
Analysis and Application of

Evolutionary Processes to tackle

HIV-1 Entry

Inaugural-Dissertation

zur

Erlangung des Doktorgrades

Dr. rer. nat.

der Fakultät für

Biologie

an der

Universität Duisburg-Essen

vorgelegt von

Reda Rawi

aus Casablanca

Oktober 2013



Die der vorliegenden Arbeit zugrunde liegenden Experimente wurden am Zentrum

für Medizinische Biotechnologie (ZMB) in der Abteilung für Bioinformatik der

Universität Duisburg-Essen durchgeführt.

1. Gutachter: Prof. Dr. Daniel Ho↵mann

2. Gutachter: Prof. Dr. Axel Mosig

Vorsitzender des Prüfungsausschusses: Prof. Dr. Jörg Timm

Tag der mündlichen Prüfung: 12. März 2014



Zusammenfassung

Im Laufe der Jahrmillionen hat die Evolution durch einige einfache Mechanismen

wie Mutation, Selektion oder auch Vererbung eine erstaunliche Artenvielfalt her-

vorgebracht.

Diese Prinzipien können auch beim computergestützten Entwurf von Proteinen

und/oder Proteinsequenzen mit gewünschten Eigenschaften, wie z.B. Stabilität

oder Funktionalität einer Proteinstruktur, angewandt werden. Da jedoch der

mögliche Konformations- und Sequenzraum für bereits kleine Proteine immens

groß wird, werden hier vereinfachte Gitterproteinmodelle verwendet.

Im ersten Teil der Promotionsarbeit werden evolutionäre Algorithmen, im Beson-

deren S Metric Selection - Evolutionary Multi-objective Optimisation Algorithm

(SMS-EMOA), implementiert und angewandt ummöglichst optimale evolutionäre

Parameter zu identifizieren, z.B. Populationsgröße oder Mutationsrate. Interes-

santerweise spielt die richtige Auswahl der evolutionären Parameter eine entschei-

dende Rolle bezüglich der E�zienz der Algorithmen.

Im zweiten Teil der Arbeit wird die Evolution von Proteinen beobachtet und

analysiert. Ein besonderes Augenmerk wird dabei auf Positionen gelegt, die nicht

konserviert sind. Gleichwohl können diese mit kompensatorischen Mutationen

an anderen Stellen im Protein strukturell wichtige Funktionen einnehmen. Hier-

bei werden verschiedene Koevolutionsmethoden, wie z.B. die Mutual Information

(MI) oder die Direct Coupling Analysis (DCA), weiterentwickelt und verglichen.

Anschließend wird die DCA-Methode mit einer neu verbesserten Gewichtung

angewandt um koevolvierende Positionen im Humanen Immundefizienz-Virus

(HIV) Hüllprotein-Komplex (Env) vorherzusagen. Bemerkenswerterweise wurden

dabei sowohl bereits in der Literatur beschriebene als auch noch unbekannte Po-
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sitionen identifiziert, die eine entscheidende Rolle im Eintritt des Viruses in die

humane Wirtszelle spielen können. Schließlich wurden die koevolvierenden Posi-

tionen bei der Erstellung eines Homologiemodells des Protein-Komplexes verwen-

det.
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1 Introduction

”Look deep, deep into nature, and then

you will understand everything better.”

Albert Einstein

1.1 Evolution

According to the Oxford Dictionary [37], the concept of Evolution describes ”the

process by which di↵erent kinds of living organism are believed to have developed

from earlier forms during the history of earth”. Moreover, it is believed that all

living organisms originate from one ancestor form, as proposed amongst others by

Charles Darwin in the Recapitulation and Conclusion chapter of his book On the

Origin of Species by Means of Natural Selection, or the Preservation of Favoured

Races in the Struggle for Life in 1859: ”Therefore I should infer from analogy that

probably all the organic beings which have ever lived on this earth have descended

from some one primordial form, into which life was first breathed.” [32]. Charles

Darwin was also the one who introduced the concept of natural selection, which

can be summed up by the four main principles variation, competition, adaption

and inheritance [32]. The variations between individuals are thereby introduced

by mutations. The competition between individuals occurs, because most pop-

ulations tend to have more o↵spring than the natural resources are capable of

preserving, which leads to the selection of those that are adapted best. The last

principle, the inheritance, ensures that the characteristics increasing the proba-

bility of survival are inherited to the new o↵spring generation.

The application of these principles in evolutionary processes generates diversity

at all levels of biological organisation, including proteins.
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1.1 Evolution

Proteins are one of the most important molecules on earth. They are not only

responsible for catalysing nearly all biochemical reactions in cells, but also fulfils

functions like gene activity, cell signalling, immune response or structural and

mechanical functions in muscles and cytoskeletons. Knowledge of a proteins se-

quence, structure and function enables thereby scientist to design and implement

experiments that can be applied in drug design.

Nevertheless, even for a small protein with a sequence length of 50 amino acids

there are 2050 possible sequences. In the course of evolution (millions of years)

nature explored only a fraction of these possible protein sequences [104], by con-

serving only biological relevant ones.

One possible approach for the discovery of novel proteins with desired properties

or the optimisation of known proteins, is the application and utilisation of evo-

lutionary processes in silico. Basic features of evolution are thereby applied, e.g.

reproduction and selection. The fitness, in natural evolution the capability of or-

ganisms to reproduce successfully under certain circumstances, is defined accord-

ing to the designers needs and goals. One typical fitness criterion is the stability

of a newly designed protein. Amongst many others [31, 36, 46, 123, 139, 174]

Gronwald et al. [63] applied evolutionary Pareto optimisation in order to gain

stably folding proteins. However, they performed only a limited number of evo-

lutionary cycles (15 generations), due to the computational very costly fitness

calculations of each individual. The evolutionary algorithm required one year

Central Processing Unit (CPU) time for 15 generations at eight individuals.

Another interesting research field is the co-evolution within homologous proteins.

Positions important for the overall structure and function of proteins are mainly

conserved during the course of evolution. Nevertheless, mutations also occur in

regions important for the global fold and function, without a↵ecting them. Most

of these mutations are linked with compensatory changes in other sequence po-

sitions. The identification and analysis of co-evolving positions is of interest for

protein contact and de novo structure predictions.
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1.2 Research motivation

1.2 Research motivation

The first aim of this work was the identification of evolutionary parameters, e.g.

mutation rate or population size, that perform best in in silico design of proteins

with desired properties. We utilised therefore simplified protein models, which

conserve typical protein folding behaviour.

The second aim of this work was the improvement, analysis and comparison of

co-evolution detecting methods. Subsequently, the best performing method was

applied in order to identify co-evolving and structurally interacting positions in

Human Immunodeficiency Virus-1 Envelope (Env), a key protein complex dur-

ing the entry of Human Immunodeficiency Virus (HIV) into human host cells.

Furthermore, we utilised the detected co-evolving positions to predict missing

structural regions within the protein complex.
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2 Evolutionary Parameter Opti-

misation

”Order and simplification are the first

steps toward the mastery of a subject.”

Thomas Mann

In the following chapter, we apply the S Metric Selection - Evolutionary Multi-

objective Optimisation Algorithm (SMS-EMOA) to identify evolutionary param-

eters that perform best on the Multi-Objective Optimisation Problem (MOOP)

protein design. We utilise simplified protein models that conserve typical protein

folding behaviour, in order to search through sequence and structure space. First,

we give a brief introduction to MOOPs and protein lattice models, followed by an

explanation of the applied evolutionary optimisers. Then we present the results

followed by a conclusion.

2.1 Introduction

2.1.1 Multi-objective optimisation problems

MOOPs address optimisation problems with more than one objective function.

The classical approach solving these kind of problems is to convert the MOOP

into a Single-Objective Optimisation Problem (SOOP) by combining the individ-

ual objective functions into a single composite one.

The preferred approach solving MOOPs is to obtain the Pareto-optimal solution

set or a subset of it. However, we formulate first a minimisation MOOP (without

loss of generality) with K objective functions as follows:

4



2.1 Introduction

”Given an n-dimensional decision variable vector x = {x1, ..., xn

} in the solution

space X, find a vector x⇤ that minimizes a given set of K objective functions

z(x⇤) = {z1(x⇤), ..., z
K

(x⇤)}” [85].

Due to the fact that the objectives are in conflict with each other in many optimi-
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Figure 2.1: Multi-objective solution space including the utopian perfect

solution

sation problems, it is rather unrealistic to gain a perfect multi-objective solution

as illustrated in Figure 2.1 (red triangle). It is more common that a set of non-

dominated solutions represent a more realistic outcome. Dominance is thereby

defined as follows:

Solution x dominates y if and only if

z
i

(x) � z
i

(y) for all i = 1, ..., K and

z
i

(x) > z
i

(y) for at least one objective.
(2.1)

Furthermore, solution x is Pareto-optimal, if it is not dominated by any other

solution in X. The set of feasible solutions in X is defined the Pareto-optimal set.
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2.1 Introduction

The corresponding objective function values in the objective space are referred

to as Pareto front (see Figure 2.2) [33, 85].

As previously mentioned, the ultimate aim for solving a MOOP is the identifi-
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Figure 2.2: Multi-objective solution space including Pareto front

cation of the Pareto-optimal set. However, this is impossible or computationally

infeasible for many MOOPs. Hence, a MOOP should attain the following goals:

• The obtained solution set should be as close as possible to the true Pareto

front [33].

• The obtained solution set should be as diverse as possible, in order to cap-

ture the whole spectrum of the true Pareto front [33].

As already indicated above, most classical multi-objective optimisation algo-

rithms convert MOOPs into SOOPs by applying some sort of a priori knowledge,

e.g. weights or constraints/limits. To name a few popular ones, weighted sum
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2.1 Introduction

approach [33], ✏-Constraint method [65], weighted metric methods [33], value

function method [33], goal programming methods [19, 74, 94] and interactive

methods [7, 15, 18, 76, 112, 162]. However, classical approaches are not practi-

cal, since they need to be executed many times in order to find Pareto-optimal

solutions and they require a priori knowledge, which might be di�cult or even

impossible in arbitrary MOOPs.

Later in the thesis (subsection Materials and Methods) we introduce evolutionary

algorithms, in particular Genetic Algorithm (GA) and SMS-EMOA, which have

proven to be good in order to solve MOOPs.

2.1.2 Protein and protein models

The main building blocks of proteins are amino acids. They are all identical in

their backbone formed by an amino group, a central carbon atom (C
↵

) and a

carboxyl group. On the contrary, they di↵er in their side-chains physiochemical

properties, which are bound to the central C
↵

atom. Some of the side-chains are

hydrophobic and prefer other neutral amino acids or non-polar solvent to interact

with. Some others are hydrophilic, meaning that they like to interact with other

charged or polar molecules and with polar solutions like for instance water.

The primary structure of proteins is defined by their sequence of amino acids,

which are covalently linked by peptide bonds in order to form a polypeptide

chain. The peptide bond is built by an interaction of one amino acid’s backbone

carboxyl group with another amino acid’s backbone amino group with water as

chemical byproduct. The polypeptide chain production is performed during trans-

lation1 of messenger RNA in the ribosomes. It starts with the amino group of the

first amino acid (N-terminus) and ends with the carboxyl group of the last amino

acid (C-terminus). Immediately after the polypeptide chain production, proteins

start to fold into their functional structure, in most cases guided by chaperone

molecules, that prevent misfolding of protein parts by interacting with them [177].

Helices and �-sheets are the regular secondary structure of proteins. Helical con-

formations are stabilised by energetically favourable hydrogen bonding between

1Translation is the second central step during gene expression and describes the building of

a protein polypeptide chain on the basis of the information coded in the messenger RNA.
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2.1 Introduction

Figure 2.3: Levels of protein structure - We illustrate the four levels of protein

structure using the X-ray structure of AOP RANTES [164] (PDB ID: 1B3A):

Primary structure - amino acid sequence, Secondary structure - amongst others

helices and sheets (hydrogen bonds are indicated by white dashed lines), Tertiary

structure - folded conformation of the polypeptide chain, Quaternary structure -

complex of two or more polypeptide chains.
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2.1 Introduction

backbone oxygen atoms of amino acid’s carboxyl group and backbone hydrogen

atoms of amino acid’s amino group. The most common helical form is the ↵-helix

next to the 310-helix and the ⇡-helix. They mainly di↵er in their structural fea-

tures such as the number of residues per helical turn.

�-sheets are composed of parallel and antiparallel orientated �-strands that can

perform hydrogen bonding by their amino group from one side and their carboxyl

group from the other side.

Another type of secondary structure are loops, which are less ordered than the

previously mentioned helices and sheets. Loops connect helical and sheet sec-

ondary elements within a packed folded structure. Moreover, loops are mainly

located on the surface of protein folds, where they often fulfil important protein

functions, e.g. being part of active or binding sites.

The tertiary structure of proteins is their folded Three-Dimensional (3D)-structure,

where the secondary elements are spatially arranged by the following interactions

and bonds:

• disulfide bonds

• hydrogen bridges

• van der Vaals interactions

• hydrophobic interactions

• electrostatic interactions.

The hydrophobic forces play an important role, since they almost always pack

all hydrophobic amino acids into the core (hydrophobic core) in order to avoid

the surrounding solution1. The charged and polar amino acids are mostly located

on the surface of globular proteins, because of their ability to interact with the

surrounding solvent. Figure 2.3 illustrates the levels of protein structure using

the crystal structure of AOP-RANTES [164] (PDB ID: 1B3A).

According to thermodynamic theory, proteins fold into a conformation with min-

imal free energy, the native protein state [2]. Nevertheless, depending on the

1The surrounding solution of proteins in their natural environment is water.
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2.1 Introduction

Figure 2.4: Energy landscape - An example energy landscape showing the

typical local minima and the native state (centred global minimum). Vertical axis

represents the energy in the system. (A) Global view on the energy landscape.

(B) Cross-section view. (Copyright 2008 from [183]. Reproduced by permission of

Garland Science/Taylor & Francis LLC.)

energy landscape it is possible that proteins fold into other metastable conforma-

tions, local minima in the energy landscape, during the folding process. Figure

2.4 illustrates an example energy landscape with several minima and a global

minimum representing the native state.

For the purpose of analysis and simulation of proteins and their folding process,

protein models are needed that abstract their structure and sequence space as

well as the energy functions. Protein structure models can thereby range from

detailed all-atom models in 3D applied in Molecular Dynamics (MD) simulations

[77] down to coarse grained Two-Dimensional (2D) lattice models [93].

The sequence space is represented by the protein’s primary structure, the amino

10



2.1 Introduction

acids. Models can either apply the set of all 20 naturally occurring amino acids or

apply a simplified sequence space, which abstracts the physiochemical properties

of amino acids, like for instance the hydrophobicity and polarity model used in

the HP-model by Lau and Dill [93].

Protein energy functions are supposed to cover all intra- and inter-protein forces

that have an e↵ect on protein folding (see above). Because of the above indicated

fact that proteins aspire towards the energetically minimal conformation, protein

folding may be defined as minimisation problem for the applied energy function

models. Biologically realistic models, like the all-atom energy functions defined

in MD simulation force fields, include all intra- and inter-protein forces, but are

thus computationally very costly. Simplifications of the energy functions are often

realised as distance based potentials or even as contact potentials.

A more detailed introduction into proteins and protein structures can be found

in several textbooks, amongst others [12, 96, 138].

2.1.3 Lattice protein models

Lattice protein models are a common simplified representation of proteins. They

are mostly applied to perform amongst others folding- [127] and comparative

folding-processes [25] or sequence evolution [11]. The proteins are thereby simpli-

fied in their sequence and structure space. Furthermore, simplified energy func-

tions are used in order to reduce the complexity during for instance folding ex-

periments. Nevertheless, the abstraction does accompany with loss of accuracy.

In the following, we briefly introduce the most common lattices and energy func-

tions.

The classical abstraction of protein sequences is the ’bead on a string’ represen-

tation, whereupon one amino acid, including backbone and side-chain, is mapped

on one bead or sphere. The spheres are thereby connected by rigid edges. More-

over, representations that incorporate side-chains by one additional sphere also

exist. Nevertheless, we apply the classical representation for our experiments.

Discrete lattices The abstracted protein strings are in general folded on discrete

lattices. The most simple lattice model is the 2D-squared lattice model introduced

11



2.1 Introduction

Figure 2.5: Visualisation of lattice’s coordination numbers. - The reference

sphere is illustrated as wheat coloured sphere, the neighbouring spheres are depicted

in green ((A) 2D-squared lattice, (B) 3D-cubic lattice and (C) 3D-face centred cubic

lattice).

by Lau and Dill [93]. The coordination number1 in this lattice is four, which re-

duces the complexity dramatically at the expense of accuracy. Nonetheless, even

on this simple model one can identify protein properties during protein folding,

for instance packing of hydrophobic amino acid spheres into the core (hydrophobic

core).

A more complex model is the 3D-cubic lattice model. It is one of the widely ap-

plied protein lattice models, since it is more realistic than 2D ones. The number

of nearest neighbours is in this model six, which increases the complexity. On

the other hand, more information can be obtained about protein properties and

folding behaviour due to the extra dimension.

Another 3D model is the Face Centred Cubic (FCC) lattice model from Raghu-

nathan and Jernigan [130]. The coordination number for this lattice is twelve.

Figure 2.5 illustrates the possible nearest neighbours (green spheres) for the cen-

tral wheat coloured sphere in the introduced lattices. We apply the FCC lattice

in our simulations.

The number of possible lattice protein structures for di↵erent sequence lengths

n in the introduced discrete lattices is given in Table 2.1. It is easily apparent

that the number of possible structures in the complex FCC lattice quickly reaches

1The number of atoms or ions (spheres) immediately surrounding a central atom in a

complex or crystal (lattice). It can be interpreted as a measure of the lattices complexity.

12
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Table 2.1: Number of possible lattice protein conformations

n 2D-square 3D-cubic 3D-FCC

2 1 1 1

3 2 2 4

4 5 6 32

5 13 22 313

6 36 92 3,196

7 98 402 32,835

8 272 1,832 337,056

9 740 8,453 3,452,392

10 2,034 39,640

⇠ c ⇤ bn 0.28 ⇤ 2.69n 0.08 ⇤ 4.42n 0.05 ⇤ 9.57n

The number of possible lattice protein structures (self-avoiding chains) for di↵erent

sequence lengths n. The number already excludes symmetric structures (rotation

and reflection products). The last line presents an exponential formula in order to

approximate possible conformations for specific sequence lengths n [105].

dimensions, which make a complete enumeration impossible.

Energy functions Due to the structure simplification in lattice protein models,

it is not possible to model all forces involved in intra- and inter-protein interac-

tions. Energy functions are therefore mostly approximated by contact potentials,

which mimic residue-residue interactions.

The most popular contact potential is the HP-model introduced by Lau and

Dill [93]. The HP-model translates the 20 naturally occurring amino acids into

two types of residues; H for hydrophobic residues and P for polar residues. The

HP-potential is listed in Table 2.2. This simple potential prefers hydrophobic-

hydrophobic contacts in contrast to contacts that include polar amino acids. In

folding simulations, it is very well suited to discover hydrophobic cores, because

it strives for the minimal system energy, which is given by the sum of all contact

13



2.2 Materials and Methods

potentials.

In the Miyazawa-Jernigan (MJ)-model [113, 114] all 20 amino acids are con-

Table 2.2: HP-potential according to Lau and Dill [93]

H P

H -1 0

P 0 0

sidered and not split into groups. The MJ-potential is thereby derived from ex-

amination of residue-residue interactions within experimentally derived protein

structures. The model enables a much more detailed energy calculation than the

previously introduced HP one, but has the disadvantage that the complexity is

significantly increased. Table A.1 lists the MJ-potentials we applied in our simu-

lations.

2.2 Materials and Methods

2.2.1 Genetic Algorithm

GAs are a popular type of evolutionary algorithms that mimic natural evolution-

ary processes and parameters, e.g. crossover, mutation or selection, in order to

perform optimisation procedures. In contrast to the above-mentioned classical ap-

proaches for solving MOOPs, GAs are capable of finding many non-dominated so-

lutions in a single optimisation run. Furthermore, GAs are able to search through

di↵erent regions of the solution space X, even for di�cult MOOPs. The first

drafts of GAs were developed by Holland and co-workers in the 1970’s [67] and

were then extensively applied in many areas, to name only a few, bioinformatics

[60, 119, 149, 153], computer science [166], phylogenetics [66] and even engineer-

ing and economics. Literature on GAs can be found in quite a few textbooks, for

instance Reference [56, 58, 67], while GAs and evolutionary algorithms applied

on MOOPs are summarised in detail in [4, 33]. Some of the most commonly used

multi-objective GAs are VEGA [136], MOGA [53], SPEA/SPEAII [180, 182],

14



2.2 Materials and Methods

PAES [84], PESA/PESAII [28, 29] and NSGA/NSGAII [34, 143]. They mainly

di↵er in their approaches to fitness determination, elitism and dispersion along

the Pareto front. In most cases, this is realised by di↵erent implementation of the

selection operator, the most essential parameter during a GA optimisation.

The optimisation during GAs proceeds in cycles, usually referred to as gen-
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./0'()*+&%$#)"
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Figure 2.6: GA flowchart - Major steps of a GA.

erations. In every generation, o↵spring are generated from the parent popula-

tion. Then the fitness values are determined and the most promising individuals

are passed on to the next generation. GA optimisations proceed until a pre-

defined stop criterion is reached. We illustrate the major working steps of GAs

as flowchart in Figure 2.6.

Initial population A GA begins the search with a set of chromosomes (set

of solutions/individuals) called initial population, which is either randomly cho-

sen or composed of known chromosomes that are supposed to be improved.
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2.2 Materials and Methods

Crossover Reproduction operators crossover and mutation are applied on the

initial population to produce new o↵spring. Genes (information) of two or more

parent chromosomes are interchanged when using crossover. The most popular

crossover operators in GAs are

• the single-point crossover (parent information is split into two halves and

interchanged),

• the multi-point crossover (multiple crossover-points are applied)

• and the uniform crossover (parent information is randomly copied).

Mutation The mutation operator is a more local reproduction procedure. The

new o↵spring is changed according to the coding of the chromosomes. For ex-

ample, in a binary encoding of the o↵spring, the single bits are mutated with a

pre-defined or randomly chosen probability.

Evaluation The next step in the GA cycle is the evaluation process. Depending

on the type and number of the objective functions, this step can be the computa-

tional most costly one, since sometimes data had to be gained by time-consuming

simulations.

Selection The most crucial step for the development of GAs is the selection

procedure. As indicated earlier in the text, most GAs di↵er in the implementa-

tion of this operator. According to Darwin’s evolution theory, the operator should

select the best performing individuals for survival. To mention a few examples,

• roulette wheel selection (the better the individuals are, the higher the prob-

ability to be selected),

• Pareto-ranking approaches (individuals are ranked according to the domi-

nance rule and selected on the basis of their Pareto rank) [34, 143, 182],

• and several other selection procedures to maintain diversity in the popula-

tion by fitness sharing [53, 59], crowding distance [34] or cell-based density
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2.2 Materials and Methods

[28, 29, 81, 84, 101, 176].

Stop criterion The last step in the GA cycle is the stop criterion. The optimi-

sation is terminated, if an a priori defined termination condition is satisfied (e.g.

number of generations) or a convergence criterion is met, otherwise the GA cycle

is run again.

The quality of the performance of GAs (and evolutionary algorithms in gen-
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Figure 2.7: Hypervolume - The hypervolume is made up by the grey coloured

area between the reference point (black dot) and the actual non-dominated solu-

tions, illustrated as red dots.

eral) is usually determined by the hypervolume [181], a measure that determines

the size of the dominated area for a given reference point. The hypervolume is a

fair and good performance criterion, since we are always comparing evolutionary

optimisers using the same number of iterations/generations. Figure 2.7 illustrates
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2.2 Materials and Methods

the hypervolume as grey coloured area between the non-dominated solutions of a

2D maximisation problem in green and the reference point in black. It is desirable

to maximise the hypervolume, since it equals the finding of the true Pareto front

[136].

2.2.2 SMS-EMOA

The SMS-EMOA applies the hypervolume measure as selection criterion during

the optimisation process [9, 44] and incorporates properties from previously de-

veloped evolutionary algorithms, e.g. the non-dominated sorting of the NSGAII

[34] or archiving strategies from [82, 83]. Furthermore, the algorithm is a steady-

state algorithm, i.e. during an evaluation cycle only one o↵spring is generated

by applying reproduction operators and one individual is sorted out by applying

selection, which we will explain in detail in the following.

The SMS-EMOA is shown as pseudocode in Algorithm 1 (Page 101) [9]. At the

beginning, a population of µ individuals is initialised. Second, a new individ-

ual is generated by applying reproduction operators crossover and/or mutation.

The now enlarged population of µ + 1 individuals undergoes a two-stage selec-

tion process. The primary selection criterion is based on the Pareto dominance.

First, all dominated individuals are identified and their dominance number is

evaluated. The dominance number specifies the number of individuals that dom-

inate an individual of interest. Figure 2.8 illustrates the removing according to

the first selection criterion. Both, the red (s) and black (d) coloured squared

points represent dominated individuals. Point d will be removed, since it has the

higher dominance number. It is dominated by three other points (black hatched

area), while s is only dominated by one point (red hatched area). Hence, solution

d is considered to be more dispensable than s, because it is located in a more

densely populated area and thus makes less contribution to the diversity. Solution

s is located in a sparsely populated area and may help the optimiser converging

into unexplored solution space areas. If there are multiple individuals having the

same dominance number or only non-dominated solutions, the second selection

criterion is applied, wherein the individual with the smallest hypervolume contri-

bution is removed. Figure 2.9 illustrates such a situation. Point s has the smallest
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SMS−EMOA (dominance tournament)
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Figure 2.8: SMS-EMOA dominance tournament - The selection of the new

population is based on the dominance number. Individuals d and s are both dom-

inated by green circled points. Subsequently, the individual with the higher domi-

nance number is removed from the population. Individual d is dominated by three

other individuals (black hatched area), while individual s is only dominated by 1

(red hatched area).

hypervolume contribution and is removed from the population.

The SMS-EMOA has numerous advantages. First, the results are well distributed

over the Pareto front, since the algorithm focuses the search towards less explored

regions near the growing Pareto front. Second, the steady-state approach enables

the parallel implementation of function evaluations. For example, we have gener-

ated and calculated four individuals in parallel on a computer with four CPUs.

We thus reduced the computation time by a factor of four. Furthermore, we intro-

duced a Pareto archive, where we continuously saved the non-dominated solution

set for each SMS-EMOA cycle.

19



2.2 Materials and Methods

●

SMS−EMOA (hypervolume tournament)

Objective1

O
bj
ec
tiv
e2

●ref

●

●

●
●

●

●

●

●s

Figure 2.9: SMS-EMOA hypervolume tournament - The selection of the

new population is based on the hypervolume contribution. All individuals are not

dominated by any other point. Hence, the individual with the smallest hypervolume

contribution (s) is removed.

2.2.3 Folding simulation via LatFold

We have used the program LatFold, embedded in the software package LatPack

[106], to perform folding simulations of lattice proteins. The folding is applied by

Monte-Carlo (MC) simulations using a Metropolis criterion [111].

The Metropolis MC procedure identifies at each step a new random conforma-

tion by applying pre-defined move sets. Move sets perform structural changes to

a given conformation in order to generate a neighbouring structure in the en-

ergy landscape. LatFold uses two ergodic move sets. First, the pull-moves [95],

which perform more local changes, and second pivot-moves [103], which in con-

trast conduct stronger structural changes. Figure 2.10 illustrates the pull move

implementation on the FCC lattice. The grey coloured current conformation (A)
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Figure 2.10: Pull move - The actual conformation (A) is transferred by replace-

ment of a single amino acid sphere into a new green coloured (B) conformation.

is transferred by applying a pull-move into a new green coloured structure (B).

The local change includes only the replacement of one amino acid sphere, indi-

cated by the yellow line. In contrast, a pivot-move involves a greater change as

shown in Figure 2.11. The grey coloured current conformation (A) is transferred

to a new green coloured structure (B) by relocating a whole fraction of the struc-

ture, also indicated with a yellow line.

We have illustrated the pseudocode of the Metropolis MC procedure in Algo-

Figure 2.11: Pivot move - The actual conformation (A) is transferred by relo-

cation of a lattice protein’s fraction into a new green coloured (B) one.
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rithm 2 (Page 102). During the course of the simulation, a new neighbouring

conformation is generated at each step by applying the move steps pull-move or

pivot-move. Subsequently, the energy of the new conformation is compared to the

energy of the current one. In the case of a lower energy, the new conformation is

accepted, while otherwise the Metropolis criterion is applied. The new conforma-

tion will then be accepted with probability e
� �E

kBT , where �E equals the energy

di↵erence between the new and the actual conformation (�E = Enew �Eactual),

k
B

represents the Boltzmann constant and T the temperature of the system. The

Boltzmann constant k
B

cannot be applied, due to the simplified coarse grained

energy function [106]. Moreover, the optimal folding temperature T , where the

global minimum (native structure) of a lattice protein is adopted and stable, is

unknown and has to be approximated for each lattice system independently. We

will approximate the product kT for the FCC lattice and the MJ energy function,

instead of T and k independently.

2.3 Results

It is computationally very costly to search through all FCC lattice structures,

although we are applying simplified protein models (see Table 2.1); e.g. protein

Villin Headpiece with a sequence length of 36 amino acids has approximately

9.9633 possible conformations. Our main target when applying Metropolis MC

simulations for folding is not the identification of native structures for any given

sequence, but the sampling of the solution space near native structure conforma-

tions in order to test the performance of evolutionary algorithm parameters, like

population size, number of generations, mutation or crossover.

However, we have to solve some preliminary issues, before we start the evolu-

tionary optimisations. First, we need to find a native or closely neighboured con-

formation for our reference structure. The reference structure is the FCC lattice

conformation of the arbitrary chosen Villin Headpiece protein (PDB ID: 1VII), a

well studied protein due to its short amino acid sequence (36 amino acids) and fast

folding kinetics in all-atom protein models applied in MD simulations [6, 63, 80].

We approximate the global minimum energy conformation by application of a
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high number of long Metropolis MC simulations at di↵erent temperatures. Sub-

sequently, we use the detected native structure and perform a kT -screening in

order to identify the relative folding temperature kT . Furthermore, we need to

choose the number (seeds) and length (simulation steps per MC run) of MC

simulations to perform.

2.3.1 Preliminary experiments

Approximated native conformation We have performed Metropolis MC sim-

ulations of Villin Headpiece sequence using 100 seeds and two di↵erent simulation

lengths:

1. short simulations with 1,000,000 Metropolis MC simulation steps.

2. long simulations with 10,000,000 Metropolis MC simulation steps.

The Latpack developer used in a similar test case only 10,000 steps. Furthermore,

we applied the simulations using 10 di↵erent kT values (kT = {0.05, 0.1, ..., 0.5}).

In Figure 2.12 we illustrate the short (coloured red) and long (coloured black)

simulations minimum energies (100 di↵erent seeds) that have been reached in

the course of the Metropolis MC runs. The green horizontal line represents the

smallest energy found in all simulations. It is readily apparent that small and

large relative folding temperatures do not come within the scope of the minimum

energy. It is also striking that the boxes representing small kT values, indicating

a higher standard deviation, are apparently bigger than the boxes for large kT

values.

Conformations with minimum MJ energies or neighbouring ones are mainly

adopted at kT values between 0.15 and 0.3. Hence, we have deepened the analy-

sis in this range of values (see Figure 2.13) and noticed that almost all MC runs

assume conformations that are close to the minimum energy one. Astonishingly,

none of the MC runs in Figure 2.13 yielded a smaller energy than the highlighted

one (green horizontal line), which strengthen the assumption that this is the na-

tive or near native minimum energy structure. To be sure, we have to enumerate

all structures, which is computational very infeasible.

Moreover, we have plotted the mean energy of each run in Figure 2.14. Noticeable,
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Figure 2.12: Boxplots of minimum MJ energies - Short (red boxes) and

long (black boxes) simulations minimum MJ energies shown as boxplots for 100

MC seeds. Simulations were performed using 10 di↵erent kT values (x-axis). The

green line represent the minimum energy found in all simulations.

the mean energies strongly increase with increasing temperature kT , while the

standard deviations decrease. The same observations are made when examining

the more detailed area between 0.15 and 0.3 kT (see Figure A.1).

We want to explain the previously made observations with the aid of Figures

2.15, 2.16 and 2.17. Figure 2.15 illustrates the energy traces for three di↵erent

Metropolis MC seeds (coloured black, red and blue) using the relative folding

temperature 0.05 kT . The simulations are immediately trapped in a local mini-

mum after a short equilibration time. The relatively low temperature of 0.05 kT

has the consequence that energetically inferior conformations are not accepted

via the Metropolis criterion, since the probability is getting lower the smaller the

kT . This explains also the relatively stable mean energies during the simulations.
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Figure 2.13: Detailed boxplots of minimum MJ energies - Short (red

boxes) and long (black boxes) simulations minimumMJ energies shown as boxplots

for 100 MC seeds. Simulations were performed using kT values ranging from 0.15 to

0.3 (x-axis). The green line represent the minimum energy found in all simulations.

On the other hand, Figure 2.17 illustrates a completely di↵erent picture. Due to

the relatively high temperature of 0.5 kT , each new conformation is accepted,

either because it has a lower energy or by application of the Metropolis criterion,

whose probability gets higher the larger the temperature. Thus, a convergence

towards the native structure is always prevented.

Figure 2.16 illustrates a more common energy trace behaviour. All three simula-

tions converge towards a MJ energy plateau around -18. Due to the still su�cient

high temperature, it is always possible to fall by chance into a deeper energy

minimum, as realised in the first simulation (black curve/trajectory).

As already shown in Figure 2.13, several simulations discovered conformations

with the same minimal energy. Figures 2.18 and 2.19 depict all three found min-
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Figure 2.14: Boxplots of mean MJ energies - Short (red boxes) and long

(black boxes) simulations mean MJ energies shown as boxplots for 100 MC seeds.

Simulations were performed using 10 di↵erent kT values (x-axis).

imum energy conformations. The conformations di↵er only in the placement of

two amino acid lattice spheres. The di↵erences between conformations A and B

and conformations A and C are highlighted by yellow dashed lines.

Moreover, conformation C has another energy contributing interaction than con-

formation A. Nevertheless, there is no global energy di↵erence, since in both cases

the amino acid glutamatic acid (GLU) is involved in the contact.

Relative folding temperature kT In the following, we applied the predicted

minimum energy conformation (choose randomly one of the three) in order to

perform a kT -screening. The purpose of the kT -screening is the identification of

an optimal folding temperature.

The screening procedure is as follows. First, Metropolis MC simulations are per-
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Figure 2.15: Metropolis MC energy trajectory (kT = 0.05)

formed using di↵erent numbers of seeds and kT values. The MC runs are thereby

carried out at a constant kT value. During these simulations the proportion of

the unchanged minimum energy conformation is counted. Figure 2.20 illustrates

the kT -screening applying short MC simulations. Astonishingly, the number of

seeds does not have an e↵ect on the proportion of the minimum energy conforma-

tion during the MC runs. Furthermore, at 0.25 kT there is no minimum energy

conformation present anymore. Hence, we decided to use 0.15 kT , since it main-

tains a good balance between conserving a well folded lattice conformation and

variation by the use of the Metropolis criterion.

2.3.2 SMS-EMOA runs

Workflow In the following, we will perform SMS-EMOA optimisations in order

to screen for evolutionary parameters that perform best in the prediction of low

energy lattice conformations for given sequences (protein structure prediction).
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Figure 2.16: Metropolis MC energy trajectory (kT = 0.25)

During single SMS-EMOA runs we will apply the following criteria. First, five

short Metropolis MC simulations are performed in order to evaluate the fitness

for each individual, since the number of seeds did not have an e↵ect as shown in

the previous subsection. Second, we apply the constant relative folding tempera-

ture of 0.15 kT during the fitness evaluations. Furthermore, we split the trajectory

into two parts, the equilibration (15 simulation length) and the production stage

(45 simulation length). The conformations and energies important for the fitness

evaluation are exclusively derived from the production stage. Once the simulation

has been carried out the following two fitness functions are applied:

1. mean MJ energy.

2. similarity.

The first fitness function ensures that we compare contact potential energies of

conformations, which are most frequently adopted during the MC simulations and
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Figure 2.17: Metropolis MC energy trajectory (kT = 0.5)

therefore represent the most probable lattice structure for a given individual’s

sequence.

The second fitness function, the similarity, is defined in order to obtain solutions

that are similar to a pre-defined reference structure. The previously predicted

minimum energy lattice conformation of Villin Headpiece serves in our case as

the reference conformation. The similarity is implemented as follows: A cubic

lattice box, with a mesh size of 0.5 Å and an o↵set of 15 Å, is centred on the

reference structure. The box size is chosen quite generously to ensure that all

lattice protein structures fit in. Afterwards, each grid point is assigned with a

hydrophobicity potential �, which is calculated by

� =
n

X

i=1

hydro(res
i

) · e�dist, (2.2)

with the protein sequence length n, res representing the individuals’s amino acid

and the distance dist from each amino acid to the current grid point. The function
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Figure 2.18: Minimum energy conformations A and B - The conformations

A and B di↵er in the placement of one amino acid sphere, indicated by a yellow

dashed line. The di↵erence does not have an e↵ect on the overall energy potential.

hydro assigns each residue a hydrophobicity value according to the Kyte-Doolittle

scale [90] (listed in Table A.2). Large negative values correspond to strong polar

amino acids, while large positive values represent hydrophobic amino acids. The

next step is the definition of a hydrophobicity hull around the reference structure.

Each amino acid bead of the reference conformation is surrounded by a sphere

with a van der Vaals radius of 8 Å. Next, the hull is defined as the surface of

these spheres and is the set of grid points, which are considered in the fitness

calculation. The hull fulfils the criterion that the same set of points can be de-

rived for every newly generated individual’s conformation. This is conducted by

the superimposition of every new conformation onto the reference one. The su-

perimposition is performed using the epitopsy1 library coded in Python2. Due to

the fact that we are considering the same grid points for every newly generated

individual’s conformation, we are now able to compare the hydrophobicity hulls,

by determining the fraction of grid points with the same sign. The resulting fit-

ness function values range thus from zero to one, with one as perfect match of

1
https://code.google.com/p/epitopsy

2
http://www.python.org
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Figure 2.19: Minimum energy conformations A and C - The conformations

di↵er in the placement of two amino acid spheres, indicated by yellow lines. The

overall energy potential does not change, since the energy contributing contacts are

performed by the same amino acids asparagine and glutamic acid, highlighted by

red dashed lines.

the hydrophobicity hulls.

Long SMS-EMOA runs Our main goal is the identification of evolutionary

parameters that require a minimum number of computational time as possible

to detect new protein sequences and structures having desired properties, e.g.

a stable fold or a similarity to a pre-defined protein. We must therefore try to

answer the following questions:

• How big should the population size be?

• What is the best performing mutation rate?

• Should we apply crossover?

• How many SMS-EMOA generations should at least be performed?

We have started the analysis with SMS-EMOA optimisations applying the evo-

lutionary parameters listed in Table 2.3.
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Figure 2.20: kT-screening - Number of seeds does not have an e↵ect on the

fraction of global minimum folds. At 0.25 kT no global minimum conformations

are present anymore in the trajectory.

Typical illustrations of evolutionary algorithm performances are shown in Figures

2.21 and 2.22.

In Figure 2.21 we plotted the solution space of the SMS-EMOA optimisation

using the evolutionary parameters from the second row in Table 2.3. The black

circles represent the solution space elements of all individuals generated during

the SMS-EMOA run. The red connected filled circles highlight solutions that

originate from the last Pareto front. It is readily apparent that the solutions are

well distributed over the similarity axis (y-axis), since the axis’s range is from

zero to one.

The hypervolume development of the same SMS-EMOA run is shown in Figure

2.22. The optimisation converges after around 7000 simulation steps. This ex-

plains the accumulation of black circles on the right side of Figure 2.21, because
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Table 2.3: Parameters applied in the first SMS-EMOA runs

Simulation steps Population size Mutation rate Crossover

15000 10 0.014( 1
2n) no

15000 10 0.028( 1
n

) no

15000 10 0.05 no

15000 10 0.075 no

15000 10 0.1 no

15000 10 0.014( 1
2n) one-point

15000 10 0.028( 1
n

) one-point

15000 10 0.05 one-point

15000 10 0.075 one-point

15000 10 0.1 one-point

it seems that the maximum range of the mean MJ energy is reached, although we

do not know where the limit is. A closer examination of the Pareto individuals

leads to the following conclusions. The Pareto individuals at the far right side,

with high mean MJ energies and low similarities, are highly mutated at sequence

level. The sequences consist almost exclusively of polar charged amino acids like

aspartic and glutamic acids or lysine, arginine and histidine. Some of the se-

quences incorporate also a lot of cysteines. The reason for this lies in the fact

that the MJ contact potential (see Table A.1) prefers polar and cysteine-cysteine

contacts more than others, like hydrophobic ones. The second fitness function,

the similarity, prevents the optimisation run to exclusively generate this kind of

sequences, by forcing it to search for sequences that have a similar amino acid

composition like the reference conformation.

Figure 2.23 shows the hypervolume developments of SMS-EMOA runs applying

evolutionary parameters listed in Table 2.3. Red and black lines highlight hyper-

volume trajectories of simulations applying one-point crossover and no crossover

respectively. The di↵erent graphical symbols triangle, circle, plus sign, x and di-

amond di↵erentiate between optimisation runs applying mutation rates 1
n

, 1
2n

(n =sequence length), 0.05, 0.075 and 0.1.
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Figure 2.21: SMS-EMOA solution space - Black circles represent solution

space entries of all individuals created during the SMS-EMOA run. Red connected

circles show the solution space entries for the last Pareto front.

First, it is striking that all trajectories start converging between 5000 and 10000

simulation steps. On closer inspection, we observe the same rapid convergence

of the di↵erent optimisations with respect to the first fitness function, the mean

MJ energy. As shown in the example above, this is due to the highly mutated

sequences, which mainly consist of polar charged amino acids. The further rela-

tively small increases in the trajectories derive mainly from the search of better

solutions in terms of the second fitness function, the similarity. Depending on

the distribution of solutions along the Pareto front, it can be very random and

time consuming until better solutions are found. We will describe this by the

help of Figure 2.21. There are more Pareto solutions, red circles in Figure 2.21,

with a high mean MJ energy (bottom right side) than solutions with low mean

MJ energy and high similarity. Due to the fact that the SMS-EMOA only choose
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Figure 2.22: Hypervolume development - Typical hypervolume development

during a SMS-EMOA optimisation run.

one individual for replication, it occurs less frequently that an individual with

high similarity is chosen. Hence, the algorithm gets less chance to improve it’s

individuals in this area of the solution space.

Moreover, it is noticeable that the trajectories originating from optimisations not

using crossover cluster when converging. In contrary, red lines are much more

variable, which is due to the properties of crossover operators. Crossover ex-

changes information, in our case amino acids, from di↵erent individuals, result-

ing in strong reallocation of solution space entries. Hence, the solution space is

searched through in larger steps, while mutation only performs local changes.

2.3.3 SMS-EMOA Enumerator

In the following, we carried out a series of experiments (Enumerator) with the as-

sumption that only limited computational resources are available. We performed
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Figure 2.23: Hypervolume development comparison - Comparison of hyper-

volume developments of SMS-EMOA runs using the evolutionary parameters listed

in Table 2.3. Black lines indicate hypervolume developments with no crossover pa-

rameter applied. In contrary, red lines represent developments of SMS-EMOA runs

including one-point crossover application. The graphical symbols triangle, circle,

plus sign, x and diamond refer to SMS-EMOA runs using di↵erent mutation rates,

in particular 1
n

, 1
2n (n =sequence length), 0.05, 0.075 and 0.1 as shown in the legend

in the top left corner.

SMS-EMOA optimisations with a maximum of 5000 generations (5000 evalua-

tions steps) in order to identify evolutionary parameters that perform best.

The evolutionary parameters applied in the experiments are the following:

• evaluation step: e = 5000.

• population size: p = {2, 5, 10, 50, 100}.

• mutation rate: m = {0.01, 0.02, ..., 0.1, 0.2, ..., 0.5, 0.75, 1}.

• crossover: c = {0(no crossover), 1(one-point crossover)}.
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For each parameter set we performed three di↵erent seeds.

Figures 2.24 illustrates the hypervolume solutions, which have been produced
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Figure 2.24: Enumerator heat map - The hypervolumes of all parameter set

combinations are shown as heat map. In general, the brighter the colour (yellow)

the lower the hypervolume and vice versa, the more intensive the red the higher

is the hypervolume for the optimisation run applying these parameter sets. The

three left-hand figures represent SMS-EMOA runs not applying crossover, while

the three right-handed apply one-point crossover. The three di↵erent rows indicate

the di↵erent seeds that have been applied.
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during the SMS-EMOA optimisations. The embedded plots are structured as fol-

lows. The plots on the left-hand side represent optimisations that did not apply

crossover, on the right-hand side those that apply one-point crossover. The three

di↵erent rows indicate the three distinct seeds that have been applied. The hy-

pervolume size is encoded in heat colours. The brighter the colour (yellow) the

lower the hypervolume and vice versa, the more intense the red the higher is the

hypervolume. The mutation rates are plotted on the x-axis, the population sizes

on the y-axis.

The first thing that strikes is that mutation rates greater 0.1 (m > 0.1) lead to

poor hypervolume results (yellow squares). Because of this, we made a close up

view shown in Figure 2.25, where the x-axis ranges from mutation rates 0.01 to

0.1. The first thing one can notice is that the performances (hypervolumes) in the

first three population sizes (p = {2, 5, 10}) are similar between no and one-point

crossover application in all three seeds. However, in optimisations with higher

population sizes (p = {50, 100}), there is a clear advantage (dark orange opposite

to bright orange) in the inclusion of crossover, in particular one-point crossover.

Furthermore and most interestingly, the best hypervolumes (red squares) are

mainly obtained when using population size five in some cases population sizes

two and ten. The application of the crossover operator does not have an impact.

With respect to the mutation rates, it is quite di�cult to name the best mutation

rate regarding the performance. Hence, we simplified the results by plotting the

mutation rates as a function of the averaged hypervolumes of all seeds (see Figure

2.26). The di↵erent population sizes are highlighted by the application of vari-

ous line types, graphical symbols and colours (see Figure legend). The error bars

represent the standard deviation within the three di↵erent seeds. It is quickly

apparent, that population size five is the superior one with respect to the hyper-

volume, as already suggested above. In the case of optimisations with no crossover

(upper plot), it is di�cult to point out one single superior mutation rate, while

in optimisation using one-point crossover (bottom plot), mutation rate 0.04 is

the best performing one. Moreover, it is astonishing that the choice of the mu-

tation rate does not have a decisive impact when applied larger population sizes

(p = {10, 50, 100}), shown by almost horizontal green, blue and cyan coloured

curves.
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Figure 2.25: Enumerator heat map (close-up view) - The hypervolumes of

all parameter set combinations are shown as heat map. In general, the brighter the

colour (yellow) the lower the hypervolume and vice versa, the more intensive the red

the higher is the hypervolume for the optimisation run applying these parameter

sets. The three left-hand figures represent SMS-EMOA runs not applying crossover,

while the three right-handed apply one-point crossover. The three di↵erent rows

indicate the di↵erent seeds that have been applied.

In summary, the combination of the correct evolutionary parameters plays a cru-

cial role in the performance of the optimiser (SMS-EMOA).
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Figure 2.26: Enumerator - mean of three seeds - Averaged hypervolumes of

three seed are shown in the plots. The colours, line types and graphical symbols

distinguish between optimisations applying di↵erent population sizes. The upper

plot represents hypervolume output from optimisations not applying crossover,

while the bottom plot depicts simulations including crossover operation. The error

bars represent the standard deviation of uncertainty.
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2.4 Conclusion

We have seen from the extended analysis that the choice of the evolutionary pa-

rameters, like population size, mutation rate or crossover, can be decisive in terms

of performance.

Starting with the crossover, it seems as if the introduction of crossover (here:

one-point crossover) has beneficial e↵ects. Optimisations using high population

sizes (p = {50, 100}) benefit in terms of hypervolume when introducing crossover,

whereas the mutation rate is not a↵ected.

Second, the choice of the mutation rate is also essential. Overestimated mutation

rates (m > 0.1) lead to poor hypervolume results. This is due to the fact that

the evolutionary optimiser does not have the chance to converge to an optimum.

The mutation rate forces, once a good individual in terms of fitness functions is

found, the sequence to mutate strongly. Hence, it is always advisable to choose a

more moderate mutation rate, at least less than 0.1 (m = 0.1).

The population size is according to our analysis the main determining parameter.

The properties of the SMS-EMOA should always be kept in mind when deciding

for a proper population size, since only one individual is chosen for reproduction

per evaluation step. In contrast, in GAs the complete population is altered by

application of crossover and mutation operators. Hence, if we have computation-

ally limited resources and we are interested in quickly finding good results, the

population size should be small. In the case of unlimited computational and time

resources, one should choose bigger sizes in order to obtain many good and di-

verse solutions, which capture the whole spectrum of the real Pareto front.

For the MOOP of protein design, we suggest more moderate population sizes like

five or ten, since the fitness evaluations are very costly, when applying more de-

tailed protein models, e.g. all-atom models used in MD simulations. Furthermore,

we also suggest the introduction of crossover operators, at least on sequence level,

since they may enable the optimiser to quickly search in other regions of the so-

lutions space. The mutation rates, however, should be at least lower than 10%

of the sequence length, in order to locally search the solution space around an

individual. In matters of the mutation rate one can think of an adaptive strategy.
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2.4 Conclusion

This can be accomplished by adjusting the mutation rate depending on the con-

vergence condition of the optimiser. For instance, if the SMS-EMOA is already

converged with respect to one fitness function, then apply only local search by

lowering the mutation rates.
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3 Co-evolution in HIV-1 Env

”In nature we never see anything isolated,

but everything in connection with

something else which is before it, beside it,

under it and over it.”
Johann Wolfgang von Goethe

3.1 Introduction

3.1.1 HIV

HIV/AIDS history The Acquired Immunodeficiency Syndrome (AIDS) was

first clinically detected in 1981, where young men exhibit symptoms of Pneu-

mocystis Carinii Pneumonia or of the rare skin cancer Kaposi’s Sarcoma, both

infections present in people with a↵ected immune systems [54, 62, 73]. The virus

causing the disease was then identified by the working group of Luc Montag-

nier in 1983, called Lymphadenopathy-Associated Virus (LAV) [5] and one year

later by Robert Gallo and co-workers, termed HTLV-III [55]. LAV and HTLV-III

were renamed in 1986 to HIV, since both groups isolated the same virus. HIV

occurs in two types, HIV-1 and HIV-2, where both types most likely evolved

from Simian Immunodeficiency Virus (SIV) which infects non-human primates

as chimpanzees and gorillas or sooty mangabey respectively [141]. HIV-1 is sig-

nificantly more common than HIV-2, which is regionally spread in West Africa.

HIV/AIDS epidemic According to the 2012 UNAIDS report on the global
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AIDS epidemic [151], 34 million people worldwide were living with HIV at the

end of 2011, most of them (69%) in sub-saharan Africa.

The worldwide estimated HIV prevalence is illustrated in Figure 3.1. Regrettably,

Figure 3.1: HIV prevalence - Estimated HIV prevalence by country of 2011,

according to the 2012 UNAIDS report [151]. Source: UNAIDS [152]

the prevalence in southern Africa, e.g. in countries like Swaziland, Botswana,

Lesotho or South Africa, reaches values of up to 26%, corresponding to every

fourth inhabitant of that countries.

Fortunately, a decline of 20% of the worldwide number of new HIV infections is

observed in 2011 compared to 2001, resulting in 2.5 million newly infected people.

The decline is mainly based on rising HIV prevention e↵orts [151].

The number of human deaths from AIDS-related causes (1.7 million) also de-

clined in 2011 compared to 2005 [151].

HIV morphology HIV virions are spherical in shape and have a diameter

of around 120 Nanometer (nm) (a schematic morphology of HIV is given in Fig-

ure 3.2) [14]. Its outer coat, the viral envelope, is composed of a lipid bilayer,

which is extracted from the host cells in the budding step (step six in Figure

3.3) during HIV life cycle. Host cell proteins and envelope protein complexes, key
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Figure 3.2: HIV virion - Schematic morphology of HIV virion. Source: National

Institute of Allergy and Infectious Diseases (NIAID) [118]

players in the initial step of HIV replication cycle, are embedded in the bilayer.

The bullet-shaped viral core (also referred to as capsid), embedded in the enve-

lope, is built up by around 2000 capsid-proteins p24 and contains two copies of

the viral genes, two single strands of Ribonucleic Acid (RNA), and viral enzymes

reverse transcriptase, integrase and protease, which are essential for viral repli-

cation.

Between the viral envelope and core, units of matrix proteins (p17) are arranged

to assist anchoring the previously mentioned envelope protein complexes.

HIV replication cyle HIV’s main targets are Cluster of Di↵erentiation 4 Re-

ceptor (CD4)+ T-cells as well as macrophages [24]. The main processes during

HIV attack on these cells are illustrated in Figure 3.3 and will be introduced in

the following. The initial step, the interaction of the viral envelope protein com-

plex with di↵erent host cell membrane proteins, is essential to this thesis and will

be described more detailed in the next subsection.
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Figure 3.3: HIV replication cycle - Source: National Institute of Allergy and

Infectious Diseases (NIAID) [117]

The second step is the fusion of HIV with the host cell membrane followed by

the release of the viral capsid content, amongst others the virus RNA and the en-

zymes reverse transcriptase, integrase and protease, into the intra-cellular space.

The next step is the transcription of the viral RNA into viral Deoxyribonucleic

Acid (DNA) by the reverse transcriptase. The newly built viral DNA is then

transported and integrated by the HIV integrase into the infected cell genome

in the nucleus. The new viral RNA, a product of the transcription of the provi-

ral DNA by the cellular machinery, is then used as genomic RNA to make viral

proteins Tat and Rev, responsible amongst other things for expression of viral
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precursor proteins Gag, Gag-Pol and Env. Subsequently, the new viral RNA and

viral precursor-proteins di↵use to the cell membrane forming a new immature

HIV virion. The last step of the HIV replication cycle is the cleavage of the pre-

cursor proteins into their functional units by the HIV protease resulting in a

mature infectious virus particle.

HIV-1 cell entry HIV-1, as well as influenza and syncytial respiratory viruses,

enters host cells by applying type I membrane fusion machinery [26, 43]. The type

I entry machine in HIV-1 is the membrane spanning Env spike, a trimer consisting

of three copies of N-terminal components, responsible for interaction with host cell

receptors, and C-terminal parts, positioned in the viral membrane and performing

fusion of viral and host membranes. The trimer components are the non-covalently

bound exterior Glycoprotein 120 (gp120) (N-terminal) and the transmembrane

Glycoprotein 41 (gp41) (C-terminal), both generated by the host cell protease

furin by cleaving the pre-cursor polypeptide Glycoprotein 160 (gp160), which is

expressed during the HIV replication cycle (step five in Figure 3.3) [173].

The complete entry process can be split into three main parts, attachment, co-

receptor binding and fusion, wherein the first two parts are schematically illus-

trated in Figure 3.4. The first step, the attachment, starts with the recognition

and binding of gp120 by the host cell CD4. CD4 interacts with the Phe43 cav-

ity on gp120, a conserved pocket formed by residues located in three di↵erent

domains of gp120. These domains include helices in the inner domain, the CD4-

binding loop in the outer domain and the �20-�21 unit, that becomes one half

of the gp120 bridging sheet, formed after CD4 binding and important for co-

receptor binding [89, 171]. After CD4 binding, viral and host cell membranes are

brought via bending of the flexible region in CD4 into close proximity [134]. Fur-

thermore, substantial conformational changes take place, including the formation

of the bridging sheet, spatial approach of inner and outer domain and the de-

tachment of the Variable loop 3 (V3), resulting in formation and exposure of the

chemokine co-receptor binding site [20, 89, 131, 135, 168, 172]. The second main

step in HIV-1 entry is the binding of gp120 to C-C Chemokine Receptor 5 (CCR5)

or C-X-C Chemokine Receptor 4 (CXCR4) [35, 40, 50]. V3 is supposed to interact

with the Extracelluar Loop 2 (ECL2), while the bridging sheet interacts with the
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Figure 3.4: HIV cell entry - Schematic illustration of HIV-1 entry steps attach-

ment and co-receptor binding.

N-terminal part of the co-receptor [13, 27, 48, 70, 71]. The co-receptor binding

induces further changes in the Env trimer, leading to re-arrangments of the pre-

viously inaccessible gp41, that enables in the last step of HIV-1 entry the fusion

of the viral and host cell lipid membranes [72].

HIV-1 structural data In order to fully understand the mechanisms and molec-

ular basis of HIV entry, 3D structures of trimeric Env proteins in di↵erent con-

formations and in interaction with involved host cell receptors are needed at the

best possible resolutions. Unfortunately, this has not been achieved yet, although

an impressive development in terms of this goal is evident, starting with the crys-

tallisation of T-cell CD4 by Wu et al. [168] in 1996. Two years later, the first

structure of monomeric HIV-1 gp120, bound to CD4 and a monoclonal antibody

17b, was solved by Kwong et al. [89].

Despite the fact that only a deglycosylated core was crystallised, in total 60%

of the polypeptide, gp120 crystal structure revealed the essential molecular sites
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Figure 3.5: Structure of HIV-1 gp120 - HIV-1 gp120 is shown in cartoon

illustration with inner domain in green and outer domain in grey. The outer domain

structure elements bridging sheet and V3 are shown in blue and respectively orange.

Structure taken from PDB entry 2B4C [71].

involved in CD4- and co-receptor binding, which then boosted the development

of small molecule CD4 mimics [91, 102] and broadly neutralising antibodies, e.g.

VRC01 [169]. Since the publication of Kwong et al. [89], several structures of

monomeric gp120 have been crystallised in unliganded state as well as in com-

plex with CD4, CD4 mimics or various antibodies [1, 21, 38, 39, 70, 71, 75, 87,

88, 116, 122, 124, 170, 178, 179]. Nevertheless, the core structure of all these pro-

teins is identical with a packing into an inner and an outer domain, respectively,

facing the inner or the outer side of the Env trimer. The most variable parts in

gp120, with respect to structural as well as sequential aspects, are the surface-

exposed variable loop regions V1-V5. Variable loops 1 and 2 (V1V2) have been

crystallised only with a non-HIV sca↵old [98, 110], precluding assumptions about

intra gp120 domain orientations. In contrast, V3 was successfully solved in com-
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plex with CD4 and an antibody by Huang et al. [71] (see Figure 3.5). However, it

can vary depending on the conformation and interaction state of gp120. Variable

loops 4 and 5 are also disordered in most crystal structures, which seems reason-

able, since they are, first, highly variable in sequence and, second, located in the

outer domain and thus exposed to immune system attacks. The first insights into

trimeric gp120 were given by Liu et al. [99]. They solved the trimeric structure

using cryo-electron tomography in unliganded, in complex with the antibody b12

and in complex with CD4 and the 17b antibody.

We superimposed three copies of gp120 structure including V3 and docked CD4

(Protein Data Bank (PDB) [8] ID: 2B4C) onto the gp120 core structures embed-

ded in the trimeric docked coordinates provided by Tran et al. [150] (see Figure

3.6).

Since then, a number of low-resolution electron-microscopy structures of the Env

complex were solved [69, 100, 150, 161, 169]. Among these publications, several

identified interactions between V1V2 and V3, describing them as a mechanism

of HIV to shield the co-receptor binding site (located at the stem of V3) from

antibodies [64, 69, 100, 132]. However, there is still controversy whether it is an

intra- or inter-gp120 interaction [100, 132].

Even a year before Kwong et al. [89] solved the structure of gp120, multiple

groups obtained a six-helix bundle crystal structure of gp41 [17, 145, 160, 163].

Unfortunately, all the reported and following crystal- and Nuclear Magnetic Res-

onance (NMR)-structures are in the post-fusion conformation. High-resolution

structures of gp41 in a critical pre-fusion state, which would give conclusions and

hints about overall Env structure, are still unavailable. Recently, Tran et al. [150]

determined a cryo-electron microscopy structure of trimeric Env including a gp41

intermediate, providing new insights into conformational changes during HIV en-

try.

The remaining host cell receptors involved in HIV entry, host cell CCR5 and

CXCR4, are unfortunately insu�ciently described, at least the complete recep-

tor structure including the tyrosine-sulphated N-terminal regions, crucial for the

interaction with gp120. Nevertheless, recent studies reported detailed interaction

sites between gp120 and host cell receptors. As already indicated above, Huang
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Figure 3.6: Env spike - Structure of Env heterotrimer in a CD4 bound confor-

mation in side and top view. Two protein complexes of the heterotrimer are shown

in mesh and one in cartoon illustration. gp120 is coloured in grey with structure

elements bridging sheet, inner domain and V3 in blue, green and orange, CD4 in

yellow (ribbon illustration) and N-terminal gp41 in cyan. PDB structures 2B4C

[71] were superimposed on the trimeric docked coordinates provided by Tran et al.

[150].
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Figure 3.7: Structure of HIV-1 gp120 bound to CD4 and N-terminal

CCR5 - HIV-1 gp120 (grey) with V3 (orange), bridging sheet (blue) and N-

terminal CCR5 fragment (purple) with sulphated tyrosines as red sticks are shown

in cartoon illustration. Docked coordinates provided by Huang et al. [70].

et al. [70] presented a gp120 crystal structure bound to CD4 and a tyrosine-

sulphated antibody, which mimics the co-recepor binding. Furthermore, they

solved a N-terminal CCR5 fragment (residues 7-15) by NMR and docked it to

gp120 crystal structure (see Figure 3.7). Schnur et al. [137] carried out the same

experiment by solving a NMR structure of a N-terminal CCR5 peptide. However,

their CCR5 fragment was 26 amino acids long and had an oppositely directed ori-

entation after docking in contrast to [70], suggesting other residues as interaction

pairs (see Figure 3.8).

3.1.2 Co-evolution

A protein fold can remain almost unchanged during the course of evolution

of homologous proteins, while the corresponding amino acid sequences mutate

more frequently. Positions that mutate little or are conserved imply thereby func-

52



3.1 Introduction

Figure 3.8: Structure of HIV-1 gp120 bound to CD4 and N-terminal

CCR5 - HIV-1 gp120 (grey) with V3 (orange), bridging sheet (blue) and N-

terminal CCR5 fragment (purple) with sulphated tyrosines as red sticks are shown

in cartoon illustration. Docked coordinates provided by Schnur et al. [137].

tional and/or structural importance. However, non-conserved sequence positions

may also be important with compensatory mutations in other variable positions

[52, 175].

Due to the fact that co-evolution often takes place between residues that are

proximal in the folded structure [52, 126, 175], identification of them would prove

useful for ab initio structure, interdomain or dynamic prediction of proteins and

protein domains [47, 57, 154, 155].

The first step for the identification is the arrangement of the sequences of inter-

est in a Multiple Sequence Alignment (MSA), which helps identifying conserved

and co-evolving positions. In Figure 3.9, a cut-out of an example MSA is shown,

that includes conserved and co-evolving positions. The first column of the MSA

consists exclusively of the nonpolar amino acid proline (P) and thus represents

a conserved position. Columns seven and twelve illustrate an example for co-

evolving positions. The negatively charged aspartic acid (D) (sequences 1-3) is
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3.1 Introduction Alignment: 2_coevolution/figures/alignment.fa
Seaview [blocks=10 fontsize=10 A4] on Sat Aug 10 02:17:42 2013

   1
1  P--QP-D-TP -R-I-
2  PT-QP-D-TP -R-I-
3  P--QP-D-TP -R-I-
4  P--EN-R-LT -D-IE
5  P--NP-R-TP -D-I-

Figure 3.9: MSA - An cut-out of an example MSA illustrating conserved (column

1 and 14) and co-evolving positions (columns 7 and 12).

mutated in column seven into the positively charged arginine (R) (sequences 4-5).

Consequently, the positively charged arginine (R) (seqeunces 1-3) is mutated in

column twelve into the negatively charged aspartic acid (D) (sequences 4-5). The

compensatory mutations are in this case a clear indicator for spatial proximity

and ionic interaction.

Many di↵erent approaches have been applied to identify co-evolving positions

including methods to detect the di↵erences between observed versus expected

frequencies of residue pairs (OMES) [78, 92], the McLachlan Based Substitution

correlation (McBASC) [57, 120] and Mutual Information (MI) based methods

[22, 30, 41, 86, 109, 158, 165]. However, the prediction quality su↵ers from ran-

dom noise and phylogenetic relationship of the sequences within a MSA that

induce additional indirect couplings [41, 159]. Recently, Direct Information (DI),

based on Direct Coupling Analysis (DCA), which disentangles direct from indirect

coupling, has been developed by Weigt et al. [159]. DI showed high accuracy in

predicting real residue contacts on a variety of protein families [115] and has also

been applied to protein ab initio folding with di↵erent fold classes [68, 108, 144].

We will focus in the following on the methods MI and DI and apply them together

with a new improved sequence re-weighting strategy on the protein dataset pro-

vided by Morcos et al. [115]. In addition, we apply DI with the best performing

re-weighting scheme to Env sequences in order to identify interacting residues

within the Env trimer.
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3.2 Materials and Methods

3.2.1 Materials

Bacterial and eukaryote protein sequences For comparing co-evolution

methods, bacterial and eukaryote protein sequence alignments with minimum

1000 sequences were extracted from the Pfam database [129]. We retrieved MSAs

of all protein families introduced in Morcos et al. [115], except those that have

been withdrawn meanwhile, families without known atomic structure or families

having too large MSAs for our computational resources. Pfam alignments are

generated by applying Hidden Markov models, which can introduce insert states

during the alignment of new sequences (lowercase letters). Insertions into the

alignment are generally more typical in loop regions.

The MSAs were preprocessed in the same manner as in Morcos et al. [115], where,

first, all lowercase amino acids are converted to gaps. Second, all positions that

contain non-standard amino acids are also replaced by gaps.

Replacement of all lowercase amino acids by a gap means consequently a non-

consideration of loop regions in the co-evolution prediction. Due to this fact,

we additionally performed co-evolution prediction including all lowercase amino

acids to obtain information about loop regions too.

Furthermore, we retrieved for each family all atomic structures listed on Pfam

from the PDB [8]. Table A.3 lists all used protein families.

HIV-1 Env sequences A MSA containing pre-aligned HIV-1 Env sequences

was taken from Los Alamos HIV Sequence Database1. Apart from the fact that

only one sequence per patient is used, we did not consider any other constraints,

e.g. HIV subtype or co-receptor usage. Sequences with non-standard amino acid

have been deleted resulting in 4844 aligned HIV-1 Env sequences.

1
http://www.hiv.lanl.gov/
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3.2.2 Mutual information

MI is an information theoretical quantity that measures the mutual dependence

of two random variables [3, 30]. It is based on Shannon’s entropy [140], a measure

of uncertainty in a random variable X, which is given by:

H(X) = �
X

x2X

p(x) log p(x). (3.1)

The joint entropy is an extension of the entropy to two random variables X and

Y with ordered pairs p(x, y). It is defined as follows:

H(X, Y ) = �
X

x2X

X

y2Y

p(x, y) log p(x, y). (3.2)

Conditional entropy is in turn given by the di↵erence between the joint and the

Shannon entropy:

H(Y |X) =
X

x2X

X

y2Y

p(x, y) log
p(x)

p(x, y)

= �
X

x2X

X

y2Y

p(x, y) log p(x, y) +
X

x2X

X

y2Y

p(x, y) log p(x)

= H(X, Y ) +
X

x2X

p(x) log p(x)

= H(X, Y )�H(X).

(3.3)

MI reduces the uncertainty of random variable X due to the knowledge of Y (and

vice versa) and we may therefore specify

MI(X, Y ) = H(X)�H(X|Y )

= H(Y )�H(Y |X)

= H(X) +H(Y )�H(X, Y ).

(3.4)

Reorganisation of Equation 3.3 to

H(X) = H(X, Y )�H(Y |X) (3.5)

and insertion of 3.5 in Equation 3.4 gives

MI(X, Y ) = H(X, Y )�H(Y |X) +H(X, Y )�H(X|Y )�H(X, Y )

= H(X, Y )�H(X|Y )�H(Y |X).
(3.6)
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Introduction of joint and conditional entropy definitions (see Equations 3.2 and

3.3) into Equation 3.6 gives the widely used version of MI [30, 51, 115, 159]:

MI(X, Y ) =�
X

x2X

X

y2Y

p(x, y) log p(x, y)

+
X

x2X

X

y2Y

p(x, y) log p(x, y)�
X

x2X

X

y2Y

p(x, y) log p(y)

+
X

x2X

X

y2Y

p(x, y) log p(x, y)�
X

x2X

X

y2Y

p(x, y) log p(x)

=
X

x2X

X

y2Y

p(x, y) log p(x, y)�
X

x2X

X

y2Y

p(x, y) log p(y)

�

X

x2X

X

y2Y

p(x, y) log p(x)

=
X

x2X

X

y2Y

p(x, y) log
p(x, y)

p(x)p(y)
.

(3.7)

MI can also be applied to MSAs withM as the number of protein sequences (num-

ber of MSA rows) and N denoting the protein length (number of MSA columns),

by considering the amino acid frequencies f(A) within alignment columns as ob-

servations of an alphabet A instead of the probabilities p(x) of a random variable

X. The entropy is thus obtained by using the single-site frequencies f
i

(A) of MSA

columns i,

f
i

(A) =
1

M

M

X

a=1

�
A,A

a
i

(3.8)

with 1  i  N , 1  A  q (q = 21 as the alphabet size, 20 standard amino-acids

and gap) and � denoting the Kronecker symbol equaling one if the two indices

(amino acids) match, and zero otherwise. Accordingly, the joint entropy is defined

as pair-site frequencies f
ij

(A,B) of MSA columns i and j,

f
ij

(A,B) =
1

M

M

X

a=1

�
A,A

a
i
�
B,A

a
j

(3.9)

with 1  i, j  N , 1  A,B  q. Consequently, MI Equation 3.7 can be adjusted

to

MI
i,j

=
X

A,B

f
ij

(A,B) ln
f
ij

(A,B)

f
i

(A)f
j

(B)
, (3.10)
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where MI equals zero if MSA columns i and j are uncorrelated and is positive

otherwise.

3.2.3 Direct information

A major drawback of covariance analysis methods, like the introduced MI, is

that they do not distinguish between correlations arising from direct or indirect

interactions that result from substitution patterns of interacting residues. For in-

stance, if residue i is coupled directly with residue j and j with k, then residue i

and k are correlated indirectly (see Figure 3.10).

The indirect interaction may even be increased, if there are multiple weak cou-

Figure 3.10: Direct and indirect interactions. - Direct interaction, in terms

of spatial proximity, of residue i with residue j and j with k illustrated by green

dashes. Red dash represents indirect interaction of residue i with residue k.

plings linking i and k, leading to a strong correlation without any direct inter-

action. Recently, Weigt et al. [159] introduced DCA, a method that disentangles

direct from indirect e↵ects. The methods and information presented in the follow-

ing will however be based on the computationally more e�cient implementation

of DCA introduced by Morcos et al. [115].

In contrast to the local MI score, because it only considers one residue pair at

a time, DCA infers a global statistical model P (A1, ..., AN

) for all amino acid

sequences of the MSA. The model has to be consistent with the empirical data
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present in the alignment, i.e. to generate the empirical single- and two-site fre-

quency counts:

P
i

(A
i

) =
X

{Ak|k 6=i}

P (A1, ..., AN

) = f
i

(A
i

)

P
ij

(A
i

, A
j

) =
X

{Ak|k 6=i,j}

P (A1, ..., AN

) = f
ij

(A
i

, A
j

).
(3.11)

The aim is to determine the most general model, i.e. least constrained model

P (A1, ..., AN

) and the estimation of the direct couplings e
ij

(A,B).

A detailed description of the derivation and estimation is given in the supplemen-

tary of [115].

Given now the pair couplings e
ij

(A,B), we can estimate the quantity DI intro-

duced by Weigt et al. [159]. DI measures the MI due to the direct coupling by

isolating position pair i, j and introduction of a two-side model

P
(dir)
ij

(A,B) =
1

Z
ij

exp
n

e
ij

(A,B) + h̃
i

(A) + h̃
j

(B)
o

. (3.12)

The new fields h̃
i/j

are determined by introducing the single-site frequencies as

marginal distributions,

f
i

(A) =
q

X

B=1

P
(dir)
ij

(A,B)

f
i

(B) =
q

X

A=1

P
(dir)
ij

(A,B),

(3.13)

and Z
ij

follows by normalisation. Consequently, DI is MI associated to P
(dir)
ij

:

DI
ij

=
q

X

A,B=1

P
(dir)
ij

(A,B) ln
P

(dir)
ij

(A,B)

f
i

(A)f
j

(B)
. (3.14)

3.2.4 Re-weighting

Re-weighting Biological sequences within a MSA show strong sampling bias due

to phylogenetic relationships, especially sequences representing a protein family

or sequences originating from only one species. Therefore, Procaccini et al. [128]
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introduced a re-weighting scheme that corrects for this sampling bias by weighting

each sequence with a factor 1
m

a , where ma is the number of sequences with a

sequence identity greater than a pre-defined identity threshold x

ma =
M

X

b=1

c, c =

(

1, seqid(Aa, Ab) � xN

0
(3.15)

with 0  x  1. Sequences that have no similar sequences within the given thresh-

old have weight one and sequences with similar sequences are down-weighted with
1
m

a . The single- and pair-site frequencies are thus re-defined [115, 159],

f
i

(A) =
1

�+M
eff
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q
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with pseudo-count �, to estimate probabilities from counts in biological sequence

analysis [42] and M
eff

=
P

M

a=1
1
m

a estimating the e↵ective number of indepen-

dent sequences.

Improved re-weighting The above introduced re-weighting is based on the se-

quence identity of two sequences extracted from a MSA (see Figure 3.9). The iden-

tity (fraction of identical amino acids) is determined from sequences including all

gaps (see Figure 3.11), which are treated like regular amino acids (implemented in

the code introduced in Morcos et al. [115] and available at http://evfold.org).

We suspected on the accurateness of this type of sequence identity calculation

and extracted sequences from a MSA excluding position where both sequences

have a gap (see Figure 3.12), since this is more similar to a pairwise sequence

identity calculation. In the following, we will refer to MI and DI using the first

option as MIMSA and DIMSA and MI and DI applying the second option as

MIPW and DIPW.
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3.3 ResultsAlignment: 2_coevolution/figures/alignment.fa
Seaview [blocks=10 fontsize=10 A4] on Sat Aug 10 02:17:42 2013

   1
1  P--QP-D-TP -R-I-
2  PT-QP-D-TP -R-I-
3  P--QP-D-TP -R-I-
4  P--EN-R-LT -D-IE
5  P--NP-R-TP -D-I-

Figure 3.11: Re-weightingMSA

- Re-weighting option considering

all positions (including gaps).

Alignment: alignment_DIpw.fa
Seaview [blocks=10 fontsize=10 A4] on Sun Aug 11 16:29:52 2013

   1
1  P-QPDTPRI
2  PTQPDTPRI

Figure 3.12: Re-weightingPW

- Re-weighting option excluding

gapped positions (both sequences).

3.2.5 Homology modelling

Homology modelling, also referred to as comparative or knowledge-based mod-

elling, is a useful technique to construct an atomic-resolution model of a pro-

tein with unknown structure (target) from its amino acid sequence and one or

more experimentally derived 3D structures of homologous proteins (template(s))

[10, 133]. It makes use of the fact that structures of homologous proteins are

more conserved than their corresponding sequences [23]. Figure 3.13 illustrates

the main steps during the modelling of a target protein. The first step is the

identification of one or more template structures of homologous proteins with a

sequence identity of at least 25% - 30% to the target sequence. The second and

most critical step is the alignment of the target sequence with the template struc-

tures. Subsequent to the alignment is the building of the target model by using

the information given in the template structures. The last step is the evaluation

of the produced model. In case of insu�cient quality of the model, the modelling

should be repeated from step two on. More detailed information about homology

modelling steps, techniques and programs can be found in literature and in the

web, e.g. in chapter 13 of [183].

We applied the homology modelling program MODELLER [133] to generate mod-

els of gp120 including V1V2, models of gp41 and models of the gp160.

3.3 Results

We shall first define the requirements necessary for a correct prediction (contact

or True Positive (TP)). Residue pairs that are predicted by the co-evolution

method to be in contact, should have a minimum sequence separation of five

and a minimum atomic distance of less than eight Ångström (Å) in one of the
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Figure 3.13: Homology modelling steps - A flow diagram illustrating the steps

applied in modelling a target sequence based on a template structure. Figure taken

from [45].

protein’s structures in order to be a TP (as applied in Morcos et al. [115]). These

requirements have then been used to test the prediction performance of DI and

MI, applying both re-weighting strategies.

3.3.1 Contact prediction in bacterial and eukaryote pro-

tein families

Contact prediction excluding lowercase amino acids DIPW and DIMSA

values have been computed for 124 bacterial protein families, preprocessed in the

same manner as in Morcos et al. [115]. The mean TP rate for all families is shown

62



3.3 Results

as a function of the number of predicted residue pairs in Figure 3.14.

The DI predictions are thereby carried out using five di↵erent sequence iden-
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Figure 3.14: DIPW vs. DIMSA applied to bacterial protein families - Mean

TP rate for 124 bacterial protein families as a function of the number of predicted

pairs. The DI predictions were made using five di↵erent sequence identity thresholds

x = {0.5, 0.6, 0.7, 0.8, 0.9} for both, DIPW and DIMSA. Black and red solid lines

represent the sequence identity thresholds that perform best (DIPW: x = 0.6,

DIMSA: x = 0.9). The other thresholds are shown as dashed lines. The dotted line

represents the performance of DIMSA using threshold x = 0.8, applied in Morcos

et al. [115].

tity thresholds (x = {0.5, 0.6, 0.7, 0.8, 0.9}). The results of the best performing

thresholds1 are shown as solid black and red lines, for DIPW and DIMSA respec-

tively. Dashed lines represent the remaining identity thresholds, except one dotted

red line, which displays the performance of DIMSA using the identity threshold

1We determined for each curve the sum of its mean TP rates in order to evaluate the

performance between the sequence identity thresholds.
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x = 0.8 (sequence identity threshold applied in Morcos et al. [115]). The solid

lines, representing the best performing thresholds (DIPW: x = 0.6 and DIMSA:

x = 0.9), show a nearly identical progression for the first 200 predicted pairs,

while the dotted line is surprisingly the worst preforming one. Strikingly, DIPW

is less dependent on the choice of the sequence identity threshold than DIMSA.

This observation is even more pronounced in the eukaryote dataset shown in
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Figure 3.15: DIPW vs. DIMSA applied to eukaryote protein families -

Mean TP rate for 22 eukaryote protein families as a function of the number of

predicted pairs. The DI predictions were made using five di↵erent sequence identity

thresholds x = {0.5, 0.6, 0.7, 0.8, 0.9} for both, DIPW and DIMSA. Black and red

solid lines represent the sequence identity thresholds that perform best (DIPW:

x = 0.6, DIMSA: x = 0.9). The other thresholds are shown as dashed lines. The

dotted line represents the performance of DIMSA using threshold x = 0.8, applied

in Morcos et al. [115].

Figure 3.15, where all DIMSA curves, except the curve for the best performing

threshold x = 0.9, show a lower mean TP rate progression compared to theDIPW

64



3.3 Results

ones. The best performing threshold for DIPW is in this dataset di↵erent from

the one in the bacterial one (x = 0.8), which reinforces the aforementioned ob-

servation that DIPW is less dependent on the choice of x.

Furthermore, we compared the performance of DI and MI applied on the bacte-
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Figure 3.16: Averaged ROC curves for DI and MI prediction methods -

The plot shows true positive (y-axis) and false positive (x-axis) rates of DI and MI

with no re-weighting and DI and MI applying both re-weighting strategies, while

only the best performing sequence thresholds, according to the AUCs, are shown.

Strikingly, DI and DIMSA have a nearly identical performance (magenta coloured

line is under the red line), implicating that this type of re-weighting does not supply

any prediction improvement.

rial dataset, both with and without the re-weighting procedure. Figure 3.16 shows

the comparison carried out by averaged Receiver Operating Characteristic (ROC)

curves1 (averaged over 124 protein families).

1ROC curves plot the true positive rate as a function of the false positive rate for all

predicted pairs and for cuto↵s ranging from zero to one.
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DIPW (black line) is the best performing prediction method with a mean Area

Table 3.1: Mean AUC values (bacterial protein families)

Method Mean Sd

DI 0.7056 0.0614

DIPW 0.7295 0.0527

DIMSA 0.7065 0.0644

MI 0.6191 0.0693

MIPW 0.6983 0.0718

MIMSA 0.6379 0.0621

Mean AUC values (with standard deviation) of DI and MI applying both re-

weigting strategies. DIPW outperforms all other methods significantly.

Under the Curve (AUC)1 of 0.7295 of maximal one and a standard deviation of

0.0527 (see Table 3.1). Moreover, it is significantly2 better than DI and DIMSA,

which have an almost identical performance with mean AUCs of 0.7056 and 0.7065

respectively. The averaged ROC curves are so similar that the magenta coloured

one, representing DI, is hidden behind the red coloured DIMSA curve. Aston-

ishingly, MIMSA performs just as well as DI and DIMSA with a mean AUC of

0.6983. In a nutshell, MI benefits from both re-weighting strategies, while DI show

only an increase when applied with the improved re-weighting strategy.

In summary, the re-weighting has been applied in order to correct for sampling

bias by down-weighting the frequency counts depending on the number of sim-

ilar sequences in the MSAs. The performance of DI is thereby enhanced by the

presence of mutually diverse sequences, which tend to introduce many gaps into

the MSA. Since DIMSA considers also gapped positions for the sequence identity

calculation, sequences seem to be more similar than they are in truth, which has

1A common application of ROC curves is the integration of the area under the ROC curve,

the AUC [49], which is mainly used as measure for comparison of prediction performances. AUC

values vary between zero and one, while a random classification results in 0.5, often illustrated

as dashed bisecting line in ROC plots.
2T-test: p-value=0.0015, with given normal distribution and homogeneity of variance.
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the e↵ect of suppressing the information contained by down-weighting the counts.

This e↵ect is even more boosted by applying the preprocessing as introduced in

Morcos et al. [115], which replaces lowercase amino acids by gaps. This leads

to the fact that the choice of the sequence identity threshold is crucial for the

performance of the method. DIPW is in contrast to DIMSA independent of the

choice of the threshold, since it determines the actual identity of the sequences

in the MSAs.

Contact prediction including lowercase amino acids We will show in the

following the performances of DIPW and DIMSA applied on protein families

MSAs including lowercase amino acids.

The mean TP rate progressions for theses cases are shown in Figures 3.17 (bacte-

rial families) and 3.18 (eukaryote families) with DI predictions carried out using

five di↵erent sequence identity thresholds (x = {0.5, 0.6, 0.7, 0.8, 0.9}).

Both the analysis of the bacterial and the eukaryote protein families yielded sim-

ilar results compared to the previous subsection. We may therefore sum up as

follows:

• The best performing DIPW and DIMSA predictions (top 200) have a nearly

identical progression of the mean TP curves.

(The sequence identity thresholds are not known a priori.)

• DIPW is less dependent on the sequence identity threshold.

• DIMSA using sequence identity threshold x = 0.8 (applied in Morcos et al.

[115]) performs by far worst.

However, we must mention that the maximum TP rate for both the bacterial

and the eukaryote analysis decreases compared to the previous predictions. The

reasons lie above all in the inclusion of lowercase amino acids into the MSAs. The

additional information is mainly from loop regions, which are typically highly

variable in sequence and thus positioned in the more unaligned regions in the

MSA. Furthermore, they are very often located at the solvent-accessible surface

of protein folds and thus conformationally very flexible. Accordingly, either the

contact predictions may be wrong per se, due to sparsely amino acid information
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Figure 3.17: DIPW vs. DIMSA applied to bacterial protein families includ-

ing lowercase amino acids - Mean TP rate (five sequence identity thresholds

x = {0.5, 0.6, 0.7, 0.8, 0.9}) for 124 bacterial protein families, as a function of the

number of predicted pairs. Black and red solid lines represent the sequence iden-

tity thresholds that perform best (DIPW: x = 0.6, DIMSA: x = 0.9). The other

thresholds are shown as dashed lines. The dotted line represents the performance

of DIMSA using threshold x = 0.8, applied in Morcos et al. [115].

in these regions of MSAs, or the validation of the true predictions is wrong due

to insu�cient information about possible protein fold conformations in the loop

regions.

Finally, we want to demonstrate the impact of the two re-weighting strategies

with the help of the WD40 repeat domain (Pfam ID: PF00400) as an example.

WD40 is a structural motif found in all eukaryotes that carries out functions like

signal transduction and transcription regulation to cell cycle control, autophagy

and apoptosis [97, 142]. A property of the WD40 family are the diverse sequences

resulting in a low average sequence identity of 23% leading to the inclusion of
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Figure 3.18: DIPW vs. DIMSA applied to eukaryote protein families in-

cluding lowercase amino acids - Mean TP rate (five sequence identity thresholds

x = {0.5, 0.6, 0.7, 0.8, 0.9}) for 22 eukaryote protein families, as a function of the

number of predicted pairs. Black and red solid lines represent the sequence iden-

tity thresholds that perform best (DIPW: x = 0.7, DIMSA: x = 0.9). The other

thresholds are shown as dashed lines. The dotted line represents the performance

of DIMSA using threshold x = 0.8, applied in Morcos et al. [115].

many gaps in the protein families MSA. The residue pairs with the 20 highest

DI values and a minimum sequence separation of five are mapped and connected

by coloured lines on the WD40 crystal structure (PDB ID: 1YFQ) (see Figure

3.19). Residue pairs with a minimum atomic distance of less than eight Å are TP

and shown in green solid lines, whereas dashed orange lines denote TP found in

another WD40 protein structure. Red lines highlight residue pairs not in contact.

All pairs predicted by DIPW, shown in Figure 3.19 (A), are in contact, indicated

by green or orange colouring. In contrast, several of the pairs predicted by DIMSA

are not in contact illustrated by red lines in Figure 3.19 (B). These results clearly
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Figure 3.19: DIPW vs. DIMSA applied to the WD40 repeat family - Top

20 predicted contacts of (A) DIPW and (B) DIMSA applied to the WD40 repeat

family (Pfam ID: PF00400) and mapped on the crystal structure (PDB ID: 1YFQ).

Green lines connect residues, crystallised in this structure, with a minimum atomic

distance less than eight Å, orange lines represent contacts found in another WD40

repeat domain structure and red lines pairs not in contact.

show that DIPW outperforms DIMSA on this protein family.

3.3.2 Contact prediction in HIV-1 Env

In the following, we will apply DIPW to analyse co-evolution within Env. We

have previously noted that the choice of the sequence identity threshold has not

a major impact with respect to the performance. Nevertheless, we have considered

examining the sequence identity distribution within our 4844 HIV-1 sequences,

since they originate only from one organism. As expected, the sequences are very

similar (see Figure 3.20) with seven out of ten having a sequence identity between

70% and 80%, in contrast to the above applied bacterial and eukaryote datasets,

where sequences are more di↵erent to each other. Figure A.4 and A.5 show box-

plots of the averaged (over 124 bacterial and 22 eukaryote) sequence identities.

It is readily apparent that the sequence identity peaks are between 0.1 and 0.3.

70



3.3 Results

The choice of a small sequence threshold (e.g. x = 0.5) would in this case cause

the down-weighting of all sequences, whereas a big threshold (e.g. x > 0.9) re-

sults in not weighting any sequence. We choose the threshold x = 0.8, since it

represents a good balance between no weighting and weighting of all sequences.

Marks et al. [108] concluded from their analysis that a minimum of 0.5 to 0.75
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Figure 3.20: Histogram of Env sequence identities - Relative frequencies of

HIV-1 Env sequence identities.

predicted constraints per residue is needed to make a reasonable 3D structure

prediction. However, they mentioned that this number can vary depending on

factors like type of fold and False Positive (FP) rate. We decided to consider

a rather conservative number of prediction pairs when analysing Env sequences

namely 200, which is around 0.2 of the number of residues in the reference se-

quence.

Contact prediction in gp120 In Figure 3.21 we utilise the gp120 crystal struc-
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Figure 3.21: DIPW predictions in gp120 - Top 200 predictions for HIV-1 Env.

Only contact predictions of crystallised residues are indicated by red and green

lines on the crystal structure solved by Huang et al. [70] (PDB ID: 2QAD).

ture, solved by Huang et al. [70], in order to map the contacts predicted byDIPW.

Since there is no complete structure of Env (see introduction), we highlight only

contacts (as lines), whose residues are crystallised (74 out of 200 residue pairs).

Almost 75% of the predictions are TPs, represented by green lines. We even get

close to 90%, if we soften our distance threshold from eight Å to ten Å. This

may make sense in some cases, since errors, e.g. originating from wrong place-

ment of side chains, may occur during X-ray structure analysis or the protein

of interest is very flexible and changes its conformation during lifetime, e.g. Env

during host cell entry. Nevertheless, there are some red coloured medium length
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dashes (length between 10 Å - 20 Å) such as those slightly above and to the right

of the bridging sheet (blue). These three predicted pairs surround the so called

Phe43 cavity, which is essential for CD4 binding and may thus be functionally

important, for instance to preserve the electrostatics in this region or the cavity

per se. Furthermore, there are two medium length dashes ranging from the bridg-

ing sheet to the inner domain and two far-reaching dashes. All four predictions

are potential TPs, for instance in the unliganded conformation of the Env spike,

where it is first, assumed that V1V2 and V3 are in close proximity to shield the

co-receptor binding site and second, the bridging sheet is still unformed and thus

spatially closer to the inner domain.

Figure 3.22: DIPW predictions

located at the V3 stem

Figure 3.23: DIPW predictions

located at the V3 crown

Contact prediction in V3 Figure 3.22 depicts potential interactions of residues

located at the stem of V3. Surprisingly, all illustrated residues, except residue

Asn 301, are substantial interaction partners of one of the host cells sulphated ty-

rosines, located at the N-terminal end of one of the co-receptors CCR5 or CXCR4.

Position 301 (residue Asn 301) is also an important location, since it is a poten-

tial glycosylation site according to the Los Alamos HIV Sequence Database1.

This region is a perfect example for a functionally motivated direct coupling as

the participating residues need to be in close proximity to fulfil the binding be-

tween gp120 and the host cell co-receptor.

1
http://www.hiv.lanl.gov/
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Figure 3.23 also shows putative interaction sites between residues within V3, but

located more closer to the crown. The crown of V3 is next to the above indicated

stem the second essential region responsible for co-receptor binding. It interacts

with residues located in the extracellular loops of CCR5 or CXCR4, most likely

with residues in the extracellular loop 2 [27, 121, 125, 148]. Moreover, the crown

of V3 is supposed to be the one of the main determinants of co-receptor usage

[27]. These facts suggest the presence of direct compensatory mutations within

this region in order to conserve functional and structural features.

Furthermore, in Figure 3.24 we illustrate potential interactions between residues

Figure 3.24: Potential interactions between V1V2 and V3 - Structure of

gp120 [70] (PDB ID: 2QAD) is shown in cartoon illustration with V3 coloured

in orange and V1V2 depicted as dashed line, since it is not crystallised. DIPW

prediction pairs are shown as cyan and green spheres (V1V2 and V3 respectively)

and connected by bars.

located in V1V2 and V3. Due to the fact that there is no atomic structure includ-

ing V1V2 available, we depicted V1V2 as dashed lines. These contact predictions

support the above mentioned presumptions that V1V2 and V3 interact with

each other in order to shield the co-receptor binding site. Nevertheless, from our

DIPW analysis we cannot distinguish between a monomeric (intra-gp120) [100]
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or a neighbouring interaction (inter-gp120) [132].

Moreover, DIPW predicted V1V2 - V3 interactions helped interpreting signature

patterns that distinguishes between Chinese and Non-Chinese HIV-1 genomes

[156, 157].

Contact prediction in V1V2 Due to absence of an atomic structure of gp120

including V1V2 domain, we cannot evaluate the performance of intra-V1V2 in-

teractions predicted by DIPW, which are among the top-ranked ones, as can be

seen in Table A.5. Nonetheless, the predictions give hints about the conformation

of the V1V2 domain and may be applied in structure prediction methods. We

will utilise the predicted residue pairs to generate a homology model of gp120

including V1V2 in the next subsection.

Contact prediction between gp120 and gp41 13 out of the top 200 pre-

dicted DIPW pairs are potential interactions between the non-covalently bound

proteins gp120 and gp41 (shown in Table 3.2).

We have labelled gp120 positions that have been annotated in literature as gp41

binding [122] with a † and gp120 positions close (maximum sequence distance of

two) to annotated ones with a ⇤.

Gp120 inner domain one position 114 and signal peptide positions ten, 23, 24

and 25 have not been mentioned in literature previously and may thus be very

interesting for future structure prediction analysis of the complete Env trimer.

All potential gp41 binding positions are located either in the inner domain, N- or

C-terminal gp120 or in the signal peptide and thus face the inner site of the Env

trimer. Eight of the 13 predicted gp41 partners are mapped on the gp120 crystal

structure solved by Pancera et al. [122] (PDB ID: 3JWD) (shown in Figure 3.25).

These findings seem reasonable, since gp41 is located at the inner side of the

glycoprotein complex (see Figure 3.6).

Contact prediction in gp41 Table A.6 lists 59 (out of the top 200) puta-

tive intra-gp41 interactions predicted by DIPW. An evaluation of the predictions

is extremely di�cult due to the insu�cient structural data for gp41. In fact, the

first obstacle is that only a part of gp41 (residues 531-581 and 624-681) is solved
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3.3 Results

Rank i (HXB2) i (domain) j (HXB2) j (domain) DIPW

2 502⇤ Ct gp120 607 gp41 0.24

73 500† Ct gp120 619 gp41 0.07

142 114 id1 553 gp41 0.05

149 46⇤ Nt gp120 632 gp41 0.05

152 25 sp 722 gp41 0.05

153 24 sp 722 gp41 0.05

158 10 sp 809 gp41 0.05

167 244⇤ id2 629 gp41 0.05

177 236⇤ id2 792 gp41 0.05

182 499† Ct gp120 605 gp41 0.05

183 492⇤ id3 612 gp41 0.05

185 23 sp 853 gp41 0.05

193 92† id1 633 gp41 0.05

Table 3.2: Potential interactions between the non-covalently bound proteins gp120

and gp41. Positions labelled with a † are annotated as gp41 binding in Pancera et al.

[122]. gp120 positions with a ⇤ are close to annotated ones (a maximum sequence

distance of two). The domain definition are taken from Table S3 in Kwon et al. [87]

and are as follows: Nt gp120 - N-terminal gp120, Ct gp120 - C-terminal gp120, sp

- signal peptide, id1 - inner domain 1, id2 - inner domain 2 and id3 - inner domain

3.

as crystal or NMR structure (e.g. PDB ID: 2X7R) and only eight of the 59 pre-

dicted interactions are within the solved structural region. Second, all available

gp41 structures are exclusively in post-fusion state. However, DIPW contact pre-

dictions may be valid in other conformations, e.g. in the unliganded, CD4-bound

or co-receptor-bound conformation of the Env spike.

3.3.3 Homology modelling of Env

In the following, we will generate comparative models of gp120, gp41 and a com-

plex of both glycoproteins using the homology modelling program MODELLER.

For that purpose, we will utilise the previously introduced DIPW contact pre-

dictions as special distance restraints within the modelling process. The distance
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3.3 Results

Figure 3.25: Potential gp41 interaction partners - Predicted gp120 positions

(gp41 partners) are shown as spheres on the crystal structure solved by Pancera

et al. [122] (PDB ID: 3JWD). Signal peptide positions are not shown, since they

are unfortunately not crystallised. Inner domain, outer domain, bridging sheet, N-

terminal gp120 and C-terminal gp120 are shown in green, grey, blue, magenta and

yellow respectively.

constraint in MODELLER is harmonically restrained around a mean distance

with an additional standard deviation. Since we do not know a priori which

C
↵

-C
↵

distance is required, we examine the afore analysed bacterial and eukary-

ote dataset.

Figure 3.26 illustrates a histogram showing all C
↵

-C
↵

distances of the top 200

predicted pairs in each protein family. The distribution exhibits the highest peak

at 10.25 Å. Hence, we choose a mean distance of 10.25 Å. Moreover, we mirrored

the frequencies left of the peak, which seems to be normal distributed, in order

to approximate a normal distribution to obtain a standard deviation, which we

can apply in MODELLER. The approximated gaussian is shown as red line in

Figure 3.26 with a standard deviation of 2.92 Å.

Furthermore, we included additional information like disulphide bonds and sec-

77



3.3 Results

Histogram of Cα−Cα distances
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Figure 3.26: Histogram of C
↵

-C
↵

distances - Distances of the top 200 pre-

dicted pairs from all bacterial and eukaryote protein families.

ondary structure in the modelling process, obtained from Uniprot database1 [147].

In addition, we applied an extended optimization routine, MD level refinement,

with the parameter very slow. We repeated the optimisation ten times.

Homology modelling of gp120 Up to date, there is no complete experimen-

tal solved structure of gp120 available, especially V1V2 and the N- respectively

C-terminal parts are unavailable.

We identified and applied two template structures. First, the crystal structure

solved by Pancera et al. [122] (PDB ID: 3JWD), which includes the N- and

C-terminal regions of gp120, and second, the structure solved by Huang et al.

[70] (PDB ID: 2QAD), which includes V3. Furthermore, we added 107 distance

restraints to the modelling process, based on 107 intra-gp120 DIPW contact

1
http://www.uniprot.org/uniprot/P04578
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3.3 Results

Figure 3.27: Homology model of HIV-1 gp120 including V1V2 - Gp120 is

shown in cartoon illustration with V1V2 in red and green. V3 is coloured in orange

and the bridging sheet in blue. The top 200 DIPW contact predictions had been

included in the model calculation and cause amongst other things a relocation of

V3 close to the bridging sheet and V1V2.

predictions (out of the top 200). Figure 3.27 shows the resulting gp120 ho-

mology model including V1V2, which are coloured red and green respectively.

Interestingly, according to this model, V3 is folded towards the bridging sheet

(blue) and V1V2, which is supported by findings mentioned before in literature

[64, 69, 100, 107, 132]. The interactions are supposed to shield the co-receptor

binding site located at the stem of V3. V1V2 residues do not form any secondary

structure in this model, which could well correspond with the native state, as it

takes multiple conformations and locations during the host cell entry. The only

structures including V1V2 [98, 110] are solved with a non-HIV sca↵old and do

not provide possible intra gp120 interactions, as does our comparative model.

However, we must mention that the applied contact predictions may originate
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3.3 Results

from several conformations during the entry, whereas the model presented here

shows only one possible conformation.

Homology modelling of gp41 Due to the fact that all gp41 structures are

exclusively solved in post-fusion state, we need to be careful in selecting the tem-

plates. We are interested in a more native structure model by applying DIPW

contacts, which can originate from all conformations/states that gp41 adapts.

Figure 3.28 shows in (A) the gp41 X-ray structure solved by Weissenhorn et al.

Figure 3.28: Gp41 X-ray structure and homology model - (A) X-ray struc-

ture of gp41 (N-terminal part) solved by Weissenhorn et al. [160] (PDB ID: 1ENV).

(B) Homology model of N-terminal (residues 540-665) gp41 based on 1ENV tem-

plate structure and taken from SWISS-MODEL [79] (Repository entry: P04578)

[160] (PDB ID: 1ENV). It is readily apparent that the connection of the two long

helices, most probably a loop region, is not solved in the structure. The homol-

ogy model, illustrated in (B) and obtained from SWISS-MODEL [79] (Repository

80



3.3 Results

entry: P04578), predicts an ordered conformation composed of two helices and a

parallel beta sheet. It used the gp41 X-ray structure (PDB ID: 1ENV) as tem-

plate. However, Tran et al. [150] suggest that gp41 does not adopt the post-fusion

conformation of two parallel helices in a pre-fusion intermediate.

Therefore, we mainly depend the protein length on the findings presented in Ta-

ble 3.2.

If we exclude predicted contacts including the signal peptide (sp) and the con-

Figure 3.29: Homology model of HIV-1 gp41 - Gp41, residues 512-633 (HXB2

sequence), in cyan coloured cartoon illustration.

tact between the inner domain two (id2) and gp41 (Rank 177), all amino acids

have a sequence position  633. Hence, we generated a model ranging from gp41

N-terminus (HXB2 position 513) up to position 633. As templates, we chose on

the one hand the fusion peptide (HXB2 positions 513 - 535) structure solved by

Gordon et al. [61] (PDB ID: 1ERF) and on the other hand the N-terminal helix

(HXB2 positions 531 - 581) of the structure solved by Buzon et al. [16] (PDB ID:
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3.3 Results

2X7R). Subsequently, we extracted a subset of Table A.6 that contains predicted

interactions of positions  633 (Table A.7), in order to apply these interacting

positions as distance constraints in the modelling process. Furthermore, we ap-

plied additional information, a disulphide bridge between position 598 and 604

and secondary structure information, in the modelling process. The information

were derived from the Uniprot database1 [147]. The resulting homology model of

gp41 is shown in Figure 3.29. The fusion peptide (small helix on the left side) is

folded towards the N-terminal helix as indicated in Figure 4 of the publication by

Pancera et al. [122]. According to the gp41 homology model, the fusion peptide

folding exists only because of the presence of the interaction between position

518 and 553 (see Table A.7, Rank 93). The looped regions above the long helix

are disordered, since these regions are not covered by a template structure or by

additional secondary structure prediction.

Homology modelling of gp160 Until today, there is no single atomic struc-

ture of gp160 available. For the purpose of producing a comparative model, we

generate a template consisting of the above modelled gp120 and gp41 by super-

imposing both onto the cryo-electron microscopy trimeric Env structure solved

by Tran et al. [150] (see Figure 3.6). The gp160 comparative model structure

was then solved by adding distance restraints, extracted from Table 3.2, to the

modelling process. Figure 3.30 illustrates the gp160 model using the same color

code as in Figures 3.27 and 3.29. As already mentioned by Pancera et al. [122],

the gp120 termini and the 7-stranded �-sandwich, at the top of gp120, are in

close proximity to gp41 and seem to maintain gp120-gp41 interaction (see red

spheres in Figure 3.25). Furthermore, gp41 is located at the inner side of the Env

trimer and possibly interacts with inner domain residues too. We have to mention

nonetheless, that we only consider co-evolving positions as distance constraints

during gp160 modelling. Conserved residues in gp120 and gp41 may interact with

each other too. However, DIPW does not detect conserved interacting positions.

.
1
http://www.uniprot.org/uniprot/P04578
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3.4 Conclusion

Figure 3.30: Homology model of HIV-1 gp160 - Model has been generated by

applying inter gp120-gp41 DIPW contact predictions as distance restraints. Colour

scheme is according to the previous Figures 3.27 and 3.29.

3.4 Conclusion

We have studied the impact of di↵erent re-weighting strategies upon the perfor-

mance of DI and MI, applying the protein family test set introduced in Morcos

et al. [115]. In general, we conclude from our analysis that re-weighting has a

positive e↵ect with respect to the performance, when applied to both DI and MI.

Concerning DI, the new developed re-weighting strategy performs significantly

better in predicting real residue contacts than the published one. Furthermore,

DIPW is in contrast to DIMSA less dependent on the sequence similarity thresh-

old, which has to be chosen a priori.

In addition, we applied the superior methodDIPW in order to identify co-evolving

positions close in proximity in HIV-1 gp120 and gp41. Interestingly, the method
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3.4 Conclusion

predicted a lot of positions already indicated in literature. Nevertheless, due to

the lack of atomic structures of di↵erent conformations of gp120 and gp41 dur-

ing the host cell entry, we are not able to validate all predicted positions. These

predicted pairs can therefore be at worst FP, TP in other conformations or TP

in ligand-mediated conformations (e.g. CD4, co-receptor or glycan shield). How-

ever, the predicted pairs are worth an experimental validation, since they may

help understanding the molecular basis of the key proteins involved in HIV entry.

Beyond that, we appliedDIPW predicted pairs as distance constraints to generate

homology models of gp120, gp41 and gp160. We have thereby achieved reasonable

models, which provides an insight into the conformations of the involved glyco-

proteins. A further step would be the inclusion of additional methods in order

to validate the produced models and gain more native-like comparative models

(e.g. cryo-electron microscopy, Fluorescence Resonance Energy Transfer (FRET)

experiments or MD simulations).
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4 Summary and Outlook

”Prediction is very di�cult, especially if

it’s about the future.”

Niels Bohr

In this work, we implemented GA and SMS-EMOA codes in Python1, which are

capable of solving di↵erent kinds of MOOP. The codes are very flexible and adap-

tive to the particular needs of the optimisation problems of interest. We used the

SMS-EMOA program to test for optimally performing evolutionary parameters

in the MOOP protein design. In order to apply several large-scale analyses we

utilised simplified protein lattice models to search through sequence and struc-

ture space. The results provided new insights in evolutionary parameter selection,

especially when applying the hypervolume guided SMS-EMOA to design new pro-

tein sequences and structures fulfilling desired tasks. The choice of the right com-

bination of population sizes, mutation rates and crossover operators can save a

lot of computation time and yield more promising protein sequence and structure

candidates (pareto optimal individuals) at the same time. A further extension

of the carried out experiments could on the one hand include an even simpler

protein lattice model, for instance the HP model, to enumerate more evolution-

ary parameters, e.g. various crossover operators, population sizes and evaluation

steps. On the other hand one could use more complex and realistic protein lattice

models that include solvent-protein contacts. The lack of interaction with the sur-

rounding solvent resulted in our case in the introduction of unrealistic sequence

compositions, due to the fact that the applied energy function prefers contacts

between charged residues, e.g. some amino acid sequences are built up exclusively

1
http://www.python.org
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by charged residues. A combination of both, a simpler energy function (e.g. HP

or HPNX model) and the introduction of solvent interaction may lead to faster

and more realistic output.

Furthermore, we modified re-weighting strategies within co-evolution methods

DI and MI in order to identify co-evolving positions that are in spatial proximity.

The modification made it also possible to be independent of the sequence simi-

larity threshold, which has to be a priori provided for re-weighting. DI already

proved its usefulness in the identification of contact positions in several studies

[115] and was beyond that applied in structure ab initio folding [68, 108, 144].

The current advances in sequencing methods with a quickly growing number of

new sequences make DI even more a promising e↵ective method for co-evolution

analysis and structure prediction.

Moreover, we applied the improved DI in order to identify co-evolving contact

positions within HIV-1 Env protein complex, which have always been di�cult to

be solved structurally, due to the flexibility and sequence variability of its variable

loops. Our analyses confirms several experimental findings and theories, e.g. the

interactions of V1V2 and V3 or V3 and the bridging sheet, which are supposed

to be a defence mechanism of HIV in order to shield the co-receptor binding side

from immune attacks. Furthermore, we identified interactions between proteins

gp120 and gp41, which are also in good agreement with experimental findings, in

particular mutagenesis experiments.

In addition, we designed via the help of predicted contacts and cryo-EM den-

sity maps a new homology model of HIV-1 protein complex. Previous models,

especially gp41 models are only generated in the post-fusion state of HIV entry.

However, we performed the modelling process independent of gp41 structures

solved in this state. The proposed intra- and inter-domain interactions can be

subject to experimental studies in order to confirm and solve HIV bimolecular

structures.

Another possibility is the modelling of HIV in combination with one of the co-

receptors CXCR4 [167] or CCR5 [146]. The new model could then be further

tested by e.g. extensive MD simulations in order to gain knowledge of the bind-

ing during the host cell entry.
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Another interesting experiment would be the application of SMS-EMOA using

the identified evolutionary parameters in order to design peptides/proteins that

interact with HIV at critical locations, e.g. the CD4 or co-receptor binding sites.

With further development in technology, it may be possible in near future to per-

form computationally costly MD simulations of big protein complexes including

viral and host cell membranes in moderate time frames.
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Figure A.1: Detailed boxplots of mean MJ energies - Short (red boxes)
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MC seeds. Simulations were performed using kTs ranging from 0.15 to 0.3 (x-axis).
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Table A.2: Protein amino acid hydrophobicity scale according to Kyte

and Doolittle [90]

Residue Hydrophobicity

Alanine 1.8

Arginine -4.5

Asparagine -3.5

Aspartic acid -3.5

Cysteine 2.5

Glutamine -3.5

Glutamic acid -3.5

Glycine -0.4

Histidine -3.2

Isoleucine 4.5

Leucine 3.8

Lysine -3.9

Methionine 1.9

Phenylalanine 2.8

Proline -1.6

Serine -0.8

Threonine -0.7

Tryptophan -0.9

Tyrosine -1.3

Valine 4.2

Table A.3: List of Pfam domain families analysed in this study

Pfam Domain Names

ABC tran ABM AIRS
AIRS C AP endonuc 2 Amidohydro 3
AraC binding Arf ArsA ATPase
AsnC trans reg B12-binding BPD transp 1
Bac luciferase CMD COX1

Continued on next page

90



Table A.3 – continued from previous page
Pfam Domain Names

Cadherin CbiA CheW
CoA transf 3 Cons hypoth95 Cytochrom B C
Cytochrom B N Cytochrom C DHH
DHHA1 DNA gyraseA C DegT DnrJ EryC1
EAL FMN red Fe-ADH
FecCD Fer4 Fer4 NifH
Flavin Reduct Flavodoxin 2 GGDEF
GTP EFTU GerE Globin
Globin Glycos transf 1 Glycos transf 2
Glyoxalase GntR HATPase c
HD HTH 1 HTH 3
HTH 5 HTH 8 HTH IclR
HisKA HlyD Homeobox
Hormone recep Hpt HxlR
IclR IspD IstB IS21
Kunitz BPTI LacI Lectin C
LysR substrate MCPsignal MarR
MerR MerR-DNA-bind Methylase S
MoCF biosynth Molydop binding Mur ligase
Mur ligase C Mur ligase M N6 Mtase
N6 N4 Mtase NMT1 NTP transferase
Nitroreductase OEP OmpA
PAS PASTA PAS 3
PD40 PHP PIN
PQQ PadR ParBc
Pentapeptide Peptidase M23 Peripla BP 1
Peripla BP 2 Phage integr N Phage integrase
PhoU PilZ Plasmid stabil
Plug ROK RRM 1
Radical SAM Ras Resolvase
Response reg RibD C RimK
Rrf2 RuBisCO large SBP bac 1
SBP bac 3 SH2 SH3 1
SIS SLBB SLT
Serpin Sigma54 activat Sigma70 r2
Sigma70 r4 Sigma70 r4 2 Surf Ag VNR
Sushi T2SE T2SF

Continued on next page
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Table A.3 – continued from previous page
Pfam Domain Names

TOBE TOBE 2 TP methylase
TctC TetR N TonB
Toprim Trans reg C Transpeptidase
Transposase 11 TrkA N TrmB
Trypsin Tubulin UDPG MGDP dh N
UTRA Y phosphatase YkuD
fn3 zf-C4

Table A.4: Top 200 interactions predicted by DIPW

Rank i (HXB2) i (domain) j (HXB2) j (domain)

1 283 od 453 od
2 502 gp120 C 607 gp41
3 231 id2 267 od
4 747 gp41 758 gp41
5 97 id1 275 od
6 13 sp 20 sp
7 159 V2 174 V2
8 360 od 465 V5
9 293 od 337 od
10 92 id1 238 id2
11 277 od 352 od
12 308 V3 316 V3
13 816 gp41 824 gp41
14 49 gp120 N 99 id1
15 65 gp120 N 208 id2
16 825 gp41 833 gp41
17 308 V3 315 V3
18 211 id2 379 od
19 232 id2 268 od
20 231 id2 268 od
21 567 gp41 629 gp41
22 219 id2 225 id2
23 114 id1 202 bs

Continued on next page
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Table A.4 – continued from previous page
Rank i (HXB2) i (domain) j (HXB2) j (domain)

24 275 od 282 od
25 167 V2 192 V2
26 230 id2 240 id2
27 85 id1 229 id2
28 290 od 340 od
29 178 V2 195 V2
30 106 id1 174 V2
31 801 gp41 825 gp41
32 133 V1 155 V1
33 11 sp 21 sp
34 325 V3 419 od
35 306 V3 321 V3
36 425 bs 432 bs
37 788 gp41 797 gp41
38 770 gp41 783 gp41
39 182 V2 192 V2
40 300 V3 442 od
41 290 od 337 od
42 202 bs 432 bs
43 557 gp41 567 gp41
44 602 gp41 651 gp41
45 845 gp41 851 gp41
46 667 gp41 674 gp41
47 269 od 348 od
48 12 sp 21 sp
49 287 od 481 id3
50 178 V2 194 V2
51 192 V2 426 bs
52 290 od 344 od
53 805 gp41 853 gp41
54 270 od 277 od
55 46 gp120 N 492 id3
56 10 sp 21 sp
57 333 od 389 V4
58 172 V2 305 V3
59 335 od 412 V4
60 12 sp 30 sp

Continued on next page
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Table A.4 – continued from previous page
Rank i (HXB2) i (domain) j (HXB2) j (domain)

61 740 gp41 796 gp41
62 309 V3 317 V3
63 360 od 467 V5
64 800 gp41 853 gp41
65 154 V1 300 V3
66 698 gp41 705 gp41
67 121 bs 429 bs
68 700 gp41 758 gp41
69 12 sp 20 sp
70 303 V3 323 V3
71 632 gp41 640 gp41
72 12 sp 23 sp
73 500 gp120 C 619 gp41
74 677 gp41 683 gp41
75 232 id2 269 od
76 273 od 481 id3
77 306 V3 316 V3
78 161 V2 172 V2
79 293 od 446 od
80 720 gp41 727 gp41
81 456 od 466 V5
82 328 V3 334 od
83 726 gp41 736 gp41
84 279 od 474 od
85 721 gp41 732 gp41
86 595 gp41 602 gp41
87 761 gp41 769 gp41
88 164 V2 170 V2
89 353 od 468 V5
90 816 gp41 825 gp41
91 175 V2 194 V2
92 9 sp 21 sp
93 518 gp41 553 gp41
94 13 sp 19 sp
95 725 gp41 731 gp41
96 750 gp41 756 gp41
97 305 V3 319 V3

Continued on next page
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Table A.4 – continued from previous page
Rank i (HXB2) i (domain) j (HXB2) j (domain)

98 167 V2 177 V2
99 10 sp 282 od
100 281 od 365 od
101 309 V3 315 V3
102 202 bs 315 V3
103 232 id2 240 id2
104 174 V2 429 bs
105 723 gp41 731 gp41
106 65 gp120 N 379 od
107 10 sp 23 sp
108 95 id1 236 id2
109 784 gp41 800 gp41
110 308 V3 317 V3
111 565 gp41 646 gp41
112 651 gp41 658 gp41
113 346 od 395 V4
114 800 gp41 825 gp41
115 295 od 446 od
116 809 gp41 853 gp41
117 32 sp 500 gp120 C
118 471 V5 477 id3
119 121 bs 202 bs
120 619 gp41 646 gp41
121 665 gp41 677 gp41
122 11 sp 26 sp
123 10 sp 20 sp
124 7 sp 21 sp
125 134 V1 154 V1
126 25 sp 31 sp
127 152 V1 181 V2
128 720 gp41 750 gp41
129 809 gp41 824 gp41
130 289 od 344 od
131 792 gp41 800 gp41
132 106 id1 121 bs
133 283 od 471 V5
134 158 V2 173 V2

Continued on next page
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Table A.4 – continued from previous page
Rank i (HXB2) i (domain) j (HXB2) j (domain)

135 671 gp41 683 gp41
136 269 od 351 od
137 602 gp41 654 gp41
138 300 V3 323 V3
139 796 gp41 812 gp41
140 624 gp41 632 gp41
141 725 gp41 743 gp41
142 114 id1 553 gp41
143 792 gp41 798 gp41
144 722 gp41 824 gp41
145 195 V2 432 bs
146 302 V3 323 V3
147 133 V1 152 V1
148 700 gp41 746 gp41
149 46 gp120 N 632 gp41
150 788 gp41 805 gp41
151 162 V2 195 V2
152 25 sp 722 gp41
153 24 sp 722 gp41
154 23 sp 29 sp
155 301 V3 323 V3
156 164 V2 195 V2
157 62 gp120 N 209 id2
158 10 sp 809 gp41
159 746 gp41 758 gp41
160 788 gp41 800 gp41
161 20 sp 26 sp
162 801 gp41 824 gp41
163 7 sp 20 sp
164 183 V2 194 V2
165 167 V2 309 V3
166 121 bs 315 V3
167 244 id2 629 gp41
168 753 gp41 762 gp41
169 369 od 429 bs
170 167 V2 426 bs
171 458 od 466 V5

Continued on next page
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Table A.4 – continued from previous page
Rank i (HXB2) i (domain) j (HXB2) j (domain)

172 22 sp 29 sp
173 749 gp41 758 gp41
174 288 od 341 od
175 270 od 341 od
176 295 od 413 V4
177 236 id2 792 gp41
178 793 gp41 804 gp41
179 746 gp41 756 gp41
180 720 gp41 796 gp41
181 236 id2 275 od
182 499 gp120 C 605 gp41
183 492 id3 612 gp41
184 588 gp41 646 gp41
185 23 sp 853 gp41
186 9 sp 22 sp
187 307 V3 319 V3
188 177 V2 192 V2
189 232 id2 271 od
190 379 od 443 od
191 722 gp41 746 gp41
192 174 V2 333 od
193 92 id1 633 gp41
194 256 od 265 od
195 232 id2 238 id2
196 845 gp41 854 gp41
197 275 od 474 od
198 281 od 353 od
199 750 gp41 758 gp41
200 295 od 444 od

Table A.5: Intra-V1V2 interactions predicted by DIPW

Rank i (HXB2) i (domain) j (HXB2) j (domain)

7 159 V2 174 V2
25 167 V2 192 V2

Continued on next page
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Table A.5 – continued from previous page
Rank i (HXB2) i (domain) j (HXB2) j (domain)

29 178 V2 195 V2
32 133 V1 155 V1
39 182 V2 192 V2
50 178 V2 194 V2
78 161 V2 172 V2
88 164 V2 170 V2
91 175 V2 194 V2
98 167 V2 177 V2
125 134 V1 154 V1
127 152 V1 181 V2
134 158 V2 173 V2
147 133 V1 152 V1
151 162 V2 195 V2
156 164 V2 195 V2
164 183 V2 194 V2
188 177 V2 192 V2

Table A.6: Intra-gp41 interactions predicted by DIPW

Rank i (HXB2) i (domain) j (HXB2) j (domain)

4 747 gp41 758 gp41
13 816 gp41 824 gp41
16 825 gp41 833 gp41
21 567 gp41 629 gp41
31 801 gp41 825 gp41
37 788 gp41 797 gp41
38 770 gp41 783 gp41
43 557 gp41 567 gp41
44 602 gp41 651 gp41
45 845 gp41 851 gp41
46 667 gp41 674 gp41
53 805 gp41 853 gp41
61 740 gp41 796 gp41
64 800 gp41 853 gp41
66 698 gp41 705 gp41

Continued on next page
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Table A.6 – continued from previous page
Rank i (HXB2) i (domain) j (HXB2) j (domain)

68 700 gp41 758 gp41
71 632 gp41 640 gp41
74 677 gp41 683 gp41
80 720 gp41 727 gp41
83 726 gp41 736 gp41
85 721 gp41 732 gp41
86 595 gp41 602 gp41
87 761 gp41 769 gp41
90 816 gp41 825 gp41
93 518 gp41 553 gp41
95 725 gp41 731 gp41
96 750 gp41 756 gp41
105 723 gp41 731 gp41
109 784 gp41 800 gp41
111 565 gp41 646 gp41
112 651 gp41 658 gp41
114 800 gp41 825 gp41
116 809 gp41 853 gp41
120 619 gp41 646 gp41
121 665 gp41 677 gp41
128 720 gp41 750 gp41
129 809 gp41 824 gp41
131 792 gp41 800 gp41
135 671 gp41 683 gp41
137 602 gp41 654 gp41
139 796 gp41 812 gp41
140 624 gp41 632 gp41
141 725 gp41 743 gp41
143 792 gp41 798 gp41
144 722 gp41 824 gp41
148 700 gp41 746 gp41
150 788 gp41 805 gp41
159 746 gp41 758 gp41
160 788 gp41 800 gp41
162 801 gp41 824 gp41
168 753 gp41 762 gp41
173 749 gp41 758 gp41

Continued on next page
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Table A.6 – continued from previous page
Rank i (HXB2) i (domain) j (HXB2) j (domain)

178 793 gp41 804 gp41
179 746 gp41 756 gp41
180 720 gp41 796 gp41
184 588 gp41 646 gp41
191 722 gp41 746 gp41
196 845 gp41 854 gp41
199 750 gp41 758 gp41

Table A.7: Intra-gp41 (HXB2 position <= 633) interactions predicted

by DIPW

Rank i (HXB2) i (domain) j (HXB2) j (domain)

21 567 gp41 629 gp41
43 557 gp41 567 gp41
86 595 gp41 602 gp41
93 518 gp41 553 gp41
140 624 gp41 632 gp41
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Algorithm 1: SMS-EMOA pseudocode

P0  init() Initial population with µ individuals

t 0 Generation index

repeat
o reproduction(P

t

) Generate 1 new o↵spring by reproduction

D  dom(P
t

[ {o}) Identify set of dominated individuals

if D 6= ; then
r⇤  argmax

r2D[dom(r, D)]

Individual(s) with highest dominance number

if {r⇤} > 1 then
More than one individual with the highest dominance number

a⇤
 argmina2{r⇤}[hyp(a, {r⇤})]

Individual(s) with the lowest hyervolume contribution

if {a⇤
} > 1 then

More than one individual with the lowest hypervolume

contribution

s random({a⇤
}) Choose randomly an individual

end

else
s r⇤ Choose individual with highest dominance number

end

else
r⇤  argminr2{Pt[{o}}[hyp(r, Pt

[ {o})]

Individual(s) with lowest hypervolume contribution

if {r⇤} > 1 then
s random({a⇤

}) Choose randomly an individual

end

end

P
t+1  {P

t

[ {o}}\{s} Remove worst individual s

t t+ 1
until Stop criterion;
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Algorithm 2: Metropolis MC algorithm pseudocode
t
max

maximal number of steps

confinitial initial conformation

confactual  confinitial actual conformation

t 0

while t < t
max

do
t t+ 1

confnew  random{N(confactual)}

choose randomly a neighbourhood conformation

read current;

if E(confnew)  E(confactual) then
new conformation’s energy is favourable

confactual  confnew accept new conformation
else

new conformation’s energy is not favourable

r  random[0, 1] random number between 0 and 1

if r  min(1, e�
�E
kT ) then

apply Metropolis criterion

confactual  confnew accept new conformation
else

confactual reject new and keep actual conformation

end

end

end
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Figure A.2: Enumerator heat map error estimates - The hypervolume stan-

dard deviations of three di↵erent seeds are shown as heat map for optimisation

with and without applying crossover parameter.
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Figure A.3: Enumerator heat map error estimates (close-up view) - The

hypervolume standard deviations of three di↵erent seeds are shown as heat map

for optimisation with and without applying crossover parameter. Only mutation

rates between 0 and 0.1 are illustrated.
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Figure A.4: Boxplot of averaged (over 124 bacterial protein families)

sequence identities
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Figure A.5: Boxplot of averaged (over 22 eukaryote protein families)

sequence identities

106



Bibliography

[1] P. Acharya, T. S. Luongo, M. K. Louder, K. McKee, Y. Yang, Y. Do Kwon,

J. R. Mascola, P. Kessler, L. Martin, and P. D. Kwong. Structural basis

for highly e↵ective HIV-1 neutralization by CD4-mimetic miniproteins re-
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[112] K. Miettinen and M. Mäkelä. Interactive bundle-based method for nondif-

ferentiable multiobjeective optimization: nimbus . Optimization, 34(3):231–

246, January 1995. 7

[113] S. Miyazawa and R. L. Jernigan. Estimation of e↵ective interresidue con-

tact energies from protein crystal structures: quasi-chemical approximation.

Macromolecules, 18(3):534–552, May 1985. 14, 89

[114] S. Miyazawa and R. L. Jernigan. Residue-residue potentials with a favorable

contact pair term and an unfavorable high packing density term, for sim-

ulation and threading. Journal of molecular biology, 256(3):623–44, March

1996. 14

[115] F. Morcos, A. Pagnani, B. Lunt, A. Bertolino, D. S. Marks, C. Sander,

R. Zecchina, J. N. Onuchic, T. Hwa, and M. Weigt. Direct-coupling analysis

of residue coevolution captures native contacts across many protein families.

Proceedings of the National Academy of Sciences of the United States of

America, 108(49):E1293–301, December 2011. 54, 55, 57, 58, 59, 60, 62, 63,

64, 67, 68, 69, 83, 86

[116] L. Morellato-Castillo, P. Acharya, O. Combes, J. Michiels, A. Descours,

O. H. P. Ramos, Y. Yang, G. Vanham, K. K. Ariën, P. D. Kwong, L. Mar-
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and H. Garo↵. Single-particle cryoelectron microscopy analysis reveals the

127



HIV-1 spike as a tripod structure. Proceedings of the National Academy of

Sciences of the United States of America, 107(44):18844–9, November 2010.

49, 50

[170] X. Wu, T. Zhou, J. Zhu, B. Zhang, I. Georgiev, C. Wang, X. Chen, N. S.

Longo, M. Louder, K. McKee, S. O’Dell, S. Perfetto, S. D. Schmidt, W. Shi,

L. Wu, Y. Yang, Z.-Y. Yang, Z. Yang, Z. Zhang, M. Bonsignori, J. A.

Crump, S. H. Kapiga, N. E. Sam, B. F. Haynes, M. Simek, D. R. Burton,

W. C. Ko↵, N. A. Doria-Rose, M. Connors, J. C. Mullikin, G. J. Nabel,

M. Roederer, L. Shapiro, P. D. Kwong, and J. R. Mascola. Focused evo-

lution of HIV-1 neutralizing antibodies revealed by structures and deep se-

quencing. Science (New York, N.Y.), 333(6049):1593–602, September 2011.

49

[171] R. Wyatt, P. D. Kwong, E. Desjardins, R. W. Sweet, J. Robinson, W. A.

Hendrickson, and J. G. Sodroski. The antigenic structure of the HIV gp120

envelope glycoprotein. Nature, 393(6686):705–11, June 1998. 47

[172] R. Wyatt, J. Moore, M. Accola, E. Desjardin, J. Robinson, and J. Sodroski.

Involvement of the V1/V2 variable loop structure in the exposure of human

immunodeficiency virus type 1 gp120 epitopes induced by receptor binding.

Journal of virology, 69(9):5723–33, September 1995. 47

[173] R. Wyatt and J. Sodroski. The HIV-1 envelope glycoproteins: fusogens,

antigens, and immunogens. Science (New York, N.Y.), 280(5371):1884–8,

June 1998. 47

[174] Y. Yang and H. Liu. Genetic algorithms for protein conformation sampling

and optimization in a discrete backbone dihedral angle space. Journal of

computational chemistry, 27(13):1593–602, October 2006. 2

[175] C. Yanofsky, V. Horn, and D. Thorpe. Protein Structure Relationships

Revealed by Mutational Analysis. Science, 146(3651):1593–1594, December

1964. 53

128



[176] G. Yen and H. Lu. Dynamic multiobjective evolutionary algorithm: adap-

tive cell-based rank and density estimation. IEEE Transactions on Evolu-

tionary Computation, 7(3):253–274, June 2003. 17

[177] B.-W. Ying, H. Taguchi, and T. Ueda. Co-translational binding of GroEL

to nascent polypeptides is followed by post-translational encapsulation by

GroES to mediate protein folding. The Journal of biological chemistry,

281(31):21813–9, August 2006. 7

[178] T. Zhou, I. Georgiev, X. Wu, Z.-Y. Yang, K. Dai, A. Finzi, Y. D. Kwon, J. F.

Scheid, W. Shi, L. Xu, Y. Yang, J. Zhu, M. C. Nussenzweig, J. Sodroski,

L. Shapiro, G. J. Nabel, J. R. Mascola, and P. D. Kwong. Structural basis

for broad and potent neutralization of HIV-1 by antibody VRC01. Science

(New York, N.Y.), 329(5993):811–7, August 2010. 49

[179] T. Zhou, L. Xu, B. Dey, A. J. Hessell, D. Van Ryk, S.-H. Xiang, X. Yang,

M.-Y. Zhang, M. B. Zwick, J. Arthos, D. R. Burton, D. S. Dimitrov, J. So-

droski, R. Wyatt, G. J. Nabel, and P. D. Kwong. Structural definition of a

conserved neutralization epitope on HIV-1 gp120. Nature, 445(7129):732–7,

February 2007. 49

[180] E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improving the Strength

Pareto Evolutionary Algorithm. Technical report, ETH Zurich, Zuerich,

Switzerland, 2001. 14

[181] E. Zitzler and L. Thiele. Multiobjective optimization using evolutionary

algorithms A comparative case study. In Parallel Problem Solving from

Nature PPSN V, pages 292–301. Springer Berlin / Heidelberg, 1998. 17

[182] E. Zitzler and L. Thiele. Multiobjective evolutionary algorithms: a com-

parative case study and the strength Pareto approach. IEEE Transactions

on Evolutionary Computation, 3(4):257–271, 1999. 14, 16

[183] M. Zvelebil and J. Baum. Understanding Bioinformatics. Garland Science,

New York and London, 2007. 10, 61

129



List of Publications

Journal Articles

Y. Wang, R. Rawi, D. Ho↵mann, B. Sun, and R. Yang. Inference of global

HIV-1 sequence patterns and preliminary feature analysis. Virologica Sinica,

28(4):22838, 2013.

Y. Wang⇤, R. Rawi⇤, C. Wilms, D. Heider, R. Yang, and D. Ho↵mann. A small

set of succinct signature patterns distinguishes Chinese and non-Chinese HIV-1

genomes. PloS one, 8(3):e58804, 2013

R. Rawi, L. Whitmore, M. Topf. CHOYCE: a web server for constrained homol-

ogy modelling with cryoEM maps. Bioinformatics, 26(16):1673-4, 2010

130



Acknowledgements

”When you practice gratefulness, there is a

sense of respect toward others.”

Dalai Lama

My parents For your everlasting support and love. Allah I-Hfadkum.

My supervisor Daniel Ho↵mann For given me the opportunity to be part

of your team, but most important for your countless scientific and non-scientific

ideas, guidance and help. I really enjoyed and benefited from your knowledge,

company and principles. Stay as you are.

My colleagues For sharing ideas, experiences, methods, scripts and a lot of

co↵ee. Cheers.

My love Soumia For your company, love, patience,... . I could name 1001

adjectives and they would still not be su�cient. May you be blessed with happi-

ness and love. I am looking forward to share my life with you.

131



Curriculum Vitae

For reasons of confidentiality, the curriculum vitae is not included in the online

version of this work.

132



Declarations

Erklärung:
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