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1 Introduction 

1.1 Obesity 

1.1.1 Definition and classification 

 Obesity is defined as an excessive accumulation of body fat, which increases the 

proportion of body fat mass to whole body mass, as a result of a longstanding positive 

energy balance (Hebebrand et al. 2001a). In general, the body mass index (BMI) calculated 

by body weight (in kg) over squared body height (in m2) is used for classification of obesity. 

Due to a high correlation to body weight (r=0.8-0.9) and body fat mass (r=0.6-0.7) 

accompanied by a low correlation to body height (r=-0.2) in both men and women, the BMI 

represents a body height adjusted measure for body fat mass (Watson et al. 1979). 

According to World Health Organization (WHO) criteria, adult people are assigned to weight 

classes by use of the BMI, and obesity is defined as a BMI ≥ 30 kg/m2 (Table 1.1; WHO 2000). 

Table 1.1 WHO Classification of adults according to BMI 

Classification BMI [kg] 
Underweight <18.50 
Normal weight 18.50-24.99 
Overweight ≥25.00 

Pre-obesity 25.00-29.99 
Obesity ≥30.00 

Class I 30.00-34.99 
Class II 35.00-39.99 
Class III ≥40.00 

adapted from WHO (2000) 

 

 However, there are some limitations using the BMI as estimation for body fat mass. 

Individuals with a large muscle mass and hence a high body weight for their height might be 

misclassified as (pre-) obese (Lambert et al. 2012), while the body fat mass of individuals 

with a reduced lean body mass as for instance found in elderly can be underestimated 

(Gallagher et al. 1996). In addition, in children and adolescents, lean body mass fluctuates 

stronger than in adulthood due to different developmental stages, i.e. the BMI rises 

continuously during the first six months of life and decreases until the age of six to eight 

years because of increased linear growth; afterwards BMI rises again (Fig. 1.1; Rolland-

Cachera et al. 1991). Hence, percentile curves (Fig. 1.1) which represent age and gender 

adjusted BMI distributions of a reference population are more adequate than the pure BMI 

to define weight classes (Hebebrand et al. 1994, Kromeyer-Hauschild et al. 2001). In 
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Germany, a meta-analysis of 17 studies including a total of 17,147 boys and 17,275 girls aged 

0-18 years is primarily used as reference (Kromeyer-Hauschild et al. 2001). Currently, 

overweight and obesity are defined as the 90th and 97th age and gender adjusted BMI 

percentile, respectively, set according to the guidelines of the “Arbeitsgemeinschaft 

Adipositas im Kindes- und Jugendalter” (www.a-g-a.de). Formerly, the German National 

Survey I was used as reference, and overweight and obesity were defined as the 90th and 

99th age and gender adjusted BMI percentile (Hebebrand et al. 1994). In addition, the 

standard deviation score (SDS) can be applied to quantify by which factor of a standard 

deviation the individual BMI deviates from the age and gender adjusted BMI median of the 

reference population (Kromeyer-Hauschild et al. 2001). 

 

 

 

 

 

 

Figure 1.1 BMI percentile curves for girls aged 0-18 years 

Curves derive from a meta-analysis of 17 studies (performed in Germany) including 17,275 girls aged 
0-18 years. Data from the 17,147 boys included were used to establish similar BMI percentile curves. 
According to the guidelines of the “Arbeitsgemeinschaft Adipositas im Kindes- und Jugendalter” 
(www.a-g-a.de), the 90th and 97th age and gender adjusted BMI percentile are used to define 
overweight and obesity, respectively. Figure from Kromeyer-Hauschild et al. (2001) 
 

age (years) 

http://www.a-g-a.de/�
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1.1.2 Prevalence of obesity 

 According to a recent report by the WHO (2013), world-wide more than 1.4 billion adults 

of 20 years and older (35 %) were overweight (BMI ≥ 25 kg/m2) in 2008. Among these, about 

500 million, i.e. 11 % of adults and 7 % of the world’s total population in 2008, were obese 

(BMI ≥ 30 kg/m 2, UN World Population Prospects 2011, WHO 2013). Because of 

consequences in later life such as type two diabetes mellitus (T2DM), ischemic heart 

diseases and cancer, obesity has become a worldwide important health problem (WHO 

2013). 

 Pertaining to results of the German Health Interview and Examination Survey for Adults 

(DEGS1) performed between 2008 and 2011, 67.1 % of men and 53.0 % of women were 

overweight (Mensink et al. 2013). These figures are comparable to those reported in the 

German National Health Interview and Examination Survey 1998 (GNHIES98, Bergmann and 

Mensink 1999). However, the prevalence of obesity has increased: 23.3 % of men and 23.9 % 

of women were obese in DEGS1 compared with 18.9 % and 22.5 % in GNHIES98 (Mensink et 

al. 2013). In the USA, data of the National Health and Nutrition Examination Survey 

(NHANES) show that obesity has been prevalent among 35.5 % of men and 35.8 % of women 

in 2009-2010 (Flegal et al. 2012). While between 1988-1994 and 1999-2000 age and gender 

dependent increases in the obesity prevalence of 3.4 % to 12.0 % were found (Flegal et al. 

2002), the figures of 2009-2010 were similar to those in 2003-2008 indicating a leveling off 

effect of the obesity prevalence (Flegal et al. 2012).  

 In 2011, more than 40 million children under the age of five were overweight (WHO 

2013). Childhood obesity is associated with a higher risk of obesity during adulthood (Power 

et al. 1997). During the last three to four decades, prevalence rates of obesity during 

childhood and adolescence rose especially in developed and newly industrializing countries. 

For instance, prevalence rates have increased 2.3-fold to 3.3-fold between 1971-74 and 1999 

in the USA, 3.4-fold to 4.6-fold between 1985 and 1995 in Australia, 3.4-fold to 3.6-fold 

between 1974 and 1997 in Brazil and 1.1 to 1.4-fold between 1991 and 1997 in China 

(Ebbeling et al. 2002). In addition, the heaviest children from US surveys from the 1990s 

were significantly heavier than the heaviest children in 1960-1970, while the BMI 

distribution in the middle and lower ranges did not change (Troiano and Flegal 1998). 

Comparatively, this was also seen in obese children and adolescents treated as inpatients 

from six different German study groups over a period of 10 years (1985-1995). While the 

most pronounced increase was detected among the obese above the 9th decile (5 kg/m2 and 
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2.5 kg/m2 in boys and girls, respectively), in the lower BMI range a shift towards a higher 

BMI has not been seen (Barth et al. 1997). 

 According to representative data pertaining to overweight and obesity among 14,836 

children and adolescents of 3 to 17 years of age from the German Health Interview and 

Examination Survey for Children and Adolescents (KiGGS), 15 % and 6.3 % were overweight 

and obese, respectively (Kurth and Schaffrath-Rosario 2007). Blüher et al. (2011) analyzed 

prevalence trends for overweight and obesity among 272,826 children and adolescents of 4 

to 16 years in Germany. While there was an upward trend for both overweight and obesity 

prevalence rates between 1999 and 2003, a decrease was found between 2004 and 2008.  

 A stabilizing trend of the obesity prevalence was also seen among children and 

adolescents since the late 1990s or first years of the 2000s in other countries, such as 

England (Karlsen et al. 2013), Australia (Hardy et al. 2012), France (Salanave et al. 2009), the 

Netherlands (de Wilde et al. 2009) and Sweden (Sundblom et al. 2008). Interestingly, in 

some of these countries, the stabilizing trend was not seen among ethnic minorities (de 

Wilde et al. 2009, Karlsen et al. 2013). 

1.1.3 Causes of obesity epidemics 

 The increase in the prevalence rates of obesity since the last three to four decades might 

be attributed to both environmental factors and a genetic predisposition (Bouchard 2007, 

Hebebrand and Hinney 2009). An excessive availability of cheap high-caloric food in 

combination with a more and more sedentary lifestyle form an “obesogenic” environment 

for humans especially in developed and newly industrializing countries, and a persisting 

positive energy balance seem to be the major causes for obesity (Hebebrand et al. 2001a, 

Ebbeling et al. 2002).  

 On the other hand, Neel hypothesized the existence of a “thrifty genotype” regarding the 

development of T2DM in the 1960s: a decreased energy expenditure accompanied by an 

increased energy storage capacity had been advantageous to survive when food was not as 

easy accessible and/or scarce. Consequently, genetic variation favoring this phenotype might 

have been enriched during human evolution (Neel 1962). However, a “thrifty genotype” in 

times of excessive availability of food, as found nowadays in many parts of the world, can no 

longer be considered a survival advantage, but it promotes the obesity epidemics. Bouchard 

(2007) derived a hierarchical model depicting the relationship between the major 
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determinants of energy balance (built environment, social environment, behavior and 

biology; Fig. 1.2). 

 

 

 

 

 

Social environment Built environment

Obesogenic environment

Obesogenic behavior

Biological prediposition

Positive energy balance

Weight gain
 

Figure 1.2 Hierarchical model of relationship among major determinants of energy 

balance 

Factors in the built environment (e.g. reliance on the automobile) and the social environment (e.g. 
advertising, pressure to consume) create an obesogenic environment. This in turn is favorable for the 
adaptation of an obesogenic behavior (e.g. consumption of large portion sizes of meals, many hours 
spent watching TV). Both the environment and behavior have accelerated the increase in the obesity 
prevalence. However, a biological predisposition (e.g. genetic variation) – indicated by arrows of 
different sizes in the figure – is important for inter-individual differences in the predisposition of 
gaining weight and risk of becoming obese, particularly severe obese. Adapted by permission from 
Macmillan Publishers Ltd: International Jornal of Obesity (Bouchard, 2007), © 2007.  

http://www.nature.com/ijo/index.html�
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1.2 Heritability of obesity 

 Numerous twin, family and adoption studies have been performed to estimate the 

heritability of body weight variation. Of particular interest are twin pairs which were reared 

apart, as the contribution of a common environment which most twins experience, 

especially during childhood and adolescence, is reduced. Stunkard et al. (1990) investigated 

intra pair BMI correlations in a total of 673 monozygotic (MZ) and dizygotic (DZ) adult twin 

pairs which were reared together or apart from the Swedish Adoption/Twin Study of Aging. 

The intra pair BMI correlations were higher in the MZ twin pairs (between 0.66 and 0.74) 

compared with the DZ twin pairs (between 0.15 and 0.33), but were similar independent 

whether the twin pairs were reared together or apart. Among 34 reared apart and 38 reared 

together British MZ twin pairs, intra pair correlations of body fat of 0.61 and 0.75 were 

reported, respectively (Price and Gottesman 1991). 

 In family studies, correlations in BMI between siblings which were reared together 

ranged between 0.1 and 0.5, and were slightly lower than between parents and their 

offspring (~0.1-0.3; reviewed by Maes et al. 1997). Among 540 adult Danish adoptees, the 

relationship between the weight class (thin, median weight, overweight, and obese) of the 

adoptee and the BMI of the biological parents and siblings was strong, while BMI 

correlations between the adoptee and the adoptive parents or siblings were not existing 

(Sørensen et al. 1989, Stunkard et al. 1986). In a longitudinal adoption study of 840 Danish 

adoptees (partly the same as the above mentioned 540), 269 of which height and weight 

data at the ages 7 to 13 years were present, BMI correlations between the adoptees and 

their biological parents were higher than with their adoptive parents (0.16 to 0.17 vs. 0.03 to 

0.10). Comparatively, BMI correlations between the adoptees and biological full siblings 

were 4.2-fold higher than BMI correlations between the adoptees and their adoptive siblings 

(0.59 vs. 0.14; Sørensen et al. 1992). 

 Considering all empirical study types, it is assumed that heritability estimates range from 

0.4 to 0.7 (Hebebrand et al. 2010). Interestingly, some of these family and adoption studies 

have shown that correlations in BMI between mothers and their offspring are higher than 

between fathers and their offspring (Hebebrand et al. 2001a). For instance, Sørensen et al. 

(1998) reported (based on the above mentioned Danish adoptees) that correlation in BMI 

between the adoptee and the biological mother and father were 0.15 and 0.11, respectively. 

In 179 Italian families, the mother-offspring correlation in BMI was 0.37, while the father-
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offspring’s was 0.31 (Zonta et al. 1987). Price et al. (1987) reported that among 357 adult 

American adoptees correlations in BMI were 0.40/0.15 between biological mothers and 

daughters/sons, while correlations between biological fathers and daughters/sons were 

0.18/0.08, respectively. Comparatively, in a study of young Swedish men, maternal half-

brothers show two-fold higher correlations in BMI than paternal half-brothers do (r=0.21 vs. 

r=0.11, Magnusson and Rasmussen 2002).  

1.3 Molecular genetic studies on obesity 

1.3.1 Molecular genetic approaches 

 On a molecular genetic level, several approaches have been undertaken to elucidate 

genetic variation to be associated with obesity. There are basically two major approaches – 

candidate gene studies and genome-wide approaches – which have been and still are 

performed to get insight into the genetics of body weight regulation. In candidate gene 

studies, specific genes with a known role in metabolism or body weight regulation are 

investigated. These might be derived from animal models as for instance knockout (k.o.) 

models of the respective genes and are screened for the detection of mutations (Hinney et 

al. 2004). Later on, allele frequencies of detected variations are classically compared 

between cases of a certain trait (e.g. early onset (extreme) obesity) and controls, i.e. 

individuals which are ideally only different by the trait of investigation. Another option to 

follow-up detected variants are family-based studies. A family-based study typically consists 

of “trios”, i.e. one index proband with the phenotype of interest (e.g. early onset (extreme) 

obesity) and both biological parents. Statistically, a transmission-disequilibrium-test (TDT) is 

performed (Spielman et al. 1993), which compares the transmission of each allele of the 

variant of interest, by only including heterozygous parents. A transmission of 50 % for each 

allele is expected by chance, and a significant deviation from the expected transmission (= 

transmission disequilibrium) indicates association of the variant with the investigated trait. 

One advantage of family-based studies compared with case-control (CC) studies is that they 

are not subject to population stratification. Both cases and controls of the investigated trait 

might be from different population subgroups and hence the allele frequencies per se might 

be different in cases and controls leading to false positive findings (Attia et al. 2009b). 

However, one disadvantage of family-based studies is that the parents might also carry the 

same phenotype as their offspring (Hebebrand et al. 2000), and thus might carry relevant 

genetic variants homozygously. This might decrease the power for association testing, as 



1 Introduction 

8 
 

only heterozygous parents are included in the TDT. Significantly associated variants may be 

either directly functionally relevant for the investigated trait (e.g. early onset (extreme) 

obesity), or a marker for a functionally relevant variant in high linkage disequilibrium (LD).  

 In contrast to candidate studies, genome-wide approaches for the detection of genes 

being associated with obesity are “hypothesis-free” (Kitsios and Zintzaras 2009, Day and 

Loos 2011). Formerly, some linkage analyses have been performed. In these studies, obesity 

predisposing genes were detected by genetic markers (e.g. microsatellites) which are 

theoretically inherited together with a nearby gene, i.e. in LD to the gene (Hebebrand et al. 

2001b). However, linkage approaches as well as candidate studies majorly failed to be 

successful in the detection of robust loci or genes associated with obesity (Day and Loos 

2011). 

 The most recent and more prosperous approaches regarding the identification of genes 

associated with obesity are genome-wide association studies (GWAS). These studies are 

mainly focused on single nucleotide polymorphisms (SNPs) and copy number variations 

(CNVs), which are evenly spread over the whole genome. More than 12 million common 

SNPs with a frequency of > 1 % have been identified so far (Attia et al. 2009a). Efficient 

genotyping technologies, the sequencing of the human genome, and the creation of SNP 

databases such as HapMap (www.hapmap.org; International HapMap Consortium 2003) 

helped this approach to be performed on a large scale (Day and Loos 2011). Recent GWAS 

arrays, such as the Affymetrix Genome-Wide Human SNP Array 6.0, cover each one million 

of SNPs and CNVs evenly distributed across the whole genome including sex chromosomes 

and mitochondrial DNA (mtDNA). SNPs on the array found to be associated with a trait can 

be either functionally relevant per se, or serve as a marker for a nearby SNP or genomic 

region which is in high LD with the SNP. 

 Since 2005, GWAS have contributed to a further elucidation of the genetic architecture 

of many complex traits, such as obesity, coronary heart disease or diabetes, and have 

revealed many gene loci which would have never been detected by classical candidate 

approaches as their impact on the investigated traits is still mainly unknown (Pearson and 

Manolio 2008, Kitsios and Zintzaras 2009). Nevertheless, as many variants are tested 

simultaneously for association, the risk of spurious association is high. Therefore, currently a 

p-value of 5x10-8 (correction for one million tests) is considered genome-wide significant and 

a confirmation of the initial findings in an independent study sample is required (Attia et al. 

2009a, b, Manolio 2010). 
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1.3.2 Monogenic forms of obesity and major gene effects 

 Monogenic forms of obesity are characterized by mutations in a single gene that lead to 

(extreme) obesity. In case a gene has a clear impact on the development of obesity it is 

referred to as a major gene. Both monogenic forms and major gene effects regarding obesity 

are infrequent (Hinney et al. 2010). All current known monogenic forms of obesity are 

derived from mutations in genes belonging to the leptinergic-melanocortinergic system, 

which is involved in the central regulation of the energy balance (Fig. 1.3, Hinney et al. 2010, 

Hebebrand et al. 2013). In brief, the satiety hormone leptin is generated by adipocites. 

Leptin reaches the arcuate nucleus in the hypothalamus through the bloodstream. There, it 

induces the syntheses of pro-opiomelanocortin (POMC) which is cleaved to α-melanocyte 

stimulating hormone (α-MSH) by prohormone-convertase-I/3 (PCSK1). α-MSH is an agonist 

of the melanocortin-4-receptor (MC4R) located in higher order neurons of the 

hypothalamus. This in turn activates the brain derived neurotrophic factor (BDNF), the 

binding of which to tyrosine receptor kinase B (TRKB) signals a saturated – anorexigenic – 

condition. By contrast, in case of low levels or lack of leptin the agouti-related protein is 

expressed and acts as an antagonist of the MC4R, signaling a hunger stimulating – orexigenic 

– condition (Hebebrand et al. 2013). The identification of these genes as being involved in 

the development of early onset extreme obesity in a monogenic manner occurred through 

k.o. or transgenic mouse models (Hinney et al. 2010). Furthermore, large pedigree studies of 

consanguineous families based on extremely obese individuals were used (Hinney et al. 

2010). Mutations in the leptin gene (LEP) have the strongest effects. Homozygous mutation 

carriers, which lack the synthesis of leptin despite a significantly elevated fat mass, are 

subject to a continuously increased orexigenic condition. This in turn leads to hyperphagia 

and results in early onset (extreme) obesity. Only 11 families with mutation carriers have 

been identified so far whose parents were, with one exception, consanguineous (Montague 

et al. 1997, Strobel et al. 1998, Mazen et al. 2009, Fischer-Posovszky et al. 2010). It was 

reported that in case of denying food to the severely hyperphagic children, they showed an 

aggressive behavior (Montague et al. 1997). After treatment with human recombinant 

leptin, these children developed a normal eating behavior. Sustained beneficial effects on fat 

mass, hyperinsulinemia, and hyperlipidemia were also observed (Farooqi et al. 2002). For 

instance, during the first 12 months of leptin therapy one of the children lost 16.4 kg of body 

weight, of which 95 % were fat (Farooqi et al. 1999).  
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 As depicted in Fig. 1.3, MC4R plays a crucial role in the body weight regulation. More 

than 150 mutations in MC4R with impact on the receptor function have been identified so 

far (Hinney et al. 2013). The frequency of these mutations in extremely obese children and 

adolescents is 2.5 % (Hinney et al. 2003), while in obese adults, only 0.2 % are carriers of 

functionally relevant mutations (Hinney et al. 2006). Adult carriers are on average 15 kg 

(males) to 30 kg (females) heavier than relatives without mutation in MC4R (Dempfle et al. 

2004). However, not every carrier of a functionally relevant mutation develops obesity 

(Hinney et al. 2006). In addition, the reported effect sizes regarding body weight are lower 

than those reported in other monogenic forms of obesity, which is why MC4R has rather 

major gene effects than monogenic (Hebebrand et al. 2013). 

 Interestingly, three of the genes with major gene or monogenic effects on obesity also 

contribute to polygenic forms of obesity (Fig. 1.3, MC4R: Geller et al. 2004, Stutzmann et al. 

2007, Loos et al. 2008, BDNF: Thorleiffson et al. 2009, POMC: Speliotes et al. 2010). 

1.3.3 Polygenic forms of obesity 

 In polygenic forms of obesity, many genes with small effect size contribute to obesity. In 

the latest population-based GWAS meta-analysis of ~250,000 individuals of European origin, 

32 gene loci have been robustly associated with BMI (Speliotes et al. 2010). The effect sizes 

of these loci range from 0.06 kg/m2 to 0.39 kg/m2. The fat mass and obesity associated gene 

(FTO) had the largest effect size in the meta-analysis of Speliotes et al. (2010). It was first 

identified as a robustly BMI associated polygene in a GWAS for T2DM, with a subsequent 

replication in nearly 40,000 individuals (Frayling et al. 2007). Homozygous carriers of the risk 

allele were on average 2 to 3 kg heavier than non-carriers (Frayling et al. 2007, Hinney et al. 

2007, Speliotes et al. 2010). According to bioinformatics analyses, the FTO protein has equal 

motifs as found in Fe(II) and 2-oxoglutarate-dependent oxygenases (Gerken et al. 2007). 

Moreover, it was shown that recombinant murine Fto is involved in demethylation of single 

stranded DNA (Gerken et al. 2007). Fischer et al. (2009) found Fto k.o. mice to be leaner with 

a reduced fat mass than littermates. Berulava and Horsthemke (2010) showed that 

increased FTO expression is associated with increased fat mass. Both studies are 

directionally consistent and point at a gain of function effect of FTO in obesity. In most 

human studies, FTO alleles predisposing to obesity are associated with increased food intake 

rather and not with energy expenditure (summarized by Müller et al. 2013). 
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 A more recent GWAS meta-analysis of 14 studies with 5,530 obese cases and 8,318 lean 

controls detected two further SNPs associated with childhood and adolescent obesity 

(Bradfield et al. 2012). These were directionally consistent in the above mentioned meta-

analysis on adult BMI (Speliotes et al. 2010). Another GWAS meta-analysis focusing on the 

extremes, i.e. individuals of the upper and lower 5th BMI percentiles are compared, yielded 

in the detection of seven new loci associated with different classes of obesity (Berndt et al. 

2013). 

 

Leptin

ObRb

AgRP

NPY

POMC

CART
PCSK1

AgRP

α-MSH

MC4R BDNF

TrkB

Anorexigenic condition – decreased energy intake

Orexigenic condition – increased energy intake

ObRb

POMC

Arcuate nucleus Higher order neurons

Hypothalamus

 

Figure 1.3 Leptinergic-melanocortinergic system 

The satiety hormone leptin is generated by adipocytes in quantities depending on the size of the fat 
depot. It reaches the arcuate nucleus in the hypothalamus via the blood stream, and increased 
amounts of leptin are recognized by the leptin receptor (ObRb). The binding to the receptor 
stimulates the synthesis of pro-opiomelanocortin (POMC) which is cleaved to α-melanocyte 
stimulating hormone (α-MSH) by prohormone-convertase-I/3 (PCSK1). α-MSH is an agonist of the 
melanocortin-4-receptor (MC4R) being located in higher order neurons of the hypothalamus. This in 
turn activates the brain derived neurotrophic factor (BDNF), the binding of which to tyrosine 
receptor kinase B (TrkB) signals a saturated – anorexigenic – condition. By contrast, in case of low 
levels or lack of leptin the agouti-related protein (AgRP) is expressed and acts as an antagonist of the 
MC4R, signaling a hunger stimulating – orexigenic – condition. 
Gray shaded boxes: mutations lead to monogenic forms of obesity; green shaded boxes: mutations 
leading to mono- and polygenic forms of obesity; Figure and legend adapted from Hebebrand et al. 
(2013). 
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1.3.4 Missing heritability 

 Though having a large effect on the body weight, all recently identified monogenic forms 

of obesity are infrequent. Thus, their contribution to the global obesity epidemics is certainly 

rather low. Considering the effect sizes of all 32 polygenic loci of the last population-based 

meta-analysis, only 1.5 % of the BMI variance can be explained (additive genetic effects). 

This is based on the polygenic nature of these genes and their small effect size. Even by 

increasing the sample size to 730,000 individuals to detect 250 further gene loci with similar 

effect sizes as those found in the 32 loci (i.e. 0.06 kg/m2 to 0.39 kg/m2), estimations 

predicted that still only 4.5 % of the variance in BMI would be explained (Speliotes et al. 

2010). By contrast, empirical studies have shown heritability estimates for the variance of 

the BMI between 40 % and 70 %. The discrepancy between the empirical ascertained 

heritability and that explained by all variants identified in molecular genetic studies is coined 

as “missing heritability” (Hebebrand et al. 2010). Reasons for this phenomenon are among 

others that the empirically estimated high heritability might have been overestimated. On 

the other hand, there might be further infrequent monogenic variants with strong effects on 

the body weight, but due to their frequency they cannot be identified by GWAS (Hebebrand 

et al. 2010). The identified polygenic variants were assumed to have additive effects. Yang et 

al. (2011a) have shown that by including all 586,898 autosomal SNPs of a GWAS of 11,586 

unrelated individuals, a total of 16.5 % of the variance in BMI would be explained. Moreover, 

non-additive genetic effects might be existent. According to simulations, such epistasis 

effects explain large parts of the missing heritability (Zuk et al. 2012). 

1.3.5 Pathway-based approaches and gene set enrichment analyses (GSEA) 

 In GWAS, each SNP has been generally considered individually. However, genes and their 

gene products often interact in functionally relevant groups or pathways, which as a whole 

may contribute to a disease. Hence, for the discovery of further variants being associated 

with obesity, an extension of the single-locus-oriented GWAS to pathway-based approaches 

or gene set enrichment analyses (GSEA) might be an option for new genetic insight into the 

trait of interest (Liu et al. 2010). These approaches might thus help to diminish the gap 

between empirically ascertained and genetically explained heritability. 

 In a pathway-based approach or GSEA, gene association signals of pathways or gene sets 

which are biologically plausible for a given trait like obesity are compared with those of the 

genome-wide set of genes (Subramanian et al. 2005, Wang et al. 2007, Segrè et al. 2010). 
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Hence, these approaches concentrate on the combined effects across several loci; each locus 

might have a too small effect to be detected on its own, however in combination the impact 

could be striking enough (Wang et al. 2007, Torkamani et al. 2008, Segrè et al. 2010). 

 Pathway-based analyses or GSEA have been initially applied on gene expression 

microarray data (Mootha et al. 2003, Subramanian et al. 2005). For instance, Mootha et al. 

(2003) found PGC-1α responsive genes which are involved in the oxidative phosphorylation 

to be downregulated in skeletal muscle tissue of individuals with T2DM. On the gene 

expression level, each gene is represented by the maximum or median expression value of 

its transcript(s) and/or probe sets (Wang et al. 2007). On a SNP level, by contrast, each gene 

is represented by several common SNPs, of which only a few are causal or in LD with SNPs 

that contribute to a disease risk (Wang et al. 2007). Thus, Wang et al. (2007) suggested 

taking the maximum statistic for all SNPs in and near a gene to represent the significance of 

the gene and to use a permutation-based approach to adjust for multiple testing. 

 Liu et al. (2010) performed a pathway-based GWAS analysis of 963 pathways or gene sets 

in 1,000 US whites regarding obesity. The pathways or gene sets were generated using the 

public databases BioCarta, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes 

(KEGG) and Ambion Gene Assist. The authors found the vasoactive intestinal peptide (VIP) 

pathway significantly associated with both BMI and body fat mass. This pathway was also 

shown to be significantly associated in a sub-sample of 3,552 individuals of the EPIC-Norfolk 

study (Evangelou et al. 2012).  

 Segrè et al. (2010) developed an extended GSEA method called MAGENTA (Meta-Analysis 

Gene set Enrichment Analysis of variaNT Associations). Using MAGENTA, large GWAS meta-

analysis, of which only summary statistics are available, can be analyzed. For this purpose, 

for each gene, its best SNP p-value received from a meta-analysis has been taken forward 

and corrected for confounders such as gene size, variant number and LD properties using 

linear regression analysis. Segrè et al. (2010) did not find enrichment of association signals of 

common variants for T2DM and related glycemic traits in three gene sets of mitochondrial 

genes in a large GWAS meta-analysis using MAGENTA.  

 As mitochondria have a predominant role in the cellular energy generation, variation in 

mitochondrial genes might have an impact on body weight. Thus, the mitochondrial gene 

sets used by Segrè et al. (2010) have been tested for enrichment of obesity association 

signals in the present PhD thesis.  
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1.4 Mitochondria 

1.4.1 Description and function 

 Mitochondria are oval to longish organelles with a constant thickness of ~1 µm and 

variable length. They are characterized by a double membrane. The outer membrane is 

permeable for intermediates of the metabolism, but not for correctly folded proteins. The 

protein complex TOM/TIM (transporter outer membrane/transporter inner membrane; Fig. 

1.4) which connects the outer and inner membrane is responsible for the active transport of 

unfolded proteins synthesized in the cytosol (Löffler and Petrides 2003, pp.195ff and 

pp.287f, Bolender et al. 2008).  

 On the other hand, the inner membrane is impermeable for any substance. It consists of 

70 % protein. In addition, the inner membrane is folded into cristae which enlarge its surface 

enormously (Löffler and Petrides 2003, p.195). 

 

Figure 1.4 Schematic representation of mitochondrial TOM/TIM protein complex  

Inner membrane proteins and matrix proteins synthesized in the cytosol are directed by a positively-
charged presequece through the TOM complex, TIM23 complex and motor PAM to the matrix. The 
presequence is removed by the matrix processing peptidase (MPP). Inner membrane proteins are 
released laterally from TIM23 complex. Carrier proteins containing internal targeting signals, which 
are recognized by the receptor Tom70, are translocated by the TOM complex as well as Tim9-Tim10 
chaperone of the intermembrane space and inserted into the inner membrane by TIM22 complex. 
The proton gradient at the inner membrane is the driving force for the passage through the 
mitochondrial membranes.Mge1, nucleotide exchange factor; MtHsp70, matrix heat shock protein 
70; PAM, presequence translocase-associated motor; TIM, translocase (transporter) of inner 
membrane; TOM, translocase (transporter) of outer membrane. Reprinted by permission from 
Macmillan Publishers Ltd: EMBO reports (Bolender et al., 2008), © 2008. 

http://www.nature.com/embor/index.html�
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 Mitochondria are well known as the cellular power plants. Their main function is the 

generation of the energy equivalent adenosine triphosphate (ATP). For this purpose, the 

complexes I to IV of the electron transport chain (ETC) and complex V for the oxidative 

phosphorylation (OXPHOS, in the following “OXPHOS” is referred to as OXPHOS including 

ETC), which are located in the inner membrane, are necessary (Fig. 1.5). The reduction 

equivalent nicotinamide adenine dinucleotide (NADH), which is derived from the citric acid 

cycle, is converted to its oxidative state (NAD+) by passing its electrons to complex I of the 

electron transport chain. This in turn induces a reduction cascade of the complexes II to IV 

finally to reduce molecular oxygen to water. Via the complexes I, III and IV, protons (H+) are 

actively transported into the inter membrane space of the mitochondria and generate a 

proton gradient. This gradient is finally used for the OXPHOS of adenosine diphosphate 

(ADP) to ATP via the ATPase of complex V (Löffler and Petrides 2003, p.195 and p. 537). A 

resting adult requires 40 kg of ATP per 24 hours, which is mainly derived by the 

mitochondrial OXPHOS; intensive exercise might augment this requirement by 0.5 kg per 

minute (Stryer 1999, p. 470). 

 

Figure 1.5 Electron transport chain and oxidative phosphorylation 

The reduction equivalent nicotinamide adenine dinucleotide (NADH), which is derived from the citric 
acid cycle, is converted to its oxidative state (NAD+) by passing its electrons to complex I (NADH-
ubiquinone-oxidoreductase) of the electron transport chain. Subsequently, succinate is oxidized to 
fumerate while ubiquinone (Q) is reduced to ubiquinol (QH2) at complex II (succinate-ubiquinone-
oxidoreductase). FADH2 serves as reduction equivalent. At complex III (ubiquinol-cytochrome C-
oxidoreductase), QH2 is oxidized to Q, while cytochrome C (cyt C) is reduced. Thereafter, cyt C is 
oxidized and molecular oxygen (O2) is reduced to water (H2O) at complex IV (cytocrome C-oxidase). 
Finally, H+ influx is the driving force for the synthesis of ATP at complex V (ATPase). Figure from St 
John et al. Mitochondrial DNA transmission, replication and inheritance: a journey from the gamete 
through the embryo and into offspring and embryonic stem cells, Hum Reprod Update, 2010, 
16(5):488-509, by permission of Oxford University Press. 
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 Besides the generation of ATP via the OXPHOS, further processes as for instance the citric 

acid cycle and the fatty acid ß-oxidation can be found in mitochondria. Moreover, 

mitochondria can induce apoptosis by release of cyt C (Löffler and Petrides 2003, p. 214). 

 In addition, mitochondria are highly dynamic organelles which are able to fuse or to 

fission in order to regulate their morphology, distribution and activity (Chan 2006). Fusion 

and fission are generally counterbalanced processes, which can be shifted to one direction in 

order to regulate the energy demand; for instance, mitochondria tend to fuse and elongate 

during starvation, while fragmentation (fission) is predominant during excessive nutrient 

supply (Liesa and Shirihai 2013). The regulation of the mitochondrial dynamics is important 

for cellular health or proper function (Hales 2010). By fusion, mitochondria exchange mtDNA 

and share proteins which might enable the mitochondrion to restore its function; a fission 

process which follows fusions might lead to newly refurbished mitochondria (Lindinger et al. 

2010). The fusion machinery of mammals consists of three proteins, mitofusin 1 (Mfn1) and 

Mfn2 as well as the optic atrophy gene 1 (Opa1), while dynamin-related protein 1 (Drp1), 

fission 1 protein (Fis1) and the mitochondrial fission factor (Mff) are part of the mammalian 

fission machinery (Chan 2006, Liesa and Shirihai 2013). 

1.4.2 Mitochondrial DNA (mtDNA) 

1.4.2.1 Origin of mtDNA 

 According to the endosymbiotic theory, mitochondria have been formerly autonomous 

prokaryotes which were taken up by another cell as an endosymbiont. This theory originated 

from the Russian biologist Constantin Mereschkovsky at the beginning of the 20th century 

and was extensively studied by Lynn Margulis during the last century (Campbell and Reece 

2002, p. 549). Molecular genetic analysis of the smaller ribosomal subunit RNA revealed that 

mitochondria are descendents of the α-proteobacteria. The endosymbiotic theory is 

supported by the fact that mitochondria show similarities to bacteria as for instance: (1) the 

creation of new mitochondria occurs only by fission, (2) mitochondria are surrounded by a 

double membrane and (3) mitochondria contain their own DNA – a circular DNA which is 

distinct from the nuclear encoded eukaryotic DNA (Campbell and Reece 2002, p. 550). 

1.4.2.2 Amount of mtDNA molecules per cell 

 Somatic cells have a varying number of ~1,000-10,000 copies of mtDNA molecules 

(Falkenberg et al. 2007). Robin and Wong (1988) reported the number of virtual 

mitochondria and mtDNA molecules to be constant in a specific cell type, but considerable 
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variation between different cell types was found. Each mitochondrion has one to three 

mtDNA molecules (Robin and Wong 1988, Wiesner et al. 1992). All copies of mtDNA of an 

organism or tissue are usually identical (homoplasmy). However, especially among 

individuals with pathogenic mtDNA mutations leading to mitochondrial disease, only a 

fraction of mtDNA might be affected (heteroplasmy, Falkenberg et al. 2007). As the 

generation of the energy equivalent ATP is the major function of mitochondria, tissues of 

high energy demand (e.g. brain, retinal, skeletal and cardiac muscle tissues) are 

predominantly affected by these mutations (Chial and Craig 2008). However, heteroplasmies 

at functionally neutral positions might also be present in individuals without obvious 

mitochondrial disease (Sondheimer et al. 2011). 

1.4.2.3 Characterization of sequence 

 Human mtDNA was completely sequenced for the first time by Frederic Sanger and 

colleagues in Cambridge in 1981 (Anderson et al. 1981). This sequence is referred to as the 

Cambridge Reference Sequence (CRS). The CRS was mainly derived from one person of 

European descent (human placenta mtDNA preparation). However, some regions had to be 

determined using HeLa cell mtDNA (African origin), and a few nucleotides were ambiguous 

and thus assumed to be identical with the respective nucleotide found in bovine mtDNA, 

which was also sequenced at that time (Anderson et al. 1981). As the CRS differed at several 

sites from mtDNA sequences re-sequenced by others, reanalysis was done 18 years later 

using the original placental mtDNA sample (Andrews et al. 1999). As both sequencing errors 

and rare polymorphisms were harbored, the investigators suggested revising the CRS by (1) 

correcting the 10 sequencing errors, (2) retaining rare polymorphisms such as m.263A 

(instead of G) and a C tract of only five Cs (instead of six) between m.311 and m.315, and (3) 

retaining the original numbering by replacing the second C misleadingly found at m.3107 in 

the CRS by an N in the revised CRS (rCRS) in order to remain consistent with previous 

literature (Andrews et al. 1999). 

 Sequencing of human mtDNA revealed a length of 16,569 bp. Due to its unequal base 

distribution mtDNA consists of a heavy strand (H-strand) and a light strand (L-strand, 25 % of 

T, 31 % of C, 31 % of A and 13 % of G; Anderson et al. 1981). Moreover, the genetic code 

deviates from the universal genetic code, as in human or generally in vertebrate mtDNA (1) 

UGA encodes for tryptophan, (2) AGA and AGG are stop codons, (3) AUA encodes for 
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methionine, and (4) AUA and AUU are additional start codons (Anderson et al. 1981, Jukes 

and Osawa 1990). 

1.4.2.4 Coding region 

 The human mtDNA coding region is located between m.577 and m.16025 (Fig. 1.6). It 

encodes for 13 messenger RNAs (mRNAs), 22 transfer RNAs (tRNAs) and two ribosomal RNAs 

(rRNAs); except for one mRNA and eight tRNAs all genes are encoded by the H-strand (Fig. 

1.6, Taylor and Turnbull 2005). The 13 mRNAs are subunits of complex I, III, IV and V of the 

mitochondrial OXPHOS system. The coding region is very compact. Between the genes, only 

very short non-coding regions can be found, and nucleotide overlaps between the genes are 

present as well (Chial and Craig 2008). 

 The 22 tRNAs are sufficient to read all 64 possible codons. Eight tRNAs are able to read 

each four codons, which only differ in the last codon position. These tRNAs are characterized 

by a modified U (pseudouridine) in the first position of the anticodon. Moreover, 13 tRNAs 

are able to read each two codons by building G:U wobbles between the third codon and first 

anticodon position. Apart from leucine and serine, which have two, there is only one tRNA 

for each amino acid (Anderson et al. 1981). 

 
 

Figure 1.6 Coding region of human mtDNA 

The coding region of human mtDNA encodes for subunits of complex I (=NADH-ubiquinone-
oxidoreductase, ND1, ND2, ND3, ND4, ND5, ND6 and ND4L, blue), complex III (=ubiquinol-
cytochrome C-oxidoreductase, Cyt b, green), complex IV (cytocrome c-oxidase, COI, COII and COIII, 
red), complex V (ATPase, ATP6 and ATP8, yellow), two rRNAs (12S and 16S, purple) and 22 tRNAs 
(black line) indicated as single letter code. The light strand origin of replication (OL) is located in the 
coding region, while remaining function locations as e.g. the heavy strand origin of replication (OH) 
are located in the control region (displacement (D)-loop). Adapted by permission from Macmillan 
Publishers Ltd: Nature Reviews Genetics (Taylor and Turnbull, 2005), © 2005.  

http://www.nature.com/nrg/index.html�
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1.4.2.5 Control region 

 The mtDNA control region is an 1122-bp-long non-coding region located between the 

sequences of tRNAPhe and tRNAPro (Fig. 1.6). The control region harbors the origin of 

replication (OH) of the H-strand. H-strand replication results in the formation of a 

displacement loop (D-loop) with the newly synthesized H-strand of ~680 bases; this DNA 

segment mostly does not grow to full length and is known as 7S DNA (Anderson et al. 1981). 

Because of this peculiarity, the control region is synonymously named D-loop. Subsequently, 

the term “D-loop” is used when referring to the control region of mtDNA. The D-loop has 

two hypervariable regions – HV1 (m.16024-m.16365) and HV2 (m.73-m.340) – characterized 

by a greater variability compared with the remaining mtDNA D-loop or coding region (Wilson 

et al. 1993; Fig. 1.7). Later, Lutz et al. (1998) suggested a third hypervariable region after 

having sequenced the D-loop in 200 German individuals. In that sample, the highest density 

of variants was obtained in HV1 (26 %, i.e. 88 variable positions in 342 bp), followed by HV2 

(24 %) and HV3 (18 %), while variant rates of 7 % and 3 % were found in the sequence 

between the hypervariable regions (Lutz et al. 1998). 
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438574
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Figure 1.7 Control region (D-loop) of human mtDNA 

The mtDNA control region is located between tRNAPhe (F) and tRNAPro (P, cf. Fig. 1.6). Three 
hypervariable regions (HV1 to HV3) can be found characterized by a greater variant density. The D-
loop harbors the origin of replication of the heavy strand (OH), the light strand promoter (LSP) and 
the heavy strand promoter 1 (HSP1), while the second heavy strand promoter (HSP2) is located in 
tRNAPhe. Premature termination of H-strand synthesis results in the formation of 7S DNA which is 
included in the formation of the displacement (D-loop). Moreover, mitochondrial transcription factor 
A (TFAM, formerly known as mtTF1) binding sites, several control element/transcription factor 
bindings sites (metallothionein 3 (Mt3) to Mt5), conserved sequence blocks (CSB1 to CSB3), as well 
(extended) termination associated sequences (TAS, ETAS1 and ETAS2) can be found in the D-loop. 
The function of each functionally relevant region is explained in Table 1.2 
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Table 1.2 Functionally relevant regions of the D-loop 

Region Description/Function 
Location 

start 
Location  

end 
Reference 

HV1a 

Hypervariable regions 

m.16024 m.16365 Wilson et al. 1993 
HV1b m.16024 m.16382 Meyer et al. 1999 
HV2a m.73 m.340 Wilson et al. 1993 
HV2b m.57 m.371 Meyer et al. 1999 
HV3 m.438 m.574 Lutz et al. 1998 

Mt5 (CE) 
Intra- and interspecific control 
element (CE)  

m.16194 m.16208 Ohno et al. 1991 

Mt3 (L-strand CE) - cis elements, first found in 5’ 
region of nuclear encoded 
mitochondrial OXPHOS genes, 
later on also detected in mtDNA 
D-loop 

- potentially involved in 
coordinated expression of 
nuclear-encoded and mtDNA 
OXPHOS genes  

m.16499 m.16506 Suzuki et al. 1991 
Mt4 (L-strand CE) m.371 m.379 Suzuki et al. 1991 
Mt3 (H-strand CE) m.384 m.391 Suzuki et al. 1991 

mtTF1 BS binding sites (BS) of 
mitochondrial transcription 
factor A (TFAM, formerly known 
as mtTF1) 

m.233 m.260 Fisher et al. 1987 
mtTF1 BS m.276 m.303 Fisher et al. 1987 
mtTF1 BS m.418 m.445 Fisher et al. 1987 
mtTF1 BS m.525 m.552 Fisher et al. 1987 
LSP (including 

mtTF1 BS) 

L-strand and H-strand promoters  

m.392 m.445 Chang and Clayton 1984 

HSP1 m.545 m.567 Chang and Clayton 1984 
HSP1 (including 

mtTF1 BS) 
m.525 m.567 - - 

HSP2 m.632 m.655 Lodeiro et al. 2012 
CSB1 - Conserved sequence blocks 

- potentially involved in direction 
of transcription termination and 
H-strand primer formation 

m.210 m.234 Sbisà et al. 1997 

CSB2 
m.299 m.315 Sbisà et al. 1997, Pham et 

al. 2006 
CSB3 m.346 m.363 Sbisà et al. 1997 
ETAS1 - (extended) termination 

associated sequences 
- potentially involved in 
premature termination of H-
strand synthesis 

m.16081 m.16140 Sbisà et al. 1997 
ETAS2 m.16294 m.16356 Sbisà et al. 1997 

TAS 
m.16157 m.16172 Roberti et al. 1998,  

Ingman and Gyllensten 
2001 

a LSP region alone also indicated at m.392 to m.445 (Chang and Clayton 1984) 
b HSP2 was indicated at mitomap as m.645 (Montoya et al. 1982, 1983, Yoza et al. 1984), however, 
more recent investigation mapped start of HSP2 at m.644 (Zollo et al. 2012, Lodeiro et al. 2012); 
m.632 to m.655 was selected as HSP2 region, as Lodeiro et al. (2012) randomized these 24 
nucleotides around the transcription start and did not detect transcription in vitro, thus, these 24 
nucleotides might be important HSP2 control elements (e.g. transcription factor binding sites)  
CE, control element; CSB, conserved sequence block; ETAS, extended termination associated 
sequence, HSP, heavy strand promoter; HV, hypervariable region; LSP, light strand promoter; mtTF1 
BS, mitochondrial transcription factor A (TFAM) binding side (TFAM, formerly known as mtTF1), 
OXPHOS, oxidative phosphorylation; TAS, termination associated sequence  
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 Besides OH mapping at m.191 (Anderson et al. 1981), two promoters, the light strand 

promoter (LSP) and the heavy strand promoter 1 (HSP1) can be found in the D-loop (Fig. 

1.7). Binding sites of the mitochondrial transcription factor A (TFAM, formerly known as 

mtTF1) are located near LSP and HSP1, as well as in HV2 (Fig. 1.7, Fisher et al. 1987). 

Moreover, several control elements (i.e. cis elements) are located in the D-loop: Mt3 on L- 

and H-strand, as well as Mt4 and Mt5 on L-strand. These elements are also present in the 5’ 

region of nuclear-encoded mitochondrial OXPHOS genes and hence might be involved in the 

coordinated expression of nuclear and mtDNA encoded OXPHOS genes (Suzuki et al. 1991). 

 In addition, the D-loop has three conserved sequence blocks (CSB1 to CSB3) which are 

moderately to strongly conserved when comparing the mtDNA control region among 

different mammalian orders (Sbisà et al. 1997). They are potentially involved in the 

termination of LSP transcription and direction to primer formation for H-strand replication 

(Sbisà et al. 1997, Pham et al. 2006). The termination associated sequence (TAS) and both 

extended TAS (ETAS1 and ETAS2; Fig. 1.7) are conserved among different mammalian orders 

as well (Sbisà et al. 1997). They are potentially involved in the premature termination of H-

strand synthesis resulting in the 7S DNA and hence D-loop formation (Anderson et al. 1981, 

Sbisà et al. 1997, Roberti et al. 1998). 

1.4.2.6 Transcription and replication 

 Transcription of mtDNA L-strand is initiated in the light strand promoter (LSP), the start 

of which was mapped to m.407A. For H-strand transcription two promoters are present – 

heavy strand promoter 1 (HSP1) at m.561A and HSP2 at m.644A. The latter is not located in 

the D-loop, but in the adjacent tRNAPhe (Fig. 1.7, Zollo et al. 2012). Transcription from LSP 

and HSP2 produce polycistronic precursor RNAs which contain the entire genetic 

information of the respective strand, and excision of tRNAs enables the production of 

mature mRNA and rRNA molecules. By contrast, HSP1 transcription terminates at the 3’ end 

of the 16S rRNA gene (Falkenberg et al. 2007). The mitochondrial DNA-directed RNA 

polymerase (POLRMT) requires the mitochondrial transcription factor A (TFAM) and either 

TFB1M or TFB2M (mitochondrial transcription factor B), as POLRMT is not able to interact 

with the mtDNA promoter sequence itself (Falkenberg et al. 2007). In vitro, however, only 

POLRMT and TFB2M were necessary for transcription of mtDNA fragments (Shutt et al. 2011, 

Zollo et al. 2012). The addition of TFAM at low concentrations leads to further activation of 
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transcription, while excess TFAM concentrations had inhibitory effects (Zollo et al. 2012, 

Lodeiro et al. 2012). 

 Replication of mtDNA occurs continuously without depending on cell cycle phase 

(Falkenberg et al. 2007). It is coupled with the LSP transcription, as during LSP transcription 

RNA primers for H-strand mtDNA replication starting at OH are produced. The molecular 

mechanisms which direct the switch between LSP transcription and primer formation have 

not been completely identified yet. The three CSBs located near LSP might be involved in this 

process, as transition from RNA primer to DNA have been mapped near or within CSB2 

(Falkenberg et al. 2007). Pham et al. (2006) have shown in vitro that mutation of CSB2 and, 

to a smaller extent, mutation of CSB3 decreased premature transcription termination. 

Considering these data, one can conclude that the primer formation and hence the H-strand 

synthesis is realized through sequence specific DNA elements (Pham et al. 2006, Falkenberg 

et al. 2007). After approximately two thirds of the H-strand (leading strand) has been 

synthesized, L-strand (lagging strand) replication starts at its origin of replication (OL) in the 

opposite direction (strand-asymmetric model of replication, Falkenberg et al. 2007). 

Performing in vitro studies, Wanrooij et al. (2008) suggested that compared to H-strand 

replication POLRMT acts as primase in mammalian mitochondria by synthesis of 25 to 75 

base-long RNA primers for lagging strand replication. Besides this classical strand-

asymmetric replication model, advanced electrophoresis methods led to the proposition of 

further replication mechanisms of mtDNA, as for instance a bidirectional coupled leading 

and lagging strand synthesis at the same initiation site (strand-coupled model, Pham et al. 

2006, Kasiviswanathan et al. 2012).  

 Furthermore, mtDNA is organized in nucleoids, which have been isolated by 

immunoaffinity purification to characterize the protein content. Twenty one proteins were 

identified, of which many are involved in mtDNA transcription and replication, e.g. TFAM, 

mitochondrial single-stranded DNA-binding proteins (mtSSB), which mediate the unwinding 

of mtDNA and stabilize mtDNA during replication, TWINKLE (=helicase) or mtDNA 

polymerase γ (POL γ; Falkenberg et al. 2007, St John et al. 2010, Campbell et al. 2012). 

1.4.2.7 Mode of inheritance and haplogroups 

 Human or generally mammalian DNA is exclusively maternally inherited. During 

spermatogenesis, spermatogonia are labeled by ubiquitin (St John et al. 2010). After 

fertilization, these masked sperm mitochondria and their mtDNA are eliminated from the 
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oocyte cytoplasm by proteolysis at the 4 to 8-cell-stage in humans (St John et al. 2000). 

Consequently, the mtDNA from the population present in the oocyte just prior to 

fertilization which predominantly consists of identical copies is inherited to the offspring (St 

John et al. 2010).  

 mtDNA is characterized by a at least 5- to 15-fold higher mutation rate compared with 

nuclear encoded DNA, partly due to its exposition to reactive oxygen species generated by 

the ETC and also limited repair mechanisms (Payne et al. 2013). Mutation rate was 

estimated to 200x10-9 bp-1 year-1 in HV1 and HV2 compared with 0.5x10-9 bp-1 year-1 in the 

nuclear-encoded DNA (Scally and Durbin 2012). The high mutation rate results in high 

mtDNA diversity (Payne et al. 2013).  

 mtDNA is particularly suitable for the investigation of evolutionary aspects, as it is 

exclusively maternally inherited without any recombination events, and its high mutation 

rate enables to differentiate between most recently separated populations (Torroni et al. 

1994). Based on the assumption that all human mtDNA haplotypes can be traced back to 

one common matrilineal ancestor living in Africa ~200,000 years ago, mtDNA variation 

evolved as consecutive accumulation of mutations along maternally inherited lineages. 

These accumulated mutations can be represented in a tree which reflects the phylogenetic 

relationship of mtDNA variants (van Oven and Kayser 2009). Major European and Asian 

haplogroups are branches of the L3 African haplotype, of which haplogroup M 

(predominantly found in the Indian subcontinent and farther east) and N have evolved as 

the first non-African founder nodes (Fernandes et al. 2012). All European haplogroups are 

derived from haplogroup N (Fig. 1.8, Ruiz-Pesini et al. 2007, www.mitomap.org). Fernandes 

et al. (2012) tried to locate the geographical site of the first steps of modern human outside 

of Africa by comparing Southwest Asian samples (Arabian Peninsula) of three minor 

haplogroups of western Eurasia (N1, N2 and X) branching directly from haplogroup N with 

300 European samples. The authors found a relict distribution of these haplogroups in the 

European samples, and thus suggested that modern humans spread from the Gulf Oasis 

region to the Near East and Europe 55,000 to 24,000 years ago. 

Pertaining to Europe, haplogroup H is the most frequent (41 % in West Europe, 48.6 % in 

Germany) followed by haplogroup U (18 % in West Europe, 13.5 % in Germany; 

www.mitomap.org; Pliss et al. 2006, Table 1.3). The rCRS (Anderson et al. 1981, Andrews et 

al. 1999) has a sub-haplogroup of H, H2a2a (Fig. 1.8, www.phylotree.org; built 11). 

 

http://www.mitomap.org/�
http://www.mitomap.org/�
http://www.phylotree.org/�
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Figure 1.8 Simplified haplogroup tree 

Major European and Asian haplogroups are branches from the L3 African haplotype. Haplogroups M 
and N are the first non-African founder nodes. All European haplogroups are derived from 
haplogroup N. For each major haplogroup, sub-haplogroups are existed. The rCRS (indicated as star) 
belongs to haplogroup H, the most frequent European major haplogroup. Figure from 
www.mitomap.org, 2012 (Ruiz-Pesini et al. 2007). Figure content licensed by a Creative Commons 
Attribution 3.0 license. 
 
 
Table 1.3 Estimated haplogroup frequencies of West Europe in % 

 D H I J K L M N R T U V W X n. d. 
West 
Europe a 

1 41 2 9 5 1 1 1 - 8 18 7 2 2 3 

Germany b 0.6 48.6 c 1.8 8.4 7.5 1.2 -d 0.6 0.3 9.0 13.5 4.5 2.7 1.2 - 
a Estimations based on means from published frequencies (bearing in mind that sometimes not all 

haplogroups have been typed), compiled in 2009 for Mitomap only for illustrative purpose 
(www.mitomap.org, Ruiz-Pesini et al. 2007); n. d., not defined 

b data from Pliss et al. (2006) which are based on a total of n=333 German individuals 
c haplogroups HV and preHV included 
d all individuals of haplogroup M belonged to haplogroup D which directly branches off of M 

 

1.4.3 Nuclear encoded mitochondrial genes 

 Besides those 13 protein encoding genes on the mtDNA, about 1,500 genes are 

estimated to be necessary to realize mitochondrial biogenesis (Lopez et al. 2000, Bar-Yaacov 

et al. 2012). Whereas for most of the mitochondrial functions (e.g. apoptosis, citric acid cycle 

or nucleotide biosynthesis) only proteins encoded by nuclear genes are involved, for 

http://www.mitomap.org/�
http://creativecommons.org/licenses/by/3.0/legalcode�
http://creativecommons.org/licenses/by/3.0/legalcode�
http://www.mitomap.org/�
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OXPHOS and the mitochondrial translation machinery proteins encoded by nuclear DNA and 

mtDNA are required (Bar-Yaacov et al. 2012).  

 Up to date, the largest investigation on the identification of mitochondrial proteins was 

done by Pagliarini et al. (2008). The authors isolated mitochondria from 14 different mouse 

tissues and performed mass spectroscopy (MS). Subsequently, the received MS data were 

compared with six pre-existent genome-scale datasets of mitochondrial localization (such as 

presence of mitochondrial target sequence (Fig. 1.9), yeast homology, transcriptional co-

expression with known mitochondrial genes or ancestry with Rickettsia prowazekii, the 

closest still living bacterial relative of human mitochondria; Calvo et al. 2006). Further 

validation was achieved by green fluorescent protein tagging and a literature check of prior 

experimentally identified mitochondrial proteins. This resulted in an inventory of 1,098 

mouse mitochondrial proteins called MitoCarta 

(www.broad.mit.edu/publications/MitoCarta/), from which 1,012 human homologs can be 

derived (including the 13 from the mtDNA and 31 encoded on sex chromosomes; Pagliarini 

et al. 2008). The 1,012 proteins/genes represent ~85 % of all assumed mitochondrial 

proteins/genes (Pagliarini et al. 2008, Segrè et al. 2010). 

 In addition to characteristic entrance sequences (Fig. 1.9), the identified MitoCarta genes 

are significantly shorter (UTRs and coding region), and more highly expressed in comparison 

with all mouse genes. Their promoters are enriched for sequence motifs, as for instance 

transcription factor binding sites, and tend to have CpG islands, while TATA boxes are not 

present. The latter feature might explain their higher expression levels, as housekeeping 

genes generally lack these boxes (Pagliarini et al. 2008).  

 

 

+H3N – MLRTSSLFTRRVQPSLFRNILRLQST
 

Figure 1.9 Example of mitochondrial entrance sequence 

Entrance sequence of nuclear encoded mitochondrial genes is recognized by receptors being located 
on the outer mitochondrial membrane, and only proteins carrying such sequences are imported. 
Single letter amino acid code is used (red, hydrophobic proteins; yellow, basic proteins; green, serine 
and threonine). Entrance sequences typically have a length of 15 to 35 amino acids and are enriched 
by positively charged amino acids (serine and threonine). A consensus sequence has not yet been 
found. Figure adapted from Stryer (1999, p. 975).  

http://www.broad.mit.edu/publications/MitoCarta/�
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1.4.4 Nuclear-mitochondrial interactions 

 For most mitochondrial functions, only nuclear-encoded proteins are necessary, 

however, the mitochondrial translation machinery and OXPHOS require both nuclear- and 

mtDNA-encoded proteins (Fig. 1.10, Bar-Yaacov et al. 2012). Thus a communication between 

both compartments (nucleus and mitochondria) as well as a coordinated expression of the 

two genomes is indispensable (Ryan and Hoogenraad 2007). 

 
 

Figure 1.10 Interplay of nuclear and mtDNA-encoded proteins 

For most mitochondrial functions only nuclear-encoded proteins are necessary (yellow). For OXPHOS 
(complex I, III, IV and V, blue) and the mitochondrial translation machinery (green) both nuclear-
encoded and mtDNA-encoded genes are required. Reprinted from Biochimica et Biophysica Acta 
(BBA) – Gene Regulatory Mechanisms, 1819, Bar-Yaacov et al., Mitochondrial-nuclear co-evolution 
and its effects on OXPHOS activity and regulation, pp. 1107-1111, © 2012, with permission of 
Elsevier. 
 
 
 Several transcription factors and coactivators are involved in coordinating nuclear-

mitochondrial interactions. The peroxisome-proliferator-activated receptor coactivator-1α 

(PGC-1α) can be considered the key regulator/coordinator of mitochondrial biogenesis. 

External stimuli such as energy deprivation during exercise, fasting or cold have been found 

to increase PGC1α transcription in the nucleus through upstream cascades and transcription 

factors as for instance the cAMP response element-binding protein (CREB). PGC1α activates 

the key transcription factors (e.g. ERRα, NRF1, NRF2, MEF-2 and PPARα) which in turn 

enhance transcription of nuclear genes responsible for several mitochondrial functions. For 

instance, the nuclear respiratory factor 1 (NRF1) activates TFAM which regulates mtDNA 
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transcription and regulation (Fig. 1.11, Ryan and Hoogenraad 2007, Scarpulla 2008). As 

mentioned above, nuclear-encoded mitochondrial genes are enriched for sequence motifs 

such as transcription factor binding sites (Pagliarini et al. 2008). Those genes belonging to 

one pathway in mitochondria (e.g. OXPHOS or β-oxidation) share recognition elements of a 

few transcriptions factors. This might enable a collective gene expression of all genes of the 

respective pathway (Moyes et al. 1998). Interestingly, sequence recognition sites of some 

transcription factors such as metallothionein 3 (Mt3) or Mt4 have been found in nuclear-

encoded OXPHOS genes and in the D-loop. These might be involved in the coordinated 

expression of both nuclear- and mtDNA encoded OXPHOS genes (Suzuki et al. 1991). 

 

 

 
 

Figure 1.11 Nuclear-mitochondrial communication 

Nuclear activity of peroxisome-proliferator-activated receptor coactivator-1α (PGC-1α) is a central 
regulator or coordinator of mitochondrial biogenesis, which is activated by different stimuli via 
different cascades.  
AMPK, 5' adenosine monophosphate-activated protein kinase; Ca, calcium; CaMKIV, 
calcium/calmodulin-dependent protein kinase type IV; cAMP, cyclic adenosine monophosphate; 
cGMP, cyclic guanosine monophosphate; COX, cytochrom-c-oxidase; CREB, cAMP response 
element-binding protein; ERRα, estrogene related receptor α; MEF-2, myocyte enhancer factor-
2; mtDNA, mitochondrial DNA; NRF1, nuclear respiratory factor 1; NRF2, nuclear respiratory factor 
2; PKA, protein kinase A; PPARγ, peroxisome-proliferator-activated receptor γ.  
Figure from Scarpulla (2008).  
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1.5 Mitochondrial/mtDNA alterations and body weight associated 

phenotypes 

1.5.1 Variation in mitochondrial genes 

1.5.1.1 Common polymorphisms in mtDNA 

 Pertaining to common polymorphisms, the variant allele m.16189C of the mtDNA D-loop 

polymorphism m.16189T/C accompanied by an uninterrupted poly-C tract at m.16184 to 

m.16193 was found to be nominally associated with leanness in 161 Australian mothers and 

their 20-year-old offspring (Parker et al. 2005). Saxena et al. (2006) did not find association 

between common SNPs of the mtDNA coding region and BMI in adults of European descent. 

The study was primarily focused on investigating T2DM in association with mtDNA SNPs 

using a cohort of each 3,304 diabetic and non-diabetic adults. In both groups, a mean BMI 

above 25 kg/m2 was present. The subsample used for association testing of BMI was not 

described in more detail. Hence, the power of this study regarding BMI was elusive. 

 Although first GWAS on BMI or obesity were published in 2007 (e.g. Frayling et al. 2007, 

Hinney et al. 2007), mtDNA SNPs have not been investigated until recently in association 

with body weight and/or related traits. In 2011, Yang et al. described the mitochondrial 

haplogroup X to be associated with a lower BMI in a sample of 2,286 adult unrelated 

Caucasians (Yang et al. 2011b). However, the study lacked confirmation in an independent 

sample. Grant et al. (2012) performed a GWAS on both European-American and African-

American case-control samples of obese and lean children, and did not find any mtDNA 

variant or heteroplasmy being associated with increased BMI. 

1.5.1.2 Mitochondrial diseases  

 Infrequent mutations in mtDNA with non-synonymous amino acid exchanges or tRNA 

nucleotide exchanges are predominantly associated with severe phenotypes like blindness, 

muscle weakness or movement disorders (Li et al. 2012), and the function of tissues with 

high energy demand (nervous system and skeletal muscle) are most pronouncedly affected 

(Chial and Craig 2008). Only a few reports referred to the body weight of the patients. For 

instance, patients with mitochondrial encephalopathy lactic acidosis and stroke-like 

syndrome (MELAS), which is caused by a transition in tRNALeu(UUR) (m.3243A/G), are 

characterized by a lean to normal weight phenotype (Suomalainen et al. 2011). This 

transition was also associated with the cyclic vomiting syndrome (Salpietro et al. 2003). 

Horváth et al. (2009) reported of a very lean girl (BMI < 1st percentile) with clinical symptoms 
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of mitochondrial neurogastrointestinal encephalopathy (MNGIE) syndrome-like 

gastrointestinal dysmotility and cachexia. Comparatively, MNGIE patients harboring 

mutations in the thymidine phosphorylase (TYMP) gene and being characterized by 

abnormal mitochondria and OXPHOS defects are very lean as well (Suomalainen et al. 2011). 

By contrast, patients with mitochondrial recessive ataxia syndrome (MIRAS) were found to 

be obese (Suomalainen et al. 2011). These patients harbor mutations in the polymerase γ 

(POLG1). Thus, mtDNA replication might lead to multiple deletions (Hamosh et al. 2005). 

1.5.2 Alterations in mitochondrial gene expression and function in obese individuals 

 As cellular power plants, mitochondria are key organs of energy metabolism, and thus, 

the assumption of a relationship between altered body weight and disturbed mitochondrial 

function might suggest itself. Although there is a body of publications on alterations of 

mitochondrial function and T2DM or insulin resistance, the number of studies focusing only 

on obesity in combination with mitochondria is rather small. 

 In adult obese individuals, smaller mitochondria were found in skeletal muscle compared 

with lean individuals (Kelley et al. 2002). Moreover, these individuals were characterized by 

a reduced skeletal muscle complex I activity. Niemann et al. (2011) investigated the right 

atrial cardiomyocytes of 60 male cardiac surgery patients without pre-existing T2DM, which 

were assigned to four groups of each 15 patients (young/normal weight, young/obese, 

old/normal weight and old/obese). The division by age occurred as mitochondria function 

diminishes by age. Young patients were <55 years, while old were >70 years, and body 

weight status was defined by BMI (Table 1.1). The authors found that mRNA expression of 

NRF1 and TFAM as well as mRNA expression of ND6, a mtDNA encoded subunit of complex I, 

were significantly reduced in old patients (both weight statuses) and young obese patients. 

In addition, a nuclear-encoded protein of complex I – NADH dehydrogenase (ubiquinone) 1 

beta subcomplex 8 (NDUFB8) – was slightly reduced in both groups of old patients and 

young obese. Comparatively to Kelley et al. (2002), complex I activity was reduced in the 

obese as well as in normal weight old individuals (Niemann et al. 2011). 
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2 Objectives 

 Due to the central role of mitochondrial in energy metabolism as the cellular power 

plants, the overall objective of the present thesis was to assess whether variation in 

mitochondrial genes are associated with obesity. Within this scope, both variation in mtDNA 

and nuclear-encoded mitochondrial genes were addressed. 

2.1 Analysis of mtDNA 

 Based on the empirical observation that correlations in BMI between mothers and their 

offspring were higher compared with fathers and their offspring and the greater correlations 

in BMI between maternal half-brothers than paternal ones (Hebebrand et al. 2001a, 

Magnusson and Rasmussen 2002), one specific objective was to assess whether variations in 

the exclusively maternally inherited mtDNA contributes to this parental effect.  

 To address this question, two basic approaches were performed: 

1) an association study of common mtDNA SNPs and haplogroups in two case-control 

samples for obesity in children and adolescents (discovery) and adults (confirmation) 

with subsequent re-sequencing of complete mtDNA of ten individuals of 

predominantly haplogroup W; this haplogroup was nominally over-represented in 

the controls of the discovery and thus potentially protective against increased body 

weight, and the re-sequencing was done to detect functionally relevant variants with 

impact on body weight explaining its initial association 

2) re-sequencing of mtDNA D-loop in (extremely) obese children and adolescents 

(cases) and lean adult controls to detect further variations potentially associated with 

obesity 

 The experiments have been started in August 2010. At that time, a well powered GWAS 

on mtDNA SNPs pertaining to obesity or BMI had not been published. 

2.2 Analysis of nuclear-encoded mitochondrial genes 

 Regarding to the latest GWAS meta-analysis of 250,000 individuals newly identified and 

confirmed loci only explain 1.5 % of the BMI variance which is in large discrepancy to the 

empirical estimated heritability of 40 % to 70 %. Due to their polygenic nature and small 

effect sizes, a three-fold increase in sample size would not lead to a substantial increase in 

explained variance (Hebebrand et al. 2010, Speliotes et al. 2010). Pathway-based 

approaches or gene set enrichment analysis (GSEA) might reveal further insight into the 
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genetics of obesity. Based on the observations of a reduced mitochondrial function in obese 

individuals (Kelley et al. 2002, Niemann et al. 2011), one specific objective was to assess 

whether nuclear-encoded mitochondrial genes are enriched for modest association signals 

that collectively have an impact on mitochondrial function and potentially influence body 

weight. 

 To address this question, a GSEA was performed using three gene sets of nuclear 

encoded mitochondrial genes. The three gene sets – (1) 16 nuclear regulators of 

mitochondrial genes, (2) 91 OXPHOS genes, and (3) 966 nuclear-encoded human 

mitochondrial genes listed in the MitoCarta compendium (Pagliarini et al. 2008) – were from 

Segrè et al. (2010) who used these in meta-analysis GSEA for T2DM and related traits. 
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3 Subjects and Methods 

3.1 Subjects 

DISCOVERY

Samples for early onset extreme obesity

Case-control sample of 453 
(extremely) obese children and

adolescents (cases) and 435 lean
adult controls

Family-based sample of 705 obesity
trios, i.e. 705 (extremely) obese
children or adolescents (=index

probands) and their biological parents

KORA c SHIP c POPGEN c

CONFIRMATION

Population-based samples a

Association
study of 
SNPs c of 
mtDNA c

D-Loop c re-
sequencing

Complete
re-sequen-

cing of 
mtDNA c

GSEA c of 
nuclear
encoded

mitochon-
drial genes

1,158 b cases vs. 435 controls 1,697 cases vs. 2,373 controls

5 cases vs. 5 controls

192 cases vs. 192 controls

463 cases vs. 483 controls705 trios453 cases vs. 435 controls

 
Figure 3.1 Study samples and purpose in the present analysis 
a only individuals with a BMI > 30 kg/m2 (cases) and < 25 kg/m2 (controls) were included into the 

analyses 
b 453 and 705 (extremely) obese children and adolescents from the case-control and family-based 

sample, respectively 
c D-loop, displacement loop; GSEA, gene set enrichment analysis; mtDNA, mitochondrial DNA; KORA, 

Kooperative Gesundheitsförderung in der Region Augsburg; POPGEN, population genetic research 
project of the national genome research network; SHIP, The Study of Health in Pomerania; SNPs, 
single nucleotide polymorphisms 

 
 Two types of samples for early onset extreme obesity, i.e. a case-control (CC) and a 

family-based sample (“trios”), as well as three population-based adult samples (KORA, SHIP 

and POPGEN) were used for the present analyses (Fig. 3.1; Table 3.1). All samples had been 

recruited for various health related purposes including genetic association studies (Scherag 

et al. 2010, Rückert et al. 2011, Völzke et al. 2006, Nöthlings and Krawczak 2012). Thus, for 

the present analysis, both genotype and phenotype data were already present.  

 All participants (in case of minors their parents) gave written informed consent. The 

studies were approved by the Ethics Committees of the Universities of Marburg, Essen, 
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Greifswald and Kiel, as well as the Bavarian Medical Association, and conducted in 

accordance with the Declaration of Helsinki. 

3.1.1 Samples for early onset extreme obesity 

3.1.1.1 Case-control sample 

 The case-control (CC) sample consisted of 453 (extremely) obese children and 

adolescents and 435 lean or normal weight adult controls. The mean body mass index (BMI) 

of the cases (mean age: 14.37 ± 3.75 years) was 33.15 ± 6.68 kg/m2 (Table 3.1). 84.4 % of the 

cases were extremely obese (BMI ≥ 99 th percentile) using age- and sex-specific percentile 

criteria for the German population from the National Nutrition Survey I (Hebebrand et al. 

1994). The recruitment of the cases occurred in hospitals which are specialized for the 

treatment of extreme obesity in children and adolescents (Murnau, Berchtesgaden, Gießen, 

Ulm and Marburg). The lean or normal weight healthy adult controls (mean age: 26.08 ± 

5.75 years) had a mean BMI of 18.31 ± 1.11 kg/m2 (Table 3.1). These individuals were 

recruited at the University of Marburg and interviewed regarding their course of body 

weight development. At the age of 15 years, i.e. a similar age to that of the cases, 78 % of 

the lean and normal weight controls reported that their body weight was below the average 

body weight (Hinney et al. 2007). The CC sample was taken as the discovery sample for the 

gene set enrichment analysis (GSEA, Fig. 3.1). To increase the power for association testing 

of the mtDNA SNPs, the sample was enlarged by 705 (extremely) obese children and 

adolescents cases (i.e., the index probands from the family-based trios, cf. 3.1.1.2). The 

mean BMI of the 1158 cases was 32.45 ± 6.19 kg/m2 (Table 3.1).  

 The complete mtDNA was re-sequenced from five lean (all of haplogroup W) and five 

obese individuals (three of haplogroup W, each one of haplogroup H and HV) from the CC 

sample (Fig. 3.1). In addition, a case-control sample of each 192 cases and controls was used 

for variant detection in the mitochondrial D-loop (Fig. 3.1). Most of these individuals (except 

for 14 cases and six controls) were from the CC sample. Both mean BMI and mean age was 

similar to the full CC sample (Table 3.1). 

3.1.1.2 Family-based sample (‘Trios’) 

 The family-based sample comprised 705 obesity trios, each consisting of one (extremely) 

obese child or adolescent (index proband) and both biological parents. Similar to the cases 

of the CC sample, the families were recruited in hospitals specialized for the inpatient 

treatment of extreme obesity in children and adolescents (Bad Orb, Murnau, Wien, Ulm, 
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Gießen, Berchtesgaden, and Marburg). The mean age and BMI of the index probands was 

13.44 ± 3.01 years and 32.02 ± 5.82 kg/m2, respectively (Table 3.1). According to reference 

data from the German National Nutrition Survey I (Hebebrand et al. 1994), 83.8 % of the 

index probands were extremely obese (BMI ≥ 99th percentile). The parents (mean age: 42.54 

± 6.02 years) had a mean BMI of 30.28 ± 6.33 kg/m2 (Table 3.1). The index probands were 

independent of the cases of the CC sample. The family-based sample was used as a 

confirmation sample for the GSEA (Fig. 3.1). 

3.1.2 Population-based samples 

3.1.2.1 KORA 

 KORA is an epidemiological study group of the region of Augsburg (Kooperative 

Gesundheitsförderung in der Region Augsburg) which includes about 18,000 individuals 

between 25 and 74 years of age at recruitment. The 1,743 adult participants (53 % females), 

of which genome-wide SNP data on the Affymetrix Genome-Wide Human SNP Array 6.0 are 

available, are a sub-sample of the total KORA follow-up 4 sample (Rückert et al. 2011, Table 

3.1). 463 of these individuals categorized as obese cases (mean BMI: 33.55 ± 3.66 kg/m2, 

mean age: 55.84 ± 8.54 years) and 483 individuals as normal weight or lean controls were 

included in the present study (mean BMI: 22.84 ± 1.48 kg/m2, mean age: 50.55 ± 8.64 years, 

Table 3.1).  

3.1.2.2 SHIP 

 SHIP (The Study of Health in Pomerania) is a cross-sectional population-based health 

survey in Northeast Germany comprising 4,310 individuals between 20 and 79 years of age 

at recruitment (Völzke et al. 2006). For 4,073 of these individuals (51 % females, Table 3.1) 

GWAS data (Affymetrix Genome-Wide Human SNP Array 6.0) are available. 1,045 were 

obese (mean BMI: 33.56 ± 3.30 kg/m2, mean age: 54.76 ± 14.28 years) and 1,379 were 

normal weight and lean individuals (mean BMI: 26.26 ± 4.20 kg/m2, mean age: 42.43 ± 

16.08 years) and included in the present analysis (Table 3.1).  

3.1.2.3 POPGEN 

 POPGEN is a population-based genetic research project founded in 2003 at the University 

Clinic of Schleswig-Holstein for the research of genetic risk factors for complex diseases 

(Nöthlings and Krawczak 2012). Specific patient groups as well as a random population-

based sample of 1,317 individuals (19 to 77 years of age, 45 % females) were recruited. For 
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1,198 individuals of the population-based sample GWAS data (Affymetrix Genome-Wide 

Human SNP Array 6.0) were available. Amang these, 738 subjects (46 % females) were 

recruited via the local population registry and 460 (41 % females) as blood donors. BMI of 

the individuals recruited via the local population registry was estimated by self-report, while 

the BMI of the blood donors was measured. The cases and controls of the sample were used 

for confirmation of mtDNA SNP analysis (Fig. 3.1). Because of the different modes of 

recruitment and determination of BMI, statistical analysis was done stratified for both 

POPGEN sub-samples (Table 3.1).  

 

 A large case-control sample was created from all three population-based samples which 

consisted of 1,697 cases (mean BMI: 33.57 ± 3.47 kg/m2, mean age: 55.08 ± 12.87 years) and 

2,373 controls (mean BMI: 22.57 ± 1.69 kg/m2, mean age: 46.15 ± 15.37 years, Table 3.1). 

This sample was used for confirmation of mtDNA SNP analysis. In addition, KORA as a case-

control sample was used for confirmation of GSEA (Fig. 3.1). 

Table 3.1 Phenotypical characteristics of subjects  

Sample Description Status n total Age [years] BMI [kg/m2] BMI SDS a 
   {% female} {female} {female} {female} 
    (male) (male) (male) 

Samples for early onset extreme obesity  mean ± SD mean ± SD mean ± SD 

Case-control 
(CC) sample 

(extremely) 
obese children 

and adolescents 
cases 

453 14.37 ± 3.75 33.15 ± 6.68 4.55 ± 2.16 
{58.00} {14.50 ± 3.67} {33.18 ± 6.84} {4.66 ± 2.18} 

 (14.18 ± 3.85) (33.11 ± 6.48) (4.40 ± 2.12) 

Lean or normal 
weight subjects controls 

435 26.08 ± 5.75 18.31 ± 1.11 -1.45 ± 0.34 

{61.00} {26.54 ± 6.37} {17.58 ± 0.95} {-1.35 ± 0.30} 
 (25.38 ± 4.57) (18.86 ± 0.94) (-1.60 ± 0.36) 

Reduced CC 
sample  
(D-loop 
sample) b 

(extremely) 
obese children 

and adolescents 
cases 

192 13.87 ± 3.05 33.00 ± 7.24 4.49 ± 2.38 
{52.60} {13.79 ± 3.11} {33.37 ± 8.20} {4.75 ± 2.67} 

 (13.95 ± 2.99) (32.59 ± 6.01) (4.19 ± 1.98) 

Lean or normal 
weight subjects controls 

192 25.50 ± 3.95 18.37 ± 1.09 -1.46 ± 0.33 
{45.31} {24.93 ± 3.82} {17.61 ± 0.71} {-1.31 ± 0.24} 

 (25.97 ± 4.01) (19.01 ± 0.93) (-1.59 ± 0.34) 

Family-based 
sample (Trios) 

(extremely) 
obese children 

and adolescents 
cases 

705 13.44 ± 3.01 32.02 ± 5.82 4.23 ± 1.96 
{54.89} {13.54 ± 3.04} {32.36 ± 6.04} {4.50 ± 2.03} 

 (13.31 ± 2.98) (31.60 ± 5.51) (3.91 ± 1.81) 

parents parents 
1410 42.54 ± 6.02 30.28 ± 6.33 1.65 ± 1.84 

{50.00} {40.89 ± 5.44} {30.23 ± 7.12} {1.75 ± 1.88} 
 (44.21 ± 6.12) (30.34 ± 5.42) (1.55 ± 1.78) 

Enlargement 
of CC by 705 
cases from 
Trios 

(extremely) 
obese children 

and adolescents 
cases 

1158 13.79 ± 3.35 32.45 ± 6.19 4.35 ± 2.04 
{55.81} {13.91 ± 3.34} {32.66 ± 6.39} {4.55 ± 2.10} 

 (13.65 ± 3.36) (32.18 ± 5.93) (4.10 ± 1.95) 

Table 3.1 is continued on the next page 
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Table 3.1 Phenotypical characteristics of subjects – continued  

Sample Description Status n total Age [years] BMI [kg/m2] BMI SDS a 
   {% female} {female} {female} {female} 
    (male) (male) (male) 

Population-based samples mean ± SD mean ± SD mean ± SD 

KORA population-
based 

population-
based 

1743 53.87 ± 8.86 27.75 ± 4.56 0.68 ± 1.28 
{51.06} {53.63 ± 8.80} {27.51 ± 5.08} {0.71 ± 1.30} 

 (54.12 ± 8.91) (28.00 ± 3.94) (0.65 ± 1.27) 

As case-control 
sample 

obese subjects 
(BMI ≥ 30) cases 

463 55.84 ± 8.54 33.55 ± 3.66 2.31 ± 1.10 
{53.13} {56.46 ± 8.36} {34.04 ± 3.75} {2.37 ± 1.00} 

 (55.14 ± 8.70) (33.00 ± 3.48) (2.24 ± 1.19) 

normal weight 
subjects  

(BMI < 25) 

controls 
483 50.55 ± 8.64 22.84 ± 1.48 -0.61 ± 0.45 

{66.25} {49.83 ± 8.17} {22.63 ± 1.51} {-0.49 ± 0.41} 
 (51.96 ± 9.38) (23.26 ± 1.32) (-0.83 ± 0.42) 

SHIP population-
based 

population-
based 

4073 49.73 ± 16.27 27.31 ± 4.77 0.75 ± 1.33 
{50.75} {48.6 ± 16.04} {26.95 ± 5.35} {0.76 ± 1.36} 

 (50.89 ± 16.44) (27.69 ± 4.04) (0.75 ± 1.29) 

As case-control 
sample 

obese subjects 
(BMI ≥ 30) cases 

1045 54.76 ± 14.28 33.56 ± 3.3 2.47 ± 1.03 
{51.39} {54.78 ± 14.31} {34.15 ± 3.6} {2.55 ± 1.05} 

 (54.73 ± 14.27) (32.94 ± 2.82) (2.39 ± 1.00) 

normal weight 
subjects  

(BMI < 25) 
controls 

1379 42.43 ± 16.08 22.43 ± 1.76 -0.46 ± 0.56 
{62.73} {41.49 ± 15.06} {22.14 ± 1.82} {-0.35 ± 0.52} 

 (44.01 ± 17.56) (22.93 ± 1.53) (-0.63 ± 0.57) 

POPGEN  
(from local 
registry) 

population-
based 

population-
based 

738 61.06 ± 10.57 26.26 ± 4.2 0.21 ± 1.22 
{45.53} {61.76 ± 10.7} {25.85 ± 4.64} {0.19 ± 1.19} 

 (60.48 ± 10.44) (26.6 ± 3.76) (0.22 ± 1.24) 

As case-control 
sample 

obese subjects 
(BMI ≥ 30) cases 

111 61.5 ± 10.49 33.46 ± 3.81 2.26 ± 1.18 
{47.75} {63.06 ± 9.52} {33.93 ± 3.96} {2.25 ± 1.02} 

 (60.07 ± 11.19) (33.02 ± 3.65) (2.28 ± 1.32) 

normal weight 
subjects  

(BMI < 25) 
controls 

306 59.9 ± 11.76 22.67 ± 1.69 -0.79 ± 0.54 
{52.61} {59.53 ± 12.14} {22.28 ± 1.79} {-0.7 ± 0.55} 

 (60.32 ± 11.36) (23.11 ± 1.45) (-0.89 ± 0.52) 

POPGEN 
(blood donors) 

population-
based 

population-
based 

460 43 ± 12.66 26.23 ± 4.53 0.51 ± 1.42 
{40.87} {40.02 ± 11.82} {25.84 ± 5.05} {0.66 ± 1.43} 

 (45.07 ± 12.82) (26.51 ± 4.11) (0.4 ± 1.4) 

As case-control 
sample 

obese subjects 
(BMI ≥ 30) cases 

78 45.22 ± 11.34 33.86 ± 4.09 2.75 ± 1.58 
{42.31} {41.73 ± 9.71} {34.74 ± 3.84} {2.99 ± 1.32} 

 (47.78 ± 11.85) (33.21 ± 4.18) (2.57 ± 1.74) 

normal weight 
subjects  

(BMI < 25) 
controls 

205 39.89 ± 12.44 22.64 ± 1.56 -0.48 ± 0.57 
{47.32} {39.07 ± 12.48} {22.21 ± 1.59} {-0.3 ± 0.56} 

 (40.62 ± 12.41) (23.03 ± 1.43) (-0.64 ± 0.53) 

All cases and 
all controls 
from the 
population-
based samples 

obese subjects 
(BMI ≥ 30) 

cases 
1697 55.08 ± 12.87 33.57 ± 3.47 2.42 ± 1.10 

{51.21} {55.27 ± 12.89} {34.13 ± 3.67} {2.49 ± 1.06} 
 (54.87 ± 12.86) (32.98 ± 3.15) (2.36 ± 1.14) 

normal weight 
subjects  

(BMI < 25) 

controls 
2373 46.15 ± 15.37 22.57 ± 1.69 -0.53 ± 0.55 

{60.81} {45.23 ± 14.71} {22.27 ± 1.75} {-0.42 ± 0.52} 
 (47.57 ± 16.26) (23.03 ± 1.47) (-0.71 ± 0.54) 

a BMI SDS calculation based on reference data of the National Nutrition Survey I (Hebebrand et. al. 
1994).b All individuals except for 14 cases and six controls are from CC sample, as analyses of 
Affymetrix Genome-Wide Human SNP Array 6.0 failed for these 20 individuals.  
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3.2 Chemicals and buffers 

Table 3.2 Used chemicals in alphabetical order 

Chemicals Producer Method 

Bromophenol blue Merck KGaG, Darmstadt, Germany Gel electrophoresis 
DirectLoadTM Wide Range DNA 

Marker (50-10,000 bp) Sigma-Aldrich Chemie GmbH, Munich, Germany Gel electrophoresis 

dNTPs (100 mM) Sigma-Aldrich Chemie GmbH, Munich, Germany PCR 
EDTA Karl Roth GmbH, Karlsruhe, Germany Gel electrophoresis 
Ethidium bromide Karl Roth GmbH, Karlsruhe, Germany Gel electrophoresis 
Expand Long Template PCR 

System 
Roche Diagnostics Deutschland GmbH, Roche 

Applied Science, Mannheim, Germany PCR 

Ficoll Type 400 Sigma-Aldrich Chemie GmbH, Munich, Germany Gel electrophoresis 
Glacial acetic acid Karl Roth GmbH, Karlsruhe, Germany Gel electrophoresis 
HCl Karl Roth GmbH, Karlsruhe, Germany Gel electrophoresis 

LongAmp® Taq PCR Kit New England BioLabs® Inc., Ipswich, MA, USA PCR 
MgCl2 (25 mM) Sigma-Aldrich Chemie GmbH, Munich, Germany PCR 
NaOH Karl Roth GmbH, Karlsruhe, Germany Gel electrophoresis 

Oligonucleotides (Primers) Sigma-Aldrich Chemie GmbH, Munich, Germany PCR 
PCR buffer 10x Sigma-Aldrich Chemie GmbH, Munich, Germany PCR 
peqGOLD Universal Agaroses PEQLAB Biotechnologie GMBH, Erlangen, Germany Gel electrophoresis 

Taq DNA Polymerase Sigma-Aldrich Chemie GmbH, Munich, Germany PCR 
Tris Karl Roth GmbH, Karlsruhe, Germany Gel electrophoresis 
Tris-HCl Karl Roth GmbH, Karlsruhe, Germany Gel electrophoresis 

Xylene cyanol Karl Roth GmbH, Karlsruhe, Germany Gel electrophoresis 

 

 For 50 x TAE buffer production, Tris, Tris HCl and EDTA were diluted in 500 mL H2O 

(bidest.). Glacial acetic acid was added, and H2O (bidest.) filled-up to 1 L (Table 3.3). For 

production of the loading buffer, all ingredients (Table 3.4) were diluted in 50 mL H2O 

(bidest.), and H2O (bidest.) was filled-up to 100 mL. Afterwards, pH was adjusted to 8.3 with 

NaOH or HCl in both buffers. 

Table 3.3 Components of 50 x TAE buffer for gel electrophoresis 

 Final volume 1 L Final concentration [M] 

Tris 230 g 2.0 Tris HCl 15 g 
glacial acetic acid 57.1 mL 2.0 
EDTA 100 mL of 0.5 M EDTA 0.05 

 

Table 3.4 PCR product loading buffer for agaroses gels 

 Final volume 100 mL  Final concentration [mM] 

Bromophenol blue 0.25 g 3.6 
Xylene cyanol  0.25 g 4.6 
Ficoll 400 15 g 0.4 
EDTA  4.46 g 12 
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http://dict.leo.org/#/search=glacial&searchLoc=0&resultOrder=basic&multiwordShowSingle=on�
http://dict.leo.org/#/search=acetic&searchLoc=0&resultOrder=basic&multiwordShowSingle=on�
http://dict.leo.org/#/search=acid&searchLoc=0&resultOrder=basic&multiwordShowSingle=on�
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3.3 Molecular genetic analyses 

3.3.1 Genotyping 

 All individuals (except for 14 cases and six controls whose D-loop was re-sequenced) 

were genotyped by the Affymetrix Genome-Wide Human SNP Array 6.0. This SNP array has 

genome-wide approximate 910,000 SNPs, of which approximately 870,000 SNPs are 

autosomal and 119 of mtDNA. Only individuals with a genome-wide SNP call rate (CR) ≥ 95 % 

were included.  

 The following quality control (QC) criteria were applied on the 119 SNP of the mtDNA for 

each study sample separately (Table 3.5): (1) the sample call-rate (CR) per SNP had to be ≥ 

95 % and (2) the minor allele frequency (MAF) ≥ 1 %. Only ~40 SNPs passed these criteria 

due to the fact that most of the mitochondrial SNPs had a very low MAF or were even 

monomorphic (96 % of all excluded SNPs). As a third QC criterion (3), the cluster graphs of 

the 40 SNPs were checked by two independent raters. Only those SNPs showing a clear 

separation of both alleles were finally included in the analyses (CC: 40, Trios: 35, KORA: 37, 

SHIP: 32 and POPGEN: 35; Table 3.5). 

 For GSEA, all autosomal SNPs having passed QC were included. Four QC criteria were 

applied for the ~870,000 autosomal SNPs (Table 3.5): (1) sample CR per SNP had to be ≥ 

95 %; (2) the MAF had to be ≥ 1 % in the CC sample and in KORA, and ≥ 5% in the set of all 

parents of the family-based sample; (3) the two-sided exact p-value of the test for Hardy-

Weinberg-Equilibrium (HWE, Wigginton et al. 2005) in the whole KORA sample, in the 

parents of the family-based sample and in the controls of the case-controls GWAS sample, 

respectively, had to be ≥ 0.001, and (4) after setting all Mendelian inconsisten t calls to 

“missing” in the family-based sample, at least one major allele and one minor allele 

transmission at each SNP was claimed. 703,015 / 641,991 / 659,502 autosomal SNPs passed 

this QC in the CC / family-based / population-based sample, respectively (Table 3.5).  

 Genotype calling of the family-based trios initially was performed in eight batches of a 

varying number of individuals between n=26 and n=432, while for both the CC and the KORA 

sample one batch was used each. In the trios, gene set 1 was initially enriched for 

association signals above the 95th percentile (Table 8.1 in the appendix). Association results 

can be influenced by batch effects (Miclaus et al. 2010). In case the cluster graph of a SNP 

does not show clear allele separation, the SNP might be false-positively associated with the 

trait of investigation (Browning and Yu 2009). Therefore, I checked cluster graphs of 2,986 
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SNPs (i.e. all SNPs initially involved in GSEA of gene set 1 of CC, trios and KORA) for clear 

allele separation. In the trios, 14 % of all SNPs (nine of the 16 best SNPs were involved) did 

not show clear allele separation compared with only 2-3 % in CC sample and KORA (only one 

best SNP was involved in KORA). Consequently, genotype calling of the trios was repeated 

using one batch and GSEA was recalculated (Jarick, Scherag) leading to non-enrichment of 

gene set 1. 

Table 3.5 Quality control of SNPs 

Sample CC TRIOS KORA SHIP POPGEN 

n=888 n=2,115 
705 trios n=1,743 n=4,073 n=1,198 

Mitochondrial SNPs      
number of mtDNA SNPs genotyped a 119 115 115 115 115 

1st SNP-QC criterion sample call-rate per SNP ≥ 95 % 
number of SNPs failing 1st SNP-QC 
criterion 3 6 6 2 11 

% of SNPs failing 1st SNP-QC criterion 2.52 5.22 5.22 1.74 9.57 

2nd SNP-QC criterion MAF ≥ 1 % 
in sample in sample in sample in sample in sample 

number of SNPs failing 2nd SNP-QC 
criterion 76 68 72 71 71 

% of SNPs failing 2nd SNP-QC criterion 63.9 59.1 62.6 61.7 61.7 
3rd SNP-QC criterion clear separation of the 2 alleles in the cluster graph of each SNP 

number of SNPs failing 3rd SNP-QC 
criterion 1 7 7 17 7 

% of SNPs failing 3rd SNP-QC criterion 0.84 6.09 6.09 14.8 6.09 
number of SNPs left after SNP-QC b 40 35 37 32 35 
% of SNPs left after SNP-QC 33.6 30.4 32.2 27.8 30.4 

Autosomal SNPs      
number of autosomal SNPs genotyped a 869,224 868,257 868,278   

1st SNP-QC criterion sample call-rate per SNP ≥ 95 %   
number of SNPs failing 1st SNP-QC 
criterion 33,616 36,507 79,032   

% of SNPs failing 1st SNP-QC criterion 3.87 4.20 9.10   

2nd SNP-QC criterion 
MAF ≥ 1 % MAF ≥ 5 % MAF ≥ 1 %   
in sample in parents in sample   

number of SNPs failing 2nd SNP-QC 
criterion 134,847 192,243 120,498   

% of SNPs failing 2nd SNP-QC criterion 15.51 22.14 13.88   

3rd SNP-QC criterion 
two-tailed exact p-value in test for  

HWE ≥ 0.001   

in controls in parents in sample   
number of SNPs failing 3rd SNP-QC 
criterion 4,563 13,050 40,538   

% of SNPs failing 3rd SNP-QC criterion 0.52 1.50 4.67   

4th SNP-QC criterion none 

at least 1 
minor and 1 
major allele 
transmission  

none   

number of SNPs failing 4th SNP-QC 
criterion 0 67,682 0   

% of SNPs failing 4th SNP-QC criterion 0.00 7.80 0.00   
number of SNPs left after SNP-QC b, c 703,015 641,991 659,502   
% of SNPs left after SNP-QC  80.88 73.94 75.96   

 

a This number is differing due to the fact that each sample has been analyzed at different points of time and for 
each moment of analysis the latest Affymetrix annotation file has been used. b There are SNPs failing more than 
one SNP-QC criterion. c after setting all Mendelian inconsistent calls to “missing” 
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3.3.2 Variant detection by Sanger-re-sequencing 

3.3.2.1 Complete mitochondrial DNA 

 Complete mtDNA of five lean (all haplogroup W) and five obese individuals (three 

haplogroup W, each one H and HV) was re-sequenced (Sanger re-sequencing) by Seqlab, 

Sequence Laboratories, Göttingen. The company provided the sequences of two primer pairs 

to amplify the complete mtDNA with two long range polymerase chain reaction (PCR) 

products of 10 kb each. For sequencing of the PCR products, 48 (forward and reverse) 

primers were selected. The distance between the starts of the forward and reverse primers 

was approximately 700 bp, respectively, in order to guarantee a bi-directional sequencing in 

a major part of the complete mtDNA (Fig. 3.2). The exact starting positions and sequences of 

the primers are kept a secret by SeqLab. 

mtDNA reference sequence a

6-fold
2-foldDepth of Coverage

48 forward and reverse sequencing
primers b

 
 
Figure 3.2 Coverage of sequencing primers for re-sequencing (Sanger) of complete mtDNA 

This strategy view from the analysis tool Seqman Pro (v.10.1.0 (174), 419, DNASTAR, Inc., Madison 
(WI), USA) is of one individual whose mtDNA was completely re-sequenced The distance between 
the starts of the forward and reverse primers was approximately 700 bp, respectively, so that a bi-
directionally sequencing of a major part of the complete mtDNA could be guaranteed. The exact 
starting positions and/or sequences of the primers are a secret of SeqLab.  
a revised Cambridge Reverence Sequence (rCRS) enlarged by adding the last 129 nucleotides from the 

end of the rCRS to its start (3’-end) and the first 660 nucleotides to its 5’-end 
b In the present example, only 47 primers are shown as one reverse primer failed to work. However, 

the remaining primers still covered the whole mtDNA. 
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 Preparation of both PCR fragments for re-sequencing was performed in our laboratory. 

For both PCR fragments, the annealing temperature was established using a temperature 

gradient between 57 °C and 65 °C (fragment 1) and 58 °C and 68 °C (fragment 2; Fig. 3.3). 

The amplification of fragment 1 occurred with a kit from Roche Diagnostics Deutschland 

GmbH (Expand Long Template PCR System), and that of fragment 2 with the LongAmp® Taq 

PCR kit from New England BioLabs® Inc. These two commercial kits were necessary, as 

during the establishment, fragment 1 showed strong by-products with the mix from New 

England BioLabs®, and for fragment 2, the amplification was either weak or absent with the 

mix of Roche. PCR components and conditions were chosen according to the manual of the 

respective producer (Table 3.6 and 3.7). For visualization, 20 µL of the long range PCR 

product was loaded on a 0.8 % (w/v) agaroses gel containing ethydiumbromide (0.0025 % 

(v/v)). Primer annealing temperatures of 57 °C and 65 °C have been chosen for fragment 1 

and 2, respectively (Fig. 3.3). 

 

A B1 2 3 4 5 6 7 8 9 10 11 12 1413 1 2 3 4 5 6 7 8 9 10 11 12 13

 

Figure 3.3 Establishment of annealing temperature for fragment 1 and fragment 2 

A lane 1 and 14: DNA marker (50 to 10,000 bp, DirectLoadTM Wide Range DNA Marker, Sigma-Aldrich, 
lane 2-13: PCR product with annealing temperature gradient from 57 °C to 65 °C; 57 °C (lane 2) was 
chosen as annealing temperature 
B lane 13: DNA marker (cf. A), lane 1-12: PCR product with annealing temperature gradient from 
58 °C to 68 °C, 65 °C (lane 8) was chosen as annealing temperature 
0.8 % (w/v) agaroses gel in TAE buffer, containing ethydiumbromide (0.0025 % (v/v)); 20 µL PCR 
product and 4 µL loading buffer; electrophoresis conditions: 4 h running time and 80 V; black arrows 
indicate direction of electrophoresis  
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Table 3.6 Components of reaction mix for long range PCR fragments 

 Fragment 1 Fragment 2 
 Volume [µL] Final Conc. Volume [µL] Final Conc. 
Total volume 50  50  
DNA (100 ng/µL) 2 4 ng/µL 2 4 ng/µL 
H2O 38.55  21  
Reaction mix 5 a 2.75 mM MgCl2 25 c 1 x 
Forward primer (25 pmol/µL) 0.6 0.3 µM 1 0.5 µM 
Reverse primer (25 pmol/µL) 0.6 0.3 µM 1 0.5 µM 
dNTP (10 mM) 2.5 500 µM   
Taq b 0.75 3.75 U   
a Expand long template buffer 2, 10 x conc. with 27.5 mM MgCl2 from Roche Diagnostics Deutschland 

GmbH  
b Expand long template enzyme mix from Roche Diagnostics Deutschland GmbH 
c LongAmp® Taq from New England BioLabs® Inc. 
 

Table 3.7 Long range PCR conditions for the amplification of both mtDNA fragments 

 Fragment 1 a Fragment 2 a 

 Time 
[s] 

Temperature 
[°C] 

  Time 
[s] 

Temperature 
[°C] 

  

Denaturation 120 94   30 94   
Denaturation 10 94  

10 x 
30 94  

30 x Primer annealing 30 57  30 65  
Extension 480 68  540 65  
Denaturation 15 94  

25 x 

    
Primer annealing 30 57      

Extension 
480 

(+20 s each 
new cycle) 

68 
 

  
 

 

Final extension 420 68   600 65   
Storage ∞ 4   ∞ 4   

a Conditions were chosen according to the producers’ manuals (fragment 1: “Expand Long Template 
PCR System” from Roche Diagnostics Deutschland GmbH; fragment 2: LongAmp® Taq from New 
England BioLabs® Inc.) 

 

 Evaluation of electropherograms received by Seqlab was done with Seqman Pro (v.10.1.0 

(174), 419, DNASTAR, Inc., Madison (WI), USA) and Microsoft® Office Excel® 2007 (Microsoft 

Coop., Redmond (WA)) in our laboratory. As reference, the rCRS (Anderson et al. 1981, 

Andrews et al. 1999) was copied from PubMed 

(www.ncbi.nlm.nih.gov/nuccore/251831106). This sequence was enlarged by adding the last 

129 nucleotides from the end of the rCRS to its start (3’-end) and the first 660 nucleotides to 

its 5’-end. The enlargement was done due to the circularity of mtDNA. The enlarged 

reference was copied into an Excel® sheet (cf. Fig. 8.1 in appendix), so as to find 10 

nucleotides per cell and 60 nucleotides per line, which facilitated the counting to find a 
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certain nucleotide position. All (up to 48) obtained electropherograms of one individual were 

aligned to the enlarged reference sequence using Seqman Pro (Fig. 3.2). The alignment was 

manually checked for deviations from the reference sequence, as an automatic search was 

not accurate enough to distinguish between real deviations and false positive ones due to a 

low sequence quality. All deviations were noted in the prepared Excel® sheet.  

 The sequencing primers of SeqLab were selected to obtain an at least two-fold coverage 

of a major part of the complete mtDNA (Fig. 3.3). However, several gaps or low sequence 

qualities were seen in the alignments during evaluation. A total of eight sequencing gaps 

were present in seven of the 10 individuals (Table 3.8). Hence, eight additional primer pairs 

were selected using primer3 (v.0.4.0; http://frodo.wi.mit.edu/). As parts of the mtDNA 

sequence are present in the nuclear DNA as well, mtDNA fragment 1 and 2 were taken as 

PCR template for re-sequencing. The re-sequencing (Sanger) of these gaps was performed by 

LGC Genomics, Berlin. Obtained electropherograms were added to the alignment of the 

respective individual and again manually checked for deviations as described above.  

 

 

Table 3.8 Self-selected primers for re-sequencing for complete mtDNA 

 Start of 
gap 

End of 
gap Sequences of primers Length 

[bp] 
No. of individuals  

re-sequenced 
Fragment 1      

Gap 1 3541 3781 F: 5‘-TCTTCACCAAAGAGCCCCTA-3‘ 
R: 5‘-GGGTCATGATGGCAGGAGTA-3‘ 377 2 

Gap 2 7201 7981 F: 5‘-TCTTCCCACAACACTTTCTCG-3‘ 
R: 5‘-TTGTCAACGTCAAGGAGTCG-3‘ 828 4 

Gap 3 7981 8461 F: 5‘-CGACTACGGCGGACTAATCT-3‘ 
R: 5‘-TTTTATGGGCTTTGGTGAGG-3‘ 577 2 

Gap 4 8761 8941 F: 5‘-CAACACTAAAGGACGAACCTGA-3‘ 
R: 5‘-CTAGGGCTATTGGTTGAATG-3‘ 287 4 

Gap 5 9901 10141 F: 5‘-TCCGCCAACTAATATTTCACTTT-3‘ 
R: 5‘-GGGTGGATTTTTCTATGTAGCC-3‘ 300 3 

Fragment 2      

Gap 6 1681 1861 F: 5‘-TGACCGCTCTGAGCTAAACC-3‘ 
R: 5‘-TTGGCTCTCCTTGCAAAGTT-3‘ 234 1 

Gap 7 12721 13081 F: 5‘-CCCAAACATTAATCAGTTCTTCAA-3‘ 
R: 5‘-GGTGGAAGCGGATGAGTAAG-3‘ 461 5 

Gap 8 13081 13681 F: 5‘-ACCCCAGTCTCAGCCCTACT-3‘ 
R: 5‘-CAGGCGTTTAATGGGGTTTA-3‘ 651 4 

F, forward primer; R, reverse primer; primers were chosen with primer3 (v.0.4.0; 
http://frodo.wi.mit.edu/) 
 
 

http://frodo.wi.mit.edu/�
http://frodo.wi.mit.edu/�
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3.3.2.2 Mitochondrial displacement loop (D-loop) 

 For re-sequencing of the mtDNA D-Loop, primers were chosen according to Cardoso et 

al. (2012) who sequenced the D-loop of individuals of European origin (Fig. 3.4). However, 

instead of the heavy strand primer H616, which was used by Cardoso et al. (2012), a primer 

located out of the D-Loop was selected (H715) using primer3 (v.0.4.0; 

http://frodo.wi.mit.edu/). This extension was done to include the sequence of the heavy 

strand promoter 2 (HSP2), the start of which is located at m.644A in tRNAPhe (Zollo et al. 

2012, Lodeiro et al. 2012). The D-Loop was amplified using the outer primers, light strand 

primer 15988 (L15988) and H715, yielding a PCR product of 1319 bp (Fig. 3.4). A primer 

annealing temperature of 65 °C was chosen (Fig. 3.5). The components and conditions of this 

PCR can be found in Table 3.9 and Table 3.10.  

 

Figure 3.4 Selection of primers for the re-sequencing of the mtDNA D-Loop 

L15988, 5‘-AAGTCTTTAACTCCACCATTAGC-3’; L12, 5‘-ACATCACGATGGATCACAGGTC-3‘ and H285, 5‘-
GGGGTTTGGTGGAAATTTTTTG-3‘ were chosen according to Cardoso et al. (2012), and H715, 5‘-
TGGAACGGGGATGCTTGCAT-3‘ was selected using primer3 (v.0.4.0; http://frodo.wi.mit.edu/), to 
include the heavy strand primer 2 (HSP2) starting position at m.644A (Zollo et al. 2012, Lodeiro et al. 
2012) in tRNAPhe. 

1 2 3 4 5 6 7 8 9 10 11 12 13

 

Figure 3.5 Establishment of annealing temperature for D-loop PCR fragment 

lane 1 and 12: PCR product with annealing temperature gradient from 58 °C to 72 °C; 65 °C (lane 6-7) 
was chosen as annealing temperature; lane 13: DNA marker (50 to 10,000 bp, DirectLoadTM Wide 
Range DNA Marker, Sigma-Aldrich); 2.5 % (w/v) agarose gel in TAE buffer, containing 
ethydiumbromide (0.0025 % (v/v)); 20 µL PCR product and 4 µL loading buffer; electrophoresis 
conditions: 3 h running time and 120 V; black arrow indicates direction of electrophoresis 

http://frodo.wi.mit.edu/�
http://frodo.wi.mit.edu/�
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Table 3.9 Components of reactions mixes for the D-Loop PCR product 

 Volume [µL] Final Conc. 
Total volume 25  
DNA (20 ng/µL) 1 0.8 ng/µL 
H2O 18.65  
PCR buffer 10x 2.5 1 x 
MgCl2 (25 mM) 2.0 2 mM 
Forward primer (25 µM) 0.25 0.25 µM 
Reverse primer (25 µM) 0.25 0.25 µM 
dNTP (10 mM)  0.25 100 µM 
Taq DNA polymerase 0.1  

 

Table 3.10 PCR conditions for the amplification of the D-Loop 

 Time  
[s] 

Temperature  
[°C] 

 

Denaturation 300 95  
Denaturation 45 95 

35 x Primer annealing 60 65 
Extension 90 72 
Final extension 600 72  
Storage ∞ 4  

 
 The re-sequencing of the D-loop was done using four primers (L15988, L12, H285 and 

H715) and performed by LGC Genomics, Berlin. The four primers were necessary as (1) the 

length of the PCR product was longer than 1100 bp, which is the maximum length for Sanger 

re-sequencing according to LGC Genomics, Berlin, and (2) the D-loop contains several poly-C 

tracts (at m.16184 to m.16193, m.303 to m.315, and m.568 to m.573) at which length 

heteroplasmy might be induced at a certain length of uninterrupted Cs (Cardoso et al. 2012). 

Length heteroplasmy resulted in un-analyzable electropherogram peaks. If a length 

heteroplasmy was induced at m.16189 as an example, the re-sequencing with L15988 was 

stopped at this position, and the remaining re-sequencing of the direction of L15988 was 

done by L12 starting downstream of the heteroplasmic location. 

 As for the complete re-sequencing of mtDNA, evaluation of electropherograms was 

performed using Seqman Pro and Excel® (2007). The extended D-Loop sequence amplified 

for re-sequencing was copied from the rCRS into Excel® (ten nucleotides per cell and 60 per 

line, Fig. 8.1 in appendix). The four sequences of each individual were assembled with the 

extended D-loop from the rCRS using Seqman Pro. Again, all deviations from the reference 

were noted in the prepared Excel sheet. Afterwards, for each variation found, the number of 

lean and obese individuals harboring that variation was count. Evaluation of 

electropherograms, notation of variation and counting were performed by two independent 

raters to minimize the rate of mistakes.  
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3.4 Haplogroup determination 

 Haplogroups were determined in all individuals of the CC sample, the 705 index patients 

of the family-based trios and the population-based samples. This determination was 

performed using HaploGrep, a web application which is freely accessible at 

http://haplogrep.uibk.ac.at (Kloss-Brandstätter et al. 2011). HaploGrep applies the latest 

version of Phylotree (www.phylotree.org), an updated comprehensive phylogeny of the 

global human mtDNA variation based on variation in both coding and control region (van 

Oven and Kayser 2009). The haplogroup analysis of the discovery CC sample started in June 

2011; at that time, the latest version was Phylotree build 11. Haplogroup determination of 

the confirmation sample was also performed using Phylotree build 11 for comparative 

results.  

 A text file from the available mtDNA SNPs having passed QC was created and imported 

into HaploGrep. From the up-loaded genotype data, HaploGrep determined each individual’s 

most likely haplogroup. In addition, a rank or quality value in % was calculated to estimate 

the reliability of the determined haplogroup. Only those haplogroups with a quality value ≥ 

90 % were included in statistical analysis, as this threshold indicates a quite reliable 

haplogroup assignment according to the user manual of HaploGrep. All received 

haplogroups were assigned to major haplogroups (A, B, D, H, J, K, L, M, N, P, R, S, T, U, V, W, 

X and Z) for association testing (cf. Fig. 1.8). HV was assigned to H, and JT to J. 

 The haplogroup of the 10 individuals, of which complete mtDNA was re-sequenced, was 

re-determined using all detected variants as well as the information of the 40 SNPs found on 

the SNP array having passed QC, and only detected D-loop variants.  

 For reasons of comparability, haplogroups were re-determined using the detected D-loop 

variants from the 364 individuals of the CC sample, of which SNP array-based data were 

available.  

http://haplogrep.uibk.ac.at/�
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3.5 Statistics 

 All statistical analyses were performed by Dipl.-Math. Ivonne Jarick from the Institute for 

Medical Biometry and Epidemiology of the Philipps-University of Marburg and PD Dr. André 

Scherag from the Institute for Medical Informatics, Biometry and Epidemiology of the 

University Clinic Essen. 

3.5.1 Association tests 

3.5.1.1 Common SNPs of mtDNA 

 In the discovery sample (Fig. 3.1, Table 3.1) Fisher’s two-sided exact test was used for 

association testing of all single mtDNA SNPs and major haplogroups. The analyses were done 

in all individuals, as well as stratified by gender. A p-value below 0.05 was considered 

nominally significant. Odds ratios and 95 % confidence intervals were calculated.  

 For independent confirmation, all nominally significant SNPs and haplogroups were 

followed-up in the confirmation sample (Fig. 3.1, Table 3.1), and those SNPs and major 

haplogroups which were discovered in either females or males, were only followed-up in the 

respective sub-group. 

3.5.1.2 Variants of mtDNA detected by D-loop re-sequencing 

 Most of the individuals (except for 14 cases and six controls) whose D-loop was re-

sequenced (D-loop sample) were from the CC sample, which was part of the discovery 

sample. Hence, haplogroup data based on the 40 SNPs of the SNP array were present in the 

majority of individuals of the D-loop sample. In a first step, the haplogroup distribution 

between D-loop and discovery sample was compared using a χ2 test. Only individuals with a 

HaploGrep’s quality value ≥ 90 % were included in the analysis. 

 The frequencies of all detected variants were compared between cases and controls 

using Fisher’s two sided exact test. Odds ratios as well as 95 % confidence intervals were 

calculated. In addition, the absolute number of all variants detected per individual was 

compared between cases and controls using a two-sided t-test.  

 Finally, the mean absolute number of variants per case was compared with the mean 

absolute number of variants per control in 23 functionally relevant locations of the D-loop – 

i.e. potential protein binding sites during transcription and replication of mtDNA (Fig. 1.7, 

Table 1.2) – using a two-sided t-test. These locations have been summarized in the mitomap 

data base (www.mitomap.org, Last Edited: Aug 18, 2009). A literature check was performed 

to confirm indicated start and end sites of all suggested locations, and to check whether 
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further locations potentially involved in the transcription and replication process of mtDNA 

exist. Only for HSP2, which was listed at mitomap at only m.645 (Montoya et al. 1982, 1983, 

Yoza et al. 1984), an extended area of m.632 to m.655 was selected. This was done as 

Lodeiro et al. (2012) randomized these 24 nucleotides around the transcription start recently 

mapped at m.644 (Zollo et al. 2012, Lodeiro et al. 2012) and did not detect transcription in 

vitro. Hence, these 24 nucleotides might be important HSP2 control elements (e.g. 

transcription factor binding sites). 

 For all comparisons between cases and controls, a p-value below 0.05 was considered 

nominally significant.  

3.5.1.3 Autosomal SNPs 

 For GSEA, all autosomal SNPs having passed QC were included in the analysis. In the CC 

sample and in KORA analyzed as a CC (Fig. 3.1, Table 3.1), the Cochran-Armitage trend test 

was applied to each autosomal SNP for an additive mode of inheritance. By contrast, in the 

family-based trios, a TDT (Spielman et al. 1993) was calculated for each SNP using PLINK 

v1.07 (http://pngu.mgh.harvard.edu/purcell/plink/; Purcell et al. 2007) under the 

assumption of an additive allelic model of inheritance. All families with missing genotypes 

were excluded from TDT analysis of the respective SNP. Due to genotyping failures and/or 

Mendelian inconsistencies, for just 0.37 % of all SNPs more than 5 % of the trios were 

excluded from the TDT. 

http://pngu.mgh.harvard.edu/purcell/plink/�
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3.5.2 Gene set enrichment analysis (GSEA) 

 

Figure 3.6 Description of GSEA procedure 

In a GSEA, first of all, all analyzed autosomal SNPs of a study sample are mapped to their 
corresponding gene (A). Afterwards, a test statistic (e.g. p-value) that aggregates the SNP 
information is derived for each gene (B, C), and the distribution of test statistics between the gene 
set chosen pertaining to a certain biological function (here: mitochondrial genes) is compared with 
the gene set of all autosomal genes (D). Figure from Segrè et al. (2010). 

3.5.2.1 Gene sets 

 In a large GWA meta-analysis, Segrè et al. 2010 tested three mitochondrial gene sets for 

enrichment of association signals of common variation in T2DM and related glycemic traits. 

These three gene sets were tested for obesity in the present PhD thesis. The first gene set 

consisted of 16 autosomal nuclear regulators of mitochondrial genes (Table 3.11), which 

were selected by Segrè et al. (2010) based on literature (Goffart and Wiesner 2003, Kelly and 

Scapulla 2004, Finck and Kelly 2006, Giguère 2008, Yu and Auwerx 2009 and Wan et al. 
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2010). A literature re-check at the beginning of the analysis (Dec. 2010) revealed that the 

most important regulators are included. In order to be comparable with the results of the 

analysis in a phenotype similar to obesity, the list of genes had been applied as described by 

Segrè et al. (2010).  

Table 3.11 Nuclear-encoded regulators of mitochondrial genes (gene set 1) 

Gene ID Full name of gene Chromosome 
ESRRA Estrogen related receptor alpha 11 
ESRRG Estrogen related receptor gamma 1 
GABPA GA-binding protein alpha subunit 21 
GABPB1 GA-binding protein beta subunit 1 15 
GABPB2 GA-binding protein beta subunit 2 1 
MEF2A Myocyte-specific enhancer factor 2A 15 
MYC Myelocytomatosis viral oncogene homolog (avian) 8 
NRF1 Nuclear respiratory factor 1 7 
NRIP1 Nuclear receptor-interacting protein 1 21 
PPARA Peroxisome proliferator-activated receptor alpha 22 
PPARD Peroxisome proliferator-activated receptor delta 6 
PPARGC1A Peroxisome proliferator-activated receptor gamma coactivator 1 alpha 4 
PPARGC1B Peroxisome proliferator-activated receptor gamma coactivator 1 beta 5 
SIRT1 Sirtuin 1 10 
SP1 Specificity protein 1 12 
YY1 Transcriptional repressor protein YY1 14 

 

 The second gene set comprised 91 autosomal genes involved in the OXPHOS. This gene 

set was created by Mootha et al. (2003) for a GSEA of expression profiles of different 

mitochondrial gene sets (Mootha et al. 2003, Segrè et al. 2010). Finally, the third gene set 

consisted of a list of 966 autosomal nuclear-encoded human mitochondrial genes which was 

derived from the MitoCarta compendium (Pagliarini et al. 2008). The proteins belonging to 

the genes of the latter gene set were identified in 14 mouse tissues using various 

approaches (mass spectrometry, green fluorescent protein tagging and integrated analysis of 

7 genome-scale data sets). The corresponding human gene homologs can be found at 

http://www.broadinstitute.org/pubs/MitoCarta/human.mitocarta.html. According to the 

authors, the 1098 identified mitochondrial genes of the MitoCarta compendium, from which 

1012 human homologs can be derived, represent ~85 % of all assumed mitochondrial genes 

(Pagliarini et al. 2008, Segrè et al. 2010). Among the 1,012 mitochondrial genes, 13 are from 

the mtDNA, and 31 are located on the sex chromosomes. These 44 genes were not included 

in the analysis of Segrè et al. (2010), as SNPs of these genes are usually not analyzed in large 

scale GWAS studies and different association tests would have to be applied for these non-

http://www.broadinstitute.org/pubs/MitoCarta/human.mitocarta.html�
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autosomal genes. Two further genes were removed, as they were absent in the human gene 

list used for the analyses of Segrè et al. (2010). Again, for reasons of comparability, the same 

966 genes were analyzed in the present GSEA. 

3.5.2.2 Mapping of SNPs onto genes 

 A list of all human gene transcripts (n=26,914 for the hg18 March 2006 version) was 

downloaded from the UCSC Genome Browser (http://genome.uscs.edu/). Genes with 

transcripts on separate chromosomes or genes with transcripts on one chromosome, whose 

distance is more than 1 Mb, were excluded. Hence, 17,680 autosomal genes were followed-

up. To the most extreme transcript start and end site of each gene 110 kb upstream and 

40 kb downstream were added (Fig 3.6A). These boundaries represent the 99th percentiles of 

cis-eQTLs distances from transcript start and end sites of adjacent genes (Segrè et al. 2010 

according to Veyrieras et al. 2008). SNPs (with their corresponding p-values determined by 

Cochran-Armitage test or TDT, cf. 3.5.1.3) were mapped onto genes within the extended 

boundaries (Fig. 3.6A). The 55 genes without SNPs within the gene and the extended 

boundaries were excluded from further analyses. 

3.5.2.3 Determination of gene-wise empirically corrected p-value Pg 

 Each gene was assigned a gene-wise empirically corrected p-value Pg. Therefore, the 

lowest observed p-value Pg;min of each gene was determined and stored (Fig. 3.6B). 

Afterwards, in CC and KORA-CC, 10,000 permutations of the genotype data were performed 

using PLINK v1.07 (Purcell et al. 2007). The null distribution was generated by flipping the 

affection status for all SNPs in each permutation. Pg was eventually calculated as the fraction 

of permutations whose minimal p-value per gene was equal to or smaller than Pg;min. For 

genes with Pg ≤ 0.01 (0.001), the procedure was repeated with 100,000 (1,000,000) 

permutations. This was done to achieve maximal accuracy. In the family-based trios, Pg was 

calculated by randomly flipping the parentally transmitted allele for each family and each 

permutation.  

 A gene with an identical selected SNP as found already in one of the gene sets was 

excluded due to the physical clustering of the gene. This exclusion was done to avoid 

significant gene set enrichment based on identical association signals (Segrè et al. 2010). 

http://genome.uscs.edu/�
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3.5.2.4 Determination of gene set enrichment p-values PGSEA 

 Several tests were applied to test the alternative hypothesis that Pg in one of the three 

gene sets skewed towards high ranks in comparison with the set of all autosomal genes. First 

of all, the leading-edge-fraction-comparison test as proposed by Segrè et al. (2010) was 

used. The 50th, 75th and 95th percentile of the set of all autosomal Pg were chosen as cut-offs 

(i.e. leading edge fraction). With this test, the fraction of genes with Pg below a certain cut-

off (i.e. above a certain percentile) of the gene set of interest was compared with that of the 

full set of genes. The null distribution of these fractions is generated by randomly sampling 

10,000 gene sets from the genome which are identical in size compared with the three gene 

sets, respectively. The corresponding GSEA p-values (PGSEA,95, PGSEA,75 and PGSEA,50) were 

generated by division of the number of samplings with equal or larger leading edge fraction 

as observed in the respective gene set for a given cut-off by the number of samplings 

generated. 

 As proposed by Segrè et al. (2010), three alternative one-sided GSEA tests were used 

(Wilcoxon-Mann-Whitney test (PGSEA,WMW), Kolmogorov-Smirnov test (PGSEA,KS) and t-test 

(PGSEA,t)) to test the robustness of the leading-edge-fraction-comparison test. Due to the fact 

that three gene sets were tested for enrichment of association signals, enrichment was 

considered significant in case of pGSEA < 0.017. 

3.5.2.5 Meta-Analysis Gene set Enrichment of variant Associations (MAGENTA) 

 For the performance of a gene set enrichment analysis in a meta-analysis in which 

individual genotypes are not available, Segrè et al. (2010) used the MAGENTA software 

available at http://www.broadinstitute.org/mpg/magenta/. MAGENTA is based on a linear 

regression-based approach which accounts for physical gene size, the number of SNPs and 

their genetic properties (LD between SNPs, number of recombination hotspots and genetic 

distance of the gene) to determine Pg
 (Fig.3.6C). This approach was performed, as in case of 

missing individual genotype data, the above mentioned permutation procedures could not 

be used for the determination of Pg. 

 Within the present PhD thesis, a meta-analysis was performed of all three samples (CC, 

trios and KORA-CC). The p-values of each SNP from three samples were meta-analyzed with 

the inverse variance method under the assumption of a fixed effect model adopted from 

Kazeem and Farrell (2005). Therefore, the METAL software package 

(www.sph.umich.edu/csg/abecasis/metal; Willer et al. 2010) was used, and MAGENTA was 

http://www.broadinstitute.org/mpg/magenta/�
http://www.sph.umich.edu/csg/abecasis/metal�
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applied to the p-values obtained. As mentioned above, the leading edge fraction tests for 

the 95th, the 75th and the 50th percentile cut-off were performed (pMAGENTA). The exact 

Wilcoxon-Mann-Whitney test included in the software was applied as alternative test. 

 MAGENTA was also applied to each of the three samples individually in order to be 

comparable to the permutation-based GSEA approach. As for GSEA testing, enrichment was 

considered significant at pMAGENTA < 0.017. 

3.5.2.6 Determination of LD between best SNPs of gene set 1 

 The first gene set was enriched for association signals. It turned out that the best SNP of 

each gene was mostly different between the samples. The parents of the family-based trios 

served as reference sample to calculate the LD between these best SNPs using HaploView 

4.2 (Barrett et al. 2005). 
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4 Results 

4.1 Variation in mitochondrial DNA  

 First of all an association study of 35/40 mtDNA SNPs of the Affymetrix Genome-Wide 

Human SNP array was performed in 1,158 (extremely) obese children and adolescents and 

435 lean adult controls. The minor allele A of m.8994G/A (rs28358887), and haplogroup W 

were nominally overrepresented in the lean controls. m.8994G/A is a synonymous SNP in 

ATP6. Its minor allele was present in all individuals of haplogroup W. Thus, mtDNA of each 

five cases (three of haplogroup W, each one of H and HV) and controls (all of haplogroup W) 

was completely re-sequenced in order to detect causal variants explaining the initial 

associations. In the confirmation analysis, which was only completed after having started re-

sequencing of complete mtDNA, the initial associations were not confirmed. Although all 

eight individuals of haplogroup W were identical regarding the genotype information found 

on the SNP array, by re-sequencing both in the D-loop and coding region inter-individual 

variation was detected. Thus, the array provides only limited information pertaining to 

mtDNA variants, and the detection of further variants will require re-sequencing. The D-loop 

was chosen for re-sequencing in each 192 cases and controls, mainly from the CC sample, as 

(1) the inter-individual variability was greater in the D-loop compared with the coding region 

among individuals of haplogroup W, (2) the D-loop was not sufficiently covered, and (3) the 

D-loop is an important control region of mtDNA transcription and replication; thus variation 

in this region might have an impact on these processes and in further consequence on body 

weight. Lastly, (4) re-sequencing of the whole mtDNA (~16,569 bp) for a meaningful sample 

size of ~400 individuals would have been too extensive in the present PhD thesis, whereas 

the D-loop has a length of only ~1,100 bp. Fig. 4.1 sketches the approach of investigating 

whether variation in mtDNA is associated with obesity.  
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Association study of 35/40 mtDNA SNPs of 
Affymetrix Genome-Wide Human SNP Array 6.0
in 1,158 (extremely) obese cases and 435 lean 

controls

Non confirmation in 1,697 obese cases and 2,373 
controls of three population-based samples

m.8994G/A, p=0.120, OR=1.36
haplogroup W, p=0.126, OR=1.41

Sanger re-sequencing of complete mtDNA of 5 
extremely obese (3 W, 1 HV and 1 H) and 5 lean 
(all haplogroup W) and comparison of detected 

variants with SNPs present on SNP Array

DISCOVERY

m.8994G/A, p=0.002, OR=0.32
haplogroup W, p=0.039, OR=0.40

m.8994G/A synonymous SNP in ATP6 gene 
Variant allele present in haplogroup W 

- small variability in coding region
and huge variability in control region (D-loop) 

among individuals of haplogroup W
- D-loop not sufficiently covered by SNP array
- D-loop important control region of mtDNA 

transcription and replication

Sanger re-sequencing of 192 (extremely) obese 
cases and lean controls

CONFIRMATION

Detection of 252 variants
m.16189T/C, p=0.048, OR=1.93
m.16292C/T, p=0.0072, OR=0

Future follow-up of m.16189T/C in independent 
sample conceivable

 
Figure 4.1 Approach for analysis/detection of variation in mtDNA in association with  

  obesity 

OR, odds ratio 

 
 
 

4.1.1  Association of common mitochondrial SNPs with obesity 

 In the discovery, 35 mtDNA SNPs (+ 5 SNPs only in the CC sample) were analyzed in 

association with obesity (Table 4.1). One SNP, m.8994G/A, was nominally associated 

(p=0.002), and its minor allele A was more frequent among the controls (3.92 % vs. 1.30 %, 

Table 4.1). m.8994G/A is synonymous and located in ATP6. Analysis stratified by gender 

showed m.8994G/A to be associated in both males and females. In addition, one and three 

further SNPs were nominally significant only in males and females, respectively (Table 4.2).  
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Table 4.1 SNPs of mtDNA in association with obesity in discovery 

Position on  
mtDNA 
according to 
rCRS 

rs number Minor 
allele a 

Major 
 allele a 

MAF 
Cases  
[%] b 

MAF  
Controls 

[%] b 

Odds 
ratio 

for minor allele 

Confidence 
Interval p-value c 

    n=1,158 n=435    
m.1438 rs2001030 A G 2.94 2.76 1.06 0.53-2.28 1.000 
m.1700 rs2854126 d C T 1.12 1.62 0.69 0.17-2.54 0.573 
m.1811 rs28358576 G A 13.04 13.56 0.96 0.69-1.35 0.803 
m.1888 rs28358577 d A G 11.04 8.28 1.37 0.86-2.22 0.175 
m.2706 rs2854128 A G 46.28 45.73 1.02 0.81-1.28 0.865 
m.3010 rs3928306 A G 24.37 26.68 0.89 0.68-1.15 0.362 
m.3197 rs2854131 C T 8.23 7.64 1.08 0.71-1.69 0.757 
m.4580 rs28357975 A G 3.46 3.70 0.93 0.50-1.81 0.879 
m.4769 rs3021086 A G 3.11 1.84 1.71 0.77-4.30 0.229 
m.7028 rs2015062 C T 45.76 44.76 1.04 0.83-1.31 0.734 
m.8994 rs28358887 A G 1.30 3.92 0.32 0.15-0.69 0.002 
m.9055 rs28358268 d A G 6.62 7.60 0.86 0.50-1.49 0.603 
m.9123 rs28358270 A G 1.56 1.61 0.96 0.38-2.75 1.000 
m.9698 rs9743 C T 6.65 8.35 0.78 0.51-1.22 0.272 
m.10238 rs28358275 C T 3.11 2.76 1.13 0.57-2.41 0.869 
m.10463 rs28358279 C T 10.45 8.99 1.18 0.80-1.77 0.454 
m.10550 rs28358280 G A 6.13 7.16 0.85 0.54-1.36 0.490 
m.11251 rs3915952 G A 19.43 21.43 0.88 0.67-1.17 0.398 
m.11299 rs28358285 C T 6.07 6.93 0.87 0.55-1.40 0.562 
m.11467 rs2853493 G A 21.56 21.43 1.01 0.77-1.33 1.000 
m.11674 rs28358286 T C 1.39 2.99 0.46 0.20-1.04 0.055 
m.11719 rs2853495 A G 49.70 50.34 0.97 0.78-1.22 0.822 
m.11812 rs3088053 d G A 6.74 6.53 1.04 0.59-1.83 1.000 
m.11914 rs2853496 A G 2.34 1.15 2.06 0.77-6.89 0.162 
m.12007 rs2853497 A G 1.64 2.07 0.79 0.34-1.99 0.527 
m.12308 rs2853498 G A 21.78 21.61 1.01 0.77-1.34 1.000 
m.12612 rs28359172 G A 8.89 11.72 0.74 0.51-1.07 0.105 
m.12705 rs2854122 T C 7.81 7.14 1.10 0.71-1.74 0.750 
m.13368 rs3899498 A G 10.11 8.51 1.21 0.81-1.84 0.392 
m.13617 rs2853503 C T 8.12 7.37 1.11 0.72-1.74 0.677 
m.13708 rs28359178 A G 10.13 12.47 0.79 0.56-1.14 0.203 
m.14470 rs3135030 C T 2.60 2.07 1.26 0.58-3.04 0.716 
m.14905 rs28357682 A G 10.19 8.28 1.26 0.84-1.91 0.295 
m.15043 rs28357684 A G 4.24 2.99 1.44 0.76-2.91 0.309 
m.15218 rs2853506 G A 4.40 3.22 1.39 0.75-2.74 0.322 
m.15326 rs2853508 A G 1.47 0.69 2.14 0.62-11.5 0.312 
m.15452 rs3088309 A C 18.70 19.82 0.93 0.70-1.25 0.616 
m.15607 rs28357372 G A 10.19 8.51 1.22 0.82-1.85 0.343 
m.15924 rs2853510 G A 4.23 3.69 1.15 0.64-2.20 0.672 
m.16140 rs3134562 d C T 6.25 6.96 0.89 0.50-1.57 0.686 

a Reference allele of rCRS marked in bold 
b MAF, minor allele frequency 
c Fisher’s exact test, two-sided, p-values below 0.05 are highlighted in bold 
d SNPs that did not pass quality control in family-based trios  
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 All nominally associated SNPs were followed-up in the confirmation sample (Fig. 3.1). 

However, association could not be confirmed for any of these SNPs. For most of these SNPs 

the direction of effect has even changed (Table 4.2). 

Table 4.2 Nominally associated SNPs of mtDNA in discovery and follow-up in 

 confirmation 

 Discovery Confirmation 

SNP a 
MAF 
Cases 
[%] b 

MAF 
Controls 

[%] b 

Odds 
Ratio 

Confidence 
Interval c 

p- 
value d 

MAF 
Cases 
[%] b 

MAF 
Controls 

[%] b 

Odds 
Ratio 

Confidence  
Interval c 

p- 
value d 

All n=1,158 n=435    n=1,697 n=2,373    
m.8994G/A 1.30 3.92 0.32 0.15-0.69 0.002 3.24 2.41 1.36 0.92-2.02 0.120 
Males n=508 n=171    n=828 n=930    
m.8994G/A 0.79 2.94 0.26 0.05-1.23 0.048 2.78 2.16 1.30 0.68-2.51 0.441 
m.11674C/T 0.59 3.51 0.16 0.03-0.78 0.010 2.06 1.63 1.27 0.63-2.56 0.593 
Females n=650 n=264    n=869 n=1,443    
m.4769A/G 3.38 0.76 4.60 1.12-40.6 0.022 2.99 2.36 1.28 0.76-2.15 0.348 
m.8994G/A 1.69 4.55 0.36 0.14-0.91 0.019 3.68 2.57 1.45 0.87-2.41 0.132 
m.12612A/G 8.00 2.88 0.58 0.36-0.95 0.023 10.60 9.01 1.20 0.90-1.59 0.216 
m.13708G/A 9.12 13.69 0.61 0.38-0.98 0.040 10.87 12.81 1.08 0.83-1.42 0.238 
a mtDNA position according to rCRS 
b MAF, minor allele frequency 
c 95 % confidence of odds ratio for minor allele  
d Fisher's exact test, 2-sided, p-values below 0.05 are highlighted in bold  
 

4.1.2 Association of haplogroups with obesity 

 A total of 80 haplogroups with a quality value of at least 90 % were identified with 

HaploGrep (Table 4.3). These haplogroups were assigned to 18 major haplogroups for 

association analysis (Table 4.3). The HaploGrep’s quality 90 % was exceeded by 96 % of 

individuals, and only these individuals were included for association testing. 

 In the discovery, haplogroup W was nominally associated with obesity (p=0.034). 

Comparable to the minor allele A of m.8994G/A, which was present in all individuals of 

haplogroup W, haplogroup W was more frequent in the controls (2.84 % vs. 1.17 %, Table 

4.4. Stratified by gender, haplogroup W remained nominally associated only in the males 

(p=0.012), and haplogroup J became nominally significant in the females (p=0.032, Table 

4.5). None of the findings from the discovery was confirmed in the population-based adults, 

and the direction of effect has changed (Table 4.5). 
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Table 4.3 Haplogroup frequencies in discovery and confirmation 

  Discovery Confirmation  

Haplogroup a 
Total Cases Controls Cases Controls Major 

Haplogroup n=5,430 n=1,114 n=422 n=1,623 n=2,271 
A2i 5 0 0 2 3 A 
B4c1b 1 0 1 0 0 

B B4c1b2b 2 0 0 2 0 
B5b1a'b 19 0 0 8 11 
D4j5 3 0 0 2 1 D 
H 1171 247 96 344 484 

H 

H1 871 184 69 268 350 
H18 7 4 0 2 1 
H1h 17 6 0 3 8 
H2 8 1 0 2 5 
H21 1 0 1 0 0 
H27 47 12 5 10 20 
H2a2 44 19 4 8 13 
H2a5 8 2 1 1 4 
H4 75 15 7 16 37 
H6a1b 5 0 0 2 3 
HV 109 23 9 28 49 
HV1 8 3 0 1 4 
J 131 24 8 48 51 

J 

J1 353 59 35 107 152 
J1b1a 41 12 6 10 13 
J1c1b1a 5 2 1 0 2 
J1c3c 16 5 1 3 7 
JT 1 0 0 1 0 
K 198 63 28 46 61 

K 
K1a1 22 4 1 6 11 
K1a1b 21 4 2 4 11 
K1a4c 1 0 0 1 0 
L0f2a1 1 0 0 0 1 

L 
L0k 1 0 0 0 1 
L2a1c 1 1 0 0 0 
L3e2 1 0 0 1 0 
M 9 3 1 1 4 

M 

M20 9 2 0 3 4 
M34 12 3 0 2 7 
M3a 1 1 0 0 0 
M5 2 2 0 0 0 
M8a 1 1 0 0 0 
N 3 0 0 1 2 

N 

N1 13 4 2 5 2 
N1a'e'I 19 2 1 4 12 
N1b 3 0 0 0 3 
N1c 4 2 0 2 0 
N1e'I 134 26 8 50 50 
N2 2 1 0 1 0 
N9a1 3 2 0 1 0 

 Table 4.3 is continued on the next page 
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Table 4.3 Haplogroup frequencies in discovery and confirmation – continued  

  Discovery Confirmation  

Haplogroup a 
Total Cases Controls Cases Controls Major 

Haplogroup n=5,430 n=1,114 n=422 n=1,623 n=2,271 

P 2 1 0 0 1 P 
R 16 3 1 4 8 

R R0a1a1 4 0 0 2 2 
R0a2b 1 1 0 0 0 

S3 1 0 0 1 0 S 
T 407 81 8 122 196 

T 
T2 108 27 27 21 33 
T2d 7 2 0 1 4 
T2f1 41 6 1 14 20 

U 18 5 1 4 8 

U 

U2'3'4'7'8'9 299 60 22 89 128 
U2b 7 2 0 1 4 
U2d 2 0 0 1 1 
U2e1a1a 3 1 0 1 1 
U3a1 29 10 2 9 8 
U4b1a2 5 0 0 3 2 
U4b1a3 6 2 1 1 2 
U5 301 55 17 89 140 
U5a1 121 24 4 44 49 
U5a1a 6 1 4 1 0 
U5a1a1 60 12 3 13 32 
U5a1b1c 3 2 1 0 0 
U5a2b2 6 0 0 3 3 
U5b1a 1 0 1 0 0 
U5b1c1 3 0 1 2 0 
U5b2a1a2 1 0 1 0 0 
U8 186 5 4 86 91 
U8b 2 1 1 0 0 

V 186 37 16 59 74 V 
W 93 13 12 32 36 

W 
W3a 20 0 0 12 8 

X 39 19 4 7 9 
X 

X2b'd 36 6 2 6 22 

Z 1 0 0 0 1 Z 
 a Haplogroups determined by HaploGrep (Kloss-Brandstätter et al. 2011), only individuals with 

 HaploGrep's quality ≥ 90 % were included 
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Table 4.4 Frequency of major haplogroups in cases and controls in discovery and 

 confirmation 

 Discovery Confirmation 

Haplo-
group a 

Frequency 
Cases 

[%] 

Frequency 
Controls 

[%] 

Odds 
Ratio 

Confidence 
Interval b 

p-
value c 

Frequency 
Cases 

[%] 

Frequency 
Controls 

[%] 

Odds 
Ratio 

Confidence 
Interval b 

p- 
value c 

 n=1,114 n=422    n=1,623 n=2,271     
A 0 0 - - - 0.12 0.13 0.93 0.08-8.15 1.000 
B 0.00 0.24 0.00 0.00-14.65 0.275 0.62 0.48 1.27 0.48-3.31 0.659 
D 0 0 - - - 0.12 0.04 2.80 0.15-165 0.575 
H 46.23 45.73 1.00 0.80-1.26 0.909 42.21 43.06 0.97 0.85-1.10 0.599 
J 9.16 12.09 0.73 0.50-1.06 0.104 10.41 9.91 1.06 0.85-1.31 0.628 
K 6.37 7.35 0.85 0.54-1.36 0.492 3.51 3.65 0.96 0.67-1.37 0.862 
L 0.09 0 Inf 0.01-Inf 1.000 0.06 0.09 0.70 0.01-13.4 1.000 
M 1.08 0.24 4.54 0.67-195 0.129 0.37 0.66 0.56 0.18-1.53 0.271 
N 3.32 2.61 1.27 0.63-2.79 0.516 3.94 3.04 1.31 0.91-1.88 0.129 
P 0.09 0.00 Inf 0.01-Inf 1.000 0.00 0.04 0.00 0.00-54.5 1.000 
R 0.36 0.24 1.50 0.15-74.2 1.000 0.37 0.44 0.84 0.25-2.55 0.804 
S 0 0 - - - 0.06 0.00 Inf 0.04-Inf 0.417 
T 10.41 8.53 1.23 0.83-1.88 0.293 9.74 11.14 0.86 0.69-1.07 0.169 
U 16.16 14.93 1.09 0.79-1.51 0.584 21.32 20.70 1.04 0.88-1.21 0.661 
V 3.32 3.79 0.86 0.46-1.68 0.641 3.64 3.26 1.12 0.78-1.61 0.532 
W 1.17 2.84 0.40 0.17-0.97 0.034 2.71 1.94 1.41 0.90-2.20 0.126 
X 2.24 1.42 1.58 0.63-4.73 0.416 0.80 1.37 0.58 0.28-1.15 0.124 
Z 0 0 - - - 0.00 0.04 0.00 0.00-54.5 1.000 

a only individuals with HaploGrep's quality ≥ 90 % were included (~96 % of all individuals)  
b 95 % confidence interval for odds ratio  
c Fisher's exact test, 2-sided, p-values below 0.05 are highlighted in bold 
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Table 4.5 Frequency of haplogroups in cases and controls in discovery and confirmation 

stratified by gender 

 Discovery Confirmation 

Haplo-
group a 

Frequency 
Cases 

[%] 

Frequency 
Controls 

[%] 

Odds 
Ratio 

Confidence  
Interval b 

p-
value c 

Frequency 
Cases 

[%] 

Frequency 
Controls 

[%] 

Odds 
Ratio 

Confidence 
Interval b 

p-
value c 

males n=491 n=163    n=793 n=890    
A      0.25 0.22 1.12 0.08-15.5 1.000 
B 0.00 0.00 0.00 0.00-Inf - 0.38 0.22 1.69 0.19-20.2 0.671 
D      0.13 0.11 1.12 0.01-88.2 1.000 
H 46.03 46.01 1.03 0.71-1.48 1.000 44.14 42.81 1.06 0.87-1.28 0.588 
J 10.39 10.43 1.01 0.55-1.93 1.000 9.84 10.90 0.89 0.64-1.24 0.522 
K 4.89 6.75 0.72 0.33-1.67 0.421 2.90 3.48 0.83 0.46-1.48 0.580 
L 0.00 0 0.00 0.00-Inf - 0.00 0.11 0.00 0.00-43.8 1.000 
M 0.41 0.00 Inf 0.06-Inf 1.000 0.63 0.56 1.12 0.26-4.90 1.000 
N 3.87 1.84 2.17 0.63-11.6 0.315 3.28 3.71 0.88 0.50-1.53 0.691 
P 0.00 0.00 0.00 0.00-Inf - 0.00 0.00 0.00 0.00-Inf - 
R 0.61 0.61 1.01 0.08-53.3 1.000 0.63 0.45 1.41 0.30-7.11 0.742 
S      0.00 0.00 0.00 0.00-Inf - 
T 10.59 9.82 1.10 0.60-2.14 0.883 10.21 11.12 0.91 0.66-1.26 0.581 
U 15.48 17.18 0.90 0.55-1.50 0.622 21.31 19.89 1.09 0.86-1.39 0.506 
V 4.48 3.68 1.24 0.48-3.82 0.824 3.15 2.92 1.08 0.59-1.97 0.887 
W 0.41 3.07 0.13 0.01-0.81 0.012 2.14 1.69 1.28 0.60-2.77 0.592 
X 2.85 0.61 4.81 0.72-204 0.132 1.01 1.80 0.56 0.21-1.39 0.217 
Z      0.00 0.00 0.00 0.00-Inf - 

females n=623 n=259    n=830 n=1,381    
A      0.00 0.07 0.00 0.00-64.7 1.000 
B 0.00 0.39 0.00 0.00-15.8 0.294 0.84 0.65 1.29 0.41-3.92 0.612 
D      0.12 0.00 Inf 0.04-Inf 0.375 
H 46.39 45.56 0.99 0.74-1.34 0.824 40.36 43.23 0.89 0.75-1.06 0.197 
J 8.19 13.13 0.58 0.36-0.94 0.032 10.96 9.27 1.20 0.89-1.61 0.211 
K 7.54 7.72 0.95 0.54-1.73 1.000 4.10 3.77 1.09 0.68-1.73 0.734 
L 0.16 0 Inf 0.01-Inf 1.000 0.12 0.07 1.66 0.02-1306 1.000 
M 1.61 0.39 4.11 0.58-179 0.190 0.12 0.72 0.17 0.00-1.16 0.062 
N 2.89 3.09 0.91 0.37-2.45 0.830 4.58 2.61 1.79 1.09-2.93 0.014 
P 0.16 0.00 Inf 0.01-Inf 1.000 0.00 0.07 0.00 0.00-64.7 1.000 
R 0.16 0.00 Inf 0.01-Inf 1.000 0.12 0.43 0.28 0.01-2.28 0.267 
S      0.12 0.00 Inf 0.04-Inf 0.375 
T 10.27 7.72 1.33 0.78-2.38 0.259 9.28 11.15 0.81 0.60-1.09 0.173 
U 16.69 13.51 1.25 0.81-1.94 0.265 21.33 21.22 1.00 0.81-1.24 0.957 
V 2.41 3.86 0.60 0.25-1.52 0.266 4.10 3.48 1.18 0.73-1.89 0.486 
W 1.77 2.70 0.63 0.22-1.95 0.433 3.25 2.10 1.56 0.88-2.76 0.123 
X 1.77 1.93 0.89 0.28-3.31 1.000 0.60 1.09 0.55 0.16-1.60 0.354 
Z      0.00 0.07 0.00 0.00-64.7 1.000 

a only individuals with HaploGrep's quality ≥ 90 % were included (~96 % of all individuals)  
b 95 % confidence interval for odds ratio  
c Fisher's exact test, 2-sided, p-values below 0.05 are highlighted in bold 
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4.1.3 Re-sequencing of complete mtDNA 

 By re-sequencing of the complete mtDNA of 10 individuals, a total of 65 different 

variants (i.e. deviations of rCRS) were detected which were not present on the SNP array 

(Table 4.6). Among these, 33 belong to the mitochondrial D-loop and 32 to the coding 

region. All of these variations have been reported previously (www.mitomap.org, last edited 

on Apr 23, 2013), except for the deletion mt.8270_8278DelCACCCCCTC in the non-coding 

region. However, a similar one displaced by two bases, mt.8272_8280DelCCCCCTCTA, had 

been already described (Cann and Wilson 1983). In addition, genotype information of all 40 

SNPs from the SNP array was re-confirmed. 

 

Table 4.6 Variants detected by re-sequencing of complete mtDNA of each five lean and 

  obese individuals 

   Individual a (Haplogroup b) 

Position c Reference 
allele d 

Variant 
Allele 1 (W) 2 (W) 3 (W) 4 (H) 5 (HV) 6 (W) 7 (W) 8 (W) 9 (W) 10 (W) 

m.16093 T C    C       
m.16104 C A A          
m.16140 T C           
m.16192 C T   T        
m.16213 G A      A     
m.16221 C T    T       
m.16223 C T T T T   T T T T T 
m.16261 C T         T  
m.16286 C T          T 
m.16292 C T T T T    T T T  
m.16295 C T        T   
m.16301 C T      T     
m.16311 T C C    C      
m.16324 T C         C  
m.16325 T C   C        
m.16362 T C  C     C    
m.16519 T C C C C C  C C C C C 
m.73 A G G G G   G G G G G 
m.94 G A      A     
m.119 T C        C C  
m.143 G A          A 
m.152 T C     C      
m.189 A G G G G    G G G G 
m.192 T C          C 
m.194 C T T T T    T   T 
m.195 T C C C C    C C C C 
m.196 T C          C 
m.199 T C C          
m.204 T C C C C   C C C C C 
m.207 G A A A A   A A A A A 
m.263 A G G G G G G G G G G G 
m.309      309.1C   309.1C  309.1C  
m.309       309.1CC      
m.315   315.1C 315.1C 315.1C 315.1C 315.1C 315.1C 315.1C 315.1C 315.1C 315.1C 

Table 4.6 is continued on the next page  

http://www.mitomap.org/�
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Table 4.6 Variants detected by re-sequencing of complete mtDNA of each five lean and 

 obese individuals – continued 

   Individual a (Haplogroup b) 

Position c Reference 
Allele d 

Variant 
Allele 1 (W) 2 (W) 3 (W) 4 (H) 5 (HV) 6 (W) 7 (W) 8 (W) 9 (W) 10 (W) 

m.709 G A A A A   A A A A A 
m.750 A G G G G G G G G G G G 
m.960   960.1C          
m.1243 T C C C C   C C C C C 
m.1406 T C C          
m.1438 A G G G G G G G G G G G 
m.1700 T C           
m.1811 A G           
m.1888 G A           
m.2706 A G G G G  G G G G G G 
m.3010 G A           
m.3197 T C           
m.3505 A G G G G   G G G G G 
m.3531 G A          A 
m.4093 A G   G        
m.4363 T C  C     C    
m.4580 G A           
m.4769 A G G G G G G G G G G G 
m.4833 A G        G   
m.5046 G A A A A   A A A A A 
m.5460 G A A A A   A A A A A 
m.6528 C T  T     T    
m.7028 C T T T T  T T T T T T 
m.7864 C T      T  T T  
m.8251 G A A A A   A A A A A 

m.8270          
8270_8278 

DelCACCCCCTC   
m.8610 T C   C        
m.8614 T C   C        
m.8860 A G G G G G G G G G G G 
m.8994 G A A A A  A A A A A A 
m.9055 G A           
m.9123 G A           
m.9275 A G       G    
m.9698 T C           
m.10097 A G  G     G    
m.10238 T C           
m.10310 G A         A  
m.10410 T C  C     C    
m.10463 T C           
m.10550 A G           
m.11227 C A         A  
m.11251 A G           
m.11299 T C           
m.11467 A G           
m.11674 C T T T T   T T T T T 
m.11719 G A A A A   A A A A A 

Table 4.6 is continued on the next page 
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Table 4.6 Variants detected by re-sequencing of complete mtDNA of each five lean and 

 obese individuals – continued 

   Individual a (Haplogroup b) 

Position c Reference 
Allele d 

Variant 
Allele 1 (W) 2 (W) 3 (W) 4 (H) 5 (HV) 6 (W) 7 (W) 8 (W) 9 (W) 10 (W) 

m.11812 A G           
m.11914 G A           
m.11947 A G G G G   G G G G G 
m.12007 G A           
m.12308 A G           
m.12414 T C C C C   C C C C C 
m.12612 A G           
m.12705 C T T T T   T T T T T 
m.12923 G T T          
m.13368 G A           
m.13617 T C           
m.13708 G A           
m.14148 A G         G  
m.14470 T A    A       
m.14602 A G    G       
m.14766 C T T T T   T T T T T 
m.14905 G A           
m.15043 G A           
m.15218 A G           
m.15326 A G G G G G G G G G G G 
m.15452 C A           
m.15607 A G           
m.15775 A G  G     G    
m.15884 G C C C C   C C C C C 
m.15924 A G           

a Individual 1-5 extremely obese children and adolescent, individual 6-10 
b Haplogroup determined using HaploGrep (Kloss-Brandstätter et al. 2011), only individuals with 

HaploGrep's Quality ≥ 90 % were included 
c grey shaded positions represent the 40 SNPs present on the Affymetrix Genome-Wide Human SNP 

Array 6.0 
d according to rCRS; only deviations from the reference are shown 

 

 

 Considering only those eight individuals of haplogroup W, which were identical regarding 

genotype information from the SNP array, 29 and 30 variants were detected in the D-loop 

and coding region, respectively. In the D-loop, seven variants were detected in all 

individuals, while 15 were detected in only one individual. By contrast, in the coding region, 

12 variants were detected in all individuals and 12 only in one individual (Table 4.6). 

 Finally, using all detected variants as well as only the detected D-loop variants, 

haplogroup was re-determined with HaploGrep (Table 4.7). Although haplogroups changed 

in all individuals, the assigned major haplogroup, which was used for association analysis, 
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remained the same apart from one exception. In individual 6, by using only D-loop variants 

for haplogroup determination, haplogroup turned out to be N9b1c1 and hence the assigned 

major haplogroup would be N. However, due to a HaploGrep’s quality of only 80.5 %, the 

individual would not have been considered for major haplogroup assignment or association 

analysis. HaploGrep’s quality values were slightly lower by including all detected variants and 

lowest by using only D-loop variants compared with the haplogroup determination using 

SNP array-based genotype information (Table 4.7).  

 

Table 4.7 Haplotype classification after complete re-sequencing using HaploGrep 

Indi-
vidual a 

Genotype information 
based on SNP array 

Assigned 
major 
haplo-
group 

All detected variants by re-
sequencing 

Assigned 
major 
haplo-
group 

Only detected D-Loop 
variants 

Assigned 
major 
haplo-
group  Haplogroup Quality b Haplogroup Quality b Haplogroup Quality b 

1 W 100 W W3b 99.6 W W3a1+199 98.3 W 
2 W 100 W W5a1a 100 W W5a 96.8 W 
3 W 100 W W6a 100 W W6+16192 100 W 
4 H 100 H H10e2 100 H H10e 75.5 H 

5 HV 91.9 H HV9+152 100 H H2a+152  
16311 63.9 H 

6 W 100 W W1 93.2 W N9b1c1 80.5 N 
7 W 100 W W5a1a1 100 W W5a 100.0 W 
8 W 100 W W1+119 97.1 W W1+119 95.2 W 
9 W 100 W W1c 96.5 W W1+119 91.4 W 

10 W 100 W W4a 97.6 W W4a 96.0 W 
a Individuals 1-5 extremely obese children and adolescents, individuals 6-10 lean adults 
b a quality of at least 90 % indicates a quite reliable haplogroup assignment according to the user 

manual of HaploGrep 
 

4.1.4 Re-sequencing of mitochondrial D-loop 

 D-loop re-sequencing (Sanger) was performed in 192 cases and 192 controls (D-loop 

sample) predominantly from the CC sample. In one case and one control, 9 and 4 clearly 

visible point heteroplasmies, respectively, were found. D-loop re-sequencing was repeated 

for both individuals using DNA from the stock solution of the respective individuals, and the 

initial results were confirmed. As point heteroplasmies at more than one position in one 

individual may be existing, but are rather infrequent (Budowle et al. 2002), in particular in 

blood cells (Calloway et al. 2000), contamination with DNA from another individual during 

DNA isolation might also be conceivable (Andréasson et al. 2006). Therefore, both 

individuals were excluded from further analyses. 

 Among the 191 extremely obese children and adolescents and 191 controls followed-up 

for all subsequent considerations, n=178 and n=186 were derived from the CC sample, 
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respectively. The major haplogroup distribution based on the 40 SNPs from the SNP array 

did not differ between the D-loop sample and the complete discovery sample (p=0.966; 

Table 4.8 and Fig. 4.2). Haplogroup of these 364 individuals was re-assigned using only the 

detected D-loop variants. The necessary HaploGrep’s quality threshold of 90 % was reached 

in only 90 individuals (25 % vs. 96 % in SNP array-based assignment). However, among these 

90 individuals, 91 % were assigned to the same major haplogroup as compared to the SNP-

based assignment. Taking the D-loop variant derived assignment of all 364 individuals into 

consideration irrespective of quality value, accordance of the major haplogroup still has 

been found in 87 % of the individuals. 

 

Table 4.8 Comparison of haplogroup distribution between discovery and individuals 

 whose D-loop was re-sequenced (D-loop sample) 

 
Discovery sample 

 
D-loop sample a 

 
Major 
Haplogroup b 

Frequency cases 
[%] 

Frequency controls 
[%] 

p-value c 
Frequency cases 

[%] 
Frequency controls 

[%] 
p-value c 

 
n=1,114 n=422 

 
n=169 n=183 

 B 0.00 0.24 0.275 0.00 0.55 1.000 
H 46.23 45.73 0.909 44.97 47.54 0.669 
J 9.16 12.09 0.104 13.02 8.20 0.165 
K 6.37 7.35 0.492 5.92 8.20 0.534 
L 0.09 0.00 1.000 0.00 0.00 - 
M 1.08 0.24 0.129 0.59 0.00 0.480 
N 3.32 2.61 0.516 2.37 3.28 0.752 
P 0.09 0.00 1.000 0.00 0.00 - 
R 0.36 0.24 1.000 0.00 0.55 1.000 
T 10.41 8.53 0.293 12.43 10.38 0.615 
U 16.16 14.93 0.584 14.79 14.75 1.000 
V 3.32 3.79 0.641 4.14 3.28 0.780 
W 1.17 2.84 0.039 0.00 2.73 0.062 
X 2.24 1.42 0.416 1.78 0.55 0.354 

a most of individuals of D-loop sample were derived from the case-control sample 
b Haplogroup was determined using HaploGrep (Kloss-Brandstätter et al. 2011), only individuals with 

HaploGrep's Quality ≥ 90 % were included 
c Fisher’s exact test, two-sided 
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Figure 4.2 Comparison of haplogroup distribution between discovery sample and 

 individuals whose D-loop was re-sequenced (D-loop sample) 

Haplogroup was determined using HaploGrep (Kloss-Brandstätter et al. 2011) and SNP array-based 
genotype information of the 40 SNPs; only individuals with HaploGrep's Quality ≥ 90  % were 
included, χ2 test was performed to compare haplogroup distribution between Discovery sample and 
individuals whose D-loop was re-sequenced (p=0.966, most of individuals of D-loop sample were 
derived from case-control sample) 
 

 

 In both cases and controls a total of 252 variants, i.e. deviations from the rCRS, were 

detected in the 1319-bp-long fragment. Four of these variants (m.576_577InsCA, m.628C/A, 

m.634T/C and 678T/C) were not located in the actual D-loop region between m.576 and 

m.16024 (Anderson et al. 1981). All detected variants were found at 233 different positions, 

of which 221 were nucleotide positions and 12 were spaces between nucleotides due to 

insertions (Table 4.9 and Table 4.10). Altogether, 223 single nucleotide exchanges at 213 

positions were found, as at 10 positions tri-allelic single nucleotide exchanges were present 

(Table 4.9). Moreover, three complex nucleotide exchanges (m.16183A/CC, m.16183A/CCC 

and m.16189T/CC), 20 insertions of one to six nucleotides, and eight deletions of one to 

three nucleotides were detected (Table 4.10). Most of the variants detected have been 

previously described (www.mitomap.org, last edited on Apr 23, 2013). Only five (eight) single 

nucleotide exchanges and six (seven) complex nucleotide exchanges, insertions or deletions 

in the D-Loop (in the whole fragment) have not been reported previously (Table 4.9 and 

Table 4.10). 

 Four cases and nine controls had one point heteroplasmy each, which could be clearly 

identified by Sanger re-sequencing. These point heteroplasmies were found at 12 positions, 

as one was found twice (Table 4.9).  
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Table 4.9 Detected variants (single nucleotide exchanges) by re-sequencing of mtDNA 

 and frequencies in cases and controls 

Detected 
variants 

Frequency cases [%] Frequency controls [%] Detected 
variants 

Frequency cases [%] Frequency controls [%] 
n=191 n=191 n=191 n=191 

m.63T/C 0.00 0.52 m.310T/C 0.52 0.52 
m.64C/T 0.52 1.05 m.316G/A 0.52 0.00 
m.72T/C 4.71 2.62 m.318T/C 0.52 0.00 
m.73A/G 53.40 53.40 m.319T/C 1.57 1.57 
m.73A/T a 0.00 0.52 m.321T/C 0.00 0.52 
m.93A/G 1.57 0.52 m.340C/T 0.52 0.00 
m.94G/A 0.00 0.52 m.357A/G 0.00 0.52 
m.95A/C 0.52 0.00 m.372T/C 0.00 0.52 
m.114C/T 0.00 0.52 m.385A/G 1.57 0.00 
m.118G/C 

a 0.00 0.52 m.408T/A 0.52 1.05 
m.119T/C 0.00 1.05 m.449T/C 0.52 0.00 
m.143G/A 0.52 0.52 m.455T/C 0.52 0.00 
m.146T/C 9.95 10.21 m.456C/T 6.28 4.71 
m.150C/T 9.42 7.85 m.458C/T 0.52 1.05 
m.151C/T 0.52 0.26 m.462C/T 8.90 6.28 
m.152T/C 25.65 23.04 m.469C/T 0.00 0.52 
m.153A/G 1.05 0.00 m.477T/C 4.71 3.66 
m.182C/T 0.00 0.52 m.480T/C 0.00 0.52 
m.183A/G 0.00 0.52 m.482T/C 0.52 0.00 
m.185G/A 6.81 4.71 m.489T/C 12.57 7.85 
m.188A/G 1.57 3.14 m.497C/T 2.09 4.19 
m.189A/G 0.52 3.66 m.499G/A 5.24 3.66 
m.193A/G 0.00 0.52 m.508A/G 1.05 1.05 
m.194C/T 0.52 1.57 m.509C/T 0.52 0.00 
m.195T/C 18.06 18.59 m.513G/A 2.09 1.57 
m.196T/C 0.00 0.52 m.533A/G 0.00 1.05 
m.198C/T 0.52 0.52 m.535C/T 0.00 0.52 
m.199T/C 2.62 3.14 m.549T/C 0.26 0.00 
m.200A/G 1.05 0.52 m.550C/T a 0.00 0.52 
m.203G/A 1.57 0.00 m.564G/A a 0.52 0.00 
m.204T/C 2.62 7.33 m.567A/C 0.52 0.00 
m.207G/A 2.62 6.28 m.568C/T a 0.52 0.00 
m.210A/G 0.52 0.00 m.574A/C a 0.52 0.00 
m.215A/G 1.57 1.57 m.628C/A a 0.00 0.52 
m.217T/C 1.05 0.52 m.634T/C 0.00 0.52 
m.225G/A 1.05 0.00 m.678T/C 0.52 0.00 
m.226T/C 1.05 0.00 m.16051A/G 2.09 2.62 
m.227A/T 0.52 0.00 m.16063T/C 0.52 0.00 
m.228G/A 5.24 4.19 m.16067C/T 0.52 0.00 
m.234A/G 0.52 0.00 m.16069C/T 11.52 7.85 
m.235A/G 1.57 0.00 m.16082C/T 0.52 0.00 
m.236T/C 0.00 0.52 m.16086T/C 1.57 1.05 
m.239T/C 2.09 3.14 m.16092T/C 1.05 0.52 
m.240A/T a 0.00 0.52 m.16093T/C 5.76 5.24 
m.242C/T 1.57 2.09 m.16104C/T 0.00 1.05 
m.246T/C 0.52 0.00 m.16104C/A 0.52 0.00 
m.247G/A 1.05 0.52 m.16111C/T 0.00 0.52 
m.250T/C 2.09 2.09 m.16114C/T 1.05 0.26 
m.257A/G 1.05 0.52 m.16126T/C 23.04 19.37 
m.259A/G 0.52 0.00 m.16129G/A 4.19 5.24 
m.260G/A 0.52 0.00 m.16129G/C 1.05 0.52 
m.262C/T 0.52 0.00 m.16134C/T 0.52 2.09 
m.263A/G 97.91 99.48 m.16145G/A 4.19 3.66 
m.282T/C 0.00 2.09 m.16146A/G 0.00 1.05 
m.285C/T 1.05 0.52 m.16147C/A 0.00 0.52 
m.295C/T 10.99 7.85 m.16147C/T 0.00 0.52 
m.295C/A 0.00 1.05 m.16148C/T 0.52 0.52 

Table 4.9 is continued on the next page  
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Table 4.9 Detected variants (single nucleotide exchanges) by re-sequencing of mtDNA 

and frequencies in cases and controls – continued  

Detected 
variants 

Frequency cases  [%] Frequency controls [%] Detected 
variants 

Frequency cases [%] Frequency controls [%] 
n=191 n=191 n=191 n=191 

m.16153G/A 1.05 0.00 m.16265A/G 2.09 0.52 
m.16154T/C 0.00 0.52 m.16266C/T 1.57 1.57 
m.16160A/G 0.52 0.00 m.16269A/G 0.52 0.00 
m.16162A/G 2.62 4.71 m.16270C/T 6.81 4.71 
m.16163A/G 2.62 2.62 m.16271T/C 0.00 1.05 
m.16164A/G 0.00 0.52 m.16274G/A 0.52 0.00 
m.16168C/T 0.52 0.00 m.16278C/T 3.14 1.57 
m.16170A/G 0.52 0.00 m.16284A/G 0.52 0.00 
m.16171A/T 0.26 0.00 m.16286C/T 0.52 0.52 
m.16172T/C 4.19 3.14 m.16288T/C 0.52 0.00 
m.16174C/T 1.05 0.52 m.16289A/G 0.52 0.00 
m.16176C/T 0.26 0.52 m.16290C/T 0.00 0.52 
m.16176C/G 0.52 0.52 m.16291C/T 2.62 0.52 
m.16179C/T 0.52 0.00 m.16292C/T b 0.00 4.19 
m.16180A/G 0.00 0.52 m.16293A/T 0.00 0.52 
m.16182A/G 0.52 0.52 m.16293A/G 2.09 2.62 
m.16182A/C 3.14 0.52 m.16294C/T 10.99 11.52 
m.16183A/C 3.66 4.19 m.16295C/T 0.00 0.52 
m.16185C/T 0.52 0.00 m.16296C/T 5.24 7.33 
m.16186C/T 3.14 2.09 m.16297T/C 0.00 0.52 
m.16187C/T 0.00 0.52 m.16298T/C 6.81 4.71 
m.16188C/A 0.00 0.52 m.16300A/G 0.00 0.26 
m.16188C/G 0.00 0.52 m.16301C/T 0.00 0.26 
m.16189T/C b 16.75 9.42 m.16304T/C 10.47 12.04 
m.16192C/T 4.71 3.14 m.16309A/G 0.00 0.52 
m.16193C/T 1.57 2.09 m.16311T/C 13.61 15.97 
m.16201C/T 0.52 0.00 m.16316A/G 0.00 1.05 
m.16209T/C 2.62 4.19 m.16318A/T 0.52 0.52 
m.16213G/A 0.00 1.57 m.16319G/A 0.00 0.52 
m.16215A/G 0.52 0.00 m.16320C/T 1.05 1.57 
m.16216A/G 0.52 0.00 m.16324T/C 0.52 1.57 
m.16217T/C 0.00 0.52 m.16325T/C 0.00 1.57 
m.16218C/T 0.52 0.52 m.16327C/T 0.00 0.52 
m.16219A/G 0.00 1.57 m.16335A/G 0.00 0.79 
m.16221C/T 1.05 0.52 m.16342T/C 0.52 1.57 
m.16222C/T 3.14 1.57 m.16343A/G 0.52 1.05 
m.16223C/T 5.76 7.85 m.16344C/T 0.52 0.00 
m.16224T/C 5.24 7.85 m.16353C/T 0.00 0.52 
m.16230A/G 0.00 0.52 m.16354C/T 0.52 0.00 
m.16231T/C 1.57 1.57 m.16355C/T 1.57 1.57 
m.16234C/T 1.05 2.09 m.16356T/C 6.28 5.76 
m.16235A/G 0.52 0.00 m.16357T/C 0.52 0.00 
m.16239C/T 0.00 0.52 m.16360C/T 0.00 0.52 
m.16240A/G 0.00 0.52 m.16362T/C 7.85 8.90 
m.16243T/C 0.52 0.52 m.16366C/T 0.52 1.05 
m.16245C/T 0.52 1.57 m.16390G/A 2.09 2.62 
m.16247A/G 0.00 0.52 m.16391G/A 2.09 2.09 
m.16248C/T 0.52 0.52 m.16398G/A 1.05 0.00 
m.16249T/C 1.05 0.52 m.16399A/G 3.66 2.88 
m.16256C/T 4.19 3.14 m.16482A/G 1.05 2.62 
m.16258A/C 0.52 0.00 m.16497A/G 0.00 1.05 
m.16258A/G 0.00 0.52 m.16519T/C 66.49 70.16 
m.16260C/T 0.52 0.52 m.16526G/A 2.62 1.05 
m.16261C/T 4.19 4.19 m.16527C/T 0.52 0.00 
m.16263T/C 1.57 1.05 

   a variant has not been described previously based on www.mitomap.org, last edited on Apr 23, 2013 
b nominal p<0.05, Fisher’s exact test, two-sided 
grey shaded frequency: point heteroplasmy was detected in either one case or one control  
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Table 4.10 Detected variants (complex nucleotide exchanges, insertions and deletions) by 

  re-sequencing of mtDNA and frequencies in cases and controls 

Detected  
Variants 

Frequency cases [%] Frequency controls [%] 
n=191 n=191 

m.16183A/CC 2.62 1.05 
m.16183A/CCC a 0.52 0.00 
m.16189T/CC a 1.05 2.62 
m.43_44insG a 1.05 0.00 
m.297_298insC a 0.00 0.52 
m.309_310insC 34.03 39.79 
m.309_310insCC 14.14 12.57 
m.310_311insTC 0.52 1.57 
m.315_316insC 95.29 97.91 
m.315_316insCC 1.05 0.00 
m.315_316insCCC 0.52 0.00 
m.451_452insT 0.52 0.52 
m.514_515insAC 5.24 8.38 
m.514_515insACAC 3.14 1.05 
m.514_515insACACAC 0.52 0.52 
m.567_568insC 1.05 0.00 
m.567_568insCCC 0.52 1.05 
m.567_568insCCCC 0.52 0.00 
m.567_568insCCCCC 0.52 3.14 
m.576_577insCA a 0.52 0.00 
m.16193_16194insC 0.52 0.00 
m.310delT 1.05 0.00 
m.311_313delCCC 0.52 0.00 
m.498delC 2.62 1.05 
m.513_514delGC a 0.00 0.52 
m.515_516delAC 10.99 10.99 
m.568delC a 0.52 0.00 
m.16189delT 0.52 0.00 
m.16257delC 0.52 0.00 
a variant has not been described previously based on www.mitomap.org, last edited 
on Apr 23, 2013 
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 In addition, length heteroplasmies, i.e. mixtures of various lengths of a certain mtDNA 

region in one individual, were found at four locations: in individuals with (1) an 

uninterrupted poly-C tract at m.16184 to m.16193 of at least 10 Cs through m.16189T/C(C), 

(2) alterations at the CCCCCCCTCCCCC-tract at m.303 to m.315, (3) insertions of AC or ACAC 

at an AC-repeat at m.515 to m.524 and (4) insertions of three to five Cs at a poly-C tract at 

m.568 to m.573 (Fig. 4.3).  

16024 1 576

AACCCCCTCCCCATG AACCCCCCCTCCCCCG CACCCCCCACAGTGCACACACACACC

16189T/C
16189T/CC

310T/C
310delT
311_313delCCC

568-573
InsCCC
InsCCCC
InsCCCCC

515-524
InsAC
InsACAC

311-315InsC 

 

Figure 4.3 Detected length heteroplasmies 

Length heteroplasmies, i.e. mixtures of various lengths of a certain mtDNA region in one individual, 
were found at four locations in the D-loop (m.16024 o m.576), predominantly by alterations of these 
as indicated at poly-C tracts. Numbering according to rCRS.  
 

 

 The frequency of each detected variant ranged from 0.26 % (n=1) to 98.69 % (n=377). 

Three variants were found in more than two thirds of all individuals (m.263A/G, 

m.315_316insC and m.16519T/C; Table 4.9 and Table 4.10). In both cases and controls, on 

average 8.3 variants per individual were detected (p=0.989; Fig. 4.4).  

 

Cases Controls

 

Figure 4.4 Comparison of mean number of D-loop deviations per individual between 

cases and controls 
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 Comparing the frequencies of each variant between cases and controls, two variants 

were nominally associated with obesity (Table 4.9). m.16292C/T was only found in eight 

controls (p=0.0072), but five of these eight controls belong to haplogroup W, the frequency 

of which was significantly higher in the controls in the initial CC sample and borderline 

significant (p=0.062, Table 4.8) among the D-loop sample. The second nominally associated 

variant, m.16189T/C, was more frequent in the cases (17 % vs. 9 %; p=0.048, Table 4.9). The 

transition at m.16189 might create an uninterrupted poly-C tract of 10 Cs (m.16184 to 

m.16193; Fig. 4.3), in case of no further transition in any of the other Cs in this C-tract. 

Comparing only individuals with the uninterrupted C-tract, which was done by Parker et al. 

(2005) for BMI in an Australian cohort, a tendency of overrepresentation in the cases 

remained (15 % vs. 10 %).  

 Finally, the mean number of variants per case was not different compared with the mean 

number of variants per control in 23 functionally relevant locations of the D-loop (Table 

4.11). 
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Table 4.11 Comparison of mean number of variants in functionally relevant D-loop 

locations between cases and control 

a description/function of location in 1.4.2.5 of Introduction 
b t-test, 2-sided  
CE, control element; CSB, conserved sequence block; ETAS, extended termination associated 
sequence, HSP, heavy strand promoter; HV, hypervariable region; LSP, light strand promoter; mtTF1 
BS, mitochondrial transcription factor A (TFAM) binding side (TFAM formerly known as mtTF1); NaN, 
not a number; TAS, termination associated sequence   

Location a 
Location 

start 
Location 

end 

Number of 
detected 

variants in 
location 

Mean 
number of 

variants 
per case 

Mean 
number of 

variants 
per control 

p-value b 

HV1a m.16024 m.16365 126 2.39 2.39 0.977 

HV1b m.16024 m.16382 127 2.39 2.40 0.953 

HV2a m.73 m.340 69 4.25 4.33 0.686 

HV2b m.57 m.371 73 4.30 4.38 0.707 

HV3 m.438 m.574 35 0.75 0.64 0.232 

Mt5 (CE) m.16194 m.16208 1 0.01 0 0.319 

Mt3 (L-strand CE) m.16499 m.16506 0 0 0 NaN 

Mt4 (L-strand CE) m.371 m.379 1 0 0.01 0.319 

Mt3 (H-strand CE) m.384 m.391 1 0.02 0 0.083 

mtTF1 BS m.233 m.260 12 0.12 0.09 0.537 

mtTF1 BS m.276 m.303 5 0.12 0.12 1.000 

mtTF1 BS m.418 m.445 0 0 0 NaN 

mtTF1 BS m.525 m.552 4 0.01 0.02 0.178 

LSP (including mtTF1 BS) m.392 m.445 1 0.01 0.01 0.563 

HSP1 m.545 m.567 4 0.02 0.01 0.414 

HSP1 (including mtTF1 BS) m.525 m.567 6 0.02 0.02 0.738 

HSP2 m.632 m.655 1 0 0.01 0.319 

CSB1 m.210 m.234 8 0.12 0.06 0.101 

CSB2 m.299 m.315 9 1.48 1.52 0.368 

CSB3 m.346 m.363 1 0.01 0 0.319 

ETAS1 m.16081 m.16140 12 0.39 0.36 0.578 

ETAS2 m.16294 m.16356 25 0.59 0.73 0.103 

TAS m.16157 m.16172 8 0.12 0.11 0.878 
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4.2 Gene set enrichment analysis of nuclear encoded mitochondrial genes  

 The GSEA was done in cooperation with Dipl.-Math. Ivonne Jarick and PD Dr. André 

Scherag who performed statistical analysis. My contribution was (1) the check of the cluster 

graphs for clear allele separation of all ~1,000 SNPs per sample from gene set 1 (p. 38f); (2) a 

literature re-check of the literature-based gene set 1 at the beginning of the analysis (p. 49f). 

(3) Together with Ivonne Jarick, I decided to use the population-based sample KORA as a CC 

sample to increase power of the sample (p. 34, p. 98). I suggested (4) to meta-analyze data-

sets of all three sample (p. 52f) and (5) to calculate the LD between best SNPs of the same 

gene of gene set 1 to conclude whether signals were independent (p.53). 

4.2.1 Discovery  

 All 16 and 91 genes of gene sets 1 and 2, respectively, had genotyped SNPs within the 

genes and their extended boundaries. Due to physical clustering, two genes of the 91 genes 

of the second gene set were removed. All genes but one from gene set 3 had SNPs within 

the genes and their extended boundaries and 85 had to be removed due to physical 

clustering. In the reference gene set of all autosomal genes, 55 of them had no genotyped 

SNPs within the gene and their extended gene boundaries. 7,445 were removed due to 

physical clustering. Thus, the effective number of genes for gene sets 1, 2, 3 and all 

autosomal genes was 16, 89, 880 and 10,180, respectively. Genes of gene set 1, 2 and 3 

were covered by 0.1 %, 0.4 % and 4.9 % of the 703,015 autosomal SNPs included in the 

GSEA. The reference gene set of all autosomal genes was covered by 73.0 % (Table 4.12). 

 Only the first gene set of 16 nuclear regulators of mitochondrial genes was enriched for 

obesity association signals (PGSEA,WMW=0.0075, PGSEA,KS=0.0195, PGSEA,t=0.0053). This 

enrichment was above the 50th percentile of the set of all autosomal gene-wise p-values 

(PGSEA,50=0.0103, Fig. 4.5 and Table 4.12). The enrichment remained significant after 

Bonferroni correction for the three gene sets tested except for the Kolmogorov-Smirnov-

Test. Applying MAGENTA, enrichment was found above the 50th percentile as well 

(pMAGENTA,50=0.0099). In addition, enrichment was also found above the 75th percentile 

(pMAGENTA,75=0.0074), which only tended to be significant using the permutation GSEA 

approach (pGSEA,75=0.0796; Table 4.12). 

4.2.2 Confirmation 

 In the family-based GWAS sample, enrichment of gene set 1 was not confirmed 

(PGSEA,50=0.5991, PGSEA,WMW=0.7879, PGSEA,KS=0.7930, PGSEA,t=0.7588; Fig. 4.6A and Table 4.13). 
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In KORA-CC, by contrast, the initial finding of enrichment of gene set 1 above the 50th 

percentile was confirmed (PGSEA,50=0.0398, PGSEA,WMW=0.0260, PGSEA,KS=0.0431, PGSEA,t=0.0211, 

and pMAGENTA,50=0.0405; Fig. 4.6B and Table 4.13). 

 The SNP with minimal Pg was different for most genes of gene set 1 in the three analyzed 

samples, and LD between best SNPs of one gene was generally quite low (Table 4.14 and 

Table 4.16). 

4.2.3 Meta-analysis 

 Applying MAGENTA for the meta-analysis of all three samples, significant enrichment for 

gene set 1 was found (PMAGENTA,WMW=0.0357). This enrichment was found above the 75th 

percentile (PMAGENTA,75=0.0251; Fig. 4.6C and Table 4.15). Hence, the effect of enrichment of 

association signals in gene set 1 remained stable in the meta-analysis.  

 

 

Figure 4.5 Empirical cumulative distribution functions (ECDF) of gene p-values Pg in all 

autosomal genes and in three gene sets of nuclear encoded mitochondrial 

genes (discovery) 

The grey line represents the ECDF of the uniform distribution (null hypotheses of no association) in 
each panel and the black line represents the ECDF of the respective gene set. The CC sample of 453 
extremely obese children and adolescents and 435 lean adult controls was used as the discovery 
sample. Pg, gene-wise corrected p-value; Figure from Knoll et al. (2013).  
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Figure 4.6 Empirical cumulative distribution functions (ECDF) of gene p-values Pg in all 

autosomal genes and gene set 1 (confirmation) 

The initial finding of enrichment of gene set 1 was independently confirmed in the family-based 
sample of 705 trios (A) and in 463 obese cases and 483 normal weight or lean controls of the KORA-
CC sample (B). Moreover, a meta-analysis of the discovery and both confirmation samples has been 
performed (C). The grey line represents the ECDF of the uniform distribution (null hypotheses of no 
association) in each panel and the black line represents the ECDF of the respective gene set. Pg, gene-
wise corrected p-value; Figure from Knoll et al. (2013). 
 



 

 
 

Table 4.12 GSEA and MAGENTA for obesity in the CC sample (discovery) 

 

a 703,015 autosomal SNPs were included 
b cut-off = 0.0216  
c cut-off = 0.1631 
d cut-off = 0.3951 
e exact GSEA Wilcoxon-Mann-Whitney test 
f reference gene set 
GSEA and MAGENTA p-values below 0.05 are highlighted in bold 
Table adapted from Knoll et al. (2013). 
 

 

Gene set 
 

total 
number 

of 
genes 

 

effective 
number 
of genes 

 

number of 
SNPs 

involved  

 

% of all 
autosomal 

SNPs 
involved a 

 

PGSEA,WMW 
Wilcoxon-

Mann-
Whitney 

test 

 

PGSEA,KS 
Kolmogorov-
Smirnov-test 

 

PGSEA,t  
t-test 

 

PGSEA,95 
95th 

percentile 
cut-off 
test b 

 

PGSEA,75  
75th 

percentile 
cut-off  
test  c 

 

PGSEA,50  
50th 

percentile 
cut-off  
test d 

 

PMAGENTA,WMW 
Wilcoxon-

Mann-
Whitney  

test e 

 

PMAGENTA,95 
95th 

percentile 
cut-off  
test b 

 

PMAGENTA,75 
75th 

percentile 
cut-off  
test  c 

 

PMAGENTA,50 
50th 

percentile 
cut-off  
test d 

1) Nuclear 
regulators of 
mitochondrial 
genes 

16 16 1,014 0.1 0.0075 0.0195 0.0053 0.5644 0.0796 0.0103 0.0043 0.575 0.0074 0.0099 

2) OXPHOS 
genes 91 89 2,781 0.4 0.6225 0.8586 0.6374 0.2873 0.5643 0.5834 0.8447 0.6565 0.7495 0.7369 

3) Nuclear-
encoded 
mitochondrial 
genes 

966 880 35,223 4.9 0.3841 0.2502 0.4104 0.6437 0.1905 0.1196 0.8969 0.5287 0.7372 0.7577 

All autosomal 
genes f 17,680 10,180 521,469 73.0 - - - - - - - - - - 
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Table 4.13 GSEA and MAGENTA for the gene set of 16 nuclear regulators of mitochondrial genes (confirmation) 

 

a 641,991 and 659,502 autosomal SNPs were included in family-based sample and KORA-CC, respectively 
b Trios: cut-off = 0.0382, KORA-CC: cut-off = 0.0486 
c Trios: cut-off = 0.2216, KORA-CC: cut-off = 0.2611 
d Trios: cut-off = 0.4687, KORA-CC: cut-off = 0.5085 
e exact GSEA Wilcoxon-Mann-Whitney test 
f 705 trios 
g reference gene set 
h BMI ≥ 30 (cases) vs. BMI < 25 (controls) 
GSEA and MAGENTA p-values below 0.05 are highlighted in bold 
Table adapted from Knoll et al. (2013) 

 

Gene set 
 

total 
number 

of 
genes 

 

effective 
number 
of genes 

 

number of 
SNPs 

involved  

 

% of all 
autosomal 

SNPs 
involved a 

 

PGSEA,WMW 
Wilcoxon-

Mann-
Whitney 

test 

 

PGSEA,KS 
Kolmogorov-
Smirnov-test 

 

PGSEA,t  
t-test 

 

PGSEA,95 
95th 

percentile 
cut-off 
test b 

 

PGSEA,75  
75th 

percentile 
cut-off  
test  c 

 

PGSEA,50  
50th 

percentile 
cut-off  
test d 

 

PMAGENTA,WMW 
Wilcoxon-

Mann-
Whitney  

test e 

 

PMAGENTA,95 
95th 

percentile 
cut-off  
test b 

 

PMAGENTA,75 
75th 

percentile 
cut-off  
test  c 

 

PMAGENTA,50 
50th 

percentile 
cut-off  
test d 

Family-
based 
sample f 

              

Gene set 1 16 16 919 0.1 0.7879 0.7930 0.7588 1.0000 0.3711 0.5991 0.6817 1 0.6024 0.7683 

All 
autosomal 
genes g 

17,680 9,478 471,858 73.5 - - - - - - - - - - 

KORA-CC h               

Gene set 1 16 16 933 0.1 0.0260 0.0431 0.0211 0.0432 0.1939 0.0398 0.0083 0.1918 0.1888 0.0405 

All 
autosomal 
genes 

17,680 9522 483,270 73.3 - - - - - - - - - - 
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Table 4.14 Best SNPs of nuclear regulators of mitochondrial genes (gene set 1) in each sample and linkage disequilibrium between best SNPs of 

 the three different study samples 

 

a BMI ≥ 30 (cases) vs. BMI < 25 (controls); b Location of SNP: *, exonic;  #, intronic; §, upstream of gene and &, downstream of gene; c Linkage Disequilibrium (LD) was calculated in 
the parents of the family-based GWAS sample by use of HaploView 4.2; d LD between rs7895833 and rs16924888: r2=0.581; best gene of each sample is indicated in bold letter. 
ESRRA, Estrogen related receptor alpha; ESRRG, Estrogen related receptor gamma; GABPA, GA-binding protein alpha subunit; GABPB1, GA-binding protein beta subunit 1; GABPB2, 
GA-binding protein beta subunit 2; MEF2A, Myocyte-specific enhancer factor 2A; MYC, Myelocytomatosis viral oncogene homolog (avian); NRF1, Nuclear respiratory factor 1; 
NRIP1, Nuclear receptor-interacting protein 1; PPARA, Peroxisome proliferator-activated receptor alpha; PPARD, Peroxisome proliferator-activated receptor delta; PPARGC1A, 
Peroxisome proliferator-activated receptor gamma coactivator 1 alpha; PPARGC1B, Peroxisome proliferator-activated receptor gamma coactivator 1 beta; SIRT1, Sirtuin 1; SP1, 
Specificity protein 1; YY1, Transcriptional repressor protein YY. Table adapted from Knoll et al. (2013). 

 Discovery Confirmation (1) Confirmation (2) 

Sample 453 cases (children/adolescents) and 435 controls (adults) 705 family-based trios (index: child/adolescent) 463 cases and 483 controls (KORA-CC) a  (adults) 

Gene ID 

Number 
of SNPs  
in gene 
region 

Best SNP in 
gene  b 

Best 
SNP  

p-value 
Pg; min 

Gene  
p-value 

Pg 

LD: best 
SNP in 
Trios – 

best SNP 
in CC  
[r2] c 

Number 
of SNPs 
in gene 
region 

Best SNP in  
gene b 

Best 
SNP  

p-value 
Pg; min 

Gene  
p-value 

Pg 

Number 
of SNPs  
in gene 
region 

Best SNP in  
gene b 

Best  
SNP  

p-value 
Pg; min 

Gene  
p-value 

Pg 

LD: best 
SNP in 
Trios – 

best SNP 
in CC  
[r2] c 

ESRRA 12 rs2429455§ 0.0065 0.0616 0.403 10 rs1059440§ 0.0719 0.3778 11 rs11231740§ 0.0681 0.3853 0.129 
ESRRG 335 rs2185226# 0.0035 0.4240 0.001 316 rs12033461# 0.0155 0.8585 320 rs11577585# 0.0185 0.9301 0 
GABPA 36 rs2051180§ 0.0022 0.0400 0.945 35 rs11087972§ 0.1216 0.7873 32 rs7284014§ 0.0012 0.0261 0.024 
GABPB1 37 rs4775886§ 0.0205 0.3542 0 32 rs12910368# 0.3374 0.9953 35 rs16963477& 0.0071 0.1336 0 
GABPB2 19 rs3754210§ 0.2138 0.9071 0.072 19 rs4970989§ 0.0052 0.0644 19 rs267738§ 0.0539 0.4848 NA 
MEF2A 59 rs7173943§ 0.0057 0.1643 0.001 60 rs4313794§ 0.0185 0.4216 59 rs7175248§ 0.0156 0.4036 0.065 
MYC 60 rs11990827§ 0.0094 0.2750 0.001 55 rs4395860& 0.0422 0.6785 59 rs13252644§ 0.0194 0.4720 0 
NRF1 51 rs2693737& 0.0104 0.2379 0.013 52 rs9792084§ 0.1758 0.9805 47 rs11771549§ 0.0418 0.6346 0.012 
NRIP1 47 rs2776043# 0.0052 0.1075 0.005 46 rs17274722& 0.0506 0.6005 43 rs10482862& 0.0003 0.0078 0.004 
PPARA 55 rs3744749§ 0.0358 0.6169 0.009 46 rs12170325§ 0.0084 0.1999 48 rs4253754# 0.0084 0.2128 0.008 
PPARD 40 rs9658085# 0.0097 0.1854 0.016 22 rs2894401& 0.1644 0.8156 35 rs2267666# 0.0201 0.3453 0.134 
PPARGC1A 75 rs17574213* 0.0034 0.1456 0.001 71 rs10517032§ 0.0641 0.8988 67 rs17576576§ 0.0163 0.4964 0.009 
PPARGC1B 110 rs10069462§ 0.0081 0.3352 0.017 102 rs7713955§ 0.0141 0.4494 104 rs10065816§ 0.0166 0.5462 0.145 
SIRT1 16 rs7895833d,§ 0.0011 0.0104 0.304 16 rs10509291§ 0.0190 0.1282 15 rs16924888d,§ 0.0053 0.0471 0.01 
SP1 16 rs4759082§ 0.0126 0.0964 same SNP 11 rs4759082§ 0.0436 0.1949 14 rs2016266§ 0.0207 0.1624 0.209 
YY1 25 rs8007801§ 0.0034 0.0470 0.011 26 rs9291& 0.0079 0.1156 25 rs2766692§ 0.0732 0.5759 0.015 

4 
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Table 4.15 MAGENTA for the gene set of 16 nuclear regulators of mitochondrial genes 

(meta-analysis) 

a for all SNPs that are available in at least one sample 
b exact GSEA Wilcoxon-Mann-Whitney test 
c cut-off = 0.0443 
d cut-off = 0.2969 
e cut-off = 0.5619 
f reference gene set 
MAGENTA p-values below 5 % are highlighted in bold 
Table adapted from Knoll et al. (2013). 
  

 

Gene set 
 

total 
number 

of 
genes 

 

effective 
number 
of genes 

 

number of 
SNPs 

involved 

 

% of all 
autosomal 

SNPs 
(728,844) 
involved a 

 

PMAGENTA,WMW 
Wilcoxon-

Mann-
Whitney  

test b 

 

PMAGENTA,95 
95th 

percentile 
cut-off 
test c 

 

PMAGENTA,75 
75th 

percentile 
cut-off 
test  d 

 

PMAGENTA,50 
50th 

percentile 
cut-off 
test e 

Gene set 1 16 16 1,036 0.1 0.0357 0.5587 0.0251 0.1052 

All autosomal 
genes f 17,680 9,568 559,705 76.8 - - - - 
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Table 4.16 Best SNPs of nuclear regulators of mitochondrial genes (gene set 1) in meta-

 analysis and linkage disequilibrium to best SNP of family-based trios 

 
a Location of SNP: *, exonic;  #, intronic; §, upstream of gene and &, downstream of gene; b SNP-wise 
p-values of the meta-analysis were derived by application of the METAL software c Linkage 
Disequilibrium (LD) was calculated in the parents of the family-based GWAS sample by use of 
HaploView 4.2; best gene is indicated in bold letter.  
ESRRA, Estrogen related receptor alpha; ESRRG, Estrogen related receptor gamma; GABPA, GA-
binding protein alpha subunit; GABPB1, GA-binding protein beta subunit 1; GABPB2, GA-binding 
protein beta subunit 2; MEF2A, Myocyte-specific enhancer factor 2A; MYC, Myelocytomatosis viral 
oncogene homolog (avian); NRF1, Nuclear respiratory factor 1; NRIP1, Nuclear receptor-interacting 
protein 1; PPARA, Peroxisome proliferator-activated receptor alpha; PPARD, Peroxisome proliferator-
activated receptor delta; PPARGC1A, Peroxisome proliferator-activated receptor gamma coactivator 
1 alpha; PPARGC1B, Peroxisome proliferator-activated receptor gamma coactivator 1 beta; SIRT1, 
Sirtuin 1; SP1, Specificity protein 1; YY1, Transcriptional repressor protein YY.  
Table adapted from Knoll et al. (2013). 
 

Gene ID 
Number of 

SNPs  
in gene region 

Best SNP in gene  b 
Best SNP  
p-value 
Pg; min 

Gene  
p-value 

Pg 

LD: best SNP in 
Trios – best SNP in 

CC [r2] c 
ESRRA 12 rs4930702& 0.0161 0.1662 0.004 
ESRRG 349 rs7531250# 0.0090 0.8458 0.003 
GABPA 37 rs2829866§ 0.0048 0.1191 0.206 
GABPB1 38 rs16963477& 0.0046 0.1091 0 
GABPB2 22 rs7526955§ 0.0666 0.6166 0.243 
MEF2A 65 rs7173943§ 0.0039 0.1462 0.001 
MYC 62 rs12155669& 0.0923 0.9125 0.384 
NRF1 56 rs11771549§ 0.0756 0.8021 0.012 
NRIP1 49 rs10482862& 0.0047 0.1730 0.004 
PPARA 55 rs4253655# 0.0219 0.4980 0.021 
PPARD 40 rs9658085# 0.0181 0.3595 0.016 
PPARGC1A 78 rs7682906§ 0.0182 0.5493 0.089 
PPARGC1B 114 rs11746690# 0.0096 0.5180 0.016 
SIRT1 17 rs17712705§ 0.0019 0.0209 0.146 
SP1 16 rs4759082§ 0.0101 0.1173 same SNP 
YY1 26 rs9291& 0.0085 0.1391 same SNP 
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5 Discussion 

 Based on the central role of mitochondria in energy metabolism as cellular power plants, 

the overall objective of the present thesis was to assess whether variation in mitochondrial 

genes is associated with obesity. Therefore, variation in both mtDNA and nuclear-encoded 

mitochondrial genes has been investigated. 

5.1 Variation in mitochondrial DNA 

 mtDNA was specifically analyzed, as empirical studies have shown greater correlations in 

BMI between mothers and their offspring than between fathers and their offspring as well as 

greater correlations in BMI between maternal half-brothers compared with paternal half-

brothers (Hebebrand et al. 2001a, Magnusson and Rasmussen 2002), and variation in the 

exclusively maternally inherited mtDNA might contribute to this parental effect. Therefore, 

common SNPs of the mtDNA coding region as well as D-loop variants have been addressed in 

the present analysis. 

5.1.1 Common variation in mtDNA in association with obesity 

 Analysis of up to 40 array-based common mtDNA SNPs did not lead to any robust 

association of either a single mtDNA SNP or a haplogroup. Although in the discovery, a total 

of five SNPs and two haplogroups (J, W) reached nominally significant association, in both 

the whole sample and stratified by gender, independent confirmation of any of these SNPs 

was not possible. Moreover, for both haplogroups and all but one SNP the direction of effect 

was opposite between discovery and confirmation samples, underscoring that the initial 

associations might have been spurious. 

 These results are consistent with those of Grant et al. (2012) who did not find association 

between common mtDNA SNPs and obesity in neither 3,580 European American nor 3054 

African American children. Yang et al. (2011b), by contrast, found haplogroup X to be 

associated with lower BMI in 2,286 unrelated population-based adult Caucasians, but the 

study lacked a confirmation in an independent sample. In the present study, haplogroup X 

was more frequent in the extremely obese cases in the discovery. In the population-based 

adults, however, though not significant, the direction of effect was consistent with that 

reported by Yang et al. (2011b). 

 Haplogroup W and m.8994G/A initially showed the strongest associations in all 

individuals and stratified by gender. However, results were not independent of each other, 
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as all individuals of haplogroup W carry the minor allele A of m.8994G/A. This association 

might have resulted from the composition of the discovery CC sample. As indicated in Fig. 

5.1, some (infrequent) haplogroups as for instance haplogroups X and W, seem to be 

unequally distributed in Germany (Fernandes et al. 2012). The cases of the discovery sample 

were recruited in different parts of Germany/Austria (i.e. Bad Orb, Berchtesgaden, Gießen, 

Marburg, Murnau, Ulm and Vienna). The controls, however, were recruited at the University 

of Marburg. Students coming from or near Marburg thus might have been overrepresented 

in the controls. Hence, it is possible that the initial association might be rather conditioned 

by different regional haplogroup frequency distributions, than by the trait of investigation. 

 

A B

 
Figure 5.1 Geographic distribution of frequencies of haplogroup X (A) and W (B)  

HV1 data (literature based pertaining to European individuals) were used for visualization of the 
geographical distribution of haplogroup X and W. Distribution plot created by ‘‘Spatial Analyst 
Extension of ArcView version 3.2. Reprinted from The American Journal of Human Genetics, 90, 
Fernandes et al., The Arabian Cradle: Mitochondrial Relicts of the First Steps along the Southern 
Route out of Africa, pp.347-355, © 2012, with permission from Elsevier. 
 

 

 On the other hand, it might be that the initial findings were not confirmed, as mtDNA 

SNPs and/or haplogroups associated with early onset obesity (discovery sample) might not 

be associated with adult obesity (confirmation sample). For instance, autosomal SNPs 

between TNKS (tankyrase, TRF1-interacting ankyrin-related ADP-ribose polymerase gene) 

and MSRA (methionine sulfoxide reductase A gene) were found to be associated with 

obesity only in children/adolescents (Scherag et al. 2010).  

5.1.2 Evaluation of haplogroup assignment  

 Haplogroups were determined using the genotype information of up to 40 SNPs from the 

SNP array and HaploGrep. HaploGrep is a web application (Kloss-Brandstätter et al. 2011) 
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based on Phylotree built 11, a comprehensive phylogeny of global human mtDNA variation 

(van Oven and Kayser 2009). 

 As expected, haplogroup H was the most prevalent haplogroup (41 % to 44 %; Table 5.1), 

followed by U (14 % to 22 %), T (9 % to 12 %), J (8 % to 11 %), V (2.6 % to 3.4 %), and K (1 % 

to 8 %) considering each discovery sample (CC sample and index patients of trios) and the 

three population-based samples separately (Table 5.1). The percentages found of these 

haplogroups were mainly similar to those reported among West Europeans 

(www.mitomap.org) or Germans (Pliss et al. 2006), except for haplogroup K and U in SHIP 

(Table 5.1). Haplogroup K was only found at 0.6 % (vs. 6.2 % to 7.8 % in the other samples, 

5 % and 7.5 % among West Europeans and Germans, respectively), while haplogroup U was 

found at 22.2 % (vs. 14.4 % to 16.3 % in the other samples, 18 % and 13.5 % among West 

Europeans and Germans, respectively). An explanation for these deviations might be the 

different number of SNPs available for haplogroup assignment. For SHIP, only 32 SNPs 

passed QC, while at least 35 from the other samples could be used. As depicted in the 

simplified haplogroup tree (Fig. 1.8), haplogroup K is a side branch of U (van Oven and 

Kayser 2009). To reach K, m.10550G is necessary (Achilli et al. 2005, González et al. 2006, 

Behar et al. 2006, 2008, van Oven and Kayser 2009). This SNP failed QC only in SHIP, and 

consequently, all individuals which would have been assigned to K by m.10550G, “remained” 

in U. 
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Table 5.1 Distribution of haplogroup frequencies (in %) in present study samples and 

among West Europeans and Germans  

Haplogroup CC sample a Trios a KORA a, b SHIP a, b POPGEN a, b West 
Europeans c Germans d 

Number of 
SNP used for 
haplogroup 

determination 

40 35 37 32 35 - - 

A - - - - 0.6 - - 
B 0.1 - 1.9 - - - - 
C - - - - - - - 
D - - 0.1 <0.05 0.1 1 0.6 
F - - - - - 0 - 
G - - - - - - - 
H 44.4 44.5 41.6 41.2 41.2 41 48.6 e 
I - - - - - 2 1.8 
J 10.6 8.4 8.9 9.6 11.1 9 8.4 
K 6.5 6.2 6.3 0.6 7.8 5 7.5 
L - 0.1 0.1 <0.05 0.1 1 1.2 

M 1.0 0.6 0.7 0.4 0.2 1 - f 
N 2.6 3.5 2.5 3.3 3.0 1 0.6 
P 0.1 - - <0.05 - - - 
R 0.1 0.6 0.3 0.3 0.3 0 0.3 
S - - - - 0.1 - - 
T 9.3 9.8 11.2 10.6 11.9 8 9.0 
U 14.4 16.3 16.2 22.2 15.5 18 13.5 
V 3.4 3.3 3.3 3.2 2.6 7 4.5 
W 1.7 1.4 1.9 2.2 2.2 2 2.7 
X 1.5 2.6 0.4 1.5 0.4 2 1.2 
Z - - - <0.05 - 0 - 

n. d. 4.3 2.7 4.8 4.8 2.8 3 - 
a n. d., not defined represented by all individuals with a HaploGrep’s quality <90 % 
b whole population-based sample 
c Estimations based on means from published frequencies (bearing in mind that sometimes not all 
haplogroups have been typed), compiled in 2009 for Mitomap only for illustrative purpose 
(www.mitomap.org, Ruiz-Pesini et al. 2007) 
d data from Pliss et al. (2006) which are based on a total of n=333 German individuals 
e including haplogroups HV and preHV  
f all individuals of haplogroup M belonged to haplogroup D which directly branches off of M 
 
 

 

 

 Regarding haplogroups I, W and X occurring with a frequency of on average 2 % among 

West Europeans (www.mitomap.org) or Germans (Pliss et al. 2006), only W was detected at 

a similar and stable level in the samples of the present study (1.4 % to 2.2 %), while X had a 

larger deviation (0.4 % to 2.6 %), and I was not existent (Table 5.1). The absence of 

haplogroup I can be explained by the fact that neither SNPs at m.10034, m.16129, m.16391 

http://www.mitomap.org/�
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leading to haplogroup I (Finnilä et al. 2001, Palanichamy et al. 2004, Derenko et al. 2007) nor 

any at a position leading to a sub-haplogroup of I were present on the SNP array (Fig. 5.2). 

Individuals of haplogroup I might have “remained” in N1, from where haplogroup I branches 

off, which would also explain the on average 2 % higher occurrence of haplogroup N (2.5 % 

to 3.5 %, Table 5.1) compared with the 1 % and 0.6 % found among West European and 

Germans, respectively. The low occurrence of haplogroup X in KORA and POPGEN might be 

explained by the absence of m.12705 (Fig. 5.3A), which lacked QC in these two samples. 

 

 

 

 

 

Figure 5.2 Haplogroup I as part of the phylogenic mtDNA tree 

Screen shot from Phylotree built 11 (van Oven and Kayser 2009) for demonstration of haplogroup I as 
a side branch of haplogroup N1. Mutations/polymorphisms are transitions if not otherwise indicated 
by the respective nucleotide. Nucleotide positions (blue, control region; black, coding region) are 
relative to the rCRS (Anderson et al. 1981, Andrews et al. 1999). Italic nucleotide positions are 
preliminary and are likely to be further refined as additional sequences become available. 
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 In addition, several non-European haplogroups were found; however, only in very small 

percentages, except for haplogroup B in KORA (1.9 %, Table 5.1). According to HaploGrep, 

most of these individuals had haplogroup B5b1a'b, which is defined by transitions at 

m.11146 and m.14470 (www.phylotree.org, van Oven and Kayser 2009). Only m.14470 was 

present on the SNP array, which also defines haplogroup X. Thus, as m.12705 was not 

available in KORA, a misclassification to B5b1a'b might have occurred (Fig. 5.3).  

 

A

B

 

Figure 5.3 Potential misclassification of haplogroups by HaploGrep due to lacking 

genotype information  

Screen shot of the web application HaploGrep (Kloss-Brandstätter et al. 2011) is based on Phylotree 
built 11 (van Oven and Kayser 2009) using one individual of the CC sample and KORA each. All 
deviations from the rCRS leading to a certain haplogroup (in green circles) are listed (in blue boxes). 
Deviations from rCRS marked in green were found in the individual. In the CC sample and KORA, 40 
and 37 SNPs passed QC, respectively. The intersection was 35 SNPs. Both individuals were identical in 
genotype regarding these 35 SNPs. However, in the individual of the CC sample, m.12705 was 
available, and hence the presence of m.14470T/C resulted in assignment of haplogroup X (A) as 
HaploGrep’s first choice, while the lack of m.12705 accompanied by the presence of m.14470T/C in 
the second individual has led to assignment of haplogroup B5b1a'b (B) as HaploGrep’s first choice.  
 

 

 From eight individuals of haplogroup W (considering the 40 SNPs of the SNP array), the 

complete mtDNA was available to re-determine each individual’s haplogroup by HaploGrep 

(Table 4.7, p. 65). Due to the greater amount of variants available after re-sequencing, 

haplogroups branching off from W (Fig. 5.4) could be determined. Though identical 

pertaining to SNP array based genotype information, different sub-haplogroups among these 
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individuals were detected. Nevertheless, this would not have had an impact on association 

testing, as for this purpose these sub-haplogroups would have also been assigned to major 

haplogroup W (Table 4.7, p. 65).  

 

 
 

 

Figure 5.4 Haplogroup W as part of the phylogenic mtDNA tree 

Screen shot from Phylotree built 11 (van Oven and Kayser 2009) to demonstrate sub-haplogroups of 
haplogroup W. Mutations/polymorphisms are transitions if not otherwise indicated by the respective 
nucleotide (e.g. 14981C is an A to C exchange at m.14981). Nucleotide positions (blue, control region; 
black, coding region) are relative to the rCRS (Anderson et al. 1981, Andrews et al. 1999). Italic 
nucleotide positions are preliminary and are likely to be further refined as additional sequences 
become available. Nucleotide positions with an exclamation mark refer to back transitions to the 
rCRS. 
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 Moreover, a high accordance was found between the SNP array based major haplogroup 

assignment and the re-assignment based on the detected D-loop variants in the D-loop 

sample, even though most individuals had a HaploGrep’s quality value below the required 

90 %. Among the 10 individuals whose mtDNA was completely re-sequenced, quality values 

were lower using only D-loop variants compared with the use of all detected variants. There 

is no explanation for the low HaploGrep’s quality values received by haplogroup 

determination using only D-loop data in the present analyses. Kloss-Brandstätter et al. 

(2011) – the authors of HaploGrep – provided mitochondrial test data of 60 European 

individuals. Of 28 of these individuals only D-loop data were available, of four data of the 

entire genome and of 28 D-loop data and selected coding region SNPs. In contrast to the 

results of the present analysis, quality values of haplogroup determination were even 

highest among the 28 individuals of which only D-loop data were available (~97 %), and 

lowest among the 28 of which D-loop data and selected coding region SNPs were available 

(~93 %). 

 Bandelt et al. (2012) recently compared available programs (mtDNA manager, MitoTool, 

HaploGrep) for automated haplogroup assignment from D-loop data, within which 

HaploGrep was evaluated as the most sophisticated. Regarding the results of the present 

study (major accordance of haplogroup distribution of present samples between the one 

expected for West Europeans and Germans, as well as equal assignment of one major 

haplogroup by use of either SNP array based data or detected variants by re-sequencing), 

HaploGrep can be considered a valid tool for the assignment of (major) haplogroups. 

Nevertheless, due to a limited number of available SNPs on the SNP array having passed QC, 

some haplogroups could not be detected or correctly assigned. Consequently, this might 

have slightly masked the association testing of some haplogroups with obesity. 

5.1.3 D-loop variation in association with obesity  

 D-loop re-sequencing (Sanger) was initially performed in 192 cases and 192 controls (D-

loop sample). Only 191 cases and 191 controls were used for analyses, as in one case and 

one control, 9 and 4 clearly visible point heteroplasmies, respectively, were found. Point 

heteroplasmies at more than one position in one individual may exist, but are rather 

infrequent, especially in blood cells (Calloway et al. 2000; Budowle et al. 2002). DNA of the 

mothers of these two individuals was not available to check whether these heteroplasmies 

might have been inherited. Contamination with DNA of another individual during DNA 
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isolation might also explain the occurrence of several point heteroplasmies (Andréasson et 

al. 2006), which is why these two individuals were excluded from the D-loop sample for 

further analyses.  

 The mean number of sequence deviations per individual (8.3) was comparable to that 

reported in a study, in which the D-loop of 200 unrelated German individuals was re-

sequenced (~7.6 estimated from bar graphs; Lutz et al. 1998). 

 The mean number of variants per individual did not differ between cases and controls; 

neither did the mean number of variants in any of the 23 presumably functionally relevant 

locations of the mitochondrial D-loop. These regions are majorly involved in the 

transcription and replication of mtDNA. Thus, an accumulation of variants in these locations 

possibly having an impact on transcription and replication of mtDNA and potently energy 

metabolism or in the whole D-loop was not detected. 

 Among the 252 detected variants, frequencies of only two variants (m.16292C/T and 

m.16189T/C) differed nominally between cases and controls. m.16292C/T was found in only 

eight lean controls, of which five were of haplogroup W. As the initial association of 

haplogroup W could not be confirmed independently, this variant was not followed-up in a 

larger sample. m.16189T/C was more frequent in the (extremely) obese cases (17 % vs. 9 %). 

Considering all individuals with an uninterrupted poly-C tract in this region, as it was done by 

Parker et al. (2005), the tendency of an overrepresentation in the (extremely) obese cases 

was still found (15 % vs. 10 %). The uninterrupted poly-C tract was achieved by m.16189T/C, 

m.16189delT or m.16189T/CC without a further transition in any of the Cs between m.16184 

and m.16193. In contrast to the results of the present study, Parker et al. (2005) found the 

uninterrupted poly-C tract to be associated with leanness in Australian mothers and their 20-

year-old offspring.  

 m.16189T/C has also been associated with obesity-related traits like coronary artery 

disease among 1,963 Austrian individuals (Mueller et al. 2011) or insulin resistance among 

251 English men (64 years of age; Poulton et al. 1998). Moreover, this variant has been 

associated with T2DM in 5,459 Asians (Park et al. 2008) and in 932 British individuals 

(Poulton et al. 2002). However, in a further British cohort (n=2,557) and a European meta-

analysis (n=4,587), this variant has not been associated with T2DM (Chinnery et al. 2005). 

Whether the trend of m.16189T/C and/or the uninterrupted poly-C tract at m.16184 to 

m.16193 is a valid association with obesity could only be analyzed by a follow-up of this 

variant in further study groups.  
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 The number of clearly identifiable point heteroplasmies was twofold higher in the lean 

individuals compared with the obese (9 vs. 4). At time of blood collection for DNA isolation, 

the lean controls were on average 12 years older than the obese cases. Sondheimer et al. 

(2011) found that point heteroplasmies accumulate significantly with progressing age. 

Hence, the difference seen between the lean and obese might be rather attributed to their 

distinct ages than to the trait of investigation (obesity). Altogether, in 3.4 % of all individuals 

of the present study, one clearly identifiable point heteroplasmy was found. Calloway et al. 

(2000) found point heteroplasmies in the HV2 in 2.4 % of individuals analyzing blood 

samples.  

 All four detected length heteroplasmies are known (Bendall and Sykes 1995, Szibor et al. 

2007 and Forster et al. 2010). Sanger re-sequencing without prior cloning to separate the 

different alleles as performed in the present study is not an appropriate method to 

determine the exact pattern (number of varying Cs and their respective percentage) of 

length heteroplasmy, which is why a statistical comparison of their frequencies between 

cases and controls was not performed. 

 The most prevalent length heteroplasmy was found in HVI at m.16184 to m.16193. All 

individuals of the present study with an uninterrupted poly-C tract at m.16184 to m.16193, 

but none of the individuals with m.16189T/C and any further transition in this C tract 

showed length heteroplasmy. An uninterrupted poly-C tract is an unstable sequence which 

might result in strand slippage during the replication process and might generate C-tracts in 

variable length (length heteroplasmy); further transitions at this C tract, however, are 

preventive against slippage (Chinnery et al. 2005). The predominant length of this 

heteroplasmic tract was reported to be 10 to 12 Cs; shorter tracts of up to eight and longer 

of up to 14 Cs have been also described in some individuals (Bendall and Sykes 1995). This 

tract, which is nearly identical in and distinct between maternal lineages (Bendall and Sykes 

1995), is located near the TAS element (m.16157 to m.16172). This element is potentially 

involved in the premature termination of H-strand synthesis forming the 7S DNA and hence 

the D-loop (Anderson et al. 1981, Sbisà et al. 1997, Roberti et al. 1998). Proteins were shown 

to bind at this sequence and the binding capacity and consequently transcription/replication 

of mtDNA might be influenced by the presence of an uninterrupted C tract (Poulton et al. 

2002). Liou et al. (2010) reported that mtDNA content in leucocytes of healthy adult 

Taiwanese (n=837; mean BMI=24.5 kg/m2) was lowest among individuals with an 

uninterrupted C tract compared with individuals with the wild-type or an otherwise 
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interrupted poly-C tract. However, mean BMI did not differ between the three groups. 

Whether this is also the case among European subjects warrants further investigation. 

5.1.4 Limitations of mtDNA analysis 

 Using SNP array based genotype data of up to 40 SNPs of mtDNA, the initial analysis in 

association with obesity was primarily focused on common mtDNA variation. Infrequent 

variants of the coding region can have a strong impact on mitochondrial function and 

potentially body weight. For instance, MELAS (mitochondrial encephalopathy lactic acidosis 

and stroke-like syndrome) patients harboring a heteroplasmic m.3243A/G transition in 

tRNALeu(UUR) have been described as normal weight to lean (Suomalainen et al. 2011). For 

screening such infrequent variants, re-sequencing of the complete mtDNA among a study 

sample at least as large in size as the D-loop sample would be required, which would have 

been too time consuming to fit in the time frame of the present thesis.  

Moreover, by the availability of just up to 40 array-based SNPs having passed QC, not all 

common mtDNA variants of the coding region could be tagged. Some of them might have 

been evolutionally recently occurred and thus could be present in several different 

haplogroups. Comparatively, the D-loop polymorphism m.16189T/C detected by re-

sequencing can be detected in ~15 % of Europeans (Bendall and Sykes 1995) and is present 

in several European (Poulton et al. 2002) but also non-European haplogroups 

(www.phylotree.org). 

 For association analysis of haplogroups, only major haplogroups were taken into 

consideration. A refined analysis of sub-haplogroups (e.g. W1 to W6) has not been 

performed for two reasons. First, with the limited number of available SNPs from the array, 

determination of sub-haplogroups was not possible for each individual. In addition, some 

major haplogroups are present at relative low frequencies a priori. Association analysis of 

their sub-haplogroups would only be sensitive in a larger study sample to maintain an 

adequate power. Nevertheless, in the sub-haplogroups, biologically relevant variants for 

obesity might be present which consequently would have been masked by comparing only 

the respective major haplogroups. 

 Simulations of Salas and Amigo (2010) suggested that only 10 SNPs are necessary for a 

given population as for instance Europeans to discriminate between 95 % of the maximum 

haplogroup diversity. Genotyping of specific SNPs that unambiguously differentiate between 

http://www.phylotree.org/�
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haplogroups e.g. by multiplex approaches might be conceivable as a further approach in the 

detection of mtDNA variants potentially associated with obesity. 

By re-sequencing the D-loop, both common and infrequent variants were detected. For 

the infrequent variants, which were only detected once or twice in either cases or controls, 

more individuals would have to be genotyped for these variants to assess their association 

with obesity. 

5.2 Gene set enrichment analysis on nuclear-encoded mitochondrial genes 

 Despite an identification of several BMI associated loci during the last years, there is still 

a large discrepancy between the empirically assumed heritability of 40 % to 70 % and the 

currently genetically explained BMI variance of about 1.5 % (Hebebrand et al. 2013). As 

GSEA or pathway-based approaches concentrate on the combined effects of several loci, 

new insight into the genetic impact on obesity might be revealed. Based on the observations 

of a reduced mitochondrial function in obese individuals (Kelley et al. 2002, Niemann et al. 

2011), a GSEA on nuclear-encoded mitochondrial genes was performed. This was done to 

assess whether these genes are enriched for modest association signals that collectively 

might have an impact on mitochondrial function and potentially influence body weight. 

5.2.1 Enrichment of association signals in gene set 1 

 GSEA and MAGENTA procedure as well as the three mitochondrial gene sets were 

adopted from Segrè et al. (2010). Segrè et al. (2010) did not find enrichment in association 

with T2DM and related glycemic traits. In the present analysis, enrichment for obesity 

association signals in gene set 1 (16 regulators of nuclear-encoded mitochondrial genes) was 

detected in two independent CC samples (total n=1,834). Enrichment for obesity association 

signals was found for the 50th percentile, i.e. modest association signals with gene adjusted 

p-values Pg between ~0.2 and 0.5. Moreover, enrichment was also present above the 75th 

percentile in the discovery sample and in the meta-analysis using MAGENTA, but in none of 

the confirmation samples individually. 

 None of these 16 genes has been found among the 32 BMI loci reported in the latest and 

largest meta-analysis so far (Speliotes et al. 2010), thus in a single locus-oriented approach 

none of these genes revealed significant association with obesity. Hence, the results of the 

present analysis support the hypothesis that a GSEA may detect the combined association 

effects of several loci (Subramanian et al. 2005, Wang et al. 2007, Torkamani et al. 2008, Liu 

et al. 2010, and Evangelou et al. 2012). In addition, in both CC samples different SNPs and/or 
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genes with lowest p-values Pg; min were found. Consequently, it was not possible to identify 

one specific weight associated candidate gene. This finding also underscores the idea of 

GSEA or pathway-based approaches that the combined effect of several loci leads to an 

association with the trait of investigation, rather than an individual gene of a gene set (Knoll 

et al. 2013). 

 Enrichment was not detected in the family-based sample of 705 obesity trios. This 

sample might have been too small for a confirmation. In case the effect was basically driven 

by lean and normal weight subjects, the variant frequencies might have been very low in the 

predominantly obese trio parents, because assortative mating is an observed phenomenon 

among obese individuals (Hebebrand et al. 2000, Katzmarzyk et al. 2002). This again might 

result in a reduced power of the trio sample. Finally, genetic heterogeneity including both 

locus and allelic heterogeneity might have been present (Li et al. 2006). 

5.2.2 Relevance of genes of gene set 1 pertaining to body weight 

 The 16 genes of gene set 1 are transcription factors and/or co-activators. They are 

involved in the network of nuclear-mitochondrial interactions by regulating the transcription 

of mitochondrial functional pathways in response to external stimuli such as cold or energy 

deprivation (Fig. 1.11, Scarpulla 2008). Mouse models for nine of the 16 genes are existent 

showing that knockout (k.o.) or alterations in the expression of these genes are related to 

body weight or related traits (Table 5.2, Knoll et al. 2013). PGC-1b k.o. mice, for instance, 

have a reduced body weight and fat mass compared with controls (Lelliott et al. 2006). By 

contrast, female PGC-1α k.o. mice show increased body fat, and after short-term starvation 

of 24 hours PGC-1α k.o. mice of both genders developed hepatic steatosis (Leone et al. 

2005). Taken together, these nine mouse models underscore the enrichment of modest 

association signals for obesity found in gene set 1. Importance as potential candidate genes 

for obesity and related traits can be ascribed to these 16 regulators of mitochondrial genes. 

Similarly, in a large meta-analysis of 123,564 individuals (Speliotes et al. 2010), a recent 

GSEA revealed enrichment of association signals for a gene set of 547 obesity-susceptibility 

candidate genes, which were derived from animal models, Mendelian syndromes, 

linkage/genetic association studies or expression studies (Vimaleswaren et al. 2012). 
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Table 5.2 Mouse models (knockout, alterations in expression and mutations) for 9 of the 

16 genes of gene set 1 showing a body weight associated phenotype  

Gene Body weight associated phenotype Reference 
ESRRA ERRα−/− mice have reduced body weight and fat mass and are 

resistant to a high-fat diet-induced obesity compared with wild 
type littermates 

Luo et al. 2003 

GABPA = NRF2 
targeted knock-out of Nrf2 in mice leads to 

 20 % lower body weight after ad libitum diet  
 lower adipose tissue mass  
 smaller adipocytes  

and protects against weight gain and obesity otherwise induced by 
a high fat diet in comparison with wild type littermates 

Pi et al. 2010 

MYC Transgenic mice overexpressing c-myc in the liver show 
 decreased body weight increase  
 decreased fat accumulation in adipose tissue 

on a three-month-high-fat diet in comparison with control mice 

Riu et al. 2003 

NRIP1 Formerly known as RIP140  
Knock out mice are 15-20 % lighter than wild-type or heterozygous 
littermates 

White et al. 2000 

PPARA PPARα-null mice on two different backgrounds (Sv/129 or 
C57BL/6N) were not obese, but showed  

 hepatic accumulation of fat 
 larger gonadal adipose stores 

in comparison with wild type controls 

Akiyama et al. 2001 

PPARD PPARδ-null mice are smaller and have smaller gonadal fat sores in 
comparison with wild type controls 

Peters et al. 2000 

PPARGC1A female PGC-1α-/- mice show increased body fat and after 24-h-
starvation PGC-1α-/- mice develop hepatic steatosis  

Leone et al. 2005 

PPARGC1B PGC-1b knock out mice have reduced body weight and fat mass Lelliott et al. 2006 
SIRT1 Sirt1 transgenic (knock in) mice are lighter and have white adipose 

tissue per body weight in comparison with wild type littermates 
Bordone et al. 2007 

ESRRA, Estrogen related receptor alpha; GABPA, GA-binding protein alpha subunit; MYC, 
Myelocytomatosis viral oncogene homolog (avian); NRIP1, Nuclear receptor-interacting protein 1; 
PPARA, Peroxisome proliferator-activated receptor alpha; PPARD, Peroxisome proliferator-activated 
receptor delta; PPARGC1A, Peroxisome proliferator-activated receptor gamma coactivator 1 alpha; 
PPARGC1B, Peroxisome proliferator-activated receptor gamma coactivator 1 beta; SIRT1, Sirtuin 1. 
Table adapted from Knoll et al. (2013). 

5.2.3 Evaluation of the method 

 Several statistical tests recommended for GSEA or pathway-based approaches (leading-

edge fraction test, Wilcoxon-Mann-Whitney-test, Kolmogorov Smirnov test, t-test) were 

performed to evaluate robustness of GSEA and demonstrate independence from method 

choice for the significant enrichment of association signals in gene set 1. All tests, except for 

the Kolmogorov Smirnov test which was only nominally significant in the discovery for gene 

set 1, were similar regarding significance within a tested sample and gene set.  



5 Discussion 

96 
 

 MAGENTA software was initially designed for meta-analysis of GWAS samples (Segrè et 

al. 2010). In the present study, MAGENTA was also applied to each sample individually to 

guarantee robustness of the results within a sample and comparability between different 

samples and the meta-analysis. Indeed, regression-corrected gene p-values Pg achieved by 

MAGENTA highly correlated with permutation-based gene p-values Pg within a sample 

(r=0.95, p<2x10-16), which was comparable with the results of Segrè et al. (2010; r=0.95, 

p<1x10-30). 

 The 50th, 75th and 95th percentile of the set of all autosomal gene-wise p-values Pg were 

chosen as cut-offs. Simulations have shown that for weak and modest effects of SNPs, the 

75th and 95th percentile, respectively, yielded the optimal power to detect gene set 

enrichment by analyzing GWAS data at a gene set level (Segrè et al. 2010). The conditions 

used in these simulations based on a sample size of n=10,000 individuals (Segrè et al. 2010). 

Given the relatively small sample size of n=888 individuals in the discovery, and the small 

effect sizes of the 32 BMI loci of the latest and largest meta-analysis, the 50th percentile was 

also selected as cut-off in the present analysis. Indeed, enrichment was more solidly found 

above this percentile rather than above the 75th. 

 As LDs between best SNPs of each gene of gene set 1 were rather low among different 

samples, association signals seemed to be independent. The gene-based approach which 

considers large parts of common variation within a gene might thus be a useful approach to 

handle multiple ancestral mutations (Pennisi 1998, Neale and Sham 2004). 

5.2.4 Limitations of present GSEA 

 Although several tests have been performed to guarantee maximum robustness of the 

results, the present analysis still has some limitations. First of all, only autosomal 

mitochondrial genes have been included in the present analysis. There are 1,012 unique 

mitochondrial genes existing according to MitoCarta compendium (Pagliarini et al. 2008). 

Among these, 13 are protein coding genes of mtDNA (1.3 % of all mitochondrial genes), 30 

are X- and one is X/Y-chromosomal (3.1 % of all mitochondrial genes, Pagliarini et al. 2008). 

These genes were not included in the meta-analysis of Segrè et al. (2010), because most 

GWAS only focused on autosomal SNPs. Apart from aspects of comparability to the results of 

Segré et al. (2010), analyses were primarily constrained to autosomal SNPs because 

association analyses for autosomal and X-chromosomal SNPs strongly differ. In fact, multiple 

alternatives including different underlying ideas on X inactivation for X-chromosomal SNP 
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analyses are existing (Loley et al. 2011). For the autosomal SNPs, the Cochran-Armitage 

trend test for CC association testing was used, as this test could be regarded as standard test 

for CC GWAS (Wellek and Ziegler 2012). Pertaining to mtDNA SNPs Fisher’s exact test was 

used, as even for small minor allele frequencies which are present among mtDNA SNPs, 

reliable results were achieved. Based on these differences between association tests for 

autosomal, X-chromosomal and mtDNA SNPs, it was decided to limit the present GSEA to 

autosomal SNPs. As both mtDNA and sex-chromosomal genes together represent less than 

5 % of all mitochondrial genes, the impact of these genes on the enrichment analysis might 

however be small.  

 Furthermore, as the present GSEA is only based on GWAS data and thus common 

variants, infrequent variants with a potentially stronger effect on obesity or body weight are 

hardly addressed. 

 Finally, despite hints of a reduced mitochondrial function as well as lower expression 

levels of two mitochondrial regulators NRF1 and TFAM (Kelley et al. 2002, Niemann et al. 

2011), from the enrichment found in the present study, it is not deducible how and to what 

extent the genes of gene set 1 are involved in the observed alterations of mitochondrial 

function among obese individuals. It is uncertain, whether the decreased mitochondrial 

function and expression of regulators as reported above contributed to obesity or were a 

consequence of obesity. Due to the enrichment of association signals in the 16 

mitochondrial regulators, results of the present study might indicate that a certain genetic 

predisposition for regulation of mitochondrial function with impact on body weight might 

exist. However, at this stage, the statement is rather speculative and further investigation is 

warranted. 

5.3 Study samples  

 For discovery of both mtDNA SNP analysis and GSEA, a CC sample of extremely obese 

children and adolescents vs. lean adult controls was used for association testing. The use of 

lean adults as controls can be justified by the fact that misclassification is reduced, as lean 

children still might become overweight or obese in adulthood (Hinney et al. 2007). 

Moreover, at the age of 15 years, i.e. at a similar age to that of the cases, 78 % of the lean 

and normal weight controls reported that their body weight was below the average body 

weight, underscoring the power of the sample (Hinney et al. 2007). Common variants 

contributing to BMI have general small effect sizes making large sample sizes necessary to 
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detect them. Therefore, the CC sample was enlarged by the 705 (extremely) obese index 

probands of the family-based approach as further cases for mtDNA SNP analysis to 

maximally increase the power.  

 However, the sample size of the present discovery sample (n=1,593) is still slightly 

smaller than the 2nd discovery stage sample used in a meta-analysis for (early onset) obesity 

(1,181 overweight/obese cases vs. 1,960 controls plus the 705 obesity trios; Scherag et al. 

2010). As in that slightly larger sample, initially detected best SNPs apart from SNPs of FTO, 

MC4R, and TMEM18 mainly reached p-values between 0.01 and 0.04, it was decided to 

follow-up nominally associated mtDNA SNPs in the present analysis in order not to miss 

loci/haplogroups potentially associated with obesity due to a relatively small sample size. 

 For independent confirmation of the initial findings, population-based samples were 

converted into CC samples by categorizing all individuals with a BMI ≥ 30 kg/m2 as obese 

cases and those with a BMI < 25 kg/m2 as normal weight and lean controls. The remaining 

individuals were excluded from the analysis. According to simulations, genetic markers with 

an effect in the extremes of a trait are detected more solidly within a CC design compared 

with a linear regression design despite smaller sample sizes (Pütter et al. 2011). This is based 

on the fact that linear regression results are mainly influenced by the majority of individuals 

with a moderate trait and only little by the few individuals of the extremes (Pütter et al. 

2011). 

 Moreover, individuals of all samples (except for 20 from the D-loop sample) used in the 

present analyses were genotyped with the same SNP array (Affymetrix Human Genome-

Wide SNP Array 6.0). Although from the initially available 119 (115) mtDNA SNPs only up to 

40 passed all QC criteria, the SNPs used for analyses had a high concordance between the 

samples. This was in particular of importance for haplogroup assignment. 
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6 Summary and Conclusion 

 In 2008, more than 35 % of the world’s adult population were overweight (BMI ≥ 

25 kg/m2) and 11 % were obese (BMI ≥ 30 kg/m2, WHO 2013). Although in the last five to ten 

years a stabilizing trend in prevalence had been observed (Blüher et al. 2011, Flegal et al. 

2012), obesity still is a major global health problem, because of health consequences in later 

life such as type 2 diabetes mellitus (T2DM, WHO 2013). Both environmental and genetic 

factors were shown to contribute to the global obesity epidemic (Bouchard 2007). In 

empirical studies, the heritability of the BMI variance was estimated to 40 % to 70 % 

(Hebebrand et al. 2013). Interestingly, larger correlations in BMI between mothers and their 

offspring than between fathers and their offspring were found (Hebebrand et al. 2001a). 

 Mitochondria are well known as cellular power plants and contain an exclusively 

maternally inherited circular DNA (mtDNA) of 16,569 bp with 37 genes of which 13 are 

protein coding subunits of the oxidative phosphorylation system (OXPHOS). On the other 

hand, ~1,000 to 1,500 nuclear-encoded genes are required to maintain mitochondrial 

biogenesis (Bar-Yaacov et al. 2012). Alterations in mitochondrial function were found in 

obese individuals (Kelley et al. 2002). 

 Both variation of mtDNA and nuclear-encoded mitochondrial genes have been analyzed 

in association with obesity within the present PhD thesis, because of (1) the central role of 

mitochondria in the energy metabolism, (2) hints of altered mitochondrial function in obese 

individuals, and (3) the parental effect of correlations in BMI to which genetic variation in 

the exclusively maternally inherited mtDNA might contribute. 

 For analysis of variation in mtDNA, first of all, an association study of up to 40 array-

based SNPs of mtDNA (all but one of the SNPs located in mtDNA coding region) was 

performed in a case-control (CC) sample of 1,158 (extremely) obese cases and 435 lean adult 

controls (discovery). SNPs were analyzed as single SNPs and as haplogroups determined by 

HaploGrep. Analysis was done (a) in all individuals and (b) stratified by gender. For 

independent confirmation, nominally associated SNPs were followed-up among adults of 

three population-based samples analyzed as CC sample of 1,697 obese cases and 2,373 

normal weight controls. In addition, the mtDNA control region (D-loop) of each 192 cases 

and controls was screened for variants by re-sequencing (Sanger). Fisher’s two-sided exact 

test was used for association testing. Five SNPs (m.4769A/G, m.8994G/A, m.11674C/T, 

m.12612A/G and m.13708G/A) and two haplogroups (W, J) were initially found to be 
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nominally associated with obesity (a) in the whole sample (m.8994G/A, W) or (b) stratified 

by gender, but none of these SNPs or haplogroups could be confirmed in the independent 

sample. By re-sequencing, 252 variants were detected. Frequencies of two of these variants 

differed nominally between cases and controls (m.16189T/C, m.16292C/T). m.16189C was 

more frequent among the cases (17 % vs. 9 %; p=0.048), while 16292T was only found in 

eight controls.  

 For analysis of nuclear-encoded mitochondrial genes, a gene set enrichment analysis 

(GSEA) was performed using three gene sets previously investigated in association with 

T2DM: (1) 16 nuclear-encoded regulators of mitochondrial genes, (2) 91 OXPHOS genes, and 

(3) 966 nuclear-encoded human mitochondrial genes (Segrè et al. 2010). For discovery, GSEA 

was performed in a CC sample of 453 (extremely) obese cases and 435 lean adult. 

Independent confirmation occurred in a family-based sample of 705 obesity trios and an 

adult population-based analyzed as a CC sample (463 obese cases and 483 normal weight 

controls, KORA-CC). A meta-analysis of all three samples was performed. The distribution of 

association signals (i.e. gene-wise corrected p-values Pg) between a gene set and the gene 

set of all genes was compared using a leading-edge-fraction-comparison test with cut-offs 

between the 50th and the 95th percentile in the set of all Pg and alternative tests (e.g. 

Wilcoxon-Mann-Whitney-test). In the discovery, gene set 1 was significantly enriched for 

modest to weak association signals above the 50th percentile (pGSEA,50=0.0103). This 

enrichment was not confirmed in the trios, but in KORA-CC. In the meta-analysis, enrichment 

was not detected above the 50th percentile, but above the 75th. 

 In conclusion, analysis of up to 40 array-based common mtDNA SNPs did not lead to 

robust association of either a single mtDNA SNP or a haplogroup. Pertaining to D-loop 

variants, m.16189T/C seems to be promising to be followed-up in a further sample for 

independent confirmation of the initial association. The results of variant m.16292C/T, by 

contrast, might be rather spurious as five of the eight controls carrying the variant allele T 

were of haplogroup W, association of which could not be independently confirmed. 

Regarding nuclear-encoded mitochondrial genes, GSEA revealed that modest to weak 

association signals for obesity might be enriched in the gene set of 16 nuclear-encoded 

regulators of mitochondrial genes. Although the impact is small, the results of the present 

thesis contribute to elucidate the heritability of the BMI variance on a molecular genetic 

level.  
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8  Appendix 

 

Figure 8.1 Evaluation sheet of re-sequencing of mitochondrial D-loop 

D-loop of rCRS from http://www.ncbi.nlm.nih.gov/nuccore/251831106. Each cell comprises 10 and 
each line 60 nucleotides. Deviations from rCRS were noted on a separate sheet for each individual. 
For complete re-sequencing of mtDNA the procedure was performed accordingly.  
a numbering as found in rCRS  
b consecutive numbering as found in alignment of reference and the four re-sequenced sequences 

15961 a 1 b gaaaaagtct ttaactccac cattagcacc caaagctaag attctaattt aaactattct 

        16021 61 ctgttctttc atggggaagc agatttgggt accacccaag tattgactca cccatcaaca 

        16081 121 accgctatgt atttcgtaca ttactgccag ccaccatgaa tattgtacgg taccataaat 

        16141 181 acttgaccac ctgtagtaca taaaaaccca atccacatca aaaccccctc cccatgctta 

        16201 241 caagcaagta cagcaatcaa ccctcaacta tcacacatca actgcaactc caaagccacc 

        16261 301 cctcacccac taggatacca acaaacctac ccacccttaa cagtacatag tacataaagc 

        16321 361 catttaccgt acatagcaca ttacagtcaa atcccttctc gtccccatgg atgacccccc 

        16381 421 tcagataggg gtcccttgac caccatcctc cgtgaaatca atatcccgca caagagtgct 

        16441 481 actctcctcg ctccgggccc ataacacttg ggggtagcta aagtgaactg tatccgacat 

        16501 541 ctggttccta cttcagggtc ataaagccta aatagcccac acgttcccct taaataagac 

        16561 601 atcacgatg 
     

        1 610 gatcacaggt ctatcaccct attaaccact cacgggagct ctccatgcat ttggtatttt 

        61 670 cgtctggggg gtatgcacgc gatagcattg cgagacgctg gagccggagc accctatgtc 

        121 730 gcagtatctg tctttgattc ctgcctcatc ctattattta tcgcacctac gttcaatatt 

        181 790 acaggcgaac atacttacta aagtgtgtta attaattaat gcttgtagga cataataata 

        241 850 acaattgaat gtctgcacag ccactttcca cacagacatc ataacaaaaa atttccacca 

        301 910 aaccccccct cccccgcttc tggccacagc acttaaacac atctctgcca aaccccaaaa 

        361 970 acaaagaacc ctaacaccag cctaaccaga tttcaaattt tatcttttgg cggtatgcac 

        421 1030 ttttaacagt caccccccaa ctaacacatt attttcccct cccactccca tactactaat 

        481 1090 ctcatcaata caacccccgc ccatcctacc cagcacacac acaccgctgc taaccccata 

        541 1150 ccccgaacca accaaacccc aaagacaccc cccacagttt atgtagctta cctcctcaaa 

        601 1210 gcaatacact gaaaatgttt agacgggctc acatcacccc ataaacaaat aggtttggtc 

        661 1270 ctagcctttc tattagctct tagtaagatt acacatgcaa gcatccccgt tccagtgagt 

http://www.ncbi.nlm.nih.gov/nuccore/251831106�
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Table 8.1 Enrichment of association signals above 95th percentile in 705 family-based  

  trios with initial genotype calling in eight batches 

 

a 723,288 autosomal SNPs were included 
b cut-off = 0.0095  
c cut-off = 0.1283 
d cut-off = 0.3788 
e reference gene set 
GSEA p-values below 0.05 are highlighted in bold 
 

 

 

Gene 
set 

 

total 
number 

of 
genes 

 

effective 
number 
of genes 

 

number 
of SNPs 
involved  

 

% of all 
autosomal 

SNPs 
involved a 

 

PGSEA,WMW 
Wilcoxon-

Mann-
Whitney 

test 

 

PGSEA,KS 
Kolmogorov-
Smirnov-test 

 

PGSEA,t  
t-test 

 

PGSEA,95 
95th 

percentile 
cut-off 
test b 

 

PGSEA,75  
75th 

percentile 
cut-off  
test  c 

 

PGSEA,50  
50th 

percentile 
cut-off  
test d 

Gene 
set 1 16 16 1,039 0.1 0.0210 0.0224 0.0415 0.0419 0.0826 0.1085 

All 
auto-
somal 
genes e 

17,680 9,517 470,499 65.1 - - - - - - 
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