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ABSTRACT  

 

The main cost factors within a supply chain can be put into the categories of production, 

transportation, and inventory costs. The composition of these operational costs relative to 

total costs varies largely by industry. However, production cost is the largest of all in 

almost all the industries, followed by transportation and inventory costs. Optimizing one 

of these categories without consideration of the others may increase the total cost and 

reduce the overall performance. 

This dissertation deals with the production distribution problem of developing 

synchronized strategies to improve the supply chain performance and to minimize the 

total cost. A real case study is investigated. This real-life case study is a powder detergent 

plant located in Libya. 

There are two main scenarios evaluated. The first scenario is the conventional plan, where 

the manufacturer dominates. This means the manufacturer finds his own optimum job-

scheduling plan, and the distributor tries to find the optimum plan according to it. This will 

increase the distribution cost. The second scenario involves synchronizing the production, 

inventory and transportation schedules. 

A Java program and SimAl (job-scheduling software) were constructed for modelling 

conventional and integrated scenarios. The two scenarios were compared and validated. 

The case study considered multiple products and a flowshop system which is difficult to 

schedule. The results show that the total costs, including setup, inventory and 

transportation, can be minimized when the synchronized system is applied.  
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Abstrakt 

 

Die wichtigsten Kostenfaktoren innerhalb einer Lieferkette lassen sich drei Kategorien 

zuordnen: Produktions-, Transport-und Lagerkosten. Die Strukturen dieser operativen 

Kosten im Hinblick auf die Gesamtkosten variieren stark je nach Industriesektor. 

Produktionskosten stellen dennoch die höchste Kostenart in fast allen Branchen dar, 

weniger bedeutend folgen danach jeweils die Transport- und Lagerkosten. Die 

Optimierung einer dieser Kategorien ohne Rücksicht auf die anderen kann zur Erhöhung 

der  Gesamtkosten sowie der  allgemeinen  Leistungsfähigkeit führen. 

Diese Dissertation befasst sich mit dem „production distribution problem“ wobei 

synchronisierte Strategien entwickelt werden können, um die Leistung der Supply Chain zu 

verbessern und gleichzeitig die Gesamtkosten zu minimieren. Dazu wurde eine Fallstudie 

aus der Realität untersucht, nämlich das Praxisbeispiel eines Herstellers von Waschmitteln. 

Zwei Hauptszenarien werden bewertet. Das erste Szenario ist der konventionelle Plan, 

wobei die Hersteller dominieren. Dies bedeutet, dass der Hersteller findet seinen eigenen 

optimalen  Job-Scheduling-Plan, während die Distribution versucht mit Hilfe dessen ihren 

optimalen Plan zu finden. Dadurch erhöhen sich die Distributionskosten. Das zweite 

Szenario betrifft die Synchronisation der Produktions-, Lagerhaltungs- und 

Transportzeitpläne. 

Ein zu diesem Zweck entwickeltes Java-Programm und die Job-Scheduling-Software Simal  

wurden für die Modellierung der konventionellen und integrierten Szenarien verwendet. 

Beide Szenarien wurden verglichen und validiert. Die Fallstudie betrachtet mehrere 

Produkte sowie ein schwer zu planendes  flowshop- System. Die Ergebnisse zeigen, dass 

die Gesamtkosten, einschließlich der Einrichtungs-, Lager- und Transportkosten, minimiert 

werden können, wenn das synchronisierte System angewendet wird. 
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1. Introduction 

Nowadays supply chain, which is an extension definition of logistics, has become more and 

more important in our daily life due to the rapid development of society. Quick delivery 

and potential cost benefit are required, both for transport and for all economic-related 

events. Since logistics played a dominant role in the Second World War, more attention to 

logistics was inevitable. 

The management of the entire supply chain has become possible in recent years due to 

new developments in the technology of information systems. However, it is still obviously 

much more difficult than dealing with each of the traditional problems of production, 

transportation and inventory decisions separately.  

Supply chain research now can be divided according to two directions. One direction is 

submitting the new methods to not only cater to the needs of the more complex supply 

chain system but also to guide the second direction. For example, vendor-managed 

inventory (VMI) relative to the customer-managed inventory (CMI) and ship-to-stock (STS) 

purchasing concept is employed in the industry field now: the method which integrated 

the production and transportation problem relative to the independent research in 

production management, inventory management and distribution management before. 

The second direction is grounded on the basic method in the first direction, aiming at the 

different and detailed case study in practice to probe as deeply as possible to find out 

better methods and solutions in order to adapt the individual company situation. 

Several examples can be found in the literature proving that models coordinating at least 

two stages of the supply chain can detect new opportunities for improving the efficiency 

of the supply chain.[74] Various types of coordination in a supply chain have been 

researched in the literature.  

The supply chain of a typical product starts with material input, followed by production, 

and finally distribution of the end product to customers. The cost of a product includes not 

only the cost of factory resources to convert materials to a finished item but also the cost 

of resources to make a sale, deliver the product to customers, and service the customers. 

According to that, firms have to organize all the activities in the supply chain.[91] 

The composition of production, transportation and inventory costs, relative to total costs, 

varies largely by industry; however, production costs are the largest of all, in almost all the 

industries, followed by transportation and inventory costs.  
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Production and distribution scheduling decisions are typically made independently of each 

other, which means organizations focus their efforts on making effective decisions within 

the facility. The cooperation between decisions made at different stages of the supply 

chain is the central issue in the supply chain management; the decision makers at each 

stage have different objectives. For example, the manufacturer aims to minimize total 

production costs, and match the customer’s due dates. The manufacturer prefers to 

produce individual products in large batch sizes, which can minimize the setup costs. The 

distributor aims to minimize the inventory costs and transportation costs. The overall 

system performance will be poor, in many cases, if each decision maker, at each different 

stage, uses its optimal schedule. It is well recognized that there is a greater opportunity for 

cost saving in managing supply chain coordination than in improving individual function 

areas.[88] Therefore, the coordination problem is to find a schedule for each stage that will 

provide a better overall system performance.  

1.1 Background 

Most companies nowadays are organized into networks of manufacturing and distribution 

sites that procure raw materials, process them into finished goods, and distribute the 

finished goods to customers. The goal is to deliver the right product at the right time to 

the right place for the right price. 

For many years, companies and researchers failed to take an integrated view of the entire 

supply chain. They considered only one piece of the overall problem, such as production or 

distribution sub-models. These sub-models were optimized separately and the solutions 

were then joined together to establish operating policies. 

The system of supply chain involves many units, such as supplier, transporter, production 

plants, warehouse and customers. All parties directly or indirectly fulfill customers' 

requests. Initially, those units are considered as independent; therefore, the problems 

concerning different units are modelled separately. An optimal solution is desired. As 

many new algorithms and approaches have been proposed in the supply chain system and 

computer science has been rapidly developed, solving complex problems with an 

integrated approach has become possible. The main current issue is how to integrate the 

units – supplier, transporter, production plants, warehouses, and customers – in a 

systematic manner. 
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The production-distribution problem usually consists of a factory, which manufactures 

products, and a set of warehouses that stock these products ready to deliver them to 

retailers’ stores where the demand for these products is generated. The manufacture of a 

final product requires several different production processes. Each process is assumed to 

take place at a given production stage. The final product, delivered to one of the 

warehouses, and then to the retailers, must satisfy customer requirements. 

The supply chain stages can be decoupled if there is a sufficient amount of inventory 

between them. The complexity of the decision making, in this way, is reduced because 

each stage is treated separately. However, ignoring stages dependencies can have costly 

consequences. Moving towards coordination can minimize the total cost while 

continuously improving the customer service level. Figure (1.1) shows the three stages of 

the supply chain. 

 

Figure 1.1: The traditional three stages of the supply chain.[94] 

Managing production and distribution problems separately, as mentioned above, leads to 

increasing inventory levels, which leads to increased holding costs and longer lead times of 

the products through the supply chain. 
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The primary difference between analyzing a supply chain and analyzing a production 

system or a distribution system is that in a supply chain, we may have to simultaneously 

consider different and sometimes conflicting objectives from different participants, or 

different departments within the same participant. For example, minimizing production 

costs at the production line means minimizing the number of batches. Similarly, optimizing 

the distribution costs to a supplier by sending large shipments may determine an increase 

in the inventory holding costs at the warehouse. 

The production-distribution link in the supply chain can take on many forms. Products can 

be manufactured and sent to distribution centers, retailers or plants. The literature 

addressing both production planning and distribution planning is extensive; however, 

there are few models that attempt to address these problems simultaneously. There are 

several reasons why this may be true. Firstly, many problems in these areas are 

tremendously hard to solve by themselves, with both vehicle routing and machine 

scheduling falling into this category. Secondly, in practice, these problems are often 

separated by inventory buffers, and finally, different departments are often responsible 

for these two planning activities. 

In general, the plant may involve one machine, or many machines, to produce different 

products, and the machine sequence may be in parallel or series sequences. Usually, there 

will be a setup time when changing from one product to another. 

The flow shop scheduling with setup time is considered in this study. Production 

scheduling, which is a part of the planning and control of individual production units, lies 

at the heart of the performance of manufacturing organizations. The need for efficient 

scheduling has increased in the last decades because of needs to fulfill customer 

requirements. However, although scheduling research activities have moved from purely 

academic exercises to serious attempts to solve real-word problems.  Flowshop Scheduling 

is used to determine the optimal sequence of n jobs to be processed on m machines in the 

same order. Permutation Flowshop Scheduling Problems (PFSP) require same job 

sequence on all the machines with the constraint that machines can only process one job 

at a time and jobs can be processed by only one machine at a time. No machine is allowed 
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to remain idle when a job is ready for processing. Such problems are NP hard and hence 

optimal solutions are not guaranteed but heuristics have been shown to produce good 

working solutions. Scheduling is an important aspect of operational level floor decisions. 

Makespan (maximum completion time) and maximum tardiness are among the most 

commonly used criteria in the flow shop scheduling research. Makespan is a measure of 

system utilization while maximum tardiness is a measure of performance in meeting 

customer due dates. 

In the case of a manufacturer that produces more than one product, a schedule that 

produces each product in lot sizes is preferred in order to minimize the total setup costs. 

However, the distributor prefers a schedule where batches of the products will be shipped 

together. In this case, the distributor can minimize its distribution costs.  

Figure (1.2) shows a case where the production and transportation schedules are 

independent. 

 

 

 

 

 

 

 

 

 

Figure (1.2): Cumulative production and departures for independent schedules.[17] 

As shown in the figure, the flat line occurs while other products are produced for other 

destinations. The production lot size is the quantity produced for this destination.  

Number of 

parts for one 

destination 

Time 

Production 

Shipment Size 

Production 

lot size 

Demand 
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In this example of an independent schedule, the shipment size is calculated independently 

of the production lot size. The horizontal distance represents the time that a product 

consumes in inventory. 

Figure (1.3) shows the costs incurred in this case [17].  

 

 

 

 

 

Figure (1.3): Costs on one link of the network[17]. 

1.2. Overview of the research problem 

Companies deliver products to their customers using a logistics distribution network. Such 

networks typically consist of product flows from the producers to the customers through 

distribution centres (warehouses) and retailers. Companies generally need to make 

decisions on production planning, inventory levels and transportation in each level of the 

logistics distribution network in such a way that customer demand is satisfied at minimum 

cost. 

In this thesis, the possibility of moving from the singular decision-making processes toward 

a more coordinated and integrated system is studied. The system suggested consists of a 

single production facility which produces multiple products, and multiple warehouses and 

retailers, as shown in Figure 1.4.  

Achieving a level of integration that will yield new benefits requires that the production 

and distribution decisions be made to balance setup, holding and delivery costs.  

In the model suggested, excess production can be stored at either the plant, depots or 

retailers, up to a limit, to fulfill the customers' requirements. It is assumed that daily 

demand is known for all retailers. Deliveries are made using homogenous vehicles.  

Origin Destination 

Production setup 

and inventory 

transportation and 

inventory 

 inventory 
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Figure (1.4): Block diagram of the system considered 

The manufacturer produces different products, which are processed through different 

machines, and those products are delivered to retailers through warehouses.  

There are setup times (and costs) when changes occur between these products. The 

objective of the plant is to find a plan which can minimize the total setup costs.  

Also, there are different warehouses that receive these products and deliver them to  

retailers demanding them. The objective of the warehouses and retailers is to minimize 

the inventory and transportation costs. 

Obviously, there is a conflict between these objectives; the plant prefers to manufacture in 

batch production, while the retailers prefer to receive just their orders, and on time.  

Inventory and transportation policies are intertwined. When distributing a product, three 

main strategies can be used: direct shipment, warehousing and cross-docking. If a direct 

shipment strategy is used, goods are shipped directly from the manufacturer to the end-

user (the retailers in the case of retail goods) (see Figure 1.5a). Direct shipments eliminate 

the expenses of operating a DC and reduce lead times. On the other hand, if a typical 

customer shipment size is small and customers are dispersed over a wide geographic area, 

a large fleet of small trucks may be required. As a result, direct shipment is common when 

fully loaded trucks are required by customers or when perishable goods have to be 

delivered promptly. Warehousing is a traditional approach in which goods are received by 

warehouses and stored in tanks, pallet racks or on shelves (see Figure 1.5b). When an 

order arrives, items are retrieved, packed and shipped to the customer. Warehousing 

consists of four major functions: reception of the incoming goods, storage, order picking 

and shipping. Out of these four functions, storage and order picking are the most 

The plant has different stages, 

and produce multi products. 

There is a setup cost between 

different products at different 

stages. 
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expensive because of inventory holding costs and labour costs, respectively. Cross-docking 

(also referred to as just-in-time distribution) is a relatively new logistics technique that has 

been successfully applied by several retail chains (see Figure 1.5c). A cross-dock is a trans-

shipment facility in which incoming shipments (possibly originating from several 

manufacturers) are sorted, consolidated with other products and transferred directly to 

outgoing trailers without intermediate storage or order picking. As a result, shipments 

spend just a few hours at the facility. In pre-distribution cross-docking, goods are assigned 

to a retail outlet before the shipment leaves the vendor. In post-distribution cross-docking, 

the cross-dock itself allocates goods to the retail outlets. In order to work properly, cross-

docking requires high volumes and low variability of demand (otherwise it is difficult to 

match supply and demand), as well as easy-to-handle products. Moreover, a suitable 

information system is needed to coordinate inbound and outbound flows. [34] 

 

 
 

Figure 1.5 Inventory and Transportation Strategies[34] 

 

If a warehousing strategy is used, one has to decide whether to select a centralized or a 

decentralized system. In centralized warehousing, a single warehouse serves the whole 

market, while in decentralized warehousing the market is divided into different zones, 

each of which is served by a different (smaller) warehouse. Decentralized warehousing 

leads to reduced lead times since the warehouses are much closer to the customers. On 
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the other hand, centralized warehousing is characterized by lower facility costs because of 

larger economies of scale. In addition, if customers’ demands are uncorrelated, the 

aggregate safety stock required by a centralized system is significantly smaller than the 

sum of the safety stocks in a decentralized system. This phenomenon (known as risk 

pooling) can be explained qualitatively as follows: under the above hypotheses, if the 

demand from a customer zone is higher than the average, then there will probably be a 

customer zone whose demand is below average. Hence, demand originally allocated to a 

zone can be reallocated to the other and, as a result, lower safety stocks are required. 

Finally, inbound transportation costs (the costs of shipping the goods from manufacturing 

plants to warehouses) are lower in a centralized system, while outbound transportation 

costs (the costs of delivering the goods from the warehouses to the customers) are lower 

in a decentralized system. [34] 

1.3 Research motivation and objectives 

This thesis was motivated by a real-life powder detergent company located in Libya. The 

company wanted to optimize its supply chain network and distribution strategies.  

The supply chain distribution network model that should be analysed is typically complex. 

The mathematical optimization techniques have some limitations as they deal only with 

static models; however, simulation-based tools, which take into account the dynamics of 

the system, are capable of characterizing system performance for a given design. 

Comparisons between different scenarios will be made. Figure 1.6 shows the different 

scenarios suggested. 

There are two different scenarios: the first one is where the plant dominates; in this 

scenario the plant will calculate its optimum plan, which will minimize the production 

(setup) costs. According to the plant plan, the different products will be delivered to 

different warehouses and then to the retailers. The second scenario is to make an 

optimum plan, for the whole supply chain, to minimize the total costs. 

This thesis focuses on a manufacturing system, which produces multiple products. Setup 

times are incurred when changes need to be made between manufacturing these 

products. The final products will be delivered to the retailers according to their orders. 
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Figure (1.6): Suggested scenarios to solve the problem 
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 To develop new tools and practices that would allow the plant to design a more 

effective schedule. 

 To answer questions; e.g., how much should the company produce from each 

product, when should they produce them, how much should be kept in the 

inventory, and which route should they followed?  

1.4 Problem Description 

The problem considered in this thesis involves one plant, which produces different 

products through a flow shop production line. A setup time is incurred whenever changes 

between productions occur.  

 

 

 

 

 

 

 

 

 

 

Figure (1.7): General description of the problem 

The plant aims to minimize the setup costs. There are retailers who have deterministic 

orders and a limited inventory capacity with known holding costs. The retailers’ aim is to 

minimize the total holding costs; however, the distributor also aims to minimize their 

distribution costs. The products are shipped in cartons, and the trucks have limited 

capacity with variable costs related to the total distance travelled. The total costs 

considered consist of the setup costs, distribution costs, and inventory costs.  

1.5 Thesis overview 

This thesis is structured as follows: chapter 2 presents the literature review on the flow 

shop scheduling problem, and the integrated production routing and inventory problem. 

The scenario of the manufacturer is explained in chapter 3; where the mathematical 

model of the problem is explained (the NEHT[61] (Nawaz , Enscore, Ham) algorithm is used 
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to solve the problem). According to the solution obtained, the distribution costs are 

calculated using VMI model, with product and customer improvements. Chapter 4 

represents the synchronized production-routing-inventory problem. The mathematical 

model is developed, and a heuristic algorithm is suggested. Chapter 5 deals with location 

routing problems, the aim being to suggest a new location for the depots in order to 

minimize the total costs (the models used here are ADD-DROP algorithms). The case study 

represented in Chapter 6 explains the production stages at the plant and also gives a 

general overview of the detergent powder industry. Chapter 7 includes the calculations 

and results of the different models and scenarios. Conclusions are represented in    

chapter 8. 
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2. Literature Review 

Shuguang Liu [97] classified the literature review on the production inventory distribution 

problem as shown in Figure 2.1. 

 

Figure 2.1 Classification of literature on PIDRP 
[97] 

He aims to minimize the total production, inventory and delivery costs. 

 

 

Figure 2.2: The production, inventory and distribution problem 

A single product and a set of plants: each has its own production capacity, inventory 

capacity, raw material supply contract, inventory holding cost, and production cost to be 

considered. Associated with each plant is a heterogeneous fleet of transporters. A set of 

customer demand centres (DCs) is located over a wide geographical region; each is 

assigned its own demand per time period in the planning horizon, its own inventory 

capacity, holding cost, and safety stock requirement. The problem is to determine the 

operation schedules to coordinate the production, inventory, and transportation routing 
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operations while the resulting operation cost (i.e., the sum of production, inventory and 

transportation cost) over a given planning horizon is minimized.  

A two-phase methodology is proposed. In phase I, Liu solves a restricted coordination 

problem which keeps all the constraints in P except that the transporter routings are 

limited to direct shipment. He proves that the resulting optimal solution to the Phase I 

problem is always feasible to P, thus giving an upper bound solution to P. He determines 

the optimal number of trips (per time period) performed by each individual transporter, in 

terms of its very own capacity, cost and speed. In phase II, he proposes a heuristic 

transporter routing algorithm, the Load Consolidation (LC) algorithm, that removes all the 

less-than-truck-load (LTL) assignments from the phase I solution and consolidates such 

assignments into transporter routing schedules subject to transporter capacity and 

available time constraints.  

Ivan Ferretti et al.[42] present the algorithmic solution, based on an Ant System 

metaheuristic, of an industrial production-inventory problem in a steel continuous-casting 

plant. The model proposes aims to find the most profitable production schedule of the 

steel billets. 

Figure 2.3 shows the analyzed unit relative to the whole supply chain in this study. 

 

 

Figure 2.3: Production and Inventory Scheduling in Supply Chain 

The paper focuses on the optimization of the production schedule in a steel plant. The 

final result of the algorithm is the sequence of customer orders to be produced, thus 

defining the starting date of each job and considering the delivery date required by the 

customer. If a delay in the delivery is to be introduced, the objective function accounts it 

as a penalty cost.  
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The Ant System which used to solve the problem is derived from the Travelling Salesman 

Problem (TSP) Ant System. The TSP Ant System finds the shortest path that links each 

node. The Billet Ant System searches a production sequence that maximizes the profit.  

Renato De Matta and Tan Miller[85] studied the problem of coordinating the short-term 

production and inter-facility transportation scheduling decisions between a plant that 

produces intermediate products and a finishing plant which processes the intermediate 

products into finished goods; Figure 2.4 shows the problem.  

 

 

Figure 2.4: Production and inter-facility transportation scheduling 

The goal is to develop a better understanding of the general relationships between 

production and transportation scheduling decisions – in particular, how changes in plant 

capacity and costs affect the coordination of scheduling decisions, as well as the choice of 

transportation modes and carriers. They formulate the problem as a mixed-integer 

programming model. 

Because of the large number of integer variables for even a small problem, obtaining 

integer solutions for (P) via a branch-and-bound procedure requires evaluating a large 

number of branches and performing a large number of simplex pivots. They modified the 

process for the problem in order to solve directly by branch-and-bound. 

Zhi-Long Chen[112] considered the supply chain of a manufacturer who produces time-

sensitive products that have a large variety, a short lifecycle, and are sold in a very short 

selling season.  

The coordination is the production and distribution unit, as shown in Figure 2.5. 
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Figure 2.5: Order assignment and scheduling 

The supply chain consists of multiple overseas plants and a domestic distribution centre 

(DC), as shown in Figure (2.6). Retail orders are first processed at the plants and then 

shipped from the plants to the DC for distribution to domestic retailers. Due to variations 

in productivity and labour costs at different plants, the processing time and cost of an 

order are dependent on the plant to which it is assigned.  

The model tries to find which orders are to be assigned to which plants, how to schedule 

the production of the assigned orders at each plant, and how to schedule the distribution 

of the completed orders from each plant to the distribution centre.  

 

 

 

 

 

 

Figure 2.6: Problem description for order assignment and scheduling 

Dennis E. Blumenfeld[17] determined optimal shipping strategies by analyzing trade-offs 

between transportation, inventory and production set-up costs on freight networks.  

Conditions are identified so that networks involving direct shipments between many 

origins and destinations can be analyzed on a link-by-link basis.  

He simultaneously determines optimal routes and shipment sizes for networks with a 

consolidation terminal and concave cost functions.  

The standard economic order quantity (EOQ) methods are used to solve the direct 

shipment problem. For the shipping via consolidation terminal problem, optimal shipment 

sizes can be determined for each link independently, as in direct shipping. The total cost 

can be minimized by minimizing the cost on each link separately. For solving the mixed 
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strategy network, Blumenfeld decomposes the network into several sub-networks based 

on the “all or nothing” principle.  

Consider a network of two origins and many destinations. There are only two inbound 

links. In general, for S shipment sizes and M origins, the number of combinations is SM. 

The optimal shipment sizes can be determined for each link independently, using the EOQ 

formula.  

M. Zandieh and Zavaradehi[75] studied the problem of synchronized scheduling of single 

machine and air transportation in supply chain management.  

The overall problem is decomposed into two sub-problems, consisting of the air 

transportation allocation problem and a single machine scheduling problem, which they 

considered together. The detail structures are shown in Figure 2.7.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7: Problem description 

Kadir Ertogral et al.[48] investigated the effects of integrating production and 

transportation planning. The integrated optimization models that reconcile the viewpoints 

from transportation and production planning and analyze the costs introduced by 

coordination are presented.  

Based on MLMILP (Multi-level multi-item dynamic-capacitated lot-sizing problem) and m-

PDPTW (multi-vehicle pickup and delivery problem with time windows), they explain and 

solve the production-planning model and transportation-planning model separately. Then, 
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according to the connected variables, the linkages between these two models are 

analyzed in order to get the solution. 

 

 

 

 

 

 

 

 

Figure 2.8: Problem formulation 

The Lagrangean decomposition method is used to solve the integrating production and 

transportation planning. First, the problem is decomposed into production sub-problem 

and transportation sub-problem, both with coupling constraints. Then the solution process 

is shown in Figure 2.9. 

 

 

 

 

 

 

 

 

Figure 2.9: Solution method 

Milind Dawande et al.[69] studied the conflict and cooperation issues arising in a supply 

chain where a manufacturer makes products which are shipped to customers by a 

distributor. They suggested two practical problems. In both problems, the manufacturer 

focuses on minimizing unproductive time. In the first problem, the distributor minimizes 

the customer cost, while in the second problem they minimize the inventory-holding cost. 

They evaluated the conflict cost, which is the relative in cost causing from using the other 

party’s optimal schedule. 
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Felix T. S. Chan et al.[29] developed a hybrid genetic algorithm for production and 

distribution problems in multi-factory supply-chain models. The analytical hierarchy 

process was used to organize the different criteria. The process provides a systematic 

approach for decision makers to assign and relate weighting. Genetic algorithms were 

utilized to determine jobs allocation into suitable production plants. 

Jonathan Bard and Nananukul [48] developed a model which includes a single commodity, a 

single production facility, a set of customers with time varying demands, a finite planning 

horizon, and a fleet of vehicles. The delivery to a customer on a particular day could be to 

restock inventory, or meet the demand of that day, or both. Customer demand would be 

satisfied from either the inventory held at the customer sites, or from the daily 

distribution. A tabu search is developed for solving the problem, and a path relinking is 

applied to improve the results after a solution is found. An allocation model is used in the 

form of a mixed integer program to find feasibility solutions that serve as starting points 

for the tabu search. Computational testing demonstrates the effectiveness of the 

approach.  

PIDRP (Production-inventory-distribution-routing Problem), which is similar to an 

inventory routing problem, but different from the traditional VRP, was investigated . They 

provided an effective tabu-search algorithm to find near-optimal solutions for high quality 

instances.  

Although the three problems’ combination was considered, it could be extended to 

include multiple products’ situation and improved by some correct adjustments.  

Mohamed Omar et al. [71]  studied the problem of HPP (Hierarchical Production Planning) 

and introduced an algorithm to solve similar problems. The plan was divided into three 

levels, these being two mathematical models and a backwards algorithm: step one, obtain 

total optimal minimized costs of production, inventory, workforce and setup; then, 

minimize the sum of back ordering costs, penalty costs of overproduction and so on; 

finally, according to the results of the last levels, formulate the near-optimal sequence to 

minimize total weighted tardiness. 
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Following a study, for Dell, on how to schedule production for accepted orders enabling  

enough transportation time for orders to be sent by slow shipping mode to reduce the 

shipping cost, Kathryn E.Stecke, et al. [53] stated that nonpreemptive  EDD (Earliest Due 

Date) production schedules are optimal when partial delivery is allowed. When partial 

delivery is not allowed, an MIP model was developed , which proved that the problem is 

NP-hard. They also provided  an efficient heuristic algorithm to achieve a near-optimal 

production schedule.  

A zero-inventory production and distribution problem was considered by Ronald 

Armstrong et al.[88] , whose objective was to maximize the total demands delivered by 

customers, chosen from a given sequence, while also satisfying other constraints (a short 

lifespan product, a single truck, a fixed sequence of customers with delivery time window 

requirements, and a limited production capacity). Its general version was proved NP-hard 

even with relaxed time windows and instantaneous truck travelling times. To solve the 

problem, they developed a heuristic lower bound on the optimal solution and a branch-

and-bound procedure. 

The model studied for a product with a short lifespan within an environment of a single 

plant, a single limited-capacity truck and the random demands from different customers. 

They focused on minimizing the total time that was needed for production and delivery, 

and for satisfying the capacity, transportation and lifespan constraints, simultaneously. 

With the development of a two-phase heuristic algorithm, although the optimality was 

obtained by comparing results from analytically derived lower bounds, this algorithm 

would not be effective once the truck’s routing was more influenced than makespan.  

Campbell and Savelsberg [6], in their work, also develop a linear time algorithm for 

determining a delivery schedule for a route, to define a sequence service to visit 

customers, which maximizes the total amount of delivery product on the route. As time 

delivery windows are used, flexibility of product can be adjusted; the amount of product 

can also be delivered to more than one target; thus the schedule of delivery to increase 

the amount of delivery also has flexibility. Maximum delivery quantity depends on the 

time of delivery windows, where the actual selection of delivery times, between the 
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earliest and latest delivery times, will affect the total volume deliverable on a trip. The 

later vehicle arrives, more inventory holding capacity and more products can be delivered, 

and later on as consequences, the less time available to deliver because of delivery time is 

restricted of customers to be visited later. 

They  tried to divide the problem into two phases based on delivery schedule and routing 

problems. The first phase was to create a delivery schedule followed by a set of delivery 

routes, which utilizes integer programming; in the second phase, routing and scheduling 

heuristics were employed. They introduced the clustering system to make delivery 

schedules more efficient among the customers; this model involved certain restrictions. 

For example, all customers that require the full load capacity of a vehicle can not be 

combined in one cluster, also the customers whose combined inventory levels are less 

than the size of the vehicle capacity will not be in the same cluster, because they need a 

maximum load vehicle capacity within the delivery schedule. The last aspect in clustering is 

based on a geographical factor, ensuring the need for customers to be in close proximity 

to each other. In spite of clustering, they found problems inherent in route planning, thus 

they reduced the customer set based on the urgency of each customer, and defined them 

into two classes, the critical and impending customer. 

Carine Cousineau-Ouimet [7], in her paper, employs a tabu research heuristic to solve the 

inventory-routing problem, with problem definitions where the customers demands or 

usage rate of customers are determined. The main idea of this method is to make use of 

the degradation of solution combined with the notion of memory to avoid cycling, 

therefore one customer will not be visited twice, or reserve exchange are tabu. The next 

customer who has been removed, as degradation will not be included in the routes, from 

there, a neighbourhood solution by given transformation is introduced; it can also be 

achieved by swapping customers between routes. To improve the solution, she also 

employs the attributes of the GENI algorithm; this method removes and inserts the 

customer between the other customers of a route. 

Chien, Balakrishnan and Wong[9] employ lagragian relaxation, in their paper, in order to try 

and solve the problem between inventory routing problems and vehicle routing problems 
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using mixed integer programming. In their model, lagragian functions to generate upper 

bounds and heuristic methods to obtain feasible solutions that give lower bounds for 

integrated problems. Later, in the paper, the problem is broken down into two sub-

problems; inventory allocation and vehicle utilization. For unsatisfied customers, they 

become the first priority in the next period, and multiple visits to a customer are also 

permitted by different vehicles. 

M. W. P. Savelsberg and Hwa Song[74] focus on the inventory routing problem with 

continuous moves, which incorporate two important real-life complexities: limited product 

availabilities at facilities and customers that cannot be served using out-and-back tours.  

Delivery routes are designed spanning several days covering huge geographic areas and 

involving product pickups at different facilities. They developed an integer programming 

based on an optimization algorithm; this optimization algorithm is embedded in local 

search procedures to improve solutions produced by randomized greedy heuristics. 

Aghezzaf et al.[1], in their paper, discussed various models for inventory routing problems, 

assuming that customers’ demands are stable or can be determined even in the real world 

where situations could lead into stochastic demand rates. However, they argue that the 

assumption of the usage rate of customers can be predicted over time, thus they assume 

demand rates of customers are stable, and take into consideration a long term cyclical 

inventory and distribution planning approach. The problem definition of their model is 

that it employs a single product, single facility and a fleet of homogenous vehicles (all with 

same load capacity).  

S. Anily and Federgruen[92] consider a single item distribution system with one plant as a 

depot and a determinate number of retailers. The demand rate of each retailer is a result 

of the integer multiple of some base demand rate. The replenishment strategy is defined 

in certain regions of retailers, where there could be possible overlapping or belong to 

another region. Vehicles are assigned to serve in each region, and when a vehicle visits a 

retailer in one region, it must also visit all the retailers in that region. 

They state that inventory can only be held at the retailers; however, they later extend this 

to say that inventory can also be held at central warehouses or distribution centres.  
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Pankaj Chandra and Fisher[82] have demonstrated the integration of production and 

distribution decisions, which presents a challenging problem for manufacturers trying to 

optimize their supply chain. At the planning level, the immediate goal is to coordinate 

production, inventory, and delivery needs to meet customer demand so that the 

corresponding costs are minimized. Achieving this goal provides the foundations for 

streamlining the logistics network and for integrating other operational and financial 

components of the system. In this paper, a model is presented, which includes a single 

production facility, a set of customers with time varying demands, a finite planning 

horizon, and a fleet of vehicles for making the deliveries. Demand can be satisfied from 

either inventory held at the customer sites, or from daily product distribution. In the most 

restrictive case, a vehicle routing problem must be solved for each time period. The 

decision to visit a customer on a particular day could be to restock inventory, meet that 

day’s demands, or both. In a less restrictive case, the routing component of the model is 

replaced with an allocation component only. A procedure centring on reactive tabu search 

is developed for solving the full problem. After a solution is found, path relinking is applied 

to improve the results. A novel feature of this methodology is the use of an allocation 

model, in the form of a mixed integer program, to find good feasible solutions that serve 

as starting points for the tabu search. Lower bounds on the optimum are obtained by 

solving a modified version of the allocation model.  

Liu and Lee[59] explained that multi-depot location routing problem and combined depot 

location and vehicle routing decisions, in order to determine the locations of depots and 

find the optimal set of vehicle schedules and routes. Inventory control decisions are 

interrelated with vehicle routing and depot location; however, the inventory control 

decisions are always ignored. A mathematical model for the single-plant multi-depot 

location-routing problem, taking inventory control decisions into consideration, is 

proposed.  

Anna Maria Sarmiento and Rakesh Nagi[4] referred to an integrated analysis of production-

distribution systems, and identified important areas where further research is needed. By 

integrated analysis is reached understand analysis performed on models that integrate 

decisions of different production and distribution functions for a simultaneous 

optimization. It is reviewed work that explicitly considers the transportation system in its 
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analysis, with particular emphasis on the following questions: (i) how have logistics aspects 

been included in the integrated analysis?  (ii) What competitive advantages, if any, have 

been obtained from the integration of the distribution function to other production 

functions within a plant? Production and distribution operations are the two most 

important operational functions in a supply chain. To achieve optimal operational 

performance in a supply chain, it is critical to integrate these two functions and plan and 

schedule them, jointly, in a coordinated way.  

Daskin[15]  pointed out that there were interrelated decisions, which were involved in the 

LRP. These decisions include: (i) how many facilities to locate, (ii) Where the facilities 

should be, (iii) Which customers to assign to which warehouses, (iv) In what order 

customers should be served on each route. The LRP is categorized as NP (Non Polynomial) 

– hard problems, which involve two NP-hard problems (facility location and vehicle 

routing) and it is modelled as a combinatorial optimization problem (Nagy and Salhi[74]). 

From their papers review, some practical applications of LRP were summarized; for 

example,  blood bank location (Cohen and Pierskalla[13]).  

Min et al.[16]  and Nagi and Salhi[76]  studied the variety and classification of LRP, dividing it 

into its problems’ perspective and the solution method. Their review was summarized by 

Kalkan[52]  in the table (5.1). 

Eugeniusz Nowicki and Smutnicki[27] provided a special method, based on tabu search, for 

minimizing the maximum makespan in the flow shop problem. Due to the reduced 

structure of the neighbourhood and due to a special method of calculating makespan, the 

method works faster and more efficiently than other known algorithms. The essence of 

the algorithm consists in exploiting properties, which has allowed them to search (using 

the makespan) the most interesting part of a single neighbourhood in the mean time O 

(n1.11m1.10 ) on tested instances. The proposed method solves, almost optimally, medium 

and large size instances on a PC in a short time. The method is easily implemented and is 

easily tuned (default values of tuning parameters are recommended). 

Meral Azizoglu, Cakmak and Kondakci[66] have considered the problem of minimizing total 

flow time in a flexible flow shop problem. They proposed lower and upper bounding 
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schemes and incorporated them into a branch-and-bound algorithm using two branching 

schemes. Their computational experience showed that the algorithm is capable of 

generating optimal solutions for medium-sized problems. The branch-and-bound 

algorithm produces the optimal solution at very early stages and the majority of the time 

is spent in illustrating that the solution is optimal. A branch-and-bound algorithm that 

terminates after a prespecified time limit maybe an attractive heuristic solution for larger 

size problems if proving the optimality of the solution is not crucial. The model they 

studied can be generalized to include due-date-related performance measures and/or 

flexible job shops.  

The main aim of the research of Colin R. Reeves[14] was to explore the potential of genetic 

algorithms for flow shop sequencing. However, as a subsidiary observation he notes that 

for certain types of problems, it may not be worth using sophisticated procedures, as a 

simple neighbourhood search can obtain solutions of comparable quality very easily. This 

dependence of solution quality on problem structure in combinatorial optimization is not 

one that has been adequately addressed in the literature. For problems where structure is 

not apparent, a naive method does less well, and we would make the following 

observations in respect to the other methods. 

The overall implication of his studies carried out is that simulated annealing algorithms 

and genetic algorithms produce comparable results for flow shop sequencing problems of 

most sizes and types of problem, but that genetic algorithms will perform relatively better 

for larger problems, and they will reach a near-optimal solution rather more quickly.  

Moreover, it should be pointed out that the Potts simulated annealing algorithm heuristic 

is the result of a substantial amount of experimentation in order to arrive at the 

parameter settings recommended. No experimentation of this kind has, as yet, been done 

on the genetic algorithm heuristic reported here; the parameters were simply set at what 

seemed "sensible" values after some rather small-scale experiments on one parameter at 

a time using some 20/5 problems. One of the characteristics of genetic algorithms is their 

robustness in respect of parameter settings, so that a similar performance might be 

expected from a wide range of choices of population size, mutation rate and so on. 

Nevertheless, there is some experience that would suggest that worthwhile gains might be 

achieved by trying to optimize in parameter space. Of course, it is possible that another 
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type of genetic algorithm might do even better; in particular it should be pointed out that 

this implementation is a "pure" genetic algorithm, i.e., no problem-specific information is 

used. Hybrid genetic algorithms have been suggested, where use is made of such 

information may perform better. All these factors are being investigated. Furthermore, 

genetic algorithms lend themselves very well to parallel implementation: there is no 

reason why the evaluation of new chromosomes needs to be done sequentially; this 

method would  further accelerate solution times. A parallel version of the genetic 

algorithm, described above, is also being explored.  

In conclusion, genetic algorithms provide a variety of options and parameter settings, 

which still have to be fully investigated. This research has demonstrated the potential for 

solving machine-sequencing problems by means of a genetic algorithm, and it clearly 

suggests that such procedures are well worth exploring in the context of solving large and 

difficult combinatorial problems. 

Chung-Yee Lee and Chen[10] studied a machine scheduling problem with explicit 

transportation considerations. They considered two models of transportation: the first 

model involves transporting semi-finished products from one machine to another; the 

second model considers delivering the finished goods to the final customers or warehouse. 

The transportation times and capacity are considered. They developed a dynamic 

programming model to solve the problem. 

The best-known heuristic for the general flowshop scheduling problem with makespan 

minimization is NEH, due to Nawaz et al. This procedure consists of inserting a job into the 

best available position of a set of partially scheduled jobs: i.e., in the position that would 

cause the smallest increment to the value of the makespan. [77] 

In their paper, M. Ben-Daya and Al-Fawzan[63] proposed a tabu search algorithm for the 

flowshop scheduling problem. The proposed algorithm suggests simple techniques for 

generating neighbourhoods of a given sequence and a combined scheme for 

intensification and diversification. They used the NEH algorithm for the initial solution. 

They compared the results used benchmark test problems and other literature for which 

lower bounds are known. An average deviation of less than 9% from the lower bound was 

achieved. 
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E. Taillard[26] compared some efficient heuristic algorithms to solve the flowshop problem 

and used a tabu search algorithm to improve the complexity of the best one. 

Computational experiments were reported. He compared the CPU time and number of 

iterations required to solve the same problems. He found that the NEH algorithm was the 

best algorithm among those tested.  

Tiago et al.[104] considered the permutation flowshop scheduling problem with blocking in-

process. There were no buffers between successive machines. They proposed a genetic 

algorithm to solve this problem. The performance of the algorithm was tested and 

compared with other algorithms. They used the NEH algorithm to generate the initial 

solution. 

S. G. Ponnambalam et al.[95] used the tabu search technique to solve the job shop 

scheduling problem, with makespan minimization criteria. They used the adjacent pairwise 

interchange method to generate neighbourhoods. They compared the results with 

simulated annealing and genetic algorithms. The performance of the used algorithm is 

comparable. Out of 25 problems considered, the tabu search performs better for six 

problems. For the remaining problems, the tabu search results are very close to both 

algorithms' results. 
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3. Manufacturer Dominates 

The manufacturer has his own ideal schedule. This schedule is determined by cost and 

capacity considerations. Using this ideal schedule without consideration for other 

schedules leads to poor overall performance measure. In this chapter, the scenario 

considers the optimal schedule for the manufacturer.  The manufacturer tries to minimize 

the total production cost (in this case it is equal to setup cost) per distribution cycle (which 

is considered one week).  

3.1  Flow shop models  

Flow shop (FS) scheduling is one of the most important problems in the area of production 

management. It can be briefly described as follows: There are a set of m machines 

(processors) and a set of n jobs. Each job comprises a set of m operations which must be 

done on different machines. All jobs have the same processing operation order when 

passing through the machines. There are no precedence constraints among operations of 

different jobs. Operations cannot be interrupted and each machine can process only one 

operation at a time. The problem is to find the job sequences on the machines which 

minimizes the makespan, i.e. the maximum of the completion times of all operations. As 

the objective function, mean flow time, completion time variance  and total tardiness can 

also be used. The flow shop scheduling problem is NP-hard and thus it is usually solved by 

approximation or heuristic methods. Figure 3.1 shows the generalized flowshop problem. 

 

 
 
 
 
 
 
 
 
 
 
 

Figure 3.1: Generalized flow shop problem  

The three-field notation α|β|γ is used to describe all details of considered flow shop 

problem variants.  
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The α field denotes the shop configuration (indicates the structure of the problem), 

including the shop type and machine environment per stage. The α field discomposes into 

four parameters, i.e. α1, α2, α3, α4. Here, parameter α1 indicates the considered shop, 

and parameter α2 indicates the number of stages.  

For each stage, parameters α3 and α4 indicate the machine set environments. More 

specifically, α3 indicates information about the type of the machines while α4 indicates 

the number of machines in the stage. 

Usually, all queues are assumed to operate under the First In First Out (FIFO) discipline, 

that is, a job cannot ”pass” another while waiting in a queue. If the FIFO discipline is in 

effect the flow shop is referred to as a permutation (prmu) flow shop and the β field 

includes the entry prmu. For example, as Fm | prmu | Cmax (see Fig.3.2) is one of the 

more basic scheduling problems, it has attracted a great deal of attention over the years. 

Many heuristics have been developed for dealing with this problem. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Directed Graph for the Computation of the Makespan in Fm | prmu | Cmax 

under sequence j1, . . . , jn.[72] 

 

The possible machine set environments on the stage i of a flowshop scheduling (FS) are: 

1. Single machine (1): a special case; any stages (not all) in a FS can have only one 

machine; 

2.  Identical machines in parallel (Pmi):  job j may be processed on any of mi 

machines; 
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3.  Uniformed machines in parallel (Qmi): the mi machines in the set have different 

speeds; a job j may be processed on anyone machine of set, however its 

processing time is proportional of the machine speed; 

4. Unrelated machines in parallel (Rmi): a set of mi different machines in parallel. The 

time that a job spends on a machine depends on the job and the machine. 

When there are several consecutive stages with the same machine set environments, the 

parameters α3 and α4 can be grouped as ((α3α 4(i))i = sk), where s and k are the index of 

the first and the last consecutive stage, respectively. For example, the notation FH4, 

(1,(P2(i))i=23,R3(4)) refers to a FS configuration with four stages where there are one 

machine at the first stage, two identical machines in parallel at second and third stages 

and three unrelated parallel machines in the fourth stage. [46] 

β field cumulates a set of explicit constraints (not implied by the internal semantic 

structure – for example, for flow shop, a job cannot start its execution on a machine if it's 

still under processing on the previous one); in another way the β field provides the shop 

properties; also other conditions and details of the processing characteristics, which may 

enumerate multiple entries, also may be empty if they are not. 

3.2 Classification of Scheduling Problems 

French[31]  introduced the target of the general scheduling problem is to find a sequence, 

in which the jobs (tasks) pass between the resources (machines), which is a feasible 

schedule, and optimal with respect to some performance criterion. Graves[2] introduced a 

functional classification scheme for scheduling problems. This scheme categorizes 

problems using the following five dimensions: 

 Requirement generation 

Based on requirements generation, it can be classified as an open shop or a closed shop. 

An open shop is "build to order" and no inventory is stocked and when orders are filled 

from existing inventory it is called closed shop. Closed shop can further be classified into 

job shop and flow shop. A detailed classification of scheduling problems is shown in 

following figure. 
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Figure 3.3 Classification of scheduling problems based on requirement generations[18]. 

 

 Processing complexity 

Processing complexity refers to the number of processing steps and workstations 

associated with the production process. This dimension can be decomposed further as 

follows: 

 One stage, one processor; 

 One stage multiple processors; 

 Multistage flow shop; 

 Multistage job shop. 

The one stage, one processor and one stage, multiple processors problems require one 

processing step that must be performed on a single resource or multiple resources 

respectively. In the multistage, flow shop problem each job consists of several tasks, which 

require processing by distinct resources; but there is a common route for all jobs. Finally, 

in the multistage, job shop situation, alternative resource sets and routes can be chosen, 

possibly for the same job, allowing the production of different part types. 
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Scheduling criteria, states the desired objectives to be met. “They are numerous, complex, 

and often conflicting”. Some commonly used scheduling criteria include the following: 

minimize total tardiness, minimize the number of late jobs, maximize system/resource 

utilization, minimize in-process inventory, balance resource usage, maximize production 

rate etc. 

 Parameter variability 

The dimension ‘parameters variability’ indicates the degree of uncertainty of the various 

parameters of the scheduling problem. If the degree of uncertainty is insignificant (i.e. the 

uncertainty in the various quantities is several orders of magnitude less than the quantities 

themselves), the scheduling problem could be called deterministic. For example, the 

expected processing time is six hours, and the variance is one minute. Otherwise, the 

scheduling problem could be called stochastic. 

 Scheduling environment 

The dimension, scheduling environment, defined the scheduling problem as static or 

dynamic. Scheduling problems in which the number of jobs to be considered and their 

ready times are available are called static. On the other hand, scheduling problems in 

which the number of jobs and related characteristics change over time are called dynamic. 

3.3 FSPs with setup times 

The setup times is a subset of cycle time, defined as a period which is needed to carry out 

an initial format which  usually will be necessary before adding a new job on each 

machine. So before adding any new jobs to be processed on the machines there is a need 

to prepare the machine to be ready for the new task, and this preparation requires time 

intervals which vary from job to another, and from machine to another (although it 

depends on the previous job even if it is the first job in the machine). 

 

 

 

 

 

Figure 3.4 Flowshop with setup time 
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In some cases the production doesn’t required setup time, so it can included in the 

processing times as negligible values (set as zeros). 

We can divide the setup time to two categories: 

 Non-separable setup times are either included in the processing times or are 

negligible, and hence are ignored.  

 Separable setup times are not a part of processing operation. 

However, in general the structure of the breakdown time when a job belongs to a machine 

is as follows :[72] 

- Setup time that is independent on the job sequence. This operation consists of 

activities such as fetching the required details, and fixtures, and setting them up on 

the machine. 

- Setup time that is dependent on the job to be processed. The carrying out of this 

operation includes the time required to put the job in the jigs and fixtures and to 

adjust the tools. 

- Processing time of the job being processed. 

- Removal time that is independent on the job that has been processed. This 

operation includes activities such as dismounting the jigs, the fixtures and/or tools, 

inspecting/sharpening of the tools, and cleaning the machine and the adjacent 

area. 

-
 Removal time that is dependent on the job that just has been processed. This 

operation includes activities such as disengaging the tools from the job, and 

releasing the job from the jigs and fixtures. 

Among scheduling problems which consider separable setup times in parallel machine 

environment, there is a class of problems of a high computational complexity, where setup 

from one product to another occurs on a machine; and machine parameters, which have 

to be changed during a setup, differ according to the production sequence. It leads to 

sequence-dependent setup times and consequently to sequence-dependent setup costs.  

Every job is to be processed on one machine at a time without preemption and a machine 

processes no more than one job at a time. When an operation is started on a machine, it 

must be finished without interruption. 

Typically, buffers are located between stages to store intermediate products. 
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The problem consists of assigning the jobs to machines at each stage and sequencing the 

jobs assigned to the same machine so that some optimality criteria are minimized. The 

following index are used for describing the problems: j for job, j = 1,…, n, i for stage, 

i = 1, 2, …, k; mi for number of machines at the stage i; l for machine index, l = 1, 2, …, mi. 

There are many algorithms to solve FSP with setup time. The algorithm used in this thesis 

is NEHT-RB algorithm. This is a modified version of a heuristic (NEH) proposed by Nawaz et 

al., and NEHT-RB is extended from the NEH heuristic to handle setup times. 

Appendix III shows the randomized algorithm, while Appendix IV shows the comparison 

results of the NEH algorithm, randomized algorithm and a shortest-processing-time-first 

(SP) algorithm. Figures a, b, and c in Appendix IV show the results for 10*20 (10 machines, 

and 20 jobs), 10*50, and 10*100 problems. The number of runs was ten in every model.  

It is obvious that NEH works better than the other algorithms, especially when the 

problem contains a big number of jobs.  

The main idea of NEH algorithm is to generate an initial order of jobs with respect to an 

indicator value, then insert the jobs iterative into a partial sequence according to the initial 

order of  the first stage. 

The construction of NEHT-RB is as follows: 

Step 1: Sequence the jobs by using a particular sequencing rule (first-stage sequence). 

Step 2: Assign the jobs to the machines at every stage using the job sequence from either 

the First-In-First-Out (FIFO) rule or the Permutation rule. 

Step 3: Return the best solution. 

The best known heuristic for the general flowshop scheduling problem with makespan 

minimization is NEH, due to Nawaz et al[77]. This procedure consists of inserting a job into 

the best available position of a set of partially scheduled jobs; i.e., in the position that 

would cause the smallest increment to the value of the makespan. [86] 

The NEHT-RB idea of building a feasible schedule is very simple. At each iteration of the 

algorithm there is a partial schedule S. A job h is selected from a priority list P of 

unscheduled jobs. Nawaz et al. suggest a largest processing time (LPT) rule; i.e., a list 

where the jobs are ordered from largest to smallest total processing time. The partial 

schedule S and the job h define a unique greedy function ψ(j): { 1.2.. , |S + 1|}   R, where 

ψ(j) is the makespan of the new schedule S’ resulting from inserting job h at the jth position 
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(right before the jth job) in S. Here, position |S + l| means an insertion at the end of the 

schedule. Job h is inserted into position 

                   k = argminij=l.....|S + l| {ψ(j)} 

where the position in S has the minimum makespan value. 

The Procedure NEHT-RB is as follows: 

Input: Set P of unscheduled jobs. 

Output: Feasible schedule S. 

Step 0. Set S = 0 

Step 1. Sort the jobs in P to form an LPT priority list 

Step 2. while |P| > 0 do 

Step 2a. Remove h, the first job from P 

Step 2b. Compute ψ(j) for every position j = 1, …., |S| 

Step 2c. Find k = argminj{ψ(j)} 

Step 2d. Insert job h at position k in S 

Step 3. Output S 

Step 4. Stop  

 

Figure 3.5: NEHT-RB algorithm 



Manufacturer Dominates        36  
 

Using this algorithm, initial solution for job schedule can be calculated. The next step is to 

improve this solution using tabu search. To generate the neighborhood, more than one 

idea is used. The first one is swapping. Given a sequence s, let i and j be two positions in 

the sequence s. A neighbor of s is obtained by interchanging the jobs in positions i and j. 

The positions i and j selected randomly. Figure 3.6 shows this criteria. 

 

 

 

 

Figure 3.6: Swapping criteria 

The second criteria is Insertion. Given a sequence s, let i and j be two positions in the 

sequence s. A neighbor of s is obtained by inserting the job in position i in position  j. 

Positions i and j are selected randomly.  Figure 3.6 shows this criteria. 

 

 

 

 

 

Figure 3.7: Insertion criteria 

The third way is block insertion. Given a sequence s, let i, j, and k be three integers. A 

neighbor of s is obtained by inserting a bloc of k jobs starting at job i in position j, Figure 

3.7. The positions i and j and the integer k are randomly selected. 

 

 

 

 

 

Figure 3.8: Block Insertion criteria 

The last criteria used is Block Swapping. Given a sequence s, let i and j be two positions in 

the sequence s. A neighbor of s is obtained by interchanging bloc of k jobs starting at job i 
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in position j, as shown in figure 3.9. The positions i and j and the integer k are selected 

randomly.  

 

 

 

 

 

Figure 3.9: Block swapping criteria 

The objective function is the makespan. Thus, simply define ‘best’ by reference to the 

objective function and the current tabu conditions, the best neighbor in the candidate list 

is the sequence that yields the smallest makespan subject to not creating a tabu move. 

The tabu list size used is 7.  

The algorithm is stopped when there is no improvement between two consecutive calls of 

the diversification scheme. Other criteria could be used such as stopping after some 

maximum number of iterations or stopping after some maximum number of calls of the 

diversification scheme. The optimal solution is obtained. 

The distributor have to use this schedule to calculate his own schedule. The suggested 

algorithm is a Vendor Managed Inventory model. According to this model the total 

distance and total inventory is calculated. 

Table 3.1 shows a comparison of results for an example for 10 machines and different 

number of jobs. The quality of the solution is calculated by the objective function 

(makespan Cmax) and CPU time (in seconds). 

Table 3-1: Compression between tabu search neighborhoods criteria for 10 machines 

 

  

10 

machines

Initial 

solution

Jobs Cmax CPU Cmax CPU Cmax CPU Cmax CPU Cmax

10 141 1 139 1 139 3 139 <1 136

20 216 1 215 1 213 12 213 1 211

25 264 1 261 1 261 19 262 1 261

30 300 1 299 1 299 30 300 1 299

40 382 1 382 2 381 51 382 2 381

Element Insertion Block Insertion Block Swapping Pair Swapping

1 2 3 4 5 6 7 8 9 

1 6 7 8 5 2 3 4 9 
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3.4 VMI Mathematical Model 

The three-echelon inventory and distribution routing system considered in this thesis 

consists of a single plant producing multiple products. The manufactured products have to 

be delivered to depots by vehicles at the plant to ensure fulfillment of demand, which is 

considered deterministically known over a planning horizon. On the other hand, retailers 

will be replenished by their respective depot with different products transported by means 

of vehicles at each depot. Either plant or depot has limited storage capacity and its own 

truck for transportation. Transportation costs of these vehicles are proportional to the 

travelling time. There is no fixed cost associated with vehicle usage. It is assumed that 

each truck can make multiple trips (a trip is defined as a sequence of retailer locations a 

vehicle visits, starting from a depot and ending at the same depot) during each time period 

as long as it can return to the base depot at the end of the same period. The objective is to 

minimize the total inventory and transportation costs, while fulfilling the demand 

requirement. 

To give a formal presentation of the Integrated Inventory and Distribution Routing 

Problem in a VMI system,  a supply chain environment with the following assumptions is 

considered: 

- Single plant 

- Multiple depots 

- Multiple retailers 

- Multiple products 

- Multiple time periods within a planning horizon 

- A number of vehicles at plant 

- A number of vehicles at each depot 

- Each vehicle can visit more than one customer during a trip, and can make multiple 

trips within one period if possible 

- Each vehicle returns to its base plant or depot at the end of each period 
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Notations and variables: 

Parameter definitions for the IRP model 

Symbol Definition 

m distribution cycle  (t=1,2,3……m) 

T distribution cycle time (one week) 

P plant 

l distribution center (d=d1,d2,……dl) 

n retailers (r=1,2,3…..n) 

N product (i=1,2….N) 

dirt demand of retailer r for product i at time t 

Iirt inventory level of retailer r for product i 

Iidt inventory level of the depot for product i 

Iipt inventory level of the plant for product i 

qirt quantity of product i distributed from depot to retailer r 

qidt replenished quantity of product i from plant to depot 

qipt produced quantitiy of product i at plant 

 dt  1 or 0, when qidt >0 or otherwise 

 rt  1 or 0, when qirt >0 or otherwise 

Chip unit inventory holding cost for product i at plant 

Chid unit inventory holding cost for product i at depot 

Chir unit inventory holding cost for product i at retailer 

dxy total distance for route y which belongs to depot d  (x=1,2……n, 

y=1,2……n) 

dpd distance between plant and depots (d= d1,d2,……dl) 
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Cv variable transportation cost in unit distance 

 

Variable definitions for the IRP model 

Symbol Definition 

CThp total holding cost for plant 

CThd total holding cost for depot 

CTTd total transportation cost for depot 

CThr total holding cost for retailer 

CTTr total transportation cost for retailer 

 

The integrated inventory and distribution routing problem can then be formulated as 

follows: 

minimizing total cost = min (inventory cost of all products at the plant + Inventory cost at 

DC’s + transportation cost from the plant to DC’s + inventory cost at retailers + 

transportation cost from DC’s to retailers). 
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Total holding cost for the plant:  

    CThp= 
1 1

m N

t i 

  Chip 
Iipt-1 Iipt

2


                                                                                       (3.2) 

Iipt=Iipt-1 + qipt - 
1

l

d

  qidt   i, t , i∈N, t∈T p=1                                                    (3.3) 



Manufacturer Dominates        41  
 

Total holding cost for depot:  

           ∑∑∑    

           
 

                                                                                                

 

   

 

   

 

   

 

Iidt=Iidt-1 + qidt - 
1

n

r

  qirt      ,      i, t, i∈N, t∈T                                                      (3.5) 

Total transportation cost for depot 

   CTTd = 
1 1

m l

i d 

 2Cv dpd it ,  it  0,1
 
 i, t, i∈N, t∈T                                       (3.6)                                                                           

Total holding cost for retailer 

CThr= 
1 1 1

m N n

t i r  

 Chir
Iirt-1 Iirt

2
                                                                                   (3.7) 

Iirt = Iirt-1 + qirt - dirt   i, t,  i, t, i∈N, t∈T, r∈n                                                    (3.8) 

Total transportation cost for retailer 
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               {   }      ∈    ∈                                                        

Storage capacity and safety stock requirement constraints 

The maximum stock at the plant, DC’s and retailers should not exceed the maximum 

storage capacity. 

0 ≤Iipt≤Ip
max    i, t, i∈N, t∈T                                                                                    (3.10) 

0 ≤Iidt≤Id
max    i, t, i∈N, t∈T                                                                                    (3.11) 

0 ≤Iirt≤Ir
max     i, t, i∈N, t∈T                                                                                    (3.12) 

Non-negative and integer requirement 

qirt  0 qidt  0  qipt 0  i, t, i∈N, t∈T                                                                      (3.13) 
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The objective function (3.1) of the model includes inventory cost (at plant, depots and 

retailers, respectively), and transportation cost (both plant and depots owned vehicles). 

Constraints (3.2) and (3.3) assure the balance at the plant among production, inventory 

and delivery, and the demand fulfillment for depot respectively. Constraint (3.2) is the 

average inventory level at plant. Constraint (3.3) is the inventory balance constraint at 

plant, which requires that distribution from the plant can be met from inventory and 

current production in that period. Constraints (3.4) and (3.5) assure the balance at the 

depot among replenishment, inventory and delivery, and the demand fulfillment for 

retailers respectively. Constraint (3.4) is the average inventory level at depot. Constraint 

(3.5) is the inventory balance constraint at depot, which requires that distribution from 

the depot can be met from inventory and replenishment from plant in that period. 

Constrain (3.6) is the transportation cost for depot including variable cost and fixed cost 

when one delivery is placed from plant to depot. Constraints (3.7) and (3.8) assure the 

balance at the retailer among replenishment, inventory and delivery, and the demand 

fulfillment for customers respectively. Constraint (3.7) is the average inventory level at 

retailers. Constraint (3.8) is the inventory balance constraint at retailers, which requires 

that demand from customers will be met from inventory and replenishment from depot in 

that period. Constrain (3.9) is the transportation cost for retailers including variable cost 

and fixed cost when one replenishment is placed from depot to retailers. Constraints 

(3.10), (3.11) and (3.12) are inventory constraints satisfying maximum storage capacity and 

inventory requirements at plant, depots and retailers. And finally, constraint (3.13) is non-

negative constraints. 

3.5 VMI Heuristic Algorithm 

In general, the VMI model tasks can break off into 2 sub-tasks, later called phases, where 

each phase has a relationship with the others.  

Phase I is setting a service sequences list for each customer; in the next step in phase II, 

the route selection based on urgency case customer from phase I can be added to 

accomplish the vendor-managed inventory activity. 
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Since avoiding a lack of stock is the main objective, three aspects have to be considered: 

- When do the articles have to be delivered to the customers? 

- How many articles have to be delivered? 

- Which routes have to be taken to serve delivery action? 

Delivery times is one of the most important aspects in vendor-managed inventory. Some 

data required to calculate this time are: 

- Usage rate of the customer per day 

- Stock out time of each customer 

- Inventory level of each customer. 

Usage rate of the customer is a very important element to know how quickly the 

distribution centre can take action to deliver the article to the customer, and the time to 

deliver the goods to avoid stock out. Usage rate, inventory capacity and stock out time are 

strongly related to delivery time. The number of customers also affects the model. A larger 

number of customers means more complex situations have to be handled. Also, more 

distribution centres with different locations requires more flexibility to fulfil these 

customers' demands.  

Delivery quantity is the answer to the question of how many articles have to be delivered 

to each customer. The amount of delivery depends on how fast the customer consumes 

the product and how big their inventory capacity is. If the customer only has a small 

inventory capacity and the usage rate is fast during work hours, this means that the 

vendor has to visit the customer more often with small delivery periods. It means that we 

cannot maximize our delivery quantity. One aspect we have to consider is that delivery 

quantity cannot exceed the inventory capacity of the customer. 

Figure 3.10 illustrates that, if we want to maximize delivery quantity, the total amount of 

delivery in one route schedule between the customers in this route has to be able to 

utilize vehicle capacity. 
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Figure 3.10. Example of Delivery Quantity 

Defining the route schedule in VMI is not so flexible compared to VRP, since VMI is based 

on the urgency of the customers. In the case of VMI, we cannot select certain routes to 

minimize the distance to the customer; VMI more concerns how to serve the customer as 

soon as possible to prevent stock out. For example, although we have customers near the 

distribution centre who do not need replenishment in a short time, we have to serve 

customers in critical term first based on the service sequences list (SSL). In VMI, distance 

does not matter as long as the vendor can fulfil the demand of the customer. Certainly, 

some conditions in practical terms could also be acceptable; for example, if two customers 

have the same urgency (same value in the SSL) and they are on the same route, then the 

vehicle will deliver the goods to the nearest one first. Figure 3.11 gives some explanation 

of this idea. 

 

                                

 

 

Figure 3.11. Example of Route Selection 

There are some conditions that can affect the route selection; among them are: 

- Geographical advantage  
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- Amount of service vehicles 

- Vehicle capacity. 

Geographical advantage is the distance between distribution centre and customers, or 

among the customers themselves. For closer customers it is possible to assign a more 

flexible route, although the route schedule still has to refer to the service sequences list, 

as already explained above. 

The number of vehicles that the plant or distribution centre has can give more advantages 

in setting the route selection; more vehicles means more flexibility in assigning the 

customers to the routes. 

Vehicle capacity is also an important factor when making the route schedule. A bigger 

capacity of the vehicle means that the vehicle can deliver more quantity, and can also 

move further to the next customer.  

In this thesis,  a three-phase methodology Route-Route-Cluster to solve M-M (multi-depot 

and multi-retailer) problem is investigated. Figure (3.12) shows a schematical 

representation of the system.  

 

 

 

 

 

 

Figure 3.12: A schematical Model of the distribution system 

As shown in figure 3.12, it is clear that this method is divided into three stages including 

specific steps respectively.  

Phase I: Cluster Generation 

Phase II: Retailer Service Sequence 

List 

Phase III: VMI Model Route 
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In stage 1, the main objective is to group retailers and depots into different clusters 

according to available data and assumptions. For the method of grouping,  the nearest 

neighbor algorithm and stem distance are chosen.  In stage 2, the service sequence list, 

which plays an important role in stage 3, is created based on the stock out time of 

products according to the sequence from small to large.  In stage 3, which route to choose 

and how to assign vehicles are the main tasks. According to the service sequence list 

created in former stage, trucks are sent out to transport based on the premises that the 

delivery quantity is not allowed to exceeding the capacity of vehicle on the one hand. On 

the other hand, when one truck can not serve some retailer in urgent situation, a new 

route for this retailer need to be created to avoid   causing shortage.   

3.5.1 Phase I: Cluster generation 

Based on the location, retailers are routed into separate route by regarding the individual 

average demand of retailers and storage capacity of depots. (Figure 3.13) 

This phase takes the following steps.  

STEP 1: Calculate the total demand of all the retailers in a planning horizon and allocate it 

evenly into each depot (assumed all the depots has the same capacity )   

        ∑  

 

   

 

Utotal: total demand of all the retailers 

Ur: individual customer demand 

     QDC= Utotal/n 

QDC: assigned quantity to each depot 

n: number of depots ( supposed the depot has the same capacity) 
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Yes

No

Calculate Stem Distance from depot to the beginning 
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Routing Retailer  with depot finished
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the other retailers

                                dra,rb=

Routing finished
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next nearest retailer  until  QDChas been reached

Start phase I

Select Seed Retailers

According to the nearest neighbor algorithm include 

the closest retailer into the route

dmin=min(dra,rb)  

Calculate total demand

                                 Utotal=

Calculate capacity of a depot

                                          QDC= Utotal/n

1

Ur
r

r



2 2(Xra-Xrb) +(Yra-Yrb)

All depots and clusters grouped?

Yes

No

 

Figure 3.13: Flowchart for Phase I 

STEP 2: Begin with a random retailer (ro). In order to avoid missing remote points, we 

consciously chose those points as the start one, which are located far away from the 

depot.    
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STEP 3: Based on the nearest neighbor algorithm, route all the closer retailers into a single 

route by considering their travelling distance from one point to another point until 

reaching the capacity limit of one depot. 

d0,r min=min(√                     ,……√                     ) 

d0,r min: distance from the first point to its nearest one in the route. 

STEP 4: Repeat step 2,3 until all retailers are routed. 

STEP 5: Calculate summation distance from each depot to the first point and the last point 

of each route to get the minimum stem distance. 

 

 

 

 

 

 

 

 

Figure 3.14:depot assignment 

min(dstem)=min((dDC1,r0+ dDC1,rn),……(dDCn,r0+ dDCn,rn) 

dstem: total distance from the depot to the beginning and ending point of the route. 

dDC,r0: distance from the depot to the start point in a route 

dDC,rn: distance from the depot to the last point in a route. 

Depot 

 

Depot 

 

Depot 

 

seed customer 

the last customer in 

the route 
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STEP 6: Choose the closest depot as the central supplier of a customer group until each 

depot belongs to a separate cluster. 

3.5.2 Phase II: Service Sequence List (SSL) generation 

In this stage, the service sequence list, which takes an important role in phase III, is 

created based on the stock out time of retailers ordered according to the sequence from 

small to large. 

The objective of this list is to sort the retailers according to the stockout time of different 

products. 

3.5.3 Phase III: Route model 

The customer service sequence list is partitioned by looking at the retailer's demands and 

the summation of demands less than or equal to vehicle capacity. Therefore, this model is 

made to give the minimum number of trips.  
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Start phase II

Begin with one cluster, calculate stock out time of all 

retailers in this cluster

Tr,stoc=Ir/ur

Still cluster not calculated jet?

Retailer Service Sequence List finished

Given a set of retailers and depots information such 

as location(x,y), inventory level I and consumption 

rate u

Select delivery mode Split TSP with multi truck

Model 1

One truck -One product

Model 2

One truck -multi- product

Order retailers according to the 

sequence of each product

One product is associated with 

one Service Sequence List 

(SSL) ordered from small to 

large

SSL1,SSL2,...SSLi

Order retailers according to the 

smallest stock out time of all 

products needed

All products are arranged in 

only one SSL ordered from 

small to large

min(Tr1,1, Tr1,2,…. Tr1,i) < min(Tr2,1, 

Tr2,2,…. Tr2,i) <……< min(Trn,1, 

Trn,2,…. Trn,i)

Yes

No

 

Figure 3.15: Flowchart for Phase II 
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Figure 3.16: Flowchart for Phase III 
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4. Production, Inventory, and Transportation model 

4.1 Introduction 

The production, inventory and distribution routing system considered in this research 

consists of one production plant producing a multi products. The plant has limited 

production capacity and its own fleet for transportation. The manufactured products has 

to be delivered to retailers geographically dispersed on a grid to ensure fulfillment of the 

demand, which is considered deterministically known over a planning horizon. Delivery 

takes place by means of fleets of homogeneous transporters with same capacity. 

Transportation costs of these fleets are proportional to the traveling distance instead of 

the shipped quantity. There is no fixed cost associated with transporter usage. It is 

assumed that each transporter can make multiple trips.  

A supply chain environment with the following assumptions are considered: 

- Multi  products 

- Single plant 

- Multiple time periods within a planning horizon 

- A heterogeneous fleet of transporter at the warehouse 

- Each transporter can visit more than one customer during a trip, and can make 

multiple trips within one period if possible 

- Each transporter returns to its base plant at the end of each period 

As part of the solution methodology, this does not attempt to solve the full model but 

instead to investigate a relaxation referred to as the allocation model. In particular, the 

routing term in the objective function is replaced by a distribution component.  

Figure 4.1 shows that block diagram of a multi-stage, multi-level production-inventory-

distribution system. The details of the production inventory distribution system has been 

shown by this diagram.  
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1 2 S

1 2

Inventory at 

production stages

Distibution from plant 

to warehouse

Production

stages

Warehouses

1 2 RRetailers

Inventory at 

warehouses

Distribution from 

warehouse to retailers

Inventory at retailers

 

Figure 4.1 Block diagram of a multi-stage, multi-level production-inventory-distribution system[79] 

 

 

 

 

Figure 4.2 Production Inventory Distribution System 

Figure 4.2 shows that there is a plant (which can produce multi products). These products 

delivered to warehouses, and from warehouses to the retailers. Also it shows the time 

horizon. The quantity available at the warehouse at the end of any day equals to the initial 
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inventory at that day plus quantity received from the plant minus the quantity delivered to 

different retailers assigned to that warehouse. 

4.2 Model Formulation  

The problem is a single production facility which can produce multi products, and a set of 

retailers geographically dispersed on a grid. Each retailer r has a fixed nonnegative 

demand dirt in time period t of the planning horizon that must be satisfied, i.e., shortages 

are not permitted. A limited number of items can be produced in each time period and a 

limited number can be stored at a unit cost of Chip . In general, it is natural to equate a 

period with a day, which is done, but when production is scheduled for more than one 

shift in a day it could be to equate the period with one shift. 

 In constructing delivery schedules, each customer can be visited at most once per day and 

each of vehicles can make at most one trip per day. The latter restriction implies that all 

routes overlap in time. If cv is the cost of going from warehouse w to retailer r and βrt  is a 

binary variable equal to 1 if retailer r is assigned by warehouse w, then the traveling costs 

is given cm in the full model. A limited amount of inventory can be stored at retailer r’s  at 

a unit cost of Chir. Moreover, it is assumed that all deliveries take place at the beginning of 

the day and arrive in time to satisfy demand for at least that day. All production on day t is 

available for delivery only on the following morning and all inventories are measured at 

the end of the day. Demand on day t can be met from deliveries on day t and from ending 

inventory on day t−1 at the retailer. Initial customer inventory on day t simply reduces 

demand on subsequent days, while initial inventory at the plant must be routed; at the 

end of the planning horizon all inventory levels are required to be zero. The goal is to 

construct a production plan and delivery schedule that minimizes the sum of all costs 

while ensuring that each customer’s demand is met over the planning horizon. In so doing, 

three critical decisions have to be made: 

- How many items to manufacture each day, 

- How much to deliver to a customer during each visit, 

- Which delivery routes to use.  
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The Figure 4.3 shows that block diagram of a multi-stage, multi-level production-

inventory-distribution system. The details of the production inventory distribution system 

has been shown by this diagram.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 Block diagram of a multi-stage, multi-level production-inventory-distribution 

system 
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 Notations 

Symbol Definition 

S Number of production stages 

Fst Fixed or setup cost at stage s in period t 

Yst (0,1) variable, equal to 0 when there is no setup at stage s in 

period t 

Xst Quantity produced at stage s in period t 

m distribution cycle  (t=1,2,3……m) 

T distribution cycle time (one week) 

P plant 

l distribution center (d=d1,d2,……dl) 

n retailers (r=1,2,3…..n) 

N product (i=1,2….N) 

dirt demand of retailer r for product i at time t 

Iirt inventory level of retailer r for product i 

Iidt inventory level of the depot for product i 

Iipt inventory level of the plant for product i 

qirt quantity of product i distributed from depot to retailer r 

qidt replenished quantity of product i from plant to depot 

qipt produced quantitiy of product i at plant 

 dt  1 or 0, when qidt >0 or otherwise 

 rt  1 or 0, when qirt >0 or otherwise 

Chip unit inventory holding cost for product i at plant 

Chid unit inventory holding cost for product i at depot 
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Chir unit inventory holding cost for product i at retailer 

dxy total distance for route y which belongs to depot d  (x=1,2……n, 

y=1,2……n) 

dpd distance between plant and depots (d= d1,d2,……dl) 

Cv variable transportation cost in unit distance 

 

Variable definitions for the IRP model 

Symbol Definition 

CThp total holding cost for plant 

CThd total holding cost for depot 

CTTd total transportation cost for depot 

CThr total holding cost for retailer 

CTTr total transportation cost for retailer 

 

The integrated production, inventory and distribution routing problem can then be 

formulated as follows: 

minimizing total cost = min (setup cost+ inventory cost of all products at the plant + 

Inventory cost at DC’s + transportation cost from the plant to DC’s + inventory cost at 

retailers + transportation cost from DC’s to retailers). 
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Total holding cost for plant:  

    CThp= 
1 1

m N

t i 

  Chip 
Iipt-1 Iipt

2


                                                                                       (4.3) 

Iipt=Iipt-1 + qipt - 
1

l

d

  qidt   i, t , i∈N, t∈T p=1                                                     (4.4) 

Total holding cost for depot:  

CThd= 
1 1

m N

t i 

 Chid Iidt-1 Iidt
2
                                                                                       (4.5) 

Iidt=Iidt-1 + qidt - 
1

n

r

  qirt   i, t, i∈N, t∈T                                                                 (4.6) 

Total transportation cost for depot 

   CTTd = 
1 1

m l

i d 

 2Cv dpd it ,  it  0,1
 
 i, t, i∈N, t∈T                                            (4.7) 

Total holding cost for retailer 

CThr= 
1 1 1

m N n

t i r  

 Chir
Iirt-1 Iirt

2
                                                                                       (4.8) 

Iirt = Iirt-1 + qirt - dirt   i, t,  i, t, i∈N, t∈T, r∈n                                                        (4.9) 

Total transportation cost for retailer 

    CTTr= 
1 0 0

m n n

t x y  

 Cv dxy  rt ,  rt  0,1
 
 t, t∈T, r∈n                                           (4.10) 

Storage capacity and safety stock requirement constraints 

0 ≤Iipt≤Ip
max    i, t, i∈N, t∈T                                                                                        (4.11) 

0 ≤Iidt≤Id
max    i, t, i∈N, t∈T                                                                                        (4.12) 
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0 ≤Iirt≤Ir
max     i, t, i∈N, t∈T                                                                                         (4.13) 

Non-negative and integer requirement 

qirt  0 qidt  0  qipt 0  i, t, i∈N, t∈T                                                                          (4.14) 

The objective function minimizes the sum of production setup costs, a surrogate for the 

routing costs, holding costs at the plant, and holding costs at the retailers.  

Constraint (4.2) ensures that the total production capacity at each stage should not exceed 

the plant production capacity. Constraints (4.3) and (4.4) assure the balance at the plant 

among production, inventory and delivery, and the demand fulfillment for depot 

respectively. Constraint (4.3) is the average inventory level at plant. Constraint (4.4) is the 

inventory balance constraint at plant, which requires that distribution from the plant can 

be met from inventory and current production in that period. Constraints (4.5) and (4.6) 

assure the balance at the depot among replenishment, inventory and delivery, and the 

demand fulfillment for retailers respectively. Constraint (4.5) is the average inventory level 

at depot. Constraint (4.6) is the inventory balance constraint at depot, which requires that 

distribution from the depot can be met from inventory and replenishment from plant in 

that period. Constrain (4.7) is the transportation cost for depot including variable cost 

when one delivery is placed from plant to depot. Constraints (4.8) and (4.9) assure the 

balance at the retailer among replenishment, inventory and delivery, and the demand 

fulfillment for customers respectively. Constraint (4.8) is the average inventory level at 

retailers. Constraint (4.9) is the inventory balance constraint at retailers, which requires 

that demand from customers will be met from inventory and replenishment from depot in 

that period. Constrain (4.10) is the transportation cost for retailers including variable cost 

when one replenishment is placed from depot to retailers. Constraints (4.11), (4.12) and 

(4.13) are inventory constraints satisfying maximum storage capacity and inventory 

requirements at plant, depots and retailers. And finally, constraint (4.14) is non-negative 

constraints. 
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4.3 Heuristic Algorithm for PIDP 

The production distribution model suggested by Milind et al.[69] was developed. They 

considered a data set which included two products delivered to six retailers. One truck 

with limited capacity was used to deliver the products in their model. They used a full 

truck load model. 

Figure (4.4) shows the suggested solution to solve this problem. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (4.4) The general view of the suggested algorithm. 
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Figure (4.5): Allocation problem 

The algorithm suggested is as follows: 

Step 1: Finding the initial schedule 

Construct an Earliest Due Date (EDD) schedule according to the non decreasing order of 

the due dates and minimizing the total. 

If there is more than one order in the same day, schedule these orders to minimize the 

setup cost. 

Step 2: Feasibility check 

Starting from the last time period, if period t is over capacitated, choose the order that 

minimizes the setup time and shift it to the period t-1. If period t-1 not capacitated 

rearrange the orders of this period considering the added quantity. Otherwise, shift the 

over capacitated to the previous day. Repeat this step till the first period. 
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Figure (4.6) shows this concept. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (4.6): the algorithm concept 

3. Step 3: construct daily VRP scheduling plan. 

4.4 SimAL software 

The advanced planning and scheduling system SimAL was used to solve the scheduling 

problem. Using SimAL provides an opportunity to use the suggested algorithm to solve 

different models of job scheduling. SimAL[93] is a comprehensive planning solution used to 

strengthen the competitiveness of the enterprise. SimAL guarantees the observance of 

delivery and reduction of stocks while sustainably increasing the productivity and 

efficiency of the business. 

SimAL increases flexibility as planning and production are linked in real time and the 

exchange of information is automated and accelerated. The integration is carried out both 

with the ERP system as well as the production software or manufacturing automation 

solutions. This means that all production-related data are practically available in real time.  

Through the use of advanced simulation and optimization processes in SimAL, planning 

can also be automated. This not only increases the quality of the design but also enhances 

business responsiveness by short-term rescheduling and thus contributes to lowering the 

total cost of ownership. The timeliness and completeness of all production-related data 

with SimAL also enables an effective controlling of production performance. 

Controlling the production scheduler provides the necessary transparency and 

supplemental measures to increase the efficiency of production on the one hand and to 

optimize the long-term strategic planning on the other. 

SimAL is an advanced planning, scheduling and information system that can be employed 

irrespective of the type of production or particular branch of industry. Its control system 
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stands for a comprehensive solution for optimizing the manufacturing resource planning 

(MRP II) and can be also put to good use as scheduling control system even where there is 

no functioning MRP II system. Graphical planning panel for user-friendly scheduling, 

display of order status and completion-date and resource conflicts is the feature of SimAL. 

Additionally, groups of planners can work in parallel thanks to system networking. Results 

and conflicts are displayed to all planning groups involved administration to all resources: 

personnel, tools, store, buffer zones etc.  

It is known that, each production process is unique and this must also be reflected in 

software. On the one hand, it is sensible to use standard products for using their powerful 

functionality and not have to constantly reinvent the wheel; but on the other hand, 

software that caters to exact restrictions of the production process to be scheduled is 

indispensable. So in order to balance these two conditions, we need a data dictionary in 

SimAL. While setting up an object in SimAL, we must to be sure a relative Data Dictionary 

for the object is available. In this Data Dictionary, all basic object types (such as the ERP 

order, disposition order and so on) as well as the attributes available in the types are 

predefined, then we can start edit the characters for the required machine, resource and 

other data for the project. 
 

 

 

 

 

 

 

 

 

 

Figure 4.7: Some important Inputs and Outputs in SimAL 
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Fig. 4.8 Inputs of SimAl 

In the following some important inputs to the software are explained. 

Every machine to be scheduled has to be registered with SimAL. The list of machine 

edition is not only shows all machines currently documented, but also offers a wide option 

of editing possibilities to parameterize and manage the machines. Figure 4.9 shows all the 

machines that are used in this case study. 

Figure 4.9 shows, there are 6 machines that are registered with SimAL. 
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Figure 4.9: List of machines 

To edit the machines that is listed above, the machine has to be chosen that has to be 

edited, and then click on the button Edit that is on the right side of the screen. 

 

 
Figure 4.10: Editing machine 

All units which are needed additionally for a scheduled machine for finishing of a part are 

called resources. A resource could be a worker (with a particular qualification), a tool, 

electricity or water, for example. 
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Figure 4.11: Setting up/editing resources 

 

Figure 4.11 shows the information of resource the detergent Gleed 200 gm for the 

external packing. The list in the figure 4.10 shows the »Stock/Capacity«   is 10000. It 

means, there can be 10000 cartons of the detergent Gleed be stored. 

The production process is illustrated with the help of production graphs and work plans in 

SimAL. Work plans illustrate linear production sequences with process alternatives. With 

the help of production graphs, several work plans can be chained together in nearly any 

structure. Work plans, on the other hand, consist of one or more processes. After selecting 

the menu entry, an overview box consisting of two parts is opened Figure 4.12 the left 

window shows all the currently set-up work plans while the right window lists the 

processes which belong to the chosen work plan. 
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Figure 4.12: Overview box of work plans 

Figure below (4.13) shows the work step Packing of work plan of Neer 200 gm.  

 
Figure 4.13: Editing a process  

A fixed set-up time, which accumulates at the beginning of the process, can be 

parameterized in the box »Set-up time«. The necessary processing time with respect to 

the work factor “ per quantity” or “ per piece” is defined in the box »Processing time«. For 

the work step packaging the working time for 12000 quantities is 1 hour. 
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The checkboxes »Factor Quantity« and »Factor Piece« help in describing how a process 

affects the quantity and number of pieces of the orders. 

Managing of shifts by SimAL offers the highest flexibility without needing complicated 

entries from the user. The main aspect here is defining all necessary shift schedules in four 

steps, which are based on each other and which can be supplemented or extended at any 

time (Figure 4.14). 

 

 
Fig4.14: Overview of shifts to be edited 

 

In the menu entry ERP INTERFACE, all the functions to manipulate ERP orders can be 

found. This includes editing, accepting and deleting of ERP orders as well as functions for 

communication of SimAL with connected Enterprise Resource Planning Systems (ERP) and 

Production Data Acquisition (PDA) systems. 

 

Figure shows ERP Order 2 of Detergent production. From the edition menu we can enter 

the basic characters of the ERP order, such as the due time, the required quantity, the 

material information, priority and so on. Before the process of a ERP order can be 

scheduled in the schedule window, they first have to be generated into the schedule 

window. 
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Figure 4.15: Editing ERP orders 

 

Figure (4.16) shows the main result screen in the software 

 
 

Figure (4.16) Main result screen 
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Figure (4.17) shows one of the statistics screens  

 
Figure (4.17) One of the statistics screen 
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5.  LOCATION ROUTING PROBLEM 

The Multi-Depot Location Routing Problem occurs in the physical distribution system’s 

design. An important element in the design of a physical distribution system is the location 

of depots, and the distribution of goods from depot to customer occurs in a straight to and 

back manner while computing distribution costs. This is true only if the delivery to each 

customer is a truckload, but for deliveries that are less than a truckload (LTL) multiple 

customers are served on a single route. Thus the true distribution costs are the route costs 

for all customers. Several unrealistic assumptions, such as homogeneous fleet type and 

unlimited number of available vehicles, are typically made concerning this problem, and 

since the inherent complexity of the MDLRP problem makes it impossible to solve the 

problem on a larger scale, the original problem is divided into two sub-problems, i.e., the 

location-allocation problem, and the general vehicle routing problem, respectively. Each 

sub-problem is then solved in a sequential and iterative manner by a certain algorithm 

embedded in the general framework for the problem-solving procedure. This chapter 

considers the analysis of some algorithms for the Multi-Depot Location Routing Problem 

(MDLRP) and the development of a decision-making tool on the basis of these algorithms 

with a visual basic programming language. In addition, the setting of parameters 

throughout the solution procedure for obtaining quick and favourable solutions is also 

suggested. 

Over the past few decades, the concept of integrated logistics systems has emerged as a 

new management philosophy which aims to increase distribution efficiency. Such a 

concept recognizes the interdependence among the location of facilities, the allocation of 

suppliers and customers to the facilities, and the vehicle route structure around depots or 

distribution center (DC). As such, it coordinates a broader spectrum of location and routing 

options available to logistics managers and consequently avoids the sub-optimization of 

distribution solutions. Since finding the optimal solution for this problem is a non-

polynomial problem, several heuristics for searching local optima have been proposed. In 

this chapter the ADD and DROP algorithms will be explained, and a software tool has been 

developed to solve this problem. 
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The distribution center location problem is basically one of finding the optimal balance 

between transportation and warehousing costs. The cost of transportation is often the 

most significant cost component in a distribution system. In most cases, an increase in the 

number of distribution centers would result in higher warehousing costs and lower 

transportation costs. Analytic models for distribution center location represent 

warehousing costs as the sum of fixed costs (construction and maintenance of buildings 

and roads) and variable costs (labor, material handling equipment, order processing). 

Transportation costs include the cost of shipping from the supply sources (plants) to the 

distribution centers (trucking cost) and the cost of shipping from the distribution centers 

to customers (delivery cost). 

In practice, there are two main ways of distributing products from facilities to customers. 

(1) Each delivery vehicle serves only one customer on a straight-and-back basis on a given 

route. This is the case when the customer demand is a full truckload (TL). (2) A vehicle 

stops at more than one customer on its route, which is the case if each customer’s 

requirement is less than a truckload (LTL). For the first case, it is appropriate to assume 

that the delivery cost can be represented by the moment sum cost function where the unit 

shipment cost from a facility to a customer is assumed to be independent of the route 

taken to visit the customer. Then the total delivery cost is the sum, overall customers and 

facilities, of the production. But most cases in practice are of the second type, for which 

the transportation cost is hard to estimate. 

In order to get an efficient and cost-effective decision for strategic location allocation and 

corresponding daily operation in a supply chain, different computer-programmed tools 

were developed. These tools were basically developed from several popular heuristic 

algorithms: such as nearest neighbour for the routing algorithm and shortest stem 

distance for the location allocation method. After the initial results, some other methods 

were also implemented to improve the route and assignment of depots.  

The aim of this part is to try to minimize the total cost by finding the optimum location for 

the distribution centers. 



Location Routing Problem 73  

 

Liu and Lee[59] composed the following definition of MDLRP from several literatures: 

“determining locations of depots from several candidates and finding the optimal set of 

vehicle schedules and routes based on the shortest travelling distance criteria.” MDLRP 

could be categorised into two sub-problems: a location allocation problem (LAP) and a 

vehicle routing problem (VRP)[106]. 

Daskin[15] pointed out that there were interrelated decisions involved in the LRP. 

These decisions include: (i) How many facilities are to be located? (ii) Where should the 

facilities be? (iii) Which customers are to be assigned to which warehouses? (iv) In what 

order should customers be served on each route? The LRP is categorised as NP-hard 

problems. 

Table 5.1. Classification of LRP with regard to its problem perspective[52]. 

Network levels Single stage / Two stages 

Demand / Supply Deterministic / Stochastic 

Number of facilities Single facility / Multiple facilities 

Size of vehicle fleets Single vehicle /  Multiple vehicles 

Vehicle capacity Uncapacitated / Capacitated 

Facility capacity Uncapacitated / Capacitated 

Facility layer Primary / Secondary / Intermediate 

Planning horizon Single period (static) / Multiple periods (dynamic) 

Time windows Unspecified time with no deadline 

Soft time windows with loose deadlines 

Hard time windows with strict deadlines 

Objective function Single objective / Multiple objectives 

Types of model data Hypothetical  / Real-world 

The proposed methodology is based on the ADD-heuristic and DROP-heuristic solution for 

the location and allocation problem (LAP) and the savings algorithm for the vehicle routing 

problem (VRP).  
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Figure 5. 1 The flowchart for solution methodology 
 

5.1. HEURISTIC FOR LOCATION AND ALLOCATION PROBLEM 

The solution of the LRP algorithm that leads to an optimal result is known as the exact 

solution (for example Simplex method). The exact approaches for the LRP have been 

limited to small- and medium-sized instances with 20–50 customers[108]. In a large-scale 

problem size and also due to the complexity of LRP, the heuristic approach is proposed. 

The classification of solution methods in LRP according to Nagi and Salhi[76] is divided into 

three categories: iterative, clustering, and hierarchical-based algorithm. The improving 
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solution with repeating the algorithm is called iterative. In the clustering algorithm the first 

step is to set the customers into clusters, assign the customers to the potential depots (or 

vehicle routes) and then follow this by solving the location and routing. The hierarchical 

set the algorithm into main algorithm that solving the location problem and the sub 

algorithm that the routing part[68]. Wu et al.[107] proposed the simulated annealing 

associated with the tabu list to avoid cycling for the multi-depot LRP with heterogeneous 

vehicle types with a limited number of vehicles and capacity on both routes and depots. Yu 

et al.[108] also proposed the simulated annealing heuristic. In the dissertation of Sajjadi[90] 

there are several literature reviews about the heuristic solution. One of them is from Nagy 

and Salhi[76] who presented a capacitated vehicle with a nested heuristic solution and 

distance limitation. They divided the problem into location as master problem and routing 

as the sub problem. The computational result suggested that their method had better 

results than the sequential algorithm. There are some criteria which needed to be 

considered for evaluation purposes in MDLRP according to Ball and Magazine in 

Srivastava[99]. These include: 

- How close is the solution to being optimal? 

- the computer running time and storage space for the heuristic; 

- flexibility of the heuristics is an important consideration, since changes in the 

model required by different real-world problems should be easily handled; 

- simplicity and analyzability of the heuristics. 

The LRP has the complexity of the two sub problems of location and routing. In realistic 

problems the optimal solution procedures may not be possible, thus the heuristic 

procedure has been developed to solve this problem. 

The sub problems of LAP are solved with the ADD and DROP heuristics. The following 

definition of ADD and DROP heuristics is according to Daskin[15] and Jacobsen[43] . The ADD 

procedure is a greedy algorithm. In each iteration a depot is greedily added to the solution 

until the algorithm is not able to find a depot where the largest saving can be obtained. 

“Greedily” means that each depot that is added to the solution reduces the cost as much 

as possible.  
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Table 5.2. Classification of LRP with regard to its solution method[52] 

Solution Methodology Methods and Algorithms 

1 Exact Algorithm 

Direct tree search/ Branch and bound 

Dynamic programming 

Integer programming 

Nonlinear programming 

2 Heuristic 

Nearest Neighbour Heuristic 

Savings / Insertion 

Improvement / exchange 

3 Meta-Heuristics 

Ant Algorithms  

Genetic Algorithms  

Simulated Annealing  

Tabu Search  

The DROP procedure is also a greedy heuristic. In each iteration a depot is removed at the 

location where the largest saving is obtained until the algorithm can no longer find a depot 

whose removal will result in a decrease in the total cost. “Greedily” now means that each 

depot that is removed from the solution reduces the costs as much as possible. To 

describe the ADD and DROP procedure in the next section, the following additional 

notation will be used [106]: 

      I   =  the set of location 

      I0   =  subset  of I that has been decided to close 

      I1   = subset of I that has been decided to open 

      I2   = subset of I that is yet undecided 

5.2. The minimum cost method 

The first step of the proposed ADD and DROP procedure requires the solution of the 

transportation model to solve the LAP. The transportation problem in this model was 

solved by the cost savings method. The transportation problem in general can be 

characterized by the following description[106]:  
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- A set of m supply points from which a good is shipped. Supply point i can supply at 

most qi units; 

- A set of demand points to which the good is shipped. Demand point j must receive 

at least wj units of the shipped good; 

- Each unit produced at supply point i and shipped to demand point j incurs a 

variable cost of cij.  

In the LAP the adopted following mathematical model from Jacobsen[43] was examined. 

The data for the LAP model are: 

    ai  : fixed cost associated with i th location 

    cij  : cost of supplying one unit volume to the jth customer from ith location 

    wj  : demand from customer j 

    qi  : maximum output from location i 

     I  : the set of locations 

    J  : the set of customers 

The decision variables are : 

   Zi  : indicates whether (z = 1) or not (z = 0) a facility is established at location i 

   xij  : volume shipped from location I to customer j. 

The objective is to minimize total location cost and transportation cost. 

        
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          Iizi  ,1,0               (5.5) 

        IiJjxij  ,,0               (5.6)  

Equation (5.1) shows that the objective function is to minimize the total location and 

transportation costs. Constraint (5.2) ensures the demand could be satisfied from all 

locations. Constraint (5.3) shows that only positive shipments are possible. Constraint (5.4) 

ensures that only positive outputs of locations are considered. Constraint (5.5) indicates 

whether the facility is established or not. Constraint (5.6) ensures only positive demand is 

possible.  

The main characteristic that distinguished the minimum cost method from other solution 

methods such as the northwest corner method is the consideration of using up as much of 

the available supplies or requirements (the distribution costs) at as small a cost as possible 

to produce a lower total cost. The steps in the minimum cost method are described 

below[106]: 

1. Find the variable which has the smallest distributed cost (call it xij). 

2.  Assign xij its largest possible value. 

3. Cross out row i or column j whose availability or requirements are exhausted, 

and reduce the supply or demand of the non-crossed-out row or column by 

the value of xij. 

4. Choose from the cells that do not lie in a crossed-out row or column the cell 

with the minimum distribution cost. 

5.  Repeat the procedure until there is only one cell that can be chosen. In this 

case, cross out both the cell’s row and column. 

Using this method the initial feasible solution in the LAP level is obtained: to get the 

assignment of the customers to depots that gives the minimum total cost. 
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5.3. ADD HEURISTIC PROCEDURES 

The procedure of the ADD heuristic was developed initially by Kuehn and Hamburger[56]  

for the un-capacitated plant location model. In this thesis the adopted procedure from 

Jacobsen[106] is used. The ADD heuristic normally leads to bad solutions[20]. The ADD 

procedure usually starts with zero depots. It is difficult to choose which depot to open first 

and, in order to overcome this difficulty, a starting procedure from Domschke and Drexl[20]  

was used . 

 This procedure could also be mentioned as the initial solution, because in this starting 

procedure, the depots that should be open have already been found but are not yet 

optimal. The description of the starting procedure is as follows: the locations from the 

candidates’ depot are added in order of decreasing values of the mathematical model 

below until the depots opened are able to serve the entire demand of all retailers[20]. 
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The mathematical model above explains that locations h whose reciprocal of average 

transportation costs Chj for serving all demand bj from customers, multiplied by capacity of 

depot ah and decreased by fixed cost of depot fh, is least are selected. In other words, 

among locations with equal transportation and fixed costs the capacity is the deciding 

factor. Among locations with equal capacities and transportation costs the fixed costs are 

the deciding factor. Among locations with equal capacities and fixed costs the 

transportation costs are the deciding factor. After getting the depot (named by super 

source SS) in locations which are able to serve the entire demand, the procedure is 

continued with the the ADD heuristics from Jacobsen[43]. 

After the starting procedure for the ADD procedure was calculated the steps were 

continued for the ADD procedure where a facility is added at the location which obtains 

the largest saving as follows[43]: 
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1. Initially only the depot from the starting procedure was opened, which was 

mentioned as “super source (SS)”, and was symbolized by I1. 

2. For each depot (i) that belongs to the candidates’ depots (I2) or i  I2 compute the 

saving cost (Ai0) with the formula below: 

 Ai0  =  C * (I1, J) – C * ( I1  i0, J) –ai 0 

where Ai0 : saving cost, 

            C * (I1, J): the optimal objective of the transportation model with source set I1. 

3. Find the depot that has the largest saving depot i ( i* such that A i * = max i  I2Ai0 ). 

4. If Ai* > 0, i* is transferred from I2 to I1 and another iteration is made. If Ai* ≤ 0, the 

elements of I2 are transferred to I0.  

5. Computations are discontinued when the savings cost is less than zero, which means 

a solution is available. 

The computation in step 1 is the saving cost by adding a facility at i0 while all other 

locations in I2 are considered unused. The computation of A i * in step 1 requires the 

solution of I2 transportation models in each iteration. 

5.4. DROP HEURISTIC PROCEDURES 

The DROP procedure was first used by Feldman, Lehrer and Ray (Sridahran[98]) for un-

capacitated plant location problems. This procedure dropped a depot in each iteration at 

the location where the largest saving is obtained. The steps are described below: 

1. Start with all depots opened. 

2. Initially, all locations contain a facility. That means I2 is the set of all locations.  

3. For each depot (i0 ) in the candidates’ depots (I2) or  i0  I2 compute :  

 Ai0  = a i 0  + C*(I2 , J) – C*( I2  i0, J) 

4. Find the depot that has the maximal saving cost  

 (i* such that A i * = max i  I2Ai0). 
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5. If A i * > 0, i* is transferred from I2 to I0 and another iteration is made. If A i * ≤ 0, the 

elements of I2 are transferred to I1.  

6. Computations are discontinued as a solution is available. 

The Ai0 computed in step 1 is the saving gained by dropping a facility at i0 while all other 

locations in I2 are regarded as containing a facility. The computation of A i * in step 1 

requires the solution of I2 transportation models in each iteration. To solve the 

transportation model, the minimum cost methods were used. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2. The Flowcharts for Add and DROP procedure (Inspired by Jacobsen[43]) 
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5.5. Improvement in the routing level using the savings heuristic method 

The savings heuristic was developed by Clark and Wright[11]. This procedure was designed 

to enable selection of an optimum or near-optimum route which a designed problem 

model of varying vehicle capacities with homogenous product. The objective is to allocate 

loads to vehicles in such a way that all products are assigned and the total distance of all 

routes covered is minimized. The distance savings is generated by merging two routes into 

a single route. The steps in the savings heuristic are described below:  

 

Figure 5.3. Step in savings method 

Step1. Savings Computation 

Compute the savings (Sij) from every node of customer (i,j) that are connected to a depot 
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Sij = Cio + Coj + Cij 
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Sij = 2*Coi +2 Coj  
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Create n vehicle routes (0,i,0) for i = 1,….,n. and then list the savings in a non-increasing 

manner. 

 Step 2. Merge the routes 

Execute the following steps starting from the top of the saving listing, calculate a saving Sij, 

and find out whether there are two routes that can feasibly be merged, starting with (0,j) 

and ending with (i,0). Combine these two routes by deleting (0,j) and (i,0) and introducing 

(i,j). In another explanation, there are two components of savings. The first is the distance 

route from customer i back to the depot adding the other one from the depot to the 

customer. The second part is the distance between these two customers. The first part can 

be saved and replaced the second part, which is the new connection between customers. 

In other words, the vehicle does not have to go back to the depot; instead it goes to the 

other customer and connects them. Consider the next route and reapply the same 

operations. Stop when no route merge is feasible.  Figure (5.4) shows a snapshot of the 

results screen of the software developed. 

 

Figure (5.4) Snapshot of result screen of the developed software  
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6. Case study: Powder Detergent Industry 

Detergent manufacturing consists of a broad range of processing and packing operations. 

The size and complexity of these operations varies from small plants, employing a few 

people, to those with several hundred workers. Production ranges from large-volume 

types to lower-volume specialties for less frequent cleaning needs. The different stages in 

the detergent supply chain is showed in figure (6.1). 

 

 

 

 

 

 

 

 

Fig. (6.1): The different stages in a detergent supply chain. 

Published statistics on the market for laundry products are often unclear and 

contradictory. Based on publications on laundry product consumption, table 6.1 has been 

compiled, which presents the volumes of the main laundry products. For certain countries 

it has been necessary to extrapolate data based on information from countries with very 

similar cultural conditions, or from slightly older data. A consumption of approximately 25 

million of the main laundry product has been estimated: 25% by the developed regions, 

and 75% by the less-developed regions.   
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Table 6.1 Laundry product consumption in 1994 and in 2010 [114] 

   Consumption 

 GNP 

( U.S.S/capita) 

Population 

( millions ) 

1994 

(tons) 

2010 

(tons) 

World  5.605.7 25.318.110 30.907.400 

Developed areas     

USA/Canada 22.839 289.9 2.174.250 2.503.500 

Western Europe 20.103 382.9 3.063.440 3.117.840 

Japan 28.220 125.0 875.000 912.800 

Australia/New 

Zealand/Singapore 

16.187 24.2 193.600 226.400 

SUBTOTAL  822.0 6.306.290 6.750.540 

PERCANTAGE OF TOTAL  14.7% 24.9% 21.9% 

Less-developed areas     

Latin America 2.688 469.2 3.284.680 4.088.000 

Eastern Europe 2.295 353.9 2.477.440 2.434.810 

Western Asia/Middle 

East 

1.983 415.1 2.075.500 3.190.500 

Northern Africa 1.077 157.6 788.000 1.102.500 

Sub-Saharan Africa 486 541.8 1.625.400 2.572.800 

India and others 301 1.069.2 2.673.000 3.457.250 

China and others 380 1.194.4 2.986.000 3.449.000 

Northeast Asia 6.328 94.9 664.300 763.000 

Southeast Asia 855 487.5 2.437.500 3.089.000 

SUBTOTAL  4.783.7 19.011.820 24.146.860 

PERCENTAGE OF TOTAL  85.3% 75.1% 78.1% 
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This case study is based on a plant which produces multiple products of different sizes. The 

production of sprayed detergent powder is obtained through three subsequent major 

steps: 

 Preparation of a mixture of solid and liquid components, called slurry, forming a 

suspension with H2O content varying 30–40%. 

 Drying of the slurry by means of high-pressure spraying in a vertical cylindrical 

tower, in contact with a stream of hot air. 

 Performing of sprayed product and possible introduction of other additives, 

which, for different reasons, cannot be added during the slurry preparation. 

 The following are the main steps to produce these products. 

6.1 Process description 

Standard detergent powder manufacturing consists of slurry making, spray drying, 

after drying, and packing and antipollution units. These steps are briefly described as 

follows. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (6.2): Process flow chart 
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Figure (6.3) Main production processes[114] 

The plant layout for detergent formulations consists of a feed-preparation section 

(automatic feeding, proportioning and mixing), feed pumping to the nozzle atomizer, 

dried-powder conveying and dosing, followed by thorough blending, screening and 

packaging. 

6.1.1  Slurry making 

In the slurry making process, dry and liquid ingredients are first combined into slurry, or 

thick suspension, in a tank called a crutcher. The slurry is heated and then pumped to the 

top of a tower where it is sprayed through nozzles under high pressure to produce small 

droplets. The droplets fall through a current of hot air forming hollow granules as they dry. 

The dried granules are collected from the bottom of the spray tower where they are 

screened to achieve a relatively uniform size. 

In the detergent processing plant the detergent powder is normally produced in batches 

or continuously.  

Linear alkyl benzene sulphonate paste is metered into a slurry preparation tank together 

with metered sodium silicate solution, solid phosphates, sulphates and additives. The 
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slurry preparation tank acts as a coarse mixer: lumps are broken down and air pockets are 

eliminated. After blending, materials are conveyed to an ageing vessel.  

Mixing is carefully controlled to prevent aeration of the slurry. Feed slurry passes through 

a coarse filter, a homogenizer and then a fine filter; deaeration of the product is carried 

out if necessary. The slurry, which is now of a consistent solidity  and viscosity, is ready for 

spray drying. The handling of the product in the feed treatment section plays a large role 

in the quality of the dried product (e.g., granulation, degree of fines, etc.). 

The solid and liquid raw ingredients are dropped into a large tank known as a slurry mixer. 

As the ingredients are added, the mixture heats up as a result of two exothermic 

reactions: the hydration of sodium tripolyphosphate and the reaction between caustic 

soda and linear alkylbenzene sulphonic acid. The mixture is then further heated to 85°C 

and stirred until it forms a homogeneous slurry. 

6.1.2 Detergent Spray Drying 

In the current high-tonnage productions of spray-dried detergents, continuous mixing of 

ingredients is used to form formulations that can be spray dried in drying towers with 

nozzle atomization. Many spray towers have the built-in flexibility of both co-current and 

countercurrent air flows in order to handle special formulations and achieve specific bulk 

density.  

The plant layout for detergent formulations consists of a feed-preparation section 

(automatic feeding, proportioning and mixing) feed pumping to the nozzle atomizer, dried-

powder conveying and dosing, followed by thorough blending, screening and packaging. 

The slurry (50–80°C, 120–180°F) is fed to the spray dryer by a high-pressure pump. 

Countercurrent product airflows are mainly used. A countercurrent unit with multiple 

nozzles has been claimed to be of special merit, and countercurrent systems also give 

high-bulk densities of 0.3–0.4 g/cm3 and moisture content of 6–15%. Cocurrent systems 

give low-bulk densities of 0.1–0.3 g/cm3 with moisture content of 3–8%. 
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The vast majority of powder leaves the base of the chamber. The entrained fines fraction 

is recovered from the exhaust air in cyclones or bag filters, and these fines are reslurried.  

The main product is conveyed by belt to an airlift. Any after-drying dosing is carried out on 

the belt: this can be organic foam boosters (lauryl alcohol), enzymes (proteolytic) and 

sodium perborate. The airlift then raises the powder to a storage hopper from where a 

gravity feed takes the product through screens and a perfuming chamber and on to the 

packing machines. 

6.1.3 Pneumatic Conveying, Perfuming and Packing  

The dried detergent powder is pneumatically conveyed from the spray dryer to the 

product silos, after sieving. Here filtered atmospheric air is used as the cooling and 

conveying media; dense phase conveying systems are normally preferred. The detergent 

product from the silo is then blended along with the perfume in a continuous mixer, after 

which it is packed. 

6.2 Product characteristics 

The detergent powder coming from the spray-drying tower will be white without coloured 

spots, in the form of beads with dimensions 0.2–2.5 mm. The density of the product (250–

400 g/l) and the moisture content (13–19%) depends on the slurry composition and the 

drying conditions, and can be adjusted, within a certain range, by acting on the process 

parameters; i.e., slurry ageing time and temperature, spray-drying pressure, hot air 

temperature, exhaust air temperature, etc. There is a wide range of formulations for hand-

washing and machine-washing detergent powder. 

There are three main dimensions for the products. Table 6.2 shows these dimensions. 

Table 6.2:  Products dimensions 

No. Code Denomination Dimensions (mm) 

H W TH 

1 RB 11 E1 117 42.5 155 

2 RB 12 E2 143.5 53.5 200 

3 RB 13 E10 251.5 103.5 333 
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Fig. 6.4: Main stages and raw material 

 

When the characteristics of the package change (carton dimensions, filling volume) the 

following amendments are necessary (at the packing machine): 

 Replacement of size parts. 

 Adjustment as necessary. 

 Timing reset of the machine according to the new configuration caused by the 
replacements and adjustments that were executed. 
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Because of these adjustments, there are setup times between different products. Table 

6.3 shows the setup time in general (in minutes) at the packing machine. 

Table 6.3 setup time matrix (in minutes) at packing machine. 

 

Appendix I, II shows the setup time matrix at packing and drying machines in details. 

Also, there is a setup time at the preparation stage between the product P3 and the other 

products. 

Table 6.4 shows the production rate and carton sizes for every type of product. 

 

Table 6.4: production rate (in tons) 

Nom. E1 E2 E3 

Weight 140 g 200 g 3 kg 

Production rate (ton) 3 3 3 

No. of units per carton 48 24 4 

 

The setup cost consists of manpower cost and depreciation cost of the tools used. The 

main cost factor is the sales losses. The plant capacity is 3 tons/hour. That means that for 

every idle hour the plant will lose sales equal to the estimated income of this production.  

Domination E1 E2 E3

E1 10 30 90

E2 30 10 90

E3 90 90 0
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7.  Calculations and Analysis 

In this chapter the results and analysis of the case study are presented. In these 

calculations and analysis two scenarios are presented: the first scenario where the 

manufacturer is dominant, and the second scenario where the production, inventory and 

routing is synchronized. The calculations will be as the following: 

 Solving the job scheduling problem to find the optimum schedule for the plant. 

This solution has been found using the NEH algorithm with setup time. Using this 

solution, the transporter delivers the quantity according to the VMI model. The 

calculations for the VMI model consider two scenarios. The first one is the ‘one 

truck one product’ model, and the second is ‘one truck multi products’. Also the 

results of the inserting impeding products and customers’ concepts have been 

showed. 

 The synchronizing production, inventory and distribution routing is considered 

later. In this model the software SimAL has been used to find the optimum job 

schedule. 

 The last part of the calculations shows the effect of transportation cost on the 

suggested model. 

7.1 Manufacturer dominates model 

The objective of the manufacturer is to minimize the total setup time (setup cost), and any 

schedule that minimizes this time is optimum; using the NEHT algorithm provides the 

optimum schedule. 

The total setup time, according to this sequence, is five hours. 

The setup costs consist of many elements; for example, labour, materials, tools, and 

quantity losses costs. The last cost is the major cost. The production quantity per hour is 

three tons, which means the plant loses three tons of sales every hour.  

The average setup cost = total setup time (hrs) * 3 tons/ hr* average price.  
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The minimum (optimum) setup cost for the plant is 48,750.                                        

According to this plan, the distributor will deliver the required quantity to the customers. 

There are two scenarios: the first scenario uses the VMI model, and the second scenario 

uses the VRP model. 

7.2 Using the VMI model 

7.2.1 Assigning retailers to depots 

After making a selection of seed retailers, start from any one retailer and begin to form the 

cluster. Calculate the distance from this retailer to all other retailers using the formula 

dra,rb=√                     .  

Subsequently, take the next retailer and apply the same approach to find out the nearest 

retailer. Repeat this algorithm until reaching the capacity limit of one depot. A review of 

table 7.1 suggests that R90 is the last point of cluster one. 

Table 7.1: Cluster 1 

Cluster1 R246 R245 …… R91 R90 

Cumulative Weight 0.12 0.23 …… 7.96 8.09 

 

Through the calculations presented above, so far we have routed 80 retailers in cluster 

one. The other two clusters will be generated based on the remaining 166 retailers. As the 

routing algorithm is the same, we will omit the calculation process for cluster two and 

cluster three. 

As illustrated in table 7.2, R246 and R90 represent the starting point and end point of 

cluster one, respectively; cluster two starts from R20 and ends with R168; R233 represents 

the starting point and the last point is represented by R89 in cluster three. 
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Table 7.2: Three Clusters and Stem Distance 

Cluster Starting 

point 

Ending 

point 

Total 

distance 

Total 

demand 

in ton 

Total 

demand 

in carton 

Stem distance 

 

DC1    DC2      DC3 

1 246 90 151.66 8.09 1,125 48.3 56.1 46.5 

2 20 168 197.99 8.08 1,133 84.8 38.5 71.8 

3 233 89 221.72 7.82 1,078 51.0 52.5 44.9 

By applying step five with formula min(dstem)=min((dDC1,r0+ dDC1,rn),……(dDCn,r0+ dDCn,rn) in 

phase one, solutions have been obtained as shown in table 7.2. It can be noted that DC1 is 

the closest depot to cluster one with a geographic distance of 48.3 km, DC2 has the 

smallest distance of 38.5 km to cluster two, and obviously DC3 is required to supply cluster 

three as it is located closer to this cluster than the other two depots. 

7.2.2 Retailer Service Sequence List 

According to available data, including initial inventory level Ir, customer consumption rate 

ur by Ur/daily work hour (10 hours) with formula Tr,stoc=Ir/ur , we can calculate the shortage 

time of each retailer. Unlike in previous studies where only one item forms the research 

objective, in our study, there are three products that require delivery from suppliers to 

customers. Thus, when we calculate the stock-out time for each retailer, the three 

products should be considered simultaneously.  

Let us take R245 in cluster 1, for example. As shown in table 7.3, the initial inventory levels 

of product one is seven cartons; the consumption rate is two cartons per day; we can work 

out the stock-out time with the given data. If we assume our simulation horizon does not 

exceed ten hours, then 35 hours means R245 will not be supplied with product one in the 

current period. However, these figures are only concerned with one product; therefore it 

is necessary to calculate the inventory levels of the other products. Obviously there also 

needs to be a sufficient amount of product two to ensure that R245 will not run out of 
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product in 11.7 hours, but the situation varies for product three, with a shortage time of 

6.7 hours, which is included in our consideration. 

Table 7.3: Stock-out Time List 

 

 

Not only do we need to calculate the stock-out time as the basis of vehicle assignment, but 

also, it is more important to order retailers according to the sequence of stock-out time, 

from small to large. Some retailers require a delivery of product one in the next hour, but 

other retailers may also require other products at the same time. That makes the delivery 

schedule especially difficult. How to decide the service sequence is basically determined 

by the urgency of the customers. One retailer with either one or more products being 

deficient would be placed at the top of the service sequence list.  

7.2.3 Vehicle Assignment 

The objective of this section is to partition retailer service sequence lists by looking at their 

demands and the summation of demands in accordance with vehicle capacity, to find out 

the most optimal solution that can minimize the total distribution cost. 

7.2.3.1 Model 1: One truck – One product 

In this model, one vehicle is responsible for delivering only a single product. Based on this 

premise, it is relatively easy to decide how much product to transport and which route to 

travel. Firstly, the total retailer service sequence list must be split into three separate lists 

with each one representing the stock-out time for one product.  

As shown in table 7.4, this is part of the service sequence list for product one. According to 

the algorithm stated previously, R234 with the smallest stock-out time of 1.4 hours is 

Retailer Inventory capacity
Inventory
Level

Consumpt
ion Rate

stockout
time

Inventory
Level

Consumpti
on Rate

stockout
time

Inventory
Level

Consumpt
ion Rate

stockout
time

84 30 cartons 6 5 12.0    5        1        50.0 3         1        30.0

85 30 cartons 3 3 10.0    5        2        25.0 1         1        10.0

90 30 cartons 5 1 50.0    8        7        11.4 1         4        2.5

Day 1
p1 p2 p3

245 30 cartons 7 2 35.0    7        6        11.7 2         3        6.7

246 30 cartons 2 3 6.7     3        7        4.3 2         2        10.0
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defined as the most urgent retailer and will be served first. Starting from the initial time of 

zero, a truck leaves the depot and travels to R234 and arrives after 0.2 hours, represented 

by arrival time in the yellow area. During this time, from the depot to R234, the truck has 

travelled a distance of 15.6 km. Using the formula tint=dx,y/v, assuming a vehicle speed of 

70 km/h, we can calculate the arrival time at the first retailer. Based on the available data, 

it usually takes quarter of an hour to unload at each retailer, which has to be taken into 

consideration when calculating the departure time from each retailer. This is the reason 

why the departure of the vehicle takes place 0.25 hours after arrival. 

Table 7.4: Service Sequence List of product one 

 

During the research, we encountered a problem where more than one retailer required a 

delivery at the same time, as demonstrated in table 7.4. Both R115 and R180 were due to 

run out of product after 2.5 hours. What must be made clear is that the urgency of the 

retailers in our study is defined as the most essential criterion in vehicle assignment. Only 

when this condition is satisfied would we consider applying another criterion such as 

distance, widely used in TSP, to solve the problem as the case shown in table 7.4 

illustrates. However, in this example there is a distance of 35.8 km from R234 to R115, 

while from R234 to R180 the distance is only 19.7 km. Obviously R180 is the better 

solution when determining the next retailer in the sequence after R234. Thus, the service 

sequence has been adjusted from R234 to R180 and then from R180 to R115. With this 

adjustment, a distance of 16.1 km (35.8 - 19.7 = 16.1) has been minimized with a decrease 

in travel time of 0.23 hours (16.1/70 = 0.23). 

7.2.3.2 Model 2: One truck – Multiple products 

This model aims to control the number of truckloads not exceeding one. This means a 

retailer is visited only once a day by a truck, with three products being replenished in the 

same delivery.  

Retailer
Ordered
Quantity

stockout
time

serve
sequence ac.OQ  Distance

adjusted
order

 inter
distance

 inter
arrival
time(hou

r)
 arrival

time
leaving
time

234 7      1.4        1 7 15.6       234       15.6      0.2    0.2    0.47
115 5      2.5        2 12 35.8       180 19.7      0.3    0.8    1.00
180 5      2.5        2 17 19.7       115 16.1      0.2    1.2    1.49
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In this model, an amount of three different products loaded in one truck is to be delivered 

to retailers in a trip.  Each retailer has its own inventory capacity, average demand for each 

product and different requirements for the delivery period, which dramatically impacts on 

the complexity of creating efficient delivery routes; therefore, it is much more difficult to 

decide how much to transport and which route to travel than in model one.   

As shown in table 7.5, this is a service sequence list associated with three products being 

delivered to nine retailers by one truck. According to the algorithm stated previously, R234 

is the first customer to be visited. As every retailer is to be supplied only once a day, all the 

demands for products one, two and three must be satisfied in this truckload. We have 

assumed that the delivery quantity of each product is predetermined in both models; we 

don’t need to consider the current demand of customers based on the arrival time at the 

customer to calculate the accumulative volume in the vehicle. Thereby, the delivery 

quantity to R234 is calculated by the sum of individual needs, which is 18 (7 plus 8 plus 3).    

Table 7.5: Service Sequence List for Products 1, 2 and 3 

  

where ac.OQ is the accumulative ordered quantity. 

As the restriction of ten hours’ working time has not been reached and there are no 

efficient items to serve another customer after R113 (see table 7.4), the truck has to 

return to the depot to reload for the next trip.   

Other trucks at the depot are also assigned trips in this way until all the retailers are 

served by any one of them. 

 

Retailer
Ordered
Quantity

P1
stockout
time

Ordered
Quantity

P2
stockout
time

Ordered
Quantity

P3
stockout
time ac.OQ

 
compared
distance

adjusted
order

 inter
distance

 inter
arrival
time(hou

r)
 arrival

time
 leaving

time

234 7 1.4     8 20.0 3 5.0 18 234 15.6   0.2    0.2    0.47   
183 7 6.0     8 5.0 5 2.0 38 222 14.1   0.2    0.7    0.92   
222 7 7.1     8 2.0 3 30.0 56 194 15.8   0.2    1.1    1.40   
99 7 7.5     6 2.0 5 15.0 74 183 2.2    0.0    1.4    1.68   
194 7 15.0    6 60.0 5 2.0 92 99 19.1   0.3    2.0    2.20   
90 0 50.0    8 11.4 5 2.5 105 90 3.0    0.0    2.2    2.49   
201 7 2.9     0 20.0 5 50.0 117 201 23.5   0.3    2.8    3.08   
181 7 3.3     8 3.3 3 5.0 135 181 4.0    0.1    3.1    3.39   
113 5 10.0    5 3.3 2 20.0 147 113 17.2   0.2    3.6    3.88   
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7.2.4 The analysis of model 1 and model 2  

According to the raw data for cluster one and the different algorithms used in the two 

models above, the total system costs by applying model one and model two are obviously 

different. As both models are subject to the constraint that the delivery quantities must be 

constant, there is no difference in the inventory cost between the two models based on 

the same initial inventory level and consumption rate. Therefore we only need to compare 

the total travel distance resulting from each model. 

From table 7.6, we can see the following: 

(1) In model one, eight trucks are needed when the same number of retailers are served. 

Each truck travels once a day with a total travel distance of 1796 km. 

(2) In model two, although only half of the number of vehicles in model one are put into 

use, each truck delivers twice a day, on average, with a total travel distance of 1003 

km. 

Table 7.6: Comparison of model 1 and model 2. 

 

However, this situation could be complicated in reality, as retailers located widely require 

deliveries at different times and with specific demands. The most essential point in solving 

this issue is being able to control the time when the truck arrives at the retailer. According 

to the actual arrival time, we can calculate the specific demands of retailers, which 

therefore influence not only how the routes are chosen, but also a calculation of the 

inventory costs of retailers and depots. In other words, the more accurately the model 

reflects the real situation, the more complex the problem becomes, and also the more 

1003

Model 1

Model 2

One truck delivers
three product at once

Each truck delivers
once a day

Each truck can have
multi-tour for a

day

4

8

concept No. of Trucks
total travel

distance

One truck is mainly in
charge of one product

1796
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feasible it is for future research. Thus, it cannot be denied that model two provides us with 

a reasonable direction for improvements on the algorithm.       

7.2.5 The Initial Optimization 

In this section we look at how we can improve the feasibility of our basic model based on 

model two, discussed previously. As stated, the most important improvement is that a 

variable, representing the actual volume of retailers consumed before the truck reaches, 

will be introduced into the calculation of the actual demand quantity.  

7.2.6 The Further Improvement 

Based on the previous assumption, the situation may arise where a customer is supplied 

with one or two products on one day and then replenished with another product the 

following day, due to the demands of their various initial inventory and consumption 

rates. For example, if a retailer is due to run out of a product in fifteen hours, then it will 

be supplied with this product the following day instead of being replenished at the same 

time as other ordered products that have a stock-out time of less than ten hours.     

Furthermore, it is possible that some retailers who are geographically close (and thus can 

be served on a single trip) will never be routed together because of their diverse stock-out 

times (optimal replenishment days differ). If they can be routed together under certain 

conditions, it would be a great change from how the VMI has been solved previously.  

In our initial solution, the retailer service sequence list is always created before assigning 

routes, which is a concern for all urgent retailers who will run out of product in ten hours. 

Firstly, it may be that some urgent retailers have one product that has an urgent inventory 

level, while also stocking other kinds of products that have a safe inventory level; this can 

be classified into two sets: impending products and non-impending products. Impending 

products are those that will be consumed within between ten and twenty hours, while 

non-impending products, that have a safe inventory, can meet a two-day long demand at 

least. Secondly, the remaining retailers also can be classified into two sets: impending 

retailers and non-impending retailers. Impending retailers are those that require a delivery 
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on the second day, while non-impending retailers will not need a delivery in two days 

(Figure 7.1). 

 

 

Fig. (7.1): Definition of retailers 

7.2.7 Applying Insertion Heuristic 

Once a set of delivery routes has been selected, some flexibility may exist in the individual 

routes in terms of constraints put on the available delivery time and quantity. Therefore, 

an insertion heuristic has been applied to improve vehicle utilization on this basis without 

causing stocking out.    

Method 1: Insert impending products for urgent retailers. 

Normally a retailer is served with product that will be consumed under an upper bound of 

ten hours; this can be defined as urgent product. The initial idea was to find geographically 

close retailers with impending products to include on one route. It would be a better 

choice to start with the urgent retailers with impending product. Thus, the first step is to 

check whether the first retailer on the first route has impending product or not. If yes, add 

the quantity, calculated through the formula, to the volume on the truck without 

exceeding the vehicle capacity. If no, go to the next retailer and repeat the step above.  

All Retailers 

Urgent 
retailers 

Urgent 
product 

Impending 
product 

Not  
impending 

product 

Remaining  
retailers 

Impending 
retailers 

Impending 
product 

Not 
impending 

product 

Not 
impending 

retailers 
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According to table 7.7 and table 7.8, it can be noted that the latter one indicates a better 

solution. In table 7.7 there are three products with a total amount of 138 units on the 

truck. Compared with table 7.7,  table 7.8 illustrates that 149 units of products are 

delivered to the same retailers on the route with eleven units more than the initial 

solution. The reason for this great difference lies in withholding product for R241 and 

R235, which are 4 and 7 respectively, presented by the colour yellow. Basically, this truck 

has been fully utilized through this approach.  

Table 7.7: Route without Insertion 

 

Table 7.8: Route with Insertion 

 

Method 2: Insert impending retailers.  

As mentioned earlier, impending retailers are those that require a delivery on the second 

day. If we only consider urgent retailers, according to the initial service sequence list, it is 

T1-1

Retailer

 P1
supplied
Qty

 P2
supplied
Qty

 P3
supplied
Qty  ac.OQ

185 7 8 5 20
85 21 0 9 50
240 12 0 62

241 8 4 74
235 13 87
155 0 6 93
181 9 10 3 115
194 9 8 6 138

T1-1

Retailer

 P1
supplied
Qty

 P2
supplied
Qty

 P3
supplied
Qty  ac.OQ

185 7 8 5 20
85 21 0 9 50
240 12 0 62

241 4 8 4 78
235 7 13 98
155 0 6 104
181 9 10 3 126
194 9 8 6 149
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much easier to solve the problem. However, in the consideration of vehicle utilization, the 

solutions are not always quite what we want.  

For example, consider the situation such as the one described previously, where there is a 

retailer A, included in the route, who is critical. The only retailers near A are B and C. If B is 

nearer to A than C, but is not urgent and C is urgent, then C should be served after A. 

However, if B is an impending retailer, then an opportunity exists for balancing the 

truckload by taking advantage of adjusting the route sequence. The basic idea is that we 

repeatedly add retailers to the model classified as urgent and impending retailers (Figure 

7.2). All retailers that are currently considered in the model have an opportunity to be 

balanced if they require an impending delivery and are close to the route. Including these 

retailers with these attributes improves the chance of increasing truck efficiency. We do 

not consider non-critical and non-impending retailers without delivery require in the 

scheduled time in this phase in order to avoid causing large costs in terms of computation 

time. 

 

 

 

 

 

 

 
 

 
Customer with safe 

inventory

 
Customer with urgent 

inventory

Normal delivery route

Delivery with insertion

 

 

 

 

Fig. (7.2): Insertion of impending retailers 

Method 3: Swap retailers between routes  

All methods discussed earlier are based on a separate cluster. In our case all retailers and 

depots have been grouped into three clusters. This means a truck can only serve a retailer 
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from the predetermined depot, which is in charge of all deliveries within this cluster. 

When we discuss transport costs and inventory costs, they will only be considered either 

within cluster one, cluster two or cluster three; there is no opportunity to create routes 

across the clusters. Eventually, the total costs generated in the whole distribution system 

will be calculated by the summation of individual costs brought together from each 

cluster.  

However, the initial algorithm may not be the optimal solution for maximizing utilization 

and minimizing total operation costs. It may happen that two retailers are geographically 

close to each other, but are included in their respective routes, which belong to different 

clusters. If they were assigned to the same route, transport costs could be minimized due 

to a smaller travel distance in total. In figure 7.3, the retailer represented in yellow round 

could be switched to the right route, which could result in a greater minimization of the 

total travel distance for the whole distribution system. 

 

 

 

 

 
Customer with urgent 

inventory

Normal delivery route

Delivery with insertion

 

 

 

  

 Balanced customer

 

Fig. (7.3): Swap retailers between routes 
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7.2.7 Comparison and Analysis of Different Algorithms 

In the previous section we have discussed several efforts to utilize vehicle capacity and 

reduce operational costs. To demonstrate the effectiveness of these efforts and the 

impact they have on our results, we applied the first two of all the methods in our 

experiment. We then compared the results obtained from the new approach with the 

initial algorithm without insertion.  

For the comparison of simulation results, the following information will be taken into 

consideration: 

(1) Vehicle utilization 

 

Figure (7.4): Comparison of vehicle utilization 

Compared with the initial algorithm, the algorithm with insertion has a substantially higher 

vehicle utilization with approximate 145 units on average, thirteen units more than the 

132 of the initial algorithm.  

(2) Number of trips 
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Figure (7.5): Comparison of number of trips 

From figure 7.5, it can be seen that the algorithm with insertion provides a slight 

minimization in the number of trips when compared with the initial algorithm. Because 

the purpose of optimization is to utilize vehicle capacity to reduce the number of trips, as 

anticipated, it should usually be less than or equal to the solution from the initial 

algorithm. 

(3) Cumulative delivered quantity 

 

Figure (7.6): Comparison of cumulative delivered quantity 
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As shown in figure 7.6, a larger total delivered volume has been obtained from the new 

approach than that of the initial algorithm, this being 45.9 and 44.8 units, respectively, 

over a five-day period.  

(4) Depot inventory level 

 

Figure (7.7): Comparison of depot inventory levels 

According to the results indicated in figure 7.7, when more quantities are delivered from 

the depot to retailers, as shown in figure 7.6, it is logical that the algorithm with insertion 

results in a decrease of depot inventory level when compared with the initial algorithm.  

(5) Retailer inventory level 

In contrast with figure 7.7, the algorithm with insertion results in an increase of retailer 

inventory levels when compared with the initial algorithm because more quantities have 

been delivered from the depot to the retailers. 
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Figure (7.8): Comparison of retailer inventory levels 

(6) Total inventory level 

 

Figure (7.9): Comparison of total inventory levels 

Considering the total inventory levels of the depot and the retailers, as anticipated, the 

algorithm with insertion brings in a little higher storage level in comparison with the initial 

algorithm as the vehicle capacity is utilized and the delivery amount that we allow to be 

delivered is increased. 

(7) Total travelled distance 
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Figure (7.10): Comparison of total travelled distance 

From the chart above, it is obvious that for the algorithm with insertion the total travelled 

distance is lower than that of the initial algorithm. With the same unit transport costs, 

clearly the delivery costs of the algorithm with insertion will be lower than the initial 

algorithm. 

(8) Total costs 

 

Figure (7.11): Comparison of total costs 
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From figure 7.11, it can be noted that the algorithm with insertion gives a substantially 

lower total cost for inventory and distribution when compared with the initial algorithm, 

which is just what we want from the further improvement. 

In conclusion, we see that for our objective cluster, even with a larger total volume 

delivered, the algorithm with insertion has a substantially lower travel distance, higher 

volume per mile, higher average utilization, and lower total cost when compared to the 

initial algorithm. 

This insertion approach tries to utilize vehicle capacity by including deliveries to retailers 

near the imminent retailers, which consume the remaining truck capacity in order to 

reduce transportation costs, especially fixed transportation costs. In the cases where the 

fixed transportation costs are very high, this approach will reduce the number of trips and 

distance that a vehicle must travel; therefore, the transportation costs will be remarkably 

reduced. Moreover, as the impending retailers are permitted to be replenished with a 

number of quantities based on the volume remaining on the truck, the total system 

inventory costs will be increased. However, the decreased transportation costs can 

compensate for the increased inventory costs; therefore, the total system costs will be 

minimized. 

7.2.8 Inventory level of three depots 

According to tables 7.9, 7.10 and 7.11, the inventory levels at each depot differ every day. 

Assuming that the depot inventory levels reach the upper bound of 30 tons on the first 

day, with daily deliveries to retailers, there will be no efficient products left in the 

warehouse at each depot for the next day´s supply at the end of day three. Based on the 

principle of not causing stock-out, replenishment for the three depots will be placed 

together earlier on the day four before the trucks at the depots transport products to the 

retailers. Delivery quantity to each depot can be obtained by subtracting from 30 the last 

inventory levels at the depot, which are 27, 27.3 and 25.3 respectively. This means that on 

day four there are, in total, 79.6 tons of items delivered from the plant to the depots.        
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Table 7.9: Inventory level of depot one 

 

Table 7.10: Inventory level of depot two 

 

Table 7.11: Inventory level of depot three 

 

As illustrated in table 7.1, it takes 0.35 hours (at the most) to travel from the plant to the 

depot. As there are only three depots to be serviced, a direct delivery can be first 

scheduled from the plant to any one of the depots; the vehicles then return to the plant to 

be refilled for the next delivery until all three depots are replenished.  

  

Inventory Level of Depot(ton)

DC1 Day1 Day2 Day3 Day4 Day5

Ii
30.0   20.8  11.3  30.0    20.6  

Ii+1
20.8   11.3  3.0   20.6    11.1  

average
inventory

25.4   16.0  7.1   25.3    15.9  

Inventory Level of Depot(ton)

DC6 Day1 Day2 Day3 Day4 Day5

Ii
30.0   23.7  12.0 30.0    20.7  

Ii+1
23.7   12.0  2.7  20.7    10.9  

average
inventory

26.8   17.9  7.3  25.3    15.8  

Inventory Level of Depot(ton)

DC7 Day1 Day2 Day3 Day4 Day5

Ii
30.0   24.9  12.1 30.0    20.6  

Ii+1
24.9   12.1  4.7  20.6    12.1  

average
inventory

27.5   18.5  8.4  25.3    16.3  
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7.3 Synchronizing production, inventory and routing 

According to this model, the orders will be produced using the EDD algorithm, which takes 

into consideration the production capacity minimizing the setup costs every day. 

The total distance delivered is shown in Figure (7.12), and the total distance is 5,854.3 km. 

 

Figure (7.12): Total distance travelled 

Figure (7.13) shows the routes, utilization and distances for day one. 

 

Fig. (7.13): Screen shot for routes, utilization and distance  
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The truck utilization is showed in Figure 7.14 

 

Fig. 7.14 Truck utilization 

Figure 7.15 shows costs comparison between the three costs categories. 

 

Fig. 7.15 Costs comparison of the two models 
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In this figure, it is clear that the setup costs will increase in the syncronizing model. This is 

due to the increase the number of setup times per one week. On the other side, the 

transportation and inventory costs will decrease. The total costs will decrease by 2.8%.  

The reason for higher transportation cost, even with low fuel and transportation cost, is 

that the total travelled distance is high. The retailers are geographically dispersed. If the 

transporter goes to the most urgent retailer, it  will usually go a further distance. 

To analyze the effect of the transportation costs on the model, sensitivity analysis is 

carried out. This analysis aims to answer the question of how much the transportation cost 

can rise while still having the same total cost. The comparison is done with respect to the 

total travelled distance. 

Figure 7.16 shows the results of the sensitivity analysis if the transportation cost is 

increased compared with the transportation distance. 

 

Figure 7.16 sensitivity analysis with transportation distance consideration 

The first axis shows the total distance travelled (× 1,000 km); the second axis is the unit 

transportation cost per kilometer, while the third axis shows the total cost. 

As shown in the figure, the effect of the transportation cost increases when the total 

travelled distance increases. For example, if the unit transportation cost increased to 3.2 
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the total distance should not exceed 1,600 km to have the same total cost obtained by the 

model. 

It is clear from this figure that for shorter distances travelled (10,000 km) the effect of the 

transportation cost will be smaller than the same effect for the longest distance.  

To decide which model (manufacturer dominates or synchronizing production, inventory 

and transportation) is best, this depends on the comparison of benefits of using one of  

the two models. To explain this, a benefit analysis will be provided. This analysis is a 

development of the cost conflict analysis obtained by Milid et al.[69] 

Assume that: 

                                     

                                     

                                             

                                                  

                                                  

The objective function is to minimize the total cost (of setup, inventory, and transportation 

costs). 

When manufacturer dominates: 

                              (        )                       

Where: 

                                                                                   

                                                                     

 (        )                                                                    
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When synchronizing production, inventory and transportation 

                           (        )                       

                                                 

                {                   }           

Table (7.12) shows the cost of setup, inventory and transportation at deferent values of α. 

It is clear that when α arises the setup cost will also arises. 

Table (7.12) total cost at different values of α when manufacturer dominates 

 

setup inventory transportation Total 

α=.1 4875 525 47072 52472 

α=.3 14625 525 35304 50454 

α=.5 24375 525 23536 48436 

α=.7 34125 525 11768 46418 

α=.9 43875 525 0 44400 

 

Table (7.13) total cost at different values of α when synchronizing production, inventory 

and transportation 

 

setup inventory transportation Total 

α=.1 6225 60 37465.6 43750.6 

α=.3 18675 60 28099.2 46834.2 

α=.5 31125 60 18732.8 49917.8 

α=.7 43575 60 9366.4 53001.4 

α=.9 56025 60 0 56085 
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Table (7.14) shows the benefit of using the manufacturer schedule. It shows that at lower 

values of α (which means that lower values of setup cost), it is better to use the 

synchronizing model, which reduces the total cost by 16.6%. For α greater than 0.4, it is 

better to use the manufacturer schedule. That is because it has the higher effect on the 

total cost. 

Table (7.14) The benefit cost 

α 0.1 0.3 0.5 0.7 0.9 

 16.6% 7.2% -3.0% -14.2% -26.3% 

As shown in Figure (7.17),  when α is greater than 0.4 the benefit of using the synchronized 

model is less than zero. That means the manufacturer prefers his own schedule than the 

synchronized schedule. 

 

Figure (7.17) benefit cost 

The same analysis could be done for the the inventory-dominated model or the 

distributor-dominated model. In these cases, the manufacturer will make his schedule 

according to the distributor (or inventory) optimum schedule.  
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Conclusions and future work 

The primary objective of this research was to determine the effect of synchronizing the 

functions at different stages of a supply chain, to minimize production, inventory, and 

transportation costs. This work studied two scenarios of problems for a three-echelon 

supply-chain problem: (1) manufacturer dominated: where the manufacturer obtains his 

optimum job schedule and then the distributor tries to find his optimum schedule 

according to it, and (2) synchronizing  production, inventory and transportation problems, 

with the aim of minimizing the total costs. 

As a conclusion, the main contribution of this thesis is to propose a heuristic approach to 

deal with the PID problem in an environment with one plant, multiple depots, and multiple 

retailers. The proposed approach considers the setup time at the production line. In 

addition, the proposed algorithm considers the optimal transportation routes.  

In almost all existing literatures regarding the studies on both PID and vendor-managed 

inventory (VMI) problems, just one product is considered. However, in reality, the plants 

produce more than one product. In addition, many literatures do not consider the routes 

problem. Moreover, machine setup time is also ignored. However, machine setup time is 

inevitable in practice.  

In this thesis the concept of a VMI problem, replenishment policy and the vehicle routing 

problem model were studied and integrated to solve the three-echelon distribution 

problem of a single-plant, multi-depots, multi-retailers environment. Many previous 

studies failed to consider both the inventory problem and the transportation problem 

together based on three levels with multiple items. Some researches considered only the 

inventory problem for one depot and multi-retailers distribution system, while other 

researches only studied vehicle routing problems, which are all based on a two-level 

problem. Integrating the inventory problem and vehicle routing problem can solve the 1-

M-M distribution system with different approaches taken from the existing models. 

However, the solutions to the distribution system shown by applying the developed 

models are not always optimal solutions. The solutions depend on the conditions of all 

factors involved in the system. 
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According to the developed models, retailers and depots are first grouped into various 

clusters according to the consumption rate and capacity through the nearest neighbour 

and stem distance algorithms. Basically the route-first, cluster-second approach is applied 

to supply retailers. After all the retailers are routed, a specific service sequence list for 

each cluster is created based on the urgency of each retailer. Then several routes are 

assigned according to the service sequence list. Two scenarios were investigated in the 

VMI model. The first one is a one-product one-truck scenario, and the second one is a 

multi-products one-truck scenario. The results shows that the second scenario was better. 

An insertion heuristic has been brought in as an improvement based on scenario 2 with 

the objective of ultilizing vehicle capacity without increasing total cost, which is finally 

proven to show significant progress in the study. Therefore when a company has to decide 

when and how much to replenish customers, these scenarios might provide directions to 

make decisions.  

The second main model involved synchronizing production, inventory and transportation. 

In this model the setup costs increased, but the inventory and transportation costs were 

decreased. Comparing the two models showed that the total costs were decreased when 

the synchronized model was applied.  

The benefit of using each model depends on the weight of each cost part (setup, inventory 

and transportation costs). For higher values of setup cost, it is better to use the 

manufacturer-dominated model. 

There are several potential extensions from this work. First, from a practical point of view, 

other job scheduling models (such as job shop or parallel machines) could be investigated. 

Also, models containing more than one plant that produce the same products which can 

delivered to the same retailers could be considered. In the latter case the setup cost could 

be minimized while the transportation cost could be increased.  

Second, from a research point of view, new algorithms that can effectively solve the 

integrated production, inventory and distribution-routing problem of setup time could be 

suggested. Also, the idea of impeding products and customers could be further improved 

to reduce the transportation cost. 
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Appendices 

Appendix I setup time matrix (in minutes) at packing machine. 

Brand 1 2 3 4 

Den. E1 E2 E10 E1 E2 E1 E2 E1 E2 

Pr. No. P1 P2 P3 P4 P5 P6 P7 P8 P9 

P1 - 30 90 10 30 10 30 10 30 

P2 30 - 90 30 10 30 10 30 10 

P3 90 90 - 90 90 90 90 90 90 

P4 10 30 90 - 30 10 30 10 30 

P5 30 10 90 30 - 30 10 30 10 

P6 10 30 90 10 30 - 30 10 30 

P7 30 10 90 30 10 30 - 30 10 

P8 10 30 90 10 30 10 30 - 30 

P9 30 10 90 30 10 30 10 30 - 
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Appendix II setup time matrix (in minutes) at drying stage. 

Brand 1 2 3 4 

Den. E1 E2 E10 E1 E2 E1 E2 E1 E2 

Pr. No. P1 P2 P3 P4 P5 P6 P7 P8 P9 

P1 - - 60 60 60 60 60 60 60 

P2 - - 60 60 60 60 60 60 60 

P3 60 60 - 60 60 60 60 60 60 

P4 60 60 60 - - 60 60 60 60 

P5 60 60 60 - - 60 60 60 60 

P6 60 60 60 60 60 - - 60 60 

P7 60 60 60 60 60 - - 60 60 

P8 60 60 60 60 60 60 60 - - 

P9 60 60 60 60 60 60 60 - - 
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Appendix III: Randomly generated algorithm 

 Initialization 

Enter the number n of jobs. 

For each job, enter its processing time Pj and its release date rj . 

Read setup times sjk for each pair of jobs j and k, with j =1= k. 

Define the number of iterations (niter). 

 Algorithm 

1. Set h = 1, the first iteration. Set j = 1. 

2. Generate an integer random number R from an equilikely distribution between 1 

and n. 

3. Schedule job j on position defined by R. If this position is already assigned, go to 

step 2. 

4. Do j = j +1 and repeat from step 2 while j ::; n (that is, until all jobs are scheduled). 

5. Ensuring that release dates are respected, compute Cmax, the make span for the 

schedule of iteration h. 

6. Do h = h +1 and repeat from step 2 while h ::; niter (that is, until the number of 

iterations is reached). 

7. Select the schedule with mi nj, Cmax (that is, select the schedule with minimum 

make span over all the iterations). 

 

 

 

 



Appendices        122  
 

Appendix IV: Comparison results of NEH, randomized and SP algorithms. 

 

 

(a) Results for 10*20 problems with 10 runs 

 

(b) Results for 10*50 problems with 10 runs 

 

(c) Results for 10*100 problems with 10 runs 
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