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Chapter 1

Introduction

1.1 Motivation

Insurance is used to transfer losses from individuals to a group such that they can be

shared among the group members (see Vaughan and Vaughan, 2008, p. 34). Conse-

quently, measuring, assessing, and managing risks is of high importance to any insurance

company. This is especially true in the life-insurance sector, where the premiums paid

by the customers have to be invested over long time horizons to finance later payouts,

thus adding market and credit risk on the asset side of the life-insurance undertaking’s

balance sheet. Risk management in this context is made even more complex by the nature

of typical life-insurance policies that link assets and liabilities: the policies’ payouts often

depend on the performance of the investments made by the company, but with guaranteed

minimum benefits or guaranteed yearly returns. Additionally, customers may surrender

their contracts before maturity. That insurance undertakings should appreciate the value

and the risks of these embedded options was already recognized by Brennan and Schwartz

(1976). Today, this is rapidly becoming common industry practice (see CFO Forum, 2009,

principles 6 & 7).

In earlier years, this was not necessarily the case. Risk management, as “a discipline

for living with the possibility that future events may cause adverse effects” (Kloman,

1990), usually receives public attention when it fails to prevent risks from being realized

that threaten the survival of a company. In the life-insurance industry infamous examples

are two companies that failed to see the enormous value of guarantees embedded in the

products they sold to their customers: Nissan Mutual Life in Japan and Equitable Life

in the UK. Nissan Mutual Life was the first life insurance company to fail in Japan after

1
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World War II, when it could not earn the guaranteed rate of return it promised to the

holders of its pension products in 1997, leading to losses for policyholders. Equitable Life,

then the world’s oldest mutual life-insurance company, had to succumb to its financial

difficulties in 2000, which again were the result of selling guaranteed annuity options with

high guarantees. The Sharma-Report discusses other cases of (near) failures of European

insurance undertakings and also identifies realized financial risks as important factors for

critical situations at life-insurance companies (see Sharma, 2002). The report was an

important first step towards the Solvency II regulations for the insurance industry that

are to come in force in the European Union in the near future.

The Solvency II regulations imitate the structure of their counterpart in the banking

world, Basel II: the regulations can be split into three pillars, covering quantitative, quali-

tative, and transparency requirements. The valuation of embedded options and guarantees

and the quantification of risk associated with them is a main concern of the quantitative

requirements that form the first pillar. It includes the prescription of the market consistent

valuation of the insurance undertaking’s balance sheet, therefore also including possible

optionalites on the asset side. The result of this exercise has to be—at least if an insurance

company opts to apply an internal model—not only the value of the balance sheet, but also

a distribution of losses which leads to the regulatory capital requirements, in particular the

Solvency Capital Requirement. It should not be a surprise that the necessary calculations

are not simple in the majority of cases. The assets of a life-insurance undertaking are

usually comprised of bonds by different issuers, sovereigns as well as corporates, shares,

and alternative investments, possibly also denominated in foreign currency. Therefore, the

problem is high dimensional. On the liability side, cliquet-style guarantees—the entitle-

ments of the insured grow each year by a minimum guaranteed rate or a fraction of the

return of the insurance undertaking’s portfolio—and additional path-dependency intro-

duced by surrender options and participation schemes complicate matters, often leaving

simulation-based methods as the only choice.

As a principle-based framework, though, Solvency II does not specify exact methods

for the calculations, but rather the properties the applied methods are required to have to

gain the regulators’ approval. This is done by demanding an internal model to pass several

quality tests and by demanding adherence to modeling principles such as robustness. A

robust model still yields stable results if model inputs such as data or the portfolio change

only slightly and therefore facilitates interpretation and understanding of the results, es-



CHAPTER 1. INTRODUCTION 3

pecially by non-experts in stochastic models (see also the introduction to Stahl, Zheng,

Kiesel and Rühlicke, 2012).

Non-robust risk models can have severe consequences, as highlighted by the recent

financial crisis1. Hull (2009) identifies the “mechanistic” application of models as a source

of problems, arguing that managerial judgement is always required as a complement.

This is made easier by robust models. The CRO Forum (2009) is explicitly in favour

of robustness in its report on the crisis and the consequences for the insurance industry,

without going into details how this can be achieved.

1.2 Literature, Objectives, and Contribution

Insurance undertakings face the challenge of implementing internal models that allow for

the timely computation and assessment of the financial risk of their balance sheets in

order to fulfill the regulatory requirements of Solvency II, but also in order to equip them-

selves with instruments that allow management decisions that take risk into account in

a comprehensive and consistent manner. We want to contribute in the following ways:

first, by showing that robustness is an important property of methods employed for quan-

titative risk management, from a theoretical, practical, and regulatory point of view;

second, by showing how robust methods can be used consistently in risk management;

third, by discussing a variant of a simulation-based method for the computation of the

loss distribution of a life-insurance company that has not shown up in the academic lit-

erature and comparing its properties—especially with regards to regulatory requirements

and robustness—with more established methods.

Risk and risk assessment have been discussed by various authors in the literature (see,

e.g., Kloman (1990); Klügel (2007)). In particular, Aven (2011a,b, 2010, 2007) devotes

a lot of work to the topic and develops consistent definitions and frameworks, especially

taking into account uncertainty about the problems at hand. However, he argues from a

perspective that is suited rather for safety and reliability problems than for financial risks.

In contrast, the financial risk management literature either just touches these conceptual

topics, see Föllmer and Penner (2011), Cont (2006), or Cont, Deguest and Scandolo (2010),

or essentially ignores them, see Hull (2011), McNeil, Frey and Embrechts (2005), and

Vaughan and Vaughan (2008). In chapter 2 we contribute by interpreting the rigorous
1Interestingly, Kloman (1990) already predicted that “’diseconomies of risk’ can overwhelm ’economies

of scale’ in the future.” One could certainly argue that this was realized during the financial crisis.
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framework by Aven in a financial context and conclude that robustness is required if we

follow these ideas.

The Solvency II regulations are discussed in the literature by various authors, see

Rittmann (2009) or Renz and Best (2005), or from a regulators perspective (see Financial

Services Authority, 2008). While robustness and model risk show up in some works,

notably in the collection by Bennemann, Oehlenberg and Stahl (2011), there is no thorough

review of the regulatory body with this in mind. We provide this review in chapter 3.

Although several authors have investigated robustness of risk measures, the accounts

are often quite specific, see, for example, Wozabal (2012), Föllmer (2012), Föllmer and

Schied (2002b), and rather technical, see Krätschmer and Zähle (2011) and Krätschmer,

Schied and Zähle (2012a). A more comprehensive approach is followed by Cont et al.

(2010), who introduce a risk measurement procedure and discuss robust estimators. We

extend this concept and introduce the risk management procedure which combines all the

elements necessary for (robust) quantitative risk management. Our robustness approach is

based on the concept of approximations using probability distances, which was introduced

into the literature on statistics by Davies (1995). We recall the definitions of probability

distances and probability metrics and show that, among the various examples, the Wasser-

stein metric has many desirable properties that make it a particularly suitable choice in a

risk management context. In order to use probability distances in risk management and to

relate them to risk measures, we adapt classical (see, e.g., Huber and Ronchetti (2011)) as

well as recent results in statistical robustness (see Krätschmer and Zähle (2011)) for our

applications to risk measures. These results allow us to to judge the robustness properties

of risk measures, coming from a different direction than Cont, Deguest and He (2011).

The computation of the Solvency Capital Requirement is not a straightforward exer-

cise in practice. Different suggestions have been made to speed up calculations: replicat-

ing portfolios (see Oechslin, Aubry, Aellig, Käppeli, Brönnimann, Tandonnet and Valois

(2007)) increasing the speed of nested simulations (see Gordy and Juneja (2008), Broadie,

Du and Moallemi (2010), Lan, Nelson and Staum (2007), Liu and Staum (2010)), and

adapted simulation algorithms like the least-squares Monte-Carlo method (see Bauer,

Bergmann and Reuss (2011a) and Bauer, Bergmann and Reuss (2011b)). We built on an

idea from practice (Bergmann, Reuss, Siebert, Stahl and Zwiesler, 2009) and adapt this

method in such a way, that a change of measure at the time horizon of the risk measure is

not necessary. We show convergence of the algorithm and, using the asset-liability model
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by Zaglauer and Bauer (2008) with a Heston-Cox-Ingersoll-Ross asset model, we conduct

an empirical study comparing this algorithm to alternatives. We focus on robustness and

stability properties, using the previously discussed results.

1.3 Structure

Part I contains basic definitions and discusses the regulatory environment. We start by

defining the general notions of “risk” and “uncertainty” and by discussing the risk manage-

ment process, in particular in a financial and insurance context, in chapter 2. We see that

robustness can be derived as a necessary property of risk management procedures from

these definitions. In practice, however, regulatory requirements are of highest importance

to insurance companies. Therefore, we discuss the upcoming Solvency II regulations for

the European insurance industry in chapter 3. Again, we focus on their implications for

the use of robust quantitative methods in financial risk management.

Part II is concerned with the ingredients that we need for a robust quantitative risk

management process. The first element are probability distances. In chapter 4 we discuss

definitions, properties, and examples, the main one being the Wasserstein metric. Proba-

bility distances are a prerequisite for obtaining many of the results in robust statistics. We

streamline these results for our applications in chapter 5. In chapter 6, before applying

the robustness results, we discuss axiomatic approaches for risk measures, on probability

spaces as well as on data. Finally, we combine all ingredients into the risk management

procedure, introduced in chapter 7.

Part III is devoted to the calculation of the Solvency Capital Requirement. We discuss

several—in particular simulation-based—approaches and set up a mathematical framework

for the upcoming analysis in chapter 8. Then in chapter 9, we review and extend the

model on which our empirical study is based. The results of this study are presented and

discussed.

Chapter 10 concludes.
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Chapter 2

Risk and Risk Management

2.1 Risk and Uncertainty

It is natural to begin a discussion of robustness in risk management with the definitions

of the terms under consideration. Starting with the dictionary, the definition of robust—

“capable of performing without failure under a wide range of conditions1”—is certainly

sufficient as a starting point and is easily concretized for our use in chapters 3 and 5. In

contrast, the definition of risk—“possibility of loss or injury2”—seems to be incomplete,

as it does not consider the severity of a loss. In the risk management literature, the picture

is even less clear. Some authors’ definitions are close to the one presented, focusing on

the possibility of a loss (e.g., Vaughan and Vaughan, 2008, ch. 1); some authors add the

requirement that the possibility is quantifiable (e.g., McNeil et al., 2005, ch. 1), while

others—those who emphasize the discussion of quantitative methods—define risk in terms

of random variables (see Denuit, Dhaene, Goovaerts and Kaas, 2006, 1.4.3) or ignore the

issue altogether (e.g., Pflug and Römisch, 2007).

Aven (2011b, ch. 8) provides a more thorough discussion of the topic, classifying

definitions of risk into three groups: those that see risk “as a concept based on events,

consequences and uncertainties;”, those that see risk “as a modelled quantitative concept”,

and “risk descriptions” (Aven, 2011b, p. 138). He calls the latter two groups (A,C, P )

definitions because they are based on events A, their consequences C and associated prob-

abilities P . The probabilities are either frequentist probabilities—probabilities derived
1Merriam-Webster OnLine, s.v. “robust,” accessed June 7, 2012, http://www.merriam-webster.com/

dictionary/robust
2Merriam-Webster OnLine, s.v. “risk,” accessed June 7, 2012, http://www.merriam-webster.com/

dictionary/risk

7
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using the assumption that we observe the first trials of an experiment potentially repeated

an infinite number of times and interpreted as parameters of a probability model—or sub-

jective probabilities—he also calls them knowledge-based probabilities—which are related

to Bayesian statistics where background information and expert knowledge are used to ob-

tain a prior distribution incorporating uncertainties about the parameters into the analysis

(see Aven, 2011a). A representative for the (A,C, P ) definitions belonging to the second

of the three groups is given by Ale (2002, p. 113): “risk is defined as the combination of

consequence(s) and the frequency(ies) that it arrives (they arrive).” Aven (2011b) classifies

the definition into the third group if we replace “frequencies” with “subjective probabil-

ities”.3 As Aven (2011b) states that “risk should exist as a concept without modelling

and subjective probability assignments”, he prefers approaches that belong to the first

group. One such definition is provided by Aven and Renn (2009, abstract): “Risk refers

to uncertainty about and severity of the events and consequences (or outcomes) of an

activity with respect to something that humans value.” Aven (2011b) refers to definitions

of this type as (A,C,U) definitions, where U stands for uncertainty; he strongly prefers

them over the (A,C, P ) definitions, arguing that a definition of risk should exclude mod-

eling assumptions. The term uncertainty used in these definitions encompasses everything

that is probabilistic or otherwise unknown about the subject of interest. In particular,

“uncertainties beyond the probabilities”(Aven, 2011b, p. 19) are included.

The usage of the term uncertainty in the literature on risk goes back to Knight (1971,

p. 233), who introduced a distinction between “risk” and “uncertainty”: “To preserve the

distinction [. . . ] between the measurable uncertainty and an unmeasurable one we may use

the term ’risk’ to designate the former and the term ’uncertainty’ for the latter.” In this

context, measurable means that a true model with corresponding “objective” probabilities

(see Knight, 1971, p. 233) is known—such as for the game of Roulette or urn experiments.

Knight’s (1971) definition of risk has not turned out to be useful in financial applications

because the situation we encounter there is virtually never one in which a model and

probabilities are known a priori (see Aven, 2011b, ch. 2.4). Consequently, there would be no

risk and only uncertainty in this context. In contrast, the so-called Knightian uncertainty

has become a widely used concept (see, e.g., Föllmer and Penner, 2011; Föllmer, 2008;

Cont, 2006), being interpreted as model ambiguity or model uncertainty—a situation
3In fact, Aven (2011b, p. 140) misquotes Ale (2002): “Risk is the combination of probability and extend

of consequences.” He then places the definition into the second or third group by either interpreting the
term “probability” as a frequentist or subjective probability.
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where several models are possible to represent the data available.

Two related terms that also show up in the risk literature are aleatory4 variability and

epistemic uncertainty. Aleatory variability can be defined as “uncertainty inherent in a

nondeterministic [. . . ] phenomenon [which] is reflected by modelling the phenomenon in

terms of a probabilistic model” (Klügel, 2007, p. 2198). Epistemic uncertainty, on the

other hand, is “uncertainty attributable to incomplete knowledge about the phenomenon”

(Klügel, 2007, p. 2199). These two notions therefore compare directly to Knightian

risk and Knightian uncertainty, respectively, and are sometimes used in their place (see

Aven, 2011b, sect. 2.4). This implies that they also carry with them the same problem

in practical applications—”in the end all uncertainties are epistemic” (Klügel, 2007, p.

2199).

This discussion of risk definitions and uncertainty suggests that, even if the uncer-

tainty concepts presented here are not directly applicable, any approach to dealing with

risk should recognize uncertainties about models and their parameters. Whether a good

approach to this problem is based on Bayesian probabilities and Bayesian statistics as

suggested by Aven (2011b) or on different methods certainly depends on the problem at

hand, as we will see shortly.

2.2 Risk Management

Having defined what we mean by risk, we have to think about what to do about it.

The answer is risk management, which is “a discipline for living with the possibility that

future events may cause adverse effects” (Kloman, 1990) or, according to Aven (2011a),

“all coordinated activities to direct and control an organisation with regard to risk.” The

term risk management first appeared in the literature, if we believe Kloman (1990), in

the article by Gallagher (1956). While the research on risk management has, of course,

progressed significantly since the publication of his article, there are some noteworthy

points. Gallagher (1956) sees changes in the legal environment concerning workplace safety

as the main driver for the management of companies to consider a systematic treatment

of risks. Today, legal reasons are still an important motivation for changes in the risk

management of companies. Examples are the Basel regulations in the banking industry

(see, e.g., Basel Committee on Banking Supervision, 2011) and the Solvency II project
4From the Latin “alea”, fig. dice, see The Oxford Latin Dictionary s.v. “alea”
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concerning insurance companies, which we discuss in detail in chapter 3. Additionally,

the three main elements of risk management identified in this article are risk analysis,

risk abatement, and risk coverage. These are still main parts of the risk management

process and are recognized as such in the literature. Kloman (1990) calls the phases risk

assessment, risk control, and risk financing, Vaughan and Vaughan (2008) call them risk

identification and evaluation, risk control, and risk financing. Table 2.1 shows a summary.

These elements enter into the risk management process which includes additional steps.

Element Description
risk analysis, risk assessment, risk
identification & evaluation

What are the risks? What is their (subjective)
probability and severity?

risk abatement, risk control How can a risk be avoided, its probability or
severity reduced?

risk coverage, risk financing How are the costs of risks financed? Are risks
retained or transferred? If so, how?

Table 2.1: Elements of Risk Management, (see Gallagher, 1956; Kloman, 1990; Vaughan
and Vaughan, 2008)

In a dynamic environment such as a company, risk management cannot be a one-time

exercise. The measures taken and the detailed steps of the process have to be reviewed

and possibly revised. This is the reason why the risk management process is often shown

as a risk management cycle, such as in figure 2.1.

Determina�on of objec�ves

Iden�fica�on of risks

Evalua�on of risks
Selec�on of the risk 
treatment  device

Implementa�on of 
the decision

Evalua�on and review

I

II

III
IV

V

VI

Figure 2.1: The risk management cycle, steps according to Vaughan and Vaughan (2008)



CHAPTER 2. RISK AND RISK MANAGEMENT 11

The first step is the determination of objectives. Doherty (1985, ch. 2) sees value

maximization from the point of view the equity holders as the main objective of risk

management (This is in line with general studies of corporate objectives, at least under

some assumptions, see Hansen and Lott (1996) for a review of the literature). Although

in theory, market mechanisms should lead to an incorporation of other stakeholders’ ob-

jectives into the value of equity, this is not always the case, due to market imperfections

and externalities. An example could be the events of the recent financial crisis, where the

put options that owners of a limited liability company implicitly buy from society became

very valuable for some banks. Doherty (1985, p. 23) puts the responsibility for such

risks to the state, which has to introduce regulation. Due to the presence of bankruptcy

costs—empirical studies show that they can be as high as 20% of firm value (see Bris,

Welch and Ning, 2006)—decreasing the probability of default is often a consequence of

value maximization. Vaughan and Vaughan (2008) start from this perspective. They see

as the primary objective of risk management that it should allow the company to reach its

goals by making sure that the company does not go out of business because of losses due

to realized risks. Such a risk management philosophy calls for measures that, for example,

reduce the likelihood of major accidents that lead to indemnifications the company would

be unable to pay, and also protects debt holders. It is also in line with the goals of the

regulations of the insurance industry in Europe, which are in our focus: the Solvency II

Directive names “protection of policy holders and beneficiaries” (The European Parlia-

ment and the Council of the European Union, 2009, Preambel, (16)) as the main objective

of the regulation and this implies that insurance companies should be solvent. The selec-

tion of the primary objective has to be augmented by a discussion of the details. These

could include the specification of a survival probability (as in Solvency II) if guaranteed

protection is not feasible. Once agreed upon, the objectives should be summarized in a

risk management policy (see Vaughan and Vaughan, 2008, p. 26).

Risk identification, the second step in the process, can be achieved using a number of

different means. A starting point can be any documentation of the company’s structure

and implemented processes, but also items like balance sheets, lists of physical assets and

(future) products can be a valuable sources of information. Vaughan and Vaughan (2008,

pp. 27f) list tools that can be used to extract information from these sources.

Risk assessment is the next step in the risk management cycle. The risks that have been

identified have to be described in terms of their severity and their probability. Here, the
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different definitions of risk discussed in section 2.1 imply different methods of completing

this task. Starting with one of Aven’s (2011b) definitions of risk, either of (A,C, P ) or

(A,C,U)-type, we see that this is not sufficient to progress further. An (A,C, P ) definition

has to be extended to incorporate model ambiguity, and for tasks like risk description,

risk assessment, or risk quantification—discussed in the following section—a probabilistic

approach is lacking for (A,C,U) definitions. This view is shared by Aven (2011b), who

introduces a risk description as

Risk descriptionA,C,P = (A,C, Pf , U(Pf ), U,K)

in the former case and

Risk descriptionA,C,U = (A,C,U, Ps,K)

in the latter case, adding background knowledge K as well as uncertainties or probabili-

ties, respectively, to the risk definitions. In the first case, Pf are frequentist probabilities,

U(Pf ) refers to the uncertainty about them, and U stands for further uncertainty factors.

In the second case, Ps relates to subjective, Bayesian probabilities. In order to obtain

a risk description, Aven (2011b, sect. 8.2) adapts a framework for quantitative risk as-

sessment from de Rocquigny, Devictor and Tarantola (2008), as shown in figure 2.2. The

Background Knowledge K

Measure of 
uncertainty

P(X <= x)

Model input 
X

G(X)
Quan��es of 

interest 
Z

Uncertainty 
expressed by 
P(Z <= z), E[Z], 

VAR[Z] etc. 
Sensi�vity 

analysis and 
importance 

ranking

Uncertainty 
assessment of 

uncertainty 
factors

Uncertainty evalua�onManagerial review and judgement

Uncertainty propaga�on

Decision

Figure 2.2: A framework for risk assessment (Aven, 2011b, Fig. 8.3)

uncertainty in this framework is in the input variables X and the quantities of interest

Z. This uncertainty is measured using probabilities in this framework. Nevertheless,
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Aven (2011b, sect. 8.2.1) requires both X and Z to have values that can be objectively

determined—today or in the future—in order to use them as a basis for scientific risk

assessment. The uncertainty about X is then propagated by the model G—sometimes by

means of simulations—and the result is a (subjective) probability distribution of Z. This

distribution can be evaluated using probabilistic measures such as expectation, variance,

or quantiles, but this analysis should also be augmented by qualitative assessment of the

background knowledge K and the model assumptions implicit in G. The information

gathered in this step enters into the decision-making step, which comes next in the risk

management cycle.

The decision-maker—guided by the risk management policy, if available—has the

choice between different responses to the risks that have been identified and evaluated. The

first decision is whether to do something about the risk in question or whether to retain

it. The answer depends on the severity of the potential loss, its probability, the resources

available to finance the loss, and the costs of risk mitigation measures (see Vaughan and

Vaughan, 2008, p. 30). A common device to visualize the first two dimensions is a risk

heat map such as shown in figure 2.3. Risks with low probability and low severity are

Probability

Se
ve
ri
ty

Figure 2.3: A risk heat map (see, for example, Weis, 2009, Abb. 5)

located in green areas of the heat map, indicating that usually no action is necessary, and

risks with high risk and high severity are located in red areas, indicating the need for risk

mitigation. For risks that are located in between the two areas, careful consideration of

costs and benefits of possible actions is necessary (see Weis, 2009, pp. 62f). Depending

on the area of application and the type of the risk, various measures can be taken. figure

2.4 provides a summary.

The main risk control techniques are risk avoidance and risk reduction. Risk avoidance
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Risk Control Risk Financing

Risk TransferRisk Reten�onRisk Reduc�onRisk Avoidance

Loss 
Preven�on

Loss Control

Figure 2.4: Risk treatment techniques, compiled from Vaughan and Vaughan (2008, sect.
I.2) and Weis (2009, pp. 66f)

is often applied to risk in the red area of the heat map. Activities that lead to such risks are

stopped or not taken up. As this might mean that business opportunities are not realized,

Vaughan and Vaughan (2008, p. 18) call risk avoidance “the last resort in dealing with

risk.” Risk reduction techniques can again be separated into two groups, loss prevention

and loss control. Loss prevention aims at lowering the probability of the risk. We can

think, for example, of improved maintenance procedures or the installation of additional

safety features. Loss control procedures aim to reduce the severity of a loss. Examples in

a financial context are some hedging strategies or limits systems for the traders of a bank.

Having applied risk control techniques, risk financing strategies describe how losses

are funded once they have occurred. One possibility is to basically do nothing, that is,

retain the risk. This is the default handling for risk with low probability and low severity

(see Weis, 2009, p. 67)—the green area on the risk heat map in figure 2.3—as well as for

risk that remains after risk avoidance, reduction and transfer have been applied. In these

cases, risk retention is voluntary and intentional. In contrast, risk retention is involuntary

if the other strategies are not available and unintentional if risk is retained that has not

been identified in the first place (see Vaughan and Vaughan, 2008, p. 19). The classical

example of a risk transfer is the purchase of insurance, another the producer’s forward

sale of her products on commodity markets. There is a variety of possible contracts that

transfer risk. The common characteristic is that the nature of the risk remains unchanged,

only the party exposed to the risk changes.

The combination of measures that is selected in the previous step has to be imple-

mented. The results are evaluated and suggestions for improvements enter again into the

risk management cycle.
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2.3 Financial Risk Management

We have discussed risk management in a general context and are now ready to focus on

financial risk management, especially in the (life-) insurance industry. As we once again

go through the risk management cycle, we concretize the ideas of the preceding section.

We center our attention on the risk evaluation step, which is the point in the cycle where

quantitative methods are most important.

The risk management objectives do not change in the financial context—equity value

maximization or reduction of default probability are certainly the main objectives. McNeil

et al. (2005) name other areas where risk management can be useful for companies. We

could call these secondary objectives. They name decreasing the cash flow variability,

which often leads to lower taxes, and cost benefits from a reduced need of external financing

(see Hennessy and Whited (2007) for an empirical study on the size of the costs of external

financing).

The task of risk identification is made easier if we know what types of risk we are likely

to encounter and how to name them. The types of risk most frequently found in the finan-

cial industry are, according to McNeil et al. (2005), market risk, credit risk, operational

risk, model risk, and liquidity risk. For insurance companies, in particular, underwriting

risk is also important. Table 2.2 summarizes the definitions. An especially important

problem in the risk identification of financial risk is to find options and guarantees em-

bedded in contracts into which the company has entered. For example, life-insurance

undertakings include guarantees and surrender options in their products (see, e.g., Grosen

and Jørgensen, 2000).

Next in the risk management cycle is the risk evaluation step. As suggested by Aven’s

(2011b) framework (see figure 2.2), quantitative methods are used to deal with the tasks.

We consider the financial risk associated with a portfolio. The portfolio under consid-

eration can be the position of a single trader at a bank or—in the case of an insurance

undertaking—the whole balance sheet (see section 3.2.1). We start with the model input

X which consists of a number of risk factors driving the portfolio value. Common risk

factors are stock prices, commodity prices, interest rates, and economic factors such as

inflation. For these risk factors, we have to find a measure of uncertainty P (X ≤ x). In

practice, this is much more difficult in our financial setting than in the example presented

by Aven (2011b, sect. 8.2.2) for two reasons. First, the risk factors can take not only a
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Risk Type Definition
Market Risk risk of loss or of adverse change in the financial situation result-

ing, directly or indirectly, from fluctuations in the level and in
the volatility of market prices of assets, liabilities and financial
instruments

Credit Risk risk of loss or of adverse change in the financial situation, resulting
from fluctuations in the credit standing of issuers of securities,
counterparties and any debtors . . . in the form of counterparty
default risk, or spread risk, or market risk concentrations

Operational Risk risk of loss arising from inadequate or failed internal processes,
personnel or systems, or from external events

Liquidity Risk risk that . . . undertakings are unable to realise investments and
other assets in order to settle their financial obligations when they
fall due

Model Risk [risk of loss from] using a misspecified (inappropriate) model for
measuring risk

Underwriting
Risk

risk of loss or of adverse change in the value of insurance liabilities,
due to inadequate pricing and provisioning assumptions

Table 2.2: Types of risk, definitions from the Solvency II directive (The European Parlia-
ment and the Council of the European Union, 2009, Article 13)(all except for model risk)
and (McNeil et al., 2005, p. 3)(model risk)

finite number of values, but any (positive) real number. Second, the quantity of interest

Z, which is the portfolio value or portfolio loss at some time T in the future, often depends

not only on the value of the risk factors at time T , but also on their history from today up

to T . If this is the case, the risk factors have to be modeled as stochastic processes (Xt).

The probability model for the risk factors is selected using the background knowledge

K, in particular historical data, theoretical considerations, and expert opinion (Pflug and

Römisch, 2007, p. 2). While this implies that the probabilities thus computed are subjec-

tive probabilities and in line with Aven’s (2011b) interpretations, his Bayesian ansatz for

the quantification of uncertainty is not promising in this case. Even for relatively simple

problems, experts are notoriously bad at estimating probabilities (see, e.g., Kahneman,

Slovic and Tversky (1982)). Additionally, the problem at hand calls at best for the esti-

mation of prior distributions on the parameters, which might not be independent, or even

for the estimation of prior probabilities for different classes of stochastic processes. As

model uncertainty is an important part of risk and risk management, we do not ignore

the issue and discuss our approach in section 2.4. The model M which translates the risk

factors into the distribution of portfolio value or loss Z can take different forms. Examples

are linear combinations of the risk factors, Delta-Gamma approximations of option values
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(Hull, 2012, 21.5 & 21.6), and the model for participating life-insurance in chapter 8. Risk

measures (see chapter 6) play an important part in the uncertainty assessment in financial

risk management. The qualitative aspects are part of the Solvency II regulations, see

section 3.2.1.

The general risk treatment devices discussed above can also be used in financial risk

management. Particular to financial risk are hedging strategies and the use of derivatives.

Implementation, evaluation, and review receive attention in the Solvency II regulations,

see section 3.2.

2.4 Robustness and Uncertainty in Financial Risk Manage-

ment

The need to deal with model uncertainty emerged from our discussion of risk definitions

and descriptions, but it is also a problem we encounter in practice. Stahl et al. (2012, ex.

1) present an example from life-insurance that illustrates the potential impact of model

uncertainty on risk assessment. The example also suggests that robust procedures can

help with the issues that arise if we are not—and cannot—be sure about our probability

model and its parameters5.

The approach by Stahl et al. (2012), which we also use in this thesis, is based on the

idea that all models are—we cannot know whether a true model exists and what this model

might look like—approximations. The concept of approximations was introduced into the

statistics literature by Davies (1995). The term approximation immediately provokes the

questions “How good is the approximation? How ’far’ are we away?” To answer these

questions, we need a distance or metric on the space of the objects of interest, in this

case probability distributions (see chapter 4). The concept has the advantage that it

can also be applied to other approximations that might be necessary in the quantitative

risk assessment process. This could be a dimension reduction if the number of risk factors

driving the portfolio value is too high to be tractable, as it is often the case for life-insurance

companies, or a Monte-Carlo simulation that is necessary if closed-form solutions do not

exists for the quantities of interest.

Having acknowledged that we use approximations throughout the risk assessment pro-

cess, we have to adapt the risk measurement procedures accordingly: distributions of the
5Here and in the following, the term model refers to the probability model for the risk factors X in the

risk assessment framework and, if necessary, the propagation model M .
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portfolio value that are “close” (in terms of the chosen distance) should be assigned “sim-

ilar” (in terms of some distance) risk values. This intuition is closely related to continuity

and robustness concepts in the Statistics literature (see chapter 5). Therefore, the results

from robust statistics can provide a guideline for the selection of risk measures that fit our

framework among the various classes of such functionals (see chapter 6).



Chapter 3

Regulatory Framework: Solvency

II

Risk management in an insurance company is strongly influenced by regulatory require-

ments. This is especially true with the upcoming Solvency II regulations in the European

Union1, which follow a risk-based approach (The European Parliament and the Council

of the European Union, 2009, Preamble (15)). In this chapter we show why and how the

regulatory framework is set up and give an overview of the regulations. We will see that

quantitative risk management and robustness play an important role in the Solvency II

framework.

3.1 The Road to Solvency II

An insurance company takes on and pools risks from its customers, sharing the risk among

them (see Vaughan and Vaughan, 2008, p. 34). It is therefore clear that the company

itself faces risks which stem directly from this business, the so-called underwriting risk (see

CEA Groupe Consultatif, 2007, p. 55). Historically, the regulation of insurance companies

was focused on underwriting risk. In Germany prior to 1994, for example, the supervisory

authorities had far reaching control over the business of insurance undertakings, including

its products (see Knauth, 2005, sect. 2). In life insurance, biometric actuarial assumptions

and cost calculations were prescribed by the regulator, in essence leading to fixed premia

across the life insurance market (see Faulhaber, 2004, sect. 2).
1In the discussion of institutions, legal texts, and other matter related to the European Union, we follow

the style guide of the European Commission (European Commission Directorate-General for Translation,
2012)

19
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The insurance regulation in the European Communities and now the European Union

shares the focus on underwriting risk. The First Council Directive 73/239/EEC concern-

ing non-life insurance (The Council of the European Communities, 1973) and the First

Council Directive 79/267/EEC concerning life insurance (The Council of the European

Communities, 1979) first aimed at coordinating the insurance regulations in the Member

States. The Directives broadly state when insurance companies may take up and continue

business and under which conditions the authorization may be withdrawn. The capital

requirements for insurance companies, a solvency margin and a minimum guarantee fund,

are derived from earned premiums, claims, and mathematical reserves, all of which are

related to underwriting. Since the 1970s, there have been changes of and additions to

these Directives, most recently by the Directives 2002/13/EC and 2002/83/EC (The Eu-

ropean Parliament and the Council of the European Union, 2002a,b). The resulting body

of regulation is known as “Solvency I” (see Wagner (n.d.)).

While drafting the Solvency I Directives, the Insurance Committee agreed that “a

more fundamental and wider-ranging review of the overall financial position of an insur-

ance undertaking, including investment risk, (Solvency II) should be commenced” (The

European Commission, 1999, sect. 1.1). Further evidence for the necessity to rework the

regulation was provided by the Sharma-Report (Sharma, 2002), which analyzes failures

and “near-misses” of European insurance companies and conducts detailed case studies.

The authors conclude that a regulatory regime should encompass risk-based capital and

solvency levels, and a broad set of early-warning tools for the regulators that cover dif-

ferent types of risks. Also, it should include supervision of qualitative aspects such as

management and risk management processes. They recommend the Lamfalussy process

for the legislative procedure which was developed by the Committee of Wise Men on the

Regulation of Security Markets (Lamfalussy, Herkströter, Rojo, Ryden, Spaventa, Walter

and Wicks, 2001). Council, Commission and European Parliament followed this advice.

There are four levels under the Lamfalussy approach (The European Commission,

2007, 2004b). At the first level, the Commission combines, after a full consultation pro-

cess, framework principles into a proposal to the Council and the European Parliament,

which adopt the suggestions in a Directive or Regulation. For the Solvency II project,

Council and European Parliament adopted Directive 2009/138/EC. The Commission has

recently proposed an amendment for the Directive called “Omnibus II” (The European

Commission, 2011). At the second level, the implementing measures are designed using
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Level Main Actors Results
I Council and European Parliament Directive 2009/138/EC

& Omnibus II Directive
II Commission, consulting EIOPC, European

Parliament, EIOPA
Implementing measures

III EIOPA guidance for national
supervisors

IV Commission enforced Community
Law

Table 3.1: The Lamfalussy process in context of the Solvency II project

the “comitology” procedure laid down in The Council of the European Communities (1999,

2006). In the case of the Solvency II project, the Commission asked the Level 3 Com-

mittee of European Insurance and Occupational Pensions Supervisors (CEIOPS) (The

European Commission, 2004a)2 for technical advice. At the time of writing, CEIOPS has

issued final versions of the Level 2 Advice3 and the Commission has conducted a public

consultation. The next step in the Lamfalussy process is the consultation of the Level 2

“comitology” committee (the European Insurance and Occupational Pensions Committee

(EIOPC), (see The European Parliament and the Council of the European Union, 2005))

and the European Parliament. If both agree, the Commission will adopt the Level 2 im-

plementing measures. In part, this advice is based on five “Quantitative Impact Studies”

(QIS), which gauge the impact of the new rules (see The European Commission (2010)

for further details on the fifth quantitative impact study (QIS5)). At Level 3, the respon-

sible committee, EIOPA, facilitates the cooperation between national supervisors, aiming

at consistent implementation of the Solvency II framework in the Member States. The

Commission is the main actor at Level 4. It enforces Community Law in the Member

States.

3.2 Structure

The Solvency II regulations can be grouped into three pillars, analogously to the Basel

II framework in banking regulation. Figure 3.1 gives an overview. We examine the three
2CEIOPS was given additional authority and was renamed “European Insurance and Occupational

Pensions Authority” (EIOPA) in 2010 (The European Parliament and the Council of the European Union,
2011). We cite documents published by CEIOPS under the original name, but refer to current and future
work using EIOPA.

3Available at https://eiopa.europa.eu/publications/sii-final-l2-advice/index.html(accessed
18/10/2011)

https://eiopa.europa.eu/publications/sii-final-l2-advice/index.html
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pillars in the following sections. The methods for measuring risk which are at center of

this thesis have to be used extensively in Pillar I, which is why we put a strong emphasis

on this part in our discussion of the Solvency II framework.

In this section we refer repeatedly to articles in the Solvency II Directive (The Euro-

pean Parliament and the Council of the European Union, 2009). To make the text more

readable, we use only the name and the article number, omitting the reference to the

Directive.

Pillar III
Transparency 
Requirements

Pillar II
Qualita�ve Requirements

Pillar I
Quan�ta�ve Requirements

‐ Total Balance Sheet 
   Approach
‐ Valua�on of Assets 
   and Liabili�es
‐ Own Funds
‐ Standard Formula and
   internal models

‐ Governance

‐ Risk Management

   Systems

‐ Reports to the Public
‐ Reports to Supervisors

Minimum / Solvency 
Capital Requirement

Own Risk and Solvency 
Assessment

Report to Supervisors / 
Solvency and Financial 

Condi�on Report

Figure 3.1: The three pillars of Solvency II

3.2.1 Pillar I: Quantitative Requirements

Pillar I covers the calculation of capital requirements in the form of the Solvency Capital

Requirement (SCR) and the Minimum Capital Requirement (MCR) and the necessary

steps leading up to them. The corresponding rules can be found in chapter VI of the

Solvency II Directive.

Total Balance Sheet Approach and Capital Requirements

The calculation of own funds and the capital requirements are based on an economic

balance sheet, meaning that it is obtained using market values of assets and liabilities

where available. Figure 3.2 shows the main elements.
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Under Solvency II, assets and liabilities should be valued such that they could be ex-

changed, or transferred or settled, respectively, “between knowledgeable willing parties in

an arm’s length transaction.” (The European Parliament and the Council of the Euro-

pean Union, 2009, Article 75). EIOPA in the Level 2 implementing Advice (see CEIOPS

(2009n)) and The European Commission (2010) recommend to follow the standards set

by the International Accounting Standards Board (IASB) in their International Finan-

cial Reporting Standards (IFRS) for the economic valuation of assets and liabilities other

than technical provisions. The main exception from this is that the value is not adjusted

for the credit quality of the insurance undertaking itself (see Article 75 (1)). The Euro-

pean Commission (2010, V.1.4) provides detailed explanations of other deviations from

IFRS. If possible the valuation should be based on a mark-to-market approach. Otherwise

mark-to-model valuation is permitted. In this case the undertaking has to take into ac-

count all relevant market data and take additional measures to convince management and

supervisors that the valuation is appropriate and reliable (see CEIOPS, 2009n, 3.36-3.38).

Assets Liabili�es

Assets at Market Value

Net Assets

Other Liabili�es

Best Es�mate + Risk 
Margin

Market Value

Basic Own Funds

Technical Provisions

Figure 3.2: The Solvency II Balance Sheet

Concerning the valuation of technical provisions, the mark-to-market approach is a

special case. If insurance obligations can be replicated reliably with financial instruments

that are traded in an active market, their value can be derived directly from the value of

those instruments (Article 77 (4)). The European Commission (2010, V.2.4) envisages this

possibility mostly for insurance products that promise the delivery of a portfolio of such

assets. When the cash-flow depends on other factors such as “the level, trend, or volatility



CHAPTER 3. REGULATORY FRAMEWORK: SOLVENCY II 24

of mortality, disability, sickness and morbidity rates” (The European Commission, 2010,

TP.4.8) or is related to expenses, it cannot be reliably replicated (see The European

Commission, 2010, TP.4.8). In this case, the value consists of a best estimate and a risk

margin (see Article 77). The computation of the best estimate has to be segmented at

least by line of business. The European Commission (2010, V.2.1) suggests how this can

be done. The best estimate is a probability weighted average of discounted future cash

flows and therefore dependent on the prediction of future cash flows and the discount

rates.

The projections of future cash-flows should include cash inflows (such as future premi-

ums and receivables but not investment returns) and outflows (such as benefits to policy-

holders, expenses, and tax payments) over the full lifetime of the insurance contracts (see

The European Commission, 2010, V.2.2.1). Also included are payments resulting from

bonuses to policy holders and expectations about inflation (see Article 78). Cash flows

from reinsurance contracts or special-purpose vehicles are not included and are valued

separately according to Article 81, taking credit risk into account.

The discount rates should be based on a risk free term structure of interest rates, either

derived from government bonds or, if this is not possible for some currency, from other

financial instruments such as swaps (see CEIOPS, 2009l). In the fifth quantitative impact

study (see The European Commission, 2010), different curves were provided, some with

an illiquidity adjustment.

Mostly following the final Level 2 Advice (CEIOPS, 2009m), the risk margin is calcu-

lated in QIS5 (see The European Commission, 2010, V.2.5) based on a scenario where the

insurance obligations, including corresponding reinsurance contracts, of the undertaking

are transferred to a new, empty, entity which is then equipped with sufficient capital to

cover the Solvency Capital Requirement (SCR) (see CEIOPS (2009m, 3.1.3.1) and the

discussion of the SCR later in this section) of the liabilities and corresponding as sets

that minimize this SCR. This SCR includes (see CEIOPS, 2009m, 3.49) underwriting risk,

counterparty credit risk from reinsurance, operational risk, and unavoidable market risk.

It can be calculated with the same method as the underlying’s SCR and has to be seg-

mented at least by line of business. The Cost-of-Capital margin CoCM is then calculated
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as (see CEIOPS, 2009m, 3.125)

CoCM = CoC
∑
t≥0

∑
line of business i

SCR(t, i)

(1 + rt)t

where rt is the risk free rate for t, SCR(t, i) is the Solvency Capital Requirement at t for

line of business i, and CoC is the Cost-of-Capital rate. The Cost-of-Capital rate used in

QIS5 was 6%, and this equals the lower bound set by CEIOPS (2009m, 3.1.3.2.2).

A balance sheet valuation as described in the previous paragraphs allows the insurance

undertaking to calculate its own funds. Figure 3.3 provides an overview of own funds in

Solvency II. They consist of so called basic own funds and ancillary own funds (see Article

87). Basic own funds are calculated as the difference between the value of assets and

liabilities, valued as described above, plus subordinated liabilities (see Article 88). They

are therefore on balance sheet items. In contrast, ancillary own funds, such as unpaid

share capital, letters of credit and guarantees, are off balance sheet items and their use

has to be approved by supervisors (see Articles 88 and 89).

Eligible Own Funds

Own Funds

Basic Own Funds Ancillary Own Funds

Tier I 
Tier II from Basic 

Own Funds

Tier II from 
Ancillary 

Own Funds

Tier III 
from 
basic 
Own 

Funds

Tier III from 
Ancillary Own 

Funds

Figure 3.3: Own funds in Solvency II

Basic own funds and ancillary own funds are further classified into tiers according to

their characteristics regarding loss absorption (see Articles 93-97). Only basic own fund

items can be in the best class, Tier 1. Both basic own fund items and ancillary own
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Tier 1 Tier 2 Tier 3
Subordination deeply subordinated effectively subordi-

nated
Loss absorbency fully paid in, first to

take loss
can be called up,
must absorb losses

Sufficient dura-
tion

≥ 10 years ≥ 5 years ≥ 3 years

Free from re-
quirements or
incentives to
redeem

no incentives, re-
deemable only at
option of undertak-
ing

moderate incen-
tives to redeem,
redeemable only at
option of undertak-
ing

no coupon pay-
ments/redemption
after breach of SCR

Free from
mandatory
fixed charges

coupons/dividends
cancelable, full
discretion over
amount

coupons/dividends
deferred after
breach of SCR

Absence of en-
cumbrances

yes yes yes

Table 3.2: Requirements for classes of basic own funds in Solvency II, Source: CEIOPS
(2009c, 3.208, 3.227, 3.231)

fund items can be in Tier 2 and Tier 3. Table 3.2 summarizes the classification criteria

from the Level 2 final Advice issued by CEIOPS (2009c). The criteria for ancillary own

funds are somewhat simpler: in general, ancillary own fund items “which, if called up and

paid in, would be classified in Tier 1” CEIOPS (2009c, 3.235), are classified in Tier 2;

ancillary own fund items that would be classified in Tiers 2 or 3, are classified in Tier 3.

The classification of own funds is relevant when coverage of the capital requirements is

concerned.

The two levels of capital requirements in Solvency II are the Solvency Capital Require-

ment and the Minimum Capital Requirement. The SCR has to be calculated at least once

a year (see Article 102) on a “going concern” basis as the 99.5% value at risk (VaR, see

chapter 6 for an in-depth discussion) of the basic own funds of the insurance undertaking

(see Article 101). The SCR can be calculated in one of three ways, using the standard for-

mula (see Articles 103-111), a full, or a partial internal model (see Articles 112-127). We

summarize the main features of the standard formula and internal models in the following

sections. Here, a main point of interest is that the SCR has to be covered by eligible

own funds. Both basic own funds and ancillary own funds are eligible to cover the SCR,

but there are restrictions concerning the tiers of the own funds. CEIOPS (2009c, 3.195)

opines that at least 50% of the eligible funds should consist of Tier 1 own funds and that
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no more than 15% should consist of Tier 3 own funds. Article 138 details the consequences

of non-compliance with the SCR. An undertaking that breaches the SCR immediately has

to inform the supervisor about the event and develop a recovery plan—detailed in Article

142—within 2 months. Within 6 months the undertaking has to make sure that it com-

plies with the SCR. The supervisor can extend this deadline or take additional measures

such as restrictions of the use of assets in exceptional circumstances.

The MCR has to be calculated quarterly as a linear function of technical provisions,

written premiums, capital-at-risk, deferred tax and administrative expenses (see Article

129(3)); it has to be calibrated such that it matches the one year, 85% value at risk of

the basic own funds (see Article 129(1)c). Additionally, it should lie in a corridor between

25% and 45% of the undertaking’s SCR (see Article 129(3)), but subject to a fixed floor

(see Article 129(1)d), which takes precedence over the corridor requirement. Taking this

together, CEIOPS (2009b) suggests the formula

MCR = max {min [max (MCRl; 0.25 · SCR) ; 0.45 · SCR] ;FloorB}

where MCRl is the linear MCR-function referred to in Article 129(3) and FloorB is the

MCR-floor, depending on the type of business of the undertaking. Only basic own funds

of Tier 1 and Tier 2 are eligible to cover the MCR, and the proportion of Tier 1 own

funds should be at least 80%. As losses to policyholders are more likely upon a breach

of MCR compared to just a breach of the SCR, the consequences of non-compliance with

the MCR, laid down in Article 139, are potentially more severe. Analogously to the SCR

case, an undertaking that breaches the MCR immediately has to inform the supervisor

about the event and develop a financial scheme, detailed in Article 142, that shows how

MCR-compliance can be restored. But in contrast to the SCR-recovery plan, it has to

be presented within one month, and compliance with the MCR has to be restored within

three months. The free disposal of assets can be restricted. If the supervisory authority

finds the financial scheme “manifestly inadequate” (Article 144(1)) or if the undertaking

does not comply with it within three months, the supervisory authority may withdraw the

authorization to do business (see Article 144(1)).
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SCR

non‐life 
underwri�ng risk

life underwri�ng 
risk

health underwri�ng 
risk

market risk

counterparty credit 
risk

opera�onal risk

Figure 3.4: Risks that have to be included in the SCR according to Article 101

Standard Formula

The calculation of the SCR using the standard formula is detailed in Articles 103-112. It is

the sum of the Basic Solvency Capital Requirement, a capital requirement for operational

risk, and an adjustment for the loss-absorbing capacity of technical provisions and deferred

taxes (see Article 103). According to Article 104, the calculation of the Basic Solvency

Capital Requirement is further split up into risk modules for non-life underwriting risk,

life underwriting risk, health underwriting risk, market risk, and counterparty credit risk.

In this way, all types of risks shown in figure 3.4 are covered by the Standard formula.

The result of each of the risk modules is a one-year value at risk at a 99.5% confidence

level. Explicit formulas for the risk modules and their sub-modules derived from the

requirements in Article 105 and correlations for the aggregation are provided in the final

Level 2 Advice, see CEIOPS (2009h,e,f,i,d, 2010). Studies have shown that the standard

formula has deficiencies in some cases (see, e.g., Pfeiffer and Strassburger (2008) and

Sandström (2007)).

Internal Models

The Solvency II standard formula is, by definition, not adapted to the specifics of a sin-

gle undertaking. Already at the beginning of the process leading up to the Solvency II

regulations, the European Commission wanted to encourage the use of internal models,

which better capture the risk profile of an undertaking, by opening up the possibility of

reduced regulatory capital requirements (see The European Commission, 2002a, 207). An
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internal model, which produces a probability distribution forecast of relevant quantities,

can also aid with identification, understanding, and measurement of risks, which facilitates

calculation and allocation of economic capital (see International Association of Insurance

Supervisors, 2007; The European Commission, 2002b). The following discussion of the re-

quirements for internal models in Solvency II will suggest that the cost of implementation

and maintenance of an internal model, both in terms of financial and human resources, can

be high. Therefore, undertakings have to take positive and negative aspects into account

when making a decision about the development of such a model (see International Associ-

ation of Insurance Supervisors, 2007, 13). This is especially true in the Solvency II context

because a reversion to the standard formula requires authorization of the supervisors (see

Article 117).

The use of a full or partial internal model in Solvency II is governed by Articles 113-127.

The calculation is divided just as for the standard formula. Insurance undertakings can use

internal models for one or more of the three main parts of the SCR (Basic Solvency Capital

Requirement, operational risk, adjustment), and for one or more of the risk (sub-) modules

of the Basic Solvency Capital Requirement, given supervisory approval (see Article 113).

In any case, supervisory approval is necessary for the introduction and major changes of

an internal model. An insurance undertaking has to apply for authorization, providing

documentation that the model fulfills the requirements of Articles 120-125. The final Level

2 Advice by CEIOPS (2009g) on the application process suggests the introduction of a

pre-application phase in which the supervisory authorities understand basic facts of the

model and communicate possible difficulties to the undertaking. The application process

itself, which takes a maximum of six months, starts with the submission of the complete

documentation of the internal model to the regulator. Being based on this documentation,

it can also include on-site inspections and requests for additional information (see CEIOPS,

2009g). The supervisor may also request changes to the model, which can stop the process

in severe cases.

Standards for Internal Models

The internal model of an insurance undertaking under Solvency II has to pass a series of

quality checks in order to be approved by the supervisors. The requirements encompass

the use test (Article 120), statistical quality standards (Article 121), calibration standards

(Article 122), profit and loss attribution (Article 123), validation standards (Article 124),
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and documentation standards (Article 125).

The use test is a regulatory instrument that is used in many jurisdictions where internal

models are used in financial market regulations, both in banking and insurance. Examples

are the Basel II rules (see Basel Committee on Banking Supervision, 2006) and the Swiss

Solvency Test (SST) (see Eidgenössische Finanzmarktaufsicht FINMA, 2008, X.B) for

Swiss insurance undertakings. The rationale behind the use test is that an undertaking

that only uses its internal model for the calculation of regulatory capital has an incentive

to tweak the model in such a way that the capital requirement is reduced. In contrast, an

undertaking that has to demonstrate the use of its internal model for internal purposes

beyond the calculation of regulatory capital has an incentive to improve the quality of

the model. CEIOPS (2009a, 3.3.7 & 3.105-3.127) derives from Article 120 the areas in

which the internal model should be used (see figure 3.5) and suggests that a “sufficiently

material” use of the internal model should be checked based on ten principles (see table

3.3).

Use test

Decision‐making 
process

System of 
governance

Economic capital assessment and 
alloca�on 

Risk‐management 
system

Solvency capital assessment and 
alloca�on

Figure 3.5: Areas of use of an internal model according to CEIOPS (2009a, 3.35).

Some of these principles have robustness implications for the internal model. CEIOPS

(2009a, 3.103) mentions robustness as one aspect of the quality of the internal model which

is central to the Foundation Principle. Additionally, Principle 1 states that senior manage-

ment and the advisory board—both groups usually include non-experts in stochastic and

actuarial models—have to understand the internal model, including the methodologies

employed and its limitations. While non-robustness is a limitation itself, it is also much

harder to understand a model whose output changes widely with small changes of data
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Foundation
Principle:

The undertaking’s use of the internal model shall be sufficiently material to result in
pressure to improve the quality of the internal model

Principle 1: Senior management and the administrative, management or supervisory body, shall
be able to demonstrate understanding of the internal model

Principle 2: The internal model shall fit the business model
Principle 3: The internal model shall be used to support and verify decision-making in the under-

taking
Principle 4: The internal model shall cover sufficient risks to make it useful for risk management

and decision-making
Principle 5: Undertakings shall design the internal model in such a way that it facilitates analysis

of business decisions
Principle 6: The internal model shall be widely integrated with the risk-management system
Principle 7: The internal model shall be used to improve the undertaking’s risk-management sys-

tem
Principle 8: The integration into the risk-management system shall be on a consistent basis for

all uses
Principle 9: The Solvency Capital Requirement shall be calculated at least annually from a full run

of the internal model, and also when there is a significant change to the undertaking’s
risk profile, assumptions underlying the model and / or the methodology arising from
decisions or business model changes, and whenever a recalculation is necessary to
provide up to date information for decision making or any other use of the model, or
to fulfil supervisory reporting requirements

Table 3.3: Principles for the use test as suggested by CEIOPS (2009a, pp. 41-47)

or assumptions than to understand a robust one. Furthermore, non-robustness facilitates

manipulation of model results by small tweaks of data or assumptions, which CEIOPS

(2009a, 3.107) explicitly wants to prevent. The main part of compliance with the use test

is, according to the principles given by CEIOPS (2009a), that the internal model output

has to be used in decision-making processes (see Principles 3-5) and risk management (see

Principles 6-8). This makes robustness of the internal model important for the undertak-

ing itself, as reliable inputs are of high importance in any decision making process (see

Meyburg, 2006). Finally, Principle 9 suggests that in many cases the internal model will

have to be run more often than the once-a-year frequency necessary for SCR calculations.

Especially for larger undertakings or groups, such a model run typically needs significant

computational time and resources. Therefore, it is desirable that the methodologies used

in the internal model facilitate (relatively) fast computations. We address this issue in

Part III of this thesis.

The statistical quality standards (see Article 121) set quality requirements for the

methods used in the internal model and the data used as input to the internal model.

Additionally, they clarify the scope of the internal model. We focus on two aspects of the

statistical quality standards: the nature of the probability distribution forecast and the

required properties of the methods applied in the model.

The probability distribution forecast is defined in Article 13(38) as “a mathematical
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function that assigns to an exhaustive set of mutually exclusive future events a probability

of realisation”. Additionally, the Level 1 text only requires that the probability distribution

forecast is sufficient to rank risks and to be applied in the internal processes required by the

use test (see Article 121(4)). The output of internal models could range from continuous

distributions to discrete distributions which only assign probabilities to some key events

(CEIOPS, 2009a, 5.52). While the former is certainly preferable, at least if the assumptions

necessary to obtain a continuous distribution through interpolation, extrapolation, or

fitting of a parametric model are justified, the latter might still be reasonable in some

cases. Such a model can be approved by supervisors if it performs as well as models that

are standard market practice, if it is sufficient considering the undertaking’s risk profile

and the proportionality principle, or if there are no better models available (CEIOPS,

2009a, 5.54). A risk type that can fall into the latter category is operational risk, where

usually only few observations are available to build a model with (see Schäl, 2011, Part

II, B).

Concerning the methods used in the internal model, the Level 1 text states that they

have to be applicable, relevant, and adequate (see Article 121(2)). CEIOPS (2009a, 5.62)

interprets the term “adequate” as appropriate, up to date, detailed and parsimonious,

transparent, and robust and sensitive. We therefore have an explicit requirement for

the use of robust statistical methods such as those introduced in chapter 5. Another

item on the list of requirements for the methods of the internal model relevant in the

context of this thesis is concerned with the assumption underlying the applied methods.

The undertaking has to identify and document all assumptions that enter the model

together with their implications for model performance and model risk and compare them

to alternative assumptions (see CEIOPS, 2009a, 5.115-5.118).

The calibration standards (see Article 122) give insurance undertakings the possibility

to deviate from the standard time period of one year or the standard risk measure value at

risk for internal model purposes or for the calculation of the SCR. Also, undertakings may

use approximations when they cannot derive the SCR directly from the probability forecast

distribution output by the internal model. In both cases, it is necessary that the level of

policyholder protection obtained in this way is equivalent to that of Article 101(3)—that

is as provided by a one-year, 99.5% value at risk (see CEIOPS, 2009a, 6.50-6.57).

The aim of the validation processes is that the undertaking gains confidence in the

functioning and the results of its internal model (see CEIOPS, 2009a, 8.15). Accordingly,
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many different aspects of the internal model have to be validated. CEIOPS (2009a, 8.18)

requires at least validation of data, methods, assumptions, expert judgement, documenta-

tion, systems and IT, model governance, use test, and the validation tools and processes

themselves. For the quantitative aspects of the validation procedure, CEIOPS (2009a,

8.54) prescribes a number of tools which have to be used by all undertakings, namely the

testing of results against experience, testing the robustness of the internal model, stress

and scenario testing, and profit and loss attribution.

Testing of results against experience is known as backtesting, although in an insurance

context, additional methods that are not part of the backtesting approach in banking

might be required, for example due to a lack of data (see CEIOPS, 2009a, 8.57). It

consists of running the model with input data in such a way that the model predictions

can be compared to historical realizations (see, e.g., Crouhy, Galai and Mark, 2001, 4.3.4).

The problem of robust backtesting of value at risk models has been addressed by Escaniano

and Olmo (2008).

For the test of robustness, CEIOPS (2009a, 8.3.3.1.2) suggests a sensitivity analysis

and a stability check. The sensitivity analysis consists of changing parameter or model

assumptions and re-running the model. Ideally, only significant changes in the assump-

tions should lead to significant changes in the results. Large differences in the output

of the model which are the results of only small changes to the assumptions have to be

investigated and the reasons explained to the supervisor. The rationale behind the sen-

sitivity analysis is quite similar to that behind the robustness concepts in statistics (see

chapter 5 in particular) that are the basis for our work in the following chapters. The

second part of the test of robustness, the stability test, is concerned with reproducibility

of model results when the input assumptions for model and parameters do not change,

but the (pseudo)random numbers used in a stochastic model do. In this case, any changes

in the output have to be “reasonable, explicable and comprehensible” (CEIOPS, 2009a,

8.87).

The third of the validation tools, stress and scenario testing, is mainly an extension

of the sensitivity analysis to scenarios. It is concerned with the development of adverse

scenarios and the investigation of the consequences for the company if these scenarios

occur (see Aragonés, Blanco and Dowd, 2008). Its main area of application is in Pillar II,

though, where stress and scenario tests are an important part of the own risk and solvency

assessment (CEIOPS, 2009a, 8.90).
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Finally, the profit and loss attribution is a tool for both validation and use test. The

yearly exercise of attributing profits and losses to business units leads to a risk profile that

should be matched by the internal model (see CEIOPS, 2009a, 7.3 for details). In terms

of the use test, the profits and losses from this step should be used in the risk governance

processes (see CEIOPS, 2009a, 3.48).

Details on the documentation of the internal model are provided by CEIOPS (2009a,

chapter 9). It has to show that the model complies with Articles 120-124 in such a way

that an “independent and knowledgeable third party [. . . ] could understand the reason-

ing and the underlying design and operational details of the internal model” (CEIOPS,

2009a, 9.55). This includes details on the employed mathematical methodologies and

their assumptions, the model implementation and validation, weaknesses of the model,

and changes to it.

3.2.2 Pillar II: Qualitative Requirements

Pillar II of the Solvency II framework is concerned with the system of governance of

insurance undertakings. The qualitative requirements are laid down in Articles 41-50 (see

table 3.4) and the corresponding Level 2 Advice on implementing measures by CEIOPS

(2009k).

The governance system has to provide the means to prudently manage and run the

insurance company. This includes a transparent organizational structure, clear responsi-

bilities, written documentation of company policies with respect to the areas named in

Articles 44-49 of the Directive (see also Article 41) as well as the persons who effectively

run the undertaking (at least two, the “four eyes principle”, see CEIOPS (2009k, 3.3)):

they have to be fit (meaning qualified and experienced) and proper (of good repute) (see

Articles 42 and 43).

Article 41 of the Level 1 text establishes four functions which are the responsible parties

for certain areas of the governance system—namely risk management, internal control,

internal audit, and actuarial (see figure 3.6). The undertaking has significant freedom in

assigning (groups of) people to these functions, from single persons to organizational units

and outside experts (see Oehlenberg, Stahl and Bennemann, 2011, Ch. 3). In some cases

the proportionality principle might even allow one person or group of persons to take on

more than one function (see CEIOPS, 2008a, 45-46).

The internal control function has to make sure that the insurance company complies
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Figure 3.6: Functions in the Solvency II governance system

with “applicable laws, regulations and administrative provisions” (CEIOPS, 2009k, 3.254)

and report problems to the administrative, management or supervisory body. The in-

dependent internal audit function has to evaluate the governance system and, especially,

the internal control. The actuarial function is concerned with the calculation of technical

provisions and assisting in risk management tasks and the building of internal models. In

the context of this thesis, the most important function is risk management, and therefore

we take a more detailed look.

The risk management system of an insurance company should encompass well docu-

mented risk strategies, processes and reporting procedures (see CEIOPS, 2009k, sect. 3.3).

The risk categories covered are not exhaustively prescribed by those incorporated in the

SCR, but also include other relevant risks (CEIOPS, 2009k). The Level 1 text names un-

derwriting and reserving, asset liability management, investment, liquidity, concentration,

and operational risk (see Article 44(2)). CEIOPS (2009k, sect. 3.3) adds credit, strategic

and reputational risk, and also gives advice on risk mitigation techniques which have to

be implemented.

The risk management function co-ordinates and monitors the risk management ac-

tivities in the insurance company. It has to compile a view not only of the current risk

situation in the company but also of emerging risks, and report the results to the admin-

istrative, management or supervisory body. While the proportionality principle applies to

the risk management function, CEIOPS (2008a, 52) makes it clear that the end result of

the risk management process, namely “getting a clear picture of the undertaking’s risks”
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(CEIOPS, 2008a), is not affected. The risk management function is also responsible for

any internal model, its integration, documentation, performance evaluation, and validation

(see CEIOPS, 2009k, 3.214-3.219).

The results of the activities of the risk management function also enter the Own Risk

and Solvency Assessment (ORSA) (see Article 44), which requires the insurance company

to “properly assess their own short and long term risk and the amount of funds neces-

sary to cover them” (CEIOPS, 2008b, 8) with the purpose of ensuring “that undertakings

have robust processes for assessing and monitoring their overall solvency needs”(CEIOPS,

2008b, 24). The process of compiling the ORSA should lead to a better understanding by

the company of its own risk and solvency situation and enable it to prove this understand-

ing to supervisors. It includes the identification of potential issues that could impact the

solvency of the undertaking.

Article Topic
41 General governance requirements
42 Fit and proper requirements
43 Proof of good repute
44 Risk Management
45 Own risk and solvency assessment
46 Internal control
47 Internal audit
48 Actuarial function
49 Outsourcing
50 Implementing measures

Table 3.4: Articles in Directive 2009/138/EC concerning Pillar II

3.2.3 Pillar III: Transparency Requirements

Pillar III of the Solvency II regulations covers disclosure requirements to supervisors (see

Articles 35, and 254) and to the public (see Articles 51-56 and 256). CEIOPS (2009j) has

issued final Level 2 Advice on the topic.

The Solvency Financial Condition Report (SFCR) is the report that addresses the pub-

lic. CEIOPS (2009j, 3.62) envisages that the report is of interest not only for shareholders

and policyholders, but also for rating agencies, financial analysts and competitors, among

others. It has to be published once a year (14 weeks after the end of the undertaking’s

financial year, at the latest) and in the case of predefined events such as breaches of the

SCR and MCR levels (see Article 54 and CEIOPS (2009j, 3.522 & sects. 3.2 & 3.7.1)). The
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content of the SFCR is summarized in table 3.5. The Quantitative Reporting Templates

(QRT) are used to summarize quantitative information like the balance sheet, MCR and

SCR. They will be detailed in Level 3 documents (CEIOPS, 2009j, 3.32 & sect. 3.5). The

Executive Summary
Business and Performance
System of Governance
Risk Profile
Regulatory Balance Sheet
Capital Management
Undertakings with an approved internal model
Annex - Quantitative reporting templates

Table 3.5: Structure of the RTS and SFCR as suggested by CEIOPS (2009j)

Report to Supervisors (RTS) is similar to the SFCR, but for the use of the supervisory

authorities only. While CEIOPS (2009j, sect. 3.3) suggests a very similar structure for

both documents (see table 3.5), the RTS should contain additional information such as the

ORSA (CEIOPS, 2009j, B.4) and non-public QRTs. Just as the SFCR, the RTS usually

has to be published once a year and at predefined events. The supervisor may request

additional information at any point of the Supervisory Review Process (SRP) (see Article

35(2)a(iii) and CEIOPS (2009j, sect. 3.7.2)).



Part II

Robust Risk Management Process



Chapter 4

Probability Distances

4.1 Metric Spaces and Probability Distances

The tool of choice for dealing with distances in a strict mathematical setup is the defini-

tion of a metric space. We start by recalling the general definition before moving on to

probabilistic objects:

Definition 4.1.1 (see, e.g. Reed and Simon (2005, p. 4))

A metric space (M,d) consists of a set M and a function d : M ×M → R such that for

any x, y, z ∈M

(i) d(x, y) ≥ 0 (non-negativity).

(ii) d(x, y) = 0 if and only if x = y (identity).

(iii) d(x, y) = d(y, x) (symmetry).

(iv) d(x, y) ≤ d(x, z) + d(z, y) (triangle inequality/subadditivity).

The function d is called a metric. A function d that satisfies the relaxed condition

(ii)’ d(x, y) = 0 if x = y

instead of (ii) is called semi-metric.

As we deal with random events, we need metrics defined on sets of objects from proba-

bility theory such as measures, distributions, and random variables. What makes our task

easier is that our main application is the investigation of portfolio value or portfolio loss

39
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distributions which are related to real numbers. Assume that µ is a probability measure

on the Borel sigma algebra B(R) on the real line. Then, setting

F (x) = µ((−∞, x])

or, in the other direction,

µ((a, b]) = F (b)− F (a)

we have a direct relationship between a measure µ and a distribution function F = Fµ. In

some cases, we can get an additional relationship between measures and random variables.

Let X = X(R, (Ω,F ,P)) denote the set of real-valued random variables on some probabil-

ity space (Ω,F ,P). Rachev (1991, section 2.5) shows that the set of joint distributions

generated by random variables X,Y ∈ X equals the set of all two-dimensional probability

measuresM2 in this case,

LX2(R, (Ω,F ,P)) =M2(R),

as long as P does not put any mass on atoms of F . This fact gives us some flexibility

when choosing the objects we want to consider.

Although we focus on distributions on the real line, we provide more general results

where it does not complicate matters too much. Let Mk(M) denote the space of prob-

ability measures on the Borel σ-algebra B = B(Mk) (Mk denotes the k-fold Cartesian

product of M). Furthermore, let {α, β, . . . , γ} ⊆ {1, 2, . . . , k}. Then Tα,β,...,γP denotes

the marginals in the α, β, . . . , γ components of some P ∈Mk.

Definition 4.1.2 (see Rachev (1991, pp. 10-11))

A mapping d :M2 → [0,∞] is called a probability distance (with parameter K := Kµ ≥ 1)

if the following holds:

(i) If µ ∈M2, then µ(∪x∈M{(x, x)}) = 1⇔ d(µ) = 0.

(ii) If µ ∈M2, then d(µ ◦B−1) = d(µ) where B(x, y) := (y, x).

(iii) If µ12, µ13, µ23 ∈ M2 and there exist ν ∈ M3 such that T12ν = µ12, T13ν = µ13,
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T23ν = µ23 then

d(µ13) ≤ K (d(µ12) + d(µ23)) .

In case K = 1, d is called a probability metric. If d only satisfies the relaxed condition

(i)’ If µ ∈M2, then µ(∪x∈M{(x, x)}) = 1⇒ d(µ) = 0

instead of (i), it is called probability semi-distance or probability semi-metric, respectively.

We can analogously define a probability distance on random variables. From now on,

let (M,d) be a separable metric space (sms). Denote by X(M) = X(M, (Ω,F ,P)) the

set of random variables on (Ω,F ,P) taking values in M and by LX2 the space of joint

two-dimensional distributions PX,Y generated by pairs of random variables X,Y ∈ X. We

can define a probability distance on X via

d(X,Y ) = d(PX,Y )

for any probability distance d.

Definition 4.1.3 (see (Rachev, 1991, pp. 10-11))

A mapping d : LX2 → [0,∞] is called probability semi-distance (with parameter K :=

Kµ ≥ 1), if d(X,Y ) = d(PX,Y ) satisfies the following properties for all X,Y, Z ∈ X:

(i) P(X = Y ) = 1⇒ d(X,Y ) = 0.

(ii) d(X,Y ) = d(Y,X).

(iii) d(X,Z) ≤ K(d(X,Y ) + d(Y,Z)).

d is a probability distance if equivalence holds in (i). For K = 1 we have a probability

semi-metric or metric, respectively. A probability metric is called s-ideal if additionally

(iv) µ(cX, cY ) = ‖c‖s µ(X,Y ) for c, s ∈ R (homogeneity).

(v) µ(X + Z, Y + Z) ≤ µ(X,Y ) for any r.v. Z independent of X and Y (regularity).

In the following, we set K = 1.

Probability metrics can be classified into different groups by the type of “sameness”

considered in (i) of definitions 4.1.2 and 4.1.3 (see, e.g., Rachev (1991) and Rachev, Stoy-

anov and Fabozzi (2008)). If the metric d depends on the joint distribution of the objects,
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it is called a compound metric. Since we have defined a probability metric in this way, a

“compound [. . . ] metric [. . . ] is any probability [. . . ] metric” (Rachev, 1991, p. 39). For

random variables this means that a compound metric is zero if and only if the random

variables considered are equal almost everywhere.

Example 4.1.4 (p-Average Metric, (see Rachev et al., 2008, p. 85))

Let X,Y ∈ Xp(R) be two real-valued random variables with finite p-th moment on some

probability space (Ω,F ,P). Then the p-average metric given by

Lp(X,Y ) = IE [|X − Y |p]1/p

for some p ∈ [1,∞) is a compound metric. Note that Lp(X,Y ) = 0 implies that X = Y

almost everywhere, but for a sequence X1, X2, . . . of random variables, each Xi ∈ Xp,

IE [|Xn −X|p]1/p → 0 does not imply that Xn → 0 a.s.

We relax the condition in the definitions by ignoring the joint distribution and focusing

on the marginal distributions. In this way, we call a probability semi-metric d a simple

probability metric if for µ ∈ M2 it holds that T1µ = T2µ ⇔ d(µ) = 0, or, for random

variables X,Y ∈ X, if FX(x) = FY (x) ⇔ d(X,Y ) = 0. This requirement turns out to be

sufficiently strong for our applications and there are various examples of such metrics. We

present those simple metrics here (see, e.g., Rachev et al. (2008) for the definitions), that

are important in robust statistics and our applications.

Example 4.1.5

The Kolmogorov metric dK , which is known from the central limit theorem, is defined as

dK(F,G) = sup
x∈R
|F (x)−G(x)| (4.1)

or, for random variables,

dK(X,Y ) = sup
x∈R
|FX(x)− FY (x)| . (4.2)

The absolute distance between the two distribution function is often largest close to the

means of the distributions, therefore the focus os this metric is on the middle part of the

distributions while differences in the tails are less important (see Rachev et al. (2008, p.

77)).
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The Lévy metric is given by

dL(F,G) = inf
ε>0
{F (x− ε)− ε ≤ G(x) ≤ F (x+ ε) + ε, ∀x ∈ R)} (4.3)

and analogously for random variables. The Lévy metric can be interpreted as measuring

the distance between the graphs of the cumulative distribution functions. Again as in

the previous case of the Kolmogorov metric, there is some focus on the middle part of

the distributions, because the c.d.f.s are close to zero or one, respectively, in the tails for

any distribution by definition. The Lévy metric is a special case of the Prohorov metric

defined by

dPr(µ) = inf
ε>0
{T1µ(A) ≤ T2µ(Aε) + ε, T2µ(A) ≤ T1µ(Aε) + ε∀A ⊂ B} (4.4)

for µ ∈ M2 and Aε the ε-neighborhood of A ∈ B = B(M) w.r.t. the distance of the

measurable space (M,d) .

Another example of simple probability metrics are the Lp-metrics between distribution

functions, defined by

θp(F,G) =

(∫ ∞
−∞
|F (x)−G(x)|p dx

)1/p

(4.5)

for some p ≥ 1. For larger value of p, the relevance of larger values of |F (x)−G(x)| in-

creases relative to that of smaller values. In the limit as p→∞, we obtain the Kolmogorov

metric from equation (4.2).

In contrast to these examples, the Wasserstein metric—the Lp metric between inverse

distribution functions—puts the focus on differences in the tails of the distributions. As

risk management is concerned with tail-events, the Wasserstein metric turns out to be a

natural choice in this context. Therefore, we discuss its properties in detail in section 4.3.

We obtain the class of primary probability metrics if we further relax the “sameness”

requirement. Let h :M→ R. For a primary probability metric, condition (i) in definition

4.1.2 and is replaced by

h(T1µ) = h(T2µ)⇔ d(µ) = 0.

We can adapt definition 4.1.3 in a similar fashion. In this way, two distributions are equal
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if they have certain characteristics—for example moments or the sum of moments—in

common. Such a characterization is too weak for risk management applications because

risk measures often depend on the specific distribution function.

Example 4.1.6 (Engineer’s Metric)

The engineer’s metric is based on the expectation operator,

EN(X,Y ) = |IEX − IEY |

for some random variables X,Y with finite first moments.

4.2 Weak Convergence

An important concept we need for robustness considerations is the notion of weak conver-

gence. We discuss it here because it is related to the structure of the space of measures

under consideration.

Let (M,d) be a separable complete metric space with Borel σ-field B and let C(M)

denote the space of bounded, continuous functions fromM to R. Furthermore, letMR(M)

denote the set of finitely additive Radon measures on B. For the probability measuresM

on B, we haveM⊂MR. Merkle (2000, Ch. 4) explains that the spaces relate as

original space C(M)

dual space MR(M) = C(M)∗

double dual C(M)∗∗ ⊃ C(M).

Defining

〈f, µ〉 =

∫
f(x)dµ(x), (4.6)

we have the choice of different topologies onMR (and thereforeM), among them the weak

topology defined by 〈f, µ〉 with f ∈ C(M)∗∗ and the weak-∗ topology defined by 〈f, µ〉

where f ∈ C(M). We select the weak-∗ topology which is the weakest topology—the

topology with the fewest open sets—such that 〈f, µ〉 with f ∈ C(M) is continuous. This

is the standard approach in the relevant branch of literature: “The convergence in the weak

star topology is usually called the weak convergence in the probabilistic literature. This
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does not lead to a confusion, since the true weak convergence is never studied.” (Merkle,

2000, sect. 4.1).

Definition 4.2.1 (Weak Convergence of Probability Measures)

Let (µn)n≥0 be a sequence of probability measures inM(M) and let µ ∈M(M). We say

that µn converges weakly to µ, µn ⇒ µ, if

∫
ϕ(x)µn(x)→

∫
ϕ(x)dµ(x)

for all bounded continuous functions ϕ ∈ C(M).

Often we are not interested in the space of all probability measures but in a subspace

Mp consisting of the probability measures with p-th finite moment 1 ≤ p < ∞. This is

especially true if we want to use the p-Wasserstein distance as a metric, which is only

defined for probability measures with this property. In this case, the class of functionals

which have to converge in order to have weak convergence of measure is somewhat broader,

see Villani (2009, Ch. 6).

Definition 4.2.2 (Weak Convergence of Probability Measures with finite p-th Moment)

Let (µn)n≥0 be a sequence of probability measures in Mp(M) and let µ ∈ Mp(M). We

say that µn converges weakly to µ, µn ⇒ µ, if

∫
ϕ(x)µn(x)→

∫
ϕ(x)dµ(x)

for all continuous functions ϕ with ϕ(x) ≤ c(1 + d(x0, x))p for some constant c ∈ R and

some—and therefore any—x0 ∈M .

4.3 The Wasserstein Metric

We take a closer look at the Wasserstein metric, which was discovered independently by

multiple researchers (among them Vasershtein (1969)). We use the more common Ger-

man spelling “Wasserstein” instead of “Vasershtein”. The metric is known under different

names in different contexts, such as Mallow’s metric, Kantorovich metric, or earth movers

distance. Rüschendorf (2002) gives a short time line of its development. Among the vari-

ous possible degrees of generality for the definition, we follow Bickel and Freedman (1981)

and use notation from Shao and Tu (1996).
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Definition 4.3.1

Let (M,d) be a separable metric space with norm. Let 1 ≤ p < ∞ and Mp = Mp(M)

the set of probability distributions γ on B(M) with
∫
‖x‖p γ(dx) < ∞. The Wasserstein

metric is defined as

dp(F,G) = inf
L((X,Y ))∈τ(F,G)

{E [d(X − Y )p]1/p} (4.7)

= inf
γ∈τ(F,G)

(∫
M×M

d(x− y)pdγ(x, y)

)1/p

(4.8)

where τ(F,G) denotes the set of joint distribution functions of pairs of M -valued random

variables random variables X,Y with marginals F ∈Mp and G ∈Mp, respectively.

We write dp(U, V ) = dp(FU , FV ) for the distance between the distributions of two

random variables U, V with distributions FU and FV , respectively, inMp.

The definition in equation (4.8) leads to interpretations in the context of transportation

theory: the Wasserstein metric provides a measure for the cost of moving the (probability)

mass distributed on M according to F such that it is distributed according to G.

Before using the Wasserstein metric and investigating its properties, we have to answer

the question whether the functional in definition 4.3.1 is indeed a metric. We can obtain

this result if the infimum in equation (4.8) is attained.

Proposition 4.3.2

The infimum in equation (4.8) is attained. We have the duality relationship

dp(F,G) = sup

{∫
fd(F −G) : |f(x1)− f(x2)| ≤ ‖x1 − x2‖ ∀x1, x2 ∈ B

}
.

Proof. Kellerer (1985, thm. 1) shows the first part for tight measures. By Ulam’s theorem

B.2.3, every probability measure in Mp is tight, so Kellerer’s (1985) proof applies. He

also shows the second part but tightness is not necessary in this case.

Dall’Aglio (1956) has shown the first part for M equal to the real line.

Now that we have this result, the main idea is to find such measures for which the

infimum in equation (4.8) is attained and then to apply Minkowski’s inequality. This

technique is also used in the proof of proposition 4.3.8. Here, we have the basic result that

the Wasserstein metric is indeed a metric.
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Proposition 4.3.3

The map dp(F,G) is a metric onMp.

Proof. See Bickel and Freedman (1981, Lemma 8.1) for the proof.

As already noted above, we mainly work on the real line. In this case, proposition

4.3.4 gives us a useful representation in terms of the generalized inverses of cumulative

distribution functions.

Proposition 4.3.4 (Bickel and Freedman (1981))

If the separable metric space (M,d) is the real line equipped with usual norm, then

dp(F,G) =

(∫ 1

0
|F−1(t)−G−1(t)|pdt

)1/p

. (4.9)

Proof. One way to prove the proposition is to show that the infimum in equation (4.8) is

attained for the random variablesX = F−1(U) and Y = G−1(U) where U has a continuous

uniform distribution U ∼ U(0, 1). (The rvs. X and Y obviously have laws F and G,

respectively. See, e.g., Glasserman (2004, Ch. 2.2.1)). Vallender (1973) accomplishes this

task for the case p = 1 using conditional expectations and basic inequalities. Mallows

(1972) extends the result to p = 2 by showing the equality directly, first for measures F ,

G with bounded support (using the Hoeffding-Fréchet bounds known from copula theory

(Hoeffding, 1940; Fréchet, 1951)), then for the general case.

The case p > 0 is proved by Dall’Aglio (1956, thm. IX, in Italian) using a similar

technique as Mallows. Major (1978, thm. 8.1) proves a generalization to convex functions.

He first shows that for measures F,G concentrated on a finite set, the random variables for

which the infimum is attained can be characterized uniquely and agree with the random

variables X and Y above. Taking limits, he extends the argument to bounded intervals

and then to the real line.

The representation shows that—at least for p > 1—the value of the Wasserstein metric

between two distribution functions is influenced more by differences in their tails rather

than differences in the center of the distributions. This desirable feature of the metric is in

contrast to the other examples of simple probability metrics we have considered in section

4.1. Additionally, it suggests how the infimum in the definition is attained in this special

case.
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Corollary 4.3.5

The infimum in equation (4.8) forM = R is attained combining the marginal distributions

F,G on the real line with the comonotonicity copula M2(u) = min(u1, u2), u = (u1, u2) ∈

R2 (see, e.g., Durante and Sempi (2010)).

Proof. Note from proposition 4.3.4 that the infimum in equation (4.8) is attained for the

random variables X = F−1(U) and Y = G−1(U) where U has a continuous uniform

distribution U ∼ U(0, 1). But these random variables are the result of coupling F and G

using the comonotonicity copula (see, e.g., the review paper by Dhaene, Denuit, Goovaerts,

Kaas and Vyncke (2002, thm. 2)).

Convergence with respect to the Wasserstein metric is closely related to the concept

of weak convergence of probability measures, as the following results show. In particular,

convergence in the p-Wasserstein metric is equivalent to weak convergence in Mp and

implies weak convergence inM.

Proposition 4.3.6 (Bickel and Freedman (1981, Lemma 8.3))

Let Fn, F ∈Mp. The following statements are equivalent:

(i) dp(Fn, F )→ 0 as n→∞

(ii) Fn → F weakly inM and
∫
‖x‖p Fn(dx)→

∫
‖x‖p F (dx).

(iii) Fn → F weakly inM and ‖x‖p is uniformly Fn integrable.

(iv)
∫
ϕdFn →

∫
ϕdF for every continuous ϕ such that ϕ(x) = O(‖x‖p) at infinity.

Proof. See Bickel and Freedman (1981, Lemma 8.3).

Corollary 4.3.7

The Wasserstein distance metrizes the weak topology on the space of distributions with

finite p-th moment, 1 ≤ p <∞, that is

µn ⇒ µ inMp

if and only if

dp(µn, µ)→ 0
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as n→∞.

Proof. We get the result directly from proposition 4.3.6 and the definition of weak con-

vergence inMp.

With regard to applications in finance outside of risk management, we can make the

case that the Wasserstein metric is a sensible choice too.

Proposition 4.3.8 (see Bickel and Freedman (1981, ch. 8))

Let X,Y ∈ X, F1, F2, G1, G2 ∈ M2, let Ui, i = 1, . . . ,m and Vj , j = 1, . . . ,m be indepen-

dent rvs with law inM2.

(i) Scaling properties:

dp(aX, aY ) = |a| dp(X,Y ) for any a ∈ R

dp(LX,LY ) ≤ ‖L‖ dp(X,Y ) for any linear operator L on M.

(ii) Convexity: Let α ∈ (0, 1), p = 2. Then

dp(αF1 + (1− α)F2, αG1 + (1− α)G2) ≤ αdp(F1, G1) + (1− α)dp(F2, G2).

(iii) Subadditivity:

d2

(
m∑
i=1

Ui,

m∑
i=1

Vi

)
≤

m∑
i=1

d2(Ui, Vi).

(iv) The Wasserstein metric is 1-ideal.

Proof. (i) This follows directly from proposition 4.3.2, the scaling properties of the

respective norms and linearity of the expectation.

(ii) By proposition 4.3.2, we can find measures µ, µ̂ on M ×M such that d2(F1, G1) =

IEµ ‖X1, Y1‖ and d2(F2, G2) = IEµ̂ ‖X2, Y2‖ where X1, X2, Y1, Y2 have marginal dis-

tributions F1, F2, G1, G2, respectively, and IE. denotes expectation w.r.t. the given

measure. Choose a measure µ on M × M × M × M with the µ and µ̂ as two-

dimensional marginals (cf. Bickel and Freedman (1981, Proof of Lemma 8.1)) so



CHAPTER 4. PROBABILITY DISTANCES 50

that

d2
2(αF1 + (1− α)F2, αG1 + (1− α)G2)

≤IEµ
[
‖αX1 + (1− α)X2 − αY1 − (1− α)Y2‖2

]1/2

≤IEµ
[
‖αX1 − αY1‖2 + ‖(1− α)X2 − (1− α)Y2‖2

]1/2

≤IEµ
[
‖αX1 − αY1‖2

]1/2
+ IEµ̂

[
‖(1− α)X2 − (1− α)Y2‖2

]1/2

=αIEµ
[
‖X1 − Y1‖2

]1/2
+ (1− α)IEµ̂

[
‖X2 − Y2‖2

]1/2

=αd2(F1, G1) + (1− α)d2(F2, G2)

using Minkowski’s inequality.

(iii) Use the same strategy as for part iii) or see Bickel and Freedman (1981, Lemma 8.6)

(iv) Regularity is a consequence of part ii), homogeneity is part i).

Suppose we want to measure the distance between two portfolio value distributions on

a fixed time horizon T . The value is given in Euro, but our home currency are US dollars.

The scaling property makes sure that conversion with today’s forward FX-rate for T does

not lead to unexpected changes of the metric.

The notion of an ideal metric is used in the context of (generalized) central limit

theorems, see Rachev et al. (2008, Ch. 4), where we want to know how far the limit

distribution obtained via such a theorem could be from the distribution of the sample.

Sums of random variables occur in different contexts in finance applications. Examples

are a portfolio consisting of (a “sum” of) different assets or a monthly log-returns which

are the sums of daily log-returns.

The statistical robustness concepts we discuss in the next section are based on statis-

tical functionals, that is, maps from a set of distribution functions to the real numbers.

As we work with historical data or data obtained from simulations, we usually face the

situation that we only have an empirical distribution function as an input to a statistical

functional instead of the distribution function from which the data is sampled. There-

fore, we are interested to control the distance between the two distribution functions.

Bolley, Guillin and Villani (2007) provide the following probabilistic error bounds for the

Wasserstein metric.
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In the following, let F̂n denote a (random) empirical measure associated with an i.i.d.

sample X1, . . . , Xn of size n of a random variable X with distribution F ,

F̂n =
1

n

n∑
i=1

δXi

where δXi denotes the Dirac measure. With a slight abuse of notation, we also denote by

F̂n the empirical distribution function associated with X1, . . . , Xn..

Theorem 4.3.9 (see Bolley et al. (2007, thms. 2.7 & 2.8))

Let q ≥ 1 and let F ∈Mq(Rd). Then

(i) For any p ∈ [1, q/2)], δ ∈ (0, q/p − 2) and d′ > d there exists some constant N0 =

N0(F, q, p) such that

P
[
dpp(F, F̂N ) > ε

]
≤ ε−qN−

q
2p

+ δ
2

for any ε > 0 and any N > N0 max

(
ε
−q 2p+d′

q−p , εd
′−d
)
.

(ii) For any p ∈ [q/2, q)], δ ∈ (0, q/p − 1) and d′ > d there exists some constant N0 =

N0(F, q, p) such that

P
[
dpp(F, F̂N ) > ε

]
≤ ε−qN1− q

p
+δ

for any ε > 0 and any N > N0 max

(
ε
−q 2p+d′

q−p , εd
′−d
)
.

(iii) Let p ≥ 1 and assume that Eα :=
∫
Rd e

α|x|dF is finite for some α > 0. Then there

exist, for all d′ > d, constants K and N0, depending only on d, α, and Eα such that

P
[
dpp(F, F̂N ) > ε

]
≤ eKN1/p min(ε,ε2)

for any ε > 0 and N > N0 max
(
ε−(2p+d′), 1

)
.

It would be useful for robustness considerations to have a (uniform) Glivenko-Cantelli

type of result for the Wasserstein distance dp, p ≥ 1. Unfortunately, the only results

available are either restricted to the case p = 1 (see definition 5.1.11 and the following

discussion) or by strong assumptions on the underlying distribution F :

Theorem 4.3.10 (see Boissard and Gouic (2011))

Let (M,d) be a measured Polish space and for X ⊂M define the covering number N(X, δ)
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by

N(X, δ) = min

{
n

∣∣∣∣∣∃x1, . . . , xn with X ⊂
n⋃
i=1

B(xi, δ)

}

where B(x, δ) denotes the δ-Ball centered around x. Choose t > 0 and F ∈ M(M) with

support in some X with N(X, t) <∞. Then

IE
[
dp(F, F̂n)

]
≤ c

(
t+ n−1/(2p)

∫ d/4

t
N(X, δ)1/(2p)dδ

)
.

Theorem 4.3.11 (see Horowitz and Karandikar (1994, thm. 1.1))

Consider the space (Rd, |.|) and set c :=
∫
|u|d+5 dF < ∞ for F ∈ M(Rd). Then there is

a constant C > 0 depending only on c and d such that

IE
[
d2

2(F, F̂n)
]
≤ Cn

−2
d+4 .

4.4 The Wasserstein Metric and the Lp-Metrics

The p-Wasserstein metric dp has similarities with both the Lp metric between distribution

functions θp and the p-average metric Lp. In special cases it agrees with one or both of

them. To avoid confusion, we examine the relationship more closely.

Recall the definition of the Lp metric between distribution functions.

Definition 4.4.1 (Lp metric between distribution functions)

Let F,G ∈M1. Then

θp(F,G) :=

(∫ ∞
−∞
|F (t)−G(t)|p dt

) 1
p

, p ≥ 1

defines the Lp metric between distribution functions. For X and Y having distribution

functions FX and FY respectively, we define, with a slight abuse of notation,

θp(X,Y ) := θp(FX , FY ).

Note that θp is defined for distributions with finite first moment for any p ≥ 1. It is not

necessary that the p-th moment exists in order for θp to be defined (p > 1). Both dp and

θp are simple probability metrics and for p = 1 we have that d1(F,G) = θ1(F,G). In this
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case, the integral in either of the definitions calculates the area between the distribution

functions, but in a different order of integration. This is illustrated by figure 4.1.

−5 −4 −3 −2 −1 0 1 2 3 4 5

1

Figure 4.1: Integration directions for the Wasserstein metric (horizontal lines) and Lp

metric between distribution functions (vertical lines)

For p > 1 the metrics differ, and the larger p the more the Wasserstein metric focuses

on the tails and the more the Lp metric between distribution functions focuses on the

center. We illustrate this with an example.

Example 4.4.2

We compare the distance of a standard normal distribution and a mixture distribution

G(x) = (1− ε)Φ(x) + εH(x;ϑ)

where ε ∈ (0, 1), Φ is the c.d.f. of the standard normal distribution, and H is a cdf of

second distribution with parameter vector ϑ. We use the exponential distribution Exp(λ)

where λ is the mean of the distribution. This leads to differences in the right tail between

the distributions. Table 4.1 shows the values of dp and θp for some exemplary parameters.

We can see that the distance as measured with the Wasserstein metric increases with p,

while the distance decreases when measuring it with the Lp metric between distribution
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1 2 3 4
dp 0.054 0.067 0.075 0.085
θp 0.054 0.039 0.038 0.038

Table 4.1: Values of the Wasserstein metric and the Lp metric between distribution func-
tions for the standard normal distribution and a mixture distribution with H = Exp(0.5)
and ε = 0.1, p = 1, 2, 3, 4.

functions.

Next, we consider the p-average metric. Recall that Xs denotes the set of random

variables with finite s-th moment.

Definition 4.4.3 (The Lp-metric)

Let X,Y ∈ Xp. Then

Lp(X,Y ) := (IE [|X − Y |p])
1
p , p ≥ 1

defines the Lp-metric between random variables.

The p-average metric is a compound metric—it takes the joint distribution of the

random variables or marginal distributions into account. Defining an analog p-average

metric between distribution functions F,G ∈ Mp therefore only is possible if the joint

distribution H ∈ Γ2
p is known. Then, we can write

Lp(H) := (IE [|X − Y |p])
1
p , p ≥ 1, (X,Y ) ∼ H.

Corollary 4.4.4

The Wasserstein metric dp between the marginal distributions of two random variables is

equal to the p-average metric between the random variables if their joint distribution is

given by the comonotonicity copula.

Proof. This is a direct consequence of Corollary 4.3.5.

Proposition 4.4.5

Let Xn ∈ X2 be a sequence of random variables with distributions Fn, let X ∈ X2 be a

random variable with distribution F . Then Xn →L2 X implies Fn →d2 F .
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Proof. We have

0 ≤ d2(Fn, F ) = inf
(Yn,Y )∈τFnF

{E
[
‖Yn − Y ‖2

]1/2
}

≤ E
[
‖Xn −X‖2

]1/2

= L2(Xn, X)→ 0 as n→∞.

Example 4.4.6

We consider two standard normally distributed random variables X,Y and specify their

joint distribution via an Archimedean copula, namely the Gumbel copula, which is given

by

CGHθ (u) = exp
(
−((− log(u1))θ + (− log(u2))θ)1/θ

)
for some θ ≥ 1. The independence copula is a special case for θ = 1, the comonotonicity

copula is its limit as θ → ∞. The L1 and L2 distances between X and Y for θ ∈ [1, 50]

are exhibited in figure 4.2. The limit as θ →∞ is zero, equal to the Wasserstein distance

between the marginals of X and Y .

The Wasserstein distance is a simple metric and so does not imply anything about the

joint distribution between two marginals. We would therefore assume that convergence

in the Wasserstein metric does not imply convergence in the p-average metric in general.

This is indeed the case as the following example shows.

Example 4.4.7

We give a counterexample to show that the converse implication in proposition 4.4.5

does not hold. Take a sequence of distributions Fn = B(1, 0.5 + 1
n)1 and a distribution

F = B(1, 0.5). Assume that the joint distribution is induced by the countermonotonicity
1B(α, β) denotes the beta distribution with mean α

α+β
.
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Figure 4.2: Lp distance for standard normal random variables with joint distribution given
by the Gumbel copula with parameter θ ∈ [1, 50]

copula. Then

d2(Fn, F )2 =

∫ 1

0

∣∣∣1[0,0.5](x)− 1[0,0.5+ 1
n

]

∣∣∣2 dx
=

∫ 0.5+ 1
n

0.5
dx

=
1

n
→ 0

but

L2(Xn, X)2 =

∫ 1

0

∣∣∣1[0,0.5](x)− 1[0.5− 1
n
,1](x)

∣∣∣2 dx
=

∫ 1

0
1− 1[0.5− 1

n
,0.5](x)dx

=

∫ 0.5− 1
n

0
dx+

∫ 1

0.5
dx

= 1− 1

n
→ 1.



Chapter 5

Robustness in Statistics

A robust quantitative risk management process has to be based on robust statistical

methods. Before we discuss such methods, we want to make the notion of robustness

more precise. We quote Huber and Ronchetti (2011, p. 5), who answer the question of

the properties of a robust statistical procedure as follows:

• “Efficiency: It should have a reasonably good [. . . ] efficiency at the assumed model.

• Stability: It should be robust in the sense that small deviations from the model

assumptions should impair the performance only slightly[. . . ].

• Breakdown: Somewhat larger deviations from the model should not cause a catas-

trophe.”

Robustness in this sense is distinct from the concept of resistance. A statistic is called

resistant, if changing a small part of the data—however big the change—does not change

the statistic substantially, see Mosteller and Tukey (1977). Fortunately, it turns out that

the two notions are equivalent in many practical applications (see theorem 5.1.7) so that

we can talk about robustness in the following.

We need some notation for the discussion, which we borrow from Huber and Ronchetti

(2011). In the following, we are interested in statistics that can be written as statisti-

cal functionals T . They depend on a sample (x1, . . . , xn) with corresponding empirical

distribution function

F̂n(x) =
1

n

n∑
i=1

1xi<x. (5.1)

57
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With a slight abuse of notation we also denote the empirical measure by Fn, which is

given by the set function

Fn =
1

n

n∑
i=1

δxi .

Here, δxi is the Dirac-measure that puts mass 1 on xi. We write

Tn(x1, . . . , xn) = T (Fn)

for a statistic that is defined at least on the space of empirical measures. LF (Tn) de-

notes the distribution of Tn at F , that is, if the distribution underlying the observations

(x1, . . . , xn) is F .

Definition 5.0.8 (Fisher Consistent Functionals, see Huber and Ronchetti (2011, p. 9))

Let F be the distribution underlying the observations (x1, . . . , xn) with empirical distri-

bution function Fn. Let T be a functional defined for all empirical distribution functions.

Then, T can be extended to the space of probability distributionsM by setting

T (F ) = lim
n→∞

T (Fn)

if the limit on the right-hand side exists in probability. Such a functional T is called

(Fisher) consistent at F .

5.1 Qualitative Robustness

The intuition of robustness given in the introductory paragraph to this chapter refers to

“small” and “somewhat larger” deviations from the model assumptions. This has to be

made precise. The probability distances introduced in chapter 4 allow us to do this.

We use the setup outlined by Hampel (1971). Let M denote the set of probability

measures on some measurable space (Ω,B(Ω)) andMn ⊂M the set of discrete probability

measures with atoms equal to m
n ,m ∈ {0, 1, . . . , n} for n ∈ N. We observe the first n

elements of a sequence ω1, ω2, . . . of independent and identically distributed realizations

of a random variable with distribution F , which can be modeled on a product space

(ΩN,B(Ω)N, FN). Observe the correspondence between observations (ω1, . . . , ωn) ∈ Ωn

and measures Fn in Mn which is unique up to permutations of the observations. We
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consider sequences of measurable mappings (Tn)n≥0 with Tn :Mn → Rk for some k ≥ 1.

Each random measure Fn corresponds to the first n elements of a sequence ω1, ω2, . . . of

elements from Ω. Therefore, Tn induces a distribution on Rk, mapping F 7→ LF (Tn). As

we are interested in measuring risks of real valued random variable through real valued

functionals—we discuss this in chapter 6—we use Ω = R and k = 1 in the following.

Definition 5.1.1

Let T be a statistical functional and F0 ∈ M some probability distribution. T is called

continuous at F0 w.r.t. some metric d onM that metrizes the weak topology if for every

ε > 0 there exists a δ > 0 such that for any F ∈M

d(F0, F ) < δ ⇒ |T (F0)− T (F )| < ε. (5.2)

Before we continue with the definition of qualitative robustness, we consider some

examples.

Example 5.1.2 (Trimmed Mean)

Consider the α-trimmed mean with corresponding functional Tα(F ) =
∫ 1−α
α F−1(t)dt for

some α ∈ (0, 1). Fix F0 ∈M(R) and ε > 0. Then for any F ∈M(R) we have

|Tα(F0)− Tα(F )| =
∣∣∣∣ 1

1− 2α

∫ 1−α

α
F−1

0 (t)dt− 1

1− 2α

∫ 1−α

α
F−1(t)dt

∣∣∣∣
=

1

1− 2α

∣∣∣∣∫ 1−α

α
F−1

0 (t)− F−1(t)dt

∣∣∣∣
≤ 1

1− 2α

∫ 1−α

α

∣∣F−1
0 (t)− F−1(t)

∣∣ dt
≤ 1

1− 2α

∫ 1

0

∣∣F−1
0 (t)− F−1(t)

∣∣ dt
=

1

1− 2α
d1(F0, F )

where d1(., .) denotes the Wasserstein distance with p = 1. Choosing δ = (1 − 2α)ε, this

shows that the α-trimmed mean is continuous w.r.t. this distance at any F0 ∈M1(R).

Example 5.1.3 (Mean)

Consider the mean with corresponding functional T (F ) =
∫
R xdF . Fix F ∈ M1(R) with

T (F ) <∞ and set

Fn =
n− 1

n
F +

1

n
δn2 .
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Then Fn ∈M∀n and Fn → F weakly: for any ε > 0, set n0 =
⌊

1
ε

⌋
. We have:

|F (x)− Fn(x)| =
∣∣∣ 1

n
F (x)︸ ︷︷ ︸
∈[0,1/n]

− 1

n
1x≥n2︸ ︷︷ ︸
∈[0,1/n]

∣∣∣
≤ 1

n

< ε∀x ∈ R∀n ≥ n0.

But for the mean, we have

|T (F )− T (Fn)| =
∣∣∣∣∫

R
xd

(
1

n
(F − δn2)

)∣∣∣∣
=

∣∣∣∣ 1nT (F )− 1

n
T (δn2)

∣∣∣∣
=

∣∣∣∣ 1nT (F )− n
∣∣∣∣

→∞ as n→∞.

Consequently, the mean is not continuous w.r.t. any metric metrizing the weak topology

on all ofM.

Weak continuity is a property that can be checked easily for many functionals as in the

examples above. For the class of L-statistics, which encompass many functionals that are

relevant for risk measurement in practice, Huber and Ronchetti (2011) provide a result

that further simplifies this task. An L-statistic is generally of the form

TL(F ) =

∫
F−1(s)µ(ds)

where µ is a signed measure on (0, 1), J : [0, 1]→ R. Sometimes the less general equation

TL(F ) =

∫
xJ(F (x))dF (x)︸ ︷︷ ︸

=:TL1

+
m∑
i=1

aiF
−1(αi)︸ ︷︷ ︸

=:TL2

(5.3)

is used as a definition. Here m ∈ N is fixed, and αi, ai with 0 < αi < 1 are constants.

L-statistics combine robustness derived from week continuity (see theorem 5.1.4) with ef-

ficiency of location estimates (see Bickel and Lehmann (1975)). L-statistics are important

in our context because most of the distribution-based or law-invariant risk measures dis-
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cussed in the literature are in fact in this class (see Cont et al. (2010, sect. 2.1) and our

discussion in section 6.1).

Theorem 5.1.4 (see Huber and Ronchetti (2011, thm. 3.7))

Let µ = µ+ − µ− be a signed measure on (0, 1) and let T (F ) =
∫
F−1(s)µ(ds). Define

α = max {x|supp(µ) ⊂ [x, 1− x]}. If α > 0, then T is weakly continuous at F0, provided

that µ does not put any pointmass on a discontinuity point of F−1
0 . If α = 0, this implies

that T is discontinuous.

Example 5.1.5 (α-Quantiles)

We define the (lower) α-quantile by

q(α)(F ) := inf {x|F (x) ≥ α}

for some probability distribution F ∈M(R). We can write q(α)(F ) as a functional

Tq(α)(F ) = F−1(α) =

∫ 1

0
F−1(u)δα(u)

where F−1 denotes the generalized inverse distribution function

F−1(y) := inf
x∈R
{F (x) ≥ y}

and δα is the Dirac measure that put a point-mass of one on α. The α-quantile is an

L-statistic with µ = δα. If α > 0, we are in the setup of theorem 5.1.4. Therefore, it is

weakly continuous for all F ∈M(R)) such that F−1 is continuous at α > 0. As a further

consequence of theorem 5.1.4, minimum and maximum are not weakly continuous.

Definition 5.1.6 (see Huber and Ronchetti (2011, p. 11))

Let d, d′ be distances that metrize the weak topology on the setM of probability measures

on (R,B(R)). A sequence of functionals Tn is called (qualitatively) robust if for each ε > 0

there exists a δ > 0 and an n0 ∈ N such that, for all F ∈M and n ≥ n0,

d(F0, F ) ≤ δ ⇒ d′(LF0(Tn),LF (Tn)) ≤ ε. (5.4)

Hampel’s theorem is a classical result that relates qualitative robustness to continuity

of a functional, which is much easier to check. The only restriction on the metrics in the

definition of robustness is the requirement that they metrize the weak topology. Originally,
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Hampel (1971) selected the Prohorov distance, d = d′ = dPr. We show the result obtained

by Huber and Ronchetti (2011, thm. 2.21).

Theorem 5.1.7 (Hampel’s Theorem)

Set d to the Lévy metric and d′ to the Prohorov metric. Assume that (Tn) derives from a

functional T so that it is consistent in a neighborhood of F0. Then T is continuous at F0

if and only if (Tn) is qualitatively robust at F0.

Proof. See the proof by Huber and Ronchetti (2011, thm. 2.21).

Example 5.1.8

By Hampel’s theorem, the (lower) α-quantile is qualitatively robust at any µ ∈ M under

the conditions stated in example 5.1.5.

Qualitative robustness “depends on the specific choice of metric” (Krätschmer, Schied

and Zähle, 2012b), as also noted by Huber and Ronchetti (2011, p. 42). As we prefer to use

the Wasserstein metric over the Lévy and Prohorov metrics, the usefulness of the version

of Hampel’s theorem stated above is limited for us. Consequently, we have to look for

alternatives. The recent results by Krätschmer et al. (2012b) provide a Hampel-theorem

for the Wasserstein metric with p = 1 for a modified robustness notion, which has been

introduced by (Cont et al., 2010, def. 3.1) and Krätschmer et al. (2012b, def. 2.1):

Definition 5.1.9 (QualitativeM0-Robustness)

Let M0 ⊂ M and F ∈ M. The sequence (Tn) is called qualitatively M0-robust w.r.t.

(d, d′) if for every ε > 0 there exist δ > 0 and n0 ∈ N such that

d(F,G) ≤ δ ⇒ d′(LF (Tn),LG(Tn)) ≤ ε (5.5)

for all G ∈M0 and n ≥ n0.

To prove the result, Krätschmer et al. (2012b) introduce the concept of N -continuity

and a uniform Glivenko-Cantelli property.

Definition 5.1.10 (N -Continuity)

Let F ∈M and N ⊂M. A functional T is called N -continuous at F w.r.t. d if for every

ε > 0 there exists a δ > 0 such that for all G ∈ N

d(F,G) ≤ δ ⇒ |T (F ), T (G)| ≤ ε. (5.6)
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Definition 5.1.11 (Uniform Glivenko-Cantelli (UGC) Property)

LetM0 ⊂ M. A metric space (M, d) has the UGC poperty if for every ε > 0 and δ > 0

there exists n0 ∈ N such that

FN
[{
ω ∈ (Ω)N

∣∣∣d(F, Fn) ≥ δ
}]
≤ ε

for all F ∈M0 and for all n ≥ n0.

Theorem 5.1.12 (Hampel’s Theorem for M0-Robustness)

LetM0 ⊂M such that (M0, d) has the UGC property, and let F ∈M. Set E =
⋃
n≥1Mn.

If T is E-continuous at F w.r.t. d, then (Tn) isM0 robust at F w.r.t. (d, dPr). Conversely,

if (Tn) is weakly consistent in some d-neighbourhood of F and (Tn) is qualitativelyM0-

robust a F w.r.t. (d, dPr), then T isM0-continuous w.r.t. d.

Proof. See Krätschmer et al. (2012b, Appendices A1 & A2).

Proposition 5.1.13

For any κ > 0 and any λ > 0, denote by (Mκ,λ, d1) the metric space consisting of the

probability measures F on R with

∫
(1 + |x|)λdF < κ

and the d1-Wasserstein distance. (Mκ,λ, d1) has the UGC-property. Consequently, if T is

an E-continuous functional at F w.r.t. d1 on this space for some κ > 0, λ > 0, then (Tn)

is qualitativelyMκ,λ-robust at F w.r.t. (d, dPr).

Proof. See Krätschmer et al. (2012b, thm. 3.1 & Corr. 3.3) for the first part. The second

part is a direct consequence of theorem 5.1.12.

Example 5.1.14 (Qualitative Robustness of the Sample Mean)

Krätschmer et al. (2012b, ex. 4.2) show that the sample mean is Mκ,λ-robust w.r.t.

(d1, dProh) at F ∈Mκ,λ for any κ ≥
∫

(1 + |x|)λdF and λ > 1.

5.2 Quantitative Robustness

We have seen that a qualitatively robust functional is well behaved for small to medium

deviations from the model. Quantitative robustness is concerned with measuring how
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much a small deviation from the model assumption influences the functional. To make

this more precise, we consider in this section a sequence (Tn) that derives from a consistent

functional T . A small deviation from the model is characterized by a distribution that

is in an ε-neighborhood Pε(F0) of the model distribution F0. The neighborhood depends

on the distance of the metric space of probability measures under consideration. Popular

choices, see Huber and Ronchetti (2011, sect. 1.4), are the Lévy neighborhood

Pε,L(F0) = {F |∀t, F0(t− ε)− ε ≤ F ≤ F0(t+ ε) + ε} (5.7)

= {F |dL(F0, F ) < ε} (5.8)

and the gross error model

Pε,GEM (F0) = {F |F = (1− ε)F0 + εH,H ∈M} . (5.9)

Note that the Lévy neighborhood is a neighborhood in the weak topology sense on (M, dL),

but the gross error model—or contamination neighborhood—is not. Using a neighborhood

such as those defined above, we obtain two measures of quantitative robustness.

Definition 5.2.1 (see Huber and Ronchetti (2011, p. 12))

Let (Tn) be a sequence derived from a statistical functional T , F0 ∈M, and let Pε = Pε(F0)

be an ε-neighborhood of F0. Then the maximum bias is given by

b1(ε;T ) = sup
F∈Pε

|T (F )− F (F0)| ,

and the maximum asymptotic bias by

b(ε) = lim
n→∞

sup
F∈Pε

|Median(LF (Tn − T (F0))| .

Huber and Ronchetti (2011) show that if b1 is well-defined, b(ε) ≥ b1(ε) and that

equality holds in many cases, for example for the Lévy neighborhood.

Definition 5.2.2 (Asymptotic Breakdown Point)

[see Huber and Ronchetti (2011, p. 13)] The asymptotic breakdown point of a functional

T at F0 ∈M is defined as

ε∗ = sup {ε|b(ε) < b(1)} .
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For the Lévy and contamination neighborhood, b(1) gives the worst possible value

of b(.)—corresponding to a change to any distribution in M—and is usually infinite.

Therefore, the breakdown point can be interpreted as the fraction of outlying observations

the estimator can accept before becoming useless: the higher the breakdown point, the

more robust the estimator to outliers.

Example 5.2.3

The arithmetic mean and the maximum have an (asymptotic) breakdown point of ε∗ = 0,

since a single large observation can produce arbitrarily large values. The α-trimmed mean

and the α-quantile have an (asymptotic) breakdown point of ε∗ = α.

5.3 Infinitesimal Robustness

In the preceding sections, we have considered qualitative robustness, concerned with

“small” and “somewhat larger” deviations from the model, and quantitative robustness,

concerned with measuring the results of small deviations from the model for statistical

functionals. It remains to ask the question, “What happens if we add one more obser-

vation [. . . ] to a very large sample?” (Huber and Ronchetti, 2011, p. 14). The answer

is provided by influence curves which are closely related to derivatives of statistical func-

tionals. As differentiability of statistical functionals is helpful when considering statistical

methods such as the bootstrap, we start with the general framework for derivatives in this

context and obtain the influence curve as a special case.

The discussion of differentiable statistical functionals started with the work by von

Mises (1947), who observed that, under some conditions,

T (Fn)− T (F ) = T ′(Fn − F ) +R(Fn, F ) (5.10)

where T ′(Fn − F ) is a derivative of T , and R(Fn, F ) is a remainder term from a Taylor

series development of T . The existence and properties of the derivative, the asymptotic

behavior of the remainder term, and the distribution of the left-hand side of equation

(5.10) have to be investigated. We pursue this agenda in a slightly more general setup,

replacing the empirical distribution function Fn by a more general c.d.f, say G.

Let (M, d) be a metric space of probability measures. A general definition of differen-

tiability can be given assuming that the domain of T extends to the space given by the

linear span of the set of probability measures, namely to finite signed measures.
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Definition 5.3.1 (see Shao (1993, def. 2.1))

Let S be a class of subsets of the linear space D generated by M. Then a functional

T :M→ R is S-differentiable at F ∈ M if there exists a linear functional LF on D such

that for any C ∈ S

lim
t→0

|T (F + tG)− T (F )− LF (tG)|
t

= 0 (5.11)

uniformly for all G ∈ C with F + tG ∈M. If S is the class of

(i) single-point subsets of D, T is called Gâteaux differentiable;

(ii) compact subsets of D, T is called Hadamard or compactly differentiable;

(iii) bounded subsets of D, T is called Fréchet differentiable.

An immediate consequence of definition 5.3.1 is that Fréchet differentiability implies

Hadamard differentiability which implies Gâteaux differentiability. It also shows that dif-

ferentiability of statistical functionals depends on the topology we put onM and therefore

on the distance we use in the metric space (M, d). Reeds (1976) criticizes the approach of

defining differentiation with respect to a metric as “bad policy” (Reeds, 1976, p. 74) be-

cause different metrics can generate the same topology. While it is possible to put a norm

on the space of probability measures (see Dudley, 1969), we prefer to do without a norm

and just consider the metric space (M, d) with a metric d chosen to fit our applications.

There are equivalent differentiability definitions which do not require us to extend the

statistical functional T beyond the class of probability measures. We add the requirement

that (M, d) is a metric space such that dmetrizes the weak topology onM and d(Ft, Fs) =

O(|t− s|) for Ft = (1 − t)F0 + tF1 for some F0, F1 ∈ M. A statistical functional is then

Fréchet differentiable at F w.r.t. d if there exists a linear functional L = LF with domain

consisting of the finite signed measures such that

|T (G)− T (F )− L(G− F )| = o(d(F,G))

for all G ∈M. An additional advantage of this definition is that it makes the dependence

of Fréchet differentiability on the metric more explicit. Similarly, a statistical functional T

is Gâteaux differentiable at F w.r.t. d if for all G ∈M there is a linear functional L = LF
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such that

lim
t→0

T (Ft)− T (F )

t
= L(G− F )

where we set Ft = (1 − t)F + tG. We obtain a special case by setting G to the Dirac

measure, G = δx.

Definition 5.3.2 (see Huber and Ronchetti (2011, p. 39))

The influence curve (IC) (or influence function) of a functional T at F is given by

IC(x;F, T ) = lim
t→0

T (Ft)− T (F )

t
(5.12)

where Ft = (1− t)F + tδx.

The influence curve “describes the effect of an infinitesimal contamination at the point

x on the estimate, standardized by the mass of the contamination” (Hampel, Ronchetti,

Rousseeuw and Stahel, 1986). It provides a possible answer to the question of the influence

of a single observation on the value of the functional that we posed at the beginning of

this section. From a robustness point of view, a smaller value of the influence curve is, of

course, preferable to a larger value. This is captured by the gross-error sensitivity, given

by (see Hampel et al. (1986, sect. 2.1c))

γ∗ = γ∗(T, F ) := sup
x|IC(x) exists

|IC(x;F,T)| .

Consequently, Rousseeuw (1981) calls a functional with finite gross-error sensitivity B-

robust. As the influence curve can often be computed even if the functional T is not

Gâteux differentiable in general, we can then use IC and γ∗ to investigate the infinitesimal

aspect of robustness.

Example 5.3.3 (Mean, Trimmed Mean, α-Quantiles)

The influence curve for the mean functional T (F ) =
∫
xdF (x), which is defined for all

F ∈ M with existing first moment, is given by (see Hampel et al. (1986) for the special

case of F = N(0, σ))

IC(x;F, T ) = x− µF
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where µF denotes the first moment of F . It is unbounded, which implies γ∗(T, F ) = ∞.

In particular, the mean is not B-robust.

For the α-trimmed mean, we have (see Huber and Ronchetti (2011, p. 58))

IC(x;F, Tα) =


1

1−2α

(
F−1(α)−Wα(F )

)
for x < F−1(α)

1
1−2α (x−Wα(F )) for F−1(α) < x < F−1(1− α)

1
1−2α

(
F−1(1− α)−Wα(F )

)
for x > F−1(1− α)

where W (F ) is the Winsorized mean

Wα(F ) = (1− 2α)Tα(F ) + α
(
F−1(α) + F−1(1− α)

)
.

So the influence curve is bounded in this case and, as a consequence, the α-trimmed is

B-robust.

If F has nonzero finite derivative f at F−1(α), the influence curve of the α-quantile is

given by (see Huber and Ronchetti (2011, sect. 3.3.1))

IC(x;F, Tq(α)) =


α−1

f(F−1(α))
for x < F−1(α)

α
f(F−1(α))

for x > F−1(α)

which is a bounded function. The α-quantile is B robust.

Example 5.3.4 (L-Statistics)

We consider L-statistics as defined in equation (5.3). There, TL2 is a sum of quantiles. We

can reuse the results from example 5.3.3 and obtain

IC(x; , F, TL2) =

m∑
i=1

ai
αi − 1{x<F−1(αi)}(x)

f(F−1(α))
.

IC(x; , F, TL2) has m step discontinuiuties. Serfling (1980, sect. 8.1) calculates the influ-

ence curve for TL1 as

IC(x; , F, TL1) = −
∫ ∞
−∞

(
1{x<y} − F (y)

)
J(F (y))dy. (5.13)

IC(x; , F, TL1) is continuous, but potentially unbounded, unless J vanishes outside some

bounded interval. The influence curve of TL is then given by the sum of IC(x; , F, TL1)
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and IC(x; , F, TL2).

Apart from the easy calculation of the influence functions and the weak continuity

results from theorem 5.1.4, we can find results on the L-statistics’s differentiability prop-

erties.

Theorem 5.3.5 (see Shao (1989, thm. 4.1))

Consider TL1 as defined in equation (5.3) with J(t) = 0 for t ∈ [0, a) ∪ (b, 1] for some

0 < a < b < 1. If J is bounded and continuous a.e. w.r.t. the Lebesgue measure on [0, 1]

and a.e. w.r.t. F−1, then T is Fréchet differentiable with differential given in equation

(5.13) and locally Lipschitz continuous at F w.r.t. ‖.‖∞.

Proof. See the proof by Boos (1979, thm. 1). Continuity w.r.t. F−1 means that the set

{x|J is discontinuous at F (x)} is a Lebesgue null-set.



Chapter 6

Risk Measures

As a wealth of risk measures and axiomatic approaches to classify them, both on a prob-

ability space or a sample space, have been proposed in the literature, the question arises

which risk measure or set of risk measures is appropriate for robust risk management. The

discussion of the merits and weaknesses of axiomatic systems and single risk measures has

been ongoing since the famous contribution by Artzner, Delbaen, Eber and Heath (1999),

who first introduced so-called coherent risk measures. More recently, Heyde, Kou and

Peng (2007) suggested that the required properties of risk measures depend on the tar-

geted audience, differentiating between external risk measures intended for regulators and

internal risk measures directed at the undertaking’s management. In this section, we re-

view some popular classes of risk measures, give examples and analyze their properties

with regard to the intended audience.

6.1 Axiomatic Approaches on Probability Spaces

The risk measures we discuss in this section are defined on a probability space (Ω,F ,P).

Let X denote the set of real-valued random variables on this probability space. Adapting

the definition by Artzner et al. (1999) slightly we have:

Definition 6.1.1

A measure of risk is a mapping ρ from (a subset of) X into R.

There are different possibilities for the interpretation of the set X and ρ(X), X ∈ X.

In their seminal paper on an axiomatic approach to risk measures, Artzner et al. (1999)

interpret each X ∈ X as a final net worth of a position, which is acceptable to the regulator

70
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a clearing firm or management if the chosen risk measure evaluated for the position is

negative, ρ(X) < 0. The risk measure then gives the amount of cash, or, depending

on the context, equity, that has to be added to the position to make it acceptable. In

the Solvency II context, we think it is reasonably to follow Dhaene, Laeven, Vanduffel,

Darkiewicz and Goovaerts (2008) and interpret X as a set of losses of an insurance company

or portfolio. The company is insolvent when its aggregated loss over a reference period

is X > 0, X ∈ X. Dhaene et al. (2008) then think of ρ(X) as a capital requirement a

regulator imposes on the company to protect its policyholders with a certain probability

from the event X − ρ(X) > 0 of default. This setup can easily be adapted to different

industries such as the banking or energy sectors and also to internal risk management,

using the risk measure in the calculation of the economic capital that shareholders of a

company would require (for an application in this area, see, e.g., Prokopczuk, Rachev,

Schindlmayr and Trück, 2007).

Risk measures can have a number of desirable properties, depending on the interpreta-

tion and intended usage. In the literature, sets of axioms have been put together that result

in different classes of risk measures that fulfill these axioms. We consider coherent, convex

and distortion risk measures in the following. Each of these class can be characterized by

a subset of the following axioms, for which we also provide short interpretations:

RM1 Monotonicity: if X(ω) ≤ Y (ω)∀ω ∈ Ω then ρ(X) ≤ ρ(Y ). A portfolio with bigger

losses in any state of the world should lead to a higher capital requirement.

RM2 Subadditivity: ρ(X + Y ) ≤ ρ(X) + ρ(Y ). “A merger does not create extra risk”

(Artzner et al., 1999, p.209)

RM3 Positive homogeneity: for λ > 0 we have ρ(λX) = λρ(X). Increasing or decreasing

the amount invested in a portfolio should increase or decrease, respectively, the risk

by the same factor.

RM4 Translation invariance: for any constant function a we have ρ(a+X) = ρ(X) + a.

Adding a sure loss to a portfolio should increase the capital requirement by the

amount of the sure loss.

RM5 Convexity: for any λ ∈ [0, 1] we have ρ(λX + (1 − λ)Y ) ≤ λρ(X) + (1 − λ)ρ(Y ).

“Convexity means that diversification does not increase risk” (Föllmer and Schied,
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2002a). Note that convexity is implied by RM2 and RM3, but it does not imply

RM2 and RM3. It is therefore a weaker axiom than RM2 and RM3 together.

RM6 Law invariance/conditional state independence: For a given market condition, ρ(X)

depends only on the distribution of X.

RM7 Comonotonic additivity: for any comonotonic1 r.v.s X,Y , we have ρ(X) + ρ(Y ) =

ρ(X + Y ). Merging two portfolios that cannot be used as hedges for each other

should not change the risk position.

RM8 Continuity: for any X, d ≥ 0, we have

lim
d→0+

ρ(X − d)+ = ρ(X)

and

lim
d→∞

ρ(min(X, d)) = ρ(X).

Small truncation of the random loss should only lead to small changes of the risk

measure, which can still be calculated if the loss X is approximated by bounded

random variables (see Wang, Young and Panjer, 1997).

From a robustness point of view, axioms RM1 - RM8 do not have much to offer.

Monotonicity (RM1) can be seen as a minimum requirement if a risk measure is to be

used as a basis for consistent decisions. The continuity requirement (RM8) is a step in the

right direction, but seems not to be sufficient: a change in the losses of a portfolio or an

insurance undertaking will usually be stochastic—that is, occur by adding or removing a

risky asset or an insurance contract—but RM8 considers only deterministic changes.

Definition 6.1.2 (Monetary Risk Measures)

A mapping2 ρ : L∞(Ω,F ,P) → R ∪ {∞} is called a monetary risk measure if it satisfies

axioms RM1 and RM4 (see Föllmer and Schied, 2011, def. 4.1).

Example 6.1.3 (Standard Deviation)

The definition of a risk measure encompasses a wealth of functions, among the measures of
1Two random variables X,Y are comonotonic if X(ω1) < X(ω2)⇔ Y (ω1) < Y (ω2) for any ω1, ω2 ∈ Ω,

see Denneberg (1994, Prop.4.5). Note that comonotonicity is a distribution free property.
2We mostly use the classical definition of risk measures as maps on L∞ in this chapter. The definitions

can be translated to Lp spaces, see Cheridito and Li (2009).
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dispersion like the standard deviation. The standard deviation of asset returns—it is often

called volatility in this context—has been used, for example, to measure the riskiness of

assets in Markowitz portfolio theory (Markowitz, 1952), but could also be applied to loss

distributions, as long as the second moment exists. It obviously satisfies axioms RM1 and

RM7, but it is not even a monetary risk measure. Consequently, we look for alternatives.

Example 6.1.4 (Value at Risk)

The value at risk (VaR) at level α of a loss X ∈ X is defined as

VaRα(X) = inf {x|P(X ≤ x) ≥ α} (6.1)

where we take the definition from Dhaene et al. (2008). Note that the α-VaR equals by

definition the lower α-quantile q(α)(X) of the loss X. Additionally, VaR is a monetary risk

measure.

Remark 6.1.5

In our setting, interpreting a positive value of the random variable X as a loss defining

the α-VaR by the lower α-quantile, we follow Heyde et al. (2007), Dhaene et al. (2008),

and many others and adopt the convention to talk about a 95%- or 99%-VaR rather than

a 5%- or 1%-VaR as in other works on the topic.

VaR was helped to widespread use by practitioners at J.P. Morgan (Hull, 2011, Business

Snapshot 8.1), and is now the most widely used risk measure (Denuit et al., 2006, sect.

2.3). Among the reasons is that the computation of VaR as a quantile is relatively easy.

Apart from that, it seems to be easy to understand for non-experts, as it is stated in units

of money and can be loosely defined saying that “VAR summarizes the worst loss over a

target horizon that will not be exceeded with a given level of confidence”(Jorion, 2009, p.

viii). While this intuition is restated in many works covering the topic (see, among many

others, Hull, 2011; Crouhy et al., 2001), critics argue that it gives non-expert users a false

sense of security. Rowe (2010) suggests to call the 99% VaR a “minimum twice-a-year

loss” instead.

We show in section 3 that the VaR is the risk measure of choice in the Solvency II

framework. It also plays an important role in internal models in the Basel II regulations for

banks (The European Parliament and the Council of the European Union, 2006a,b, Annex

VII and Annex V, respectively). Dhaene et al. (2008) provide a theoretical justification for

the application of VaR as an external risk measure in this area. They consider a measure
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ϕ of shortfall or insolvency risk

ϕ[(X − ρ(X))+]

where

ρ1(X) ≤ ρ2(X)⇒ ϕ((X − ρ1(X))+) ≥ ϕ((X − ρ2(X))+)

holds and with an associated cost function

C(X, ρ(X)) = ϕ[(X − ρ(X))+] + ρ(X)ε (6.2)

where ε ∈ (0, 1) determines how much capital costs enter into the cost function.

Proposition 6.1.6

The value at risk at level 1− ε minimizes equation (6.2).

Proof. See Dhaene et al. (2008, thm. 1).

In this sense, value at risk is the most efficient capital requirement. Dhaene et al.

(2008) also show that it satisfies their “regulator’s condition” which states that for a risk

measure used as a capital requirement, diversification should not increase shortfall risk as

defined above. We revisit the application of VaR as a capital requirement when we discuss

natural risk statistics in section 6.2.

But value at risk also has critics. It is clear that VaR at level α does not provide

information on losses beyond this level (Dowd and Blake, 2006). This fact can be used to

game VaR measurements if no precautions are taken. An example for a portfolio with low

VaR and apparently high risk is a position in short out-of-the-money put option, which

pay an up-front premium and only lead to payments in “bad” scenarios (Dowd and Blake,

2006).

As one of the main points of criticism of VaR in the academic literature concerns the

axioms that it (does not) satisfy, we postpone further discussion of the properties of VaR

until we consider the work by Heyde et al. (2007) in section 6.2 to focus on the axioms for

now.

Proposition 6.1.7

The value at risk satisfies axioms RM1, RM3, RM4 and RM6. Consequently it is a



CHAPTER 6. RISK MEASURES 75

monetary risk measure.

Proof. The properties are immediate consequences of the definition.

In particular, VaR does not satisfy subadditivity RM2, and has been widely criticized

for this fact—for example, by Artzner et al. (1999) and Dowd and Blake (2006), who also

provide counter-examples. Daníelsson, Jørgensen, Mandira, Samorodnitsky and de Vries

(2005) and Daníelsson, Jørgensen, Mandira, Samorodnitsky and de Vries (2011) show,

however, that VaR is subadditive in many situations encountered in practice.

Whether subadditivity is in fact a desirable property for a risk measure is subject

to debate in the literature. Föllmer and Schied (2002a) observed that subadditive risk

measures ignore liquidity risk if portfolios with the same loss characteristics are merged

(Already Artzner et al. (1999) noted that the same is true for positive homogeneous risk

measures). Note that scaling a position does not mean that the associated loss random

variable X is scaled by the same factor if liquidity risk is involved. Loebnitz and Roorda

(2011) suggest a solution to this problem and also review different approaches in the

literature.

But this is not the only criticism of subadditivity. Heyde et al. (2007) have compiled

arguments against subadditive risk measures as external risk measures. They recall an

observation by Dhaene, Vanduffel, Tang, Goovaerts, Kaas and Vyncke (2004) and Dhaene

et al. (2008) that a merger can in fact increase (shortfall) risk because limited liability

applies only to the whole company after a merger instead of to the separate parts before the

merger. Additionally, they find evidence from prospect theory, developed by Kahneman

and Tversky (1979), and utility theory that risk perception violates subadditivity in some

cases.

6.1.1 Coherent Risk Measures

Monetary risk measures only satisfy the most basic axioms. We now move to risk measures

characterized by larger sets of axioms, starting with the coherent risk measures introduced

by Artzner et al. (1999).

Definition 6.1.8 (Artzner et al. (1999); Delbaen (2002))

A mapping ρ : L∞(Ω,F ,P) → R ∪ {∞} is called a coherent risk measure if it satisfies

axioms RM1-RM4.
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Axioms RM2 and RM3 are central to coherent risk measures. Despite the criticism of

those axioms we discuss above, coherent risk measures are used widely in the literature and

as internal risk measures. Delbaen (2002) generalizes them to general probability spaces

and relates them to distorted measures. Jaschke and Küchler (2001) discuss coherent

risk measures in the context of arbitrage bounds for derivatives pricing. An interesting

property in our context is the following:

Proposition 6.1.9

A coherent risk measure ρ : L∞(Ω,F ,P)→ R can be written as

ρ(X) = sup
P∈P

EP [X] ∀X ∈ L∞(Ω,F ,P).

where P is a set of probability measures equivalent to P on (Ω,F) if and only if it fulfills

the Fatou property

ρ(X) ≤ lim inf
n→∞

ρ(Xn)

for any bounded sequence Xn → Xa.s..

Proof. See Föllmer and Schied (2011, Corollary 4.37).

Following Artzner et al. (1999) and interpreting the measures P ∈ P as generalized

scenarios the proposition justifies the use of scenario analysis in the context of coherent

risk measures (see Heyde et al., 2007, sect. 2.1.1).

Remark 6.1.10

As has been noted by academics and practitioners alike (see, e.g., Dhaene et al., 2008;

Holton, 2009), the name “coherent” risk measure can be deceiving. The dictionary lists

“reasonable” and “valid” as synonyms of “coherent”3. Therefore, the name “coherent risk

measure” can lead to the false conclusion that any risk measure that is not coherent is not

reasonable and not valid.

Example 6.1.11 (Expected Shortfall)

The Expected Shortfall (ES) at level α of a loss X is given by

ESα(X) =
1

1− α
(
IE
[
X1(X≥qα(X))

]
+ qα(X) (1− α− P [X ≥ qα(X)])

)
(6.3)

3Merriam-Webster OnLine, s.v. “coherent,” accessed June 7, 2012, http://www.merriam-webster.
com/dictionary/coherent

http://www.merriam-webster.com/dictionary/coherent
http://www.merriam-webster.com/dictionary/coherent
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where

qα(X) = inf{x|P(X ≤ x) > α} (6.4)

is the upper α-quantile of the distribution of X (we adapt the definition by Acerbi and

Tasche (2002)). With this definition, Acerbi and Tasche (2002) also show that ES is equal

to the Conditional value at risk (CVaR). Other related risk measures are the tail value

at risk (TVaR) and the tail conditional expectation (TCE). We focus on the ES in this

example because Acerbi and Tasche (2002) provide a consistent reference4.

Proposition 6.1.12

The expected shortfall of X ∈ L∞(Ω,F ,P) can be represented as

ESα(X) =
1

1− α

∫ 1

1−α
V aRu(X)du.

Proof. See the remark after proposition 3.2 in (Acerbi and Tasche, 2002).

Proposition 6.1.13 (Expected Shortfall is a coherent risk measure)

The Expected Shortfall satisfies axioms RM1-RM4 and is therefore a coherent risk mea-

sure.

Proof. See Acerbi and Tasche (2002, Prop. 3.1).

The coherence property distinguishes ES from VaR and it is the main point why its

proponents prefer it to the latter, see Acerbi, Nordio and Sirtori (2001).

Another property that distinguishes the ES from the VaR is that it takes into account

information on the losses beyond the level α, which are disregarded by VaR. The usefulness

of this property in applications is, in our view, doubtful, due to the lack of robustness of

ES. As a mean type statistic, it is sensitive to outliers in the data, as indicated by an

unbounded influence curve, which Heyde et al. (2007) show to be given by

IC(x,ESα, X) =


VaRα(X)− IE [X|X ≥ VaRα(X)] , if x ≤ VaRα(X),

x
1−α − IE [X|X ≥ VaRα(X)]− α

1−α VaRα(X), if x > VaRα(X)

4We cannot take this for granted in the literature on risk measures. As Acerbi and Tasche (2002)
note about TCE: “Meanwhile, several authors [. . . ] proposed modifications to TCE, this way increasing
confusion[. . . ]”. The same is true for other risk measures.
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if X has continuous density which is positive at VaRα(X). Additionally, the extra infor-

mation on the losses beyond VaR might not be in the data. To show this, we extend an

example by Heyde and Kou (2004). They consider the problem of distinguishing between

a normalized Laplace distribution with exponential-type tails with density

fLP (x) =
1√
2
e−
√

2|x|, x ∈ R

and a normalized t-distribution with power-type tails and density

ftν (x) =
Γ((ν + 1/2))

Γ(ν/2)
√
π(ν − 2)

·
(

1 +
x2

v − 2

) ν+1
2

, x ∈ R

based on a sample. A sample size of 5000 observations, corresponding to about 20 years

of daily data in a financial time series, is not enough to distinguish between Laplace

distribution and t-distribution with 5.4899 degrees of freedom based on the tails of the

distributions at 95% confidence, because the asymptotic confidence intervals of the sample

quantiles overlap (see Walker, 1968). While the difference in 99.9% quantiles, and therefore

VaR, between the two distributions is less than 0.001%, the difference in 99.9% ES in

contrast is about 8%, see table 6.1.

VaR 99.9% ES 99.9%

Laplace distribution -4.3944 -5.1015
Normalized t-distribution (5.4899 dg. of f.) -4.3944 -5.4988

Table 6.1: VaR and ES of the Laplace distribution and the normalized t-distribution with
5.4899 degrees of freedom

6.1.2 Convex Risk Measures

Definition 6.1.14 (Föllmer and Schied (2002a))

A mapping ρ : L∞(Ω,F ,P) → R ∪ {∞} is called a convex risk measure if it adheres to

axioms RM1, RM4 and RM5.

As noted above, convexity (RM5) is a weaker requirement than positive homogeneity

(RM3) combined with subadditivity (RM2). Therefore, all coherent risk measures are also

convex risk measures.

The main attraction of convex risk measures is already implied by their name: The

convexity allows the use of results from convex optimization theory in applications such
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as portfolio allocation. A lot of work has been published in the area, among others by

Filipović and Svindland (2008), who proof the existence of solutions for a wide range of

problems, and by Lüthi and Doege (2005), who focus on efficient numerical computations.

The criticism of the coherent risk measures concerning axioms RM2 and RM3 does not

apply to convex risk measures.

Just as for coherent risk measures, there is a dual representation for convex risk mea-

sures that links them to scenario analysis.

Proposition 6.1.15

A convex risk measure ρ : L∞(Ω,F ,P)→ R can be written as

ρ(X) = sup
P∈P

(
EP [X]− αmin(P )

)
∀X ∈ L∞(Ω,F ,P).

where P is the set of all probability measures equivalent to P on (Ω,F) and αmin(P ) is

the minimal penalty function (Föllmer and Schied, 2011, sect. 4.2) if and only if it fulfills

the Fatou property

ρ(X) ≤ lim inf
n→∞

ρ(Xn)

for any bounded sequence Xn → Xa.s..

Proof. See Föllmer and Schied (2011, thm. 4.33).

We consider an example of a risk measure that is convex, but not coherent.

Example 6.1.16 (Entropic Risk Measure)

The expected exponential loss is a special case of entropy-based risk measures, which we

obtain by setting the penalty function to the entropy function (see Lüthi and Doege, 2005)

α(P ) =


P (ω)
P(ω) log

(
P(ω)
P (ω)

)
, if P � Q,

+∞, otherwise.

This gives us the expected exponential loss

ρE1 (X) = log IEP [eX ],
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while using γα(P ) for some γ > 0 as the penalty function gives the entropic risk measure

(see Barrieu and Karoui, 2009)

ρEγ (X) = γ log IEP
[
exp

(
X

γ

)]
.

Föllmer and Schied (2011, chapter 4.2) consider risk measures from the class of bounded

functions X on a measurable spaces (Ω,F). They see this as a situation with Knightian

uncertainty, as no reference probability measure is fixed in advance. In this setting, they

show the following representation for convex risk measures analogously to proposition

6.1.15 that they call “robust representation”.

Proposition 6.1.17 (Robust Representation of Convex Risk Measures)

A convex risk measure ρ on the space X of bounded measurable functions on some mea-

surable space (Ω,F) is of the form

ρ(X) = max
Q∈Q

(IEQ[X]− αmin(Q)), X ∈ X ,Q ⊂M1,f (6.5)

where αmin is the minimal penalty function and M1,f is the set of finitely additive set

functions Q : F → [0, 1] with Q(Ω) = 1.

The reason they give and that is reiterated by Föllmer (2012) is that the risk measure

does not depend on a model, but equals an expectation under that model that results in

the highest risk measurement, therefore greatly reducing model risk in theory.

We consider two examples that show that this kind of robustness unfortunately does

not translate directly to improvements in practical applications.

Example 6.1.18 (Worst-Case Risk Measure)

The worst-case risk measure on (Ω,F) is defined as (see Föllmer and Schied, 2002b, ex.3.4)

ρmax(X) := sup
ω∈Ω

X(ω) (6.6)

can be represented as

ρmax(X) = sup
Q∈M1

IEQ[X] (6.7)

where M1 = M1(Ω,F) denotes the space of probability measures on (Ω,F). Note that

the supremum is not attained in general because we restrict the set of finitely additive
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set functions M1,f to the set M1 of probability measures, which can be strictly smaller

(see Föllmer and Schied (2011, ex. A.53)). Here,M1 contains the Dirac measure for each

ω ∈ Ω, so the supremum in equation (6.7) is attained if the supremum in equation (6.6) is

attained, see Föllmer and Schied (2002b, ex. 3.4). Note that on L∞, the worst-case risk

measure is defined as

ρmax(X) := ess supX.

The worst-case risk measure is the most conservative coherent (or convex) risk measure

we can come up with (see Artzner et al., 1999) and there is, in the setup above, no model

risk as we always chose the most conservative model. The first problem is that we often

have unbounded loss profiles, in which case the measure is ρmax =∞. If we have bounded

losses and are therefore in the setup above, but have to estimate the supremum from

data, we have seen that the corresponding estimator is not statistically robust at all. The

measure is only useful if the losses are bounded with a known bound, but then model risk

is a far less serious problem anyway.

Example 6.1.19 (Expected Shortfall Revisited)

We revisit the expected shortfall introduced in example 6.1.11. As a risk measure on

L∞(Ω,F ,P), it has the robust representation

ESλ(X) = sup
Q∈Qλ

EQ[X] (6.8)

where

Qλ =

{
Q ∼ P

∣∣∣∣dQdP <
1

λ

}
.

Compared to the worst-case risk measure, the set of measures over which the supremum

is taken, is smaller. It is restricted to probability measures equivalent to a reference

measure P with bounded Radon-Nikodym density with respect to this measure. In fact,

the definition given in equation (6.3) uses only this reference measure. We have to ask

why the existence of representation equation (6.8) should have positive implications for

robustness, if the reference measure alone is what matters. Additionally, the expected

shortfall can be seen as a mean-type statistic when we are concerned with estimation, and

so its standard estimators are not robust.
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Very recently, Pflug, Pichler and Wozabal (2012) and Wozabal (2012) have taken a

different approach to improve robustness of convex risk measures in a portfolio allocation

context. They start with a reference probability measure on a fixed probability space

which they see as a best estimate of the unknown true distribution of the loss and decide

on a convex risk measure to use. In order to obtain a robust version of this risk measure,

they calculate the “worst” value the risk measure can take for a loss with distribution in a

neighbourhood around the reference distributions, determined via the Wasserstein metric.

More precisely, we have the following proposition.

Proposition 6.1.20

Let ρ be a convex, law-invariant risk measure, ρ : Lp(Ω,F ,P)→ R, 1 ≤ p <∞ with dual

representation (see Appendix C)

ρ(X) = max {IE[XZ]−R(Z)|Z ∈ Lq} (6.9)

where p and q are Hölder conjugates, 1
p + 1

q = 1, and R : Lq(Ω,F ,P) → R can be the

convex conjugate of ρ, (a representation where R is a convex function is sufficient here,

see Pflug and Römisch (2007)). Let XQ denote a random variable with image measure Q

on R. Additionally, let ∂ρ(X) ⊂ Lq denote the set of maximizers of equation (6.9). Then

• for arbitrary measures Q1 and Q2 on R we have

∣∣ρ(XQ1)− ρ(XQ2)
∣∣ ≤ sup

Z,R(Z)<∞
dp(Q1, Q2)

where dp denotes the Wasserstein distance;

• for a probability measure Q1 on R, if

‖Z‖Lq = C ∀ Z ∈
⋃

X∈LP
∂ρ(X) with R(Z) <∞,

it holds for any κ > 0 that there exists a measure Q2 on R with dp(Q1, Q2) = κ such

that

∣∣ρ (XQ1)− ρ(XQ2
)∣∣ = Cκ;
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• for ρ : L1(Ω,F ,P)→ R with

‖Z‖L∞ = C and |Z| = C or |Z| = 0 a.e. (6.10)

for all subgradients Z of ρ. Fix a probability measure Q1 on R and κ > 0. Then

there exists a probability measure Q2 on R with d1(Q1, Q2) = κ such that

∣∣ρ(XQ1)− ρ(XQ2)
∣∣ = Cκ.

Proof. See the proofs by Pflug et al. (2012, Lemma 1, Prop. 1, Prop. 2).

Pflug et al. (2012) show that the requirements of the proposition, especially equation

(6.10), hold for ES. We easily5 get from equation (6.8) that

ESα(X) = sup

{
IE[XZ]

∣∣∣∣IE[Z] = 1, 0 ≤ Z ≤ 1

1− α

}
. (6.11)

Following Pflug et al. (2012) and choosing A ⊂ Ω such that P(A) = 1 − α and X(ω) ≥

F−1
X (α) ∀ω ∈ A, we have

Z(ω) =
1

1− α
1A(ω) ∈ ∂ESα(X).

The fact that Z is a maximizer of equation (6.11) is shown by Föllmer and Schied (2011,

thm. 4.52). So for any loss XQ with Wasserstein distance d1(XP, XQ) = κ from XP, the

difference in ES is

∣∣∣ESα(XP)− ESα(XQ)
∣∣∣ ≤ κ

1− α

and there is a such random variable for which equality holds. The robustified version of

the ES is therefore

ESκα(X) = ESα(X) +
κ

1− α
, (6.12)

see Wozabal (2012), who also provide robustified versions of other risk measures, especially

from a subclass of distortion risk measures.
5For the required measure theoretical facts, see Shreve (2004, thm 1.6.1 & def. 1.6.5).
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6.1.3 Distortion Risk Measures

We take a look at one more class of risk measures, the distortion or Wang risk measures.

Definition 6.1.21 (see Wang et al. (1997))

A mapping ρ : {X ∈ L∞(Ω,F ,P) | X ≥ 0} → R ∪ {∞} is called a distortion risk measure

if it adheres to axioms RM1, RM6, RM7 and RM8

The axiomatic approach originates from the characterization of insurance prices by

Wang et al. (1997). The representation via distorted expectations that gives them the

name is based on ideas by Yaari (1987), who developed a modified expected utility theory.

The conceptual difference to classical expected utility theory is that “distortion functions

modify the probability, and keep the wealth function unchanged, whereas utility functions

modify the wealth and keep the probability unchanged” (Wirch and Hardy, 1999, sect.

2.1).

Proposition 6.1.22 (Choquet Integral Representation of Distortion Risk Measures)

ρ(X) is a distortion risk measure with ρ(1) = 1 if and only if ρ has the Choquet integral

representation

ρ(X) =

∫
Xd(g ◦ P) =

∫ ∞
0

g(1− FX(x))dx

where g : [0, 1]→ [0, 1] is an increasing distortion function with g(0) = 0 and g(1) = 1 and

FX is the cdf of X.

Proof. See Wang et al. (1997, thm 3) who refer to Wang (1996) and Denneberg (1994) for

details.

An attractive property of distortion risk measures is that properties of the distortion

function g, which is a relatively simple object as a function from the real numbers to the

real numbers, translate to properties of the associated risk measure.

Proposition 6.1.23 (Properties of Distortion Risk Measures)

A distortion risk measure ρ with distortion function g as in proposition 6.1.22 is no-ripoff,

that is, ρ(X) ≤ max(X), positively homogeneous (RM3) and translation invariant (RM4).

ρ preserves first order stochastic dominance. Additionally,

(i) if and only if g is concave, ρ(X) is subadditive and therefore coherent;
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(ii) if g is concave, ρ preserves second order stochastic dominance;

(iii) if g is strictly concave, ρ strictly preserves second order stochastic dominance.

Proof. For the proof and further references, see Wang (1996), Wirch and Hardy (2003)

and Sereda, Bronshtein, Rachev, Fabozzi, Sun and Stoyanov (2010).

Applications of distortion risk measures in the literature include portfolio optimization

(Sereda et al., 2010; Balbás, Garrido and Mayoral, 2009) and capital allocation (Tsanakas,

2004).

Example 6.1.24 (Distortion Risk Measures)

We consider some examples. Plots of the distortion functions are exhibited in Figure 6.1.

• The VaRα is a distortion risk measure with distortion function

gα(1− FX(x)) =


0;x > VaRα ⇔ 0 ≤ 1− FX(x) < 1− α,

1;x ≥ VaRα ⇔ 1− α ≤ 1− FX(x).

As the step function is not concave, we can see immediately that the value at risk is

not a coherent risk measure.

• Using the representation in proposition 6.1.12, the expected shortfall at level α, ESα,

can be represented via the distortion function

gα(x) = min

{
x

1− α
, 1

}
.

The distortion function is concave, so we can confirm that the ES is coherent.

In analogy to convex risk measures, there is a robustified version for certain distortion

risk measures developed by Wozabal (2012, ex. 4): If a distortion risk measure ρH :

Lp(Ω,F ,P)→ R, 1 < p <∞ has a representation as

ρH(X) =

∫ 1

0
F−1
X (p)dH(p)

for a convex function H : [0, 1]→ R with H(p) =
∫ p

0 H(t)dt, it can be written as

ρH(X) = sup {IE[XZ]|Z = h(U), U ∼ U [0, 1]} .
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Figure 6.1: Distortion functions for VaR (upper panel) and ES (lower panel)

The robustified version of this risk measure, corresponding to equation (6.12) for the ES,

is then given by

ρκH(X) = ρH(X) + κ ‖h(U)‖Lq (6.13)

where κ > 0 and q is the Hölder conjugate of p.

6.1.4 Risk Measures as Statistical Functionals and Risk Estimators

In order to apply the notions of qualitative robustness we exhibit in chapter 5, we have to

consider risk measures as statistical functional on a space of probability distributions.

Remark 6.1.25 (Statistical Functional and Risk Statistics)

Let F denote the cdf of a random variable X ∈ L∞(Ω,F ,P).

• The statistical functional for standard deviation is

TSD(F ) =

√∫
x2dF −

(∫
xdF

)2

. (6.14)
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• The statistical functional for the VaR is given by

VaRα(X) = TVaR(F ) = F−1(α) = inf {x|F (x) ≥ α} (6.15)

for 0 < α < 1. It can be written as

TVaR(F ) =

∫ 1

0
F−1(α)dδα

where δα puts mass one to α ∈ (0, 1).

• The statistical functional for the ES is given by

ESα = TES(F ) = E(X | X > V aRα) = (1− α)−1

∫ 1

α
F−1(x)dx (6.16)

as shown in proposition 6.1.12.

Example 6.1.26 (Robustness of VaR and ES)

The statistical functional of the VaR is the same as for the quantile, so we can collect the

robustness properties from the examples in chapter 5. The VaR at level α ∈ (0, 0.5) is

weakly continuous at F ∈ M if F−1 is continuous at 1 − α. At such a distribution F , it

is also qualitatively robust if we use the Lévy and Prohorov metrics (see theorem 5.1.7).

It has an asymptotic breakdown point of α and a finite influence curve given by

IC(x;F, Tq(α)) =


α−1

f(F−1(α))
for x < F−1(α),

α
f(F−1(α))

for x > F−1(α).

The robustness picture for the expected shortfall looks different. While we have conti-

nuity with respect to the Wasserstein distance with p ≥ 1, the ES is not weakly continuous

w.r.t. other metrics that do not require the convergence of moments. Additionally, it has

an asymptotic breakdown point of 0 and an unbounded influence curve, which we can

derive from the result for the trimmed mean, see example 5.3.3:

IC(x;F, Tα) =


1

1−α (x−Wα(F )) for x > F−1(1− α),

1
1−α

(
F−1(α)−Wα(F )

)
for x ≤ F−1(α).

However, the sample mean isMκ,λ-robust w.r.t. (d1, dProh), see example 5.1.14.
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In practice, we usually do not have a fixed distribution function F to which we can

apply the statistical functionals, but we have to estimate the distribution from data. We

then use a risk measure to obtain an estimator for the risk. Cont et al. (2010) formalize

this procedure in two steps:

Definition 6.1.27 (Risk Measurement Procedure and Risk Estimator, (see Cont et al.,

2010, def. 2.3))

A risk measurement procedure is a couple (M,ρ) where

ρ :Mp → R

is a risk measure and

M : X =
⋃
n≥1

Rn →Mp,

a map from the set of possible data sets, is an estimator of the loss distribution. The

composite function

ρ̂ : X → R, x 7→ ρ(M(x))

is called a risk estimator.

Cont et al. (2010) give examples of risk estimators, in particular the historical risk

estimators—obtained by using M = F̂n, the empirical cdf—and maximum likelihood esti-

mators. Using the classical results on robust statistics we collected in chapter 5, they show

that the robustness properties for value at risk and expected shortfall that we derived in

example 6.1.26 carry over to the historical risk estimators (also see examples 6.2.4 and

6.2.5).

6.2 Data-based Approach: Natural Risk Statistics

The classes of risk measures we consider in sections 6.1.1-6.1.3 have in common that they

are usually defined as real-valued maps from some set of random variables on a probability

space. The risk statistics introduced by Heyde et al. (2007) that we discuss here take a

different approach. As risk measurements are, in practice, derived from data, usually either
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directly or via a model and simulation, risk statistics take this into account. Consequently,

they are defined for data x = (x1, . . . , xn) ∈ Rn.

Definition 6.2.1

A risk statistic is a mapping ρ̂ : Rn → R.

The following axioms can be used to characterize desirable properties of risk statistics,

analogously to those for risk measure in section 6.1.

RS1 Monotonicity: ρ̂(x) ≤ ρ̂(y) if x ≤ y, that is, xi ≤ yi, i = 1, . . . , n

RS2 Subadditivity: ρ̂(x+ y) ≤ ρ̂(x) + ρ̂(y)x, y ∈ Rn

RS3 Positive homogeneity: ρ̂(λx) = λρ̂(x) for λ ≥ 0, x ∈ Rn

RS4 Translation invariance: ρ̂(x+ b1) = ρ̂(x) + b for b ∈ R and x ∈ Rn

RS5 Comonotonic subadditivity: ρ̂(x+y) ≤ ρ̂(x)+ ρ̂(y) for any comonotonic x ∈ Rn and

y ∈ Rn. x and y are comonotonic if (xi − yi)(xj − yj) ≥ 0 for any i 6= j

RS6 Permutation invariance: ρ̂((x1, . . . , xn)) = ρ̂((xπ(1), . . . , xπ(n))) for any permutation

(π(1), . . . , π(n))

RS7 Comonotonic additivity: ρ̂(x + y) = ρ̂(x) + ρ̂(y) for any comonotonic x ∈ Rn and

y ∈ Rn

RS8 Scale normalization: ρ̂(1) = 1

Definition 6.2.2 (see Heyde et al. (2007, def. 1,2,3))

A risk statistic that satisfies axioms RS1, RS3, RS4, RS5, and RS6 is called a natural risk

statistic.

A risk statistic that satisfies axioms RS1, RS2, RS4, and RS3 is called a coherent risk

statistic. If, in addition, it satisfies RS6, it is called a law-invariant coherent risk statistic.

A risk statistic that satisfies axioms RS1, RS6, RS7, and RS8 is called an insurance risk

statistic.

While the coherent and insurance risk statistics are data-based counterparts of coher-

ent and insurance risk measures, there is no analog for the natural risk statistics. The

introduction of the natural risk statistics by Heyde et al. (2007) is motivated by their

criticism of subadditivity—see the discussion of the axioms in section 6.1—combined with
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the robustness requirements they derive for external risk measures in particular. While we

have discussed practical arguments against subadditivity and for robustness, Heyde et al.

(2007) also provide a philosophical basis for both aspects. The robustness requirements

are based on their observation (see Heyde et al., 2007, sect. 3) that the concept of “legal re-

alism” requires robustness of legal rules to further their consistent implementation. Their

criticism of subadditivity is based on the concept of “legal positivism” which postulates

that laws depend on existing social standards (see Green, 2009) and that “there must be

a sufficient number [of members of the society] who accept it voluntarily” (Hart, 1997, p.

201). They argue that subadditivity is contrary to the risk perception of most people as

suggested by experiments from prospect theory (see Heyde et al., 2007, sect. 3.2). The

following results show how natural risk statistics perform in the area of robustness.

Proposition 6.2.3 (see Heyde et al. (2007, thms. 1, 4, 5))

Let ρ : Rn → R be a risk statistic and let x(1), . . . , x(n) denote the order statistics of

x ∈ Rn.

• ρ is a natural risk statistic if and only if there exists a set of weights W ⊂ Rn with

each w = (w1, . . . , wn) ∈ W satisfying
∑n

i=1wi = 1 and wi ≥ 0, 1 ≤ i ≤ n such that

ρ(x) = sup
w∈W

{
n∑
i=1

wix(i)

}
∀x ∈ Rn.

• ρ is a law-invariant coherent risk statistic if and only if there exists a set of weights

W ⊂ Rn with each w = (w1, . . . , wn) ∈ W satisfying
∑n

i=1wi = 1, wi ≥ 0, 1 ≤ i ≤ n,

and w1 ≤, . . . ,≤ wn such that

ρ(x) = sup
w∈W

{
n∑
i=1

wix(i)

}
∀x ∈ Rn.

• ρ is an insurance risk statistic if and only if there exists a weight w = (w1, . . . , wn) ∈

R satisfying
∑n

i=1wi = 1 and wi ≥ 0, 1 ≤ i ≤ n such that

ρ(x) =
n∑
i=1

wix(i)∀x ∈ R.

Proof. See the proof for theorems 1, 4, and 5 in the online supplement to Heyde et al.

(2007).
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The proposition shows that natural risk statistics can be represented by a supremum

of L-statistics, law-invariant coherent risk statistics as a supremum of L-statistics with

increasing weights for increasing observations, and insurance risk statistics as a single

L-statistic. The weights over which the supremum is taken for the former two kinds of

risk statistics can be interpreted as scenarios. So just as for the coherent and convex risk

measures in section 6.1, we can say that natural and law-invariant coherent risk statistics

incorporate scenario analysis. From a robustness point of view, we have seen that certain

L-statistics have nice properties (see example 5.3.4). For the law-invariant coherent risk

statistics, however, this is offset by their assignment of increasing weights to increasing

observations, a property that increases the influence of outliers on the statistic.

Consequently, Heyde et al. (2007) note that the natural risk statistics combine the

properties they consider important in a risk measure: consistency with empirical results

of decisions under risk, incorporation of scenario analysis, and robustness. We have to be

careful, though. While there are certainly natural risk statistics with these properties—as

we see in the following examples—it is an immediate consequence of proposition 6.2.3 that

every law-invariant coherent risk statistic is also a natural risk statistic.

Example 6.2.4 (Data-based VaR and Tail Conditional Median)

The data-based value at risk at level α can be derived from the definition in example

6.1.4. Assume we have observations x = (x1, . . . , xn) of the random variable X ∈ R and

let Fn(·;x) denote the corresponding empirical distribution function. Then we have

VaRdata
α (x) = inf {y|Fn(y;x) ≥ α} = x(dnαe), x ∈ Rn.

If we set W to be the single element set W = {wVarα} with

wVarα
i =


1, if i = dnαe,

0, else,

we get from proposition 6.2.3 that VaR is a natural risk statistic. The VaR has been

faulted by Acerbi (2004) and Dowd and Blake (2006), among others, for not belonging to an

axiomatic system of risk measures. The classification as a natural risk measure removes the

reason for this line of criticism. As the VaR is a natural, but not a coherent risk measure,

it satisfies the robustness requirements set up by Heyde et al. (2007). Consequently, they
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suggest the tail conditional median (TCM) at level α, defined as

TCMα(X) := Med [X|X ≥ VaRα(X)] , (6.17)

as a risk statistics which incorporates tail information and is a robust alternative to ES.

Note that for continuous random variables we have

TCMα(X) = VaR 1+α
2

(X).

As a quantile, the TCM has, in contrast to the ES, a bounded influence curve.

Example 6.2.5 (Data-based Expected Shortfall)

The data-based expected shortfall at level α ∈ (0, 1) can be derived from equation (6.3)

to be

ESdataα (X) =
1

n− bnαc

(nα− bnαc)x(bnαc+1) +
n∑

i=bnαc+2

x(i)

 .

As 0 ≤ nα− bnαc < 1 by definition, we have

0 = w1 = . . . = wbnαc ≤
nα− bnαc
n− bnαc

= wbnαc+1 <
1

n− bnαc
= wbnαc+2 = . . . = wn,

and therefore, we can conclude from proposition 6.2.3 the ES is a law-invariant coherent

risk statistic.



Chapter 7

Risk Management Procedure

Our goal is to come up with a concept that facilitates robust risk management. The risk

measurement procedure introduced by Cont et al. (2010) that we discuss in section 6.1.4

is a step in this direction. But the risk management process includes more than just risk

measurement (see section 2.2). Therefore, we need a broader approach which we obtain

by extending the risk measurement procedure.

Definition 7.0.6 (Risk Management Procedure)

A risk management procedure is a tuple (G, d,M, ρ,�) where G is a (class of) model(s) for

the underlying risk factors of the portfolio, d is a probability distance, M is a (possibly

simulation-based) estimator of the loss distribution, ρ is a law-invariant risk measure, and

� a decision rule.

The ingredients of the risk management procedure are derived from our study of the

risk management process—this requires a model for the risk factors, means to deal with

unnty, that is, the distance for approximations, the risk measurement procedure M,ρ for

risk evaluation, and a decision rule. Our robustness requirements can be incorporated by

selecting the distance and the risk measure appropriately.

While the risk management procedure forces us to think coherently about its ingre-

dients, it is still flexible enough to incorporate adjustments to different situations that

turn up in practice. In particular, background knowledge about the portfolio and its risk

drivers can—and has to—enter in the procedure.

This starts with the selection of possible models for the underlying risk factors. Is a

distributional assumption for the risk factor at a single point in time sufficient, or is a

time-series model or a model based on continuous time stochastic processes necessary?
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Are risk factors likely to exhibit jumps in their price processes? Do we have to model

volatility as a stochastic process? Answering these questions requires expert knowledge

on the portfolio and the market.

The distance d can be chosen, for example, among the distances presented in chapter

4. Under robustness considerations, the Wasserstein metric is a good choice, as it allows

us to derive some theoretical results, focuses on differences in the tails of the distributions,

and is easily interpretable.

Concerning the estimator of the loss distribution, there is again a wide variety of

possible choices, depending on the portfolio on the one hand and the model on the other

hand. For a portfolio consisting of a single stock that is modeled as having normally

distributed log-returns, we could simply use a properly scaled log-normal distribution as

the loss distribution. Probably closer to practical problems is the asset-liability model for

the balance sheet of a life-insurance company by Bauer, Bergmann and Kiesel (2008) that

we use in chapter 8. It consists of a set of rules that determine the portfolio value based on

the evolution of the underlying asset and has to be used in conjunction with Monte-Carlo

simulation of asset paths. The result, however, is a loss distribution, and consequently

models like this are a valid choice for M .

Chapter 6 has many examples of risk measures among which we can select one for ρ.

Of the two most popular risk measures—value at risk and expected shortfall—the VaR

turned out to be the better choice from a robustness point of view. However, we could also

use the ES if the model G and the estimator of the loss distribution M are such that the

resulting loss distribution allows for a limited robustness result in the sense of Krätschmer

et al. (2012a).

It remains to discuss the decision rule. We do not fix the character of � in definition

7.0.6 because there is a again a wide variety of possibilities and because different decisions

have to be made based on the results, for example to fulfill the requirements of the use test

in Solvency II (see section 3.2.1). Simple decision rules can be based on the risk measure.

A limit system—positions with a risk as measured by ρ of more than some limit L ∈ R

are not taken up—constitutes a decision rule:

�: R→ {0, 1},� (ρ(.)) 7→ 1ρ≤L.

Another possibility would be to use the ordering on the real numbers to rank portfolios
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Mean -0.0147 Skewness -1.0356
Stand. dev. 0.1611 Kurtosis 9.4282

Table 7.1: Descriptive statistics of stock log-returns

based on the risk (or performance) measurement (see again section 3.2.1).

We present two examples of how the risk management procedure can be used.

Example 7.0.7

We observe 500 historic log-returns of a stock S (obtained by simulation) exhibited in

figure 7.1 and want to decide whether or not to invest 10.000 into it. We will not invest if

the 97.5% value at risk is higher than 3500. To facilitate later extensions of our portfolio
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Figure 7.1: Histogram of stock log-returns (simulated data)

to options on this underlying, we want to use a parametric model. Inspection of the

histogram and the descriptive statistics in table 7.1 indicate a heavier left tail than in a

normal distribution. Based on this, we decide to try to fit a normal distribution for its

simplicity and a t-location-scale distribution1 which might provide a better fit to the left
1A r.v. X has a t-location-scale distribution with parameters µ, σ, and ν if (X−µ)/σ has a t distribution

with ν degrees of freedom.
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Normal T-Location-Scale
µ -1.96% -2.07%
σ 15.71% 12.64%
ν N/A 5.83

d2 0.037 0.028

Table 7.2: Fitting results

tail. We select one of the two distributions as model M based on the Wasserstein metric.

In order to do this, we use numerical optimization to find the parameters that minimize

the Wasserstein distance (set d = d2) between the empirical distribution and the model

distribution. The results are shown in table 7.2. As expected, the distance between the

empirical distribution and the model is slightly smaller for the t-location-scale distribution.

The difference is also noticeable in a plot of the left tails in figure 7.2.
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Figure 7.2: Left tail of the empirical and the model distribution functions

The distribution that we use as input to the risk measure can be the model distribution,

that is,M can be the identity map on the space of distribution functions. We can compute

the value at risk directly, the results are shown in table 7.3. There is a difference between



CHAPTER 7. RISK MANAGEMENT PROCEDURE 97

Model 97.5% value at risk
Historic 3030
Normal 2792
t-location-scale 2828

Table 7.3: Value at risk for the empirical distribution and the models.

the models, but using our decision rule, we go through with the investment in any case.

Example 7.0.8

We want to illustrate the process outlined in chapter 2 with another stylized example, parts

of which are taken from Stahl et al. (2012, sect. 4). Consider a market with 10 stocks and

a risk-free asset evolving independently from the stocks. We have to decide how much of

our wealth we invest in a portfolio Π consisting of the stocks (equally weighted) and in

the risk-free asset. Our data set consists of the history of 500 (simulated) daily quotes for

each of the stocks as well as for the risk-free rate.

• Dimension Reduction We apply Principal Component Analysis to the stock data.

We chose the number of factors that we use in the next steps such that they cover

99% of the variance in the data. For our example data set, this turns out to be

6. The true value of the stock portfolio is the sum of the stock prices. Using this

value as the dependent variable in a regression against the factors obtained from the

PCA, we get an approximation to the portfolio value based on the lower dimensional

set of risk factors. If an OLS estimator is used, this implies a small Wasserstein

distance between the empirical distribution of the portfolio value on the data set

and the approximate portfolio value derived from the risk factors on the data set.

For the example data, we obtain W2 = 5.54, and this seems to be reasonably small

considering that such a distance would result from moving the distribution by less

than a half percent of its mean.

• Model Building In order to derive forecasts for our portfolio value and to estimate

the risk inherent in the portfolio, we have to build a model for the risk factors. A

statistical analysis of the time series of the risk factors shows that, in our example,

it is stationary and that for 5 of the 6 factors the hypothesis of normally distributed

increments cannot be rejected at a 99% level. To keep matters as simle as possible,

we use a normal distribution for the increments of the factors and estimate the

parameters with robust methods via the median and the median absolute deviation.
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Based on these assumptions and using a Vasicek interest rate model for the risk free

rate, we can simulate the development of the asset values over a horizon h of one

year to obtain the empirical distribution F of the value of portfolio Π. Figure 7.3

compares the simulation results from the true distribution of the stock portfolio value

(in red) with the results from the reduced dimension model (in blue). Obviously, the

model does not provide a good fit, which is also indicated by a Wasserstein distance

W2 = 510. As the left tail nevertheless fits reasonably well and as the risk measures

we use depend mainly this part of the distribution, we do not try to find a better

model in this example.

• Risk Measures and Decision Making Risk measures such as VaR or TVaR can

be computed from the empirical distribution function of the asset values at t = 1.

These risk measures form the basis for performance measures that can be used for

portfolio allocation (see, e.g., Rachev, Menn and Fabozzi (2005, exhibit 13.3)). The

performance measures map the empirical distribution to the real numbers, providing

us with a way to order portfolios with different distributions. In our example, we use

the VaR ratio as performance measure, which relates the mean excess return to the

VaR. Via numerical optimization we can find w ∈ [0, 1] such that investing a fraction

w of our wealth in the stocks and (1−w) in the risk-free asset maximizes the VaR-

ratio of the resulting portfolio Π∗ at a 99% level. Based on the true distribution, the

optimization yields w = 7.2%, based on the reduced dimensional model we obtain

w = 12.5% with VaR ratios of 0.86 and 0.24, respectively. The poor performance

of the reduced dimensional model should not be a surprise given the rather large

Wasserstein distance obtained in the previous step.
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Part III

The Solvency Capital Requirement



Chapter 8

Mathematical Framework

8.1 Motivation and Definitions

Capital requirements, especially the Solvency Capital Requirement (SCR), are a central

part of the Solvency II framework, as we have seen in chapter 3. The calculation as a

quantile of own funds over a one-year horizon requires a total balance sheet approach that

includes the market-based valuation of assets and liabilities.

Apart from the guidelines in the Solvency II documents, there are several works on

market consistent valuation techniques in insurance in the literature. Among them is

Wüthrich, Bühlmann and Furrer (2008), who combine results from Buchwalder, Bühlmann,

Merz and Wüthrich (2007) (non-life insurance) and Baumgartner, Bühlmann and Koller

(2004) (life insurance). These works bring together and integrate the actuarial valuation

of the liabilities and the mark-to-market valuation of the assets of an insurance com-

pany for the first time. The introductory note by Kalberer (2006) focuses on the Market

Consistent Embedded Value (MCEV) and is more concerned with stochastic simulation,

although trees, replicating portfolios and closed-form solutions are mentioned as alterna-

tives methods. The calculation of the SCR is closely connected to the notion of the MCEV

as calculated according to the CFO Forum (2009) by the present value of future profits

(PVFP). Bauer et al. (2011b, eq. (1)) present an MCEV-based approximation of the SCR.

MCEV = ANAV + PV FP − CoC (8.1)

where ANAV is the Adjusted Net Asset Value as the sum of free surplus and required

capital, PV FP is the Present Value of Future Profits, and CoC is a Cost of Capital
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charge, see figure 8.1 for details. These quantities are calculated according to the principles

established by the CFO Forum (2009).

PVFP

Time value of financial 
op�ons and guarantees

Fric�onal cost of 
required capital

Cost of residual non-
hedgeable risk

VIF
(Principles 6-9)

Required capital
(Principle 5)

Free surplus
(Principle 4)

CFO-Forum (2008)
MCEV

Bauer et. al. (2011b)
MCEV

+ +

+ -ANAV PVFP CoC

=

=

Figure 8.1: Components of the MCEV according to the CFO Forum (2009) and Bauer
et al. (2011b). VIF is the value of in-force business.

The SCR approximation by Bauer et al. (2011a) depends on the Available Capital one

year into the future (Bauer et al., 2011a, eq. (2)):

AC1 =: MCEV1 +X1 (8.2)

where X1 is the profit in this year. The Available Capital computed in this way corre-

sponds roughly to the basic own funds in Solvency II. This is sufficient for their—and

our—modeling purposes because we do not capture the details in which differences arise

anyway1. Therefore, we try to calculate the distribution of the available capital at t = 1

given the available capital at t = 0—especially the 99.5%-quantile which then corresponds

to the SCR. The first step in this exercise is the simulation of the market development,

in particular of the risk factors that drive the value of the portfolio, from t = 0 to t = 1.

This has to be done under a real-world measure. Given the market development up to

t = 1, the unknown part of the available capital is the present value of future profits

(PVFP). Therefore, the second step consists of finding the PVFP. It can potentially be

found by different means: closed formulas, tree methods, stochastic simulation or repli-

cating portfolios (see Kalberer, 2006). Due to the nature of the options and guarantees

embedded in many life-insurance contracts, it is usually not possible to find closed-form

prices. Tree methods do not seem to be feasible because of the high dimension of the
1Additionally, the industry expects the MCEV guidelines to converge to the Solvency II regulations

(see, e.g., Towers Watson, 2012)
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problem (participation usually depends at least on the yield curve because fixed-income

securities are usually a main part of a life insurer’s portfolio). Consequently, we consider

only the remaining two methods in the following, with a focus on nested simulations. For

this method, we generate scenarios under the risk-neutral or pricing measure to estimate

the value for each state of the world at t = 1 that we have reached in the first simulation

step. In the replicating portfolio approach, traded financial instruments are used to mimic

the payoffs generated by the insurance portfolio. If this replication is close, the PVFP can

be approximated by the value of the replicating portfolio at t = 1.

8.1.1 Nested Simulation

One method to evaluate and assess the risk of an insurer’s portfolio is nested simulation.

While straightforward application of this method, as described above, yields the desired

results, it is often too expensive computationally. In the literature, there are mainly two

approaches to this problem. The first is to choose the number of inner and outer simulation

steps optimally. In this context, Gordy and Juneja (2008) derive the optimal allocation

of the computational budget and introduce a jackknife bias-reduction technique, both in

the context of derivative portfolios. Broadie et al. (2010) show an algorithm that builds

on the results by Gordy and Juneja (2008), but allocates the computational resources

sequentially. Screening techniques can be used if the risk measure of interest depends only

on the tail of the distribution. Screening was introduced by Lan (2009) and applied to the

insurance context by Bauer et al. (2011b). The second approach is to use interpolation

techniques to reduce the number of necessary steps. Bauer, Bergmann and Reuss (2009)

develop a framework in the context of MCEV and the Solvency requirements. They apply

a least-squares method, which was originally introduced by Longstaff and Schwartz (2001)

for the valuation of American options, to reduce the number of inner steps. Bergmann

et al. (2009) use a replicating portfolio as a control variate and try to avoid the change

of measure in the inner step by interpolating from the portfolio values in risk neutral

scenarios used for MCEV computation in t = 0. Liu and Staum (2010) apply stochastic

kriging, a method that originated in geostatistics, to the problem.

8.1.2 Replicating Portfolios

The literature on replicating portfolios in (life-) insurance is rather limited. We review

some practitioners’ accounts first which do not give a rigorous treatment but rather a sum-
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mary of strengths, weaknesses, and applications of the method. Baxter, Muir and Leung

(2008) give a short introduction to replicating portfolios, show some fitting results and list

advantages and disadvantages of the approach. They see improved speed, quality, and ac-

curacy of information about insurance liabilities as well as a better understanding of ALM

exposures. On the other hand, they mention that a replicating portfolio may be volatile

over time and that it is difficult to obtain a good fit. They also note that the application

of the method might be limited if liability cash flows depend on the asset allocation or if

non-economic assumptions are to be assessed. Erixon and Tubis (2008) suggest the use of

replicating portfolios for the valuation and risk management of unit-linked products with

investment guarantees. They give an overview of the approach and present a small case

study. Mason (2008) focuses on applications in ALM and risk management with regard

to Solvency II. Additionally, Clark, Gillespie and Verheugen (2008) and Kalberer (2006)

mention replicating portfolios but advocate model compression and stochastic simulation,

respectively, as alternative methods to obtain market consistent valuations.

Oechslin et al. (2007) show the application of replicating portfolios to the valuation

and management of embedded options and guarantees. In contrast to the publications

referenced above, they describe the method in more detail. Starting from the general

setup, they find a metric measuring the “distance” of the replicating portfolio to the

original portfolio, show how to minimize it with and without constraints, suggest methods

to assess the quality of the replication and conduct a small case study. Another work in

the spirit of Oechslin et al. (2007) is Seemann (2009). He considers replicating portfolios

that match the terminal cash-flows, the continuous cash-flows at each time of the life of the

portfolio as well as the terminal cash-flows of intervals. A case study is presented in which

different life-insurance products are replicated. Starting from a deterministic savings-only

contract, guarantees, repurchase options, participation and mortality risk are are added

to the model.

8.2 Algorithms

In this section, we show three different simulation algorithms that can be used to compute

the SCR—the nested simulation algorithm, the least-squares Monte-Carlo algorithm, and

the least-squares Monte-Carlo algorithm with risk-neutral paths. Before we can work on

these algorithms, we have to fill in some details.
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Our setup is similar to that of Bauer et al. (2009). Let (Ω,F ,P, IF) be a filtered probability

space with IF = (Ft)t∈[0,T ] that fulfills the usual hypothesis Protter (2005, ch. 1). T is the

maturity of the latest cash flow in the portfolio, P is the real-world or physical measure.

Further, assume that the uncertainty in the market is modeled by a d-dimensional Markov

semimartingale2 (Yt)t∈[0,T ] = (Yt,1, . . . , Yt,d)t∈[0,T ]. The filtration (Ft) is generated by (Yt).

Additionally, there is a numéraire process Bt =
∫ t

0 rsds with rt = r(Yt) the risk-free interest

rate. There is a cash flow projection model in place, that is, the cash flow of the portfolio

of the insurance company is given by an Ft measurable process Xt = f(Ys, s ∈ [0, t]).

The process Xt can be discrete or continuous in time, but we will restrict ourselves to the

discrete version.

Remark 8.2.1

The cash flow process Xt as defined above is not Markov because for any t ∈ [0, T ], Xt

usually depends not only on Yt but on the development of Ys, 0 ≤ s ≤ t. A practical

solution to this problem can be the introduction of additional “Markov state variables”

Dt ∈ Rm which, in an insurance context, could represent the bookkeeping, see Bauer et al.

(2009). We assume that for any t ∈ [0, T ] the pair (Yt, Dt) contains all the information

we need from Ft, that is, Xu, t ≤ u ≤ T and Ft as well as Bu, t ≤ u ≤ T and Ft are

conditionally independent given σ{(Yt, Dt)} ⊃ σ{Yt}. We write Ft ⊥(Yt,Dt) Xu, t ≤ u ≤ T

and Ft ⊥(Yt,Dt) Bu, t ≤ u ≤ T .

We assume the existence of a risk-neutral probability measure Q so that our market

is arbitrage free. If the market is not complete, we select one of the risk-neutral measures

and label it Q. As a consequence, we can use the risk neutral valuation formula (see

Bingham and Kiesel, 2004, thm. 6.1.14) to obtain the value of our portfolio (the PVFP)

Vt = IEQ

[
T∑

s=t+1

exp (−(Bs −Bt))Xs

∣∣∣∣∣Ft
]

= IEQ

[
T∑

s=t+1

exp (−(Bs −Bt))Xs

∣∣∣∣∣ (Yt, Dt)

]
, 0 ≤ t ≤ T. (8.3)

The second equality uses the assumptions from remark 8.2.1.

Proposition 8.2.2

Fix t. Then there exists a measurable function hVt : Rd × Rm → R such that Vt =

2For conditions under which a Markov process is a semimartingale, see C̨inlar, Jacod, Protter and
Sharpe (1980)
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hVt(Yt, Dt).

Proof. (Yt, Dt) : Ω → Rd+m is a random vector and therefore measurable, Vt is (Yt, Dt)-

measurable by the definition of the conditional expectation. Applying lemma 1.13 from

Kallenberg (2002) gives the result.

Remark 8.2.3

Note that the function hVt is deterministic. The randomness of Vt is in the input (Yt, Dt),

which is a random vector.

In practice, we are interested in two objects: the degenerated random variable V0 ∈ R

and the P-distribution of V1, that is, the distribution given by the cumulative distribution

function

FV1(x) = P(V1 ≤ x). (8.4)

In the second case, risk measures derived from the distribution are especially important.

We considered examples in chapter 6, among them the value at risk at level α ∈ (0, 1)

VaRα(V1) = inf{x ∈ R|FV (x) ≥ α} (8.5)

which is used with α = 99.5% to compute the solvency capital requirement, and the

expected shortfall at level α

ESα(V1) = IE[V1|V1 ≤ VaRα(V1)]. (8.6)

8.2.1 Nested Simulations

We focus our attention on the computation of the distribution of V1 via nested simulations

as described in section 8.1. Recall that the first step is to generate N paths from t = 0 up

to t = 1 under the real-world measure, that is, we have (Y
(i)

1 , D
(i)
1 ) for i = 1, . . . , N . The

second step is to obtain an estimate of the function hV1(., .), at least at (Y
(i)

1 , D
(i)
1 ), i =

1, . . . , N . We consider different approaches for estimating hV1 .

Remark 8.2.4

We follow the literature (see, e.g., Gordy and Juneja, 2008; Bauer et al., 2009; Broadie

et al., 2010) and assume that the risk neutral measure does not change from t = 0 to
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t = 1. The measure would change if any market price of risk parameters changed. But

those are calibrated to external data, and we should not gain any new external information

while running simulations which use reasonable amounts of computing time. Therefore,

the assumption seems reasonable.

Unfortunately, we do not have a closed formula for V1(Y1, D1). So instead of calculating

V1(Y1, D1), which is deterministic given (Y1, D1), directly we can only estimate it by Monte

Carlo methods, which, in this context, means that we generate samples of the random

variable Ṽ1(Y1, D1;K) ≡ V1(Y1, D1) + εK(Y1, D1) where εK(Y1, D1) is an FT measurable

random variable. We follow Gordy and Juneja (2008) by assuming that εK(Y1, D1) has a

mean of zero and IE [|εK |] <∞. Additionally, we assume that

εK → 0 a.s.

as K →∞.
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Figure 8.2: Path generation for nested simulation; paths from 0 to 1 are generated under
the real-world measure P, paths from 1 to T are generated under the risk-neutral measure

These assumptions fit well into our Monte Carlo framework. To estimate the function
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at each point (Y
(i)

1 , D
(i)
1 ) of a path i, we generate K(i) paths of the market development

from t = 1 to t = T under the risk-neutral measure Q starting at (Y
(i)

1 , D
(i)
1 ), see figure

8.2. Then, evaluating the cash flows on those paths, we get the estimator

V̂
(i)

1 (K(i)) =
1

K(i)

K(i)∑
k=1

T∑
s=2

exp (−(B(i,k)
s −B(i,k)

1 ))X(i,k)
s︸ ︷︷ ︸

:=PV
(i,k)
1

.

Here, a superscript (i, k) indicates that we consider the k-th inner path (k = 1, . . . ,K(i))

starting from (Y
(i)

1 , D
(i)
1 ), i = 1, . . . , N . The number of inner paths K(i) can be the same

for each outer path i, K(i) = K, as in (most parts of) Gordy and Juneja (2008), or it can

be chosen dynamically as advocated by Broadie et al. (2010). We use K(i) ≡ K ∀i in the

following. Note that PV (i,k)
1 is an unbiased estimate of V1(Y

(i)
1 , D

(i)
1 ) which is associated

with a mean-zero pricing error ε(i,k) which can be seen as a realization on the k-th inner

path given (Y
(i)

1 , D
(i)
1 ) of εK(Y1, D1). As functions of the inner paths, the pricing errors

ε(i,k), k = 1, . . . ,K are mutually independent samples given (Y
(i)

1 , D
(i)
1 ). Taken together,

this means that conducting the nested simulations as described above can be seen as

drawing iid realizations from the distribution of Ṽ1(Y1, D1;K) ≡ V1(Y1, D1) + εK(Y1, D1)

for fixed K. By assumption, we have Ṽ1(Y1, D1;K)→ V1(Y1, D1) a.s. as K →∞. In this

setting, it makes sense to consider the empirical distribution function

F̂Ṽ1(K)(x;N) =
1

N

N∑
i=1

1{Ṽ (i)
1 (K)≤x} (8.7)

of Ṽ1(K). From the Glivenko-Cantelli theorem (see Karr, 1993, thm. 7.28) we can obtain

uniform convergence

lim
N→∞

sup
x∈R
|F̂V̂1(K)(x;N)− FṼ1(K)(x)| = 0 a.s., (8.8)

but this does not help much because we need to know the c.d.f. of V1, not that of Ṽ1(K).

Gordy and Juneja (2008) develop a representation for the mean-squared error (MSE) of
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F̂V̂1(K)(x;N) as follows. Fix x ∈ R. Then

IE
[(
F̂Ṽ1(K)(x;N)− FV1(x)

)2
]

= IE
[(
F̂Ṽ1(K)(x;N)− FṼ1(K)(x) + FṼ1(K)(x)− FV1(x)

)2
]

= IE
[(
F̂Ṽ1(K)(x;N)− FṼ1(K)(x)

)2
]

+
(
FṼ1(K)(x)− FV1(x)

)2

=
FṼ1(K)

(
1− FṼ1(K)

)
N︸ ︷︷ ︸

Variance

+
(
FṼ1(K)(x)− FV1(x)

)2

︸ ︷︷ ︸
Bias

where the last equality holds because we can see each indicator function in equation

(8.7) as an independent realization of a random variable with Bernoulli distribution with

parameter px = FV̂1(K)(x). For fixed K, the variance part of the MSE vanishes when we

increase the number N of outer simulation steps while the bias part does not change. This

observation should not be a surprise given the result in equation (8.8). Gordy and Juneja

(2008) also obtain a result on the behavior of the bias part, but only under the following

assumptions.

Assumption 8.2.5

Define ε̃(K) := ε(K) ·
√
K.

• The joint pdf gK(v, z) of V1 and ε̃(K) as well as its first and second partial derivatives

w.r.t. v exist for each K and any (v, z) ∈ R2.

• For each K ∈ N+ there exist non-negative functions p0,K(.), p1,K(.), p2,K(.) with

sup
K

∫ ∞
−∞
|z|rpi,K(z)dz <∞

for i = 0, 1, 2 and 0 ≤ r ≤ 4 such that

gK(v, z) ≤ p0,K(z)∣∣∣∣ ∂∂vgK(v, z)

∣∣∣∣ ≤ p1,K(z)∣∣∣∣ ∂2

∂v2
gK(v, z)

∣∣∣∣ ≤ p2,K(z)

for all v, z ∈ R.
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Proposition 8.2.6

Let fV1 denote the density of V1, that is, fV1 = F ′V1 . Define

Θ(u) :=
1

2
f(u)IE

[
σ2(Y1, D1) | V1 = u

]
, (8.9)

θu := −Θ′(u). (8.10)

Fix x ∈ R. Then, under Assumption 8.2.5,

FṼ1(K)(x) = FV1(x)− θx
K

+O
(
K−3/2

)
.

Proof. The proof is completely analogous to Gordy and Juneja (2008, Appendix 2).

Remark 8.2.7

A consequence of Proposition 8.2.6 is that the estimator F̂Ṽ1(K)(x;N) converges to FV1(x)

in probability for each x ∈ R as N,K →∞ (see Karr, 1993, Prop. 5.11). In contrast, we

could get almost sure convergence uniform in x from the Glivenko-Cantelli theorem if we

were able to compute equation (8.3) explicitly.

We summarize the nested simulation method in algorithm 1.

Algorithm 1 Nested simulation (NS)
Value the portfolio at t = 0 using N0 risk-neutral sample paths
Generate N1 paths under the real-world measure from t = 0 to t = 1
for each path do
Value the portfolio at t = 1 given the history up to t = 1 using K1 inner simulations

end for

8.2.2 Least-Squares Monte-Carlo

A different approach to the problem is to estimate the function hV1 as a whole. In this case,

we have to make some structural assumptions on hV1 which result in a parametrization.

Once such a parametrization is found and the parameters are estimated, we can evaluate

the function at the points of interest, namely (Y
(i)

1 , D
(i)
1 ), i = 1, . . . , N .

The least squares method presented by Bauer et al. (2009) belongs to this group of

methods. They assume that the function hV1 belongs to the Hilbert space

L2(Ω, σ(Y1, D1),P(Y1, D1))
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Then, there exists a linearly independent and complete sequence (ek(Y1, D1)) of basis

functions on this space which can be used to approximate hV1 by

hV1(Y1, D1) ≈ V̂ (M)
1 (Y1, D1) =

M∑
k=1

αk · ek(Y1, D1).

Consequently, they generate N sample paths from t = 0 up to T , under the real-world

measure from t = 0 to t = 1 and continuing under the risk neutral measure from t = 1 to

t = T . From the realized cash flows on these paths, they obtain least-squares estimates

α̂k of the coefficients αk. Therefore,

ĥV1(Y1, D1) ≈ V̂ (M)
1 (Y1, D1) ≈ V̂ (M,N)

1 (Y1, D1) =
M∑
k=1

α̂k · ek(Y1, D1). (8.11)

This function can be evaluated at (Y
(i)

1 , D
(i)
1 ), i = 1, . . . , N obtained, for example, from

the first year sub-paths generated for the calibration. Then, we can estimate the empirical

distribution function from these realizations.

We quote the following result from Bauer et al. (2011a, Prop. 3.1).

Proposition 8.2.8

V̂
(M)

1 → V1 in L2(Rd,B,P(Y1,D1)), M → ∞, and V̂
(M,N)

1 → V̂
(M)

1 , N → ∞, P̃ almost

surely.

Proof. See Bauer et al. (2011a, Prop. 3.1).

The measure P̃ is defined via the Radon-Nikodym derivative

∂P̃
∂P

=
∂Q
∂P

IE
[
∂Q
∂P

∣∣∣ F1

] .
We summarize the least-squares Monte-Carlo method in algorithm 2.

Algorithm 2 Least-squares Monte-Carlo (LSM)
Value the portfolio at t = 0 using N0 risk-neutral sample paths
Generate N1 paths under the real-world measure from t = 0 to t = 1
for each path do
Change to the risk-neutral measure and generate a path up to T

end for
Estimate hV1 using equation (8.11) based on the risk-neutral paths from t = 1 to T
Evaluate hV1 at t = 1 at the end points of the previously generated real-world paths
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For the estimation of the function hV1 , it is not important under which measure

(Y
(i)

1 , D
(i)
1 ) are generated. In fact, if the change of measure from P to Q in t = 1 is

difficult in practice, it might be convenient to estimate the function using paths that are

generated entirely under the risk neutral measure, as suggested by Bergmann et al. (2009).

We can adapt the convergence result from proposition 8.2.8 to this setting.

Proposition 8.2.9

Assume V1 ∈ L2(Rd,B,Q(Y1,D1)). V̂
(M)

1 → V1 in L2(Rd,B,Q(Y1,D1)), M → ∞, and

V̂
(M,N)

1 → V̂
(M)

1 , N →∞, Q almost surely.

Proof. The proof is completely analogous to the proof of Prop. 8.2.8.

As L2-convergence implies convergence in probability (see Karr, 1993, section 5.2.1),

Prop. 8.2.9 implies the convergence V (M)
1

P−→ V1 in Q-probability. Due to the following

result, this is equivalent to V (M)
1

P−→ V1 in P-probability.

Proposition 8.2.10

Let µ and ν be two probability measures on some measure space (Ω,F) and let ν � µ. If

a sequence of random variables Xn, n ≥ 0 in (Ω,F , µ) converges to a random variable X

in probability, then the sequence in (Ω,F , ν) also converges to X in probability.

Proof. Let Xn, n ≥ 0 be a sequence of random variables in (Ω,F). By assumption,

∀δ > 0 ∃n(δ) ∈ N : µ ({ω ∈ Ω| ‖Xn(ω)−X(ω) ≥ ε‖}) < δ∀n > n(δ). (8.12)

Since µ, ν <∞, ν � µ is equivalent (see Billingsley (1986, p.443) for details) to

∀δ̃ > 0 ∃ε̃ > 0 : ν(A) < ε̃ if µ(A) < δ̃ for any A ∈ Ω. (8.13)

Fix δ > 0. The there exists ε > 0 (by 8.13) and n(ε) (by 8.12) such that

µ ({ω ∈ Ω| ‖Xn(ω)−X(ω) ≥ ε‖}) < ε ∀n > n(ε)

and therefore

ν ({ω ∈ Ω| ‖Xn(ω)−X(ω) ≥ ε‖}) < δ ∀n > n(ε).
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Proposition 8.2.11

Assume that the Radon-Nikodym density dQ/dP is bounded P- almost everywhere. Then

Prop. 8.2.9 implies that V̂ (M)
1 → V1 in L2(Rd,B,P(Y1,D1)).

We summarize the least-squares Monte-Carlo with risk-neutral paths method in algo-

rithm 3.

Algorithm 3 Least-squares Monte-Carlo with risk neutral paths (LSMQ)
Value the portfolio at t = 0 using N0 risk-neutral sample paths
Estimate hV1 using equation (8.11) based on the risk-neutral paths from t = 1 to T
Generate N1 paths under the real-world measure from t = 0 to t = 1
Evaluate hV1 at t = 1 at the end points of the previously generated real-world paths



Chapter 9

Empirical Study

We investigate the performance of the different algorithms for the computation of an

insurance company’s loss distribution. Following our approach using the risk management

procedure, we have to specify its elements. We use the 2-Wasserstein distance d2 where

possible, but also consider other possibilities. The estimator of the loss distribution M

is computed using the asset-liability model exhibited in section 9.1. For the probability

model G, we consider two alternatives in section 9.2. Due to its robustness properties and

its wide-spread use in practice as well as in the Solvency II regulations, we will use the

value at risk as the risk measure ρ. Additionally, we also consider the expected shortfall.

In this empirical study, we refrain from specifying the decision rule because our focus is

on the properties of the other elements.

9.1 Asset and Liability Model

For our empirical studies, we use the simple model of an insurance undertaking which was

proposed by Zaglauer and Bauer (2008). The model is based on a simplified balance sheet

that is valued using a market-based approach. The balance sheet items in the model are

the assets At, the liabilities Lt, and the reserves Rt, each at time t, see figure 9.1.

The contracts in the undertaking’s portfolio are fixed-term (life-time of the contracts

is [0, T ]) single premium P = L0 life-insurance contracts with guaranteed annual return g.

The company has to share additional profits on top of the guaranteed rate with the policy

holders according to the MUST-case exhibited by Bauer, Kiesel, Kling and Ruß (2006),

which corresponds to the legal requirements in Germany. The participation amounts to

a fixed fraction δ of earnings on book value. The portion of earnings on book value that

114
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Assets Liabili�es

At

Rt

Lt

Figure 9.1: Balance sheet in the model, source: Zaglauer and Bauer (2008).

is not used for the participation is paid to to the shareholders as dividends dt. If the

earnings on the assets and the reserves are not sufficient to cover the guaranteed return

of the contract, shareholders have to inject capital ct.

The asset value At evolves according to some stochastic model. At the end of the

period [t − 1, t], when the asset value is A−t , dividends dt are paid to the shareholders

or the shareholders might have to inject capital ct. The asset value after these corporate

actions is then A+
t = A−t − dt + ct (see Bauer et al., 2011b, p. 20). Assuming that the

earnings on book value are a fraction y of the earning on market value Et = A−t − A
+
t−1.

Thus, given the development of asset prices from t− 1 to t, we can compute Lt, ct, and dt
according to the following formulas provided by Bauer et al. (2011b, pp. 20-21):

Lt = (1 + g)Lt−1 + (δyEt − gLt−1)+ , t = 1, . . . , T (9.1)

dt = (1− δ)yEt1{δyEt>gLt−1} + (yEt − gLt−1)1{δyEt≤gLt−1≤yEt} (9.2)

ct =
(
Lt −A−t

)+ (9.3)

Bauer et al. (2011b) also show how to compute the available capital in this model.

Setting

Xt =


dt − ct t ∈ [0, T − 1]

dT − cT +RT t = T,
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they obtain from a shareholder perspective

ACs = IEQ

[
T∑
t=1

exp (−(Bt −Bs))Xt

]
, s = 0, 1, (9.4)

and from a policyholder perspective

AC0 = A0 − IEQ [exp (−BT )LT ] (9.5)

AC1 = A+
1 − IEQ [exp (−(BT −B1))LT |F1] +X1. (9.6)

9.2 Asset Price Models

9.2.1 Black-Scholes-Vasicek Model

It remains to specify a stochastic model for the asset prices and discount factors. One

possibility is to again follow Bauer et al. (2011b) and model the asset price process (At) as

a geometric Brownian motion and the short rate as an Ornstein-Uhlenbeck process rt—as

in the Vasicek model—that is correlated with (At):

dAt = µAtdt+ σA(ρdWt +
√

1− ρ2dZt), A0 > 0

drt = κ(θ − rt)dt+ σrdWt, r0 > 0.

Here ρ ∈ [−1, 1] is the correlation, µ ∈ R and σA > 0 are the drift and volatility, respec-

tively, of the asset price process, and κ, θ, σr are the speed of mean reversion, long-term

mean, and volatility, respectively, of the short-rate process. Wt and Zt are two indepen-

dent Brownian motions under the real world measure P. A change of measure to the

risk-neutral pricing measure Q leads to

dAt = rtAtdt+ σA(ρdWt +
√

1− ρ2dZt), A0 > 0

drt = κ(θ̃ − rt)dt+ σrdWt, r0 > 0.

with θ̃ = θ − λσr
κ , the market price of interest rate risk λ, and independent Q-Brownian

motions W,Z (see Bauer et al., 2011b, sect. 6.1.3).

An advantage of this model is its tractability. First, the stochastic differential equations

of both the asset and the short rate process can be solved explicitly, see Glasserman (2004,
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sect. 3.2.1 & 3.3.1):

At = As exp

((
µ−

σ2
A

2

)
+ σA(ρ(Wt −Ws) +

√
1− ρ2(Zt − Zs)

)
(9.7)

rt = r(s) exp(−κ(t− s)) + θ (1− exp(−κ(t− s))) + σr

∫ t

s
exp(−κ(t− u))dW (u) (9.8)

for 0 ≤ s < t ≤ T . In particular, the short-rate as well as the log-asset price process

have normal distributions. Second, the distribution of the integrated short-rate process

It =
∫ t

0 rsds conditional on rs, s < t and its covariance with the short-rate itself are known,

see Glasserman (2004, pp. 113f):

It − Is|rs ∼N
(
rs − θ
κ

(
1− e−κ(t−s)

)
+ θ(t− s),

σr
κ

√
(t− s)− 2

κ

(
1− e−κ(t−s)

)
+

1

2κ

(
1− e−2κ(t−s)

))

Cov(rr, It) =
σ1
r

2κ

(
1 + e−2κ(t−s) − 2e−κ(t−s)

)
.

These results allow exact simulation of the process at any time t of interest. The model

allows the computation of bond and option prices in closed form, a property which is very

convenient for the calibration of the model to data. The price at time t of a European call

option with strike K and maturity T is given by (see Kim, 2002, sect. 2.1.1)

Vc(t) = AtΦ(dV1 (t, T ))− P (t, T )KΦ(dV2 (t, T ))

where P (t, T ) is the time t price of a zero coupon bond in the Vasicek model,

P (t, T ) = exp(
1

2
Σ22(t, T )−B(t, T ))

and dV1 , dV2 are, in analogy to the Black-Scholes model with deterministic rates, given by

dV1 (t, T ) =
(C(t, T ) + Σ12(t, T ))√

D(t, T )

dV2 (t, T ) = dV1 (t, T )−
√
D(t, T )
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and auxiliary functions

Σ11(t, T ) = σ2(T − t)

Σ12(t, T ) =
σσrρ

κ

(
e−κ(T−t) − 1

κ
+ (T − t)

)

Σ22(t, T ) =
σ2
r

κ2

(
(T − t)− (3− 4e−κ(T−t) + e−2κ(T−t))

2κ

)
B(t, T ) = −1

κ

[(
rt − θ̃

)(
e−κ(T−t) − 1

)
− θ̃(T − t)

]
C(t, T ) = log

(
At
K

)
+

Σ11(T − t)
2

+B(t, T )

D(t, T ) = Σ11(T − t) + 2Σ12(T − t) + Σ22(T − t).

9.2.2 Heston-Cox-Ingersoll-Ross Model

A weakness of the Black-Scholes-Vasicek model is that it is difficult to obtain a reasonable

fit to option prices, due to the assumption of constant volatility. Market prices usually

show different implied volatilities across time and strikes (see Cont and da Fonseca (2002)

among many others). To this end, we therefore consider an alternative specification, which

is more general. We model the asset price process with a Heston stochastic volatility model

(see Heston, 1993), the interest rate with a Cox-Ingersoll-Ross process (see Cox, Ingersoll

and Ross, 1985):

dAt = µAtdt+
√
vtAtdW1

dvt = κ(θ − vt)dt+ σ
√
vtdW2 (9.9)

drt = κr(θr − rt)dt+ σr
√
rtdW3

where we assume that dW1dW2 = ρdt and dW1dW3 = dW2dW3 = 0. Here, µ ∈ R is

the expected return on the asset1, κ > 0 the volatility’s speed of mean reversion, θ > 0

the volatility’s long term mean, σ > 0 the volatility of volatility, and ρ the correlation

between asset and volatility. The corresponding parameters for the short interest rate

process are κr, θr > 0, and σr > 0. A change to an equivalent martingale measure for

valuation purposes can be done such that only the long-term means of both volatility and
1For an arbitrage free model, µ should be a function µ(rt, Vt) such that µ(rt, 0) = rt, see as argued by

Alan L. Lewis in the discussion http://www.wilmott.com/messageview.cfm?catid=4&threadid=71093.
We follow this suggestion.

http://www.wilmott.com/messageview.cfm?catid=4&threadid=71093
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short-rate are affected (see Brigo and Mercurio, 2006, sect. 3.2.3). Consequently, we have

risk neutral dynamics given by

dAt = rtAtdt+
√
vtAtdW1

dvt = κ(θ̃ − vt)dt+ σ
√
vtdW2

drt = κr(θ̃r − rt)dt+ σr
√
rtdW3

where θ̃ and θ̃r are the long-term means of volatility and short-rate, respectively, and the

other parameters are as in equation (9.9).

The simulation of paths is more involved in this model than in the Black-Scholes-

Vasicek model. This is due to the two square root diffusion processes involved. A simple

Euler discretization scheme would allow for negative interest rates and negative volatilities

(see Lord, Koekkoek and Dijk, 2010) that are not possible in the continuous time model.

The conditional distribution of the square-root diffusion process is a non-central chi-square

distribution (see Glasserman, 2004, sect. 3.4)—this makes exact simulation on a discrete

time grid possible, albeit with high computational cost. The caveat, however, is that exact

simulation of the asset price process then requires sampling from the conditional distri-

bution of the integrated volatility process, which is only available via its characteristic

function combined with Fourier-Inversion techniques, as developed by Broadie and Kaya

(2006). Observing that these methods are computationally rather slow and difficult to im-

plement correctly, Andersen (2008) suggests approximate simulation schemes that belong

to a class of methods based on moment matching. We take a closer look at his QE-scheme

that presents a good compromise between speed, accuracy, and ease of implementation.

We present a summary of the QE-scheme (see Andersen, 2008, sect. 3.2) for the

volatility process. As the interest rate process is of the same type, it can be applied

analogously. The scheme is based on the observation that the conditional distribution of

vt given vs, s < t is a non-central chi-square distribution with a non-centrality parameter

proportional to vs. For large vs, Andersen (2008) approximates this distribution by that

of a moment-matched squared Gaussian random variable, while for small vs, he uses a

density approximation based on a Dirac-mass at 0 combined with an exponential tail.

Andersen (2008) also supplies us with a switching rule to decide when vs is “small” or

“large” and with a discretization scheme for the asset price. He derives the latter from the

exact representation of the asset price process by approximating the integrated volatility
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process with a generalized trapezoidal quadrature rule
∫ s
t vudu ∼ (t − s) (γ1vt + γ2vs)

where the constants γ1, γ2 are either set to γ1 = γ2 = 1
2 or are obtained via moment

matching.

The considerations regarding the simulation suggests that we cannot hope for closed-

form options prices in the Heston-Cox-Ingersoll-Ross model. As the calibration of the

model parameters to option prices potentially requires the re-pricing of options in the

model under many different combinations of parameters, we need an alternative pricing

method that is faster than simulation. We can compute the characteristic function of the

log-asset price in the model. Using our assumption that dW1dW3 = dW2dW3 = 0, we can

easily extend the results by Mikhailov and Nögel (2003) to obtain2

ϕHCIR,j(u;St, τ = T − t) = exp(Cj(u) +Dj(u)V t+ iu log(St)) · ϕCIR(u), j = 1, 2

where

Ci(u) =
κθ

σ2

(
(bj − ρσui+ d)τ − 2 log

(
(1− gedτ )

(1− g)

))
Di(u) =

bj − ρσui+ d

σ2

(
1− edτ

(1− gedτ

)
g =

bj − ρσui+ d

bi − ρσui− d

d =
√

(ρσui− bj)2 − σ2(2ujui− u2)

u1 = 0.5 = −u2

b1 = κ− ρσ

b2 = κ

and where ϕCIR is the characteristic function of the integrated Cox-Ingersoll-Ross process.

It is given by

ϕCIR(u) = A(τ)eiurtB(τ)

2There are also results for non-zero correlation available in the literature, see, e.g., Grzelak and Oosterlee
(2011), Scott (1997), and Ahlip and Rutkowski (2009).
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with

A(τ) =

(
2h exp (κr + h)τ/2

2h+ (κr + h) exp(τh)− 1

)2κrθr/σ2
r

B(τ) =
2(exp(τh)− 1

2h+ (κr + h) exp(τh)− 1

h =
√
κ2
r + 2σ2

r .

This formula can be derived directly from the pricing function for zero-coupon bonds in the

CIR model, which is provided by Brigo and Mercurio (2006, sect. 3.2.3). The characteristic

function can then be used for option pricing based on Inverse Fourier Transform introduced

to option valuation by Stein and Stein (1991) and Heston (1993). The method, also used

in case of the Heston model with deterministic rates by Mikhailov and Nögel (2003), can

be adapted starting from the Black-Scholes-type equation

Vc(t) = SP1 −KPCIR(t, T )P2

where P1, P2 are the probabilities of the option being in-the-money at maturity with

the asset and the bond as numéraire, respectively (see Schmelzle, 2010, sect. 4.1), and

PCIR(t, T ) is the zero-coupon bond price in the CIR model given by ϕCIR(u)|u=i. P1 and

P2 can then be computed using a Fourier inversion theorem (Shephard, 1991, thm. 3)

Pj =
1

2
+

1

π

∫ ∞
0
<
[
e−iuKϕHCIR,j(u;St;T − t)

iu

]
du, j = 1, 2.

9.3 Data and Calibration

For our experiments, we fit the two models to market data. The asset is represented by

an index that is generated from a portfolio of the German REX and DAX indices, with

weights of 90% and 10%, respectively. We compile a price history for the index from

the beginning of 2007 up to the valuation date of October 11, 2012, from the Bloomberg

information system (see figure 9.2), which also provides us with option prices for different

strikes and maturities at the valuation date. As a proxy for the historic short-rate, we

use the time series of the 1-week EONIA interest rate3 As shown in figure 9.3, there is a
3We use the 1-week rate instead of the overnight rate because the latter tends to spike at the end of

ECB reserve maintenance periods, see Fecht, Nyborg and Rocholl (2008).
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Figure 9.2: Portfolio consisting of investments in the REX (portfolio weight 90%) and
DAX (portfolio weight 10%) indices

sharp drop in the EONIA rates in October and November 2010. Computing the means

of the process up to 04/16/2009 and from this date on to the end of the time series gives

values of 3.5% and 1%, respectively. Welch’s t-test (see Sawilowsky, 2002) confirms that

the two means differ significantly at any reasonable level of confidence. As we do not

want to complicate matters by modeling a regime switch, we use only the data starting

from this date. The corresponding term-structure of interest rates is the Euro overnight

indexed swap (OIS) curve, see figure 9.4.

We start the parameter estimation in the Black-Scholes-Vasicek model with the short-

rate parameters. In this step, we try to fit the bond prices in the Vasicek model to zero

bond prices derived from the term-structure of interest rates, minimizing the squared

Euclidean distance between the two. This provides us with the parameters under the

risk-neutral measure. The real-world drift is then estimated from the time-series data

via maximum-likelihood, taking into account the distributional properties exhibited in

equation (9.8).

Concerning the parameters for the Black-Scholes model, we follow the same route

and first estimate the implied volatility by least-squares from the option prices and then

estimating the drift via maximum-likelihood. The results are summarized in table 9.1.
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Figure 9.3: 1-week EONIA interest rate from 01/02/2007 to 10/11/2012, data from
Bloomberg
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Figure 9.4: Euro overnight indexed swap curve, data from Bloomberg (curve S122)

κr 3.178 σ 0.084
θr 0.005 µ 0.063
σr 0.007 ρ -0.038
θ̃r 0.016 r0 0.001

Table 9.1: Parameters for the Black-Scholes-Vasicek model
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κr 2.148 V0 0.009 κ 0.310
θr 0.004 µ 0.031 θ 0.001
σr 0.085 ρ 0.969 σ 0.027
θ̃r 0.016 r0 0.001 θ̃ 0.023

Table 9.2: Parameters for the Heston-Cox-Ingersoll-Ross model

For the Heston-Cox-Ingersoll-Ross model, we replicate this strategy. The only sub-

stantial difference is the estimation of the real-world parameters for the asset process.

Here, direct maximum-likelihood estimation is not possible because the volatility is an

unobserved parameter. We implement a dual particle filter for the joint estimation of the

volatility state and the parameters as in Olivier, Huang and Craig (2012), using results

from Aihara, Bagchi and Saha (2009) on particle filtering for the Heston model. The

results are exhibited in table 9.2.

9.4 Empirical Study

9.4.1 Model Comparison

In this section, we compare the performance of algorithms 1-3, that is, nested simulation

(NS), least-squares Monte-Carlo (LSM), and least-squares Monte-Carlo with risk-neutral

paths (LSMQ) using the asset and liability model from section 9.1 and the Black-Scholes-

Vasicek (BSV) and Heston-Cox-Ingersoll-Ross (HCIR) models from section 9.2. Following

Bauer et al. (2011a), we use the policyholder perspective throughout this section, as

Bauer et al. (2011a) observe that this leads to better results (we are able to confirm

this observation in section 9.4.2). The regressions in the LSM and LSMQ algorithms are

conducted with their full model (see Bauer et al., 2011a, tab. 2). In this section, we

aim for small errors by generating large numbers of paths. We set N0 = N1 = 1.5MM ,

K1 = 400.

The computation times are exhibited in table 9.3. Even in our simple model, the

NS takes three quarters of an hour with the BSV and more than two and a half hours

with the HCIR asset model, a result that suggests that this algorithm is not feasible for

application in practice. Compared to 29.2 and 41.8 seconds, respectively, for the LSM

with the two asset models, the NS needs about 90 and 200 times as much computation

time, respectively. The difference in these factors can be explained by the more complex

simulation scheme for the HCIR model, which takes more time relative to the calculations
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for the asset-liability model and overhead. This also suggests that the LSM scales better

to advanced models than nested simulations. As expected, the LSMQ is the fastest of the

three algorithms, saving about 35% of computation time compared to the LSM with each

model. This improvement is sufficient for the algorithm to be faster with the HCIR asset

model than the LSM algorithm is with the much simpler BSV model.

BSV HCIR
LSM 29.2s 41.8s
LSMQ 19.6s 27.0s
NS 2700.5s 9466.3s

Table 9.3: Computation times for the LSM, LSMQ, and NS algorithms using the Black-
Scholes-Vasicek (BSV) and Heston-Cox-Ingersoll-Ross (HCIR) models; MATLAB2012b
on a PC with Core2Quad Q8400, 4GB RAM; N0 = N1 = 1.5MM , K1 = 400

Next, we consider the distance of the resulting distributions as measured by the 2-

Wasserstein, L2, and Kolmogorov distances introduced in chapter 4. The distances for

the BSV and HCIR models are displayed in table 9.4 and table 9.5, respectively. We use

the distributions generated using NS as the references. The Kolmogorov distance is small

across the board and does not help us in distinguishing between the algorithms. The

distance of the LSMQ to the NS is larger than the distance of the LSM to NS in the case

of the BSV model, but it is the other way around in for he HCIR model. Visual inspection

of the empirical cdfs—we show two examples in figure 9.5 and figure 9.6—suggests that

the Wasserstein and L2 distances are small, too. To give a comparison, the Wasserstein

distances obtained here would also be the result of shifting the distribution mean by less

than 0.5% of the distribution’s standard deviation.

Algorithm d2 L2 K

LSM NS 3.08 0.06 0.01
LSMQ NS 5.32 0.11 0.01
LSM LSMQ 3.56 0.06 0.00

Table 9.4: Distances between the distributions computed by the LSM, LSMQ, and NS
algorithms in the Black-Scholes-Vasicek model

The comparison of the cdfs across asset models—figure 9.7 shows the results for the

NS—suggests larger distances between the distributions. This impression is confirmed by

the data in table 9.6. We investigate and explain this difference in section 9.4.3. However,

the algorithms perform similarly.
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Algorithm d2 L2 K

LSM NS 4.69 0.08 0.01
LSMQ NS 3.36 0.06 0.01
LSM LSMQ 3.11 0.03 0.00

Table 9.5: Distances between the distributions computed by the LSM, LSMQ, and NS
algorithms in the Heston-Cox-Ingersoll-Ross model
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Figure 9.5: Distribution functions of the AC at t = 1 in the BSV model, computed with
the LSM and LSMQ algorithms

Algorithm Model d2 L2 K

NS BSV HCIR 503.08 10.01 0.28
LSM BSV HCIR 503.14 10.01 0.28
LSMQ BSV HCIR 504.87 10.05 0.28

Table 9.6: Distances between the distributions computed computed in the BSV and HCIR
models by the LSM, LSMQ, and NS algorithms
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Figure 9.6: Distribution functions of the AC at t = 1 in the BSV model, computed with
the LSM and NS algorithms
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Figure 9.7: Distribution functions of the AC at t = 1 in the BSV and HCIR models,
computed with the NS algorithm



CHAPTER 9. EMPIRICAL STUDY 128

Finally, we consider the value at risk and the expected shortfall computed from the

simulations (table 9.7 and table 9.8). The results from the three algorithms within the

models are quite close, with the largest relative difference less than 0.5%. While larger

Wasserstein and L2 distances suggest larger deviations in the risk measures, the results are

too close together in this case to empirically confirm our argument that the Wasserstein

distance is better indicator of deviations in tail-based risk measures.

Model / Algorithm VaR0.95 VaR0.9 VaR0.995

BSV
LSM 862.03 1425.64 1618.27
LSMQ 865.09 1429.14 1630.06
NS 865.45 1430.30 1626.73
HCIR
LSM 1328.48 1722.15 1852.52
LSMQ 1327.39 1720.89 1846.09
NS 1330.71 1724.49 1852.41

Table 9.7: Value at risk

Model / Algorithm ES0.95 ES0.9 ES0.995

BSV
LSM 1206.24 1684.17 1855.14
LSMQ 1208.61 1693.55 1866.99
NS 1209.19 1693.33 1868.27
HCIR
LSM 1568.95 1889.53 1997.86
LSMQ 1566.68 1885.79 1993.65
NS 1570.92 1889.77 1996.94

Table 9.8: Expected shortfall

9.4.2 Validation for the LSM and LSMQ Methods

In section 9.4.1 we use large numbers of paths and, consequently, obtain rather stable re-

sults for all algorithms under consideration. In practice, we would probably be restricted

to much fewer paths (maybe 1000 instead of 1.5MM paths) due to restrictions of mem-

ory and computation time. Such a restriction essentially rules out the NS algorithm, as

configurations such as 400 outer paths and 3 inner paths each cannot be near sufficient to

obtain a stable estimate of a 99.5% quantile like the SCR. We investigate how many paths

are necessary to obtain reasonably stable results with the LSM and LSMQ algorithms and
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whether we can find any clues regarding robustness by applying regression diagnostics.

Such a test is required under the Solvency II regulations, see section 3.2.1.

We start by considering single runs of the LSM and LSMQ algorithms, each for

N0 = N1 = {1000, 10000, 100000}. A crucial part in both algorithms is the estimation

of the function hV1 by least-squares regression. Table 9.9 and table 9.10 show regression

diagnostics4 for the exemplary runs of the algorithms, both for calculations from the share-

holders’ (SH) and policyholders’ (PH) point-of-view. Recall that the reference values for

the SCR obtained from the NS are 1626.73 for the BSV model and 1852.41 for the HCIR

model.

The first statistic we consider is the F-statistic for goodness of fit of the linear model

(see Weisberg, 1980, p. 48). Under the test-assumptions of independent normal residuals

with zero mean, the critical value for the test at the 99% level is between 3 and 4 for all

regression models used in this section which would indicate rejection of the H0-hypothesis

that the regression coefficients are jointly equal to zero. However, we do not report p-

values, as the residuals in all models turn out to be far from normally distributed. As

the F-statistic is increasing with the number of observations, we cannot deduce anything

about the number of simulation paths necessary to obtain good results. There are notable

differences between the F-statistics of the models from the shareholders’ and policyholders’

point-of-view, though. The values for the latter are about two to five times higher than

for the former, all else being equal, indicating a better model fit for the PH calculations.

The adjusted R2 (adjusted for the number of explanatory variables in the model, see

Weisberg (1980, p. 188)) is generally quite low, which is not unusual in least-squares

Monte-Carlo applications. Again, the values for the PH perspective are about two to five

times higher than for the SH perspective.

Next, we examine whether single paths have a large influence on regression results.

The leverage, given by the diagonal elements of the projection matrix (also called hat

matrix), gives an indication. Huber and Ronchetti (2011, p. 160) state that values up to

0.2 are safe, values between 0.2 and 0.5 risky, and that values above 0.5 should be avoided.

We see that the maximum leverage for regressions based on BSV paths falls in the lower

part of the “risky” interval, while it is above 0.5 for all regressions based on HCIR paths,

with improvement only for N0 = N1 = 100000.

The discussion of the regression diagnostics suggests that the regression works better
4Some additional results that are not needed for our discussion are relegated to Appendix D.
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Model / No. paths Perspective F-statistic Adj. R2 Leverage SCR
BSV

1000 SH 5.14 0.04 0.24 1891.48
PH 26.38 0.19 1748.94

10000 SH 48.81 0.04 0.24 1634.77
PH 315.52 0.22 1664.01

100000 SH 497.51 0.04 0.25 1598.31
PH 3065.72 0.22 1624.79

HCIR

1000 SH 3.97 0.03 0.98 1871.42
PH 6.46 0.05 1841.89

10000 SH 41.42 0.04 0.88 1983.73
PH 92.87 0.08 1872.89

100000 SH 385.15 0.03 0.53 1862.94
PH 798.32 0.07 1845.60

Table 9.9: Regression diagnostics for LSM algorithm, shareholder (SH) and policyholder
(PH) perspective; number of paths N0 = N1

Model / No. paths Perspective F-statistic Adj. R2 Leverage SCR
BSV

1000 SH 4.88 0.03 0.25 968.91
PH 14.58 0.11 1697.25

10000 SH 62.02 0.05 0.24 1362.47
PH 157.70 0.12 1682.80

100000 SH 570.44 0.05 0.24 1554.96
PH 1451.47 0.12 1618.17

HCIR

1000 SH 6.55 0.05 0.98 1761.41
PH 11.55 0.09 1670.80

10000 SH 49.00 0.04 0.88 1926.74
PH 142.78 0.11 1852.12

100000 SH 430.83 0.04 0.53 1894.52
PH 1264.00 0.10 1865.85

Table 9.10: Regression diagnostics for LSMQ algorithm, shareholder (SH) and policyholder
(PH) perspective; number of paths N0 = N1
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SH PH
Model / N0 = N1 Mean SCR STD SCR Mean SCR STD SCR
BSV
1000 1690.04 294.29 1586.97 130.06
10000 1622.62 91.23 1619.81 44.24
100000 1619.66 28.55 1622.67 13.21

CIR
1000 1892.79 247.61 1842.28 102.33
10000 1849.04 68.06 1845.99 32.63
100000 1849.09 21.23 1847.58 10.17

Table 9.11: Mean and standard deviation of the SCR computed from 500 simulation runs
with the LSM algorithm

for the PH perspective than for the SH perspective and possibly better in the BSV model

than in the HCIR model. To get some further information on the stability, we run the

model 500 times in each configuration. Table 9.11 and table 9.12 show means and standard

deviations for both asset models, from SH and PH perspective for the LSM and the LSMQ

method, respectively.

The means for N0 = N1 > 1000 are within about 0.5% of the previously computed val-

ues (cf. table 9.7), but for N0 = N1 = 1000 the deviations are larger, ranging from about

1% (HCIR,PH) to 34% (BSV,SH). The means obtained from PH calculations are closer

in the latter case, while there is no recognizable pattern in the former case. The picture is

clearer when we consider the standard deviations: computations from the PH perspective

have only between about 20% to 50% of the corresponding value for SH perspective com-

putations. This confirms the conjecture we formed from the regression diagnostics and

the observations by Bauer et al. (2011a).

The results for the two asset models do not agree with what we expected from the

regression diagnostics: the simulations based on the HCIR model are more stable than

those based on the BSV model, with standard deviations being about 15% to 20% lower.

The somewhat unstable regressions do not seem to have an overriding influence on the

resulting distributions.

The standard deviation in relation to the number of paths turns out to be close to

what can be derived from the theory on Monte-Carlo methods: increasing the number of

paths by a factor of n decreases the standard deviation of the estimator by about a factor

of
√
n.
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SH PH
Model / N0 = N1 Mean SCR STD SCR Mean SCR STD SCR
BSV
1000 2072.68 1382.33 1602.36 257.51
10000 1612.94 264.20 1619.49 76.76
100000 1624.26 87.61 1621.23 24.50

CIR
1000 1901.39 542.18 1828.01 200.03
10000 1845.52 172.47 1846.32 64.93
100000 1850.21 55.31 1847.67 20.08

Table 9.12: Mean and standard deviation of the SCR computed from 500 simulation runs
with the LSMQ algorithm

Parameter % change SCR SCR % change
µ +5.00 1595.90 −1.70
µ −5.00 1649.41 1.60
σ +5.00 1710.74 5.38
σ −5.00 1534.13 −5.50

θ̂r +5.00 1627.26 0.24

θ̂r −5.00 1623.54 0.01

Table 9.13: Sensitivity analysis for the BSV model (SCR with standard parameters:
1623.43)

9.4.3 Sensitivity Analysis

A sensitivity analysis to changes of model parameters is required for the robustness check

under the Solvency II for internal model approval, see section 3.2.1. We perform such an

analysis for exemplary parameters for both the BSV and the HCIR model.

We start with the BSV model, examining the influence on the SCR of changes in

the expected asset return µ, the asset volatility σ, and the long-term mean of the short-

rate under the risk-neutral measure θ̂r. We increase and decrease each parameter by 5%

of its respective value. The results, computed with N0 = N1 = 1.5MM paths in the

LSM algorithm, are shown in table 9.13. From our results in section 9.4.2, we can infer

a standard deviation of about 3.41 for the SCR computations. In relation to this, the

changes in θ̂r barely have an influence on the final result. This should not be surprising,

though, as the interest-rate is used as the log-asset drift in the risk-neutral model, and

payoffs are discounted based on the same rate. The SCR changes induced by altering

the asset volatility have roughly the same size in relative terms as the parameter change.

In particular, increasing the asset volatility increases the SCR. This can be explained as
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Parameter % change SCR SCR % change
θ +5.00 1856.34 0.49
θ −5.00 1845.45 −0.10

θ̂r +5.00 1843.04 −0.23

θ̂r −5.00 1843.62 −0.20
σr +5.00 1829.55 −0.96
σr −5.00 1868.04 1.12

Table 9.14: Sensitivity analysis for the HCIR model (SCR with standard parameters:
1847.26)

follows: As the guarantee in the contract that is modeled in the asset-liability framework

is essentially a strip of put options (with strike set one year before maturity) sold to the

policyholders, and put options have a positive vega, the value of the guarantees to the

policyholders increases with σ. The real-world drift µ is only used for the generation

of paths over the first year of the time horizon. Increasing µ relative to the short-rate

increases the probability of positive asset returns in the model and therefore lowers the

SCR. This is what we can see in the results here. While the magnitude of the influence is

smaller than that of the asset volatility, the difference observed here is still significantly

larger than the Monte-Carlo noise at any standard confidence level5. This observation

helps us to explain the difference in SCR between the BSV and the HCIR models. The

no-arbitrage argument we used in section 9.2 leads to real-world asset drifts that are close

to the short-rate (∼ 0.1%) in the HCIR model, while the real world asset drift in the BSV

model is estimated to be 6.3%. Indeed, using µ = r0% in the BSV model, we obtain an

SCR estimate of 2186.29, confirming the significant influence the parameter has on the

result. In practice, we could discuss whether and how we can change the structure of the

drift term in the HCIR model to get consistent results.

We repeat the exercise for the HCIR model, this time considering the influence of the

long-term mean θ of the volatility process, the risk-neutral long-term mean θ̂r of the short-

rate, and the short-rate volatility σr. The other parts of the setup remain the same: we

use N0 = N1 = 1.5MM paths in the LSM algorithm and permute each parameter by plus

and minus 5% of its respective value. The results are shown in table 9.14. For both θ and

θ̂r the changes in the SCR we observe are smaller than the Monte-Carlo error. In the case

of θ, the direction of the changes can be explained using the same line of arguments as for
5Based on the normal error distribution for Monte Carlo simulations (see Glasserman, 2004, p. 2), the

difference is more than seven standard deviations away from zero.
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the volatility in the BSV model, while the Monte-Carlo error seems to be the overriding

influence for θ̂r, as it was the case in the BSV model.6 The influence of the short-rate

volatility is more pronounced: altering it by ±5% leads to a change of the SCR of about

1% in the opposite direction. Increasing σr leads to higher probabilities of higher interest

rates, and as the short-rate enters into the drift from t = 0 to t = 1, this explains—in

analogy to the BSV model—why the SCR decreases.

6This impression is confirmed be rerunning the simulations.



Chapter 10

Conclusions

In this thesis, we investigated how to improve the robustness of quantitative risk manage-

ment procedures, especially in the light of the Solvency II regulations for the insurance

industry. The importance of this task was recently highlighted during the financial crisis.

Our starting points were the definitions of risk and risk management, and the Solvency

II framework. We sought to identify important elements of the risk management process

and their required properties—confirming that robustness is one of them—and to combine

these elements into a structure that facilitates a coherent risk management procedure. Ad-

ditionally, we tried to show how the Solvency capital requirements can be computed with

a simulation algorithm that circumvents the practical problem of a change of measure

within the simulation paths.

In the first part, the distinction between risk and uncertainty (see chapter 2) pro-

vided a first impulse to consider robustness of statistical methods used in quantitative risk

management—methods that work under uncertainty about models and their parameters.

Added to that are the regulatory requirements in Solvency II regulations (see chapter

3, and in particular section 3.2.1) which explicitly require robustness of the statistical

and probabilistic methods used on several occasions. The reasoning behind this turned

out to be practical considerations, as alluded to in the introduction: an insurance com-

pany’s management should be able to understand and base decisions on the results of risk

management activities, and this is greatly facilitated by the use of robust methods.

Our approach to robustness, laid out in the second part, was based on the idea that

any probabilistic model that we use can only be an approximation. This necessitated

a facility which can measure the quality of such an approximation. In our probabilistic

setup, probability distances are the solution (see chapter 4). Among the possible choices,
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the Wasserstein metric turned out to be a good candidate for risk management: it focuses

on differences in the tails of distributions—this is the important area of a loss or value

distribution for risk management—its properties are well understood and it has a simple

formula on the real line, making interpretations and communication of results easier.

Probability distances in general have the advantage that they are widely used in classical

robustness literature in statistics (see chapter 5). In particular, we were able to apply

these classic results to risk measures, which are central to quantitative risk management

(see chapter 6). Consequently, we collected the elements necessary for robust quantitative

risk management, united them in a structure we called “risk management procedure” and

illustrated its application in two examples.

In the third part, we were concerned with the computation of the Solvency capital

requirement, specifically by simulation algorithms. Following up on a proposal from prac-

tice, we showed that the least-squares algorithm proposed by Bauer et al. (2011a) can be

modified so that a change of measure is not necessary within the simulation paths. We

proved its convergence theoretically and investigated its performance empirically using

a simple asset-liability model of a life-insurance company to compare it to the standard

least-squares and the nested simulation algorithms. The empirical study included model

validation exercises required by Solvency II regulations. The results of the new algo-

rithm were comparable to those of the unmodified least-squares algorithm, and it could

be serviceable if the change of measure is a serious problem in practice.

Our studies suggest areas for further research. While the robustness properties of

the most widely used risk measures, value at risk and expected shortfall, are known, it

would be an improvement to devise a risk measure that is designed with this aspect in

mind while still fulfilling some sensible axiomatic system. Additionally, in order to employ

the Wasserstein metric in practice, calibration methods based on this metric would be

needed for more than the most basic models. In particular, it could potentially be used

to find replicating portfolios, which are another promising method for the calculation of

the Solvency capital requirement.

Robustness is an important property of any quantitative risk management process for

theoretical, regulatory, and especially practical reasons. In this thesis, we showed how this

aspect can be integrated into a risk management procedure that—if applied in practice—

could lead to more reliable results that are easier to interpret by stakeholders, especially

in the complex context of rule-based Solvency II regulations.



Appendix A

Geometry of the Space (M2, d2)

We consider the metric space (M2, d2) of probability distributions on the Borel σ-field

B(X) of some separable metric space (X, d).

Remark A.0.1

The space (M2, d2) is a metric space but not a vector space. Consequently, classical results

such as the Krein-Milman theorem (see theorem B.2.4) cannot be applied.

Proposition A.0.2

If (X, d) is a separable and complete metric space and p > 0, then the metric space

(Mp, dp) is separable and complete. Additionally, K ⊂ Mp(X) is relatively compact

w.r.t. the topology induced by dp if and only if it is tight and p-uniformly integrable.

Proof. See Bolley (2008) and Ambrosio and Gigli (2010).

In the following we restrict ourselves to X = Rn for some n ∈ N.

Proposition A.0.3 (Gigli (2004, Prop. 2.5))

A subset ofM2(Rn) is relatively compact if and only if it is 2-uniformly integrable.

Definition A.0.4 (Length Space, (see Papadopoulos, 2005, def. 2.1.2))

Let (X, d) a metric space. It is called a length space if for any x, y ∈ X we have

d(x, y) = inf
γ
L(γ)

where L(γ) denotes the length of the path γ and the infimum is taken over all paths

connecting x and y.
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Definition A.0.5 (Geodesics, see Ambrosio and Gigli (2010))

A curve γ : [0, 1]→ X is called a constant speed geodesic if

d(γt, γs) = |t− s| d(γ0, γ1) ∀ t, s ∈ [0, 1].

A metric space (X, d) is called geodesic if for every x, y ∈ X there exists a constant speed

geodesic connecting them.

Example A.0.6

The Euclidean spaces (Rd, ‖.‖) with the distance induced by the norm ‖.‖ are geodesic.

Let x, y ∈ Rd. Then

γt := x+ t(y − x), t ∈ [0, 1]

with

‖γt − γs‖ = ‖x− x+ t(y − x)− s(y − x)‖

= ‖(t− s)(y − x)‖

= |t− s| ‖y − x‖ = |t− s| ‖γ0 − γ1‖

is a constant speed geodesic connecting x and y.

Proposition A.0.7 (see Papadopoulos (2005, Prop. 2.4.2))

A geodesic space is a length space.

Theorem A.0.8

Let (X, d) be Polish and geodesic. Then (M2(X), d2) is geodesic and, in particular,

(M2(Rn), d2) is geodesic.

Proof. See Ambrosio and Gigli (2010, Th. 2.10).

Proposition A.0.9 (see Ambrosio and Gigli (2010, Prop. 2.26))

Let (µt) ⊂ M2(Rd) be a geodesic and assume that µ0 is absolutely continuous w.r.t. the

Lebesgue measure on Rd. Then, µt is absolutely continuous w.r.t. the Lebesgue measure

and the set of absolutely continuous measures is geodesically convex.

Let F1, F2 ∈M2(R) be two distributions on the real line. Then for any geodesic γ1→2

connecting F1 and F2 induced by a distribution γ for which the infimum in equation (4.8)
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is attained, we have

F−1
γ1→2
t

= (1− t)F−1
F1

+ tF−1
F 2

a.e. w.r.t. the Lebesgue measure on the real line, see Ambrosio, Gigli and Savaré (2008).

Definition A.0.10 (Interpolation, see Gigli (2004, def. 2.6))

Let F,G ∈ M2(Rn), γ ∈ τ(F,G). The interpolation from F to G is the curve [γ](t) :

[0.1]→M2(Rn) defined as

[γ](t) :=
(
(1− t)π1 + tπ2

)
#
γ

where πi denotes the projection operator to the i-th component and ν#µ denotes the push

forward of µ through ν, see definition B.1.3.

Proposition A.0.11 ((M2(Rn), d2) is positively curved, see Gigli (2004, Prop. 2.13))

Let F0, F1, G ∈ M2(Rd) and assume that the minimum in equation (4.8) is attained for

γ ∈ τ(F0, F1). Then

d2(G, [γ](t)) ≥ (1− t)d2(G,F0) + td2(G,F1)− t(1− t)d2(F0, F1), (A.1)

that is, (M2(Rn), d2) is positively curved in the sense of Alexandrow (1957).

We follow Ambrosio et al. (2008, Ch. 12.3) and define a triangle ∆ ∈M2(Rd) to be the

image of three geodesics µ1→2, µ2→3, µ3→1 connecting three points µ1, µ2, µ3 ∈ M2(Rd).

A reference triangle ∆̂ in R2 is given by the image of the geodesics x1→2, x2→3, x3→1

connecting some points x1,x2,x3 in R2 where d(µi, µj) =
∥∥xi − xj∥∥ , i, j = 1, 2, 3 (unique

up to isometric transformation). Positive curvature means that for any points ν1, ν2 ∈ ∆

and y1, y2 ∈ ∆̂, we have d(ν1, ν2) ≥ ‖y1 − y2‖.



Appendix B

Measure Theory and Probability

Theory

B.1 Definitions

Definition B.1.1 (Weak Convergence of Measures, see Billingsley (1999, p. 2))

Let (M,d) be a metric space. Let P, Pn, n ∈ N be probability measures on the Borel σ-field

B(M) of M . The sequence Pn converges weakly to P if the probability measures satisfy∫
S fdPn →

∫
S fdP for any bounded, continuous real-valued function f on S. We write

Pn ⇒ P .

Definition B.1.2 (Continuity Sets, see Billingsley (1999, p. 2))

Let (M,d) be a metric space and let P be a probability measure on M . A set A ∈ B(M)

is called a P -continuity set if its boundary ∂A has measure zero, that is, P (∂A) = 0.

Definition B.1.3 (Push Forward, see, e.g., Sturm (2006, sect. 2.3))

Let (X,σX) and (Y, σY ) be two measurable spaces and let f : X → Y be a measurable

function. If µ is a measure on (X,σX) then the measure

f#µ(B) := µ(f−1(B)), for any B ∈ σ(Y )

is called the push forward of µ through f .
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Definition B.1.4 (2-uniform integrability, 2-boundedness, see Gigli (2004))

Let X be some separable metric space with Borel σ-field B(X). Denote by

Γ2(X) :=

{
µ

∣∣∣∣µ a probability measure on B(X),

∫
X
‖x‖2 dµ <∞

}

Some subset A ⊂ Γ2(X) is called 2-uniformly integrable if for every ε > 0 there exists Kε

such that

∫
X\Kε

‖x‖2 dµ < ε∀µ ∈ A.

A set A ⊂ Γ2(X) is called 2-bounded if

sup
µ∈A

∫
‖x‖2 dµ <∞.

B.2 Results from Measure Theory

Theorem B.2.1 (Disintegration Theorem, see Ambrosio et al. (2008, Th. 5.3.1))

Let X,Y be Radon separable metric spaces, µ ∈ Γ(X), let π : X → Y be a Borel map

and let ν = π#µ ∈ Γ(Y ). Then there exists a ν-a.e. unique family of Borel measures

{µy}y∈Y ⊂ Γ(X) such that

µy(X \ pi−1(y)) = 0 ν-a.e. y ∈ Y

and

∫
X
f(x)dµ(x) =

∫
Y

(∫
π−1(y)

f(x)dµy(x)

)
dν(y)

for every Borel map f : X → [0,+∞].

Theorem B.2.2 (The Portmanteau Theorem)

Let (M,d) be a metric space. Let P, Pn, n ∈ N be probability measures on the Borel σ-field

B(M) of M . The following conditions are equivalent.

(i) Pn ⇒ P .

(ii)
∫
fdPn →

∫
fdP for all bounded, uniformly continuous functions f .

(iii) lim supn Pn(A) ≤ P (A) for all closed sets A ∈ B(M).
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(iv) lim infn Pn(A) ≥ P (A) for all open sets A ∈ B(M).

(v) Pn(A)→ P (A) for all P -continuity sets A.

Proof. See Billingsley (1999, theorem 2.1).

Theorem B.2.3 (Ulam’s theorem)

On any complete separable metric space (M,d) every finite Borel measure is tight and

therefore regular.

Proof. See Dudley (2002).

Theorem B.2.4 (Krein-Milman Theorem (Royden, 1968, thm. 26))

Let K be a compact convex set in a locally convex topological vector space X. Then K

is the closed hull of its extreme points.

Proof. The theorem was originally proved by Krein and Milman (1940).

B.3 Stochastic Dominance

Definition B.3.1 (see Rachev et al. (2008))

A random variable X dominates a random variable Y in the sense of

• first order stochastic dominance,

X �FSD Y iff FX(x) ≤ FY (x)∀x ∈ R;

• second order stochastic dominance,

X �SSD Y iff
∫ x

−∞
FX(t)dt ≤

∫ x

−∞
FY (t)dt,∀x ∈ R.

Corollary B.3.2

We have X �SSD Y ⇒ X �FSD Y directly from the definitions.



Appendix C

Convex Analysis

In this appendix, we collect some facts on convex analysis that are needed to derive the

robustified version of convex risk measures in section 6.1.2 from Rockafellar (1997, sect.

1,2,6).

Definition C.0.3 (Affine and Convex Sets)

Let 〈., .〉 denote the inner product on Rn.

• A set A ⊆ Rn is called affine if (1− λ)x+ λy ∈ A∀x, y ∈ A, λ ∈ R.

• For any set S ⊆ Rn, its affine hull is defined as

aff S =
⋂

A⊃S,A affine
A

• A subset C ⊂ Rn is called convex if (1− λ)x+ λy ∈ C for all λ ∈ (0, 1), x, y ∈ C.

• The relative interior of a convex set C is the interior of C as a subset of its affine

hull,

riC = {x ∈ aff C|∃ε > 0, (x+ εB) ∩ (aff C) ⊂ C} .

• A half-space in Rn is characterized by a hyperplane

H = {x|〈x, b〉 = β} , b ∈ Rn \ {0}, β ∈ mR.
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There are the closed half-spaces

{x|〈x, b〉 ≤ β} and {x|〈x, b〉 ≥ β}

and the open half-spaces

{x|〈x, b〉 < β} and {x|〈x, b〉 > β} .

Half-spaces are convex sets.

Definition C.0.4 (Convex Functions (Rockafellar, 1997, sect. 4 & 7))

Let f : S → R be a function on the domain S ⊆ Rn. Its epigraph is defined as

epi f := {(x, µ)|x ∈ S, µ ∈ R, µ ≥ f(x)} .

• Such a function f is called convex if its epigraph epi f is a convex set.

• The projection of the epigraph on Rn is called the effective domain of f :

dom f := {x|f(x) <∞} .

• A convex function f is called proper if

∃x ∈ Rn : f(x) < +∞ and ∀x ∈ Rn : f(x) > −∞,

otherwise it is called improper.

• A function f : Rn → R is called lower semi-continuous if

f(x) = lim inf
y→x

f(y).

• The lower semi-continuous hull of a convex function f is given by the function f

whose epigraph equals the closure of the epigraph of f :

epi f = cl epi f.
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• The closure of a convex function f is defined as

cl f(x) :=


f(x); f(x) > −∞∀x ∈ Rn

−∞; else.

A convex function is closed if cl f = f . For proper convex functions, lower semi-

continuity and closedness are actually the same (see Rockafellar, 1997, sect. 7).

The dual characterization of convex risk measures is based the following theorem.

Theorem C.0.5 (Rockafellar (1997, thm. 12.1))

A closed convex function f is the pointwise supremum of the collection of all affine func-

tions h such that h ≤ f .

The affine functions from Rn to R are characterized by points (x∗, µ∗), x∗ ∈ Rn, µ∗ ∈ R

and therefore h(x) = 〈x, x∗〉 − µ∗ ≤ f(x)∀x ∈ Rn if and only if

µ∗ ≥ sup {〈x, x∗〉 − f(x)|x ∈ R}

The set on the left-hand side of this equation is the epigraph of the function

f∗(x∗) = sup
x
{〈x, x∗〉 − f(x)}

which is called the (convex) conjugate of f . By definition,

f(x) = sup
x∗
{〈x, x∗〉 − f(x∗)} ,

so the conjugate f∗∗ of f∗ is equal to f .

Theorem C.0.6 (Rockafellar (1997, thm. 12.2 & Corr. 12.2.2))

Let f be a convex function. The conjugate function f∗ is then a closed convex function,

proper if and only if f is proper. Moreover, (cl f)∗ = f∗ and f∗∗ = cl f . For any convex

function f on Rn, one actually has

f∗(x∗) = sup {〈x, x∗〉 − f(x)|x ∈ ri(dom f)} .
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Definition C.0.7 (Subgradient and Subdifferential)

Let f : Rn → R be a convex function. x∗ ∈ Rn is called a subgradient of f at x if

f(z) ≥ f(x) + 〈x∗, z − x〉 , ∀z.

The set of all subgradients of f at x is said to be its subdifferential ∂f(x).

Theorem C.0.8 (Rockafellar (1997, thm. 23.5))

For any proper convex function f ;Rn → R and x ∈ R, the following conditions are

equivalent for x∗ ∈ Rn:

• x∗ ∈ ∂f(x);

• 〈z, x∗〉 − f(z) attains its supremum in z at z = x;

• f(x) + f∗(x∗) ≤ 〈x, x∗〉;

• f(x) + f∗(x∗) = 〈x, x∗〉.

• if f is closed, also x ∈ ∂f∗(x∗) is equivalent to the conditions above.



Appendix D

Validation of the LSM and LSMQ

We use a scaled version of the full regression model from Bauer et al. (2011a):

V1 = α+ β1
A1

10000
+ β2

(
A1

10000

)2

+ β3(1 + r1) + β4(1 + r1)2 + β5
L1

10000
+ β6

R1

L1

+ β7
A1

10000
exp(r1) + β8

L1

10000
exp(r1) + β9 exp

(
A1

10000

)
.

Exemplary coefficient estimates and regression diagnostics can be found in table D.1 and

table D.2.
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