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CORE Metadata, citation and similar papers at core.ac.uk

Provided by Duisburg-Essen Publications Online

https://core.ac.uk/display/33797488?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Acknowledgements

At first, I like to thank my supervisor Prof. Dr. Arnd Rösch for the support and
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Chapter 1

Introduction

The topic of optimization, especially optimal control governed by partial differen-

tial equations, contains a large field of mathematical disciplines reaching from the

foundations of functional analysis into the depths of numerical mathematics. It

deals with the theoretical aspects of optimization, such as existence/uniqueness of

solutions or necessary and sufficient optimality conditions, as well as the numerical

implementation and the acompanying aspects of a priori/a posteriori error analysis,

stability of solutions, conditions for and rate of convergence and many more. Due

to this broad spectrum of aspects it is influenced by many different mathematical

communities resulting in a huge variety of approaches and ideas.

Optimality conditions were always a point of interest and with the step from convex

optimization problems to differentiable but non-convex settings the necessary condi-

tions where no longer sufficient. It was necessary to consider sufficient conditions of

higher order. Standard sufficient optimality conditions for finite dimension employ

differentiability of f(ū) and that f ′′(ū) is positive definite at a local minimum ū.

If one wants to adept these conditions to the infinite dimensional case one is often

confronted with the following problem:

If one considers the functional f in an L2(Ω)-space it satisfies that the second deriva-

tive f ′′(ū) is positive definite, but it is not twice differentiable in L2(Ω), which means

f ′′(ū) does not belong to the correct functional space.

But if one interprets the same functional f as an L∞(Ω)-functional, one can show

that f satisfies the differentiability conditions while it is not positive definite in ū

with regard to L∞(Ω).

This phenomenon is called 2-norm discrepancy and it shows that the choice of suit-

able functional spaces for an optimization problem is very important. In the late

1970s A.D. Ioffe [25] and H. Maurer and I. Zowe [31] developed sufficent optimal

condition for problems in Banach spaces and presented ways to deal with the 2-norm

discrepancy.
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1.1 Motivation 2

Throughout the years there were many works dealing with the application of the

abstract results on different classes of problems. We want to point out the works of

H. Goldberg and F. Tröltzsch [19] for the control constrained case, E. Casas, J.-P.

Raymond and F. Tröltzsch [11], [15], [39] for the state constrained case and A. Rösch

and F. Tröltzsch [40] for the mixed constrained case.

In this work we study general nonlinear optimization problems in Banach and Hilbert

spaces and discretizations of such problems. We use this approach, because we are

in particular interested in nonlinear optimization problems with state constraints

and this setting allows us to formulate such conditions in a mathematical way. Our

goal is to derive sufficient optimality conditions that enable us to show optimality

when an exact solution is unknown but a solution of the discretized problem is at

hand. This is a quite common situation, if one, for example, has computed a nu-

merical solution using a discrete model and wants to know if an exact solution exists

in a neighborhood of this discrete solution. We assume that we have a numerical

method, with certain properties, to solve these nonlinear problems. We develop suf-

ficient optimality conditions based only on the numerical solution and other known

quantities. Throughout this process we also deliver error estimates regarding the

numerical solution.

We want to mention the results of D. Wachsmuth and S. Akindeinde, who worked on

non-convex optimal control problems with finite dimensional control space [2], [3],

and the work of I. Neitzel, J. Pfefferer and A. Rösch [37] regarding state-constrained

elliptic optimal control problems with semilinear state equation and their finite ele-

ment discretization.

1.1 Motivation

The usual approach to determine sufficient optimality conditions, which is for ex-

ample utilizied by E.Casas and F.Tröltzsch in [10],[14] for elliptic problems with

state constraints, is to formulate necessary optimality conditions and sufficient op-

timality conditions of second order for an optimal solution ū. Employing additional

conditions one can prove further desirable properties of the solution. One can, for

example, ensure stability of the solution of state constrained problems, if one requires

uniqueness of the dual variables. The catch of this approach is that the optimality

conditions as well as the additional conditions have to be checked for the optimal

solution ū. Some properties depend on the discretization parameter h to be below

a certain constant h0. This can lead to uncertainties for some kinds of problems,

where one has difficulties to obtain such an optimal solution as well as computing

the actual value of h0 . Of course there are cases in which it is possible to check

these conditions, for example demonstrated by H. Goldberg and F. Tröltzsch in [19],
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but one cannot expect that for every problem. This encourages the idea to derive

a different type of condition to prove optimality of a solution, based on known in-

formations, for example on a numerical solution. As a simple approach to get such

a condition one can think of using the discrete Hessian, i.e use its eigenvalues to

check if the discrete Hessian is positive definite. But as A.Rösch and D. Wachsmuth

showed in [42] this approach does not work in general, which is illustrated in a simple

example.

Example 1.1. [42] Let U be a Hilbert-space. We look at the following problem

min
u∈U

f(u) =
1

2
‖u− u1‖2U‖u− u2‖2U (1.1)

We see that ũ = u1+u2
2 is a saddle point for this example. If we choose u1 = x−1/2+ε

and u2 = −u1, we can compute ”critical values” of the mesh size. The smallest

eigenvalue of the discrete Hessian at ũ is positive, if h is above the critical value

h0. This means that we get a false positive indication for an optimum, if we use

this criteria with unsufficient mesh refinement. The problem arouses because the

direction u1−u2, which is the only direction with negative curvature, is approximated

poorly and thus ’overlooked’ until the refinement is fine enough. In Table 1.1 one can

see that this false indication can occur even for rather small discretization parameters

h. For detailed information on this example we refer to [42] Section 3.

ε h0

0.05 1/18 = 0.056

0.04 1/106 = 0.0094

0.03 1/1917 = 5.2 ·10−4

0.02 1/619660 = 1.6 ·10−6

Table 1.1: Critical mesh sizes found in [42]

A second example illustrates another phenomenon. Lets take a look at

Example 1.2.

min
u∈L2([0,1])

‖S(u)− yd‖L2([0,1])

with

(Su)(t) =

∫ t

0
u(x) dx

and

yd(x) =

{
0 for x ∈ [0, 0.5]

1 for x ∈ (0.5, 1].
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It is possible to approximate yd with differentiable functions for any given error

margin, which means one can find y = Su with an abitrary small L2-error ‖S(u)−
yd‖L2([0,1]). But on the other hand, since every y = Su is differentiable, it is not

possible to find a solution ū with ‖S(ū)−yd‖L2([0,1]) = 0. We see that the minimizing

sequence of yn = S(un) exists but does not converge since the limit itself is not

admissible and thus we see that this continuous problem does not have an solution.

Now lets take a look at an arbitrary linear FE discretization of this problem. Let

0.5 ∈ [xj , xj+1] then we see that the state

ȳh =


0 for 0 ≤ x ≤ xj
x− xj

xj+1 − xj
for xj < x ≤ xj+1

1 for xj+1 < x ≤ 1

delivers an optimal functional value over all discrete states. Thus we get the corre-

sponding optimal control

ūh =


0 for 0 ≤ x ≤ xj

1

xj+1 − xj
for xj < x ≤ xj+1

0 for xj+1 < x ≤ 1

which means the discrete problem delivers a solution even if the continuous problem

does not have one. Note that the L2([0, 1])-norm of ūh, i.e.

‖ūh‖L2([0,1]) =
1

√
xj+1 − xj

,

tends to infinity with finer discretizations of [0, 1], which means that the limit of ūh
for h→ 0 does not belong to L2([0, 1]).

.

.

.
.0 .0.5 .1

.1

.

(a) yd

.

.

.
.0 .xj .0.5 .xj+1 .1

.1

.

(b) ȳh

Figure 1.2: Desired state yd and optimal discrete state ȳh

These two examples illustrate, in rather simple settings, that it can be wrong to

draw conclusions from computed solutions to the actual continuous solutions and
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that one has to make further efforts to reach solid results. We use the approach first

presented in [41] by A.Rösch and D.Wachsmuth in 2008 and generalize their ideas

to an abstract nonlinear optimization problem.



Chapter 2

Mathematical background

In this section we present the mathematical concepts, which enable us to formulate

and discuss abstract optimization problems.

2.1 Banach and Hilbert spaces

Following Adams [1] we introduce the concepts of Banach and Hilbert spaces. We

begin with Definition (1.7):

Definition 2.1. A norm on a vector space X is a real-valued function f on X

satisfying the following conditions:

1. f(x) ≥ 0 for all x ∈ X and f(x) = 0 if and only if x = 0,

2. f(cx) = |c|f(x) for every x ∈ X and c ∈ R,

3. f(x+ y) ≤ f(x) + f(y) for every x, y ∈ X.

A vector space X provided with a norm is called normed space. We will denote the

norm with || · ||X . Now we can define convergent sequences and Cauchy sequences

(see [1] (1.8),(1.9)) :

Definition 2.2. A sequence {xn} in a normed space X is convergent to the limit

x0 if and only if

lim
n→∞

‖xn − x0‖X = 0.

Definition 2.3. A sequence {xn} in a normed space X is called Cauchy sequence

if and only if for every ε > 0 there exists an integer N such that ‖xm − xn‖X < ε

holds whenever m,n > N .

Thus we can define

6
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Definition 2.4. X is complete and a Banach space if every Cauchy sequence in

X converges to a limit in X.

We proceed with the definition of Hilbert spaces. First we need the definition of an

inner product (see [1] (1.10))

Definition 2.5. If X is a vector space, a functional (·, ·)X defined on X × X is

called inner product on X provided that for every x, y ∈ X and a, b ∈ R

1. (x, y)X = (y, x)X ,

2. (ax+ by, z)X = a(x, z)X + b(y, z)X ,

3. (x, x)X = 0 if and only if x = 0.

Equipped with such a functional, X is called an inner product space and the

functional

‖x‖X =
√

(x, x)X

is, in fact, a norm on X.

Definition 2.6. If X is complete (i.e. a Banach space) under the norm ‖x‖X =√
(x, x)X it is called a Hilbert space.

We take a look at the normed dual of a normed space X (see [1] (1.11)):

Definition 2.7. A norm on the dual X∗ of a normed space X can be defined by

setting

‖x∗‖X∗ = sup{|x∗(x)| : ‖x‖X ≤ 1}

for each x∗ ∈ X∗. Since R is complete, with the topology induced by this norm X∗

is a Banach space (wether or not X is) and its called the normed dual of X.

We want to note several concepts involving dual spaces :

Definition 2.8. A sequence {xn} ⊂ X is called weakly convergent to x ∈ X, if

〈xn, f〉X,X∗ → 〈x, f〉X,X∗ ∀f ∈ X∗

holds. An often used notation for this convergence is xn ⇀ x.

Definition 2.9. A map F : X → Y between two Banach spaces X and Y is called

weakly continuous, if a weakly convergent sequence {xn} in X is mapped to a

weakly convergent sequence {F (xn)} in Y , i.e.

xn ⇀ x ⇒ F (xn)⇀ F (x), n→ ∞.
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Definition 2.10. A functional f : X → R is calledweakly lower semi-continuous,

if for xn ⇀ x with n→ ∞
lim inf
n→∞

f(xn) ≥ f(x)

holds.

Definition 2.11. A functional f : X → R is called radially unbounded, if for a

sequence xn ∈ U and n→ ∞

‖xn‖U → ∞ ⇒ f(xn) → ∞

holds.

Definition 2.12. A subset U ⊂ X is called weakly closed, if for every weakly

convergent sequence {un} with limit u ∈ X also u ∈ U holds, i.e.

un ⇀ u ∈ X, n→ ∞ ⇒ u ∈ U.

Definition 2.13. An operator G : X → Y is called weakly closed, if G(U) =

{G(u) : u ∈ U} is a weakly closed subset of Y for every subset U of X.

Definition 2.14. The set M ⊂ X, X a Banach space, is called weakly relatively

compact, if every sequence {xn} ⊂ M has a weakly convergent partial sequence.

It is called weakly compact when it is additionally weakly closed.

The following two results, see [45] Theorem 2.10 and 2.11, will help us to ensure

existence of solution for optimization problems:

Theorem 2.15. If X is a reflexive Banach space and M ⊂ X is bounded then M

is weakly relatively compact.

Theorem 2.16. If X is a Banach space and M ⊂ X is convex and closed, then M

is also weakly closed.

If X is reflexive and M convex, closed and bounded, then M is weakly compact.

To conclude this section we want to point out that, if X is a Hilbert space, it can

be identified with its normed dual. This is showed by the following theorem (see [1]

(1.12)).

Theorem 2.17. (Riesz representation) LetX be a Hilbert space. A linear functional

x∗ on X belongs to X∗ if and only if there exists x ∈ X such that for every y ∈ X

we have

x∗(y) = (y, x)X ,

and in this case ‖x∗‖X∗ = ‖x‖X . Moreover, x is uniquely determined by x∗ ∈ X∗.



2.3 Lp and Sobolev spaces 9

2.2 Differentiability in Banach spaces

Let X,Y be Banach spaces and G : X → Y an operator from X to Y .

Definition 2.18. Let x and h be in X. If the limit

lim
t↘0

1

t
(G(x+ th)−G(x)) =: δG(x, h), t ∈ R

exists in Y , then it is called directional derivative of G at x in direction of h.

If it exists for all h ∈ X then the map h 7→ δG(x, h) is called first variation of G

at x.

Definition 2.19. If the first variation δG(x, h) exists as well as a linear and con-

tinuous operator A : X 7→ Y with

δG(x, h) = Ah, ∀h ∈ X

then A is called Gâteaux-derivative of G at x ∈ X.

Definition 2.20. G : X → Y is called Fréchet-differentiable at x ∈ X if there

exist an operator A ∈ L(X,Y ) and a map r : X ×X → Y , such that

G(x+ h) = G(x) +Ah+ r(x, h) ∀h ∈ X

holds with
‖r(x, h)‖Y

‖h‖x
→ 0 for ‖h‖X → 0.

A is called Fréchet-derivative of G at x and we use the notation A = G′(x).

Definition 2.21. Is G : X → Y Fréchet-differentiable for all x ∈ X then it is

called Fréchet-differentiable. Let G be Fréchet-differentiable in a neighborhood

of x ∈ X. If the map x 7→ G′(x) from X to L(X,Y ) is continuous, then G is called

continuous Fréchet-differentiable at x.

2.3 Lp and Sobolev spaces

Let Ω be a domain with Lipschitz boundary Γ. We denote by Lp(Ω), 1 ≤ p < ∞,

the space of real valued functions, which are defined on Ω and integrable to the p-th

power with respect to the Lebesgue measure dx, i.e.

u ∈ Lp(Ω) ⇔
∫
Ω
up dx <∞.
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Lp(Ω) is a Banach space with the norm

‖u‖Lp(Ω) :=

(∫
Ω
|u(x)|p dx

)1/p

.

With p = 2, L2(Ω) is a Hilbert space with the scalar product

(u, v)L2(Ω) =

∫
Ω
u(x)v(x) dx.

By L∞(Ω) we denote the space of all real valued functions, which are essentially

bounded on Ω. The norm is given by

‖u‖L∞(Ω) = ess sup
Ω

|u(x)|.

Let m be an nonnegative integer and p a real number with 1 ≤ p <∞.

Wm,p(Ω) denotes the Sobolev space of functions whose weak derivatives of order m

lie in Lp(Ω) . Wm,p(Ω) with the norm

‖u‖Wm,p(Ω) =

 ∑
|α|≤m

‖Dαu‖pLp

1/p

is a Banach space.

For p = 2 we use the abbreviation

Hm(Ω) :=Wm,2(Ω).

For m = 1 and m = 2, Hm(Ω) is a Hilbert space with the scalar product

(u, v)H1(Ω) =

∫
Ω
uv dx +

∫
Ω
∇u∇v dx,

(u, v)H2(Ω) =

∫
Ω
uv dx +

∫
Ω
∇u∇v dx +

∫
Ω
∇2u∇2v dx

respectively.

Theorem 2.22 (Sobolev embedding theorem). The following imbeddings are well

defined and continuous for bounded Ω ∈ Rn with Lipschitz boundary, 1 < p < ∞
and a nonnegative integer m :

For mp < n : Wm,p(Ω) ↪→ Lq(Ω), if 1 ≤ q ≤ np

n−mp
;

For mp = n : Wm,p(Ω) ↪→ Lq(Ω), if 1 ≤ q <∞;

For mp > n : Wm,p(Ω) ↪→ C(Ω̄).

Remark 2.23. Every Lp(Ω) is a seperable space and L2(Ω) is as a Hilbert space

also reflexive.
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2.4 Abstract optimization problem

Following [45] Chapter 6 we present the theory on optimization problems in Banach

spaces. For the general setting we assume that U and Z are Banach spaces and

C ⊂ U is a nonempty convex subset of U .

To describe general optimization problems in Banach spaces we will utilize convex

cones:

Definition 2.24. A convex set K ⊂ Z is called convex cone, if λz ∈ K holds for

every z ∈ K and λ > 0.

Example 2.25. We want to give some examples for convex cones:

• For any Banach space Z :

K = {0} and K = Z

• For Z = L2(Ω) with a bounded domain Ω ⊂ RN :

K = {z ∈ L2(Ω) : z(x) ≥ 0 f.a.a. x ∈ Ω}

• For Z = R3 :

K = {z ∈ R3 : z1 = 0, z2 ≤ 0, z3 ≥ 0}

We use a convex cone to define a relation in Z with respect to this cone :

Definition 2.26. Let K ⊂ Z be a convex cone and z ∈ Z. We set z ≥K 0 if, and

only if z ∈ K. Analogous we set z ≤K 0, if −z ∈ K. Furthermore we set z >K 0

and z <K 0, if z ∈ int K and −z ∈ int K, respectively.

Remark 2.27. For z ≥K 0 one sees the elements of K as ’nonnegative’. The

definition above can result in the fact that this nonnegativity does not comply with

the natural sense of nonnegativity. If we take a look at the last example we see that

the nonnegativity z ≥K 0 only implies nonnegativity for z3.

To define a relation in dual spaces and to introduce the Langrange multipliers we

need to define the dual cone:

Definition 2.28. Let K ⊂ Z be a convex cone. The dual cone belonging to K is

defined as

K+ = {z∗ ∈ Z∗ : 〈z∗, z〉Z∗,Z ≥ 0 ∀z ∈ K}

Example 2.29. We want to illustrate this definition by means of the first examples

of convex cones.
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• Let Z be a Banach space and K = 0, then z ≥K 0 ⇔ z = 0 holds. This means

K+ = Z∗, because 〈z∗, 0〉Z∗,Z = 0 ≥ 0 is satisfied for every z∗ ∈ Z∗.

• For a Banach space Z and K = Z we get K+ = {0}.

• With Z = L2(Ω), with a bounded domain Ω ⊂ RN , and

K = {z ∈ L2(Ω) : z(x) ≥ 0 f.a.a. x ∈ Ω}

we see via the Riesz theorem that Z = Z∗ holds and we get K+ = K.

With these definitions we can formulate the general problem for Fréchet-differentiable

f and G, with f : U → R and G : U → Z, and a convex cone K ⊂ Z:

Problem 2.30.

min
u∈C

f(u) (2.1)

s.t.:

G(u) ≤K 0 (2.2)

Definition 2.31. ū ∈ C is called a local solution of Problem 2.30, if ū is a feasible

point and

f(ū) ≤ f(u)

is fulfilled for all u ∈ C with G(u) ≤K 0 and ‖u− ū‖U ≤ ε with a suitable ε > 0.

We define the Langrange function L(u, z∗):

Definition 2.32. The function

L(u, z∗) = f(u) + 〈z∗, G(u)〉Z∗,Z ,

L : U × Z∗ → R, is called Lagrange function.

A Lagrange multiplier is defined as:

Definition 2.33. z∗ ∈ K+ is called a Lagrange multiplier for a local solution ū of

Problem 2.30 if the following conditions are fulfilled:

DuL(ū, z
∗)(u− ū) ≥ 0 ∀u ∈ C

〈z∗, G(ū)〉Z∗,Z = 0

The existence of Lagrange multipliers can be ensured via regularity conditions, also

called constraint qualifications, such as the regularity condition of Kurcyusz and

Zowe [29]:
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Definition 2.34. Let ū ∈ C be with G(ū) ≤K 0. The sets

C(ū) = {λ(u− ū) : λ ≥ 0, u ∈ C}

and

K(z̄) = {λ(z − z̄) : λ ≥ 0, z ∈ K}

are the conical hulls on C in ū and K in z̄. The regularity condition of Kurcyusz

and Zowe can be formulated as

G′(ū)C(ū) +K(−G(ū)) = Z (2.3)

which is equivalent to the fact that the equation

αG′(ū)(u− ū) + β(v +G(ū)) = z

has a solution for every given z ∈ Z with u ∈ C, v ≥K 0 and nonnegative α and β.

Theorem 2.35. [[45] Theorem 6.3 ] Let ū be a local solution of Problem 2.30 and

f , G continuous Fréchet-differentiable in an open neighborhood of ū. Then there

exists a Lagrange multiplier z∗ ∈ Z∗ belonging to ū, if regularity condition (2.3) is

fulfilled. The set of Lagrange multipliers belonging to ū is bounded.

We will use an formulation, which is sufficient for (2.3), if K and C have a nonempty

interior:

∃ũ ∈ int C(ū) : G(ū) +G′(ū)ũ <K 0 (2.4)

Condition (2.4) is called Mangasarian Fromovitz Constraint Qualification.

Remark 2.36. The regularity condition depends on the nonempty interior of K,

which cones in Z = Lp(Ω), with 1 ≤ p < ∞, do not possess. We take for example

the natural choice of the nonnegative cone in L2([0, 1])

K = {z ∈ L2([0, 1]) : z(x) ≥ 0 a.e. in [0, 1]}.

One would think that a function such as z(x) ≡ 1 is an interior point of K. But if

we look at the sequence

vn(x) =

{
1 in [0, 1− 1/n)

−1 in [1− 1/n, 1]

it does not belong to K, but it converges to z with respect to the L2-norm. This

effect occurs for every Lp space with 1 ≤ p <∞, which makes it necessary to choose

Z ⊂ L∞(Ω) if we want to employ formulation (2.4).



Chapter 3

Optimality conditions and main

result

3.1 Optimality conditions

We consider the following general problem setting :

Assumption 3.1. (Setting of P)

Let U be a Hilbert space, Z a Banach space, f : U → R, G : U → Z and

f a twice continuously Fréchet-differentiable functional (3.1)

G a weakly closed operator (3.2)

G a twice continuously Fréchet-differentiable nonlinear operator. (3.3)

With a weakly closed and non-empty subset Uad of U we consider the problem

min
u∈Uad

f(u) (P)

and describe Uad as

Uad = {u ∈ U : Gu ≤K 0}

while K ⊂ Z is a convex cone. To use our approach we make several additional

assumptions. We start with some properties of the functional f :

14
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Assumption 3.2. (Properties of P)

Assume that f : U → R has the following properties:

f is bounded from below, i.e. f(u) ≥ b , for all u ∈ U and one b ∈ R. (3.4)

f is weakly lower semicontinuous. (3.5)

f is radially unbounded. (3.6)

|(f ′′(u)− f ′′(w))[v1, v2]| ≤M‖u− w‖U‖v1‖U‖v2‖U , (3.7)

∀u,w ∈ Uad, v1, v2 ∈ U

Lemma 3.3. (Existence of a solution for the continuous problem)

If Assumption 3.2 is fulfilled, then there exists at least one control ū ∈ Uad such that

f(ū) ≤ f(u) ∀u ∈ Uad

holds.

Proof. Since f is bounded from below there exists a j ∈ R with

j = inf
u∈Uad

f(u)

We choose a minimizing sequence un such that

f(un) → j for n→ ∞.

Since f is radially unbounded we know that ‖un‖U ≤ C, with a certain positive

number C, holds for all n ∈ N. Thus {un} is a bounded set and consequently weakly

relatively compact. (See Theorem 2.15) This means we can choose a subsequence

{unk
} ⊂ Uad such that

unk
⇀ ū for k → ∞

for some ū ∈ Uad. (See Note 2.23.) Note that ū is in Uad, because Uad is weakly

closed.

Since f is weakly lower semicontinuous we also see that

f(ū) ≤ lim inf
k→∞

f(unk
)

holds. This leads to f(ū) = j ≤ f(u) ∀u ∈ Uad.

From this point on we denote a local minimizer of (P) by ū .

To formulate the optimality conditions for the continuous problem we recall the

Lagrange function:

Definition 3.4. The function L : U × Z∗ → R

L(u, z∗) = f(u) + 〈z∗, Gu〉Z∗,Z (3.8)

is called Lagrange function of (P ).



3.1 Optimality conditions 16

To ensure the existence of Lagrange multipliers we assume a regularity condition

Assumption 3.5. (MFCQ-type)

There exists a d ∈ U such that

G(ū) +G′(ū)d <K 0

holds.

Thus we get via Theorem 2.35:

Lemma 3.6. If Assumption 3.5 is fulfilled, then there exists a Lagrange multiplier

µ ∈ K∗ ⊂ Z∗, such that the following properties are fulfilled :

DuL(ū, µ)(u− ū) ≥ 0 ∀u ∈ Uad (3.9)

〈µ,G(ū)〉Z∗,Z = 0 (3.10)

We denote µ as a Lagrange multiplier corresponding to ū.

At this point we want to introduce a second optimization problem (Ph) as a discrete

counterpart to (P ) and discuss it in a similar way.

Assumption 3.7. (Setting of Ph)

Let U be a Hilbert space, Zh ⊂ Z a Banach space, fh : U → R, Gh : U → Zh and

fh a twice continuously Fréchet-differentiable functional (3.11)

Gh a weakly closed operator (3.12)

Gh a twice continuously Fréchet-differentiable nonlinear operator. (3.13)

We consider

min
u∈Uh

ad

fh(u) (Ph)

with

Uh
ad = {u ∈ U : Ghu ≤K 0}

as a discrete problem.

Remark 3.8. At this point we want to emphasize two things :

• U has not been discretized, which means we use the approach of M.Hinze

presented in [24].

• For linear finite element examples there is no difference between this so called

Hinze discretization and a standard discretization of U .
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We impose the same assumptions on the functional fh as on f .

Assumption 3.9. (Properties of Ph)

Assume that fh : U → R has the following properties:

fh is bounded from below (3.14)

fh is weakly lower semicontinuous (3.15)

fh is radially unbounded (3.16)

Lemma 3.10. (Existence of a solution for Ph)

If Assumption 3.9 is fulfilled, then there exists at least one control ūh such that

fh(ūh) ≤ fh(u) ∀u ∈ Uh
ad

holds.

This can be proven in the same way as Lemma 3.3.

By ūh we denote a local minimizer of (Ph). We assume a slightly different regularity

condition for (Ph)

Assumption 3.11. (Regularity condition of Ph)

There exists an dh ∈ U such that

−Ghūh − sG′
h(ūh)dh − z ∈ K, (3.17)

∀z ∈ Z : ‖z‖Z ≤ sτ, s ∈ [0, 1]

and formulate the optimality condition for (Ph).

Lemma 3.12. If assumption 3.11 is fulfilled, then there exists a Lagrange multiplier

µh ∈ K∗ ⊂ Z∗
h, such that the following properties are fulfilled:

DuLh(ūh, µh)(u− ūh) ≥ 0, u ∈ Uh
ad (3.18)

〈µh, Gh(ū)〉(Zh)∗,Zh
= 0 (3.19)

The Lagrange function Lh is defined as

Lh(u, z
∗) = fh(u) + 〈z∗, Ghu〉(Zh)∗,Zh

and µh is a Langrange multiplier of ūh.

We introduced the first order optimality conditions and showed the existence of a

solution for the two problems. We interpret (Ph) as the discretized problem of the

continuous problem (P ) via the following assumptions:
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Assumption 3.13. (Approximation properties of Gh)

There exist constants cG, cG′ and k such that

‖G(uh)−Gh(uh)‖Z ≤ cGh
k‖uh‖U , uh ∈ Uh

ad (3.20)

‖[G′(ūh)−G′
h(ūh)]u‖Z ≤ cG′hk‖u‖U , ∀u ∈ U (3.21)

hold.

Assumption 3.14. (Approximation properties of fh)

There exist constants cf ′ and k such that

|[f ′(ūh)− f ′h(ūh)]u| ≤ cf ′hk‖u‖U , ∀u ∈ U (3.22)

Throughout the estimation process we will impose the following properties on f ,fh,G

and Gh

Assumption 3.15. (Coercivity, boundedness and Lipschitz-type conditions)

There exist constants L,M,N,R and α > 0 such that

L′′(ūh, µh)v
2 = f ′′(ūh)[v, v] + 〈µh, G′′(ūh)[v, v]〉 ≥ α‖v‖2U , ∀v ∈ U (3.23)

‖[G′
h(u)−G′

h(ūh)]v‖ ≤ L‖u− ūh‖U‖v‖U , ∀v ∈ U, (3.24)

∀u ∈ U : ‖u− ūh‖U ≤ ‖ũh − ūh‖U
|(f ′′(u)− f ′′(ūh))[v1, v2]| ≤M‖u− ūh‖U‖v1‖U‖v2‖U , ∀u ∈ Uad (3.25)

‖u− ūh‖U ≤ R, v1, v2 ∈ U

‖[G′′(u)−G′′(ūh)][v1, v2]‖Z ≤ N‖u− ūh‖U‖v1‖U‖v2‖U , ∀u ∈ Uad (3.26)

‖u− ūh‖U ≤ R, v1, v2 ∈ U

hold.

Remark 3.16. We want to point out

• that assumption (3.23) implies the coercivity of the second order derivative of

f in ūh

• that assumption (3.25) is a confinement of assumption (3.7).

To conclude this section we introduce a class of example, on which we will take a

closer look in Chapter 5:
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Example 3.17. We set U = L2(Ω), Z = L∞(Ω), Ω ⊂ Rn, n = 1, .., 3, and consider

the problem

min J(y, u) :=
1

2
‖y − yd‖2L2(Ω) +

λ

2
‖u− ud‖2L2(Ω)

−∆y + d(x, y) = u in Ω

y(x) = 0 on Γ

y(x) = Gu(x) ≤ cc(x) a.e. in Ω

y(x) = Gu(x) ≥ −cc(x) a.e. in Ω

We set Ĝ as

Ĝ =

{
Gu+ cc

−Gu+ cc

while G is the control-state operator belonging to the PDE above, and with

K = {z ∈ Z : z(x) ≥ 0, a.e. in Ω}

we express the constraints of Example 3.17 as Ĝu ≤K 0.

3.2 Estimation strategy

Our goal is to formulate the final part of a second order sufficient condition for the

optimization problem (P ) and give an estimate of the discrepancy of the continuous

optimal functional value f(ū) and the functional value f(ūh) as well as an estimate

of the error ‖ū− ūh‖U between a continuous local minimizer ū and a discrete local

minimizer ūh. In this section we want to present the main ideas we pursued to

achieve the SSC and the estimate. The strategy can be divided in four major steps.

Step 1: Since we can not expect that ūh is a feasible control for the continuous

problem we start with the construction of a feasible control uδ. We use (3.18) and

set

uδ := ūh + sδdh,

which is feasible for sufficient small h and a adequate choice of s and δ. (See Section

3.1)

Step 2: We derive an estimate of |f(uδ) − f(ūh)| depending on the discretization

parameter h, the functional f and other known quantities and get:

|f(uδ)− f(ūh)| ≤ cfh
k .

Step 3: We consider all feasible u ∈ Uad, which lie on the boundary of B(ūh, r),

and get an inequality of the following structure:

f(u)− f(ūh) ≥ αr2 − βr − γr3 − δ
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with constants α, β, γ, δ, which depend on the quantities L,M ,N ,α,cG,cG′ ,cf ′ ,h,

which we introduced in Section 3.1, and ūh.

Step 4: We show that a continuous local minimizer ū lies in the interior of a ball

with radius r, 0 ≤ r ≤ R, around ūh.

This is equivalent to the fact that the solutions of the restricted problem

min
u∈Uad∩B(ūh,r)

f(u) (Pr)

are inner points of B(ūh, r) = {u ∈ U : ‖u− ūh‖U ≤ r}.
We also show that

αr2 − βr − γr3 − δ ≥ cfh
k

holds for an adequate choice of r, 0 ≤ r ≤ R.

We see that a u on the boundary of B(ūh, r) cannot be optimal for (Pr), which

means it is no local solution of (P ) . This leads to our desired estimates

|f(ū)− f(ūh)| ≤ cfh
k (3.27)

‖ū− ūh‖U ≤ r (3.28)

for an appropriate set of constants cf , k and r.

Lemma 3.18. (Existence of a solution for Pr)

Let ūh be a solution of Ph and r ∈ R with 0 ≤ r ≤ R. If Assumption 3.2 is fulfilled,

then there exists at least one control ū ∈ Uad ∩B(ūh, r) such that

f(ū) ≤ f(u) ∀u ∈ Uad ∩B(ūh, r)

holds.

Proof. Since B(ūh, r) is convex, closed and bounded we know because of Theorem

2.15, Theorem 2.16 and Remark 2.23 that B(ūh, r) is weakly compact. This means

that Uad ∩B(ūh, r) is weakly closed and that we can use the same techniques as in

the proof of Lemma 3.3.



Chapter 4

Derivation of the main result

4.1 Construction of a feasible point

As stated in Chapter 3 ūh is a local minimizer of (Ph). Furthermore we choose a dh,

which fulfilles Assumption 3.11. Then we define uδ as

uδ := ūh + sδdh

for δ ∈ [0, 1].

For every h, we denote m as the maximum of ‖ūh‖U and ‖ūh + dh‖U , i.e.

m = max{‖ūh‖U , ‖ūh + dh‖U}.

We show that the control uδ is feasible for an adequate choice of s and δ:

Theorem 4.1. For sufficient small h, 0 < s ≤ 1 and uδ := ūh + sδdh the following

implication holds:

δ ≥ 2chkm

s(τ − sL‖dh‖2U )
⇒ uδ ∈ Uad (4.1)

21
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Proof.

Guδ = Guδ +Ghuδ −Ghuδ

= Guδ −Ghuδ +Ghūh

+

∫ 1

0
G′

h(ūh + tsδdh)sδdhdt

= Guδ −Ghuδ +Ghūh

+

∫ 1

0
G′

h(ūh + tsδdh)sδdh

+ (G′
h(ūh)−G′

h(ūh))sδdhdt

= Guδ −Ghuδ +Ghūh + δsG′
h(ūh)dh

+ δ

∫ 1

0
[G′

h(ūh + tsδdh)−G′
h(ūh)]sdhdt

That means we have to show that

−Ghūh − δsG′
h(ūh)dh −Guδ +Ghuδ

− δ

∫ 1

0
[G′

h(ūh + tsδdh)−G′
h(ūh)]sdhdt ∈ K

holds. We know that −Ghūh− δsG′
h(ūh)dh− z ∈ K holds for all z ∈ Z : ‖z‖Z ≤ sδτ

because of Assumption 3.11 and the convexity of K. That means if

‖ −Guδ +Ghuδ − δ

∫ 1

0
[G′

h(ūh + tsδdh)−G′
h(ūh)]sdhdt‖Z ≤ δsτ

holds, than Guδ ≤K 0 is fulfilled and uδ is a feasible control. We derive a lower

bound of δ:

‖ −Guδ +Ghuδ − δ

∫ 1

0
[G′

h(ūh + tsδdh)−G′
h(ūh)]sdhdt‖Z

≤ ‖ −Guδ +Ghuδ‖Z + ‖ − δ

∫ 1

0
[G′

h(ūh + tsδdh)−G′
h(ūh)]sdhdt‖Z

≤ cGh
k‖uδ‖U + δ

∫ 1

0
‖[G′

h(ūh + tsδdh)−G′
h(ūh)]sdh‖Zdt

≤ 2cGh
km+ δ2Ls2‖dh‖2U ≤ 2cGh

km+ δLs2‖dh‖2U
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Thus uδ is feasible if

2cGh
km+ δLs2‖dh‖2U ≤ sδτ

⇔ 2cGh
km ≤ sδτ − δLs2‖dh‖2U

⇔ 2cGh
km ≤ δ(sτ − Ls2‖dh‖2U )

⇔ 2cGh
km

s(τ − Ls‖dh‖2U )
≤ δ

To get uδ as close as possible to ūh we want the lower bound for δ to be as small as

possible. To accomplish that we set

s = min{1, τ

2L‖dh‖2U
}.

This leads to

δ =
2cGh

km

τ
2L‖dh‖2U

(τ − τL‖dh‖2U
2L‖dh‖2U

)
=

8cGh
kmL‖dh‖2U
τ2

if we set δ on the lower bound and s = τ
2L‖dh‖2U

< 1 holds. This means for sufficient

small h we get a δ ≤ 1, for which uδ is feasible. With this we have completed Step

1 of the estimation strategy.

4.2 Error of uδ

Now we come to the second step presented in Section 3.2. We will estimate the

difference of the functional values of uδ and ūh. We assume that s = τ
2L‖dh‖2U

< 1

holds, because we get the same results for s = 1 only with a slightly different constant

cf .

Theorem 4.2. For sufficient small h, m = max{‖ūh‖U , ‖ūh + dh‖U},
s = τ

2L‖dh‖2U
and δ =

8cGhkmL‖dh‖2U
τ2

the following inequality holds:

|f(uδ)− f(ūh)| ≤ cfh
k (4.2)
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Proof.

|f(uδ)− f(ūh)| = |
∫ 1

0
f ′(ūh + t(uδ − ūh))(uδ − ūh)dt|

≤
∫ 1

0
|f ′(ūh + t(uδ − ūh))(uδ − ūh)|dt

≤ ‖f ′‖‖ūh − uδ‖U
= ‖f ′‖‖ūh − ūh − sδdh‖U
= ‖f ′‖sδ‖dh‖U

= ‖f ′‖ τ

2L‖dh‖2U
8cGh

kmL‖dh‖2U
τ2

‖dh‖U

= ‖f ′‖4cGh
km‖dh‖U
τ

≤ ‖f ′‖8cGh
km2

τ

≤ cfh
k

This concludes Step 2.

4.3 Error on the boundary of B(ūh, r)

As mentioned before we deal with the third step and derive a lower bound for the

error on the boundary of B(ūh, r). We recall

L(u, µ) = f(u) + 〈µ,Gu〉Z∗,Z , ∀u ∈ Uad

as the Lagrange-function of the problem (P ) and

Lh(u, µ) = fh(u) + 〈µ,Ghu〉Z∗,Z , ∀u ∈ Uh
ad

as the Lagrange-function of the discrete problem (Ph). Note that ūh satisfies a first

order condition, i.e.

〈f ′h(ūh) +G′
h(ūh)

∗µh, u− ūh〉U∗,U ≥ 0, ∀u ∈ U

which leads to

f ′h(ūh) +G′
h(ūh)

∗µh = 0 (4.3)

Now we consider the u ∈ Uad on the boundary of B(ūh, r).
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Theorem 4.3. Let R ≥ r > 0, u ∈ Uad be on the boundary of B(ūh, r), i.e.

‖u− ūh‖U = r, ūh a solution of the discrete problem (Ph) and µh ∈ K∗ a Lagrange

multiplier of Lh with respect to ūh. Then the following inequality holds:

f(u)−f(ūh) ≥
α

2
r2−hkr(cf ′ +cG′‖µh‖Z∗)− r3

6
(M+N‖µh‖Z∗)−cGhk‖µh‖Z∗‖ūh‖U

Proof.

f(u)− f(ūh) ≥ f(u)− f(ūh) + 〈µh, Gu〉Z∗,Z

− 〈µh, Ghūh〉Z∗,Z

= f(u)− f(ūh) + 〈µh, Gu〉Z∗,Z

− 〈µh, Gūh〉Z∗,Z

+ 〈µh, Gūh〉Z∗,Z − 〈µh, Ghūh〉Z∗,Z

= L(u, µh)− L(ūh, µh) + 〈µh, (G−Gh)ūh〉Z∗,Z

This leads to:

f(u)− f(ūh) ≥ L(u, µh)− L(ūh, µh)− 〈µh, (G−Gh)ūh〉Z∗,Z

≥ L′(ūh, µh)(u− ūh)︸ ︷︷ ︸
i)

+
1

2
L′′(ūh, µh)(u− ūh)

2︸ ︷︷ ︸
ii)

+

∫ 1

0

∫ s

0
[L′′(ūh + t(ūh − u), µh)− L′′(ūh, µh)](u− ūh)

2 dtds︸ ︷︷ ︸
iii)

+ 〈µh, (G−Gh)ūh〉Z∗,Z

where L′(u, µ) is the partial derivative in direction of u and

L′′(ūh, µh)(u− ūh)
2 := L′′(ūh, µh)[u− ūh, u− ūh]

Ad i):

L′(ūh, µh)(u− ūh) = f ′(ūh)(u− ūh) +G′(ūh)
∗µh(u− ūh)

= [f ′(ūh)− f ′h(ūh)](u− ūh) + [f ′h(ūh) +G′
h(ūh)

∗µh](u− ūh)︸ ︷︷ ︸
=0 by (4.3)

+ [G′(ūh)
∗ −G′

h(ūh)
∗]µh(u− ūh)

≥ −cf ′hk‖u− ūh‖U − cG′hk‖µh‖Z∗‖u− ūh‖U

Ad ii):

L′′(ūh, µh)(u− ūh)
2 ≥ α‖u− ūh‖2U by (3.23)
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Ad iii): ∫ 1

0

∫ s

0
[L′′(ūh + t(ūh − u), µh)− L′′(ūh, µh)](u− ūh)

2 dtds

=

∫ 1

0

∫ s

0
[f ′′(ūh + t(u− ūh))− f ′′(ūh)](u− ūh)

2

+〈µh, [G′′(ūh + t(u− ūh))−G′′(ūh)](u− ūh)
2〉Z∗,Zdtds

≥ −(
M

6
‖u− ūh‖3U +

N

6
‖µh‖Z∗‖u− ūh‖3U )

For u ∈ Uad with ‖u− ūh‖U = r, these three inequalities imply:

f(u)− f(ūh) ≥
α

2
‖u− ūh‖2U − chk‖u− ūh‖U

− chk‖µh‖Z∗‖u− ūh‖U − M

6
‖u− ūh‖3U

− N

6
‖u− ūh‖3U − 〈µh, (G−Gh)ūh〉Z∗,Z

≥ α

2
r2 − hkr(cf ′ + cG′‖µh‖Z∗)− 1

6
r3(M +N‖µh‖Z∗)

− cGh
k‖µh‖Z∗‖ūh‖U

Now that Step 3 is completed we combine the previous theorems to prove the exis-

tence of a local minimizer ū of (P ) in a neighborhood of ūh:

4.4 Main result

We prove that a local minimizer ū of (P) lies in a ball around ūh such that the

discrepancy of f(ū) and f(ūh) is bounded by cfh
k.

Theorem 4.4. Let s = τ
L‖ũh−ūh‖2U

and δ =
8cGhkmL‖ũh−ūh‖2U

τ2
.

If there is a radius r, 0 ≤ r ≤ R, for which

α

2
r2 − hkr(cf ′ + cG′‖µh‖Z∗)− 1

6
r3(M +N‖µh‖Z∗)− cGh

k‖µh‖Z∗‖ūh‖U − cfh
k > 0

is fulfilled, then

‖ū− ūh‖U < r (4.4)

holds, which means that a local solution ū of (P) lies within a ball of radius r around

ūh.
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Proof. It results from Theorem 4.3 that for every u ∈ Uad with ‖u − ūh‖U = r the

following inequality applies :

f(u)−f(ūh) ≥
αr2

2
−hkr(cf ′ +cG′‖µh‖Z∗)− r3

6
(M+N‖µh‖Z∗)−cGhk‖µh‖Z∗‖ūh‖U

On the other hand we get from Theorem 4.2 that

|f(uδ)− f(ūh)| < cfh
k

holds. For sufficient small h we get that ‖uδ − ūh‖U < r holds, which means that

the optimal solution of the restricted problem

min
u∈Uad∩B(ūh,r)

f(u) (Pr)

is not on the boundary of B(ūh, r), which means that the solution of (Pr) is a local

solution of (P).

With that Step 4 is completed and our strategy was succesful. We derived a sufficient

optimality condition in Theorem 4.4 as well as the error estimate

|f(uδ)− f(ūh)| ≤ cfh
k

in Theorem 4.2.

Remark 4.5. After determining a discrete solution ūh and a Lagrange multiplier

µh we reduce our problem by means of Theorem 4.4. It remains to show existence

of a root of a third order polynomial in the interval [0, R].



Chapter 5

Example

We consider a semilinear elliptic problem:

Example 5.1.

min J(y, u) :=
1

2
‖y − yd‖2L2([0,1]) −

λ

2
‖u− ud‖2L2([0,1])

−∆y + d(x, y) = u in [0, 1]

y(0) = y(1) = 0

y(x) = Gu(x) ≤ cc(x) a.e. in [0, 1]

y(x) = Gu(x) ≥ −cc(x) a.e. in [0, 1]

with the control to state operator G : L2([0, 1]) 7→ H1
0 ([0, 1]) belonging to the ODE

above.

With

Ĝ =

{
Gu+ cc

−Gu+ cc

and

K = {z ∈ Z : z(x) ≥ 0, a.e. in [0, 1]}

we can express these condition via the cone relation :

Ĝu ≤K 0

We set d as :

d(x, y) := y(x) + y3(x)

That leads to :

d′(x, y)h = h(x) + 3y2(x)h(x)

d′′(x, y)(h1(x), h2(x)) = 6y(x)h1(x)h2(x)

28



5.1 Verifying the assumptions 29

where d′ is the partial derivative of d in direction of y.

The first order Frechét-derivative of G is determined as :

G′(û)u = y (5.1)

where y is the weak solution of

−∆y + y + 3ŷ2y = u in Ω

y = 0 on Γ

with G(û) = ŷ.

The second order Frechét-derivative is determined as

G′′(û)[u1, u2] = ẑ (5.2)

where ẑ is the weak solution of

−∆ẑ + ẑ + 3ŷ2ẑ = −6ŷy1y2 in Ω

ẑ = 0 on Γ

with G(û) = ŷ and G′(û)ui = yi for i = 1, 2.

5.1 Verifying the assumptions

We compute the constants of Chapter 4 for this class of examples. These computa-

tions are quite technical even for this rather simple case as we will see. At the end

of this chapter we will give an overview of the results for all involved constants. We

start with several underlying constants, which we utilize for the desired estimates.

5.1.1 Lagrange operator and imbedding constants

We look at the imbedding constants Ip of the imbeddings H1
0 ([0, 1]) ↪→ Lp([0, 1]),

i.e.

‖y‖Lp([0,1]) ≤ Ip‖y‖H1([0,1]) ∀y ∈ H1
0 ([0, 1]).

Computation of Ip

We start with the derivation of I2, which we will then use to compute the imbedding

constants for Lp([0, 1]) with p > 2.

Note that

‖ sin(nπx)‖2L2([0,1]) =

∫ 1

0
sin2(nπx)dx =

1

2
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and

‖ sin(nπx)‖2H1([0,1]) =

∫ 1

0
sin2(nπx) + n2π2 cos2(nπx)dx =

1

2
+ n2π2

1

2
=

1 + n2π2

2

hold. This leads to

‖ sin(nπx)‖L2([0,1]) =
1√

1 + n2π2
‖ sin(nπx)‖H1([0,1]) ≤

1√
1 + π2

‖ sin(nπx)‖H1([0,1])

We set y =
∑∞

n=0 yn sin(nπx) and get :

‖y‖2L2([0,1]) =

∫ 1

0
y2dx =

∫ 1

0

∞∑
n=0

(yn sin(nπx))
2dx

=

∞∑
n=0

y2n

∫ 1

0
sin2(nπx) dx

=

∞∑
n=0

y2n‖ sin(nπx)‖2L2([0,1])

=

∞∑
n=0

y2n
1

1 + n2π2
‖ sin(nπx)‖2H1([0,1])

≤ 1

1 + π2

∞∑
n=0

y2n‖ sin(nπx)‖2H1([0,1])

=
1

1 + π2

∫ 1

0

∞∑
n=0

y2n sin
2(nπx) + y2nn

2π2 cos2(nπx) dx

=
1

1 + π2

∫ 1

0
y2 + (y′)2dx

=
1

1 + π2
‖y‖2H1([0,1])

Thus we see that

‖y‖L2([0,1]) ≤
1√

1 + π2
‖y‖H1([0,1])

holds. This leads to the following imbedding constants:

I2 =
1√

π2 + 1
≈ 0.3033

I4 = (
1

2
I22 )

1
4 = 2−

1
4 I

1
2
2 ≈ 0.4631

I6 = (
9

8
I44 )

1
6 = (

9

16
)
1
6 I

1
3
2 ≈ 0.6105
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Computation of c∞

In the next step we look at the imbedding of H1([0, 1]) ↪→ L∞([0, 1]), on which we

will rely for several of the other constants :

‖z − z̄h‖L∞([0,1]) ≤ c∞‖z − z̄h‖H1([0,1]) (5.3)

Let y be an arbitrary function in H1
0 ([0, 1]), then there exists a x0 ∈ [0, 1] such that

‖y‖L∞([0,1]) = |y(x0)|. We split the estimation process in two cases:

Case 1 : x0 ∈ [0, 12 ]

‖y‖L∞([0,1]) = |y(x0)| = |y(x0)| − y(0)

=

∫ x0

0
|y′(t)| dt ≤

√∫ x0

0
1 dt

√∫ x0

0
y′(t)2 dt

≤

√∫ 1
2

0
1 dt

√∫ 1

0
y′(t)2 dt ≤ 1√

2
‖y‖H1([0,1])

Case 2 : x0 ∈ (12 , 1]

‖y‖L∞([0,1]) = |y(x0)| = |y(x0)| − y(1)

≤
∫ 1

x0

|y′(t)| dt ≤

√∫ 1

x0

1 dt

√∫ 1

x0

y′(t)2 dt

≤

√∫ 1

1
2

1 dt

√∫ 1

0
y′(t)2 dt ≤ 1√

2
‖y‖H1([0,1])

Hence we get

c∞ =
1√
2

Properties of the Lagrange operator

We end this section with some properties of the Lagrange operator.

For

Ay = −∆y = −yxx

there exist constants δ0 and δ1, such that

δ0‖y‖2H1([0,1]) ≤ 〈Ay, y〉

〈Ay1, y2〉 ≤ δ1‖y1‖H1([0,1])‖y2‖H1([0,1]) ∀y ∈ H1
0 ([0, 1])

hold. We see that

〈Ay1, y2〉 = 〈−∆y1, y2〉 = 〈∇y1,∇y2〉 ≤ ‖y1‖H1([0,1])‖y2‖H1([0,1])
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holds, which means δ1 = 1. Furthermore we see that

〈Ay, y〉 = ‖∇y‖2L2([0,1]) = ‖y‖2H1([0,1]) − ‖y‖2L2([0,1]) ≥ (1− I22 )‖y‖2H1([0,1])

holds. Thus we get δ0 = 1− I22 .

For δ0 we get :

δ0 = 1− I22 ≈ 0.9080

5.1.2 Computation of cS

We look at the constant cS from [41] Theorem 4.1:

‖y‖H2([0,1]) ≤ cS‖u‖L2([0,1])

We recall the ODE:

−yxx + y + y3 = u ⇒ yxx = y + y3 − u

This leads to

y2xx = y2 + y3 − uy + y4 + y6 − y3u− uy − uy3 + u2

= y6 + 2y4 + y2 − 2y3u− 2uy + u2

= (y4 + 2y2 + 1)y2 − 2uy(y2 + 1) + u2.

Furthermore ∫ 1

0
y2 + y2x + y4 dx =

∫ 1

0
uy dx

holds. Thus we get

‖y‖2H2([0,1]) =

∫ 1

0
y2 + y2x + y2xx dx =

∫ 1

0
y2 + y2x + y4 + y2xx − y4 dx

=

∫ 1

0
uy + (y4 + 2y2 + 1)y2 − 2uy(y2 + 1) + u2 − y4 dx

=

∫ 1

0
−(2y2 + 1)uy + (y4 + y2 + 1)y2 + u2 dx

=

∫ 1

0
−(2y2 + 1)(y2 + y2x + y4) + (y4 + y2 + 1)y2 + u2 dx

=

∫ 1

0
−2y4 − 2y2y2x − 2y6 − y2 − y2x − y4 + y6 + y4 + y2 + u2 dx

=

∫ 1

0
u2−y6 − 2y4 − 2y2y2x − y2x︸ ︷︷ ︸

≤0

dx ≤
∫ 1

0
u2 dx

≤ ‖u‖2L2([0,1])

⇒
cS ≤ 1
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5.1.3 Computation of cinv

We want to compute the inverse estimate constant cinv:

‖vh‖L∞([0,1]) ≤
cinv√
h
‖vh‖L2([0,1]) ∀vh ∈ Vh

In order to do this we will utilize two known results. Regarding symmetric matrices

we want to recall the Rayleigh quotient and its properties:

Definition 5.2. For a given matrix A ∈ Rn×n and a nonzero vector x ∈ Rn the

Rayleigh quotient R(A, x) is defined as

R(A, x) =
xTAx

xTx
.

Theorem 5.3. The Raleigh quotient fulfills

λmin ≤ R(A, x) ≤ λmax, x ∈ Rn \ {0}

for a symmetric matrix A ∈ Rn×n, its smallest eigenvalue λmin and its largest

eigenvalue λmax.

And regarding estimates of eigenvalues we quote Gershgorins circle theorem:

Theorem 5.4. For every diagonal entry aii of A ∈ Rn×n the Gershgorin circle is

defined as:

B̄i := B̄(aii,
n∑

j=1,j 6=i

|aij |)

and the spectrum of A lies in ∪n
i=1B̄i

Now we derive cinv:

Let vh ∈ Vh, then vh can be written as vh =
∑n

i=1 viφi and the L2-norm can be

derived as

‖vh‖2L2([0,1]) = vTMv

with v = (vi)i=1..n and M = (mij)i,j=1..n with mij = 〈φi, φj〉. We define an L2-type

norm as

‖vh‖2equ = hvT v

and prove that this norm is equivalent to the L2-norm :

We set

A =
1

6


4 1

1 4 1

. . .

. . .

1 4
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and use the Rayleigh quotient to get

λminv
T v ≤ vTAv ≤ λmaxv

T v.

Thus we get

hλminv
T v ≤ vTMv ≤ hλmaxv

T v.

Using Gershgorins circle theorem we get the bounds

λmin ≥ 1

3
and λmax ≤ 1.

This leads to

1

3
‖vh‖2equ ≤ ‖vh‖2L2([0,1]) ≤ ‖vh‖2equ

⇒ ‖vh‖equ ≤
√
3‖vh‖L2([0,1]) ≤

√
3‖vh‖equ.

Now we look at the minimization problem

min

√√√√h

n∑
i=1

v2i = ‖vh‖equ

s.t. ‖vh‖L∞([0,1]) = max
i
vi = m.

It is clear that v̄ with v̄i = m for one certain i ∈ 1, .., n and v̄j = 0, ∀j 6= i, is a

solution of this problem, which leads us to

‖v̄‖equ =
√
hm ≤ ‖vh‖equ ∀vh ∈ Vh with ‖vh‖L∞([0,1]) = m.

Thus we get:

‖vh‖L∞([0,1]) = m =

√
hm√
h

≤ ‖vh‖equ√
h

≤
√
3√
h
‖vh‖L2([0,1])

which means

cinv =
√
3.

5.1.4 Computation of N

We consider Assumption (3.26)

‖[G′′(u)−G′′(ūh)][v1, v2]‖H1([0,1]) ≤ N‖u− ūh‖L2([0,1])‖v1‖U‖v2‖L2[(0,1]),

∀u ∈ Uad, ‖u− ūh‖L2([0,1]) ≤ R, v1, v2 ∈ L2([0, 1])

and want to compute N . From (5.2) we get

(G′′(u)−G′′(ūh))[u1, u2] = z − z̄h
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where z − z̄h is the weak solution of

−∆(z − z̄h) + (z − z̄h) + 3(y2z − ȳ2hz̄h) = −6yy1y2 + 6ȳhyh1yh2 in [0, 1]

z(0)− z̄h(0) = z(1)− z̄h(1) = 0

with G(u) = y, G(ūh) = ȳh, G
′(u)ui = yi and G

′(ūh)u2 = yhi for i = 1, 2 .

This leads to the weak formulation∫ 1

0
∇(z − z̄h)∇v + (z − z̄h)v + 3(y2z − ȳ2hz̄h)v dx =∫ 1

0
−6yy1y2v + 6ȳhyh1yh2v dx, ∀v ∈ H1([0, 1]).

With v = z − z̄h we get∫ 1

0
∇(z − z̄h)

2 + (z − z̄h)
2 + 3(y2z − ȳ2hz̄h)(z − z̄h) dx =∫ 1

0
−6(z − z̄h)(yy1y2 − ȳhyh1yh2) dx.

This is equivalent to:∫ 1

0
∇(z − z̄h)

2 dx + 〈d′(x, y)z − d′(x, ȳh)z̄h, z − z̄h〉 =∫ 1

0
−6(z − z̄h)(yy1y2 − ȳhyh1yh2) dx

We see that the following equation applies:

〈d′(x, y)z − d′(x, ȳh)z̄h, z − z̄h〉 = 〈d′(x, ȳh)(z − z̄h), z − z̄h〉
+ 〈d′(x, y)− d′(x, ȳh)z, z − z̄h〉

=

∫ 1

0
(z − z̄h)

2 + 3ȳ2h(z − z̄h)
2

+ 3y2z(z − z̄h)− 3ȳ2hz(z − z̄h) dx

This results in

‖z − z̄h‖2H1([0,1]) +

∫ 1

0
3ȳ2h(z − z̄h)

2 dx = −
∫ 1

0
3(z − z̄h)[(y

2z − ȳ2hz)

+ 2yy1y2 − 2ȳhyh1yh2] dx

and we gain

‖z − z̄h‖2H1([0,1]) ≤ |3
∫ 1

0
(z − z̄h)[y

2z − ȳ2hz + 2yy1y2 − 2ȳhyh1yh2] dx|
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from the fact that
∫ 1
0 3ȳ2h(z − z̄h)

2 dx ≥ 0. We get the estimate

‖z − z̄h‖2H1([0,1]) ≤ 3‖z − z̄h‖L∞([0,1])(

∫ 1

0
|y2z − ȳ2hz + 2yy1y2 − 2ȳhyh1yh2| dx)

≤ 3c∞‖z − z̄h‖H1([0,1])[|〈y2 − ȳ2h, z〉|+ 2

∫ 1

0
|yy1y2 − ȳhyh1yh2| dx]

which leads to

‖z − z̄h‖H1([0,1]) ≤ 3c∞|〈y2 − ȳ2h, z〉|+ 6c∞

∫ 1

0
|yy1y2 − ȳhyh1yh2| dx|

= 3c∞|〈y2 − ȳ2h, z〉|+ 6c∞

∫ 1

0
|y(y1y2 − yh1y2)

+ yyh1y2 − ȳh(yh1yh2 − yh1y2)− ȳhyh1y2| dx|

= 3c∞|〈y2 − ȳ2h, z〉|+ 6c∞

∫ 1

0
|y([G′(u)−G′(ūh)]u1G

′(u)u2)

− ȳh([G
′(ūh)−G′(u)]u2G

′(ūh)u1)

+ (y − ȳh)(G
′(ūh)u1G

′(u)u2)| dx|

≤ 3c∞

[
|〈y2 − ȳ2h, z〉|

+ 2
[
‖y‖L∞([0,1])‖[G′(u)−G′(ūh)]u1‖L∞([0,1])‖G′(u)‖‖u2‖L2([0,1])

+ ‖ȳh‖L∞([0,1])‖[G′(ūh)−G′(u)]u2‖L∞([0,1])‖G′(ūh)‖‖u1‖L2([0,1])

+ ‖y − ȳh‖L∞([0,1])‖G′(ūh)‖L2([0,1])→L∞([0,1])‖u1‖L2([0,1])

‖G′(u)‖L2([0,1])→L∞([0,1])‖u2‖L2([0,1])

]]
.

We assume

‖G′(u)‖L2([0,1])→L∞([0,1]) ≤ K ′ (5.4)

‖G′′(u)‖L2([0,1])→L(L2([0,1]),L∞([0,1])) ≤ K ′′ (5.5)

‖Gu−Gūh‖L∞([0,1]) ≤ LG‖u− ūh‖L2([0,1]) (5.6)

‖y2 − ȳ2h‖L2([0,1]) = ‖G(u)2 −G(ūh)
2‖L2([0,1]) ≤ LG2‖u− ūh‖L2([0,1]) (5.7)

‖[G′(ūh)−G′(u)]ui‖L∞([0,1]) ≤ LG′‖u− ūh‖L2([0,1])‖ui‖L2([0,1]) (5.8)

with ‖u− ūh‖L2([0,1]) ≤ R for (5.3)-(5.8) and u ∈ Uad for (5.6)-(5.8) and get

‖z − z̄h‖H1([0,1]) ≤ 3c∞(‖y2 − ȳ2h‖L2([0,1])‖G′′(u)‖‖u1‖L2([0,1])‖u2‖L2([0,1])

+ 2(2‖cc‖L∞([0,1])LG′K ′‖u− ūh‖L2([0,1])‖u1‖L2([0,1])‖u2‖L2([0,1])

+ LG(K
′)2‖u− ūh‖L2([0,1])‖u1‖L2([0,1])‖u2‖L2([0,1])))

≤ 3c∞‖u− ūh‖L2([0,1])‖u1‖L2([0,1])‖u2‖L2([0,1])

(LG2K ′′ + 4‖cc‖L∞([0,1])LG′K ′ + 2LG(K
′)2). (5.9)
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Computation of K ′

To compute K ′ we consider the weak formulation of (5.1)

(∇y,∇v) + (y, v) + (3ŷ2y, v) = (u, v)

and set v = y which leads to

(∇y,∇y) + (y, y) + (3ŷ2y, y)︸ ︷︷ ︸
≥0

= (u, y)

⇒
‖y‖2H1([0,1]) ≤ (u, y) ≤ ‖u‖L2([0,1])‖y‖L2([0,1]) ≤ ‖u‖L2([0,1])‖y‖H1([0,1])

⇒
‖y‖H1([0,1]) ≤ ‖u‖L2([0,1]) ⇒ ‖G′(û)‖ ≤ K ′ = 1

Computation of K ′′

To compute K ′′ we use the same strategy:

We consider the weak formulation belonging to (5.2)

(∇ẑ,∇v) + (ẑ, v) + (3ŷ2ẑ, v) = (−6ŷy1y2, v)

and set v = ẑ ⇒

(∇ẑ,∇ẑ) + (ẑ, ẑ) + (3ŷ2ẑ, ẑ)︸ ︷︷ ︸
≥0

= (−6ŷy1y2, ẑ)

⇒

‖ẑ‖2H1([0,1]) ≤ |(−6ŷy1y2, ẑ)|

≤ ‖ẑ‖L∞([0,1])

∫ 1

0
|6GûG′(û)u1G

′(û)u2| dx

≤ 6c∞‖ẑ‖H1([0,1])‖Gû‖L∞([0,1])K
′‖u1‖L2([0,1])K

′‖u2‖L2([0,1])

⇒

‖ẑ‖H1([0,1]) ≤ 6c∞‖Gû‖L∞([0,1])‖u1‖L2([0,1])‖u2‖L2([0,1])

≤ 6c∞cSL∞‖û‖L2([0,1])‖u1‖L2([0,1])‖u2‖L2([0,1])

⇒
‖G′′(û)‖ ≤ K ′′ = 6c∞cSL∞

with

cSL∞ = 4
I26
δ0

|Ω|
1
6 .
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(See [41] Corollary 8.1)

With

cSL∞ ≈ 1.6419

we get

K ′′ ≈ 6.9660.

Computation of LG

For (5.6) we get from [41] Lemma 4.2 that

LG =
I2
δ0

≈ 0.3340 (5.10)

holds.

Computation of LG2

For (5.7) we see that

‖y2 − ȳ2h‖L2([0,1]) ≤ ‖y − ȳh‖L4([0,1])‖y + ȳh‖L4([0,1])

≤ ‖y − ȳh‖L∞([0,1])‖y + ȳh‖L∞([0,1])

≤ LG‖u− ūh‖L2([0,1])‖y + ȳh‖L∞([0,1])

holds. Thus we need to estimate ‖y + ȳh‖L∞([0,1]):

‖y + ȳh‖L∞([0,1]) ≤ ‖y‖L∞([0,1]) + ‖ȳh‖L∞([0,1])

This means that we have to find an estimate of ‖y‖L∞([0,1]) for all y with G(u) = y

and ‖u− ūh‖L2([0,1]) ≤ R. We know that

‖y‖L∞([0,1]) ≤
1√
2
‖y‖H1([0,1])

holds. Hence we get

‖y + ȳh‖L∞([0,1]) ≤
1√
2
(‖y‖H1([0,1]) + ‖ȳh‖H1([0,1]))

Now we want to derive a upper bound for ‖y‖H1([0,1]) and ‖ȳh‖H1([0,1]) respectively:

We consider the weak formulation of the underlying problem:

(∇y,∇v) + (y, v) + (y3, v) = (u, v)



5.1 Verifying the assumptions 39

With v = y we get:

‖y‖2H1([0,1]) + (y3, y)︸ ︷︷ ︸
≥0

= (u, y)

⇒ ‖y‖2H1([0,1]) ≤ ‖u‖L2([0,1])‖y‖H1([0,1])

⇒ ‖y‖H1([0,1]) ≤ ‖u‖L2([0,1])

Thus we need to find an estimate for ‖u‖L2([0,1]). Obviously

‖u‖L2([0,1]) ≤ ‖ūh‖L2([0,1]) +R

holds ∀u ∈ BR(ūh). Hence,

‖y‖H1([0,1]) ≤ ‖ūh‖L2([0,1]) +R

holds. This leads to

‖y + ȳh‖L∞([0,1]) ≤
√
2(‖ūh‖L2([0,1]) +R).

Finally we see that

‖y2 − ȳ2h‖L2([0,1]) ≤
√
2LG‖u− ūh‖L2([0,1])(‖ūh‖L2([0,1]) +R)

holds and thus we get

LG2 =
√
2LG(‖ūh‖L2([0,1]) +R).

Computation of LG′

LG′ from (5.8) can be derived as follows:

We denote

G′(u)ui = ŷ

and

G′(ūh)ui = ỹ

as the weak solutions of

−∆ŷ + ŷ + 3y2ŷ = ui

respectively

−∆ỹ + ỹ + 3ȳ2hỹ = ui.

This leads to

−∆(ŷ − ỹ) + ŷ − ỹ + 3(y2ŷ − ȳ2hỹ) = 0
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and the weak formulation reads as

(∇(ŷ − ỹ),∇v) + (ŷ − ỹ, v) + (3(y2ŷ − ȳ2hỹ, v)︸ ︷︷ ︸
=〈d′(x,y)ŷ−d′(x,ȳh)ỹ,v〉

= 0, ∀v ∈ H1
0 ([0, 1]).

We set v = ŷ − ỹ and get

‖∇(ŷ − ỹ)‖2 + 〈d′(x, y)ŷ − d′(x, ȳh)ỹ, ŷ − ỹ〉 = 0

We consider the second term of this equation:

〈d′(x, y)ŷ − d′(x, ȳh)ỹ, ŷ − ỹ〉 = 〈d′(x, ȳh)(ŷ − ỹ), ŷ − ỹ〉
+ 〈d′(x, y)− d′(x, ȳh)ŷ, ŷ − ỹ〉

=

∫ 1

0
(ŷ − ỹ)2 + 3ȳ2h(ŷ − ỹ)2 + 3(y2 − ȳ2h)ŷ(ŷ − ỹ)dx

This results in:

‖∇(ŷ − ỹ)‖2 + ‖ŷ − ỹ‖2 +
∫ 1

0
3ȳ2h(ŷ − ỹ)2︸ ︷︷ ︸

≥0

= −3

∫ 1

0
(y2 − ȳ2h)ŷ(ŷ − ỹ)dx

⇒ ‖ŷ − ỹ‖2H1([0,1] ≤ |3
∫ 1

0
(y2 − ȳ2h)ŷ(ŷ − ỹ)dx|

≤ 3‖y2 − ȳ2h‖L2([0,1])‖ŷ‖L2([0,1])‖ŷ − ỹ‖L∞([0,1])

≤ 3‖y2 − ȳ2h‖L2([0,1])‖G′(u)‖L‖ui‖L2([0,1])c∞‖ŷ − ỹ‖H1([0,1])

⇒ ‖ŷ − ỹ‖H1([0,1]) ≤ 3LG2c∞‖u− ūh‖K ′‖ui‖L2([0,1])

⇒ LG′ = 3c∞K
′LG2

Final result

If we combine all the results above we get :

N = 3c∞(LG2K ′′ + 4‖cc‖L∞([0,1])LG′ + 2LG(K
′)2)

=
3√
2

[
24(

9

16
)
1
3
(π2 + 1)(π2 + 1)

1
6

π4
(‖ūh‖L2([0,1]) +R)

+12‖cc‖L∞([0,1])

√
π2 + 1

π2
(‖ūh‖L2([0,1]) +R) + 2

√
π2 + 1

π2

]
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5.1.5 Computation of L

We consider Assumption (3.24)

‖[G′
h(u)−G′

h(ūh)]v‖H1([0,1)] ≤ L‖u− ūh‖L2([0,1])‖v‖L2([0,1]), ∀v ∈ L2([0, 1]),

∀u ∈ L2([0, 1]) : ‖u− ūh‖L2([0,1]) ≤ ‖ũh − ūh‖L2([0,1])

and compute L in a analogous way to N . We set

G′
h(u)w = zu : −∆zu + zu + 3ŷ2uzu = w

with Gh(u) = ŷu and get

[G′
h(u)−G′

h(v)]w = zu − zv : −∆(zu − zv) + (zu − zv) + 3ŷ2uzu − 3ŷ2vzv = 0

∀u, v ∈ U . We consider the weak formulation

(∇(zu − zv), t) + (zu − zv, t) + 3(ŷ2uzu − ŷ2vzv, t) = 0, ∀t ∈ Zh

and with t = zu − zv we get

(∇(zu − zv),∇(zu − zv)) + (zu − zv, zu − zv) + 3(ŷ2uzu − ŷ2vzv, zu − zv) = 0

⇒ ∫ 1

0
∇(zu − zv)

2 + (zu − zv)
2 + 3(ŷ2uzu − ŷ2vzv)(zu − zv) dx = 0

⇒ ∫ 1

0
∇(zu − zv)

2 dx + 〈d′(x, ŷu)zu − d′(x, ŷv)zv, zu − zv〉 = 0

For 〈d′(x, ŷu)zu − d′(x, ŷv)zv, zu − zv〉 we get the following equation:

〈d′(x, ŷu)zu − d′(x, ŷv)zv, zu − zv〉 = 〈d′(x, ŷv)(zu − zv), zu − zv〉
+ 〈[d′(x, ŷu)− d′(x, ŷv)]zu, zu − zv〉

=

∫ 1

0
(zu − zv)

2 + 3ŷ2v(zu − zv)
2

+ 3(ŷ2u − ŷ2v)zu(zu − zv) dx

⇒ ∫ 1

0
∇(zu − zv)

2 + (zuzv)
2 + 3ŷ2v(zu − zv)

2 + 3(ŷ2u − ŷ2v)zu(zu − zv) dx = 0

which is equivalent to

‖zu − zv‖2H1([0,1]) +

∫ 1

0
3ŷ2v(zu − zv)

2 dx︸ ︷︷ ︸
≥0

+

∫ 1

0
3(ŷ2u − ŷ2v)zu(zu − zv) dx = 0
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This leads to

‖zu − zv‖2H1([0,1]) ≤ | − 3

∫ 1

0
(ŷ2u − ŷ2v)zu(zu − zv) dx|

≤ 3‖zu − zv‖L∞([0,1])

∫
[0,1]

|(ŷ2u − ŷ2v)zu| dx

≤ 3c∞‖zu − zv‖H1([0,1])‖ŷ2u − ŷ2v‖L2(Ω)‖zu‖L2([0,1])

Thus we get

‖zu − zv‖H1([0,1]) ≤
3√
2
‖Gh(u)

2 −Gh(v)
2‖L2([0,1])‖G′

h(u)w‖L2([0,1])

≤ 3√
2
LG2

h
‖u− v‖L2([0,1])K

′
h‖w‖L2([0,1])

under the assumptions

‖Gh(u)
2 −Gh(v)

2‖L2([0,1]) ≤ LG2
h
‖u− v‖L2([0,1]) (5.11)

‖G′
h(u)‖ ≤ K ′

h (5.12)

Computation of K ′
h

We consider the weak formulation

(∇zu,∇t) + (zu, t) + (3ŷ2uzu, t) = (w, t)

to verify (5.12), set t = zu and get

(∇zu,∇zu) + (zu, zu) + (3ŷ2uzu, zu)︸ ︷︷ ︸
≥0

= (w, zu).

This leads to

‖zu‖2H1([0,1]) ≤ (w, zu) ≤ ‖w‖L2([0,1])‖zu‖L2([0,1]) ≤ ‖w‖L2([0,1])‖zu‖H1([0,1])

⇒
‖zu‖H1([0,1]) ≤ ‖w‖L2([0,1])

Thus we see that

‖G′
h(u)‖ ≤ 1

holds and get

K ′
h = 1.
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Computation of LG2

To proof (5.11) we fix v at ūh and consider only u ∈ U which fulfill

‖u− ūh‖L2([0,1]) ≤ ‖ũh − ūh‖L2([0,1]). We get :

‖Gh(u)
2 −Gh(v)

2‖L2([0,1]) ≤ ‖y2u − y2ūh
‖L2([0,1])

≤ ‖yu − yūh
‖L2([0,1])‖yu + yūh

‖L2([0,1])

≤ ‖yu − yūh
‖L∞([0,1])‖yu + yūh

‖L∞([0,1])

≤ LGh
‖u− ūh‖L2([0,1])‖yu + yūh

‖L∞([0,1])

with

‖yu − yūh
‖L∞([0,1]) ≤ LGh

‖u− ūh‖L2([0,1]) (5.13)

∀u ∈ U : ‖u− ūh‖L2([0,1]) ≤ ‖ũh − ūh‖L2([0,1])

Since LG only depends on the imbedding constant I2 and the Laplace operator ∆,

LG = LGh
holds.

Now we consider ‖yu + yūh
‖L∞([0,1]). We see that

‖yu + yūh
‖L∞([0,1]) ≤ ‖yu‖L∞([0,1]) + ‖yūh

‖L∞([0,1])

≤ 1√
2
(‖yu‖H1([0,1]) + ‖yūh

‖H1([0,1]))

holds. The weak formulation reads as

(∇yu,∇t) + (yu, t) + (y3u, t) = (u, t).

With t = yu this leads to

(∇yu,∇yu) + (yu, yu) + (y3u, yu) = (u, yu).

Thus we get

‖yu‖2H1([0,1]) ≤ (‖u‖L2([0,1]))‖yu‖L2([0,1])

≤ (‖u‖L2([0,1]))‖yu‖H1([0,1])

⇒ ‖yu‖H1([0,1]) ≤ ‖u‖L2([0,1]).

Since the considered u fulfill ‖u− ūh‖L2([0,1]) ≤ ‖ũh − ūh‖L2([0,1]) it is obvious that

‖u‖L2([0,1]) ≤ ‖ūh‖L2([0,1]) + ‖ũh − ūh‖L2([0,1])

holds. Thus

‖yu‖H1([0,1]) ≤ ‖ūh‖L2([0,1]) + ‖ũh − ūh‖L2([0,1])
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holds, which leads to

‖y2u − y2v‖L2([0,1]) ≤ LGh
‖u− ūh‖L2([0,1])

2√
2
(‖ūh‖L2([0,1]) + ‖ũh − ūh‖L2([0,1]))

=
√
2LGh

(‖ūh‖L2([0,1]) + ‖ũh − ūh‖L2([0,1]))‖u− ūh‖L2([0,1])

∀u ∈ U : ‖u− ūh‖L2([0,1]) ≤ ‖ũh − ūh‖L2([0,1]).

Hence we see

LG2
h
=

√
2LGh

(‖ūh‖L2([0,1]) + ‖ũh − ūh‖L2([0,1])).

Final result

L = 3c∞LG2
h
K ′

h

= 3

√
π2 + 1

π2
(‖ūh‖L2([0,1]) +R)

5.1.6 Computation of M

First we prove the following inequaility

‖Gu−Gūh‖L∞([0,1]) ≤
3√
2
‖u− ūh‖L2([0,1]) , ∀u ∈ U : ‖u− ūh‖L2([0,1]) ≤ R

Since G is Fréchet-differentiable we know that

Gu = Gūh +G′(ūh)(u− ūh) + r(ūh, u− ūh)

holds, which we reformulate to

Gu−Gūh = G′(ūh)(u− ūh) + r(ūh, u− ūh).
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This leads to

‖Gu−Gūh‖L∞([0,1]) ≤ ‖G′(ūh)(u− ūh)‖L∞([0,1]) + ‖r(ūh, u− ūh)‖L∞([0,1])

= ‖G′(ūh)(u− ūh)‖L∞([0,1]) + ‖Gu−Gūh −G′(ūh)(u− ūh)‖L∞([0,1])

≤ 1√
2
(‖G′(ūh)(u− ūh)‖H1([0,1])

+ ‖Gu−Gūh −G′(ūh)(u− ūh)‖H1([0,1]))

≤ 1√
2
(‖G′(ūh)‖L2([0,1])→H1([0,1])︸ ︷︷ ︸

≤1

‖u− ūh‖L2([0,1])

+ sup
τ∈[0,1]

‖G′(ūh + τ(u− ūh))−G′(ūh)‖L2([0,1])→H1([0,1])‖u− ūh‖L2([0,1]))

≤ 1√
2
(‖u− ūh‖L2([0,1])

+ sup
τ∈[0,1]

‖G′(ūh + τ(u− ūh))‖L2([0,1])→H1([0,1])︸ ︷︷ ︸
≤1

‖u− ūh‖L2([0,1])

+ ‖G′(ūh)‖L2([0,1])→H1([0,1])︸ ︷︷ ︸
≤1

‖u− ūh‖L2)

≤ 3√
2
‖u− ūh‖L2 .

Now we consider

|(f ′′(u)− f ′′(ūh))[v1, v2]| ≤M‖u− ūh‖L2([0,1])‖v1‖L2([0,1])‖v2‖L2([0,1])

∀u ∈ BR(ūh) and v1, v2 ∈ L2([0, 1])

with

f(u) =
1

2
‖Gu− yd‖L2([0,1]) +

λ

2
‖u‖L2([0,1])

and compute the derivatives of first and second order:

f ′(u)v1 = (G′(u)v1, Gu− yd)L2([0,1]) + λ(v1, u)L2([0,1])

f ′′(u)[v1, v2] = (G′′(u)[v1, v2], Gu− yd)L2([0,1])

+ (G′(u)v2, G
′(u)v1)L2([0,1]) + λ(v1, v2)L2([0,1])
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Thus we get

[f ′′(u)− f ′′(ūh)][v1, v2] = (G′′(u)[v1, v2], Gu− yd)L2([0,1]) + (G′(u)v2, G
′(u)v1)L2([0,1])

− (G′′(ūh)[v1, v2], Gūh − yd)L2([0,1]) − (G′(ūh)v2, G
′(ūh)v1)L2([0,1])

= (G′′(u)[v1, v2], Gu−Gūh +Gūh − yd)L2([0,1])

− (G′′(ūh)[v1, v2], Gūh − yd)L2([0,1])

+ (G′(u)v2, G
′(u)v1 −G′(ūh)v1 +G′(ūh)v1)L2([0,1])

− (G′(ūh)v2, G
′(ūh)v1)L2([0,1])

= (G′′(u)[v1, v2], Gu−Gūh)L2([0,1])

+ (G′′(u)[v1, v2]−G′′(ūh)[v1, v2], Gūh − yd)L2([0,1])

+ (G′(u)v2, G
′(u)v1 −G′(ūh)v1)L2([0,1])

+ (G′(u)v2 −G′(ūh)v2, G
′(ūh)v1)L2([0,1])

≤ ‖G′′(u)[v1, v2‖L2([0,1])‖Gu−Gūh‖L2([0,1])

+ ‖[G′′(u)−G′′(ūh)][v1, v2]‖L2([0,1])‖Gūh − yd‖L2([0,1])

+ ‖G′(u)v2‖L2([0,1])‖G′(u)v1 −G′(ūh)v1‖L2([0,1])

+ ‖G′(u)v2 −G′(ūh)v2‖L2([0,1])‖G′(ūh)v1‖L2([0,1])

≤ K ′′‖v1‖L2([0,1])‖v2‖L2([0,1])‖Gu−Gūh‖L∞([0,1])

+N‖u− ūh‖L2([0,1])‖v1‖L2([0,1])‖v2‖L2([0,1])‖Gūh − yd‖L2([0,1])

+ ‖v2‖L2([0,1])L‖u− ūh‖L2([0,1])‖v1‖L2([0,1])

+ L‖u− ūh‖L2([0,1])‖v2‖L2([0,1])‖v1‖L2([0,1])

≤ (
3√
2
K ′′ +N‖Gūh − yd‖L2([0,1]) + 2L)

‖u− ūh‖L2([0,1])‖v1‖L2([0,1])‖v2‖L2([0,1]).

5.1.7 Computation of cG

We consider

‖G(uh)−Gh(uh)‖L∞([0,1]) ≤ cGh‖uh‖L2([0,1]) , ∀uh ∈ Uh
ad

and set

G(uh) = z : −∆z + z + z3 = uh

⇔ (∇z,∇v) + (z, v) + (z3, v) = (uh, v) , ∀v ∈ V

Gh(uh) = zh : −∆zh + zh + z3h = uh

⇔ (∇zh,∇vh) + (zh, vh) + (z3h, vh) = (uh, vh) , ∀vh ∈ Vh.
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We get

‖z−zh‖L∞([0,1]) ≤ ‖z − Ihz‖L∞([0,1]) + ‖Ihz − zh‖L∞([0,1])

≤ 1√
2
‖z − Ihz‖H1([0,1]) +

√
3√
h
‖Ihz − zh‖L2([0,1])

≤ 2√
2
h‖z‖H2([0,1]) +

√
3√
h
(‖Ihz − z‖L2([0,1]) + ‖z − zh‖L2([0,1]))

≤
√
2hcS‖uh‖L2([0,1]) +

√
3√
h
(h2‖z‖H2([0,1]) + cL2cSh

2‖uh‖L2([0,1]))

≤
√
2h‖uh‖L2([0,1]) +

√
3√
h
(h2‖uh‖L2([0,1]) + h2cL2([0,1])‖uh‖L2([0,1]))

= (
√
2 +

√
3
√
h+

√
3
√
hcL2([0,1]))‖uh‖L2([0,1])h

=

(√
2 +

√
3
√
h+

√
3
√
h
(δ1c2 + cfc1)

2

δ0

√
c2L + (1 + (1 + 3c2c)cL)

2

)
h‖uh‖L2([0,1])

=

(
√
2 +

√
3
√
h+

√
3
√
h(3 + 3c2c)

2 1 + π2

π2

√
I22
δ20

+ (1 + (1 + 3c2c)
I2
δ0
)2

)
h‖uh‖L2([0,1]).

5.1.8 Computation of cG′

We look at the second approximation property

‖[G′(ūh)−G′
h(ūh)]u‖L∞([0,1]) ≤ cG′hk‖u‖L2([0,1]), ∀u ∈ L2([0, 1]).

We set

G′(ūh)u = z

and

G′
h(ūh)u = zh

with z solution of

−zxx + z + 3ȳ2hz = u in [0, 1]

z(0) = z(1) = 0

and zh solution of

−(zh)xx + zh + 3ȳ2hzh = u in [0, 1]

zh(0) = zh(1) = 0.
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We write this equations as

(Az)(x) + f(y(x)) = u(x) in [0, 1]

with

Az = −∆z = −zxx and f(z) = z + 3ȳ2hz.

Now we use Lemma 5.1 in [41] to derive the following estimate:

‖z − zh‖L∞([0,1]) ≤
1√
2
‖z − zh‖H1([0,1])

≤ 1√
2

δ1c2 + c3c1
δ0

h‖G′(ūh)‖L2→H2‖u‖L2([0,1])

with

δ0 = 1− I22 =
π2

1 + π2

δ1 = 1

c1 = 1

c2 = 1 +

√
7

3

c3 = 1 + 3c2c .

c1 and c2 fulfill the interpolation properties of assumption (A3) in [41],i.e.

‖y − Ihy‖L2([0,1]) ≤ c1h
2‖y‖H2([0,1])

‖y − Ihy‖H1([0,1]) ≤ c2h‖y‖H2([0,1])

which is proven in [8] Chapter 4.5.

c3 has to fulfill assumption (A2) of [41], i.e. for a function f = f(y) : R → R of

class C2 with f(0) = 0, there exists a constant c3 such that

|f(y1)− f(y2)| ≤ c3|y1 − y2|

holds for all y1, y2 ∈ R. We want to use this result for the first derivative of G, which

means we have to show that this assumption holds for f(y) = y + 3y2hy, y ∈ R. We

get for y1, y2 ∈ R :

|f(y1)− f(y2)| = |y1 + 3y2hy1 − y2 − 3y2hy2|
= |(1 + 3y2h)y1 − (1 + 3y2h)y2| = (1 + 3y2h)|y1 − y2|
≤ (1 + 3c2c)|y1 − y2|

We utilized that yh is a solution of the optimal control problem and thus fullfills the

pointwise state constraint |y(x)| ≤ cc.
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At last we have to compute the operator norm ‖G′(ūh)‖L2→H2 :

We set

G′(ūh)u = z

with

−zxx + z + 3ȳ2hz = u in [0, 1]

z(0) = z(1) = 0.

This is equivalent to

zxx = z + 3ȳ2hz − u

wich leads to

z2xx = z + 3ȳ2hz
2 − uz + 3ȳ2h + 9ȳ4hz

2 − 3ȳ2hzu− uz − 3ȳ2hzu+ u2

= z2 + 6ȳ2hz
2 + 9ȳ2h − 6ȳ2hzu− 2zu+ u2

= (1 + 6ȳ2h + 9ȳ4h)z
2 − (6ȳ2h + 2)uz + u2.

Thus we get

‖G′(ūh)u‖2H2([0,1]) =

∫ 1

0
z2 + z2x + z2xx dx

=

∫ 1

0
z2 + z2x + 3ȳ2hz

2 + z2xx − 3ȳ2hz
2 dx

=

∫ 1

0
uz + (1 + 6ȳ2h + 9ȳ4h)z

2 − (6ȳ2h + 2)uz + u2 − 3ȳ2hz
2 dx

=

∫ 1

0
(1 + 6ȳ2h + 9ȳ4h)z

2 − (6ȳ2h + 1)uz + u2 − 3ȳ2hz
2 dx

=

∫ 1

0
(1 + 6ȳ2h + 9ȳ4h)z

2 − (6ȳ2h + 1)(z2 + z2x + 3ȳ2hz
2) + u2 − 3ȳ2hz

2 dx

=

∫ 1

0
(1 + 6ȳ2h + 9ȳ4h)z

2 − (6ȳ2h + 1)z2 − (6ȳ2h + 1)z2x

− 18ȳ4hz
2 − 3ȳ2hz

2 + u2 − 3ȳ2hz
2 dx

=

∫ 1

0
u2−9ȳ2hz

2 − (6ȳ2h + 1)z2x − 6ȳ2hz
2︸ ︷︷ ︸

≤0

dx

≤
∫ 1

0
u2 dx = ‖u‖2L2([0,1])

which means

‖G′(ūh)u‖H2([0,1]) ≤ ‖u‖L2([0,1])

⇒ ‖G′(ūh)‖L2([0,1])→H2([0,1]) ≤ 1.
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Finally we get

‖z − zh‖L∞([0,1]) ≤
1√
2

1 +
√

7
3 + 1 + 3c2c
π2

1+π2

h‖u‖L2([0,1])

=
(1 + π2)(2 +

√
7
3 + 3c2c)

π2
√
2

h‖u‖L2([0,1]).

5.1.9 Computation of cf

Because of Theorem 4.2 we know that cf can be derived as

cf = ‖f ′‖8cGm
2

τ

with

‖f ′‖ ≥ max
t∈[0,1]

‖f ′(ūh + tdh)‖L(L2([0,1]),R).

We estimate ‖f ′(uh)‖L(L2([0,1]),R) with uh = ūh + tdh, t ∈ [0, 1]. With

f ′(ūh)u =

∫ 1

0
G′(ūh)u(Gūh − yd) + λu(ūh − ud) dx

≤ |
∫ 1

0
G′(ūh)u(Gūh − yd) dx|+ λ|

∫ 1

0
u(ūh − ud) dx|

≤ ‖G′(ūh)u‖L2([0,1])‖Gūh − yd‖L2([0,1]) + λ‖u‖L2([0,1])‖ūh − ud‖L2([0,1])

≤ ‖u‖L2([0,1])(‖Gūh − yd‖L2([0,1]) + λ‖ūh − ud‖L2([0,1]))

we see that

‖f ′(uh)‖L(L2([0,1]),R) ≤ ‖Guh − yd‖L2([0,1]) + λ‖uh − ud‖L2([0,1])

holds.

5.1.10 Computation of cf ′

We derive cf ′ of

|[f ′(ūh)− f ′h(ūh)]u| ≤ cf ′hk‖u‖L2([0,1]), ∀u ∈ L2([0, 1])

with

f(u) =
1

2
‖Gu− yd‖2L2([0,1]) +

λ

2
‖u‖2L2([0,1])

and

fh(u) =
1

2
‖Ghu− yd‖2L2([0,1]) +

λ

2
‖u‖2L2([0,1]).
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We compute the derivatives

f ′(ūh)u = (G′(ūh)u,Gūh − yd)L2([0,1]) + λ(u, ūh)L2([0,1])

and

f ′h(ūh)u = (G′
h(ūh)u,Ghūh − yd)L2([0,1]) + λ(u, ūh)L2([0,1]).

Thus we get :

f ′(ūh)u− f ′h(ūh)u = (G′(ūh)u,Gūh − yd)L2([0,1]) − (G′
h(ūh)u,Ghūh − yd)L2([0,1])

= (G′(ūh)u,Gūh − yd)L2([0,1]) − (G′
h(ūh)u,Ghūh − yd)L2([0,1])

+ (G′(ūh)u,Ghūh − yd)L2([0,1]) − (G′(ūh)u,Ghūh − yd)L2([0,1])

= (G′(ūh)u,Gūh −Ghūh)L2([0,1]) + (G′(ūh)u−G′
h(ūh)u,Ghūh − yd)L2([0,1])

≤ ‖G′(ūh)u‖L2([0,1])‖Gūh −Ghūh‖L2([0,1])

+ ‖G′(ūh)u−G′
h(ūh)u‖L2([0,1])‖Ghūh − yd‖L2([0,1])

≤ ‖G′(ūh)u‖H1([0,1])‖Gūh −Ghūh‖L∞([0,1])

+ ‖G′(ūh)u−G′
h(ūh)u‖L∞([0,1])‖Ghūh − yd‖L∞([0,1])

≤ ‖u‖L2([0,1])cGh‖ūh‖L2([0,1]) + cG′h‖u‖L2([0,1])‖Ghūh − yd‖L∞([0,1])

= (cG‖ūh‖L2([0,1]) + cG′‖Ghūh − yd‖L∞)h‖u‖L2([0,1])

⇒ |[f ′(ūh)− f ′h(ūh)]u| ≤ (cG‖ūh‖L2([0,1]) + cG′‖Ghūh − yd‖L∞([0,1]))h‖u‖L2([0,1])

5.1.11 Coercivity

We want to derive an α, which fulfills

L′′(ūh, µh)v
2 = f ′′(ūh)[v, v] + 〈µh, G′′(ūh)[v, v]〉 ≥ α‖v‖2U , ∀v ∈ U.

First of all we have to compute the derivatives of L:

DuL(u, y, p, µa, µb)v = (λ(u− ud), v)

DyL(u, y, p, µa, µb)yv = (y − yd, yv)− (∇yv,∇p)− (yv, p)

− (3y2yv, p) + (µa, yv)− (µb, yv)

Du2L(u, y, p, µa, µb)[v, v] = λ(v, v) =

∫
Ω
λv2 dx

Dy2L(u, y, p, µa, µb)[yv, yv] = (yv, yv)− (6yyvyv, p) =

∫
Ω
yvyv − 6yyvyvp dx

=

∫
Ω
(1− 6yp)y2v dx
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Thus

Du2,y2L(ūh, ȳh, p̄h, µha, µhb )[(v, yv), (v, yv)] =∫
Ω
(1− 6ȳhp̄h)y

2
vdx+

∫
Ω
λv2dx ≥ α‖v‖2L2(Ω) ∀v ∈ L2(Ω)

with G′(ūh)v = yv:

−∆yv + yv + 3ȳ2hyv = ūh in [0, 1]

yv(0) = yv(1) = 0

holds with α = λ, if the pointwise condition

1− 6ȳh(x)p̄h(x) ≥ 0 a.e in [0, 1]

is fulfilled.

5.2 Summary

To conclude this section we summarize our results. These results enable us to com-

pute the assumed constants once we derived a numerical solution ūh.

We start the summary with the Lipschitz-type constants L, M and N .

5.2.1 Lipschitz-type constants L, M and N

The assumption (3.24)

‖[G′
h(u)−G′

h(ūh)]v‖H1([0,1)] ≤ L‖u− ūh‖L2([0,1])‖v‖L2([0,1]), ∀v ∈ L2([0, 1]),

∀u ∈ L2([0, 1]) : ‖u− ūh‖L2([0,1]) ≤ ‖ũh − ūh‖L2([0,1])

holds for

L = 3

√
π2 + 1

π2
(‖ūh‖L2([0,1]) +R).

For the constant M of (3.25) with

|(f ′′(u)− f ′′(ūh))[v1, v2]| ≤M‖u− ūh‖L2([0,1])‖v1‖L2([0,1])‖v2‖L2([0,1])

∀u ∈ BR(ūh) and v1, v2 ∈ L2([0, 1])

we concluded

M = 36(
9

16
)
1
3
(π2 + 1)

2
3

π2
+N‖Gūh − yd‖L2[0,1] + 2L
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For assumption (3.26)

‖[G′′(u)−G′′(ūh)][v1, v2]‖Z ≤ N‖u− ūh‖U‖v1‖U‖v2‖U ,
∀u ∈ Uad, ‖u− ūh‖U ≤ R, v1, v2 ∈ U

we derived the estimation

N =
3√
2
(24(

9

16
)
1
3
(π2 + 1)(π2 + 1)

1
6

π4
(‖ūh‖L2([0,1]) +R)

+ 12‖cc‖L∞([0,1])

√
π2 + 1

π2
(‖ūh‖L2([0,1]) +R) + 2

√
π2 + 1

π2
).

5.2.2 Approximation properties

We derived the approximation constants cG, cG′ and cf ′ as follows:

We proved for assumption (3.20), i.e.

‖G(uh)−Gh(uh)‖L∞([0,1]) ≤ cGh‖uh‖L2([0,1]) , ∀uh ∈ Uh
ad

that

cG =
√
2 +

√
3
√
h+

√
3
√
h(3 + 3c2c)

2 1 + π2

π2

√
π2 + 1

π4
+ (1 + (1 + 3c2c)

√
π2 + 1

π2
)2

fulfills it.

For cG′ of assumption (3.21),

‖[G′(ūh)−G′
h(ūh)]u‖L∞([0,1]) ≤ cG′hk‖u‖L2([0,1]), ∀u ∈ L2([0, 1]),

we derived

cG′ =
(1 + π2)(2 +

√
7
3 + 3c2c)

π2
√
2

.

We optained for cf ′ of assumption (3.22),

|[f ′(ūh)− f ′h(ūh)]u| ≤ cf ′hk‖u‖L2([0,1]), ∀u ∈ L2([0, 1]),

that

cf ′ = (cG‖ūh‖L2([0,1]) + cG′‖Ghūh − yd‖L∞([0,1]))

holds.

5.2.3 Coercivity condition

We considered the coercivity of L′′ in (ūh, µh),

L′′(ūh, µh)v
2 = f ′′(ūh)[v, v] + 〈µh, G′′(ūh)[v, v]〉 ≥ α‖v‖2U , ∀v ∈ U,

and showed that it is coercive with α = λ, if the following pointwise condition is

fulfilled:

1− 6ȳh(x)p̄h(x) ≥ 0 a.e. in [0, 1]
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5.2.4 Error bound cf for uδ

We recall Theorem 4.2 :

Theorem 5.5. For sufficient small h, m = max{‖ūh‖U , ‖ūh + dh‖U},
s = τ

2L‖dh‖2U
and δ =

8cGhkmL‖dh‖2U
τ2

the following inequality holds :

|f(uδ)− f(ūh)| < cfh
k (5.14)

We showed that

cf = (‖Guh − yd‖L2([0,1]) + λ‖uh − ud‖L2([0,1]))
8cGm

2

τ

holds for the right choice of t ∈ [0, 1] in uh = ūh + tdh.

5.2.5 Auxiliary constant K ′′

As a last point we want to recall the auxiliary constant K ′′, which is used in more

than one estimate. K ′′ is an upper bound of the operator norm of G”(u). It fulfills

(5.5), i.e.

‖G′′(u)‖L2([0,1])→L(L2([0,1]),L∞([0,1])) ≤ K ′′.

We showed that

K ′′ ≈ 6.9660

holds.

Now we are able to compute all of the assumed constants and check the sufficient op-

timality condition, once we derived a numerical solution ūh. Chapter 6 is dedicated

to all these numerical aspects.



Chapter 6

Numerical experiments

In the first part of this chapter we introduce the numerical methods we put to use

throughout the computation of a numerical solution for the example. In the second

part we will present the results of our computations and the conclusions for the

optimality conditions and the predicted error estimates.

6.1 FEM

We present a short look into the 1-dimensional Finite Element Method. We follow

[27] Chapter 3 and adapt it for an example.

We look at the following problem :

Find a y ∈ C2(0, 1) ∩ C1(0, 1] ∩ C[0, 1], such that

−y′′(x) + y(x) = u(x) ∀x ∈ Ω = [0, 1]

y(0) = 0

y(1) = 0

hold for a given function u ∈ H2[0, 1]. This can be converted into the following

variational formulation:

For a given u ∈ H2[0, 1] find y ∈ V = {y ∈ H2[0, 1] : y(0) = y(1) = 0}, such that

a(y, v) = 〈F, v〉

holds for all v ∈ V = v ∈ H2
0 [0, 1] with

a(y, v) =

∫ 1

0
y′(x)v′(x) + y(x)v(x) dx

〈F, v〉 =
∫ 1

0
u(x)v(x) dx.

55
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We want to derive an approximate solution for this problem. To discretize the

continuous problem we divide the intervall [0, 1] into n+ 1 equal parts and get the

points x0, ..., xn+1 with

xj = x0 + jh and h =
1

n+ 1
.

For every xj we define an ansatzfunction φj , j = 1, .., n, as follows:

φj =



0 for 0 ≤ x ≤ xj−1

x− xj−1

h
for xj−1 < x ≤ xj

xj+1 − x

h
for xj < x ≤ xj+1

0 for xj+1 < x ≤ 1

.

.

.

.1

.x0 .x1 .x2 .xj−1 .xj .xj+1 .xn−1 .xn .xn+1

.

Figure 6.1: φj

Additionally φ0 and φn+1 are defined as

φ0 =


x1 − x

h
for 0 < x ≤ x1

0 for x1 < x ≤ 1

and

φn+1 =

 0 for 0 ≤ x ≤ xn
x− xn
h

for xn < x ≤ 1
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.

.

.

.1

.x0 .x1 .x2 .xn−1 .xn .xn+1

.

Figure 6.2: φ0

.

.

.

.1

.x0 .x1 .x2 .xn−1 .xn .xn+1

.

Figure 6.3: φn+1

Using these definitions we can define the general ansatzspace

Vh = {vh(x) : vh(x) =
n+1∑
i=0

viφi(x), vh(0) = vh(1) = 0}.

Now we can formulate the discrete problem :

For a given u ∈ H2[0, 1] find yh ∈ Vh, such that

a(yh, vh) = 〈F, vh〉

with a(yh, vh) =

∫ 1

0
y′h(x)v

′
h(x) + yh(x)vh(x) dx

and 〈F, vh〉 =
∫ 1

0
u(x)vh(x)

hold for all vh ∈ Vh.

We express this problem via matrices :

Khyh = uh

with

Kh = [Kij ]
n
i,j=1

= [

∫ 1

0
φ′iφ

′
j + φiφj dx]ni,j=1
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and

uh = [ui]
n
i=1 = [

∫ 1

0
u(x)φi(x) dx]

n
i=1

Note that the first and last entry of the coefficient vector for every vh ∈ Vh is equal

to zero due to the dirichlet boundary condition. Thus we only have to consider the

entries belonging to the inner knots x1, ..., xn.

We write Kh as Kh = Kh,1 +Kh,2 and see in [27] Section 3.3 that

Kh,1 =
1

h



2 −1 0 . . . 0

−1 2 −1 0 . . 0

0 −1 2 −1 0 . 0

. . . . . . .

0 . . 0 −1 2 −1

0 . . . 0 −1 2


and

Kh,2 =
h

6



4 1 0 . . . 0

1 4 1 0 . . 0

0 1 4 1 0 . 0

. . . . . . .

0 . . 0 1 4 1

0 . . . 0 1 4


hold. The matrices Kh,1 and Kh,2 are called stiffness matrix and mass matrix.

uh = (u1, ..., un)
T can be derived as

ui =

∫ xi+1

xi−1

u(x)φi(x) dx.

Thus we converted the underlying continuous problem into a system of equations

which can be solved numerically.

6.2 SQP method

To compute numerical results we use one Sequentially Quadratic Programming

(SQP) method, the Lagrange-Newton SQP.

The general theory is taken from [45] Chapter 4.11, with minor modifications to

address the dirichlet boundary conditions of our example.

We consider a problem with distributed control:

min J(y, u) :=

∫
Ω
φ(x, y(x)) dx +

∫
Ω
ψ(x, u(x)) dx (P)

s.t.−∆y + d(x, y) = u in Ω

y = 0 on Γ
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An adjoint state is defined via

−∆p+ dy(x, y)p = φy(x, y) in Ω

p = 0 on Γ.

The main principles of the SQP algorithm can be described in three steps.

The first step is to linearize the nonlinear problem (P) at a feasible point (yk, uk)

and a corresponding adjoint state pk. This leeds to a quadratic problem (QPk):

min

{
J ′(yk, uk)(y − yk, u− uk) +

1

2
L′′(yk, uk, pk)(y − yk, u− uk)

2

}
(QPk)

subject to

−∆y + d(x, yk) + dy(x, yk)(y − yk) = u in Ω

y = 0 on Γ

In the second step we solve the quadratic problem (QPk) and derive the control uk+1

and state yk+1. Then pk+1 can be computed via

−∆p+ pdy(x, yk) + pkdyy(x, yk)(yk+1 − yk) = φy(x, yk) + φyy(x, yk)(yk+1 − yk) in Ω

p = 0 on Γ

The last step is to linearize (P) at (yk+1, uk+1, pk+1) and start anew.

The algorithm is to be terminated, if the solution of (QPk) is equal to the solution

of the previous iteration.

6.3 Numerical implementation

As mentioned in Chapter 5 we want to illustrate our results on the following example.

Example 6.1.

min J(y, u) =
1

2
‖y−yd‖2L2([0,1]) +

λ

2
‖u− ud‖2L2([0,1])

−∆y + y + y3 = u in [0, 1]

y(0) = y(1) = 0

|y(x)| ≤ cc a.e. in [0, 1]

with cc ∈ R+.
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To compute a numerical solution we want to employ the Lagrange-Newton-SQP

method and derive the following quadratic problem for a feasible point (uk, yk, pk):

min{
∫ 1

0
(yk − yd)(y − yk) + λ(uk − ud)(u− uk) dx

−1

2

∫ 1

0
pk6y

2
k(y − yd)

2 dx +
1

2

∫ 1

0
(y − yk)

2 + λ(u− uk)
2 dx}

subject to

−∆y + yk + y3k + y − yk + 3y2k(y − yk) = u in Ω

y = 0 on Γ,

which can be reformulated to

min{1
2

∫ 1

0
y2(1− 6pky

2
k) + λu2 dx +

∫ 1

0
y(6y3kpk − yd)− λuud dx

+

∫ 1

0
ykyd −

1

2
y2k − 3pky

4
k + λukud −

λ

2
u2k dx}

subject to

−∆y + y + 3y2ky − 2y3k = u in Ω

y = 0 on Γ.

We skip the constant term and get the equivalent problem

min{1
2

∫ 1

0
y2(1− 6pky

2
k) + λu2 dx +

∫ 1

0
y(6y3kpk − yd)− λuud dx}

subject to

−∆y + y + 3y2ky − 2y3k = u in Ω

y = 0 on Γ.

For optimal yk+1 and uk+1 we can derive the corresponding adjoint state pk+1 via :

−∆p+ p+ 3y2kp = 2yk + 6y2kpk − yd − 6ykpky in Ω

p = 0 on Γ

We translate this quadratic problem into its FE formulation:

Let y, u, yk and pk be functions in Vh, i.e. y =
∑n

i=1 y
iφi, u =

∑n
i=1 u

iφi,

yk =
∑n

i=1 y
i
kφi and pk =

∑n
i=1 p

i
kφi, with corresponding coefficient vectors y =

(y1, ..., yn)T , u = (u1, ..., un)T , y
k
= (y1k, ..., y

n
k )

T and p
k
= (p1k, ..., p

n
k)

T . Then we

can formulate the FE problem setting:
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Problem 6.2.

min
(y,u)∈R2n

J(y, u) =
1

2
(y, u)TH(y, u) + fT (y, u)

subject to

EQ(y, u) = b

lb ≤ (y, u) ≤ ub

with

H =

(
Kh,2 − 6Apk

yk 0

0 λKh,2

)
where Apk

yk is defined as

Apk
yk

=
1

5(n+ 1)



a b 0 . . . 0

∗1 ∗2 ∗3 0 . . 0

0 ∗1 ∗2 ∗3 0 . 0

. . . . . . .

0 . . 0 ∗1 ∗2 ∗3
0 . . . 0 f g


with

a = 2y1kp
1
k +

1

4
y1kp

2
k +

1

4
y2kp

1
k +

1

6
y2kp

2
k

b =
1

4
y1kp

1
k +

1

6
y1kp

2
k +

1

6
y2kp

1
k +

1

4
y2kp

2
k

f =
1

4
yn−1
k pn−1

k +
1

6
yn−1
k pnk +

1

6
ynkp

n−1
k +

1

4
ynkp

n
k

g =
1

6
yn−1
k pn−1

k +
1

4
yn−1
k pnk +

1

4
ynkp

n−1
k + 2ynkp

n
k

as well as

∗1 =
1

4
yl−1
k pl−1

k +
1

6
yl−1
k plk +

1

6
ylkp

l−1
k +

1

4
ylkp

l
k

∗2 =
1

4
yl−1
k pl−1

k +
1

4
yl−1
k plk +

1

4
ylkp

l−1
k + 2ylkp

l
k +

1

4
ylkp

l+1
k

∗3 =
1

4
ylkp

l
k +

1

6
ylkp

l+1
k +

1

6
yl+1
k plk +

1

4
yl+1
k pl+1

k

for l ∈ {2...n − 1}. For the computation of Apk
yk we refer to Section 7.1. f is

determined via

f =

(
Kh,2(v − y

d
)

−λKh,2ud

)
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with v = (v1, ..., vn)
T and vi = 6(yik)

2pik for i = 1, .., n.

The equation matrix is defined as

EQ =
(
NB −K

)
with NB = K +B. While

B = η



6 ∗ (y1k)2 (y1k)
2 + (y2k)

2 0 . . . 0

∗1 ∗2 ∗3 0 . . 0

0 ∗1 ∗2 ∗3 0 . 0

. . . . . . .

0 . . 0 ∗1 ∗2 ∗3
0 . . . 0 (yn−1

k )2 + (ynk )
2 (yn−1

k )2 + 6(ynk )
2


with

η =
1

4(n+ 1)

∗1 = (yl−1
k )2 + (ylk)

2

∗2 = (yl−1
k )2 + 6(ylk)

2 + (yl+1
k )2

∗3 = (ylk)
2 + (yl+1

k )2

for l ∈ {2...n− 1}. For the computation of B we refer to Section 7.2.

The lower and upper bound lb and ub can be written as :

lb = −(cc, ...cc︸ ︷︷ ︸
n

, c, .., c︸ ︷︷ ︸
n

)T

ub = (cc, ...cc︸ ︷︷ ︸
n

, c, .., c︸ ︷︷ ︸
n

)T

with a sufficiently large c ∈ N, such that these partial boundaries are never active.

To start the computation we have to derive a feasible starting point and to choose

yd and ud.

For the desired state yd we choose

yd = cc sin(πx)

and set ud as the corresponding control

ud = cc(π
2 + 1) sin(πx) + c3c sin(πx)

3.
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.

.
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.1

.

Figure 6.4: yd

.

.

.

.0 .0.5 .1

.1

.cu

.

Figure 6.5: ud with cu = π2 + 2

We illustrate these choices in Figure 6.4 and Figure 6.5 for cc = 1.

Finally we have to determine a starting point for the SQP method.

It is clear that uk(x) = yk(x) = 0, a.e. in [0, 1] are feasible, which leaves us with the

computation of their adjoint state pk.

pk has to fulfill the PDE :

−p′′ + p = −cc sin(πx) (6.1)

With p̃k = a sin(πx) we get

p̃k = a sin(πx)

p̃′k = πa sin(πx)

p̃′′k = −π2a sin(πx).
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We insert p̃k into (6.1) and get

(π2 + 1)a sin(πx) = −cc sin(πx) ⇒ a =
−cc
π2 + 1

which means

pk(x) = − cc
π2 + 1

sin(πx).

6.4 Numerical results

We used MATLAB to implement the Finite Element discretization and the Lagrange-

Newton-SQP and solved the quadratic problems with the integrated solver QUAD-

PROG. For the actual computation we choose cc = 0.01 which is rather low but

enables us to observe the fulfillment of the sufficient condition at a relatively coarse

refinement.

We derive the polynom for several choices of n starting with n = 63 to illustrate

the progress throughout the refinement of the grid. From step to step we choose n

such that h = 1
n+1 is cut in half. Table 6.6 shows the observed errors regarding the

functional value, the control and the state as well as the first nonnegative root of the

sufficient condition polynom. The state and the control error are cut in half with

each step, which means we see convergence of order h. For r1 we observe a slower

decrease but it still serves as an upper bound for the control error. The slower rate

of convergence is likely caused by overestimation of some expression throughout the

estimation of the involved constants.

Note that Table 6.6 only shows the error between the numerical optimal control

ūh and the projection Ihū of the continuous optimal control ū. The same holds

for the states ȳh and ȳ. In order to derive the actual errors ‖ūh − ū‖L2([0,1]) and

‖yh − ȳ‖L2([0,1]) we proceed as follows :

For the control error we see that

‖ūh − ū‖L2([0,1]) ≤ ‖ūh − Ihū‖L2([0,1]) + ‖Ihū− ū‖L2([0,1])

n |fh(ūh, ȳh)− f(ū, ȳ)| ‖ȳh − Ihȳ‖L2 ‖ūh − Ihū‖L2 r1

63 3.9904e− 7 1.8848e− 6 8.9335e− 4 −
127 1.0079e− 7 9.3983e− 7 4.4897e− 4 0.064571

255 2.5250e− 8 4.7021e− 7 2.2472e− 4 0.036586

511 6.3267e− 9 2.3497e− 7 1.1249e− 4 0.022508

1023 1.5834e− 9 1.1745e− 7 5.6275e− 5 0.014403

2047 3.9608e− 10 5.8716e− 8 2.8147e− 5 0.009470

Table 6.6: Numerical errors and the control error estimate r1
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holds as well as

‖ȳh − ȳ‖L2([0,1]) ≤ ‖ȳh − Ihȳ‖L2([0,1]) + ‖Ihȳ − ȳ‖L2([0,1])

holds for the state error. Due to the regularity of ū and therefore ȳ we can use the

interpolation estimates and their constants (see [8]). We get

‖Ihū− ū‖L2([0,1]) ≤ h2‖ū′′‖L2([0,1])

and

‖Ihȳ − ȳ‖L2([0,1]) ≤ h2‖ȳ′′‖L2([0,1]).

with

‖ū′′‖L2([0,1]) =

√
c2c(π

4 + π2)2

2
+

3c4cπ
2(π4 + π2)

4
+

45c6cπ
4

16

≈ 0.5755

and

‖y′′d‖L2([0,1]) =
ccπ

2

√
2

≈ 0.0698

(see Section 7.3). This leads to

‖ūh − ū‖L2([0,1]) ≤ ‖ūh − Ihū‖L2([0,1]) + 0.7586h2

and to

‖ȳh − ȳ‖L2([0,1]) ≤ ‖ȳh − Ihȳ‖L2([0,1]) + 0.0698h2

which means that both errors approximately behave in the same way as the com-

puted numerical errors.

We present the computation of the necessary constants for n = 2047 inner knots,

R = 0.1, k = 1, τ = 1, and m = 0.18. Before we start with the actual computation

we state the necessary informations which gained through the numerics :

‖ūh‖L2([0,1]) = 7.6800e− 2

‖ȳh‖L2([0,1]) = 7.1000e− 3

‖Ihyd‖L2([0,1]) = 7.1000e− 3

‖ȳ2h‖L∞([0,1]) = 1.0000e− 4

‖µh‖L∞([0,1]) = 2.1440e− 4

‖Ghūh − Ihyd‖L2([0,1]) = 5.8716e− 8

‖Ghūh − Ihyd‖L∞([0,1]) = 8.7558e− 8

With these informations we are able to compute the assumed constants with excep-

tion ofM and cf ′ were we used the errors ‖Gūh−yd‖L2([0,1]) and ‖Ghūh−yd‖L∞([0,1])
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during the estimation process, which are not direct results of the numerical compu-

tations. For these two errors we use the estimates

‖Gūh − yd‖L2([0,1]) ≤ cGh‖ūh‖L2([0,1]) + ‖Ghūh − Ihyd‖L2([0,1]) +
ccπ

2

√
2
h2

and

‖Gūh − yd‖L∞([0,1]) ≤ ‖Ghūh − Ihyd‖L∞([0,1]) +
ccπ

2

2
(h2 + h).

We show the derivation of these estimates in Section 7.4. Now we can compute all

constants and the computation yields :

α = 1, cG = 1.9743...,

cG′ = 2.7472..., cf ′ = 0.1516...,

cf = 0.0859..., L = 0.1771...,

M = 15.1290..., N = 2.6662...

Note that the computation of cf involves the estimation of ‖f ′‖. We showed that

‖f ′‖ ≤ ‖Gūh − yd‖L2([0,1]) + λ‖ūh − ud‖L2([0,1])

holds (see 5.1.9), which can be estimated as

‖f ′‖ ≤ 2‖yd‖L2([0,1]) + 2λ‖ud‖L2([0,1]) = 0.1684...

due to the choice of R = 0.1.

Now we can compute the corresponding sufficient condition polynom

P (r) =
α

2
r2 − hkr(cf ′ + cG′‖µh‖(L∞([0,1]))∗)

− 1

6
r3(M +N‖µh‖(L∞([0,1]))∗)− cGh

k‖µh‖(L∞([0,1]))∗‖ūh‖L2([0,1]) − cfh
k

≈ 1

2
r2 − 0.000075r − 2.5220r3 − 0.00005

which is illustrated in Figure 6.7.
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Figure 6.7: Polynom of the SSC for n = 2047

The second and third root of the polynom are :

r1 = 0.0094...

r2 = 0.1976...

We already showed that

‖ūh − ū‖L2([0,1]) ≤ ‖ūh − Ihū‖L2([0,1]) + 0.7586h2

holds. Thus we see for h = 1
2048 that

‖ūh − ū‖L2([0,1]) ≤ ‖ūh − Ihū‖L2([0,1]) + 0.7586h2

= 2.8147e− 5 +
0.7586

20482

≈ 2.8327e− 5 < 9.466e− 3 = r1

holds, which means that ‖ū− ūh‖L2([0,1]) < r holds for all positive r with P (r) > 0.

Thus we see that the second order conditions works and that the error estimate also

delivers an upper bound of the L2-control error.



Chapter 7

Further computations

To implement the Lagrange-Newton-SQP method into a finite element framework

we have to discretize the linearized PDE in an adequate form.

7.1 Conversion of
∫
ykpky

2 dx (Computation of Apk
yk
)

We assume that yk,pk and y have the corresponding finite element representations∑n
i=1 y

i
kφi,

∑n
i=1 p

i
kφi and

∑n
i=1 y

iφi. We want to derive a matrix Apk
yk such that∫ 1

0 ykpky
2 dx = yTApk

yky holds.∫ 1

0
ykpky

2 dx =∫ 1

0

n∑
l=1

ylφl

n∑
m=1

ymφm

n∑
i=1

yikφi

n∑
j=1

pjkφj dx

=

∫ 1

0

n∑
l=1

ylφl

n∑
m=1

ymφm

n∑
i=1

yikφi(p
i−1
k φi−1 + pikφi + pi+1

k φi+1) dx

=

∫ 1

0

n∑
l=1

ylφl

n∑
m=1

ymφm

n∑
i=1

(yikp
i−1
k φiφi−1 + yikp

i
kφ

2
i + yikp

i+1
k φiφi+1) dx

=

∫ 1

0

n∑
l=1

ylφl

n∑
m=1

ym(ym−1
k pm−1

k φ2m−1φm + ym−1
k pmk φm−1φ

2
m

+ ymk p
m−1
k φ2mφm−1 + ymk p

m
k φ

3
m + ymk p

m+1
k φ2mφm+1

+ ym+11
k pmk φm+1φ

2
m + ym+1

k pm+1
k φ2m+1φm) dx

68
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Using the properties of φi we get the expanded expression∫ 1

0
ykpky

2 dx

=

∫ 1

0

n−1∑
l=2

{ylyl−1(yl−1
k pl−1

k φl−1φl + yl−1
k plkφ

2
l−1φ

2
l + ylkp

l−1
k φ2l φ

2
l−1 + ylkp

l
kφ

3
l φl−1)

+ ylyl(yl−1
k pl−1

k φ2l−1φ
2
l + yl−1

k plkφl−1φ
3
l + ylkp

l−1
k φl−1φ

3
l + ylkp

l
kφ

4
l + ylkp

l+1
k φ3l φl+1

+ yl+1
k plkφl+1φ

3
l + ykl+1pkl + 1φ2l+1φ

2
l )

+ ylyl+1(ylkp
l
kφ

3
l φl+1 + ylkp

l+1
k φ2l φ

2
l+1 + yl+1

k plkφ
2
l+1φ

2
l + yl+1

k pl+1
k φ3l+1φl)}

+ y1y1(y1kp
1
kφ

4
1 + y1kp

2
kφ

3
1φ2 + y2kp

1
kφ

3
1φ2 + y2kp

2
kφ

2
2φ

2
1)

+ y1y2(y1kp
1
kφ

3
1φ2 + y1kp

2
kφ

2
1φ

2
2 + y2kp

1
kφ

2
2φ

2
1 + y2kp

2
kφ

3
2φ1)

+ ynyn−1(yn−1
k pn−1

k φ3n−1φn + yn−1
k pnkφ

2
n−1φ

2
n + ynkp

n−1
k φ2nφ

2
n−1 + ynkp

n
kφ

3
nφn−1)

+ ynyn(yn−1
k pn−1

k φ2n−1φ
2
n + yn−1

k pnkφn−1φ
3
n + ynkp

n−1
k φn−1φ

3
n + ynkp

n
kφ

4
n) dx.

We need to compute the integrals over the occuring products and potencies of the

ansatzfunctions. For suitable i ∈ {1...n} we get:∫ 1

0
φ2iφ

2
i+1 dx =

∫ 1

0
φ2i−1φ

2
i dx =

1

30(n+ 1)∫ 1

0
φ3iφi+1 dx =

∫ 1

0
φi−1φ

3
i dx =

1

20(n+ 1)∫ 1

0
φ4i dx =

2

5(n+ 1)
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This leads us to∫ 1

0
ykpky

2 dx =
1

(n+ 1)

n−1∑
l=2

{ylyl−1(
1

20
yl−1
k pl−1

k +
1

30
yl−1
k plk +

1

30
ylkp

l−1
k +

1

20
ylkp

l
k)

+ ylyl(
1

20
yl−1
k pl−1

k +
1

20
yl−1
k plk +

1

20
ylkp

l−1
k +

2

5
ylkp

l
k +

1

20
ylkp

l+1
k )

+
1

20
yl+1
k plk +

1

30
ykl+1pl+1

k )

+ ylyl+1(
1

20
ylkp

l
k +

1

30
ylkp

l+1
k +

1

30
yl+1
k plk +

1

20
yl+1
k pl+1

k )}

+
2

5
y1y1(y1kp

1
k +

1

20
y1kp

2
k +

1

20
y2kp

1
k +

1

30
y2kp

2
k)

+ y1y2(
1

20
y1kp

1
k +

1

30
y1kp

2
k +

1

30
y2kp

1
k +

1

20
y2kp

2
k)

+ ynyn−1(
1

20
yn−1
k pn−1

k +
1

30
yn−1
k pnk +

1

30
ynkp

n−1
k +

1

20
ynkp

n
k)

+ ynyn(
1

30
yn−1
k pn−1

k +
1

20
yn−1
k pnk +

1

20
ynkp

n−1
k +

2

5
ynkp

n
k)

which means
∫ 1
0 ykpky

2 dx = yTAy with

Apk
yk

=
1

5(n+ 1)



a b 0 . . . 0

∗1 ∗2 ∗3 0 . . 0

0 ∗1 ∗2 ∗3 0 . 0

. . . . . . .

0 . . 0 ∗1 ∗2 ∗3
0 . . . 0 f g


and

a = 2y1kp
1
k +

1

4
y1kp

2
k +

1

4
y2kp

1
k +

1

6
y2kp

2
k

b =
1

4
y1kp

1
k +

1

6
y1kp

2
k +

1

6
y2kp

1
k +

1

4
y2kp

2
k

f =
1

4
yn−1
k pn−1

k +
1

6
yn−1
k pnk +

1

6
ynkp

n−1
k +

1

4
ynkp

n
k

g =
1

6
yn−1
k pn−1

k +
1

4
yn−1
k pnk +

1

4
ynkp

n−1
k + 2ynkp

n
k

as well as

∗1 =
1

4
yl−1
k pl−1

k +
1

6
yl−1
k plk +

1

6
ylkp

l−1
k +

1

4
ylkp

l
k

∗2 =
1

4
yl−1
k pl−1

k +
1

4
yl−1
k plk +

1

4
ylkp

l−1
k + 2ylkp

l
k +

1

4
ylkp

l+1
k

∗3 =
1

4
ylkp

l
k +

1

6
ylkp

l+1
k +

1

6
yl+1
k plk +

1

4
yl+1
k pl+1

k
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for l ∈ {2...n− 1}.

7.2 Computation of B

We want to derive the FEM matrix for the third therm of the linearized PDE

−∆y + y + 3y2ky = u.

Let yk =
∑n

i=1 y
i
kφi and y =

∑n
i=1 y

iφi be the FEM representations of yk and y. We

look at the third term of the weak formulation :

3

∫ 1

0
y2kyvh = 3

∫ 1

0
(

n∑
i=1

(yik)
2φi)(

n∑
i=1

ykφi)vh dx

To derive the entries of the j-th column of B we set vh = φj . Due to the disjoint

support of non-neighboring ansatzfunctions the term above can be reduced to:

3

∫ 1

0
((yj−1

k )2φj−1 + (yjk)
2φj + (yj+1

k )2φj+1)(y
j−1φj−1 + yjφj + yj+1φj+1)φj dx

= 3

∫ 1

0
(yj−1

k )2φ2j−1φjy
j−1 + (yj−1

k )2φj−1φ
2
jy

j

+ (yjk)
2φ2jφj−1y

j−1 + (yjk)
2φ3jy

j + (yjk)
2φ2jφj+1y

j+1

+ (yj+1
k )2φ2jφj+1y

j + (yj+1
k )2φjφ

2
j+1y

j+1 dx

= 3[(yj−1
k )2

∫ 1

0
φ2j−1φj dx yj−1 + (yj−1

k )2
∫ 1

0
φj−1φ

2
j dx yj

+ (yjk)
2

∫ 1

0
φ2jφj−1 dx yj−1 + (yjk)

2

∫ 1

0
φ3j dx yj + (yjk)

2

∫ 1

0
φ2jφj+1 dx yj+1

+ (yj+1
k )2

∫ 1

0
φ2jφj+1 dx yj + (yj+1

k )2
∫ 1

0
φjφ

2
j+1 dx yj+1]

We compute the involved integrals and get for suitable j ∈ {1, ..., n}:∫ 1

0
φ2j−1φj dx =

∫ 1

0
φj−1φ

2
j dx =

∫ 1

0
φ2jφj+1 dx =

∫ 1

0
φjφ

2
j+1 dx =

1

12(n+ 1)∫ 1

0
φ3j dx =

1

2(n+ 1)
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This leads to

3[(yj−1
k )2

∫ 1

0
φ2j−1φj dx yj−1 + (yj−1

k )2
∫ 1

0
φj−1φ

2
j dx yj

+ (yjk)
2

∫ 1

0
φ2jφj−1 dx yj−1 + (yjk)

2

∫ 1

0
φ3j dx yj + (yjk)

2

∫ 1

0
φ2jφj+1 dx yj+1

+ (yj+1
k )2

∫ 1

0
φ2jφj+1 dx yj + (yj+1

k )2
∫ 1

0
φjφ

2
j+1 dx yj+1 dx ]

= 3[(yj−1
k )2yj−1 1

12(n+ 1)
+ (yj−1

k )2yj
1

12(n+ 1)

+ (yjk)
2yj−1 1

12(n+ 1)
+ (yjk)

2yj
1

2(n+ 1)
+ (yjk)

2yj+1 1

12(n+ 1)

+ (yj+1
k )2yj

1

12(n+ 1)
+ (yj+1

k )2yj+1 1

12(n+ 1)
]

= 3[yj−1 (y
j−1
k )2 + (yjk)

2

12(n+ 1)
+ yj(

(yj−1
k )2

12(n+ 1)
+

(yjk)
2

2(n+ 1)

+
(yj+1

k )2

12(n+ 1)
) + yj+1 (y

j
k)

2 + (yj+1
k )2

12(n+ 1)
]

=
1

4(n+ 1)
[yj−1((yj−1

k )2 + (yjk)
2) + yj((yj−1

k )2 + 6(yjk)
2 + (yj+1

k )2)

+ yj+1((yjk)
2 + (yj+1

k )2)].

Thus we see

B = η



6 ∗ (y1k)2 (y1k)
2 + (y2k)

2 0 . . . 0

∗1 ∗2 ∗3 0 . . 0

0 ∗1 ∗2 ∗3 0 . 0

. . . . . . .

0 . . 0 ∗1 ∗2 ∗3
0 . . . 0 (yn−1

k )2 + (ynk )
2 (yn−1

k )2 + 6(ynk )
2


with

η =
1

4(n+ 1)

∗1 = (yl−1
k )2 + (ylk)

2

∗2 = (yl−1
k )2 + 6(ylk)

2 + (yl+1
k )2

∗3 = (ylk)
2 + (yl+1

k )2

for l ∈ {2...n− 1}.
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7.3 L2-norms of the second derivatives of ud and yd

To evaluate the numerical results we used estimations involving the second order

derivatives of ud and yd. We start with the optimal/desired control ud. We have

ud = cc(π
2 + 1) sin(πx) + c3c sin

3(πx)

u′d = cc(π
2 + 1)π cos(πx) + 3c3c sin

2(πx) cos(πx)π

u′′d = cc(π
2 + 1)π2(− sin(πx) + 6c3cπ

2 sin(πx) cos2(πx)− 3c3cπ
2 sin3(πx)

and

(u′′d)
2 = c2c(π

4 + π2)2 sin2(πx)− 12c4cπ
2(π4 + π2) sin2(πx) cos2(πx)

+ 6c4cπ
2(π4 + π2) sin4(πx)− 36c6cπ

4 sin4(πx) cos2(πx)

+ 36c6cπ
4 sin2(πx) cos4(πx) + 9c6cπ

4 sin6(πx).

Thus we get:

‖u′′d‖L2([0,1]) =
[
c2c(π

4 + π2)2
∫ 1

0
sin2(πx) dx

− 12c4cπ
2(π4 + π2)

∫ 1

0
sin2(πx) cos2(πx) dx

+ 6c4cπ
2(π4 + π2)

∫ 1

0
sin4(πx) dx− 36c6cπ

4

∫ 1

0
sin4(πx) cos2(πx) dx

+ 36c6cπ
4

∫ 1

0
sin2(πx) cos4(πx) dx + 9c6cπ

4

∫ 1

0
sin6(πx) dx

]1/2
=
[c2c(π4 + π2)2

2
− 12c4cπ

2(π4 + π2)

8

+
18c4cπ

2(π4 + π2)

8
− 36c6cπ

4

16
+

36c6cπ
4

16
+

45c6cπ
4

16

]1/2
=
[c2c(π4 + π2)2

2
+

3c4cπ
2(π4 + π2)

4
+

45c6cπ
4

16

]1/2
This leaves us with the computation of ‖y′′d‖L2([0,1]):

yd = cc sin(πx), y
′
d = ccπ cos(πx), y

′′
d = −ccπ2 sin(πx)

This results in:

‖y′′d‖2L2([0,1]) =

∫ 1

0
(−ccπ2 sin(πx)2 dx

=

∫ 1

0
c2cπ

4 sin2(πx) dx = c2cπ
4

∫ 1

0
sin2(πx) dx

=
c2cπ

4

2

⇒ ‖y′′d‖L2([0,1]) =
ccπ

2

√
2
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7.4 Gūh − yd error

Throughout the estimation process we used the errors ‖Gūh−yd‖L2[0,1] and ‖Ghūh−
yd‖L∞[0,1]. But our numerical calculations provide only the errors for the discrete

control-state operator and the discrete representation of yd, i.e. ‖Ghūh−Ihyd‖L2[0,1]

and ‖Ghūh − Ihyd‖L∞[0,1]. Thus we have to estimate the former errors using the

latter. Using the informations at hand we estimate the L2-error and L∞-error:

‖Gūh − yd‖L2([0,1]) = ‖Gūh −Ghūh +Ghūh − Ihyd + Ihyd − yd‖L2([0,1])

≤ ‖Gūh −Ghūh‖L2([0,1]) + ‖Ghūh − Ihyd‖L2([0,1]) + ‖Ihyd − yd‖L2([0,1])

≤ cGh‖ūh‖L2([0,1]) + ‖Ghūh − Ihyd‖L2([0,1]) + h2‖y′′d‖L2([0,1])

‖Ghūh − yd‖L∞([0,1]) = ‖Ghūh − Ihyd + Ihyd − yd‖L∞([0,1])

≤ ‖Ghūh − Ihyd‖L∞ + ‖Ihyd − yd‖L∞([0,1])

≤ ‖Ghūh − Ihyd‖L∞ +
1√
2
‖Ihyd − yd‖H1([0,1])

≤ ‖Ghūh − Ihyd‖L∞([0,1]) +
1√
2
(h2 + h)‖y′′d‖L2([0,1])

Using the result of Section 7.3 we get:

‖Gūh − yd‖L2([0,1]) ≤ cGh‖ūh‖L2([0,1]) + ‖Ghūh − Ihyd‖L2([0,1]) +
ccπ

2

√
2
h2

‖Gūh − yd‖L∞([0,1]) ≤ ‖Ghūh − Ihyd‖L∞([0,1]) +
ccπ

2

2
(h2 + h)



Chapter 8

Conclusion and perspectives

In this thesis we studied abstract nonlinear optimization problems in Banach and

Hilbert spaces.

In the first part we derived the sufficient optimality condition and the error estimate.

We assumed the existence of a discretized and thus numerical solvable version of such

a problem. Depending on the discrete solution ūh and properties of both involved

problems, the continuous as well as the discretized, we developed a set of sufficient

optimality conditions, which ensure existence of a solution in a neighborhood of ūh
and also delivered an error estimate for this solution. The presented method has the

benefit that it only depends on computable quantities and that the conditions can

therefore be checked when there is a numerical solution at hand.

In the second part we applied the theory on an one-dimensional example. We de-

rived the estimates for all involved constants and developed the techniques, which

were essential to conduct the estimation process.

The last part was dedicated to the numerical methods. We introduced the FE

method, which we used for the discretization of inifinite dimensional spaces. To deal

with nonlinear optimization problems we introduced the Lagrange-Newton SQP.

We conducted the necessary computations and transformed the example into the

numerical problem and applied the numerical methods. We presented the results

and deduced the actual errors from the observed numerical quantities. We inter-

preted the data and saw that the sufficient optimality conditions were satisfied and

that the error estimate holds, although we observed weaker convergence for the error

estimate. But even with optimized estimates one can show, using the results of [37],

that the maximal achieveable estimate is of order h. This result is based on the

satisfied SSC. If one uses only a priori arguments one can only expect an order of

h3/4 using the presented technique. This is mainly caused by the fact that we have
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to deal with an L2 environment.

To conclude this work let us comment on some further aspects:

We presented our computations by means of an one dimensional example. However,

many of them can be conducted for higher dimensions with the presented techniques.

The crucial estimates, which cannot be transferred to higher dimension, are those

involving the imbedding H1([0, 1]) ↪→ L∞([0, 1]). Essentially these are the estimates

L,M,N and cG′ .

For Ω ⊂ Rd, with d = 2, 3, we know that H2(Ω) ↪→ C(Ω̄) holds, which could be

used as substitute for the higher dimensional estimates. The inverse estimate can

be formulated as

‖v̄h‖L∞(Ω) ≤ c(Ω)h−d/2‖v̄h‖L2(Ω),

which could be used to derive L∞-estimates for FE-errors. In higher dimensions one

has to include the geometry of Ω into the estimation process, as one can for exam-

ple see in the inverse estimate above. Especially the involved imbedding constants

depend on Ω and their computation leads to several eigenvalue problems. This adds

another difficulty to the technical aspects, which one has to keep in mind.

Another question, which can be interesting in the future, is if and when the SSC of

the discrete solution ūh entails an SSC for the continuous solution ū.

While [2], [3], [41] and [42] investigated this question thoroughly for control con-

strained problems, state constrained problems pose different kind of challenges due

to the low regularity of the Lagrange multipliers.

It is desirable to overcome these difficulties and find a positive answer to this ques-

tion, because it would enable us to employ a-priori-theory, which would lead to

better FE-error estimates, especially for higher dimensions.

On the other hand it would also effect regularity approaches, as presented for exam-

ple in [28]. At this point it does not seem possible to achieve this goal for the general

abstract problem. However, the ideas presented in [20] may be a key to reach results

for a special class of problems.
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