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Chapter 1

Introduction

1.1 The Problem

In Germany, the average contribution rate to the social health insurance increased

from 8.2 per cent in 1970 to 14.9 per cent in 2009 (IW, 2009). In a shorter period of

time, the insurance contributions in the private system even tripled between 1985

and 2005 in nominal terms (Grabka, 2006). Likewise, Albrecht et al. (2010) report

an average increase in health insurance contributions between 1997 and 2008 by 2.4

per cent per year in the social health insurance and by 3.9 per cent in the private

health insurance. While the latter is not yet a public issue, the former induces a

steady public concern. Since the contributions to the statutory health insurance are

taken as a payroll tax, they impose a wedge between gross and net wage and have

direct implications for the labour supply of individuals.

The reasons for this evolution are manifold and can be found on the revenue as

well as on the expenditure side of the health insurances. Most important, the de-

mographic change, i.e., the increasing average age of the German population, has

consequences for both the revenues of the statutory health insurance and the health
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care expenditures. A decreasing absolute number of working individuals decreases

the income of the health insurance companies ceteris paribus since the sum of con-

tributions is directly linked to the payroll sum. At the same time, an ageing society

needs more health care services and causes more expenditures.1 A more important

reason of higher expenditures is the technological progress. The development of

new drugs and medical equipment helps patients to survive with chronic conditions

which would have led to death some years ago. This highly welcome development,

however, increases health care expenditures, and probably explains the major part

of the overall increase in the last decades (see, e.g., Newhouse, 1992).

Concepts to improve or stabilise the revenues of the German health insurance are

beyond the scope of this thesis which focuses on the expenditures side. In Germany,

health care expenditures (HCE) as a share of the GDP have risen sharply between

1970 and 2006, from 6 per cent to more than 10 per cent (see Figure 1.1). How-

ever, while Germany was the country with the highest health care expenditures in

the 1970s, this changed thereafter. Since the middle of the 1990s (until 2006) the

ratio has been staying fairly stable while it increased substantially in most other

industrialised countries. However, Germany still has the fourth highest health care

expenditures of all OECD countries. The reason for the steadiness in Germany

seems to be the introduction of sectoral budgets for hospital expenditures, ambu-

latory expenditures and pharmaceuticals in the early 1990s. These budgets are a

means for the policy maker to contain costs; in most of the years they increased

only by the rate of the payroll wage increase. However, while at first sight it seems

pleasing, this comes at a cost: if the demand for health care constantly increases due

to demographic change and technological progress but the expenditures are capped,

this can only be resolved by a rationing of health care services. While officially there

1There is, however, a debate on this point. See, e.g., Zweifel et al. (1999), or Werblow et al.
(2007).
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is no rationing in the German health care system, there was a growing public debate

about “hidden rationing” in the last years.

Figure 1.1: HCE as % of GDP of selected countries

Source: OECD Health Data 2008, own illustration

Since the demographic change and the technological progress will most likely not

be stopped, the only possible solution to this dilemma - apart from rationing or

prioritisation - is to detect and reduce inefficiencies in the health care sector. These

inefficiencies arise, for instance, from information asymmetries between different

agents in the health care market. One such information asymmetry is between

insurance company and insuree. Since the insurance company cannot fully super-

wise the insured, it is difficult to sanction both an unhealthy behaviour and excess

demand for trivial health care services. If individuals both exhibit unhealthy be-

haviour (the so-called ex-ante moral hazard) and/or increase health care utilisation

due to their health insurance (ex-post moral hazard), a possible solution can be cost-

sharing between health insurance and insuree in order to reduce overconsumption of

medical services (Breyer et al., 2004). However, demand-side cost-sharing also has

its limits. It imposes financial risk on the patients, thus, it induces a welfare loss in

3



a world with risk-averse individuals and no moral hazard behaviour. Moreover, it

might be in conflict with goals of universal access to health care, especially of poorer

households (see Ellis and McGuire, 1993).

Another information asymmetry is the one between patient and physician. Since, in

general, the physician has more information about the patient’s health status than

the patient himself, she can - at least to a certain degree - induce demand from the

patient. This, of course, implies an inefficient use of resources in the health care

system. Here, the remuneration system might be a good instrument to gouvern the

behaviour of the physician if she is not fully altruistic but also cares for her own

income. The physician remuneration system can - in the terminology of Ellis and

McGuire (1993) - be classified into systems with high and low degrees of provider

cost-sharing (or supply-side cost-sharing). Pure cost-reimbursement systems would

be the extreme case of no supply-side cost-sharing while a pure prospective re-

imbursement system (with the full cost risk for the provider) would be the other

extreme of complete supply-side cost-sharing.

Both levels of cost-sharing can be set independently. Ellis and McGuire (1990)

set up a framework to simultaneously determine the optimal degree of demand-

side and supply-side cost-sharing. Doing this, a first-best outcome is more often

achieved than in models that only use one of the two instruments. Crucial in their

model is that patients and providers may have different levels of demand and supply

and bargain over the realised amount of medical services. The optimal mix of

both is not clear without imposing assumptions, e.g. on the degree of the patient’s

risk aversion, the degree of moral hazard, the physician’s objective function, or the

bargaining power of both the patient and the physician. As a result, full cover

insurance and partial supply-side cost-sharing can lead to a first best outcome even

in the presence of moral hazard. This is the case when the physician is - due to
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his incentives implied by the reimbursement system - not willing to supply as much

medical care as demanded by the fully insured individual. Thus, supply-side cost-

sharing can be a means to reduce a too high level of medical care due to moral

hazard to a socially optimal level without the need to increase the financial risk of

the patient by introducing demand-side cost-sharing. Although this only holds in

special circumstances2 and less than full cover insurance combined with a mixed

payment system is often optimal (although only second-best), Ellis and McGuire

(1990) conclude that “supply-side policies are the preferred instruments for cost

control”.

Whether or not there is indeed moral hazard of individuals and whether or not physi-

cians behave altruistically3 are empirical questions. Answers to both are necessary

in order to form an optimal insurance system and an optimal physician remuneration

system. The second and the third chapter of this thesis analyse these two questions

and shed some light on effects of demand-side cost-sharing and the reimbursement

system on patient’s and physician’s behaviour.

While Chapters 2 and 3 can directly be seen as analyses of incentive effects of

health insurance (for the insured and for the physician, since the patient’s health

insurance type determines the remuneration system), Chapters 4 and 5 might be

more generally subsumed under the title “efficiency reserves in the health system”.

Chapter 4 takes a deeper look into one health care market - the market for private

supplementary health insurance for hospital visits - and analyses information asym-

metries between insurance company and insuree. This market becomes increasingly

relevant since, first, more and more services are taken out of the standard benefit

2Specifically, this holds when individuals are risk averse, patients and physicians have the same
bargaining power, and the physician does value the patient’s health benefits, but not too much
(see, Ellis and McGuire, 1990).

3Ellis and McGuire (1990) call this more generally the degree of agency of the physician, i.e.,
how much the physician values the patient’s health benefits compared to his profits.
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packages of the statutory health insurances and are left for private supplementary

insurance and, second, this market has been strongly increasing in the last decades.

Traditionally, the theoretical literature expects adverse selection in insurance mar-

kets with asymmetric information, see, e.g., Rothschild and Stiglitz (1976). How-

ever, there are recent theoretical models (de Meza and Webb, 2001) and empirical

findings (Finkelstein and McGarry, 2006) that assume a more complex (i.e. mul-

tidimensional) information asymmetry which might lead to a positive, often called

advantageous selection. Whether there is information asymmetry at all and if so, in

what direction, will be analysed in that chapter.

Chapter 5 shades away from health insurances and looks at the causal effect of

unemployment on health. Thus, it looks at efficiency reserves from another point of

view. Health care expenditures rise if unemployment deteriorates individual health.

However, whether this is indeed the case in Germany is not yet convincingly shown

empirically. The answer to this question has important implications for the policy

maker concerning her effort to help the unemployed finding their way back into the

labour market.

All chapters in this thesis comprise empirical studies using microdata and microe-

conometric estimation methods. In the empirical work I considered two issues that

are central in applied health econometrics. First, unobserved heterogeneity plays

an important role. Individuals differ in important aspects which remain unobserved

to the researcher, for instance parts of their health status. Models that take un-

observed heterogeneity into account are therefore especially important in this field.

Second, the dependent variable is often not a metric measure. Therefore, binary,

count data or ordered models are often more appropriate than linear models. The

specific estimation methods are explained in detail in each chapter.

The remainder of this introduction includes some descriptive statistics about health
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insurance and health care expenditures in Germany in the next section, an overview

about data sets that are available to carry out health economic studies with microe-

conometric methods (Section 3), and a summary of all following chapters including

their results (Section 4).

1.2 Some Descriptives

Germany has two independent health insurance systems, a public and a private one.

Roughly 90 per cent of the population are insured by public health insurance (also

called the statutory health insurance, SHI). It is statutory for all individuals with

earnings below a certain income threshold (3,975 Euro per month in 2007) who are

not civil servants or selfemployed and it is financed by payroll taxes. Individuals

who earn more than the income threshold, the self-employed, and civil servants

are allowed to opt out of the public insurance system and can instead buy private

insurance (which accounts for the remaining 10 per cent of the German population,

abstracting from a small group without any insurance coverage).

The average contribution rate to the statutory health insurance increased from 12.6

per cent in 1990 to 14.9 per cent in 2009. As can be seen in Figure 1.1, this is

not mirrored by the same relative increase in health care expenditures. The reason

for this increase mainly lies on the revenue side, namely that the payroll sum which

determines the revenues of the statutory health insurance system rose by a lower rate

than the GDP in the last decades. Moreover, there is a growing selection of good

risks out of the SHI into the private insurance. These individuals pay on average

higher insurance contributions before they leave and induce lower costs than those

who remain in the public system.

The private insurance sector has been steadily increasing over time. While there
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were 5.8 million individuals holding a private full cover insurance in 1970, 8.5 mil-

lion held one in 2007 (IW, 2009). The market for private supplementary insurance

exploded over time. While 2.5 million held at least one kind of private supplemen-

tary insurance in 1970, this number increased to 20.0 million in 2007 (IW, 2009).

The major reason for the growing market for supplementary insurance seems to be

the reduction of services in the standard benefit packages in the statutory health in-

surance system to curb the rise in contribution rates. However, contributions to the

private health insurances also strongly increased in the last decades, even stronger

than in the public system (Grabka, 2006). Therefore, efficiency concerns and ways

to contain health care expenditures will be an important issue also in this system in

the future.

In 2006, German health care expenditures amounted to 245 billion Euros. The major

part was spent on hospital care (26.1 per cent) followed by the ambulatory care sector

(14.9 per cent; without dentists) and pharmacies (14.2 per cent). Figure 1.2 shows

the distribution of health care expenditures between 1995 and 2006. In this period,

relative expenditures on acute hospitals, dentists, and rehab hospitals decreased by

1.1 to 1.3 percentage points, while relative expenditures on pharamacies, ambulatory

and stationary care increased strongest. The expenditures on doctors’ practices

increased by 0.7 percentage points, implying an absolute increase by 9.4 billion

Euros.

1.3 The Data

The data source used in this thesis is the German Socio-Economic Panel (SOEP)

throughout all chapters. The SOEP turned out to be the best available data set for

all the questions analysed in this thesis and, thus, was preferred to other possible
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Figure 1.2: Distribution HCE in %

Source: Gesundheitsberichterstattung des Bundes, own illustration

data sets in every chapter. There are three major advantages in the SOEP to other

data sets which will shortly be summarised below. First, it is a representative

household data set and a long and still ongoing panel. In 2009, the 25th wave is

getting available. Individuals are followed over a long period, many over almost 10

years, some even over 25 years. Since the questionnaire stayed consistent in most

aspects over time, analyses over long time periods are possible (which is especially

relevant for Chapters 3 and 5).

Second, it has a considerable sample size. While it started with 5,000 households and

about 10,000 individuals in 1984, 12,000 households and about 24,000 individuals

were sampled in 2008. With such a big amount, analyses of particular subgroups

are often possible (important for Chapter 5).

Third, it contains a wide range of socio-economic variables (important for all chap-

ters). Concerning relevant information for health economics, the SOEP includes a

lot of information on health status (self-rated health, health satisfaction, limitations
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due to health problems, and, as of 2002, the body mass index and the SF12v2-

questionnare), health care utilization (the number of doctor visits in the previous

three months and the number of hospitalisations in the previous 12 months), health

behaviour (smoking, drinking, doing sports), and the health insurance status (in-

cluding supplementary health insurance).

The major drawbacks of the SOEP for the analyses in this thesis are the follow-

ing ones: the information on the health status does not include chronic conditions,

symptoms, or other objective measures. However, this was partly improved by in-

cluding the SF12v2-questionnaire in 2002. Concerning the number of doctor visits,

there is no distinction between visits to general practitioners and specialists. More-

over, one cannot infer the number of sickness spells from the information on the

overall number of visits. Finally, and most important, all information in the SOEP

is self-stated by the interviewed individuals. Answers to questions regarding the

health status, health care utilisation, and income, for instance, are likely to contain

considerable measurement error. If this is indeed the case, it might lead to down-

ward biased estimation results. However, the SOEP is widely accepted as a high

quality data set and it is the best available data set to analyse the research questions

in this thesis.

In the following, I briefly describe other possible microdata sets that in principle

allow the evaluation of health econometric research questions for Germany.

SHARE

The Survey of Health, Aging and Retirement in Europe (SHARE) is a large repre-

sentative micro-data set containing information of about 30.000 individuals above

the age of 50 from 13 European countries and Israel starting in 2004. The survey

covers a wide range of topics, including physical health, health behaviour, socioe-

conomic status, and income. The major advantage of the SHARE is the detailed
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list of symptoms and chronic conditions and a more detailed information on health

care utilisation. However, currently, there are only two waves available with about

1.900 individuals in Germany who participated in both waves. Research questions

that either draw on a longer time horizon or a distinct subgroup can, therefore, not

yet be answered with the SHARE.

Mikrozensus

The German Mikrozensus is an annual micro data survey which includes 1% of the

population in Germany, i.e. about 830,000 observations per year. The scientific

use file is a 70% subsample with about 530.000 observations. Randomly chosen

interviewees are asked four years consecutively. Besides questions that are asked

every year, there are supplementary questions that are asked only every four years.

Since the health questions are in the supplementary part, the Mikrozensus cannot

be used for panel analyses with health economic questions. Moreover, while the

main part is compulsory, the health questions can be answered voluntarily which

leads to a considerable non-response rate here.

GKV-Versichertenstichprobe

The GKV-Stichprobe is a 3% sample of all statutorily insured in Germany in 2002.

In total, it includes 2.3 million individuals with detailed information on statutory

and ambulatory treatments in 2001, with diagnosis and induced costs. Moreover, it

has information on the consumption of prescription drugs and on work absenteeism.

However, it is only a cross-section, it does not include the privately insured and

information on the socio-economic background of the individuals is very limited.

EVS

The German Income and Expenditure Survey (Einkommens- und Verbrauchsstich-

probe, EVS) samples about 75.000 households every five years (2008 is the most

recent wave). Its main advantage is the very detailed information on income and
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expenditures of German household within a month. However, apart from not being

a panel, the health information is very limited. The EVS includes the health insur-

ance status (including contributions to health insurance), expenditures for tobacco,

alcohol, drugs, pharmaceuticals, and expeditures for doctor, dentist, hospital visits

and other health care utilisation.

Bundes-Gesundheitssurvey

This is a cross-section data set of 7.124 individuals between 18 and 79 years, asked

in 1998. The questionnaire includes in total 637 variables, about health behaviour,

health care utilisation and very detailed information about the the health status

including objective measures like blood pressure, blood tests, and urine tests.

1.4 Overview and Summary of Findings

The second Chapter (“More health care utilisation with more insurance cov-

erage? - Evidence from a latent class model with German data”) deals

with effects of different types of health insurance on the behaviour of the demanders

of health care. I analyse whether individuals with more health insurance cover-

age demand more health care services (measured as the number of visits to the

doctor) than those with less coverage. Specifically, I examine whether privately

insured with a deductible demand less doctor visits compared to those without a

deductible, conditional on their health status and other socioeconomic variables.

In the group of publicly (or statutorily) insured I analyse whether supplementary

insurance increases the number of doctor visits. The contribution to the existing

German literature is twofold. First, I use newly available data on the health sta-

tus and self-stated individual risk aversion. Including more information is likely to

reduce possible endogeneity problems of the insurance choice by a great deal (as
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long as they result from omitted variable bias). While the existing literature mostly

neglects the endogeneity problem at all, I test for it. Second, I control for unob-

served heterogeneity in a flexible way by estimating a latent class model. The model

allows for different effects of health insurance and income on health care utilisation

for different unobserved types of individuals.

I find that endogeneity is not a problem in the data set. The reasons might either

be the improved quality of the data or/and the inflexible German insurance system

that allows only a small fraction of individuals to choose between the two systems.

Also, the effect of health insurance on utilisation is very small. I do not find any

significant effects in the group of high users at all, neither in the private nor in the

public insurance. It seems to be the case that these individuals need health care

services anyway (for unobserved reasons) and do not care for their current health

insurance status. However, I do find incentive effects in the group of low users.

Those individuals who generally demand less doctor visits react on their insurance

status and demand even less if they have less insurance coverage. Likewise, income

only plays a role in the group of low users with richer individuals having more visits.

The small magnitude of effects is only at first sight in contrast to the strong effects of

demand-side cost-sharing found in the famous Rand Health Insurance Experiment

(RHIE, see Manning et al., 1987). Note, that while the deductibles in the RHIE were

mandatory, they are optional in the German system. Although individuals with less

insurance coverage demand less health care in Germany, this is mostly due to a

selection of good risks into contracts with less insurance coverage and not causally

due the insurance status. Thus, I cannot conclude that demand-side cost-sharing as

such does not have any effects but that optional deductibles rather lead to selection

than to incentive effects in Germany.

The third Chapter (“Practice budgets and the patient mix of physicians -

13



Evaluating effects of remuneration system reforms on physician behaviour

in Germany”) takes a look at the supply side and analyses incentive effects of health

insurance on physicians’ behaviour through the remuneration system. In Germany,

differently insured individuals imply different remunerations for physicians. For

instance, doctors get more money for the same treatment of a privately insured

compared to a publicly insured. This might impose an incentive to induce demand

from privately insured patients. Due to the information asymmetry between doctor

and patient this is possible to a certain degree. This chapter evaluates the effects of

two major reforms of the remuneration system for publicly insured, the reforms of

1993 and 1997. In 1993, the payment system changed from a fee-for-service system,

where the price of a treatment was known ex-ante, to a point system. From that time

on, the overall budget for physician remunerations was fixed and doctors collected

points for all treatments in a quarter. Ex-post, the point value and, thus, the income

from treating publicly insured was calculated by dividing the money budget by the

sum of all points collected by all physicians. The reform of 1997 introduced an

individual practice budget for each physician, in addition. That is, the number of

points that could be remunerated was capped. There was no comparable reform in

the private health insurance.

Both reforms have not been evaluated before. I find that there are no effects of

the reform of 1993 on the number of doctor visits but considerable effects after the

introduction of individual budgets in 1997. Because I use a hurdle model, I can split

up the number of doctor visits into two parts: the decision to see a doctor within

a quarter (binary information, first part) and the number of recalls (integer value

truncated at zero, second part). I can show that the total drop in the number of

doctor visits of the publicly insured is entirely a result from the drop in the second

step. Given the economic principal-agent model underlying the econometric hurdle
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model, this result can be interpreted as a mere supply-side effect. Moreover, there

was not only a drop in the conditional number of visits of publicly insured but also

a strong increase of conditional visits of the privately insured. This gives rise to

the interpretation that physicians responded to the second reform by changing their

patient mix, i.e., by substituting out the publicly insured for the privately insured. I

argue that the estimate of the treatment-effect of a 10% drop in the number of doctor

visits due to increased copayments for prescription drugs that is well established in

the literature (Winkelmann, 2004a, 2004b, 2006) is biased and that it is more likely

that the effect is due to the introduction of individual practice budgets.

The fourth Chapter (“Risk aversion and advantageous selection in the Ger-

man supplementary health insurance”) takes a deeper look into the question

of who buys private supplementary health insurance for hospital stays in Germany.

It is well known that individuals who sign health insurance contracts have more

information on their true risk type than insurance companies. This private infor-

mation might lead to adverse selection. That is, since health insurance companies

have to offer contracts with insurance premia that equal the average expected losses

of all risk types, the good risks might leave the market if the insurance premium

exceeds their expected loss. If there is an equilibrium at all, Rothschild and Stiglitz

(1976) predict in their model that good risks buy less insurance than bad risks in

this market with adverse selection. However, many recent studies find the opposite,

namely that those individuals who hold more insurance are better risks and have

a lower probability to actually need the insurance. This holds, for example, for

life insurance, long-term care, and Medigap-markets (see Cutler et al., 2008 for an

overview) and is often called advantageous selection. One explanation for this find-

ing is that individuals do not only differ in their risk type as assumed by Rothschild

and Stiglitz (1976) but also in their risk preferences. More risk averse individuals
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are more likely to hold insurance but also to invest in own health making less health

care utilisation necessary.

In this chapter I analyse how holding supplementary insurance and the number of

overnight hospital stays within six years after the interview are correlated with risk

aversion concerning one’s own health. Thereby I am the first one to use a directly

stated degree of risk aversion and do not have to use proxy variables like smoking

or drinking alcohol. I find that there is (overall) adverse selection in the German

market for private supplementary health insurance for females only. For males, risk

aversion increases the likelihood to buy private supplementary health insurance and

decreases the expected number of hospital visits in the future. Thus, risk aversion

is a source of advantageous selection here, possibly outweighing other sources of

adverse selection.

The fifth Chapter (“Why are the unemployed so ill - The causal effect of

unemployment on health”) analyses the impact of unemployment on health. Al-

though there exists some German literature about this question, it has not yet been

answered convincingly. It is well known that the stock of unemployed individuals

exhibits a worse health status than the stock of working individuals. Furthermore,

Arrow (1996) and Riphahn (1999) show that there is a selection of ill individuals into

unemployment. The causal effect of unemployment on health, however, is not clear.

The approach in this chapter both takes into account time-invariant unobserved in-

dividual effects that might be correlated with the health status and the likelihood

to become unemployed, and reversed causality that goes from health to unemploy-

ment. The former is captured by estimating fixed-effects regressions, while the latter

is done by only looking at individuals who lost their jobs due to plant closures and

did not quit or get fired for other reasons. I use three different health measures:

the health satisfaction as an overall health measure, a binary variable indicating a
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hospital visit within the four years after losing the job as a more objective variable,

and a mental health score. The results confirm that, on average, unemployed indi-

viduals have a worse health status according to all measures. After controlling for

fixed-effects and possible reversed causality the negative effect completely vanishes,

however. I can show that without taking into account possible reversed causality (by

using all unemployed) one would find a negative effect of unemployment on health.

Because one cannot exclude reversed causality, this result is likely to be biased and

shows the importance of relying on exogenous reasons of becoming unemployed.
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Chapter 2

More health care utilisation with

more insurance coverage? - Evidence

from a latent class model with

German data

2.1 Introduction

Rising health care expenditures have been an issue for several decades in most

industrialised countries. While demographic change and technological progress can

be seen as the main driving forces behind the increase, both factors can hardly

be tackled in order to contain costs. Moreover, they might lead to even higher

expenditures in the future. In order to lower costs, it seems more promising to

detect and to reduce inefficiencies in the health care sector.

One inefficiency from the demand side is the problem of moral hazard induced by

insurance, defined as "the change in health behavior and health care consumption
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caused by insurance" (Zweifel and Manning, 2000). If this leads to excess demand

for trivial health services, efficiency could be gained by cost-sharing, e.g., deductibles

or co-payments for doctor or hospital visits. However, the optimal amount of cost-

sharing is a priori unclear. In a world with risk-averse individuals and without

moral hazard, full cover insurance (i.e., no deductibles) is a first-best solution. Yet,

when moral hazard is present, the first-best solution is no longer feasible and the

introduction of mandatory deductibles can lead to a second-best solution (see Breyer

et al., 2004).1

On the other hand, in particular European countries also follow the goal of univer-

sal coverage for health care services, available to all in need, independent of income

(Wagstaff and Van Doorslaer, 2000). Cost-sharing might endanger access to health

care services of poorer households and, thus, threaten equity goals in health care

utilisation. Moreover, allowing for optional deductibles could lead to a decomposi-

tion of the risk pool as it can be assumed that good risks choose to buy less insurance

to safe on insurance contributions whereas bad risks are left with higher premiums.

Therefore, if optional deductibles do not increase efficiency due to a more cost con-

scious behaviour, this option might induce a welfare loss since, when again the risk

aversion of individuals is considered, it lowers the expected utility behind the veil

of ignorance.

Hence, finding out more about the price elasticity of demand for health services is

an important empirical task in order to design an optimal health insurance system.

This study analyses the price elasticity of demand for health services in Germany. In

particular we examine whether (a) optional deductibles in private health insurance

or (b) absence of private supplementary insurance cause a lower utilisation of health

care services and, thus, are able to increase efficiency in the health care sector, or

1We therefore also have to assume absence of adverse selection. See below for the problem of
separating moral hazard from adverse selection.
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if they only lead to a decomposition of the risk pool. Second, we evaluate whether

utilisation varies with income conditional on individual need.

The ideal way to determine causal effects of health insurance on the demand for

medical services is a randomised experiment. Manning et al. (1987) report the

results of the Rand Health Insurance Experiment, the only social experiment that

exists in the health insurance literature. Between November 1974 and February 1977,

5809 individuals in six US-American cities were randomly assigned to different health

insurance plans. The plans varied in the rate of coinsurance (from 0% to 95% of out-

of-pocket expenditures) and upper limits of annual out-of-pocket payments (between

5 and 15% of annual family income, up to a maximum of 1000$). Furthermore, in

some cases the co-payment differed for inpatient and outpatient services. The results

concerning demand for medical services (number of treatments and expenditures

caused by the treatments) show a clear incentive effect. Individuals without any

coinsurance caused the highest expenditures due to the highest demand for health

care. The demand decreased with higher amounts of co-payments. However, the

differences between the insurance plans with co-payment are much less pronounced

than the difference between users with coinsurance and those without. That is, the

difference in doctor visits between individuals without coinsurance and those with a

coinsurance rate of 25% is much higher than between individuals with coinsurance

rates of 50% vs. 95%. These results generally hold for various subgroups (divided

by income, age, health status).

The German experience with mandatory cost-sharing is mixed. Exploiting a natural

experiment, Augurzky et al. (2006) and Schreyögg and Grabka (2010) evaluate a

reform of 2004 that introduced a co-payment of 10 Euro for the first doctor visit in

a quarter. The authors do not find reactions on the incentives to save costs induced

by this reform. Farbmacher (2009), who also analyses the reform, finds a slight drop
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in the demand for doctor visits due to the reform. The most likely reason for these

findings is that an amount of 10 Euro that only applies to the first visit in a quarter

is too low to lead to significant effects. On the contrary, Winkelmann (2004a, 2004b,

2006) finds strong effects of increased co-payments for prescription drugs in 1997 on

the demand for doctor visits. A moderate increase in co-payments led to a 10%

drop in the number of doctor visits. However, see Chapter 3 of this thesis for an

alternative explanation for the strong effects of this last reform.

The major difference of this study to the aforementioned ones is that it does not

analyse effects of mandatory deductibles or co-payments but of optional ones. This

has two important implications. First, the empirical challenge to find causal effects

is much stronger because the selection of individuals into insurance plans has to

be considered. Second, statements about the effects of deductibles can only be

made for the group of individuals who actually hold contracts with deductibles. As

regards deductibles in Germany this is important to note, since only a special group

is allowed to choose deductibles. This group might not be representative for the

whole German population (see Section 2.2 for a description of this group).

There are several studies that analyse the impact of the insurance status on the

number of doctor visits or hospitalisations with German observational data (i.e.,

without exploiting either randomised or natural experiments), e.g., Pohlmeier and

Ulrich (1995), Geil et al. (1997), and Riphahn et al. (2003). They compare the

behaviour of individuals covered by private health insurance with those covered by

public insurance. In the German system, the former can choose between having a

deductible or not whereas there are basically no deductibles for the latter.2 The

results of these studies are mixed. Pohlmeier and Ulrich (1995) find that the proba-

bility of visiting a general practitioner (GP) is higher for the publicly insured, that

2A brief introduction to the German health insurance system will be given in Section 2.2.
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is, implicitly, for those with more insurance coverage. Geil et al. (1997) show that,

for females, being covered by public insurance has a positive (but moderate) effect

on the number of hospitalisations, while no significant effect was found for males.

Finally, Riphahn et al. (2003) find that private add-on insurance raises the number

of hospitalisations of males while other variables that indicate the insurance status

are not significant.

Felder and Werblow (2008) evaluate an experiment of one German sickness fund

that allowed a subset of voluntarily insured to choose a contract with a deductible

in 2003. They find that the deductible reduces the probability of visiting a specialist

but not a GP. Furthermore the deductible reduced health care expenditures for

acute care but not for preventive care. This result does not surprise, since the

deductible in the experiment is much higher than, e.g., the co-payment of 10 Euros

for only the first doctor visit in a quarter. However, the author’s control for the

notable selection of healthy individuals into the deductible program rests on strong

assumptions (basically, the validity of exclusion restrictions).

The contribution of this study is threefold. First, we take unobserved heterogeneity

into account in a fairly general way. By exploiting the panel structure of the data,

Riphahn et al. (2003) and Geil et al. (1997) already account for unobserved individ-

ual effects that affect doctor visits, such as individual frailty, using a random effects

model. Here, however, we estimate a finite mixture model that allows for different

effects of insurance status and income for different latent classes. Latent class mod-

els where introduced to the health economics literature by Deb and Trivedi (1997)

and have become very popular since then.3 In the present study, we use the latent

class hurdle model developed by Bago d’Uva (2006), which Bago d’Uva and Jones

3Recently they where used in different specifications by, e.g., Deb and Holmes (2000), Deb
(2001), Gerdtham and Trivedi (2001), Deb and Trivedi (2002), Jimenez-Martin et al. (2002),
Atella et al. (2004), Bago d’Uva (2005), Bago d’Uva (2006), Bago d’Uva and Jones (2009).
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(2009) also apply, but which, so far, has not been estimated on German data.

Second, we control for the fact that privately and publicly insured individuals differ

in many aspects, especially in their offered insurance contracts and their latent

health status. Therefore, we run separate regressions for both groups.

Third, we use recent innovations in the German Socio-Economic Panel and include

better health measures and a directly stated measure of risk aversion in the analysis.

Doing this, we are much more likely to reduce possible omitted variable bias that

renders the insurance choice an endogenous explanatory variable than those previous

studies which do not exploit natural experiments.4 Endogeneity of the insurance

status might occur for two reasons: unobserved health status and unobserved risk

aversion. When making a decision about the insurance plan, the individual takes

into account her expected demand for health services in the future. A person who

knows that she needs many visits to the doctor in the future due to health problems

might not buy insurance with deductibles. Thus, the health status both affects the

demand for doctor visits and the insurance type. An incompletely observed health

status might lead to biased results. Similar reasoning applies to preferences like risk

aversion. Risk-averse individuals tend to prefer full cover insurance and at the same

time demand more doctor visits given a certain health status. However, note that,

unconditionally, the effect might even be reversed with more demand for health

insurance but less demand for health services, given that risk averse individuals are

likely to be in better health due to higher preventive efforts, see de Meza and Webb

(2001), Finkelstein and McGarry (2006), or Cutler et al. (2008).

We use the waves 2002, 2004, and 2006 of the German Socio-economic panel (SOEP)

that include newly available health measures from a version of the SF12v2-questionnaire

4While Pohlmeier and Ulrich (1995) and Geil et al. (1997) do not discuss possible endogeneity
of the insurance choice, Riphahn et al. (2003) do test for it and find that there is endogeneity of
holding private supplementary insurance in the case of hospital visits.
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and a directly stated degree of risk aversion to overcome this problem. It turns out

that deductibles and private supplementary insurance affect the doctor visiting be-

haviour at least to a certain degree. Specifically, individuals who generally have a

lower demand for doctor visits react on the imposed incentives given by the insur-

ance status and demand less doctor visits with a deductible and more with private

supplementary insurance. No or even reversed effects can be found in the group of

high users, which however, is the smaller one compared to the group of low users. As

regards income elasticity we find positive effects in the low user group and virtually

no effects of high users. Thus, the results are in line with most other latent class

analyses that find that especially the low users respond to insurance status and are

also more price elastic than high users (see, e.g., Deb and Trivedi, 2002; Bago d’Uva,

2005; Bago d’Uva, 2006).

The paper is structured as follows. Section 2 gives a short introduction into the

German health insurance system. Section 3 describes the data and the empirical

strategy, while Section 4 presents the estimation results. Section 5 discusses some

endogeneity concerns and Section 6 concludes.

2.2 Institutional Background

The German health insurance system consists of two parts. Roughly 88 per cent

of the population are insured by public health insurance (also called the statutory

health insurance, SHI). It is statutory for all individuals with earnings below a

certain income threshold (3,975 Euro per month in 2007) and financed by payroll

taxes. Therefore, it is basically independent of age, gender, or health status of the

insured.5 Since 1997, the publicly insured are allowed to choose between different
5It does, however, indirectly also depend on these factors since they affect the individual

earnings.
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insurance companies yet the benefit package is heavily regulated and does not vary

much between companies.6 The insurance companies are not allowed to reject ap-

plicants and non-working family members are covered without an extra premium.

Until the most recent reform which took effect in April 2007, there were basically

no (optional) deductibles in the public scheme. However, in 2004, a co-payment of

10 Euro for the first visit in a quarter was introduced.7 Furthermore, there were low

co-payments for hospitalisations (10 Euro per calendar day up to a maximum of 28

days) and for prescription drugs (Winkelmann, 2004b). The publicly insured can

additionally purchase private supplementary insurance that either increases qual-

ity (e.g. double rooms in hospitals) or covers co-payments on dentures, corrective

devices (like glasses) or other remedies.

Individuals who earn more than the income threshold, the self-employed, and civil

servants are allowed to opt out of the public insurance system and can instead buy

private insurance (which accounts for the remaining 12 per cent of the German popu-

lation, abstracting from a small group without any insurance coverage). The private

insurance premium does not depend on income but is a risk-equivalent contribution

(depending on age, gender, and health status). Private insurance companies can re-

ject bad risks. Furthermore, privately insured individuals have to pay higher premia

in order to cover non-working family members. Thus, being a bad risk or having

dependents might be two of the reasons for staying voluntarily in the public system

for about 50 per cent of all the individuals who are allowed to opt out although

private insurance often is perceived to lead to higher quality of health care. Private

insurance companies usually offer a set of different contracts, including the choice of

deductibles. Individuals who opt out of the public insurance system are in general
6About 95 per cent of the package that all insurers have to provide is stated in Social Code

Book V (see Buchner and Wasem (2003)).
7No effects of this reform on the demand for doctor visits are found by Augurzky et al. (2006).

Since they use the same data set as we do, we do not take this reform into account. Also, since
our latest panel year is 2006, the reform of 2007 is of no importance for this study.
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not allowed to re-enter later as long as they do not fall below the income threshold.

Furthermore, contracts with a deductible cannot be transformed into full cover con-

tracts without proof of good health. Hence, the decision to buy private insurance

and about the deductible are practically lifetime decisions.

Because the insurance contracts differ so strongly between both the privately and the

publicly insured, we analyse both groups separately. Besides income, the main focus

will be on the effect of more insurance in the SHI system (private supplementary

health insurance, also called add-on insurance) and less insurance in the private

system (contracts with deductible) compared to individuals with standard contracts

(no add-on, or no deductibles) in the respective system.

2.3 Empirical Model

2.3.1 Data and Variable Description

The database for the empirical analysis is the German Socioeconomic Panel (SOEP),

which started in 1984 in West Germany and was extended to include East Germany

in June 1990. There were several refreshments resulting in a sample size of more than

20,000 adult individuals living in more than 12,000 households that participated in

the SOEP survey in 2006 (see, e.g., Wagner et al., 2007).8 The SOEP includes

questions about the number of doctor visits within the last three months prior to

the interview and the number of hospital trips in the previous year.

The number of doctor visits depends, to a large extent, on the individual health sta-

8The data used in this paper were extracted using the Add-On package PanelWhiz v2.0 (Nov
2007) for Stata. PanelWhiz was written by Dr. John P. Haisken-DeNew (john@panelwhiz.eu).
The PanelWhiz generated DO file to retrieve the SOEP data used here and any Panelwhiz Plugins
are available upon request. Any data or computational errors in this paper are my own. Haisken-
DeNew and Hahn (2006) describe PanelWhiz in detail.
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tus. However, direct measurement of the health status is somewhat complicated and,

especially in general surveys such as the SOEP, often restricted to the self-assessed

health status (SAH, on a 5-point scale from very good to bad). As often argued,

this measure is prone to measurement error and reporting bias, possibly leading to

biased coefficient estimates (see, e.g., Bound, 1991 or Crossley and Kennedy, 2002).

Furthermore, it is unlikely that a complete picture of individual health can be cap-

tured by the SAH. Two newly available and more objective measures are used here to

alleviate this problem: the Physical Component Summary Scale (PCS), a measure

of physical health, and the Mental Component Summary Scale (MCS) a measure

of mental health (see Andersen et al. (2007) for a description). These measures are

based on a variant of the SF12v2-questionnaire in the SOEP that includes several

questions about health quality and satisfaction of the individuals.9 Both variables

are calculated using explorative factor analysis and lie between 0 and 100, with a

higher value indicating a better health status. The mean value of the SOEP 2004

population is 50 points with a standard deviation of 10 points. Although both mea-

sures are also based on self-reported information, they give a much more detailed

picture of the true health status.

As an objective measure of individual health we use the body mass index (BMI) and

whether there was a hospital stay in the previous year. The three variables PCS,

MCS, and BMI are only available in the waves 2002, 2004, and 2006, hence, these

three waves of the SOEP are used for the analysis. It turns out that after controlling

for these health measures, the self assessed health status still contains information

to explain the number of doctor visits and should therefore not be left out.

One further variable that is newly available in the SOEP is a self-assessed attitude

towards risk concerning health matters on an 11-point scale from 0 (very risk-averse)

9Questions concern, among others, bodily pain, stress, ability to carry out everyday tasks,
phases of melancholy, etc.
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to 10 (not at all risk-averse).10 The risk-attitude is likely to have an important

impact on the demand for health care. It was only asked in 2004. However, it seems

reasonable to assume that this preference is constant over the span of five years.

Although the attitude towards risks are self-assessed, Dohmen et al. (2010b) show

in an experimental setting with a pre-test group of the SOEP that it is a fairly

reliable measure. Another variable that reflects preferences of the individual is the

assessment about worries concerning the own health (on a 3-point scale between

1= very concerned and 3= not at all concerned). On the one hand, it contains

additional information on the true health status. On the other hand, it also reflects

parts of the individual doctor visiting behaviour since there might be individuals

who are more concerned about their health status and demand more doctor visits

than others at a comparable true health status. Using these new variables (together

with a set of other socio economic variables which are not the focus of this study),

we can control for a lot of important heterogeneity that has an effect on the number

of doctor visits and the insurance status at the same time and which remained

unobserved in previous studies.

In our sample, only the privately insured are allowed to buy contracts with de-

ductibles. In our dataset the information on deductibles of the privately insured is

restricted to a binary variable indicating the existence or absence of a deductible.

Although the publicly insured can indicate what kind of private add-on insurance

they hold, we collapse these into a binary variable indicating whether or not an in-

dividual holds some kind of add-on insurance due to the low coverage of the publicly

insured with add-on insurance (only about 14 per cent of all publicly insured hold

some kind of private add-on insurance). However, add-on insurance that covers hos-

pital stays or medical costs abroad are not included here. More precisely, the binary

10The question in the SOEP is: “How would you rate your willingness to take risks with your
health?”
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variable Add-on states whether an individual holds supplementary insurance that

covers dentures, corrective devices, some kinds of therapeutic measures, or others.

As an income measure we use the logarithm of the equivalised net household income.

We exclude civil servants from the sample due to their special insurance status. In

general, the civil servant’s employer covers 50 per cent (or more) of the health care

costs while civil servants have to insure only the remaining 50 per cent, usually

privately. Treating a civil servant with private insurance and deductible similar to

other privately insured would possibly bias the results. All together, we use infor-

mation from 20,751 individuals with 51,894 observations in person-year form after

exclusion of observations with missing values in any of the variables used for the

regression analysis.

Table 2.1: Doctor Visits of Subgroups

Average Probability Average Number
# of sd of one sd # of visits sd of
visits visit if > 0 obs.

Whole Sample 2.44 3.97 0.68 0.47 3.57 4.36 51894
Public Insurance 2.47 3.95 0.69 0.46 3.58 4.31 46319
– with add-on 2.56 4.16 0.71 0.45 3.58 4.53 3644
– without add-on 2.47 3.93 0.69 0.46 3.58 4.29 42675
Private Insurance 2.20 4.16 0.62 0.49 3.54 4.80 5551
– with deductible 1.96 3.86 0.58 0.49 3.36 4.57 3081
– without deductible 2.50 4.48 0.67 0.47 3.74 5.04 2470

Source: SOEP, pooled years 2002, 2004, 2006; no civil servants.

The number of doctor visits in the previous three months of several groups with

different insurance statuses in the pooled sample is given in Table 2.1. The overall

mean is 2.44, with 32 per cent of all the individuals not visiting any doctor. Condi-

tional on having at least one visit, the average number of doctor visits in the whole
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sample is 3.57. The group of publicly insured exhibits a higher number of doctor

visits than the group of privately insured (2.47 vs. 2.20). However, both groups

are hardly comparable because, first of all, the group of privately insured consists of

individuals with higher income and better education - characteristics that are known

to be correlated with better health (see Table A3.2 in the appendix for means of

the covariates for different subgroups). Furthermore, this group has the better risk-

pool because bad risks are either rejected by private health insurance companies

or would have to pay high contributions that preclude them from buying private

health insurance. Therefore, and because, the insurance contracts of both groups

differ substantially, we carry out separate regressions for both groups.

The comparison of the privately insured with and without deductible shows a clear

picture: the privately insured with a deductible have much less doctor visits (1.96 vs.

2.50), a lower probability of visiting a doctor (58 per cent vs. 67 per cent), and even

fewer doctor visits conditional on having at least one visit (3.36 vs. 3.74). Likewise,

individuals with add-on insurance exhibit slightly higher numbers of doctor visits.

However, these are only unconditional numbers which do not account for different

health statuses across groups or different attitudes towards visiting a doctor. To

find out if these differences in health care utilisation are only due to different risk

pools or also due to different incentives given by the insurance statuses a more

detailed analysis that controls for important observable and unobservable factors is

necessary.

2.3.2 Latent Class Hurdle Model

It is often argued that the observed number of doctor visits is a result of two different

(and probably independent) decision-making processes. First, the patient decides

whether or not to see a doctor in case of an illness. Once a doctor is seen, however,
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the doctor determines the length of the treatment. Hence, a hurdle model seems to

be the most appropriate formulation in order to explain the number of doctor visits

(Mullahy, 1986; Pohlmeier and Ulrich, 1995). Let

g(yit) =

 f1(0|xit) if yit = 0

(1− f1(0|xit))f2(yit|xit, yit > 0) if yit > 0
(1)

where f2(yit|xit, yit > 0) = f2(yit|xit)[1−f2(0|xit)]−1, yit is the number of doctor visits

of individual i at time t, and xit is a vector of covariates. f1(0|xit) = P (yit = 0|xit) is

a binary function that determines the probability of having no doctor visit at all in a

given period. Given that the number of doctor visits exceeds zero (with probability

1 − f1(0|xit)), a truncated-at-zero function f2(yit|xit, yit > 0) determines the exact

number of visits.

Given that the dependent variable (number of doctor visits in the previous three

months) is an integer, it is appropriate to use a count data model in order to specify

the two underlying functions in the hurdle model. While the Poisson model is a

good starting point for count data, it is often seen to be too restrictive due to

its assumption of the equality of conditional mean and variance of the dependent

variable, which is clearly not the case here (see Table 2.1). In order to allow for

over-dispersion, one commonly introduces a gamma-distributed error term, ending

up with the negative binomial distribution (see, e.g., Cameron and Trivedi, 2005,

for a derivation) with the following probability density function:

f(yit|µ, α) =
Γ(α−1 + yit)

Γ(α−1)(Γ(yit + 1))

(
α−1

α−1 + µ

)α−1 (
µ

µ+ α−1

)yit
(2)

where µ =exp(x′itβ) and α is the over-dispersion parameter.

Combining the negative binomial distribution with the hurdle structure in (1), f1
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becomes

f1(0|xit) = P (yit = 0|xit, β1) = (µ1 + 1)−1 (3)

where µ1 =exp(x′itβ1).11 The truncated part in (1) becomes

f2(yit|xit, β2; yit > 0) =
Γ(α−1 + yit)

Γ(α−1)(Γ(yit + 1))((1 + αµ2)α
−1 − 1)

(
µ2

µ2 + α−1

)yit
(4)

where µ2 =exp(x′itβ2).

While the xit’s capture a lot of observable heterogeneity between individuals and

across time (especially the health status, insurance status, age, sex, and education),

there might still be great a deal of unobservable heterogeneity left. This could be

general unmeasured frailty or preferences towards visiting a doctor. These factors

clearly affect the demand for health care and can be considered time-invariant. In

order to account for this unobserved heterogeneity, we use the latent class hurdle

model derived by Bago d’Uva (2006) for panel count data in which the time-invariant

individual effect follows a discrete distribution that takes on a small number of

components. The latent class hurdle model combines the basic hurdle model (that

groups individuals into “users” and “non-users”) with a finite mixture model (where

the latent classes can be given interpretations such as “high users” and “low users”,

see Deb and Trivedi, 2002).

As in Bago d’Uva (2006) or Clark and Etile (2006), the individual probability of

belonging to one of C latent classes is specified as a multinomial logit.

πij =
exp(z′iγj)∑C
g=1 exp(z′iγg)

, j = 1, . . . , C (5)

11Here, α is set to one because it would not be identified from β1 in this binary information
case (see Deb and Trivedi (2002) or Bago d’Uva (2006))
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This ensures that 0 < πij < 1 and
∑C

j=1 πij = 1. In order to guarantee that each

individual belongs to the same latent class over all time periods, we choose the zi as

time-invariant characteristics. We follow Bago d’Uva (2005) in using the individual

averages of the xit, defining zi = x̄i. Note that this specification allows for correlation

between the observable characteristics and the unobserved individual heterogeneity

(that is, here, the latent class).

The likelihood function is finally given by

L =
N∏
i=1

C∑
j=1

πij

Ti∏
t=1

gj(yit|xit, θj) (6)

where θj = (β1j, β2j, αj) and equation (1), (3), (4) and (5) are plugged into equation

(6). The most flexible formulation allows for different slope parameters in every

latent class (β1j 6= β1k and β2j 6= β2k for j 6= k) and different parameters in the

two hurdle parts (β1j 6= β2j). That is, belonging to a certain latent class does not

only alter the intercept but is allowed to affect each slope parameter. This, how-

ever, requires estimation of very many parameters. For instance, a fully flexible

hurdle model with three latent classes and, say, 30 regressors and a constant would

include 251 coefficients12 that have to be estimated. This flexible specification is

very data-demanding. Since we only have three waves and, furthermore, carry out

different regressions for publicly and privately insured, we restrict the model to the

same slope parameters across latent classes and allow only for heterogeneity in the

most interesting parts. These are: the intercept, the over-dispersion parameters and

the two interesting insurance variables (deductible or add-on) plus the equivalised

household income. This still requires the estimation of many parameters but much

less than in the fully flexible specification. Apart from allowing for heterogeneous

12These are three classes times two sets of parameters for the first and second hurdle part times
31 parameters plus three different over-dispersion parameters plus two times 31 parameters for the
probability of belonging to a certain latent class.
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effects of insurance and income on the health care utilisation for different latent

groups, there is also a statistical motivation for the use of a finite mixture model.

This is the possibility to introduce a random-effect without imposing strong dis-

tributional assumptions. The likelihood function is maximized with respect to the

vectors θ1, . . . , θC , γ1, . . . , γC−1 using the Broyden-Fletcher-Goldfarb-Shanno quasi-

Newton algorithm.13 Note, finally, that in this specification, the two parts of the

hurdle model are not assumed to be independent. This restrictive assumption is

relaxed due to the latent class specification.

2.4 Estimation Results

We carry out separate regressions for both groups of insured (SHI and private in-

surance) where the insurance variable in the case of SHI is the binary indicator of

holding add-on insurance and in the case of private insurance it is the dummy for

a deductible. The model selection, that is, the choice of the number of components

is done by the Akaike criterion (AIC). Table 2.2 shows different values of AIC for

different choices of components. In both cases the latent class panel model out-

performs the standard hurdle model with a logit as the first part and a truncated

negative binomial model as a second part (which is equivalent to the latent class

model with one component). Hence, the fit is improved substantially by capturing

unobserved individual effects. According to the AIC, the model with three compo-

nents is preferred for the privately insured over the one with two components. In

the SHI sample, the model with three components failed to converge. However, it

is widely accepted that two components already capture a substantial part of indi-

vidual unobserved heterogeneity. A model with four components did not converge

13We used the ml command in Stata and drawed on the code provided in Jones et al. (2007).
Various starting values were used to rule out local maxima of the likelihood function.
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in either case.

Table 2.2: Model selection

Components Private SHI
AIC AIC

1 19,877 175,897
2 19,636 172,786
3 19,532 -

Source: own calculations

Based on the estimated parameters and the observed covariates we calculate both the

individual predicted number of doctor visits (for all latent classes) and the individual

likelihood of belonging to one of the three (or two in the case of SHI) latent classes

using (5). Table 2.3 reports average probabilities for the different classes and average

predicted values. Based on the predicted numbers of visits we call the classes the

“low users”, “medium users” and “high users”.14 Every group has a reasonably high

share. The high users have a share of about one third whereas low users or low and

medium users account for the remaining two thirds.

Table 2.3: Shares of individuals within each latent class and predicted numbers of
physician visits

Sample deductibles Sample add-on
Share of Predicted Share of Predicted

individuals mean individuals mean
Low users 0.43 0.84 0.67 1.57
Medium users 0.25 2.19 - -
High users 0.32 3.58 0.33 4.15
Predicted values based on regression results in Table A2.2. Predicted shares of

latent classes are calculated based on the results in Table A2.3

Due to the nonlinearity of the model, the interpretation of the estimated parameters
14Another possibility would be to assign each individual the group she is most likely to be in

according to her individual πij and then average the predicted values only over those appearing in
the respective groups. This leads to very similar results.
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is not straightforward. Here we focus on the calculated marginal effects of the most

interesting variables in order to interpret the results (Table 2.4). The marginal

effects are calculated in the following way: first we compute the marginal effect

of each individual in both (or, in the private insurance case, three) latent classes.

Then we average over all individual marginal effects within all latent classes. The

full regression results can be found in Tables A2.2 and A2.3 in the appendix.

The effects of the insurance variables vary with the latent classes. Both low users

and medium users in the private insurance have a lower likelihood of one doctor

visit (in the first stage) in case of a contract with deductible. But only for the low

users the effect is significant at the 5 per cent-level. Likewise, the effect is negative

but insignificant for both low and medium users in the second stage. The same

results hold for the low users in the SHI. Here, more insurance implies more doctor

visits, also significant in both the first and the second stage. On the other hand, the

insurance status does not significantly affect the behaviour of high users in the SHI

sample and even has an unexpected effect in the privately insured sample. Here, less

insurance seems to increase the demand for doctor visits (however, not significant).

All together, especially low users appear to react on the incentives given by the

insurance status. These results are in line with those found in Deb and Trivedi

(1997) and Bago d’Uva (2006). However given an average probability of seing a

doctor within three months of 68 per cent, a reduction by 7.1 percentage points

(deductible/low users) or an increase by 5.8 percentage points appears to be rather

small.

Concerning equivalised household income the results, again, differ by latent classes.

Only small or insignificant effects can be found in both groups of high users. In

the group of low and medium users, however, higher income is associated with more

doctor visits. Again, this especially holds for a higher likelihood of one visit (i.e.,

36



the first stage). Thus, after controlling for the health status and other important

factors like age and sex this result points into the direction of a pro-rich inequity.

That is, richer individuals seem to have a better access to health care at least in

the low users group. This is again in line with the results of previous international

studies using finite mixture models. However, most other studies find a positive

income effect for all latent classes but a stronger effect for the low users (e.g., Deb

and Trivedi (2002),Bago d’Uva (2005), Bago d’Uva (2006)). We find this result only

in the group of SHI insured, not in the private insurance. However, the results are

not perfectly comparable, as we run different estimations for privately and publicly

insured. It may well be that, taken both groups together, there is a positive effect

in all latent classes.

Table 2.4: Marginal effects of insurance and income variables for all latent classes

Sample Latent Deductible Deductible Add-on Add-on Income Income
class 1st stage 2nd stage 1st stage 2nd stage 1st stage 2nd stage

Priv. Low users -0.071* -0.358 0.082* 0.157
Ins. (0.031) (0.216) (0.024) (0.132)

Medium users -0.066 -1.175 0.125* 0.589
(0.038) (0.980) (0.040) (0.319)

High users 0.075 1.623 -0.016 -0.140
(0.039) (1.058) (0.034) (0.277)

SHI Low users 0.058* 0.549* 0.034* 0.119*
(0.013) (0.163) (0.008) (0.039)

High users -0.013 -0.413 0.026* -0.105
(0.016) (0.475) (0.011) (0.108)

*p<0.05; Marginal effects based on regressions as reported in table A2.2. The marginal effects are calculated

individually and over each of the components and then averaged over all individuals. The marginal effects of the

continuous variables calculated numerically using the following formula: MEi = (pi,new−pi)/(Incomei/100), where

pi is the predicted value, pi,new is the predicted value assuming a household income of 1% more than the observed

value.

We briefly summarise the effects of other important variables, particularly the newly

available health measures. The estimated parameters of these variables are reported
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in Table A2.2. All three variables indicating the health status show a highly sig-

nificant effect on the demand for health care. Both higher PCS and higher MCS

(indicating a healthier individual) lead to less doctor visits, where the effect of

physical health is stronger than the one of mental health. However, even when con-

trolling for both more comprehensive health measures, self-assessed general health

status remains significant in most equations. A very high body-mass index (> 30)

significantly increases the number of visits for the publicly insured. Finally, having

had a hospital visit in the last year or being handicapped furthermore increases the

number of visits. Altogether, the health variables are highly significant and explain

the demand for physician visits to a great amount.

Worries about the own health are associated with more doctor visits in the SHI

sample. Thus, this variable might either capture even more information about the

true health status or also behavioural differences between individuals with the same

health status (or both). The self-assessed risk attitude towards health also has

the expected sign (more risk-averse individuals have more doctor visits, conditional

on the health status) and is significant in the first stage in the group of privately

insured.

2.5 Endogeneity concerns

When analysing the impact of health insurance on the demand for health care ser-

vices, there is possibly an endogeneity problem. As discussed in the introduction,

this problem might stem from omitted variable bias due to unobserved health status

and unobserved risk-preferences. However, including the new set of health and risk

variables might reduce the endogeneity problem.

Given the principal-agent interpretation of the hurdle model, one can argue that
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possible endogeneity of the insurance choice should mainly play a role in the first

stage, namely when the patient has full control. This is corroborated by the regres-

sion results that mainly showed significant effects of the insurance variables in the

first and not the second stage (with one exception). Thus, as a robustness check, to

determine if endogeneity is a problem, we focus on that stage and model the deci-

sion to see a doctor together with the decision about a certain insurance contract.

Consider the following bivariate model

y1 = 1[x1β1 + hδ1 + α1y2 + µ1 > 0] (2)

y2 = 1[x2β2 + hδ2 + µ2 > 0] (3)

where y1 is the binary decision to see a doctor and y2 the binary decision about

the insurance contract (e.g. deductible yes/no, or add-on insurance yes/no), h is

the observed health status, and x1 and x2 are socio-economic variables like age,

education, and income. Finally, µ1 and µ2 capture unobserved effects like unobserved

health and preferences towards visiting a doctor. We assume that the number of

doctor visits in one period depends on the insurance status whereas the insurance

status does not depend on the number of doctor visits in that same period (given

a certain health status). The correlation between µ1 and µ2, ρ = corr(µ1, µ2), does

not equal 0 if the unobserved effects that affect the number of doctor visits and the

insurance choice are correlated. Assuming a bivariate normal distribution of the

error terms, the parameters of this model (and the correlation ρ) can be estimated

by a bivariate probit.

Again, we fit two different regressions, one where the insurance variable is deductible

and one where it is add-on. In the first regression, ρ can be expected to be negative

if the insured who expect to have fewer doctor visits in the future (for unobserved

39



reasons) tend to buy insurance with a deductible. Unlike in the deductible case, add-

on insurance leads to more insurance coverage, hence, a positive ρ can be expected

in the second regression.

We add variables to x2 that are assumed not to affect the decision to visit a doctor

and are thus excluded from x1. These are risk-aversion concerning financial matters

and the general attitude towards co-payments for health care services.15 The bivari-

ate probit model allows for endogeneity of the insurance choice in the doctor-visits

equation via correlation of the error terms. However, as Table 2.5 shows, in neither

of the two cases is the estimated correlation coefficient significantly different from

zero. We follow Knapp and Seaks (1998) in using a t-test on the correlation coef-

ficient as a test for endogeneity of the dummy regressors. Here, the hypothesis of

ρ = 0 (no endogeneity) cannot be rejected in either case.

Table 2.5: Estimated correlation in bivariate probit

Equation ρ̂ ŝe(ρ̂) Observations
Deductible 0.022 (0.31) 5152
Add-on 0.090 (0.10) 43458
Standard errors clustered by individuals. Full estimation
results in the appendix, see table A2.4

In the deductible equation the sign is different from what is expected, however,

the value is very close to zero in both cases. It can be argued that capturing

information from the new health variables and the degree of risk-aversion (plus

health worries) together with all the other socio-economic variables reduces the

endogeneity problem by a substantial amount. However, one can think of even more

reasons originating in the insurance system that render endogeneity being much less

of a problem than possibly expected. As discussed in Section 2, opting out of private
15Risk-aversion concerning financial matters is asked for in the same way as the risk-aversion

concerning health. The question about the attitudes towards co-payments was asked only in 2002.
As in the case of risk-aversion, we assume that this is a time-invariant preference.
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insurance and deciding on deductibles are practically lifetime decisions. While the

(partly unobserved) health status should have a high impact on the decision about

health insurance in a given year, it only affects the number of doctor visits in the

following years but not the decision about the insurance type. Moreover, Grabka

(2006) gives another reason for the privately insured to switch to a contract with a

deductible that is independent of changes in the health status of the insured. Unlike

in the case of public insurance, cost containment and the stability of contribution

rates have not been considered in the past decades in the private insurance system.

This has led to a much higher proportional increase in costs than in the SHI and,

thus, in steadily increasing contribution rates for the privately insured. One way

for an insured to stop an increase in the contribution rate in a given year is to

transform a contract without a deductible into one with a deductible to keep the

basic insurance premium stable. In this case, the decision about buying insurance

with a deductible is not affected by a change in the health status but by other

reasons. Together with the performed statistical tests this supports the idea that

the results of the previous section are not biased by endogeneity problems.

2.6 Conclusion

In this paper we analyse the income elasticity of German individuals with respect

to the utilisation of health care services and the effect of health insurance coverage.

We find that there are effects of health insurance on the demand for physician visits

and that richer individuals tend to have more doctor visits conditional on their

individual needs. Both effects, however, are only found in the group of low users,

that is, those who have only a lower probability to see a doctor from the outset.

With a flexible hurdle model that accounts for individual unobserved heterogeneity,
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we observe that especially the newly available health measures in the SOEP from the

SF12v2-questionnaire, the BMI, and the measure of risk-aversion can partly explain

the demand for physician visits (the latter only in the case of privately insured).

Altogether, we find that possible endogeneity of the insurance status is not a big

problem in the data set.

The results on the responsiveness of the group of German low users is in line with

those in the recent literature for other countries that uses finite mixture models. The

effects of the insurance status, however, are not straightforward to interpret. In the

group of high users, deductibles do not seem to have an effect on cost-consciousness,

nor does private supplementary insurance increase the demand for physician visits.

Apparently, these individuals need physician visits anyway, irrespective of their in-

surance status. Therefore, in this group, optional deductibles rather seem to spur on

the decomposition of the risk-pool instead of increasing efficiency. The findings for

the group of low users, however, are more in line with those of Felder and Werblow

(2008), who do find incentive effects of optional deductibles.

Although we find incentive effects that are - at least in some subgroups - statis-

tically significant, they are not very strong in economic terms. While individuals

who hold contracts with less insurance coverage have much less doctor visits, this

difference is strongly reduced when we take observed and unobserved heterogeneity

into account. Thus, the selection into different insurance schemes explains these

observed differences in health care utilisation to a great deal. However, this does

not mean that deductibles as such are not a good measure to control costs. The

introduction of mandatory cost-sharing - as found in the Rand Health Insurance

Experiment - might strongly affect the demand for health care. However, as the

German experience shows, the amount of cost-sharing needs to be non-negligible in

order to see some effects. Moreover, as the results of this paper imply, these effects
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might then be driven by the group of individuals who would not choose optional

deductibles (either due to a bad health status, a high degree of risk-aversion or a

strong preference for doctor visits). Since, on average, these are also financially

less well-off, the increased efficiency due to mandatory cost-sharing might come at

the cost of inequality in access to health care. Moreover, the finding of an already

existing pro-rich inequity, although being small only, presents the possible problems

of increased cost-sharing.

Therefore, one might think of supply-side mechanisms that reduce the realised con-

sumption of health care. Ellis and McGuire (1990) argue that it can be optimal

to leave the demand for health care on a too high level (i.e., higher than socially

optimal) and not reducing it by demand-side cost-sharing. If the incentives of the

physicians are set such that they do not satisfy this excess demand, the realised

amount of health care services will be lower than the one preferred by the fully

insured patients. This would be a possibility to achieve efficiency gains when indi-

viduals show moral hazard behaviour without the need to increase the financial risk

of illness for the patients by cost-sharing. The next chapter provides some evidence

that indeed physicians react on supply-side incentives imposed by the reimbursement

system and, thus, can strongly influence the individual health care utilisation.

A qualification of this chapter concerns the separation of moral hazard and ad-

verse selection. Both are problems that arise from the information asymmetry of

insurer and insured and lead to a higher utilisation of health care of individuals

with more insurance. Observing a higher number of doctor visits of those with

more insurance need not necessarily be moral hazard. However, insurance contracts

with deductibles as well as private supplementary insurance are offered by private

insurance companies who are allowed to collect detailed information on the health

status at the time the insurance contract is signed. Therefore, the degree of ex-ante
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information asymmetry which possibly leads to adverse selection is reduced due to

the good information of the insurance companies. Indeed, although Schmitz (2009)

finds evidence for adverse selection in one German market for private supplementary

insurance (the one for hospital visits), it is only of a low degree. Nevertheless, the

measured incentive effects should, therefore, be seen as an upper bound.
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2.7 Appendix

Table A2.1: Sample means by subgroups
SHI SHI Private Private

without add-on with add-on with deductible without deductible
Log. income 7.30 7.55 7.90 7.82
PCS 49.15 50.86 52.63 51.29
MCS 49.75 50.15 51.59 51.22
Self-assessed health 2.65 2.50 2.36 2.44
BMI high 0.36 0.34 0.37 0.34
BMI very high 0.15 0.15 0.10 0.10
Hospital stay prev. year 0.11 0.10 0.07 0.11
Handicapped 0.12 0.09 0.07 0.10
Smoker 0.30 0.31 0.28 0.23
Worries Health 2.10 2.21 2.32 2.27
Risk attitude health 2.82 3.20 3.49 3.10
Female 0.54 0.56 0.34 0.44
Age 48.0 44.90 47.29 49.13
Foreign 0.07 0.02 0.05 0.02
Married 0.62 0.63 0.64 0.64
Children in househ. 0.30 0.34 0.33 0.27
Full-time employed 0.36 0.49 0.62 0.34
Self-employed 0.02 0.07 0.37 0.18
Blue collar worker 0.18 0.15 0.01 0.01
White collar worker 0.28 0.46 0.31 0.23
Health job 0.03 0.05 0.07 0.05
Years of schooling 11.3 12.32 13.67 13.22
2002 0.34 0.25 0.31 0.34
2004 0.36 0.33 0.36 0.34
Risk attitude finance 2.24 2.76 3.45 2.89
Attitdue cost-sharing 3.34 3.10 2.56 2.82
Observations 42675 3644 3081 2470

Source: SOEP, pooled years 2002, 2004, 2006; no civil servants.
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Table A2.2: Estimation results of latent class hurdle model

Privately Insured SHI Insured
β̂stage1 β̂stage2 β̂stage1 β̂stage2

Deductible (LC 1) -0.373* (0.16) 0.156 (0.14)
Deductible (LC 2) -0.678 (0.40) -0.371* (0.09)
Deductible (LC 3) 0.439* (0.22) -0.008 (0.09)
Addon (LC 1) 0.312* (0.07) 0.088* (0.03)
Addon (LC 2) -0.116 (0.14) 0.157* (0.04)
Log. income (LC 1) 0.432* (0.12) 0.171 (0.11) 0.182* (0.04) 0.080* (0.02)
Log. income (LC 2) 1.264* (0.32) 0.342* (0.09) 0.242* (0.10) -0.028 (0.03)
Log. income (LC 3) -0.092 (0.20) -0.039 (0.08)

PCS -0.053* (0.01) -0.024* (0.01) -0.045* (0.00) -0.029* (0.00)
MCS -0.022* (0.01) -0.016* (0.00) -0.013* (0.00) -0.012* (0.00)
Self-assessed health 0.112 (0.10) 0.124* (0.05) 0.209* (0.03) 0.108* (0.01)
BMI high 0.201 (0.12) 0.085 (0.06) 0.038 (0.03) 0.003 (0.02)
BMI very high 0.388 (0.24) -0.108 (0.13) 0.105* (0.05) 0.052* (0.02)
Hospital stay prev. year 0.534* (0.16) 0.244* (0.06) 0.747* (0.05) 0.316* (0.02)
Handicapped 0.875* (0.22) 0.236* (0.09) 0.518* (0.06) 0.059* (0.02)
Smoker -0.215 (0.14) -0.003 (0.06) -0.349* (0.04) -0.106* (0.02)
Worries health -0.108 (0.09) -0.091 (0.05) -0.304* (0.02) -0.145* (0.01)
Risk attitude health -0.088* (0.03) -0.017 (0.02) -0.003 (0.01) -0.003 (0.00)
Female 0.773* (0.16) 0.235* (0.07) 0.449* (0.04) 0.045* (0.02)
Age -0.104* (0.03) -0.007 (0.01) -0.064* (0.01) -0.014* (0.00)
Age squared 0.001* (0.00) 0.000 (0.00) 0.001* (0.00) 0.000* (0.00)
Foreign -0.756* (0.27) -0.244 (0.16) 0.103 (0.06) 0.158* (0.03)
Married 0.223 (0.17) 0.106 (0.07) 0.087* (0.04) 0.067* (0.02)
Children in househ. -0.435* (0.16) -0.269* (0.07) -0.097* (0.04) -0.030 (0.02)
Full-time employed 0.008 (0.20) 0.043 (0.10) -0.114* (0.05) -0.070* (0.03)
Self-employed 0.075 (0.19) -0.299* (0.10) -0.298* (0.08) -0.094 (0.05)
Blue collar worker 0.123 (0.37) 0.164 (0.17) -0.170* (0.05) -0.090* (0.03)
White collar worker 0.019 (0.22) -0.171 (0.09) -0.005 (0.05) -0.079* (0.03)
Health job -0.518* (0.24) -0.303 (0.16) -0.222* (0.08) 0.034 (0.05)
Years of schooling -0.018 (0.02) -0.008 (0.01) 0.052* (0.01) 0.017* (0.00)
2002 0.080 (0.09) -0.020 (0.05) 0.122* (0.03) 0.093* (0.01)
2004 0.089 (0.09) -0.021 (0.05) 0.068* (0.03) -0.016 (0.01)

Constant (LC 1) 2.688* (1.36) 1.064 (1.08) 2.408* (0.42) 2.081* (0.22)
Constant (LC 2) -0.901 (2.79) 0.497 (0.85) 3.580* (0.78) 3.625* (0.27)
Constant (LC 3) 8.039* (2.17) 3.913* (0.81)

Alpha (LC 1) 0.111 (0.10) 0.101* (0.01)
Alpha (LC 2) 0.015 (0.07) 0.717* (0.03)
Alpha (LC 3) 0.857* (0.10)

Log-pseudolikelihood -9643.098 -86304.011
Akaike 19532.196 . 172786.022 .
Observations 5551 46319
Standard errors in parentheses; * p < 0.05; The hypothesis of equality of all parameters across
the two stages could be rejected in favor of the hurdle model. “LC” = latent class. Reference
groups for dummies: BMI <= 25 (for BMI high and BMI very high), no full-time employment
(for Full-time employed), unemployed or out-of-the labour force (for Self-employed, Blue collar

worker, and White collar worker).46



Table A2.3: Probabilities of latent class membership

Privately Insured SHI Insured
π1 π2 π

coefficient std. error coefficient std. error coefficient std. error
Deductible 0.085 (0.32) 0.335 (0.36)
Addon -0.139 (0.15)
Log. income 0.664* (0.29) 0.582 (0.31) -0.149 (0.10)
PCS -0.023 (0.03) -0.037 (0.04) -0.003 (0.01)
MCS 0.013 (0.02) 0.009 (0.02) -0.004 (0.00)
Self-assessed health -0.189 (0.32) 0.301 (0.37) -0.192* (0.08)
BMI high 0.317 (0.31) -0.258 (0.31) -0.057 (0.09)
BMI very high 1.502 (1.05) 1.533 (0.90) 0.127 (0.11)
Hospital stay prev. year -0.996 (0.65) 0.293 (0.56) -1.131* (0.13)
Handicapped 0.837 (0.70) 0.702 (0.77) -0.500* (0.12)
Smoker -0.195 (0.36) -0.416 (0.32) -0.181* (0.09)
Worries health 0.770* (0.31) 0.481 (0.32) -0.126 (0.08)
Risk attitude health -0.229* (0.06) -0.121* (0.06) 0.006 (0.02)
Female 0.713 (0.38) 0.113 (0.34) -0.250* (0.10)
Age -0.095 (0.06) 0.050 (0.06) -0.015 (0.02)
Age squared 0.001 (0.00) -0.001 (0.00) 0.000 (0.00)
Foreign -1.193 (0.67) -0.186 (0.72) 0.276 (0.15)
Married -0.033 (0.44) -0.452 (0.37) 0.203 (0.10)
Children in househ. -0.758 (0.45) 0.421 (0.38) -0.094 (0.10)
Full-time employed 1.852* (0.59) 0.482 (0.55) -0.011 (0.13)
Self-employed 0.355 (0.61) 0.617 (0.58) -0.083 (0.23)
Blue collar worker 0.857 (1.30) 0.481 (1.22) 0.139 (0.15)
White collar worker -1.451* (0.59) -0.731 (0.54) -0.210 (0.14)
Health job 0.861 (0.89) 1.317 (0.95) 0.250 (0.21)
Years of schooling -0.119* (0.04) -0.048 (0.04) 0.037* (0.02)
2002 1.241* (0.58) 1.857* (0.66) 0.489* (0.19)
2004 0.048 (0.55) 0.062 (0.64) 0.348* (0.21)
Constant -1.730 (3.99) -5.389 (4.13) 2.609* (1.07)

* p<0.05;
Coefficients have to be interpreted relative to the base category in the private insurance

regressions.
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Table A2.4: Bivariate probit results

Privately Insured SHI Insured
Doctor Binary Deductible Doctor Binary Addon

Deductible -0.090 (0.51)
Addon -0.046 (0.20)
Log. income 0.096* (0.04) 0.019 (0.05) 0.131* (0.02) 0.478* (0.03)
PCS -0.026* (0.00) 0.005 (0.00) -0.024* (0.00) -0.002 (0.00)
MCS -0.011* (0.00) 0.004 (0.00) -0.007* (0.00) 0.001 (0.00)
Self-assessed health 0.109* (0.04) 0.070* (0.04) 0.131* (0.01) -0.012 (0.02)
BMI high 0.004 (0.05) -0.034 (0.05) 0.035* (0.02) 0.014 (0.03)
BMI very high 0.038 (0.08) -0.045 (0.08) 0.050* (0.02) 0.061 (0.04)
Hospital stay prev. year 0.384* (0.08) -0.096 (0.06) 0.483* (0.03) 0.084* (0.03)
Handicapped 0.361* (0.10) -0.033 (0.09) 0.350* (0.03) 0.028 (0.04)
Smoker -0.094 (0.05) -0.009 (0.05) -0.170* (0.02) 0.079* (0.03)
Worries health -0.157* (0.04) 0.007 (0.04) -0.168* (0.01) 0.018 (0.02)
Risk attitude health -0.007 (0.01) 0.003 (0.01) -0.002 (0.00) 0.007 (0.01)
Female 0.245* (0.05) 0.035 (0.06) 0.299* (0.02) 0.110* (0.03)
Age -0.031* (0.01) 0.042* (0.01) -0.031* (0.00) 0.009 (0.01)
Age squared 0.000* (0.00) -0.000* (0.00) 0.000* (0.00) -0.000* (0.00)
Foreign -0.153 (0.10) 0.146 (0.12) 0.018 (0.03) -0.383* (0.06)
Married 0.084 (0.06) -0.119* (0.06) 0.017 (0.02) -0.009 (0.03)
Children in househ. -0.012 (0.05) 0.055 (0.06) -0.038 (0.02) 0.102* (0.03)
Full-time employed -0.291* (0.11) 0.417* (0.08) -0.064* (0.02) 0.022 (0.03)
Self-employed 0.006 (0.12) 0.455* (0.09) -0.161* (0.04) 0.247* (0.06)
Blue collar worker -0.022 (0.16) 0.281 (0.16) -0.117* (0.03) -0.000 (0.04)
White collar worker 0.264* (0.09) 0.177* (0.09) 0.031 (0.03) 0.152* (0.04)
Health job -0.347* (0.10) -0.331* (0.10) -0.178* (0.04) 0.010 (0.06)
Years of schooling 0.014* (0.01) -0.014* (0.01) 0.026* (0.00) 0.015* (0.01)
2002 0.023 (0.05) -0.087* (0.04) 0.056* (0.02) -0.324* (0.02)
2004 0.039 (0.04) -0.002 (0.03) 0.033* (0.02) -0.234* (0.02)
Risk attitude finance 0.014 (0.01) 0.018* (0.01)
Attitdue cost-sharing -0.117* (0.02) -0.075* (0.02)
Constant 2.123* (0.55) -1.494* (0.56) 1.237* (0.22) -5.020* (0.32)
ρ 0.022 (0.31) 0.090 (0.10)
Log-pseudolikelihood -6225.409 -33881.073
Observations 5152 43458

*p<0.05; Standard errors in parentheses
Estimations done by Stata program biprobit, standard errors clustered by individuals, less

observations than in table A3.2 because of missing values in the instruments. Reference groups
for dummies: BMI <= 25 (for BMI high and BMI very high), no full-time employment (for
Full-time employed), unemployed or out-of-the labour force (for Self-employed, Blue collar

worker, and White collar worker).
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Chapter 3

Practice budgets and the patient mix

of physicians - Evaluating effects of

remuneration system reforms on

physician behaviour in Germany

3.1 Introduction

Steadily increasing health care costs have been an issue in most industrialised coun-

tries for the last few decades. In Germany, however, health care expenditures as

a fraction of the gross domestic product have been rather stable since the mid-

1990s even though demographic change and technological progress have increased

the pressure on the health care system. For instance, the share was 10.4% in 1996

and it stood at 10.6% by 2006. This fraction has risen by 12 to 20% in countries

like Switzerland, France, the US, and the UK in the same period (OECD, 2008). A

major reason for the stability in Germany could be the introduction of fixed budgets
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for various health care sectors (stationary, ambulatory, and pharmaceuticals) that

increase only by a limited amount each year. These fixed budgets are in general a

means to introduce rationing in the health care market.

The budgets in the ambulatory sector directly affect the remuneration of physicians

and, therefore, possibly also their behaviour. This study analyses the effect of the

introduction of fixed budgets on physician’s behaviour as measured by the length

of treatment of patients. It uses a particularity of the German health insurance

system, namely the existence of two different and independent insurance systems

(private and statutory public insurance) that imply different remuneration systems

for physicians. Until 1993, the remuneration for treating the statutorily insured

was based on a fee-for-service (FFS) system. In 1993, the remuneration system

was reformed with the introduction of a fixed budget and a point system for the

statutorily insured. From then on, physicians got points for each treatment. The

monetary value of each point was then calculated at the end of each quarter by

dividing the total budget by the sum of all points collected by all physicians. In

1997, a further reform was introduced which capped the total points reported by

doctors by a so-called “individual practice budget”. Since no reform took place in

the private sector in the period of analysis, this allows us to analyse the response of

physicians to the change in financial incentives by using the reform as a source of

exogenous variation.

This study contributes to a growing literature that analyses the effect of physician

remuneration on the quantity of health care utilisation, typically measured by the

number of physician visits. As found by Devlin and Sarma (2008), physicians con-

duct more patient visits under FFS than under any other remuneration system in

Canada. Croxson et al. (2001) and Dusheiko et al. (2006) find effects of budgets on

physician behaviour for the UK. Hennig-Schmidt et al. (2008) show in an experi-
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mental setting that physicians respond to incentives imposed by the reimbursement

system and that they tend to overtreat patients under FFS and to undertreat them

in a per-capita payment system. On the other hand, Madden et al. (2005) and Gryt-

ten and Sorensen (2001) do not find significant effects of the remuneration system

on physician behaviour for Ireland and Norway. Implicitly, studies on the effects

of the remuneration system on physicians’ behaviour can be seen as analyses of

supplier-induced demand. This is true at least for remuneration systems like the

FFS-system, which provide incentives for physicians to conduct excess treatments.

To our knowledge, this is the first paper that evaluates the impact of the introduc-

tion of the fixed budget and the individual practice budget in Germany (see Wörz

and Busse, 2005, who also note the absence of any scientific evaluation of these re-

forms). Up to now, German literature that analysed supplier-induced demand has

concentrated on the effect of physician density on the number of doctor visits and

findings show only weak and mixed evidence for Germany (Krämer, 1981; Breyer,

1984; Pohlmeier and Ulrich, 1995; Kopetsch, 2007). Only Jürges (2009) explicitly

accounts for the differences in the remuneration system and finds that, in the year

2002, those who were privately insured had, on average, more doctor visits given

that they had contacted a doctor. Moreover, while physician density increased the

frequency of doctor visits for all patients, the effect was strongest for the privately

insured.

Figure 1 illustrates the evolution of the average number of doctor visits in the last

three months prior to the interview using data from the German Socio-Economic

Panel (SOEP) between 1988 and 2006. While the average number for the privately

insured (around 10% of the population in 2006) stayed fairly constant around 2.3,

the number for the publicly insured (the remaining 90%) steadily decreased from

about 3.1 in 1988 to 2.5 in 2006. However, as Figure 2a shows, the probability of
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at least one visit slightly increased in the same period for both groups while the

number of doctor visits for those individuals who had seen a doctor at least once

in the previous three months (Figure 2b) decreased sharply for the publicly insured

(from 4.7 to 3.5) and only slightly for the privately insured (from 3.8 to 3.5). Hence,

the decline in the average number of doctor visits for the statutorily insured is almost

exclusively a result of the decline in the number of visits for those individuals who

had at least one doctor visit.

Figure 3.1: Average number of doctor visits in previous three months, overall

Source: SOEP, years 1988-2006. Vertical lines represent the years 1993 and 1997.

Figure 3.2: Average . . . in previous three months

(a) . . . probability of at least one doctor visit
. . .

(b) . . . number of doctor visits, conditional on
one visit

Source: SOEP, years 1988-2006. Vertical lines represent the years 1993 and 1997.

The slight increase in the probability of at least one doctor visit (Figure 2a) might

reflect the growing importance of preventive doctor visits while the observed decline

in the total number of doctor visits (Figure 1 and Figure 2b) may have several rea-
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sons. First, because this is a long panel, composition effects might play a role. That

is, the panel might have changed in observables like age, education, or the health

status of the respondents. All of these variables are important for the demand for

doctor visits. Second, panel attrition could matter as well. It can be expected that

unhealthy individuals (with a high demand for doctor visits) have a higher probabil-

ity to drop out of the data set due to severe illness, death, or other reasons. Frijters

et al. (2005) show that panel attrition of individuals with lower health satisfaction

is an issue in the SOEP; Contoyannis et al. (2004) find similar problems in the

British Household Panel Study (BHPS). These two points - compositional changes

in observables and unobservables - could lead to a decline in the average number

of doctor visits in the SOEP. However, because the SOEP is a representative panel

that saw several refreshments in the observation period, both points should not be

the only reasons for this picture.

Third, macroeconomic factors like the unemployment rate contribute to the demand

for doctor visits. As is well established (e.g., Askildsen et al., 2005), work absen-

teeism is less frequent in recessions due to a greater fear of losing the job. Workers

who are absent for more than three days, however, need a certificate from a doctor

and, thus, a doctor visit. Hence, recessions could have decreased the number of doc-

tor visits. Fourth, institutional changes concerning the supply side of health services

(here, the physicians as providers of outpatient care) might have had an impact.

This study takes into account all four points but puts emphasis on the last one. It

turns out that, after controlling for compositional effects, panel attrition, and eco-

nomic conditions, the decline in the number of visits of the publicly insured is much

less pronounced and can be attributed to the introduction of individual practice

budgets in 1997. Moreover, not only did the number of doctor visits of the publicly

insured decrease after the reform, it also increased for the privately insured. This
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gives rise to the interpretation that physicians responded to the reforms by chang-

ing their patient mix, i.e., by substituting out the publicly insured for the privately

insured. The results are robust to different specifications. Moreover, several tests

support the identifying assumptions, one of these being the test for the single spell

assumption as derived by Santos Silva and Windmeijer (2001).

The remainder of this paper is structured as follows. Section 2 gives an overview

of the institutional background and of the reforms that took place in the German

health care system. Section 3 explains the data, Section 4 the empirical strategy.

Section 5 presents the estimation results. Section 6 shows the robustness of the

results and supports the identifying assumptions while Section 7 concludes.

3.2 Payment System and Major Reforms

The German health insurance system consists of two parts. About 90% of the pop-

ulation are insured by statutory health insurance (SHI; also called public insurance

hereafter). It is compulsory for all individuals with earnings below a certain in-

come threshold (3,975 Euro per month in 2007) and who are not civil servants or

self-employed. It is financed by payroll taxes and non-working family members are

covered without an extra premium. The benefit package is heavily regulated and

does not vary much between insurance companies. Individuals who earn more than

the income threshold, the self-employed, and civil servants are allowed to opt out

of the statutory insurance system and instead buy private insurance. This group

accounts for the remaining 10% of the German population. The private insurance

premium does not depend on income but instead is a risk-equivalent contribution

depending on age, gender, and health status when the contract is signed. Privately

insured individuals have to pay higher premia in order to cover non-working family
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members. Thus, having many dependents is a reason for staying voluntarily in the

public system for about 50% of all the individuals who are eligible to opt out.

Physicians are remunerated according to an FFS-system. Before 1993, the price for

a treatment was fixed ex ante and depended on the complexity of the treatment.

Treatments of the statutorily insured were (and still are) charged according to the

EBM (“Einheitlicher Bewertungsmaßstab”), whereas treatments of privately insured

were charged according to a different legal setting, namely the GOÄ (“Gebührenord-

nung für Ärzte”). The statutory health insurance is a full cover insurance (with some

exceptions). The insurance company directly pays for the treatments and hence the

patient does not see the costs she actually incurs. In such a system, neither the

patient nor the doctor has an incentive to contain costs (Jürges, 2009). On the con-

trary, due to the well known information asymmetry between patient and physician,

the physician can possibly induce demand to increase income. This incentive system

might have contributed to an average number of doctor visits in Germany that is

higher than in most other countries.

In reaction to the steadily increasing health care expenditures, the German govern-

ment introduced a fixed budget for ambulatory fees for the statutorily insured in

1993. Under this system, doctors receive points for each treatment according to the

severity of the case. At the end of each quarter, the monetary value for each point is

calculated as the value of the total budget divided by the sum of all points collected

by all doctors. The budgets and the sum of all points are determined regionally.

Hence, the monetary value of one point varies by region and time.

The fixed budget was introduced in order to keep the overall costs stable for the

social health insurance system. However, it cannot contribute to a reduction of

medical services by physicians, as Benstetter and Wambach (2006) show theoret-

ically. For instance, a single physician can still increase her income by increasing

55



the duration of treatments. Given the fixed budget, however, and no coordination

between physicians, this can only be at the cost of the point value. A decreasing

point value again leads to increased activity of the physician, resulting in a further

decrease in the point value. This is called the “treadmill effect”. Indeed, the point

value declined after 1993 (Benstetter and Wambach, 2006). This, however, was not

due to an increasing number of physician visits but due to the fact that physicians

charged much more services during a treatment, especially doctor’s advice. The

number of consultations even decreased by 6.5% but the number of charged points

increased by more than 30% (Wittek, 1996).1

Although the increasing dispensation of doctor’s advice was partly intended by the

policy makers to strengthen the “speaking medicine”, some groups of physicians

were negatively affected by the reform while others benefited.2 In order to stop the

declining point value, individual practice budgets were introduced in addition to

the overall fixed budget in July 1997. With this reform, each physician receives a

maximum number of points she could reimburse for each quarter. Points exceeding

the practice budget were reimbursed by a much lower point value. The reform was

successful in stabilising the point value (see Benstetter and Wambach, 2006). Since

1999, the budget for ambulatory care may not rise faster than the payroll tax base in

Germany. However, since 2000, the increase in the payroll tax base was lower than

the inflation rate (see Table 3.1). Particularly in 2003, the budget did not increase

at all. Altogether, this led to a reduction of the budget in real terms after 2000.

Given the incentives induced by the reform of 1993, a decrease in the number of

doctor visits cannot be expected after the introduction of the fixed budget because,

1All numbers are only for the statutorily insured. Therefore, the decrease in doctor visits need
not result from the reform but – due to the absence of a control group – can be due to a temporary
shock. In fact, below, we evaluate the reform effects on the number of consultations including a
group that was not directly affected, the privately insured.

2The net effect for all physicians was zero in monetary terms since the total budget was fixed
at the expenditure level prior to the reform.
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Table 3.1: Payroll tax base and CPI, normalised

Year 2000 2001 2002 2003 2004 2005 2006
Payroll tax base 100.0 102.1 102.8 102.8 103.4 103.2 104.7
CPI 100.0 102.0 103.4 104.5 106.2 108.3 110.1

Source: RWI Essen, base year is 2000.

as regards incentives for doctors, there is no strong difference between a system

where physicians get money values or point values for a treatment. In contrast,

the reform in July 1997 should have an effect on the physician’s behaviour. If the

physician incurs a cost for each treatment, she should have an incentive not to exceed

the individual amount of points she can get reimbursed. If it was before the case

that physician-induced demand (i.e., longer treatments than necessary) increased

the income of (some) physicians, the incentive to carry out unnecessary treatments

was reduced after the reform. Another possibility is to postpone recalls of publicly

insured patients into the next quarter.

There might also be an incentive to substitute out the publicly for the privately

insured. Reducing the number of recalls of the publicly insured leads to higher

available capacities for physicians to spend on the privately insured. Since treatment

of the privately insured does not affect the practice budget, physicians might have

an incentive to fill the gap by boosting the recalls of the privately insured. The

tightening of the budget in real terms after 2000 should have further strengthened

these incentives.

The private insurance system has not seen any reform during the whole period. That

is, while the reimbursement system for statutorily insured patients has substantially

changed, it remained unchanged for privately insured patients. A first indicator

of a positive effect of rationing in the SHI is the development of health insurance

contributions in the public and the private system. Using data from the SOEP for
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the period 1984-2006, Grabka (2006) shows that, while the contributions nominally

increased by about 130% in the SHI, they tripled in the private insurance system.

A major problem in identifying the reform effect is that, in this long time period,

two other reforms affected the demand (i.e., patient) side of the market. This is

especially important since the data we use here measure the number of doctor visits

at the patient level. First, at the same time that the introduction of practice budgets

became effective, there was a reform that increased the co-payments for prescription

drugs by 6 DM (about 3 Euro).3 Winkelmann (2004a, 2004b, 2006) finds remarkable

negative effects of the reform on the demand for doctor visits using the same data as

this paper. However, as we will argue later in Section 5, it is more likely that these

effects are due to the introduction of practice budgets and not due to the increased

co-payments for prescription drugs. Second, a co-payment of 10 Euro was introduced

in 2004 for the first doctor visit in each quarter. While Augurzky et al. (2006) and

Schreyögg and Grabka (2010) do find significant demand-side effects in the SOEP,

Farbmacher (2009) finds a reduction in the probability of visiting a physician which

is small but significant.

3.3 Data

Our empirical analysis is based on the German Socio-Economic Panel (SOEP), a

survey which started in 1984 with more than 12,000 individuals in West Germany

and was extended to include East Germany in June 1990. There were several re-

freshments resulting in a sample size of more than 20,000 adult individuals living

in about 13,000 households that participated in the SOEP survey in 2006 (see, e.g.,

3The reform was partly abolished in 1999.
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Wagner et al., 2007).4 The SOEP includes questions about the total number of

doctor visits within the last three months prior to the interview in all years except

for 1990 and 1993. In the years 1984 to 1987 and 1994, the SOEP does not ask for

the total number but differentiates between general practitioners (GPs) and various

kinds of specialists. Because these questions differ from the one in all other years,

we drop the years 1984-1987 and 1994 from the analysis.5

In order to not confound our results with the possible effects of the co-payment

reform in 2004, we also disregard information from the years after 2003. Finally,

we drop all individuals of the year 1997 that were interviewed after June. Because

the question refers to the number of doctor visits in the previous three months, one

cannot see if the stated number of visits falls into the period before or after the

reform for these observations. Since most of the interviews take place in the first

months of each year we do not lose many observations.

The main drawback of the SOEP for this kind of analysis is that it only provides

the total number of doctor visits per respondent in the last three months. There

are no information on the number and duration of illness episodes that are captured

by this value. Hence, the first observed count within the quarter might be the

continuation of a previous illness episode instead of being the initiation of a new

spell. Furthermore, several visits in a quarter might either result from one longer

illness episode or from multiple short ones. Considering the identification strategy

outlined in the next section, the latter issue might be particularly problematic.

4The data used in this paper were extracted using the Add-On package PanelWhiz v2.0 (Nov
2007) for Stata. PanelWhiz was written by Dr. John P. Haisken-DeNew (john@panelwhiz.eu).
The PanelWhiz generated DO file to retrieve the SOEP data used here and any Panelwhiz Plugins
are available upon request. Any data or computational errors in this paper are my own. Haisken-
DeNew and Hahn (2006) describe PanelWhiz in detail.

5Including these years does not affect the results at all. Because only the total number of visits
is asked in all remaining years, we cannot distinguish effects between general practitioners and
specialists because, apart from the mentioned years, the type of physician is not specified in the
data set. Since the reforms affected all types of physicians we consider this a minor problem.
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Pohlmeier and Ulrich (1995) argue that the period of three months in the SOEP is

a good compromise in reducing the former problem (that gets smaller with longer

periods) without letting the latter problem get too large (which is reduced in shorter

periods). In the following, we assume that the observed number of doctor visits

results from only one sickness spell that starts at the beginning of the quarter to

which the question refers. Santos Silva and Windmeijer (2001) call this the “single

spell assumption” and argue that the validity of this assumption critically depends

on the length of the observation period. In fact, this assumption can be tested. In

Section 6.2 we outline the test for the single spell assumption that was derived by

Santos Silva and Windmeijer (2001) and report the results.

The SOEP has several important virtues and it is probably the only available data

set to answer the questions above. First, it covers a long period that starts well before

the first reform became effective and continues to go on. It includes many variables

that affect the individual demand for health care like the health status and many

other socio-economic variables. Due to its panel nature, unobserved heterogeneity

of the individuals can also be taken into account. Finally, and most importantly, it

includes a group (the privately insured) that was not directly affected by either of

the reforms. Although the groups of privately and statutorily insured are somewhat

different, assuming that the group differences would have stayed stable over time

without the reforms makes it possible to identify the reform effect on physician

behaviour.

Several variables are included to control for the differences between the privately

and the publicly insured. The main variables are those which control for the observ-

able health status. These are satisfaction with own health (on an 11-point scale),

the number of hospital stays in the previous year, age, and if the respondent is

handicapped. Sport controls for different health behaviour. The average unemploy-
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ment rate and a dummy for job absenteeism for more than three days in the last

year captures macroeconomic aspects that affect the demand for doctor visits. A

dummy for West Germany captures different regional behaviour as well as differ-

ent infrastructure. Furthermore, two variables are included to capture the effects

of population density. Finally, a few other socio-economic control variables are in-

cluded. Since males and females exhibit considerable differences in their doctor

visiting behaviour, we carry out separate regressions for both groups. Table A3.2 in

the appendix explains the variables and reports sample means.

3.4 Empirical Strategy

3.4.1 Count Data Hurdle Model

The dependent variable (number of doctor visits) takes on only non-negative integer

values. Therefore, it seems reasonable to use a count data model such as the neg-

ative binomial model that has the following probability density function (see, e.g.,

Cameron and Trivedi, 2005):

f(yit|µ, α) =
Γ(α−1 + yit)

Γ(α−1)(Γ(yit + 1))

(
α−1

α−1 + µ

)α−1 (
µ

µ+ α−1

)yit

where µ =exp(x′itβ) and α is the over-dispersion parameter.

It is often argued that the observed number of doctor visits is a result of two differ-

ent (and maybe independent) decision-making processes. In case of an illness, the

patient decides whether or not to see a physician (1st stage). Once a doctor is seen,

however, the doctor – maybe together with the patient – determines the length of the

treatment (2nd stage). Hence, a hurdle model (also called a two-part model) seems

to be the most appropriate formulation in order to explain the observed number of
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doctor visits (Mullahy, 1986; Pohlmeier and Ulrich, 1995). The underlying economic

structure is that of a principal-agent model. That is, the first stage should mainly

capture demand-side effects, while the second stage should also capture supply-side

effects.

The availability of panel data allows to account for unobserved heterogeneity. We

follow Bago d’Uva (2006) and add a time-invariant random effect that affects both

stages. This random effect is supposed to follow a discrete distribution that takes on

a small number of mass points. There is an economic and a statistical motivation for

this resulting finite mixture model. The economic motivation classifies individuals

into a small number of latent classes, e.g., two, the “high users” and the “low users”,

with different effects of covariates on the outcome variable. There is a debate in the

literature on whether the standard hurdle model (with the differentiation between

“users” and “non-users”) or the finite mixture negative binomial model (with the

less restrictive differentiation between “high users” and “low users”) is better able to

explain data on doctor visits (see, e.g., Deb and Trivedi (1997), Deb and Trivedi

(2002), Jimenez-Martin et al. (2002)). The advantage of the model derived by Bago

d’Uva (2006), which is also used by Bago d’Uva and Jones (2009), is to combine both

previous models and to allow for latent classes but, at the same time, to maintain

the principal-agent structure of the model.

The latent class hurdle model that, in its most general form, allows for slope hetero-

geneity, however, has very many parameters to estimate and is very data-demanding.

Here, we keep the model parsimonious and restrict it to intercept heterogeneity and

to different over-dispersion parameters (i.e., different values of α) for the different

latent classes. Thus, the motivation for the resulting finite mixture model comes

more from a statistical side, that is, the possibility to introduce a time-invariant

individual effect θmi without imposing too many distributional assumptions on the
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effect, except for some general random-effects assumptions

E[θmi |xit] = 0;E(θi) =
M∑
m=1

P (θmi )θmi = 0;
M∑
m=1

P (θmi ) = 1,∀m(m = 1, . . . ,M)

where M is the total number of mass points and P (θmi ) is the probability of mass

point θmi . The density of the observed data is given by

gm(y|x, θmi ) =


f1m(0|x, θmi ) if y = 0

(1− f1m(0|x, θmi ))f2m(y|x, θmi , y > 0) if y > 0

where

f1m(0|xit, θmi ) = P (yit = 0|xit, θmi , β1) = (µ1m + 1)−1

and

f2m(yit|xit, θmi , β2; yit > 0) =
Γ(α−1m + yit)

Γ(α−1m )(Γ(yit + 1))((1 + αmµ2m)α
−1
m − 1)

(
µ2m

µ2m + α−1m

)yit

and µ1m =exp(x′itβ1 + θmi ), µ2m =exp(x′itβ2 + θmi ).

The parameter vectors β1, β2, the heterogeneity terms αm, and the locations and

probabilities of the mass points are estimated jointly by maximizing the following

likelihood function, where Ti denotes the number of years individual i is observed
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in the data set:6

L =
N∏
i=1

M∑
m=1

P (θmi )

Ti∏
t=1

gm(yit|xit, θmi ).

3.4.2 Estimation Strategy

In this study, we estimate the effects of two reforms on the patient mix of physicians.

The analysis is complicated by the fact that the data are on the patient and not

on the physician level. Given the principal-agent structure of the estimation model

outlined in the previous section, we measure the physicians’ behaviour in the second

stage of the hurdle model using data of patients. The fact that the reform directly

affected only the treatment of the publicly and not the privately insured gives reason

to evaluate the effect of introducing fixed budgets for doctors on the number of

doctor visits of the publicly insured using the group of the privately insured as

a control group. However, this would mean assuming the absence of any general

equilibrium effects, i.e., of any effects the reform might have had on the private

sector. The theoretical discussion in Section 2 and the raw numbers in Figures 1

and 2b support the notion that the privately insured are also (indirectly) affected

by the reform, because it might be that doctors substitute out the publicly for the

privately insured. Therefore, the privately insured are not well-suited as a control

group and the estimated treatment effect of a difference-in-differences analysis is

likely be biased.

Nevertheless, in the estimation, we include a dummy for being publicly insured,

time dummies, and interactions between time dummies and the indicator for public

insurance (see Table 3.2 for the structure of the time dummies). We do this to
6We use the ml command in Stata and the Broyden-Fletcher-Goldfarb-Shanno quasi-Newton

algorithm. We draw from the code provided in Jones et al. (2007). Different starting values are
used to rule out local maxima of the likelihood function.
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compare the expected number of doctor visits of the publicly insured with the one of

the privately insured before and after the reform, keeping in mind that the difference

does not necessarily measure the effect of introducing budgets on the number of

doctor visits of the publicly insured.

Table 3.2: Covariates

Year Regulations T93−97 T98−99 T00−03

1988 - 1992 Base system 0 0 0
1993 - 1997 Fixed budget 1 0 0
1998 - 1999 Individual budget 0 1 0
2000 - 2003 Stricter individual budget 0 0 1

By doing this, we can analyse whether or not physicians changed their patient mix

after the reform. Ideally, one would want to compare the patient mix of doctors who

were affected by the reform with the one of doctors who were not affected. Since

virtually all physicians treat both privately and publicly insured, there is no control

group of physicians available and therefore no true difference-in-differences analysis

possible.7 Our analysis is therefore a before-after evaluation. In order to identify a

causal reform effect, we do not only have to assume absence of unobserved effects that

differ for treatment and control groups (like in a difference-in-differences analysis)

but absence of any unobserved effects that change the patient mix of doctors over

time. This, however, does not seem to be a very restrictive assumption in our case.

Assuming that there are no exogenous shocks that affect the absolute number of

doctor visits might be too strong (think of flu epidemics, for example), making a

reform evaluation without a control group unfeasible when the patient behaviour is

the object of interest. However, we see no reason why unobserved effects should alter

the relative number of visits, i.e., why doctors should change their patient mix for

7There is a very small group of physicians that specialise on treating privately insured patients
only (less than 1% of all physicians). However, this group is not only small but usually specialises
in fields like psychotherapy and is therefore not well-suited as a control group.
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reasons other than the reform (i.e., privately and publicly insured are not affected

differently by flu epidemics).

For the analysis to be valid, we furthermore have to assume common trends for

publicly and privately insured. That is, we assume that the existing differences in

the expected number of doctor visits between both groups would have stayed stable

without the reform. Obviously, this counterfactual situation is not testable but we

come back to this point in Section 6.1 (Robustness Checks). We also assume that

individuals do not self-select into public or private insurance due to the reform. One

might argue that publicly insured individuals who need many doctor visits realise

that they would get shorter treatments due to the reform and therefore change

into the private system. Because these would be the sicker individuals, the average

number of doctor visits in the SHI would decrease and the number in the private

system increase. This is very unlikely to be the case in Germany. First, only a

small number of individuals (about 20%) can actually choose between statutory

and private insurance. The remaining 80% cannot change even if they want to.

Second, sick individuals in particular would decide to stay in the statutory system

because private insurers are allowed to use the health status in calculating insurance

premia. Thus, the contribution is higher in the private system than in the public

system for sick individuals or, even worse, some services might be excluded from the

private benefit package at the outset. However, as a robustness check, we carry out

a regression including only those individuals who never switched health insurances

after 1996.

3.4.3 Control for Panel Attrition

Although there were several refreshments in the SOEP, panel attrition might be a

problem in such a long period of analysis (Frijters et al., 2005). It might be the
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case that unhealthy individuals with a high demand for doctor visits have a higher

probability to drop out of the data set due to severe illness, death, or other reasons.

This is a problem because it can be expected that the statutory health insurance

covers a higher share of unhealthy people compared to the private insurance because

of the worse risk-pool. We follow Freund et al. (1999) and include an inverse Mills

ratio to control for possible panel attrition. A natural problem with panel attrition

is that no individual characteristics can be observed when a person has already

left the panel. Only the information of not being in the panel can be observed

for attritors. Therefore, the inverse Mills ratio is constructed using the estimates

of a probit regression of an indicator to be in the panel in the next period on all

current control variables that appear later in the regression model. Variables that

are assumed to have an effect on panel attrition but not on the number of doctor

visits (conditional on the other control variables) are also included here, namely the

degree of life satisfaction, a dummy for oral interview (instead of written), and the

duration of the interview. Life satisfaction should not affect the demand for doctor

visits once health satisfaction is controlled for but is likely to affect the general

likelihood of participating in a panel study.8 Likewise, if the interview was oral and

shorter, the probability of staying in the panel is assumed to increase, whereas these

characteristics should not affect the number of physician visits.

3.5 Estimation Results

Following the Akaike information criterion (AIC), a mixture model with four mass

points outperformed models with three and two mass points, and the basic model

without control for unobserved heterogeneity. The main results, however, are similar

to all other models with a smaller number of mass points. A model with five mass
8See Frijters et al. (2004) who find panel attrition in the SOEP that is negatively linked to life

satisfaction.
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points failed to converge. The regression results are reported in Table 3.3.

Due to the non-linearity of the model, the estimated coefficients cannot be inter-

preted as marginal effects. However, since the underlying models are a logit and a

negative binomial model, signs and significance can be directly interpreted. Looking

at the differences between publicly and privately insured over time (i.e., looking at

the coefficients of SHI × T93−97, SHI × T98−99, and SHI × T00−03), we find that

the basic effects do not differ strongly between males and females. The coefficients

in the first stage are always insignificant for both men and women. The effect of

the introduction of a fixed budget in 1993 is also insignificant in the second stage,

thus confirming the expected result of no effects of this reform on the number of

doctor visits. However, there are highly significant negative coefficients of the 1997

reform in the second stage. The period of increased tightness of the national budget

(after 2000) is again associated with a negative coefficient for the publicly insured

which, however, is not statistically different from the coefficients of the 1997 reform.

Therefore, these results provide some evidence that the effect of the 1997 reform

was not only a short-term one.

To get a better idea of the effects, we use the regression results and look at the time

trends of the number of doctor visits when compositional differences and macroe-

conomic conditions are controlled for. Figures 3.3 and 3.4 show predicted values

for the first and the second stages, holding all characteristics fixed at the sample

averages and varying only the time and the insurance group indicators. Further-

more, the predicted values are averaged over the four latent types, weighted by their

respective probabilities. That is, we compare two hypothetical average individuals

that only differ in their insurance status (and not, for instance, in their health sta-

tus). No real variation over time can be found in the first stage (Figures 3a and
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Table 3.3: Estimated coefficients of the finite mixture hurdle model

Males Females
Stage 1 Stage 2 Stage 1 Stage 2

SHI × T93−97 -0.022 (0.10) -0.015 (0.06) -0.031 (0.13) -0.057 (0.06)
SHI × T98−99 -0.085 (0.10) -0.192* (0.06) -0.043 (0.14) -0.158* (0.06)
SHI × T00−03 -0.082 (0.08) -0.229* (0.05) 0.118 (0.11) -0.175* (0.05)
T93−97 -0.015 (0.10) -0.028 (0.06) 0.103 (0.13) 0.043 (0.06)
T98−99 -0.032 (0.10) 0.091 (0.06) 0.033 (0.14) 0.095 (0.06)
T00−03 -0.014 (0.08) 0.082 (0.05) -0.164 (0.11) 0.071 (0.05)
SHI 0.193* (0.07) 0.095* (0.04) 0.067 (0.10) 0.113* (0.04)
Health Satisfaction -0.269* (0.01) -0.166* (0.00) -0.252* (0.01) -0.143* (0.00)
Disabled 0.855* (0.04) 0.302* (0.02) 0.787* (0.06) 0.290* (0.01)
Hospital visit previous year 0.049* (0.01) 0.010* (0.00) 0.038* (0.01) 0.012* (0.00)
Sport 0.094* (0.01) 0.006 (0.01) 0.076* (0.01) 0.003 (0.00)
Unemployment rate -0.004 (0.01) 0.008 (0.01) -0.025* (0.01) 0.002 (0.00)
Absent > 3 days 0.847* (0.02) 0.329* (0.01) 0.745* (0.03) 0.300* (0.01)
Age -0.044* (0.01) 0.009* (0.00) -0.048* (0.01) 0.005 (0.00)
Age Squared 0.001* (0.00) -0.000 (0.00) 0.001* (0.00) -0.000 (0.00)
Married 0.209* (0.03) 0.018 (0.02) 0.173* (0.03) 0.061* (0.01)
Children under 16 -0.151* (0.03) -0.060* (0.02) -0.083* (0.03) -0.054* (0.01)
Small town -0.067* (0.03) -0.038* (0.02) -0.038 (0.03) -0.037* (0.01)
Large town 0.011 (0.03) 0.061* (0.02) 0.060 (0.03) 0.032* (0.01)
Years of schooling 0.035* (0.01) -0.008* (0.00) 0.042* (0.01) 0.007* (0.00)
Full-time employed -0.159* (0.06) -0.081* (0.04) -0.304* (0.05) -0.153* (0.02)
Part-time employed -0.036 (0.10) 0.058 (0.05) -0.246* (0.05) -0.121* (0.02)
Unemployed -0.304* (0.05) 0.021 (0.02) -0.205* (0.04) -0.008 (0.02)
Blue collar worker -0.380* (0.06) -0.151* (0.04) -0.267* (0.05) -0.105* (0.02)
White collar worker -0.262* (0.06) -0.189* (0.04) -0.023 (0.05) -0.121* (0.02)
Self-employed -0.513* (0.07) -0.259* (0.04) -0.322* (0.07) -0.157* (0.03)
Health job -0.135 (0.11) -0.143 (0.08) -0.177* (0.05) -0.037 (0.03)
Civil -0.055 (0.08) -0.090 (0.05) 0.134 (0.10) -0.087* (0.04)
Net-household inc./1000 0.011 (0.01) -0.004 (0.00) -0.003 (0.01) -0.014* (0.00)
West Germany -0.163 (0.09) 0.215* (0.05) -0.358* (0.09) 0.101* (0.04)
Inverse Mills ratio -0.670 (0.36) 0.684* (0.20) -1.198* (0.43) 0.650* (0.17)
α1 5.062* (0.672) 0.827* (0.023)
α2 0.418* (0.015) 0.091* (0.012)
α3 0.213* (0.012) 0.285* (0.010)
α4 10.208* (0.462) 13.002* (0.520)
θ1 0.523* (0.092) 1.069* (0.019)
θ2 0.990* (0.022) -0.047* (0.019)
θ3 0.246* (0.020) 0.531* (0.016)
θ4 - 1.366* (0.018) 1.131* (0.016)
P (θ1, α1) 0.095* (0.01) 0.145* (0.01)
P (θ2, α2) 0.227* (0.01) 0.267* (0.01)
P (θ3, α3) 0.386* (0.01) 0.367* (0.01)
P (θ4, α4) 0.291* (0.01) 0.221* (0.01)
Log-pseudolikelihood -147254.915 -182720.336
Akaike 294657.830 365588.672
Observations 82,621 88,575

∗ indicates significance at the 5% level
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4a) for males or for females.9 Conditional on observed characteristics like the health

status, the publicly insured have a slightly higher likelihood of one visit throughout

the entire observation period. This might reflect incentive effects of the insured due

to the absence of co-payments in the public system.

Figure 3.3: Predicted values males

(a) 1st stage (b) 2nd stage
Predicted values for average individuals in the sample, based on regression results in Table 3.3.

Figure 3.4: Predicted values females

(a) 1st stage (b) 2nd stage
Predicted values for average individuals in the sample, based on regression results in Table 3.3.

However, there are remarkable evolutions in the second stage. Note that Figures

3b and 4b do not show the clear decreasing time trend that was found in the un-

conditional numbers in Figures 1 and 2. Until 1997, the publicly insured had more

conditional doctor visits than comparable privately insured. Not only did their num-

9Note that the slight drop of the SHI-group after 1997 in Figure 3a is not significant.
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ber of visits decrease after 1997, the number of visits in the privately insured group

also increased. Since there is no reason to assume that there was an unobserved

shock that affected only the privately insured and shifted their number of visits to

a higher level, this evolution seems to be a result of a change in the patient mix

by the physicians. This important identifying assumption is also supported by the

evolution after 1997. While before the reform the difference between the privately

and the publicly insured is stable (more visits of the publicly insured in the second

stage), it is also stable afterwards (more visits of the privately insured). The change

after 1997 is a long-term change which is unlikely to result from time-varying un-

observed effects. Looking at these figures, the assumption of no general equilibrium

effects becomes very unlikely to hold true.

In a series of articles, Winkelmann (2004a, 2004b, 2006) also uses the SOEP to

estimate the effect of increased co-payments for prescription drugs on the number of

doctor visits. In July 1997, the co-payments for prescription drugs were increased

for the publicly insured by 6 DM (about 3 Euro) which, depending on the package

size was an increase of about 86% (from 7 DM to 13 DM for large sizes) to 200%

(from 3 DM to 9 DM for small sizes). The privately insured were not affected by

the reform. Winkelmann uses them as a control group and finds a reduction in the

expected number of doctor visits by about 10% between 1995 and 1999. In order to

make our results comparable to the ones of Winkelmann, we use the results of our

regression and calculate a “treatment effect”, the derivation of which is explained in

the appendix.10

The first column of Table 3.4 reports the average treatment effect on the treated.

Although it is only unbiased if one is willing to assume that there are no general

10We are aware of the problem with this terminology. Although it is not clear, what this quantity
really measures in this case, we call this a “treatment effect”. We do this to keep things simple
because our specification is similar to a difference-in-differences estimation.
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equilibrium effects, we report it as a benchmark to compare it to Winkelmann’s

results. Signs, significance, and relative sizes of the coefficients to each other do not

differ to the results in Table 3.3. However, here, the sizes can be directly quantified.

The estimated treatment effect for the reform of 1993 is zero. The one for the reform

of 1997, however, is strong and significant. The values of about 0.22 for males and

0.32 for females mean an approximate drop of 10% in the number of doctor visits

due to the reform. Thus, assuming that the privately insured are a proper control

group, we can replicate Winkelmann’s finding. The question is, whether this effect

results from the remuneration reform or the co-payment reform.

Our hurdle model specification allows us not only to calculate the overall effect

but to decompose it into parts that are due to changes in the first stage and those

due to changes in the second stage. The third and the fifth columns in Table 3.4

report these effects. The effects in the first stage are very small and insignificant

for all three reforms. Those in the second stage for the reform of 1997 and the time

thereafter, however, are quite large and statistically significant. Thus, the negative

overall treatment effect is exclusively the result of a negative effect in the second

stage. The motivation of the hurdle model as a model with two different decision-

making processes – the patient has full control in the first stage but the physician

takes over in the second stage – supports the interpretation that the reform did not

affect the patient’s but only the physician’s behaviour.

Winkelmann argues that the co-payment reform might have lowered the probability

of doctor visits, because individuals either do not go to the doctor anymore because

they fear getting a prescription, or that they have less visits than before, because they

demand prescriptions for larger package sizes. The first argument seems disputable

since this is a very indirect effect and it is hard to imagine that this would reduce the

total number of doctor visits by such a great amount. While the co-payment increase
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Table 3.4: Estimated Treatment Effects
Overall s.e. 1st stage s.e. 2nd stage s.e.

Males Reform 1993 -0.024 (0.071) -0.004 (0.019) -0.021 (0.082)
Reform 1997 -0.221* (0.084) -0.016 (0.020) -0.270* (0.098)
After 2000 -0.249* (0.067) -0.016 (0.015) -0.313* (0.078)

Females Reform 1993 -0.123 (0.120) -0.004 (0.015) -0.129 (0.128)
Reform 1997 -0.322* (0.141) -0.005 (0.017) -0.355* (0.150)
After 2000 -0.284* (0.108) 0.015 (0.014) -0.381* (0.114)

Treatment effects calculated according to equation (2) in the appendix based on regression results
in Table 3.3. All control variables (except for the interesting reform dummies) set to represent

the average individual in the data set. ∗ indicates significance at the 5% level

is high in relative terms, it is rather low (about 3 Euro) in absolute terms. Other

studies show that even more direct and somewhat stronger demand side incentives

have much smaller effects. In an evaluation of the introduction of a 10 Euro co-

payment for doctor visits, Farbmacher (2009) finds a reduction in the probability

of one doctor visit (i.e., in the first stage) of up to 3.4% while there are no effects

in the positive part of the distribution (the second stage). Moreover, apart from

the co-payments for doctor visits, also in 2004, there was another increase in co-

payments for prescription drugs. By attributing the entire reduction to the co-

payments for doctor visits, Farbmacher (2009) implicitly finds no effects of increased

co-payments for prescription drugs here. The second of Winkelmann’s arguments

(patients demand higher package sizes to reduce the number of doctor visits) is

more likely to be true. However, because co-payments for large package sizes are

still about 50% higher than for small sizes, the incentives to switch from smaller to

larger package sizes might not be very strong. All in all, the incentives imposed by

the prescription-drug reform are quite low and such a strong reaction – a 10% drop

in the number of doctor visits – seems to be surprising.

More importantly, the increased co-payments should lead to a demand-side effect

only. Turning back to Table 3.4 and Figures 3 and 4, the results for the first stage

are practically zero. The decreasing expected number of doctor visits only result
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from the changes in the second stage.11 Even though it is possible that the patient

also has some level of control in the second stage apart from the physician, the

findings from the first stage indicate that it is unlikely that the second-stage results

are driven by demand-side effects.

Having said this, looking back at the evolution in Figures 3 and 4, we directly see

that the estimated “treatment effect” of a decrease in the number of doctor visits by

10% is upward biased. This strong result does not only follow from a drop in the

visits of the publicly insured but to a great deal also from an increase in the visits of

the “control group”. Therefore, no difference-in-differences analysis is possible here

when the effect of reforms on the absolute number of doctor visits is to be evaluated.

However, we can say that physicians changed their patient-mix. While until 1997,

the publicly insured had more conditional doctor visits than the comparable pri-

vately insured, this picture turned around immediately after the reform took effect.

Other Covariates

Not surprisingly, given the high number of observations, most of the other control

11Winkelmann (2004b) also uses a two-part model to distinguish the effects on the first and the
second stage. Contrary to our study, he finds significant effects in both stages, and even a bigger
one in the first stage. His study, however, does not use a control group but is just a before-after
comparison. Without a control group, however, one has to impose the rather strict assumption of
absence of exogenous temporary shocks that affect the number of doctor visits. Turning back to
Figure 2a, we can see a drop in the probability of one doctor visit between 1996 and 1998. This,
however, applies to both statutorily and privately insured. Winkelmann (2004a) uses a control
group, but does not present results of the hurdle model, hence one cannot separate a demand from
a supply-side effect. Winkelmann (2006) uses the method of quantile regressions for count data and
the years 1996 and 1998 only. Using a control group here, he finds that the reform effect was larger
in the lower part of the distribution (the “low-users”) than in the upper part (the “high-users”). This
strategy allows to analyse different behavioural responses of heterogenous individuals. However,
arguably, the two-part model might be better suited to separate demand from supply-side effects
than a quantile regression model.
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variables are highly significant (Table 3.3). Here, we only discuss the most interesting

ones. The variables that capture the observed health status (health satisfaction,

hospital stays in the last year, at least three days of absence, handicap) are all highly

significant in both stages and have the expected signs. Individuals who frequently

do sports have a higher probability of visiting a doctor. Conditional on the health

status this can be interpreted as a higher concern for own health of these individuals.

This interpretation is supported by the finding that sport is not significant in the

second stage. West Germans have a lower probability of visiting a doctor than

East Germans. This remarkable difference can be interpreted by preventive doctor

visits that used to have a much higher importance in the former GDR and still

have in East Germany. However, the conditional number of visits is much higher

in West Germany.12 Individuals who live in large towns have more doctors visits.

This might be explained by better access to services in larger towns (should affect

the first stage) but also increased competition between doctors in urban regions,

resulting in a higher degree of physician-induced demand here (second stage). The

unemployment rate also shows the expected sign, although it is only significant for

females. A higher unemployment rate is associated with a lower number of doctor

visits (this effect is partly also captured by the absenteeism indicator which, however,

also captures the individual health status). Note, however, that it only affects the

first stage, thus being in line with the interpretation of individuals deciding not to

see a doctor in times of recessions.

12This explains the drop in doctor visits after 1991 in Figures 1 and 2b. This is a compositional
effect because before 1992 there are only West Germans in the sample. Note the absence of this
drop in Figures 3 and 4 after conditioning on the region.
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3.6 Robustness Checks

3.6.1 Subsamples and Specifications

The identification of the reform effect on the patient-mix rests on some assumptions.

The first one is that the trends in doctor visiting behaviour would have stayed

stable without the reform in 1997. This cannot be tested directly but a test used by

Galiani et al. (2005) could give a notion of how credible this assumption is. Basically,

this test consists of using only the pre-reform years, running placebo-reforms and

testing whether one finds differences between control and treatment groups before.

Since we already included an interaction-dummy for the period of 1993 to 1997 in

the regression (SHI × T93−97) which is not significant, we directly infer that the

assumption of parallel trends is supported.

As discussed earlier, switching insurance from public to private or vice versa is not

possible for the majority of individuals. Moreover, switching to private insurance as

a reaction to the reforms seems unlikely because it is especially the sicker individuals

who would be punished by paying a higher insurance premium in the private sector.

Nevertheless, as a second robustness check, to completely rule out endogeneity prob-

lems of the treatment, we dropped all individuals from the sample who switched at

least once their insurance status after 1996. The results for these two subsamples

are reported in Table 3.5 in Columns 1 and 2. Neither in the first nor in the second

stage do we see important differences in the estimated effects.

We experimented with several other specifications and subsamples to check the

robustness of the results. As pointed out in the text, apart from a baseline model

without a random effect, we also estimated models with two and three mass points.

The model with four mass points is preferred for statistical reasons but does not lead

to results different to those of the other models. As shown by Bertrand et al. (2004),
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Table 3.5: Non-changers

Males Females
Stage 1 Stage 2 Stage 1 Stage 2

SHI × T93−97 -0.010 -0.030 0.022 -0.004
(0.11) (0.07) (0.15) (0.07)

SHI × T98−99 -0.055 -0.283* 0.095 -0.167*
(0.12) (0.07) (0.17) (0.08)

SHI × T00−03 -0.046 -0.276* 0.084 -0.201*
(0.09) (0.05) (0.13) (0.06)

T93−97 -0.045 -0.015 0.034 -0.012
(0.11) (0.07) (0.15) (0.07)

T98−99 -0.065 0.182* -0.117 0.107
(0.12) (0.07) (0.18) (0.08)

T00−03 -0.056 0.132* -0.141 0.098
(0.09) (0.05) (0.13) (0.06)

SHI 0.161 0.113* 0.012 0.111*
(0.08) (0.05) (0.12) (0.05)

Observations 74,942 82,728
Asterisk indicates significance at the 5% level. Coefficients of

all other covariates not shown here.

difference-in-differences estimations tend to underestimate the standard errors of

the treatment effect as the included number of years after the treatment increases.

This does not seem to be a problem here since for the most interesting treatment

effect (the reform of 1997), only two post-reform years are used and moreover, the

estimated z-statistics are rather high. Nevertheless, we re-estimated the same model

using only the years 1996 (pre-reform) and 1998 (post-reform).13 The results do not

change qualitatively (i.e., no significant effect in stage 1 but a significant reduction

in stage 2).

3.6.2 Test for Single Spell Assumption

As mentioned above, the analysis using the hurdle model rests on the assumption

that the observed number of doctor visits in a quarter results from one sickness spell

13Estimation results of the robustness checks are not presented here but available upon request.
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only. This “single spell assumption” can be verified by a test which was derived by

Santos Silva and Windmeijer (2001). We only briefly outline the procedure here

and refer to Santos Silva and Windmeijer (2001) for a more detailed derivation and

description. The notation here also follows Santos Silva and Windmeijer (2001). Let

V be the number of doctor visits in the previous three months. If S denotes the

number of illness spells and Rj the number of recalls in spell j, V can be expressed

as V =
∑S

j=1Rj = S +
∑S

j=1R
∗
j , where R∗j = Rj − 1. Assuming that S and Rj are

conditionally independent and with E(Rj|x, γ) = E(R|x, γ), j = 1, . . . , S, one can

show that

E(V |x, β, γ) = E(S|x, β)E(R|x, γ).

We only observe V but want to identify the parameters β and γ of E(S|x, β) and

E(R|x, γ). This is only possible if S does not exceed 1, that is, if S = d = min{V, 1}.

If this is true, the following moment condition holds:

E[d− E(S|, x, β)] = 0. (1)

This condition can be used to estimate β. Likewise, since for the positive counts

E(V |V > 0, S ≤ 1, x, γ) = E(R|x, γ),

the following moment condition can be used to estimate γ:

E{[V − E(R|x, γ)]|V > 0} = 0. (2)

The idea of the test for the single spell hypothesis is to estimate β and γ by GMM

using the moment conditions (1) and (2) and specification of the first moments and

then to test whether the following expression significantly differs from zero when the
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estimated parameters are plugged in, i.e., to test if the following holds:

E[m(V, x, β, γ)] = E[V − E(S|x, β)E(R|x, γ)] = 0.

This type of conditional moments test is described in, e.g., Cameron and Trivedi

(2005). Under the null hypothesis of E[m(V, x, β, γ)] = 0, the test statistic M

follows a chi-square distribution with h degrees of freedom where h is the number

of moment conditions, i.e., the number of included variables in x:

M = m̂(β̂, γ̂)′[V̂ {m̂(β̂, γ̂)}]−1m̂(β̂, γ̂) ∼ χ2(h)

Here, in order to stay consistent with the negative binomial model in section 4.1,

we specify

E(S|x, β) = 1− exp(−exp(x′β))

and

E(R|x, γ) =
exp(x′γ)

1− exp(−exp(x′γ))
.

We bootstrap the estimate of the variance-covariance matrix of m with 500 repli-

cations. A test statistic above the critical value leads to a rejection of the null.

Consequently, failure to reject the null hypothesis would then be an evidence in

favour of the single spell assumption. Since the test by Santos Silva and Windmei-

jer (2001) is derived for cross-sections, we carry out separate tests for every year.

We include the same covariates as in the regression analysis but have to leave out all

those which do not vary between individuals within a given year (essentially, these

are the time and treatment effect dummies).

Table 3.6 reports the results of the single spell test. The test statistic is below the

critical value of the chi-square distribution with a significance level of 5% for all
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cases. Thus, we cannot reject the single spell hypothesis.

Table 3.6: Test for single spell assumption
Year Test statistic Critical value

Males Females
1988 24.909 12.899 36.415
1989 21.562 28.765 36.415
1991 24.737 28.796 36.415
1992 29.391 36.639 37.652
1995 25.026 32.811 37.652
1996 33.872 22.739 37.652
1997 27.474 30.590 37.652
1998 25.635 36.362 37.652
1999 36.069 23.129 37.652
2000 15.322 34.767 37.652
2001 27.273 33.080 37.652
2002 30.449 29.758 37.652
2003 27.084 31.638 37.652
Critical values are of chi-square distribution with 24

or 25 degrees of freedom and 5% significance level. 25

degrees of freedom after 1991 because a dummy for

West Germany is included only thereafter.

To our knowledge, we are the first to apply this test apart from Santos Silva and

Windmeijer (2001) who used it with data from 1985 of the SOEP.14 Therefore,

no evidence from other data sets is available with which to compare this result.

However, we think that the short period of three months within which the number of

visits to the doctor is measured leads to this finding. While in most other household

panel data sets, the period is one year, three months seem to be short enough to

justify the single spell assumption. Based on this result, we argue that differentiation

between first and second stage, which is essential for our identification strategy, is

possible given the data at hand.

14The authors reject the assumption for specialist visits but fail to reject it for GPs.
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3.7 Conclusion

Two major reforms affected the supply-side of ambulatory care in Germany in the

last 15 years, namely the introduction of a fixed budget in 1993 and of individual

practice budgets for physicians in 1997. With data from the German Socio-Economic

Panel that cover the period 1988-2003, we find no effect of the introduction of a fixed

budget but a strong effect of the individual practice budgets on the number of doctor

visits of both publicly and privately insured.

The results show that the behaviour of patients has not changed due to the reforms

since the likelihood of one visit to the doctor within a period of three months re-

mained stable. However, the number of recalls changed gradually. While until 1997,

publicly insured patients had more doctor visits than comparable privately insured

individuals, given they had seen a doctor at least once, this picture turned around

after the second reform became effective. After the reform, privately insured pa-

tients have more visits when characteristics like the health status are controlled for.

The results hold for both males and females and are robust to several subsamples.

The results are in line with a general notion in the German public of the privately

insured getting preferential treatment from physicians at the cost of the publicly in-

sured (see Lungen et al. (2008) for an experimental study on the access to physicians

of the privately and publicly insured). This study gives evidence on how the remu-

neration system can directly affect physician behaviour. Since we control for patient

characteristics like the health status, education or income, the strong variation in

the number of recalls displays the physicians’ influence in controlling the demand

for treatments. Therefore, this finding is also a hint at the existence of supplier-

induced demand. Since we did not evaluate health changes due to the reforms, we

cannot say if physicians reduced excess and supposedly trivial treatments in the the
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group of publicly insured after 1997 or if they also reduced the number of necessary

treatments. The increased number of visits among privately insured which cannot

be attributed to a shock like a sudden drop of health status, however, points to an

increased number of unnecessary treatments in this group. A full evaluation of the

health effects of these reforms is left for future research.

Previous German studies only find weak or no effects of demand-side incentives on

cost-saving behaviour of the insured (see, e.g., Pohlmeier and Ulrich, 1995, Riphahn

et al., 2003, Augurzky et al., 2006, Schreyögg and Grabka, 2010, Farbmacher, 2009;

however also see Felder and Werblow, 2008). The findings of the current study

suggest that doctors react strongly to incentives. Therefore, in general, supply-side

regulations might be a much better instrument to manage health care expenditures

than adjusting incentives on the demand side in Germany. Using the physician re-

muneration system to reduce the inefficiency implied by the information asymmetry

between doctor and patient seems to be a good starting point in order to maintain

universal access to health care at a reasonable cost.
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3.8 Appendix

Derivation of the Treatment Effect with Nonlinear Difference-in-Differences

Let Y be the observed outcome variable (number of doctor visits), G an indicator of

the treatment group, and T a dummy variable for the post-treatment time.15 Then

the treatment effect on the treated is defined as

τ(T = 1, G = 1, X) = E[Y 1|T = 1, G = 1, X]− E[Y 0|T = 1, G = 1, X]

where Y 1 is the observed outcome and Y 0 is the potential outcome in the absence of

the treatment (the contrafactual situation). With a control group and the identifying

assumption that the differences between treatment and control group would have

been stable over time, this expression reduces to the parameter of the interaction

term T ×G in a linear regression of Y on T , G, T ×G, and other control variables.

This, however, is not possible in a nonlinear model. Let the conditional expectation

of Y depend on a possibly nonlinear function g

E[Y |T,G,X] = g(αT + βG+ γTG+Xθ)

Then the treatment effect is given as (see Puhani, 2008)

τ(T = 1, G = 1, X) = g(α + β + γ +Xθ)− g(α + β +Xθ)

The expectation in the hurdle specification is given by the probability of a positive

count (1st stage; call this function ψ1) times the expectation conditional on positive

15The notation and the general notion of nonlinear difference-in-differences closely follow Puhani
(2008).
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counts (2nd stage; call this function ψ2)16:

E[Y |T,G,X] = P (Y > 0|T,G,X) ∗ E[Y |Y > 0, T,G,X]

= ψ1(α1T + β1G+ γ1TG+Xθ1) ∗ ψ2(α2T + β2G+ γ2TG+Xθ2)

(3.1)

Then, the treatment effect on the treated, together with the hurdle specification, is

given by

τ(T = 1, G = 1, X) = ψ1(α1 + β1 + γ1 +Xθ1) ∗ ψ2(α2 + β2 + γ2 +Xθ2)

− ψ1(α1 + β1 +Xθ1) ∗ ψ2(α2 + β2 +Xθ2)

(3.2)

Unlike in the linear case, the treatment effect is not constant over all individuals.

Here, it is calculated according to (2) where all the control variables (except for

the interesting reform dummies) are set to represent the average individual in the

dataset.

16Note that both functions in the hurdle model are strictly monotonic transformations of the
linear index and, thus, also the product of the two.
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Table A3.1: Probability of staying in the sample

Coefficient Std. Error Coefficient Std. Error
SHI × T93−97 -0.106 (0.067) -0.116 (0.073)
SHI × T98−99 0.057 (0.069) -0.297* (0.089)
SHI × T00−03 -0.011 (0.050) -0.281* (0.058)
T93−97 0.188* (0.065) 0.163* (0.072)
T98−99 0.108 (0.067) 0.457* (0.088)
T00−03 0.169* (0.049) 0.432* (0.057)
SHI 0.022 (0.046) 0.359* (0.050)
Health Satisfaction 0.016* (0.004) 0.021* (0.003)
Disabled 0.009 (0.021) 0.074* (0.024)
Hospital Stays prev. year -0.004* (0.002) -0.006* (0.002)
Sport 0.010 (0.006) 0.005 (0.006)
Unemployment rate 0.021* (0.006) 0.022* (0.006)
Absent > 3 days 0.046* (0.015) 0.046* (0.017)
Age 0.040* (0.003) 0.043* (0.002)
Age Squared -0.000* (0.000) -0.000* (0.000)
Married 0.115* (0.018) 0.055* (0.016)
Children under 16 -0.012 (0.016) 0.002 (0.016)
Small town -0.004 (0.017) 0.010 (0.016)
Large town -0.011 (0.017) -0.021 (0.017)
Years of schooling 0.010* (0.003) 0.012* (0.003)
Full-time employed -0.103* (0.041) -0.044 (0.035)
Part-time employed -0.131* (0.065) -0.020 (0.037)
Unemployed -0.067* (0.029) -0.033 (0.028)
Blue collar worker 0.107* (0.041) 0.033 (0.036)
White collar worker 0.117* (0.043) 0.025 (0.035)
Self-employed -0.031 (0.046) -0.065 (0.046)
Health job -0.063 (0.080) 0.108* (0.038)
Civil servant -0.055 (0.055) 0.075 (0.061)
Net-household inc./1000 0.009 (0.005) -0.004 (0.004)
West Germany 0.092 (0.057) 0.110* (0.055)
Life Satisfaction 0.033* (0.004) 0.027* (0.004)
Oral Interview 0.132* (0.013) 0.129* (0.013)
Long Interview -0.103* (0.013) -0.093* (0.013)
Constant -0.507* (0.129) -0.852* (0.127)
Log-pseudolikelihood -23727.056 -23994.092
Observations 82,621 88,575

Star indicates significance at the 5% level; Standard errors in parentheses
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Table A3.2: Variable description and sample means

Variable Mean Males Mean Females Description

SHI 0.88 0.93 Dummy for statutory health insurance
Health Satisfaction 6.78 6.58 Self-assessed health satisfaction betw. 0 (very bad) and 10 (very good)
Hospital Stays prev. Year 0.33 0.37 Number of hospital stays in the previous year
Disabled 0.13 0.09 Dummy for disability
Sport 2.16 2.00 Doing sports betw. 1 (almost never) and 4 (at least once a week)
Unemployment Rate 10.85 10.87 Average national unemployment rate per year
Absent > 3 days 0.32 0.25 Dummy for being absent for more than 3 days
Age 45.06 46.30 Age
Married 0.67 0.63 Dummy for being married
Children under 16 0.34 0.35 Number of children under 16
Small town 0.42 0.41 Dummy for living in a town with less than 20.000 inhabitants
Large town 0.32 0.33 Dummy for living in a town with more than 100.000 inhabitants
West Germany 0.77 0.77 Dummy for West Germany
Years of schooling 11.71 11.26 Years of Schooling
Full-time employed 0.63 0.28 Full-time employed
Part-time employed 0.01 0.15 Part-time employed
Unemployed 0.07 0.07 Unemployed
Blue collar worker 0.31 0.12 Blue collar worker
White collar worker 0.22 0.29 White collar worker
Self-employed 0.07 0.03 Self-employed
Health job 0.01 0.03 Health job
Civil Servant 0.05 0.02 Civil Servant
Net-household inc./1000 2.55 2.38 Net-household inc./1000
Life Satisfaction 7.00 7.00 Self-assessed life satisfaction between 0 (very bad) and 10 (very good)
Oral Interview 0.45 0.48 Oral Interview
Long Interview 0.52 0.50 Long Interview
Number of observations 82,621 88,575
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Chapter 4

Risk aversion and advantageous
selection in the German
supplementary health insurance

4.1 Introduction

Standard insurance models with asymmetric information like the Rothschild-Stiglitz-

model (1976) predict a positive correlation between insurance cover and the occur-

rence of the insured risk conditional on the information of the insurance provider.

That is, individuals who are bad risks choose insurance from a set of offered con-

tracts that has a higher coverage than do good risks. Private individual information

on the true risk type prevents insurance companies from perfectly calculating proper

insurance premia for all risk types which might drive the good risks out of the mar-

ket, that is, there is adverse selection in the insurance market. An empirical test

on the positive correlation between insurance cover and the occurrence of the risk

(the “positive correlation test”) conditional on all the information that is observed

by the insurance company can be seen as one possible test on the presence of asym-

metric information in an insurance market (Chiappori and Salanie, 2001). Rejecting

the hypothesis of no asymmetric information in favour of a positive correlation is

then evidence for either moral hazard, adverse selection, or both together which are
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usually difficult to separate.

However, many empirical applications find no evidence for adverse selection in dif-

ferent insurance markets like markets for long-term care, Medigap insurance or life-

insurance (see Cutler et al., 2008, for an overview). In some markets, there can even

be found a negative correlation between insurance cover and experience of risks. One

explanation for this finding is that individuals do not only have private information

on their risk type (possibly leading to adverse selection) but that also preferences

like risk aversion shape their demand for insurance and the probability experiencing

the insured risk. A more risk-averse individual might demand more insurance and

at the same time try to minimise the probability of occurrence of the risk. Risk

aversion is also unobserved by the insurer but in this case this information asymme-

try does not lead to adverse selection, it is rather a source of the opposite, namely

advantageous selection. Because the private information about the risk type and

risk preferences is not one-dimensional but multi-dimensional, potential sources of

adverse and advantageous selection may net out and the overall effect is not clear a

priori.

Therefore, the positive correlation test as a test on asymmetric information is invalid

(Finkelstein and Poterba, 2006). Failure to reject the hypothesis of no asymmetric

information can arise if there are sources of adverse and advantageous selection that

partly cancel each other out. Finkelstein and Poterba (2006) thus propose another

test on information asymmetry, the “unused observables test”. The existence of only

one variable that is not used by the insurer to calculate the risk classification of

the insured, but which is correlated with both the insurance choice and the risk of

the insured loss (conditional on the observed variables) is evidence for asymmetric

information. They find for the UK that the place of residence is correlated with both

purchasing annuities and the annuitant’s mortality but not being used for insurer’s
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risk calculation, thus leading to adverse selection.

In this study, we analyse the existence and direction of information asymmetries

in the German market for private supplementary insurance for hospital stays. In

Germany, about 90 per cent of the population are covered by public insurance that

generally pays for all the expenditures for hospital visits (except for a small amount

of co-payments). However, additional to this basic insurance, individuals can buy

private supplementary insurance that enables a better treatment during the hospital

stay, namely a double room and treatment by a chief physician. When buying this

private supplementary insurance, individuals have to give a detailed statement about

their age, sex, occupation and current health status. Hence, all these variables are

known by the insurance companies and can thus be used to calculate the monthly

insurance premium. However, several important variables are unobserved by the

insurer. Not only might the true health status still be unknown (possibly being a

source of adverse selection), but so is also the degree of risk aversion (possibly being

a source of advantageous selection). Risk aversion is usually not observed by the

econometrician either, but the individual health behaviour is often used as a proxy.

The contribution of this study is twofold. First, in this study, we do not rely on

proxy variables for risk tolerance but use a measure of risk aversion concerning

health matters that is directly obtained by the survey instrument. This measure is

the self-stated degree of risk aversion concerning one’s own health. Similar measures

have recently become increasingly popular, see, e.g., Dohmen et al. (2010a), Dohmen

et al. (2010b), or Jaeger et al. (2010). As Dohmen et al. (2010b) show, the individual

degree of risk aversion may differ depending on the context. Although they are

highly correlated, individuals assess their risk aversion with respect to, say, car

driving differently to the one concerning financial matters. In particular, the stated

risk aversion concerning health predicts actual health behaviour more accurately
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than risk aversion concerning other domains. Thus, in a health context, the risk

aversion concerning health is strongly preferable over risk aversion measured by,

e.g., standard hypothetical financial lotteries which are - if at all - usually used as

direct measures of risk aversion (Dohmen et al., 2010b).

Second, it is the first study to analyse the degree of information asymmetries in

the German market for private supplementary insurance. As the bulk of evidence

about adverse selection in health insurance uses data from the US - with a healthcare

system that, according to Buchmueller et al. (2008), is an outlier in the industrialised

world - the present paper provides evidence about a type of health insurance that

is common in many other industrialised countries.

Our results show that for women, conditional on observed variables, there is a pos-

itive correlation of holding insurance and having a hospital stay, which indicates

the presence of adverse selection. However, the degree of adverse selection is rather

small. For males, we do not find a significant positive correlation. Moreover, we

find that risk averse males have a higher likelihood to buy supplementary health in-

surance while they have, on average, less hospital visits within a period of six years

after buying the insurance. Thus, risk aversion is a source of advantageous selection

that potentially nets out other sources of adverse selection and possibly leads to the

result of no overall adverse selection effect.

This paper is organised as follows. The next section contains a theoretical discussion

and previous empirical results. Section 3 gives a brief overview of the German health

insurance system with its private supplementary insurance. The data are presented

in Section 4. Section 5 explains estimation and testing methods, Section 6 reports

the results, while Section 7 concludes.
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4.2 Previous theoretical and empirical literature

One standard insurance model incorporating asymmetric information was developed

by Rothschild and Stiglitz (1976). In their model individuals have private informa-

tion about their risk type, i.e., their propensity to suffer from the loss they seek to

insure against. Individuals can only hold one insurance contract at a time and there

is perfect competition among insurance providers. Rothschild and Stiglitz (1976)

show that, depending on the share of good risks, there is either no equilibrium at all

or an equilibrium in which the good risks buy less insurance than the bad risks. Pri-

vate individual information on the true risk type prevents insurance companies from

perfectly calculating proper insurance premia for all risk types which might drive the

good risks out of the market, i.e., there is adverse selection in the insurance market.

While Rothschild and Stiglitz (1976) assume that individuals only differ in their risk

type, de Meza and Webb (2001) also allow for differences in risk preferences among

the individuals. In their model, individuals do not only have private information

about their risk type but also on their degree of risk aversion. Risk aversion, how-

ever, affects both the insurance coverage and the risk type. Risk-averse individuals

(named the “timid” by de Meza and Webb, 2001) demand more insurance and lower

their risks by preventive behaviour, whereas the “bold” care less for insurance and

prevention, thus increasing their risk. While the Rothschild-Stiglitz-model predicts

a positive correlation of risk type and insurance coverage, de Meza and Webb (2001)

allow for equilibria that exhibit a negative correlation between risk and insurance

coverage.

Cutler et al. (2008) review the empirical literature and find that whether there is

more or less insurance of high-risk individuals depends on the type of insurance

market. While in acute care and annuity markets high-risk individuals usually buy

more insurance (as the standard model predicts; see Cutler and Zeckhauser, 2000
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or Finkelstein and Poterba, 2004), the opposite is true in the case of life insurance,

long-term care, and Medigap-markets (Cawley and Philipson, 1999, Finkelstein and

McGarry, 2006, and Fang et al., 2008). Doiron et al. (2008) and Buchmueller et al.

(2008) also find evidence for advantageous selection for private supplementary health

insurance in Australia, which, however, is in contrast to the previous findings in the

American market for acute health insurance.

Cutler et al. (2008) furthermore find that risky behaviour like smoking, alcohol

abuse, not doing preventive care, not using a seat belt or holding a risky job is

negatively correlated with holding insurance in all the mentioned markets. However,

these risk tolerant individuals have higher claims for long-term care insurance and

life insurance and lower claims for annuities. In contrast, the results for Medigap and

acute health insurance are mixed. Fang et al. (2008) show that not only attitudes

towards risks as measured by these proxies may be important but that there are also

other possible variables that correlate with insurance and experience of risk. They

find that cognitive ability and wealth are sources of advantageous selection in the

Medigap market.

4.3 Institutional background

The insurance market we analyse in this paper is the German market for private

supplementary health insurance. In Germany, about 90 per cent of all individuals

are covered by public health insurance (called the “statutory health insurance”).

In general, this is a full cover insurance. Except for small co-payments for doctor

visits, hospital visits, and prescription drugs it pays for all health care expenditures

caused by the insured. As regards hospital visits, the statutory health insurance

is basic in the sense that it does not cover stays in a double room and treatments

by the chief physician. However, statutorily insured can buy private supplementary
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insurance that bears the additional costs for this improved quality. While the general

public insurance premium does not depend on the risk type but is funded by payroll

taxes, the premium for the private supplementary insurance is risk-adjusted. When

buying supplementary insurance, individuals have to give a detailed statement about

their age, sex, occupation and health status. The basic private insurance premium

depends on the age and sex of the insured individual. Health problems increase

it. Finally, insurance companies can further raise the insurance premium of those

applicants whose jobs are deemed risky.

There are two main advantages in analysing the market for private supplementary

insurance for hospital visits in Germany. First, while in general the German health

insurance system is strictly regulated, this is a market in the health care sector

that exhibits competition. By law, the vast majority of the publicly insured cannot

opt out of the system or personalise their degree of insurance coverage. The only

free choice they have is whether or not to buy private supplementary insurance.1

The second advantage is that the reality in Germany allows for the identification of

truly adverse-selection effects without being contaminated with moral-hazard issues.

Moral hazard also results from the information asymmetry between the insured and

her insurance provider that leads to a positive correlation between insurance and

the consumption of health care services which one could observe in the presence of

adverse selection. This is because insurance coverage effectively reduces the price of

such services and, ceteris paribus, the quantity demanded would therefore increase.

If the consumption of services and the experience of risk is measured in the same unit

(e.g. health care expenditures, number of doctor visits, number of hospitalisations),

it is difficult to disentangle moral hazard from adverse selection when a positive

correlation is found. However, as regards hospital visits, the price elasticity is found
1There is also competition on the supply side with currently about 50 private insurance

companies being on the market, according to “Gesundheitsberichterstattung des Bundes”, see
http://www.gbe-bund.de.
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to be very low, at least in Germany (Geil et al., 1997). After all, it is difficult

to imagine a person increasing her demand for hospital visits simply because its

price has been effectively lowered. We therefore assume that moral hazard does not

play a role in the case of hospital visits and that a positive correlation can solely

be attributed to adverse selection.2 Note, however, that the problem of separating

adverse selection from moral hazard only applies to the positive correlation test.

The “unused observables test” can clearly assign problems of information asymmetry

to selection effects (Finkelstein and Poterba, 2006), making the assumptions of no

moral hazard in the German hospital sector less restrictive.

4.4 Data

We use data from the German Socio-Economic Panel (SOEP), which is a represen-

tative large-scale panel data set.3 The SOEP includes information about the health

insurance status (public or exclusively private) of the individual. In case of public

insurance, it also asks whether or not an individual holds private supplementary

insurance of several different types. One of these includes supplementary insurance

for hospital visits. In 2002, 7.8% of all males and 8.7% of all females in the sample

hold this type of insurance.

Since 2002, the SOEP contains detailed - although self-stated - measures of individ-

ual health. Most important are the Physical Component Summary Scale (PCS), a

measure of physical health which is formed by the SF12-questionnaire (see Andersen

et al., 2007, for a description), and the BMI as an objective measure of health. Since

2Following the same idea, we assume that there is also no ex-ante moral hazard, i.e., individuals
do not change their behaviour and, thus, their risk type due to the supplementary insurance.

3The data used in this paper were extracted using the Add-On package PanelWhiz v2.0 (Nov
2007) for Stata. PanelWhiz was written by Dr. John P. Haisken-DeNew (john@panelwhiz.eu).
The PanelWhiz generated DO file to retrieve the SOEP data used here and any Panelwhiz Plugins
are available upon request. Any data or computational errors in this paper are my own. Haisken-
DeNew and Hahn (2006) describe PanelWhiz in detail.
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the health status at the time of signing the insurance contract is relevant for the

insurance premium, we focus on these individuals who newly bought supplementary

health insurance in 2002. Thus, we do not consider the complete stock of individuals

who hold supplementary insurance in 2002 because we do not know their detailed

health status when they signed the insurance contract - possibly decades ago. We

also drop individuals above the age of 65 from the sample because only very few

enter supplementary health insurance at this age. Our final estimation sample con-

sists of 7,618 individuals out of which about 1.5% purchased supplementary health

insurance in 2002; the rest remained without supplementary insurance in 2002.

We measure the occurrence of the insured risk by the number of overnight hospital

visits (outpatient interventions in hospitals are therefore not included in this vari-

able). The SOEP contains information about hospital visits in the previous twelve

months. However, as a measure of risk occurrence we are not interested in past hos-

pital stays but in the future probability of entering a hospital, after having signed

the supplementary insurance contract. Because a hospital visit is usually a rare

event, we count all hospital visits in the six years after the wave 2002, thus using as

much information from the SOEP as currently possible. The number of overnight

hospital stays ranges from 0 to 59 in the sample with a mean value of 0.82.

The SOEP includes several variables that are not observed by insurance companies

and that are likely to affect both the insurance choice and the likelihood of entering a

hospital. Apart from several variables that could be seen as proxies for risk aversion

concerning health matters (like smoking, drinking alcohol, following a healthy diet,

frequently exercising), it also directly asks the individual to state its willingness to

take risks regarding health matters. The question in the SOEP is: “How would

you rate your willingness to take risks with your health?”. It is measured on an

11-point scale from 0 (completely ready to take risks) to 10 (not willing to take
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Table 4.1: Distribution of Risk Aversion

Males Females
Category Obs. Obs.

Not risk averse 0 23 15
1 38 26

↓ 2 129 80
3 209 163
4 243 174
5 561 571
6 345 359
7 457 528

↑ 8 531 664
9 311 539

Very risk averse 10 628 1,024
Source: SOEP

risks).4 Although this variable is self-assessed, Dohmen et al. (2010b) show in an

experimental setting with a pre-test group of the SOEP households that a similar

question on general risk attitudes is a fairly reliable measure of the revealed true

risk aversion. Likewise, the individual assessment of risk aversion concerning health

matters is a good predictor of actually observed health behaviour.5 Therefore, we

are confident that this variable measures the true degree of risk aversion regarding

health more accurately and in a more general way than, e.g., if the individual smokes

or drinks alcohol. Table 4.1 reports the distribution of risk aversion in the estimation

sample for males and females. Most of the individuals in the sample report a fairly

high degree of risk aversion concerning health matters. As is also found for other

dimensions of risk aversion (Dohmen et al., 2010b), men report a slightly lower

degree (median of 7) than women (median of 8).

4We recoded the original variable in order to let a higher value represent a higher degree of
risk aversion.

5These self-assessed variables of risk aversion are widely used in other contexts in the recent
literature, see, e.g., Dohmen et al. (2010a), Jaeger et al. (2010), or Caliendo et al. (2009).
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4.5 Methods

As a first step to test for information asymmetries in the German market for private

supplementary health insurance, we perform one version of the positive correlation

test as proposed by, e.g., Chiappori and Salanie (2001). Although we are aware of

the objections of Finkelstein and Poterba (2006) to the test, we believe it is helpful

to use it as a first benchmark to which the subsequent estimations can be compared.

In our case, the test employs a seemingly unrelated regression model with the choice

to buy supplementary insurance and the number of hospital stays in the following

six years as the two left hand side variables. On the right hand side appear only

the variables which are observed by the insurance companies: health status, age,

sex, and job risk, all included in the vector X in equations (1) and (2). Age-effects

are captured by dummy variables for 10-year age-groups. To allow for a flexible

estimation and to control for further non-linearities we include interactions between

the health status variables.

HOSPITALSTAY S = Xβ1 + µ1 (1)

INSURANCE = Xδ1 + µ2 (2)

The error terms µ1 and µ2 capture effects that are not observed by the insurance

company but affect the number of hospital stays or the likelihood to buy insurance.

The sign and significance of ρ (which is the estimated correlation between µ1 and µ2)

informs about asymmetric information and whether there is adverse or advantageous

selection. For instance, a significantly positive correlation coefficient implies that

there are unobserved factors that both lead to higher utilisation of health care and

to an increased demand for insurance. Note that - as Finkelstein and Poterba (2006)

emphasise - a significant correlation in the unobserved part is a sufficient but not
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a necessary condition for the existence of information asymmetries. Note further

that the estimated coefficients in this model do not measure causal effects of the

included variables on the probability of buying insurance and entering a hospital

because they are likely to suffer from omitted variable bias. In any case, the aim of

this test is not to find causal effects of the included variables but to estimate the

correlation in the unobserved part that remains when all the information observable

to the insurance company is controlled for.

However, ρ just measures the overall degree of asymmetric information and there

might still be sources of adverse and advantageous selection that cancel out in the

market for private supplementary insurance. Focussing on the model of de Meza

and Webb (2001), we are mostly interested in the effect of risk aversion on both the

demand for insurance and the occurrence of the insured risk as an unobserved factor.

Finding that risk aversion both affects the likelihood to buy insurance (positively)

and future hospital visits (negatively) would be a sign for risk aversion being a

single source of advantageous selection, possibly outweighing other sources of adverse

selection. This “unused observable” would, thus, be another source of information

asymmetry.6

The individual degree of risk aversion can be seen as an exogenous personality trait.

For instance, it is one of the prime examples used to motivate fixed-effects estimation

methods by the idea to remove the important but time-constant individual risk-

aversion. Basically, we want to use this notion of an exogenously given characteristic

here when we compare the demand for health insurance and hospital visits for more

and less risk averse. However, as was shown in the literature (Dohmen et al., 2010b),

6Finkelstein and Poterba (2006) use the term “unused observable” for variables that are, in
principle, known by the insurer but not used to calculate the insurance premium. Here, the degree
of risk aversion is not known by the insurer and “observable” only by the researcher. The basic
idea of the test is, however, unchanged.
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risk aversion changes in age, sex, income, and other characteristics.7 Especially

important for the degree of risk aversion concerning health matters is certainly the

own health status. It is easy to imagine an individual with a chronic illness who

cares much more for his own health than a healthy individual. This first individual

would most likely also report a higher degree of risk aversion concerning his own

health. Thus, if we want to find the effect of, say, a baseline level of exogenously

given risk aversion on the two outcome variables, we have to control for the health

status which affects the stated degree of risk aversion.

The approach here is to match individuals who have a comparable health status,

age, income and other important characteristics but differ in their risk aversion.

To this end we use matching techniques as known from the treatment evaluation

literature. The “treatment” here is to be risk averse or not. Matching individuals on

observables should account for differences in the stated degree of risk aversion that

are due to differences in health, age, etc. The idea (and the identifying assumption)

is that, conditional on the observable variables, the personality trait “risk averse” is

randomly assigned to individuals by nature. As could be seen in Table 4.1, only very

few individuals consider themselves risk loving (i.e., they state a very low level to

characterise their risk tolerance). Moreover, the possible answers to the question do

not allow for a clear cut between risk averse, risk neutral and risk loving individuals.8

Therefore, we classify the individuals into more risk averse and less risk averse using

the the median value of the reported degree of risk aversion as a threshold. A

value of at least 8 on the scale indicates more risk averse individuals, while less risk

aversion is denoted by values of up to 7. For simplicity, we call the first group the

7While high income might also result from a low degree of risk aversion, i.e., there is reversed
causality, age and sex are sufficiently exogenous. Thus, this shows that risk aversion is both
time-varying and it partly depends on other factors.

8Dohmen et al. (2010b) actually can do so, although with respect to the domain “financial
matters”. They find that 78% in their sample are risk averse, 13% are risk neutral, while 9% might
be classified as risk loving.
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“risk averse” and the second group the “not risk averse”, keeping in mind that the

“not risk averse” are mostly just less risk averse than the first group.9

Matching on observables can be a challenge because, in general, very many char-

acteristics are required to match observations on in order to find valid comparison

observations for which the conditional independence assumption holds. In order to

circumvent this so called “curse of dimensionality” we use a propensity score match-

ing, as proposed by Rosenbaum and Rubin (1983, 1985). We estimate the propensity

score by using a probit regression of being risk averse on a set of covariates that po-

tentially affect the degree of stated risk aversion.10 These covariates are the health

status (PCS, BMI, self-rated health, disability degree, worries about own health sta-

tus, hospital visits in the previous year), age, income, homeownership, education,

and the labour-force status. Because the matching results are often sensitive to the

specific matching technique we use several different ones. These are kernel matching

(with a bandwidth of 0.06), caliper matching and nearest neighbor matching (both

with a caliper of width 0.02). Moreover, we also estimate the effect of being risk

averse on the demand for insurance and hospital visits by simple OLS regressions

to check for the robustness of the results.

4.6 Results

The results of the SUR for the positive correlation test are reported in Table 4.2.

Since the regression was carried out in order to perform the positive correlation test

and the coefficients do not have a causal interpretation, we restrict the presentation

to the estimated correlation of the error terms. Full estimation results can be found

in Table A4.1 in the Appendix.

9The results are unchanged if we set the threshold to 7 instead of 8.
10The Stata routine “psmatch2” (Leuven and Sianesi, 2008) was used for the matching.
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Table 4.2: Positive Correlation Test

Males Females
ρ 0.0217 0.0267*
Observations 3,671 4,392
* p < 0.1. Full estimation results in Table A4.1.

Table 4.3: Sample Means by Risk Aversion

Means
Risk averse Not risk averse

Males Private suppl. Insurance 0.016 0.010
Hospital visits 0.807 0.759
Observations 1,470 2,005

Females Private suppl. Insurance 0.016 0.016
Hospital visits 0.919 0.799
Observations 2,227 1,916

We find that - for women - there is a small but significantly positive correlation be-

tween insurance coverage and hospital visits conditional on the information known

by the insurer (estimated ρ = 0.0267 with the Breusch-Pagan-test indicating sig-

nificance at the 10%-level), thus indicating adverse selection. That is, there are

unobserved factors (unobserved by the insurance company) that both increase the

probability of a hospital visit and the likelihood of holding supplementary insurance.

The correlation in the male equation is slightly smaller and not significant. As noted

in the beginning, this is only the aggregate degree of information asymmetry and

there might be single sources of advantageous and adverse selection that cancel each

other out. That is, not rejecting the hypothesis that ρ differs from zero in the males

regression does not necessarily imply the absence of information asymmetry.

Table 5.1 show the means of hospital visits within six years after 2002 and the

decision to buy supplementary health insurance in 2002 for the risk averse and the
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less risk averse individuals. While men who consider themselves risk averse buy

private insurance more often (1.6% vs. 1.0%) this is not the case for women where

both types have a likelihood of 1.6%. Interestingly, the risk averse have more hospital

visits in the period of six years after the interview than the “control group” of the less

risk averse, which is not surprising given the discussion in the previous section. Risk

aversion concerning health is more common among already ill individuals because

they have to care more for their own health. These differences should therefore not

be mistaken for negative causal effects of risk aversion on the health status (which

in turn affects the hospital visits).

The last argument is supported by the probit regressions of being risk averse on

the control variables used to estimate the propensity score, the results of which are

reported in Table 4.4. We see that reporting to be risk averse mainly varies with the

self-rated health status, the education level and income: healthy, better educated

and wealthier individuals are less likely to report a high degree of risk aversion

regarding their health status.

Hence, the matching approach that directly compares similar individuals that do not

differ in their health status (among others) but only in their degree of risk aversion

is necessary. Table 4.5 shows that the results change notably when matching is used

- at least for males. For Kernel and Radius matching we find that risk averse males

are significantly more likely to buy private health insurance and also spend less stays

in a hospital within the six years after purchasing the insurance. In absolute terms,

the difference in the likelihood to buy supplementary insurance is small with 0.7

percentage points. However, given the low overall likelihood to buy supplementary

insurance in a certain year, this effect is very high in relative terms with an almost

50% increase. The nearest neighbor matching supports the results regarding the

choice to buy insurance but not regarding the number of hospital stays. Here, we
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Table 4.4: Probit Estimates for the Propensity Scores

Males Females
SAH very good 0.076* 0.114***

(0.039) (0.037)
SAH good 0.044* 0.066***

(0.023) (0.022)
SAH poor or bad 0.031 -0.003

(0.034) (0.030)
PCS -1.790 -0.734

(1.300) (1.196)
PCS squared 1.346 0.424

(0.968) (0.896)
PCS x Age 0.004 0.001

(0.009) (0.009)
PCS x BMI 0.014 0.006

(0.021) (0.017)
Body-Mass-Index -0.012 -0.003

(0.010) (0.009)
Disabled -0.024 0.013

(0.062) (0.073)
Degree Disability 0.002* 0.001

(0.001) (0.001)
Hospital visits last year 0.004 0.016

(0.021) (0.017)
Years of schooling -0.007** -0.011***

(0.003) (0.003)
Worries health -0.009 -0.012

(0.015) (0.014)
Age 0.004 0.006

(0.008) (0.007)
Age squared 0.000 -0.000

(0.000) (0.000)
Homeowner 0.008 0.004

(0.017) (0.017)
Log. equiv. HH-income -0.080*** -0.033*

(0.022) (0.019)
Foreign 0.045 0.012

(0.029) (0.028)
Full-time employed 0.007 -0.066***

(0.023) (0.019)
White collar worker -0.042** 0.011

(0.021) (0.019)
Constant 1.436*** 0.935**

(0.518) (0.463)
Observations 3475 4143
* p < 0.1, ** p < 0.05, *** p < 0.01
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also find a negative effect of risk aversion on the number of hospital visits which is,

however, small and not significant. The results are supported by OLS regressions of

insurance and hospital visits on the risk aversion dummy and the same covariates

as in the propensity score regressions, with almost the same effects of risk aversion

as in the Kernel and the Radius matching.11 Therefore, we conclude that there is

(weak) evidence of risk aversion concerning health as one source of advantageous

selection, at least for males, since it is an unobserved factor that is associated with

more insurance coverage and less hospital visits. This can also explain why we do

not find evidence for adverse selection for this group with the positive correlation

test shown in Table 4.2. The private information on the health status which is a

source of adverse selection is partly outweighed by the private information on risk

aversion which is a source of advantageous selection. Note again, that, although

the positive correlation test does not find evidence for information asymmetries, the

unused observables test does so.

No such effects can be found for females. Neither is the likelihood to buy supplemen-

tary health insurance different between the risk averse and the not risk averse, nor

do the two groups differ significantly in their number of hospital stays. Risk aver-

sion does not seem to be a source of advantageous selection for females. This could

explain why we find a significant, albeit small, degree of overall adverse selection

here which is not outweighed by this potential source of advantageous selection.

One explanation for risk aversion being not as important for females as for males

could be that the mostly male breadwinner gets more information about potential

private insurance or is more likely to be the target of the insurance companies. He

might either decide to buy insurance for himself and his partner or induce her to also

choose private insurance. In this case, the women’s risk aversion is not decisive for

11Estimation results of the OLS regression are reported in Table A4.2 in the Appendix
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Table 4.5: Effects of Risk Aversion

Effects of risk aversion
Kernel NN Radius
(1) (2) (3)

Males
Private suppl. Insurance 0.007* 0.012** 0.007*

(0.004) (0.005) (0.004)
Hospital visits -0.114* -0.027 -0.126**

(0.063) (0.083) (0.064)
Females
Private suppl. Insurance 0.002 0.001 0.002

(0.004) (0.005) (0.004)
Hospital visits 0.042 0.028 0.029

(0.051) (0.067) (0.052)
*p<0.1, **p<0.05. Standard errors in parentheses.

A few observations that are outside the common support
where removed from the matching estimations.

her likelihood to hold more insurance.12 Also, women usually have routine visits at

the gynaecologist anyway, making the individual degree of risk aversion concerning

health not as decisive for prevention and, thus, for later incidence of illnesses as in

the case of males. Unfortunately, the already small number of observations makes

a subsample analysis to find out the reasons underlying this result unfeasible.

4.7 Conclusion

Using data from the SOEP we find evidence for information asymmetries in the

German market for private supplementary insurance for hospital stays. A positive

correlation test shows that the overall degree of adverse selection is very small and

only significant for women. For males there is no significant adverse selection. How-

ever, the unused observables test shows that the individual degree of risk aversion
12Certainly, risk averse women might be more likely to also have risk averse partners. This

indirect effect of the women’s risk aversion via her spouse’s risk aversion is likely to be too small
to lead to significant results.
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is a source of advantageous selection which possibly outweighs sources of adverse

selection. That is, risk averse men have a higher likelihood to buy private supple-

mentary insurance and, at the same time, a smaller number of hospital stays within

a period of six years after purchasing the insurance. For males, this finding matches

the prediction of de Meza and Webb (2001) who theoretically show that risk aver-

sion can be a source of advantageous selection which outweighs sources of adverse

selection.

This is the first study that uses a direct measure of risk aversion regarding health

when testing for information asymmetries in insurance markets and does not rely

on, e.g., reported health behaviour as a proxy for risk aversion. However, small

sample sizes and the low incidence of supplementary insurance allow only for weak

evidence due to large standard errors.

What does the finding of several sources of adverse and advantageous selection im-

ply? Were the insurance companies able to observe all the variables, they could

calculate proper insurance premia for all individuals with their different character-

istics. However, as they are not, the information asymmetry prevents a first-best

outcome of the market equilibrium. Even if there is one-dimensional private in-

formation (e.g., on the true health status), the market outcome is inefficient. The

inefficiency even increases if private information is multi-dimensional as is the case

here due to the importance of risk aversion (see Finkelstein and McGarry, 2006, for

a discussion on list last point). This problem becomes increasingly relevant when

more services that insurers have to provide in the statutory health insurance are re-

moved from the benefit packages and have to be covered by private supplementary

insurance, as is currently debated.

106



4.8 Appendix

Table A4.1: Positive Correlation Test - Full Results

Males Females
Insurance Hospital Visits Insurance Hospital Visits

26 <= Age < 36 0.014 -0.059 -0.002 0.040
(0.010) (0.142) (0.009) (0.133)

36 <= Age < 46 0.010 0.009 -0.015 -0.229
(0.014) (0.207) (0.014) (0.194)

46 <= Age < 56 0.009 0.065 -0.014 -0.217
(0.019) (0.287) (0.019) (0.268)

56 <= Age < 66 0.019 0.172 -0.014 -0.034
(0.024) (0.360) (0.024) (0.340)

PCS 0.073 -3.415 0.098 -10.250***
(0.252) (3.735) (0.246) (3.516)

PCS squared 0.033 2.947 -0.046 6.509**
(0.188) (2.787) (0.190) (2.717)

PCS x Age -0.001 0.008 0.001 -0.004
(0.001) (0.017) (0.001) (0.016)

PCS x BMI -0.002 -0.132* -0.004 0.041
(0.005) (0.069) (0.004) (0.060)

BMI 0.002 0.081** 0.001 -0.010
(0.002) (0.034) (0.002) (0.030)

Disabled -0.001 0.097 -0.014 0.110
(0.014) (0.210) (0.018) (0.257)

Degree Disability -0.000 0.006* 0.000 0.011***
(0.000) (0.004) (0.000) (0.004)

Risky Job -0.014 0.076 -0.018 -0.184
(0.016) (0.235) (0.023) (0.334)

Constant -0.048 1.093 -0.016 4.197***
(0.085) (1.261) (0.080) (1.140)

ρ 0.0217 0.0267*
Observations 3671 4392
Standard errors in parentheses
* p < 0.1, ** p < 0.05, *** p < 0.01
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Table A4.2: OLS Results

Males Females
Insurance Hospital Visits Insurance Hospital Visits

Risk averse 0.007* -0.103* 0.000 0.048
(0.004) (0.059) (0.004) (0.055)

SAH very good 0.007 0.018 -0.002 -0.018
(0.009) (0.136) (0.009) (0.130)

SAH good 0.010* 0.002 -0.001 -0.088
(0.005) (0.081) (0.006) (0.077)

SAH poor or bad -0.001 0.317*** -0.008 0.206*
(0.008) (0.118) (0.008) (0.105)

PCS 0.017 3.412 0.029 2.381
(0.304) (4.510) (0.306) (4.231)

PCS squared -0.011 -1.444 -0.001 -0.911
(0.226) (3.358) (0.229) (3.170)

PCS x Age 0.000 0.013 0.001 -0.071**
(0.002) (0.032) (0.002) (0.030)

PCS x BMI -0.001 -0.164** -0.004 0.022
(0.005) (0.072) (0.004) (0.061)

Body-Mass-Index 0.002 0.098*** 0.001 -0.001
(0.002) (0.036) (0.002) (0.030)

Disabled 0.000 0.082 -0.012 -0.074
(0.015) (0.216) (0.019) (0.260)

Degree Disability -0.000 0.005 0.000 0.011***
(0.000) (0.004) (0.000) (0.004)

Hospital visits last year -0.003 0.630*** 0.005 0.932***
(0.005) (0.072) (0.004) (0.059)

Worries health 0.003 -0.163*** 0.006* -0.173***
(0.004) (0.053) (0.004) (0.051)

Years of schooling -0.000 0.004 0.002** 0.016
(0.001) (0.011) (0.001) (0.011)

Age 0.000 -0.007 -0.001 -0.008
(0.002) (0.029) (0.002) (0.026)

Age squared -0.000 0.000 0.000 0.001***
(0.000) (0.000) (0.000) (0.000)

Homeowner 0.004 -0.040 0.005 -0.110*
(0.004) (0.060) (0.004) (0.059)

Log. equvi. hh-income 0.002 -0.011 0.009* -0.014
(0.005) (0.076) (0.005) (0.068)

Foreign -0.010 -0.034 -0.004 -0.174*
(0.007) (0.101) (0.007) (0.099)

Full-time employed -0.003 -0.048 -0.005 0.043
(0.005) (0.081) (0.005) (0.068)

White collar worker 0.005 -0.075 -0.005 -0.025
(0.005) (0.074) (0.005) (0.068)

Constant -0.046 -0.845 -0.070 0.659
(0.121) (1.799) (0.119) (1.639)

Observations 3475 3475 4143 4143
Standard errors in parentheses
* p < 0.1, ** p < 0.05, *** p < 0.01
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Chapter 5

Why are the unemployed so ill? -
The causal effect of unemployment
on health

5.1 Introduction

The association between unemployment and health is well documented in the em-

pirical literature. Various studies report a strong negative correlation between in-

dividual health and the experience of unemployment, or, more general, between

health and low income (see, e.g., Adams et al., 2003). However, the direction of

causality is not yet well understood. There are at least three pathways that can

lead to the observation of a less healthy stock of unemployed compared to the stock

of employed. First, there is a selection of ill workers from work into unemployment.

García-Gómez et al. (2010), Arrow (1996), Riphahn (1999), and Lindholm et al.

(2001) provide evidence that the likelihood of becoming unemployed is higher for ill

workers. Second, poor health causes longer unemployment spells, as shown by Stew-

art (2001). Both points - selection of ill workers into unemployment and selection

of healthy workers out of unemployment - increase the probability of observing an

ill individual in the stock of unemployed and, thus, lead to a lower average health

status of the stock of unemployed.
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Third, unemployment itself might lead to a deterioration in health. The causal

effect of unemployment on health is probably the most difficult of the three to

show. There are most likely individual unobservable effects that both affect health

and the probability of becoming unemployed, for instance a general frailty or other

genetic factors. Usually, panel data help to control for this unobserved heterogeneity.

Moreover, the health-related selection into unemployment needs to be considered.

Since there might be reversed causality (e.g., a health shock that both decreases

health and leads to unemployment), a causal effect can only be established if this

selection effect is controlled for.

If unemployment indeed deteriorates health, the individual and social costs of unem-

ployment are higher than usually assumed and policymakers should try even harder

to get the unemployed back into the labour market. An additional motivation to

examine this third point is to find out more about the nature of unemployment. The

life satisfaction literature concludes that unemployment is involuntary if it causally

reduces life satisfaction (Winkelmann and Winkelmann, 1998). Similar arguments

hold for health. It can be assumed that unemployment negatively affects health

especially if it is involuntary.1

There are only a few studies that analyse the causal effect of unemployment on

health with German data. The most recent one, Romeu Gordo (2006), finds a

negative effect of short-term unemployment on health satisfaction for men but no

effect for women with SOEP data from 1984-2001. Moreover, long-term unemploy-

ment decreases health satisfaction of both men and women. However, although

Romeu Gordo (2006) uses panel data and can therefore control for unobserved het-

erogeneity, the author cannot exclude that reversed causality may have biased the

result.

1This is true at least in countries where unemployment does not imply the loss of health
insurance and leads to only a moderate drop in income, like in Germany.
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This paper extends Romeu Gordo (2006) in several ways. First, it does not only

use health satisfaction (or the self-rated health status which is highly correlated

with health satisfaction) as outcome variable but also the probability of a hospital

visit within four years after the interview as a more objective health measure, and

a measure of mental health. To our knowledge, this is the first study to analyse

mental health effects of unemployment with German panel data. Second, it uses the

appropriate econometric methods by accounting for the ordered nature of the health

satisfaction variable. Third, and most importantly, it accounts for the possible

endogeneity of the entry into unemployment. In principle, this can be done by

estimating a simultaneous equations model with health and the labour market status

as endogenous variables (see Cai, 2010). Here, we rely on an alternative approach

by only using plant closures as an exogenous reason for unemployment. Doing this,

reversed causality (from bad health to unemployment) is ruled out.

We find that using only exogenous unemployment entries has a strong impact on

the results. Using data from the German Socio-Economic Panel for the years 1991-

2008 and including all unemployed in the analysis, we find that unemployed are

less healthy than employed according to all health measures. However, this is not

causally due to unemployment, since this effect disappears if unobserved hetero-

geneity is controlled for and only exogenously unemployed are considered. In this

latter group, unemployment does not deteriorate health, neither in the short- nor in

the long-run. Thus, the worse health status of the unemployed (and especially the

long-term unemployed) is only a selection effect into unemployment.

The results are in line with several international studies in the recent literature

that either use plant closures or mass lay-offs to rule out a health-driven selection

into unemployment. Browning et al. (2006) find no causal effect of job loss on the

probability of entering a hospital due to symptoms caused by mental stress four years
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after with Danish register data. Salm (2009) finds no effect on several subjective

and objective health measures with data from the HRS. Kuhn et al. (2009) do not

find short-run effects of job loss on public health costs associated with health care

utilisation. However, they do find that job loss increases hospitalisations for mental

health reasons and prescriptions for antidepressants (both for males only). There are

also studies that do find strong effects of involuntary job loss on subsequent mortality

(e.g., Sullivan and Wachter, 2009; Eliason and Storrie, 2009). The difference in our

study, however, is that we analyse the effect of actually being unemployed instead

of the mere job loss on health. Also doing this, Böckerman and Ilmakunnas (2009)

do not find negative effects of unemployment on self-assessed health for Finland,

although they do not restrict their analysis to mass lay-offs or plant closures as

reasons for unemployment.

The next section presents the data used in the analysis. Section 3 explains the

econometric strategy while Section 4 reports the regression results. Section 5 con-

cludes.

5.2 Data

The database for the empirical analysis is the German Socio-Economic Panel (SOEP),

which started in 1984 with more than 12,000 individuals in West Germany and was

extended to East Germany in June 1990. There were several refreshments result-

ing in a sample size of more than 20,000 adult individuals living in about 13,000

households that participated in the SOEP survey in 2006 (see, e.g., Wagner et al.,

2007).2

2The data used in this paper were extracted using the Add-On package PanelWhiz v3.0 (Jul
2008) for Stata. PanelWhiz was written by Dr. John P. Haisken-DeNew (john@panelwhiz.eu).
The PanelWhiz generated DO file to retrieve the SOEP data used here and any Panelwhiz

Plugins are available upon request. Any data or computational errors in this paper are my own.
Haisken-DeNew and Hahn (2006) describe PanelWhiz in detail.
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The SOEP contains information on the current labour force status in each year of the

panel membership. We collapse full-time and part-time employment to the category

“working”. Individuals who are either in some kind of education or out of the labour

force during the entire observation period are dropped from the sample. In order

to analyse the long-term effects of unemployment, we also interact unemployment

with the current duration of the spell in months at the interview date. Therefore,

we use the retrospective monthly calendar information on the labour force status

in the previous year which provides the exact unemployment duration in months.3

The advantage of the calendar information is that a person who is unemployed

in two consecutive years at the time of the interview is not necessarily long-term

unemployed. With the calendar information we can - as an example - identify

persons who were unemployed at the time of both interviews but working in the

mean time. These would falsely be classified as long-term unemployed without the

calendar information.4

In case of a job termination, the SOEP asks for the reason. Possible reasons include

own resignation, dismissal, plant closure, and end of a temporary job. Because the

question differed somewhat before 1991 and we rely on the reason of the job loss

later in the econometric analysis, we only use data from 1991 to 2008 in the analysis.

We exclude all individuals above the age of 58 because of special regulations that

allowed for possible voluntary unemployment in combination with early retirement

at around this age in the past. Over the whole sample period we get a panel of up

to 180,562 observations in person-year form, resulting from 23,734 individuals (see

3Note that there is some recall error in that variable, see Jürges (2007). However, since we
mainly rely on the labour market status at the interview date, this retrospective error is arguably
not a big problem here.

4Instead of the interaction of unemployment and duration of the current spell in months, we
also included a dummy variable indicating long-term unemployment which takes on the value
one in case of a duration of more than twelve months and zero otherwise. The results with this
specification did not differ in qualitative terms from the one with the interaction of unemployment
and months of unemployment.
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Table 5.1 below).

We use three different health measures. The first one, satisfaction with health, is

a self-stated measure on an 11-point scale, ranging from 0 (totally unhappy) to 10

(totally happy). Although it is a subjective measure, it has been shown to have

high predictive power for morbidity and subsequent mortality (see, e.g., Idler and

Benyamini, 1997, for a review of studies which use self-rated health which is highly

correlated with health satisfaction). Furthermore, it gives a more complete picture

of overall health than many single objective measures can do. The second measure,

the Mental Component Summary Scale, is a measure of mental health. It is based on

the SF12-questionnaire in the SOEP that includes several questions about health

quality and health satisfaction of individuals. The exact questions which include

questions about phases of melancholy, emotional problems or social limitations due

to mental health problems are given in Table A5.7 in the appendix. The Mental

Component Summary Scale is provided by the SOEP-group and calculated using

explorative factor analysis. It ranges from 0 to 100, with a higher value indicating

a better health status. The mean value of the SOEP 2004 population is 50 points

with a standard deviation of 10 points (see Andersen et al., 2007, for a description).

The third measure is a more objective indicator of individual health. It is the binary

variable for having at least one overnight hospital stay in the next four years after

the interview. In order to make it comparable to the other two measures with a

higher value meaning a better health status, we define the variable as no hospital

visit. The SOEP asks about the hospital visits in the last twelve months, therefore

we use information from the four future waves after the current interview. Hospital

visits are a fairly crude measure of health, but also used in the literature. However,

in contrast to Browning et al. (2006) we do not know the reason of the hospital visit

and can, therefore, not distinguish between hospital visits due to symptoms that
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arise from mental stress and other reasons.

While health satisfaction is available for all waves between 1991 and 2008, the ques-

tion about the hospital visits was not asked in 1993. Therefore, and because of the

prospective nature of the variable, we cannot use the years 1991-1992 and 2005-

2008 for this measure. The mental health score is only available for the years 2002,

2004, 2006, and 2008. Hence, more observations for health satisfaction than for the

other two indicators can be used. The three measures reflect different aspects of

the individual health status. While health satisfaction is an overall measure, the

Mental Component Summary Scale only represents mental health. The hospital

visits are objective but can be seen as an indicator of bad health only. For instance,

this measure does not discriminate between forms of very good and good health if

for both types no hospital visit at all is necessary. No measure can thus per se be

preferred to the other ones and a complete picture of the effects of unemployment

on health can be achieved when all indicators are used together in the analysis. The

three variables are significantly and positively correlated in the data with health

satisfaction and mental health showing the strongest correlation (0.32). Since (no)

hospital visits are given as a binary variable only, the correlation coefficient of this

one and the other two measures is naturally smaller (0.14 with health satisfaction

and 0.07 with mental health).

Table 5.1 reports the means of the three health measures for all working individuals,

unemployed and long-term unemployed (more than 12 months). According to all

measures, the stock of unemployed consists of less healthy individuals than the stock

of employed. Long-term unemployed are even less healthy than the whole group of

unemployed, although only slightly. However, these are only raw means without

control for observable and unobservable individual effects that may be correlated

with both health and the labour market status. Furthermore, it does not control
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for selection into unemployment due to bad health. Hence, a causal relationship

between health and unemployment cannot be found in the table. We try to answer

this question with a regression analysis, the strategy of which is outlined in the next

section.

Table 5.1: Means of the health measures

Means Health No hospital Mental
satisfaction visit health

Working 6.96 68.41% 49.40
Unemployed 6.37 63.32% 47.36
Long-term unemployed 6.00 62.70% 46.98
Individuals 23,734 16,525 16,085
Person-year observations 180,562 95,217 44,504
Source: SOEP 1991-2008

5.3 Empirical Strategy

Health satisfaction is an ordinal measure, hence ordered logit or ordered probit seem

to be the appropriate estimation methods instead of ordinary least squares which

assumes cardinality of the outcome variable. When estimating the relationship be-

tween health and unemployment it is essential to control for other factors that affect

both health and the likelihood of becoming (and staying) unemployed. Although we

include several variables to control for observed heterogeneity, a great deal of unob-

servable heterogeneity is likely to remain. One might think of genetic factors, but

also risk aversion, or time preferences. As most of this unobservable heterogeneity

can be assumed to be time invariant - at least over a limited period of time -, fixed-

effects methods are capable of solving this problem. Ferrer-i-Carbonell and Frijters

(2004) develop a fixed-effects ordered logit estimator which collapses the ordered

variable into a binary one with the thresholds that determine whether the original

ordered variable is transformed to a one or a zero being individual-specific. Since
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implementation of this estimator is not trivial and convergence time is very long,

the authors point to an easily implementable approximation of their estimator which

works pretty well and is widely used in the recent literature.5 In the approximation,

the information on health satisfaction is collapsed into a binary variable that takes

on the values 1 if the health satisfaction exceeds the within-individual average over

time, and 0 if it is below. The model is then estimated as a conditional logit model

(Chamberlain, 1980). As usual, only individuals can be included in the conditional

logit regression who change their health status at least once in the observed period.

This, however, is the case for most of the individuals in the sample. A draw-back of

this estimator (as well as with the normal fixed-effects logit estimator) is that one

cannot calculate marginal effects without implying further assumptions on the fixed

effect. We therefore show parameter estimates only.

Since the mental health score lies between 0 and 100, we use the linear fixed effects

model here, while the conditional logit model is used for the binary hospital visit

variable. The fixed-effects estimation also removes the possible problem of selection

of healthy workers out of unemployment because we only consider the within dif-

ferences. Therefore, if we assume that the changes in health due to unemployment

are the same for healthy and ill unemployed, it does not bias the analysis if healthy

individuals are more likely to find their way back into the labour market. However,

if there are negative effects of unemployment and they are stronger for already ill

individuals, we might overestimate negative effects of unemployment even with the

use of fixed-effects estimation.

Although fixed-effects methods remove a lot of unobserved heterogeneity that might

be correlated with both health and unemployment, they cannot solve the potential

5See e.g. Böckerman and Ilmakunnas (2009), Kassenböhmer and Haisken-DeNew (2009), or
Brenner (2007). Jones and Schurer (2010) report that the differences in the estimates between the
original estimator and the approximation are negligible.
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problem of reversed causality or endogenous unemployment. It may well be that

we observe a working individual in good health in one year in the sample and in

bad health and unemployment in the following one. Because we only have the

information on the health status at two points in time (before and after the day

of the job loss) we cannot exclude the case that the individual first became ill and

then lost her job (or quit) due to bad health. In order to identify the causal effect

of unemployment on health we need to find an exogenous reason for unemployment,

especially one that is not related to the individual health status.

In this study we rely on plant closures as an exogenous reason for unemployment (see

Salm, 2009, Browning et al., 2006, or Kuhn et al., 2009 for a similar argumentation).6

Table 5.2 reports the number of observations for the different health measures. Only

about 5 per cent of all the unemployed (in person-year observations) are unemployed

due to plant closure. This means a reduction of identifying observations for the

estimation of the effect of unemployment on health. However, we still have enough

individuals for a reasonable analysis.

Table 5.2: Number of observations

Observations Health No hospital Mental
satisfaction visit health

All 180,562 95,217 44,504
Unemployed 15,114 7,982 3,736
Unemployed Plant Closure 876 522 194
Source: SOEP 1991-2008

Because, in general, blue collar workers are more likely to lose their job due to plant

closures than white collar workers and they are - on average - less healthy than the

latter, we also control for job characteristics (blue collar, white collar, self-employed,

civil servant, other position). Since there is no information on the job characteristics
6“Plant closure” does not include job loss of selfemployed who had to close down their own

business. The questionnaire explicitly allows for this reason as well, allowing us to distinguish
between both reasons and use only the category “plant closure” in the SOEP.
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of unemployed, we include the job position prior to unemployment for this group.

Furthermore, we include a full-set of dummies for the type of industry (2 digit NACE

codes).

5.4 Results

Table 5.3 reports estimation results for the three health measures when pooled

estimation models without fixed effects are used and all reasons for unemployment

are considered. Since the estimated coefficients of the unemployment dummies are

likely to be biased, they should not be interpreted as causal effects. Table 5.3

rather serves as a first benchmark and descriptive analysis. According to all health

measures, unemployed are less healthy than working individuals. The coefficients

are all highly significant. Considering unemployment duration the results are less

clear. While long-term unemployed have an even lower health satisfaction than

the short-term unemployed, no duration effect can be found for the mental health

measure and the hospital visits.

Although unemployment is the most interesting variable in this study, we briefly

discuss the results of the other covariates. Males, foreigners, and individuals who

have a higher income or frequently do sports report a better health status than

the respective base categories. West Germans have a better self-stated health but

more hospital visits than East Germans, broadly the same picture holds for younger

individuals. Note, however, that individuals above the age of 58 are excluded from

the sample. Private health insurance is associated with better health, the same

holds for more education and children in the household. Although no coefficient has

a causal interpretation, they have in general the expected signs.

Table 5.4 reports the results when fixed effects are taken into account but still all

reasons for unemployment are taken together. Here, the time-invariant variables
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Table 5.3: Pooled models

Health Satisfaction No Hospital Visit Mental Health Score
(Ordered logit) (Logit) (OLS)

Unemployed -0.225* (0.027) -0.222* (0.040) -1.410* (0.259)
Months of unemployment -0.005* (0.001) -0.000 (0.002) 0.002 (0.010)
28 <= Age <= 32 -0.363* (0.023) -0.058 (0.042) -1.023* (0.215)
33 <= Age <= 37 -0.642* (0.028) 0.207* (0.048) -1.274* (0.237)
38 <= Age <= 42 -0.916* (0.030) 0.313* (0.050) -1.452* (0.240)
43 <= Age <= 47 -1.093* (0.031) 0.204* (0.050) -1.154* (0.240)
48 <= Age <= 52 -1.243* (0.032) 0.071 (0.052) -0.925* (0.256)
53 <= Age <= 58 -1.419* (0.033) -0.060 (0.052) -0.344 (0.258)
Male 0.057* (0.024) 0.582* (0.035) 1.595* (0.161)
Foreign 0.180* (0.032) 0.044 (0.045) 0.480 (0.248)
West 0.129* (0.023) -0.057 (0.034) 0.537* (0.157)
Years of education 0.012* (0.004) 0.006 (0.006) -0.025 (0.031)
log. equiv. HH-income 0.271* (0.021) 0.067* (0.032) 1.967* (0.154)
Frequency of sports 0.111* (0.007) 0.032* (0.010) 0.147* (0.047)
Married 0.003 (0.022) -0.125* (0.033) 1.162* (0.160)
Children in household 0.190* (0.019) 0.101* (0.030) 0.260 (0.148)
Private insurance 0.080* (0.032) 0.091 (0.053) 0.267 (0.229)
Education/Vocational training -0.064* (0.028) -0.170* (0.043) -0.625* (0.253)
Out of labor force -0.250* (0.029) -0.175* (0.039) -1.579* (0.235)
Blue collar -0.133* (0.026) 0.010 (0.040) -0.404* (0.193)
Selfemployed -0.020 (0.035) 0.165* (0.058) -0.380 (0.250)
Civil Servant -0.094 (0.054) -0.304* (0.082) -1.061* (0.387)
Other Position 0.093* (0.038) 0.193* (0.059) 0.469 (0.318)
Quarter of Interview = 2 0.005 (0.014) -0.002 (0.024) -0.475* (0.126)
Quarter of Interview = 3 0.048* (0.024) 0.103* (0.043) -0.249 (0.212)
Quarter of Interview = 4 0.038 (0.071) 0.049 (0.108) -1.519 (1.106)
Constant -0.067 (0.245) 34.150* (1.197)
Year dummies yes yes yes
Industry dummies yes yes yes
Observations 180,562 95,217 44,504

Standard errors in parentheses; * p < 0.05

Cut-off points for the ordered logit model not presented here.
White collar workers are the reference group for job position.

(male, foreigner, west) cannot be included. Note here the difference between the

conditional logit and the fixed-effects ordered logit. Because only individuals who

change their health outcome at least once in the observed time period can be used
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in the analysis, there is a high loss of information in the hospital equation. That is,

many individuals have either no hospital visit at all in the entire period or regularly

enter a hospital. The loss is much smaller in the health satisfaction equation where

only individuals are dropped who never change their health satisfaction on an 11-

point scale, which is rarely the case.

Table 5.4: Fixed effects models

Health Satisfaction No Hospital Visit Mental Health Score
(FE Ordered logit) (FE Logit) (Linear FE)

Unemployed -0.063* (0.026) 0.097 (0.051) -0.681* (0.226)
Months of unemployment -0.003* (0.001) 0.001 (0.003) -0.006 (0.009)
28 <= Age <= 32 0.054 (0.029) -0.021 (0.059) -0.398 (0.267)
33 <= Age <= 37 0.064 (0.042) 0.392* (0.087) -0.565 (0.384)
38 <= Age <= 42 0.065 (0.055) 0.530* (0.115) -0.826 (0.482)
43 <= Age <= 47 0.063 (0.069) 0.425* (0.144) -0.717 (0.578)
48 <= Age <= 52 0.085 (0.084) 0.298 (0.174) -0.527 (0.677)
53 <= Age <= 58 -0.000 (0.099) 0.105 (0.205) -0.514 (0.785)
Years of education 0.005 (0.006) -0.037* (0.013) 0.012 (0.060)
log. equiv. HH-income 0.083* (0.021) -0.139* (0.046) 0.915* (0.175)
Frequency of sports 0.063* (0.006) 0.006 (0.013) 0.108* (0.050)
Married -0.024 (0.024) -0.231* (0.050) 1.109* (0.216)
Children in household 0.041* (0.019) 0.418* (0.040) 0.068 (0.167)
Private insurance 0.066 (0.036) -0.323* (0.081) 0.128 (0.316)
Education/Vocational training 0.018 (0.028) 0.221* (0.055) 0.256 (0.241)
Out of labor force 0.002 (0.024) 0.582* (0.048) -0.319 (0.204)
Blue collar -0.068* (0.026) 0.084 (0.055) 0.023 (0.217)
Selfemployed -0.024 (0.039) 0.291* (0.088) -0.557 (0.334)
Civil Servant -0.073 (0.075) -0.246 (0.161) -1.623* (0.690)
Other Position -0.100* (0.038) 0.073 (0.082) -0.145 (0.335)
Quarter of Interview = 2 0.008 (0.014) 0.024 (0.033) -0.244* (0.122)
Quarter of Interview = 3 0.030 (0.026) 0.043 (0.063) -0.415 (0.220)
Quarter of Interview = 4 0.035 (0.078) 0.388* (0.159) -1.828 (1.232)
Constant 42.748* (1.694)
Year dummies yes yes yes
Industry dummies yes yes yes
Observations 174,893 45,764 44,504

Standard errors in parentheses; * p < 0.05

The size of the coefficients markedly decreases after controlling for fixed effects.
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That means that individual unobserved effects determine the likelihood of becoming

(and staying) unemployed and, at the same time, being in bad health to a great

deal. Although the coefficients of the unemployment variable decrease they are still

highly significant, except for the hospital visits equation where they turn positive

but also insignificant. The size of the other estimated coefficients also decreases.

For instance, the effect of household income on all health measures becomes smaller

and even negative for hospital visits when fixed effects are controlled for.

However, as discussed in the previous section, fixed-effects estimations do not provide

consistent estimates of the effect of unemployment on health if reversed causality

can be expected. If we include all unemployed in the sample we cannot rule out

that there are individuals that endogenously became unemployed (i.e., they quit

their job or lost it due to health problems). Only if we use the group of exogenously

unemployed (those who became unemployed due to plant closure) we can establish

causality. Table 5.5 shows the results of the fixed-effects methods with exogenous

unemployment.7 The estimated parameters turn insignificant in all cases. It almost

reaches zero for the Mental Health Score and it is even positive (though insignificant)

for health satisfaction and hospital visits. The results indicate that endogenous un-

employment might have biased the estimates in Table 5.4 and that there is no causal

effect of unemployment (and even long-term unemployment) on health according to

all three measures.

We find no significant effect of unemployment on health for the entire sample. How-

ever, it may well be that some groups suffer differently from unemployment than

others. To check the robustness of the results we split up the sample into sub-

groups and again carry out the fixed-effects estimations with unemployed due to

7Here, individuals who became unemployed for other reasons are dropped from the sample. In a
different specification, we left them in the sample and included a dummy variable for unemployment
due to plant closure and one for unemployment due to other reasons. This did not lead to different
conclusions.
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Table 5.5: Fixed Effects models with plant closure

Health Satisfaction No Hospital Visit Mental Health Score
(FE Ordered logit) (FE Logit) (Linear FE)

Unemployed 0.145 (0.107) 0.083 (0.204) -0.084 (0.894)
Months of unemployment -0.001 (0.005) -0.015 (0.011) 0.006 (0.042)
28 <= Age <= 32 0.046 (0.030) 0.004 (0.063) -0.340 (0.277)
33 <= Age <= 37 0.064 (0.044) 0.467* (0.092) -0.501 (0.398)
38 <= Age <= 42 0.085 (0.058) 0.628* (0.122) -0.782 (0.499)
43 <= Age <= 47 0.076 (0.073) 0.474* (0.153) -0.832 (0.599)
48 <= Age <= 52 0.111 (0.088) 0.405* (0.184) -0.606 (0.701)
53 <= Age <= 58 0.028 (0.104) 0.195 (0.218) -0.585 (0.813)
Years of education 0.003 (0.006) -0.033* (0.014) 0.012 (0.060)
log. equiv. HH-income 0.077* (0.023) -0.132* (0.050) 0.669* (0.189)
Frequency of sports 0.062* (0.007) 0.003 (0.014) 0.114* (0.052)
Married -0.027 (0.025) -0.266* (0.053) 1.033* (0.225)
Children in household 0.040* (0.020) 0.418* (0.043) 0.013 (0.174)
Private insurance 0.071 (0.036) -0.287* (0.084) -0.051 (0.320)
Education/Vocational training 0.024 (0.029) 0.258* (0.059) 0.383 (0.254)
Out of labor force -0.008 (0.025) 0.604* (0.051) -0.228 (0.213)
Blue collar -0.073* (0.027) 0.077 (0.059) 0.042 (0.229)
Selfemployed -0.031 (0.041) 0.276* (0.094) -0.318 (0.355)
Civil Servant -0.088 (0.076) -0.301 (0.164) -1.371* (0.689)
Other Position -0.117* (0.042) -0.011 (0.091) -0.433 (0.368)
Quarter of Interview = 2 0.004 (0.015) 0.024 (0.034) -0.304* (0.125)
Quarter of Interview = 3 0.034 (0.027) 0.044 (0.065) -0.310 (0.226)
Quarter of Interview = 4 0.053 (0.081) 0.412* (0.167) -2.220 (1.288)
Constant 44.985* (1.808)
Year dummies yes yes yes
Industry dummies yes yes yes
Observations 159563 40988 40962

Standard errors in parentheses; * p < 0.05

plant closures. Table 5.6 reports the results of the different regressions. Here, only

the two most interesting coefficients (unemployment and unemployment duration)

are shown. The full estimation results can be found in Tables A5.2 - A5.6 in the

appendix. The results indicate that there is no negative effect of both short-term

and long-term unemployment for males, females and West Germans according to

all measures. In East Germany this also holds for health satisfaction and mental
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health. However, for those individuals we find a marginally significant effect of

unemployment-duration on hospital visits.

Table 5.6: Fixed Effects models with plant closure - Subsamples

Health Satisfaction No Hospital Visit Mental Health Score
(FE Ordered logit) (FE Logit) (Linear FE)

Males
Unemployed 0.066 (0.144) -0.003 (0.301) -0.362 (1.068)
Months of unemployment 0.004 (0.007) -0.001 (0.015) 0.040 (0.048)
Observations 82,961 18,181 20,736
Females
Unemployed 0.253 (0.160) 0.234 (0.289) 0.489 (1.570)
Months of unemployment -0.009 (0.008) -0.028 (0.018) -0.064 (0.079)
Observations 76,602 22,807 20,226
West
Unemployed 0.166 (0.144) 0.270 (0.273) -0.113 (1.060)
Months of unemployment -0.000 (0.006) 0.001 (0.014) 0.001 (0.048)
Observations 120,636 29,563 31,543
East
Unemployed 0.086 (0.164) 0.107 (0.326) 0.225 (1.705)
Months of unemployment -0.003 (0.009) -0.041* (0.019) 0.019 (0.089)
Observations 38,282 11,090 9,419
Over 50 years
Unemployed -0.164 (0.197) -0.440 (0.408) 1.337 (1.900)
Months of unemployment 0.004 (0.008) -0.017 (0.015) 0.025 (0.083)
Observations 28,418 6,236 9,157
* p < 0.05; Standard errors in parentheses; Full estimation results in tables A5.2 - A5.6

Unemployed individuals above the age of 50 (males, females, east and west taken

together) have a lower health satisfaction and more hospital visits. Surprisingly, they

also have a much better mental health status even after controlling for exogenous

entry into unemployment. However, although the coefficients are rather high they

are not precisely estimated (probably due to the very small numbers of identifying

observations in this subgroup). Overall, the effects are almost always very small and

insignificant, even in the subgroups.
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Table 5.7: Fixed Effects models with plant closure - Other health measures

Hospital visit # Hospital visits # Doctor Body mass
previous year next 4 years visits index
(FE Logit) (FE Neg. Binomial) (FE Neg. Binomial) (Linear FE)

Unemployed -0.210 (0.213) 0.018 (0.114) 0.018 (0.057) -0.082 (0.179)
Months of unemployment 0.009 (0.010) 0.008 (0.006) 0.001 (0.003) -0.008 (0.008)
28 <= Age <= 32 -0.145* (0.054) -0.098* (0.029) -0.015 (0.014) 0.205* (0.055)
33 <= Age <= 37 -0.435* (0.079) -0.425* (0.038) -0.022 (0.016) 0.207* (0.079)
38 <= Age <= 42 -0.609* (0.106) -0.559* (0.043) -0.045* (0.018) 0.125 (0.099)
43 <= Age <= 47 -0.450* (0.134) -0.565* (0.047) 0.009 (0.019) 0.132 (0.119)
48 <= Age <= 52 -0.337* (0.162) -0.538* (0.051) 0.099* (0.021) 0.022 (0.139)
53 <= Age <= 58 -0.203 (0.192) -0.387* (0.057) 0.238* (0.023) -0.071 (0.161)
Years of education 0.054* (0.012) 0.009 (0.006) 0.021* (0.002) 0.058* (0.012)
log. equiv. HH-income -0.101* (0.040) 0.132* (0.026) 0.017 (0.011) -0.042 (0.037)
Frequency of sports -0.032* (0.012) 0.016* (0.007) 0.023* (0.003) -0.044* (0.010)
Married 0.248* (0.044) 0.125* (0.025) 0.095* (0.011) 0.382* (0.045)
Children in household 0.194* (0.036) -0.202* (0.023) -0.053* (0.010) 0.026 (0.035)
Private insurance -0.092 (0.073) 0.209* (0.044) -0.072* (0.018) -0.099 (0.064)
Education/Vocational training 0.948* (0.048) -0.128* (0.031) 0.118* (0.015) 0.033 (0.050)
Out of labor force 1.043* (0.039) -0.307* (0.026) 0.150* (0.012) 0.223* (0.042)
Blue collar -0.092 (0.050) -0.006 (0.031) -0.057* (0.013) 0.018 (0.045)
Selfemployed -0.134 (0.077) -0.208* (0.050) -0.214* (0.020) -0.036 (0.070)
Civil Servant 0.471* (0.147) 0.159* (0.073) 0.039 (0.030) -0.061 (0.137)
Other Position -0.729* (0.077) 0.083 (0.047) -0.018 (0.021) -0.126 (0.073)
Quarter of Interview = 2 -0.066* (0.028) 0.051* (0.019) 0.002 (0.008) 0.015 (0.025)
Quarter of Interview = 3 -0.040 (0.051) 0.019 (0.035) -0.044* (0.015) 0.016 (0.045)
Quarter of Interview = 4 -0.039 (0.151) -0.110 (0.093) -0.056 (0.044) -0.051 (0.253)
Constant -0.421* (0.212) 0.244* (0.088) 25.204* (0.369)
Year dummies yes yes yes yes
Industry dummies yes yes yes yes
Observations 76,591 43,653 150,385 41,843
Standard errors in parentheses; * p < 0.05

As another robustness check we change the dependent variable of the more objective

measure, the hospital visit. First, we use the original variable in the SOEP, a

hospital visit within the previous twelve months. This variable has the drawback,

that hospital visits might possibly be counted before the unemployment spell started.

Therefore, this variable is not the preferred one and is only used for a robustness

check. Second, we use the total number of hospital stays within the next four years

instead of the binary variable to use all the available information. Third, we use the

number of doctor visits in the previous three months as a health measure. On the

one hand, the latter might be better than the hospital visits as a health measure

because it does not only capture severe health problems (as the hospital visit mainly

does) but also smaller ones. On the other hand, while, in general, a hospital visit can
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be assumed to be involuntary for the unemployed, this is not necessarily the case for

a doctor visit. As the opportunity costs decrease with unemployment, more doctor

visits than before need not necessarily reflect a worse health status but maybe just

more available time. Finally, we use another objective health measure, the body-

mass index, as an outcome variable. This variable is available for the years 2002,

2004, 2006, and 2008 in the data set.

Since the number of hospital visits and the number of doctor visits are count vari-

ables, we use a fixed-effects negative binomial model as presented in, e.g., Cameron

and Trivedi (2005) for this estimation.8 Table 5.7 reports the results when the other

health measures are used. In contrast to the health measures before, higher values of

these variables indicate a worse health status. That is, a positive coefficient implies

a negative impact on health. However, again the coefficients of unemployment are

small, insignificant and not of the expected sign in the binary hospital equations.

The coefficient in the doctor visits equation is about zero. Likewise, the body-mass

index remains largely unchanged due to unemployment. Apparently, the results are

not sensitive to these health measures.

5.5 Conclusion

We estimate the causal effect of unemployment on health using data from the Ger-

man Socio-Economic Panel for 1991-2008. With fixed-effects methods and an exoge-

nous entry into unemployment we do not find a causal effect of neither short-term

nor long-term unemployment on health. These results hold for various health mea-

sures and across several subgroups.

This is the first study that analyses the effect of unemployment on mental health for

Germany. This is especially interesting since it can be assumed that unemployment
8The stata command xtnbreg was used for the estimation.
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first reduces mental health before it deteriorates the overall health status. However,

we do not find evidence for a negative effect of unemployment on mental health.

The results are not in line with an earlier study by Romeu Gordo (2006) who finds

negative effects of unemployment using the same data set. Our results indicate that

the major reason for the difference is that we consider only truly exogenously un-

employed individuals in the preferred specification while the former study does not

make this distinction.9 We argue that it is crucial to take the possible endogene-

ity of unemployment (and, thus, reversed causality) into account to get consistent

estimates.

One potential shortcoming of our study might be the health measures. Although

satisfaction with health is likely to be the most interesting outcome variable in terms

of a utility measure it might be prone to measurement error. Especially in the

health-and-retirement literature it is often argued that self-stated health indicators

might suffer from a justification bias. Transferred to our study this means that

unemployed feel uncomfortable with telling the interviewer about not yet having

found a job and state a lower health status as an excuse. It is debatable if this is the

case in Germany where unemployment is more widely perceived as bad luck than

as one’s own fault. Even if this were the case and the health satisfaction variable

suffered from a justification bias, the negative effects of unemployment on health

would be overestimated - yet, we do not find negative effects. Moreover, the results

also hold when more objective health measures are used.

Our results indicate that the selection of ill workers into unemployment and healthy

workers out of unemployment lead to the observation that the stock of unemployed

has on average a worse health status than the stock of employed but that there

is no causal effect of unemployment on health. These results are also in line with
9Moreover, the use of calendar information might lead to different effects of long-term unem-

ployment even when we consider all reasons of unemployment.
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those found in the recent international health economic literature (Browning et al.,

2006; Salm, 2009; Böckerman and Ilmakunnas, 2009). One reason for the absence

of negative effects on health in Germany (as well as in the Scandinavian countries

cited above) might be the following. First, before the most recent labour market

reform, Germany had an unemployment insurance system that was characterised by

generous insurance benefits and especially by long entitlement durations of unem-

ployment benefits. Therefore, the income loss in case of unemployment was (and

still is) usually moderate. Moreover, Frijters et al. (2005) find only a very small

causal effect of income on health in Germany. Second, job loss never causes the

loss of health insurance in Germany. Health care utilisation should, therefore, not

be affected by financial constraints due to unemployment. This could explain why

unemployment does not lead to adverse health outcomes in Germany compared to,

e.g., the US, where some authors do find negative health effects of unemployment.
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5.6 Appendix

Table A5.1: Sample Means

Variable Mean S.D. Min Max
Unemployed 0.084 0.277 0 1
Months of unemployment 1.019 6.338 0 178
28 <= Age <= 32 0.132 0.338 0 1
33 <= Age <= 37 0.147 0.354 0 1
38 <= Age <= 42 0.149 0.356 0 1
43 <= Age <= 47 0.140 0.347 0 1
48 <= Age <= 52 0.123 0.329 0 1
53 <= Age <= 58 0.129 0.335 0 1
Male 0.519 0.500 0 1
Foreign 0.121 0.326 0 1
West 0.741 0.438 0 1
Years of education 11.941 2.755 0 18
log. equiv. HH-income 7.286 0.470 3.034 11.166
Frequency of sports 2.338 1.264 1 4
Married 0.623 0.485 0 1
Children in household 0.440 0.496 0 1
Private insurance 0.110 0.313 0 1
Education/Vocational training 0.071 0.256 0 1
Out of labor force 0.088 0.284 0 1
Blue collar 0.354 0.478 0 1
Selfemployed 0.078 0.268 0 1
Civil Servant 0.058 0.233 0 1
Other Position 0.060 0.238 0 1
Quarter of Interview = 2 0.233 0.423 0 1
Quarter of Interview = 3 0.057 0.232 0 1
Quarter of Interview = 4 0.005 0.069 0 1
Observations 180,562
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Table A5.2: Fixed Effects models with plant closure- Males

Health Satisfaction No Hospital Visit Mental Health Score
(FE Ordered logit) (FE Logit) (Linear FE)

Unemployed 0.066 (0.144) -0.003 (0.301) -0.362 (1.068)
Months of unemployment 0.004 (0.007) -0.001 (0.015) 0.040 (0.048)
28 <= Age <= 32 0.102* (0.043) 0.046 (0.104) -0.526 (0.398)
33 <= Age <= 37 0.122* (0.062) 0.282 (0.146) -0.305 (0.556)
38 <= Age <= 42 0.171* (0.082) 0.417* (0.190) -0.708 (0.690)
43 <= Age <= 47 0.190 (0.102) 0.034 (0.235) -0.818 (0.821)
48 <= Age <= 52 0.252* (0.124) -0.060 (0.281) -0.739 (0.958)
53 <= Age <= 58 0.199 (0.146) -0.216 (0.329) -0.866 (1.104)
Years of education -0.017 (0.009) 0.028 (0.022) -0.004 (0.089)
log. equiv. HH-income 0.081* (0.033) -0.165* (0.081) 0.937* (0.266)
Frequency of sports 0.073* (0.010) -0.022 (0.022) 0.046 (0.073)
Married -0.041 (0.037) -0.143 (0.088) 1.021* (0.317)
Children in household 0.032 (0.028) -0.068 (0.065) -0.163 (0.237)
Private insurance 0.123* (0.047) 0.037 (0.115) -0.421 (0.388)
Education/Vocational training -0.069 (0.057) 0.316* (0.149) 0.422 (0.458)
Out of labor force -0.135* (0.047) 0.475* (0.110) -0.534 (0.417)
Blue collar -0.073 (0.039) 0.025 (0.090) -0.177 (0.315)
Selfemployed -0.143* (0.056) -0.159 (0.142) -0.203 (0.475)
Civil Servant -0.036 (0.104) -0.409 (0.246) 0.705 (0.906)
Other Position -0.039 (0.068) -0.634* (0.177) -0.445 (0.559)
Quarter of Interview = 2 0.004 (0.021) -0.019 (0.052) -0.411* (0.169)
Quarter of Interview = 3 0.032 (0.038) 0.052 (0.099) -0.473 (0.306)
Quarter of Interview = 4 0.063 (0.113) 0.520* (0.256) -1.867 (1.805)
Constant 45.562* (2.746)
Year dummies yes yes yes
Industry dummies yes yes yes
Observations 82,961 18,181 20,736

Standard errors in parentheses; * p < 0.05
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Table A5.3: Fixed Effects models with plant closure- Females

Health Satisfaction No Hospital Visit Mental Health Score
(FE Ordered logit) (FE Logit) (Linear FE)

Unemployed 0.253 (0.160) 0.234 (0.289) 0.489 (1.570)
Months of unemployment -0.009 (0.008) -0.028 (0.018) -0.064 (0.079)
28 <= Age <= 32 -0.025 (0.043) -0.105 (0.081) -0.240 (0.392)
33 <= Age <= 37 -0.005 (0.063) 0.535* (0.122) -0.783 (0.576)
38 <= Age <= 42 -0.010 (0.083) 0.800* (0.164) -0.925 (0.727)
43 <= Age <= 47 -0.039 (0.104) 0.921* (0.207) -0.927 (0.877)
48 <= Age <= 52 -0.030 (0.126) 0.925* (0.251) -0.549 (1.030)
53 <= Age <= 58 -0.136 (0.150) 0.749* (0.298) -0.405 (1.199)
Years of education 0.018* (0.008) -0.071* (0.019) 0.034 (0.084)
log. equiv. HH-income 0.073* (0.031) -0.142* (0.066) 0.385 (0.271)
Frequency of sports 0.047* (0.009) 0.009 (0.019) 0.168* (0.074)
Married -0.019 (0.035) -0.292* (0.069) 1.075* (0.324)
Children in household 0.046 (0.029) 0.826* (0.059) 0.182 (0.260)
Private insurance 0.036 (0.060) -0.587* (0.128) 0.587 (0.552)
Education/Vocational training 0.051 (0.035) 0.259* (0.066) 0.275 (0.316)
Out of labor force 0.035 (0.030) 0.553* (0.059) -0.212 (0.259)
Blue collar -0.067 (0.039) -0.018 (0.082) 0.289 (0.344)
Selfemployed 0.113 (0.060) 0.572* (0.131) -0.456 (0.537)
Civil Servant -0.168 (0.115) -0.146 (0.232) -3.787* (1.056)
Other Position -0.137* (0.055) 0.341* (0.113) -0.535 (0.514)
Quarter of Interview = 2 0.002 (0.021) 0.056 (0.047) -0.163 (0.186)
Quarter of Interview = 3 0.036 (0.039) 0.028 (0.089) -0.147 (0.335)
Quarter of Interview = 4 0.044 (0.117) 0.319 (0.227) -2.512 (1.839)
Constant 44.944* (2.443)
Year dummies yes yes yes
Industry dummies yes yes yes
Observations 76,602 22,807 20,226

Standard errors in parentheses; * p < 0.05
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Table A5.4: Fixed Effects models with plant closure- West

Health Satisfaction No Hospital Visit Mental Health Score
(FE Ordered logit) (FE Logit) (Linear FE)

Unemployed 0.166 (0.144) 0.270 (0.273) -0.113 (1.060)
Months of unemployment -0.000 (0.006) 0.001 (0.014) 0.001 (0.048)
28 <= Age <= 32 0.036 (0.035) 0.032 (0.073) -0.342 (0.328)
33 <= Age <= 37 0.056 (0.050) 0.591* (0.107) -0.478 (0.464)
38 <= Age <= 42 0.102 (0.067) 0.709* (0.143) -0.716 (0.578)
43 <= Age <= 47 0.129 (0.084) 0.649* (0.181) -0.612 (0.692)
48 <= Age <= 52 0.141 (0.101) 0.516* (0.218) -0.335 (0.810)
53 <= Age <= 58 0.054 (0.120) 0.368 (0.257) -0.299 (0.939)
Years of education -0.002 (0.007) -0.033* (0.017) 0.005 (0.074)
log. equiv. HH-income 0.083* (0.026) -0.143* (0.058) 0.389 (0.217)
Frequency of sports 0.064* (0.008) -0.004 (0.016) 0.061 (0.060)
Married -0.019 (0.028) -0.347* (0.061) 1.020* (0.255)
Children in household 0.037 (0.024) 0.416* (0.051) -0.206 (0.209)
Private insurance 0.094* (0.041) -0.333* (0.095) 0.002 (0.361)
Education/Vocational training 0.013 (0.032) 0.215* (0.066) 0.323 (0.282)
Out of labor force -0.025 (0.028) 0.585* (0.057) -0.503* (0.241)
Blue collar -0.079* (0.032) 0.094 (0.070) -0.005 (0.269)
Selfemployed -0.012 (0.047) 0.258* (0.110) -0.093 (0.410)
Civil Servant -0.014 (0.091) -0.417* (0.200) -1.412 (0.802)
Other Position -0.066 (0.049) -0.059 (0.110) -0.342 (0.434)
Quarter of Interview = 2 -0.005 (0.016) 0.051 (0.038) -0.332* (0.142)
Quarter of Interview = 3 0.024 (0.028) 0.063 (0.069) -0.357 (0.244)
Quarter of Interview = 4 0.027 (0.082) 0.437* (0.168) -2.244 (1.342)
Constant 47.520* (2.116)
Year dummies yes yes yes
Industry dummies yes yes yes
Observations 120,636 29,563 31,543

Standard errors in parentheses; * p < 0.05
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Table A5.5: Fixed Effects models with plant closure- East

Health Satisfaction No Hospital Visit Mental Health Score
(FE Ordered logit) (FE Logit) (Linear FE)

Unemployed 0.086 (0.164) 0.107 (0.326) 0.225 (1.705)
Months of unemployment -0.003 (0.009) -0.041* (0.019) 0.019 (0.089)
28 <= Age <= 32 0.081 (0.066) -0.028 (0.130) -0.620 (0.545)
33 <= Age <= 37 0.098 (0.095) 0.095 (0.190) -1.113 (0.807)
38 <= Age <= 42 0.030 (0.123) 0.429 (0.245) -1.618 (1.035)
43 <= Age <= 47 -0.086 (0.153) 0.141 (0.302) -2.186 (1.237)
48 <= Age <= 52 -0.006 (0.185) 0.289 (0.363) -2.336 (1.440)
53 <= Age <= 58 -0.084 (0.218) -0.047 (0.427) -2.473 (1.664)
Years of education 0.006 (0.012) -0.029 (0.027) 0.074 (0.114)
log. equiv. HH-income 0.091 (0.049) -0.157 (0.105) 1.673* (0.399)
Frequency of sports 0.060* (0.014) 0.027 (0.029) 0.296* (0.109)
Married -0.066 (0.059) -0.024 (0.116) 1.417* (0.508)
Children in household 0.017 (0.040) 0.481* (0.082) 0.467 (0.327)
Private insurance -0.029 (0.086) -0.152 (0.194) -0.169 (0.736)
Education/Vocational training 0.069 (0.072) 0.449* (0.134) 0.265 (0.629)
Out of labor force 0.067 (0.059) 0.803* (0.115) 0.773 (0.474)
Blue collar -0.066 (0.054) -0.079 (0.115) 0.098 (0.449)
Selfemployed -0.103 (0.089) 0.366 (0.196) -0.834 (0.751)
Civil Servant -0.249 (0.151) -0.128 (0.310) -1.163 (1.504)
Other Position -0.232* (0.090) -0.069 (0.176) -0.143 (0.760)
Quarter of Interview = 2 0.029 (0.038) -0.098 (0.093) -0.122 (0.283)
Quarter of Interview = 3 0.089 (0.091) 0.096 (0.241) 0.516 (0.688)
Quarter of Interview = 4 1.169 (0.667) -2.491 (5.429)
Constant 36.131* (3.681)
Year dummies yes yes yes
Industry dummies yes yes yes
Observations 38,282 11,090 9,419

Standard errors in parentheses; * p < 0.05
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Table A5.6: Fixed Effects models with plant closure- Above 50

Health Satisfaction No Hospital Visit Mental Health Score
(FE Ordered logit) (FE Logit) (Linear FE)

Unemployed -0.164 (0.197) -0.440 (0.408) 1.337 (1.900)
Months of unemployment 0.004 (0.008) -0.017 (0.015) 0.025 (0.083)
53 <= Age <= 58 -0.031 (0.045) 0.116 (0.100) -0.278 (0.316)
Years of education 0.061 (0.039) 0.015 (0.066) -1.254 (2.284)
log. equiv. HH-income 0.147* (0.064) -0.006 (0.154) 1.515* (0.491)
Frequency of sports 0.098* (0.019) -0.042 (0.042) 0.174 (0.131)
Married -0.273* (0.106) -0.900* (0.263) 1.680* (0.826)
Children in household 0.068 (0.073) -0.418* (0.166) -0.551 (0.540)
Private insurance -0.093 (0.113) -0.236 (0.259) -0.919 (0.941)
Education/Vocational training -0.184 (0.111) 0.315 (0.293) 0.914 (0.792)
Out of labor force -0.073 (0.073) 0.827* (0.159) -0.925 (0.650)
Blue collar -0.068 (0.084) -0.097 (0.195) 0.297 (0.675)
Selfemployed 0.100 (0.131) 0.169 (0.327) 1.688 (1.025)
Civil Servant -0.229 (0.285) -0.181 (0.654) -2.608 (2.561)
Other Position -0.915 (0.664) -0.665 (0.932) -4.777 (6.621)
Quarter of Interview = 2 -0.016 (0.037) 0.235* (0.092) -0.468 (0.311)
Quarter of Interview = 3 0.116 (0.071) 0.093 (0.181) -0.599 (0.590)
Quarter of Interview = 4 0.403 (0.223) 0.672 (0.468) -3.407 (3.299)
Constant 52.576 (28.986)
Year dummies yes yes yes
Industry dummies yes yes yes
Observations 28,418 6,236 9,157

Standard errors in parentheses; * p < 0.05
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Table A5.7: SF-12v2 questionnaire in the SOEP

Please think about the last four weeks. Always Often Some- Almost Never
How often did it occur within this period of time, . . . times never

� that you felt rushed or pressed for time?
� that you felt run-down and melancholy?
� that you felt relaxed and well-balanced?
� that you used up a lot of energy?
� that you had strong physical pains?
� that due to physical health problems
. . . you achieved less than you wanted to

at work or in everyday tasks?
. . . you were limited in some form

at work or in everyday tasks?
� that due to mental health or emotional problems
. . . you achieved less than you wanted to

at work or in everyday tasks?
. . . you carried out your work or everyday tasks

less thoroughly than usual?
� that due to physical or mental health problems you
were limited socially, i.e. in contact with friends,
acquaintances or relatives?
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Chapter 6

Concluding Discussions

The constantly increasing pressure on the health care system in Germany due to

phenomena like the technical progress or the demographic change call for solutions

that are capable of containing costs. These might either be rationing of health care

services or reducing inefficiencies in the health care market, or both. Since there is a

trade-off between efficiency and other goals like universal access and equity in health

care utilisation, it is worthwhile to empirically assess the potential gains of increasing

incentives to contain costs because they often go together with utility loss for the

consumers. E.g., demand-side cost-sharing might lead to a more cost-conscious

behaviour of the patient. However, it also reduces the protection of individuals

against the financial risk of illness which is welfare enhancing if individuals are

risk-averse.

The results of the first three chapters of this thesis show that there are indeed con-

siderable inefficiencies that could be reduced. However, the findings imply different

magnitudes of inefficiencies. I find that the, so far, existing solutions that address

the demand side of health care, that is, the patients, do not show strong effects when

it comes to containing health care costs. Specifically, optional deductibles or supple-

mentary health insurance do have some impact on health care utilisation - however,

only a moderate one. The reason for this is that healthy individuals - who know to
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need less health care services - self-select into contracts with less insurance coverage

because they have the opportunity to save on the insurance premia. Therefore, the

mere possibility to choose a lower insurance coverage does not seem to contribute

to cost consciousness of individuals.

Moreover, Chapter 4 highlights another problem that occurs, when trying to contain

costs induced by demanders of health care which is, so far, not discussed in the

public. This arises if benefit packages of statutory health insurance are reduced and

left for supplementary insurance on the private market. Not only are information

asymmetries between health insurance company and insured individual likely to

lead to moral hazard. There is also adverse or advantageous selection (sources of

both partly at the same time) that lead to inefficient market outcomes in private

insurance markets.

However, the results do not imply that cost-sharing as such is not suitable to con-

tain health care costs in Germany in general. First, especially individuals with a

high income are allowed to choose a deductible in the German system. It is by all

means possible that the price elasticity in this special group is not representative

for all households in the population. The stronger impact of private supplementary

insurance on the number of doctor visits - as found in Chapter 2 - is an indication

of this point because this insurance type can be purchased by the whole population.

Second, and most important, deductibles which are not voluntary but mandatory

(as, e.g., in the Swiss health system) might have a strong impact on the demand for

health care, even in Germany.1 Therefore, the result in this thesis is not directly

comparable to the result of the famous Rand Health Insurance Experiment, which

showed considerable effects of mandatory deductibles on the demand for health care

1Although the weak effects of the co-payment reform in 2004 imply that mandatory co-
payments might only change the doctor visiting behaviour of the German population if they are
not too small, see Augurzky et al. (2006); Schreyögg and Grabka (2010); Farbmacher (2009).
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(Manning et al., 1987).

According to the results in Chapter 3, the supply side (e.g., the physicians) seems to

bear much more possibilities to reduce inefficiencies. In Germany, there are consid-

erable differences in doctor visiting behaviour of individuals which can be attributed

to physician behaviour. Therefore, setting the right incentives for physicians seems

to be a promising way to save costs while keeping quality on a high level. This

should be done by a remuneration system that prevents physicians from inducing

their own demand. Moreover, setting the right incentives for physicians can also

be able to reduce the problem of excess-demand of patients due to moral hazard,

without the need to introduce demand-side cost-sharing (with its mentioned limits).

This is the case if physicians have incentives to provide less health care services than

demanded by the full-cover insured patients (Ellis and McGuire, 1990).

Future work should draw on better data sets to improve the quality of the results.

Administrative data sets or data from health insurances clearly have the advan-

tage of not being reported by the patients and are, thus, less likely to suffer from

measurement error. Moreover, they should be more detailed as regards health care

utilisation than survey data. Strongly increased sample sizes of administrative data

or data from insurance companies also make subsample analyses more feasible. How-

ever, these data sets often lack good health measures and, moreover, usually do not

contain both privately and publicly insured at the same time.

Another way to improve the analysis might be to reduce the parametric assumptions

in the empirical specifications. I reacted on the non-linear nature of the dependent

variables by fully specifying a density function up to some parameters which were

estimated by maximum-likelihood (an exception being the matching approach in

Chapter 4). Although the flexible specification I used in most chapters - e.g., un-

observed heterogeneity that follows an arbitrary discrete distribution or inclusion of
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a full set of dummy variables to account for non-linearities in exogenous variables

instead of polynomials - is sometimes called “semi-parametric” in the literature, the

estimation results are inconsistent if the distributional assumptions (which cannot

be tested) are wrong. However, again, fully non-parametric regressions often do not

seem to be feasible given the data base used in this thesis.
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