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Abstract

An un-permitted deviation of at least one characteristic property or parameter of a system
from standard condition is referred as a fault. Faults result in reduced efficiency of the
system, reduced quality of the product, and sometimes complete breakdown of the process.
This not only causes economic losses but may also result in fatalities. An early detection of
faults can assist to avert these losses. Therefore, fault detection and process monitoring is
becoming an essential part of modern control systems. Fault detection in linear dynamical
systems has been extensively studied and well established techniques exist in the literature.
However, fault detection for nonlinear dynamical systems is yet an active field of research.
This work is motivated by the fact that most of real systems are nonlinear in nature and
there is a need to develop fault detection techniques for nonlinear systems. Observer-
based methods for fault detection have proven to be among the most capable approaches,
therefore, this research is focused towards these methods.

The first step in observer-based fault detection is to generate a symptom signal, called
the residual signal, which carries the information of faults. This is done by comparing the
measurements from the process to their estimates generated by an observer (filter). It is
desired that the residual signal is sensitive to faults and robust against disturbances. This
research presents new methods for designing observer (filter) to generate residual signal
which is sensitive to faults and robust against disturbances. Three types of filters are
proposed in this dissertation; these include a fault sensitive filter, disturbance attenuating
filter, and a filter to achieve simultaneous attenuation of disturbances and amplification of
faults.

Despite the disturbance attenuation property of the proposed filters, the residual signal
is not completely decoupled from the effect of disturbances and uncertainties. Therefore,
a threshold is needed to care for the effect of disturbances and uncertainties. Selection
of threshold plays an important role in the performance of the fault detection system. If
it is selected too high, some faults will not be detected. Conversely, if it is selected too
low, disturbances and uncertainties will result in false alarms. This research presents a new
method to determine the threshold to avoid false-alarms and to minimize missed-detections.
A threshold generator is proposed which is itself a dynamic system and produces a variable
threshold. This threshold changes with the effects of uncertainties and disturbances and fits
more tightly to the fault-free residual signal and, hence, the performance of fault detection
system is improved.

In addition to the residual generation stage, the efficiency of a fault detection system can
also be optimized by post-filtering. A further contribution of this research is in proposing
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Abstract

a post-filter which operates on the residual signal to generate a modified residual signal.
This modified residual signal is simultaneously sensitive to faults and robust against dis-
turbances. Together with this post-filter, a strategy is adopted to select a threshold which
maximizes the fault detectability and minimizes the number of false-alarms.
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Chapter 1
Introduction

This chapter gives a brief description of the motivations and objectives of this
study. The outline of the dissertation and its contribution are also presented in
this chapter.

1.1 Motivations

The topic of research in this dissertation is observer-based fault detection in nonlinear
systems. The motivations of carrying out this study can be elucidated by the following
three questions: (1) Why fault detection? (2) Why observer-based methods? and (3) Why
nonlinear systems? These questions are answered below.

Why fault detection? Due to increasing demand in high degree of sophistication and
automation, there is an increasing trend in the complexity of technical processes. With
increased complexity, the probability of occurrence of faults is also increased. Faults can
occur in the process components, sensors or actuators, for example, short circuiting or
overheating of electrical components, breakage in bearings due to mechanical stresses,
leakages in pipes, sticking of valves, cracks in tanks, drifting of sensors etc. Faults can
cause the process to operate far away from the optimal operating points and hence, can
reduce the efficiency of the process, quality of the product and if grown large enough, may
result in complete failure of the process which requires additional costs for maintenance.
Vedam and Venkatasubramanian [1] claim that only in US petrochemical industry, 20
billion dollars per year is lost due to poor abnormal situation management. In safety-
critical processes such as aircrafts, nuclear reactors etc., faults may result in fatalities, a
few incidents are listed below:

● Boeing 747-200F lost both engines on taking off from Schiphol Airport in Amsterdam.
After 15 minutes, the crew lost the control and the plane crashed into a building with
a considerable loss of life. Maciejowski [2] has shown that the incident could have
been avoided by reconfiguration of the controller.

● The American Airline DC10 crashed at Chigao-O’Hare International Airport. The
pilot had the indication of fault only 15 seconds prior to the accident. Later studies
showed that the crash could have been avoided [3].

1



1 Introduction

● An explosion happened in a huge nuclear power plant in the town of Chernobyl in
1986. The main cause for this tragedy was the faulty outdated technology and the
lack of a fault handling mechanism [4, 5].

● Due to complete loss of flying surface in tail, Japan Airlines Flight 123 was crashed
on 12 August 1984 resulting in 520 casualties [6].

● In Delta flight 1080 from San Diego to Los Angeles, the elevator became jammed
at 19 degrees up and the pilot was given no indication of the failure. However, the
pilot manged to reconfigure the lateral control elements and managed to land safely
[3, 5, 7].

Timely detection of faults can avoid, or at least, minimize the severity of economic
losses and fatalities by reconfiguration of controllers or safely switching off the process for
maintenance. For example, the later studies carried out for the above mentioned incidents
proved that many incident could have been avoided if there were a suitable monitoring
system. Engineers and researchers have realized the usefulness of fault detection and
isolation (FDI) and fault tolerant control (FTC) as indicated by several research papers,
invited tutorials, plenary talks in well reputed conferences such as ACC, CDC, IFAC
SAFEPROCESS, ECC and IFAC World Congress, and research papers in high ranked
journals.

Why observer-based methods? Fault detection and isolation (FDI) can be achieved by
adding either hardware (or physical) redundancy or analytical redundancy in the process.
Hardware redundancy means that additional (redundant) components are used in parallel
to the process components. If the behavior of a process component is different from that
of the redundant component, it gives an indication of the occurrence of a fault. Hard-
ware redundancy has the advantages of high reliability and direct fault isolation but has
associated disadvantages of additional cost, additional space required to accommodate the
components and additional weight [8–10]. The analytical redundancy based approaches
give indication of faults by comparing the measured outputs of the process to their es-
timations. Analytical redundancy based fault detection algorithms can be implemented
on some digital computer and hence avoid the disadvantages related to the hardware
redundancy based fault detection techniques. Due to associated advantages, analytical
redundancy based approaches are becoming more and more popular. Figure 1.1 depicts
the concepts of hardware and analytical redundancy based fault detection, the analytical
redundancy based fault detection algorithms can be implemented in the same processor
which implements the control algorithms, thus no additional hardware is needed.

Among the analytical redundancy based fault detection schemes, analytical model-based
techniques use the deepest knowledge of the monitored process and, therefore, are the most
capable approaches for fault detection [11, 12]. There are three types of analytical model-
based approaches, these include: the observer-based approach, parity-space approach and
the parameter identification approach. In the past few decades, observer-based methods
have received considerable interests. There are possibly three reasons for this particular at-
tention to observer-based methods. Firstly, due to associated advantages of observer-based
approaches, e.g., quick detection, requiring no excitation signal, possibility of on-line im-
plementation etc. Secondly, other model-based approaches which include parity-space ap-
proach and parameter identification approach are, under certain conditions/assumptions,

2



1.1 Motivations

(a) Hardware redundancy

(b) Analytical redundancy

Figure 1.1: Hardware redundancy vs analytical redundancy: (a) shows the hardware redun-
dancy based fault detection, additional redundant components are used to analyze the presence
of faults, (b) shows the analytical redundancy based fault detection, FDI algorithms can be im-
plemented in the same processor which implements the control algorithms, thus no additional
hardware is needed.
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1 Introduction

a specific form of the observer-based approaches, and thirdly, control engineers are more
familiar with the concepts of observer design.

Why for nonlinear systems? Fault detection for linear dynamical systems has been well
studied and quite a large number of methods exist in literature. One can find a detailed
study of these methods in recent books [8, 13–19] and survey papers [9, 11, 20–25]. Recall
that most of the systems are nonlinear in nature, one method for fault detection in nonlinear
systems is to linearize them at some operating point and use the techniques developed for
linear systems. The linearization errors can be modeled as unstructured uncertainties and
their effects can be taken care of by utilizing the robust methods [8, 10]. However, if the
process has high nonlinearities, or the operating region is too wide, the linearization error
will be too large to be handled by the robust linear fault detection techniques. Therefore,
there is a need to study fault detection techniques for nonlinear systems. Fault detection in
nonlinear dynamical systems is still an active field of research [26–30] and there is enough
space for further improvements.

1.2 Objectives

The idea of observer-based fault detection is to generate estimations of measured signals
using model of the monitored process, and compare the measurements with their estima-
tions to generate a symptom signal, called the residual signal , which carries the information
of faults. In ideal situations, when there are no disturbances and modeling uncertainties,
the estimations will completely match with the measurements in fault-free case and the
residual signal will be zero. Any deviation of residual signal from zero will give an in-
dication of faults. However, the presence of modeling uncertainties and disturbances is
inevitable. Therefore, the aim is to design observers such that the affect of disturbances
and uncertainties on the residual signal is reduced while the affect of faults is considerably
increased. Now, instead of setting deviation of residual from zero as indicator of faults, a
threshold which cares for the effect of disturbances and uncertainties, should be selected
and if the residual exceeds the selected threshold, it gives an indication of the presence
of faults. The selection of threshold plays a very important role in the performance of a
fault detection system, if it is selected too low, some of the disturbances and uncertainties
will cause the residual to cross the threshold and appear as faults, this is definitely not
desired. Conversely, if the threshold is selected too high, some of the faults will not enable
the residual to cross the threshold, and hence will remain undetected. One solution is to
select, instead of a constant threshold, a variable threshold which changes with the varia-
tions in the effects of uncertainties and disturbances on the residual signal, more the affect
of uncertainties and disturbances on residual signal, higher is the threshold and vice versa.
This can, to a large extent, improve the performance of fault detection system. In brief,
the main objectives in the design of a fault detection system are to design an observer
such that the residual signal is minimally influenced by disturbances and uncertainties and
is maximally influenced by faults, and to select a threshold which is as close to fault-free
residual signal as possible. These design objectives have been solved for linear dynamical
systems, comprehensive study can be found in recent monograms [8, 13–15]. The objectives
of this dissertation is to present techniques for optimal residual generation and threshold
computation for nonlinear dynamical systems. These objectives can be summarized in the

4



1.3 Outline and contribution of the thesis

following two points

1. Generation of residual signal sensitive to faults and robust against disturbances. To
discuss the sensitivity and the robustness level, the worst case situation should be
considered, i.e., the faults which have minimum effect on residual and disturbances
which have maximum effect on residual should be considered.

2. To avoid too conservative threshold, and hence to improve the performance of fault
detection system, extension of the concept of variable threshold to nonlinear dynam-
ical systems.

If the above mentioned objectives are achieved, faults will be detected more quickly, while
there will be less number of false alarms. From the previous statement, one would instantly
realize that the real goals of fault detection system are high fault detection rate (FDR)
and low false alarm rate (FAR) , optimal residual generation and threshold computation
are only tools to achieve these goals. However, high FDR and low FAR are two conflicting
goals, therefore, an optimal trade-off should be made between the two. An excellent work
to find this optimal trade-off design for linear systems can be found in [13, 31]. The third
objective of this dissertation is to solve the optimal trade-off design problem for nonlinear
systems, which is summarized in the following point

3. Proposing a strategy for nonlinear systems which achieves an optimal trade-off be-
tween high fault detection rate and low false alarm rate.

1.3 Outline and contribution of the thesis

This thesis is divide into seven chapters. The first and the second chapters serve as
introductory material. The rest of the chapters summarize the contribution and research
results of this study.

The first chapter describes motivations, objectives and contribution of the thesis.
Chapter 2 gives an overview of fault detection and isolation (FDI) and presents some

existing methods for fault detection in nonlinear systems. It begins with the definitions
of basic concepts such as faults, failures, fault detection etc. A classification of fault
detection techniques, with a brief discussion on each approach, is also presented in this
chapter. An appropriate attention is paid to observer-based methods, their robustness and
sensitivity issues are elaborated. The chapter also presents fault detection methods for
nonlinear systems, most commonly used observers for fault detection in nonlinear systems
are described in a bit details. State of the art methods for residual evaluation in nonlinear
systems are also presented.

Residual generation is the first step in an observer-based fault detection scheme. It is de-
sired that the residual signal should be sensitive to faults and robust against disturbances.
Over the past, H∞ norm and H− index have been used to measure the disturbance atten-
uation and fault sensitivity property of residual generator. Based on the standard tools
from game theory, Chapter 3 presents approaches for designing H− fault sensitive resid-
ual generator, H∞ disturbance attenuating residual generator and H−/H∞ multi-objective
residual generator for nonlinear systems. The chapter begins with some examples intro-
ducing concepts of H∞ norm and H− index and their significance in fault detection system
design. Then sufficient conditions for H− fault sensitivity of residual signal are derived. A

5



1 Introduction

delicate difference between H∞ filtering problem and H∞ fault detection filtering problem
is explained, an example is provided to highlight the difference. It is explicated that al-
though the H∞ filtering problem has been extensively studied, H∞ fault detection filtering
problem for nonlinear systems has not been discussed. Sufficient conditions for H∞ fault
detection filtering problem are derived for nonlinear systems. Simultaneous attenuation of
disturbances and amplification of faults is desired feature of a residual generator, therefore,
the H−/H∞ multi-objective fault detection filtering problem is discussed. In all the three
filters, both finite horizon and infinite horizon cases are handled. The proposed methods
are demonstrated by simulation examples.

With the fault detection filters mentioned above, the effect of disturbances on the resid-
ual signal is not completely eliminated, therefore, there is a need to use a threshold.
Selection of threshold is significantly important in the design of a fault detection system,
preferably a variable threshold can achieve a better performance. Chapter 4 begins with
explaining the concept of variable thresholds. Based on the recently proposed approach
of dynamic threshold generation for linear systems, Chapter 4 presents an approach to
generate dynamic threshold for a class of nonlinear systems. A dynamic upper bound on
the modulus of error dynamics is obtained which is used to generate a dynamic threshold.
With a simulation example of a simple second order system, it is demonstrated that the
proposed method of dynamic threshold generation can successfully avoid false alarms and
can detect small faults.

The residual generation methods presented in Chapter 3 and threshold selection tech-
nique presented in Chapter 4 are tools to achieve a trade-off between high FDR and low
FAR. This optimal trade-off can also be reached by designing a dynamic post-filter and
a determining a threshold. With the assumption that a stable residual generator is avail-
able, Chapter 5 presents an approach to design a post-filter and determine a threshold to
attain an optimal trade-off between high FDR and low FAR. The optimal trade-off design
problem is formulated into two optimization problems; these are the maximization of fault
detectability for an allowed FAR and the minimization of false alarms for a required FDR.
For the first optimization problem, a threshold is selected which guarantees that the FAR
is not more than the allowed one. Then based on the selected threshold and utilizing
the factorization approach, a post-filter is proposed which maximizes fault detectability.
Similarly for the second optimization problem, a threshold is selected to ensure the re-
quired FAR and the post-filter minimizes the number of false alarms. Furthermore, it is
demonstrated that after using the post-filer, which acts on the residual signal to generate
a modified residual signal, the modified residual signal is sensitive to faults and robust
against disturbances, i.e. the proposed post-filter also gives optimization in the sense ofH−/H∞ optimization. A simple example is provided to illustrate the proposed methods
and to show its effectiveness.

Chapter 6 gives the application of the optimal trade-off design method developed in
Chapter 5 to the three tank system. The three tank system has high nonlinearities and is,
therefore, widely used as a benchmark to test nonlinear control and FDI algorithms. After
describing the three tank system, a fault detection filter is used to generate residual signal.
Then a post-filter is designed and threshold is computed to give and optimal trade-off
between high FDR and low FAR. The simulation results are presented which show that
all the faults including sensor faults, actuator faults and component faults are successfully
detected. Both abrupt and incipient fault situations are presented.

The concluding remarks of this research and some future recommendations for possible

6
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extension of the work are presented in the last chapter.
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Chapter 2
Background and state of the art

This chapter introduces to the basic concepts in fault detection and isolation
(FDI) and presents some existing methods for fault detection in nonlinear sys-
tems. Fundamental concepts, such as faults, failures, fault detection, fault iso-
lation etc. are defined. Different types of faults and their effects on the perfor-
mance of processes are explained. Several methods for fault detection exist in
literature; a widely accepted classification of these methods is presented with a
particular focus on the model-based fault detection techniques. Observer-based
fault detection in nonlinear systems is of major interest in this thesis, therefore,
state of the art observer-based residual generation methods for nonlinear sys-
tems are presented in a bit details. Most commonly used evaluation functions
and threshold selection approaches are described.

2.1 Some basic concepts

The terminologies used in FDI has been fairly standardized after the suggestions from
SAFEPROCESS Technical Committee [25]. Throughout the text a fault means an un-
permitted deviation of at least one characteristic property or parameter of a system from
the acceptable/usual/standard condition. A very related term is failure which is a per-
manent interruption of the system’s ability to perform a required function under specified
operating conditions. There is a slight difference between fault and failure, failure means
complete breakdown of a component, whereas fault is only deviation from normal char-
acteristics. As far as detection is concerned, faults and failures can be treated alike. In
sequel, we will use the term fault to encompass failure as well.

Faults can be described as external inputs or parameter deviations which change the
behavior of the process. Like faults, disturbances and uncertainties can also be modeled as
external inputs. Furthermore, disturbances and uncertainties have effects on the process
similar to that of faults. But as compared to faults, disturbances are unavoidable and
are present even during the normal operation of the process. Moreover, the controller is
designed so that it can perform well in the presence of disturbances. Faults, on the other
hand, are more severe changes and their affects can not be overcome by a fixed controller
and, therefore, must be detected.

The purpose of fault diagnosis is to detect faults and to determine their locations and

9



2 Background and state of the art

Figure 2.1: Representation of different kinds of external inputs to a system, including faults,
disturbances and parameter variations

significance. The procedure of fault diagnosis consists of three steps namely fault detection,
fault isolation and fault identification. Fault detection (FD) is the process of determining
the presence of faults and the time of their occurrence. The function of fault isolation
is to exactly locate the reason or the origin of fault. Once the fault has been detected
and isolated, the step of fault identification starts that aims to find an approximate time
behavior of the fault. The conditions for the isolation of faults are quite harder and that
of fault identification or even more stringent (see [13, Chapter 4]) which makes it, in most
situations, impossible to isolate and identify the faults. The scope of the thesis is limited
to the detection of faults.

2.1.1 Types of faults

Fault in a system is an external input that causes a deviation from the normal behavior of
the system. Faults can occur in the actuators, process components or the sensors as shown
in Figure 2.1, and are categorized accordingly. Each of these faults and their effects are
briefly described below.

Component faults

These are the faults which appear in the components of plant. Component faults alter the
physical parameters of the plant which, in turn, results in change of its dynamical proper-
ties. The common reason for these faults is usually wear and tear, aging of components etc.
Some examples of component faults are leakages in tanks, breakages or cracks in gearbox
system, change in friction due to lubricant deterioration etc. Component faults may result
in instability of the process, therefore, it is extremely important to detect these faults.

Actuator faults

Actuators are needed to transform control signals into proper actuation signals such as
torques and forces to drive the system. A fault in an actuator may result in higher energy
consumption to total loss of control [28]. Examples of actuator faults include stuck-up of
control valves, faults in pumps, motors etc. Some common actuator faults in servomotors

10



2.1 Some basic concepts

(a) (b)

(c) (d)

Figure 2.2: Graphical representation of common types of actuator faults in servomotors [32].
Dotted lines show the desired value of actuator and the solid lines show actual value. (a)
floating around trim, (b) lock-in-place, (c) hard-over failure and (d) loss of effectiveness

are lock-in-place, float around trim, hard-over failure and loss of effectiveness [28, 32] as
shown in Figure 2.2.

Sensor faults

In closed loop systems, the measurements obtained by sensors are used to generate the
control inputs and any fault in sensors can cause operating points that are far from the
optimal ones [14]. This results in degradation in the performance of the system. It is
therefore, very important to detect these faults. Typical examples of sensor faults are:
bias, drift, performance degradation (or loss of accuracy), sensor freezing and calibration
error [28, 32, 33] as illustrated in Figure 2.3.

Faults can also be categorized according to whether these have developed slowly in the
system (Incipient faults) , arisen suddenly like a step change (Abrupt faults) or occurred
in discrete intervals (Intermittent faults) as shown in Figure 2.4. Abrupt faults have more
severe affects and may result in damage of equipments. However, fortunately abrupt faults
are easier to detect. Incipient faults grow slowly and result in degradation of equipments.
Their slowly changing behavior makes it difficult to detect them.

Faults may also be classified into additive faults and multiplicative faults according to
the way in which these are modeled. Actuator and sensor faults are more easily modeled
as additive faults, whereas component faults are modeled as multiplicative faults.

2.1.2 Desired features of fault detection schemes

Advanced methods of fault detection should satisfy the following requirements [15]

● early detection of abrupt and incipient faults
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(a) (b) (c)

(d) (e)

Figure 2.3: Graphical depiction of different kinds of sensor faults [33]. Solid lines show the
actual values whereas the dotted lines show the measured values. (a) Bias, (b) Drift, (c) Loss
of accuracy, (d) Freezing and (e) Calibration error

(a) Abrupt fault (b) Incipient fault (c) Intermittent fault

Figure 2.4: Graphical illustration of abrupt, incipient and intermittent faults occurring at time
tf

● detection of actuator, component and sensor faults

● detection of faults in closed loop

● supervision of processes in transient states

Other than the above mentioned features, a fault detection technique should consume less
computational cost so that on-line implementation is easily achieved. Furthermore, the
design procedure should be simple.

2.2 Classification of fault detection schemes

The importance of fault detection has been realized since the invention of machines. The
earliest way of detecting faults was biological senses, such as looking for changes in color and
shape, listening to sounds unusual in pitch and loudness, touching to feel heat or vibration,
and smelling for fumes because of leakage or overheating [16]. However, with industrial
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revolution, there was a need to autonomously detect faults without human intervention.
This was to save extra labor, to achieve more precise and quick detection of faults and the
fact that some parts or location may not be accessible to, or dangerous for human beings.

Classical way of fault detection is by limit checking which is done by setting an upper
and lower limit for the measured variables. If the measured variable exceeds the limit, it
gives indication of fault. There has to be a compromise in selecting the limit bound; if
selected too narrow some fluctuations and disturbances will cause an alarm of fault and if
selected too wide, some of the small magnitude faults may not be detected. These methods
are suitable for processes with steady state behavior. The advantage of these methods is
simplicity and reliability for steady-state situations [15, 34]. The disadvantage of limit
checking methods is that faults can be detected only when these grow large enough to
cross the limit. This may cause more damage to the process as compared to that if it
was detected earlier and suitable remedies had been taken. Another disadvantage is that
these methods fail when the monitored process has dynamic properties or the operating
points are changing rapidly. Therefore advanced methods of supervision must be used.
These methods can be classified into i) Plausibility test, ii) Signal-based methods and iii)
Model-based methods. These are briefly described in the following subsections.

2.2.1 Plausibility test

The idea is based on checking the plausibility of measured values. This means that the
measurements are compared with their rough behavior under normal operation, for exam-
ple, the sign and size of the measurements. The plausibility test can be implemented by
simple logical gates. It has the drawback that it is less efficient in detecting faults and
becomes impossible in complex plants.

2.2.2 Signal-based fault detection

In signal-based approaches, one gets the information of faults by collecting some properties
of the measured signals. Examples of these properties are the magnitudes of the time
function, trend checking from the derivative, mean and variance, spectral power densities,
correlation coefficients, etc., of the measured signals. Figure 2.5 shows the conceptual
diagram for signal-based fault detection schemes.

Limit checking of absolute value of the measurements and the limit checking of derivative
(trend) of the measurements are the two most simple and widely used approaches for fault
detection. In limit checking of absolute value of the measurements, suitable upper and
lower limits are set based on the knowledge of the plant, and if the magnitude of the
measurement crosses the limit, it gives an indication of a fault, i.e.,

Ymin ≤ y(t) ≤ Ymax⇒ fault-free

y(t) < Ymin or y(t) > Ymax⇒ faulty

Similarly, in limit checking of the trend of the measurements, if the derivative of the
measurements crosses the pre-defined upper and lower limits, a fault alarm is released, i.e.,

Ẏmin ≤ ẏ(t) ≤ Ẏmax⇒ fault-free

ẏ(t) < Ẏmin or ẏ(t) > Ẏmax⇒ faulty
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Figure 2.5: Schematic diagram of signal-based fault detection scheme

Limit checking approach is simple and can be easily implemented. However, the drawback
is that fault can only be detected when it grows enough to cross the limits. Moreover,
these approaches are not suitable for the dynamic systems with transient behavior.

2.2.3 Model-based fault detection

The idea of model-based fault detection schemes is to compare the behavior of actual pro-
cess to that of the nominal fault-free model of the process driven by the same input. Model-
based approaches are more powerful than the signal processing-based approaches [11, 12],
because these use more information about the process. Figure 2.6 shows the schematic
diagram of a model-based fault detection scheme. It consists of two main stages; residual
generation and residual evaluation. The objective of residual generation is to produce a
signal, called residual signal, by comparing the measurements with their estimates and
the purpose of residual evaluation is to inspect the residual signal for possible presence of
faults.

Based on the model used for the purpose of residual generation, model-based fault de-
tection schemes can further be divided into two categories. The model can be an analytical
model represented by set of differential equations or it can be knowledge-based model rep-
resented by, for example, neural networks, petri nets, experts systems, fuzzy rules etc.
Knowledge-based model approaches do not need full analytical modeling, therefore, are
more suitable in information-poor systems or in situations where the mathematical model
of the process is difficult to obtain or is too complex. This is the case, for example, in
chemical processes which are difficult to model analytically. A comprehensive study of
these methods can be found in survey papers [11, 35–38] and recent books [17, 38]. Re-
cently, hybrid approaches which simultaneously use the mathematical model and neural
networks have also been proposed [28].

In analytical model-based approaches, residual signal is generated using the mathemati-
cal model of the system. The most commonly used analytical model-based approaches for
residual generation include i) Observer-based approach, ii) Parity space approach and iii)
Parameter estimation-based approach, these are described below.
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Figure 2.6: Schematic diagram of model-based fault detection schemes

Figure 2.7: Schematic diagram of observer-based residual generator

Observer-based approach

In observer-based approaches, residual signal is generated by comparing measurements
from process with their estimates generated by an observer (a filter). It should be noted
that there is a difference between observers used for control purposes and observers for
FD. The observers needed for control are state observers, i.e., they estimate states which
are not measured. In contrary, the observers needed for FD are output observer, i.e., these
observers generate estimation of the measurements. A special form is the fault detection
filter, which generates estimation of all the states, irrespective of whether they are measured
or not. In this case, these can be used both for control and FDI. Figure 2.7 shows the
schematic diagram of an observer-based residual generation scheme.

The idea of using observers for residual generation goes back to 1970s when Beard
proposed a detection filter which was later modified by Jones to the so called Beard-Jones
detection filter. In parallel to the Beard-Jones detection filter, Kalman filter was used in
stochastic setting.
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The robustness of residual signal against unknown inputs has been widely discussed in
literature and several approaches have been proposed to tackle this problem, a survey of
these approaches can be found in [39]. The first attempt to improve the robustness of
observer-based instrument fault detection scheme was made by [40]. Robust fault detec-
tion using unknown input observers was a focus of research in 1980’s. With a pioneering
work of [41], a considerable contribution was made in literature by [42–45]. The idea is to
completely decouple the state estimation from unknown inputs (disturbances) using the
information of the unknown input distribution matrix. If the states are decoupled from
the unknown inputs, residual is also independent. A related approach for robust residual
generation is use of eigenstructure approach which also decouples residual from unknown
inputs. The existence conditions for the eigenstructure assignment approach are more
relaxed compared to unknown input observers. In this approach, instead of decoupling
state estimations from unknown inputs, the residual signal is made independent of un-
known inputs. The approach was initially proposed in [46] and further developments were
made in [47, 48]. Another approach for disturbance decoupling was proposed in [49] which
involves geometric approach for decoupling the effect of disturbance. Unknown input ob-
servers, eigenstructure assignment approach and the geometric approach are all based upon
eliminating the effect of disturbance. However, these approaches can not properly handle
modeling uncertainties. One way to handle the uncertainties is to model them as external
unknown inputs and then utilize the disturbance decoupling approaches. The existence
conditions for disturbance decoupling approaches are quite stringent which restricts their
application. Furthermore, if the fault lies in the same space as the disturbances, its effect
on the residual is also decoupled and cannot be detected. Therefore, instead of completely
decoupling unknown inputs, much focus has also been paid to design observers which at-
tenuate the effect of unknown inputs and amplify the effect of faults on the residual signal.
Following the standard results from control theory, several approaches [43, 50, 51] were
proposed utilizing the H∞, H2 indices to design observer so as to attenuate the effect
of disturbance on the residual signal. In parallel to robustness problem, much of atten-
tion is also paid to fault sensitivity problems [52–55]. With simultaneous consideration
to robustness and sensitivity proposed in [56], there were a series of articles which solved
the sensitivity and robustness problem and LMI solutions were presented to solve H−/H∞
multi-objective optimization [53, 55, 57–60]. The unified solution was presented in [61, 62]
which gives a simultaneous solution of the multi-objective Hi/H∞ optimization and in-
volves less computations. A comprehensive study of the unified approach can be found in
[13].

Observer-based approach for fault detection in nonlinear systems is the main interest of
this thesis. A survey of some observer-based techniques for residual generation in nonlinear
systems will be presented in Section 2.4.1.

Parity space approach

The parity space approach uses the check of parity of mathematical equations of the system
by using the measurements. Chow and Willsky [63] first proposed parity equations for state
space model of the system, later contributions were made using the transfer functions in
[64–66]. Figure 2.8 shows the configuration of parity space-based residual gneration [11].

Parity space approach and observer-based approach are similar as shown in [12, 67, 68]
and there exists a one-to-one mapping between the design parameters of observer and
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Figure 2.8: Schematic diagram of parity space approach for residual generator

parity relation based residual generator. Two theorems are presented in [13] that show
how to calculate parity vector corresponding to observer-based residual generator and vice
versa. Thus we can design residual generator in parity space and then can transform
the parity vector into diagnostic observer parameters for on-line implementation. The
implementation of the parity relation based residual generator uses a non-recursive form,
while the observer-based residual generator represents a recursive form. Thus it is usual
to design in parity space and to realize in observer-based structure.

Parity relation based fault detection schemes have also been utilized for nonlinear sys-
tems. Krishnaswami and Rizzoni [69] presented a parity space approach based on the
inverse model of input output nonlinear systems. Recently, [70, 71] generalized the parity
space approach for linear systems to nonlinear systems described by TS fuzzy models.
A comprehensive study of parity space approach for nonlinear processes can be found in
[15]. For multi-input single-output nonlinear systems, the relationship between the parity
relations and high gain observers has been shown in [72, 73].

Parameter estimation based approach

The parameter estimation approach for fault detection was first proposed in [74–76] and is
based on the assumption that the faults are reflected in the physical parameters of systems.
With this assumption, parameters of system are estimated on-line repeatedly, if there is a
discrepancy in the estimated parameters and the actual parameters, it gives indication of
faults. An advantage of parameter estimation approach is that with only one input and
one output signal, several parameters can be estimated which give a detailed picture on
internal process quantities [15]. Another advantage of the method is that it yields the size
of the deviations which is important for fault analysis [11]. Parameter estimation based
approach is useful for component fault detection, although it can also detect sensor and
actuator faults. A disadvantage is that an excitation is always needed in order to estimate
the parameters which may result in problems if the precess is operating at a stationary
points [11]. There are several parameter estimation techniques, among them are methods
of least squares (LS), recursive least squares (RLS), extended least squares (ELS), etc.

Parameter estimation techniques have also been applied to fault detection in nonlinear
systems, study of parameter estimation based fault detection in nonlinear systems can
be found in [15] and application to a nonlinear satellite model in [77]. There is a close
relationship between parameter identification based fault detection and the observer-based
fault detection approach as demonstrated in [78, 79].
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2.3 A comparison of different fault detection methods

It is quite difficult to compare different fault detection schemes. The decision upon which
FD method should be used depends on several factors, among them are the availability of
mathematical model, information about the process, type of disturbances and uncertain-
ties, nonlinearities, closed loop or open loop etc. For example, in electrical and mechanical
systems, it is relatively easy to obtain a mathematical model so analytical model-based
approaches are preferred. In contrary, chemical and industrial processes are difficult to
model, or even if a mathematical model can be obtained, it is quite complex. In that
case, qualitative model-based approaches or signal-based approaches should be applied.
Analytical model-based approaches are usually faster and on-line implementation is easier
hence more suitable for processes with fast dynamics.

Among the analytical model-based approaches, an interesting comparison is presented in
[15] which could be used as a guideline for selecting the FD method. Parameter estimation
based approaches need only the structure of the process as against parity space approaches
and observer-based approaches which need not only the structure of the process but also
the parameters. Both the parity space approach and the observer-based approach do
not need an input signal change to detect faults whereas parameter estimation approach
requires input excitation. To detect multiplicative faults, parameter estimation approach
is a better choice as compared to observers and parity equations. Parity space approaches
are more sensitive to measurement noise as compared to observer-based approaches and
parameter estimation approaches. It is also possible to combine different approaches to
collect the advantages of each approach. A few combining strategies are enlisted in [15].

2.4 State of the art nonlinear FD techniques

Most of the real systems are nonlinear in nature. One approach for the fault detection
of nonlinear systems is to linearize them at operating points and use the well established
theory of linear FDI. The effect of linearization errors is handled by applying robust FDI
schemes. In certain cases when the linearized model does not deviate too much from
the nonlinear model, these approaches can perform well. However, in situations where
the monitored process has high nonlinearities, or the operating region of the plant is
large enough, linearization about a point may result into high modeling errors. Using
the linear model-based approaches will result into high false alarm rate with most of the
faults undetected [22]. These limitations of linear FD methods motivated the researchers
to study the nonlinear fault detection techniques.

Several approaches for fault detection of nonlinear systems have been proposed. These
include analytical model-based techniques [8, 80], neural networks [81], fuzzy systems [11],
data driven methods [82], statistical techniques etc. Among these techniques, the analyt-
ical model-based approaches use the deepest knowledge of the process, and therefore, are
the most capable approaches for fault detection provided that the mathematical model
of the process is available. Three types of analytical model-based residual generation ap-
proaches are classified in the last section, these are the observer-based approach, parity
space approach and parameter identification approach. The major focus of this thesis is
observer-based approaches because of two reasons. Firstly, it has been shown that parity
relations are a special form of observers, called the dead-beat observers (i.e. observers
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having all the poles at origin). Likewise, parameter identification approaches have much
similarities to observer-based approaches. So, it does not cause any loss of generality to fo-
cus on observer-based approaches [12]. Secondly, observers are more familiar to the control
community as compared to parity relations and parameter identification approaches. In
the next subsection, some state of the art methods for observer-based residual generation
in nonlinear systems are explained. Residual evaluation techniques will be presented in
subsection 2.4.2.

2.4.1 Observer-based residual generation

Over the past, several observer-based approaches for residual generation in nonlinear sys-
tems have been proposed, see [8, 22, 27, 30, 39, 80, 83] for survey of these approaches.
Some of them are described in below:

Extended Luenberger observer

The Luenberger observer was used for fault detection in linear systems in [84]. For fault
detection in nonlinear systems, one can linearize the nonlinear model at an operating
point and apply the Luenberger observer. However, if the operating region is too wide, the
linearized model will deviate largely from the nonlinear model, particularly, if the system
is operating away from the linearizing point. The idea of the extended Luenberger observer
is to linearize the model around current estimate of states x̂(t), instead of a fix point (e.g.
x = 0), and then apply the Luenberger observer. Consider, for example, the nonlinear
system

ẋ = a(x,u), x(0) = x0

y = c(x,u)
Then a nonlinear observer is

˙̂x = a(x̂, u) +L(x̂, u)(y − c(x̂, u)), x̂(0) = x̂0

ŷ = c(x̂, u)
where L(x̂, u) is the observer gain which is computed at each time instant in such a way

that the eigenvalues of (∂a(x,u)
∂x
−L(x̂, u)∂c(x,u)

∂x
) are stable. The detailed study can be found

in [85]. A similar approach for state estimation and its application to fault detection has
been proposed in [86]. Because of the requirements of repetitive calculation of observer
gain (which means more on-line computations) and the linearization errors, the extended
Luenberger observer is rarely used in practice.

In stochastic settings, the counterpart of the extended Luenberger observer is the ex-
tended Kalman filter (EKF) . Similar to extended Luenberger observer, the basic idea of
extended Kalman filter is to linearize the system around the current estimation of states
and apply the linear Kalman filter.

The Thau observer approach

The Thau observer was developed in [87] for the state estimation of a class of nonlinear
systems. It has also been applied to fault detection in [88]. The class of nonlinear systems
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examined in this approach is described by

ẋ = Ax +Bu + g(x,u)
y = Cx

It is assumed that the pair (C,A) is observable, the nonlinear part g(x,u) is continuously
differentiable and satisfies the Lipschitz condition locally, i.e.

∥g(x,u) − g(x̂, u)∥ ≤ γ ∥x − x̂∥
The structure of the Thau observer is given by

˙̂x = Ax̂ +Bu + g(x̂, u) +L(y − ŷ)
r = y −Cx̂

and the observer gain L = P −1CT , P is the solution to the Lyapunov equation

ATP + PA −CTC + θP = 0 (2.1)

where θ is a positive parameter which is chosen in such a way that it ensures the solution
of the Lyapunov equation (2.1).

Nonlinear identity observer approach

The nonlinear identity observer was first proposed in [89] for detection and isolation of
component faults. Further contributions were presented in [21, 86]. The nonlinear system
considered is given as

ẋ = a(x,u), x(0) = x0

y = c(x,u)
The nonlinear observer is then given by

˙̂x = a(x̂, u) +L(x̂, u)(y − ŷ)
r = y − c(x̂, u)

Defining the estimation error e = x − x̂, the error dynamics can be written as

ė = A(x̂, u)e −L(x̂, u)C(x̂, u)e +HOT
r = C(x̂, u)e +HOT

where

A(x̂, u) = ∂a(x,u)
∂x

∣
x=x̂

, C(x̂, u) = ∂c(x,u)
∂x

∣
x=x̂

and HOT represents the higher order terms. Neglecting these HOT, the gain matrix L(x̂, u)
can be found in such a way that the error dynamics are asymptotically stable. In some
situations, for example in Lipschitz nonlinear systems, a constant matrix will guarantee
the stability[80]. For the case C(x,u) = Cx, the matrix L(x̂, u) has the form [80]

L(x̂, u) = P −1Â(x̂, u)CTQ
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where the symmetric positive definite matrix P should be such that

KTP
∂a(x,u)
∂x

∣
x=x̂

< 0

where K is the highest rank right orthogonal matrix to C and

Â(x̂, u) = diag(1
2

n∑
j=1

∣ψij +ψji∣) , i = 1,⋯, n

where ψij is the ijth element of the matrix P ∂a(x,u)
∂x
∣
x=x̂

and Q is a matrix satisfying CTQC−

I ≥ 0.

Nonlinear unknown input observer approach

As discussed earlier, the unknown input observer completely cancels the affect of distur-
bances on the residual signals. The unknown input observer was first applied for fault
detection in [41] and later contributions were introduced in [44, 67] for linear systems.
The approach was extended to a class of nonlinear systems in [67]. This approach can be
applied to the class of nonlinear systems modeled by

ẋ = Ax +B(y, u) +Edd +Ef(x,u)ff

y = Cx +Ff(x,u)fs

where d represents the unknown inputs, ff represents the component or the actuator faults
and fs represents the sensor faults. Then the observer is given by

˙̂x = Fz + J(y, u) +Gy
r = L1x̂ +L2y

For the observer to be decoupled from the unknown inputs, following conditions should be
satisfied [80].

TA −FT = GC, F stable

J(y, u) = TB(y, u)
L1T +L2C = 0, TEd = 0

rank(TEf(x,u)) = rank(Ef(x,u))
rank([ G

L2

]) = rank(Ff(x,u))
Provided the above requirements are fulfilled, defining the estimation error e = Tx− x̂, the
dynamics of the residual are governed by

ė = Fe −GEf(x,u)ff + TFf(x,u)fs

r = L1e +L2Ff(x,u)fs

A drawback of the unknown input observer approach is that the class of the systems
covered by this technique is very limited. There are some methods which can transform
other nonlinear model to the form suitable for unknown input observer design approach,
however, the existence conditions for such transformations are very restrictive. Even if
the existence conditions are satisfied, finding the transformations involves the solution of
higher order partial differential equations [8].
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Disturbance decoupling nonlinear observer approach

To relax the existence conditions for the nonlinear unknown input observers, the idea was
extended by [90, 91] to disturbance decoupling nonlinear observers. A more general class
of nonlinear systems was considered in this approach.

ẋ = a(x,u) +Ed(x)d +Ef(x,u)f
y = c(x,u)

To decouple the states from disturbances, a nonlinear state transformation z = T (x) is
used and the transformed system becomes

Ṫ (x) = ∂T (x)
∂x

( a(x,u) +Ed(x)d +Ef(x,u)f)
The transformation should be such that the transformed system becomes unaffected by
disturbances but still reflects the effect of faults. The desired transformation can be selected
as

∂T (x)
∂x

Ed(x) = 0 (2.2)

If such a transformation exists, the transformed system is given by

ż = ∂T (x)
∂x

( a(x,u) +Ef(x,u)ff)
y∗ = c∗(z, u, y)

which no longer has the effect of disturbances. Seliger and Frank [91] have also discussed
a special case when the disturbance distribution matrix is also dependent on u. In that
case the required transformation will also depend on u. Conditions for the existence of
transformation (2.2) are also derived in [91]. If the existence conditions are satisfied, the
problem remains solving the partial differential equations (2.2). After the transformation
is achieved, an observer can be designed using any observer design method, e.g., it can be
designed using nonlinear identity observer approach etc.

High-gain observer approach

High gain observer was initially proposed in [92–94] and was applied to fault detection in
[95–98]. The class of nonlinear systems covered by the approach is represented by

ẋ = Ax + g(x) + m∑
i=1

uiψi(x)
y = Cx

(2.3)

where

A =
⎛⎜⎜⎜⎜⎜⎜⎝

0 1 0 ⋯ 0
⋮ ⋱ ⋱ ⋱ ⋮

⋮ ⋱ ⋱ 0
⋮ ⋱ 1
0 ⋯ ⋯ ⋯ 0

⎞⎟⎟⎟⎟⎟⎟⎠
, g(x) =

⎛⎜⎜⎜⎝

0
⋮

0
gn(x)

⎞⎟⎟⎟⎠
, C = ( 1 0 ⋯ 0 ) ,

ψi(x) = [ ψi1(x) ψi2(x) ⋯ ψin(x) ]T
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Note that the class of systems represented by (2.3) is fairly general, as most of the affine
nonlinear systems can be transformed into (2.3). The required transformation can be found
in [95]. With the assumption that g(x) and ψi are globally Lipschitz, an observer for (2.3)
is of the form

˙̂x = Ax̂ + g(x̂) + m∑
i=1

uiψi(x̂) − S−1θ CT (Cx̂ − y)
where Sθ is the unique solution of the Lyapunov algebraic equation

θSθ +A
TSθ + SθA = CTC (2.4)

The high gain observer design approach was extended to a more general class of nonlinear
systems in [95]. The class of systems is

ẋ = A(t)x +ψ(t, u, x)
y = Cx (2.5)

where

A(t) =
⎛⎜⎜⎜⎜⎜⎜⎝

0 a1(t) 0 ⋯ 0
⋮ ⋱ ⋱ ⋱ ⋮

⋮ ⋱ ⋱ 0
⋮ ⋱ an−1(t)
0 ⋯ ⋯ ⋯ 0

⎞⎟⎟⎟⎟⎟⎟⎠
, C = ( 1 0 ⋯ 0 ) ,

and the ith component ψi(t, u, x) is such that ψi(t, u, x) = ψi(t, u, x1,⋯, xi). Furthermore,
the following two assumptions are satisfied

● ψ is globally Lipschitz w.r.t. x and t, locally w.r.t. u

● ai, i = 1,⋯, n − 1 are known differentiable functions with unknown derivatives, and
there exist ǫ > 0,M > 0,M

′ > 0 such that, for every t ≥ 0, ǫ ≤ ∣ai(t)∣ ≤ M and∣ d
dt
ai(t)∣ ≤M ′

for i = 1,⋯, n − 1

then an observer for (2.5) is of the form

˙̂x = A(t)x̂ +ψ(t, u, x̂) −Λ−1(t)S−1θ CT (Cx̂ − y)
where Sθ is the solution of (2.4) and

Λ(t) = diag{1, a1(t), a1(t)a2(t),⋯, a1(t)⋯an−1(t)}
Sliding mode observer approach

Sliding mode observers have been vastly applied to fault detection in linear systems [99–102]
as well as in nonlinear systems [103–107]. The inherent property of sliding mode observers
of being robust to uncertainties and disturbances makes them suitable for state estimation
and fault detection. Designing a sliding mode observer consists of two steps, construction
of a sliding surface and designing a control law which drives the system trajectories to the
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2 Background and state of the art

sliding surface in finite time. As the trajectories reach to the sliding surface, they become
insensitive to the external disturbances. In below, we describe the major steps involved
in the design of sliding mode observer. The discussion is based on the results from [104].
Consider the class of nonlinear systems described by

ẋ = Ax + g(x,u) +Eψ(x,u, t)
y = Cx (2.6)

x ∈ Rn, u ∈ Rm and y ∈ Rp are the sate vector, input vector and the output vector,
respectively. A ∈ Rn×n, E ∈ Rn×r, D ∈ Rn×q and C ∈ Rp×n are the constant matrices. The
unknown nonlinear term g(x,u) is Lipschitz with respect to x, the unknown nonlinear
term ψ(x,u, t) represents the modeling uncertainties and disturbances and is bounded by
a known Lipschitz function ξ(x,u, t), i.e.,

∥ψ(x,u, t)∥ ≤ ξ(x,u, t)
Under the assumption that rank(C[E D]) = rank([E D]), there exists a coordinate system
in which the triple (A, [E D],C) has the following structure

([ A1 A2

A3 A4

] , [ 0(n−p)×r 0(n−p)×q
E2 D2

] , [ 0p×(n−p) C2 ] ,)
where A1 ∈ R(n−p)×(n−p), C2 ∈ Rp×p are nonsingular. Hence, the system (2.6) can be repre-
sented as

ẋ1 = A1x1 +A2x2 + g1(x,u)
ẋ2 = A3x1 +A4x2 + g2(x,u) +E2ψ(x,u, t)
y = C2x2

(2.7)

If all the invariant zeros of the matrix triple (A, [E D],C) lie in the left half plane, then
there exists a matrix L which has the structure L = [L1 0] such that A1 + LA3 is stable.
Applying the coordinate transformation

z = [ In−p L

0 Ip
]x

to the system (2.7) results into

ż1 = (A1 +LA3)z1 + (A2 +LA4 − (A1 +LA3)L) z2 + [In−p L]g(T −1z, u)
ż2 = A3z1 + (A4 −A3L)z2 + g2(T −1z, u) +E2ψ(T −1z, u, t)
y = C2z2

(2.8)

Then a sliding mode observer for (2.8) is given as

˙̂z1 = (A1 +LA3)ẑ1 + (A2 +LA4 − (A1 +LA3)L)C−12 y + [In−p L]g(T −1ẑ, u)
˙̂z2 = A3ẑ1 + (A4 −A3L)ẑ2 −K(y −C2ẑ2) + g2(T −1ẑ, u) + ν(t, u, y, ŷ, ẑ)
ŷ = C2ẑ2

(2.9)
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2.4 State of the art nonlinear FD techniques

The gain matrix K is chosen such that C2(A2 − A3L)C−12
+ C2K is symmetric negative

definite. The function ν is defined by

ν = k(⋅)C−12

y − ŷ∥y − ŷ∥ if y − ŷ ≠ 0 (2.10)

where k(⋅) is a positive scalar function to be determined. With the state estimation error
defined by e1 = z1 − ẑ1 and ey = y− ŷ = C2(z2 − ẑ2), the motion of estimation error dynamics
associated with the the sliding surface defined by

S = {(e1, ey)∣ey = 0}
is stable if the matrix inequality

ĀT P̄ T + P̄ Ā +
1

ǫ
P̄ P̄ T + ǫγ2

gIn−p + αP < 0

is solvable for P̄ . Where P̄ = P [In−p L], Ā = [A1 A3]T , P > 0, α and ǫ are positive constants
and γg is the Lipschitz constant for the g(x,u) with respect to x. The scalar function k(⋅)
is chosen to satisfy

k(t, u, y, ẑ) ≥ (∥C2A3∥ + ∥C2∥γg + ∥C2E∥γξ)ŵ + ∥C2E2∥ ξ(T −1ẑ, u, t) + ∥C2D2∥ρ(y, u, t) + η
where η is a positive constant and ŵ is the solution to the differential equation

˙̂w = −1

2
αŵ(t)

Geometric approach

The nonlinear geometric approach for fault detection, proposed in [108], is nonlinear ex-
tension to the detection filter proposed by Massoumnia [109]. The idea is based on con-
structing a subsystem which is affected by faults and is decoupled from disturbances. This
is done by finding an unobservability subspace in which all disturbances are unobservable.
Once this subspace has been determined, a simple asymptotic observer is designed for
the subsystem, and this guarantees that the disturbances are decoupled. The geometric
approach can also be used for fault isolation. In this case all faults, except the one to
be isolated, are treated as disturbances and are rendered unobservable to the subsystem.
Persis and Isidori [108] proposed recursive algorithm to find the unobservability subspace.

The geometric approach suffers from the same disadvantages as the unknown input
observer techniques. For certain systems, such an unobservability subspace may not exist
or faults may also belong to the same subspace as the disturbances.

Game theoretic approach for observer design

Game theory has been utilized to design observers for linear [110–112] as well as nonlinear
systems [113–118], specifically in the context of fault detection [50, 119, 120]. The advan-
tage of applying game theory is that extreme case scenario can be treated very easily and
the H∞ disturbance attenuating observers can be designed for nonlinear systems. Another
advantage is that more general class of nonlinear systems can be handled.
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2 Background and state of the art

To design H∞ disturbance attenuation filter using game theory, the fundamental idea
is to find out the worst possible disturbance and then to design an observer gain which
achieves the desired attenuation of the disturbance. If the designed observer can achieve
a desired level of attenuation α to the worst possible disturbance, all other disturbances
which are not the worst disturbance will be clearly attenuated more than that attenuation
level α. Below we present game theoretic observer for nonlinear systems. It should be
noted that this is not a fault detection filter, rather a state estimation filter. The objective
to present it here is that our approach presented in Chapter 2 is base on similar ideas.

For the class of nonlinear systems described by

ẋ = a(x, t) +Ed(x, t)d
y = c(x, t) + Fd(x, t)d

which satisfies the following assumptions

● a, Ed and Fd are smooth functions in x for every t, and continuous in t

● a has an equilibrium point x0, i.e., a(x0, t) = 0 ∀t

● c(x0, t) = 0 ∀t

● x0 is asymptotically stable point of f

● Ed(x, t)F T
d (x, t) = 0 ∀t

Berman [114] proposed the following observer to ensure the H∞ disturbance attenuation
level greater than or equal to α

˙̂x = a(x̂, t) +L(x̂, t)[y − c(x̂)]
ŷ = c(x̂, t)

The filter gain matrix L(x̂, t) is the solution of the following equation

Vx̂L(x̂, t) = −2α2[c(x, t) − c(x̂, t)]T (Fd(x, t)F T
d (x, t))−1

where Vx̂ = ∂V
∂x̂

is the solution of the following partial differential inequality

∂V

∂t
+ Vxa(x, t) + Vx̂a(x̂, t)

− α2[c(x, t) − c(x̂, t)](Fd(x, t)F T
d (x, t))−1[c(x, t) − c(x̂, t)]

+ [c(x, t) − c(x̂, t)][c(x, t) − c(x̂, t)]T + 1

4α2
Vx(Ed(x, t)ET

d (x, t))V T
x ≤ 0

An advantage of the above approach is that more general class of systems can be treated.
An associated disadvantage is that the approach is restricted by the demand to solve
nonlinear partial differential equation (inequality).

Another very interesting approach utilizing the game theory for optimal sensitive fault
detection filter design was introduced in [120]. To describe the method, consider a class of
nonlinear systems described by

ẋ1 = a1(x1, u) + a2(x1, u)x2 +Ef(x1, u)f
y1 = c(x1) + d1

y2 = x2 + d2
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2.4 State of the art nonlinear FD techniques

It is desired to find a filter such that for some fixed positive number α and a given choice
of positive definite matrices Q, M , N , V , Π0, the cost function

J(f, d1, d2) = t1

∫
0

[∣c(x1) − c(x̂1)∣2Q + ∣f ∣2N−1 − α2(∣d2∣2N−1 + ∣d1∣2V −1)]dt − ∣x1(0)∣2α2Π0
(2.11)

is such that

sup
d1,d2

inf
f
J(f, d1, d2) ≤ 0 (2.12)

Based upon the above cost function, the following filter is proposed

˙̂x1 = a1(x̂1, u) + a2(x̂1, u)y2 + 2α2Y −1x1x1
(x̂1, t) ( ∂c

∂x1

(x̂1))V −1(y1 − c(x̂1))
where Y (x1, t), defined on Rn × [0, t1]→ R, is twice continuously differential function with
respect to both x1 and t and Yx1x1

(x̂1, t) is nonsingular for all r ∈ [0, t1]. Furthermore,
Y (x1, t) satisfies the following properties:

1. Y (x1, t) ≥ 0 for all (x1, t) ∈ Rn × [0, t1], and Y (x1,0) = ∣x1∣2α2Π0

2. there exists a function x̂1 ∶ [0, t1] → Rn which is unique minimum of Y (x1, t) with
respect to x1 for each fixed t

3. Y (x1, t) satisfies the following partial differential equation

Yt(x1, t) + Y (x1, t) (a1(u,x1) + a2(u,x1)y2)
+

1

α2
Yx1
(a2(u,x1)MaT

2 (u,x1) − α2Ef(u,x1)NET
f (u,x1))Y T

x1
(x1, t)

+ ∣c(x1) − c(x̂1)∣2Q − α2∣y1 − c(x1)∣2V −1 + α2∣y1 − c(x̂1)∣2V −1 = 0

for all t ∈ [0, t1]
From the cost functions defined in (2.11) and (2.12), it can be seen that the disturbance

attenuation problem in the presence of worst-case fault (the fault to which the residual is
minimally sensitive) is solved. So, this filter should not be understood as a fault sensitive
filter, rather only disturbance attenuation property is achieved by this filter.

2.4.2 Residual evaluation methods

After residual generation, the second step in model-based fault detection scheme is residual
evaluation. In this step, the residual signal is manipulated to indicate the occurrence of
fault. In ideal situations when there is no disturbances or their effect on the residual signal
is completely eliminated, there are no modeling uncertainties and the initial conditions of
the observer are the same as that of the process, the residual signal is zero in fault-free
case. In that case, any deviation of residual from zero will indicate the presence of faults.
However, these ideal situations are never attained and there are always modeling errors,
initial conditions of the observer may be different from that of the process. This causes the
residual signal to deviate from zero even in the absence of faults. The purpose of residual
evaluation is to decide about the occurrence of faults even in the presence of disturbances
and uncertainties.

As shown in Figure 2.9, residual evaluation consists of three stages; these are residual
processing, threshold selection and decision making. These are described below.
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2 Background and state of the art

Figure 2.9: Residual evaluation

Residual processing

Based on the type of the monitored system, two strategies for residual processing have
been used. For deterministic systems, norm-based residual processing strategy is preferred
and for stochastic systems, statistical methods are adopted. Several different evaluation
functions have been proposed in literature. A detailed study can be found in [13]. In
deterministic settings, L2-norm is the most commonly used evaluation function and is
defined as

∥r∥
2
=
¿ÁÁÁÀ ∞

∫
0

rT rdt

The implementation of L2-norm is not feasible, since the value of ∥r∥
2

is not known till
t =∞. Therefore, it is actually implemented over a time window as

∥r∥
2,[t−τ,t] =

¿ÁÁÁÀ t

∫
t−τ

rT rdt

The fault detection systems are designed based on ∥r∥
2

and realized based on ∥r∥
2,[t−τ,t],

this results in loss of the optimality of fault detection system. A detailed study on the
influence of using ∥r∥

2,[t−τ,t] instead of ∥r∥
2

on the performance of fault detection system
has been studied in [121]. In some cases, the RMS value of the residual signal is used as
evaluation function

∥r∥RMS =
¿ÁÁÁÀ1

τ

τ

∫
0

rT rdt

Another evaluation function proposed in [122] is described as

Svr ≜
t

∫
0

v(t − τ)∣r∣dt
where v is a weighting function to increase the influence of the most recent data. Further
discussion on this evaluation function will be made in Chapter 4. A generalized version of
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the above evaluation function is given as

S p
v r ≜ ⎛⎝

t

∫
0

v(t − τ)∣r∣pdt⎞⎠
1/p

Other commonly used evaluation functions for deterministic systems include absolute value,
peak value, average value or moving average etc. In stochastic settings, frequently used
evaluation functions are mean, variance, likelihood ratio (LR), generalized likelihood ratio
(GLR) etc. This thesis is restricted to only deterministic nonlinear systems, further details
about stochastic evaluation functions could be found in [13, 14, 123, 124].

Threshold selection

Selection of threshold is important for a fault detection system. If threshold is selected
too low, it will result in false alarms, i.e. some of disturbances will cause the residual to
cross the threshold and result in an alarm. If the threshold is selected too high, small
faults will not be detected. A detailed study of different threshold selection methods and
their computation details for linear systems can be found in [13]. Although the residual
generation for nonlinear systems has been extensively studied, only a little attention has
been paid to threshold computation for nonlinear systems [125–127]. In deterministic
settings, threshold is usually selected slightly higher than the supremum value of evaluated
residual signal in fault-free case. For example, in the case when L2 is used as evaluation
function, the threshold Jth will be defined by

Jth = αδd
where α = supd≠0,f=0

∥r∥
2∥d∥
2

and ∥d∥
2
≤ δd, d and f represent the disturbance and fault respec-

tively. Computation of α for nonlinear systems requires the solution of partial differential
equations. For Lipschitz nonlinear systems, [125] has shown that these partial differential
equation can be reduced to differential equation and can be formulated into LMI which can
be easily solved using MATLAB. Selection of supremum value of evaluated residual signal
in fault free case results into a conservative threshold which can cause miss-detection of
faults, therefore, some trade-off approaches for threshold selection can be used which will
be discussed in Chapter 5. Instead of using a constant threshold, a variable threshold can
achieve better fault detection. In Chapter 4, we will develop a variable threshold scheme
for a class of nonlinear systems.

Decision logic

The third step in residual evaluation is the decision logic. The simplest decision logic is to
compare the evaluated residual signal with the threshold, if the evaluated residual exceeds
the threshold, the fault-alarm is released, i.e.,

J > Jth⇒ fault

J ≤ Jth⇒ fault-free
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There are also some approaches which use fuzzy logic or neural networks for residual
evaluation, see e.g. [11, 83] for an introductory study. These approaches can be used to
perform either all the three steps of residual evaluation or only one of these steps.

2.5 Summary

This chapter introduced to the fundamental concepts in fault detection with focus on
fault detection of nonlinear systems. Definitions of elementary nomenclature such as fault,
failure, fault detection, fault identification and fault isolation were provided. The differ-
ence between faults and disturbances was elaborated. A classification of fault detection
schemes was presented elaborating the main features of each approach. A particular atten-
tion was paid to observer-based fault detection schemes, their robustness properties were
discussed and several approaches developed over the past for robust residual generation
were introduced. At the end, some state of the art fault detection techniques for nonlin-
ear systems were presented. Commonly used nonlinear observers for residual generation
were explained. A brief description of residual evaluation and threshold computation for
nonlinear systems was described.
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Chapter 3
Residual generation with H−, H∞ andH−/H∞ optimizations

The contribution of this chapter includes the design of fault detection filters
for residual generation in nonlinear systems. Sensitivity to faults and robust-
ness against disturbances are desired features of a residual generation scheme.
Utilizing the game theoretic approach, H− index based fault sensitive, H∞ norm
based disturbance attenuating and H−/H∞ multi-objective fault detection filters
are designed. The proposed methods and their effectiveness are illustrated by
an academic example.

Residual generation is an important step in the design of observer-based fault detection
system. It is desired that the residual signal is significantly sensitive to faults and robust
against all other inputs (including unknown inputs such as disturbances and measurement
noise, and known inputs such as the reference input). To achieve these desired aspects,
several techniques for designing observers for fault detection in nonlinear systems have
been proposed in literature, some of them were presented in Chapter 2. Based on the
disturbance handling property, these techniques can broadly be classified in two categories
– the first category of the approaches aims at complete decoupling of the effect of dis-
turbances on residual signal. Nonlinear unknown input observer, disturbance decoupling
nonlinear observer, geometric approach for nonlinear observer design belong to this class.
The second category of approaches does not make complete decoupling of disturbances,
rather, the effect of disturbances on the residual signal is attenuated. High-gain observers,
game-theoretic approach based observers belong to this second category. Due to quite
stringent existence conditions for disturbance decoupling approaches, the second category
of approaches are getting more attention in recent years [114, 120]. The techniques pro-
posed in this chapter also belong to this second category of approaches, and disturbance
attenuation rather than complete decoupling is addressed. Together with the disturbance
attenuation, we also focus on fault sensitivity of the residual signal. To measure the degree
of disturbance attenuation, H∞ norm is extensively used. Likewise, the so called H− index
have been utilized for linear systems to measure the sensitivity to the faults [13, 54–57].
The fault detection filters presented in this chapter are also based on H∞ norm and H−
index, therefore, it is useful to describe these concepts. We take some examples from linear
systems to elaborate H∞ norm and H− index and their significance in fault detection.
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Figure 3.1: The singular value plot for the example system

Example 3.1. Consider a stable linear system described by

ẋ = Ax +Edd

y = Cx +Fdd
(3.1)

with

A =
⎛⎜⎜⎜⎝
−6 −8 0 0
1 0 0 0
0 0 −6 −4
0 0 2 0

⎞⎟⎟⎟⎠ ,Ed =
⎛⎜⎜⎜⎝

2 0
0 0
0 2
0 0

⎞⎟⎟⎟⎠
C = ( 2.5 1 0 0.25

0 0.5 2.5 1.25
) , Fd = ( 1 0

0 0
)

The related transfer function is Gd(s) = C(sI−A)−1Ed+Fd. The L2 gain from disturbance d
to the signal y changes with the direction and frequency of the disturbance vector. Figure 3.1
shows the plot of principal gains (gain to two extreme cases of disturbance vector directions)
for the system. It can be seen that for the disturbance vector in certain direction and of
specific frequency, the gain ∥y∥

2
/∥d∥

2
is the maximum, this specific disturbance is called the

worst case disturbance (because it has the maximum effects on y) and the corresponding
gain is referred to as the H∞ norm, i.e.

∥Gd∥∞ = sup
ω
σ̄(Gd(jω)) = sup

d≠0

∥y∥
2∥d∥
2

where σ̄(Gd(jω)) represents the upper principal gain of Gd(jω) and ∥⋅∥
2

represents the L2

norm of a signal.

It is clear that if the fault detection filter is so designed to achieve a specific level of
attenuation α to the worst case disturbance, surely any disturbance will have attenuation
greater than or equal to α. The concept of worst case disturbance and hence H∞ distur-
bance attenuation can be generalized to nonlinear systems. Consider a nonlinear system
described by

ΣD ∶

⎧⎪⎪⎨⎪⎪⎩
ẋ = a(x) +Ed(x)d
y = c(x) +Fd(x)d (3.2)
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Figure 3.2: The singular value plot for the example system

then the H∞ norm for the nonlinear system ΣD is given as

∥ΣD∥∞ = sup
d≠0

∥y∥
2∥d∥
2

To explain the concept of H− fault sensitivity, we examine an example of a linear system.

Example 3.2. Consider a linear system described by

ẋ = Ax +Eff

y = Cx + Fff
(3.3)

A =
⎛⎜⎜⎜⎝
−9 −4 0 0
2 0 0 0
0 0 −9 −4
0 0 2 0

⎞⎟⎟⎟⎠ ,Ef =
⎛⎜⎜⎜⎝

2 0
0 0
0 4
0 0

⎞⎟⎟⎟⎠
C = ( −2 −0.5 0 0.125

0 0.25 −4 −1.5
) , Ff = ( 1 0

0 2
)

The related transfer function is Gf(s) = C(sI −A)−1Ef + Ff . The L2 gain from fault f
to the signal y changes with the direction and frequency of the fault vector. Figure 3.2
shows the plot of principal gains for the system. It can be seen that for the fault vector in
certain direction and specific frequency, the gain ∥y∥

2
/∥f∥

2
is the minimum, this specific

fault is called the worst case fault (because it has the minimum effects on y and is, therefore
difficult to be detected as compared to a fault of same magnitude with different direction)
and the corresponding gain is referred to as the H− index, i.e.

∥Gf∥− = inf
ω
σ(Gf(jω)) = inf

f≠0

∥y∥
2∥f∥
2

where σ(Gf(jω)) represents the lower principal gain of Gf(jω).
It is obvious that if the worst fault has an L2 gain ∥y∥

2
/ ∥f∥

2
greater than or equal to a

given positive constant β, then all the faults will have gain greater than or equal to β. The
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3 Residual generation with H−, H∞ and H−/H∞ optimizations

concept of H− can be generalized to nonlinear systems. For a nonlinear system described
by

ΣF ∶

⎧⎪⎪⎨⎪⎪⎩
ẋ = a(x) +Ef(x)f
y = c(x) + Ff(x)f (3.4)

H− index for the system ΣF can be defined as

∥ΣF ∥− = inf
f≠0

∥y∥
2∥f∥
2

For a more practical application, it is useful to define H∞ norm and H− index over a
finite horizon [0, t1] as described in the following definitions.

Definition 3.1. Given nonlinear system (3.2), the H∞ norm of the system ΣD in finite
horizon case represented by ∥ΣD∥∞,[0,t1] is defined as

∥ΣD∥∞,[0,t1] = sup
d≠0

∥y∥
2,[0,t1]∥d∥
2,[0,t1]

where ∥y∥
2,[0,t1] =

√
∫ t1
0
yTydt

Definition 3.2. Given nonlinear system (3.4), the H− index of the system ΣF in finite
horizon case represented by ∥ΣF ∥−,[0,t1] is defined as

∥ΣF ∥−,[0,t1] = inf
f≠0

∥y∥
2,[0,t1]∥f∥
2,[0,t1]

H− fault sensitive filter design has received considerable interests for linear systems
[53–55]. As far as nonlinear systems are concerned, H− fault sensitivity problem has not
been addressed. The H− fault sensitive FDF design problem for nonlinear systems will be
formulated in Section 3.1 and a solution will be presented in Section 3.2.

There has been an extensive research to design H∞ disturbance attenuation filter, both
for linear [50, 128–131] as well as nonlinear systems [114, 117, 120, 132]. However, that re-
search is mainly focused on state estimation rather than output estimation. In Section 3.3,
the difference between the two estimation problems will be highlighted. For the purpose of
fault detection, output estimation is of importance and state estimation is of little use. To
our knowledge, the H∞ disturbance attenuation problem for fault detection in nonlinear
systems has not been studied. The problem of H∞ disturbance attenuation FDF will be
formulated in Section 3.1 and a solution to this problem will be presented in Section 3.3.

The H∞ based fault detection filter attenuates the effects of disturbances on the residual
signal, but at the same time, may also result in the attenuation of the effects of faults
on the residual signal, which is not desired. Similarly, the H− index based fault detection
filter makes the residual more sensitive to faults, but at the same time may also result in
amplification of the effect of disturbances on the residual signal, this is also not desired.
To attain simultaneous H− fault sensitivity and H∞ disturbance attenuation, the multi-
objective H−/H∞ index was proposed in [56]. The multi-objective H−/H∞ index based
fault detection filter for linear systems has been widely studied and LMI solutions are
presented [13, 55]. This problem for nonlinear systems is formulated in Section 3.1 and
the solution is provided in Section 3.4.
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3.1 Problem formulation

3.1 Problem formulation

Consider the affine nonlinear systems described by⎧⎪⎪⎨⎪⎪⎩
ẋ = a(x) +Ed(x)d +Ef(x)f
y = c(x) +Fd(x)d +Ff(x)f (3.5)

where x ∈ Rn is the state vector, y ∈ Rm is the measurement vector, d ∈ Rkd is the vector
of unknown inputs (which include disturbances and measurement noise) and f ∈ Rkf is
the fault vector to be detected, the time argument of these vectors is omitted for nota-
tional simplicity. All the elements in the vectors a(x) ∈ Rn, c(x) ∈ Rm and the matrices
Ef(x) ∈ Rn×kf , Ed(x) ∈ Rn×kd , Ff(x) ∈ Rm×kf , Fd(x) ∈ Rm×kd are smooth functions of their
arguments. For the purpose of fault detection, we apply the following nonlinear FDF

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
˙̂x = a(x̂) +L(x̂, t)(y − ŷ)
ŷ = c(x̂)
r = y − ŷ

(3.6)

where x̂ ∈ Rn is the estimate of the state vector, ŷ ∈ Rm is the estimate of the measurement
vector, L(x̂, t) ∈ Rn×m is the filter gain matrix and r ∈ Rm is residual vector which is used
to decide about the occurrence of faults. Combining the the system state vector and the
filter state vector, the dynamics of the residual generator become

ΣA ∶

⎧⎪⎪⎨⎪⎪⎩
˙̃x = ã(x̃) + Ẽd(x̃)d + Ẽf(x̃)f
r = c̃(x̃) + Fd(x)d + Ff(x)f (3.7)

where

x̃ = [ x
x̂
] , ã(x̃) = [ a(x)

a(x̂) +L(x̂, t)c̃(x̃) ]
Ẽf(x̃) = [ Ef(x)

L(x̂, t)Ff(x) ] , Ẽd(x̃) = [ Ed(x)
L(x̂, t)Fd(x) ] , c̃(x̃) = c(x) − c(x̂)

To achieve the sensitivity and robustness features of the fault detection filter, the fol-
lowing three filtering problems are formulated.

Problem 3.1. H− fault detection filter design
Given system (3.7) and a constant β > 0, find a filter gain matrix L(x̂, t) such that the L2

gain from fault to the residual is greater than or equal to β, i.e.,

∥ΣA ∥−,[0,t1] = inf
d=0,f≠0

∥r∥
2,[0,t1]∥f∥
2,[0,t1]

≥ β (3.8)

Problem 3.2. H∞ fault detection filter design
Given system (3.7) and a constant α > 0, find a filter gain matrix L(x̂, t) such that the L2

gain from disturbance to the residual is less than or equal to α, i.e.,

∥ΣA ∥∞,[0,t1] = sup
f=0,d≠0

∥r∥
2,[0,t1]∥d∥
2,[0,t1]

≤ α (3.9)
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3 Residual generation with H−, H∞ and H−/H∞ optimizations

Problem 3.3. H−/H∞ fault detection filter design
Given system (3.7) and two scalars α > 0 and β > 0, find a filter gain matrix L(x̂, t) such
that

1. The L2 gain from disturbance to the residual is less than or equal to α, i.e.,

∥ΣA ∥∞,[0,t1] = sup
f=0,d≠0

∥r∥
2,[0,t1]∥d∥
2,[0,t1]

≤ α (3.10)

2. The L2 gain from fault to the residual is greater than or equal β, i.e.,

∥ΣA ∥−,[0,t1] = inf
d=0,f≠0

∥r∥
2,[0,t1]∥f∥
2,[0,t1]

≥ β (3.11)

Remark 3.1. In the above formulation, the effect of known inputs u has not been taken into
account. However, in any fault detection system, it is desired that, additional to robustness
against unknown inputs, the residual signal should be robust against the known inputs as
well. In linear systems, the effect of known inputs on the residual generator dynamics is
canceled out, but this is not the situation in nonlinear systems. Thus we should examine
the following augmented system⎧⎪⎪⎨⎪⎪⎩

˙̃x = ã(x̃) + B̃(x̃)u + Ẽd(x̃)d + Ẽf(x̃)f
r = c̃(x̃) + D̃(x̃)u + Fd(x)d + Ff(x)f

Since it is desired that the residual signal should be robust against known inputs u, we may
treat them in the same way as the unknown inputs d, i.e., for the above augmented system,
we may write as ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̃x = ã(x̃) + [ B̃(x̃) Ẽd(x̃) ] ⎡⎢⎢⎢⎢⎣
u

d

⎤⎥⎥⎥⎥⎦ + Ẽf(x̃)f
r = c̃(x̃) + [ D̃(x̃) Fd(x) ] ⎡⎢⎢⎢⎢⎣

u

d

⎤⎥⎥⎥⎥⎦ + Ff(x)f
(3.12)

defining

w = [ u
d
] , Ẽw(x̃) = [ B̃(x̃) Ẽd(x̃) ] , Fw(x̃) = [ D̃(x̃) Fd(x) ]

the system (3.12) is transformed into⎧⎪⎪⎨⎪⎪⎩
˙̃x = ã(x̃) + Ẽw(x̃)w + Ẽf(x̃)f
r = c̃(x̃) +Fw(x̃)w + Ff(x)f (3.13)

which is in the same form as (3.7) and we may perform a similar analysis as will be done
for (3.7).

The approach to solve the above stated filtering problems will be based on two-players
zero-sum differential game theory, a brief description of two-players zero-sum differential
games is presented in Appendix A. For a more detailed study, the reader is referred to
[133], and to [134] for particular focus to control problems.

In next section, a game-theoretic approach to provide a solution of the H− FDF design
problem is presented.
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3.2 H− fault sensitive FDF

3.2 H− fault sensitive FDF

The minimum sensitivity problem defined in Problem 3.1 is satisfied if the functional
defined by

J (L, f) ≜ t1

∫
0

{rT r − β2fTf}dt ;d = 0 (3.14)

is greater than or equal to zero for each possible fault. This can be viewed as a two player
zero-sum differential game with the cost functional (3.14). The minimizing player tries to
minimize the functional through f and the maximizing player maximizes the functional
through L. Below we present a theorem which provides a solution to the sensitivity prob-
lem. Vx and Vx̂ are row vectors of first partial derivatives of V with respect to x and x̂,
respectively.

Theorem 3.1. Given system (3.7), a positive constant β and assume
A1. Rf ≜ F T

f (x)Ff(x) − β2Ikf
> 0

A2. Ff(x) is a square matrix
If there exists a function V (x̃, t) with V (x̃(0),0) = 0 that satisfies the following Hamilton-
Jacobi-Isaacs (HJI) equation

−
∂V (x̃, t)

∂t
= Vx(x̃, t)a(x) + Vx̂(x̃, t)a(x̂)

+ c̃T (x̃)(Ff(x)R−1f F
T
f (x))−1c̃(x̃) − c̃T (x̃)c̃(x̃)

− Vx(x̃, t)Ef(x̃)(F T
f (x)Ff(x))−1F T

f (x)c̃(x̃) (3.15)

then L⋆(x̂, t) satisfying

Vx̂(x̃, t)L⋆(x̂, t) = −Vx(x̃, t)Ef(x)(F T
f (x)Ff(x))−1F T

f (x)
+ 2c̃T (x̃)(Ff(x)R−1f F

T
f (x))−1 − 2c̃T (x̃) (3.16)

solves the sensitivity problem (3.8).

Proof. For the augmented system (3.7) with the cost functional (3.14), utilizing the stan-
dard concepts from dynamic game theory we conclude that, if there exists continuously
differentiable function V (x̃, t) on [0, t1] × Rn, satisfying the following Hamilton-Jacobi-
Isaacs equation

−
∂V (x̃, t)

∂t
= max

L∈Rn×m
min
f∈Rk
{∂V (x̃, t)

∂x̃
˙̃x + rT r − β2fTf}

= max
L∈Rn×m

min
f∈Rk
{ Vx(x̃, t)a(x) + Vx(x̃, t)Ef(x)f + Vx̂(x̃)a(x̂)
+ Vx̂(x̃, t)L(x̂, t)c̃(x̃) + Vx̂(x̃, t)L(x̂, t)Ff(x)f

+rT r − β2fTf }
=Vx(x̃, t)a(x) + Vx(x̃, t)Ef(x)f⋆ + Vx̂(x̃, t)a(x̂)

+ Vx̂(x̃, t)L⋆(x̂, t)c̃(x̃) + Vx̂(x̃, t)L⋆(x̂, t)Ff(x)f⋆
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3 Residual generation with H−, H∞ and H−/H∞ optimizations

+ rT (f⋆)r(f⋆) − β2f⋆
T
f⋆ (3.17)

then the pair of strategies (L⋆, f⋆) provides a saddle-point solution, i.e. J (L, f⋆) ≤
J (L⋆, f⋆) ≤ J (L⋆, f). Furthermore, saddle-point value of the game is J (L⋆, f⋆) =
V (x̃(0),0). This ensures J (L⋆, f) ≥ V (x̃(0),0) = 0, which in turn guarantees that L⋆

solves the sensitivity problem (3.8).
Henceforth, for the sake of simplicity of notation, we will not write the arguments of the

functions except where it makes ambiguity. Rest of the proof consists of finding f⋆ and L⋆

and substituting them into (3.17). For that purpose, we define the following Hamiltonian
function

H (L, f) ≜Vx̃
˙̃x + rT r − β2fTf

=Vxa(x, t) + VxEff + Vx̂a(x̂, t) + Vx̂Lc̃ + Vx̂LFff + r
T r − β2fTf (3.18)

To find f⋆ (the fault which has the minimum effect on the residual), we differentiate H
with respect to f (standard results from matrix calculus are applied, Appendix B gives a
table of these results, details can be found in any reference for matrix calculus). It turns
out

∂H (L, f)
∂f

=VxEf + Vx̂LFf + 2rT ∂r

∂f
− 2β2fT

=VxEf + Vx̂LFf + 2rTFf − 2β2fT

=VxEf + Vx̂LFf + 2c̃TFf + 2fTF T
f Ff − 2β2fT

For f⋆ to be the critical point, ∂H (L,f)
∂f

∣
f=f⋆
= 0. Hence, we get an expression for f⋆

VxEf + Vx̂LFf + 2c̃TFf + 2f⋆TF T
f Ff − 2β2f⋆

T = 0

⇒ VxEf + Vx̂LFf + 2c̃TFf + 2f⋆T (F T
f Ff − β

2Ikf
) = 0

⇒ f⋆ = −1

2
R−1f (ET

f V
T
x +F

T
f L

TV T
x̂ + 2F T

f c̃)
where Ikf

represents the identity matrix of dimensions kf × kf and Rf = (F T
f Ff − β2Ikf

).
It follows from Assumption A1 that ∂2H (L,f)

∂f2 ∣
f=f⋆
= (2F T

f Ff −2β2Ikf
) > 0, which means

f⋆ really minimizes the Hamiltonian function. Substitute f = f⋆ in (3.18), we obtain the
following expression

H (L, f⋆) = Vxa(x) + VxEff
⋆ + Vx̂a(x̂) + Vx̂Lc̃ + Vx̂LFff

⋆

+ (c̃ +Fff
⋆)T (c̃ + Fff

⋆) − β2f⋆
T
f⋆

after simplifications,

H (L, f⋆) = Vxa(x) − 1

4
VxEfR

−1
f E

T
f V

T
x −

1

4
VxEfR

−1
f F

T
f L

TV T
x̂

− VxEfR
−1
f F

T
f c̃ + Vx̂a(x̂) + Vx̂Lc̃ −

1

4
Vx̂LFfR

−1
f E

T
f V

T
x

−
1

4
Vx̂LFfR

−1
f F

T
f L

TV T
x̂ − Vx̂LFfR

−1
f F

T
f c̃ + c̃

T c̃ − c̃TFfR
−1
f F

T
f c̃ (3.19)
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3.2 H− fault sensitive FDF

Since all the terms in above expression are scalars, for the purpose of simplification we
may replace some terms by their transpose. As a result:

H (L, f⋆) = Vxa(x) − 1

4
VxEfR

−1
f E

T
f V

T
x −

1

2
VxEfR

−1
f F

T
f L

TV T
x̂

− VxEfR
−1
f F

T
f c̃ + Vx̂a(x̂) + Vx̂Lc̃ −

1

4
Vx̂LFfR

−1
f F

T
f L

TV T
x̂

− Vx̂LFfR
−1
f F

T
f c̃ + c̃

T c̃ − c̃TFfR
−1
f F

T
f c̃

To find L⋆, set ∂H (L,f⋆)
∂L

∣
L=L⋆

= 0 to get:

V T
x̂ c̃

T −
1

2
V T

x̂ VxEfR
−1
f F

T
f −

1

2
V T

x̂ Vx̂L
⋆FfR

−1
f F

T
f − V

T
x̂ c̃

TFfR
−1
f F

T
f = 0

from which we obtain an expression for L⋆

Vx̂L
⋆ = −VxEf(F T

f Ff)−1F T
f + 2c̃T (FfR

−1
f F

T
f )−1 − 2c̃T

It remained to prove by taking the second derivative of Hamiltonian, that L⋆ maximizes
the Hamiltonian. So

∂2H (L, f⋆)
∂L2

∣
L=L⋆
= −1

2
(FfR

−1
f F

T
f ⊗ V

T
x̂ Vx̂)T

where ⊗ represents the Kronecker product of matrices. Since Rf is positive definite by

Assumption A1, ∂2H (L,f⋆)
∂L2 ∣

L=L⋆
will be negative definite, meaning that L⋆ will be maxi-

mizing as required. Furthermore, Assumptions A1 and A2 also ensure that (F T
f Ff)−1 and(FfR

−1
f F

T
f )−1 exist. By substituting f⋆ and L⋆ into (3.17) and performing some simplifi-

cations:

−
∂V

∂t
=Vxa(x) + Vx̂a(x̂) + c̃T (FfR

−1
f F

T
f )−1c̃ − c̃T c̃ − VxEf(F T

f Ff)−1F T
f c̃

This completes the proof.

Remark 3.2. The Assumption A1 is not specific to nonlinear systems only. A similar
assumption is also made for linear systems when H− index problem is formulated. Since
we are only interested in nonzero H− index, this assumption ensures that it is greater than
zero.

Remark 3.3. It should be noted that Assumption A2 does not cause any loss of generality.
In the case that Assumption A2 is not satisfied, some fictitious fault variables can be added
to make Ff(x) a square matrix.

Remark 3.4. If we look at the expression (3.16) very carefully, we notice that, for a
general nonlinear system, it would be quite difficult to find an L which is independent
of states of the system. However, if we could somehow transform the equality in (3.15)
to inequality, there would be more flexibility in the selection of V (x̃, t) and, hence, more
freedom in selection of L [114]. In that case, it will become more easier to select a state
independent filter gain matrix. In this regard, the next remark is useful.

39



3 Residual generation with H−, H∞ and H−/H∞ optimizations

Remark 3.5. The minimum sensitivity problem (3.8) is satisfied if

t1

∫
0

rT rdt − β2

t1

∫
0

fTfdt ≥ 0

the above inequality is also satisfied if for a negative semidefinite Y (x̃(t), t) with
Y (x̃(0),0) = 0, the following inequality holds:

t1

∫
0

rT rdt − β2

t1

∫
0

fTfdt + Y (x̃(t1), t1) ≥ 0

or

t1

∫
0

rT rdt − β2

t1

∫
0

fTfdt +

t1

∫
0

d

dt
Y (x̃, t)dt ≥ 0

which is satisfied if

rT r − β2fTf +
d

dt
Y (x̃, t) ≥ 0

or

−
∂Y (x̃, t)

∂t
≤ ∂Y (x̃, t)

∂x̃
˙̃x + rT r − β2fTf (3.20)

Note that (3.20) is similar to (3.17) except the inequality sign and that Y (x̃, t) must be
negative semidefinite. On one hand (3.20) would be better because the inequality is easy
to deal with ( see Remark 3.4 ), on the other hand, it provides less freedom by restricting
Y (x̃, t) to be negative semidefinite.

Here a question arises, “why to use game theory if we can obtain the sufficient conditions
for the fault sensitivity, as in (3.20), without applying it?” The answer to this question is
that we do not know f , therefore, we have to use its worst-case value. Game theory helps
to find the worst-case fault and the corresponding best case filter gain.

Combining the result from Theorem 3.1 and Remark 3.5, we have the following corollary.

Corollary 3.1. Given system (3.7), a positive constant β and assume
A1. Rf ≜ F T

f (x)Ff(x) − β2Ikf
> 0

A2. Ff(x) is a square matrix
If there exists a negative semidefinite function V (x̃, t) with V (x̃(0),0) = 0 that satisfies the
following HJI inequality

−
∂V (x̃, t)

∂t
≤ Vx(x̃, t)a(x) + Vx̂(x̃, t)a(x̂) + c̃T (x̃)(Ff(x)R−1f F

T
f (x))−1c̃(x̃)

− c̃T (x̃)c̃(x̃) − Vx(x̃, t)Ef(x̃)(F T
f (x)Ff(x))−1F T

f (x)c̃(x̃) (3.21)

then L⋆(x̂, t) satisfying

Vx̂(x̃, t)L⋆(x̂, t) = −Vx(x̃, t)Ef(x)(F T
f (x)Ff(x))−1F T

f (x)
+ 2c̃T (x̃)(Ff(x)R−1f F

T
f (x))−1 − 2c̃T (x̃) (3.22)

solves the sensitivity problem (3.8).
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3.2 H− fault sensitive FDF

Proof. The proof follows directly from Theorem 3.1 and Remark 3.5.

In the case of infinite-horizon filtering problem, i.e., when t1 →∞, and if we are interested
in time-invariant gain for the filter, the function V can be selected independent of time.
In that case, we can summarize the results in the following corollary.

Corollary 3.2. Given system (3.7), a positive constant β and assume
A1. Rf ≜ F T

f (x)Ff(x) − β2Ikf
> 0

A2. Ff(x) is a square matrix
If there exists a negative semidefinite function V (x̃) with V (x̃(0)) = 0 that satisfies the
following HJI inequality

0 ≤ Vx(x̃)a(x) + Vx̂(x̃)a(x̂) + c̃T (x̃)(Ff(x)R−1f F
T
f (x))−1c̃(x̃)

− c̃T (x̃)c̃(x̃) − Vx(x̃)Ef(x̃)(F T
f (x)Ff(x))−1F T

f (x)c̃(x̃) (3.23)

then L⋆(x̂) satisfying

Vx̂(x̃)L⋆(x̂) = −Vx(x̃)Ef(x)(F T
f (x)Ff(x))−1F T

f (x)
+ 2c̃T (x̃)(Ff(x)R−1f F

T
f (x))−1 − 2c̃T (x̃) (3.24)

solves the sensitivity problem (3.8) in infinite horizon sense.

Proof. The proof follows from Corollary 3.1 by substituting a time invariant function
V (x̃).

Note that the H− fault sensitivity conditions derived above do not guarantee the stability
of the filter. This is different from the H∞ disturbance attenuation problem, as will be
discussed in the next section, where the disturbance attenuation condition also pledges the
stability of the filter. Therefore, in designing the H− fault sensitive filter, the stability issue
should be separately addressed. This can be done by selecting a positive definite Lyapunov
function and showing the negative definiteness of its time derivative along the augmented
system trajectories. Another common approach is to design using multi-objective H−/H∞
optimization, as will be described in Section 3.4. In this situation, the H− index gives the
required level of fault sensitivity, and the stability is guaranteed by the H∞ optimization.

Remark 3.6. Our solution to H− fault detection filter design involves solving an HJI
inequality. We come across such HJI inequalities (equations) mostly in dealing with non-
linear systems. The analytical solution of such (inequalities) equations is, in general, hard
to obtain and some numerical approach should be utilized.

In case of linear systems, i.e.

ẋ = Ax +Eff +Edd

y = Cx +Fff + Fdd
(3.25)

with a linear fault detection filter

˙̂x = Ax̂ +L(x̂)(y − ŷ)
ŷ = Cx̂ (3.26)
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3 Residual generation with H−, H∞ and H−/H∞ optimizations

The simplest negative definite function to choose is V (x̃) = (x − x̂)TP (x − x̂) with P ≤ 0.
In this case

Vx(x̃) = 2(x − x̂)TP = −Vx̂(x̃)
and (3.23) is simplified as:

2(x − x̂)TPAx − 2(x − x̂)TPAx̂ + (x − x̂)CT (FfR
−1
f F

T
f )−1C(x − x̂)

− (x − x̂)CTC(x − x̂) − 2(x − x̂)TPEf(F T
f Ff)−1FfC(x − x̂) ≥ 0

(x − x̂)TPA(x − x̂) + (x − x̂)TATP (x − x̂) + (x − x̂)CT (FfR
−1
f F

T
f )−1C(x − x̂)

− (x − x̂)CTC(x − x̂) − 2(x − x̂)TPEf(F T
f Ff)−1FfC(x − x̂) ≥ 0

PA +ATP +CT (FfR
−1
f F

T
f )−1C −CTC − 2PEf(F T

f Ff)−1FfC ≥ 0 (3.27)

and (3.24) simplifies to

− 2(x − x̂)TPL⋆ = −2(x − x̂)TPEf(F T
f Ff)−1F T

f

+ 2(x − x̂)TCT (FfR
−1
f F

T
f )−1 − 2(x − x̂)TCT

PL⋆ = PEf(F T
f Ff)−1F T

f −C
T (FfR

−1
f F

T
f )−1 +CT (3.28)

The design of H− fault sensitive FDF is an iterative procedure. One can begin with the
highest possible value of β permitted by assumption A1, and check for possible existence of
sufficient conditions (3.21),(3.22) ( (3.23), (3.24) for infinite horizon case). If these are not
satisfied then reduce β until the sufficient conditions are fulfilled. For linear systems, these
sufficient conditions are usually formulated into LMIs and the iterations are performed
with efficient algorithms in MATLAB R LMI toolbox.

3.3 H∞ disturbance attenuating FDF

The H∞ nonlinear filtering has been extensively studied in literature, some references are
mentioned at the beginning of this chapter. It should be explicated here that there is a
delicate difference in the H∞ filtering problem and the H∞ FDF. In the former situation,
the objective is to minimize

sup
d≠0

∥c(x) − c(x̂)∥
2∥d∥

2

(3.29)

while in the later case, it is desired to minimize

sup
d≠0

∥y − c(x̂)∥
2∥d∥

2

= sup
d≠0

∥c(x) − c(x̂) + Fd(x)d∥2∥d∥
2

(3.30)

For fault detection purpose, the later optimization is of more interests. To demonstrate the
difference between the two optimization problems and to illustrate that satisfying (3.29)
does not imply that (3.30) is also fulfilled, we give an example from linear systems.
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3.3 H∞ disturbance attenuating FDF

Example 3.3. Consider a linear system described by

ẋ = Ax +Edd

y = Cx + Fdd

with

A = [ 0 1
−1 −1

] , Ed = Fd = C = I2
we apply the following filter for the above system

˙̂x = Ax̂ +L(y − ŷ)
ŷ = Cx̂

the error dynamics are

ė = (A −LC)e + (Ed −LFd)d (3.31)

z = Ce (3.32)

r = Ce + Fdd (3.33)

The disturbance attenuation filtering problem (3.29) is satisfied if an L satisfies the follow-
ing inequality for a positive definite P

P (A −LC) + (A −LC)TP + 1

α2
P (E −LF )(E −LF )TP +CTC ≤ 0

Note that the above inequality is satisfied for α = 1 and

L = [ 1.2011 0
0 0.5344

] , P = [ 1.1454 0
0 1.1454

]
Figure 3.3 shows the singular value plot of the system defined by (3.31) and (3.32). It

can be seen, as guaranteed by H∞ filtering problem, that supd
∥z∥

2

∥d∥
2

= supw σ̄(w) is less than

the predefined value of α. However, as illustrated by Figure 3.4 which shows the singular

value plot for the system (3.31) and (3.33), the same is not guaranteed for supd
∥r∥

2

∥d∥
2

. This

demonstrates the difference between the two filtering problems.

The above example demonstrates that there is a difference between the H∞ filtering
problems and H∞ fault detection filtering problems. The former have been extensively
studied and some references were provided in the introduction of this chapter, while to our
knowledge, the later case have not been discussed for nonlinear systems. This section is
dedicated to the study of H∞ fault detection filtering problem.

Similar to the H− fault sensitivity problem, we can also formulate the H∞ disturbance
attenuation problem as a two-players zero-sum differential game with disturbance d and
filter gain L as two players. Thus defining the cost functional

J (L,d) ≜ t1

∫
0

(rT r − α2dTd)dt (f = 0) (3.34)
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Figure 3.3: Singular value plot for the system defined by (3.31) and (3.32)

10
−1

10
0

10
1

10
2

−1.5

0

2

Frequency [rad/sec]

S
in

gu
la

r 
va

lu
es

 [d
B

]

 

Figure 3.4: Singular value plot for the system defined by (3.31) and (3.33)
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3.3 H∞ disturbance attenuating FDF

the disturbance attenuation problem (3.10) is satisfied if

inf
L

sup
d≠0

J (L,d) ≤ 0

The following theorem gives a solution to the disturbance attenuation problem using the
results from game theory.

Theorem 3.2. Given system (3.7), a positive constant α and assume
A1. Rd ≜ F T

d (x)Fd(x) − α2Ikd
< 0

A2. Fd(x) is a square matrix
If there exists a function Y (x̃, t) with Y (x̃(0),0) = 0 that satisfies the following HJI equation

−
∂Y (x̃, t)

∂t
= Yx(x̃, t)a(x) + Yx̂(x̃, t)a(x̂)

+ c̃T (x̃)(Fd(x)R−1d F
T
d (x))−1c̃(x̃) − c̃T (x̃)c̃(x̃)

− Yx(x̃, t)Ed(x̃)(F T
d (x)Fd(x))−1F T

d (x)c̃(x̃) (3.35)

then L⋆(x̂, t) satisfying

Yx̂(x̃, t)L⋆(x̂, t) = −Yx(x̃, t)Ed(x)(F T
d (x)Fd(x))−1F T

d (x)
+ 2c̃T (x̃)(Fd(x)R−1d F

T
d (x))−1 − 2c̃T (x̃) (3.36)

solves the disturbance attenuation problem (3.10).

Proof. (sketch: details which are similar to the proof of Theorem 3.1 are omitted) For the
system (3.7) with no fault and the cost functional (3.34), if there exists a function Y (x̃, t)
on [0, t1] ×R

n satisfying the following HJI equation

−
∂Y (x̃, t)

∂t
= min

L∈Rn×m
max
d∈Rkd

{∂Y (x̃, t)
∂x̃

˙̃x + rT r − α2dTd}
= min

L∈Rn×m
max
d∈Rkd

{ Yx(x̃, t)a(x) + Yx(x̃, t)Ed(x)d + Yx̂(x̃)a(x̂)
+ Yx̂(x̃, t)L(x̂, t)c̃(x̃) + Yx̂(x̃, t)L(x̂, t)Fd(x)d

+rT r − α2dTd }
=Yx(x̃, t)a(x) + Yx(x̃, t)Ed(x)d⋆ + Yx̂(x̃, t)a(x̂)

+ Yx̂(x̃, t)L⋆(x̂, t)c̃(x̃) + Yx̂(x̃, t)L⋆(x̂, t)Fd(x)d⋆
+ rT (d⋆)r(d⋆) − α2d⋆

T
d⋆ (3.37)

then the pair of strategies (L⋆, d⋆) provides a saddle-point solution, i.e. J (L⋆, d) ≤
J (L⋆, d⋆) ≤ J (L,d⋆). Furthermore, saddle-point value of the game is J (L⋆, d⋆) =
Y (x̃(0),0). This ensures J (L⋆, d) ≤ V (x̃(0),0) = 0, which in turn guarantees that L⋆

solves the disturbance attenuation problem (3.10).
Rest of the proof consists of finding d⋆ and L⋆ and substituting them into (3.37). For

that purpose, we define the following Hamiltonian function

H (L, f) ≜Vx̃
˙̃x + rT r − α2dTd

=Vxa(x) + VxEdd + Vx̂a(x̂) + Vx̂Lc̃ + Vx̂LFdd + r
T r − α2dTd (3.38)
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3 Residual generation with H−, H∞ and H−/H∞ optimizations

Similar to the case of fault sensitivity problem, differentiate the Hamiltonian with respect
to d, set the derivative equal to zero to find the worst case disturbance

d⋆ = R−1d (ET
d Y

T
x + F

T
d L

TY T
x̂ + 2F T

d c̃)
Substitute the worst case disturbance in the defined Hamiltonian, differentiate it with
respect to L and set the derivative equal to zero to obtain an expression for L⋆ as given
in (3.36). By similar arguments as in the proof of fault sensitivity condition, it can be
shown that d⋆ maximizes the Hamiltonian and L⋆ minimizes the Hamiltonian, as required.
Substitute d⋆ and L⋆ in (3.37) to get (3.35).

As it has been discussed, an inequality version of HJI in (3.35) would be easier to solve,
therefore, it is desired to convert it into HJI inequality. This can be done by using similar
arguments as used in H− sensitivity condition. These arguments are analogous to the
dissipativity approach and can be stated as under:

The system (3.7) is said to be dissipative with respect to supply rate of

α2 ∥d∥2
2
+ ∥r∥2

2
(3.39)

if there exists a positive function Y (x̃, t) that satisfies

∂Y

∂t
+ Yx̃

˙̃x − α2dTd + rT r ≤ 0 (3.40)

and from the definition of dissipativity, it follows that

∥r∥2
2
≤ α2 ∥d∥2

2

Furthermore, we known that if a system is dissipative with respect to supply rate given in
(3.39), then it is finite gain L2 stable [135, 136]. Thus, we can summarize the results in
the form of following corollary.

Corollary 3.3. Given system (3.7) with f = 0, a positive constant α and assume
A1. Rd ≜ F T

d (x)Fd(x) − α2Ikd
< 0

A2. Fd(x) is a square matrix
If there exists a positive definite function Y (x̃, t) with Y (x̃(0),0) = 0 that satisfies the
following HJI inequality

−
∂Y (x̃, t)

∂t
≥ Yx(x̃, t)a(x) + Yx̂(x̃, t)a(x̂) + c̃T (x̃)(Fd(x)R−1d F

T
d (x))−1c̃(x̃)

− c̃T (x̃)c̃(x̃) − Yx(x̃, t)Ed(x̃)(F T
d (x)Fd(x))−1F T

d (x)c̃(x̃) (3.41)

and L⋆(x̂, t) satisfying

Yx̂(x̃, t)L⋆(x̂, t) = −Yx(x̃, t)Ed(x)(F T
d (x)Fd(x))−1F T

d (x)
+ 2c̃T (x̃)(Fd(x)R−1d F

T
d (x))−1 − 2c̃T (x̃) (3.42)

then the system (3.7) is dissipative with respect to supply rate of (3.39) and, therefore,
solves the disturbance attenuation problem (3.10).
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3.3 H∞ disturbance attenuating FDF

Note that with the dissipativity theory, we have obtained an inequality version of equa-
tion (3.35) which is easier to solve (see Remark 3.4). Furthermore, the dissipativity prop-
erty also guarantees the stability of the filter. Now question arises why do we use the game
theory? The answer is that with the game theoretic approach, the worst case disturbance
and the corresponding optimal filter gain can be found.

In the case when t1 →∞, and we are interested in time invariant solutions, we can take
a time independent function Y (x̃). In this situation, we have the following results.

Corollary 3.4. Given system (3.7) with f = 0, a positive constant α and assume
A1. Rd ≜ F T

d (x)Fd(x) − α2Ikd
< 0

A2. Fd(x) is a square matrix
If there exists a positive definite function Y (x̃) with Y (x̃(0)) = 0 that satisfies the following
HJI inequality

0 ≥ Yx(x̃)a(x) + Yx̂(x̃)a(x̂)
+ c̃T (x̃)(Fd(x)R−1d F

T
d (x))−1c̃(x̃) − c̃T (x̃)c̃(x̃)
− Yx(x̃)Ed(x̃)(F T

d (x)Fd(x))−1F T
d (x)c̃(x̃) (3.43)

and L⋆(x̂) satisfying

Yx̂(x̃)L⋆(x̂) = −Yx(x̃)Ed(x)(F T
d (x)Fd(x))−1F T

d (x)
+ 2c̃T (x̃)(Fd(x)R−1d F

T
d (x))−1 − 2c̃T (x̃) (3.44)

then the systems (3.7) is dissipative with respect to supply rate of (3.39) and, therefore,
solves the disturbance attenuation problem (3.10) in infinite horizon sense.

Proof. The proof follows by substituting a time independent function Y (x̃) in the results
of Corollary 3.3.

For the case of linear systems defined in (3.25) and the corresponding linear fault detec-
tion filter (3.26), we can select Y (x̃) = (x− x̂)TQ(x− x̂) with Q ≥ 0. In this case (3.43) and
(3.44) are simplified to

QA +ATQ +CT (FdR
−1
d F

T
d )−1C −CTC − 2QEd(F T

d Fd)−1FdC ≤ 0 (3.45)

QL⋆(x̂) = QEd(F T
d Fd)−1F T

d −C
T (FdR

−1
d F

T
d )−1 +CT (3.46)

Similar to the case of H− fault sensitive FDF, the H∞ disturbance attenuation FDF design
is also an iterative procedure. Starting with the smallest possible value of α permitted by
A1, one can successively increase α until (3.41),(3.42) are satisfied ((3.43), (3.44) in infinite
horizon case are satisfied).

As compared to H− fault sensitive FDF which guarantees a required level of sensitivity of
residual to the faults, the H∞ disturbance attenuating FDF ensures that residual is robust
against disturbances. In addition to the disturbance attenuation property, H∞ disturbance
attenuating FDF also helps to set up the threshold. Thus, if L2 norm of residual signal is
used as evaluation function, the maximum possible effect of disturbances on the evaluated
residual is not greater than αδd, where ∥d∥

2
≤ δd. One can set threshold equal to αδd to

avoid any possible false alarms. Further discussions on residual evaluation and threshold
settings will be provided in Chapters 4 and 5.
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3 Residual generation with H−, H∞ and H−/H∞ optimizations

3.4 H−/H∞ multi-objective FDF

In the last two sections, two fault detection filtering problems were discussed. In the
first case, H− fault detection filter was presented which guaranteed a fault sensitivity
greater than a given constant. However, this filter does not give any indication of the
disturbance attenuation property of the filter. It is possible that, in addition to making
residual sensitive to faults, the filter also makes residual sensitive to disturbances. This is
certainly not a desired feature of H− filter. Similar is the situation for the second FDF,
the H∞ fault detection filter guarantees the disturbance attenuation greater than a given
constant but does not give any indication of fault sensitivity. In addition to disturbance
attenuation, the filter may also result in attenuating the effect of faults. A better fault
detection filter should be simultaneously robust against disturbance and sensitive to faults.
For that purpose, multi-objective H−/H∞ index can be used. The multi-objective index
was first proposed in [56] and later several techniques were proposed for linear systems.
This section presents H−/H∞ filtering problem for nonlinear systems.

In H−/H∞ based design, the objective is to maximize the ratio β/α, rather than individ-
ually maximizing β or minimizing α. Thus an H−/H∞ based filter may not be the optimal
in the sense of H− index, i.e., another filter gain may exist which gives a higher fault to
residual gain than that delivered by the H−/H∞ based designed filter gain. A similar com-
parison of H∞ based FDF and multi-objective index based FDF can be presented, i.e., the
disturbance to residual gain for the former FDF may be smaller than that for the later
FDF.

TheH−/H∞ multi-objective FDF problem can be formulated as two two-players nonzero-
sum differential games with following two cost functionals:

J1(L, f) = t1

∫
0

(rT r − βfTf) dt ;d = 0 (3.47)

J2(L,d) = t1

∫
0

(rT r − αdTd) dt ;f = 0 (3.48)

The first functional is associated with H− fault sensitivity and the second cost functional is
associated with the H∞ disturbance attenuation. Making J1 ≥ 0 guarantees ∥ΣA ∥−,[0,t1] =
inff≠0

∥r∥
2,[0,t1]

∥f∥
2,[0,t1]

≥ β and making J2 ≤ 0 guarantees ∥ΣA ∥∞,[0,t1] = supd≠0

∥r∥
2,[0,t1]

∥d∥
2,[0,t1]

≤ α. The

following theorem now gives the sufficient conditions for the solvability of the problem.

Theorem 3.3. Consider the nonlinear system (3.7), positive constants α and β and as-
sume
A1. Rf ≜ F T

f (x)Ff(x) − β2Ikf
> 0

A2. Rd ≜ F T
d (x)Fd(x) − α2Ikd

< 0
A2. Ff(x), Fd(x) are square matrices
Suppose that there exists a pair of functions V (x̃, t) with V (x̃(0),0) = 0 and Y (x̃, t) with
V (x̃(0),0) = 0 and the filter gain L(x̂, t) satisfying the following partial differential equa-
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tions,

Vxa(x) − 1

4
VxEfR

−1
f E

T
f V

T
x −

1

2
VxEfR

−1
f F

T
f L

TV T
x̂

− VxEfR
−1
f F

T
f c̃ + Vx̂a(x̂) + Vx̂Lc̃ −

1

4
Vx̂LFfR

−1
f F

T
f L

TV T
x̂

− Vx̂LFfR
−1
f F

T
f c̃ + c̃

T c̃ − c̃TFfR
−1
f F

T
f c̃ = −∂V∂t (3.49)

Yxa(x) − 1

4
YxEdR

−1
d E

T
d Y

T
x −

1

2
YxEdR

−1
d F

T
d L

TY T
x̂

− YxEdR
−1
d F

T
d c̃ + Yx̂a(x̂) + Yx̂Lc̃ −

1

4
Yx̂LFdR

−1
d F

T
d L

TY T
x̂

− Yx̂LFdR
−1
d F

T
d c̃ + c̃

T c̃ − c̃TFdR
−1
d F

T
d c̃ = −∂Y∂t (3.50)

then L(x̂, t) solves the multi-objective filtering problem defined in Problem 3.3.

Proof. (sketch: details which are similar to the proof of Theorems 3.1, 3.2 are omitted)
The proof follows by defining Hamiltonian functions H1 and H2 as in (3.18) and (3.38),
respectively. Find f⋆ and d⋆ by setting

∂H1

∂f
∣
f⋆
= 0,

∂H2

∂d
∣
d⋆
= 0

and substitute in the Hamiltonians H1 and H2 to reach at the results. Then L which
simultaneously satisfies (3.49) and (3.49) will satisfy both the sensitivity and robustness
conditions.

In previous sections, we derived sufficient conditions for H− fault sensitivity and H∞
disturbance attenuation fault detection filtering problems. These conditions were in form
of an HJI and and explicit expression for the filter gain L. However, in H−/H∞ based
multi-objective filtering problems, we can not derive an explicit expression for L, because
the same L has to satisfy both the sensitivity and robustness conditions. That is, if we
derive an explicit expression for L based on (3.49), it may not satisfy (3.50), and vice versa.

It should be noted that the H∞ disturbance robustness condition also ensures the finite
gain L2 stability of the filter (see [135, 136] for finite-gain L2 stability).

Although the H−/H∞ optimization based FDF is better in the sense that it provides
simultaneous disturbance attenuation and fault sensitivity, but the disadvantage is that it
involves solving two coupled partial differential equations.

It can be shown (as in Section 3.2 and Section 3.3) that for negative semidefinite V
and positive semidefinite Y , the ‘=’ in (3.49) and (3.49) can be respectively changed to ≥
and ≤. In the case when t1 →∞, and we are interested in time invariant filter gain L(x̂),
the functions V and Y can be taken independent of time. Hence we have the following
corollary

Corollary 3.5. Consider the nonlinear system (3.7), positive constants α and β and as-
sume
A1. Rf ≜ F T

f (x)Ff(x) − β2Ikf
> 0
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3 Residual generation with H−, H∞ and H−/H∞ optimizations

A2. Rd ≜ F T
d (x)Fd(x) − α2Ikd

< 0
A2. Ff(x), Fd(x) are square matrices
Suppose that there exists a pair of negative definite function V (x̃) with V (x̃(0)) = 0 and
a positive definite function Y (x̃) with Y (x̃(0)) = 0 and the filter gain L(x̂) satisfying the
following partial differential equations,

Vxa(x) − 1

4
VxEfR

−1
f E

T
f V

T
x −

1

2
VxEfR

−1
f F

T
f L

TV T
x̂

− VxEfR
−1
f F

T
f C̃ + Vx̂a(x̂) + Vx̂Lc̃ −

1

4
Vx̂LFfR

−1
f F

T
f L

TV T
x̂

− Vx̂LFfR
−1
f F

T
f c̃ + c̃

T c̃ − c̃TFfR
−1
f F

T
f c̃ ≥ 0 (3.51)

Yxa(x) − 1

4
YxEdR

−1
d E

T
d Y

T
x −

1

2
YxEdR

−1
d F

T
d L

TY T
x̂

− YxEdR
−1
d F

T
d c̃ + Yx̂a(x̂) + Yx̂Lc̃ −

1

4
Yx̂LFdR

−1
d F

T
d L

TY T
x̂

− Yx̂LFdR
−1
d F

T
d c̃ + c̃

T c̃ − c̃TFdR
−1
d F

T
d c̃ ≤ 0 (3.52)

then L(x̂) solves the multi-objective filtering problem defined in Problem 3.3 in infinite
horizon sense.

Proof. The proof follows by substituting time invariant functions V (x̃) and Y (x̃) in the
results of Theorem 3.3.

For linear system defined in (3.25) and corresponding fault detection filter (3.26), the
negative semidefinite function V (x̃) can be selected as V (x̃) = (x− x̂)TP (x− x̂) with P ≤ 0
and the positive definite function Y (x̃) = (x − x̂)TQ(x − x̂) with Q ≥ 0. In this case (3.51)
is simplified as under:

(x − x̂)TPA(x − x̂) + (x − x̂)TATP (x − x̂) − (x − x̂)TPEfR
−1
f E

T
f P (x − x̂)

+ (x − x̂)TPEfR
−1
f F

T
f L

TP (x − x̂) − (x − x̂)TPEfR
−1
f F

T
f C(x − x̂)

− 2(x − x̂)TPLC(x − x̂) + (x − x̂)TPLFfR
−1
f E

T
f P (x − x̂)

− (x − x̂)TPLFfR
−1
f F

T
f L

TP (x − x̂) + (x − x̂)TPLFfR
−1
f F

T
f C(x − x̂)

+CT (x − x̂)TC(x − x̂) − (x − x̂)TPEfR
−1
f F

T
f C(x − x̂)

+ (x − x̂)TPLFfR
−1
f F

T
f C(x − x̂) −CT (x − x̂)TFfR

−1
f F

T
f C(x − x̂) ≥ 0

Since all terms in above equation are scalars which may be transposed, the above expression
becomes

PA +ATP − PEfR
−1
f E

T
f P + PEfR

−1
f F

T
f L

TP − PEfR
−1
f F

T
f C − PLC

−CTLTP + PLFfR
−1
f E

T
f P − PLFfR

−1
f F

T
f L

TP + PLFfR
−1
f F

T
f C

+CTC −CTFfR
−1
f E

T
f P +C

TFfR
−1
f F

T
f L

TP −CTFfR
−1
f F

T
f C ≥ 0

After a few further simplifications

P (A −LC − (Ef −LFf)R−1f F
T
f C) + (A −LC − (Ef −LFf)R−1f F

T
f C)TP

− P (Ef −LFf)R−1f (Ef −LFf)TP +CT (Ikf
− FfR

−1
f F

T
f )C ≥ 0
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Likewise, after similar simplifications, (3.52) is reduced to

Q(A −LC − (Ed −LFd)R−1d F
T
d C) + (A −LC − (Ed −LFd)R−1d F

T
d C)TQ

−Q(Ed −LFd)R−1d (Ed −LFd)TQ +CT (Ikd
− FdR

−1
d F

T
d )C ≥ 0

These are the well known result for case of linear systems (see e.g. [13, Chapter 7]). The
above nonlinear matrix inequalities (NMI) can be reduced to linear matrix inequalities
(LMI) and powerful tools are available to solve such LMIs.

3.5 An example

To illustrate our results for nonlinear systems, we consider an example of a simple second
order system. The dynamics of the system are given by

ẋ1 = x2

ẋ2 = −bx2 − cx1 − kn sin(x2) + kgu + d

y = x1 + f + 0.5d

(3.53)

x1, x2 are respectively the angular position and the angular velocity of the positioning
system, y is the measurement, u is the input, d is the measurement noise and f is the
sensor fault to be detected. The numerical values of the system parameters are: b = 1,
c = 0.4, k1 = 0.1 and kg = 1. Note that in this example, reference input u(t) is also present.
Since the input matrix is independent of states, the influence of u(t) on state estimation
error is removed after using an FDF. We have the following system matrices:

a(x) = [ x2

−bx2 − cx1 − kn sin(x2) ] ,Ef = [ 0
0
] ,Ed = [ 0

1
] ,

C = [ 1 0 ] , Ff = [ 1 ] , Fd = [ 0.5 ]
H− fault sensitive FDF
It follows from Corollary 3.2 that the fault sensitivity problem (3.8) with infinite horizon
case is solved for the example system if we find an L(x̂) and a negative definite function
V (x̃) with V (x̃(0)) which satisfy (3.23) and (3.24). With

A1 = [ 0 1
−c −b

] , A2(x) = [ 0
−kn sin(x2) ]

equation (3.23) becomes

VxA1x + VxA2(x) + Vx̂A1x̂ + Vx̂A2(x̂)
+ C̃T (x̃)(FfR

−1
f F

T
f )−1C̃(x̃) − C̃T (x̃)C̃(x̃) − VxE(F TF )−1F T C̃(x̃) ≥ 0 (3.54)

We treat the stationary case (t1 → ∞) and select V = (x − x̂)TP (x − x̂), where P is a
symmetric negative definite matrix, (3.54) becomes,

(x − x̂)TPA1(x − x̂) + (x − x̂)TAT
1 P (x − x̂)

+ (x − x̂)TCT (FfR
−1
f F

T
f )−1C(x − x̂) − (x − x̂)TCTC(x − x̂)
− 2(x − x̂)TPE(F TF )−1F TC(x − x̂) + J1 ≥ 0 (3.55)
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where

J1 = 2(x − x̂)TPA2(x) − 2(x − x̂)TPA2(x̂)
= −2kn(x − x̂)TP [ 0

sin(x2) − sin(x̂2) ]
= −2kn(x − x̂)TP [ 0

2 sin(x2−x̂2

2
) cos(x2+x̂2

2
) ]

= −2kn(x − x̂)TP [ 0
1
] sin(x2−x̂2

2
)

(x2−x̂2)
2

cos(x2 + x̂2

2
) [ 0 1 ] (x − x̂)

= −2kn(x − x̂)TP [ 0
1
] sinc(x2 − x̂2

2
) cos(x2 + x̂2

2
) [ 0 1 ] (x − x̂)

≥ 2kn(x − x̂)TP [ 0
1
] [ 0 1 ] (x − x̂)

The last inequality follows from the fact that the minimum value of sinc(x1−x̂1

2
) cos(x1+x̂1

2
)

is −1 and P < 0. Hence, a sufficient condition for (3.55) becomes,

(x − x̂)TPA1(x − x̂) + (x − x̂)TAT
1 P (x − x̂)

+ (x − x̂)TCT (FfR
−1
f F

T
f )−1C(x − x̂) − 2(x − x̂)TPEf(F T

f FF )−1F T
F C(x − x̂)

− (x − x̂)TCTC(x − x̂) + 2kn(x − x̂)TP [ 0
1
] [ 0 1 ] (x − x̂) ≥ 0

or

PA1 +A
T
1 P +C

T (FfR
−1
f F

T
f )−1C −CTC − 2PEf(F T

f Ff)−1F T
f C

+ 2knP [ 0
1
] [ 0 1 ] ≥ 0

a sufficient condition for the above inequality is

PA1 +A
T
1 P −C

TC − 2PEf(F T
f Ff)−1F T

f C + 2knP [ 0
1
] [ 0 1 ] ≥ 0 (3.56)

and the filter gain L is given by

− 2(x − x̂)TPL = −2(x − x̂)TPEf(F T
f Ff)−1F T

f

+ 2(x − x̂)TCT (FR−1F T )−1 − 2(x − x̂)TCT

or

L = Ef(F T
f Ff)−1F T

f − P
−1CT (FR−1F T )−1 + P −1CT (3.57)

The inequality (3.56) is satisfied for

P = [ −4.2363 −2.7369
−2.7369 −4.4638

]
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3.5 An example

Figure 3.5: Residual signal for a unit step sensor fault which occurs at 30 s

Note that F TF = 1, so according to Assumption A1, the maximum possible value of β is
1. We calculate the filter gain L for β = 0.9 to get:

L = [ −0.3166
0.1941

] (3.58)

The example was simulated in Simulink R for a unit step fault which occurs at 30 seconds
in the sensor measuring the angular position of the system. The initial conditions of the
positioning system were set as [0.2 0] in simulation. The simulation results are shown in
the Figure 3.5. It can be observed that the residual signal is sufficiently sensitive to the
fault. Some further discussion on this figure will be made in H∞ based FDF design.

H∞ disturbance attenuating FDF
Now we design an H∞ disturbance attenuating FDF for the example system. It follows
Corollary 3.4 that the H∞ disturbance attenuation problem with infinite horizon case is
achieved if there exits a positive definite function Y (x̃) with Y (x̃(0)) which satisfies (3.43),
the filter gain L(x̂) is then given by (3.44). With the matrices A1 and A2(x) defined above,
(3.43) becomes

YxA1x + YxA2(x) + Yx̂A1x̂ + Yx̂A2(x̂) + C̃T (x̃)(FdR
−1
d F

T
d )−1C̃(x̃)

− C̃T (x̃)C̃(x̃) − YxEd(F T
d Fd)−1F T

d C̃(x̃) ≤ 0 (3.59)

Select Y (x̃) = (x − x̂)TQ(x − x̂), with Q ≥ 0, (3.59) reduces to

(x − x̂)TQA1(x − x̂) + (x − x̂)TAT
1Q(x − x̂) + (x − x̂)TCT (FdR

−1
d F

T
d )−1C(x − x̂)

− (x − x̂)TCC(x − x̂) − 2(x − x̂)TQEd(F T
d Fd)−1F T

d C(x − x̂) + J2 ≤ 0 (3.60)

where
J2 = 2(x − x̂)TPA2(x) − 2(x − x̂)TPA2(x̂)

with similar simplifications as for J1, we reach at

J2 = −2kn(x − x̂)TQ [ 0
1
] sinc(x2 − x̂2

2
) cos(x2 + x̂2

2
) [ 0 1 ] (x − x̂)
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Noting that Q ≥ 0 and that sinc(x2−x̂2

2
) cos(x2+x̂2

2
) can have values in between −1 and 1, we

conclude

−2kn(x − x̂)TQ [ 0
1
] [ 0 1 ] (x − x̂) ≤ J2 ≤ 2kn(x − x̂)TQ [ 0

1
] [ 0 1 ] (x − x̂)

Thus sufficient condition for (3.60) is

(x − x̂)TQA1(x − x̂) + (x − x̂)TAT
1Q(x − x̂)

+ (x − x̂)TCT (FdR
−1
d F

T
d )−1C(x − x̂) − (x − x̂)TCC(x − x̂)

− 2(x − x̂)TQEd(F T
d Fd)−1F T

d C(x − x̂) + 2kn(x − x̂)TQ [ 0
1
] [ 0 1 ] (x − x̂) ≤ 0

which simplifies to

QA1 +A
T
1Q +C

T (FdR
−1
d F

T
d )−1C −CC

− 2QEd(F T
d Fd)−1F T

d C + 2knQ [ 0
1
] [ 0 1 ] ≤ 0 (3.61)

and the expression for L(x̂) is obtained from (3.44)

L = Ed(F T
d Fd)−1F T

d − 2Q−1CT (FdR
−1
d F

T
d )−1 − 2Q−1CT (3.62)

The following positive definite Q solves (3.61) for α = 0.5 (the minimum possible value of
α),

Q = [ 2.8407 0.8441
0.8441 4.6377

]
and from (3.62), the filter gain L is

L = [ 0.3024
0.9450

]
Figure 3.6 shows the simulation results for a unit step sensor fault which occurs at 50

seconds. It can be seen that the effect of disturbances on the residual signal is considerably
reduced. The disturbance and the sensor noise is bounded by d ∈ [−0.2,0.2].
Discussions
In this example, we have designed two filters for the example system: an H− fault sensitive
FDF and an H∞ disturbance attenuation FDF. The inset figures in Figure 3.5 and Figure
3.6 show that the H∞ disturbance attenuating filter has a better disturbance attenuation
property. But at the same time we can notice that the H− fault sensitive filter provides
better sensitivity to the faults.
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3.6 Summary

Figure 3.6: Residual signal for a unit step sensor fault which occurs at 30 s

3.6 Summary

Residual generation is an important step in observer-based fault detection of dynamic
systems. The residual signal is obtained by comparing the measurements with their esti-
mates generated by the observer (filter). For a better performance of the fault detection
system, it is desired that the designed observer (filter) should have the properties such
that the residual signal is sensitive to faults and robust against disturbances. To measure
sensitivity to faults and robustness against disturbances, the worst case scenario is usually
examined. For that purpose H− index and H∞ norm are widely used in literature. This
chapter explained the basic idea of H− index and H∞ norm and their application in fault
detection. To achieve fault sensitivity, H− fault sensitive FDF was presented for nonlinear
systems. The H− fault sensitive FDF ensures that the L2 gain from worst case fault (the
fault for which the residual is minimally sensitive) to the residual is greater than a known
constant. To deal with the disturbance attenuation, H∞ disturbance attenuating FDF was
proposed. The difference between extensively studied H∞ filtering problem and the H∞
fault detection filtering problem was emphasized with an example. The later is of more
interest for fault detection but has not been discussed for nonlinear systems. The proposed
H∞ disturbance attenuating filter guarantees that the L2 gain from worst case disturbance
to the residual is less than a known constant. It was highlighted that, additional to fault
sensitivity, the H− fault sensitive FDF may also result in sensitivity to disturbances. Like-
wise, the H∞ disturbance attenuating FDF may result in attenuation of faults additional to
attenuation of disturbances. This is, off course, not desired. The simultaneous attenuation
of disturbances and amplification of faults should be attained. To achieve this objective,
the H−/H∞ multi-objective FDF was proposed. In all the three proposed fault detection
filters, both finite horizon and infinite horizon cases were addressed. It was shown that for
linear systems, our results reduce to well known results for linear systems. The proposed
FDF methods were illustrated with simulation example of a simple second order system.
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Chapter 4
Dynamic threshold computation

The main contribution of this chapter includes the presentation of a method
for generating dynamic threshold for a class of nonlinear systems. For systems
with Lipschitz nonlinearities and unstructured uncertainties, an inequality for
the upper bound on the modulus of error dynamics is derived. This upper bound
is utilized for designing a dynamic threshold. The effectiveness of the proposed
technique is demonstrated by simulation results of an simple Lipschitz nonlinear
system.

As discussed in Chapter 2, the process of model-based fault detection consists of two
steps, residual generation and residual evaluation. In observer-based residual generation
techniques, estimations of the measurements are generated using observers and the residual
is the difference of the two. In ideal case, when there are no disturbances and modeling
uncertainties, residual becomes zero in the absence of faults. A deviation from zero gives
the indication of presence of fault. In reality, such ideal conditions never exist and there
are always disturbances and uncertainties. This results in the residual signal being nonzero
even in the absence of faults. The aim of residual evaluation is to decide whether a fault
has occurred or not even in the presence of modeling uncertainties and disturbances. For
that purpose, residual is evaluated and then compared to some threshold to decide about
the presence of faults. Selection of threshold plays an important role in the performance
of a fault detection system. If a constant threshold is used and is selected too high, it may
result in mis-detection of faults, whereas if it is selected too low, some of disturbances may

Figure 4.1: Comparison of a constant and a variable thresholds for fault detection
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(a) Classical method for variable threshold

generation: threshold is generated by multiply-

ing the input with norm of uncertainties

(b) Dynamic threshold generation: the thresh-

old generator is a dynamic system

Figure 4.2: Classical method for variable threshold generation vs dynamic threshold generation

cause the residual to cross the threshold and result in false-alarm. To avoid this difficulty,
as proposed by [137], one can use variable or adaptive threshold which varies according
to the control activity and uncertainties in the plant. Figure 4.1 compares a constant
threshold to a variable threshold . It can be noticed that a constant threshold either
results in miss-detection of faults (if selected too high) or some of the uncertainties appear
as faults (if threshold is selected too low). Whereas, the variable threshold can successfully
avoid false alarms generated by uncertainties and, thus improves the fault detectability.

Several techniques have been presented in the literature for designing adaptive thresh-
old for linear systems. For example, [43] proposed frequency domain approach to design
an adaptive threshold, [138] used the statistical approach to design adaptive threshold.
Recently, [122], [139], [140] proposed the idea of dynamic threshold generation which not
only varies according to control activity, but also possesses dynamic properties and hence,
is more tighter to the fault-free residual signal resulting in better fault detection system.
Figure 4.2 show the difference of a classical adaptive threshold generator and a dynamic
threshold generator. In the domain of nonlinear systems, only a few articles address the
problem of threshold generation[141], [126], [127]. In this chapter, a the time domain ap-
proach for dynamic threshold generation for Lipschitz nonlinear systems is proposed. The
threshold generated is adaptive in nature and the on-line implementation does not involve
complex mathematical computation.

4.1 Problem formulation

Consider Lipschitz nonlinear systems described by

ẋ = Ax + φ(x,u) + η(x,u, t) +Eff (4.1)

y = Cx + Fff (4.2)

where x ∈ Rn is the system state vector, u ∈ Rm is the input vector, y ∈ Rp is the measurable
output vector, φ ∶ Rn ×Rm ↦ Rn and η ∶ Rn ×Rm ×R+ ↦ Rn are smooth vector fields. Ef ,
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4.1 Problem formulation

Ff are the fault input and output matrices, respectively, and C is the output matrix of
appropriate dimensions. It is assumed that the modeling uncertainty η, which may also
include external disturbances, is unstructured and is an unknown nonlinear function of u
and t, but it is bounded by some known functional, i.e.,

∣η(x,u, t)∣ ≤ η̄(u, t)
φ(x,u) is nonlinearity with a Lipschitz constant γ, i.e.,

∣φ(x,u) − φ(x − e, u)∣ ≤ γ∣e∣
As discussed in [142], the class of systems covered by (4.1) is fairly general and any non-
linear system of the form ẋ = f(x,u) can be expressed in form (4.1) as long as f(x,u) is
differentiable with respect to x. In addition, most of the nonlinearities may be considered
as Lipschitz at least locally.

For the purpose of fault detection, we need to generate a residual signal which carries
the information about faults. To generate such a residual for system (4.1)-(4.2), we take
the observer of the form

˙̂x = Ax̂ + φ(x̂, u) +L[y −Cx̂]
ŷ = Cx̂ (4.3)

Several techniques for observer design for Lipschitz nonlinear systems exist in the literature.
Some of the most commonly applied to fault detection have been described in Chapter
2. These include the Thau’s observers, high gain observers [94], [98], [95], sliding mode
observers, etc. The approach developed in Chapter 3 for fault sensitive detection filter
design can also be utilized. Other important observer design approaches for Lipshcitz
nonlinear systems are the distance to unobservability based observer [142, 143] and observer
design for systems with large Lipschitz constant [144]. Here, we assume that such an
observer is already designed.

The residual is simply defined as

r = y − ŷ
Introducing the variable e = x − x̂, the dynamics of residual generator can be written as

ẋ = Ax + φ(x,u) + η(x,u, t) +Eff

ė = (A −LC)e + φ(x,u) − φ(x − e, u) + η(x,u, t) +Eff

r = Ce +Fff

Using the simplified notation Ā = A−LC and Φ(x, e, u) = φ(x,u)−φ(x−e, u), the dynamics
of the residual generator can be written as

ẋ = Ax + φ(x,u) + η(x,u, t) +Eff

ė = Āe +Φ(x, e, u) + η(x,u, t) +Eff

r = Ce + Fff

Due to the presence of disturbances and modeling uncertainties, the residual signal will not
be zero even in the absence of faults. Residual evaluation and threshold setting serves to
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4 Dynamic threshold computation

avoid the effect of uncertainties and disturbances. A decision on the occurrence of a fault
is then made by comparing the evaluated residual to the threshold. Some standard evalu-
ation functions are described in Chapter 2. As proposed in [122], the following evaluation
function is used,

J = ∥r∥v ≜
t

∫
0

v(t − τ) ∣r(τ)∣dτ = (v ∗ ∣r∣)(t)
Where v is the weighting function which increases the influence of the most recent data.
A simple choice of v could be an exponential function µe−µt which has the advantage that
the convolution with v can be implemented by a simple first order transfer function. Two
major advantages of using the above evaluation function are mentioned in [122]. Firstly,
the absolute value of the residual is likely to be less sensitive to outliers than the square
and secondly, it provides efficient ways of calculating the robust threshold. Threshold is
then selected as

Jth = sup
fault-free

∥r∥v (4.4)

and the following decision logic is used to detect the occurrence of faults:

J > Jth⇒ fault alarm

J ≤ Jth⇒ no alarm

Designing an optimum threshold, which avoids false alarm with maximum probability of
fault detection is the design problem. The main task is to develop a method for generating
dynamic threshold for fault detection for the system (4.1) - (4.2).

4.2 Preliminaries and notations

Before we are able to proceed for further discussion, it will be useful to present some
preliminary material. The convolution between two functions F and G will be represented
as FG, i.e.,

FG ≜ F ∗G
The element-wise inequalities between matrices and vectors will be represented by t andu, for example, with

X ≜
⎡⎢⎢⎢⎢⎢⎣
x11 ⋯ x1m

⋮ ⋱ ⋮

xn1 ⋯ xnm

⎤⎥⎥⎥⎥⎥⎦
, Y ≜

⎡⎢⎢⎢⎢⎢⎣
y11 ⋯ y1m

⋮ ⋱ ⋮

yn1 ⋯ ynm

⎤⎥⎥⎥⎥⎥⎦
then X t Y means that xij ≤ yij for all i ∈ 1⋯n and all j ∈ 1⋯m. ∣ ⋅ ∣ will represent the
matrix modulus function, i.e. element-wise absolute value. Thus

∣X ∣ =
⎡⎢⎢⎢⎢⎢⎣
∣x11∣ ⋯ ∣x1m∣
⋮ ⋱ ⋮∣xn1∣ ⋯ ∣xnm∣

⎤⎥⎥⎥⎥⎥⎦
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For functions, ∣ ⋅ ∣ will be interpreted point-wise, so that ∣F ∣(t) ≜ ∣F (t)∣. Inequalities
between functions are also intended point-wise, i.e. F t G means F (t) t G(t) for all
t ∈ R+. Next, a property and lemmas are presented that will be used for the derivation of
the results.

Property 4.1. [122] Let c be an arbitrary scalar and let A, B and C be matrices of
compatible dimensions. Then

a. ∣A +B∣ t ∣A∣ + ∣B∣
b. ∣AC ∣ t ∣A∣∣C ∣
c. ∣cA∣ = ∣c∣∣A∣
Lemma 4.1 ([122]). Let F ∈ Ln×m

pe and G,H ∈ Lm×r
qe , 1 ≤ p ≤ ∞ and 1/p + 1/q = 1.

Furthermore, let J ∈ Lr×s
∞e and define

J̄(t) ≜ sup
τ∈[0,t]

∣J(τ)∣
Then

a. If F (t) u 0 for all t and H u G then F ∗H u F ∗G
b. ∣F ∗G∣ t ∣F ∣ ∗ ∣G∣
c. If F (t) u 0 for all t then F ∗ ∣GJ ∣ t (F ∗ ∣G∣)J̄
and all the convolutions above are finite for all t ≥ 0

Lemma 4.2 ([122]). Let G ∈ Ln×n
pe , 1 ≤ p ≤ ∞ and define the linear operator G by GF ≜

G∗F . Let T ≜ (I −G)−1−I and define T as the function such that TF ≜ T ∗F . If ∥G∥p ≤ 1
and G(t) u 0 for all t ≥ 0 then ∥T∥p <∞ and T (t) u 0 for all t ≥ 0.

In the above Lemmas, the space Ln×m
pe , for example, represents the set of functions from

R+ to Rn×m such that ∥Pτx∥p < ∞ for all τ > 0, where ∥⋅∥ is some matrix norm and the
truncation operator Pτ is defined as

(Pτx)(t) = ⎧⎪⎪⎨⎪⎪⎩
x(t) t ≤ τ
0 otherwise

4.3 Dynamic threshold generation

Below, a theorem is presented which gives an upper bound on the modulus of the error
dynamics and will be applied to derive an expression for dynamic threshold generator.

Theorem 4.1. Consider the Lipschitz nonlinear system described by

ė = Āe +Φ(x, e, u) + η(x,u, t) (4.5)

where Ā is Hurwitz. Assume that the nonlinear term Φ(x, e, u) = φ(x,u) − φ(x − e, u) is
Lipschitz with the Lipschitz constant γ, i.e.,∣Φ(x, e, u)∣ t γ∣e∣, and η(x,u, t) is bounded by
a known functional, i.e., ∣η(x,u, t)∣ t η̄(u, t). Let G(t) ≜ exp(Āt) and H(t) be a function
that satisfies H(t) u ∣G(t)∣. If ∥γH∥p < 1, then ∣∣(I − γH)−1∣∣p <∞ and

∣e∣ t (I − γH)−1Hη̄(u, t)
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Proof. The solution to the error dynamics (4.5) can be expressed by

e =
t

∫
0

exp(Ā(t − τ)) {Φ(x(τ), x̂(τ), u(τ)) + η(x(τ), u(τ), τ)}dτ
=

t

∫
0

exp(Ā(t − τ))Φ(x(τ), x̂(τ), u(τ))dτ + t

∫
0

exp(Ā(t − τ))η(x(τ), u(τ), τ)dτ
The upper bound on the modulus of e can be derived as

∣e∣ = RRRRRRRRRRRR
t

∫
0

exp(Ā(t − τ))Φ(x(τ), x̂(τ), u(τ))dτ + t

∫
0

exp(Ā(t − τ))η(x(τ), u(τ), τ)dτ RRRRRRRRRRRR
t
RRRRRRRRRRRR

t

∫
0

exp(Ā(t − τ))Φ(x(τ), x̂(τ), u(τ))dτ RRRRRRRRRRRR +
RRRRRRRRRRRR

t

∫
0

exp(Ā(t − τ))η(x(τ), u(τ), τ)dτ RRRRRRRRRRRR
where the inequality follows Property 1(a). The above expression may be represented in a
simplified manner using convolution operator,

∣e∣ t ∣G(t) ∗Φ(x, x̂, u)∣ + ∣G(t) ∗ η(x,u, t)∣
t ∣G(t)∣ ∗ ∣Φ(x, x̂, u)∣ + ∣G(t)∣ ∗ ∣η(x,u, t)∣
t γ ∣G(t)∣ ∗ ∣e∣ + ∣G(t)∣ ∗ ∣η(x,u, t)∣
t γ ∣G(t)∣ ∗ ∣e∣ + ∣G(t)∣ ∗ η̄(u, t)

where the first inequality follows Lemma 4.1(b) and the second inequality follows using
the Lipschitz condition. Using the assumption H(t) u ∣G(t)∣, we have

∣e∣ t γH ∣e∣ +Hη̄(u, t)
From the above equation, it is obvious that

(I − γH) ∣e∣ ≜ ζ tHη̄(u, t)
By defining the linear operator T ≜ (I − γH)−1 − I, ∣e∣ can be expressed as

∣e∣ = (I − γH)−1 ζ = Tζ + ζ

It is clear from Lemma 4.2 that T is bounded and T (t) u 0 for all t ≥ 0. From Lemma 4.1,
it follows that

∣e∣ = Tζ + ζ

t THη̄(u, t) +Hη̄(u, t)
= ((I − γH)−1 − I)Hη̄(u, t) +Hη̄(u, t)
= (I − γH)−1 Hη̄(u, t)
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Remark 4.1. It should be noted that we have not considered the effect of initial conditions
e(0) in the above results. This may be included without any difficulty. However, for the
purpose of fault detection, since we assume that the observer has already converged before
the occurrence of fault, we may ignore the effect of initial conditions.

To this point, it has not been said how to find an H with impulse response H(t) u ∣G(t)∣.
The following lemma provides a solution to find such an H for the case when Ā has n
linearly independent eigenvectors and only real eigenvalues.

Lemma 4.3 ([122]). Let T (t) = CeĀtB where Ā has only real eigenvalues and is diago-
nalizable as Ā = SDS−1 where D is a diagonal matrix with the eigenvalues of Ā on the
diagonal and the columns of S consists of n linearly independent eigenvectors of Ā. Then

∣T (t)∣ t U(t) = ∣CS∣eDt∣S−1B∣
The above lemma provides a solution to find H, only when Ā has real eigenvalues. The

above lemma is extended to a generalized case where the eigenvalues of Ā could also be
complex.

Theorem 4.2. Let T (t) = CeĀtB where Ā is diagonalizable as Ā = SDS−1, D is a diagonal
matrix with the eigenvalues of Ā on the diagonal and the columns of S consists of n
linearly independent eigenvectors of Ā. Furthermore, let Dreal and Dimag be, respectively
the diagonal matrices with the real and imaginary part of the eigenvalues of Ā on the
diagonal. Then

∣T (t)∣ ≤ U(t) = ∣CS∣eDrealt∣S−1B∣
Proof.

∣CeĀtB∣ = ∣CSeDtS−1B∣
t ∣CS∣∣eDt∣∣S−1B∣
= ∣CS∣∣eDrealteDimagt∣∣S−1B∣
t ∣CS∣∣eDrealt∣∣eDimagt∣∣S−1B∣
t ∣CS∣eDrealt∣S−1B∣

With the upper bound on the modulus of the error dynamics determined in Theorem
4.1, the dynamic upper bound on the residual signal r is given as

∣r∣ = ∣Ce∣
t ∣C ∣ ∣e∣
t ∣C ∣ (I − γH)−1Hη̄(u, t)

Hence, the expression for threshold defined in (4.4) becomes

Jth = v ∗ ∣C ∣ (I − γH)−1Hη̄(u, t) (4.6)

It should be noted that in comparison to the fixed threshold, Jth in (4.6) is generated by a
dynamic system with u as input. This nature of adaptiveness in threshold will reduce the
false alarm rate and will increase the fault detection rate.

In the next section, an example is presented to illustrate the proposed technique.
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4.4 An example

To illustrate the proposed method for threshold selection, the nonlinear system described
in Example 3.5 is considered:

ẋ1 = x2

ẋ2 = −bx2 − cx1 − kn sin(x2) + (kg +∆kg
)u + d

y = x1

(4.7)

We assume that the parameter kg is uncertain which results in modeling uncertainty. d(t)
is uniformly distributed external disturbance to the system with the interval [−δd, δd]. The
system dynamics are of the form (4.1) with

A = [ 0 1
−c −b

] , B = [ 0
kg
] , C = [ 1 0 ]

φ(x) = [ 0
−kn sin(x1) ] , η = [ 0

∆kg
u + d(t) ]

Numerical values of the parameters are b = 1, c = 0.4, kn = 0.1, kg = 1. It is assumed
that the uncertainty in kg is at most 10%, which gives an upper bound on uncertainty as
η̄ = ∣0.1kgu∣+δd. We take δd = 0.3 in this example. The Lipschitz constant for the nonlinear
term φ, is γ = 0.1. For the purpose of residual generation, the observer structure of (4.3)
is utilized, where A, B, C, φ are as defined above, and the filter gain L as computed in
Example 3.5

L = [ 0.3024
0.9450

]
Then

A −LC = [ −0.30 1.00
−1.34 −1.00

]
The eigenvalues of A −LC are complex and lie at −0.65 ± 1.10i. Using Theorem 4.2, H(t)
is found as follows:

D = [ −0.65 + 1.10i 0
0 −0.65 − 1.10i

] ,
S = [ −0.20 − 0.62i −0.20 + 0.62i

0.76 0.76
]

H(t) = ∣S∣eDrealt∣S−1∣ = [ 1.04e−0.65t 0.90e−0.65t

1.22e−0.65t 1.05e−0.65t ]
and

H(s) = [ 1.04
s+0.65

0.90
s+0.65

1.22
s+0.65

1.05
s+0.65

]
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Figure 4.3: Singular value plot for H(s)

Before using H(t) for computation of threshold using (4.6), we need to show that ∥γH∥p <
1, as required by the Theorem 4.1. The easiest to find is for p =∞, ∥γH∥∞ ≤ σ̄(γH) because
efficient algorithms exist in MATLAB R for the computation of singular values of a transfer
function matrix. Figure 4.3 shows the singular value plot for γH using MATLAB R . We
notice that σ̄(γH) < 1 and hence, ∥γH∥∞ < 1. After a few algebraic simplifications, we get

(I − γH)−1H = 1

s2 + 1.12s + 0.30
[ 1.04s + 0.69 0.90s + 0.60

1.22s + 0.81 1.05s + 0.70
]

and

∣C ∣ (I − γH)−1H( 0
1
) = 0.9s + 0.60

s2 + 1.12s + 0.30

We choose µ = 0.5 so that v(t) = 0.5e−0.5t. The choice of µ is arbitrary, smaller value of
µ will result in more smoothened evaluated signal, and vice versa. Thus, the dynamic
threshold defined in (4.6) for this example is:

Jth =L −1 { 0.5

s + 0.5

0.9s + 0.60

s2 + 1.12s + 0.30
} ∗ η̄(u, t)

which can be implemented by a third order transfer function. The above example was
simulated in Simulink R with an input signal shown in Figure 4.4a. A constant fault of
magnitude 1 V occurs at 50s due to malfunctioning of the power electronics driving the
positioning system. Figure 4.4c shows the residual and the corresponding threshold, it is
seen that the variation in residual signal due to changes in control input are mimicked in
dynamic threshold whereas the fault is timely detected.

4.5 Summary

In this chapter, a method for dynamic threshold selection for Lipschitz nonlinear systems
with unstructured modeling uncertainty and external disturbances bounded by some known
functional was presented. An upper bound on the modulus of error dynamics was derived.
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4 Dynamic threshold computation
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Figure 4.4: Simulation results for fault detection of the example system (a) input to the system
(b) fault in the system occurring at 5s (c) residual and the corresponding dynamic threshold.
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4.5 Summary

This upper bound was utilized to compute a threshold. Thus, threshold generator is itself
a dynamic system which results in more tighter threshold, and hence, a better performance
of the fault detection system. The proposed method was demonstrated by an example that
demonstrated the effectiveness of the proposed method.
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Chapter 5
Optimal trade-off design using
post-filter and threshold

The problem of optimal trade-off design for fault detection in nonlinear systems
is addressed in this chapter. Using the factorization approach, a post-filter is
designed and a threshold is computed to achieve an optimal trade-off between
fault detectability and number of false alarms. Furthermore, it is shown that the
proposed post-filter also provides the H−/H∞ multi-objective optimization. The
effectiveness of the proposed method is demonstrated by an academic example.

As discussed earlier, an observer-based fault detection system consists of residual gener-
ation and residual evaluation. In residual generation step, objective is to make the residual
signal sensitive to faults and robust against disturbances. In Chapter 2, some state of the
art methods for observer-based residual generation in nonlinear systems were presented.
In Chapter 3, three types of fault detection filters were proposed to achieve the fault sen-
sitivity and disturbance robustness properties of the residual signal. Despite disturbance
attenuation properties of these residual generation techniques, complete rejection of the
effect of disturbances and uncertainties on the residual signal is not possible. Therefore,
residual evaluation is performed to decide about the presence of faults. Conventionally, a
residual evaluation process consists of taking some norm of the residual signal to obtain
the so called evaluated residual signal and comparing it with a threshold. If the evaluated
residual signal exceeds the threshold, a fault alarm is released. Selection of threshold plays
a very important role in the performance of a fault detection system. If threshold is se-
lected too low, disturbances and uncertainties will be able to cause the evaluated residual
signal cross the threshold resulting in false alarms. If it is selected too high, some of the
faults will not be detected. One approach for threshold selection is to take the maximum
possible effect of disturbances on the evaluated residual signal. If L2 norm is used as evalu-
ation function, then this maximum effect is equal to L2 norm of disturbance multiplied by
H∞ norm of the system describing the dynamics of residual generator. However, this will
result in a very conservative threshold and most of the small faults will not be detected.
To avoid this conservativeness, an approach to select a variable threshold was presented
in Chapter 4 for a class of nonlinear systems. This chapter presents another approach for
selecting a threshold to reduce the conservativeness of threshold and to make an optimal
trade-off between fault detectability and the reduced number of false alarms.
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5 Optimal trade-off design using post-filter and threshold

Figure 5.1: Schematic diagram of an observer-based fault detection scheme

Additional to taking norm of the residual signal, generating threshold and selecting a
decision logic, this chapter also introduces a post-filter in the step of residual evaluation
as shown in Figure 5.1. Utilizing the factorization approach, we propose a method to
design this post-filter. The proposed post-filter servers two purposes, firstly, it operates on
the residual signal to generate modified residual signal. The modified residual signal has
increased sensitivity to faults and robustness against disturbances, i.e., the multi-objective
H−/H∞ optimization is achieved. Thus one can use any arbitrary stable fault detection
filter and the H−/H∞ optimization will be guaranteed by the post-filter. Secondly, the
post-filter together with the designed threshold makes an optimal trade-off between fault
detectability and reduced number of false alarms. There can be two situations of the
optimal trade-off between the fault detectability and the false alarm rate. These are: i)
Minimization of false alarms for a required fault detection rate(FDR) ii) Maximization of
fault detectability for an allowed false alarm rate (FAR) . We propose two solutions for the
above mentioned optimal trade-off design problems. For the first situation, based on the
required fault detection rate, a threshold is determined which ensures the required FDR,
and the false alarm rate is minimized by designing the post-filter. The second situation
is more realistic, in many practical situations allowable FAR is provided and it is desired
to maximize the fault detectability. A threshold is selected to guarantee that the FAR is
lower than the allowed one, and fault detectability is maximized by using the post-filter.
Factorization approach is utilized to obtain solution to these optimization problems.

Section 5.1 presents some preliminary material which will be helpful for further discus-
sions. The problem of finding a trade-off between high fault detectability and reduced
number of false alarms is formulated in Section 5.2. Section 5.3 provides a solution to the
formulated problems. The threshold selection is presented in Section 5.4. In Section 5.5,
we compare our results to the existing optimization problems. An example is presented
in Section 5.6 to demonstrate the effectiveness of the proposed approach. Conclusion is
presented in the last section.
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5.1 Preliminaries

5.1 Preliminaries

To impart some useful concepts for our further discussion, we consider the affine nonlinear
system described by

Σ ∶

⎧⎪⎪⎨⎪⎪⎩
ẋ = a(x) +B(x)u
y = c(x) +D(x)u (5.1)

where x ∈ Rn is the state vector, u ∈ Rm is input vector and y ∈ Rp is the output vector.
a(x), B(x), c(x) and D(x) are smooth functions of appropriate dimensions. We will use
Σ(u) to represent the output of system Σ with input u, i.e., y = Σ(u). The series intercon-
nection of two systems will be represented by the operator ○, i.e., Σ2 ○Σ1 means the output
of system Σ1 appears as input to system Σ2. DΣ represents the Fréchet derivative of the
system Σ (see [145] for details about Fréchet derivative). Σ−1 is obtained by interchanging
the roles of inputs and outputs of Σ, i.e., with the assumption that D(x) is invertible, Σ−1

is given by:

Σ−1 ∶

⎧⎪⎪⎨⎪⎪⎩
ẋ = a(x) −B(x)D−1(x)c(x) +B(x)D−1(x)y
u = −D−1(x)c(x) +D−1(x)y

Definition 5.1. [146] The nonlinear system Σ defined in (5.1) is called weakly mini-
mum phase if xeq is a Lyapunov stable equilibrium point of a(x) − B(x)D−1(x)c(x) and
is called strictly minimum phase if xeq is an asymptotically stable equilibrium point of
a(x) −B(x)D−1(x)c(x)
Definition 5.2. [147] The nonlinear system Σ as in (5.1) is called inner if there exists a
non-negative valued storage function P (x) with P (0) = 0 such that

P (x(t2)) − P (x(t1)) = 1

2

t2

∫
t1

[uTu − yTy]dt
over all trajectories (y, x, u) of the system.

Definition 5.3. [147] The nonlinear system Σ is called outer if it is an asymptotically
stable, weakly minimum phase system.

Lemma 5.1. For nonlinear system Σ ∶ u→ y, we have

a) ∥y∥
2
≤ ∥Σ∥∞ ∥u∥2

b) ∥y∥
2
≥ ∥Σ∥− ∥u∥2

Proof. Following the definitions

∥y∥
2
= ∥y∥2∥u∥

2

∥u∥
2
≤ sup

u≠0

∥y∥
2∥u∥
2

∥u∥
2
= ∥Σ∥∞ ∥u∥2

∥y∥
2
= ∥y∥2∥u∥

2

∥u∥
2
≥ inf

u≠0

∥y∥
2∥u∥
2

∥u∥
2
= ∥Σ∥− ∥u∥2
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5 Optimal trade-off design using post-filter and threshold

Lemma 5.2. For two nonlinear systems ΣA: y ↦ z and ΣB ∶ u ↦ y, and the assumption
that for u ≠ 0, y = ΣB(u) ≠ 0, we have

a) ∥ΣA ○ΣB∥∞ ≤ ∥ΣA∥∞∥ΣB∥∞
b) ∥ΣA ○ΣB∥− ≤ ∥ΣA∥∞∥ΣB∥−
c) ∥ΣA ○ΣB∥∞ ≥ ∥ΣA∥−∥ΣB∥∞
Proof. a)

∥ΣA ○ΣB∥∞ = sup
u≠0

∥ΣA ○ΣB(u)∥2∥u∥2
= sup

u≠0
(∥ΣA ○ΣB(u)∥2∥ΣB(u)∥2 ∥ΣB(u)∥2∥u∥2 )

≤ sup
y≠0

∥ΣA(y)∥2∥y∥2 sup
u≠0

∥ΣB(u)∥2∥u∥2
≤ ∥ΣA∥∞∥ΣB∥∞

b)

∥ΣA ○ΣB∥− = inf
u≠0

∥ΣA ○ΣB(u)∥2∥u∥2
= inf

u≠0
{∥ΣA ○ΣB(u)∥2∥ΣB(u)∥2 ∥ΣB(u)∥2∥u∥2 }

= inf
u≠0
{∥ΣA(y)∥2∥y∥2 ∥ΣB(u)∥2∥u∥2 }

≤ sup
y≠0

∥ΣA(y)∥2∥y∥2 inf
u≠0

∥ΣB(u)∥2∥u∥2
≤ ∥ΣA∥∞∥ΣB∥−

c)

∥ΣA ○ΣB∥∞ = sup
u≠0

∥ΣA ○ΣB(u)∥2∥u∥2
= sup

u≠0
{∥ΣA ○ΣB(u)∥2∥ΣB(u)∥2 ∥ΣB(u)∥2∥u∥2 }

= sup
u≠0
{∥ΣA(y)∥2∥y∥2 ∥ΣB(u)∥2∥u∥2 }

≥ inf
y≠0

∥ΣA(y)∥2∥y∥2 sup
u≠0

∥ΣB(u)∥2∥u∥2
≥ ∥ΣA∥−∥ΣB∥∞
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5.1 Preliminaries

The inner-outer factorization of a nonlinear systems Σ is represented as

Σ = Σi ○Σo

The lossless system Σi is inner factor and stable minimum phase system Σo is the outer
factor. The problem of inner-outer factorization (more precisely (j,J)-inner-outer factor-
ization) has been widely discussed in literature (mainly by Ball and coworkers, see e.g.,
[146, 147]). On the assumption that xeq = 0 is asymptotically stable equilibrium point of
ẋ = a(x), the outer factor for the system Σ defined in (5.1) is given by [147]

Σo ∶

⎧⎪⎪⎨⎪⎪⎩
ξ̇ = a(ξ) +B(ξ)u
ȳ = c̄(ξ) + D̄(ξ)u

where m×m smooth function D̄(ξ) with invertible values for all ξ is given by DT (ξ)D(ξ) =
D̄T (ξ)D̄(ξ) = E(ξ) and c̄(ξ) = D̄(ξ)E−1(ξ) {DT (ξ)c(ξ) +BT (ξ)P T

x (ξ)}. P (ξ) ≥ 0 with
P (0) = 0 is a smooth function which satisfies the following Hamilton-Jacobi equation

Pξ(ξ) [a(ξ) −B(ξ)E−1(ξ)DT (ξ)c(ξ)]
+

1

2
cT (ξ) [I −D(ξ)E−1(ξ)DT (ξ)] c(ξ) − 1

2
Pξ(ξ)B(ξ)E−1(ξ)BT (ξ)P T

ξ (ξ) = 0

Furthermore, the inner is conservative, i.e.,

[DΣi]T ○ [Σi(ȳ)] = ȳ (5.2)

It has been shown in [148] that if Σi satisfies (5.2), then Σi is norm preserving, i.e. ∥y∥
2
=∥ȳ∥

2
. In other words, we can say

∥Σi∥∞ = ∥Σi∥− = 1

For the purpose of FDI, the problem of co-inner-outer factorization is of more interest
and is represented as:

Σ = Σco ○Σci

where Σco is an outer system and Σci is an inner system. The co-inner-outer factorization
is a dual problem to the inner-outer factorization. By proceeding in a parallel way to
inner-outer factorization in [147], we have the following theorem for the co-inner-outer
factorization.

Theorem 5.1. Suppose that for the system Σ defined in (5.1), xeq = 0 is asymptotically
stable equilibrium point of ẋ = a(x) and there exists a solution P (ξ) ≥ 0 with P (0) = 0 to
the following Hamilton-Jacobi equation

Pξ(ξ) [a(ξ) −B(ξ)DT (ξ)E−1(ξ)c(ξ)]
+

1

4
Pξ(ξ)B(ξ) [I −DT (ξ)E−1(ξ)D(ξ)]BT (ξ)P T

ξ (ξ) − cT (ξ)E−1(ξ)c(ξ) = 0 (5.3)

Then the co-outer factor Σco for Σ is given by

Σco ∶

⎧⎪⎪⎨⎪⎪⎩
ξ̇ = a(ξ) + B̄(ξ)ȳ
y = c(ξ) + D̄(ξ)ȳ (5.4)
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5 Optimal trade-off design using post-filter and threshold

where p × p smooth function d̄(ξ) with invertible values for all ξ is given by d(ξ)dT (ξ) =
d̄(ξ)d̄T (ξ) = E(ξ) and

Pξ(ξ)B̄(ξ) = [Pξ(ξ)B(ξ)DT (ξ) + 2cT (ξ)]E−1(ξ)D̄(ξ) (5.5)

Proof. The proof follows in same lines as for inner-outer factorization in [147].

The factorization of nonlinear systems involves solving a Hamilton-Jacobi equations
(5.3). Analytical solution of such equation is difficult to obtain, however, there exist some
methods to obtain the approximate solution for the Hamilton-Jacobi equations, see e.g.
[149–152] and references therein for approximate solutions of Hamilton-Jacobi equations.
Two of these methods are outlined in Appendix C.

5.2 Problem formulation

If we put bird’s eye view on a fault detection system, it appears as a box with measurements
as inputs and the ‘fault alarm’ as output. It is desired that the fault detection system should
release a fault alarm as soon as fault occurs in the system. The presence of uncertainties
and disturbances can also appear to the fault detection system as faults and may cause
to release alarm, this is called a false alarm. Definitely, the presence of false alarms is not
desired in any fault detection system. To measure how frequently a false alarm occurs in
a fault detection system, false alarm rate (FAR) was defined in statistical settings [123].
Similarly, to measure the fault detectability, fault detection rate (FDR) was defined [123].
Later, these concepts were generalized to the norm based context [13, 31]. We know that
high FDR and low FAR are the design objectives of fault detection systems. But these are
the conflicting requirements and therefore, to find an optimal trade-off between high FDR
and low FAR is the challenge in designing fault detection systems. Note that, residual
sensitivity to faults and robustness to disturbances are only tools to achieve the objective
of the optimal trade-off between high FDR and low FAR. In this section, first we give the
norm based definitions of FDR and FAR, and then based on norm based definitions, we
formulate the optimal trade-off design problem into finding a post-filter and a threshold.

We consider again the affine nonlinear system described by (3.5) and the corresponding
fault detection filter structure defined in (3.6). We assume that a stable fault detection
filter is already designed. The dynamics of augmented system are then described by (3.7).
For easy reference, the dynamics of the augmented systems are again described here

ΣA ∶

⎧⎪⎪⎨⎪⎪⎩
˙̃x = ã(x̃) + Ẽf(x̃)f + Ẽd(x̃)d
r = c̃(x̃) + F̃f(x̃)f + F̃d(x̃)d (5.6)

where f ∈ Rkf is the fault vector that has to be detected, d ∈ Rkd is vector of disturbances,
the vectors x̃, ã(x̃), c̃(x̃) and the matrices Ẽf(x̃), Ẽf(x̃), F̃f(x̃), F̃d(x̃) are as defined in
Section 3.1.

As shown in Figure 5.1, the residual signal r acts as input to the post-filter to generate
a signal, we call the modified residual signal r̃, i.e.

r̃ = ΣR(r)
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5.2 Problem formulation

ΣR is a dynamic nonlinear system which is to be designed to achieve the optimal trade-off
design problems (to be stated in this Section).

Note that in the above formulation, we have not taken into account the effect of known
inputs u. The known inputs can be treated in similar way as the disturbances d (please
see Remark 3.1 for more details).

For the purpose of analysis, we define ΣD to represent the fault-free residual generator
dynamics, i.e.,

ΣD ∶

⎧⎪⎪⎨⎪⎪⎩
˙̃x = ã(x̃) + Ẽd(x̃)d
r = c̃(x̃) + F̃d(x̃)d (5.7)

Similarly, we define ΣF to represent the residual generator dynamics with d = 0, i.e.,

ΣF ∶

⎧⎪⎪⎨⎪⎪⎩
˙̃x = ã(x̃) + Ẽf(x̃)f
r = c̃(x̃) + F̃f(x̃)f (5.8)

L2 norm is commonly used as evaluation function, we will also use L2 norm of the
modified residual signal r̃ for the purpose of residual evaluation, i.e.,

J = ∥r̃∥
2
= ∥ΣR ○ΣA (f, d)∥2 (5.9)

The corresponding threshold is denoted by Jth and the following simple decision logic is
used to decide about the occurrence of faults

J − Jth > 0⇒ fault

J − Jth ≤ 0⇒ fault-free
(5.10)

Note that a false-alarm will be created if in a fault-free case

∥r̃∥
2
= ∥ΣR ○ΣA (d)∥2 > Jth false-alarm condition (5.11)

Likewise, a fault will be detected if

∥r̃∥
2
= ∥ΣR ○ΣA (f, d)∥2 > Jth fault detection condition (5.12)

To measure how frequently a false alarm is released and how frequently a fault is detected,
false alarm rate (FAR) and fault detection rate (FDR) were originally defined in stochastic
settings [123]. Later, the concept was generalized to deterministic context in [13]. Below
we explain the deterministic definition of FAR and FDR.

In fault free case,
sup

d≠0,f=0
∥r̃∥

2
= ∥ΣR ○ΣD∥∞ δd = αδd

It can be noticed that setting the threshold equal to αδd will guarantee a zero false alarm.
With this observation, [13] defined FAR in norm based framework as

FAR = 1 −
Jth

αδd
(5.13)

The set of disturbances that cause false alarms (SDFA) is denoted by ΩFA(ΣR , Jth), i.e.,

ΩFA(ΣR , Jth) = {d∣(5.11) is satisfied} (5.14)

75



5 Optimal trade-off design using post-filter and threshold

The size of SDFA gives an indication of the number of possible false alarms - smaller the
set ΩFA, lower is the false alarm number and vice versa.

Likewise, for no disturbance,

inf
f≠0,d=0

∥r̃∥
2
= ∥ΣR ○ΣF ∥− δf,min = βδf,min

and setting the threshold equal to βδf,min will give 100 % detection of faults whose size is
larger than δf,min. Hence, FDR in norm based framework can be defined as [13]

FDR = βδf,min

Jth

(5.15)

We denote the set of detectable faults (SDF) by ΩDE(ΣR , Jth), i.e.,

ΩDE(ΣR , Jth) = {f ∣ (5.12) is satisfied} (5.16)

the size of SDF gives the measure of the performance of fault detection system regarding
fault detectability – larger is the set ΩDE, higher will be the fault detectability and vice
versa.

So, the design objective of finding a trade-off between FDR and FAR can be expressed
in terms of the following two optimization problems.

Problem 5.1 (Maximizing SDF under a given FAR (PMax-SDF)). Given an FAR, find
a stable post-filter ΣRopt

so that

ΩDE(ΣR , Jth) ⊆ ΩDE(ΣRopt
, Jth) (5.17)

Problem 5.2 (Minimizing SDFA under a given FDR (PMin-SDFA)). Given FDR, find a
stable post-filter ΣRopt

so that

ΩFA(ΣR , Jth) ⊇ ΩFA(ΣRopt
, Jth) (5.18)

In next section, a threshold selection method and post-filter design to give solutions to
these problems is proposed.

5.3 Post-filter design

Using the co-inner-outer factorization, we present two theorems which propose threshold
selection and post-filter design methods to provide solutions to the problems formulated
in the last section.

Theorem 5.2. Assume that ΣD can be factorized into co-inner-outer factors as ΣD =
ΣDco

○ΣDci
, then

ΣRopt
= Σ−1Dco

(5.19)

solves the optimization problem PMax-SDF defined in (5.17).
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5.3 Post-filter design

Proof. For a given FAR, the threshold is given according to (5.13) as

Jth = (1 −FAR) ∥ΣR ○ΣD∥∞ δd
Let

ΣR = ΣQ ○Σ−1Dco

where ΣQ is any arbitrarily selectable stable system. Then from the fault detection condi-
tion (5.12), fault is detected if

∥ΣQ ○Σ−1Dco
○ΣA (f, d)∥

2
− (1 − FAR) ∥ΣQ ○Σ−1Dco

○ΣD∥∞ δd > 0 (5.20)

Note that

∥ΣQ ○Σ−1Dco
○ΣD∥∞ = ∥ΣQ ○ΣDci

∥∞ = ∥ΣQ∥∞
The first equality follows by cancellation of the co-outer part of ΣD and the second by the
fact that ∥ΣDci

∥∞ = 1. Also utilizing Lemma 5.1(a), we have

∥ΣQ ○Σ−1Dco
○ΣA (f, d)∥

2
≤ ∥ΣQ∥∞ ∥Σ−1Dco

○ΣA (f, d)∥
2

So that detection condition (5.20) becomes

0 < ∥ΣQ ○Σ−1Dco
○ΣA (f, d)∥

2
− (1 − FAR) ∥ΣQ ○Σ−1Dco

○ΣD∥∞ δd≤ ∥ΣQ∥∞ (∥Σ−1Dco
○ΣA (f, d)∥

2
− (1 −FAR)δd)

Therefore

∥Σ−1Dco
○ΣA (f, d)∥

2
− (1 −FAR)δd > 0 (5.21)

is a necessary condition for fault to be detected. Setting ΣQ = I and therefore, ΣRopt
= Σ−1Dco

leads to

∥ΣQ ○Σ−1Dco
○ΣA (f, d)∥

2
− (1 −FAR) ∥ΣQ ○Σ−1Dco

○ΣD∥∞ δd= ∥Σ−1Dco
○ΣA (f, d)∥

2
− (1 − FAR)δd

which means that (5.21) is also sufficient condition for f to be detectable provided that
ΣRopt

= Σ−1Dco
. Thus,

ΩDE(ΣR , Jth) ⊆ ΩDE(ΣRopt
, Jth)

which means that the set of detectable faults with post-filter ΣRopt
= Σ−1Dco

is superset to
the set of detectable faults with any other post-filter, that is, the set of detectable faults is
maximized with the optimal post-filter. Furthermore, as the co-outer is weakly minimum
phase, hence its inverse is stable. This completes the proof.

Using a similar approach, the following theorem provides a solution to PMin-SDFA
problem defined in (5.18).
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5 Optimal trade-off design using post-filter and threshold

Theorem 5.3. Assume that ΣF can be factorized into co-inner-outer factors as ΣF =
ΣFco

○ΣFci
, then

ΣRopt
= Σ−1Fco

(5.22)

solves the optimal trade-off design problem PMin-SDFA defined in (5.18)

Proof. For a given FDR, the threshold is given according to (5.15) as

Jth = δf,min

FDR
∥ΣR ○ΣF ∥−

Let

ΣR = ΣQ ○Σ−1Fco

where ΣQ is any arbitrarily selectable stable system. Then from (5.11), false alarm will be
generated if

∥ΣQ ○Σ−1Fco
○ΣD(d)∥

2
−
δf,min

FDR
∥ΣQ ○Σ−1Fco

○ΣF∥− > 0 (5.23)

Note that ∥ΣQ ○Σ−1Fco
○ΣF∥− = ∥ΣQ ○ΣFci

∥− = ∥ΣQ∥−
The first equality follows by cancellation of the co-outer part ΣF and the second by noting
that that ∥ΣFci

∥− = 1. Utilizing Lemma 5.1(b), we have

∥ΣQ ○Σ−1Fco
○ΣD(d)∥

2
≥ ∥ΣQ∥− ∥Σ−1Fco

○ΣD(d)∥
2

then the false alarm condition (5.23) becomes

0 < ∥ΣQ∥− (∥Σ−1Fco
○ΣD(d)∥

2
−
δf,min

FDR
)

≤ ∥ΣQ ○Σ−1Fco
○ΣD(d)∥

2
−
δf,min

FDR
∥ΣQ ○Σ−1Fco

○ΣF∥−
Hence,

∥ΣQ∥− > 0, ∥Σ−1Fco
○ΣD(d)∥

2
−
δf,min

FDR
> 0 (5.24)

is sufficient condition for a false alarm. Setting ΣQ = I and therefore, ΣRopt
= Σ−1Fco

leads to

∥ΣQ ○Σ−1Fco
○ΣD(d)∥

2
−
δf,min

FDR
∥ΣQ ○ΣFci

∥− = ∥ΣQ∥− ∥Σ−1Fco
○ΣD(d)∥

2
−
δf,min

FDR
> 0

which means that (5.24) is also necessary condition for d to cause false alarm provided
ΣRopt

= Σ−1Fco
. So

ΩFA(ΣRopt
, Jth) ⊆ ΩFA(ΣR , Jth)

which means that the set of disturbances that cause false-alarms with post-filter ΣRopt
=

Σ−1Fco
is subset to the set of disturbances that cause false-alarms with any other post-filter,

that is, the set of disturbances that cause false alarms is minimized with the optimal post-
filter. Furthermore, as the co-outer is weakly minimum phase, hence its inverse is stable.
This completes the proof.
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5.4 Threshold selection

The proposed post-filter design approach not only provides optimization in the sense of
FDR and FAR but, as will be shown in Section 5.5, also gives optimization in the sense
of multi-objective H−/H∞ trade-off design. As compared to the H−/H∞ trade-off design,
where two coupled partial differential equations with two unknown functions (L,P ) are
to be solved [153], the proposed approach has the advantage that it needs the solution of
only one partial differential equation with one unknown function (P ), although the order
of the equation is doubled.

The approach for multi-objective H−/H∞ trade-off design is to assume a constant post
filter and to make optimization over the filter gain L. In our analysis, it is easier to take
a stabilizing filter gain and make optimization over the post-filter. This has the drawback
that two time effort is to be made, once for designing a stabilizing filter gain matrix and
the other for optimal post-filter design. However, this approach has more advantage in
situations when the observer has already been designed, e.g. for control purposes, and we
can not change the observer properties.

5.4 Threshold selection

Threshold selection is an important step in the design of fault detection scheme. The effect
of disturbances and modeling uncertainties on the residual signal can not be eliminated in
most of the cases, therefore, a proper threshold has to be selected to decide the presence
of faults. A high threshold will result in low number of false alarms but at the same
time will result in low fault detectability. Likewise, a low threshold selection will give a
good fault detectability but with increased false alarm rate. In last section, we proposed
that threshold can be selected to guarantee a required fault detection rate or allowable
false alarm rate. Based on these threshold selections, we derived post-filters to minimize
the false alarm rate and maximize the fault detectability. With these post filters, the
expression for threshold is considerably simplified and can be easily computed. Thus for
a given FAR, and post-filter settings according to ΣR = Σ−1Dco

, threshold is obtained from
(5.13) as

Jth = (1 − FAR) ∥ΣR ○ΣD∥∞ δd
= (1 − FAR) ∥Σ−1Dco

○ΣD∥∞ δd= (1 − FAR) ∥ΣDci
∥∞ δd= (1 − FAR)δd (5.25)

Likewise, for a given FDR and post filter settings according to ΣR = Σ−1Fco
, threshold is

determined from (5.15)

Jth = δf,min

FDR
∥ΣR ○ΣF ∥−

= δf,min

FDR
∥Σ−1Fco

○ΣF∥−
= δf,min

FDR
∥ΣFci

∥−
= δf,min

FDR
(5.26)

79



5 Optimal trade-off design using post-filter and threshold

5.5 The relationship with optimal residual generators

Residual generation in nonlinear systems has received considerable interests among the re-
searchers. Some of the well known observer-based residual generation methods for nonlin-
ear systems were presented in Chapter 2. In Chapter 3 we proposed observer-based residual
generation techniques for nonlinear systems utilizing the game theoretic approach. Three
types of observers were presented, these include H− fault sensitive FDF, H∞ disturbance
attenuating FDF and H−/H∞ multi-objective FDF. The H− fault sensitive FDF ensures
that the minimum L2 gain from fault to residual is not less than a give constant, and
H∞ disturbance attenuating FDF guarantees that in worst case L2 gain from disturbance
to residual is not greater than a give constant. However, these two FDF have associated
disadvantages. For example, besides amplifying the effect of faults, the H− fault sensitive
FDF may also amplify the disturbances. Likewise, H∞ disturbance attenuating FDF may
also attenuate the effect of faults along with attenuating the effect of disturbances. There-
fore, H−/H∞ multi-objective FDF is the best in the sense that it simultaneously reduces
the effect of disturbances and amplifies the effect of faults (see Chapter 3 for more details).
In this section, we show that the post-filters design methods proposed in this chapter not
only deliver optimization in the sense of optimal trade-off between FAR and FDR but also
achieve H−/H∞ optimization.

From previous discussions, we know that the H−/H∞ optimization problem is to maxi-
mize

inff≠0 ∥r∥2 / ∥f∥2
supd≠0 ∥r∥2 / ∥d∥2 =

∥ΣF ∥−∥ΣD∥∞
If the post-filter is used as shown in Figure 5.1, the residual signal r acts as input to the
post-filter to generate the modified residual signal r̃, and the multi-objective optimization
problem is then represented as

inff≠0 ∥r̃∥2 / ∥f∥2
supd≠0 ∥r̃∥2 / ∥d∥2 =

∥ΣR ○ΣF ∥−∥ΣR ○ΣD∥∞
Next two theorems show that using the post-filters proposed in Section 5.3 will optimize
the above index. Thus one can use any stable fault detection filter for residual generation
and the H−/H∞ optimization will be achieved by the proposed post-filter.

Theorem 5.4. Assume that ΣD can be factorized into co-inner-outer factors as ΣD =
ΣDco

○ΣDci
, then

ΣRopt
= Σ−1Dco

(5.27)

solves the optimal residual generator design problem according to the H−/H∞ index, i.e.,

ΣRopt
= arg sup

ΣR

∥ΣR ○ΣF ∥−∥ΣR ○ΣD∥∞ = Σ−1Dco

Proof. Let post-filter

ΣR = ΣQ ○Σ−1Dco
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5.5 The relationship with optimal residual generators

where ΣQ is any arbitrarily selectable stable system. Recall that ΣF and ΣD represent the
augmented system ΣA for case f = 0 and d = 0, respectively, then using Lemma 5.2(b) and
noting that ∥ΣDci

∥∞ = 1, we get

∥ΣR ○ΣF ∥−∥ΣR ○ΣD∥∞ =
∥ΣQ ○Σ−1Dco

○ΣF ∥−∥ΣQ ○Σ−1Dco
○ΣD∥∞

= ∥ΣQ ○Σ−1Dco
○ΣF ∥−∥ΣQ ○ΣDci
∥∞

= ∥ΣQ ○Σ−1Dco
○ΣF ∥−∥ΣQ∥∞

≤ ∥ΣQ∥∞∥Σ−1Dco
○ΣF ∥−∥ΣQ∥∞≤ ∥Σ−1Dco

○ΣF ∥−
The equalities can be achieved when ΣQ = I, so that the optimal post-filter is ΣRopt

=
Σ−1Dco

. This completes the proof.

By following similar steps, it can be shown that (5.27) also solves the optimal residual
generator design problem according to the H∞/H∞ multi-objective performance index.

Theorem 5.5. Assume that ΣF can be factorized into co-inner-outer factors as ΣF =
ΣFco

○ΣFci
, then

ΣRopt
= Σ−1Fco

(5.28)

solves the optimal residual generator design problem according to the H−/H∞ index, i.e.,

ΣRopt
= arg sup

ΣR

∥ΣR ○ΣF ∥−∥ΣR ○ΣD∥∞ = Σ−1Fco

Proof. Let post-filter

ΣR = ΣQ ○Σ−1Fco

where ΣQ is any arbitrarily selectable stable system. Recall that ΣF and ΣD represent
the augmented system ΣA for case f = 0 and d = 0, using Lemma 5.2(c) and noting that∥ΣFci

∥− = 1, we get

∥ΣR ○ΣF ∥−∥ΣR ○ΣD∥∞ =
∥ΣQ ○Σ−1Fco

○ΣF ∥−∥ΣQ ○Σ−1Fco
○ΣD∥∞

= ∥ΣQ ○ΣFci
∥−∥ΣQ ○Σ−1Fco
○ΣD∥∞

= ∥ΣQ∥−∥ΣQ ○Σ−1Fco
○ΣD∥∞

≤ ∥ΣQ∥−∥ΣQ∥−∥Σ−1Fco
○ΣD∥∞

≤ 1∥Σ−1Fco
○ΣD∥∞

81



5 Optimal trade-off design using post-filter and threshold

The equalities can be achieved when ΣQ = I, so that the optimal post-filter is ΣRopt
=

Σ−1Fco
. This completes the proof.

5.6 An Example

To demonstrate the effectiveness of the proposed method, we present here a simple example
of a nonlinear system described by

ẋ = −x − x3 + u + d + fa

y = x + η + fs

For residual generation, we apply the following nonlinear fault detection filter

˙̂x = −x̂ − x̂3 + u +L(y − ŷ)
ŷ = x̂

where L = 3 is the filter gain. The dynamics of residual generator are;

[ ẋ˙̂x ] = [ −x − x3

−x̂ − x̂3 +L(x − x̂) ] + [ 1
1
]u + [ 1 0

0 L
] [ d

η
]

+ [ 1 0
0 L

] [ fa

fs
]

r = x − x̂ + [ 0 1 ] [ d
η
] + [ 0 1 ] [ fa

fs
]

Post-filter and threshold to solve PMaxSDF
Recall that the optimal post-filter which provides the solution to PMaxSDF problem is
the inverse of the co-outer part of ΣD . For the example system,

ΣD ∶

⎧⎪⎪⎨⎪⎪⎩
˙̃x = ã(x̃) + Ẽdd

r = c̃(x̃) + F̃dd
(5.29)

with

ã(x̃) = [ −x − x3

−x̂ − x̂3 +L(x − x̂) ] , Ẽd = [ 1 0
0 L

] , c̃(x̃) = x − x̂, F̃d = [ 0 1 ]
To find the co-outer for ΣD , we need to solve the following equation which comes from
(5.3),

Pξ(ξ)[ã(ξ) − ẼdF̃
T
d (F̃dF̃

T
d )−1c̃(ξ)]

+
1

4
Pξ(ξ)Ẽd[I − F̃ T

d (F̃dF̃
T
d )−1F̃d]ẼTP T

ξ (ξ) − c̃T (ξ)(F̃dF̃
T
d )−1c̃(ξ) = 0 (5.30)

We utilize the method proposed in [151] (see Appendix C) for solving (5.30). First, we
transform (5.30) in the form of (C.1). For that purpose, we define

φ(ξ) = ã(ξ) − Ẽd(F̃dF̃
T
d )−1F̃ T

d c̃(ξ) = [ −ξ1 − ξ3

1

−ξ2 − ξ2
3 ]
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5.6 An Example

and

D = 1

2
Ẽd[I − F̃ T

d (F̃dF̃
T
d )−1F̃d]ẼT

d = 1

2
[ 1 0

0 0
]

and

D+ = [ 2 0
0 0

]
then from (C.2),

[ ψ1 ψ2 ] [ 2 0
0 0

] [ ψ1

ψ2

] − [ φ1 φ2 ] [ 2 0
0 0

] [ φ1

φ2

] − 2(ξ1 − ξ2)T (ξ1 − ξ2) = 0

or
ψ2

1 − (ξ1 − ξ3

1)2 − (ξ1 − ξ2)2 = 0

which gives

ψ1 =√(ξ1 − ξ3

1
)2 + (ξ1 − ξ2)2

and from (C.3)

Pξ(ξ) = − [ (φ1 −ψ1) (φ2 −ψ2) ]D+
= −2 [ (φ1 −ψ1) 0 ]

or

Pξ(ξ) = [ 2ξ1 + 2ξ3

1
+ 2
√(ξ1 − ξ2)2 + (ξ1 + ξ3

1
)2 0 ]

Further, we can show that Pξ(ξ) satisfies the symmetry conditions (C.4). Then the co-outer
ΣDco

is obtained from (5.4) as;

ΣDco
∶

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ξ̇ =
⎡⎢⎢⎢⎢⎣
−ξ1 − ξ

3

1

−ξ2 − ξ
3

2

⎤⎥⎥⎥⎥⎦ + B̄(ξ)r̃
r = ξ1 − ξ2 + r̃

Where B̄(ξ) is as defined in (5.5). The inverse of the co-outer system is the optimal
post-filter and is given as

ΣRopt
= ΣD−1co

∶

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ξ̇ =
⎡⎢⎢⎢⎢⎣
−ξ1 − ξ

3

1

−ξ2 − ξ
3

2

⎤⎥⎥⎥⎥⎦ − B̄(ξ)(ξ1 − ξ2) + B̄(ξ)r
r̃ = −ξ1 + ξ2 + r

(5.31)

The post filter (5.31) is used to generate the modified residual signal for fault detection.
The example is simulated in Simulink R for δd ≤ 0.2 and a unit step sensor fault occurring
at t = 5s. The simulation results are shown in Figure 5.2. It should be noted that L2 norm
of a signal can not be implemented in reality, and a practical solution is to approximate it
with RMS value of the signal over a finite length moving window. The length of window
can be arbitrarily selected, a large window gives better approximation of L2 norm but
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5 Optimal trade-off design using post-filter and threshold
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(a) Evaluated residual signal
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(b) Evaluated modified residual signal

Figure 5.2: Superiority of using the proposed optimal trade-off design method. (a) evaluated
residual signal r, (b) evaluated modified residual signal r̃ (after using the proposed post-filter)
and the corresponding threshold for a sensor fault occurring at t = 5 seconds.
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(a) Evaluated intermediate signal
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(b) Evaluated residual signal

Figure 5.3: Superiority of using the proposed optimal trade-off design method. (a) evaluated
residual signal r, (b) the evaluated modified residual signal r̃ (after using the proposed post-
filter) and the corresponding threshold for an actuator fault occurring at t = 5 seconds.

with a delayed detection of fault. In simulation, we selected a window length equal to
0.15 seconds. Threshold can be selected according to (5.25) which results in Jth = 0.2 for a
zero FAR. To demonstrate the effectiveness of the proposed method, the evaluated residual
signal r (i.e. without using the post-filter) is compared with evaluated modified residual
signal obtained after applying the post-filter. It becomes obvious that after using the post-
filter, the effect of faults is considerably increased while the disturbances are attenuated.
Thus increasing the fault detectability with zero false alarm rate.

The example is also simulated for a unit step actuator fault occurring at t = 5 seconds.
The simulation results are shown in Figure 5.3. It is clear that if threshold is set according
to zero FAR, the fault can not be detected if the post-filter is not used (see Figure 5.3a).
However, after applying the proposed post-filter, fault is quickly detected (see Figure 5.3b).

Post-filter and threshold to solve PMinSDFA
The optimal post-filter which solves the PMinSDFA problem is given by the inverse of
co-outer part of ΣF . For the example system,

ΣF ∶

⎧⎪⎪⎨⎪⎪⎩
˙̃x = ã(x̃) + Ẽff

r = c̃(x̃) + F̃ff
(5.32)
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5 Optimal trade-off design using post-filter and threshold

with

ã(x̃) = [ −x − x3

−x̂ − x̂3 +L(x − x̂) ] , Ẽf = [ 1 0
0 L

] , c̃(x̃) = x − x̂, F̃f = [ 0 1 ]
We can proceed in similar steps as for finding the co-outer of ΣD to obtain the co-outer
for ΣF . Then the optimal post-filter will be ΣRopt

= Σ−1Fco
. For the example system, ΣF

and ΣD are identical, therefore, we will have the same post-filter as was designed for the
PMax-SDF problem. And the threshold will be given as:

Jth = δf,min

FDR

If we are interested in detecting the faults with magnitude greater than 0.2 and the desired
FDR is, for example, 80%, then the threshold will be 0.25.

5.7 Summary

In this chapter, a method to design post-filter and to select threshold for achieving an
optimal trade-off between fault detectability and number of false alarms was proposed.
The trade-off design was formulated as two optimization problems. These include the
maximization of fault detectability under an allowed false alarm rate and the minimization
of false alarm number under a required fault detection rate. To solve these optimization
problems, threshold was selected according to either the allowed FAR or the required
FDR, then utilizing the co-inner-outer factorization, the post-filter was obtained either to
maximize fault detectability or to minimize number of false alarms. It comes out that
the optimal post-filter is the inverse of the co-outer part of fault-free residual generator
dynamics for the former case and the inverse of co-outer part of disturbance-free residual
generator dynamics for the later case. It was proved that the designed post-filters not only
achieve optimization in the sense of FAR and FDR but also result in the so called H−/H∞
multi-objective optimization. The proposed method was illustrated by an example.
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Chapter 6
Application to the three tank
benchmark

The three tank system DTS200 is an experimental setup with typical char-
acteristics of chemical processes, such as tanks, pipes, pumps and has been
adopted as a standard benchmark for fault detection and isolation [154]. The
mathematical model of the three tanks system has high nonlinearities and is,
therefore, suitable to evaluate nonlinear fault detection techniques. This chap-
ter implements the optimal trade-off design using post-filter technique proposed
in Chapter 5 to the nonlinear model of the three tank benchmark.

For the experimental three tank benchmark system, all the states are measurable; con-
sequently, a nonlinear observer can be designed to deliver linear estimation error dynamics
over the whole operating region [155]. This is, off course, a very appropriate method for
fault detection of three tank system. Alongside, the three tank system has high nonlinear-
ities; therefore, it serves as an excellent benchmark to test the nonlinear FDI algorithms.
Several FDI algorithms have been implemented on both linearized and nonlinear model of
the three tank system. For example, Koenig et al. [156] designed a linear observer to detect
and isolate component and actuator faults around and operating point, H∞ based FDI for
linearized model was presented in [157], multi-objective approach for linearized model was
discussed in [158], sliding mode observer for fault detection was designed in [159], model
interval approach was implemented in [160], parameter identification approach was applied
in [161, 162], observer-based schemes in [22, 155, 159, 163–165], structured augmented state
models in [29], FDI over networks in [166]. Noura et al. [167] applied the unknown input
observer-based FDI algorithms to the three tank system, utilizing both the model linearized
at an operating point and model linearized using input-output linearization method. A
comparison of different fault detection techniques for linearized model of three tank sys-
tem is presented in [168]. This chapter realizes the approach presented in Chapter 5 to the
nonlinear model of the three tank system. Simulation results show the successful detection
of both abrupt and incipient faults in sensors, actuators and components of the system.
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6 Application to the three tank benchmark

Figure 6.1: schematic diagram of the three tank system

6.1 Description of the three tank system

The schematic diagram for the three tank experimental setup DTS200 is shown in Figure
6.1. It consists of three water tanks, each of cross sectional area Ac and height Hmax. The
central tank T3 is connected to tanks T1 and T2 through pipes of cross sectional areas
s13, s23 respectively. Water can flow out from T2 to a central reservoir through a pipe of
cross-section area s0. There are two pumps with flow rates Q1 and Q2 which pump the
water from the central reservoir to the tanks T1 and T2, respectively. The flow rates Q1

and Q2 can be varied through a computer interface, the maximum being equal to Q1max

and Q2max
. The water levels in the tanks are measured through sensors, which could be

read by an interfaced computer. There are additional valves at the bottom of each tank to
simulate the leakage in the tanks [169]. Different kinds of faults can be simulated, these
include:

● Actuator faults: Actuator faults can be simulated in three tank system by changing
the flow rates of the two pumps. This can be done by using potentiometers which
reduce the control signals to the pumps. These fault are represented as fa1

and fa2
.

● Component faults: The component faults in the three tank system can be sim-
ulated by leakage in the tanks and are represented as fl1 , fl2 and fl3 . In DTS200,
there are extra valves at the bottom of each tank to mimic the leakages.

● Sensor faults: In each tank of DTS200, there are sensors to measure the water levels
in the tanks. Faults in the sensors are represented by fs1

, fs2
and fs3

. In DTS200,
sensor faults can be introduced by potentiometers which scale the measurements
from sensors.

Due to water inflow from pumps to the tanks, the water levels in the tanks fluctuate and
cannot be accurately measured. This is the source of sensor noise. The quantization errors
and uncertainties in the parameters are treated as deterministic disturbances.
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6.2 Modeling of the three tank system

Table 6.1: Parameters of the three tank system [13]

Parameters Symbol Value Unit
cross section area of tanks Ac 154 cm2

cross section area of pipes s13, s23, s0 0.5 cm2

max. height of tanks Hmax 62 cm2

max. flow rate of pump 1 Q1max
100 cm3/sec

max. flow rate of pump 2 Q2max
100 cm3/sec

coeff. of flow for pipe 1 a1 0.46
coeff. of flow for pipe 2 a2 0.60
coeff. of flow for pipe 3 a3 0.45
gravitational constant g 980 cm/sec2

6.2 Modeling of the three tank system

Using the incoming and outgoing mass flows under consideration of Torricelli’s Law [170],
the dynamics of the three tank system is modeled by [13, 169]:

Acḣ1 = −a1s13sgn(h1 − h3)√2g∣h1 − h3∣ +Q1 + fa1
+ fl1 + d1

Acḣ2 = a3s23sgn(h3 − h2)√2g∣h3 − h2∣ − a2s0

√
2gh2 +Q2 + fa2

+ fl2 + d2

Acḣ3 = a1s13sgn(h1 − h3)√2g∣h1 − h3∣ − a3s23sgn(h3 − h2)√2g∣h3 − h2∣ + fl3 + d3

y1 = h1 + fs1
+ η1

y2 = h2 + fs2
+ η2

y3 = h3 + fs3
+ η3

where Ac is the cross-sectional area of the tanks, s13, s23 and s0 are respectively the
cross-sectional areas of the pipe connecting tanks T1 and T3, the pipe connecting tanks
T2 and T3 and the outlet pipe in tank T2. a1, a3 and a2 are the corresponding coefficients
of flow. These co-efficients depend, among the other things, on the viscosity of the liquid
(water in this study), ambient temperature and friction of the pipes. Table 6.2 shows the
estimated values of these coefficients. g is the gravitational constant, sgn represents the
signum function, which is defined as

sgn(x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−1 if x < 0

0 if x = 0

1 if x > 0

Defining

x = ⎛⎜⎝
x1

x2

x3

⎞⎟⎠ =
⎛⎜⎝
h1

h2

h3

⎞⎟⎠ , u = ( u1

u2

) = ( Q1

Q2

) ,
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f =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

f1

f2

f3

f4

f5

f6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

fa1
+ fl1

fa2
+ fl2

fl3

fs1

fs2

fs3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, d =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

d1

d2

d3

d4

d5

d6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

d1

d2

d3

η1

η2

η3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
we have the following state space model for the three tank system

ẋ = a(x) +Bu +Eff +Edd

y = Cx + Fff +Fdd
(6.1)

where

a(x) =
⎛⎜⎜⎜⎜⎜⎜⎜⎝

−
a1s13

√
2g

Ac
sgn(x1 − x3)√∣x1 − x3∣

a3s23

√
2g

Ac
sgn(x3 − x2)√∣x3 − x2∣ − a2s0

√
2g

Ac

√
x2

a1S13

√
2g

Ac
sgn(x1 − x3)√∣x1 − x3∣ − a3s23

√
2g

Ac
sgn(x3 − x2)√∣x3 − x2∣

⎞⎟⎟⎟⎟⎟⎟⎟⎠

B = 1

Ac

⎛⎜⎝
1 0
0 1
0 0

⎞⎟⎠ , C = I3
Ef = Ed = ( I3 O3 ) , Ff = Fd = ( O3 I3 )

where I3 and O3 respectively represent an identity matrix and a zero matrix of dimensions
3 × 3. Based on the above mathematical model, the next section deals with the optimal
trade-off design for the three tank system.

6.3 Optimal trade-off design for the three tank system

In Chapter 5, two optimal trade-off design problems were formulated, these include the
maximization of fault detectability for an allowed FAR (PMax-SDF) and minimization of
false alarm numbers for a required FDR (PMin-SDFA). Solution to these problems were
provided in terms of designing post-filters and selecting thresholds. The effectiveness of
the proposed trade-off design problems was illustrated by an academic example. In this
section, we apply these result to the fault detection of nonlinear model of the three tank
system.

For the purpose of residual generation, the following fault detection filter is applied

˙̂x = a(x̂) +Bu +L(y − ŷ)
ŷ = Cx̂
r = y − ŷ

It was proved in the last chapter that any stable filter gain L can be selected and the
H−/H∞ optimization is achieved by the post-filter. Thus, we select arbitrarily, the following
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constant filter gain

L = ⎛⎜⎝
0.0833 0.0250 0.0833
0.0417 0.1667 0.0833
0.0833 0.0833 0.1667

⎞⎟⎠ (6.2)

The augmented system, as described in (5.6) becomes

ΣA ∶

⎧⎪⎪⎨⎪⎪⎩
˙̃x = ã(x̃) + B̃u + Ẽff + Ẽdd

r = c̃(x̃) + Fff + Fdd
(6.3)

where x̃, ã(x̃), B̃, Ẽf , Ẽd, c̃(x̃) are as defined in Section 5.2. In next two subsections, the
solution to the two optimal trade-off design problems for the three tank system are pro-
vided.

6.3.1 Solving PMax-SDF for three tank system

Recall from the theory of Chapter 5 that the optimal post filter that solves PMax-SDF is
the inverse of the co-outer part of ΣD , i.e., ΣRopt

= Σ−1Dco
, where ΣD is obtained by setting

f = 0, u = 0 in (6.3) and is given by

ΣD ∶

⎧⎪⎪⎨⎪⎪⎩
˙̃x = ã(x̃) + Ẽdd

r = c̃(x̃) + Fdd
(6.4)

To find the co-outer for (6.4), following HJ equation needs to be solved

Pξ(ξ) [ã(ξ) − ẼdF
T
d (FdF

T
d )−1c̃(ξ)]

+
1

4
Pξ(ξ)Ẽd [I − F T

d (FdF
T
d )−1Fd] ẼT

d P
T
ξ (ξ) − c̃T (ξ)(FdF

T
d )−1c̃(ξ) = 0 (6.5)

Next, the solution of the above HJ equation is described.

Solving the HJE for three tank system

To solve the HJ equation (6.5), we use the method proposed in [151, 171] (see Appendix
C.1). To apply the method, (6.5) needs to be brought in the form of (C.1). For that
purpose, define

φ(ξ) = ã(ξ) − ẼdF
T
d (FdF

T
d )−1c̃(ξ)

h(ξ) = c̃(ξ)
D = 1

2
Ẽd (I − F T

d (FdF
T
d )−1Fd) ẼT

d

then (6.5) becomes

Pξ(ξ)φ(ξ) + 1

2
Pξ(ξ)DP T

ξ (ξ) − hT (ξ)(ddT )−1h(ξ) = 0

which is similar to (C.1). Further calculations for the solution of HJE are as follows

FdF
T
d = (FdF

T
d )−1 = I3×3
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ẼdẼ
T
d = ( I3 O3

O3 LLT )
ẼdF

T
d (FdF

T
d )−1FdẼ

T
d = ( I3 O3

O3 L
)( O3

I3
) I3 ( O3 I3 )( I3 O3

O3 LT )
= ( O3 O3

O3 LLT )
D = 1

2
(ẼdẼ

T
d − ẼdF

T
d (FdF

T
d )−1FdẼ

T
d ) = 1

2
( I3 O3

O3 O3

)
D+ = 2( I3 O3

O3 O3

)
where D+ is the generalized inverse of D. Further,

φ(x) =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

φ1

φ2

φ3

φ4

φ5

φ6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
= ã(ξ) − ẼdF

T
d (FdF

T
d )−1c̃(ξ)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−
a1s13

√
2g

Ac
sgn(ξ1 − ξ3)√∣ξ1 − ξ3∣

a3s23

√
2g

Ac
sgn(ξ3 − ξ2)√∣ξ3 − ξ2∣ − a2s0

√
2g

Ac

√
ξ2

a1S13

√
2g

Ac
sgn(ξ1 − ξ3)√∣ξ1 − ξ3∣ − a3s23

√
2g

Ac
sgn(ξ3 − ξ2)√∣ξ3 − ξ2∣

−
a1s13

√
2g

Ac
sgn(ξ4 − ξ6)√∣ξ4 − ξ6∣

a3s23

√
2g

Ac
sgn(ξ6 − ξ5)√∣ξ6 − ξ5∣ − a2s0

√
2g

Ac

√
ξ5

a1S13

√
2g

Ac
sgn(ξ4 − ξ6)√∣ξ4 − ξ6∣ − a3s23

√
2g

Ac
sgn(ξ6 − ξ5)√∣ξ6 − ξ5∣

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Then using (C.2), we have

ψ2

1 +ψ
2

2 +ψ
2

3 − φ
2

1 − φ
2

2 − φ
2

3 − (ξ1 − ξ4)2 − (ξ2 − ξ5)2 − (ξ3 − ξ6)2 = 0 (6.6)

Also, from (C.5), we have following conditions

φ1,ξ2 ±ψ1,ξ2 = φ2,ξ1 ±ψ2,ξ1

φ1,ξ3 ±ψ1,ξ3 = φ3,ξ1 ±ψ3,ξ1

φ2,ξ3 ±ψ2,ξ3 = φ3,ξ2 ±ψ3,ξ2

(6.7)

Setting

ψ1 = φ1

ψ2 = φ2

ψ2

3 = φ2

3 + (ξ1 − ξ4)2 + (ξ2 − ξ5)2 + (ξ3 − ξ6)2
(6.8)
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satisfies the conditions (6.6) and (6.7). Therefore, from (C.3), following solution for the
HJE in (6.5) is obtained

Pξ(ξ) = −(φT ±ψT )D+
= 2 ( −φ1 −ψ1 −φ2 −ψ2 −φ3 −ψ3 0 0 0 ) (6.9)

Note that for the co-outer, we do not need an expression for P (ξ), rather knowledge of
Pξ(ξ) is sufficient.

Optimal post filter

Once we have solved the HJE, according to (5.4), the co-outer for ΣD is given by

ΣDco
∶

⎧⎪⎪⎨⎪⎪⎩
ξ̇ = ã(ξ) + B̄(ξ)r̃
r = c̃(ξ) + D̄r̃ (6.10)

where FdF
T
d = D̄D̄T = I and according to (5.5)

Pξ(ξ)B̄(ξ) = Pξ(ξ)ẼdF
T
d + 2c̃T (ξ)

Then the optimal post-filter is the inverse of the co-outer part of ΣD , i.e.,

ΣRopt
= Σ−1Dco

= ⎧⎪⎪⎨⎪⎪⎩
ξ̇ = ã(ξ) − B̄(ξ)c̃(ξ) + B̄(ξ)r
r̃ = −c̃(ξ) + r (6.11)

Threshold selection

For a required FAR and the post-filter settings according to ΣRopt
= Σ−1Dco

, the threshold is
obtained from (5.25) as

Jth = (1 − FAR)δd (6.12)

where δd is a bound on the L2 norm of disturbance, i.e., ∥d∥
2
≤ δd.

6.3.2 Simulation results

To validate the results, nonlinear model of the three tank system given in (6.1) with
the fault detection filter and the post filter designed in the last section is implemented
in Simulink R . The simulation results for the various fault scenario is described in the
following subsections. To indicate the superiority of the proposed method, we also plot
the evaluated residual signal r (which is the signal obtained without using the post filter).
By observing the simulation results, we can immediately notice that after using the post-
filter, FDR is considerably increased while the selected threshold guarantees that the FAR
is lower than the allowed one.
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6 Application to the three tank benchmark

The simulations were performed with a constant inflow of pumps Q1 = 25.6 cm3/sec,
Q2 = 39.5 cm3/sec, uniform disturbance d ∈ [−0.5,0.5] and a constant filter gain L given
by

L = ⎛⎜⎝
0.0833 0.0250 0.0833
0.0417 0.1667 0.0833
0.0833 0.0833 0.1667

⎞⎟⎠ (6.13)

The L2 norm of the modified residual signal is approximated by its RMS value over a
moving window. The length of window is selected as 10 seconds (see discussion in Example
in Chapter 5 for selection of window length).

With δd = 0.5 and zero percent FAR, the threshold comes out to be 0.5 according to
expression (6.12).

Actuator fault detection

Actuator faults i.e., faults in pumps in three tank system are introduced by two additional
potentiometers which reduce the control signal up to 0% of its value, i.e. the faulty flow
rate of the pump becomes Qf = Q − θQ, where Qf is the faulty flow rate, Q is the desired
flow rate and θ is the gain of the potentiometer. Simulation results for actuator faults
in pumps P1 and P2 occurring at 200 seconds are respectively shown in Figures 6.2 and
6.3. With a fault in pump P1, the dynamic behavior of water levels in tanks T2 and T3
are also affected. Similarly, the fault in pump P2 also shows off in water levels of tanks
T1 and T3. From figures, it can be observed that after using the post-filter, the residual
signal becomes more sensitive to faults resulting in convenience of fault detection. The
simulations were also performed for the case when there is an increase in the flow rate, i.e.,
Qf = Q + θQ. In that case the fault was also successfully detected (simulation results for
this case are not shown here). It can be observed from the figures that it is easier to detect
a fault of same magnitude in P1 as compared to fault in P2. The reason is the difference
in co-efficient of outflows of the two tanks, the same change in the pump inflows causes a
different change in the levels in the tanks, and hence different fault detectability.

Component fault detection

Leakages in tanks are typical source of component faults in chemical processes. To simulate
the leakages in the three tank system, there are extra outlets controlled by valves at the
bottom of each tank. The magnitude of the outflow from a tank due to leakage is a function
of the water level in that tank. However, for the purpose of simulations, we will assume a
constant leakage in tanks. The simulation results for the leakages in tanks T1, T2 and T3
are shown in Figures 6.4, 6.5 and 6.6. The effect of leakage in tanks T1 and T2 is similar
to the actuator fault in pumps P1 and P2, because both the pumps fault and the leakage
fault cause a drop in net inflow of water into the tanks. Furthermore, a leakage in a tank
not only effects the level in corresponding tank but the water levels in other tanks are also
affected. From the simulation results, it can be noticed that after using post-filter, there is
considerable increase in fault detection rate. It is observed from the simulations that the
modified residual signal is more sensitive to leakage in tank T1 as compared to leakages
in tanks T2 and T3. The reason is that the coefficient of outflow of T1, i.e., a1 is smaller
compared to a2 and a3, so the same size of leakage in T1 results into a relatively large
change in water levels in the tanks and hence better detectability.
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Figure 6.2: Actuator fault detection. A fault of 25% of the flow rate of pump P1 occurs at
t = 200 seconds (fa1

= 0.25Q1). Figure (a) shows the measurements of water levels in the three
tanks, the fault is directly reflected in water level of tank T1 and indirectly in water levels of
tanks T2 and T3. Figure (b) shows the evaluated residual signal. In Figure (c) the solid line
shows the evaluated modified residual signal and the dotted line is the threshold to guarantee
the allowed FAR. It becomes obvious that after using the post-filter, fault detection is quite
easily achieved
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Figure 6.3: Actuator fault detection. A fault of 25% of the flow rate of pump P2 occurrs at
t = 200 seconds (fa2

= 0.25Q2). Figure (a) show the measurements of water levels in the three
tanks, water level in tank T2 is directly effected by the fault. Figure (b) shows the evaluated
residual signal. In Figure (c), the solid line shows the evaluated modified residual signal and
the dotted line shows the threshold which is selected according to the allowed FAR
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Figure 6.4: Component fault detection. A leakage in tank T1, simulation is for a constant
leakage of magnitude fl1 = −0.06 cm3/sec. Figure (a) shows the measurements of water levels
in the three tanks, Figure (b) shows the evaluated residual signal, Figure (c) shows the evaluated
modified residual signal and the dotted lines shown the threshold to guarantee the FAR lower
than the allowed one.
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Figure 6.5: Component fault detection. A leakage in tank T2, simulation is for a constant
leakage of magnitude fl2 = −0.06 cm3/sec. Figure (a) shows the measurements of water levels
in the three tanks, Figure (b) shows the evaluated residual signal and Figure (c) shows the
evaluated modified residual signal

98



6.3 Optimal trade-off design for the three tank system

0 100 200 300 400 500
10

20

30

40

50

Time [s]

M
ea

su
re

m
en

ts
 [c

m
]

(a)

0 100 200 300 400 500
0

0.5

1

1.5

Time [s]

E
va

lu
at

ed
R

es
id

ua
l S

ig
na

l

(b)

0 100 200 300 400 500
0

0.5

1

1.5

Time [s]

E
va

lu
at

ed
 M

od
ifi

ed
R

es
id

ua
l S

ig
na

l

(c)

Figure 6.6: Component fault detection. A leakage in tank T3, simulation is for a constant
leakage of magnitude fl3 = −0.06 cm3/sec. Figure (a) shows the measurements of water levels
in the three tanks, Figure (b) shows the evaluated residual signal and Figure (c) shows the
evaluated modified residual signal

99



6 Application to the three tank benchmark

0 100 200 300 400 500
10

20

30

40

50

Time [s]
M

ea
su

re
m

en
ts

 [c
m

]

(a)

0 100 200 300 400 500
0

0.5

1

1.5

Time [s]

E
va

lu
at

ed
R

es
id

ua
l S

ig
na

l

(b)

0 100 200 300 400 500
0

0.5

1

1.5

Time [s]

E
va

lu
at

ed
 M

od
ifi

ed
R

es
id

ua
l S

ig
na

l

(c)

Figure 6.7: Sensor fault detection. A drift of 1 cm occurs in the sensor measuring the water
level in tank T1 at t = 200 seconds (fs1

= 1 cm). Figure (a) shows the measurements of water
levels in the three tanks, Figure (b) shows the evaluated residual signal and Figure (c) shows
the evaluated modified residual signal

Sensor fault detection

There are sensors in each tank of the three tank system to measure water levels in the
tanks. Figures 6.7, 6.8 and 6.9 show the simulation results for a 1 centimeter drift occurring
at 200 seconds in the sensors. From simulation results, we can observe that after using the
post filter, the fault detection rate is considerably increased.

Incipient fault detection

Most of the faults in real systems develop slowly by the time with the aging of components,
sensors or actuators. Such slowly growing faults are called the incipient faults. These faults
are usually less severe but are more difficult to detect. Figure 6.10 shows the simulation
results for an incipient fault in sensor measuring the water level in tank T1. The fault
develops slowly with a slope 0.01cm/sec and saturates at a value of 2 cm. In Figure 6.10
only the results for sensor fault in tank T1 are shown, other two sensor faults have the
similar behavior and can be successfully detected.
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Figure 6.8: Sensor fault detection. A drift of 1 cm occurs in the sensor measuring the water
level in tank T2 at t = 200 seconds (fs2

= 1 cm). Figure (a) shows the measurements of water
levels in the three tanks, Figure (b) shows the evaluated residual signal and Figure (c) shows
the evaluated modified residual signal
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Figure 6.9: Sensor fault detection. A drift of 1 cm occurs in the sensor measuring the water
level in tank T3 at t = 200 seconds (fs3

= 1 cm). Figure (a) shows the measurements of water
levels in the three tanks, Figure (b) shows the evaluated residual signal and Figure (c) shows
the evaluated modified residual signal
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Figure 6.10: Incipient sensor fault detection. An incipient fault with slope 0.01cm/sec occurs
in the sensor measuring the water level in tank T3 at t = 200 seconds. Figure (a) show the
measurements of water levels in the three tanks, Figure (b) shows the evaluated residual signal
and Figure (c) shows the evaluated modified residual signal

Figure 6.11 shows a successful detection of incipient component fault. A slowly growing
leakage occurs in tank T1 at t = 200 seconds. Incipient leakages in tanks T2 and T3 were
also simulated and the results (not shown here) show a successful detection.

Due to aging of the pumps, the flow rate of the pumps may slowly decrease. Figure 6.12
shows the successful detection of incipient fault in pump P1. The fault starts at t = 200
seconds with a slope of −0.77cm3/second. The simulation results show the successful
detection of fault. Incipient fault in pump P1 was also simulated and results show the
incipient fault in pump P1 is also successfully detected.

6.3.3 Solving PMin-SDFA for three tank system

The problem of minimizing false alarms for a required FDR (PMin-SDFA) was formulated
in Chapter 5 and solution was provided in terms of designing an optimal post-filter and
selecting a threshold. The optimal post-filter which solves PMin-SDFA is the inverse of
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Figure 6.11: Incipient component fault detection. A slowly growing leakage (with slope
−0.001 cm3/sec) occurs at t = 200 seconds in tank T1. Figure (a) show the measurements of
water levels in the three tanks, Figure (b) shows the evaluated residual signal and Figure (c)
shows the evaluated modified residual signal

104



6.3 Optimal trade-off design for the three tank system
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Figure 6.12: Incipient actuator fault detection. The flow from pump P2 slowly decreases from
38.5 cm3/sec to 28.8 cm3/sec in 50 seconds. Figure (a) show the measurements of water levels
in the three tanks, (b) shows the evaluated residual signal and (c) shows the evaluated modified
residual signal.
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6 Application to the three tank benchmark

the co-outer part of ΣF , i.e.,

ΣRopt
= Σ−1Fco

(6.14)

where ΣF is obtained by setting d = 0, u = 0 in (6.3)

ΣF ∶

⎧⎪⎪⎨⎪⎪⎩
˙̃x = ã(x̃) + Ẽff

r = c̃(x̃) +Fff
(6.15)

We notice that for three tank system, Ẽf = Ẽd and Ef = Fd. Therefore the co-outer part
of ΣF will be the same as the co-outer for ΣD .

For a required FDR and post-filter setting according (6.14), the threshold should be

Jth = δf,min

FDR

where δf,min is the minimum fault to be detected. For a 100% FDR and δf,min = 0.5, the
threshold will be equal to 0.5.

6.4 Summary

The mathematical model of the three tank benchmark can be obtained by applying the
Torricelli’s Law. The high nonlinearities in the mathematical model of the three tank
system make it very suitable benchmark to test nonlinear FDI schemes. This chapter
demonstrated the application of optimal trade-off design approach developed in last chap-
ter to the three tank system. The solution to the two optimization problem PMax-SDF and
PMin-SDFA results in the design of post-filter and computation of thresholds, these com-
putations were made for the three tank system. Simulations were performed in Simulink R

which showed the effectiveness of the proposed approach. Different kinds of faults which
include sensor fault, actuator faults and component faults are simulated and plot of eval-
uated modified residual signal shows successful detection. It has been shown that both
abrupt and incipient faults can be detected.
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Chapter 7
Conclusions and future directions

To improve the performance of nonlinear fault detection systems, some new
methods for residual generation and residual evaluation were proposed in the
preceding chapters. This chapter presents some concluding remarks and indi-
cates a few future directions for possible extension of this work.

7.1 Conclusions

The major focus of this thesis is on observer-based fault detection for nonlinear systems.
The goals of this thesis were precisely stated in the first chapter. To achieve these goals,
some new approaches were proposed, the performance of these approaches was proved
mathematically and their effectiveness was illustrated by simulation results.

The first objective of this thesis was generation of residual signal which is sensitive to
faults and robust against disturbances. To achieve this objective, game theoretic approach
was utilized to propose three fault detection filters, these include the H− fault sensitive
FDF, the H∞ disturbance attenuating FDF and the H−/H∞ multi-objective FDF. The
concepts H− index and H∞ norm and their significance in fault detection were explained
by numerical examples. The difference between H∞ filtering problem and the H∞ fault
detection filtering problem was highlighted. These fault detection filters were obtained for
both finite horizon and infinite horizon cases. Examples were provided to show that the
desired objective is achieved. From the discussions presented therein, we conclude

1. There is a difference between H∞ filtering problem and H∞ fault detection filtering
problem. This difference was highlighted by Example 3.3.

2. The H∞ filtering problem for nonlinear systems has been discussed in literature, but
H∞ fault detection filtering problem has not received particular attention.

3. H− fault sensitive FDF guarantees a level of fault sensitivity, but does not give any
indication of disturbance attenuation property of the filter. It is possible that the
H− fault sensitive FDF may also make the residual signal sensitive to disturbances.

4. A similar conclusion can be drawn for the H∞ disturbance attenuating FDF; besides
attenuating the effect of disturbances on the residual signal, the effect of faults might
also be reduced.
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7 Conclusions and future directions

5. The multi-objective H−/H∞ FDF simultaneously makes the residual sensitive to
faults and robust against disturbances. It is possible that H−/H∞ FDF generates
a residual signal which is less sensitive to faults compared to the residual signal gen-
erated by H− FDF. Similarly, H−/H∞ FDF generates a residual signal which could
be less robust against disturbances as compared to the residual signal generated
by H∞ FDF. However, the ratio of fault sensitivity and disturbances robustness is
maximized by H−/H∞ FDF.

After successful residual generation, residual evaluation is performed to make decision
about the occurrence of faults. Residual evaluation consists of taking the norm of the
residual signal, to obtain an evaluated residual signal, and comparing the evaluated residual
signal with a threshold. Usually the maximum possible influence of disturbances on the
evaluated residual signal is taken as a threshold, i.e., if L2 norm of the residual signal is
used to obtain the evaluated residual signal, the maximum possible effect of disturbances
on the evaluated residual signal is αδd, where α is theH∞ norm of the system describing the
dynamics of residual generator and δd is the upper bound on L2 norm of the disturbance.
This gives a very conservative threshold and most of the faults remain undetected. To
avoid this over conservativeness of the threshold, a variable threshold, which changes with
uncertainties, can be selected. To design such a variable threshold was the second objective
of this dissertation. This objective was achieved by determining a dynamic system which
gives an upper bound on modulus of residual generator dynamics, and hence an upper
bound on the modulus of the residual signal. This upper bound was utilized to compute
a variable threshold. Since this threshold is generated by a dynamic system, it has the
capability to fit more tightly to a fault-free residual signal. An example was provided to
show that the designed threshold can successfully detect faults while avoiding false alarms.
Following are the conclusions which can be drawn from the discussions

6. A variable threshold can improve the performance of fault detection system.

7. The conventional approach for generating a variable threshold is to multiply the
input with some norm of uncertainties. The dynamic threshold generator possesses
the properties of a dynamic system and can better fit to a fault-free residual signal,
improving the performance of fault detection system.

The third objective of this thesis was to devise a strategy which achieves an optimal
trade-off between high fault detection rate and low false alarm rate. Two trade-off design
problems were formulated which include the minimization of number of false alarms for a
required FDR and maximization of fault detectability for an allowed FAR. The solutions to
these problems were achieved by proposing post-filters and thresholds. This post-filtering
and threshold selection scheme not only provided the desired optimal trade-off but also
solved the H−/H∞ optimization problem. An example was presented to demonstrate the
effectiveness of the proposed technique. The proposed method for optimal trade-off was
also applied to the nonlinear model of a three tank system. The simulation results showed
that both abrupt and incipient faults in sensors, actuators and components of three tank
system were successfully detected and the false alarms were reduced. Following are con-
clusions from the optimal trade-off design method.

8. The optimal trade-off between low FAR and high FDR is the true objective in the
design of fault detection system, optimal residual generation and optimal residual
evaluation are only the tools to attain the objective.
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7.2 Future directions

9. The optimal trade-off was achieved by proposing post-filter and threshold selection
scheme.

10. The proposed post-filter also solves the H−/H∞ optimization problem.

7.2 Future directions

The last section summarized the results presented in this dissertation. The proposed
techniques and their applications to improve the fault detection of nonlinear systems were
briefly described. Besides the admired features of the proposed methods, there is a room for
further improvements. In below, we outline a few possible directions for possible extension
of the work.

● Chapter 3 proposed solutions to H− fault sensitive FDF, H∞ disturbance attenuating
FDF and H−/H∞ multi-objective FDF. In the proposed methods for the design of
these filters, a difficulty sometimes arises in finding a filter gain independent of system
states (this was discussed in Remark 3.4). To overcome this difficulty, some special
structure of filter, for example the one recently proposed in [117], can be studied as
a future extension of the work to make it more easier to obtain a state independent
filter gain.

As we know from the previous discussions in Chapter 3, it is desired that the residual
signal should only be sensitive to faults and robust to all other inputs (which include
disturbances d and the known inputs u). Following the traditional approach, we

have summed up these inputs into one vector w, i.e., w = [ d
u
] and the attenuation

∥r∥
2

∥w∥
2

≤ α is achieved. This strategy has a drawback: the information of the input

u is available on-line and could be utilized to relax the over conservative situation
which arises by using the upper bound and worst scenario of the input vector u.
This issue has not been addressed for nonlinear filtering problems and is very rarely
discussed in literature for linear uncertain systems. To our knowledge, only [110, 172]
have proposed utilizing the information of known inputs in linear filtering problems.
A possible future direction to extend our results is to include the information of
known inputs in solving the fault detection filtering problems (or even the filtering
problems).

● We have presented a dynamic threshold generation method for a class of nonlinear
systems with Lipschitz nonlinearities. Many systems satisfy the Lipschitz condition
globally, for example, the robotic systems etc. There are many other systems which
can be converted into a form which is, at least, locally Lipschitz. A possible future
direction is to extend the proposed approach of dynamic threshold generation to
a more general class of nonlinear systems. This will have two advantages, firstly,
more wider set of systems would be covered. Secondly, the computation of Lipschitz
constant which involves numerical computations (see [173] for calculation of Lipschitz
constant) could be avoided.

● The optimal trade-off design problem presented in this thesis involves the design
of a post-filter and computation of a threshold. As demonstrated by an academic
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7 Conclusions and future directions

example and simulations results of three tank systems, the proposed trade-off design
approach achieves overwhelming results. However, one imperfection in the proposed
approach is the order of the post-filter, it comes out to be of the same dimensions
as the dynamics of the augmented system, i.e, 2n. To avoid this imperfection, two
directions for future extension of the work are suggested:

– One possible future extension of the work is to obtain a reduced order post-filter.
This can be probably achieved by system order reduction techniques.

– Another possible direction for future extension is to achieve the optimal trade-
off by using filter gain L instead of the post-filter. For linear systems, it is
done as follows: an expression for the post-filter is derived to deliver an optimal
trade-off between low FAR and high FDR, analogous to the nonlinear systems,
it comes out to be the inverse of co-outer part of ΣD (or of ΣF ) as defined in
(5.7) (or in (5.8)). Then the filter gain is selected in such a way (see (12.65)
in [13, Chapter 12]) that the co-outer of ΣD (or of ΣF ) is identity system,
which means that the optimal post-filter should be identity system and hence
no more required. In other words, the problem of finding optimal post-filter is
transformed into computing the optimal filter gain. This has the advantage that
the use of high dimensional post-filter is avoided, which means computational
cost is substantially reduced. A similar procedure for nonlinear systems to avoid
the use of high dimensional post-filter could be a future direction for possible
extension of the results proposed in this thesis.
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Appendix A
Two-players zero sum differential
game

In game theory, the zero-sum game means that the sum of the cost functions of each of
the players is identically zero [133]. What one player gets is at the cost of what the other
player looses, and the total sum is zero. Consider a two player zero-sum differential game
with cost functional J = J(u1, u2) which is to be maximized by u1 and minimized by u2.
If there exists a pair (u⋆

1
, u⋆

2
) such that

J(u1, u
⋆
2) ≤ J(u⋆1, u⋆2) ≤ J(u⋆1, u2)

then the pair (u⋆
1
, u⋆

2
) is called a saddle-point solution. In this case, J(u⋆

1
, u⋆

2
) is called the

saddle-point value of the game.
Below is a theorem which gives necessary and sufficient condition for the solution of a

two person zero-sum differential game defined by the state equations

ẋ = a(t, x, u1, u2) x(0) = x0 (A.1)

with the cost functional

J(u1, u2) = T

∫
0

g(t, x, u1, u2)dt (A.2)

Theorem A.1. [133] For a two-person zero-sum differential game of prescribed du-
ration [0,T], and under either MPS or CLPS information pattern, a pair of strate-
gies u⋆i ∈ Si; i = 1,2 provides a feedback saddle-point solution if there exists a function

Figure A.1: Two-players zero-sum game
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A Two-players zero sum differential game

V ∶ [0, T ] ×Rn → R satisfying the following partial differential equation

−
∂V (x, t)

∂t
= min

u1∈S1

max
u2∈S2

{∂V (x, t)
∂x

a(t, x, u1, u2) + g(t, x, u1, u2)}
= max

u1∈S1

min
u2∈S2

{∂V (x, t)
∂x

a(t, x, u1, u2) + g(t, x, u1, u2)}
= {∂V (x, t)

∂x
a(t, x, u⋆1, u⋆2) + g(t, x, u⋆1, u⋆2)}

Every such saddle-point solution is strongly time consistent, and the unique saddle-point
value of the game is V (0, x(0)).

The above partial differential equation is referred as Hamiltonian-Jacobi-Isaacs (HJI)
equation or simply Isaacs equation. In Theorem A.1, two terms MPS and CLPS are used,
which are explained below: In a two-player continuous time differential game of prescribed
duration [0, T ], we say that player Pi’s information set ηi(t) is

● closed loop perfect state (CLPS) pattern if ηi(t) = {x(s),0 ≤ s ≤ t}, t ∈ [0, T ]
● memoryless perfect state (MPS) pattern if ηi(t) = {x(0), x(t)}, t ∈ [0, T ]

If we are only interested in time-invariant solutions, then the above Isaacs equation
reduces to

0 = min
u1∈S1

max
u2∈S2

{∂V (x)
∂x

a(x,u1, u2) + g(x,u1, u2)}
= max

u1∈S1

min
u2∈S2

{∂V (x)
∂x

a(x,u1, u2) + g(x,u1, u2)}
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Appendix B
Matrix Calculus

The results derived in Chapter 3 involved extensive use matrix calculus. Derivatives of
matrix functions with respect to vectors or matrices are very puzzling. It is, therefore,
useful to provide here some of the most commonly used formulas [174].

The derivative of a scalar function with respect to a column vector is taken as a row
vector 1.

d

dx
xTa = d

dx
aTx = aT

d

dx
Ax = d

dx
xTA = A

d

dx
xTx = 2xT

d

dx
xTAx = xT (A +AT )

d

dx
(Ax + b)T (Ax + b) = 2(Ax + b)TA

d

dx
(Ax + b)T (Dx + e) = (Ax + b)TD + (Dx + e)TA

d

dx
(Ax + b)TC(Dx + e) = (Ax + b)TCD + (Dx + e)TCTA

d

dX
aTXb = baT

d

dX
aTXT b = abT

d

dX
aTXTXa = 2XaaT

d

dX
aTXTXb =X(baT + abT )

1There is another convention according to which, the derivative of a scalar function with respect to a

column vector is a column vector.
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B Matrix Calculus

d

dX
aTXTAXb = baTXTA + abTXTAT

d

dX
aTXTAXa = 2aaTXTA

d

dX
(Xa + b)T (Xa + b) = a(Xa + b)T (C +CT )

d

dX
aTX−1b = −X−1baTX−1

The Chain Rule: If Z is a function of Y which is itself a function of X, then

dZ

dX
= dZ
dY

dY

dX
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Appendix C
Solution of Hamilton-Jacobi
equations (inequalities)

In dealing with nonlinear optimal control problems, optimal filtering problems and inner-
outer factorization problems, one encounters with Hamilton-Jacobi (HJ), Hamilton-Jacobi-
Isaacs (HJI) and Hamilton-Jacobi-Bellman (HJB) equations. The optimal residual gener-
ation problem in Chapter 3 and the integrated design of nonlinear fault detection systems
in Chapter 5 depend on the solution of partial differential equations which are similar to
Hamilton-Jacobi (HJ) equations. The analytical solution of these equations (inequalities)
is in general not possible, therefore there has been active research to find the approximate
solutions. A detailed study of some methods can be found in [149, 151, 152, 171, 175–
179] and the references therein. In this thesis, we have utilized the methods proposed in
[151, 171, 176] and in [152] to solve the simulation examples and the benchmark studies.
In next two sections, the computational algorithm of these two methods will be described.

C.1 Computational details of the approach proposed by

Aliyu for solving HJI equations (inequalities)

Consider the partial differential equations described by

Px(x)φ(x) + 1

2
Px(x)D(x)P T

x (x) − hT (x)h(x) = 0, P (0) = 0 ∀x ∈ N (C.1)

Define the matrix D+(x) as the generalized inverse of D(x) and suppose that there exists
a vector field ψ such that

ψT (x)D+(x)ψ(x) − φT (x)D+(x)φ(x) − 2hT (x)h(x) = 0 (C.2)

then

Px(x) = −(φ(x) ±ψ(x))TD+(x) (C.3)
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C Solution of Hamilton-Jacobi equations (inequalities)

satisfies (C.1). If the equality in (C.2) is replaced with inequality, (C.3) satisfies the
inequality (C.1). Furthermore, P (x) is symmetric if

(∂φ(x)
∂x

±
∂ψ(x)
∂x
)T D+(x) + (In ⊗ (φ(x) ±ψ(x))T ) ∂D+(x)

∂x

= D+(x) (∂φ(x)
∂x

±
∂ψ(x)
∂x
) + ∂D+(x)

∂x
(In ⊗ (φ(x) ±ψ(x))) (C.4)

If D+(x) is a constant matrix, (C.4) reduces to

(∂φ(x)
∂x

±
∂ψ(x)
∂x
)T D+ = D+ (∂φ(x)

∂x
±
∂ψ(x)
∂x
) (C.5)

For P (x) to be positive semidefinite, following inequality must hold

(∂φ(x)
∂x

±
∂ψ(x)
∂x
)T D+(x) + (In ⊗ (φ(x) ±ψ(x))T ) ∂D+(x)

∂x
≤ 0 (C.6)

C.2 Successive approximation of solution of HJI equation

proposed by Wise

Consider the partial differential equation described by (5.3) and suppose that the nonlin-
earities are confined to the system function a(x) and is represented as

a(x) = Ax +∆a(x)
then (5.3) reduces to

Px(x) (Ax +∆a(x) −BDT (DDT )−1Cx)
+

1

4
Px(x)B (I −DT (DDT )−1D)BTP T

x + x
TCT (DDT )−1Cx = 0 (C.7)

The solution of (C.7) can be approximated by the sum of solution of the linear part and
the solution of the nonlinear part of (C.7), i.e.,

P (x) = xTPx +∆P (x)
The linear part of (C.7) is an ARE and is given by

P (A −BDT (DDT )−1C) + PB (I −DT (DDT )−1D)BTP +CT (DDT )−1C = 0

To obtain the solution of the nonlinear part, define

Ã = A −BDT (DDT )−1C
Q̃ = CT (DDT )−1C
R̃ = B (I −DT (DDT )−1D)BT

F̃ = Ã + R̃P
q(z, p) = −2∆aT

z (z)Pz −∆aT
z (z)p − 2P∆a(z)

J(t) = t

∫
0

eF̃ τ(1
2
R̃)eF̃ T τdτ
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C.2 Approach proposed by Wise

where az(z) represents the partial derivative of a(z) with respect to z.

z(t) = eF̃ tz(0) + J(t)p(t) + eF̃ t

t

∫
0

e−F̃ τ {∆a(z(τ)) − J(τ)q(z(τ), p(τ))}dτ (C.8)

p(t) = −eF̃ T τq(z(τ),p(τ))dτ (C.9)

Then the successive approximation algorithm begins with setting

z(0)(t) = eF̃ tz

p(0)(t) = 0

and substituting into (C.8) to get the first approximation. The repeated approximations
are obtained by plugging the latest computations of z(t) and p(t) into (C.8). The solution
to the nonlinear part of (C.7) is then given by

∆Px(x) = p(0) (C.10)
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fault, 9

abrupt, 12
actuator fault, 11
additive fault, 12
component fault, 10

incipient, 12
intermittent, 12
multiplicative fault, 12
sensor fault, 11
types, 10
worst case, 37

fault detection, 10
classification, 13
comparison of techniques, 19
condition, 85
desired features, 12
observer-base approach, 15
parameter estimation approach, 19
parity space approach, 18

fault detection filter
H− fault sensitive, 42
H−/H∞ multi-objective, 55
H∞ disturbance attenuating, 48

fault detection rate, 5, 78
fault diagnosis, 10
fault identification, 10
fault isolation, 10
FDR, 5, 78

deterministic systems, 85

geometric approach, 28

Hamilton-Jacobi-Isaacs equation, 42
hardware redundancy, 2
high gain observers, 25
HJE

solution, 131
HJI equation, 42

inner system, 79
inner-outer factorization, 81

131



Index

Lipschitz nonlinear, 66

minimum phase
strictly, 79
weakly, 79

model-based FD, 15
modified residual signal, 78, 84

nonlinear identity observer, 22

observer for NL system
disturbance decoupled, 24
extended Luenberger, 21
game theoretic approach, 28
geometric approach, 28
high gain, 25
identity observer, 22
sliding mode, 26
Thau observer, 21
unknown input, 23

observers for NL system, 21
outer system, 80

plausibility test, 14
PMax-SDF, 86
PMin-SDFA, 86
post filter, 78
post-filter

design, 86

residual
generation, 35

residual evaluation, 65
residual generation, 35
residual signal, 4

modified, 78, 84

saddle-point value, 43
SDF, 86
SDFA, 85
sensor fault, 11
signal-based FD, 14
sliding mode observer, 26

Thau observer, 21
three tank system

description, 100
modeling, 101

threshold, 4, 66

constant, 66
dynamic, 66
selection, 89
variable, 66

trade-off design, 77
two players zero-sum game, 42, 127

uncertainty, 9
unknown input observers, 23

variable threshold, 66
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