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Summary 

Among the prior demands in current sample preparation for organic trace analysis are 

sensitivity, ease of automation and solvent exclusion. One approach to meet these demands 

has been the development of microextraction techniques, where the amount of extraction 

phase is very small compared to the sample phase. Today, microextraction techniques are 

used in current analytical methods from all fields. This thesis provides an overview on the 

recent developments in solventless microextraction techniques, with special emphasis on 

techniques providing full automation, starting from the first open-tubular trap techniques in 

the mid-1980s to recent devices utilizing sorbent packed needles. Different implementations 

of in-needle microextraction are discussed with their characteristic benefits, shortcomings 

and possible sampling modes. In this context, solid phase dynamic extraction (SPDE) was 

investigated for its applicability in quality control analysis of 196 German red wines. To that 

purpose, a fingerprinting database was created using commercial available chromatogram 

comparison software. 22 flavor relevant alcohols and esters have been quantified, also, to 

monitor the long term extraction performance of the SPDE needles, which showed constant 

results for up to 400 extractions using one extraction needle tip. A novel in-tube extraction 

(ITEX) device for headspace sampling has been evaluated for environmental and food 

analysis. To that end, five commercially available and six custom prepared sorbent traps have 

been evaluated for their extraction efficiency for over 50 analytes from different classes. 

They cover aromatics, heterocyclic aromatics, halogenated hydrocarbons, fuel oxygenates, 

alcohols, esters and aldehydes. During this course, the benefits of the use of adsorbent or 

absorbent materials, depending on the application, were shown, as well as the potential of 

mixed bed traps. Method detection limits in the low ng L
-1

-range were achieved for 

compounds of importance for drinking water quality, which is much lower than demanded by 

regulatory limits and usually requires much more complex purge and trap systems. 

Furthermore, it was possible to discriminate the six beer varieties Alt, Helles, Kölsch, 

Pilsener beer, Schwarzbier and wheat beer and to assign 46 beers to these classes, just by 

analyzing volatile aroma constituents and applying Linear Discriminant Analysis. The 

governing parameters of the extraction and injection steps are discussed and the experiences 

from method development are summarized to give recommendations for the setting of proper 

extraction conditions, in order to minimize the experimental effort for future method 

development.  
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Kurzfassung 

Zu den wichtigsten Anforderungen in der aktuellen organischen Spurenanalytik gehören 

Empfindlichkeit, leichte Automation und die Vermeidung von Lösemitteln. Ein Ansatz diese 

Ziele zu erreichen war die Einführung von Mikroextraktionstechniken, bei denen die Menge 

der Extraktionsphase, im Vergleich zur Probenphase, sehr klein ist. Heute werden 

Mikroextraktionstechniken in vielen analytischen Gebieten angewandt. Diese Arbeit bietet 

einen Überblick über die Entwicklung lösemittelfreier Mikroextraktionstechniken, mit 

vornehmlichem Schwerpunkt auf vollständig automatisierbare Techniken, beginnend bei den 

ersten Kapillartechniken Mitte der 1980er Jahre, bis hin zu aktuellen Ausführungen mit 

gepackten Nadeln. Die Verschiedenen Varianten werden in Bezug auf ihre charakteristischen 

Vor- und Nachteile und ihre Einsatzmöglichkeiten diskutiert. In diesem Zusammenhang 

wurde die Solid Phase Dynamic Extraction (SPDE) auf ihre Anwendbarkeit in der 

Qualitätskontrolle von 196 deutschen Rotweinen untersucht. Dazu wurde mit einer 

kommerziellen Vergleichssoftware eine Datenbank erstellt, mit der bekannte Proben 

identifiziert werden können. Weiterhin wurden 22 Geschmacksrelevante Alkohole und Ester 

quantifiziert und anhand dieser Daten die Langzeitstabilität der SPDE Nadeln untersucht. Mit 

einer Nadel konnten, bei konstanter Leistung, bis zu 400 Analysen durchgeführt werden. Eine 

neuartige In-tube Extraction (ITEX) Einheit wurde für die Umwelt- und Lebensmittelanalytik 

evaluiert. Dabei wurde die Extraktionseffizienz von fünf kommerziell erhältlichen und sechs 

speziell angefertigten Extraktionsnadeln anhand von über 50 Analyten verschiedener Klassen 

verglichen. Sie umfassten Aromaten, Heteroaromaten, halogenierte Kohlenwasserstoffe, 

Treibstoffzusätze, Alkohole, Ester und Aldehyde. Dabei wurden die anwendungsspezifischen 

Vorteile von Ab- und Adsorbtionsmaterialien und die Möglichkeiten gemischter 

Extraktionsphasen gezeigt. Für trinkwasserrelevante Analyten wurden Nachweisgrenzen im 

unteren ng L
-1

-Bereich erzielt, die weit unter den erforderlichen Grenzwerten liegen und 

sonst nur mit deutlich komplexeren Purge & Trap Systemen erreicht werden. Weiterhin war 

es durch Messung von flüchtigen Geschmacksstoffen möglich, die sechs Biervarianten Alt, 

Helles, Kölsch, Pils, Schwarzbier und Weizen zu Unterscheiden und 46 Biere, durch lineare 

Diskriminanzanalyse, ihrer entsprechenden Variante zu zuordnen. Mit den Erfahrungswerten 

der Methodenentwicklung werden die entscheidenden Parameter der Extraktions- und 

Injektionsschritte diskutiert und Empfehlungen für geeignete Bedingungen gegeben, um den 

Entwicklungsaufwand für zukünftige Methoden zu minimieren.  
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1 Introduction and Scope 

Parts of this chapter have been published in modified form in Laaks, J.; Jochmann, M. A.; Schmidt, T. C., 

Solvent-free microextraction techniques in gas chromatography. Analytical and Bioanalytical Chemistry 2012, 

402, 565-571, © Springer-Verlag 2012 and Jochmann, M. A.; Laaks, J.; Schmidt, T. C., Chapter 12: Solvent 

Free Injection Techniques in “Practical Gas Chromatography: A Comprehensive Reference” by Dettmer-

Wilde, K.; Engewald, W. (Eds.) 2014, © Springer-Verlag 2014 

Sample preparation/pre-treatment is one of the most time consuming and laborious steps in 

analytical procedures; nonetheless, improvements in this field have been considered to be of 

less importance than separation and detection, for many years.
1, 2

 The main purposes of 

sample preparation are (i) removal of matrix components interfering with separation and/or 

detection, (ii) converting the analyte to a suitable form for separation and (iii) enrichment of 

the analyte to increase sensitivity. Today, capillary gas chromatography (GC) coupled to 

mass spectrometry (MS) provides high separation efficiency with highly sensitive and 

selective detection, while at the same time, improvements in liquid chromatography columns 

and interfaces to MS, often render the second point unnecessary. 

Consequently, many sample preparation protocols still rely on simple, classical techniques, 

such as liquid-liquid extraction (LLE) and solid-phase extraction (SPE) for liquid samples or 

Soxhlet extraction for solid samples. These methods typically require high volumes of sample 

and organic solvent (from mL-range up to several liters), as well as repeated extractions for 

sufficient enrichment. The resulting large volumes of extracts necessitate further 

concentration by evaporation or distillation; which, together with clean-up steps, makes these 

methods laborious, time consuming and prone to analyte losses. The used high purity organic 

solvents are expensive, usually toxic, harmful to the environment (e.g. ozone layer destroying 

chlorinated solvents) and in the end substantial quantities of solvent waste have to be 

handled.
2-4

 

New directives and guidelines demand ever decreasing limits of detection and quantification, 

which cannot be achieved by improved separation and detection capabilities alone. This put 

enrichment and matrix separation more into focus, because errors in this stage of the 

analytical process can hardly be corrected in the following steps. Therefore, sample 

preparation has become a prominent part of many studies on the trace-level determination of 

organic micro-contaminants in real-life samples.
1
 The main observable trends in present 

sample preparation techniques are (i) higher extraction yields and better reproducibility, (ii) 



Introduction and Scope 

2 

 

higher sample throughput by lower processing time, (iii) on-line sample preparation, (iv) 

automation, (v) miniaturization and (vi) organic solvent reduction/exclusion.
2, 3, 5, 6

 A 

considerable fraction among the multitude of newly developed sample preparation procedures 

is represented by microextraction techniques, which can combine several of the 

aforementioned properties in one device. 

1.1 Microextraction Techniques 

Although all microextraction techniques share one common feature, namely that the amount 

of extraction phase is small compared to the sample volume
7
, a wide variety using many 

different approaches has been presented over the years. Some are merely downsized versions 

of the classical techniques like liquid-liquid extraction, which can be scaled down to use only 

a few dozen micro liters of solvent (liquid-liquid microextraction (LLME) or dispersive 

liquid-liquid microextraction (DLLME)
8
), down to a single drop of just about one microliter 

(single-drop microextraction (SDME))
9
. Similar formats have been developed for automated 

extractions like liquid-phase microextraction (LPME)
10

 or organic solvent film extraction 

(OSF)
11

. Microextraction in packed syringe (MEPS)
12

 is a scaled down SPE, using a sorbent 

filled barrel attached to a micro syringe, which can also be automated. Other procedures use 

membranes to separate the analytes from the matrix, like membrane extraction with sorbent 

interface (MESI)
13

 or the hollow-fiber extraction syringe (HF-ESy)
14

, for example. More 

information on modern sample preparation methods can be found in a review by de Koning et 

al..
1
 Recent reviews discuss liquid phase microextractions

15
 or the role of surfactants

16
 and 

new materials
17

 to minimize solvent consumption. 

The focus of this thesis is laid on solvent free microextraction techniques for gas 

chromatography, which utilize a liquid or solid sorbent for analyte extraction and preferably 

offer a high degree of automation. An advantage of these techniques is the reusability of the 

extraction device, which can be employed repeatedly after reconditioning of the sorbent. For 

some techniques, several hundred measuring cycles have been reported without significant 

loss of extraction efficiency.
18

 They can be divided into three general groups, depending on 

the way the sorbent material is implemented. The first uses a sorbent coating on a mechanical 

support, the second a packed sorbent bed and in the third group, the sorbent is used as bulk 

phase. 
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1.1.1 Sorbent coating Based Techniques 

First applications used capillaries with polymer coatings (such as polydimethylsiloxane 

(PDMS)) as sorptive phase for analyte extraction and have been developed in the mid 

1980s.
19, 20

 Similar approaches were presented later as open-tubular trapping (OTT), in-tube 

microextraction, in-tube solid phase microextraction or capillary microextraction (CME) and 

have been subject to several reviews.
6, 21-25

. However, this approach suffered from complex 

instrumental setups and unfavorable sampling conditions such as high pressure drops for long 

traps and limited sample flows
26

, stimulating the development of more convenient 

techniques. 

1.1.1.1 Solid Phase Microextraction 

Probably the best-known microextraction technique is the solid phase microextraction 

(SPME), which was introduced in 1989 by Belardi and Pawliszyn.
27

 It utilizes a fused silica 

fiber core, coated with a film of PDMS as extraction phase (Figure 1.1 a). It can be used for 

sampling either from the liquid phase, by direct immersion of the fiber into the sample, or for 

headspace analysis and combines sampling, enrichment and clean-up in one device. Sample 

injection is achieved by thermal desorption and can be performed in any conventional GC 

injection port. In this way, the amount of manual work is minimized and easy automation 

with common xyz-autosamplers is also possible. 

Initial problems like the fragility of the fused silica fiber core and ghost peaks from septum 

particles, pushed into the injection port by the blunt needle, have been addressed by bendable 

metal fibers and septum less injection port seals. Today, a variety of several sorbent materials 

with different polarities and sorption mechanisms is commercially available. One remaining 

drawback is the limited extraction capacity, caused by the low volume of extraction phase on 

the fiber
28

, which is, depending on the core diameter (dc) and film thickness (df), between 

0.2 µL (dc = 0.1 mm, df = 7 μm) and 1.6 µL (dc = 0.2 mm, df = 100 μm). Because thicker 

coatings prolong the extraction time by the limited diffusion inside the coating, and the length 

and diameter of the sorbent support are restricted by the in-needle design, different 

techniques have been developed to gain more extraction capacity. 

Despite its initial limitations and the availability of more sophisticated techniques, SPME is 

still widely used, because of its simplicity and versatility. Over the past 20 years, several 

hundred applications for SPME have been published in all analytical fields, covering 

environmental and food analysis, as well as biological and medical applications. Several 



Introduction and Scope 

4 

 

books
29-31

 and reviews
3, 5, 7, 23, 32

 are available, also. However, the transfer to national standard 

procedures for environmental and drinking water monitoring is still only beginning, because 

of the time consuming standardization process.
33-35

 

1.1.1.2 Solid Phase Dynamic Extraction 

One approach to increase the extraction capacity of SPME was to place short pieces of 

capillary GC columns inside a syringe needle, which was called inside needle capillary 

absorption trap (INCAT).
36, 37

 A similar technique was commercialized in 2000 as the “magic 

needle” by Chromtech (Idstein, Germany) or solid phase dynamic extraction (SPDE)
38

, where 

the coating is applied directly to the inner surface of a stainless steel needle (see Figure 

1.1 b). In this way, about 4.5 µL PDMS can be immobilized as a 50 µm thick coating in a 

56 mm long needle.
28

 Besides the higher extraction phase volume, SPDE also offers more 

mechanical stability than SPME while maintaining the variability of possible extraction phase 

materials and easy autosampler integration. Sampling is performed by repeated pumping of 

the sample solution (liquid phase (LP)) or the sample headspace (HS) through the needle 

using a gastight syringe. The extraction conditions, like flow and number of pumping cycles, 

must be kept constant for all corresponding measurements because the extraction process is 

usually stopped before equilibrium is reached. This hampers the use of SPDE and related 

techniques, when no autosampler is available. Another possible disadvantage of SPDE arises 

from the length of the coating in the needle; a significantly varying temperature profile over 

the inlet depth of some GC injection port designs can result in incomplete desorption of 

analytes. 

SPDE and INCAT have not been as well accepted as SPME, only about 30 applications have 

been published in the 15 years since the first presentation, but they also cover several 

different analytical tasks (see Table 1.1). The first application of SPDE by Lipinski was the 

extraction of halogenated pesticides from water.
39

 Although no problems were reported, it 

remains the only application of SPDE with extraction directly from the liquid phase, until 

now. Other early works include the analysis of drugs of abuse from ground hair samples with 

an on-coating derivatization of amphetamines
38

, cannabinoids
40

 and other designer drugs
41

. 

Another core area of applications is food analysis, where Bicchi tested HS-SPDE for the 

extraction of dried rosemary leaves, green and roasted coffee, banana fruits and wines
28

; wine 

must
42

 and wine
18, 43, 44

 were the topic of other applications. An unusual application was the 

analysis of pheromones from elephant urine.
45

 Further details are discussed in previous 

reviews on this topic.
46, 47
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Table 1.1 List of previous INCAT and SPDE applications (if not stated else, all extractions were performed from the 

headspace) 

Method Sorbent Matrix Analytes LODa LOQa Ref. 

INCAT 
5%-Phenyl/PDMS 

Carbon 
Air, Water BTEX - - 36 

INCAT Carbon Water BTEX - - 37 

INCAT Carbon 
Petroleum, 
Water 

BTEX, VOCs - - 48 

INCAT 
Polyaniline/Hexagonally 

ordered silica 
Water PAHs 1 ng L-1 - 49 

LP-SPDE PDMS Water 
Halogenated 
pesticides 

0.3 ng L-1 - 39 

SPDE 10%-Carbon/PDMS Hair samples 

Amphetamines/ 

Synthetic designer 

drugs 

30 mg g-1 110 mg g-1 38 

SPDE 10%-Carbon/PDMS Hair samples Cannabinoids 90 mg g-1 440 mg g-1 40 

SPDE 10%-Carbon/PDMS Hair samples Drugs of abuse 6 µg g-1 25 µg g-1 41 

SPDE 10%-Carbon/PDMS Food matrices 
β-pinene, isoamyl 
acetate, linalool 

- - 28 

SPDE 

WAX, PDMS, 10%-

Carbon/PDMS, cyanopropyl-
phenyl/PDMS 

Water Alcohols 4 ng L-1 - 44 

SPDE - Elephant urine 
Insect 

pheromones 
- - 45 

SPDE PDMS Water 
Furan, benzene, 
toluene 

0.17 µg L-1 - 50 

SPDE PDMS, 10%-Carbon/PDMS Soft drinks BTEX 0.03 ng L-1 - 51 

SPDE 10%-Carbon/PDMS Water Chlorinated VOCs 12 ng L-1 - 52 

SPDE PDMS Air Toluene - - 53 

SPDE 10%-Carbon/PDMS Snow water BTEX, aldehydes 19 ng L-1 53 ng L-1 54 

SPDE 10%-Carbon/PDMS Snow/Ice water 

Alkylated 
benzenes, 

monoterpenes, 
chlorinated VOCs 

- - 55 

SPDE Polypyrrole Water PAHs 2 ng L-1 - 56 

SPDE 10%-Carbon/PDMS Serum, urine 
γ-hydroxybutyric 

acid 
160 µg L-1 - 57 

SPDE 10%-Carbon/PDMS Grape must 
Aroma 

compounds 
- - 42 

SPDE PDMS 
Barley, malt, 

beer 
trans-2-nonenal 5 ng L-1 15 ng L-1 58 

SPDE - Air Biogenic VOCs - - 59 

SPDE TiO2-coating Urine, water 
Desomorphine, 

desocodeine 
250 µg L-1 - 60 

SPDE 10%-Carbon/PDMS Elephant urine 
Volatile urinary 

chemicals 
- - 61 

SPDE Molecularly imprinted polymer Urine 

Amphetamine, 

methamphetamine
, ecstasy 

12 µg L-1 40 µg L-1 62 

SPDE Molecularly imprinted polymer Water 
Triazine 

herbicides 
2.6 µg L-1 - 63 

SPDE 10%-Carbon/PDMS Blood 
n-heptane 
metabolites 

6 µg L-1 - 64 

SPDE WAX (PEG) Wine 
Aroma 

compounds 
0.1 µg L-1 - 18 

SPDE PDMS 
Citrus essential 

oil 

Limonene, 
linalool, γ-

terpinene 

6.8 ng abs. 22.6 ng abs. 65 

SPDE 10%-Carbon/PDMS Wine 
Aroma 
compounds 

- - 43 

a
 only the lowest limit of detection/quantification is given for mixtures of multiple analytes 
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1.1.1.3 Stir Bar Sorptive Extraction 

Several techniques utilizing coated stir bars or glass rods have been developed to gain 

significantly larger volumes of extraction phase, for example stir bar sorptive extraction 

(SBSE, Figure 1.1 c, commercialized by Gerstel as “Twister”)
66

, high capacity headspace 

sorptive extraction (HSSE, Figure 1.1 d)
26

 or dual twister
67

. The Twister is available as 

magnetic glass stir bar (2 mm o.d.) with lengths of 1 cm or 2 cm, with coating thicknesses of 

0.5 mm and 1 mm, resulting in sorbent volumes of up to 315 µL. These techniques lose the 

advantage of complete automation, as the stir bar or rod has to be manually removed from the 

sample to put it into a desorption tube, sometimes rinsing and drying steps are also necessary. 

The sample introduction to the GC requires a special thermodesorption unit or inlet system, 

which is able to change the tube (containing the rod or bar) automatically, otherwise this has 

to be performed manually, too. Until now, only PDMS and polyethylene glycol (PEG) 

coatings are commercially available. 

 
Figure 1.1 Important coating based extraction techniques: a) Solid phase microextraction, b) Solid phase dynamic 

extraction, c) Stir bar sorptive extraction, d) Headspace sorptive extraction; sorbent coating represented in red 
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These methods are primarily used for sampling of low volatile compounds like pesticides, 

polycyclic aromatic hydrocarbons (PAHs) or polychlorinated biphenyls (PCBs) directly from 

the liquid phase.. While the total number of published applications is in the hundreds, only 

few applications utilizing extractions from the sample headspace are available
68

. More 

information can be found in recent reviews.
69-71

 

1.1.2 Packed Sorbent Techniques 

A common constraint of the methods mentioned before is the limitation to liquid polymer 

coatings, with PDMS being the most frequently used but poly(acrylate) (PA) or PEG also 

being common for more polar compounds. Some adsorbents that cannot be applied as a 

coating are available embedded in PDMS, for example activated carbon, 

Carboxen/Carbopack or divinylbenzene (DVB). While liquid polymers act as absorbents, 

enriching the analytes by partitioning into the extraction phase, only adsorption to the surface 

takes place with solid packing materials. Because the number of sorption sites is limited, 

competition effects or displacement of analytes might occur at higher concentrations.
29

 On 

the other hand, adsorption is typically stronger than absorptive interactions, allowing the 

efficient trapping of more volatile compounds. To enhance the range of available extraction 

phases to the complete set of standard sorbents, well known from gas analysis or purge and 

trap systems, several techniques utilizing a packed sorbent bed inside a needle or tube have 

been developed. Another advantage of packed sorbent techniques is their versatility. In 

addition to the wide range of available sorbent materials, mixed bed traps can be prepared 

effortlessly by combining sorbent materials with different sorption capacities and affinities in 

order to achieve optimal conditions for each analytical task. 

The sorbents can be placed either directly inside the needle, as in the needle 

microconcentrator
72

 the needle trap (NT, see Figure 1.2 a)
73

 and the fiber-packed needle 

(FPN)
74

 (Figure 1.2 b) or in a larger diameter tube attached to a needle, like the cylindrical 

microconcentrator
72

 and the in-tube extraction (ITEX)
75

 (Figure 1.2 c). Of those, only the NT 

and ITEX have found further prevalence, as they have been commercialized by PAS 

Technology (Magdala, Germany) and CTC Analytics (Zwingen, Switzerland), respectively. 

Both implementations have specific advantages and shortcomings. While the devices with in-

needle packings can be inserted directly into the GC injection port for thermal desorption, the 

in-tube devices require an external heater around the packing. The in-needle systems on the 

other hand show the same sensitivity to temperature gradients in the injector as SPDE and the 

amount of sorbent is limited by the smaller inner diameter. Several sampling modes are 
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possible: (i) open system sampling (exhaustive sampling) with a syringe pump or purge gas 

supply, (ii) closed system sampling (equilibrium sampling) from a vial by aspirating and 

dispensing headspace gas with a syringe or (iii) passive time weighted average sampling. 

Each design favours certain sampling modes and applications. 

 

Figure 1.2 Common packed sorbent techniques: a) Needle trap, b) Fiber-packed needle, c) In-tube extraction 

1.1.2.1 Needle Trap 

The NT-device typically consists of a 22-gauge (0.72 mm o.d., 0.41 mm i.d.) stainless steel 

needle with a conical tip and side port hole, but other needle diameters (e.g. 23-gauge, 

0.34 mm i.d.) and tip configurations are also possible. The sorbent bed is held in position 

either by a quartz wool- or spiral steel-plug and the bed length can vary between 7 mm
73

 and 

30 mm
76

, resulting in bed volumes of 0.6 µL to 4 µL. Most applications (Table 1.2) use 

standard sorbents like Carbopack X, Carboxen 1000, Tenax, DVB or HayeSep Q, while some 

investigate new materials like copolymers of methacrylic acid/ ethylene glycol 

dimethacrylate
77, 78

, gold wire for amalgamated mercury extraction
79

, nanosilica
80

 or carbon 

nanotubes
81, 82

. The fiber-packed needle is a peculiar implementation of the NT principle, 
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utilizing PDMS coated filaments as sorbent material, which allows sampling from the liquid 

phase, too. 

The NT has been promoted for exhaustive sampling (sampling mode (i)) since its 

presentation, while sampling modes (ii) and (iii) should be continued using SPME, which 

was introduced by the same group. Consequently, about two thirds of the publications on the 

NT-device use exhaustive sampling, which can be performed in the field with syringe pumps 

or vacuum sampling systems. In this way the device may take advantage of the automated 

exchange of field loaded needles by an autosampler back in the laboratory. Only few 

applications are using sampling modes (ii) and (iii). Applications and fundamentals of NT-

devices have also been discussed in several reviews.
6, 83

 

Table 1.2 Applications of sorbent packed needle techniques 

Method Sorbent Matrix Analytes LODa LOQa Ref. 

Needle 
Microconcen-

trator 

- Tobacco smoke Benzene, toluene - - 72 

NT None (quartz wool filter) 
Airborne 
particles and 

aerosols 

PAHs - - 84 

NT Carboxen 1000 Gas BTEX 0.23 ngL-1 - 73 

NT 
Methacrylic acid/ ethylene 

glycol dimethacrylate 
Gas 

Acetone, ethyl 

acetate, hexane, 
toluene 

- - 77 

NT Carbopack X Water BTEX 50 ng L-1 80 ng L-1 85 

NT 
DVB, Carboxen 1000, Tenax, 

Davison silica gel 
Gas BTEX, C6-C15 - - 86 

NT DVB, Carboxen 1000 Gas BTEX - - 87 

NT DVB Water BTEX 1 µg L-1 - 88 

NT DVB Water 
Formic acid, 
acetic acid 

87.2 µg L-1 - 89 

NT Carboxen 1000 Gas BTEX 0.6 µg L-1 2.02 µg L-1 90 

NT Gold wire Gas Mercury 0.2 pg m-3 - 79 

NT DVB 

Mosquito coil 

smoke, airborne 

particles 

VOCs - - 91 

NT 
Carboxen 1000/ Carbopack X/ 
Tenax 

Breath gas Breath biomarkers 1.9 ng L-1 - 76 

NT 
Carboxen 1000/ Carbopack X/ 

Tenax 
Breath gas 

Breath 

biomarkers, 
propofol 

- - 92 

NT Carbopack X Water BTEX 10 µg L-1 - 93 

NT DVB/ Carboxen 
Aerosols, 

smoke 
PAHs - - 94 

NT Carbon nanotube-sol-gel Water PAHs 1 ng L-1 - 81 

NT Oleic acid grafted nanosilica Water PAHs 2 ng L-1 - 80 

NT Carbopack X, Tenax TA Gas BTEX, VOCs 2 ng L-1 7 ng L-1 95 

NT Carboxen 1000/Tenax TA Water BTEX, VOCs 10 ng L-1 70 ng L-1 96 

NT DVB/Carboxen 1000 
Pump oil, solid 

PAHs 
BTEX, PAHs - - 97 

NT 

DVB/Carbopack X/Carboxen 
1000, PDSM/Carbopack 

X/Carboxen 1000, 

DVB/Carboxen 1000, 

Gas 
C1-C10 aldehydes, 

BTEX, VOCs 
0.22 ng L-1 0.74 ng L-1 78 



Introduction and Scope 

10 

 

Method Sorbent Matrix Analytes LODa LOQa Ref. 

PDMS/Carboxen 1000, 

methacrylic acid/ ethylene 

glycol dimethacrylate 
copolymer 

NT Haysep Q Gas 
Bed bug related 

pheromones 
- - 98 

NT Carbopack X/Carboxen 1000 Gas Breath VOCs - - 99 

NT DVB Water 
Formic acid, 
acetic acid 

- - 100 

NT Carboxen 1000/Tenax TA Blood BTEX, VOCs 0.02 µg L-1 0.2 µg L-1 101 

NT Carboxen 1000, DVB Gas BTEX,  - - 102 

NT 
Single wall carbon 

nanotubes/silica composite 
Gas 

Halogenated 

VOCs 
1 ng L-1 5 ng L-1 82 

NT DVB, DVB/Carboxen 1000 Garlic Derivatized thiols 11 µg L-1 0.1 µg L-1 103 

NT 

Methacrylic acid/ ethylene 

glycol dimethacrylate 
copolymer 

Breath gas 
n-C1-C10 

aldehydes 
- - 104 

NT 
Tenax TA/Carbopack 

X/Carboxen 1000 
Breath gas 

Volatile blood and 

breath 
constituents 

0.012 nmol L-1 - 105 

NT Polystyrene/DVB Water 
Phenolic 

compounds 
- 0.4 µg 106 

NT DVB Water 
Formic acid, 
acetic acid 

1 mg L-1 - 107 

NT DVB Ground coffee 
Coffee aroma 

compounds 
- - 108 

NT 
Multi walled carbon 
nanotubes/silica composite, 

PDMS 

Gas 
Volatile 
organohalogen 

compounds 

0.01 µg L-1 - 109 

NT 
DVB/Shincarbon ST/carbon 

molecular sieve 
Water 

BTEX, volatile 

organohalogens 
0.01 µg L-1 0.03 µg L-1 110 

NT DVB/Carboxen 1000 Gas 
Limonene, α-

pinene, acetone 
4 ng L-1 12 ng L-1 111 

NT Tenax TA Gas 
Insect 

pheromones 
3 ng m-3 - 112 

FPN PDMS Gas Aldehydes 1.2 ng L-1 3.6 ng L-1 113 

FPN PDMS Gas 
Smoking related 

volatiles 
1.2 ng L-1 - 114 

LP-FPN PDMS, 50%-Phenyl/PDMS Water PAHs, phthalates - - 115 

LP-FPN PDMS Water Bisphenol A - - 116 

FPN PDMS Gas Ethylene oxide 1.8 ng L-1 5.4 ng L-1 117 

LP-FPN PDMS Water 

Alkylbenzenes 

(C6-C12), n-

alkanes (C8-C12) 

- - 118 

INCAT Porapack Q/aluminum oxide Water BTEX 19 ng L-1 52 ng L-1 119 
a
 only the lowest limit of detection/quantification is given for mixtures of multiple analytes 

1.1.2.2 In-tube Extraction 

The ITEX trap features a 30 mm high sorbent bed, which is fixed between two quartz-wool 

plugs in a 54 mm long tube with 2.6 mm i.d.; the resulting bed volume of about 160 µL is 

much higher than for in-needle techniques. The tube is combined with a 41 mm long and 

0.72 mm o.d. needle with conical tip and side port for septum penetration and surrounded by 

an electric heating system for thermal desorption. Typically, the tube will be connected to a 

gastight syringe, placed in an autosampler, allowing full automation of sampling mode (ii), 

while the other modes are less favorable and manual operation is not intended. 
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The specialization on one sampling mode and the larger amount of extraction phase, which 

results in a higher extraction capacity and sensitivity, make ITEX a good tool for the 

headspace analysis of volatile to semi volatile compounds in trace concentrations. This is also 

reflected in the published applications, which cover environmental, food and forensic 

analysis (Table 1.3); the number is still limited, because ITEX is a relatively new technique. 

The achievable detection limits for the analysis of BTEX and halogenated VOCs are in the 

range of purge and trap systems, which are more complex and prone to contamination by 

sample matrix.
75, 120

 Zapata et al. developed a method, which uses very small sample 

amounts (20 µL of 1:10 diluted sample) to achieve quantitative trapping of beer and wine 

aroma compounds without saturation of the sorbent by ethanol.
121

 The method was also 

adapted for multiple headspace (MHE) analysis of wine samples.
122

 Rasanen et al. presented 

a method for the analysis of methyl derivatives of glycolic- and formic acid, which can be 

used as markers for an ethylene glycol or methanol poisoning, even when the toxic alcohols 

are no longer detectable, due to delayed sampling after the ingestion.
123

 Owing to the novelty 

of the technique, it is discussed in few reviews.
83, 124, 125 

Table 1.3 Applications of sorbent packed tube techniques 

Method Sorbent Matrix Analytes LODa LOQa Ref. 

Cylindrical 
Microconcen-

trator 

- Tobacco smoke Benzene, toluene - - 72 

ITEX Tenax TA Water 

BTEX, 

halogenated 

VOCs 

29 ng L-1 - 75 

ITEX Tenax TA Blood, Urine 

Ethylene glycol, 

glycolic acid, 
formic acid, 

VOCs 

3 mg L-1 10 mg L-1 123 

ITEX 
⅔ Tenax GR/⅓ Carbosieve S 

III 

Water, soft 

drinks 

BTEX, 
halogenated 

VOCs 

1 ng L-1 - 120 

ITEX Tenax TA 

Petroleum 

source rock 
extracts 

Aliphatic 

hydrocarbons 
- - 126 

ITEX Tenax TA Blood, Urine Formic acid - - 127 

ITEX Tenax TA 
Torreya grandis 

extract 
Odor compounds - - 128 

ITEX Bond Elut ENV Beer, wine 

Acetaldehyde, 
ethyl acetate, 

ethyl propanoate, 

diacetyl, ethyl 
butyrate, 

isobutanol, 

isoamyl acetate 

5 µg L-1 - 121 

MHE-ITEX Tenax TA, Bond Elut ENV Wine 
Aroma 

compounds 
10 ng L-1 - 122 

ITEX Tenax TA 
Sea buckthorn 

berries, juice 

Aroma 

compounds 
- - 129 

ITEX Multi walled carbon nanotubes Water 
BTEX, 

naphthalene 
2 ng L-1 - 130 

a
 only the lowest limit of detection/quantification is given for mixtures of multiple analytes 
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1.1.3 Bulk Sorbent Techniques 

A low-cost alternative to other microextraction techniques is the use of silicone rods (SR) or 

tubes (ST), which can be acquired in different qualities from several suppliers by the meter. 

The benefits of PDMS for this application are the stability towards water, temperature and a 

broad range of organic solvents. While standard SRs and STs can contain filler materials like 

silicic acid esters, phenyl-vinyl-methyl polysiloxane or chalk
20, 131

, pure PDMS rods tailored 

especially for analytical use are also available (e.g. Sorb-Star by IMT GmbH, Vohenstrauß, 

Germany; SR with 20 mm length and 2 mm diameter). 

Detailed information an SR and ST extraction can be found in a comprehensive review by 

van Pinxteren et al..
20

 The standard tubing or rods are cut to the desired length and then 

weighted, to assure a constant extraction phase volume, which is for typical applications 

between 8 µL and 635 µL, but extremes of 14.7 mL have also been used.
132

 Before analytical 

use, the material has to be cleaned by solvent rinsing or thermal bake-out, to remove 

impurities from production and storage or to avoid carryover between measurements. The 

application is similar to SBSE or HSSE, with extraction mainly direct from the liquid matrix, 

but headspace extractions are also performed. Sample injection is performed either by 

thermodesorption in the GC or by solvent back-extraction and liquid injection with GC-

compatible solvents. Because of the low cost of SRs and STs and the easy identification of 

PDMS degradation products by mass spectrometry, long-term stability is less important, also 

allowing the use of solvents causing considerable swelling of the silicone. 

Prieto at al. compared the performance of polyethersulphone (PES), polypropylene and 

Kevlar as alternative low cost materials with PDMS and found PES to have better extraction 

efficiencies than PDMS for both polar and non-polar compounds.
133 

1.2 Fundamental Principles of Microextraction Techniques 

Three main subjects have to be considered regarding the aforementioned microextraction 

techniques: the sampling system, the sorption type (mechanism and sorbents) and the 

sampling strategy. The sampling system may consist of two or three phases, the sorption 

mechanisms for GC applications typically are either adsorption or absorption and the 

sampling strategies can be distinguished by static and dynamic sampling. The characteristics 

of these three subjects will be discussed in the following. 
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1.2.1 Sampling Systems 

The simplest possible system for microextraction techniques is the 2-phase system, where the 

sorbent is brought in direct contact with the sample matrix and analyte distribution is limited 

to these two phases. This applies for gas analysis and liquid phase sampling, while direct 

extraction from solids is unpractical due to the small contact area and slow diffusion. In a 3-

phase system, the analytes distribute between the sample phase and the gas phase and 

between the gas phase and the sorbent. This procedure, usually referred to as headspace 

sampling, is limited to solid and liquid samples, because two gas phases would intermix and 

therefore again result in a 2-phase system. Typical combinations of sampling systems and 

common microextraction techniques can be found in Table 1.4 and Figure 1.4. A special 

case is the headspace analysis of solid, adsorptive samples, where the analyte release to the 

gas phase can be slow and concentration dependent. This system can be changed to a 

partitioning system, with extended linear range, by the addition of a suitable solvent which 

can act as modifier/displacer. This is called surface modification method, when the amount of 

solvent is small enough that only the surface of the sample is wetted or suspension approach, 

when the solvent amount is large enough to separate from the solids. In this case, we have a 

4-phase system, with the solid phase from which the analytes have been eluted and which 

usually has no further influence, the new liquid phase containing the analytes, the gas phase 

and the extraction phase.
134

 

Table 1.4 Typical microextraction techniques for different sampling systems 

 2-Phase system 3-Phase system 

Gaseous sample NT, SPME - 

Liquid sample SPME, SBSE, SR/ST, SPDE, FPN 
SPME, HSSE, SR/ST, SPDE, NT, 

ITEX 

Solid sample - SPME, HSSE, SPDE, NT, ITEX 

1.2.2 Sorption 

1.2.2.1 Adsorption 

Adsorption relies on interactions of active groups of the sorbent material with analyte 

molecules, which can vary from weak van-der-Waals forces to strong ionic interactions, 

depending on the sorbent and analyte combination. Diffusion of analyte molecules into the 

material is restricted by the glassy or crystalline structure and can be neglected for analytical 

use, limiting the available active sites to the sorbent surface. To compensate this, adsorbents 

usually are manufactured as porous materials to gain a high specific internal surface area, 

which can be over 1000 m
2
 g

-1
 for activated carbons. The limitation of sorption sites can lead 
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to problems in quantitative analysis under equilibrium conditions, when the analyte mass is 

high (either due to too high concentration or too large sample amount). The sorption isotherm 

is non-linear and competition of different compounds for sorption sites may occur, which can 

cause the displacement of weak binding molecules by stronger retained ones (target or matrix 

compounds). This leads to variations in the extracted analyte amounts in equilibrium and 

hence to wrong quantification results.
135

 To avoid this, adsorbent materials are often used in 

non equilibrium breakthrough sampling conditions, which will be discussed in Section 

1.2.3.2. 

The standard adsorbents used for thermal desorption in microextraction techniques can be 

categorized in two groups, inorganic carbon based materials and porous organic polymers. 

The first group can be subdivided into activated carbon, carbon molecular sieves and 

graphitized carbon blacks, which differ in their structure and functional groups. The surface 

of activated carbon possesses several functional groups like hydroxyl-, carbonyl-, and 

carboxylic functions, which allow non-specific and specific interactions,
136

 but polar analytes 

like alcohols might be irreversibly adsorbed by hydrogen bonds.
137

 Carbon molecular sieves 

consist of amorphous carbon and layers of condensed aromatic rings, which gives them a 

well defined pore size distribution and high specific surface area. Although the surface can 

contain traces of metals and salts, adsorption is mainly based on non-specific interactions and 

they can be used to trap highly volatile hydrocarbons and even methane, but they are not 

suitable for the sampling of reactive analytes, which can be degraded on the catalytic 

surface.
138-140

 Graphitized carbon blacks are formed of planar graphite layers, which results in 

a lower specific surface area of about 5 – 500 m
2
 g

-1
 and lower sorption strength. They are 

typically used for the analysis of C3 – C20 hydrocarbons. Adsorption is caused by van-der-

Waals forces (dispersion and induction) and their hydrophobicity allows sampling of VOCs 

in humid conditions without additional drying agents.
141

 A common feature of these 

inorganic carbon materials is that they can withstand desorption temperatures of more than 

400 °C without significant degradation. 

The most used porous organic polymers in microextraction applications are DVB copolymers 

(sometimes under the trade names Chromosorb or Porapak) and Tenax TA. They consist of 

polymeric building blocks and are very pure substances, due to the controlled manufacturing 

process. A negative side effect of this is the limited temperature stability (compared to 

inorganic adsorbents) and possible depolymerisation, which results in increased background 

signals in chromatography; Tenax for example is known to produce artifacts like aldehydes 
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and ketones.
139

 The specific surface area is also smaller than for activated carbon or carbon 

molecular sieves, especially for Tenax TA with only 35 m
2
 g

-1
. The polymers are therefore 

best used to sample hydrocarbons from C7 upwards, or in combination with stronger sorbents 

to enlarge the breakthrough volume. 

An overview of common sorbent materials for thermal desorption is given by Dettmer and 

Engewald
139

 and new materials for the sampling of polar compounds are discussed by 

Fontanals et al.
21

. 

1.2.2.2 Absorption 

In absorption, the analyte molecules partition into the extraction phase and can diffuse into 

the whole volume of the extractant during the extraction time, when the film thickness or 

particle size is small enough. The analytes are solvated in the extraction phase like in an 

organic solvent, without competition or displacement effects and the equilibrium conditions 

do not vary, until the extracted amount is large enough (a few percent of the sorbent mass) to 

modify the properties of the sorbent phase.
3
 This is hardly the case for analytical purposes, as 

enrichment techniques are typically used for trace analysis. Absorptive interactions are 

weaker than adsorption on active surfaces, which makes the trapping of highly volatile 

analytes difficult; on the other hand, this allows lower desorption temperatures and shorter 

desorption times, which minimizes the degradation of unstable analytes 
20, 139

 and reduces 

sorbent degradation. 

Absorbents are polymeric materials which are used above their glass-liquid transition 

temperature (Tg). While they are hard and brittle below this temperature, they change to a 

rubbery, liquid like state above it, allowing the analytes to partition into the material. The 

most used partitioning material for analytical purposes is PDMS, which is not only used in 

many microextraction techniques, but also as stationary phase in capillary columns for gas 

chromatography. It possesses several beneficial characteristics: the glass transition 

temperature is very low (Tg = -127 °C), it is highly hydrophobic and shows little swelling in 

water, it is inert to many chemicals and degradation products are easily identified by mass 

selective detectors.
20, 131

 The selectivity can be adjusted with additives like phenyl or 

cyanopropyl-phenyl (often named 1701) for INCAT and SPDE
44

 or is used as support for 

adsorbent materials like activated carbon, Carboxen or DVB in SPME. Another absorbent for 

the extraction of more polar analytes is PA, which is used as a crystalline coating in SPME, 

that turns liquid at desorption temperatures. As the exact type of the used PA polymer is not 
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publicly available, no information on the Tg can be given, because values ranging 

from -36 °C to 120 °C can be found in literature for different side chains. Despite the 

crystalline structure, the primary extraction mechanism is absorption, but the diffusion 

coefficient in PA is about one order of magnitude lower than for PDMS.
135

 A third absorbent, 

which is also popular for the analysis of polar compounds, is PEG. There is also no 

information on the molecular weight of the PEG used in coatings for SPME, SPDE and 

SBSE, but the maximum Tg within a range of molecular weights from 10
1
 to 10

6
 is -17 °C

142
 

and the melting point is between 50 °C and 67 °C for molecular weights from 4000 to 20000. 

Because of the low melting point and good water solubility, PEG is often embedded in 

PDMS, to avoid the detachment of the coating. 

1.2.3 Sampling Strategies 

1.2.3.1 Static sampling 

In static sampling, the whole amount of sorbent and sample are brought together at the start 

and remain unaltered until the end of the extraction time. The analytes will then begin to 

distribute between extractant and sample phase towards equilibrium. The equilibrium 

concentrations are defined by the distribution constant, which is     in the case of 

absorption: 

Equation 1.1     
  

  
 

  

  
 

  

  
 

where C, m and V are the analyte concentration, mass and phase volume, with the indices E 

for the extractant and S for the sample phase, respectively. The distribution constant    
  for 

adsorption is defined as: 

Equation 1.2    
  

  

  
 

with SE being the adsorbent surface concentration of adsorbed analytes.
3
 The distribution 

constants reflect the physicochemical composition of the extraction phase and can be 

determined chromatographically or by estimation with polyparameter-linear free energy 

relations (pp-LFERs).
143

 As thermodynamic constants, they depend on, e.g., temperature, 

pressure, sample pH and salt content; but they are not affected by mixing procedures like 

shaking or stirring, which are often applied to speed up the extraction process. 
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When the sampling time is sufficiently long, equilibrium will be reached (although the 

extraction is often stopped before, to save time) and the resulting mass of extracted analyte in 

a 2-phase system can be calculated according to: 

Equation 1.3    
         

        
 

where C0 is the initial concentration of the analyte in the sample. A more convenient way to 

estimate the extraction efficiency is to calculate the analyte recovery: 

Equation 1.4   
  

  
 

 
 

   
  

 

with m0 being the initial analyte mass and β the phase ratio      . Following Equation 1.4, 

only two parameters control the recovery, the distribution constant and the phase ratio. As 

mentioned before, the distribution constant is depending on the analyte, the extractant and the 

sample properties; when no suitable extractant with a higher KES is available, the biggest 

potential to increase the recovery, is a decrease of the phase ratio. This can be achieved either 

by the use of a lower sample volume, which also results in lower sensitivity of the method, or 

with more extractant. This is exemplarily depicted in Figure 1.3, where the achievable 

recovery of three environmental contaminants is calculated for three microextraction 

techniques utilizing different volumes of PDMS. 

 
Figure 1.3 Calculated recoveries for the extraction of chloroform, ethylbenzene and pyrene from 10 mL sample 

volume with three microextraction techniques and their typical PDMS volumes; the log KPDMS-water of each compound 

is marked by a red line, where the recoveries can be read at the intercepts with the curves of the extraction 

techniques 
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An additional phase transition with a corresponding distribution has to be considered in the 3-

phase system of a headspace extraction. This can be achieved by the expansion of Equation 

1.3 with the headspace to sample distribution constant KHS and the headspace volume VH: 

Equation 1.5    
         

              
 

In most analytical applications the condensed sample phase will be an aqueous sample, where 

KHS is identical to the air-water partitioning constant Kaw, which can be found in literature for 

many compounds.
144, 145

 Equation 1.5 can be further expanded in the same way for any 

number of phases, if necessary. One problem in headspace analysis is the opposite effect of 

sample temperature on the distribution equilibria of headspace to sample and extractant to 

headspace; while Kaw rises with increasing temperature, KEH will typically decrease, making 

it important to find the optimal temperature, where both effects are well balanced. 

The kinetics of static sampling is limited by the diffusion of the analytes in the different 

phases and the phase transition. While diffusion in the gas phase is usually uncritical, shaking 

or mixing of a liquid phase can be applied to minimize boundary layers between liquid and 

sorbent or liquid and headspace, to speed up the extraction procedure. 

1.2.3.2 Dynamic Sampling 

In dynamic sampling, opposed to static sampling, only parts of the sample are in contact with 

the extractant at any given time and the fraction in contact with the extractant is exchanged 

perpetually. The dynamic sampling itself can be differentiated in open system and closed 

system sampling (see Figure 1.4 b), d) and e)). The closed system sampling is applied by 

some microextraction techniques, where parts of the sample are withdrawn with a syringe and 

in this way pumped over an extractant film (SPDE) or through a sorbent bed (ITEX, NT), 

before it is re-injected to the sample reservoir and another fraction is withdrawn (Figure 

1.4 d)). Dynamic sampling in a closed system will result in the same equilibrium conditions 

as described for static sampling in Section 1.2.3.1, although the sampling process is often 

stopped before equilibrium will be reached. 

The “classic” dynamic sampling uses an open system, where a liquid or gaseous sample is 

pumped through a packed sorbent bed and is discarded afterwards. For liquid and solid 

samples, there are also methods that use a purge gas to exchange the headspace above the 

solution (dynamic headspace) or bubble the gas through the sample matrix to strip the 

analytes to the gas phase before trapping (purge and trap, Figure 1.4 e)). The typical 
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microextraction technique to apply to this open sampling system is the NT, where the sample 

can also be pulled through the sorbent bed by a syringe, without a following dispensing step 

(Figure 1.4 b)). 

 

Figure 1.4 Examples for different sampling systems: a) liquid phase sampling with SPME (static sampling), b) 

ambient air sampling using NT (dynamic sampling, open system), c) HS-SPME (static sampling), d) ITEX (dynamic 

sampling, closed system) and e) liquid sampling with NT and purge gas (dynamic sampling, open system) 

Technically, open system dynamic sampling resembles frontal gas-solid chromatography, 

where a constant stream of analyte is introduced to the trap, until the extractant is saturated. 

At the start, when the trap is unloaded, all analytes will be trapped and the concentration in 

the outflow will be zero. With longer sampling time and more sampled volume, the extractant 

at the entrance of the trap will get saturated and the concentration of the analyte front will 

move through the bed like the integral of a Gaussian peak, until it reaches the end of the trap, 

when a breakthrough will occur and analyte is lost (see Figure 1.5, sampling times t1 to 

t3).
146-148

 The shape of the front may be different in short traps with low plate numbers, like 

they are typical for the sorbent beds of microextraction techniques and a correction following 

Lövkvist and Jönsson
147

 should be applied. The analyte loss can either be calculated as a 

percentage of the initial concentration C0 (differential breakthrough) or as a predetermined 

amount of analyte mass (integral breakthrough), where the tolerated amount has to be chosen 

by the user. More information on breakthrough sampling and the calculation of safe sampling 
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volumes, where no analyte loss occurs, can be found in literature
139, 149

, also considering 

especially needle trap devices
83

. A possible sampling strategy for absorbent type extractants, 

where no competition and displacement occurs, is to continue sampling until the analytes in 

the sample stream are in equilibrium with the analytes in the sorbent (equilibrium sampling, 

see Figure 1.5, sampling time t4).
150

 

 
Figure 1.5 Schematic view of the theoretical analyte front in a sorbent bed at four consecutive sampling times t1 to t4; 

10 % differential breakthrough is reached at t3, saturation/equilibrium at t4 
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1.3 Scope of this Thesis 

This thesis focuses on the development and evaluation of new applications for novel, fully 

automated microextraction techniques. Chapter 2 describes a SPDE method used to build a 

fingerprinting database of 196 German red wines, predominantly from the vintage of 2006. 

Furthermore, a quantification and performance evaluation of the method for 22 flavor-

relevant aroma compounds and an observation of the long term performance of the extraction 

needle were conducted. 

The following chapters present ITEX methods from different analytical fields. Chapter 3 

describes the optimization of extraction parameters for the analysis of regulated 

environmental contaminants and two unwanted odor compounds from aqueous samples. The 

applicability is tested with water samples of differing origins and several soft drinks. A 

method for the analysis of aroma relevant alcohols and esters from beer aroma is presented in 

Chapter 4. It uses a similar, but enlarged, compound set as the SPDE method discussed in 

Chapter 2 and the performance of both extraction techniques is compared regarding 

sensitivity and precision. Finally, 45 beers of different makings (Pilsner, Altbier, Wheat beer, 

Kölsch, Helles and Schwarzbier), also including alcohol free variants, are analyzed and 

discriminated by linear discriminant analysis. A summary of the importance of the different 

optimization steps, together with recommendations for more efficient method development, 

which is based on experiences made through the time of this thesis, are given in Chapter 5. 

  



Introduction and Scope 

22 

 

1.4 References 

1. de Koning, S.; Janssen, H. G.; Brinkman, U. A. T., Modern Methods of Sample 

Preparation for GC Analysis. Chromatographia 2009, 1-46. 

2. Smith, R. M., Before the injection--modern methods of sample preparation for 

separation techniques. Journal of Chromatography A 2003, 1000, (1-2), 3-27. 

3. Pawliszyn, J., Sample Preparation: Quo Vadis? Analytical Chemistry 2003, 75, (11), 

2543-2558. 

4. Noble, D., Here today, gone tomorrow. Halogenated solvents in analytical chemistry. 

Analytical Chemistry 1993, 65, (15), 693A-695A. 

5. David, F.; Van Hoeck, E.; Sandra, P., Towards automated, miniaturized and solvent-

free sample preparation methods. Analytical and Bioanalytical Chemistry 2007, 387, (1), 

141-144. 

6. Nerín, C.; Salafranca, J.; Aznar, M.; Batlle, R., Critical review on recent 

developments in solventless techniques for extraction of analytes. Analytical and 

Bioanalytical Chemistry 2009, 393, (3), 809-833. 

7. Lord, H. L.; Pawliszyn, J., Recent advances in solid-phase microextraction. LC GC: 

Liquid Chromatography, Gas Chromatography 1998, 16, (5 SUPPL.), S41-S46. 

8. Rezaee, M.; Assadi, Y.; Milani Hosseini, M.-R.; Aghaee, E.; Ahmadi, F.; Berijani, S., 

Determination of organic compounds in water using dispersive liquid-liquid microextraction. 

Journal of Chromatography A 2006, 1116, (1-2), 1-9. 

9. Liu, H.; Dasgupta, P. K., Analytical Chemistry in a Drop. Solvent Extraction in a 

Microdrop. Analytical Chemistry 1996, 68, (11), 1817-1821. 

10. He, Y.; Lee, H. K., Liquid-Phase Microextraction in a Single Drop of Organic Solvent 

by Using a Conventional Microsyringe. Analytical Chemistry 1997, 69, (22), 4634-4640. 

11. Mohammadi, A.; Alizadeh, N., Automated dynamic headspace organic solvent film 

microextraction for benzene, toluene, ethylbenzene and xylene: Renewable liquid film as a 

sampler by a programmable motor. Journal of Chromatography A 2006, 1107, (1-2), 19-28. 



Introduction and Scope 

23 

 

12. Abdel-Rehim, M., New trend in sample preparation: on-line microextraction in 

packed syringe for liquid and gas chromatography applications: I. Determination of local 

anaesthetics in human plasma samples using gas chromatography-mass spectrometry. Journal 

of Chromatography B 2004, 801, (2), 317-321. 

13. Luo, Y. Z.; Pawliszyn, J., Membrane Extraction with a Sorbent Interface for 

Headspace Monitoring of Aqueous Samples Using a Cap Sampling Device. Analytical 

Chemistry 2000, 72, (5), 1058-1063. 

14. Norberg, J.; Thordarson, E., Extracting syringe-connecting sample preparation and 

gas chromatography. Analyst 2000, 125, (4), 673-676. 

15. Abdulra'uf, L. B.; Sirhan, A. Y.; Huat Tan, G., Recent developments and applications 

of liquid phase microextraction in fruits and vegetables analysis. Journal of Separation 

Science 2012, 35, (24), 3540-3553. 

16. Moradi, M.; Yamini, Y., Surfactant roles in modern sample preparation techniques: A 

review. Journal of Separation Science 2012, 35, (18), 2319-2340. 

17. Huang, Z.; Lee, H. K., Materials-based approaches to minimizing solvent usage in 

analytical sample preparation. TrAC Trends in Analytical Chemistry 2012, 39, (0), 228-244. 

18. Laaks, J.; Letzel, T.; Schmidt, T. C.; Jochmann, M. A., Fingerprinting of red wine by 

headspace solid-phase dynamic extraction of volatile constituents. Analytical and 

Bioanalytical Chemistry 2012, 403, (8), 2429-2436. 

19. Grob, K.; Habich, A., Headspace gas analysis: the role and the design of concentration 

traps specifically suitable for capillary gas chromatography. Journal of Chromatography A 

1985, 321, 45-58. 

20. van Pinxteren, M.; Paschke, A.; Popp, P., Silicone rod and silicone tube sorptive 

extraction. Journal of Chromatography A 2010, 1217, (16), 2589-2598. 

21. Fontanals, N.; Marce, R. M.; Borrull, F., New materials in sorptive extraction 

techniques for polar compounds. Journal of Chromatography A 2007, 1152, (1-2), 14-31. 



Introduction and Scope 

24 

 

22. Kataoka, H.; Ishizaki, A.; Nonaka, Y.; Saito, K., Developments and applications of 

capillary microextraction techniques: A review. Analytica Chimica Acta 2009, 655, (1-2), 8-

29. 

23. Lord, H.; Pawliszyn, J., Evolution of solid-phase microextraction technology. Journal 

of Chromatography A 2000, 885, (1-2), 153-193. 

24. Ridgway, K.; Lalljie, S. P. D.; Smith, R. M., Sample preparation techniques for the 

determination of trace residues and contaminants in foods. Journal of Chromatography A 

2007, 1153, (1-2), 36-53. 

25. Burger, B. V.; Munro, Z., Headspace gas analysis : Quantitative trapping and thermal 

desorption of volatiles using fused-silica open tubular capillary traps. Journal of 

Chromatography A 1986, 370, 449-464. 

26. Tienpont, B.; David, F.; Bicchi, C.; Sandra, P., High capacity headspace sorptive 

extraction. Journal of Microcolumn Separations 2000, 12, (11), 577-584. 

27. Belardi, R. P.; Pawliszyn, J. B., Application of chemically modified fused silica fibers 

in the extraction of organics from water matrix samples and their rapid transfer to capillary 

columns. Water pollution research journal of Canada 1989, 24, (1), 179-191. 

28. Bicchi, C.; Cordero, C.; Liberto, E.; Rubiolo, P.; Sgorbini, B., Automated headspace 

solid-phase dynamic extraction to analyse the volatile fraction of food matrices. Journal of 

Chromatography A 2004, 1024, (1-2), 217-226. 

29. Pawliszyn, J., Solid phase microextraction : theory and practice. Wiley-VCH: New 

York ; Chichester, 1997; p xi,247p. 

30. Pawliszyn, J.; Royal Society of Chemistry (Great Britain), Applications of solid phase 

microextraction. Royal Society of Chemistry: Cambridge, 1999; p xviii, 655 p. 

31. Pawliszyn, J., Sampling and sample preparation for field and laboratory : 

fundamentals and new directions in sample preparation. 1st ed.; Elsevier Science: 

Amsterdam ; Boston, 2002; p xxxiv, 1131 p. 

32. Risticevic, S.; Niri, V. H.; Vuckovic, D.; Pawliszyn, J., Recent developments in solid-

phase microextraction. Analytical and Bioanalytical Chemistry 2009, 393, (3), 781-795. 



Introduction and Scope 

25 

 

33. anonymous, German standard methods for the examination of water, waste water and 

sludge - Jointly determinable substances (group F) - Part 34: Determination of selected plant 

treatment agents, biocides and break-down products; Method using gas chromatography (GC-

MS) after solid-phase micro extraction (SPME) (F 34). In Normung, D. I. f., Ed. Beuth 

Verlag: Berlin, 2006; Vol. 38407-34. 

34. anonymous, Parent and Alkyl Policyclic Aromatics in Sediment Pore Water by Solid-

Phase Microextraction and Gas Chromatography/Mass Spectrometry in Selected Ion 

Monitoring Mode. In Agency, U. S. E. P., Ed. Washington, DC, 2007; Vol. Method 8272. 

35. anonymous, German standard methods for the examination of water, waste water and 

sludge - Jointly determinable substances (group F) - Part 41: Determination of selected easily 

volatile organic compounds in water - Method using gas chromatography (GC-MS) after 

solid-phase micro extraction (SPME). In Normung, D. I. f., Ed. Beuth Verlag: Berlin, 2009; 

Vol. 38407-41. 

36. McComb, M. E.; Oleschuk, R. D.; Giller, E.; Gesser, H. D., Microextraction of 

volatile organic compounds using the inside needle capillary adsorption trap (INCAT) device. 

Talanta 1997, 44, (11), 2137-2143. 

37. Shojania, S.; Oleschuk, R. D.; McComb, M. E.; Gesser, H. D.; Chow, A., The active 

and passive sampling of benzene, toluene, ethyl benzene and xylenes compounds using the 

inside needle capillary adsorption trap device. Talanta 1999, 50, (1), 193-205. 

38. Musshoff, F.; Lachenmeier, D. W.; Kroener, L.; Madea, B., Automated headspace 

solid-phase dynamic extraction for the determination of amphetamines and synthetic designer 

drugs in hair samples. Journal of Chromatography A 2002, 958, (1-2), 231-238. 

39. Lipinski, J., Automated solid phase dynamic extraction - Extraction of organics using 

a wall coated syringe needle. Analytical and Bioanalytical Chemistry 2001, 369, (1), 57-62. 

40. Musshoff, F.; Lachenmeier, D. W.; Kroener, L.; Madea, B., Automated headspace 

solid-phase dynamic extraction for the determination of cannabinoids in hair samples. 

Forensic Science International 2003, 133, (1-2), 32-38. 



Introduction and Scope 

26 

 

41. Lachenmeier, D. W.; Frank, W.; Kuballa, T., Application of tandem mass 

spectrometry combined with gas chromatography to the routine analysis of ethyl carbamate in 

stone-fruit spirits. Rapid Communications in Mass Spectrometry 2005, 19, (2), 108-112. 

42. Malherbe, S.; Watts, V.; Nieuwoudt, H. H.; Bauer, F. F.; du Toit, M., Analysis of 

Volatile Profiles of Fermenting Grape Must by Headspace Solid-Phase Dynamic Extraction 

Coupled with Gas Chromatography-Mass Spectrometry (HS-SPDE GC-MS): Novel 

Application To Investigate Problem Fermentations. Journal of Agricultural and Food 

Chemistry 2009, 57, (12), 5161-5166. 

43. Gamero, A.; Wesselink, W.; de Jong, C., Comparison of the sensitivity of different 

aroma extraction techniques in combination with gas chromatographyâ€“mass spectrometry 

to detect minor aroma compounds in wine. Journal of Chromatography A 2013, 1272, (0), in 

press. 

44. Jochmann, M. A.; Kmiecik, M. P.; Schmidt, T. C., Solid-phase dynamic extraction for 

the enrichment of polar volatile organic compounds from water. Journal of Chromatography 

A 2006, 1115, (1-2), 208-216. 

45. Goodwin, T.; Eggert, M.; House, S.; Weddell, M.; Schulte, B.; Rasmussen, L. E. L., 

Insect Pheromones and Precursors in Female African Elephant Urine. Journal of Chemical 

Ecology 2006, 32, (8), 1849-1853. 

46. Castro, R.; Natera, R.; Duran, E.; Garcia-Barroso, C., Application of solid phase 

extraction techniques to analyse volatile compounds in wines and other enological products. 

European Food Research and Technology 2008, 228, (1), 1-18. 

47. Demeestere, K.; Dewulf, J.; De Witte, B.; Van Langenhove, H., Sample preparation 

for the analysis of volatile organic compounds in air and water matrices. Journal of 

Chromatography A 2007, 1153, (1-2), 130-144. 

48. Shojania, S.; McComb, M. E.; Oleschuk, R. D.; Perreault, H.; Gesser, H. D.; Chow, 

A., Qualitative analysis of complex mixtures of VOCs using the inside needle capillary 

adsorption trap. Canadian Journal of Chemistry 1999, 77, (11), 1716-1727. 



Introduction and Scope 

27 

 

49. Gholivand, M. B.; Abolghasemi, M. M., Inside needle capillary adsorption trap device 

for headspace solid-phase dynamic extraction based on polyaniline/hexagonally ordered 

silica nanocomposite. Journal of Separation Science 2012, 35, (5-6), 695-701. 

50. Ridgway, K.; Lalljie, S. P. D.; Smith, R. M., Comparison of in-tube sorptive 

extraction techniques for non-polar volatile organic compounds by gas chromatography with 

mass spectrometric detection. Journal of Chromatography A 2006, 1124, (1-2), 181-186. 

51. Ridgway, K.; Lalljie, S. P. D.; Smith, R. M., Use of in-tube sorptive extraction 

techniques for determination of benzene, toluene, ethylbenzene and xylenes in soft drinks. 

Journal of Chromatography A 2007, 1174, (1-2), 20-26. 

52. Jochmann, M. A.; Yuan, X.; Schmidt, T. C., Determination of volatile organic 

hydrocarbons in water samples by solid-phase dynamic extraction. Analytical and 

Bioanalytical Chemistry 2007, 387, (6), 2163-2174. 

53. Van Durme, J.; Demeestere, K.; Dewulf, J.; Ronsse, F.; Braeckman, L.; Pieters, J.; 

Van Langenhove, H., Accelerated solid-phase dynamic extraction of toluene from air. 

Journal of Chromatography A 2007, 1175, (2), 145-153. 

54. Sieg, K.; Fries, E.; Püttmann, W., Analysis of benzene, toluene, ethylbenzene, xylenes 

and n-aldehydes in melted snow water via solid-phase dynamic extraction combined with gas 

chromatography/mass spectrometry. Journal of Chromatography A 2008, 1178, (1-2), 178-

186. 

55. Fries, E.; Sieg, K.; Püttmann, W.; Jaeschke, W.; Winterhalter, R.; Williams, J.; 

Moortgat, G. K., Benzene, alkylated benzenes, chlorinated hydrocarbons and monoterpenes 

in snow/ice at Jungfraujoch (46.6Â°N, 8.0Â°E) during CLACE 4 and 5. Science of the Total 

Environment 2008, 391, (2â€“3), 269-277. 

56. Bagheri, H.; Babanezhad, E.; Khalilian, F., An interior needle electropolymerized 

pyrrole-based coating for headspace solid-phase dynamic extraction. Analytica Chimica Acta 

2009, 634, (2), 209-214. 

57. Lenz, D.; Kröner, L.; Rothschild, M. A., Determination of gamma-hydroxybutyric 

acid in serum and urine by headspace solid-phase dynamic extraction combined with gas 



Introduction and Scope 

28 

 

chromatographyâ€“positive chemical ionization mass spectrometry. Journal of 

Chromatography A 2009, 1216, (18), 4090-4096. 

58. Svoboda, Z.; Mikulikova, R.; Belakova, S.; Benesova, K.; Marova, I.; Nesvadba, Z., 

Optimization of Modern Analytical SPME and SPDE Methods for Determination of Trans-2-

nonenal in Barley, Malt and Beer. Chromatographia 2011, 73, (0), 157-161. 

59. Pokorska, O.; Dewulf, J.; Van Langenhove, H., Accelerated solid-phase dynamic 

extraction for the analysis of biogenic volatile organic compounds in air. International 

Journal of Environmental Analytical Chemistry 2011, 91, (12), 1206-1217. 

60. Su, C.-J.; Srimurugan, S.; Chen, C.; Shu, H.-C., Sol-gel Titania-Coated Needles for 

Solid Phase Dynamic Extraction-GC/MS Analysis of Desomorphine and Desocodeine. 

Analytical Sciences 2011, 27, (11), 1107-1107. 

61. Goodwin, T.; Broederdorf, L.; Burkert, B.; Hirwa, I.; Mark, D.; Waldrip, Z.; Kopper, 

R.; Sutherland, M.; Freeman, E.; Hollister-Smith, J.; Schulte, B., Chemical Signals of 

Elephant Musth: Temporal Aspects of Microbially-Mediated Modifications. Journal of 

Chemical Ecology 2012, 38, (1), 81-87. 

62. Djozan, D.; Farajzadeh, M.; Sorouraddin, S.; Baheri, T., Determination of 

methamphetamine, amphetamine and ecstasy by inside-needle adsorption trap based on 

molecularly imprinted polymer followed by GC-FID determination. Microchimica Acta 

2012, 179, (3-4), 209-217. 

63. Djozan, D.; Farajzadeh, M.; Sorouraddin, S.; Baheri, T.; Norouzi, J., Inside-Needle 

Extraction Method Based on Molecularly Imprinted Polymer for Solid-Phase Dynamic 

Extraction and Preconcentration of Triazine Herbicides Followed by GCâ€“FID 

Determination. Chromatographia 2012, 75, (3-4), 139-148. 

64. Rossbach, B.; Kegel, P.; Letzel, S., Application of headspace solid phase dynamic 

extraction gas chromatography/mass spectrometry (HS-SPDE-GC/MS) for biomonitoring of 

n-heptane and its metabolites in blood. Toxicology Letters 2012, 210, (2), 232-239. 

65. Son, H.-H.; Bae, S.; Lee, D.-S., New needle packed with polydimethylsiloxane having 

a micro-bore tunnel for headspace in-needle microextraction of aroma components of citrus 

oils. Analytica Chimica Acta 2012, 751, (0), 86-93. 



Introduction and Scope 

29 

 

66. Baltussen, E.; Sandra, P.; David, F.; Cramers, C., Stir bar sorptive extraction (SBSE), 

a novel extraction technique for aqueous samples: Theory and principles. Journal of 

Microcolumn Separations 1999, 11, (10), 737-747. 

67. Bicchi, C.; Cordero, C.; Liberto, E.; Rubiolo, P.; Sgorbini, B.; David, F.; Sandra, P., 

Dual-phase twisters: A new approach to headspace sorptive extraction and stir bar sorptive 

extraction. Journal of Chromatography A 2005, 1094, (1-2), 9-16. 

68. Bicchi, C.; Cordero, C.; Liberto, E.; Sgorbini, B.; Rubiolo, P., Headspace sampling of 

the volatile fraction of vegetable matrices. Journal of Chromatography A 2008, 1184, (1-2), 

220-233. 

69. Lancas, F. M.; Queiroz, M. E. C.; Grossi, P.; Olivares, I. R. B., Recent developments 

and applications of stir bar sorptive extraction. Journal of Separation Science 2009, 32, (5-6), 

813-824. 

70. Prieto, A.; Basauri, O.; Rodil, R.; Usobiaga, A.; Fernández, L. A.; Etxebarria, N.; 

Zuloaga, O., Stir-bar sorptive extraction: A view on method optimisation, novel applications, 

limitations and potential solutions. Journal of Chromatography A 2010, 1217, (16), 2642-

2666. 

71. Nogueira, J. M. F., Novel sorption-based methodologies for static microextraction 

analysis: A review on SBSE and related techniques. Analytica Chimica Acta 2012, 757, (0), 

in press. 

72. Berezkin, V. G.; Makarov, E. D.; Stolyarov, B. V., Needle-type concentrator and its 

application to the determination of pollutants. Journal of Chromatography A 2003, 985, (1-

2), 63-65. 

73. Wang, A.; Fang, F.; Pawliszyn, J., Sampling and determination of volatile organic 

compounds with needle trap devices. Journal of Chromatography A 2005, 1072, (1), 127-

135. 

74. Saito, Y.; Ueta, I.; Ogawa, M.; Abe, A.; Yogo, K.; Shirai, S.; Jinno, K., Fiber-packed 

needle-type sample preparation device designed for gas chromatographic analysis. Analytical 

and Bioanalytical Chemistry 2009, 393, (3), 861-869. 



Introduction and Scope 

30 

 

75. Jochmann, M. A.; Yuan, X.; Schilling, B.; Schmidt, T. C., In-tube extraction for 

enrichment of volatile organic hydrocarbons from aqueous samples. Journal of 

Chromatography A 2008, 1179, (2), 96-105. 

76. Mieth, M.; Kischkel, S.; Schubert, J. K.; Hein, D.; Miekisch, W., Multibed needle trap 

devices for on site sampling and preconcentration of volatile breath biomarkers. Analytical 

Chemistry 2009, 81, (14), 5851-5857. 

77. Saito, Y.; Ueta, I.; Kotera, K.; Ogawa, M.; Wada, H.; Jinno, K., In-needle extraction 

device designed for gas chromatographic analysis of volatile organic compounds. Journal of 

Chromatography A 2006, 1106, (1-2), 190-195. 

78. Trefz, P.; Kischkel, S.; Hein, D.; James, E. S.; Schubert, J. K.; Miekisch, W., Needle 

trap micro-extraction for VOC analysis: Effects of packing materials and desorption 

parameters. Journal of Chromatography A 2012, 1219, (0), 29-38. 

79. Cai, J.; Ouyang, G.; Gong, Y.; Pawliszyn, J., Simultaneous sampling and analysis for 

vapor mercury in ambient air using needle trap coupled with gas chromatography-mass 

spectrometry. Journal of Chromatography A 2008, 1213, (1), 19-24. 

80. Bagheri, H.; Roostaie, A.; Babanezhad, E., New Grafted Nanosilica-Based Sorbent 

for Needle Trap Extraction of Polycyclic Aromatic Hydrocarbons from Water Samples 

Followed by GC/MS. Chromatographia 2011, 74, (5-6), 429-436. 

81. Bagheri, H.; Ayazi, Z.; Aghakhani, A., A novel needle trap sorbent based on carbon 

nanotube-sol-gel for microextraction of polycyclic aromatic hydrocarbons from aquatic 

media. Analytica Chimica Acta 2011, 683, (2), 212-220. 

82. Heidari, M.; Bahrami, A.; Ghiasvand, A. R.; Shahna, F. G.; Soltanian, A. R., A novel 

needle trap device with single wall carbon nanotubes sol-gel sorbent packed for sampling and 

analysis of volatile organohalogen compounds in air. Talanta 2012, 101, (0), 314-321. 

83. Lord, H. L.; Zhan, W.; Pawliszyn, J., Fundamentals and applications of needle trap 

devices: A critical review. Analytica Chimica Acta 2010, 677, (1), 3-18. 



Introduction and Scope 

31 

 

84. Koziel, J. A.; Odziemkowski, M.; Pawliszyn, J., Sampling and Analysis of Airborne 

Particulate Matter and Aerosols Using In-Needle Trap and SPME Fiber Devices. Analytical 

Chemistry 2001, 73, (1), 47-54. 

85. Jurdakova, H.; Kubinec, R.; Jurcisinova, M.; Krkosova, Z.; Blasko, J.; Ostrovsky, I.; 

Sojak, L.; Berezkin, V. G., Gas chromatography analysis of benzene, toluene, ethylbenzene 

and xylenes using newly designed needle trap device in aqueous samples. Journal of 

Chromatography A 2008, 1194, (2), 161-164. 

86. Eom, I.-Y.; Pawliszyn, J., Simple sample transfer technique by internally expanded 

desorptive flow for needle trap devices. Journal of Separation Science 2008, 31, (12), 2283-

2287. 

87. Eom, I. Y.; Tugulea, A. M.; Pawliszyn, J., Development and application of needle trap 

devices. Journal of Chromatography A 2008, 1196-1197, (1-2), 3-9. 

88. Eom, I. Y.; Niri, V. H.; Pawliszyn, J., Development of a syringe pump assisted 

dynamic headspace sampling technique for needle trap device. Journal of Chromatography A 

2008, 1196-1197, (1-2), 10-14. 

89. Lou, D. W.; Lee, X.; Pawliszyn, J., Extraction of formic and acetic acids from 

aqueous solution by dynamic headspace-needle trap extraction. Temperature and pH 

optimization. Journal of Chromatography A 2008, 1201, (2), 228-234. 

90. Gong, Y.; Eom, I. Y.; Lou, D. W.; Hein, D.; Pawliszyn, J., Development and 

application of a needle trap device for time-weighted average diffusive sampling. Analytical 

Chemistry 2008, 80, (19), 7275-7282. 

91. Niri, V. H.; Eom, I. Y.; Kermani, F. R.; Pawliszyn, J., Sampling free and particle-

bound chemicals using solid-phase microextraction and needle trap device simultaneously. 

Journal of Separation Science 2009, 32, (7), 1075-1080. 

92. Mieth, M.; Schubert, J. K.; Gröger, T.; Sabel, B.; Kischkel, S.; Fuchs, P.; Hein, D.; 

Zimmermann, R.; Miekisch, W., Automated Needle Trap Heart-Cut GC/MS and Needle Trap 

Comprehensive Two-Dimensional GC/TOF-MS for Breath Gas Analysis in the Clinical 

Environment. Analytical Chemistry 2010, 82, (6), 2541-2551. 



Introduction and Scope 

32 

 

93. De Crom, J.; Claeys, S.; Godayol, A.; Alonso, M.; Anticó, E.; Sanchez, J. M., 

Sorbent-packed needle microextraction trap for benzene, toluene, ethylbenzene, and xylenes 

determination in aqueous samples. Journal of Separation Science 2010, 33, (17-18), 2833-

2840. 

94. Li, X.; Ouyang, G.; Lord, H.; Pawliszyn, J., Theory and validation of solid-phase 

microextraction and needle trap devices for aerosol sample. Analytical Chemistry 2010, 82, 

(22), 9521-9527. 

95. Alonso, M.; Godayol, A.; Antico, E.; Sanchez, J. M., Needle microextraction trap for 

on-site analysis of airborne volatile compounds at ultra-trace levels in gaseous samples. 

Journal of Separation Science 2011, 34, (19), 2705-2711. 

96. Alonso, M.; Cerdan, L.; Godayol, A.; Antico, E.; Sanchez, J. M., Headspace needle-

trap analysis of priority volatile organic compounds from aqueous samples: Application to 

the analysis of natural and waste waters. Journal of Chromatography A 2011, 1218, (45), 

8131-8139. 

97. Warren, J. M.; Pawliszyn, J., Development and evaluation of needle trap device 

geometry and packing methods for automated and manual analysis. Journal of 

Chromatography A 2011, 1218, (50), 8982-8988. 

98. Eom, I.-Y.; Risticevic, S.; Pawliszyn, J., Simultaneous sampling and analysis of 

indoor air infested with Cimex lectularius L. (Hemiptera: Cimicidae) by solid phase 

microextraction, thin film microextraction and needle trap device. Analytica Chimica Acta 

2012, 716, (0), 2-10. 

99. Filipiak, W.; Filipiak, A.; Ager, C.; Wiesenhofer, H.; Amann, A., Optimization of 

sampling parameters for collection and preconcentration of alveolar air by needle traps. 

Journal of Breath Research 2012, 6, (2), 027107. 

100. Lee, X.; Huang, D.; Lou, D.; Pawliszyn, J., Needle trap extraction for GC analysis of 

formic and acetic acids in aqueous solution. Journal of Separation Science 2012, 35, (13), 

1675-1981. 



Introduction and Scope 

33 

 

101. Alonso, M.; Castellanos, M.; Besalu, E.; Sanchez, J. M., A headspace needle-trap 

method for the analysis of volatile organic compounds in whole blood. Journal of 

Chromatography A 2012, 1252, (0), 23-30. 

102. Zhan, W.; Pawliszyn, J., Investigation and optimization of particle dimensions for 

needle trap device as an exhaustive active sampler. Journal of Chromatography A 2012, 

1260, (0), 54-60. 

103. Warren, J. M.; Parkinson, D.-R.; Pawliszyn, J., Assessment of Thiol Compounds from 

Garlic by Automated Headspace Derivatized In-Needle-NTD-GC-MS and Derivatized In-

Fiber-SPME-GC-MS. Journal of Agricultural and Food Chemistry 2013, 61, (3), 492-500. 

104. Trefz, P.; Rösner, L.; Hein, D.; Schubert, J.; Miekisch, W., Evaluation of needle trap 

micro-extraction and automatic alveolar sampling for point-of-care breath analysis. 

Analytical and Bioanalytical Chemistry 2013, 405, (10), 3105-3115. 

105. Mochalski, P.; King, J.; Klieber, M.; Unterkofler, K.; Hinterhuber, H.; Baumann, M.; 

Amann, A., Blood and breath levels of selected volatile organic compounds in healthy 

volunteers. Analyst 2013, 138, (7), 2134-2145. 

106. Pietrzynska, M.; Voelkel, A.; Bielicka-Daszkiewicz, K., Preparation and examination 

of monolithic in-needle extraction (MINE) device for the direct analysis of liquid samples. 

Analytica Chimica Acta 2013, 776, (0), 50-56. 

107. Lee, X.; Zhang, L.; Huang, D.; An, N.; Yang, F.; Jiang, W.; Fang, B., Analysis of the 

stable carbon isotope composition of formic and acetic acids. Analytical Biochemistry 2013, 

436, (2), 178-186. 

108. Eom, I. Y.; Jung, M. J., Identification of coffee fragrances using needle trap device-

gas chromatograph/mass spectrometry (NTD-GC/MS). Bulletin of the Korean Chemical 

Society 2013, 34, (6), 1703-1707. 

109. Heidari, M.; Bahrami, A.; Ghiasvand, A. R.; Shahna, F. G.; Soltanian, A. R., A needle 

trap device packed with a sol-gel derived, multi-walled carbon nanotubes/silica composite for 

sampling and analysis of volatile organohalogen compounds in air. Analytica Chimica Acta 

2013, 785, (0), 67-74. 



Introduction and Scope 

34 

 

110. Ueta, I.; Razak, N. A.; Mizuguchi, A.; Kawakubo, S.; Saito, Y.; Jinno, K., Needle-

type extraction device for the purge and trap analysis of 23 volatile organic compounds in tap 

water. Journal of Chromatography A 2013, (0), In Press. 

111. Reyes-Garces, N.; Gomez-Rios, G. A.; Souza Silva, E. A.; Pawliszyn, J., Coupling 

needle trap devices with gas chromatography-ion mobility spectrometry detection as a simple 

approach for on-site quantitative analysis. Journal of Chromatography A 2013, 1300, (0), 

193-198. 

112. Schott, M.; Wehrenfennig, C.; Gasch, T.; Düring, R.-A.; Vilcinskas, A., A portable 

gas chromatograph with simultaneous detection by mass spectrometry and 

electroantennography for the highly sensitive in situ measurement of volatiles. Analytical and 

Bioanalytical Chemistry 2013, 405, (23), 7457-7467. 

113. Saito, Y.; Ueta, I.; Ogawa, M.; Jinno, K., Simultaneous 

derivatization/preconcentration of volatile aldehydes with a miniaturized fiber-packed sample 

preparation device designed for gas chromatographic analysis. Analytical and Bioanalytical 

Chemistry 2006, 386, (3), 725-732. 

114. Saito, Y.; Ueta, I.; Ogawa, M.; Hayashida, M.; Jinno, K., Miniaturized sample 

preparation needle: A versatile design for the rapid analysis of smoking-related compounds in 

hair and air samples. Journal of Pharmaceutical and Biomedical Analysis 2007, 44, (1), 1-7. 

115. Ogawa, M.; Saito, Y.; Ueta, I.; Jinno, K., Fiber-packed needle for dynamic extraction 

of aromatic compounds. Analytical and Bioanalytical Chemistry 2007, 388, (3), 619-625. 

116. Ogawa, M.; Saito, Y.; Shirai, S.; Kiso, Y.; Jinno, K., Determination of Bisphenol A in 

Water Using a Packed Needle Extraction Device. Chromatographia 2009, 69, (7), 685-690. 

117. Ueta, I.; Saito, Y.; Ghani, N. B. A.; Ogawa, M.; Yogo, K.; Abe, A.; Shirai, S.; Jinno, 

K., Rapid determination of ethylene oxide with fiber-packed sample preparation needle. 

Journal of Chromatography A 2009, 1216, (14), 2848-2853. 

118. Abe, A.; Saito, Y.; Ueta, I.; Nakane, K.; Takeichi, T.; Jinno, K., Development of 

novel fiber-packed needle interface for off-line reversed-phase liquid 

chromatographyâ€“capillary gas chromatography. Journal of Chromatography A 2009, 1216, 

(44), 7456-7460. 



Introduction and Scope 

35 

 

119. Prikryl, P.; Kubinec, R.; Jurdakova, H.; Sevcik, J.; Ostrovsky, I.; Sojak, L.; Berezkin, 

V., Comparison of needle concentrator with SPME for GC determination of benzene, toluene, 

ethylbenzene, and xylenes in aqueous samples. Chromatographia 2006, 64, (1-2), 65-70. 

120. Laaks, J.; Jochmann, M. A.; Schilling, B.; Schmidt, T. C., In-tube extraction of 

volatile organic compounds from aqueous samples: An economical alternative to purge and 

trap enrichment. Analytical Chemistry 2010, 82, (18), 7641-7648. 

121. Zapata, J.; Mateo-Vivaracho, L.; Lopez, R.; Ferreira, V., Automated and quantitative 

headspace in-tube extraction for the accurate determination of highly volatile compounds 

from wines and beers. Journal of Chromatography A 2012, 1230, 1-7. 

122. Zapata, J.; Lopez, R.; Herrero, P.; Ferreira, V., Multiple automated headspace in-tube 

extraction for the accurate analysis of relevant wine aroma compounds and for the estimation 

of their relative liquid-gas transfer rates. Journal of Chromatography A 2012, 1266, (0), 1-9. 

123. Rasanen, I.; Viinamäki, J.; Vuori, E.; Ojanperä, I., Headspace in-tube extraction gas 

chromatography-mass spectrometry for the analysis of Hydroxylic methyl-derivatized and 

volatile organic compounds in blood and urine. Journal of Analytical Toxicology 2010, 34, 

(3), 113-121. 

124. Jelen, H. H.; Majcher, M.; Dziadas, M., Microextraction techniques in the analysis of 

food flavor compounds: A review. Analytica Chimica Acta 2012, 738, (0), 13-26. 

125. Laaks, J.; Jochmann, M. A.; Schmidt, T. C., Solvent-free microextraction techniques 

in gas chromatography. Analytical and Bioanalytical Chemistry 2012, 402, (2), 565-571. 

126. Akinlua, A.; Jochmann, M. A.; Laaks, J.; Ewert, A.; Schmidt, T. C., Microwave-

assisted nonionic surfactant extraction of aliphatic hydrocarbons from petroleum source rock. 

Analytica Chimica Acta 2011, 691, (1-2), 48-55. 

127. Viinamäki, J.; Rasanen, I.; Vuori, E.; Ojanperä, I., Elevated formic acid 

concentrations in putrefied post-mortem blood and urine samples. Forensic Science 

International 2011, 208, (1-3), 42-46. 



Introduction and Scope 

36 

 

128. Niu, L.; Bao, J.; Zhao, L.; Zhang, Y., Odor Properties and Volatile Compounds 

Analysis of Torreya grandis Aril Extracts. Journal of Essential Oil Research 2011, 23, (4), 1-

6. 

129. Socaci, S. A.; Socaciu, C.; Tofană, M.; Raţi, I. V.; Pintea, A., In-tube Extraction and 

GC–MS Analysis of Volatile Components from Wild and Cultivated sea buckthorn 

(Hippophae rhamnoides L. ssp. Carpatica) Berry Varieties and Juice. Phytochemical Analysis 

2013, 24, (4), 319-328. 

130. Hüffer, T.; Osorio, X. L.; Jochmann, M. A.; Schilling, B.; Schmidt, T. C., Multi-

walled carbon nanotubes as sorptive material for solventless in-tube microextraction (ITEX2) 

- a factorial design study. Analytical and Bioanalytical Chemistry 2013, 405, (26), 8387-

8395. 

131. Seethapathy, S.; Gorecki, T., Applications of polydimethylsiloxane in analytical 

chemistry: A review. Analytica Chimica Acta 2012, 750, (0), 48-62. 

132. Gouliarmou, V.; Collins, C. D.; Christiansen, E.; Mayer, P., Sorptive Physiologically 

Based Extraction of Contaminated Solid Matrices: Incorporating Silicone Rod As Absorption 

Sink for Hydrophobic Organic Contaminants. Environmental Science & Technology 2013, 

47, (2), 941-948. 

133. Prieto, A.; Rodil, R.; Quintana, J. B.; Rodriguez, I.; Cela, R.; Möder, M., Evaluation 

of low-cost disposable polymeric materials for sorptive extraction of organic pollutants in 

water samples. Analytica Chimica Acta 2012, 716, (0), 119-127. 

134. Kolb, B.; Ettre, L. S., Headspace Methods for Quantitative Analysis. In Static 

Headspace–Gas Chromatography, John Wiley & Sons, Inc.: 2006; pp 197-256. 

135. Gorecki, T.; Yu, X.; Pawliszyn, J., Theory of analyte extraction by selected porous 

polymer SPME fibers[dagger]. Analyst 1999, 124, (5), 643-649. 

136. Leboda, R.; Lodyga, A.; Gierak, A., Carbon adsorbents as materials for 

chromatography I. Gas chromatography. Materials Chemistry and Physics 1997, 51, (3), 216-

232. 



Introduction and Scope 

37 

 

137. Rudling, J., Improvement of activated carbon for air sampling. Journal of 

Chromatography A 1990, 503, (0), 33-40. 

138. Dettmer, K.; Knobloch, T.; Engewald, W., Stability of reactive low boiling 

hydrocarbons on carbon based adsorbents typically used for adsorptive enrichment and 

thermal desorption. Fresenius' Journal of Analytical Chemistry 2000, 366, (1), 70-78. 

139. Dettmer, K.; Engewald, W., Adsorbent materials commonly used in air analysis for 

adsorptive enrichment and thermal desorption of volatile organic compounds. Analytical and 

Bioanalytical Chemistry 2002, 373, (6), 490-500. 

140. Kornacki, W.; Fastyn, P.; Gierczak, T.; Gawlowski, J.; Niedzielski, J., Reactivity of 

carbon adsorbents used to determine volatile organic compounds in atmospheric air. 

Chromatographia 2006, 63, (1-2), 67-71. 

141. Knobloch, T.; Engewald, W., Sampling and gas chromatographic analysis of volatile 

organic compounds in hot and extremely humid emissions. Journal of High Resolution 

Chromatography 1995, 18, (10), 635-642. 

142. Faucher, J. A.; Koleske, J. V.; Santee, J. E. R.; Stratta, J. J.; Wilson Iii, C. W., Glass 

Transitions of Ethylene Oxide Polymers. Journal of Applied Physics 1966, 37, (11), 3962-

3964. 

143. Schwarzenbach, R. P.; Gschwend, P. M.; Imboden, D. M., Environmental organic 

chemistry. 2nd ed.; Wiley: Hoboken, N.J., 2003; p xiii, 1313 p. 

144. Ashworth, R. A.; Howe, G. B.; Mullins, M. E.; Rogers, T. N., Air-water partitioning 

coefficients of organics in dilute aqueous solutions. Journal of Hazardous Materials 1988, 

18, (1), 25-36. 

145. Staudinger, J.; Roberts, P. V., A critical compilation of Henry's law constant 

temperature dependence relations for organic compounds in dilute aqueous solutions. 

Chemosphere 2001, 44, (4), 561-576. 

146. Werkhoven-Goewie, C. E.; Brinkman, U. A. T.; Frei, R. W., Trace enrichment of 

polar compounds on chemically bonded and carbonaceous sorbents and application to 

chlorophenol. Analytical Chemistry 1981, 53, (13), 2072-2080. 



Introduction and Scope 

38 

 

147. Loevkvist, P.; Joensson, J. A., Capacity of sampling and preconcentration columns 

with a low number of theoretical plates. Analytical Chemistry 1987, 59, (6), 818-821. 

148. Pankow, J. F., Overview of the gas phase retention volume behavior of organic 

compounds on polyurethane foam. Atmospheric Environment (1967) 1989, 23, (5), 1107-

1111. 

149. Schneider, M.; Goss, K.-U., Systematic Investigation of the Sorption Properties of 

Tenax TA, Chromosorb 106, Porapak N, and Carbopak F. Analytical Chemistry 2009, 81, (8), 

3017-3021. 

150. Baltussen, E.; David, F.; Sandra, P.; Janssen, H.-G.; Cramers, C., Equilibrium 

Sorptive Enrichment on Poly(dimethylsiloxane) Particles for Trace Analysis of Volatile 

Compounds in Gaseous Samples. Analytical Chemistry 1999, 71, (22), 5193-5198. 

 



Fingerprinting of Red Wine by Headspace Solid Phase Dynamic Extraction of Volatile Constituents 

39 

 

2 Fingerprinting of Red Wine by Headspace Solid Phase Dynamic 

Extraction of Volatile Constituents 

This chapter has been published in modified form in Laaks, J.; Letzel, T.; Schmidt, T. C.; Jochmann, M. A., 

Fingerprinting of red wine by headspace solid-phase dynamic extraction of volatile constituents. Analytical and 

Bioanalytical Chemistry 2012, 403, 2429-2436, © Springer-Verlag 2012 

2.1 Introduction 

Wine is considered to be the alcoholic beverage with the greatest variation in flavor
1
. The 

aroma is a complex mixture of several hundred compounds
1, 2

 and over 800 volatiles have 

been identified in wines
3-6

. The requirements in wine analysis are an extensive and artifact 

free enrichment, an effective separation by means of gas chromatography and the 

identification of important and characteristic compounds
7
. Especially S-HS methods without 

pre-concentration have been used for the analysis of the volatile wine fraction, but low 

sensitivity, as well as the large concentration range in which different important compounds 

occur, restrict the application of S-HS methods considerably
8
. 

Microextraction methods such as SPME fulfill the mentioned demands and have been 

successfully employed in different aspects of wine analysis such as screening of aroma 

compounds
2, 3, 5, 9-13

, analysis of methoxypyrazines
14, 15

, sulphur compounds,
16-19

 oak barrel 

storage related compounds
20

 and in wine discrimination
6, 21-23

. SPME has further advantages 

over more traditional extraction techniques: it is inexpensive, relatively fast, easy to automate 

with conventional auto samplers, requires low sample volumes, gives high sensitivity and 

good reproducibility.
24-26

 Despite these advantages, SPME itself suffers from certain 

disadvantages: mechanical damage of the coating due to scraping and needle bending during 

agitation, limited flexibility in fiber length and coating thickness resulting in low amounts of 

stationary phase and the limited fiber lifetime.
11, 24, 27-29

 

The film thickness is the major leverage to increase the sorption capacity of SPME, but with 

greater film thicknesses up to 100 µm also the extraction takes longer, diminishing one of the 

advantages of SPME. To overcome this problem, a thin film has to be spread over a larger 

area, leading to a larger extraction phase volume, combined with short extraction times, due 

to faster phase transfer
30

. This was achieved by placing a short length of capillary GC column 

into a steel needle or by directly coating the inner wall of the needle. Typically the needle is 

mounted on a 2.5 mL-headspace syringe. Early implementations have been called INCAT
31, 

32
. In the year 2000, Chromtech (Idstein, Germany) commercialized the in-needle trapping as 
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the “magic needle” or SPDE
29, 33

. The sampling can be carried out from the headspace, 

whereby the analytes are accumulated in the coating by aspirating and dispensing a defined 

sample volume for several times. Thermal desorption is carried out in the GC injection 

system, after aspiration of a desorption gas (helium or nitrogen), either from a gas station or 

directly from the injection system (see Figure 2.1). 

 

Figure 2.1 Depiction of the SPDE-procedure. 1) Conditioning of the needle before the first use and cleaning after each 

analysis; 2) headspace extraction of the sample by several extraction strokes; 3) aspiration of desorption gas volume; 

4) thermal desorption in the GC injector. 

Contrary to equilibrium sampling, under the conditions used here SPDE is a non-equilibrium 

sampling method and must be carried out with invariable extraction parameters (aspirating 

and dispensing flow, sampling volume) to obtain reliable results
8
. However, nowadays this 

can easily be achieved with programmable xyz-autosamplers. The main advantages of SPDE 

over SPME are the higher sorption capacity, due to the larger amount of stationary phase 

(about 5-6 times
8, 27, 29, 33-35

); the faster extraction, because of the active pumping, instead of 

relying only on diffusion
35

 and the mechanical stability
33

. SPDE has been applied to a wide 

scope of target compounds: halogenated pesticides
30

, chlorinated hydrocarbons
34

, furan
36

, 

BTEX
36-38

, drugs of abuse
29, 33, 35

 and different food matrices
27, 39

. Other examples, related to 
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wine analysis, are the quantification of fusel oils
40

 and the identification of fermentation 

problems in wine musts
41

. 

The aim of this work was the application and evaluation of a headspace SPDE-GC/MS 

method in the analysis of German red wines. Therefore, 22 aroma active alcohols and esters 

were chosen as targets for quantification, which would also be used as reference compounds 

to create a fingerprinting database for authenticity control and similarity searches, based on 

their retention times, mass spectra and relative peak areas, respectively. Due to the large 

number of samples analyzed (overall, about 950 analyses were executed), the long term 

performance of the employed extraction needles was also investigated. 

2.2 Experimental 

2.2.1 Chemicals 

As reference compounds for method validation and calibration standard solutions, 1-butanol 

(purity ≥99.9%), 2-butanol (≥99.8%), tert-butanol (≥99.8%), ethyl acetate (≥99.9%), 2-ethyl-

1-hexanol (≥99.5%), ethyl octanoate (≥98%), 1-hexanol (≥99.9%), (S)-2-methylbutanol 

(≥99.5%, sum of enatiomers), 3-methylbutanol (≥99.8%), 2-methyl-1-propanol (≥99.8%), 1-

pentanol (≥99.8%), 3-pentanol (≥99.5%), 1-propanol (≥99.9%) and 2-propanol (≥99.9%) 

were purchased from Fluka (Sigma-Aldrich, Steinheim, Germany). Ethyl decanoate (≥99%), 

ethyl hexanoate (≥99%), ethyl isovalerate (98%), linalool (≥97%), 3-methyl-1-pentanol 

(99%), 2-phenethyl acetate (99%) from Aldrich (Sigma-Aldrich); isopentyl acetate (≥99%) 

from Sigma-Aldrich and diethyl succinate (≥99%) from Merck (Darmstadt, Germany) were 

used. Ethanol absolute SPECTRANAL® (≥99.8%) from Riedel-deHaën (Sigma-Aldrich) 

was used for the preparation of stock solutions. Tri-distilled deionised water as solvent for 

standard solutions and sample dilution was attained from a lab unit (Westdeutsche 

Quarzschmelze, Geesthacht, Germany). 

2.2.2 Instrumentation 

All measurements were carried out with a Thermo Trace GC Ultra (S+H Analytik, 

Mönchengladbach, Germany) equipped with a CTC Combi PAL autosampler (AxelSemrau, 

Sprockhövel, Germany), holding a TrayCooler for 20-mL headspace vials, a SyrHS2.5mL 

heated syringe holder and a Single Magnet Mixer (SMM) (Chromtech, Idstein, Germany). 

10 mL of each sample solution were transferred into a 20-mL amber headspace vial (BGB 

Analytik AG, Boeckten, Switzerland), with an 8x3 mm PTFE laminated magnetic stir bar 

(VWR International GmbH, Darmstadt, Germany). The vials were closed by magnetic screw 
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caps with rubber/PTFE septa (BGB Analytik AG) and stored in the TrayCooler at 25 °C, 

because longer storage (about one day) at the extraction temperature of 70 °C revealed to 

alter the composition of the wine samples. Sample extraction and injection were executed by 

the autosampler programmed with custom made macros. The HS-SPDE was carried out using 

a 56 mm long hollow needle with a 50 µm carbowax-coating (Chromtech) mounted on a 2.5-

mL headspace syringe (Hamilton, Bonaduz, Switzerland). The syringe temperature was kept 

at 35 °C. Prior to analysis, the needle was pre-conditioned and flushed with nitrogen 4.0 (Air 

Liquide, Oberhausen, Germany) for 30 min in an Atas GL Optic 3 injector (Axel Semrau, 

Sprockhövel, Germany) at 200 °C. For the extraction, the samples were transferred to the 

SMM, which was set to 70 °C and stirred at 500 rpm for 15 min, to heat up and equilibrate. 

15 extraction strokes of 2.5 mL were conducted with an aspiration and dispensing flow of 

125 µL s
‒1

, respectively. Sample penetration for the extraction was 20 mm. Desorption was 

carried out in the Split/Splitless injector (S/SL) with a 5 mm inner diameter (i.d.) glass liner 

(Thermo Scientific; Idstein, Germany) at 200 °C. 500 µL helium 5.0 (Air Liquide) were 

aspirated as desorption gas from the S/SL with an injector penetration of 20 mm. The 

desorption flow was set to 10 µL s
‒1

 with an injector penetration of 45 mm. The S/SL injector 

was used in splitless mode (1 minute splitless time) with constant septum purge; helium was 

used as carrier gas with a constant flow of 1.5 mL min
‒1

. After desorption, the needle was 

transferred to the Optic 3 and was flushed with nitrogen for 10 min at 200 °C, to prevent 

carryover. The whole procedure for each sample (including equilibration, extraction, 

injection and needle flushing) takes about 35 minutes and can be performed in parallel to the 

GC analysis, thus making the GC program the limiting factor. Separation of compounds was 

performed on a Stabilwax DA fused-silica capillary column (cross bonded carbowax-PEG 

(polyethylene glycol)) with 60 m length, 0.32 mm i.d. and 1 µm film thickness (Restek 

GmbH, Bad Homburg, Germany). Initial GC oven temperature was 40 °C for 1 min, to trap 

the analytes during desorption time and prevent peak broadening. After the desorption phase, 

the GC was heated with 7 °C min
-1

 to 110 °C, 3 °C min
‒1

 to 130 °C and 7 °C min
‒1

 to 160 °C 

with a hold time of 38 min. A Thermo DSQ II single quadrupole mass spectrometer (S+H 

Analytik) was coupled to the GC for sample detection. The MS transfer line and ion source 

temperatures were set to 220 °C. Electron ionization mode (EI) with an ionization energy of 

70 eV was used in scan mode (m/z = 31-129) with a scan rate of 500 amu s
‒1

. Automatic 

tuning of the instrument was carried out regularly. Instrument automation, data acquisition 

and data processing were performed by the Xcalibur 1.4 data system (S+H Analytik). 
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2.2.3 Samples and Sample Preparation 

196 samples of German red wines were supplied for quantification from the Analytical 

Research Group at the Chair of Biopolymer Chemistry of the Technische Universität 

München. The samples were delivered in 60-mL amber screw cap bottles, which were 

flushed with nitrogen and sealed with laboratory film, to prevent oxidation of sample 

compounds during transportation and storage. Because of the good sensitivity of the method, 

the wine samples were diluted by a factor of ten to decrease matrix, co-solvent and 

competition effects
3, 9, 12-14, 40

; no other sample preparation, except the addition of stir bars, 

was needed. 

The required calibration ranges for all compounds were determined by the analysis of five 

randomly selected wine samples. The ethanolic stock solution, containing all target 

compounds in the previously determined concentration ratio, was prepared monthly and 

stored in vials without headspace in the dark at 4 °C. Aqueous calibration standards were 

prepared from the stock solutions every day. A six point calibration was performed with 

every set of samples, to monitor the long term stability of the SPDE needles. 

2.3 Results and Discussion 

2.3.1 Quantification 

The Method detection limits (MDLs) were determined based on a guideline of the U.S. 

Environmental Protection agency and are calculated from the standard deviation of a 

sevenfold measurement at a signal to noise ratio of three to five, resulting in a 99% 

confidence that the analyte concentration is greater than zero
42

. MDLs are in a range from 

0.02 µg L
‒1

 for ethyl octanoate to 9.3 µg L
‒1

 for 1-propanol. As the MDL are far below the 

required concentration range for the wine analysis, the samples were diluted by a factor of 

ten. 

A chromatogram of a typical wine sample is shown in Figure 2.2. The begin of the 

chromatogram with the major compounds is depicted in the larger part, while the zoomed 

view gives insight to the high number of trace compounds, which are responsible for the 

richness of wine aroma. The amounts of the 22 quantified compounds ranged from about 

1 µg L
‒1

 of linalool up to 380 mg L
‒1

 of 2-methyl-1-propanol, the ranges for each compound 

with the corresponding median are listed in Table 2.1. The major compounds besides ethanol 

are mainly fusel alcohols like 2-methyl-1-propanol, 2-/3-methylbutanol and 1-propanol, the 

main esters are ethyl acetate and diethyl succinate. 
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Figure 2.2 Exemplary wine chromatogram. main view showing 1) desorption gas, 2) Acetaldehyde, 3) Ethyl acetate, 

4) Ethanol, 5) Ethyl isovalerate, 6) 1-propanol, 7) 2-methyl-1-propanol, 8) Isopentyl acetate, 9) 2-methylbutanol, 

10) 3-methylbutanol, 11) Ethyl hexanoate, 12) 1-hexanol, 13) Ethyl lactate, 14) Ethyl octanoate, 15) Acetic acid, 

16) Ethyl decanoate, 17) Diethyl succinate. The zoomed view shows lower concentration compounds 18) 1-butanol, 

19) 1-pentanol, 20) 3-methyl-1-pentanol, 21) 2-ethyl-1-hexanol, 22) Linalool, 23) 2-phenethyl acetate. 

2.3.2 Uncertainty budget of the method 

The method error was calculated by propagation of uncertainty in a “top-down” approach
43

, 

by summing up of the uncertainties of the used materials and instruments: 

Equation 2.1                            
  

where u(cm) is the total measurement uncertainty, u(ccal) the uncertainty of the calibration, 

u(cs) the sample uncertainty and RSDx the relative standard deviation of the extraction and 

analysis from standard solutions. The relative standard deviations of the samples (RSDs) for 

each compound were calculated as the average of the relative standard deviations (RSD) of 

the 196 triplicate analyses. The results of the compound specific measurement uncertainty 

and RSDs are summed up in Table 2.1. 

The total measurement uncertainty ranges from 2.5% to 7.9%. While u(ccal) is about 1% and 

u(cs) is only 0.4%, the major proportion of u(cm) is made up by RSDx, which is higher for the 

compounds with retention times between 9 and 15 minutes. The elevated uncertainties in this 

range mainly originate from co-elution of low concentrated compounds with more abundant 
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ones and the chromatographic background composed of degradation products of PEG from 

the column or needle coating material, which will be discusses later. 

The values of RSDs are, in most cases, in good agreement with the calculated measurement 

uncertainties, indicating little additional matrix effects on the analytical method. However, 

some compounds exhibit a high RSDs, because in several samples, RSDs of over 100% were 

observed, which seems to be caused by interferences between the target compounds and 

substances present in certain wine samples. In the case of 1-butanol, for example, some wines 

showed RSDs of up to 182%, while in most of the remaining samples the deviation for this 

compound keeps below 10%. Therefore, a one-sided Grubbs’ test with a significance level 

α = 0.01 was carried out to remove possible outliers. In other cases, like with ethyl 

isovalerate, ethyl decanoate, 2-methyl-1-propanol, 1-butanol, 2-ethyl-1-hexanol and 2-

phenethyl acetate, wines from certain regions had interferences in the quantification, which 

could not be removed as outliers, because about 25 samples each have been affected, 

resulting in average RSDs of 20% or more. 

2.3.3 Fingerprinting Analysis 

The fingerprinting database was built using the software MSChromsearch (Axel Semrau), 

which allows a manual peak by peak comparison of two chromatograms (Figure 2.3). Each 

peak receives a matching score by retention time (Rt), retention index (Ri), relative peak area 

and height and by comparing their mass spectra with each other (in case of the chosen target 

compounds also with a previously stored reference spectrum), indicating the similarity of 

both peaks. Based on the same scoring system, libraries of reference chromatograms can be 

compiled for automated chromatogram similarity searches, likewise to common mass spectra 

databases. In this way, unknown samples can be matched to previously acquired 

chromatograms for identification. 
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Table 2.1 Investigated compounds with their retention times (Rt), target ions and corresponding method detection 

limit (MDL); concentration ranges found in wine samples with median, measurement uncertainty u(cm) and average 

relative standard deviation of all analysed samples RSDs. 

Compound Rt 
Target ions MDL Range Median u(cm) RSDs (n=196) 

(m/z) (µg L‒1) (mg L‒1) (mg L‒1) (%) (%) 

Ethyl acetate 9.15 61, 70 2.8 30 - 168 71 4.3 3.8 

tert-butanol 9.17 59, 41 8.5 0.3 - 1.5 0.7 7.0 3.8 

2-propanol 9.88 39, 59 8.2 18 - 48 36 7.8  18 

2-butanol 12.0 73, 45 4.6 0.2 - 1.4 0.4 6.8 3.4 

1-propanol 12.6 31, 59 9.3 18 - 134 42 6.1 13 

Ethyl isovalerate 13.1 115, 88 7.1 0.01 - 0.1 0.02 4.5 12 

2-methyl-1-propanol 13.5 43, 74 11 16 - 380 68 6.1 16 

3-pentanol 14.1 59, 31 3.2 n.d. - 0. 9 0.03 7.9 10 

Isopentyl acetate 14.6 43, 70 5.7 0.09 - 2.9 0.4 5.9 3.8 

1-butanol 15.4 31, 56 6.2 n.d. - 5.2 2.6 7.5 9.9 

2-methylbutanol 17.2 56, 57 0.9 18 - 140 61 4.6 6.6 

3-methylbutanol 17.3 55, 42 0.7 56 - 358 161 5.8 6.7 

Ethyl hexanoate 18.2 88, 99 0.08 0.1 - 0.9 0.3 5.2 5.4 

1-pentanol 18.6 42, 55 0.3 0.03 - 0.1 0.07 6.1 8.4 

3-methyl-1-pentanol 20.9 56, 69 0.6 0.04 - 0.8 0.4 4.7 5.8 

1-hexanol 21.5 56, 43 0.2 0.3 - 5.6 1.7 4.1 4.8 

Ethyl octanoate 24.2 88, 101 0.02 0.09 - 1.2 0.3 7.0 8.3 

2-ethyl-1-hexanol 25.8 57, 41 0.1 n.d. - 0.08 0.002 4.5 25 

Linalool 28 71, 121 0.4 0.001 - 0.03 0.005 5.0 7.2 

Ethyl decanoate 33 88, 101 0.3 n.d. - 0.2 0.05 5.3 12 

Diethyl succinate 35.5 101, 129 0.7 0.8 - 41 6.9 3.2 4.2 

2-phenethyl acetate 49.5 43, 104 0.3 n.d. - 0.3 0.03 2.5 12 

   n.d.: not detectable (lower than method detection limit) 

 

While a reliable correlation of given wine samples to the library was no problem, as long as a 

sample of the same provenance and vintage was measured before, the detection of further 

similarities based on the varietal or region of origin proved difficult. Only in few cases, larger 

groups of wines with the same varietal and region of origin could be formed, because the 

differences in the wine making process of each individual wine maker outweigh the influence 

of varietal, soil condition or climate on the volatile composition of wine. A more extensive 

differentiation should be possible by the combination of the volatile data with measurements 

of non-volatile compounds. 
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Figure 2.3 Chromatogram match view, showing a peak by peak comparison of a sample and a library 

chromatogram; the size of the dots indicates the peak area and the color the matching score from red (low score) to 

green (high score); examples of a good match in the upper figure and a bad match in the lower one. 
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2.3.4 SPDE Needle Lifetime and Performance 

A previous study revealed a long lifetime of a carbowax-coated SPDE syringe needle
40

. 

Therefore, an in depth study of the SPDE needle lifetime and performance for high through 

put sampling was carried out during the wine fingerprinting campaign. The long term 

stability of the SPDE needles was observed using the calibration data, acquired with each 

sample batch. As any reference standard involved in the sample extraction and injection 

process also would have been affected by the changes in the needle extraction capacity, the 

sensitivity of the MS was monitored to make sure any observed loss of extraction capacity 

only results from deterioration of the SPDE needle. The peak areas of the reference substance 

of the MS (perfluorotributylamine (PFTBA)), acquired with the auto-tune function on 

m/z = 69 were used to calculate a relative sensitivity Sr: 

Equation 2.2    
  

    
 

where At is the peak area of the corresponding auto-tune and Amax the maximum value of all 

tunings. During the first 250 measurements, the sensitivity of the instrument dropped to about 

50 % of the maximum and stayed at this level till the end of the campaign with over 900 

samples. The calculated relative sensitivity was then applied to the calibration data, to allow 

comparison of the extraction performance over the whole time of the study: 

Equation 2.3      
    

  
 

where Acor is the corrected peak area and Acal the primary acquired peak area. 

Ethyl acetate, as one of the most abundant compounds, was chosen to discuss the 

performance of the SPDE needle over time, in detail. The first SPDE needle was also used for 

the preliminary experiments to determine the required concentration ranges for the target 

compounds and extraction conditions for the wine samples, resulting in about 200 performed 

extractions. No data for performance comparison is available for this phase of work, because 

of the varying extraction conditions. The slopes of the calibration functions for the 

determination of ethyl acetate, fitted to the uncorrected and corrected calibration data, over 

time are depicted in Figure 2.4. A decrease of the slopes can be observed with an increasing 

number of performed analyses, indicating a loss of extraction capacity after about 250 

analyses. However, after the calibration data was corrected for changing MS sensitivity, a 

decline of calibration slopes cannot be observed until over 350 analyses. After 542 

measurements, the extraction capacity dropped to about 50% of the initial value and the 
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SPDE needle was replaced by a new one. The same trend as observed for ethyl acetate 

applies for the other quantified compounds. The second SPDE needle was introduced after 

542 samples and was used for the remaining samples. The slopes of the calibration functions 

are also given in Figure 2.4, no decrease of capacity can be observed during the use of the 

second needle. In total, 399 analyses were performed with this needle without loss of 

extraction capacity. The initial performance of both needles is quite similar and suggests low 

variance between different needles. 

 

Figure 2.4 Slopes of fittet calibartion functions for the determination of ethyl acetate, before and after correction for 

MS sensitivity loss. 

Contrary to the deterioration of needle extraction capacity, no significant change of retention 

of the column could be observed over time. Suggesting the earlier mentioned appearance of 

PEG degradation products in the chromatograms results mainly from decomposition of the 

extraction phase in the needle, during thermal desorption and conditioning. Lattimer observed 

pyrolysis of PEG in inert atmospheres at temperature levels of 150 °C
44

, the main reactions 

are homolytic cleavage of C-C or C-O bonds followed by hydrogen abstraction reactions
44, 45

. 

A random scission of the main chain occurs already at temperatures of 80 °C in air
46

. 

Furthermore, PEG can form stable trihydrates with water
47

, which changes the polarity of the 

extraction phase. 
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2.4 Conclusions 

The headspace SPDE-GC/MS method proved to be appropriate for the analysis of volatile 

wine constituents. A number of substances could be extracted and quantified down to the low 

µg L
-1

 range from the diluted samples, with total measurement uncertainties below 10%. 

A continuous decrease of the extraction capacity of the SPDE needles over the working 

period could not be observed; instead constant results were obtained for about 400 extractions 

before a decline started. This is a notable advantage over solid phase microextraction, where 

the peak heights in wine analysis were reported to drop to about 25 % after only 30 extraction 

cycles.
11

 

The fingerprinting library was reliable in identification of wine samples and could be used for 

quality control, but not for the assignment of common characteristics like region of origin or 

varietal, because of the limited information provided by volatile data only. 
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3 In-tube Extraction of Volatile Organic Compounds from Aqueous 

Samples 

This chapter has been published in modified form in Laaks, J.; Jochmann, M. A.; Schilling, B.; Schmidt, T. C., 

In-tube extraction of volatile organic compounds from aqueous samples: An economical alternative to purge 

and trap enrichment. Analytical Chemistry 2010, 82, 7641-7648 © American Chemical Society 2010 

3.1 Introduction 

The analysis of substances in water which are environmentally hazardous or harmful to 

health is a major part of the routine work performed in analytical laboratories. It requires 

sensitive and robust methods, delivering results in a reasonable amount of time with 

preferably a high degree of automation. Established and standardized methods include liquid-

liquid extraction, static headspace without pre-concentration and, particularly common in the 

US, purge and trap systems (P&T). These methods have certain disadvantages, for example 

the limited sensitivity of S-HS
1
, the amount of manual work and solvent consumption for 

LLE or the investment cost and susceptibility to contamination of P&T systems. 

These drawbacks could be overcome by the use of solventless microextraction techniques, 

offering sample preparation and pre-concentration in one step, which can be performed fully 

automated by xyz-autosamplers. Although SPME, featuring a sorbent coated fused-silica 

fiber in a stainless steel needle, was presented almost 20 years ago
2
 and commercialized in 

1993, only few standardized procedures have been developed so far (e.g. DIN 38407-

34:2006
3
, EPA Method 8272

4
). SPME suffers from certain disadvantages: fragility of the 

fused-silica fiber, mechanical damage of the coating due to scraping and needle bending 

during agitation, limited flexibility in fiber length and coating thickness, resulting in low 

amounts of stationary phase (about 0.6 µL on a 100 µm PDMS fiber
5
), ghost peaks from 

septum particles or fiber glue, a possible memory effect from incomplete sample desorption 

and the limited lifetime
6-9

. Several in-needle extraction devices were proposed to overcome 

these drawbacks, by placing a short length of capillary GC column into a steel needle or by 

directly coating the inner wall of the needle. Early implementations have been called 

INCAT
10, 11

, until it was commercialized as the “magic needle” or SPDE by Chromtech 

(Idstein, Germany) in 2000
9, 12

. The main advantages are the larger amount of stationary 

phase (about 4.5 µL in a 50 µm x 56 mm PDMS coating
5
), the mechanical stability

12 
and the 

faster extraction, because of the dynamic process with active pumping of the sample, instead 

of mere diffusion
13

. SPDE has been successfully utilized in the analysis of pesticides
14

, 
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chlorinated hydrocarbons
15

, furan
16

 or BTEX compounds
16-18

 and proven its stability (up to 

400 extractions were achieved with a polyethylene glycol phase)
19

. However, the length of 

the coating in the needle (56 mm) can cause problems during thermodesorption, if the 

injector exhibits a temperature profile and the amount of extraction phase is still quite small. 

An increase in phase material can be achieved with packed sorbents in larger diameter 

needles, like the tubular cylindrical microconcentrator (TCMC) developed by Berezkin et 

al.
20

, the NT presented by Wang et al.
21

, the in-needle extraction device introduced by Saito 

et al.
22

 and ITEX device, which was commercialized in 2006 by CTC Analytics AG 

(Zwingen, Switzerland)
23

. ITEX features a sorbent volume of 160 µL and is the only fully 

automatable device with needle packing, so far. However, the ITEX system required a special 

autosampler head, which hampered the quick exchange of analytical methods. In 2009, this 

drawback has been overcome with the release of a new ITEX 2 system, which can be 

mounted on any PAL-type autosampler without modification. 

It features a sorbent packed needle surrounded by an external heater, mounted on a gas-tight 

syringe with side-port. Enrichment is carried out by aspirating and dispensing the syringe 

several times, pumping the sample headspace through the sorbent bed. The analytes are 

thermodesorbed into the GC injector with desorption gas, which can be either a portion of the 

sample headspace or aspirated carrier gas from the injector. After the syringe is withdrawn 

from the injector, the plunger is moved above the side port and the heated trap is flushed with 

inert gas several times to avoid carryover. A schematic depiction of the steps in the ITEX 

procedure is given in Figure 3.1. The extraction yield is influenced by various parameters 

taking effect in different steps of the analytical process. As with other headspace sampling 

techniques, the air-water partitioning of the analytes in the vial can be influenced by the 

variation of the phase ratio, the temperature, the ionic strength and, depending on compound 

structure, the pH-value of the sample. The first step in the development of an ITEX procedure 

is the choice of an appropriate sorbent material for the target compounds. Optimization 

parameters during the extraction are the number of aspirating and dispensing cycles 

(extraction strokes) and the volume and flow of each stroke, respectively. The desorption 

temperature of the trap, the desorption gas volume and the desorption flow have to be 

considered during sample injection. 
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Figure 3.1 Schematic steps of the ITEX procedure: Sample conditioning through heating and stirring/shaking, 

adsorption by dynamic headspace extraction, thermodesorption from the heated trap, trap cleaning by a stream of 

nitrogen 

The aim of this work was to develop and evaluate a simple ITEX 2 method for the analysis of 

water contaminants as an alternative to the typically utilized P&T system, following EPA 

method 524.3
24

. The target compounds include chlorinated hydrocarbons, trihalomethanes 

(THM), BTEX compounds, fuel oxygenates (ethyl tert-butyl ether (ETBE), methyl tert-butyl 

ether (MTBE) and tert-amyl methyl ether (TAME)). We also included more polar 

compounds not typically analyzed by P&T methods such as 1,4-dioxane and the two bacterial 

or cyanobacterial metabolites 2-methylisoborneol (MIB) and geosmin that cause earthy-

musty odors in low concentrations
25

. The latter need to be controlled since their presence 

leads to the most frequent customer complaints. Guideline or limit values for the target 

compounds are listed in Table 3.1. 
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Table 3.1 Target compounds with boiling points, air-water partitioning coefficients and their maximum 

concentrations according to the “Guidelines for Drinking-water Quality”26 of the World Health Organization (WHO), 

the “National Primary Drinking Water Regulations” of the United States Environmental Protection Agency (EPA)27 

and the “Council Directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption”28 of 

the European Union (EU) 

  Boiling point*  WHO EPA EU 

Compound CAS-Nr. (°C) Kaw(20°C) (µg L-1) (µg L-1) (µg L-1) 

Vinyl chloride 75-01-4 -13 0.89129 0.3 2 0.5 

Dichloromethane 75-09-2 40 0.090329 20 5 - 

MTBE 1634-04-4 55 0.016929 - - - 

ETBE 637-92-3 73 0.037730 - - - 

Chloroform 67-66-3 61 0.12629 300 80a 100a 

Benzene 71-43-2 80 0.19129 10 5 1 

TAME 994-05-8 86 0.0330 - - - 

1,2-Dichloroethane 107-06-2 83 0.041929 30 5 3 

Trichloroethylene 79-01-6 87 0.53329 20 5 10c 

Bromodichloromethane 75-25-2 87 0.07629 60 80a 100a 

1,4-Dioxane 123-91-1 102 0.000231 50 - - 

Toluene 108-88-3 110 0.20929 700 1000 - 

Tetrachloroethylene 127-18-4 121 0.53329 40 5 10c 

Dibromochloromethane 124-48-1 120 0.03529 100 80a 100a 

Ethylbenzene 100-41-4 136 0.23929 300 700 - 

p-Xylene 106-42-3 138 0.24829 500 10b - 

o-Xylene 95-47-6 145 0.1629 500 10b - 

Bromoform 75-25-2 150 0.017529 100 80a 100a 

2-Methylisoborneol 2371-42-8 197 0.002732 - - - 

Geosmin 16423-19-1 270 0.002432 - - - 
* Supplier data 

a Sum of all trihalomethanes 
b Sum of all xylenes 
c Sum of trichloroethylene and tetrachloroethylene 

 

3.2 Experimental 

3.2.1 Reagents 

Analytical grade methanol (KMF Laborchemie, Lohmar, Germany) was used for the 

preparation of stock and working solutions. Standard solutions were prepared with reagent 

water from a PURELAB Ultra Analytic water purification system (ELGA LabWater, Celle, 

Germany). 

Dichloromethane (> 99.5 %), chloroform (> 99.9 %), bromodichloromethane (98+ %), 

dibromochloromethane (98 %), bromoform (99+ %), trichloroethylene (> 99 %), 

tetrachloroethylene (> 99 %), ethyl tert-butyl ether (ETBE) (99 %), tert-amyl methyl ether 

(TAME) (97 %), toluene (> 99.5 %) and methyl tert-butyl ether-d3 (MTBE-d3) (99+ atom-%) 

were purchased from Aldrich (Sigma-Aldrich, Steinheim, Germany); methyl tert-butyl ether 
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(MTBE) (99+ %), 1,4-dioxane (99+ %), benzene (> 99.9 %), ethylbenzene (> 99.5 %), p-

xylene (> 99.5 %) and o-xylene (> 99.5 %) from Fluka (Sigma-Aldrich); 1,2-dichloroethane 

(99.8 %), geosmin (2 g L
-1

 in methanol) and 2-methylisoborneol (MIB) (10 g L
-1

 in 

methanol) from Sigma (Sigma-Aldrich) and vinyl chloride (2 g L
-1

 in methanol), toluene-d8 

(99.9 atom-%, 2 g L
-1

 in methanol) and 1,2-dichlorobenzene-d4 (99.9 atom-%, 2 g L
-1

 in 

methanol) from Supelco (Sigma-Aldrich). 

3.2.2 Standard and Sample Preparation 

A methanolic stock solution with a concentration of 100 µL L
-1

 was prepared from the pure 

substances, using Hamilton syringes (Hamilton, Bonaduz, Switzerland) and volumetric 

flasks, using the stock solution and the reagents delivered in methanolic solutions (vinyl 

chloride, geosmin and MIB), methanolic standard solutions with a concentration range from 

100 ng L
-1

 up to 2 mg L
-1

 were prepared and stored in vials without headspace in the 

refrigerator at 4 °C. An internal standard mixture, containing 2 mg L
-1

 of MTBE-d3, toluene-

d8 and 1,2-dichlorobenzene-d4, was also prepared. MTBE-d3 was used as internal standard for 

vinyl chloride, dichloromethane, MTBE, ETBE, chloroform, TAME, 1,2-dichloroethane, 

trichloroethylene and bromodichloromethane; Toluene-d8 was used for benzene, 1,4-dioxane, 

toluene, tetrachloroethylene,dibromochloromethane, ethylbenzene, p-xylene and o-xylene; 

1,2-dichlorobenzene was used for bromoform, MIB and geosmin. 

The aqueous calibration solutions were prepared with 10 mL reagent water, where each 

10 µL of the methanolic standard solutions and 5 µL of the internal standard mix were added, 

resulting in calibration levels between 0.1 ng L
-1

 and 2 µg L
-1

 for the target compounds and 

1 µg L
-1

 of the internal standards. The only sample preparation step was the addition of 5 µL 

internal standard mix to each 10 mL of sample. The calibration solutions and samples were 

filled into amber 20 mL-headspace screw cap vials with rubber-PTFE septa (BGB Analytik 

AG, Boeckten, Switzerland), containing an 8x3 mm PTFE coated magnetic stir bar (VWR 

International GmbH, Darmstadt, Germany). 

3.2.3 GC/MS Instruments and Parameters 

All analyses were performed using a Trace GC Ultra (S+H Analytik, Mönchengladbach, 

Germany) coupled to a DSQ II single quadrupole mass spectrometer (S+H Analytik). The GC 

was equipped with a split/splitless injector (S/SL), an Atas GL Optic 3 programmed 

temperature vaporization injector with cryofocussing unit (Axel Semrau, Sprockhövel, 

Germany) and a Combi PAL autosampler (Axel Semrau). An uncoated, deactivated fused 
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silica tubing with 0.53 mm i.d. (BGB Analytik AG, Boeckten, Switzerland) was used in the 

cryofocussing unit, compound separation was performed on a Restek Rtx-VMS column 

(medium polar, proprietary modified phase) with 60 m length, 0.32 mm i.d. and 1.8 µm film 

thickness (Restek GmbH, Bad Homburg, Germany). 

For the ITEX measurements, the injector temperature of the Optic 3 was set to 280 °C, the 

cryotrap was set to -165 °C with a hold/transfer time of 60 s and a transfer column flow of 

1.0 mL min
-1

 He 5.0 (Air Liquide, Oberhausen, Germany) in splitless mode. After the 

transfer time, the column flow is raised to a constant flow of 1.5 mL min
-1

, the split is opened 

at 20 mL s
-1

 and the cryotrap is heated to 250 °C with a heating rate of 30 °C sec
-1

. The 

column oven start temperature was set to 40 °C for 1 min, then heating up to 130 °C with 

4 °C min
-1

 and to 200 °C with 10 °C min
-1

 and a hold time of 10 minutes. The MS transfer 

line was set to 250 °C, ion source temp was 220 °C. The MS was set to electron ionization 

(EI) with an ionization energy of 70 eV in scan mode (m/z = 49-180, 6.5 scans s
-1

). 

Instrument control, data acquisition and evaluation were performed by the Xcalibur 1.4 data 

system (S+H Analytik). 

3.2.4 ITEX Method 

The ITEX 2 option for the Combi PAL was received by CTC Analytics (Zwingen, 

Switzerland), it consists of a heated syringe holder, a 1.3 mL Hamilton syringe with side port 

(Hamilaton, Bonaduz, Switzerland) and a trap heater. The Combi Pal was equipped with a 

Tray Cooler2 (CTC Analytics) and a Single Magnet Mixer (SMM) (Chromtech, Idstein, 

Germany). The ITEX extraction procedure was controlled by manufacturer supplied macros, 

customized in the PAL Cycle Composer (CTC Analytics). ITEX 2 traps with different 

sorbent packings, common in gas analytics, were supplied by BGB Analytik AG: Carbosieve 

S III, Carbopack C, Carboxen 1000, Tenax GR and Tenax TA. A custom trap with two parts 

Tenax GR and one part Carbosieve S III was acquired after the evaluation of the packing 

materials with the target compounds. The properties of the packing materials are summarized 

in Table 3.2. 

Parameters considered for the optimization of the ITEX method were: (i) the extraction flow, 

at which the sample headspace is passed through the sorbent packing; (ii) the total extraction 

volume passed over the trap, depending on the number of extraction strokes performed and 

the volume used for every stroke; (iii) the sample temperature during the extraction; (iv) the 

desorption temperature of the trap; (v) the desorption gas volume and (vi) the desorption gas 
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flow. Method optimization was carried out using standard solutions with a concentration of 

1 µg L
-1

 in triplicate analysis. Only the optimized parameters are given here, the optimization 

steps will be discussed in the results part. 

The samples were stored in the Tray Cooler at 25 °C, after the transfer to the SMM, the 

sample was heated and stirred at 500 rpm for 5 min to reach the extraction temperature of 

60 °C. 60 extraction strokes with an aspirating and dispensing volume of 1 mL were 

performed with an aspirating and dispensing flow of 100 µL s
-1

, respectively. The trap 

temperature was 40 °C and the syringe temperature was set to 60 °C to avoid condensation of 

water. After the extraction, the sample vial was moved back to the tray and 500 µL of helium 

were aspirated as desorption gas from the cold S/SL, to minimize the amount of water 

transferred to the column and to avoid desorption and condensation of sample components in 

the syringe. Desorption was performed in the Optic 3 after the ITEX trap was heated to 

300 °C with a desorption flow of 10 µL s
-1

. The autosampler returned to the home position 

for trap cleaning. To avoid transport of possible residuals from the trap into the syringe, the 

trap was allowed to cool down to 70 °C, before the plunger of the syringe was moved above 

the side port. A flow of nitrogen with 5-6 mL min
-1

 was applied and the trap was flushed for 

5 minutes at a temperature of 350 °C. Afterwards, the plunger was moved down and the 

temperature was set to 40 °C, to prepare the trap for the next extraction. The whole procedure 

(including injection, trap cleaning and extraction of the following sample) was optimized to 

be completed within the runtime of the GC oven program with cooling (about 45 minutes) to 

avoid unnecessary downtime. 

Table 3.2 Properties of sorbent materials (manufacturer data) 

 Carbopack C Carbosieve S III Carboxen 1000 Tenax TA Tenax GR 

Sorbent type 
Graphitized 

carbon black 

Carbon molecular 

sieve 

Carbon molecular 

sieve 

Porous organic 

polymer 

70 % Tenax 30 % 

graph. carb. 

Mesh size 80/100 80/100 60/80 80/100 80/100 

Surface Area 10 m²/g 975 m²/g 1200 m²/g 35 m²/g 24 m²/g 

Temperature 

Limit 
500 °C 400 °C 225 °C 350 °C 350 °C 

Water affinity relatively low moderate moderate low low 

Application 
low to medium 

boilers (C12-C20) 

volatile organics 

(C2-C5) 

permanent gases, 

volatiles (C2-C5) 

volatiles and semi 

volatiles (C7-C26) 

volatiles, flavors, 

fragrances 
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3.3 Results and Discussion 

A chromatogram of a 1 µg L
-1

 standard solution is depicted in Figure 3.2. An elevated 

background due to trapped water can be seen at retention times between 4.5 and 7 minutes, 

the only target compound in this area is vinyl chloride. However, when an extracted ion 

chromatogram of the base peak at m/z = 62 is created, no negative effects on peak shape and 

height are visible and no problems in quantification down to the low ng L
-1

 range could be 

observed. 

 
Figure 3.2 GC/MS chromatogram of standard analytes, in full scan mode (m/z 49-180) at 1µg L-1; the first minutes of 

an extracted ion chromatogram of m/z 62 is shown in the box. Target compounds: 1) vinyl chloride, 

2) dichloromethane, 3) MTBE, 4) ETBE, 5) chloroform, 6) benzene, 7) TAME, 8) 1,2-dichloroethane, 

9) trichloroethylene, 10) bromodichloromethane, 11) 1,4-dioxane, 12) toluene, 13) tetrachloroethylene, 

14) dibromochloromethane, 15) ethylbenzene, 16) p-xylene, 17) o-xylene, 18) bromoform, 19) MIB, 20) geosmin 

3.3.1 Sorbent materials 

Prior to the ITEX 2 method optimization, the five available packing materials were evaluated 

for the best yield of target analytes. Therefore, a sample containing 1 µg L
-1

 of each 

compound was analyzed with the default parameters (20 extraction strokes of 1 mL at 

100 µL s
-1

 flow) and desorbed at temperatures of 200 and 300 °C. The obtained peak areas 

are listed in Table 3.3. The higher desorption temperature generally gives better yields, due 

to the endothermic desorption process and was kept for all measurements. As expected, the 

Carbopack C trap was more effective with the higher boiling substances and the Carboxen 

1000 trap with low boilers. The Carbosieve S III trap was most effective with low boilers, but 

also with the high boiling MIB and geosmin. Tenax TA and the graphitized Tenax GR 
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display the best enrichment performance over the whole analyte range, but with lower yield 

in the low and high boiling substances. 

As the characteristics of Tenax GR and Carbosieve S III complemented each other, a mixed 

bed trap consisting of 2/3 Tenax GR and 1/3 Carbosieve S III was prepared and evaluated 

under the same conditions. The Tenax GR was placed in the bottom of the trap and the 

Carbosieve S III on the top, in this way the higher boiling analytes are held by and desorbed 

from the weaker sorbent and do not reach the stronger molecular sieve as is common practice 

in air analysis.
33, 34

 The overall performance of the mixed bed trap was slightly inferior 

compared to the plain Tenax GR trap, but because the results for 1,4-dioxane, MIB and 

geosmin were higher than with the other traps and their peak areas, together with that of vinyl 

chloride, were the smallest of all compounds, the mixed bed trap was used for the following 

experiments. 

Table 3.3 Obtained peak areas of the target compounds with different sorbent materials and desorption temperatures 

(average of three measurements); the bars in each row indicate the relative peak area per compound 

 

3.3.2 Extraction Parameter Optimization 

Some parameters of the extraction process are linked and have to be optimized together, 

especially considering the total extraction time. These parameters are the aspirating and 

dispensing flow, the aspirated sample volume and the number of extraction strokes. Higher 
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extraction flows usually lead to a lower extraction yield; with MIB and geosmin being the 

only exceptions of the investigated compounds, displaying increasing peak areas with 

increasing flows. The cause of this behavior is still under investigation. With a difference of 

about 30 % between 10 µL s
-1

 and 125 µL s
-1

, the effect of the extraction flow is not as 

important as the number of extraction strokes performed, where an increase in peak areas by 

a factor of five can be observed between 10 and 100 strokes of 1 mL aspiration volume. 

Considering the run-time of the GC program, the yield of 10 extraction strokes at 10 µL s
-1

 

was compared to that of 60 strokes at 100 µL s
-1

. The higher number of extraction strokes, 

and consequently sampled headspace volume, resulted in considerably higher extraction 

yields, up to a factor of 11 for MIB. This could be expected, as van Durme et al.
35

 reported 

increasing extraction yield with increased aspirated sample volume for a modified SPDE 

technique. 

Extraction temperature was checked in increments of 10 °C from 40 °C to 70 °C, as 

Jochmann et al.
23

 found the optimal extraction temperature to be 50 °C with the first 

generation ITEX system, using a Tenax TA trap. Up to 60 °C, the extraction yield of all 

compounds increased with rising temperatures, because of the increasing partitioning 

coefficient between headspace and sample; when the extraction temperature was raised to 

70 °C, stagnation or slight decrease of extraction efficiency was observed for the volatile 

compounds like vinyl chloride, dichloromethane, ETBE or trichloroethylene, while the 

extraction of less volatile compounds like MIB and geosmin still improved. This behavior 

can also be observed with the first generation ITEX
23

, SPDE
5, 15, 18

 and SPME
36, 37

, because 

the partitioning into the sorbent decreases with higher temperatures. Although the decrease in 

peak areas from 60 °C to 70 °C for the volatile compounds was only marginal, an extraction 

temperature of 60 °C was chosen. 

Optimized desorption parameters are the desorption temperature, the desorption gas volume 

and the desorption flow. As the influence of the desorption temperature on the analyte yield 

has already been covered in the extraction phase evaluation, only the latter two will be 

discussed here. Desorption gas volumes of 100, 500 and 1000 µL were tested. In general, the 

effect on the desorption efficiency was small, with only MIB showing a significant increase 

from 100 to 500 µL; an increase to 1000 µL slightly lowered the yield of many compounds 

and augmented the error of the measurement, thus 500 µL were set as desorption gas volume. 

Contrary to the extraction flow, variations of the desorption flow result in significantly 

increased analyte yields. Lowering the flow from 100 µL s
-1

 to 50 µL s
-1

 and finally to 
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10 µL s
-1

 increased the obtained peak area for some compounds up to a factor of five, only 

the yield of the highly volatile vinyl chloride was not influenced by the desorption flow. 

Graphical presentations of four optimization parameters are given with the examples of vinyl 

chloride as most volatile and geosmin as least volatile compound in Figure 3.3. 

 

Figure 3.3 Influence of selected extraction parameters on the obtained peak areas: (a) extraction flow; (b) number of 

extraction strokes; (c) extraction temperature; (d) desorption gas flow 

3.3.3 Method Detection Limits, Linear Range, Precision, Recovery and Extraction 

Efficiency 

The method detection limits (MDLs) were calculated following a procedure of the U.S. 

Environmental Protection Agency.
38

 The standard deviation of seven replicates (Sc) was 

calculated for each compound, at a concentration level featuring a signal to noise ratio (S/N) 

of approximately five to one, or where the slope of the calibration curve exhibited a break 

and became non-linear nearing low analyte concentrations, due to chromatographic 
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background or not totally blank free water. The MDLs were calculated according to Equation 

3.1: 

Equation 3.1                        

where t is the student’s t-value for the one-tailed test with a confidence level of 99% and six 

degrees of freedom. Sixteen-point calibration curves of seven replicates were measured in a 

concentration range from 0.1 ng L
-1

 up to 2 µg L
-1

 to obtain the required data for all 

compounds. 

The attained MDLs are mostly in a narrow range: halogenated compounds range from 

0.7 ng L
-1

 to 10.6 ng L
-1

,  the trihalomethanes in particular from 0.8 ng L
-1

 to 5.2 ng L
-1

, 

BTEX compounds from 1.2 ng L
-1

 to 5.3 ng L
-1

 and the fuel oxygenates from 0.8 ng L
-1

 to 

3.7 ng L
-1

; only 1,4-dioxane, MIB and geosmin show higher MDLs of 69.6 ng L
-1

, 32.8 ng L
-1

 

and 57.2 ng L
-1

, respectively, which may result from their low air-water partitioning 

coefficients and higher chromatographic background noise in the case of MIB and geosmin. 

The MDLs are comparable to those achieved with purge and trap systems found in the 

literature, except for MIB and geosmin (Table 3.4). 

The linear range was specified from the concentration level, where the MDL calculation has 

been performed (S/N ≈ 3-5 or changing/discontinuous slope) up to the highest tested 

concentration level, if no changes in the slope appeared. Resulting linear ranges are between 

a concentration factor of 20 for 1,4-dioxane and about 2000 for bromodichloromethane, with 

correlation coefficients ≥ 0.998 for all compounds. A higher dynamic range can be assumed, 

as all compounds exhibit linear characteristics up to the highest investigated concentration 

levels and measurements of real samples, containing BTEX concentrations up to 40 µg L
-1

, 

gave similar results undiluted and diluted to the calibrated concentration range. Also, 

Jochmann et al. observed a dynamic range over six orders of magnitude for the first 

generation ITEX.
23

 

The precision was determined as the average of the relative standard deviations (RSD, n = 7) 

of all concentration levels in the linear range. The standard deviations were below 10% for all 

analytes; p-xylene and 1,4-dioxane showing the highest deviation with 8.9%, while the other 

compounds mostly possess standard deviations in the range of 5-6%. This is also similar to 

purge and trap results. 
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Recovery was calculated after tenfold measurements of tap water spiked with 100, 500 and 

1500 ng L
-1

 of the target compounds, respectively. It is given as the proportion of the 

measured concentration minus the initial concentration of the tap water and the spiked 

amount. The recovery rates are basically between 88% and 103%, only 1,4-dioxane with just 

59% recovery stands out. This might result from matrix effects or the overall low sensitivity 

of the method for this compound. The variations of recovery between the three spiking levels 

are also small, with RSDs well below 5%, except for MTBE, 1,4-dioxane, toluene and 

geosmin. 

The extraction efficiency was calculated by multiple extractions from the same sample vial, 

according to the depletion method presented by Zimmermann et al..
39

 An exponential 

decrease of peak areas could be observed for all compounds, indicating that the same fraction 

of the sample is removed with each consecutive extraction. The extracted fractions ranged 

from 7% to 55% and increased with the air-water partitioning coefficient (see Table 3.1) of 

the compounds. When the extracted fraction was plotted against the air-water partitioning 

coefficient, a logarithmic trend could be observed. However, the correlation is not 

quantitative, because of the compound specific partitioning to the sorbent material. 

Table 3.4 Quality parameters obtained with the ITEX 2-GC-MS system, compared to purge and trap systems 

  ITEX 2 Purge & Trap 

Compound 

Target 

ions 

(m/z) 

MDL 

(µg L-1) 

Linear 

range 

(µg L-1) R² 

Precision 

(%) 

Recovery 

(%) 

Extraction 

yield 

(%) 

MDL 

(µg L-1) 

RSD 

(%) 

Ref. 

 

Vinyl chloride 62 0.008 0.02-2.0 0.999 5.3 

(n=63) 

103 ± 3.8 36 0.008  40 

Dichloromethane 49, 84 0.01 0.03-2.7 0.999 5.5 

(n=63) 

97 ± 2.2 21    

MTBE 73 0.004 0.01-1.5 0.999 6.1 

(n=63) 

88 ± 10.1 28 0.001 4.7 41 

ETBE 59, 87 0.001 0.004-1.5 0.998 6.6 

(n=77) 

94 ± 1.8 34 0.009 5.1 41 

Chloroform 83 0.004 0.007-2.9 0.999 5.4 

(n=77) 

99 ± 3.7 35 0.008  40 

Benzene 78, 77 0.001 0.002-1.8 0.999 5.4 

(n=84) 

89 ± 2.2 24 0.002 5 41 

TAME 73, 55 0.001 0.004-1.5 0.999 5.8 

(n=77) 

95 ± 3.4 29 0.01 3 42 

1,2-Dichloroethane 62, 98 0.002 0.006-2.5 0.999 5.3 

(n=77) 

97 ± 1.1 22    

Trichloroethylene 95, 130 0.001 0.007-2.9 0.999 5.2 

(n=77) 

95 ± 1.3 49 0.003 5.3 40 

Bromodichloromethane 83, 85 0.001 0.002-4.0 0.999 6.1 

(n=91) 

97± 1.6 31 0.007 5.2 40 

1,4-Dioxane 88, 58 0.07 0.1-2.1 0.998 8.9 

(n=49) 

59 ± 13.5 10    

Toluene 92, 91 0.005 0.009-1.7 0.998 7.3 

(n=70) 

96 ± 7.7 46 0.001 4.5 41 

Tetrachloroethylene 166, 168 0.001 0.003-3.2 0.999 5.7 

(n=84) 

97 ± 0.9 55 0.004 7.3 40 

Dibromochloromethane 129, 127 0.005 0.02-4.9 0.999 5.8 

(n=70) 

98 ± 2.8 27 0.001 4.1  40 

Ethylbenzene 91, 106 0.002 0.009-1.7 0.999 8.7 

(n=70) 

93 ± 3.2 50 0.001 5.5 41 

p-Xylene 91, 106 0.004 0.009-1.7 0.999 8.9 

(n=70) 

117 ± 2.3 49 0.001 4.9 41 

o-Xylene 91, 106 0.005 0.02-1.7 0.999 6.9 

(n=63) 

90 ± 2.6 45 0.002 4.7 41 

Bromoform 173, 175 0.002 0.006-5.8 0.999 5.7 

(n=84) 

94 ± 4.2 19    

2-Methylisoborneol 95, 107 0.03 0.1-2.0 0.999 5.5 

(n=49) 

94 ± 2.1 7 0.001 5.6 25 

Geosmin 112, 55 0.06 0.1-2.0 0.999 5.1 

(n=49) 

88 ± 9.1 10 0.002 6.1 25 
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3.3.4 Application to Real Samples 

The method was tested on different aqueous samples: (i) tap water, which was also used for 

the recovery calculations, (ii) water from a pond near the university campus, (iii) water from 

a reservoir for drinking water production, withdrawn in 30 m depth and (iv) four kinds of 

soda in plastic bottles, acquired in the university cafeteria. 

The results are summarized in Table 3.5. The guideline or limit values for drinking water 

were exceeded neither in the tap water and sodas, nor in the reservoir- or pond water. Except 

for chloroform and toluene in soda a and the xylenes in soda d, all concentrations were well 

below 1 µg L
-1

, but traces of many compounds can be found in all samples. Although the 

sampling took place in late autumn, outside the growing period of blue-green algae, MIB 

could be detected in the water of the pond, which is heavily eutrophicated. 

Table 3.5 Results for different types of aqueous real samples (n=3) 

 Tap water Pond water Reservoir water Soda a Soda b Soda c Soda d 

  (µg L-1) RSD (ng L-1) RSD (µg L-1) RSD (µg L-1) RSD (µg L-1) RSD (µg L-1) RSD (µg L-1) RSD 

Vinyl chloride <0.008     <0.008  <0.008  <0.008  <0.008  <0.008  

Dichloromethane 0.02 1% 0.02 9% <0.01  <0.01  <0.01  0.09 5% <0.01  

MTBE 0.01 14% 0.02 12% 0.02 10% <0.004  <0.004  0.03 16% <0.004  

ETBE <0.001  <0.001  <0.001  <0.001  <0.001  <0.001  <0.001  

Chloroform 0.20 10% 0.20 6% 0.55 4% 0.98 23% <0.004  <0.004  0.09 63% 

Benzene <0.001  <0.001  <0.001  <0.001  <0.001  <0.001  <0.001  

TAME <0.001  <0.001  0.01 31% <0.001  <0.001  <0.001  <0.001  

1,2-Dichloroethane 0.04 7% 0.05 9% 0.10 13% <0.002  <0.002  <0.002  <0.002  

Trichloroethylene 0.08 10% 0.08 6% 0.17 13% 0.33 19% <0.001  <0.001  0.04 44% 

Bromodichloromethane 0.01 12% 0.01 11% 0.02 13% 0.19 17% 0.08 15% 0.14 2% 0.06 13% 

1,4-Dioxane <0.07  <0.07  <0.07  <0.07  <0.07  <0.07  <0.07  

Toluene 0.25 1% 0.43 3% 0.61 2% 1.85 15% 0.25 5% 0.33 7% 0.40 3% 

Tetrachloroethylene 0.07 1% 0.07 2% 0.13 5% 0.10 1% 0.03 6% 0.02 10% 0.01 15% 

Dibromochloromethane <0.005  0.07 3% <0.005  0.54 6% 0.53 9% 0.63 3% 0.11 3% 

Ethylbenzene 0.01 8% 0.06 11% 0.07 12% 0.07 8% <0.002  <0.002  0.05 5% 

m/p-Xylene 0.06 12% 0.05 14% 0.12 9% 0.16 5% 0.07 20% 0.07 11% 0.79 5% 

o-Xylene 0.03 4% 0.04 7% 0.07 11% 0.14 4% 0.06 7% 0.04 5% 0.06 3% 

Bromoform 0.09 1% 0.09 1% 0.10 1% 0.16 4% 0.16 1% 0.16 3% 0.10 2% 

MIB <0.03  0.08 11% <0.03  <0.03  <0.03  <0.03  <0.03  

Geosmin <0.06  <0.06  <0.06  <0.06  <0.06  <0.06  <0.06  
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3.4 Conclusions 

The results show that the ITEX 2 option can be used as sensitive and robust method in trace 

analysis of water samples, delivering MDLs well below any regulatory limit values. The 

sensitivity is similar to that of P&T systems, with less instrumental effort and susceptibility to 

contamination, because of the easy exchange of the needle including the sorbent. The heating 

unit makes the desorption step independent from the injector temperature profile, which can 

cause troubles especially for SPDE, where the coating is spread over the length of the needle. 

Many sorbents well known from gas analysis and P&T are available as trap materials and 

mixed bed traps tailored for broad analyte ranges are also possible. 
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4 In-tube Extraction-GC/MS analysis of volatile beer aroma compounds 

Parts of this chapter have been accepted for publication in modified form in Laaks, J. Jochmann, M. A., 

Schilling, B.; Molt, K.; Schmidt, T. C., In-tube Extraction-GC/MS as High Capacity Enrichment Technique for 

the Analysis of Alcoholic Beverages. Journal of Agricultural and Food Chemistry 2014, DOI: 

10.1021/jf405832u © American Chemical Society 2014 

4.1 Introduction 

The aroma of beer is the main quality feature for brewers, as well as for the consumers and it 

is important that an established, well known brand character is consistent over time, to satisfy 

the expectations of customers.
1
 However, quality ratings by expert panels may be based on 

different criteria than ratings performed by consumers
2
 and a stale beer has been found to be 

more acceptable for drinkers, when it was presented unbranded and they had no expectations 

how the beer should taste, compared to a branded presentation.
3
 

A wide variety of compounds is responsible for the beer aroma. Depending on their 

contribution to the overall beer aroma, the flavor-active compounds can be classified in four 

groups (i) primary flavor constituents, (ii) secondary flavor constituents, (iii) tertiary flavor 

constituents and (iv) background flavor constituents. Examples for primary flavor 

constituents are ethanol, carbon dioxide or hop bitter substances, which cause a significant 

change of aroma, if either one of them is removed. The major element of beer aroma is 

contributed by the entity of the secondary flavor constituents but the absence of a single 

compound of this group would only lead to a minor change in flavor. Tertiary flavor 

constituents cannot be perceived individually and all together they add only complementary 

aromas to the beer, while background flavor constituents may require many similarly 

flavored compounds to result in a perceptible effect.
4
 

The most important alcohols in beer, next to ethanol, are the fusel alcohols 1-propanol, 2-

methylpropanol, 2-methylbutanol, 3-methylbutanol and phenethylalcohol, which belong to 

the secondary flavor constituents and can also be oxidized to the corresponding aldehydes 

during beer aging.
5
 Trans-2-nonenal was first identified to cause cardboard flavor in beer, 

with a flavor threshold of 0.1 µg L
-1

 but other linear C4-C10 alkanals, alkenals and alkedienals 

have been found to have similar flavor properties, too. Another group of aldehydes is formed 

by the Strecker degradation of amino acids; but only two of the so-called Strecker aldehydes, 

methional and phenylacetaldehyde, are considered to be relevant for stale flavor formation, 
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while the others could be used as suitable markers for beer oxidation.
6
 Benzaldehyde 

however, which also belongs to the Strecker aldehydes and gives an almond aroma, can be 

formed during the malting process, also.
7
 Acetaldehyde is considered as an off-flavor, which 

gives beer an unfinished “green apple” aroma. Other secondary flavor constituents with fruity 

flavors are volatile esters like ethyl butanoate, ethyl hexanoate, ethyl octanoate and ethyl 

decanoate, also called “apple esters”, 3-methylbutyl acetate or “banana ester” and ethyl 

acetate as a light, solvent-like flavor.
4
 They are produced during fermentation and can be 

degraded by yeast induced ester hydrolysis during storage, while other esters, like ethyl 3-

methylbutanoate or diethyl succinate, are formed during beer aging.
6
 A general decrease of 

fruity flavors and an increase of caramel and burnt sugar aromas can be observed during beer 

storage.
8
 

The main ingredients of beer are water, malt, hop and yeast; although other ingredients like 

fruits and spices may be added for specialty beers. The yeast is responsible for the synthesis 

of the main flavor constituents and can be separated in two general classes, top- or warm-

fermenting yeast, which ferments at temperatures of 15-25 °C, while bottom- or cold-

fermenting yeast ferments at temperatures of 6-14 °C and can also use melibiose, while top-

fermenting yeast cannot.
9
 The fermentation at higher temperatures is faster and results in 

higher concentrations of higher alcohols and esters with fruity aromas.
10

 Traditionally, top-

fermenting yeast is also known as ale yeast and bottom-fermenting yeast as lager yeast, 

although the brewing procedure of some top-fermented beers also includes cold storage for 

conditioning. 

The analysis of alcoholic beverages usually requires an extraction procedure, to separate the 

aroma compounds, which come from many chemical classes with varying polarity and 

volatility, from the matrix. Classical methods are liquid-liquid extraction, vacuum or steam 

distillation, supercritical fluid extraction, ultrasound extraction and solid phase extraction.
11-14

 

In this way, more than 620 constituents have been reported in different types of beers by 

1996, but many of them do not contribute to the beer aroma and the flavor impact of volatiles 

is now more in the focus of research.
15

 This can be achieved by methods, which reflect the 

release of aroma compounds from the matrix in a similar way as in a sensory analysis, i.e. 

static or dynamic headspace techniques.
12

 They include purge and trap, desorption tubes, 

sorbent packed micro columns and, particularly in recent years, microextraction techniques 

like SPME.
1, 7, 8, 13-21
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ITEX is a relatively new, fully automated microextraction technique for xyz-autosamplers 

which uses a sorbent filled tube with a fixed steel needle, which is attached to a gas-tight 

syringe and surrounded by an electrical heater for thermal desorption.
22, 23

 The analytes are 

enriched on the sorbent material by repeated pumping of the sample headspace through the 

sorbent bed by aspirating and dispensing of the syringe. Analyte injection to the GC is 

performed after the trap is heated to the set desorption temperature, facilitated by a desorption 

gas, which can either be a portion of the sample headspace or carrier gas aspirated from the 

inlet system. Afterwards, the trap is heated and flushed with nitrogen through the syringe 

side-port hole, to avoid carryover. So far, ITEX has been used for the analysis of volatile 

environmental pollutants
22, 23

, alcohol degradation products from blood and urine
24

, aliphatic 

hydrocarbons from petroleum source rock
25

 and in the food area for the analysis of Torreya 

grandis Aril extracts
26

, wine and beer
20, 27

 and sea-buckthorn
28

. The aim of this work was to 

develop and evaluate an ITEX method for the analysis of major aroma compounds from 

alcoholic beverages. Therefore, a wide variety of custom prepared ITEX traps, featuring 

different kinds of commercial sorbent materials, has been prepared and evaluated, including 

(to my best knowledge) the first use of an absorbent ITEX trap filled with PDMS. Finally, the 

found method was applied in the analysis of 46 samples of six beer varieties, established in 

Germany. 

4.2 Experimental 

4.2.1 Chemicals, Samples 

Pure substances for standard preparation were purchased from different suppliers: 

acetaldehyde, 1-butanol, 2-butanol, tert-butanol, ethyl acetate, 2-ethylhexanol, ethyl 

octanoate, 1-hexanol, 2-methylbutanol, 3-methylbutanol, 2-methylpropanol, 1-pentanol, 3-

pentanol, 1-propanol and 2-propanol from Fluka (Sigma-Aldrich, Steinheim, Germany); ethyl 

butanoate, ethyl decanoate, ethyl hexanoate, ethyl 3-methylbutanoate, geraniol, linalool, 3-

methylpentanol, 2-phenethyl acetate and trans-2-nonenal from Aldrich (Sigma-Aldrich); 

benzaldehyde, 3-methylbutyl acetate and (R)-(+)-limonene from Sigma-Aldrich and diethyl 

succinate from Merck (Darmstadt, Germany). CAS registry numbers, analytical grades, 

logarithmic air-water (log Kaw) and octanol-water partitioning constants (log Kow) of all 

compounds can be found in Table 4.1. Stock solutions were prepared with ethanol (99.8%) 

from Riedel de Haën (Seelze, Germany). Analytical grade water from a PURELAB Ultra 

Analytic water purification system (ELGA LabWater, Celle, Germany) was used to prepare 

standard solutions and to dilute samples. 
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4.2.2 Standard- and Sample Preparation 

Two stock solutions were made; the first (Stock 1) was used for extraction phase evaluation 

and method optimization and contained 500 µL L
-1

 of each analyte, except of the aldehydes 

and limonene, which have been added to the compound set, later. The second stock solution 

(Stock 2) was prepared to adjust for the differences in sensitivity between analytes and was 

composed to cover the whole linear range of all analytes for a more efficient calibration 

procedure. The composition of the second stock solution is given in Table 4.1. The highest 

concentrated calibration solution was prepared with 200 µL of Stock 2 filled up to 200 mL 

with water; the lower concentration levels were prepared by a serial dilution with a dilution 

factor of two, resulting in a 14-point calibration spanning a concentration factor of 8192. 

46 Beers from six German varieties Altbier (A, n=4), Helles (H, n=6), Kölsch (K, n=6), 

Pilsener Bier (P, n=25), Schwarzbier (S, n=1) and Weizenbier (wheat beer) (W, n=4) were 

analyzed. Three varieties are produced with top-fermenting yeast, they were Kölsch, which is 

a light lager, Weizenbier, where a major proportion of barley is replaced by malted wheat and 

Altbier, a dark lager which gets its colour from roasted malt. The other three varieties are 

produced with bottom-fermenting yeast and are Helles, a light lager, Schwarzbier, a dark 

lager and Pilsener Bier, which is a pale lager with hoppy aroma. Two Pilsener and one 

Weizen were alcohol-free beers (marked with \alc). The beer samples have been cooled on 

ice to minimize the loss of volatile aroma compounds to the gas phase, before they were 

diluted by a factor of ten. Because precise measurement of the liquid volume of beer is 

difficult due to foam formation, 10 g of beer have been weighted in a 100-mL volumetric 

flask and were filled up with water. The gas content of the diluted solution was then low 

enough to be handled by a volumetric pipette. 

10 mL of each standard or sample solution were transferred into a 20-mL amber headspace 

vial (BGB Analytik AG, Boeckten, Switzerland), with an 8×3 mm PTFE laminated magnetic 

stir bar (VWR International GmbH, Darmstadt, Germany). The vials were closed by 

magnetic screw caps with rubber/PTFE septa (BGB Analytik AG) 
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Table 4.1 Compound information and composition of stock solutions; log Kaw and log Kow taken from the 

experimental data database of the EPI SuiteTM v4.11 of the U.S. Environmental Protection Agency29, if not stated 

otherwise 

Compound CAS-nr. Purity log Kaw log Kow Stock 2 concentration 

  (%) (25°C)  mmol L-1 (g L-1) 

Alcohols       

1-Propanol 71-23-8 ≥ 99.9 -3.52 0.25 40.1 2.41 

2-Propanol 67-63-0 ≥ 99.9 -3.48 0.05 39.2 2.36 

2-Methylpropanol 78-83-1 ≥ 99.8 -3.40 0.76 43.3 3.21 

1-Butanol 71-36-3 ≥ 99.9 -3.44 0.88 43.7 3.24 

2-Butanol 78-92-2 ≥ 99.8 -3.43 0.61 43.5 3.23 

tert-Butanol 75-65-0 ≥ 99.8 -3.43 0.35 31.6 2.34 

2-Methylbutanol 137-32-6 ≥ 99.5 -3.24 1.29 37.2 3.28 

3-Methylbutanol 123-51-3 ≥ 99.8 -3.24 1.16 36.7 3.24 

1-Pentanol 71-41-0 ≥ 99 -3.27 1.51 37.0 3.26 

3-Pentanol 584-02-1 ≥ 99.5 -3.09 1.21 37.0 3.26 

3-Methylpentanol 589-35-5 99 -3.14* 1.75* 32.3 3.30 

1-Hexanol 111-27-3 98 -3.16 2.03 31.8 3.25 

2-Ethylhexanol 104-76-7 ≥ 99.5 -2.97 2.73* 38.4 5.00 

       

Aldehydes       

Acetaldehyde 75-07-0 ≥ 99.5 -2.56 -0.34 35.6 1.57 

Benzaldehyde 100-52-7 ≥ 99 -2.96 1.48 39.6 4.20 

trans-2-Nonenal 18829-56-6 97 -2.02* 3.06* 36.2 5.08 

       

Esters       

Ethyl acetate 141-78-6 ≥ 99.9 -2.26 0.73 40.7 3.59 

Ethyl butanoate 105-54-4 99 -1.79 1.85* 37.8 4.40 

Ethyl 3-methylbutanoate 108-64-5 98 -1.54 2.26* 33.2 4.32 

3-Methylbutyl acetate 123-92-2 > 99 -1.62 2.25 33.6 4.38 

Ethyl hexanoate 123-66-0 99 -1.53* 2.83* 30.3 4.37 

Ethyl octanoate 106-32-1 ≥ 98 -1.28* 3.81* 35.2 6.07 

Ethyl decanoate 110-38-3 99 -1.04* 4.79* 34.4 6.90 

Diethyl succinate 123-25-1 99 -4.67 1.20 35.8 6.24 

2-Phenethyl acetate 103-45-7 99 -3.11* 2.30* 37.7 6.20 

       

Terpenes       

Geraniol 106-24-1 98 -3.33 3.56 34.6 5.33 

Limonene 5989-27-5 97 0.12 4.57 37.0 5.04 

Linalool 78-70-6 ≥97 -3.06 2.97 33.8 5.22 
* Values estimated by EPI SuiteTM v4.11 programs HenryWin v3.2 and KOWWIN v1.68 

4.2.3 Sorbent Materials 

Nine sorbent materials were tested for their extraction efficiency for the target analytes, they 

were Carbopack C (CC), Carboxen 1000 (C1000), Carbosieve S III (CSIII), Tenax TA (TTA) 

(Poly-(2,6-diphenyl-)-p-phenyloxide), Tenax GR (TGR) (Tenax TA with graphitized carbon), 

HayeSep D (HSD) (divinylbenzene (DVB)), multi-walled carbon nanotubes (MWCNTs) 

(Baytubes C 150 HP, Bayer Material Science, Leverkusen, Germany), polydimethylsiloxane 

(PDMS) and Carbowax 20M (polyethylene glycol (PEG) with a molecular weight of 20000); 

more information can be found in Table 4.2. PDMS and PDMS blue (PDMSb) particles were 

prepared from white silicone and IceBlue septa (Restek Corporation, Bellefonte, PA, USA) 

which have been frozen with liquid Nitrogen and were ground and sieved subsequently. 

Carbowax 20M could only be applied as a fraction of 10% in a mixed bed trap with PDMS 



In-tube Extraction-GC/MS analysis of volatile beer aroma compounds 

82 

 

because it melts at desorption temperature and might drip out of the trap or block it, after 

cooling down again. A two-sorbent bed, prepared of ⅔ Tenax GR and ⅓ Carbosieve S III, 

was used based on previous experiences,
23

 resulting in a total of eleven different ITEX traps 

tested. 

Table 4.2 Properties of sorbent materials used (manufacturer data, if not stated otherwise; n.a. is not available) 

Sorbent Sorbent type 

Specific 

surface 

area 

Temperature 

limit Water affinity 

Typical 

applications 

Carbopack C 
Graphitized 

carbon black 
10 m2 g-1 500 °C Relatively low 

Low to medium 

boilers (C12-C20) 

Carboxen 1000 
Carbon molecular 

sieve 
1200 m2 g-1 225 °C Moderate 

Permanent gases, 

volatiles (C2-C5) 

Carbosieve S 

III 

Carbon molecular 

sieve 
975 m2 g-1 400 °C Moderate 

Volatile organics 

(C2-C5) 

Tenax GR 

70% porous 

organic polymer/ 

30% graphitized 

carbon 

24 m2 g-1 350 °C Low Volatiles, flavors 

Tenax TA 
Porous organic 

polymer 
35 m2 g-1 350 °C Low 

Volatiles and 

semi-volatiles 

(C7-C26) 

HayeSep D 
Porous organic 

polymer 
795 m2 g-1 290 °C Low Volatiles (C1-C6) 

MWCNT 
Multi wall carbon 

nanotubes 
a) 211 m2 g-1 n.a. n.a. n.a. 

PDMS & 

PDMS blue 
Silicone rubber Absorbent 250 °C Low 

Unpolar volatiles, 

semi-volatiles 

Carbowax 20M 
Polyethylene 

glycol 
Absorbent 225 °C High 

Polar semi-

volatiles 

a) BET measurement 

4.2.4 Sample Extraction and Injection 

Sample extraction and injection were executed by a CTC Combi PAL autosampler (Axel 

Semrau, Sprockhövel, Germany), holding a thermostated TrayCooler2 for 20-mL headspace 

vials, a heat able Single Magnet Mixer (SMM) (Chromtech, Idstein, Germany) and the ITEX 

II option kit (CTC Analytics AG, Zwingen, Switzerland), consisting of a heated syringe 

holder for a 1.3-mL gas-tight Hamilton syringe with side port (Hamilton, Bonaduz, 

Switzerland) and the ITEX trap heater. The extraction was performed by custom made 

macros. Only the optimized ITEX procedure, used for sample analysis, is presented here, 

more details regarding method development are given in the results and discussion section. 

The samples were incubated and stirred at 70 °C for 20 minutes in the SMM to equilibrate the 

sample headspace prior to extraction. During the incubation time, the ITEX trap was heated 

to 250 °C, while being flushed with 5 mL min
-1

 of nitrogen for 10 minutes, for 

preconditioning. After the trap was cooled down to 30 °C and the incubation time was over, 
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65 extraction strokes of 1 mL were performed with a flow of 100 µL s
-1

. Then 1 mL of 

helium was aspirated and dispensed at an unconnected ATAS GL Optic 3 injection port (Axel 

Semrau), to remove residual carbon dioxide of the sample from the void volume of the trap. 

Following the transfer of the trap to the split/splitless injector (S/SL), 500 µL of helium were 

aspirated as desorption gas and after the trap was heated to 250 °C, injected with a desorption 

flow of 50 µL s
-1

. The whole procedure for each sample (including incubation/equilibration, 

extraction, injection and needle flushing) takes about 42 minutes and can be performed in 

parallel to the GC analysis, thus making the GC temperature program the total analysis time-

determining step. 

4.2.5 GC/MS Measurements 

All measurements were made using a Thermo Trace GC Ultra, coupled to a Thermo DSQ II 

single quadrupole mass spectrometer (S+H Analytik, Mönchengladbach, Germany). The GC 

was equipped with an Optic 3 programmable temperature vaporizer with a nitrogen cooled 

cold trap for on-column focusing and a S/SL injector, where the column was connected. 

Injection was performed into the S/SL set to 200 °C in splitless mode, the column flow was 

set to 1.5 mL min
-1

 constant flow for 31 minutes and was then raised to 2 mL min
-1

 until the 

end of the temperature program, to accelerate the elution of low volatile compounds. After 

injection, the analytes were transferred to an uncoated 0.53 mm inner diameter (i.d.) fused 

silica capillary (BGB Analytik AG) and cryo-focused in the cold trap at -150 °C. After a hold 

time of two minutes, the trap was heated with 50 °C s
-1

 to 250 °C and the analytes were 

transferred to the chromatographic column. Separation of compounds was performed on a 

Stabilwax-DA fused-silica capillary column (cross bonded carbowax (PEG)) with 60 m 

length, 0.32 mm i.d. and 1 µm film thickness (Restek GmbH, Bad Homburg, Germany). The 

GC oven temperature program started at 35 °C for 5 min and then heated with 5 °C min
-1

 to 

110 °C, held for 2 min and heated further with 10 °C min
‒1

 to 200 °C with a hold time of 

10 min. The MS transfer line was set to 220 °C, the ion source temperature was 200 °C; 

Electron ionization (EI), with an ionization energy of 70 eV, was used in scan mode (m/z = 

29-200), with a scan rate of 500 amu s
‒1

. Instrument automation, data acquisition and data 

processing were performed using the Xcalibur 1.4 data system (S+H Analytik). 
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4.3 Results and Discussion 

4.3.1 Method Optimization 

The ITEX procedure comprises of three main steps: sample extraction, sample injection and 

trap conditioning for the next analysis; several parameters can be optimized in each of these 

steps. The extraction parameters, next to the choice of the most suitable extraction material, 

are the temperatures of the trap and the sample solution and the number, volume and flow of 

the extraction strokes. The parameters for injection are the desorption gas volume and flow 

and the desorption temperature; trap conditioning includes conditioning temperature and 

time. 

Two of the extraction parameters will not be discussed here. The first is the choice of the 

extraction material, which will be covered in the next section, because it was performed after 

the optimization of the parameters and the second is the trap temperature, which should 

normally be set to the lowest possible value, due to the exothermic nature of the sorption 

process. Sample temperatures were tested from 40 °C to 80 °C in intervals of 10 °C. The 

majority of analytes shows increasing extraction efficiency in the whole tested range, but 

about a third of the analytes begin to lose sensitivity, when the temperature is raised from 

70 °C to 80 °C. Here it is an advantage of ITEX that the sorption material is located outside 

of the heated sample vial, because a similar loss of sensitivity has been observed for the 

analysis of terpenes using HS-SPME, already at temperatures above 40 °C.
30

 The extraction 

flow and the number of extraction strokes have to be optimized together, because their 

combination defines the efficiency and duration of the extraction procedure. An extraction 

flow of 10 µLs
-1

 gives the highest peak areas for all compounds, which drop to 33-94% of the 

area at 50 µLs
-1

 and 28-88% at 100 µLs
-1

, with averages of 63% and 52%, respectively. On 

the other hand, when 10 extraction strokes are defined as 100%, the extracted amount 

increases to 119-1337% for 100 extraction strokes, with an average of 626%. The average 

peak areas for 25, 50 and 75 extraction strokes were 228%, 299% and 399%, respectively. No 

analyte reached equilibrium within the tested 100 extraction strokes. As an increase in the 

number of extraction strokes by a factor of ten results in about six times larger peak areas, 

while the same increase of the extraction flow only halves the peak areas, a high number of 

extraction strokes with a high flow gives a better extraction efficiency in the same extraction 

time. Consequently, 65 extraction strokes with an extraction flow of 100 µLs
-1

 were chosen, 

which was the maximum to be performed in parallel to the GC-oven runtime. 
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Desorption volumes of 100 µL, 500 µL and 1000 µL were tested. An increase of the resulting 

peak areas for most compounds can be observed from 100 µL to 500 µL, while a further 

increase is only visible for low volatile compounds, like geraniol, ethyl decanoate or diethyl 

succinate, when the desorption volume is raised from 500 µL to 1000 µL. Because the gain in 

sensitivity was not significant and limited to few compounds, a desorption volume of 500 µL 

was chosen. The desorption flow showed a similar behavior, with a decline of peak areas 

from a flow of 10 µL s
-1

 to 50 µL s
-1

, while only the peak areas of the low volatile 

compounds further decrease at a flow of 100 µL s
-1

. As the reproducibility got better with 

higher desorption flows, 50 µL
-1

 were used. The optimization results also agree with the ones 

found for environmental contaminants in an earlier work.
23

 

4.3.2 Choice of Extraction Phase Material 

The comparison of the extraction materials was performed with a 5 µgL
-1

 standard solution 

and the optimized method parameters given before, but with adapted desorption temperatures 

for each trap. Based on previous experiences, which indicated that the best desorption 

efficiency is reached at high desorption temperatures
23

, the desorption temperature was set at 

or near the maximum temperature for each sorbent (see Table 4.2). The desorption 

temperatures were set to 300 °C for Carbopack C, Carbosieve S III, Tenax GR, Tenax TA 

and the MWCNTs, to 250 °C for HayeSep D and PDMS and to 200 °C for the trap containing 

Carbowax 20M and C1000. 

A summary of the total extracted amounts with each trap is given in Figure 4.1. The best 

overall extraction yield was achieved with HayeSep D, Tenax GR, Tenax TA and Carbopack 

C; the PDMS based absorbent traps were in a medium range and the traps using molecular 

sieves and carbon nanotubes had the lowest yield. Information on the extracted amount per 

compound can be found in Table 4.3. HSD was most effective for the trapping of long chain 

esters and terpenes, but less suitable for the more polar alcohols, where TTA was the best 

sorbent. TGR had a lower efficiency for alcohols than TTA and was best suited for short 

chain esters. CC as an apolar material also had the highest yields for esters and long chain 

alcohols, but, complementary to HSD, very low efficiency for long chain esters and terpenes, 

which may be caused by irreversible adsorption or the degradation of analytes; similar 

reasons might be responsible for the low extraction yields of the traps containing carbon 

molecular sieves. It has been found, that the surface of carbon based adsorbents can be 

activated during the conditioning, even with a stream of inert gas and then cause analyte loss 

by transformation reactions, especially for alcohols and carbonyl compounds.
31

 The same 



In-tube Extraction-GC/MS analysis of volatile beer aroma compounds 

86 

 

may also apply for the MWCNTs, where more research is undergoing at the moment. 

Because the sensitivity for esters was generally better than for alcohols and the differences in 

the total extracted amount were quite small, the carbon based adsorbents were excluded and 

TTA was initially chosen as sorbent material. 

However, when the linear range was determined during method evaluation, it proved to be 

quite limited for TTA (see Table 4.4) which lead to an inferior repeatability for beer samples, 

than for standard solutions, because of competition and displacement effects of ethanol. 

Moreover, the compound set was extended with aldehydes, including benzaldehyde, which 

can be formed as degradation product of Tenax TA during thermal desorption.
32

 When the 

carbon and Tenax based sorbents were ruled out because of their reactivity with alcohols and 

carbonyl compounds or interfering degradation product formation, only HSD and the PDMS 

based traps remained. However, HSD as adsorbent material would suffer from the same 

competition effects as TTA while the equilibrium conditions of absorbent materials do not 

vary until loadings of several percent are present.
33

 This rendered a re-evaluation of sorbent 

materials for the enhanced compound set unnecessary and consequently, the trap containing 

PDMS blue was used, which had the best performance of the remaining sorbents and 

promised to possess a wider linear range, being an absorbent material. 

 
Figure 4.1 Summarized peak areas with average repeatability of all analytes 
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Table 4.3 Comparison of extraction trap efficiencies by the average peak areas of a triplicate analysis of a 5 µgL-1 

standard solution and the average of the relative standard deviations of all compounds 

  CC C1000 CSIII 
C.SIII/ 

TGR 
TGR TTA HSD 

MW 

CNT 
PDMS 

PDMS 

blue 

PDMS

/ PEG 

  Peak area /1,000,000 

Alcohols 
           1-Propanol 5.2 7.6 7.8 2.7 7.6 6.4 2.0 0.1 3.7 3.4 2.7 

2-Propanol 0.3 0.6 0.8 n.d. 0.5 0.4 0.4 n.d. 0.3 0.3 0.2 

2-Methylpropanol 0.6 1.4 1.2 1.2 1.2 5.1 1.5 1.6 1.0 0.9 0.8 

1-Butanol 2.8 0.7 3.0 1.0 4.9 4.8 4.4 0.1 1.9 2.4 1.8 

2-Butanol 10.8 18.5 16.1 2.5 22.2 14.5 14.3 0.07 28.7 41.0 36.2 

tert-Butanol 14.4 31.5 11.4 4.8 27.6 5.5 24.7 0.7 22.1 12.2 11.9 

2-Methylbutanol 5.7 5.4 3.7 2.5 9.1 7.4 6.6 0.3 3.1 4.1 3.3 

3-Methylbutanol 5.6 7.0 2.3 2.1 5.8 4.6 3.9 1.2 1.9 2.5 2.0 

1-Pentanol 4.3 2.6 1.9 1.5 3.4 6.0 4.4 0.2 1.9 2.5 2.1 

3-Pentanol 4.0 3.7 6.3 1.1 7.9 30.4 4.9 0.2 6.4 6.5 7.6 

3-Methylpentanol 6.3 2.6 1.6 1.6 8.0 8.3 5.9 0.4 3.1 3.9 3.0 

1-Hexanol 9.0 3.0 1.9 2.3 10.2 12.9 7.9 1.2 4.4 5.0 3.9 

2-Ethylhexanol 24.0 4.0 3.1 4.4 24.1 40.5 39.2 6.7 24.9 14.4 11.8 

  
           

Esters 
           

Ethyl acetate 10.4 26.1 20.9 15.9 21.9 18.7 20.2 4.5 10.1 6.5 6.5 

Ethyl butanoate 144.1 69.3 37.3 43.9 129.8 109.3 145.2 7.2 56.1 39.7 47.6 

Ethyl 3-methylbutanoate 34.8 9.7 4.6 12.5 94.0 36.7 38.3 4.1 26.8 37.7 16.6 

3-Methylbutyl acetate 113.4 7.5 10.4 18.0 61.3 1.4 33.9 47.2 49.6 99.3 57.2 

Ethyl hexanoate 111.5 16.1 7.5 23.7 134.9 118.1 92.8 11.2 40.6 71.8 52.2 

Ethyl octanoate 73.7 7.1 5.9 28.5 85.1 154.5 124.8 35.3 115.6 73.8 55.0 

Ethyl decanoate 114.5 40.8 41.8 73.5 129.5 114.3 181.7 32.8 58.5 126.8 141.4 

Diethyl succinate 0.07 0.7 0.3 0.3 1.4 0.7 1.7 0.05 0.8 0.5 0.7 

2-Phenethyl acetate 1.2 2.1 1.2 4.4 10.8 6.6 23.5 0.7 9.8 4.5 5.8 

  
           

Terpenes 
           

Geraniol 0.3 2.2 2.1 0.8 3.2 2.2 6.5 0.4 2.2 3.4 3.6 

Linalool 3.3 1.4 1.0 1.2 1.8 16.5 20.6 5.1 13.2 6.3 5.6 

                        

Sum 700.3 271.6 194.1 250.4 806.2 725.8 809.3 161.3 486.7 569.4 479.5 

Average RSD (%) 12.3 5.8 8.4 14.4 14.5 6.5 10.1 10.4 8.0 11.3 10.0 

4.3.3 Method Performance Parameters 

Method performance parameters were evaluated for the initially used TTA trap and the 

finally used PDMSb trap. The method detection limit (MDL), precision and linear range were 

determined for both traps, the recovery and extracted analyte fraction only for the latter one. 

The results are summarized in Table 4.4. 

The MDL of each analyte was determined by a procedure of the U.S. Environmental 

Protection Agency, as the minimum concentration of an analyte that can be reported greater 

than zero with a confidence of 99%. It is based on the standard deviation of a sevenfold 

analysis with an analyte concentration resulting in a signal to noise ratio of about three to 

five.
34

 The precision was calculated as the average of all calibration points within the linear 

range and a range factor (RF) was defined by dividing the upper limit of the linear range by 

the lower limit, for an easier comparison of linear ranges between sorbent materials. The 
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MDLs which were achieved with the TTA trap ranged from 0.01 µg L
-1

 to 17.5 µg L
-1

 with a 

median of 0.2 µg L
-1

; except for benzaldehyde, where no quantification was possible because 

of artifact formation by TTA during desorption. The average MDL for the alcohols is 1 µg L
-

1
, while it is 0.17 µg L

-1
 for the esters without diethyl succinate (2.1 µg L

-1
 when included), 

which is mainly influenced by the much higher air-water partitioning coefficient (Kaw, see 

Table 4.1) of most of the esters, than by the selectivity of TTA towards the analytes. Kaw of 

diethyl succinate is three orders of magnitude lower, than of the other esters and the lowest of 

all analytes. Precision with TTA was consistent in a narrow band between 6.2% and 10.0%, 

but the linear range was quite limited and RF was spanning from 25 to 540, with an average 

of 136 and a median of 88, giving less than two orders of magnitude for most analytes. The 

precision achieved for beer samples was worse than for standard solutions (>20% RSD), due 

to the low RF, the wide range of analyte concentrations in the samples and competition 

effects, even when the beer has been diluted by a factor of 50. Zapata et al. experienced 

similar problems with mass saturation of TTA and solved it by using a stronger sorbent 

(Bond Elut ENV) and very small sample amounts (10 µL, diluted by a factor of 5) to achieve 

quantitative analyte extraction.
20

 A different approach has been chosen here, where an 

absorbent material was used, which does not suffer from competition and saturation effects.
35

 

The MDLs for the PDMSb trap were mostly higher than for TTA, ranging from 0.3 µg L
-1

 to 

13 µg L
-1

, with a median of 1.6 µg L
-1

. They were lower for diethyl succinate, which had by 

far the highest MDL with TTA, 2-phenethyl acetate and geraniol; furthermore, the 

quantification of benzaldehyde was possible with PDMSb, because no artifacts were formed 

by the sorbent. The largest difference was observed with 3-methylbutyl acetate, where the 

MDL was 410 time higher with PDMSb, but apart from this, the difference was about a factor 

of ten and the sensitivity was still good enough, to dilute the samples by a factor of ten, 

before the analysis. The same trend for the sensitivities of alcohols and esters that has been 

observed with TTA also applied for the extraction with PDMSb. The precision was less 

consistent, ranging from 1.2% for 3-pentanol to 19.9% for trans-2-nonenal, but overall it was 

better, with less than 5% for the majority of analytes. The linear range improved, as it was 

expected using a sorbent based on analyte partitioning, rather than adsorption. RF was 

between 32 and 4485, with an average of 666 and a median of 391, being about 5 times 

larger. The limit of the linear range was not reached within the applied concentration range 

for 1-propanol, 2-propanol, 2-methylpropanol, 2-butanol, 2-methylbutanol, 3-methylbutanol 

and 3-pentanol, which could make the difference even bigger. 
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When the MDLs are compared to those of the SPDE (solid phase dynamic extraction) method 

for a similar compound set in Chapter 2 (Table 2.1), which was previously used to analyze 

wine samples
36

, the ITEX method is more or less sensitive, depending on the applied sorbent 

material. Compared to the results with TTA, the MDLs of the SPDE method are lower for 

diethyl succinate and 2-phenethylacetate, equal for ethyl hexanoate and 3-pentanol, and 

between 1.3 to 570 times higher for the other compounds, with a median of 3.6. With the 

PDMSb phase, the MDLs of the ITEX method are lower by a factor of four for seven of 22 

analytes, equal for 2-phenethyl acetate and higher by an average factor of five for the other 

14 compounds, analyzed in both methods. The lower MDL using the TTA phase should be 

caused by stronger sorption of the analytes and the larger sorbent volume of ITEX, compared 

to the 4.5 µL PEG phase which was used in SPDE. On the other hand, PEG is more polar 

than PDMS, making the SPDE method more sensitive for nine of 13 of the analyzed alcohols. 

As no data on the linear range of the SPDE method is available, it is difficult to estimate if 

the smaller sorbent volume has negative effects on the extraction capacity. Liu et al. 

presented a method for similar analytes from beer samples, using sol-gel derived SPME 

fibers; The limits of detection are comparable to those of the ITEX method with TTA sorbent 

and lower than ITEX with PDMSb, but the linear range of the SPME method is smaller.
37

 

The detection limits of the earlier mentioned ITEX method for quantitative extraction by 

Zapata et al. are between 3 and 117 times larger than for the method presented here; 

however, they were still low enough for the analysis in natural abundance in beer and wine. A 

comparison of linear ranges is not feasible, because it has only been determined in the 

expected analyte range.
20

 

The recovery was calculated by the analysis of pure and spiked beer samples, which were 

measured undiluted, diluted by a factor of ten and diluted by a factor of 100; the spike was 

made using 1 µL, 5 µL and 10 µL of the standard solution Stock 2 in 100 mL sample, 

respectively. In this way, the recovery for all analytes could be calculated from at least one 

analysis within the linear range; when two or all measurements were within the linear range, 

an average was calculated. The recoveries were between 91.8% for diethyl succinate and 

131.7% for 3-pentanol, with an average of 111%. Considering the difficult handling of the 

undiluted samples, due to foam formation, that had to be transferred to the sample vials after 

spiking, it seems acceptable that most analytes show recoveries of 100% ±15%. The recovery 

for 2-propanol could not be determined because the peak co-eluted with ethanol and in this 

period, the detector was turned off to avoid detector saturation, when analyzing beer samples. 
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Table 4.4 Method performance parameters of the evaluated ITEX-traps. Method detection limit (MDL), precision (as 

relative standard deviation (RSD)), linear range (absolute and range factor (RF), +: upper limit not reached within 

applied concentration range), recovery from spiked samples and extracted analyte fraction (Fe) 

 Tenax TA PDMS blue 

 MDL RSD Linear range MDL RSD Linear range Recovery Fe 

 (µg L-1) (%) (µg L-1) RF (µg L-1) (%) (µg L-1) RF (%) (%) 

Alcohols           

1-Propanol 2.1 6.2 3.2 – 80 25 7.0 1.7 37.7 – 2410+ 64+ 97.2 30.3 

2-Propanol 3.6 9.9 3.6 – 236 66 11.3 7.8 36.8 – 2343+ 64+ - 8.2 

2-Methylpropanol 1.6 9.7 3.2 – 241 75 13.0 8.8 50.1 – 3208+ 64+ 105.8 12.6 

1-Butanol 0.3 8.4 0.4 – 41 103 5.0 1.8 12.7 – 1620 128 121.4 2.5 

2-Butanol 1.1 8.8 1.6 – 242 151 3.1 2.1 6.3 – 3225+ 512+ 120.9 5.3 

tert-Butanol 0.3 8.9 0.6 – 47 78 2.2 4.5 2.3 – 146 64 104.5 5.6 

2-Methylbutanol 0.1 7.7 0.3 – 10 33 1.6 2.1 1.6 – 3276+ 2048+ 109.3 5.8 

3-Methylbutanol 0.1 7.4 0.3 – 24 80 3.0 4.2 6.3 – 3236+ 512+ 110.4 9.3 

1-Pentanol 0.2 7.1 0.2 – 81 405 1.4 7.6 6.4 – 204 32 100.0 7.2 

3-Pentanol 3.1 8.6 3.3 – 815 247 4.3 1.2 6.4 – 3260+ 510+ 131.7 6.2 

3-Methylpentanol 0.3 7.0 0.3 – 33 110 1.5 7.1 1.6 – 1648 1030 111.0 6.6 

1-Hexanol 0.08 6.9 0.2 – 16.3 82 1.1 3.5 1.6 – 1627 1017 117.3 6.4 

2-Ethylhexanol 0.08 7.3 0.08 – 33 413 1.8 15.3 2.4 – 1250 521 102.4 5.8 

           

Aldehydes           

Acetaldehyde 3.1 8.3 3.1 – 157 51 5.1 2.3 6.1 – 784 128 113.3 15.9 

Benzaldehyde - - - - 7.2 9.3 4.1 – 1050 256 106.0 5.6 

trans-2-Nonenal 0.2 7.8 0.2 – 25.4 127 0.5 19.9 0.6 – 1269 256 112.3 11.9 

           

Esters           

Ethyl acetate 0.1 8.5 0.1 – 54 540 0.6 1.8 0.4 – 1794 4485 106.8 9.8 

Ethyl butanoate 0.02 7.3 0.04 – 3.5 88 0.5 2.3 0.5 – 1099 2198 108.4 24.9 

Ethyl 3-methylbutanoate 0.06 7.3 0.4 – 26 65 0.5 2.2 0.5 – 68 136 115.4 38.9 

3-Methylbutyl acetate 0.01 8.1 0.04 – 1.1 28 4.1 1.9 4.3 – 1095 255 121.3 34.7 

Ethyl hexanoate 0.08 9.3 0.2 – 18 90 0.4 3.2 0.5 – 546 1092 120.7 35.8 

Ethyl octanoate 0.01 8.6 0.02 – 1.7 85 0.5 4.4 0.7 – 379 541 123.3 37.3 

Ethyl decanoate 0.1 10.0 0.2 – 26 130 0.7 6.4 0.8 – 108 135 125.2 47.3 

Diethyl succinate 17.5 7.6 21 – 1040 50 2.1 6.3 6.1 – 3120 511 91.8 3.6 

2-Phenethyl acetate 1.0 8.9 1.0 – 155 155 0.3 2.9 0.8 – 194 243 96.1 3.8 

           

Terpenes           

Geraniol 5.8 9.3 5.8 – 667 115 0.8 4.0 2.6 – 1334 513 103.7 5.7 

Limonene 0.07 9.5 0.08 – 4.2 53 0.7 11.6 1.2 – 1260 1050 122.6 77.9 

Linalool 0.06 7.5 0.2 – 44 220 0.9 8.4 0.9 – 163 272 109.5 2.3 

The extracted fraction (Fe) of analyte, which is removed from the sample vial in each 

analysis, was calculated following the depletion method proposed by Zimmermann et al., by 

consecutive analyses from the same sample vial.
38

 To that end three samples have been 

extracted for five times each and the logarithmic peak areas of the analytes were plotted over 

the number of extractions to obtain a linear graph, from which Fe could easily be calculated 

by the slope. Fe ranged from 2.3% for linalool to 77.9% for limonene. Here it was apparent 

that the octanol-water partitioning coefficient (Kow, Table 4.1), which can be used to estimate 

the sorption of analytes to PDMS,
35, 39

 has lower influence on the extraction efficiency than 

Kaw. Limonene has the highest Fe and the highest values for Kaw and Kow, but ethyl hexanoate 

and linalool have a similar log Kow at 2.83 and 2.97 with extracted fractions of 34.7% and 

2.3%, so that the difference must originate in Kaw. Also, 1-pentanol and geraniol have similar 
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log Kaw at -3.27 and -3.33, respectively but while log Kow of geraniol is larger by a factor of 

two, Fe of 1-pentanol is two times larger (7.2%) than for geraniol (3.56%). When Fe is plotted 

over log Kaw (Figure 4.2 a)) and log Kow (Figure 4.2 b)), a roughly linear trend can be 

observed for Kaw, while no trend is visible for Kow. However, this should be considered 

merely as a rule of thumb for ITEX-users to estimate the probable extraction efficiency, 

because the system is not in equilibrium and the air-water and octanol-water partitioning 

coefficients that can be found in literature can show quite large variations for some 

compounds. 

 
Figure 4.2 Graphical depiction of a) Fe over log Kaw, b) Fe over log Kow 

4.3.4 Quantitative Analysis 

An overview on the detected concentration ranges of all analytes and the number of samples, 

in which they were detected, is given in Table 4.5. A complete list of the beer samples and 

analytes is given in Table S 4.1 et seqq. in the supporting information of this chapter. 2-

Propanol could not be detected in the actual beer samples, because it co-eluted with the 

ethanol peak, for which the detector was turned off, to avoid saturation. If the peak would 

have been detected, quantification could have been performed by the mass selective detector, 

but, as previous work showed, only with a high RSD of about 20%.
36

 Three analytes were not 

detected in any beer sample, 3-pentanol, 3-methylpentanol and benzaldehyde were always 

below the method detection limits. Trans-2-nonenal was only detected in two samples (H06 

and P04) in a concentration of about 6 µg L
-1

, making acetaldehyde the only one of the 

investigated aldehydes, which was found in considerable amounts, with concentrations 

between 2.6 mg L
-1

 and 13.2 mg L
-1

. 

The sample concentration exceeded the determined linear range for four analytes, 

acetaldehyde ethyl acetate, 2-methylpropanol and 3-methylbutanol. In the case of ethyl 
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acetate, five of 46 samples had higher concentrations, four were about 20% higher and one 

was 78% higher. Eleven samples contained acetaldehyde above the linear range of the 

method, but only four exceeded it by more than 20%. 21 samples contained 2-

methylpropanol above the upper limit of the determined linear range, which was also the 

upper limit of the used calibration solutions, with the highest value being almost 3 times 

higher than the linear range. 33 of 46 samples had concentrations of 3-methylbutanol above 

the highest concentrated calibration solution, similar as 2-methylpropanol. The problems with 

2-methylpropanol and 3-methylbutanol have not been evident during the method 

development, because the concentration in the beer, which was used for test measurements, 

was within the linear ranges of each analyte. For future applications it needs to be checked if 

the problem can be solved by an increased calibration range, a stronger dilution of the 

samples or a combination of both. 

Eight analytes were detected in all 46 beer samples; they were 1-propanol, 2-methylpropanol, 

2-methylbutanol, 3-methylbutanol, ethyl acetate, ethyl hexanoate, ethyl octanoate and 

acetaldehyde. Ethyl butanoate, 3-methylbutyl acetate and 2-phenethyl acetate were detected 

in 45 samples and all three were missing in sample P25\alc, an alcohol-free Pilsener beer. 

Ethyl decanoate was not found in two alcohol-free beers, P25\alc and W01\alc and diethyl 

succinate was absent in four samples (P05, P24\alc, P25\alc and W01\alc), three of them were 

again alcohol-free variants. Most of these compounds belong to the secondary flavor 

constituents and play an important role in the overall beer aroma. Acetaldehyde as an off-

flavor has an individual flavor threshold of 10 mg L
-1

 in beer
4
, which was only reached in 

three samples: H06, P23 and W03 from the groups of Helles, Pilsener beer and wheat beer. 

H06 is a beer which is brought to higher alcohol content by the addition of glucose syrup, 

P23 is a rather cheap beer which might probably have insufficient storage time and W03 is a 

special dark wheat beer. 

The sum of the higher alcohols is dominated by the four fusel alcohols 1-propanol, 2-

methylpropanol, 2-methylbutanol and 3-methylbutanol, which contribute more than 99% of 

the measured higher alcohol content. The top-fermenting beers had, other than expected, a 

similar average concentration of higher alcohols (⌀ = 97.0 mg L
-1

) as the bottom-fermenting 

beers (⌀ = 97.5 mg L
-1

) and no significant difference (Welch’s t-test, on-tailed, α = 0.05, p-

value = 0.476) could be observed. The variations between the different varieties in each beer 

class were quite big and the variations within of each variety of beer could also be 

considerably. The sum of alcohols in the Pilsener beers for example was ranging from 
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51.4 mg L
-1

 in P06 to 168.4 mg L
-1

 in P15, which is a beer with increased ethanol content. No 

significant difference (p-value = 0.343) was observed for the terpenes, also. A changed 

outcome was achieved for acetaldehyde and the esters, where significant differences between 

bottom- and top-fermenting beers could be observed. With an average acetaldehyde 

concentration of 4.9 mg L
-1

 in the top-fermenting beers and 6.9 mg L
-1

 in the bottom-

fermenting beers, the difference was significant (p-value = 0.003). This can result from the 

higher fermenting temperatures of the top-fermenting beers, where initially more 

acetaldehyde is formed, but it is also faster reduced, resulting in a lower concentration in the 

finished beer.
40

 The same applied for the esters, where the average concentrations were 

12.3 mg L
-1

 for the bottom-fermenting beers and 17.8 mg L
-1

 for the top-fermenting, resulting 

in a p-value of 0.025. This result was expected, as top-fermenting yeast is known to produce 

more esters due to the higher fermentation temperature.
9, 10

 The total ester content was 

dominated by ethyl acetate, which had a concentration about ten times as high as that of the 

second highest concentrated ester, 3-methylbutyl acetate, except for the alcohol free wheat 

beer, where the difference was only about 2.5 times. The alcohol free beers lost, apart from 

the ethanol, also most of its secondary aroma constituents like the higher alcohols and esters, 

while the reduction in acetaldehyde is not as prominent. A direct comparison is only possible 

for the wheat beer, as the brand of the tested alcohol-free Pilsener beers does not offer an 

alcohol containing beer. 
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Table 4.5 Lowest and highest detected analyte concentrations, with RSD, median and the number of samples, in 

which the analytes have been detected and average (⌀) concentrations of all analytes in the different beer varieties 

with the average sum of each of the four analyte classes 
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4.3.5 Alcohol-free Beer 

A regular wheat beer and the corresponding alcohol-free variant of the same brand were 

analyzed The overlaid total ion chromatograms of the two beers are presented in Figure 4.3, 

where it can clearly be seen that the peaks of most compounds are much smaller in the 

alcohol free version. A detailed view on the analytes found in these two samples, together 

with the fraction which was lost in the making of the alcohol-free beer, is given in Table 4.6. 

The average loss was 21% for acetaldehyde, 79% for the alcohols and up to 88% for the 

esters. The levels dropped below the method detection limit for ethyl decanoate, diethyl 

succinate and tert-butanol; where, with the corresponding MDLs set as maximum possible 

remaining concentrations, the losses were at least 87%, 66% and 49%, respectively. 

Exceptions were 1-butanol and linalool, where the levels in the alcohol-free beer were higher 

than in the regular beer. However, the value for the regular beer of 1-butanol is below the 

lower limit of the linear range, which starts at 127 µg L
-1

, due to sample dilution. Linalool is 

just above the MDL, in this way the differences might, as well as for 1-hexanol, originate in 

measurement uncertainty. 

There are several ways to make alcohol-free beer: vacuum rectification, thin film 

evaporation, dialysis, reverse osmosis and arrested fermentation; common to all techniques is 

that a major part of volatile beer aroma constituents is also removed with the ethanol, but 

some methods also allow a reintroduction of parts of the aroma compounds to the beer after 

the dealcoholization. The method used in the production of the tested beers is undisclosed, 

but when the reduction ratios are compared with literature, it could be assumed to be a 

reverse osmosis or arrested fermentation technique. However, studies have shown, that the 

aroma threshold concentrations in alcohol-free beer are lower than in regular beers and in this 

way even the lower concentrations can result in a satisfying overall aroma.
41
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Figure 4.3 Total ion current chromatogram of a regular wheat beer and the alcohol-free beer of the same brand: 

(1) acetaldehyde, (2) ethyl acetate, (3) tert-butanol, (*) detector turned off for ethanol peak, (4) 1-propanol, (5) ethyl 

butanoate, (6) 2-methylpropanol, (7) 3-methylbutylacetate, (8) 2-methylbutanol, (9) 3-methylbutanol, (10) ethyl 

hexanoate, (11) 1-hexanol, (12) ethyl octanoate, (13) ethyl decanoate, (14) diethyl succinate, (15) 2-phenethyl acetate 

Table 4.6 Comparison of the measured analyte concentrations of W01, a regular wheat beer and W01\alc, the 

alcohol-free beer of the same brand, with the fraction of analytes lost in the production of the alcohol free version 

 
Regular Alcohol-free Loss 

 
Regular Alcohol-free Loss 

 
(µg L-1) (µg L-1) (%) 

 
(µg L-1) (µg L-1) (%) 

Alcohols 
 

  Esters 
  

 

1-Propanol 14702 1662 89 Ethyl acetate 22834 1012 96 

2-Methylpropanol 35716 5188 85 Ethyl butanoate 97 6 94 

1-Butanol 59 191 - 3-Methylbutyl acetate 2079 394 81 

2-Butanol n.d. 11 - Ethyl hexanoate 501 26 95 

tert-Butanol 43 n.d. ≥49 Ethyl octanoate 461 19 96 

2-Methylbutanol 8940 1640 82 Ethyl decanoate 55 n.d. ≥87 

3-Methylbutanol 35952 4034 89 Diethyl succinate 61 n.d. ≥66 

1-Hexanol 21 23 - 2-Phenethyl acetate 506 31 94 

  
 

  
   

 

Aldehydes 
 

  Terpenes 
  

 

Acetaldehyde 4414 3477 21 Linalool n.d. 10 - 

4.3.6 Variety Discrimination by LDA 

Because a significant discrimination of top- and bottom-fermenting beers has been possible 

by just comparing the concentration of acetaldehyde and the sum of esters, the data was 

subjected to a multivariate analysis, to perform a discrimination of the varieties within each 

class, also. A Linear Discriminant Analysis (LDA) was performed with the free software 

environment R 3.0.1 (The R Foundation for Statistical Computing, www.r-project.org) using 

the “lda”-function from the “MASS” package 
42

, on semi-quantitative data. To that end, the 

peak areas of the quantified analytes present in almost all samples were combined with the 
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peak areas of several other compounds that could also be detected in nearly all samples, like 

2- and 3-methylbutanal, some formate- and acetate esters and dimethyl sulphide, resulting in 

31 components as explanatory variables for the LDA. The number of useful discriminant 

functions is limited to the minimum of either the number of the groups minus one or the 

number of variables. Because the beer samples originated from eight different varieties, seven 

discriminant functions could be found. Their proportions of trace are shown in Figure 4.4. 

This shows that the first two linear discriminants explain about 95% of the between-group 

variance and should provide good separation; The main loadings on LD1 were given to 

isoamyl propionate in the positive direction and to 1-hexanol in the negative direction; the 

main loadings on LD2 were ethyl 3-methylbutanoate in the positive and diethyl succinate in 

the negative direction. 

 
Figure 4.4 Proportion of trace and cumulative proportions of the seven found liniear discriminants 

Table 4.7 shows the prediction results using these two first discriminants. The proportion of 

correct predictions was almost 90% and four of the five false predictions are between Pilsener 

beer and Helles, which have a very similar brewing process and their main difference is the 

lower hop content of Helles. Moreover, one of the falsely predicted Pilsener beers is 

marketed to be especially mild and another one had an increased alcohol content, which 

might separate them from the other beers of their variety. 
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Table 4.7 Predicted results of the analyzted samples 

Variety Predicted variety Correct predictions 

 A H K P P\alc S W W\alc (%) 

A (n=4) 4        100.0 

H (n=6)  5  1     83.3 

K (n=6)   5    1  83.3 

P (n=23)  3  20     87.0 

P\alc (n=2)     2    100.0 

S (n=1)      1   100.0 

W(n=3)       3  100.0 

W\alc (n=1)        1 100.0 

Total 89.1 

A graphical representation of this situation is given in Figure 4.5 which shows a scatter 

diagram based on the first two discriminant functions with boundaries for each beer variety. 

The distance of the two kinds of alcohol free beers between themselves and to the rest of the 

beer varieties was so large, that they were not  included into the plot. As already discussed 

using Table 4.7 a good discrimination is achieved and only the quite similar varieties of 

Pilsener beer and Helles are partially overlapping. A better discrimination between those two 

varieties might be achieved by the inclusion of an HPLC analysis of the hop-bitter 

substances, as Helles has typically lower hop content than Pilsener beer. The production 

conditions of these two varieties can also be quite different, as the samples originated from 

breweries all over Germany, but there were also beers from Poland and Turkey and specialty 

beers which were brewed with higher alcohol content. On the other hand, the variations 

within the small groups of the top-fermenting beers Alt, Kölsch and wheat beer was relatively 

small, as they are regional beers; while Alt originates in Düsseldorf and the lower Rhine 

region, wheat beer is predominantly brewed in southern Germany and Kölsch is exclusively 

produced in and around the city of Cologne and typically fermented at 14 °C to 16 °C, which 

is quite low for a top-fermenting beer. A separation between the two general classes of top-

fermenting (K, W, A) and bottom-fermenting (H, S, P) is also visible, as the top-fermenting 

beers are by trend more located in the lower resp. lower left area of the plot, while the 

bottom-fermenting beers tend to be on the upper resp. upper-right hand area. 
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Figure 4.5 Plot of the discriminant functions with boundaries for each beer variety, falsely classified samples shown 

in red; alcohol free beers not shown (coordinates would be at LD1=80, LD2=0 for the alcohol free Pilsener beers and 

LD1=-18, LD2=25 for the alcohol free wheat beer) 

4.4 Conclusions 

The developed method was appropriate to perform a sensible and robust analysis of the beer 

samples. The performance was mostly comparable to results obtained with other 

microextraction techniques like SPDE or SPME and sometimes also better. The data, 

obtained during method evaluation, highlights that it is not always significant to have the 

most sensitive method, but also a robust method, which also complies with factors like 

precision and linear range, where it is important to choose the appropriate sorbent material 

for the analytical task at hand. Still, the presented ITEX method was sensitive enough to 

allow the dilution of the samples to minimize the influence of the matrix. A satisfying 

chemometric discrimination of all analyzed beer varieties was possible and the alcohol free 

beers could clearly be separated from the regular beers, also. 

  



In-tube Extraction-GC/MS analysis of volatile beer aroma compounds 

100 

 

4.5 References 

1. Saison, D.; De Schutter, D. P.; Vanbeneden, N.; Daenen, L.; Delvaux, F.; Delvaux, F. 

R., Decrease of Aged Beer Aroma by the Reducing Activity of Brewing Yeast. Journal of 

Agricultural and Food Chemistry 2010, 58, (5), 3107-3115. 

2. Guinard, J. X.; Uotani, B.; Mazzucchelli, R.; Taguchi, A.; Masuoka, S.; Fujino, S., 

Consumer Testing of Commercial Lager Beers in Blind Versus Informed Conditions: 

Relation With Descriptive Analysis and Expert Quality Ratings*. Journal of the Institute of 

Brewing 2000, 106, (1), 11-20. 

3. Stephenson, W. H.; Bamforth, C. W., The Impact of Lightstruck and Stale Character 

in Beers on their Perceived Quality: A Consumer Study. Journal of the Institute of Brewing 

2002, 108, (4), 406-409. 

4. Meilgaard, M. C., Prediction of flavor differences between beers from their chemical 

composition. Journal of Agricultural and Food Chemistry 1982, 30, (6), 1009-1017. 

5. Vanderhaegen, B.; Delvaux, F.; Daenen, L.; Verachtert, H.; Delvaux, F. R., Aging 

characteristics of different beer types. Food Chemistry 2007, 103, (2), 404-412. 

6. Vanderhaegen, B.; Neven, H.; Verachtert, H.; Derdelinckx, G., The chemistry of beer 

aging - a critical review. Food Chemistry 2006, 95, (3), 357-381. 

7. Dong, L.; Piao, Y.; Zhang, X.; Zhao, C.; Hou, Y.; Shi, Z., Analysis of volatile 

compounds from a malting process using headspace solid-phase micro-extraction and GC-

MS. Food Research International 2013, 51, (2), 783-789. 

8. Rodriguez-Bencomo, J. J.; Munoz-Gonzalez, C.; Martin-Alvarez, P. J.; Lazaro, E.; 

Mancebo, R.; Castane, X.; Pozo-Bayon, M. A., Optimization of a HS-SPME-GC-MS 

Procedure for Beer Volatile Profiling Using Response Surface Methodology: Application to 

Follow Aroma Stability of Beers Under Different Storage Conditions. Food Analytical 

Methods 2012, 5, (6), 1386-1397. 

9. Vidgren, V.; Multanen, J.-P.; Ruohonen, L.; Londesborough, J., The temperature 

dependence of maltose transport in ale and lager strains of brewer's yeast. FEMS Yeast 

Research 2010, 10, (4), 402-411. 



In-tube Extraction-GC/MS analysis of volatile beer aroma compounds 

101 

 

10. Saerens, S. M. G.; Verbelen, P. J.; Vanbeneden, N.; Thevelein, J. M.; Delvaux, F. R., 

Monitoring the influence of high-gravity brewing and fermentation temperature on flavor 

formation by analysis of gene expression levels in brewing yeast. Applied Microbiology and 

Biotechnology 2008, 80, (6), 1039-1051. 

11. Jelen, H. H.; Majcher, M.; Dziadas, M., Microextraction techniques in the analysis of 

food flavor compounds: A review. Analytica Chimica Acta 2012, 738, (0), 13-26. 

12. Plutowska, B.; Chmiel, T.; Dymerski, T.; Wardencki, W., A headspace solid-phase 

microextraction method development and its application in the determination of volatiles in 

honeys by gas chromatography. Food Chemistry 2011, 126, (3), 1288-1298. 

13. Horák, T.; Čulík, J.; Kellner, V.; Čejka, P.; Hašková, D.; Jurková, M.; Dvořák, J., 

Determination of Selected Beer Flavors: Comparison of a Stir Bar Sorptive Extraction and a 

Steam Distillation Procedure. Journal of the Institute of Brewing 2011, 117, (4), 617-621. 

14. Rodrigues, F.; Caldeira, M.; Camara, J. S., Development of a dynamic headspace 

solid-phase microextraction procedure coupled to GC-qMSD for evaluation the chemical 

profile in alcoholic beverages. Analytica Chimica Acta 2008, 609, (1), 82-104. 

15. Sterckx, F. L.; Missiaen, J.; Saison, D.; Delvaux, F. R., Contribution of monophenols 

to beer flavor based on flavor thresholds, interactions and recombination experiments. Food 

Chemistry 2011, 126, (4), 1679-1685. 

16. Hrivnak, J.; Smogrovicova, D.; Nadasky, P.; Lakatosova, J., Determination of beer 

aroma compounds using headspace solid-phase microcolumn extraction. Talanta 2010, 83, 

(1), 294-296. 

17. Lyumugabe, F.; Bajyana Songa, E.; Wathelet, J. P.; Thonart, P., Volatile compounds 

of the traditional sorghum beers "ikigage" brewed with Vernonia amygdalina "umubirizi". 

Cerevisia 2013, 37, (4), 89-96. 

18. Tsuji, H.; Mizuno, A., Volatile Compounds and the Changes in Their Concentration 

Levels during Storage in Beers Containing Varying Malt Concentrations. Journal of Food 

Science 2010, 75, (1), C79-C84. 



In-tube Extraction-GC/MS analysis of volatile beer aroma compounds 

102 

 

19. Vázquez-Araújo, L.; Rodríguez-Solana, R.; Cortés-Diéguez, S. M.; Domínguez, J. M., 

Use of hydrodistillation and headspace solid-phase microextraction to characterize the 

volatile composition of different hop cultivars. Journal of the Science of Food and 

Agriculture 2013, 93, (10), 2568-2574. 

20. Zapata, J.; Mateo-Vivaracho, L.; Lopez, R.; Ferreira, V., Automated and quantitative 

headspace in-tube extraction for the accurate determination of highly volatile compounds 

from wines and beers. Journal of Chromatography A 2012, 1230, 1-7. 

21. Gonçalves, J.; Figueira, J.; Rodrigues, F.; Câmara, J. S., Headspace solid-phase 

microextraction combined with mass spectrometry as a powerful analytical tool for profiling 

the terpenoid metabolomic pattern of hop-essential oil derived from Saaz variety. Journal of 

Separation Science 2012, 35, (17), 2282-2296. 

22. Jochmann, M. A.; Yuan, X.; Schilling, B.; Schmidt, T. C., In-tube extraction for 

enrichment of volatile organic hydrocarbons from aqueous samples. Journal of 

Chromatography A 2008, 1179, (2), 96-105. 

23. Laaks, J.; Jochmann, M. A.; Schilling, B.; Schmidt, T. C., In-tube extraction of 

volatile organic compounds from aqueous samples: An economical alternative to purge and 

trap enrichment. Analytical Chemistry 2010, 82, (18), 7641-7648. 

24. Rasanen, I.; Viinamäki, J.; Vuori, E.; Ojanperä, I., Headspace in-tube extraction gas 

chromatography-mass spectrometry for the analysis of Hydroxylic methyl-derivatized and 

volatile organic compounds in blood and urine. Journal of Analytical Toxicology 2010, 34, 

(3), 113-121. 

25. Akinlua, A.; Jochmann, M. A.; Laaks, J.; Ewert, A.; Schmidt, T. C., Microwave-

assisted nonionic surfactant extraction of aliphatic hydrocarbons from petroleum source rock. 

Analytica Chimica Acta 2011, 691, (1-2), 48-55. 

26. Niu, L.; Bao, J.; Zhao, L.; Zhang, Y., Odor Properties and Volatile Compounds 

Analysis of Torreya grandis Aril Extracts. Journal of Essential Oil Research 2011, 23, (4), 1-

6. 



In-tube Extraction-GC/MS analysis of volatile beer aroma compounds 

103 

 

27. Zapata, J.; Lopez, R.; Herrero, P.; Ferreira, V., Multiple automated headspace in-tube 

extraction for the accurate analysis of relevant wine aroma compounds and for the estimation 

of their relative liquid-gas transfer rates. Journal of Chromatography A 2012, 1266, (0), 1-9. 

28. Socaci, S. A.; Socaciu, C.; Tofană, M.; Raţi, I. V.; Pintea, A., In-tube Extraction and 

GC–MS Analysis of Volatile Components from Wild and Cultivated sea buckthorn 

(Hippophae rhamnoides L. ssp. Carpatica) Berry Varieties and Juice. Phytochemical Analysis 

2013, 24, (4), 319-328. 

29. U.S. Environmental Protection Agency Exposure Assessment Tools and Models. 

http://www.epa.gov/opptintr/exposure/pubs/episuitedl.htm (2013-06-12),  

30. De La Calle Garcia, D.; Reichenbächer, M.; Danzer, K.; Hurlbeck, C.; Bartzsch, C.; 

Feller, K. H., Analysis of wine bouquet components using headspace solid-phase 

microextraction-capillary gas chromatography. HRC Journal of High Resolution 

Chromatography 1998, 21, (7), 373-377. 

31. Kornacki, W.; Fastyn, P.; Gierczak, T.; Gawlowski, J.; Niedzielski, J., Reactivity of 

carbon adsorbents used to determine volatile organic compounds in atmospheric air. 

Chromatographia 2006, 63, (1-2), 67-71. 

32. Cao, X.-L.; Hewitt, C. N., Study of the Degradation by Ozone of Adsorbents and of 

Hydrocarbons Adsorbed during the Passive Sampling of Air. Environmental Science & 

Technology 1994, 28, (5), 757-762. 

33. Pawliszyn, J., Sample Preparation: Quo Vadis? Analytical Chemistry 2003, 75, (11), 

2543-2558. 

34. United States Office of the Federal Register, Title 40 Code of Federal Regulations, 

Protection of environment, Part 136 Appendix B, revision 1.11. In [Online] 7-1-09 ed.; 

National Archives and Records Administration: Washington, D.C., 2009; p. v. 

http://purl.access.gpo.gov/GPO/LPS494. 

35. Poerschmann, J., Sorption of hydrophobic organic compounds on nonpolar SPME 

fibers and dissolved humic organic matter - Part III: Application of the solubility parameter 

concept to interpret sorption on solid phase microextraction (SPME) fiber coatings. Journal 

of Microcolumn Separations 2000, 12, (12), 603-612. 



In-tube Extraction-GC/MS analysis of volatile beer aroma compounds 

104 

 

36. Laaks, J.; Letzel, T.; Schmidt, T. C.; Jochmann, M. A., Fingerprinting of red wine by 

headspace solid-phase dynamic extraction of volatile constituents. Analytical and 

Bioanalytical Chemistry 2012, 403, (8), 2429-2436. 

37. Liu, M.; Zeng, Z.; Xiong, B., Preparation of novel solid-phase microextraction fibers 

by sol-gel technology for headspace solid-phase microextraction-gas chromatographic 

analysis of aroma compounds in beer. Journal of Chromatography A 2005, 1065, (2), 287-

299. 

38. Zimmermann, T.; Ensinger, W. J.; Schmidt, T. C., Depletion solid-phase 

microextraction for the evaluation of fiber-sample partition coefficients of pesticides. Journal 

of Chromatography A 2006, 1102, (1-2), 51-59. 

39. Dean, J. R.; Tomlinson, W. R.; Makovskaya, V.; Cumming, R.; Hetheridge, M.; 

Comber, M., Solid-Phase Microextraction as a Method for Estimating the Octanol-Water 

Partition Coefficient. Analytical Chemistry 1996, 68, (1), 130-133. 

40. Jonkova, G.; Petkova, N., Effect Of some technological factors on the content of 

acetaldehyde in beer. Journal of the University of Chemical Technology and Metallurgy 

2011, 46, (1), 57-60. 

41. Branyik, T.; Silva, D. P.; Baszczynski, M.; Lehnert, R.; Almeida e Silva, J. B., A 

review of methods of low alcohol and alcohol-free beer production. Journal of Food 

Engineering 2012, 108, (4), 493-506. 

42. Venables, W. N.; Ripley, B. D., Modern applied statistics with S. 4th ed.; Springer: 

New York, 2002; p xi, 495 p. 

  



In-tube Extraction-GC/MS analysis of volatile beer aroma compounds 

105 

 

4.6 Supporting Information 

Table S 4.1 Sample numbers with corresponding sample name (H: Helles, P: Pilsener beer, S: Schwarzbier, A: 

Altbier, K: Kölsch, W: Wheat beer) 

Top-fermenting beers Bottom-fermenting beers 

Number Name Number Name 

H01 Hövels A01 Diebels Alt 

H02 Borbecker Helles Dampfbier A02 Gatz Altbier 

H03 Stauder Spezial A03 Schlösser Alt 

H04 Maingold Landbier A04 Frankenheim Alt 

H05 Oettinger Urtyp K01 Früh Kölsch 

H06 Tyskie K02 Sester Kölsch 

P01 Bitburger K03 Sion Kölsch 

P02 König Pilsener K04 Mühlen Kölsch 

P03 Veltins K05 Reissdorf Kölsch 

P04 Brinkhoffs Nr.1 K06 Küppers Kölsch 

P05 Stauder W01 Erdinger Weissbier 

P06 Beck's W01\alc Erdinger Alkoholfrei 

P07 Radeberger W02 Paulaner 

P08 Astra Urtyp W03 Franziskaner Weissbier Dunkel 

P09 Tuborg Pilsener 

  P10 Jever 

  P11 Moritz Fiege Pils 

  P12 Hansa Pils 

  P13 Holsten 

  P14 Flensburger Pilsener 

  P15 Astra Rotlicht 

  P16 Krombacher Pils 

  P17 Beck's Gold 

  P18 Warsteiner 

  P19 Efes Pils 

  P20 Lech 

  P21 DAB Pilsener 

  P22 Landfürst 

  P23 Paderborner 

  P24\alc Clausthaler Extra Herb 

  P25\alc Clausthaler Classic Alkoholfrei 

  S01 Köstritzer Schwarzbier 
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Table S 4.2 Measured concentrations of the analyzed compounds in Altbier and Kölsch (empty field: not detected or 

below MDL) 

Compound 
 

A01 A02 A03 A04 K01 K02 K03 K04 K05 K06 

1-Propanol 
c (µg L-1) 8573 7767 9290 8502 9310 6921 5685 18029 15570 5180 

RSD 0.3% 5.5% 3.5% 0.6% 1.1% 0.9% 1.4% 0.4% 0.7% 4.6% 

2-Methylpropanol 
c (µg L-1) 27967 23774 23021 16065 38726 31789 35021 29852 46470 25449 

RSD 2.6% 53.5% 2.6% 6.6% 1.2% 28.2% 5.6% 2.9% 6.8% 19.5% 

1-Butanol 
c (µg L-1) 

 
116 

 
55 

   
585 676 

 
RSD 

 
2.0% 

 
0.1% 

   
0.9% 1.4% 

 

2-Butanol 
c (µg L-1) 

          
RSD 

          

tert-Butanol 
c (µg L-1) 

  
31 

       
RSD 

  
3.5% 

       

2-Methylbutanol 
c (µg L-1) 14940 10592 8573 5163 16991 14429 13038 13455 12908 15059 

RSD 2.4% 3.2% 1.3% 0.6% 2.2% 4.3% 1.2% 1.2% 0.5% 10.0% 

3-Methylbutanol 
c (µg L-1) 34496 51736 38430 26193 42969 39252 36691 38880 42981 42782 

RSD 2.9% 4.7% 1.9% 1.5% 1.8% 5.8% 1.5% 1.8% 0.7% 11.4% 

1-Pentanol 
c (µg L-1) 35 

  
14 20 27 29 31 28 30 

RSD 2.4% 
  

3.6% 18.4% 14.3% 5.6% 6.0% 7.0% 11.6% 

1-Hexanol 
c (µg L-1) 51 14 24 19 34 36 40 46 37 42 

RSD 2.1% 9.4% 3.2% 3.1% 1.0% 8.4% 1.7% 2.6% 3.3% 5.4% 

2-Ethylhexanol 
c (µg L-1) 

    
23 31 33 43 38 23 

RSD 
    

4.3% 0.0% 38.5% 45.4% 6.0% 3.6% 

Acetaldehyde 
c (µg L-1) 2639 2836 3224 4166 4485 4795 4978 5086 5162 5253 

RSD 5.4% 2.1% 1.5% 2.3% 2.0% 6.3% 1.8% 1.4% 2.0% 3.4% 

trans-2-Nonenal 
c (µg L-1) 

          
RSD 

          

Ethyl acetate 
c (µg L-1) 10954 7550 14350 5884 21695 8860 10708 16385 20184 12128 

RSD 2.7% 3.7% 2.4% 0.2% 0.8% 3.1% 1.4% 0.0% 0.8% 6.2% 

Ethyl butanoate 
c (µg L-1) 72 41 90 55 159 36 43 81 130 44 

RSD 0.2% 2.4% 2.9% 1.0% 0.7% 2.0% 2.1% 0.5% 1.1% 2.9% 

Ethyl-3-methylbutanoate 
c (µg L-1) 5 

         
RSD 1.4% 

         

3-Methylbutyl acetate 
c (µg L-1) 618 775 1375 311 1464 884 997 1206 1758 1084 

RSD 1.0% 3.7% 2.0% 1.3% 0.9% 1.4% 1.4% 0.8% 2.0% 1.5% 

Ethyl hexanoate 
c (µg L-1) 218 138 219 236 311 94 120 213 321 117 

RSD 2.1% 2.4% 3.0% 0.4% 1.8% 3.5% 3.3% 1.6% 3.5% 6.8% 

Ethyl octanoate 
c (µg L-1) 575 295 465 459 850 188 275 405 699 276 

RSD 0.2% 3.3% 2.3% 0.1% 1.1% 12.2% 1.2% 3.3% 5.5% 13.1% 

Ethyl decanoate 
c (µg L-1) 154 94 90 94 62 72 68 46 82 99 

RSD 0.9% 2.4% 5.0% 2.0% 6.3% 7.8% 15.7% 5.6% 11.6% 3.4% 

Diethyl succinate 
c (µg L-1) 223 47 107 72 52 91 151 1000 207 246 

RSD 4.2% 14.2% 3.3% 4.2% 12.9% 13.1% 2.7% 3.5% 7.4% 2.9% 

2-Phenethyl acetate 
c (µg L-1) 238 200 298 52 888 451 581 956 1690 658 

RSD 4.0% 4.0% 1.0% 3.1% 1.6% 4.2% 2.1% 1.9% 1.5% 5.5% 

Geraniol 
c (µg L-1) 

 
40 

 
67 

      
RSD 

 
1.8% 

 
0.1% 

      

Limonen 
c (µg L-1) 

      
11 

   
RSD 

      
12.5% 

   

Linalool 
c (µg L-1) 9 

      
27 15 14 

RSD 0.5% 
      

0.3% 9.9% 3.9% 
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Table S 4.3 Measured concentrations of the analyzed compounds in Wheat beer and Helles (empty field: not detected 

or below MDL) 

Compound 
 

W01 W01\alc W02 W03 H01 H02 H03 H04 H05 H06 

1-Propanol 
c (µg L-1) 14702 1662 5595 11281 11049 11369 6234 4272 5608 5425 

RSD 1.5% 3.5% 3.5% 0.5% 2.7% 0.6% 1.6% 1.5% 2.0% 1.8% 

2-Methylpropanol 
c (µg L-1) 35716 5188 19155 84343 30339 49418 15502 42453 28280 31619 

RSD 5.4% 5.2% 12.4% 1.3% 6.3% 1.2% 15.2% 5.2% 15.3% 7.1% 

1-Butanol 
c (µg L-1) 59 191 

 
97 131 194 58 

 
70 

 
RSD 2.7% 8.8% 

 
1.7% 3.2% 1.5% 2.3% 

 
2.2% 

 

2-Butanol 
c (µg L-1) 

   
73 

      
RSD 

   
1.6% 

      

tert-Butanol 
c (µg L-1) 43 

  
45 25 

   
25 

 
RSD 1.5% 

  
5.7% 3.2% 

   
2.4% 

 

2-Methylbutanol 
c (µg L-1) 8940 1639 10754 14180 10056 13379 7822 14524 12741 14009 

RSD 0.3% 6.1% 1.1% 3.0% 3.3% 1.6% 0.2% 2.5% 1.9% 1.4% 

3-Methylbutanol 
c (µg L-1) 35952 4034 46715 57894 49202 49042 30052 31426 43825 31385 

RSD 0.4% 5.0% 0.7% 2.9% 3.9% 0.9% 1.2% 2.4% 1.4% 0.8% 

1-Pentanol 
c (µg L-1) 

       
26 14 17 

RSD 
       

12.8% 4.3% 10.7% 

1-Hexanol 
c (µg L-1) 21 23 17 23 25 24 13 30 25 24 

RSD 0.9% 9.1% 0.2% 5.9% 1.4% 2.0% 1.2% 4.2% 3.3% 1.7% 

2-Ethylhexanol 
c (µg L-1) 

       
38 

  
RSD 

       
7.1% 

  

Acetaldehyde 
c (µg L-1) 4414 3477 5975 10108 3684 4128 5683 8485 8563 13184 

RSD 2.5% 6.2% 1.7% 3.3% 5.0% 2.1% 0.1% 0.3% 3.6% 0.9% 

trans-2-Nonenal 
c (µg L-1) 

         
6.3 

RSD 
         

67.6% 

Ethyl acetate 
c (µg L-1) 22834 1011 8752 32453 10613 5657 5069 11603 10355 13525 

RSD 1.1% 6.1% 0.9% 5.5% 2.5% 0.6% 0.8% 1.5% 2.5% 0.5% 

Ethyl butanoate 
c (µg L-1) 97 6 64 106 61 29 25 94 59 98 

RSD 2.0% 12.8% 1.7% 5.6% 3.1% 1.0% 0.9% 1.1% 1.6% 0.7% 

Ethyl-3-methylbutanoate 
c (µg L-1) 

          
RSD 

          

3-Methylbutyl acetate 
c (µg L-1) 2079 394 1100 3538 1011 201 128 1083 1217 1200 

RSD 1.2% 0.7% 1.9% 5.6% 3.4% 1.4% 4.5% 0.6% 2.9% 1.1% 

Ethyl hexanoate 
c (µg L-1) 501 26 240 197 158 92 65 328 270 342 

RSD 0.9% 8.4% 0.8% 7.7% 5.1% 1.5% 3.0% 0.9% 2.0% 0.8% 

Ethyl octanoate 
c (µg L-1) 461 19 299 365 403 173 127 388 311 494 

RSD 0.6% 12.8% 3.0% 7.5% 1.7% 0.5% 2.7% 2.2% 3.7% 4.7% 

Ethyl decanoate 
c (µg L-1) 55 

 
22 166 62 23 14 117 56 140 

RSD 1.1% 
 

5.1% 10.3% 1.3% 1.4% 6.0% 5.4% 7.1% 14.3% 

Diethyl succinate 
c (µg L-1) 61 

 
137 123 300 111 46 231 133 113 

RSD 4.2% 
 

1.3% 2.1% 0.4% 3.8% 7.9% 7.6% 1.2% 12.4% 

2-Phenethyl acetate 
c (µg L-1) 506 31 250 808 274 70 50 861 352 982 

RSD 1.7% 0.5% 6.4% 4.3% 2.0% 1.2% 0.4% 0.5% 1.2% 2.4% 

Geraniol 
c (µg L-1) 

   
241 

   
223 104 183 

RSD 
   

9.5% 
   

2.8% 3.0% 1.5% 

Limonen 
c (µg L-1) 

         
20 

RSD 
         

24.8% 

Linalool 
c (µg L-1) 

 
10 

     
25 

 
9 

RSD 
 

5.9% 
     

8.5% 
 

22.8% 
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Table S 4.4 Measured concentrations of the analyzed compounds in Pilsener beers (empty field: not detected or below 

MDL) 

Compound 
 

P01 P02 P03 P04 P05 P06 P07 P08 P09 P10 

1-Propanol 
c (µg L-1) 7230 11065 15339 9668 5136 7336 6157 16170 16335 7719 

RSD 1.8% 0.7% 0.9% 2.6% 2.2% 0.1% 1.5% 0.5% 1.9% 0.8% 

2-Methylpropanol 
c (µg L-1) 19418 26838 54708 64501 14784 16965 30378 59110 62364 39605 

RSD 1.2% 1.9% 2.1% 3.3% 8.4% 11.8% 5.2% 3.0% 6.9% 0.7% 

1-Butanol 
c (µg L-1) 

     
60 

    
RSD 

     
2.0% 

    

2-Butanol 
c (µg L-1) 

          
RSD 

          

tert-Butanol 
c (µg L-1) 

          
RSD 

          

2-Methylbutanol 
c (µg L-1) 13972 16213 16096 16486 7188 5311 10419 19715 16703 20355 

RSD 1.2% 1.3% 1.3% 2.3% 2.5% 0.6% 1.2% 2.0% 2.7% 0.4% 

3-Methylbutanol 
c (µg L-1) 29882 32500 36594 40891 26886 21684 44447 44155 41017 49073 

RSD 1.1% 1.2% 1.6% 2.3% 2.2% 0.9% 2.0% 3.1% 3.2% 0.5% 

1-Pentanol 
c (µg L-1) 27 20 28 21 

   
25 23 20 

RSD 6.6% 4.6% 10.0% 6.3% 
   

6.2% 6.2% 5.2% 

1-Hexanol 
c (µg L-1) 40 39 37 37 13 15 20 47 36 33 

RSD 1.6% 1.0% 1.0% 3.5% 1.8% 2.4% 1.9% 5.4% 2.1% 1.6% 

2-Ethylhexanol 
c (µg L-1) 24 22 

      
24 

 
RSD 0.2% 23.9% 

      
0.0% 

 

Acetaldehyde 
c (µg L-1) 4278 4492 4908 5059 5356 5373 5561 5816 5882 5908 

RSD 1.4% 2.0% 2.6% 2.4% 2.1% 1.2% 0.9% 2.1% 0.8% 1.8% 

trans-2-Nonenal 
c (µg L-1) 

   
6.1 

      
RSD 

   
36.8% 

      

Ethyl acetate 
c (µg L-1) 9887 10328 18204 14535 4634 4008 5906 8714 8373 13501 

RSD 1.1% 0.5% 2.2% 1.7% 0.5% 0.7% 0.4% 2.1% 0.9% 0.9% 

Ethyl butanoate 
c (µg L-1) 74 87 72 64 30 31 40 70 66 75 

RSD 1.5% 0.9% 0.7% 1.1% 1.0% 2.0% 1.4% 2.2% 1.3% 0.9% 

Ethyl-3-methylbutanoate 
c (µg L-1) 

        
5 5 

RSD 
        

3.5% 0.1% 

3-Methylbutyl acetate 
c (µg L-1) 687 702 1421 1201 128 218 803 593 639 963 

RSD 1.0% 1.0% 1.6% 1.5% 3.1% 4.2% 0.4% 0.7% 1.4% 1.4% 

Ethyl hexanoate 
c (µg L-1) 251 323 287 178 77 125 158 238 188 208 

RSD 2.1% 1.6% 2.7% 4.0% 3.2% 3.9% 0.8% 6.1% 3.6% 1.2% 

Ethyl octanoate 
c (µg L-1) 501 557 345 296 124 218 211 316 226 259 

RSD 1.6% 3.5% 0.7% 5.3% 5.3% 1.9% 1.5% 17.8% 6.3% 0.4% 

Ethyl decanoate 
c (µg L-1) 92 165 25 74 9 29 26 80 127 39 

RSD 4.0% 3.5% 3.2% 1.4% 4.7% 2.6% 0.2% 2.9% 5.7% 2.4% 

Diethyl succinate 
c (µg L-1) 220 301 351 437 

 
50 41 388 729 165 

RSD 1.8% 1.6% 4.3% 5.8% 
 

10.1% 3.9% 4.0% 5.1% 4.4% 

2-Phenethyl acetate 
c (µg L-1) 325 368 1233 1201 37 113 276 336 461 507 

RSD 2.2% 1.5% 2.1% 2.8% 3.1% 4.7% 4.6% 4.3% 4.1% 2.5% 

Geraniol 
c (µg L-1) 

 
39 

        
RSD 

 
0.0% 

        

Limonen 
c (µg L-1) 

   
14 

      
RSD 

   
118.4% 

      

Linalool 
c (µg L-1) 11 

      
18 13 11 

RSD 5.7% 
      

1.7% 4.1% 5.1% 
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Table S 4.5 Measured concentrations of the analyzed compounds in Pilsener beers (empty field: not detected or below 

MDL) 

Compound 
 

P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 

1-Propanol 
c (µg L-1) 6659 7473 14916 6232 23372 12657 4854 8257 5772 5524 

RSD 2.1% 2.1% 1.1% 1.2% 1.5% 2.3% 0.7% 0.3% 1.7% 1.5% 

2-Methylpropanol 
c (µg L-1) 21093 43829 54496 48822 70938 43234 18515 36751 20841 33481 

RSD 5.2% 1.1% 3.6% 7.6% 2.1% 6.1% 3.6% 6.1% 3.5% 7.3% 

1-Butanol 
c (µg L-1) 

   
249 

   
654 

  
RSD 

   
2.1% 

   
0.0% 

  

2-Butanol 
c (µg L-1) 

          
RSD 

          

tert-Butanol 
c (µg L-1) 

   
25 

      
RSD 

   
3.9% 

      

2-Methylbutanol 
c (µg L-1) 8349 17483 16122 15892 21680 19119 5497 18035 11539 14675 

RSD 4.2% 2.6% 0.9% 0.9% 0.0% 4.4% 0.3% 3.4% 1.9% 2.2% 

3-Methylbutanol 
c (µg L-1) 35431 42135 38324 51450 52338 41340 25740 34904 34164 32867 

RSD 5.9% 2.3% 0.9% 1.7% 0.4% 5.7% 1.2% 4.1% 1.9% 2.1% 

1-Pentanol 
c (µg L-1) 16 21 29 14 33 22 

 
29 18 18 

RSD 15.6% 7.3% 3.7% 3.7% 2.8% 9.4% 
 

7.6% 5.8% 8.5% 

1-Hexanol 
c (µg L-1) 23 38 44 16 55 35 

 
38 30 23 

RSD 5.2% 2.0% 2.3% 5.5% 0.7% 3.1% 
 

4.0% 8.0% 5.4% 

2-Ethylhexanol 
c (µg L-1) 

          
RSD 

          

Acetaldehyde 
c (µg L-1) 6321 6422 6476 6853 6859 7384 8333 8442 8445 9149 

RSD 5.0% 2.5% 2.3% 1.2% 2.3% 4.0% 1.4% 1.7% 1.7% 1.8% 

trans-2-Nonenal 
c (µg L-1) 

          
RSD 

          

Ethyl acetate 
c (µg L-1) 8183 12155 9359 10838 9846 13827 8367 11193 9602 14253 

RSD 0.5% 1.6% 1.8% 3.0% 0.4% 2.8% 1.0% 2.5% 0.5% 0.6% 

Ethyl butanoate 
c (µg L-1) 55 65 71 57 73 74 35 56 65 95 

RSD 5.1% 0.5% 0.8% 6.6% 2.0% 2.8% 1.0% 0.5% 0.1% 1.8% 

Ethyl-3-methylbutanoate 
c (µg L-1) 

  
5 

 
6 

     
RSD 

  
5.6% 

 
3.4% 

     

3-Methylbutyl acetate 
c (µg L-1) 639 983 660 1679 686 1153 758 941 770 1230 

RSD 0.7% 0.4% 0.9% 7.6% 1.0% 3.2% 0.4% 1.7% 0.9% 0.8% 

Ethyl hexanoate 
c (µg L-1) 168 240 207 237 247 270 111 276 177 290 

RSD 0.1% 7.4% 1.3% 8.6% 3.2% 5.5% 0.4% 3.0% 2.9% 1.6% 

Ethyl octanoate 
c (µg L-1) 240 366 103 352 173 361 147 280 254 389 

RSD 3.5% 1.7% 2.5% 11.8% 2.5% 4.2% 2.3% 6.5% 3.1% 1.4% 

Ethyl decanoate 
c (µg L-1) 16 91 16 40 90 49 17 31 45 117 

RSD 9.3% 12.0% 11.6% 2.7% 3.4% 5.5% 4.1% 8.5% 2.3% 6.4% 

Diethyl succinate 
c (µg L-1) 358 271 93 70 314 92 56 67 816 179 

RSD 5.7% 9.2% 7.2% 2.4% 3.7% 9.2% 4.4% 18.1% 2.6% 7.2% 

2-Phenethyl acetate 
c (µg L-1) 175 730 463 831 485 878 344 558 416 914 

RSD 3.2% 4.7% 2.4% 2.7% 2.9% 6.9% 1.7% 5.1% 0.9% 5.8% 

Geraniol 
c (µg L-1) 

 
106 

 
67 

     
80 

RSD 
 

5.9% 
 

3.3% 
     

2.8% 

Limonen 
c (µg L-1) 

 
7 

        
RSD 

 
65.7% 

        

Linalool 
c (µg L-1) 

  
18 

 
16 9 

  
14 10 

RSD 
  

2.1% 
 

8.8% 4.8% 
  

2.0% 9.4% 
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Table S 4.6 Measured concentrations of the analyzed compounds in Pilsener beers and Schwarzbier (empty field: not 

detected or below MDL) 

Compound 
 

P21 P22 P23 P24\alc P25\alc S01 

1-Propanol 
c (µg L-1) 7127 6888 9634 761 935 5018 

RSD 0.8% 6.6% 0.3% 0.7% 3.9% 1.2% 

2-Methylpropanol 
c (µg L-1) 35653 33762 29162 6409 8670 17126 

RSD 4.4% 28.4% 4.5% 6.2% 9.3% 6.8% 

1-Butanol 
c (µg L-1) 

  
328 

  
36 

RSD 
  

0.0% 
  

4.6% 

2-Butanol 
c (µg L-1) 

      
RSD 

      

tert-Butanol 
c (µg L-1) 

      
RSD 

      

2-Methylbutanol 
c (µg L-1) 15575 19362 14376 1011 1168 8611 

RSD 1.4% 2.0% 1.4% 2.3% 2.9% 1.9% 

3-Methylbutanol 
c (µg L-1) 42595 41040 32156 1795 3133 29299 

RSD 2.2% 0.1% 2.0% 86.6% 3.1% 2.7% 

1-Pentanol 
c (µg L-1) 20 28 21 102 84 

 
RSD 0.7% 0.1% 13.7% 2.0% 5.1% 

 

1-Hexanol 
c (µg L-1) 32 44 30 

 
11 16 

RSD 0.9% 7.9% 1.8% 
 

1.9% 4.6% 

2-Ethylhexanol 
c (µg L-1) 

      
RSD 

      

Acetaldehyde 
c (µg L-1) 9301 9725 11674 2759 3618 4143 

RSD 0.6% 3.0% 1.0% 2.0% 2.4% 2.1% 

trans-2-Nonenal 
c (µg L-1) 

      
RSD 

      

Ethyl acetate 
c (µg L-1) 10696 13713 8404 706 800 6558 

RSD 0.2% 5.8% 2.1% 1.8% 3.2% 0.5% 

Ethyl butanoate 
c (µg L-1) 76 93 50 2 

 
47 

RSD 0.5% 5.6% 1.2% 5.9% 
 

1.3% 

Ethyl-3-methylbutanoate 
c (µg L-1) 

      
RSD 

      

3-Methylbutyl acetate 
c (µg L-1) 832 1233 715 47 

 
599 

RSD 1.1% 1.0% 1.8% 3.1% 
 

1.0% 

Ethyl hexanoate 
c (µg L-1) 191 467 175 9 11 191 

RSD 1.9% 4.1% 2.3% 5.4% 8.2% 2.4% 

Ethyl octanoate 
c (µg L-1) 293 578 252 10 7 253 

RSD 0.9% 15.4% 4.9% 10.1% 5.0% 2.3% 

Ethyl decanoate 
c (µg L-1) 89 89 24 10 

 
71 

RSD 12.7% 35.9% 4.7% 16.8% 
 

2.7% 

Diethyl succinate 
c (µg L-1) 251 120 59 

  
91 

RSD 3.4% 21.2% 15.9% 
  

4.6% 

2-Phenethyl acetate 
c (µg L-1) 565 805 391 18 

 
195 

RSD 1.5% 5.1% 1.1% 2.2% 
 

1.0% 

Geraniol 
c (µg L-1) 88 147 

   
72 

RSD 8.4% 1.8% 
   

7.2% 

Limonen 
c (µg L-1) 

  
8 11 

  
RSD 

  
44.8% 7.8% 

  

Linalool 
c (µg L-1) 

 
12 

 
32 23 

 
RSD 

 
0.1% 

 
2.4% 5.0% 
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5 Systematic optimization of in-tube extraction (ITEX) methods 

5.1 Introduction 

Method development for microextraction techniques can be a very time consuming task, 

because a multitude of different parameters influences the efficiency of extraction. Even in 

the simplest system, where only a coated fiber (SPME) is immersed in a liquid sample, the 

extraction can be influenced by several parameters. They are, for example, (i) the choice of 

the polymeric coating, (ii) the extraction time, together with (iii) shaking or stirring, (iv) the 

extraction temperature, (v) the pH for ionizable compounds, (vi) the ionic strength and (vii) 

the presence of organic solvents or humic substances.
1
 Dynamic microextraction techniques, 

where the sample is actively passed over the sorbent material or through a sorbent bed are 

more complex and thus have even more parameters to optimize during the steps of the 

extraction and injection procedure; e.g. the volume and the corresponding flows that are 

applied during extraction and desorption. 
2-4

 

ITEX is a fully automated microextraction technique for CTC PAL-series autosamplers and 

uses a gas-tight syringe to pump the sample headspace repeatedly through an attached tube, 

filled with a sorbent material for analyte enrichment. The syringe, as well as the sorbent tube, 

is enclosed by an electric heater, to avoid sample condensation in the syringe and to facilitate 

thermal desorption to the inlet system of the gas chromatograph, respectively. The syringe 

also features a side-port hole, which allows the flushing of the syringe and the sorbent tube 

with a pure, inert gas for trap conditioning to avoid carry-over between analyses. The four 

stages of the ITEX-procedure (sample conditioning, analyte extraction/sorption, 

desorption/injection and trap conditioning), together with the main parameters governing the 

performance of each stage are depicted in Figure 5.1. 

The aim of this work is to summarize the experiences gained in the ITEX-method 

development and to present a guideline that allows future user to minimize the number of 

experiments, which are required to find the appropriate parameters for their analytical task. 



Systematic optimization of in-tube extraction (ITEX) methods 

112 

 

 

Figure 5.1 Stages of the ITEX-procedure with the corresponding parameters for optimization, adapted from 4 

5.2 Experimental 

5.2.1 Target Compounds 

The target compounds used in the developed methods can be sorted in two categories, VOCs 

as water contaminants and aroma compounds in food matrices. The VOCs are comprised of 

halogenated hydrocarbons, BTEX compounds and gasoline oxygenates (ETBE, MTBE, 

TAME). The aroma compounds include several alcohols, aldehydes, esters, terpenes and 2,3- 

butanedione, pyridine, methylpyrazine and 2-furanmethanol. A complete list, together with 

the sample matrix and the used sorbent material are given in Table 5.1. 
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Table 5.1 Analyzed target compounds with corresponding sample phase and sorbent material 

 
VOCs

4
 Aroma compounds 

Sample 

matrix 
Water Beer Coffee powder 

Sorbent 

material 

Tenax GR/Carbosieve 

SIII 
Tenax TA, PDMS PDMS 

Target 

compounds 
Vinyl chloride 1-Propanol Acetaldehyde 

Dichloromethane 2-Propanol Propanal 

Chloroform 2-Methylpropanol 2-Methylpropanal 

1,2-Dichloroethane 1-Butanol 2-Methylbutanal 

Trichloroethylene 2-Butanol 3-Methylbutanal 

Bromodichloromethane tert-Butanol 2,3- Butanedione 

Tetrachloroethylene 2-Methylbutanol Pyridine 

Dibromochloromethane 3-Methylbutanol Methylpyrazine 

Bromoform 1-Pentanol 2-Furanmethanol 

MTBE 3-Pentanol 
 

ETBE 3-Methylpentanol 
 

TAME 1-Hexanol 
 

Benzene 2-Ethylhexanol 
 

Toluene Ethyl acetate 
 

Ethylbenzene Ethyl butanoat 
 

p-Xylene Ethyl 3-methylbutanoate 
 

o-Xylene 3-Methylbutyl acetate 
 

1,4-Dioxane Ethyl hexanoate 
 

2-Methylisoborneol Ethyl octanoate 
 

Geosmin Ethyl decanoate 
 

 
Diethyl succinate 

 

 
2-Phenethyl acetate 

 

 
Geraniol 

 

 
Linalool 

 

5.2.2 Instrumentation 

The experiments were performed on two instruments. The first instrument was a Thermo 

Trace GC Ultra (S+H Analytik, Mönchengladbach, Germany), equipped with a CTC Combi 

PAL autosampler with ITEX-2 option (Axel Semrau, Sprockhövel, Germany) and a Single 

Magnet Mixer (SMM) (Chromtech, Idstein, Germany); the autosampler was modified with a 

small electric fan, for faster cooling of the ITEX-trap. The GC featured a split/splitless 

injector (S/SL) and an Atas GL Optic 3 programmable temperature vaporizer with a nitrogen 

cooled cold trap for on column focussing (Axel Semrau). On column focussing was 

performed on a deactivated, uncoated 0.53 mm inner diameter (i.d.) fused silica capillary 

with a length of about 1 m (BGB Analytik AG, Boeckten, Switzerland). A Rtx-VMS column 

(medium polar, proprietary modified phase) with 60 m length, 0.32 mm i.d. and 1.8 µm film 

thickness (Restek GmbH, Bad Homburg, Germany) was used for the separation of VOCs and 

a Stabilwax-DA fused-silica capillary column (cross bonded carbowax (PEG)) with 60 m 

length, 0.32 mm i.d. and 1 µm film thickness (Restek GmbH) was used for the separation of 
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aroma compounds. The GC was coupled to a Thermo DSQ II single quadrupole mass 

spectrometer (S+H Analytik, Mönchengladbach, Germany) in EI mode for analyte detection. 

The second instrument was a ThermoQuest Trace GC (ThermoQuest GmbH, Egelsbach, 

Germany) outfitted with a CTC PAL Combi-xt with ITEX-2 option (Axel Semrau) and a 

SMM. The GC had a split/splitless injector, an Optima 5 MS (5% Diphenyl-95% 

Dimethylpolysiloxan) chromatographic column with 30 m length, 0.25 mm i.d. and 0.25 µm 

film thickness (Macherey-Nagel GmbH & Co. KG, Düren, Germany) was installed for 

analyte separation and a Finnigan Polaris Q (ThermoQuest GmbH) external source ion trap 

mass spectrometer was connected as detector in EI mode. 

If not stated otherwise, 10 mL of each standard or sample solution were transferred into a 20-

mL amber headspace vial (BGB Analytik AG), containing an 8×3 mm PTFE laminated 

magnetic stir bar (VWR International GmbH, Darmstadt, Germany), which were closed by 

magnetic screw caps with rubber/PTFE septa (BGB Analytik AG). 

5.2.3 Sorbent Materials 

The applied sorbents are mostly standard materials, which are also used in desorption tubes 

for gas analysis, in purge and trap instruments or as stationary phase in packed GC-columns. 

Carbopack C (CC), Carboxen 1000 (C1000), Carbosieve S III (CSIII), Tenax TA (TTA) and 

Tenax GR (TGR) are commercially available as single- and also as multi-sorbent ITEX-traps, 

while HayeSep D (HSD), multi-walled carbon nanotubes (MWCNTs) (Baytubes C 150 HP, 

Bayer Material Science, Leverkusen, Germany) PDMS (polydimethylsiloxane) and 

Carbowax 20M (polyethylene glycol (PEG) with a molecular weight of 20000) are custom 

prepared taps, which were, to our knowledge, first used here. The properties of the applied 

sorbent materials are given in Table 4.2. 

5.3 Results and Discussion 

The effects of the essential parameters of the ITEX-procedure will be discussed here with 

detailed examples; they include the selection of the sorbent material and the extraction and 

injection parameters, but also ways to shorten the analysis time by modifications of both the 

ITEX-hardware and the macros of the control software. The initial step of sample 

conditioning will not be discussed here, because it is basically the same as for other 

headspace techniques, which can be found in literature (e.g. Static Headspace-Gas 

Chromatography: Theory and Practice 
5
). 
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5.3.1 Sorbent Selection 

5.3.1.1 Theoretical Considerations 

The first step in ITEX-method development should be the selection of a suitable sorbent for 

the analytical task. One way to achieve this is to compare the extraction efficiency of all 

available sorbent materials for all target analytes, like it has been performed here for the sake 

of completeness. Another option is to save time and limit the number of possible extraction 

phases, based on the target compounds and sample characteristics. To that end, it is important 

to check for known unintended interactions between analytes and sorbents. For example: (i) 

activated carbon possesses several functional groups like hydroxyl-, carbonyl-, and 

carboxylic functions where polar analytes like alcohols might be adsorbed, irreversible by 

thermodesorption, through hydrogen bonds 
6
, (ii) the surface of carbon based adsorbents can 

be activated during conditioning (even in a stream of inert gas) and then cause analyte loss by 

transformation reactions, especially for alcohols and carbonyl compounds
7-9

 and (iii) Tenax is 

known to release aldehydes (e.g. benzaldehyde) and ketones during thermodesorption, which 

can obscure the determination of these compounds 
7, 10

; on the other hand, the degradation 

products of PDMS can easily be identified by mass selective detectors and are usually 

unproblematic.
11, 12

 

Afterwards, the class of sorbent material can be chosen. The sorbent materials suitable for 

ITEX can be separated in two classes, adsorbents and absorbents. Adsorbents rely on surface 

interactions of the sorbent material with analyte molecules, while in absorption the analyte 

molecules are solvated in the extraction phase like in an organic solvent. Absorptive 

interactions are weaker than adsorption on active surfaces, which makes the trapping of 

highly volatile analytes difficult, but also allows lower desorption temperatures and shorter 

desorption times, which minimizes the degradation of unstable analytes.
7, 12

 Because the 

available active sites on the adsorbent surface are limited, problems in quantitative analysis 

can occur, when the analyte mass is high (either by too high concentration or too large 

sample amount), due to competition or displacement effects, while the equilibrium conditions 

of absorbents do not vary until the extracted amount is large enough (a few percent of the 

sorbent mass) to modify the properties of the sorbent phase.
13

 This makes adsorbent materials 

ideal for trace/ultra-trace analysis of samples with little matrix interferences and for samples 

where all analytes are in a similar concentration range 
4
, so that a saturation of the sorbent can 

be excluded. Absorbents in contrast, are best used when the concentration range of the 



Systematic optimization of in-tube extraction (ITEX) methods 

116 

 

analytes is wide or high concentrated matrix components could saturate an adsorbent, for 

example like ethanol often does in the aroma analysis of alcoholic beverages 
14

. 

5.3.1.2 Exemplary Extraction Efficiencies 

In the following, the relative extraction efficiencies of commercially available, but also of 

custom prepared ITEX-traps, obtained for the analytes listed in Table 5.1 will be discussed. 

To that end, for each compound the sorbent with the highest resulting peak area was used as 

reference to normalize the peak areas of the other traps. The results for the analysis of VOCs 

are shown in Figure 5.2. The overall best extraction yield was achieved with TGR, which 

was the most efficient for eleven compounds, followed by TTA which had the highest yield 

for six compounds and very similar results as TGR for most other analytes, while C1000 was 

the most efficient for vinyl chloride and the mixed TGR and CSIII trap was good for 1,4-

dioxane, 2-methylisoborneol and geosmin. 

 
Figure 5.2 Relative extraction yields of six tested standard sorbent traps for the analysis of VOCs, result for each 

compound was normalized to the most efficient sorbent (data taken from Table 3.3) 

The relative extraction yields of aroma compounds from beer analyis have been split in two 

diagrams, because of the higher number of evaluated sorbents, but both corresponding 

diagrams were normalized to the same scale. The standard sorbents, also used for the VOC 

analysis, are shown in Figure S 5.1 in the supporting information, the custom filled traps, 

first applied in this project, are shown in Figure S 5.2. While the sorbents with the highest 
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yields were TTA for alcohols and HSD for longer chain esters and terpenes, a lower, but 

more balanced performance for all compounds could be observed for the PDMS containing 

traps. The average extraction yield of the C1000 and CSIII traps was quite low, except for 

few compounds like ethyl acetate and propanol. 

The extraction yields of major coffee aroma compounds are shown in Figure S 5.3 and 

Figure S 5.4. Good results for the extraction of acetaldehyde could be obtained wth CSIII 

and C1000, while they were not as well suited for the other analytes. The best results could 

be achieved with TGR, TTA and HSD, while the PDMS and MWCNT traps performed not 

so well. 

5.3.2 ITEX Extraction 

5.3.2.1 Sorbent and Sample Temperature 

Another parameter that can be set without much experimental effort is the trap temperature; it 

should be set to the lowest value that can be reached in the laboratory, because analyte 

sorption to the trap material is typically an exothermic process
15, 16

. On the other hand, the 

air-water partitioning coefficient increases with higher sample temperatures, which results in 

a competition between both effects, when the sorbent phase is inserted directly into the 

sample vial like it is the case with techniques like SPME or SPDE. In this case, it is an 

advantage of the ITEX device, that the sorbent material is placed in a tube outside the heated 

sample vial and that the trap temperature can be controlled independently from the 

conditioning temperature of the sample. However, when the temperature difference between 

sample vial and trap becomes too large, problems with condensation of water on the sorbent 

material can arise, depending on the sorbent material. The influence of the sample and 

sorbent temperature on the extraction efficiency of toluene from water with four different 

sorbent materials, with increasing water affinity, is shown in Figure 5.3 and Figure 5.4 and 

Figure S 5.5 and Figure S 5.6 in the supporting information. For all investigated sorbents, 

the peak area increases in the direction of rising sample temperatures and decreasing packing 

temperatures and the highest peak area tends to be reached, when the highest sample and the 

lowest packing temperatures are applied. However, it is also visible that for the sorbents with 

higher water affinity, i.e., CSIII or PEG, the structure of the plotted surface shows 

discontinuous behavior at those points, where the sample temperature is higher than the 

packing temperature, which is most likely caused by water condensing on the sorbent surface, 

influencing the precision and accuracy of the measurement. 
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Figure 5.3 Influence of sample and packing temperature on the resulting peak area of toluene for PDMS 

 
Figure 5.4 Influence of sample and packing temperature on the resulting peak area of toluene for Tenax TA 
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5.3.2.2 Extraction Flow and Extraction Strokes 

While the extraction flow through the trap and the number of performed extraction strokes 

are the defining factors for the extracted amount and necessary extraction time in analytical 

applications, they are mostly optimized to the maximum extraction yield, individually.
3, 14

 

Although, most authors used a method with a high extraction flow and a large number of 

extraction strokes,
3, 14, 17-19

 the measurement of different combinations of extraction strokes 

and flows has so far only been reported by two authors.
4, 20

 Therefore, after discussing both 

individual parameters, special emphasis will be laid on the interaction of both parameters, to 

achieve an optimum extraction yield in a predefined extraction time, for instance in parallel 

to the GC oven runtime. 

Figure 5.5 and Figure 5.6 show the influence of the extraction flow on the extraction yield of 

six analytes from different compound classes, using a TGR/CSIII trap and a TTA trap. As a 

general trend, it could be observed that the extraction yield decreased towards higher 

extraction flows and that the effect was stronger at lower analyte concentrations. The largest 

influence was observed for ethyl acetate, where the extraction yield at an extraction flow of 

10 µL s
-1

 was almost twice as high as at 100 µL s
-1

, whereas no significant influence on the 

extraction yield could be observed for geraniol and vinyl chloride. Jochmann et al. suggested 

diffusion into the sorbent pores to be the rate limiting effect at higher extraction flows,
3
 as it 

can also be observed by increasing plate heights in gas chromatography
21

. The lesser 

retention of analytes would also result in a lower breakthrough volume, however, this can be 

neglected as ITEX is a closed sampling system. Furthermore, the extraction flow was the 

parameter with the least influence on extraction yield, when it was compared to the extraction 

temperature and the number of extraction strokes
20

, which allows more flexibility to achieve 

time efficient analyte enrichment. 

The peak areas, obtained from the extraction of the headspace of a toluene solution with 

1 mg L
-1

, using a TTA trap with varying numbers of extraction strokes, are presented in 

Figure 5.7. The development of the peak areas can be separated in two ranges; the increase 

was linear from the beginning up to ten extraction strokes and then changed to a logarithmic 

trend until the upper limit of 100 strokes. At the start of the extraction process, the pre-

conditioned sorbent material was not loaded and all analytes, which were pumped through the 

sorbent bed were trapped, therefore the resulting peak areas were proportional to the sampled 

volume, which is defined by the number of extraction strokes.
22

 The loading on the trap 

increased with the sampled volume until the analytes, which were transported through the 
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sorbent bed with each extraction stroke, could not be trapped completely, anymore. From this 

point on, the increase of peak areas changed to the logarithmic trend and in an open sampling 

system, this would result in analyte loss,
23

 but as ITEX is a closed system, the analyte 

fraction that was not adsorbed would be re-injected to the sample vial. The sampling volume 

with linear increase depends on the distribution constant between the analyte and the sorbent, 

the amount of used sorbent and the analyte concentration;
22

 while it extended up to 20 

extraction strokes for the low volatile geosmin, no linear trend could be observed for the very 

volatile vinyl chloride; in both cases under the same conditions as for toluene
4
. The following 

logarithmic trend was also observed in other experiments which were performed up to 200 

extraction strokes and which data are not shown here, because they were only performed as 

single determinations due to the long extraction times. In this way, the response per 

extraction stroke could easily be predicted by just a few measurements. However, this simple 

relation is only valid for low analyte masses, because the limited sorption sites of adsorbent 

materials lead to saturation effects, when samples with higher concentrations or mixtures 

containing several compounds are analyzed. So, while toluene alone did not reach 

equilibrium in more than 100 extraction strokes, it only took 40 extraction strokes to reach 

steady state in a mixture containing 23 compounds. When the extraction is continued beyond 

this point, analytes with a low affinity to the sorbent material can be displaced by stronger 

retained analytes. This will show as non-linear behavior in the calibration functions at the 

higher concentrated mixed standard solutions. Thus, the number of extraction strokes can be 

used to tune the sensitivity of the method to the expected concentration level of the samples; 

a high number of extraction strokes should be applied for trace analysis in the ng L
-1

 to µg L
-1

 

range, while for higher concentrated samples in the mg L
-1

 range, a lower number might be 

more suitable. 
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Figure 5.5 Influence of the extraction flow on the obtained peak areas of vinylchloride, toluene and tribromomethane 

with a TGR/CSIII trap using 10 extraction strokes, from a 23-compound standard mixture with a concentration of 

1mg L-1 per compound 

 
Figure 5.6 Influence of the extraction flow on the obtained peak areas of ethyl acetate, 3-methylbutanol and geraniol 

with a TTA trap using 75 extraction strokes from a 24-component stadard mixture with a concentration of 5 µg L-1, 

per compound 
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Figure 5.7 Influence of the number of extraction cycles on the extraction yield of toluene 

The peak areas of nine combinations of extraction flows and extraction strokes are presented 

in Figure 5.8, accompanied by the resulting extraction time for each combination. As 

expected, the peak areas increased towards lower extraction flows and also towards more 

extraction strokes. The results for most combinations, apart from 80 extraction strokes with 

30 µL s
-1

 or 20 extraction strokes with 90 and 60 µL s
-1

, were quite similar, but the necessary 

extraction times varied from 18.5 to 55.6 minutes. Thus, the calculation of the extraction 

efficiency, as peak area obtained per second of extraction, can be a good way to identify the 

most suitable extraction parameters, which is given in Table 5.2. 

 
Figure 5.8 Effects of combinations of varying numbers of extraction strokes and extraction flows on the extraction 

yield of toluene on MWCNTs, together with the resulting extraction time of each combination (unpublished data 

from 20) 
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The highest extraction efficiencies were achieved at 20 extraction strokes with 60 and 

90 µL s
-1

, because they mainly cover the linear part of the extraction profile (see Figure 5.7), 

however with small peak areas. The most efficient extraction of the combinations with 

similar peak areas were achieved with 50 strokes at 90 µL s
-1

 and 20 strokes at 30 µL s
-1

 with 

5.0 and 4.9 kAU s
-1

, respectively. Four combinations which result in a constant extraction 

time are compared in Figure 5.9; here, the higher number of fast extraction strokes by far 

outperforms the lower extraction flows. However, these differences might diminish when 

longer extraction times are chosen, as was seen before. 

Table 5.2 Extraction efficiencies of nine combinations of numbers of extration strokes and extraction flow, calculated 

as resulting peak area per second of the extraction procedure 

Extraction strokes (n) 20 50 80 

Extraction flow (µL s-1) Extraction efficiency (kAU s-1) 

30 4.9 2.2 1.7 

60 6.1 3.6 2.6 

90 6.7 5.0 3.4 

 

 
Figure 5.9 Toluene extraction yield of a TTA trap for different combinations of extraction strokes and flows, 

resulting in a constant extraction time of 6.7 minutes 

5.3.3 ITEX Injection 

The most suitable parameters for ITEX injections depend on the volatility of the analytes of 

interest and the technical configuration of the GC. Based on these preconditions, two general 

cases can be distinguished: (i) the analytes cannot be re-focused on the head of the analytical 

column and (ii) the analytes can be re-focused, either by a low oven temperature alone or by a 

cryogenic cooling trap. The consequences will be discussed in the following. 
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5.3.3.1 Injection without Analyte Focusing 

There are two injection methods for the ITEX technique. The first (hence denoted as 

ITEX_inj) aspirates the defined injection volume of a desorption gas, then starts heating the 

trap and injects the analytes, when the predefined desorption temperature has been reached. 

The second (Vol_inj) aspirates a fraction of the defined injection volume (50% by default), 

then starts to heat the trap, while simultaneously aspirating the remaining fraction of the 

injection volume. Analyte injection is performed solely, when the desorption temperature and 

the whole injection volume have been reached. In this way, the analytes will be transported 

into the syringe at first and then be injected through the heated bed with a higher injection 

flow, similar to a classical headspace injection technique. This is used to avoid peak 

broadening of volatile compounds and to compensate for the thermal expansion of the gas in 

the trap, during the heating process, which would otherwise result in bleeding of analytes into 

the injection system, before the actual injection is performed. 

The differences between both injection methods for desorption temperatures of 200, 250 and 

300 °C are presented in Figure 5.10. The peaks with the ITEX_inj method displayed 

increased fronting, when the desorption temperature was raised, until a distinct valley 

developed at 300 °C. While the peak areas were similar with 204794, 221662 and 201930 

AU, respectively, the intensity and signal to noise ratio decreased significantly. The peaks of 

the Vol_inj method did not show fronting, except for the one with 300 °C desorption 

temperature, where the heating took longer than the parallel aspiration of the desorption gas 

volume, which might be compensated by a larger desorption volume. However, the peak 

areas were much smaller with 133017, 139258 and 135774 AU, because the analytes were 

diluted to the whole extraction volume plus the void volume of the trap, which remains in the 

tube after the injection. The total volume of an ITEX-tube is about 300 µL, the sorbent bed 

takes up 160 µL, which results in about 118 µL sorbent material, if an optimal sphere packing 

is assumed, ensuing a total void volume of about 180 to 190 µL. With a desorption volume of 

500 µL, the resulting peak area of the Vol_inj method should theoretically be around 40% 

lower than the ITEX_inj peak area, which is close to the actual results. 

The heating times for several desorption temperatures, starting from a temperature of 30 °C, 

are given in Table 5.3, together with the theoretical expansion of the gas in the void volume. 

However, the theoretical expansion can only be used as an allusion to the necessary 

aspiration volume of the Vol_inj method, because the volume of gas released during heating 

is also influenced by the amount of analytes or water sorbed to the trap material. Above 
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200 °C, the heating rate decreases significantly, which would require larger desorption 

volumes with the Vol_inj method to avoid premature bleeding of the analytes to the injector, 

as it was observed with the 300 °C desorption temperature. On the other hand, this would 

also lead to stronger analyte dilution in the desorption gas and a broadened injection band. 

The peak width is also determined by the quotient of desorption volume and desorption flow 

(like in the example: 500 µL ÷ 100 µL s
-1

 = 5s), but the influence of the desorption flow is 

mostly insignificant for volatile compounds, while low volatiles benefit from lower flows. 

In the given example, complete desorption of the analyte was achieved at 200 °C with both 

injection methods using a desorption volume of 500 µL and the peak areas did not further 

increase, when the desorption temperature has been raised. In this case, the ITEX_inj method 

gave a higher peak area with sufficiently good peak shape and might be the better option, 

when only volatile compounds are analyzed. Higher desorption temperatures may be needed, 

when also low volatile compounds are analyzed, necessitating the use of the Vol_inj method. 

Then, the analyst has to find a suitable balance between desorption temperature, desorption 

volume and aspiration flow for all target analytes. 

 
Figure 5.10 Peak shapes of 0.1 mg L-1 toluene from a Tenax TA trap using a) ITEX_inj and b)Vol_inj methods at 

different desorption temperatures, with an injection volume of 500 µL, 100 µL s-1 desorption flow and a 1:10 split 

ratio 

 

Table 5.3 Heating time and theoretical void gas expansion during the desorption process, starting from 30 °C 

T (°C) 30 50 100 150 200 250 300 350 

Heating time (s) 0 5 10 16 24 34 47 63 

Volume expansion (%) 0 7 23 40 56 73 89 106 
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5.3.3.2 Injection with Analyte Focusing 

The initial width and shape of the injection band are of less importance, when the analytes 

can be re-focused on the column. Therefore, the ITEX_inj method can be used with higher 

desorption temperatures, which will result in larger peak areas of low volatile compounds or 

when stronger sorbent materials than Tenax TA in the example above are used. In this case, 

the desorption temperature is either limited by the thermal stability of the analytes and the 

sorbent material or by the maximum temperature of the ITEX heater. Variations of the 

desorption volume only cause small effects on the resulting peak areas, because a fraction of 

the analytes will be transported into the GC injector by the thermal expansion during the 

heating process and only the remaining void volume needs to be flushed. Generally, the 

results with 100 and 500 µL desorption volume were very similar and a further increase to 

1 mL only resulted in inferior repeatability for most compounds. 

In contrast to the non-focused injection, low desorption flows do not result in peak 

broadening and therefore, also low flows can be applied for injections when analyte focusing 

is possible. As mentioned before, the desorption flow had only low influence on the resulting 

peak areas of volatile compounds and was practically insignificant for highly volatiles like 

vinyl chloride, while a decrease of the desorption flow from 50 µL s
-1

 to 10 µL s
-1

 almost 

doubled the obtained peak area of geosmin (see Figure 3.3 (d)) 

5.3.4 Trap Conditioning 

Before the first use, the traps should be conditioned to remove possible impurities from 

packing, transport and storage. The conditioning is straightforward, the nitrogen flow is 

recommended to be about 5 mL min
-1

 and the conditioning temperature should be just below 

the maximum tolerable temperature of the sorbent material, to achieve complete desorption 

of possible residual compounds. An initial conditioning time around 30 minutes should be 

sufficient. The conditioning time between analyses depends on the sorbent strength, the 

volatility of analytes and the sample concentration. A flushing time of ten minutes is usually 

long enough to avoid carryover of volatiles in the µg L
-1

 range, while the complete removal 

of semi-volatiles in the mg L
-1

 range can require over 20 minutes. 

5.3.5 Improving the ITEX-procedure 

A relatively simple way to improve the system is to add a cooling-fan to the autosampler 

(Figure 5.11), to reach lower trap temperatures, because this makes the sorption process 

more efficient. Therefore, a 12 V, 6 cm axial-flow fan has been attached directly to the 
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autosampler head using duct-tape. The fan was operated with a 5 V DC power adapter, 

originally intended for an USB hub, which gave sufficient air-flow for the cooling task. A 

trap temperature of 24 °C could be achieved with active cooling, but the lowest software 

controlled temperature of the ITEX trap heater, to maintain steady enrichment conditions, is 

30 °C. This lower temperature limit could not be reached without active cooling, even in an 

air-conditioned laboratory. Active cooling also shortens the cooling time of the trap. Figure 

5.12 shows the difference in cooling time between the standard passive cooling and active 

cooling by a fan, attached to the autosampler. With a cooling fan, suitable trap temperatures 

for analyte enrichment can be reached in about ⅓ of the time. 

 

Figure 5.11 Combi PAL modified with a 6 cm fan for trap cooling 
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Figure 5.12 Influence of active cooling of the trap on cool-down time 

The most time consuming steps in the ITEX-procedure are typically sorption, sample 

conditioning and trap cleaning with cooling. As seen before, the number of extraction strokes 

performed during the sorption step is the most important parameter, defining the sensitivity of 

the method and it is therefore desirable, to use as much time as possible on this step, when 

trace analysis is required. This can be achieved by the modification of the standard procedure 

to perform the trap cleaning in parallel to the sample conditioning, before the extraction of 

the next sample begins (see Figure 5.13). When the whole extraction procedure is conducted 

in parallel to the GC-run of the previous sample, it is possible to perform about 50 extraction 

strokes in a total analysis time of 30 minutes, with an incubation time of 15 minutes, while 

the trap is flushed for 10 minutes, to allow a safe cooling time. The standard procedure would 

only allow 10 to 20 strokes, when the flushing time is shortened. 

 

Figure 5.13 Basic steps of the ITEX-procedure; a) standard procedure, b) runtime optimized procedure 

Furthermore, the Vol_inj method by default aspirates 50% of the desorption volume before 

heating the trap, which does not leave enough aspiration volume/time to achieve high 

desorption temperatures without analytes bleeding to the column, unless large desorption 

volumes are used. A modification to the macro, that was performed without negative effects, 
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was to skip the pre-heating aspiration and to begin the aspiration of the whole desorption 

volume at the same time as the heating process. The aspiration flow can then be adjusted in a 

way that the required heating time (see Table 5.3) is slightly shorter than the aspirating time. 

5.3.6 Possible Sources of Error 

The main reasons for unsatisfactory results often are non-optimum extraction and injection 

conditions, like a small number of slowly performed extraction strokes or a too large 

desorption volume for volatile compounds. However, there are also a few mechanical issues 

that can cause the diminishing of extraction performance over time and need to be observed. 

The most important is the plunger of the syringe. It should be checked for leak tightness 

regularly because a failure will result in less gas pumped through the sorbent bed, lowering 

the extracted analyte amount. Although the plunger usually lasts for several thousand 

movements, this limit might be reached within several weeks, when a very large number of 

extraction strokes is performed per analysis. Another fault can occur at the connection of the 

sorbent tube to the syringe. When the connection nut has not been screwed in well enough, it 

can loosen over time, due to thermal stress during desorption and trap cleaning, which will 

result in a leakage, too. Finally, a problem that has only occurred once so far in our lab, in 

over four years of continuous use, was the blocking of the needle by scraped septum 

particles, which has most likely been caused by too much force on the septum nut. 

5.4 Conclusions 

Based on previous experiences, the time needed for the development of appropriate methods 

for certain analytical tasks can be shortened drastically. Therefore, all characteristics of the 

sample and the analytes have to be taken into account. Figure 5.14 presents a flow chart, in 

which the previously discussed parameters are summarized and which gives 

recommendations for efficient method development, for different analyte volatilities and 

sample compositions. This should enable new ITEX users to develop suitable methods in less 

time, avoiding unfavorable extraction and injection conditions. Currently, a characterization 

of ITEX-traps is undergoing with several test compounds, to build a database, which can be 

used to predict optimal extraction conditions by simulation. 
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Figure 5.14 Flow chart of the ITEX procedure for accelerated method development, showing exemplary extraction 

and injection parameters for different sample conditions and analyte compositions 
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5.6 Supporting Information 

 
Figure S 5.1 Relative extraction yields of six tested standard sorbent traps for the analysis of beer aroma compounds, 

result for each compound was normalized to the most efficient sorbent from Figure S 5.1 and Figure S 5.2 

 
Figure S 5.2 Relative extraction yields of five tested custom packed traps for the analysis of beer aroma compounds, 

result for each compound was normalized to the most efficient sorbent from Figure S 5.1 and Figure S 5.2 
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Figure S 5.3 Relative extraction yields of five tested standard sorbent traps for the analysis of coffee aroma 

compounds, result for each compound was normalized to the most efficient sorbent from Figure S 5.3 and Figure S 

5.4 

 
Figure S 5.4 Relative extraction yields of five tested custom packed traps for the analysis of coffee aroma compounds, 

result for each compound was normalized to the most efficient sorbent from Figure S 5.3 and Figure S 5.4 
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Figure S 5.5 Influence of sample and packing temperature on the resulting peak area of toluene for Carbosieve S III 

 
Figure S 5.6 Influence of sample and packing temperature on the resulting peak area of toluene for PDMS with 10% 

Carbowax
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6 Concluding Remarks and Outlook 

Parts of this chapter have been published in modified form in Laaks, J.; Jochmann, M. A.; Schmidt, T. C., 

Solvent-free microextraction techniques in gas chromatography. Analytical and Bioanalytical Chemistry 2012, 

402, 565-571, © Springer-Verlag 2012 

Although microextraction techniques have come a long way since they have first been 

presented about 25 years ago, there is still room for improvement, due to their importance in 

the overall analytical process. Automated solventless extraction techniques are now 

commercially available for routine GC-based analysis of almost all typical volatile and semi 

volatile compounds. In the coming years, such methods surely will also be included to a 

larger extent in standardization efforts, thereby replacing more and more outdated liquid-

liquid extraction methods. Among the numerous different devices of solvent-free 

microextraction techniques for gas chromatography are sorbent coated rods, bars and needles, 

sorbent packed needles and bulk sorbent techniques. However, most newly presented 

techniques are minor adaptations of already existing approaches and fundamentally new 

developments are not on the horizon. Yet, all of these techniques possess their individual 

advantages and limitations and until now, no truly universal microextraction device has been 

presented, which is equally useable for liquid and gas phase extractions and provides an 

unrestricted choice of extraction phase material, at the same time. In this way, the user is 

either limited to liquid polymer coatings that can be applied to a surface or to particulate 

sorbents for packed beds. 

An increase in the amount of applied extraction phase material, which determines the 

enrichment capability of a microextraction device, does not necessarily result in a linearly 

increased sensitivity and might lead to other problems during automation or sample 

introduction to the chromatographic system. In this thesis, method detection limits for VOCs 

were achieved, which were in the same range as with typical purge and trap systems. While 

the sorbent bed of purge and trap systems has a volume of more than 1 mL, the bed volume 

of the ITEX system is just 0.16 mL and the sample size for the extraction procedure is 

smaller, also. The method detection limits of the ITEX method for alcohols and esters was, 

on the other hand, depending on the sorbent material applied, in the same range as or higher 

than with the presented SPDE method or a SPME method using a sol-gel coating. The 

extraction phase volumes are about 4.5 µL for SPDE and 0.6 µL for SPME, respectively and 

the ITEX method required a cryogenic trap, to re-focus the analytes on the column head to 
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prevent peak broadening. Peak broadening can result from the larger void volumes of the 

ITEX system, that come along with the larger sorbent amount, but also from the relatively 

slow heating rate of the ITEX heater. On the other hand, the heater makes ITEX independent 

from possible injection port temperature profiles, which can influence desorption of other 

needle based techniques. A further optimization of the ITEX system to reduce the void 

volumes and to increase the heating rate might solve these problems. 

It is apparent that the choice of sorbent material is the decisive factor for the sensitivity and 

dynamic range of the method and that lower amounts of a well suited sorbent material can 

give better results than larger amounts of an inept sorbent. The method detection limits with 

the adsorbent Tenax TA were about one tenth of those with the partitioning material PDMSb, 

but the opposite could be observed for the linear range, which was about five times larger 

with PDMSb, due to saturation effects of the adsorbent. While practically all kinds of 

particulate standard adsorbents can be used straightforward for ITEX, the situation for 

absorbents is much different, where until now only PDMS is usable. Another interesting 

absorbent would be the PEG material, which was also used in the SPDE needle, but so far, it 

could only be applied as a fraction of 10% in PDMS with ITEX. This small fraction had no 

significant influence on the extraction performance for polar compounds and cannot be 

increased, because PEG turns liquid at desorption temperatures and could drip out or block 

the needle. This problem might be solved, when a suitable support material is found, on 

which the PEG can be grafted. Therefore, more research should be undertaken to adapt more 

absorbent materials for the use in ITEX traps or to develop and evaluate new extraction phase 

materials to further enhance the scope of target compounds and to increase selectivity, 

especially for the analysis of polar compounds. In the focus are, for instance, several types of 

nanomaterials (gold nanoparticles, porous carbon, carbon nanotubes), ionic liquids, sol-gel 

coatings or molecularly imprinted polymers. 

Another important aspect of microextraction techniques, which has made little progress since 

the beginning, is the more systematic development and optimization of analytical methods, 

which is currently still dominated by mere trial-and-error approaches. These require much 

time and experimental effort to find appropriate extraction materials and operational 

parameters. A first step, which has been made here, was to summarize the experiences from 

method development for multiple analytes, including aromatics, heterocyclic aromatics, 

halogenated hydrocarbons, fuel oxygenates, alcohols, esters and aldehydes. This should give 

future users general guidelines for a more efficient method development, i.e. which 
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parameters are the most important and where to start with their optimization. Currently, a 

characterization of ITEX-traps is undergoing with several test compounds, which can give 

further evidence for the choice of appropriate sorbent materials. This should result in the 

future development of predictive tools for the optimization of extraction parameters by design 

of experiment approaches and integration of such tools in software platforms, to minimize 

remaining experiments and to facilitate a rapid optimization of analytical methods. 
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7 Appendix 

7.1 Abbreviations and Symbols 

Acal : Calibration peak area 

Acor : Corrected peak area 

Amax : Max. peak area 

amu : Atomic mass unit 

At : Auto-tune peak area 

AU : Arbitrary unit 

Axx : Altbier 

β : Phase ratio 

BTEX : Benzene, toluene, ethylbenzene, xylenes 

C : Analyte concentration 

C0 : Initial analyte concentration 

C1000 : Carboxen 1000 

CAS : Chemical Abstracts Service 

CC : Carbopack C 

CME : Capillary microextraction 

CSIII : Carbosieve SIII 

dc : Core diameter 

DC : Direct current 

df : Film thickness 

DLLME : Dispersive liquid-liquid microextraction 

DVB : Divinylbenzene 

EI : Electron ionization 

EPA : Environmental Protection Agency 

ETBE : Ethyl tert-butyl ether 

EU : European Union 

eV : Electron Volt 

Fe : Extracted fraction 

FPN : Fiber-packed needle 

GC : Gas chromatography 

HF-Esy : Hollow fiber extraction syringe 

HS : Headspace 

HSD : HayeSep D 

HSSE : High capacity sorptive extraction 

Hxx : Helles 

i.d. : inner diameter 

INCAT : Inside needle capillary absorption trap 
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ITEX : In-tube extraction 

Kaw : Air-water partitioning constant 

KEH : Extraction phase-headspace distribution constant 

KES : Extraction phase-sample distribution constant 

KHS : Headspace-sample partitioning constant 

Kow : Octanol-water partitioning constant 

Kxx : Kölsch 

LD : Linear discriminant 

LDA : Linear Discriminant Analysis 

LLE : Liquid-liquid extraction 

LLME : Liquid-liquid microextraction 

LP : liquid phase 

LPME : Liquid phase microextraction 

m : Mass 

m0 : Initial analyte mass 

MDL : Method detection limit 

MEPS : Microextraction in packed syringe 

MESI : Membrane extraction with sorbent interface 

MHE : Multiple headspace extraction 

MIB : 2-Methylisoborneol 

MS : Mass spectrometry 

MTBE : Methyl tert-butyl ether 

MWCNTs : Multi-walled carbon nanotubes 

NT : Needle trap 

OSF : Organic solvent film extraction 

OTT : Open-tubular trapping 

P&T : Purge and trap 

PA : Poly(acrylate) 

PAH : Polycyclic aromatic hydrocarbon 

PCB : Polychlorinated biphenyl 

PDMS : Polydimethylsiloxane 

PEG : Polyethylene glycol 

PES : Polyethersulphone 

PFTBA : Perfluorotributylamine 

pp-LFER : Polyparameter-linear free energy relation 

PTFE : Polytetrafluorethylen 

Pxx : Pilsener beer 

Pxx\alc : Alcohol free Pilsener beer 

RF : Linear range factor 

Ri : Retention index 

RSD : Relative standard deviation 
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Rt : Retention time 

S/N : Signal to noise ratio 

S/SL : Split/splitless injector 

SBSE : Stir bar sorptive extraction 

Sc : Standard deviation 

SDME : Single drop microextraction 

SE : Adsorbent surface concentration 

S-HS : Static headspace 

SMM : Single magnet mixer 

SPDE : Solid phase dynamic extraction 

SPE : Solid phase extraction 

SPME : Solid phase microextraction 

SR : Silicone rod 

Sr : Relative sensitivity 

ST : Silicone tube 

Sxx : Schwarzbier 

t(N-1) : Student's t-value 

TAME : tert-amyl methyl ether 

TCMC : Tubular cylindrical microconcentrator 

Tg : Glass temperature 

TGR : Tenax GR 

THM : Trihalomethanes 

TTA : Tenax TA 

u(ccal) : Uncertainty of calibration 

u(cm) : Total measurement uncertainty 

u(cs) : Sample uncertainty 

USB : Universal Serial Bus 

V : Volume 

V : Volt 

VOC : Volatile organic compound 

WHO : World Health Organization 

Wxx : Wheat beer 

Wxx\alc : Alcohol free Wheat beer 
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