn34In16. On the other hand, the magnetization of Ni50Mn34In14Ga2 is lower

than that of Ni50Mn34In16 at 5 K. The saturation magnetization under 5 T magnetic

field decreases by adding Ga from 47 Am2kg−1 to about 34 Am2kg−1. The width of

thermal hysteresis decreases from 25 K to 7 K.

The magnetization isotherms in the vicinity of Ms are shown in Fig. 4.5(a) and

(b). The data shown with open red circles in both figures correspond to M(H) for

T < Ms, and the filled black circles correspond to T > Ms. M(H) for T < Ms shows

metamagnetic behavior suggesting the presence of a field-induced transformation. M(H)

initially increases with increasing field until it reaches an inflection point at a critical

field Hc. Above this point, M(H) begins to increase faster with increasing magnetic

field. For Ni50Mn34In14Ga2, the field-induced transformation begins to take place at

lower fields than those needed for Ni50Mn34In16, so that the sharp rise in M(H) begins

already below 1 T. The narrower hysteresis in M(T ) for Ni50Mn34In14Ga2 in Fig. 4.4 is

the reason for the lower threshold of the transformation than for Ni50Mn34In16.

The entropy change ∆S determined numerically from the M(H)-data using Eq. 11

in section 3 is shown in Fig. 4.6(a) and (b) for Ni50Mn34In16 and Ni50Mn34In14Ga2,

respectively. For both samples, ∆S(T ) is positive below Ms (inverse MCE) and negative
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around TA
C (conventional MCE) with the crossover taking place at the temperature

corresponding to Ms as shown in Fig. 4.6. The magnitude of the entropy-changes

below Ms are almost equal for both samples with a maximum value of 8 Jkg−1K−1 in

5 T applied field. Above Ms, ∆S of Ni50Mn34In16 and Ni50Mn34In14Ga2 are about −5

Jkg−1K−1 under 5 T.

The results of the direct measurements of the adiabatic temperature-change as a

function of temperature, ∆Tad(T ), in a magnetic field are given in Fig. 4.7. Both samples

cool on applying a magnetic-field below Ms and warm on applying a field around TA
C .

For Ni50Mn34In16, the maximum ∆T below Ms is −2 K in 5 T, and around TA
C , it is

about 3.5 K (Fig. 4.7(a)). Each of these values are about 2 K for Ni50Mn34In14Ga2 in

Fig. 4.7(b). The MCE above Ms is smaller than in Ni50Mn34In16, and this is consistent

with the smaller ∆S.



40 4. Results and Discussions

0 1 2 3 4 5
0

20

40

60

0 1 2 3 4 5
0

20

40

60

80

100
Ni50Mn34In14Ga2

b)

0H (T)

280

295

275

260

245

T
 
=

 
5 K

220
235

210

200

 0H (T)

M
 (A

 m
2  k

g-1
)

a)

Ni50Mn34In16
240 

T
 
=

 
5 K 

320 

H
c

Figure 4.5: Magnetic-field dependence of the magnetization for (a) Ni50Mn34In16 at 200
≤ T ≤ 320 K and (b) Ni50Mn34In14Ga2 at 245 ≤ T ≤ 300 K in 5 K steps. Open red circles
and filled circles are data measured T < Ms and T > Ms respectively. Hc is shown by arrow.



4.1 Tailoring Magnetic Properties of Martensitic Ni-Mn-based Heusler Alloys 41

150 200 250 300

-5

0

5

10

150 200 250 300 350

AS

Ni50Mn34In16

 

S 
(J

 k
g-1

 K
-1

)
a)

TA
C

M H=0
s AS

M H=0
s

TA
C

T (K)

Ni50Mn34In14Ga2

b)

 1
 2
 3
 4
 5

T (K)

0
H (T)

Figure 4.6: Temperature dependence of the isothermal entropy-change around the marten-
sitic transformation and TA

C for (a) Ni50Mn34In16 and (b) Ni50Mn34In14Ga2.

150 200 250 300
-3

-2

-1

0

1

2

3

4

150 200 250 300 350

Ni50Mn34In16

 (K
)

a)

TAC

TAC
 1
 2
 3
 4
 5

T (K)

Ni50Mn34In14Ga2

b)

T (K)

0
H (T)

Figure 4.7: Temperature dependence of the adiabatic temperature-change ∆Tad around Ms

and at TA
C in (a) Ni50Mn34In16 and (b) Ni50Mn34In14Ga2.



42 4. Results and Discussions

300 320 340 360 380 400220 240 260 280 300

M
sM

f

A
f

A
s

T (K)

Ni50Mn34In12Ga4

b)a)

Ni50Mn34In14Ga2

 

TA
C

A
f

A
s

M
f

dQ
/d
T 

(a
.u

.)

M
s

T (K)

Figure 4.8: dQ/dT versus temperature for (a) Ni50Mn34In14Ga2 and (b) Ni50Mn34In12Ga4.
Horizontal arrows indicate the direction of temperature change, and the vertical arrows show
the locations of the characteristic temperatures.

The results of calorimetric measurements for Ni50Mn34In14Ga2 and Ni50Mn34In12Ga4

are plotted in Figs. 4.8(a) and (b), where the heating and cooling cycles are shown by

arrows. The austenite to martensite transformation is exothermic, whereas the reverse

transformation is endothermic (dQ/dT >0). The martensitic transformation temper-

ature shifts to higher temperatures when Ga substitution increases. The transition

temperatures Ms, Mf , As and Af are indicated with vertical arrows. These tempera-

tures are estimated from the intersection points of the linearly extrapolated data. The

values are listed in Table 4.1. In Ni50Mn34In14Ga2, the values are approximately the

same as those obtained from M(T ). A further feature is observed in Ni50Mn34In14Ga2

at TA
C .

M(T ) of Ni50Mn34In12Ga4 measured in 5 mT and 5 T is shown in Figs. 4.9(a) and (b).

A broad magnetic transition occurs around TM
C =135 K, which is close to the temperature

where the splitting of the FC and ZFC curves takes place. When a 5 T magnetic field

is applied, a peak-like feature related to the martensitic transformation becomes visible

as can be seen in Fig. 4.9(b). Ms being about 350 K according to Fig. 4.9(b), the

M(T )-data indicate that the martensitic transformation occurs from a PM austenitic
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to a PM martensitic state so that all characteristic temperatures cannot be precisely

defined. The magnetization of the austenitic state is more enhanced than that in the

martensitic state under 5 T. The temperature corresponding to the peak is at M5T
s =

350 K being close to the value obtained from DSC measurements, i.e. M5T
s ≈ MH=0

s .

M(H) measurements are shown at several temperatures in Fig. 4.9(c). M(H) is

linear at high temperatures in the PM state. In the martensitic transformation region,

Sample A
DSC/M
s (K) A

DSC/M
f (K) M

DSC/M
s (K) M

DSC/M
f (K)

Ni50Mn34In14Ga2 258/250 282/280 268/275 249/250

Ni50Mn34In12Ga4 334/- 358/- 347/∼ 350 323/-

Table 4.1: Characteristic temperatures obtained from DSC and magnetization measurements
for Ni50Mn34In16−xGax (x = 2 and 4).
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the magnetization decreases with decreasing temperature as can be seen from the slope

of the 350 and 300 K-curves. For T < 300 K, M(H) shows a curvature due to the

presence of ferromagnetic short-range ordering. Below TM
C , at 50 K, M(H) initially

rises rapidly but saturation is not reached, as is also the case at 5 K. The coexistence

of AF interactions within the FM state is the origin of non-saturation (see Sec. 4.3.2).

Strain measurements

Another important property of Ni50Mn34In16 is magnetic superelasticity [5]. As dis-

cussed in section 2.2, when a magnetic field is applied below Ms, the sample displays

large strains. The magnetic-field-dependence of the strain ∆l/l(H) is shown in Fig.

4.10 for polycrystalline Ni50Mn27Ga23, Ni50Mn34In16 and Ni50Mn34In14Ga2 alloys at 240

K, 195 K and 265 K, respectively. These selected temperatures are just below As of

each sample. The measurement sequences for each sample are indicated by arrows. The

relative length-change was calculated with respect to the sample length at zero field l0.

The application of a magnetic field to Ni50Mn27Ga23 (Fig. 4.10(a)) causes a strain

of about 0.04% in the initial curve. When the field is removed, the original value is not

recovered. The residual strain is 0.03% in zero-magnetic field. Cycling the magnetic

field leads to a small relative change of about 0.013% in 5 T, and the absolute strain

remains almost constant at about 0.043%. This behavior is caused by field-induced

twin boundary motion [1,87]. When a field is applied in the initial state, the strong

magnetocrystalline anisotropy causes the rotation of the martensite variants leading to

a length-change. The driving force for the rotation is provided by the difference in

Zeeman energy of neighboring variants.

∆l/l(H) for Ni50Mn34In16 is seen in Fig. 4.10(b). The application of a magnetic

field produces a length of about 0.14% in the initial curve. After the first field-cycle is

completed, the strain reduces to about 0.12%. When the field is removed, the original

strain is recovered each time. The magnetic field-induced strain is reversible when the

magnetic field is cycled. The reorientation of variants in the martensitic state are not

observed in ∆l/l(H) for this alloy. In Ni50Mn34In16, the length change is caused by the

crystallographic transformation from martensite to austenite with increasing field. The

evolution of the neutron diffraction pattern with applied field taken at 180 K (T < Ms)

shows that the external field drives the reverse martensitic transformation [5].

In Fig. 4.10(c), the strain increases rapidly to 0.11% for Ni50Mn34In14Ga2 in the initial

curve. When the field is removed, the original strain is not recovered as in Ni50Mn27Ga23,
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Figure 4.10: ∆l/l versus magnetic field up to 5 T for (a) Ni50Mn27Ga23, (b) Ni50Mn34In16

and (c) Ni50Mn34In14Ga2 at 240, 195, and 265 K, respectively. The data for Ni50Mn34In16 are
taken from [4].

and the residual strain is nearly 0.09%. The amount of maximum strain reduces to

0.03% after the field cycle is completed and then remains constant. The magnetic

superelasticity weakens in Ni50Mn34In14Ga2 compared to that in Ni50Mn34In16. However,

the similarity of the initial increase in strain and its irreversibility on further cycling the

field in Ni50Mn34In14Ga2 to that of Ni50Mn27Ga23 suggests that twin boundaries become

more mobile on small amounts of Ga substitution for In.

4.1.2 Sn substitution: Ni50Mn34In15Sn1

Magnetic and magnetocaloric properties

Fig. 4.11(a) shows the temperature dependence of the AC susceptibility χ(T ) recorded

in the range 150 < T < 300 K on heating and cooling. Multiple peaks occur during

the martensitic transition which is possibly associated with the occurrence of an inter-

martensitic transformation or a secondary phase. From the cooling curves, Ms ≈ 244

K and the secondary transformation temperature is about 228 K. The inset shows the
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calorimetric curves dQ/dT on heating and cooling in the range 200 ≤ T ≤ 280 K. The

characteristic transition temperatures Ms= 243 K, Mf= 226 K, As= 241 K and Af=

253 K are obtained from DSC measurements. The results of calorimetric measurements

and χ(T ) agree well and Ms remain almost constant by 1% Sn substitution for In

while e/a increases. M(T ) for Ni50Mn34In15Sn1 in 5 mT is shown in Fig. 4.11(b).

At high temperatures, in the austenitic state, the sample is paramagnetic and orders

ferromagnetically at TA
C =305 K and runs at the demagnetizing limit with decreasing

temperature down to Ms. M(T ) indicates a higher value of Ms=252 K than DSC

and χ(T ). Below Ms, the austenite state loses its stability and M(T ) drops. On further

cooling, the sample orders ferromagnetically at TM
C =225 K. At this temperature, a large

separation between ZFC and FC curves is observed as in Ni50Mn34In15Sn1.

The magnetization isotherms in the vicinity of Ms are shown in Figs. 4.12(a) and

(b) for Ni50Mn34In16 and for Ni50Mn34In15Sn1 respectively. The data shown with open

red circles in both figures correspond to M(H) for T < Ms and indicate the presence

of a field-induced transition. The filled circles correspond to T > Ms. In the range
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Figure 4.11: (a) Temperature dependence of the ac susceptibility and (b) ZFC, FC, and
FH-M(T ) in 5 mT of Ni50Mn34In15Sn1. The inset shows dQ/dT versus temperature for
Ni50Mn34In15Sn1 recorded on heating and cooling. Vertical arrows indicate the position of
TA

C , Ms, and TM
C .
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Ms ≤ T ≤ TA
C , M(H) does not saturate indicating that even in the austenitic state,

the ferromagnetic state is not pure and incorporates non-ferromagnetic entities. The

metamagnetic-like character of the feature in M(H) at temperatures T < Ms becomes

more pronounced in Ni50Mn34In15Sn1.

The entropy change ∆S around Ms in Ni50Mn34In15Sn1 determined from M(H) data

is shown in Fig. 4.13(a). ∆S(T ) is positive and shows an inverse MCE around T < Ms.

The maximum entropy change for Ni50Mn34In15Sn1 is 20.6 Jkg−1K−1 which is reached

already at 3 T, and does not change any further when the field is increased up to 5

T. This value is higher than that in Ni50Mn34In16 for which ∆S = 8 Jkg−1K−1 at 5

T. The rate of change of ∆S with respect to field up to 3 T is ∼7 Jkg−1K−1T−1 for

Ni50Mn34In15Sn1 and ∼2 Jkg−1K−1T−1 for Ni50Mn34In16.

The temperature dependence of ∆Tad for Ni50Mn34In15Sn1 is shown in Fig. 4.13(b).

The sample cools by about 6 K below Ms and warms by 2 K at room temperature
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Figure 4.12: Magnetic-field-dependence of the magnetization for (a) Ni50Mn34In16 at 200 ≤
T ≤ 320 K in 5 K steps and (b) Ni50Mn34In15Sn1 at selected temperatures. Open circles (red)
and filled circles are data for T < Ms and T > Ms respectively. The data for Ni50Mn34In16

are shown again for comparison.
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Figure 4.13: (a) ∆S(T ) and (b) ∆Tad(T ) around Ms in Ni50Mn34In15Sn1.

under 5 T magnetic field, whereas in Ni50Mn34In16, these values are 2 K and 3.5 K

respectively (see Fig. 4.7(a)). The rate of change of the MCE with respect to field for

the Sn-substituted sample is 1.2 KT−1 which is higher than that in Ni50Mn34In16 (0.4

KT−1). Further increase in Sn concentration suppresses the martensitic transformation.
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The inverse magnetocaloric properties are strongly related to the shift of Ms in a mag-

netic field (see Fig. 2.12). Figure 4.14(a) shows ∆Tad(T ) and ∆S(T ) for Ni50Mn34In15Sn1

under a 5 T magnetic-field-change. This material cools below Ms and warms above Ms

when the magnetic field is applied adiabatically. M(T ) in applied fields of 5 mT and

5 T are shown in Fig. 4.14(b). The shift of Ms is about -20 K in 5 T with respect to

M(T ). The maximum in ∆S(T ) is located at a temperature slightly above As (point 1)

in the 5 mT M(T )-data as shown by the vertical dotted line. Applying a 5 T magnetic

field adiabatically at this temperature, where the sample contains mixed austenite and

martensite phases, causes a decrease in temperature of about 6 K. This carries the state

of the sample from point 1 to point 2 located in the 5 T-M(T ) curve where the sample

is essentially austenite. The shift of Ms under an applied magnetic field is mostly re-

sponsible for the cooling as was modelled in Fig. 2.12. On the other hand, a field of 5 T

applied adiabatically above Ms at point 3 leads to a 1 K rise within the austenitic state

(point 4) caused by the conventional MCE. The crystallographic state of the sample

does not change in this process. Accordingly, one can expect a maximum value of ∆Tad

equal to the value of the hysteresis shift (or Ms shift).

Strain measurements

The strain versus magnetic field measurements are shown in Fig. 4.15(a), (b) and (c) for

Ni50Mn35Sn15 [4], Ni50Mn34In16 [4] and Ni50Mn34In15Sn1 alloys, respectively. The data

for Ni50Mn34In16 are shown again for comparison. Ni50Mn35Sn15 shows a weak strain on

applying a magnetic field in the martensitic state at 120 K (Fig. 4.15(a)). The relative

length change is about 0.002%. The effect is reversible, and it is due to conventional

magnetostriction. In Ni50Mn35Sn15, a magnetic field of 5 T is not sufficient to induce a

martensitic transition as it is for Ni50Mn34In16 [86].

Fig. 4.15(c) shows the magnetic-field-dependence of the relative strain at 242 K for

Ni50Mn34In15Sn1. The initial application of a magnetic field causes a 0.015% shrinkage

of the sample up to 3 T. Afterwards, the length change increases rapidly. It reaches

a maximum value of 0.075% in 4 T, and a further increase of the magnetic field up

to 5 T causes a 0.015% decrease in the length change. When the field is decreased,

the length change remains almost constant down to 2 T. At this field, the strain is

recovered to a reversible value 0.075%. Only 1% Sn substitution for In in Ni50Mn34In16

is sufficient to decrease strongly the value of the field-induced-strain. This is due to

the fact that Ni50Mn35Sn15 shows a weak strain associated with the magnetostriction of
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Figure 4.15: ∆l/l versus magnetic field up to 5 T for (a) Ni50Mn35Sn15, at 120 K, (b)
Ni50Mn34In16 at 195 K and (c) Ni50Mn34In15Sn1 at 242 K, respectively. The graphs in (a) and
(b) are taken from [4] for comparison.

the martensite. However, the magnetic superelasticity is preserved in Ni50Mn34In15Sn1,

and the features in ∆l/l(H) around the maximum strain values stand out more in

Ni50Mn34In15Sn1 than in Ni50Mn34In16 (Fig. 4.15(b) and (c)).

The field dependence of magnetization of Ni50Mn34In15Sn1 for 0 ≤ H ≤ 5 T at 245 K

is shown in Fig. 4.16. The open circles show the initial curve, in which the metamagnetic

transition is seen around 2.5 T. The metamagnetic transitions are observed in the main

loop at 2.5 T and 1 T for the increasing-field and decreasing-field branches, respectively.

The curves are symmetric around the origin. The features observed in Fig. 4.15(c)

between 2 T and 4 T for the increasing-field branch can be related to the metamagnetic

transitions in this magnetic field range. As in the case of ∆l/l(H), M(H) also displays

essentially no remanence and recovers its zero-field value.

4.1.3 Summary

The MCE in Ni50Mn34In16 and its quaternary compounds Ni50Mn34In14Ga2 and

Ni50Mn34In15Sn1 have been investigated. In Ni50Mn34In16, ∂M/∂T < 0 at TA
C and
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Figure 4.16: Magnetic hysteresis loop at 245 K for Ni50Mn34In15Sn1. The open circles
indicate the initial curve.

∂M/∂T > 0 below Ms. According to Eq. 7, the conventional and the inverse MCE are

observed around TA
C and below Ms, respectively. The maximum in ∆Tad(T ) (or mini-

mum in ∆S(T )) and the minimum in ∆Tad(T ) (or maximum in ∆S(T )) are related to

the conventional MCE and the inverse MCE, respectively. In Ni50Mn34In16, ∆S = −5

Jkg−1K−1 at TA
C and ∆S = 8 Jkg−1K−1 below Ms under a 5 T magnetic field change.

When a 5 T magnetic field is applied adiabatically at TA
C , the sample warms about 3.5

K and cools 2 K when the field is applied below Ms (see figures 4.6 and 4.7).

Since Ni50Mn37Sn13 exhibits a large inverse MCE, one can expect that Sn substitution

in Ni50Mn34In16 could enhance its inverse MCE . Indeed, when 1% Sn is substituted for

In, ∆S increases from 8 to 21 J kg−1K−1 under 5 T magnetic field change below Ms, and

the sample cools by about 6.5 K adiabatically. Therefore, the magnetocaloric properties

are enhanced by Sn substitution; and by Ga substitution, Ms is shifted to around room

temperature without altering ∆S (or ∆Tad).

Fig. 4.17 shows the maximum in the inverse MCE represented by ∆Smax and ∆Tmax
ad
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as a function of magnetic field change µ0∆H in Ni50Mn34In16, Ni50Mn34In14Ga2 and

Ni50Mn34In15Sn1. For Ni50Mn34In16 and Ni50Mn34In14Ga2, ∆Smax increases and ∆Tmax
ad

decreases with increasing µ0∆H in a similar manner. For Ni50Mn34In15Sn1, ∆Smax is

significantly larger than in Ni50Mn34In16. It increases rapidly up to 3 T, and above this

value, ∆Smax is nearly independent of µ0∆H and remains constant up to 5 T. However,

∆Tmax
ad continues to increase negatively above 3 T and reaches almost 7 K under 5 T

(Fig. 4.17(b)).

Fig. 4.18 shows the conventional MCE around TA
C in Ni50Mn34In16, Ni50Mn34In14Ga2

and Ni50Mn34In15Sn1. ∆S increases negatively with almost linear behavior for all alloys

with increasing µ0∆H with the slope being largest for Ni50Mn34In15Sn1. This shows
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Figure 4.18: The field dependence of ∆S (a) at TA
C , (b) at 270 K, and (c) the field dependence

of ∆Tad at TA
C for Ni50Mn34In16, Ni50Mn34In15Sn1 and Ni50Mn34In14Ga2.

that Sn substitution enhances also the conventional MCE just as it enhances the inverse

MCE.

Fig. 4.18(c) shows ∆Tmax
ad as a function of µ0∆H, where it is seen that the samples

warm on applying a magnetic field in the austenitic state. Substitution of Ga or Sn for In

decreases ∆Tmax
ad with respect to that for Ni50Mn34In16. Particularly in Ni50Mn34In15Sn1,

the expected ∆Tmax
ad values are higher because of the higher negative ∆Smax. However,

the measured ∆Tad is lower than the values in Ni50Mn34In16. At TA
C , the transformation

is second-order, and ∆Tad is the difference between the total entropy curves for H = 0

and H > 0 at constant S. (see Fig. 2.10).

A relevant parameter characterizing magnetic refrigerator material is the refrigerant

capacity q, which is a measure of heat transfer under an applied field and is calculated

by integrating ∆S(T ). Gd is presently the most suitable refrigerant material for which

q=542 Jg−1. In Ni50Mn34In16, q = 223 Jg−1 and it decreases to 144 Jg−1 with 2% Ga

substitution for In. In Ni50Mn34In15Sn1, q increases to 262 Jg−1.
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4.2 Effect of External Magnetic Field on the Structure of

Heusler Alloys

The effect of an external magnetic field on the structure of Ni-Mn-Z Heusler alloys is

studied, and the results are presented in the next two sections. In the following, the term

cooling-field is used to refer to an external magnetic field that is applied in the austenitic

state, after which the temperature is decreased to a value in the martensitic state. The

temperature dependence of the strain (∆l/l)(T ) and the change of the crystallographic

structure under an applied cooling-field are discussed. The latter is examined by neutron

diffraction.

4.2.1 Strain under field: Estimation of the easy-axis of magnetization

Ni-Mn-based magnetic shape memory alloys show large magnetic-field-induced strains

related to strong magneto-elastic coupling in the martensitic state. Such a large strain

under a cooling-field has previously been observed in a single-crystalline Ni2MnGa as

shown in Fig. 4.19 [1]. In the martensitic state, twin variants align along their easy

magnetization direction under an external cooling-field by the motion of the mobile

twin-boundaries (see section 2.2), and this can result in large macroscopic strains. The

alignment of the variants along the easy-axis (the short c−axis in Ni-Mn-Ga) under a

magnetic field produces the large strain. We investigate the temperature dependence of

the strain ∆l/l in constant cooling-field around the martensitic transformation.

Fig. 4.20 shows (∆l/l)(T ) measured under the cooling-fields of 0, 2 and 5 T for

Ni50Mn50−xZx ternary alloys where Z is Ga, In, Sn and Sb. The relative length-change

∆l/l is normalized to the value at 300 K. For Ni50Mn27Ga23 shown in Fig. 4.20(a), a weak

hysteretic feature is found in the temperature-range corresponding to the martensitic

transition in the absence of a magnetic-field as in the case of the single crystal sample in

Fig. 4.19. Substantial difference in the macroscopic dimensions between the austenitic

and martensitic states is not found at Ms. A negligible change in volume of the unit cells

of austenite and martensite was reported in diffraction experiments [88]. However, when

the sample is cooled through Ms under 2 T, a large difference in the strain ∆ε∼ -0.4%

between the austenitic and martensitic states occurs. Further increasing the cooling-field

up to 5 T, causes only an insignificant further increase in ∆ε.

Ni50Mn35Sn15 undergoes a martensitic transformation at about 120 K. As seen in

Fig. 4.20(b), cooling in the absence of a magnetic-field leads to a sudden drop in ∆l/l
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at Ms. This drop indicates that there is a volume difference between the austenitic

and martensitic states. The presence of volume-change is also shown by temperature-

dependent neutron diffraction experiments [88]. Cooling in the presence of a magnetic-

field causes Ms (indicated by arrows) to drop at a rate of about −3 KT−1. At the same

time, the difference in strain between the austenitic and martensitic states increases

with increasing magnetic field as in the case of Ni50Mn27Ga23 in Fig. 4.20(a). Twin-

boundary mobility in Ni50Mn35Sn15 is weak, so that only little magnetic-field-induced

strain (∼ 10−5) is observed in fields up to 5 T (Fig. 4.15(a)). Therefore, the large change

in strain (∼ 10−3) between the austenitic and martensitic states should be related to the

effect of the magnetic cooling-field providing a preferred orientation to the martensite
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Figure 4.19: Strain as a function of temperature in zero field and in 10 kOe for single-
crystalline Ni2MnGa. The two curves have been displaced relative to each other along the
strain axis for clarity. This figure is adapted from reference [1].



4.2 Effect of External Magnetic Field on the Structure of Heusler Alloys 57

50 100 150 200

-0.4

-0.3

-0.2

200 250 300

-0.6

-0.4

-0.2

0

100 200 300

-0.4

-0.2

0

250 300

-0.2

-0.1

0

c)

Ni50Mn35Sn15

l/l
 (%

)

T (K)

l/l
 (%

)

Ni50Mn27Ga23

b)

∆ε

Ni50Mn34In16

a)

  0 T
  2 T
  5 T

 

d)

T (K) 

Ni50Mn37Sb13

Figure 4.20: ∆l/l versus temperature under 0, 2, and 5 T for (a) Ni50Mn27Ga23, (b)
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variants during their nucleation.

The behavior is opposite in Ni50Mn34In16 as seen in Fig. 4.20(c). The cooling-

field causes a decrease in ∆l/l between the austenitic and the martensitic states. The

absolute value of ∆ε decreases from about 0.2% to 0.1%. The rate of change of Ms

with applied field for this sample is about −10 KT−1, which is nearly 3 times larger

than for Ni50Mn35Sn15. The data for Ni50Mn37Sb13 is shown in Fig. 4.20(d). Here, the

rate of decrease of Ms with applied field is about −1 KT−1. There is a weak relative

length-change of about -0.03% between the austenitic and martensitic states under an

applied cooling-field of 5 T.

The relative length-change under a cooling-field in alloys where Ga and Sn are sub-

stituted for In is shown in Fig. 4.21. Ms, indicated with arrows in Fig. 4.21(a) and

Fig. 4.21(b), decreases with increasing cooling-field. The substitution of 2% Ga shifts

Ms from 275 K to about 257 K and 1% Sn shifts it from 250 K to 231 K in an applied

field of 5 T with a rate about −3 KT−1 and −4 KT−1, respectively. The influence of the

external cooling-field on the nucleation is weaker in Ni50Mn34In14Ga2, and ∆ε increases
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Figure 4.21: ∆l/l versus temperature under 0, 2, and 5 T for quaternary Heusler alloys (a)
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slightly from -0.2% to -0.1%. Here, we observe that the decrease in ∆l/l below Ms is

broader than in the case of Ni50Mn27Ga23. In Ni50Mn34In15Sn1, ∆ε increases from -0.1%

to -0.04%.

In general, when a martensitic material is cooled through Ms under zero applied

field, the martensitic variants form as twin-related self-organized structures in order

to minimize the elastic energy associated with the change of the unit-cell. When the

material cools through Ms under an applied magnetic field, martensite variants can grow

with a preferred orientation. Fig. 4.22 shows schematically the effect of a cooling-field on

martensite nucleation. In this figure, each twin variant is represented by tetragonal units

of length l, which themselves are built up of a tetragonal unit-cells. Twin structures

with easy-directiona of magnetization along the long-axis and along the short-axis in

the absence of field and under an applied cooling-field are taken into account in the

upper and lower panels, respectively. If the easy-direction is the long-axis, the sample-

length measured along the field direction increases by an amount δ to l + δ. If the

easy-direction is the short-axis, the sample-length decreases to l − δ. Therefore, it is

possible to obtain information on the easy direction of magnetization in the martensitic

aThe easy-direction refers to the energetically favorable direction of the spontaneous magnetization

in a ferromagnetic material. This direction is determined by various factors, including the magnetocrys-

talline anisotropy and the shape anisotropy in single crystalline materials. In the L10 tetragonal phase,

having two a-axes and a c-axis, or in any modulated martensitic structure, the magnetization tends to

lie either in a plane bounded by the a-axes or along the c-axis of the unit cell.
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Figure 4.22: Schematic representation of ferromagnetic martensite nucleation with and
without a cooling magnetic-field applied at T > Ms. Twins are represented with tetragonal
units of length l built up of self-similar tetragonal unit-cells. There is no preferred variant
growth during martensite nucleation when cooled in H = 0. Preferred variant growth during
martensite nucleation occurs when the sample is cooled through Ms in H > 0, such that when
the long-axis is the easy-axis, the length increases in field direction by δ. When the short-axis
is the easy-axis the length decreases by δ in the field direction.

state by temperature-dependent strain measurements under a cooling-field.

Strain measurements in a single crystal of Ni-Mn-Ga had previously shown that in

the martensitic state, the sample shrinks (or ∆ε increases) along the field direction due

to the alignment of the short easy-direction of magnetization (c-axis) with the external

magnetic field [1]. The high twin boundary mobility in Ni-Mn-Ga is the main cause

of this effect (see section 2.2). When single and polycrystalline Ni-Mn-Ga alloys are

compared, it is seen that the response of the strain under a cooling-field is similar for

both as seen in Figs. 4.19 and 4.20(a). When Ni-Mn-Ga (single or polycrystalline) is

cooled through Ms in the absence of a magnetic field, martensite variants grow without

any preferred direction. Since the volume of the unit cell between the austenite and

martensite phase are the same at the transition, a negligible strain change is observed.

However, when a magnetic field is applied in the austenitic state and the sample is

cooled through Ms, martensite variants nucleate and grow with a preferred orientation

provided by the direction of the magnetic field. ∆l/l between austenite and marten-



60 4. Results and Discussions

site increases with respect to the zero-field measurement. The same increase of strain

under magnetic field with respect to the zero-field measurement is also observed in

Ni50Mn35Sn15 (Fig. 4.20(b)). However, in the absence of a magnetic field, the sample

shows a significant strain due to the difference in volume of the unit cells of austenite

and martensite. Since ∆ε in Ni50Mn35Sn15 increases with increasing magnetic field (or

the sample-length decreases with increasing cooling-field), the easy-direction of magne-

tization in the martensitic state is expected to be along a short-axis as in Ni50Mn27Ga23.

In Ni50Mn34In16, ∆ε decreases under a cooling-field with respect to the strain in the

absence of a magnetic field. This effect can be related to fact that the easy magnetization

direction is along the long-axis. It can also be related to the austenite arrest effect which

will be discussed in the next section.
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4.2.2 Austenite arrest studied by neutron diffraction under magnetic field

The term kinetic arrest is used to describe the retarded growth of the low-temperature

phase by the supercooled high-temperature phase in first-order transitions. An example

for the kinetic arrest of magnetic phases can be given for the Ru-doped CeFe2 pseu-

dobinary alloy which exhibits a first-order FM/AF transition. When a magnetic field is

applied in the FM phase, and the sample is cooled through the transition temperature

to the AF phase, the FM phase is partially arrested [90]. Recently, kinetic arrest was

found in FM Ni-Mn-In Heusler alloys where the martensitic transformation is arrested

in the presence of magnetic cooling-fields [62]. Theoretical studies on Ni2MnIn show

that there is a strong tendency for the austenitic state to gain stability under an applied

field [91].

In NiMnInCo, austenite arrest was reported from the results of temperature and field-

dependent X-ray diffraction experiments [89]. Fig. 4.23 focuses on the (220) L21cubic
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Figure 4.23: Temperature-dependent X-ray diffraction patterns (a) in 5 T field cooling and
(b) ZFC after 5 T field cooling in NiCoMnIn (after [89]). The filled dotted symbols are related
to the (220) reflection of L21 cubic structure, and the asteriks indicate the reflections related
to the martensite phase.
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reflection. During cooling under 5 T (FC), the austenite (220) reflection persists down

to 8 K, where reflections related to the martensite phase are also present indicating that

the martensitic transformation takes place partially (Fig. 4.23(b)). On removing the

field and warming, the martensite quantity increases with increasing temperature, and

at 100 K and 200 K, an increased number of reflections related to the martensite phase

are observed in Fig. 4.23(b). At 300 K, the reverse transformation completes. The

authors explain this freezing behavior at low temperatures to be due to the decrease of

the mobility of the habit plane between the martensite and austenite phases and the

loss of the driving force for the transformation on supercooling.

In this section, we present results on neutron diffraction for Ni50Mn27Ga23,

Ni50Mn35Sn15, and Ni50Mn34In16 at 300 K and 5 K in the absence of magnetic field

and in 5 T cooling-field. The diffraction data are analyzed by the Fullprof program.

The samples used in the following experiments have been prepared particularly for the

neutron diffraction experiments, and the compositions are given in Table 3.1. The

samples are individually characterized by magnetization experiments, which are also

discussed briefly.

Magnetic characterization

Fig. 4.24 shows M(T ) in ZFC, FH, and FC states for the samples prepared for neutron

diffraction studies. Ms, As and TA
C are indicated by vertical arrows and are listed in

Table 4.2 for each alloy. All alloys are in the ferromagnetic austenitic state at room

temperature and in the martensitic state at 5 K. Below TA
C , all samples order ferromag-

netically. A splitting between FC and FH magnetization data occurs just below TA
C for

Ni50Mn27Ga23 (Fig. 4.24(a)). The ferromagnetism extends down to Ms, and then the

magnetization decreases rapidly for all samples. The martensitic state is also FM but a

Curie temperature cannot be attributed for this composition.

Sample Ms(K) Mf (K) As(K) Af (K) TA
C (K)

Ni50Mn27Ga23 284 249 255 290 375

Ni50Mn35Sn15 215 156 113 213 320

Ni50Mn34In16 195 135 160 205 305

Table 4.2: Martensitic transformation temperatures Ms, Mf , As, and Af and the austenite
Curie temperature TA

C obtained from M(T ) for the samples used in neutron diffraction studies.
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Ni50Mn37Ga23

The diffraction patterns of Ni50Mn27Ga23 at 300 K are shown in Fig. 4.25(a). The crystal

structure of the austenitic state is cubic, L21 with the space group Fm3̄m. A lattice

parameter of the austenite aaustenite = 5.8348 Å is calculated by profile matching using

Fullprof program. The diffraction pattern at 300 K under 5 T in Fig. 4.25(b) shows

the same cubic structure. However, some intensities which are related to the martensite

structure indicate a second phase. The lattice parameters of the second orthorhombic

phase are a = 17.1159 Å, b = 9.9570 Å, c = 3.6580 Å with the space group Pnnm.

The profile matching results for the spectrum at 5 K (Fig. 4.26(a)) show the presence

of an orthorhombic crystal structure with space group Pnnm, and lattice parameters

b = 7a which is related to the 7-fold modulated martensitic structure (or 7M modulated)

[92,93]. Fig. 4.26(b) shows the diffraction patterns at 5 K in the range of 20◦ ≤ 2θ ≤ 40◦

in the absence of field (black line) and under 5 T cooling-field (red line). The crystal

structures for both conditions are orthorhombic with 7-fold modulation. The lattice

parameters are collected in Table 4.3 together with the reliability factor χ2.

µ0H (T) a(Å) b(Å) c(Å) χ2

300 K

0 5.8348 5.8348 5.8348 4.7

5 5.8383 5.8383 5.8383 8.9

5 K

0 4.2269 29.3727 5.5426 6.2

5 4.2265 29.3579 5.5357 6.7

Table 4.3: Lattice parameters of Ni50Mn27Ga23 at 300 K and 5 K in the absence of a cooling-
field and in the presence of a 5 T cooling-field. χ2 gives the profile matching parameter which
is related to the quality of the calculated diffraction pattern.
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Figure 4.25: Neutron diffraction patterns at 300 K (a) in zero-field and (b) in 5 T for
Ni50Mn27Ga23 together with calculated patterns and the Bragg positions. In (b), the Bragg
positions of the second orthorhombic phase Pnnm is also shown.
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Figure 4.26: Neutron diffraction patterns (a) at 5 K in zero-field and (b) comparison of the
5 K-data under zero field and 5 T magnetic field for Ni50Mn27Ga23. The crystal structure is
orthorhombic with space group Pnnm.
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Ni50Mn35Sn15

The diffraction patterns for Ni50Mn35Sn15 in Figs. 4.27(a) and (b) are related to a cubic

crystal structure at 300 K with a space group Fm3̄m and an orthorhombic structure at

5 K with a space group Pmma. By applying a 5 T field at 300 K, the crystal structure

remains the same with slightly increased lattice parameter. The results of the profile

matching agree well with those obtained by Rietvelt analysis for Ni50Mn36Sn14 [88]. The

inset of Fig. 4.27(b) gives a comparison between 0 T and 5 T diffraction patterns at 5

K. The crystal structure is the same for both cases. The lattice parameters are collected

in Table 4.4 for the martensitic and the austenitic states.

µ0H (T) a(Å) b(Å) c(Å) χ2

300 K

0 5.9946 5.9946 5.9946 4.2

5 5.9959 5.9959 5.9959 4.2

5 K

0 8.6023 5.6529 4.3616 7.6

5 8.6106 5.6523 4.3656 7.2

Table 4.4: Lattice parameters of Ni50Mn35Sn15 at 300 K and 5 K in the absence of a magnetic
field and in the presence of a 5 T cooling-field. χ2 is the profile matching parameter which is
related to the quality of the calculated diffraction pattern.
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Figure 4.27: Neutron diffraction pattern at (a) 300 K and (b) 5 K for Ni50Mn35Sn15 together
with the calculated patterns and the Bragg positions of the crystal structure. Inset shows
comparison of the observed patterns under an applied 5 T-magnetic field and zero-field at 5
K. The crystal structures are cubic L21 at 300 K and orthorhombic with space group Pmma
at 5 K.
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Ni50Mn34In16

The diffraction pattern of Ni50Mn34In16 at 300 K in Fig. 4.28(a) is related to a cubic

L21 structure with space group Fm3̄m, and a lattice parameter a = 6.0013 Å (Table

4.5). Under a 5 T magnetic field at 300 K, the crystal structure is the same as in the

zero-field pattern. The martensitic crystal structure at 5 K under 5 T cooling-field is

orthorhombic with a space group P212121 shown in Fig. 4.28(b). The relations that

appear on the lattice parameters in Ni50Mn34In16 alloys are amartensite ≈ 3aaustenite and

c ≈ √
2aaustenite.

The patterns obtained at 5 K in the absence of a magnetic field and under a 5 T

cooling-field are compared in two ranges in Fig. 4.29: (a) 20◦ ≤ 2θ ≤ 90◦ and (b) 90◦

≤ 2θ ≤ 140◦. The red pattern, which is obtained under a 5 T cooling-field is related

to a mixture of the orthorhombic martensite phase and the cubic austenite phase. The

reflections associated with the cubic phase can be better distinguished in the higher

range in Fig. 4.29(b). The Miller indices (hkl) of the austenite phase are given on the

pattern.

µ0H (T) a(Å) b(Å) c(Å) χ2

300 K

0 6.0013 6.0013 6.0013 3.5

5 5.9986 5.9986 5.9986 2.8

5 K

0 17.3287 9.4975 10.8435 1.3

5 17.8033 9.7913 8.9430 1.7

5 5.9022 5.9022 5.9022 1.7

Table 4.5: Lattice parameters of Ni50Mn34In16 at 300 K and 5 K in the absent of a magnetic
field and in the presence of a 5 T cooling-field. χ2 show the profile matching parameter which
is related to the quality of the calculated diffraction pattern.



70 4. Results and Discussions

20 30 40 50 60 70 80 90

In
te

ns
ity

 (a
.u

.)

a)
300 K

0H =0 T

20 30 40 50 60 70 80 90

2   (°)

0H =5  T  

 Iobs

 Iobs-Icalc

 Bragg Position

In
te

ns
ity

 (a
.u

.)

5 Kb)

FC

Figure 4.28: Neutron diffraction patterns at (a) 300 K at zero-field and (b) 5 K at 5 T field
cooled for Ni50Mn34In16 sample together with calculated pattern and the Bragg positions of
the crystal structure.
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Figure 4.29: Neutron diffraction patterns in zero-field and 5 T applied field at 5 K for
Ni50Mn34In16 sample for (a) 20◦ ≤ 2θ ≤ 90◦ and (b) 90◦ ≤ 2θ ≤ 140◦. The Bragg reflections
which belonging to the L21 cubic structure are indicated in the 5 T-pattern.

Previous studies on Ni50Mn34In16 have shown that in the presence of a cooling-field

greater than 4 T, the martensitic transformation from austenite to martensite is kinet-

ically arrested, and this effect depends on the thermal magnetic history of the sample

[62,94]. The coexistence of the martensite structure with the austenite structure at 5 K

displays the arrested austenite phase in Ni50Mn34In16 which is not found in Ni50Mn27Ga23

and Ni50Mn35Sn15.

To calculate the amount of rest-austenite phase in the martensitic state for

Ni50Mn34In16, we make use of the neutron diffraction patterns taken at 300 K and 5

K in 5 T cooling-field. In Fig 4.30, the vertically shifted patterns at 5 K (red) and

300 K (black) in 5 T cooling-field are shown in the neighborhood of the cubic (220)

reflection in the range 35◦ ≤ 2θ ≤50◦. The blue pattern is related to pure martensite

obtained at 5 K in the absence of magnetic field. In the red pattern, the intensity re-

sulting from the mixed austenite phase is located at about 43◦. If we assume that the

total intensity of the (220) reflection under 5 T at 300 K and 5 K remains the same,

the amount of the rest-austenite phase can be estimated from the ratio IM/IA where IA

and IM are the total intensities in the austenite and martensite phases. Approximately
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Figure 4.30: Neutron diffraction patterns around the (220) L21-cubic reflection in
Ni50Mn34In16. The black and red data are taken at 300 K and 5 K under a 5 T cooling-
field. The vertically shifted blue data belong to the martensite phase at 5 K in ZFC state.

45% rest-austenite is found in Ni50Mn34In16 at 5 K. On the basis of this estimation, we

can better understand the temperature dependence of the strain under a cooling-field

for this alloy. In Fig. 4.31, ∆l/l(T ) is shown in the absence of a cooling-field and under

a 5 T cooling-field. The extrapolated red dotted line represents ∆l/l(T ) in the absence

of the martensitic transformation. At point 1, ∆ε = 0. Point 2 and point 3 represent

strain-values in the pure martensite phase and in the mixed austenite/martensite phase,

respectively. The ”mixed” nature is verified by the results of neutron diffraction studies

discussed above. The value of ∆εH=0 = 0.19 decreases under a 5 T cooling-field to

∆εH=5T = 0.11. When a strain value arising from 45% austenite is substracted from

the strain-value of the mixed phase, the strain decreases to point 4 as indicated by the

arrow. This leads to an estimated increase in ∆εH=5T from 0.11 to 0.17. According to

the discussion in 4.2.1, this would further confirm that the easy-direction of the magne-

tization is along the long-axis in Ni50Mn34In16 even when the effect of austenite arrest

is taken into account.
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Figure 4.31: ∆l/l(T ) in the absence of cooling-field and under a 5 T cooling-field in
Ni50Mn34In16. ∆ε indicates the strain difference between the austenitic and martensitic states.

When we consider that the shift of 10 KT−1 in Ms to lower temperatures under

a cooling-field results from austenite arrest, one can expect that at higher magnetic

cooling-fields, the martensitic transformation can be completely suppressed. In fact,

in single crystalline Ni50Mn34In16, the shift of the martensitic transformation has been

reported to be 12 KT−1, and the resistivity around Ms decreases under an external

magnetic field with respect to the zero-field resistivity as a result of remaining rest-

austenite under an applied cooling-field [10]. Studies on NiCoMnIn have also shown

that an external magnetic field up to 8 T stabilizes the austenite phase completely [89].

The quaternary compounds of Ni50Mn34In16 exhibit the similar relative length-change

properties under a cooling-field which can be associated with the alignment of easy

magnetization along the long-axis in these alloys. In Ga and Sn-substituted alloys,

austenite arrest can be expected as well. However, in Ni50Mn36Sn14 the shift of Ms has

been reported to be around 2 KT−1 indicating that fields higher than 5 T are required

for austenite arrest to occur [11].
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4.3 Nature of Magnetism Around the Martensitic Transforma-

tion

Ni-Mn-based Heusler alloys undergo martensitic transformations in certain composi-

tional ranges, and all such systems show a drop at Ms in M(T ) in small magnetic fields

of about 10 mT or less [6,86]. The drop persists in higher measuring fields of about 5 T

except in Ni-Mn-Ga alloys. In these alloys, the slope in M(T ) reverses sign around Ms

above a certain measurement field [95]. The cause of the drop in M(T ) in Ni-Mn-based

Heusler alloys is often thought to be related to the development of local AF ordering

associated with changing distance of the Mn-Mn bonding [88].

To understand the cause of magnetic-field-induced effects in magnetic shape memory

alloys, it is necessary to understand the nature of the magnetic ordering, particularly

in the temperature-vicinity of the martensitic transformation. The following section

presents results of neutron polarization analysis in Ni50Mn40Sb10 and Ni50Mn37Sn13 and

the result of FMR studies in Ni50Mn34In16 and Ni50Mn37Sn13. These techniques are

particularly useful for studying the nature of magnetic interactions.

4.3.1 Polarized neutron scattering

We study the nature of the magnetic interactions in the martensitic and austenitic states

of Ni-Mn-based Heusler systems. In this section, we discuss the results of neutron po-

larization analysis experiments on Ni50Mn40Sb10 and Ni50Mn37Sn13 prototype systems.

First, the magnetic characterization of these two samples is given briefly.

Magnetic characterization of the samples

The results of calorimetric measurements for Ni50Mn40Sb10 given in Fig. 4.32 show that

the structural transformation takes place at Ms = 440 K. The double peak structure

observed in the heating and cooling curves suggests the presence of inter-martensitic

transitions. The hysteresis width ∆T ≈ 12 K corresponds to the difference in the

position of the shoulders or peaks in the heating and cooling curves.

Fig. 4.33 shows M(T ) in ZFC, FC and FH states, and the temperature-dependent

flipping ratio RF (T ) for both samples. In Fig. 4.33(a), FM ordering is not found

in the austenitic state so that Ms cannot be resolved. The value of Ms determined

from calorimetric measurements indicates that the martensitic transformation occurs
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Figure 4.33: Characterization of the samples for the polarization analysis experiments of
Ni50Mn40Sb10 and Ni50Mn37Sn13. (a) M(T ) in the ZFC, FC, and FH states for Ni50Mn40Sb10.
The inset shows RF (T ) for Ni50Mn40Sb10. (b) M(T ) in the ZFC, FC, and FH states and (c)
RF (T ) for Ni50Mn37Sn13.
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from a paramagnetic (PM) austenitic to a PM martensitic state in Ni50Mn40Sb10. It

orders ferromagnetically in the martensitic state at TM
C ≈ 210 K, where ZFC and FC

curves split. In the inset of Fig. 4.33(a), the neutron depolarization measurement shows

RF ≈ 25 and remains temperature-independent from the highest temperatures down to

temperatures approaching TM
C . This means that the net magnetization of Ni50Mn40Sb10

is zero, and neutrons are not depolarized by the sample.

Ni50Mn37Sn13 orders ferromagnetically in the austenitic state at TA
C = 310 K as

seen in Fig. 4.33(b). Just below TA
C , the alloy undergoes a martensitic transformation

at Ms ≈ 305 K, and the magnetization rapidly drops below Ms. At TM
C ≈ 220 K,

Ni50Mn37Sn13 orders ferromagnetically again. RF (T ) for this alloy is shown in Fig.

4.33(c). Above TA
C , where the alloy is in the PM state, RF ≈ 25. The initial sharp drop

with decreasing temperature in RF (T ) is related to the beginning of FM order below

TA
C , whereby the neutrons are depolarized by the FM domains in the alloy. On the other

hand, RF begins to recover and increases just below Ms with decreasing temperature.

This points out that the amount of FM austenite progressively decreases at T < Ms.

Then, RF passes through a maximum with RF ≈ 12 at a temperature corresponding to

the local minimum in M(T ) at 250 K. However, RF does not regain its maximum value of

25 as some FM rest-austenite remains below Ms. As the temperature further decreases,

RF (T ) decreases as well. The decrease progresses from 250 K to 200 K in a relatively

broad temperature-range with respect to the decrease around TA
C . This is an indication

that the position of TM
C is not well-defined. The broad nature of the FM transition in the

martensitic state for Ni50Mn40Sb10 and Ni50Mn37Sn13 is also identified in M(T ) in Figs.

4.33(b) and 4.33(c). For a ferromagnet, M(T ) rises sharply to a value corresponding to

the demagnetization limit at the Curie temperature when measured in a small external

magnetic field such as 5 mT. Then, M(T ) continues relatively temperature-independent

as the temperature decreases [6]. In the martensitic state, we see that this is not the

case for M(T ) below TM
C .

M(H) for Ni50Mn40Sb10 is shown in Fig. 4.34(a). At 350 K and 315 K, corresponding

to temperatures within the martensitic state, M(H) is linear, and only at temperatures

T < TM
C is the sample FM. Substantial high-field susceptibility is also present indicating

that non-ferromagnetic components are present at these temperatures.

M(H) for Ni50Mn37Sn13 is plotted in 4.34(b). At 330 K, the sample is PM, but the

curvature suggests the presence of short-range FM correlations. At 300 K, the magne-

tization increases rapidly in lower magnetic fields showing ferromagnetism. However,

the magnetization does not saturate. M(H) decreases in overall as the temperature de-
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Figure 4.34: M(H) plotted at selected temperatures for (a) Ni50Mn40Sb10 and (b)
Ni50Mn37Sn13.

creases from 306 K to 275 K. In this temperature interval, the proportion of martensite

increases with decreasing temperature, and along with it, the contribution of ferromag-

netic exchange to the total magnetization from the austenite phase decreases. Below

TM
C the martensite phase becomes ferromagnetic; however, non-saturating properties of

M(H) suggest that non-FM entities persists for T <150 K. At 5 K, M(H) saturates

above 5 T, and the saturation magnetization is smaller than that at 306 K.
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Polarization analysis

The results of polarization analysis experiments on Ni50Mn40Sb10 are shown in Fig. 4.35.

q−dependent (dσ/dΩ)nuc plotted in Fig. 4.35(a) shows diffraction patterns at 320 K and
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Figure 4.35: The q-dependence of the neutron scattering cross-sections in the austenitic
(500 K) and martensitic (320 K) states of Ni50Mn40Sb10 (Ms = 440 K). (a) The nuclear cross-
section is plotted in the range 1.2 ≤ q ≤ 2.6 Å−1. Open circles: L21 (indexed horizontally);
filled circles: 4O (indexed vertically). The data for 320 K are shifted vertically by +2 units
for clarity. (b) The magnetic cross-section. The forward scattering, present in the austenitic
state at 500 K, vanishes in the martensitic state (320 K).
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500 K related to the martensitic and the austenitic structures, respectively. The data

for 320 K are shifted vertically by +2 units for clarity. The martensitic structure is

determined as 4O modulated orthorhombic with a Pmma space group, in agreement

with earlier studies [32]. q−dependent (dσ/dΩ)mag is plotted in Fig. 4.35(b) at 500

K and 320 K. At low q-values, forward scattering is present at T > Ms indicating

the presence of FM correlations. However, FM ordering is not found in the austenitic

state in M(T ). The narrow peak in the magnetic scattering at 500 K accompanied by

relatively large error bars at q ≈ 2.1 Å−1 results probably from systematic errors due

to the difficulties in separating the nuclear and magnetic contributions of the scattering

at a position close to the strong (200) nuclear Bragg peak in Fig. 4.35(a). At 320 K,

within the martensitic state, the scattering at low q-values is very weak indicating that

FM correlations have practically vanished. However, strong and broad diffuse scattering

is observed above about 0.8 Å−1 up to the instrumental limit of 2.5 Å−1. This broad

diffuse scattering is due to the presence of AF correlations.
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Figure 4.36: The q-dependence of the neutron diffraction spectrum of Ni50Mn35Sn15-N
obtained on the SPODI spectrometer at 5 K (black line) and 300 K (red line). The inset shows
the nuclear cross-section in the austenitic (330 K) and martensitic (250 K) states obtained on
the D7 spectrometer for Ni50Mn37Sn13. The data for 250 K are shifted vertically by +5 units
for clarity (austenite: indexed horizontally; martensite: indexed vertically).
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The powder diffraction patterns in Ni50Mn35Sn15 taken on the SPODI spectrometer

at 5 K and 300 K are shown in Fig. 4.36 in the martensitic and austenitic states respec-

tively. The reflections associated with the high symmetry austenitic cubic phase at 300

K split into a multitude of reflections at various zones in the low symmetry martensitic

state at 5 K. The inset shows the q dependence of (dσ/dΩ)nuc in the martensitic and

austenitic states resulting from polarization analysis data taken on the D7 spectrometer.

The data in the inset at 250 K are shifted vertically by +5 units for clarity. Data from

SPODI and D7 spectrometers are in good agreement.

On the D7 spectrometer, the full XYZ-polarization analysis technique was employed

at 500 K, whereas at 250 K, only Z-polarization was employed because of the lower value

of RF ≈ 12 at this temperature, relative to the base flipping ratio of the instrument of

RF ≈ 25. The analyzers are setup to count only non-spin-flip neutrons in the Z-direction

on the D7 spectrometer. When the neutron-spin is rotated into the X-Y plane at low

RF , the presence of residual ferromagnetic austenite would give rise to uncertainties in

the scattering information. However, RF at 250 K is still sufficiently high to apply Z-
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Figure 4.37: The q-dependence of the magnetic cross-section at 500 K and 250 K for
Ni50Mn37Sn13. The forward scattering, present in the austenitic state, essentially vanishes
in the martensitic state (Ms = 305 K). The inset shows the q-dependence of spin incoherent
cross-section at 500 K.
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polarization analysis (Fig. 4.33(c)). For Z-polarization analysis at 250 K, (dσ/dΩ)inc is

assumed to be temperature-independent, and (dσ/dΩ)mag is calculated using (dσ/dΩ)inc

at 500 K which was obtained using XYZ-polarization analysis [73].

q−dependent (dσ/dΩ)mag for Ni50Mn37Sn13 obtained at 250 K and 500 K is shown

in Fig. 4.37. The magnetic scattering at 500 K is similar to that of Ni50Mn40Sb10 for

the same temperature (Fig. 4.35(b)). At this temperature, there is substantial forward

scattering at low q values indicating the presence of FM correlations. (dσ/dΩ)inc is

shown in the inset of Fig. 4.37. The q-dependent (dσ/dΩ)mag at 250 K is also similar to

that of Ni50Mn40Sb10 at 320 K. The FM correlations vanish and instead AF correlations

are found at this temperature. The relatively large scattering in the data around q = 2.1

Å−1 (corresponding to the (200) Bragg position in the austenitic state and nearly the

(105) Bragg position in the martensitic state) is related to the presence of FM rest-

austenite that causes partial depolarization of the neutrons and leads to some difficulties
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Figure 4.38: The comparison of the magnetic cross-section at 250 K and the q-dependence
of the Mn form factor (heavy line) normalized to the value (dσ/dΩ)mag at q = 1.5 Å−1 in
Ni50Mn37Sn13.
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in separating nuclear and magnetic contributions.

Fig. 4.38 compares the q-dependence of the magnetic cross-section at 500 K to that

of the single-ion Mn++ form factor normalized to the value of (dσ/dΩ)mag at q = 1.5

Å−1. The q-dependence of the form factor represents non-correlated behavior. The

different behavior of the q-dependencies of the obtained data and that of the form

factor, especially at low-q values, point out that the scattering at low-q is related to FM

correlations.
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Figure 4.39: The q dependence of the magnetic cross-section at (a) T > Ms and (b) T < Ms

for Ni50Mn37Sn13 and Ni50Mn40Sb10.

Figures 4.39(a) and (b) show the magnetic scattering as a function of q below and

above Ms in Ni50Mn40Sb10 and Ni50Mn37Sn13, respectively. FM correlations are found

at T > Ms, and persist well above TA
C in both alloys, whereas the nature of AF short-

range correlations are similar at T < Ms for both alloys. For both Ni50Mn37Sn13 and

Ni50Mn40Sb10, (dσ/dΩ)mag for T < Ms exhibits a broad shoulder beginning at about

q = 0.8 Å−1 and extending up to the highest q-value of 2.5 Å−1 as seen in Fig. 4.39(b).

The scattering profiles show a maximum nearly at the same value of about q = 1.6 Å−1.

This q-range includes the half-q positions of a multitude of Bragg-reflections appearing in

the range of 1.5 < q < 5.0 Å−1 as seen in Fig. 4.36. In an well ordered antiferromagnet,

the magnetic scattering is observed as an intensity at the half position of the Bragg
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decrease of magnetic moment µ in Ni-Mn-Sn- and Ni-Mn-Sb system by increasing e/a is
caused by the presence of AF interactions.

intensities. Due to the doubled magnetic unit cell with respect to the crystallographic

unit cell, AF correlations would be observed as weak, broad peaks centered at half-

q positions of the various crystallographic zones. Such broad peaks can overlap and

give rise to a broad shoulder in the magnetic scattering. Similar spectra exhibiting AF

correlations have been previously observed in YMn2 where diffuse scattering centered

at half-Bragg positions develop into a single broad diffuse peak [96–98].

In NiMn-based Heusler alloys, because of the smaller cell-volume and therefore the

smaller Mn-Mn separation in the modulated martensitic state with respect to the cubic

austenitic state, FM exchange can be expected to weaken below Ms. Therefore, the

drop in the M(T ) is caused by the loss of FM and the appearance of AF correlations in

martensite phase.

For a general overview on the relationship between magnetic and electronic properties

of Heusler alloys, we plot in Fig. 4.40 the magnetic moment µ of 3d FM and AF systems

as a function of e/a. The red line represents the SlaterPauling (SP) curve for 3d FM

materials. The bcc and fcc stability ranges for the FM systems are also shown. The
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large black-filled circles represent calculated and experimental values of the moments of

various stoichiometric Heusler and half-Heusler alloys [99,100], for which the structures

are in principle bcc. µ increases with increasing e/a in the bcc range. The lower part of

the curve is assigned to AF systems showing µ for fcc-Mn and the AF Ni50Mn50 alloy with

L10 structure. AF-Ni50Mn50 is electronically intermediate between fcc-Mn and fcc-Ni,

and the structure is close to being fcc, and one finds indeed that the magnetic moments

of these alloys are accommodated approximately on the line joining the moments of

fcc-Mn and fcc-Ni.

For Heusler alloys, µ can increase or decrease with increasing e/a. Off-stoichiometric

Ni-Mn-based Heusler alloys show a decrease in µ-values that tend to the value of AF-

Ni50Mn50. The decrease in µ with increasing e/a in the L21 phase can be understood

to be caused by strengthening AF exchange. On the other hand, the sudden drop of

magnetization below Ms and the broad feature of ferromagnetic ordering at TM
C suggest

the presence of non-ferromagnetic entities.
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4.3.2 Ferromagnetic resonance

The limitations of the polarization analysis technique close and below to TM
C , does not

allow the nature of magnetic exchange to be determined at these temperatures. We

have, therefore, employed the ferromagnetic resonance (FMR) technique to clarify this

issue particularly in the temperature range below TM
C .

The samples used in the FMR studies are first characterized by M(T ) measurements.

M(T ) in an applied field of 5 mT for Ni50Mn35In15 and Ni50Mn37Sn13 are shown in Fig.

4.41(a) and (b), respectively. TA
C , TM

C , Ms, Mf , As and Af are listed in Table 4.6.

As and Af are relevant to the discussion on FMR results and are also shown in Fig.

4.41. The alloys are FM above Af and PM above TA
C . A thermal hysteresis is observed

between the FC and FH (and ZFC) data around the structural transition.
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Figure 4.41: M(T ) in ZFC, FC and FH states under 5 mT of (a) Ni50Mn35In15 and (b)
Ni50Mn37Sn13. TA

C , Af , As and TM
C are indicated by arrows.

Fig. 4.42 shows the FMR spectra for both samples in their martensitic and austenitic

states at 180 K and 300 K, respectively. There are three signals in the martensitic state in

Ni50Mn35In15 and Ni50Mn37Sn13. These lines can originate from different domains in the

sample or from three different magnetic sublattices. However, no angular dependence

is observed, which would be expected for domains with different orientations of the
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Alloy TA
C (K) Ms(K) Mf (K) As(K) Af (K) TM

C (K)

Ni50Mn35In15 310 250 219 220 260 205

Ni50Mn37Sn13 310 305 255 265 305 230

Table 4.6: The characteristic magnetic and structural transition temperatures of
Ni50Mn35In15 and Ni50Mn37Sn13.

magnetization. At 180 K the signal at µ0H ≤ 330 mT (labeled as HIII
res ) in Ni50Mn35In15

is related to a FM component because it lies below the isotropic value. It is observed

up to 300 K. The signals which are observed above ω/γ for both samples, labeled HII
res

and HI
res, are related to non-FM components. The signal between 330 ≤ µ0H ≤ 400

mT in Ni50Mn35In15 lies slightly above the isotropic value, so that it is also related to

a non-FM component. The inset in Fig. 4.42 gives a comparison between the FMR

spectra at 300 K where Hres lies below ω/γ in Ni50Mn37Sn13 and Ni50Mn35In15.

0 200 400 600 800 1000 1200 1400 1600 1800

0 200 400 600 800

H  III
res

H  II
res

dX
''/
dH

 (a
.u

.)

0H (mT)

 Ni
50

Mn
37

Sn
13

 Ni
50

Mn
35

In
15

180 K

ω/γ

H  I
res

ω/γ

dX
''/
dH

 (a
.u

.) 300 K

Figure 4.42: FMR measurements in the martensitic state at 180 K for Ni50Mn37Sn13 and
Ni50Mn35In15. The HI
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res are shown by arrows. Inset shows the measurements
in the martensitic state at 300 K.
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The temperature dependence of the resonance fields µ0Hres(T ) extracted from

Lorentzian lines fitted to the signals are shown in Fig. 4.43 and Fig. 4.44. The detailed

fitting procedures is given in Appendix A2. The isotropic value is shown approximately

with the horizontal bar. TM
C , As and Af are indicated with arrows. The sample is first

cooled to the lowest temperature in the absence of magnetic field, and the data are taken

on increasing temperature. At 100 K, in the martensitic state, the sample incorporates

AF entities for which the spectra are labelled HI
res and HII

res and FM entities labelled

as HIII
res (Fig. 4.43). Such a mixture of magnetic states is present up to about TM

C .

Above TM
C , the AF component disappears and only FM components remain. The FM

signals are observed in the temperature range 100 ≤ T ≤ 300 K. µ0Hres(T ), which is

shown with HI
res and has a higher resonance field than ω/γ, decreases monotonically

with increasing temperature. The behavior of µ0Hres(T ) can be understood when com-

paring it to the behavior of M(T ) in the ZFC state. The splitting of the ZFC and FC

M(T )-curves below TM
C is understood to be due to the pinning of the FM domains due

to coexisting AF components. The AF exchange weakens with increasing temperature

so that the FC and ZFC branches of M(T ) merge at TM
C (Fig. 4.41(a)). This is reflected

as a decrease in µ0Hres(T ) with increasing temperature.

The intensity of the FMR signal is proportional to the magnetic susceptibility, and

for HII
res it is shown as a function of temperature in the inset of Fig. 4.43. From 100

K to a temperature close to As, the intensity is nearly constant with a low value and,

then, increases with increasing temperature following a similar dependence in M(T ) as

FM austenite develops.

The temperature-dependence of the resonance field µ0Hres(T ) is seen in Fig. 4.44

for Ni50Mn37Sn13. At 100 K, the alloy exhibits two magnetic contributions which are

AF and FM located below and above ω/γ. Below TM
C , the FMR signals HI

res and

HII
res appear above ω/γ which are related to weak AF ordering. HI

res is related to AF

exchange which is consistent with the behavior of M(T ) as in the case of Ni50Mn35In15.

HII
res is particularly significant for 100 ≤ T ≤ 300 K. It approaches the isotropic value

close to TA
C . Closer details of the development of HI

res and HII
res can be seen in Fig.

4.45(a) for T ≤ 200 K. HII
res and HIV

res are indicated in Fig. 4.45(b) for T ≥ 200 K.

HI
res and HII

res decrease with increasing temperature (Fig. 4.45(a)). The inset in Fig.

4.45(a) shows that HII
res exists at 5 K as well. In Fig. 4.45(b), HII

res decreases and HIV
res

increases with increasing temperature. Then, they superpose above 240 K, which lies

above As. Angular dependence of FMR measurements have been performed at 160 K

and 300 K. No angular-dependent signals in the austenitic and martensitic states have
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Figure 4.45: Temperature-dependence of the FMR signals for Ni50Mn37Sn13. (a) HI
res and

HII
res are shown at selected temperatures below TM

C , and (b) the overlapping FMR signals HII
res

and HIV
res between 200, and 240 K are shown. Inset in (a) shows the FMR signal at 5 K.

been detected indicating that there are no powder-related features arising coming from

differently oriented domains.

The intensities of HII
res (open circles) and the FM HIV

res and HV
res are shown in Fig.

4.46. The intensities of HII
res and HIV

res are almost temperature-independent at low tem-

peratures up to 170 K, and both begin to gain intensity by further increasing the temper-

ature. Around As, the intensities of the two signals reach their maximum values. Above

260 K, it becomes difficult to distinguish the signals. FM HIV
res, reaches a maximum

intensity at 250 K, and, above this temperature, the FM part diminishes, reflecting an

overall decrease of the magnetic moment. At 270 K, the intensity of HV
res starts to in-

crease meaning that the magnetization increases as long-range FM ordering sets in and

becomes dominant. The sharp decrease in M(T ) for Ni50Mn37Sn13 just below Ms while

cooling is revealed to be related to the loss of ferromagnetism and the first appearance
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Figure 4.46: The intensity of the FMR signals related to the HII
res, HIV

res and HV
res as a

function of temperature in Ni50Mn37Sn13. Open circles represent the intensity of AF HII
res.

of AF correlations at 250 K. Here, neutron depolarization measurements show a local

maximum in RF (T ) (Fig. 4.33(c)). Analogously, one can observe the development of AF

interactions in the present FMR data particularly through the temperature-behavior of

HII
res in Ni50Mn37Sn13.

The results of the FMR experiments show the presence of mixed magnetic phases

below Ms. Figures 4.47(a) and (b) show ZFC-M(T ) in Ni50Mn35In15 and Ni50Mn37Sn13

respectively. Different magnetic regions are separated by dotted lines according to the

FMR results for Ni50Mn37Sn13 and Ni50Mn35In15. In Fig. 4.47(a), above TA
C , Ni-Mn-In

is PM, and between TA
C and As, the magnetic state is FM. In a narrow region between

As and TM
C , a weak AF signal is accompanied by a FM signal in the FMR spectrum.

Below TM
C , the magnetic structure is more complex and two AF signals appear together

with a FM signal.

In Fig. 4.47(b), the magnetic state of Ni50Mn37Sn13 is PM above TA
C , and ferromag-

netism appears below TA
C . In the region As ≤ T ≤ Af , AF and FM signals coexist,

however below As, only an AF signal is observed down to TM
C . As in the case of

Ni50Mn35In15, mixed AF and FM magnetic structures coexist below TM
C . The presence
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of HI
res and HII

res above ω/γ indicates the occurrence of an AF phase in the martensitic

state (see figure 4.44). The higher value of HII
res than the one observed in Fig. 4.43

indicates that AF correlations may be weaker in Ni50Mn35In15. The presence of HI
res for

both alloys is related to AF components appearing below TM
C .

The results of the FMR and the polarized neutron scattering experiments for

Ni50Mn37Sn13 complement one another. The FMR measurements provide information

on the nature of long-range magnetic ordering, whereas neutron polarization analysis

provides information on short-range magnetic correlations within essentially paramag-

netic states. In this manner the nature of magnetic interactions can be understood at

all temperatures in martensitic Heusler alloys.

The observation of exchange bias in the martensitic state suggests the presence of

AF interactions in Ni-Mn-In, Ni-Mn-Sn and Ni-Mn-Sb Heusler alloys [14–16,35]. AF

interactions are revealed here directly by FMR experiments. Recently, the results of

Mössbauer experiments had suggested the presence of a paramagnetic state below Ms

[101,102]. The separation of ZFC and FC states in M(T ) below TM
C under an mag-
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netic field was interpreted as being due to the presence of magnetically inhomogeneous

phases in the martensitic state [6]. On the other hand neutron diffraction studies on

Ni2Mn(MnxSn1−x) alloys pointed out that Mn atoms which substitute for Sn atoms are

coupled antiferromagnetically to the ferromagnetically coupled Mn sublattices [103].
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4.4 Effect of the Hydrostatic Pressure on Martensitic Trans-

formations

In the following, the effect of pressure on the magnetic and structural properties of Ni-

Mn-In Heusler alloys is studied using magnetization, DSC and neutron depolarization

measurements. Neutron polarization analysis is also performed for Ni50Mn40Sb10 under

pressure.

4.4.1 Magnetization and calorimetric measurements under pressure

M(T )at selected applied pressures for Ni50Mn34In16 is shown in Fig. 4.48 in a low exter-

nal magnetic field of 5 mT. Data have been taken in ZFC, FC, and FH states. Results

for ambient pressure agree with those previously shown in Fig. 4.2(a). On cooling, the

cubic phase orders ferromagnetically at TA
C = 310 K which causes a sharp increase in

the magnetization in the austenitic state. At Ms, the martensitic transformation takes

place, and the typical sharp drop in the magnetization is observed. Upon further cool-

ing, the magnetization rises again, reflecting the increase in ferromagnetic order in the

martensite phase. The application of pressure has little effect on the magnetic behavior

of the high temperature cubic austenite phase. TA
C increases slightly with increasing

pressure, in agreement with earlier data reported for Heusler alloys [104–106] and are

consistent with the predictions of first principles calculations [107]. Also, below about

150 K, well in the martensitic state, the temperature behavior of the magnetization

remains nearly the same at all pressures. However, pressure has a significant effect on

the magnetic behavior in the temperature region where the austenite and martensite

phases coexist. All characteristic temperatures associated with the martensitic transi-

tion shift to higher values as the pressure is increased which is shown in the inset of Fig.

4.48 (Ms and Af exhibit similar behavior with pressure). Another feature is that the

difference in the magnetization between martensitic and austenitic states around the

transition becomes larger with increasing pressure. As it was shown in section 4.3.1, AF

interactions appear below Ms. It is expected that applied pressure would enhance the

AF exchange in the martensite phase.

We have performed differential calorimetric measurements under pressure to obtain

further information on pressure effects on the martensitic transition. The thermal curves

for powder Ni50Mn35In15 at selected hydrostatic pressures are shown in Fig. 4.49, where

the exothermal and endothermal peaks corresponding to the forward and reverse tran-
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Figure 4.48: The temperature dependence of magnetization curves of Ni50Mn34In16 for
selected applied pressures under 5 mT magnetic field in ZFC, FC and FH states. The inset
shows the change of Ms and Af as a function of applied pressure.

sitions on cooling and heating, respectively, are seen. Application of pressure does not

significantly alter the shape of the thermal peak, but both forward and reverse tran-

sitions shift towards higher temperatures as the pressure increases. The rate of shifts

in the transition temperatures in Ni50Mn35In15, dT/dp ≈ 2K kbar−1, is lower than in

Ni50Mn34In16, dT/dp ≈ 4K kbar−1.

4.4.2 Polarized neutron scattering under pressure

Application of pressure is expected to enhance AF exchange present in the martensitic

state so that we have performed neutron depolarization measurements on Ni50Mn35In15

under hydrostatic pressures on the D7 spectrometer. M(T ) in ZFC, FC and FH states
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Figure 4.49: (a) Calorimetric measurements for selected values of applied pressure in
Ni50Mn35In15. From top to bottom (heating) and bottom to top (cooling) the applied pres-
sures are: ambient, 0.36 kbar, 0.80 kbar, 1.11 kbar and 1.45 kbar. The inset shows Ms and
Af as a function of the applied pressure.

and RF (T ) curves are shown in Fig. 4.50(a). FM ordering in the austenitic state occurs

at TA
C = 295 K, and the martensitic transformation takes place at Ms = 274 K. A

sudden drop in magnetization below Ms is observed as in the case for Ni50Mn37Sn13.

However, here, the magnetization nearly vanishes in the range 200 ≤ T ≤ 225 K.

Below 200 K, long-range FM ordering develops gradually in the martensitic state until

TM
C = 140 K is reached. Figure 4.50(b) shows RF (T ) taken on heating under 0.5 and

15 kbar hydrostatic pressure. Here 0.5 kbar is the pressure which is applied to close the

pressure cell. Above TA
C , RF increases sharply to about 60 at 340 K when long-range

FM ordering vanishes.
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Figure 4.50: (a) M(T ) curve of Ni50Mn35In15 alloy under 5 mT magnetic field. TA
C , Ms

and TM
C are shown by arrows. (b) RF (T ) for Ni50Mn35In15 under 0.5 and 15 kbar pressures

measured on heating. (c) RF (T ) plotted in the range of 170 ≤ T ≤ 310 K under 15 kbar.

Fig. 4.50(c) shows a detailed plot of RF (T ) in the range 150 ≤ T ≤ 310 K under

15 kbar. When the external pressure increases up to 15 kbar, RF starts to increase

and reaches a maximum value of 7.5 at 250 K which corresponds to a temperature just

below Ms. This behavior shows that under pressure ferromagnetism can be suppressed

and AF correlations may appear in Ni-Mn-In.

We carry out XYZ polarization analysis experiments under pressure in Ni50Mn40Sb10

to investigate the pressure-dependence of the nature of magnetic coupling. Figure 4.51

shows the results of the polarization analysis at 320 K for Ni50Mn40Sb10 under 0.5 and

10 kbar. The q-dependence of (dσ/dΩ)nuc is given in Fig. 4.51(a). The diffraction

pattern is similar to the pattern in Fig. 4.35(a) in the absence of pressure. The only

difference is the additional nuclear scattering coming from Fluorinert which is used as

the pressure-transmitting medium. Fluorinert gives amorphous-like scattering peaked

around 1 Å−1 at 0.5 kbar, and it shifts to about 1.25 Å−1 at 15 kbar. The q-dependence

of (dσ/dΩ)mag is plotted in Fig. 4.51(b) for 0.5 kbar and 10 kbar at 320 K. The green

line shows the magnetic scattering at ambient pressure (see Fig. 4.35(b)). The broad

diffuse scattering centered at about 1.6 Å−1 exist also under pressure and is due to AF
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correlations. However, in this case, when the pressure increases, the scattering at low q

values also increases indicating that FM correlations also develop.
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Figure 4.51: q-dependence of the neutron scattering cross-sections in the martensitic (320
K) states of Ni50Mn40Sb10 (Ms = 440 K). (a) The nuclear cross-section plotted in the range
0.5 ≤ q ≤ 2.6 Å−1 under 0.5 and 10 kbar pressure. At lower q, the nuclear scattering of
fluorinert is seen. The structure is 4O orthorhombic. (b) The magnetic cross-section in the
martensitic state at 320 K. The green line shows the magnetic scattering at ambient pressure.
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The results of polarization analysis and FMR experiments are compared to the result

of density functional theory (DFT) calculations. The magnetic exchange parameters

have been calculated for Ni-Mn-Sb within DFT [108]. The exchange parameters for the

cubic L21 phase is shown in Fig. 4.52 along with the L21 cubic structure of Ni-Mn-

Sb. Ni, Mn and Sb sites are indicated by black, pink and blue spheres. It is assumed

that Mn1 and Mn2 refer to Mn atoms located on the original Mn sites and on the Sb

sites, respectively. We observe coexistence of strong FM Mn-Ni (Mn1-Ni and Mn2-Ni)

interactions and AF interactions between nearest neighbor Mn1-Mn2 atoms. As a result

of the larger number of the nearest neighbor Mn-Ni interactions, ferromagnetism can

prevail and Ni2Mn1.6Sb0.4 (corresponding to Ni50Mn40Sb10) behaves as a ferromagnet in

the austenitic state.
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Figure 4.52: The exchange parameters Jij between pairs of atoms i and j for different coordi-
nation shells obtained by DFT calculations for the cubic L21 austenite phase in Ni2Mn1.6Sb0.4

(Ni50Mn40Sb10) with the L21 cubic structure. The coordination shells are characterized by
their interatomic distance rij given in units of the cubic lattice constant. The Ni-Ni contribu-
tions and the interactions with Sb-atoms are small and, thus, are omitted for clarity.
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Figure 4.53: Comparison of the exchange parameters Jij between pairs of atoms i and j for
different coordination shells obtained by DFT calculations for a tetragonally distorted structure
with the c-axis reduced by 8% relative to the a- and b-axis in Ni2Mn1.6Sb0.4 (Ni50Mn40Sb10)
for (a) ferromagnetic and (b) ferrimagnetic configurations. The coordination shells are charac-
terized by their interatomic distances rij given in units of the cubic lattice constant. The Ni-Ni
contributions and the interactions with Sb-atoms are small and, thus, omitted for clarity.

In the martensitic state, a competition between FM, AF and even ferrimagnetic (FI)

configurations can occur. The DFT calculations are done for a tetragonally distorted

martensite structure by reducing the c-axis by 8% with respect to the a-axis (c/a=0.92)

in Ni2Mn1.6Sb0.4, and in the FI configuration, the Mn spins on the Sb sites (Mn2) are

assumed to be flipped. A comparison of the exchange parameters for the tetragonal case

is shown in Figs. 4.53(a) and (b) for FM and FI configurations respectively. In the FM

configuration, AF nearest neighbor Mn1-Mn2 interactions are stronger than FM Mn-Ni

interactions, and as a result of large number of AF interactions in the martensitic state,

the magnetic coupling in the tetragonally distorted state of Ni2Mn1.6Sb0.4 can be AF.

In Fig. 4.53(b), the FI configuration exhibits a significant decrease of the FM Mn-Ni

contributions, which is caused by the breakdown of the induced moments on the Ni-sites.

The Mn1-Mn2 interaction is stronger than the Mn-Ni interactions. In both AF and FI
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cases, the tetragonal distortion leads to a significant strengthening of AF interactions

in the martensitic state.

The results of these calculations suggest that AF interactions occur in Ni2Mn1.6Sb0.4

in the tetragonally distorted state and are in agreement with the results of FMR and

neutron scattering experiments.
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5. Conclusion and Outlook

In this thesis various experimental techniques were used to understand magnetic and

structural properties of Ni-Mn-based martensitic Heusler alloys under three main goals.

The first goal was to design new Heusler materials and to investigate the basic properties.

For this purpose, a method was provided based on the e/a dependence of Ms for different

Ni-Mn-based Heusler alloys. At constant e/a, by Ga substitution for In in Ni50Mn34In16,

Ms shifted to higher temperatures so that favorable properties of Ni50Mn34In16, such as

the magnetocaloric effect and the magnetic-field-induced strain were brought to the

vicinity of room temperature. At increased e/a, by partially substituting Sn for In, the

magnetocaloric effect was improved from 8 to about 21 Jkg−1K−1, while the magnetic

superelasticity was preserved. The adiabatic temperature-change was measured directly

in these alloys using a magneto-calorimeter. ∆Tad measurements showed that applying

a magnetic field leads to a temperature increase of the material around TA
C (conventional

MCE), and a temperature decrease below Ms (inverse MCE). Table 5.1 summarizes the

magnetocaloric properties of Ni50Mn34In16 and its substituted alloys.

The second goal was to investigate the effect of a magnetic cooling-field. We proposed

that the temperature dependence of strain under a magnetic cooling-field could be use-

ful in providing information on the easy-direction of magnetization in the martensitic

state using polycrystalline samples. The easy-direction of magnetization is found to be

along the short-axis in Ni50Mn27Ga23 and Ni50Mn35Sn15, whereas in Ni50Mn34In16 and

Ni50Mn37Sb13, the easy-direction is along the long-axis. The results were confirmed by

comparing the well-known properties of single crystalline Ni2MnGa Heusler alloys.

The structural properties of Ni-Mn based Heusler alloys were investigated in the

absence of magnetic field and in the presence of a cooling-field. In Ni50Mn34In16, the

austenite and martensite phases coexisted in the martensitic state when the sample was

cooled through Ms in a magnetic field. 45% rest-austenite phase was found at 5 K under

5 T cooling-field.

The third goal was to understand the nature of magnetic interactions in Ni-Mn

based Heusler alloys. For this purpose neutron polarization analysis and ferromagnetic

resonance experiment were undertaken. The presence of exchange-bias and the broad

temperature range of the FM transition in the martensitic state suggested the presence

of AF coupling below Ms. However, until now, no direct evidence has been provided

for the presence of antiferromagnetism. We show here that the q-dependence of the

magnetic scattering of Ni50Mn40Sb10 below Ms shows features related to the presence
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Sample TM
C (K) Ms(K) TA

C (K) ∆S(Jkg−1K−1) ∆Tad(K)

Ni50Mn34In16 225 243 308 8/-5 -2/3.5

Ni50Mn34In14Ga2 210 275 293 8/-5 -2/3.5

Ni50Mn34In12Ga4 135 347 − −/− −/−
Ni50Mn34In15Sn1 225 243 305 20.6/− -7/−

Table 5.1: The characteristic temperatures TM
C , Ms, TA

C and ∆S and ∆Tad for the inverse
and conventional MCE are listed for Ni50Mn34In16 and its quaternary alloys.

of short-range AF correlations. Above the martensitic transformation of this alloy, in

spite of the absence of long-range FM ordering, we observed the presence of FM short-

range correlations. Similar experiments on Ni50Mn37Sn13 showed also the presence of

FM correlations above Ms. However, just below Ms, only AF coupling was observed

explaining the sudden drop in M(T ) below the martensitic transformation. In the PM

region above TA
C , the FM short-range correlations were still observed in the magnetic

scattering. FMR results in Ni50Mn37Sn13 showed in addition to the presence of AF

correlations below Ms, the appearance of AF exchange concurrently with the appearance

of long-range FM ordering below TM
C . These results show the existence of a mixed

magnetic state in the martensite phase. Similarly, in Ni50Mn35In15, FMR experiments

showed the presence of AF exchange coexisting together with long-range FM ordering

below TM
C .

The pressure dependence of M(T ) in Ni50Mn35In15 showed the presence of a shift

of Ms by about 4 K kbar−1. It was found that the rate of change in the transition

temperature with both pressure and magnetic field in this alloy was larger than in other

Ni-Mn-Z Heusler alloys. In addition to the shift of Ms to higher temperatures, M(T )

decreased below Ms more quickly with increasing pressure, and reached smaller values

than M(T ) at ambient pressure. RF (T ) at ambient pressure showed no AF correlations

in Ni50Mn34In16 in the range TM
C ≤ T ≤ Ms. This result is found to be consistent with

those obtained from FMR studies. However, under 15 kbar, emerging AF interactions

are suggested by the increase in RF in this temperature range. This showed that by

applying pressure, the spin orientation can be influenced in the martensitic state just

below Ms in Ni50Mn34In16. AF exchange was found to appear under ambient pressure

only for T < TM
C by FMR studies.

Further studies under pressure were carried out also for Ni50Mn40Sb10. The magnetic

scattering shows that AF short-range correlations are still present under 10 kbar in the
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martensitic state. The results were found to be in good agreement with those of DFT

calculations. These results contribute to the understanding of the physical properties

of martensitic Heusler alloys and can serve as guides to optimize their properties for

applications.

The experimental results in this work on Ni-Mn based Heusler alloys find support

from theoretical predictions. For further studies, one can now consider the results of

theoretical calculations as a starting point to design new high-strain materials based on

martensitic transitions and optimize their properties for promising technological appli-

cations.
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A Appendix

A1 Polarization Analysis

The total cross-section in the case of spin-flip and non-spin-flip scattering (SF and NSF)

can be separated into the partial differential cross-section in the x, y and z directions.

These include all kinds of scattering as, nuclear-coherent (COH), magnetic (MAG),

nuclear spin-incoherent (N) and isotope incoherent(II) scattering.
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By combining these cross sections one can separate the different contributions of the

different cross-sections. In the absence of magnetic scattering, nuclear coherent and

nuclear-spin incoherent cross-sections can be obtain in any direction from the measured

SF and NSF cross sections.
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Rearranging the measured six partial differential cross-sections (Eq. 14-19), the

magnetic scattering can be obtained in two ways:
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So that,the total spin-flip (TSF) and non-spin-flip (TNSF) cross-sections can be given

as follows,
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The nuclear spin-incoherent (N) and nuclear coherent (COH) cross-sections can be de-

fined as using the TSF and TNSF cross sections;
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The detailed derivation of these equations can be found in [72,109,110].
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A2 The Fit Procedure of Ferromagnetic Resonance Signals

The data (dχ”/dH) were integrated to obtain χ”(µ0H) which is characterized by a

Lorentzian shape or a Dyson shape. After that, Lorentzian or Dyson function was fitted

to the data using Origin program. In martenstic Heusler alloys, the analysis showed

that the FMR signals can have a single or multiple Lorentzian lines. For example; in

the paramagnetic austenite phase at 310 K, Ni50Mn37Sn13 has a single Dyson line as

shown in Fig. A1. However, in ferromagnetic austenite phase or in martensite phase

FMR shows more than one signal. In Fig. A2(a) and (b) show FMR signals with a

multiple structure at 180 K for Ni50Mn35In15 and Ni50Mn37Sn13 respectively. In Fig.

A2(a), three and in (b) four signals are shown by green Lorentzian lines contributing to

the signal. The location of the peaks gives Hres.
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Figure A1: A Dyson line fitted to FMR signal at 310 K for Ni50Mn37Sn13. Red line shows
the calculated fit.
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Figure A2: Multiple Lorentzian lines fitted to FMR signal at 180 K (a) for Ni50Mn35In15

and (b) for Ni50Mn37Sn13. Red lines show the calculated fits. The data are a sum of the
Lorentzian lines.
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[98] T. Freltoft, P. Böni, G. Shirane, and K. Motoya, Neutron scattering of the
itinerant-electron magnet YMn2, Phys. Rev. B 37, 3454 (1988).

[99] I. Galanakis, P. H. Dederichs and N. Papanikolaou, Slater-Pauling behavior and
origin of the half-metallicity of the full-Heusler alloys, Phys. Rev. B 66, 174429
(2002).

[100] J. Rusz, L. Bergqvist, J. Kudrnovsky and I. Turek, Exchange interactions and
Curie temperatures in Ni2−xMnSb alloys: First-principles study, Phys. Rev. B 73,
214412 (2006).

[101] R. Y. Umetsu, R. Kainuma, Y. Amako, Y. Taniguchi, T. Kanomata, K.
Fukushima, A. Fujita, K. Oikawa, and K. Ishida, Mössbauer study on marten-
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and Pascal P. Deen, Structural properties and magnetic interactions in martensitic
Ni-Mn-Sb alloys, Philosophical Magazine, 89 (2009) 2093.
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Planes, Magnetization easy-axis in martensitic Heusler alloys estimated by strain
measurements under magnetic-field, Applied Physics Letters, 91 (2007) 251915.
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