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Abstract

Transition metal (TM) clusters occupy an important role in the class of materials projected for nano

applications. In addition to the unusual properties due to their cluster form, TM clusters have the

advantage of developing magnetic moments. The goal of this thesis is to study the properties of

clusters and cluster related phenomena. Physical properties of clusters are suitable platform to study

quantum effects, which becomes prominent at such low dimensions. Thus, it is essential to study

the properties of clusters using first-principles methods because they cannot be easily handeled by

empirical approaches. The present thesis deals with the density functional theory total energy for-

malism through the Kohn-Sham approach. The many-body correlation effects are accounted for the

generalized gradient approximation (GGA) which has been successful in describing the properties of

materials, especially metals.

The ground state structure of various sizes of elemental andbinary TM clusters is studied. One of the

main observation is that the icosahedron is one of the most stable geometries for 13-atom elemental

(Fe, Co, Ni) clusters. For large Fe clusters with regular icosahedron geometry, the core of the cluster

relaxes towards the cuboctahedral geometry. For all sizes,after geometrical optimization, we find

slight structural distortions. This is associated with thephysics of Jahn-Teller effect. We observe

that the Jahn-Teller effect is more prominent in Fe clustersas compared to Ni and Co clusters. Also,

the evolution of magnetic moment with cluster size is studied. The clusters show enhanced magnetic

moment which is inversely related to the cluster size. The magnetic moment versus cluster size

obtained from calculations match very well with the experimental results.

One of the main goals of studying binary cluster is to understand the site-specific occupation of atomic

species in a multi-component (here binary) cluster. This isachieved this by studying the competition

between chemical ordering and segregation for binary Fe-(Co, Ni, Pt) and Co-(Pt, Mn) icosahedral

clusters. The energetically favorable distribution of constituent elements in binary cluster is examined

for different compositions. Using the lowest energy structure so obtained, the composition-dependent

mixing energy is studied. It is observed that the qualitative behavior of mixing energy with respect

to composition for 13-atom Fe-Ni clusters is very similar tothat of the bulk alloy. It is found that

Ni atoms tend to occupy the surface sites on a cluster (segregation tendency) for Fe-rich and Ni-rich

compositions. This appears to be a common trend which has been verified for both 13- and 55-

atom clusters. Owing to heavy computational demand, we haveverified the trend at some specific

compositions for 55-atom clusters.

Magnetic properties like the orbital magnetic moment and the magnetic anisotropy are studied for free

11



List of Tables

and deposited clusters. 13- and 55-atom icosahedral clusters of Fe, Ni and Co are deposited on the

substrates like Pt(111) and Pt(001) for these studies. Boththe free clusters and the deposited clusters

are observed to exhibit large magnetic anisotropy as compared to that of the respective bulk metals.

The angle (angle between magnetization and the spin-quantization axis) dependent anisotropy energy

is calculated from DFT and then fitted to the classical Heisenberg model containing an anisotropy

term. Large values of magnetic anisotropy energy are found for relaxed clusters as compared to

perfect clusters because of the structural symmetry-breaking.

In addition to its structural and magnetic properties, transition metal clusters are attractive candidates

for catalysis. In principle, the catalysis can be studied byestimating the activation energy barrier

of various paths of a reaction by nudged elastic band method.There are studies in literature of the

catalytic properties of TM clusters (for example Fe and Pt) for the oxidation of carbon monoxide to

carbon-dioxide on graphene surface. We have attempted to study the oxidation of carbon monoxide

on graphene surface. The goal is to understand the role of TM clusters in reducing the activation

barrier of the chemical reaction and to derive the possible reaction paths. Presently, the proper site

for adsorption of CO molecule on free and graphene-supported TM clusters are identified within the

accuracy of GGA.

From another aspect, we tried to extrapolate the magnetic properties of clusters to finite temperature

using the exact diagonalization technique. We have only studied the magnetic properties of 4- and 13-

atom clusters. The exact diagonalization method is appliedto the quantum Heisenberg Hamiltonian

with nearest-neighbor spin-interactions. The role of dipolar interaction and local uniaxial anisotropy

terms in the Heisenberg Hamiltonian are taken into account which has non-negligible contribution

for clusters. We observe discontinuities in the magnetization with change in external magnetic field

for clusters with antiferromagnetic interactions, which is unlike for clusters with ferromagnetic in-

teraction. The ground state and the temperature-dependentspin-spin correlation functions are also

studied.

The findings of these studies for elemental and binary clusters like the size-dependent structural

and magnetic properties, the composition-dependent atomic distributions of multi-component clus-

ters (segregation), magnetic anisotropy of free and supported TM clusters are expected to shed light

on the understanding of physics of clusters in general and may be helpful for experimentalists.
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Zusammenfassung

Übergangsmetallcluster nehmen einen wichtigen Platz in der Klasse der Materialien für Anwendun-

gen im Nanobereich ein. Übergangsmetallcluster besitzen,zusätzlich zu weiteren ungewöhnlichen

Eigenschaften aufgrund ihrer Cluster-Form, den Vorteil magnetische Momente zu entwickeln. Das

Ziel dieser Arbeit ist die Eigenschaften von Clustern und der damit zusammenhängenden Phänomene

zu untersuchen. Die physikalischen Eigenschaften von Clustern sind eine geeignete Grundlage um

Quanteneffekte zu studieren, die in niedrigen Dimensionendominieren. Da sich die Eigenschaften der

Cluster nicht mit empirischen Ansätzen einfach beschreiben lassen ist es notwendig, parameterfreie

first-principlesMethoden zu verwenden. In dieser Arbeit kommt der Dichtefunktional Gesamten-

ergieformalismus im Rahmen des Kohn-Sham-Ansatzes zum Einsatz. Die Vielteilchen-Korrelations-

effekte werden im Rahmen der verallgemeinerten GradientenApproximation (GGA) behandelt, die

sehr erfolgreich für die Beschreibung von Materialien, insbesondere Metalle, eingesetzt wird.

Im Rahmen dieser Arbeit wurden die Grundzustandsstrukturen von elementaren und binären Über-

gangsmetallclustern verschiedener Größen untersucht. Eine der wichtigsten Beobachtungen ist hier-

bei, dass die ikosaedrische Geometrie eine der stabilsten Formen für elementare 13-Atom (Fe, Co,

Ni) Cluster ist. Für alle untersuchten Größen sind leichte strukturelle Verzerrungen präsent, die auf

dem Jahn-Teller-Effekt beruhen. Dieser tritt stärker in Fe-Clustern als in Ni- und Co-Clustern auf.

Für größere Fe-Cluster mit regelmäßiger ikosaedrischer Geometrie relaxiert der Kern des Clusters in

Richtung einer kuboktaedrischen Geometrie. Ebenfalls untersucht wurde die Entwicklung des mag-

netischen Momentes mit der Clustergröße. Die Cluster besitzen ein erhöhtes magnetisches Moment,

dessen Größe sich umgekehrt zur Clustergröße verhält. Der berechnete Zusammenhang stimmt gut

mit experimentellen Resultaten überein.

Ein weiteres wichtiges Ziel der Untersuchung binärer Cluster ist das Verständnis der gitterplatzspezi-

fischen Besetzung der atomaren Spezies in mehrkomponentigen (hier binären) Clustern. Dazu wurde

die Konkurrenz zwischen chemischer Ordnung und Segregation in binären Fe-(Co, Ni, Pt) und Co-

(Pt, Mn) Clustern mit ikosaedrischer Struktur untersucht.Für verschiedene Zusammensetzungen

wurde die energetisch günstigste Verteilung der konstituierenden Elemente berechnet. Aufbauend

auf der so bestimmten Struktur mit der niedrigsten Energie,wurde das zusammensetzungsabhängige

Mischungsverhalten der Elemente untersucht. Das qualitative Verhalten der Mischungsenergie eines

13-Atom Fe-Ni-Clusters stellt sich in Bezug auf die Zusammensetzung als sehr ähnlich zu dem des

Festkörpers heraus. Dabei zeigt sich, dass Ni zur Besetzungder Oberflächenplätze (Segregationsten-

denz) im Fe-reichen wie auch im Ni-reichen Zusammensetzungsbereich tendiert. Das erscheint als
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allgemeiner Trend, der in dieser Arbeit für 13- und 55-Atom-Cluster verifiziert werden konnte.

Ebenfalls untersucht wurden magnetische Eigenschaften wie das Bahnmoment und die magnetische

Anisotropie für freie und deponierte Cluster. Hierzu wurden, ikosaedrische Cluster mit 13 und 55

Atomen bestehend aus Fe, Ni und Co auf Pt(111) und Pt(001) Substraten deponiert. Sowohl die freien,

wie auch die deponierten Cluster zeichnen sich durch eine große magnetische Anisotropie im Vergle-

ich zu den entsprechenden Festkörper-Materialien aus. Diewinkelaufgelöste Anisotropie-Energie

(gemeint ist der Winkel zwischen Magnetisierung und Spin-Quantisierungsachse) wurde im Rahmen

der DFT berechnet. An diese Ergebnisse wurden die Parametereines klassischen Heisenberg-Modells

mit Anisotropieterm gefittet. Für relaxierte Cluster werden im Vergleich zu perfekten Strukturen auf-

grund der strukturellen Symmetriebrechung große Anisotropie-Energien gefunden.

Abgesehen von ihren strukturellen und magnetischen Eigenschaften sind Übergangsmetallcluster at-

traktive Kandidaten für katalytische Anwendungen. Im Prinzip können die katalytischen Eigen-

schaften durch Bestimmung der Aktivierungsbarriere für verschiedene Reaktionspfade im Rahmen

der Nugded-elastic-band-Method untersucht werden. In derLiteratur existieren Studien der katalytis-

chen Eigenschaften von Übergangsmetallclustern (z.B. Fe oder Pt) im Bezug auf die Oxidation von

Kohlenmonoxid zu Kohlendioxid. Im Rahmen dieser Arbeit wird die Oxidation von Kohlenmonoxid

auf Graphen mit dem Ziel untersucht, die Rolle der Übergangsmetallcluster im Hinblick auf eine Re-

duzierung der Aktivierungsbarriere der chemischen Reaktion zu verstehen und mögliche Reaktion-

spfade abzuleiten. Bislang konnte der Adsoptionsplatz eines CO-Moleküls auf freien und Graphen-

unterstützten Clustern im Rahmen der Genauigkeit der GGA bestimmt werden.

Um die magnetischen Eigenschaften bei endlichen Temperaturen besser zu verstehen, wurden vier

bis 13-Atom Cluster im Rahmen des quantenmechanischen Heisenbergmodells mit nächster-Nachbar-

Spin-Wechselwirkung exakt diagonalisiert. Die Rolle der Dipolwechselwirkung und radialer Anisotro-

pieterme, die nicht vernachlässigbare Beiträge für Cluster haben, wurden im Heisenberg-Hamiltonian

berücksichtigt. Für antiferromagnetische Cluster wurden- im Gegensatz zu ferromagnetische wech-

selwirkenden Clustern - Unstetigkeiten in der Magnetisierung als Funktion des externen Magnetfeldes

gefunden. Zusätzlich wurden für diese Cluster Grundzustand und temperaturabhängige Spin-Spin-

Korrelationsfunktionen berechnet.

Die Ergebnisse dieser Arbeit für elementare und binäre Cluster, wie die Größenabhängigkeit struk-

tureller und magnetischer Eigenschaften, die zusammensetzungsabhängige Verteilung der Atome

in mehrkomponentigen Clustern (Segregation), magnetische Anisotropie freischwebender und de-

ponierter Übergangsmetallcluster können beitragen, das Verständnis der Clusterphysik im Allge-

meinen voranzubringen und Hilfestellungen für experimentelle Arbeiten bieten.
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1 Introduction

1.1 Magnetism in low dimensional systems

Magnetism is a relatively old topic, but still attracts lot of scientific attention. Phenomenas associated

with magnetism can be classified as many-body problems and quantum mechanics has been successful

in interpreting them [1]. The scope of the present thesis is understanding the structure and magnetism

of some pure and mixed transition metal clusters. Clusters provide the unique opportunity to study the

development of a physical property from the atom towards thesolid, i.e., from a “zero”-dimensional

to a three-dimensional system. This concerns the formationof an electronic band structure or the

development of many-electron phenomena, such as solid state magnetism or superconductivity. Like

the corresponding atoms these small particles have significant spin and orbital contributions to their

magnetic moment. This is in contrast to the respective solids, where the orbital moment is almost com-

pletely quenched by crystal fields and where in most cases theexchange energy that could be gained

by spin alignment is exceeded by the increase in kinetic energy that according to the Pauli principle

is required to promote the electrons to empty orbitals. Mostsolids therefore are non-magnetic. When

the energy band width is small and correspondingly the density of statesD(EF) is large at the Fermi

energy, like in somed- and f - metals, there is a gain in exchange energy at the expense of kinetic

energy and then magnetism survives. This corresponds to theStoner criterion, which states that for a

material to be magnetic the product of the exchange integralI andD(EF) needs to be larger than one.

Experimentally, the magnetic moments of metal clusters areusually studies by in-flight molecular

beam Stern-Gerlach experiment. In the experiment, a magnetic field gradient induces small deflec-

tions of a beam of magnetic clusters traveling through a highvacuum channel. The tiny deflections

are only a fraction of millimeters in magnitude, but can be measured with very accurate precision by

a position-sensitive time of flight (TOF) technique [2]. From the magnitude of these deflections the

magnetic moments of the clusters can be determined. Anotheradvanced method for characterization

of magnetic moments is the technique of X-ray magnetic circular dichroism (XMCD). The advantage

of XMCD is that one can make a distinction between spin and orbital contributions to the magnetic

moment when clusters are soft landed on the substrate [3].

The following is a short recapitulation of the basic properties of clusters [4]. Clusters have very differ-

ent and often very individual physical and chemical properties. For example, the chemical reactivity

can change by orders of magnitude from one cluster size to thenext. Therefore, clusters may form

specific material selective catalysts. Clusters have structures with five-fold symmetry (possibly also
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Figure 1.1: The variation of energy differences between cuboctahedra and icosahedra for Co, Ni and
Fe as a function of the cluster size calculated byab initio methods. The lines are guide to
the eye [7].

seven-fold symmetry) like that of the icosahedral geometrystructures which have their own individual

growth patterns. Due to their five-fold symmetry axes they cannot grow into periodic lattice structures.

Clusters are characterized by a large surface to volume ratio, that is, a large fraction of the constituents

occupies low coordinated surface sites. For example, for a cluster with 2000 atoms, a fraction of∼ 30

% atoms is still at the surface. The number of surface atoms ina cluster is inversely proportional to the

mean cluster radiusR. The large fraction of surface atoms makes the clusters sensitive for chemical

reactions. The large number of surface atoms in clusters also have consequences in magnetism since

the surface atoms are low-coordinated as compared to the bulk. Therefore, they have a more atom-like

character than the interior atoms. As a result, magnetic properties of clusters are very sensitive to their

chemical environment. On one hand magnetism in clusters maybe quenched, e.g. by charge transfer

into emptyd-states, on the other hand, it is also possible to even increase the magnetic moment of a

cluster. It has been recently shown that even gold nanoparticles can be remanently magnetized, when

capped with thiol ligands, even at room temperature [5]. This sensitivity also has implications for

deposited clusters. The systematics of cluster physics canbe given by expressing the binding energy

as a function of cluster sizeN [6, 7],

E(N) = aN+bN2/3 +cN1/3+d. (1.1)

Where,a, b, c and d signify the contributions arising from the cluster volume,facets, edges, and

vertices, respectively. The volume and surface (facets, edges and vertices) contributions compete

with each other. These coefficients show a dependence on the type and shape of the cluster. Fig. 1.1

shows a comparison of the energy differences between the icosahedra and cuboctahedra geometries
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of Fe, Co and Ni clusters [7], which shows that the icosahedral structures are more favorable for Co

and Ni with larger energy difference in contrast to Fe.

1.2 Origin of magnetism in atoms: Hund’s rules

There exists a close relationship between angular momentumand magnetism [8]. Each electron in an

atomic orbital contributes to spin and orbital magnetic moment. The addition of these contributions is

within the scope of the vector model of atomic magnetism. In theLS coupling, also known as Russell-

Saunders coupling scheme, the total orbital momentumL = Σili and the total spin momentumS = Σisi

combine to yield the total momentumJ = L+S. The moments obey the matrix-operator rules, such as

S2 = S(S+1), L2 = L(L+1), andJ2 = J(J+1). In heavy elements, due to the large nuclear charges,

spin-orbit interactions are larger than spin-spin interactions or orbit-orbit interactions. This situation

is described by thejj coupling, where,J = ΣiJi = Σi (Li + Si) .

Hund’s rules can be summarized by three rules.

• For an electronic configuration, the spin configuration with maximum multiplicity has the low-

est energy. The multiplicity is given by 2S+1, which is maximum whenS is maximum. This is

possible because of the Pauli exclusion principle which states that two electrons cannot share

the same set of quantum numbers.

• For a given multiplicity, the configuration with the largest value ofL has the lowest energy. This

rule deals with reducing the repulsion between electrons.

• For a given atom with the outermost subshell half-filled or less, the configuration with the lowest

value ofJ is the lowest in energy. If the outermost shell is more than half-filled, the configura-

tion with the highest value ofJ is the lowest in energy. This rule takes into consideration the

energy shifts due to spin-orbit coupling, and is valid for the case where the spin-orbit coupling

is weak compared to the residual electrostatic interaction.

Any degeneracy beyond the Hund’s rules is removed by interactions such as Zeeman coupling and

interatomic exchange. This is of importance for the temperature dependence of magnetic anisotropy.

1.3 Cluster magnetism

Magnetism is sensitive to many factors such as the symmetry,atomic coordination and interatomic

distances in the cluster. These characteristics are interrelated [9]. Let us consider the case of free

atoms. Fe, Co and Ni have eight, nine and ten valence electrons, respectively and are distributed

in the 3d and 4s shells. Hund’s rules require the spin to be a maximum and thisleads to electronic

configurations 3d↑5 3d↓1 4s2 for Fe, 3d↑5 3d↓24s2 for Co, and 3d↑5 3d↓34s2 for Ni, where the 3d↑
and 3d↓ subshells are separated by the exchange interaction. Sincethe spin magnetic moment of an
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electron is 1µB, and these atoms have non-zero spins, the atoms possess substantial moments. The

magnetic moment is given by the difference in the number of spin ↑ and spin↓ 3d electrons per atom,

which is nd(↑)− nd(↓) = 4,3,2 for Fe, Co and Ni, respectively. When the atoms come together in

a cluster, the overlap between the atomic orbitals of neighbor atoms gives rise to energy bands. The

levels corresponding to 4s electrons produce a free electron-like band, while thed electrons stay lo-

calized on the atomic sites. The crystal potential stabilizes thed ands states by different amounts.

Together with the crystal potential,spdhybridization leads to charge transfer froms to d states, and

the number ofs electrons for systems other than the atom is close to 1. Assuming that the 3d orbitals

are atomic-like, the Hund’s rules require the majority 3d↑ sub-band to be fully occupied with five

electrons per atom while the minority 3d↓ sub-band has two, three and four electrons per atom in Fe,

Co and Ni respectively. The difference in the number of spin↑ and spin↓ 3d electrons per atom is

nd(↑)−nd(↓) = 3,2,1 for Fe, Co and Ni respectively, and the magnetic moments peratom are 3µB,

2 µB and 1µB for Fe, Co and Ni, respectively. These values are quite closeto the magnetic moments

of very small clusters. The bulk moments per atom for Fe (2.2µB), Co (1.7µB) and Ni (0.6µB) are

smaller, and their noninteger values originate because of the partial delocalization of the 3d electrons.

This also leads to the mutual alignment of the moments, whichis known as itinerant exchange.

1.4 Magnetism in bulk

The main characteristic of bulk is that the energy levels areclassified as energy bands which can be

delocalized [9]. In a one-electron picture, the electrons fill the available delocalized states up to the

Fermi level. This explains the occurrence of noninteger magnetic moments in bulk transition metals.

Nonmagnetic metals have two equally populated↑ and↓ spin subbands. With application of magnetic

field, some electrons are transferred from the↓ to the ↑ band. This type of behaviour of metals

are characteristically known as Pauli paramagnetism. The corresponding spin polarization is small,

usually less than 0.1%. In itinerant ferromagnets the corresponding one-electron energies of the bands,

as represented by the band width, compete against intra-atomic exchange. As a result ferromagnetism

is realized in narrow bands. The simplest model of itinerantferromagnetism is the Bloch model, where

the intra-atomic exchange is evaluated for the free electrons. A more sophisticated model is the Stoner

model, which relates the onset of ferromagnetism with that of the DOS at the Fermi level. The density

of states strongly depend on the crystal structure. This makes it difficult to predict the ferromagnetic

moment of solids from their atomic composition. Itinerant magnets with approximately half-filled

bands exhibit a strong tendency towards antiferromagnetism because the hybridization energy of half-

filled ↑ and↓ spin bands is lower than that of completely-filled↑ bands. Magnetism in the iron-series

transition metal elements is because of the itinerant electrons. The itinerant character is represented

by the non-integer spin moments per atom, such as the 2.2µB for Fe, 1.7µB for Co, and 0.6µB for

Ni, as already discussed. The origin of non-integer values of magnetic moment cannot be accounted
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Figure 1.2: The Jahn-Teller effect for Mn3+ (3d4). The left side indicates the Mn3+ ion (purple) placed
at the center of an oxygen (green) octahedron. Due to structural distortion, the octahedral
symmetry is converted to a tetragonal one (shown in the rightside) and the energy of the
d3z2 orbital pointing along thezdirection is lowered. Since the d3z2 orbital is filled and the
higher dx2−y2 orbital is empty, the system can lower its energy. For details, see Ref. [10].

with the ionic nature, but reflect the interatomic hopping ofthe spin-polarized electrons. Itinerant

magnetism also occurs in many alloys, such as Fe1−xNix, PtCo, and the low-Tc intermetallic ZrZn2.

On the other hand, magnetism in rare-earth 4f metals, heavy-fermion compounds such as CeAl3 can

only be explained from the localized picture. Rare-earth transition metal intermetallics such as SmCo5

and Nd2Fe14B exhibit both itinerant (3d) and localized (4f ) features.

In iron-series transition metals the delocalized electrons can be classified as two types, 4s electrons

and 3d electrons. Both 4s and 3d electrons contribute to transport properties, such as electrical and

thermal conductivities, but the magnetic moment largely originates from the 3d electrons. However,

4shelp to realize a RKKY-type exchange [11–13] between the atomic moments. This is different from

the rare-earth elements, where the metallic conductivity is due to delocalized 5d and 6s electrons but

the magnetic moment originates from localized 4f electrons. As in other transition metal magnets, the

orbital moment of the itinerant 3d electrons is largely quenched. Typical orbital moments of itinerant

3d electrons are of order 0.1µB, so that the Landé g-factor is close to 2 and the moment is equal to

the number of unpaired spins.

1.5 Jahn-Teller effect

The Jahn-Teller effect is an important physical effect whose role is more prominent in cluster physics.

The Jahn-Teller theorem states that any non-linear molecule with a degenerate electronic ground state

will undergo a geometrical distortion that removes the degeneracy, because the distortion lowers the

overall energy of the complex [10, 14]. This implies that a system having a degenerate ground state

will spontaneously deform to lower its symmetry. It mostly occurs in octahedral complexes of the

transition metals. As an example, the mechanism of such effect has been shown for Mn3+ ion in
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Fig 1.2. When the Mn3+ in high spin configuration is placed in the octahedral ligandfield, it contains

a single electron in the uppereg state. The system lowers its energy by a tetragonal distortion, thereby

causing a splitting in the energy levels. The total energy islowered due to the lowering of the one of

theeg orbitals (d3z2) marked by the increased bond length along thez axis. This causes the filled d3z2

orbital to drop in energy below the empty dx2−y2 orbital. On the other hand, since both of the split

t2g states are filled and the center of gravity is preserved, the t2g states donot contribute to the overall

energy saving.

1.6 Other general aspects of clusters

The difference between cluster and bulk are manyfold. One ofthem is the number of surface atoms,

which are significantly larger in the cluster. Another aspect of the difference is that the electrons are

confined in a small volume of the potential well in clusters. As a result the electrons are filled in

discrete levels instead of the band which is characteristicof bulk. Clusters provide the bridge be-

tween atoms, molecules and bulk. One of the important questions which is still lacking convincing

answer is how many number of atoms are required for a cluster to mimic the bulk behaviour. Al-

though the jellium model sucessfully explains the stability of clusters of nearly free electron metals,

it has limitations in describing the structural propertiesof clusters, such as their geometry and atomic

arrangements (for many elements in clusters). There are ample research going on studying clusters

by rigorous molecular orbital calculations based on density-functional theory.

Clusters can be broadly classified into following categories based on the type of chemical bonding [4].

Accordingly, needs different experimental setups for synthesis and also different level of theory are

necessary for studying the system.

• Van der Waals clusters

The clusters are characterized by the weak van der Waals interaction. Due to the central force,

the most stable clusters have a closed-packing of atoms. Theweak binding leads to low melting

and boiling points. Molecular clusters like (I2)N, (N2)N, (CO2)N, (SF6)N belong to this class.

• Metal clusters

One can sub-classify the metals clusters based on constituent like, simple metals (Na or Al with

sp-valence electrons) and transition metals (Fe or Co, where the localizedd electrons play an

important role). Some polyvalent non-transition elementslike Pb form a group in between.

The clusters reflect these characteristics. The strength ofthe binding in metallic clusters ranges

from moderate to strong (0.5 to 3 eV per atom). The main property of the clusters of the simple

sp elements is the existence of electronic shell effects [15].The delocalized character of the

electronic states inspelements allows for the occurence of collective electronicexcitations at

low energies. The presence ofd electrons in transition metals make it more complex than the
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clusters ofspelements. One of the interesting effects of these clusters is their role in catalysis.

Another interesting effect is the evolution of magnetic properties with the cluster size.

• Clusters of ionic materials

The cohesion of such clusters can be described by potentialswith an attractive part due to

electrostatic monopole forces and a repulsive part from theoverlap of the electronic clouds of

ions with filled electronic shells. The structures of these clusters can have a rectangular shape

cut from the solid.

• Network clusters

In this case, the covalent bonding leads to the formation of atomic networks in clusters. Mate-

rials like Si, Ge and C belong to this catagory. The binding energy in network clusters is strong

(1 to 4 eV per atom). Some of the example are the fullereneC60, and water clusters.

1.7 Experimental techniques for synthesis of clusters

Depending on the physical or chemical properties of the clusters, different methods of synthesis tech-

niques are used [16].

Clusters having low melting points can be produced through liquid metal ion source, where the metal

cluster is heated in an oven and then distilled into a tungsten capillary needle. By applying high

electric field between the tip of the capillary needle and an extraction electrode to the field emission

of cluster ions of different size can be synthesized.

Ion bombardment is another method of generating clusters. Here a beam of inert gas ions with a high

kinetic energy is directed towards the sample to produce thecluster ions. Charged cluster of noble

metals and the Zn group elements have been obtained in this way. This method is applied to produce

clusters with high boiling point like alkali halides.

Clusters have been synthesized using techniques like supersonic nozzle sources. The basic idea behind

this method is the formation of clusters by condensation of an expanding gas of atoms. A highly

compressed gas (typically under pressure of around 10 bar) with atoms of the material to be aggregated

is allowed to expand through a small nozzle. The adiabatic expansion slows down the atoms up to

a point at which binding between neighboring atoms becomes energetically favorable. This leads

to a successive aggregation of the atoms to form clusters. Supersonic sources are often used for

producing clusters of low melting metals like alkali metals. A furnace containing molten metal is

heated to produce the metal vapor of pressure around 10-100 mbar. This vapor is mixed with a rare

gas introduced into the source at a pressure of several bar. The hot mixture of metal vapor and rare gas

is driven through the nozzle which expands after coming out of the nozzle. This pure vapor source is

efficient to produce van der Waals clusters. In the case of metallic clusters it produces mainly small

clusters, and some medium size clusters but with low abundances. This source is not suitable for the

21



1 Introduction

formation of large metallic clusters because the process ofatom aggregation leaves the cluster in an

excited state and the metal vapor must act also as a heat bath to cool the clusters.

Metal clusters can also be produced using gas aggregation sources, where the metal vapor exists in a

supersaturated state for a short time. This leads to the formation of small clusters. But large clusters

are formed with the increase of corresponding times in gas aggregation sources. In a gas aggregation

source the metal vapor from the oven enters a condensation chamber, where it mixes with a stream

of inert gas at pressure about 1 Torr. Cluster growth continues in the condensation chamber until the

mixture of gas and clusters is discharged through an orifice into a sourrounding vacuum chamber. The

distribution of cluster sizes is controlled by the temperatures of the oven and condensation chamber

and by the gas flow rate. Experimental parameters can be adjusted to produce clusters up to sizes of

105 atoms.

Laser vaporization is another method of producing clusters. It can produce aggregates with up to

100 atoms or more of any substance which exists in the solid state. In this method of production

of clusters, a pulsed laser beam is allowed to hit a metallic rod or disk placed in a tube. The laser

pulse evaporates atoms producing an extremely hot plasma. This vapor is cooled by a stream of

inert gas flowing through the tube and condensation of the vapor produces clusters of different sizes.

The flowing inert gas carries the clusters to a vacuum chamberwhere the pressure difference induces

a supersonic expansion of the beam. Collisions ocurring during the expansion cool the aggregates

down to a low temperature. Both neutral and ionized clustershas been produced by this method.

1.8 Experimental characterization of clusters

After the production of clusters, it is analyzed to estimatethe size distributions and varios other cluster

properties. The size distribution is estimated with mass spectrometers. There are two main classes

of experimental setups involving either time-dependent ortime-independent electromagnetic fields.

Typical devices with time-dependent fields are quadrupolessetup, ion cyclotron resonance systems

and the widely used time of flight (TOF) set-up. TOF mass spectrometry [2] is a method of mass

spectrometry in which ions are accelerated by an electric field of known strength. The velocity of the

ion depends on the mass-to-charge ratio. The time that it subsequently takes for the particle to reach

a detector at a known distance is measured. From this time andthe known experimental parameters

one can find the charge to mass ratio of the ion. The characterization discussed is valid for gas-phase

synthesis of clusters as discussed above.

X-ray diffraction (XRD) and transmission electron microscopy (TEM) are often used for structure

analysis. X-ray photoelectron spectroscopy (XPS) is useful for anlysing the chemical composition

of the clusters. Magnetic characterization is commonly done using the superconducting quantum in-

terference device (SQUID). The system is designed to measure the magnetic moment of a sample,

from which the magnetization and magnetic susceptibility can be obtained. Temperature dependent

magnetic properties can also be studied. X-ray absorption spectroscopy (XAS), which essentially
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measures the atomic composition of the material by analysing the element specific X-ray absorption

process. This is complementary to XPS, which probes the emission spectra. One of the improtant

experimental characterization techniques for measuring the spin and orbital magnetic moments sep-

arately is XMCD. In this case circularly polarized X-ray from a synchrotron source (which contains

an angular momentum - the helicity) is incident on a sample. The XMCD is yielded by the difference

of the absorption curves for both the helicities of X-ray. The XMCD effect is commonly described

by a two step model [10], which distinguishes the generationof a spin and/or orbitally polarized

photoelectron and the transfer of this photoelectron to free electron state of higher energy.

1.9 Outline of thesis

This thesis addresses mainly the structural and magnetic properties of TM clusters based on DFT. As

TM clusters, Fe, Co, Ni, Pt and their combinations are mostlystudied. TM clusters show enhanced

stability at some particular sizes, known as magic numbers (13, 55, 147, 309, 561, 923,· · · ). Clusters

with magic number of atoms usually have the geometry of a closed shell icosahedron, cuboctahedron

and decahedron. As a result, the main focus is on 13 and 55 atomicosahedron and cuboctahedron.

The structural stability and magnetic properties of isolated and deposited closed shell transition metal

clusters are studied with much focus. Along with the elemental clusters, some of the binary clusters

of (Fe-Co, Ni, Pt) are studied. The motivation for studying binary clusters is that the intermixing of

different atomic species in clusters gives rise to more parameters to control the physical and chemical

properties, those are different from the corresponding elemental clusters. After a short description

of the DFT and specific settings used for the calculations in the second chapter, the elementary and

binary clusters are discussed with emphasis on properties like segregation and mixing in clusters in

the third chapter.

The magnetic clusters are projected as possible candidatesfor future recording media [17], where hy-

pothetically, each cluster can store one bit of informationby means of the magnetic configuration. For

this purpose, magnetic anisotropy is a primary requirement. Since magnetism of small clusters is not

stable due to superparamagnetism and thermal fluctuation isa major menace as size reduction of the

storage devices, therefore, materials with large magneticanisotropy are needed to block the thermal

fluctuations. In chapter four, the magnetic anisotropy, spin moment and orbital moments of elemental

and binary clusters are discussed. The studies on orbital magnetism and magnetic anisotropy needs the

incorporation of spin-orbit interaction in the DFT Hamiltonian. The spin-orbit coupling in the present

case is treated as a perturbation term in the scalar-relativistic Hamiltonian. Theoretical determination

of magnetic anisotropy based on DFT is challenging, becauseof the very small energy differences.

For example, the value of magnetocrystalline anisotropy inbulk is of the order of 10−6 eV. Thus, to

determine the magnetic anisotropy for clusters, the energytolerance to 10−10 eV is necessary which

is a sensitive task [18]. Therefore, calculation of MAE requires much careful attention towards some

facts like the proper convergence of energy and accuracy of the results.
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Physical phenomena associated with surfaces and its interaction with molecules and clusters are cur-

rently much aspired research problems [19]. Chapter five discusses the structural stability and mag-

netic properties of clusters deposited on Pt surfaces. The magnetic anisotropy of deposited clusters

are also discussed.

The use of TM clusters as catalysts is well known [20, 21]. Some studies on the catalytic activity of

metal clusters are attempted and reported in the literature[23, 24]. (Fe, Co, Ni and Pt)13,55 clusters

on a pristine (defect free) and a five-member ring graphene (with defect) sheet are used as substrate

to study the stability of clusters and the cluster-grapheneinterface. This topic is discussed in chapter

six.

The cluster calculations have mostly been perfomed with a quantum mechanical package named as

Vienna Ab initio simulation package (VASP) [25, 26]. It solves the Kohn-Sham equations of local

density or spin-density functional theory, iteratively within a plane-wave basis-set. The interaction

between ions and electrons is described by the projector-augmented wave (PAW) [27] method. In

addition to the VASP calculations, we have used the SIESTA code [28] for a comparative study in

chapter four. In a few case, the cluster calculations have been performed with the full potential FPLO

code of the Dresden group [29], see chapter four. The consideration of catalytic reaction (oxidation

of CO in different environments) in chapter six represents the first step in this important of research.

Here, further calculations are needed, which are beyond thescope of the present thesis.

Thermodynamics of the cluster magnetism is done by the exactdiagonalization method. In chapter

seven, we discuss the Heisenberg spin Hamiltonian to which our cluster can be modeled and then

study the thermodynamic properties by the exact diagonalization technique. We have treated the case

of 13- and 4-atom clusters with spin-1/2 and spin-1 particles [30, 31].
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2 Density functional theory

The DFT is a theory where the many-body problem is treated by the single-particle density through

the Kohn-Sham equations. This was proposed by P. Hohenberg and W. Kohn in 1964 [32]. The

total energy is a functional of the density. Thus all properties of the system can be considered to be

unique functionals of the ground state density. The number of degrees of freedom is now significantly

reduced allowing for quick computations in comparison to other quantum chemical methods. As a

result DFT has become a primary tool for calculation of electronic structure in condensed matter and is

increasingly important for quantitative studies of molecules and other finite systems. The formulation

of DFT as we use today, comes from the classic work of W. Kohn and L. J. Sham [33] and has

become the basis of much of present-day methods for treatingelectrons in atoms, molecules, clusters,

surfaces, adsorbates and bulk. One of the landmark achievement of the DFT is the local-density

approximation (LDA) as the exchange-correlation functional which is very successful in describing

the material properties. Improvements over LDA, like generalized gradient approximation (GGA) is

also mostly recommended in many cases. Below we present a brief theoretical description of the DFT

following the description of Ref. [34]. For more detailed description one must refer to standard books

and review articles.

2.1 Thomas-Fermi-Dirac model

The original DFT of quantum systems was proposed by Thomas [35] and Fermi [36] in 1927. Al-

though their approximation is not accurate enough for present-day electronic structure calculations,

the approach illustrates the way DFT works. In the original Thomas-Fermi method the kinetic en-

ergy of the system of electrons is approximated as an explicit functional of the density, idealized as

non-interacting electrons in a homogeneous gas with density equal to the local density at any given

point. However, in this case the exchange-correlation among the electrons is neglected. Later on in

1930, Dirac formulated the local approximation for exchange. This leads to the energy functional for

electrons in an external potentialVext(r)

ETF[n] = C1

Z

d3r n(r)5/3 +

Z

d3r Vext(r)n(r)+C2

Z

d3r n(r)4/3

+
1
2

Z

d3rd3r
′ n(r)n(r)′

| r− r′ |
(2.1)

where the first term is the local approximation to kinetic energy withC1 = 3
10(3π2)2/3 The ground state
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2 Density functional theory

density and energy can be found by minimizing the functionalETF[n] in Eq. (2.1) and the number of

electronsn(r)

Z

d3r n(r) = N. (2.2)

Using the Lagrange method, the solution can be found by an unconstrained minimization of the func-

tional

ΩTF[n] = ETF[n]−µ{∫ d3r n(r)−N} (2.3)

where the Lagrange multiplierµ is the Fermi energy. For small variations of the densityδn(r), the

condition for a stationary point is

Z

d3r {ΩTF[n(r)+ δn(r)]−ΩTF[n(r)]} →
Z

d3r

{

5
3

C1n(r)2/3 +V(r)−µ

}

δn(r) = 0, (2.4)

whereV(r) = Vext(r)+VHartree(r)+Vx(r) is the total potential. Since Eq. 2.4 must be satisfied for

any functionδn(r), it follows that the functional is stationary if and only if the density and potential

satisfy the relation

1
2
(3π2)2/3n(r)2/3 +V(r)−µ= 0. (2.5)

DFT is attractive because in this case the equation for density is more simpler compared to the many-

body Schrödinger equation that involves 3N degrees of freedom forN electrons. Thomas-Fermi

approach has very crude approximations, which lacks the essential physics, unable to provide a useful

description of electrons in matter.

2.2 The Hohenberg-Kohn theorems

The formulation of DFT by Hohenberg and Kohn applies to any system of interacting particles in an

external potentialVext(r), with the electrons and fixed nuclei. In this case, the Hamiltonian can be

written as

Ĥ = − h̄2

2me
∑

i
∇2

i +∑
i

Vext(ri)+
1
2 ∑

i 6= j

e2

| ri − r j |
. (2.6)

DFT is based on two theorems proved by Hohenberg and Kohn [32], which is as follows.

• TheoremI: For any system of interacting particles in an external potential Vext(r), the potential

Vext(r) is uniquely determined, except for a constant, by the groundstate particle densityn0(r).
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2.3 The Kohn-Sham approach

• TheoremII: A universal functional for the energyE[n] in terms of the densityn(r) can be defined,

which is valid for any external potentialVext(r). For any particularVext(r), the exact ground state of

the system is the global minimum value of this functional, and the densityn(r) which minimizes the

functional is the exact ground state densityn0(r).

2.3 The Kohn-Sham approach

The assumption made behind this approach is that the ground state density of the original interacting

system is equal to that of a non-interacting system, which leads to independent particle equations of

the non-interacting system that can be considered exactly soluble with all many-body terms incorpo-

rated into an exchange-correlation functional of the density. By solving the equations one finds the

ground state density and energy of the original interactingsystem with the accuracy limited by the

approximations in the exchange-correlation functional.

The Hamiltonian for the independent particle system has form

Ĥσ = −1
2

∇2 +Vσ(r) (2.7)

For a system ofN independent electrons withN = N↑ + N↓ obeying this, the ground state has one

electron in each of theNσ orbitalsψσ
i with the lowest eigen valuesεσ

i of the Hamiltonian (Eq. 2.7).

The density of the auxiliary system is given by sums of squares of the orbitals for each spin

n(r) = ∑
σ

n(r,σ) = ∑
σ

Nσ

∑
i=1

| ψσ
i (r) |2 (2.8)

the independent-particle kinetic energyTs is given by

Ts = −1
2∑

σ

Nσ

∑
i=1

〈ψσ
i | ∇2 | ψσ

i 〉 =
1
2∑

σ

Nσ

∑
i=1

| ∇ψσ
i |2, (2.9)

and the classical Coulomb energy of the electron densityn(r) is defined as

EHartree[n] =
1
2

Z

d3rd3r ′
n(r)n(r′)
| r− r′ | . (2.10)

The Kohn-Sham approach to the full interacting many-body problem is to rewrite the Hohenberg-

Kohn expression of ground state energy functional in the form

EKS = Ts[n]+
Z

drVext(r)n(r)+EHartree[n]+EH +Exc[n]. (2.11)

Where,Vext(r) is the external potential due to the nuclei and other external fields (assumed to be

independent of spin),EH : the interaction among the nuclei.
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2 Density functional theory

Using expressions fornσ(r) andTs from Eqs. 2.8 and 2.9 and the Lagrange multiplier method for the

constraints, the Kohn-Sham Schrödinger-like equation is obtained. this has a form

(Hσ
KS− εσ

i )ψσ
i (r) = 0, (2.12)

whereεi are the eigenvalues, andHKS is the effective Hamiltonian

Hσ
KS(r) = −1

2
∇2 +Vσ

KS(r), (2.13)

whereVσ
KS(r) consists of three terms, i.e.,

Vσ
KS(r) = Vext(r)+

δEHartree

δn(r,σ)
+

δExc

δn(r,σ)
= Vext(r)+VHartree(r)+Vσ

xc(r). (2.14)

The last three equations are the Kohn-Sham equations, with the electron densityn(r,σ) and total

energyEKS given in Eqs. 2.8 and 2.11. If the exactExc[n] functional is known, then the exact ground

state density and energy can be calculated for the interacting system.

2.4 Exchange correlation functionals

2.4.1 Local density approximation (LDA)

In local density approximation (LDA) or more generally the local spin density approximation (LSDA),

the exchange- correlation energy is an integral over all space with the exchange-correlation energy

density at each point assumed to be the same as in a homogeneous electron gas with that density,

ELSDA
xc [n↑,n↓] =

Z

d3rn(r)εhom
xc (n↑(r),n↓(r)) (2.15)

Here, the spin quantization axis is assumed to be the same at all points in space. The LSDA is the

most common local approximation for exchange and correlation . In the case of unpolarized systems,

the LDA is found by settingn↑(r)=n↓(r)=n(r)/2. In LDA,

δExc[n] = ∑
σ

Z

dr
[

εhom
xc +n

∂εhom
xc

∂nσ

]

r,σ
δn(r,σ) (2.16)

Hence the exchange-correlation potentialVσ
xc can be expressed as

Vσ
xc(r) =

[

εhom
xc +n

∂εhom
xc

∂nσ

]

r,σ
, (2.17)

Sinceεhom
x (nσ) scales(nσ)−1/3, the LDA exchange terms are

Vσ
xc(r) =

4
3

εhom
x (n(r,σ)). (2.18)
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2.4.2 Generalized-gradient approximation (GGA)

In generalized gradient approximation (GGA), the exchange-correlation potential is treated as a func-

tion of both electron density as well as the gradient of the density. The exchange-correlation functional

in GGA has the form

δExc[n] = ∑
σ

Z

dr
[

εxc +n
∂εxc

∂nσ +n
∂εxc

∂∇nσ ∇
]

r,σ
δn(r,σ). (2.19)

where, the term in the square brackets is the exchange-correlation potential.

δVσ
xc(r) =

[

εxc +n
∂εxc

∂nσ +n
∂εxc

∂∇nσ ∇
]

r,σ
. (2.20)

2.5 Basis sets

A basis set is a set of unknown functions through which the wavefunction is expanded. For a single

electron, the wavefunction can be written as

ψi(r) =
∞

∑
j=1

c jφ j(r) (2.21)

whereφ j(r) are a complete set of functions. Any set of functions could beused as basis functions.

In principle, the basis functions should have the same limiting behavior as the real wavefunction, for

isolated atom or molecules they should decay to zero, and they should be computationally inexpensive.

2.5.1 Localized basis sets

The wavefunction exponentially decays to zero at large distances for isolated atoms and molecules.

This means that the basis functions also should behave in a similar way. Atomic orbitals are the basis

functions possessing this property and have two forms: Slater type orbitals (STO) and Gaussian type

orbitals (GTO).

STOs have the following form in spherical coordinates [37]

φnlmζ
STO(r,θ,φ) = αYlm(θ,φ)rn−1e−ζr

whereα is a normalization constant,Ylm(θ,φ) is the spherical harmonic.l , m, andn are quantum

numbers, andζ determines the radius of the orbit. The exponential dependence on distance is the

same as for the hydrogen atom.

GTOs in spherical coordinates have a form

φnlmζ
GTO(r,θφ) = αYlm(θ,φ)r(2n−2−l)e−ζr2

.
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2 Density functional theory

In both cases the angular dependence of the wavefunction is contained in the spherical harmonics,

where thel ,mvalues determine the type of orbital (e.g.l = 0 is as type orbital,l = 1 a p orbital, etc).

The main difference between STO and GTO is the power ofr in the exponent. GTOs have a zero

slope at the nucleus (r = 0) whereas STOs have a cusp. GTOs also fall off more rapidly with distance

than STOs. These factors suggest that more GTOs are needed toform a suitable basis set than STOs,

roughly three times as many are needed to achieve the same accuracy [37]. However, GTOs are

computationally more efficient than STOs: the factorr in the exponent requires taking a square root

( r =
√

x2 +y2 +z2) which is computationally very slow. This computational efficiency compensates

for the additional number of functions needed, hence GTOs are more commonly used in calculations.

The size of the basis set has a large effect on the accuracy of the calculation. The smallest basis set

possible is the minimum basis set which contains only enoughfunctions to contain all the electrons in

the neutral atoms. Increasing the number of basis functionsimproves the accuracy of the calculation.

2.5.2 Plane wave basis sets

The potential for a periodic system has the property

V(r+na) = V(r) (2.22)

wherea is a lattice vector andn is an integer. From Bloch’s theorem [38], the wavefunction can be

written as a product of a periodic and a wave-like part, i.e.,

ψi(r) = eik·rφi(r) (2.23)

Because of periodicity,f (r) can be expanded as a set of plane waves

φi(r) = ∑
G

ci ,GeiG·r (2.24)

whereG are the reciprocal lattice vectors. Substituting Eq. 2.24 in Eq. 2.23, the wave function can be

written as

ψi(r) = ∑
G

ci,Gei(k+G)·r (2.25)

The number of wavefunctions used is controlled by the largest wave vector in the expansion in

Eq. 2.24. This is equivalent to a cut-off on the kinetic energy since the kinetic energy of an elec-

tron with wave vectork is given by

Ek =
h̄2|k|2

2m
. (2.26)

Using the plane waves, the Kohn-Sham equations can be written as [39]
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2.6 Pseudopotentials

[

∑
G′

h̄2

2m
|k + G|2δGG′ +Ven(G −G′)+Vee(G−G′)+VXC(G−G′)

]

ci,k+G′ = ci,k+Gεi, (2.27)

whereVen(G − G′), Vee(G − G′) and VXC(G − G′) are the Fourier transforms of electron-nuclei,

electron-electron, and exchange-correlation potentials.

The major advantages of using plane wave basis sets:

• it is very easy to calculate all kinds of matrix elements, where the fast-Fourier-transform techniques

are of great help.

• the size of basis set can be increased systematically in a simple way.

• the same basis set can be used for all atomic species,

• convergence towards completeness can easily be tested,

• plane waves do not depend on nuclear positions so, unlike localized basis sets, correction terms are

not needed for the calculation of forces.

The main disadvantage is that the basis sets become large very easily. For finite systems such as clus-

ters and molecules in a plane wave approach, it is essential to construct a supercell in each dimension

in which the system is localized. In order to neglect any interactions with the images, the supercell

should be large enough. This means that a large number of plane waves should be used; nevertheless,

this may be an effective way of solving the problem.

2.6 Pseudopotentials

The application of pseudopotentials in electronic structure is to replace the strong Coulomb potential

on the nucleus and the effects of tightly bound core electrons by an effective ionic potential acting on

the valence electrons. Since the core states remain unchanged, a pseudopotential can be generated and

used to compute properties of valence electrons in the system. The advantage of ultrasoft or norm-

conserving pseudopotentials has led to accurate calculations which are the basis for the development

of new methods in electronic structure.

2.6.1 Norm-conserving pseudopotentials

The norm-conserving pseudo functionsψPS are normalized and are solutions of a model potential

chosen to reproduce the valence properties of all-electroncalculation. In the application of pseudopo-

tential to molecules, clusters or solids, the valence pseudo functions must satisfy the orthonormality

conditions, i.e.,

〈ψσ,PS
i | ψσ′,PS

j 〉 = δi, jδσ,σ′ (2.28)
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so that the Kohn-Sham equations can be written as,

(

Hσ,PS
KS − εσ

i

)

Ψσ,PS
i (r) = 0, (2.29)

with the external potential given by the pseudopotentials.

The norm-conserving pseudopotentials must satisfy the following conditions, namely,

1. All-electron and pseudo valence eigenvalues must agree for the atomic reference configuration.

2. All-electron and pseudo valence wavefunctions must agree beyond the core radiusRc.

3. The logarithmic derivatives of the all-electron and pseudo wavefunctions must agree atRc.

4. The integrated charge insideRc for each wavefunction must agree (norm-conservation).

5. The energy derivative of the logarithmic derivatives of the all-electron and pseudo wavefunc-

tions must agree atRc.

Generation of a pseudopotential starts with the usual all-electron atomic calculation with eachl , m

states treated independently. The total potential is calculated self-consistently for the given approxi-

mation for exchange and correlation and for the given configuration of the atom.

Relativistic effects can be incorporated into the pseudopotentials, since they lead to finite effects in

the interior of the atom very close to the nucleus. The relativistic effects incorporated in the valence

electrons, like shifts due to scalar relativistic effects and spin-orbit interactions, could be easily carried

into the molecular or solid-state calculations.

2.7 Projector augmented wave (PAW) method

The projector augmented wave (PAW) method [27], developed by Blöchl (1994) is a powerful method

for performing pseudopotential electronic structure calculations within DFT. It retains the information

about the correct nodal behavior of the valence electron wave functions and includes the upper core

states in addition to valence states in the self-consistentiterations without significant additional com-

putation. The problem of constructing the projector and basis functions needed for PAW technique

is very similar to the problem of constructing local and nonlocal pseudopotentials. The PAW method

starts with a self-consistent all-electron atomic structure calculation within the framework of DFT.

The projector and basis functions are derived from the eigenstates of the all-electron atomic Hamilto-

nian. They are determined iteratively solving radial differential equations. A detailed description of

the PAW method can be found in Ref [40].
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2.8 Noncollinear magnetism

2.8 Noncollinear magnetism

In the collinear case of a spin polarized system, for spin up and spin down there are always two

densities[n↑(r),n↓(r)] and potentials[V↑
xc(r),V

↓
xc(r)]. Since the spin axis can vary in space, i.e., the

non-collinear case [41], the electron density at every point is represented by a vector giving the direc-

tion.

The local spin density matrix has a form

ραβ(r) = ∑
i

φiψα⋆
i (r)ψβ

i (r), (2.30)

The Kohn-Sham Hamiltonian becomes a 2×2 matrix

Hαβ
KS(r) = − h̄2

2me
∇2+Vαβ

KS(r), (2.31)

where the only part ofVαβ
KS that is non-diagonal inαβ isVαβ

xc .

Although this looks like a major complication, the real difficulty is in the nature of the functionalεαβ
xc .

In LDA it is given by finding the local axis of spin quantization and using the same functional form

εhom
xc (n↑(r),n↓(r)), whereas the gradient of spin axis is taken into account for the modifications of

GGA expressions.

2.9 Spin-orbit coupling

The spin-orbit coupling involves the interaction between electron spin with its orbital motion. It plays

an significant role in determining the magnetic properties such as the magnetocrystalline anisotropy,

magnetostriction and magneto-optical effects. The spin-orbit coupling can be included as a perturba-

tion in the scalar relativistic LSDA Hamiltonian (Eq. 2.13)with a self-consistent treatment of spin-

orbit contribution at each variational step.

Ĥ = Ĥ0 + ĤSO (2.32)

where,H0 is the scalar relativistic Hamiltonian andHSO is the spin-orbit Hamiltonian, which has a

form

ĤSO=
h̄2

2M2c2

1
r

dV
dr

L ·σ = ξL ·σ, (2.33)

ξ = h̄2

2M2c2
1
r

dV
dr and is the spin-orbit coupling strength.

For 3d transition metals, theHSO alters charge density, spin density, and spin moment negligibly [42].

While for heavy elements like 4d or 5d elements,HSO has to be included in the self-consistence loop

for the solution of the Kohn-Sham equations.
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2.10 Methods for the determination of magnetocrystalline

anisotropy

The determination of magnetocrystalline anisotropy energy (EMAE) form first-principles is a great

challenge. It is known that spin-orbit coupling is the origin of magnetocrystalline anisotropy, which is

the fully relativistic total energy difference between twoseparate magnetization directions. There are

three different methods to calculate the MAE; (i) the force theorem [43–45], (ii) the total energy [46],

(iii) the torque method [45, 47]. There are evidences of achieving similar results for most of the 3d

systems.

The calculation of MAE through force theorem includes the difference in the band energies of the

two different magnetization directions with spin-orbit coupling included in the Kohn-Sham equation

in the presence of the same self-consistent scalar-relativistic potential [43, 44]. It has a the following

form

EMAE = E(90◦)−E(0◦) ≈ ∑
occ′

εi(90◦)− ∑
occ′

εi(0
◦). (2.34)

Where,εi are the band energies which are summed up to the occupied bands. In order to restrain the

numerical fluctuations, a large number ofk points are required.

On the other hand, the calculation of MAE from total energiesnot only deals with large number ofk

points but also a well-converged charge density or potential.

The torque method [47] involves the calculation of the expectation values of the angular derivative of

HSOC(spin-orbit coupling term) at some particular angle (θm andφm). The prime in the wave function

denotes the consideration of SOC.

EMAE = ∑
iεocc

〈Ψ′
i(θm,φm) | ∂HSOC

∂θ
| Ψ′(θm,φm)〉. (2.35)

θm andφm can be found from the symmetry of the crystal lattice. However, it gives reliable results

with few k-points.

2.11 Electronic structure calculations

2.11.1 Single point energy calculations

In a single point energy (SPE) calculation, the wavefunction and charge density, and hence the energy

of an arrangement of nuclei is calculated self-consistently. The total energy functional of a system of

electrons and nuclei can be written as

E[ρ(ri),RI ] = Te[ρ(ri)]+Tn+Een[ρ(ri),RI]+Eee[ρ(ri)]+Enn(RI) (2.36)
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whereTe[ρ(ri)] is the electronic kinetic energy,Tn is the nuclear kinetic energy,Een is the electron-

nuclei interaction,Eee is the electron-electron interaction andEnn is the nuclei-nuclei interaction.Ene

is described using pseudopotentials, while for a fixed set ofnuclear positionsTn is zero andEnn is

a constant. Therefore, a SPE calculation is reduced to finding the charge density that minimizes the

total energy functional by solving the Kohn-Sham equations.

The total energy minimization can be done in several ways. One method is through direct diagonal-

ization of the matrix equation 2.27. Starting from an initial trial densityEee is calculated and inserted

into 2.27. A new density is then calculated by inverting the matrix equation 2.27. If the change in

energy between iterations is smaller than a given tolerance, it is then inserted into the total energy

functional and the energy calculated. Otherwise this new density is used to calculate a newEee. This

is repeated until the density and potential are consistent with each other within a given tolerance.

The matrix diagonalization method has the disadvantage that the computational cost of matrix diag-

onalization scales as the cube of number of plane waves. An alternative method is to minimize the

energy functional directly [48], where the energy is a functional of the density, which is determined

by the expansion coefficientsci,k+G. The ground state density is found from the set ofci,k+G that min-

imize the energy functional. Several standard functional optimization methods [49] can then be used

to find the minima of the total energy functional. One of such techniques is the method of Steepest

Descents (SD) [49]. The SD method produces a series of points{Pi}

Pi+1 = Pi + λihi (2.37)

where

hi = −∇ f (Pi).

Here,Pi are sets of plane wave expansion coefficients andf (P) is the energy functional.λi (a scalar)

is the distance along the directionhi from Pi that a minima is located. The SD method proceeds

by moving in the steepest downhill direction from a pointPi until a minima along that direction is

located at pointPi+1. The steepest downhill direction fromPi+1 is then determined (−∇ f (Pi+1)) and

the minima located along that direction is found. This is repeated until the change in the function is

lower than a preset tolerance. The speed at which the SD method will find a minima is limited as at

each step only the information at that point is taken into account. It is easy to think of examples where

this will lead to slow convergence. A better method is the Conjugate Gradients (CG) method [48, 49]].

It differs from the SD method in that each search direction isconjugate to the last one. In CG method

the function has a quadratic form

f (x) ≈ 1
2

x.A.x (2.38)

whereA is the Hessian and is given by
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Ai j =
∂2 f

∂xi∂x j

∣

∣

∣

∣

x=x0

. (2.39)

Using the quadratic form Eq. 2.38 the step needed to get to theminima in the directionhi is given

by [49]

λi =
hi.gi

hi .A.hi
. (2.40)

This however can be found from a one-dimensional minimization alonghi, i.e. without explicitly

calculating the Hessian. As the Hessian is anN×N matrix, for DFT calculations withN = 105−106

plane waves the CG method has a large advantage over methods that explicitly use the Hessian. The

CG method will find a minimum of anN dimensional function inN iterations. For CG and SD

methods to minimize the total energy functional, the wavefunctions have to be orthonormal which is

an additional constraint on the minimization. The number ofiterations required can be substantially

reduced by preconditioning the function [48].

2.11.2 Geometry optimization

The aim of geometry optimization is to generate the lowest energy structure of a molecule or cluster

from any arbitrary starting state. Since using the Born-Oppenheimer approximation, the motion of the

nuclei and the electrons can be separated, hence a geometry optimization consists of a set of single

point energy calculations. For the initial starting geometry, a SPE calculation is performed. The forces

on the nuclei are calculated from the wavefunction using theHellmann-Feynman theorem [50]. The

force in this case is given by

FI = −
〈

∂E
∂RI

〉

(2.41)

whereE is the energy,RI is the position of the nucleus. This force can be used to find the ground

state positions of the atoms. As the forces point towards a local minimum in the energy integrating

the equations of motion for the nuclei will move the nuclei towards an equilibrium structure. Alterna-

tively, functional optimization techniques like SD or CG methods may be used. However the Hessian

based methods [49] may also be used for this purpose.

Two points should be made about the above method. Firstly, ifthe basis set is incomplete, an error

is introduced into the Hellman-Feynman forces, known as thePulay force [51]. However, for a plane

wave basis set the wavefunctions do not depend on the nuclearpositions, hence this error is zero, as

long as the electronic system has converged to the ground state. For situations where the cell shape

changes analogous Pulay stresses arise. Secondly, the above procedure will find the nearest point in

the configuration space at which the forces are zero. Hence, if a poor starting point is chosen it may

find a local rather than a global minimum in the potential energy surface or if the starting point is an

energy maximum it may stay there. This procedure can also be rather time consuming with many SPE
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calculations needed to find the minima. Thus it is common to perform an initial energy minimization

using molecular mechanics calculations to get to the vicinity of a minima and then perform a fullab

initio geometry optimization.
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3 Structure and magnetism in transition
metal clusters

3.1 Introduction

One of the important quest in the physics of transition metalclusters is to understand how the prop-

erties of clusters vary with change in morphology and size. The physical and chemical properties of

clusters, such as magnetic properties and chemical reactivity can be determined by analyzing their

geometry and electronic structures. For instance, the magnetic properties of TM clusters depend

on various parameters like bond lengths, structural geometry, cluster size,d-band filling (TM type),

atomic distributions (for binary clusters) and surrounding environment (deposited clusters). Therefore

it is essential to study the physics of clusters by anab initio approach, where all type of interactions

are modeled through more fundamental electron-electron interactions and correlations.

Transition metal clusters of Fe, Co and Ni have been the main topic of research both experimen-

tally [52–55] and theoretically [56, 57]. Experimental studies based on Stern-Gerlach setup [52] for

magnetic properties of FeN, CoN and NiN clusters show enhancement of the average magnetic mo-

ment for small clusters relative to bulk. With increase in cluster size, upto few hundreds of atoms, the

average magnetic moment are still higher but slowly approaches towards the corresponding bulk value

in a non monotonous way. The convergence of magnetic moment towards the bulk limit are faster for

Ni and Co in comparison to Fe. There exist various experimental [52, 53] and theoretical [56, 58–60]

studies for the structure and magnetism of Ni and Fe clusters. For example, the geometry of small NiN,

3≤N≤28, clusters have been studied by Parkset al. [61, 62] through molecular adsorption and have

reported different atomic packings with respect to clustersizes. Using the classical molecular dynam-

ics and molecular orbital theory, Reddy et al. [63] have studied the morphology, energetics, electronic

structure and vertical ionization potential and magnetic properties of Ni clusters up to 21 atoms (N

= 21). Through the self-consistent tight-binding model, Aguilera-Granjaet al. [64] have studied the

variation of the magnetic moments of nickel clusters for 5≤ N ≤ 60. Reuse and Khanna [65] have

performed studies on the geometry, electronic and magneticproperties of nickel clusters using the

linear combination of atomic orbitals. They have found a number geometries and spin multiplicities

for NiN (N = 2-6, 8, 13) clusters. A study of the electronic structure and magnetic properties of NiN

(N= 2-39 and 55) clusters was also performed by Duanet al. [58] using LSDA. Futscheket al. [66]

have studied the structural and magnetic properties of Ni clusters through the fixed spin moment cal-
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3.2 Elemental clusters

culations within the GGA based on DFT. Experimental studiesrelated to structure of Fe clusters are

still limited [67–69]. The bond lengths for Fe dimer on neon [67] and argon matrix [68] are pre-

dicted to be 2.02± 0.02 Å and 1.87± 0.13 Å, respectively, through extended X-ray absorption fine

structure (EXAFS) analysis. For a Fe trimer (N = 3), Raman spectroscopy measurements by Haslett

et al. [70] have proved a Jahn-Teller distorted ground state. For Fe clusters larger than three atoms,

no direct experimental results are available regarding thestructural stability. However, experimen-

tally, there exists results for electron affinity and ionization potential [71–74] of Fe clusters up to 100

atoms. Theoretical studies on structure and magnetism of Feclusters are many, which are mainly

based on tight-binding techniques [60, 75] or first-principles approach [76–79]. LSDA calculations

for small Fe clusters containing up to 5 atoms have shown enhanced stabilities for higher-dimensional

clusters [76, 77]. For instance, among several isomers for Fe4, the tetrahedral geometry is more prefer-

able over the square and linear geometry. Using density functional tight binding and DFT, Bobadova

et al. [80] have evaluated the potential energy surface as well as the magnetic properties of Fe clusters

up to 19 atoms. Diéguezet al. [79] have performed LSDA calculations to study the structures and

magnetic moments of Fe clusters up to 17 atoms. There have been studies on the optimal geometries,

binding energies, bond dissociation energies, ionizationpotentials and electron affinities of neutral

and charged iron clusters up to 5 atoms using the nonlocal spin density method [81].

The literature survey discussed above mainly deals with theproperties of clusters based on collinear

treatment of spins, where a global spin quantization axis isassumed for the whole system. One must

note that spin spiral states exist in bulk fcc Fe [82]. On the other hand, triangular lattice structures of

bulk Mn and Cr leads to the spin frustration. This shows the importance of non-collinear magnetism

occurring in clusters. There are already reports for the noncollinear magnetic configurations for small

clusters of Fe, Cr and Mn studied within the LSDA [83–85].

3.2 Elemental clusters

In order to determine the equilibrium geometries, we have considered several isomers (same cluster

size but different structural geometry) for each cluster size. Since the number of isomers increase

rapidly with cluster size, it is nearly impossible to scan all the isomers in the potential energy surface

of each cluster. Therefore, the starting geometry is constructed according to certain educated geuss

backed from literature. After structural optimization, all isomers of NiN and FeN are found to be

distorted from their regular geometries. These structuraldeformations can be attributed to Jahn-

Teller (JT) [14] distortions. Jahn-Teller distortions arecharacterized by structural distortions in finite

systems like molecules and clusters, which is accompanind by removal of any degeneracy of electronic

energy levels near the Fermi level by breaking the symmetry and there by lowering the energy of the

system.
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3 Structure and magnetism in transition metal clusters

3.2.1 NiN clusters

Using the linear combination of atomic and molecular orbitals Reuseet al. [65] have reported a bond

length of 1.76 Å and corresponding binding energy of 1.61 eV/atom for Ni-dimer. Our studies based

on GGA for Ni2 also gives a ferromagnetic ground state, however we obtain slightly larger bond

length of 2.08 Å. We have obtained the binding energy as 1.41 eV/atom, which is slightly smaller.

This difference is due to the degree of approximations used in the calculations. We believe that GGA

gives a much better value and our obtained results also agreevery well with other calculations done

in GGA [56, 66]. Badenet al. [86] have presented results on binding energy calculated using various

functionals and the binding energy is shown to vary from 1.15to 1.25 eV/atom. The experimentally

obtained bond length and binding energy of Ni2 is reported to be 2.15 Å and 1.02 eV/atom, respec-

tively [87]. One observes that the bond length of Ni2 is shorter than the nearest-neighbour distance of

bulk fcc Ni (2.49 Å). We have obtained a magnetic moment of 1.0µB/atom for Ni2.

The equilibrium geometry for Ni3 is a distorted triangle with an average bond length of 2.20 Å.The

total magnetic moment is found to be 0.733µB/atom and a binding energy is 1.84 eV/atom. It must

be compared with results obtained by Castroet al [56], where they have obtained a regular equilateral

triangle as the ground state structure. The value of bond length, magnetic moment and the binding

energy are howerver comparable to the values obtained from our calculations, on the other hand the

binding energy reported by Futscheket al. [66] is slightly lower. The reason for obtaining a low

binding energy can be accounted from the structural optimization which they have performed within

fixed-spin constraints. Our calculations, however, are done with fully unconstrained relaxation also

allowing for noncollinear magnetic moments. LSDA values ofbond length, magnetic moment and

binding energy reported by Reuseet al. [65] agrees very well with our results obtained from GGA.

For Ni4, a JT distorted tetrahedron is found to be the minimum energystructure. The average bond

length is 2.28 Å (the exreme values of bond length are 2.20 and2.33 Å), total magnetic moment

is 0.86µB/atom and the binding energy is 2.14 eV/atom. The above results match well with those

obtained by Bienatiet al. [88]. Castroet al. have also predicted a Jahn-Teller distorted structure with

a large variation of bond length (from 2.21 Å to 2.41 Å). The value of binding energy reported is 2.33

eV/atom, which is larger as compared to ours. It must be notedthat unlike Ni3, they obtain distorted

structure for Ni4. Reuseet al. [65] on the other hand, have obtained the distorted tetrahedron and

square as structures with degenerate energies for Ni4 cluster. This is unlike the energy trend obtianed

by us for the two structures.

A JT-distorted trigonal bipyramid with three atoms in a triangular ring and two atoms occupying the

apex sites is found to be the stable structure for Ni5 with variation in bond length between 2.25 Å to

2.34 Å. The total magnetic moment and binding energy are calculated to be 0.77µB/atom and 2.39

eV/atom, respectively. The obtained minimum energy structure is in agreement with Castroet al [56],

Reuseet al [65] and Micheliniet al. [89]. LSDA calculations [65, 89] predict a larger binding energy

for Ni5 compared to the present GGA calculations. The calculated total spin moment, howevr, agrees

well with the LSDA calculations.
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For Ni6 cluster, a Jahn-Teller distorted octahedral cluster is obtained as the ground state structure with

a bond length range between 2.29 Å-2.35 Å. Similar structureis predicted as the lower in energy by

Reuseet al. [65] and Micheliniet al. [89]. The calculated values of bond length variations, magnetic

moment (1.1µB/atom) and binding energy (2.61 eV/atom) agree with those ofMichelini et al.[89]. On

the other hand, Reuseet al. have obtained a relatively large value of binding energy∼ 3.30 eV/atom,

which might be due to the small variation of bond lengths in their results. They have obtained a

distorted octahedral Ni6 cluster with bond length variation (2.32-2.35 Å) as low energy strcuture.

The total mangnetic moment obtained in our calculations forNi6(1.10µB/atom) agrees well with the

experimental obtained values of 1.33µB/atom [54].

A distorted pentagonal bipyramidal structure is determined as the stable structure for Ni7 obtained

from our calculations. Using embeded atoms potentials, Böyükataet al. [90] have obtained a similar

structure as the minimum energy structure. The emperical many body potential and molecular dy-

namics simulations by Nayaket al. [91] have also shown such a structure having the lowest energy.

However, LSDA calculations by Desmaraiset al. shows a capped octahedron as the stable structure

for Ni7 [92]. They have also predicted a distorted pentagonal bipyramid structure as energetically

close to the ground state structure. The calculated value ofbinding energy (2.71 eV/atom) is almost

comparable to the corresponding result in Ref. [90].

We have found the lowest energy structure for Ni8 as a distorted bidisphenoid structure with the bond

lengths varying from 2.27 to 2.39 Å. Such a structure is also predicted by Desmaraiset al. [92]. Our

calculated binding energy, 2.84 eV/atom is slightly less ascompared to their values, this is because

of the different exchange-correlation functional used in the calculations. They have used LSDA,

while our calculations are in GGA. The energetically favorable structures for Ni9-Ni11 are observed

to be of polytetrahedral geometry. The binding energies forNi9, Ni10 and Ni11 are calculated to be

2.95, 2.98 and 3.05 eV/atom, respectively, and their magnetic moments are 0.86 (Ni9), 0.8 (Ni10) and

0.75µB/atom (Ni11). The equilibrium geometries and binding energies obtained in our calculations

agree with the results Refs. [90, 91]. Form Ni12 onwards, the icosahedral-like geometry is more

favorable. For instance, the Ni13 cluster is a JT-distorted icosahedron, with average centerto shell

distance of 2.32 Å and a total spin moment of 0.61µB/atom, which is close to the corresponding bulk

value of fcc Ni (0.6µB/atom).

The equilibrium geometries obtained for NiN clusters are illustrated in Fig 3.1. The calculated value

of magnetic moments for NiN clusters are compared with the available theoretical and experimental

results in Fig 3.2. It shows that theoretically obtained values of magnetic moments are lower compared

to that of the experimental ones. Our calculations show a good qualitative agreement with Ref. [63].

The strong fluctuations in the moments of small cluster sizesmay be due to the different equilibrium

structures predicted from various approximations. FromN = 6 onwards, almost a linear decrease in

the magnetic moment is observed untilN = 14. This trend is supported by other theoretical results [58,

63, 64] and also from experiment [54]. There is a discrepancyin the theoretical results for clusters

larger thanN = 14. We must stress that the present calculation is consistent with the experimental
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Figure 3.1: The equilibrium geometries of NiN clusters.

values [54]. The magnetic moment for Ni6 cluster obtained experimentally is smaller than for Ni5

cluster. This is not supported either by our calculations orother theoretical calculations [58, 63],

except that of Aguileraet al. [64].

3.2.2 FeN clusters

The minimum energy morphologies for FeN clusters obtained in our calculation are consistent with

previous DFT calculations [56, 78, 79] with slight difference in the structural parameters. The ground

state geometries of FeN clusters are found to show Jahn-Teller distortion, like NiN clusters.

For Fe2, we found a bond length of 1.98 Å which is in agreement with that of the experimentally

obtained value of 2.02 Å on neon [67] and 1.87 Å on argon [68] matrices. Several DFT studies based

on LSDA have obtained a similar value of 1.95 Å [56] and 1.96 Å [79]. The binding energy for Fe

dimer is calculated to be 1.5 eV/atom, which is larger than the experimental value of 0.65 eV/atom.

LSDA calculations even report a more larger value of bindingenergy [76, 79, 81] based on the LSDA

calculations. Such an overestimation of binding energy in LSDA calculations mainly occurs due to

the error in the atomic energy. However, the calculated value of total magnetic moment 2.82µB/atom

agrees well with the experimental [93] results as well as theDFT calculations [76, 79, 81].

For Fe3 cluster, a JT-distorted triangle with average bond length 2.22 Å (varying from 2.07 Å to

2.32 Å) is found to be the ground state structure. with a magnetic moment of 2.98µB/atom and the
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Figure 3.2: The variation of magnetic moment per atoms as a function of cluster size for NiN clusters.
The curves show a comparison of magnetic moment of several theoretical calculations
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binding energy 1.94 eV/atom. The average bond length for Fe3 agrees well with the corresponding

results from previous DFT calculations [76, 79, 81]. In addition, the calculated magnetic moment per

atom for this cluster is in agreement with the experimentally [93] obtained value of 2.7µB/atom.

There are several predictions for the ground state structure of Fe4. For instance, DFT calculations by

Chenet al.[76] and Castroet al.[81] report an ideal tetrahedron as the minimum energy structure with

total magnetic moment 3.0µB/atom. On the other hand, in Refs. [78, 79, 83], a distorted tetrahedron

was predicted as the most stable structure. This is in agreement with the present results, where a

JT-distorted tetrahedral structure with a bond length varying from 2.16 Å to 2.38 Å is obtained. The

binding energy and average magnetic moment for this clusterare calculated to be 2.36 eV/atom and

3.06µB/atom, respectively.

A distorted trigonal bipyramid is predicted as the ground state structure for Fe5 cluster with bond

lengths varying from 2.28 Å-2.37 Å and an average magnetic moment 3.20µB/atom. A similar ge-

ometry was also reported as the minimum energy structure in Refs. [78, 79, 81, 83]. The value of

average magnetic moments obtained in our calculations are in agreement with Refs [79, 81]. For this

structure, a non-collinear magnetic configuration is obtained, where the magnetic moments of the api-

cal atoms are tilted by 31◦ in opposite directions [94]. Such a non-collinear ground state for Fe5 has

been previously reported by Odaet al. [83] and Hobbset al. [84] through LSDA calculations. They

have obtained an average magnetic moment for Fe5 cluster as 2.9µB/atom, which is relatively small

compared to that of the present calculations.

For Fe6 cluster, a distorted octahedron is found to be the ground state structure with varying bond

lengths between 2.30 Å to 2.70 Å. A total magnetic moment of 3.00 µB/atom and binding energy
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2.85 eV/atom. LSDA calculations by Diéguezet al. [78, 79] have predicted such a structure to be

more favorable for Fe6. Our calculated value of magnetic moment for the octahedronis slightly less

than that of Diéguezet al., who have obtained 3.33µB/atom. The ground state structure for Fe7 is a

distorted pentagonal bipyramid with a bond length range between 2.28 Å-2.56 Å, which agrees with

the results in Refs. [78, 79]. The calculated value of magnetic moment 2.88µB/atom is lowered by

0.26µB compared to Ref. [79].

The ground state structures obtained for Fe8, Fe9 and Fe10 are similar to the corresponding findings

of Diéguezet al. [79], who have found a bidispenoid for Fe8, a tricapped trigonal prism for Fe9 and

a bicapped square anti prism for Fe10 with relatively larger value of binding energies (4.12 eV/atom,

4.19 eV/atom and 4.27 eV/atom for Fe8, Fe9 and Fe10, respectively). The binding energy obtained

from our calculations are 3.17, 3.21 and 3.27 eV/atom which have a lower value compared to those

obtained in LSDA calculations. The average magnetic moments obtained in our calculations are 2.77,

2.69 and 2.63µB/atom for Fe8, Fe9 and Fe10 clusters, respectively.

From N = 11 onwards, the stable structures exhibit icosahedral-like strucutres. In particular, for

Fe13 cluster we obtain a JT-distorted closed shell icosahedron [18, 95] with everage center to shell

distance of 2.39 Å and an average magnetic moment 3.02µB/atom with binding energy 3.45 eV/atom.

LSDA studies also predict a distorted icosahedron as the ground state structure for Fe13 [96, 97]. The

calculated value of average magnetic moment for this cluster is comparable with the experimental

value of 2.6±0.4 µB as obtained from the cluster beam deflection experiments [98]. The collinear

fixed spin moment calculations for Fe13 suggest the existence of two spin states. The high spin state

with total magnetic moment 44µB (all spins parrell) is lower in energy compared to the low spin state

of 34µB where the central spin is reversed with respect to the surrounding atoms. Figure 3.3 shows the

total energies obtained for each spin moment of Fe13 icosahedral cluster using the fixed spin moment

method [99], where the total energy is calculated by fixing the total magnetic moment of the cluster.

It shows that both LDA and GGA yield the same result with the high spin state as the more favorable

in energy as compared to the low spin state. Our findings for GGA calculation of Fe13 agrees with

Ref. [97].

Figures 3.4, 3.5 and 3.6 shows a comparison of the evolution of cluster properties with respect to

cluster size for the minimum energy structures of NiN and FeN clusters. The variation of binding

energy as a function of cluster size for both cluster speciesare illustrated in Fig. 3.4. The variation

of binding energies for NiN and FeN clusters show monotonically increasing trends with increasing

cluster size. However, no anomalous feature is observed towards the existence of magic numbers

previously reported for alkali metal clusters.

In Fig. 3.5, the total magnetic moment per atom as a function of cluster size are plotted for FeN and

NiN clusters, which shows oscillatory behavior for both clusters with increase in the number of atoms

in a cluster. Both clusters show magnetic moment enhancements relative to the corresponding values

of bulk bcc Fe (2.22µB/atom) and fcc Ni (0.6µB/atom). However, such an enhancement for NiN is

found to be weak compared to FeN. It is observed that the magnetic moment in Fe clusters increases
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Figure 3.4: The binding energy per atom for NiN (square) and FeN (circle) clusters as a function of
cluster size.

steadily from Fe2 to Fe5 and then shows a regular decrease until Fe10 and a similar oscillatory trend

thereafter, the magnetic moment enhancement in nickel clusters is abrupt and varies sharply with in-

crease of cluster size, especially for small clusters. It isobserved that Ni6 has the highest enhanced

magnetic moment followed by Ni2. A comparison with Fe clusters show that Fe13 has the maximum
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Figure 3.6: The variation of HOMO-LUMO gap for NiN (square) and FeN (circle) clusters with re-
spect to cluster size.

enhanced moment, whereas Ni13 has the minimum enhanced moment, inspite of the similar struc-

tures. It should be noted that the ground states structures of NiN and FeN clusters have a collinear

arrangements of atomic spins with ferromagnetic coupling.

Besides the total magnetic moment, the HOMO-LUMO gap (highest occupied molecular orbital-

lowest unoccupied molecular orbital) is calculated for these clusters and plotted in Fig. 3.6 as a func-

tion of cluster size. The HOMO-LUMO gap indicates the stability of the electronic distribution for a

system. A large HOMO-LUMO gap generally corresponds to a closed-shell electronic configuration
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which indicates the absence of low-energy excitations in the system. In the present calculations, a

large energy gap is obtained for Ni4, Ni5 and Ni13 clusters with 0.22 eV, 0.19 eV and 0.17 eV, re-

spectively, which indicates an enhanced stability for these clusters. On the other hand, the energy

gap for Fe5 clusters show large fluctuations in particular, for Fe5 and Fe13, a lower gap is observed.

Our calculations of HOMO-LUMO gap for Ni clusters (marked bysquares in Fig. 3.6) show a good

agreement with Ref. [63] from N≥7. Some discrepancies appear for small clusters. The originof

such discrepancies can be due to the different treatment of the electronic structure as well as the use

of model potentials to optimize the geometries. However, our results are more reliable because of

the high-precision calculations performed with the PAW method and a large basis set with an energy

cut-off of 270 eV.

3.3 Size dependence of the magnetic moments

The variation of the average magnetic moment as a function ofthe cluster size is not smooth in general.

The overal decay is due to the increasing number of nearest neighbors, an effect that enhances the

itinerant character of thed electrons. On the surface of the clusters the number of neighbors is still

low compared to the bulk, so only when the number of surface atoms becomes small compared to the

total number of atoms in the cluster, then the cluster magnetic moment converges towards the bulk

moment. Furthermore, small clusters have structures that are not simple fragments of the crystal. All

these ingredients affect the detailed broadening of the electronic levels to form thed bands. So the

exchange splitting between↑ and↓ d sub-bands, the charge transfer from thes to thed band and the

sdhybridization depend on the cluster sizeN, and control the evolution of magnetic moments.

The magnetic moments of Fe, Co and Ni clusters with sizes up to700 atoms have been measured [52,

54, 55] under conditions where the clusters follow superparamagnetic behavior, for low cluster tem-

peratures (vibrational temperatureTvib = 120K for Fe clusters and 78 K for Ni and Co clusters). The

results are shown in Fig. 3.7. The magnetic moment per atom decreases with increasing cluster size

and converges to the bulk value for a few hundred atoms; this convergence is faster for the Ni clus-

ters. However, in the three cases weak oscillations are superimposed to the global decrease of average

magnetic moments. The size dependent magnetic moments has been studied for Fe clusters up to 641

atoms using DFT [100]. Figure 3.8 shows the energetics (leftpanel) and the corresponding magnetic

moments (right panel) for Fe clusters (for details, see Ref.[100]). For each cluster size, the Fe clusters

with bcc, fcc, and Mackay transformed (discussed in Section4.4.2) geometries are structurally opti-

mized. It shows that the for small clusters of 13 atoms, the Jahn-Teller distorted Fe13 cluster shows

enhanced stability, whereas with increase in cluster size (clusters containing more than 100 atoms), the

Fe clusters with bcc symmetry are found to show more stability compared to the Jahn-Teller distorted

or Mackay transformed ones. Concerning the magnetic moments for all clusters (shown in the right

panel of Fig. 3.8), it slowly approaches towards the bulk limit with increase in cluster size, the Mackay

transformed and bcc Fe clusters show a better agreement withthe experimental results [53, 55].

47
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Figure 3.7: The variation of magnetic moments per atom of FeN, CoN and NiN clusters as a function
of cluster size [52]. The dashed lines indicate the bulk values of magnetic moment for bcc
Fe (top), fcc Co (middle) and fcc Ni (bottom).
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size. The energy of bcc structure is considered as the reference. The circles, triangles and
the diamonds denote the shellwise Mackay-transformed, icosahedral and the cuboctahdral
structures, respectively. The shaded circles indicate theMackay-transformed clusters with
different magnetic structures. The energy of the fcc bulk Feis included for comparison.
The inset shows the size dependence of the total energies forvarious geometries evaluated
at the experimental bcc lattice constant. Bottom: The magnetic moments as a function of
cluster size for FeN clusters. The filled symbols such as squares, circles, triangles, dia-
monds denote the moments for bcc, Mackay transformed, icosahedral and cuboctahedral
clusters, respectively. The shaded circles denote the shellwise Mackay transformed struc-
tures with magnetic configuration higher in energy and the shaded squares represent the
relaxed bcc clusters. The crosses denote the experimental data [53, 55] and the bcc bulk
data are taken from Ref. [101]. The solid region are the extension of error bars. Figure is
taken from [100]. Lines are only guide to the eyes.
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3 Structure and magnetism in transition metal clusters

Experiments performed on 4d and 5d transition metal clusters show that clusters develop a magnetic

moment unlike bulk which is nonmagnetic. Rh clusters with less than 60 atoms show magnetic

moments, but larger clusters are nonmagnetic. Clusters with about ten atoms have magnetic moments

µ̄ ≈ 0.8µB, and µ̄ decays quickly betweenN=10 and 20, showing, oscillations that produce large

moments for Rh15, Rh16 and Rh19. Rhodium was the first case in which magnetism was observed

in clusters of a nonmagnetic metal. This behavior is different from that shown by clusters of the 3d

elements Fe, Co and Ni, where the variation of average magnetic moment extends over a much wider

range of cluster sizes. In contrast to Rh, Ruthenium and Palladium clusters with 12 to more than 100

atoms are reported nonmagnetic.

3.4 Binary clusters: Segregation and mixing

In addition to elemental clusters, we have studied the ground state properties of multi-component

clusters. One of the main features of the multi-component clusters is that their properties can be tuned

by changing the chemical ordering and composition [102–108]. As a result, they show physical and

chemical properties different from their constituent elemental clusters as well as bulk. Several stud-

ies have been carried out on the structure and chemical ordering as well as magnetic properties of

bimetallic transition metal clusters [109–114]. Experimentally, Roussetet al. have performed TOF

mass spectrometry and photo fragmentation techniques for free and supported Pd-Pt bimetallic clus-

ters, where they observed the segregation tendency of Pd forboth free and supported cases [115].

Yasudaetal. [116] have studied the alloying and phase stability for Au-Sn binary clusters using trans-

mission electron microscopy and have observed an enhanced solubility of Sn atoms into Au clusters.

Theoretical studies based on EAM method for Cu-Ni and Cu-Pd bimetallic clusters have shown the

surface segregation of Cu atoms for Cu-Ni clusters, and the coexistance of both segregation and or-

dering for the Cu-Pd clusters [117]. The studies on the growth of for Ag-Pd and Ag-Cu core-shell

clusters by Balettoet al. [118] have shown well-defined single-layer shells of Ag atoms on Pd at low

temperatures and on Cu at high temperatures.

Another aspect is to study the magnetism in binary clusters,which is one of our prime interest. It

has been observed that alloying among 3d elements as well as 3d with 4d or 5d element gives rise

to novel magnetic properties. For instance, enhancements of magnetic moments have been observed

experimentally for binary clusters such as Fe-(Co, Ni) [119], Co-Rh [120], Ni-Pd [121] and Fe-

Pt [122]. The enhancements of of magnetic moments for these systems [123–127] are also confirmed

by theoretical calculations.

In this chapter, the segregation and magnetic properties ofbinary Fe-Ni, Fe-Co, Fe-Pt, Co-Pt and

Co-Mn clusters are discussed for closed-shell icosahedra consisting of 13 atoms in the whole con-

centration range. In order to check wheather the propertiesobserved in small clusters still persist for

larger clusters, the binary clusters consisting of 55 atomsare studied. Unlike the case of 13-atom

binary clusters, few compositions for 55-atom binary clusters are considered due to the existence of
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3.4 Binary clusters: Segregation and mixing

Figure 3.9: 81 possible distributions of atoms on the surface shell of 13-atom icosahedral binary
cluster [128]. The distributions concerning the central atom are not shown here. For the
case of Fe-Ni and other binary clusters, the energy of these clusters have been calculated.

large number of distributions (∼ 1014 configurations) of each atomic species. For 13-atom binary

clusters with icosahedral geometry, there are 164 possibilities of distributing two kinds of atomic

species. In Fig. 3.9 the possible distributions of two atomic species on the surface of the icosahedral

shell are displayed.

The mixing energy is calculated for the binary clusters, which measures the stability of the heteroge-

neous system with respect to its composition. For clusters,it is defined as the difference in energy to

construct the binary cluster from the identical configurations of its elemental constituents. The mixing
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3 Structure and magnetism in transition metal clusters

energy per atom of a bimetallic cluster is given by,

EMix =
1
N

[

EAnB(N−n)
− n

N
EAn −

(N−n)

N
EBN

]

(3.1)

where, EMix : Mixing energy per atom. A, B: Different species of atoms in the cluster. N: Total

number of atoms in the bimetallic cluster. n: Number of atomsof species A. EAnB(N−n)
: Total energy

of the bimetallic cluster.

3.4.1 Fe-Ni

Binary Fe-Ni systems are important from many respects, one of them is the Invar property, where

the alloy of Fe-Ni with 65 % Fe and 35 % Ni shows a low linear expansion for a wide range of

temperature [129]. The Invar anomaly has been predicted forFe-Ni nanoparticles with upto∼ 8600

atoms using molecular dynamics simulation, where the average nearest neighbour distance is observed

to vary slowly for a range of temperature and then rises linearly with temperature as expected for

higher temperature [130]. Therefore, studying the nature of chemical ordering or segregation in such

system is of immense interest.

The structural stability of Fe13−nNin clusters have been studied for all compositions. For each cluster

composition of Fe13−nNin, several isomers with different distributions of Fe and Ni atoms were re-

laxed without any constraints of symmetry. The lowest energy isomers for each cluster composition

are illustrated in Fig. 3.10. We observe some degree of distortion for all clusters deviating from their

symmetric geometry. However, the distortions are large forcompositions in the Fe-rich part. This is

expected, as elemental Fe13 shows large degree of distortion compared to Ni13 [95].

The most favorable configurations in the whole Ni concentration range are characterized by the sur-

face occupancy of Ni atoms on the icosahedron. In spite that Ni atoms occupy the surface sites,

different trends appear for the arrangement of Ni atoms at different range of compositions [131]. For

instance, the composition with two Ni atoms,i.e., for Fe11Ni2, the energetically preferable structure is

characterized by two Ni atoms occupying the nearest-neighbour positions of the surface shell of icosa-

hedral cluster. A detailed study regarding the possible distributions and energetics for this cluster has

been carried out in Ref. [95]. In order to confirm the tendencyfor the occupancy of Ni atoms in the

low Ni concentration range, we have considered a cluster composition Fe13Ni2, where the energetics

are studied by capping two Ni atoms at several positions on the Fe13 icosahedron. The energetics

and magnetic moments for all possible arrangements of two Niatoms are reported in Fig. 3.11. We

observe that the energetically favorable structure corresponds to the nearest neighbour occupancy of

Ni atoms on the surface of Fe13 icosahedron with maximization of Ni-Ni bonds. For Fe11Ni3, the

lowest energy configuration corresponds to the Ni atoms occupying the nearest neighbour sites in the

surface shell of the icosahedral cluster as observed for Fe11Ni2.

With increasing number of Ni atoms, different trends appearregarding the distribution of Ni atoms

in the cluster. For instance, for clusters having 4 to 7 Ni atoms, instead of the nearest-neighbour
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3.4 Binary clusters: Segregation and mixing

occupancy, Ni atoms prefer a ring-like arrangement with a maximization of Fe-Ni bonds. Such distri-

bution trends of Ni atoms has been described for Fe8Ni5 in Ref. [132], which is a suitable candidate

for the study of Invar anomalies [133] in Fe13−nNin clusters primarily found infcc bulk Fe-Ni alloy

with 65% Fe and 35% Ni. For clusters withn = 8 onwards, i.e., in the Ni rich part, the minimum

energy structures possess large number of Fe-Ni bonds. Figure 3.12 and Table 3.1 depicts the number

of Fe-Fe, Fe-Ni and Ni-Ni bonds for the low energy compositions of these clusters.

Figure 3.13 shows a comparison of mixing energies as a function of Ni concentration for clusters

and bulk alloy of Fe-Ni in the left and right panel, respectively. The mixing energy per atom for

the lowest energy isomers of Fe13−nNin clusters with respect to Ni concentration is plotted in the

left panel of Fig. 3.13 [131]. The nonlinear mixing energy curve indicates various degree of mixing

in the same system depending on the composition of the binarycomponents. Out of the minimum

energy distributions for all compositions, it is observed that Fe3Ni10 has gained higher stability due to

the lower value of mixing energy in comparison to other compositions. A comparison of the mixing

energy plot for Fe13−nNin clusters with the fcc Fe-Ni bulk alloy [134] (right panel of Fig. 3.13), shows

similar qualitative trends with respect to the composition. Both the plots show clear indications of two

overlapping parabola occurring at two different compositions. Both the parabola seem to meet at a

composition of 30% Ni, which is near to the composition of theInvar alloy in bulk Fe-Ni alloy with

35% Ni. In addition, we have studied the mixing energies of small (Fe-Ni)N clusters withN = 3,.., 6.

For N = 3, 4, 5 and 6, the triangular, tetrahedral, trigonal bipyramidal and octahedral geometries are

chosen, respectively, which are predicted as the stable geometries for the elemental Fe and Ni clusters.

Figure 3.14 and 3.15 illustrate the mixing energies for these clusters as a function of Ni concentration.

For all cases, the lowest energy structures for each composition are found to be distorted. For 5- (see

top panel of Fig. 3.14) and 6-atom Fe-Ni clusters (see Fig. 3.15), the Fe atoms prefer to be at the basal

triangle of the trigonal bipyramidal structure and basal square part of the octahedron, respectively.

A ferromagnetic ordering is found to be stable for the lowestenergy structures of each composition

of Fe13−nNin clusters. With increasing number of Ni atoms, the magnetic moment show a decreasing

trend.

In order to investigate the segregation and mixing properties for 55 atom Fe-Ni clusters, we have

opted for the compositions in two extreme regions; in the Fe rich part: Fe43Ni12 and in the Ni rich

part: Fe12Ni43. For every composition, several random distributions of atoms are optimized. The

energetically favorable isomers obtained for Fe43Ni12 and Fe12Ni43 are shown in Fig. 3.16. For the

Fe-rich composition, the preferrable structure corresponds to the occupancy of 12 Ni atoms on the

most exposed sites (the vertex positions) on the surface of cluster creating a maximum number of Fe-

Ni bonds. On the other hand, for the Ni-rich composition, 43 Ni atoms occupy the surface shell with

12 Fe atoms positioned towards the interior of the cluster and form a core-shell type arrangement. The

occupancy of Ni atoms on the surface is due to the fact that Ni has a lower surface energy compared to

Fe [139]. Such site-selected distribution of atoms in a binary cluster clearly indicate the segregation

behavior in clusters which is observed primarily in bulk binary alloys.
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3 Structure and magnetism in transition metal clusters

Table 3.1: The nearest neighbour bonds for the lowest energyconfigurations of Fe13−nNin clusters in
the whole range.

Cluster Fe−Fe Ni−Ni Fe−Ni
Fe13 42
Fe12Ni1 36 0 6
Fe11Ni2 31 1 10
Fe10Ni3 27 3 12
Fe9Ni4 21 3 18
Fe8Ni5 16 4 22
Fe7Ni6 12 6 24
Fe6Ni7 9 9 24
Fe5Ni8 7 13 22
Fe4Ni9 4 16 22
Fe3Ni10 2 20 20
Fe2Ni11 1 25 16
Fe1Ni12 0 30 12
Ni13 42

Figure 3.10: The lowest energy structures for Fe13−nNin clusters. The blue and pink spheres denote
Fe and Ni atoms, respectively. The mixing energy is calculated for these structures.

An antiferromagnetic ordering of atomic spin moments with the magnetic moment of central Fe atom

aligned in the opposite direction is found to be stable for Fe43Ni12, whereas, for (Fe12Ni43), a ferro-

magnetic ordering is more favorable.
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3.4 Binary clusters: Segregation and mixing

∆E = 0.0 eV E = 0.07 eV E = 0.38 eVE = 0.16 eV∆ ∆ ∆

Figure 3.11: Energetics of Fe13Ni2 clusters. Blue and pink balls denote the Fe and Ni atoms, respec-
tively. A ferromagnetic ordering is favored for all isomerswith magnetic moment 2.93
µB/atom for each case.
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Figure 3.12: The number of nearest neighbour bonds with respect to the number of Ni atoms for
the lowest energy structures of Fe13Ni13−n cluster. Fe-Fe: Blue, Ni-Ni: Red and Fe-Ni:
Diamond and the total number of bonds: square for the Fe13Ni13−n cluster.

3.4.2 Fe-Co

The lowest energy structures for each composition of Fe13−nCon clusters are illustrated in Figure 3.17.

The preferrable isomers for every composition of Fe13−nCon clusters corresponds to distorted icosahe-

drons with the occupation of Co atoms at the center position of cluster. The tendency of occupancy of

Co atom at center position of Fe13−nCon icosahedron has been reported in a previous DFT study [135].

In our studies, the segregation tendency is found to be more pronounced in the Co-poor concentra-

tions, with the formation of maximum Fe-Fe bonds on the surface. On the other hand, in the Co-rich

concentrations, the mixing tendency is more dominant, where Fe atoms prefer to be far apart from

each other and thus minimizing the number of Fe-Fe bonds. Forthe intermediate range of compo-

sitions, however, there is a competition between segregation and mixing. For this case, a ring-like
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Figure 3.13: Left: The variation of mixing energy with respect to the composition for the lowest
energy structures of Fe13−nNin clusters. Right: Mixing energy for bulk Fe-Ni alloy as a
function of Ni concentration [134]. The red curve in the right panel should be compared
with the mixing energy curve of clusters.
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Figure 3.14: The variation of mixing energy in eV/atom with respect to Ni composition for (Fe-
Ni)3,4,5 clusters. The top, middle and bottom panels are the mixing energies for 5-, 4-
and 3-atom Fe-Ni clusters, respectively.

arrangement of Co atoms is more favorable with maximum number of Fe-Co bonds. This is marked

from Table 3.2 and Fig. 3.18 (left panel), where the total number of Fe-Fe, Co-Co and Fe-Co bonds

for the lowest energy structures are plotted.
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Figure 3.15: The mixing energy per atom for Fe6−nNin octahedron as a function of Ni concentration.
The average magnetic moments for the binary clusters are in units of µB/atom. Blue and
pink balls represent Fe and Ni atoms, respectively.

Figure 3.16: Energetically preferrable structures for Fe43Ni12 and Fe12Ni43 clusters. The blue and
pink spheres are marked by Fe and Ni atoms.

The mixing energies for the lowest energy strucutres of Fe13−nCon clusters are plotted as a function

of Co concentration in Fig. 3.18 This suggests an enhanced stability for the nearly equiatomic Fe7Co6

cluster. It should be noted that the mixing energy shows oscillatory trend in the Invar concentration

range with with 60≤x≤100 for bulk Fe100−xCox.

A ferromagnetic ordering is found to be stable for the lowestenergy structures of all compositions

for Fe13−nCon clusters. In Table 3.3, the average magnetic moment on each atomic species and the

total magnetic moment for the clusters are presented. The total magnetic moment per cluster shows a

monotonically decreasing trend with increasing number of Co atoms, as reported in Table 3.3. Such

a decreasing order can occur because of the substitution of Fe by Co atoms. However, for the Co-rich

compositions, the average local magnetic moments are observed to have larger values both for Fe
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3 Structure and magnetism in transition metal clusters

(MFe) and Co (MCo) sites as shown in Table 3.3. It is also observed that Fe gainsmaximum magnetic

moment while surrounded by Co atoms. This suggests the important role of Co in enhancing the

magnetism of Fe. Our studies agree well with previous theoretical studies [123]. However, such

finding is in contrary to experimental results [136] for Fe orFeCo monolayers on W(110) substrate,

where maximum magnetic moment is found on pure Fe compared toFeCo monolayers.

Table 3.2: The nearest neighbour Fe-Fe, Co-Co and Fe-Co bonds for the favorable structures of all
compositions of Fe13−nCon clusters.

Cluster Fe−Fe Co−Co Fe−Co
Fe13 42
Fe12Co1 30 0 12
Fe11Co2 25 1 16
Fe10Co3 21 3 18
Fe9Co4 16 4 22
Fe8Co5 12 6 24
Fe7Co6 9 9 24
Fe6Co7 6 12 24
Fe5Co8 4 16 22
Fe4Co9 2 20 20
Fe3Co10 1 25 16
Fe2Co11 0 30 12
Fe1Co12 0 36 6
Co13 42

Concerning the (Fe-Co)55 atom clusters we have chosen Fe43Co12 and Fe12Co43 clusters for the in-

vestigations. For Fe-rich composition, i.e., Fe43Co12, the energetically favorable structure is char-

acterized by the occupancy of Fe atom at the center and the outermost-shell of the cluster. The 12

Co atoms, however prefer the inner shell. This indicates thecoexistence of both surface segregation

and ordering. From the phase diagram of Fe-Co alloy [137, 138], the existence of ordering phase at

low temperature region for Fe-rich compositions also showssuch behavior. On the other hand, for

Fe12Co43, 12 Fe atoms segregate towards the surface of the icosahedron cluster being far away from

each other, as observed for 13-atom clusters in the Co-rich side with 8≤ n≤ 11. This suggests a dom-

inant role of segregation over ordering for this composition. Both compositions have a ferromagnetic

alignment of magnetic moments.

3.4.3 Fe-Pt

The energetically favorable structures for Fe13−nPtn clusters in the whole range of compositions are

shown in Fig. 3.19. We observe that the ground state structure for all compositions are dependent

on the distribution of atoms in such a way that Fe atoms tend tobond among itself more favorably

than Pt. The icosahedral structure is found to be stable onlyfor the low and high concentrations of Pt
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3.4 Binary clusters: Segregation and mixing

Table 3.3: The average magnetic moments (µB/atom) on Fe (MFe)and Co (MCo) atoms for the low-
est energy structures of Fe13−nCon clusters. Mtot: The total cluster magnetic moment in
µB/cluster.

Cluster MFe MCo Mtot

Fe13 44.00
Fe12Co1 3.08 1.77 39.00
Fe11Co2 3.09 1.88 38.00
Fe10Co3 3.09 1.95 37.00
Fe9Co4 3.10 1.95 36.00
Fe8Co5 3.03 1.86 34.00
Fe7Co6 3.05 1.87 33.00
Fe6Co7 3.11 1.91 32.00
Fe5Co8 3.08 1.93 31.00
Fe4Co9 3.17 1.99 31.00
Fe3Co10 3.17 2.03 30.00
Fe2Co11 3.22 2.05 29.00
Fe1Co12 3.17 2.07 28.00
Co13 31.00

Table 3.4: The nearest neighbour Fe-Fe, Pt-Pt and Fe-Pt bonds for the favorable structures of all
composition of Fe13−nPtn clusters.

Cluster Fe−Fe Pt−Pt Fe−Pt
Fe13 42
Fe12Pt1 36 0 6
Fe11Pt2 30 0 12
Fe10Pt3 27 0 12
Fe9Pt4 20 2 20
Fe8Pt5 18 2 17
Fe7Pt6 12 0 24
Fe6Pt7 11 0 22
Fe5Pt8 7 6 20
Fe4Pt9 5 8 20
Fe3Pt10 0 18 18
Fe2Pt11 1 25 16
Fe1Pt12 0 30 12
Pt13 42

with Fe atom occupying the center position. At intermediatory compositions, forn = 4 to 10, there

is a competition, as a result the structure is now deformed completely from the icosahedral geometry

exhibiting maximum number of Fe-Pt bonds as listed in Table 3.4. The structural deformation is

understandable from Fig. 3.20, where, the number of nearestneighbor bonds for homo, hetero species

59



3 Structure and magnetism in transition metal clusters

Figure 3.17: Lowest energy structures of Fe13−nCon clusters. Blue and red balls denote the Fe and
Co atoms, respectively.
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Figure 3.18: Left: The variation of nearest neighbour Co-Co(red circle), Fe-Fe (blue circle), Fe-Co
(diamond) and total number of bonds (square) in the cluster with respect to the num-
ber of Co atoms. Right: The variation of mixing energy (eV/atom) with respect to Co
composition for the low energy structures of Fe13−nCon clusters.

and total number of bonds are plotted with respect to the number of Pt atoms. The dotted lines

indicate the linear variation of the corresponding quantities in the infinite system. Due to the structural

deformation, the total number of bonds (black square) is notconstant with respect to the number of

Pt atoms. As a consequence of strong structural deformationfor the intermediatory compositions,

the oscillatory trends appear for the nearest neighbour bonds of Fe-Fe, Pt-Pt and the Fe-Pt, whereas

for Fe13−nCon and Fe13−nNin, these fluctuations in the nearest neighbour bonds are not observed due
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3.4 Binary clusters: Segregation and mixing

Figure 3.19: Lowest energy structures of Fe13−nPtn clusters. Blue and yellow balls denote the Fe and
Pt atoms, respectively.

to the stability of icosahedral structures (see Fig. 3.18 and 3.12 for the nearest neighbour bonds of

Fe13−nCon and Fe13−nNin, respectively).

The variation of mixing energy for the lowest energy structures of Fe-Pt clusters as a function of

Pt composition is shown in the right panel of Fig. 3.20, whichshows more stability for the nearly

equiatomic compositions of Fe-Pt clusters. Like the case ofFe-Co clusters, the mixing energy shows

oscillations in the Invar concentration range, which is from 30% to 60% of Pt concentration.

Now we discuss the magnetic properties of Fe-Pt clusters. The absolute value of average magnetic

moment on Fe and Pt along with the total magnetic moment of thecluster are listed in Table 3.5. A

ferromagnetic ordering is found to be more stable for all compositions of Fe-Pt cluster. Due to the

presence of Fe atoms, there is induced moment on Pt atoms, which is a consequence of intermixing

among the Fe 3d and Pt 5d orbitals. For the Fe-rich compositions, the hybridizationbetween Fe-

Fe orbitals results in slight decrease in magnetic moment compared to that of the atomic moment,

while for the Pt-rich compositions, the local moment on Fe atoms retain their atomic-like character.

For the intermediate compositions, enhancement of magnetic moment for both Fe and Pt atoms is

observed, due to the strongly deformed structures, as a result, each atom possess low coordination

and a hybridization between the Fe and Ptd-orbitals.

Concerning the Fe55−nPtn clusters, we have investigated Fe43Pt12 and Fe12Pt43 clusters. Out of sev-

eral configurations, the energetically favorable structure for both compositions corresponds to the Pt

segregation towards the surface with the Fe atom occupying the center position of the icosahedron.

This trend is also observed for small Fe13−nPtn clusters. The segregation of Pt atoms on the surface is

a consequence of its lower surface energy compared to that ofFe [139]. For the Fe-rich composition,
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3 Structure and magnetism in transition metal clusters

Table 3.5: The average magnetic moments (µB/atom) on Fe MFe and Pt MPt sites for the lowest en-
ergy structures of Fe13−nPtn clusters. Mtot: The total cluster magnetic moment in units of
µB/cluster.

Cluster MFe MPt Mtot

Fe13 44.00
Fe12Pt1 2.86 0.39 34.70
Fe11Pt2 2.82 0.37 31.70
Fe10Pt3 2.95 0.56 31.14
Fe9Pt4 2.89 0.42 27.62
Fe8Pt5 3.01 0.41 26.15
Fe7Pt6 3.09 0.50 24.60
Fe6Pt7 3.17 0.52 22.64
Fe5Pt8 3.21 0.57 20.62
Fe4Pt9 3.30 0.41 16.90
Fe3Pt10 3.34 0.33 13.32
Fe2Pt11 3.10 0.31 9.62
Fe1Pt12 3.15 0.54 9.70
Pt13 0.15 1.93
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Figure 3.20: Left: The variation of nearest neighbour Pt-Pt(red circle), Fe-Fe (blue circle), Fe-Pt (di-
amond) and total number of bonds (square) in the cluster withrespect to the number of Pt
atoms. Right: The variation of mixing energy (eV/atom) withrespect to Pt composition
for the low energy structures of Fe13−nPtn clusters.

12 Pt atoms prefer the six-coordinated vertex sites with a minimization of Pt-Pt bonds, while in the Pt-

rich composition, a core-shell structure is more favorablewith Fe as the core and Pt as the outer-shell.

Experimental observations through high resolution transmission electron micrographs (HRTEM) have

confirmed the existence of such core-shell structures for icosahedral Fe-Pt nanoparticles with Pt seg-

regation on the surface [140].

Different magnetic orderings are observed at two extreme compositions of Fe55Ptn clusters in contrary
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3.4 Binary clusters: Segregation and mixing

to 13-atom clusters of Fe-Pt. The Fe43Pt12 favors an antiferromagnetic ordering with the moment of

center atom aligned opposite to the surrounding atoms, while for Fe12Pt43, a ferromagnetic ground

state with all moments in parallel direction is more stable.The reason for different magnetic behavior

is related to the interlayer relaxation effects.

3.4.4 Co-Pt

The lowest energy structures for Co13−nPtn clusters show similar behavior as observed for Fe-Pt sys-

tem for all compositions. In this case, the minimum energy structures for each composition form

maximum Co-Co bonds as observed for Fe-Pt clusters. For the Co-rich and Pt-rich compositions,

the Pt occupancy on the surface is more favorable with distorted icosahedral-like structure. However,

for the intermediate compositions, the icosahedral structure is found to be completely deformed ex-

hibiting a different symmetry, which results in maximization of Co-Pt bonds. The different structural

trends can be marked from the oscillations appearing in the mixing energy for the favorable structures

of each composition, plotted in Fig. 3.21.

Like Fe-Pt clusters, all lowest energy structures correspond to a ferromagnetic ground state. The total

magnetic moment of the binary clusters decrease with increasing number of Co atoms. The presence

of Co atoms leads to induced moment on Pt atoms, as depicted inTable 3.6.With increase in Pt atoms,

the average moment on Co as well as the induced moment on Pt increases as a consequence of the

orbital hybridization between the Co 3d and Pt 5d states.

For the Co55−nPtn clusters, both the Co-rich and Pt-rich compositions preferthe segregation of Pt

atoms on the surface with Co being at the center. Due to the lower surface energy of Pt compared to

Co, Pt segregation occurs on the surface of the cluster. However, unlike Fe55−nPtn, the ground state

structures for these clusters are observed to have ferromagnetic ordering for both compositions.

3.4.5 Co-Mn

The structural relaxation of Co13−nMnn clusters for all compositions of the cluster results in Jahn-

Teller distorted icosahedral structures. For the lowest-energy isomers, Mn atom prefer to occupy

the central position of the icosahedral shell with the remaining Mn atoms being far away from each

other. However,Co11Mn2 is an exception to such trend, where two Mn atoms occupy the surface

shell being in opposite positions of the icosahedron. For a detailed description, see Ref. [141]. The

mixing energies as a function of Mn concentration for the lowest energy configurations of Co13−nMnn

clusters are shown in Fig. 3.22. The negative values ofEmix over the whole range of compositions

indicate the favorable solubility of the components. It also shows enhanced stability for the isomers

having approximately equal amount of Co and Mn atoms.

Figure 3.23 shows the magnetic moment per atom for the lowestenergy configurations of Co13−nMnn

clusters. It shows that for the Co-rich compositions up to Co6Mn7, an increasing trend of the total

magnetic moment is observed clusters increases with increase in number of Mn atoms. This agrees
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3 Structure and magnetism in transition metal clusters

Table 3.6: The average magnetic moments inµB/atom on CoMCoand PtMPt atoms for the low-
est energy structures of Co13−nPtn clusters. Mtot: The total cluster magnetic moment in
µB/cluster.

Cluster MCo MPt Mtot

Co13 2.23 29.00
Co12Pt1 1.76 0.34 21.43
Co11Pt2 1.83 0.28 20.65
Co10Pt3 1.88 0.26 19.62
Co9Pt4 1.97 0.40 19.34
Co8Pt5 1.97 0.34 17.49
Co7Pt6 1.93 0.26 15.10
Co6Pt7 2.13 0.61 17.03
Co5Pt8 2.13 0.47 14.41
Co4Pt9 2.12 0.36 11.70
Co3Pt10 2.26 0.37 10.47
Co2Pt11 2.17 0.44 9.22
Co1Pt12 2.10 0.32 6.00
Pt13 0.15 1.93
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Figure 3.21: Mixing energy (eV/atom) with respect to Pt composition for the lowest energy structures
of Co13−nPtn clusters.

with the experimental results [142, 143] through Stern-Gerlach molecular beam deflection technique.

Such increase in magnetic moment with Mn concentration is found to be opposite to that of bulk

Co-Mn alloy, where with increasing Mn concentration the magnetic moment shows a decreasing

behavior [144].

The replacement of a Co atom by Mn at the center of the icosahedron results in a reduction in the

magnetic moment by 8µB, which occurs for the bulk Co-Mn in the low Mn concentrations. However,
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Figure 3.22: Mixing energy in eV/atom with respect to Mn concentration for the lowest energy con-
figurations of Co13−nMnn clusters.
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Figure 3.23: The variation of magnetic moments for the corresponding configurations as shown in
Fig. 3.22 for Co13−nMnn clusters.

irrespective of the central atomic species, the substitution of a Co by a Mn atom at the surface increases

the total cluster magnetic moment by 2µB, up ton≤ 8. This is in agreement with the behavior of Co-

Mn clusters of different sizes observed experimentally [142].

For Co5Mn8, a crossover form ferro to antiferro-like ordering of magnetic moments occurs for the

surface atoms. This is due to the different spin alignments of the corresponding elemental clusters.

For example, Co13 has a ferromagnetic alignment of moments, on the other hand Mn13 has six of the

surface atoms aligned opposite to the rest atoms, thereby exhibiting a small magnetic moment of 3

µB/cluster. Replacing few Mn atoms by Co, still does not changethe antiferromagnetic-like ordering.
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Figure 3.24: The site projected density of states (DOS) for Co12Mn1, Co10Mn3, and Co8Mn5 clusters.
The DOS are calculated with a Gaussian broadening parameter0.05 eV. The Fermi level
is fixed at zero.

This agrees well with the theoretical calculations by Gutsev etal. [145] on elemental Mn clusters,

where the ferro to antiferromagnetic-like transition was observed for Mn5, which is not present in 13

atom Co-Mn clusters with less than 8 Mn atoms.

The absolute values of the local moments of the surface Mn atoms in Mn13 as well as in mixed

clusters retain their atomic-like moments with values 4.1µB, which is 1.5µB larger than that of Co

atoms in Co13. This is shown in Fig. 3.24, where the change of the electronic structure of the lowest-

energy isomers with the number of Mn atoms is displayed. The magnetic moment of the central atom

is reduced for all isomers, resulting together with a decrease in the moment of the surrounding Co

atoms. The surface Mn atoms couple ferromagnetically with the Co atoms. Their large magnetic

moments arise due to the 3d spin-majority states, which are located between -3 to -1 eV below the

Fermi level. However, due to the large exchange splitting, the corresponding minority spin states are

unoccupied, which lie∼ 4 eV higher.

We have studied 55-atom Co-Mn clusters in the low Mn concentration range with up to twelve Mn

atoms due to the availability of experimental [142] data forthe magnetic moments, where all possible

configurations for Co54Mn1 (4) and Co53Mn2 (31) are investigated, while for Co52Mn3 to Co43Mn12

ten randomly chosen configurations are taken into account. Figure 3.25 depicts the magnetic moments

and mixing energies of the 177 optimized structures. For thelowest-energy configurations of each

composition, most of the Mn atoms prefer to occupy the outermost shell of the cluster being far

away from each other, thereby maximizing the number of Co-Mnbonds. For some compositions,

there is occupancy of Mn atom in the cluster center, in spite that the corresponding energy gain is
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Figure 3.25: Top panel: Magnetic moments with respect to thenumber of Mn atoms for (Co-Mn)55

clusters. Bottom panel: The corresponding mixing energies. The dashed line in both
panels connects the quantities for the lowest energy isomers.

relatively small. On the other hand, occupation of the innershell with many Mn atoms results in

highly unfavorable structures.

The magnetic properties of the 55-atom cluster are found to be nearly similar to 13-atom clusters.

Except some configurations that are energetically not relevant, the moments of all isomers lie in a

10µB-wide stripe. Replacing a Co atom at the center by Mn for the isomers with only Co atoms in

the inner shell results in a decrease of magnetic moment by 8µB, which again mimics the bulk trend.

Though it happens for some of the lowest-energy isomers, theoverall increase in moment by 2µB per

Mn atom is clearly recognized and is consistent with experimental results.

Figure 3.26 shows the magnetic moments and the mixing energies for all configurations of some more

13-atom binary clusters. Substituting Co by Ni, a same magnetic trend is observed like the case of

Co-Mn clusters, with a slight increase in the slope of the magnetic moment (from 2µB to 3 µB), as

a function of Mn concentration. This is due to the differencein the atomic numbers of Mn and Ni.

Like Co-Mn clusters, the most favorable structures are characterized by the occupancy of Mn atoms

on the surface of Ni-Mn clusters. In addition, a crossover toantiferro-like magnetic ordering is also

observed for this case, which is shown in Fig. 3.26. For Fe-Mnclusters(the results are illustrated also

in Fig. 3.26), the results are more complicated due to the antiferromagnetic tendencies of the system.

However, in comparison with Co-Mn and Ni-Mn, the mixing energy is found to be very small for

these clusters.
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Figure 3.26: Variation of magnetic moments (top panel) and mixing energies (bottom panel) for all
configurations of 13-atom binary clusters. Black solid lines denote the properties of the
lowest-energy isomers found for each composition. For eachsystem, the quantities are
divided into two groups according to the element occupying the central position of the
icosahedron [141].
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4 Magnetic anisotropy of clusters

4.1 Introduction

One of the major obstacle in the miniaturization of magneticstorage devices is to overcome the

thermal fluctuation of magnetic information which has attracted much attention in current research.

Out of various factors that can help to overcome the obstacle, one of the main strategies is to enhance

the magnetic anisotropy by artificial material manipulation. As an example, for a disk shaped sample,

one can identify two main anisotropy directions: External field acting in the plane of the disk and

external field acting perpendicular to the plane of the disk.This type of anisotropy is popularly called

the shape anisotropy. For a ferromagnetic material the direction of the magnetization depends on the

shape of the material due to the shape anisotropy. Besides shape of the material, the non-isotropic

environment of atoms (in multi-component alloys, for example) in a crystal is another source of

magneto-crystalline anisotropy.

Experimentally, there has been many ways to tailor magneticanisotropies of nanostructured materi-

als especially by manipulating lattice strains, compositions, capping layers, growth procedures, and

surface adsorbates etc. [146–148]). Density-functional calculations have been extensively used to

explore and understand the underlying mechanism at the electronic structure level [42, 149, 150].

The reliable determination of MAE for any material requiresvery accurate electronic structures cal-

culations and proper treatment of the spin-orbit coupling because the energy we are dealing with are

sometimes several orders ofµeV, which can very easily superimpose with the numerical noise. The

spin-orbit coupling term is usually omitted in most of the DFT calculations with the assumption that it

does not play a major role in the chemical bonding and also forquick computations. In DFT the spin-

orbit interaction is treated through the scalar-relativistic or semi-relativistic [151] approaches. The

magnetic anisotropy is studied using the force theorem (fordetails, see Sec. 3.10). Such calculations

involve a large number ofk points to deal with the numerical fluctuation [43]. Several improvements

are proposed, like broadening techniques [152], and the state-tracking and the torque schemes, to

overcome this problem. The evaluation ofEMAE can also be done through the torque method. For a

detail description, see Sec. 3.10. In all our studies on MAE we have adopted the former method, i.e.

calculating the magnetic anisotropy energy using the magnetic force theorem method.
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4 Magnetic anisotropy of clusters

4.1.1 Magnetoelasticity

There exists a different magnetic phenomena, due to the strain dependence of the MAE, known as

magnetostriction or magnetoelastic anisotropy, which is the deformation of the material in response

to a change in its direction of magnetization through the application of a magnetic field [9]. Magnetoe-

lastic anisotropy is caused by the mechanical strain which yields substantial anisotropy contributions

in a material. It has long been exploited in iron-based magnets, such as carbon steels and related

alloys (Fe-Cr, Fe-Co). It is also important in soft magnets,for example in permalloy-type magnets

(Fe100−xNix), where the cubic anisotropy is small and the magnetoelastic contribution easily dom-

inates the total anisotropy. The main source of magnetoelasticity is magnetocrystalline anisotropy.

Magnetoelasticity is closely related to magnetostriction, where the mechanical strain is created by the

rotation of the magnetization direction. Subjecting cubicmagnets to uniaxial mechanical strain yields

a uniaxial anisotropy contribution. Uniaxial magnetoelasticity is defined as

EME

V
= −λsE

2
(3cos2θ−1)ε+

E
2

ε2− εσ (4.1)

whereσ is the uniaxial stress,ε is the elongation along the stress axis and is equal to∆l/l , E is the

Young’s modulus andθ is the angle between the magnetization and strain axes.λs is the saturation

magnetostriction that describes the strength of magnetoelastic coupling. Puttingσ and θ = 0 and

minimizing the magnetoelastic energy with respect toε in Eq. 4.1 yields the elongationε = λs, which

means thatλs is the spontaneous magnetostriction in the magnetization direction. A magnet that has

a spherical shape in the paramagnetic state becomes a prolate ferromagnet forλs > 0 and an oblate

ferromagnet forλs < 0. Sinceλs is very small in most compounds, moderate stressσ = Eε outweighs

the spontaneous magnetostriction, which yields the magnetoelastic anisotropy energy density

EME

V
= −λsσ

2
(3cos2θ−1) (4.2)

and the magnetoelastic contributionK1= 3λsσ/2. A crystal-field phenomenon occurring in highly

symmetric crystals and requiring a degenerate ground stateis the Jahn-Teller effect. Jahn-Teller ions

can lower their energy by spontaneously distorting the surrounding lattice. This energy gain is small

but proportional toε, as compared to the elastic energy, which is proportional toε2. Minimizing the

total energy results in a finite lattice distortion [8]. However, besides the crystal-field analogy, the

Jahn-Teller effect is not related to magnetocrystalline anisotropy.

4.1.2 Magnetic anisotropy in thin films and wires

The origin of large uniaxial magnetic anisotropies in thin films are the surface interface effects and

lattice strains arising because of lattice mismatches and presence of step edges [147, 153]. The con-

tributions from surface and interface strongly depend on the atomic relaxations, chemisorptions, and

growth morphologies. Therefore, the calculation ofEMAE through DFT requires geometrically op-
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Figure 4.1: The phase diagram for a free-standing chain of 10-atoms using classical Monte Carlo
simulations [45].

timized structures. Though GGA improves the results of atomic structures for 3d transition metals

over LSDA, it overestimates the volume of 4d and 5d elements as well as oxides. A complete under-

standing of complex magnetic films requires the analysis of the electronic origin of theEMAE for a

free-standing magnetic monolayer.

There have been many calculations to study the effects of metal substrates or capping layers on the

EMAE of ultrathin magnetic thin films [42, 150]. The values ofK for magnetic films can be deter-

mined through DFT calculations with suitable accuracy. Interestingly,EMAE of Fe, Co and Ni films

can be tuned by surface chemisorptions of O, CO, and H [154–158], and the underlying electronic

mechanism has been actively explored through theory and experiment interplays.

The smallest possible magnetic recording units, such as monoatomic chains, are grown on sub-

strates [159] or built by Scanning Tunneling Microscope (STM) tip manipulation [160] for 100-1000

TB in.−2. The major problem of nanomagnets is the thermal fluctuation, which produces superpara-

magnetism [161] at finite temperature. Therefore, a high anisotropy energy barrier is required in

order to maintain the ferromagnetic ordering. Experimentally, Jametet al. have studied the mag-

netic anisotropy in a 3-nm Co cluster embedded in a niobium matrix and found the dominating role

of atoms on the cluster surface [162–164]. Giant MAEs of Co particles on Pt(111) [3, 165] was

found by Gambardellaet al.. They have also found an oscillation of MAE and the coercive field as a

function of the transverse width of the Co wires on Pt(997). The experimental studies by Rusponiet

al. [166] for Co patches deposited on Pt(111) has predicted the dominant role of edge Co atoms in the

perpendicular uniaxial anisotropy. Pratzeret al. have studied the Fe stripes on stepped W(110) and

found an extremely narrow domain wall, (≈ 6 Å), which might be due to large MAE [167, 168]. Fig-

ure 4.1 shows the magnetic phase diagram for a 10-atom monatomic chain, obtained through classical

Monte Carlo simulations. In order to achieve a high blockingtemperature (300K), below which the
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4 Magnetic anisotropy of clusters

magnetization of each atom aligns along the easy axis and thereby forming a ferromagnetic structure,

stringent conditions are required, such as,J= 320-420 meV andK= 30-50 meV/atom. Such a large

EMAE cannot be achieved in nano-entities only with 3d elements. For the free-standing or supported

Co monatomic chains,EMCA is still a few tenths meV/atom [169]. For Co chains depositedon Pt(111),

Lazarovitset al. have found the easy axis to be perpendicular to the surface and independent of the

length of the chains [170]. There are also studies on the growth of Fen chains on Cu(001), Cu(111)

as well as embedded in the bulk Cu [169]. Shicket al. found that a quasi-one-dimensional Co chain

at the Pt(111) step edge has an easy axis at an odd angle of 20◦ toward the Pt step [171, 172]. In

addition, the spin and orbital magnetic moments are noncollinear. The relationship between MAE

and the anisotropy of the orbital moment, that is adopted formeasuring theEMAE through the X-ray

magnetic circular dichroism technique, was also examined for several systems [149, 173]. LargeK

values upto 30-50 meV have been found through DFT calculations. Model calculations for 3d-5d

trimers (FeOsFe and FeIrFe) showed a large value ofEMAE up to 108 meV, which is due to the high

spin polarization of Fe and the strong SOC from the 5d atoms. Giant values of 30-60 meV/atom were

also reported for Ru or Rh wires by Mokrousovet al. through FLAPW calculations [174].

4.2 Spin moments, orbital moments and magnetic anisotropy f or

clusters

DFT successfully calculates several physical and chemicalproperties of clusters. While calculat-

ing the magnetic properties such as spin and orbital momentsas well as the MAE of small clusters,

from computational point of view, two cases should be taken into account, namely, the non-collinear

magnetization density (the magnetization vector varies smoothly with respect to the position) and the

spin-orbit coupling (the interaction between electron spin and its orbital motion). For Both cases, the

spin-up and spin-down states are mixed together [175, 176].It has been observed that TM clusters

give rise to novel magnetic anisotropic properties compared to the bulk. For example, XMCD studies

by Gambardellaet al. [3] predict a large MAE of a single Co atom (9.0 meV/atom) deposited on

Pt(111) surface. Experimentally, Balashovet al. [177] through inelastic tunnelling spectroscopy have

found very large value of MAE for Fe and Co clusters up to 3 atoms compared to bulk. Theoretically

there exists abundant studies for MAE of clusters depositedon substrates [178–184], however studies

related to MAE of gas phase clusters are still limited [185–188]. Most of them are based on semiem-

pirical techniques. For example, using tight binding technique, Pastoret al. [185] have calculated the

MAE of small Fe clusters up to 7 atoms, where they have found large MAEs for clusters relative to the

corresponding bulk as well as thin films. Using the same method, Xie et al. [189] and Guirado-Lopeź

et al. [186] have calculated the MAE for Co nanoparticles. They have also obtained large MAEs for

Co clusters relative to bulk. As an example, Figure 4.2 showsthe MAE of Co clusters obtained from

tight binding calculations [189]. Calculation of MAE for isolated clusters based onab initio methods

are mostly for TM dimers [188, 190, 191]. For larger clusters, there exists very few reports [192, 193].
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Figure 4.2: The magnetic anisotropy (E001 - E100) in meV/atom of CoN clusters with 1, 3, 5, 7, 9 and
11 layers for 41, 121, 195, 259 and 341 atoms. For Co309, the MAE is calculated as the
difference between (E111 - E001) in µeV/atom [189].

Using DFT, Kortuset al. [192] have calculated the MAE of 5- and 13-atom Co and Fe clusters, where

they have obtained the MAEs for Fe5, Co5 and Fe13 as 0.2, 0.1 and 0.27 meV/atom, respectively.

However, for Co13, they obtain nearly zero MAE. Honget al. [193] have calculated the the orbital

moments and MAE for small Co clusters up to six atoms using thefull potential linearized augmented

plane wave method, where they have obtained significantly enhanced value of orbital moment relative

to the hcp bulk Co, but, the value of MAE calculated by them forCo clusters is less (< 1 meV/atom).

In this respect, binary 3d-5d clusters can be a challenging material, since the alloying of non magnetic

bulk 4d and 5d elements like Rh, Pt and Au with magnetic 3d transition metals result in enhanced

magnetic moments [119, 194–196]. In the present work, we have studied the spin moments, orbital

moments and MAE of elemental M13 (M = Fe, Co, Ni) clusters and the effect of capping them with Pt

atoms. We have chosen the closed-shell icosahedral geometry for the M13 clusters, which are known

to show enhanced stability for such cluster size. The following results are discussed in Ref. [18].

4.3 Computational details

The DFT calculations are performed using the VASP code [25, 26], within the GGA. The parame-

terization by Perdew and Wang (PW91) was used for the exchange and correlation functional [197].
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VASP uses the projector augmented wave (PAW) method [26, 27]and a plane wave basis set. Pe-

riodic boundary conditions were imposed onto a sufficientlylarge cubic cell with an edge length of

15 Å for M13 clusters and 20 Å for M13Ptn clusters which is large enough to minimize the interaction

between the replicated cluster images. Only theΓ point was used for the Brillouin-zone sampling for

the cluster calculations. Gaussian broadening for the discrete energy levels of 0.05 eV, a plane-wave

cutoff of 270 eV, and a Fourier grid spacing of 0.05 Å−1 were applied for all calculations except for

the MAE calculations. The energy convergence criterion forthe self-consistency was set to 10−10 eV.

In order to compute the equilibrium lattice constants for bulk bcc Fe, fcc Ni, and fcc Co, a k-mesh

of (11×11×11) and Gaussian broadening as in the cluster calculations was used. The local magnetic

moments were obtained by integration of the magnetization density over atom-centered spheres with

radii of 1.302 Å (Fe, Co), 1.286 Å (Ni) and 1.455 Å (Pt).

It is known that the MAE for cubic bulk transition metals is ofthe order of 1µ eV/atom. Thus,

calculation of MAE requires much careful attention in orderto overcome minute computational noise,

which can easily interfere with the estimated quantities. Therefore, one must have a very refined

convergence of charge density as well as proper choice of energy cutoff and a large Fourier mesh. For

our studies on MAE of the clusters, we have used a Gaussian broadening parameter of 0.01 eV for

the energy levels and a very high value of plane-wave cut-offof 1000 eV with a 0.046 Å−1 Fourier

grid spacing. The MAE is defined as the maximum energy difference between different settings of

the spin moment with respect to the atoms framework.

For the sake of comparison and for the validation of the results on clusters, some calculations have

been performed using a local-orbitals code, SIESTA (Spanish Initiative for Electronic Simulations

with Thousands of atoms) [28] within GGA. SIESTA uses localized atom-centered basis functions

of “double-ζ with polarization orbitals” quality and triple-ζ for 3d functions have been constructed

according to the standard scheme of SIESTA method [198], version 1.4.13, with the “Energy Shift”

parameter, which controls the localization of basis functions taken 0.01 Ry. Norm-conserving pseu-

dopotentials of Troullier and Martins [199]. The treatmentof the spin-orbit coupling was included as

described by Fernandez-Seivaneet al. [200].

For additional verification, few calculations have been done for the binary clusters with another first-

principles calculation method, namely, the all-electron local orbital FPLO 6.00-24 code [29] in the

fully relativistic mode, where the Dirac-Kohn-Sham equations including the spin-orbit coupling in all

orders are solved [201]. It uses the LSDA [202].

4.4 Elemental clusters

Bulk cubic transition metals exhibit very small value of MAEdue to the high symmetry. Hence it is

expected that the MAE decreases for the perfect icosahedralclusters. With the breaking of symmetry,

for example by tetragonal distortion, the MAE increases considerably [203]. Such an enhancement of

MAE may also occur for the relaxed clusters. Therefore, we have calculated the MAE for both ideal
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Figure 4.3: The perfect icosahedral cluster showing thex-z plane, where the angleθ is varied for the
MAE calculations. E, F, and A abbreviate the directions fromthe center to the middle of
an edge, the middle of a facet, and an outer atom, respectively.

and relaxed M13 clusters. Each of them will be discussed categorically in the following.

4.4.1 MAE of perfect clusters

Figure 4.3 shows the perfect icosahedral cluster with the definition of (x, z)-plane and the angleθ
for the magnetization directions. Forθ = 0, the magnetization is directed parallel to an axis passing

through the central atom and the center of a bond connecting two outer atoms; with increasingθ, the

magnetization direction passes through the center of a triangular facet, through an outer atom and

finally arrives again at a bond center forθ = π/2.

In order to calculate the MAE of the perfect icosahedral clusters, the minimum-energy center-shell

distances for each of the perfect icosahedral M13 clusters are calculated, which are found to be 2.39 Å,

2.33 Å and 2.32 Å for Fe13, Co13 and Ni13, respectively with total magnetic moments 44µB (Fe13), 31

µB (Co13), and 8µB (Ni13). For Fe13 with magnetic moment 44µB, there are difficulties in achieving

convergence in the calculation of MAE at low smearing of 0.01eV due to the dense energy levels

near the Fermi level. Therefore, a perfect icosahedron withtotal magnetic moment 46µB, which

has a center-shell distance of 2.57 Å is considered. Figure 4.4 shows the comparison ofθ-dependent

energy differences (∆E(θ)) of perfect Fe13 ICO (with total magnetic moment 46µB) obtained fromab

initio calculations with the Néel model. The global minima is obtained for the magnetization directed

parallel to the line from the central atom to the circumcenter of the triangular facets and the global

maxima is obtained for the magnetization parallel to the line from center atom to one of the surface

atoms. The magnitude of∆E(θ) for Fe13 cluster is found to be 1.7µeV/atom, which is comparable to

that of the bulk bcc Fe. The MAE of perfect Co13 and Ni13 are found to be 0.31µeV/atom, and 0.77
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Figure 4.4: Left: The energy difference∆E = E (θ) - E(0) in meV/cluster as a function ofθ for a
perfect Fe13 icosahedral cluster, which shows a comparison between theab initio data
(filled circles connected by solid line as guide to the eyes) and the fit to the anisotropy
term of Néel model (the dashed line). The letters A, E, and F refer to the positions defined
in Fig. 4.3 Right: the (θ, φ) for the MAE of the perfect Fe13 cluster.

µeV/atom, respectively. The∆E(θ) shows a similar qualitative trend for Co13 and Ni13 as obtained

for perfect Fe13. The total energy obtained as a function ofθ from theab initio calculations for Fe13

are fitted to the anisotropy expansion of the Néel surface anisotropy model [204, 205] for a nearly

spherical cluster, which is defined as

∆ENéel = ∑
n

En = −∑
n

N

∑
i=1

Dn(ei ·Si)
n. (4.3)

where,Dn is the anisotropy constant of ordern (an even integer),ei the normalized position vec-

tor of atomi along the radial directions andSi are their magnetic moments. Dn are assumed to be

θ-independent. From the symmetry considerations of perfectICO, the second and fourth order con-

tributions have noθ-dependence. The major contribution to anisotropy energy is from the next order

contribution, i.e., the sixth order. Still higher order contributions are negligible and the∆E(θ) could

be successfully fitted to the sixth order fit.

4.4.2 Structural distortion of relaxed clusters

In order to calculate the MAE of relaxed clusters, we have transformed the perfect ICO in two dif-

ferent paths, namely, the Jahn-Teller distortion (JT) and the distortion along the Mackay path, the

mackay transformation (MT). The JT and the Mackay distortions reduce the Ih symmetry of a perfect

icosahedron in two different ways, lifting the (quasi-) degeneracy of the highest occupied molecular

orbitals and gaining in energy from their splitting. The JT distortion [14] maintains the five-fold ro-
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Figure 4.5: The JT-distorted and MT Fe13 clusters in the left and right panels, respectively. Arrows
indicate the direction of relative shift of atoms with respect to the ideal positions. The
arrows have been scaled up by a factor of 20 and 30 for the JT andMT Fe13 cluster. The
box is only guide to the eyes. The actual simulation box size is 153 Å3 [18].

tational symmetry, with a compression of the cluster along the corresponding axis. It also involves

a mutual opposite rotation of the two pentagonal rings pierced by the axis in consideration. The JT

distortion can be characterized by parameterr, defined asr = |rrr3 − rrr4|/|rrr1 − rrr2| (see left panel of

Fig. 4.5 for the labeling of atoms). The MT can be characterized by parameters, which is the square

of the ratio of the stretched to the unstretched edges (see Fig. 4.5, right panel) being equal to 1 and 2

for the perfect icosahedron and cuboctahedron, respectively [206]. That is,s= |rrr4− rrr2|2/|rrr4− rrr12|2.

Figure 4.6 shows the variation of energy as a function of the JT-parameterr and of the Mackay

parameters for M13 clusters. As the starting geometries, the minimum energy center-shell distances

for the perfect ICO of Fe13, Co13 and Ni13 are considered, which are 2.39 Å, 2.33 Åand 2.32 Å,

respectively. The minimum energy structural parameters are reported in Table 4.1. It should be

noted that for the JT-distorted clusters, two of the axial atoms have different center-shell distances

compared to the other atoms, while for the Mackay transformed clusters, the center-shell distances

remains independent ofs.

For Fe13 cluster, the JT-distorted structure is by 125 meV/cluster,the MT cluster by 61 meV/cluster

lower in energy compared to the energy of perfect ICO. For Co13, the JT relaxation is by 7 meV/cluster

and the MT relaxation is by 27 meV lower in energy with respectto the perfect ICO, whereas for Ni13

the energy differences are nearly the same (16 meV/cluster)for both JT and MT clusters, respectively.
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Figure 4.6: The values of ther ands obtained for M13 clusters. The dashed lines indicate the mini-
mum points for both cases. For each case,s= 1 andr = 1 represent the perfect ICO.

Table 4.1: The bond lengths (Å) for the minimum energy JT-distorted (r = 0.965 for Fe13, 1.01 for
Co13, 0.98 for Ni13) and MT (s = 1.07 for Fe13, 0.96 for Co13, 1.04 for Ni13) M13 clusters.

Bonds Fe13 (JT) Co13 (JT) Ni13 (JT)
2× center-shell 2.34 2.35 2.28
10× center-shell 2.42 2.32 2.33
Bonds Fe13 (MT) Co13 (MT) Ni13 (MT)
Center-shell 2.39 2.33 2.32
24× bond length (surface) 2.50 2.46 2.43
6× bond length (surface) 2.58 2.41 2.47

4.4.3 Spin and orbital magnetic moments of relaxed clusters

Table 4.2: The average orbital moment〈L〉 = 1
13∑13

i=1 |Li| and the average spin moment〈S〉 =
1
13∑13

i=1|Si| for MT M13 clusters in units ofµB/atom, compared to the corresponding cal-
culated bulk values for bcc Fe, fcc Co and Ni.

Cluster 〈L〉 〈S〉 〈|L|〉bulk 〈|S|〉 bulk

Fe13 (MT) 0.08 3.05 0.06 2.25
Co13 (MT) 0.12 2.05 0.08 1.67
Ni13 (MT) 0.06 0.66 0.05 0.65
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The average orbital moments〈L〉 and the average spin moments〈S〉 for the Mackay-distorted M13

clusters are compared with related bulk values in Tab. 4.2. The orbital and spin moments are obtained

for the bulk systems at the equilibrium lattice parameters of 2.83 Å (bcc Fe), 3.52 Å (fcc Co) and

3.523 Å (fcc Ni). We observe larger values of spin moments forclusters as compared to that of the

corresponding bulk, which is expected in small clusters. For Ni13, the spin moment is approximately

the same as the corresponding bulk value. On the other hand, the orbital moments for M13 clusters are

found to be larger by factors of∼ 1.2 to 1.5 than in the bulk. For Co13 and Ni13, the orbital magnetic

moments are observed to be more sensitive towards the geometry than spin magnetic moments. Previ-

ous study based on tight-binding technique [207], has shownthat in Ni clusters of up to 13 atoms, the

average orbital moment〈L〉 per atom is about 4 to 8 times larger than the bulk value and with increase

in cluster sizes,〈L〉 was shown to approach the bulk value. Table 4.3 shows a comparison of the

on-site magnetic moments for Mackay-distorted M13 clusters, obtained with VASP and SIESTA. The

relaxed MT coordinates obtained with VASP have been used in the calculation with SIESTA, in order

to compare the spin and orbital moments, and the non-collinearity. For both methods, the spin mo-

ments are aligned parallel (thex- and they-components of the spin vectors amount to at most 0.001µB

and are not shown in Tab. 4.3). The orbital moments slightly deviate from thez-axis, but these devia-

tions are not significantly above the numerical noise level.While comparing the numerical results for

spin and orbital magnetic moments from these two calculation methods, one must take into account

the difference in their definitions. In VASP, the properties(spin and orbital moments) are extracted

as projection onto an atomic sphere, While in SIESTA, the magnetic moments are computed in terms

of the decomposition by projection onto localized, numerical orbitals, known as Mulliken population

analysis. It is known that the local magnetic moments as wellas the atomic charges in heterogeneous

systems are often very different, when estimated accordingto these two different schemes. In order

to illustrate this effect, we give in the last column of Tab. 4.3 (in parentheses), the values of spin mo-

ment, extracted from the SIESTA results by summing up the spatial spin density over atom-centered

spheres with a radius of 1.302 Å. The fluctuations of the magnetic moments over equivalent atoms

are observed, which occur due to the sparseness of the spatial grid with steps of 0.078 Å, on which

the spin density summation has been done. While the results of the Mulliken population analysis by

definition add up to the total moments, the added values of thespatial summations are smaller than

the total moments by about 10%.

4.4.4 MAE of relaxed clusters

The MAE is calculated both for the JT and MT M13 clusters, for the structural parameters compiled in

Table 4.1. The relaxation pattern for both transformationsis shown in Fig. 4.5. In order to underline

the remaining symmetry, the spatial orientation of both clusters is different. According to these dif-

ferent orientations, theθ-path for the calculation of MAE is, therefore different forboth distortions.

For the JT case, theθ = [0, π] path is roughly A-E-A-F-E-F-A (see Fig. 4.5, left panel), while for the
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4 Magnetic anisotropy of clusters

MT case, it follows the path as discussed for the perfect icosahedron, E-F-A-E forθ = [0, π/2].

The θ-dependent energy differences for the relaxed M13 clusters are depicted in Fig. 4.7. For the

JT-distorted M13 clusters, a large second order contribution to the MAE (see Fig. 4.7, left panel) is

obtained, as is a consequence of symmetry breaking. All higher order terms are significantly small and

hence can be neglected. On the other hand, due to the cubic symmetry of the MT clusters, the lowest

order contribution is only the fourth order, D4. No second order anisotropy is found in this case. The

higher orders can be neglected. The corresponding values are listed in Table 4.4. For all cases, the

MAE of the JT-clusters are found to have larger values as compared to that of the MT clusters. For

example, in the case of Fe13, the MAE of the JT-distorted cluster is calculated to be 322µeV/atom,

which is approximately six times larger as compared to the MTFe13 cluster (55µeV/atom). Similarly,

for Co13, the MAE of the JT-distorted cluster has a value of 147µeV/atom and this is approximately

100 times larger than the MT-distorted (1.42µeV/atom) cluster. However, among all M13 clusters,

the JT-distorted Ni13 cluster has the largest value (688µeV/atom), which is about 30 times larger

than that of the MT-distorted ones. The reason behind such large values of MAE for the JT-distorted

clusters compared to the MT ones is the symmetry breaking in the former case. Concerning the

comparision of MAE with respect to bulk, a large value of MAE per atom for JT- and MT-distorted

Fe13 and Ni13 clusters are obtained relative to the corresponding bulk, which is 1.4µeV/atom for bcc

Fe, 2.7µeV/atom for fcc Ni as obtained from LSDA calculations [208]. For Co13, a different trend

is observed. Though the JT-distorted Co13 has a large MAE value∼100 times larger than that of the

value of bulk (1.3µeV/atom for fcc Co), for MT Co13, it is approximately similar to the bulk.

4.4.5 Pt capped clusters: (Fe, Co, Ni) 13Ptn

Binary clusters show a larger diversity compared to the elemental systems. For example, the intermix-

ing of Co with Rh results in large magnetic moments of the binary systems [196]. Also, both free FePt

clusters and Co clusters supported by a Pt substrate show enhanced spin and orbital moments with

respect to corresponding bulk values [209]. Hence, it is interesting to study how the magnetic proper-

ties including the MAE of M13 clusters change as they are capped with Pt atoms. The important point

is to investigate the evolution of spin and orbital moments as well as the MAE in more ”asymmetric”

clusters as obtained by adatoms. Therefore, we have added different number of Pt atoms on the top of

M13 clusters and studied the resulting properties. We considered three high-symmetry positions (A,

E, and F in Fig. 4.3) to cap the M13 clusters by a single Pt atom and found that a Pt position abovethe

middle point of a facet is most favorable in all three cases, M= Fe, Co, Ni. In the following, we used

this finding as a guideline for initial geometries of M13Ptn clusters (n = 3, 5, 20). In all cases, the Pt

atoms were initially placed above the facet centers at a distance found in the single-Pt capping case.

After relaxation, optimized geometries were obtained as shown in Fig. 4.8 for Co13Pt3 (left) and for

Co13Pt5 (right). Since atom projected quantities like spin and orbital moments depend on the specific

code, we compared for the particular case of Ni13Pt3 related data obtained by VASP and FPLO. The

structure optimization was carried out by VASP, and the samegeometry was used to evaluate the
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Figure 4.7: The energy differences∆E = E (θ) - E(0) in meV/cluster as a function ofθ for the JT-
(left) and Mackay-distorted (right) M13 clusters. The magnetization direction varies in the
x−zplane. For the JT case, thex−zplane passes through atoms 3, 4, 12 and middle of the
bond 8-10 (see left panel of Fig. 4.5). For the MT caseθ varies through all atoms shown in
Fig. 4.3. For the JT-distorted clusters, the energy difference for the Co13 and Fe13 clusters
is multiplied by factors of 5 and 2, respectively, whereas for the MT-distorted clusters, the
energy difference for Co13 and Ni13 is multiplied by factors of 40 and 2, respectively.

Figure 4.8: The low energy isomers of Co13Pt3 (left) and Co13Pt5 (right) clusters. Blue and yellow
spheres represent Co atoms and Pt atoms, respectively.

magnetic moments by both codes. In FPLO, the magnetic moments are calculated through Mulliken

population analysis. Fig. 4.9 shows the absolute value of orbital moment per atom|Li| (left) and

the absolute value of spin moment per atom|Si | (right) on each atomic site. It is obvious that both

codes give results which are in good agreement with each other. Therefore, the calculations which are

discussed in the following are done with VASP only.
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Figures 4.10 and 4.11 show the variation of|Li | and the variation of|Si| on each atomic site of M13Ptn
clusters are shown, respectively (the symbols are kept consistent for both figures and the center atom

is placed at 1). Fig. 4.10 shows that the orbital moments of such few-atom systems, which in general

depend sensitively on the particular chemical compositionand geometry. The resulting electronic

structure can be very individual (e.g., the nature of the highest occupied level depends on the electron

number and on the spin moment), and is hard to be predicted without a detailed calculation. It is found

that the|Li| of Fe13 clusters approach the corresponding bulk value of bcc Fe (see Table 4.5), with

increasing number of Pt atoms. This trend is absent in the related Co and Ni systems (see Table 4.5).

The orbital moment on Pt atoms is found to be very sensitive with respect to the core atomic species.

For Fe and Co cores, it grows with the numbern of Pt atoms, but for Ni cores it slightly decreases

with growingn.

In Fig. 4.11, the site-specific spin moments of the capped clusters are shown. Different trends are

found for the core atoms: While the Fe and the Co spin moments are reduced by the capping, the

Ni moments are relatively enhanced. The spin moment on Pt atoms does not show any clear trend.

One intriguing point is the difference between the trends ofPt orbital and spin moments for the

M13Pt3/M13Pt5 clusters, as M varies from Fe to Ni. Here, the Pt orbital moments increase by a factor

of two, while the Pt spin moments are merely unchanged. We assume that the hybridization between

Ni and Pt is weaker than between Fe and Pt due to the different extension of the atomic orbitals.
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Weaker hybridization in general yields larger orbital moments, since the hybridization mixes different

m-states. An approximate conservation of spin moments of thePt atoms while passing from Fe to Ni

may be due to the fact that in each case the maximum induced spin moment on Pt is already reached,

close to a value of 0.5µB which is comparable to the spin moment of the isoelectronic Ni. We have

checked this by additional calculations in which we placed one Pt atom on the top of triangular Fe3

(Co3, Ni3) clusters, which shows a similar variation of|Li| and |Si| as in the cluster calculations of

M13Pt3/M13Pt5.

In the following, quantitative discussions have been presented for the capped clusters. Table 4.5

compiles the values of average orbital moment and average spin moment for each atomic species of

M13Ptn clusters with the total orbital moment Ltot and total spin moment Stot.

4.4.6 Fe13Ptn

It is observed that, the addition of Pt atoms on the Fe13 cluster leads to considerably enhanced values

of Ltot, and reduced value of Stot if the Pt-overlayer is completed. This is due to a considerable re-

duction of the Fe spin moment in comparison with the bare Fe13 cluster. The average orbital moment

〈LM〉 on Fe13 decreases with increasing number of Pt atoms. Regarding theMAE of capped M13Ptn
clusters, we observe that the symmetry of the cluster determines the magnitude of the effect similar

to the case in the M13 systems. For example, four Pt atoms are capped onto Fe13 with the Mackay

orientation, to get the Fe13Pt4 cluster shown on the left panel of Fig. 4.12, and, after optimizing the

structure, the MAE is calculated. Theθ-dependent energy is shown in the right panel of Fig. 4.12. As

a consequence of reduced symmetry, we obtain a second-ordertype anisotropy for this cluster, which

is quite large, exceeding by a factor of 10 (∼7 meV/cluster) that of the MT-distorted Fe13 and by a

factor of 2 that of the JT-distorted Fe13.

4.4.7 Co13Ptn

For Co13Ptn clusters, a ferromagnetic ground state is found to be stablefor all compositions. Ltot

increases monotonically withn. 〈LM〉 and〈LPt〉 for Co13Ptn clusters show a trend similar to Fe13Ptn,

i.e. with increasing number of Pt atoms,〈LM〉 (as defined in Table 4.5) decreases and〈LPt〉 increases.

〈SM〉 on Co13 is merely constant, while the Pt-spin moment increases monotonically with the number

of Pt atoms on the cluster surface. This yields a high spin moment of the completely Pt-covered Co13.

4.4.8 Ni13Ptn

Both Ltot and Stot vary monotonically with increasing number of Pt atoms for Ni13Ptn clusters.〈LM〉
and〈LPt〉 for this cluster do not much depend on the number of Pt atoms. However, a decrease of

〈LPt〉 and 〈SPt〉 from Ni13Pt5 to Ni13Pt20 is also observed, which is the consequence of structural
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Figure 4.12: Left: The Fe13Pt4 cluster with thex-zplane, where the angleθ is varied. The orange and
blue spheres denote the Fe and Pt atoms, respectively. For the optimized Fe13Pt4 cluster,
two opposite edges (those adjacent to the Pt atoms) of the Fe13 cluster moved towards
each other. Right: Theθ-dependent energy differences for the relaxed Fe13Pt4 cluster.
The solid curve is simply a cubic spline fit to data obtained from the GGA calculations.

instability occurring for the latter composition upon relaxation. The geometry optimization of this

cluster converges to a structure with different symmetry, where the Ni atoms are placed closer to the

surface of the cluster. The reason for the segregation of Ni atoms towards the surface may be due to

its lower surface energy compared to Pt [139]. Another related aspect may be observed in the right

panels of Figs. 4.10 and 4.11 showing the variation of onsiteorbital and spin moments. The large

variations in orbital and spin moments just occur because ofthe structural distortion for this cluster

composition. Comparing all three cases of capped clusters,we find that the presence of Pt atoms on

M13 affects the orientation of core orbital moments in such a waythat they always prefer to be in non-

collinear alignment for the M13Ptn clusters, which is not the case in the uncapped M13 clusters. On

the other hand, directions of individual spin moments remain always collinear for the same clusters

indicating that they are less affected by the Pt atoms.
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4 Magnetic anisotropy of clusters

Table 4.3: Spin and orbital moments inµB/atom for the Mackay-distorted M13 clusters as calculated
by VASP and SIESTA, for an initial[001] setting of the spin direction. Thex and y-
components of the spin moment are< 0.001µB (not shown). For VASP calculations, the
spin moments are calculated over atom-centered spheres of 1.302 Å for Fe13, Co13 and
1.286 Å for Ni13, respectively. For SIESTA calculations, the values of spinmoments are
given in terms of Mulliken populations and over atom-centered spheres (shown in paren-
thesis). The same values of atomic radius are used for the SIESTA calculations.

Fe13 (MT)

VASP SIESTA
Atom No. Lx Ly Lz Sz Lx Ly Lz Sz

1 0.00 -0.02 0.11 3.06 0.00 -0.01 0.09 3.43 (3.14)
2 0.00 0.02 0.12 3.06 0.00 0.01 0.09 3.43 (3.12)
3 -0.01 0.00 0.08 3.08 -0.01 0.00 0.08 3.43 (3.16)
4 0.01 0.00 0.08 3.08 0.01 0.00 0.08 3.44 (3.12)
5 0.00 0.00 0.07 3.10 0.00 0.00 0.06 3.44 (3.18)
6 0.00 0.00 0.07 3.10 0.00 0.00 0.06 3.44 (3.15)
7 0.00 0.00 0.07 3.10 0.00 0.00 0.06 3.44 (3.16)
8 0.00 0.00 0.07 3.10 0.00 0.00 0.06 3.44 (3.13)
9 0.01 0.00 0.08 3.08 0.01 0.00 0.08 3.44 (3.18)
10 -0.01 0.00 0.08 3.08 -0.01 0.00 0.08 3.44 (3.15)
11 0.00 0.02 0.11 3.05 0.00 0.01 0.09 3.43 (3.18)
12 0.00 -0.02 0.11 3.06 0.00 -0.01 0.09 3.43 (3.16)
13 0.00 0.00 0.05 2.70 0.00 0.00 0.03 2.75 (2.61)

Co13 (MT)
1 0.00 0.02 0.10 2.06 0.00 0.00 0.08 2.42 (2.16)
2 0.00 -0.02 0.10 2.06 0.00 0.00 0.08 2.42 (2.14)
3 0.02 0.00 0.12 2.05 0.01 0.00 0.10 2.42 (2.17)
4 -0.02 0.00 0.12 2.05 -0.01 0.00 0.10 2.42 (2.14)
5 0.00 0.00 0.15 2.05 0.00 0.00 0.12 2.42 (2.17)
6 0.00 0.00 0.15 2.05 0.00 0.00 0.12 2.42 (2.14)
7 0.00 0.00 0.15 2.05 0.00 0.00 0.12 2.42 (2.19)
8 0.00 0.00 0.15 2.05 0.00 0.00 0.12 2.42 (2.16)
9 -0.02 0.00 0.12 2.05 -0.01 0.00 0.10 2.42 (2.19)
10 0.02 0.00 0.12 2.05 0.01 0.00 0.10 2.42 (2.16)
11 0.00 0.02 0.10 2.06 0.00 0.00 0.08 2.42 (2.17)
12 0.00 -0.02 0.10 2.06 0.00 0.00 0.08 2.42 (2.19)
13 0.00 0.00 0.04 1.97 0.00 0.00 0.04 1.96 (1.88)

Ni13 (MT)
1 0.00 -0.02 0.06 0.66 0.00 0.01 0.07 0.64 (0.68)
2 0.00 0.02 0.06 0.66 0.00 -0.01 0.07 0.64 (0.68)
3 0.00 0.00 0.07 0.70 -0.01 0.00 0.06 0.64 (0.68)
4 0.00 0.00 0.07 0.70 0.01 0.00 0.06 0.64 (0.67)
5 0.00 0.00 0.06 0.70 0.00 0.00 0.05 0.64 (0.68)
6 0.00 0.00 0.06 0.70 0.00 0.00 0.05 0.64 (0.67)
7 0.00 0.00 0.06 0.70 0.00 0.00 0.05 0.64 (0.68)
8 0.00 0.00 0.06 0.70 0.00 0.00 0.05 0.64 (0.68)
9 0.00 0.00 0.07 0.70 0.01 0.00 0.06 0.64 (0.68)
10 0.00 0.00 0.07 0.70 -0.01 0.00 0.07 0.64 (0.68)
11 0.00 -0.02 0.06 0.66 0.00 0.01 0.07 0.64 (0.68)
12 0.00 0.02 0.06 0.66 0.00 0.01 0.07 0.64 (0.68)
13 0.00 0.00 0.02 0.38 0.00 0.00 0.00 0.30 (0.27)
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4.4 Elemental clusters

Table 4.4: Anisotropy constantsDn for the perfect and relaxed M13 clusters obtained by fitting the
GGA results. For the icosahedral symmetry, second- and fourth-order contributions do not
depend onθ for any value ofD2,4. Thus, the related data are omitted. The same holds
for the second-order terms in cubic symmetry (MT clusters).In all cases, only the leading
order terms are essential and all higher order terms can be neglected.r andsare parameters
describing the JT and the Mackay-transformation, respectively. The last column shows the
energy differences obtained from the GGA calculations.

Cluster D2 (meV) D4(meV) D6(meV) r −1 s−1 ∆EDFT (meV)
Fe13 (ICO) 46µB -0.04 0 0 0.02
Co13 (ICO) 31µB -0.01 0 0 0.004
Ni13 (ICO) 8µB -0.02 0 0 0.01
Fe13 (JT) 44µB 15.0 -0.04 4.20
Co13 (JT) 31µB -16.0 0.01 1.90
Ni13 (JT) 8µB 44.1 -0.02 8.90
Fe13 (MT) 44 µB -11.5 0.07 0.71
Co13 (MT) 31 µB -0.4 -0.04 0.02
Ni13 (MT) 8 µB -10.1 0.04 0.32

Table 4.5: The orbital and spin moments inµB/atom for the binary M13Ptn clusters. The average
cluster magnetic moments are defined by〈LM〉 = 1

13∑13
i=1 |Li,M | and〈SM〉 = 1

13∑13
i=1 |Si,M | (M

denotes the 13-atom Fe, Co and Ni clusters),〈LPt〉 = 1
n∑n

i=1 |Li,Pt| and〈SPt〉 = 1
n∑n

i=1 |Si,Pt|
(the number of Pt atomsn = 3, 4, 5, 20)|Ltot| and |Stot| are the corresponding absolute
values of the total orbital and total spin moment for every cluster.

Cluster 〈LM〉 〈LPt〉 〈SM〉 〈SPt〉 |Ltot| |Stot|
Fe13 0.08 3.05 1.09 39.64
Fe13Pt3 0.09 0.08 2.86 0.36 1.43 38.30
Fe13Pt4 0.10 0.14 2.87 0.32 1.74 38.60
Fe13Pt5 0.08 0.13 2.97 0.53 1.76 41.30
Fe13Pt20 0.05 0.17 2.18 0.40 2.74 36.40
Co13 0.12 2.05 1.52 26.60
Co13Pt3 0.10 0.13 1.87 0.42 1.68 25.60
Co13Pt5 0.09 0.16 1.83 0.47 2.06 26.10
Co13Pt20 0.07 0.30 1.88 0.60 4.90 36.20
Ni13 0.06 0.66 0.80 8.65
Ni13Pt3 0.06 0.20 0.81 0.40 1.61 11.70
Ni13Pt5 0.05 0.26 0.80 0.51 2.01 13.00
Ni13Pt20 0.08 0.20 0.81 0.36 3.55 17.60
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5 Structure and magnetism of clusters on Pt
surfaces

5.1 Introduction

Metal clusters show electronic structures which change completely with the slight change in the num-

ber of atoms in the cluster. Similar size-dependencies havebeen found in the magnetism of clus-

ters [54, 56, 79]. In order to realize the practical applications of such properties, a prerequisite is

to deposit the cluster on a substrate. Due to the interactionwith the substrate, it is expected that the

cluster may either emerge into the substrate or show a wetting behavior by spreading over it. Such ten-

dencies have been earlier observed experimentally for nanoparticles [210] and thin films [211, 212].

For example, Co nanoparticles (≈ 10 nm diameter) when deposited on Cu(100) and Ag(100) sub-

strates show burrowing effects at 600K [210]. Similar effects have been observed theoretically based

on molecular dynamics simulations for Ni clusters on Au substrates, where Ni clusters exchange few

of the Au atoms and form the subsurface wetting layers [213].

With change in the morphology, it is evident that clusters deposited on substrate show magnetic prop-

erties different from the freestanding clusters and the bulk [178, 181, 214–217]. To study the magnetic

properties of deposited clusters, several experimental techniques have been employed, such as X-ray

magnetic circular dichroism, Magneto-optic kerr effect orScanning tunnelling microscopy measure-

ments, where large MAE, orbital moment as well as spin momentfor clusters can be obtained [3, 218–

221]. XMCD measurements for supported Fe clusters indicateenhanced spin and orbital magnetic

moments with respect to bulk Fe [220, 221]. Using scanning tunneling spectroscopy, the size depen-

dence MAE for small Co and Fe clusters on Pt(111) surface havebeen studied, where for a single Co

and Fe atom, the MAEs of 10.25 meV/atom and 6.53 meV/atom are measured, respectively [177].

Theoretically, large spin and orbital moments have been calculated for supported clusters relative

to bulk [180–182, 184, 209, 214–217, 222]. Using Kohn-Korringa-Rostoker (KKR) Green’s function

formalism in the framework of DFT, Šipret al.[215] have studied the size dependence spin and orbital

moments for free and supported small Fe and Co clusters on different substrates, where the magnetic

moments decrease with increasing cluster size though it is always larger than the respective bulk val-

ues. Using the same method, Mavropouloset al. [223] have studied the size dependence of the spin

moments of Fe clusters on Ni and Cu substrates, where a lineardecrease of spin moments with cluster

size is reported due to the increase in the hybridization ofd-orbitals with the higher coordination of
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5.2 Deposited elemental clusters

Fe atoms. Studies based on tight-binding technique [178] for Co clusters on Pd(111) surface have

reported large spin and orbital moments as well as MAE for Co clusters where the significant role

of substrate behind the enhanced the magnetic properties has been reported. The above theoretical

studies have neglected the effect of structural optimization of clusters. It is evident that relaxation

effects play an important part in determining the properties of deposited clusters [181, 182, 216].

For example, as a consequence of atomic relaxation, it has been observed that Ni dimers on Cu(001)

surface lead to vanishing magnetic moments [216]. For Fe clusters on Pd(001), the relaxation ef-

fects lead to reduced magnetic moments for Fe clusters and enhanced induced magnetization on the

Pd substrate [182]. Studies of deposited clusters considering the effects of atomic relaxation are still

limited.

In the present chapter, we have studied the structural stability and magnetic properties such as spin

moments, orbital moments and MAE of closed shell M13,55 (M = Fe, Co, Ni) clusters supported

on Pt(001) and Pt(111) surfaces considering the effects of structural relaxation of both clusters and

substrates. Pt is considered as a substrate due to its large spin-orbit coupling. Though the orbital

moment is quenched in 3d TM systems, still they are magnetic. Therefore, the combined effect of

large spin-orbit coupling strength of Pt and 3d TM may give rise novel magnetic properties. This has

been observed for free standing Pt-capped Fe13 clusters, where a large second order MAE has been

obtained [18]. Along with the elemental clusters, the structural and magnetic properties of binary

(Fe-Pt)13,55 clusters on Pt(001) and Pt(111) will be discussed.

To deposit the clusters on Pt surfaces, three and four substrate layers are considered for Pt(001) and

Pt(111), respectively. The periodic boundary condition isimposed along the directions parallel to the

surfaces. The structural relaxation for the cluster/substrate complex is performed using the conjugate

gradient algorithm. In order to mimic the bulk behavior, only the bottom layer is kept fixed for Pt(001)

and for Pt(111) the bottom two layers are kept fixed. Sufficiently extended surface layer and large

vacuum space is created along the perpendicular direction to the substrate to minimize the interaction

between the periodic images of cluster. The integration over the Brillouin-zone is performed at the

Γ point. The Pt(001) surface is constructed with the experimental value of lattice constant 3.92 Å,

while for Pt(111), the equilibrium value of lattice constant 3.99 Å calculated from GGA are taken into

account.

5.2 Deposited elemental clusters

5.2.1 Structural stability of M 13 and M55 clusters on Pt(001) and Pt(111)

The perfect icosahedrons [18] with equilibrium center-shell distances 2.39 Å, 2.33 Å and 2.32 Å

are considered as the starting geometries for Fe13, Co13 and Ni13, respectively for deposition on

Pt surfaces. The structural relaxation of M13 clusters on Pt(001) surface shows a deformation of

icosahedral geometry, where the M13 clusters emerge into the Pt(001) substrate by substitutingfew of

the Pt atoms. Fig. 5.1 for instance, illustrates the starting (top panel) and the optimized (bottom panel)
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5 Structure and magnetism of clusters on Pt surfaces

Figure 5.1: The initial and relaxed structures of Co13 on Pt(001) surface are shown in the top and
bottom panel, respectively with different side views. The red and yellow balls are marked
by Co and Pt atoms, respectively. The optimized structure for Co13 on Pt(001) shows the
substitution of Pt atoms by few Co atoms.

structure of Co13 on Pt(001). For the optimized structure, the Co atoms substitute few Pt atoms in

the substrate and occupy exactly the lattice sites in the substrate indicating a hint for the surface alloy

formation. The reason behind the cluster deformation and emergence of cluster into substrate is be

due to the large mismatch of nearest neighbour bond lengths in bulk Pt and the cluster species, which

is ∼ 28%. The intermixing tendency of M13 clusters on Pt(001) substrate is confirmed by molecular

dynamics simulations at 300K for supported Fe13 and Co13. Experimentally, such tendency has been

observed for Fe and Co thin films on Pt surfaces [211, 212, 224]. In addition to Co thin films,

Zimmermannet al. [210] have observed such effect for supported Co nanoparticles with diameter∼
10nm, where the Co atoms burrow into the Ag(100) and Cu(100) at finite temperature, which they

attribute is due to the large capillary forces on the nanoparticles and the low surface energy of the

substrate. With increase in cluster size, for M55 on Pt(001), the intermixing tendency persists for

Co55 and Ni55, while for Fe55, the cluster spreads over the substrate. To see this effect,the optimized

structures of Fe55 and Co55 clusters on Pt(001) are displayed in Fig. 5.2 in the left and right panel,

respectively. Like M13/Pt(001), all supported clusters are geometrically deformed.

Deposition of M13 and M55 clusters on Pt(111) substrate shows structural trends different from those

on Pt(001). Due to the closed packing, the clusters on Pt(111) do not show any sign of surface

alloying, rather they spread over the surface showing a strong deviation from icosahedron geometry.

However, Fe13 on Pt(111) does not fall in the same trend. For this system, the icosahedral structure is
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5.2 Deposited elemental clusters

Figure 5.2: Relaxed structures of Fe55 (left) and Co55 on Pt(001) surface (right). The later case shows
the substitution of substrate atoms by few Co atoms. The blue, red and yellow balls are
marked as Fe, Co and Pt atoms, respectively.

still preserved.

5.2.2 Spin and orbital moments of deposited elemental clust ers

Previous studies have shown a strong dependency of cluster magnetization on the local environ-

ment [178]. Due to the change in the number of nearest neighbor bonds and hybridization processes,

the magnetic moments of clusters are strongly affected. Similar tendencies are observed in our cal-

culations. The average spin and average orbital moments forM13 and M55 clusters on different Pt

surfaces are reported in Table 5.1. For the sake of comparison, the spin and orbital moments of free

clusters and bulk are listed. It is observed that the spin andorbital moments for the deposited clus-

ters are enhanced with respect to the bulk while they are found to be reduced as compared to the

corresponding free clusters. Calculations based on KKR formalism report such enhancements with

respect to bulk for the spin and orbital moments of small Co clusters on Pt(111) surface [209]. For

M13/Pt(001), the reduction of total spin moments can be quantified approximately by 6µB for Fe13

and Co13 relative to their corresponding free clusters (44µB and 31µB for Fe13 and Co13, respec-

tively). For Ni13, such reduction is found to be relatively weak. The reduction of cluster magnetic

moments on Pt(001) is due to the substitution of Pt atoms by cluster atoms, which results in strong

hybridization among the 3d orbitals of cluster atoms and 5d orbitals of Pt atoms. On the other hand,

M13 clusters deposited on Pt(111) exhibit both spin and orbitalmoments larger than those on Pt(001)

surface. Since clusters spread over the Pt(111) surface, the nearest neighbour coordination for the

cluster atoms with the substrate are less compared to that ofon Pt(001) surface. As a result there is a

weak hybridization among the cluster and Pt substrate. Therefore both spin and orbital magnetic mo-

ments are enhanced on Pt(111). This can also be marked from the electronic density of states (DOS)

plotted in Fig. 5.3, which shows a comparison of the DOS for both free and deposited M13 clusters.

This shows that clusters supported on Pt(111) surface have highly localized peaks with the exchange

splitting at the Fermi level in both spin channels, while forclusters on Pt(001), as a consequence of
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Figure 5.3: Left: The DOS of free standing M13 clusters. Middle and right panel indicates DOS of
M13 clusters on Pt(001) and Pt(111) surfaces. The vertical dashed line indicates the Fermi
level fixed at zero.

strong hybridization with Pt, the broadened peaks show the exchange splitting only in the minority

spin channel at the Fermi level. With increase in cluster size, i.e., for deposited M55 clusters, the

spin and orbital moment does not show any significant change for both surfaces of Pt, in spite of the

fact that the relaxation patterns are different, which is due to the fact that with increasing number of

atoms in the cluster, the number of nearest-neighbour bondsbetween the cluster and substrate in the

interface decreases. Thus the clusters almost retain the magnetic moments like the corresponding free

ones. The deposition of clusters leads to some induced magnetic moments on Pt surfaces.

Table 5.1: The average spin moment per atom〈S〉= 1
N ∑N

i=1 |Si| (where N = 13, 55)and average orbital
moment per atom〈L〉 = 1

N ∑N
i=1 |Li| for deposited M(13,55) clusters inµB/atom, compared

to that of the corresponding unsupported clusters and for bulk bcc Fe, fcc Co and Ni as
obtained from our calculations.

Cluster 〈S〉M/Pt(001) 〈S〉M/Pt(111) 〈|S|〉free 〈|S|〉bulk 〈L〉M/Pt(001) 〈L〉M/Pt(111) 〈|L|〉free 〈|L|〉bulk

Fe13 2.88 2.74 3.05 2.25 0.07 0.08 0.08 0.06
Co13 1.81 3.18 2.05 1.67 0.08 0.12 0.12 0.08
Ni13 0.62 0.64 0.66 0.65 0.06 0.07 0.06 0.05
Fe55 2.72 2.62 2.65 2.25 0.07 0.08 0.08 0.06
Co55 1.78 1.75 1.87 1.67 0.09 0.10 0.10 0.08
Ni55 0.63 0.62 0.74 0.65 0.06 0.06 0.09 0.05

In addition to spin and orbital moments, the magnetic anisotropy is calculated for the optimized
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Figure 5.4: Left: Monolayer of Ni(111), where the colored arrows indicate the differentφ values.
Right: Theθ-dependent MAE for the correspondingφ values for Ni(111) surface.

structure of Fe13 on Pt(111). In order to check the correct variation of total energy according to

the symmetry of the surface, a single layer of Ni(111) surface is considered and the magnetization

direction is varied in terms ofθ for several values ofφ as shown in the left panel of Fig 5.4. According

to the symmetry of the surface, the energy as a function ofθ should show similar qualitative and

quantitative trends forφ = 0◦, 60◦, 120◦. Also theθ-dependent energies forφ = 30◦ should match

with φ = 90◦. Similar trends are obtained form the present calculationsas illustrated in the right panel

of Fig 5.4. Theθ-dependent energies for differentφ values show a fourth order contribution to the

anisotropy.

The θ-dependent energy differences is studied for the relaxed structure of Fe13 on Pt(111) (shown

in the left panel of Fig. 5.5). The total energy as a function of θ for the severalφ values (φ =

0◦,30◦,60◦,90◦,120◦) are plotted in the right panel of Fig. 5.5. It must be noted that the energy

difference plotted in Fig. 5.5 is scaled with respect to the corresponding energy atθ = 0◦. As a con-

sequence of atomic relaxation, there is lowering of symmetry. This leads to a large second order

anisotropy for such system. The MAE is defined as the energy difference between the maximum and

the minimum total energy obtained from variousθ at particularφ. The MAE forφ = 0◦ is observed to

be approximately 165 times larger than the MAE of bulk Fe withbcc structure (1.4 µeV/atom) [43].

The enhanced MAE for deposited Fe13 clusters relative to bulk indicates the role of structural relax-

ation effects. The dominant role of atomic relaxation on themagnetic anisotropy has been previously

reported for Fe films [225] and clusters [226] supported on Ptsurfaces.
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Figure 5.5: Left: Optimized structure of Fe13 on Pt(111). The blue and yellow balls are Fe and
Pt atoms, respectively. Right: The MAE as a function ofθ for relaxed Fe13 on Pt(111)
surface.

5.3 Deposited binary clusters: L1 0 (FePt)55 on Pt surfaces

One of the most discussed materials for magnetic data storage devices is a near-stoichiometric L10

Fe-Pt phase, where the Fe and Pt atoms are stacked alternatingly in [001] direction. Similar layered

arrangement in Fe-Pt nanoparticles is envisaged as medium for high-density magnetic data storage de-

vices, which are also observed to be thermodynamically stable [17]. The magnetic anisotropy constant

for the L10 Fe-Pt nanoparticles is an order larger in magnitude than that of the materials being used

in present day technology (bulk) [227]. As a result it is easier to overcome the super-paramagnetic

limit which posses a lower bound limit for the particle sizesabove which the magnetization of a grain

can withstand the thermal relaxation processes for relatively longer time. This has however not been

achieved experimentally [228] and it is understood that other morphologies of Fe-Pt nanoparticles

at similar sizes also occur which do not posses hard magneticproperties as discussed for Fe-Pt L10

nanoparticles. Few theoretical studies regarding the growth and stability of free and supported Fe-Pt

L10 nanoparticles exist in the literature [229]. This chapter discusses the morphological stability and

magnetic properties of binary L10 cuboctahedral and the corresponding icosahedral Fe-Pt clusters

(generated by the Mackay transformation, explained in chapter 6) supported on (001) and (111) sur-

faces of Pt. The L10 ordered cuboctahedron has an alternate layered stacking oftwo atomic species

(Fe and Pt, in the present case) in the (001) direction, illustrated in the right panel of Fig. 5.6. Since

theoretical studies on L10 free Fe-Pt clusters show a cuboctahedral geometry with Pt terminating lay-

ers to be more stable relative to the Fe terminating compositions [230], we have considered the L10

structure with terminating Pt layers. In order to constructa 55-atom perfect L10 Fe-Pt cluster with Pt-
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5.3 Deposited binary clusters: L10 (FePt)55 on Pt surfaces

Figure 5.6: The Fe5Pt8 (upper panel) and Fe24Pt31 (bottom panel) clusters. For both cluster sizes,
the icosahedron and L10 cuboctahedron geometries are shown in the left and right panels,
respectively. Blue balls: Fe and Yellow balls: Pt.

terminating layers, the structure should have 24 Fe atoms and 31 Pt atoms. For instance, Fig. 5.6 shows

the layered structures for 13- and 55-atom Fe-Pt clusters with the corresponding icosahedrons. The

equilibrium geometries for free standing 13-, 55- atom icosahedron and L10 cuboctahedron are found

to show slight structural deformations with respect to their regular clusters. For both cluster sizes, the

distorted icosahedral Fe-Pt is energetically more preferable relative to the distorted L10 cuboctahe-

dral structure. This is in agreement with previous theoretical studies [230], where the Fe-Pt clusters

upto 561 atoms (∼ 2.5 nm size range) show enhanced stability for ordered or core shell icosahedral

structures compared to L10 ordered cuboctahedrons. A ferromagnetic ordering of magnetic moments

is preferred for both geometries. With increasing cluster size, previous theoretical calculation [230]

suggest the existence of layered antiferromagnetic-like ordering which mimics the magnetic behavior

in bulk L10 Fe-Pt. When the 13- and 55-atom Fe-Pt clusters (illustratedin Fig. 5.6) are deposited on

Pt(001) and Pt(111) surfaces, after relaxation, the equilibrium geometries for deposited clusters are

found to be all deformed relative to the their regular geometries. Neither of the icosahedral nor the

cuboctahedral morphology are found to be stable on both Pt surfaces. They show wetting tendencies

by spreading over the Pt surfaces. The energetics for the supported as well as free clusters are reported

in Table 5.2. It is observed that the cluster with a starting geometry as icosahedron shows enhanced

stability for both deposited and free Fe-Pt clusters. However, Fe5Pt8/Pt(001) is an exception to such

trend, where the cluster with a starting geometry as a cuboctahedron shows the higher stability.

Table 5.2: The energetics for the deposited and free Fe-Pt13,55 clusters.∆E : Eico−Ecubo: The energy
difference between ico and cubo.

Pt(001) Pt(111) Free cluster
∆E (eV/atom)Stable ∆E (eV/atom)Stable ∆E (eV/atom)Stable

Fe5Pt8 0.005 L10 -0.005 ICO -0.04 ICO
Fe24Pt32 -0.031 ICO -0.006 ICO -0.05 ICO
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Figure 5.7: The magnetic moments for free and deposited Fe5Pt8 and Fe24Pt31 in the left and right
panel, respectively. The hatched histograms for both clusters represent the magnetic mo-
ments for free clusters and the solid histograms show the moments on deposited clusters.
The blue and magenta denote the moments for the icosahedral and L10 cuboctahedral
clusters.

Table 5.3: The magnetic moments for Fe5Pt8 and Fe24Pt31. µFe andµPt are the magnetic moments in
units of µB/atom for Fe and Pt sites.µTotal is the total magnetic moment for cluster and
substrate.

Cluster µFe µPt µTotal

Fe5Pt8 ico 3.05 0.284 18.0
Fe5Pt8 ico on Pt(001) 2.48 0.200 19.0
Fe5Pt8 ico on Pt(111) 3.21 0.323 15.0
Fe5Pt8 L10 cubo 3.08 0.351 19.3
Fe5Pt8 L10 cubo on Pt(001) 3.22 0.323 30.3
Fe5Pt8 L10 cubo on Pt(111) 3.23 0.375 13.0

Fe24Pt31 ico 3.08 0.46 93.0
Fe24Pt31 ico on Pt(001) 3.08 0.37 98.0
Fe24Pt31 ico on Pt(111) 3.10 0.38 109.0
Fe24Pt31 L10 cubo 3.07 0.45 92.0
Fe24Pt31 L10 cubo on Pt(001) 3.09 0.41 101.0
Fe24Pt31 L10 cubo on Pt(111) 3.08 0.39 119.0

Figure 5.7 shows a comparison of the average magnetic moments (µB/atom) for free and deposited

Fe8Pt5 (left panel), and Fe24Pt31 (right panel). It is observed that the average magnetic moment of

icosahedral Fe8Pt5 cluster shows a large fluctuation depending on the type of Pt surfaces. The icosa-

hedral Fe8Pt5 on Pt(001) has a lower average magnetic moment compared to the free cluster as well

as that of the cluster deposited on Pt(111). On the other hand, the average magnetic moment for de-
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Fe5Pt8 cuboctahedron). The red colored numbers are the magnetic moment of substrate
atoms which are directly bonded to the cluster.
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5 Structure and magnetism of clusters on Pt surfaces

posited L10 Fe8Pt5 cluster on Pt surfaces remains almost unchanged with respect to the corresponding

unsupported ones. With increasing cluster size (right panel of Fig. 5.7), the average magnetic moment

remains nearly constant with respect to the corresponding free clusters irrespective of the type of

Pt surfaces. In Table 5.3, the average magnetic moments on Fe(µFe) and Pt (µPt) atoms of the de-

posited clusters along with the total magnetic moment of cluster/substrate complex are listed. As a

consequence of cluster-substrate interaction and the intermixing of Fe 3d and Pt 5d orbitals,µFe for

deposited clusters is enhanced with respect to theµFe of free ones. However, icosahedral Fe8Pt5 is an

exception to the such behavior, where bothµFe andµFe decrease compared to that of free cluster. Such

behavior is reflected with the decreasing average moment forthe same cluster on Pt(001), as shown in

the left panel of Fig. 5.7. Due to the presence of Fe atoms, some magnetic moment is induced on the

Pt surfaces, shown in Fig. 5.8. The Pt layer close to the cluster exhibits larger induced magnetization

compared to other layers. The induced moments on the Pt layerclose to the cluster are depicted in

Figure 5.8 for Pt(001) and Pt(111) surface in the left and right panel, respectively. Especially, the

Pt atoms bonded with cluster atoms show large magnetic magnetic moments shown as red digits in

Fig. 5.8. Figure 5.9 (left panel) shows the relaxed structure of Fe5Pt8 on Pt(001) for which we have

calculated the angle-dependent energies (right panel). The angleθ is varied in thez−x (out of plane)

andx− y plane (in-plane). Due to the structural deformation, the symmetry is lowered, as a result a

second order contribution to the anisotropy is obtained. The MAE is defined as the energy difference

between the maximum and the minimum total energy obtained from variousθ. The in-pane MAE is

found to be larger (∼ 58 meV/atom) compared to the out of plane anisotropy (∼ 10 meV/atom). The

reason behind obtaining a large in-plane MAE is the lower symmetry of the cluster/substrate complex

arising due to the effect of structrual relaxation and the large spin-orbit coupling of Pt substrate.
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6 Transition metal clusters on graphene

6.1 Introduction

Graphene, a one-atom thick carbon layer arranged in a honeycomb lattice, is one of the most promi-

nent materials to be studied as substrate due to high surfacearea, inertness [231], and high conduc-

tivity [232, 233]. It is a zero-band gap semiconductor with alinear dispersion at the Fermi level.

Figure 6.1 shows the band structure of graphene obtained from the tight-binding calculations, where

the Dirac points are found at the symmetry points of the Brillouin zone [234]. Because of its two

dimensional confinement with a point-like Fermi surface anda linear dispersion at the Fermi level, it

is a suitable material for studying anomalous quantum Hall effects and ballistic transport [235].

Figure 6.1: Band dispersions of graphene (left panel) showing the Dirac points (the zoom in part) at
K and K′ of the Brillouin zone in the right panel. Figure is taken fromRef. [250].

Graphene-supported transition metal catalysis has drawn much attention [20, 21]. Experimentally,

Yoo et al. have observed very high catalytic activity of small Pt clusters for CO oxidation while

supported on graphene. Similar observation is confirmed theoretically by Zhou and Yamamotoet

al. [236, 237]. However, the origin of such high catalytic reactivity is still to be solved. Theoretical

calculations by Luet al. [122] predicts high catalytic activity for Au-embedded graphene for the CO

oxidation reaction, which they attribute due to the partially occupiedd orbital localized in the vicinity

of the Fermi level because of the interaction between the Au atom with graphene. Theoretically, us-

ing DFT, Li et al. [238] have found good catalytic activity for CO oxidation reaction on Fe-embedded

graphene. Using different carbon supports, experimentally, the changes in the chemical activity for

clusters of Ni [239], Co [240], Pt [241–245], Pd [246], and Rh[247] have been studied. Theoreti-
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6 Transition metal clusters on graphene

cally, DFT calculations have been performed to investigatethe catalytic activity for small clusters on

graphene. For example, Ducaet al. [248] have studied the stability and electronic propertiesof Pd

clusters adsorbed on graphene. Okamotoet al. [249] have studied the stability and catalytic activity

of Pt13 and Au13 clusters on graphene sheet and flakes. From the above studies, it is evident that

graphene can act as an attractive support as compared to the traditional supports.

The present chapter deals with the studies of the geometric,magnetic and electronic properties of Fe,

Co, Ni and Pt clusters consisting of 13-atoms adsorbed on twotypes of graphene supports, namely

the defect-free (pristine) graphene and five-membered ringgraphene flake. In addition, the catalytic

activity of free-standing and graphene supported clustersare studied by the adsorption of CO molecule

on the surface of clusters.

6.2 Computational details

Our calculations are based on DFT within PBE exchange correlation functional [251]. The projector

augmented wave method is used for the treatment of core electrons [27]. The TM clusters are ad-

sorbed on a pristine (defect free) and a five-member ring graphene flake. For the pristine (defect free)

graphene sheet, a (6×4) supercell consisting of 96 atoms have been used. The periodic boundary

condition is applied along the graphene plane. A (3×3×1) k-mesh is used for the integration over

the Brillouin zone. While, for the five member ring graphene flake which is a hydrocarbon cluster:

C45H15, the integration over Brillouin zone are performed at theΓ point only. A large supercell of

size (23×23×15) Å3 has been used, which sufficiently minimizes the interactionbetween the cluster

with the periodic image. For constructing the substrate, a calculated C-C bond length of 1.427 Å

has been used which is close to the experimental value of 1.42Å. The structural relaxations of the

cluster-substrate complex are performed using the conjugate gradient method. The self-consistent cal-

culations are performed with a convergence criterion of 10−6 eV. In order to check the binding strength

between the cluster and graphene, the adsorption energy (Eads) is calculated, which is defined in the

following.

Ecluster
ads = Etot(cluster)+Etot(graphene)−Etot(cluster+graphene) (6.1)

where,Etot(cluster) is the total energy of metal cluster.Etot(graphene): The total energy of graphene.

Etot(cluster+graphene): The total energy of cluster on graphene.

6.3 Clusters on defect free graphene sheet

The icosahedral clusters of M13 (M = Fe, Co, Ni and Pt) are adsorbed on the on the hollow site of

the pristine graphene sheet where the center atom of the cluster lies over the middle of the hollow

site with one the triangular facets of the cluster being oriented parallel to the graphene surface. The
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6.3 Clusters on defect free graphene sheet

equilibrium geometries of M13 clusters on graphene results in distorted icosahedral clusters from their

corresponding regular geometry. This is marked from the deviation of average bond lengths for the

deposited clusters as compared to the free standing ones, shown in Table 6.1. The adsorption energies

(Eads) for these deposited clusters are presented in Table 6.2. Itis observed that theEads for Co13 on

graphene has a larger value compared to that of Fe13 and Ni13 indicating a strong binding strength for

Co13 with graphene. Previous studies based on DFT have shown a similar tendency for dimers of Fe,

Co and Ni, where Co dimer on graphene shows largerEads compared to that of Fe and Ni dimers on

graphene [252].

Table 6.3 shows a comparison of the magnetic moments for the deposited clusters with respect to the

corresponding free ones. It is observed that the deposited M13 clusters have reduced total magnetic

moments as compared to their corresponding free clusters. For instance, the total moment for de-

posited Fe13 on graphene decreases by 8µB compared to that of the free Fe13 cluster (44µB). For

Co13, the decrease in total moment is even more(∼ 10 µB). On the other hand for Ni13, the moment

is slightly enhanced unlike Fe13 or Co13. This can be seen from Fig. 6.4, which shows the electronic

density of states of deposited M13 clusters. For Ni13/graphene, the large exchange splitting in the

spin-down channel near the Fermi level explains this fact. For graphene supported TM dimers, previ-

ous studies report different trend of magnetic moments where, the Fe, Co or Ni dimers on graphene

posses total moments comparable to the free dimers [252], which is not observed for 13-atom clusters.

This may be due to the fact that with increase in cluster size,there is an increase in the coordination

numbers for each atom as a consequence the total magnetic moment is reduced.

2
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Figure 6.2: Relaxed structure of Co13 (with labeling of atoms) on defect free graphene sheet. The red
and black balls denote the Co and C atoms, respectively.

The onsite spin moments for M13 clusters are listed in Table 6.4, which shows that, the cluster atoms

bonded with graphene (indices 10, 11 and 12 shown in Fig. 6.2)show reduced moments relative to

the other atoms (indices 1-9 in Fig. 6.2). The reduction of magnetic moments on TM atoms is coun-

terbalanced by the slight induced magnetization on graphene. This can be quantified as 0.23µB for

101



6 Transition metal clusters on graphene

Fe13/graphene, 0.12µB for Co13/graphene and 0.05µB for Ni13/graphene. Such induced magnetiza-

tion on C atoms for graphene supported TM has been observed theoretically [252]. The carbon atoms

bonded with cluster atoms show more induced moments compared to the those away from clusters.

Table 6.1: The average bond lengths in Å for M13 and Pt13 clusters on pristine and five-member ring
graphene.

Bond length Fe13 Co13 Ni13 Pt13(ico) Pt13(layered)
Free Cluster 2.48 2.42 2.41 2.63 2.57
On pristine 2.49 2.42 2.43 2.72 2.65
On five member 2.49 2.41 2.42 2.64 2.65

Figure 6.4 (top left panel) shows the total electronic density of states (DOS) for pure graphene and

M13 clusters on graphene (top right and the bottom panel). The DOS shows a non magnetic behavior

of pure graphene. When M13 clusters are deposited on it, as a consequence of induced magnetization

on C-atoms, the Fermi level for the graphene supported clusters shows a shift towards the conduction

band. For all cases the Fermi level shows the exchange splittings in the minority spin channel, which

indicates the half-metallic behavior of graphene. Theoretically, such a trend has been observed for the

adsorption of Fe and Co adatoms on graphene [252].

Figure 6.3: The optimized geometry of deposited layered Pt13 (left) and distorted icosahedral Pt13

(right) on pristine graphene. Yellow and black balls are marked by Pt and C atoms respec-
tively.

Since previous studies on free standing Pt13 shows an enhanced stability for a layered-like geome-

try [253–255] relative to the icosahedral one, thus along with the icosahedron, a layered-like Pt13

clusters is adsorbed on graphene. Our calculations on free Pt13 clusters suggests that the layered

structure is energetically lowered by approximately 3 eV with respect to the icosahedral structure.

This is more or less in agreement with Ref. [253], where the authors have reported an energy differ-

ence of more than 1 eV between the icosahedron and the layeredstructure. Due to such a large energy
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6.4 Clusters on five-member ring graphene

difference between the icosahedral and the layered structure of Pt13, the optimized structure of Pt13

with the starting geometry as icosahedron is found to be not stable on graphene as shown in the left

panel of Fig. 6.3. Our results are not in good agreement with Previous calculations, where it was re-

ported that the optimized geometry of Pt13 is a slightly distorted icosahedron on graphene [249]. The

reason behind such a discrepancy might be related to the initial height of cluster from the substrate.

On the other hand, the layered morphology of Pt13 on graphene is found to be preserved, which is

shown in Fig. 6.4, right panel. As a consequence of structural deformation of Pt13 with icosahedron

as the starting structure, a large value of Eads is found (5.42 eV) as compared to that of the layered

Pt13 on graphene (2.11 eV).

Table 6.2: Adsorption energy of M13 clusters on pristine and five-member ring graphene.

Clusters Pristine Five-member
Fe13 1.86 2.47
Co13 2.78 3.24
Ni13 2.33 3.05
Pt13(ico) 5.42 5.16
Pt13(layered) 2.11 2.17

Table 6.3: The magnetic moments of clusters on pristine and five member ring graphene.

Clusters µPristine µFive member µCluster+Pristine µCluster+five member µFree cluster

Fe13 36.0 34.33 36.00 36.0 44.0
Co13 22.0 23.00 21.00 23.0 31.0
Ni13 9.0 9.30 8.50 9.1 8.0
Pt13(ico) 1.68 0.88 1.83 1.0 2.1
Pt13(layered) 2.00 0.92 2.27 1.0 2.0

6.4 Clusters on five-member ring graphene

It has been observed earlier that for graphene-supported TMclusters, presence of a defect in graphene

substrate enhances the adsorption energy of cluster. For example, calculations based on DFT by

Okamotoet al. show large adsorption energies for Pt and Au clusters adsorbed on a defective graphene

sheet as compared to that of on a pristine graphene sheet [249]. Therefore, in the present calculation,

to study the effect of C vacancy on the structural stability and magnetic properties of clusters the

TM clusters are adsorbed on a five-member ring graphene flake,which is expressed as a hydrocar-

bon cluster: C45H15. Such topological disorders are quite well-known in graphene sheets [256]. The

relaxed structures of M13 clusters on five-member ring graphene are shown in Fig. 6.5. As observed

for TM clusters on pristine graphene, the adsorption of M13 clusters on five-member graphene results

in distorted structures with respect to their regular geometries. The average bond lengths for the de-
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6 Transition metal clusters on graphene

Table 6.4: The atomic magnetic moments for M13 clusters on pristine graphene. The labeling of atoms
are illustrated in Fig. 6.2. Atom index 13 is the center atom and 10, 11, 12 metal atoms are
bonded with the C atoms, which show reduced moments comparedto the rest ones.

Atomic sites Fe13 Co13 Ni13 Pt13

1 2.84 1.79 0.81 0.17
2 2.85 1.79 0.81 0.18
3 2.85 1.79 0.81 0.29
4 2.95 1.83 0.76 0.22
5 2.94 1.77 0.74 0.12
6 2.95 1.77 0.73 0.12
7 2.98 1.80 0.72 0.08
8 2.98 1.80 0.72 0.08
9 2.92 1.79 0.72 0.23
10 2.26 0.87 0.34 0.04
11 2.59 1.44 0.37 0.08
12 2.59 1.44 0.37 0.08
13 2.22 1.41 0.57 0.00

posited clusters are listed in Table 6.1. With the cluster deformation, different bending tendencies of

the substrate is observed. For supported Fe13, the five-membered ring graphene flake shows a bending

towards the cluster for Fe13/graphene, while it bends oppositely for supported Co13 and Ni13. The dif-

ferent bending behavior of the five-membered ring graphene is found to be very sensitive towards the

starting structures of M13 clusters. For all three clusters, as starting structures the perfect icosahedral

clusters with the center to shell distances of 2.39 Å (Fe13), 2.33 Å (Co13) and 2.32 Å (Ni13), respec-

tively are considered, which are the minimum energy center-shell distances [18]. A slight variation

in the center-shell distance results in different bending tendencies. The bending trend is also found to

be dependent on the morphology of cluster. This can be understood from the Pt13/graphene system,

where the graphene substrate for Pt13 with a layer structure as the starting geometry bends towards

the cluster, while Pt13 with the starting structure as icosahedron, graphene showsan opposite bending

behavior. The adsorption energies of M13 and Pt13 clusters on five-member graphene sheet are listed

in Table 6.2. Comparing the adsorption energies for clusters on defected graphene with the clusters on

defect free graphene, it is observed that clusters on a defected graphene flake are more stable relative

the clusters adsorbed on a pristine one.

Table 6.3 (fifth column) shows the total magnetic moment for supported clusters on five-member

ring graphene are tabulated. Like clusters on Pristine graphene sheet, an almost same quantitative

reduction of magnetic moment is observed for clusters on five-member ring graphene. The Co13

and Ni13 clusters on five-member ring graphene show slightly enhanced values of magnetic moments

on five-member ring graphene compared to those on pristine graphene. The reason may be due to

the weak hybridization between thed-orbitals of cluster andπ-orbitals of C for the cluster-graphene
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Figure 6.4: The site projected electronic density of statesfor pristine graphene and deposited M13

clusters on pristine graphene. A Gaussian broadening parameterσ = 0.05 eV has been
used to calculate the DOS. The Fermi level is shifted to zero for each case. (a) Pristine
graphene, (b) Fe13 on graphene, (c) Co13 on graphene, (d) Ni13 on graphene.

system. On the other hand, for Fe13 on five-member graphene, due to the bending of five-member

ring graphene towards the cluster leads to a decrease of total moment form 23µB (Fe13 on pristine

graphene) to 21µB (Fe13 on defected graphene). The metal atoms close to graphene have a reduced

moment and some amount of magnetic moment is induced to the substrate (mainly C atoms close to

cluster) for Fe13 and Co13. A different situation appears for adsorption of Ni13 on graphene. Here,

like the case of Ni13 on defect free graphene, there is no change in total moment ofthe cluster relative

to the free ones. As a result, there is no induced magnetization on C atoms of the substrate. Such a

behavior is due to the weak hybridization between the Nid-orbitals and the Cπ-orbitals.

In addition to 13 atom clusters, the deposition of larger icosahedral clusters consisting of 55 atoms are

also deposited on five-membered ring graphene. For the deposition of M55 clusters, the five member
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6 Transition metal clusters on graphene

(a) (b)

(d) (e)

(c)

Figure 6.5: Optimized structures of 13-atom clusters on five-member ring graphene. Blue: Fe, red:
Co, magenta: Ni, yellow: Pt, black: C and white: H

ring graphene consists of 80 C atoms and 20 H atoms. Unlike theM13 clusters, the deposited M55

clusters show same bending tendencies of five-membered ringgraphene, where the defected graphene

always shows a bending towards the cluster. Unlike deposited M13 clusters, the magnetic moments of

adsorbed M55 clusters almost retain the magnetic moments like the corresponding free clusters.

6.5 CO adsorption on clusters deposited on five member ring

graphene

Nanoclusters exhibit unique active sites like facets, vertices or edges, which can show varying catalytic

activities [257]. Therefore a proper understanding of favorable adsorption sites of CO molecule on

clusters is essential. In order to study the role of carbon support on catalytic activity of 13 atom

clusters, we have adsorbed the CO molecule on clusters deposited on five-member ring graphene.

As a substrate, the five-member graphene is chosen because weobtain large adsorption energy for

M13 clusters compared to that of the clusters on pristine graphene. The CO molecule is adsorbed

on several sites of the clusters. For instance, the most probable adsorption sites of CO molecule on

an icosahedron are: On the middle of a triangular face (facet), middle of a bond (edge) and on the

top of an atom (vertex). Among these possibilities, we have looked for the suitable adsorption site

of CO for each cluster. Figure 6.6 shows the optimized structures with favorable adsorption sites

of CO on free and graphene supported clusters. It is found that due to the adsorption of CO, the

free clusters are distorted from the ideal structure. However, for Pt13, the icosahedral geometry is

no more preserved. It might be due to the fact that the ground state of Pt13 is a layered-like [253]
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6.5 CO adsorption on clusters deposited on five member ring graphene
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Figure 6.6: The favorable adsorption sites for CO on metal clusters without and with the five-member
graphene flake. Blue: Fe, red: Co, magenta: Ni, yellow: Pt, black: C, white: H, green: O.

Table 6.5: Adsorption energy of CO on Fe13, Co13, Ni13 and Pt13 clusters with and without five-
member ring graphene.

Clusters with graphene without graphene
Fe13 2.26 1.75
Co13 2.09 2.23
Ni13 2.27 2.20
Pt13(ico) 2.82 5.49
Pt13(layered) 2.48 2.19

structure instead of an icosahedron. The favorable adsorption site of CO on Fe13 and layered Pt13

are found to be the vertices, whereas For Co13 and Ni13 CO preferably adsorbs on the facets. For

Pt13 (starting structure as icosahedron), the edge is the stableadsorption site. Our findings for Pt13

cluster is consistent with the DFT calculations (through hybrid functional B3LYP) for Pt10 and Pt11

clusters by Monteiroetal. [258]. On the other hand, for Fe and Co clusters, the same authors have

predicted the edge and the top positions as the preferentialadsorption sites of CO for Fe11 and Co10

clusters. The difference in adsorption sites for Fe and Co clusters compared to ours may be related to

the different exchange-correlations functionals (LDA andBPW91) and basis sets.

Adsorbing these clusters on graphene flake does not change the adsorption sites except for Fe13+grap-
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6 Transition metal clusters on graphene

hene+CO, where CO prefers to be adsorbed on the facet. In the presence of graphene, the strong

interaction between the cluster and substrate and the distortion of cluster, the CO is adsorbed on the

facet instead of the vertex of the cluster as found for free Fe13. The adsorption energies for the free

clusters with and without graphene are listed in Table 6.5. This suggests that CO is strongly adsorbed

on the metal clusters in the presence of five member ring graphene with a large adsorption energy. The

enhanced adsorption energy indicates a high reactivity of metal clusters in the presence of graphene

leading to enhanced catalytic activity for reactions such as CO oxidation or CO2 dissociation, which

is beyond the scope of this thesis.

6.6 CO oxidation on pristine graphene

It has been observed that presence of graphene decreases theenergy barrier for the CO oxidation

reactions on Pt clusters [236]. The authors have reported the energy vs. reaction coordinate curves

and few transition states, which are shown in Fig. 6.7. This motivates us to study the CO oxidation on

pristine graphene, where we have studied the Langmuir-Hinselwood type reaction followed by (CO +

O2 –> CO2 + O). The transition states for the catalytic reaction are determined by using the nudged

elastic band method [22], where the total energies of the intermediate states along the reaction path

connecting the initial (reactant) and final (product) states are simultaneously minimized in constraint

of atomic motions restricted only along the hyperplane perpendicular to the reaction path. More about

the method is described in Refs [22, 23].

As reactant, both CO and O2 molecules are adsorbed on graphene in the hexagonal hollow site, where

the CO molecule is adsorbed such that C-O bond (bond length = 1.14 Å) is perpendicular to the

substrate and O2 molecule with bond length 1.26 Åis coadsorbed (aligned parallel). The product is

characterized by the free CO2 molecule and a single oxygen atom adsorbed on the substrate at the

favorable site of hexagonal hollow. We have taken four intermediatory states between the reactant

and the product, which is as a first approximation, is a linearinterpolation from the reactant and

the product coordinates at equal intervals. It may be statedthat the reaction path observed in nature

could be different than the first approximation we have used.In fact, a through study of different

reaction path would eventually lead to a reaction path whichcan be directly compared with the real

reactions. This can be achieved by identifying the reactionpath with the minimum activation barrier.

In the present study however, we are concerned with the methods used to study reaction. For instance,

Eichler et al. [23] have studied the CO oxidation on Pt(111) surface through a variety of reaction

paths and reported their activation barriers. Fig. 6.8 (data taken from stated reference) shows the

energy profile with respect to the reaction coordinates along the reaction path (shown in schematics)

for the CO oxidation with reaction path having the minimum activation barrier.

Fig. 6.9 shows the calculated energy profile along the reaction coordinates for the CO oxidation and

the initial state, transition state and final state. The reaction coordinates are given by the distance

between carbon atom of CO molecule and the oxygen of O2 molecule, which are kept fixed during
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6.6 CO oxidation on pristine graphene

the reaction. From our calculation, the activation energy barrier is calculated to be 1.19 eV, which is

relatively larger as compared to the CO oxidation on graphene in presence of Pt cluster [236]. This

shows that Pt clusters help in reducing the activation barrier of CO reaction, which will be the next

step in this direction of research.
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Figure 6.7: The energy profile as a function of reaction coordinates for the CO oxidation on graphene
supported Pt cluster. The reaction coordinate is taken as the distance between the carbon
atom of CO and the nearest oxygen atom of the O2 molecule. The green, black and red
balls represent the Pt, C and O atoms, respectively. Figure is adopted from Ref. [236].

0.00 0.05 0.10 0.15 0.20 0.25

Reaction coordinate (Å)

-3.00

-2.00

-1.00

0.00

E
ne

rg
y 

(e
V

)

(a)

(b)

(c)

(a) (b) (c)

Figure 6.8: The energy profile as a function of reaction coordinate for Langmuir-Hinselwood type
CO oxidation reaction on Pt(111) surface. The optimized states along the reaction path
are also shown. (a-c) represent the transition states. The black and gray balls are marked
by C and O atoms, respectively. The figure is adopted from Ref.[23].
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Figure 6.9: The energy profile as a function of reaction coordinate for the Langmuir-Hinselwood type
CO oxidation on a defect free graphene. The reaction coordinates are taken as the distance
between the carbon atom of CO and the nearest oxygen atom of the O2 molecule. Black
and green balls represent the C and O atoms, respectively.

110



7 Exact diagonalization and
thermodynamics of clusters

7.1 Introduction

In the previous, the ground state properties of TM clusters are exclusively discussed using DFT, which

is based on variational principle, i.e., a system has a lowerbound in energy, known as the ground

state energy, which can be obtained by minimizing the total energy of a system. However, such a

treatment completely barrs from estimating any propertiesat non-zero temperature. Thermodynamics

of some of the exactly solvable models are already well established [259]. In this chapter, the nearest-

neighbour Heisenberg spin model is adopted to study the magnetic and thermodynamic properties

of finite systems through exact diagonalization technique [31]. Besides the exact diagonalization

method, several other techniques such as the density matrixrenormalization group [260], cluster

expansions [261], spin-wave expansions [262–264] and quantum Monte Carlo techniques [265–267],

which can be used to study the magnetic systems. However, some of these techniques have limitations,

for instance quantum Monte Carlo technique has limitationsin describing the systems with geometric

frustration. In this regard, exact diagonalization methodhas the advantage, where it is possible to

obtain all energy levels with their spectroscopic classification (useful for the electron paramagnetic

resonance or nuclear magnetic resonance spectra).

It is well known that frustration in low dimensional magnetic systems leads to many nontrivial fea-

tures, like plateaus and jumps in magnetization with the variation of external magnetic field and

occurrence of low-lying singlets [30, 268–277] in the energy spectra. For example, through exact

diagonalization of the antiferromagnetic Heisenberg model, Konstantinidiset al. [268] have calcu-

lated the ground state magnetization for a dodecahedron andicosahedron symmetry fors = 1
2 and 1,

where they have found discontinuity in the field-dependent magnetization and double peaks in the

temperature-dependent specific heat arising due to the frustrations. The same authors have applied

the full diagonalization technique to a series of clusters with size ranging from 24 to 32, where they

have shown the effect of frustration and connectivity on thelow lying energy spectrum. For a 28-site

cluster, they obtain the most pronounced plateaus in the field-dependent magnetization compared to

other cluster sizes [278]. Using perturbation theory, Coffey et al. [269] have studied the effect of

frustration and connectivity on the magnetic properties ofa 60-site cluster [279]. Schnalleet al. [270]

have applied an approximation of diagonalization scheme toa cuboctahedron fors= 1 and3
2 in order
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7 Exact diagonalization and thermodynamics of clusters

to obtain the energy spectra. In addition to ground state magnetic properties, several studies also exist

for the thermodynamical properties. Honeckeret al. [280] have computed several magneto-thermal

properties such as the magnetic susceptibility, specific heat and magnetic cooling rate for a cubocta-

hedron with different spin quantum numbers using the antiferromagnetic Heisenberg model, where

they have observed significant deviations from the classical behavior for the corresponding properties

of the cuboctahedron withs≤ 5. Studies on the effect of dipolar interaction and radial anisotropy

on properties of nano clusters is still limited [238, 281, 282]. In the present chapter, the exact diag-

onalization method is applied to small clusters consistingof 13 and 4-atoms with spin-1
2 and 1 and a

systematic study of the magnetic and thermodynamic properties has been performed. The main focus

is showing the effect of dipolar interaction and uniaxial anisotropy on the magnetization behavior in

the presence of magnetic field. The ground state and the temperature-dependent spin-spin correlation

functions are also calculated for these clusters.

7.2 Theoretical method

The Heisenberg spin Hamiltonian for a set of nearest neighbour interacting spinssssi has the following

form,

H = −∑
i< j

Ji j sssi ·sssj , (7.1)

where, the sum is over all pairs.sssi is the spin operator on sitei having total spins and sz
i =

−s,−s+ 1, . . . ,s; Ji j is the exchange coupling. For a ferromagnetic and antiferromagnetic interac-

tion, Ji j > 0 andJi j < 0, respectively. Though, for one dimensional nearest-neighbour couplings

Ji j = J, the Heisenberg model has been solved analytically by meansof the Bethe-Ansatz [283], for

higher dimensions, other approximation methods are highlyrequired. However, for small spin sys-

tems, the problem is solved by employing the exact diagonalization technique [284]. In order to study

the model Hamiltonian numerically (defined in Eq. 7.1), the straightforward way is to obtain the ma-

trix elements ofH in a basis of|sz
1,s

z
2, . . . ,s

z
n〉, with thez-axis taken as quantization direction, wheren

is the total number of spins in the system, and then diagonalize the Hamiltonian matrix. For instance,

for thes= 1
2 Heisenberg model, we can construct the basis states,

|1〉 = |↑↑ . . . ↑↑〉,
|2〉 = |↑↑ . . . ↑↓〉,
|3〉 = |↑↑ . . . ↓↑〉,

...

|2n〉 = |↓↓ . . . ↓↓〉,

where↑ and↓ representssz
i = 1

2 and -12 state, respectively. In terms of these basis states, the dimension

of the Hamiltonian matrix will be 2n×2n. Fors= 1 systems,sz has three basis states (-1, 0, 1) leading
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7.2 Theoretical method

to the dimension of Hamiltonian matrix 3n×3n. In general for a spin system of sizen, the number

of basis states to represent the Hilbert space is(2s+ 1)n. Therefore, with increase of the system

size, the dimension of the matrix grows exponentially and becomes intractable. There are conserved

quantities corresponding to the symmetry of the systems. Insuch cases, the basis states with different

eigenvalues of the symmetry operators do not mix together onthe application of Hamiltonian on the

basis. Then, the Hamiltonian matrix can be expressed as a direct product of several small matrices.

It has been observed that the Heisenberg Hamiltonian commutes with the square of the total spin of

the systemSSS2 and thez component of the total spinSz. Though it is straightforward to work in anSz

subspace, there is no efficient method to construct symmetryadopted eigenstates ofSSS2. In addition,

the Hamiltonian is symmetric under combination of permutation of spins that respect the connectivity

of the small size cluster considered in the present case. Furthermore, the model also possesses time

reversal symmetry in the absence of external magnetic field.While the symmetries of the system is

taken into account,Sz basis states can be projected into states that transform under specific irreducible

representation of the symmetry group. In this way, the Hamiltonian is block diagonalized into small

matrices and the maximum dimension is dramatically reducedcompared to full Hilbert space size.

In the presence of an external magnetic field the Heisenberg Hamiltonian is modified to the following

form,

H = −∑
i< j

Ji j sssi ·sssj −BzSz, (7.2)

whereBz is the external magnetic field alongz-direction, andSz = ∑i s
z
i is thez-component of the total

spin. The value ofSz can vary from−S to +S in unit steps, withS being the maximum total spin

of the system. Note thatBz measures the field energy, i.e., the factorµB is absorbed intoBz. In the

presence of a magnetic field, the time reversal symmetry is broken, as a result, the eigenvalues of the

Hamiltonian within the positiveSz sector and negativeSz sector will be different. However, one can

obtain the eigenvalues of the system in the presence of magnetic field directly from the eigenvalues of

the pure Heisenberg model forBz = 0, Eq. (7.1), by shifting the eigenvalues byBzSz, asSz commutes

with H.

Now the Hamiltonian matrix is constructed in terms of eigenstates of the totalSz operator by express-

ing the Hamiltonian in the form

H = −∑
i< j

Ji j

[

1
2

(

s+
i s−j +s−i s+

j

)

+sz
i s

z
j

]

−BzSz, (7.3)

wheres±i = sx
i ± isy

i are the raising and lowering operators. Whens+
i ands−i operates on the eigenstates

of sz
i , we have

s±i |sz
i 〉 =

√

s(s+1)−sz
i (s

z
i ±1) |sz

i±1〉. (7.4)
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7 Exact diagonalization and thermodynamics of clusters

For example, for a spin-1
2 particle,

s+
i |↑i〉 = 0,

s+
i |↓i〉 = |↑i〉,

s−i |↑i〉 = |↓i〉,
s−i |↓i〉 = 0,

and for a spin-1 particle,

s+
i |↑i〉 = 0,

s+
i |0i〉 =

√
2|↑i〉,

s+
i |↓i〉 =

√
2|0i〉,

s−i |↑i〉 =
√

2|0i〉,
s−i |0i〉 =

√
2|↓i〉,

s−i |↓i〉 = 0,

where in the latter case↓,0,↑ denote the three possible values ofsz
i = −1,0,1. We have adopted the

block diagonalization procedure in order to obtain the eigenvalue spectra of 13- and 4-atom clusters,

where the total Hamiltonian matrix is written in terms of smaller matrices with the zero off diagonal

elements. For instance, in case of a 13-atom cluster withs = 1
2, the dimension of the Hamiltonian

matrix is 213×213. Because of the block diagonalization, the whole matrix is divided into blocks with

dimension
(13

k

)

×
(13

k

)

, with k = 0, . . . ,13. 14 such block matrices have to be solved and the largest

block matrix has
(13

6

)

= 1716 rows. In addition, the effect of uniaxial anisotropy for 13- and 4-atom

clusters withs= 1 has been studied, as the anisotropy does not have any contribution fors= 1
2. For a

spin-1 system, the total Hamiltonian in the presence of local uniaxial anisotropy axeseeei can be written

as

H = −∑
i< j

Ji j sssi ·sssj −BzSz−∑
i

Di (eieiei ·sisisi)
2, (7.5)

whereDi are the local uniaxial anisotropy constants andeieiei are the easy axes compatible with the

symmetry of the system [18]. The results obtained for 13- and4-atom clusters are discussed in the

following sections.

7.3 13-atom clusters with spin- 1
2

In order to study the properties of 13-atom clusters, we haveconsidered two geometries: The icosahe-

dron (ICO) and the cuboctahedron (CUBO). Both geometries are shown in Fig. 7.1. The ICO having

a connectivity like fullerene [285, 286], exhibits 12 vertices, 20 triangular facets and 30 edges with a
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symmetry groupIh. The CUBO has 12 vertices with 8 triangular and 6 square faces, 24 edges, which

belongs to a symmetry groupOh. In spite of same number of vertices (12), both geometries exhibit

different number of nearest neighbors, i.e., the ICO and CUBO posses 5 and 4 nearest neighbors,

respectively.

The total Hamiltonian for a 13-atom cluster has the following form

H = −J ∑
i, j>0
〈i j 〉

sssi ·sssj −J′ ∑
i>0

sss0 ·sssi −Bz∑
i

sz
i , (7.6)

wheresss0 is the spin of the center atom, and the first sum runs over nearest-neighbor pairs〈i j 〉 in the

surface shell.J is the exchange coupling between atoms in the surface shell and J′ is the exchange

coupling between central and surface spins.

The Hamiltonian matrix of dimension 8192×8192 has to be diagonalized for 13-atom spin-1
2 cluster.

Because of symmetries of the system, the Hamiltonian matrixis divided into 14 sub-matrices with

block diagonalization dimensions
(13

k

)

with k = 0,1, . . . ,6 for the positive and negativeSz sectors.

The block diagonalization of the total Hamiltonian matrix leads to the eigenvalues of the system.

The ground state energy is obtained by taking the minimum of the energy eigenvalues from each

magnetization sector. We have obtained the energies for four different exchange couplings defined by

(i) all spins ferromagnetic (J = J′ = 1); (ii) all spins antiferromagnetic (J = J′ =−1); (iii) central spin

is reversed with respect to the ferromagnetic surface spins(J = 1 andJ′ =−1), (iv) antiferromagnetic

surface spins with ferromagnetic central spin (J =−1 andJ′ = 1). Note that all energies are measured

in units of|J|, where|J| is fixed to the one.
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Figure 7.1: Skematic picture of 13-atom ICO (left) and CUBO (right) with labeling of each atomic
site. Both structures have 12 vertices with one atom at center. The center atom for both
cases are not shown here.

The minimum energies for AFM case of 13-atom clusters (ICO and CUBO) corresponding to eachSz

sector are listed in Tab. 7.1, which suggests a two-fold degeneracy for AFM case i.e., the minimum

energy for each positiveSz sector has similar value like that of the corresponding negative Sz sector.
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7 Exact diagonalization and thermodynamics of clusters

Table 7.1: Low energy eigenvalues in the units of| J | and the correspondingSz for 13-atom ICO and
CUBO for AFM interaction.

Sz Energy (ICO) Energy (CUBO)
6.5 10.5000 9.0000
5.5 4.0000 2.5000
4.5 0.8819 0.0000
3.5 -1.8342 -2.5000
2.5 -3.9669 -4.6313
1.5 -5.4198 -5.8687
0.5 -6.2880 -6.0622

Figure 7.2 illustrates the complete eigenvalue spectrum for the FM and AFM interactions of ICO (top

panel) and CUBO (bottom panel). The ground state energies are marked in red. For the FM interac-

tion, the degenerate minimum energies are obtained, which is due to the fact that the Hamiltonian has

spin rotational invariance, as a result, turning the total spin in another direction, does not change the

energy. For the AFM interaction, the minimum energies are found to be nondegenerate for eachSz

sector and the energy gaps are different between the consecutive Sz sectors for both ICO and CUBO

geometries (see Table 7.1,

The variation of magnetization as a function of external magnetic field for the four cases of inter-

actions of the ICO are shown in the left panel of Fig. 7.3. It isobserved that for the AFM case

(J = J′ = −1), the presence of external magnetic field leads to the appearance of plateaus, marked

by solid curve in Fig. 7.3, left panel. This occurs due to the inequivalent energy gaps between the

consecutiveSz sectors. On the other hand, for the FM case withJ = J′ = 1, only a single energy

minimum state exists atSz = 6.5, due to the degeneracy of the ground state energy (see the dashed

curve in Fig. 7.3). The right panel of Fig. 7.3 illustrates the variation of magnetization as a function

of magnetic field for the four interactions of the CUBO geometry. As observed in the case of ICO, we

obtain a similar behavior for the variation of magnetization with respect to magnetic field for the FM

interaction. However, for the AFM interactions of CUBO, theplateaus appearing in the magnetiza-

tion have different sizes compared to the ICO, which can be marked from the solid curve in the right

panel of Fig. 7.3. This occurs as the consequence of structural symmetries. Figure 7.4 illustrates the

variation of the minimum energy (in units of|J|) as a function of magnetic field for eachSz for the

AFM and FM interactions of ICO (left panel) and CUBO (right panel). The inequivalent energy gaps

at severalBz values for the ICO and CUBO clearly shows the reason behind the different plateaus

sizes for the AFM. On the other hand due to the degenerate energies for eachSz sector, all energies

meet at one point for FM interaction at zero external magnetic fieldBz.

The influence of dipolar interaction on the magnetization of13-atom ICO withs= 1/2 has been studied

in the presence of a magnetic field. The dipole-dipole coupling is useful in the studies of molecular

structures as it depends only on known physical constants and the inverse cube of interatomic distance.
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Figure 7.2: All eigenvalues (N= 8192) for FM and AFM interactions of ICO (top two columns) and
CUBO (bottom two columns) with spin-1

2 . The solid line is a guide to eye, which indicates
the minimum eigenenergies. For AFM interaction, there exists a±Sz degeneracy for both
symmetries.
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7 Exact diagonalization and thermodynamics of clusters

The dipolar coupling Hamiltonian can be expressed through the following form,

Hdipole = ω∑
i< j

sssi ·sssj −3(sssi ·r̂rr i j )(r̂rr i j ·sssj)

|rrr i j |3
, (7.7)

wherer̂rr i j = rrr i j /|rrr i j | is the unit vector along the line joining the two spins, andω = g2µ2
Bµ0/4π is the

dipolar coupling strength, measured in units of|J|. Figure 7.5 shows the variation of magnetization

as a function of the magnetic field for several dipolar interaction strengths withω = 0, 0.025, 0.05 and

0.1 for the AFM case (we have set the shell radius to one).

For ω = 0, a reversed central spinsss0 with negative hysteresis is observed, as forBz/|J′| ≤ 6.5 the

exchange coupling is stronger than the field. For larger magnetic fields the central spin flips along the

field direction. At finite values ofω, the magnetization of center atom (the blue curve in Fig. 7.5)

and surface atoms (solid curve in Fig. 7.5) behave differently depending on their position indicating

the strong impact of dipolar interaction on the magnetization of surface spins of the cluster. For finite

values ofω, the spins of the top and bottom atoms of the cluster (left panel of Fig. 7.1) show a different

magnetization behavior compared to the other surface spins. The magnetization of the center atom

remains nearly unaffected by the change inω values. On the other hand, for the FM case,ω has no

influence on the magnetization for the center or surface spins, since the dipolar interactions cancel

with each other. Only one step appears for the field-dependence of magnetization, not shown here.

Table 7.2 compiles the values of centersz
0 and surface spinsz

i magnetizations forω = 0 at different
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Figure 7.3: Variation of magnetization as a function of magnetic field for different interactions of
13-atom ICO (left panel) and CUBO (right panel).J andJ′ are the exchange couplings
between the surface spins and center-surface spins, respectively. The external magnetic
field is measured in units of|J|.
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Table 7.2: The ground state expectation values of center andsurface spins atω = 0 for the AFM case
of ICO and the correspondingSz. Note that forSz = 6.5 the central spin is parallel.

Sz 〈sz
0〉 〈sz

i 〉
6.5 0.5 0.5
5.5 −0.4231 0.4936
4.5 −0.4091 0.4091
3.5 −0.3889 0.3241
2.5 −0.3571 0.2381
1.5 −0.3 0.15
0.5 −0.1667 0.0556

values ofSz, given by

〈sz
0〉 = − Sz

2(Sz+1)
, 〈sz

i 〉 =
Sz−〈sz

0〉
12

. (7.8)

In addition the ground state spin-spin correlation functions are calculated for the ICO and CUBO,

which has the following form

〈sssi ·sssj〉 =
Tre−βH sssi ·sssj

Tre−βH
. (7.9)

Table 7.3 and 7.4 lists the ground state correlation functions for several distances between the spins,

which are calculated in terms of the eigenvectors obtained from the exact diagonalization of the

Hamiltonian obtained from Eq. 7.6. The correlations for theFM case are found to be same for both

geometries, while for the AFM interactions, different correlation functions are obtained, which show
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Figure 7.4: The magnetic field dependence of minimum eigenenergy for ICO (left panel) and CUBO
(right panel). The black and green lines for both symmetriesrepresent the energy variation
with respect to the external magnetic field for FM and AFM cases, respectively.
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7 Exact diagonalization and thermodynamics of clusters

Table 7.3: Ground state spin-spin correlation functions for ICO with FM and AFM interactions. See
left panel of Fig. 7.1 for the labeling of atomic sites. Here,index “zero” is the center atom.

Correlation function FM AFM
〈sss0 ·sss2〉 0.25 -0.083
〈sss2 ·sss4〉 0.25 -0.176
〈sss2 ·sss6〉 0.25 0.085
〈sss2 ·sss1〉 0.25 -0.127

Table 7.4: Spin correlation functions for CUBO for FM and AFMinteractions. See right panel of
Fig. 7.1 for the labeling of atomic sites. Here, also index “zero” is the center atom.

Correlation function FM AFM
〈sss0 ·sss2〉 0.25 -0.083
〈sss2 ·sss1〉 0.25 -0.127
〈sss2 ·sss3〉 0.25 0.085
〈sss2 ·sss5〉 0.25 0.085
〈sss2 ·sss7〉 0.25 -0.176
〈sss2 ·sss11〉 0.25 -0.176

a tendency towards the antiferromagnetic order. The ICO appears to be less frustrated with respect

to the CUBO. Compared to the ICO, the CUBO shows much smaller and irregular correlations in the

3rd and 4th neighbour shell.

The thermodynamic quantities such as entropy, specific heatand susceptibility (defined in Eqs. 7.10, 7.11

and 7.12, respectively) as a function of magnetic field at several temperatures are calculated for ICO

and CUBO for the AFM (see Fig. 7.6, 7.7) and FM interactions (see Fig. 7.8). The top and bottom

panel of Figure 7.6 shows the variation of entropy as a function of external magnetic field for the

AFM case of ICO and CUBO, respectively. This shows sharp peaks for the field-dependent entropy

at low temperature, which is due to the fact that at low temperatures only the minimum energies

EntropyS= kB

(

logZ+
〈E〉
kBT

)

(7.10)

Specific heatC =
∂〈E〉
∂T

=
1

kBT2

(

〈E2〉− 〈E〉2
)

(7.11)

where,〈E〉 = ∑n εne−εn/kBT

Z

Susceptibilityχ =
∂〈M〉
∂T

=
(gµB)2

kBT

[

1
Z ∑

n
SZ

n
2
e−εn/kBT −

(

1
Z ∑SZ

ne−εn/kBT
)2

]

(7.12)

of eachSz sector are more decisive. With the variation in the magneticfield, the absolute minimum

eigenstates shift fromSz= 0.5 to higherSz values. However, as the temperature increases more number
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Figure 7.5: Variation of magnetization〈sz
i 〉 as a function of magnetic field (in units of|J|) for the

AFM case of 13-atom ICO at several values of dipole coupling strengthsω. The dotted
lines in all plots show the field-dependence of magnetization for the center spin〈sz

0〉. The
dashed and the solid lines show the same quantity for the top-bottom atoms and remaining
10 atoms on the surface, respectively. It depicts that the magnetization of the central spin
remains almost unaffected by the strength of the dipolar interaction.

of states fromSz sector contribute to the thermodynamics, as a result the peaks for field-dependent

entropy are smeared out. Similar explanation can be given tothe behavior of specific heat and sus-

ceptibility with respect to magnetic field at several temperatures, which are shown in Fig. 7.7. On the

other hand, for the FM case (Fig. 7.8), however, only the maximum Sz block matrix has the lowest

energy for all magnetic fields, which means that all eigenvalues are simply scaled with magnetic field

and therefore no non-trivial features are observed for the thermodynamic quantities such as entropy,

specific heat and susceptibility.

Figure 7.9 shows the variation entropy (top panel) and specific heat as a function of temperature at dif-

ferent external magnetic fields for the AFM interaction. Theresults for the ICO and CUBO are shown

in the left and right panels, respectively. The peaks in the temperature-dependent specific heat at low

temperatures (T≈ 1) indicate the classical excitations in the system. However, the additional peaks in

the temperature-dependent specific heat and plateaus in theentropy appear due to the quantum exci-

tations from the low lying energy levels at low temperatures. In Fig. 7.10 the temperature-dependent

entropy, specific heat and susceptibility are displayed forthe FM case of both clusters, which shows

the trivial behavior.

Figure 7.11 shows the field-dependence of magnetization at different temperatures for AFM (left)

and FM (right) interactions of ICO, respectively. It shows that with increasing temperature, the mag-

netization is smeared out for both interactions. A similar magnetization behavior with increasing

temperature is also observed for the CUBO case, which is not shown in the thesis.
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case, respectively. The several colors denote the behaviorof these quantities at several
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7.4 4-atom cluster: Tetrahedron and square

Previously, we have studied the structural and magnetic properties of small transition metal clusters

with more emphasis on the magnetic anisotropy using the density functional theory (DFT) [18], where

the energies obtained from DFT calculations were fitted by using a classical Heisenberg Hamiltonian.

The investigations presented here can be viewed as a continuation of the previous work in the sense

that we perform exact diagonalization of a corresponding quantum spin Hamiltonian to study the

system. The effect of uniaxial anisotropy has been studied for a tetrahedron and a square geometry

(shown in Fig. 7.12) withs = 1. As the uniaxial anisotropy gives a constant value fors = 1
2. In the

presence of the uniaxial anisotropies, the Hamiltonian hasa form as shown in Eq. 7.5. A regular

tetrahedron has four triangular faces with the equilateraltriangles of tetrahedron meeting at each

vertex. It has a symmetry groupTd, whereas a square is a regular quadrilateral withD4 symmetry. We

begin our discussion with the case of spin-1
2 square.

7.4.1 Square (s = 1
2)

For a 4-atom system with spin-1
2system, a Hamiltonian matrix of dimension (16×16) has to be solved.

Because of the block diagonalization method, the whole Hamiltonian matrix is divided into 5 sub-

matrices each corresponding to a definiteSz value. The 5 sub-matrices have dimensions 1, 4, 6, 4, 1
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Figure 7.8: Variation of thermodynamical entities as a function of external magnetic field for 13-atom
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rows indicate the variation of Entropy, specific heat and susceptibility with respect to
magnetic field for the FM case. The several colors denote the behavior of these quantities
at several temperatures.

in positive and negativeSz sectors. In the present case,Sz= -2, -1,...2. The ground state energies, for

the square are found to be all degenerate for FM interaction,while they are non-degenerate for the

AFM interaction, as observed in the case of 13-atom clusters. The reason behind such trend is similar

as discussed previously. The variation of magnetization with respect to external magnetic field has

been shown in Figure 7.13. We found that with increase in magnetic field, for Ji j >0, magnetization

does not change and always has a value of 2.0 in the positiveSz (dashed curve in Fig. 7.13), while for

Ji j <0, a number of plateaus occur for eachSz (solid curve in Fig. 7.13). The reason is similar like for

13-atom clusters, which is described in Sec. III.

7.4.2 Tetrahedron and square with s = 1

Several studies have been performed for the magnetic and thermodynamic properties for spin-1 clus-

ters [282, 287] using Heisenberg model. Studies including the influence of radial anisotropy on vari-

ous properties of clusters are still limited. In the presentwork, we have investigated the influence of

anisotropy on the magnetic properties and temperature-dependent correlation functions for the spin-1
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tetrahedron and square. The Hamiltonian is modified to a formas represented in Eq. (7.5) in the pres-

ence of local uniaxial anisotropies, whereDi = D is the anisotropy constant andeeei are the easy axes

which may differ for each spin. Figure 7.12 shows the anisotropy axes (double arrows) pointing in the

radial directions for the square and tetrahedron. For the 4-atom spin-1 cluster, the Hamiltonian matrix

is of dimension 34×34. The total number of block matrices is 9 in this case withSz = −4,−3, . . . ,4.

Taking the minimum energy from eachSz sector results in 9 eigenenergies. The presence of anisotropy

D shows different qualitative behavior of field-dependent magnetization as depicted in Fig. 7.14 for

the case of tetrahedron (a-b) and the square (c-d). ForD = 0, we obtain a single step in the magne-

tization for FM case and plateaus for the AFM case of both geometries. The presence of anisotropy

leads to the smearing of magnetization with respect to magnetic field for FM and AFM interactions

(see the squares and diamonds) of square and tetrahedron. Inparticular, for tetrahedron geometry,

differences in the magnetization for positive and negativevalues ofD are observed, whereas for the

square geometry, the change of sign in the anisotropy does not affect the magnetization significantly.

This indicates the dependence of anisotropy on the structural symmetry, which has been observed

earlier for 13-atom clusters through Monte Carlo simulations [281].

7.15 shows the nearest-neighbour correlation functions with respect to temperature at different values

of anisotropy constants for FM and AFM interactions of tetrahedron and square with spin-1. We
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7.4 4-atom cluster: Tetrahedron and square

Figure 7.12: Skematic picture of a planar square (left panel) and a three dimensional tetrahedron (right
panel) with 4 lattice sites. The arrows indicate the radial spin orientations taken into
account to study the effect of anisotropy fors= 1.
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Figure 7.13: Variation of magnetization as a function of external magnetic field fors=1
2 case of 4-atom

square. The dashed and solid curve show the magnetic field dependence of magnetization
for FM and AFM cases.

observe that the anisotropy has significant effect on correlation function at low temperature regions

for both FM and AFM interactions. For the FM case, they are positive, while they have negative

sign for AFM case. ForD ≥ 0, with increasing temperature, the correlations between spins gradually

decreases for both cases as expected. For negative value ofD, the correlations are reduced, which

might be due to some quantum fluctuations. Such effect can be marked for the square geometry,

where, the classical ground state would be in the direction perpendicular to the plane, as all couplings

are satisfied and the spin directions are all perpendicular to the anisotropy axes. Hence, the reduction

of correlation functions at low temperature occur due to thequantum effects. However, this reduction
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Figure 7.14: Magnetization as a function of magnetic field for different anisotropy constants for spin-
one 4-atom tetrahedron (a-b)and square (c-d). The results for FM and AFM are shown
in left and right side, respectively. The black curve for FM and AFM shows the variation
of field-dependent magnetization in the absence of anisotropy constantD. The magenta
and blue curves show the variation of the same at positive andnegativeD.

in correlation function becomes negligible in the high temperature regime, as a result the correlations

show a decreasing trend as usual.

7.5 13-atom icosahedron with spin-1

For the spin-1 icosahedron (the Hamiltonian is shown in Eq. 9.6), the Hamiltonian matrix has a di-

mension(313×313), which can be decomposed into block matrices with sizes represented as trinomial

numbers(13
k )2 for −13≤ k ≤ 13, shown in Table 7.5 together with the lowest eigenvalues of each

Sz block. The variation of magnetization as a function of magnetic field for D = 0 shows a similar

behavior like spin-12 case, as the magnetization has a constant step size from -11 to 11 for|Bz| ≤ 6 (see

Fig. 7.16, black line). The plateaus atMz =±11 indicate the saturated outer shell, where only the cen-

tral spin points antiparallel to the external field. In addition, the effect of radial uniaxial anisotropy is

studied for this geometry, with the Hamiltonian shown in Eq.9.5. For such studies, the whole Hamil-
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Figure 7.16: Variation of magnetization as a function of theexternal magnetic field (measured in units
of |J|) for the spin-1 AFM icosahedron.

tonian matrix is considered, since the anisotropy term doesnot commute with the interaction term

and hence destroys the block structure of theH. In the present case, we have calculated the minimum

eigenvalues and eigenvectors using the Lanczos scheme. Theresulting field-dependent magnetiza-
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7 Exact diagonalization and thermodynamics of clusters

Table 7.5: Size of matrices, lowest energy eigenvaluesE0 and degeneracyK0 for different Sz for 13-
atom AFM ICO with spin-1.

|Sz| Matrix size E0/|J| K0

13 1 +42 1
12 13 +29 1
11 91 +17 1
10 442 +10.763932 3
9 1651 +5.034063 5
8 5005 −0.131753 4
7 12727 −4.663902 4
6 27742 −8.608201 3
5 52624 −11.932667 4
4 87802 −14.679508 5
3 129844 −16.920343 5
2 171106 −18.566489 3
1 201643 −19.506298 5
0 212941 −19.839976 3

Table 7.6: Ground state spin-spin correlation functions for the spin-1 ICO with FM and AFM interac-
tions. See left panel of Fig. 7.1 for the labeling of atomic sites.sss0 is the center atom.

Neighbor Correlation function FM AFM
1 〈sss2 ·sss0〉 +1 −0.166667
1 〈sss2 ·sss4〉 +1 −0.594666
2 〈sss2 ·sss6〉 +1 +0.382099
3 〈sss2 ·sss1〉 +1 −0.770497

tions are plotted in Fig. 7.16 for several anisotropy constants with magenta curve for negative value

of D and blue curve for positive value ofD.

Table 7.6 shows the ground state spin correlations of the FM and AFM spin-1 ICO without anisotropy,

which are also similar to that of spin-1
2 case. They show AFM-like ordering for the AFM case with

a larger anti-correlation between opposite sites 2 and 1 (see Fig. 7.1) as compared to the nearest

neighbour value, which approaches towards the classical limit -1.
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8 Summary and outlook

8.1 Summary

This thesis deals with the study of structural, magnetic andelectronic properties of elemental and

binary transition metal clusters. We have considered especially the closed shell clusters of Fe, Co,

Ni and Pt. We have used the density functional theory for studying the electronic structure and the

total energy. As the exchange-correlation potential we have adopted the generalized gradient ap-

proximation, which is successful in describing the properties of metals. The cluster geometries are

structurally optimized by applying the conjugate gradientenergy minimization procedure. We have

explored various essential properties of clusters like theground-state structure, structure dependent

magnetic moment, possible distribution of atoms in binary clusters through segregation and mixing.

Magnetic anisotropy properties has been studied for various free and supported clusters. We have

used the exact-diagonalization procedure to study the thermodynamics of clusters.

The studies of the ground-state structural properties of small elemental clusters of Ni and Fe with upto

16 atoms suggest that the small clusters are slightly distorted from perfect geometry. The distortion

is identified as the Jahn-Teller distortion which arises because of the inherent property of a system

to avoid degeneracy of states at the Fermi level. The magnetic moments of clusters are larger than

bulk due to the uncompensated bonding of atoms. The magneticmoment as a function of cluster size

shows an oscillatory (non-monotonous) behavior. The convergence of magnetic moment towards the

corresponding bulk value is much faster for Ni clusters thanthat of Fe, which is in agreement with

experimental results. We observe existence of two spin states for the icosahedral Fe13 from the fixed

spin moment calculations The two spin states are: (i) the high-spin state with magnetic moment 44µB,

where all spins are parallel to each other, (ii) the low spin state with magnetic moment 34µB, where

the central spin is aligned oppositely with respect to the surrounding surface atoms. We find that the

high-spin state has a lower energy than the low-spin state.

Our studies on binary icosahedral Fe-(Co, Ni, Pt) and Co-(Pt, Mn) clusters show a competition be-

tween the alloy components which finally leads to chemical ordering and segregation. In order to

achieve this, the energetically preferable configuration of the binary clusters are found for several

compositions. Using the lowest energy structure of the compositions, the mixing energy is calcu-

lated. We observe a qualitative resemblance for composition-dependent mixing energy for Fe13−nNin
clusters as compared to that of the bulk alloy. For Fe-Ni clusters, it is found that Ni atoms show the

occupancy at the surface of the icosahedron for all compositions studied. For 55-atom binary clusters,
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8 Summary and outlook

however, owing to the large number of configurations that canbe possible, we have studied selective

compositions in the extreme composition regions to comparethe trends of 13-atom cluster. Our stud-

ies on 55-atom binary clusters showed similar tendencies asthat of the 13-atom binary clusters. From

the segregation properties as observed for Fe-Ni, Fe-Pt andCo-Pt, we could generalize the trend that

in a binary cluster the component with larger atomic number segregate towards the surface of the clus-

ter. In the TM-Pt binary clusters we find induced magnetic moment on Pt due to the TM component,

which is otherwise non magnetic in bulk.

Our studies on 13- and 55-atom icosahedral binary Fe, Co, Ni and Pt clusters show that there is a

competition between the alloy components which finally leads to chemical ordering and segregation.

We have calculated the mixing energy at all compositions forthe energetically most favorable config-

uration of component atoms in the cluster. The trend in the mixing energy gives the chemical ordering

and the corresponding cluster configuration is used to studythe segregation property. We observe a

qualitative resemblance of composition-dependent mixingenergy for Fe13−nNin clusters as compared

to that of the bulk alloy. For 55-atom binary clusters, however, owing to the large number of con-

figurations that can be possible, we have studied selective compositions in the extreme composition

regions to compare the trends of 13-atom cluster. Our studies on 55-atom binary clusters showed

similar tendencies as that of the 13-atom binary cluster. From the segregation properties as observed

for Fe-Ni, Fe-Pt and Co-Pt, we could generalize the trend that in a binary cluster the component with

larger atomic number segregate towards the surface of the cluster. In the TM-Pt binary clusters we

find induced magnetic moment on Pt due to the TM component, which is otherwise non magnetic in

bulk.

One of the main part of the thesis is the magnetic anisotropy studies of clusters. Usually the compu-

tational demand for magnetic anisotropy studies is more because of inclusion of spin-orbit part into

the Hamiltonian. Since the energy differences we are dealing with magnetic anisotropy studies are

relatively smaller, this needs more accurate calculationswith large energy cut-off and Fourier transfor-

mation grids. Our studies show that both spin and orbital moments of clusters are larger compared to

the corresponding bulk values. The MAE for perfect icosahedral clusters has been obtained from our

calculations and compared with the Néel anisotropy model, which are in good qualitative agreement.

We have studied the MAE of relaxed Fe13, Co13 and Ni13 clusters through two competing structural

transformation paths, namely, the Jahn Teller and the Mackay transformation. As already mentioned,

JT-distortion in clusters is a natural way to structural deviations. In the present controlled structural

transformation with separate transformations paths show that Fe13 prefers JT-distortion, while Co13

prefers MT-distortion. For Ni13 we find that both JT- and MT- distortions are almost degenerate. It

is found that the MAE of clusters is larger as compared to their bulk values. Since MAE is related

to the structure through the position vectors of all the atoms, symmetry of clusters play an important

role. The relaxed clusters have a large MAE than the perfect clusters as a consequence of symmetry

lowering for the relaxed clusters. It is peculiar that this trend was not observed for Co13 cluster, where

the MAE values were similar to that of bulk values. Our studies on Pt-capped Fe13 cluster (Fe13Pt4)
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show that the MAE is further enhanced as compared to the elemental clusters.

In addition to free clusters, we have studied clusters deposited on surface by modeling the system with

13- and 55-atom Fe, Co and Ni clusters and the surface as (001)and (111) surfaces of Pt. As expected,

the deposited clusters show the structural and magnetic properties different from that of free clusters.

The role of the surface-type is quite important for the properties of cluster-substrate interaction. For

example, we find that the closed shell 13 and 55-atom Fe, Co, Niclusters are completely deformed

while deposited on Pt(001) surface with the cluster atoms penetrating the surface with tendency of

forming surface-alloy. On Pt(111), however, the icosahedral geometry of Fe13 cluster is preserved,

while Co13 and Ni13 shows a tendency of spreading on the surface. From magnetic properties point

of view, we find that clusters deposited on Pt(001) have lowervalues of spin and orbital magnetic

moment, while clusters deposited on Pt(111) have higher values of spin and orbital magnetic mo-

ment, as compared to their corresponding free clusters. Ourstudies on the magnetic anisotropy of

Pt-supported Fe13 show an enhanced MAE which is several orders of magnitude larger with respect

to the free Fe13 cluster (as well as bulk). The enhancement of MAE is a consequence of reduction of

structural symmetry (relaxation effect) and due to the large spin-orbit coupling of Pt substrate, which

develops induced magnetic moment.

We have studied icosahedral 13-atom Fe, Co, Ni and Pt clusters deposited on both pristine and five-

membered ring graphene. Our purpose is to investigate the stability of metal cluster and graphene

interfaces, which is important from the perspective of catalytic activity of metal clusters. Our cal-

culations suggest that the interface stability is enhancedfor clusters/five-membered ring graphene as

compared to those adsorbed on pristine graphene. We observesignificant reduction in the total mag-

netic moment for the adsorbed Fe and Co clusters as compared to the corresponding free clusters. We

have attempted to study the catalytic reaction, where a CO molecule is adsorbed on 13-atom cluster

both for free clusters and for graphene supported clusters.We observe that, the adsorption of CO on

metal clusters show a strong dependence on the atomic species and the cluster geometry, for example,

CO molecule prefers to be adsorbed on Fe13 and Pt13 on the top of the atom, while for Co13 and Ni13,

it prefers the middle of the facet. The adsorption sites of COremain unchanged for the graphene

supported metals clusters. It must be mentioned that DFT-GGA has short-comings in predicting the

correct adsorption sites on surfaces which can be overcome by a van-der Waal’s correction.

We have studied the ground-state magnetic properties and thermodynamics of clusters by the exact

diagonalization technique. This technique is useful in studying the magnetic properties dependent on

temperature and magnetic field, the informations of which isnot directly accessible from the DFT

calculations. We have modeled the cluster by the Heisenbergmodel with nearest-neighbour interac-

tion for 13- (icosahedron and cuboctahedron) and 4-atom (tetrahedron and square) clusters with both

spin-12 and spin-1. Our studies reveal that in the absence of external magnetic field, the ground state

is degenerate for the FM interaction, while for the antiferromagnetic case, they are non-degenerate.

In the presence of external magnetic field the variation of magnetization shows discontinuities with

appearance of plateaus for the antiferromagnetic interaction, while for the FM interaction it shows
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Figure 8.1: The structural and magnetic phase diagram of Fe1−x-Nix bulk alloy [137, 138].

a single step. With inclusion of dipolar interaction in the Hamiltonian for spin-12 particles for the

13-atom icosahedron we find that the central atom has different field-dependent magnetization as

compared to the extreme atoms (top and bottom atoms), which in turn different from the rest of atoms

in the cluster. By including a radial anisotropy term in the Hamiltonian, we could differentiate the

field-dependent magnetization for square and tetrahedron with spin-1 particles. This is also reflected

in the temperature-dependent correlation function. The Hamiltonian for the 13-atom spin-1 icosahe-

dron with dimension of the Hamiltonian matrix is 313×313 has been solved by using Lanczos method

and the hysteresis for the icosahedron with radial uniaxialanisotropy is calculated.

8.2 Outlook

There are many scopes of clusters studies, which still need to be understood. As an outlook mostly

two important phenomena are focussed which will be persued if similar studies are continued.

Firstly about the binary clusters, which give a scope of manipulating the clusters properties through its

compositional arrangements. We have already seen from our studies that the segregation tendencies

in Fe-Ni clusters depend on the geometry of the clusters and the concentration of the components.

It is interesting to study the structural phase diagram of binary clusters, and to find whether there
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(

(

Figure 8.2: Phase diagram from nano to bulk for Fe taken from [288].
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Figure 8.3: Minimum energy paths for CO2 formation on Fe55 starting from CO and co-adsorbed
atomic C/O [257]. Several intermediate structures along the path are shown.A, E and F
abbreviate the top of the atom, edge and facet of the cluster,where the molecules are
adsorbed. Blue, green and red balls denote the Fe, C and O atoms, respectively.

is any similarity to the bulk binary alloys (for example in Fe-Ni binary system). Figure 8.1 shows

the phase-diagram of Fe-Ni bulk alloy [137, 138]. It must be noated that the studies would need

many different types of cluster geometry and thus the task isan enormous one. Experimentally, it has

been shown that as the system size is decreased from bulk to clusters, the phase formations, such as

eutectic composition and the transition temperature differs [289, 290]. This will nevertheless help us
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to address questions like, what are the properties of a desired configuration of clusters and how they

can be synthesized by understanding the stability of the desired configuration from the phase diagram.

The studies will lead the scope of extending the traditionalphase transition theories to low dimensions.

Since experimentally the studies on nano-phases can be a challenge, so theoretical studies based on

DFT may provide the right insight into the problem. Fig. 8.2 shows the cluster to bulk phase diagram

for Fe [288] (studied through molecular dynamics simulations using embedded atom potentials) which

predicts a stability for the icosahedral and shell wise Mackay transformed structures up to cluster sizes

with 15 closed atomic shells. Wanget al. have studied the size-dependent surface reconstruction and

layerwise relasation of icosahedron FePt nanoparticles and propose that the structural results can

be understood if the atomic distribution in the nanoparticle is assumed to have radial composition

gradient with a Pt-rich shell and a Fe-rich core [140]. It is understood that empirical studies can be

quick from computational aspects, but approaching the problem in fundamental way throughab initio

formalism will be useful for building better empirical potantials and directly approaching the problem

from ab initio will lead to unchallenged results.

A second scope of the outlook is the studies on catalysis properties of transition metal clusters. While

catalysis is an active technological application of transition metal nanoparticles, there are relatively

few theoretical studies attempted to understand how transition metal atom act as a catalyst for chemi-

cal reaction. Catalytic reactions can be studied by comparing the energy-barrier of reaction paths thus

predicting the most favourable reaction path. Figure 8.3 shows the several states of CO2 formation on

Fe55 cluster [257]. The energy barrier is comparable to the experimental values. Treating this problem

may sound easy, but comparing to the number of configurationsof reactants and products, the task is

challenging. These studies will contribute to desigining catalysts for efficient reactions, for example,

for efficient combustion of hydrogarbons or gasolins in industries and automobiles.
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Extension of cluster magnetism to finite temperatures

DFT being a variational theory has shortcoming in predicting the excited state properties of materials.

A direct extention to temperature dependence of propertiesis not straightforward. One of the ways to

deal with finite temperature properties especially for the magnetic properties can be easily conceiv-

able. It is a rather indirect method of calculating the distance-dependent exchange integralsJi j (r) of

magnetic atoms byab initio methods and thereby simulating the thermodynamics by the Monte Carlo

approach through the construction of classical HeisenbergHamiltonian,

He f f = −∑
i 6= j

Ji j sssi ·sssj (8.1)

where,sssi is the spin magnetic moment on the atomic site.

We have attempted to extent the zero-temperatureab initio calculations of the magnetic properties

of small clusters to finite temperatures. The exchange integrals can be calculated from the Green’s

function formalism adopted in the SPR-KKR code [291] from the group of Prof. Ebert at LMU-

Munich. The essential theory behind the method is derived byLichtensteinet al. [292] through

frozen-magnon approximation. The exchange integral is thus given by the energy integration of the

imaginary part of combination oft-matrix andτ-matrix integrated from the bottom of the valency

band (theoretically−∞) up to the Fermi-energy [293].

Ji j = − 1
4π

Im
Z EF

dE Tr
[

δi(E)G↑↑
i j (E)δ j(E)G↓↓

ji (E)
]

(8.2)

where,Gσσ
i j is the propagator of electrons with spinσ between sitesi and j in the ferromagnetic

configuration. The quantityδi(E) is the energy-dependent local exchange splitting at sitei. The trace

is over the orbital index.

It must be stressed that the mean-field estimation of the magnetic transition temperature from theJi j s

itself is overestimated. This is already well known for the bulk magnetic materials. Especially in

clusters, because of the large number of surface atoms whichare under-coordinated, the mean-field

prediction can be still misleading. Thus Monte-Carlo simulations are must. One must be aware that

for finite systems the statistics has to be closely monitored, and the transition point can be estimated by

suitably scaling the physical quantities (magnetization for example) by appropriate critical exponents.

There has already been some attempts of studies in literature. For example, the left panel of Fig 8.4
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shows the distance-dependent exchange parameters for Fe clusters. In the right panel of Fig 8.4, the

variation of Ji j with respect to the cluster size is shown [222]. Typical results obtained by the magnetic

properties by using the Ji j in the Heisenberg model with classical spins are, for example, shown in

Fig 8.5, where the variation of average magnetization as a function of temperature is plotted as for

Fe59 and Fe89 clusters.
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Figure 8.4: Left: The distance-dependent exchange parameter (Ji j ) for Fe clusters consisting of 59
(circles) and 89 (squares) atoms. TheJi j for bulk Fe is represented by black diamond. The
dashed and solid lines indicate the exchange interactions between center to other atoms
and the surface to other atoms. The black solid line at zero alongy-axis is just guide to the
eye. Both figures are replotted from Ref [222].J̄ in the right panel is the average exchange
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We have, so far, carried out few calculations of Ji j for small clusters of Fe2 and Fe13 using the Juelich

SKKR code [294, 295]. But since the cluster calculations have already been published mainly by

the group of Prof. Hubert Ebert (LMU Munich) for tiny Fe and Fe-Pt clusters, we discuss here the

published results.
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