
Models and Algorithms for

Dominance-Constrained Stochastic

Programs with Recourse

Von der Fakultät für Mathematik der

Universität Duisburg-Essen

zur Erlangung des akademischen Grades eines

Dr. rer. nat.

angenommene Dissertation

von

Herrn Dipl.-Math. Dimitri Drapkin

Referent: Prof. Dr. Rüdiger Schultz
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Abstract

We consider optimization problems with stochastic order constraints of first

and second order posed on random variables coming from two-stage stochastic

programs with recourse. We clarify the theoretical relevance of these specific

problems, and contribute to improving their computational tractability. For

the latter, we review and enhance mixed-integer linear programming (MILP)

equivalents. These exist for either mixed-integer or continuous variables in the

second stage. Algorithmically, our focus is on developing tailored cutting-plane

decomposition methods for these models.

Stochastic mixed-integer programming, stochastic dominance, decomposi-

tion methods, cutting-plane methods, risk aversion.



Zusammenfassung

In der vorliegenden Dissertationsschrift befassen wir uns mit stochastischen

Optimierungsproblemen unter Nebenbedingungen, die mithilfe stochastischer

Ordnungen formuliert sind. Hierbei konzentrieren wir uns auf stochastische

Dominanz erster Ordnung und die steigende konvexe Ordnung, wobei beide

Ordnungen in unserem Fall auf Zufallsgrößen operieren, welche Optimalwerten

zweistufiger stochastischer Optimierungsprobleme mit Kompensation entspre-

chen.

Wir stellen die theoretische Relevanz der vorliegenden Problemklasse heraus

und tragen zur Entwicklung von effizienten Lösungsverfahren bei. Um Letzteres

zu erreichen untersuchen und erweitern wir bestehende gemischt-ganzzahlige

lineare Repräsentationen dieser Probleme und entwickeln maßgeschneiderte

Dekompositionsverfahren. Der Schwerpunkt dieser Arbeit liegt dabei auf der

Entwicklung und Implementierung besonders effizienter Lösungsansätze für

den Fall mit linearer Kompensation.

Stochastische gemischt-ganzzahlige Optimierung, Stochastische Dominanz,

Dekompositionsverfahren, Schnittebenenverfahren, Risikoaversion.
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Chapter 1

Introduction

Good decisions have always been connected with mastering some kind of un-

certainty. In former times experience and common sense used to be the only

aids to find a good path. Starting from the middle of the twentieth cen-

tury, stochastic programming (SP) emerged, at the interface of probability

and optimization theory, to become a discipline of science aiming at explo-

ration, development and improvement of models for decision making under

uncertainty.

Today, stochastic programming has a great variety of applications from

sports, e.g., yacht racing [Phi05], over management of risks related to natural

disasters, e.g., of flood and seismic risks [EE05], to manifold applications in

finance [DHv02]. Even the problem of finding an optimal shape for an elastic

body (e.g., a cantilever) under uncertain loading configurations was recently

formulated and solved by means of (infinite-dimensional) stochastic program-

ming, see [CHP+09].

Though the achievements in this field have been remarkable, a sensible han-

dling of uncertainty and risks seems to be more important than ever to master

the challenges of the day. Various aspects of risk management are subject to

constant debate in science and society. Also the mathematical models are con-

stantly getting larger and gain complexity, providing a motivation for ongoing

1



Chapter 1. Introduction

research.

In the present thesis, we will deal with a specific decision making framework

of dominance-constrained stochastic programs with recourse. Our aim will be,

on the one hand, to clarify the theoretical relevance of this problem class

in view of recent developments in the adjacent fields of decision theory, risk

modeling and stochastic programming. On the other hand, to strengthen

the relevance of dominance-constrained problems in practical decision making

under uncertainty, we will concentrate on the algorithmic aspects of these

problems proposing new and enhancing existing solution techniques.

The thesis is structured as follows. In Chapter 2, we define relations of

stochastic dominance and review their decision theoretical background. Also

some computationally tractable representations for SD and an outline of its

connections with the related concept of risk measures are presented. In Chap-

ter 3, we expose how to incorporate SD into the established optimization

framework of SP, and introduce our problem class of dominance-constrained

stochastic problems with recourse. In Chapter 4, mixed integer linear pro-

gramming (MILP) equivalent formulations for such problems are developed

and enhanced. Starting from Chapter 5, we concentrate on the case of lin-

ear recourse, i.e., on problems without integer variables in the second stage.

Model equivalents based on duality are derived for these problems in Chap-

ter 5, whereas cutting plane decomposition methods are proposed in Chapter 6.

Lastly, computational results presented in Chapter 7 indicate the effectiveness

of our approach and conclude the thesis.

2



Chapter 2

Comparing Risks for Decision

Making under Uncertainty

2.1 Stochastic Dominance and Decision The-

ory

Decisions we are making today tend to have prospects observable in the future,

only. The problem of making good decisions prior to having the exact infor-

mation from the future, is the fundamental matter of stochastic programming.

Thus, stochastic programming can be understood as optimization under in-

formation or nonanticipativity constraints. Though we cannot anticipate the

future, in the present thesis we assume, that all relevant uncertain quantities

can be identified and modeled as random variables with distributions known

to the decision maker.1

Once the basic model is set, the question of a sensible comparison of random

outcomes arises, since it has to be clarified what a ”good” decision should be.

The first sound idea of such a comparison yielded the concept of the expected

1The problem of selecting an appropriate basic probability model is referred to as the am-

biguity problem, cf. [RP07] and the discussion therein, in contrast to the so-called uncertainty

problem treated here.

3



Chapter 2. Comparing Risks for Decision Making under Uncertainty

value, introduced in the 17th century by Blaise Pascal as a ”fair” solution for

the ”Problem of Points”2. Symptomatically, the question of what should be

considered ”good” or ”fair” was even then not only a mathematical question.

In today’s terms, and at least in case of many repetitions of the same setting,

optimizing the expected value of the prospects is justified by the Law of Large

Numbers. In fact, the average of a prospect will converge with the number of

repetitions to its expected value, meaning that the obtained solution would be

optimal on average.

The drawback of the expectation based approach is its complete neglect of

the risk incurred by concrete realizations of the random outcome. Ignoring

the risk, however, may easily lead to inferior or even completely implausible

decisions. One famous example of such a situation is that of the St. Petersburg

Lottery: a game with infinite expected payoff, for which there is ”no person of

good sense, who would wish to give 20 coins”3.

To resolve this difficulty, Daniel Bernoulli proposed to measure the utility of

an outcome numerically (as the logarithm of one’s monetary possessions) and

to optimize the ”mean utility” instead of the expectation itself.4 Bernoulli’s

work inspired the concept of marginal utility and gave rise to a cardinal utility

theory, which made the notion of utility indispensable in economics.

However, it proved problematic (if not impossible) to determine utility func-

tions explicitly.5 This difficulty led to the development of normative models,

starting from the beginning of the 20th century. In these models, systems of a

2According to [Kat98, Chapter 11.3], the discussion of this problem belongs to the earliest

beginnings of probability theory.
3As Gabriel Cramer put it in his correspondence with Nicolas Bernoulli in 1728, cf. [Ber75]

for the edifying discussion of St. Petersburg paradox.
4Cf. [Ber54] for the English translation of D. Bernoulli’s seminal ”Exposition of a New

Theory on the Measurement of Risk”, originally published in 1738 in Latin.
5The effort in utility measurement was considerable and produced some interesting con-

cepts (e.g., Edgeworth’s hedonimeter), cf. [Col07]. In the modern economic discourse this

experienced utility was largely replaced by decision utility which refers to the prospect’s

weight in decisions and can be inferred from observed choice, cf. [KWS97].
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2.1. Stochastic Dominance and Decision Theory

few axioms were proposed to describe preferences which should be consistent

across different choice problems.

A (preliminary) culmination of these efforts was the development of the

expected utility theory (EUT) by von Neumann and Morgenstern. In their

fundamental work [VNM44], a notion of a rational decision maker - defined as

an agent obedient towards a given set of four intuitive axioms - was introduced.

This rational decision maker was proven to possess a utility function u(·)6 such

that he would prefer a prospect Y to X iff

IE[u(Y)] ≥ IE[u(X)].7 (2.1)

In the framework of EUT the study of attitudes towards risk is of special

importance. A decision maker is called risk-averse if he prefers the expected

value of a prospect to the random prospect itself, i.e., his utility function is

concave with

IE(u(X)) ≤ u(IE(X)). (2.2)

Otherwise, he is called risk-seeking with a convex utility.8 To compare risk

aversion between individuals9 some measures of risk aversion were introduced,

most notably the Arrow-Pratt measure of absolute risk-aversion ρ(x) := −u′′(x)
u′(x)

,

cf. [Pra64, Arr65]. With the help of this measure it is possible to formulate

the plausible assumption of declining absolute risk aversion (DARA) which is

characterized by a non-increasing ρ (ρ′ ≤ 0), cf. [Vic75].10

Being a powerful tool for decision making under uncertainty, EUT recently

came under pressure, both from the descriptive and the normative side. On

6Such utility functions can be determined up to an affine transformation through the

analysis of a decision maker’s preferences between simple lotteries. For a more practically

successful approach the author refers to [ADH77].
7From now on we assume the utility functions to be differentiable sufficiently often, all

expected values are assumed to exist.
8Both observations are a direct consequence of Jensen’s inequality.
9This task is not straightforward because utility functions are lacking uniqueness.

10E.g., Bernoulli’s logarithmic utility function exposed DARA.
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Chapter 2. Comparing Risks for Decision Making under Uncertainty

the one hand, there is empirical evidence of behavioral patterns which system-

atically violate EUT, cf. [All53, KT79].11 For example, individuals systemat-

ically overweight low-probability events and show different attitudes towards

gains and losses with respect to the status quo (e.g., buy lottery tickets and

insurance contracts simultaneously). On the other hand, fundamentally dis-

tinct notions of attitude towards risk and attitude towards wealth coincide in

EUT thus leading to the question whether these concepts could be decoupled.

Several generalizations of EUT have recently been proposed to resolve these

drawbacks.

The rank-dependent expected utility theory (RDEUT) elaborated on the ob-

served subjective probability distortion. It was originally presented by Quiggin

([Qui82]) and developed for a special case by Yaari ([Yaa87])12 under the name

dual utility theory. From a (weaker) set of axioms a utility function u(·) and

a nondecreasing probability transformation function q(·) : [0, 1] → [0, 1] were

proven to exist, s.t. a prospect Y is preferred to X iff∫
u(t) d(q ◦ FY)(t) ≥

∫
u(t) d(q ◦ FX)(t). (2.3)

A further generalization of EUT is the highly praised cumulative prospect

theory (CPT) of Kahneman and Tversky, cf. [KT92].13 In this theory, gains and

losses are considered separately: the utility function is assumed to be convex

for the losses and concave for the gains (i.e., u(·) is S-shaped); separate reverse

S-shaped probability distortion functions are proposed for either case. While

most experimental studies support CPT (thus explaining its popularity), we

refer to [LL02a, LL02b] and the references therein for some critical findings.14

So far, we have compared the riskiness of a prospect from the individual

11The work [KT79] is regarded as the fundamental paper in behavioral economics.
12In Yaari’s version, u(·) is assumed to be the identity function and the probability trans-

formation function is referred to as a dual utility function.
13In particular for the development of CPT, Kahneman received the Nobel Prize in Eco-

nomics in 2002.
14In the quoted articles particularly the S-shape of a utility function is rejected by studies

envolving mixed (partly positive, partly negative) prospects. However, [Wak03] shows, that

6



2.1. Stochastic Dominance and Decision Theory

perspective of a given decision maker, pointing out the properties of his utility

functions connected with his attitude towards risk. In practice, the knowledge

of the concrete shape of a utility function is at best partial and it makes sense

to consider classes of utility functions characterizing typical risk attitudes.

This idea leads us to a more general approach of stochastic dominance (SD),

which will be the main subject of the present thesis. In the context of decision

theory, SD enables a direct comparison of prospects by means of EUT. More

precisely, one prospect will be said to dominate the other if it is preferred by

all individuals with utility functions in a given class.

Under the assumed preference of more money to less, the most general class

U1 of utility functions will include all nondecreasing functions u (with u′ ≥ 0).

We have already seen that in EUT risk-aversion is equivalent to concavity of

the utility function, hence the class U2 will contain all concave utility functions

from U1 (u′ ≥ 0, u′′ ≤ 0).

More generally, one could consider utility functions whose derivatives alter-

nate in sign, i.e, belong to the class Un := {u ∈ Un−1 : (−1)nu(n) ≤ 0}, n > 1,

whereby the economic interpretation for n > 3 is not evident.15 The impor-

tance of U3 is related to the fact that U3 ⊃ UDARA := {u ∈ U2 : u′ 6= 0, ρ′ ≤ 0}

and the conditions in U3 are easier to check.16

Corresponding stochastic dominance relations are then defined in a straight-

forward way:

Definition 2.1.1. For random variables X and Y, we define Y to dominate X

w.r.t. nth order stochastic dominance, written X �(n) Y iff

IEu(X) ≤ IEu(Y)∀u ∈ Un. (2.4)

due to probability distortion, the studies actually support the CPT - an argument countered

in [LL03] for some special cases.
15Such classes of utility functions were generalized for all real numbers n > 0, cf. [Fis76,

Fis80].
16For more details the author refers to [Whi70, FV78, Baw75].

7



Chapter 2. Comparing Risks for Decision Making under Uncertainty

Stochastic dominance w.r.t. DARA utility functions is defined analogously.17

Remark 2.1.2. In the present thesis, we define all dominance relations in the

so-called weak form, i.e., we do not exclude the possibility of simultaneously

X � Y and Y � X. For any (weak) dominance relation ”�”, the corresponding

strict form ”≺” is given through the standard rule

X ≺ Y ⇔ X � Y and Y 6� X. (2.5)

In the generalizations of EUT the defined dominance rules only make sense

if they are consistent with the underlying decision model. More precisely, if Y

is preferred to X w.r.t. a dominance relation, it should also be preferred in the

corresponding model by all decision makers with utility functions in the given

class.18

In the rank-dependent expected utility theory (RDEUT), consistency fol-

lows for first-order stochastic dominance (FSD) from monotonicity of the prob-

ability weighting function q in view of (2.3), cf. [Qui82, Proposition 3]. Due

to its interpretation (as a general preference of more to less), consistency with

FSD is such a fundamental property, that it holds for most generalizations of

EUT.19 FSD is also sometimes referred to as the axiom of ”absolute prefer-

ence”, because it can be used to axiomatize RDEUT ([Qui92, Yaa87]).

Lacking consistency with FSD of the original version of the prospect theory

([KT79]), was considered such a large drawback that it partly inspired the

development of CPT ([KT92]) to elaborate on this issue.

The situation with second-order stochastic dominance (SSD) in the gener-

alized models is more complex. In RDEUT a decision maker is risk-averse (in

the sense of preferring certainty over risk, see above) iff he is characterized

17For more details on this dominance relation the author refers to [Vic75, Vic77].
18For EUT this consistency requirement is immediate from the definition of dominance

relations.
19Especially those generalizations of EUT concerning relaxation of the independence ax-

iom and partly even the transitivity axiom, cf. [Lev92, p. 559 - 560].

8



2.1. Stochastic Dominance and Decision Theory

by a concave utility function and a pessimistic transformation of probabili-

ties.20 SSD consistency is preserved if both u(·) and q(·) are concave, which is

a weaker condition than risk-aversion, cf. [Qui92, p. 80].

Due to the proposed S-shape of utility functions, which explicitly assumes

a partly risk-seeking behavior of the decision maker, CPT is of course not

consistent with SSD. The notion of prospect stochastic dominance (PSD) which

considers all S-shaped utility functions and is consistent with prospect theory

was proposed in [LW98, Lev06]. However, consistency problems with CPT

arise in view of reverse S-shaped probability distortion functions proposed

there, cf. [LL02a, p. 1065]. Recently, several even more general classes of

dominance relations have been proposed which also take account of the relevant

probability distortion functions, cf. [BH06]. Nevertheless, the author takes

the view that a broadly accepted and computationally tractable stochastic

dominance theory for the CPT still has to be developed.

In view of the above discussion, in the present thesis we will consider the

FSD relation, because it is the most fundamental SD rule consistent with all

most prominent decision models, and the SSD relation because of its account

for risk-aversion in EUT and its good mathematical and computational prop-

erties, cf. [DR03].

In the context of decision theory, SD was introduced by a number of au-

thors starting from 1960’s, most notably Quirk and Saposnik ([QS62]), Fish-

burn ([Fis64]), Hadar and Russell ([HR69]), Hanoch and Levy ([HL69]) and

Rothschild and Stiglitz ([RS69]).21 A detailed survey of SD rules mainly from

the economical perspective can be found, e.g, in [WF78] and [Lev92].

20Pessimism means that bad outcomes receive larger and good outcomes smaller proba-

bilities. For the exact definition and the proof see [Qui92, pp. 77].
21For a more complete list of early contributions we refer to [Baw82].

9
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2.2 Stochastic Orders and Measures of Risk

The concept of SD is the decision-theoretical counterpart of the more general

concept of stochastic orders, which was developed in statistics starting from

the late 1940’s, cf. [MW47], [Bla51, Bla53] and [Leh55] for early references22

and [MS02], [SS07] for a contemporary discussion.

Stochastic ordering aims at imposing sensible orders23 on the set of cumu-

lative distribution functions (cdf) of real-valued random variables (rv) defined

on a probability space (Ω,F , IP ). In the present thesis, ordering of rvs will not

be distinguished from ordering of their corresponding cdfs. In these terms, we

have seen in the previous section that EUT imposes a total ordering (through

(2.1)) in case the utility function is given, and a partial ordering through SD

rules. Another possibility to obtain ordering relations will employ acceptabil-

ity and risk functionals defined on rvs24, which we will discuss in the present

section focusing on their relations to SD.

As we have pointed out above, SD relations were developed for decision

makers preferring big outcomes to small, so that a large body of literature exists

for this case. On the other hand, some important risk functionals have more

natural interpretations for rvs representing losses instead of gains. Starting

from the classical setting, we will illustrate here the transition from the one case

to the other. In this way, we will obtain the intuition and the representations

we will need in the main part of the thesis for the discussion of our minimization

framework.

22These works were in turn inspired by earlier findings in majorization theory, cf. [HLP34]

and [MOA11] for an overview.
23Formally, a (partial) order is a reflexive, transitive and antisymmetric binary relation

over an arbitrary set. The order is called total if any two elements in the set are comparable

under the relation.
24More precisely, we will use only law-invariant or version-independent functionals, which

depend on the cdf only, cf. [RP07, Definition 2.1].

10



2.2. Stochastic Orders and Measures of Risk

2.2.1 Preference of Large Outcomes

In the context of statistics, SD rules are equivalently expressed through a

pointwise comparison of some performance functions constructed from a rv’s

cdf. For FSD, this performance function is the cdf itself and the following

(primal) characterizations hold.

Proposition 2.2.1. For rvs X,Y ∈ (Ω,F , IP ) with cdfs FX and FY the follow-

ing statements are equivalent:

(i) X �(1) Y;

(ii) FX(t) ≥ FY(t) ∀ t ∈ R;

(iii) there exists a probability space (Ω̂, F̂ , ÎP ) and random variables X̂ and Ŷ

with marginals FX and FY such that X̂(ω̂) ≤ Ŷ(ω̂) for all ω̂ ∈ Ω̂;

(iv) IP (X > t) ≤ IP (Y > t) ∀ t ∈ R.

Proof. (i)⇔(ii) Theorem 1.2.8 in [MS02], (ii)⇔(iii) Theorem 1.2.4 in [MS02],

(iv)⇔(ii) clear.

In other words, the preference of more to less in EUT can be equivalently

described by a pointwise comparison of cdfs (which implies that the smaller

rv should take smaller values with a higher probability) and is closely related

to the simple pointwise comparison of rvs. Thus, being the most fundamental

version-independent ordering concept for rvs, FSD is often just referred to as

the (usual) stochastic order, cf. [SS07, p. 3].

The function F̄X(t) := IP (X > t) from the representation (iv), which we

will use to derive computationally tractable representations for FSD starting

from Chapter 4, denotes the so-called survival function, well-known, e.g., in

actuarial sciences, cf. [Pro11, p. 194].

11
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For SSD, computationally more tractable representations can be derived by

means of the second performance function

F
(2)
X (t) :=

t∫
−∞

FX(α) dα ∀ t ∈ R (2.6)

as follows.

Proposition 2.2.2. For rvs X,Y ∈ L1(Ω,F , IP ) with cdfs FX and FY the

following statements are equivalent:

(i) X �(2) Y;

(ii) IE[t − X]+ ≥ IE[t − Y]+ for all t ∈ R, where [α]+ := max(α, 0) is the

positive part of α;

(iii) F
(2)
X (t) ≥ F

(2)
Y (t) for all t ∈ R.

Proof. See Theorem 4.A.2 in [SS07].

Due to the definition of SSD by nondecreasing concave utility functions

in Definition 2.1.1 this order is also often called the increasing concave order

(ICV). The observation that only a small subset of these functions is sufficient

to fully characterize ICV leads to (ii). From the integral condition (iii) it is

here again immediate that FSD implies SSD, because (iii) can be interpreted

as a requirement for the area enclosed between the two cdfs to be non-negative

up to every point t, which is a weaker condition than a pointwise comparison

of the cdfs.

Though the above representations are more tractable, checking both domi-

nance relations implies comparison of performance functions on infinitely many

points, which is a complex task. In fact, a much easier approach to compare

distributions was developed in probability theory from its very beginnings:

namely the study and comparison of cdfs by their relevant parameters. These

parameters are distinguished between a value dimension and a risk dimension.
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2.2. Stochastic Orders and Measures of Risk

Since Pascal, the value dimension is typically represented by the expected value

of the prospect. At this, it follows directly from the definitions that

X �(i) Y =⇒ IE(X) ≤ IE(Y), for i = 1, 2, (2.7)

because the identity function is both increasing and concave.

To address the risk dimension, a wide variety of (version-independent) risk

functionals R(·) on the space of rvs has been defined which characterize the

riskiness of the whole cdf by a scalar. Keeping both dimensions separate leads

to a bi-criteria decision problem, while the relative importance of value to risk

represents the risk aversion in this context.25 These considerations lead to the

definition of the following relations.

Definition 2.2.3. For rvs X,Y ∈ L1(Ω,F , IP ), we define

X �IE,R Y iff IE(X) ≤ IE(Y) and R(X) ≥ R(Y); (2.8)

and

X �IE−λR Y iff IE(X)− λR(X) ≤ IE(Y)− λR(Y), (2.9)

where λ > 0 is an assumed degree of risk aversion.

The relation (2.8) is called mean-risk dominance, whereas the approach

of maximizing IE(X) − λR(X) constitutes the so-called mean-risk approach.

This approach was pioneered by Markowitz in his seminal work [Mar52] and

still is very popular among practitioners and researchers due to its excellent

computational tractability.

However, to justify the mean-risk approach theoretically, compatibility with

the findings of decision theory has to be verified. In particular, the risk func-

tional should be such that the model becomes consistent with FSD and prefer-

ably also with SSD (to account for risk-aversion in EUT) in the sense of the

following definitions.

25See (3.12) for the formulation of this bi-criteria problem for the minimization case.
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Chapter 2. Comparing Risks for Decision Making under Uncertainty

Definition 2.2.4. The mean-risk model (IE,R) is said to be consistent with

i-th order SD if

X �(i) Y =⇒ X �IE,R Y, (2.10)

and λ−consistent with i-th order SD if

X �(i) Y =⇒ X �IE−λR Y (2.11)

for some λ > 0 and i = 1, 2.

Thus, a strict maximum of a λ−consistent model will not be dominated

w.r.t. the corresponding dominance relation, cf. Section 3.1.3. Clearly, (2.10)

implies (2.11) for all λ > 0 and consistency with SSD implies consistency with

FSD (but not vice versa).

The seminal mean-risk model presented in [Mar52] considered the variance

as a risk functional. This model was heavily criticized for being inconsistent

with FSD. Also variance as a risk measure is in many ways not adequate.26

On the other hand, e.g., the expected shortfall27 below some fixed target t

defined as IE[t−X]+ is a sensible risk measure, which yields an SSD-consistent

mean-risk model in view of Proposition 2.2.2 (ii). Moreover, in this way SSD

can be described as a continuum of constraints on this risk measure.28

Examples of sensible risk functionals taking into account all gains below the

mean, which are not consistent but only 1-consistent with SSD (cf. [OR99,

OR02]) are lower absolute semideviation

ASD−(X) := IE([IE(X)− X]+) =
1

2

∫ ∞
−∞
|t− IE(X)| dIPX(t) (2.12)

26Despite its many drawbacks, the mean-variance model attracted much attention and

led, e.g., to the development of the highly praised Capital Asset Pricing Model of portfo-

lio optimization, cf. [Sha64]. For special classes of distributions (most commonly normal

distributed rvs are assumed) the model is also even consistent with SSD, cf. [Big93].
27The term expected shortfall is also frequently used in a different meaning, cf. Re-

mark 2.2.8.
28These constraints are closely related to integrated chance constraints (3.5), also cf.

[KH86].
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2.2. Stochastic Orders and Measures of Risk

and lower standard semideviation

STD−(X) :=
√
IE([IE(X)− X]2+) =

√∫ IE(X)

−∞
(IE(X)− t)2 dIPX(t). (2.13)

To elaborate on the desirable properties for risk functionals, axiomatic def-

initions were proposed in [ADEH99], where the notion of coherence was intro-

duced. A coherent risk functional then complies with the following axioms:

(R1) Antimonotonicity: X ≤ Y a.s. implies that R(X) ≥ R(Y);

(R2) Convexity: R(tX + (1− t)Y) ≤ tR(X) + (1− t)R(Y)∀t ∈ [0, 1];

(R3) Translation antivariance: R(X + a) = R(X)− a ∀a ∈ R;

(R4) Positive homogenity: R(tX) = tR(X)∀t ≥ 0.

A mirror image to risk functionals are acceptability functionals or safety

measures, which assess the acceptability of the cdf instead of its riskiness.

These functionals should comply with monotonicity (A1), concavity (A2) and

translation equivariance (A3) axioms, which are the counterparts to (R1)-

(R3), cf. [RP07].29 Moreover, if A is a positively homogeneous acceptability

functional then R(X) := −A(X) will be a coherent risk functional. Of course,

higher acceptability will imply higher preference of a decision maker.

In view of Proposition 2.2.1 (iii), the monotonicity axiom for acceptability

functionals is equivalent to the following requirement of isotonicity with FSD

X �(1) Y =⇒ A(X) ≤ A(Y), (2.14)

which once again underlines the importance of the order. Analogously, con-

sistency of the corresponding mean-risk models with FSD has an axiomatic

meaning for coherent risk functionals.

Two of the most important acceptability functionals have close relations to

the so-called dual representations of the stochastic orders proposed in [OR02],

which are characterized with the help of quantiles.30

29The axioms for acceptability functionals can be found in A.3.1.
30For the definition of a quantile we refer to A.1.
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Let F−1
X : [0, 1] → R̄ denote the (left-continuous) inverse distribution or

first quantile function of a distribution function FX, defined as

F−1
X (p) := inf{t : FX(t) ≥ p} for 0 < p ≤ 1. (2.15)

The infimum is attained for 0 < p < 1 since cdfs are continuous from the right,

and we can define the first acceptability functional as follows.

Definition 2.2.5. The left α-quantile

V@Rα(X) := F−1
X (α) (2.16)

is called value-at-risk at level α.

Though V@Rα is not concave, it is widely used and very relevant in many

decision models, cf. [RP07, pp. 57] and the references therein.31 Directly

from Proposition 2.2.1 (ii) we now get another characterization for FSD as a

continuum of constraints on the V@Rα acceptability functional.

Proposition 2.2.6. For random variables X and Y the following statements

are equivalent:

(i) X �(1) Y;

(ii) V@Rα (X) ≤V@Rα (Y) for all α ∈]0, 1].

The average of the left quantiles below α now gives another important

acceptability functional with nice mathematical properties.32

Definition 2.2.7. The tail value-at-risk at level α, written TV@Rα, with

0 < α ≤ 1 is defined as

TV@Rα(X) :=
1

α

α∫
0

F−1
X (t) dt. (2.17)

31In the case of rvs representing losses, V@Rα has a natural interpretation of a quantile

risk measure, that we will discuss in Section 2.2.2.
32In fact, −TV@Rα defines a coherent risk functional, see Section 2.2.2.
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Remark 2.2.8. Definition 2.2.7 is due to [Ace02], where −TV@Rα was called

α-Expected Shortfall. TV@Rα is also referred to as the average value-at-risk

in [FS11], which is a major reference in financial mathematics. In the lit-

erature, different names are frequently used synonymously, which is, unfortu-

nately, a constant source of confusion. To distinguish between the functionals,

we will use the term TV@Rα as above (cf. [OR02]) and CV@Rα as in Defi-

nition 2.2.14 (cf. [Pfl00]).

Interestingly, the second quantile function

F
(−2)
X (p) :=

p∫
0

F−1
X (t) dt for 0 < p ≤ 1, (2.18)

which we used for the definition of the TV@Rα, is a Fenchel conjugate to the

second performance function F
(2)
X , cf. [OR02, Theorem 3.1].

Proposition 2.2.9. For every rv X with IE(|X|) < ∞ the following duality

relations hold

(i) F
(−2)
X = [F

(2)
X ]?;

(ii) F
(2)
X = [F

(−2)
X ]?.

Proof. For the proof and background on dual dominance relations the author

refers to [OR02]. An excellent exposition of convex analysis can be found in

[Roc97]. Some basic notions and results of convex analysis are provided in

A.2.

Since the conjugacy operation is order-reversing, cf. [BL06, p.49], Propo-

sition 2.2.9 yields a dual representation of SSD as a continuum of constraints

on the TV@Rα acceptability functional.

Proposition 2.2.10. For random variables X and Y the following statements

are equivalent:

(i) X �(2) Y;
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Chapter 2. Comparing Risks for Decision Making under Uncertainty

(ii) TV@Rα(X) ≤ TV@Rα(Y) for all α ∈]0, 1].

From this proposition it is immediate that the mean-risk model with−TV@Rα

as a risk functional is consistent with SSD.

2.2.2 Preference of Small Outcomes

For the decision maker minimizing losses, in complete analogy to the Defini-

tion 2.1.1, we could define the FSD relation for small outcomes (X � FSD
small

Y)

through

IEu(X) ≤ IEu(Y) (2.19)

for all nonincreasing utility functions u(·). The same inequality would then

hold for all nondecreasing functions −u(·), which is equivalent to changing

sides in (2.19), thus yielding

X � FSD
small

Y ⇐⇒ Y �(1) X. (2.20)

In view of this relation, we will stick to the original definition of FSD and just

regard the dominated variable as the better one.

For SSD, the argumentation is analogous, however we will also have to

change sides in Jensen’s inequality (2.2), which expresses the risk aversion. In

other words, the SSD relation for the minimization case, would mean the pref-

erence of a dominated variable in the increasing convex order (ICX), defined

as follows.

Definition 2.2.11. For rvs X,Y ∈ L1(Ω,F , IP ), we define Y to dominate X

w.r.t. the increasing convex order, written X �icx Y iff

IEu(X) ≤ IEu(Y)∀u nondecreasing and convex. (2.21)

Remark 2.2.12. Usually, the notation X � Y automatically implies that Y

should be the preferred variable in the �-order. As we have seen above, for the

minimization case that would imply introducing new ordering relations specially
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2.2. Stochastic Orders and Measures of Risk

for the minimization case. Since both FSD and ICX have a long tradition in

literature, after some discussion with the community, it was decided to prefer

the dominated rvs in the established orders as a compromise. Since then, these

notions became state of the art in the literature dealing with the SD relations

in the minimization case.

In analogy to Proposition 2.2.2, the following proposition presents a com-

putationally more tractable representation for ICX.

Proposition 2.2.13. For rvs X,Y ∈ L1(Ω,F , IP ), the following statements

are equivalent:

(i) X �icx Y;

(ii) IE[X − t]+ ≤ IE[Y − t]+ for all t ∈ R, where [α]+ := max(α, 0) is the

positive part of α.

Proof. See Theorem 4.A.2 in [SS07].

The function HX(t) := IE[X − t]+ =
∞∫
t

F̄X(α) dα is called the integrated

survival function or excess function and is referred to as the stop-loss transform

in actuarial sciences. Here, we will chose the interpretation of IE[X − t]+ as

the expected excess above some fixed target t, which is the counterpart risk

functional to IE[t− X]+ we used to characterize the SSD.

In fact, negative losses can be interpreted as gains and vice versa. Replacing

X with −X in characterization (ii) of the above proposition yields

X �icx Y ⇐⇒ −Y �(2) −X, (2.22)

which allows us to transfer all results from one order to the other. Clearly, for

FSD we have −X �(1) −Y ⇐⇒ Y �(1) X.

With the risk functionals in the minimization case the situation is more

diverse. For some functionals the switch of preference is reflected just in re-

placing X with −X. E.g., the risk functional corresponding to STD−(X) is
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the upper standard semideviation, which measures the risk of losses above the

mean. For this measure the following relation holds

STD+(X) :=
√
IE([X− IE(X)]2+) = STD−(−X). (2.23)

Other important risk functionals arise as counterparts to the acceptability

functionals V@Rα and TV@Rα. In fact, V@Rα can be used here directly as

a risk functional, because the value V@Rα(X) = inf{t : IP (X > t) ≤ 1 − α}

has a natural interpretation as the smallest loss, such that the probability

of exceeding this loss lies below 1 − α. In other words, V@Rα describes the

minimum potential loss in the ”(1− α) · 100 % worst cases”.

This functional is extremely popular in finance, being, e.g., the standard

in the Basel II accord, cf. [BAS06]. However, V@Rα has undesirable math-

ematical and computational properties. Particularly, its failing convexity33

may strongly discourage diversification of risks, cf. [FS11], [ADEH99] and the

references therein.

The counterpart to the TV@Rα usually is called conditional value-at-risk

(CV@Rα), since the intention behind this functional was to consider the con-

ditional expectation of losses in the ”(1− α) · 100 % worst cases”.

Definition 2.2.14. The conditional value-at-risk at level α, written CV@Rα,

with 0 < α ≤ 1 is defined as

CV@Rα(X) :=
1

1− α

1∫
α

F−1
X (t) dt. (2.24)

For continuous distributions or, generally, in case α is in the range of FX, it

holds that

CV@Rα(X) = IE(X|X > F−1
X (α)). (2.25)

Since an η with FX(η) = α need not exist,34 the above equality will not hold in

33Convexity stands here for the axiom (C2), which can be found, together with the other

axioms of coherence for risk functionals in the minimization case, in Definition A.3.2.
34Which, in particular, may be the case for a discretely distributed rv with a probability

atom at V@Rα .
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2.2. Stochastic Orders and Measures of Risk

general, and the correct definition of the CV@Rα is (2.24). The importance of

the CV@Rα now is on the one hand due to the fact, that it is the most funda-

mental35 coherent risk functional, cf. [Pfl00] and [AT02]. On the other hand, a

computationally tractable representation of this measure is given through the

minimization rule

CV@Rα(X) = min{a+
1

1− α
IE(X− a)+ : a ∈ R}, (2.26)

which was established in [RU00] and [RU02]. Thus, to obtain CV@Rα a

continuous convex function has to be minimized, which opens a variety of

possibilities to construct tractable stochastic programming models, cf. [ST04].

Also, the following relations to the TV@Rα can be derived

IE(X) = α · TV@Rα(X) + (1− α) · CV@Rα(X) (2.27)

and both functionals can be transformed into each other:

CV@Rα(X) = −TV@R1−α(−X). (2.28)

In fact, the last equality combined with Proposition 2.2.10 and the relation

(2.22) implies the following dual characterization of ICX.

Proposition 2.2.15. For rvs X,Y ∈ L1(Ω,F , IP ), the following statements

are equivalent:

(i) X �icx Y;

(ii) CV@Rα(X) ≤ CV@Rα(Y) for all α ∈]0, 1].

In view of the relation (2.20), the dual characterization of FSD presented

in Proposition 2.2.6 remains intact in the minimization case. Thus, FSD has

a representation as a continuum of constraints on the V@Rα and ICX as a

continuum of constraints on the CV@Rα.

35Many other coherent risk functionals can be represented through functions of the

CV@Rα due to Choquet and Kusuoka representations, cf. [RP07, pp. 58].
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Chapter 2. Comparing Risks for Decision Making under Uncertainty

The definitions of mean-risk dominance and its consistency with the stochas-

tic orders are analogous to the maximization case and are presented in A.3. In

view of the results above, it is immediately clear that the model with V@Rα as

a risk functional is consistent with FSD, and the model with CV@Rα even

with ICX.
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Chapter 3

Stochastic Orders and

Contemporary Stochastic

Programming

3.1 Stochastic Programming: Models

In the Introduction, we discussed various ways to compare random prospects.

In context of SP, these prospects are now generally assumed to depend on a

policy or decision variable x ∈ X , so that the decision problem could consist

in selecting the ”best” rv out of the family

{f(x, ω) : x ∈ X}. (3.1)

For the following it is further assumed that all underlying probability distri-

butions are independent of the decisions x, and that these decisions have to

be made before uncertainty is revealed. Thus, SP can be seen as optimization

under information constraints, with the latter assumption also referred to as

nonanticipativity.1

1While most SP models comply with nonanticipativity constraints, exceptions are dis-

cussed, e.g., in [GG06].
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Since stochastic problems typically arise as generalizations of deterministic

problems with random data, the concrete shape of the rvs f(x, ω) is usually not

given explicitly. In the present thesis, we will restrict ourselves to stochastic

linear programs which are the random counterparts to (mixed-integer) linear

programs. Stochastic linear programs were pioneered in the famous papers

of Dantzig [Dan55] and Beale [Bea55] and can be considered fundamental in

contemporary SP.

To become more specific, let us consider the following ”random” linear

program as the starting point of our discussion:

” min ”{c>(ω)x : Ax = b, T (ω)x = h(ω), x ≥ 0}. (3.2)

Here, x denotes a decision variable defined on a given polyhedron X :=

{x : Ax = b, x ≥ 0}.2 Let the cost vector c(ω) associated with x, the

constraint matrix T (ω) and the right-hand side vector h(ω) denote rvs defined

on a probability space (Ω,F , IP ).

Clearly, under nonanticipativity constraints, i.e., if we have to make deci-

sions here-and-now, the problem (3.2) gets ill-posed: it is neither specified for

which ω the ”random” constraints have to hold, nor what the meaning of the

”min” should be.

Before we elaborate on these issues, let us recall that already in deterministic

programming the notions of optimality and feasibility are closely interlinked,

especially in the face of conflicting objectives. Since the attitude towards risk

has to be additionally considered in a stochastic model, the situation in SP is

bound to become even more intricate.

Basically, any absolute order could be used to address optimality, so for the

moment we assume an appropriate order to be fixed and will come back to the

treatment of optimality in Section 3.1.3. To define feasibility, maybe the most

obvious way is to impose the random constraints to hold for (IP -almost) all ω,

or to specify a set D of possible values for the random components over which

2From now on, we assume all matrices and vectors to be of consistent dimensions.
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the constraints are to be fulfilled. Models of such a kind are called robust.3

Depending on the properties of the set D, robust optimization programs

can be reformulated and treated as linear or convex problems, cf. [BTN02],

[BTBN06] and the references therein. Leading to ”safe” decisions, the disad-

vantage of robust solutions is that they might be very expensive or not even

exist at all.4

Therefore, some kind of infeasibility is usually allowed in stochastic pro-

grams. This infeasibility could be treated in the objective, e.g., the probability

of constraint satisfaction may be maximized or penalty costs for infeasibility

could be specified. However, the first technique has close relations to prob-

lems with probabilistic constraints, cf. [Pré95, Chapter 10], and the second to

problems with recourse, cf. [KH86, Remark 3.6]), which are the two classical

modeling techniques of SP. A schematic overview of SP models can be found

in Figure 3.1.

Without aiming at any completeness, we will now introduce both techniques

to pave the way for problems with SD-constraints, which constitute the main

part of the present thesis.

3.1.1 Probabilistic Constraints

For stochastic systems subject to high uncertainty and where reliability is a

central issue, so-called probabilistic or chance constraints pioneered by Charnes,

Cooper and Symonds, cf. [CCS58], might be the right choice to handle infea-

sibility.

In this approach, for a prespecified (usually large) probability level p we

obtain the well-defined joint probabilistic constraints through

IP ({ω : T (ω)x ≥ h(ω)}) ≥ p (3.3)

3In fact, for robust programs we make an assumption on the range of the rvs instead of

the exact shapes of their distributions.
4That is why such solutions are also called ”worst-case” or ”fat”, cf. [KW94], [BL97].
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Stochastic Optimization Models

Objective Constraints

Absolute Orders Robust

Risk-neutral: Probabilistic

-Expectation ICC

Risk-averse: Risk measures

-Risk measures Recourse

-Mean-risk -two-stage

-Utility functions -multistage

Partial Orders SD-Constraints

SD (multi-criteria)

Mean-risk dominance (bi-criteria)

Underlying Optimization Problem

Linear

Nonlinear (Convex/Non-Convex)

Mixed-Integer Linear/Nonlinear

Finite Dimensional/Infinite Dimensional

Figure 3.1: Overview of SP Models

and, analogously, the simpler individual probabilistic constraints through

IP ({ω : Ti•(ω)x ≥ hi(ω)}) ≥ pi, i = 1, . . . ,m, (3.4)

where Ti• denotes the i-th row of the matrix T .5 Due to their intuitive in-

terpretation as a safety requirement, probabilistic constraints are appealing to

practitioners and widely used in applications, see, e.g., [HLM+01], [TL99] and

[Pré03, pp. 338] for a brief overview.

Unfortunately, especially the practically more interesting problems with

joint probabilistic constraints possess rather bad mathematical properties,

since their feasible regions may become non-convex and even disconnected,

5For chance constraints, the inequality form of the corresponding constraints is assumed.
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in general. Only under special requirements on the underlying probability

distributions convexity can be guaranteed.6 Once convexity is obtained, the

problems can be efficiently solved directly or incorporated into larger opti-

mization models as a part of constraints – a view we will adopt in the present

thesis.

As it was pointed out in [KH86], probabilistic constraints are based upon

the qualitative risk concept, which accounts only for the probability of an in-

feasibility but not for its extent. Clearly, in some situations placing an upper

bound on the amount of risk could be a plausible alternative. This idea led to

the development of so-called integrated chance constraints (ICC) in [KH86].

By analogy with (3.4), individual integrated chance constraints are defined

through

IE([hi(ω)− Ti•(ω)x]+) =

∫ 0

−∞
IP{w : Ti•(ω)x− hi(ω) < t} dt ≤ βi, (3.5)

where βi is the prespecified risk aversion parameter.7 Apparently, ICC are of

the same form as constraints on the expected shortfall. It is also important

to mention that problems with ICC are tractable computationally due to the

intrinsic convexity of their feasible regions.8

3.1.2 Recourse Problems

The second classical modeling approach of SP is completely based on the quan-

titative risk concept. This technique is appropriate if we may assume that in-

feasibility can be corrected after the realization of the random outcomes. To

this end, the model is extended with a so-called second stage, where recourse

actions can be taken to correct the infeasibility.

6A well-known convexity result was achieved for a nonrandom matrix T and a quasi-

concave distribution of h(ω). For more general results, we refer to the seminal paper of

Prékopa [Pré71] and to the textbooks [SDR09], [Pré03].
7The representation with the integral explains the ”integrated” as part of the name. A

joint version of ICC was introduced in [KH86] as well.
8For the joint ICC case, convexity also persists, cf. [KH86].
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Thus, the information constraints are modified in such a way that the here-

and-now or first-stage decisions x are followed by the wait-and-see or second-

stage decisions y = y(x, ω), carried out after the randomness is observed.

These decisions are governed by the fixed recourse9 matrix W and penalized

with recourse costs q(ω) to enter the objective function. Then, we get the two-

stage information scheme of alternating decision and observation depicted in

Figure 3.2. This scheme can be naturally extended to a multistage framework

involving sequential decisions for situations where randomness is subsequently

revealed over time, cf. [SDR09], [Pré95].

Decide

x

Stage I

Observe

q, T, h(ω)

Decide

y(x, ω)

Stage II

Figure 3.2: Information Constraints

In the present work, we will restrict ourselves to the two-stage approach,

which yields the formulation

” min ”

 c(ω)>x+ q(ω)>y : T (ω)x+Wy = h(ω)

x ∈ X , y ∈ Y

 , (3.6)

where X ,Y are polyhedral sets possibly with integer requirements. The con-

straints of this model are now posed for (IP -almost) all ω and hence are well-

defined. The second-stage decisions y are solutions of a (parametric) linear

program (LP) with the following value function

Φ(x, ω) := min
y∈Y
{q(ω)>y : Wy = h(ω)− T (ω)x}. (3.7)

The study of this function and its properties plays the key role in the theory

of problems with recourse. The most widely studied problem in this class is

9The randomness of the recourse matrix may lead to extreme numerical instability for

discrete distributions, cf. [RS03, p. 80] and [BL97, pp. 109] for a more general view.
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obtained if we minimize the expectation of the overall, i.e., of first- and second-

stage, costs. For this purpose, we define the expected recourse function

QIE(x) := IEωΦ(x, ω), (3.8)

and get a so-called deterministic equivalent formulation10 of the expectation

based stochastic program as

min
x∈X
{c>x+QIE(x)}.11 (3.9)

Clearly, the program is well-posed, and if the function QIE was given, it

would translate into a deterministic nonlinear program. In fact, if the second-

stage problem (3.7) is solvable for at least one x, the function Φ(·, ω) is convex

and even piecewise linear in the pure linear case, cf. [SDR09, Proposition 2.1].

Under certain assumptions, convexity results can also be transferred to the ex-

pected recourse function QIE, cf. [SDR09, Propositions 2.3, 2.7], which enables

an efficient algorithmic treatment of the model (3.9) and hence contributes to

the popularity of the mean-based approach.

3.1.3 Risk Aversion and Dominance Constraints

In what follows, we assume the two-stage framework with recourse presented

above to be the modeling technique of choice, i.e., probabilistic constraints

are assumed to be already included as linear constraints in the polyhedron X

containing all first-stage restrictions. Thus, it is assumed that the decisions

we make will ensure feasibility of our model with a sufficient reliability level

and in exchange for certain costs.

Staying in this framework, we now return to the treatment of optimality.

To this end, we represent the overall cost for each first-stage decision x as a rv

10The term deterministic equivalent implies that all symbols of rvs are eliminated in the

formulation. We will stick to this term though it may be misleading, because stochastic

problems are deterministic regardless of their formulation, as was argued in [Pré95, p. 234].
11For ease of exposition, we assume from this point onwards c(ω) = c to be deterministic.

Due to linearity of the expectation, here we could simply take the average of the values.
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f(x, ω) := c>x+ Φ(x, ω), (3.10)

with Φ(x, ω) as in (3.7), and thus obtain the family (3.1) of rvs with the

specific structure. Selecting the ”best” rv out of this family through taking

the expectation of the costs, as it was done in the formulation (3.9), rests

upon a risk neutral decision model and hence may lead to first-stage decisions

incurring ruinous costs for unfavorable random outcomes.

A popular way to consider risk aversion consists in the application of a

mean-risk optimization model that here takes the shape

min
x∈X

IE(f(x, ω)) + λρ(f(x, ω)) (3.11)

and was studied in [Ahm06], [Tie05] and [ST04] in more detail. If the risk

functional ρ is λ-consistent with SD, a strict minimum of this model will be

non-dominated in SD in view of (A.4) and (A.6). Being computationally at-

tractive, this approach is thus justified on grounds of the decision theory.

However, a drawback of mean-risk models is the need to specify the risk

aversion parameter λ directly or to employ a sensitivity analysis on this pa-

rameter.12 To avoid this difficulty, SD-consistent mean-risk dominance, see

(A.3) and (A.5), may be used instead. As a partial order, it yields the multi-

criteria, here bi-criteria, optimization problem

min
x∈X
{IE(f(x, ω)), ρ(f(x, ω))} (3.12)

with conflicting objectives. Such a problem is not likely to possess a solution

that simultaneously optimizes each of the objectives. Hence, the set of Pareto

optimal solutions, called the efficient frontier, can be considered.13 For (3.12),

a solution x̄ ∈ X is Pareto optimal if there is no other x with f(x, ω) ≺IE,ρ
f(x̄, ω). Thus, these solutions will also be non-dominated w.r.t. SD.

12Because the risk measure itself is typically not given naturally, families of other risk

measures may have to be considered as well.
13For an introduction to multiobjective optimization we refer to [Ste89] and [Ehr06].
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It is also possible to look for solutions preferable w.r.t. SD directly. Result-

ing optimization problems then possess a continuum of objectives. Though for

finite, discrete distributions the number of objectives can be reduced to a fi-

nite number, cf. [Ogr02] and [RDDM06], such models remain relatively hard to

solve. By contrast, if the utility function of the decision maker is given explic-

itly, its optimization yields a computationally attractive risk-averse technique

referred to as the Bernoulli principle, cf. [Pré95, pp. 221]. Unfortunately, this

method is not universally applicable, as we have argued in Section 2.1.

In the present thesis, we will now concentrate on an alternative way to

incorporate risk aversion through shifting its treatment to the constraints. This

trick is well-known from deterministic programming with conflicting objectives,

all but one of which can be transformed into goal restrictions.14

Here, this idea implies imposing constraints on the risk, thus defining deci-

sions with ”acceptable” risk as feasible solutions. To ensure such ”economic”

feasibility, probabilistic constraints and also ICC or constraints on risk mea-

sures could be used, once corresponding data on probability and risk thresholds

is available. Instead, in some practical situations a reference random outcome

Y - a so-called benchmark - is available. We will concentrate on such situations

and look for decisions producing outcomes preferable to the benchmark.

The seminal model for this type of problems was proposed by Dentcheva

and Ruszczyński in [DR03], [DR04a]. Inspired by applications in portfolio

optimization where benchmarks naturally arise from stock indexes like [SP],

the authors employed stochastic orders to characterize the preferable outcomes.

Thus, the following dominance-constrained model was obtained:

max{g(X) : Y �(i) X, X ∈ C}, (3.13)

where Y was the benchmark rv, C a convex and closed set and g a concave

14An intermediate approach is followed in the so-called goal programming where violations

of the goal restrictions are additionally penalized in the objective, cf. [CCF55]. However,

this approach does not seem applicable here.
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continuous functional. For dominance constraints of first and second order

the feasible regions of this problem were shown to be closed, and for SSD even

convex, cf. [DR03]. Moreover, under rather weak assumptions15 it was shown in

[DR04b] that problems with SSD constraints are convexifications of problems

with first order constraints (which are not convex in general). For stability

and sensitivity analysis of these problems the author refers to [DHR07] and

[DR13].

In the framework of EUT, the dominance-constrained model (3.13) guar-

antees the preference of the solution X by all decision makers with utility

functions in the corresponding class Ui, see Definition 2.1.1. In particular, no

risk-averse decision maker will strictly prefer the benchmark outcome over a

feasible solution to the second order model.

Conversely, it was shown in [DR04b] and [DR03] that utility functions of

EUT can be identified with Lagrange multipliers associated with the domi-

nance constraints of (3.13). Moreover, dual representations of SD from Propo-

sitions 2.2.6 and 2.2.10 possess Lagrange multipliers that can be identified with

dual utility functions in the sense of RDEUT, cf. [DR05]. In this way, prob-

lems with SD-constraints can be regarded as dual to EUT and RDEUT, thus

providing a link between both theories.

Links to SD-consistent mean-risk and mean-risk dominance models exist,

as we have already discussed above, because their optimal values yield feasible

solutions for dominance-constrained problems. Due to the dual representations

of SD, dominance constraints can be also viewed as continua of constraints

on important risk measures. By Proposition 2.2.1 (ii), first order dominance

constraints are nothing else than a continuum of probabilistic constraints. In

view of Proposition 2.2.2 (ii) and (3.5), SSD constraints can in turn be viewed

as a continuum of ICC.

Recent applications of dominance-constrained models include, e.g., finan-

15E.g., for a discrete distribution of Y with equiprobable outcomes or if its distribution is

continuous, cf. [DR04b].
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cial optimization [DR06] and power generation capacity expansion problems

[VBZE13]. For recent interesting theoretical developments we refer to contri-

butions on multivariate SD [DR09, HdMM10, AL10], and on dynamic opti-

mization models with dominance constraints [DR08, HJ13].

Finally, we introduce the problem class we will work with starting from

Chapter 4. It results from the specialization of problem (3.13) for the cost

minimization framework, where the decision dependent random outcome is

given with f(x, ω) from (3.10). A typical problem of the relevant class then

takes the shape

min{g(x) : f(x, ω) �(i) d(ω), x ∈ X} (3.14)

where �(i) refers to the orders FSD and ICX, cf. (4.1). Thus, model feasibility

is assured through recourse actions, whereas the ”economic” feasibility of a

decision is defined w.r.t. a cost benchmark d(ω) by means of the SD-rules.

In this way, the model combines one of the most popular feasibility modeling

techniques of SP with the decision theoretical benefits of SD.

Models of the form (3.14) were proposed in [GNS08, GGS07]. The special

case with a linear second stage was considered in [DS10]. Applications were

carried out, e.g., in energy trading [CGS09] and in operation planning of virtual

power plants [DGG+11].

Building up on these works, in the following we will develop appropriate

solution techniques for this interesting but demanding problem class. Since

our tailored methods are based on the standard methods of SP, we first outline

their main ideas in the following section.

3.2 Stochastic Programming: Methods

3.2.1 Deterministic equivalents

A simple way to approach a two-stage stochastic program is to tackle its de-

terministic equivalent formulation directly. For the mean-based problem, the
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deterministic equivalent (3.9) can be written down as the linear program

min

 c>x+
L∑̀
=1

π`q
>y` : Ax = b, x ≥ 0,

Tx+Wy` = h`, y` ≥ 0, ` = 1, . . . , L

 (3.15)

for a finite discrete distribution of the right-hand side with probabilities π1, . . . , πL

for the scenarios h1, . . . , hL. While we assume the recourse matrix W to be

fixed for numerical reasons, cf. [RS03, p. 80], the matrix T and the cost vector

q will be presented as fixed only for the ease of exposition. Also the equality

form of the second-stage constraints and the restrictions on first and second-

stage variables are presented exemplary.16

To formulate risk-averse models as (mixed-integer) linear programs, aux-

iliary (sometimes binary) variables and a so-called Big M, which is a large

number associated with these variables, can be used. For example, under cer-

tain assumptions, cf. [Tie05], there exists a constant M > 0, such that the

pure risk problem min{V@Rα (x): x ∈ X} can be equivalently restated as

min


η :

c>x+ q>y` −Mθ` ≤ η, ∀`

Tx+Wy` = h`, ∀`
L∑̀
=1

π`θ` ≤ 1− α,

x ∈ X , η ∈ R, y` ≥ 0, θ` ∈ {0, 1} ∀`


. (3.16)

With the help of the minimization rule (2.26), an analogous representation can

be gained for the problem of CV@Rα minimization:

min

 η + 1
1−α

L∑̀
=1

π`θ` :

c>x+ q>y` − θ` ≤ η, ∀`

Tx+Wy` = h`, ∀`

x ∈ X , η ∈ R , y` ≥ 0, θ` ∈ R+ ∀`

 , (3.17)

cf. [Tie05] for more details on such equivalents and other risk measures. Clearly,

MILP equivalents of mean-risk models directly arise as combinations of the

mean-based problem (3.15) with a corresponding pure risk problem.

16More generally, the variables are assumed to be contained in nonempty closed convex

polyhedra, which arise as solution sets to systems of linear inequalities (later also involving

certain integer requirements).
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In view of the close relations between V@Rα and FSD and CV@Rα and ICX,

it is not surprising that formulations (3.16) and (3.17) have similarities with

the MILP equivalents

min


g>x :

c>x+ q>y`k −Mθ`k ≤ dk ∀` ∀k

Tx+Wy`k = h` ∀` ∀k
L∑̀
=1

π`θ`k ≤
K∑

j=k+1

pj ∀k

x ∈ X , y`k ≥ 0, θ`k ∈ {0, 1} ∀` ∀k


(3.18)

and

min


g>x :

c>x+ q>y`k − θ`k ≤ dk ∀` ∀k

Tx+Wy`k = h` ∀` ∀k
L∑̀
=1

π`θ`k ≤
K∑

j=k+1

pj(dj − dk) ∀k

x ∈ X , y`k ≥ 0, θ`k ≥ 0 ∀` ∀k


, (3.19)

which were derived in [GNS08] and [GGS11] for the dominance-constrained

problems

min{g>x : f(x, ω) �(1) d(ω), x ∈ X} (3.20)

and

min{g>x : f(x, ω) �icx d(ω), x ∈ X}. (3.21)

Here, the objective function g(x) is assumed to be linear, and the distri-

bution of the benchmark rv d(ω) is finite, discrete with scenarios d1, . . . , dK and

probabilities p1, . . . , pK . We will discuss these so-called lifting-representations17

in Chapter 4 in more detail also presenting some possible improvements and

modifications. In Section 5.2, then the so-called polyhedral representation for

the problem with ICX will be discussed. This representation avoids any aux-

iliary variables and goes back to a representation obtained in [KH86] for ICC.

Thus, a solution technique for risk-averse stochastic programs may consist

in applying readily available efficient solvers, like [CPL13] and [GUR13], to

17This term was proposed by Fábián in [Fáb12] to reflect the usage of auxiliary variables

which lift the problem dimension.
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corresponding MILP equivalents. The drawback of this approach is that such

equivalents grow in size quickly with the number of data scenarios. Here,

decomposition methods exploiting specific structures of stochastic programs

may go into action.

3.2.2 Primal Decomposition Methods

To explain the first group of so-called primal decomposition methods, let us

go back to the mean-based problem. For this problem, the idea behind the

primal methods consists in tackling the formulation (3.9) using the structural

properties of the value functions

Q`(x) := min
y≥0
{q>y : Wy = h` − Tx}, (3.22)

and of the expected recourse function QIE(x) =
L∑̀
=1

π`Q`(x), which are, as we

have already mentioned, convex and piecewise linear under certain assump-

tions. These properties enable us to construct suitable approximations for the

functions Q` and QIE by solving the subproblems (3.22) for the current first

stage solution xk. These approximations are then used in a so-called master

problem to calculate the next iterate xk+1.

While primal methods mainly differ in the way how master problems are

constructed and solved, in the present thesis we will employ the idea of cutting

plane methods, which we now sketch below. To focus on the points essential

here, we assume both Q`(x) > −∞ and Q`(x) < +∞ for all x ∈ X .18 Alter-

natively, first stage solutions yielding infeasible subproblems could be cut off

algorithmically with the so-called feasibility cuts. For a discussion of these cuts

and for an overview of other primal methods, we refer the interested reader to

[RS03, Chapter 3].

To design a cutting plane method, let us consider the LP-dual problem to

18These assumptions are well-known in SP and will be discussed later, cf. assumptions

(A3) and (A4) of Chapter 5.
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the subproblem (3.22)

max{u>(h` − Tx) : W>u ≤ q}, (3.23)

which is solvable due to the assumed finiteness of Q`(x). With ∆ := {u :

W>u ≤ q} denoting the feasible domain of (3.23), the subdifferential of the

function Q`(x) at any fixed point x̄ can be expressed as

∂Q`(x̄) = −T> arg max
u∈∆

u>(h` − T x̄), (3.24)

cf. [RS03, pp. 72]. Let ū`,k denote an optimal solution to the subproblem (3.23)

for the current first stage iterate xk. From the definition of the subdifferential

we then get a lower approximation of Q`(x) over X with the inequality

Q`(x) ≥ Q`(x
k)− ū>`,kT (x− xk) = ū>`,k(h` − Tx) ∀x ∈ X . (3.25)

This approximation leads to objective cuts, which are gradually included

into the master problems

min

 c>x+
L∑̀
=1

π`θ` : x ∈ X , θ` ∈ R , ` = 1, . . . , L,

ū>` (h` − Tx) ≤ θ` ∀ū` ∈ ∆k
`

 (3.26)

of the cutting plane method. Here, ∆k
` denotes the set containing the optimal

solutions to the subproblems for each scenario ` which we have computed in the

previous k iterations of the algorithm. This so-called disaggregate form of the

cutting plane method was developed by Dantzig and Mandansky, cf. [DM61],

as a dual method to Dantzig-Wolfe decomposition, cf. [DW60].

The cutting plane method in the aggregate form operates with the master

problems of the form

min


c>x+ θ : x ∈ X , θ ∈ R,

L∑̀
=1

π`ū
>
` (h` − Tx) ≤ θ ∀(ū1, . . . , ūL) ∈ ∆̄k

 , (3.27)

where ∆̄k ⊂ ∆k
1 × · · · × ∆k

L. In this form, the method is usually referred to

as Benders decomposition, cf. [Ben63]. It was also proposed by Van Slyke and
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Wets in [VSW69] under the name of the L-shaped method, due to the shape

of the block structure in the constraints of the formulation (3.15). For a more

detailed exposition of the cutting plane methods we refer to [BL97], [KW94],

[RS03].

Analogously, cutting plane methods can be applied to convex risk-averse

problems, like (3.17), cf. [Ahm06], [KBM06]. In this context, it is interest-

ing to note that not only for the mean-based problems lifting-representations

have structural similarities with master problems of disaggregate cutting plane

methods, whereas polyhedral representations and aggregate cutting plane meth-

ods get along well, cf. [KBM06] and [Fáb12].

In this way, representations and methods of both kinds that we will develop

and discuss for the dominance-constrained models in Chapters 5 and 6 fit into

the general framework of the cutting plane methodology.

3.2.3 Dual Decomposition Methods

In Chapter 7, we will come across two dual decomposition methods proposed

in [GNS08] and [GGS07] especially for the dominance-constrained problems.

To explain the functioning of these methods, let us once again go back to the

mean-based problem, but now in its formulation (3.15) as an LP.

As we just mentioned, this formulation has a special L-shaped block struc-

ture, which is especially amenable for decomposition, in its constraints. In fact,

the blocks Tx+Wy` = h` are not interconnected, i.e., for two scenarios ` 6= `′

the corresponding second-stage variables do not appear together in one con-

straint. Hence, only the implicit nonanticipativity conditions - which require

the first-stage decisions x to be chosen independently of the scenarios - pre-

vent the mean-based problem from decomposing directly into scenario-specific

subproblems.

To make this nonanticipativity requirement explicit, we can split the first

stage variable x into copies x1, . . . , xL and add the constraints x1 = . . . = xL
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to the formulation (3.15), which then reads

min


L∑̀
=1

π`(c
>x` + q>y`) : Ax` = b, x` ≥ 0, ∀`

Tx` +Wy` = h`, y` ≥ 0, ∀`

x1 = . . . = xL

 . (3.28)

The idea behind dual decomposition now consists in the application of La-

grangean relaxation to the last group of constraints. To facilitate notation,

we rewrite these constraints as
L∑̀
=1

H`x` = 0, with suitable matrices H`. The

Lagrangean function of (3.28) is then given by19

L(x, y, λ) :=
L∑
`=1

π`(c
>x` + q>y` + λ>H`x`) (3.29)

with the associated dual function

D(λ) := min

 L(x, y, λ) : Ax` = b, x` ≥ 0 ∀`

Tx` +Wy` = h`, y` ≥ 0 ∀`

 . (3.30)

For an arbitrary λ the value D(λ) provides a lower bound for (3.15). To

compute this bound, the optimization problem (3.30) - which now has the

desired structure with independent blocks - can be solved by decomposition

into the scenario subproblems

D`(λ) := min

 c>x` + q>y` + λ>H`x` : Ax` = b, x` ≥ 0 ∀`

Tx` +Wy` = h`, y` ≥ 0 ∀`

 ,

(3.31)

since it holds that

D(λ) =
L∑
`=1

π`D`(λ). (3.32)

By the duality theory, cf. [RS03, pp. 119], the problem

maxD(λ) (3.33)

is the dual problem to (3.28), which implies that their optimal values are equal

unless both problems are infeasible. For a dual optimal solution λ̄ a primal

19The factors π` in front of λ>H`x` preserve the expectation like nature of the objective

and may prevent the ill-conditioning of the Lagrangean dual, cf. [LS03, p. 234].
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optimal solution can be obtained as a solution to the scenario subproblems

(3.31).

To solve the dual problem (3.33), which is a non-smooth concave maximiza-

tion problem with a piecewise linear objective, appropriate nonlinear methods

like, e.g, bundle methods (cf. [HK02]), can be applied. Subgradients for these

methods applied to the corresponding convex minimization problem can be

calculated from the subproblems as well. In fact, for the subdifferential of

−D(·) at a fixed λ̄ it holds

∂(−D(λ̄)) = −

(
L∑
`=1

H` arg min
x`

D`(λ̄)

)
, (3.34)

cf. [RS03, pp. 190].20

Analogously, dual decomposition methods can be applied to other risk-

averse problems with a similar block structure in the constraints, cf. [ST04].

However, some risk-averse problems may have additional scenario-coupling in

the constraints. For example, the pure risk problem (3.16) - unlike problem

(3.17) - has a scenario dependent constraint
L∑̀
=1

π`θ` ≤ 1 − α, which hampers

decomposition. Unfortunately, both SD-constrained problems possess similar

groups of coupling constraints, cf. third group of constraints in (3.18) and

(3.19). One of the remedies proposed in [GNS08, GGS11] then consists in

expanding the Lagrangean relaxation to these restrictions as well.

Further, dual decomposition becomes especially interesting once integer re-

quirements are present in both the first and the second stage (as it is the case in

[GNS08]). In fact, an integer first stage would not cause much trouble for the

primal methods: the subproblems (3.22) remain linear, duality is preserved,

and hence the convexity properties of the recourse functions needed for the

construction of the cuts remain intact. With an integer second stage, however,

both convexity and duality, which are essential for the primal methods, cannot

20In this reference, the properties of the function −D(·) are derived from the fact that it is

the Fenchel conjugate of the expected recourse function. The formula for the subdifferential

then results from the Fenchel-Moreau Theorem, cf. [RS03, Theorem 52].
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be maintained for reasonable problem classes, cf. [LS03, pp. 215].

At this, the advantage of the dual methods is based on the fact that the

Lagrangean dual problem (3.33) retains its structural properties in the inte-

ger case, so that it still could be tackled by the bundle methods. Of course,

an optimal solution to the dual problem would not necessarily yield a primal

optimal solution in this case. However, the procedure described in this subsec-

tion represents an important option to generate adequate lower bounds. These

bounds can be used together with feasibility heuristics in a branch-and-bound

scheme. This approach, which is also referred to as scenario decomposition, is

due to [CS99].
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Chapter 4

Lifting-Representations of

Dominance Constraints with

Mixed-Integer Recourse

In the present chapter, we consider different lifting-representations for the

dominance-constrained problems (3.20) and (3.21) from a unified point-of-

view.1 To this end, we discuss and enhance MILP equivalents (3.18), (3.19)

proposed in [GGS11, GNS08], and adapt model formulations from [Lue07,

Lue08] to our framework.

Putting together all model ingredients introduced in Section 3.1, we may

write down the problems of interest as

min{g>x : f(x, h(ω)) �(1) d(ω), x ∈ X} (4.1)

and

min{g>x : f(x, h(ω)) �icx d(ω), x ∈ X} (4.2)

where

f(x, h(ω)) := c>x+ Φ(h(ω)− Tx) (4.3)

1The results of the present chapter were originally published by the author in [DKS11].
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with the second-stage value function rewritten as

Φ(t) := min{q>y : Wy ≥ t, y ∈ ZZm̄
+ × Rm′

+ } for all t ∈ Rs.

Here, second-stage variables are allowed to possess integer components,

which is why the models are said to have mixed-integer recourse. From now

on, we again assume W to be fixed, while T and q are only depicted as fixed

for the ease of exposition.

So far, we have always assumed the solvability of the optimization problem

behind Φ, and did not bother about its possible infeasibility or unboundedness.

To ensure that the entities

f(x, h`) = c>x+ Φ(h` − Tx)

are well-defined real numbers for all ` = 1, . . . , L, x ∈ X , we now make the

solvability requirements explicit. To this end, we pose the assumptions

(A1) (complete mixed-integer-recourse)

for any t ∈ Rs there exists a y ∈ ZZm̄
+ × Rm′

+ such that Wy ≥ t,

(A2) (dual feasibility of the linear programming relaxation)

{u ∈ Rs : W>u ≤ q, u ≥ 0} 6= ∅,

which are well-known in SP, see [Sch93], and ensure that Φ(t) is a well-defined

real number for any t ∈ Rs.

Further, we assume that the objective g>x is linear, the polyhedron X

nonempty, possibly with integer requirements on components of x. Both the

random right-hand side h(ω) and the benchmark d(ω) follow discrete distri-

butions with realizations h`, ` = 1, . . . , L, and dk, k = 1, . . . , K, as well as

probabilities π`, ` = 1, . . . , L, and pk, k = 1, . . . , K, respectively.

Out of all different representations we presented in Section 2.2 to charac-

terize the SD relations, in the following we will use Proposition 2.2.1 (iv) for

FSD and Proposition 2.2.13 for ICX.
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For a discrete and finite benchmark Y with realizations Yk, k = 1, . . . , K it

is possible to reduce the continua of constraints in both characterizations to a

finite number as follows:

X �(1) Y iff IP [X > Yk] ≤ IP [Y > Yk] , k = 1, . . . , K, (4.4)

X �icx Y iff IE[X− Yk]+ ≤ IE[Y − Yk]+, k = 1, . . . , K, (4.5)

see [GNS08, Got09] for the proofs.

MILP equivalents to (4.1) and (4.2) are now obtained by representing the

feasible sets

C1 := {x ∈ X : f(x, h) �(1) d} (4.6)

and

C2 := {x ∈ X : f(x, h) �icx d} (4.7)

as polyhedra in lifted dimensions, possibly involving integer requirements to

some of the variables.

4.1 Lifting-Representations of Type I

For convenience we denote the probability measures induced by the random

variables h(ω) and d(ω) on Rs and R by µ and ν, respectively. Without loss of

generality, we assume that the realizations of the benchmark, dk, are arranged

in ascending order, i.e.,

d1 < d2 < . . . < dK . (4.8)

Now, let us have a closer look at the feasibility region C1 starting from the

following observation.

Observation 4.1.1. The function values f(x, h`), ` = 1, . . . , L, x ∈ C1, are

bounded above by the biggest realization dK of the benchmark. The reason is

that, for k = K, inequality (4.4) becomes µ[f(x, h) > dK ] = 0.

Adjusting the steps of the proof of Proposition 3.1 in [GNS08] in the light

of Observation 4.1.1, we obtain the following equivalent representation for C1.
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Chapter 4. Lifting-Representations of SD-Constraints with Recourse

Proposition 4.1.2. For finite discrete distributions of h(ω) and d(ω) and

under the assumptions (A1) and (A2) it holds that

C1 =


x ∈ X :

∃y` ∈ ZZm̄
+ × Rm′

+

∃θ`k ∈ {0, 1}

c>x+ q>y` ≤ dk + θ`k(dK − dk) ∀` ∀k

Tx+Wy` ≥ h` ∀`
L∑̀
=1

π`θ`k ≤
K∑

j=k+1

pj ∀k


.

(4.9)

Proof: Employing (4.4) and calculating explicitly the probabilities ν[d > dk],

provides

C1 = {x ∈ X : µ[f(x, h) > dk] ≤ ν[d > dk], k = 1, . . . , K}

=

{
x ∈ X : µ[f(x, h) > dk] ≤

K∑
j=k+1

pj, k = 1, . . . , K

}
.

(Throughout, we make the convention that
∑K

j=K+1 corresponds to summing

over the empty set and yielding zero.)

Now, for

µ[f(x, h) > dk] ≤
K∑

j=k+1

pj, k = 1, . . . , K, (4.10)

to hold, it is sufficient to find y`k ∈ ZZm̄
+×Rm′

+ and θ`k ∈ {0, 1}, k = 1, . . . , K, ` =

1, . . . , L, such that

Tx+Wy`k ≥ h`, ` = 1, . . . , L, (4.11)

c>x+ q>y`k ≤ dk + θ`k(dK − dk), ` = 1, . . . , L, (4.12)

and
L∑
`=1

π`θ`k ≤
K∑

j=k+1

pj. (4.13)

Indeed, if (4.11), (4.12) can be fulfilled with θ`k = 0, then f(x, h`) ≤ dk. Hence,

f(x, h`) > dk is possible for θ`k = 1, only. This implies

µ[f(x, h) > dk] ≤
L∑
`=1

π`θ`k.
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On the other hand, if (4.10) is valid, then setting θ`k = 1 if and only if

f(x, h`) > dk and choosing y`k ∈ ZZm̄
+ × Rm′

+ , ` = 1, . . . , L, as optimal so-

lutions to

min{q>y : Wy ≥ h` − Tx, y ∈ ZZm̄
+ × Rm′

+ }, ` = 1, . . . , L,

together with Observation 4.1.1, demonstrate that (4.11) - (4.13) can be ful-

filled. The following Observation 4.1.3 from [Nei08] completes the proof. �

Observation 4.1.3. The vectors y`k ∈ ZZm̄
+ ×Rm′

+ , ` = 1, . . . , L, from the above

proof can be selected independently on k. In the necessity part the selection

has already been made this way. In the sufficiency part, passing for each ` =

1, . . . , L to y` := arg min{q>y`k : k = 1, . . . , K} yields the desired.

Now, let us turn our attention to the feasibility region C2 starting from a

result similar to Observation 4.1.1.

Observation 4.1.4. The function values f(x, h`), ` = 1, . . . , L, x ∈ C2, are

bounded above by dK, because, for k = K, the expectation on the right in (4.5)

becomes zero, so that IE [f(x, h)− dK ]+ =
L∑̀
=1

π` [f(x, h`)− dK ]+ = 0 yielding

[f(x, h`)− dK ]+ = 0 for ` = 1, . . . , L.

Adjusting the steps of the proof of Proposition 3.1 in [GGS11] according to

Observation 4.1.4, we obtain the following equivalent representation for C2.

Proposition 4.1.5. For finite discrete distributions of h(ω) and d(ω) and

under the assumptions (A1) and (A2) it holds that

C2 =


x ∈ X :

∃y` ∈ ZZm̄
+ × Rm′

+

∃θ`k ∈ [0, 1]

c>x+ q>y` ≤ dk + θ`k(dK − dk) ∀` ∀k

Tx+Wy` ≥ hi ∀`
L∑̀
=1

π`θ`k(dK − dk) ≤
K∑

j=k+1

pj(dj − dk) ∀k


.

(4.14)
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Proof: By (4.5) we have

C2 =

{
x ∈ X :

L∑
`=1

π` [f(x, h`)− dk]+ ≤
K∑

j=k+1

pj(dj − dk), k = 1, . . . , K

}
.

Then, for
L∑
`=1

π` [f(x, h`)− dk]+ ≤
K∑

j=k+1

pj(dj − dk) (4.15)

to hold, it is sufficient to find y`k ∈ ZZm̄
+ × Rm′

+ and θ`k ≥ 0, ` = 1, . . . , L, such

that

Tx+Wy`k ≥ h`, ` = 1, . . . , L, (4.16)

c>x+ q>y`k ≤ dk + θ`k, ` = 1, . . . , L, (4.17)

and
L∑
`=1

π`θ`k ≤
K∑

j=k+1

pj(dj − dk). (4.18)

Indeed, (4.16) and (4.17) imply

f(x, h`)− dk ≤ θ`k,

and, together with (4.18),

L∑
`=1

π`[f(x, h`)− dk]+ ≤
L∑
`=1

π`θ`k ≤
K∑

j=k+1

pj(dj − dk).

If, vice versa, (4.15) is valid, then picking y`k ∈ ZZm̄
+ ×Rm′

+ as optimal solutions

to

min{q>y : Wy ≥ h` − Tx, y ∈ ZZm̄
+ × Rm′

+ }, ` = 1, . . . , L,

and setting

θ`k = [f(x, h`)− dk]+,

for ` = 1, . . . , L, fulfills (4.16) - (4.18).

In view of Observation 4.1.4, there cannot occur arbitrarily large θ`k ≥ 0

in relations (4.17), (4.18), although this were formally feasible. With new
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variables θ`k for which 0 ≤ θ`k ≤ 1, the relations can be expressed as follows:

c>x+ q>y`k ≤ dk + θ`k(dK − dk), ` = 1, . . . , L,
L∑
`=1

π`θ`k(dK − dk) ≤
K∑

j=k+1

pj(dj − dk), k = 1, . . . , K.

For the same reasons as in Observation 4.1.3 the vectors y`k ∈ ZZm̄
+ ×Rm′

+ , ` =

1, . . . , L, can be selected independently on k. This argument completes the

proof. �

Remark 4.1.6. The representations of C1 and C2 given in Propositions 4.1.2

and 4.1.5 slightly improve earlier results in [GNS08] and [GGS11]. In [GNS08]

a big-M technique is employed which is often problematic for practical and nu-

merical reasons, whereas Propositions 4.1.2 now works with the improved upper

bounds dK − dk. In both [GNS08] and [GGS11], the y-variables still depend

on the benchmark scenarios k. This makes the model dimensions bigger, while

matrix fill-in is bigger in the present models.

Remark 4.1.7. The closedness of the sets C1 and C2 is apparent from their

MILP equivalent formulations. In a more general context, this was shown in

[GNS08, Proposition 2.1] and [GGS11, Proposition 2.2]. Once the set X is

bounded and C1, C2 6= ∅, the optimization problems (4.1) and (4.2) become

well-defined, i.e, the corresponding infima are finite and attained. While the

boundedness of X was required in [GNS08, Proposition 2.1] for the calculation

of big - M, here it may assure the solvability of our optimization problems.

4.2 Lifting-Representations of Type II

Both the representations (4.9) and (4.14) rely on variables θ`k indicating whether

f(x, h`) exceeds the benchmark dk. This is the crucial factor for launching the

model dimension as well as the number of constraints into the order of K · L.
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However, since the benchmark scenarios are ascending, for each data scenario

` it holds that f(x, h`) ≤ dk implies f(x, h`) ≤ dk′ for all k′ > k.

Therefore, one could introduce Boolean variables θ`k to indicate the change

from f(x, h`) ≤ dk to f(x, h`) > dk which, inspired by [Lue08], now leads us

to an alternative mixed-integer linear formulation of C1.

Proposition 4.2.1. (adapted from [Lue08]) For finite discrete distributions

of h(ω) and d(ω) and under the assumptions (A1) and (A2) it holds that

C1 =



x ∈ X :

∃y` ∈ ZZm̄
+ × Rm′

+

∃θ`k ∈ {0, 1}

c>x+ q>y` ≤
K∑
k=1

θ`kdk ∀`

Tx+Wy` ≥ h` ∀`
L∑̀
=1

π`
K∑

j=k+1

θ`j ≤
K∑

j=k+1

pj ∀k
K∑
k=1

θ`k = 1 ∀`



. (4.19)

Proof: Let x ∈ X . Then for (4.10) to hold it is sufficient to find y` ∈ ZZm̄
+ × Rm′

+ ,

θ`k ∈ {0, 1} (∀ `, k) such that

c>x+ q>y` ≤
K∑
k=1

θ`kdk ∀ `, (4.20)

Tx+Wy` ≥ h` ∀ `, (4.21)
K∑
k=1

θ`k = 1 ∀ ` (4.22)

and
L∑
`=1

π`

K∑
j=k+1

θ`j ≤
K∑

j=k+1

pj ∀ k. (4.23)

This can be seen as follows: In view of (4.22), for each ` ∈ {1, . . . , L} there

exists k∗ = k∗(`) such that θ`k∗ = 1. By (4.20) and (4.21) it follows that

f(x, h`) ≤ dk∗ . Since the dk are in ascending order, the relation f(x, h`) > dk

can be valid for k < k∗, only. For k < k∗ it holds that

K∑
j=k+1

θ`j = 1.
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Therefore,

{l : f(x, h`) > dk} ⊆

{
l :

K∑
j=k+1

θ`j = 1

}
implying

µ[f(x, h) > dk] ≤
L∑
`=1

π`

K∑
j=k+1

θ`j ≤
K∑

j=k+1

pj ∀ k.

For necessity, let x ∈ X fulfill (4.10) for all k. The variables y` ∈ ZZm̄
+ × Rm′

+

again are taken as optimal solutions to

min{q>y : Wy ≥ h` − Tx, y ∈ ZZm̄
+ × Rm′

+ }, ` = 1, . . . , L.

For ` ∈ {1, . . . , L} let k∗ = k∗(`) be the minimal index k with f(x, h`) ≤ dk.

Put θ`k = 1 if k = k∗(`) and θ`k = 0, otherwise. It is easily seen that (4.20)-

(4.22) are valid with these choices. To check (4.23), observe that

K∑
j=k+1

θ`j = 1 iff k < k∗(`) iff f(x, h`) > dk.

Hence, for all k,

L∑
`=1

π`

K∑
j=k+1

θ`j = µ[f(x, h) > dk] ≤
K∑

j=k+1

pj.

�

Following [Lue07], with the help of Observation 4.1.4 and (4.8) the infor-

mation about the quantities [f(x, h`) − dk]+ can be stored in the auxiliary

variables θ`k more efficiently than in the representation (4.14). This leads to

another equivalent representation of C2.

Proposition 4.2.2. (adapted from [Lue07]2) For finite discrete distributions

2In [Lue08], Luedtke also proposed another proof - based on Strassen’s theorem ( [MS02,

pp. 25]) - for the original result. To preserve the analogy to our previous proofs, we followed

the more constructive version of the proof given in [Lue07].
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of h(ω) and d(ω) and under the assumptions (A1) and (A2) it holds that

C2 =



x ∈ X :

∃y` ∈ ZZm̄
+ × Rm′

+

∃θ`k ∈ [0, 1]

c>x+ q>y` ≤
K∑
k=1

θ`kdk ∀`

Tx+Wy` ≥ h` ∀`
L∑̀
=1

π`
K∑

j=k+1

θ`j(dj − dk) ≤
K∑

j=k+1

pj(dj − dk) ∀k
K∑
k=1

θ`k = 1 ∀`



.

(4.24)

Proof: For x ∈ X to satisfy

L∑
`=1

π` [f(x, h`)− dk]+ ≤
K∑

j=k+1

pj(dj − dk) ∀k (4.25)

it is sufficient to find y` ∈ ZZm̄
+ × Rm′

+ , θ`k ∈ [0, 1] (∀ `, k) such that

c>x+ q>y` ≤
K∑
j=1

θ`jdj ∀ `, (4.26)

Tx+Wy` ≥ h` ∀ `, (4.27)
K∑
k=1

θ`k = 1 ∀ ` (4.28)

and
L∑
`=1

π`

K∑
j=k+1

θ`j(dj − dk) ≤
K∑

j=k+1

pj(dj − dk) ∀ k. (4.29)

Indeed, (4.26) and (4.27) imply

f(x, h`) ≤
K∑
j=1

θ`jdj,

and, together with (4.28) and (4.8),

f(x, h`)− dk ≤
K∑
j=1

θ`j(dj − dk) ≤
K∑

j=k+1

θ`j(dj − dk).
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Then, (4.29) delivers the desired

L∑
`=1

π`[f(x, h`)− dk]+ ≤
L∑
`=1

π`

K∑
j=k+1

θ`j(dj − dk) ≤
K∑

j=k+1

pj(dj − dk).

If, vice versa, (4.25) is valid, the variables y` ∈ ZZm̄
+ ×Rm′

+ are once again taken

as optimal solutions to

min{q>y : Wy ≥ h` − Tx, y ∈ ZZm̄
+ × Rm′

+ }, ` = 1, . . . , L.

For the selection of θ`k we first consider the case of f(x, h`) ≤ d1. Here, we

set θ`1 = 1, θ`k = 0 ∀ k > 1, which fulfills (4.26)-(4.29). Otherwise, in view of

Observation 4.1.4, we may select an index k∗ = k∗(`) with 1 < k∗ ≤ K such

that

dk∗−1 < f(x, h`) ≤ dk∗ . (4.30)

Now, we define θ`k = 0 ∀ k < k∗ − 1, k > k∗, and

θ`k∗−1 :=
dk∗ − f(x, h`)

dk∗ − dk∗−1

, θ`k∗ :=
f(x, h`)− dk∗−1

dk∗ − dk∗−1

. (4.31)

Clearly, θ`k ≥ 0 and fulfill (4.28). The constraint (4.26) is fulfilled since

K∑
j=1

θ`jdj =
dk∗−1(dk∗ − f(x, h`)) + dk∗(f(x, h`)− dk∗−1)

dk∗ − dk∗−1

= f(x, h`).

For the remaining constraint (4.29), we first compute that

k ≥ k∗ :
K∑

j=k+1

θ`j(dj − dk) = 0 = [f(x, h`)− dk]+,

k = k∗ − 1 :
K∑

j=k+1

θ`j(dj − dk) = θ`k∗(dk∗ − dk∗−1) = [f(x, h`)− dk]+,

hold. After a lengthier computation we see that also

k < k∗ − 1 :
K∑

j=k+1

θ`j(dj − dk) = θ`k∗−1(dk∗−1 − dk) + θ`k∗(dk∗ − dk)

= [f(x, h`)− dk]+
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holds. Together with (4.25) this leads to

L∑
`=1

π`

K∑
j=k+1

θ`j(dj − dk) =
L∑
`=1

π` [f(x, h`)− dk]+ ≤
K∑

j=k+1

pj(dj − dk) ∀ k

completing the proof. �

Observation 4.2.3. While the model dimension in (4.19), (4.24) still is in

the order of K ·L, compared with (4.9), (4.14), the number of constraints now

is in the order of K + L.

Remark 4.2.4. For the Propositions 4.1.2, 4.1.5, 4.2.1 and 4.2.2 to hold we

have posed the assumptions (A1) and (A2), which are not used in the proofs

explicitly. Indeed, if (A1) were missing for some t = h` − Tx, then one would

associate Φ(t) = +∞ yielding x neither in C1, C2 nor in their corresponding

MILP equivalents. If (A2) were violated, then Φ(t) = −∞, and the dominance

constraints would hold trivially.

The MILP formulations discussed so far, in principle, can be tackled by

readily available mixed-integer linear programming solvers such as the open

source solver GLPK [GLP12] or one of the commercial solvers such as CPLEX

[CPL13], GUROBI [GUR13] or Xpress [XPR13], just to mention a few. How-

ever, with the growth of the model size these MILP formulations quickly be-

come large-scale. Especially, models with numbers of constraints in the or-

der of K · L are problematic in this respect. The formulations inspired by

[Lue07, Lue08] with constraint numbers in the order of K + L provide some

relief, but, as will be seen later on, come to their limits where decomposition

methods still perform quite decently.
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Chapter 5

Linear Recourse: Model

Equivalents Tailored for

Decomposition

In the MILP equivalents (4.9), (4.14), (4.19), and (4.24), the presence of the

second-stage variables y`, ` = 1, . . . , L, and their constraints is a critical factor

for the model sizes being huge and quickly leading to intractability by general-

purpose MILP solvers. As we have pointed out in Section 3.2.3, one possible

remedy, still working for mixed-integer y`, is dual decomposition by means

of Lagrangian relaxation combined with branch-and-bound. For dominance-

constrained problems with mixed-integer recourse, this approach has been

proven successful in [GNS08, GGS11].

If the second-stage variables y` all are continuous, i.e., if

Φ(t) := min{q>y : Wy ≥ t, y ≥ 0}, (5.1)

also referred to as linear recourse, then linear programming duality allows

for considerable shortcuts in both the MILP equivalents and algorithms for

their solution. A prominent class of such algorithms, namely cutting plane or

Benders’ decomposition methods, was discussed in Section 3.2.2 for the case

of expectation based problems (3.9) with linear recourse.
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In the following, we will adapt the idea of these cutting plane methods

to the dominance-constrained problems (3.20), (3.21). To this end, in the

present chapter we derive the MILP equivalent formulations whose relaxations

will reappear as master problems in the cutting plane methods proposed con-

secutively in Chapter 6.

To avoid technical difficulties, we assume

(A3) (complete recourse) For any t ∈ Rs there exists a y ≥ 0 such that

Wy ≥ t;

(A4) (dual feasibility) {u ∈ Rs : W>u ≤ q, u ≥ 0} 6= ∅;

which are the counterpart assumptions to (A1), (A2) and imply that Φ(t) is a

well-defined real number for any t ∈ Rs, see [BL97, KW94, Pré95, RS03].

5.1 Equivalent Formulations Based on the Lifting-

Representations

Assuming linear recourse and (A3), (A4), we now derive MILP equivalents to

the first- and second-order dominance constraints specified in C1 and C2. In

particular, we study linear-recourse versions of (4.9), (4.14), (4.19), and (4.24).

This refines and extends our earlier work in [DS10].1 Here, refinement concerns

(4.9) where the “big-M” is replaced by tighter bounds. Extension arises from

including second-order dominance as in (4.14), (4.24) and from incorporating

the modeling techniques of [Lue08], as in (4.19), (4.24). The following lemma

from [DS10], providing a characterization of f(x, h) ≤ η (η ∈ R), will have a

pivotal role. To be self-contained concerning this detail and for convenient use

later on, we include the short proof of the lemma.

Lemma 5.1.1. Let (δi, δio) ∈ Rs+1, i = 1, . . . , I, denote the vertices of

∆ :=
{

(u, uo) ∈ Rs+1 : 0 ≤ u ≤ 1, 0 ≤ uo ≤ 1, W>u− uoq ≤ 0
}

1The results of the present section were originally published by the author in [DKS11].

56



5.1. Equivalent Formulations Based on the Lifting-Representations

with 1 ∈ Rs denoting the vector of all ones. Then

f(x, h) = c>x+ Φ(h− Tx) ≤ η

if and only if

(h− Tx)>δi + (c>x− η)δio ≤ 0 for all i = 1, . . . , I. (5.2)

Proof: Since ∆ is a nonempty and bounded polyhedron, it has vertices.

By the definition of Φ in (5.1), the relation c>x+ Φ(h− Tx) ≤ η is equivalent

to claiming that the feasibility problem

min
y,τ,τo

{
1>τ+τo : Wy+τ ≥ h−Tx, c>x+q>y−τo ≤ η, y ≥ 0, τ ≥ 0, τo ≥ 0

}
has optimal value zero. This problem is always solvable, and, by linear pro-

gramming duality, its optimal value coincides with the optimal value of

max
u,uo

{
(h− Tx)>u+ (c>x− η)uo : 0 ≤ u ≤ 1, 0 ≤ uo ≤ 1, W>u− uoq ≤ 0

}
.

(5.3)

Since ∆ is the constraint set of the above linear program, the proof is

complete. �

With this result, the formulations (4.9) and (4.19) for the problems with FSD

arise in the following shape.

Proposition 5.1.2. Assume (A3), (A4), and let h(ω), d(ω) follow the finite

discrete probability distributions introduced at the beginning of Chapter 4. Then

the following are equivalent:

The linear-recourse first-order dominance model

min{g>x : f(x, h(ω)) �(1) d(ω), x ∈ X} (5.4)

• and the mixed-integer linear program

min


g>x :

(h` − Tx)>δi +

(c>x− dk − θ`k(dK − dk))δi0 ≤ 0 ∀`, k, i
L∑̀
=1

π`θ`k ≤
K∑

j=k+1

pj ∀k

x ∈ X , θ`k ∈ {0, 1} ∀`, k


(5.5)
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• and the mixed-integer linear program

min


g>x :

(h` − Tx)>δi + (c>x−
K∑
k=1

θ`kdk)δi0 ≤ 0 ∀`, i
L∑̀
=1

π`
K∑

j=k+1

θ`j ≤
K∑

j=k+1

pj ∀k
K∑
k=1

θ`k = 1 ∀`

x ∈ X , θ`k ∈ {0, 1} ∀`, k


.

(5.6)

Proof: The proof of the first claim is given by confirming that the constraint

set of (5.5) coincides with the set of all x ∈ X fulfilling (4.10):

µ[f(x, h) > dk] ≤
K∑

j=k+1

pj, k = 1, . . . , K.

For (4.10) to hold it is sufficient to find θ`k ∈ {0, 1}, k = 1, . . . , K, ` = 1, . . . , L,

such that

(h` − Tx)>δi + (c>x− dk − θ`k(dK − dk))δi0 ≤ 0 ∀`, k, i (5.7)

and
L∑
`=1

π`θ`k ≤
K∑

j=k+1

pj ∀k.

Indeed, if the above relations can be fulfilled with θ`k = 0, then, by Lemma 5.1.1,

it holds that f(x, h`) ≤ dk. Hence,

µ[f(x, h) > dk] ≤
L∑
`=1

π`θ`k.

For necessity, set θ`k = 1 if and only if f(x, h`) > dk. Then, for any k,

L∑
`=1

π`θ`k = µ[f(x, h) > dk] ≤
K∑

j=k+1

pj.

Moreover, for θ`k = 0 we have f(x, h`) ≤ dk, and Lemma 5.1.1 provides the

validity of (5.7). For θ`k = 1, the relevant relations in (5.7) yield f(x, h`) ≤ dK

58



5.1. Equivalent Formulations Based on the Lifting-Representations

which is valid by Observation 4.1.1.

To prove the second claim we first confirm that, for (4.10) to hold, it is

sufficient to find θ`k ∈ {0, 1}, ` = 1, . . . , L, such that

(h` − Tx)>δi +

(
c>x−

K∑
k=1

θ`kdk

)
δi0 ≤ 0 ∀`, i; (5.8)

L∑
`=1

π`

K∑
j=k+1

θ`j ≤
K∑

j=k+1

pj ∀k; (5.9)

K∑
k=1

θ`k = 1 ∀`. (5.10)

Indeed, we conclude from (5.8) and (5.10) that for each ` = 1, . . . , L, there

exists an index k∗(`) with f(x, h`) ≤ dk∗(`). Since the dk are ascending,

f(x, h`) > dk is possible for k < k∗(`), only. For k < k∗(`), however,∑K
j=k+1 θ`j = 1. Therefore,

µ[f(x, h) > dk] =
L∑
`=1

π`

K∑
j=k+1

θ`j ≤
K∑

j=k+1

pj.

For the necessity part put θ`k = 1 if and only if, given `, k equals the minimal

index k∗(`) with f(x, h`) ≤ dk∗ . �

For the second-order problems, Lemma 5.1.1 brings about the following

reformulations of (4.14), (4.24).

Proposition 5.1.3. Assume (A3), (A4), and let h(ω), d(ω) follow the finite

discrete probability distributions introduced at the beginning of Chapter 4. Then

the following are equivalent:

The linear-recourse, second-order dominance model

min{g>x : f(x, h(ω)) �icx d(ω), x ∈ X} (5.11)
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• and the mixed-integer linear program

min


g>x :

(h` − Tx)>δi +

(c>x− dk − θ`k(dK − dk))δi0 ≤ 0 ∀`, k, i
L∑̀
=1

π`θ`k(dK − dk) ≤
K∑

j=k+1

pj(dj − dk) ∀k

x ∈ X , θ`k ∈ [0, 1] ∀`, k


(5.12)

• and the mixed-integer linear program

min


g>x :

(h` − Tx)>δi +

(c>x−
K∑
k=1

θ`kdk)δi0 ≤ 0 ∀`, i
L∑̀
=1

π`
K∑

j=k+1

θ`j(dj − dk) ≤
K∑

j=k+1

pj(dj − dk) ∀k
K∑
k=1

θ`k = 1 ∀`

x ∈ X , θ`k ∈ [0, 1] ∀`, k


.

(5.13)

Proof: Very similarly to the proof of Propositions 5.1.2, the principal lines

of arguments for the mixed-integer recourse models in Section 4 are repeated

with some adaptations. Let us demonstrate this at (5.12). To obtain the

desired relation characterizing (this time) C2, namely,

L∑
`=1

π` [f(x, h`)− dk]+ ≤
K∑

j=k+1

pj(dj − dk) ∀ k, (5.14)

cf. (4.15), it is sufficient to fulfill the constraints of the prospective equivalent,

i.e.,

(h` − Tx)>δi + (c>x− dk − θ`k(dK − dk))δi0 ≤ 0 ∀`, k, i; (5.15)
L∑
`=1

π`θ`k(dK − dk) ≤
K∑

j=k+1

pj(dj − dk) ∀k; (5.16)

x ∈ X , θ`k ∈ [0, 1] ∀`, k

Now (5.15) implies in light of Lemma 5.1.1

f(x, h`)− dk ≤ θ`k(dK − dk) ∀ `, k.

60



5.1. Equivalent Formulations Based on the Lifting-Representations

Together with (5.16) this yields the desired relation (5.14):

L∑
`=1

π` [f(x, h`)− dk]+ ≤
L∑
`=1

π`θ`k(dK − dk) ≤
K∑

j=k+1

pj(dj − dk) ∀ k.

Vice versa, the desired relation (5.14) implies that the constraints of the

prospected equivalent can be fulfilled. Given x ∈ X , choose θ`k such that

θ`k(dK − dk) = [f(x, h`)− dk]+ ∀ `, k.

Then (5.14) implies (5.16). Due to Observation 4.1.4, we have θ`k ∈ [0, 1] ∀ `, k.

To verify (5.15), notice that

f(x, h`)− dk ≤ [f(x, h`)− dk]+ = θ`k(dK − dk).

Thus, f(x, h`) ≤ dk + θ`k(dK − dk), from where Lemma 5.1.1 yields (5.15).

To prove the equivalence of C2 and (5.13), it is sufficient to fulfill the con-

straints

(h` − Tx)>δi + (c>x−
K∑
k=1

θ`kdk)δi0 ≤ 0 ∀`, i; (5.17)

L∑
`=1

π`

K∑
j=k+1

θ`j(dj − dk) ≤
K∑

j=k+1

pj(dj − dk) ∀k; (5.18)

K∑
k=1

θ`k = 1 ∀`; (5.19)

x ∈ X , θ`k ∈ [0, 1] ∀`, k. (5.20)

Indeed, (5.17) and Lemma 5.1.1 imply

f(x, h`) ≤
K∑
j=1

θ`jdj, (5.21)

and, together with (5.19) and (4.8),

f(x, h`)− dk ≤
K∑
j=1

θ`j(dj − dk) ≤
K∑

j=k+1

θ`j(dj − dk).

Then, (5.18) delivers the desired

L∑
`=1

π`[f(x, h`)− dk]+ ≤
L∑
`=1

π`

K∑
j=k+1

θ`j(dj − dk) ≤
K∑

j=k+1

pj(dj − dk).
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For the necessity part, we can choose θ`k as in the proof of Proposition 4.2.2.

There it was shown, that this choice of θ`k fulfills (5.18), (5.19), (5.20) and

that (5.21) holds. Since (5.21) implies (5.17) by Lemma 5.1.1, we are done.

�

Remark 5.1.4. While in the MILP equivalents of Chapter 4 second-stage op-

timality is captured by explicit conditions involving the second-stage variables,

the MILP equivalents of Propositions 5.1.2 and 5.1.3 rely on dual characteri-

zation of second-stage optimality by implicit constraints of the type (5.2).

The formulation presented in the next section is based upon implicit con-

straints as well. However, in contrast to all formulations presented above, it is

devoid of any auxiliary variables.

5.2 An Equivalent Formulation Based on the

Polyhedral Representation

As we have discussed in Section 3.1.3, dominance constraints have close rela-

tions to constraints on some risk measures. Particularly, SSD constraints can

be viewed as ICC with the risk thresholds defined through the benchmark.

This implies, that the MILP equivalent formulations we developed for C2 so

far, can be applied to solve the problems with ICC as well.2

By contrast, in the present section, we consider an alternative formula-

tion for C2 which was originally developed for ICC in [KHvdV06] and then

adapted for SSD in [RR08]. As opposed to the usual approach to model this

relation, which allows to construct linear representations for the nonlinear

shortfall terms [t − X]+ by means of additional indicator variables (θ`k), the

alternative formulation will forgo any auxiliary variables.

2More precisely, our representations can be applied to solve problems with constraints

on expected excess, cf. Proposition 2.2.13 and below.
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We start from the representation of SSD which builds upon the characteriza-

tion from Proposition 2.2.2 (ii) and is due to [RR08]. Analogously, we construct

the corresponding representation for ICX basing upon Proposition 2.2.13.

Proposition 5.2.1. Assume that X,Y ∈ L1(Ω,F , IP ). Then

(i) Y �(2) X iff IE((t− X) · 1A) ≤ IE[t− Y]+ ∀t ∈ R, A ∈ F ;

(ii) X �icx Y iff IE((X− t) · 1A) ≤ IE[Y − t]+ ∀t ∈ R, A ∈ F .

Proof: The proof of (i) can be found in [RR08, Theorem 2.2]. For (ii) we,

analogously, prove necessity and sufficiency:

“=⇒“ For all A ∈ F , t ∈ R it holds (X(ω)−t)·1A(ω) ≤ [X(ω)−t]+ for all ω ∈ Ω.

By Proposition 2.2.13 then IE((X− t) · 1A) ≤ IE[X− t]+ ≤ IE[Y − t]+;

”⇐=” For all t ∈ R and A := [X > t] we have (X(ω)− t) · 1A(ω) = [X(ω)− t]+
for all ω ∈ Ω, which yields the desired in view of Proposition 2.2.13.

�

These representations were termed polyhedral in [Fáb12], as opposed to the

lifting-representations we considered so far. For a finite and discrete bench-

mark variable Y with realizations Yk, k = 1, . . . , K the continua of constraints

in Proposition 5.2.1 again reduce to a finite number, as the following proposi-

tion shows.

Proposition 5.2.2.

(i) Y �(2) X iff IE((Yk − X) · 1A) ≤ IE[Yk − Y]+ ∀A ∈ 2Ω, k = 1, . . . , K;

(ii) X �icx Y iff IE((X−Yk) · 1A) ≤ IE[Y−Yk]+ ∀A ∈ 2Ω, k = 1, . . . , K.

Proof:

“=⇒“ Proposition 5.2.1 for t = Yk and F = 2Ω;
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”⇐=” For each k define Ak := [X > Yk] and it holds (X(ω) − Yk) · 1Ak(ω) =

[X(ω) − Yk]+ for all ω ∈ Ω. By (4.5) this implies X �icx Y. To see (i)

choose Ak := [X < Yk].

�

If we assume (A3), (A4), which ensure the finiteness of our rvs f(x, h`), the

set C2 has the representation with nonlinear entities as

C2 =

{
x ∈ X :

L∑
`=1

π`(f(x, h`)− dk)+ ≤
K∑

j=k+1

pj(dj − dk), ∀ k = 1, . . . , K

}
.

(5.22)

In view of Proposition 5.2.2, the corresponding polyhedral representation of

this set immediately arises in the following proposition.

Proposition 5.2.3. Assume (A3), (A4), and let h(ω), d(ω) follow the finite

discrete probability distributions introduced at the beginning of Chapter 4. Then

it holds that

C2 =

{
x ∈ X :

∑
`∈A

π`(f(x, h`)− dk) ≤ vk, ∀ k = 1, . . . , K, ∀ A ⊂ {1, . . . , L}

}
,

(5.23)

where vk :=
K∑

j=k+1

pj(dj − dk) from now on.

Unfortunately, (5.23) cannot be used for decomposition directly because

the involved rvs are not given explicitly. As in the previous section, in case

of linear recourse we can use LP-duality to derive a polyhedral formulation

amenable for decomposition. In fact, under the assumptions (A3) and (A4) it

holds that

f(x, h`) = c>x+ min{q>y : Wy ≥ h` − Tx, y ≥ 0}

= c>x+ max{(h` − Tx)>u : W>u ≤ q, u ≥ 0}
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with both optimization problems being solvable. For the dual problem it means

that we can restrict optimization over the vertices δi ∈ Rs, i = 1, . . . , I, of

∆̄ :=
{
u ∈ Rs : W>u ≤ q, u ≥ 0

}
.

For each x ∈ X , ` = 1, . . . , L it holds

f(x, h`) ≥ c>x+ (h` − Tx)>δi ∀ i = 1, . . . , I (5.24)

and there exists a vertex δ(x, h`) of ∆̄ such that

f(x, h`) = c>x+ max
δi∈∆̄
{(h` − Tx)>δi : i = 1, . . . , I} = c>x+ (h` − Tx)>δ(x, h`).

(5.25)

With this representation of the rvs, we obtain the desired formulation for

C2 in the following proposition.

Proposition 5.2.4. Assume (A3), (A4), and let h(ω), d(ω) follow the finite

discrete probability distributions introduced at the beginning of Chapter 4. Then

it holds that

C2 =

{
x ∈ X :

∑
`∈A

π`((h` − Tx)>δ + c>x− dk) ≤ vk, ∀ A ⊂ {1, . . . , L}, ∀ k

}
,

(5.26)

where δ in each addend is an arbitrary vertex of ∆̄, so that we have I |A| con-

straints for any fixed k and A.

Proof: We call the set C2 in representation (5.23) S1 and in representation

(5.26) S2 and show S1 = S2.

“⊂”: For an x ∈ S1, (5.24) yields∑
`∈A

π`((h` − Tx)>δ + c>x− dk) ≤
∑
`∈A

π`(f(x, h`)− dk) ≤ vk

for any fixed k and A.

“⊃”: For x ∈ S2 the constraint holds for arbitrary vertices δ in each addend,

so also for the ones with f(x, h`) = c>x+ (h` − Tx)>δ(x, h`). �
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Chapter 6

Cutting Plane Methods

The representations (5.5), (5.6), (5.12), and (5.13) all contain constraints (or

cuts) of the type (5.2)

(h− Tx)>δi + (c>x− η)δio ≤ 0

induced by vertices (δi, δio) of ∆, see Lemma 5.1.1, whereas the representation

(5.26) employs, roughly speaking, the aggregated version of those cuts, see

Proposition 5.2.4. Because the number of vertices in a polyhedron may grow

exponentially in the problem dimension, all the MILP equivalents derived in

the previous chapter are about to have a vast number of such constraints for

realistic problem dimensions. Moreover, these constraints are not available a

priorily.

Rather, we will generate them as they are needed in the course of the

subsequent algorithms. In these algorithms, the idea of traditional Benders’

decomposition, or L-shaped method in stochastic programming terms, see Sec-

tion 3.2.2 and [Ben63, BL97, KW94, Pré95, RS03], has a central role.

The algorithms work with master problems, i.e., relaxations of the full prob-

lems (5.5), (5.6), (5.12), (5.13) or (5.26) involving subsets of the above cuts.

For an optimal solution to the master problem it is checked algorithmically

whether it violates cuts not yet included in the master. If so, then violated

cuts are added. If not, then the optimal solution to the master problem is opti-
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mal for the full problem as well. The algorithms differ in the MILP equivalents

they employ and in the ways cuts are managed.1

6.1 Decomposition Methods for the Lifting-

Representations

For the lifting-representations of Section 5.1, the algorithmic check of cut vio-

lation is based on solving the dual feasibility problem (5.3) from the proof of

Lemma 5.1.1:

D(x, h, η) max
u,uo

 (h− Tx)>u+ (c>x− η)uo : 0 ≤ u ≤ 1, 0 ≤ uo ≤ 1,

W>u− quo ≤ 0

 .

By the notation D(x, h, η) we indicate that the problem will be solved for

suitable specifications of the parameters (x, h, η). Note that changes in the

parameters do not influence the feasible set which is always ∆.2

We begin with an algorithm tackling the first-order model (5.5):

min


g>x :

(h` − Tx)>δi +

(c>x− dk − θ`k(dK − dk))δi0 ≤ 0 ∀`, k, i
L∑̀
=1

π`θ`k ≤
K∑

j=k+1

pj ∀k

x ∈ X , θ`k ∈ {0, 1} ∀`, k


.

Algorithm 6.1.1. Cutting Plane Algorithm for (5.5)

Step 1 (Initialization):

Set ν := 0 and I0 = ∅.

Step 2 (Master Problem):

1The results of Section 6.1 were originally published by the author in [DKS11].
2In practice, this set depends on the scenario index once q is allowed to be stochastic.
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Solve the current master problem (MP )ν

min


g>x :

(h` − Tx)>δi +

(c>x− dk − θ`k(dK − dk))δi0 ≤ 0 ∀(`, k, i) ∈ Iν
L∑̀
=1

π`θ`k ≤
K∑

j=k+1

pj ∀k

x ∈ X , θ`k ∈ {0, 1} ∀`, k


and let (xν , θν) be an optimal solution.

Step 3 (Subproblems):

Set I+ = ∅.

Solve the subproblems D(xν , h`, dk) for all (`, k) such that θν`k = 0. Dis-

tinguish between the following situations:

3.1) If all subproblems have optimal value zero, then STOP. The current

solution (xν , θν) is optimal for (5.5).

3.2) For each subproblem D(xν , h`, dk), whose optimal value is greater

than zero, pick an optimal vertex (δi, δi0) yielding a cut

(h` − Tx)>δi + (cTx− dk − θ`k(dK − dk))δi0 ≤ 0

which is added to the master problem. Collect these triplets (`, k, i)

in a set I+.

Set ν := ν + 1 and Iν+1 := Iν ∪ I+; GOTO Step 2.

Proposition 6.1.2. Assume (A3), (A4) and that X is bounded. If the feasible

set of (5.5) is nonempty, then Algorithm 6.1.1 terminates with an optimal

solution to (5.5) after a finite number of steps.

Proof: Recall that X is a non-empty polyhedron, possibly with integer

requirements to components of x. By the boundedness assumption, this set

is compact. Hence, if the feasible set of (5.5) is nonempty, it is compact

as well, implying that (5.5) and all master problems arising in the course of

the algorithm possess optimal solutions. Clearly, these master problems are

relaxations of (5.5).
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Consider (`, k) such that θν`k = 0 and the optimal value of D(xν , h`, dk)

equals zero. Then (x, θ) = (xν , θν) satisfies the constraints

(h` − Tx)>δi + (c>x− dk − θ`k(dK − dk))δi0 ≤ 0 (6.1)

for all vertices (δi, δi0) of ∆.

For k = K, the constraint

L∑
`=1

π`θ`k ≤
K∑

j=k+1

pj

implies θ`K = 0 for all ` = 1, . . . .L. Inserting this into (6.1) yields

(h` − Tx)>δi + (c>x− dK)δi0 ≤ 0 ∀ (δi, δi0),

coinciding with the constraint (6.1) for (`, k) with θν`k = 1.

Hence, (xν , θν) is both feasible to (5.5) and optimal to a relaxation of (5.5).

Thus, (xν , θν) is optimal to (5.5).

The algorithm must terminate after finitely many steps, since altogether

there are only finitely many cuts of the type (5.2), and at least one new cut is

added per loop. �

Algorithm 6.1.1 does not prescribe a specific order to deal with the sub-

problems D(xν , h`, dk), corresponding to (`, k) with θν`k = 0. By the following

observation, it is possible to establish such an order which leads to a substantial

reduction of subproblems to be considered.

Observation 6.1.3. If for some (x, `, k) the optimal value of D(x, `, dk) is zero

then the same is true for all (x, `, k′) with k′ ≥ k. Indeed, by Lemma 5.1.1,

f(x, h`) ≤ dk if and only if the optimal value of D(x, h`, dk) is zero. Since

the dk are in ascending order, it follows that f(x, h`) ≤ dk′ for all k′ ≥ k.

Therefore, the optimal value of D(x, h`, dk′) is zero for all k′ ≥ k.

The next algorithm, again for the MILP equivalent (5.5), makes use of this

observation. After having solved the master problem and picked an optimal
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solution (xν , θν), the subproblems D(xν , h`, dk) are inspected with indizes ` ∈

{1, . . . , L} iterating in an outer and k ∈ {1, . . . , K} in an inner loop.

For given `, the index k is increased starting from k = 1 up to the first k

with θν`k = 0. If D(xν , h`, dk) has optimal value zero then the same is true for all

k′ ≥ k, and the iteration continues with ` := `+1, k := 1. If the optimal value

of D(xν , h`, dk) is positive, then, before continuing with ` := ` + 1, k := 1, a

cut is constructed and added to the master problem. Thus, for each ` precisely

one subproblem is solved and at most one cut generated per iteration.

Algorithm 6.1.4. Enhanced Cutting Plane Algorithm for (5.5)

Step 1 (Initialization):

Set ν := 0 and I0 = ∅.

Step 2 (Master Problem):

Solve the current master problem (MP )ν

min


g>x :

(h` − Tx)>δi +

(c>x− dk − θ`k(dK − dk))δi0 ≤ 0 ∀(`, k, i) ∈ Iν
L∑̀
=1

π`θ`k ≤
K∑

j=k+1

pj ∀k

x ∈ X , θ`k ∈ {0, 1} ∀`, k


and let (xν , θν) be an optimal solution.

Step 3 (Subproblems):

Set I+ = ∅.

For ` = 1, . . . , L

For k = 1, . . . , K

IF θν`k = 0 solve D(xν , h`, dk)

IF optimal value of D(xν , h`, dk) equals zero

BREAK;

ELSE Pick a vertex (δi, δi0) of ∆ optimal to D(xν , h`, dk)

Add (h` − Tx)>δi + (cTx− dk − θ`k(dK − dk))δi0 ≤ 0
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to the master and (`, k, i) to I+

BREAK;

3.1) If all subproblems considered have optimal value zero, then STOP.

The current solution xν is optimal for (5.5);

3.2) Otherwise, set ν := ν + 1 and Iν+1 := Iν ∪ I+; GOTO Step 2.

Sketched Proof of Correctnes: The algorithm terminates after a finite

number of steps for the same reason as the previous one did so.

In each loop ν of the algorithm and for each data scenario ` exactly one sub-

problem D(xν , h`, dk) is solved. Upon termination, according to Substep 3.1,

all these subproblems have optimal value zero.

For fixed `, by Observation 6.1.3 all subproblems D(xν , h`, dk′) with k′ ≥ k

have optimal value zero, too. As in the proof of Proposition 6.1.2,

(h` − Txν)>δi + (c>xν − dk − θ`k(dK − dk))δi0 ≤ 0

then holds for all k′ ≥ k and all (δi, δi0). For k′ < k, by construction, θν`k′ = 1,

whose feasibility is equivalent to the feasibility of θν`K = 0 we have just checked.

�

For second-order dominance, Algorithm 6.1.4 may suggest a counterpart

method addressing representation (5.12). The key distinction between the

models (5.5) and (5.12) is that the former has constraints θ`k ∈ {0, 1} ∀`, k

where the latter has θ`k ∈ [0, 1] ∀`, k.

The correctness proof of a hypothetical counterpart algorithm would follow

verbatim the above arguments, except for the last conclusion where feasibility

for k′ < k is verified. The constraints that remain to be checked have θν`k′ 6= 0

and read

(h` − Txν)>δi + (c>xν − dk − θ`k(dK − dk))δi0 ≤ 0.

For θ`k ∈ {0, 1} the requirement that θ`k 6= 0 implies θ`k = 1 leading to

(h` − Txν)>δi + (c>xν − dK))δi0 ≤ 0,
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which coincides with the constraint for k′ := K ≥ k that was checked already.

So no additional effort is needed.

For θ`k ∈ [0, 1], however, the requirement that θ`k 6= 0 merely gives 0 <

θ`k ≤ 1, leading to

(h` − Txν)>δi + (c>xν − dk − θ`k(dK − dk)δi0 ≤ 0,

which has to be checked explicitly by solving the subproblems D(xν , h`, dk′ +

θ`k′(dK − dk′)) for all k′ < k, amounting to complete enumeration of the k′.

The next algorithm again is devoted to first-order dominance, but now for

the model (5.6) where the Boolean variables θ`k have a slightly different role.

So far, these variables indicated whether, for given x, `, k, the function values

f(x, h`) exceed dk or not. Now these variables, for given x, `, indicate at which

index k the change from f(x, h`) ≤ dk to f(x, h`) > dk takes place:

min


g>x :

(h` − Tx)>δi + (c>x−
K∑
k=1

θ`kdk)δi0 ≤ 0 ∀`, i
L∑̀
=1

π`
K∑

j=k+1

θ`j ≤
K∑

j=k+1

pj ∀k
K∑
k=1

θ`k = 1 ∀`

x ∈ X , θ`k ∈ {0, 1} ∀`, k


.

Algorithm 6.1.5. Cutting Plane Algorithm for (5.6)

Step 1 (Initialization):

Set ν := 0 and I0 = ∅.

Step 2 (Master Problem):
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Solve the current master problem (MP )ν

min


g>x :

(h` − Tx)>δi + (c>x−
K∑
k=1

θ`kdk)δi0 ≤ 0 ∀(`, i) ∈ Iν

L∑̀
=1

π`
K∑

j=k+1

θ`j ≤
K∑

j=k+1

pj ∀k

K∑
k=1

θ`k = 1 ∀ `

x ∈ X , θ`k ∈ {0, 1} ∀`, k


and let (xν , θν) be an optimal solution.

Step 3 (Subproblems):

Set I+ = ∅.

Solve the subproblems D(xν , h`,
K∑
k=1

θν`kdk) for all ` ∈ {1, . . . , L}. Con-

sider the situations:

3.1) If all subproblems have optimal value zero, then STOP. The current

solution (xν , θν) is optimal for (5.6).

3.2) If some of these subproblems have optimal value greater than zero,

then their optimal solutions yield vertices (δi, δi0) of ∆. Add the

resulting cuts

(h` − Tx)>δi + (cTx−
K∑
k=1

θ`kdk)δi0 ≤ 0

to the master problem, and add (`, i) to I+.

Set ν := ν + 1 and Iν+1 := Iν ∪ I+; GOTO Step 2.

Proposition 6.1.6. Assume (A3), (A4) and that X is bounded. If the feasible

set of (5.6) is nonempty, then Algorithm 6.1.5 terminates with an optimal

solution to (5.6) after a finite number of steps.

Proof: As with Algorithm 6.1.1, the assumptions ensure that (5.6) as well

as all master problems in the course of the iteration possess optimal solutions.

If all subproblems D(xν , h`,
∑K

k=1 θ
ν
`kdk)

max
u,uo

 (h` − Txν)>u+

(
c>xν −

K∑
k=1

θν`kdk

)
uo : 0 ≤ u ≤ 1, 0 ≤ uo ≤ 1,

W>u− quo ≤ 0,
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for ` = 1, . . . , L, have optimal value zero, then

(h` − Txν)>δi +

(
c>xν −

K∑
k=1

θν`kdk

)
δi0 ≤ 0

for all vertices (δi, δi0) of ∆, implying that (xν , θν) is feasible for (5.6). Simul-

taneously, (xν , θν) is optimal for a relaxation of (5.6), and thus optimal for

(5.6).

Again, termination of the method is granted since there are only finitely

many cuts in total, and per loop at least one new cut is added to the master

problem. �

We conclude the present section with an algorithm for the second-order

dominance model (5.13)

min


g>x :

(h` − Tx)>δi + (c>x−
K∑
k=1

θ`kdk)δi0 ≤ 0 ∀`, i
L∑̀
=1

π`
K∑

j=k+1

θ`j(dj − dk) ≤
K∑

j=k+1

pj(dj − dk) ∀k
K∑
k=1

θ`k = 1 ∀`

x ∈ X , θ`k ∈ [0, 1] ∀`, k


.

Algorithm 6.1.7. Cutting Plane Algorithm for (5.13)

Step 1 (Initialization):

Set ν := 0 and I0 = ∅.

Step 2 (Master Problem):

Solve the current master problem (MP )ν

min


g>x :

(h` − Tx)>δi +

(c>x−
K∑
k=1

θ`kdk)δi0 ≤ 0 ∀(`, i) ∈ Iν

L∑̀
=1

π`
K∑

j=k+1

θ`j(dj − dk) ≤
K∑

j=k+1

pj(dj − dk) ∀k

K∑
k=1

θ`k = 1 ∀`

x ∈ X , θ`k ∈ [0, 1] ∀`, k


and let (xν , θν) be an optimal solution.
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Step 3 (Subproblems):

Set I+ = ∅.

Solve the subproblems D(xν , h`,
∑K

k=1 θ
ν
`kdk) for all ` ∈ {1, . . . , L}. Con-

sider the following situations:

3.1) If all subproblems have optimal value zero, then STOP. The current

solution (xν , θν) is optimal for (5.13).

3.2) If some of these subproblems have optimal value greater than zero,

then their optimal solutions yield vertices (δi, δi0) of ∆. Add the

resulting cuts

(h` − Tx)>δi + (cTx−
K∑
k=1

θ`kdk)δi0 ≤ 0

to the master problem and (`, i) to I+.

Set ν := ν + 1 and Iν+1 := Iν ∪ I+; GOTO Step 2.

To see that Algorithm 6.1.7 works correctly, we resort to the proof of Propo-

sition 6.1.6, which transfers verbatim to the present situation.

6.2 Decomposition for the Polyhedral Repre-

sentation

In the present section, we propose a decomposition method for the polyhedral

representation from Section 5.2. To check the feasibility of the current iterate,

i.e., x = xν ∈ C2, the method uses the formulation (5.22) by computing for

each ` = 1, . . . , L the quantities

f(x, h`) = c>x+ (h` − Tx)>δ(x, h`)

with δ(x, h`) being the vertices of ∆̄ =
{
u ∈ Rs : W>u ≤ q, u ≥ 0

}
which

arise as optimal solutions to the subproblems

max
u
{(h` − Tx)>u : W>u ≤ q, u ≥ 0}. (6.2)
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To reach optimality, the algorithm works with master problems which are

relaxations of the full problem in shape (5.26) from Proposition 5.2.4. If a

solution to the master problem is checked to be infeasible to the full problem,

the violated cuts can be constructed with the help of the vertices δ(x, h`)

already computed during the feasibility check. The following algorithm arises.

Algorithm 6.2.1. Cutting Plane Algorithm for (5.26)

Step 1 (Initialization):

Set ν := 0 and K0 := ∅.

Step 2 (Master Problem):

Solve the current master problem (MP )ν:

min

g>x :

∑
`∈Ank

π`((h` − Tx)>δn` + c>x− dk) ≤ vk, ∀ n < ν, ∀ k ∈ Kn

x ∈ X

 ,

where vk :=
K∑

j=k+1

pj(dj − dk). Let xν be an optimal solution.

Step 3 (Subproblems):

Solve the subproblems (6.2) for ` = 1, . . . , L and obtain optimal vertices

δν` of ∆̄. Check the feasibility for xν by verifying constraints from (5.22):

L∑
`=1

π`(f(xν , h`)− dk)+ =
L∑
`=1

π`(c
>x+ (h` − Txν)>δν` − dk)+ ≤ vk ∀ k.

Distinguish between the following situations:

3.1) If xν satisfies the constraints for all k, then STOP. The current

solution xν is optimal for (5.26).

3.2) Let Kν be the set of all k, where the constraints are violated. For

all k ∈ Kν define Aνk := {` : f(xν , h`) > dk} and introduce cuts∑
`∈Aνk

π`((h` − Tx)>δν` + c>x− dk) ≤ vk, ∀ k ∈ Kν , (6.3)

which are added to the master problem.

Set ν := ν + 1; GOTO Step 2.
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Proposition 6.2.2. Assume (A3), (A4) and that X is bounded. If the feasible

set of (5.26) is nonempty, then Algorithm 6.2.1 terminates with an optimal

solution to (5.26) after a finite number of steps.

Proof: Recall that X is a non-empty polyhedron, possibly with integer

requirements to components of x. By the boundedness assumption, this set

is compact. Hence, if the feasible set of (5.26) is nonempty, it is compact as

well, implying that (5.26) and all master problems arising in the course of

the algorithm possess optimal solutions. Clearly, these master problems are

relaxations of (5.26). All subproblems are solvable due to assumptions (A3)

and (A4).

In view of Proposition 5.2.4 the formulations (5.22) and (5.26) are equiva-

lent, so if x = xν satisfies the constraints in (5.22) it is both feasible to (5.26)

and optimal to a relaxation of (5.26). Thus, xν is optimal to (5.26).

The algorithm must terminate after finitely many steps, since altogether

there are only finitely many cuts of the type (6.3), and at least one new cut is

added per loop. �

For a more detailed understanding of the presented method and in order to

get a better comparison to the decomposition methods developed in [DKS11]

and Section 6.1 we will now provide some details on our implementation of the

cut generation routine from Step 3 of the above algorithm.

Algorithm 6.2.3. (An improved cut generation routine for Algorithm 6.2.1)

Let x = xν be the solution of the current master problem (MP )ν from Algo-

rithm 6.2.1:
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For ` = 1, . . . , L

Solve subproblem (6.2) =⇒ δν` and f(xν , h`)

For k = 1, . . . , K

IF (f(xν , h`) > dk)

Add scenario ` to Aνk;

θk+=π`(f(xν , h`)− dk);

ELSE

IF (` < L)

BREAK; (see Remark 6.2.4 (1))

IF (` = L)

IF (θk = 0)

BREAK; (see Remark 6.2.4 (2))

ELSE

IF (θk > vk)

Add a cut with Aνk to the MASTER; (see Remark 6.2.4 (3))

Remark 6.2.4. In each step of the algorithm L subproblems have to be solved.

Only one path though (`, k) combinations is carried out whereby only the needed

combinations are treated, see (1) and (2). At most K cuts are created, usually

much less due to (3).

(1) θk is increased by π`(f(xν , h`)−dk)+ for each scenario `, so that it equals

the left-hand side in the constraints (5.22), i.e., θk =
L∑̀
=1

π`(f(xν , h`) −

dk)+, for ` = L of the loop. If f(xν , h`) < dk the increment is zero, but

not only for the current k̄ but also for all k > k̄ due to the ascending

ordering of dk.

(2) For the same reason, θk is decreasing in k. Since vk is nonnegative, all

constraints from (5.22) would be fulfilled for k ≥ k̄ and no cuts are to be

applied.
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(3) In contrast to the primal cutting plane method presented in [RR08] for the

polyhedral representation, the sets Aνk generated here may repeat. More

precisely, these sets may repeat for different k because we generate mul-

tiple cuts per iteration. However, the following observations hold:

a) the coefficients in the cuts (6.3) can be calculated as
∑
`∈Aνk

π`(c
> −

δν`
>T );

b) the right-hand side in the cuts (6.3) is vk −
∑
`∈Aνk

π`(δ
ν
`
>h` − dk);

both vk and the sum are decreasing in k but the right-hand side, in

general, is not;

c) Aν1 ⊃ Aν2 ⊃ · · · ⊃ AνK and because of a), cuts with Aνk = Aν
k̄

have

identical coefficients;

d) due to a) - c), out of all cut candidates with the same set Aνk, we

may generate a single cut by choosing the cut with the smallest right-

hand side. With this modification, the number of cuts added in one

iteration ν is simply the number of different sets Aνk generated here.

Remark 6.2.5. In the recent publication [DM12], a method similar to Algo-

rithm 6.2.1 was developed independently in context of the so-called quantile

decomposition, which is based on yet another representation of ICX (related

to the dual representation of Proposition 2.2.15):

X �icx Y ⇐⇒ IE(X|X > α) ≤ 1

IP (X > α)

1∫
FX(α)

F−1
Y (t) dt ∀α ∈ R , IP (X > α) > 0.

Similar to Algorithm 6.2.1, cuts approximating the dominance constraints are

generated with the help of some sets {X > α}.3 The algorithmic framework

developed for the resulting quantile decomposition method is then applied for

3The integral on the right-hand side defines a function which is closely related to the

second quantile function (2.18). If it can be evaluated on all the required points, e.g., with

a minimization rule similar to (2.26), the benchmark rv does not need to be discrete for this

method.
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the representation from Proposition 5.2.2 (ii). The differences to our approach

of Algorithm 6.2.1 lie in the treatment of feasibility and in the way the cuts

are created and managed.
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Chapter 7

Computational Experiments

7.1 Test Problem Formulations

There are (at least) three options for solving the dominance-constrained stochas-

tic programs studied in the present thesis. The first is to apply a general-

purpose mixed-integer linear programming solver such as CPLEX, [CPL13],

to the large-scale MILP equivalents displayed in Chapter 4. The next option

is to resort to decomposition methods, combining relaxation of nonanticipa-

tivity with branch-and-bound. These methods, see [GNS08, GGS11], work for

dominance constraints induced by mixed-integer recourse. Finally, there are

the decomposition methods developed in Chapter 6 which require, however,

that the underlying model has no integer variables in the second stage. In

the present chapter, we report on computational experiments in light of these

options. Accent is placed on models with dominance constraints induced by

linear recourse.

For first-order models, we compare the performance of the Algorithms 6.1.1,

6.1.4, and 6.1.5 proposed in the present thesis with the computational behavior

of CPLEX, [CPL13], and with the decomposition method from [GNS08] which

even is able to cope with models involving mixed-integer linear recourse. Our

test instances stem from a two-stage investment planning problem for electric-
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ity generation under uncertainty, inspired by a multi-stage model introduced

in [LS88]. A second, more demanding but also more academic, group of test

problems was formed on the basis of Sudoku puzzling.

For second-order models, we illustrate the performance of the Algorithms 6.1.7

and 6.2.1 compared to the direct application of a general-purpose MILP solver

to the representations (4.14) and (4.24). The test instances concern an elec-

tricity retailer problem analyzed in [CGS09].

7.2 First-Order Models

Let us start with a few words on the practical background of our first group

of test instances. They are derived from a two-stage investment planning

problem for electricity generation under uncertainty, which was inspired by a

multi-stage model introduced in [LS88].

In the first stage, (integer) decisions on capacity expansions for different gen-

eration technologies with budget constraints and supply guarantee are made

under uncertainty of power demand. The second stage concerns the minimiza-

tion of production costs for electricity under the constraints that electricity

demand is met and the available capacity is not exceeded. Here, the decision

variables are continuous. The random variable f(x, h(ω)) arises as the mini-

mum of the costs incurred by the investment decisions in the first stage and

the production plans in the second. With the random benchmark d(ω), the

constraint f(x, h(ω)) �(1) d(ω), x ∈ X , singles out those investment policies x

that are economically feasible and lead to costs f(x, h(ω)) which are preferable

to the benchmark in terms of stochastic order.

The dominance constrained stochastic program (4.1) is completed by an ob-

jective function referring to preferences among different pre-designated tech-

nologies for capacity expansion.

Table 7.1 displays the dimensions of (4.9) for test instances with different

numbers K of benchmark and L of demand scenarios.
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K L
Variables

Constraints
General Integer Boolean Continuous

10

150 4 1500 3001 2863

300 4 3000 6001 5713

1000 4 10000 20001 19013

20

80 4 1600 1601 2343

100 4 2000 2001 2923

150 4 3000 3001 4373

300 4 6000 6001 8723

Table 7.1: Dimensions of mixed-integer linear programming equivalents (in-

vestment planning)

Table 7.2 reports computing times for the individual solvers:

• A.(6.1.1): Algorithm 6.1.1 applied to (4.9) without utilizing relations

between subproblems, cf. [DS10];

• A.(6.1.4): Algorithm 6.1.4 applied to (4.9) and taking advantage of rela-

tions between subproblems (Observation 6.1.3), resulting in substantial

reductions of the numbers of subproblems to be inspected;

• C.(4.9): general-purpose MILP solver (CPLEX 12.4.01) applied to rep-

resentation (4.9);

• C.(4.19): CPLEX applied to the alternative representation (4.19);

• A.(6.1.5): Algorithm 6.1.5 developed for the alternative representation

(4.19);

• A.[GNS08]: decomposition method for mixed-integer recourse models

from [GNS08].

Computations were carried out on a Linux PC with a 2.67GHz Core i5

processor and 4GB RAM. The time limit for all computations was set to three
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hours, with ”no feas. Sol.” meaning that no feasible solution could be found

during this time.

K L A.(6.1.1) A.(6.1.4) C.(4.9) C.(4.19) A.(6.1.5) A.[GNS08]

10

150 1.09 0.24 1.04 1.52 2.58 2.24

300 4.21 0.62 5.28 60.21 11.73 5.97

1000 42.54 4.43 175.91 1004.10 49.47 5.83

20

80 19.82 3.72 8.1 19.70 51.50 no feas. Sol.

100 35.09 4.79 10.71 135.60 153.24 no feas. Sol.

150 4.11 1.42 19.65 196.15 112 no feas. Sol.

300 6.89 1.55 9.17 167.36 25.42 0.52

Table 7.2: CPU times in seconds for investment planning instances

From these computational results several conclusions can be drawn:

• Algorithms 6.1.1 and 6.1.4 demonstrate superior performance over direct

application of the MILP solver CPLEX to the full model (4.9). Algo-

rithm 6.1.5 is superior over solving (4.19) for the larger instances.

• Solving the formulation (4.19) directly takes significantly more time than

the solution of (4.9), which is surprising since the former model has less

constraints, see Observation 4.2.3. One explanation could be the more

complex structure of the constraints (4.23) in (4.19) which may lead to

some combinatorial problems (θ`k are binary).

• Algorithm 6.1.4 demonstrates a significant improvement over Algorithm 6.1.1.

The cuts generated in both methods have the same shape, but the former

method solves less subproblems and introduces less of these cuts.

• By construction, both Algorithms 6.1.4 and 6.1.5 introduce at most L

cuts per iteration. Though the number of generated cuts and solved mas-

ter problems was less for Algorithms 6.1.5, its performance was weaker.

Again, this could be explained with the more complex structure of the
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constructed cuts, which seems to cause combinatorial problems for this

group of test instances.1

• The decomposition method from [GNS08], which is valid for a much more

comprehensive class of problems (mixed-integer linear recourse compared

to linear recourse), leaves mixed impressions. While the fastest of all for

the last test instance, it performs worst of all for the other instances with

K = 20. The reason is in the different successes of the primal heuristics

which are part of the algorithm.2 Anything from the strong performance

to a complete failure seems possible.

To create more demanding test instances we consider a somewhat academic

group of test problems derived from Sudoku puzzling, see also [GGS11]. Su-

doku is a logic game, which is played over a 9 × 9 grid, canonically divided

into nine 3 × 3 sub grids. It begins with some of the grid cells already filled

with numbers. The task of a Sudoku player is to fill the remaining empty cells

with numbers between 1 and 9 (one number only in each cell), such that each

number occurs exactly once in each row, each column and each of the nine sub

blocks. The Sudoku rules can easily be represented with 729 Boolean variables

and a system of linear inequalities (cf. [KK06]).

A two-stage random optimization problem now comes up as follows: the

entries on the main diagonal are chosen as first stage decisions. A scenario is

formed by a single Sudoku puzzle with a small number of prescribed entries

and the property that a solution with joint elements on the main diagonal

exists. The random variable f(x, h(ω)) arises as the minimum of the sum

of the elements on the secondary diagonal (north-east to south-west) over all

feasible Sudokus.

1In a cut of the Algorithm 6.1.5 each θ`k may have a coefficient different from zero,

whereas the coefficients for all but one θ`k will vanish in Algorithm 6.1.4.
2Since we manually tuned the heuristics for this method, the comparison with the other

techniques is not completely fair. The numbers should only demonstrate that - given a good

heuristic - this more general method may solve even large problems in a competitive time.
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To obtain a dominance constrained model (4.1), the objective g>x is taken

as the sum of the elements on the main diagonal. With a benchmark d(ω),

the constraint f(x, h(ω)) �(1) d(ω), x ∈ X models those first-stage decisions

x leading to minimal sums f(x, h(ω)) along the secondary diagonal that are

preferable to d(ω) with respect to the stochastic order �(1). With finite dis-

crete data and benchmark distributions, the dominance constrained stochastic

program can be represented as a MILP. In our computations, we relax inte-

grality in the representation of the Sudoku rules, thus arriving at models with

linear recourse.

Table 7.3 shows dimensions of the mixed-integer linear programming equiv-

alents (4.9) for the Sudoku-inspired test instances. Table 7.4 reports our com-

putational results.

K L Boolean variables Continuous Variables Constraints

10

20 200 14581 8331

50 500 36451 20811

100 1000 72901 41611

200 2000 145801 83211

300 3000 218701 124811

500 5000 364501 208011

Table 7.3: Dimensions of mixed-integer linear programming equivalents (Su-

doku puzzling)

The results displayed in Table 7.4 help clarify the effects observed in the

Table 7.2. With the increasing size of test instances the superiority of all pro-

posed decomposition methods becomes apparent. Since the Sudoku-inspired

models are less restrictive, combinatorial issues do not play a major role any

more, so that the model formulation (4.19) gains attraction together with the

corresponding decomposition method 6.1.5. Here, similar numbers of cuts and

master problems between the Algorithms 6.1.4 and 6.1.5 imply a very similar

performance of both methods. The advantage of Algorithm 6.1.4 over 6.1.1 is
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K L A. (6.1.1) A. (6.1.4) C. (4.9) C. (4.19) A. (6.1.5)

10

20 29.29 3.08 1.48 5.40 3.20

50 70.52 7.14 6.95 34.79 7.25

100 140.55 14.22 26.99 133.83 14.38

200 279.93 28.82 312.39 339.10 28.96

300 561.44 71.70 892.91 1409.21 57.63

500 924.42 94.94 6385.31 4036.49 94.82

Table 7.4: CPU times in seconds for Sudoku instances

again considerable.

7.3 Second-Order Models

The decision problem, from where our test instances for second-order problems

were derived, is that of an electricity retailer who has to fix forward contracting

portfolios and selling prices to clients at the beginning of the year. Over the

year, the retailer has to satisfy the electricity demand of the customers and

may trade at a day-ahead electricity pool market. Customer demand and pool

prices are uncertain at the moment of decision about forward portfolios and

selling prices. The objective is to maximize the retailer’s revenue.

A two-stage random optimization problem arises when taking the decisions

on forward contracting portfolios (base and peak contracts) together with sell-

ing prices for clients (industrial, commercial, residential) into the first stage

and decisions on day-ahead trading as well as delivery to clients into the second.

Customer demand and pool prices form the stochastic data. The stochastic

benchmark is given by a just acceptable pre-specified profit profile. The dom-

inance constrained stochastic program is completed by the objective which

is given as the sum of the selling prices to the different categories of clients.

For further details on the modeling background of the retailer problem see

[CGS09].
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The problem dimensions of the mixed-integer linear programming equiva-

lents (4.14) are listed in Table 7.5.

K L Boolean variables Continuous Variables Constraints

200

600 20 163265 163592

800 20 217665 217992

1000 20 272065 272392

2000 20 544065 544392

Table 7.5: Dimensions of mixed-integer linear programming equivalents (En-

ergy Retailer Problems)

L K A. (6.1.7) A. (6.2.1) C. (4.14) C. (4.24)

600 200 218.12 170.60 no feas. Sol. 236.05

+30% 119.58 150.39 8645.1 205.80

800 200 383.22 223.74 no feas. Sol. 488.60

+30% 192.39 247.49 no feas. Sol. 301.24

1000 200 554.78 278.15 OOM 801.25

+30% 269.31 260.95 OOM 368.39

2000 200 1950.43 551.28 OOM 2897.95

+30% 670.37 549.22 OOM 1437.06

Table 7.6: CPU times in seconds for Energy Retailer Problems

In Table 7.6 we present computational results for the decomposition meth-

ods 6.1.7 and 6.2.1 as opposed to CPLEX applied to the MILPs (4.14) and

(4.24) directly.3

In our test instances the number of data scenarios varied between 600 and

2000, while the number of benchmark scenarios was 200 throughout. Addi-

tional instances were created by introducing a lighter benchmark with the same

number of realizations.
3”OOM” means that the computations ran out of RAM without having found a feasible

solution before.
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Table 7.6 shows that the model formulation (4.24) outperforms (4.14) when

applying CPLEX directly, an observation made in [Lue08] already. Both de-

composition methods, however, are again increasingly attractive with increas-

ing problem sizes compared to all direct applications of CPLEX. The Algo-

rithm 6.2.1 based on the polyhedral representation seems to show a better

performance for large instances than the Algorithm 6.1.7 based on the lifting-

representation. A similar observation was also made in [KHvdV06], [RR08],

[KBM06]. A relation to the more general discussion of aggregate vs. disaggre-

gate methods was drawn in [Fáb12].
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A.1 Selected Facts of Probability Theory

A probability space is a triplet (Ω,F , IP ), where Ω is the scenario set, F is a

σ-algebra and IP is a probability measure. A (real-valued) random variable X

then denotes a real-valued measurable function on such a probability space,

i.e., X : Ω 7→ R. Random variables are characterized by their cumulative

distribution functions (cdf), which are defined as FX(t) := IP (X ≤ t). Such

functions are only continuous from the right, in general. The closed interval

{t ∈ R : P (X ≤ t) ≥ p and P (X ≥ t) ≥ 1− p}

is called the set of all p-quantiles of X, its left end

F−1
X (p) := inf{t ∈ R : P (X ≤ t) ≥ p}

is called a p-quantile. The function F−1
X : [0, 1] → R̄ then denotes the (left-

continuous) inverse distribution or first quantile function of a distribution func-

tion FX. It is defined as

F−1
X (p) := inf{t : FX(t) ≥ p} for 0 < p ≤ 1.

Since FX is continuous from the right, the infimum is attained for 0 < p < 1.

The relations between a cdf and its quantile function can be characterized with

the following properties:
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• for all 0 < p < 1, FX(F−1
X (p)) ≥ p and equality holds if p is in the range

of FX or, equivalently, if F−1
X (p) is a continuity point of FX;

• for all t ∈ R, F−1
X (FX(t)) ≤ t and equality holds if t is in the range of

F−1
X or, equivalently, if FX(t) is a continuity point of F−1

X ;

• F−1
X (p) ≤ t iif p ≤ FX(t).

A.2 Selected Facts of Convex Analysis

Dual stochastic dominance relations were explored in [OR02] with help of some

fundamental results of convex analysis, cf. [Roc97] and [BL06].

Definition A.2.1. For f : Rn ⊃ S → R∪{±∞} we define the following sets:

epi f := {(x, α) ∈ S × R|f(x) ≤ α} as the epigraph of f ;

gph f := {(x, α) ∈ S × R|f(x) = α} as the graph of f .

Definition A.2.2.

a) A ⊂ Rn is said to be convex, if

∀x, y ∈ A, λ ∈ (0, 1) : (1− λ)x+ λy ∈ A (A.1)

b) f is said to be convex, if epi f is a convex set;

c) a convex function f is said to be proper, if epi f 6= ∅, f(x) < ∞ for at

least one x and f(x) > −∞ for all x;

d) a proper convex function f is said to be closed, if it is lower semi-

continuous.

Definition A.2.3. The Fenchel conjugate of a function f : Rn → R̄ is the

function

f ∗(x∗) := sup
ξ
{ξx∗ − f(ξ)}. (A.2)

The conjugate function f ∗ : Rn → R̄ is always convex and lower semicontinu-

ous.
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A.3 Axiomatic Definitions for Risk and Ac-

ceptability Functionals and their Consis-

tency with Stochastic Orders

Acceptability functionals describe preferences of decision makers maximizing

gains in the sense that higher values of acceptability yield higher preference.

That is why the axioms for these functionals are counterparts to the axioms

(R1) - (R3), cf. Section 2.2.

Definition A.3.1. An acceptability functional A should comply with the fol-

lowing axioms

(A1) Monotonicity: X ≤ Y a.s. implies that A(X) ≤ A(Y);

(A2) Concavity: A(tX + (1− t)Y) ≥ tA(X) + (1− t)A(Y)∀t ∈ [0, 1];

(A3) Translation Equivariance: A(X + a) = A(X) + a ∀a ∈ R.

The axiom of positive homogenity (R4) can be defined here in the same way,

since it is responsible for stability of the functionals under scaling of the units.

Since some important acceptability functionals lack positive homogenity, this

property is not required in [RP07].

The axioms of concavity and convexity are connected with the additivity

properties responsible for the diversification of risk. A positive homogenous

functional is known to be convex (concave) iff it is subadditive (superadditive),

cf. [RP07].

For the minimization case, we obtain the axioms of coherence in analogy to

those developed in [ADEH99] for variables representing gains as follows.

Definition A.3.2. A coherent risk functional ρ defined on rvs representing

losses should comply with

(C1) Monotonicity: X ≤ Y a.s. implies that ρ(X) ≤ ρ(Y);
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(C2) Convexity: ρ(tX + (1− t)Y) ≤ tρ(X) + (1− t)ρ(Y)∀t ∈ [0, 1];

(C3) Translation Equivariance: ρ(X + a) = ρ(X) + a ∀a ∈ R;

(C4) Positive Homogenity: ρ(tX) = tρ(X)∀t ≥ 0.

Further, we define mean-risk dominance for the minimization case in the

same way similarly with the SD rules, i.e., the dominated variable in this

relation should be the smaller and hence the better one.

Definition A.3.3. For random variables X and Y, we define

X �IE,ρ Y iff IE(X) ≤ IE(Y) and ρ(X) ≤ ρ(Y) (A.3)

and

X �IE+λρ Y iff IE(X) + λρ(X) ≤ IE(Y) + λρ(Y), (A.4)

where λ > 0 is an assumed degree of risk aversion.

Definition A.3.4. The mean-risk model (IE, ρ) is said to be consistent with

�(i) if

X �(i) Y =⇒ X �IE,ρ Y (A.5)

and λ−consistent with �(i) if

X �(i) Y =⇒ X �IE+λρ Y, (A.6)

for some λ > 0 and i = 1 and ICX.

As in (2.7) we have

X �(i) Y =⇒ IE(X) ≤ IE(Y), for i = 1 and ICX, (A.7)

and the following implications hold true

X �IE,ρ Y ⇒ X �IE+λρ Y ⇒ X �IE+αρ Y ∀α ∈ [0, λ]. (A.8)

Since FSD implies ICX, it is again immediate that consistency with ICX im-

plies consistency with FSD. The property

X �(1) Y =⇒ ρ(X) ≤ ρ(Y), for i = 1 and ICX (A.9)
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is referred to as isotonicity of a risk measure with the corresponding domi-

nance relation. In view of Proposition 2.2.1 (iii), the monotonicity axiom (C1)

is equivalent to isotonicity with FSD, which in turn directly implies FSD-

consistency of all coherent mean-risk models.
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