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Abstract

Service robots shall very soon autonomously provide services in all spheres of life. They
have to execute demanding and complex tasks in a dynamic environment, collaborate
with human users in a natural and intuitive way and adapt themselves to varying
conditions. It can be assumed that complex robots have to be able to learn, if they
shall be able to provide complex tasks in unstructured environments in an autonomous
fashion. The capability to ‘act autonomously’ is often mentioned in conjunction with
robots, however, the perception and understanding of the term autonomy varies among
the different research fields. Therefore, a closer look is taken at robot autonomy
and intelligence, in particular, with regard to current and future robots. From this
perspective, implications for safety are derived concerning safe autonomous behavior.

In order to push forward the robot safety in the light of safe behavior in complex
environments, a novel classification of robot hazards is provided. Based on this, the
so-called object interaction hazards are derived which arise when objects that are, for
instance, located in the near environment, interact with objects that are manipulated
by a robot. Taking into account the current state-of-the-art, it can be stated that this
denotes a novel problem area. This problem area is so far addressed neither in current
research work, nor in the relevant standards.

The new type of hazards can be assigned to a group of hazards that originate from
the interaction with a complex and unstructured environment. In order to sufficiently
consider the environment and operation context, the robot has to be aware of it. In the
field of cognitive (technical and biological) systems, this key capability can be called
‘situation awareness’ (cf. Söffker, 2008). Based on Endsley (1995)’s definition of situation
awareness, Wardziński (2008) proposes the ‘dynamic risk assessment’ approach, which
shall enable the robot perceive the risk of current and upcoming situations. In order to
realize such a risk-aware planning system for the first time, dynamic risk assessment
is integrated within a cognitive architecture in order to utilize cognitive functions,
such as anticipation, planning and learning. Here, the so-called action spaces (sets
of possible upcoming situations) are dynamically anticipated within the underlying
cognitive architecture, and a risk assessment component assesses them with regard to
comprised risks. Thus, the generated risk information can be utilized for a risk-aware
action planning. The proper operation of this integrating concept is demonstrated via
simulations and with a robot experiment.

In order to consider (object interaction) hazards by means of dynamic risk assessment,
(initial) knowledge about hazards is required. Thus, a novel procedural model is
developed for systematically generating a safety knowledge base. In this connection,
the concept is to formalize risk models (risk description rules) in a generalized manner
so that they remain valid for future, and so far unknown situations. The structure
of so-called ‘Safety Principles’ can be additionally considered as meta-structure for
integrating already available safety-related approaches with the context-aware system
(adaptive collision avoidance, adaptive compliance actuation, etc.).

However, it can be assumed that the safety knowledge potentially lacks completeness.
The application of AI-based approaches constitutes a noteworthy opportunity (Fox



and Das, 2000), for instance, learning of safety-related knowledge. For this reason,
light is shed on strategically influential learning methods in safety-critical contexts:
On the one hand, well-known ‘reinforcement learning’ algorithms are investigated
paying special attention to their performance to learn and relearn in the presence of
unknown and hazardous situations. On the other hand, a ‘learning from demonstration’
approach is investigated, constituting interesting potential for improving or simplifying
the generation process of the safety knowledge (either in the development phase or
even in the operation phase of the system). A gathered risk model in turn is integrated
within the dynamic risk assessment approach.

Finally, this work reveals a general perspective on potential hazards of future autonomous
robots. It describes the generation, integration, utilization, and maintenance of a
system-internal safety knowledge base for dynamic risk assessment. It denotes an overall
concept toward solving the advanced safety problem of intelligent autonomous robots
(systems). Consequently, feasibility of safe behavior of autonomous and intelligent
systems is confirmed in principle.



Kurzfassung

Autonome mobile Serviceroboter sollen zukünftig selbständig Dienstleistungen in allen
Lebensbereichen erbringen, auch in direkter Nähe zum Menschen. Hierbei kann angenom-
men werden, dass komplexe Roboter lernfähig sein müssen, wenn sie komplexe Aufgaben
in unstrukturierten Umgebungen autonom erbringen können sollen. Die Fähigkeit au-
tonom zu Handeln ist essentiell für viele Roboteranwendungen, allerdings wird dieser Be-
griff in der Robotik sehr unterschiedlich aufgefasst. Daher wird der Begriff Autonomie
zunächst eingehender beleuchtet, in Hinsicht auf gegenwärtige und vor allem auf zukün-
ftige Roboter. Hierauf basierend wird abgeleitet, welche Konsequenzen dies hinsichtlich
der Sicherheit nach sich ziehen kann.

Um das Verständnis für Sicherheit in der Robotik zu erweitern, wird zunächst eine neue
Klassifizierung der möglichen Gefahren vorgenommen. Hiervon wird die Klasse der Ob-
jektinteraktionsgefahren abgeleitet. Vor allem wenn Objekte vom Roboter aufgenom-
men, transportiert und abgestellt werden, können Gefahren dadurch provoziert werden,
dass diese mit Objekten der Umgebung auf gefährliche Art und Weise interagieren. In
Anbetracht des aktuellen Stands der Sicherheitstechnik in der Robotik wird klar, dass
sich hier ein neues Problemfeld auftut, welches bisher weder in Forschungsarbeiten,
noch in der entsprechenden Normung Berücksichtigung findet.

Die benannten Gefahren entstehen überwiegend durch die Interaktion des Roboters mit
einer unstrukturierten Umgebung. Um seine Umgebung und den gegenwärtigen Kon-
text adäquat berücksichtigen zu können, muss der Roboter Kenntnis desselben haben.
Eine solche Schlüsselfähigkeit kann im Bereich der (biologisch und technisch) kognitiven
Systeme als ‘Situation Awareness’ (Situationsbewusstsein) bezeichnet werden (vgl. Söf-
fker, 2008). Basierend auf der Definition von Situationsbewusstsein von Endsley (1995)
schlägt Wardziński (2008) den Ansatz der dynamischen Risikobewertung vor. Hierbei
soll der Roboter selbst in die Lage versetzt werden, das Risiko einer Situation ermitteln
zu können. Um eine solche risikobewusste Handlungsplanung erstmals zu realisieren,
wird der dynamische Risikobewertungsansatz in eine kognitive Architektur integriert,
um deren kognitiven Funktionen, wie Antizipation, Planen und Lernen zu nutzen. Hi-
erbei werden mögliche Handlungsräume mittels der zugrundeliegenden kognitiven Ar-
chitektur dynamisch antizipiert und mittels dynamischer Risikoanalyse auf mögliche
Gefahren untersucht. Diese zusätzliche Risikoinformation findet dann in der nachfol-
genden Handlungsplanung Berücksichtigung, um risikoadäquate Handlungsabläufe zu
realisieren. Die Funktionsfähigkeit des Konzepts wird mittels Simulationen und eines
Roboterexperimentes gezeigt.

Um (Objektinteraktions-) Gefahren mittels dynamischer Risikountersuchung bestim-
men zu können, bedarf es eines (initialen) Wissens über mögliche Gefahren. Aus diesem
Grund wird ein Vorgehensmodell zur systematischen Erzeugung einer solchen Sicher-
heitswissensbasis entwickelt. Das Konzept ist hierbei, dass sogenannte Risikomodelle
in generalisierter Weise formalisieren werden, sodass diese ihre Gültigkeit in zukünfti-
gen und unbekannten Situationen behalten. Die Struktur der sogenannten Sicherheit-
sprinzipien kann ebenfalls als Modell dienen, um vorhandene sicherheitsbezogene An-



sätze (z.B. adaptive Kollisionsvermeidung und adaptive, nachgiebige Roboterantriebe)
mit dem dynamischen Umgebungskontext in Verbindung zu bringen.

Das Gefahrenwissen ist jedoch potentiell unvollständig. Daher stellt die Erweiterung und
Verfeinerung desselben eine Notwendigkeit dar, da neue Gefahren auftauchen können,
bzw. bisheriges Gefahrenwissen detailliert werden muss. Hierbei können die Ansätze aus
dem Bereich der künstlichen Intelligenz als nützliche Möglichkeit wahrgenommen werden
(Fox and Das, 2000). Aus diesem Grund werden strategisch wichtige Lernmethoden
hinsichtlich der Anwendung in einem sicherheitskritischen Kontext untersucht. Einerseits
werden einige etablierte Reinforcement Learning Algorithmen untersucht, inwiefern
diese Handlungsstrategien in Hinsicht auf unbekannte und gefährliche Situationen
erlernen, bzw. auch ‘umlernen’. Andererseits wird ein Ansatz, basierend auf dem
Lernen durch Demonstration-Paradigmas so integriert, dass der Entwicklungs- oder
Erweiterungsprozess des Sicherheitswissens (zur Entwicklungszeit oder zur Betriebszeit
des Roboters) erleichtert und verbessert werden kann. Ein Risikomodell, dass in diesem
Zusammenhang entsteht, wird anschließend (nach erneuter Untersuchung) wieder für
die dynamische Risikoermittlung eingesetzt.

Die vorliegende Arbeit trägt somit schlussendlich zur Untersuchung der potentiellen
Gefahren heutiger und zukünftiger Roboter bei. Sie beschreibt die Erzeugung, die
Integration, die Verwendung und die Aufrechterhaltung einer systeminternen Sicher-
heitswissensbasis zum Zwecke der dynamischen Risikountersuchung. Sie stellt hierbei ein
Gesamtkonzept dar, dass zur Lösung des erweiterten Sicherheitsproblems von autonomen
und intelligenten Robotern (Systemen) beiträgt. Die prinzipielle Realisierbarkeit des
sicheren Betriebs von autonomen und intelligenten Systemen ist somit bestätigt.
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1 Introduction and Background

1.1 Introduction

The amount of sold traditional industrial robots seems to go into saturation, as it is
reported in the study World Robotics 2010 of the IFR Statistical Department. However,
a new type of robot seems to become successful as its sales potential reveals: The
service robot. In this connection, the perception and the definition of the term robot
have changed, and the robotic domain is currently re-classified (Harper and Virk, 2010).
An evolution from robotics over advanced robotics, service robotics, and human-friendly
robotics toward personal robotics takes place. This faces researches with drastically
increased development problems (Dario et al., 2001).

1.1.1 Motivation

A service robot has to be distinguished from an industrial robot by the kind and
intention of tasks to perform. A service robot is a robot which performs services useful
to humans, society, or organizations, excluding industrial automation (prEN ISO 8373,
2010). A personal care robot is “[...] a service robot with the purpose of either aiding
actions or performing actions that contribute toward improvement of the quality of life
of individuals” (Harper and Virk, 2010). Hence, this kind of robots has to operate in an
unstructured open environment, including also non-qualified, inexperienced users or
other humans. Henceforth, the term robot or agent relates to a robot or robotic agent,
providing services for personal human-centered applications.

A different class of robots
In accordance to the IFR study World Robotics 2010 - Service Robots1, over 70.000

service robots were sold in 2009. These are of course simple robots. The Navibot vacuum
cleaning robot (Figure 1.1) denotes a candidate of robots, recently sold successfully.
It is autonomously cleaning the floor on pre-programmed times. Therefore, a camera-
based self localization and mapping algorithm is applied in order to build a map of its
environment and to navigate systematically through it.

Occasionally, it empties the dirt deposit and recharges its battery at the docking station
in order to continue its work at the position of interruption. Thus, it provides a real
assistance for every day live.2

1Executive Summary of World Robotics 2010, http://www.ifr.org/uploads/media/2010_

Executive_Summary_rev_01.pdf
2the author’s experience

http://www.ifr.org/uploads/media/2010_Executive_Summary_rev_01.pdf
http://www.ifr.org/uploads/media/2010_Executive_Summary_rev_01.pdf
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Figure 1.1: Vacuum
cleaning robot

1579048 (PNG-Grafik, 458 × 338 Pixel) http://spectrum.ieee.org/image/1579048

1 von 1 25.02.2013 21:17

Figure 1.2: Robot
PR2 folding towels.3

Figure 1.3: Care-O-bot3 serving a
drink.4

In general, it can be stated that robots are introduced into the human environment.
Furthermore, as available robot techniques and approaches are getting more sophisti-
cated, the vision of advanced servant robots seems to be attainable. The Next Gen-
eration Robots will probably be “capable of performing such tasks as house cleaning,
security, nursing, life-support, and entertainment - all functions to be performed in co-
existence with humans in businesses and homes” (Weng et al., 2009).

In Figure 1.2, the PR2 robot is shown folding towels. Currently, the folding takes a
long time - about 3 to 7 minutes (cf. Van Den Berg et al., 2011). Nevertheless, this
represents a significant complex task that can be already solved by robots, although,
this is based on pre-specified models of the objects that should be folded.

The Care-O-bot3 serves a drink to an elderly person in Figure 1.3. The Care-O-bot3
is based on an omnidirectional platform, enabling it to autonomously plan and follow
an optimal, collision free path to a given target by automatically avoiding collisions
with dynamic obstacles such as persons. It is equipped with a flexible seven degrees of
freedom manipulator as well as with a three-finger hand, making it capable of gripping
various different typical household objects.

The research robot Kate is based on a differential drive platform and is equipped with a
six degrees of freedom manipulator, see Figure 1.4. For being able to establish complex
tasks, several academic research approaches implemented and encapsulated as skills
within the ‘SmartSoft’ software framework and combined in a meaningful way. Thus,
the robot is enabled to navigate through a household environment, recognize several
objects and manipulate them for different task purposes. A learning from demonstration
approach was integrated into the framework as well, thus, tasks or task sequences, the
robot does not know so far, can be taught by a human demonstrator. In consequence,
the robot can take a person’s order, prepare, and serve respective drinks. Afterwards,

3Image: From video http://www.eecs.berkeley.edu/~pabbeel/personal_robotics.html [online;
accessed 14-October-2013]

4Image: Press article Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA, 12-July-
2011, http://idw-online.de/de/news432787 [online; accessed 27-February-2013]

http://www.eecs.berkeley.edu/~pabbeel/personal_robotics.html
http://idw-online.de/de/news432787
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Figure 1.4: Research robot ‘Kate’6

it cleans up the table and disposes the drinking vessels. The way how a drink is poured
into a glass is shown by a user.5

From this perspective, it becomes apparent that complex robots in human’s everyday
live are not mere science fiction. However, this close co-existence of machines with
humans provides not only technological challenges, also legal, ethical, and social aspects
will become important; Matthias (2008), for instance, addresses arising legal difficulties.

Intelligent machines for unstructured environments
The critical point is that these robots have to operate in an unstructured and complex
human environment. This implies that they act as a part of this environment, and in
many cases, their tasks also require modifying environment entities. As outlined later
on, this implies as well that most of the future (and current research) robots have to be
considered to be safety-critical. However, it is quite evident that the robot’s designated
use excludes the traditional segregation from humans (by Bicchi et al. (2008) referred
to as segregation paradigm).

As explained later on, it is typical for open environments that the occurrence of new
situations can be expected. Thus, researchers in artificial intelligence spend huge efforts
enabling systems to adapt to such environments. The systems are intended to show
autonomous emergent behavior in such situations at runtime (cf. Russell and Norvig,
2010; Murphy, 2000; Arkin, 1998). In contrast, the principle of safety ideally relies
on recognizing and mitigating all undesired hazardous situations before the system is
put into operation (Ericson, 2011). From a principal point of view this will lead to
contradictions and implies that current safety methods are conceptionally not sufficient
for autonomous systems. The development of more and more complex autonomous

5Project homepage: http://www.zafh-servicerobotik.de/, demonstration video: http://www.

youtube.com/watch?v=nUM3BUCUnpY[online;accessed27-February-2013]
6Images: From video http://www.youtube.com/watch?v=nUM3BUCUnpY [online; accessed 27-February-

2013]

http://www.zafh-servicerobotik.de/
http://www.youtube.com/watch?v=nUM3BUCUnpY [online; accessed 27-February-2013]
http://www.youtube.com/watch?v=nUM3BUCUnpY [online; accessed 27-February-2013]
http://www.youtube.com/watch?v=nUM3BUCUnpY
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robots is in principle not fully determined anymore by its design process. This requires
carefulness, in particular, with regard to safety requirements. Safety mechanisms of
such systems have to keep pace with the achievements of ‘robot-enabling’ - in virtue
of the tenor of Jonas: “Act so that the effects of your action are compatible with the
permanence of genuine human life” (Jonas, 1985).

1.1.2 Organization and contribution of this work

Contribution
This contribution compiles the current state-of-the-art in understanding robotic systems
with an emphasis of cognitive-oriented approaches. Furthermore, essential contributions
that account for safety issues in this domain are summarized. A general hazard analysis
for robots is provided. Due to comparison of already addressed with practical possible
hazards, it turns out that there are hazard aspects which are not sufficiently considered so
far. For instance, accidents can occur if the robot modifies objects that can hazardously
interact with the environment. Such interaction hazards may exist in many operating
places, however in particular, they are typical for robots acting in the unstructured
human living space.

Dynamic risk assessment (Wardziński, 2008) is considered as the fundamental approach
to cope with mentioned problems. Dynamic risk assessment basically is a system
monitoring approach by which parts of the hazard identification and assessment are
automated in order to provide situational risk information to the monitored system
during its operating time. Since cognitive systems are characterized to be equipped with
anticipatory and representational capabilities (Strube et al., 2003), the combination of
these features with the dynamic risk assessment approach are perceived as a promising
step toward the goal to enable the system to be aware of present and forthcoming risks,
not pursued so far in other research work for autonomous manipulating robots.

The dynamic risk assessment approach is based on knowledge about hazards. There-
fore, besides providing an analysis of possible robot hazards, a procedural model is
explicated that aims on systematically formalize hazards, in particular with regard to
object interaction hazards. The integration of the safety knowledge in the dynamic risk
assessment approach is demonstrated via simulations and robotic experiments. Fur-
thermore, a Markovian approach for realizing a safety clearance within the anticipated
action space is contributed.

Learning can be fundamental for achieving autonomy of robotic systems due to lack of
sufficient knowledge about its environment (cf. Russell and Norvig, 2010; Fox and Das,
2000; Ridley, 2003); hence, it is one of the essential reasons for the mentioned safety
problems. On the other hand, learning capabilities can denote as well an opportunity
for safety considerations to cope with so far unknown situations. For this reason, it
is taken a closer look at the reinforcement learning and learning from demonstration
paradigm in a safety-critical context. Investigations with regard to state-of-the-art
reinforcement learning algorithms show that some of them reliably learn (converge) even
under worse case parameter settings. In this connection, learning capabilities ‘on board’
can denote a better choice for autonomous systems than depend on (as the case may
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be) prespecified, mis-designed, ‘static’ strategies. As a second perspective on learning
approaches for safety-critical applications, learning from demonstration is utilized for
learning safety knowledge. It is found that learning approaches can also support the
safety-related development process.

Organization
Chapter 2 recapitulates fundamental aspects of robotic, cognitive and safety sciences,
since this work is located in the intersection of robotics with cognitive sciences and safety.

Chapter 3 outlines the current state-of-the-art of safety approaches in conjunction
with robots, and mobile robots. Within that section a variety of approaches is reported
considering the collision safety of robots. Hence, it starts with outlining safety measures
that are realized via hardware. For taking into account the robot behavior, approaches
realized within control theory and planning are outlined. Finally, the contributions
in conjunction with abstract high-level safety goals are reported. Here, the concepts
of situation awareness and dynamic risk assessment are of special interest for this
contribution.

Autonomy is an often and widely used term, also in robotics. With the intention to open
up a more comprehensive understanding of the term autonomy, the different perspectives
and aspects of the topic autonomy are consolidated in Chapter 4. In this connection,
autonomy aspects that might be required, and aspects that may become important for
future robotic systems and resulting implications for safety are discussed. Specifically,
intelligent systems appear to be problematic in conjunction with heteronomous safety
measures. However, a ‘psychodynamic approach’ seems to be well combinable with the
dynamic risk assessment concept and, hence, provides an important perspective.

In Chapter 5, it is briefly explained the cognitive architecture on which the concept
is based on. Here, a conceptual prototype of a cognitive-oriented robot is outlined for
which the following concepts and implementations are designed for. Both is realized on
basis of the so-called ‘SOM approach’ which is a meta-modeling technique; hence, it
provides a consistent formal description basis.

Since robots are intended to manipulate their environment, far reaching implications
with regard to safety may result that are beyond the scope of so far considered collision
risks. Therefore, a fundamental investigation of possible robot hazards can be found in
Chapter 6. Here, the Hazard Theory is applied in order to derive a taxonomic set of
hazard classes for robotic systems.

In Chapter 7, the observations made so far are summarized. Furthermore, conclusions
are drawn in order to define possible safety problems that originate from the utilization
of intelligent systems and elements (cf. Fox and Das, 2000; Wardziński, 2008), (Ertle
et al., 2010c,a). Furthermore, hazards stemming from interacting objects are assumed to
be one of the upcoming problems. To take a step forward, in Chapter 8 a procedural
model is explained that focuses on the development of an initial safety knowledge base
considering the object interaction. The systematically gathered safety knowledge shall
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denote an initial safety measure for autonomous robot systems, which represents a kind
of a so-called ALARP7 approach.

In Chapter 9, it is shown how the safety knowledge is applied to a robotic system,
and how it is intended to come into effect as safety measure for realizing risk-sensitive
planning and perception. This is demonstrated with the help of two simulations and
one robotic experiment.

The safety measures of intelligent robots are assumed to be potentially incomplete.
Besides being the origin of, or the catalyst for the mentioned safety problems, methods
of artificial intelligence can also be seen as chance. Hence, Chapter 10 presents
a perspective on this topic. Here, learning methods with regard to safety-critical
applications are investigated.

Finally, in Chapter 11, the main contributions are recapitulated within the summary
section, while the possibilities are discussed within the outlook section, how the proposed
approach can be extended for solving remaining and further problems in future research
work.

1.2 Background

1.2.1 Robot science and robotic systems

Robotics is a technology branch and field of applied sciences. Robot science is an
interdisciplinary field to which important contributions origin from computer science,
engineering, psychology, and biology. Since the 1980s robotics is defined as the science
which studies the intelligent connection between perception and action. From that
time on, interest were shifted toward robot mobility and manipulability in unstructured
environments. This led to the desire to develop robots for improving the quality of
life and, therefore, pushed interest toward a realization of service robots. The age of
human-centered and life-like robotics begun, in which robots are expected to safely and
dependably co-habitat with humans in homes, workplaces, and communities (Siciliano
and Khatib, 2008).

A recently new aspect of such robots is the interaction between robot and human. The
term ‘human-robot interaction’ (HRI) appears, being subdivided into the areas of cogni-
tive HRI (cHRI) and physical HRI (pHRI). The field of cHRI concerns communication
and pHRI the real physical contact between human and robots (Bicchi et al., 2008). In
this contribution, the interaction of the robot is more generally considered. Basically,
robots interact with their environment. Thus, HRI is considered as a special kind of the
robot-environment interaction, because humans are obviously entities of a robot’s envi-
ronment, besides other entities such as animals and objects. Hence, there are different
combinations of interactions, which are systematically examined later on.

7As-low-as-reasonably-practicable: A “given risk can be shown to have been reduced to as low a level

as is reasonably practicable, taking into consideration the costs and benefits of reducing it further”

(Ericson, 2011).
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Even orderly environments such as the living environment of humans or their working
areas appear chaotic for robots, since rules how things are ordered are often abstract
and of individual, personal nature. Many robotic applications, thus, were specified for
simplified and structured environments. This means that the environment is arranged
in such way that the robot is able to reliably fulfill its task. Current technical demands
for service and personal robots are vice versa: A robot has to adapt itself on the typical
human environment as it is. This is an unstructured and dynamic environment, which
is, in most cases, not fully observable by robot’s sensor systems. Hence, truly flexible
robots have “to be able to learn to adapt to [such] partially-known dynamic environments”
(Mahadevan, 1996).

Intelligent robots
An intention to develop truly autonomous, intelligent robots is referred to the science of
making machines act intelligently, called ‘artificial intelligence’ (AI), a branch of com-
puter science. Realization of robots, capable to autonomously operate in unstructured
environments, requires for intelligence. An “intelligent robot is a mechanical creature
which can function autonomously” (Murphy, 2000). With the term ‘mechanical crea-
ture’ it is emphasized that mechanical building blocks are used for realizing robots.
Autonomous functioning indicates that robots can operate, self-contained, under rea-
sonable conditions without requiring for help from a human operator. Intelligent means
that a robot “does not do things in a mindless, repetitive way” (Russell and Norvig,
2010) as it is more typical for factory automation and teleoperation.

There are various definitions of what ‘intelligence’ is. Russell and Norvig outline
that an intelligent agent “[...] should learn what it can to compensate for partial or
incorrect prior knowledge” (Russell and Norvig, 2010). Another definition that delivers
important aspects is: “Intelligence is the ability to work and adapt to the environment
with insufficient knowledge and resources” (Wang, 2007). This definition considers a
system that operates under the Assumption of Insufficient Knowledge and Resources
(AIKR). The two components ‘adaption’ and ‘insufficient knowledge and resources’
are related to each other: An adaptive system has some insufficiency in knowledge
and resources; otherwise, there would be no need for adaptive capabilities, and no
need to change. On the other hand, systems without adaptive capabilities, insufficient
knowledge and resources would make no attempts to improve its capabilities, hence, it
would act as its knowledge and resources were sufficient (Wang, 2006). According to
Goertzel and Pennachin (2007); Wang (1995), a system that is acting under the AIKR
has to concurrently be

• a finite system, whose computing power, as well as its working and storage space,
is limited and constant,

• a real-time system, whose tasks to process, can arrive at any time, and all have
deadlines attached with them (including derivation of new knowledge and decision
making),

• an ampliative system that not only can retrieve available knowledge and derive
sound conclusions from it (deduction), but also can form hypotheses in case of
uncertainty (induction),
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• an open system, whose old knowledge is not restricted to be extended or replaced
by new knowledge, and

• a self-organized system, which can accommodate itself to new knowledge, and
adjust its memory structure and mechanism to improve its time and space efficiency,
under the assumption that there will be a similarity of past and future situations.

This definition of intelligence considers limited computing power and resources; hence,
it is also called efficient intelligence, which is “the ability to achieve intelligence using
severely limited resources” (Goertzel and Pennachin, 2007).

From the given point of view, it can be concluded that one of the core aspects of
intelligent robots is to be able to deal with new and, hence, a priori not known
situations. In consequence, intelligent robots appear to be knowledge-based systems,
whose adequate operation depends on adequate knowledge. Desired functionality, thus,
relies on sufficient knowledge as well. Knowledge in turn can not be provided a priori
to the system, hence, an intelligent system has to additionally meet the requirement to
generate sufficient knowledge in order to be able to perform its task.

Robot architectures
A robotic architecture can be regarded as the abstract design of a class of robots,
consisting of a set of structural components with specific functionality and interfaces,
it shows the interconnection topology between components (Hayes-Roth, 1995), and
can be used to illustrate the essentials of a paradigm (Murphy, 2000). There are three
main robotic paradigms, which are the deliberative/hierarchical, the reactive, and the
hybrid deliberative/reactive paradigm (Murphy, 2000).

Deliberative/Hierarchical Paradigm First robotic architectures, such as Shakey
(Nilsson, 1984) were realized in a deliberative/hierarchical manner, which are also
assigned to the Sense-Plan-Act paradigm, see Figure 1.5 a). In general, the single
primitives to process are ‘horizontally’ decomposed and, hence, processed in a sequential
and orderly manner. Sensor observations are usually fused into one global data structure
called ‘world model’. A world model serves as basis for the planning process. If such a
deliberative planner is confronted to model and preplan all eventualities of a dynamic
environment, it will suffer from what Arkin calls the Qualification Problem: A never
ending ‘what-if’ stream, which would hinder the planner to terminate. Hence, for
certain tasks that require rapid response times, a deliberative/hierarchical architecture
becomes unsatisfactory (Murphy, 2000).

Reactive Paradigm The drawbacks of systems according to the deliberative/hierarchical
paradigm changed the focus of robotisits toward fast adequate reaction times of robots.
The concept of reactive or behavior-based robots is generally introduced by Brooks
(1986). Brooks coined the perspective on reactive robots by formulating the following
key aspects. At first, robots are situated and surrounded by the real world, and they
operate on reality itself, on their sensors, rather than on abstract representations. Sec-
ondly, robots are embodied, which means that robots have a physical presence (a body).
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Figure 1.5: a) Sense-plan-act model (deliberative paradigm / horizontal decompo-
sition), b) subsumption architecture (reactive paradigm / vertical decomposition),
and c) plan, then sense-act model (hybrid paradigm / vertical and horizontal de-
composition) (Arkin, 1998; Brooks, 1986; Murphy, 2000).

This embodiment can not be faithfully simulated with regard to possible consequences
of a dynamic interaction with the world. Thirdly, the intelligence or utility of robots
emerges in the first place from the interaction of robots with their real environment,
including complexity, dynamics, and uncertainty.

These behavior-based systems consist of contextually meaningful units (behaviors) as
basic components. Behaviors can be incrementally added to the system in order to
increase its utility (Arkin, 1998). In principle, behavior-based systems do not rely
on a global world model. Behaviors are lowly coupled because they are independent
from each other, and operate concurrently, see Figure 1.5 b). An implementation in
hardware, or with algorithms of low computational complexity results, hence, in a tight
coupling of sensors and actuators, and limits behaviors to what biologists would call
pure stimulus-response reflexes (Murphy, 2000). Two representative reactive approaches
are the ‘subsumption architecture’ of Brooks (1986), and the ‘artificial potential field’
approaches, introduced into robotics domain by Khatib (1985).

Hybrid Deliberative / Reactive Paradigm On the one hand, there is a consensus
that behavioral control is a correct approach for low level control. On the other hand,
it is acknowledged as a drawback of the reactive paradigm that the correct assemblage
of behaviors for realizing complex tasks, strongly depends on the designer. The concept
to enable the robot ‘itself’ to select behaviors mitigates this design problem, because
implemented behaviors can be dynamically combined to complex different tasks in an
adaptive manner. However, planning capabilities are required if future aspects shall
be taken into account. Architectures which incorporate both, reactive and planning
aspects, are assigned to the hybrid deliberative/reactive paradigm (Murphy, 2000).
Basically, planning is computational expensive and requires for global knowledge, hence,
it is decoupled from the reactive ‘act-sense’ partition, see Figure 1.5 c). Planning
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within the hybrid architecture is comprised in a superordinate deliberation layer as an
explicit control level.

The meaning of ‘behavior’ in the hybrid paradigm is slightly different in comparison to
its pendant in the reactive paradigm, thus, its connotation in the hybrid paradigm is
‘skill’. In general, it is more consistent with the ethological use (behaviors in biology
and cognitive science) and, hence, includes reflexive, innate, and learned behaviors.
Furthermore, in hybrid architectures are tendentially used assemblages of behaviors
sequenced over time, rather than primitive behaviors (Murphy, 2000). A skill can be
defined as “the component in a robot control system that is responsible for the coordinated
execution and parameter configuration of the set of available instantaneous robot motion
controllers, such that, together, multiple motion controllers let the robot system realize a
certain task between a set of modeled objects in the environment” (Smits, 2010).

For many hybrid architectures, skills have associated events which can be utilized by the
deliberative level as explicit control method for bottom-up communication. Vice versa,
the global world model, especially for so-called model-oriented hybrid architectures, can
support the sensory perception and, thus, serve as a virtual sensor for skills. This has
remarkable effect of the performance of robots in terms of reducing sensor errors and
uncertainty by sensor fusion (Murphy, 2000).

“The hybrid paradigm has its roots in ethology and provides a framework for exploring
cognitive science” (Murphy, 2000).

1.2.2 Cognitive aspects

Cognitive Science
Cognitive science is the interdisciplinary study of the mind, to which many researches
are contributing, mainly from domains of psychology, philosophy, neuroscience, biology,
linguistic, and computer science (artificial intelligence). Cognitive science originated
from problems to explain human capabilities from a behaviorism perspective, which
rejected the presence of mental representations. The cognitive paradigm states that
cognition is realized via computation, and computation operates on representations.
This is based on the assumption that computers and intelligent organisms process
and store information in a similar way. Furthermore, the Physical Symbol System
Hypothesis (PSSH) (Newell and Simon, 1976), the basis for classical AI and AI-oriented
cognitive sciences, states that a physical symbol system is a necessary and sufficient
requirement for intelligence.

Considering intelligent organisms and computers as physical symbol systems, the PSSH
implies that symbol processing can be considered to be independent from its physical
instantiation (substrate) as long as the instantiation can perform the functions required.
Consequently, intelligence can be investigated at the level of algorithms and computation
processes.

Both, classical AI and cognitive science, consider natural and artificial agents, respec-
tively, as information processing systems. The language of information processing forms
a further common denominator for both disciplines (Pfeifer and Scheier, 2001).
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Research in cognitive science can be distinguished in two different perspectives, called
micro- and macro-cognition. Macro-cognition indicates description of cognitive functions
of a cognitive system (e.g. human) under complex real world conditions. Micro-
cognition is related to investigation and artificial realization of specific functions that are
considered to be the invariant mechanisms forming cognition and determining behavior
(Cacciabue and Hollnagel, 1995). Investigation and simulation of cognitive functions and
processes, for instance, in artificial agents such as robots, is related to macro-cognition.

A model of the human decision making process
The step-ladder model of Rasmussen (1986) is a well known example of a qualitative
information processing model, denoting that there is a sequence of information processing
steps when humans perform a problem solving or decision-making task. An important
aspect is that ‘short-cuts’ exist that allow to reduce the amount of cognitive efforts that
need to be invested for accomplishing a task (cf. Hollnagel, 1998). Additionally, the
step-ladder model is often used to explain human erroneous actions.

In general, the step-ladder model contains different ‘states of knowledge’, which are
provided by ‘information processing activities’, as illustrated in Figure 1.6. As well, it
comprises the three different levels of information processing, the skill-based, rule-base,
and knowledge-based level. Skill-based behavior represents the sensory-motor level, in
which skills are composed by a large repertoire of automated subroutines. Rule-based
behavior can be regarded as procedural knowledge, derived from experience, problem-
solving or planning. Knowledge-based behavior level is the highest conceptual level. In
case when no procedural knowledge (rules) exists, a useful plan can be generated by
utilizing a goal description, the mental model of the system itself and its environment.

Cognition and cognitive technical systems
Cognitive systems can be cognitive biological systems or cognitive technical systems.
Cognitive systems are characterized by (Strube et al., 2003) to have ability to

• interact in and with their environment (and other cognitive systems as well),

• adapt their acting according to their environment based on internally represented
system relevant aspects, and

• feature learning and anticipation capabilities based on information processing.

Furthermore, cognitive systems can be realized by a combination of non-cognitive and
cognitive levels. They strongly interact with each other. The underlying non-cognitive
layer is formed by basic controls (Strube, 1998).

Cognitive robots
Robots can be considered as technical systems, fulfilling necessary requirements, to be
cognitive systems as well. Reiter summarizes the field of cognitive robots: “The [...] field
of cognitive robotics has [...] the provision of a uniform theoretical and implementation
framework for autonomous robotic or software agents that reason, act and perceive in
changing, incompletely known, unpredictable environments. It differs from ‘traditional’
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robotics research in emphasizing ‘higher level’ cognition as a determiner for agent
behaviours” (Reiter, 2001).

Cognitive robotics can be regarded 1) as realization of robots with cognitive abilities, 2)
as realization of robots based on knowledge and methods of cognitive science, and 3) as
robotics, used to inform the field of cognitive science.8

Need for cognitive technical systems
Amongst various aspects, the objectives of the AI community are to enable service
robots, robots or other systems to learn skills or tasks by environmental or human
feedback or by demonstration. Therefore, different systemic functions like perception,
vision or learning are needed in order to realize higher functionality by a well-coordinated
interplay of these components. They and their interplay have to deal with a huge variety
of information with respect to the environment (typical human/domestic environment
assumed) and depending on used sensors. As long as processing power of controlling
computers is not able to process the full variety of information (if this is ever possible),
only a selection of information can be processed. These are the so-called ‘relevant aspects’
of the full range of information. As cognitive systems are basically characterized by the
capability to represent system-relevant aspects of the environment internally (Gamrad
and Söffker, 2009a) (in order to process them), it is obvious that robotic systems which
are intended to operate in human like (complex) environments are ‘somehow’ cognitive-
oriented systems (Ertle et al., 2010c).

1.2.3 System safety

Safety science is a multidisciplinary field which seeks to ensure rigorousness of theories
and methods for research with the aim of understanding and managing unwanted
actions or events by developing, experimenting and testing practical methods, tools
and models.9 Safety Science consists of several knowledge areas, such as chemistry,
biology, physics, ergonomics, environmental sciences, physiology, business management,
economics, sociology, geology, and engineering.10

System safety is the engineering discipline (system safety engineering) which aims on
developing safe systems and products. It is related to all phases of the system life cycle
and covers all system aspects, such as hardware, firmware, software, human operators,
and procedures. Generally, it is the process for eliminating or reducing potential
accidents (Ericson, 2011). Safety is typically defined as “[...] relative freedom from danger
or the risk of harm [...]” (Ericson, 2011) (for users, bystanders, environment, etc.).

Stephans reported that the system safety community lacks of standardization or com-
monality and, therefore, providing ‘universally accepted’ definitions to even basic terms

8according to van Heuveln, Rensselaer Polytechnic Institute, http://www.cogsci.rpi.edu/~heuveb/
teaching/CognitiveRobotics/What%20Is%20Cognitive%20Robotics.html [online; accessed 23-
March-2012]

9Call for papers - Special issue on the foundations of safety science. Safety Science, 50(7),2012, I-II
10What is safety science: http://www.asse.org/newsroom/presskit/docs/ASSE_she_career_

broch_FNL.pdf [online; accessed 31-May-2012]

http://www.cogsci.rpi.edu/~heuveb/teaching/CognitiveRobotics/ What%20Is%20Cognitive%20Robotics.html
http://www.cogsci.rpi.edu/~heuveb/teaching/CognitiveRobotics/ What%20Is%20Cognitive%20Robotics.html
http://www.asse.org/newsroom/presskit/docs/ASSE_she_career_broch_FNL.pdf
http://www.asse.org/newsroom/presskit/docs/ASSE_she_career_broch_FNL.pdf
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Figure 1.7: The general elements of the system safety process, according to Ericson
(2005).

is difficult (Stephans, 2004). System safety is considered as a discipline which is primar-
ily concerned with new systems with the attempt to identify potential hazards while
the system is designed. Therefore, safety is reasonably not added onto a completed
system design. It has to be considered throughout the life cycle of a system, being al-
ready a part of initial concept development (Leveson, 2003). In most cases, safety is in
conflict with other design goals, such as operational effectiveness, performance, time,
and costs (Ericson, 2005; Leveson, 2003).

Safety is understood as an emergent property of a system that can be determined only
in the context of the whole system; safety appears, and must be controlled at the system
level. Consequently, system safety is closely coupled with system theory, since it considers
the system as a whole rather than single subsystems or components (Leveson, 2012).

System safety focuses on eliminating and preventing of hazards. A hazard is a potential
accident, and an accident is an actuated hazard. Actuation of a hazard is the process
of a hazard turning into an accident; the hazard as potential condition state transients
into the accident as event state. An accident is an actual event that has occurred and
has resulted in an undesired outcome (Ericson, 2011).

For system safety, hazards and not failures are the primary concern. In contrast,
reliability engineering primarily focuses on failures; hence, its contribution to safety
considers accidents that are caused by component failures. Thus, reliability engineering
contributes to safety, whereas safety has a broader scope: There are accidents that
occur despite components that operate exactly as specified. Typically, reliability applies
bottom-up approaches in order to anticipate component failure effects on system overall
functionality. For safety considerations, top-down approaches are required for evaluating
how hazardous states can be provoked by correct and incorrect behavior of components
(Leveson, 2012).

The course of action taken to achieve safety is called ‘system safety process’. The general
system safety process consists of consecutive steps which are arranged in a closed-loop
manner, during the entire life cycle of a system. As illustrated in Figure 1.7, the
general elements are ‘hazard identification’, ‘risk assessment’, and ‘risk control’. These
terms are briefly detailed in the sequel, based on the definitions of Ericson (2011).

Hazard identification is the process of recognizing hazards, its consequences, and it
is achieved through hazard analysis. Hazard identification denotes the basis for the
‘hazard risk assessment’.

In a hazard risk assessment, the likelihood of identified hazards is determined in terms
of probability, frequency, or qualitative criteria. Both together, likelihood of occurrence
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and severity of consequences form the concept of a safety measure, called hazard
risk. In the following, it is referred to hazard risk as risk. Risk is described by a
triplet, < sci,Pi(φi),Pi(Xi)> (Kaplan and Garrick, 1981). The elements are, at first, the
potential future event, sci (with i ∈ {1, . . . ,nscenario}), secondly, the likelihood, Pi(φi),
of its occurring, and last, the potential consequences, Pi(Xi), when it occurs. Each
of these aspects involves an element of uncertainty (Ericson, 2011). Hence, risk is a
measure of the future event, where the event is an expected accident. From that follows,
considering the operation phase of a safety-critical system, that in every situation there
exists a list of hazards (with a certain length) with different amounts of risks.

Hazard risk control is the mitigation of risks that were identified to be unacceptable.
A common strategy is called the ‘safety order of precedence’: First it shall be tried to
eliminate hazards through design alternatives, if not possible, risks shall be reduced
(Ericson, 2011). Risk mitigation is the strategy to reduce potential risks including
methods that are applied to achieve this. Risk mitigation involves the establishing and
implementing of so-called ‘design safety features’.

Design safety features are intended to reduce the likelihood and/or severity of hazards.
A design safety feature is a synonym and interchangeably usable for safety feature,
safety measure, safety mechanism, and hazard countermeasure (Ericson, 2011). It “is a
special and intentional feature in the design of a system or product employed specifically
for the purpose of eliminating or mitigating the risk presented by an identified hazard.
A design safety feature may not be necessary for system function, but it is necessary
for superior safety (i.e., risk reduction). A design safety feature can be any device,
technique, method, or procedure incorporated into the design to specifically eliminate or
reduce the risk factors comprising a hazard” (Ericson, 2011).

Risks that are remaining after risk mitigation are called residual risks. Residual risks
that are acknowledge to persist without further risk reduction for the remaining system
life cycle (e.g. operating time) are called acceptable risks. Acknowledgment of risk
acceptance takes place by the ‘risk acceptance process’.

The risk acceptance is finally a decision that the potential accident risk presented by
a hazard is known, understood, and acceptable. An accepted risk is not necessarily
the lowest risk possible, it may also be a risk labeled as unacceptable. In this case it
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must be accepted for various reasons such as mission needs, for instance, and it must
be considered that the system user is consciously exposed to this risk. This is usually
explicated with the help of the ‘ALARP’ model. ALARP is an acronym for ‘as low as
reasonably practicable’. “If a given risk can be shown to have been reduced to as low a
level as is reasonably practicable, taking into consideration costs and benefits of reducing
it further, then it is said to be a tolerable risk” (Ericson, 2011). The ALARP model is
illustrated in Figure 1.8.
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2 State-of-the-Art in Robotic Safety

2.1 Safety Standards

Norms and standards are given and agreed conventions to ensure that minimal safety
level is obtained before products are launched. For the considered kind of industrial
robots, the norm DIN EN ISO 10218 (2009) has to be considered. For non-industrial
robots currently no analogous norm exists. The ISO/DIS 13482 (2011), currently
available as a preliminary draft version, is to become a norm for non-industrial and non-
medical personal care robots. Basically, all safety norms and standards are based on risk
assessment. The risk assessment and risk reduction process is described in the DIN EN
ISO 12100 (2004). Accordingly, all hazards have to be identified, analyzed, and taken
into account for each specific application. Corresponding to the DIN EN ISO 12100, a
three step approach for mitigating hazards has to be carried out: First of all, inherently
safe design measures have to be considered. These protection measures are intended to
eliminate hazards. Secondly, hazards that can not be sufficiently mitigated in the first
instance require to be considered by the implementation of safeguards. Finally, users
have to be warned about the remaining risk that can not be mitigated through the two
latter measures.

According to the DIN EN ISO 12100, norms are classified as norms of type A,B, or C.
Type-A norms are very general, the specificity increases for type-B to type-C norms. If
there are deviations within different applicable norms, the more detailed type-C norms
have precedence over type-B norms, and consequently, type-B over type-A norms. The
DIN EN ISO 12100 is a type-A norm, the ISO/DIS 13482 and the DIN EN ISO 10218
are type-C norms.

A list of typical hazards is provided in ISO/DIS 13482. These hazards can be classified
as mechanical, electrical, thermal, emission-like, environment-related, and controlling-
related, or a combination of them (ISO/DIS 13482, 2011). The hazard that is predom-
inantly taken into account in literature is of mechanical nature: Collisions between
robots and humans. The field of physical Human-Robot Interaction (pHRI) is driven by
applications in which robots cooperate with physical contact to humans, or share the
workspace with them, so-called hands-on, or hands-off pHRI (Bicchi et al., 2008). Fol-
lowing this paradigm, several mechanical inherent safe designs for robots are developed.
A mechanical safe design is intended to compensate for user failures, and especially, for
inadequate control of robot.
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2.2 Determining the Injury Potential of Collisions

At first, a quantitative measure is required to determine the hazard potential of
collisions. Inspired by investigations in the field of automotive crash tests, the Head
Injury Coefficient (HIC) is adopted as an adequate measurement. The HIC represents a
measure for acceleration of the human head during a collision. It “[...] has been validated
as a predictor for skull fracture and brain injury of certain severities” (Gao and Wampler,
2009). Based on the HIC, there are various investigations of collisions considering a
multitude of different configurations. Blunt impacts are investigated (Haddadin et al.,
2008; Park and Song, 2009), singularity poses of robot arms are examined (Haddadin
et al., 2010), or pneumatic actuated robot arms are taken into account (Damme et al.,
2010). Further investigations are concerned with material properties, shape, acceptable
velocity of the robot, and so forth (Wassink and Stramigioli, 2007), to mention only few.

Newsworthy research work considers the injury potential of different object shapes.
Injury via different primitive shapes is evaluated by Haddadin et al. (2012), which are a
wedge, a small, and a large sphere. Therefore, drop-test experiments with these shapes
on pig skin are realized. Afterwards, a set of professionals is evaluating the injuries
according to an acknowledged classification. Hence, the injury potential for collisions
of different primitive shapes is known in dependence of its respective kinetic energy.
The injury potential for closed skin injury, muscle and tendon injury, and neurovascular
injury is experimentally determined in this manner.

2.3 Mechanical Safe Robot Design

2.3.1 Robot shape

The contour of the robot as potential colliding geometry plays an important role.
Collision energy can be distributed and absorbed by a soft covering (Suita et al., 1995)
or chamfering (Ikuta et al., 2003). Investigations with regard to HIC and covering are
reported by Zinn et al. (2004).

2.3.2 Reduction of colliding masses

It is acknowledged that the colliding mass is a further important safety-relevant factor. In
this connection, there are essentially four basic approaches that contribute to additional
safety features. Usually, these are classified as the so-called post-collision strategies
(Heinzmann and Zelinsky, 2003).

At first, lightweight design can be realized by utilizing modern light-weighted materials.

Secondly, lightweight actuators, such as pneumatic muscles can be preferred. Pneumatic
muscles can be designed as inherently compliant actuators. A combination of lightweight
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design and lightweight actuators is realized in the Bionic Handling Assistant.1 The
so-called bionic inspired approaches are realized by copying of organic designs. The
Bionic Handling Assistant is an ultra-lightweight compliant manipulator.

Thirdly, heavy actuators can be relocated from the manipulator’s joints to the robot
base. In the Whole Arm Manipulator WAM 2 or Dexter (Zollo et al., 2002), the actuators
are connected via wires to the manipulator’s joints. Extending this concept, in the
Distributed Macro-Mini Actuation (DM2) approach additional small and lightweight
actuators are integrated in the manipulator joints for high frequency actuation (Zinn
et al., 2004).

Finally, the effective mass that is involved in a collision can be reduced by compliant
actuation. The predominant part of the mass of compliant actuators is decoupled from
its output shaft. This is effecting on the one hand that the inertia of rotating elements
of the actuators, additionally amplified by gear mechanisms, is not directly involved in
collisions. Furthermore, serial connected compliant actuators, in a multi-joint robot
manipulator, for instance, decouple each, its own and the preceding moved masses (e.g.
the rest of the robot) from its output shaft.

2.3.3 Passive compliant actuation

Compliant actuators reduce the collision mass on the one hand, on the other hand,
a manipulator with compliant actuators is ‘soft’ if external forces are applied to it.
Consequently, the manipulator can be manually deflected by a user. This feature can
as well increase the acceptability in contrast to stiff robot manipulators.

Compliance can be realized actively by control, or passively by compliant elements.
Active compliance relies on the control system and its sufficiently low control latency
time; passive compliance is inherently available, according to its mechanical properties
and reliability.

As passive compliant actuation is realized by integrating elastic elements into actuation
chain, it is called Series Elastic Actuation (SEA). SEA is not suitable for mere
precise position control. For precise position control traditionally stiff constructions are
preferred. Furthermore, SEA can become instable at its resonance frequency. As the
output shaft is decoupled by elastic elements, oscillations are not controllable by the
actuator itself. The actuation system shows an open-loop behavior; hence, it can not
be considered being safe. Thus, there are six basic strategies how the fundamental SEA
actuation can be improved, considering mentioned drawbacks. The latter four are to
assign to the so-called adaptive compliance or Variable Impedance Actuation (VIA)
approaches.

Equilibrium-controlled stiffness
This actuation approach is an extension of the SEA principle. Deformation of the
spring, being mounted between the joint and the stiff actuation, is measured. Thus, an

1http://www.festo.com/cms/en_corp/9655.htm [online; accessed 29-June-2012]
2http://www.barrett.com/robot/products-arm.htm [online; accessed 27-March-2012]

http://www.festo.com/cms/en_corp/9655.htm
http://www.barrett.com/robot/products-arm.htm
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active control of the exerted force is realized; the position control is changed to force
control (see Figure 2.1a).

DM2-actuation
On the one hand, heavy actuators are relocated from the robot manipulator joints to
the robot base. On the other hand, they are connected as SEA (see Figure 2.1b).
Lightweight actuators, mounted in the joints, allow controlling the instability of the
standard SEA (Zinn et al., 2004).

Force limitation
The Safe Link Mechanism (SLM) limits the maximum force that can be transferred
via a link. It is a passive redundant element which does not affect the conventional
actuation strategy (see Figure 2.1c). If the force limit is exceeded, the link becomes
compliant (Park et al., 2007).

Structural-controlled stiffness
The variable stiffness of structural-control actuation is realized by taking into account
the physical bending properties of a bending beam or spring. The bending beam changes
its bending properties with respect to the bending direction or the effective length of
beam (or spring). Therefore, the control adjusts the bending orientation or the effective
length (see Figure 2.1d). The Hybrid Dual Actuator Unit (HDAU) varies the length
a beam that presses on a spring (Kim and Song, 2010).

Antagonistic-controlled stiffness
In this approach, the stiffness is varied by controlling the preload of two antagonistic
coupled (non-linear) SEAs. The higher the preload of both antagonistic springs, the
higher is the stiffness of the actuator (see Figure 2.1e). The Parallel Dual Action
Unit (PDAU) is a compact realization of the antagonistic-controlled stiffness approach,
including a force limitation mechanism (Nam et al., 2010).

Mechanically controlled stiffness
The improvement in contrast to the SEA is that, due to the construction, the preload of a
spring AND its equilibrium position can be changed. The spring behaves like adjustable
torque spring with a variable equilibrium position (see Figure 2.1f). This is also
called the MACCEPA approach (Mechanically Adjustable Compliance and Controllable
Equilibrium Position Actuator). The Variable Stiffness joint (Wolf and Hirzinger, 2008)
is a compact realization if the MACCEPA approach.

2.3.4 Summary

Finally, several approaches are available that allow to realized inherently safe actuators,
considering the hazard potential of collisions between robots and humans. At this, the
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Figure 2.1: Different main concepts for safe and compliant actuators (cf. Ham
et al., 2009; Park et al., 2007).

risk of hazardous collisions might be eliminated at least partially if not completely.
Certain risk remains if high forces or velocities are required for the task mission because
the compliance adjustment has to be realized by control. Hence, the safe and reliable
control is shifted to a certain extent from mechanical toward software-related aspects.
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2.4 Reactive Safety Approaches in Robotics

There are various examples for which an inherent mechanical design can not be realized,
for instance, the robot application requires that the robot possesses potential critical
forces or movement velocity. In consequence, protective functions have to be realized that
ensure adequate and safe behavior of the system. With regard to the collision of the robot
with safety-relevant obstacles (humans, pets etc.), the norm ISO/DIS 13482 requires for
one or more protective measures with regard to pre-collision strategies, the avoidance
of collision in general, and post-collision strategies, the mitigation of harm in case of
collision. Both can be realized via control and reactive planning. Reactivity emphasizes
low reaction time, small time-horizon and focus on the present moment, and strong
coupling to sensor data. Control refers to the consideration of error signal, determined by
deviation of a feedback signal from its set point. For control quality, cost functions can
be taken into account. Reactive planning incorporates a planner for the generation of
plans, which are used as reactions to predefined situations (Vlahavas and Vrakas, 2005).

The behavior of a robot is controlled by several instances within robot architectures
(see Section 1.2.1). At the lower architectural level, such reactive aspects are met. Skills
represent the reactive functionality.

In general, post- and pre-collision strategies can be classified as either binary or gradual
strategy (Kulić and Croft, 2007). The binary, the so-called safeguarding strategy
principally consists of detecting the human’s presence in the robot’s working range
and altering the robot overall operation mode, for instance, to safe slow motion. The
gradual, the danger evaluation strategy aims on adequately adjusting the robot behavior
based on a continuous expression of danger.

Different criteria for collision safe robots should be mentioned. According to Fraichard
(2007), three basic criteria have to be taken into account to ensure safety: 1) The robot
dynamics, 2) environment object dynamics has to be considered, and 3) this for an
infinite (or goal-related) time horizon. Dautenhahn et al. (2006) propose three different
criteria for safe (and user-comfortable) robots: 1) The safety criterion, which focuses
on the collision-free approaching of robots to humans. 2) By the visibility criterion, it
is demanded that the robot operation should be performed (if possible) in the human’s
field of view. 3) ‘Shaded’ areas behind obstacles are insidious and should be avoided by
the robot.

2.4.1 Safety integrated into robot manipulator control

Post-collision strategies are also mentioned in Section 2.3 with regard to inherent
mechanical design. With the help of real-time control systems, a collision detection
system can be sufficient, if it reliably reduces the collision energy. Such an approach is
suggested by Yamada et al. (1997). The robot arm itself is covered with viscoelastic
material, which does not only mitigate the contact force. In fact, the time during a
collision, which is needed for deforming the elastic coverage with uncritical forces, is
used for detecting the contact. In consequence, a very fast detection control reduces the
velocity of the robot or triggers an emergency stop. Furthermore, the collision energy
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should not exceed an acceptable level. In Section 2.3 is argued that the stiffness is
related to the effecting collision mass. Stiffness can be also affected by control, thus,
Lew et al. (2000) consider the effect of control parameters on stiffness. They state that
control parameters are commonly optimized for realizing good tracking and accuracy,
collision issues are not considered and, hence, high stiffness and high inertia results.
Therefore, Lew et al. (2000) propose to take into account these effects, and show how
the control parameters are related to the stiffness.

In order to improve the emergency stop state, Heinzmann and Zelinsky (1999) introduce
the concept of the Zero-G controller. The Zero-G mode is proposed as a preferable
failsafe solution. In the Zero-G mode all gravity effects are compensated; therefore, the
manipulator remains fully compliant and easily movable for the user. This provides
advantages in comparison to ‘freezing’ arms caused by emergency brakes or ‘breakdowns’
due to mere de-energizing.

Karlsson et al. (2000), for instance, reduce the robot velocity with regard to the distance
between robot and human. Heinzmann and Zelinsky (2003) and Matsumoto et al.
(1999) present an adequate measure for robot velocity reduction by utilizing the impact
potential as function for an allowable velocity. The impact potential is the force, which
is exceeded at the moment of contact. With their approach the entire robot can be
limited in such way that no hazardous impact force can occur. An additional advantage
is the overcoming of the drawback of passive compliant actuation approaches (SEA see
Section 2.3.3), which are limiting the collision overall energy but not the impact force.

Traver et al. (2000) introduce the elusive robot. An elusive strategy is characterized by
actively avoiding collisions with humans. Goal-directing forces, directing the manipulator
toward the desired position have to be balanced with repulsive forces that intend to
maximize the distance to humans. They outline the basic concept that repulsive forces
can be generated based on distance information, pose or velocity of the robot, or with
regard to the current moving or viewing direction of a human user.

An essential basis to consider hazards by continuous measures is given by Ikuta et al.
(2003). They initially suggest utilizing the concept of danger indices. As already
mentioned, danger indices are numerical and normalized expressions of hazard potentials.
They can be applied to both, design purposes and to control schemes. Danger indices
may describe hazard potentials with regard to various contributing factors, such as
impact force, relative distance, velocity, robot inertia, stiffness, and so forth. However, a
control strategy is not detailed by Ikuta et al. (2003), therefore, Kulić and Croft (2006)
realize this in their research work. They use and refine the proposed hazard factors based
on the distance, velocity, and inertia with respect to the ‘critical point’ (the point closest
to human). The danger index is the product of different hazard factors (see Figure 2.2).
With increasing hazard potential, the value of the danger index increases. Based on the
danger index, a repulsive force is generated when the distance falls below a minimal value.

Lacevic and Rocco (2010) extend the danger index approach of Ikuta et al. (2003), and
Kulić and Croft (2006). They introduce the so-called kinetostatic danger field . The
kinetostatic danger field is similar to the well-known potential fields, introduced in the
robot domain by Khatib (1985). The kinetostatic danger field contains repulsive forces
with regard to the distance to obstacles, their velocity, and the velocity vector of the
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Figure 2.2: Danger Index DI according to Kulić and Croft (2006).

entire robot manipulator. A control method is proposed, which decreases the overall
hazard potential, and on the other hand, allows for deviations from the task if a certain
hazard potential threshold is exceeded.

Najmaei and Kermani (2011) apply the danger index as well. Repulsive forces, similarly
based on the danger index, are generated also by taking into account the movement of
a human user. Position and direction of humans are detected with the help of sensitive
flooring. With this, a neural network is trained for predicting the human movement.
The predicted human movement is considered, in turn, by the movement of the robot;
an elusive robot is realized.

2.4.2 Safety integrated into reactive robot platform motion

planning

Alami et al. (2002) focus on the safe motion of the entire robot platform. It is shown
how velocity profiles for motion trajectories can be generated in order to exclude all
constellations in which the robot is incapable to avoid collisions by evading or stopping
(assuming that also unknown dynamic obstacles never exceed a known maximum velocity
threshold). Therefore, sensor limitations and dynamics of obstacles are considered.
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Additionally, it is taken into account that dynamic objects can be hidden behind shaded
areas of detected obstacles. Velocity profiles, also including collision safety, are also
examined further by Madhavakrishna et al. (2006).

The concept of inevitable collision states (ICS) is introduced by Fraichard and Asama
(2004). ICS are constellations in which the robot is unable to adequately react because
of its own or environment object’s dynamic. Fraichard and Asama define a motion plan
to be safe if it comprises no inevitable collision states. Petti and Fraichard (2005) realize
the ICS concept for fast motion planning approaches. In order to realize short planning
delays, partial motion plans are periodically generated (Rapidly-Exploring Random
Tree method). Branches that comprise inevitable collisions are rejected. Bekris and
Kavraki (2007), as another example, used the ICS concept for motion planning as well
(GRIP-motion planner).

Althoff et al. (2012) use the ICS concept as basis in order to extend it to a probabilistic
version, called Probabilistic Collision States (PCS). While the ICS concept classifies
trajectories as such that inevitably contain collisions, and others that may not contain
collisions, the PCS concept postulates the trajectory collision probability. The PCS
concept is applied to partial motion planning. Here, it is taken into account the collision
probability of the trajectory candidates within the planning horizon, on the one handand
on the other hand, the collision probability of the respective final state as collision
indicator beyond the planning horizon. With this approach, collision free trajectories
are found taking into account the dynamics of environment objects, including their
interaction.

Altogether, there are various approaches to concern safety for manipulator or platform
trajectories. A more general approach toward autonomous operation of mobile robots
is pursued by Seward et al. (2000, 2007). Basically, they develop the robotic excavator
LUCIE which is intended to act autonomously. They explicitly perceive the safety
problem to be related to an unstructured environment to which mobile robots are often
interfaced with. In this regard, the complex functionality of robots is additionally
sensitive to such an environment, which increases the complexity of safety analysis.
However, autonomous systems basically offer the chance, as outlined in Section 3, to
adjust their operation with regard to various aspects, including safety. Seward et al.
(2007) call this the ‘self-safety management’. Their central approach to the safety
problem is that the self-safety management has to be become an inherent part of the
system behavior. They favor a centralized safety system which is responsible for the safe
operation of the overall system. The safety system is based on a ‘self-risk evaluation’.
For realizing an operational risk evaluation, Seward et al. (2000) model risks utilizing
fault trees. These fault trees map observed system and environment states that account
for a specific hazardous top event to the probability estimate of its occurring. The
toppling hazard is explicitly regarded as top event while digging, and the collision hazard
is regarded as top event while traveling. The process model is shown in Figure 2.3.
In general, the system states are modeled with partially observable Markov decision
processes (POMDP) in order to consider uncertainty3 with regard to observing the
respective system state. Actions taken are assumed to transfer the system into the

3 epistemic uncertainty due to system subjective classification of system states (cf. Beer et al., 2013)
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Figure 2.3: Process model of safety risk assessment and management (Seward
et al., 2007).

subsequent system state with a certain probability. With the help of specified fault
trees, the probability of a specific accident can be determined from any system state
information. By computing the product of this probability and the accident severity, the
corresponding risk value results. Afterwards, a value integration component balances
the risk value and a benefit value. Finally, an appropriate action may be chosen. In
Figure 2.4, an exemplary fault tree for the top event of excavator toppling is shown.

2.4.3 Summary

Several contributions focusing on proper reactive behavior are available in order to
mitigate collision dangers for several robot motion approaches, addressing mobile
platforms, manipulators, or both. There are approaches that merely alter the operation
mode of the robot but there are also approaches that reactively alter the behavior of the
robot, for instance, based on a velocity profile, a danger index or on the modeled risk
(probability) for a specific event. Finally, there are a remarkable number of concepts
how motion control can be modified or extended in order to improve safety.

The preliminary version of the safety standard ISO/DIS 13482 (2011) requires considering
collisions with safety-relevant obstacles by implementing protective measures, whereas
the mentioned concepts denote a good basis to approach toward fulfillment of these
requirements.

2.5 Safe High-level Reasoning and Planning

latter sections reviewed contributions for safety at a lower (reactive) systemic level. The
majority of these are concerned with collisions. This appears to be a logic consequence,
since collisions are inherently related to control of motions. Reactive portions of



2 State-of-the-Art in Robotic Safety 27

Top Event: Hazard of toppling

Sudden 

rotation

Rugged 

ground

Robot 

speed

Rocking from linear 

motion

Induced rocking

Ground tilt 

> smaller 

limit

Ground tilt value > smaller limit with 

induced rocking of excavator
Ground tilt 

value > limit 

when in normal 

drive conditions

³1

&

³1

&

()()()()()8181 ePePePePTP ×-+=

()()()278 ePePeP ×=
()1eP

()3eP

()4eP ()5eP

()2eP

()()()546 ePePeP ×=

()()()
()()63

637

ePeP

ePePeP

×-

+=

Figure 2.4: Example of a fault tree used for mapping system states into a hazardous
event, according to Pace and Seward (2005).

robot control are closely related to sensors and actors. The time horizon of the lower
reactive system levels is about the past and the present. The upper level, responsible
for deliberation and planning, reflects about future aspects, and works with symbols
(Murphy, 2000). Classical cognitive and AI paradigms acknowledge the Physical Symbol
System Hypothesis. Here, the action performed by a system is a causal consequence of
the symbol processing (Vernon et al., 2007). Langley (2005) formulates the Symbolic
Physical System Hypothesis which claims that the mental states of embodied agents
should always be grounded in real or imagined physical states, and that problem-space
operators (high-level action representations) always expand to primitive skills with
executable actions. This means that actions encoded by symbols at the symbolic level
are representing skills or assemblages of primitive skills. Such skills typically might be
of the kind of ‘pick object A and place it at B’, or ‘drive to B’, for examples see Bischoff
and Graefe (2004); Mosemann and Wahl (2001); Söffker and Ahle (2008).

Planning and reasoning that is based on abstract terms and concepts is often referred
to as high-level planning and reasoning (Coradeschi et al., 2006). Such planning is not
meant to replace existing motion or path planning methods, mentioned in the latter
chapter, but to complement them for more general and complex planning of robot
action. In this connection, planning means deliberation about a course of action to
take for achieving a given set of goals. In this respect, notable key requirements are the
representation of actions and their effects, keeping track of changes in the environment
over time, and dealing with any remaining uncertainty or lack of information (Hertzberg
and Chatila, 2008). Uncertainty implicates two key problems with regard to planning.
At first, the outcome of certain actions is not necessarily predictable. Secondly, the
current state, obtained from initial conditions, sensors, and memory of previously
applied actions, is not necessarily known (LaValle, 2006). Uncertainty of action outcome,
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both, its indeterminism and the vague knowledge of the action’s starting situation, may
implicate severe consequence with regard to safety.

Basically, planning and decision making are found to be interrelated methods. While
decision theory focuses on single decisions with often multiple related factors, planning
considers searching for problem solutions in huge planning spaces.

In the robotic domain little contributions seem to be currently available that reflect on
safety issues at this level; in some other domains there are notable concepts.

2.5.1 Risk in Utility Theory

Utility Theory is a major branch of decision theory, therefore, contributions focusing
on risk-sensitive decision making are found to be often based thereupon. An overview
to decision-theoretic planning is given by Blythe (1999), and risk-sensitive planning is
considered by Koenig and Simmons (1994); Goldman and Boddy (1994). In general,
decisions in Utility Theory are based on the so-called utility function. A utility function
subsumes the decision criteria as numerical costs and rewards, hence, the utility
function maps an expected outcome of an action into a numerical utility expression. In
consequence, proper decisions are made by maximizing the utility reward.

The concept ‘risk’ in this domain relates to the variance of the expected utility value
(considering probabilistic decision making). For instance, the ‘risk-seeking’ or ‘gambling
agent’ favors (‘speculative’) decisions with high utility besides low probability. A ‘risk-
avoiding agent’ favors decisions whose outcome is reliable (Koenig and Simmons, 1994).
In this connection, the risk is related to likelihood of costs according to the utility
function; hence, it is defined similar in comparison to numerical risk expressions in system
safety theory, which is the product of probability and a measure of damage (Kaplan
and Garrick, 1981). Furthermore, the inherent tradeoff problem between performance
and safety in real environments may involve multiple factors. Thus, utility theory may
serve as fundamental conceptual framework for risk-sensitive decision making. In this
case, it must be ensured that the accident severity is throughout represented in the
utility function. Additionally, it is assumed that different utility functions are required,
because the robotic system may pursue different tasks.

Several aforementioned approaches implicitly include aspects of utility-based decision
making. For instance, Seward et al. (2007) introduce a component for action value
integration that balances risks and benefits in order to select proper actions. The danger
index of Ikuta et al. (2003); Kulić and Croft (2006) are a representation of danger as
numerical expression, which could theoretically be normalized and balanced against
benefits of performed actions. At the higher system level, the maximal danger index of
a planned manipulator trajectory could be compared to the movement benefits in order
to permit or prohibit the performing of the movement action at all.
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2.5.2 The safety bag concept

The safety bag system was designed by Klein (1991) in order to manage the routing of
rolling stock though the shunt yards at a railway station. The system goal was to safely
plan routes for the rolling stock, which shall be moved through a busy rail network.
Since a section of the route may have other wagons on it, or switches are set such that
other trains could enter the section, it is a hazardous task. The safety bag is an expert
system that is realized as a dual channel design. The first system proposes different
possible routes. In parallel, the second system assesses the routes with regard to hazards
and vetoes or commits proposed routes. The safety bag is a rule-based expert system,
whose rules embody the knowledge of the safety regulation of a railway station. The
rules are realized via ‘if...then...else’ constructs.

2.5.3 Guardian agents

Fox and Das (2000) investigate intelligent systems and autonomous agents. Their main
background is related to decision support systems in medical contexts. Since such
decision support and planning systems are usually knowledge-based systems, the formal
integrity of software and knowledge bases is not sufficient. Knowledge often is heuristic
and, hence, knowledge-based systems are intrinsically faced with incompleteness and
uncertainty (Das et al., 1997). “However, even the best managed design and development
programs will not guarantee reliability and safety of a complex system in complex settings,
particularly when we need to cope with high levels of uncertainty and unpredictability of
situations and events. To complement conventional development methods, intelligent
agents should also be equipped with capabilities to monitor for hazards during their
operation, and to apply their problem solving and reasoning functions to managing such
hazards if, and when, they occur. Part of the agent’s knowledge will be concerned with
achieving its primary goals. Another part, which we can view as an independent agent,
keeps a weather eye out for problems” (Fox and Das, 2000), which actively manages safety.

Das et al. (1997) propose that safety constraints on the behavior of the system shall be
modeled within this independent agent, using concepts of obligation and permission
(deontic logic). It is suggested to introduce so-called guardian agents, “whose job is just
to watch out for hazards, and take charge if anything looks like going wrong” (Fox and
Das, 2000). Therefore, Fox and Das propose a concept that is intended to overcome the
drawbacks of the safety bag concept of Klein (1991). In this connection, they criticize
that the rationale behind rules in the safety bag concept is not explicitly represented;
hence, it is impossible for the agent to recognize inappropriate rules. Furthermore, it is
required to express how the logic shall be procedurally enacted, for instance, considering
the timing of critical events. Finally, the proposed rules of Klein are application and
domain specific, and they do not formalize general principles of safe and acceptable
action. Fox and Das propose to provide the foundations for specifying safety protocols
that might be used in any domain. “There would be significant benefits if we could
separate general safety knowledge from an agent’s domain-specific knowledge. Formally,
it would simplify the task of proving that an agent design is safe and sound. Practically,
it would open up the possibility of constructing a standardized guardian agent that could
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Section 1

Detect any potentially hazardous anomaly and raise a goal to deal with it.

if results of enquiry is State and (1)

State is not safe

then goal is remedy State

If the abnormal state is a known hazard with a known remedial action then 

propose it as a candidate solution to the goal.

if goal is remedy State and (2)

known remedy for State is Action

then candidate for remedy of State is Action

Commit to action if the agent can establish that it is permitted according to 

the rules of the protocol.

if candidate for remedy of State is Action and (3)

decision status of Action is permitted and Action is safe

then decision status of Action is obligatory

Section 2

Any action that could be hazardous must be authorized [before it may be 

executed].

if candidate for remedy of State is Action and (4)

possible(Action causes NewState) and

NewState is not safe

then authorization of Action is obligatory

When an action has been authorized it is permitted.

if authorization of Action is obligatory and (5)

Action is authorized

then Action is permitted

Any action that has no hazardous consequences is permitted.

if candidate for remedy of State is Action and (6)

not(possible(Action causes NewState) and NewState is not safe)

then Action is permitted

Figure 2.5: A generic safety protocol, according to Fox and Das (2000).

be a reusable component for many applications, from medicine to routing trains, from air
traffic management to e-commerce, and from autopilots to robots” (Fox and Das, 2000).

Consequently, Fox and Das propose to formalize and generalize a basic safety protocol. In
Figure 2.5 a simple version is shown. Basically, it is organized into two sections whereby
the first comprises rules that explicate how to assess and respond to irregular operation.
The second section’s policies describe when actions can be executed autonomously, and
when authorization is required.

The generality of the protocol is based upon abstract features, which must be derived
from specific situation data. Thus, states are the states of the environment, which, as
well as actions, can be somehow classified as safe or not. Hazardous states have defined
remedy actions, decisions can have states of permission or obligations.

They formalized these notations in a logic, LSa f e, for reasoning about safety. The logic
contains modalities such as ‘permitted’, ‘obligatory’, ‘safe’, and ‘authorized’ which can
be either applied to characterize an action, or the property of a state. Hence, permitted
or obligatory actions leading to safe states can be allowed to be performed autonomously
by an agent, obligatory but potentially hazardous actions must be authorized, or optional
actions provoking hazardous states are not allowed to be executed at all. In the end, ‘safe’
is a (binary) predicate that describes that a state comprises no unacceptable risks and
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no risk mitigation action have to be performed. The predicate ‘safe’ has to be initially
assigned to states and does not allow a gradual or probabilistic state characterization.

2.5.4 Dynamic risk assessment

Wardziński (2008) focuses on safely operating autonomous vehicles. Autonomous
vehicles are autonomous robots whose task repertoire is dominated but not exhausted
by the goal of traveling along a route. Autonomous mobile robots are however a wider
class than the vehicle classes mentioned, whereas the boundaries are not rigid between
these classes (Veres et al., 2011). Hence, the domain of autonomous vehicles provides a
huge intersection with the domain of robots.

Autonomous vehicles are typically intended to operate in open environments. An open
environment is understood as “an environment in which agents operate and can have
different, not consistent missions and strategies” (Wardziński, 2008). Typically, actions
may lead to unexpected outcomes in open environments, thus, plans fail and have to be
dynamically revised (Ahle and Söffker, 2006).

Similarly to the guardian agent and self-risk evaluation approach, Wardziński suggests
the need for a dynamic risk assessment approach. Wardziński points out that binary
safety barriers may lead to significant problems. A safety barrier is “an obstacle, an
obstruction, or a hindrance that may [...] prevent an action from being carried out or an
event from taking place” (Hollnagel, 1999). But even sophisticated and complex safety
barriers remain a binary view on safety: Barriers (safety functions) are activated in case
of approaching unsafe operating conditions. This binary view on safety (namely the
classification in safe and unsafe states) is a simplification of safety. The problem of the
binary classification in complex environment conditions is that if two or more hazards
have to be considered that appear in one situation, the binary perspective on safety does
not support to deliberate any tradeoff of risks. For more complex situations, sets of safety
functions may cause dead-locks. This is the case, for instance, if the system is locked in
an unsafe situation because all action alternatives are classified as unsafe (Wardziński,
2008). Consequently, Wardziński suggests deriving risk level information and provide it
to the planning process, where it has to be adequately considered. Wardziński defines
the dynamic risk assessment approach as “to design a system which is able to perceive
and interpret risk factors and then assess how far it is on the scale starting from an
absolutely safe state and ending with an accident. A system should be able to assess the
risk of the situation before carrying out a specific action. In that way the system would
be able to select safe actions and avoid actions leading to hazards” (Wardziński, 2008).

2.5.5 Safety for the system situation awareness

In the work of Wardziński (2006), situation awareness is mentioned as an important
requirement to address safety for autonomous vehicles, or more specifically to enable
the dynamic risk assessment approach. A system that has situation awareness is often
described as a system that knows “what is going around” (Wardziński, 2006).
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Wardziński refers to the well-established definition of situation awareness of Endsley:
Situation awareness is “the perception of the elements in the environment within a volume
of time and space, the comprehension of their meaning and the projection of their status
in the near future” (Endsley, 1995). The definition incorporates three levels of situation
awareness, 1) the perception of information from the environment, 2) the comprehension
of the perceived information, and 3) the projection of the information into the near
future for the purpose of guiding actions. Situation awareness is a mental state or a state
of knowledge. Processes to achieve and maintain situation awareness are referred to as
situation assessment (Fischer et al., 2011). In this connection, Wardziński details three
situation assessment functions for achieving safety incorporating situation awareness.
These are 1) situation risk level assessment, 2) regulations compliance assessment, and
3) mission progress assessment. The situation risk level assessment function identifies
risks in current and future situations in order to enable planning taking into account the
risk levels of particular actions. There might be different strategies how risk information
is handled. To provide an example, Wardziński formulates a strategy for selecting the
safest action in VDM4-like notation:

vehicleAction( s : Situation ) as : ActionScenario

post
as ∈ possibleScenarios( s )
∧
riskAssessment( s, as ) =

min{ ra | ra = riskAssessment( s, ax ) ∧ ax ∈ possibleScenarios( s ) }

Fu and Söffker (2011); Ahle and Söffker (2006) illustrate how automated supervision of
a vehicle can be realized. The system learns to understand the control of a technical
system via human-machine interaction at a highly abstracted level, for instance, for a
lane change maneuver on the highway. Here, the automated supervision system checks
the consistency of the driver’s actions and the learned mental model of the driver’s
behavior with regard to the specified goal and specified rules (Fu and Söffker, 2011).
This automated supervision approach allows a formalized strategy to analyze the logic of
interaction and an application to technical systems. It bridges the gap between the pure
signal level and the complex interpretation level by learning to structure (understand) the
current situation. This is basically achieved by supervising interaction in terms of storing
and refining experiences with the purpose to generate an internal model of the (assumed)
structure of the interacting outside world. Here, a central aspect is that the currently
available but changeable and refined mental model structures the system’s perception
and, thus, the ‘situation understanding’, also called situation awareness (Söffker, 2008).
The concept is that the automated supervision system fully understands the shown task,
it has to learn to control supervised task on its own and, hence, can be called autonomous,
and consequently, used to realize robot control systems (Ahle and Söffker, 2006; Gamrad
and Söffker, 2009a,c; Gamrad, 2011). The concept is described in more detail in Section 4.

4Vienna Development Method, see http://www.vdmportal.org/twiki/bin/view [accessed; online
17-December-2012]

http://www.vdmportal.org/twiki/bin/view
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2.5.6 Summary

There are several concepts available, each covering important aspects. However, it
seems that the interplay and control of the entire robot behavior has to be focused.
This control is finally grounded in a cognitive level. Thus, the integration and de facto
realization of the available concepts within an (exemplary) cognitive architecture denote
a suitable concept to approach the safety problems of intelligent systems.

The generic safety protocol proposed by Fox and Das (2000) denotes an abstract
concept for taking into account safety concerns for automated decision making, with
a potential to provide a basis for constructing a decision calculus or algorithm for
autonomous robots. However, it tends to realize safety via pre-specifying behavior
patterns. Moreover, safety is treated in a binary fashion (safe, not safe) and it is unclear
how the classification of safe or not safe is realized.

The dynamic risk assessment approach proposed by Wardziński (2008) favors gradual
risk classifications in order to explicitly overcome drawbacks of interfering complex
safety rules. This can be the case, when typical rule-based systems take control, due to
inconsistent rules or occurrence of multiple conflicting risks. According to Wardziński,
a system itself has to continuously assess current and future situations with regard to
risks. Therefore, Wardziński provides an abstract VDM notation of the concept. It is
not gone into detailed how risk information is derived, how a foresight is realized, and
how risk information is taken into account for decision making.

Similarly Seward et al. (2007) propose in the latter section a self-risk assessment
approach, in which the system itself decides about the selection of subsequent actions
on basis of numeric risk expressions. Furthermore, it is illustrated how a static fault
tree could be applied to model the relationship between the system state variables and
the probability of a specified accident. Utilization of fault trees for formalizing hazard
risks appears to be useful method, however, their risk assessment is integrated into
specific (movement) skills; thus, it seems to lack integration at a (centralized) cognitive
level, more closely related to abstract world knowledge, which, for instance, requires a
conditional part for checking the general presence of a hazard in respective situation.

However, there is decision theory, which provides the basis for decision making, as well
for multifactorial decision problems. Consequently, it appears that several approaches
have to be combined to a more general framework that subsumes the variety of already
proposed approaches, and new requirements, which result from a renewed analysis of
the significant safety problems of current or prospective service robots.

Autonomous operation is assumed to be one of the key features of this kind of systems due
to several reasons. This feature, on the other hand, is probably the one that distinguishes
this kind of systems from conventional. Hence, it is important to understand what
autonomy is, and which implications are imposed as a result.
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3 Robot Autonomy

3.1 Autonomous Systems

Autonomy is discussed in different scientific fields. Etymologically, autonomy is a
combined term of the words ‘autos’ (self) and ‘nomos’ (rule or law). Originally, it reflects
the idea of the self-governing of the Greek city-state (Dworkin, 1976). But there are
various philosophic thoughts about autonomy also with regard natural agents such as
humans, animals, and other biological organisms, e.g., see Varela (1979); Smithers (1997);
Collier (2002); Verhagen (2004). On the other hand, there are thoughts and definitions
about autonomy for artificial agent systems such as in artificial live, multi agent systems,
and agents in natural environments, e.g., see Smithers (1997); Collier (2002); Verhagen
(2004); Franklin and Graesser (1997); Beavers and Hexmoor (2004); Castelfranchi and
Falcone (2003); Carabelea et al. (2004). Basically, autonomy is neither a kind of abstract
system concept, nor it is a function, state or mechanism; it is an organizational property
of a system (Di Paolo and Iizuka, 2008). From a very general perspective, autonomy
can be understood as a synonym to ‘independence’ or ‘self-sufficiency’ (Castelfranchi,
1995). The generation of universal moral laws by the agent itself is autonomy (Kant and
Kirchmann, 1869), and heteronomy is the opposite, when laws are imposed from outsides,
from a higher authority. An agent has freedom, and is consequently autonomous, when
there are no external barriers to its actions (Verhagen, 2004). Hence, freedom of the
will and autonomy are closely interrelated in philosophy, at least for natural agents.

A special feature of autonomous artificial systems is that there is a direct access to the
‘mind’ (Verhagen, 2004). This allows having an insight into the ongoing processes and
offers the chance to intervene, or in other words to affect the autonomy. With regard to
robotics, the new revision of the DIN EN ISO 8373 shall soon define that “autonomy of
a robot is the ability to perform the intended task based on the current state and sensor
information without human intervention.”1

3.2 Aspects of Autonomy

Autonomy has a broad meaning and its relativity allows referring it to several character-
istics in varying degrees which are in particular, material, psychological, informational,

1according to Gurvinder Virk’s (Chairman, ISO TC 184/ SC 2/WG 7 on Safety of personal care robots)
recent definitions with regard to revision of the DIN EN ISO 8373 (2010), oral presentation held 3
July 2012 at the International Workshop on Medical Robots in Milano, Italy, and 12 October 2012
at the international conference on Intelligent Robots and Systems (IROS) in Vilamoura, Portugal
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representational, and anticipatory autonomy (Collier, 1999), mental autonomy (Col-
lier, 2002), autonomy from stimuli, cognitive autonomy (Verhagen, 2004; Castelfranchi,
1995), norm autonomy (Verhagen, 2004; Carabelea et al., 2004), executive and goal au-
tonomy (Castelfranchi and Falcone, 2003; Castelfranchi, 1995), user, environment, and
(agent) self-autonomy (Carabelea et al., 2004), intention and organization autonomy
(Carabelea et al., 2004), and finally, social autonomy (Castelfranchi, 1995; Castelfranchi
and Falcone, 2003; Collier, 1999). The mentioned aspects and related definitions are
listed in Figure 3.2. In determining autonomy, most authors explicitly agree that it
must be considered to be relative to something external of the system (Verhagen, 2004;
Carabelea et al., 2004; Castelfranchi and Falcone, 2003; Collier, 1999). Collier (1999)
argues that the different kinds of autonomy arise at different levels and hierarchies
and, hence, autonomy is relative to level and hierarchy as well. Collier mentions that
something can be non-autonomous at the most fundamental physical level, under the
extreme conditions found in physics. But it might be autonomous biologically in the
less intense environments of organisms. For instance, minds can be autonomous with
regard to the information content, but they depend on their biological embodiment.
Hence, autonomy is relative, it is a matter of degree, and it has hierarchical aspects.

3.3 Present, Desired, and Future Robot Autonomy

Some of the current cleaning robots2 cover some of the aforementioned aspects, for
instance, those that realize the self localizing and mapping (SLAM) approach. They
process information derived from sensor data, such as distance measures; they internally
generate and maintain a map representation to perform optimized movement trajectories.
Due to the fact that the map is used and generated simultaneously, it is questionable if the
robots anticipate their selected actions, however, the behaviors are adapted to the current
situation: According to the current situation, a strategy or partial plan is selected, on the
one hand, in order to optimize the cleaning process, on the other hand, to pursue different
intentions, for instance, surface or spot cleaning, recharging the battery and so forth.
Hence, several aspects are already realized in current robots. According to this example,
in Figure 3.1 is shown which autonomy aspects for commercial robots can be considered
to be achieved. The cleaning robot acts (more or less) without user intervention, just
as it is advised to do so, while most of its actions are selected based on its internal map
and not only on external stimuli, without social interactions or agent-agent cooperation.

For future robots, more complex tasks should be performed. This implies a cascade of
needs for other aspects of autonomy. It is basically well known that the programming of
complex tasks requires for enormous programming efforts, which may be a motivation
to apply AI-methods to such problems (Collier, 1999). Fox and Das summarize in this
regard:3 “In some fields it may be possible to anticipate most hazards, but in medicine and
similar complex settings this seems to be out of the question. The scope for unforeseen

2see comparison of a selection of robots in http://www.testberichte.de/d/read-swf/307638.html

[accessed; online 5-November-2012]
3Fox and Das have a special scope on medical applications, whose characteristics are assumed to be

comparable with other complex environments

http://www.testberichte.de/d/read-swf/307638.html
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 Aspects Current Future

Material autonomy - -

Psychological autonomy - ?

Informational autonomy - +

Representational autonomy - +

Anticipatory autonomy - +

Mental autonomy - +

Autonomy from stimuli - +

Cognitive autonomy  - +

Norm / autonomy organization - ?

Executive (means) autonomy + +

Goal (motivational) autonomy - ?

User autonomy + +

Environment autonomy + +

Agent self-autonomy + dep.

Social / autonomyintention + dep.

Moral autonomy - -

Figure 3.1: Assumed present and future autonomy aspects of robots (’+’ applies,
’-’ applies not, ’?’ questionable, ’dep.’ depends).

and unforeseeable interactions is vast. It is simply not possible to guarantee that all
possible hazards will be exhaustively identified for substantial applications. Hazards
that have not been anticipated will arise and strategies will be needed to prevent and
minimize their consequences. Software designers, including those building AI systems,
must acknowledge this hard reality” (Fox and Das, 2000). The rationale behind the
generation of intelligent systems is to overcome such design limitations of systems in
unpredictable environments. This increases the independence or autonomy from the
initial design and, hence, from the designers, because otherwise, the system must be
updated by its designers with incremental updates or the like, in each case a new and
unknown situation is detected. Hence, a superimposed objective of many AI-approaches
in robotics is the intention to evoke emergence effects, so that adaption capabilities
can enhance from the initial system design in new ways. The statement of Russell
and Norvig (2010) underpins this: “An agent lacks of autonomy when it relies on the
prior knowledge of its designers. An autonomous agent should compensate for partial
or incorrect knowledge” (Russell and Norvig, 2010).

3.4 Autonomy for Structural Drift

This understanding of autonomy may subsume several already available notions of
autonomy, however, it emphasizes the changing of the system ‘post-design’. Hence,
this can be called autonomy for structural development. The autonomy for structural
development is based on the structural determinism and coupling of systems, according
to Maturana and Varela (1998). Structural determinism means that any system always
behaves according to its current structure. If the system differently behaves than it is
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Figure 3.2: Different kinds of autonomy aspects



3 Robot Autonomy 39

constructed, there is a failure. For instance, adopting Maturana and Varela’s example,
if a car does not accelerate by pressing the gas pedal - as it is constructed - there is any
built-in reason to ignore the user input, or it has a failure. The failure itself is a change
of the system structure, and the system behaves according to its changed structure.

Furthermore, a system and its environment are structurally coupled, which means that
system and environment mutually perturb each other. The history of changes that
a system undergoes while being structurally coupled with its environment is called
system ontogeny. It can be said that all physical systems undergo structural changes.
There exist various types of changes, and there are at least such changes as aging,
abrasion etc. The structural determined system (every system) functions according its
‘mutating’ structure; in the case of aging, or abrasion, it typically becomes less reliable.
The ongoing ontogenic change of a system is called ‘structural drift’ (Maturana and
Varela, 1998). The environment as well underlies a structural drift. The structural
drifts of both, system and environment, can be considered to be driven by the ongoing
perturbing interaction of the system and environment in two different directions:

• On the one hand, the system adapts to external requirements, for instance, to the
present environment condition in order to be able to deliver its current function
or task.

• On the other hand, a system like a physical robot that is constructed for providing
certain functionality or task should perturb the environment in a respective
(intentional) manner.

For the system that is well adapted to its environment, one can state that the structural
drift of a system is always in congruency with the structural drift of its environment
(Maturana and Varela, 1998). As they express it, the environment functions as a ‘selector’
of the structural drift the system has to undergo, and the system actions are the ‘selectors’
of the changes that the environment is subjected to. From this it becomes obvious
that limitations of the changeability of the system structure depict the limitations of
its adaptability (and vice versa4). It can be assumed that a robotic system remains
mainly structural constant with regard to its hardware (embodiment). Consequently,
its autonomy is based on structural changeability within its software realization. For
instance, if a robot can not reach a certain area with its manipulator, it, its adaptability,
and, hence, its autonomy is limited to this hardware structure limitation. With regard
to the crow example, intelligence can be applied to overcome such limitations. Here,
crows utilize tools in the correct sequence in order to fetch some food they usually can
not reach (Wimpenny et al., 2009). Thus, intelligence can increase autonomy.

3.4.1 Autonomy as control of control

Smithers (1997) differentiates artificial systems into three basic types of systems:
‘Automatic’, ‘controlled’, and ‘autonomous systems’. Automatic systems are ‘self-moving’
or ‘self-acting’ systems. They are built for very specific purposes, and they are just doing

4the limitations of the changeability of the environment structure limits what the system can realize
within the environment
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that what they are built for. For instance, a clockwork merely moves the clock hands.
It is important to denote, that the movement has to be generated by transformation
of energy.5 The transformation of information, typical for software programs, can
be automatically realized as well. Thus, many software programs (considered to be
systems) are often automatic systems.

Controlled, ‘cybernetic’ or ‘self-regulated’ systems are basically also kinds of automatic
systems. The essential difference is that control systems comprise a feedback loop. With
the help of this feedback loop, control systems are basically enabled to compensate
deviations due to disturbances by comparing its real with the desired outcome. This
adaption (to the present operating or environment conditions) is realized according to
predefined control laws or rules (ex-ante), which are usually derived from a model of the
system to be controlled. Rasmussen (1983) denotes that humans usually do not control
their actions on basis of feedback signals from their environment. Such feedback control
is required for very specific, slow, and accurate movements, for example, assembly tasks
or drawing. In most cases action control is feedforward. Consequently, humans can
establish various feedback loop behaviors if they are required. However, most often
they are not required and, hence, typically human behavior is finally not only based on
traditional control theory.

In general, controlled and autonomous systems differ from automatic systems by being
equipped with any kind of feedback loop. Thus, both are basically assigned to the class
of self-regulating systems, whereas the class of autonomous systems is a superset of
self-regulating systems. Smithers states: “A definition of autonomy is not to be derived
from control theory since it is a concept that subsumes the concepts of control and self-
regulation, not one that can be subsumed by them”6 (Smithers, 1997).

3.4.2 Autonomy as adaptability

Collier and Hooker (1999), favoring a graduation of autonomy, refer to control and
self-regulation as first and higher order adaptive strategies. In particular, a first order
adaptive strategy is based on fixed sets of system-internal and system-environment
interactions which are determined by an already known set of environment conditions.
Hence, this fits for traditional engineered systems with a static implemented functionality.
Autonomous systems possess higher order adaptive strategies which are strategies
for modifying first order strategies in order to increase adaptive ‘width, strength or
consistency’. This is called the process of adaptation, which is a “system-environment
open-loop interaction that yields system modification such that [...] system autonomy
and internal system information increases” (Collier and Hooker, 1999). Second or
higher order adaptive strategies denote such capability to adapt adaptations7 and are
called adaptability (Collier and Hooker, 1999). Further on, systems with adaptability
obligatorily are, according to Collier and Hooker (1999), information processing systems

5A manual gear box for instance, is a system that merely transforms moments and thus, no automatic
system.

6in terms of control of control
7There is an analogy to Smithers’ statement ‘control of control’ with regard to its similarity to ‘adapting

the adaption’.
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(Conrad, 1993), and the adaptability is closely related to the system intelligence (Hooker,
1995). The adaptability is enhanced by “building features into the regulatory design of
the system corresponding to as wide-ranging dynamical patterns shared by the class of
tolerable environments as possible and using these as the basis for anticipative adaptations
in response to local, short-term perceptual information” (Collier and Hooker, 1999). On
the one hand, the common properties of the environment conditions affect the control
system to change. This could concern changes that require more time to change, for
instance, such as the modification, extension, generalization of complex movements in
skills, or the like. The knowledge about the common properties of the environment
may be utilized in an anticipation process in order to be able to flexibly adapt planning
according to expected effects and changes of the environment.

3.4.3 Autonomy for anticipation

Considering limitations within the software structure, Collier (1999) criticizes derivative
anticipation capabilities. Derivative anticipation capabilities are anticipation capabilities
that are explicitly designed into the system. Collier states that they are overestimated
in providing autonomy, because they underlie design limitations. The anticipation of an
autonomous system should be autonomous and intentional. If system functionality is
specified by its designer, it is derivative functional and, hence, limited to its functional
design. Such a system requires for reference to any external autonomous functional
system because its intention is derived from the external autonomous intentional system.
However, “if the anticipatory capacities of a device are grounded in its autonomy
[...], anticipatory design limitations can be overcome through reconsideration of their
contribution to autonomy, permitting some new functions to arise which contribute
to autonomy in fundamentally new ways” (Collier, 1999). In conclusion, the so-called
anticipatory autonomy requires the realization of other autonomy aspects: It requires
representation autonomy and informational autonomy. This might be illustrated by the
following allegory: A system can not consider what it can not anticipate, it can not
anticipate what it can not represent, and it can not represent those aspects that can
not be expressed via its informational structure.

3.4.4 Autonomy as reciprocal information entropy

According to the work of Bertschinger et al. (2008), autonomy can be considered to be
inversely proportional to the system information entropy. In this regard, Bertschinger
et al. present an information theoretic approach to autonomy, and provide a quantified
autonomy measure. They argue that the autonomous system should not be fully
determined by its environment. This decoupling of system and environment, they call
non-trivial informational closure. The informational closure can be increased if the
mutual information between system and environment is enhanced. The informational
closure measures “the extent to which the system models its environment” (Bertschinger
et al., 2008). It appears logical that if the internal modeled representation of the
environment is used to predict the outcome of interactions, or the dynamics of the
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environment, the information entropy is decreased, because there is nothing new to the
system.

3.4.5 Informed autonomy

Rohde and Stewart (2008) reflect on different definitions of autonomy, and in particular,
they criticize that there are many ascriptions of autonomy, and many ascriptions are
based on observed behaviors of the system. On the one hand, observation is subjective,
and can be only objectified considering agreed conventions in a constructive world
view. Maturana and Varela (1998) give the example with the submarine pilot, who
controls the submarine based on different kinds of meters in order to pass a reef full
of obstacles. The pilot never left the submarine, thus, he/she possibly never knows
what obstacles, reefs and submarines are, in contrast to the observer that is located
at the seacoast. Hence, the observer and pilot probably will have some troubles to
give mutual understandable specifications of the navigation task. It may be concluded
from this that robot and humans may possess over a compatible interpretation and
understanding of the world, if the autonomous robot is equipped with similar sensors,
and it can access to the social agreed conventions, for instance, via social interactions.
The urgent necessity for social robotics is discussed later on in Section 3.5.2.

On the other hand, Rohde and Stewart’s criticism on relating autonomy to observed
behaviors of the system is that these observations underlie an intrinsic behaviorist
reduction. This can be illustrated by considering the input/output mapping of even
small black boxes may lead to serious problems, as can be shown by the theory of Finite
State Machines (Gill, 1962) with the help of the non-trivial automaton example (cf. von
Goldammer and Paul, 1995). Assuming informational closed systems as systems that
are capable to internally represent external aspects, and assuming that such systems, or
intentional systems are self-referential systems, this indicates that those systems should
have a strong coupling to their system-internal representations. These may be modeled
as black-box system which carries more internal information (states and their alphabet)
as can be transferred once per input or output (and their alphabets). For instance,
the black-box system has binary input and output (p = 2;q = 2) and 10 internal states
(n= 10).8 With knowing only this, the theory of Finite State Machines allows to compute
that there are N = (qn)pn ≈ 1,05 ·1026 possible Finite State Machines, and it requires an
experiment of presenting l ≤ (2n−1)(Nn−1). 2 ·1028 different inputs to the system
until the mapping functions from input to internal states and output can be determined.
The number of possible Finite State Machines exponentially increases, extending the
number of inputs, states, or their alphabet. Consequently, behaviorist reduction, e.g.
Touring-tests, seems to quickly lead to analysis problems and does not support a formal
determination of autonomy (Rohde and Stewart, 2008). They “lose the hope for an
absolute criterion, providing timeless necessary and sufficient conditions for [genuine]
autonomy” (Rohde and Stewart, 2008). Instead, they outline the idea of ‘informed
autonomy’, which is basically to focus on the mechanisms that generate autonomy.

8the human brain has an estimated ratio of input/inter/output neurons of approximately 1 : 100.000 : 10

(Maturana and Varela, 1998, p. 159)
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3.4.6 Research-related mechanisms generating autonomy

Lussier et al. (2004) lists a couple of AI methods that are usually utilized to realize
autonomous features; these are

• planning,

• execution control,

• situation recognition (including diagnosis), and

• learning.

The execution control is the coordination and supervision of the execution of plans.
High-level actions are often decomposed into sequences of behaviors or simpler tasks.
The execution is supervised in order to react to possible failures, occurring due to the
system failures or due to unexpected environment conditions. The diagnosis is required
to identify an erroneous system state, generally after error detection. Diagnosis may be
regarded as a specific case of situation recognition (Lussier et al., 2004).

In consequence, mechanisms based on methods listed above (without intention to be
exhaustive) play a central role in generating autonomous robots. However, learning
seems to be a key aspect, because systems without the capability to learn may adapt
to the foreseen and considered conditions, and if robustly realized also to some beyond.
A ‘real’ autonomous system, a system that is capable to learn, however, is intended
to operate under conditions where occurrence of something new is no exception but
normal (Smithers, 1997).

3.4.7 Autonomy via nature and nurture

Autonomous systems have, “as an intrinsic property, the ability to deal with new
situations: as the conditions change for this ongoing process of formation,9 so the laws
of regulation so formed change, and change in such a way to keep the autonomous
system naturally well fitted to its current situation” (Smithers, 1997). Here, the ‘fitting
to the current situation’ denotes a relation to the demands for the intelligence of the
autonomous system with regard to the ‘nature versus nurture debate’10. This debate
centers on what contributes to the human development. In this connection, some
philosophers argued that certain things are inborn and occur regardless of environment
influences and, thus, are genetically inherited (nature). Others argued that the mind
starts at a blank state, also known as ‘tabula rasa’, and everything that humans are
is coined from their experiences (nurture). Ridley (2003) favors the perspective that
there is a mutual relation between environment and genetic influences in general, which
may vary depending on what is considered. For some more complex behaviors, such
as social behaviors, individuals are rarely affected by their ancestors as rather by the

9continuously forming the laws of operation
10An analogy to robotics could be described as follows: The nature state is the state of the robot as it

is delivered to the user or intended place of operation. The nurture denotes the development of the
robot in accordance to its operation environment, beginning from the natural state at its start of
operation.
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pressure of the environment: “Distant relatives can have very similar social systems by
convergent evolution if they inhabit similar ecological niches” (Ridley, 2003). Thus, the
role of the environment, the ecological niche of an autonomous system, seems to play
an essential role: On the one hand, it may have effect on the suitable morphology of
the system (cf. Collins et al., 2005). On the other hand, it affects the requirements
for the behavior repertoire. Since a behavior repertoire is huge, it potentially allows
to maintaining the system’s autonomy under a variety of environment conditions. If
the behavior repertoire is limited, the chances to maintain the system’s autonomy is
limited as well with regard to changed environment conditions, as expressed by Arkin:
The “concept of niche is important to roboticists because of their goals. If the roboticist
intends to build a system that is autonomous and can success fully compete with other
environmental inhabitants, that system must find a stable niche or it (as an application)
will be unsuccessful” (Arkin, 1998).

In consequence, the learning from experiences (e.g. new behaviors or application of
available behaviors for new purposes) denotes a key element to allow a system to
overcome pre-specified behaviors in order to maintain autonomy for not considered
environment conditions. For humans, and this equivalently applies for robots that are
sharing parts of the humans ecological niche, complex behaviors seem to be required.
These are far more complex than simple inherited stimulus-response behaviors that suit
well, for instance, for bacteria to maintaining their autonomy. Hence, the adaption is
required to enhance autonomy, and its complexity is certainly related to requirements of
the ecological niche, in which the system is intended to exist and operate. Consequently,
autonomy can be regarded to depend on

• the requirements from its ecological niche,

• the behaviors, skills, or strategies that are predefined (nature) to maintain auton-
omy under usual conditions, and

• the skill to integrate (learn from) experiences (nurture), in order to extent the
repertoire to maintain its autonomy under new conditions.

As Ridley denotes, “human beings were under selective pressure to develop more pro-
cessing power” (Ridley, 2003) with a mind that is not equipped with innate data but
innate ways of processing data (Pinker, 1994). Thus, maintaining autonomy in the hu-
man ecological niche seems to require the ability of complex information processing,
and the establishing of processing structures such as human cognitive functions. In
consequence, researchers developing autonomous robots do somehow concentrate on
those system features that represent key aspects of systems as they are typically also
perceived in cognitive science.

3.4.8 Summarizing annotations

If a robot is demanded to perform complex tasks, and this requires a deeper under-
standing of situations, it is very probable that on the system’s understanding may not
result evidence about the present situation, as rather the system beliefs what it looks
like, and when it is detected (Wardziński, 2006). In consequence the system becomes
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cognitive autonomous, and autonomous from stimuli, because the stimuli are fused and
integrated to interpretations, the system does not sense its environment, it rather in-
terprets the input data based on its current state of knowledge and intention (Söffker,
2008), which in turn is based on its ontogeny, and its goals.

The nature of the changes within the software structure can be considered as a matter
of change of internal states, knowledge, connections of software components and the
like. This can be compared to the psychogenesis of humans. The psychogenesis is
the origin and development of mental functions, traits, or states; the development
from mental as distinguished from physical origins.11 The psychogenesis of humans
is typically absolutely unique for each individual, because the complex environment,
e.g. the human ecological niche, comprises inexhaustible number of facets. It appears
reasonable to assume that the ontogeny of intelligent artificial systems, intended to
mainly share the human niche, results in the synthesis of unique individual systems.

In order to summarize appearing most essential requirements for realizing an autonomous
robot, it should correspond to be

• an information processing system,

• a system that can generate and maintain representations of relevant aspects,

• a system that possesses the capability to intentionally anticipate,

• a system that has the freedom to alter its rules of control and behavior, respectively,

• a system whose complexity is related to the complexity of its respective ecological
niche; therefore, it may be required to be

• an intelligent system.

3.5 Implications for Safety

It is questionable, if the next generation of robots requires being goal autonomous, since
a robot that pursues its own goals imply several critical aspects, as outlined later on in
Section 3.5.2. Similarly, moral autonomy, the freedom to construct and self-impose its
own moral laws, implies suspect problems. Weng et al. (2009) differentiate between
Type 1 and Type 2 artificial ethics. The first refers to robots that are programmed to
obey a given set of legal and ethical norms, and the latter, to robots that are able to
generate their own values and ethics.

Many contributions to safety rely on applying Type 1-like limitations, which means that
safety limitations are well engineered into systems and, hence, are externally given to the
system. With this in mind, the traditional safety engineering practice could be classified
as Safety Type 1 limitation. If this affects the behavior of a system in any way, the system
acts at least partially heteronomous; hence, this effects or reduces its autonomy. This

11Merriam Webster dictionary, http://www.merriam-webster.com/dictionary/psychogenesis [ac-
cessed; online 20-November-2012]

http://www.merriam-webster.com/dictionary/psychogenesis
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appears reasonable, because any safety-critical system should optimally be heteronomous
in hazardous situations, and behave according to the specified protective mechanisms.

The minority of contributions are related to safety limitations in the meaning of Type
2. As already mentioned, the lack of complete safety specifications possibly imply that
protective functions have to be learned, or that Type 1 limitations have to be extended
or refined. Without a doubt, such capabilities must be carefully investigated. In that
respect, it can be argued according to Yampolskiy (2013) that safety mechanisms always
have to remain as given by humans (Type 1), and should not be a subject of the recursive
self-improvement process of Artificial General Intelligence. Otherwise, it will be very
likely that humans as well as their vital resources will not be reliably protected, and “there
will be a direct competition between superintelligent machines and people” (Yampolskiy,
2013), what basically conflicts with the imperative of Jonas (1985), mentioned initially.

3.5.1 A cognitive perspective

As aforementioned, it may become very difficult to evaluate the function of a system
by observing only its input and outputs. This disqualifies the classic concept of
an additional safety observer, which operates in parallel to a system and limits its
outputs to safe ones. However, there is a model which comprises a kind of observer,
which certainly not lacks a behavioristic reduction, as it rather explains behavior
between the poles of distinct forces - psychological forces within a psychodynamic
framework. Psychodynamics and related psychoanalytical theories are of interest for
cognitive science, because psychoanalytical concepts coincide with prevailing cognitive
models of science (Bornstein, 2003). Psychodynamics basically considers changes a
psychical system undergoes as determinants for its current behavior. One of the core
assumptions of psychodynamics is the so-called psychic causality. Psychic causality
signifies that cognitions, emotional responses, and expressed behaviors always stem from
some combination of identifiable biological and/or, psychological processes (Rychlak,
1990). Biological and/or, psychological processes are the determinants for the behavior.
Analogously, the inner states and processes of an artificial embodied system are the
determinants for the system behavior.

Freud’s structural model of the [human’s] psyche is an empirical model whose scientific
grounding is controversial discussed. The structural model is one of the Freudian
concepts of the psychodynamics of humans, and it still plays an important role in the
psychoanalytical approach. Kandel states that “psychoanalysis still represents the most
coherent and intellectually satisfying view of the mind” (Kandel, 1999), and Buller that
the unscientific character of psychodynamics “faces a fast track to oblivion” (Buller,
2005). Neither the combination of AI and psychoanalysis is new (Turkle, 1988), nor the
introduction of psychodynamic aspects into artificial systems (Buller, 2005; Zeilinger
et al., 2008).

In the scope of the safety-autonomy dilemma, it may serve as a rough sketch, illustrating
how safety mechanisms may be integrated into an autonomous system without limiting
it to stringent, ontogenically static rule-based safety mechanisms. The drawback of
static safety mechanisms can be illustrated with two examples:
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1) There are many accidents and suicides by people fall to death. In order to prevent
this, a regulation could be issued that requires to install a safety barrier at every
location, somebody could fall to death, for instance, in front of every window that is
higher than five meters. This measure could be compared to a stringent static safety
measure, which certainly would prevent many fatalities. On the other hand, what is
about the utilization of windows, balconies, roofs, etc. as evacuation routes? It might
be possible that the total amount of fatalities becomes higher than it was before. People
usually do not jump out of the window, even if they have many possibilities to do so,
because they are aware of the consequences. In case of fire, for instance, everybody is
basically capable to deliberate the risk of jumping out of the window or not.

2) The classical method to ensure safety is to transfer the safety-critical system into a
safe state if something unexpected happens. Robots are usually transferred into a stop
state. Furthermore, states or actions that are specified to comprise unacceptable risks
are banned from the robot’s action repertoire. These measures represent static safety
measures as well. If a robot, for instance, stops in a narrow passage because collision risks
are verified to be too high, it certainly might reduce risks to a minimum on the one hand,
but on the other hand, this might block the evacuation route of a department store and,
hence, provokes high risk. The collision risk has to be regarded relative to the current
environment condition. In this case, a deliberation of risks may allow the robot to accept
a lower collision risk close to an evacuation route in order to avoid the risk of fire victims.

Wardziński (2008) already mentioned the problem of considering safety in a binary
fashion, which is to regard the system to be either in a safe state or not (see Section 2.5.5).
Beyond that, new situations and a changed system (with extended capabilities) have to
be considered as well. It is questionable, if predefined rule sets (understood as state-
actions pairs: ‘if...then...else’) are reasonable because the response with respect to
unknown situation can not be well considered. Instead, it is supposed to inform the
decision making process about risks of several courses of action. The system has to
deliberate the action alternatives case-by-case, taking into account the inherent trade-
off between task success, efficiency, and safety. The action repertoire of the robot can be
additionally equipped with prespecified actions that cause the transition into a safe state
(full/partial de-energization of the system and the like). Hence, these actions remain
available as an acting alternative to be chosen as ‘ulitma ratio’ by the autonomous system,
because if they are appropriate, the risk performing these actions should be very low. The
essential difference is that the system is allowed to check if the pre-programmed ‘limp-
home’ action is suitable in its current situation, or if there are more reasonable actions.
This implies to draw the attention of safety investigations toward safe deliberation,
and its related mechanisms for which intrinsic tensions exist between objectives of
performance, efficiency, or optimality, and objectives of ethics, morality, or safety.

3.5.2 The psychodynamic structure model

As it is expressed by Buller [2002], Freud’s psychodynamic theory expresses that the
mental life is a kind of a continuous battle between conflicting psychological forces,
which are, for instance, wishes, fears, and intentions. Freud’s structure model explains
this intrapsychic dynamics by the three interacting mental structures, called id, ego,
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Figure 3.3: Freud’s structure model of the human psyche

and superego (Bornstein, 2003). The id represents the basic drives, things wished
to be instantaneously realized. Drives can be considered for artificial systems to be
value state-variables that provide estimates of need (Albus, 1991). The superego is the
antagonist of the id as an agency subsuming parental, educational, or social experiences,
representing the moral agency. The ego has to mediate between id and superego, and
synchronizes them with the reality, as illustrated in Figure 3.3.

The superego represents the component of interest, despite the discussion of its formation
and its effects in psychopathological respects. In essence, it has an effecting and limiting
function on the id drives and the reality of the ego. Interestingly, the superego seems to
be developed during the process where the human evolves from the state, characterized
by parental dependency and heteronomy to the state, in which decisions are of a self-
reliant character. It re-echoes the moral laws that were learned so far by interacting
with parents or others (Bornstein, 2003). Moral rules are standards of behavior, or
principles of right and wrong.12 In consequence, the safe behavior of a human as an
autonomous self-responsible system has to be considered as matter of moral and, hence,
based on moral laws of the superego. For instance, it is wrong (according to our social
conventions) to endanger or injury somebody or damage somebody’s property, if this is
not required to avert a higher damage, for instance, similarly to robot moral behavior
according to the rules of Asimov (Asimov, 1950).

The transfer of the structural model to robots may be controversial, but some aspects
and functions of the superego are important. At first, the development of the superego
is initially affected by a small group of persons (parents, family) in order to generate a
first functional version of the superego with an externally given rule set. This initial
coined superego, or at least a part of it, seems to remain influential over the lifetime.
Secondly, it appears to be a model of an instance or agency, which plays an important
role to basically make an individual and its egocentric desires and wishes compatible

12according to Oxford Dictionaries, http://oxforddictionaries.com/definition/english/moral
[online; accessed 13-November-2012]

http://oxforddictionaries.com/definition/english/moral
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to its social environment. Thirdly, it seems, as most of the influence of the superego
takes place unconsciously (Freud, 1923) that in most cases, the individual does not
perceive its own superego as a mechanism that rudely and patronizingly limits its
own freedom (autonomy). Consequently, it appears as proper mechanism to ‘colorize’
decision alternatives so that some might appear as unpleasant or shameful. Thus, this is
an ‘involuntary voluntary’ confinement, and ideally, it results an individual, possessing
full freedom, which in principle ‘quasi-voluntarily’ accepts confinements if she/he runs
in danger to constrain the freedom of other individuals.

This initially appears somehow pedestrian, but incorporating the objections of Yampol-
skiy (2013); Yampolskiy and Fox (2013), it becomes more logical: Yampolskiy and Fox
consider that AI may become equivalent to, or exceeds human intelligence level. Reach-
ing human level implicates that AI becomes capable to reproduce and improve its own
kind. Kurzweil (2005) calls this the phenomenon of rapidly escalating superintelligence.
At this stage, it may become very critical ensuring the philanthropic development of AI.
Yampolskiy and Fox outlines that safety mechanisms, protecting humans (humankind),
has to remain persistent and untouchable by improvements of AI. However, such safety
mechanism can not be realized as rules or constraints on the behavior, because the AI
may outwit every constraint imposed by humans. They emphasize that AI must want
to cooperate, it must have safe and stable end-goals, to the effect that AI specifically
designed to pursue human welfare as their primary goal.

In this respect, a structure model may serve as blueprint of the elementary mechanisms,
involved to establish and maintain social behavior, subsuming the aspects of safety,
of autonomous individuals. Thus, a moral collective of human specialists may be
responsible to generate and maintain the superegos for artificial intelligent systems, or
at least some essential parts of it.
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4 A Cognitive-oriented Architecture

There are various robots that are controlled based on a cognitive-oriented architecture
such as, for instance, SOAR or ACT-R (Laird (2009) gives a brief overview). Ahle and
Söffker (2006); Gamrad and Söffker (2009a,c, 2010) also provide a model and an explicit
structuring for cognitive architectures which is based on a throughout homogeneous
framework. The Situation-Operator-Model approach is a system theoretic meta-model
technique which comes with a graphical notation. It is applied for describing cognitive
functions, procedures, and their interaction processes (cf. Ahle, 2007; Gamrad and
Söffker, 2009a) and for realizing autonomous robots (Ahle and Söffker, 2006; Gamrad
and Söffker, 2010).

4.1 Situation-Operator-Model

Within the SOM approach (Söffker, 2001) processes of the real world are understood
as a sequence of effects. Changes are therefore modeled as sequences of scenes and
actions. Scenes and actions are modeled as situations (time-fixed description of the
considered system or problem) and operators (changes within the considered system),
respectively. A situation si consists of a set of characteristics, Ci ⊆ C and a set of
relations Ri ⊆ R. Basically, the characteristics can be textual, logical or numerical
expressions. In technical systems, they are based on physical values measured by
sensors possibly combined with suitable filtering. Relations represent the inner structure
of the situation, which extends the classical situation calculus (McCarthy, 1963) by
linking the characteristics to each other through suitable functions. In order to describe
the relations, known problem related modeling techniques can be used, like ordinary
differential equations, differential-algebraic equations, algorithms or other graphical
formalisms (e.g. Petri-nets). An operator transfers a situation to another (oj : sx → sy).
Depending on its functionality, the characteristics, the relations or both can be changed.
An operator on a higher hierarchical level can consist of several operators, which is
consequently called ‘meta-operator’ (oi→n : si → sn).

The graphical representation of the SOM approach is shown in Figure 4.1, in which
situations are illustrated by gray ellipses. Here, black dots denote characteristics, and
white circles denote relations. The relations (or passive operators), also active operators
are represented by white circles. A detailed description about this underlying approach
is given by Söffker (2001, 2008).

An operator (relation) appears as an information-theoretic construct, which is defined
by its function, describing modification, with explicit and implicit assumptions as
inputs (see Figure 4.2): Explicit and implicit assumptions eAi, iAi are distinguished.
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Figure 4.1: Graphical representation of a situation-operator sequence denoting
the modeling of changes within the real world (Söffker, 2001).
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Figure 4.2: Graphical illustration of the active/passive operator (Söffker, 2001).

Function F will only be realized, if the explicit assumptions eAi are fulfilled. The
implicit assumptions iAi include the constraints between explicit assumptions eAi and
function F of the operator. The explicit assumptions eAi are of the same quality as
the characteristics of a situation. In general, textual, logical, mathematical, or other
problem-related descriptions are allowed.

4.1.1 Representing classical control problems

As outlined by Söffker (2008), classical control problems and algorithms can be described
with the SOM notation. In the SOM context, the control of the continuous system
takes place within a fixed situation. The input of the system is represented by a
characteristic cB, the output by cA and the reference value by characteristic cC. These
characteristics are time-variant numbers. The feedback loop is realized by a relation r1

and the controller rule by a relation r2.

4.1.2 Representing algorithms

For algorithms, the characteristics ci represent the data of the algorithm. The relations
ri result from the problem modeling and are implemented in data-objects. The operators
oi denote the execution procedure which changes the object of the algorithm. The
operator sequence is predefined as well as the kinds of situations that may exist.

Finally, the SOM approach extends the situation calculus and state-action scheme by
a introducing a structure for describing internal relations and the system’s mapping
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of the real world structure to the internal representation. One of the advantages of
the SOM approach is the uniform and general formulation which allows for a better
understanding of any kind of interaction. Different and abstracted levels of interaction
can be explained which makes the more and more confusing interactions of complex
systems comprehensible.

4.2 Cognitive-oriented Robot Architecture

Initially, Ahle (2007) designed and implemented a cognitive-oriented architecture on a
mobile robot. Gamrad and Söffker (2009a) refined the architecture (see Figure 4.3)
and realized it using high-level Petri Nets. At first, the architecture comes with the
known three levels for skill-based, rule-based, and knowledge-based decision behavior,
according to Rasmussen (1983) and introduced in Section 1.2.2.

4.2.1 Behavior generation hierarchy

On the skill-based level, a situation is generated from sensor measurements. Operators
represent changes in the real world, such as actions of the robot or the dynamic of
the environment. These operators can be either predefined by the system designer,
or learned, as detailed later on. The modules for sensing and execution connect the
architecture to robot sensors and actuators. The arrow between the sensing and
the execution module represents the performing of sensomotoric actions, which are
implemented underlying robot system.

On the rule-based level, the modules for perception and planning are realized. The
planning module generates a sequence of actions in order to achieve a given goal. The
underlying rule-based knowledge can be previously defined or learned from interactions.
The perception module comprises two modules, one for attention and one for recognition.
The recognition module comprises rules to process sensor data, for instance, by fusing
data or filtering. The attention module comprises rules in order to select problem
relevant characteristics.

If the internal representations do not correspond to the real world, the knowledge-
based level becomes important. This might be the case if a plan to a goal can not be
generated on basis of available rule-based knowledge. Furthermore, the system may
need to refine its internal representations of action effects. This takes place by learning
from interaction with the environment and is stored either as experiences or as operators
in the action model.



54 4 A Cognitive-oriented Architecture

Attention 

model
Recognition 

model

Attention Recognition

Perception

Perception model

Execution

Planning

Learning

Sensing

Mental action 

space

Action model

Meta operators

Environment

Goals

Knowledge-based level

Rule-based level

Skill-based level

Action space 

generation

© SRS 2010

Figure 4.3: The cognitive architecture ILCA of Gamrad and Söffker (2010).

4.2.2 Learning issues

Learning from interaction can take place in the considered architecture in different
ways. At first, so-called experiences can be stored in the so-called mental action space.1

An experience is a structure which denotes that there is a transition from a specific
initial situation to a final situation by applying a specific operator. At this stage,
an operator is considered as a black box. In this connection, uncertainty of different
operator outcomes can be monitored in order to detect that an experience is to general
and needs to be refined.

Secondly, operator functions and assumptions can be learned. Hence, it is generalized,
when an operator is applied (operator assumptions), and what ‘difference’ the application
of an operator generates (operator function). This generalized action logic is stored
in the action model. For the learning of operator functions with a more complex
transfer behavior, various refinement iterations may be necessary. Here, operator
functions with a high order differential equation are possible, but not suitable since
the proposed approach assumes symbolic representation for the action logic. The
subsymbolic representation is realized by perception, where nominal values are derived
from numerical values (Gamrad and Söffker, 2010).

1In a newer version of the architecture, the experiences are stored in the short term memory. The
experiences in the short term memory are successively used to learn action models.
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Figure 4.4: Different types of situations (Gamrad and Söffker, 2010).

4.2.3 Adaptive and selective perception

Within the perceptional subsystem, recognition and attention is realized, and for both,
recognition and attention rules can be learned. Thus, Gamrad and Söffker (2010)
differentiate between, measured, derived, and focused characteristics. The difference is
illustrated in Figure 4.4. At first, measured characteristics are closely related to the
sensors and defined by the system designer; hence, they denote defined and fixed set
of characteristics. Secondly, the derived or virtual characteristics denote a set of an
arbitrary number of characteristics. Their generation via relations can be either pre-
defined during the design stage or learned during operating time, and the set of derived
characteristics typically is dependent on the current problem context (due to the explicit
assumptions of the relations). Furthermore, measured characteristics and other derived
characteristics can be combined in order to build new virtual characteristics with a high
degree of abstraction (Gamrad and Söffker, 2009c). Thirdly, focused characteristics
are a selection of the measured or derived characteristics. The attention module
(Figure 4.3) contains either pre-defined or learned rules in order to generate focused
situations. The set of focused characteristics can be arbitrarily changed from situation to
situation in dependence on the current parameters of measured characteristics, derived
characteristics, or on operators planed to be executed (Gamrad and Söffker, 2010).

4.2.4 Mental action space and action planning

The mental action space can be generated either by stored experiences (situation-(meta)
operator-situation sequences), or by application of operators from the cognitive system’s
action model (cf. Gamrad and Söffker, 2009c). Hence, the action space is a combination
of all possible sequences of action that are available in the current situation and its
possible subsequent situations, as illustrated in Figure 4.5. The action space is either
complete (from the perspective of the current action knowledge), or limited to a certain
depth. The generation and the analysis of the action space can alternately take place
with the simulation or execution of actions in a closed-loop manner in order to realize
an ongoing adaption to a dynamic environment (Oberheid et al., 2008). A state space
analysis is also applied to supervise the human behavior in complex environments, to
analyze the human-machine interaction with the purpose to reduce the interaction
complexity of the interaction (Gamrad and Söffker, 2009b), or to detect human errors
Gamrad et al. (2009).
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Figure 4.5: Illustration of a dynamically generated, simple exemplary action space.
The yellow situation denotes the initial, the green the goal situation. The red-
colored sequences of action may result as shortest, the blue-colored as alternative
due to weighting of operators or situations (cf. Gamrad and Söffker, 2009a,c).

If the action space comprises one or more (sub-) goal situations, the planning process
can take place in order to find a suitable trajectory from the current to the desired
situation. The action space has Markov properties, therefore, a set of suitable planning
algorithms can be applied.

4.3 Summary

The current section outlines a generic model of a cognitive-oriented robot based on
a generic structure. The cognitive approach delivers the internal representation of
the interaction with the environment. The internal representation can be basically
considered as informational basis for risk assessment. This enables the robot itself to
consider risks that can result from its interaction with the environment. As reported in
Section 2.5, Wardziński (2008) outlines that such risk assessment should be a function
of the situation awareness.

In order to form a basis for this kind of risk assessment, a fundamental hazards analysis
delivers a useful inside into the different kinds of hazards that may occur in robotic
applications. The different hazard categories are derived in the following section.
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5 Identification and Classification

of Robotic Hazards

In the ideal case, a robotic system should interact with different and not necessarily
pre-specified or arranged environments. Due to this interaction, hazards may arise
or be provoked. Hence, it appears to be reasonable to define the boundary between
system, environment and their main elements, respectively. The basic elements of the
robotic system were outlined in the latter section, and the essential elements of the
environment are defined in this section.

5.1 Defining System and Environment

The boundary between the robotic system and its environment can be either externally
defined by an observer, or via attributes of the system. Intuitively, the system is
described by an external observer, and equals the physical embodiment of the robot.
However, this definition is subjective, and correct in one case, but wrong in another.

5.1.1 The problem of defining the system boundary

An example that illustrates the problem is given by von Goldammer and Paul (1995).
Considered is an industrial robot in an automobile production. The observer can easily
distinguish between robot, screws, tools, chassis, storage rack, and the like. From the
perspective of the (certainly non-cognitive) completely pre-configured robot there exists
no environment. The screws, the chassis, the trajectory of the screw from the storage
rack to the chassis are parts of the robot system. They are objects that are specified
and programmed into the robot control by the designer.

From this example obviously the question arises when a system does have an environment.
In order to generate a working basis it is assumed that this can be answered in sufficient
depth for the current purpose by referring to representations: If the system can adapt
its internal representation of its environment or parts of it (cf. representations in
Section 1.2.2, Section 3), the mechanisms providing this mapping from environment
to internal representation can be understood as the boundary of the system. For a
cognitive system, the robot physical embodiment can be assumed as a valid system
boundary for most of the considerations.

From a global perspective, the environment consists of distinguishable entities. With
regard to safety considerations, it seems to be reasonable to distinguish objects and
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humans, since the threat of humans is of primary interest. In order to define the
entities of a robot’s typical1 ‘world’ it can be assumed that it consists of the robot(s)
Rt, environment objects Ob j, and humans H. These are understood as the basic object
categories the robot’s world consists of. From the perspective of the robot, the robot’s
world is identical, the description ‘robot’ can be replaced by ‘I’.

5.1.2 Transition of responsibility

The gripping problem is theoretically solved,2 thus, it is probable that robots soon
become capable to manipulate various objects in unstructured environments. As shown
in the sequel, the different objects may pose risks. The question arises who is responsible
for the risks which may emerge when a robot manipulates objects. Usually, the owner,
or the person that the owner allowed to use an object is responsible for it. For instance,
potential hazardous objects, such as the kitchen stove, hairdryers, candles, and the like,
have to be adequately handled by the persons living in a joint household. In the robotic
context, it is suggested that the robot has to become responsible for an object and its
proper handling, if it starts to manipulate it. It seems to be more difficult to define,
when this responsibility ends.3 Irrespective thereof, the assignment of the responsibility
for manipulated objects to the robot has fundamental consequences for ensuring safety.
In consequence, safety aspects are related to manipulated objects, environment objects,
and actions that a robot performs in presence of these objects.

In order to decompose the problem complexity, the interaction of different constellations
of robots, humans, and objects are differentiated. The Hazard Theory provides a
systematic approach to decompose the hazard actuation into its contributing elements.
It is applied in order to realize a generic classification for hazardously interacting entities.

5.2 The Hazard Theory

The Hazard Theory (Ericson, 2005) describes the formation of accidents or mishaps in
a generalized manner. Accordingly, a hazard is a potential condition that can result
in accidents or mishaps. In this connection, the hazard is a potential event, while
the mishap or accident is the occurred event. Both are different states of the same
phenomenon. The state transition from hazard to mishap is called the hazard actuation.
Basic mandatory and sufficient requirements for turning a hazard into a mishap are the
three basic hazard components. The basic hazard components are

1There exist more complex scenarios containing several robots or robot cooperation. For sake of
simplicity a typical scenario of one single robot in the human living environment is considered.

2according to Gill Pratt, plenary lecture ‘Today’s DARPA Robotics Programs: Toward a Symbiosis of
Productivity and Protection’ held at the IEEE/RSJ International Conference on Intelligent Robots
and Systems 2012 in Vilamoura, Portugal

3On the one hand, the robot deposits a knife in cutlery drawer; hence, its responsibility ends in
the moment, the cutlery drawer is closed. On the other hand, there are more complex cases, for
instance, the robot should deposit a used candle (containing hot wax), or it is allowed to proceed
with a new task after using the kitchen stove. When does its responsibility exactly end?
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• the hazardous element, as the basic hazardous resource being the driving force for
the hazard, such as hazardous energies.

• The initiating mechanism, as the trigger or initiator event, which causes the
hazard to occur, and

• the target and threat, as the person or thing being in danger to get injured or
damaged.

These components form the so-called hazard triangle. The geometrical form ‘triangle’ is
used in order to illustrate that all three hazard elements are required for a hazard to exist.
In an industrial robotic application, for instance, the force or kinetic energy of the robot
is a hazard element and the workers are the targets. The initiating mechanisms are,
for instance, the worker which crosses the moving trajectory of the robot (by entering
its working range), and the fast movement, the robot performs. The countermeasures
which are typically used to mitigate resulting collision risks are exemplary explained in
the context of the hazard triangle in Figure 5.1:

1. The maximum working velocity/force of the robot can be limited such that
maximum available can be classified as non-critical. In consequence, the hazard
element is eliminated.

2. Threatened target can be removed from the hazard triangle: Workers are efficiently
kept away from the working range by being separated through a safety cage
(segregation paradigm).

3. If the latter two methods are not applicable, because hazardous energies are
required for fulfilling the task, and the human is required to remain in the working
range, the initiating mechanisms have to be reliably observed and considered
for the hazard control. The initiation mechanism, for instance, ‘human is in the
movement trajectory of the robot’, and ‘robot performs fast movement’, can be
eliminated by detecting the human’s position and adjusting the robot’s movement
such that the collision of robot and human is reliably prohibited.

5.3 Classification of Hazard Causes in Robotic

Applications

Ericson (2005) decomposes the basic hazard components, as a first level of a hazard
actuation, into a further second and third level. The second level describes the causal
factor categories. Thus, the causal factor categories detail the hazard elements. In
general, they are subsumed to be related to hardware, software, environment, function,
interfaces, and so forth. In the third level, the causal factors are decomposed into
detailed specific causes.

When a robotic system is considered as a whole in an open environment, it is reasonable
to resolve how different entities of the environment contribute to hazards. Therefore, the
hazard components (first level) can be further decomposed with regard to the origin of
the causal factors (second level). The different origins are the different object categories
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Figure 5.1: Hazard actuation in a robotic example according to Ericson’s Hazard
Theory (Ericson, 2005): Each hazard can be eliminated by eliminating at least one
of the basic hazard components, represented by the edges of the hazard triangle.4
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Figure 5.2: Hazard actuation in a service robotic context, decomposed to hazard
components and causal factor origins, adopted from Ericson (2005).

(introduced as the basic entities of a robot’s world). The decomposition of the hazard
components is illustrated in Figure 5.2. Consequently, the causal factors origin from,
or target at humans, robots or objects. The interaction of the entities of one or more
object categories can result in hazards and mishaps. On basis of this arrangement,
all possible combinations of causal factors can be generated as a basis for a systemic
analysis. But not all combinations are relevant for safety analysis. The safety relevant
combinations are shown in Table 5.1. At first, there are combinations in that the
robot itself is the final threatened target (crossed-out blue). These cases have priority
for robot security interests. The combinations containing no robot are obviously not
in the scope of the robot safety process (crossed-out red). The remaining candidates
finally are the safety relevant combinations of hazard causal factors; therefore, a first
version of definitions are formulated in the sequel.

4some graphical elements are obtained from the public domain clip art gallery www.openclipart.org

www.openclipart.org
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Table 5.1: All combinations of possible robotic hazard causal factors. Those, not
directly related to robot safety aspects are filtered: Crossed-out blue are related
to security aspects; for the red crossed-out combinations, no robot participates.
The targets human and environment objects are aggregated in order to preserve a
better overview. With regard to the safety relevant aspects, it is referred to the
corresponding text sections.

5.3.1 Robot-originated and robot-initiated hazards

The robot itself can contain the hazard resource. Hazardous energies can be released
having the potential to injure humans or damage valuable objects, such as kinetic
energy or potential, chemical, electrical energy, and so forth. The release might be
caused by faults of the robotic systems, by inadequate autonomous decisions or plans.
As simplification, the human around the robot is considered as threatened bystander
who is not involved in the hazard actuation itself.

As the robot becomes responsible for the objects that it manipulates, the hazard
potential that may be changed thereby must be considered as well. For instance, if the
robot has gripped sharply shaped objects, such as a knife, screw driver, and the like,
the hazard potential of movements is changed with regard to the movement direction.
From this follows that the robot becomes as well ‘responsible’ for correct (safe) usage
of tools. This also implicates that additional hazard energy resources may appear if
objects are handled by the robot (such as drill machines, electric irons etc).

Definition 1: A hazard is called robot-originated and robot-initiated, if a robot
comprises one or more hazard resources. An object that is manipulated by the robot
becomes a part of the robotic system, including further hazard resources. Hazardous
energy can be released that potentially causes injuries or damages. The reason of the
unwanted release of energy is caused by the robot system itself, without effect on the
accident causation through humans, and environment objects (see 1 in Figure 5.3).
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Figure 5.3: Illustration of the different categories of hazard actuation (see corre-
sponding text in Sections 5.3.1-5.3.5). The robotic world consists of different entity
categories, the sets of humans H, robots Rt, and objects Obj. Actors (humans H,
robots Rt) are responsible for the respective sets of objects Objh, Objrt that they
manipulate. The shaded areas illustrate this coherence. The entity categories can
interact with each other. The entities may comprise or turn into a hazardous en-
ergy source (changing its state by turning it on, by combining objects, by chemical
reaction, and the like. Those relations are not illustrated in the graphs). The haz-
ardous energy sources are shown as red shaded areas. The hazardous energy in
turn may be released to other entities (red line with star). The release may be
initiated by entities comprising the hazardous energy itself, or by other entities,
called the initiating mechanisms of hazard actuation (blue arrow).

5.3.2 Robot-originated and human-caused hazards

This category is similar to the latter, but it differs with regard to the cause of accident
actuation. While the robot remains as the basic hazard resource, human activity is the
initiator of the accident. For instance, the robot is cleaning the bathroom as specified,
and a user accidentally showers the robot. As consequence, the user may be electrocuted
or hit by robot due to a resulting malfunction, or the like. As indicated with the
example, the safety relevant aspects of improper use either willful or not may be related
to this category. Both have to be considered in the safety process. In the mentioned
example, the robot must be waterproof to certain extent, being used damp locations; or
a non-waterproof robot is not allowed to be put into operation in damp locations at all.

Definition 2: A hazard is called robot-originated and human-caused if a robot
comprises one or more hazard resources. An object that is manipulated by the robot
becomes a part of the robotic system, including further hazard resources. It is assumed
that the robot, up to now, operates failure-free, and according to the recent specifications.
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Human activity provokes that the (so far) safe robot operation causes the release of
hazardous energy (see 2 in Figure 5.3).

5.3.3 Robot-originated and object-caused hazards

In this category, the robot remains as the basic hazard resources, but one or more
environment objects cause the robot to injure humans or damage objects. This might be
provoked by another object that hits the robot, for instance, an object that is ejected by
a surrounding automation plant, an object that somehow drops on the robot. Another
reason could be the electrical field/radiation being generated by an environment object
(welding flame, cell phones, induction cooker etc.) that may provoke failures and,
therefore, yield to the release of the robot’s hazardous energy. As the examples indicate,
these safety aspects are related to the well definition of operating conditions and the
compliant design of the robot.

Definition 3: A hazard is called robot-originated and object-caused if a robot comprises
one or more hazard resources. An object that is manipulated by the robot is a part of
the robotic system, including further hazard resources. It is assumed that the robot,
up to now, operates failure-free, and according to the recent specifications. The reason
of the unwanted release of energy is caused by the robot system itself without effect
on the accident causation through humans, but due to the interaction of one or more
environment objects with the robotic system (see 3 in Figure 5.3).

5.3.4 Human-originated and robot-caused hazards

A human is the hazard resources itself and the robot is participated in provoking the
hazard. The hazard resources can directly be a human, for instance, a robot prison
ward releases a dangerous criminal. On the other hand, a human can carry or handle
an object which in turn can be a hazard resource. For instance, a future robot would
be applied as crossing guard: The robot gives advice to cross the street and overlooks
an approaching car, steered by a human driver.

Definition 4: A hazard is called human-originated and robot-caused if a human is
considered as basic hazard resource. An object that is manipulated by the robot becomes
a part of the robotic system. The robot is not the hazard resources but the essential
trigger, contributing to the hazard actuation (see 4 in Figure 5.3).

5.3.5 Object-originated and robot-caused hazards

In this category, there are objects in the robot environment which are the hazard
resources. The robot is the key element which activates the release of the energy. An
accident can be provoked by a robot handling with such objects, for instance, the
domestic robot turns on the kitchen stove without turning it off after usage. On the
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other hand a mishap can be based on interaction of objects as well, for instance the
robot deposits an inflammable object on the hot kitchen stove.

Definition 5: A hazard is called object-originated and robot-caused if the basic hazard
resource is an environment object. The release of the hazardous energy is initiated by
the interaction of the robot. An object that is manipulated by the robot becomes a part
of the robotic system; however, in this case the handled object does NOT comprise any
hazard resources (see 5 in Figure 5.3).
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6 Conclusions and Problem

Identification

Several contributions were reported and several requirements were found. From this,
several observations were made that implicate important research questions, reported
in the sequel.

Observation 1: There are various approaches ensuring collision safety with humans
and obstacles for both robotic hardware design and reactive behaviors.
On basis of the reported approaches considering collision risks in Section 2.3 and
Section 2.4 it can be assumed that intrinsic collision-safe robot manipulators and
platforms are technically feasible. Furthermore, numeric expressions of hazard potentials
can be generated, for instance, as danger index or risk metric and feed back to control
(cf. Kulić and Croft, 2006; Seward et al., 2000). However, the majority of such metrics
depend on complex environment perception processes. The realization of a reliable
perception of the environment including detection of humans can be regarded as a
critical aspect in this connection.

Observation 2: Current robotic approaches consider the robot as main hazard
resource. Further hazard resources have to be considered. Concerning this matter, the
robot requires becoming aware of these hazards.
Having hazard classification of the latter section in mind, it becomes apparent that the
majority of the contributions consider the robot throughout as a hazard energy resource.
There are some contributions additionally considering a robot using tools. Haddadin
et al. (2010), for instance, investigate the impact of a gripped knife and screwdriver
on a swine body. Indeed, some of the mentioned hazard categories are recently not of
central interest, since the development of considered robots (see Section 1) will take
further time. However, it seems that robots operating in human environments are soon
becoming capable to manipulate objects of their environment since the gripping problem
is considered to be theoretically solved.1 As argued in Section 5.1.2, the robot should
become responsible for the objects it manipulates. Hence, the category of hazardously
interacting objects in Section 5.3.5 is from great importance for robotic safety. In a
typical household, for instance, there occur numerous domestic accidents every year;
there are also numerous accidents because young children show a great creativity to
provoke accidents while exploring their (domestic) environment. This shows that the
ordinary human environment provides a variety of hazards. It can be assumed that
these hazards have to become part of robot safety considerations.

1According to Gill Pratt, plenary lecture ‘Today’s DARPA Robotics Programs: Toward a Symbiosis of
Productivity and Protection’ held at the IEEE/RSJ International Conference on Intelligent Robots
and Systems 2012 in Vilamoura, Portugal



66 6 Conclusions and Problem Identification

From this perspective it becomes clear that robots have to be equipped with well
engineered mechanisms to adequately consider hazardous objects, as it is already
mentioned in the current draft version of the relevant standard for personal care
robots (ISO/DIS 13482, 2011). Furthermore, hazardous object interactions have to be
considered if robots manipulate objects. In this regard, safety aspects are still related
to problems of system (component) failure, however, the problem of incomplete, but
necessary knowledge about the world may become a problem of far higher complexity.
This potentially provokes hazards that typically occur due to lack of knowledge and not
due to component failures. Unfortunately, it seems impossible to decompose hazard
actuation to find its origin at specific system elements. A transportation task of an object
from place A to B highlights the difficulty to adequately consider object interaction
hazards when skills are focused isolatedly. A trajectory describing the movement of a
robot manipulator may be safe for the most cases, but in some not: A trajectory that
is designed to be safe with regard to collisions (slow, huge safety margin, and so forth)
may become insufficient for many applications or even hazardous for others. Hence,
the computation of a safe trajectory strongly depends on the context. For cognitive
(technical and biological) systems the capability to become aware of the current situation
is called Situation Awareness (cf. Söffker, 2008) (mentioned as well in Section 2.5.5).
The comprehension of situations can be regarded as the construction and maintenance
of Situation Awareness (Baumann and Krems, 2007). As this may incorporate complex
and highly abstracted world knowledge, it is realized within robotic systems at higher
systemic levels according to the robotic hybrid paradigm (see Section 1.2.1). The
knowledge about the current perceived and comprehended context has to be broken
down to the network of the internally interacting components in order to adequately
modulate the underlying execution of skills. It appears that the more the hazard
occurrence depends on the context, the less these hazards are related to specific system
elements and, therefore, the more it is matter of the situation awareness.

Observation 3: A strong need for an active safety management system has to be stated.
Usually, an activated barrier (Hollnagel, 1999) starts a specific hazard preventing
countermeasure (e.g. implemented as rule), for instance, in order to bring the system
into a failsafe state. According to Wardziński (2008), the interaction of such rules for
complex systems may become unmanageable or even erroneous. Therefore, Seward et al.
(implicitly) and Wardziński (explicitly) suggest to decouple the detection of hazards
from the actuation of safety countermeasures (intervention). Consequently, if multiple
risks appear and each of it is described with a risk value, a safety system is enabled
to actively manage safety interests amongst available action alternatives. Thus, an
active safety management will represent a kind of automated risk assessment and risk
mitigation procedure based on identified and assessed risks taking into account the
situation from a holistic perspective. Safety is continuously managed within the overall
behavior planning as an integral aspect of the system performance.

Observation 4: The active safety management needs a safety-related knowledge base.
It is reasonable expressing safety of a situation as a gradual risk metric. This can be
done with the help of related safety knowledge as it is intended to take into account such
risk information somehow in a decision process.
An active safety management decouples classical rule-based (‘if...then...else’) constructs

in order to enable risk value-based deliberation amongst action alternatives. However,
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such a system has to know respective hazards in order to be able to accomplish the
generation of gradual risk expressions. As Wardziński (2008) pointed out, a respective
risk value function can be understood as a specific aspect of situation awareness.
According to the Comprehension and Integration Theory of Kintsch (1998), situation
awareness is constructed by applying knowledge about the world (long term memory)
in order to understand a perceived situation with the help of the current context and
vice versa.

Observation 5: Safety has to be considered at each level of a robotic architecture.
Safety is a matter of system internal and system external interactions.
For coarser planning purposes with long-term focus (high-level planning), plans can be
assessed situation per situation with regard to risks in order to detect their risk potential.
Consequently, the results of performed skills are considered. For instance, if the final
intended position of an object poses risks due to interaction with another object, it is
not required to compute the precise trajectory to detect that some hazards may be
comprised. In order to realize such risk-aware planning, the mentioned SOM-based
cognitive architecture represents a homogeneous ‘framework’ in order to integrated risk
assessment function. In this connection, risk information can be generated at the rule-
based level with regard to perceived situations (current situation) and planned situations.
At the knowledge-based level, risk information can be derived from anticipated situations.

For generating risk information during skill execution, similar risk relations can be
applied, as the SOM notation can be used as well for related modeling algorithms and
control problems (see Section 4.1). Obviously, the performance for computing those
relations (at a reactive level) must be taken into account. It may be considered that
safety specifications are generated at higher systemic levels, so that skill- and context-
specific risk relations are provided to observe the execution of skills. The specifications
shall ensure that the execution takes place within specified risk boundaries, more
specifically spoken, below the acceptable risk threshold. Therefore, an acceptable risk
level has to be defined at the superordinate systemic levels, presumably, in accordance
to respective task benefits. For the execution of complex skills, it is questionable that
all detailed (risky) circumstances the system may possibly reach during the execution
of the skill can be anticipated before the skill is executed. But it might be anticipated,
which risks are to be expected. Hence, it seems reasonable to ensure that the execution
of skills with a high risk potential are strongly guided or monitored by a higher systemic
instance, similar to human conscious control of skills. If, concerning this matter,
accurate movements are required to perform, for instance, drawing a picture, the motor
output is based on simple feedback control in response to the observation of an error
signal (cf. Rasmussen, 1983). Hence, the execution of respective skills is performed
more slowly, because planning and anticipation takes place in close interaction with
the movement control with focus on short term events, and in smaller execution steps
as well. For instance, the interaction dynamic of a transportation task from A to B
within a complex environment may be difficult to anticipate beforehand. However, the
trajectory planning process may be instructed to constrain the risks to an acceptable
level (not to move too close to an obstacle). In addition, the higher systemic levels keep
trace (as fast as possible) of risks that could appear during the execution of the skill.
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Figure 6.1: Parameterization of skills in a cognitive framework

Observation 6: The mentioned cognitive framework is based on a kind of primitive
skills, which are designed into the system or have to be learned. The skills are parame-
terized at a cognitive level with regard to the current context and intention.
At the cognitive level, it can be assumed that tasks (intentions) are known and the system
maintains a hypothesis about what the current context is. The skills have to be designed
such that they can be parameterized in order to adjust them in accordance to safety as-
pects. When driving from A to B, for instance, the parameters related to safety such as
movement speed or the safety clearance are changing according to the current situation.
In case of variable compliant actuators (see Section 2.3.3), the compliance is a parame-
ter which should be well adapted to the current context. The parameters that determine
the performance of the skills are derived by a relation that is preposed to the execution
of the skill. When skills are designed, the decomposition into the two steps, 1) specifica-
tion of the operation condition and 2) execution according to operation conditions, may
simplify the safety integration process. In Figure 6.1, the SOM notion of the men-
tioned concept is illustrated: A relation generates safety-related parameters from the
current situation; the skill to be executed (operator) awaits this information. The case
that the skills can not be successfully executed with given parameters must be consid-
ered, as well that the execution of skills could untimely terminate due to sudden changes
of the current situation. Furthermore, learning of new skills implicates that the relation,
providing safety-relevant parameters, and their integration need to be learned as well. In
this regard, it must be thought about learning processes that integrate safety aspects.

Observation 7: The inevitable requirement for learning capabilities is deemed probable
for the majority of future robots.
Autonomous operation is a key feature of complex robots. This feature distinguishes this
kind of systems from ‘conventional’ systems. Revisiting the reported perspectives on
autonomy in Section 3, it can be stated that maintaining autonomy depends on demands
imposed from the system’s ‘ecological niche’. In simply structured environments a
system can be autonomous being fully prespecified without demands on sophisticated
adaption capabilities for its survival. On the other hand, it seems to be impossible
or unreasonable to prespecify the full range of possibilities for systems performing
complex tasks in complex environments in order to ensure their survival (as long as the
niche remains stable). Thus, systems in such niches can only maintain their autonomy
by being able to interact successfully with new situations, which inevitably requires
learning capabilities. Robots operating in human living environments are doubtless
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confronted to deal with a variety of situations which hardly can be prespecified also
due to the human behavior. Furthermore, the complexity to maintain autonomy is
related to the complexity of the intended tasks that the robot is required to perform in
order to remain useful. Thus, it can be assumed that learning capabilities are required
for the majority of future robotic systems which have to perform advanced tasks. In
consequence, the capability to adapt to new situations implicates that fixed prespecified
behavior patterns are not convenient for realizing autonomy, since it can turn out that
they are insufficient for the one situation or hazardous for another.

In summary up to now, no contributions integrating these requirements were found in
the literature. The main aspects of the problem of ensuring safety for intelligent robotic
systems are decomposed into three central questions, obviously, amongst many others.
These questions outline the scope of the research work in the following sections, and
are related to the generation of a safety knowledge base, its realization, and integration
within the robotic system, and the problem of potentially incomplete safety knowledge.

Problem 1: How can risk awareness be realized, such that the system can recognize
risks with regard to different kinds of hazards, and how can this be realized on a high
reliable level?
Ideally, the robot behaves safely if it is turned on at its intended place of operation.
One the one hand, this is desired, and on the other hand, it is an obligation the
manufacturer has to provide. This requires that the robot comes with knowledge about
possible hazards, as already discussed. Thus, as much as possible hazards have to be
identified during the design phase of the system and from this, hazard information
has to be derived in order to integrate it into the safety knowledge base of the robot.
Risks shall be expressed via gradual expressions, however, generation of such measures
should include the hazards of the examined situation. Hence, risk assessment should
map dynamic situation information into risk expressions. This can take place via so-
called risk functions. Terminologically, such risk functions can also be denoted as safety
knowledge. A systematic procedure is required for generating the safety knowledge
base, which denotes the first contribution of the work at hand.

Wardziński (2006) argues that the dynamic risk assessment is a part of the system’s
situation assessment. Situation assessment is required to generate and maintain situation
awareness. Here, Wardziński refers to Endsley’s description of situation awareness
(cf. Endsley, 1995). Both do not detail how the capabilities are realized to predict
upcoming situations in order to basically allow the system to plan its actions. However,
the generation of situation awareness including perception, anticipation of upcoming
situations and the planning, based on anticipated situations, are properties of cognitive
(technical) systems (cf. Söffker, 2001, 2008) and are realized, for instance, by Ahle and
Söffker (2006); Gamrad and Söffker (2009c); Oberheid et al. (2008); Fu and Söffker (2011);
Gamrad (2011). Thus, in order to realize a situation risk-aware system it is described in
this work how the required safety-related knowledge base is connected to the respective
cognitive functions in order to realize that hazards are adequately considered within
the perception and planning process (cf. Ertle et al., 2012c, 2010a,c, 2012a, 2010b).

Problem 2: How should the safety knowledge base be utilized in order to affect the
decisions of the robotic system such that described hazards are avoided?
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From the aforementioned realization of knowledge-based risk-awareness, the question
arises how the safety knowledge should be utilized in order to affect decisions of the
robotic system to avoid hazards. Therefore, further research is required in order to
develop a suitable decision process. Decision theory and utility theory provide a suitable
theoretical framework, because risks and benefits can be considered within cost/utility
functions (cf. LaValle, 2006). In this connection, as already indicated, it can be concluded
from statements in Section 3 that considered autonomous robots have to be enabled to
make their decisions for solving their assigned tasks by themselves (execution autonomy,
etc., no goal autonomy). In consequence, it should be avoided to implement specific,
fixed reaction schemes, guiding the robot how to react precisely in specific situations.
Autonomous systems have to be designed such that they are free to choose amongst
possible action alternatives. From this follows that there are no rules that define the
reaction of the system in a specific situation as rather the predicted situations are labeled
with rewards and penalties. These numeric factors can be taken into consideration by
the decision-making process. The evaluation of predicted situations according to mission
success, risks, time, etc. is a part of the situation awareness. The decision-making process
is based upon the value system, but denotes a separate and independent processing step,
utilizing a situation independent decision calculus. Thus, it is as well a general decision
calculus that has to be designed to take into account a set of prespecified decision-
relevant factors. A simple example of such a decision calculus will be given in Section 8.

Usually, fail-safe states are defined for safety-critical systems with the intention that
systems under hazardous or unknown operating conditions can be transferred to safe
states. As detailed later on, this is realized slightly different for autonomous systems: If
actions that transfer the system into fail-safe state are as well designed into the system,
they appear, in consequence, as action alternative with a very low risk when the system
anticipates possible consequences of a situation.

Problem 3: How should new knowledge about hazards be complemented and new
knowledge integrated during the operation of the robotic system?
The initial safety knowledge base of a robot is hardly complete. In order to incrementally
improve the safety, established safety knowledge has to be modified and new knowledge
has to be generated and integrated. In general, it is imaginable that this could take
place by successive updates, by learning or by a mixture of both. As learning capabilities
seem to be implicated for complex future robots, a perspective on this is provided as a
last contribution of this thesis.

The generation of a sufficient initial safety knowledge base is considered to be a key
problem. Hence, problem 1 appears to be of major interest. Since the safety knowledge
needs to be interfaced with a control system, the problem 2 is interrelated with problem
1. Therefore, the problem to generate a safety knowledge base for object interaction
hazards is first of all described in Chapter 7, its integration and realization in the
following Chapter 8. However, the problem of a potentially incomplete safety knowledge
base for autonomous systems raises the importance of investigating learning capabilities
in conjunction with safety-critical applications, as mentioned in Problem 3. Therefore,
a perspective on the performance and utilization of learning approaches within safety-
critical context is given in Chapter 9.
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7 A priori Formalization and

Quantification of Hazards

Safety-critical systems are those systems whose failure could result in loss of life,
significant property damage or damage of the environment. Therefore, a system is called
safe if it can be ensured that risks are kept at an acceptable level (Ericson, 2011). In this
respect, risk is the possibility of injury, loss or environment incident created by a hazard,
while the significance or level of the risk is generally determined by the probability of an
unwanted incident and the severity of the consequences, as described in Section 1.2.3.
Safety of technical systems is enforced by regulations formulated in laws and directives,
and different directives exist for different technical domains, as outlined in Section 2.1.
In order to fulfill the requirements of these safety-related regulations, well-established
procedures and measures for the development of safety-critical systems like air- and
spacecrafts or automobiles have been developed (cf. Börcsök, 2007) including reliability
and risk analysis, redundancy, fault and event tree analysis, simulation and testing or
formal verification to mention only a few (cf. Voos and Ertle, 2009).

7.1 The Concept of Explicit Safety Knowledge

Many robot systems have a considerable mass and kinetic energy during operation, and
hence, are clearly perceived as safety-critical systems (see Section 2.3). The assumption
of a ‘weak and lightweight’ robot obviously removes hazardous potential and kinetic
energies and, hence, may mislead to assume a system to be safe. But if the robot is
capable to manipulate objects, it becomes responsible for safely handling them, as
argued in Section 5.1.2. In consequence, the object-originated and robot-caused hazards,
according to Section 5.3.5 are of special interest. A robot that can handle various
objects may provoke hazards via object manipulation without being the hazardous
energy source itself; thus, the manipulating robot and its environment must be already
considered as a safety-critical system.

Since the system safety is often driven by real problems, three scenarios are subsequently
described in order to concretize the addressed problem. It is assumed that an object
recognition system is available as an underlying system unit in order to provide informa-
tion about the identity, position, pose, size, and the like of environment objects to the
robotic system. Indeed, an object knowledge base is required to store object characteris-
tics for the recognition process. Furthermore, it is assumed that the object recognition
is appropriately powerful to recognize all present objects quickly enough. The output
of the object recognition module is assumed be to a list, which contains the recognized
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Figure 7.1: Possible hazards with regard to the kitchen stove. Should a robot be
allowed to deposit objects as illustrated?

objects. For each recognized object, there exists a sub-list which contains object identi-
fiers, the identification confidence, position, pose, size, and the like, respectively. The
object identifiers are assumed to be known natural language descriptions, and the confi-
dence is assumed to give some information about the recognition probability Pi.

The proposed examples addressing the safety problem are kept simple in order to outline
the general concept. Basically, causal and temporal relations of the described problems
might be technically decoded very precisely. However, simple solutions are often more
functional and comprehensible. Here, this is understood as a ‘conservative’ character of
a problem solution, as outlined later on in more detail, and aims first and foremost on
safety and, thus, accepts that iterations may become necessary (cf. Ertle et al., 2010c).

7.1.1 Exemplary safety-critical scenarios

Scenario 1: Kitchen stove
A service robot is instructed to bring the dishes to the kitchen sink. In order to deposit
the dishes near to the sink, it recognizes the modern ceramic stove top as preferable
surface and deposits the dishes there, as illustrated in Figure 7.1. If now a cooking plate
is still hot, and there is, for instance, a plastic salad bowl, or a cutting board amongst the
dishes, obviously, some risks arise. The situation in which a plastic or wooden object is
located very close or on top of the cooking plate can be considered as not safe anymore,
since the risk of toxic vapor or fire by inflamed plastic or wood is potentially present.
The worst case accident can be a residential fire causing human injury or death. The
risk is not present in a situation in which these objects are located apart the cooking
plate (with a certain safety margin), independent from the state of the cooking plate.

In consequence, a kind of mechanism (a rule) is required which ‘instructs’ the robot
not to deposit a salad bowl or cutting board on top of, or too close to a kitchen stove.
More precisely, there might be several different possibilities to formulate such a rule.
For instance, the temperature of the cooking plate might be considered, or the position
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of the cooking plate knobs and a heat indicator lamp might be taken into account. How
can such a hazard description be reliably realized? A more simple and reliable approach
could be assuming the cooking plate is (always) potentially hot and integrate an internal
rule that instructs the robot: ‘Never put something burnable too close to a potential heat
source’. This might not be fully correct, but the environment remains in a safe state.

Obviously, the hazard within the example is based on the presence of the objects ‘bowl’
and ‘cooking plate’. Hence, it is assumed that the object recognition module recognizes
respective objects. However, besides the presence of these objects (appearing in a
situation at the same time) further factors are involved and have to be considered. They
are required to formulate rules guiding the robot to avoid hazardous situations. The
rules denote the a priori knowledge about hazards and comprise information how and
which dynamic and measured data is required, and has to be processed. For instance,
the term ‘too close to’ indicates that the relative distance between the objects has an
essential effect on the risk. The salad bowl, located 2m apart from the cooking plate
does obviously not impose risk of fire or toxic vapors.

Scenario 2: Watering the power plug
A service robot is instructed to ‘watering the plants’. In this connection, it is assumed
that a power plug fell into a plant pot, see Figure 7.2. If the robot is watering the
plant, the risk of electrical shock arises, both, for human and robot. The risk factors
can be considered to be the following: The object recognition again recognizes the
power plug while having the watering can grasped (or any plant watering device) and
additionally, it can be detected that there is water in the watering can (or similar
device). In consequence, a rule should be integrated that instructs the robot not to
approaching too close with the watering can to a power plug, or the like, in order to
avoid that it is struck by a water jet.

Scenario 3: Handling the hairdryer
The third scenario deals with a situation in which the robot is instructed to grasp
a hairdryer in order to put it away. The hairdryer, connected to the line voltage,
is for some reason closely deposited next to the bathtub or basin, as illustrated in
Figure 7.3. Obviously, for the case that the hairdryer slips from the robot’s gripper,
a lethal electroshock may result immediately (possibly not for the case of having a
proper operating residual current protection installed). Similar to the latter example,
water and electricity are involved in hazardously interacting. Hence, a rule should be
integrated that instructs the robot not to approach electrical AC devices too close to
water sources, such as water tab, bathtubs, etc.

Conclusions
It can be noted that the technical realization of constraints is not the essential key
problem, as for instance, the handling of a cup of coffee which can be formulated as a
constraint satisfaction planning problem, or similarly, the area of the cooking plate can
be blocked for the placement of (specific) objects. The question is rather how
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Figure 7.2: Possible hazards with regard to a power plug. Should a robot be
allowed to watering the plant?

Figure 7.3: Possible hazards - a hairdryer deposited for some reason on the basin.
Should the robot handle it, especially while somebody is washing his/her hands?
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• these limitations can be put into practice in a complex system comprising a variety
of (altering) skills,

• these limitations can be realized when safety significantly depends on the specific
context,

• systematic procedures can be established for generating such limitations, and

• these limitations can be maintained to ensure safe operation and obtain a flexible
and functional system.

7.2 Risk-awareness via intrinsic rule-based safety

knowledge

Risk can be understood as ratio of hazard and safeguards, and “safeguards is the idea
of simple awareness. That is, awareness of risk reduces risk. Thus, if we know there is
a hole in the road around the corner, it poses less risk to us than if we zip around not
knowing about it” (Kaplan and Garrick, 1981).

It can be assumed that it is inevitable to equip the system with safety-related knowledge
in order to enable it to actively avoid hazard risks, because safety-related knowledge
basically enables the system to become aware of risks. However, predefined ‘directive
rules’, controlling the behavior of the system itself (e.g. safety-bag concept), can be
impractical or even hazardous for autonomous systems. A directive rule is a logical rule
which commands the performing of an action if the rule is fired (Grosan and Abraham,
2011), e.g., IF distance<threshold THEN back_off. In a fuzzy rule-based system,
the membership of data is assigned to predefined membership functions. However,
the formulation of hazards in form of gradual risk expressions does not require to be
represented as fuzzy terms. A risk-self evaluation approach (cf. Seward et al., 2007) can
be realized as dynamic risk assessment approach (cf. Wardziński, 2008) via deliberation
of numeric expressions of risks, benefits and the like in the style of Bayesian or certainty
factor theory (cf. Grosan and Abraham, 2011), as shown later on. This basically imposes
the partial realization of decision making on basis of an (at least partially) artificially
designed ‘value system’ - comprehending a value system as “an enduring organization
of beliefs concerning preferable modes of conduct or end states of existence along a
continuum of relative importance” (Rokeach, 1973).

The question is how to systematically transfer such knowledge into an autonomous
system. Typically, new knowledge can be acquired by learning. However, it is intuitively
obvious that introducing learning approaches in safety-critical contexts in principle
implicates a ‘chicken-and-egg’ dilemma. The unknowing system (e.g. ‘tabula rasa’
system) can not avoid hazardous situations in order to remain in a safe state. Indeed,
being equipped with learning capabilities, it may learn (after more or less trials and on
basis of bad experiences or any kind of feedback) to avoid such hazardous states. Finally,
it will ‘converge’ to take safer actions in the average by learning more or less abstract
concepts of safety. However, the system has to experience hazardous situations in order to
learn from them. Moreover, difficulties might appear gaining comprehensible insight into
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the learned safety objectives even if a system would have learned an adequate concept.
Thus, it might become difficult to check how the concept looks like or how it is realized.

Basically, manufacturer of robots oblige to declare the conformity with current relevant
standards and directives. The declaration procedure often relies on a throughout
documentation of the accomplished activities and their results. In consequence, learning
approaches are obviously not the method of choice. Rather the system has to be equipped
with a ‘manually’ generated initial safety knowledge base which ensures safety from the
moment the system is put into operation in an arbitrary target environment. Thus, the
initial safety knowledge for a risk-aware system has at least four basic functions, which are

• to provide an initial safety assurance, based on the current consensus about known
hazards,

• to try to extend the safety assurance so that the safety knowledge is formulated
in a general and conservative manner,

• to develop and introduce certain measures to describe hazards and risks, and

• to construct and maintain a comprehensible symbolic representation of the safety
knowledge to enable documentation, debugging, verification and transferring to
other systems.

7.2.1 The abstracted risk modeling approach

The most things in the natural (and artificialized) world are hierarchically organized, in
the sense that systems are recurrently consisting of subsystems with different properties
(cf. Simon, 1969). Thus, information about the environment can be regarded and
required at different levels of abstraction.

Apparently, the demand on information about the environment seems to depend on
the task to be performed. This is similar, if rules for ensuring safety should be realized
in practice. Furthermore, the detail level of a safety rule seems to be related to the
requirement of information depth: The more accurate the hazard actuation is described,
the more detailed information about the object attributes is required. For instance, a
salad bowl is made of polypropylene, with a melting temperature of 130◦C, and auto-
ignition temperature of 350◦C (Carlowitz, 1995, p. 15). The cooking plate emits heat
radiation. Assuming it as black body, it emits ES =σ ·T 4, more realistically, as gray body,
it emits ES = ε ·σ ·T 4. Two gray bodies transfer the heat Q̇12 = e12 ·ε1 ·ε2 ·σ ·

(

T 4
1 −T 4

2

)

,
whereas the heat transfer significantly depends on object body shape, the radiation angle,
and the like.1 Consequently, the reaction of a plastic body according to a heat source can
be precisely described. In this connection, the question arises if this accurate description
is required, on the one hand. On the other hand, the practicability and reliability of
such rule realization should be taken into consideration. A practical approach, which
can be reliably realized and to which probably most humans intuitively act according
to, would be to observe that a plastic object is not approached too close to a potential

1T(.) is the temperature of bodies; σ , the Stefan-Boltzmann constant; ε(.), the emissivity factors of
bodies, and e12, a geometrical factor
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heat source. Thus, it can be accepted that accuracy of hazard descriptions can entail
drawbacks with regard to reliability aspects. Consequently, it can be advantageous from
the reliability perspective to prefer overgeneralized descriptions of lower complexity over
complex and accurate ones. Complex and accurate description may relay on multiple
information sources (availability of serial systems). In this connection, the focus of
defining safety rules is not primarily to model the lifelike hazard actuation itself, as
rather to utilize the knowledge about the hazard actuation to define an approximated
practicable and reliable rule to compute the extent of the respective risk.

7.2.2 The generalized risk modeling approach

An object that might be transcribed to be made of plastic; plastic in turn can be classified
as acrylic, polyester, silicone, polyurethane, etc., or as thermoplastic or thermosetting
polymer, or according to their chemical manufacturing process, for instance. Hence,
object attribute descriptions can be detailed up to a very specific degree. For some
purposes, a suitable object attribute is one that generalizes more sophisticated object
attributes in order to indicate that a group of objects has a prominent attribute in
common, for instance that they are made of plastic. The problem of overgeneralization
may arise. Furthermore, many objects consist of several components with different
attributes. In this connection, a detailed description of the object attributes requires
to hierarchically distinguish the different object components, and their respective sub-
components. However, depending on the object’s complexity, huge efforts have to be
spent to detail the object components, their attributes, and further subcomponents.
In this connection, it may be sufficient to describe a specific detail level. Hierarchies
below this specification level are generalized with prominent object attributes of the
subcomponents. The required information depth might be different with regard to the
task context: For the user, a remote controller is simply a plastic box with buttons to
control televisions or similar devices. A service technician, for instance, has the task
to repair remote controllers and, therefore, has detailed information about their inner
structure, such as chips, circuits, and the like.

The formalization and quantification of accident probabilities and severities is the key
problem of describing risks numerically. With regard to object interaction risks, the
hazards are often related to object attributes. Thus, the formulation of object attribute-
referring safety rules covers a complete set of hazards, since the rule is applicable to
all objects with similar attributes. Thus, the formalization of hazards based on a set
of observations appears as an inductive reasoning approach. If, for instance, a safety
rule is formulated concerning the approaching of a salad bowl to the kitchen stove,
the hazard actuation can be traced to approaching plastic too close to a strong heat
source, according to a ‘plastic and heat source rule’. Thus, the formulation according
these object attributes denotes an inductive generalization. This becomes valid for
all objects that have assigned respective attributes. This generalization reduces the
number of required rules and potentially simplifies the application of already available
safety rules to new objects. Because of this generalization concept, aforementioned
constructs are henceforth not called ‘safety rules’ anymore, but ‘Safety Principles’. The
‘overgeneralization’ (false positive risk detection) may implicate that the robot can not
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Figure 7.4: Risk quantification procedure for the dynamic risk assessment (Ertle
et al., 2010c), based on Kaplan (1997).

fulfill its task because it appears to be hazardous although it is not. Consequently, the
refinement of the respective Safety Principle may be required.

7.2.3 Modeling risks - the evidence-based approach

Within a universal definition of risk the three questions ‘what can happen’, ‘how likely is
that’ and ‘what are the consequences’ are adopted for presented robotic risk assessment
approach. Each answer results in a triplet < sci,Pi(φi),Pi(Xi) >, which describes the
likelihood Pi(φi) and the consequence Pi(Xi) of the scenario Si (Kaplan and Garrick,
1981). A key problem describing risks numerically is that risks most often can not
be determined with absolute precision because the probability of accidents is often
difficult to determine. The degree of confidence or degree of certainty an accident is
likely to happen is often called ‘subjective’ probability (Kaplan, 1997). In order to
‘objectifying’ the subjective probability, (Kaplan, 1997) suggest the ‘evidence-based
approach’. In this regard, experts are asked about a numerical value and its evidence.
The more evidence is available the more precise the numerical expression becomes, as
the probability density of the numerical expression changes in accordance to what the
experts collectively know. Thus, the evidence-based approach denotes an approach
utilizing experienced facts for methodically quantifying risks. If no experiences are
available, a similar procedure can be applied. Different scenario examples can be
presented to experts who contribute their subjective appraisal of respective risk (c.f.
Haddadin et al., 2012). The gained information can be fused in order to generate an
objectivized risk description, as detailed in Figure 7.4.

7.2.4 The conservative risk modeling approach

If a scenario comprises hazards, it has to be estimated to which extent a situation is
hazardous, which risks are entailed. This can be specified very precisely, for instance,
according to applicable laws of nature, as initially outlined. Since this might become
work-intensive and difficult, it seems to be sufficient to formulate practicable safety
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rules. If there is lack of experience, in particular, the formulation could as well be based
on subjective (expert) estimates. For instance, the plastic-and-heat-source rule can be
expressed with the help of a step function which describes the uncritical distance between
plastic object and heat source. The function would obviously comprise a safety clearance.
This and the generality of such safety rules may give preference to false alarms in order
to ensure that the missed alarm rate is kept as low as possible. For many cases, this
seems to be the method to prefer: The definition of general (conservative) and simple
(reliable) safety rules, designed to preferentially improve the missed alarm rate, which
are refined if impracticable limitations occur with regard to tasks that are to perform.

7.2.5 Refinement of the safety knowledge

Safety assuring procedures for achieving the robot’s conformity to relevant standards
require the ‘complete’ definition of occurring and considered hazards in form of a hazard
analysis. In this connection, the environment of a robot, possibly sold and delivered
to any arbitrary household, is complex and not completely known. In consequence,
methods and concepts for supporting 1) the as-complete-as-reasonably-possible hazard-
analysis and control, and 2) the responsible-minded refinement and extension of risk
control are the two ‘challenges’ that that may to be taken into account as already
mentioned in Chapter 6.

The completeness problem can be possibly circumvented when a safety assuring method
is assumed which basically permits the refinement of the knowledge concerning hazardous
situations. The two principle refinement cycles are illustrated in Figure 7.5. On
the one hand, refinement and extension of the safety knowledge can take place via
learning during the operation phase. Indeed, special attention has to be drawn to
possible implications of ‘autonomously’ altering of safety knowledge. On the other
hand, manufacturer updates denote another possibility to improve the completeness
and correctness of knowledge bases. A combination of both appears to be the most
practicable way, considering that the lack of knowledge or inconsistencies can be collected
and reported to a robot-external and centralized instance, which in turn examines the
reports and arranges updates.2 The resulting process could be seen as one that is
converging toward completeness of the safety knowledge and, hence, assuming adequate
consideration within the decision-making process, toward safety.

7.3 Operating Hazards Analysis

Hazard analyses are used to identify hazards, hazard effects, and hazard causal factors
in order to determine system risks. Thereby, a key aspect is to ascertain the significance
of hazards so that safety design measures can be established to eliminate or mitigate
the hazards. Analyses are performed to systematically examine systems, subsystems,
components, software, environment, and their interrelationships. Each type of hazard
analysis differs with regard to the scope, coverage, detail, and life-cycle phase timing

2Assuming that security aspects (vulnerability to manipulation) are adequately taken into consideration.
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Robot in operation in 
target environment

Safety 
knowledge

Pre-specified

Manufacturer

Figure 7.5: The two principle cycles of safety knowledge refinement.

and, hence, identifies hazards for a particular design phase in the system development
life cycle (Ericson, 2005).

The preliminary hazard list is an analysis technique for identifying and listing potential
hazards and mishaps that are already known at an early phase of the development
process. With its help the design at the conceptual level is evaluated without detailed
information in order to generate a preliminary list of hazards. In this connection,
every hazard identified will be analyzed in more detail via further analysis techniques.
Hence, the preliminary hazard list technique is applied during conceptual or preliminary
design stage and is the starting point for all subsequent hazard analyses (Ericson, 2005).
However, at an early stage of the robot system development process, inherent hazards
can be considered, despite of detailed information about the operating environment is
possibly not available. Such inherent hazards might be in general related to courses of
motion, since the robot typically is mobile and equipped with a manipulator. Hence,
adequate motion control and compliant actuation, mentioned in Section 2.3, might be
already focused in this phase.

Analyses that particularly address issues of a system at its operation phase are usually
assigned to the operating hazards analysis type. The operating hazards analysis type
evaluates as well the normal operation, test, installation, maintenance, repair, handling,
etc., in order to identify operational hazards that can be eliminated or mitigated
through design features. The operating hazards analysis is typically performed a soon
as operations information becomes available. The typical basic requirements of an
operating hazards analysis are according to Ericson (2005):

• It focuses on hazards occurring during operations and, hence, considers hazards
as well during system use, test, training,

• usually, it is performed during the detailed design phases of system development,
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• an integrated assessment of the system design, related equipment, facilities,
operational tasks, and human factors takes place,

• it depicts a detailed analysis based on final design information,

• it is to identify hazards, potential mishaps, causal factors, risk and safety critical
factors, applicable safety requirements, and hazard mitigation recommendations.

7.3.1 A procedure for modeling object-related safety knowledge

As far as information about the intended operation environment of the robotic system
becomes available, an operational hazard analysis can take place, which should take
into account object-object interaction hazards. Therefore, a procedure to consider such
hazards within the scope of an operation hazard analysis is developed with the goal to
consider related risks, in terms of identification, assessment, and mitigation based on
reasonable design safety features. In this connection, the very fundamental approach is
to go through the possible combinations of objects and analyze them with regard to
hazardous interactions. Therefore, a systematic approach will be proposed here for the
first time. The overall procedural model is sketched in Figure 7.6.

Hazard risks have to be identified, analyzed, and modeled as safety knowledge in order
to enable the robot itself to detect and determine hazard risks, via the so-called ‘Safety
Principles’. Safety Principles will be derived with the help of the ‘hazard matrix analysis’
and ‘Safety Principle generation’ procedures, detailed in the following sections.

As the documentation of the safety activities might be important (e.g. certification),
the described procedure is provided with suggestions how a documentation can take
place. Furthermore, the functionality and the effectiveness of the safety measures have
to be validated. Depending on the required safety integrity level, activities ranging
from systematic testing to formal verification might become necessary. Independent of
this, the verification of design safety features or the system operation may reveal new
objects or hazards, which in turn requires a further iteration step. This is illustrated by
conditional loop structures.

7.4 Hazard Matrix Analysis

The hazard identification and analysis via hazard matrix analysis are the initial steps
for detecting object-object interaction risks as candidates to be modeled into the
safety knowledge base. The required steps are illustrated as a flow chart diagram in
Figure 7.7. The arrows ‘HMA1’ and ‘HMA2’ originate from branches for iteration
steps in the overall procedure, see Figure 7.6.
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Figure 7.6: Overall procedural model for specifying the safety hazard knowledge.

7.4.1 Hazard identification matrix

Column-based worksheets often are the basis of systematic hazard identification and
analysis approaches (cf. Ericson, 2011). For the identification of the object-object
interaction hazards, such column-based worksheets appear to be less practicable due to
the point that a huge but finite number of object combinations have to be investigated.
The investigation of object-object interaction can be based on a simple permutation:
All available object-object pairs are analyzed with regard to potential hazards. In
consequence, the number of object-object combinations is quadratic proportional to the
number of objects. In order to reduce the complexity, several methods are known. In the
first instance, it makes sense to reduce object-object combinations to those, the robot
can become responsible for. Consequently, only the combinations of objects within the
environment and objects, the robot is allowed to grasp have to be analyzed. Thus, a
matrix structure can be used, as it is already applied in other contexts (cf. Burgman,
2005; Cameron and Raman, 2005). Within such a matrix structure, all objects that
the robot is allowed to grasp are listed as the columns of the matrix. After that, all
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Figure 7.7: Procedural model for identifying object interaction hazards and their
hazard causal factors.

objects are listed as matrix rows that potentially exist in the environment. If a hazard
can potentially result by ‘combining’ a column and a row object this presumption is
to label (with an ‘X’). Reasonably, the matrix is initialized with hazards labels, and if
there can not be found any hazardous interaction, the label is removed. An exemplary
hazard identification matrix is illustrated in Table 7.1.

As an operating environment can comprise a multiplicity of objects, and in addition, a
robot possibly can grasp many of them, a hazard matrix may become large. Therefore,
it is reasonable to assign objects to categories and, hence, check category-wise for the
occurrence of hazards. This concept is illustrated in Table 7.2.

7.4.2 Hazard analysis I: Hazard description

In order to detail the hazards identified with the hazard matrix, each hazardous object
combination needs to be further analyzed. At first, a brief description of the focused
hazard is of interest. Secondly, the mishap or accident has to be denoted. From this, a
more general formulation of the hazard causal factors can be derived. This is important
for the generalization of the safety knowledge.
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Objects

   that can be

       grasped

Objects of 

the environment

Kitchen stove X X X X X X X X X

Mircowave X X X

Coffee bowl X

Salad bowl

Orange juice pack X

Watering can X

Fork

Spoon

Plate

Power plug X X X X

Hairdryer X X X X X

Kitchen sink X

Bathtub X

Human X X
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Table 7.1: Hazard identification matrix for systematic examination of object-
object interactions. In this example, the column vector of the matrix comprises
objects to be potentially grasped by the robot, the row vector comprises objects
that may be part of the operating environment.

Objects

   that can be

       grasped

Objects of 

the environment

X X X X X X X X X

X X X

Category IEO X
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Category IIEO

X X X X
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Table 7.2: Segmentation of large objects lists in categories.
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Example
An exemplary worksheet is shown in Table 7.3. Here, a detailed example of the labeled
object combinations of Table 7.1 is given. The annotation ‘Cat. I’ denotes that the
hazard matrix illustrated in Table 7.2 may be a part the ‘Category I’ of a larger hazard
matrix. The respective object combinations are assigned with their (x/y) coordinates
to the hazard matrix position. The involved objects are transferred to column two and
three. Column four contains a description of the hazards in natural language. In the
fifth column, the accident or mishap is denoted that could result by respective object-
object interaction. In this regard, it is suggested to distinguish different mishaps or
accidents, because later on, actuations of hazards have to be specified, which may be
differently modeled for different hazards. In the example, it is distinguished between
toxic vapor and fire risk for the case that a salad bowl is put on a hot cooking plate.
Indeed, the inflaming of the salad bowl may be accompanied by the generation of toxic
vapor, however, the condition under which the salad bowl starts to burn is different
than the conditions under that toxic vapor is produced.

In column six, the hazard causal factors have to be specified. In this connection, the
question becomes important what the reasons can be that let the mishap or accident may
happen. The reason why it is potentially hazardous to put a salad bowl on a cooking
plate is certainly not related to these specific objects, as rather to the attributes of the
objects. In this respect, the salad bowl is made of plastic, and plastic usually (depending
on the kind of plastic material) melts or starts to burn in contact to, or close to a strong
heat source. Hence, the goal of this step is to generalize the specific object-object-related
hazard regarding the fundamental causes that let the hazard come into existence.

The final column contains the number of the respective design safety feature, which
later on is required to control each identified hazard.

7.4.3 Hazard analysis II: Preliminary risk estimation

The hazard matrix analysis supports the identification of object-interaction hazards,
the hazard description, and the identification of the general causal factors. “Hazard
causal factors are the genesis of a mishap; they explain how a hazard will transform
into a mishap, and they also explain what outcome to expect” (Ericson, 2011). In
this connection, the hazard causal factors are identified as those mechanisms that are
involved in turning an object-object interaction into potential mishap or accident. The
preliminary risk estimation is useful in order to identify either those risks that have to
be addressed, or at least the priority how they should be processed.

For this purpose, a qualitative analysis is advantageous, since a detailed and time-
consuming quantitative analysis is not required for every hazard. In a qualitative
analysis, all factors affecting mishap risk against a predetermined set of parameters
are reviewed by involving the use of qualitative criteria. Judgments have to be made
to which category something might fit into. From experience is it known that such
qualitative methods are very effective, and in most cases provide decision-making
capability comparable to quantitative analysis (Ericson, 2011).
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Table 7.3: A worksheet example for analyzing the hazard matrix with result of
revealing the potentially required design-safety features cases.
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Likelihood level 

Level  Description  Scenario and detail  Probability 

16 Very likely Will happen under virtually all conditions > 85% 

12 Highly likely Will happen under most conditions 50–85% 

8 Fairly likely Will happen quite often 21–49% 

4 Unlikely Will happen sometimes 1–20% 

2 Very unlikely Not expected <1% 

1 Almost �incredible 
Theoretically possible but not expected to 
occur 

<0.01% 

Table 7.4: Example for the qualitative preliminary risk estimation measure for
the mishap likelihood (cf. Proske, 2008).

Consequence level 

Level Description   Scenario and detail 

1000 Disaster and catastrophe  Fatalities, death of single or multiple persons 

100 Major accident   Permanent injury of single or multiple persons 

20 Average accident Sever but healing injury or sever damage of goods 

3 Minor accident   First aid required, minor damage of goods  

1 Negligible No or negligible consequences 

Table 7.5: Example for the qualitative preliminary risk estimation measure for
the mishap consequence (cf. Proske, 2008).

In order to realize a qualitative risk analysis, several standards are available and
applicable in respect to application area and scope. For the European Union, the DIN
EN ISO 12100 (2004) is applicable. A qualitative risk analysis requires formulating
categories. The categories formulated by (Proske, 2008), for instance, are found to be
suitable for the estimation of the object-object interaction risks. In Table 7.4 and
Table 7.5 the classifications for the mishap likelihood and consequences are shown. In
Table 7.6, values are listed guiding the decision concerning risk acceptance or need for
risk mitigation.

Example
The results of the preliminary risk estimation and the resulting decision for further steps
can be documented in a worksheet for the risk estimation as proposed in Table 7.7,
columns 4-7. Here, the risk of toxic vapor is rated with a lower consequence as residential

Requirement for risk control  

Value  Category Risk mitigation 

> 1000 Non-acceptable  Yes 

101–1000 Not desired  Yes/ALARP 

21–100 Acceptable ALARP/No 

< 20 Negligible No 

Table 7.6: Decision of risk acceptance based on the preliminary risk estimation
example (cf. Proske, 2008).
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fire, as the chance to elude one from the vapors is more likely, for instance, by mitigating
the hazard source, ventilating rooms, or by leaving the rooms. However, toxic vapors
may result a permanent damage of the lungs and, hence, permanent injury of single
or multiple persons occurs. A residential fire might have catastrophic consequences,
however, the probability of a catastrophic fire can be assumed to be unlikely. In contrast,
toxic vapor with the potential of intoxicating humans nearby can result fairly likely,
if a plastic object is approached close to a hot cooking plate. The application of the
proposed qualitative evaluation results that the risk of toxic vapor is not desired, and the
risk of a residential fire is not acceptable; thus, both risks are required to be mitigated.

7.5 Specifying the Safety Principles

After identification of risks to be mitigated, the mechanisms have to be investigated
that are involved in turning an object-object interaction into a mishap or accident. In
this connection, the presence of two hazardously interacting objects in one and the
same situation indicates that the respective hazard is principally present. This can be
considered to be similar to the premise of a logical statement. If the premise becomes
true it induces a conclusion. Similarly, if the principle premise becomes true (due to the
existence of respective objects), the hazard does exist in principle, independent from the
extent of respective hazard risk. Hence, if the derived knowledge about hazardous object
interactions (identified in the latter section) is assumed to be made available for robot’s
perception system, the robot is in principle enabled to automatically detect hazards,
namely, when it detects respective hazardously interacting objects (or respective object
attributes) in a situation. This is the basic intention of the first part of the hazard
formalization, the so-called Safety-Principle premise.

The hazard causal factors, identified in the hazard matrix analysis, denote the respective
preparation step. In this connection, there are two different categories concerning the
description of the hazard causal factors:

• The hazard does not occur because of the specific object, instead, it occurs due to
specific attributes the object has, such as color, material, weight, shape, typical
usage, and the like. If respective object attribute could be changed, the hazard
does not exist anymore, despite the object remains the same in principle. For
instance, if a salad bowl is made of plastic, it may interact with a strong heat
source, resulting in the production of toxic vapor or fire. If instead the salad bowl is
made of metal, it is not subjected to the same hazard, but it remains a salad bowl.

• The hazard causal factors are directly related to a specific object. The hazard
does not exist due to specific object attributes, or it is not reasonable to assign the
hazard to them. In consequence, the hazard is specific for this object; hence, the
formalization concerning an object interaction hazard is specific for this object.

The generality of such an approach provides the advantage that all objects with identical
(similar) attributes can be identically treated. Hence, referring to the aforementioned
example, all plastic objects (assuming different plastic materials are not required
to be distinguished) can be considered with one ‘plastic and heat source principle’.
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This generalization reduces the number of required Safety Principles and potentially
simplifies the application of already available Safety Principles to new objects. Thus,
the assignment of the respective attribute to a new object ‘enables’ the applicability of
a respective Safety Principle.

How these Safety Principles can be systematically generated is proposed in the sequel.
The corresponding procedural model is depicted in Figure 7.8. The procedure starts
with reasoning about the possibility to abstract a specific object interaction scenario to
a generalized Safety Principle. In general, this is realized via inductive reasoning. As
consequence general principles can be incorrect if inferred from specific observations.
Hence, potentially too stringent rules may result. Due to the already mentioned
conservative attitude, the refinement of too strict safety limitations is given preference
over the possibility to overlook hazardous situations.

The hazard causal factors that were derived in the latter section can be helpful to
figure out the general mechanisms involved, and the relevant object attributes. If object
attributes are not already associated with respective objects, the attributes have to be
defined, and stored in an object attribute knowledge base in order to have them assigned
to respective objects henceforth. The Safety-Principle premise is usually defined such
that it relies on the object attributes.

Defined attributes can be specified more precisely in the subsequent procedure. In
order to simplify the attribute definition process, a semi-automated procedure can
assist in finding and assigning attribute labels for a set of already identified object-
object interactions. A computer aided definition process is recommended, as, on the
one hand, the more objects have to be considered in the safety knowledge base, the
more sophisticated their attributes and related Safety Principles may become. On
the other hand, the refinement of Safety Principles might have a similar effect due to
impracticable limitations on the tasks to perform. Hence, the refinement may require
differentiating more sophisticates object attributes or hazard actuation processes. In
consequence, the formalization of hazards is an iterative process.

If a Safety Principle is formulated, its scope and the generalization intention is known
(and documented). If a new object is to assign to fall into the scope of an already
available Safety Principle, the reusability of the available Safety Principle has to be
checked. For instance, a heat-plastic principle is formulated and a new object appears
that is made of plastic, the question arises how the Safety Principle is applicable for
the new object. Hence, the already defined Safety Principle keeps its validity for old
and new object relations, or it is conflicting. In the conflict case, the available Safety
Principles can be generalized for integrating the new objects relation as well, or the
object attributes have to be refined in order to differentiate the old and new object
relations. In consequence, the revision of former object relation is implicated.

Example
In the given example, the hazard occurs because a plastic object is approached too close
to a strong heat source. Hence, the hazard causal factors are at first the occurrence
of a plastic object and a strong heat source in a similar context. In other terms, if a
robot handles a plastic object it has to principally take care about heat sources. Here,
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Figure 7.8: Procedural model for specifying the Safety Principles.
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the terms ‘plastic material’ and ‘strong heat source’ are defined attributes, which are
manually assigned to respective objects so far. This can be documented in the proposed
worksheet in columns 8 and 9 in Table 7.7.

7.5.1 Modeling and quantification of likelihoods and

consequences

The core elements of the present approach are the Safety Principles. As already
mentioned, it consists of two parts, the premise and the conclusion. A fulfilled premise
indicates that the hazard, the Safety Principle is objected to, is detected in general in
the assessed situation. For this case, the respective hazard risk has to be determined,
based on the Safety-Principle conclusion, which contains detailed instruction to compute
the risk quantity.

In principle, the fundamental intention concerning Safety Principles is to take into
account object-object interactions. Hence, for a finite number, k ∈

{

1 . . .ngr

}

, l ∈
{1 . . .nenv}, of objects, ob jk and ob jl, there may be formalized a finite number, i ∈
{1 . . .nscenario}, of Safety Principles. For object-object interaction, a safety rule can be
formalized as

(ob jk ∧ob jl)→ risk. (7.1)

In order to generalize the hazard actuation description, the Safety Principles are assigned
to object attributes with a finite number, o, p ∈ {1 . . .nattr}, of object attributes,

ob jk :=
{

attrk,1 . . .attrk,o

}

, (7.2)

ob jl :=
{

attrl,1 . . .attrl,p

}

. (7.3)

In consequence, a Safety Principle concerning a generalized risk can be defined as

(

(

attrk,o ∨ . . .
)

∧
(

attrl,p ∨ . . .
)

)

i
→ riski, (7.4)

or due to several combinations for considering specific objects or object attributes,

(

(

attrk,o ∨ . . .
)

∧ob jl

)

∼i
→ risk∼i, or (7.5)

(

ob jk ∧
(

attrl,p ∨ . . .
)

)

∼i
→ risk∼i, (7.6)

however, the risks may be different due to different generalization aspects (indicated by
‘∼ i’). The premise becomes true as soon as two objects or their corresponding object
attribute-based conditions are detected in a situation. Influences that origin from the
environment can be considered as object (with attributes) the robot system is located
within. The procedure for identifying and entitling object attributes is discussed in
the latter section. The quantification of the risk is proposed to be realized according
to the common definition of risk (cf. Ericson, 2005) by determining or estimating the
likelihood and the consequence of a concerned mishap or accident. Hence it can be can
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Table 7.7: Worksheet for risks analysis, and estimating the related hazard causal
factors.
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be expressed as

riski = Pi

(

acc | Cq

)

·Pi (sev | Cr) , (7.7)

with the set or subset of information channels (characteristics) Cq,Cr ⊆ C, out of the
finite set of information channels (characteristics) C = {c | c1 . . .cnIC

}. In consequence,
the Safety Principle’s structure is similar to the triplet of (Kaplan, 1997) for describing
risks, < sci,Pi(φi),Pi(Xi) >. The scenario sci is assumed to be present if the Safety
Principle premise is true. During operation of the robot, the current state of the robot
and environment is described in respective SOM notation within a situation. Thus,
a scenario is a specific configuration of a situation in which a hazard is potentially
present and which has to be considered. In consequence, it is checked via premise of a
Safety Principle if a scenario is to encounter in a situation. In the respective event, the
likelihood and the consequences express the elements to compute related risk. However,
the risks can not be sufficiently determined for the most hazards without taking into
account further information of the situation in more detail. In order to realize an
adequate description of the scenario risk, likelihood and consequence might depend on
the constellation of the objects in the situation itself. The relevant risk factors have to
be (made) available on basis of measured or abstracted information channels. In SOM
notation, these are the set of characteristics Cx ⊆ C of the situation sx. The question
becomes important how the risk can be numerically described with regard to the object
constellation and further situational factors. For this purpose, functions that transcribe
the likelihood and the consequence can be principally specified, in the form of

Pi

(

acc | Cq

)

= f acc
i

(

Cq, . . .
)

, and (7.8)

Pi (sev | Cr) = f sev
i (Cr, . . .) . (7.9)

The key task for quantifying the hazard risk of a Safety Principle, i, for a specific
scenario, sci, is to define systematically the two functions, f acc

i and f sev
i in an adequate

manner. The adequateness is related to a description which

• is sufficient accurate,

• reliably reflects the risk,

• within an adequate time horizon,

• with a sufficient detail level, but is

• only as complex as necessary.

Definition 6: A Safety Principle is a rule for generating a quantitative risk statement
about an assessed situation during the operation of a system, concerning one particular
hazard but one or more different hazard causations. For this purpose, a first part, the
Safety-Principle premise acts as a basic detector of a particular situated hazard; hence,
it indicates, or identifies that a hazard is potentially present in an assessed situation.
If so, it can be stated that the Safety Principle is applicable. The second part, the
Safety-Principle conclusion analyses the assessed situation in depth in order to produce
the desired quantitative risk expression. For computing the risk expression, predefined
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instructions have to be executed taking into account the given situation and, if required,
a set of predefined parameters.

7.5.2 Required information basis

In order to approach toward the realization of a risk computation model, it is recom-
mended to firstly list the possible risk factors that mainly effect the hazard actuation
for a given scenario sci for a set of imaginable situations. Afterwards, the list can be
examined in order to find out which risk factors are suitable for quantifying a risk value.
In this connection, several aspects are of relevance:

• Which is each factor’s effect to the risk (correlation),

• are combinations of different risk factors required,

• how can the factors be made measurable,

• how reliable are the information channels, and

• how much efforts have to be spent to realize related information channels.

In this connection, a model of the hazard actuation has to be considered and therefore
generated, which reflects the ‘state of affairs’ of the concerned hazard within an
information processing system. The model represents the way the system perceives
(understands) the hazard, or rather the basic causal relations. Therefore, a data base is
used for further description. In this regard, the hazard model and the risk factor data
quality is essential, since data are required as parameters for the hazard model (quasi
static parameters defined during the development process or refined during learning), and
input channels for mapping the perceived situation to its comprised risks (dynamic data
describing the current situation and possibly determining hazard actuation probability
or hazard severity). The (static) parameters of the hazard actuation model can be
derived via expert knowledge, for instance, based on the evidence-based approach (see
Section 8.1.1), or fuzzy rules, and the like, and in general, by a systematic procedure,
as it is outlined in this section.

The latter, the dynamic data (characteristics of the situation) are based on sensor
data, or further processing and abstraction steps. Determining the quality of data that
represent real-world (RW ) aspects within the information system (IS) is related to further
aspects. Wand and Wang (1996) differentiate the proper representation and three kinds
of deficient representations, as shown in Figure 7.9. The proper representation allows
a mapping from RW → IS and vice versa, at least for considered parts of the real world.
The incomplete representation lacks of a sufficient mapping RW → IS, thus, RW states
should be represented within the IS, but they are not. Ambiguous representation allows
mapping RW → IS, but there map several RW states into identical IS states, thus, there
lacks knowledge to infer which RW state is represented. Meaningless states are not
required to map RW → IS and vice versa; hence, it is a ‘bad design’ to allow meaningless
data (Wand and Wang, 1996). The data that represent the information states itself
have various quality dimensions, such as accuracy, reliability, timeliness, relevance, to
mention only few (Wand and Wang, 1996). Gray and Salber (2001) mention quality
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RW IS RW IS

RW IS RW IS

Proper Incomplete

Ambiguous Meaningless state

Figure 7.9: Proper and improper representations, according Wand and Wang
(1996).

aspects such as coverage, resolution, repeatability, and frequencies. The “quality of data
depend on the design and production processes involved in generating the data” (Wand
and Wang, 1996). The processes might be complex; thus, a precise determination of
the data quality may be difficult.

7.5.3 Evaluation of information quality in early development

phases

In order to select the information basis the risk estimation will be based on, the
application of a qualitative evaluation is suggested. Here, an exemplary evaluation is
outlined that intents to take into account the 1) efforts that have to be spent in order to
realize and implement specific information sources, 2) the reliability of the information
sources, and 3) the estimate of the coverage of different fused sets of information channels
describing the focused hazard actuation. For this purpose, exemplary qualitative
measures are provided as evaluation basis comprising qualitative criterion transcriptions
and related scores. The scores are subsequently applied to generate a preference measure
for supporting the decision of selecting (a set of) information channels.

Availability of information channels
Due to the knowledge of the observer about the hazard actuation, it is one task to
identify the relevant risk factors. But for some cases, they are neither necessarily
available as information channel, nor simple to measure. Thus, one important aspect is
to consider the efforts that are potentially spent in order to implement such information
channel or fused sets of channels. In other cases, the required information is already
available, or few lines of codes are necessary, in further cases, new sensors are required.
The integration of new sensors into the hard- and software framework can be complex
and time-consuming (depending on the current development stage of the system). In
consequence, it is recommended to consider mentioned aspects (although they are not
of primary interest for safety concerns). The exemplary effort evaluation criteria (ELE)
are denoted in Table 7.8.
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ELE Effort level estimation 

Level Description  Detail 

3 Unreasonable 
Notable efforts have to be spent in order to derive       
required information channel, possibly additional hard-
ware has to be integrated 

2 Huge 
Further efforts have to spent but a software solution is 
feasible 

1 Small  
Minor computations or procedures are required to provide 
the required information channel 

0 Available Information channel is (quasi) available 

Table 7.8: Exemplary qualitative evaluation of the efforts that have to be poten-
tially spent to realize a specific information channel to express a desired risk factor.

* Reliability of information channels might depend on already considered instances. 

RLE Reliability level estimation* 

Level Description  Detail 

0 Low Outliers often occur, precision is low, deficiency occurs 

1 Moderate Minor outliers, weak precision, but high availability 

2 Good  Almost no outliers, high precision and availability 

3 High No outliers, accurate precision, no further unreliability 

Table 7.9: Exemplary qualitative evaluation of the estimated reliability of a specific
information channel representing a desired risk factor.

Reliability of information channels
Usually, the reliability if an information channel can be precisely determined, if the
reliabilities of all steps of the processing chain are known. Nevertheless, the precise
determination might be complex and time consuming, particularly, in early development
phases. In this connection, a qualitative evaluation can provide a useful preliminary
orientation as well. With the help of this evaluation it is rated which additional
unreliability each information channel contributes to the hazard model. Data that are
derived from prior, and already considered information processing steps, comprise no
high additional unreliability. For instance, most of the given examples are based on
an object recognition module. Unreliable elements in the process chain have to be
considered due to the point that the whole assessment process is based on it. In this
connection, it is important to be aware that the reliability of data that are derived
from the object recognition process is already considered by taking into account the
reliability of the object recognition module. The proposed reliability evaluation criteria
(RLE) are denoted in Table 7.9.

The coverage of fused information channels
For many hazards, it is assumed that several risk factors have to be fused in order to
sufficiently model the hazard actuation, and possibly, there are different variants for
realizing this. In consequence, the different variants can cover different aspects of the
causal relations. In this connection, it is assumed that very accurate risk models are
less general and, hence, are potentially more vulnerable to inadequately perform when
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CLE Coverage level estimation 

Level Description  Detail 

0 Negligible 
Risk factors (RFs) offer only specific and detailed infor-
mation, the hazard actuation can not be fully covered 

1 Very limited  
Specific aspects of several relevant RFs are described, 
there might exist cases for which the hazard will not be 
described  

2 Weak  
The main aspects of the hazard actuation are described, 
but RFs appear to potentially generate high complexity 

3 Strong  
The RFs factor can sufficiently describe the occurrence of 
the hazard, despite it is not the exact description of the 
hazard actuation 

4 Fully  The RF fully and precisely specifies the hazard actuation  

Table 7.10: Exemplary qualitative evaluation of the estimated amount that an
information channel or a set of them cover the considered hazard actuation.

applied in a similar context. In contrast, very general risk models may lack precision,
however, they may denote the better choice in the conservative sense (see conservative
approach, Section 7.2.4) concerning the debate of modeling a classification that gives
preference to false positives over false negatives. The respective coverage evaluation
criteria (CLE) are listed in Table 7.10.

With the help of proposed qualitative evaluation method, risk factors of a considered
hazard actuation are classified with regard to effort, reliability, and coverage. From this
estimation a conclusion can be drawn in order to systematically choose one of the possible
options (if available) for modeling the hazard actuation. The scores that were derived
from qualitative evaluations can be fused with the help of a utility function. Hence,
meaningful weights can be assigned the different sets of risk factors. The resulting utility
value indicates the preference for an option of modeling the hazard risk. As described
above, the risk consists of the two factors likelihood and consequence. Thus, the risk
factors can be distinguished in factors that effect the likelihood, and the consequences.

Example
The worksheet shown in Table 7.11 illustrates an example considering the likelihood,
Table 7.12 the severity. Here, the utility function emphasizes reliability and coverage,
while the required efforts are reflected as reduced utility value. Since the reliability is
represented via qualitative measures, the reliability of a fused information channel is
expressed by the minimum reliability value of its components in order to measure it
with regard to the ‘weakest link of the chain’. Usually, reliability values are multiplied
for series systems of n components.

In the exemplary worksheet in Table 7.11, the applied utility function is denoted in
the right lower corner, and respective results are denoted in the last column. Here,
the hazard model considering plastic and heat being participated in the production
of toxic vapor or a residential fire, are assumed to be described by assuming the heat
source as a potential heat source (independently of its on/off-state), and considering
their relative distance. In fact, this approach provokes many false alarms, especially, if
the heat source can be turned off. However, it is not sure that the heat source could
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be turned on later on. Hence, it seems reasonable not to deposit plastic toys or other
inflammable objects on the cold kitchen stove, wood-burning fireplace, or the like.

7.5.4 Determining the risk function

If the risk factors are known and the information channels to model the hazard ac-
tuation are chosen, the question arises how the risk factors are related to the hazard
actuation, and how can risk models be realized that adequately describe the hazard
actuation. Depending on the purpose this can be principally realized via utilization of
mathematical functions, or algorithms. For instance, the relation of measurable risk
factors (information channels) map a mathematical function to a risk value: There-
fore, additionally generated information channels could be required and have to be
abstracted, for instance, timer functions that measure an exposure time. However, as
already partially influenced by the selection of the used information channels, the prob-
lem to define the description granularity arises: The hazard actuation can be modeled
realistically, or the actuation is approximated with a function using an adequate degree
of abstraction. This is affected again by aspects of reliability and (conservative) classifi-
cation performance (see Section 7.2.4). In general, a risk function can be determined
based on information channels (characteristics), and prespecified or learned parameters.
Here, the subset of characteristic, Cq ⊆ C, is used for determining the likelihood, and
the subset Cr ⊆ C for describing the severity. Possibly required parameters Z can be
prespecified or learned, which are the likelihood-related parameters, Zq ⊆ Z, and the
severity-related parameters, Zr ⊆ Z. In consequence, the risk function,

riski = f acc
i

(

Cq,Zq

)

· f sev
i (Cr,Zr) , (7.10)

can be determined.

The universality of this notion shall emphasize that, in principle, every kind of mathe-
matical function or algorithm might be suitable to express the mapping from information
channels and parameters to risk values. A risk value might be determined by neuronal
nets, fuzzy functions, decision trees, support vector machines, functions similar to ‘dan-
ger indices’ in Section 2.4.1, or fault trees in Section 2.4.2, to mention a few. Hence, the
mapping can be realized with known methods that are integrated within the structure of
a Safety Principle. This implies flexibility with regard to the modeling of the risk func-
tion, and the refinement of Safety Principles during the operation phase of the system.

After defining and realizing the required information channels, the mapping from
information channels to the desired risk values has to be defined, including the required
parameters. A simple mapping function is a step function, for instance, if an input
channel exceeds a certain threshold, or a linear function, mapping the linear correlation of
the input channel as risk factor. More sophisticated functions are polynomial functions,
exponential, logarithmic functions, neural networks, and the like. In the most cases,
multiple factors may have effect on the risk amount. In consequence, multidimensional
mapping functions are required. A list of available functions, respective parameters,
and the procedure to determine the function parameters is shown in Table 7.13.
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Table 7.11: Worksheet for determining likelihood-related risk factors and evalua-
tion of respective information and the information quality.
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Table 7.12: Worksheet for determining severity-related risk factors and evaluation
of respective information and the information quality.
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Linear equation 

unknown parameters ���� � � ��,  

Form: 
��	ABCD� � � C�E F �� � �DCD��� ����C� 

Determine data pairs 

Define approximation method 

 
Polynomial equation 

unknown parameters ���� � � � ��� 

Form:  

��	ABCD� � � C�E F � ��������CD���C���
�������

 

Determine data pairs 

Define approximation method 

 
Fuzzy function 

Fuzzyfication 
- Define fuzzy set with n membership functions 
- Define the rule set 

Defuzzification  
- Define the defuzzification method 

 
Multilayer perceptron 

Number of input, intermediate, output neurons 

Define learning data 

Define learning method, activation function, minimal error etc.  

 
 Step functions 

… 
 

Decision tree 

… 
 

Fault tree 

… 
 

Table 7.13: Exemplary functions for realizing the computation part for estimating
the likelihood and severity, and their typically required parameters.

Example
In the example shown in Table 7.11, interaction of heat and plastic shall be modeled
with regard to the accident likelihood. According to the analysis, the modeling of the
risk function on basis of one risk factor and one assumption is favored. On the one
hand, the heat source is assumed to be potentially hot, disregarding that it can be
turned off. On the other hand, the relative distance of the plastic object and the heat
source is figured out as essential risk factor. For the given example, an one-dimensional
function has to be modeled, which maps the distance between a plastic object and a
heat source to a likelihood value.

In order to generate a mapping function, experts can be asked for the accident likelihood
similar to the already mentioned evidence-based approach. An exemplary scenario, as
illustrated in Figure 7.10, and the related questions the expert are asked, could be:



102 7 A priori Formalization and Quantification of Hazards

• Assume the cooking plate is turned on, and typical temperatures of the cooking
plate are classified as strong heat sources.

• Assume further that the material attribute of the plastic object are not accurately
known, thus, it could be made of thermoplastic.

• Estimate the likelihood of a residential fire (e.g. x of 1000 trials) under adverse
conditions (more objects nearby, kitchen hood running, wooden kitchen units,
and the like) according the minimal distance between the plastic object and the
cooking plate.

In this regard, the expert’s estimates can be based on former experiences or experiments.

The results that are retrieved by consulting experts can be interpolated, for instance, by
a mathematical function. In Table 7.14, exemplary expert ratings are listed according
to pre-defined distance categories, D. In order to approximate a mapping function,
the upper confidence level (UCL) can be computed. This is realized by utilizing the
Student’s t-distribution, which is t(1−0.99;4) = 3.747 for statistically enclosing 99% of

nD = 5 probes. The variance VAR(D) = 1
nD−1 ∑

nD

i=1

(

di −D
)2

is calculated based on

mean D = 1
nD

∑
nD

i=1 di. Then, each UCL can be computed applying respective mean and
variance value according to

UCLD = D+ t(1−α;nD−1)

√

VAR(D)√
nD

, (7.11)

assuming normal distribution. For interpolation, a polynomial of fifth order fits well (the
boundaries of the polynomial have to be correctly considered as well). In Table 7.14,
exemplary expert estimates are denoted for pre-defined distance categories. In Fig-
ure 7.11, the risk values, their UCL, and the interpolation are shown. The denoted
formula could be applied as accident likelihood function (for the interval [0,15cm]).

In order to estimate the accident severity of a residential fire, it was decided to consider
the intended use of the robot. For instance, for a robot that is designed for usage in
a typical household, it has to be assumed that humans can come to death due to a
residential fire. As initially mentioned, qualitative measures can be helpful for this
purpose. For instance, the accident severity of a residential fire can be estimated with

Figure 7.10: Scenario for estimating the risks of approaching a plastic bowl to
the cooking plate.
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y = -3E-06x5 + 0,0001x4 - 0,002x3 + 0,0166x2 -
0,0748x + 0,1836

0

0,05

0,1

0,15

0,2

0 5 10 15 cm

Expert A

Expert B

Expert C

Expert D

Expert E

UCL99%

Polynomial

Figure 7.11: Graphs of the expert estimates, the UCL, and the polynomial
interpolation, with x as distance [cm] and y = f (x) = f acc

i .

the ‘Hicks Scale’ s( c.f. Proske, 2008). Hence, ‘multiple fatalities and injuries’ are rated
with 100 (severityHicks[0,100]), and normalized (severityn ∈ [0,1]) with f sev

i = 1. The
Safety Principle, i = 1, and the respective formula mapping the minimal distance d

between the two objects into the risk value can be denoted as:3

(

attrk,o = ‘attr:plastic’
)

∧
(

attrl,p = ‘attr:strong_heat_source’
)

→ risk1 (d) =







0.184 : d < 0cm
−3·10−6d5+0.0001d4−0.002d3

+0.0166d2−0.0748d+0.1836
: 0 ≤ d ≤ 15cm .

0 : d > 15cm

(7.12)

Finally, the process of determining a risk function is exemplary shown. Such formalized
safety knowledge denotes the basis to enable the system itself to assess the situation risk.
The question arises how the safety knowledge is integrated into and utilize within the
risk assessment component and overall system in order to realize this. This is detailed
in the subsequent section.

Likelihood estimation of a residential fire

Distance d [cm] 0 2,5 5 7,5 10 12,5 15

Expert A 0,05 0,03 0,01 0,005 0,002 0 0

Expert B 0,15 0,07 0,02 0,01 0 0 0

Expert C 0,1 0,05 0,03 0,01 0,005 0 0

Expert D 0,15 0,05 0,04 0,02 0,01 0,001 0

Expert E 0,05 0,04 0,02 0,01 0 0 0

Mean 0,1 0,048 0,024 0,011 0,0034 0,0002 0

Var 0,0025 0,00022 0,00013 0,00003 0,0000178 0,0000002 0

UCL99% 0,183785467 0,07285479 0,04310603 0,02017824 0,01046983 0,0009494 0

Table 7.14: Exemplary values of possible expert likelihood estimates for a resi-
dential fire in case of approaching plastic to heat sources. The values denote the
expert’s estimates of accident likelihoods according to different distances.

3However, possible intersection of the object areas is not explicitly considered. This could to be taken
into account bygenerating a formula that expresses the risk in function of the area overlap or by a
function for negative distances.
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8 Realization of the Dynamic Risk

Assessment Approach

8.1 Integrating Hazard Knowledge

Risks are focused arising through interaction of environment objects. The considered
risks are assumed to be situational inherent and, therefore, in principle detectable by
analyzing the inner structure of a situation. Relations are used in the SOM-technique
to describe the inner structure of situations and in consequence the generation of
another characteristic within a situation results. Hence, the construct ‘relation’ can
be applied to derive abstract information from a situation. Within the relation, it is
specified when it becomes applicable and how the information processing (on basis of
which characteristics or additional information, e.g. knowledge bases) takes place. In
consequence, the dynamic risk assessment concept can be expressed via a so-called ‘risk
assessment relation’. Since situations in the SOM-approach are considered as snapshots
of a dynamic process, the situation itself is not necessarily dynamic, but the sequence of
situations. Thus, assessing a sequence of situations via risk assessment relations can be
defined as a realization of the proposed dynamic risk assessment approach. The general
concept is shown in Figure 8.1.

Due to the SOM-based realization of the risk assessment, it is applicable to any instance
of the SOM-based cognitive architecture. This allows the integration of the safety
knowledge into the experience database, into the perception, action models, and into
the anticipation process. Furthermore, the safety knowledge (Safety Principles) can
be expressed using the SOM relation structure. In consequence, it is consistent with
the overall SOM-based cognitive architecture, and hence, the information processing
within the architecture can principally take place as well on the safety knowledge. This
compatibility at the conceptual level allows in principle that the processing of the safety
knowledge in terms of refinement can be realized.

The relation in SOM notation has the same structure as an operator, and is also called
passive operator (internal causal relation between characteristics: In terms of ‘because’
(Söffker, 2001)). As mentioned in Section 4.1, a relation is applicable to a situation if
its so-called explicit assumptions eAx are fulfilled. Hence, each relation requires the
presence of specific characteristics. The required characteristic can be seen as a condition
for its application and as inputs of the relation function. On the basis of the inputs
(and parameters as implicit assumptions iAx) the relation generates new (abstract)
characteristics c, for example like a mathematical function, c = f(eA1 . . .eAi, iA1 . . . iAj).
Hence, a conditional part of a Safety Principle automatically comes with the SOM
approach. For instance, if the appearance of characteristic ‘A’ and ‘B’ indicates
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Figure 8.1: Realization of the dynamic risk assessment approach. Risk as a part
of the situation: Situation risk-awareness.
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[B]

[Position A]

[Current task]
[Position B]

[Risk]

[A]

c2

c4

c6

c3

c5

c1

rRA
Stored in 
the safety
knowledge
base

Figure 8.2: SOM-relation applied to denote the principle of the risk assessment
process within a SOM-based approach.

risk ‘Risk’, then, the relation generating characteristic ‘Risk’ awaits the presence of
characteristic ‘A’ and ‘B’. The given example is illustrated in Figure 8.2.

Since the interaction of objects is particularly considered, some additional processing
steps are required in order to establish the risk assessment. As already mentioned, the
safety knowledge, expressed using Safety Principles is generalized in terms of referencing
on object attributes instead on specific objects. Furthermore, the risk estimation can
be based on already available or additional required situation characteristics. These
dependencies are illustrated in Figure 8.3. Here, it is assumed that recognized and
grasped objects are represented as kind of lists, describing the contained objects in a
hierarchical structure, for instance, in XML, as it is proposed by Ertle et al. (2012a), or
in a similar notation. On the one hand, there are data, describing currently measured
aspects, such as position pose, size, and so forth. On the other hand, there are data
that are inferred from a knowledge base containing declarative object knowledge, such
as typical size, grasping data, center of mass, and further object attributes. In this
connection, the object recognition (possibly in combination with a kind of object map in
order to store and track already recognized objects) of the current environment provides
the measured partition of the data, denoted in Figure 8.3 as ‘environment objects’. The
grasping module in turn provides measured and stored data about the currently grasped
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r : compute risks5

r : derive charact.4

r : extract attr.2

r : match SPs3

© SRS 2013

[Attributes list]

[Grasped obj.]

[Safety principles list]

[Attributes list]

[Risk value list]

[Env. objects]

[Input channel c ]1

r : extract attr.1
1

3

2

5

4

RA

SRA SRA

Figure 8.3: The situational object interaction risk assessment process denoted in
detail in SOM notation.

objects, called ‘grasped objects’. Via a further processing step, object information is
selectively inferred from a knowledge base. For considering safety aspects, in particular,
these are the object attributes. This is realized with a relation r1,2 that ‘extracts’ the
object attributes object-wise in the ‘attributes list’. A further relation r3 generates a list
of Safety Principles, that become applicable due to the presence of respective object or
object attributes. This relation could also be called the ‘hazard identification relation’.

It is specified within the Safety Principles which information channels (characteristics)
are required in order to base the computation of the risk values on them. Hence, from
the list of applicable Safety Principles, the list of required additional characteristics
is known. In consequence, the additionally required characteristics can be generated
by applying the specified relations, for instance, the relation r4. In the following, the
list of applicable Safety Principles is required to compute the risk function r5 (‘specific
risk assessment relation’) that is defined in the second part of each Safety Principle.
In consequence, a risk value results from each specific risk assessment relation, and is
added to the characteristic ‘risk value list’. In a further step, a resulting risk value can
be computed in order to express the overall risk of a situation (not illustrated).

From the outlined process, the requirements for related subprocesses become visible.
On the one hand, the requirement on the object recognition and a dynamic object
environment map can be derived. On the other hand, the principle processing steps are
explained for realizing the dynamic risk assessment approach. Both together provide a
first basis for an implementation.

8.1.1 Risk-sensitive planning and perception

For ensuring safety of autonomous systems, the capability of the system to have
situation awareness is important (Wardziński, 2006). As expressed by Endsley, situation
awareness is “the perception of the elements in the environment [...], and the projection
of their status in the near future” (Endsley, 1995). Consequently, two functions play a
major role: Planning and perception. Unfortunately, neither their relation nor their
internal relation with respect to internal structuring is detailed.

The first important function, the planning capability, is generally speaking the searching
for a sequence of action in order to reach a given goal. Within the applied cognitive
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Figure 8.4: The dynamic risk assessment process based on initial safety knowledge
(cf. Ertle et al., 2010c).

architecture, planning is realized with the help of its anticipation capabilities, see
Section 4.2.4. Accordingly, the outcomes of applicable operators on a starting situation
are predicted in a recursive fashion, so that a net of situation-operator-situation chains
is generated, which represents the space of different (known) sequences of action, the
so-called mental action space. If this action space contains the goal situation (once or
multiple times), a plan for solving the problem can be found by successively transferring
the system from the current to the desired goal situation. In this connection, the selection
of the sequence of action should clearly depend on the risks that may be comprised in the
different situations. Therefore, thresholds with regard to the benefit of the task have to be
maintained, and an optimization should take place as well under consideration of risks.

The perception is seen as a second important component because the information
selection is strongly related to it. In dependence on the current parameters, knowledge,
intention, goal, and the like, the information processing of sensory data is adapted in
order to provide the system with currently relevant information aspects. For considering
safety, it must be ensured that potential risks in a situation are perceived and classified
as relevant and required aspects to be considered, and hence, remain in the scope of
the system’s attention. Otherwise, risk information could be discarded as non-problem
related information.

Since the main objective of integrating risk assessment capabilities in robotic systems is
to realize safe autonomy, deliberative decision-making capabilities are required, at least
at a higher systemic level. “Rational decision-making requires, therefore, a clear and
quantitative way of expressing risk so that it can be properly weighted, along with all
other costs and benefits, in the decision process” (Kaplan and Garrick, 1981). The term
‘properly weighted’ in relation to risks, costs and benefits requires comparable measures.

If the system has an internal representation of the sets of possible sequences of action
available, for instance, in form of the mentioned action space, and this representation is
equipped with quantitative measures such as benefits and costs, the decision theory
becomes applicable in order to generate desired plans. The required quantitative
measures for taking into account potential risks are provided by the dynamic risk
assessment approach. Its principle integration is illustrated in Figure 8.4.

In order to realize the risk-sensitive planning approach, the mental action space is
assessed situation per situation, and risk values are attached as further situation
characteristics before the decision process takes place. In this connection, risk values can
be assumed to be transition (operator) costs. As the action space is a directed graph,



8 Realization of the Dynamic Risk Assessment Approach 109

Perception  
(object recognition / 

object map)

Anticipation / 
planning

DRA 
server

Voter

DRA 
server

DRA 
server

Sensing Execution

Figure 8.5: Sketch of the communication within the dynamic risk assessment
(DRA) architecture, adopted from Ertle et al. (2012a).

and consequently, is equipped with respective weighted transitions, various methods
are available in order to solve the optimization problem of weighted directed graphs.

8.1.2 The Risk assessment server

The latter section outlined the general steps for generating a knowledge base for object-
object interaction hazards. In this section it is described more specifically how the
safety knowledge is applied within the robotic system in order to put it into effect.
Therefore, a client-server communication structure is chosen, since it provides some
advantages, such as system interoperability, reduced workload, data integrity and the
like (Yadava and Singh, 2009). So, the risk assessment module is realized as server, and
the components of the robot control system as clients. Furthermore, a server-based
architecture simplifies the realization of concepts such as distributed redundancy and
software diversity (e.g. various compilers). The architecture highlighting the general
integration of a dynamic risk assessment server into robotic architectures is sketched
in Figure 8.5. Here, the perception includes the recognition of objects from the
current scene. As object recognition processes are time-consuming, it is assumed that
the presence of objects can be stored within, and in particular, recalled from a kind of
object map. Activities for generation of the actions space, and the planning process are
assumed to take place within the ‘Anticipation/planning’ module.

The dynamic risk assessment server module is connected to the anticipation/planning
module, and might be realized as multiple instances, built via various compilers, or
is executed on multiple redundant devices. A subsequent voter receives redundant
responses from each dynamic risk assessment server instance, allowing detecting de-
viations due to software errors or failures in general. According to the dynamic risk
assessment approach, the anticipation/planning module passes the set of possible situ-
ations to the dynamic risk assessment server(s), which in turn extends each of them
with risk information in the described manner.
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Figure 8.6: UML extract of the dynamic risk assessment server structure (Ertle
et al., 2012a).

In general, the concept in this work favors the utilization of knowledge-based approaches.
Besides the advantage to maintain knowledge-based updates, the separation of knowledge
from the implementation is enforced (Beierle and Kern-Isberner, 2006). However,
it is has to be considered that a part of the knowledge might be required for non-
safety-related purposes and, therefore, must be accessible for other components of the
system as well. For instance, this might be the case for the object knowledge base. In
consequence, the object knowledge base and safety knowledge base are realized as a
separate knowledge bases for this reason, and in addition, for providing better overview
and maintainability. The utilization and integration of the safety and object knowledge
for the dynamic risk assessment process is outlined in UML notation in Figure 8.6.

Here, the information of object attributes is inferred from the object knowledge base. The
Safety Principles are obtained from the Safety Principle knowledge base. The dyadic form
of the Safety Principles, the premise and the conclusion are implemented via interface
structures. Interfaces might be comfortable to implement but, so far, they constitute a
breach with the paradigm to separate the knowledge from the code implementation.

8.1.3 Safety clearance to critical situations

In the latter section, it is described how risks can be identified and quantified within a
dynamic risk assessment approach and how this is integrated within the SOM approach.
For realizing that a system safely operates, courses of action have to take place such that
situations with unacceptable risks are sufficiently and reliably avoided. Additionally, the
risk could be reduced, if the ‘distance’ to hazardous situations is maximized. This can
be realized if the possible successor situations can be determined, on the one hand, and
on the other hand, a measure for the distance to hazardous situations is defined. The
anticipation capabilities of a cognitive technical system, described in Section 4.1, and the
integration of the dynamic risk assessment approach in Section 8.1 denote the fulfillment
of the first requirement. The realization of a safety clearance is described in the sequel.
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Since it is difficult to formulate a distance measure at the description level of actions
(operators) and situations, in form of spatial or temporal distances, the number of
actions that are required to be performed to arrive at a hazardous situation are utilized
as a distance measure. This can be realized by ‘diffusing’ the risk value of a hazardous
situation to its prior situations. If a decision process is designed to find courses of action
with minimized risks, an additional risk aversion can be realized with this approach.
From this, it follows that a course of action with a safety clearance to hazardous
situations can be favored over one that closely passes hazardous situations. Hence, the
safety clearance depends on the number of operators that have to be executed until a
hazardous situation is reached.

In order to realize this, a Markov transition matrix can be applied. In general, it
can be used to compute the reachability of future states of a discrete Markov chain.
The action space, representing the anticipation capabilities of a cognitive technical
system (see Section 4.2.4), contains the current and all reachable future situations
(depending on the amount or depth of the anticipation). Future situations are reachable
by executing applicable operators (transitions), and each situation typically has one or
a set of applicable operators. The applicability of an operator does only depend on its
respective initial situation. Hence, the action space has Markov properties.

The Markov transition matrix is generated without considering any preference for action
selection. Hence, the available successor situations are equally probable, consequently,
their probability is inverse proportional to the available applicable operators. For
instance, if there are ‘4’ applicable operators in a situation, each has chance to be
randomly chosen with a probability of ‘0.25’. The assumption of equally probable
successor situations denotes the modeling of a task neutral reachability of future
situations on the one hand. On the other hand, it represents the random action
selection of an exploring agent (without any prior knowledge). Exploration is essential
for learning, as a “[...] learning agent must prefer actions that it has tried in the past
and found to be effective in producing reward. But to discover such actions, it has to try
actions that it has not selected before. The agent has to exploit what it already knows
in order to obtain reward, but it also has to explore in order to make better action
selections in the future. The dilemma is that neither exploration nor exploitation can be
pursued exclusively without failing at the task” (Sutton and Barto, 1998).

The required transition matrix has the dimension nsit ×nsit for an action space consisting
of nsit situations. If, for instance, in the situation, sx with x ∈ {1 . . .nsit}, one operator
is available, which transfers the situation, sx, to any situation, sy with y ∈ {1 . . .nsit}, of
the action space, the transition probability of ‘1’ is denoted at the respective position,
x,y, in the transition matrix. In order to transform the complete action space into the
transition matrix the inverse number of available operators (transition between two
situations) in each situation, sx, is denoted at each position, x,y, in the matrix in which
the application of respective operator transfers the situation, sx, into respective successor
situation, sy. Assuming, that the situation, sx, is the initial situation, and the situation,
sy, is the successor situation, the operator ox,y transfers sx into sy. Furthermore, the
transition probability, P(ox,y), is the reciprocal of the number of available operators of
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each initial situation, sx. From this, it can be derived the quadratic transition matrix,

M =







P(o1,1) . . . P(ox,1)
...

. . .
...

P(o1,y) . . . P(ox,y)






. (8.1)

By raising the transition matrix M to the power of n, the transition probabilities of
applying a number n of operators can be computed. Furthermore, each situation sy

comprises a number of risk values riskk,y with k = {1 . . .nscenario} (from assessment of
applicable out of nscenario Safety Principles, not applicable Safety Principles are denoted
as riskk,y = 0), therefore, it can be generated the nsit ×nscenario risk matrix

RISKSP =







risk1,1 . . . risk1,y
...

. . .
...

riskk,1 . . . riskk,y






. (8.2)

Assuming summable risks values, the cross product of transition probability matrix
M

n and the transposed risk matrix RISK
T
SP generates the situation risk matrix

MRISKn =M
n ×RISK

T
SP, (8.3)

for taking a number n of arbitrary applied but applicable operators into account. With
regard to planning actions, the nsit ×nscenario situation risk matrix MRISKn can be
used as a look-up table to find out which risks are available in a specific situation,
including the risks that are diffused from its reachable neighbored situations. Depending
on which number n of operators are considered in the risk matrix MRISKn, different
safety clearances can be realized. The safety clearance can be seen as a measure how far
the foresight to hazardous situations should be. The higher the safety clearance n the
wider hazardous situations can be ‘circumnavigated’ (risk aversion). For instance, if a
safety clearance n = 1 is considered in a situation s2 with three applicable operators, and
one of them is leading to the ‘lethal’ situation s3 (severity SAcc = 1), the transition from
the situation s1 to the successor situation s2 will result to the diffused risk mrisk1,1,2 =
33% (see Figure 8.7 left). If a safety clearance of n= 2 is considered, the transition from
the initial situation s0 to the successor situation s1 already comprises the risk mrisk2,0,1 =
0.33 ·0.33≈ 11% (see Figure 8.7 right). From this results that in situations with no risk
(e.g. mriskn,x,y = 0%) a number n of arbitrary operators could be applied without reaching
a hazardous/lethal situation. In other cases, the application of a number n, of operators
after transferring from one situation sx to another situation sy, poses the mriskn,x,y.

Thus, information describing the distance to hazardous situations allows, at first, the
reduction of the set of situations, which should be reachable by the system, and secondly,
selecting operators considering a safety clearance.
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Figure 8.7: Safety clearance delivers risk value for risks with a distance of one
(left part) or two (right part) operators. The ‘future’ risky situation s3 can already
be taken into account in s2 or s1 (Ertle et al., 2010a).

8.2 Simulation Experiments

8.2.1 Risk assessment server experiment

A small grid-world example is shown in Figure 8.8 containing several potential haz-
ardous object interactions. In all situations, the robot has gripped a ‘coffee bowl’ and is
following a predefined path, so far not paying attention to any risks. A ‘human’ enters
the scene drying hairs with a ‘hairdryer’. The ‘hairdryer’ is deposited afterwards and
the human crosses the scene. On the robot’s path it approaches first a ‘power plug’,
‘cooking plate’ and later on the deposited ‘hairdryer’. In general, the scene consists of
ten situations that are passed consecutively to the dynamic risk assessment server.

The dynamic risk assessment server is realized within a SOAP1 middleware offering a
comfortable possibility to serialize and deserialize XML structures. Hence, the situational
descriptions and the knowledge are realized via XML. The dynamic risk assessment
server is prepared with initial object knowledge. The attribute-based generalization is
realized by defining object attributes according to Table 8.1.

At first, the initial safety knowledge has to be loaded into the dynamic risk assessment
server. This Safety-Principle knowledge base, shown in Table 8.2, contains four Safety
Principles relating objects or their attributes to hazards as premises for the presence of
respective hazards. The risk of each hazard is computed by the risk determination part.
For illustration, all risks are interpolated as linear functions in dependence of respective
object distances. The interpolation takes place between two extremes: Being a very
hazardous constellation on the one hand, and on the other hand, being a constellation
assumed to be safe. The last two columns of the table depict the two coefficients of a
linear equation. As mentioned already, any functions or instructions can be utilized in
this context.

1http://www.cs.fsu.edu/~engelen/soap.html [Online; accessed 08-December-2011]

http://www.cs.fsu.edu/~engelen/soap.html
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Figure 8.8: The Safety Principle simulator: Simulation comprising different
hazardously interacting objects. The experiment is a 6x7 grid world and consists
of 10 sequenced situations. Numbers below the symbols indicate respective object
position at each sequence step (Ertle et al., 2012a).

Objects Attributes

Coffee bowl hot liquid, liquid, plastic

Human obstacle

Cooking plate obstacle, extreme heat

Power plug obstacle, high voltage, grippable

Hairdryer obstacle, high voltage

Object knowledge base

Table 8.1: The object knowledge base of the risk assessment server containing the
attributes of the respective objects (Ertle et al., 2012a).

Dist. Risk Dist. Risk a b

Electric shock liquid high voltage 1 0,6 3 0 <linear> -0,3 0,9

Scaling human hot liquid human 0 0,3 2 0 <linear> -0,15 0,3

Collision risks <any> obstacle 0 0,1 2 0 <linear> -0,05 0,1

Melting plastic plastic extreme heat 0 0,8 2 0 <linear> -0,4 0,8

Function 

type

Res. param.

Safety knowledge base

Hazardous Uncritical
Scene obj.Gripped obj.Modeled risks

Table 8.2: Example of Safety Principles as risk computation models for object
interaction accident (Ertle et al., 2012a).
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Figure 8.9: Graphical illustration of the output of the dynamic risk assessment:
The risks appearing in the simulation example (Ertle et al., 2012a).

The results of the dynamic risk assessment server are illustrated in Figure 8.9. Risks
are plotted situation-wise in a stack chart. The dynamic risk assessment server responds
single risk values. The sum of these results in the overall situational risk value. Hence,
it becomes apparent that the assessment of anticipated situations allows for balancing
of single risks, overall risks with regard to comparisons of risks, risk thresholds or even
modeled task benefits.

The values chosen for risk models are not realistic but for real world purposes they could
be systematically determined with the help of the procedural model in the previous
chapter.

8.2.2 Risk-sensitive planning experiment

As an example application, an arcade game2 is chosen, in which an autonomous agent
as softbot interacts within a grid-based environment. This application example is well
suited in order to illustrate the proposed approach since it offers a simplified world
focusing on the problems aimed in this contribution. Moreover, the developed functions
can be easily transferred to real world applications since uncertainty, ambiguousness,
faults, and perceptual limits can also be simulated by the arcade game in the figurative
sense.

The environment consists of different kinds of fields and the agent can perform the
actions ‘up’, ‘down’, ‘left’, and ‘right’. In general, the task consists of first picking
up a certain number of ‘emeralds’, by entering related fields, and then finishing the
level by leaving the scenario through an exit door, see Figure 8.10. Here, the agent
is performing actions with help of the proposed cognitive architecture. Any situation
si, as the input of the architecture, consists of the characteristics ‘x-position’ (integer),
‘y-position’ (integer), ‘type of the current field’ (string), and ‘collected points’ (integer).
This example is now used to illustrate the action planning including safety aspects based
on the mental action space. The agent has to leave the level by reaching the exit door in
the lower right corner, which can be reached by following different paths. Furthermore,
an emerald can be picked up to increase the number of collected points. This is no

2A. Entertainment, ‘Rocks’n’Diamonds’, http://www.artsoft.org/rocksndiamonds/ [Online; ac-
cessed 08-Apil-2013]

http://www.artsoft.org/rocksndiamonds/
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Figure 8.10: The simulation example - the arcade game (Ertle et al., 2010a).

necessary condition to finish the scenario, however, it can be used as an additional
factor influencing the planning process. The considered scenario also contains three
acid fields and a hostile monster agent performing horizontal movements. A collision
with either the monster or the acid fields would lead to the undesired ‘death’ of the
agent. In the considered application example a Safety Principle P1 is defined.

SP1 : Pos(player) = Pos(mortal_ f ield)→ risk = 1 (8.4)

A : mortal_ f ield = {acid_ f ield,monster} (8.5)

The conditional parts become true, if the position of the player is equal to the position of
a ‘mortal_ f ield’ (which again could contain ‘attributes A’: ‘acid_ f ield’ or ‘monster’).
The related risk is defined as 1 (accident severity SAcc = 1 means ‘death’ of agent,
accident probability PAcc = 1 when the condition of Safety Principle is fulfilled and
risk = SAcc ·PAcc).

The mental action space is generated based on the initial situation of the agent (lower
left corner) and contains all possible future situations and actions. In Figure 8.11, the
complete mental actions space as it results in this first simplified example is depicted
using the SOM symbolic and colors in accordance to their present risk. Here, the
hostile monster and the emerald in the upper right corner are not considered for
simplification. After the generation of the mental action space, two different safety
margins are evaluated. These can be identified by the indexes risk1,risk2. The agent’s
‘death’ is assumed to have accident severity of ‘1’ and therefore a risk 100% (‘mortal’).
Situations without any risks are described with 0% risk.

According to Figure 8.11, the shortest route will lead over situation s3,4,5,8 to the
goal situation s21. This path is hazardous because it is close to the acid fields (s9,10,11:
colored red). Each decision error or exploration step will lead to the agent’s ‘death’
with high probability. For planning the Dijkstra algorithm is used. It generates paths
considering its costs. Thus, each transition from si → sj costs

costi j = 1+ risk
(

sj

)

,
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Figure 8.11: Graphical representation of the mental action space without consid-
ering the monster (Ertle et al., 2010a).

whereby the risk value is assumed to be expressed in percent (0 . . .100%). The overall
costs of the path~s with the elements s0 . . .sn or n actions (with n ∈N

∗) are calculated as

cost0,n = n+
n

∑
x=1

risk (sx).

This example cost formula is a very safety oriented strategy. The plan with lowest costs
results to costs(~s : s2,6,7,12,13,18,16,8,21). The goal is reachable without any risks, when
considering a safety margin of one action. The plan does not change by considering
safety margin of two actions but the maximum risk rises to risk2 = 11.1% and the costs
amount 37 (≈ 11.1(%)+8.3(%)+8.3(%)+9(steps)).

By regarding the scenario (Figure 8.10), it can be seen that the protrusion directly
above the player’s starting position causes a bottleneck. Consequently, it is not possible
to pass the acid containers with a greater safety margin.

When the dynamic elements (monster, emerald) are taken into account as well, the
complexity is increasing significantly. The action space contains 816 situations (instead
of 23), 1662 operators, and 22 different goal constellations. If the scenario is evaluated
again with safety margin ‘1’ then the goal can be reached without any risks. For shortest
route 18 steps and 30 steps for the case that the emerald is collected are used. The
planning process considering a safety margin ‘2’ and collecting the emerald, results to

Path 11: maxrisk2(383) = 37,5%, n = 42 steps, costs = 111, emeralds = 1:
om:right , om:right , om:right , om:right , om:right , om:le f t , oa:up, om:le f t , oa:right , om:le f t , oa:right ,
om:le f t , oa:up, om:le f t , oa:right , om:right , oa:right , om:right , oa:down, om:right , om:right , om:right ,
om:le f t , oa:up, om:le f t , oa:up, om:le f t , oa:right , om:le f t , oa:right , om:le f t , oa:le f t , om:right , oa:le f t ,
om:right(38%), oa:down, om:right(31%), oa:down, om:right , oa:down, om:right , oa:right .

When the emerald should be collected, then costs of 42 actions and maximum risk of
37.5% or overall costs of 111 have to be accepted. When the actions sequence is regarded,
it can be seen, how the movement of the monster is taken into account to avoid collisions.
The autonomous agent waits until the monster is in the left corner. This moment is used
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to pass the rock in the center of the scenario. If the monster again is in the left corner,
the moment is used to collect the emerald. Performing this game without collecting
the emerald is possible without any risks and with the cost of 22 (plan is not shown).
Therefore, if the collecting of the emerald leads to a benefit of at least 111−22 = 89

cost points then the ‘emerald collecting’ plan could be preferred. In Figure 8.12 the
respective action space is illustrated. The graph visualization software Tulip3 is used
to generate the graph. The Graph Embedder (GEM-Frick) was utilized to arrange
the situations. Green-colored situations denote possible goal situations, red-colored
situations denote lethal situations. Yellow, and orange-colored situations are risky, and
grey-colored situations are without risk. The red-outlined situations indicate that the
emerald was collected, in situations with black-outline, the agent did not pick up the
emerald. The situations without emerald are located in the upper part of the graph, while
the situations for which the emerald was collected are in the lower part. The connection of
the both parts is visible as ‘bottleneck’ between the both parts. There apparently are few
degrees of freedom with regard to the timing, denoting the problem to fetch the emerald.

In general, it appears that even a small problem with dynamic elements can result in a
complex action space. Consequently, partial planning approaches might be required.
However, since the risk assessment approach is not the reason for the complexity, it
should be suitable as well for other planning techniques.

8.2.3 Interactive object manipulation simulation

For the demonstration of the concept a small simulation environment is implemented
(Ertle et al., 2010c). The simulator generates a graphical environment in order to
investigate the results of the described risk assessment module. Therefore, a scene in form
of 2D-world is made available, containing a robot and several environment objects. The
user can control the robot in order to manipulate the objects of the scene. The simulated
scene is assumed to be the possible result of a powerful object recognition module. In
this connection, it is assumed that the object recognition formulates different hypotheses
for the identity of each object. The different hypotheses are assumed to be represented
assigning different probabilities to different possible identities of the objects. The
different hypotheses are specified for each object and remain fixed during the simulation,
but they can be manually changed by the user. For the object identifiers, expressions
in natural language are used. Further relevant information from the object recognition
module, for instance, position, size of objects, and information about the internal state
of the robot, for instance, its position and speed are collected in the situation description.
The situation description serves as information basis for the risk assessment.

In order to realize the risk assessment approach, object and safety knowledge is required.
Therefore, object information is declared in the object knowledge base. Here, one or
more object attributes are assigned to each object in form of natural language description.
The safety knowledge is represented in form of Safety Principles, consisting of the
premise and conclusion part (see Section 7.5). The premise indicates the applicability of

3Tulip data visualization software http://tulip.labri.fr/TulipDrupal/ [online; accessed 09. April
2013]

http://tulip.labri.fr/TulipDrupal/
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Figure 8.12: Graphical representation of the mental action space with safety
clearance n = 2 including the monster. Red-colored situations denote mortal
situations, orange-colored situations represent situations with medium risks. Red-
outlined situations denote that the player fetched the emerald (lower part) and
black-outlined situations denote that no emerald is collected (upper part). Green-
colored situations represent goal situations.
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Figure 8.13: The 2D-world, including typical objects and the robot4(cf. Ertle
et al., 2010c).

the respective principle, while the conclusion generates the numeric risk expression. The
premise consists of logical conjunctions considering the presence of objects or attributes.
For sake of simplicity, only Safety Principles are regarded that describe the interaction
of two objects. In this connection, one object is grasped and ergo manipulated by
the robot, the other object is located in the environment. In this connection, the
confidence for the different identification hypotheses Pi j for each object are assumed
to be Pi = ∑Pi j ≤ 1. The remaining difference Punknown,i = 1−Pi is assumed to decode
that the object cannot be identified and could be an arbitrary object (either known or
unknown). Thus, a Safety Principle is defined assuming unidentified objects to be lethal
(see 8.3, last). Finally, the conclusion consists of a part estimating the probability, and
the other, for estimating the severity of a threatening mishap or accident. The both
multiplied denote the risk estimate concerning the respective hazard.

Experimental setup

The simulation scenario is shown in Figure 8.13. The scene objects are located in the
2D-world space at left-hand side. The situation description is located in the middle, the
risk curve is drawn on the right part of the dialog. The object knowledge is realized with a
table, see Table 8.3. Here, natural name attributes are assigned to the object identifiers.
The prefix ‘A:’ indicates that the expression is an attribute. For instance, the object
‘PlasticBowl’ has associated attributes like ‘graspable’, ‘plastic’, and ‘liquid_container’.

4Icons are from http://openclipart.org/ [online; accessed 05. May 2013]

http://openclipart.org/
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Identifier Attributes

OBJ_Human A:human A:moving

OBJ_PlasticBowl A:graspable A:plastic A:liquid container

OBJ_CoffeeCup A:graspable A:liquid container A:hot liquid

OBJ_PowerPlug A:graspable A:electric A:plastic

OBJ_Stove A:heat

OBJ_Gun A:graspable A:lethal

OBJ_WateringCanP A:graspable A:plastic A:liquid container

OBJ_WateringCanM A:graspable A:metal A:liquid container

OBJ_Oma A:human

OBJ_PetrolCan A:graspable A:flammable liquid A:plastic A:liquid container

OBJ_UN A:lethal

Object knowledge base

Table 8.3: The list of objects comprised in the object knowledge base. Each object
has one or more attributes (Ertle et al., 2010c).

Scenario Likelihood Consequences Cumulative probability

sc1 p1 x1 P1=P2+p1

sc2 p2 x2 P2=P3+p2
… … … …

scn-1 pn-1 xn-1 Pn-1=Pn+pn-1

scn pn xn Pn=pn

Table 8.4: List of ordered hazard scenarios, according to Kaplan and Garrick
(1981).

The robot can be moved by the user via mouse interface, and it can be commanded to
grasp or un-grasp objects close to the robot. While the user changes the scene, the risk
assessment module continuously determines the present risk. The situation description
consists of the robot position and velocity, and a list of ‘recognized’ objects. For each
object it is listed the confidence of the recognition, the distance, and the object identifier.
With the help of the object identifier, the object attributes can be inferred from the
object knowledge base. The resulting information description denotes the basis for the
risk assessment module. The output of the risk assessment module is a risk vector,
containing the risks that are related to the respective hazardous object interactions. In
accordance to Kaplan and Garrick (1981), risk can be represented by the risk triplet
risk = < sci, pi,xi >, with i = 1,2, ...,n. Each triplet represents a hazardous scenario
which is also formalized by a Safety Principle. A list of scenarios is shown in Table 8.4.
In order to generate meaningful illustration of the risk, a so-called risk curve can be
realized (Kaplan and Garrick, 1981). For this reason, the scenarios are ordered with
regard to their consequences x1 ≤ x2 ≤ x3 ≤ . . . ≤ xn. The cumulated probability is
computed by adding the likelihoods bottom-up, see Table 8.4. The resulting risk curve
is immediately displayed in the field right-hand side of the dialog.

The applied Safety Principles are shown in Table 8.5 being organized as a conditional
part, the premise, the severity, and probability part as conclusion. The premise refers
to the presence of either objects or object attributes. The severity and probability part
can be parameterized either via fixed values or predefined functions in dependence of



122 8 Realization of the Dynamic Risk Assessment Approach

#
Object 1

(Robot/grasped)
Object 2

(in environment)
Function Input

Sev. 1
(0…1)

@Val1
of Inp.

Function Input
Prob. 1
(0…1)

@Val1
of Inp.

Prob. 2
(0…1)

@Val2
of Inp.

1 A:hot liquid A:human NONE NONE 0.1 LinearFunction distance 1 20 0 70

1 * NONE NONE LinearFunction speed 1 2 0 0.3

2 A:plastic A:heat NONE NONE 0.15 LinearFunction distance 1 10 0 50

3 A:chemical A:human NONE NONE 0.6 StepMFunction distance 1 30

4 @ A:human NONE NONE 0.02 LinearFunction distance 1 0 0.1 70

4 * NONE NONE LinearFunction speed 1 2 0 0

5 A:electric A:liquid container NONE NONE 0.6 LinearFunction distance 1 0 0 50

6 A:liquid container A:electric NONE NONE 0.6 LinearFunction distance 1 10 0 100

6 * NONE NONE LinearFunction speed 1 1 0 0.3

7 @ A:heat NONE NONE 0.02 LinearFunction distance 1 10 0 60

8 A:heat A:plastic NONE NONE 0.15 LinearFunction distance 1 10 0 30

9 A:electric A:human NONE NONE 0.6 LinearFunction distance 1 50 0 100

10 @ _ NONE NONE 0.01 LinearFunction distance 1 10 0 40

10 * NONE NONE LinearFunction speed 1 2 0 0

11 A:flammable liquid A:heat NONE NONE 0.7 LinearFunction distance 1 20 0 100

12 A:heat A:flammable liquid NONE NONE 0.7 LinearFunction distance 1 20 0 100

13 A:flammable liquid A:electric NONE NONE 0.7 LinearFunction distance 1 0 0 50

14 A:electric A:flammable liquid NONE NONE 0.7 LinearFunction distance 1 0 0 50

15 OBJ_UN _ NONE NONE 1 StepMFunction NONE 1 1

16 OBJ_Gun A:human NONE NONE 1 StepMFunction NONE 1 1

Conditional part Probability partSeverity part

Safety knowledge base

Table 8.5: List of the Safety Principles in the safety knowledge base (numbered in
the first column), consisting of three parts, the conditional, severity estimate, and
probability estimate part. The conditional part describes the condition in which
each principle becomes applicable. The severity part and probability part describe
how a quantitative probability or severity value can be defined in dependence of
input channels and parametrizable standard functions (cf. Ertle et al., 2010c).

measured channels. For the case that two or more channels have to be considered the
operator ‘*’ indicates the multiplication of both sets of functions. The wildcard ‘@’
represents the robot itself. As functions representing the dependence of a measured
channel with the risk value, linear and step functions are applied. Here, the parameters
represent data pairs for the linear function, or the threshold value and the magnitude
of a step function.

Results
In the first experiment the robot was moved close to the kitchen stove while having
grasped a plastic bowl, as illustrated in Figure 8.14. The object recognition module
detects the objects to be a salad bowl and a kitchen stove with high confidence while
there remains the chance that they are a coffee cup or a washing machine as well (see
object description at the right-hand side). According to Safety Principle 8, there exists
a hazard by approaching a plastic object toward a heat source. Additionally, Safety
Principle 7 indicates another hazard by approaching the robot toward a heat source
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TestWorldFrame

possible hazards (ordered by severity)

Salad bowl: 
<n>OBJ_PlasticBowl</n>

<p>96</p>
<n>OBJ_CoffeeCup</n>

<p>4</p>

Kitchen stove:
<n>OBJ_Stove</n>

<p>97</p>
<n>OBJ_WashingMachine</n>

<p>2</p>

Figure 8.14: The 2D-world showing the robot approaching the salad bowl toward
the kitchen stove.

TestWorldFrame

Watering can: 
<n>OBJ_WateringCanM</n>

<p>90</p>
<n>OBJ_WateringCanP</n>

<p>7</p>
<n>OBJ_PetrolCan</n>

<p>2</p>

Kitchen stove:
<n>OBJ_Stove</n>

<p>97</p>
<n>OBJ_WashingMachine</n>

<p>2</p>

Figure 8.15: The 2D-world showing the robot approaching the watering can
toward the kitchen stove.

as well. The resulting risk curve is shown in the chart, and yields an overall risk of
≈ 0.005, exactly according the parameters of the respective Safety Principle.

In the next example the robot is approached toward the kitchen stove having grasped a
watering can, see Figure 8.15. In this case, it is assumed that the object recognition
is not capable to unambiguously detect the object. There remains the uncertainty of
1%, indicated by sum of all confidence values for the identification hypotheses. From
this can be concluded that there is the risk of handling an unknown object. The risks
of known objects are according to the latter example.

Similarly, the effect of the unknown object remains for the example when the watering
can is approached toward a power plug, see Figure 8.16. However, Safety Principle 6

takes effect, thus, the risk of electric shock appears. This Safety Principle is designed
such that the robot approaching speed is taken into account, indicating that the risk
may be increased due to possibility to spill the liquid over a huger distance.

A similar effect is taken into account in the last example, were the robot quickly
approaches a human while having grasped a cup of coffee, according to Figure 8.17. In
this connection, the risk of scalding the human with spilled hot coffee is considered. This
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TestWorldFrame

Object Watering can: 
<n>OBJ_WateringCanM</n>

<p>90</p>
<n>OBJ_WateringCanP</n>

<p>7</p>
<n>OBJ_PetrolCan</n>

<p>2</p>

Object Power plug:
<n>OBJ_PowerPlug</n>

<p>95</p>
<n>OBJ_PlasticBox</n>

<p>4</p>

Figure 8.16: The 2D-world showing the robot approaching the watering can
toward a power plug.

TestWorldFrame

Object Coffee cup:
<n>OBJ_CoffeeCup</n>

<p>98</p>

<n>OBJ_PlasticBowl</n>
<p>2</p>

Object Granny:
<n>OBJ_Oma</n>

<p>98</p>
<n>OBJ_Opa</n>

<p>1</p>

Figure 8.17: The 2D-world showing the robot approaching the coffee cup quickly
toward a human.

risk depends on the movement speed of the robot, as designed into the Safety Principle 1.
Further examples are mentioned in more detailed research work (cf. Ertle et al., 2010c).

It is notable that a Safety principle for the collision risk is implemented as well. The
Safety Principle 10 models a risk between the robot and all other objects (wildcard ‘_’)
in dependence of the robot the relative speed and the distance between robot and object.
This collision risk could be modeled as well according to ‘Danger Index’ approach in
Section 2.4.1, and shown in Figure 2.2.

8.3 Robotic Experiment

A small differential drive robot platform is used as an example application. The
occurring of hazardous interactions of manipulated objects within its environment can
be illustratively shown, and the proper functioning of the proposed approach as well.
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Figure 8.18: Overview over the setup and components of the differential drive
robotic experiment (Ertle et al., 2012c).

8.3.1 Experimental scenario

The overall setting is illustrated in Figure 8.18. For sake of simplicity, robot localization
and the capturing of the scene is externally realized by utilizing the (Augmented Reality)
ARToolKit.5 An overhead camera captures the plan view of the scene containing the
robot and environment objects. In general, the ARToolKit is capable to recognize
defined patterns within the camera picture, and provides their positions and poses
in camera coordinates as output. In this experiment it is applied for detecting the
robot and environment objects, which are supplied with respective patterns. Thus, the
ARToolKit replaces object recognition, localization, and mapping, being not the scope
of this contribution. The computation takes place at two different stages, in doing so,
the term ‘robot’ refers to the whole system: 1) Perception, anticipation, assessment,
and planning within the cognitive architecture takes place in a PC; 2) the reactive
motion-control takes place on the robotic platform’s micro-controller. Data exchange is
realized via Bluetooth connection. The position data of the scene objects (including the
robot) are transformed and discretized in a 15×10 coordinate system. Object positions,
poses, and their identifier represent the current perception of the robot. The robotic
platform can change its position horizontally, vertically and diagonally to neighbored
grid positions. Currently, the mere object positions are considered, estimation of user-
related dynamics (anticipation of future positions of objects, moved by the human) is not
modeled. The robot’s actions (SOM operators) are modeled such that the anticipated
mental action space can be generated. The risk assessment module labels the action
space with risk information. The extended action space is used to derive a safe plan.

5http://www.hitl.washington.edu/artoolkit/ [online; accessed 27. September 2012]

http://www.hitl.washington.edu/artoolkit/
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Object name

human moving obstacle

cleaning_solvent flammable liquid toxic obstacle

coffee_bowl hot_liquid liquid plastic obstacle

power_plug high_voltage plastic obstacle

robot moving

cooking_plate extreme_heat obstacle

gun mortal obstacle

Object knowledge base

Attributes

Table 8.6: The object knowledge base comprising objects and related attributes
(Ertle et al., 2012c).

This overall process is performed approximately once per second. The plan execution
transmits the next valid command whenever a new plan is generated. Additionally, the
robot’s position, pose and present action command is send to the micro-controller. In
the micro-controller, the slow global position and pose data are used for calibrating
the fast reactive position data by odometry sensors. Fast position data are required to
allow the adequate position control (≈ 100Hz).

The scene objects are small boxes with an ARToolKit pattern on the top and a picture
of the represented real-world object at each side. Basically, the robot is not capable
to grip scene objects by itself; the gripping procedure is performed manually by a
user. Having the two modes, object x gripped or no object gripped, is sufficient for the
scope of the present contribution. An object is recognized as being gripped if it is
located at the platform of the robot. The robot’s task is driving to the goal position,
being also represented by a goal ARToolKit pattern. The environment objects can be
arbitrarily positioned by the user. The current object positions and related changes are
dynamically updated.

During the experiment, the robot dynamically generates plans for changing goal positions.
Furthermore, the environment is dynamically changed by adding or removing objects to
or from the environment, and the robot is confronted having different objects gripped.
Due to hazardous interactions between the environment objects, the direct approaching
of the goal might comprise unacceptable risks. An optimal path is generated by
optimizing way costs (costsway = 0.1/operator), risk costs (costsrisk ∈ [0,1]) and goal
benefit (costsgoal = −2). Furthermore, entering of hazardous situations (defined via
riskintolerable ≥ 0.1) is restricted. If no plan can be found the robot remains at its
position. A risk reduction strategy is integrated in order to adequately react on suddenly
appearing risks and to avoid getting stuck in hazardous situations. If the robot is in a
hazardous situation, it is allowed to take this action that leads to a successor situation
with the lowest possible risk (this strategy is prone to getting stuck in local minimums;
actions leading to defined fail-safe states, a more sophisticated decision calculus, and
the like would be required).

Several objects comprising potential hazardous interference with each other are used
in the experiment. In particular, these are a human, a coffee bowl, a power plug,
cleaning solvent and a cooking plate. The risk assessment is equipped with the following
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Object 1
(grasped / 
carried)

Object 2
(in the 
environment)

Function Input Par. 1 Par. 2 Function Input Par. 1 Par.2

robot A:obstacle NONE NONE 0,02 LinearF distance -0,25 1

A:hot_liquid human NONE NONE 0,1 LinearF distance -0,2 1,2

A:plastic A:extreme_heat NONE NONE 0,15 LinearF distance -0,167 1

A:liquid A:high_voltage NONE NONE 0,6 LinearF distance -0,2 1,2

A:flammable A:extreme_heat NONE NONE 0,7 LinearF distance -0,143 1,1429

A:mortal human NONE NONE 1 LinearF distance -0,02 1

Conditional part Severity part

Safety knowledge base

Probability part

Table 8.7: The Safety Principles implemented within the safety knowledge base.
Each row denotes a Safety Principle. The left side shows premises required to be
fulfilled for activating a principle (based on the presence of respective objects or
their attributes). The right side shows the parameters used for computing the
corresponding risk (cf. Ertle et al., 2012c).

information: The environment objects are defined having the attributes in accordance
to the object knowledge base, shown in Table 8.6. The Safety Principles are defined
in the Safety Principle knowledge base, as presented in Table 8.7, being related to the
presence of objects or object attributes. The presence of such object or attribute pair
is the premise indicating that a Safety Principle becomes applicable. The conclusion
contains the instructions for computing the related risk, consisting of probability and
severity part. This computation is either based on parameterized data or measured data.
Each Safety Principle which can be applied to the current environment, contributes to
the overall risk of the situation (risks are summarized). For the experiment, the risk
effecting variable is modeled being dependent of the measured distance of two objects
(risk instruction based on input= distance [grid fields] see Table 8.7). The dependence
of distances can be well illustrated within the 2D camera picture or within camera
screen shots as well. The anticipated situation risk level is decoded by colors and drawn
as indicator boxes in the video picture.

8.3.2 Experimental results

During the experimental run, multiple scenarios were tested. At first, the anticipated
action space contains no risks; a straightforward plan can be generated (blue line), see
Figure 8.19. In the second scene, a human is located at the center of the scene. As
the human is also defined as an obstacle (‘A:obstacle’), certain (collision) risks appear
around the human. The path is altered accordingly. Although risks under a certain
threshold are not displayed, they are considered anyway. Hence, the risk- and way-cost
balance induces a path keeping more distance.
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Robot

Goal

Human

Path

Figure 8.19: Snapshots during the experiment showing straightforward goal
approach (left), and avoiding the obstacle ‘human’ (right) (cf. Ertle et al., 2012c).

Human

Coffee bowl Cooking plate

Cleaning 
solvent

Robot

Robot

Figure 8.20: Snapshots during the experiment moving at full speed (only 0/1

available) being too high for approaching a human with a coffee bowl, (left), and
hazardous interference between a potential hot cooking plate and the gripped
cleaning solvent (right) (cf. Ertle et al., 2012c).

In the next scene, see Figure 8.20 (left), the robot transports a coffee bowl, which
potentially contains hot liquid (‘A:hot_liquid’). The risk of scalding humans appears
(the robot can move only at one fixed velocity and this is assumed to be too high). The
scene at right-hand side, the relatively more hazardous interference between the cleaning
solvent (being a flammable substance and gripped by the robot) and the cooking plate
is shown.

Since a coffee bowl potentially contains liquid, an additional hazardous interference with
the power plug appears. No risk-free plan can be found, as shown in Figure 8.21 (left).
In the scene at right-hand side, the situation is altered such that a risk free-path can
be found. Any interference between the cleaning solvent and humans is not modeled,
thus, the robot is allowed to closely pass the human.

In the last scene, the robot has grasped a gun. A very high risk appears when a human
is equally present, according to the last Safety Principle in Table 8.7. The risk ranges
according to the given parameters within the interval [0.98,0.64] (distance within the
scenario 1 . . .18). In consequence, all action alternatives are too risky (riskintolerable ≥ 0.1).
If an action exists to reach a situation with low or no risk (e.g. a fail-safe state), this
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Power plug

Goal

Human

Coffee bowl

Power plug

Human

Coffee bowlRobot

Robot

Figure 8.21: Snapshots during the experiment with risk scalding a human with
hot coffee, and risk of electrical shock being provoked by approaching a coffee bowl
toward a power plug. No path is available without risk (left), and changed positions
of objects with a risk-free path (right) (cf. Ertle et al., 2012c).

Gun

HumanHuman

Gun

Robot Robot

Figure 8.22: Snapshots during the experiment showing the robot having grasped
a gun. The robot has no command to ungrasp the gun, only moving commands
are available. According to an implemented risk reduction strategy, the robot is
allowed to perform this action (out of the set of available actions) that results in a
situation with the lowest possible risk. In consequence, the risk can be minimized
by maximizing the distance to the human. The maximum distance is at the lower
right corner for the scenario at left-hand side, and at the lower left corner for the
scenario with the different position of the human at right-hand side. Red labels
indicate very high risk; there are small differences of the risk values which are not
visible by the color gradation.
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action would be selected by the robot. However, there is no such situation, thus, the robot
is allowed to take the action with the lowest risk in order to demonstrate a risk mitigating
behavior. Since the robot is only provided with movement actions, and hence, it is not
able to grasp or ungrasp an object (the robot is ‘confronted’ having the object grasped
that is deposited by the experimenter), the robot can only take movement actions. With
regard to the risk reduction strategy these are the actions that maximize the distance
to the human. This scenario is illustrated in Figure 8.22. The risk of each situation
is decoded with different colors. Due to the high risk and minimal differences of the
available risks, the colors for all situations are equal. Since the risk values are (slightly)
different, the robot can minimize the risk by maximizing the distance to the human.
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9 The residual incompleteness of

the safety-related knowledge: A

perspective on learning

approaches

9.1 Learning in robotics

An alternative to manually program robots denotes ‘imitation learning’, also known
as ‘learning from demonstration’ or ‘programming by showing’. There are approaches
were the human motion is recorded by motion capture tools in order to transfer the
motion to the robot, yielding to the so-called ‘correspondence problem’ (Nehaniv
and Dautenhahn, 2002). The correspondence problem originates from the differences
between the mechanics of a human and a robot system. Hence, in other approaches
the robot is taught by moving the robot, either directly or via a teleoperating interface.
However, learning from demonstration requires for generalization mechanisms in order
to allow adaptability to slightly different situations, otherwise, a mere reproduction of
the demonstration may result.

Despite this, a robot might need the capability for self-improvement for the majority
of problems, especially, if a robot behavior is required to be adapted to unforeseen
situations, or a policy learned from demonstration needs to be improved, and the like.
These problems are usually addressed in the reinforcement learning framework, which is
inspired by the way animals and humans improve their behavior by trial-and-error (cf.
Thorndike, 1932). In this connection, the well-known key problem is the exploration,
exploitation dilemma. Since it is not known in advance which behavior is advantageous,
and which turns out to be counterproductive, various different actions must be tried in
order to discover an efficient strategy (Sigaud and Peters, 2010).

9.1.1 Implications of learning

If robots are required to be able to learn, this reveals additional questions with regard
to the problem to ensure safe robot behavior. Learning capabilities implicate that the
learning system is changed by the learning process. Hence, the system behavior is not
anymore determined by its initial (designed) structure, and not only structure deviations
due to occurring faults are of interest anymore. Learning changes the systems structure;
thus, its behavior can as well be determined by the newly learned aspects. The essential



132 9 The residual incompleteness of the safety-related knowledge

consequence is that the system differs from its initially designed version. For this reason,
it was suggested in the latter sections to integrate a safety knowledge base into the robot
system in order to realize that the robot becomes aware of hazards (and as well of similar
novel hazards), and to enable it appropriately to consider the information about hazards.
In consequence, the robot system shall be allowed to autonomously adapting to novel
situations, but within safe ‘boundaries’. If the majority of hazards can be prevented by
implementing a safety-related knowledge base, the question arises how residual hazards
are treated that preferentially occur during the operating phase of the system.

From the safety-related point of view, it can be summarized that learning capabilities
are basically questionable and in the first instance, not supportable. However, learning
approaches can be helpful with regard to residual hazards. From a fundamental point
of view, the general conditions in which learning can take place are the following.

At first, two different stages of learning must be mainly differentiated: Learning that
takes place 1) during the development phase is to differentiate from learning that
takes place 2) during the operation phase. Secondly, it is to distinguish which person
teaches the system something. The system may learn based on the feedback of (robotic
and safety) experts, by unqualified users, or both. Thirdly, the kinds of learning
environments are to distinguish. Learning can take place in simulation (excluding real
hazards), in real target operation environments (including the full range of hazards), or
in laboratory environments, which might range from simple to almost target operation
environments (including various real hazards but under surveillance conditions).

9.1.2 The problem of incomplete safety knowledge

To “[...] overcome the practically impossible problem of preidentifying the full range
of kinds of situations robots and other agents will get into during normal interaction
with their environments, [...] we should [...] seek to build robots, and artificial agents
in general, that are autonomous” (Smithers, 1997). Of course, the author suggested
this, having the complexity and NOT the safety problem in mind. Unfortunately, this
statement also holds for safety considerations. Thus, the realization of learning-based
autonomy of technical systems can imply new challenges for the system safety process,
as not fully-specified (learning) systems can imply unconsidered hazards. Thus, the
question arises what is the significance of the residual lack of safety-related knowledge.

Assuming two robots are confronted with a novel hazard. It can not be guaranteed
that robot one, equipped with a safety knowledge base behaves safer than robot two
without. All three options are possible: It might behave more safe, similar, or more
risky. This depends on the specific interaction with the currently available safety
knowledge. However, it can be generally assumed that a robot without learning
capabilities is vulnerable for recurrent rigid1 behaviors. This implies that a robot in
identical conditions tends to repeatedly end in the identical (hazardous) situation.

1rigidity is described by Dörner (2000) as adhering to a strategy although external effects might require
for changing the strategy in order to be more efficient or successful at all.
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The refinement of the safety-related knowledge of the robotic system is mentioned as
well in Section 7.2.5. Here, the two principle methods of knowledge refinement are
mentioned being updating and learning. On the one hand, an update process implicates
that safety engineers integrate new hazard aspects into the safety-related knowledge
base and afterwards release a new version for the update process. On the other hand,
robot learning capabilities imply that the robot integrates the new knowledge by itself.
Generally speaking, if a system requires for knowledge updates this denotes a lack of
autonomy because it requires system external information sources. In contrast thereof,
learning improves the robot’s autonomy in principle because the system itself can
integrate and utilize missing aspects in order to accomplish its goals. For this and other
reasons, capabilities to learn appear to be a significant aspect for autonomous robots.
Thus, a perspective on trial-and-error learning (reinforcement learning) and learning from
demonstration (supervised learning) in a safety-critical context is presented in the sequel.

9.2 Recent Work

9.2.1 An perspective on safety in reinforcement learning

Reinforcement learning was already considered to be applied as well to safety-critical
applications, either in general, or focusing on the exploration and exploitation problem
of reinforcement learning. Hence, several investigations are available. Some of these
introduce safety aspects by giving stability guarantees for controllers (Perkins and
Barto, 2003), even using arbitrary learning algorithms (Ng and Kim, 2004).

Perkins and Barto (2003) use domain knowledge [...] to design the action choices
available to the agent. An appropriately designed set of actions restricts the agent’s
behavior so that regardless of precisely which actions it chooses, desirable performance
and safety objectives are guaranteed to be satisfied. The relevant domain knowledge is
designed as a Lyapunov -function. Pursuing toward minima of the Lyapunov-function
means to approach a point of stability. Actions are restricted to those having the
probability of a negative gradient in the Lyapunov-function. Thus, assuming correct
and complete knowledge, the Lyapunov-function ‘pushes’ the system toward keeping
the specified performance and safety objectives.

Geibel (2001) introduces a separate risk-cost function which allows for limiting and
balancing risks. Risks are limited by classifying states as unsafe, when a certain
cumulative risk is exceeded. For balancing, Geibel (2001) suggest a parameter weighting
benefits and risk-costs between pure greedy and pure risk-optimal policies. Varying
this parameter can be used to realize cautiousness, for instance, at the beginning of the
learning process.

Exploration and safety
The exploration and exploitation problem of reinforcement learning (Sutton and Barto,
1998) inherently involves the safety problem. Basically, the exploration-exploitation
problem is rather the decision to either chose an action in a more or less well-known
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Situation

Adverse situation

Explicitly specified 
adverse situation

Nominal situation

Unexpected adverse 
situation

Figure 9.1: Classification of situations (Lussier et al., 2004).

state with more or less well-known consequences or to try something new. From a
safety perspective, performing actions that lead to hazardous states are unacceptable.
However, it has to be assumed that entering of such states can be acknowledged with
high negative rewards.

Hans et al. (2008) focus on safe exploration. Besides introducing a safety function,
giving pre-modeled safety information with respect to state-action pairs, the idea of
a backup policy is mentioned. The backup policy shall be able to transfer the system
from its current state to a safe state whenever an unsafe state occurs. The exploration
itself is suggested to take place structured in a level-wise manner: Exploration is locally
bounded to a state until respective exploration possibilities are exhausted.

However, Hans et al. assume that step-wise exploration from demonstrated data
(apprenticeship learning) accompanied by a pre-specified backup policy ensures that the
system performs safe. This approach relies on two assumptions that hold for their use-
case, but might be wrong for others. On the one hand, they assume that a backup policy
to avert upcoming hazards is known for every hazardous state. On the other hand,
it is assumed that the exploration close to already known and nonhazardous states is
acceptable if mentioned backup policy is available. This assumes that accidental states
can only be reached by firstly enter hazardous states that surround accident states.
Their safe exploration argument does not hold if there exist direct transitions from ‘safe’
to accident states and if there are hazardous states without backup policy.

Lussier et al. (2004) classifies situations as being either nominal or adverse. Adverse
situations can be foreseen and specified or they might be unexpected as well (see Figure
9.1). The backup policy approach of Hans et al. might address specified adverse
situations, but not necessarily unexpected (because unknown) adverse situations.

Thus, besides the challenge of principally limiting a system to safe states by specifying
adverse situations, the question ‘what if’ remains, when the system approaches or enters
unknown hazardous states, or a backup policy turns out to be inadequate.

Consequently, it is important to draw special attention to the design of safety measures
that effectively avoid known adverse situations. The basic intention of such safety
measures is to limit the system to safe states. On the other hand, safety measures
can be used to provide the ‘freedom’ to explore within the given safety boundaries, for
instance, to allow learning (cf. Perkins and Barto, 2003; Hans et al., 2008). With regard
to considered robots, it is assumed that unknown adverse situations are potentially
present due to complex tasks and environments. Thus, it is important to draw attention
toward the possibility that the knowledge integrated into the system design may prevent
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hazards, however, in unknown adverse situations it can as well turn out to be the cause
(the initiating mechanism) that transfers a hazard into an accident: Knowledge that is
integrated into the system (design, knowledge base etc.) is the cause for an accident
due to its inadequateness with regard to an unknown adverse situation. Because of the
mentioned reasons, the following topic shall be focused:

• The design of safety-related knowledge by utilizing supervised learning methods
in order to improve the safety knowledge design process, and

• learning with scope on the plasticity of knowledge, for instance, if systems are
faced with unknown hazardous situations for which no fail-safe strategies (or
backup policies) are available.

9.3 Safety Aspects in a Non-stationary

Reinforcement Learning Problem

Temporal difference (TD) learning was inspired by cognitive and biological sciences,
since it can be viewed as an extension of timing drawbacks of the models for conditioning
(Rescorla-Wagner model of Pavlovian conditioning). Additionally, TD learning is also
related to the neuroscience, as a similarity of the specific behavior in conditioning
experiments and the behavior of midbrain dopamine neurons in the brain is found
(Barto, 2007). The basic unenhanced TD learning algorithms are ‘Q-learning’ (Watkins,
1989) and ‘Sarsa’ (Rummery and Niranjan, 1994; Singh and Sutton, 1996), but by now,
there are available multiple variances of these algorithms (cf. Kaelbling et al., 1996).

Since the following investigation shall draw attention to the exploration/exploitation
dilemma, the basic TD learning algorithms Q-learning and Sarsa are combined with a
selection of methods to control the exploration/exploitation behavior. As representative
selection of these exploration/exploitation policies, it is investigated Q-learning and
Sarsa in combination with the so-called ‘ε-Greedy’, ‘Softmax Action Selection’ (Softmax),
‘Value-Difference Based Exploration’ (VDBE), ‘VDBE-Softmax’, and ‘Reinforce VDBE-
Softmax’, respectively. Indeed, more complex methods are available such as counter-
based (Thrun, 1992), or confidence bound-based (Kaelbling, 1993) methods. However,
the ε-Greedy method is often hard to beat, also with regard to more complex methods
(cf. Vermorel and Mohri, 2005; Tokic and Palm, 2011). Furthermore, Softmax, VDBE,
and VDBE-Softmax are intended to improve the drawbacks of ε-Greedy’s parameter
tuning, the Reinforce VDBE-Softmax method is a novel parameter-free variant.

The agent’s exploration/exploitation policy is a formal description that defines when
and to which extent the agent is explorative, or when it utilizes its knowledge (value
function) for action selection. The control of the exploration/exploitation behavior
can take place by implementing a constant exploration rate (the agent always explores
to a certain extent), for instance, by using the ε-Greedy policy. In this regard, the
exploration can be improved by assigning high probability of selection to those actions
with high expected rewards (e.g. Softmax policy). In contrast to the latter policies,
the control can also be based on the TD-error. The TD-error is the difference between
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the expected and received reward (and discounted rewards, respectively). Generally
spoken, a significant TD-error indicates that the value function does not match the
observations the agent made by performing an action. Thus, a significant TD-error can
be used to indicate that the value function should be rendered (learned) more precisely.
The VDBE, VDBE-Softmax and the Reinforce VDBE-Softmax policy are such TD-
error-based exploration/exploitation control policies. For the VDBE policy, a local
exploration rate is assigned to each state. The VDBE-Softmax policy is a combined
policy which behaves like ε-Greedy policy (greedily favors actions with high rewards,
however, with regard to the VDBE-like local exploration rate) when the TD-error is
low and selects actions according to a Softmax policy in case of a significant TD-error.
The mentioned policies have to be adjusted with a parameter which globally effects
the exploration/exploitation ratio. Reinforce VDBE-Softmax policy integrates a meta
instance to adapt this parameter by comparing the current performance of the agent
with a ‘slow’ performance baseline. Detailed information with regard to the policies can
be found in the contributions of Sutton and Barto (1998); Vermorel and Mohri (2005);
Tokic and Palm (2011), Tokic et al. (2012), Tokic and Palm (2012).

9.3.1 The non-stationary experiment

The cliff-walking problem proposed by Sutton and Barto (1998) is usually used to
compare the characteristics of algorithms under uncertainty. The task is to pass a
hazardous cliff in order to reach a goal position. This scenario is extended in order to
investigate reinforcement learning in the focus of safety considerations by Tokic et al.
(2012). In this connection, it is the basic concept to ‘suddenly’ change the scenario in
order to simulate an upcoming hazardous situation which the system can not recognize
as a distinct state (at least in the first instance). This may result due to system
component failures, the inability to differentiate the states, and the like. Thus, the cliff-
walking scenario is reformulated as a non-stationary experiment. The non-stationary
experiment starts with phase a). Here, it comprises one hazard state. The scenario is
changed in phase b). Here, the cliff is extended; hence, the scenario suddenly comprises
more hazardous states, and forces the agent to alter the learned optimal path. In phase
c) the problem becomes worse, as the scenario is changed again, and only one state
remains as bottleneck to pass the hazardous states. The scenario and its different phases
are shown in Figure 9.2.

Basically, the agent in the cliff-walking problem has the goal to learn a path from the start
state S to the goal state G. The rewards for performing the path are the absolute costs.
For each action taken the costs are increased, raction =−1, and iff the goal state is reached
the costs are reduced, r = r+1. The scenario also comprises so-called cliff states, which,
when entered, lead to a high negative reward, rcli f f =−500. In contrast to the original
cliff walking problem, the entering of a cliff state does not reset the agent back to the
start state S, instead, the episode is terminated. This can be compared to a scenario in
which an agent is reset to a fail-safe state in case of entering a hazardous state (here, the
fail-safe state is equal to its initial starting position) and the next learning episode starts.

An advantage of this experimental setup is that the ‘action-less’ transition from the cliff
states into the starting state is avoided. This in turn offers the opportunity to model



9 The residual incompleteness of the safety-related knowledge 137

S

G

Phase a)

1 10 21

S

G

Phase b)

1 10 21

S

G

Phase c)

1 10 21

Figure 9.2: The non-stationary cliff-walking scenario for investigating safety-
related performance of reinforcement learning approaches, according to Tokic et al.
(2012).

the transition probabilities of the scenario with the help of a Markov transition matrix.2

In consequence, the reachability of the cliff states of the scenario can be computed.

9.3.2 The hazard potential of the scenario

In former investigations (cf. Tokic et al., 2012) the performance of the learning approaches
was investigated by taking into account the cliff-falls per action rate (entering of
hazardous situations per number of taken actions) in a specific scenario. Consequently,
the results are specific for the respective scenario. In order to improve the measure
expressing the safety performance, the cliff-falls shall be considered to be relative to the
cliff-fall probability. In other words, the failure of a learning agent is seen in the light
of its chance to fail. The chance to fail can be computed with the Markov transition
matrix and depends on the transitions probabilities of the scenario to reach a cliff state.
Hence, the chance to fail in a scenario can be called the hazard potential of the scenario.

2In the original cliff-walking example and in the former experiment of Tokic et al. (2012), the agent
was reset to its initial state in case of entering a cliff state without considering this transition as an
action. This results problems if the performing of the agent over a whole episode shall be compared
to the transition probabilities of the scenario, which are in turn computed with the help of a Markov
transition matrix. It is difficult to model the scenario with a Markov transition matrix with ‘action-
less’ transitions. A workaround could denote to model the scenario with direct transitions from
the states that usually lead to a cliff state, to the start state. But this results problems analyzing
why the starting state is entered (via normal movement actions or via cliff-fall). If the cliff states
terminate an episode they appear as absorbing states in the Markov transition matrix.
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Figure 9.3: The transition probabilities in the scenario computed for a number, n,
of taken actions at the abscissa. The ordinate shows the cumulated probabilities
of the agent ending up after n actions in a hazardous state, in the goal state, or
somewhere else when the episode is terminated due to the limitation of actions.
Note that diagram two and three show the ordinate range [0.99,1].

Similar to Section 8.1.3, the Markov transition matrix, M , of the scenario can be
generated (goal and cliff states are absorbing states). By raising the transition matrix,
M , to the power of n, the transition probabilities of applying a number, n, of actions can
be computed. For each number of considered actions, the transition probability from the
starting point to a cliff state can be computed. In case of multiple cliffs, the transition
probability to the cliffs can be cumulated. Hence, the probability to end up in a hazard
state (cliff state) can be computed taking into account a specific number, n, of actions.
The maximum number of actions in the scenario is limited to 200 steps, thus, a look-up
table for n = 1 . . .200 can be generated for each phase of the experiment. The look-up
tables are shown in Figure 9.3 as diagrams. For phase a), it is visible that there exists
an increasing chance to end up in a hazardous state if the number of performed actions
increases. For phase b) and c) this becomes worse. The probability to reach the goal
state is not visible anymore in the diagram, and the probability to enter a hazardous
state is converging toward 1 (for n = 200 actions the probability to reach a hazardous
state is Phaz_state,c(200) = 0.999999999984357, and probability for reaching the goal state

Pgoal,c(200) = 6,677 ·10−12). Hence, the scenario in phase b) and c) is quite hazardous
with a low chance to reach the goal. This knowledge about the scenario can be used
to make assertions like the absolute number of entered hazardous states more general.
Absolute assertions about the performance of the learning approaches can be relativized
with regard to used experiment scenario. Hence, a learning algorithm entering many
hazardous states in a more or less uncritical environment performs worse in comparison to
an algorithm in a comparatively safety-critical environment. This relation is illustrated
in Figure 9.4. In consequence, the hazard performance measure is the quotient of the
average number of entered hazardous states and the probability in the scenario to enter
hazardous states. If this quotient is around 1, the learning algorithm performs similar
to a randomly walking agent. Numbers above 1 indicate that it performs worse than
randomly taking actions (rigid behavior; hazardous states are preferred), numbers close
to 0 are desired. From the safety point of view, the number of performed actions does
not matter if no hazardous states are entered. The number of required actions is of
interest for performance considerations. Hence, the hazard performance is computed
with regard to the hazard potential for each episode, i, for the phases, p ∈ {a,b,c},
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Figure 9.4: Hazard performance measure for learning algorithms taking into ac-
count the experiment scenario characteristics. The number of cumulated hazardous
states is set into relation with the probability to enter hazardous states in the sce-
nario.

without taking into consideration the optimality of the found solutions. In consequence,
it is the number of entered hazardous states (∈ {0,1}) divided by the hazard probability,

HPi =

{

0 : nhazstates = 0
nentered_hazstates,i

Phazstate,p(ni)
: nhazstates ≥ 1

. (9.1)

The hazard probability is based on the number of applied actions, n, which bear a
specific probability to enter a hazardous state, for a scenario that contains a number,
n

hazstates ≥ 1, of hazardous states. The scenario specific hazard probability comes from
the aforementioned Markovian look-up table. In consequence, the hazard performance
measure is low if the chosen courses of action comprise a low number of entered hazardous
states. If the scenario is uncritical with single hazardous states that are difficult to
reach, the hazard performance measure becomes higher for the identical number entered
hazardous states. Hence, in a scenario with 10-times smaller chance to enter a hazard,
the equally ‘safe’ or ‘hazardous’ courses of action are expected to result in entering as
well 10-times less hazardous states.

9.3.3 Experimental setup

As the episodes are terminated more quickly, multiple learning episodes might become
necessary in order to achieve a comparable learning success. Therefore, the scenario
phases consist of 500 episodes for phase a), 1500 for phase b), and 3000 episodes for
the phase c). The agent should learn how to reach the goal state G given the start state
S. For each action taken the costs are increased, raction =−1, and iff the goal state is
reached the agent receives an award that compensates the minimal required way costs
(4;22;42). The cliff states lead to a high negative reward, rcliff =−500, when entered.
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9.3.4 Results

The hazard performance for Q-learning is shown in Figure 9.5, at which the graphs
that correspond to the different phases are vertically arranged, and the best parameter
setting is shown in the left, the worst parameter setting in the right column. Since the
Reinforce VDBE-Softmax strategy is parameter-free, the results are identical for both
cases, and are visualized in both categories. For the case of best parameter settings,
most policies converge comparably fast toward hazard-free paths. For Reinforce VDBE-
Softmax, it takes a significantly longer timer to converge, especially if the cliff is extended
to 20 cliff states in phase c). For the case of worse parameter settings, ε-Greedy and
Softmax keep constantly exploring. In phase b) this remains unchanged, whereas the
VDBE policy shows as well an identical exploring behavior. VDBE-Softmax seems
to converge in phase b), and possibly in phase c) as well. Here, ε-Greedy, Softmax,
and VDBE policy remain in a significant explorative state, while Reinforce VDBE-
Softmax converges toward zero within 2000 episodes.

The hazard performance for Sarsa-learning is shown in Figure 9.6; the arrangement is
identical to the latter. For comparison, the results of Reinforce VDBE-Softmax strategy
are as well identical for both parameter categories. For the case of best parameter
settings, most policies as well converge comparably fast toward hazard-free paths. For
Reinforce VDBE-Softmax, it takes a significantly longer timer to converge, especially if
the cliff is extended to 20 cliff states in phase c). For worst-case parameter settings,
ε-Greedy and Softmax keep constantly exploring, Softmax at a significantly higher rate
than ε-Greedy. The VDBE-Softmax strategy seems to learn quickly, but remains in an
exploring behavior to a certain extent. This does not change in general for the phase b).
Here, all strategies remain in an exploring behavior except Reinforce VDBE-Softmax.
The VDBE strategy seems to converge, but after 200 episodes it starts to ‘unlearn’.
The characteristics do not change in phase c) but both, ε-Greedy and VDBE-Softmax,
appear to have slight convergence toward zero.

In general, the hazard performance of Q-learning and Sarsa are comparable. An overview
of the averaged hazard performances is provided in Figure 9.7. Here, the averaged
hazard performance for each phase and for all phases together are shown, Q-learning in
the left, and Sarsa in the right column, best-case parameter settings in the upper, worst-
case parameter settings in the lower diagram.

For properly chosen parameters, there seems to be no significant difference, neither
between Q-learning and Sarsa, nor between the different exploration/exploitation strate-
gies, except for Reinforce VDBE-Softmax. However, the parameter-free Reinforce
VDBE-Softmax strategy performs with a lower averaged hazard performance in com-
parison to the other worst-case parameter settings and with a significantly lower haz-
ard performance for Sarsa in comparison with Q-learning. For all considered cases,
VDBE-Softmax performs with a comparable or lower hazard performance than the
other strategies, except Reinforce VDBE-Softmax.
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Figure 9.5: Hazard performance of the Q-learning algorithm in combination with
different exploration-exploitation strategies with best-case and worst-case parameter
settings. The abscissa comprises the number of learning episodes, the ordinate
the hazard probability measure. The distinct phases are vertically arranged, the
respective best/worst parameter setting is horizontally arranged. The best-/worst-
case parameters (ε : [0,1];τ : [0.001,1000];σ : [0.001,1000]) are denoted in brackets.
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Figure 9.6: Hazard performance of different Sarsa-learning algorithms in combi-
nation with different exploration-exploitation strategies with best-case and worst-
case parameter settings. The distinct phases are vertically arranged, the respective
best/worst parameter setting is horizontally arranged. The best-/worst-case pa-
rameters (ε : [0,1];τ : [0.001,1000];σ : [0.001,1000]) are denoted in brackets.
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Figure 9.7: Hazard performance (ordinate) of Q-learning, and Sarsa-learning in
combination with different exploration and exploitation strategies averaged with
regard to the single phases a), b), c), and averaged over all phases (abscissa) of the
non-stationary cliff-walking scenario with absorbing cliff states.

9.3.5 Conclusions

In general, exploration/exploitation strategies that combine Softmax and Greedy behav-
iors perform with a lower hazard performance than applying them directly. This is due
to VDBE-Softmax strategies do not select exploration actions equally distributed but
in case of fluctuating values exploration actions are selected value sensitively according
to Softmax, and in case the value function has converged it acts greedily (Tokic et al.,
2012). Practically, it seems that both reinforcement learning approaches in combina-
tion with the mentioned exploration/exploitation strategies lack the required plasticity
with regard to an altered operation environment, and inadequately chosen parameters,
except Reinforce VDBE-Softmax.

Since all constellations of investigated algorithms require entering hazardous states
multiple times before the safe behavior is leaned, it is obvious that they should not be
applied in safety-critical applications without taking into account this issue. However, it
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is notable that many of the considered constellations perform significantly better than
a randomly walking agent. From this, it can concluded that if an agent in a potential
hazardous environment lacks any strategy to act (due to unknown situations, lack of
specification, miss-design, specified fail-safe state turns out to be inadequate, etc.), it
would be theoretically better to equip the agent with learning capabilities, for instance,
Reinforce VDBE-Softmax. However, the information has to be provided to the agent
that a situation is undesired or even hazardous. Possibly, this could be realized if hitting
the emergency button gives as well a high negative reward.

9.4 Learning Safety from Demonstration for Robot

Skills

So far, rarely literature is available focusing on learning from demonstration for safety-
related concerns. Kuter et al. (2007), for instance, describe the learning of safety con-
straints. Here, a domain ontology is developed in which domain concepts define sets of en-
tities in the world, belonging together, and sharing some properties. Their so-called Con-
straint Learner procedure checks for demonstrations of specific properties p from which
new lower or upper bounds can be observed, if upper_bound(p)<value_observed(p)

then upper_bound(p)=value_observed(p), and the like for lower bounds.

An approach for learning spatial constraints is given by Gips et al. (1998). A decision
tree is learned from labeled data. In a theoretic example it is learned how a rectangle is
located at a specific (at right-hand side of the observer) spatial position. The learning
of safety constraints is not explicitly mentioned. Consequently, so far no approach exists
to infer safety measures for robots by a learning from demonstration approach.

Robot skills
The majority of robotic architectures are realized with three layers. At the lowest level,
skills are managed by the superordinate layers (cf. Schlegel and Wörz, 1999). These skills
are combined to more complex behaviors. The behaviors do not need representational
knowledge Arkin (1998); thus, they can basically be regarded as structurally invariants
during the operation phase. Moreover, this is also valid for cognitive-oriented robotic
architectures, for instance, described by Ahle (2007).

In order to learn complex skills, the second field of learning approaches, the learning
from demonstration plays an important role. Here, behavior cloning approaches are
influential, in which the robot directly derives a policy from a teacher’s demonstration
in order to apply it for reproducing the task (Sammut and Webb, 2010). When robots
shall learn from demonstrations, the predominant questions are: What about safety?
Are safety aspects already comprised in the demonstration?

Usually, these approaches lack explaining why an applied policy is a good or bad one
(Sammut and Webb, 2010), which implicates that they lack recognizing safety relevant
aspects. Safety might be implicitly considered, but it is definitely not systematically
taken into account. With regard to pick and place tasks, this becomes clear. On the
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one hand, new learned skills might be observed and limited by already known safety
rules. But new skills may be accompanied by new hazards not considered so far. For
instance, as outlined in the latter chapters, various new hazards may arise with regard
to object interactions. If the robot learns to manipulate objects (pick and place), it is
questionable for good reason whether the knowledge to safely handle objects is also
appropriately learned. Hence, if robot should be taught to become more skilled, the
general problem is to teach them how new skills are safely performed. It is assumed
that an additional learning step is required therefore.

As outlined at the beginning of this section, for learning during the operation phase
should be paid more attention, especially, if this takes place under supervision of
unqualified users. Thus, the proposed procedural model represents an approach for
learning safety knowledge in order to simplify the safety engineering process. The
essential aspect is that the learned safety knowledge can (and has to) be checked and
revised after the learning process and before the system is finally put into operation.
However, the basic concept can also be applied to learn (post-design) during the
operating time in order to try to consider residual hazards.

9.4.1 The extended safety procedure

As initially mentioned, the general system safety process is integrated in the development
process and takes place throughout the complete life cycle of a system. The general
steps take place in a cyclic manner: Hazard identification, hazard risk assessment, risk
control, and risk verification. The risk control is sufficient since all risks are mitigated
to an acceptable level (Ericson, 2005).

With regard to autonomous systems, it is suggested (in the field of systems of systems)
to structure the hazard analysis with regard the capabilities a system provides: “Each
capability will present a variety of possible hazards, stemming from a failure to provide
the capability, an incorrect implementation of the capability, or from unexpected side-
effects of employing the capability” (Alexander et al., 2008). This is in line with the
standard ISO/NP 13482 for robots in (non-medical) personal care (see Section 2.1), as
reported by Harper and Virk (2010), where a list of tasks needs to be identified and
specified with regard to functional and non-functional requirements.

The proposed approach is to modify the system safety process so that risks are reduced
by learned countermeasures (safety functions). In the first instance, safety functions
basically label perceived situations as either risky or not. How far the generated labels
are utilized for ‘limiting’ the system depends on a decision process which should take
into account as well the benefits of a task. Te binary labels (‘safe’, ‘risky’) can be
transformed into risk values if the overall risk of the top level hazard is determined
with regard to the specific task. The modified safety process is shown in Figure 9.8.
At first, hazards, which are related to a specific behavior, are required to be identified
and assessed. This is according to the conventional procedure for generally determining
the hazards which are required to be mitigated. Four steps are identified in order to
control the identified and unacceptable risks: The definition of the requirements for the
demonstration, the demonstration itself, the revision of the learned safety functions, and
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Figure 9.8: System safety process for learning safety features from demonstration
(Ertle et al., 2012b).

finally, their integration into the robot control system. The product of the demonstration
task finally is either a learned or a learned and refined safety function. The safety
function labels the perceived (measured) situation, which can be in turn considered by
a subsequent decision or planning process (integration).

Demonstration requirements
The definition of the requirements plays a central role. First, required data must be
determined. If relevant data is not provided to the learning approach, the learning
problem can not be classified. If relevant aspects can not be measured or derived from
prior system knowledge, the demonstration approach is consequently not reasonable.
Secondly, demonstrated data has to be labeled. An adequate user interface must be
provided. Thirdly, the identified hazards have to be demonstrated without provoking
accidents. For the most cases, it is assumed that it is possible to demonstrate an
approaching toward a hazard, in terms of the hazard is not endangered to be actuated.
The limitations learned in consequence, are still in a safe range; therefore, they include
a specific safety clearance. The indicating of a hazard plays a central role. Therefore,
the demonstration sequence must be precisely defined. In order to make the safety
learning problem classifiable, sufficient desired and undesired constellations must be
demonstrated. Consequently, aspects that are not comprised in the demonstration can
not be learned. The hazards must be ‘encircled’ by the indications of the undesired
approaching so that it becomes clear which area (hyper space) is undesired. The
problem is illustrated in Figure 9.9.

Demonstration
During the demonstration it must be ensured that the demonstration specifications are
maintained. Additionally, it is important to be as precise as possible when indicating
undesired/risky situations. Otherwise, too many ambiguities may let the learning
problem become unclassifiable. Several repetitions of a demonstration might be necessary.
In this regard, classification quality measures could be used to guide the demonstration
process.

Revise Safety Features
Since there are many factors that contribute to good or bad learning results, an intensive
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Figure 9.9: Need for carefully planned demonstrations in order to ensure sufficient
representation of features, according to Ertle et al. (2012b).

revising of the learning success is assumed to be mandatory, at least for severe hazards.
In this case, the learning from demonstration approach can be seen as a design aid
for generating safety functions. The learned safety functions have to be additionally
checked. Furthermore, they have to be available in a readable form what is either
given (learning of decision trees) or what could be realized by additional transformation
steps, for instance, via extraction of rules from neural networks (Hruschka and Ebecken,
2006), or from reinforcement learning functions (Vogiatzis and Stafylopatis, 2002).
Nevertheless, a learning from demonstration approach remains helpful and may reduce
faults. As shown in the following experiments, the considering of spatial relations
between objects in 3D-space often requires a set of coordinate transformations between
different reference frames, what sometimes is error-prone.

The revision step can either take place via safety engineers if the learning from demon-
stration approach is used prior to the operation time, or it applied during the operating
time in order to consider arising residual hazards. In this connection, either the revision
step is rejected at all, or automated revision methods are developed and integrated.

Integration
The outcome of the learned safety function depends on the applied learning algorithm. In
general, the outcome might consist of binary, any continuous or probabilistic prediction
values. In case the severity S of an accident A is numerically expressed, a risk value
R = P(A) ·S(A) can be computed and assigned to the labels. The expression of hazards
in risk measures is important because it can be considered in a subsequent decision
process, as outlined in Chapter 8. In this connection, the decision making is equipped
with the additional risk information in order to be balanced with other costs and benefits
for finding out the optimal strategy. The proper consideration of risks, thus, is part of
the decision process, whose testing and verification can take place separately without
taking into consideration to correctness of the learned safety functions.
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9.4.2 Object interaction risk experiment

In order to test the described approach, two different scenarios were chosen. It is
assumed that for each scenario a specific robotic behavior would be required. Each
scenario comprises simple hazards to be learned. The goal is to learn a safety function
for each behavior, which can be applied for detecting unsafe/undesired situations.

The approach is applied considering real world conditions with noisy sensor data. Fur-
thermore, those risks are focused which appear when environment and robot manipu-
lated objects interact with each other. These objects are represented by markers, whose
position and orientation are detected by the ARToolKit.3 The camera for observing
the scene was mounted at the demonstrator’s head in order to simulate the consistently
different positions a robot will be relatively located in real world applications. The
data is labeled as risky if a key on the keyboard is hit (e.g. representing an emergency
button or voice command module).

The demonstration videos are first captured and stored. Afterwards, the videos are
presented to a C++ program utilizing the ARToolKit library in order to store the recog-
nized position and pose data vectors. Finally, the stored data is analyzed. As outlined
by Ertle et al. (2012b), the data-mining tool KNIME4 in combination with Weka5 ex-
tensions are utilized for extracting functional representations of the demonstrated safety
knowledge. Three supervised learning techniques are evaluated: ‘Radial Basis Function
Network’ (RBFN), J48 ‘Decision Tree’ (DT), and ‘Multilayer Perceptron’ (MLP). Each
of these classifiers is manually hand-tuned, according to Figure 9.10, for obtaining
reasonable results.

The performance of these classifiers is measured with the recall and F1-measure (positive
means indication of risk, true/false positive/negatives being t p, f p, tn, f n),

Recall =
t p

t p+ f n
, (9.2)

F1 =
2 · t p

t p+ f n+ t p+ f p
. (9.3)

The recall reflects the sensitivity with regard to correct classification of risks. The F1-
measure represents the overall accuracy.

9.4.3 Results of the ironing task

The first scenario is the ironing scenario. In this task, the hazard of fire is potentially
comprised when an iron remains too long at the same position. Therefore, it is
demonstrated that the standstill of the iron on the ironing board is not desired. The
placing of the iron at its backside (in upright position) or in the provided deposit is
uncritical. The scene is shown in Figure 9.11.

3http://www.hitl.washington.edu/artoolkit/ [online; accessed 17-March-2013]
4http://www.knime.org [online; accessed 17-March-2013]
5http://www.cs.waikato.ac.nz/ml/weka/ [online; accessed 17-March-2013]

http://www.hitl.washington.edu/artoolkit/
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Parameter Ironing Stacking

Clustering seed 1 1

MaxIts unl. unl.

MinStdDev 0,1 0,1

NumClusters 20 1

Ridge 1,00E-08 1,00E-08

Data normalized normalized

Max.Num.Iterations 1000 1000

Hidden layer 2 2

Neurons per hid. layer 10 10

Conf. Factor 1 1

MinNumObj 100 62

NumFold 3 3

Seed 1 1

SubtreeRiasing true true

Pruning true true

Use laplace false false

RBFN

MLP

J48 DT

Figure 9.10: Parameterization of the used learning algorithms (cf. Ertle et al.,
2012b).

risk risk

Figure 9.11: The ironing task: Pictures extracted from the demonstration video
captured from changing positions. The object positions and poses are recognized
with ARToolKit. The labeled pictures show risk situations (stand-still of the iron).
The others show normal situations (iron positioned at the iron storage, iron turned
at the back side or iron moved over the surface) (Ertle et al., 2012b).
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The relevant data for the safety function to be learned is measured. These consist of
the relative positions x,y,z and angles α,β ,γ from the coordinate system of ‘object 0’
(ironing board) and ‘object 1’ (iron), respectively. Additionally, the absolute values
of the relative velocities v are computed. Observed data are transformed into vector
form with predefined order. Thus, the situation input vector s of a typical ironing scene
consists of the following 14 continuous inputs, as

s = [x1
0,y

1
0,z

1
0,v

1
0,α

1
0 ,β

1
0 ,γ

1
0 ,x

0
1,y

0
1,z

0
1,v

0
1,α

0
1 ,β

0
1 ,γ

0
1 ] . (9.4)

Data points are labeled as commanded by the user. Initially, ‘normal’ operation is
assumed, which is the default label for all data vectors. In case hazardous situations
are demonstrated, data is labeled to ‘risk’ as long as the emergency button is pressed.

In total three demonstrations have been presented with a total of 3633 training-data
vectors, where the duration of each demonstration varies between 114 to 142 seconds.
These comprise 2909 vectors (80%) belonging to the ‘normal’ class, and 724 vectors
(20%) to the ‘risk’ class. A fourth demonstration is used as test data consisting of 1100

vectors, 900 vectors (81%) belonging to the normal class, and 200 vectors (19%) to the
‘risk’ class.

The diagrams in Figure 9.12 show the classifications of the test data according to the
trained classifiers. The classification recall and F1 performance of the overall task is
shown in Figure 9.16 (upper). The parameters are computed for classification of the
test data after learning of 1, 2, and 3 demonstrations. In the last demonstration, 4∗,
the test data is additionally learned. The performance of the complete demonstration
scenario is computed with regard to the same test data.

The generated decision tree reflects the effect of the respective measurements well
comprehensible: Sufficient velocity is desired, via relative x-position the deposit of the
ironing board is detected, via the γ-angle it is detected whether the iron is turned
upright, and if the iron is above the ironing board there is no risk as well. The branch
for angle α denotes a fragment. It is notable that the relative x-position is considered
from the perspective of the ironing board (object 0) and γ-angle from perspective of the
iron (object 1). Otherwise neither the position at the iron storage nor the depositing of
the iron at its backside could be easily distinguished.

9.4.4 Results of the stack-it-safely task

Inspired by the ‘Safe-To-Stack’ approach by Mitchell et al. (1986), a scenario is designed
for learning the safe stacking of two objects. The hazard identified for this scenario
is the toggling and falling down of the narrow object 1 that is stacked upwards on
‘object 0’. The flat stacking is assumed to be uncritical. Indeed, modeling of spatial
relations as ‘on, upwards’ and so forth may simplify the problem description, but finally,
these relations also rely on similar relative coordinates as they were utilized in the
demonstration. A flag whether an object is gripped or released is not considered in
the scenario, the relative velocities of the objects becoming zero indicate a similar
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Figure 9.12: Time plot showing the classification results of the experiment test data
for the ironing task (Ertle et al., 2012b). The section shows all classification failures
of the experiment. The first diagram indicates when the user has demonstrated risks
(1 corresponds to risk/positive). The following double diagrams each illustrate the
results of the respective learning method. The first of the double diagrams shows
when risks are predicted, the second illustrates when f n (1), correct prediction
(0), and f p (−1) occur. The curve in the RBFN and MLP diagrams represent the
predicted probability for risk, respectively.
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risk

risk

risk

Figure 9.14: The stack-it-safely task: The labeled pictures show risk situations
(upward stacking of the narrow object). The others show normal situations (stacking
objects located somewhere else or in correct position at the top of the other object)
(Ertle et al., 2012b).

state as the release of a gripped object. The vector remains the same as described in
Section 9.4.3. The scene is shown in Figure 9.14.

In total three demonstrations have been made as well, with a total amount of 3184
training-data vectors, where the duration of each demonstration varies between 114

to 145 seconds. These comprise 2452 vectors (77%) belonging to the normal class,
and 732 vectors (23%) to the risk class. A fourth demonstration is used as test data
consisting of 772 vectors, 666 vectors (86%) are belonging to the normal class, and 106

vectors (14%) to the risk class. The diagrams in Figure 9.15 show the classifications
of the test data according to the trained classifiers. The classification recall and F1
performance of the overall task is shown in Figure 9.16 (lower). The parameters are
computed for classification of the test data after learning of 1, 2, and 3 demonstrations.
In the last demonstration, 4∗, the test data is additionally learned as well.

9.4.5 Conclusions

The experiments show that the ‘decision tree’-algorithm appears to provide good
performance to learn safety functions in object manipulation scenarios besides its
advantage to be readable, and at need, also adjustable by safety engineers. The
results indicate that the proposed safety procedure provides a significant potential for
supporting the safety engineering process. Since the quality and completeness of the
learned hazard model significantly relies on the demonstration quality, it is questionable
to apply this concept to post-design phases. For safety-critical application with severe
consequences, this concept should be limited to the application during the design phase
of the system, and combined with verification procedures. For behaviors that have to
be taught during the operating phase, it might be pondered to apply such a learning
concept for tasks with minor consequences. Principally, it holds the same for this
learning from demonstration approach as for the reinforcement learning investigation: In
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Figure 9.15: Time plot showing the classification results of the experiment test data
for the stack-it-safely task (Ertle et al., 2012b). For explanation, see Figure 9.12.

RBFN MLP DT RBFN MLP DT

1 0,76 0,29 0,73 0,74 0,80 0,88

2 0,72 0,70 0,75 0,84 0,78 0,86

3 0,82 0,77 0,80 0,88 0,79 0,85

4
* 0,80 0,70 0,88 0,74 0,74 0,90

1 0,60 0,19 0,54 0,47 0,19 0,64

2 0,58 0,54 0,75 0,45 0,76 0,75

3 0,58 0,73 0,66 0,44 0,62 0,61

4
* 0,61 0,68 0,67 0,45 0,53 0,63

Nr.

Inoning task

Stack-it-safely

F1 Recall

Figure 9.16: The classification performance in terms of the F1 and recall measure.
The performance is measured against the test data after 1, 2, and 3 demonstrations.
∗The test data are additionally integrated into the learning process in a fourth
step, the performance is measured according to the same test data. Best F1/recall
measure is highlighted, respectively (Ertle et al., 2012b).
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case of appearing unknown situations, lack of specification, miss-design, or the specified
fail-safe state turns out to be inadequate, learning capabilities can also be seen as a
chance to enable the robot to overcome a rigid unsafe behavior.

9.5 Concluding Remarks

At first, it can be concluded that learning can in principle be permitted from the
safety perspective, for simulations, and laboratory conditions if the hazards occurrence
and consequences are under supervision of qualified persons. Furthermore, it can be
permitted if it takes place during the development phase, and iff it can be shown
afterwards that the learned aspects can not lead to hazardous situations during the
system’s operating time. Because it might be difficult or impossible to prove the safety,
it can be deliberated if systematic and intensive testing is sufficient as proof for safe
operation.

Secondly, it can be stated that learning under influence of unqualified users remains
critical, since the unqualified users may lack estimating the consequences of the learned
aspects, on the one hand, and on the other hand, the intentions of the users are unknown.

Thirdly, learning capabilities of robots can be permitted in general, iff it can be ensured
that hazards are known by the robot system, and their control is designed such that
hazardous situations are sufficiently avoided. The concept to equip the robotic system
with the knowledge about hazards is pursued by the safety-knowledge-based dynamic
risk-assessment approach outlined in Chapter 8. In this regard, the dynamic risk
assessment process can be considered as a basis for robot safety. Learning approaches
might be integrated within the engineering process of the safety knowledge, or may
operate complementary in order to minimize the residual lack of safety knowledge.
Consequently, a systematically engineered system safety process during the design phase,
and during the operating phase via safety knowledge updates, can not be replaced
by learning approaches, but learning can be used to improve the safety of an already
comparably safe system, for instance, realized with a concept as proposed in Chapter 7.
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10 Summary and Future Work

This thesis draws attention to the safety problem of autonomous robots. A procedural
model to systemically generate the initial safety knowledge, required for realizing the
dynamic risk assessment approach is developed and detailed. Particularly, it is drawn
attention to generate the safety knowledge of the so far not considered hazardous
object-object interactions. Furthermore, learning approaches are focused against the
background of the potential lack of safety-related knowledge. The resulting main
achievements and related benefits are summarized in the next section. Additionally,
further steps and new ideas, which were identified in conjunction with this thesis, are
briefly described in the final section of this chapter.

10.1 Summary

The contributions to robotic safety applications are spread over a wide spectrum of
research fields due to the interdisciplinary character of robotic research. As interdis-
ciplinary as the robotics research field is, the diverse are the contributions to safety-
related topics. Hence, a thorough review of present robotic and cognitive paradigms
is from particular interest in order to point out the present termini and perception of
these topics. Furthermore, it is spent particular effort structuring the extensive litera-
ture review in a meaningful way.

It is observed that there is available a significant variety of research work focusing
collision safety with humans and obstacles for both, robotic hardware design and reactive
behaviors. In this connection, the robot’s kinetic energy, emanating from the robotic
system itself is considered as hazardous energy. The attitude to perceive the hazardous
energy source as a part of the system is typical for the majority of the research work.
Not later than the robots become capable to grasp and manipulate objects, further
hazard origins have to be taken into account. A taxonomy for hazard origins is one of
the essential achievements of this work. A group of hazards with notable harm potential
is formed by hazardous energy sources that are located in the robot environment. The
robot itself is primarily involved in turning the hazards into a mishap or accident by
manipulating objects that interact with respective environment objects. This kind of
hazards was so far neither perceived in present research work, nor is it considered in
relevant standards.

The autonomy feature, often touched on and also often tried to be realized in mobile
robotics, is investigated in detail as one point worthy to point out in this contribution.
Especially, the impact of machine autonomy on safety aspects is explicated in detail.
Here, it is derived that the desired degree of autonomy inherently requires the capability
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to learn. Additionally Freud’s structure model of the human psyche is identified as a
useful blueprint to approach toward a solution of the autonomy-safety problem.

If robots can not be ruled out to be such safety-critical systems, it is obvious from the
safety perspective that safety measures have to be implemented before the system is put
into operation. It is also obvious that robots can not solely learn to safely behave because
this implicates that hazardous situations have to (quasi) occur in order to learn from
them. However, knowledge about hazards at the design stage has to be assumed to be
potentially incomplete for operating environments of high complexity. In consequence,
it seems that both, a good safety engineering practice, and learning approaches have
to be applied in order to achieve a convergence toward safety. Therefore, the system
safety process is understood as an active iterative process that reaches as well into
the operation phase. Hence, it is part of the overall concept of this work to realize an
adjustable safety knowledge base on-board of the robotic system that is applicable and
expandable for upcoming new situations during the operating time.

The application of the safety knowledge is intended to take effect within the so-called
dynamic risk assessment approach which aims on enabling the robotic system itself to
assessing the risks of upcoming situations. The utilization of gradual risk descriptions
is essential because a binary classification of risks (as safe or not) entails problems. The
situation awareness of the system itself plays as well a central role in this connection, as
it denotes the capability to perceive and comprehend the environment, and to foresee
situations in the near future. In this regard, it is firstly described an approach which
realizes situation risk-awareness on basis of a cognitive architecture and a knowledge-
based situation risk assessment function. Therefore, the hazards are formalized as safety
knowledge in form of so-called ‘Safety Principles’. A Safety Principle has a dyadic
structure and denotes a model to formalizing hazards: At first, it comprises information
for detecting the presence of a hazard, and secondly, instructions for computing its
respective numeric risk value. In general, other concepts such as adaptive collision
avoidance strategies, adaptive compliant actuation or injury knowledge-based control
etc. can be connected to context-awareness by Safety Principles as meta-structure.

The underlying cognitive architecture providing cognitive functions such as percep-
tion, learning, planning and anticipation is based on the so-called Situation-Operator-
Modeling (SOM) approach. The SOM approach is used as meta-modeling technique for
structuring and formalizing complex environments of systems. The safety knowledge and
the risk assessment server as well are conceptualized with the SOM notation; hence, the
both can be integrated within the cognitive architecture. For this reason, the capabilities
of the cognitive architecture can be fused with the dynamic risk assessment approach, or
rather risk awareness can be realized within the cognitive architecture, since risks become
perceivable for the system. Consequently, the outlined concept provides the capability
to perceive and anticipate risks in order to basically realize risk-sensitive planning. Addi-
tionally, it is introduced the concept of a safety clearance into the risk-sensitive planning-
approach; hence, it is already avoided to get closer to hazardous situations. Since the
safety knowledge is realized via SOM notation, it remains to be practically change-
able by the system itself which structurally enables the extension and refinement of the
safety knowledge base during the operating time of the robot, for instance, via learning.



10 Summary and Future Work 157

As already mentioned, it is problematic to apply learning approaches for safety-critical
applications. Therefore, a separate perspective on this topic is given. In this regard, a
non-stationary scenario, comprising different hazardous states is designed in order to
evaluate reinforcement learning. In the first instance, a hazard performance measure
is defined which also takes into account the hazard potential of the scenario. Hence,
the count of transitions into hazardous states relative to the scenario-hazard potential
is evaluated (comparison to a randomly walking agent). It is found that learning
capabilities can as well provide significant benefit for worst-case conditions, in which
the algorithms are sub-optimally parameterized in situations without adequate fail-safe
strategies.

In the following, a further learning paradigm is investigated - imitation learning, or
more precisely, learning from demonstration. In principle, learning from demonstration
can be applied for extending the safety knowledge during the operating time of the
robot. However, this can raise multiple issues, since the validation of the learned safety
knowledge is difficult to accomplish. Thus, a learning from demonstration procedure
is described which is integrated into the system safety process in order to support
the generation process of risk models. The risk models can be integrated into the
dynamic risk assessment approach when the verification of the learned contents took
place. Notably, the utilization of decision trees shows interesting results, besides the
advantage that the decision trees are directly readable.

10.2 Future Work

This work was focused on the realization of a risk-aware autonomous system. Since little
research work was realized in this area, this work represents a first approach toward
a novel topic and, hence, many directions of future work have to be pursued. In the
following, some points are mentioned which are considered to be from major interest.

It is described within the realized concept how risks can be formalized in order to enable
the system itself to recognize and estimate them. During the execution of reactive
(low-level) skills, the higher system level may be involved in planning further steps in
order to approach toward a goal. But if the performing of a skill is risky (potentially
close to an acceptable risk threshold), the higher system levels may be required to
track the execution, in terms of draw special attention to the progression of the current
action’s outcome. Thus, the question arises how the resources of the higher systemic
levels should be controlled and distributed. Therefore, a control may be required which
deliberates the assignment of the high-level resources. Resources may be gradually
distributed among precise short-term planning and monitoring and long-term planning.

Furthermore, the system is aware of risks at higher system levels. The knowledge about
the risks should as well have effect on the execution layer in order to enable risk-sensitive
skill execution without special attention of the higher system level. For instance, specific
collision risks may be formulated as a Safety Principle; thus, the system is aware of it
at higher system level, but not the movement controller. In consequence, the awareness
about risks is an important aspect but often depends on complex world knowledge.
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According to the hybrid paradigm in robotics, complex world knowledge-related aspects
are typically processed at higher system levels, and have to become rare at lower levels
in order to maintain reactivity. Thus, the question arises how the execution of skills
under risky conditions should be parameterized or modulated in order to take into
account the risks the system is aware at higher system levels. In this connection,
the risk information has to be somehow decomposed into adequate parameters, high-
performance functions or code segments to be processed by the execution of low-level
skills. If the skills itself are considered to be atomic units at some point, the information
of risks has finally to be mapped into adequate execution parameters.

In addition, the handling of multiple risks in complex situations is perceived as challeng-
ing problem. The outlined risk planning strategy is logic and analytic. Humans typically
operate differently in complex situations, not analytically but intuitively according to
an experience-involving ‘affect heuristic’ (Finucane et al., 2000). In this regard, two fun-
damental systems are involved, which again need for a third, being altogether 1) the ‘an-
alytic system’, which uses algorithms and normative rules, 2) the ‘experiential system’,
which relies on experiences based on images or associations and 3) the ‘political system’,
which mediates the two latter system’s outcome (Slovic et al., 2004). For the judgment in
complex decision or decision with limited resources (e.g. time pressure), the affect heuris-
tics can be more effective than to analytically deliberate the pros and cons. Especially,
decisions in the scope of risks and benefits are made with regard to emotions stemming
from former experiences (Finucane et al., 2000). The utilization of concepts like emotions
can denote an advantageous strategy as well for robots (Lee-Johnson and Carnegie, 2007).
‘Fear’ as basic emotion (cf. Lee-Johnson and Carnegie, 2007) within an affect heuristic
denotes in interesting concept to integrate results from the dynamic risk assessment,
for instance, as it is described by the psychodynamic structure model in Section 3.5.2.

With scope on the refinement of the safety knowledge, user dialogs could be suitable, in
particular with new objects. A Marvin-like agent may ask question in order to extend
its knowledge (cf. Anderson et al., 1986). Since, unknown objects should appear to
comprise unpredictable risks, this might trigger a user dialog.

Finally, the work at hand comprises a procedural model for systematically generating
the safety knowledge for object interaction. This systematic approach denotes a first
milestone of a safety strategy. In further steps, a strategy to verify the safety-related
knowledge and the risk assessment server is required. Furthermore, the consistency
of the knowledge base is of interest, but in particular, the verification of the overall
robotic system, see as well Alexander et al. (2007, 2008, 2009, 2010).
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