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Chapter 1

Introduction

The topic of optimization, especially optimal control governed by partial differen-
tial equations, contains a large field of mathematical disciplines reaching from the
foundations of functional analysis into the depths of numerical mathematics. It
deals with the theoretical aspects of optimization, such as existence/uniqueness of
solutions or necessary and sufficient optimality conditions, as well as the numerical
implementation and the acompanying aspects of a priori/a posteriori error analysis,
stability of solutions, conditions for and rate of convergence and many more. Due
to this broad spectrum of aspects it is influenced by many different mathematical
communities resulting in a huge variety of approaches and ideas.

Optimality conditions were always a point of interest and with the step from convex
optimization problems to differentiable but non-convex settings the necessary condi-
tions where no longer sufficient. It was necessary to consider sufficient conditions of
higher order. Standard sufficient optimality conditions for finite dimension employ
differentiability of f(@) and that f”(a) is positive definite at a local minimum 4.
If one wants to adept these conditions to the infinite dimensional case one is often
confronted with the following problem:

If one considers the functional f in an L?(9)-space it satisfies that the second deriva-
tive f”(a) is positive definite, but it is not twice differentiable in L?(£2), which means
1" (1) does not belong to the correct functional space.

But if one interprets the same functional f as an L°°(2)-functional, one can show
that f satisfies the differentiability conditions while it is not positive definite in @
with regard to L*°(12).

This phenomenon is called 2-norm discrepancy and it shows that the choice of suit-
able functional spaces for an optimization problem is very important. In the late
1970s A.D. Ioffe [25] and H. Maurer and I. Zowe [31] developed sufficent optimal
condition for problems in Banach spaces and presented ways to deal with the 2-norm
discrepancy.
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Throughout the years there were many works dealing with the application of the
abstract results on different classes of problems. We want to point out the works of
H. Goldberg and F. Troltzsch [19] for the control constrained case, E. Casas, J.-P.
Raymond and F. Troltzsch [11], [15], [39] for the state constrained case and A. Rosch
and F. Troltzsch [40] for the mixed constrained case.

In this work we study general nonlinear optimization problems in Banach and Hilbert
spaces and discretizations of such problems. We use this approach, because we are
in particular interested in nonlinear optimization problems with state constraints
and this setting allows us to formulate such conditions in a mathematical way. Our
goal is to derive sufficient optimality conditions that enable us to show optimality
when an exact solution is unknown but a solution of the discretized problem is at
hand. This is a quite common situation, if one, for example, has computed a nu-
merical solution using a discrete model and wants to know if an exact solution exists
in a neighborhood of this discrete solution. We assume that we have a numerical
method, with certain properties, to solve these nonlinear problems. We develop suf-
ficient optimality conditions based only on the numerical solution and other known
quantities. Throughout this process we also deliver error estimates regarding the
numerical solution.

We want to mention the results of D. Wachsmuth and S. Akindeinde, who worked on
non-convex optimal control problems with finite dimensional control space [2], [3],
and the work of I. Neitzel, J. Pfefferer and A. Rosch [37] regarding state-constrained
elliptic optimal control problems with semilinear state equation and their finite ele-
ment discretization.

1.1 Motivation

The usual approach to determine sufficient optimality conditions, which is for ex-
ample utilizied by E.Casas and F.Troltzsch in [10],[14] for elliptic problems with
state constraints, is to formulate necessary optimality conditions and sufficient op-
timality conditions of second order for an optimal solution #. Employing additional
conditions one can prove further desirable properties of the solution. One can, for
example, ensure stability of the solution of state constrained problems, if one requires
uniqueness of the dual variables. The catch of this approach is that the optimality
conditions as well as the additional conditions have to be checked for the optimal
solution u. Some properties depend on the discretization parameter h to be below
a certain constant hg. This can lead to uncertainties for some kinds of problems,
where one has difficulties to obtain such an optimal solution as well as computing
the actual value of hg . Of course there are cases in which it is possible to check
these conditions, for example demonstrated by H. Goldberg and F. Troltzsch in [19],
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but one cannot expect that for every problem. This encourages the idea to derive
a different type of condition to prove optimality of a solution, based on known in-
formations, for example on a numerical solution. As a simple approach to get such
a condition one can think of using the discrete Hessian, i.e use its eigenvalues to
check if the discrete Hessian is positive definite. But as A.Rdsch and D. Wachsmuth
showed in [42] this approach does not work in general, which is illustrated in a simple
example.

Example 1.1. [42] Let U be a Hilbert-space. We look at the following problem

min f(u) !

min £ () = 5l — = uall? (1)

We see that o = WTUZ is a saddle point for this example. If we choose u; = z~V/2te
and uo = —uy, we can compute "critical values” of the mesh size. The smallest
eigenvalue of the discrete Hessian at @ is positive, if A is above the critical value
ho. This means that we get a false positive indication for an optimum, if we use
this criteria with unsufficient mesh refinement. The problem arouses because the
direction u; —usg, which is the only direction with negative curvature, is approximated
poorly and thus 'overlooked’ until the refinement is fine enough. In Table 1.1 one can
see that this false indication can occur even for rather small discretization parameters
h. For detailed information on this example we refer to [42] Section 3.

S ho

0.05 1/18 = 0.056
0.04 1/106 = 0.0094
0.03 1/1917 =5.2-1074

0.02 1/619660 = 1.6-107

Table 1.1: Critical mesh sizes found in [42]

A second example illustrates another phenomenon. Lets take a look at

Example 1.2.
. S _
we3iio 1904 ~ alzzqon
with t
(Su)(t) = / u(z) dx
0
and

0 for z € [0,0.5]
Ya\r) =
1 for x € (0.5,1].
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It is possible to approximate y,; with differentiable functions for any given error
margin, which means one can find y = Su with an abitrary small L?-error ||S(u) —
Yallr2(jo,17)- But on the other hand, since every y = Su is differentiable, it is not
possible to find a solution 4 with ||S(%) —yall £2([0,1) = 0. We see that the minimizing
sequence of y, = S(u,) exists but does not converge since the limit itself is not
admissible and thus we see that this continuous problem does not have an solution.
Now lets take a look at an arbitrary linear FE discretization of this problem. Let
0.5 € [z, x;41] then we see that the state

0 for 0 <z <z
x—xj
gp = ——— forz; <z <z
Tj+1 = Tj
1 forzj 1 <x <1

delivers an optimal functional value over all discrete states. Thus we get the corre-
sponding optimal control

0 for 0 <z <z
B 1
ip = —— forz; <x <z
Tj+1 — Tj
0 for zj 1 <2 <1

which means the discrete problem delivers a solution even if the continuous problem
does not have one. Note that the L?([0, 1])-norm of @y, i.e.

1
ltn L2 =,
([0,1]) VT — T,

tends to infinity with finer discretizations of [0, 1], which means that the limit of uy,
for h — 0 does not belong to L?([0, 1]).

1 1

(a) ya (b) Yn
Figure 1.2: Desired state y4; and optimal discrete state gy,

These two examples illustrate, in rather simple settings, that it can be wrong to
draw conclusions from computed solutions to the actual continuous solutions and
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that one has to make further efforts to reach solid results. We use the approach first
presented in [41] by A.R6sch and D.Wachsmuth in 2008 and generalize their ideas
to an abstract nonlinear optimization problem.



Chapter 2

Mathematical background

In this section we present the mathematical concepts, which enable us to formulate
and discuss abstract optimization problems.

2.1 Banach and Hilbert spaces

Following Adams [1] we introduce the concepts of Banach and Hilbert spaces. We
begin with Definition (1.7):

Definition 2.1. A norm on a vector space X is a real-valued function f on X
satisfying the following conditions:

1. f(z) >0 for all z € X and f(z) =0 if and only if z = 0,
2. f(cx) = |c|f(z) for every x € X and ¢ € R,

3. flz+y) < f(z)+ f(y) for every z,y € X.

A vector space X provided with a norm is called normed space. We will denote the
norm with || - ||x. Now we can define convergent sequences and Cauchy sequences
(see [1] (1.8),(1.9)) :

Definition 2.2. A sequence {z,} in a normed space X is convergent to the limit
xo if and only if

lim ||z, — zol|x = 0.
n—oo

Definition 2.3. A sequence {x,} in a normed space X is called Cauchy sequence
if and only if for every € > 0 there exists an integer N such that ||z, — z,|x < ¢
holds whenever m,n > N.

Thus we can define
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Definition 2.4. X is complete and a Banach space if every Cauchy sequence in
X converges to a limit in X.

We proceed with the definition of Hilbert spaces. First we need the definition of an
inner product (see [1] (1.10))

Definition 2.5. If X is a vector space, a functional (-,-)x defined on X x X is
called inner product on X provided that for every z,y € X and a,b € R

L. (.’L‘,y)X = (y,l’)X,
2. (aa; =+ by7 Z)X = CL(I‘, Z)X + b(y7 z)Xv
3. (z,z)x =0 if and only if z = 0.

Equipped with such a functional, X is called an inner product space and the
functional

lzllx = vz, z)x

is, in fact, a norm on X.

Definition 2.6. If X is complete (i.e. a Banach space) under the norm |z|x =
V/(x,x)x it is called a Hilbert space.

We take a look at the normed dual of a normed space X (see [1] (1.11)):

Definition 2.7. A norm on the dual X* of a normed space X can be defined by
setting
27| x+ = sup{la”(z)| : [|=[|x <1}

for each z* € X*. Since R is complete, with the topology induced by this norm X*
is a Banach space (wether or not X is) and its called the normed dual of X.

We want to note several concepts involving dual spaces :

Definition 2.8. A sequence {z,} C X is called weakly convergent to x € X, if

<xn, f>X7X* — <m, f>X,X* Vf c X"
holds. An often used notation for this convergence is x,, — x.

Definition 2.9. A map F': X — Y between two Banach spaces X and Y is called
weakly continuous, if a weakly convergent sequence {x,} in X is mapped to a
weakly convergent sequence {F'(zy,)} in Y, i.e.

Ty =z = F(z,) = F(z), n = oo.
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Definition 2.10. A functional f : X — R is called weakly lower semi-continuous,
if for x,, — x with n — oo

liminf f(z,) > f(z)

n—o0

holds.

Definition 2.11. A functional f : X — R is called radially unbounded, if for a
sequence z, € U and n — o0

holds.

Definition 2.12. A subset U C X is called weakly closed, if for every weakly
convergent sequence {u,} with limit v € X also u € U holds, i.e.

U, = u € X, n—>00=ucl.

Definition 2.13. An operator G : X — Y is called weakly closed, if G(U) =
{G(u) : uw € U} is a weakly closed subset of Y for every subset U of X.

Definition 2.14. The set M C X, X a Banach space, is called weakly relatively
compact, if every sequence {z,} C M has a weakly convergent partial sequence.
It is called weakly compact when it is additionally weakly closed.

The following two results, see [45] Theorem 2.10 and 2.11, will help us to ensure

existence of solution for optimization problems:

Theorem 2.15. If X is a reflexive Banach space and M C X is bounded then M
is weakly relatively compact.

Theorem 2.16. If X is a Banach space and M C X is convex and closed, then M
is also weakly closed.
If X is reflexive and M convex, closed and bounded, then M is weakly compact.

To conclude this section we want to point out that, if X is a Hilbert space, it can
be identified with its normed dual. This is showed by the following theorem (see [1]
(1.12)).

Theorem 2.17. (Riesz representation) Let X be a Hilbert space. A linear functional
z* on X belongs to X™ if and only if there exists x € X such that for every y € X
we have

2 (y) = (v, 2)x,

and in this case ||z*|| x+ = ||z|/x. Moreover, z is uniquely determined by z* € X*.
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2.2 Differentiability in Banach spaces

Let X,Y be Banach spaces and G : X — Y an operator from X to Y.

Definition 2.18. Let 2z and A be in X. If the limit

1
lim * (G + th) — G(x)) =: 0G(x,h), t € R

exists in Y, then it is called directional derivative of G at x in direction of h.
If it exists for all h € X then the map h — 0G(z, h) is called first variation of G
at x.

Definition 2.19. If the first variation 0G(z, h) exists as well as a linear and con-
tinuous operator A : X — Y with

0G(x,h) = Ah, Yh € X
then A is called Gateaux-derivative of G at x € X.

Definition 2.20. G : X — Y is called Fréchet-differentiable at x € X if there
exist an operator A € L(X,Y) and a map 7 : X x X — Y, such that

Gx+h)=G(x)+ Ah+r(z,h) Vh e X

holds with
[r(z, h)|ly
1Al

A is called Fréchet-derivative of G at x and we use the notation A = G'(z).

0 for ||A]x — 0.

Definition 2.21. Is G : X — Y Fréchet-differentiable for all x € X then it is
called Fréchet-differentiable. Let G be Fréchet-differentiable in a neighborhood
of x € X. If the map z — G'(x) from X to £(X,Y) is continuous, then G is called
continuous Fréchet-differentiable at x.

2.3 L? and Sobolev spaces

Let © be a domain with Lipschitz boundary I". We denote by LP(2), 1 < p < o0,
the space of real valued functions, which are defined on {2 and integrable to the p-th
power with respect to the Lebesgue measure dx, i.e.

uELp(Q)(@/updx<oo.
Q
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LP(Q) is a Banach space with the norm

1/p
lull ey = ( [ p dx) .

With p = 2, L?(Q) is a Hilbert space with the scalar product

(u,v)r2(0) = /Qu(x)v(x) dx.

By L*°(€2) we denote the space of all real valued functions, which are essentially
bounded on 2. The norm is given by

lull <) = ess sup fu(z)].

Let m be an nonnegative integer and p a real number with 1 < p < oo.
W™P () denotes the Sobolev space of functions whose weak derivatives of order m
lie in LP(§2) . W™P(Q) with the norm
1/p
lulwmoiy = | Y 1D%ulf,
laj<m

is a Banach space.
For p = 2 we use the abbreviation

H™(Q) := W™2(Q).

For m =1 and m = 2, H™(Q) is a Hilbert space with the scalar product

(u,v) () :/uv dx+/ VuVv dx,
Q Q

(u,v) 2(0) :/uv dx+/ VuVv dx—l—/ V2uV2v dx
Q Q Q
respectively.

Theorem 2.22 (Sobolev embedding theorem). The following imbeddings are well
defined and continuous for bounded €2 € R™ with Lipschitz boundary, 1 < p < o
and a nonnegative integer m :

np
n—mp’
Formp=mn : W"™P(Q) — L1(Q), if 1 <gq < oo;

For mp >n : W™P(Q) — C(Q).

Formp<n : W™P(Q) — L1(Q), if 1 <¢g<

Remark 2.23. Every LP(f) is a seperable space and L?(Q) is as a Hilbert space
also reflexive.
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2.4 Abstract optimization problem

Following [45] Chapter 6 we present the theory on optimization problems in Banach
spaces. For the general setting we assume that U and Z are Banach spaces and
C C U is a nonempty convex subset of U.

To describe general optimization problems in Banach spaces we will utilize convex
cones:

Definition 2.24. A convex set K C Z is called convex cone, if Az € K holds for
every z € K and A > 0.

Example 2.25. We want to give some examples for convex cones:

e For any Banach space Z :

K={0}and K =7

e For Z = L?(Q) with a bounded domain Q C R" :

K={2cL*Q) : z2(x) >0 faa zcQ}

e For Z =TR3:
K:{ZER3 :21=0, 20 <0, 23 >0}

We use a convex cone to define a relation in Z with respect to this cone :

Definition 2.26. Let K C Z be a convex cone and z € Z. We set z >k 0 if, and
only if z € K. Analogous we set z <g 0, if —z € K. Furthermore we set z >k 0
and z < 0, if z € int K and —z € int K, respectively.

Remark 2.27. For z >k 0 one sees the elements of K as 'nonnegative’. The
definition above can result in the fact that this nonnegativity does not comply with
the natural sense of nonnegativity. If we take a look at the last example we see that
the nonnegativity z > g 0 only implies nonnegativity for zs.

To define a relation in dual spaces and to introduce the Langrange multipliers we
need to define the dual cone:

Definition 2.28. Let K C Z be a convex cone. The dual cone belonging to K is
defined as
Kt ={ecz*: (2", 2)z+ 7z > 0Vz € K}

Example 2.29. We want to illustrate this definition by means of the first examples
of convex cones.
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e Let Z be a Banach space and K = 0, then z > 0 < z = 0 holds. This means
Kt = Z* because (z*,0)z« z = 0 > 0 is satisfied for every z* € Z*.

e For a Banach space Z and K = Z we get KT = {0}.
e With Z = L?(), with a bounded domain Q ¢ R, and
K={2€L*Q) : z(z) >0 faa. zecQ}

we see via the Riesz theorem that Z = Z* holds and we get K+ = K.

With these definitions we can formulate the general problem for Fréchet-differentiable
fand G, with f: U - R and G: U — Z, and a convex cone K C Z:

Problem 2.30.

min f(u) (2.1)
s.t.:
Gu) <k 0 (2.2)

Definition 2.31. u € C' is called a local solution of Problem 2.30, if @ is a feasible
point and

f(@) < f(u)

is fulfilled for all v € C' with G(u) < 0 and ||u — @||y < e with a suitable £ > 0.
We define the Langrange function L(u, z*):
Definition 2.32. The function
L(u,z%) = f(u) + (", G(u)) 2+ z,
L:U x Z* = R, is called Lagrange function.
A Lagrange multiplier is defined as:

Definition 2.33. z* € K is called a Lagrange multiplier for a local solution % of
Problem 2.30 if the following conditions are fulfilled:

D, L(u,z")(u— )>0 VueC
(2", G(u)z+,z =
The existence of Lagrange multipliers can be ensured via regularity conditions, also

called constraint qualifications, such as the regularity condition of Kurcyusz and
Zowe [29]:
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Definition 2.34. Let @ € C be with G(u) <k 0. The sets
Cla)={Mu—-a) : A>0, ueC}
and
Kz ={\Mz—-%2) : A>0, z€ K}

are the conical hulls on C' in @ and K in zZ. The regularity condition of Kurcyusz
and Zowe can be formulated as

G'(a)C(u) + K(-G(u)) = Z (2.3)
which is equivalent to the fact that the equation
aG'(u)(u—u) + Bv+ G(a) = 2
has a solution for every given z € Z with u € C, v >k 0 and nonnegative o and f.

Theorem 2.35. [[45] Theorem 6.3 | Let u be a local solution of Problem 2.30 and
f, G continuous Fréchet-differentiable in an open neighborhood of @. Then there
exists a Lagrange multiplier z* € Z* belonging to @, if regularity condition (2.3) is
fulfilled. The set of Lagrange multipliers belonging to u is bounded.

We will use an formulation, which is sufficient for (2.3), if K and C have a nonempty
interior:

Ja € int C(u) : G(u)+ G'(@)ia <k 0 (2.4)
Condition (2.4) is called Mangasarian Fromovitz Constraint Qualification.

Remark 2.36. The regularity condition depends on the nonempty interior of K,
which cones in Z = LP(Q), with 1 < p < 00, do not possess. We take for example
the natural choice of the nonnegative cone in L?([0, 1])

K ={z¢c L*[0,1]) : z(z) >0 a.e. in [0,1]}.

One would think that a function such as z(z) = 1 is an interior point of K. But if
we look at the sequence

vn(x)_{ 1in [0,1—1/n)

—1lin[1—-1/n,1]

it does not belong to K, but it converges to z with respect to the L?-norm. This
effect occurs for every LP space with 1 < p < oo, which makes it necessary to choose
Z C L™(Q) if we want to employ formulation (2.4).



Chapter 3

Optimality conditions and main
result

3.1 Optimality conditions

We consider the following general problem setting :

Assumption 3.1. (Setting of P)
Let U be a Hilbert space, Z a Banach space, f: U - R, G: U — Z and

f a twice continuously Fréchet-differentiable functional (3.1)
G a weakly closed operator (3.2)
G a twice continuously Fréchet-differentiable nonlinear operator. (3.3)

With a weakly closed and non-empty subset U,q of U we consider the problem

1 "

and describe U,y as
Uad:{UEU : GUSKO}

while K C Z is a convex cone. To use our approach we make several additional
assumptions. We start with some properties of the functional f:

14
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Assumption 3.2. (Properties of P)
Assume that f: U — R has the following properties:
f is bounded from below, i.e. f(u) > b, for all u € U and one b € R. (
f is weakly lower semicontinuous. (
f is radially unbounded. (
|(f"(u) = f"(w))[or,v2]| < Mu—wllullvillufvzflo, — (
Yu,w € Uyg, v1,v2 € U

Lemma 3.3. (Existence of a solution for the continuous problem)
If Assumption 3.2 is fulfilled, then there exists at least one control @ € U,q such that

F(@) < F(u) Vu € Ung
holds.

Proof. Since f is bounded from below there exists a j € R with

S
J ugg]adf(U)

We choose a minimizing sequence u,, such that
fluy) — j for n — oo.

Since f is radially unbounded we know that |lu,||y < C, with a certain positive
number C, holds for all n € N. Thus {u,} is a bounded set and consequently weakly
relatively compact. (See Theorem 2.15) This means we can choose a subsequence
{un, } C Uyq such that

Uy, — u for k — oo

for some @ € U,y. (See Note 2.23.) Note that @ is in U,q, because Uyy is weakly
closed.
Since f is weakly lower semicontinuous we also see that

f(u) <liminf f(up,)

k—o0

holds. This leads to f(a) =j < f(u) Yu € Uyg. O

From this point on we denote a local minimizer of (P) by « .
To formulate the optimality conditions for the continuous problem we recall the
Lagrange function:

Definition 3.4. The function £ : U x Z* —- R
L(u,z*) = f(u) + (2%, Gu) z+ 2 (3.8)

is called Lagrange function of (P).



3.1 Optimality conditions 16

To ensure the existence of Lagrange multipliers we assume a regularity condition

Assumption 3.5. (MFCQ-type)
There exists a d € U such that

G(u) + G’(ﬂ)d <K 0
holds.

Thus we get via Theorem 2.35:

Lemma 3.6. If Assumption 3.5 is fulfilled, then there exists a Lagrange multiplier
uw € K* C Z*, such that the following properties are fulfilled :

D, L(t,p)(u—1u) > 0Vu € Uy (3.9)
(n,G(a))z+z =0 (3.10)

We denote p as a Lagrange multiplier corresponding to .

At this point we want to introduce a second optimization problem (P}) as a discrete
counterpart to (P) and discuss it in a similar way.

Assumption 3.7. (Setting of P,)
Let U be a Hilbert space, Z), C Z a Banach space, fr, : U = R, Gy, : U — Zj, and

fn a twice continuously Fréchet-differentiable functional (3.11)
Gy, a weakly closed operator (3.12)
G}, a twice continuously Fréchet-differentiable nonlinear operator. (3.13)
We consider
ug%?d fn(w) (Pn)

with
ad—{UEU : Gpu <g 0}

as a discrete problem.
Remark 3.8. At this point we want to emphasize two things :

e U has not been discretized, which means we use the approach of M.Hinze
presented in [24].

e For linear finite element examples there is no difference between this so called
Hinze discretization and a standard discretization of U.
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We impose the same assumptions on the functional fj as on f.

Assumption 3.9. (Properties of Py)
Assume that fj, : U — R has the following properties:

fn is bounded from below (3.14)
fn is weakly lower semicontinuous (3.15)
fn is radially unbounded (3.16)

Lemma 3.10. (Existence of a solution for P)
If Assumption 3.9 is fulfilled, then there exists at least one control @y, such that

fu(y) < falu) Yu e UM,
holds.

This can be proven in the same way as Lemma 3.3.
By uy, we denote a local minimizer of (Py,). We assume a slightly different regularity
condition for (Py)

Assumption 3.11. (Regularity condition of Pj,)
There exists an dj, € U such that

—Gpup — SG%(ﬁh)dh —z2€K, (3.17)
Vz€ Z:|z|lz < s, s€[0,1]

and formulate the optimality condition for (Py).

Lemma 3.12. If assumption 3.11 is fulfilled, then there exists a Lagrange multiplier
pyn € K* C Z;, such that the following properties are fulfilled:

Duch(ahaﬂh)(u - ah) >0, ue U(;ld (318)
(n, Gr(@)) (2,2, = 0 (3.19)

The Lagrange function L, is defined as
ﬁh(u, Z*) = fh(u) + <Z*, Ghu>(zh)*7zh
and pyp is a Langrange multiplier of .
We introduced the first order optimality conditions and showed the existence of a

solution for the two problems. We interpret (P,) as the discretized problem of the
continuous problem (P) via the following assumptions:
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Assumption 3.13. (Approximation properties of G},)
There exist constants cg, cq and k such that

|G (un) — Gu(up)llz < cah¥llunllu, un € U (3.20)
G (@) — G (@n)]ullz < carh®||ullu, Yu € U (3.21)

hold.

Assumption 3.14. (Approximation properties of f)
There exist constants ¢y and k such that

L/ (@n) — fr(@n)lul < cph®llullu, YueU (3.22)

Throughout the estimation process we will impose the following properties on f, f;,G
and Gy,

Assumption 3.15. (Coercivity, boundedness and Lipschitz-type conditions)
There exist constants L, M, N, R and « > 0 such that

L (@, pn)o* = " (@n)[v, o] + {un, G" (@) [v,0]) > allo||f, Yo € U (3:23)

I[Gh(u) = G(an)vll < Llu = anlluv]u, Yo € U, (3.24)
Vu e U : ||lu—ap|lu < ||an — nllu

[(F"(w) = f"(an))[v1, val| < Mllu = ap|lu|villollvzllu, Yu € U (3.25)
|lu—apllv < R, vi,v3 € U

I[G" (u) — G"(n)][v1, valllz < Nllu — apllullor|uflvello, Yu € Uad (3.26)
|lu—apllv < R, vi,v3 € U

hold.
Remark 3.16. We want to point out

e that assumption (3.23) implies the coercivity of the second order derivative of
fin uy,

e that assumption (3.25) is a confinement of assumption (3.7).

To conclude this section we introduce a class of example, on which we will take a
closer look in Chapter 5:
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Example 3.17. We set U = L3(Q), Z = L>®(Q2), Q C R",n = 1,..,3, and consider
the problem

min Iy, 0) = 5lly = vallFaie) + 5l — walago
—Ay+d(z,y) =uin
y(z) =0on T
y(x) = Gu(x) < c.(z) a.e. in Q
y(r) = Gu(x) > —c.(r) a.e. in Q

We set G as
. Gu + c.
G =
—Gu + ¢,
while G is the control-state operator belonging to the PDE above, and with
K={ze€Z: z(x) >0, ae. in Q}

we express the constraints of Example 3.17 as Gu <f 0.

3.2 Estimation strategy

Our goal is to formulate the final part of a second order sufficient condition for the
optimization problem (P) and give an estimate of the discrepancy of the continuous
optimal functional value f(u) and the functional value f(uy) as well as an estimate
of the error ||u — up|| between a continuous local minimizer 4 and a discrete local
minimizer uy. In this section we want to present the main ideas we pursued to
achieve the SSC and the estimate. The strategy can be divided in four major steps.
Step 1: Since we can not expect that uy is a feasible control for the continuous
problem we start with the construction of a feasible control us. We use (3.18) and
set
ug 1= up, + sodp,

which is feasible for sufficient small h and a adequate choice of s and 6. (See Section
3.1)

Step 2: We derive an estimate of |f(us) — f(up)| depending on the discretization
parameter h, the functional f and other known quantities and get:

| f(us) — flan)| < cphF .

Step 3: We consider all feasible v € U,q, which lie on the boundary of B(uy,r),
and get an inequality of the following structure:

flu) — f(ay) > ar® — Br—yr® — 6
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with constants «, 3,7,d, which depend on the quantities L,M ,N,o,cq,cqr,cyh,
which we introduced in Section 3.1, and wy,.

Step 4: We show that a continuous local minimizer « lies in the interior of a ball
with radius r, 0 <r < R, around uy,.

This is equivalent to the fact that the solutions of the restricted problem

min P
uGUadﬂlB(ﬁh,r) f(U) ( T)
are inner points of B(up,r) = {u € U : ||lu — ap||lv < r}.
We also show that
ar? — Br — 77‘3 — 0> thk

holds for an adequate choice of r, 0 <r < R.
We see that a u on the boundary of B(uy,r) cannot be optimal for (P.), which
means it is no local solution of (P) . This leads to our desired estimates

|f () — f(n)| < cph (3.27)
@ —aplly <7 (3.28)
for an appropriate set of constants cy, k and 7.

Lemma 3.18. (Existence of a solution for P,)
Let @, be a solution of P, and r € R with 0 <r < R. If Assumption 3.2 is fulfilled,
then there exists at least one control u € U,q N B(up, r) such that

fa) < f(u) Yu € Ugg N B(ap,r)
holds.

Proof. Since B(up,r) is convex, closed and bounded we know because of Theorem
2.15, Theorem 2.16 and Remark 2.23 that B(uy,r) is weakly compact. This means
that Ugq N B(uy, ) is weakly closed and that we can use the same techniques as in
the proof of Lemma 3.3. O



Chapter 4

Derivation of the main result

4.1 Construction of a feasible point

As stated in Chapter 3 @y, is a local minimizer of (Py). Furthermore we choose a dy,
which fulfilles Assumption 3.11. Then we define us as

ug := up, + sodp,

for 0 € [0,1].
For every h, we denote m as the maximum of ||a||¢ and ||ap + dp|v, i-e.

m = max{||up||v, [|an + dnllv}
We show that the control us is feasible for an adequate choice of s and §:

Theorem 4.1. For sufficient small h, 0 < s < 1 and ug := up, + sdd, the following

implication holds:
2ch*m

e U, 4.1
= s(r — sL||dnl|?) o ¢ (1)

21
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Proof.

Gus = Gus + Grus — Grus
= Gugs — Grus + Gpuy,

1
—l—/ G}, (ap, + tsddy)sddydt
0
= GU,5 — GhU5 + Ghﬂh
1
+/ G%(ﬂh + tsddy)sddy
0

+ (Gl (an) — G (an))sddpdt
= Gus — Gpus + Gpup, + 5SG/h(th)dh

1
+ 5/ [G%(U}l + tsody) — G%(ﬂh)]sdhdt
0
That means we have to show that
— Gruy, — (58G;1(1_Lh)dh — Gug + Gpus

1
— 5/ [G%(@h + t85dh) — G%(ﬂh)]sdhdt e K
0

holds. We know that —Gpuy, —dsG),(up)dp, — 2 € K holds for all z € Z : ||z||z < soT

because of Assumption 3.11 and the convexity of K. That means if

1
H — Gugs + Gprus — 5/ [G;l(ﬂh + tsddy) — G;Z(ﬂh)]sdhdtHZ < st
0

holds, than Gus <k 0 is fulfilled and us is a feasible control. We derive a lower

bound of §:

1
| = Gug + Gpus — / (G (@ + ts6dn) — G (in)]sndt]| 2
0

1
< || — Gus + Grusl||z + || — (5/ (G}, (ap, + tsddy) — G, (1)) sdpdt]| z
0

1
< Cghk||U5||U + (5/ ||[G%(Uh + t85dh) — G%(ﬂh)}sdhnzdt
0

< 2cqh*m + 62Ls?||dp||3 < 2cqh®m + 6Ls%||dy||%
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Thus wug is feasible if

2cahPm + 5L52Hdh||l2j < s0T
& 2cchFm < sét — SLs?||dy |}
& 2chFm < 8(st — Ls?||dl|)

k
2cah®m <6
s(T — Ls||dpl|f;)

O]

To get ug as close as possible to @, we want the lower bound for § to be as small as
possible. To accomplish that we set

— minf1
s = min{1, 5Ll ||2}

This leads to

2cqgh*m _ 8cgh*mL|dy|?
2

5 pu— pu—
T (o TLHth%) T
2L|dn |3 2L|dn |3

if we set 4 on the lower bound and s = 57| d YA < 1 holds. This means for sufficient
small h we get a < 1, for which us is feasubﬁe. With this we have completed Step

1 of the estimation strategy.

4.2 Error of wug

Now we come to the second step presented in Section 3.2. We will estimate the
difference of the functional values of us and u,. We assume that s = 57| d L4 <1
holds, because we get the same results for s = 1 only with a slightly different constant

Cf.

Theorem 4.2. For sufficient small h, m = max{||a||v, ||an + drnllv},

k 2
$= s+ and 6 = % the following inequality holds:

2Llld I

|f(us) — fun)| < cph” (4.2)
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Proof.
1
Flus) — Flan)| = | /0 7 + t(us — ) (ug — an)dt]

1
</0 |f(ap, + t(us — ap)) (us — ap)|dt

< Man — usllo
= || f'llan — @n — sodlv
= || f'lIsé]ldnllo
—F T 8CthmLHth2U
N 2L|dp||? 72
deghPml|dy o
T

8cahFm?

T

ldnllv

=
< I/

< thk

This concludes Step 2.

4.3 Error on the boundary of B(uy, 1)

As mentioned before we deal with the third step and derive a lower bound for the
error on the boundary of B(uy,r). We recall

Lu,p) = f(u) + (1, Gu)z+ 2, Vu € Uqa
as the Lagrange-function of the problem (P) and
L (u, ) = fr(u) + (p, Gpu) z+ z, Yu € Ul

as the Lagrange-function of the discrete problem (Py). Note that u;, satisfies a first
order condition, i.e.

(fr.(up) + Gy, (up)* pp,u — up)y=v > 0, Yu € U

which leads to
fn(an) + Gy (@) pp = 0 (4.3)

Now we consider the u € U,q on the boundary of B(up,r).
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Theorem 4.3. Let R > r > 0, u € U,y be on the boundary of B(up,r), i.e.
llu — ap|| = 7, un a solution of the discrete problem (F},) and up € K* a Lagrange
multiplier of L5 with respect to @,. Then the following inequality holds:

7“3

_ a! _
fu)— f(ug) > §T2—hkr(0f/+CG/||Mth*) 5 (M +N||unllz+) — cch®|| | 2 |an ||

Proof.
fu) = f(un) > f(u) = f(un) + (pn, Gu) z+ 7
— (o, Grtin) z+ 7
= f(u) = f(an) + (n, Gu) z+ z
— {pn, Gup) 7+ z

+ (un, Gunp) z+. 7 — (pn, Grun) z+ 2
= L(u, pin) — L(Up, pin) + (ptn; (G — Gr)n) z+ 2

This leads to:

flu) = f(un) = L(u, pp) — L(Un, pn) — (pn, (G — Gp)n) z+ 2

1
> L' (Up, pn) (v — ) +5 L (g, pn) (u — 1wy )

i)

D
1 ]
+ / / [E”(ﬂh + t(ﬂh — u), Nh) — [,//(ﬂh, uh)](u — ﬂh)Q dtds
0 0

i)
+ (b, (G = Gr)n) 2+,
where £'(u, i) is the partial derivative in direction of u and
L" (ap, pun) (w = p)? = L" (p, i) [ — tp, v — 1)
Ad i):

L (@, pn) (w = ap) = f'(@n)(u — an) + G'(@n)" pn(u — n)
= [f'(an) = fr(an))(u — an) + [f4(an) + G, (an)* pn) (u — ap)
=0 by (4.3)

+ (G (un)* — Gy, (un) ) pun (u — ap)
> —cphFllu—apll — carh¥| sl 2+ |u — n v

Ad ii):
L7 (i, ) (w = un)* > aflu — |7 by (3.23)
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Ad iii):
1 s
/0 /0 1L (an + t(tn —w), pn) — L" (tn, )| (u — Gp)? dds

= [ [t a) — l- )
s [G" (@n + t(u — an)) = G"(@p))(u — ap)?) 7+ zdtds
> (= anlly + Szl — )
For u € U,y with ||u — 4|y = 7, these three inequalities imply:
) = £ n) > 5 = [ — e o — o

N T P TR M A

Rl Gun, (G — Ca)in) 2

> 02 = Wr(ep + carlunllzr) = gr* (M + Nlnllz-)
— cah ||l z- | anllv

O

Now that Step 3 is completed we combine the previous theorems to prove the exis-
tence of a local minimizer @ of (P) in a neighborhood of u,:

4.4 Main result

We prove that a local minimizer @ of (P) lies in a ball around uj, such that the
discrepancy of f(@) and f(iy) is bounded by cgh®.

BC(;hkmLHﬂhfﬁhH%
T2 :

Theorem 4.4. Let s = ———= and § =
L||ap,—ap||
If there is a radius r, 0 < r < R, ?or which

«
57“2 — hFr(cp + corllpn]

is fulfilled, then

1
z2) = (M + Nlpanl z+) = cch® |un] 2« |[anllr — esh* > 0

@ —anllo <r (4.4)

holds, which means that a local solution u of (P) lies within a ball of radius r around
Up -
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Proof. Tt results from Theorem 4.3 that for every u € U,y with [[u — @p||g = r the
following inequality applies :
2 3
_ ar T
fw) = f(un) = 5 W r(ep+ealliml 2+) — G

On the other hand we get from Theorem 4.2 that

(M + N || z+) — cah* |l z= | an o

|f(us) — f(@n)| < cph

holds. For sufficient small h we get that |jus — un||y < 7 holds, which means that
the optimal solution of the restricted problem

. P
wew, Bin f(u) ()

is not on the boundary of B(up,r), which means that the solution of (P,) is a local
solution of (P). O

With that Step 4 is completed and our strategy was succesful. We derived a sufficient
optimality condition in Theorem 4.4 as well as the error estimate

£ (us) = f(@n)| < csh
in Theorem 4.2.

Remark 4.5. After determining a discrete solution u; and a Lagrange multiplier
up we reduce our problem by means of Theorem 4.4. It remains to show existence
of a root of a third order polynomial in the interval [0, R].



Chapter 5

Example

We consider a semilinear elliptic problem:

Example 5.1.

. 1 A
min J(y, u) := 5ly — yall72(o,17) — S llu = uallz2(0,1)

—Ay +d(z,y) = wu in [0, 1]

y(0) =y(1) =
y(z) = Gu(x) < c.(x) a.e. in [0,1]
y(@) = Gu(x) > —cc(x) ae. in [0,1]

with the control to state operator G : L*([0,1]) — H2([0,1]) belonging to the ODE
above.
With

. Gu + ¢
b u+c
—Gu + ¢,

and
K={z€Z: z(z) >0, ae. in [0,1]}
we can express these condition via the cone relation :
Gu <g 0

We set d as :
d(z,y) = y(z) + v’ (x)
That leads to :
d'(z,y)h = h(z) + 3y*(z)h(z)
d"(z,y)(hi(z), ha(z)) = 6y(x)h1(z)ha(z)

28
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where d’ is the partial derivative of d in direction of y.
The first order Frechét-derivative of G is determined as :

G(a)u =y (5.1)
where y is the weak solution of

—Ay+y+3)Py=uin Q
y=0onT

with G(a) = 9.
The second order Frechét-derivative is determined as

G”(@)[ul,l@] =z (5.2)
where Z is the weak solution of

—AZ+ 243572 = —6gy1y2 in Q

Zz=0onT

with G(4) = ¢ and G'(4)u; = y; for i = 1,2.

5.1 Verifying the assumptions

We compute the constants of Chapter 4 for this class of examples. These computa-
tions are quite technical even for this rather simple case as we will see. At the end
of this chapter we will give an overview of the results for all involved constants. We
start with several underlying constants, which we utilize for the desired estimates.

5.1.1 Lagrange operator and imbedding constants

We look at the imbedding constants I, of the imbeddings H}([0,1]) < LP([0,1]),
ie.
19l 2o o,1)) < Lollyll o,y Yy € H([0,1]).

Computation of I,

We start with the derivation of I2, which we will then use to compute the imbedding
constants for LP([0,1]) with p > 2.

Note that .
. . 1
I sm(mrx)”%g([o,l]) = / sin?(nmz)dr = B

0
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and

1 22
1 1 1
I sin(nﬂm)leql([o ) = / sin®(nmx) + n’n? cos? (nrx)dr = 3 + nzwz5 = %
' 0

hold. This leads to

) 1 )
| sin(nmz)| 2 (j0,1) = W” sin(nmz) || g (o,1)) < \/ﬁ” sin(nz) || g1 (jo,1))

We set y = > 02 yn sin(nmz) and get :

||y\|%2([0’1]) :/0 y?dx —/ Z Yn sin(nmz))?dx
—Zyn/ sin?(nrx) dx

= Z yall sin(nm)l[72 0.1

n=0
=3 g2 ||sin(nma)|
n=0 Iny g H1((0,1])

1
S Zynn sin(nm) 3 0.

] 2/ E 31721 Sin2(nﬂ'x +yin2ﬂz COS2(TL7T$) dx
4+
=0

1
- / 2+ () de
0

1+7
1 2
m”ynm([o,u)

Thus we see that

1
1yl 220,17y < ﬁ“y”m([o,u)

holds. This leads to the following imbedding constants:

1
L= ——— ~0.3033
2 Va2 + 1
1
I = (ilg)i 917 ~ 0.4631

Io=(SIE = (37)

1
g I3 ~ 0.6105

[
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Computation of ¢y,

In the next step we look at the imbedding of H'([0,1]) < L°([0,1]), on which we
will rely for several of the other constants :

12 = Znll oo (0,1)) < Coollz = Znll 1 (j0,1)) (5.3)

Let y be an arbitrary function in H{([0,1]), then there exists a o € [0, 1] such that
1yl Lo (j0,17) = |y(wo)|. We split the estimation process in two cases:
Case 1 : mg € [0, 1]

1Yl Lo (j0,17) = |y(wo)| = [y(wo)| — y(

:/ ydt<\// 1dt\// t)2 dt
0
5 1
< 1dt / ’thtSf
N /0 VL 02 a < Sl
il 0.y = (0] = ly(o)] — (1)
/yy ydt<\//1dt\// t)2 dt
1
< 1dt /y’tzdtgy 1
,//é VL o2 ac< Sl

Coo =

Case 2 : xg € (3,1]

Hence we get

Sl

Properties of the Lagrange operator

We end this section with some properties of the Lagrange operator.
For
Ay = —Ay = —Yuz
there exist constants dy and 1, such that
50Hy||H1 0,1]) S (Ay,y)
(Ay1,y2) < 0ullyllmqoap vzl o,y Yy € Hg ([0, 1])

hold. We see that

(Ayr,y2) = (=Ay1, y2) = (Vur, Vy2) < [lvall g o, 12l a1 o,1)
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holds, which means §; = 1. Furthermore we see that

(Ay,y) = IVYll72(0.1) = 19117 0,1y = 19l Z20,17y = (2 = Il 0,1y
holds. Thus we get 6o = 1 — I3.
For &g we get :
6o =1 — 12 ~ 0.9080
5.1.2 Computation of cg
We look at the constant cg from [41] Theorem 4.1:
1Yl &2 10,1y < esllullzz(o)
We recall the ODE:
_yxa:+y+y3 =U = Yz :y+y3_u
This leads to
Vor =+ 5" —uy +y* +1° — yPu —uy —uy® +
=%+ 20 + 42 — 230 — 2uy + u?
= (y* + 20 + Dy? — 2uy(y® + 1) + v,

1 1
/ v+ i+t dxz/ uy dx
0 0

1 1
1911 20,17y = /0 v+ s +ys, dx = /O vty +yt +ys. —ytdx

Furthermore

holds. Thus we get

uy + (y* + 20° + 1)y? — 2uy(y® + 1) + u* — y* dx

(207 + Duy + (y* + 92 + Dy? +u? dx

/1
[

0

1
/ Y+ D)2+ 2 +yh) + W+ P+ Dy +u? dx
0

1
/—2y e =200 =y — i =yt Syt P u? dx
0

1
:/u—y — oyt 2y2yfc—y§d><§/u2dx
0 0
<0

< lullZ2o.1))



5.1 Verifying the assumptions 33

5.1.3 Computation of ¢;,,

We want to compute the inverse estimate constant c;,,:

Cinv

h

[vnllzee(jo,17) < lvrll 2o, Yon € Vi

In order to do this we will utilize two known results. Regarding symmetric matrices
we want to recall the Rayleigh quotient and its properties:

Definition 5.2. For a given matrix A € R™*" and a nonzero vector € R" the
Rayleigh quotient R(A,x) is defined as
T Az
Ax)=——.
R( 7'r) 2T
Theorem 5.3. The Raleigh quotient fulfills
Amin < R(A,2) < Amaz, @ € R™\ {0}

for a symmetric matrix A € R™* ™ its smallest eigenvalue A.,;, and its largest
eigenvalue A;qq-

And regarding estimates of eigenvalues we quote Gershgorins circle theorem:

Theorem 5.4. For every diagonal entry a;; of A € R™*" the Gershgorin circle is
defined as:

and the spectrum of A lies in U?_; B;

Now we derive cjpny:
Let vp, € Vj, then vy, can be written as v, = Y., v;¢; and the L?-norm can be
derived as

||Uh||%2([0,1]) =0 My
with v = (v;)i=1., and M = (m;)i j=1.n With m;; = (¢i, ¢;). We define an L2-type
norm as

T
thquu =hv'v

and prove that this norm is equivalent to the L?-norm :
We set
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and use the Rayleigh quotient to get
Amint’ v < 0" Av < Apnaav” .

Thus we get
PAminvTv < o7 My < hApazvT v.

Using Gershgorins circle theorem we get the bounds
1
Amin > g and Apar < 1.

This leads to

1
gllvh\liqu < llonlZeo,y) < lonllZgu

= [[vnllequ < V3lvnll 20,1y < V3l 0nlegu-

Now we look at the minimization problem

n
Yo7 = lonlequ
i=1

s.t. ||'U]—LHLOO([O71]) = mzaxvi =1m.

It is clear that v with ¥; = m for one certain ¢ € 1,..,n and v; = 0, Vj # i, is a
solution of this problem, which leads us to

[9]lequ = Vhm < [[vpllequ Yon € Vi, with [|vp | pee(o.1)) = m.

Thus we get:

fonllieoy = m = L0 < Jonllean o V3,
’ N ’

which means

Ciny = \/g

5.1.4 Computation of N

We consider Assumption (3.26)

1G" (w) — G" (an)][v1, va) L 0,17 < Nllw — @l 2qoapllvillollvall 2 g0,
Yu € Ugg, Hu — ﬂhHLQ([O,l]) <R, vi,uvs € L2([0, 1])

and want to compute N. From (5.2) we get

(G"(uw) — G" (1)) [u1,us) = 2z — Zp
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where z — Zj, is the weak solution of

~A(z —2) + (2 — 2n) + 3(¥%2 — G2 2n) = —6yy1y2 + 6Fnyn1yne in [0,1]
2(0) — 2,(0) = 2(1) — z,(1) = 0

with G(u) =y, G(ap) = gn, G'(u)u; = y; and G’ (ap)uz = yp; for i = 1,2 .
This leads to the weak formulation

1
/ V(z—2Z)Vo + (2 — Zn)v + 3(y%2 — g2 2p)v dx =
0
1
/ —6yy1y20 + 6Gnyn1ynev dx, Yo € H'([0,1]).
0
With v = z — 2z, we get
1
/ Viz—2)%+ (2 — 20)* + 3(¥°2 — 522n) (2 — 2p,) dx =
0
1
/ —6(2 — 2) (yy1y2 — Ynyn1Yn2) dx.
0
This is equivalent to:
1
| VG2 der @y - d e mm s - ) -
0

1
/ —6(2 — 2) (yy1y2 — Ynyn1yn2) dx
0
We see that the following equation applies:

(d(x,y)z — d'(x,9n) 20, 2 — Zn) = (d'(z, ) (2 — Zn), 2 — Zp)
+{d' (z,y) — d'(x,9n)z, 2 — Zn)

1
_ / (2= 20)2 4 372( — 22
0

+3y%2(2 — Z) — 37pz(z — 2p,) dx

This results in

1 1
”Z — Zh”%p([o,”) + / 3@}21(»2 - Zh)Q dx = _/ 3(2 - Zh)[(yQZ - Z?i%z)
0 0
+ 2yy192 — 2UnYn1Yne) dx

and we gain

1
12 = Znll2p 0,17y < |3/ (z = 20)[Y*2 — Gz + 2y5192 — 2Gnyn1yna) dx|
0
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from the fact that fol 3y2(z — z,)% dx > 0. We get the estimate
by 2
1z = Znll 31 0,17 < 3ll2 = Zh||Loo([o,1])(/ ly“2 — Uhz + 2yy1y2 — 20nYn1yne| dx)
0
1
< Beoollz = Znll o, 1Y — Ui 2)| + 2/ lyy1y2 — YnYn1yn2| dx]
0
which leads to

1
1z = Znll m1.0,17) < 3ool (¥ — Ui 2)| + 6Coo/ [yy1Y2 — Ynyn1yn2| dx|
0

1
= Sescl(5? = 72 + B [ Iyl = smase)
+ yyr1y2 — Un(Yn1Yn2 — Yn1y2) — YnYniye| dx|

1
= 3coo|(y® — U1, 2)| + GCoo/ (G (u) = G'(an)]ur G' (u)uz)

0

— Un([G'(an) — G'(u)]uaG' (Tn)ur)
+ (y — 9n) (G (@) n1 G’ (w)u2)| dx|
< Bee [I(* — 72, 2)
+ 2[llyll o (o, |G (w) — G’ () Jua || oo (0,1 |G (w) ||| £2(0,1))
+ 1Fnl oo o, |G (@n) — G (w)]ua |l oo 0,17 |G (@n) 1w || £2(0,1))
+ ly = Tnll oo o, G (@) [l L2 (10,17) Loe o, 1wt | 22 (0,17)
||G,(u)||L2([0,1])HL°°([0,1])||U2HL2([0,1])H-

We assume
1G" (W)l 20,1y o< (j0,1)) < K’ (5.4)
IG" (W)l 2((0,11)—£(22(j0,1), L ([0,1)) < K (5.5)
Gu = Gun|| Lo (o,1)) < Lallu = nllr2(o,1)) (5.6)
ly* = T2l 22 o) = I1G(@)? = G(@n)? || L2qpo,17) < Lz llu = @nll 2o, (5.7)
G () — G (w)]uil Lo jo,17) < L 1w — tnll p2(o,ap) 1will 2 (0,17) (5.8)
with [Ju — g || p2(j0,17) < R for (5.3)-(5.8) and u € Uyq for (5.6)-(5.8) and get

12 = Znllmo.17) < 3coo (19 = Fill 2o IG” (W) luall 2o, 1wzl 220,17
+ 2(2lecll oo 0,1 Lar K [|w = an| 2o, luall 2o,y w2l £2o,17)
+ La(K")?|lu = sl 2 (o.ap) 1wl 2o, lluzll z2o.17)))
< 3eoollu — @nll 2o, 1wt ll 2o, 1) 1wzl L2 0,1
(L2 K" + 4llecll os o)) Lar K + 2La(K')?). (5.9)
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Computation of K’

To compute K’ we consider the weak formulation of (5.1)
(Vy. Vo) + (y,v) + (35, v) = (u,v)
and set v = y which leads to
(Vy, V) + (v.9) + (357, 9) = (u.y)
>0

H?/H?{l([o,u) < (w,y) < llullzzo, 19l 220,11y < Nwllz2 o Iyl a o,1))

9l oy < llullzzqoy = IIG (@) < K" =1

Computation of K"

To compute K” we use the same strategy:
We consider the weak formulation belonging to (5.2)

(V27 V’U) + (727 ’U) + (3:&227 ’U) = (—Gleyza ’U)
and set v =2 =

(V2,V2) + (2,2) + (3972, 2) = (~63y1y2, 2)

———
>0
=
1201 0.1y < 1(=633192, 2)]
1
< elmony [ 16GAG @G (@)ua] dx
0
< 6cooll21 (o, Gl oo o,y K 2 [l 2 o, 1) K 2 | 2 jo,1)
=
120 &1 (o,1) < 6coa |G| poo(o,17) Il 220,112l 2 j0,17)
< 6coocsro ||l 2o, 1wl L2 o vl L2 0,1
=
|G"(0)]| < K" = 6coocsroo
with

12
csnee = 45105,
do
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(See [41] Corollary 8.1)
With
cse ~ 1.6419

we get
K" =~ 6.9660.
Computation of Lg

For (5.6) we get from [41] Lemma 4.2 that

I
Lo = 63 ~ 0.3340 (5.10)
0

holds.

Computation of L
For (5.7) we see that
1v? = Gl 2oy < 1y = nllzago,m 1y + Fnll 2o,

< |ly = Gnll Lo (jo,) 1Y + nll Lo (0,1
< Lallu — anl 22 o, 1y + T ll Lo 0,1

holds. Thus we need to estimate ||y + @nl| Lo ([0,1)):

ly + nllLeeo,1) < N19lle(o,1)) + NFrll Lo (o,1)

This means that we have to find an estimate of [|y|| o ((o,1)) for all y with G(u) =y
and [|u — p| z2(0,1)) < R. We know that

1
Yl Lo (p0,1)) < EH?JHHl([O,H)
holds. Hence we get

_ 1 _
ly + Fnll Lo jo,1) < E(Hyllm([o,u) + 1 FnllE (o,1)))

Now we want to derive a upper bound for ||y|| g1 (f0,1)) and |9l g1 ([o,17) Tespectively:
We consider the weak formulation of the underlying problem:

(Vy, Vo) + (y,v) + (3%, v) = (u,v)
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With v = y we get:

2 3
+ ) = (u,
19l oy + (W7 9) = (u,y)
>0

= [yl o) < lellz2 o, 191l o

= [lyllar oy < lullz2 o,

Thus we need to find an estimate for [|ul|z2((o,1). Obviously

lull 20,1y < Nl@nllz2 o)) + R

holds Vu € Br(uy). Hence,

1yl &0, < Nlanlleoay + R

holds. This leads to
Iy + Gnll oo o,17) < V2(lln | z2(o,17) + R)-

Finally we see that
1y? = Tl 2oy < V2Lallu =l r2 o1y (lanll 2 o,1) + R)
holds and thus we get

Lo = \@Lg(HﬂhHH([OJD +R).

Computation of L

L¢y from (5.8) can be derived as follows:
We denote
G'(uw)u; =9
and
G'(up)u; = g
as the weak solutions of
—AG+ i+ 3y") = s
respectively
—~AJ+ G+ 3737 = .
This leads to
—AG—§) +9—F+3w*— 975 =0
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and the weak formulation reads as

(V@ —9), Vo) + (7 — §,v) + (3 — Frd,v) = 0, Yo € Hy([0,1]).

:<d/ (xry):l}_d/ (xvgh)grv>

We set v = ¢y — g and get
IV = 9)I* + (d' (2, 9)§ — d'(, )5, § — 5) =0
We consider the second term of this equation:
(d'(z,y)g — d'(z,91)5,9 — §) = (d'(z,90) (G — ), — 9)
+{d(2,y) — (2, 90)9, 9 — §)
= /0 G- 5+ 3080 - 0+ 307 — )ild - D)

This results in:

1 1
VG — )2+ 15— 3% + / 35209 — §)° = -3 /0 (v — )9 — §)dx

0
| —
>0

1
1= il o < 3 | 2 = )it =D

<311y = Tl 2qoap 191l z2 o, 19 — Gll 2o 0.17)
< 3[ly* = Gl 2o IG" (W)l llwill £2((0,1) oo 18 — ll 11 (0,17
= 9 = 9llmr o)) < 3La2coollu — anl| K |Juill L2 (0,17
= Lo = 3c K Lo

Final result

If we combine all the results above we get :

N = 3COO(LGv2K” + 4HCC||L°°([0,1])LG’ + 2L0(K/)2)

3 9 1 (P2 +1)(x2+1)5,
-5 24(15)? o (anll 2o,y + R)
VATl vri+l

+12/[cell e o, ~—5— (Il z2(po,1y) + R) + 2

w2 w2
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5.1.5 Computation of L

We consider Assumption (3.24)

1[G (w) = G, (@n)]vll o,y < Lllw = @nll 2o, llvll 20,1, Yo € L2([0,1),
Vu € L*([0,1]) : [Ju — @nl| 20,1y < 8n — tnll 20,1

and compute L in a analogous way to V. We set
Gl (W)w =z, © —Azy + 2y + 3@3% =w
with Gp(u) = g, and get
(Gl (u) — GhL()w =2y — 2+ —A(2y — 20) + (24 — 20) + 30220 — 3722, =0
Yu,v € U. We consider the weak formulation
(V(zu = 20),t) + (20 = 20, t) + 3(Gi2u — oz, ) = 0, VL€ 2y,
and with t = z, — z, we get

(V(zu — Zv), v(zu - Zv)) + (Zu — Ry, Ru — Zv) + 3(@72,2“ - @?,Zm 2y — Zv) =0

1
/ V(Zu - Zv)2 + (Zu - Zv)2 + 3(@5211 - @?,ZU)(ZU - Zv) dx =0
0

1
| V= )? s () )20~ 22) =0
0
For (d'(x, §y)2y — d' (2, §y) 20, 20 — 2») We get the following equation:

(d (2, Gu) 20 — d' (2, 90) 20, 20 — 20) = (d' (2, 90) (20 — 20), 20 — 20)
+ <[d/(l‘, @u) - d/(l‘, ]}v)]zu, Zu — Zv>

1
- / (20 — zau)2 + Sgg(zu — zv)2
0

+ 30 — 92)7u(zu — 20) dx

1
/ V(zy — 20)? 4 (2uz0)? + 302 (20 — 20)? + 3(92 — 92)2u(2y — 2,) dx =0
0
which is equivalent to

1 1
l2u — Z’UH%JI([OJ]) +/ 30y (2u — 20)° dX+/ 30 — 03)7u(2u — 20) dx =0
0 0

>0
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This leads to
2 ! 2 2
[ Zv”Hl([o,1]) <|- 3/0 (T — T)2u(2u — 20) dx|

< 3nzu——zv|Lw(mJDlA;1]K@i——@3>zu|dx

)

< 3coollzu — 2ol qoap 192 — Fall 2 | 2all L2(o0,17)

Thus we get

3
20 = 2ol 51 (j0,17) < \ﬁllGh(u)Q — Gr(v)?|l 20,1 | G (w)wl £2(po,1))

< gl = vlaoyKilhwllgos)
under the assumptions
||Gh(u)2 - Gh(?})2HL2([0,1]) < LG%HU - U”L2([0,1}) (5.11)
|GL ()| < K, (5.12)

Computation of K

We consider the weak formulation
(Vzy, Vt) + (24, t) + (3gjizu,t) = (w,t)
to verify (5.12), set ¢t = z,, and get

(VZU, vzu) + (Zua Zu) + (3@5%, Zu) = (w7 Zu)-
—————

>0

This leads to

2l (o1 < (w0, 20) < llwll 20,17y 12ull 220,17 < Il 2o, 2l 2 o, 1)

lzull 1 j0,17) < Nlwllz2(jo,1))
Thus we see that

G ()] <1

holds and get
K;, =1.
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Computation of L

To proof (5.11) we fix v at uj, and consider only v € U which fulfill
lw =l L2(j0,1)) < llan — @nllL2(0,1))- We get :

1Gh(1)? = Gr(v)? 22017 < llve — vz, 220,
< yu — Yan 220, 1Yu + Yan 22 0,1))
< Yu = Yap | oo (0,1 1Yu + Yan | Lo (0,1))
< Lay [lw = @nll L2 o) l19u + Yay 2o (j0,1))

with
19w = Yan [ oo (0,17) < Lay, [lu = UnllL2(o,1)) (5.13)
Vu € Ut |lu—nllz2(0,1)) < [1Tn — @nllz2(0,1))

Since L¢g only depends on the imbedding constant Is and the Laplace operator A,
LG = LGh holds.
Now we consider ||y, + ya, [l ([0,1)- We see that

1Yu + Yan [l Lo 0,1)) < NYull oo (o,1)) + llvan, | jo,1)
1
< E(HyunHl([O,l]) + [[ya, | 71 j0,1))
holds. The weak formulation reads as
(Vyu, V) + (g, t) + (13,1) = (u, t).
With t = y,, this leads to

(VYu, Vi) + YY) + W2, %) = (1, yu)-

Thus we get

Hyu”%{l([o 1)) (”“HL2 01]))HyuHL2 ([0,1])

< (el 2o,y 1yl 72 o,17)
= |lyull 1 qo,17) < lullz2o,1))-

Since the considered u fulfill ||u — @p|z2(j0,1)) < l@n — @nll2(jo,1)) it is obvious that
lull 20,1y < Nl@nllz2o,1)) + l8n — @nll L2 (o,1))

holds. Thus
yullzro,1)) < NlEnllz2qo,1)) + [18n — @allL2o,1))
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holds, which leads to

_ 2, _ _
lve = vell 2oy < Laallu — UhHL?([O,l])ﬁ(”uhnﬂ([o,l}) + [lan — @nll L2 (o,17))

= \/iLGh(”ﬂh||L2([0,1]) + 1@ — @nll L2 o,17)) 1w — @all L2 (0,1
Vu € Ut |lu—tpllz2¢0,1)) < 1in — @nllz2(p0,1))-

Hence we see
Lez = V2L, (Il z2(o,1)) + 18 — @nll 2o, 1)-

Final result

L =3coLe: K},

Vi1,
=3———lnllr2qo1) + R)
Vs

5.1.6 Computation of M

First we prove the following inequaility

_ 3 _ _
|Gu — Gap| poo(po,1)) < —=llw = nllz2oayy » Yu €U |lu— @nllp2oa) < R

V2
Since G is Fréchet-differentiable we know that
Gu = Gy, + G'(up) (u — p) + (U, u — )
holds, which we reformulate to

Gu — Giy, = G'(up) (u — ap) + 7(up, u — ap)-
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This leads to

1Gu — Gp|| oo (po,1)) < N1G'(@n)(w = an) |l oo 0,1y + 17 (@ns w = @n)|| oo (o,1))
= ||G"(@n) (u — an) o (jo,1)) + |Gu — Gy — G (an) (u — @n) || o (j0,1))
1
< E(HG’(%)(U — )| m1(j0,1))
+ |Gu — Gy, — G'(un) (v — n) | g j0,17))

1 _ _
< 7(|1G/(Uh)HL2([0,1])—>H1([0,1]) |w — | £2(j0,1)

<1

+ Sl[lopl} |G (tn + 7(u — an)) — G'(@n)|l L2(0,17)— s (o, 1 — Tall £2(p0,17))
T7€|0,

< ——(Ju— anl
—=(|{|U —Uu

<% nllz2(o)

+ Sl[lopu 1G" (@n + 7(u = an))ll L2(0,17)— a1 (0,17) 1w = nll L2 (0,1))
T€|0,

<1

+ G (@n) 20,17 = m2 (o,1)) |0 — TnllL2)

<1
< fu—
——— - 2.
= /5 hIlL
Now we consider
[(f"(w) — £ (an)) o1, va] | < Mlu— anl 2o, llv1ll 2o, 1v2ll L2 o,1))
Yu € BR(ﬂh) and vy,ve € L2([0, 1])
with
1 A
fu) = §||GU — ydllz2(0,1)) + §||U”L2([0,1])
and compute the derivatives of first and second order:
fw)or = (G'(w)vr, Gu = ya) r2(j0,17) + M1, ) £2((0,1))

f(w)[v1,v2] = (G (u)[v1,v2], Gu = ya) 12(j0,1))
+ (G (w)vz, G'(w)v1) r2(j0,1)) + AMv1,v2) £2(0,1))
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Thus we get

[ (w) = £ (an)][vr, va] = (G"(w)[v1, va], Gu — ya) r2(0,1)) + (G (u)va, G'(u)v1) £2(j0.1))
— (G"(ap)[v1,va], Gan — ya) r2(o,1)) — (G (@n)v2, G’ (Un)v1) £2(0,1))
= (G"(u)[v1, ve], Gu — Gy, + Gy, — Ya) 12([0,1))
— (G"(un)[v1, va], G, — ya) r2(jo,1)
+ (G'(u)va, G'(u)v1 — G’ (an)v1 + G’ (@) v1) L2([0,1))
— (G'(an)v2, G'(Un)v1) 20,1
= (G"(uw)[v1, va], Gu — Gan) £2((0,1)
+ (G (u)[v1,v2] — G" (up)[v1,v2], G — ya) L2((0,1))
+ (G'(u)vz, G' (w)vr — G' (@) v1) £2(0,1))
+ (G'(u)v2 — G'(an)v2, G’ (@n)v1) £2((0,1))
< |G (w)[vr, v2ll 20,17 |G — G| L2 o1y
+[I[G" (w) — G" (an )1, va || L2 (o, 1Gan — yall L2(o,1))
+ |G (w)vall 2o, |G (w)vr — G (@n)v1ll £2(o,1))
+ |G (uw)v2 — G'(@n)v2|| 20,1 |1 G' (@) v1 |l L2 (f0,17)
< K" o1l 2o, llv2ll 2o,y |G — G| o= (0,1
+ Nllu = anll 2o llvill 22 o, lv2ll L2 o, |Gan — yall 22 (o,17)
+ lv2ll 2o,y Lllw — @nll 2o, o1l 220,17

+ Ll|u — | g2 jo,p) o2l 20,1 V1 | 22 0,1))

3
S(%

lu = anl| L2 o7y lv1ll 20,1 V2l L2 j0,17)-

K" + N||Gtp, — yall£2(o,1)) +2L)

5.1.7 Computation of cg
We consider

|G (un) — Gu(up)ll poo(o.17) < cabllunllrzqoy) » Yun € Uly
and set

Glup) =2 : —Az+z+ 25 =uy
& (Vz, Vo) + (z,0) + (23,0) = (up,v) , YweV
Gr(up) =z + —QAzp+ 2 + z,?; = uyp,
& (Van, Vo) + (zn,vp) + (23, 0n) = (up,vp) , Yop € V.
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We get
2=zl Loo(j0,1)) < 12 = In2llLe(o,1)) + nz — 2nllLoe(f0,1))

1 V3
< —||lz = Inz + —|[Ipz — 2
< ﬂH 2| (fo,1)) \th n? = znllz2(0,1))

2
< ﬁhHZHm([o,u) + :/f%(\\fhz = 2|2 jo,1)) + 112 = 2nllz2(0,1))

V3
< V2hes]lup | 20} + ﬁ(h2”z”H2([O,l]) + crzesh®||unll 2 o)

V3
< V2h||upl| 2 (o1 + ﬁ(hZHUhHL?([O,l]) + h2erzqop lunllz2o,17)

= (\@ +V3Vh + \/g\/ECLQ([O,l]))HuhHLZ([O,l])h
= (\/5 +V3Vh + \/g\/ﬁw\/c% +(1+(1+ 302)%)2)

o

hllun || L2 (jo,1))

_ (\/§ VBVR 4+ VBVRGB 32T +27T2 \/g +(14+01+ 302)§Z)2>
T 0

hHUhHL2([0,1])-
5.1.8 Computation of cq
We look at the second approximation property
G (tn) — G (@) Jull o< (o,17) < carh™||ull 2oy, Yu € L2([0,1]).

We set
G'(up)u = =z

and

with z solution of

—Zpw + 2+ 3722 = in [0,1]
2(0)=2(1)=0

and zp, solution of

—(zn)za + 20 + 3?}212‘}1 = in [0, 1]
Zh(O) = Zh(l) = 0.
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We write this equations as

(A2)(z) + f(y(x)) = u(z) in [0,1]

with
Az = —Az= —2,, and f(2) = 2 + 373 2.

Now we use Lemma 5.1 in [41] to derive the following estimate:

1
12 = 2nllLoo(po,1)) < EHZ = znlE1(o,1))

< \}55102;_00361hHG,(ah)HLQHHQ||u||L2([0’1])

with
2
T
So=1—13 =
=1
01:1
7
co =1+ g
63:14-362.

¢1 and ¢y fulfill the interpolation properties of assumption (A3) in [41],i.e.

ly = Inyllz2(o,1)) < Clh2”yHH2([0,1])
1y — Inyll mjo,1)) < c2hllyll z2po,1))
which is proven in [8] Chapter 4.5.

c3 has to fulfill assumption (A2) of [41], i.e. for a function f = f(y) : R — R of
class C? with f(0) = 0, there exists a constant c3 such that

|f(y1) = f(y2)] < eslyr — 2

holds for all y1,ys € R. We want to use this result for the first derivative of GG, which
means we have to show that this assumption holds for f(y) =y + 3y}2Ly, y € R. We
get for y1,y2 € R :

1f(y1) — f(y2)| = [y1 + 3yiy1 — y2 — 3ypyol
= |(L+3yi)yr — (L + 3yi)yal = (1 + 3yi)ly1 — 2|
< (143¢2)|y1 — vz

We utilized that yp, is a solution of the optimal control problem and thus fullfills the
pointwise state constraint |y(z)| < c..
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At last we have to compute the operator norm |G’ ()| r2—, g2:
We set
G'(tp)u = 2

with
— 2z + 2+ 3732 = u in [0,1]
2(0) = z(1) =0.
This is equivalent to
Zox :z+3y}%z—u
wich leads to

2

22, =2+ 3772% —uz + 375 + 951 2° — 3yizu — uz — 37rzu + u?
= 63}%22 + 93},21 - 63},%zu — 2z2u + u?
= (14677 +973)2% — (677 + 2)uz + u>.
Thus we get

1
HG/(ah)uH%I2([O,1D == / 22 + Zg + Zg,z’ dX
0

1
= / 2422435022 22, - 3pi2? dx
0
1
uz + (14 677 4+ 951)2% — (677 + 2)uz +u? — 37722 dx

1
1+6172+9174 2% — 6372+1 uz+u2—3@72z2 dx
h h h h

1
(1+ 677 +974)2° — (677 + 1)(2° + 22 + 3772°) + u® — 3pp2° dx

1
(1+ 657 +957)2% — (677 + 1)2* — (677 + 1)z2

S— S— >— >—

— 187122 — 37722 +u® — 3y3 2% dx
1
u? —9y7 2% — (677 + 1)22 — 67227 dx

<0

Il
S—

1
2

< [ w? dx = ullfa o)

S—

which means

G (@n)ull 20,17y < llull L2(o,1))
= |G (@n )|l 220,17y 2 (0,1]) < 1.
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Finally we get

1 1+ /5+1+3e

2 = znll o)) < —= — ChllUHL?([o,u)
\/E 1472
(1+72)(2+ /% +3c2)
= 2/ hHUHL2([o,1])-

5.1.9 Computation of ¢

Because of Theorem 4.2 we know that cy can be derived as

8cam?

cr = [l

=
with
= max 1 (@ + tdn) |l 2201 R)-

We estimate ”f,(uh)HE(LQ([O,l}),]R) with up = up, +tdy, t € [0, 1]. With

1
P an)u = /0 G (@) u(Gn — ya) + Nu(y — ug) dx

1 1
< |/0 G (ap)u(Guy, — yq) dx| + )\|/0 u(ap — ugq) dx|

< NG (@n)ull 20,1 1Gan — yall 20,17y + Al 2o, 18n — wall 2(0,1))
< Mlullz2qo,1)) (1G8R — yallL2¢o0,1)) + MEn — wall L2(j0,1))

we see that

1" (un)ll ez o, ,m) < 1Gun = yall 20,17y + Mlun — vall L2(o,1))

holds.

5.1.10 Computation of ¢y
We derive ¢y of
ILf"(@n) = fr(an)lul < eph®llull 2oy, Yu € L2([0,1))
with
_ 1 G 2 )\ 2
fw) = SlGu = yallzao,y) + 5 lullzao,)

and

1 A
fn(uw) = §\|Ghu - yd”%?([o,u) + 5”“”%2([0,1])-
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We compute the derivatives
f(@n)u = (G'(an)u, Gan — ya) r2(jo,1)) + M, @n) £2(o,1))
and
fr(@n)u = (G (an)u, Griin — ya) r2(j0,17) + M, @n) 22(j0,1])-
Thus we get :

F(@n)u — fr,(an)u = (G (an)u, Gin — ya) r2 (o)) — (Gh(an)u, Ghiin — ya) r2(jo,1))
= (G'(an)u, Gin — ya) r2(0,1)) — (G (@n)u, Griin — ya) L2(jo,1))
+ (G"(an)u, Griin — ya) r2(j0,1]) — (G'(@n)u, Griin — ya) r2(j0,1))
= (G'(an)u, Gy, — Gpun) p2(0,1)) + (G (@n)u — G, (@n)u, Gutin — Ya) £2(0,1))
< |G (an)ul| 2 [0 Gan — Griin| 20,1
(@n)u — Gy (@n)ul| 20,1 |G rtin = yall L2(o,1))
< ||G'(a
+ |G (@n)u — Gy (an)ull Lo o, | Gritn — yall L= j0,1))

r)ull o |Gan — Griin| oo (jo,1))

<Alullg2qo,icahllanllLzjo,1) + carbllull 2o, |Grtn — Yall oo (o,1))
= (callanlr2qo,1)) + car |Gran — yall L) hllull L2(0,1))
= |[f"(an) = fr(an)]ul < (callnllrz o) + corllGrtn — yall Lo o,))) Pllull 2o,1))

5.1.11 Coercivity
We want to derive an «, which fulfills

L (@, pn)0® = " (@n)[v, 0] + {n, G (@) [v,0]) > allolf;, Yo € U.
First of all we have to compute the derivatives of L:

Duﬁ(uy Y, P, la, Mb)v = ()‘(u - ud)? U)
DyL(u,y, p, fas 16) Y0 = (¥ — Yar Yo) — (V. VD) = (40, D)
— (3Y°Yu, ) + (tarYv) — (Kbs Yu)

D2 L(u,y,p, fhas ) [v,v] = A(v,v) = / M? dx
Q
Dy L(w, Y, s fay 1) (Yo, Yv] = (Yos Yo) — (6yYuyu, p) = /vayv — 6yyuyup dx

= /(1 — Gyp)y2 dx
Q
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Thus

D2 2 L(tin, Yy Py e 1) [(0,50), (v, 90)] =
/9(1 — Ggnn)yde + /Q Xodz > alfolf2aq Yo € LHQ)
with G/ (ap)v = yy:
—Ayy + yo + 3ye =, in [0,1]
Yo(0) = yo(1) =0
holds with o = A, if the pointwise condition
1 — 6y (z)pp(z) > 0 a.e in [0, 1]

is fulfilled.

5.2 Summary

To conclude this section we summarize our results. These results enable us to com-
pute the assumed constants once we derived a numerical solution .
We start the summary with the Lipschitz-type constants L, M and N.

5.2.1 Lipschitz-type constants L, M and N
The assumption (3.24)
1[G (w) = Gh(@n)loll o,y < Lllw = anll 2o 1ol 2o, Yo € L2([0,1]),
Vu € L*([0,1]) : [Ju — @nl| z2(o,17) < I8n — tnll 201
holds for .
L= 3@(”%”@([0@}) + R).
For the constant M of (3.25) with

(" (w) = f"(an)) o1, vo] | < Mlu— anl 2o, llvrll 2o, lv2ll 22 o, 1p)
Yu € Bg(1y,) and vi,ve € L*([0,1])

we concluded

9 1 (n2+1)3 i
9, (71-2)+NHGUh_deL2[071}+2L

16

ol

M = 36(
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For assumption (3.26)
1[G"(u) — G"(@n)][v1, v2]llz < Nllu = anllvfvillolvallo,
Yu € Uyyq, ||u - thHU <R, vi,vo €U
we derived the estimation

3 9
N = Z5(24(

+ 12||ecll oo (0,17

(241 7r2+1é B
)3 A DEE DT g + B)

vr2i 41, w24+ 1
———lanllz2qo) + B) + 2——5—

)

2 2
5.2.2 Approximation properties

We derived the approximation constants cq,ce and ¢y as follows:
We proved for assumption (3.20), i.e.

|G (un) — Gu(un)ll oo (o.17) < cabllunllrzoy) » Yun € Uly

that
1+72 [7n2+1 V2 +1
ca = V2 + V3Vh +V3Vh(3 + 3c2)? :; \/W 7:: +(1+(+ 3@%)2
fulfills it.

For ¢ of assumption (3.21),
G (@n) — G (an)ull oo (o,17) < carh|ull 2oy, Yu € L2([0,1]),

we derived

cCqr =

(14 72)(2+ \/§+ 3c2)
724/2 '
We optained for ¢y of assumption (3.22),

| (@) — fr(an)lul < cph*|lull 2oy, Vu € L*([0,1]),
that
cpr = (callunllL2(o,1)) + carllGrin — vall o (j0,1))
holds.

5.2.3 Coercivity condition

We considered the coercivity of £ in (up, ur),
L (ap, pr)v?® = 1" (@n)[v, 0] + (pn, G" (@) [v,0]) > allol|f, Yo € U,

and showed that it is coercive with o = A, if the following pointwise condition is
fulfilled:

1 — 6yn(z)pn(z) > 0 a.e. in [0, 1]
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5.2.4 Error bound c; for u;
We recall Theorem 4.2 :

Theorem 5.5. For sufficient small h, m = max{||a||v, ||@n + drllv},

k 2
S and § = % the following inequality holds :

= LTS
| (us) — f(@n)| < cpht (5.14)

We showed that

8cam?

¢ = (1Gun = yall 20,17y + Allun = all L2o,17)) =

holds for the right choice of ¢ € [0, 1] in up, = @y, + tdp,.

5.2.5 Auxiliary constant K"

As a last point we want to recall the auxiliary constant K”, which is used in more
than one estimate. K" is an upper bound of the operator norm of G”(u). It fulfills
(5.5), i.e.
IG" (W)l 2 0,17 (22 (0,17), Lo (0.11)) < K-
We showed that
K" ~ 6.9660

holds.
Now we are able to compute all of the assumed constants and check the sufficient op-

timality condition, once we derived a numerical solution uy. Chapter 6 is dedicated
to all these numerical aspects.



Chapter 6

Numerical experiments

In the first part of this chapter we introduce the numerical methods we put to use
throughout the computation of a numerical solution for the example. In the second
part we will present the results of our computations and the conclusions for the
optimality conditions and the predicted error estimates.

6.1 FEM

We present a short look into the 1-dimensional Finite Element Method. We follow
[27] Chapter 3 and adapt it for an example.

We look at the following problem :

Find a y € C%(0,1) N C*(0,1] N C[0, 1], such that

u(z) Ve e Q=[0,1]
y(0)=0
0

hold for a given function uw € H?[0,1]. This can be converted into the following

variational formulation:
For a given u € H?[0,1] find y € V = {y € H?[0,1] : y(0) = y(1) = 0}, such that
a(y7 U) = <F,’U>
holds for all v € V = v € H2[0,1] with
1
ayo) = [ ¥ @'(a) + (o) dx
0
(F,v) = (x)v(z) dx.

1
J
0

95
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We want to derive an approximate solution for this problem. To discretize the
continuous problem we divide the intervall [0, 1] into n + 1 equal parts and get the
points g, ..., Tn4+1 with

1
n+1

z; =x0+ jh and h =

For every x; we define an ansatzfunction ¢;, j = 1,..,n, as follows:

0 for0 <z <z

r—Ti-1

TJ for Tj—1<T < Zj

T
1 X

ﬁT for T; <X < Tj+1

0 forxjp 1 <x <1
1
o I1 Z2 Tj—1 Zj Tj+1 Tn—-1 Tn Tnp+l

Figure 6.1: ¢;

Additionally ¢¢ and ¢, are defined as

T1— T
! for0<z <z
$o =
0 forz; <z <1
and
0 for0<z <z,
Pny1 = T — Ty

W forz, <x <1
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Zo T €2 Tn—1 Tn Tn+l

Figure 6.2: ¢¢

>
d

Zo X1 X2 Tn—1 Tn Tn+1

Figure 6.3: ¢ 11

Using these definitions we can define the general ansatzspace

n+1

Vi = {on(@) s onlx) =D vighi(x), vn(0) = vp(1) = 0}.
i=0
Now we can formulate the discrete problem :
For a given u € H?[0,1] find y, € V}, such that

a(yn,vn) = (F,vp)

1
with (g, v1) = / Yh(@)oh () + pn(@)on(z) dx

1
and (F,vp) :/0 u(z)vp(x)

hold for all v, € V.
We express this problem via matrices :

Kny, = uy,
with
Ky, = [Kij]

n
,j=1

1
= /0 O, + didy AxT_,y
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and
1
wp = [y = | /0 u(@)i(x) dxlly

Note that the first and last entry of the coefficient vector for every vy € V4 is equal
to zero due to the dirichlet boundary condition. Thus we only have to consider the
entries belonging to the inner knots x1, ..., .

We write K}, as Kj, = Kp, 1 + K, 2 and see in [27] Section 3.3 that

2 -1 0 0
-1 2 -1 0 0
1 o -1 2 -1 0 0
Kp1=—
0 o -1 2 -1
0 o -1 2
and

4 1 0 . . .0

1410 . .0

R0 1 41 0 . O

Kpo=—
o . . 0141
o . . . 01 4

hold. The matrices K} 1 and K}, o are called stiffness matrix and mass matrix.
uy, = (u1, ...,un)’ can be derived as

u; = /Cm+1 u(x)pi(x) dx.

Thus we converted the underlying continuous problem into a system of equations
which can be solved numerically.

6.2 SQP method

To compute numerical results we use one Sequentially Quadratic Programming
(SQP) method, the Lagrange-Newton SQP.

The general theory is taken from [45] Chapter 4.11, with minor modifications to
address the dirichlet boundary conditions of our example.

We consider a problem with distributed control:

min J(y, u) ::/Qd)(a:,y(x)) dx—l—/Qw(a:,u(a:)) dx (P)

st. — Ay +d(z,y) = u in Q
y=0onT
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An adjoint state is defined via

_Ap+ dy(x7y)p = ¢y(x7y) in Q
p=0onT.

The main principles of the SQP algorithm can be described in three steps.
The first step is to linearize the nonlinear problem (P) at a feasible point (yg, ux)
and a corresponding adjoint state pg. This leeds to a quadratic problem (QFy):

. 1
min {J'(yk, ur) (Y — Yr, u — ug) + 55"(%, Uk Dk) (Y — Yk, v — uk)Z} (QFy)

subject to

—Ay +d(x,yr) +dy(z, yx)(y — yx) = win Q
y=0onT

In the second step we solve the quadratic problem (QPy) and derive the control ugq
and state yx+1. Then pgy1 can be computed via

—Ap + pdy(x, yi) + Prdyy (T, Yr) (Yr+1 — Yk) = Sy (T, Yr) + Gy (T, Yr) (Ykt1 — yi) in Q
p=0onTl

The last step is to linearize (P) at (ygi1, uk+1,Pr+1) and start anew.
The algorithm is to be terminated, if the solution of (QPy) is equal to the solution
of the previous iteration.

6.3 Numerical implementation

As mentioned in Chapter 5 we want to illustrate our results on the following example.

Example 6.1.

. 1 A
min J(y, u) = QH?J—yd”QLz([m]) + 5”“ - udH%Q([O,l])
—~Ay+y+yP=uin0,1]
y(0) =y(1) =0
ly(z)| < ¢ a.e. in [0, 1]

with Ce € R+.
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To compute a numerical solution we want to employ the Lagrange-Newton-SQP
method and derive the following quadratic problem for a feasible point (ug, Y, Pk):

1
min{ (= 9a) 0y = )+ A = ) = ) dx

1 /! 1 /!
—2/0 Pr6YE(y — va)? dX+2/O (v —yi)? + Mu — ug)? dx}

subject to

Ay + Y+ +y—yr +3yi(y —yp) = u in Q
y=0onT,

which can be reformulated to
‘1121— 2y 4\ d 13——/\d
min{g [ y7(1 = 6pry) + Au” dx+ [ y(6yppr — ya) — Auug dx
0 0

1
1 A
+/ YkYd — 591% — 3Pkl + Augtg — 5“% dx}
0
subject to
—Ay+y+3y2y—2y2:uinﬂ
y=0onT.

We skip the constant term and get the equivalent problem

) 1 1 1
mm{Z/ y2(1 — kay,%) + \u? dx —i—/ y(6y2pk — yq) — Auug dx}
0 0
subject to

—Ay +y + 3yjy — 2y = u in Q
y=0onT.

For optimal yx4+1 and ug41 we can derive the corresponding adjoint state pp41 via :

—Ap +p + 3yep = 2yk + 6Yipk — Ya — 6ykpry in
p=0onT

We translate this quadratic problem into its FE formulation:

Let y, u, yx apd pr be functions in Vh, le.y=>1", Yo, u = Yo uly,

Uk = D orq Ypti and pp = Y1, pi.¢i, with corresponding coefficient vectors y =
(y17"'7yn)T 17"'7un)T7 yk = (y]i?"'?yl:?)T

can formulate the FE problem setting:

,u= (u and p, = (pty .., pP)T. Then we
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Problem 6.2.
1
i, Sy w) =5y u) Hyu) + £y u)
subject to
with

where AlF is defined as

a b 0 0
¥ %o *x3 0 0
Apk _ 1 0 *1 X9 X3 0 0
Ye o 5(n+1)
0 . . 0 X1 k9 k3
0 0 f g
with
1 1 1
@ = 2yipk + JURPE + JURPE T GUEPR
Ly 145 1oq 1455
b= Zykpk + 6 YkPk + 6 YkPk + 1Ykl
1 1 1
F= U PR Gu PR YRR+ Yk
1 _ _ 1 1 _
9= Uk PR QU PR uRp T+ 2k
as well as
Loy ga Yy Ly a1y
*1 = Zyk pp * gyk Dy + gykpk + Zykpk
L g1 g 1111 I+1
¥2= 7Y Pe T Yk PrT 4ykpk Y 2ypp) + 4yk:pk
1 1
_ Ll I+1 l+1 ! l+1 I+1
*3 4ykpk+ Gykpk + = 6k T 1% Pk

for | € {2..n — 1}. For the computation of AL¥ we refer to Section 7.1.

determined via

o Kpa(v—y,)
_AKh,ZQd
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with v = (v1,...,v,)7 and v; = 6(yi)%pt fori =1,..,n
The equation matrix is defined as

EQ = <NB —K>

with NB = K + B. While

6+ (y)? (wi)+whH*> 0 . . : 0
*1 *9 *3 0 0
B — n 0 *1 *9 k3 0 . 0
0 0 *1 *9 *3
0 : 0 (W )2+ wm? ()2 +6(yp)?
with
1
T At
x1= (yb 1?2 + (yh)?
0 = (Y )2 +6(yp)? + (yhth)?
w3 = (yp)? + (yhth)?

for I € {2...n — 1}. For the computation of B we refer to Section 7.2.
The lower and upper bound /b and ub can be written as :

Ib=—(ccy..-CcoCy ey c)T
——— N~

n n
ub = (ce,...Cer €, .r€) T
——— N~

n n

with a sufficiently large ¢ € N, such that these partial boundaries are never active.
To start the computation we have to derive a feasible starting point and to choose
yq and ug.

For the desired state y4 we choose

Yq = cesin(mz)

and set ug as the corresponding control

ug = ce(m? + 1) sin(rz) + ¢ sin(rz)?.
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1
0 0.5 1
Figure 6.4: yq
Cu A
1 s
0 0.5 1

Figure 6.5: ug with ¢, = 72 + 2

We illustrate these choices in Figure 6.4 and Figure 6.5 for ¢, = 1.

Finally we have to determine a starting point for the SQP method.

It is clear that ug(z) = yi(z) = 0, a.e. in [0, 1] are feasible, which leaves us with the
computation of their adjoint state py.

pi has to fulfill the PDE :

—p" +p = —ccsin(nz) (6.1)
With py = asin(rx) we get

Pr = asin(mx)
Py, = masin(rzx)

P} = —m2asin(rz).



6.4 Numerical results 64

We insert py into (6.1) and get

_CC

(772 + Dasin(rz) = —ccsin(nz) = a = =1

which means

6.4 Numerical results

We used MATLAB to implement the Finite Element discretization and the Lagrange-
Newton-SQP and solved the quadratic problems with the integrated solver QUAD-
PROG. For the actual computation we choose ¢, = 0.01 which is rather low but
enables us to observe the fulfillment of the sufficient condition at a relatively coarse
refinement.

We derive the polynom for several choices of n starting with n = 63 to illustrate
the progress throughout the refinement of the grid. From step to step we choose n
such that h = n%rl is cut in half. Table 6.6 shows the observed errors regarding the
functional value, the control and the state as well as the first nonnegative root of the
sufficient condition polynom. The state and the control error are cut in half with
each step, which means we see convergence of order h. For r; we observe a slower
decrease but it still serves as an upper bound for the control error. The slower rate
of convergence is likely caused by overestimation of some expression throughout the
estimation of the involved constants.

Note that Table 6.6 only shows the error between the numerical optimal control
up and the projection [pu of the continuous optimal control 4. The same holds
for the states yn and y. In order to derive the actual errors |[u, — ul[12(j0,1) and
lyn — ll£2(j0,1) We proceed as follows :

For the control error we see that

lan — all 20,1y < llan — Intill L2(0,1) + a8 — @ll p2(p0,1))

n | [fa(tn, Yn) = f(@ )] | |90 — Inyllz2 | lan — Inal| g 1

63 3.9904e — 7 1.8848¢ — 6 8.9335e — 4 —
127 1.0079¢ — 7 9.3983e — 7 4.4897¢ — 4 | 0.064571
255 2.5250e — 8 4.7021e — 7 2.2472e — 4 | 0.036586
511 6.3267¢ — 9 2.3497e — 7 1.1249¢ — 4 | 0.022508
1023 1.5834e — 9 1.1745e — 7 5.6275e — 5 | 0.014403
2047 3.9608e — 10 5.8716e — 8 2.8147¢ — 5 | 0.009470

Table 6.6: Numerical errors and the control error estimate r;
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holds as well as

9r — 9l 20,1y < N10n — gl 2,17y + 18T — 9ll 2(0,1))

holds for the state error. Due to the regularity of @ and therefore § we can use the
interpolation estimates and their constants (see [8]). We get

1Tntt — ]| 20,17y < PN || 22(j0,17)

and

1105 = Fll 220,17y < P2 15" | 220,17 -
with

17| 2 _ \/cg(w‘1 + 72)2 n 3cdn?(md + 72)  45c874
£2(0,1) > 1 T

~ 0.5755

and )
CeTr
lyall L2 o,y = — =~ 0.0698

(see Section 7.3). This leads to
”ﬂh - aHLQ([O,l]) < Hﬂh — IhaHLQ([O,l]) + 0.7586h>

and to

15 — Ul 20.17) < 19n — In¥ll 220,17y + 0.0698h*
which means that both errors approximately behave in the same way as the com-
puted numerical errors.
We present the computation of the necessary constants for n = 2047 inner knots,
R=0.1, k=1, 7 =1, and m = 0.18. Before we start with the actual computation
we state the necessary informations which gained through the numerics :

ln 22 ([0,1) = 7-6800e — 2

90l L2(j0,17) = 7-1000e — 3

1 1nyall £2((o,1) = 7-1000e — 3
153l £ 0,17) = 1.0000€e — 4
|40 Lo 0.17) = 2.1440e — 4

|Griin — Inyall z2(jo,17) = 5.8716e — 8
|Griin — Inyall oo (0,1]) = 8-7558¢ — 8

With these informations we are able to compute the assumed constants with excep-
tion of M and ¢y were we used the errors ||Gup —yal £2(j0,17) and ||Griin —Yall £ (j0,1))
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during the estimation process, which are not direct results of the numerical compu-
tations. For these two errors we use the estimates

2
_ _ _ CeT
Gun — yall2(o,1)) < cahllanllrz(o,1) + 1Grin — InyallL2o,1)) + WhQ

and
_ _ 00772 2
|Gn — yall L 0,1)) < IGrtin — Inyall Lo (fo,1)) + T(h + h).

We show the derivation of these estimates in Section 7.4. Now we can compute all
constants and the computation yields :

a=1, ce = 1.9743...,
cr = 2.TAT2..., cpr = 0.1516...,
¢f = 0.0859..., L=0.1771...,
M = 15.1290..., N = 2.6662...

Note that the computation of ¢y involves the estimation of || f’||. We showed that

11l < N Gan = yall 2 (o,1)) + Alan — vall L2 (go,17)
holds (see 5.1.9), which can be estimated as

£l < 2llwall 2o,y + 2Mluall 20,17y = 0.1684...

due to the choice of R = 0.1.
Now we can compute the corresponding sufficient condition polynom

(6%
P(r) = 573 — B*r(cp + carllpnll (Loeo,17))*)

1 _
— = (M + Nlpall o)) — cah®[lunllzooo,17) @l 2 (o,17) — csh*

6
1
R~ 57"2 — 0.0000757 — 2.5220r3 — 0.00005

which is illustrated in Figure 6.7.
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Figure 6.7: Polynom of the SSC for n = 2047

The second and third root of the polynom are :

r1 = 0.0094...
ro = 0.1976...

We already showed that
”ﬂh — aHLQ([O,l]) < Hﬂh — IhaHLQ([O,l]) + 0.7586h2

holds. Thus we see for h = lexs that

lapn — ﬂ||L2([O,1]) < Hﬂh — Ihﬂ”Lz([O,l]) + 0.7586h2
0.7586

~ 2.8327e — 5 < 9.466e — 3 = 11

holds, which means that || — || 12([o,1)) < 7 holds for all positive r with P(r) > 0.
Thus we see that the second order conditions works and that the error estimate also
delivers an upper bound of the L?-control error.



Chapter 7

Further computations

To implement the Lagrange-Newton-SQP method into a finite element framework
we have to discretize the linearized PDE in an adequate form.

. 2 .
7.1 Conversion of [ ypry° dx (Computation of AP¥)

We assume that yi,pr and y have the corresponding finite element representations
S L YLdi, Dor Phd; and D, y'e. We want to derive a matrix AJ* such that
fol yepry? dx = yT AFy holds.

1
/ ykpry” dx =
0
1 n n n . n ]
JD I SIS SIS W R
0 =1 m=1 i=1 j=1

N / DU Yy om > yki(py ' dio1 + Pt + Py dir) dx
0 =1 m=1 i=1

N / DY >y om > (Wipl 'didio1 + Uipkd + vkpl didier) dx
0 =1 m=1 1

1=

1 n n

B / STyl >y e O b YT PR Sm1 62,
0 1= m=1

+ Y O b1 + Y PR S, + Y G2 P

Yy D G162, + Yy T PP G2 L ) dx
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Using the properties of ¢; we get the expanded expression

1
/ ykpry® dx
0
1n—1
= /0 D W T o bt g LT+ vkp), ST + VDS di1)
=2

+ 'y (o O]+ kT Db} + YDl i1} + Yokl + vkl Gl b
=+ yfjlpicﬁlﬂﬁ + yk! Tl + 1¢l2+1¢52)

+yy T ki b + vkplT TS+ Ul Pt P B}

+ 'y (UkphoT + UPROT b2 + YEPLO B2 + YRDRIHT)

+ 'y (UkpE ST B2 + YRPRDT 05 + VEDLOIDT + UiphBad1)

+ "y T o a1 bn U PR + YRDE P dn1 + YR PR Sndn1)

oy Yy (T R 2 YT R b 165 YD b 1dS + ylpRdn) dx.

We need to compute the integrals over the occuring products and potencies of the
ansatzfunctions. For suitable i € {1...n} we get:

1 1
1
262 q :/ 2 Rdx= 1
/0 ¢Z¢Z+1 X 0 (z)l*l(bl X 30(n+1)

1 1 1
3. _ . 3 _
/0 ¢z ¢Z+1 dX — /0\ qblf].qbi dX - 20(77/ + 1)

/0 0 dX:5(n+1)
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This leads us to
/lykpszdx Z:{y”1 Lt Lyeipl oy Lt Lt
0 +1 koo 307k kT 307k kT g kR
Ll g g 1 l 1.1 1+1
+ 'y (20yk pk +og¥e Pet QOykpk " 5ykpk + 2Oykpk )
1 z+1 ! 141, 141
k
tog¥e PeH 3oy )
oyl 1 ok + 1 S 4 1 gk 4 1 yEHpi)
207Kk T 307k kT 307k 207k
2, 1 1 1
+ VY Y(yrpr + 2Oykpk + 20ykpk + 30ykpk)
1 1
1
+yy (2Oykpk + 30ykpk + 30ykpk + 20ykpk)
1 1 1
n,n—1/ - n—1 _n—1 7n1n n—1
+y"y (20y’f PRt gg¥e Pkt 3Oykpk + 2Oykpk)
1 n 1 _n—1 1 n 1. n 2 n,_n
+y"y (30 Pt og¥k Pkt 20ykpk " 5ykpk)
which means fol ypey® dx = yT Ay with
a b 0 . 0
*1 *9 *3 0 . 0
Apk _ 1 0 *1 k9 k3 0 0
e 5(n+1) | . )
0 0 X1 k9 k3
0 0 f g
and
0= 2ulpl Lo 1oy 15,
= 2YpDi + 4ykpk;+ 4ykpk:+ 6yk:pk
1 1 1
b= 4ykpk + Gykpk + Gykpk + 4ykpk
1 1 1
1 n-1 1 1
f= 1 Pt gl Pit gUkPr o+ qYkPk
n—l 1 n—1_n 1 n,n
9=7¢6% P = Y Prt 4ykpk Lt 2yp e
as well as
1l1l1111l 1 Ly
=% P + 6Yk Pk + Gykpk T+ 1YkPk
1, ., 1 1 _ 1
xg = <yp P+ Syn D+ Sukpl o 2ukph + S ukny
4 4 4 4
1 1 1+1 1 I+1 l+1 +1
4ykpk+ Gykp + L pk+ 1% Pk
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for I € {2..n — 1}.

7.2 Computation of B
We want to derive the FEM matrix for the third therm of the linearized PDE
—Ay+uy+ 3y,%y = u.

Let yp = > i g yidi and y = > | y'¢; be the FEM representations of y and y. We
look at the third term of the weak formulation :

n

1 1 ' n
3 /0 iy =3 [ (00 (3 ma)un d

=1

To derive the entries of the j-th column of B we set v, = ¢;. Due to the disjoint
support of non-neighboring ansatzfunctions the term above can be reduced to:

3 /0 (L)1 + ()20 + ()20 (¥ by + ¥ 5 + 47 i)y dx
=3[ ("2 o+ ()2 e—10%
+ (W) 2305y + )25y + (y)) B3 by’
+ (2820 y + (v 2002y dx

. 1 ) . 1 A
= 3[@%_1)2/0 ¢7_1¢; dx v/~ + (y} 1)2/0 ¢j 197 dx

S~

. 1 ‘ ) 1 ) ) 1 )
(i) /0 G651 dx i1+ () /0 ¢ dx o + (u])? /0 $26141 dx !

; 1 . , 1 A
O™ [ o dxyl+ 072 [ o6t dx ™)

We compute the involved integrals and get for suitable j € {1,...,n}:

1 1 1 1 1
| taosae= [ Lot ax= [ o ax= o6t ax= s

1 3 1
/0 95 dXZ2(n+1)
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This leads to
3[(3/i_1)2 /01 ¢]2‘—1¢j dx /=1 + (yi_1)2 /01 ¢j—1¢? dx o/
+ (yi)Q/ol Plpj—1 dx y ! + (y£)2/01 ¢ dx o + (yi)z/ol G4 dx y/ T
+ (yi+1)2/01 G2pj1 dx ' + (yi“)Q/ol ¢id7,y dx y/ T dx |
1

—3 j=1\2, -1+ j—-1\2 5 L

12(nl+1) + (yi)Z?ﬂ'Q(nlJr LA
+ (yi+1)2yjl2(n1+ 5+ (yi“)?yj“12(7,LlJr 5!
W2+ w)? 5, W )? (y3)?
1 k12(n + 1)k Ty (IQ(I;L—F 1) 2(nk+ 1)
? )+ j+1(yi)2+(yk )2]

1 1
12(n+ 1)

1

J\2, -1 -
+ )y 12(n + 1)

=3[y~

)
12(n+1)
= T D )+ (P 66 + )2

+ W)+ ()

Thus we see

6+ (y)? (yp)*+@whH* 0 . . : 0
*1 *9 x3 0 . . 0
B — n 0 *1 *9 k3 0 . 0
0 . .0 % *9 *3
0 : 0 (2?2 +6(yp)?
with
o
T A1)
x1= (Y 1?2 + (yh)?
0 = (Y )2+ 6(yp)? + (yhth)?
w3 = (yp)? + (yhth)?

for i € {2..n — 1}.
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7.3 L?-norms of the second derivatives of u; and yy

To evaluate the numerical results we used estimations involving the second order
derivatives of ug and y4. We start with the optimal/desired control uy. We have

ug = ce(m* + 1) sin(rz) 4 ¢ sin®(7z)
uly = co(m? + 1) cos(mx) + 3cp sin’(7x) cos(mz)m

ul) = co(m? + 1)7? (= sin(rx) + 6372 sin(nz) cos? (mx) — 3c¢37? sin®(nzx)

and
(uf)? = A(r* + 72)? sin?(nz) — 12¢272 (7 + 72) sin? (w2 cos?(mzx)
+ 6ctr?(nt 4+ 72) sin? (rz) — 36c57 sin () cos? (nx)
+ 36¢8 7t sin? () cos® (mx) + 9c8n? sin (7).
Thus we get:

1
lugllz2 (o, = [ca(n? +7r2)2/ sin?(mz) dx
0
1
— 12¢k7% (nt + 7?) / sin?(rz) cos? (mx) dx
0

1 1
+ 6cin? (rt + 7?) / sin?(7x) dx — 3602%4/ sint(72) cos®(mx) dx
0 0

1 1 1/2
+ 360?774/ sin?(rx) cos?(mz) dx + 902%4/ sin®(7x) dx }
0 0

B [cg(ﬂ4 +72)2  12¢ 72 (7t 4 7?)

2 8
18cir?(nt +72)  36c87%  36c8rt  45c571q1/2
8 TT16 16 16 }
Cr(rt+a?)? 3ciri(nt + %) 45c8rt1/2
_[ 2 4 16 }

This leaves us with the computation of ||y} 2(j0,1)):
Yq = cesin(mz), yy = comcos(nx), ) = —cen? sin(nx)

This results in:

1
||y¢/1,||%2([0,1]) :/0 (*CCTF2 Sin(ﬂx)2 dx

1 1
= / c2rtsin?(mr) dx = 03774/ sin?(7z) dx
0 0

2,4
c

O

= il 2oy = 7
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7.4 Guy — yq error

Throughout the estimation process we used the errors ||Gup —yall12(0,1) and ||Gpn —
Yall L[0,1]- But our numerical calculations provide only the errors for the discrete
control-state operator and the discrete representation of yg, i.e. ||Gpiin —Inyd||r2(0 ]
and [|Grup — Inyd||Lepo,1)- Thus we have to estimate the former errors using the
latter. Using the informations at hand we estimate the L?-error and L>-error:

|Gun — yallz2(0,1)) = [|GUn — Grn + Grtin — Inya + Inya — yall L2 jo,1))
<|NGun — Guiinll 20,17y + 1Grtn — Inyallr2(0,1) + 1 1hya — YallL2(0,1))
< cahllanllz2(o,1)) + |1Griin — Inyall 2o,y + P21Yall £2(0,1))

|Griin — yall Lo (j0,17) = IGrtn — Inya + Inya — yall Lo (0,1

<N Grtn — Inyall e + Hrya — yall Lo jo,1))

1
< ||Gpup — I oo + —||1] —
< ||Gran — Inyallz ﬁ” nYd — Yall e (o,1))

< (|Grtn — Inyall = (o) + \jiuﬂ + W) 2oy

Using the result of Section 7.3 we get:

cem?

1GUn — yall2qo,1) < cahllanllzz(o,1) + 1Grtin — Inyall 20,1 + 7 h?

2
_ _ CoT0
|GUn = Yal e o,1)) < 1Grtn — Inyall Lo (o,1) + CT(’%Q + h)



Chapter 8

Conclusion and perspectives

In this thesis we studied abstract nonlinear optimization problems in Banach and
Hilbert spaces.

In the first part we derived the sufficient optimality condition and the error estimate.
We assumed the existence of a discretized and thus numerical solvable version of such
a problem. Depending on the discrete solution #; and properties of both involved
problems, the continuous as well as the discretized, we developed a set of sufficient
optimality conditions, which ensure existence of a solution in a neighborhood of uy,
and also delivered an error estimate for this solution. The presented method has the
benefit that it only depends on computable quantities and that the conditions can
therefore be checked when there is a numerical solution at hand.

In the second part we applied the theory on an one-dimensional example. We de-
rived the estimates for all involved constants and developed the techniques, which
were essential to conduct the estimation process.

The last part was dedicated to the numerical methods. We introduced the FE
method, which we used for the discretization of inifinite dimensional spaces. To deal
with nonlinear optimization problems we introduced the Lagrange-Newton SQP.
We conducted the necessary computations and transformed the example into the
numerical problem and applied the numerical methods. We presented the results
and deduced the actual errors from the observed numerical quantities. We inter-
preted the data and saw that the sufficient optimality conditions were satisfied and
that the error estimate holds, although we observed weaker convergence for the error
estimate. But even with optimized estimates one can show, using the results of [37],
that the maximal achieveable estimate is of order h. This result is based on the
satisfied SSC. If one uses only a priori arguments one can only expect an order of
h3/% using the presented technique. This is mainly caused by the fact that we have

75



76

to deal with an L? environment.
To conclude this work let us comment on some further aspects:

We presented our computations by means of an one dimensional example. However,
many of them can be conducted for higher dimensions with the presented techniques.
The crucial estimates, which cannot be transferred to higher dimension, are those
involving the imbedding H([0,1]) < L*°([0, 1]). Essentially these are the estimates
L, M, N and cg.

For Q C RY, with d = 2,3, we know that H?(Q) — C(Q) holds, which could be
used as substitute for the higher dimensional estimates. The inverse estimate can
be formulated as

ol o) < (@R[l 20y,

which could be used to derive L*>°-estimates for FE-errors. In higher dimensions one
has to include the geometry of €2 into the estimation process, as one can for exam-
ple see in the inverse estimate above. Especially the involved imbedding constants
depend on €2 and their computation leads to several eigenvalue problems. This adds
another difficulty to the technical aspects, which one has to keep in mind.

Another question, which can be interesting in the future, is if and when the SSC of
the discrete solution uj, entails an SSC for the continuous solution .

While [2], [3], [41] and [42] investigated this question thoroughly for control con-
strained problems, state constrained problems pose different kind of challenges due
to the low regularity of the Lagrange multipliers.

It is desirable to overcome these difficulties and find a positive answer to this ques-
tion, because it would enable us to employ a-priori-theory, which would lead to
better FE-error estimates, especially for higher dimensions.

On the other hand it would also effect regularity approaches, as presented for exam-
ple in [28]. At this point it does not seem possible to achieve this goal for the general
abstract problem. However, the ideas presented in [20] may be a key to reach results
for a special class of problems.
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