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Acknowledgements
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Zusammenfassung

Thema der vorliegenden Arbeit ist risikoaverse Formoptimierung. Gewöhnliche For-

moptimierung umfasst jene Art von Problemen, bei denen die zu optimierende Vari-

able die Form eines Objekts ist. Hier ist das Objekt ein elastischer Körper auf den

eine Kraft einwirkt. Basierend auf den Konzepten der Sensitivitätsanalyse bezüglich

Form und Topologie wird eine Algorithmus konstruiert, der den elastischen Körper

bezüglich seiner elastischen Eigenschaften und dem dabei insgesamt gebrauchten Vol-

umen sukzessiv verbesssert. Das Resultat ist eine Struktur, die auf die wirkende Kraft

so stabil wie möglich reagiert und dabei möglichst geringes Volumen hat. Diese Art

von Problemen benötigen effiziente numerische Löser für die zugrundeliegenden par-

tiellen Differentialgleichungen (hier ist dies das Modell der linearen Elastizität). Dazu

werden unterschiedliche Finite Elemente Methoden sowie Ansätze zur Gittergener-

ierung benutzt. Mit den sogenannten Levelset Methoden wird die Entwicklung der

Struktur numerisch beschrieben.

Unsicherheit kommt dann ins Spiel, wenn die berücksichtigten Kräfte als zufällig

angenommen werden. So kann nun das elastische Verhalten des Körpers als Zu-

fallsvariable angesehen werden, die von der Form abhängt. In einem ersten Ansatz

wird die Form bezüglich verschiedener Risikomaße optimiert, die vor allem in Modellen

der (Finanz-) Ökonomie zum Einsatz kommen. Solche Risikomaße definieren unter-

schiedliche Bewertungen von Risiko, welches einer Zufallsvariable anhängt. Risikoneu-

trale und risikoaverse Modelle werden zur Formoptimierung benutzt.

Eine neue Perspektive eröffnet sich, wenn stochastic dominance relations zur Risiko-

bewertung herangezogen werden. Diese definieren eine Halbordnung auf dem Raum

der Zufallsvariablen und ermöglichen es, diese in Relation zu stellen. Ausgehend von

einem Benchmark, welches eine gewisse Güte für das Verhalten unter Einwirkung

der zufälligen Kräfte beschreibt, kann eine Menge von Formen identifiziert werden,

deren Verhalten unter Einwirkung der Kräfte nicht schlechter als das Benchmark ist.

Aus diese Menge werden dann Formen nach einem weiteren Kriterium, z.B. möglichst

geringes Volumen, ausgewählt. Auf diese Art und Weise werden Formen mit geringem

Volumen gefunden, die aber dennoch die zuvor gestellten Anforderungen erfüllen.

Die vorliegende Arbeit ist eine thematische Weiterentwicklung, Verbesserung und

Neuimplementierung meiner Diplomarbeit ”Levelsetverfahren in der Shapeoptimierung”.
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Abstract

In this thesis, risk averse shape optimization of elastic strucures is at issue. Shape

optimization, in general, deals with the type of problems where the variable to be

optimized is the geometry or the shape of a domain. Here, the domain represents

an elastic body which is subjected to a force applied. Relying on the concepts of

shape and topology sensitivity analysis an algorithm is implemented which succes-

sively improves the elastic body concerning the elastic response and the total volume.

Eventually, this procedure results in a body which is, on the one hand, as stiff as

possible regarding the force applied and, on the other hand, whose volume is as small

as possible. Solving such problems numerically requires an efficient solver for the

underlying partial differential equation (here the linearized elasticity model). To this

end, different finite element methods and mesh generation approaches are applied.

Level set methods are employed to realize the evolution of the elastic body in the

discrete setting.

Uncertainty is then introduced by considering the force applied to be random.

Thus, the elastic body can be interpreted as a parameter defining a random variable.

In a first approach risk measures, which are well-known in economics, are proposed to

assess random variables. Risk measures give a notion of risk associated with random

variables. Risk neutral and risk averse models are discussed and used to optimize over

a class of shapes.

A new perspective arises when stochastic dominance relations are employed for the

assessment of risk. They define an order on the space of random variables and allow to

compare these to each other directly. Taking a benchmark random variable associated

with a required behavior under uncertainty, a set of acceptable shapes can be identified

by comparision to this benchmark. An additional criterion, e.g. minimal volume, is

used to select shapes from this set. In that way, shapes with low volume are found

which still meet the prescribed requirements.

This work is a thematic advancement, improvement, and complete re-implementation

of my diploma thesis ”Levelsetverfahren in der Shapeoptimierung” .
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1 Introduction

The present thesis has two main parts. Shape optimization on the one hand and

stochastic programming on the other. A link between those two fields is established

by reformulating a shape optimization problem involving uncertainty as a Two-Stage

Stochastic Linear Program, see chapter 3. Then, to the best of our knowledge, we

introduce a new aspect to shape optimization under uncertainty, namely risk assess-

ment via risk measures and dominance relations, known from finance and operations

research.

The term shape or topology optimization is related to those type of problems,

where the variable to optimize is the geometry (or shape) of a domain. From a gen-

eral point of view, this can be seen as an optimal control problem [35], where the

domain takes the role of the control variable.

While shape optimization ’only’ aims at finding an optimal shape of a domain, topol-

ogy optimization, in addition, seeks for an optimal topology of the latter. We will

just use the term shape optimization, meaning both methods in combination.

There is a broad range of applications in science and industrial engineering for this

type of optimization, such as mathematical image registration [91,106], inverse prob-

lems [38], optimal design [130], aerospace design [88, 144, 145] or structural mechan-

ics [6, 29, 85, 111] just to mention a few. Within the last decade this field of research

has drawn a lot of attention. Significant progress has been made from an analytical

point of view and regarding the numerical implementation, see [66,161]. The increase

in available computing power has boosted applications to even large-scale problems.

Stochastic programming, on the other hand, is strongly related to economics, de-

cision making, and operations research, see the monographs [31, 55, 60, 102, 131, 139].

Within the past century, it has become a substantial subfield of mathematical pro-

gramming with applications to finance [136], transport problems or energy distribution

in networks [171]. In general, stochastic programming comprises problems involving

uncertain data, or parameters, in a linear or non-linear setting. When the underlying

data are only known to be in certain boundaries, this leads to the field called robust

optimization. Whereas, if the data follows a probability distribution, which is known,

the problem is labeled stochastic optimization problem.

We rely on a solid knowledge of two-stage stochastic linear programming models and

we will transfer concepts for handling uncertainty from this field to shape optimization.

In this thesis, we deal with shape optimization of elastic structures subjected to

forces which are considered to be uncertain, i.e., they follow a probability distribution.

We consider a linearized elasticity model, that is discussed in section 2.1.
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The prototype of a deterministic shape optimization reads as

min{J(O) : O ∈ Uad} (1.1)

where J : Uad 7→ R is a so-called shape functional, representing a certain quality of

the domain (shape) O ⊂ Rd (d=2,3). Uad is the set of admissible shapes. Usually,

these are required to have some boundary regularity and are contained in a so-called

working domain D ⊂ Rd. A classical choice for J is the elastic energy, the so-called
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Figure 1.1: The configuration of a shape optimization problem is depicted. This is a typical
setting for the optimization of an elastic structure and frequently considered in literature.
Thus, it serves well as a benchmark test to check the correctness of the optimization algo-
rithm. We see the working domain D and the shape O contained in it. The boundary to
the left is supposed to be Dirichlet boundary (ΓD) and the part of the boundary on the right
(ΓN ) is of Neumann type and subject to the force g. These parts of the boundary are fixed
during the optimization process. The remaining part of ∂O (Γ0) is to be optimized. This
setting results in a cantilever like structure, see Fig. (2.14).

compliance functional, which is a measure for the overall elastic energy contained in

the body O, as a result of forces applied to it. Minimizing the compliance functional

J yields a shape which responds as rigidly as possible when forces are applied.

Usually, analytical solutions are not available for shape optimization problems. There-

fore, these are solved numerically using gradient descent methods. The shape and

topology sensitivity analyses (see section 2.2 and section 2.3) provide information how

to improve a given shape by the so-called shape gradient and topological gradient.

Doing so, a sequence of shapes with decreasing values of the functional J is generated

iteratively.

The evaluation of the functional J , as well as the computation of the shape and

topological gradient, require the solution of the underlying elasticity model for each

iteration step. Thus, solving the PDE constitutes the main part of the compuational

effort and an efficient and accurate numerical solver is crucial for the optimization

process, see section 2.6.
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Shape optimization models involving uncertainties have been investigated for dif-

ferent applications, for example, in areodynamic design [98,143]. and structural design

as well, [7, 8, 11, 20, 25, 48, 107]. There, uncertainties with respect to geometry, ma-

terial properties, and loadings are considered. Mostly, these models are based on an

expected-value (Multiload case) optimization or robust (worst case) optimization ap-

proach. We enrich the selection of existing approaches with a new type: models for

assessment of risk via risk-measures and dominance relations.

As said, we consider the situation when the forces (loadings) applied are random vari-

ables. Then the functional JO) becomes a real-valued random variable, too. Thus, O
can be seen as a parameter defining the random variable J(O, ω) , where ω denotes

the random state. So, seeking an optimal O is equivalent to seeking an ”optimal”

random variable J(O, ω). And this calls for a proper ranking of random variables.

A first choice, of course, is a ranking according to the expected value, which is risk neu-

tral. Results discussed in Subsection 2.6.3 demonstrate the advantage of this model

in the presence of uncertainty.

But, this approach completely ignores the variability of random variables. For in-

stance, if for some reason, realizations of J(O, ω) above a certain threshold are un-

acceptable, the need for refined models arises. In the field of stochastic program-

ming, risk-measures for a broad range of applications are studied, see the mono-

graphs [64, 114, 127, 153]. We proposed assessment of risk according to the expected

excess and excess probability models in previous works, [51, 52, 90]. In these, so-

called risk-averse models, assessment of risk is assigned to a statistical parameter

η ∈ R (η > 0), which serves as the threshold mentioned above. While the expected-

excess model considers how much a random variable exceeds η in the mean, the

excess-probability model takes account of the probability that η is exceeded. These

models are at issue in section 3.1.

A different perspective is obtained, when we employ stochastic orders for the for-

mulation of an optimization problem under uncertainty. Stochastic orders are an

established issue in the theory of decision making under risk, see [59, 120–122, 134].

They define (partial) orders on the space of distribution functions, and allow to com-

pare random variables by comparison of the corresponding distribution functions.

With this tools at hand, we proceed as follows:

Suppose a benchmark random variable is prescribed, then, instead of heading directly

for ”best” random variables, ranking by stochastic orders enables to identify a set of

”acceptable” random variables by comparing those to the benchmark. This viewpoint

allows for more flexibility. For instance, rather than requiring that J(O, ω) must not

exceed the deterministic value of, say, 50 (that would be the threshold η), we might

wish to allow for values up to 60, on the one hand , and to require that 35 not to be

exceeded with 40% and 40 with 90% probability, on the other hand. In this way, risk
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aversion is not governed by ’just a real number’ but by a benchmark, which allows to

include distribution information.

By this pre-selection, we have identified a set Sacc of shapes O, each representing a

random variable J(O, ω), whose elastic behavior under uncertainty meets the par-

ticular requirements. From this set Sacc we can choose according to an additional

criterion, for instance: shapes with low volume are preferable.

Then the objective would be the volume, which is to be minimized over the set Sacc,
each member O representing a random variable J(O, ω), which is acceptable in the

above sense.

This new approach gives a different notion of how to treat risk in the context of shape

optimization. We will conclude with a discussion of the latter in section 3.2.
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2 Shape Optimization Problem

2.1 Linearized Elasticity Model

As stated before, we focus on the elastic response of the body O to be optimized.

Thus a brief review of the underlying elasticity model will be given. In this work, we

restrict our considerations to the basic model of linearized elasticity. Furthermore, we

assume the body O to consist of an isotropic, homogeneous material.

Let O ⊂ Rd (d = 2 or 3) be an open bounded set whose boundary is split into two

disjunct parts

∂O = ΓN ∪ ΓD ΓN ∩ ΓD = ∅

with Dirichlet boundary conditions on ΓD and Neumann boundary conditions on ΓN .

The body O is subjected to volume forces denoted by f and boundary loads denoted

by g. The transformation O undergoes is described by the deformation

φ : O → Rd

or in terms of displacement u (cf. Fig. (2.1)).

u : O → Rd, φ = I + u

In elasticity theory, the Cauchy-Green strain tensor

C := ∇φT · ∇φ

is decisive for the local modification in length. The deviation from the identity defined

as

E := (C − I)
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Figure 2.1: Illustration of the displacement u caused by a surface force g.

defines the strain. In matrices notation E reads as

Eij :=
1

2
(ui,j + uj,i) +

1

2

∑
k

uk,i · uk,j

In linearized elasticity theory, the terms of quadratic order in E are truncated and a

symmetric approximation is obtained

εij :=
1

2
(ui,j + uj,i) (2.1)

which in this thesis will be referred to as the linearized strain tensor ε = ε(u). This

is a first linearization; a further linearization arises by taking Hooke’s linear material

law as a basis, obtaining the following linear relation between the stress and strain

tensors A and ε(u), respectively.

A(ε(u)) := 2µε(u) + λ(trε(u))I (2.2)

Here, µ and λ are the so called Lamé-coefficients which represent the material prop-

erties of the body O. A scalar product on the space of tensors is given by

A : B =
3∑

i,j=1

AijBij = tr [ATB] (2.3)

for (d⊗ d)-tensors A,B.

To sum up, in linearized elasticity, only terms of first order of the displacement u are

considered, both in the kinematic and material laws.

A crucial axiom in mechanics is that, in state of equilibrium, all forces and moment

of forces sum up to zero. This includes volume and surface forces. The following

variational formulation reflects this principle. Let Eelast(u) the elastic energy, i.e.,

Eelast(u) :=

∫
O

[
1

2
· A(ε(u)) : ε(u)− f · u

]
dx−

∫
∂O

g · u dν (2.4)
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then the minimizer u

u = arg min
v

Eelast(v)

is the solution of the Lamé partial differential equation

−div(A(ε(u))) = f in O
u = 0 on ΓD

A(ε(u)) · n = g on ΓN

(2.5)

in case of homogeneous Dirichlet Boundary Conditions on ΓD.

In what follows we will derive this in a more formal setting. Recall the notation of

Sobolov spaces

Hm,p(O) := {v ∈ Lp(O,R) : ∂αv ∈ Lp(O,R) ∀|α| ≤ m}

for m ∈ N0 and 1 ≤ p <∞ and a multi index α with ∂αv denoting the corresponding

partial derivative (in the sense of distributions), see further [3,10,73]. Where Lp(O,R)

denotes the Lebesgue-spaces. Equipped with the norm

‖v‖m,p(O) :=

∫
O

∑
|α|≤m

|∂αv|p dx

 1
p

Hm,p(O) is a Banach space. If p = 2, the space Hm,2(O) is a Hilbert space with the

inner product

(u, v)Hm,2(O) =

∫
O

∑
|α|≤m

∂αu(x) · ∂αv(x) dx

It is customary to write Hm(O) instead of Hm,2(O) and ‖v‖p instead of ‖v‖m,p(O).

For vector-valued functions we introduce the notatin Hm(O)d which means each com-

ponent is in Hm(O). As we will derive (2.5) in its weak form, p=1 will provide

sufficient regularity although in (2.5) second order derivatives occur. Dealing only

with homogeneous Dirichlet boundary conditions, we define the solution space as :

H1
ΓD

(O)d := {v ∈ H1(O)d : v|ΓD = 0}

If we assume O to be bounded with a Lipschitz boundary, then expression v|ΓD = 0 is

well defined due to the trace theorem for Sobolov spaces. For the rest of this chapter

we will use the notation V := Hm(O)d.

Lemma 2.1 (Korn’s inequality). Let O ⊂ Rd be an open bounded domain with a

piecewise smooth boundary ∂O. Furthermore ΓD ⊂ ∂O is required to have a positive
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(d−1)-dimensional (Lebesgue) measure. Then there exists a constant c := c(O,ΓD) >

0 such that∫
O

ε(v) : ε(v) dx ≥ c · ‖v‖2
1 ∀ v ∈ H1

ΓD
(O)d

holds.

Proof :

See [33, p. 290].

In the sequel, we sketch a proof of existence for a solution u ∈ H1
ΓD

(O)d to the

weak formulation of problem (2.5). The intrigued reader is referred to [33, 50] for a

more detailed discussion. A weak formulation (as variational problem) only yields

weak solutions, but on the other hand opens up possibilities for numerical treatment.

Before we start we recall Green’s formula for tensor products.

Lemma 2.2 (Green’s formula). For v ∈ H1(O)d and the symmetric tensor A(ε(v)) :=

2µε(v) + λ(trε(v))I it holds

−
∫
O

divA(ε(v)) · v dx =

∫
O

A(ε(v)) : ε(v) dx−
∫
∂O

A(ε(v))n · v dν

Proof :

For sake of readability we write A instead of A(ε(v)) and use Einstein’s convention

(repeated index notation). The outer normal of ∂O is denoted by n .

−
∫
O

divA · v dx = −
∫
O

Aij,j vi dx

= −1

2

∫
O

Aij,j vi +Aij,i vj dx

=
1

2

∫
O

Aij vi,j +Aij vj,i dx−
1

2

∫
∂O

(Aij vi)nj + (Aij vj)ni dν

=

∫
O

Aij
1

2
(vi,j + vj,i) dx−

∫
∂O

(Aij vi)nj dν

=

∫
O

Aij ε(v)ij dx−
∫
∂O

v A n dν

=

∫
O

A : ε(v) dx−
∫
∂O

An · v dν

�
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Now we return to the strong formulation (2.5). Let f ∈ L2(O)d and g ∈ V ,

furthermore let λ > 0, µ > 0. Then multiplying equation 1 in (2.5) with v ∈ V and

integrating over O yields

−
∫
O

div(A(ε(u))) · v dx =
∫
O
f · v dx

⇔
∫
O
A(ε(u))) : ε(v) dx−

∫
∂O
A(ε(u)))n · v dν =

∫
O
f · v dx

⇔
∫
O
A(ε(u))) : ε(v) dx =

∫
O
f · v dx+

∫
∂O
A(ε(u)))n · v dν

⇔
∫
O
A(ε(u))) : ε(v) dx =

∫
O
f · v dx+

∫
∂O
g · v dν

Identifying the left hand side as a bilinear form a(u, v) :=
∫
O
A(ε(u))) : ε(v) dx and the

right hand side as a linear functional L(v) :=
∫
O
f ·v dx+

∫
∂O
g ·v dν , we can summarize

the weak formulation of (2.5) in the equation:

a(u, v) = L(v) ∀ v ∈ V (2.6)

If there exist an u ∈ V fulfilling (2.6) it is called a weak solution. For proving existence

and uniqueness we want to apply the Lax-Milgram theorem. Thus it is required the

bilinear form a(u, v) to be coercive and bounded, and the linear functional L(v) to be

bounded. For the functional L we get by the Cauchy-Schwartz inequality

|L(v)| = |
∫
O

f · v dx+

∫
∂O

g · v dν|

≤ ‖f‖L2(O) · ‖v‖H1(O) + ‖g‖L2(∂O) · ‖v‖L2(∂O)

Having in mind the continuity of the trace operator

‖v
∣∣
∂O‖L2(∂O) ≤ c(O)‖v‖H1(O)

we eventually get

|L(v)| ≤ ‖f‖L2(O) · ‖v‖H1(O) + c(O)‖g‖H1(O) · ‖v‖H1(O)

= (‖f‖L2(O) + c(O)‖g‖H1(O)) · ‖v‖H1(O)

Boundedness of the bilinear form a(u, v) is obtained directly by the Cauchy-Schwartz

inequality:

|a(u, v)| = |
∫
O

A(ε(u)) : ε(v) dx|

≤ ‖u‖H1(O) · ‖v‖H1(O)
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It remains to show that a(., .) is coercive.

|a(v, v)| = |
∫
O

A(ε(v)) : ε(v) dx|

= |
∫
O

(2µε(v) + λ(trε(u))I) : ε(v) dx|

= |
∫
O

2µε(v) : ε(v) + λ(trε(v))I : ε(v) dx|

= |
∫
O

2µε(v) : ε(v) + λ(trε(v))2 dx|

≥ |
∫
O

2µε(v) : ε(v) dx|

≥ 2µc‖v‖2
H1(O)

The last estimation is due to Korn’s inequality. The Lax-Milgram theorem then

guarantees existence and uniqueness of a weak solution u for (2.6). For a more detailed

discussion we refer to [33]. Later in this thesis, shape optimization with linearized

elasticity will be pursued. Therefore, we discuss an analytical framework for shape

derivatives, preparing subsequent numerical considerations.
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2.2 Shape Sensitivity

Shape optimization signifies those type of problems, where the variable to optimize is

the geometry of a structure or domain. Contrary to optimization in Hilbert spaces,

this class of optimization problems requires special techniques. Therefore, we will

discuss the concept of shape derivatives, which provides information of how to change

(or vary) a domain to improve it.

A general formulation of a shape optimization problem reads as

min{J(O) : O ∈ Uad}

where Uad is a class of admissible domains and J : O 7→ R a cost functional to be

minimized over Uad. A first observation indicates that the class Uad in general does

not have any linear or convex structure. Thus, it is difficult to identify necessary op-

timality conditions known from optimization in real vector spaces or Hilbert spaces.

These conditions give information about the behavior of the objective in a neighbor-

hood of a local optimum and usually are obtained by a so-called variational approach.

For instance, the gradient of a real valued function would provide such information.

Due to the lack of a vector space structure of the class of admissible shapes Uad, a

first step is to define a characterization of the neighborhood of a domain O.

Definition 2.3 (Local Variations). Let V ∈ C1(Rd,Rd) be a vector field. We define

the map :

T (s, x) := x+ sV (x) ∀x ∈ Rd , s ≥ 0

Then for s sufficiently small, the map

T (s, .) : Rd → Rd , x 7→ x+ sV (x) ∀x ∈ Rd , s ≥ 0

is a local C1-diffeomorphism. This follows from the fact that

(I + s V ) ∈ C1(Rd,Rd) , and lim
s↘0

det (I + s V ) = 1,

and applying the inverse function theorem. Thus, for every open bounded domain O
there exists a s0 > 0 such that Ts0(.) is a diffeomorphism and it holds Os0 = Ts0(O).

Whereas Ts(O) can be read as

Ts(O) := {Ts(x) : ∀x ∈ O}

with Ts(x) := T (s, x) ∀x ∈ O.

This type of variation is referred to as perturbation of identity. See [58] and [167]
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for further details. Another approach for variations of a domain O is referred to

as velocity (speed) method which is applicable in more general settings. Again, we

consider a vector field V and look at the solution x : R+ × Rd → Rd for the initial

value problem

ẋ(s, x̄) = V (x(s, x̄)) ∀ s ≥ 0

x(0, x̄) = x̄ ∀ x̄ ∈ Rd

for which a unique solution exists if V is Lipschitz continuous, that is V ∈ C0,1(Rd,Rd).

Then the Picard-Lindelöf theorem ensures solvability. Variations of O are generated

by the mapping Ts : Rd → Rd, i.e.,

Ts(x̄) := x(s, x̄) ∀ s ≥ 0 ∀ x̄ ∈ Rd

Thus, variations Os of O are described as Os := Ts(O).

Remark 2.4. In most settings, both types of variations, velocity method and

perturbation of identity, provide the same results for first order shape derivatives. As

we will see later, shape derivatives, in our considerations, only depend on restrictions

V |∂O of vector fields to the boundary ∂O of O. But there are settings in which this

no longer holds, e.g., O being a subset of a submanifold of Rd. See [58] for a detailed

discussion on this topic. In this case, shape derivatives obtained by the two different

methods do not coincide.

Such cases will not be considered, thus, the perturbation of identity is sufficient

for the construction of variations.

Definition 2.5 ( Shape derivative ). Let V ∈ C1(Rd,Rd) be a vector field and Ts(.)

as defined above (s > 0). Then, the functional J has an Eulerian semiderivative at

O in direction V if the limit

lim
s↘0

J(Ts(O))− J(O)

s
= lim

s↘0

J(Os)− J(O)

s
(2.7)

exists. It will be denoted by dJ(O, V ). Assume J has a derivative atO in all directions

V ∈ V := C1(Rd,Rd) and the map

V 7→ dJ(O, V ) : V → R

is linear and continuous. Then this map will be referred to as the shape differential

or shape gradient, denoted by dJ(O), of J in the topological dual space V ’ of V .
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V

x.
. x(s)OsO

Figure 2.2: Deformation of O by the vector field V.

A short example will illustrate how these variations lead to shape derivatives.

Example 2.6.

Let V ∈ C1(Rd,Rd) and suppose the boundary of O is sufficiently smooth, that is at

least a Lipschitz boundary. A more general situation is considered in [57]. For a given

function ϑ ∈ C1(Rd,Rd), we define the shape functional

J(O) =

∫
O

ϑ(x) dx.

J is differentiable at O in direction V and the derivative takes the form:

dJ(O, V ) =

∫
O

div (V (x)ϑ(x)) dx

=

∫
∂O

V (x) · n(x)ϑ(x) dν

.

Proof :

The map Ts(.) is for s sufficient small a C1-diffeomorphism with Ts(O) = Os.

J(Os) =

∫
Os

ϑ(x) dx =

∫
O

ϑ(T−1
s (x))| detDTs(x)| dx

DTs(x) being the Jacobian of Ts(.) with respect to x. Furthermore, it holds

dJ(O, V ) =
∂J(Os)
∂s

∣∣∣
s=0

=
∂

∂s

∫
O

ϑ(Ts(x))| detDTs(x)| dx
∣∣∣
s=0

=

∫
O

∂

∂s
(ϑ(Ts(x))| detDTs(x)|)

∣∣∣
s=0

dx
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=

∫
O

∂

∂s
(ϑ(Ts(x)))

∣∣∣
s=0
| detDT0(V )(x)|

+ϑ(T0(V )(x))
∂

∂s
(| detDTs(x)|)

∣∣∣
s=0

dx

=

∫
O

∂

∂s
(ϑ(Ts(x)))

∣∣∣
s=0

+ϑ(x)
∂

∂s
(| detDTs(x)|)

∣∣∣
s=0

dx (2.8)

. Considering Taylor’s formula of Ts(.) with respect to s, it is

Ts(x) = T0(x) +
∂

∂s
Ts(x)

∣∣∣
s=0

s + o(s2)

= I + V (x) s + σ(s2).

So we have the following expression for the Jacobian of Ts(x)

DTs(x) = I +DV (x) s + σ(s2).

Next, we apply the following relation to (2.8)

∂

∂s
(detDTs(x))

∣∣∣
s=0

= tr (DV (x)) = div (V (x))

Finally, the shape derivative takes the form

dJ(O, V ) =

∫
O

∂

∂s
(ϑ(Ts(x)))

∣∣∣
s=0

+ ϑ(x) div (V (x)) dx

=

∫
O

∇ϑ(x)
∂

∂s
(Ts(x))

∣∣∣
s=0

+ ϑ(x) div (V (x)) dx

=

∫
O

∇ϑ(x) V (x) + ϑ(x) div (V (x)) dx

=

∫
O

div (V (x)ϑ(x)) dx

=

∫
∂O

V (x) · n(x) ϑ(x) dν

with n denoting the outer normal of O.
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This rather simplistic example gives just an idea how to generate shape differen-

tials since the functional J does not depend on a solution of a state equation, e.g.,

the solution of the elasticity model discussed in the preceding chapter. In that sit-

uation, the calculation gets more subtle as one has to deal with the variation of the

state solution as well. For instance, consider the compliance of the body O as shape

functional J to be optimized. It is

J(O) =

∫
O

A(ε(u))) : ε(u) dx (2.9)

which is a measure for the strain energy contained within O, and u is the solution to

the linearized elasticity model (2.5). Thus, the shape functional becomes

J(O) := J(O, u(O))

and the derivative in definition 2.5 then reads as

lim
s↘0

J(Os)− J(O)

s
= lim

s↘0

J(Os, u(Os))− J((O), u(O))

s
= lim

s↘0

J(Os, us)− J(O, u0)

s

with us being the solution to (2.5) on Os. So, the crucial part for the computation

of a shape differential is the asymptotic behavior of us as s tends to zero. And the

question arises whether continuity or differentiability of us or at least of the shape

functional can be established. This will be at issue in the subsequent discussion.

Linearized Elasticity as state constraint

Shape sensitivity calculus has been widely analyzed and there are different approaches

to proof continuity and differentiability of shape functionals. See,e.g., the mono-

graphs [58,86,104,164]. One approach, maybe the most commonly used, is referred to

as the reduced gradient method. It is based on a straight forward formal differentiation

of the reduced functional J((O), u(O)) using the chain rule. As a consequence, shape

differentiability of the state u with respect to O has to be provided.

We may rely of an alternative approach based on the concept of a Lagrangian for-

mulation. Here, the state equation and its dual are realized in a weak formulation as

side constraints of a Lagrangian functional. The shape derivative of the functional J

then coincides with the derivative of the Lagrangian with respect to O. Thus, it is

not necessary to compute the above mentioned derivative of the state u.

Since we consider the linearized elasticity model as state equation, there will be

a short interlude assembling some lemma and auxiliary calculations which will be

helpful for the calculations of shape derivatives.
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So, recall the linearized elasticity model (2.5):

−div(A(ε(u))) = f in O
u = 0 on ΓD

A(ε(u)) · n = g on ΓN

(2.10)

with u ∈ H1
ΓD

(O)d, f ∈ L2(O)d and g ∈ H1(O)d.

Then some properties of the stress tensor A are assembled in the following corollary.

Corollar 2.7. For the stress tensor A and the strain tensor ε(u) from (2.2) and (2.1)

sufficient smooth it holds ∀ϑ, ϕ ∈ H1(O)d:

(i)
∫
Ω

Aε(ϑ) : ε(ϕ) dx =
∫
Ω

div(Aε(ϑ)) · ϕdx +
∫
∂Ω

Aε(ϑ) · n · ϕdν

(ii) A(ε(ϑ)) : ε(ϕ) = A(ε(ϕ)) : ε(ε(ϑ))

Proof :

(i) For the sake of readability, Einstein notation is used and we write A instead of

Aε(ϑ)∫
Ω

A : ε(ϕ) dx =
1

2

∫
Ω

Aij(ϕij + ϕji) dx

= −1

2

∫
Ω

Aij,jϕi +Aij,iϕj) dx +
1

2

∫
∂Ω

Aij(ϕinj + ϕjni) dν

= −
∫
Ω

div(A) · ϕdx +

∫
∂Ω

ϕ · A · n dν

(ii) With the definition of the scalar product (2.3) in mind we have

A(ε(ϑ)) : ε(ϕ) = λtr(ε(ϑ))I : ε(ϕ) + 2µε(ϑ) : ε(ϕ)

= λtr(ε(ϑ))tr(ε(ϕ)) + 2µtr(ε(ϑ) · ε(ϕ))

= λtr(ε(ϕ))I : ε(ϑ) + 2µε(ϕ) : ε(ϑ)

= A(ε(ϕ)) : ε(ϑ)

Following the idea of (2.6) we take account of a boundary functional, which will be

very useful later in this chapter.
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Lemma 2.8.

Let V ∈ C1(Rd,Rd) and suppose the boundary of O is of class C2. Then h denotes the

mean curvature of ∂O and n the outer normal. For a given function ϑ ∈ C1(Rd,Rd)

we define the shape functional

J(O) =

∫
∂O

ϑ dν

then J is differentiable at O in direction V and the derivative takes the form:

dJ(O, V ) =

∫
∂O

(
∂ϑ

∂n
+ ϑh

)
n · V dν

Proof :

Start with a simple reformulation using Green’s formula

J(O) =

∫
∂O

ϑ dν

=

∫
∂O

ϑ n · n dν

=

∫
O

div (ϑn) dx

using example 2.6 yields

dJ(O, V ) =

∫
∂O

div (ϑn) n · V dν

=

∫
∂O

(ϑ,ini + ϑni,i) n · V dν

=

∫
∂O

(∇ϑ · n+ ϑ div(n)) n · V dν

=

∫
∂O

(
∂ϑ

∂n
+ ϑh

)
n · V dν.

Here again Einstein notation was used.

�

Remark 2.9. With (2.6) and (2.8) at hand, derivatives for the volume and the surface

area can be easily derived. These terms will be useful to realize a volume or surface
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penalization in shape optimization problems. For a volume penalization term we have

J(O) =

∫
O

dx ⇒ dJ(O, V ) =

∫
∂O

n · V dν

and for surface penalization we get

J(O) =

∫
∂O

dν ⇒ dJ(O, V ) =

∫
∂O

h n · V dν

We will now derive the shape derivatives for a class of functionals which comprises

the functionals we focus on in our numerical computations.

Lemma 2.10.

Consider a domain O ∈ Rd and a vector field V : Rd → Rd satisfying conditions in

Definition 2.3. Furthermore, let the the data f and g comply with the requirements

ensuring existence for the linearized elasticity model (2.5). Then the functionals as

defined below

(I)

J1(O) =

∫
O

A(ε(u))) : ε(u) dx =

∫
O

f · u dx +

∫
ΓN

g · u dν (2.11)

(II)

J2(O) =

∫
O

|u− u0|2 dx (2.12)

have the shape derivatives :

(I)

dJ1(O, V ) =

∫
ΓN

(
2

[
∂(g · u)

∂n
+ hg · u+ f · u

]
−Aε(u) : ε(u)

)
V · n dν

+

∫
ΓD

(Aε(u) : ε(u)) V · n dν
(2.13)



2.2 Shape Sensitivity 19

(II)

dJ2(O, V ) =

∫
ΓN

(
|u− u0|2 +A(ε(u)) : ε(p)− p · f

)
V · n dν

+

∫
ΓN

h V · n dν

−
∫

ΓN

(
∂(g · p)
∂n

+ hg · p
)
V · n dν

−
∫

ΓD

(
−|u− u0|2 +A(ε(u)) : ε(p) + p · f

)
V · n dν

(2.14)

where p denotes the adjoint state defined as the solution to

−div(A(ε(p))) = −2(u− u0) in O
p = 0 on ΓD

A(ε(p)) · n = 0 on ΓN

(2.15)

Proof :

We will prove the above statements both at once by considering a general objective

functional.

J(O) =

∫
O

j(x, u(x)) dx +

∫
ΓN

l(x, u(x)) dν (2.16)

with differentiable functions j : R×R3 → R and l : R×R3 → R. Now we follow an

approach well known from control theory. We introduce the general functional F

F (O, ϕ) =

∫
O

j(x, ϕ(x)) dx +

∫
ΓN

l(x, ϕ(x)) dν

such that F (O, u) = J(O) holds. By introducing a Lagrange multiplier ψ, the so

called adjoint state, we construct a Lagrangian functional.

L(O, ϕ, ψ) = F (O, ϕ) + dE(O, ϕ;ψ) (2.17)

The state equation is now realized as a side constraint in its variational form. It is

E(O, ϕ) := Eelast(ϕ) =

∫
O

[
1

2
· A(ε(ϕ)) : ε(ϕ)− f · ϕ

]
dx−

∫
∂O

g · ϕ dν,
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and the variation of the elastic energy in direction ψ reads as

dE(O, ϕ;ψ) :=
d

dt
E(O, ϕ+ tψ)

∣∣∣
t=0

=

∫
O

[A(ε(ϕ)) : ε(ψ)− f · ψ] dx−
∫
∂O

g · ψ dν.

As we have to ensure that the Dirichlet Boundary Conditions are fulfilled, the La-

grangian as in (2.17) is adjusted by adding an additional term and the Lagrangian

finally takes the form:

L(O, ϕ, ψ) =

∫
O

j(x, ϕ(x)) dx +

∫
ΓN

l(x, ϕ(x)) dν

+

∫
O

Aε(ϕ) : ε(ψ)− ψ · f dx−
∫

ΓN

ψ · g dν

︸ ︷︷ ︸
dE(O,ϕ;ψ)

−
∫

ΓD

ψ · Aε(ϕ) · n+ ϕ · Aε(ψ) · n dν

︸ ︷︷ ︸
additional term

ϕ, ψ ∈ H1(Rd)d.

(2.18)

Then, we observe for the objective

J(O) = min
ϕ∈H1(Rd)d

sup
ψ∈H1(Rd)d

L(O, ϕ, ψ) (2.19)

due to the fact that it holds

sup
ψ∈H1(Rd)d

L(O, ϕ, ψ) =

F (O, u(O)), if ϕ = u(O)

+∞, if ϕ 6= u(O)
(2.20)

.

This can easily be justified by taking account of the linearity of dE(O, ϕ;ψ). The

Lagrangian L is convex and continuous with respect to ϕ and concave and continu-

ous with respect to ψ. Moreover, the Sobolov space H1(Rd)d is convex and closed.

Following [65] L has a saddle point if and only if the saddle point equations have a

solution, that is

p ∈ H1(Rd)d, dL(O, u, p; 0, ψ) = 0 ∀ψ ∈ H1(Rd)d (2.21)

u ∈ H1(Rd)d, dL(O, u, p;ϕ, 0) = 0 ∀ϕ ∈ H1(Rd)d (2.22)
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If we take (2.21) as a starting point, we obtain by using Corollary 2.7

dL(O, u, p; 0, ψ) =

∫
O

Aε(u) : ε(ψ)− ψ · f dx−
∫

ΓN

ψ · g dν

−
∫

ΓD

ψ · Aε(u) · n+ u · Aε(ψ) · n dν

=−
∫
O

(divAε(u) + f)ψ dx

+

∫
ΓN

(Aε(u)n− g)ψ dν

−
∫

ΓD

ψ · Aε(u) · n+ u · Aε(ψ) · n dν

First, choose ψ ∈ C∞0 (O) with compact support within O the fundamental lemma of

the calculus of variations yields

−divAε(u) = f in O

then, considering ψ ∈ H1
D(O) we get

Aε(u)n = g on ΓN

and finally by varying Aε(ψ) · n on ΓD the Dirichlet Boundary Conditions are estab-

lished. See [73] for a detailed justification of the last argument. Thus, u is the unique

solution of the elasticity model (2.5).

Proceeding with (2.22), we observe that p is the solution of the adjoint equation (2.15).

dL(O, u, p;ϕ, 0) =

∫
O

d

dy
j(x, u(x))ϕdx +

∫
ΓN

d

dy
l(x, u(x))ϕdν

+

∫
O

Aε(ϕ) : ε(p) dx

−
∫

ΓD

p · Aε(ϕ) · n+ ϕ · Aε(p) · n dν

=

∫
O

(
−divAε(p) +

d

dy
j(x, u(x))

)
ψ dx
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+

∫
ΓN

(
Aε(p)n− d

dy
l(x, u(x))

)
ψ dν

−
∫

ΓD

p · Aε(ϕ) · n+ ϕ · Aε(p) · n dν

With the same arguments as above, we identify p as the unique solution to the adjoint

equation

−div(A(ε(p))) = − d

dy
j(x, u(x)) in O

p = 0 on ΓD

A(ε(p)) · n =
d

dy
l(x, u(x)) on ΓN

Coming back to (2.19), we have found

J(O) = L(O, u, p)

Then, the shape derivative of J is given by the derivative of L with respect to the

vector field V .

dJ(O, V ) =
d

dV
L(O, u, p)

This is a crucial result provided by the shape sensitivity analysis. For a comprehensive

discussion the reader is referred to [45,53,115,128,158] and in particular to [58]. Having

in mind 2.6 and 2.8, we can continue

d

dV
L(O, u, p) =

∫
∂O

(j(x, u(x)) +A(ε(u)) : ε(p)− p · f)V · n dν

+

∫
ΓN

(
∂l(x, u(x))

∂n
+ hl(x, u(x))

)
V · n dν

−
∫

ΓN

(
∂(g · p)
∂n

+ hg · p
)
V · n dν

−
∫

ΓD

(
∂

∂n

(
u · A(ε(p)) · n + p · A(ε(u)) · n

))
V · n dν

−
∫

ΓD

(
h (u · A(ε(p)) · n + p · A(ε(u)) · n)

)
V · n dν.
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Due to the fact that it is u = p = 0 on ΓD it can easily be shown that on ΓD it holds:

∂

∂n

(
u · A(ε(p)) · n + p · A(ε(u)) · n

)
+ h

(
u · A(ε(p)) · n + p · A(ε(u)) · n

)
= 2 A(ε(u)) : ε(p)

So, we have

dJ(O;V ) =

∫
ΓN

(j(x, u(x)) +A(ε(u)) : ε(p)− p · f)V · n dν

+

∫
ΓN

(
∂l(x, u(x))

∂n
+ hl(x, u(x))

)
V · n dν

−
∫

ΓN

(
∂(g · p)
∂n

+ hg · p
)
V · n dν

−
∫

ΓD

(−j(x, u(x)) +A(ε(u)) : ε(p) + p · f)V · n dν.

The derivatives of the shape functionals in (2.13) and (2.14) are obtained by an

appropriate choice of j and l. To justify (2.13) set

j := f · u l := g · u

. It turns out that in this case we get the relation

p = −u

for the primal and dual state. So, the functional J1 is self adjoint and has the derivative

dJ1(O, V ) =

∫
ΓN

(
2

[
∂(g · u)

∂n
+ hg · u+ f · u

]
−Aε(u) : ε(u)

)
V · n dν

+

∫
ΓD

(Aε(u) : ε(u)) V · n dν

For (2.14) it is

j := |u− u0|2 l := 0
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∂O

∂Os

V

Figure 2.3: A small variation of the boundary induced by a vector field V according to
Definition 2.3. On the left: the old (black) and the updated (red) domains. On the right: a
zoom displays the velocity field V.

and we get the dual state equation (2.15) for p and finally for the derivative of J2

dJ2(O, V ) =

∫
ΓN

(
|u− u0|2 +A(ε(u)) : ε(p)− p · f

)
V · n dν

+

∫
ΓN

h V · n dν

−
∫

ΓN

(
∂(g · p)
∂n

+ hg · p
)
V · n dν

−
∫

ΓD

(
−|u− u0|2 +A(ε(u)) : ε(p) + p · f

)
V · n dν

�

Remark 2.11 (Zolesio-Hadamard Structure Theorem).

We observe that shape derivatives for the above functionals are represented by bound-

ary integral expressions. In fact, these define a vector distribution G(O) in V ′, the

so-called shape gradient. As a matter of fact, if J is a shape-differentiable functional

with shape gradient G(O), then the support of G(O) is contained in ∂O. This is im-

plied by the well known Zolésio-Hadamard structure theorem, see [58]. It generalizes

previous work from Hadamard and Zolésio to a wider range of shape functionals.

At this point, we formulate the actual shape optimization problem. Usually, one

of the shape functions in Lemma 2.10 plus a volume penalization term is considered
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as an objective function.

min{J(O) + α

∫
O

dx : O ∈ Uad} (2.23)

The second term can be seen as a regularization term with the Lagrange parameter

α ∈ R (α > 0). For instance, when we consider the compliance as the objective J ,

it can easily be shown, that the derivative of J in direction of vector fields V with

< V (x), n > > 0 is negative. Thus, the optimization process (here minization of J)

without volume penalization would generate shapes with increasing volume until the

whole working domain D is filled. So, an optimization would not reveal any structure

and would be meaningless.

Algorithm 2.12 (Gradient Descent). Using information provided by shape deriva-

tives of the objective J(O), a sketch of a very first optimization algorithm reads as

follows:

1. Choose an initial shapeO0 and parameters for step size and volume penalization.

2. For k ≥ 0 solve the elasticity system (2.5) for the current shape Ok to obtain

solutions uk and pk

3. Compute the steepest descent direction (that is a velocity field V ) using (2.10)

and perform a line search along this until a new shape Ok+1 with J(Ok+1) <

J(Ok) is found. That means, we consider slightly different shapes caused by a

variation of the boundary along the vector field V , see Fig. (2.3). Return to

step 2 unless some abort criterion is fulfilled.

Example results for using this algorithm are illustrated in Fig. (2.4) and Fig. (2.5).
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Figure 2.4: First example for optimization of a cantilever like structure using algorithm 2.12.
This cantilever setting is maybe the most illustrated one in literature, and serves well as a
benchmark problem. Here, the whole working domain D is taken as the initial shape. We
suppose homogeneous Dirichlet boundary conditions on the left boundary and inhomogeneous
Neumann boundary conditions on one part of the boundary to the right. Both parts remain
fixed. See the configuration in Fig. (1.1). We consider a surface force g of to 5.5 and a
volume penalization with α = 1.4. The sequence displays iterations 0, 10, 20 and 32 .

Figure 2.5: Second example with the same configuration as in Fig. (2.4) but with a different
initial shape. The resulting shape differs significantly from that one obtained in the first
example. The sequence shows iterations 0, 30, 50 and 157.
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Figure 2.6: Functions graphs for the optimization processes according to Fig. (2.4) (top) and
Fig. (2.5) (bottom). The compliance is colored green, the volume blue and the total value of
shape function J is colored red.
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.

Figure 2.7: Types of topological changes that are possible using only shape derivatives and
level set methods. The shape gradient provides information how to move the boundary. In
practice, this is done by making a step t > 0. If then one of above situation occurs, the level
set approach can process the new boundary information.

Figure 2.8: This type of topological change is impossible without additional information
besides the shape sensitivity analysis. The shape gradient only provides information for
already existing boundaries how to move, and thus, gives no hint where to place a hole.
Once this information is available, the change in the topology can easily be performed by
modifying the level set function.

2.3 Topological Sensitivity

Finding optimal shapes using only shape derivatives suffers a major drawback as it

does not include the problem of finding an optimal topology of shapes. As we have

seen, shape derivatives rely on variations of the boundary of a given domain which do

not change the topology of this. Thus, changes of the topology like the occurrence or

disappearance of a small cavity are not covered by methods discussed in the preced-

ing chapter, see Fig. (2.7). Whereas in numerical practice, merging or disappearing

holes can easily be tackled when using level set methods (this will be at issue in the

succeeding chapter), the occurrence of new holes represents a totally different prob-

lem and leads to the so-called topological sensitivity analysis, see Fig. (2.8). There,

information is provided how to change the topology of a given domain in order to

improve a shape functional.

In general, solving shape optimization problems the way we do, i.e., applying a gra-

dient descent method, is prone to find local minima instead of global ones. A remedy

to this effect would be a reliable method for changing the topology, as this enables

to ’escape’ bad local minima to find better ones. The impact on the resulting shape
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found by our optimization process is significant. See the different results using only

shape derivatives on the one hand Fig. (2.4) Fig. (2.5), and using both, shape and

topological derivatives, on the other hand, shown in Fig. (2.9).

Topological sensitivity has been extensively studied in the past decade, and to-

day is incorporated in a broad range of applications, e.g. inverse problems, imag-

ing [37, 97, 106] and especially structural or mechanical design [6, 72, 74, 77, 164]. In

fact, topology sensitivity has been investigated for various types of (systems of) differ-

ential equations as state constraint [13,15,16,99,117]. For a comprehensive survey see

the recently published monograph [161]. The term topology optimization comprises

different approaches for structural optimization, whereas a well established aside the

above mentioned, is based on homogenization theory, see the pioneer work of Mu-

rat and Tartar [116] and subsequent improvements [5, 28]. Here, an extended idea

of a domain underlies the theoretical and practical work. A domain is considered

to have a density continuously ranging from zero (void) to one (solid), in contrast

to a description via a characteristic function being either zero or one. This relaxed

interpretation enables the implementation of efficient algorithms, e.g. the well known

SIMP method (Solid Isotropic Material with Penalization) see [26, 28, 29], which are

sufficient in many practical problems. Despite these advantages, this approach suffers

the drawback that resultant domains consist of composite materials, which may have

no physical meaning. To get around this, penalization and filter methods for the ma-

terial density are applied to enforce sharp interfaces between void and solid material,

or keep the material physically justifiable.

However, we follow a strategy where the domain under consideration is represented

via a level set function, that is we have a sharp interface between void and solid

material. Thus, a method that indicates where to change a given topology is essential.

As a first practical implementation, in 1994, Schumacher introduced the so-called

Bubble Method [72] which creates holes in a domain according to some criterion. Later,

this principal was taken up by Sokolowski and Zochowski (1999) [163] and Guillaume

and Masmoudi (2001) [77], and they developed the concept of topological derivative or

topological asymptotic. Here, the sensitivity of a shape functional J , defined on given

domain O, is calculated when a small hole is drilled. This is performed as follows:

Consider a fixed model hole w in Rd , w being open and smooth bounded around a

center point x0 ∈ O. Then, for ρ > 0 we get the rescaled hole wρ

wρ = x0 + ρ w

and thus, the perforated domain Oρ = O \ wρ . Then, the asymptotic behavior of
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J(Oρ) as ρ tends to zero is of interest and existence of the following limit is questioned.

lim
ρ↘0

J(O)− J(Oρ)
|wρ|

Of course, in the case where the shape functional studied, depends on the solution uρ
of a boundary value problem (defined on the domain Oρ), an asymptotic analysis of

the solution uρ with respect to ρ (uρ being the solution on Oρ) is essential. In this

connection, the reader is referred to various sources [54, 63, 75, 100, 112, 159, 160] for

a detailed discussion on methods for constructing asymptotic expansions for partial

differential equations. It is worth mentioning that some ideas can be traced back

to the early 20th century, see Prandtl (1904) [129]. Results of these works underly

the concept of the so-called topological derivative, see for instance [74, 163]. The

topological derivative is obtained when an asymptotic expansion of the cost functional

J is considered.

J(Oρ) = J(O) + f(ρ)DTJ +R(f(ρ))

Whereby f is a non-negative function such that it is lim
ρ↘0

f(ρ) = 0 andR(f(ρ)) contains

all higher order terms than f(ρ), that is R(f(ρ)) = o(f(ρ)). The term DTJ denotes

the topological derivative located at the point x. At first sight, one might think this

calculation has to be done for each x ∈ O, but it turns out that exploiting information

of the corresponding adjoint state, enables to compute the topological derivative in

the whole domain O simultaneously.

First we take a look at the topological derivative of the volume functional, as an

illustrative example.

Lemma 2.13. The topological derivative of the volume functional V (O) =
∫
O
dx is

DTV (x) = −|w|.

P roof : Suppose d = 2 then for ρ > 0 is holds

V (Oρ) =

∫
Oρ

dx

=

∫
O

dx−
∫
wρ

dx

= V (O)− ρ2

∫
w

dx

= V (O)− ρ2 |w|
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Then we identify f(ρ) = ρ2 and DTV = −|w|.
�

This result meets the reader’s expectations. Likewise we obtain the topological

derivative for the surface functional. For sake of simplicity, from now on let w be the

unit ball B1. Then it is

S(Oρ) =

∫
Oρ

dν = ρ

∫
O1

dν = ρ 2π .

Thus we get

S(Oρ) = S(O0) + ρ 2π

and we find f = p and DTS = 2 π.

Recalling our genuine shape functionals, which depend on the solution u to the state

equation,

(I)

J1(O) =

∫
O

A(ε(u))) : ε(u) dx =

∫
O

f · u dx +

∫
ΓN

g · u dν (2.24)

(II)

J2(O) =

∫
O

|u− u0|2 dx (2.25)

we need to specify which boundary conditions are valid on the emerging boundary

∂Bp, as these are affecting the topological derivative. For our purpose we choose

homogeneous Neumann boundary conditions. Eventually, we obtain the following

topological derivatives in dimension d = 2 :

Theorem 2.14. Assume for simplicity that f = 0 and u is the solution of (2.5). For

any x ∈ O the topological derivatives of J1 and J2 take the form :

DTJ1(x) =
π(λ+ 2µ)

2µ(λ+ µ)
{4µAε(u) · ε(u) + (λ− µ) tr(Aε(u)) tr(ε(u))}(x)

DTJ2(x) =
π

2
|u(x)− u0(x)|2 −
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π(λ+ 2µ)

2µ(λ+ µ)
{4µAε(u) · ε(p) + (λ− µ) tr(Aε(u)) tr(ε(p))}(x)

For proofs the reader is referred to [77] and [164].

With this additional information we improve algorithm 2.12 so that it does not

depended on the topology of the initial shape.

Algorithm 2.15.

1. Set parameters for step size control and volume penalization. Choose the whole

working domain as initial shape O0

2. For k ≥ 0 solve the elasticity system (2.5) for Ok to obtain uk and pk

3. (a) For (k mod 10) 6= 0 : Compute the steepest descent direction and perform

a line search according to the step size control.

(b) For (k mod 10) = 0 : Compute the topological sensitivity and change the

topology.

Return to step 2 unless some abort criterion is fulfilled.

The sequence of shapes illustrated in Fig. (2.9) demonstrates the advantages of

using this improved algorithm. It indicates the optimization process to be robust and

to yield reliable results.

Remark 2.16 (Change of topology).

The topological gradient calculated in theorem (2.14) provides pointwise information

how the objective J changes if a small hole is created at a point x ∈ O. Being

aware of the fact that creating holes for more than just one point might not result

in a decrease of the objective J , this approach would accelerate the optimization

process enormously. Therefore, we define a threshold ηtop and cut out every point

x ∈ O for which the topological gradient DTJ(x) is smaller than ηtop. Let topmin =

arg min
x∈O

DTJ(x) and a step size τtop = 0.1, then we set ηtop = (1−τtop) ·topmin. If, after

performing the topological change, the objective J has not decreased, the procedure

is repeated with τnewtop = 0.5 τtop. This is done until the objective has decreased, or

τtop < 0.001 and no topological change is performed.
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Figure 2.9: A sequence of shapes for optimization with the topological derivative. The config-
uration is similar to the one in Fig. (2.4), that is volume penalization α = 1.4 and surface
force g = 5.5 . Depicted (from top left to down right) are iterations 0,10,11, 21,22,32,
33,43,44, 45,55,56, 67,68,100, 150,200, and 233. Topological changes are performed after
step 10, 21, 32, 44, 55, 67. After that point, topological changes do not improve the current
shape anymore and, therefore, are omitted.

2.4 Level-Set-Methods

The aim of this chapter is to motivate the use of level set methods in context of shape

optimization. These techniques have proven to be very useful in a rather broad range

of applications including mathematical image processing, computational physics, and

engineering and yet in shape optimization,too. See [9, 152, 172]. In general, level set

methods, first introduced by Osher and Sethian [125], are numerical techniques for

tracking the evolution of interfaces and boundaries. They provide some eminent ad-

vantages compared to other approaches for the representation of interfaces. Contrary

to most techniques used for interface representation, e.g. parametrization techniques,

handling of topological changes like merging boundaries or nucleation of holes is per-

formed in a simple way. In the preceding chapter, ’derivatives of shapes’, that is small
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Figure 2.10: Function graph for the sequence of shapes depicted in Fig. (2.9). The total
value of J is colored in red, the volume in blue and the compliance in green. An additional
improvement is obtained, i.e., less volume with a smaller total value of J for the final shape.
Compare the function graph in Fig. (2.6).

variations of the boundaries to improve a shape functional, were introduced. These

shape derivatives are described by vector fields which indicate the evolution of the

boundary. We will give an overview of different methods necessary for this boundary

evolution.

Boundary representation via level sets.

Interface representation via level sets is based on the embedding of the interface as

the zero level of a higher dimensional level set function. This means a fundamental

shift in how one views interfaces, namely replacing an explicit description by an im-

plicit one. Consider a function φ : Rd → R, the so called level set function, with non

vanishing gradient, ∇φ 6= 0. Then we simply identify O and ∂O as :

φ(x) = 0 x ∈ ∂O
φ(x) < 0 x ∈ O
φ(x) > 0 x 6∈ O

Fig. (2.11) illustrates this relation between O and φ. Of course, this representation

via φ is not unique. For example choose a ∈ R+, then a·φ(x) is another representation
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Figure 2.11: Different level-sets of the function φ(x) = |x| − 5 , x ∈ R2. Each can be
interpreted as the boundary of a circle with different radius.

of O. We will see later that level set functions close to a signed distance function,

that is |∇φ(x)| ≈ 1 ∀x ∈ Rd, are to prefer due to stability reasons.

Furthermore, geometric quantities of the boundary ∂O can also be expressed in

terms of the level set function. For the outer normal n of ∂O, we have

n =
∇φ
|∇φ|

and for the mean curvature, denoted by h, it holds:

h = div(n) = div

(
∇φ
|∇φ|

)
Now, we can focus on the evolution of the level set function φ as this implicitly de-

scribes the evolution of O.

Level set equation

Evolution of the level set function φ is incorporated by introducing a fictitious time t

and redefining φ as a time dependent function φ(t, x). Thus, we obtain time depen-

dency of O(t) by

O(t) :={x ∈ Rd : φ(t, x) ≤ 0}
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Figure 2.12: Here, the level set function φ for the final shape O in Fig. (2.5) is depicted.
The zero level of φ corresponds to ∂O. φ is a signed distance function, that is, φ(x)= ±
dist(x,∂O). Of course, φ only needs to be a signed distance function in a narrow band around
the zero level. We use a bandwidth of 6 times h, where h is the element size of the underlying
finite element discretization, see the next section 2.6.

∂O(t) :={x ∈ Rd : φ(t, x) = 0}

For a given vector field (velocity field) V : Rd → Rd sufficiently smooth we consider

the evolution of the iso levels φ(x) = c , for fixed c ∈ R. Let x0 ∈ Rd with φ(0, x0) = c,

then we define the initial value problem for the trajectory x(t) : R→ Rd

x(0) = x0

ẋ(t) = V (x(t))

where ẋ(t) is the derivative with respect to t. With the required regularity of V , the

Picard-Lindelöf theorem ensures unique solvability. We obtain a Hamilton-Jacobian

type equation by

∂

∂t
φ(t, x(t)) = 0 (2.26)
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⇔ φ̇(t, x(t)) + ∇φ(t, x(t)) · ẋ(t) = 0 (2.27)

⇔ φ̇(t, x(t)) + V (x(t)) · n |∇φ(t, x(t))| = 0 (2.28)

Equation (2.28) is also referred to as level set equation. It relates variations of the

level set function to variations of the iso-levels in normal direction according to a

velocity field.

Extension velocities

As we have seen above, the variation of the level set function can be computed straight

forward according to (2.28) if a velocity field is given a priori. This is not always

the case. In many practical applications one has to deal with the situation when a

velocity field is only defined on one iso-level, as it is in the case of shape optimization.

One main result in the previous chapter is the boundary representation of the shape

derivative. Thus, one has to find a way to extend the given velocity field given on

the zero level to all level sets or at least to a narrow band around the zero level set.

We follow [2, 150] and find that it is a good choice to define an extended vector field

according to

∇Vext · ∇φ = 0 in Rd

Vext = F on ∂O

which means a constant extension along the normal direction of ∂O. If we take a look

at

∂

∂t
‖∇φ‖2 =

∂

∂t
(∇φ · ∇φ)

=2∇φ · ∂
∂t

(∇φ)

=− 2∇φ · (∇Vext‖∇φ‖+∇(‖∇φ‖)Vext)

the last term is zero if |∇φ| = 1 and because of ∇Vext · ∇φ = 0. That means

the derivative of the norm of ∇φ(t) is zero and it is ‖∇φ(t)‖ = 1, t > 0. So φ(t)

remains a signed distance function. Thus, the iso-levels maintain an even distance

which prevents from developing shocks and rarefactions as discussed in [146–148]. We

will see later that the expression of the shape derivative in terms of level set function

gives good reason for conserving this property of φ.
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Re-initialization

First, in the initialization step for t = 0, the level set function is constructed as a

signed distance function to the boundary of O.

φ(x) = 0 x ∈ ∂O
φ(x) = −dist(O, x) x ∈ O
φ(x) = +dist(O, x) x 6∈ O

After evolving to some point t > 0, the level set function may, for some reason, not be

similar to a signed distance function anymore. Then, a new signed distance function is

created preserving the boundary information of φ and the process is continued setting

t = 0.

φnew(x) = 0, ∀ x ∈ {x ∈ Rd : φ(x) = 0}, ‖∇φnew‖ = 1

This procedure is referred to as re-initialization. For the construction of the signed

distance function we solve the Eikonal equation

‖∇T‖V = 1 T = 0 on ∂O (2.29)

with unit speed V = 1. T (x) can be considered as the arrival time of the expanding

front ∂O. Contrary to the level set equation (2.28), this is a boundary value problem

and strictly requires V > 0. But therefore it offers fast and efficient algorithms for

a numerical solution. We rely on the so-called Fast Marching Method based on an

upwind scheme. See [123,124,149,175] for a detailed introduction to this topic.

Shape derivative in level set formulation

Due to the relation in (2.28) it is possible to reformulate the shape calculus completely

in a level set framework. If we rewrite the objective function J(O)

J(φ) := J({x ∈ Rd : φ(x) < 0}) = J(O)

and consider variations of the function φ according to

φ(t, x) = φ(x) + tψ(x) ⇒ ∂

∂t
φ(t, x)

∣∣∣
t=0

= ψ(x)

we obtain by (2.28)

ψ(x) = −V (x) · n |∇φ(x)|
⇔ −ψ(x)|∇φ(x)|−1 n = V (x)
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Thus, we can identify the derivative of J at φ in direction ψ as

dJ(φ, ψ) := dJ(O,−ψ(x)|∇φ(x)|−1 n)

Note that for φ being a signed distance function, the above simply reads as

dJ(φ, ψ) := dJ(O,−ψ(x) n) (2.30)

whereas φ being far away from a signed distance function will cause numerical prob-

lems.

Regularized gradient

To solve shape optimization problems, we propose a gradient descent method accord-

ing to

φ̇(t) = −gradGJ(φ)

with respect to a metric G on the Hilbert space θ of variations of the level set function

φ. A discussion on different choices of G can be found in [36, 38, 56, 123, 151]. We

choose a weighted H1,2-metric according to

G(φ, ψ) = (φ, ψ)L2 +
σ2

2
(∇φ,∇ψ)L2 =

∫
D

φψ +
σ2

2
∇φ · ∇ψ dx

with σ > 0. Of course, the space θ has to be restricted to functions with sufficient

regularity, say θ ⊂ C1
0(D). We now obtain gradGJ(φ) by solving

G(gradGJ(φ), ψ) = dJ(φ, ψ) ∀ψ ∈ θ (2.31)

which is equivalent to solving the equation(
I +

σ2

2
4
)
gradG = dJ(φ)

in the sense of distributions. With this at hand, we follow a time discrete, regularized

gradient scheme

G(φk+1 − φk, ψ) = −τ dJ(φ, ψ) k ∈ N (2.32)

to generate a sequence of level set functions φk. At each time step, we apply Armijo’s

rule to control the step size τ . Thus, a level set function φk+1 is accepted if

J(φk+1) ≤ J(φk)− q τ G(gradGJ(φk), gradGJ(φk)) q ∈ (0, 1) (2.33)

is fulfilled, that means the objective J decreases sufficiently. If this requirement is
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violated, the step size τ is set to b · τ , with 0 < b < 1. In our implementation we set

q = 0.9 and b = 0.5.

2.5 Solution Algorithm

We now have all ingredients to formulate the actual optimization algorithm.

Algorithm 2.17.

Beforehand, parameters have to be set:

� Specify the objective J , especially volume penalization α and surface penaliza-

tion β.

� Define a maximal number of iterations 0 < Numiter ∈ N; such a rough abort

criterion is necessary due to numerical errors in the calculation of the shape

derivative. We can not expect the derivative to be zero at the end of the process.

In general, shape optimization problems do not have an analytical solution.

Although, a numerical implementation is always just a relaxation of the original

problem, existence of a minimizer is given only in rare cases.

� Set parameters q and b for the Armijo step size control, and an initial step size

t0

� Determine the frequency of topological changes ntop

� As initial shape choose the working domain D.

For k = 0 until k = Numiter do :

1. solve the elasticity system (2.5) (and if necessary it’s dual system) for φk to

obtain uk and pk

2. (a) For (k mod ntop) 6= 0 : Compute the gradient direction gradGJ(φk) accord-

ing to (2.31) ,generate φk+1 as described in (2.32) and find an acceptable

step size tk in (2.33).

(b) For (k mod ntop) = 0 : Compute the topological gradient (2.14) and check

whether or not a change of topology decreases the objective J, see Re-

mark 2.16.

3. The updated level set function φk+1 is re-initialized according to (2.29) to prevent

errors in the calculation of the next gradient direction gradGJ(φk+1), see (2.30).

Set k := k + 1 and return to step 1 unless k = Numiter.
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2.6 Numerical Settings

An efficient and accurate method for solving the state equation is of eminent impor-

tance for solving shape optimization problems. Since for each iteration step the state

equation (in our case this is a vector valued system of partial differential equations

(2.5) ) needs to be solved, this constitutes the major part of the computational effort.

Our discretization relies on a linear finite element method based on a quadratic grid

defined on the working domain D = [0, 1]2. To resolve the boundary in an adequate

way, we use two different approaches. The first one is based on the so-called composite

finite elements discretization. Here, each square is divided into two triangles. On this

triangular grid we consider the space Vh of piecewise affine continuous basis functions.

h = 2−l denotes the side length of each square where l ∈ N+ is the grid depth. A shape

Oh ⊂ D is then represented by a discrete level set function φh ∈ Vh. As described

above, the boundary of Oh is given by the zero level of φh which defines a finite poly-

gon. Contrary to homogenization approaches and the SIMP-method [5,26,28,29,116],

we deal with a solid-void material interface. Therefore, we need to adjust the finite ele-

ment space Vh for squares, which are intersected by the polygon ∂Oh. Suppose θi ∈ Vh
to be a basis function on such a square. Then we define a vector-valued composite

finite element basis function θcfeij (x) = ejχOh(x)θi(x), where e1 = (1, 0), e2 = (0, 1)

are the basis vectors of R2 and χOh is the indicator function of Oh. Altogether, those

modified basis functions generate the composite finite element space Vcfeh . This ap-

proach has been introduced by Hackbusch and Sauter [82]. Here, the advantage is

that degrees of freedom remain at the vertices of the original grid. Due to the uniform

structure, it is possible to implement very efficient multigrid solvers. See [142] and

further developments in [110]. Even elliptic boundary value problems with discontin-

uous coefficients across a given interface can be handled. This discretization approach

underlies results computed in section 3.1.4 and is implemented the numerical software

library Quocmesh which has been developed by the working group of Prof. M. Rumpf

at the university of Bonn.

Although, this approach works fine in practice for shape optimization [51, 52, 90] we

can not completely exclude that a truncation of the basis functions as described above,

has a disturbing effect on the shape gradient. According to 2.11, the shape gradient

has support on the boundary, so we need the solution u of the state equation to be as

precise as possible on ∂O. Therefore, we implemented a second approach to handle

boundary conditions. Here, the boundary is fully resolved by an adapted grid, and so

a truncation of basis functions is avoided.

Mesh generation for arbitrary domains is a great challenge and has been intensively

investigated in different contexts, see [17, 19,22,30,62,110,132,138,154,157].

A very impressive, and thus inspiring, achievement is the triangular mesh generator

developed by Jonathan Shewchuk [156]. Here, for a given polygonal boundary a tri-
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Figure 2.13: The process of constructing a hybrid grid resolving of the domain O = {x ∈
R2 : φ(x) < 0} =: [φ < 0] is illustrated. After identifying the polygon [φ = 0] := ∂O (upper
left side), the information about the distance of each grid point to the boundary, which is
provided implicitly as φ is a signed distance function, is used to generate a semi-uniform
grid inside O (upper right side). Finally, an adapted grid resolving the boundary [φ = 0] is
constructed.

angulation is generated with restrictions to the maximum angle or the size of each

triangle. This avoids rounding errors caused by ’bad’ finite elements, which would

result in a ill-conditioned system matrix for a Ritz-Galerkin discretization. But, the

obtained triangular mesh is not uniform. Thus, one has to deal with an increased

expense in data-management, since information for each element needs to be stored.

To get around this, we tried to combine advantages of both mesh types: low effort for

data-management using a uniform grid on the one hand, and a good boundary ap-

proximation using an adapted grid on the other hand. How this is done is illustrated

in (Fig. 2.13). We will briefly describe the process of our mesh generation. First

the polygons, which compose ∂Oh, are generated by evaluating the discrete level set

function φh given on the uniform grid of squares. φh is a signed distance function, and

therefore provides information about the distance to the boundary of each node of the
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grid. Then, based on this information, all nodes with a minimum distance bigger than

1.5 h to the boundary are identified. These remain fixed and a semi-uniform grid,

consisting of triangles, is constructed. In the last step, an unstructured triangulation

is generated which contains the boundary nodes and the nodes of the semi-uniform

grid near to the boundary. In doing so, we want the triangles to be as good as possi-

ble in the sense of aforementioned rounding errors. Up to now, this is done just in a

heuristic way and in few situations yields obtuse angles. But in the majority of cases

we obtain triangles with the desired properties, and thus, this approach serves well

for our purpose.

This is not jet finished and further improvements regarding adaptive refinement, do-

main decomposition and multigrid methods are a future ambition.

This approach is used for the computation of results in the subsequent section and

section 3.2.2.
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2.6.1 Common Settings

We now demonstrate how this works in practice. First a selection of common settings

is displayed. Compliance is the objective J to be optimized under a single load

configuration.
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Figure 2.14: The configuration and the result from Fig. (2.9) is recaptured. This cantilever

like structure is the most referred one in literature and serves well as a test setting. Here,

we set the surface force to 5.5, volume constraint α= 1.4, surface constraint β=0 (this is

always the case throughout this thesis) and threshold for the topological gradient τtop= 0.05.

A topological change is considered every ntop=10 iteration steps.
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Figure 2.15: Here, we consider a bridge like configuration. Homogeneous Dirichlet boundary

conditions are supposed downright and downleft. A force is applied down in the middle and

the whole area at the bottom remains fixed during the optimization. It is the surface force

g = 20.0, volume constraint α= 10.0, surface constraint β=0 and the threshold for the

topological gradient τtop= 0.05. A topological change is considered every ntop=10 iteration

steps.
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Figure 2.16: A different cantilever like configuration is examined. This time we consider

the surface force g to act on a broader part of the boundary. We have g = 5.5, α= 10.0,

τtop= 0.05, and ntop=10.0.
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Figure 2.17: The last example shows a mast like configuration. Homogeneous Dirichlet

boundary conditions are defined at the bottom left. The load is applied on the right. This time

the working domain D has a corner which interrupts a direct connection between the Dirichlet

and the Neumann boundary. This geometrical configuration is an additional restriction

besides the volume constraint. In the examples before, obviously D was chosen large enough

to have no effect on the optimization process. For this example we have g = 20.5, α= 10.0,

τtop= 0.05, and ntop=10.0.
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Figure 2.18: The cantilever structure that is obtained by solving the original problem. The
surface force g is set to 1.8 and volume constraint α= 0.6.

Figure 2.19: In the second scale, the cantilever shape in Fig. (2.18) is considered as the new
working domain Dnew. Then, an optimization with a bigger volume penalization is done.
The surface force g maintains at an amount of 1.8 and the volume constraint α is increased
to 0.8.

2.6.2 A Two-scale Approach

In many real-world applications, the structures used to design buildings, e.g. a bridge

or a cantilever, are subjected to further restrictions. For instance, the construction

of a bridge consisting of only one part, is not realistic. Such large-scale buildings are

build up step by step out of smaller components. Here, we tried to detect such ”sub-

structures” by performing a two scale approach. We take the cantilever configuration

as a test setting and proceed in the following way. First, the shape optimization

problem defined in the working domain D, given as in Fig. (2.14) , is solved. Then,

the resulting shape O serves as the new working domain Dnew. Doing so, reveals

some ”inner structure” of the cantilever.
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Figure 2.20: Configuration of a Two-load case. Forces g1 and g2 have the same amount
(20.5) but differ in direction. Both occur with a probability of 0.5 .

2.6.3 A Hint to Stochastic: The Two-load Case

In most practical applications more than one single load is to consider. Forces applied

can vary in direction, amount, or position on the boundary. The question arises, how

to deal with this situation. Therefore, we will consider some basic approaches known

from (stochastic programming) literature, and discuss a simple example which will

give us a notion of the importance for models, which treat the involved uncertainties

in an adequate way.

We consider a setting with two scenarios, each representing a surface force applied to

the body O with the same amount and position of the load, but different directions,

as depicted in Fig. (2.20). Both scenarios occur with probability 0.5 . We take a view

point inspired by stochastic programming theory and want to transfer knowledge and

experience from that field to our considerations. There, a first approach is to replace

computationally difficult problems by a simpler version. For example, instead of

solving a complicated stochastic model, the deterministic model is considered which

is obtained when all random variables are replaced by their expected value. Proceeding

in this way ends up solving a single load case with a loading gev = 0.5g1 + 0.5g2. This

results in the shape depicted in Fig. (2.21) on the right, which is called the EV-solution

and denoted by Oev.
A more subtle but costlier approach is to minimize the expected-value of the shape

functional J(O). That is, we minimize Jev(O) := 0.5J1(O)+0.5J2(O) , where Ji is the

corresponding functional for the load gi. This is known as Multiload case in literature

concerning shape or topology optimization. From a stochastic programming point of

view, this will be the starting point for a two-stage formulation which serves as the
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Figure 2.21: The shapes for the different approaches are depicted. On the left: the resulting
shape corresponding to a minimization of the expected value of the shape functional J(O)
(Multiload case). On the right: the resulting shape obtained by minimization of the shape
functional J(O) only considering the expected value of the force g (EV-solution).

counterpart of a two-stage problem with fixed recourse. We will go into detail on that

later in this thesis. This approach leads to the result shown in Fig. (2.21) on the left,

and differs significantly from that one obtained from the first approach.

For assessment of these two different results, in stochastic programming literature, the

concept of the expected value of perfect information (EVPI) and value of the stochastic

solution (VSS) are employed, see [31] for instance. There, EVPI is defined as EVPI :=

RP - WS, where RP (recourse problem) is the optimum value of a two-stage stochastic

linear program, whose counterpart here is arg min
O

Jev(O). WS is the so-called wait-

and-see solution, which is calculated in the following way:

Suppose Oi to be the solution to

min{Ji(O) : O ∈ Uad}

where i ∈ {1, · · · , S}, S being the number of scenarios (here S=2). Then it holds WS

:=
S∑
i=1

πiJi(Oi) with πi denoting the probability of each scenario.

In our case it is WS = 0.5J1(O1) + 0.5J2(O2) = 0.5 (0.781928 + 3.38561) = 2.083769

and RP = 4.80335. Thus EVPI = 2.719581.

The value of the stochastic solution is defined as VSS := EEV - RP. Where EEV is

the expected result using the EV solution, EEV :=
S∑
i=1

πiJi(Oev).

In our case EEV = 0.5J1(Oev) + 0.5J2(Oev) = 0.5 (35.3106 + 33.2749) = 34.29275.

Thus VSS = 29.4894 .
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It can be proven that it holds

WS ≤ RP ≤ EEV

in the linear and in the non-linear case, see [31]. In that way, we can identify upper

and lower bounds for the optimal values of our stochastic optimization model and

assess the quality of those.
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3 Stochastic

Shape Optimization Models

Deterministic shape optimization has been developed and analyzed for a wide range

of applications including aerospace engineering [88, 144, 145], structural mechanics

[6, 29,85,111], geometrical inverse problems [38] and many more. When dealing with

related mathematical and numerical models, uncertainties which arise from real world

applications play an underrated role. This might be due to the fact that shape opti-

mization, itself, is extremely challenging from the mathematical and numerical point

of view. Additionally, quantification of uncertainties is no less problematic. There is

plenty of possibilities to introduce uncertainties. They can be considered as a lack

of knowledge of material properties, i.e., unknown coefficients or unknown geometry,

think of microstructures, or the case we will deal with that is stochastic loadings.

We have done first steps to bring together the latter type of uncertainty with shape

optimization in [51, 52, 90]. Forces applied are considered to be of random character,

that is the loadings f and g are becoming random variables f(ω), g(ω), ω ∈ Ω on

some probability space (Ω,F ,P). The elasticity equation then reads

−div(A(ε(u))) = f(ω) in O
u = 0 on ΓD

A(ε(u)) · n = g(ω) on ΓN

(3.1)

The solution u of the state equation and the shape functional J then are random

variables, too, denoted by u(O, ω), J(O, u(O, ω)). In this way, the following family

of random variables arises

{G(O, ω) : O ∈ Uad} (3.2)

where

G(O, ω) = α

∫
O

1 dx + β

∫
ΓN

1 dν + J(O, u(O, ω)) (3.3)
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and J(O, u(O, ω)) takes the general form as in (2.16).

J(O, u(O, ω)) =

∫
O

j(x, u(O, ω)) dx +

∫
ΓN

l(x, u(O, ω)) dν (3.4)

From this perspective, O can be seen as a ’parameter’ defining a random variable

J(O, ω). ”Optimizing” O, hence, means finding an ’optimal’ random variable. This

raises the conceptual problem of how to rank random variables in (3.2).

The obvious fact, that under the above uncertainty the shape has to be fixed before

knowing the outcome of the random problem ingredients requires that O must not

depend on ω. This is referred to as non-anticipativity of O and becomes clear when

looking at the following scheme of ’decision and observation’ :

decide O −→ observe f(ω), g(ω) −→ decide u = u(O, ω) (3.5)

This view displays the non-anticipativity requirement, namely that the domain O
must be selected prior to observing random forces g(ω) and f(ω), according to the

information constraint. From this perspectives we reformulate the shape optimization

problem as

min{G(O, ω) : O ∈ Uad} (3.6)

Throughout this thesis, we set β = 0 and we will write V ol(O) instead of
∫
O

1 dx, for

sake of comprehension, so the problem becomes

min{ α V ol(O) + J(O, u(O, ω)) : O ∈ Uad} (3.7)

Reminding that the displacement uis the minimizer of the elastic energy Eelast(v) in

(2.4),

Eelast(v) :=

∫
O

[
1

2
· A(ε(v)) : ε(v)− f · v

]
dx−

∫
∂O

g · v dν

that is

u = arg min
v

Eelast(v)

and problem (3.7) becomes

min{α V ol(O) + J(O, u(O, ω)) : u(ω) = arg min
v

Eelast(v, ω), O ∈ Uad}

(3.8)
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and finally, performing a last simple transformation, we obtain the formulation

min

{
αV ol(O) + min

{
J(O, u(O, ω)) : u(ω) = arg min

v
Eelast(v, ω)

}
O ∈ Uad

}
(3.9)

which emphasizes a two-stage character with an inner optimization problem for the

random variable J(O, u(O, ω)).

Admittedly, the inner optimization problem is fairly simple, because of the fact that

there exist a unique minimizer of the elastic energy Eelast(v), but this new aspect stim-

ulated further development of stochastic models. So, this underlying model problem

will be briefly discussed in (3.1.1).

3.1 Mean Risk Models

Finding ’best’ members in (3.2) for the problem formulated above calls for a proper

ranking for this family of random variables. For a risk neutral setting, we proposed

a stochastic programming model which ranked members of (3.2) according to their

expected value. This choice completely ignores the variability of random variables

in [51]. Thus, it may result in selecting an ’optimal’ O whose accompanying random

variable J(O, ω) takes big values ’too often’. To get around this lack of precaution,

rankings according to risk measures are introduced. In a first approach, we have

employed the expected excess and the excess probability. Thus, we focus on those

three types of optimization problems

� Expected Value:

min{αV ol(O) + Eω [J(O, u(O, ω))] : O ∈ Uad} (3.10)

� Expected Excess:

min{αV ol(O) + Eω [max{J(O, u(O, ω))− η, 0}] : O ∈ Uad}
with preselected η ∈ R

(3.11)

� Excess Probability:

min{αV ol(O) + Pω [J(O, u(O, ω)) > η] : O ∈ Uad}
with preselected η ∈ R

(3.12)
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Here, E denotes the expected value of a random variable, thus it is a real number. The

statistical parameter η quantifies the variability (risk) of a random variable. While

for (3.12) it only matters whether G(O, ω) exceeds η or not , (3.11) measures how

much G(O, ω) exceeds η in the mean. Such sort of optimization settings are referred

to as mean-risk models and have been investigated for shape optimization in previous

works [51,52,90].

We will enrich our selection of risk measures by stochastic dominance models, which

rely on stochastic orders, also called integral orders, to rank random variables and offer

a different way to assess the quality of those. In the mean-risk models considered

above, risk aversion is accomplished by assigning a statistical parameter η, i.e., a

real number, and evaluating the quality of the random variable G(O, ω) by this.

Our alternative to evaluate the quality of random variables is to compare it to a

fixed benchmark random variable b(ω̃), where b might have a different distribution as

members in (3.2). To this end, we employ a partial order � on the space of random

variables and require that

G(O, ω) � b(ω̃).

Instead of heading for ’best’ members in (3.2), this enables to identify a subset of

’acceptable’ members:

{O : G(O, ω) � b(ω̃),O ∈ Uad} (3.13)

From the modeling point of view, the benchmark allows for more flexibility in con-

structing requirements to the properties of random variables. For instance, rather

than requiring that G(O, ω) must not exceed the deterministic value of, say, 50, we

might wish to allow for values up to 60, on the one hand , and to require that 35 not

to be exceeded with 40% and 40 with 90% probability, on the other hand. In this

way, risk aversion is not governed by ’just a real number’ but by a benchmark which

allows to include distribution information. Furthermore, we can select members in

(3.13) being optimal with respect to a different criterion, e.g. minimal volume. Then,

the optimization task would read as

min{V ol(O) : G(O, ω) � b(ω̃),O ∈ Uad} (3.14)

Subsequently, when we detail how constraints of type G(O, ω) � b(ω̃) can be imple-

mented, we will see that aforementioned mean-risk models, the expected excess (3.11)

and excess probability (3.12), are of eminent importance.
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3.1.1 Stochastic Programming Perspective

As said, our implementation of stochastic shape optimization models is inspired by

stochastic programming theory, which is a generic term for optimization problems in-

volving uncertain parameters, for which stochastic models are available. Optimization

problems involving stochastic models are found in wide areas of science and engineer-

ing, see for instance [171]. They address e.g. portfolio management and asset pricing

in mathematical finance, production planning and scheduling under uncertainty or

network planning in operations research. A main feature of this field of applications

is decision making under uncertainty, for which stochastic programming provides a

mathematical framework. Mathematical models issuing from that field depend on an

underlying probability distribution, in detail, on information available on the uncer-

tain problem components. For example, there are worst-case approaches, as in on-line

or robust optimization [4,24], for the latter at least the ranges of the uncertain param-

eters have to be known, but no detailed distributional information. In the case when

complete distributional information is available, as assumed throughout this thesis,

different approaches are applicable. Of course, detailed distributional information can

only be provided by statistical investigations of the involving uncertain parameters,

and therefore is an aspect of modeling.

Taking notice of the information constraint (3.5) of our stochastic shape optimiza-

tion model one observes a similarity with a special type of stochastic program. In

fact, two-stage stochastic linear programming. The two-stage character of the arising

shape optimization problem has been discussed detailed in [51,90].

3.1.2 Two-Stage Stochastic Programming Perspec-

tive

Let us gather some results we have obtained in previous works, starting with a short

review of two-stage stochastic program and then drawing an analogy to shape opti-

mization. Consider the random linear program

min{cTx+ qTy : Tx+Wy = z(ω), x ∈ X, y ∈ Y } (3.15)

for finite dimensional polyhedron X and Y in the Euclidian space together with the

information constraint

decide x 7→ observe ω 7→ decide y = y(x, ω) (3.16)
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Assuming existence of a minimum, we rewrite (3.15) to emphasize the two-stage char-

acteristic

min
x
{cTx+ min

y
{qTy : Wy = z(ω)− Tx, y ∈ Y } : x ∈ X}

= min{cTx+ Φ(z(ω)− Tx) : x ∈ X} (3.17)

where Φ(v) := min{qTy : Wy = v, y ∈ Y } is a value function of a linear program with

parameters on the right hand side. Then the task is to minimize the random cost

functional j(x, ω) := cTx + Φ(z(ω) − Tx). The two-stage character of this problem

becomes clear when looking at (3.17) as one can interpret the search for a ”best”

non-anticipative decision x as the search for a ‘”minimal” member in the family of

random variables {j(x, ω) : x ∈ X}. Choosing x means choosing a random variable

j(x, ω), where randomness results from Φ; x can be seen as an ”index” varying in the

set X. In that way, the two decisions on x and y become one decision on x; y can

be constructed after an ”optimal” x is computed. But the price we have to pay is we

have to deal with random variables j(x, ω), instead. That is, we need to assess the

quality of random variables to find a ’best’. This is when risk measures come into

play. For example, in a risk-neutral setting, random variables are ranked by their

expectation, leading to the (nonlinear) optimization problem

min{Eω(j(x, ω)) : x ∈ X} (3.18)

This is the starting point for our shape optimization models.

Before we discuss results for these models, we will explain the structure of the random

forces which underly our model problem.

3.1.3 Incorporating Stochastic Loadings

In order to set up a framework for the uncertainty in our considerations, we need to

define a probability space , i.e., a triple (Ω,F ,P), for our optimization model. For the

sake of completeness, we shortly recall the definition of a probability space.

In stochastic programming, uncertainty is represented in terms of random experiments

with outcomes, called random elements. We say Ω is the universe of all possible

outcomes, the sample space. A generic outcome of a random experiment is denoted

by ω ∈ Ω. A subset F of Ω is called an event. The event F is said to have occurred if

the outcome of the experiment is an element of F . Furthermore, the set of all events is

represented by F and is required to be a σ-algebra. Finally, P : F → [0, 1] is supposed

to be a probability measure which assigns each event F ∈ F a value P(F ) ∈ [0, 1]

called probability of the event F.

We assume that ω follows a discrete distribution with finitely many realizations. That
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is Ω = {ω1, · · · , ωS}, S ∈ N+, each ωi representing an event. Each scenario ωi occurs

with probability πi = P({ωi}), for i ∈ {1, · · · , S} and it is
S∑
i

πi = 1.

We assume occurring forces to be random and suppose the set of realizations of these

random forces consists of pairs (f(ωi), g(ωi)) of volume and surface loads. If we deal

with K1 realizations of f(ω), K1 ∈ N+, and K2 realizations of g(ω), K2 ∈ N+, we

observe that the number of possible scenarios is

S =
∣∣{(f(ωi), g(ωi))}

∣∣ = K1 ·K2

One gets aware that increasing the number of realizations of f and g results in a

fast growing number of scenarios, for which one has to solve the state equation, the

elasticity model in (2.5). Solving systems of partial differential equations numerically

is computationally expensive and therefore a high number of scenarios results in in-

adequate computational costs. To keep the numerical effort at an acceptable level, we

will use an algorithmic shortcut.

First, due to linearity of the state equation, it is possible to compute the solutions

for volume and surface forces separately. In detail, may uf be the solution for the

state equation with right hand side f(ωi) for some realizations of ω. And let ug be the

solution for the state equation with right hand side g(ωi). Then, a straight forward

calculation yields that uf + ug is the solution for the state equation with right hand

side (f(ωi), g(ωi)). So, the number of equations to solve reduces to K1 +K2.

Second, our considerations are restricted to the case that all scenario forces are

devised by a fixed number of so-called basis forces. In detail, scenario forces f(ω) and

g(ω) are linear combinations of the basis forces.

f(ω) =

L1∑
n=1

αn(ω) fn , g(ω) =

L2∑
m=1

βm(ω) gm

In this way, the randomness is shifted to the coefficients, i.e., αn(ω) and βm(ω).

Now, we just have to handle a fixed number of deterministic basis forces the state

equation has to be solved for, called basis scenarios. Doing so, a scenario solution

u(ωi) is obtained by linear combination of solutions of the basis scenarios ufn and ugm
according to realizations of the random coefficients.

u(ωi) =

L1∑
n=1

αn(ωi) u
n
f +

L2∑
m=1

βm(ωi)u
m
g (3.19)

This, too, follows from the linearity of the elasticity model (2.5) using the same ar-

gumentation as above. So, the special construction of random forces enables to deal

with a high number of scenarios at moderate computational costs by building on a

reasonable number of basis forces. Say L1 � K1 and L2 � K2, then there are L1 +L2
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equations of type (2.5) to solve for a stochastic shape optimization model concerning

K1 ·K2 scenarios.

3.1.4 Results for Mean Risk Models

At this point, we discuss our numerical implementation of risk models introduced at

the beginning of section 3.1. Comparing the optimal shapes for each respective risk

model, will give us a notion of the impact of each model. This will be helpful in

the succeeding chapter where we define stochastic dominance models as they rely on

models for expected excess and excess probability.

As said before, the expected-value model

min{αV ol(O) + Eω [J(O, u(O, ω))] : O ∈ Uad} (3.20)

is risk neutral in the sense that critical realizations of J(O, u(O, ω)), say extremely

high values occurring with marginal probability, are of no particular importance for

the expected value. If this is not acceptable, we may refine assessment of risk by

introducing a threshold, above which realizations of J(O, u(O, ω)) are to be avoided.

Our first implementation of risk aversion is given by the expected amount of which

J(O, u(O, ω)) exceeds that threshold. This model is called expected excess model:

min{αV ol(O) + Eω [max{J(O, u(O, ω))− η, 0}] : O ∈ Uad}
with preselected η ∈ R

(3.21)

Here, η is the intended threshold and the function max{., 0} ensures that only real-

izations J(O, u(O, ω)) exceeding η are taken into account.

Another approach to design risk aversion arises when we ask for the probability that

J(O, u(O, ω)) exceeds threshold η. This is implemented by the excess probability

model:

min{αV ol(O) + Pω [J(O, u(O, ω)) > η] : O ∈ Uad}
with preselected η ∈ R

(3.22)

Here, it only matters if threshold η is exceeded, in contrast to the expected excess

model, which measures how much η is exceeded. Thus, we obtain the following identity

Pω [J(O, u(O, ω)) > η] = Eω[H(J(O, u(O, ω))− η)] (3.23)

where H(x) : R→ R is the Heaviside function being 0 for x ≤ 0 and 1 for x > 0. Note

that this identity has no mathematical meaning, as the quantity on the left hand side
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is probability, whereas the one on the right hand side is an expected value. But, it is

easy to see that these real values coincide.

Altogether, we find that the above refined risk measures simply replace a mini-

mization of the expected value of the objective Eω [J(O, u(O, ω))] by a minimiza-

tion of Eω [q (J(O, u(O, ω)))]. Where q is a nonlinear monotone increasing function

q : R → R, which reflects a specific aversion of risk. It is q = max{., 0} for the

expected excess and q = H(.) for the excess probability.

As differentiable approximations for q we use either

max{x, 0} =

√
x2 + x

2
≈
√
x2 + ε+ x

2
=: qεmax(x) ε > 0 (3.24)

or

H(x) ≈ 1

1 + e−2ε
=: qεH(x) (3.25)

in accordance with the choice of q. Those we used in our numerical applications are

depicted in Fig. (3.1). We denote Qε
EE for the expected-excess model, Qε

EP for the

excess-probability model and QEV for the expected-value model.

Thus, shape and topological derivatives of above functionals are simply obtained by

the chain rule. Say Q = Eω [q (J(O, u(O, ω)))] and suppose ω has a finite number of

realizations, we obtain

dQ(O, V ) =
Ns∑
i=1

πi q
′(J(O, ωi)) dJ(O, ωi, V ). (3.26)

for the shape derivative and

DTQ(O, x) =
Ns∑
i=1

πi q
′(J(O, ωi))DTJ(O, ωi, x). (3.27)

for the topological derivative. So, a slight modification of algorithm (2.17) for the

evaluation of the cost functional, the shape and topological derivative needs to be

done. We refer to [52] for a sketch of the resulting algorithm.

Let us now take a look at how this works in practice. Quoting from [90] we first

describe the test setting and discuss results of risk neutral optimization. Then, we

survey our own research published in [52] and focus on models with risk aversion. As

a test setting, we suppose the situation illustrated in Fig. 3.2. There, two fixed areas

on the top of the construction domain are affected by loadings in different directions.

The bottom of the construction domain is considered to be firm ground, that is ho-

mogeneous Dirichlet boundary. We aim at optimizing the compliance of structures

which support the areas under load. Two different instances are shown, each with
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Figure 3.1: The profiles of qεmax with ε = 0.01 for the expected excess model (left) and qεH
with ε = 0.25 for the excess probability model (right) are depicted. In our applications below,
we used η = 1.0. The dotted vertical lines (up to a shift) refer to dotted horizontal lines in
the bar charts for the whole set of scenarios displayed in Fig. 3.6.
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Figure 3.2: On the left side we see a symmetric stochastic load configuration which leads to
to symmetric structure, whereas a non-symmetric stochastic loading (on the right) results
in a non-symmetric truss construction. These examples are quoted from [90].

ten scenarios forces. In the first one on the left, a symmetric setting of scenarios is

considered. All scenario forces are equally strong and occur with the same probability.

The second instance, on the right, pictures a non-symmetric setting. Forces applied

on the left are twice as strong as those on the right. But each force on the left occurs

with probability 1%, while those on the right do with 19 %. To compute the scenario

forces, 4 basis forces are required, two for each area under loading, respectively. As

discussed in the previous section, the elasticity system only needs to be solved for

these basis forces. Then, we benefit from the linearity of the elasticity model and

compute scenario solutions from basis solutions, see section 3.1.3.

Optimization of the expected value leads to different structures depicted in Fig. (3.2).

As we might expect, the symmetric load configuration results in a symmetric struc-

ture, whereas optimization in a non-symmetric load setting takes account of the fact

that forces on the left, on average, play a minor role.

We now investigate how our risk averse models take impact on the resulting shape.

The non-symmetric load configuration serves as our test setting. First, we focus on

the expected excess model. Here, the threshold η plays a central role. Obviously, set-

ting η = 0 results in an expected-value optimization, as we deal with the compliance
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as shape functional, which is always nonnegative. In Fig. (3.3), we see a family of

optimal shapes minimizing the expected excess for varying excess parameter η. One

Figure 3.3: Results for an optimization for the expected-execess with different η. The dis-
played shapes correspond to the sequence η = 0.1, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0. and 1.5. Here,
the load configuration shown in Fig. 3.2 (second right) is used.

observes that there exists a link between the parameter η and the resulting optimal

shape, which appears to be continuous. For a better understanding which effect the

scenario loadings take on different structures, the energy distribution (compliance) is

illustrated for optimal shapes for three different values of η in Fig. (3.4). Forces ap-

plied on the left cause a significant higher compliance than those applied on the right.

But, for a rather small threshold η, forces with a high probability, which are those on

the right, contribute far more to the expected excess. With increasing threshold, this

dominating effect vanishes, and forces on the right gain more attention. Thus, more

support on the left is needed and results in a ’material shift’ to the left side.

The situation is different in the case when optimizing the excess probability. Here,

one observes a total ’material shift’ to the right side. This is due to the fact that the

excess probability model only detects if threshold η is exceeded. The amount by which

η is exceeded has no impact. Thus, high forces on the left are de facto neglected, due

to their low probabilities. Hence, forces on the right are the main focus. As a conse-

quence, no support is needed for the left bearing and during the optimization process

only thin trusses remain. Finally, these are removed via a topological optimization

step to enable the optimization process to proceed. This very moment is illustrated

in Fig. (3.5).
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η =
0.1

η =
0.6

η =
1.0

Figure 3.4: The energy distributions (Aε(u) : ε(u)) for each scenario of the optimal shapes
for the expected-excess model for different η are colorcoded as . The configuration of the
loading is as in Fig. (3.2) (second right) and the set of realizations is taken from Fig. (3.3).
The η values are shown on the left.

Figure 3.5: During the optimization process of the excess-probability model ( for η = 0.4 ),

a focus on the right bearing manifests itself. This is due to the fact, that loadings on the

right are smaller than the ones on the left, but occur with higher probability. This leads to

decreasingly thin structures on the left, until those are completely neglected by performing a

topological optimization step. The final result is shown on the right.
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Figure 3.6: For optimal shapes corresponding to the stochastic cost functionals QEV ,Q0.01
EE

and Q0.25
EE (with η = 0.4), the objective values for each scenario are displayed in a bar chart.

The bar thickness is chosen proportional to the probability. The second row is a zoom into
the diagrams.

Let us assemble the results for above risk averse functionals for a cross check. In

the table below, the three risk functionals QEV , Q0.01
EE , and Q0.25

EP are each evaluated

on the optimal shapes OEEη (with respect to the expected value), OEEη (with respect

to the expected excess), and OEPη (with respect to the excess probability), separately.

QEV Q0.01
EE Q0.25

EP

OEV 0.293 0.041 0.072

OEEη 0.368 0.024 0.278

OEPη ∞ ∞ 0.068
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One main observation we made in practice is, that shape optimization problems

with risk averse objectives are hard to tackle. This is because we have to deal with

a nonlinear reformulation of risk averse optimization models, which are well studied

in the linear case, but result in great challenges in the nonlinear case. For the ease of

solvability, we therefore restrict the set of admissible shapes Uad to those with a fixed

topology, that is a structure of intersecting bars, see Fig. (3.8). The underlying grid

resolution is illustrated in Fig. (3.10) and Fig. (3.14). The first setting picks up the

idea in Fig. (3.2), a non-symmetric loading case and a rectangular working domain

D, as illustrated in Fig. (3.7). Scenario forces and probabilities are chosen such that
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Figure 3.7: Nonsymmetric stochastic loading; loads on top left are set to 4 with probability
4%, whereas on the top right loads are set to 1 with probability 16 %. Thus, the amount of
the loads on the left and on the right have the same expected value.

the amount of the loads on both sides have the same expected values. Results shown

in Fig. (3.8) demonstrate the preferences of the different risk measures.

Figure 3.8: The results for QEV ,Q0.01
EE and Q0.25

EP ; the threshold η is set to 12. We observe
a symmetric structure for the expected-value model, whereas the expected-excess model leads
to a structure with more support for the left loadings. The excess-probability model leads to
a structure with more preference to right side.
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Figure 3.9: Sets of function values for the realizations of senario forces for the expected-
value (left), the expected-excess (middle) and the excess-probability model (right). Again the
thickness of the bars is related to the scenario probabilities. We clearly see the different
performances for the expected-excess and the excess-probability model.
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Figure 3.10: Here a detail of the triangular grid resolution is displayed (bottom). We see a

zoom of the intersection of bars in the red marked area in the picture above.
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In the second example, we consider a working domain similar to a mast. Again, we

define a non-symmetric load setting corresponding to the configuration in Fig. (3.11).
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Figure 3.11: Non-symmetric stochastic loading; loads on top left are set to 4 with probability
4%, whereas on the top right loads are set to 1 with probability 16 %. This leads to, in the
mean, equal strong amounts of loads on the left and on the right.

Figure 3.12: The results for QEV ,Q0.01
EE and Q0.25

EE ; the threshold η is set to 2. For the
expected-value model, we obtain a structure with more support for the left loadings and even
slight more for the expected-excess model. This time, the excess-probability model leads to a
structure with symmetric support for both sides.
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Figure 3.13: Sets of function values for the realizations of senario forces for the expected-

value (left), the expected-excess (middle) and the excess-probability model (right). The thick-

ness of the bars is related to the scenario probabilities. We see the different performances

for the expected-excess and the excess-probability model.
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Figure 3.14: A detail of the triangular grid resolution is displayed (bottom). We see a zoom

of the intersection of bars in the red marked area in the picture above.
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3.2 Stochastic Dominance Models

As motivated above, we want to refine our methods for assessing the quality of random

variables. Resuming the idea of comparing those to each other, the need for an order,

or at least a partial order, on the space of random variables arises. In context of

stochastic optimization, these are referred to as stochastic orders. Stochastic orders

are an established issue in theory of decision making under risk. There, integral

stochastic orders are employed for that purpose, and can be found under the key

word stochastic dominance rules.

Following [114], we start with a descriptive and easy to understand definition of the

so called Usual Stochastic Order to impart a very first notion of stochastic orders.

For real-valued random variables X on R , HX denotes the associated cumulative

distribution function.

HX(t) := PX((−∞, t]) = P[X ≤ t]

Then, a straight forward approach for comparing random variables X and Y is pro-

vided by pointwise comparison of the related distribution functions. If HX(t) ≥
HY (t) ∀t ∈ R, then X assumes small values with higher probability than Y does,

and vice versa, X assumes large values with smaller probability than Y does. This

motivates for the definition of the following order relation.

Definition 3.1 (First Order Dominance). A real-valued random variable X is said to

be smaller than a random variable Y with respect to usual stochastic order (X≤stY ),

if

HX(t) ≥ HY (t) ∀ t ∈ R.

Frequently, this stochastic order relation is also known just as the stochastic order.

We adopt the notation used in economics and will this relation refer to as first order

stochastic dominance. From our point of view, smaller realizations of a random vari-

able X are preferred, so we say X dominates Y to first order (written X �1 Y ), if

X≤stY .

The relation �1 fulfills the requirements for an (partial) order on the space of

distribution functions, that is Reflexivity, Transitivity and Antisymmetry. But, since

not all distribution functions can be set into relation it is not a total order.

At this point, it is important to call attention to the difference between comparison

of distribution functions and comparison of random variables. Different random vari-

ables might have the same distribution even though when originating from different

probability spaces. Thus, the relation �1 is antisymmetric as a relation among dis-
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tributions, but not antisymmetric as a relation for random variables. A candidate to

think of for a partial order that compares the size of random variables directly, would

be the relation X �a.s. Y , that is X(ω) ≤ Y (ω) for P-almost all ω. This relation is

much stronger as it does not only depend on the distribution function, i.e., taking a

random variable X as entity, but also on the individual realizations of ω ∈ Ω. How-

ever, from a practical point of view, the relation �1 is much more useful.

To sum up the above considerations, comparing distribution functions means compar-

ing classes of random variables with the same distribution. Now the following theorem

reveals that for comparable classes of random variables, we find representative ran-

dom variables and a suitable probability space, such that these are comparable to

each other directly.

Theorem 3.2. For random variables X, Y with cumulative distribution functions

HX , HY the following statements are equivalent:

(i) HX(η) ≥ HY (η) ∀ η ∈ R.

(ii) There exist a probability space (Ω̂, Â, P̂) and random variables X̂ and Ŷ on

it with distribution functions HX and HY , respectively, such that X̂(ω̂) ≤
Ŷ (ω̂) ∀ω̂ ∈ Ω̂.

For a proof of this fundamental statement we refer the reader to [114].

From now on, whenever X �1 Y holds for random variables X and Y , it can be

assumed without loss of generality that X ≤ Y almost surely, as relation �1 only

depends on the distributions on R and not on the underlying probability spaces of X

and Y .

In what follows, a crucial characterization for relation �1 in terms of expectations of

increasing functions will be introduced. This different perspective will offer further

possibilities for defining order relations.

Lemma 3.3. The following statements are equivalent.

(i) X dominates Y to first order (X �1 Y ).

(ii) The inequality

E(h(X)) ≤ E(h(Y ))

holds for all nondecreasing functions h for which both expectations exist.

Proof :

(i)⇒ (ii) : With the above consideration, it can be assumed without loss of generality

that X(ω) ≤ Y (ω) for all ω ∈ Ω. For h nondecreasing, it follows h(X(ω)) ≤ h(Y (ω))
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for all ω ∈ Ω. And this implies E(h(X)) ≤ E(h(Y )).

(ii)⇒ (i) : For arbitrary η fixed, define h as :

h(t) :=

{
0 t < η

1 otherwise

h is nondecreasing, which implies E(h(X)) ≤ E(h(Y )). Since it is E(h(X)) = P[X >

η] and likewise for Y , one obtains P[X > η] ≤ P[Y > η].

�

This characterization of first order stochastic dominance relation �1 is of eminent

importance in context of decision making under risk. Here, the function h is considered

as the utility or disutility function of a rational decision maker. This depends on

whether one is dealing with random gains and related prospects, or dealing with

random losses. As we are concerned with finding shapes with minimal compliance,

that is maximal stiffness, our viewpoint will be treating disutility functions. For

sake of completeness, it should be mentioned that we assume gains or losses being

described by random variables with distributions which are known to the decision

maker. Following the notation in [114], this situation is called decision under risk

in contrast to decision under uncertainty, where the decision maker is not aware

of the underlying distributions. Furthermore, we assume decisions to depend on the

distribution as a whole and not on concrete realizations of the random variable.

The idea of employing a utility function to describe the behavior of a rational decision

maker originates from von Neumann and Morgenstern detailed in the book Theory

of Games and Economic Behavior [119]. There, they define axioms for the behavior

of rational decision maker, which imply the so-called expected utility hypothesis. It

predicates that for a rational decision maker there exists a utility function h such

that prospect Y is preferable to prospect X if and only if E(h(X)) ≤ E(h(Y )). That

means that the behavior of a decision maker is prescribed by his utility function. With

attention to losses instead of gains, as in our case, X is preferable and from now on

we will use the term disutility function.

Of course, in practice it is not possible to know a decision makers disutility function

in detail, as it is based on fairly subjective assessment. Therefore, a more promising

approach arises when considering classes of disutility functions F , say

X � Y if E(h(X)) ≤ E(h(Y )) for all h ∈ F .

Replacing a concrete function with a class of functions can be interpreted as analyzing

the behavior of a group of decision makers or, as aforementioned, a vaguely known

function. From our point of view, losses are greater when realizations of random

variables are greater. Thus, a disutility function should be nondecreasing. Defining

F as the set of all nondecreasing functions then leads to the above characterization
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of first order dominance relation �1.

A further stochastic integral order is obtained by choosing a different class F of

disutility functions. Therefore, let us take into account decision maker’s attitude to

risk to get an additional property of disutility functions under consideration. If we

assume decision makers to be risk averse in the sense that the certain amount E(X)

is preferred to the risky( in the sense of volatility) amount X irrespectively of the

distribution of X, then we obtain that disutility functions comply with the inequality

h(E(X)) ≤ Eh(X). An immediate conclusion, by contemplating Jensen’s inequality,

is convexity of disutility functions h. This leads to the definition of second order

stochastic dominance.

Definition 3.4 (Second Order Dominance). The real-valued random variable X(ω)

is said to be stochastically smaller than Y (ω) in increasing convex order (X �icx Y )

if and only if Eh(X) ≤ Eh(Y ) for all nondecreasing convex functions h for which both

expectations exist. In this case we say that X(ω) dominates Y (ω) to second order.

Remark 3.5. As a direct consequence of the definitions of both order relations, we

observe that first order dominance implies second order dominance. This is easy

to understand when looking at the classes of disutility functions F which underlie

both definitions. The set of all nondecreasing convex functions, relevant for second

order dominance, is a sub set of all nondecreasing functions utilized for first order

dominance. Thus, first order dominance is a stronger relation than second order

dominance.

In what follows, an alternative characterization of second order dominance will be

derived. This will give us a more comprehensible notion, similar to the definition of

first order dominance, and it will offer methods for an efficient numerical treatment.

Lemma 3.6. It holds X �icx Y if and only if E[X − η]+ ≤ E[Y − η]+ for all η ∈ R .

Proof :

(i) ⇒ (ii) : With h(t) := [t − η]+ being convex and nondecreasing for all η ∈ R the

implication is obvious.

(ii) ⇒ (i) : Let h : R → R be convex and nondecreasing. Then there occur three

cases to be dealt with :

1. lim
t→−∞

h(t) = 0

2. lim
t→−∞

h(t) = α ∈ R

3. lim
t→−∞

h(t) = −∞

The case when lim
t→−∞

h(t) =∞ is trivial because this would imply h ≡ ∞ which yields

Eh(.) =∞.
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Case 1 : h can be presented as the point wise maximum of a countable family of non-

decreasing affine functions h(t) = max{l1(t), l2(t), l3(t), · · · }. We define the sequence

of functions hn(t) := max{0, l1(t), l2(t), l3(t), · · · }. The sequence hn is pointwise non-

decreasing and converges to h pointwise. Since hn is piecewise linear with a finite

number of kinks, it can represented as

hn(t) =
n∑
i=1

ain [t− bin ]+

with certain ain ≥ 0 and bin ∈ R. Hence,

Ehn(X) =
∑
i=1n

ainE[X − bin ]+ ≤
∑
i=1n

ainE[y − bin ]+ = Ehn(Y )

Applying the Monotone Convergence Theorem yields E(h(X)) ≤ E(h(Y )).

Case 2 : Replacing h with h−α the same argumentation as in Case1 yields E(h(X)) ≤
E(h(Y )).

Case 3 : For each n ∈ N fixed, the function hn(t) := max{h(t),−n} complies with the

requirements for Case 2. As hn converges monotonically to h the statement follows

with the Monotone Convergence Theorem.

�

The shown equivalence reveals that X �icx Y if and only if X exceeds thresholds

η ∈ R by less than Y does, in the mean.

Remark 3.7. As a consequence of Definition 3.1 and Lemma 3.6 we can equate

first-order stochastic dominance with a continuum of probabilistic constraints and

second-order dominance with a continuum of expected-value constraints. This view

links to semi-infinite optimization, e.g. [78,133], where continua of constraints are the

objects of study.

However, continua of constraints are hard to tackle, especially in our case. Fur-

thermore, in order to keep computational cost at an acceptable level, it would make

things easier if just a finite number of constraints would have to be checked. We

will show in the following, subject to the condition that the underlying probability

distributions are discrete and finite, the continua of constraints reduce to finite sets.

Proposition 3.8. Assume random variables X and Y have discrete distributions, that

is X(ω) ∈ {xi : 1 ≤ i ≤ SX , xi ∈ R} with ΩX = {ωX1 , ωX2 , · · · , ωXSX}, SX ∈ N+ and

similar Y (ω) ∈ {yi : 1 ≤ i ≤ SY , yi ∈ R} with ΩY = {ωY1 , ωY2 , · · · , ωYSY }, SY ∈ N+.

Without loss of generality, we assume x1 ≤ x2 ≤ · · · ≤ xSX and y1 ≤ y2 ≤ · · · ≤ ySY
Then it holds :

(i) X �1 Y if and only if P[X ≤ η] ≥ P[Y ≤ η] for all η ∈ {Y (ωYi ) : 1 ≤ i ≤ SY }
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(ii) X �icx Y if and only if E[X− η]+ ≤ E[Y − η]+ for all η ∈ {Y (ωYi ) : 1 ≤ i ≤ SY }

That means, to probe whether X dominates Y to first or second order it is sufficient to

check the inequalities on the right hand side just for the finite number of realizations

of Y instead for all η ∈ R.

Proof : We follow [114],

(i) :

The implication ”⇒ ” is obvious.

To show ”⇐ ” we consider three cases:

Case 1 : Let η ∈ [yn−1, yn[ for 2 ≤ n ≤ SY . Then it holds:

P[Y ≤ η] = P[Y ≤ yn−1] ≤ P[X ≤ yn−1] ≤ P[X ≤ η]

The first identity follows from the fact that Y is discrete and that there are no mass

points in between yn−1 and yn. The second relation is just the assumption, and the

last relation is valid due to the monotonicity of the cumulative distribution function.

Case 2 : Let η < y1. Then it is P[Y ≤ η] = 0 ≤ P[X ≤ η].

Case 3 : Let η > ySY . Due to monotonicity of the distribution function it holds

P[X ≤ ySY ] ≤ P[X ≤ η]. Together with the assumption we obtain 1 = P[Y ≤ ySY ] ≤
P[X ≤ ySY ] and thus P[X ≤ η] = 1 ≥ P[Y ≤ η].

(ii) :

The implication ”⇒ ” is obvious due to definition (3.1).

To show ”⇐ ”, define F (η) as

F (η) := E[X − η]+ =

SX∑
n=1

πXn [xn − η]+

where πXn = P[X = xn] ≥ 0, and A(η) as

A(η) := E[Y − η]+ =

SY∑
n=1

πYn [yn − η]+

with πYn = P[Y = yn] ≥ 0.

According to the assumption it holds

F (yn) ≤ A(yn) (3.28)

for n = 1, · · · , SY . Obviously, the function A is convex and piecewise linear on each of

the intervals η ≤ y1, yn−1 ≤ η ≤ yn ( 2 ≤ n ≤ SY ), and ySY ≤ η. First, we consider

η ≤ y1. Choose η0 ≤ η such that η0 ≤ x1.
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We denote S ′ := {n ∈ {1, · · · , SX} : xn < y1} and we obtain

F (η0)− F (y1) =

SX∑
n=1

πXn xn − η0 −
∑
n/∈S′

πXn xn +
∑
n/∈S′

πXn y1

=
∑
n/∈S′

πXn y1 − η0 +
∑
n∈S′

πXn xn

≤
∑
n/∈S′

πXn y1 − η0 +
∑
n∈S′

πXn y1

= y1 − η0. (3.29)

Moreover, A(η) =
SY∑
n=1

πYn yn − η for η ≤ y1, and thus

A(η0)− A(y1) =

SY∑
n=1

πYn yn − η0 −
SY∑
n=1

πYn yn + y1 = y1 − η0 (3.30)

Let η = λη0 + (1 − λ)y1 for suitable λ ∈ R with 0 ≤ λ ≤ 1. Since F is convex as a

finite sum of convex functions we find

F (η) ≤ λF (η0) + (1− λ)F (y1)

= F (y1) + λ(F (η0)− F (y1))

≤ F (y1) + λ(y1 − η0)

≤ A(y1) + λ(y1 − η0)

= A(y1) + λ(A(η0)− A(y1))

= A(λη0 + (1− λ)y1)

= A(η)

We used (3.29) to justify the third relation, (3.28) for the forth, (3.30) for the fifth,

and eventually the linearity of A on the considered interval.

In case that yn−1 ≤ η ≤ yn (2 ≤ n ≤ SY ), we take into account the convexity of F,

(3.28), and the linearity of A on the particular interval and obtain that for suitable λ

(0 ≤ λ ≤ 1)

F (η) ≤ λF (yn−1) + (1− λ)F (yn)

≤ λA(yn−1) + (1− λ)A(yn)

= A(λyn−1 + (1− λ)yn)

= A(η)
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Finally, let ySY ≤ η. Since F and A are non-increasing and non-negative (3.28) yields

0 ≤ F (η) ≤ F (ySY ) ≤ A(ySY ) = 0

and thus F (η) = A(η) = 0.

�

As introduced in section 3.1.3, our approach for quantifying uncertainty provides that

the loads acting on elastic structures are random and follow a discrete distribution.

Of course, this holds for random variables G(O, ω) in (3.2) as well (as they directly

result from the loadings f(ω) and g(ω)) , and the above proposition is appropriable.

Reminding the viewpoint emphasized in the beginning of chapter 3, i.e., identifying

O as a parameter defining the random variable G(O, ω), comparing shapes to each

other means comparing the associated random variables G(O, ω) to each other.

Now, the set of all admissible shapes Uad can be separated into two subsets, the first

one Uacc containing ’acceptable’ shapes, which dominate a given benchmark with re-

spect to the chosen order relation, and the second one containing those, which do not

dominate this benchmark and are ’not acceptable’. Going further, we aim for a shape

in Uacc, which is optimal according to some criterion. As a natural choice, we seek for

a member of Uacc with minimal volume.

Then our ultimate goal reads as follows: For a given reference shape Oref , find a

different shape Oopt, whose associated random variable G(Oopt, ω) dominates the ran-

dom variable G(Oref , ω) (associated with the initial shape Oref ) to first or second

order, but whose volume is as small as possible.

Note, since the objective we are dealing with, here in this context, is the volume

of O, the volume penalization in (3.3) is redundant, and therefore α (the Lagrange

Multiplier for the volume) is set to zero. So is β (Lagrange Multiplier for the surface)

,for sake of simplicity. Then, G(O, ω) simply reduces to J(O, ω) and we obtain the

optimization task

min{V ol(O) : J(O, ω) �i J(Oref , ω) with O ∈ Uad} i = 1, 2 (3.31)

that is

min{V ol(O) : O ∈ Uacc} (3.32)

Using (3.8), stochastic dominance is verifiable by checking a finite number of inequal-

ities.

For First Order Dominance we rely on the following equivalence

J(Oopt, ω) �1 J(Oref , ω)

⇔ P[J(O, ω) ≤ η] ≥ P[J(Oref , ω) ≤ η] for all η ∈ B (3.33)
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where B is the finite set of realizations of J(Oref , ω), i.e., B = {bi = J(Oref , ωi), 1 ≤
i ≤ S}, S being the number of realizations. The right hand side of the second

inequality can be computed a priori for each η ∈ B and remains fixed during the

optimization process. We obtain constraints of the form

P[J(O, ω) ≤ bi] ≥ P[J(Oref , ω) ≤ bi]︸ ︷︷ ︸
:=Bi

for all 1 ≤ i ≤ S

As ω has finitely many realizations ωj, 1 ≤ j ≤ S, we obtain for Bi

Bi =
S∑
j=1

πjH(bi − J(Oref , ωj)) (3.34)

where H(x) denotes the Heaviside function being 0 for x < 0 and 1 for 0 < x.

So (3.31) becomes

min{V ol(O) : P[J(O, ω) ≤ bi] ≥ Bi, 1 ≤ i ≤ S, O ∈ Uad} (3.35)

As above, we observe

P[J(O, ω) ≤ bi] =
S∑
j=1

πjH(bi − J(O, ωj))

and replace H with the differentiable approximation

H(x) ≈ 1

1 + e−2ε
=: H̃(x) ε > 0

Our intention is to employ a penalty function to formulate an optimization task, which

itself is then solved by a gradient descent method. Therefore, we rewrite the above

constraints as a penalty term to be added to the objective V ol(O)

min
O∈Uad

V ol(O) + α0

 S∑
i=1

αi

(
Bi −

S∑
j=1

πjH̃ (bi − J(O, ω))

)2
 (3.36)

and choose Lagrange Multipliers αi > 0, 0 ≤ i ≤ S, for the penalty terms.

For Second Order Dominance we use

J(Oopt, ω) �icx J(Oref , ω)
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⇔ E[J(O, ω)− η]+ ≤ E[J(Oref , ω)− η]+ for all η ∈ B

where B is the set in (3.33). In the same manner as above, we can calculate the right

hand side of the inequalities beforehand,

Bi =
S∑
j=1

πj max {J(Oref , ωj)− bi , 0} (3.37)

So, (3.31) becomes

min{V ol(O) : E[J(O, ω)− bi]+ ≤ Bi , 1 ≤ i ≤ S, O ∈ Uad} (3.38)

We identify the left hand side as

E[J(O, ω)− η]+ =
S∑
j=1

πj max {J(O, ωj)− bi , 0}

and replace max{x, 0} with the differentiable approximation Max(x).

max{x, 0} =

√
x2 + x

2
≈
√
x2 + ε+ x

2
=: Max(x) ε > 0

with ε << 1. We end up with the penalty function to minimize

min
O∈Uad

V ol(O) + α0

 S∑
i=1

αi

(
S∑
j=1

πjMax (J(O, ω)− bi) − Bi

)2
 (3.39)

αi > 0, 0 ≤ i ≤ S, being Lagrange Multipliers to choose.
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3.2.1 Solution Algorithm

The algorithm follows the principle of (2.17) except that we have to set additional

parameters for the penalty function.

Algorithm 3.9.

Parameters to be set:

� Specify the function J (here just the compliance without volume penalization α

and surface penalization β).

� Define a maximal number of iterations 0 < Numiter ∈ N.

� Set parameters q and b for the Armijo step size control, and an initial step size

t0.

� Determine the frequency of topological changes ntop.

� As initial shape choose the working domain D.

� Finally set parameters for the penalty function to be optimized αi > 0, 0 ≤ i ≤
S.

For k = 0 until k = Numiter do :

1. Solve the elasticity system (2.5) (and if necessary its adjoint system) for φk to

obtain uk.

2. Compute Bi according to (3.34) for the first order model or according to (3.37)

for the second order model.

3. (a) For (k mod ntop) 6= 0: Compute the gradient direction gradGJ(φk) accord-

ing to (2.31), where derivatives dJ(φ, ψ) of the penalty function in (3.36)

or (3.39) are obtained by the chain rule. Generate φk+1 as described in

(2.32) and find an acceptable step size tk in (2.33).

(b) For (k mod ntop) = 0 : Compute the topological gradient of the penalty

function using (2.14) and the chain rule and check whether or not a change

of topology decreases the objective J , see (2.16).

4. Re-initialized the updated level set function φk+1 according to (2.29).

Set k := k + 1 and return to step 1 unless k=Numiter.
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3.2.2 Results for Optimization with

Stochastic Dominance Constraints

Before we start with concrete examples, we define the set Uad of admissible shapes. As

we have seen in section 2.6, for deterministic settings the optimization process works

fairly stable. The investigation of risk-models in section 3.1.4, however, revealed a

fundamental problem compared to the situation in traditional finite-dimensional lin-

ear stochastic programming. For models with finite discrete distributions equivalent

formulas exist, which can be written as large-scale linear programs. In our situation,

there are no such equivalents and we have to work with the original nonlinear objec-

tive functions directly. In particular, the evaluation whether the functional J exceeds

the threshold η, or not, can not be tackled as efficient as in finite linear stochastic

programming. Regularization according to (3.24) or (3.25) just leads to a nonlinear

optimization problem, with high fluctuations of the function value near to the thresh-

old. Additionally, without significant restrictions, the set of admissible shapes Uad

does not have a vector space structure.

With regard to our Stochasitc Dominance Models, we are confronted with a set of

difficult side constraints, originating from the underlying risk-models. To this end,

we will restrict the class of admissible shapes to those, which are described by a finite

number of geometric parameters, in order to reduce the complexity of the optimiza-

tion problem. So, the set Uad is a vector space.

In a first approach, we construct different types of shapes by inserting holes, which are

simply parametrized in the following way: Each hole has a center and a fixed number

of facets. The geometric parameters are the distances of the facets to the center.

Now, we discuss a practical application of Stochasitc Dominance Models. We will

recap the fundamental ideas from previous chapters and formulate our optimization

problem step by step. As a motivation, let us consider a mechanical structure, which

may, for instance, originate from an industrial application. This structure is subject

to a range of varying loads and meets some given requirements. We proceed from the

assumption that we are able to set up a framework of stochastic loads, according to our

model presented in section 3.1.3, that approximates the actual loads with sufficient

accuracy. Then, we can identify a set of acceptable shapes Uacc by employing stochastic

dominance constraints. These acceptable shapes are said to have a better or at least

the same qualitative behavior under uncertainty.

So let us assume we are in the following situation: We consider a given structure,

which we will refer to as the benchmark shape, and a load scenario as shown in

Fig. (3.15). We consider a configuration with four scenario forces, each force denoted

by a red arrow, shown in the lower picture. The load decreases from the left to the

right, while the probability for each scenario remains fixed. Now, when forces act on
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Figure 3.15: The configuration for the first example is depicted. On top: Benchmark shape
with volume 0.134496 . Below: The load scenario under consideration. The scenario forces
are numbered from the left to the right (1-4).

the benchmark shape Ob, its elastic response in terms of deformations is measured

by the shape functional J(Ob). Here, we consider the compliance as the objective

J(Ob), which, as said before, is the overall elastic energy contained in the shape

Ob, see (2.9), and is a value on the reals. As discussed previously in this thesis,

due to the randomness of the forces, the objective J(Ob) becomes a random variable

J(Ob, ω), too. According to the known probabilities of the realizations of the forces,

we can generate the distribution function of the objective J(Ob, ω). This is illustrated

in Fig. (3.16). There, the distribution function of the benchmark shape is colored

in black. Now, we can identify this distribution function with a certain qualitative

behavior under uncertainty (when forces are applied). Then, we seek for shapes with

the same or even better behavior under uncertainty. For this purpose, we employ

the presented principles of stochastic dominance of first and second order. On the

basis of these criteria we can decide whether a shape has the same or better behavior

under uncertainty. In terms of our preparations in section 3.2, we say, the shape

O has a better, or at least the same, qualitative behavior under uncertainty than

the benchmark shape Ob, if and only if the corresponding random variable J(O, ω)

dominates J(Ob, ω) to the chosen order (first or second order). In that sense, first

order dominance and second order dominance are two different ways to assess the
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Figure 3.16: The cumulative distribution functions of random variables generated by the
benchmark shape (black) and the shapes obtained by optimization with dominance constraints
of first (blue) and second order (red). Probability is plotted on the vertical axis, while eval-
uations of J(O, ω) in R are displayed on the horizontal axis.

behavior under uncertainty of shapes. Remark 3.5 reveals that first order dominance

implies second order dominance, as it is a stronger relation. Thus, according to our

requirements concerning the qualitative behavior under uncertainty, we can identify

two different sets of acceptable shapes, USD1
acc for first order dominance and USD2

acc for

second order dominance, where it holds

USD1
acc ⊂ USD2

acc .

We prefer shapes with small volume, thus, we seek for shapes in USD1
acc or USD2

acc with

minimal volume. This offers the choice between two approaches. Either we put

more emphasis on the behavior under uncertainty, or on the amount of material

(volume of the shape) that is used. Explicitly, optimizing shapes with respect to

Second Order Dominance Constraints leads to shapes with less volume which are

infeasible with respect to First Order Dominance Constraints.

For the optimization we employed penalty functions according to (3.36) and (3.39),
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Figure 3.17: Shapes obtained by optimization with first order constraints (top), the volume
has decreased to 0.123998, and optimization with second order constraints (bottom), the
volume has decreased to 0.11714.

where the Parameters (α0, ..., α4) are set to 60.0 . The different shapes obtained by

optimizing the volume under consideration of First Order Dominance Constraints

and Second Order Dominance Constraints respectively are displayed in Fig. (3.17).

The shape on the left dominates the benchmark shape Ob to first order and has a

reduced volume of around 92% of the benchmark shape. If we can relax the require-

ments concerning the behavior under uncertainty, for instance, the requirements for

first order are usually rather strong, then we would prefer the shape in the lower

picture. This dominates the benchmark shape Ob to second order and has a reduced

volume of around 87% of the benchmark shape. Of course, the two approaches do

not lead to completely different shapes and only slightly differ in the geometry. But

the performance in terms of the distribution function in Fig. (3.16) clearly shows the

difference of the two approaches.
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Figure 3.18: Visualization of the elastic energy for each scenario force for the benchmark

shape. Values are arranged according to the colorbar , where blue corresponds to zero

and red corresponds to the maximum. The maximum is set to 10 for the first scenario

(upper left) and the second one (upper right), 30 for the third (lower left) and 50 for the

forth scenario (lower right).

Figure 3.19: Visualization of the elastic energy for the four scenario forces (from top left to

bottom right) for the shape obtained by optimization with first order constraints. Values are

arranged with the same specification as in Fig. (3.18).
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Figure 3.20: Similar to Fig. (3.18) and Fig. (3.19), the visualization of the elastic energy

for each scenario force for the shape obtained by optimization with second order constraints

is displayed.
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Figure 3.21: The configuration of the second example. We consider the same class of shapes

as in the first example and the same benchmark shape (volume 0.134496) , but a different

configuration of the load scenarios.

In the next example, we see how the solutions for the different approaches behave

when we modify the distribution of forces applied, see the configuration in Fig. (3.21).

Here, we suppose the load of random forces to decrease from left to right, while the

benchmark shape remains fixed. This yields a change of the distribution function

(colored in black) associated with the benchmark shape as displayed in Fig. (3.22).

In this situation, difference among the optimal shapes for the two dominance models

become more apparent, see their distribution functions depicted in Fig. (3.23). The

one colored in red is associated with the optimization of the volume under consider-

ation of the Second Order Constraints model. It shows a clear violation of the First

Order Constraints as it drops below the benchmark distribution function. The corre-

sponding shapes for both approaches are depicted in Fig. (3.23). We observe a 25%

drop in volume for the model concerning First Order Constraints and a 32% drop in

volume for the model concerning Second Order Constraints.
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Figure 3.22: Distribution functions for the random variables associated with the benchmark
shape (black), the resulting shapes for optimization with first order constraints (blue) and
for optimization with second order constraints (red). Probability is plotted on the vertical
axis, while evaluations of J(O, ω) in R are displayed on the horizontal axis.

Figure 3.23: Shapes obtained by optimization with first order constraints (top), the volume

has decreased to 0.100702, and optimization with second order constraints (bottom), the

volume has decreased to 0.0916096.
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Figure 3.24: Visualization of the elastic energy for each scenario force for the benchmark

shape. Values are arranged according to the color bar , where blue corresponds to zero

and red corresponds to the maximum. The maximum is set to 15 for the first scenario

(upper left) and the second one (upper right), 20 for the third (lower left) and 25 for the

forth scenario (lower right).

Figure 3.25: Visualization of the elastic energy for the four scenario forces (from top left to

bottom right) for the shape obtained by optimization with first order constraints. Values are

arranged with the same specification as in Fig. (3.24).
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Figure 3.26: Similar to Fig. (3.24) and Fig. (3.25), the visualization of the elastic energy

for each scenario force for the shape obtained by optimization with second order constraints

is displayed.
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Figure 3.27: The configuration of the scenario loads for the third example. Here we consider
a class of shapes with a different topology to those in the first and second example. We see
the benchmark shape (top) with volume 0.22039 and the scenario loads under consideration
(below).

In the third example, we consider a modified fundamental structure with a different

topology. Fig. (3.27) shows the benchmark shape Ob on the left and the underlying

configuration of random forces on the right. In the same manner as before, we can

identify the distribution function of J(Ob, ω) which reflects the stochastic behavior

of the benchmark shape. See Fig. (3.28). Here, we find shapes with a reduction of

the volume by 5.1% for First Order Dominance Constraints and by 9.5% for Second

Order Dominance Constraints, depicted in Fig. (3.29).
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Figure 3.28: Distribution functions for the random variables associated with the benchmark
shape (black), the resulting shapes for optimization with first order constraints (blue) and
for optimization with second order constraints (red). Probability is plotted on the vertical
axis, while evaluations of J(O, ω) in R are displayed on the horizontal axis.
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Figure 3.29: Shapes obtained by optimization with first order constraints (top), the vol-
ume has decreased to 0.20913, and optimization with second order constraints (bottom), the
volume has decreased to 0.199525
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Figure 3.30: Visualization of the elastic energy for each scenario force for the benchmark
shape. Values are arranged according to the color bar , where blue corresponds to zero
and red corresponds to the maximum. The maximum is set to 250 for the first scenario
(upper left) and the second one (upper right), 350 for the third (lower left) and 500 for the
forth scenario (lower right).

Figure 3.31: Visualization of the elastic energy for the four scenario forces (from top left to
bottom right) for the shape obtained by optimization with first order constraints. Values are
arranged with the same specification as in Fig. (3.30).
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Figure 3.32: Similar to Fig. (3.30) and Fig. (3.31), the visualization of the elastic energy
for each scenario force for the shape obtained by optimization with second order constraints
is displayed.
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Shape optimization in general

Within the last decade, methods for solving shape optimization problems have under-

gone considerable improvements. Sensitivity analysis has been done for a wide range

of problems with different underlying state equation [13, 15, 16, 46, 84, 103, 162] or

variational inequalities [76,95] as well as different objectives, for instance, image pro-

cessing (or image registration) [91,94,96,106] and structural design [164,166]. Results

regarding shape and topology sensitivity provide an analytical framework for ade-

quate solution approaches. In some rare cases, even existence can be proven although

subject to strong restrictions [12, 34, 35, 40–44,71, 165]. Despite the fact that in most

situations, existence, in general, can not be proven for the analytical model, the results

obtained by solving the discretized model are applicable for real-world problems. A

great challenge remains the numerical implementation for advanced applications. For

common settings, see for instance section 2.6.1, we can rely on fairly robust methods

to solve shape optimization problems, using level set methods [6,14,36,92], the SIMP

method [27–29,87] , or alternative methods [26,69,105,111,168].

The situation becomes more tricky when we go beyond this basic settings. For exam-

ple, the investigation of micro structures requires further effort concerning modeling,

analysis, and implementation [5,18,116]. Incorporating uncertainty, the way we do, re-

sults in nonlinear optimization problems with side constraints that are hard to tackle.

There are excellent solvers available (e.g. [170]) for nonlinear problems, but due to the

high computational costs (for each evaluation of the objective, a partial differential

equation needs to be solved), the performance becomes almost inoperative.

Therefore, adapted solution approaches exploiting the special structure of the prob-

lems need to be developed.

Uncertainty

Recently, incorporating uncertainty in shape and topology optimization has attracted

more and more attention. Identification and classification of uncertainties have be-

come an issue, for instance, in aerodynamic shape optimization, see [98, 143]. There,

aleatory uncertainties, e.g. atmospheric turbulences or geometrical uncertainties, are

considered and incorporated in a robust optimization setting.

In structural mechanics, unknown material properties, geometrical uncertainties, and

stochastic loadings are an issue. Different approaches were employed for treatment of

each special type of uncertainty.

Perturbation techniques are used to deal with geometrical uncertainties, which are

modeled via stochastic fields in [108]. Stochastic collocation methods are used to

model material and geometrical uncertainties in [107]. Stochastic loadings, based

on a known probability distribution, are considered in the so-called Multiload case,
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see [7,11,80,109,113,176] for instance. Optimization approaches, without known dis-

tribution of the random forces, have been investigated in [1,20,25,48,49,137]. In [8],

a perturbation of the loads is considered and identifying a worst case perturbation

enables to optimize the compliance functional in a robust (or worst case) sense. For

a rather broad survey on modeling uncertainties, see the recently published mono-

graph [118].

Robust optimization assumes that range information on the uncertain data is avail-

able, in stochastic programming, in addition, distributional information is present.

Typical examples are the Multiload case (with distributional information) [7], and

the robust approach in [25]. In this thesis, stochastic optimization approaches have

been discussed. For a comprehensive survey on robust optimization the reader is re-

ferred to [4, 23,24].

Two-Stage stochastic shape optimization

The perspective in this thesis links shape optimization under uncertainty to the field

of stochastic programming. There, treatment of uncertainties has been a big issue

in the past decades, as documented in the monographs [31, 47, 55, 60, 102, 127, 139],

and a wide selection of models for handling risk is available for practical applications,

see [21, 64, 126, 135, 136, 140, 171]. We emphasized models, for which we already had

experiences from previous applications. It remains a future task to select further ad-

equate ’risk-models’ for shape optimization.

For example, besides incorporating uncertainty via random forces one could consider

geometrical uncertainties such as microstructures.

Our investigation of the expected-excess and excess-probability models, motivated the

step towards models with stochastic dominance constraints. First examples have been

successfully investigated, but they suggest, that further investigations on method for

solving the underlying nonlinear optimization problem are crucial for advanced appli-

cations, such as incorporation of microstructures. In this context, we aim at refined

models concerning the optimization of local structures, for instance, as indicated in

section 2.6.2 .
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[164] Sokolowski, J., and Żochowski, A. Topological Derivatives of Shape

Functionals for Elasticity Systems. Mech. Struct. & Mach. 29, 3 (2001), 331–

349.

[165] Sokolowski, J., and Żochowski, A. Optimality Conditions for Simulta-

neous Topology and Shape Optimization. SIAM Journal on Control and Opti-

mization 42, 4 (2003), 1198–1221.

[166] Sokolowski, J., and Zochowski, A. IUTAM Symposium on Topological

Design Optimization of Structures, Machines and Materials, vol. 137 of Solid

Mechanics and its Applications. springer, 2006, pp. 479–491.

[167] Sokolowski, J., and Zolésio, J. P. Introduction to Shape Optimization:

Shape Sensitivity Analysis. Springer Series in Computational Mathematics.

Springer, 1992.

[168] Stolpe, M., and Svanberg, K. Modelling topology optimization problems

as linear mixed 0-1 programs. Int. J. Numer. Meth. Engng 57 (2003), 723–739.

[169] Tartar, L. An introduction to the homogenization method in optimal design.

In Lecture Notes in Mathematics (2001), vol. 1740 of Optimal shape design,

Springer, pp. 47–156.
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