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Abstract

Transition metal (TM) clusters occupy an important rolelia tlass of materials projected for nano
applications. In addition to the unusual properties dueh@irtcluster form, TM clusters have the
advantage of developing magnetic moments. The goal of lt@sig is to study the properties of
clusters and cluster related phenomena. Physical prepeticlusters are suitable platform to study
quantum effects, which becomes prominent at such low difmess Thus, it is essential to study
the properties of clusters using first-principles methoelsalise they cannot be easily handeled by
empirical approaches. The present thesis deals with thgtygdonctional theory total energy for-
malism through the Kohn-Sham approach. The many-body letioe effects are accounted for the
generalized gradient approximation (GGA) which has beenessful in describing the properties of
materials, especially metals.

The ground state structure of various sizes of elementabaraity TM clusters is studied. One of the
main observation is that the icosahedron is one of the mabktesgeometries for 13-atom elemental
(Fe, Co, Ni) clusters. For large Fe clusters with regulasat®dron geometry, the core of the cluster
relaxes towards the cuboctahedral geometry. For all s&fés, geometrical optimization, we find
slight structural distortions. This is associated with gigsics of Jahn-Teller effect. We observe
that the Jahn-Teller effect is more prominent in Fe cluséssrsompared to Ni and Co clusters. Also,
the evolution of magnetic moment with cluster size is stddiehe clusters show enhanced magnetic
moment which is inversely related to the cluster size. Thgmatic moment versus cluster size
obtained from calculations match very well with the expenntal results.

One of the main goals of studying binary cluster is to unégthe site-specific occupation of atomic
species in a multi-component (here binary) cluster. Thichieved this by studying the competition
between chemical ordering and segregation for binary Fe-k@, Pt) and Co-(Pt, Mn) icosahedral
clusters. The energetically favorable distribution ofstitnent elements in binary cluster is examined
for different compositions. Using the lowest energy stnoetso obtained, the composition-dependent
mixing energy is studied. It is observed that the qualigatrehavior of mixing energy with respect
to composition for 13-atom Fe-Ni clusters is very similarthat of the bulk alloy. It is found that
Ni atoms tend to occupy the surface sites on a cluster (satiwagendency) for Fe-rich and Ni-rich
compositions. This appears to be a common trend which has Vesdied for both 13- and 55-
atom clusters. Owing to heavy computational demand, we kexiéed the trend at some specific
compositions for 55-atom clusters.

Magnetic properties like the orbital magnetic moment ardtiagnetic anisotropy are studied for free

11
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and deposited clusters. 13- and 55-atom icosahedral dusté-e, Ni and Co are deposited on the
substrates like Pt(111) and Pt(001) for these studies. Betfree clusters and the deposited clusters
are observed to exhibit large magnetic anisotropy as casdp@arthat of the respective bulk metals.
The angle (angle between magnetization and the spin-gadioth axis) dependent anisotropy energy
is calculated from DFT and then fitted to the classical Hdisemn model containing an anisotropy
term. Large values of magnetic anisotropy energy are fomnddlaxed clusters as compared to
perfect clusters because of the structural symmetry-brgak

In addition to its structural and magnetic properties, sitaon metal clusters are attractive candidates
for catalysis. In principle, the catalysis can be studiedebiimating the activation energy barrier
of various paths of a reaction by nudged elastic band metfibére are studies in literature of the
catalytic properties of TM clusters (for example Fe and Bt)tifie oxidation of carbon monoxide to
carbon-dioxide on graphene surface. We have attempteddy e oxidation of carbon monoxide
on graphene surface. The goal is to understand the role of [ibtecs in reducing the activation
barrier of the chemical reaction and to derive the possiddetion paths. Presently, the proper site
for adsorption of CO molecule on free and graphene-supgdrké clusters are identified within the
accuracy of GGA.

From another aspect, we tried to extrapolate the magnetdjoepties of clusters to finite temperature
using the exact diagonalization technique. We have onbjiatithe magnetic properties of 4- and 13-
atom clusters. The exact diagonalization method is apppigtie quantum Heisenberg Hamiltonian
with nearest-neighbor spin-interactions. The role of Bipmteraction and local uniaxial anisotropy
terms in the Heisenberg Hamiltonian are taken into accoumttwhas non-negligible contribution
for clusters. We observe discontinuities in the magnatinatvith change in external magnetic field
for clusters with antiferromagnetic interactions, whishunlike for clusters with ferromagnetic in-
teraction. The ground state and the temperature-depesganspin correlation functions are also
studied.

The findings of these studies for elemental and binary aisidike the size-dependent structural
and magnetic properties, the composition-dependent atdisiributions of multi-component clus-
ters (segregation), magnetic anisotropy of free and stggpdrM clusters are expected to shed light
on the understanding of physics of clusters in general andbadelpful for experimentalists.

12



Zusammenfassung

Ubergangsmetallcluster nehmen einen wichtigen PlatziifKtisse der Materialien fiir Anwendun-
gen im Nanobereich ein. Ubergangsmetallcluster besitzasatzlich zu weiteren ungewohnlichen
Eigenschaften aufgrund ihrer Cluster-Form, den Vorteignaiische Momente zu entwickeln. Das
Ziel dieser Arbeit ist die Eigenschaften von Clustern undddenit zusammenhangenden Phanomene
zu untersuchen. Die physikalischen Eigenschaften vont&tlusind eine geeignete Grundlage um
Quanteneffekte zu studieren, die in niedrigen Dimensiateninieren. Da sich die Eigenschaften der
Cluster nicht mit empirischen Anséatzen einfach beschrelassen ist es notwendig, parameterfreie
first-principles Methoden zu verwenden. In dieser Arbeit kommt der Dichtefional Gesamten-
ergieformalismus im Rahmen des Kohn-Sham-Ansatzes zusatzinDie Vielteilchen-Korrelations-
effekte werden im Rahmen der verallgemeinerten GradieApgroximation (GGA) behandelt, die
sehr erfolgreich fur die Beschreibung von Materialienpgsondere Metalle, eingesetzt wird.

Im Rahmen dieser Arbeit wurden die Grundzustandsstruktuom elementaren und bindren Uber-
gangsmetallclustern verschiedener Grof3en untersuche derr wichtigsten Beobachtungen ist hier-
bei, dass die ikosaedrische Geometrie eine der stabilsiendn fir elementare 13-Atom (Fe, Co,
Ni) Cluster ist. Fur alle untersuchten GroRRen sind leicteksurelle Verzerrungen prasent, die auf
dem Jahn-Teller-Effekt beruhen. Dieser tritt starker irGhestern als in Ni- und Co-Clustern auf.
Fur gréRere Fe-Cluster mit regelmaRiger ikosaedrischen®gie relaxiert der Kern des Clusters in
Richtung einer kuboktaedrischen Geometrie. Ebenfallersatht wurde die Entwicklung des mag-
netischen Momentes mit der Clustergrof3e. Die Clusterzsssigéin erhdhtes magnetisches Moment,
dessen Grol3e sich umgekehrt zur Clustergrof3e verhalt. €echnete Zusammenhang stimmt gut
mit experimentellen Resultaten tberein.

Ein weiteres wichtiges Ziel der Untersuchung binarer @uist das Verstandnis der gitterplatzspezi-
fischen Besetzung der atomaren Spezies in mehrkomponetigg binaren) Clustern. Dazu wurde
die Konkurrenz zwischen chemischer Ordnung und Segregatibinaren Fe-(Co, Ni, Pt) und Co-
(Pt, Mn) Clustern mit ikosaedrischer Struktur untersuckiir verschiedene Zusammensetzungen
wurde die energetisch ginstigste Verteilung der konstitiiden Elemente berechnet. Aufbauend
auf der so bestimmten Struktur mit der niedrigsten Energigde das zusammensetzungsabhéngige
Mischungsverhalten der Elemente untersucht. Das quediteerhalten der Mischungsenergie eines
13-Atom Fe-Ni-Clusters stellt sich in Bezug auf die Zusamsstzung als sehr ahnlich zu dem des
Festkorpers heraus. Dabei zeigt sich, dass Ni zur Besettem@berflachenplatze (Segregationsten-
denz) im Fe-reichen wie auch im Ni-reichen Zusammensethergich tendiert. Das erscheint als

13
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allgemeiner Trend, der in dieser Arbeit fiir 13- und 55-AtQiuster verifiziert werden konnte.
Ebenfalls untersucht wurden magnetische Eigenschafterdas Bahnmoment und die magnetische
Anisotropie flr freie und deponierte Cluster. Hierzu wurdikosaedrische Cluster mit 13 und 55
Atomen bestehend aus Fe, Niund Co auf Pt(111) und Pt(00E)&tdn deponiert. Sowohl die freien,
wie auch die deponierten Cluster zeichnen sich durch eimféegmagnetische Anisotropie im Vergle-
ich zu den entsprechenden Festkorper-Materialien aus.wiikelaufgeldste Anisotropie-Energie
(gemeint ist der Winkel zwischen Magnetisierung und SpiraQisierungsachse) wurde im Rahmen
der DFT berechnet. An diese Ergebnisse wurden die Paragie&srklassischen Heisenberg-Modells
mit Anisotropieterm gefittet. Fur relaxierte Cluster wardie Vergleich zu perfekten Strukturen auf-
grund der strukturellen Symmetriebrechung grof3e Anipar&nergien gefunden.

Abgesehen von ihren strukturellen und magnetischen Edpafien sind Ubergangsmetallcluster at-
traktive Kandidaten fir katalytische Anwendungen. Im Bipnkonnen die katalytischen Eigen-
schaften durch Bestimmung der Aktivierungsbarriere finsoliedene Reaktionspfade im Rahmen
der Nugded-elastic-band-Method untersucht werden. Ihideratur existieren Studien der katalytis-
chen Eigenschaften von Ubergangsmetallclustern (z.B dEe Bt) im Bezug auf die Oxidation von
Kohlenmonoxid zu Kohlendioxid. Im Rahmen dieser Arbeitduiie Oxidation von Kohlenmonoxid
auf Graphen mit dem Ziel untersucht, die Rolle der Ubergawegalicluster im Hinblick auf eine Re-
duzierung der Aktivierungsbarriere der chemischen Reaktu verstehen und mdogliche Reaktion-
spfade abzuleiten. Bislang konnte der Adsoptionsplatese®O-Molekils auf freien und Graphen-
unterstitzten Clustern im Rahmen der Genauigkeit der GGfirbmt werden.

Um die magnetischen Eigenschaften bei endlichen Temperatesser zu verstehen, wurden vier
bis 13-Atom Cluster im Rahmen des quantenmechanischeremtesgmodells mit ndchster-Nachbar-
Spin-Wechselwirkung exakt diagonalisiert. Die Rolle dgzddwechselwirkung und radialer Anisotro-
pieterme, die nicht vernachlassigbare Beitrage fur Cileiben, wurden im Heisenberg-Hamiltonian
berlicksichtigt. Fur antiferromagnetische Cluster wurdien Gegensatz zu ferromagnetische wech-
selwirkenden Clustern - Unstetigkeiten in der Magnetigigrals Funktion des externen Magnetfeldes
gefunden. Zusatzlich wurden fir diese Cluster Grundzdstard temperaturabhéngige Spin-Spin-
Korrelationsfunktionen berechnet.

Die Ergebnisse dieser Arbeit flir elementare und binaret@uwie die GrolRenabhangigkeit struk-
tureller und magnetischer Eigenschaften, die zusammamgabhangige Verteilung der Atome
in mehrkomponentigen Clustern (Segregation), magnetigahisotropie freischwebender und de-
ponierter Ubergangsmetallcluster konnen beitragen, dastdhdnis der Clusterphysik im Allge-
meinen voranzubringen und Hilfestellungen fir experirakb@tArbeiten bieten.
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1 Introduction

1.1 Magnetism in low dimensional systems

Magnetism is a relatively old topic, but still attracts Idtszientific attention. Phenomenas associated
with magnetism can be classified as many-body problems attgm mechanics has been successful
in interpreting them [1]. The scope of the present thesisigeustanding the structure and magnetism
of some pure and mixed transition metal clusters. Clustendge the unique opportunity to study the
development of a physical property from the atom towardsstiiel, i.e., from a “zero”-dimensional
to a three-dimensional system. This concerns the formatfcan electronic band structure or the
development of many-electron phenomena, such as sola s@jnetism or superconductivity. Like
the corresponding atoms these small particles have signifgpin and orbital contributions to their
magnetic moment. This is in contrast to the respective solithere the orbital moment is almost com-
pletely quenched by crystal fields and where in most casesxitteange energy that could be gained
by spin alignment is exceeded by the increase in kineticggnigiat according to the Pauli principle
is required to promote the electrons to empty orbitals. Mobtls therefore are non-magnetic. When
the energy band width is small and correspondingly the tien$istatesD(Eg) is large at the Fermi
energy, like in somel- and f- metals, there is a gain in exchange energy at the expenseaatick
energy and then magnetism survives. This corresponds Bttmer criterion, which states that for a
material to be magnetic the product of the exchange intégmatiD(Er ) needs to be larger than one.
Experimentally, the magnetic moments of metal clustersuatally studies by in-flight molecular
beam Stern-Gerlach experiment. In the experiment, a miaginetd gradient induces small deflec-
tions of a beam of magnetic clusters traveling through a kiagguum channel. The tiny deflections
are only a fraction of millimeters in magnitude, but can beaswed with very accurate precision by
a position-sensitive time of flight (TOF) technique [2]. Rrdhe magnitude of these deflections the
magnetic moments of the clusters can be determined. Anath@nced method for characterization
of magnetic moments is the technique of X-ray magnetic @radichroism (XMCD). The advantage
of XMCD is that one can make a distinction between spin andairbontributions to the magnetic
moment when clusters are soft landed on the substrate [3].

The following is a short recapitulation of the basic projgerbf clusters [4]. Clusters have very differ-
ent and often very individual physical and chemical prdpsertFor example, the chemical reactivity
can change by orders of magnitude from one cluster size tagke Therefore, clusters may form
specific material selective catalysts. Clusters have tstres with five-fold symmetry (possibly also
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Figure 1.1: The variation of energy differences betweeroctdhedra and icosahedra for Co, Ni and
Fe as a function of the cluster size calculatedabyinitio methods. The lines are guide to
the eye [7].

seven-fold symmetry) like that of the icosahedral geomgtiyctures which have their own individual
growth patterns. Due to their five-fold symmetry axes theyhod grow into periodic lattice structures.
Clusters are characterized by a large surface to volun thét is, a large fraction of the constituents
occupies low coordinated surface sites. For example, flustier with 2000 atoms, a fraction ef 30

% atoms is still at the surface. The number of surface atorasinster is inversely proportional to the
mean cluster radiuR. The large fraction of surface atoms makes the clusterstsen®r chemical
reactions. The large number of surface atoms in clusteoshage consequences in magnetism since
the surface atoms are low-coordinated as compared to theThubrefore, they have a more atom-like
character than the interior atoms. As a result, magnetiggsties of clusters are very sensitive to their
chemical environment. On one hand magnetism in clustersbeaenched, e.g. by charge transfer
into emptyd-states, on the other hand, it is also possible to even iserttee magnetic moment of a
cluster. It has been recently shown that even gold nanofesttan be remanently magnetized, when
capped with thiol ligands, even at room temperature [5].sHansitivity also has implications for
deposited clusters. The systematics of cluster physicbeajiven by expressing the binding energy
as a function of cluster sizd [6, 7],

E(N) = aN+bN?3 4 cNY3 4 d. (1.1)

Where,a, b, ¢ andd signify the contributions arising from the cluster voluniecets, edges, and
vertices, respectively. The volume and surface (facetge®@nd vertices) contributions compete
with each other. These coefficients show a dependence opgbend shape of the cluster. Fig. 1.1
shows a comparison of the energy differences between tkahedra and cuboctahedra geometries
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1.2 Origin of magnetism in atoms: Hund’s rules

of Fe, Co and Ni clusters [7], which shows that the icosaHesdractures are more favorable for Co
and Ni with larger energy difference in contrast to Fe.

1.2 Origin of magnetism in atoms: Hund’s rules

There exists a close relationship between angular momeatghmagnetism [8]. Each electron in an
atomic orbital contributes to spin and orbital magnetic reatn The addition of these contributions is
within the scope of the vector model of atomic magnetismhé&itS coupling, also known as Russell-
Saunders coupling scheme, the total orbital momentua®;l; and the total spin momentug= 25
combine to yield the total momentuin= L + S. The moments obey the matrix-operator rules, such as
S =8(S+1),L2=L(L+1),andI?=J(J+1). In heavy elements, due to the large nuclear charges,
spin-orbit interactions are larger than spin-spin intéoas or orbit-orbit interactions. This situation

is described by thg coupling, whereJ =%Ji =% (Li + S).

Hund’s rules can be summarized by three rules.

 For an electronic configuration, the spin configuratiorhvaitaximum multiplicity has the low-
est energy. The multiplicity is given by&1, which is maximum wheis maximum. This is
possible because of the Pauli exclusion principle whictestthat two electrons cannot share
the same set of quantum numbers.

 For a given multiplicity, the configuration with the largealue ofL has the lowest energy. This
rule deals with reducing the repulsion between electrons.

 For a given atom with the outermost subshell half-filledessl, the configuration with the lowest
value ofJ is the lowest in energy. If the outermost shell is more thdfffiled, the configura-
tion with the highest value af is the lowest in energy. This rule takes into consideratfon t
energy shifts due to spin-orbit coupling, and is valid far tase where the spin-orbit coupling
is weak compared to the residual electrostatic interaction

Any degeneracy beyond the Hund’s rules is removed by intieree such as Zeeman coupling and
interatomic exchange. This is of importance for the tempeeadependence of magnetic anisotropy.

1.3 Cluster magnetism

Magnetism is sensitive to many factors such as the symmegmynic coordination and interatomic
distances in the cluster. These characteristics are étated [9]. Let us consider the case of free
atoms. Fe, Co and Ni have eight, nine and ten valence elagtrespectively and are distributed
in the 3 and 4 shells. Hund’s rules require the spin to be a maximum andl¢lids to electronic
configurations 81° 3d|? 4s? for Fe, 311° 3d|2%4s? for Co, and 81° 3d|34s? for Ni, where the &1
and 31| subshells are separated by the exchange interaction. Bi@spin magnetic moment of an
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electron is g, and these atoms have non-zero spins, the atoms possetmtabsoments. The
magnetic moment is given by the difference in the number iof $and spin| 3d electrons per atom,
which isng(7) —ng(l) = 4,3,2 for Fe, Co and Ni, respectively. When the atoms come togéthe
a cluster, the overlap between the atomic orbitals of neiglalboms gives rise to energy bands. The
levels corresponding tos&lectrons produce a free electron-like band, whiledledectrons stay lo-
calized on the atomic sites. The crystal potential stadslithed ands states by different amounts.
Together with the crystal potentiadpd hybridization leads to charge transfer frato d states, and
the number o6 electrons for systems other than the atom is close to 1. Aisguiimat the 8 orbitals
are atomic-like, the Hund'’s rules require the majority] 3ub-band to be fully occupied with five
electrons per atom while the minoritgl 3 sub-band has two, three and four electrons per atom in Fe,
Co and Ni respectively. The difference in the number of gpand spin| 3d electrons per atom is
ng(T) —ng(l) = 3,2,1 for Fe, Co and Ni respectively, and the magnetic momentsijoen are Jug,

2 us and 1pg for Fe, Co and Ni, respectively. These values are quite ¢tmge magnetic moments
of very small clusters. The bulk moments per atom for Fe [8)2 Co (1.7ug) and Ni (0.6ug) are
smaller, and their noninteger values originate becaudeegbartial delocalization of thed3lectrons.
This also leads to the mutual alignment of the moments, wiki&hown as itinerant exchange.

1.4 Magnetism in bulk

The main characteristic of bulk is that the energy levelsctassified as energy bands which can be
delocalized [9]. In a one-electron picture, the electrotshie available delocalized states up to the
Fermi level. This explains the occurrence of noninteger meéig moments in bulk transition metals.
Nonmagnetic metals have two equally populateohd | spin subbands. With application of magnetic
field, some electrons are transferred from theo the T band. This type of behaviour of metals
are characteristically known as Pauli paramagnetism. Dhesgponding spin polarization is small,
usually less than 0.1%. In itinerant ferromagnets the sporading one-electron energies of the bands,
as represented by the band width, compete against intnai@exchange. As a result ferromagnetism
is realized in narrow bands. The simplest model of itinefambmagnetism is the Bloch model, where
the intra-atomic exchange is evaluated for the free elastrd more sophisticated model is the Stoner
model, which relates the onset of ferromagnetism with theéteDOS at the Fermi level. The density
of states strongly depend on the crystal structure. Thisasaldifficult to predict the ferromagnetic
moment of solids from their atomic compaosition. Itineraragnets with approximately half-filled
bands exhibit a strong tendency towards antiferromagndiiscause the hybridization energy of half-
filled 7 and| spin bands is lower than that of completely-fillethands. Magnetism in the iron-series
transition metal elements is because of the itinerantrelest The itinerant character is represented
by the non-integer spin moments per atom, such as thggf@r Fe, 1.7pg for Co, and 0.64g for

Ni, as already discussed. The origin of non-integer valdesagnetic moment cannot be accounted
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Figure 1.2: The Jahn-Teller effect for Nth(3d*). The left side indicates the M ion (purple) placed
at the center of an oxygen (green) octahedron. Due to staldistortion, the octahedral
symmetry is converted to a tetragonal one (shown in the ggi®) and the energy of the
ds,2 orbital pointing along the direction is lowered. Since thegd orbital is filled and the
higher d._. orbital is empty, the system can lower its energy. For detaée Ref. [10].

with the ionic nature, but reflect the interatomic hoppingtted spin-polarized electrons. Itinerant
magnetism also occurs in many alloys, such as iy, PtCo, and the low-Jintermetallic ZrzZn.
On the other hand, magnetism in rare-earthwitals, heavy-fermion compounds such as GeAh
only be explained from the localized picture. Rare-eaghdition metal intermetallics such as SmCo
and NgFe 4B exhibit both itinerant (8) and localized (4) features.

In iron-series transition metals the delocalized elecroan be classified as two types,electrons
and 3 electrons. Both gdand 3l electrons contribute to transport properties, such agriglatand
thermal conductivities, but the magnetic moment largeigioates from the 8 electrons. However,
4shelp to realize a RKKY-type exchange [11-13] between theatonoments. This is different from
the rare-earth elements, where the metallic conductigityuie to delocalizeddband & electrons but
the magnetic moment originates from localizefdelectrons. As in other transition metal magnets, the
orbital moment of the itinerantd3electrons is largely quenched. Typical orbital momentsionérant
3d electrons are of order Oylg, so that the Landé g-factor is close to 2 and the moment isl ¢égua
the number of unpaired spins.

1.5 Jahn-Teller effect

The Jahn-Teller effect is an important physical effect véehade is more prominent in cluster physics.
The Jahn-Teller theorem states that any non-linear maegitih a degenerate electronic ground state
will undergo a geometrical distortion that removes the degacy, because the distortion lowers the
overall energy of the complex [10, 14]. This implies that ateyn having a degenerate ground state
will spontaneously deform to lower its symmetry. It mostlgcars in octahedral complexes of the
transition metals. As an example, the mechanism of sucletdffes been shown for Mh ion in
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Fig 1.2. When the M#" in high spin configuration is placed in the octahedral ligiefd, it contains

a single electron in the uppeg state. The system lowers its energy by a tetragonal distortihereby
causing a splitting in the energy levels. The total enerdgvigred due to the lowering of the one of
the g orbitals (d,2) marked by the increased bond length alongzheis. This causes the filled,gl
orbital to drop in energy below the empty.d,» orbital. On the other hand, since both of the split
tog states are filled and the center of gravity is preserved gr&tdtes donot contribute to the overall
energy saving.

1.6 Other general aspects of clusters

The difference between cluster and bulk are manyfold. Orikeash is the number of surface atoms,
which are significantly larger in the cluster. Another aspédhe difference is that the electrons are
confined in a small volume of the potential well in clusterss @result the electrons are filled in
discrete levels instead of the band which is characteridtioulk. Clusters provide the bridge be-
tween atoms, molecules and bulk. One of the important qurestivhich is still lacking convincing
answer is how many number of atoms are required for a clusteritnic the bulk behaviour. Al-
though the jellium model sucessfully explains the stabiit clusters of nearly free electron metals,
it has limitations in describing the structural propertiéglusters, such as their geometry and atomic
arrangements (for many elements in clusters). There aréeam@gearch going on studying clusters
by rigorous molecular orbital calculations based on dg#sitctional theory.

Clusters can be broadly classified into following categobased on the type of chemical bonding [4].
Accordingly, needs different experimental setups for lsgais and also different level of theory are
necessary for studying the system.

» Van der Waals clusters

The clusters are characterized by the weak van der Waatadtittn. Due to the central force,
the most stable clusters have a closed-packing of atomswé&ak binding leads to low melting
and boiling points. Molecular clusters like)\, (N2)n, (CO)n, (SFs)n belong to this class.

» Metal clusters

One can sub-classify the metals clusters based on comdtitkes, simple metals (Na or Al with
spvalence electrons) and transition metals (Fe or Co, wherdacalizedd electrons play an
important role). Some polyvalent non-transition elemdikis Pb form a group in between.
The clusters reflect these characteristics. The strendtiediinding in metallic clusters ranges
from moderate to strong (0.5 to 3 eV per atom). The main ptgédithe clusters of the simple
spelements is the existence of electronic shell effects [T%]e delocalized character of the
electronic states ispelements allows for the occurence of collective electr@xicitations at
low energies. The presence @klectrons in transition metals make it more complex than the
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clusters ofspelements. One of the interesting effects of these clussatwir role in catalysis.
Another interesting effect is the evolution of magneticg@xies with the cluster size.

» Clusters of ionic materials

The cohesion of such clusters can be described by potemiitiisan attractive part due to
electrostatic monopole forces and a repulsive part fronotteglap of the electronic clouds of
ions with filled electronic shells. The structures of thelssters can have a rectangular shape
cut from the solid.

* Network clusters

In this case, the covalent bonding leads to the formatioriavhc networks in clusters. Mate-
rials like Si, Ge and C belong to this catagory. The bindingrgy in network clusters is strong
(1 to 4 eV per atom). Some of the example are the fullef@jeand water clusters.

1.7 Experimental techniques for synthesis of clusters

Depending on the physical or chemical properties of thaetasdifferent methods of synthesis tech-
nigues are used [16].

Clusters having low melting points can be produced throigghid metal ion source, where the metal
cluster is heated in an oven and then distilled into a tumgstgillary needle. By applying high
electric field between the tip of the capillary needle anddraetion electrode to the field emission
of cluster ions of different size can be synthesized.

lon bombardment is another method of generating clustezse Bl beam of inert gas ions with a high
kinetic energy is directed towards the sample to produceligter ions. Charged cluster of noble
metals and the Zn group elements have been obtained in tlisiuas method is applied to produce
clusters with high boiling point like alkali halides.

Clusters have been synthesized using techniques likesupemnozzle sources. The basic idea behind
this method is the formation of clusters by condensationrmoégpanding gas of atoms. A highly
compressed gas (typically under pressure of around 10 lidratems of the material to be aggregated
is allowed to expand through a small nozzle. The adiabati@esion slows down the atoms up to
a point at which binding between neighboring atoms becomesgetically favorable. This leads
to a successive aggregation of the atoms to form clustergerSonic sources are often used for
producing clusters of low melting metals like alkali metals furnace containing molten metal is
heated to produce the metal vapor of pressure around 10-b@@ mhis vapor is mixed with a rare
gas introduced into the source at a pressure of several bahdt mixture of metal vapor and rare gas
is driven through the nozzle which expands after coming bthe@nozzle. This pure vapor source is
efficient to produce van der Waals clusters. In the case ddllivetlusters it produces mainly small
clusters, and some medium size clusters but with low abuwatarThis source is not suitable for the
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formation of large metallic clusters because the procesdamh aggregation leaves the cluster in an
excited state and the metal vapor must act also as a heabaibltthe clusters.

Metal clusters can also be produced using gas aggregatimoesy where the metal vapor exists in a
supersaturated state for a short time. This leads to theattwmof small clusters. But large clusters
are formed with the increase of corresponding times in ggeeg@tion sources. In a gas aggregation
source the metal vapor from the oven enters a condensatambar, where it mixes with a stream
of inert gas at pressure about 1 Torr. Cluster growth coesirin the condensation chamber until the
mixture of gas and clusters is discharged through an orifitwea sourrounding vacuum chamber. The
distribution of cluster sizes is controlled by the temperas of the oven and condensation chamber
and by the gas flow rate. Experimental parameters can betedjtissproduce clusters up to sizes of
10° atoms.

Laser vaporization is another method of producing clustér€an produce aggregates with up to
100 atoms or more of any substance which exists in the sdlig.stin this method of production
of clusters, a pulsed laser beam is allowed to hit a metadlicar disk placed in a tube. The laser
pulse evaporates atoms producing an extremely hot plasrhi& Va@por is cooled by a stream of
inert gas flowing through the tube and condensation of thenamduces clusters of different sizes.
The flowing inert gas carries the clusters to a vacuum chambere the pressure difference induces
a supersonic expansion of the beam. Collisions ocurringnduhe expansion cool the aggregates
down to a low temperature. Both neutral and ionized cludtassbeen produced by this method.

1.8 Experimental characterization of clusters

After the production of clusters, itis analyzed to estinthtesize distributions and varios other cluster
properties. The size distribution is estimated with mascgpmeters. There are two main classes
of experimental setups involving either time-dependentirne-independent electromagnetic fields.
Typical devices with time-dependent fields are quadrupsétsp, ion cyclotron resonance systems
and the widely used time of flight (TOF) set-up. TOF mass speawtry [2] is a method of mass
spectrometry in which ions are accelerated by an electtit digknown strength. The velocity of the
ion depends on the mass-to-charge ratio. The time that sesutently takes for the particle to reach
a detector at a known distance is measured. From this tim¢hankhown experimental parameters
one can find the charge to mass ratio of the ion. The charaatiem discussed is valid for gas-phase
synthesis of clusters as discussed above.

X-ray diffraction (XRD) and transmission electron micropg (TEM) are often used for structure
analysis. X-ray photoelectron spectroscopy (XPS) is udefuanlysing the chemical compaosition
of the clusters. Magnetic characterization is commonlyedasing the superconducting quantum in-
terference device (SQUID). The system is designed to medkarmagnetic moment of a sample,
from which the magnetization and magnetic susceptibilay be obtained. Temperature dependent
magnetic properties can also be studied. X-ray absorpfi@ctsoscopy (XAS), which essentially
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measures the atomic composition of the material by anajytsia element specific X-ray absorption
process. This is complementary to XPS, which probes thestmnispectra. One of the improtant
experimental characterization techniques for measutirgspin and orbital magnetic moments sep-
arately is XMCD. In this case circularly polarized X-ray ifinca synchrotron source (which contains
an angular momentum - the helicity) is incident on a sample XMCD is yielded by the difference
of the absorption curves for both the helicities of X-ray.eTXMCD effect is commonly described
by a two step model [10], which distinguishes the generatiba spin and/or orbitally polarized
photoelectron and the transfer of this photoelectron te &ectron state of higher energy.

1.9 Outline of thesis

This thesis addresses mainly the structural and magnejpepies of TM clusters based on DFT. As
TM clusters, Fe, Co, Ni, Pt and their combinations are mastthgied. TM clusters show enhanced
stability at some particular sizes, known as magic numke8sgb, 147, 309, 561, 923,-). Clusters
with magic number of atoms usually have the geometry of sedahell icosahedron, cuboctahedron
and decahedron. As a result, the main focus is on 13 and 55iatmahedron and cuboctahedron.
The structural stability and magnetic properties of issdadnd deposited closed shell transition metal
clusters are studied with much focus. Along with the elermletitisters, some of the binary clusters
of (Fe-Co, Ni, Pt) are studied. The motivation for studyinigdny clusters is that the intermixing of
different atomic species in clusters gives rise to morerpatars to control the physical and chemical
properties, those are different from the correspondingnefdal clusters. After a short description
of the DFT and specific settings used for the calculationsiénsiecond chapter, the elementary and
binary clusters are discussed with emphasis on propeitiesdégregation and mixing in clusters in
the third chapter.

The magnetic clusters are projected as possible candifdaitgure recording media [17], where hy-
pothetically, each cluster can store one bit of informabgmeans of the magnetic configuration. For
this purpose, magnetic anisotropy is a primary requirem@imce magnetism of small clusters is not
stable due to superparamagnetism and thermal fluctuateomigjor menace as size reduction of the
storage devices, therefore, materials with large magaeisotropy are needed to block the thermal
fluctuations. In chapter four, the magnetic anisotropyn spbment and orbital moments of elemental
and binary clusters are discussed. The studies on orbigh@tiam and magnetic anisotropy needs the
incorporation of spin-orbit interaction in the DFT Hamiiian. The spin-orbit coupling in the present
case is treated as a perturbation term in the scalar-ristitivHamiltonian. Theoretical determination
of magnetic anisotropy based on DFT is challenging, becafifee very small energy differences.
For example, the value of magnetocrystalline anisotropiyuik is of the order of 10° eV. Thus, to
determine the magnetic anisotropy for clusters, the entigyance to 100 eV is necessary which
is a sensitive task [18]. Therefore, calculation of MAE riegsi much careful attention towards some
facts like the proper convergence of energy and accuradyeafesults.
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Physical phenomena associated with surfaces and itsétitaravith molecules and clusters are cur-
rently much aspired research problems [19]. Chapter fiveudses the structural stability and mag-
netic properties of clusters deposited on Pt surfaces. Tdgneatic anisotropy of deposited clusters
are also discussed.

The use of TM clusters as catalysts is well known [20, 21]. 8atudies on the catalytic activity of
metal clusters are attempted and reported in the literg®®e24]. (Fe, Co, Ni and Pt)zs5 clusters

on a pristine (defect free) and a five-member ring grapheiith @efect) sheet are used as substrate
to study the stability of clusters and the cluster-graphiatexface. This topic is discussed in chapter
SiX.

The cluster calculations have mostly been perfomed withaagum mechanical package named as
Vienna Ab initio simulation package (VASP) [25, 26]. It sek/the Kohn-Sham equations of local
density or spin-density functional theory, iterativelythiin a plane-wave basis-set. The interaction
between ions and electrons is described by the projecgmanted wave (PAW) [27] method. In
addition to the VASP calculations, we have used the SIESTded@8] for a comparative study in
chapter four. In a few case, the cluster calculations haea performed with the full potential FPLO
code of the Dresden group [29], see chapter four. The camgide of catalytic reaction (oxidation
of CO in different environments) in chapter six represehésfirst step in this important of research.
Here, further calculations are needed, which are beyonddbjge of the present thesis.
Thermodynamics of the cluster magnetism is done by the el{agbnalization method. In chapter
seven, we discuss the Heisenberg spin Hamiltonian to whictcloister can be modeled and then
study the thermodynamic properties by the exact diagamtadiz technique. We have treated the case
of 13- and 4-atom clusters with spin-1/2 and spin-1 pai¢8®, 31].
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2 Density functional theory

The DFT is a theory where the many-body problem is treatechbysingle-particle density through
the Kohn-Sham equations. This was proposed by P. HohenlberdVa Kohn in 1964 [32]. The
total energy is a functional of the density. Thus all projsrof the system can be considered to be
unique functionals of the ground state density. The numbéegrees of freedom is now significantly
reduced allowing for quick computations in comparison teeotquantum chemical methods. As a
result DFT has become a primary tool for calculation of et structure in condensed matter and is
increasingly important for quantitative studies of molestand other finite systems. The formulation
of DFT as we use today, comes from the classic work of W. Kotuh lanJ. Sham [33] and has
become the basis of much of present-day methods for treeli@atyons in atoms, molecules, clusters,
surfaces, adsorbates and bulk. One of the landmark achenteof the DFT is the local-density
approximation (LDA) as the exchange-correlation funaiowhich is very successful in describing
the material properties. Improvements over LDA, like gafized gradient approximation (GGA) is
also mostly recommended in many cases. Below we presergfatepretical description of the DFT
following the description of Ref. [34]. For more detailedsdgption one must refer to standard books
and review articles.

2.1 Thomas-Fermi-Dirac model

The original DFT of quantum systems was proposed by Thontsai3d Fermi [36] in 1927. Al-
though their approximation is not accurate enough for prteday electronic structure calculations,
the approach illustrates the way DFT works. In the originabmas-Fermi method the kinetic en-
ergy of the system of electrons is approximated as an ekflicctional of the density, idealized as
non-interacting electrons in a homogeneous gas with deasital to the local density at any given
point. However, in this case the exchange-correlation antba electrons is neglected. Later on in
1930, Dirac formulated the local approximation for exchanghis leads to the energy functional for
electrons in an external potenthl(r)

Ereln] Cl/d3r n(r 5/3+/d3rvext rn (r)+C2/d3r n(r)%3

33’” n(r)’
Z/d rd \r—’]

where the first term is the local approximation to kineticrggevithC, = -3(31%)%2 The ground state

(2.1)
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density and energy can be found by minimizing the functid®al[n] in Eq. (2.1) and the number of
electronsn(r)

/d3r n(r) = N. 2.2)

Using the Lagrange method, the solution can be found by aonsti@ined minimization of the func-
tional

Qre[n] = Ere[n] — pf/ d n(r) — N} (2.3)

where the Lagrange multipligr is the Fermi energy. For small variations of the dendityr), the
condition for a stationary point is

/ dr {Qre[n(r) +3n(r)] — Qreln(r)]} — / dr {gcln(r)z/3 +V(r)— u} 3n(r)=0, (2.4)

whereV (r) = Vexi(r) + VHarred ) + Vx(r) is the total potential. Since Eq. 2.4 must be satisfied for
any functiondn(r), it follows that the functional is stationary if and only e density and potential
satisfy the relation

1

E(BT[Z)Z/3n(r)2/3 +V(r)—pu=0. (2.5)
DFT is attractive because in this case the equation for tyeissinore simpler compared to the many-
body Schrodinger equation that involvebl 8legrees of freedom faN electrons. Thomas-Fermi
approach has very crude approximations, which lacks trengasphysics, unable to provide a useful
description of electrons in matter.

2.2 The Hohenberg-Kohn theorems

The formulation of DFT by Hohenberg and Kohn applies to arstay of interacting particles in an
external potentiaVex(r), with the electrons and fixed nuclei. In this case, the Hami#n can be
written as

. R 1 3
He S0P+ SVex(ri) +2 S ——— 2.6
DFT is based on two theorems proved by Hohenberg and Kohnyf¢h is as follows.

e Theoreml: For any system of interacting particles in an external piigéVey(r), the potential
Vext() is uniquely determined, except for a constant, by the grata particle densityo(r).
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2.3 The Kohn-Sham approach

e Theoreml!: A universal functional for the enerdy[n] in terms of the density(r) can be defined,
which is valid for any external potenti&ky(r). For any particulaMex(r ), the exact ground state of
the system is the global minimum value of this functional] #re densityn(r) which minimizes the
functional is the exact ground state densigyr ).

2.3 The Kohn-Sham approach

The assumption made behind this approach is that the grdateddensity of the original interacting
system is equal to that of a non-interacting system, whiabldd¢o independent particle equations of
the non-interacting system that can be considered exattiple with all many-body terms incorpo-
rated into an exchange-correlation functional of the dgn8y solving the equations one finds the
ground state density and energy of the original interacsiygfem with the accuracy limited by the
approximations in the exchange-correlation functional.

The Hamiltonian for the independent particle system has for

A 1
Ho = —§D2+V“(r) (2.7)

For a system ofN independent electrons with = N’ + N obeying this, the ground state has one
electron in each of thal? orbitalsyf with the lowest eigen valuegy of the Hamiltonian (Eq. 2.7).
The density of the auxiliary system is given by sums of scuiafehe orbitals for each spin

NG
=3nno) =3y (WP (2.8)

the independent-particle kinetic enertyis given by

I\JIH

Zl W | 0% gf) = er Oyf 2, (2.9)

and the classical Coulomb energy of the electron demsityis defined as

The Kohn-Sham approach to the full interacting many—bod;bta!m is to rewrite the Hohenberg-
Kohn expression of ground state energy functional in thenfor

Exs — T[] + / drVest(1)N(F) + Enartred] -+ En + Exc[M]- (2.11)

Where,Vex(r) is the external potential due to the nuclei and other extdielals (assumed to be
independent of spinky: the interaction among the nuclei.
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2 Density functional theory

Using expressions fa°(r) andTs from Egs. 2.8 and 2.9 and the Lagrange multiplier methodHer t
constraints, the Kohn-Sham Schrddinger-like equatiorpiained. this has a form

(HRs — &)W (r) =0, (2.12)

whereg; are the eigenvalues, ahtks is the effective Hamiltonian

1
Hgs(r) = —§D2+V£S(r), (2.13)

whereVZs(r) consists of three terms, i.e.,

6EHartree 6Exc
on(r,o)  on(r,o)
The last three equations are the Kohn-Sham equations, hétkelectron density(r,o) and total
energyExs given in Egs. 2.8 and 2.11. If the exds{:[n] functional is known, then the exact ground
state density and energy can be calculated for the intagasyistem.

VKs(r) = Vex(r) + = Vext(r) 4+ Vhartred(r ) + Vi (1) (2.14)

2.4 Exchange correlation functionals

2.4.1 Local density approximation (LDA)

In local density approximation (LDA) or more generally thedl spin density approximation (LSDA),
the exchange- correlation energy is an integral over altespeth the exchange-correlation energy
density at each point assumed to be the same as in a homogegieotion gas with that density,

ELSDAIRT nl] — / &3 (r)ehom(nl (r),nt(r)) (2.15)

Here, the spin quantization axis is assumed to be the saniiepairgs in space. The LSDA is the
most common local approximation for exchange and corglatin the case of unpolarized systems,
the LDA is found by setting' (r)=n!(r)=n(r)/2. In LDA,

ashom
ono

OEyc[n] /dr { enom 4 n—2X ] 3n(r,o) (2.16)

Hence the exchange-correlation potergican be expressed as

(o] hom as!(]gm
Vie(r) = [Exc =5 Lc, (2.17)
Sinceel®™(n%) scalegn®)~1/3, the LDA exchange terms are

VE(r) = gshom(n(r,o)). (2.18)
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2.5 Basis sets

2.4.2 Generalized-gradient approximation (GGA)

In generalized gradient approximation (GGA), the exchacmyeelation potential is treated as a func-
tion of both electron density as well as the gradient of thesdg. The exchange-correlation functional
in GGA has the form

oe o€
OEyxc[n| /dr [achrn X 4 an‘; D} 3n(r,o). (2.19)

where, the term in the square brackets is the exchangelatrepotential.

oe os
NV2(r) = [a N2 n— D] . (2.20)
xe 7 one © e0ne |

2.5 Basis sets

A basis set is a set of unknown functions through which theefuaction is expanded. For a single
electron, the wavefunction can be written as

Z cij;(r (2.21)

where;(r) are a complete set of functions. Any set of functions couldised as basis functions.
In principle, the basis functions should have the sameilignibehavior as the real wavefunction, for
isolated atom or molecules they should decay to zero, apdstiwild be computationally inexpensive.

2.5.1 Localized basis sets

The wavefunction exponentially decays to zero at largeadists for isolated atoms and molecules.
This means that the basis functions also should behave mikasivay. Atomic orbitals are the basis
functions possessing this property and have two formseftgpe orbitals (STO) and Gaussian type
orbitals (GTO).

STOs have the following form in spherical coordinates [37]

@ (1,6, ¢) = aYim (8, Pr" e ¥

wherea is a normalization constan¥i,(6,9) is the spherical harmonicl, m, andn are quantum
numbers, and determines the radius of the orbit. The exponential depmralen distance is the
same as for the hydrogen atom.

GTOs in spherical coordinates have a form

(pr(!'rlp(z)(r e(p) — C(Ylm(e, (p)r(zn—Z—l)e_ZrZ.
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2 Density functional theory

In both cases the angular dependence of the wavefunctioonisioed in the spherical harmonics,
where thd , mvalues determine the type of orbital (elg= 0 is astype orbital,| = 1 ap orbital, etc).
The main difference between STO and GTO is the powar iofthe exponent. GTOs have a zero
slope at the nucleus & 0) whereas STOs have a cusp. GTOs also fall off more rapidly distance
than STOs. These factors suggest that more GTOs are neefterhta suitable basis set than STOs,
roughly three times as many are needed to achieve the sammagrd37]. However, GTOs are
computationally more efficient than STOs: the faatan the exponent requires taking a square root
(r = /%2 +y2+ 72) which is computationally very slow. This computationdi@éncy compensates
for the additional number of functions needed, hence GT@®smmre commonly used in calculations.
The size of the basis set has a large effect on the accurabye @fdculation. The smallest basis set
possible is the minimum basis set which contains only enduigttions to contain all the electrons in
the neutral atoms. Increasing the number of basis functropsoves the accuracy of the calculation.

2.5.2 Plane wave basis sets

The potential for a periodic system has the property

V(r+na)=V(r) (2.22)

wherea is a lattice vector and is an integer. From Bloch’s theorem [38], the wavefunctian be
written as a product of a periodic and a wave-like part, i.e.,

Wi(r) =e<"q(r) (2.23)

Because of periodicityf (r) can be expanded as a set of plane waves

@) = gci,GéG'r (2.24)

whereG are the reciprocal lattice vectors. Substituting Eq. 2cPBq. 2.23, the wave function can be
written as

Qi(r) = ZCi,,c;ei('HG)'r (2.25)
5

The number of wavefunctions used is controlled by the ldrges/e vector in the expansion in
Eq. 2.24. This is equivalent to a cut-off on the kinetic egesgce the kinetic energy of an elec-
tron with wave vectok is given by

B ﬁz|k|2

E
K 2m

(2.26)

Using the plane waves, the Kohn-Sham equations can be nvait¢39]
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2.6 Pseudopotentials

ﬁZ
Z ?n'k +G|?86a +Ven(G — G') +Vee(G — G') + V(G —G') | Gixso = CikicE, (2.27)
G

whereVen(G — G'), Vee(G — G’) and Vxc(G — G’) are the Fourier transforms of electron-nuclei,
electron-electron, and exchange-correlation potentials

The major advantages of using plane wave basis sets:

e it is very easy to calculate all kinds of matrix elements, wettbe fast-Fourier-transform techniques
are of great help.

e the size of basis set can be increased systematically in@esinay.

e the same basis set can be used for all atomic species,

e convergence towards completeness can easily be tested,

e plane waves do not depend on nuclear positions so, unlilkdized basis sets, correction terms are
not needed for the calculation of forces.

The main disadvantage is that the basis sets become largeasly. For finite systems such as clus-

ters and molecules in a plane wave approach, it is essamtiahistruct a supercell in each dimension
in which the system is localized. In order to neglect anyratdons with the images, the supercell

should be large enough. This means that a large number & plaves should be used; nevertheless,
this may be an effective way of solving the problem.

2.6 Pseudopotentials

The application of pseudopotentials in electronic stmects to replace the strong Coulomb potential
on the nucleus and the effects of tightly bound core elestlpnan effective ionic potential acting on
the valence electrons. Since the core states remain urnethamgseudopotential can be generated and
used to compute properties of valence electrons in therayside advantage of ultrasoft or norm-
conserving pseudopotentials has led to accurate calougatirhich are the basis for the development
of new methods in electronic structure.

2.6.1 Norm-conserving pseudopotentials

The norm-conserving pseudo functiop8S are normalized and are solutions of a model potential
chosen to reproduce the valence properties of all-eleciatmulation. In the application of pseudopo-
tential to molecules, clusters or solids, the valence pséuctions must satisfy the orthonormality
conditions, i.e.,

WP WP =886 (2.28)
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2 Density functional theory

so that the Kohn-Sham equations can be written as,
(HE’SPS— Ei") W PS(r) =0, (2.29)

with the external potential given by the pseudopotentials.
The norm-conserving pseudopotentials must satisfy thewaolg conditions, namely,

1. All-electron and pseudo valence eigenvalues must agrdébd atomic reference configuration.
2. All-electron and pseudo valence wavefunctions mustealgeyond the core radiu;.

3. The logarithmic derivatives of the all-electron and pkewavefunctions must agreeRt.

4. The integrated charge insitg for each wavefunction must agree (norm-conservation).

5. The energy derivative of the logarithmic derivativesta# all-electron and pseudo wavefunc-
tions must agree &..

Generation of a pseudopotential starts with the usualledit®n atomic calculation with eadhm
states treated independently. The total potential is Gtled self-consistently for the given approxi-
mation for exchange and correlation and for the given cordigpn of the atom.

Relativistic effects can be incorporated into the pseutmgils, since they lead to finite effects in
the interior of the atom very close to the nucleus. The nadic effects incorporated in the valence
electrons, like shifts due to scalar relativistic effeatd apin-orbit interactions, could be easily carried
into the molecular or solid-state calculations.

2.7 Projector augmented wave (PAW) method

The projector augmented wave (PAW) method [27], developdsléichl (1994) is a powerful method
for performing pseudopotential electronic structure alaltons within DFT. It retains the information
about the correct nodal behavior of the valence electrorevfianctions and includes the upper core
states in addition to valence states in the self-consi#tenattions without significant additional com-
putation. The problem of constructing the projector andsbasctions needed for PAW technique
is very similar to the problem of constructing local and maall pseudopotentials. The PAW method
starts with a self-consistent all-electron atomic streetcalculation within the framework of DFT.
The projector and basis functions are derived from the sigées of the all-electron atomic Hamilto-
nian. They are determined iteratively solving radial difatial equations. A detailed description of
the PAW method can be found in Ref [40].
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2.8 Noncollinear magnetism

2.8 Noncollinear magnetism

In the collinear case of a spin polarized system, for spin ngh spin down there are always two
densitiesn' (r),n!(r)] and potentialgVi.(r),Vie(r)]. Since the spin axis can vary in space, i.e., the
non-collinear case [41], the electron density at everytdeirepresented by a vector giving the direc-
tion.

The local spin density matrix has a form

%) = S @ (Nuf (), (2.30)
|
The Kohn-Sham Hamiltonian becomes a 2 matrix

ﬁ2
HE(r) = — 5 D2 Vi), (2:31)

where the only part ofF that is non-diagonal i is V.

Although this looks like a major complication, the real diffity is in the nature of the functionafg.

In LDA it is given by finding the local axis of spin quantizati@and using the same functional form
eno™nl(r),nt(r)), whereas the gradient of spin axis is taken into accountHermodifications of
GGA expressions.

2.9 Spin-orbit coupling

The spin-orbit coupling involves the interaction betwekation spin with its orbital motion. It plays
an significant role in determining the magnetic propertigshsas the magnetocrystalline anisotropy,
magnetostriction and magneto-optical effects. The spiit-coupling can be included as a perturba-
tion in the scalar relativistic LSDA Hamiltonian (Eq. 2.1®)th a self-consistent treatment of spin-
orbit contribution at each variational step.

|:| = |:|0—|—|:|SO (2.32)

where,Hp is the scalar relativistic Hamiltonian aridkg is the spin-orbit Hamiltonian, which has a
form

. R2 1dv
&= %%%—Y and is the spin-orbit coupling strength.

For ™ transition metals, thelsp alters charge density, spin density, and spin moment nbiyligt2].
While for heavy elements likeddor 5d elementsHsp has to be included in the self-consistence loop
for the solution of the Kohn-Sham equations.
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2 Density functional theory

2.10 Methods for the determination of magnetocrystalline
anisotropy

The determination of magnetocrystalline anisotropy endEjyag) form first-principles is a great
challenge. Itis known that spin-orbit coupling is the anigf magnetocrystalline anisotropy, which is
the fully relativistic total energy difference between tagparate magnetization directions. There are
three different methods to calculate the MAE; (i) the foldoedrem [43—-45], (ii) the total energy [46],
(i) the torque method [45, 47]. There are evidences of@chg similar results for most of thed3
systems.

The calculation of MAE through force theorem includes thiéedence in the band energies of the
two different magnetization directions with spin-orbitugding included in the Kohn-Sham equation
in the presence of the same self-consistent scalar-ristitipotential [43, 44]. It has a the following
form

Emae = E(90°) — E(OO) ~ Z si(900) — Z si(OO). (234)

occ occ
Where,g; are the band energies which are summed up to the occupied.banarder to restrain the
numerical fluctuations, a large numberkgboints are required.
On the other hand, the calculation of MAE from total energiesonly deals with large number &f
points but also a well-converged charge density or potentia
The torque method [47] involves the calculation of the exgt@an values of the angular derivative of
HSOC (spin-orbit coupling term) at some particular andlg Gnd@y,). The prime in the wave function
denotes the consideration of SOC.

gHSsoc
06

Emae = Z (Wi (Bm, Pm) |

ieocc

| W' (Bm, @))- (2.35)
Bm and @y, can be found from the symmetry of the crystal lattice. Howgitagives reliable results
with few k-points.

2.11 Electronic structure calculations

2.11.1 Single point energy calculations

In a single point energy (SPE) calculation, the wavefumcéind charge density, and hence the energy
of an arrangement of nuclei is calculated self-consistefithe total energy functional of a system of
electrons and nuclei can be written as

E[p(ri),Ri] = Te[p(ri)] + Tn+ Een[P(ri), Ri] 4 Eeelp(ri)] + Enn(R1) (2.36)
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2.11 Electronic structure calculations

whereTg[p(ri)] is the electronic kinetic energ¥y, is the nuclear kinetic energe, is the electron-
nuclei interactionEee is the electron-electron interaction aBgh is the nuclei-nuclei interactiorEne

is described using pseudopotentials, while for a fixed setucfear positiond,, is zero andg,, is

a constant. Therefore, a SPE calculation is reduced to fintlie charge density that minimizes the
total energy functional by solving the Kohn-Sham equations

The total energy minimization can be done in several ways @athod is through direct diagonal-
ization of the matrix equation 2.27. Starting from an initiéal densityEecis calculated and inserted
into 2.27. A new density is then calculated by inverting thetn equation 2.27. If the change in
energy between iterations is smaller than a given toleraibée then inserted into the total energy
functional and the energy calculated. Otherwise this nawsitieis used to calculate a neitge. This

is repeated until the density and potential are consistéhtemach other within a given tolerance.

The matrix diagonalization method has the disadvantagetieecomputational cost of matrix diag-
onalization scales as the cube of number of plane waves. tAmative method is to minimize the
energy functional directly [48], where the energy is a fionl of the density, which is determined
by the expansion coefficientsy . The ground state density is found from the set; @f. ¢ that min-
imize the energy functional. Several standard functiomgintzation methods [49] can then be used
to find the minima of the total energy functional. One of suethnhiques is the method of Steepest
Descents (SD) [49]. The SD method produces a series of pfdjs

Pi11=Pi+Aih (2.37)

where
hi = —-0Of(P).

Here,P; are sets of plane wave expansion coefficients &) is the energy functionah; (a scalar)

is the distance along the directidm from P; that a minima is located. The SD method proceeds
by moving in the steepest downhill direction from a pdituntil a minima along that direction is
located at poinP; 1. The steepest downhill direction froRy, ; is then determined«{Jf(P;;1)) and

the minima located along that direction is found. This issapd until the change in the function is
lower than a preset tolerance. The speed at which the SD hetitidind a minima is limited as at
each step only the information at that point is taken intmaot. It is easy to think of examples where
this will lead to slow convergence. A better method is thejGgate Gradients (CG) method [48, 49]].

It differs from the SD method in that each search directioroigjugate to the last one. In CG method
the function has a quadratic form

f(x) ~ :—ZLX.A.X (2.38)

whereA is the Hessian and is given by
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0%
aX|aXJ X=Xo .

A (2.39)

Using the quadratic form Eq. 2.38 the step needed to get tathina in the directiorh; is given
by [49]

hi.g
M= hAR
This however can be found from a one-dimensional minimiratilongh;, i.e. without explicitly
calculating the Hessian. As the Hessian is\axn N matrix, for DFT calculations wittN = 10° — 10°
plane waves the CG method has a large advantage over metlzasplicitly use the Hessian. The
CG method will find a minimum of amN dimensional function irN iterations. For CG and SD
methods to minimize the total energy functional, the wamefiwns have to be orthonormal which is
an additional constraint on the minimization. The numbeitexfitions required can be substantially
reduced by preconditioning the function [48].

(2.40)

2.11.2 Geometry optimization

The aim of geometry optimization is to generate the lowestgnstructure of a molecule or cluster
from any arbitrary starting state. Since using the Born-€i@imer approximation, the motion of the
nuclei and the electrons can be separated, hence a geompéinyzation consists of a set of single
point energy calculations. For the initial starting geamypet SPE calculation is performed. The forces
on the nuclei are calculated from the wavefunction usingHbmann-Feynman theorem [50]. The

force in this case is given by
o0E
Fi=—(a) 2.4)

whereE is the energyR, is the position of the nucleus. This force can be used to fiedytiound
state positions of the atoms. As the forces point towardsa lminimum in the energy integrating
the equations of motion for the nuclei will move the nucleivéods an equilibrium structure. Alterna-
tively, functional optimization techniques like SD or CGtimeds may be used. However the Hessian
based methods [49] may also be used for this purpose.

Two points should be made about the above method. Firstlgeibasis set is incomplete, an error
is introduced into the Hellman-Feynman forces, known as’tiay force [51]. However, for a plane
wave basis set the wavefunctions do not depend on the nymed#ions, hence this error is zero, as
long as the electronic system has converged to the groute $tar situations where the cell shape
changes analogous Pulay stresses arise. Secondly, the ptomedure will find the nearest point in
the configuration space at which the forces are zero. Hehagador starting point is chosen it may
find a local rather than a global minimum in the potential ggpesurface or if the starting point is an
energy maximum it may stay there. This procedure can alsathertime consuming with many SPE
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calculations needed to find the minima. Thus it is common top@ an initial energy minimization
using molecular mechanics calculations to get to the \iciof a minima and then perform a fudb
initio geometry optimization.
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3 Structure and magnetism in transition
metal clusters

3.1 Introduction

One of the important quest in the physics of transition meltadters is to understand how the prop-
erties of clusters vary with change in morphology and sizee fghysical and chemical properties of
clusters, such as magnetic properties and chemical rispatadn be determined by analyzing their
geometry and electronic structures. For instance, the etmgproperties of TM clusters depend
on various parameters like bond lengths, structural geyynatister sized-band filling (TM type),
atomic distributions (for binary clusters) and surrougdémvironment (deposited clusters). Therefore
it is essential to study the physics of clusters byahnnitio approach, where all type of interactions
are modeled through more fundamental electron-electr@maations and correlations.

Transition metal clusters of Fe, Co and Ni have been the nugiit tof research both experimen-
tally [52-55] and theoretically [56, 57]. Experimental dies based on Stern-Gerlach setup [52] for
magnetic properties of lxe Cay and Nj clusters show enhancement of the average magnetic mo-
ment for small clusters relative to bulk. With increase imstér size, upto few hundreds of atoms, the
average magnetic moment are still higher but slowly apgresitowards the corresponding bulk value
in a non monotonous way. The convergence of magnetic moroeatds the bulk limit are faster for
Ni and Co in comparison to Fe. There exist various experiaig¢b®, 53] and theoretical [56, 58—60]
studies for the structure and magnetism of Ni and Fe clustensexample, the geometry of small\li
3<N <28, clusters have been studied by Pakal.[61, 62] through molecular adsorption and have
reported different atomic packings with respect to clusiees. Using the classical molecular dynam-
ics and molecular orbital theory, Reddy et al. [63] haveisiithe morphology, energetics, electronic
structure and vertical ionization potential and magnetapprties of Ni clusters up to 21 atonN (

= 21). Through the self-consistent tight-binding model ufgra-Granjaet al. [64] have studied the
variation of the magnetic moments of nickel clusters for S < 60. Reuse and Khanna [65] have
performed studies on the geometry, electronic and magpetigerties of nickel clusters using the
linear combination of atomic orbitals. They have found a bangeometries and spin multiplicities
for Niy (N = 2-6, 8, 13) clusters. A study of the electronic structuré aragnetic properties of Ni
(N=2-39 and 55) clusters was also performed by Detal. [58] using LSDA. Futschelet al. [66]
have studied the structural and magnetic properties ofitets through the fixed spin moment cal-
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culations within the GGA based on DFT. Experimental stud&ated to structure of Fe clusters are
still limited [67—69]. The bond lengths for Fe dimer on ne@7][and argon matrix [68] are pre-
dicted to be 2.02 0.02 A and 1.87 0.13 A, respectively, through extended X-ray absorptioa fin
structure (EXAFS) analysis. For a Fe trim&t £ 3), Raman spectroscopy measurements by Haslett
et al. [70] have proved a Jahn-Teller distorted ground state. Eatl&sters larger than three atoms,
no direct experimental results are available regardingsthectural stability. However, experimen-
tally, there exists results for electron affinity and ioniaa potential [71-74] of Fe clusters up to 100
atoms. Theoretical studies on structure and magnetism afusters are many, which are mainly
based on tight-binding techniques [60, 75] or first-pritespapproach [76—79]. LSDA calculations
for small Fe clusters containing up to 5 atoms have shownreubstabilities for higher-dimensional
clusters [76, 77]. For instance, among several isomersdgttke tetrahedral geometry is more prefer-
able over the square and linear geometry. Using densitytiirad tight binding and DFT, Bobadova
et al.[80] have evaluated the potential energy surface as wetleasiagnetic properties of Fe clusters
up to 19 atoms. Diégueet al.[79] have performed LSDA calculations to study the struetuand
magnetic moments of Fe clusters up to 17 atoms. There haveshadies on the optimal geometries,
binding energies, bond dissociation energies, ionizgpiotentials and electron affinities of neutral
and charged iron clusters up to 5 atoms using the nonlocaldguisity method [81].

The literature survey discussed above mainly deals witlpthperties of clusters based on collinear
treatment of spins, where a global spin quantization axasssimed for the whole system. One must
note that spin spiral states exist in bulk fcc Fe [82]. On ttieohand, triangular lattice structures of
bulk Mn and Cr leads to the spin frustration. This shows thedrtance of non-collinear magnetism
occurring in clusters. There are already reports for theeoliinear magnetic configurations for small
clusters of Fe, Cr and Mn studied within the LSDA [83—85].

3.2 Elemental clusters

In order to determine the equilibrium geometries, we havesiciered several isomers (same cluster
size but different structural geometry) for each clusteesiSince the number of isomers increase
rapidly with cluster size, it is nearly impossible to scaltla isomers in the potential energy surface
of each cluster. Therefore, the starting geometry is cood according to certain educated geuss
backed from literature. After structural optimization| isbmers of Nj and Fg are found to be
distorted from their regular geometries. These structdedbrmations can be attributed to Jahn-
Teller (JT) [14] distortions. Jahn-Teller distortions aferacterized by structural distortions in finite
systems like molecules and clusters, which is accompanjimérboval of any degeneracy of electronic
energy levels near the Fermi level by breaking the symmetdytaere by lowering the energy of the
system.
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3.2.1 Niy clusters

Using the linear combination of atomic and molecular ofbiReuseet al. [65] have reported a bond
length of 1.76 A and corresponding binding energy of 1.61a&h for Ni-dimer. Our studies based
on GGA for Nb also gives a ferromagnetic ground state, however we obtajhtly larger bond
length of 2.08 A. We have obtained the binding energy as 1\Watem, which is slightly smaller.
This difference is due to the degree of approximations usélde calculations. We believe that GGA
gives a much better value and our obtained results also agrgavell with other calculations done
in GGA [56, 66]. Baderet al. [86] have presented results on binding energy calculated) warious
functionals and the binding energy is shown to vary from 1dl5.25 eV/atom. The experimentally
obtained bond length and binding energy of I reported to be 2.15 A and 1.02 eV/atom, respec-
tively [87]. One observes that the bond length of Mishorter than the nearest-neighbour distance of
bulk fcc Ni (2.49 A). We have obtained a magnetic moment ofg/@tom for Np.

The equilibrium geometry for Niis a distorted triangle with an average bond length of 2.2T1e
total magnetic moment is found to be 0.7@3atom and a binding energy is 1.84 eV/atom. It must
be compared with results obtained by Cagtral [56], where they have obtained a regular equilateral
triangle as the ground state structure. The value of borgthlemmagnetic moment and the binding
energy are howerver comparable to the values obtained fromoadculations, on the other hand the
binding energy reported by Futschekal. [66] is slightly lower. The reason for obtaining a low
binding energy can be accounted from the structural opétita which they have performed within
fixed-spin constraints. Our calculations, however, areedeith fully unconstrained relaxation also
allowing for noncollinear magnetic moments. LSDA valuesofd length, magnetic moment and
binding energy reported by Reuseal.[65] agrees very well with our results obtained from GGA.
For Nig, a JT distorted tetrahedron is found to be the minimum enstgicture. The average bond
length is 2.28 A (the exreme values of bond length are 2.202a88 A), total magnetic moment
is 0.86ps/atom and the binding energy is 2.14 eV/atom. The abovetsesutch well with those
obtained by Bienatet al. [88]. Castroet al. have also predicted a Jahn-Teller distorted structure with
a large variation of bond length (from 2.21 A to 2.41 A). Théueeof binding energy reported is 2.33
eV/atom, which is larger as compared to ours. It must be nibizdunlike N, they obtain distorted
structure for Nj. Reuseet al. [65] on the other hand, have obtained the distorted tetrahednd
square as structures with degenerate energies focldster. This is unlike the energy trend obtianed
by us for the two structures.

A JT-distorted trigonal bipyramid with three atoms in angalar ring and two atoms occupying the
apex sites is found to be the stable structure ferwith variation in bond length between 2.25 A to
2.34 A. The total magnetic moment and binding energy areutztked to be 0.77is/atom and 2.39
eV/atom, respectively. The obtained minimum energy stingcis in agreement with Casted al[56],
Reuseet al [65] and Micheliniet al.[89]. LSDA calculations [65, 89] predict a larger bindingeegy

for Nis compared to the present GGA calculations. The calculatatigpin moment, howevr, agrees
well with the LSDA calculations.
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For Nig cluster, a Jahn-Teller distorted octahedral cluster iginbtl as the ground state structure with
a bond length range between 2.29 A-2.35 A. Similar strudsipredicted as the lower in energy by
Reuseet al. [65] and Micheliniet al.[89]. The calculated values of bond length variations, nesign
moment (1.Jug/atom) and binding energy (2.61 eV/atom) agree with thoddicielini et al.[89]. On
the other hand, Reust al. have obtained a relatively large value of binding energ$.30 eV/atom,
which might be due to the small variation of bond lengths igirtlesults. They have obtained a
distorted octahedral Nicluster with bond length variation (2.32-2.35 A) as low gyestrcuture.
The total mangnetic moment obtained in our calculationd\fig(1.10 pg/atom) agrees well with the
experimental obtained values of 1.@3atom [54].

A distorted pentagonal bipyramidal structure is determhine the stable structure for Nobtained
from our calculations. Using embeded atoms potentials liBétaet al. [90] have obtained a similar
structure as the minimum energy structure. The empericalyrbady potential and molecular dy-
namics simulations by Nayadt al. [91] have also shown such a structure having the lowest gnerg
However, LSDA calculations by Desmaratal. shows a capped octahedron as the stable structure
for Ni7 [92]. They have also predicted a distorted pentagonal ampia structure as energetically
close to the ground state structure. The calculated vallnding energy (2.71 eV/atom) is almost
comparable to the corresponding result in Ref. [90].

We have found the lowest energy structure fog &b a distorted bidisphenoid structure with the bond
lengths varying from 2.27 to 2.39 A. Such a structure is alsalipted by Desmaraist al.[92]. Our
calculated binding energy, 2.84 eV/atom is slightly less@spared to their values, this is because
of the different exchange-correlation functional usedhia talculations. They have used LSDA,
while our calculations are in GGA. The energetically falbeastructures for NiNi1; are observed
to be of polytetrahedral geometry. The binding energiesNigr Ni;o and Ni; are calculated to be
2.95, 2.98 and 3.05 eV/atom, respectively, and their mégmaments are 0.86 (Bl, 0.8 (Niyg) and
0.75pg/atom (Ni1). The equilibrium geometries and binding energies obthineour calculations
agree with the results Refs. [90, 91]. FormyNonwards, the icosahedral-like geometry is more
favorable. For instance, the Nicluster is a JT-distorted icosahedron, with average ceatshell
distance of 2.32 A and a total spin moment of Ouglatom, which is close to the corresponding bulk
value of fcc Ni (0.6ug/atom).

The equilibrium geometries obtained for\\Elusters are illustrated in Fig 3.1. The calculated value
of magnetic moments for Niclusters are compared with the available theoretical apeéraxental
results in Fig 3.2. It shows that theoretically obtainediealof magnetic moments are lower compared
to that of the experimental ones. Our calculations show a gp@litative agreement with Ref. [63].
The strong fluctuations in the moments of small cluster sizag be due to the different equilibrium
structures predicted from various approximations. FiNvm 6 onwards, almost a linear decrease in
the magnetic moment is observed uitik 14. This trend is supported by other theoretical resus [5
63, 64] and also from experiment [54]. There is a discrepandie theoretical results for clusters
larger thanN = 14. We must stress that the present calculation is consigtigh the experimental
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Figure 3.1: The equilibrium geometries of\Nclusters.

values [54]. The magnetic moment ford\iluster obtained experimentally is smaller than fog Ni
cluster. This is not supported either by our calculation®tber theoretical calculations [58, 63],
except that of Aguilerat al. [64].

3.2.2 Fey clusters

The minimum energy morphologies for {relusters obtained in our calculation are consistent with
previous DFT calculations [56, 78, 79] with slight diffecenin the structural parameters. The ground
state geometries of eclusters are found to show Jahn-Teller distortion, likg Blusters.

For Fe, we found a bond length of 1.98 A which is in agreement witt tfathe experimentally
obtained value of 2.02 A on neon [67] and 1.87 A on argon [68}ices. Several DFT studies based
on LSDA have obtained a similar value of 1.95 A [56] and 1.9678][ The binding energy for Fe
dimer is calculated to be 1.5 eV/atom, which is larger thanekperimental value of 0.65 eV/atom.
LSDA calculations even report a more larger value of bindingrgy [76, 79, 81] based on the LSDA
calculations. Such an overestimation of binding energy $A calculations mainly occurs due to
the error in the atomic energy. However, the calculatedevafuiotal magnetic moment 2.8@/atom
agrees well with the experimental [93] results as well adXR& calculations [76, 79, 81].

For Fe cluster, a JT-distorted triangle with average bond leng#2 A (varying from 2.07 A to
2.32 A) is found to be the ground state structure. with a mégmeoment of 2.9fs/atom and the
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binding energy 1.94 eV/atom. The average bond length fgralgeces well with the corresponding
results from previous DFT calculations [76, 79, 81]. In &iddi, the calculated magnetic moment per
atom for this cluster is in agreement with the experimeynt@B8] obtained value of 2.jig/atom.

There are several predictions for the ground state streictuFe,. For instance, DFT calculations by
Chenet al.[76] and Castret al.[81] report an ideal tetrahedron as the minimum energy straavith
total magnetic moment 3j@s/atom. On the other hand, in Refs. [78, 79, 83], a distortédhedron
was predicted as the most stable structure. This is in agneemith the present results, where a
JT-distorted tetrahedral structure with a bond length imaryrom 2.16 A to 2.38 A is obtained. The
binding energy and average magnetic moment for this clastecalculated to be 2.36 eV/atom and
3.06yg/atom, respectively.

A distorted trigonal bipyramid is predicted as the grouratesistructure for Fecluster with bond
lengths varying from 2.28 A-2.37 A and an average magnetimerd 3.20ug/atom. A similar ge-
ometry was also reported as the minimum energy structureefa. R78, 79, 81, 83]. The value of
average magnetic moments obtained in our calculationsyagreement with Refs [79, 81]. For this
structure, a non-collinear magnetic configuration is otgdj where the magnetic moments of the api-
cal atoms are tilted by 31in opposite directions [94]. Such a non-collinear grouradesfor Fe has
been previously reported by Odaal.[83] and Hobbset al. [84] through LSDA calculations. They
have obtained an average magnetic moment fgrchester as 2.Qg/atom, which is relatively small
compared to that of the present calculations.

For Fe cluster, a distorted octahedron is found to be the grourté staucture with varying bond
lengths between 2.30 A to 2.70 A. A total magnetic moment 60 3ig/atom and binding energy
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3 Structure and magnetism in transition metal clusters

2.85 eV/atom. LSDA calculations by Diéguet al.[78, 79] have predicted such a structure to be
more favorable for ke Our calculated value of magnetic moment for the octahedrasilightly less
than that of Diégueet al, who have obtained 3.3&/atom. The ground state structure for,fga
distorted pentagonal bipyramid with a bond length rangeveen 2.28 A-2.56 A, which agrees with
the results in Refs. [78, 79]. The calculated value of magmabment 2.88.g/atom is lowered by
0.26ug compared to Ref. [79].

The ground state structures obtained fog,Fey and Fegg are similar to the corresponding findings
of Diéguezet al.[79], who have found a bidispenoid for &e tricapped trigonal prism for gend

a bicapped square anti prism for;g&vith relatively larger value of binding energies (4.12 eidra,
4.19 eV/atom and 4.27 eV/atom for §;é-& and Feg, respectively). The binding energy obtained
from our calculations are 3.17, 3.21 and 3.27 eV/atom whanreha lower value compared to those
obtained in LSDA calculations. The average magnetic mosn@ptiained in our calculations are 2.77,
2.69 and 2.63ig/atom for Fg, Fe and Feg clusters, respectively.

From N = 11 onwards, the stable structures exhibit icosahedraldilkucutres. In particular, for
Fei3 cluster we obtain a JT-distorted closed shell icosahedy 95] with everage center to shell
distance of 2.39 A and an average magnetic moment|&@2om with binding energy 3.45 eV/atom.
LSDA studies also predict a distorted icosahedron as thengrstate structure for -£[96, 97]. The
calculated value of average magnetic moment for this alisteomparable with the experimental
value of 2.6:0.4 yg as obtained from the cluster beam deflection experiments [BBe collinear
fixed spin moment calculations for fxesuggest the existence of two spin states. The high spin state
with total magnetic moment 44 (all spins parrell) is lower in energy compared to the lownsgiate

of 34 ug where the central spin is reversed with respect to the sadiog atoms. Figure 3.3 shows the
total energies obtained for each spin moment ggk@sahedral cluster using the fixed spin moment
method [99], where the total energy is calculated by fixirgytttal magnetic moment of the cluster.
It shows that both LDA and GGA yield the same result with thghtspin state as the more favorable
in energy as compared to the low spin state. Our findings foA@&culation of Fes agrees with
Ref. [97].

Figures 3.4, 3.5 and 3.6 shows a comparison of the evolutiauster properties with respect to
cluster size for the minimum energy structures of,dind Fe clusters. The variation of binding
energy as a function of cluster size for both cluster spemiesllustrated in Fig. 3.4. The variation
of binding energies for Nj and Fg clusters show monotonically increasing trends with insireg
cluster size. However, no anomalous feature is observedrttsathe existence of magic numbers
previously reported for alkali metal clusters.

In Fig. 3.5, the total magnetic moment per atom as a functfariuster size are plotted for keand
Niy clusters, which shows oscillatory behavior for both clisteith increase in the number of atoms
in a cluster. Both clusters show magnetic moment enhandsmelative to the corresponding values
of bulk bcc Fe (2.231g/atom) and fcc Ni (0.64s/atom). However, such an enhancement fay i
found to be weak compared toelt is observed that the magnetic moment in Fe clusters ase®
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Figure 3.3: The variation of total energy with respect to$p& moments obtained from fixed spin
moment calculations for kg icosahedron. The black, blue curves represent the GGA
results and the green curve represent the LDA results. Theyerdifference is with
respect to the minimum energy corresponding to each cureeoberve a low-spin state
(with the center spin reversed with respect to the surfates smd a high spin state with
all spins parallel to each other).
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Figure 3.4: The binding energy per atom foyNBquare) and keg(circle) clusters as a function of
cluster size.

steadily from Fe to Fe; and then shows a regular decrease untipléad a similar oscillatory trend
thereafter, the magnetic moment enhancement in nickelechis abrupt and varies sharply with in-
crease of cluster size, especially for small clusters. dtiserved that Nihas the highest enhanced
magnetic moment followed by Bli A comparison with Fe clusters show that fFbhas the maximum
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Figure 3.6: The variation of HOMO-LUMO gap for Ni(square) and ke(circle) clusters with re-
spect to cluster size.

enhanced moment, whereas;Nhas the minimum enhanced moment, inspite of the similacstru
tures. It should be noted that the ground states structdrBsyoand Fe clusters have a collinear
arrangements of atomic spins with ferromagnetic coupling.

Besides the total magnetic moment, the HOMO-LUMO gap (fsgleecupied molecular orbital-
lowest unoccupied molecular orbital) is calculated foisthelusters and plotted in Fig. 3.6 as a func-
tion of cluster size. The HOMO-LUMO gap indicates the sigbidf the electronic distribution for a
system. A large HOMO-LUMO gap generally corresponds to aedleshell electronic configuration
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3.3 Size dependence of the magnetic moments

which indicates the absence of low-energy excitations ensystem. In the present calculations, a
large energy gap is obtained forANiNis and Ni3 clusters with 0.22 eV, 0.19 eV and 0.17 eV, re-
spectively, which indicates an enhanced stability for ¢helsisters. On the other hand, the energy
gap for Fe clusters show large fluctuations in particular, fogB@d Fes, a lower gap is observed.
Our calculations of HOMO-LUMO gap for Ni clusters (marked syuares in Fig. 3.6) show a good
agreement with Ref. [63] from N7. Some discrepancies appear for small clusters. The aoigin
such discrepancies can be due to the different treatmeheddlectronic structure as well as the use
of model potentials to optimize the geometries. However,results are more reliable because of
the high-precision calculations performed with the PAWmoettand a large basis set with an energy
cut-off of 270 eV.

3.3 Size dependence of the magnetic moments

The variation of the average magnetic moment as a functitreafluster size is not smooth in general.
The overal decay is due to the increasing number of nearagtbws, an effect that enhances the
itinerant character of the electrons. On the surface of the clusters the number of heighis still
low compared to the bulk, so only when the number of surfacmatbecomes small compared to the
total number of atoms in the cluster, then the cluster magnedment converges towards the bulk
moment. Furthermore, small clusters have structures that@ simple fragments of the crystal. All
these ingredients affect the detailed broadening of therelgic levels to form thel bands. So the
exchange splitting betweghand | d sub-bands, the charge transfer from s$tie thed band and the
sd hybridization depend on the cluster sideand control the evolution of magnetic moments.

The magnetic moments of Fe, Co and Ni clusters with sizes @pd@atoms have been measured [52,
54, 55] under conditions where the clusters follow supenpagnetic behavior, for low cluster tem-
peratures (vibrational temperatufg, = 12K for Fe clusters and 78 K for Ni and Co clusters). The
results are shown in Fig. 3.7. The magnetic moment per atamedses with increasing cluster size
and converges to the bulk value for a few hundred atoms; thisergence is faster for the Ni clus-
ters. However, in the three cases weak oscillations areisupesed to the global decrease of average
magnetic moments. The size dependent magnetic momenteéastudied for Fe clusters up to 641
atoms using DFT [100]. Figure 3.8 shows the energetics §lfel) and the corresponding magnetic
moments (right panel) for Fe clusters (for details, see R&0]). For each cluster size, the Fe clusters
with bcc, fce, and Mackay transformed (discussed in Sectidi2) geometries are structurally opti-
mized. It shows that the for small clusters of 13 atoms, tte-Jeeller distorted Fg cluster shows
enhanced stability, whereas with increase in cluster slasters containing more than 100 atoms), the
Fe clusters with bcc symmetry are found to show more stalmititmpared to the Jahn-Teller distorted
or Mackay transformed ones. Concerning the magnetic marientll clusters (shown in the right
panel of Fig. 3.8), it slowly approaches towards the bulktlimith increase in cluster size, the Mackay
transformed and bcc Fe clusters show a better agreementhsittxperimental results [53, 55].
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3 Structure and magnetism in transition metal clusters

Experiments performed ord4and T transition metal clusters show that clusters develop a etagn
moment unlike bulk which is nonmagnetic. Rh clusters witssl¢han 60 atoms show magnetic
moments, but larger clusters are nonmagnetic. Clustehsabibut ten atoms have magnetic moments
KU~ 0.8ug, andp decays quickly betweeh=10 and 20, showing, oscillations that produce large
moments for Rk, Rhyg and Rhg. Rhodium was the first case in which magnetism was observed
in clusters of a nonmagnetic metal. This behavior is difiefeom that shown by clusters of thel 3
elements Fe, Co and Ni, where the variation of average miagnement extends over a much wider
range of cluster sizes. In contrast to Rh, Ruthenium andalin clusters with 12 to more than 100
atoms are reported nonmagnetic.

3.4 Binary clusters: Segregation and mixing

In addition to elemental clusters, we have studied the gtatate properties of multi-component
clusters. One of the main features of the multi-componarstets is that their properties can be tuned
by changing the chemical ordering and composition [102}:1A8 a result, they show physical and
chemical properties different from their constituent edeal clusters as well as bulk. Several stud-
ies have been carried out on the structure and chemicaliogdas well as magnetic properties of
bimetallic transition metal clusters [109-114]. Expentatly, Roussett al. have performed TOF
mass spectrometry and photo fragmentation techniquesderaind supported Pd-Pt bimetallic clus-
ters, where they observed the segregation tendency of Rabfbrfree and supported cases [115].
Yasudaetal [116] have studied the alloying and phase stability for AubBary clusters using trans-
mission electron microscopy and have observed an enhaptdulity of Sn atoms into Au clusters.
Theoretical studies based on EAM method for Cu-Ni and Cu-iRektallic clusters have shown the
surface segregation of Cu atoms for Cu-Ni clusters, and dleistance of both segregation and or-
dering for the Cu-Pd clusters [117]. The studies on the draftfor Ag-Pd and Ag-Cu core-shell
clusters by Balettet al. [118] have shown well-defined single-layer shells of Ag asan Pd at low
temperatures and on Cu at high temperatures.

Another aspect is to study the magnetism in binary clustersch is one of our prime interest. It
has been observed that alloying amomheBements as well asd3with 4d or 5d element gives rise
to novel magnetic properties. For instance, enhancemémtsignetic moments have been observed
experimentally for binary clusters such as Fe-(Co, Ni) [1X20-Rh [120], Ni-Pd [121] and Fe-
Pt [122]. The enhancements of of magnetic moments for thesderas [123-127] are also confirmed
by theoretical calculations.

In this chapter, the segregation and magnetic propertidsnairy Fe-Ni, Fe-Co, Fe-Pt, Co-Pt and
Co-Mn clusters are discussed for closed-shell icosaheatnaisting of 13 atoms in the whole con-
centration range. In order to check wheather the propestissrved in small clusters still persist for
larger clusters, the binary clusters consisting of 55 atamesstudied. Unlike the case of 13-atom
binary clusters, few compositions for 55-atom binary @ustare considered due to the existence of
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Figure 3.9: 81 possible distributions of atoms on the serfsieell of 13-atom icosahedral binary
cluster [128]. The distributions concerning the centrahat@re not shown here. For the
case of Fe-Ni and other binary clusters, the energy of theiséecs have been calculated.

large number of distributions~( 10 configurations) of each atomic species. For 13-atom binary
clusters with icosahedral geometry, there are 164 pogigbilof distributing two kinds of atomic
species. In Fig. 3.9 the possible distributions of two atosgiecies on the surface of the icosahedral
shell are displayed.

The mixing energy is calculated for the binary clusters,ochieasures the stability of the heteroge-
neous system with respect to its composition. For clusieisdefined as the difference in energy to
construct the binary cluster from the identical configumagi of its elemental constituents. The mixing
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3 Structure and magnetism in transition metal clusters

energy per atom of a bimetallic cluster is given by,

1 n (N—n)

EMX = N EAnB(N—n) - NEAn TN Es, (3.1)

where, B'% : Mixing energy per atom. A, B: Different species of atoms fe tluster. N: Total
number of atoms in the bimetallic cluster. n: Number of atahspecies A. kg, _,: Total energy
of the bimetallic cluster.

3.4.1 Fe-Ni

Binary Fe-Ni systems are important from many respects, drihemn is the Invar property, where
the alloy of Fe-Ni with 65 % Fe and 35 % Ni shows a low linear exgdan for a wide range of
temperature [129]. The Invar anomaly has been predicteBdeXi nanoparticles with upte 8600
atoms using molecular dynamics simulation, where the geanaarest neighbour distance is observed
to vary slowly for a range of temperature and then rises tigeaith temperature as expected for
higher temperature [130]. Therefore, studying the natéidhemical ordering or segregation in such
system is of immense interest.

The structural stability of kg Niy, clusters have been studied for all compositions. For eadieni
composition of Fgsz Ni,, several isomers with different distributions of Fe and Minas were re-
laxed without any constraints of symmetry. The lowest epésgmers for each cluster composition
are illustrated in Fig. 3.10. We observe some degree ofrtiistofor all clusters deviating from their
symmetric geometry. However, the distortions are largetonpositions in the Fe-rich part. This is
expected, as elemental zeshows large degree of distortion compared te;NB5].

The most favorable configurations in the whole Ni conceitinatange are characterized by the sur-
face occupancy of Ni atoms on the icosahedron. In spite thatdms occupy the surface sites,
different trends appear for the arrangement of Ni atomsfigrdnt range of compositions [131]. For
instance, the composition with two Ni atoms,i.e., for fi,, the energetically preferable structure is
characterized by two Ni atoms occupying the nearest-neighpositions of the surface shell of icosa-
hedral cluster. A detailed study regarding the possiblgiligions and energetics for this cluster has
been carried out in Ref. [95]. In order to confirm the tendeforythe occupancy of Ni atoms in the
low Ni concentration range, we have considered a clusteiposition FgsNiy, where the energetics
are studied by capping two Ni atoms at several positions erfFty; icosahedron. The energetics
and magnetic moments for all possible arrangements of twatdhs are reported in Fig. 3.11. We
observe that the energetically favorable structure cpamds to the nearest neighbour occupancy of
Ni atoms on the surface of gicosahedron with maximization of Ni-Ni bonds. Forifdi3, the
lowest energy configuration corresponds to the Ni atomsmgéog the nearest neighbour sites in the
surface shell of the icosahedral cluster as observed falNke

With increasing number of Ni atoms, different trends appegarding the distribution of Ni atoms
in the cluster. For instance, for clusters having 4 to 7 Niepinstead of the nearest-neighbour
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3.4 Binary clusters: Segregation and mixing

occupancy, Ni atoms prefer a ring-like arrangement with &imeaation of Fe-Ni bonds. Such distri-
bution trends of Ni atoms has been described fagNtein Ref. [132], which is a suitable candidate
for the study of Invar anomalies [133] in F2,Nip clusters primarily found iricc bulk Fe-Ni alloy
with 65% Fe and 35% Ni. For clusters with= 8 onwards, i.e., in the Ni rich part, the minimum
energy structures possess large number of Fe-Ni bondsteR3gll and Table 3.1 depicts the number
of Fe-Fe, Fe-Ni and Ni-Ni bonds for the low energy composgiof these clusters.

Figure 3.13 shows a comparison of mixing energies as a fumaf Ni concentration for clusters
and bulk alloy of Fe-Ni in the left and right panel, respeelyv The mixing energy per atom for
the lowest energy isomers of fze,Nip clusters with respect to Ni concentration is plotted in the
left panel of Fig. 3.13 [131]. The nonlinear mixing energywauindicates various degree of mixing
in the same system depending on the composition of the bo@nponents. Out of the minimum
energy distributions for all compositions, it is observiedttFeNi; g has gained higher stability due to
the lower value of mixing energy in comparison to other cosifjans. A comparison of the mixing
energy plot for Fe; Nip clusters with the fcc Fe-Ni bulk alloy [134] (right panel afF3.13), shows
similar qualitative trends with respect to the compositiBoth the plots show clear indications of two
overlapping parabola occurring at two different composii. Both the parabola seem to meet at a
composition of 30% Ni, which is near to the composition of imear alloy in bulk Fe-Ni alloy with
35% Ni. In addition, we have studied the mixing energies odliire-Ni)y clusters withN = 3,.., 6.
ForN = 3, 4, 5 and 6, the triangular, tetrahedral, trigonal bipyidal and octahedral geometries are
chosen, respectively, which are predicted as the stablaggei@s for the elemental Fe and Ni clusters.
Figure 3.14 and 3.15 illustrate the mixing energies fordtegsters as a function of Ni concentration.
For all cases, the lowest energy structures for each cotigrosire found to be distorted. For 5- (see
top panel of Fig. 3.14) and 6-atom Fe-Ni clusters (see Fih)3the Fe atoms prefer to be at the basal
triangle of the trigonal bipyramidal structure and basalesg part of the octahedron, respectively.

A ferromagnetic ordering is found to be stable for the lowarstrgy structures of each composition
of Fer3_nNiy, clusters. With increasing number of Ni atoms, the magnetioent show a decreasing
trend.

In order to investigate the segregation and mixing progertor 55 atom Fe-Ni clusters, we have
opted for the compositions in two extreme regions; in thei€le part: FasNii> and in the Ni rich
part: FaoNis3. For every composition, several random distributions ofreg are optimized. The
energetically favorable isomers obtained fopdMi;, and Fg,Nisz are shown in Fig. 3.16. For the
Fe-rich composition, the preferrable structure corredpdio the occupancy of 12 Ni atoms on the
most exposed sites (the vertex positions) on the surfackistiec creating a maximum number of Fe-
Ni bonds. On the other hand, for the Ni-rich composition, 4&aféms occupy the surface shell with
12 Fe atoms positioned towards the interior of the clustdifanm a core-shell type arrangement. The
occupancy of Ni atoms on the surface is due to the fact thaablelower surface energy compared to
Fe [139]. Such site-selected distribution of atoms in atyirtduster clearly indicate the segregation
behavior in clusters which is observed primarily in bulkdrypalloys.
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3 Structure and magnetism in transition metal clusters

Table 3.1: The nearest neighbour bonds for the lowest ergengfygurations of Fg_,Niy clusters in
the whole range.

Cluster Fe-Fe Ni—Ni Fe—Ni

Feis 42

FeroNiq 36 0 6
Fei1Ni» 31 1 10
FeioNis 27 3 12
FeyNig 21 3 18
FesNis 16 4 22
FerNig 12 6 24
Fe;Ni7 9 9 24
FesNig 7 13 22
FesNig 4 16 22
FesNiqg 2 20 20
FeNiig 1 25 16
FerNiqo 0 30 12
Ni13 42

Figure 3.10: The lowest energy structures fogd=gNi, clusters. The blue and pink spheres denote
Fe and Ni atoms, respectively. The mixing energy is caledl&r these structures.

An antiferromagnetic ordering of atomic spin moments whté inagnetic moment of central Fe atom
aligned in the opposite direction is found to be stable fofzRe », whereas, for (FeNiss), a ferro-
magnetic ordering is more favorable.
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3.4 Binary clusters: Segregation and mixing

AE =0.0 eV AE =007ev AE=0.16eV AE =0.38 eV

Figure 3.11: Energetics of I#Ni, clusters. Blue and pink balls denote the Fe and Ni atomsecesp
tively. A ferromagnetic ordering is favored for all isomevith magnetic moment 2.93
ps/atom for each case.
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Figure 3.12: The number of nearest neighbour bonds witherdp the number of Ni atoms for
the lowest energy structures of 5Mi;3 n cluster. Fe-Fe: Blue, Ni-Ni: Red and Fe-Ni:
Diamond and the total number of bonds: square for thgNfgs_,, cluster.

3.4.2 Fe-Co

The lowest energy structures for each composition @ F€a, clusters are illustrated in Figure 3.17.
The preferrable isomers for every composition of4=gCa, clusters corresponds to distorted icosahe-
drons with the occupation of Co atoms at the center positi@tuster. The tendency of occupancy of
Co atom at center position of k£ ,Ca, icosahedron has been reported in a previous DFT study [135].
In our studies, the segregation tendency is found to be nromopnced in the Co-poor concentra-
tions, with the formation of maximum Fe-Fe bonds on the s&faOn the other hand, in the Co-rich
concentrations, the mixing tendency is more dominant, /e atoms prefer to be far apart from
each other and thus minimizing the number of Fe-Fe bonds.tHeointermediate range of compo-
sitions, however, there is a competition between seg@gatnd mixing. For this case, a ring-like
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3 Structure and magnetism in transition metal clusters
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Figure 3.13: Left: The variation of mixing energy with resp& the composition for the lowest
energy structures of lrg Nij clusters. Right: Mixing energy for bulk Fe-Ni alloy as a
function of Ni concentration [134]. The red curve in the tiglanel should be compared
with the mixing energy curve of clusters.
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Figure 3.14: The variation of mixing energy in eV/atom witdspect to Ni composition for (Fe-
Ni)3 45 clusters. The top, middle and bottom panels are the mixirggees for 5-, 4-
and 3-atom Fe-Ni clusters, respectively.

arrangement of Co atoms is more favorable with maximum nurobEe-Co bonds. This is marked
from Table 3.2 and Fig. 3.18 (left panel), where the total hanof Fe-Fe, Co-Co and Fe-Co bonds
for the lowest energy structures are plotted.
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3.4 Binary clusters: Segregation and mixing
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Figure 3.15: The mixing energy per atom forgsEgNi,, octahedron as a function of Ni concentration.
The average magnetic moments for the binary clusters aneiti of pJg/atom. Blue and
pink balls represent Fe and Ni atoms, respectively.

Figure 3.16: Energetically preferrable structures fofsRé» and FesNiss clusters. The blue and
pink spheres are marked by Fe and Ni atoms.

The mixing energies for the lowest energy strucutres ag R0, clusters are plotted as a function
of Co concentration in Fig. 3.18 This suggests an enhanedilist for the nearly equiatomic F€og
cluster. It should be noted that the mixing energy showdlagmiy trend in the Invar concentration
range with with 66x<100 for bulk Fegg xCox.

A ferromagnetic ordering is found to be stable for the lowarstrgy structures of all compositions
for Fe;z 1Ca, clusters. In Table 3.3, the average magnetic moment on danficaspecies and the
total magnetic moment for the clusters are presented. Taken@gnetic moment per cluster shows a
monotonically decreasing trend with increasing number @&€@ms, as reported in Table 3.3. Such
a decreasing order can occur because of the substitutioa lof Eo atoms. However, for the Co-rich
compositions, the average local magnetic moments are\@uséo have larger values both for Fe
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3 Structure and magnetism in transition metal clusters

(Mge) and Co (M) sites as shown in Table 3.3. It is also observed that Fe gagxxémum magnetic
moment while surrounded by Co atoms. This suggests the tangorole of Co in enhancing the
magnetism of Fe. Our studies agree well with previous thealestudies [123]. However, such
finding is in contrary to experimental results [136] for FeF@Co monolayers on W(110) substrate,
where maximum magnetic moment is found on pure Fe comparéd@o monolayers.

Table 3.2: The nearest neighbour Fe-Fe, Co-Co and Fe-Caslonthe favorable structures of all
compositions of Fg_,Cao, clusters.

Cluster Fe-Fe Co-Co Fe-Co

Feis 42

Fe.Cop 30 0 12
Fe1Co 25 1 16
FeoCos 21 3 18
FeCoy 16 4 22
FesCos 12 6 24
FeCos 9 9 24
Fe;Cor 6 12 24
FesCog 4 16 22
FesCogy 2 20 20
FesCoip 1 25 16
FeCorp 0 30 12
Fe Coro 0 36 6
Coiz 42

Concerning the (Fe-Cg atom clusters we have chosenk@0;, and Fe»Cou3 clusters for the in-
vestigations. For Fe-rich composition, i.e. 4§@0:,, the energetically favorable structure is char-
acterized by the occupancy of Fe atom at the center and tleenoast-shell of the cluster. The 12
Co atoms, however prefer the inner shell. This indicatestexistence of both surface segregation
and ordering. From the phase diagram of Fe-Co alloy [137], 188 existence of ordering phase at
low temperature region for Fe-rich compositions also sheuch behavior. On the other hand, for
Fe»Coys, 12 Fe atoms segregate towards the surface of the icosaheldsier being far away from
each other, as observed for 13-atom clusters in the Co-idehngth 8< n < 11. This suggests a dom-
inant role of segregation over ordering for this compositiBoth compositions have a ferromagnetic
alignment of magnetic moments.

3.4.3 Fe-Pt

The energetically favorable structures fornfgPt, clusters in the whole range of compositions are
shown in Fig. 3.19. We observe that the ground state strid¢turall compositions are dependent
on the distribution of atoms in such a way that Fe atoms teriwbtml among itself more favorably
than Pt. The icosahedral structure is found to be stablefonlyne low and high concentrations of Pt
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3.4 Binary clusters: Segregation and mixing

Table 3.3: The average magnetic momenptgdtom) on Fe (Mg)and Co (M) atoms for the low-
est energy structures of fe,Co, clusters. My:: The total cluster magnetic moment in
Ms/cluster.

Cluster Me Mco Mot
Fes 44.00
Fe,Co, 3.08 1.77 39.00
Fe;1Co, 3.09 1.88 38.00
FeoCos 3.09 1.95 37.00
FeCos 3.10 1.95 36.00
FesCos 3.03 1.86 34.00
FeCos 3.05 1.87 33.00
FesCo; 3.11 1.91 32.00
FesCos 3.08 1.93 31.00
FeaCoy 3.17 1.99 31.00
FeCopp 3.17 2.03 30.00
FeCo;; 3.22 2.05 29.00
FeCo,, 3.17 2.07 28.00
Cos 31.00

Table 3.4: The nearest neighbour Fe-Fe, Pt-Pt and Fe-Pisdondhe favorable structures of all
composition of Fg;_Pt, clusters.

Cluster Fe-Fe Pt-Pt Fe-Pt

Feis 42

Fe Py 36 0 6

Fe 1Pt 30 0 12
FeoPts 27 0 12
FePy 20 2 20
FesPts 18 2 17
Fe/Pts 12 0 24
FesPty 11 0 22
FesPtg 7 6 20
FeyPlg 5 8 20
FesPtio 0 18 18
FePt1 1 25 16
Fe Pto 0 30 12
Pt 42

with Fe atom occupying the center position. At intermediatwompositions, fon = 4 to 10, there

is a competition, as a result the structure is now deformedptetely from the icosahedral geometry
exhibiting maximum number of Fe-Pt bonds as listed in Tabfe 3he structural deformation is
understandable from Fig. 3.20, where, the number of neaesgihbor bonds for homo, hetero species
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Figure 3.17: Lowest energy structures of@Ca, clusters. Blue and red balls denote the Fe and
Co atoms, respectively.
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Figure 3.18: Left: The variation of nearest neighbour Coff@al circle), Fe-Fe (blue circle), Fe-Co
(diamond) and total number of bonds (square) in the clusttr si@spect to the num-
ber of Co atoms. Right: The variation of mixing energy (e@raj with respect to Co
composition for the low energy structures of kg Cao, clusters.

and total number of bonds are plotted with respect to the murob Pt atoms. The dotted lines
indicate the linear variation of the corresponding quéaatiin the infinite system. Due to the structural
deformation, the total number of bonds (black square) iscoostant with respect to the number of
Pt atoms. As a consequence of strong structural deformé&tiothe intermediatory compositions,
the oscillatory trends appear for the nearest neighboud$ohFe-Fe, Pt-Pt and the Fe-Pt, whereas
for Fes3_nCo, and Fgs_nNiy, these fluctuations in the nearest neighbour bonds are setwdd due
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3.4 Binary clusters: Segregation and mixing

Figure 3.19: Lowest energy structures of £@Pt, clusters. Blue and yellow balls denote the Fe and
Pt atoms, respectively.

to the stability of icosahedral structures (see Fig. 3.18 &nl2 for the nearest neighbour bonds of
Feis nCo, and Fes Nip, respectively).

The variation of mixing energy for the lowest energy stroesuof Fe-Pt clusters as a function of
Pt composition is shown in the right panel of Fig. 3.20, whittows more stability for the nearly
equiatomic compositions of Fe-Pt clusters. Like the cadeee€o clusters, the mixing energy shows
oscillations in the Invar concentration range, which i1fr80% to 60% of Pt concentration.

Now we discuss the magnetic properties of Fe-Pt clustere abisolute value of average magnetic
moment on Fe and Pt along with the total magnetic moment ofltreter are listed in Table 3.5. A
ferromagnetic ordering is found to be more stable for all positions of Fe-Pt cluster. Due to the
presence of Fe atoms, there is induced moment on Pt atomsh vghia consequence of intermixing
among the Fe @and Pt %l orbitals. For the Fe-rich compositions, the hybridizattmtween Fe-
Fe orbitals results in slight decrease in magnetic momemipeoed to that of the atomic moment,
while for the Pt-rich compositions, the local moment on Favat retain their atomic-like character.
For the intermediate compositions, enhancement of magmetiment for both Fe and Pt atoms is
observed, due to the strongly deformed structures, as #,reagh atom possess low coordination
and a hybridization between the Fe andiRirbitals.

Concerning the Rg_,Pt, clusters, we have investigated g®t;» and Fg,Pts3 clusters. Out of sev-
eral configurations, the energetically favorable struefor both compositions corresponds to the Pt
segregation towards the surface with the Fe atom occupyiegenter position of the icosahedron.
This trend is also observed for small;g&,Pt, clusters. The segregation of Pt atoms on the surface is
a consequence of its lower surface energy compared to tirag [if39]. For the Fe-rich composition,
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3 Structure and magnetism in transition metal clusters

Table 3.5: The average magnetic momenpggdtom) on Fe Me and Pt M, sites for the lowest en-
ergy structures of g ,Pt, clusters. Myi: The total cluster magnetic moment in units of

Ue/cluster.
Cluster Me Mpt Mgt
Feis 44.00
FeoPt; 2.86 0.39 34.70
FePt, 2.82 0.37 31.70
FeoPtz 2.95 056 31.14
FeoPty, 2.89 042 27.62
FegPts;  3.01 041 26.15
Fe,Ptz 3.09 050 24.60
FePt;  3.17 052 22.64
FesPtg  3.21 057 20.62
FegPly 3.30 041 16.90
FesPtip 3.34 0.33 13.32
FePt;; 3.10 0.31 9.62
FePt;, 3.15 054 9.70
Pl3 0.15 1.93
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Figure 3.20: Left: The variation of nearest neighbour P& circle), Fe-Fe (blue circle), Fe-Pt (di-
amond) and total number of bonds (square) in the clusterregipect to the number of Pt
atoms. Right: The variation of mixing energy (eV/atom) widspect to Pt composition
for the low energy structures of £ ,Pt, clusters.

12 Pt atoms prefer the six-coordinated vertex sites withrarmiation of Pt-Pt bonds, while in the Pt-
rich composition, a core-shell structure is more favoratite Fe as the core and Pt as the outer-shell.
Experimental observations through high resolution traasion electron micrographs (HRTEM) have
confirmed the existence of such core-shell structures @malkedral Fe-Pt nanoparticles with Pt seg-
regation on the surface [140].

Different magnetic orderings are observed at two extremgpositions of FgsPt, clusters in contrary
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3.4 Binary clusters: Segregation and mixing

to 13-atom clusters of Fe-Pt. ThezBt» favors an antiferromagnetic ordering with the moment of
center atom aligned opposite to the surrounding atoms.ewbil Fg,Pt3, a ferromagnetic ground
state with all moments in parallel direction is more stablee reason for different magnetic behavior
is related to the interlayer relaxation effects.

3.4.4 Co-Pt

The lowest energy structures for {30,P1, clusters show similar behavior as observed for Fe-Pt sys-
tem for all compositions. In this case, the minimum energycstires for each composition form
maximum Co-Co bonds as observed for Fe-Pt clusters. For thec@ and Pt-rich compositions,
the Pt occupancy on the surface is more favorable with dextacosahedral-like structure. However,
for the intermediate compositions, the icosahedral sireds found to be completely deformed ex-
hibiting a different symmetry, which results in maximizatiof Co-Pt bonds. The different structural
trends can be marked from the oscillations appearing in iRBgienergy for the favorable structures
of each composition, plotted in Fig. 3.21.

Like Fe-Pt clusters, all lowest energy structures corradpo a ferromagnetic ground state. The total
magnetic moment of the binary clusters decrease with isargaaumber of Co atoms. The presence
of Co atoms leads to induced moment on Pt atoms, as depicledbie 3.6.With increase in Pt atoms,
the average moment on Co as well as the induced moment onrBagss as a consequence of the
orbital hybridization between the Cal&and Pt &l states.

For the Cags_nPt, clusters, both the Co-rich and Pt-rich compositions préiersegregation of Pt
atoms on the surface with Co being at the center. Due to therleurface energy of Pt compared to
Co, Pt segregation occurs on the surface of the cluster. iHawenlike Fgs_,Pt,, the ground state
structures for these clusters are observed to have fermetiagprdering for both compositions.

3.4.5 Co-Mn

The structural relaxation of G ,Mn, clusters for all compositions of the cluster results in Jahn
Teller distorted icosahedral structures. For the lowestgy isomers, Mn atom prefer to occupy
the central position of the icosahedral shell with the rerimgi Mn atoms being far away from each
other. HoweverCo;1Mn; is an exception to such trend, where two Mn atoms occupy tHacsu
shell being in opposite positions of the icosahedron. Fogtailed description, see Ref. [141]. The
mixing energies as a function of Mn concentration for thedstxenergy configurations of €o,Mny,
clusters are shown in Fig. 3.22. The negative valueggf over the whole range of compositions
indicate the favorable solubility of the components. lbadsiows enhanced stability for the isomers
having approximately equal amount of Co and Mn atoms.

Figure 3.23 shows the magnetic moment per atom for the losvesgy configurations of Ge ,Mnjy,
clusters. It shows that for the Co-rich compositions up tgMw;, an increasing trend of the total
magnetic moment is observed clusters increases with iser@anumber of Mn atoms. This agrees
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3 Structure and magnetism in transition metal clusters

Table 3.6: The average magnetic momentggfatom on CoMceand PtMp; atoms for the low-
est energy structures of € ,Pt, clusters. My The total cluster magnetic moment in
Ms/cluster.

Cluster Mo Mpt Mot
Cos 2.23 29.00
CooPt; 1.76 0.34 21.43
Co;,Pt, 1.83 0.28 20.65
CooPtz 1.88 0.26 19.62
CoPt; 197 0.40 19.34
CogPts 197 0.34 17.49
Co/Ptz 193 0.26 15.10
CosPt; 2.13 0.61 17.03
CosPtg 2.13 0.47 14.41
CoPty 2.12 0.36 11.70
CosPtig 2.26 0.37 10.47
CoPt;; 2.17 0.44 9.22
CoPt;, 2.10 0.32 6.00
Pt3 0.15 1.93
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Figure 3.21: Mixing energy (eV/atom) with respect to Pt cosipon for the lowest energy structures
of Co1z_nPt, clusters.

with the experimental results [142, 143] through Sternt&&tr molecular beam deflection technique.
Such increase in magnetic moment with Mn concentration usidoto be opposite to that of bulk
Co-Mn alloy, where with increasing Mn concentration the metgc moment shows a decreasing
behavior [144].

The replacement of a Co atom by Mn at the center of the icosaha@sults in a reduction in the
magnetic moment by, which occurs for the bulk Co-Mn in the low Mn concentratiokwever,
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Figure 3.22: Mixing energy in eV/atom with respect to Mn cemtcation for the lowest energy con-
figurations of Cez_,Mn,, clusters.
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Figure 3.23: The variation of magnetic moments for the spoading configurations as shown in
Fig. 3.22 for Cas_pMn, clusters.

irrespective of the central atomic species, the subgiiudf a Co by a Mn atom at the surface increases
the total cluster magnetic moment by?2 up ton < 8. This is in agreement with the behavior of Co-
Mn clusters of different sizes observed experimentall\2]|14

For CaMng, a crossover form ferro to antiferro-like ordering of magmenoments occurs for the
surface atoms. This is due to the different spin alignmehtha corresponding elemental clusters.
For example, Cg has a ferromagnetic alignment of moments, on the other hamd Mas six of the
surface atoms aligned opposite to the rest atoms, therdhpitxg a small magnetic moment of 3
ps/cluster. Replacing few Mn atoms by Co, still does not chathgeantiferromagnetic-like ordering.
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Figure 3.24: The site projected density of states (DOS) tmpkdn,, CogMn3z, and C@Mns clusters.
The DOS are calculated with a Gaussian broadening parath@teeV. The Fermi level
is fixed at zero.

This agrees well with the theoretical calculations by Gutstal [145] on elemental Mn clusters,
where the ferro to antiferromagnetic-like transition waserved for Mg, which is not present in 13
atom Co-Mn clusters with less than 8 Mn atoms.

The absolute values of the local moments of the surface Mmstio M3 as well as in mixed
clusters retain their atomic-like moments with values igg1which is 1.5pg larger than that of Co
atoms in C@sz. This is shown in Fig. 3.24, where the change of the eleatrstnicture of the lowest-
energy isomers with the number of Mn atoms is displayed. Tagmatic moment of the central atom
is reduced for all isomers, resulting together with a desgaa the moment of the surrounding Co
atoms. The surface Mn atoms couple ferromagnetically with@o atoms. Their large magnetic
moments arise due to thel 3pin-majority states, which are located between -3 to -1 eldvb the
Fermi level. However, due to the large exchange splittihg,dorresponding minority spin states are
unoccupied, which lie- 4 eV higher.

We have studied 55-atom Co-Mn clusters in the low Mn conediotn range with up to twelve Mn
atoms due to the availability of experimental [142] datatf@ magnetic moments, where all possible
configurations for CegMn; (4) and CagsMn, (31) are investigated, while for GgMns to Ca;zsMn12
ten randomly chosen configurations are taken into accougntré-3.25 depicts the magnetic moments
and mixing energies of the 177 optimized structures. Foldihest-energy configurations of each
composition, most of the Mn atoms prefer to occupy the oubstnshell of the cluster being far
away from each other, thereby maximizing the number of Coddnds. For some compositions,
there is occupancy of Mn atom in the cluster center, in spiée the corresponding energy gain is
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Figure 3.25: Top panel: Magnetic moments with respect tantiraber of Mn atoms for (Co-Mg3
clusters. Bottom panel: The corresponding mixing energise dashed line in both
panels connects the quantities for the lowest energy isamer

relatively small. On the other hand, occupation of the instezll with many Mn atoms results in
highly unfavorable structures.

The magnetic properties of the 55-atom cluster are foundetadarly similar to 13-atom clusters.
Except some configurations that are energetically not aalgvthe moments of all isomers lie in a
10ug-wide stripe. Replacing a Co atom at the center by Mn for tbeners with only Co atoms in
the inner shell results in a decrease of magnetic momenggyéhich again mimics the bulk trend.
Though it happens for some of the lowest-energy isomerspubeall increase in moment by per
Mn atom is clearly recognized and is consistent with expenital results.

Figure 3.26 shows the magnetic moments and the mixing exgeiigii all configurations of some more
13-atom binary clusters. Substituting Co by Ni, a same midgtend is observed like the case of
Co-Mn clusters, with a slight increase in the slope of the meéig moment (from s to 3 Ug), as

a function of Mn concentration. This is due to the differemtéhe atomic numbers of Mn and Ni.
Like Co-Mn clusters, the most favorable structures areatiarized by the occupancy of Mn atoms
on the surface of Ni-Mn clusters. In addition, a crossovedrttiferro-like magnetic ordering is also
observed for this case, which is shown in Fig. 3.26. For FeeMaters(the results are illustrated also
in Fig. 3.26), the results are more complicated due to théeartmagnetic tendencies of the system.
However, in comparison with Co-Mn and Ni-Mn, the mixing emeis found to be very small for
these clusters.
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4 Magnetic anisotropy of clusters

4.1 Introduction

One of the major obstacle in the miniaturization of magnstimrage devices is to overcome the
thermal fluctuation of magnetic information which has atied much attention in current research.
Out of various factors that can help to overcome the obstaoke of the main strategies is to enhance
the magnetic anisotropy by artificial material manipulatids an example, for a disk shaped sample,
one can identify two main anisotropy directions: Externeldfiacting in the plane of the disk and
external field acting perpendicular to the plane of the digks type of anisotropy is popularly called
the shape anisotropy. For a ferromagnetic material thetibre of the magnetization depends on the
shape of the material due to the shape anisotropy. Besidge sif the material, the non-isotropic
environment of atoms (in multi-component alloys, for ex#&hpn a crystal is another source of
magneto-crystalline anisotropy.

Experimentally, there has been many ways to tailor magmgiigotropies of nanostructured materi-
als especially by manipulating lattice strains, composgi capping layers, growth procedures, and
surface adsorbates etc. [146-148]). Density-functioa&dutations have been extensively used to
explore and understand the underlying mechanism at thér@abéc structure level [42, 149, 150].
The reliable determination of MAE for any material requivesy accurate electronic structures cal-
culations and proper treatment of the spin-orbit coupliagause the energy we are dealing with are
sometimes several orders j@¢V, which can very easily superimpose with the numerical noise
spin-orbit coupling term is usually omitted in most of the Déalculations with the assumption that it
does not play a major role in the chemical bonding and alsqdak computations. In DFT the spin-
orbit interaction is treated through the scalar-relativier semi-relativistic [151] approaches. The
magnetic anisotropy is studied using the force theoremdétails, see Sec. 3.10). Such calculations
involve a large number d points to deal with the numerical fluctuation [43]. Sevenmabrovements
are proposed, like broadening techniques [152], and the-stcking and the torque schemes, to
overcome this problem. The evaluationEjae can also be done through the torque method. For a
detail description, see Sec. 3.10. In all our studies on MAEhave adopted the former method, i.e.
calculating the magnetic anisotropy energy using the ntagfarce theorem method.
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4 Magnetic anisotropy of clusters

4.1.1 Magnetoelasticity

There exists a different magnetic phenomena, due to thin steppendence of the MAE, known as
magnetostriction or magnetoelastic anisotropy, whiclhésdeformation of the material in response
to a change in its direction of magnetization through thdieafion of a magnetic field [9]. Magnetoe-
lastic anisotropy is caused by the mechanical strain whiieldy substantial anisotropy contributions
in a material. It has long been exploited in iron-based megyrseich as carbon steels and related
alloys (Fe-Cr, Fe-Co). Itis also important in soft magnéss,example in permalloy-type magnets
(Feroo_xNiy), where the cubic anisotropy is small and the magnetoelastitribution easily dom-
inates the total anisotropy. The main source of magnetib@tsisis magnetocrystalline anisotropy.
Magnetoelasticity is closely related to magnetostrictiwhere the mechanical strain is created by the
rotation of the magnetization direction. Subjecting cubmgnets to uniaxial mechanical strain yields
a uniaxial anisotropy contribution. Uniaxial magnetottity is defined as

% = —)\%E(300§6—1)s+§sz—80 (4.1)
whereo is the uniaxial stresg, is the elongation along the stress axis and is equAl to, E is the
Young’s modulus and@ is the angle between the magnetization and strain axeis the saturation
magnetostriction that describes the strength of magrettelcoupling. Puttingg and® = 0 and
minimizing the magnetoelastic energy with respea tw Eq. 4.1 yields the elongatia= Ag, which
means thal is the spontaneous magnetostriction in the magnetizatiestsbn. A magnet that has
a spherical shape in the paramagnetic state becomes eepi@iatmagnet fohs > 0 and an oblate
ferromagnet fois < 0. Since\sis very small in most compounds, moderate stressEe outweighs
the spontaneous magnetostriction, which yields the magtesttic anisotropy energy density

—ME —7(3co§6— 1) (4.2)

and the magnetoelastic contributiB= 3A\s0/2. A crystal-field phenomenon occurring in highly
symmetric crystals and requiring a degenerate ground istétte Jahn-Teller effect. Jahn-Teller ions
can lower their energy by spontaneously distorting theosunding lattice. This energy gain is small
but proportional te, as compared to the elastic energy, which is proportionaf.tdlinimizing the
total energy results in a finite lattice distortion [8]. Howee besides the crystal-field analogy, the
Jahn-Teller effect is not related to magnetocrystallinis@ropy.

4.1.2 Magnetic anisotropy in thin films and wires

The origin of large uniaxial magnetic anisotropies in thimé are the surface interface effects and
lattice strains arising because of lattice mismatches amsepce of step edges [147, 153]. The con-
tributions from surface and interface strongly depend ereatiomic relaxations, chemisorptions, and
growth morphologies. Therefore, the calculationEgpfae through DFT requires geometrically op-
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Figure 4.1: The phase diagram for a free-standing chain eftéts using classical Monte Carlo
simulations [45].

timized structures. Though GGA improves the results of &astructures for 8 transition metals
over LSDA, it overestimates the volume a 4nd %l elements as well as oxides. A complete under-
standing of complex magnetic films requires the analysihefdiectronic origin of th&yag for a
free-standing magnetic monolayer.

There have been many calculations to study the effects aflrmebstrates or capping layers on the
Emae of ultrathin magnetic thin films [42, 150]. The valuesKffor magnetic films can be deter-
mined through DFT calculations with suitable accuracyetdestingly,Epmae of Fe, Co and Ni films
can be tuned by surface chemisorptions of O, CO, and H [13]-ABhd the underlying electronic
mechanism has been actively explored through theory aneriexent interplays.

The smallest possible magnetic recording units, such asoatomic chains, are grown on sub-
strates [159] or built by Scanning Tunneling Microscope B Tip manipulation [160] for 100-1000
TB in.~2. The major problem of nanomagnets is the thermal fluctuatidrich produces superpara-
magnetism [161] at finite temperature. Therefore, a higlsaropy energy barrier is required in
order to maintain the ferromagnetic ordering. Experimigntdametet al. have studied the mag-
netic anisotropy in a 3-nm Co cluster embedded in a niobiurrixnand found the dominating role
of atoms on the cluster surface [162—-164]. Giant MAEs of Cdigas on Pt(111) [3, 165] was
found by Gambardellat al. They have also found an oscillation of MAE and the coercigilfas a
function of the transverse width of the Co wires on Pt(991)e €xperimental studies by Ruspe@iti
al. [166] for Co patches deposited on Pt(111) has predicteddhm@rant role of edge Co atoms in the
perpendicular uniaxial anisotropy. Pratatral. have studied the Fe stripes on stepped W(110) and
found an extremely narrow domain waky @ A), which might be due to large MAE [167, 168]. Fig-
ure 4.1 shows the magnetic phase diagram for a 10-atom nmoitatbain, obtained through classical
Monte Carlo simulations. In order to achieve a high blockieigperature (300K), below which the
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4 Magnetic anisotropy of clusters

magnetization of each atom aligns along the easy axis anelihéorming a ferromagnetic structure,
stringent conditions are required, such &s,320-420 meV an&= 30-50 meV/atom. Such a large
Emae cannot be achieved in nano-entities only withédements. For the free-standing or supported
Co monatomic chaingyca is still a few tenths meV/atom [169]. For Co chains depositedt(111),
Lazarovitset al. have found the easy axis to be perpendicular to the surfaténdependent of the
length of the chains [170]. There are also studies on thethrofvFg, chains on Cu(001), Cu(111)
as well as embedded in the bulk Cu [169]. Shitkal. found that a quasi-one-dimensional Co chain
at the Pt(111) step edge has an easy axis at an odd anglé tv2&rd the Pt step [171, 172]. In
addition, the spin and orbital magnetic moments are nonealt. The relationship between MAE
and the anisotropy of the orbital moment, that is adoptedrfeasuring thé&yag through the X-ray
magnetic circular dichroism technique, was also examioeddveral systems [149, 173]. Larie
values upto 30-50 meV have been found through DFT calcuigtidModel calculations for®5d
trimers (FeOsFe and FelrFe) showed a large valugyaf up to 108 meV, which is due to the high
spin polarization of Fe and the strong SOC from tHeafoms. Giant values of 30-60 meV/atom were
also reported for Ru or Rh wires by Mokrousetwal. through FLAPW calculations [174].

4.2 Spin moments, orbital moments and magnetic anisotropy f or
clusters

DFT successfully calculates several physical and chenpicgberties of clusters. While calculat-
ing the magnetic properties such as spin and orbital monzentgell as the MAE of small clusters,
from computational point of view, two cases should be taken account, namely, the non-collinear
magnetization density (the magnetization vector variesathty with respect to the position) and the
spin-orbit coupling (the interaction between electromspid its orbital motion). For Both cases, the
spin-up and spin-down states are mixed together [175, I7@jas been observed that TM clusters
give rise to novel magnetic anisotropic properties congpéwehe bulk. For example, XMCD studies
by Gambardellaet al. [3] predict a large MAE of a single Co atom (9.0 meV/atom) dsfeal on
Pt(111) surface. Experimentally, Balashehal. [177] through inelastic tunnelling spectroscopy have
found very large value of MAE for Fe and Co clusters up to 3 aawmpared to bulk. Theoretically
there exists abundant studies for MAE of clusters depositeslibstrates [178-184], however studies
related to MAE of gas phase clusters are still limited [1888]}1 Most of them are based on semiem-
pirical techniques. For example, using tight binding tégha, Pastoet al.[185] have calculated the
MAE of small Fe clusters up to 7 atoms, where they have fourgIMAES for clusters relative to the
corresponding bulk as well as thin films. Using the same ntktk et al.[189] and Guirado-Lopez
et al.[186] have calculated the MAE for Co nanoparticles. Theyehalgo obtained large MAES for
Co clusters relative to bulk. As an example, Figure 4.2 shih3VMAE of Co clusters obtained from
tight binding calculations [189]. Calculation of MAE fordkated clusters based @b initio methods
are mostly for TM dimers [188, 190, 191]. For larger clusténsre exists very few reports [192, 193].
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Co,, (0.036)

Figure 4.2: The magnetic anisotropyofe- E100) in meV/atom of Cg clusters with 1, 3,5, 7, 9 and
11 layers for 41, 121, 195, 259 and 341 atoms. Fof6,dhe MAE is calculated as the
difference between (&1 - Egp1) in peV/atom [189].

Using DFT, Kortuset al.[192] have calculated the MAE of 5- and 13-atom Co and Fe etastvhere
they have obtained the MAEs for £eCo; and Fgs as 0.2, 0.1 and 0.27 meV/atom, respectively.
However, for Cgs, they obtain nearly zero MAE. Hongt al. [193] have calculated the the orbital
moments and MAE for small Co clusters up to six atoms usinduth@otential linearized augmented
plane wave method, where they have obtained significantiarered value of orbital moment relative
to the hcp bulk Co, but, the value of MAE calculated by themGorclusters is less<( 1 meV/atom).

In this respect, binary®5d clusters can be a challenging material, since the alloyimgpo magnetic
bulk 4d and 5 elements like Rh, Pt and Au with magnetid 8ansition metals result in enhanced
magnetic moments [119, 194-196]. In the present work, we sawdied the spin moments, orbital
moments and MAE of elemental id(M = Fe, Co, Ni) clusters and the effect of capping them with Pt
atoms. We have chosen the closed-shell icosahedral ggofoethe M3 clusters, which are known
to show enhanced stability for such cluster size. The faligwesults are discussed in Ref. [18].

4.3 Computational details

The DFT calculations are performed using the VASP code [Bj, &ithin the GGA. The parame-
terization by Perdew and Wang (PW91) was used for the exehand correlation functional [197].
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4 Magnetic anisotropy of clusters

VASP uses the projector augmented wave (PAW) method [26a@d]a plane wave basis set. Pe-
riodic boundary conditions were imposed onto a sufficietghge cubic cell with an edge length of
15 A for M43 clusters and 20 A for NgPt, clusters which is large enough to minimize the interaction
between the replicated cluster images. Onlythmint was used for the Brillouin-zone sampling for
the cluster calculations. Gaussian broadening for theatsenergy levels of 0.05 eV, a plane-wave
cutoff of 270 eV, and a Fourier grid spacing of 0.05Awere applied for all calculations except for
the MAE calculations. The energy convergence criteriorttierself-consistency was set to 10 eV.

In order to compute the equilibrium lattice constants fokbacc Fe, fcc Ni, and fcc Co, a k-mesh
of (11x11x11) and Gaussian broadening as in the cluster calculatiassuged. The local magnetic
moments were obtained by integration of the magnetizatesitdy over atom-centered spheres with
radii of 1.302 A (Fe, Co), 1.286 A (Ni) and 1.455 A (Pt).

It is known that the MAE for cubic bulk transition metals is thie order of 1u eV/atom. Thus,
calculation of MAE requires much careful attention in orttleovercome minute computational noise,
which can easily interfere with the estimated quantitieher€fore, one must have a very refined
convergence of charge density as well as proper choice ofgoatoff and a large Fourier mesh. For
our studies on MAE of the clusters, we have used a Gaussiadéniong parameter of 0.01 eV for
the energy levels and a very high value of plane-wave cuboff000 eV with a 0.046 A! Fourier
grid spacing. The MAE is defined as the maximum energy diffeeebetween different settings of
the spin moment with respect to the atoms framework.

For the sake of comparison and for the validation of the tesan clusters, some calculations have
been performed using a local-orbitals code, SIESTA (Spalmgiative for Electronic Simulations
with Thousands of atoms) [28] within GGA. SIESTA uses laoadi atom-centered basis functions
of “double- with polarization orbitals” quality and triplé-for 3d functions have been constructed
according to the standard scheme of SIESTA method [198}jaeil.4.13, with the “Energy Shift”
parameter, which controls the localization of basis fuortitaken 0.01 Ry. Norm-conserving pseu-
dopotentials of Troullier and Martins [199]. The treatmehthe spin-orbit coupling was included as
described by Fernandez-Seivasteal. [200].

For additional verification, few calculations have beenalfor the binary clusters with another first-
principles calculation method, namely, the all-electrooal orbital FPLO 6.00-24 code [29] in the
fully relativistic mode, where the Dirac-Kohn-Sham eqoas including the spin-orbit coupling in all
orders are solved [201]. It uses the LSDA [202].

4.4 Elemental clusters

Bulk cubic transition metals exhibit very small value of MAlGe to the high symmetry. Hence it is
expected that the MAE decreases for the perfect icosaheldsdérs. With the breaking of symmetry,
for example by tetragonal distortion, the MAE increasessaarably [203]. Such an enhancement of
MAE may also occur for the relaxed clusters. Therefore, weltalculated the MAE for both ideal
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4.4 Elemental clusters

Figure 4.3: The perfect icosahedral cluster showingxth@lane, where the angkis varied for the
MAE calculations. E, F, and A abbreviate the directions fribim center to the middle of
an edge, the middle of a facet, and an outer atom, respsctivel

and relaxed Mjs clusters. Each of them will be discussed categorically énftilowing.

4.4.1 MAE of perfect clusters

Figure 4.3 shows the perfect icosahedral cluster with thHimitlen of (x, 2)-plane and the anglé

for the magnetization directions. F6r= 0, the magnetization is directed parallel to an axis pgssin
through the central atom and the center of a bond conneatiogtiter atoms; with increasirtgj the
magnetization direction passes through the center of agiar facet, through an outer atom and
finally arrives again at a bond center e 11/2.

In order to calculate the MAE of the perfect icosahedral teliss the minimum-energy center-shell
distances for each of the perfect icosahedrad blusters are calculated, which are found to be 2.39 A,
2.33 A and 2.32 A for Fg;, Coiz and Nis, respectively with total magnetic momentsi(Fe;3), 31

Ms (Cor3), and 8ug (Niy3). For Fas with magnetic moment 44g, there are difficulties in achieving
convergence in the calculation of MAE at low smearing of 0e®ldue to the dense energy levels
near the Fermi level. Therefore, a perfect icosahedron teitl magnetic moment 4@g, which
has a center-shell distance of 2.57 A is considered. Figdrelbws the comparison 8fdependent
energy differences\E (0)) of perfect Fg3 ICO (with total magnetic moment 4f) obtained fromab
initio calculations with the Néel model. The global minima is otéal for the magnetization directed
parallel to the line from the central atom to the circumcewfethe triangular facets and the global
maxima is obtained for the magnetization parallel to the fiom center atom to one of the surface
atoms. The magnitude &fE (0) for Fey3 cluster is found to be 1.[deV/atom, which is comparable to
that of the bulk bcc Fe. The MAE of perfect Gaand Ni3 are found to be 0.3fuieV/atom, and 0.77
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Figure 4.4: Left: The energy differend& = E @) - E(O) in meV/cluster as a function & for a
perfect Fes icosahedral cluster, which shows a comparison betweemlihaitio data
(filled circles connected by solid line as guide to the eyes) the fit to the anisotropy
term of Néel model (the dashed line). The letters A, E, andé¥ te the positions defined
in Fig. 4.3 Right: the §, @) for the MAE of the perfect Fg cluster.

peV/atom, respectively. ThAE(8) shows a similar qualitative trend for €pand Ni3 as obtained
for perfect Fes. The total energy obtained as a functionédfom theab initio calculations for Fg;
are fitted to the anisotropy expansion of the Néel surfacsotmoipy model [204, 205] for a nearly
spherical cluster, which is defined as

N
AENgel = ZEn = - ;i;Dn(a S)n (4-3)

where, D, is the anisotropy constant of order(an even integer)g the normalized position vec-
tor of atomi along the radial directions arfgl are their magnetic moments.,@re assumed to be
B-independent. From the symmetry considerations of pelf&0t the second and fourth order con-
tributions have n®-dependence. The major contribution to anisotropy enexdsgom the next order
contribution, i.e., the sixth order. Still higher order tioutions are negligible and th&E (6) could
be successfully fitted to the sixth order fit.

4.4.2 Structural distortion of relaxed clusters

In order to calculate the MAE of relaxed clusters, we havedi@amed the perfect ICO in two dif-
ferent paths, namely, the Jahn-Teller distortion (JT) dreddistortion along the Mackay path, the
mackay transformation (MT). The JT and the Mackay distogiceduce the,Isymmetry of a perfect
icosahedron in two different ways, lifting the (quasi-) degracy of the highest occupied molecular
orbitals and gaining in energy from their splitting. The J$tartion [14] maintains the five-fold ro-
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<

Figure 4.5: The JT-distorted and MT fzeclusters in the left and right panels, respectively. Arrows
indicate the direction of relative shift of atoms with respw the ideal positions. The
arrows have been scaled up by a factor of 20 and 30 for the JMadnige; 3 cluster. The
box is only guide to the eyes. The actual simulation box sizE5t A3 [18].

tational symmetry, with a compression of the cluster aldredorresponding axis. It also involves
a mutual opposite rotation of the two pentagonal rings piioy the axis in consideration. The JT
distortion can be characterized by parametedefined ag = |r3 —r4|/|r1 —r2| (see left panel of
Fig. 4.5 for the labeling of atoms). The MT can be characterizy parametes, which is the square
of the ratio of the stretched to the unstretched edges (spé 5, right panel) being equal to 1 and 2
for the perfect icosahedron and cuboctahedron, respBcfR@6]. That is,s= [r4 —r2[%/|F4 — 1.

Figure 4.6 shows the variation of energy as a function of fh@arameter and of the Mackay
parametes for M3 clusters. As the starting geometries, the minimum energijecehell distances
for the perfect ICO of Fg, Coiz and Nijz are considered, which are 2.39 A, 2.33 Aand 2.32 A,
respectively. The minimum energy structural parameteesraported in Table 4.1. It should be
noted that for the JT-distorted clusters, two of the axiah®t have different center-shell distances
compared to the other atoms, while for the Mackay transfdrgiasters, the center-shell distances
remains independent ef

For Fe3 cluster, the JT-distorted structure is by 125 meV/clustexr,MT cluster by 61 meV/cluster
lower in energy compared to the energy of perfect ICO. FagQhbe JT relaxation is by 7 meV/cluster
and the MT relaxation is by 27 meV lower in energy with respgeche perfect ICO, whereas for Ni

the energy differences are nearly the same (16 meV/clusteopth JT and MT clusters, respectively.

77



4 Magnetic anisotropy of clusters

0.50 , 0.06 ,
IO Fey ir,,=096 IO Feyq: 8y, =107
g 0.40 : O 0013 : rmm =101 7 %\ 0.04 : 13: sm|n =0.9 T
*(7) 1 AN ‘(7', I
= i = !
S o030} ! 1 L oo2f ! E
S i > i
2 ! - !
3 0.20f ! 1 = ooof .
1 1 1
= i @ |
w 0.10F H R w -0.02F ! E
[ 1 1 ]
= i 0 ! i
w 0.00f Ao 1 004t ! : .
IR, ! i
1 o Il 1 |
L [ w 1 !
< 0.0t v roon 1 < -006f ! : | : 1
{ ! P ! 1 | |
A R A ‘ ‘ R ! L
093 095 098 1.00 103 1.05 108 1.10 093 095 098 1.00 103 1.05 108 1.10

JT parameter r

MT parameter s

Figure 4.6: The values of theands obtained for M3 clusters. The dashed lines indicate the mini-
mum points for both cases. For each casel andr = 1 represent the perfect ICO.

Table 4.1: The bond lengths (A) for the minimum energy JTedisd ¢ = 0.965 for Fes, 1.01 for
Coy3, 0.98 for Nii3g) and MT &= 1.07 for Fgs, 0.96 for Cag, 1.04 for Ni3) M13 clusters.

Bonds Fes(JT) Casz(JT) Nigg(JT)
2 x center-shell 2.34 2.35 2.28
10 x center-shell 2.42 2.32 2.33
Bonds Fes (MT) Co13(MT) Niz (MT)
Center-shell 2.39 2.33 2.32
24 x bond length (surface) 2.50 2.46 2.43
6 x bond length (surface) 2.58 2.41 2.47

4.4.3 Spin and orbital magnetic moments of relaxed clusters

Table 4.2: The average orbital momefit) = 1513 [Lj| and the average spin mome(s) =
%32}:31]3] for MT M 13 clusters in units ofig/atom, compared to the corresponding cal-
culated bulk values for bcc Fe, fcc Co and Ni.

Cluster (L) (S)  {(ILDpuk__ {IS]) buik
Fes(MT) 0.08  3.05 0.06 2.25
Cois(MT) 0.12  2.05 0.08 1.67
Ni;z(MT) 0.06  0.66 0.05 0.65
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The average orbital momentk) and the average spin momen& for the Mackay-distorted 4
clusters are compared with related bulk values in Tab. 4h2.drbital and spin moments are obtained
for the bulk systems at the equilibrium lattice parametdr&.83 A (bcc Fe), 3.52 A (fcc Co) and
3.523 A (fcc Ni). We observe larger values of spin momentsfosters as compared to that of the
corresponding bulk, which is expected in small clusters. Nigs, the spin moment is approximately
the same as the corresponding bulk value. On the other Hamdrlbital moments for v clusters are
found to be larger by factors ef 1.2 to 1.5 than in the bulk. For @Ggand Ni3, the orbital magnetic
moments are observed to be more sensitive towards the geuaimat spin magnetic moments. Previ-
ous study based on tight-binding technique [207], has stibatin Ni clusters of up to 13 atoms, the
average orbital momenrL) per atom is about 4 to 8 times larger than the bulk value artdinirease

in cluster sizes{L) was shown to approach the bulk value. Table 4.3 shows a cisopaof the
on-site magnetic moments for Mackay-distortegsMlusters, obtained with VASP and SIESTA. The
relaxed MT coordinates obtained with VASP have been usdtkicalculation with SIESTA, in order
to compare the spin and orbital moments, and the non-caliitye For both methods, the spin mo-
ments are aligned parallel (tkeand they-components of the spin vectors amount to at most 0.g01
and are not shown in Tab. 4.3). The orbital moments slightljiate from thez-axis, but these devia-
tions are not significantly above the numerical noise |ewétile comparing the numerical results for
spin and orbital magnetic moments from these two calculatiethods, one must take into account
the difference in their definitions. In VASP, the propert{gpin and orbital moments) are extracted
as projection onto an atomic sphere, While in SIESTA, thematig moments are computed in terms
of the decomposition by projection onto localized, nunararbitals, known as Mulliken population
analysis. It is known that the local magnetic moments as agthe atomic charges in heterogeneous
systems are often very different, when estimated accordirigese two different schemes. In order
to illustrate this effect, we give in the last column of Tal8 4n parentheses), the values of spin mo-
ment, extracted from the SIESTA results by summing up théaspin density over atom-centered
spheres with a radius of 1.302 A. The fluctuations of the mtigmeoments over equivalent atoms
are observed, which occur due to the sparseness of thelgpadiavith steps of 0.078 A, on which
the spin density summation has been done. While the redutie d/ulliken population analysis by
definition add up to the total moments, the added values ofphadal summations are smaller than
the total moments by about 10%.

4.4.4 MAE of relaxed clusters

The MAE is calculated both for the JT and MTihtlusters, for the structural parameters compiled in
Table 4.1. The relaxation pattern for both transformatisrshown in Fig. 4.5. In order to underline
the remaining symmetry, the spatial orientation of bottsits is different. According to these dif-
ferent orientations, th&-path for the calculation of MAE is, therefore different footh distortions.
For the JT case, th@= [0, 1] path is roughly A-E-A-F-E-F-A (see Fig. 4.5, left panel)hite for the
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MT case, it follows the path as discussed for the perfecticedron, E-F-A-E fob = [0, 172].

The 6-dependent energy differences for the relaxeg; Blusters are depicted in Fig. 4.7. For the
JT-distorted M3 clusters, a large second order contribution to the MAE (dge4=7, left panel) is
obtained, as is a consequence of symmetry breaking. Alenigider terms are significantly small and
hence can be neglected. On the other hand, due to the cubmetyynof the MT clusters, the lowest
order contribution is only the fourth orderyDNo second order anisotropy is found in this case. The
higher orders can be neglected. The corresponding valedsstad in Table 4.4. For all cases, the
MAE of the JT-clusters are found to have larger values as eoetpto that of the MT clusters. For
example, in the case of £ the MAE of the JT-distorted cluster is calculated to be Ba¥/atom,
which is approximately six times larger as compared to theRdg cluster (55.ueV/atom). Similarly,
for Cos, the MAE of the JT-distorted cluster has a value of {#¥/atom and this is approximately
100 times larger than the MT-distorted (1.48V/atom) cluster. However, among all ¥iclusters,
the JT-distorted Nk cluster has the largest value (6@8V/atom), which is about 30 times larger
than that of the MT-distorted ones. The reason behind sugk lalues of MAE for the JT-distorted
clusters compared to the MT ones is the symmetry breakin@penfdrmer case. Concerning the
comparision of MAE with respect to bulk, a large value of MA&r@tom for JT- and MT-distorted
Fe3 and Ni3 clusters are obtained relative to the corresponding butk¢hvis 1.4pueV/atom for bee
Fe, 2.7ueV/atom for fcc Ni as obtained from LSDA calculations [208].rKo;3, a different trend
is observed. Though the JT-distorted;gbas a large MAE value-100 times larger than that of the
value of bulk (1.3ueV/atom for fcc Co), for MT Cas, it is approximately similar to the bulk.

4.4.5 Pt capped clusters: (Fe, Co, Ni) 13Pt,

Binary clusters show a larger diversity compared to the elgal systems. For example, the intermix-
ing of Co with Rh results in large magnetic moments of the fyisgstems [196]. Also, both free FePt
clusters and Co clusters supported by a Pt substrate shaanesgth spin and orbital moments with
respect to corresponding bulk values [209]. Hence, it Bragting to study how the magnetic proper-
ties including the MAE of M3 clusters change as they are capped with Pt atoms. The imppdant

is to investigate the evolution of spin and orbital momeistsvell as the MAE in more "asymmetric”
clusters as obtained by adatoms. Therefore, we have adifieedi number of Pt atoms on the top of
M3 clusters and studied the resulting properties. We coreidéiiree high-symmetry positions (A,
E, and F in Fig. 4.3) to cap the ]dclusters by a single Pt atom and found that a Pt position atheve
middle point of a facet is most favorable in all three cases; M, Co, Ni. In the following, we used
this finding as a guideline for initial geometries of MPt, clusters (n = 3, 5, 20). In all cases, the Pt
atoms were initially placed above the facet centers at amtist found in the single-Pt capping case.
After relaxation, optimized geometries were obtained asvshin Fig. 4.8 for CesPt; (left) and for
Coy3Pt5 (right). Since atom projected quantities like spin andtatbihoments depend on the specific
code, we compared for the particular case ofsRf; related data obtained by VASP and FPLO. The
structure optimization was carried out by VASP, and the sgemmetry was used to evaluate the
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Figure 4.7: The energy differencé&& = E @) - E(0) in meV/cluster as a function &ffor the JT-
(left) and Mackay-distorted (right) M clusters. The magnetization direction varies in the
x—zplane. Forthe JT case, tke- zplane passes through atoms 3, 4, 12 and middle of the
bond 8-10 (see left panel of Fig. 4.5). For the MT c@s@ries through all atoms shown in
Fig. 4.3. For the JT-distorted clusters, the energy diffeesfor the Ce; and Fe3 clusters
is multiplied by factors of 5 and 2, respectively, whereadiie MT-distorted clusters, the
energy difference for Gg and Ni3 is multiplied by factors of 40 and 2, respectively.

Figure 4.8: The low energy isomers of {3Bt; (left) and CqsPt5 (right) clusters. Blue and yellow
spheres represent Co atoms and Pt atoms, respectively.

magnetic moments by both codes. In FPLO, the magnetic manaeatcalculated through Mulliken
population analysis. Fig. 4.9 shows the absolute value litadrmoment per atonfL;| (left) and
the absolute value of spin moment per at{$i (right) on each atomic site. It is obvious that both
codes give results which are in good agreement with each. dtherefore, the calculations which are
discussed in the following are done with VASP only.
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show the magnetic moments on Ni and Pt atoms. Atomic site Heisénter atom. The
results obtained using FPLO are calculated by D. FritschMunichter.
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Figure 4.11: The onsite spin momej&| of FesPt, (left), CoisPt, (middle) and NisPt, (right)
clusters. The dashed lines show the calculated spin moroehbtsk bcc Fe, fcc Co, and
fcc Ni, respectively The same symboils as in Fig. 4.10 are.used

Figures 4.10 and 4.11 show the variationlof and the variation ofS;| on each atomic site of MPt,
clusters are shown, respectively (the symbols are kepistens for both figures and the center atom
is placed at 1). Fig. 4.10 shows that the orbital moments df $ew-atom systems, which in general
depend sensitively on the particular chemical composiéind geometry. The resulting electronic
structure can be very individual (e.g., the nature of théaéség occupied level depends on the electron
number and on the spin moment), and is hard to be predictédutia detailed calculation. It is found
that the|L;| of Fe3 clusters approach the corresponding bulk value of bcc FeTable 4.5), with
increasing number of Pt atoms. This trend is absent in tlaeeiCo and Ni systems (see Table 4.5).
The orbital moment on Pt atoms is found to be very sensitith mspect to the core atomic species.
For Fe and Co cores, it grows with the numipesf Pt atoms, but for Ni cores it slightly decreases
with growingn.

In Fig. 4.11, the site-specific spin moments of the cappestets are shown. Different trends are
found for the core atoms: While the Fe and the Co spin momestsealuced by the capping, the
Ni moments are relatively enhanced. The spin moment on Risattbes not show any clear trend.
One intriguing point is the difference between the trend$bbrbital and spin moments for the
M13P%/M13Pts clusters, as M varies from Fe to Ni. Here, the Pt orbital maseércrease by a factor

of two, while the Pt spin moments are merely unchanged. Wa@sshat the hybridization between
Ni and Pt is weaker than between Fe and Pt due to the diffeséahgion of the atomic orbitals.
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4 Magnetic anisotropy of clusters

Weaker hybridization in general yields larger orbital morise since the hybridization mixes different
m-states. An approximate conservation of spin moments dPtfeoms while passing from Fe to Ni
may be due to the fact that in each case the maximum inducedrsphent on Pt is already reached,
close to a value of 0.pg which is comparable to the spin moment of the isoelectronicVie have
checked this by additional calculations in which we placed Bt atom on the top of triangular e
(Cos, Nig) clusters, which shows a similar variation |bfi| and|S;| as in the cluster calculations of
M 13Pt3/M 13Pt5.

In the following, quantitative discussions have been presk for the capped clusters. Table 4.5
compiles the values of average orbital moment and averdgerggment for each atomic species of
M13Pt, clusters with the total orbital momentiand total spin moment;s.

4.4.6 Fe3Pt,

It is observed that, the addition of Pt atoms on thgslekuster leads to considerably enhanced values
of L, and reduced value ofiif the Pt-overlayer is completed. This is due to a considerad-
duction of the Fe spin moment in comparison with the barg Eleister. The average orbital moment
(Lm) on Fas decreases with increasing number of Pt atoms. Regardingl#teof capped M3Pt,
clusters, we observe that the symmetry of the cluster datesthe magnitude of the effect similar
to the case in the M systems. For example, four Pt atoms are capped ontovFth the Mackay
orientation, to get the kePt; cluster shown on the left panel of Fig. 4.12, and, after ojziimy the
structure, the MAE is calculated. TlRedependent energy is shown in the right panel of Fig. 4.12. As
a consequence of reduced symmetry, we obtain a secondigpaeanisotropy for this cluster, which

is quite large, exceeding by a factor of 201 meV/cluster) that of the MT-distorted fzand by a
factor of 2 that of the JT-distorted £

4.4.7 CoysPty,

For CasPt, clusters, a ferromagnetic ground state is found to be sfablall compositions. e
increases monotonically with. (Ly) and(Lpy) for Coi3Pt, clusters show a trend similar to fz8t,,
i.e. with increasing number of Pt atomg) (as defined in Table 4.5) decreases dngl) increases.
(Sum) on Ca3 is merely constant, while the Pt-spin moment increases toaically with the number
of Pt atoms on the cluster surface. This yields a high spin emtrof the completely Pt-covered o

4.4.8 NisPtp

Both Lyt and Sot vary monotonically with increasing number of Pt atoms forgRi, clusters.(Lv)
and (Lpy) for this cluster do not much depend on the number of Pt atontaveMer, a decrease of
(Lpt) and (Spy) from Niy3Pts to NijsPto is also observed, which is the consequence of structural
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Figure 4.12: Left: The FgPt; cluster with thex-z plane, where the angkis varied. The orange and
blue spheres denote the Fe and Pt atoms, respectively. d-optimized FgsPt; cluster,
two opposite edges (those adjacent to the Pt atoms) of thechester moved towards
each other. Right: ThB-dependent energy differences for the relaxegsiPg cluster.
The solid curve is simply a cubic spline fit to data obtainexifithe GGA calculations.

instability occurring for the latter composition upon pedéion. The geometry optimization of this
cluster converges to a structure with different symmettyere the Ni atoms are placed closer to the
surface of the cluster. The reason for the segregation ofdWnsitowards the surface may be due to
its lower surface energy compared to Pt [139]. Another eelatspect may be observed in the right
panels of Figs. 4.10 and 4.11 showing the variation of orwibétal and spin moments. The large
variations in orbital and spin moments just occur becaudbestructural distortion for this cluster
composition. Comparing all three cases of capped clusterdind that the presence of Pt atoms on
M3 affects the orientation of core orbital moments in such athaythey always prefer to be in non-
collinear alignment for the MyPt, clusters, which is not the case in the uncappegd dusters. On
the other hand, directions of individual spin moments renzhivays collinear for the same clusters
indicating that they are less affected by the Pt atoms.
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4 Magnetic anisotropy of clusters

Table 4.3: Spin and orbital momentsjig/atom for the Mackay-distorted { clusters as calculated

by VASP and SIESTA, for an initia]00] setting of the spin direction. The andy-

components of the spin moment are0.001pg (not shown). For VASP calculations, the
spin moments are calculated over atom-centered sphereg@# A for Fas, Cois and

1.286 A for Nij3, respectively. For SIESTA calculations, the values of spoments are

given in terms of Mulliken populations and over atom-cesdespheres (shown in paren-

thesis). The same values of atomic radius are used for th& BAEalculations.

Fer3 (MT)
VASP SIESTA
AtomNo. Ly L, L s, Ly L, L s

1 0.00 -0.02 0.11 3.06 0.00 -0.01 0.09 3.43(3.14)
2 0.00 0.02 0.12 3.06 0.00 0.01 0.09 3.43(3.12)
3 -0.01 0.00 0.08 3.08 -0.01 0.00 0.08 3.43 (3.16)
4 0.01 0.00 0.08 3.08 0.01 0.00 0.08 3.44 (3.12)
5 0.00 0.00 0.07 3.10 0.00 0.00 0.06 3.44 (3.18)
6 0.00 0.00 0.07 3.10 0.00 0.00 0.06 3.44 (3.15)
7 0.00 0.00 0.07 3.10 0.00 0.00 0.06 3.44 (3.16)
8 0.00 0.00 0.07 3.10 0.00 0.00 0.06 3.44 (3.13)
9 0.01 0.00 0.08 3.08 0.01 0.00 0.08 3.44 (3.18)
10 -0.01 0.00 0.08 3.08 -0.01 0.00 0.08 3.44 (3.15)
11 0.00 0.02 0.11 3.05 0.00 0.01 0.09 3.43(3.18)
12 0.00 -0.02 0.11 3.06 0.00 -0.01 0.09 3.43(3.16)
13 0.00 0.00 0.05 2.70 0.00 0.00 0.03 2.75(2.61)

Coy3 (MT)
1 0.00 0.02 0.10 2.06 0.00 0.00 0.08 2.42 (2.16)
2 0.00 -0.02 0.10 2.06 0.00 0.00 0.08 2.42 (2.14)
3 0.02 0.00 0.12 2.05 0.01 0.00 0.10 2.42 (2.17)
4 -0.02 0.00 0.12 2.05 -0.01 0.00 0.10 2.42 (2.14)
5 0.00 0.00 0.15 2.05 0.00 0.00 0.12 2.42 (2.17)
6 0.00 0.00 0.15 2.05 0.00 0.00 0.12 2.42 (2.14)
7 0.00 0.00 0.15 2.05 0.00 0.00 0.12 2.42 (2.19)
8 0.00 0.00 0.15 2.05 0.00 0.00 0.12 2.42 (2.16)
9 -0.02 0.00 0.12 2.05 -0.01 0.00 0.10 2.42 (2.19)
10 0.02 0.00 0.12 2.05 0.01 0.00 0.10 2.42 (2.16)
11 0.00 0.02 0.10 2.06 0.00 0.00 0.08 2.42(2.17)
12 0.00 -0.02 0.10 2.06 0.00 0.00 0.08 2.42(2.19)
13 0.00 0.00 0.04 1.97 0.00 0.00 0.04 1.96 (1.88)

Nig3 (MT)
1 0.00 -0.02 0.06 0.66 0.00 0.01 0.07 0.64 (0.68)
2 0.00 0.02 0.06 0.66 0.00 -0.01 0.07 0.64 (0.68)
3 0.00 0.00 0.07 0.70 -0.01 0.00 0.06 0.64 (0.68)
4 0.00 0.00 0.07 0.70 0.01 0.00 0.06 0.64 (0.67)
5 0.00 0.00 0.06 0.70 0.00 0.00 0.05 0.64 (0.68)
6 0.00 0.00 0.06 0.70 0.00 0.00 0.05 0.64 (0.67)
7 0.00 0.00 0.06 0.70 0.00 0.00 0.05 0.64 (0.68)
8 0.00 0.00 0.06 0.70 0.00 0.00 0.05 0.64 (0.68)
9 0.00 0.00 0.07 0.70 0.01 0.00 0.06 0.64 (0.68)
10 0.00 0.00 0.07 0.70 -0.01 0.00 0.07 0.64 (0.68)
11 0.00 -0.02 0.06 0.66 0.00 0.01 0.07 0.64 (0.68)
12 0.00 0.02 0.06 0.66 0.00 0.01 0.07 0.64 (0.68)
13 0.00 0.00 0.02 0.38 0.00 0.00 0.00 0.30(0.27)
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4.4 Elemental clusters

Table 4.4: Anisotropy constani3, for the perfect and relaxed M clusters obtained by fitting the
GGA results. For the icosahedral symmetry, second- andhfarder contributions do not
depend orB for any value ofD,4. Thus, the related data are omitted. The same holds
for the second-order terms in cubic symmetry (MT clusterspll cases, only the leading
order terms are essential and all higher order terms candbeated.r andsare parameters
describing the JT and the Mackay-transformation, respagti The last column shows the
energy differences obtained from the GGA calculations.

Cluster D (meV) DimeV) Dg(meV) r—1 s—1 AEPFT (meV)
Fe3 (ICO) 46us -0.04 0 0 0.02
Co;3(ICO) 31pg -0.01 0 0 0.004
Ni13 (ICO) 8 -0.02 0 0 0.01
Fes(JT)  44up 15.0 -0.04 4.20
Cos(JT) 31y -16.0 0.01 1.90
Nigz (JT) 8 44.1 -0.02 8.90
Feis (MT) 44 -11.5 0.07 0.71
Coi3(MT)  31ps -0.4 -0.04 0.02
Niiz (MT) 8 s -10.1 0.04 0.32

Table 4.5: The orbital and spin momentspiglatom for the binary MsPt, clusters. The average
cluster magnetic moments are definedby) = &5 [Lim| and(Su) = &5 [Sim| (M
denotes the 13-atom Fe, Co and Ni clustefishy) = 25T [Lipt| and(Sp) = 157, |S il
(the number of Pt atoms = 3, 4, 5, 20)|Lst| and |Sit| are the corresponding absolute
values of the total orbital and total spin moment for evenstgr.

Cluster  (Lm) (Ley (Sv) (Sey |Ltot| [Stet|
Feis 0.08 3.05 1.09 39.64
FesPts 0.09 0.08 286 0.36 1.43 38.30
FesPy 0.10 0.14 287 032 1.74 38.60
FesPts 0.08 0.13 297 053 1.76 41.30
FesPto 0.05 0.17 218 040 274 36.40
Cois 0.12 2.05 1.52 26.60
CosPtz 0.10 0.13 1.87 042 168 25.60
CosPts 0.09 0.16 1.83 047 206 26.10
CosPtyy 0.07 030 1.88 0.60 490 36.20
Ni13 0.06 0.66 0.80 8.65
Ni13Pt3 006 020 081 040 161 11.70
Ni13Pts 0.05 026 080 051 201 13.00
NiisPbo 0.08 0.20 0.81 036 355 17.60
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5 Structure and magnetism of clusters on Pt
surfaces

5.1 Introduction

Metal clusters show electronic structures which changepbetely with the slight change in the num-
ber of atoms in the cluster. Similar size-dependencies baem found in the magnetism of clus-
ters [54, 56, 79]. In order to realize the practical appiaad of such properties, a prerequisite is
to deposit the cluster on a substrate. Due to the interagtidnthe substrate, it is expected that the
cluster may either emerge into the substrate or show a \gdighavior by spreading over it. Such ten-
dencies have been earlier observed experimentally forgaaticles [210] and thin films [211, 212].
For example, Co nanoparticles: (10 nm diameter) when deposited on Cu(100) and Ag(100) sub-
strates show burrowing effects at 600K [210]. Similar effdtave been observed theoretically based
on molecular dynamics simulations for Ni clusters on Au siaves, where Ni clusters exchange few
of the Au atoms and form the subsurface wetting layers [213].

With change in the morphology, it is evident that clustensaited on substrate show magnetic prop-
erties different from the freestanding clusters and thk [i8, 181, 214-217]. To study the magnetic
properties of deposited clusters, several experimenthhtgues have been employed, such as X-ray
magnetic circular dichroism, Magneto-optic kerr effecSmanning tunnelling microscopy measure-
ments, where large MAE, orbital moment as well as spin moriwgrusters can be obtained [3, 218—
221]. XMCD measurements for supported Fe clusters indieateanced spin and orbital magnetic
moments with respect to bulk Fe [220, 221]. Using scanningéiing spectroscopy, the size depen-
dence MAE for small Co and Fe clusters on Pt(111) surface bega studied, where for a single Co
and Fe atom, the MAEs of 10.25 meV/atom and 6.53 meV/atom aasured, respectively [177].
Theoretically, large spin and orbital moments have beeoutated for supported clusters relative
to bulk [180-182, 184, 209, 214-217, 222]. Using Kohn-Kuya-Rostoker (KKR) Green’s function
formalism in the framework of DFT, Sit al.[215] have studied the size dependence spin and orbital
moments for free and supported small Fe and Co clusters famatit substrates, where the magnetic
moments decrease with increasing cluster size though livesya larger than the respective bulk val-
ues. Using the same method, Mavropoutbsl. [223] have studied the size dependence of the spin
moments of Fe clusters on Ni and Cu substrates, where a lileeagase of spin moments with cluster
size is reported due to the increase in the hybridizatiod-ofbitals with the higher coordination of
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5.2 Deposited elemental clusters

Fe atoms. Studies based on tight-binding technique [1#8Ctoclusters on Pd(111) surface have
reported large spin and orbital moments as well as MAE for [Oeters where the significant role
of substrate behind the enhanced the magnetic propertiebden reported. The above theoretical
studies have neglected the effect of structural optimamatf clusters. It is evident that relaxation
effects play an important part in determining the properti¢ deposited clusters [181, 182, 216].
For example, as a consequence of atomic relaxation, it hexs ddeserved that Ni dimers on Cu(001)
surface lead to vanishing magnetic moments [216]. For Feterls on Pd(001), the relaxation ef-
fects lead to reduced magnetic moments for Fe clusters dmahead induced magnetization on the
Pd substrate [182]. Studies of deposited clusters comsglére effects of atomic relaxation are still
limited.

In the present chapter, we have studied the structurallisgadond magnetic properties such as spin
moments, orbital moments and MAE of closed shelisd (M = Fe, Co, Ni) clusters supported
on Pt(001) and Pt(111) surfaces considering the effecttradtaral relaxation of both clusters and
substrates. Pt is considered as a substrate due to its fgirgerbit coupling. Though the orbital
moment is quenched ind3TM systems, still they are magnetic. Therefore, the combiefiéect of
large spin-orbit coupling strength of Pt and BM may give rise novel magnetic properties. This has
been observed for free standing Pt-cappeg Ekisters, where a large second order MAE has been
obtained [18]. Along with the elemental clusters, the dtrital and magnetic properties of binary
(Fe-Pt)3ss5 clusters on Pt(001) and Pt(111) will be discussed.

To deposit the clusters on Pt surfaces, three and four stbdayers are considered for Pt(001) and
Pt(111), respectively. The periodic boundary conditiomiposed along the directions parallel to the
surfaces. The structural relaxation for the cluster/satesttomplex is performed using the conjugate
gradient algorithm. In order to mimic the bulk behavior,\otlle bottom layer is kept fixed for Pt(001)
and for Pt(111) the bottom two layers are kept fixed. Suffitjeextended surface layer and large
vacuum space is created along the perpendicular diredithvetsubstrate to minimize the interaction
between the periodic images of cluster. The integratiom thwe Brillouin-zone is performed at the
I point. The Pt(001) surface is constructed with the expartaievalue of lattice constant 3.92 A,
while for Pt(111), the equilibrium value of lattice const&809 A calculated from GGA are taken into
account.

5.2 Deposited elemental clusters

5.2.1 Structural stability of M 13 and Mss clusters on Pt(001) and Pt(111)

The perfect icosahedrons [18] with equilibrium centerlishistances 2.39 A, 2.33 A and 2.32 A
are considered as the starting geometries fap,F€0;3 and Nis, respectively for deposition on
Pt surfaces. The structural relaxation ofidvtlusters on Pt(001) surface shows a deformation of
icosahedral geometry, where thg Mlusters emerge into the Pt(001) substrate by substitéegivgf

the Pt atoms. Fig. 5.1 for instance, illustrates the stgutiop panel) and the optimized (bottom panel)
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Figure 5.1: The initial and relaxed structures ofig&on Pt(001) surface are shown in the top and
bottom panel, respectively with different side views. Ted and yellow balls are marked
by Co and Pt atoms, respectively. The optimized structur€tas on Pt(001) shows the
substitution of Pt atoms by few Co atoms.

structure of Cgz on Pt(001). For the optimized structure, the Co atoms substfew Pt atoms in
the substrate and occupy exactly the lattice sites in thstsatb indicating a hint for the surface alloy
formation. The reason behind the cluster deformation anergemce of cluster into substrate is be
due to the large mismatch of nearest neighbour bond lengtmslk Pt and the cluster species, which
is ~ 28%. The intermixing tendency of 4 clusters on Pt(001) substrate is confirmed by molecular
dynamics simulations at 300K for supported &and Cas. Experimentally, such tendency has been
observed for Fe and Co thin films on Pt surfaces [211, 212,.224]addition to Co thin films,
Zimmermanret al. [210] have observed such effect for supported Co nanofestigith diameter
10nm, where the Co atoms burrow into the Ag(100) and Cu(10@jiée temperature, which they
attribute is due to the large capillary forces on the nantappas and the low surface energy of the
substrate. With increase in cluster size, fogshdn Pt(001), the intermixing tendency persists for
Caoss and Nis, while for Fess, the cluster spreads over the substrate. To see this dffeabptimized
structures of Fg and Cas clusters on Pt(001) are displayed in Fig. 5.2 in the left agtdtmpanel,
respectively. Like M3/Pt(001), all supported clusters are geometrically deémtm

Deposition of M3 and Mgs clusters on Pt(111) substrate shows structural trendsrdift from those
on Pt(001). Due to the closed packing, the clusters on PY(d@Inot show any sign of surface
alloying, rather they spread over the surface showing agtdeviation from icosahedron geometry.
However, Fes on Pt(111) does not fall in the same trend. For this systemictbsahedral structure is
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5.2 Deposited elemental clusters

Figure 5.2: Relaxed structures ofgs€left) and Cgs on Pt(001) surface (right). The later case shows
the substitution of substrate atoms by few Co atoms. The Ib&aktand yellow balls are
marked as Fe, Co and Pt atoms, respectively.

still preserved.

5.2.2 Spin and orbital moments of deposited elemental clust ers

Previous studies have shown a strong dependency of clustgnetization on the local environ-
ment [178]. Due to the change in the number of nearest nerdhditds and hybridization processes,
the magnetic moments of clusters are strongly affected.il&@itendencies are observed in our cal-
culations. The average spin and average orbital moments! fgrand Mss clusters on different Pt
surfaces are reported in Table 5.1. For the sake of compartise spin and orbital moments of free
clusters and bulk are listed. It is observed that the spinaghial moments for the deposited clus-
ters are enhanced with respect to the bulk while they aredidarbe reduced as compared to the
corresponding free clusters. Calculations based on KKRidtism report such enhancements with
respect to bulk for the spin and orbital moments of small @stelrs on Pt(111) surface [209]. For
M13/Pt(001), the reduction of total spin moments can be quedtéipproximately by s for Fej3
and Cas relative to their corresponding free clusters (4dand 31pg for Fe;3 and Cqs, respec-
tively). For Niis, such reduction is found to be relatively weak. The reducti cluster magnetic
moments on Pt(001) is due to the substitution of Pt atoms tsted atoms, which results in strong
hybridization among thedorbitals of cluster atoms andi®rbitals of Pt atoms. On the other hand,
M3 clusters deposited on Pt(111) exhibit both spin and orbitanents larger than those on Pt(001)
surface. Since clusters spread over the Pt(111) surfaeeehrest neighbour coordination for the
cluster atoms with the substrate are less compared to that Bf(001) surface. As a result there is a
weak hybridization among the cluster and Pt substrate.€eftwer both spin and orbital magnetic mo-
ments are enhanced on Pt(111). This can also be marked feoeldttronic density of states (DOS)
plotted in Fig. 5.3, which shows a comparison of the DOS fdhliree and deposited M clusters.
This shows that clusters supported on Pt(111) surface highéyhocalized peaks with the exchange
splitting at the Fermi level in both spin channels, while éarsters on Pt(001), as a consequence of
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5 Structure and magnetism of clusters on Pt surfaces

M,, on Pt(001) M, , on Pt(111)

Free M13

DOS (States/eV)

-2
Energy (eV)

Figure 5.3: Left: The DOS of free standing;dclusters. Middle and right panel indicates DOS of
M3 clusters on Pt(001) and Pt(111) surfaces. The verticalethbline indicates the Fermi
level fixed at zero.

strong hybridization with Pt, the broadened peaks show tishange splitting only in the minority
spin channel at the Fermi level. With increase in clustee,siz., for deposited M clusters, the
spin and orbital moment does not show any significant chamgledth surfaces of Pt, in spite of the
fact that the relaxation patterns are different, which is tuthe fact that with increasing number of
atoms in the cluster, the number of nearest-neighbour boetigeen the cluster and substrate in the
interface decreases. Thus the clusters almost retain theetia moments like the corresponding free
ones. The deposition of clusters leads to some induced riagnements on Pt surfaces.

Table 5.1: The average spin moment per at@n= ﬁ ZiN:1 |Si| (where N = 13, 55)and average orbital
moment per atonfL) = & S\, |Li| for deposited Nk3ss) clusters inyg/atom, compared
to that of the corresponding unsupported clusters and fibr liec Fe, fcc Co and Ni as
obtained from our calculations.

Cluster  (Sm/prooy  (Smyprazy  (Shiee  (Shbuk  (Edmspiooy  (Dmyprazy  (LDwee (1L Dbui

Feis 2.88 2.74 3.05 2.25 0.07 0.08 0.08 0.06
Cois 1.81 3.18 2.05 1.67 0.08 0.12 0.12 0.08
Ni13 0.62 0.64 0.66 0.65 0.06 0.07 0.06 0.05
Fess 2.72 2.62 2.65 2.25 0.07 0.08 0.08 0.06
Coss 1.78 1.75 1.87 1.67 0.09 0.10 0.10 0.08
Niss 0.63 0.62 0.74 0.65 0.06 0.06 0.09 0.05

In addition to spin and orbital moments, the magnetic aroggt is calculated for the optimized

92



5.2 Deposited elemental clusters

T T T h T T T ‘ 0= 0°
0.0 /,’/'/ \\\\\ ] Q= 30°
o = 60°
i | 8 2 | i o (0] =90°
< 0.2 o - 120°
[}
E
> -04F b
2
[}
c
L
-0.6 R
-0.8r b

0 30 60 90 120 150 180

O(degree)

Figure 5.4: Left: Monolayer of Ni(111), where the coloredosys indicate the differenp values.
Right: TheB-dependent MAE for the correspondigg/alues for Ni(111) surface.

structure of Fg; on Pt(111). In order to check the correct variation of totaérgy according to
the symmetry of the surface, a single layer of Ni(111) s@fescconsidered and the magnetization
direction is varied in terms d for several values apas shown in the left panel of Fig 5.4. According
to the symmetry of the surface, the energy as a functiof siiould show similar qualitative and
quantitative trends fop = 0°, 60°, 120°. Also theB-dependent energies fgr= 30° should match
with @=90°. Similar trends are obtained form the present calculatsniiustrated in the right panel
of Fig 5.4. TheB-dependent energies for differemtvalues show a fourth order contribution to the
anisotropy.

The 6-dependent energy differences is studied for the relaxedttste of Fe; on Pt(111) (shown
in the left panel of Fig. 5.5). The total energy as a functidn@dor the severalp values @ =
0°,30°,60°,90°,120°) are plotted in the right panel of Fig. 5.5. It must be notedt ttne energy
difference plotted in Fig. 5.5 is scaled with respect to theasponding energy &t= 0°. As a con-
sequence of atomic relaxation, there is lowering of symynetihis leads to a large second order
anisotropy for such system. The MAE is defined as the eneftgreince between the maximum and
the minimum total energy obtained from varidiat particularp. The MAE for@= 0° is observed to
be approximately 165 times larger than the MAE of bulk Fe waitle structure (4 peV/atom) [43].
The enhanced MAE for deposited s &lusters relative to bulk indicates the role of structusdhx-
ation effects. The dominant role of atomic relaxation onrttegnetic anisotropy has been previously
reported for Fe films [225] and clusters [226] supported osupfaces.
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Fe ;on Pt(111)

Energy difference (meV/cluster)
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Figure 5.5: Left: Optimized structure of Feon Pt(111). The blue and yellow balls are Fe and
Pt atoms, respectively. Right: The MAE as a functiorfdbr relaxed Fes on Pt(111)
surface.

5.3 Deposited binary clusters: L1 ( (FePt)s5 on Pt surfaces

One of the most discussed materials for magnetic data galagces is a near-stoichiometric ¢-1
Fe-Pt phase, where the Fe and Pt atoms are stacked altglyatif001] direction. Similar layered
arrangement in Fe-Pt nanoparticles is envisaged as mediumgh-density magnetic data storage de-
vices, which are also observed to be thermodynamicallyesfa]. The magnetic anisotropy constant
for the L1y Fe-Pt nanoparticles is an order larger in magnitude thanoththe materials being used
in present day technology (bulk) [227]. As a result it is easd overcome the super-paramagnetic
limit which posses a lower bound limit for the particle sizé®ve which the magnetization of a grain
can withstand the thermal relaxation processes for relgtionger time. This has however not been
achieved experimentally [228] and it is understood thatothorphologies of Fe-Pt nanoparticles
at similar sizes also occur which do not posses hard magpegerties as discussed for Fe-PpL1
nanoparticles. Few theoretical studies regarding the trewd stability of free and supported Fe-Pt
L1, nanoparticles exist in the literature [229]. This chapiscusses the morphological stability and
magnetic properties of binary klcuboctahedral and the corresponding icosahedral Fe-Biecsu
(generated by the Mackay transformation, explained in tengg) supported on (001) and (111) sur-
faces of Pt. The Ld ordered cuboctahedron has an alternate layered stackimgpaftomic species
(Fe and Pt, in the present case) in the (001) direction tifited in the right panel of Fig. 5.6. Since
theoretical studies on lgffree Fe-Pt clusters show a cuboctahedral geometry withriirtating lay-
ers to be more stable relative to the Fe terminating compasif230], we have considered thed.1
structure with terminating Pt layers. In order to constauéb-atom perfect LglFe-Pt cluster with Pt-
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ig:

Figure 5.6: The R&Ptg (upper panel) and kgPt31 (bottom panel) clusters. For both cluster sizes,
the icosahedron and gtuboctahedron geometries are shown in the left and righalpan
respectively. Blue balls: Fe and Yellow balls: Pt.

&~ 4

terminating layers, the structure should have 24 Fe atooh8 &Pt atoms. For instance, Fig. 5.6 shows
the layered structures for 13- and 55-atom Fe-Pt clusteisthvé corresponding icosahedrons. The
equilibrium geometries for free standing 13-, 55- atom awsiron and Lg.cuboctahedron are found
to show slight structural deformations with respect torthegular clusters. For both cluster sizes, the
distorted icosahedral Fe-Pt is energetically more prbfereelative to the distorted lglcuboctahe-
dral structure. This is in agreement with previous theoattstudies [230], where the Fe-Pt clusters
upto 561 atoms~ 2.5 nm size range) show enhanced stability for ordered @ shoell icosahedral
structures compared to bbrdered cuboctahedrons. A ferromagnetic ordering of magnmeoments

is preferred for both geometries. With increasing clusieg,gorevious theoretical calculation [230]
suggest the existence of layered antiferromagnetic-lidering which mimics the magnetic behavior
in bulk L1y Fe-Pt. When the 13- and 55-atom Fe-Pt clusters (illustriatédg. 5.6) are deposited on
Pt(001) and Pt(111) surfaces, after relaxation, the duiiiin geometries for deposited clusters are
found to be all deformed relative to the their regular gesieet Neither of the icosahedral nor the
cuboctahedral morphology are found to be stable on bothrRicas. They show wetting tendencies
by spreading over the Pt surfaces. The energetics for thposigal as well as free clusters are reported
in Table 5.2. It is observed that the cluster with a startirgrgetry as icosahedron shows enhanced
stability for both deposited and free Fe-Pt clusters. HaxelvePts/Pt(001) is an exception to such
trend, where the cluster with a starting geometry as a cabedron shows the higher stability.

Table 5.2: The energetics for the deposited and free Egsftlusters.AE : Eico — Ecuno The energy
difference between ico and cubo.

Pt(001) Pt(111) Free cluster
AE (eV/atom)Stable| AE (eV/atom)Stable| AE (eV/atom)Stable
FesPtg 0.005 L1 -0.005 ICO -0.04 ICO
FePt) -0.031 ICO -0.006 ICO -0.05 ICO
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Figure 5.7: The magnetic moments for free and deposite@tFand FesPtz; in the left and right

panel, respectively. The hatched histograms for both@lssepresent the magnetic mo-
ments for free clusters and the solid histograms show theentsion deposited clusters.
The blue and magenta denote the moments for the icosahattdlla cuboctahedral

clusters.

Table 5.3: The magnetic moments forsP& and Fe4Pt31. Ure andp; are the magnetic moments in

substrate.
Cluster Hre Hpt HTotal
FesPtg ico 3.05 0.284 18.0
Fe;Ptg ico on Pt(001) 2.48 0.200 19.0
FesPtg ico on Pt(111) 3.21 0.323 15.0
FesPtg L1g cubo 3.08 0.351 19.3
FesPtg L1y cubo on Pt(001) 3.22 0.323 30.3
FesPtg L1p cubo on Pt(111) 3.23 0.375 13.0
Fe4Pt3; ico 3.08 0.46 93.0
Fe4Ptz1 ico on Pt(001) 3.08 0.37 98.0
Fe4Pt31 ico on Pt(111) 3.10 0.38 109.0
Fe4Pt31 L1g cubo 3.07 0.45 92.0
FesPtz1 L1g cubo on Pt(001) 3.09 0.41 101.0
Fe4sPtz1 L1g cubo on Pt(lll) 3.08 0.39 119.0

units of pg/atom for Fe and Pt siteQurota IS the total magnetic moment for cluster and

Figure 5.7 shows a comparison of the average magnetic menjesatom) for free and deposited
FesPts (left panel), and FgPts; (right panel). It is observed that the average magnetic momie
icosahedral Rt cluster shows a large fluctuation depending on the type afiffdces. The icosa-
hedral FgPt on Pt(001) has a lower average magnetic moment compared foet cluster as well
as that of the cluster deposited on Pt(111). On the other,Hhadciverage magnetic moment for de-
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Figure 5.8: The induced magnetic moments on Pt(001) and.Bt@urfaces in the left and right
panel, respectively. The moments are shown for the laysedo the cluster (here, b1
FesPig cuboctahedron). The red colored numbers are the magnetizenitoof substrate
atoms which are directly bonded to the cluster.
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Figure 5.9: Left: Relaxed EPtg cluster on Pt(001) surface. Blue and yellow balls repretente
and Pt atoms, respectively. Right: The in-plane (red a)cad out of plane (blue circles)
magnetic anisotropies for relaxedsPd on Pt(001) surface.
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5 Structure and magnetism of clusters on Pt surfaces

posited L} FesPt; cluster on Pt surfaces remains almost unchanged with retgpiise corresponding
unsupported ones. With increasing cluster size (rightlpafrteig. 5.7), the average magnetic moment
remains nearly constant with respect to the correspondigg dlusters irrespective of the type of
Pt surfaces. In Table 5.3, the average magnetic moments @u=geand Pt (ipy) atoms of the de-
posited clusters along with the total magnetic moment afteldsubstrate complex are listed. As a
consequence of cluster-substrate interaction and therinieg of Fe 3 and Pt 8l orbitals, pge for
deposited clusters is enhanced with respect tqith®f free ones. However, icosahedralgPg is an
exception to the such behavior, where bathandyre decrease compared to that of free cluster. Such
behavior is reflected with the decreasing average momettiédamame cluster on Pt(001), as shown in
the left panel of Fig. 5.7. Due to the presence of Fe atomsgsuagnetic moment is induced on the
Pt surfaces, shown in Fig. 5.8. The Pt layer close to thealsthibits larger induced magnetization
compared to other layers. The induced moments on the Pt ¢dyse to the cluster are depicted in
Figure 5.8 for Pt(001) and Pt(111) surface in the left anditriganel, respectively. Especially, the
Pt atoms bonded with cluster atoms show large magnetic niagnements shown as red digits in
Fig. 5.8. Figure 5.9 (left panel) shows the relaxed strectifrFePtg on Pt(001) for which we have
calculated the angle-dependent energies (right paned) ambled is varied in thez— x (out of plane)
andx —y plane (in-plane). Due to the structural deformation, thametry is lowered, as a result a
second order contribution to the anisotropy is obtained WIAE is defined as the energy difference
between the maximum and the minimum total energy obtair@d frariousd. The in-pane MAE is
found to be larger~{ 58 meV/atom) compared to the out of plane anisotropyl) meV/atom). The
reason behind obtaining a large in-plane MAE is the lowerragtny of the cluster/substrate complex
arising due to the effect of structrual relaxation and tmgdapin-orbit coupling of Pt substrate.
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6 Transition metal clusters on graphene

6.1 Introduction

Graphene, a one-atom thick carbon layer arranged in a hongyattice, is one of the most promi-

nent materials to be studied as substrate due to high swafaeg inertness [231], and high conduc-
tivity [232, 233]. It is a zero-band gap semiconductor withreear dispersion at the Fermi level.

Figure 6.1 shows the band structure of graphene obtainedtfie tight-binding calculations, where

the Dirac points are found at the symmetry points of the &uilh zone [234]. Because of its two

dimensional confinement with a point-like Fermi surface atitiear dispersion at the Fermi level, it

is a suitable material for studying anomalous quantum Hidtes and ballistic transport [235].

ky A
\K

F o

] k.

)K’ 3

Figure 6.1: Band dispersions of graphene (left panel) shgihe Dirac points (the zoom in part) at
K and K of the Brillouin zone in the right panel. Figure is taken frétaf. [250].

Graphene-supported transition metal catalysis has drauchrattention [20, 21]. Experimentally,
Yoo et al. have observed very high catalytic activity of small Pt custfor CO oxidation while
supported on graphene. Similar observation is confirmedrdlieally by Zhou and Yamamotet
al. [236, 237]. However, the origin of such high catalytic reatt is still to be solved. Theoretical
calculations by Liet al.[122] predicts high catalytic activity for Au-embedded gin@ne for the CO
oxidation reaction, which they attribute due to the pdstiatcupiedd orbital localized in the vicinity
of the Fermi level because of the interaction between thetémn avith graphene. Theoretically, us-
ing DFT, Li et al.[238] have found good catalytic activity for CO oxidatioraotion on Fe-embedded
graphene. Using different carbon supports, experimegntdle changes in the chemical activity for
clusters of Ni [239], Co [240], Pt [241-245], Pd [246], and RA7] have been studied. Theoreti-
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6 Transition metal clusters on graphene

cally, DFT calculations have been performed to investigiagecatalytic activity for small clusters on
graphene. For example, Duetal. [248] have studied the stability and electronic properte®d
clusters adsorbed on graphene. Okanattal. [249] have studied the stability and catalytic activity
of Pti3 and Aus clusters on graphene sheet and flakes. From the above stitdiesvident that
graphene can act as an attractive support as compared tadit®hal supports.

The present chapter deals with the studies of the geometagnetic and electronic properties of Fe,
Co, Ni and Pt clusters consisting of 13-atoms adsorbed onytpes of graphene supports, namely
the defect-free (pristine) graphene and five-memberedgiaghene flake. In addition, the catalytic
activity of free-standing and graphene supported clusterstudied by the adsorption of CO molecule
on the surface of clusters.

6.2 Computational details

Our calculations are based on DFT within PBE exchange atioel functional [251]. The projector
augmented wave method is used for the treatment of core@bscf27]. The TM clusters are ad-
sorbed on a pristine (defect free) and a five-member ringhgnag flake. For the pristine (defect free)
graphene sheet, a X@l) supercell consisting of 96 atoms have been used. Thedietoundary
condition is applied along the graphene plane. A3%1) k-mesh is used for the integration over
the Brillouin zone. While, for the five member ring grapherakd which is a hydrocarbon cluster:
Cy4sH1s, the integration over Brillouin zone are performed at Ehpoint only. A large supercell of
size (23<23x15) A3 has been used, which sufficiently minimizes the interadtietween the cluster
with the periodic image. For constructing the substratealautated C-C bond length of 1.427 A
has been used which is close to the experimental value ofAL.4he structural relaxations of the
cluster-substrate complex are performed using the cotgugadient method. The self-consistent cal-
culations are performed with a convergence criterion ofEY. In order to check the binding strength
between the cluster and graphene, the adsorption eneggy {&calculated, which is defined in the
following.

EClister — g, (clusten + Eqor(grapheng — Eqo (cluster+ grapheng (6.1)

where E;q(cluster) is the total energy of metal clusté;(grapheng: The total energy of graphene.
Eiot(cluster+ grapheng: The total energy of cluster on graphene.
6.3 Clusters on defect free graphene sheet

The icosahedral clusters of WI(M = Fe, Co, Ni and Pt) are adsorbed on the on the hollow site of
the pristine graphene sheet where the center atom of theeclies over the middle of the hollow
site with one the triangular facets of the cluster beingrited parallel to the graphene surface. The
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6.3 Clusters on defect free graphene sheet

equilibrium geometries of v clusters on graphene results in distorted icosahedrakctifsom their
corresponding regular geometry. This is marked from theatien of average bond lengths for the
deposited clusters as compared to the free standing ormen $h Table 6.1. The adsorption energies
(Eags) for these deposited clusters are presented in Table 62olitserved that thEaqs for Cor3 on
graphene has a larger value compared to that of &®d Ni 3 indicating a strong binding strength for
Coy3 with graphene. Previous studies based on DFT have shownilarsiemdency for dimers of Fe,
Co and Ni, where Co dimer on graphene shows lakygg compared to that of Fe and Ni dimers on
graphene [252].

Table 6.3 shows a comparison of the magnetic moments forgpesited clusters with respect to the
corresponding free ones. It is observed that the depositedcMsters have reduced total magnetic
moments as compared to their corresponding free clustays.inbtance, the total moment for de-
posited Fe; on graphene decreases byg3compared to that of the free Fecluster (44ug). For
Coy3, the decrease in total moment is even merdQ pg). On the other hand for B, the moment

is slightly enhanced unlike frgor Co3. This can be seen from Fig. 6.4, which shows the electronic
density of states of depositedilyiclusters. For Nis/graphene, the large exchange splitting in the
spin-down channel near the Fermi level explains this faot.gFaphene supported TM dimers, previ-
ous studies report different trend of magnetic moments gjttbe Fe, Co or Ni dimers on graphene
posses total moments comparable to the free dimers [252hvdinot observed for 13-atom clusters.
This may be due to the fact that with increase in cluster $imxe is an increase in the coordination
numbers for each atom as a consequence the total magnetiemh@meduced.

Figure 6.2: Relaxed structure of Gdwith labeling of atoms) on defect free graphene sheet. &ter
and black balls denote the Co and C atoms, respectively.

The onsite spin moments for M clusters are listed in Table 6.4, which shows that, the efusioms
bonded with graphene (indices 10, 11 and 12 shown in Fig.gh@y reduced moments relative to
the other atoms (indices 1-9 in Fig. 6.2). The reduction ofjnetic moments on TM atoms is coun-
terbalanced by the slight induced magnetization on gragh@his can be quantified as 0.3 for
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6 Transition metal clusters on graphene

Fes/graphene, 0.18g for Cojs/graphene and 0.0fs for Nijs/graphene. Such induced magnetiza-
tion on C atoms for graphene supported TM has been obsergetetitally [252]. The carbon atoms
bonded with cluster atoms show more induced moments compatbe those away from clusters.

Table 6.1: The average bond lengths in A fogdnd Pi5 clusters on pristine and five-member ring

graphene.
Bond length Fes Cos Niiz  Ptg(ico)  Pts(layered
Free Cluster 2.48 2.42 2.41 2.63 2.57
On pristine 249 242 243 2.72 2.65
On five member  2.49 2.41 2.42 2.64 2.65

Figure 6.4 (top left panel) shows the total electronic dgnsi states (DOS) for pure graphene and
M3 clusters on graphene (top right and the bottom panel). Th8 Bldws a nhon magnetic behavior
of pure graphene. When {¥lclusters are deposited on it, as a consequence of induceuktizgion

on C-atoms, the Fermi level for the graphene supportedaskishows a shift towards the conduction
band. For all cases the Fermi level shows the exchangerggditin the minority spin channel, which
indicates the half-metallic behavior of graphene. Theoay, such a trend has been observed for the
adsorption of Fe and Co adatoms on graphene [252].

Figure 6.3: The optimized geometry of deposited layeraed (Rift) and distorted icosahedral 1Rt
(right) on pristine graphene. Yellow and black balls arekadrby Pt and C atoms respec-
tively.

Since previous studies on free standingzsRhows an enhanced stability for a layered-like geome-
try [253-255] relative to the icosahedral one, thus alontihe icosahedron, a layered-like £t
clusters is adsorbed on graphene. Our calculations on frgecBsters suggests that the layered
structure is energetically lowered by approximately 3 e¥hwespect to the icosahedral structure.
This is more or less in agreement with Ref. [253], where thb@s have reported an energy differ-
ence of more than 1 eV between the icosahedron and the lagieueture. Due to such a large energy
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6.4 Clusters on five-member ring graphene

difference between the icosahedral and the layered steuocfuPt 3, the optimized structure of Bt
with the starting geometry as icosahedron is found to be tables on graphene as shown in the left
panel of Fig. 6.3. Our results are not in good agreement wighriBus calculations, where it was re-
ported that the optimized geometry ofi £is a slightly distorted icosahedron on graphene [249]. The
reason behind such a discrepancy might be related to thial ingight of cluster from the substrate.
On the other hand, the layered morphology ofsRin graphene is found to be preserved, which is
shown in Fig. 6.4, right panel. As a consequence of strulctlegfrmation of Pi3 with icosahedron

as the starting structure, a large value gfifs found (5.42 eV) as compared to that of the layered
Pt;3 on graphene (2.11 eV).

Table 6.2: Adsorption energy of M clusters on pristine and five-member ring graphene.

Clusters Pristine  Five-member
Fes 1.86 2.47
Cos 2.78 3.24
Niq3 2.33 3.05
Pt13(iCO) 5.42 5.16
Pti3(layered 211 2.17

Table 6.3: The magnetic moments of clusters on pristine amdiember ring graphene.

Clusters Hpristine  MFive member  HCluster-Pristine  MCluster-five member  MFree cluster
Feis 36.0 34.33 36.00 36.0 44.0
Cois 22.0 23.00 21.00 23.0 31.0
Ni13 9.0 9.30 8.50 9.1 8.0
Pti3(ico) 1.68 0.88 1.83 1.0 2.1
Ptis(layered  2.00 0.92 2.27 1.0 2.0

6.4 Clusters on five-member ring graphene

It has been observed earlier that for graphene-supportedlidters, presence of a defect in graphene
substrate enhances the adsorption energy of cluster. ong&, calculations based on DFT by
Okamotoeet al. show large adsorption energies for Pt and Au clusters addarb a defective graphene
sheet as compared to that of on a pristine graphene shegt [2#refore, in the present calculation,
to study the effect of C vacancy on the structural stabilitg anagnetic properties of clusters the
TM clusters are adsorbed on a five-member ring graphene flakieh is expressed as a hydrocar-
bon cluster: GsH1s. Such topological disorders are quite well-known in gragghsheets [256]. The
relaxed structures of M clusters on five-member ring graphene are shown in Fig. 6sbobserved
for TM clusters on pristine graphene, the adsorption @ BMusters on five-member graphene results
in distorted structures with respect to their regular getoie®e The average bond lengths for the de-
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6 Transition metal clusters on graphene

Table 6.4: The atomic magnetic moments forMdlusters on pristine graphene. The labeling of atoms
are illustrated in Fig. 6.2. Atom index 13 is the center atow &0, 11, 12 metal atoms are
bonded with the C atoms, which show reduced moments compatbd rest ones.

Atomic sites F@g C013 Ni13 Pt13

1 284 179 081 0.17
2 285 1.79 081 0.18
3 285 1.79 081 0.29
4 295 183 0.76 0.22
5 294 177 074 0.12
6 295 177 073 0.12
7 298 180 0.72 0.08
8 298 180 0.72 0.08
9 292 179 0.72 0.23
10 226 087 034 0.04
11 259 144 037 0.08
12 259 144 037 0.08
13 222 141 057 0.00

posited clusters are listed in Table 6.1. With the clustéormeation, different bending tendencies of
the substrate is observed. For supporteg,Rbe five-membered ring graphene flake shows a bending
towards the cluster for kg/graphene, while it bends oppositely for supported4amd Ni3. The dif-
ferent bending behavior of the five-membered ring graphemeuind to be very sensitive towards the
starting structures of M clusters. For all three clusters, as starting structurepénfect icosahedral
clusters with the center to shell distances of 2.39 A {F;€.33 A (Cas) and 2.32 A (Nis), respec-
tively are considered, which are the minimum energy cestteit distances [18]. A slight variation

in the center-shell distance results in different benderglencies. The bending trend is also found to
be dependent on the morphology of cluster. This can be uldelr$rom the Pi/graphene system,
where the graphene substrate forsRtith a layer structure as the starting geometry bends tavard
the cluster, while Rg with the starting structure as icosahedron, graphene showpposite bending
behavior. The adsorption energies ofdMand Pi3 clusters on five-member graphene sheet are listed
in Table 6.2. Comparing the adsorption energies for clasiardefected graphene with the clusters on
defect free graphene, it is observed that clusters on atdefgcaphene flake are more stable relative
the clusters adsorbed on a pristine one.

Table 6.3 (fifth column) shows the total magnetic moment fguported clusters on five-member
ring graphene are tabulated. Like clusters on Pristinehgna@ sheet, an almost same quantitative
reduction of magnetic moment is observed for clusters onrfieenber ring graphene. The o
and Ni3 clusters on five-member ring graphene show slightly entthuakies of magnetic moments
on five-member ring graphene compared to those on pristimeghgne. The reason may be due to
the weak hybridization between tideorbitals of cluster andtorbitals of C for the cluster-graphene
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Figure 6.4: The site projected electronic density of stédespristine graphene and deposited M
clusters on pristine graphene. A Gaussian broadening gaeam= 0.05 eV has been
used to calculate the DOS. The Fermi level is shifted to zereéch case. (a) Pristine
graphene, (b) g on graphene, (c) Gg on graphene, (d) Nj on graphene.

system. On the other hand, for{z@n five-member graphene, due to the bending of five-member
ring graphene towards the cluster leads to a decrease bfotaent form 23ug (Fe;3 on pristine
graphene) to 21 (Fer3 on defected graphene). The metal atoms close to grapheeealraduced
moment and some amount of magnetic moment is induced to bstrate (mainly C atoms close to
cluster) for Fgz and Cqs. A different situation appears for adsorption ofyjon graphene. Here,
like the case of Ni; on defect free graphene, there is no change in total moméhéeafiuster relative

to the free ones. As a result, there is no induced magnetizath C atoms of the substrate. Such a
behavior is due to the weak hybridization between the-drbitals and the Grorbitals.

In addition to 13 atom clusters, the deposition of largesadwdral clusters consisting of 55 atoms are
also deposited on five-membered ring graphene. For the itieposf Mss clusters, the five member
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6 Transition metal clusters on graphene

Figure 6.5: Optimized structures of 13-atom clusters oniinmber ring graphene. Blue: Fe, red:
Co, magenta: Ni, yellow: Pt, black: C and white: H

ring graphene consists of 80 C atoms and 20 H atoms. Unlikdtheclusters, the deposited gyl
clusters show same bending tendencies of five-memberednapipene, where the defected graphene
always shows a bending towards the cluster. Unlike debbitg clusters, the magnetic moments of
adsorbed Ms clusters almost retain the magnetic moments like the qooreding free clusters.

6.5 CO adsorption on clusters deposited on five member ring
graphene

Nanoclusters exhibit unique active sites like facets jeestor edges, which can show varying catalytic
activities [257]. Therefore a proper understanding of fatte adsorption sites of CO molecule on
clusters is essential. In order to study the role of carb@psrtt on catalytic activity of 13 atom

clusters, we have adsorbed the CO molecule on clusters itapas five-member ring graphene.
As a substrate, the five-member graphene is chosen becausktawe large adsorption energy for
M3 clusters compared to that of the clusters on pristine gramhdhe CO molecule is adsorbed
on several sites of the clusters. For instance, the mosapletadsorption sites of CO molecule on
an icosahedron are: On the middle of a triangular face (fan@tldle of a bond (edge) and on the
top of an atom (vertex). Among these possibilities, we haoked for the suitable adsorption site
of CO for each cluster. Figure 6.6 shows the optimized atrest with favorable adsorption sites
of CO on free and graphene supported clusters. It is founddiha to the adsorption of CO, the
free clusters are distorted from the ideal structure. Hawnefor Pt3, the icosahedral geometry is
no more preserved. It might be due to the fact that the grotate sf Pi3 is a layered-like [253]
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6.5 CO adsorption on clusters deposited on five member riaghgne

Figure 6.6: The favorable adsorption sites for CO on metaitels without and with the five-member
graphene flake. Blue: Fe, red: Co, magenta: Ni, yellow: RGlIC, white: H, green: O.

Table 6.5: Adsorption energy of CO on e Co3, Niiz and Pi3 clusters with and without five-
member ring graphene.

Clusters with graphene  without graphene
Feis 2.26 1.75
Cos 2.09 2.23
Ni13 2.27 2.20
Pti3(ico) 2.82 5.49
Pti3(layered 2.48 2.19

structure instead of an icosahedron. The favorable adsorpite of CO on Fg; and layered Rg

are found to be the vertices, whereas For{and Ni3 CO preferably adsorbs on the facets. For
Pti3 (starting structure as icosahedron), the edge is the stalslerption site. Our findings for ft
cluster is consistent with the DFT calculations (througbrit/ functional B3LYP) for P{g and Pi1
clusters by Monteircetal. [258]. On the other hand, for Fe and Co clusters, the samei@utiave
predicted the edge and the top positions as the preferemtsarption sites of CO for Feand Cqg
clusters. The difference in adsorption sites for Fe and Gstets compared to ours may be related to
the different exchange-correlations functionals (LDA &RW91) and basis sets.

Adsorbing these clusters on graphene flake does not chamgel$lrption sites except forfzeégrap-
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6 Transition metal clusters on graphene

hene+CO, where CO prefers to be adsorbed on the facet. Inréisenre of graphene, the strong

interaction between the cluster and substrate and thertibst@f cluster, the CO is adsorbed on the

facet instead of the vertex of the cluster as found for freg.FEhe adsorption energies for the free

clusters with and without graphene are listed in Table 6tbs $uggests that CO is strongly adsorbed
on the metal clusters in the presence of five member ring gramtvith a large adsorption energy. The
enhanced adsorption energy indicates a high reactivityaifhtlusters in the presence of graphene
leading to enhanced catalytic activity for reactions su£lC® oxidation or C@dissociation, which

is beyond the scope of this thesis.

6.6 CO oxidation on pristine graphene

It has been observed that presence of graphene decreasesetiyy barrier for the CO oxidation
reactions on Pt clusters [236]. The authors have repore@niergy vs. reaction coordinate curves
and few transition states, which are shown in Fig. 6.7. Thatates us to study the CO oxidation on
pristine graphene, where we have studied the Langmuirdire®d type reaction followed by (CO +
0O, —> COy + 0). The transition states for the catalytic reaction artermeined by using the nudged
elastic band method [22], where the total energies of thernmediate states along the reaction path
connecting the initial (reactant) and final (product) statee simultaneously minimized in constraint
of atomic motions restricted only along the hyperplane gedicular to the reaction path. More about
the method is described in Refs [22, 23].

As reactant, both CO and,®nolecules are adsorbed on graphene in the hexagonal hitlawhere
the CO molecule is adsorbed such that C-O bond (bond lengtli4 A) is perpendicular to the
substrate and ©molecule with bond length 1.26 Ais coadsorbed (aligned lfgdya The product is
characterized by the free G@nolecule and a single oxygen atom adsorbed on the substrtdie a
favorable site of hexagonal hollow. We have taken four mitiatory states between the reactant
and the product, which is as a first approximation, is a linatrpolation from the reactant and
the product coordinates at equal intervals. It may be stiaidthe reaction path observed in nature
could be different than the first approximation we have udedfact, a through study of different
reaction path would eventually lead to a reaction path whan be directly compared with the real
reactions. This can be achieved by identifying the reaquith with the minimum activation barrier.
In the present study however, we are concerned with the rdetised to study reaction. For instance,
Eichler et al. [23] have studied the CO oxidation on Pt(111) surface thnoaigvariety of reaction
paths and reported their activation barriers. Fig. 6.8adaken from stated reference) shows the
energy profile with respect to the reaction coordinatesgatbe reaction path (shown in schematics)
for the CO oxidation with reaction path having the minimurtivetion barrier.

Fig. 6.9 shows the calculated energy profile along the reactbordinates for the CO oxidation and
the initial state, transition state and final state. Thetieacoordinates are given by the distance
between carbon atom of CO molecule and the oxygenofmOlecule, which are kept fixed during
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6.6 CO oxidation on pristine graphene

the reaction. From our calculation, the activation energyiér is calculated to be 1.19 eV, which is
relatively larger as compared to the CO oxidation on grapherpresence of Pt cluster [236]. This
shows that Pt clusters help in reducing the activation &aoi CO reaction, which will be the next
step in this direction of research.
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Figure 6.7: The energy profile as a function of reaction cimattes for the CO oxidation on graphene
supported Pt cluster. The reaction coordinate is takeneaditftance between the carbon
atom of CO and the nearest oxygen atom of then@lecule. The green, black and red
balls represent the Pt, C and O atoms, respectively. Figuadapted from Ref. [236].
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Figure 6.8: The energy profile as a function of reaction cioarte for Langmuir-Hinselwood type
CO oxidation reaction on Pt(111) surface. The optimizetestalong the reaction path
are also shown. (a-c) represent the transition states. [alak bnd gray balls are marked
by C and O atoms, respectively. The figure is adopted from [R&].
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Figure 6.9: The energy profile as a function of reaction cimateé for the Langmuir-Hinselwood type
CO oxidation on a defect free graphene. The reaction coatesrare taken as the distance
between the carbon atom of CO and the nearest oxygen atore @htimolecule. Black
and green balls represent the C and O atoms, respectively.
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7 Exact diagonalization and
thermodynamics of clusters

7.1 Introduction

In the previous, the ground state properties of TM cluster®aclusively discussed using DFT, which
is based on variational principle, i.e., a system has a ldwend in energy, known as the ground
state energy, which can be obtained by minimizing the tatergy of a system. However, such a
treatment completely barrs from estimating any propegie®n-zero temperature. Thermodynamics
of some of the exactly solvable models are already well &steddl [259]. In this chapter, the nearest-
neighbour Heisenberg spin model is adopted to study the atiagand thermodynamic properties
of finite systems through exact diagonalization techniddd.[ Besides the exact diagonalization
method, several other techniques such as the density matiormalization group [260], cluster
expansions [261], spin-wave expansions [262—-264] andtgqmalonte Carlo techniques [265-267],
which can be used to study the magnetic systems. Howevee sbilmese techniques have limitations,
for instance quantum Monte Carlo technique has limitatiorgescribing the systems with geometric
frustration. In this regard, exact diagonalization methad the advantage, where it is possible to
obtain all energy levels with their spectroscopic clasaiftn (useful for the electron paramagnetic
resonance or nuclear magnetic resonance spectra).

It is well known that frustration in low dimensional magresiystems leads to many nontrivial fea-
tures, like plateaus and jumps in magnetization with théatian of external magnetic field and
occurrence of low-lying singlets [30, 268—-277] in the eyespectra. For example, through exact
diagonalization of the antiferromagnetic Heisenberg radenstantinidiset al. [268] have calcu-
lated the ground state magnetization for a dodecahedroiicasahedron symmetry far= % and 1,
where they have found discontinuity in the field-dependeagmetization and double peaks in the
temperature-dependent specific heat arising due to thedtosns. The same authors have applied
the full diagonalization technique to a series of clusteith wize ranging from 24 to 32, where they
have shown the effect of frustration and connectivity onlthrelying energy spectrum. For a 28-site
cluster, they obtain the most pronounced plateaus in the:digbendent magnetization compared to
other cluster sizes [278]. Using perturbation theory, €p#t al. [269] have studied the effect of
frustration and connectivity on the magnetic propertiea 60-site cluster [279]. Schnak al.[270]
have applied an approximation of diagonalization schensedaboctahedron fa= 1 and% in order
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7 Exact diagonalization and thermodynamics of clusters

to obtain the energy spectra. In addition to ground statenetagproperties, several studies also exist
for the thermodynamical properties. Honeckeral. [280] have computed several magneto-thermal
properties such as the magnetic susceptibility, specifit fied magnetic cooling rate for a cubocta-
hedron with different spin quantum numbers using the amtifeagnetic Heisenberg model, where
they have observed significant deviations from the clakbitaavior for the corresponding properties
of the cuboctahedron wite < 5. Studies on the effect of dipolar interaction and radiasatnopy

on properties of nano clusters is still limited [238, 2812R8n the present chapter, the exact diag-
onalization method is applied to small clusters consistih@3 and 4-atoms with spié-and landa
systematic study of the magnetic and thermodynamic priegenas been performed. The main focus
is showing the effect of dipolar interaction and uniaxiaisatropy on the magnetization behavior in
the presence of magnetic field. The ground state and the tatape-dependent spin-spin correlation
functions are also calculated for these clusters.

7.2 Theoretical method

The Heisenberg spin Hamiltonian for a set of nearest neighinderacting spins; has the following
form,

H :—.ZJ”‘S-S], (7.2)

i<)

where, the sum is over all pairss is the spin operator on sitehaving total spins and s =
—s,—s+1,...,s; Jj is the exchange coupling. For a ferromagnetic and antifeagnetic interac-
tion, J; > 0 andJ; < O, respectively. Though, for one dimensional nearesthiigr couplings
Jj = J, the Heisenberg model has been solved analytically by mefaihe Bethe-Ansatz [283], for
higher dimensions, other approximation methods are higddyired. However, for small spin sys-
tems, the problem is solved by employing the exact diagpatidin technique [284]. In order to study
the model Hamiltonian numerically (defined in Eq. 7.1), ttraightforward way is to obtain the ma-
trix elements oH in a basis ofs], S5, ..., s3), with thez-axis taken as quantization direction, whare
is the total number of spins in the system, and then diagamé#tie Hamiltonian matrix. For instance,
for thes= % Heisenberg model, we can construct the basis states,

) = |11 1)
2) = [17...10),
3) = [17...11),
2 = (L. L),

where! and| represents’ = % and —% state, respectively. In terms of these basis states, thendiion
of the Hamiltonian matrix will be 2x 2". Fors= 1 systemss” has three basis states (-1, 0, 1) leading
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7.2 Theoretical method

to the dimension of Hamiltonian matriX*3 3". In general for a spin system of sinethe number

of basis states to represent the Hilbert spacsst 1)". Therefore, with increase of the system
size, the dimension of the matrix grows exponentially anctbbees intractable. There are conserved
guantities corresponding to the symmetry of the systemsuéh cases, the basis states with different
eigenvalues of the symmetry operators do not mix togethéh@mpplication of Hamiltonian on the
basis. Then, the Hamiltonian matrix can be expressed a®et ¢giroduct of several small matrices.
It has been observed that the Heisenberg Hamiltonian coemwith the square of the total spin of
the systen®” and thez component of the total spi. Though it is straightforward to work in a®f
subspace, there is no efficient method to construct symraeiwpted eigenstates 8f. In addition,
the Hamiltonian is symmetric under combination of permatadf spins that respect the connectivity
of the small size cluster considered in the present casahéfurore, the model also possesses time
reversal symmetry in the absence of external magnetic fiédile the symmetries of the system is
taken into account” basis states can be projected into states that transforar spdcific irreducible
representation of the symmetry group. In this way, the Hami&n is block diagonalized into small
matrices and the maximum dimension is dramatically redeosapared to full Hilbert space size.

In the presence of an external magnetic field the Heisenbangiltbnian is modified to the following
form,

H:—ZJ”‘S-SJ'—BZSZ, (7-2)

i<

whereB? is the external magnetic field aloaglirection, ands* = ¥, 5 is thez-component of the total
spin. The value of* can vary from—Sto +Sin unit steps, withS being the maximum total spin
of the system. Note th&* measures the field energy, i.e., the fagigris absorbed intd®?. In the
presence of a magnetic field, the time reversal symmetryoledor, as a result, the eigenvalues of the
Hamiltonian within the positives” sector and negative sector will be different. However, one can
obtain the eigenvalues of the system in the presence of radiedd directly from the eigenvalues of
the pure Heisenberg model fBf = 0, Eq. (7.1), by shifting the eigenvalues B§&, asS* commutes
with H.

Now the Hamiltonian matrix is constructed in terms of eigates of the tota®* operator by express-
ing the Hamiltonian in the form

H==3 i [3(s's ra ) o] B 73)

i<)

wheres™ = s'+is’ are the raising and lowering operators. Wisérands~ operates on the eigenstates
of &, we have

SI5) = \/S(+ 1)~ (1) [§£1). (7.4)
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7 Exact diagonalization and thermodynamics of clusters

For example, for a spié—particle,

s'[1i) =0,

s" 1) = [Ti),

s ITi) = i),

s i) =0,

and for a spin-1 particle,

s[1) =0,
§°[0) = v2[1),
sTILi) = v2(0),
s |1i) = V2(0),
5 10) = v2/Li),
s |li) =0,

where in the latter casg 0, T denote the three possible valuesspf= —1,0,1. We have adopted the
block diagonalization procedure in order to obtain the migiue spectra of 13- and 4-atom clusters,
where the total Hamiltonian matrix is written in terms of dimamatrices with the zero off diagonal
elements. For instance, in case of a 13-atom clustersv:iﬂ%, the dimension of the Hamiltonian
matrix is 23 x 213, Because of the block diagonalization, the whole matrixviléd into blocks with
dimension(}%) x (1), with k= 0,...,13. 14 such block matrices have to be solved and the largest
block matrix has(y) = 1716 rows. In addition, the effect of uniaxial anisotropy 18- and 4-atom
clusters withs = 1 has been studied, as the anisotropy does not have anyocwiatni fors = % Fora
spin-1 system, the total Hamiltonian in the presence ofl logixial anisotropy axeg can be written

as

H=-5Jss-BS-YDi@s) (7.5)

i<) i

whereD; are the local uniaxial anisotropy constants &na@re the easy axes compatible with the
symmetry of the system [18]. The results obtained for 13- 4uadiom clusters are discussed in the
following sections.

7.3 13-atom clusters with spin- 3
In order to study the properties of 13-atom clusters, we kawmsidered two geometries: The icosahe-

dron (ICO) and the cuboctahedron (CUBO). Both geometrieshown in Fig. 7.1. The ICO having
a connectivity like fullerene [285, 286], exhibits 12 veds, 20 triangular facets and 30 edges with a
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symmetry grougy. The CUBO has 12 vertices with 8 triangular and 6 square fé&#esdges, which
belongs to a symmetry groupy,. In spite of same number of vertices (12), both geometridgoex
different number of nearest neighbors, i.e., the ICO and OuBsses 5 and 4 nearest neighbors,
respectively.

The total Hamiltonian for a 13-atom cluster has the follayviarm

/ V4
H= _Ji,JZOS -§j —J igso-s —-B IZqZ, (7.6)
(ij)
wheresy is the spin of the center atom, and the first sum runs over sieaegghbor pairsgij) in the
surface shell.J is the exchange coupling between atoms in the surface sill’as the exchange
coupling between central and surface spins.
The Hamiltonian matrix of dimension 81928192 has to be diagonalized for 13-atom spictuster.
Because of symmetries of the system, the Hamiltonian magriivided into 14 sub-matrices with
block diagonalization dimensiong’) with k = 0,1,...,6 for the positive and negativé sectors.
The block diagonalization of the total Hamiltonian matreatls to the eigenvalues of the system.
The ground state energy is obtained by taking the minimunmhefanergy eigenvalues from each
magnetization sector. We have obtained the energies foditiarent exchange couplings defined by
(i) all spins ferromagnetic)(= J’ = 1); (ii) all spins antiferromagneticl(= J' = —1); (iii) central spin
is reversed with respect to the ferromagnetic surface ¢piasl and)’ = —1), (iv) antiferromagnetic
surface spins with ferromagnetic central splr<(—1 andJ’ = 1). Note that all energies are measured
in units of|J|, where|J| is fixed to the one.

wq:/»

Figure 7.1: Skematic picture of 13-atom ICO (left) and CUB@Ht) with labeling of each atomic
site. Both structures have 12 vertices with one atom at cemtee center atom for both
cases are not shown here.

The minimum energies for AFM case of 13-atom clusters (IC@O@WBO) corresponding to ea&i
sector are listed in Tab. 7.1, which suggests a two-fold Wegey for AFM case i.e., the minimum
energy for each positivE” sector has similar value like that of the corresponding tieg&” sector.
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7 Exact diagonalization and thermodynamics of clusters

Table 7.1: Low energy eigenvalues in the unitg &f and the corresponding for 13-atom ICO and
CUBO for AFM interaction.
& Energy (ICO) Energy (CUBO)

6.5 10.5000 9.0000
5.5 4.0000 2.5000
4.5 0.8819 0.0000
3.5 -1.8342 -2.5000
2.5 -3.9669 -4.6313
15 -5.4198 -5.8687
0.5 -6.2880 -6.0622

Figure 7.2 illustrates the complete eigenvalue spectrurthteoFM and AFM interactions of ICO (top
panel) and CUBO (bottom panel). The ground state energéemarked in red. For the FM interac-
tion, the degenerate minimum energies are obtained, whidhe to the fact that the Hamiltonian has
spin rotational invariance, as a result, turning the tgbéh &0 another direction, does not change the
energy. For the AFM interaction, the minimum energies atmébto be nondegenerate for edgh
sector and the energy gaps are different between the cdiveestisectors for both ICO and CUBO
geometries (see Table 7.1,

The variation of magnetization as a function of external nedig field for the four cases of inter-
actions of the ICO are shown in the left panel of Fig. 7.3. Ibliserved that for the AFM case
(J =J = —-1), the presence of external magnetic field leads to the appea of plateaus, marked
by solid curve in Fig. 7.3, left panel. This occurs due to thequivalent energy gaps between the
consecutive sectors. On the other hand, for the FM case Witk J’ = 1, only a single energy
minimum state exists & = 6.5, due to the degeneracy of the ground state energy (see shedla
curve in Fig. 7.3). The right panel of Fig. 7.3 illustrates trariation of magnetization as a function
of magnetic field for the four interactions of the CUBO geomefs observed in the case of ICO, we
obtain a similar behavior for the variation of magnetizatiwith respect to magnetic field for the FM
interaction. However, for the AFM interactions of CUBO, thiateaus appearing in the magnetiza-
tion have different sizes compared to the ICO, which can bikedafrom the solid curve in the right
panel of Fig. 7.3. This occurs as the consequence of staldymmetries. Figure 7.4 illustrates the
variation of the minimum energy (in units @f|) as a function of magnetic field for ea& for the
AFM and FM interactions of ICO (left panel) and CUBO (rightngd). The inequivalent energy gaps
at severaB? values for the ICO and CUBO clearly shows the reason behiedlifferent plateaus
sizes for the AFM. On the other hand due to the degeneratgieador eacHs sector, all energies
meet at one point for FM interaction at zero external magrfetid BZ.

The influence of dipolar interaction on the magnetizatiobh3atom ICO withs= 1/2 has been studied
in the presence of a magnetic field. The dipole-dipole cogpis useful in the studies of molecular
structures as it depends only on known physical constadttharinverse cube of interatomic distance.
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13 atom ICO (s=1/2)
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Figure 7.2: All eigenvalues (N= 8192) for FM and AFM inteliaos of ICO (top two columns) and
CUBO (bottom two columns) with spiéf The solid line is a guide to eye, which indicates
the minimum eigenenergies. For AFM interaction, theretexas-S* degeneracy for both
symmetries.
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The dipolar coupling Hamiltonian can be expressed throbgHdllowing form,

s -sj — 3(s -fij ) (Fij -Sj)
Irij |3 ’

Haipole = @ Z (7.7)

i<]
wheref;; =rj; /|ri;| is the unit vector along the line joining the two spins, ane- 0?H3 o/ Atis the
dipolar coupling strength, measured in unitsdjf Figure 7.5 shows the variation of magnetization

as a function of the magnetic field for several dipolar intgoen strengths witlw =0, 0.025, 0.05 and
0.1 for the AFM case (we have set the shell radius to one).

Forw = 0, a reversed central sp8 with negative hysteresis is observed, asBéf|J'| < 6.5 the
exchange coupling is stronger than the field. For larger midgfields the central spin flips along the
field direction. At finite values ofv, the magnetization of center atom (the blue curve in Fig) 7.5
and surface atoms (solid curve in Fig. 7.5) behave différetgpending on their position indicating
the strong impact of dipolar interaction on the magnetiratf surface spins of the cluster. For finite
values ofw, the spins of the top and bottom atoms of the cluster (lefepaiFig. 7.1) show a different
magnetization behavior compared to the other surface .sfihe magnetization of the center atom
remains nearly unaffected by the changevinalues. On the other hand, for the FM camehas no
influence on the magnetization for the center or surfacessgimce the dipolar interactions cancel
with each other. Only one step appears for the field-depeedefimagnetization, not shown here.
Table 7.2 compiles the values of cenggrand surface spis’ magnetizations fow = 0 at different
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Figure 7.3: Variation of magnetization as a function of metgnfield for different interactions of
13-atom ICO (left panel) and CUBO (right panel).andJ’ are the exchange couplings
between the surface spins and center-surface spins, teghecThe external magnetic
field is measured in units ¢8|.
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7.3 13-atom clusters with spi-

Table 7.2: The ground state expectation values of centesuanface spins ab= 0 for the AFM case

of ICO and the correspondir§f. Note that forS = 6.5 the central spin is parallel.

g () (s)

6.5 05 05

55 -0.4231 04936
45 —-0.4091 04091
35 -0.3889 03241
25 -0.3571 02381
15 -0.3 0.15

0.5 -0.1667 Q0556

values of¥, given by , e
S S—
()= TG+ (§) = o (7.8)

In addition the ground state spin-spin correlation funwi@re calculated for the ICO and CUBO,

which has the following form
Tre P -s;
R

Table 7.3 and 7.4 lists the ground state correlation funstior several distances between the spins,

(7.9)

which are calculated in terms of the eigenvectors obtaimech fthe exact diagonalization of the
Hamiltonian obtained from Eq. 7.6. The correlations for i case are found to be same for both
geometries, while for the AFM interactions, different @ation functions are obtained, which show
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Figure 7.4: The magnetic field dependence of minimum eigenggrfor ICO (left panel) and CUBO
(right panel). The black and green lines for both symmetepsesent the energy variation
with respect to the external magnetic field for FM and AFM sasespectively.
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7 Exact diagonalization and thermodynamics of clusters

Table 7.3: Ground state spin-spin correlation functiomd @D with FM and AFM interactions. See
left panel of Fig. 7.1 for the labeling of atomic sites. Henglex “zero” is the center atom.

Correlation function FM AFM

(S0-Sp) 0.25 -0.083
(Sp-84) 0.25 -0.176
(S2-S6) 0.25 0.085
(82-91) 0.25 -0.127

Table 7.4: Spin correlation functions for CUBO for FM and ARMeractions. See right panel of
Fig. 7.1 for the labeling of atomic sites. Here, also indesrt¥ is the center atom.

Correlation function FM AFM

(So- sQ> 0.25 -0.083
(sp-81) 0.25 -0.127
(sp- 83> 0.25 0.085
(S-Ss5) 0.25 0.085
(S2-S7) 0.25 -0.176
(S2-811) 0.25 -0.176

a tendency towards the antiferromagnetic order. The IC@agpto be less frustrated with respect
to the CUBO. Compared to the ICO, the CUBO shows much smallgireegular correlations in the

3rd and 4th neighbour shell.

The thermodynamic quantities such as entropy, specificamebsusceptibility (defined in Egs. 7.10, 7.11
and 7.12, respectively) as a function of magnetic field agisd\temperatures are calculated for ICO
and CUBO for the AFM (see Fig. 7.6, 7.7) and FM interactioree(big. 7.8). The top and bottom
panel of Figure 7.6 shows the variation of entropy as a fonctif external magnetic field for the
AFM case of ICO and CUBO, respectively. This shows sharp péakthe field-dependent entropy

at low temperature, which is due to the fact that at low terajpees only the minimum energies

EntropyS= kg (IogZ+ Ii?’) (7.10)
Specific hea€ = @ - ﬁ <<E2> - (E>2) (7.11)

—en/kgT
Where’<E> — ZHSHGZ#

e (7.12)

2 2
Susceptibilityx = oM) = (?(BH'BF) [% Z Sﬁzefsn/kBT — <% Z Sﬁeen/kBT>

of eachS sector are more decisive. With the variation in the magrfetld, the absolute minimum
eigenstates shift fror§= 0.5 to highel$ values. However, as the temperature increases more number
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7.3 13-atom clusters with spi-

z

Magnetization M

-5 0 5 -5 0 5 -5 0 5 -5 0 5
Magnetic field B*

Figure 7.5: Variation of magnetizatiofs) as a function of magnetic field (in units &f|) for the
AFM case of 13-atom ICO at several values of dipole couplingngthsw. The dotted
lines in all plots show the field-dependence of magnetirdiio the center spiris;). The
dashed and the solid lines show the same quantity for thbatipm atoms and remaining
10 atoms on the surface, respectively. It depicts that thgnet&ation of the central spin
remains almost unaffected by the strength of the dipola@raation.

of states fromS sector contribute to the thermodynamics, as a result thiespiea field-dependent
entropy are smeared out. Similar explanation can be givénetdehavior of specific heat and sus-
ceptibility with respect to magnetic field at several tenaperes, which are shown in Fig. 7.7. On the
other hand, for the FM case (Fig. 7.8), however, only the maxrn S block matrix has the lowest
energy for all magnetic fields, which means that all eigareslare simply scaled with magnetic field
and therefore no non-trivial features are observed forlibentodynamic quantities such as entropy,
specific heat and susceptibility.

Figure 7.9 shows the variation entropy (top panel) and fipdmat as a function of temperature at dif-
ferent external magnetic fields for the AFM interaction. Tésults for the ICO and CUBO are shown
in the left and right panels, respectively. The peaks in ¢neperature-dependent specific heat at low
temperatures (% 1) indicate the classical excitations in the system. Howeéke additional peaks in
the temperature-dependent specific heat and plateaus @mtiopy appear due to the quantum exci-
tations from the low lying energy levels at low temperatulesFig. 7.10 the temperature-dependent
entropy, specific heat and susceptibility are displayedifer-M case of both clusters, which shows
the trivial behavior.

Figure 7.11 shows the field-dependence of magnetizatioriffateht temperatures for AFM (left)
and FM (right) interactions of ICO, respectively. It showattwith increasing temperature, the mag-
netization is smeared out for both interactions. A similaagmetization behavior with increasing
temperature is also observed for the CUBO case, which ishoots in the thesis.
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7 Exact diagonalization and thermodynamics of clusters
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Figure 7.6: Variation of entropy as a function of externafgmetic field for the AFM case of 13-atom
ICO (top panel) and CUBO (bottom panel) with sp%n—The several colors denote the
behavior of these quantities at several temperatures. fpesite ordinate represents the
degeneracy of the minimum energy eigenvalues.
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Figure 7.7: Variation of thermodynamical entities as a fiorcof external magnetic field for 13-atom
ICO (left column) and CUBO (right column) with Spi%l— The top and bottom panels
indicate the field-dependent specific heat and field-dep#rsiesceptibility for the AFM
case, respectively. The several colors denote the behalitiese quantities at several
temperatures.

7.4 4-atom cluster: Tetrahedron and square

Previously, we have studied the structural and magnetipepties of small transition metal clusters
with more emphasis on the magnetic anisotropy using thatgdnactional theory (DFT) [18], where
the energies obtained from DFT calculations were fitted liygua classical Heisenberg Hamiltonian.
The investigations presented here can be viewed as a catitinwof the previous work in the sense
that we perform exact diagonalization of a correspondingngum spin Hamiltonian to study the
system. The effect of uniaxial anisotropy has been studied tetrahedron and a square geometry
(shown in Fig. 7.12) withls = 1. As the uniaxial anisotropy gives a constant valuesfer%. In the
presence of the uniaxial anisotropies, the Hamiltonianahé&sm as shown in Eq. 7.5. A regular
tetrahedron has four triangular faces with the equilaterahgles of tetrahedron meeting at each
vertex. It has a symmetry grodp, whereas a square is a regular quadrilateral Diflsymmetry. We
begin our discussion with the case of séilsquare.

7.4.1 Square (s = 3)

For a 4-atom system with spi%‘system, a Hamiltonian matrix of dimension ¢(.66) has to be solved.
Because of the block diagonalization method, the whole Hanian matrix is divided into 5 sub-
matrices each corresponding to a defirftevalue. The 5 sub-matrices have dimensions 1, 4, 6, 4, 1
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7 Exact diagonalization and thermodynamics of clusters
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Figure 7.8: Variation of thermodynamical entities as a fiorcof external magnetic field for 13-atom
ICO (left column) and CUBO (right column) with spi%].- The top, middle and bottom
rows indicate the variation of Entropy, specific heat anccepsbility with respect to
magnetic field for the FM case. The several colors denoteehavior of these quantities
at several temperatures.

in positive and negativ&” sectors. In the present ca&és -2, -1,...2. The ground state energies, for
the square are found to be all degenerate for FM interactidnile they are non-degenerate for the
AFM interaction, as observed in the case of 13-atom clusiére reason behind such trend is similar
as discussed previously. The variation of magnetizatich vaspect to external magnetic field has
been shown in Figure 7.13. We found that with increase in rtgfield, for J;>0, magnetization
does not change and always has a value of 2.0 in the poSttigashed curve in Fig. 7.13), while for
Jj <0, a number of plateaus occur for eg&H(solid curve in Fig. 7.13). The reason is similar like for
13-atom clusters, which is described in Sec. Ill.

7.4.2 Tetrahedron and square withs =1

Several studies have been performed for the magnetic andadgnamic properties for spin-1 clus-
ters [282, 287] using Heisenberg model. Studies includmegintfluence of radial anisotropy on vari-
ous properties of clusters are still limited. In the preseotk, we have investigated the influence of
anisotropy on the magnetic properties and temperaturerdigmt correlation functions for the spin-1
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7.4 4-atom cluster: Tetrahedron and square
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Figure 7.9: Variation of entropy (top panel) and specifictt{pattom panel) as a function of temper-
ature for 13-atom ICO (left column) and CUBO (right cqumn}thpin-% for the AFM
case. The colors indicate the variations of same quanétiesveral magnetic fields.

tetrahedron and square. The Hamiltonian is modified to a Bsmepresented in Eq. (7.5) in the pres-
ence of local uniaxial anisotropies, whdde= D is the anisotropy constant aedare the easy axes
which may differ for each spin. Figure 7.12 shows the anigntraxes (double arrows) pointing in the
radial directions for the square and tetrahedron. For tam#z spin-1 cluster, the Hamiltonian matrix
is of dimension 3 x 3%. The total number of block matrices is 9 in this case V@th= —4,—3,...,4.
Taking the minimum energy from ea&hsector results in 9 eigenenergies. The presence of amgotro
D shows different qualitative behavior of field-dependengnwization as depicted in Fig. 7.14 for
the case of tetrahedron (a-b) and the square (c-d) DRer0, we obtain a single step in the magne-
tization for FM case and plateaus for the AFM case of both ggoas. The presence of anisotropy
leads to the smearing of magnetization with respect to ntagfield for FM and AFM interactions
(see the squares and diamonds) of square and tetrahedrgarticular, for tetrahedron geometry,
differences in the magnetization for positive and negatalees ofD are observed, whereas for the
square geometry, the change of sign in the anisotropy ddesffiect the magnetization significantly.
This indicates the dependence of anisotropy on the stalcsymmetry, which has been observed
earlier for 13-atom clusters through Monte Carlo simuladi¢281].

7.15 shows the nearest-neighbour correlation functioiis espect to temperature at different values
of anisotropy constants for FM and AFM interactions of te&rdron and square with spin-1. We
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Figure 7.11: Magnetization as a function of magnetic fieldeatous temperatures. With increase in
temperature, the plateaus vanish for AFM case of 13-atom ICO
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7.4 4-atom cluster: Tetrahedron and square

Figure 7.12: Skematic picture of a planar square (left paarel a three dimensional tetrahedron (right
panel) with 4 lattice sites. The arrows indicate the radph ©rientations taken into
account to study the effect of anisotropy for 1.

4-atom square
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Figure 7.13: Variation of magnetization as a function oeexél magnetic field foss:% case of 4-atom
square. The dashed and solid curve show the magnetic fiedthdepce of magnetization
for FM and AFM cases.

observe that the anisotropy has significant effect on aiosl function at low temperature regions
for both FM and AFM interactions. For the FM case, they aratpes while they have negative
sign for AFM case. Fob > 0, with increasing temperature, the correlations betwearsgradually
decreases for both cases as expected. For negative valetlod correlations are reduced, which
might be due to some quantum fluctuations. Such effect candrk&eah for the square geometry,
where, the classical ground state would be in the directespgndicular to the plane, as all couplings
are satisfied and the spin directions are all perpendicaldret anisotropy axes. Hence, the reduction
of correlation functions at low temperature occur due togh@ntum effects. However, this reduction
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Figure 7.14: Magnetization as a function of magnetic fielddifferent anisotropy constants for spin-
one 4-atom tetrahedron (a-b)and square (c-d). The resulsM and AFM are shown
in left and right side, respectively. The black curve for FiMiaAFM shows the variation
of field-dependent magnetization in the absence of anigpttonstanD. The magenta
and blue curves show the variation of the same at positivenagdtiveD.

in correlation function becomes negligible in the high temgpure regime, as a result the correlations
show a decreasing trend as usual.

7.5 13-atom icosahedron with spin-1

For the spin-1 icosahedron (the Hamiltonian is shown in E§), 3he Hamiltonian matrix has a di-
mension(3*3 x 33), which can be decomposed into block matrices with sizeesemted as trinomial
numbers( 1k3)2 for —13 < k < 13, shown in Table 7.5 together with the lowest eigenvaldesaoh

& block. The variation of magnetization as a function of mdignield for D = 0 shows a similar
behavior like spin% case, as the magnetization has a constant step size from 11%dr|B? < 6 (see

Fig. 7.16, black line). The plateausMt = 411 indicate the saturated outer shell, where only the cen-
tral spin points antiparallel to the external field. In aduhif the effect of radial uniaxial anisotropy is
studied for this geometry, with the Hamiltonian shown in Bdp. For such studies, the whole Hamil-
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13-atom icosahedron with spin-1
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Figure 7.15: The variation of spin-spin correlation fuootiwith respect to temperature for spin-1
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Figure 7.16: Variation of magnetization as a function oféRternal magnetic field (measured in units

of |J|) for the spin-1 AFM icosahedron.

tonian matrix is considered, since the anisotropy term caméscommute with the interaction term
and hence destroys the block structure ofthén the present case, we have calculated the minimum
eigenvalues and eigenvectors using the Lanczos schemere3iking field-dependent magnetiza-
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7 Exact diagonalization and thermodynamics of clusters

Table 7.5: Size of matrices, lowest energy eigenvakigand degeneracl for different S for 13-
atom AFM ICO with spin-1.

|| Matrix size Eo/|J| Ko
13 1 +42 1
12 13 +29 1
11 91 +17 1
10 442 +10.763932 3
9 1651 +5.034063 5
8 5005 —0.131753 4
7 12727 —-4.663902 4
6 27742 —8.608201 3
5 52624 —11.932667 4
4 87802 —14.679508 5
3 129844 -16920343 5
2 171106 —18566489 3
1 201643 —19506298 5
0 212941 —-19.839976 3

Table 7.6: Ground state spin-spin correlation functiomgtie spin-1 ICO with FM and AFM interac-
tions. See left panel of Fig. 7.1 for the labeling of atomtesisy is the center atom.
Neighbor Correlation function FM AFM
1 (S2-S0) +1 -0.166667
(S2-84) +1 —0.594666
(S2-S6) +1 +0.382099
(S2-81) +1 —0.770497

W N P

tions are plotted in Fig. 7.16 for several anisotropy camtstavith magenta curve for negative value
of D and blue curve for positive value bBX.

Table 7.6 shows the ground state spin correlations of theidvA&M spin-1 ICO without anisotropy,
which are also similar to that of spi%mase. They show AFM-like ordering for the AFM case with
a larger anti-correlation between opposite sites 2 and 4 g 7.1) as compared to the nearest
neighbour value, which approaches towards the classiodl-1.
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8 Summary and outlook

8.1 Summary

This thesis deals with the study of structural, magnetic @ledtronic properties of elemental and
binary transition metal clusters. We have considered églpethe closed shell clusters of Fe, Co,
Ni and Pt. We have used the density functional theory forystgdthe electronic structure and the
total energy. As the exchange-correlation potential weshadopted the generalized gradient ap-
proximation, which is successful in describing the praperof metals. The cluster geometries are
structurally optimized by applying the conjugate gradienérgy minimization procedure. We have
explored various essential properties of clusters likegifueind-state structure, structure dependent
magnetic moment, possible distribution of atoms in bindugters through segregation and mixing.
Magnetic anisotropy properties has been studied for varfoee and supported clusters. We have
used the exact-diagonalization procedure to study thentbéynamics of clusters.

The studies of the ground-state structural properties aflstemental clusters of Ni and Fe with upto
16 atoms suggest that the small clusters are slightly distdrom perfect geometry. The distortion
is identified as the Jahn-Teller distortion which arisesaloee of the inherent property of a system
to avoid degeneracy of states at the Fermi level. The magnaiiments of clusters are larger than
bulk due to the uncompensated bonding of atoms. The magnetitent as a function of cluster size
shows an oscillatory (non-monotonous) behavior. The agevee of magnetic moment towards the
corresponding bulk value is much faster for Ni clusters ttiaat of Fe, which is in agreement with
experimental results. We observe existence of two spiestat the icosahedral gfrom the fixed
spin moment calculations The two spin states are: (i) the-emn state with magnetic moment g,
where all spins are parallel to each other, (ii) the low spateswith magnetic moment 345, where
the central spin is aligned oppositely with respect to thessinding surface atoms. We find that the
high-spin state has a lower energy than the low-spin state.

Our studies on binary icosahedral Fe-(Co, Ni, Pt) and CoNI) clusters show a competition be-
tween the alloy components which finally leads to chemicdkeong and segregation. In order to
achieve this, the energetically preferable configuratibthe binary clusters are found for several
compositions. Using the lowest energy structure of the amsitipns, the mixing energy is calcu-
lated. We observe a qualitative resemblance for compasitependent mixing energy for F2,Nip
clusters as compared to that of the bulk alloy. For Fe-Nitehss it is found that Ni atoms show the
occupancy at the surface of the icosahedron for all conipasistudied. For 55-atom binary clusters,
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8 Summary and outlook

however, owing to the large number of configurations thatlmpossible, we have studied selective
compositions in the extreme composition regions to comjteaérends of 13-atom cluster. Our stud-
ies on 55-atom binary clusters showed similar tendenciésaa®f the 13-atom binary clusters. From

the segregation properties as observed for Fe-Ni, Fe-PCart, we could generalize the trend that
in a binary cluster the component with larger atomic numbgregate towards the surface of the clus-
ter. In the TM-Pt binary clusters we find induced magnetic rantron Pt due to the TM component,

which is otherwise non magnetic in bulk.

Our studies on 13- and 55-atom icosahedral binary Fe, ContlliRt clusters show that there is a
competition between the alloy components which finally $exdchemical ordering and segregation.
We have calculated the mixing energy at all compositionstiferenergetically most favorable config-
uration of component atoms in the cluster. The trend in thénmgienergy gives the chemical ordering
and the corresponding cluster configuration is used to stuelysegregation property. We observe a
gualitative resemblance of composition-dependent migimgrgy for Fes Ni, clusters as compared
to that of the bulk alloy. For 55-atom binary clusters, hoarewwing to the large number of con-
figurations that can be possible, we have studied seleatiwgositions in the extreme composition
regions to compare the trends of 13-atom cluster. Our funlie55-atom binary clusters showed
similar tendencies as that of the 13-atom binary clustesmRthe segregation properties as observed
for Fe-Ni, Fe-Pt and Co-Pt, we could generalize the trentlitha binary cluster the component with
larger atomic number segregate towards the surface of tistecl In the TM-Pt binary clusters we
find induced magnetic moment on Pt due to the TM componentwikiotherwise non magnetic in
bulk.

One of the main part of the thesis is the magnetic anisotraiess of clusters. Usually the compu-
tational demand for magnetic anisotropy studies is moraumez of inclusion of spin-orbit part into
the Hamiltonian. Since the energy differences we are dgalith magnetic anisotropy studies are
relatively smaller, this needs more accurate calculatigtislarge energy cut-off and Fourier transfor-
mation grids. Our studies show that both spin and orbital emsof clusters are larger compared to
the corresponding bulk values. The MAE for perfect icosasleclusters has been obtained from our
calculations and compared with the Néel anisotropy modeighvare in good qualitative agreement.
We have studied the MAE of relaxed f3eCo;3 and Ni3 clusters through two competing structural
transformation paths, namely, the Jahn Teller and the Maitkasformation. As already mentioned,
JT-distortion in clusters is a natural way to structuralidgens. In the present controlled structural
transformation with separate transformations paths sheivFRg3 prefers JT-distortion, while Ge
prefers MT-distortion. For Ni we find that both JT- and MT- distortions are almost degerertit

is found that the MAE of clusters is larger as compared tor thelk values. Since MAE is related
to the structure through the position vectors of all the aosgmmetry of clusters play an important
role. The relaxed clusters have a large MAE than the perfastars as a consequence of symmetry
lowering for the relaxed clusters. Itis peculiar that thétd was not observed for €geluster, where
the MAE values were similar to that of bulk values. Our stadia Pt-capped kg cluster (FesPts)
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8.1 Summary

show that the MAE is further enhanced as compared to the elamdusters.

In addition to free clusters, we have studied clusters deggben surface by modeling the system with
13- and 55-atom Fe, Co and Ni clusters and the surface as#0d1)L11) surfaces of Pt. As expected,
the deposited clusters show the structural and magnetpepies different from that of free clusters.
The role of the surface-type is quite important for the préps of cluster-substrate interaction. For
example, we find that the closed shell 13 and 55-atom Fe, Colultiers are completely deformed
while deposited on Pt(001) surface with the cluster atonmeating the surface with tendency of
forming surface-alloy. On Pt(111), however, the icosahkedeometry of Fg; cluster is preserved,
while Co;3 and Ni 3 shows a tendency of spreading on the surface. From magmepenties point
of view, we find that clusters deposited on Pt(001) have lovedues of spin and orbital magnetic
moment, while clusters deposited on Pt(111) have higharegabf spin and orbital magnetic mo-
ment, as compared to their corresponding free clusters. s@dies on the magnetic anisotropy of
Pt-supported Fg show an enhanced MAE which is several orders of magnitudedawith respect
to the free Fe; cluster (as well as bulk). The enhancement of MAE is a coresacpiof reduction of
structural symmetry (relaxation effect) and due to thedapgin-orbit coupling of Pt substrate, which
develops induced magnetic moment.

We have studied icosahedral 13-atom Fe, Co, Ni and Pt ctudposited on both pristine and five-
membered ring graphene. Our purpose is to investigate #iidist of metal cluster and graphene
interfaces, which is important from the perspective of lggitaactivity of metal clusters. Our cal-
culations suggest that the interface stability is enharficedlusters/five-membered ring graphene as
compared to those adsorbed on pristine graphene. We olsignigcant reduction in the total mag-
netic moment for the adsorbed Fe and Co clusters as compuaiieel torresponding free clusters. We
have attempted to study the catalytic reaction, where a Cl@aule is adsorbed on 13-atom cluster
both for free clusters and for graphene supported clustesobserve that, the adsorption of CO on
metal clusters show a strong dependence on the atomic seadhe cluster geometry, for example,
CO molecule prefers to be adsorbed ongand Pi3 on the top of the atom, while for Ggand Ni3,

it prefers the middle of the facet. The adsorption sites of l€@@ain unchanged for the graphene
supported metals clusters. It must be mentioned that DFABG& short-comings in predicting the
correct adsorption sites on surfaces which can be overcgraevan-der Waal’s correction.

We have studied the ground-state magnetic properties amchtidynamics of clusters by the exact
diagonalization technique. This technique is useful inlgiug the magnetic properties dependent on
temperature and magnetic field, the informations of whichdsdirectly accessible from the DFT
calculations. We have modeled the cluster by the Heisenergl with nearest-neighbour interac-
tion for 13- (icosahedron and cuboctahedron) and 4-atotmaftedron and square) clusters with both
spin-% and spin-1. Our studies reveal that in the absence of exteragnetic field, the ground state
is degenerate for the FM interaction, while for the antderagnetic case, they are non-degenerate.
In the presence of external magnetic field the variation ojmetization shows discontinuities with
appearance of plateaus for the antiferromagnetic intergcivhile for the FM interaction it shows

133



8 Summary and outlook

2000 T T T T T T T T T 30
>/\ ‘‘‘‘‘
v 5 T TTm——— == |
16007 0

L . Fe Ni 150 ;En
< - Y =
o i A % &
2 5
S 1200 / RN 0 1 E
S b 2
CEE AN / 5

N N -,
_\‘ N Te ™~ quos
Ny Pl IREN N
800 ! S // P \\ N
_(x || 0(+y \\\// ///// \\\ \\
I / NN
| e / __(\ FeNi, \\\\
1
B a+FeNi, N \ N
400 1 1 1 1 1 1 |\. 1 P 0.0
0 0.2 0.4 0.6 0.8 1

Ni concentration (x)

Figure 8.1: The structural and magnetic phase diagram of,Hei, bulk alloy [137, 138].

a single step. With inclusion of dipolar interaction in tharhiltonian for spin% particles for the
13-atom icosahedron we find that the central atom has diffdreld-dependent magnetization as
compared to the extreme atoms (top and bottom atoms), whichn different from the rest of atoms
in the cluster. By including a radial anisotropy term in tharklltonian, we could differentiate the
field-dependent magnetization for square and tetraheditbnspin-1 particles. This is also reflected
in the temperature-dependent correlation function. Thenildanian for the 13-atom spin-1 icosahe-
dron with dimension of the Hamiltonian matrix i$%3< 313 has been solved by using Lanczos method
and the hysteresis for the icosahedron with radial uniadq@otropy is calculated.

8.2 Outlook

There are many scopes of clusters studies, which still neée understood. As an outlook mostly

two important phenomena are focussed which will be perdugthilar studies are continued.

Firstly about the binary clusters, which give a scope of malaiting the clusters properties through its
compositional arrangements. We have already seen fromtadies that the segregation tendencies
in Fe-Ni clusters depend on the geometry of the clusters lamatdncentration of the components.

It is interesting to study the structural phase diagram oflyi clusters, and to find whether there
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is any similarity to the bulk binary alloys (for example in-Ré binary system). Figure 8.1 shows
the phase-diagram of Fe-Ni bulk alloy [137, 138]. It must loated that the studies would need
many different types of cluster geometry and thus the tagk Bnormous one. Experimentally, it has
been shown that as the system size is decreased from bulksterd, the phase formations, such as
eutectic composition and the transition temperature @iff@89, 290]. This will nevertheless help us
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to address questions like, what are the properties of aadkesonfiguration of clusters and how they
can be synthesized by understanding the stability of thieatksonfiguration from the phase diagram.
The studies will lead the scope of extending the traditigialse transition theories to low dimensions.
Since experimentally the studies on nano-phases can bdlang® so theoretical studies based on
DFT may provide the right insight into the problem. Fig. 8i@ws the cluster to bulk phase diagram
for Fe [288] (studied through molecular dynamics simulaiasing embedded atom potentials) which
predicts a stability for the icosahedral and shell wise Mgdkansformed structures up to cluster sizes
with 15 closed atomic shells. Warmg al. have studied the size-dependent surface reconstructibn an
layerwise relasation of icosahedron FePt nanoparticlespaopose that the structural results can
be understood if the atomic distribution in the nanopaetisl assumed to have radial composition
gradient with a Pt-rich shell and a Fe-rich core [140]. Itislarstood that empirical studies can be
quick from computational aspects, but approaching thelenoln fundamental way througdib initio
formalism will be useful for building better empirical potéals and directly approaching the problem
from ab initio will lead to unchallenged results.

A second scope of the outlook is the studies on catalysisgptieg of transition metal clusters. While
catalysis is an active technological application of traosimetal nanoparticles, there are relatively
few theoretical studies attempted to understand how tiansnetal atom act as a catalyst for chemi-
cal reaction. Catalytic reactions can be studied by compdhie energy-barrier of reaction paths thus
predicting the most favourable reaction path. Figure 8dvstthe several states of Grmation on
Fess cluster [257]. The energy barrier is comparable to the expmtal values. Treating this problem
may sound easy, but comparing to the number of configuratibrsactants and products, the task is
challenging. These studies will contribute to desiginiatabysts for efficient reactions, for example,
for efficient combustion of hydrogarbons or gasolins in stdes and automobiles.
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Appendix

Extension of cluster magnetism to finite temperatures

DFT being a variational theory has shortcoming in predirtime excited state properties of materials.
A direct extention to temperature dependence of propeagiest straightforward. One of the ways to
deal with finite temperature properties especially for tregnetic properties can be easily conceiv-
able. Itis a rather indirect method of calculating the disexdependent exchange integrdjsr) of
magnetic atoms bgb initio methods and thereby simulating the thermodynamics by thetd/Garlo
approach through the construction of classical HeisenHargiltonian,

Heff:—;Jij S S (8.1)
i#]

where,s is the spin magnetic moment on the atomic site.

We have attempted to extent the zero-temperadirénitio calculations of the magnetic properties
of small clusters to finite temperatures. The exchange rategan be calculated from the Green’s
function formalism adopted in the SPR-KKR code [291] frore tiroup of Prof. Ebert at LMU-
Munich. The essential theory behind the method is derived.iblitensteinet al. [292] through
frozen-magnon approximation. The exchange integral is tfiven by the energy integration of the
imaginary part of combination dfmatrix andt-matrix integrated from the bottom of the valency
band (theoretically-) up to the Fermi-energy [293].

3 = —%{Im/EpdE Tr[&(E)G] (B8 (E)G} (E)] 8.2)

where,Gﬂ“ is the propagator of electrons with spinbetween sites and j in the ferromagnetic
configuration. The quantity; (E) is the energy-dependent local exchange splitting ai sitae trace

is over the orbital index.

It must be stressed that the mean-field estimation of the etaginansition temperature from tligs
itself is overestimated. This is already well known for thékbmagnetic materials. Especially in
clusters, because of the large number of surface atoms vanéichnder-coordinated, the mean-field
prediction can be still misleading. Thus Monte-Carlo siatioins are must. One must be aware that
for finite systems the statistics has to be closely monitaed the transition point can be estimated by
suitably scaling the physical quantities (magnetizatmmekample) by appropriate critical exponents.
There has already been some attempts of studies in literafiar example, the left panel of Fig 8.4
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8 Summary and outlook

shows the distance-dependent exchange parameters faudters! In the right panel of Fig 8.4, the
variation of J; with respect to the cluster size is shown [222]. Typical itssabtained by the magnetic
properties by using thg;Jin the Heisenberg model with classical spins are, for exagitown in

Fig 8.5, where the variation of average magnetization asetifun of temperature is plotted as for

Feso and Feg clusters.
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Figure 8.4. Left: The distance-dependent exchange paear@g) for Fe clusters consisting of 59
(circles) and 89 (squares) atoms. Thefor bulk Fe is represented by black diamond. The
dashed and solid lines indicate the exchange interactietwelen center to other atoms
and the surface to other atoms. The black solid line at zergataxis is just guide to the
eye. Both figures are replotted from Ref [222]n the right panel is the average exchange
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Figure 8.5: The variation of magnetization with respect émperature for kg and Fgg clus-
ters [222]. The circle and square shows the temperaturendiemt magnetizations for
Fesg and Feg clusters.
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8.2 Outlook

We have, so far, carried out few calculations jpffdr small clusters of Feand Fez using the Juelich
SKKR code [294, 295]. But since the cluster calculationsehalveady been published mainly by

the group of Prof. Hubert Ebert (LMU Munich) for tiny Fe and-Peclusters, we discuss here the
published results.
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