Entwicklung eines *in vitro* Nachweisverfahrens zur Analyse des Entwicklungspotentials humaner hämatopoetischer Stamm- und Vorläuferzellen

Inaugural-Dissertation zur Erlangung des Doktorgrades Dr. rer. nat.

> der Fakultät für Biologie an der

Universität Duisburg-Essen

vorgelegt von Stefan Radtke aus Hamm Februar 2014

Was kann nicht alles geschehen in einer Welt, von der es heißt, dass alles in ihr möglich ist. (Henning Mankell) Die der vorliegenden Arbeit zugrunde liegenden Experimente wurden im Institut für Transfusionsmedizin des Universitätsklinikums Essen durchgeführt.

- 1. Gutachter: PD Dr. Bernd Giebel
- 2. Gutachter: Prof. Dr. Bertram Opalka
- 3. Gutachter:

Vorsitzender des Prüfungsausschusses: Prof. ´ in Dr. Andrea Vortkamp

Tag der mündlichen Prüfung: 16.05.2014

I. Inhaltsverzeichnis

I. Inhaltsverzeichnis		erzeichnis	I		
II.	Abbildu	Abbildungsverzeichnis			
III. Tabellenverzeichnis					
IV	. Abkürzı	ıngsverzeichnis	X		
1	T ' 1 '		1		
1.	Emieitu	1g	I		
	1.1. Här	natopoetische Stammzellen und Blutbildung	1		
	1.1.1.	Immunphänotypisierung hämatopoetischer Stamm- und Vorläuferzellen	1		
	1.1.2.	Funktionelle in vitro Differenzierungsansätze	2		
	1.1.3.	Das klassische Modell der humanen Hämatopoese	4		
	1.1.4.	Nachweis multipotenter humaner HSVZ	6		
	1.2. Wie	edersprüche im klassischen Modell	6		
	1.3. Zie	lsetzung	9		
2.	Materia	und Methoden	10		
	2.1. Ma	terial	10		
	2.1.1.	Geräte. Verbrauchsmaterialien. Chemikalien und Reagenzien	10		
	2.1.2.	Zellkulturmedien und Medienzusätze	11		
	2.1.3.	Kits und Assays			
	2.1.4.	Antikörper und Seren			
	2.1.5.	Oligonukleotide			
	216	Zellkulturmedien	14		
	2161	Medien für Zellinien Primärzellen und Kokulturen	14		
	2160	Medien für die <i>in vitra</i> Differenzierung von HSVZ	15		
	2163	Medien für die <i>in vitro</i> Differenzierung von mesenchymalen Stromazellen	16		
	217	Rakterien	17		
	2.1.7.	Zelllinien	17		
	2.1.0.	Primärzellen	18		
	2.1.2. 2.2. Me	thoden	19		
	2.2. 1	Zellbiologische Methoden	19		
	2.2.1.	Einfrieren und Auftauen von Zellen	10		
	2.2.1.1	 Kultivierung von Zellen 	19		
	2.2.1.2	Hämatopoetische Stamm- und Vorläuferzellen	10		
	2.2.1.	4 Gewinnung von MSZ	21		
	2.2.1.4	5. Gewinnung von arteriellen und venösen MSZ aus der Nabelschnur			

2.2.1.6	. Gewinnung von MSZ und endothelialen Vorläuferzellen aus der Plazenta	. 22
2.2.1.7	. Gewinnung von humanen endothelialen koloniebildenden Vorläuferzellen	. 22
2.2.1.8	. Gewinnung von humanen Nabelschnurvenen-Endothelzellen	. 23
2.2.1.9	. Kultivierung von Stromazellen	. 23
2.2.1.	Funktionelle Analysen hämatopoetischer Zellen	. 24
2.2.1.1	. "Colony-forming cell" (CFC) Ansatz	. 24
2.2.1.2	. "Long-term culture-initiating cell" (LTC-IC) Ansatz	. 24
2.2.1.3	. "Natural killer cell-initiating cell" (NK-IC) Ansatz	. 25
2.2.1.4	. Megakaryozytärer-Flüssigkultur Differenzierungsansatz	. 26
2.2.1.5	. Erythrozytärer Flüssigkultur Differenzierungsansatz	. 27
2.2.1.6	. T-Zell Differenzierungsansatz	. 28
2.2.1.7	. B-Zell Differenzierungsansatz	. 28
2.2.1.8	. Qualitative Analyse von Zellen im Zytospin	. 29
2.2.2.	Funktionelle Analysen endothelialer Vorläuferzellen	. 29
2.2.3.	Funktionelle Analysen mesenchymaler Stamm-/Stromazellen	. 30
2.2.4.	Immunzytochemische Analysen	. 31
2.2.5.	Kokultivierung von HSVZ mit Stromazellen	. 32
2.2.6.	Durchflusszytometrie	. 33
2.2.6.1	. Prinzip der Durchflusszytometrie	. 33
2.2.6.2	. Durchflusszytometrische Zellsortierung	. 34
2.2.7.	Molekularbiologische Methoden	. 35
2.2.7.1	. Bakterienkultur	. 35
2.2.7.2	. Herstellung chemokompetenter E. coli	. 35
2.2.7.3	. Transformation chemokompetenter E. coli	. 36
2.2.7.4	. Extraktion von Plasmid-DNA	. 36
2.2.7.5	. Extraktion von Gesamt-RNA	. 36
2.2.7.6	. Reverse Transkription-Reaktion zur Synthese von cDNA	. 37
2.2.7.7	Polymerase-Kettenreaktion (PCR)	. 37
2.2.8.	Lentivirale Transduktion von humanen Stromazellen	. 37
2.2.8.1	. Das lentivirale Plasmid-System	. 37
2.2.8.2	. Verwendete Expressionsplasmide	. 38
2.2.1.	Herstellung virushaltiger Überstände	. 39
2.2.1.1	. Transduktion humaner Stromazellen	. 39
2.2.2.	Statistische Analysen	. 40

3.	Erg	ebniss	se	41
	3.1.	Verl	ust des erythrozytären Differenzierungspotentials in Suspensionskultur	42
	3.2.	Etab	lierung von in vitro Differenzierungsansätzen (Teil 1)	46
	3.2.	1.	Der "colony-forming cell" (CFC) Ansatz	47
	3.2.2	2.	Qualifizierung des LTC-IC Ansatzes	48
	3.2.	3.	Qualifizierung des NK-IC Ansatzes	51
	3.2.4	4.	Funktionelle Analyse frisch isolierter HSVZ im LTC-IC, NK-IC und CFC Ansatz	53
	3.3.	Expa	ansion von HSVZ in Kokultur mit Zellen muriner Stromazelllinien	55
	3.4.	Expa	ansion von HSVZ in Kokultur mit primären humanen MSZ	63
	3.4.	1.	Charakterisierung der MSZ	63
	3.4.	2.	Kokultur von HSVZ mit mesenchymalen Stromazellen	67
	3.5.	Expa	ansion von HSVZ in Kokultur mit primären humanen endothelialen Stromazellen	74
	3.5.	1.	Charakterisierung der endothelialen Stromazellen	74
	3.5.2	2.	Medientests für die Kokultur von HSVZ mit endothelialen Stromazellen	78
	3.5.	3.	Kokultur von HSVZ mit endothelialen Stromazellen	81
	3.6.	Einf	luss von EGF und FGF auf HSVZ	89
	3.7.	Expa	ansion von HSVZ in Kokultur mit plazentalen und AGM Stromazellen	92
	3.7.	1.	Charakterisierung von plazentalen und AGM Stromazellen	92
	3.7.2	2.	Kokultur von HSVZ mit plazentalen und AGM Stromazellen	97
	3.8.	Kok	ultur von HSVZ mit endothelialen und mesenchymalen Stromazellen 1	.04
	3.9.	Iden	tifizierung prädiktiver Marker auf Stromazellen für die Expansion von HSVZ 1	.11
	3.10.	Zusa	nmmenfassung	15
	3.11.	Etab	lierung von in vitro Differenzierungsansätzen (Teil 2) 1	16
	3.11	.1.	Qualifizierung des Erythrozyten-Flüssigkultur Ansatzes 1	16
	3.11	.2.	Qualifizierung des Megakaryozyten-Flüssigkultur Ansatzes 1	.18
	3.11	.3.	Qualifizierung des T-Zell Ansatzes	20
	3.11 Meg	.4. gakary	Funktionelle Analyse frisch isolierter HSVZ im T-Zell, Erythrozyten und ozyten Ansatz	.23
	3.11	.5.	Verlust erythrozytärer und megakaryozytärer Vorläufer in Suspensionskultur 1	.25
	3.12.	Kons	servierung primärer humaner Stromazellen 1	.27
	3.12	2.1.	Strategie der konditionellen Immortalisierung 1	27
	3.12	2.2.	Konditionelle Immortalisierung von primären humanen Stromazellen 1	30
	3.13.	Sele	ktion konditionell immortalisierter Einzelzellklon-Zelllinien 1	.34
	3.13	.1.	Kokultur von HSVZ mit selektionierten Einzelzellklon-Zelllinien 1	40

4.	1. Diskussion			
	4.1.	Verlust des erythrozytären Differenzierungspotentials		
	4.2.	In vitro Expansion multipotenter HSVZ	154	
	4.3.	Alternative Ansätze zur in vitro Expansion multipotenter HSVZ		
	4.1.	Asymmetrische Zellteilung und Verlust multipotenter HSVZ		
	4.2.	In vitro Kulturbedingungen für den erweiterten ML-IC Ansatz	166	
	4.3.	Ausblick	167	
5. Zusammenfassung		168		
6.	6. Anhang		172	
7.	Literaturverzeichnis		199	

II. Abbildungsverzeichnis

Abb. 1: Modellvorstellungen der humanen Hämatopoese			
Abb. 2: Schematische Darstellung des erweitererten ML-IC Ansatzes			
Abb. 3: Durchflusszytometrische Sortierung frisch isolierter HSVZ Subpopulationen			
Abb. 4: Durchflusszytometrisch sortierte und analysierte hämatopoetische Subpopulationen			
Abb. 5: Sequenzielle Analyse hämatopoetischer Subfraktionen im CFC Ansatz			
Abb. 6: Funktionelle Analyse hämatopoetischer Subfraktionen im LTC-IC, NK-IC Ansatz sowie in			
der NOD/SCID Maus			
Abb. 7: Mikroskopische Aufnahme von Kolonien im CFC Ansatz			
Abb. 8: Qualifizierung des LTC-IC Ansatzes			
Abb. 9: Qualifizierung des NK-IC Ansatzes			
Abb. 10: Differenzierungspotential frisch isolierter HSVZ-Subpopulationen			
Abb. 11: Schematischer/zeitlicher Ablauf der Kokulturversuche			
Abb. 12: Strategie für die durchlusszytometrische Quantifizierung und Sortierung von HSVZ in			
Kokultur			
Abb. 13: Expansion von HSVZ in Kokultur mit murinen Stromazelllinien-Zellen			
Abb. 14: Durchflusszytometrische Charakterisierung mesenchymaler Stromazellen			
Abb. 15: Morphologische und funktionelle Analysen mesenchymaler Stromazellen			
Abb. 16: Durchlusszytometrische Analyse der HSVZ in Kokultur mit primären MSZ			
Abb. 17: Expansion von HSVZ, LTC-ICs, NK-ICs und CFCs in Kokultur mit primären MSZ			
Abb. 18: Durchflusszytometrische Charakterisierung endothelialer Stromazellen			
Abb. 19: Morphologische und funktionelle Analyse endothelialer Stromazellen			
Abb. 20 Ergebnisse der Medienetablierung			
Abb. 21: Durchlusszytometrische Analyse der HSVZ in Kokultur mit primären humanen endothelialen			
Stromazellen			
Abb. 22: Expansion von HSVZ, LTC-ICs, NK-ICs und CFCs in Kokultur mit primären humanen			
endothelialen Stromazellen			
Abb. 23: Einfluss von EGF und FGF auf die Expansion von HSVZ			
Abb. 24: Durchflusszytometrische Charakterisierung mesenchymaler Stromazellen			
Abb. 25: Morphologische und funktionelle Analysen mesenchymaler Stromazellen			
Abb. 26: Durchflusszytometrische Charakterisierung endothelialer Stromazellen			
Abb. 27: Morphologische und funktionelle Analyse endothelialer Stromazellen			
Abb. 28: Durchlusszytometrische Analyse der HSVZ in Kokultur mit plazentalen und AGM			
Stromazellen			
Abb. 29: Expansion von HSVZ, LTC-ICs, NK-ICs und CFCs in Kokultur mit plazentalen und AGM			
Stromazellen			

Abb. 30: Durchflusszytometrische Analyse der Stromazellen und hämatopoetischen
Nachkommenschaft in der Tripel-Kultur
Abb. 31: Expansion von HSVSs in Kokultur und Tripel-Kultur
Abb. 32: Korrelation der Expression von Oberflächenantigene auf primären Stromazellen mit der
Expansion phänotypischer und funktioneller HSVZ114
Abb. 33: Qualifizierung des Erythrozyten Ansatzes
Abb. 34: Qualifizierung des Megakaryozyten-Flüssigkultur Ansatzes 120
Abb. 35: Qualifizierung des T-Zell Ansatzes
Abb. 36: Differenzierungspotential frisch isolierter HSVZ-Subpopulationen
Abb. 37: Sequenzielle Analyse hämatopoetischer Subfraktionen im Erythrozyten und Megakaryozyten
Ansatz
Abb. 38: Strategie der konditionellen Immortalisierung
Abb. 39: Alternative Modellvorstellung der humanen Hämatopoese mit den Oberflächenmarker CD38,
CD133 und CD45RA
Abb. 40: Veränderungen der Morpholgie und Proliferation immortalisierter Zellen
Abb. 41: Antibiotikaselektion und Re-mortalisierung kondtionell immortalisierter Zellen
Abb. 42: Durchflusszytometrische Quantifizierung der HSZ/MPP angereicherte Fraktion
Abb. 43: Expansion von HSZ/MPP in Kokultur mit Zellen konditionell immortalisierter
Einzelzellklon-Zelllinien
Abb. 44: Durchflusszytometrische Charakterisierung der HSVZ in Kokultur mit Zellen
immortalisierter Stromazelllinien
Abb. 45: Expansion von HSVZ mit LTC-IC, NK-IC und CFC Potential in Kokultur mit Zellen
konditionell immortalisierter Einzelzellklon-Zelllinien
Abb. 46: Quantifizierung von Zellen mit Erythrozyten, Megakaryozyten und T-Zell
Differenzierungspotential nach Kokultur mit Zellen konditionell immortalisierter Einzelzellklon-
Zelllinien
Abb. 47: Berechnete Expansion von hämatopoetischen Subpopulationen in Kokultur mit Zellen
konditionell immortalisierter Einzelzellklon-Zelllinien

III. Tabellenverzeichnis

Tab. 1: Verwendete Geräte
Tab. 2: Verwendete Verbrauchsmaterialien 10
Tab. 3: Verwendete Chemikalien und Reagenzien 11
Tab. 4: Verwendete Zellkulturmedien
Tab. 5: Verwendete Seren f ür die Zellkultur
Tab. 6: Verwendete Zytokine
Tab. 7: Verwendete Medienzusätze 12
Tab. 8: Verwendete Kits und Assays 13
Tab. 9 Verwendete konjugierte Antikörper zur Analyse humaner Zellen
Tab. 10: Verwendete unkonjugierte Antikörper
Tab. 11: Verwendete sekundäre Antikörper
Tab. 12: Verwendete Seren für immunzytologische Färbungen 14
Tab. 13: Primer f ür die Detektion des VDJ-Rearrangements
Tab. 14: Zusammensetzung der Zellkulturmedien für Zelllinien
Tab. 15: Zusammensetzung der Zellkulturmedien f ür Prim
Tab. 16: Zellkulturmedien für die Kokultur hämatopoetischer und primärer stromaler Zellen 15
Tab. 17: Zellkulturmedien f ür die in vitro Differenzierung von HSVZ
Tab. 18 : Verwendete Geräteeinstellungen des Durchflusszytometers Aria I
Tab. 19: Quantifizierung des Differenzierungspotentials frisch isolierter HSVZ
Tab. 20: Qualität der CFCs frisch isolierter HSVZ
Tab. 21: Frequenz der CD133 ⁺ CD34 ⁺ und CD133 ^{low} CD34 ⁺ Zellen in Kokultur mit murinen
Stromazellen
Tab. 22: Expansion von CD45 ⁺ , CD34 ⁺ , CD133 ⁺ CD34 ⁺ und CD133 ^{low} CD34 ⁺ Zellen in Kokultur mit
Zellen muriner Stromazelllinien
Tab. 23: LTC-IC und NK-IC Frequenz in Kokultur mit Zellen muriner Stromazelllinien
Tab. 24: Expansion von LTC-ICs, NK-ICs und CFCs in Kokultur mit murinen Stromazelllinien 60
Tab. 25: Frequenz CD133 ⁺ CD34 ⁺ und CD133 ^{low} CD34 ⁺ Zellen in Kokultur mit MSZ
Tab. 26: Expansion der CD45 ⁺ , CD133 ⁺ CD34 ⁺ und CD133 ^{low} CD34 ⁺ Fraktion in Kokultur mit MSZ69
Tab. 27: Expansion von LTC-ICs und NK-ICs in Kokultur mit MSZ70
Tab. 28: Frequenz und Expansion von CFCs in der CD133 ⁺ CD34 ⁺ und CD133 ^{low} CD34 ⁺ Fraktion in
Kokultur mit MSZ71
Tab. 29: Frequenz CD133 ⁺ CD34 ⁺ , CD133 ^{low} CD34 ⁺ und CD133 ⁺ CD34 ⁻ Zellen in Kokultur mit EZ 82
Tab. 30: Expansion von CD45 ⁺ , CD133 ⁺ CD34 ⁺ , CD133 ^{low} CD34 ⁺ und CD133 ⁺ CD34 ⁻ Zellen in
Kokultur mit EZ
Tab. 31: Expansion von LTC-ICs und NK-ICs in Kokultur mit EZ

Tab. 32: Frequenz und Expansion von CFCs in der CD133 ⁺ CD34 ⁺ und CD133 ^{low} CD34 ⁺ Fraktion in				
Kokultur mit EZ				
Tab. 33: Frequenz CD133 ⁺ CD34 ⁺ und CD133 ^{low} CD34 ⁺ Zellen in Kokultur mit plazentalen und AGM				
Stromazellen				
Tab. 34: Expansion der CD45 ⁺ , CD133 ⁺ CD34 ⁺ und CD133 ^{low} CD34 ⁺ Fraktion in Kokultur mit				
plazentalen und AGM Stromazellen				
Tab. 35: Expansion von LTC-ICs und NK-ICs in Kokultur mit plazentalen und AGM Stromazellen100				
Tab. 36: Frequenz und Expansion von CFCs in der CD133 ⁺ CD34 ⁺ und CD133 ^{low} CD34 ⁺ Fraktion in				
Kokultur mit plazentalen und AGM Stromazellen101				
Tab. 37: Berechnete Verhältnisse mesenchymaler und endothelialer Zellen nach Triple-Kultur 105				
Tab. 38: Frequenz CD133 ⁺ CD34 ⁺ und CD133 ^{low} CD34 ⁺ HSVZ in Kokultur und Tripel-Kultur 105				
Tab. 39: Expansion der CD45 ⁺ , CD133 ⁺ CD34 ⁺ und CD133 ^{low} CD34 ⁺ Fraktion in Kokultur und Tripel-				
Kultur				
Tab. 40: Expansion der LTC-ICs und NK-ICs in Kokultur und Tripel-Kultur				
Tab. 41: Frequenz und Expansion der CFCs in der CD133 ⁺ CD34 ⁺ und CD133 ^{low} CD34 ⁺ Fraktion in				
Kokultur und Tripel-Kultur				
Tab. 42: Quantifizierung des Differenzierungspotentials frisch isolierter HSVZ				
Tab. 43: Anzahl der konditionell immortalisierten Einzelzellklon-Zelllinien				
Tab. 44: Expansion der HSZ/MPP Fraktion in Kokultur mit immortalisierten Endothelzellen 137				
Tab. 45: Expansion der HSZ/MPP Fraktion in Kokultur mit immortalisierten MSZ				
Tab. 46: Expansion der LTC-ICs und NK-ICs in Kokultur mit Zellen konditionell immortalisierter				
Einzelzellklon-Zelllinien				
Tab. 47: Frequenz und Expansion der CFCs in der CD133 ⁺ CD34 ⁺ und CD133 ^{low} CD34 ⁺ Fraktion in				
Kokultur mit Zellen konditionell immortalisierter Einzelzellklon-Zelllinien				
Tab. 48: Quantifizierung von Zellen mit erythrozytärem Potential in der CD133 ⁺ CD34 ⁺ und				
CD133 ^{low} CD34 ⁺ Fraktion in Kokultur mit Zellen konditionell immortalisierter Stromazelllinien 146				
Tab. 49: Quantifizierung von Zellen mit megakaryozytärem Potential in der CD133 ⁺ CD34 ⁺ und				
CD133 ^{low} CD34 ⁺ Fraktion in Kokultur mit Zellen konditionell immortalisierter Einzelzellklon-				
Zelllinien				
Tab. 50: Quantifizierung von Zellen mit T-Zell Potential in der CD133 ⁺ CD34 ⁺ Fraktion in Kokultur				
mit Zellen konditionell immortalisierter Einzelzellklon-Zelllinien				
Tab. 51: Quantifizierung von Zellen mit T-Zell Potential in der CD133 ^{low} CD34 ⁺ Fraktion in Kokultur				
mit Zellen konditionell immortalisierter Einzelzellklon-Zelllinien				
Tab. 52: Erhalt der getesteten Differenzierungspotentiale 151				
Tab. 53: Expansion von HSVZ in Ko-Kultur mit Zellen muriner Stromazelllinien				
Tab. 54: Expansion von HSVZ in Ko-Kultur mit primären humanen mesenchymalen Zellen 157				
Tab. 55: Expansion von HSVZ mit primären humanen endothelialen Zellen				

Tab. 56: Qualität der CFCs in der CD133 ⁺ CD34 ⁺ Fraktion in Kokultur mit Zellen muriner			
Stromazelllinien			
Tab. 57: Qualität der CFCs in der CD133 ^{low} CD34 ⁺ Fraktion in Kokultur mit Zellen muriner			
Stromazelllinien			
Tab. 58: Qualität der CFCs in der CD133 ⁺ CD34 ⁺ Fraktion in Kokultur mit MSZ			
Tab. 59: Qualität der CFCs in der CD133 ^{low} CD34 ⁺ Fraktion in Kokultur mit MSZ 176			
Tab. 60: Qualität der CFCs in der CD133 ⁺ CD34 ⁺ Fraktion in Kokultur mit EZ 177			
Tab. 61: Qualität der CFCs in der CD133 ^{low} CD34 ⁺ Fraktion in Kokultur mit EZ			
Tab. 62: Qualität der CFCs in der CD133 ⁺ CD34 ⁺ Fraktion in Kokultur mit plazentalen und AGM			
Stromazellen			
Tab. 63: Qualität der CFCs in der CD133 ^{low} CD34 ⁺ Fraktion in Kokultur mit plazentalen und AGM			
Stromazellen			
Tab. 64: Qualität der CFCs in der CD133 ⁺ CD34 ⁺ Fraktion in Kokultur und Tripel-Kultur			
Tab. 65: Qualität der CFCs in der CD133 ^{low} CD34 ⁺ Fraktion in Kokultur und Tripel-Kultur 182			
Tab. 66: LTC-IC Frequenzen in der CD133 ⁺ CD34 ⁺ Fraktion			
Tab. 67: NK-IC Frequenzen in der CD133 ⁺ CD34 ⁺ Fraktion 184			
Tab. 68: Frequenz der CD133 ⁺ CD34 ⁺ Fraktion in Kokultur mit Einzelzellklon-Zelllinien (I) 186			
Tab. 69: Frequenz der CD133 ⁺ CD34 ⁺ Fraktion in Kokultur mit Einzelzellklon-Zelllinien (II)			
Tab. 70: Frequenz der CD133 ^{low} CD34 ⁺ Fraktion in Kokultur mit Einzelzellklon-Zelllinien (I) 188			
Tab. 71: Frequenz der CD133 ^{low} CD34 ⁺ Fraktion in Kokultur mit Einzelzellklon-Zelllinien (II) 189			
Tab. 72: Expansion der CD45 ⁺ Fraktion in Kokultur mit Einzelzellklon-Zelllinien (I) 190			
Tab. 73: Expansion der CD45 ⁺ Fraktion in Kokultur mit Einzelzellklon-Zelllinien (II) 191			
Tab. 74: Expansion der CD133 ⁺ CD34 ⁺ Fraktion in Kokultur mit Einzelzellklon-Zelllinien (I) 192			
Tab. 75: Expansion der CD133 ⁺ CD34 ⁺ Fraktion in Kokultur mit Einzelzellklon-Zelllinien (II) 193			
Tab. 76: Expansion der CD133 ^{low} CD34 ⁺ Fraktion in Kokultur mit Einzelzellklon-Zelllinien (I) 194			
Tab. 77: Expansion der CD133 ^{low} CD34 ⁺ Fraktion in Kokultur mit Einzelzellklon-Zelllinien (II) 195			
Tab. 78: Frequenz der CD133 ⁺ CD34 ⁺ und CD133 ^{low} CD34 ⁺ Fraktion in Kokultur mit Einzelzellklon-			
Zelllinien			
Tab. 79: Expansion der CD45 ⁺ , CD133 ⁺ CD34 ⁺ , CD133 ^{low} CD34 ⁺ und HSZ/MPP Fraktion in Kokultur			
mit Einzelzellklon-Zelllinien			
Tab. 80: Qualität der CFCs in der CD133 ⁺ CD34 ⁺ Fraktion in Kokultur mit Einzelzellklon-Zelllinien			
Tab. 81: Qualität der CFCs in der CD133 ^{low} CD34 ⁺ Fraktion in Kokultur mit Einzelzellklon-Zelllinien			

IV. Abkürzungsverzeichnis

APC	Allophycocyanin
BFU-E	Burst Forming Units-Erythroid
	(Zelle, welche "explosionsartig" erythroide Kolonien bildet)
CFC	colony forming cell
CFU	colony forming unit
CFU-E	colony forming unit erythrocyte
CFU-G	colony forming unit-Granulocyte
CFU-GEMM	$colony\ forming\ unit-granulocyte-erythrocyte-macrophage-megakaryocyte$
CFU-GM	colony forming unit-granulocyte-macrophage
CFU-M	colony forming unit-macrophage
CLP	common lymphoid progenitor
CML	common myeloid progenitor
CMV	humanes Cytomegalievirus
DiL	1,1 ⁻ -Dioctadecyl-3,3,3 ⁻ ,3 ⁻ -Tetramethylindocarbocyanine
DMEM	Dulbeco's modifiziertes essentielles Medium
DMSO	Dimethylsulfoxid
DNA	desoxyribonucleic acid
ECD	Energy coupled dye
ECFC	endothelial colony forming cell
EDTA	Ethylendiamintetraacetat
EGF	epidermal growth factor
EMP	Erythro-myeloischer Progenitor
EoBP	Eosinophil-Basophiler Progenitor
EPO	Erythropoietin
FBS	Fötales bovines Serum
FGF	fibroblast growth factor
FITC	Fluorescein-Isothiocyanat
FLT3L	FLT3-Ligand
FSC	forward scatter
GMP	Granulozyten-Makrophagen Progenitor
HPZ	Hämatopoetische Progenitorzelle
HS	Hitzeschock
HSZ	Hämatopoetische Stammzelle
HSVZ	Hämatopoetische Stamm- und Vorläuferzelle
HUVEC	human umbilical vein endothelial cell
HVZ	Hämatopoetische Vorläuferzelle
IFN	Interferon

IMDM	Iscove´s modified Dulbecco´s medium
Ig	Immunglobulin
kb	Kilobasen
lin	lineage
LTC-IC	Long Term Culture-Initiating Cell
Μ	Molar
MegE	Megakaryozyte-Erythrozyten
MEM	Minimum Essential Medium
MEP	Megakaryozyten-Erythrozyten Progenitor
ML-IC	Myeloid Lymphoid-Initiating Cell
MNZ	Mononukleäre Zelle(n)
MPP	multipotente Progenitorzelle
NK	Natürliche Killerzelle(n)
NK-IC	Natural Killer cell-Initiating Cell
NOD-SCID	Non-Obese Diabetic-Severe Combined Immunodeficiency
Р	Passage
PCR	polymerase chain reaction
PBS	phosphate buffered saline
PDGF	platelet derived growth factor
PE	Phycoerythrin
Pen/Strep	Penicillin/Streptomycin
PL	Plättchenlysat
rpm	rotations per minute
RT	Raumtemperatur
SCF	stem cell factor
SSC	side scatter
TPO	Thrombopoietin
U	Unit
UEA-I	Ulex Europaeus Agglutinin I
ÜN	über Nacht
VEGF	vascular endothelial growth factor
vWF	von Willebrand Faktor

1. Einleitung

1.1. Hämatopoetische Stammzellen und Blutbildung

In den meisten Organen und Geweben des menschlichen Körpers findet lebenslang aufgrund von externen Einflüssen oder Alterung eine fortwährende Erneuerung von spezialisierten diese Aufrechterhaltung, Zellen statt. Für auch Homöostase genannt, werden gewebespezifische somatische Stammzellen benötigt. So werden z.B. die unterschiedlichen reifen Blutzellen von den hämatopoetischen Stammzellen (HSZ) gebildet (Jacobson et al., 1951). Der genaue Ablauf der Differenzierung multipotenter HSZ über liniendeterminierte Progenitorzellen hin zu reifen Blutzellen, sowie die Verwandtschaft der unterschiedlichen hämatopoetischen Linien und Vorläuferzellen zueinander, stellt dabei einen zentralen Punkt in der hämatopoetischen Stammzellforschung dar. Ein umfassendes Verständnis der Mechanismen zur Aufrechterhaltung oder Differenzierung der Stammzellen sowie die Kenntnis über die Verwandtschaftsverhältnisse in der humanen Hämatopoese sind sowohl im klinischen als auch im experimentellen Kontext von großer Bedeutung. Dieses Wissen stellt die Grundlage z.B. für die Entwicklung neuer Therapieansätze bei malignen Erkrankungen des Blutsystems oder zukünftig für die in vitro Herstellung von Stammzell- bzw. Blutpräparaten dar.

1.1.1. Immunphänotypisierung hämatopoetischer Stamm- und Vorläuferzellen

Ein entscheidender Vorteil der hämatopoetischen Stammzellforschung gegenüber anderen somatischen Stammzellsystemen im Menschen sowie im Mausmodell ist heute das umfangreiche Wissen über die Expression von spezifischen Zelloberflächenproteinen. Innerhalb der letzten dreißig Jahre wurde eine Vielzahl von Oberflächenmarkern beschrieben, die eine phänotypische Anreicherung hämatopoetischer Subpopulationen sowie eine fortschreitend bessere Beschreibung und Eingrenzung multipotenter HSZ ermöglichen. Dabei ist im murinen System insbesondere die Detektion und Anreicherung multipotenter HSZ (1 aus 3 Zellen) mit einer deutlich höheren Auflösung möglich. Aufgrund unterschiedlicher Oberflächenmarker sind die Erkenntnisse aus dem murinen System jedoch nicht vollständig auf das humane System übertragbar. Da der Hauptfokus dieser Arbeit auf der humanen Hämatopoese lag, wird im weiteren Verlauf nur auf die Oberflächenmarker und deren Entdeckung im humanen System eingegangen.

Einer der ersten Oberflächenmarker, der auf frühen humanen hämatopoetischen Zellen aus den Knochenmark beschrieben wurde, ist das Glykoprotein CD34 (Civin *et al.*, 1984; Katz *et al.*, 1985). Die Population der CD34⁺ Zellen ist in sich sehr heterogen und enthält neben HSZ sowohl Vorläuferzellen mit lymphatischem als auch myeloischem Differenzierungspotential.

Diese bringen reife Blutzellen hervor, welche mit Hilfe von linien-spezifischen Markern identifiziert werden können (Krause al.. 1996). et Hier sind z.B. die Oberflächenmarkerkombinationen CD3/CD4/CD8 für bestimmte T-Zellen, CD19/CD20 für B-Zellen, CD16/CD56 für NK-Zellen oder CD14/CD15/CD16 für myeloische Zellen zu erwähnen (IUIS-WHO, 1984). Der Ausschluss dieser liniendeterminierten Zellen (engl. *lineage*⁺; lin⁺) ermöglichte eine weitere Anreicherung von primitiven HSVZ in der lin⁻CD34⁺ Zellpopulation. Diese Zellpopulation konnte weiterhin mit Hilfe des Oberflächenmarkers CD38 unterteilt werden (Terstappen et al., 1991). Dabei sind in der lin⁻CD34⁺CD38^{low/-} Fraktion unreifere Vorläuferzellen und in der lin⁻CD34⁺CD38⁺ Population reifere Progenitoren zu finden (Terstappen et al., 1991; Larochelle et al., 1996).

In den letzten zwei Jahrzenten wurden kontinuierlich neue Oberflächenmarker identifiziert, die eine immer detailliertere Unterteilung der lin⁻CD34⁺CD38^{low/-} sowie der lin⁻CD34⁺CD38⁺ Fraktion in zahlreiche unterschiedliche Subpopulationen ermöglichen. Für die Diskriminierung hämatopoetischer Subpopulation in der Vorläuferzellfraktion wurden insbesondere die Oberflächenantigene CD7 (Six et al., 2007), CD10 (Galy et al., 1995), CD45RA (Lansdorp et al., 1990), CD49f (Notta et al., 2011), CD90 (Majeti et al., 2007), CD123 (Manz et al., 2002), CD133 (Yin et al., 1997) sowie CD135 (Doulatov et al., 2010) beschrieben. Die derzeit höchste Anreicherung multipotenter humaner HSZ (eine aus 10,5 Zellen) ermöglicht laut Notta et al. die Kombination der Oberflächenantigene lin-CD34⁺CD38^{low}CD45RA⁻CD90⁺CD49f⁺ (Notta *et al.*, 2011). Eine rein phänotypische Identifizierung und Aufreinigung humaner HSZ ist mit Hilfe der derzeit bekannten Marker und Kombinationen nicht möglich.

1.1.2. Funktionelle in vitro Differenzierungsansätze

Ebenso wichtig und zwingend erforderlich für die Beschreibung der zuvor aufgeführten Oberflächenmarker war die Verfügbarkeit und die kontinuierliche Weiterentwicklung von sowohl *in vitro* als auch *in vivo* Nachweismethoden. Diese ermöglichten die funktionelle Analyse des Differenzierungspotentials der mittels ihrer Oberflächenmarker diskriminierbaren hämatopoetischen Subpopulationen. Da sich am Menschen aus ethischen Gründen jegliche Experimente verbieten, wurden für die Untersuchung humaner HSVZ überwiegend xenogene *in vivo* Mausmodelle bzw. *in vitro* Analysemethoden verwendet.

Die erste funktionelle Analyse hämatopoetischer Zellen wurde 1951 von Jacobson und Lorenz in der Maus beschrieben und erfolgte somit bereits mehrere Jahrzehnte vor der Entdeckung der ersten Oberflächenmarker (Jacobson *et al.*, 1951; Lorenz *et al.*, 1951). Sie konnten zeigen, dass das unseparierte Knochenmark adulter Spendermäusen transplantierbare, blutbildende Zellen enthält, die in letal bestrahlten Empfängermäusen das gesamte Blutsystem wiederherstellen können. Die transplantierten Zellen bilden zudem auf der Milz der letal bestrahlten Empfängermaus rote erythrozytäre sowie weiße myeloische Kolonien. Diese Kolonien wurden 1960 von McCulloch und Till erstmals beschrieben und werden heute als *Colony Forming Unit-Spleen* (CFU-S) bezeichnet (McCulloch und Till, 1960). Der ursprüngliche CFU-S Ansatz zum Nachweis koloniebildender hämatopoetischer Zellen findet heutzutage kaum noch Anwendung und wurde durch *in vitro* Differenzierungsansätze, wie z.B. dem nachfolgenden CFC Ansatz, ersetzt.

In Analogie zum CFU-S Ansatz und dem Ziel der in vitro Quantifizierung von Zellen mit Koloniebildungspotential folgend, wurde bereits Ende der 60er Jahre der Colony Forming Cell (CFC) Ansatz entwickelt (Bradley und Metcalf, 1966; Worton et al., 1969). Der CFC Ansatz stellte die erste in vitro Analysemethode blutbildender Zellen dar und ermöglichte die klonale Analyse des erythrozytären, myeloischen und erythro-myeloischen Koloniebildungspotentials muriner sowie humaner HSVZ (Pike und Robinson, 1970; Moore et al., 1973). Hierzu werden zu analysierende Zellen in geringer Dichte in semisolides Methylcellulose-haltiges Medium ausgebracht, welches die Migration der sich teilenden Zellen einschränkt und folglich zur lokalen Koloniebildung führt. Die Induktion der Proliferation und Differenzierung in erythrozytäre, myeloische und erythro-myeloische Zellen erfolgt dabei über die Zugabe der Zytokine SCF, GM-CSF, IL-3 sowie Epo. Dieser mehr als 40 Jahre alte Differenzierungsansatz wird bis heute routinemäßig in der Klinik eingesetzt und ermöglicht eine einfache und reproduzierbare Qualitätsanalyse von Stammzellpräparaten sowie die Diagnose von unterschiedlichen malignen myeloischen Erkrankungen des Blutsystems (Nissen-Druey et al., 2005).

Mit dem Ziel primitive hämatopoetische Zellen mit Stammzelleigenschaften in vitro zu detektieren und zu quantifizieren, wurde Ende der 80er Jahre der Long-Term Culture-Initiating Cell (LTC-IC) Ansatz in der Arbeitsgruppe von Sutherland entwickelt (Sutherland et al., 1989; Sutherland et al., 1990). Dieser in vitro Ansatz basiert auf der Annahme, dass liniendeterminierte Progenitorzellen über den Zeitraum von fünf Wochen ausdifferenzieren, wohingegen Zellen mit Stammzelleigenschaften bzw. terminal Langzeitpotential in Kokultur mit Zellen von Stromazelllinien z.B. der murinen AFT024 ihr Koloniebildungspotential erhalten. Sogenannte LTC-ICs können anschließend in einem nachgeschalteten CFC Ansatz sekundäre myeloische Kolonien bilden. Dieser Ansatz wurde bis in die späten 90er Jahre mehrfach modifiziert und lange Zeit als Surrogat für die Detektion multipotenter HSVZ angesehen (Moore et al., 1997; Punzel et al., 1999a). Der LTC-IC Ansatz wurde zudem in leicht abgewandelter Form unter Zugabe von Zytokinen für

die NK-Zellreifung (z.B. IL-2) zur Detektion von Zellen mit NK-Zell Differenzierungspotential verwendet (Miller *et al.*, 1992).

Eine bedeutende Errungenschaft bei der funktionellen Analyse und der Identifizierung primitiver hämatopoetischer Zellen stellte die Entwicklung eines xenogenen Maus-Repopulierungsansatzes Ende der 80er Jahre dar (Kamel-Reid und Dick, 1988). Dabei wandern humane hämatopoetische Zellen mit Stammzelleigenschaften nach Transplantation in das Knochenmark immundefizienter SCID (engl. *Severe Combined Immunodeficiency*)-Mäuse ein. Dort angekommen bilden sie über mehrere Monate (> 6 Monate) hinweg (engl. *long-term reconstitution; kurz LTR*) menschliche Blutzellen und Aspekte eines humanen Immunsystems aus (engl. *engraftment*). Entsprechende Vorläuferzellen werden als SCID-repopulierende Zellen (eng. *scid-repopulating cells*; kurz: SRCs) bezeichnet und gelten bis heute laut Literatur als multipotent. Innerhalb der letzten zwei Jahrzehnte wurden weitere immundefiziente Mausstämme gezüchtet, die transplantierte humane Zellen besser unterstützen und tolerieren. Hier zu nennen sind unter anderem die NOD/ (engl. *Nonobese Diabetic*) SCID-Maus (Shultz *et al.*, 1995) sowie die Interleukin-2 Rezeptor *gamma*-Kette (IL-2R- γ) defiziente NOD/SCID (NSG)-Maus (Shultz *et al.*, 2005).

Trotz der ständigen Weiterentwicklung ermöglicht der Mausstämme der Repopulierungsansatz keine zuverlässige funktionelle Analyse determinierter humaner Vorläuferzellen ohne SRC Eigenschaften. Die Transplantation determinierter Vorläuferzellen führt oftmals nur zu einer kurzzeitigen (4-6 Wochen) Ausprägung menschlicher Zellen im Blut (engl. short-term reconstitution; kurz STR), jedoch nicht zur Einwanderung der Zellen in das Knochenmark und zur LTR (Zhong et al., 2005). Zudem unterstützt das Mausmodell keine Langzeit-Rekonstitution der erythrozytären und megakaryozytären Linien nach Transplantation humaner Zellen (Mazurier et al., 2003). Die Analyse determinierter humaner Vorläuferzellen findet entsprechend in den meisten Arbeiten überwiegend mit Hilfe von in vitro Analyseverfahren wie z.B. dem zuvor erwähnten LTC-IC, CFC oder NK-IC Ansatz statt. Zusätzlich wurden in den vergangenen Jahren z.B. Protokolle für die in vitro Differenzierung humaner HSVZ in Erythrozyten (Dorn et al., 2008), Megakaryozyten (Boyer et al., 2008), T-Zellen (La Motte-Mohs et al., 2005), B-Zellen (Sanchez-Dominguez et al., 2012) und dendritische Zellen (Doulatov et al., 2010) entwickelt.

1.1.3. Das klassische Modell der humanen Hämatopoese

Bereits vor mehr als 30 Jahren - und somit noch vor der Beschreibung erster Oberflächenmarker - führte die überwiegend morphologische und histologische Untersuchung der hämatopoetischen Zellen zur Entwicklung des klassischen Modells der humanen Hämatopoese. Da unreife Progenitorzellen sowie primitive Stammzellen morphologisch kaum voneinander zu unterscheiden sind, wurde das klassische Modell maßgeblich anhand der morphologischen Verwandtschaft reifer Blutzellen entwickelt. Ausgehend von einer multipotenten hämatopoetischen Stammzelle beschreibt das klassische Modell eine frühe Aufspaltung in einen lymphatischen und einen myeloischen Zweig (Abb. 1A). Entsprechend postuliert das Modell eine gemeinsame lymphatische Vorläuferzelle (engl. *common lymphoid progenitor*, kurz CLP), die nur T-, B- und NK-Zellen hervorbringt, wohingegen sich die gemeinsame myeloische Vorläuferzelle (engl. *common lymphoid progenitor*; kurz CMP) über mehrere Zwischenstufen ausschließlich in Granulozyten, Makrophagen, Megakaryozyten und Erythrozyten differenzieren kann. Dendritische Zellen entstehen nach dem klassischen Modell sowohl aus der lymphatischen als auch der myeloischen Linie (nicht dargestellt).

Abb. 1: Modellvorstellungen der humanen Hämatopoese

(A) Das klassische Modell der humanen Hämatopoese beschreibt eine frühe Aufspaltung in den lymphatischen (common lymphoid progenitor: CLP) und den myeloischen Zweig (common myeloid progenitor: CMP). Granulozyten-Makrophagen Vorläufer (GMP) sowie Megakaryozyten-Erythrozyten Vorläufer (MegE) gehören der myeloischen Linien an (Galy et al., 1995; Manz et al., 2002). (B) Im "myeloid-basierten" Modell findet wie im klassischen Modell eine Auftrennung in den lymphatischen (common myeloid-lymphoid progenitor: CMLP) und myeloischen (lymphoid-primed multipotent progenitor: LMPP) und myeloischen Zweig, wobei beide GMPs hervorbringen können (Adolfsson et al., 2005).

Die erste experimentelle Beschreibung der postulierten Vorläuferzellen im humanen System erfolgte in den 90er Jahren unter Verwendung unterschiedlicher Oberflächenmarker und funktioneller *in vitro* und *in vivo* Nachweismethoden. Mit den zu dieser Zeit verfügbaren Markern und Methoden beschrieben Galy *et al.* lin⁻CD38⁺CD34⁺CD45RA⁺CD10⁺ Zellen aus dem humanen Knochenmark, die sowohl B-, NK- als auch T-Zell Differenzierungspotentiale nach Transplantation in den Thymus der Maus aufwiesen, jedoch keinerlei erythro-

myeloisches Koloniebildungspotential im CFC Ansatz zeigten (Galy *et al.*, 1995). Diese Zellen entsprachen funktionell den postulierten CLPs. Einige Jahre später wurden von Manz *et al.* humane lin⁻CD38⁺CD34⁺CD45RA⁺CD123⁺ Vorläuferzellen beschrieben, die in ihrem Differenzierungspotential dem postulierten CMP entsprechen. Sie isolierten Zellen aus dem Nabelschnurrrestblut und Knochenmark, die *in vitro* myeloisches Langzeitpotential im LTC-IC Ansatz sowie erythro-myeloisches Koloniebildungspotential im CFC Ansatz aufwiesen, aber weder B- noch NK-Zellen hervorbrachten (Manz *et al.*, 2002).

1.1.4. Nachweis multipotenter humaner HSVZ

Wie bereits zuvor erwähnt ist die Detektion und Isolierung multipotenter humaner Stammund Vorläuferzellen allein anhand der derzeit bekannten Oberflächenmarker nicht möglich. Der Nachweis und die Quantifizierung multipotenter Zellen erfolgt aufgrund dessen in Kombination mit funktionellen *in vitro* und/oder *in vivo* Analysemethoden. Ausgehend von dem klassischen Modell der humanen Hämatopoese weisen multipotente Stamm- und Vorläuferzellen ein lympho-myeloisches Differenzierungspotential auf, was z.B. anhand von repräsentativen Analysemethoden für den lymphatischen und myeloischen Zweig im sogenannten ML-IC (engl. *myeloid-lymphoid-initiating-cell*) Ansatz nachgewiesen werden kann (Punzel *et al.*, 1999b; Giebel *et al.*, 2006). In diesem klonalen Ansatz werden einzelne, zu analysierende Zellen für 14 Tage *in vitro* in Kokultur mit Zellen der murinen Stromazelllinie AFT024 expandiert und die Nachkommenschaft gleichmäßig in den myeloischen LTC-IC Ansatz und lymphatischen NK-IC Ansatz überführt. Zellen, deren Nachkommenschaft granulozytäres/myeloisches Langzeitpotential im LTC-IC Ansatz sowie NK-Zell Differenzierungspotential im NK-IC Ansatz aufweist, werden retrospektiv als ML-IC bezeichnet und sind dem klassischen Modell zufolge multipotent.

Ein vielfach in der Literatur als Surrogat und Gold-Standard für den Nachweis multipotenter humaner HSVZ angesehenes Analyseverfahren ist der *in vivo* Repopulierungsansatz im NOD/SCID bzw. NSG Mausmodell (Shultz *et al.*, 1995; Shultz *et al.*, 2005). Humane HSVZ, die nach Transplantation in der Maus sowohl lymphatische B-, T- und NK-Zellen sowie Granulozyten und Makrophagen hervorbringen können, werden im klassischen Modell der humanen Hämatopoese als multipotent Zellen mit Stammzelleigenschaften angesehen.

1.2. Wiedersprüche im klassischen Modell

Die kontinuierliche Weiterentwicklung und Neuentwicklung der *in vitro* und *in vivo* Analysemethoden sowie die Entdeckung neuer Oberflächenmarker führte bereits Ende der 90er Jahre zur Entdeckung von Progenitorzellen, deren Differenzierungspotential nicht mit dem klassischen Modell vereinbar ist. Die Beschreibung der neuen Progenitorzellen stellte das klassische Modell mit der binären Aufspaltung in den lymphatischen und myeloischen Zweig vielfach in Frage.

Kawamoto *et al.* beschrieben bereits 1998 mit Hilfe klonaler *in vitro* Analysen die Existenz muriner T-Zell Progenitoren im Thymus, die partielles B-Zell- sowie myeloisches Potential aufwiesen, jedoch keine Megakaryozyten und Erythrozyten hervorbringen können und demnach nicht multipotent sind (Kawamoto *et al.*, 1998; Lu *et al.*, 2002). Auf dieser Grundlage entwickelte Kawamoto das "myeloisch-basierte" Modell der Hämatopoese, das die Existenz von lympho-myeloischen Progenitoren (engl. *common myeloid-lymphoid progenitor*; kurz CMLP) ohne Megakaryozyten und Erythrozyten Potential postuliert (Katsura und Kawamoto, 2001). Bei diesem "myeloisch-basierten" Modell bleibt das myeloische Potential (Granulozyten und Makrophagen/Monozyten) in allen Linien und Vorläuferzellen bis zur terminalen Spezifizierung in die reifen Zelltypen erhalten. Die im klassischen Modell der Hämatopoese charakteristische dichotome Linienaufspaltung ist im "myeloisch-basierten" Modell nicht mehr gegeben (Abb. 1B).

Von Adolfsson et al. wurden mit Hilfe von in vivo Repopulationsexperimenten im Knochenmark von adulten Mäusen Progenitorzellen mit lymphatischem T- und B-Zell- sowie Granulozyten-Makrophagen Potential beschrieben, die jedoch keine Megakaryozyten oder Erythrozyten hervorbrachten (Adolfsson et al., 2005). Der zuvor von Kawamoto als CMLP beschriebene Vorläufer wurde hier als LMPP (engl. *lymphoid-primed multipotent progenitor*) bezeichnet und entsteht alternativ zum CLP und CMP, wobei sich Zellen mit erythromegakaryozytärem Differenzierungspotential (megakaryocyte-erythrocyte progenitor; kurz: MkEP) auch direkt von den HSZ und nicht vom CMP abspalten können. Adolfsson kombinierte das klassische Modell sowie seine alternative Modellvorstellung und postulierte das sogenannten "composite" Modell, das die autonome Abspaltung des MkEP von den HSZ vernachlässigt. Das postulierte "composite" Modell beschreibt eine frühe Aufspaltung in die lympho-myeloische (LMPP) und myeloische Linie (CMP), wobei beide Zweige Granulozyten-Makrophagen-Vorläufer (engl. granulocyte-macrophage progenitor; kurz: GMP) hervorbringen können (Abb. 1C).

Die aktuelle Beschreibung von myeloisch-determinierten murinen Progenitorzellen mit Langzeit-Repopulierungspotential durch Yamamoto *et al.*, die weder vom klassischen Modell noch von den erwähnten alternativen Modellvorstellungen erfasst werden, wirft weitere Fragen auf (Yamamoto *et al.*, 2013). Zransplantierte lin⁻c-kit⁺sca-1⁺(LKS) CD34⁻CD41⁻ /⁺CD150^{-/+} Einzelzellen sind in der Lage, langfristig gewisse Teilaspekte (z.B. nur Megakaryozyten oder Megakaryozyten und Erythrozyten) des Blutsystems

7

wiederherzustellen. Zudem sind diese Zellen seriell transplantierbar, wandern in das Knochenmark der zweiten Empfängermaus ein und bringen erneut spezifisch einzelne hämatopoetische Linien hervor. Die bisherige Hypothese, dass nur multipotente HSZ die Fähigkeit zur langfristigen und seriellen Rekonstitution des Blutsystems aufweisen, ist somit ebenfalls kritisch zu hinterfragen. Zudem stellt die Detektion von HSVZ mit megakaryozytärem Differenzierungspotential und SCR-Eigenschaften erneut die hämatopoetischen Linienverwandtschaften in Frage. Yamamoto postuliert eine direkte Abspaltung megakaryozytärer Vorläufer von der HSZ/MPP und keine Zugehörigkeit zum erythro-myeloischen Zweig.

Zuvor beschriebene Vorläuferzellen und die postulierte Modellvorstellungen von Kawamoto, Adolfsson und Yamamoto stammen überwiegend aus Experimenten im Mausmodell und können noch durch weitere Arbeiten ergänzt werden, die neue Linienverwandtschaften beschreiben (Bell und Bhandoola, 2008; Wada *et al.*, 2008). Wie bereits eingangs erwähnt können jedoch nicht alle Erkenntnisse aus der murinen Hämatopoese vollständig auf das humane System übertragen werden. Jedoch weisen auch *in vitro* Daten aus unserer Arbeitsgruppe auf alternative Linienverwandtschaften in der humanen Hämatopoese hin. Mit Hilfe des zuvor erwähnten ML-IC Ansatzes, der zum retrospektiven Nachweis multipotenter HSVZ entwickelt wurde, konnten humane Vorläuferzellen mit Monozyten/Makrophagen und NK-Zell Differenzierungspotential detektiert werden (engl. *Macrophage NK-cell initiatingcell*; kurz M-NK-IC), die keine Granulozyten hervorbrachten (Giebel *et al.*, 2006). Auch hier wurden das klassische Modell der humanen Hämatopoese und die Aufspaltung in den lymphatischen und myeloischen Zweig in Frage gestellt.

Es bleiben sowohl im "myeloisch-basierten" als auch im "*composite*" Modell der humanen Hämatopoese zahlreiche Fragen offen bzw. werden durch die Beschreibung neuer Vorläuferzelltypen neu aufgeworfen. Inwiefern die Beobachtungen aus der murinen Hämatopoese auch auf den Menschen übertragbar sind, bleibt abzuwarten. Hier insbesondere zu nennen sind z.B. die Linienzugehörigkeit der dendritischen Zellen, die genaue Linienaufspaltung im lymphatischen und erythro-megakaryozytärem Kompartiment oder auch die Abstammung der Makrophagen/Monozyten.

Eine weitere Konsequenz aus den neuen Modellvorstellungen ist, dass die in der Literatur beschriebenen *in vitro* und *in vivo* Analysemethoden (ML-IC Ansatz oder NOD/SCID Maus) keine zuverlässige Detektion multipotenter HSVZ mehr ermöglichen (Görgens *et al.*, 2013a). Der Nachweis lympho-myeloischen Differenzierungspotentials im ML-IC Ansatz ist nach den derzeit postulierten Modellvorstellungen kein zulässiger Nachweis für multipotente Zellen. Ebenso kann nicht mit Sicherheit geschlussfolgert werden, dass in NOD/SCID Mäuse transplantierte und zur Rekonstitution führende Zellen tatsächlich Multipotenz aufweisen, da die Maus keine langfristige Entwicklung und den Nachweis humaner erythrozytärer und megakaryozytärer Linien unterstützt (Mazurier *et al.*, 2003). Folglich ist derzeit kein *in vitro* oder *in vivo* Nachweisverfahren für multipotente humane HSVZ verfügbar.

1.3. Zielsetzung

Das primäre Ziel der vorliegenden Arbeit lag in der Entwicklung einer *in vitro* Analysemethode, die unabhängig von allen derzeitigen Modellvorstellungen der humanen Hämatopoese eine zuverlässige Ermittlung des Differenzierungspotentials von HSVZ auf Einzelzellebene ermöglicht. Die Analysemethode soll sowohl die Aufklärung bislang unbekannter und/oder die Bestätigung bereits beschriebener Linienverwandtschaften im humanen hämatopoetischen System als auch die Detektion multipotenter HSVZ ermöglichen.

Hierzu sollen im Rahmen dieser Arbeit funktionelle *in vitro* Analysemethoden für den Nachweis von Zellen mit T-Zell-, B-Zell-, NK-Zell, Makrophagen/Monozyten, Granulozyten (Neutrophile, Eosinophile, Basophile), Erythrozyten-, Megakaryozyten-, sowie DC Differenzierungspotential adaptiert und etabliert werden. Die Analyse einer einzelnen Zelle in mehreren unterschiedlichen funktionellen *in vitro* Analysemethoden setzt die vorherige Expansion der Einzelzelle ohne den Verlust ihrer initialen Linienpotentiale voraus. Folglich sollten *in vitro* Kulturbedingungen definiert werden, die eine verslustfreie Expansion der zu analysierenden Zelle ermöglichen.

2. Material und Methoden

2.1. Material

2.1.1. Geräte, Verbrauchsmaterialien, Chemikalien und Reagenzien

Gerät	Modelbezeichnung	Hersteller
CO ₂ -Inkubator	Hera Cell240	Thermo Scientific (Waltham, USA)
Bestrahlungsgerät (Zellen)	320kV X-Ray Machine	GE/Pantak (Easton Turnpike, USA)
Durchflusszytometer	FC500 (Analysegerät)	Beckmann Coulter (Krefeld)
	Software: CXP 2.2 und Kaluza 1.1	
	FACS Aria I (Zellsortierer)	BD Biosciences (San Jose, CA, USA)
	Software: Diva 6.1.2	
Einfrierhilfe	Тур 5100	Nalgene (Waltham, USA)
Fluorometer	GENios	Tecan (Männedorf, Schweiz)
Geldokumentationsgerät	Fusion FX7	Vilber Lourmat (Eberhardzell)
Heizblock	HX-2	PeQLab (Erlangen)
Mikroskope	CKX41	Olympus (Hamburg)
	Axio Observer Z1	Zeiss (Jena)
	Axio Vert.A1	Zeiss (Jena)
	Software: AxioVision Rel 4.8	
PCR-Gerät	GeneAmp PCR System 9700	Applied Biosystems (Carlsbad, USA)
Spektralphotometer	NanoDrop 1000	PeQLab (Erlangen)
Thermocycler	GeneAmp PCR System 9700	Applied Biosystems (Carlsbad, USA)
Waage	MP-300	Citizen
Zellkulturbank	HERAsafe KS12	Thermo Scientific (Waltham, USA)
Zentrifugen	5810R	Eppendorf (Hamburg)
	5424	Eppendorf (Hamburg)

Tab. 1: Verwendete Geräte

	Tab. 2: Verwend	lete Verbrauchsm	aterialien
--	-----------------	------------------	------------

Verbrauchsmaterial	Hersteller
Cryomolds	Sakura Finetek (Alphen aan den Rijn, Niederlande)
Einfrierröhrchen (2 ml)	Greiner (Frickenhausen)
Einmalspritzen (1 ml, 5 ml, 20 ml)	Braun (Melsungen)
Filter (0,22 und 0,45 µm Porengröße)	Corning (New York, NY, USA) und TPP
	(Trasadingen, Schweiz)
Flachbodenplatten (6er, 24er, 96er)	Greiner (Frickenhausen)
MACS Separationssäulen (LS, MS)	Miltenyi Biotec (Bergisch Gladbach)
Pipettenspitzen	Starlab (Ahrensburg) und PeQLab (Erlangen)
Polypropylen-Röhrchen (14 ml, 50 ml)	BD Biosciences (San Jose, CA, USA)
Polypropylen-Rundbodenröhrchen (5 ml)	BD Biosciences (San Jose, CA, USA)
Reagenzien-Reservoir	Corning (New York, NY, USA)
Reaktionsgefäße (0,5-2 ml)	Eppendorf (Hamburg)
Stabpipetten (5, 10, 25, 50 ml)	Greiner (Frickenhausen)
Zellkulturflaschen (25, 75, 175 cm2)	Greiner (Frickenhausen)
Zellsieb (40 µm Porengröße)	Partec (Münster)
Zentrifugationsröhrchen (40 ml)	Nalgene (Rochester, NY, USA)

Chemikalie/Reagenz	Hersteller
Agarose	Biozym (Hessisch Oldendorf)
Alizerin Rot	Roth (Karlsruhe)
Alcian Blue	Sigma-Aldrich (Taufkirchen)
Ampicillin	Roth (Karlsruhe)
BD ITS	BD Biosciences (San Jose, CA, USA)
Biocoll Separating Solution	Biochrom (Berlin)
Bromphenolblau	Sigma-Aldrich (Taufkirchen)
DAPI (4',6-Diamidin-2-phenylindol)	Invitrogen (Karlsruhe)
Dexamethason	Sigma-Aldrich (Taufkirchen)
DMSO (Dimethylsulfoxid)	Wak-Chemie (Steinbach)
Doxyzyklin	Sigma-Aldrich (Taufkirchen)
EDTA (Ethylendiamintetraacetat)	Sigma-Aldrich (Taufkirchen)
Ethanol	Roth (Karlsruhe)
Ethidiumbromid	Roth (Karlsruhe)
Gelatine	Sigma-Aldrich (Taufkirchen)
Glycerin	Sigma-Aldrich (Taufkirchen)
Beta-Glycerolphosphat	Sigma-Aldrich (Taufkirchen)
IMBX (Isobutylmethylxanthine)	Sigma-Aldrich (Taufkirchen)
Indomethacin	Sigma-Aldrich (Taufkirchen)
Isopropanol	Roth (Karlsruhe)
Kanamycin	Roth (Karlsruhe)
Kollagen Typ1+4	BD Biosciences (San Jose, CA, USA)
L-Prolin	Sigma-Aldrich (Taufkirchen)
Lysepuffer (Erythrozytenlyse)	BD Biosciences (San Jose, CA, USA)
Manganchlorid	Sigma-Aldrich (Taufkirchen)
Matrigel TM Basement Membrane Matrix	BD Biosciences (San Jose, CA, USA)
Methocult H4434 Classic	Stemcell Technologies (Vancouver, Kanada)
MOPS (3-(N-Morpholino)-Propansulfonsäure)	Sigma-Aldrich (Taufkirchen)
Nukleasefreies Wasser	Ambion (Austin, TX, USA)
OilRedO	Sigma-Aldrich (Taufkirchen)
PBS (Phosphat buffered saline)	Invitrogen (Karlsruhe)
Propidiumiodid	Baack Labor (Schwerin)
Puromyzin	Sigma-Aldrich (Taufkirchen)
Restriktionsenzyme	New England Biolabs (Ipswich, MA, USA)
RNAse A	AppliChem (Darmstadt)
Trypanblau	Invitrogen (Karlsruhe)
Trypsin	Sigma-Aldrich (Taufkirchen)
Vectashield Mounting Medium	Vector (Burlinggame, USA)

Tab. 3: Verwendete Chemikalien und Reagenzien

Nicht gesondert aufgeführte Chemikalien wurden von Sigma-Aldrich (Taufenkirchen) bezogen.

2.1.2. Zellkulturmedien und Medienzusätze

Tab. 4: Verwendete Zellkulturmedien

Bezeichnung	Firma
alpha-MEM	Promocell (Heidelberg), Lonza (Basel, Schweiz)
EGM-2	Lonza (Basel, Schweiz)
DMEM (1 g/l Glucose)	PAA (Pasching, Österreich), Lonza (Basel, Schweiz)
DMEM (4,5g/l Glucose)	PAA (Pasching, Österreich), Invitrogen (Karlsruhe)
Ham's F12	Biochrom (Berlin)
IMDM	Lonza (Basel, Schweiz)
RPMI1640	PAA (Pasching, Österreich)

Bezeichnung	Firma
Fetales Rinderserum (FBS)	Biochrom (Berlin), PAA (Pasching, Österreich)
FBS für Langzeitkultur	Stemcell Technologies (Vancouver, Kanada)
FBS für den CFC Ansatz	Stemcell Technologies (Vancouver, Kanada)
Humanes AB-Serum	Lonza (Basel, Schweiz)
Humanes AB-Serum	Eigene Herstellung
Pferdeserum	Stemcell Technologies (Vancouver, Kanada)

Tab. 5: Verwendete Seren für die Zellkultur

Humanes Plättchenlysat (PL)

Humanes PL wurden aus leukozytendepletierten, bestrahlten Apherese-Thrombozytenkonzentraten nach Ablauf der Lagerungsfrist von vier Tagen nach Spende hergestellt. Die Konzentrate wurden bei -20°C eingefroren, aufgetaut und entstandene Thrombozytenfragmente durch Zentrifugation bei 3200 x g für 1 Stunde pelletiert. Der Überstand von 80 individuellen Thrombozytenkonzentraten wurden vereinigt, in 50 ml Aliquots abgefüllt und bei -20°C gelagert (Denecke *et al.*, 2013).

Tab. 6: Verwendete Zytokine

Bezeichnung	Firma
Erythropoietin (NeoRecormon; EPO)	Roche (Basel, Schweiz)
epidermal growth factor (EGF)	PeproTech (Rocky Hill, NJ, USA)
fibroblast growth factor (FGF)	PeproTech (Rocky Hill, NJ, USA)
Fms-related tyrosine kinase 3-Ligand (Flt3-L)	Miltenyi Biotec (Bergisch Gladbach)
insulin-like growth factor (IGF-1)	PeproTech (Rocky Hill, NJ, USA)
Insulin	Sigma-Aldrich (Taufenkrichen)
Interleukin 2 (IL-2)	PeproTech (Rocky Hill, NJ, USA)
Interleukin 3 (IL-3)	PeproTech (Rocky Hill, NJ, USA)
Interleukin 6 (IL-6)	PeproTech (Rocky Hill, NJ, USA)
Interleukin 7 (IL-7)	PeproTech (Rocky Hill, NJ, USA)
Interleukin 15 (IL-15)	PeproTech (Rocky Hill, NJ, USA)
stem cell factor (SCF)	Miltenyi Biotec (Bergisch Gladbach)
<i>transforming growth factor beta</i> (TGF-β1)	PeproTech (Rocky Hill, NJ, USA)
<i>transforming growth factor beta</i> (TGF-β3)	PeproTech (Rocky Hill, NJ, USA)
Thrombopoietin (TPO)	Miltenyi Biotec (Bergisch Gladbach)
vascular endothelial growth factor (VEGF)	PeproTech (Rocky Hill, NJ, USA)

Bezeichnung	Firma
2-Mercaptoethanol	Invitrogen (Karlsruhe)
Ethanolamin	Invitrogen (Karlsruhe)
Gentamycin	Lonza (Basel, Schweiz)
Insulin	Sigma-Aldrich (Taufenkrichen)
L-Ascorbinsäure	Invitrogen (Karlsruhe)
L-Glutamin	Invitrogen (Karlsruhe)
Methylzellulose	Sigma-Aldrich (Taufenkrichen)
Natrium-Pyruvat	Sigma-Aldrich (Taufenkrichen)
Penicillin/Streptomycin (P/S)	Invitrogen (Karlsruhe)
Rinder-Serumalbumin (BSA)	Roth (Karlsruhe)
Selen	Invitrogen (Karlsruhe)
Transferrin	R&D Systems (Minneapolis, MN, USA)

Tab. 7: Verwendete Medienzusätze

2.1.3. Kits und Assays

Tab. 8:	Verwendete	Kits und	Assays
----------------	------------	----------	--------

Bezeichnung	Firma
Endofree Plasmid Maxi Kit	Qiagen (Hilden)
Flow-Count Fluorospheres	Beckman Coulter (Krefeld)
High Capacity cDNA RT Kit	Applied Biosystems (Carlsbad, USA)
MBC CD34 Micro Bead Kit human	Miltenyi Biotec (Bergisch Gladbach)
PKH67	Sigma-Aldrich (Taufenkirchen)
RNeasy Micro Kit	Qiagen (Hilden)
Wizard SV Gel and PCR Clean-Up System	Promega (Madison, WI, USA)

2.1.4. Antikörper und Seren

Tab. 9 Verwendete koniu	gierte Antikörper zur	· Analyse humaner Zellen
i ubi 2 i ci ii chucie Ronju	Sici te i munici per Zui	many se manualler Zenen

Spezifität	Konjugat	Klon	Hersteller	Spezifität	Konjugat	Klon	Hersteller
CD2	PE	S5.2	Beckman Coulter	CD45RA	PE-Cy7	HI100	Biolegend
CD3	FITC	SK3	BD Biosciences	CD49f	FITC	NK-GoH3	EuroBioScience
CD3	APC	UCHT-1	Immuno Tools	CD49f	PE	GoH3	BD Biosciences
CD4	PE	RPA-T4	BD Biosciences	CD54	FITC	84H10	Immunotech
CD7	FITC	MEM-186	Exbio	CD56	FITC	MEM-188	Immunotools
CD8	FITC	HIT8a	BD Biosciences	CD56	PerCP-	B159	BD Biosciences
CD10	PE	ALB1	Beckman Coulter	CD61	Cy5.5 FITC	\$721	Beckman Coulter
CD13	FITC	SJ1D1	Beckman Coulter	CD66b	FITC	80H3	Beckman Coulter
CD14	PE	ΜΦΡ9	BD Biosciences	CD71	FITC	VDI1 2	Beckman Coulter
CD15	PerCP-	HI98	BD Biosciences	CD73	PF	AD2	BD Biosciences
CD16	Cy5.5 PF	368	BD Biosciences	CD90	FITC	265	Immunotech
CD10	FITC	4G7	BD Biosciences	CD90	PF	E15-42-1-5	Beckman Coulter
CD19	PE-Cv5	HIB19	BD Biosciences	CD102	PF	CBR-1C2/2	BD Biosciences
CD19	FCD	LT19	Beckman Coulter	CD102	FITC	SN6/N1-3A1	Ancell
CD20	FITC	1.27	BD Biosciences	CD116	PE	4H1	Biolegend
CD29	FITC	K20	Immunotech	CD133	PE	AC133	Miltenvi Biotec
CD31	FITC	WM59	BD Biosciences	CD133	APC	AC133	Miltenvi Biotec
CD31	PE	MEM-05	Exbio	CD135	PE	ACT35	BD Biosciences
CD33	PE	HIM3-4	Exbio	CD144	PE	TEA1/31	Immunotech
CD34	FITC	581	Miltenvi Biotec	CD146	FITC	P1H12	eBioscience
CD34	ECD	581	Beckman Coulter	CD146	PE	TEA1134	Beckman Coulter
CD34	PE-Cv5	581	BD Biosciences	CD151	PE	14A2.H1	BD Biosciences
CD34	PE-Cy7	581	BD Biosciences	CD164	FITC	N6B6	BD Biosciences
CD38	FITC	HIT2	BD Biosciences	CD166	PE	3A6	BD Biosciences
CD38	PerCP-	HIT2	BD Biosciences	CD235a	PE	HIR2	BD Biosciences
CD41	PE	P2	Beckman Coulter	CD252	PE	Ik-1	BD Biosciences
CD44	FITC	J.173	Immunotech	CD271	FITC	ME20.4-1H4	Miltenyi Biotec
CD44	APC	1219	BD Biosciences	CD309	FITC	89106	R&D Systems
CD45	FITC	5B1	Miltenvi Biotec	vWF	FITC		AbD Serotec
CD45	PE	J33	Beckman Coulter	Ulex	FITC		Lifespan Bioscience
CD45	APC	2D1	BD Biosciences				Diosciclice
CD45	PE-Cy7	J33	Beckman Coulter				

1ab. 10: verwendete unkonjugierte Antikorper
--

Primärer Antikörper	Spezies	Verdünnung	Klon	Firma
vWF	Maus anti Mensch	1:200	polyklonal	BD

Tab. 11: Verwendete s	ekundäre Antikör	rper	
Sekundäre Antikörper	Spezies	Verdünnung	Firma
Alexa 488	Ziege anti Maus	1:1000 extra; 1:1500 intra	Invitrogen

Tab. 12: Verwendete Seren für immunzytologische Färbungen

Seren	Stock	Verdünnung	Firma
Serum aus Maus	50 mg/ml	5-10 %	Dianova

2.1.5. Oligonukleotide

Alle in der nachfolgenden Tabelle aufgeführten Primersequenzen wurden der Literatur entnommen (van Dongen *et al.*, 2003).

Nummer	Bezeichnung	Sequenz
856	Vylfw	GGA AGG CCC CAC AGC RTC TT
857	Vy10fw	AGC ATG GGT AAG ACA AGC AA
858	Vγ9 fw	CGG CAC TGT CAG AAA GGA ATC
859	Vγ11 fw	CTT CCA CTT CCA CTT TGA AA
860	Jγ1.1/2.1 rev	TTA CCA GGC GAA GTT ACT ATG AGC
861	Jγ1.3/2.3 rev	GTG TTG TTC CAC TGC CAA AGA G

Tab. 13: Primer für die Detektion des VDJ-Rearrangements

2.1.6. Zellkulturmedien

Die verwendeten Zellkulturmedien wurden unter sterilen Bedingungen angesetzt. Alle Medien außer EBM-2 enthielten zur pH-Kontrolle Phenolrot (pKs=7,4).

2.1.6.1. Medien für Zelllinien, Primärzellen und Kokulturen

Tab. 14: Zusammensetzung	der 7	Zellkulturmedien	für	Zelllinien
--------------------------	-------	------------------	-----	------------

Medium für AFT024-Zellen	Medium für MS-5-Zellen	Medium für 5637-Zellen
20 % FBS	10 % FBS	10 % FBS
100 U/ml Penicillin/Streptamycin	1 % Natrium-Pyruvat	100 U/ml
100 U/ml L-Glutamin	100 U/ml Penicillin/Streptamycin	Penicillin/Streptamycin
in DMEM (1 g/l Glucose)	100 U/ml L-Glutamin	100 U/ml L-Glutamin
(Moore et al., 1997)	in alpha-MEM	in RPMI1640
	(Itoh et al., 1989)	(Myers et al., 1984)
Medium für OP9-GFP /		
OP9-DL1-Zellen	Medium für HEK293T-Zellen	
20 % FBS	10 % FBS	
100 U/ml Penicillin/Streptamycin	100 U/ml Penicillin/Streptamycin	
100 U/ml L-Glutamin	100 U/ml L-Glutamin	
in alpha-MEM	in DMEM (4,5 g/l Glucose)	
(Kodama et al., 1994)	(Graham et al., 1977)	

Tab. 15: Zusammensetzung der Zellkulturmedien für Primärzellen

Endotheliale Zellen	Hämatopoetische CD34 ⁺ Zellen
5 % humanes Thrombozytenlysat	20 % FBS
EGM2-Zusätze bestehend aus:	100 U/ml Penicillin/Streptamycin
EGF, FGF, R-IFG-1, VEGF, Hydrocortison,	100 U/ml L-Glutamin
Heparin, Ascorbinsäure, Gentamycin und	10 ng/ml SCF
Amphotericin B (alles Zusätze ohne	10 ng/ml Flt3-L
Konzentrationsangabe des Herstellers)	10 ng/ml TPO
in EBM-2	in IMDM
(Reinisch und Strunk, 2009; Denecke et al.,	(Giebel et al., 2004)
2013)	

Mesenchymale Zellen

10 % humanes Thrombozytenlysat 100 U/ml Penicillin/Streptamycin 100 U/ml L-Glutamin in DMEM (1 g/l Glucose) (Shih *et al.*, 2011)

Tab. 16: Zellkulturmedien für die Kokultur hämatopoetischer und primärer stromaler ZellenCD34⁺ Zellen mit mesenchymalenCD34⁺ Zellen mit endothelialen Stromazellen

10 % FBS
100 U/ml Penicillin/Streptamycin
100 U/ml L-Glutamin
10 ng/ml SCF
10 ng/ml Flt3-L
10 ng/ml TPO
10 ng/ml EGF
10 ng/ml FGF
in IMDM

2.1.6.2. Medien für die *in vitro* Differenzierung von HSVZ

Tab. 17: Zellkulturmedien für die in vitro Differenzierung von HSVZ

LTC-IC Medium	CFC Medium für LTC-IC
12,5 % FBS für Langzeitkultur	30 % FBS für CFC Ansatz
12,5 % Pferdeserum	1,2 % Methylzellulose
100 U/ml Penicillin/Streptamycin	100 U/ml Penicillin/Streptamycin
100 U/ml L-Glutamin	100 U/ml L-Glutamin
in IMDM	10 % Zellkulturüberstand der Zelllinie 5637
(Sutherland et al., 1990)	100 μM 2-Mercaptoethanol
	in IMDM
	(Myers et al., 1984; Punzel et al., 1999b)

Erythrozyten Differenzierungsmedium	Megakaryozyten Differenzierungsmedium
15 % FBS	5 % BSA
1 % BSA	100 U/ml Penicillin/Streptamycin
100 U/ml Penicillin/Streptamycin	100 U/ml L-Glutamin
100 U/ml L-Glutamin	100µM 2-Mercaptoethanol
100 µM 2-Mercaptoethanol	10 μg/ml Insulin
0,128 mg/ml Transferrin	200 ng/ml Transferrin
1000 U/ml Eryhtropoietin	50 ng/ml TPO
10 ng/ml SCF (nur d1-6)	10 ng/ml IL-3
40 ng/ml R3-IGF (nur d1-6)	10 ng/ml IL-6
1 μg/ml Insulin (nur d1-6)	in IMDM
in DMEM (4,5 g/l Glucose)	(modifiziertes Medium des MegaCult® Ansatzes
(Dorn <i>et al.</i> , 2008)	nach StemCell Technologies)

NK-IC Medium

20 % humanes AB-Serum 100 U/ml Penicillin/Streptamycin 100 U/ml L-Glutamin 20 µg/ml Ascorbinsäure 50 µM Selen 5µM 2-Mercaptoethanol 50 µM Ethanolamin 1000 U/ml IL-2 5 ng/ml IL-3 (**nur d1-6**) 20 ng/ml Flt3-L (**nur d1-6**) 10 ng/ml Flt3-L (**nur d1-6**) 20 ng/ml SCF (**nur d1-6**) in DMEM (4,5 g/l Glucose) / Ham´sF12 im Mischungsverhältnis 2:1 (Punzel *et al.*, 1999b)

T-Zell Differenzierungsmedium

20 % FBS 100 U/ml Penicillin/Streptamycin 100 U/ml L-Glutamin 5 ng/ml Flt3-L 5 ng/ml IL-7 10 ng/ml SCF in alpha-MEM (Schmitt und Zuniga-Pflucker, 2002) (La Motte-Mohs *et al.*, 2005)

Zytotoxizitätstest, Aktivierungstest von NK-

Zellen 10 % FBS 100 U/ml Penicillin/Streptamycin 100 U/ml L-Glutamin in RPMI

2.1.6.3. Medien für die *in vitro* Differenzierung von mesenchymalen

Adipogenese induzierendes Medium	Adipogenese erhaltendes Medium
10 % FBS	10 % FBS
1 % Natriumpyruvat	1 % Natriumpyruvat
100 U/ml Penicillin/Streptamycin	100 U/ml Penicillin/Streptamycin
100 U/ml L-Glutamin	100 U/ml L-Glutamin
1 µM Dexamethason	1 μM Dexamethason
200 µM Indomethacin	200 µM Indomethacin
in DMEM (4,5 g/l Glucose)	2 μM Insulin
(Hemeda et al., 2010)	500 μM IBMX
	in DMEM (4,5 g/l Glucose)
	(Hemeda et al., 2010)
Osteogenese induzierendes Medium	Chondrogenese induzierendes Medium
Osteogenese induzierendes Medium 10 % FBS	Chondrogenese induzierendes Medium 10 % FBS
Osteogenese induzierendes Medium 10 % FBS 1 % Natriumpyruvat	Chondrogenese induzierendes Medium 10 % FBS 1 % Natriumpyruvat
Osteogenese induzierendes Medium 10 % FBS 1 % Natriumpyruvat 100 U/ml Penicillin/Streptamycin	Chondrogenese induzierendes Medium 10 % FBS 1 % Natriumpyruvat 100 U/ml Penicillin/Streptamycin
Osteogenese induzierendes Medium 10 % FBS 1 % Natriumpyruvat 100 U/ml Penicillin/Streptamycin 100 U/ml L-Glutamin	Chondrogenese induzierendes Medium 10 % FBS 1 % Natriumpyruvat 100 U/ml Penicillin/Streptamycin 100 U/ml L-Glutamin
Osteogenese induzierendes Medium 10 % FBS 1 % Natriumpyruvat 100 U/ml Penicillin/Streptamycin 100 U/ml L-Glutamin 0,1 μM Dexamethason	Chondrogenese induzierendes Medium 10 % FBS 1 % Natriumpyruvat 100 U/ml Penicillin/Streptamycin 100 U/ml L-Glutamin 0,1 μM Dexamethason
Osteogenese induzierendes Medium 10 % FBS 1 % Natriumpyruvat 100 U/ml Penicillin/Streptamycin 100 U/ml L-Glutamin 0,1 μM Dexamethason 10 mM beta-Glycerolphosphat	Chondrogenese induzierendes Medium 10 % FBS 1 % Natriumpyruvat 100 U/ml Penicillin/Streptamycin 100 U/ml L-Glutamin 0,1 μM Dexamethason 1 mM L-Prolin
Osteogenese induzierendes Medium 10 % FBS 1 % Natriumpyruvat 100 U/ml Penicillin/Streptamycin 100 U/ml L-Glutamin 0,1 μM Dexamethason 10 mM beta-Glycerolphosphat 300 μM Ascorbinsäure	Chondrogenese induzierendes Medium10 % FBS1 % Natriumpyruvat100 U/ml Penicillin/Streptamycin100 U/ml L-Glutamin0,1 μM Dexamethason1 mM L-Prolin10 μg/ml TGF-beta3
Osteogenese induzierendes Medium 10 % FBS 1 % Natriumpyruvat 100 U/ml Penicillin/Streptamycin 100 U/ml L-Glutamin 0,1 μM Dexamethason 10 mM beta-Glycerolphosphat 300 μM Ascorbinsäure in DMEM (4,5 g/l Glucose)	Chondrogenese induzierendes Medium 10 % FBS 1 % Natriumpyruvat 100 U/ml Penicillin/Streptamycin 100 U/ml L-Glutamin 0,1 μM Dexamethason 1 mM L-Prolin 10 μg/ml TGF-beta3 200μl BD ITS
Osteogenese induzierendes Medium 10 % FBS 1 % Natriumpyruvat 100 U/ml Penicillin/Streptamycin 100 U/ml L-Glutamin 0,1 μM Dexamethason 10 mM beta-Glycerolphosphat 300 μM Ascorbinsäure in DMEM (4,5 g/l Glucose) (Hemeda <i>et al.</i> , 2010)	Chondrogenese induzierendes Medium10 % FBS1 % Natriumpyruvat100 U/ml Penicillin/Streptamycin100 U/ml L-Glutamin0,1 μM Dexamethason1 mM L-Prolin10 μg/ml TGF-beta3200μl BD ITSin DMEM (4,5 g/l Glucose)

Stromazellen

2.1.7. Bakterien

Für alle aufgeführten molekularbiologischen Arbeiten wurde der Bakterienstamm *E. coli* One Shot Top10 von Invitrogen mit dem Genotyp F- *mcrA* Δ (*mrr-hsd*RMS-*mcr*BC) Φ 80*lac*Z Δ M15 Δ *lac*X74 *rec*A1 *ara*D139 Δ (*ara- leu*)7697 *gal*U *gal*K *rps*L(StrR) *end*A1 *nup*G verwendet.

2.1.8. Zelllinien

Sofern nicht anders beschrieben, wurden die aufgeführten Zelllinien bei 37°C und 5 % CO₂ kultiviert. Die Zusammensetzung der Zelllinien-spezifischen Medien befinden sich unter Punkt 2.1.6.1.

AFT024

Die murine Zelllinie AFT024 wurde 1997 von Moore aus der fötalen Leber isoliert (Moore *et al.*, 1997). Die Zelllinie eignet sich für die Kokultivierung und den Erhalt primitiver humaner hämatopoetischer Zellen über einen Zeitraum von mehr als 7 Wochen. Zudem unterstützt sie die *in vitro* NK-Zell Differenzierung von CD34⁺ Zellen (Punzel *et al.*, 1999b). Aufgrund dieser Eigenschaften wird sie zur Identifikation hämatopoetischer Zellen mit *in vitro* Langzeitpotential im LTC-IC, NK-IC und ML-IC eingesetzt. Die adhärent wachsenden Stromazellen wurden bei 33°C und 5 % CO₂ kultiviert, bei einer Konfluenz von 80-90 % trypsiniert und im Verhältnis von 1:5 bis 1:6 gesplittet.

MS-5

Für die Etablierung der murinen Zelllinie MS-5 wurden 1989 von Itoh *et al.* adhärent wachsende, fibroblastoide Langzeit-Knochenmarkzellen aus C3H/HeNSlc Mäusen bestrahlt (Itoh *et al.*, 1989). Die Stromazelllinie wird von einigen Gruppen für die *in vitro* B-Zelldifferenzierung verwendet (Berardi *et al.*, 1997; Yoshikawa *et al.*, 2000; Hirose *et al.*, 2001). Die adhärent wachsenden Stromazellen wurden bei einer Konfluenz von 80-90 % trypsiniert und im Verhältnis von 1:5 bis 1:6 gesplittet.

5637

Die humane Blasenzellkarzinomzelllinie 5637 produziert und sekretiert eine Vielzahl von Wachstumsfaktoren wie z. B. IL-6, G-CSF und SCF (Myers *et al.*, 1984). Die im Zellkulturüberstand enthaltenen Wachstumsfaktoren regen humane hämatopoetische Progenitorzellen zur Koloniebildung und Differenzierung an (McNiece *et al.*, 1989). Verwendung findet der Kulturüberstand bei der Herstellung von Methylzellulosemedium, das im LTC-IC *Assays* eingesetzt wird. Hierfür werden die adhärent wachsenden 5637-Zellen bis

zur vollständigen Konfluenz kultiviert und anschließend das Medium durch IMDM mit 20 % FBS (für CFC *Assays*) ersetzt. Für die Produktion der Zellkulturüberstände werden insgesamt mindestens zehn 175 cm² Zellkulturflaschen mit jeweils 30 ml Zellkulturmedium angesetzt. Nach 6 Tagen Kultur wird der Überstand abgenommen, vereint, sterilfiltriert, aliquotiert und bei -20°C bis zur Verwendung gelagert.

OP9-GFP und OP9-DL1

Die murine Stromazelllinie OP9 wurde von Kodama *et al.* 1994 aus der Schädeldecke einer neugeborenen Maus isoliert (Kodama *et al.*, 1994) und wird für Kokultur-Versuche mit humanen HSVZ verwendet. Die in dieser Arbeit verwendeten Zelllinien OP9-GFP und OP9-DL1 wurden durch Transduktion mit für GFP bzw. Delta-Like 1 (DL1)-GFP kodierenden retroviralen Konstrukten verändert (Schmitt und Zuniga-Pflucker, 2002). Die Stromazelllinie OP9-DL1 wird von verschiedenen Arbeitsgruppen für die Induktion der *in vitro* T-Zelldifferenzierung verwendet (La Motte-Mohs *et al.*, 2005). Die adhärent wachsenden Stromazellen wurden bei einer Konfluenz von 80-90 % trypsiniert und im Verhältnis von 1:5 bis 1:6 gesplittet.

HEK293T

HEK293-Zellen wurden 1977 von Alex Van der Eb aus humanen embryonalen Nierenzellen (*human embryonic kidney*) gewonnen und durch Transfektion mit DNA des Adenovirus Typ5 immortalisiert (Graham *et al.*, 1977). HEK293T-Zellen exprimieren zusätzlich stabil das *large-T* Antigen des Simian Virus 40 (SV40 TAg), das die DNA-Replikation von episomalen Plasmiden mit SV40 TAg-Replikationsursprung ermöglicht (DuBridge *et al.*, 1987). HEK293T-Zellen wurden zur Produktion von virushaltigem Überstand verwendet. Die adhärent wachsenden Stromazellen wurden bei einer Konfluenz von 80-90 % trypsiniert und im Verhältnis von 1:10 gesplittet.

2.1.9. Primärzellen

Alle Versuche mit humanem Zellmaterial wurden mit Genehmigung der Ethikkommission der Universität Essen durchgeführt.

Die Abnahme der Nabelschnurrestblute und Nabelschnüre erfolgte in der Klinik für Frauenheilkunde und Geburtshilfe unter der Leitung von Prof. Dr. Rainer Kimmig.

Die verwendeten Knochenmarkproben (Rückstellproben) gesunder Spender wurden von der Klinik für Knochenmarktransplantation unter der Leitung von Prof. Dr. Dietrich W. Beelen zur Verfügung gestellt. Weitere Knochenmarkproben von Patienten mit peripheren Verschlusskrankheiten wurden aus der Klinik für Angiologie unter der Leitung von Dr. med. E. Brock zur Verfügung gestellt.

Mesenchymale und endotheliale Stromazellen aus der humanen Plazenta wurden in Kooperation mit dem Institut für Medizinische Biotechnologie unter der Leitung von Prof. Dr. E. Winterhager isoliert.

Stromazellen aus der humanen embryonalen Aorta-Gonado-Mesonephros (AGM) Region wurden von Dr. Bing Liu aus dem Institut für "Basic Medical Science" in Peking (China) zur Verfügung gestellt.

2.2. Methoden

2.2.1. Zellbiologische Methoden

2.2.1.1. Einfrieren und Auftauen von Zellen

Für die Lagerung lebender muriner und humaner Zellen wurden diese pelletiert, in dem Zelltyp-spezifischen Medium resuspendiert (siehe 2.1.6.1) und im Verhältnis 1:1 mit Einfriermedium (80 % FBS, 20 % DMSO) gemischt (Lovelock und Bishop, 1959). Jeweils 1 ml der Zellsuspension wurde zügig in 2 ml Einfrierröhrchen überführt und mit Hilfe einer Isopropanol gefüllten Einfrierhilfe, die das gleichmäßige Einfrieren mit der Rate von 1°C/min ermöglicht, bei -80°C eingefroren. Eine langfristige Lagerung der eingefrorenen Zellen erfolgte bei -196°C in Stickstoff-Tanks.

Zum Auftauen der Zellen wurden die Einfrierröhrchen im Wasserbad bei 37°C erwärmt und die Zellen in 15-20 ml vorgewärmtes Medium überführt. Die Zellen wurden anschließend bei 900 x g pelletiert, in frischem Zellkulturmedium resuspendiert und in entsprechende Zellkulturgefäße überführt. Nach 24 Stunden wurde das Medium vollständig ausgetauscht, um tote Zellen aus der Kultur zu entfernen.

2.2.1.2. Kultivierung von Zellen

Sofern nicht anders beschreiben, wurden alle in dieser Arbeit verwendeten murinen und humanen Zellen bei 37° C und 5 % CO₂ kultiviert. Detaillierte Informationen zu den verwendeten Zellen sowie den entsprechenden Zellkulturmedien sind unter Punkt 2.1.6.1, 2.1.8 und 2.1.9 zu finden.

2.2.1.3. Hämatopoetische Stamm- und Vorläuferzellen

Isolierung mononukleärer Zellen aus Nabelschnurrestblut und Knochenmark

Zur Isolierung mononukleärer Zellen (MNZ) aus dem Nabelschnurrestblut ("*cord blood*" = CB) und Knochenmark (*"bone marrow*" = BM) wurden 15 ml Ficoll-Trennlösung (Dichte 1,077 g/ml) mit 35 ml CB/BM überschichtet und für 20 Minuten bei Raumtemperatur (RT),

900 x g und deaktivierter Bremsfunktion zentrifugiert. Nach der Dichtezentrifugation können vier Phasen unterschieden werden. Erythrozyten und Granulozyten befinden sich aufgrund ihrer höheren Dichte (>1,077 g/ml) in der untersten, roten Phase. Durch eine klare Ficoll-Phase getrennt befindet sich darüber die weißlich, trübe Interphase mit den MNCs, die hauptsächlich Lymphozyten, Monozyten, Thrombozyten und HSVZ enthält. Die oberste, gelbliche Phase beinhaltet das Plasma.

Die Interphase wurde mit einer 25 ml Stabpipette vorsichtig abgezogen, in ein neues 50 ml Spitzbodenröhrchen überführt, mit PBS auf 50 ml aufgefüllt und bei 650 x g für 5 min zentrifugiert. Der Überstand mit den Thrombozyten wurde verworfen, die pelletierten MNZs in 25 ml 4°C kaltem NH₄Cl-Puffer, welcher zur osmotischen Lyse residualer Erythrozyten führt, resuspendiert und die Suspension für 7 min bei 4°C im Kühlschrank inkubiert. Die Lyse wurde durch Zugabe von 25 ml PBS gestoppt, die Suspension bei 900 x g zentrifugiert und die pelletierten MNZs in 25 ml frischem PBS resuspendiert. Zur Zellzahlbestimmung und durchflusszytometrischen Bestimmung des CD34⁺-Zellgehaltes wurden jeweils 100 µl der Zellsuspension abgenommen (Giebel *et al.*, 2004).

Magnetische Zellseparation ("Magnetic assisted cell sorting" MACS)

Die Voranreicherung von CD34⁺-Zellen aus der MNZ-Fraktion von Nabelschnurrestblut erfolgte mittels magnetischer Zellseparation (Miltenyi et al., 1990). Hierfür wurden MNZs pelletiert und in 300-500 µl MACS-Puffer (0,1 % BSA, 2 mM EDTA in PBS) und 100 µl Fc-Rezeptor Blockingreagenz (MBC CD34 Micro Bead Kit human, MiltenviBiotec) resuspendiert. Pro 1x10⁸ MNZs wurden der Zellsuspension 40 µl anti-CD34-Antikörper, die mit ferromagnetischen Partikeln konjugiert sind, zugesetzt (MBC CD34 Micro Bead Kit human, Miltenyi Biotec) und für 30-40 min bei 4°C inkubiert. Um ungebundenen Antikörper zu entfernen, wurden die Zellen auf 50 ml mit MACS-Puffer aufgefüllt und bei 900 x g für 5 min zentrifugiert. Pelletierte Zellen wurden in 500 µl MACS-Puffer resuspendiert und über einen 40 µm Filter auf die zuvor mit MACS-Puffer equilibrierte Separations-Säule in einem starkes Magnetfeld (Midimacs Separation Unit, MiltenyiBiotec) gegeben. Die Säule wurde 2-3 Mal mit einem Säulenvolumen MACS-Puffer gespült, wodurch die meisten unmarkierten Zellen (CD34⁻) das Magnetfeld passieren und durch die Säule in den Durchlauf gelangen. Die Antikörper-markierten Zellen (CD34⁺) verbleiben durch das starke Magnetfeld in der Säule und wurden anschließend außerhalb des Magnetfeldes mit 2 Säulenvolumen MACS-Puffer Von dem Durchlauf und Eluat wurden zur Zellzahlbestimmung eluiert. und durchflusszytometrischen Bestimmung des CD34⁺-Zellgehaltes Proben entnommen.

Kultivierung humaner CD34⁺ Zellen

Angereicherte CD34⁺ Zellen wurden in 24er Flachbodenplatten in einer Dichte von $5x10^4$ bis $1x10^5$ je Vertiefung bei 37°C, 5 % CO₂ in Zelltyp-spezifischem Medium (siehe 2.1.6.1) kultiviert. Je Vertiefung wurden 500 µl Medium verwendet und alle 3-4 Tage zur Hälfte ausgetauscht. Ab einer Zelldichte der Nachkommenschaft von mehr als $2x10^5$ Zellen/Vertiefung wurden die Zellen auf mehrere Vertiefungen aufgeteilt.

2.2.1.4. Gewinnung von MSZ

Zur Gewinnung humaner mesenchymaler Stamm-/Stromazellen aus dem Knochenmark gesunder Spender und Patienten mit peripheren Verschlusskrankheiten wurde die MNZ Fraktion des Knochenmarks entsprechend der vorhergehenden Dichtezentrifugationsanleitung aufgearbeitet (siehe 2.2.1.3). Nur nach der Dichtezentrifugation des Knochenmarks wurde oberhalb der Serum/Thrombozyten-Phase eine weitere aus Fett und Knochenfragmenten bestehende Phase abgenommen und gesammelt.

Aufgearbeitete Knochenmark-MNZs wurden in 6er Flachbodenplatte mit einer Dichte von 1×10^6 bis 1×10^7 MNZs bzw. 1 ml unverarbeitetes Vollknochenmark je Vertiefung in 3 ml MSZ-Medium (siehe 2.1.6.1) ausplattiert. Das gesammelte Fett wurde entsprechend der Menge auf 3-6 Vertiefungen der 6er Flachbodenplatte aufgeteilt und mit 3 ml MSZ-Medium (siehe 2.1.6.1) überschichtet. Nach 24 Stunden wurde das Medium vollständig ausgetauscht und nicht adhärent wachsende und tote Zellen durch mehrfaches Waschen mit PBS aus der Kultur entfernen. Das Zellkulturmedium wurden anschließend alle 3-4 Tage zu 50 % ausgetauscht. Erste Kolonien mesenchymal-artiger Zellen fanden sich nach 7-14 Tagen (modifiziert nach Doucet *et al.*, 2005).

Eine weitere Steigerung der Effizienz bei der Isolierung und Anzucht von mesenchymalen Zellen aus dem Knochenmark oder anderen Zellquellen kann durch die Verwendung von EGM-2 Medium innerhalb der ersten 24 Stunden nach Aussaht erreicht werden. Die Anschließende Kultivierung der MSZ findet in MSZ-Medium statt.

2.2.1.5. Gewinnung von arteriellen und venösen MSZ aus der Nabelschnur

Zur Anzucht von humanen MSZ aus der Arterie und Vene wurden Nabelschnüre verwendet. Die Nabelschnur wurde vor der Verarbeitung in PBS mit 0,1 % BSA und 2 mM EDTA für maximal 24 Stunden gelagert. Metallkanülen wurden in die Vene und Arterien eingeführt und vor der Präparation zweimal mit warmen PBS durchspült, um restliches Blut zu entfernen. Die Nabelschnur wurde anschließend in Stücke von etwa 5 cm Länge zugeschnitten, Metallkanülen in Vene und Arterien eingeführt und mit Skalpell und Pinzette umliegendes Gewebe von den Gefäßen entfernt. Präparierte Venen und Arterien wurden in Stücke von etwa 2-3 mm Größe zugeschnitten und jeweils 5 Gefäßfragmente pro Vertiefung einer 6er Flachbodenplatte mit ausreichend Abstand voneinander auf das trockene Plastik überführt. Die Platten wurden anschließend für 5-10 Minuten im Luftzug der Sterilbank mit geöffnetem Deckel stehen gelassen. Anschließend wurden die angetrockneten Gefäßfragmente mit 3 ml MSZ-Medium (siehe 2.1.6.1) überschichtet. Das Zellkulturmedium wurden alle 3-4 Tage zu 50 % ausgetauscht und abgelöste Gefäßfragmente aus der Vertiefung entfernt. Erste Kolonien mesenchymal-artiger Zellen konnten nach 10-14 Tagen beobachtet werden (modifiziert nach Reinisch und Strunk, 2009).

2.2.1.6. Gewinnung von MSZ und endothelialen Vorläuferzellen aus der Plazenta

Die Anzucht von humanen MSZ und endothelialen Vorläuferzellen aus der Plazenta erfolgte in Kooperation mit dem Institut für Medizinische Biotechnologie unter der Leitung von Prof. Dr. E. Winterhager. Die Plazenten gesunder Spender wurden von der Klinik für Frauenheilkunde und Geburtshilfe unter der Leitung von Prof. Dr. Rainer Kimmig zur Verfügung gestellt und bis zur Verarbeitung in 4°C in PBS versetzt mit 1500 U/I Heparin und 100 U/ml Penicillin/Streptamycin gelagert. Der Amnionsack sowie Großteile der maternalen Plazenta (Dezidua) wurden vor der Gewinnung der Zellen entfernt. Die Nabelschnur wurde auf eine Länge von 3-4 cm gekürzt und für die Perfusion der plazentalen Gefäße eine Kanüle in die Vene der Nabelschnur eingeführt. Während der Perfusion der Plazenta mit 6 ml / min, auf 37°C vorgewärmtem PBS wurden verbleibende maternalen Gewebe aus den Kotyledonen (mit maternalem Blut gefüllte intervillöse Räume) entfernt und die Chorionzotten (stark vaskularisierte, fingerförmige Ausstülpungen) freigelegt. Verbleibende hämatopoetische Zellen wurde durch erneute Perfusion mit 21 DMEM Basalmedium entfernt.

Zur Gewinnung der MSCs und endothelialen Vorläuferzellen wurde die Plazenta mit 600 ml DMEM, 0,125 % Trypsin und 0,1 g/l Collagenase perfundiert und der Durchlauf zur Inhibition des enzymatischen Verdaus mit 10 % FBS versetzt. Die isolierten Zellen wurden bei 900 x g für 5 min sedimentiert und die MNZ mit Hilfe eines Ficoll-Gradienten isoliert. Für die Anzucht der Stromazellen wurden die MNZ in dem Zelltyp-spezifischen Medium aufgenommen, in 6er Flachbodenplatten überführt und alle nicht adhärenten Zellen nach 24 Stunden durch mehrfaches Waschen mit PBS entfernt.

2.2.1.7. Gewinnung von humanen endothelialen koloniebildenden Vorläuferzellen

Zur Gewinnung humaner endothelialer koloniebildender Vorläuferzellen wurde die MNZ Fraktion des Nabelschnurrestblutes entsprechend der vorhergehenden Anleitung aufgearbeitet
(siehe 2.2.1.3). Aufgearbeitete Nabelschnurblut-MNZ wurden in zuvor mit Kollagen-Typ4 beschichtete 6er Flachbodenplatten mit einer Dichte von $2x10^6$ MNZ je Vertiefung in 3 ml EGM2-Medium (siehe 2.1.6.1) ausplattiert. Nach 24 Stunden wurde das Medium vollständig ausgetauscht, um nicht adhärent wachsende und tote Zellen aus der Kultur zu entfernen. Das Zellkulturmedium wurde alle 3-4 Tage zu 50 % ausgetauscht. Bei 60 % der verwendeten Nabelschnurrestblute konnten erste Kolonien endothelial-artiger Zellen nach 10-14 Tagen beobachtet werden. Aufgrund ihrer koloniebildenden Eigenschaft werden diese Zellen endotheliale koloniebildende Zellen ("*endothelial colony forming cells*" = ECFCs) genannt (Ingram *et al.*, 2004).

2.2.1.8. Gewinnung von humanen Nabelschnurvenen-Endothelzellen

Zur Anzucht von humanen Nabelschnurvenen-Endothelzellen (*"human umbilical vein endothelial cells*" = HUVECs) wurde die Vene frischer Nabelschnüre zweimal mit warmem PBS gewaschen, um restliches Blut zu entfernen. Die Vene wurde anschließend einseitig verschlossen, mit 1-fach konzentrierter Trypsinlösung aufgefüllt und für 20 min bei 37°C inkubiert. Die Trypsin-Zellsuspension wurde in einem 50 ml Spitzbodengefäß aufgefangen, die Reaktion mit EGM-2 Medium (siehe 2.1.6.1) gestoppt und die Zellen bei 900 x g für 5 min zentrifugiert. Die pelletierten Zellen wurden anschließend in die Vertiefung einer 6er Flachbodenplatte in 3 ml EGM-2 Medium überführt. Nach 24 Stunden wurde das Medium vollständig ausgetauscht, um nicht adhärent wachsende und tote Zellen aus der Kultur zu entfernen. Das Zellkulturmedium wurde alle 3-4 Tage zu 50 % ausgetauscht. Erste Kolonien endothelial-artiger Zellen waren nach 10-14 Tagen zu erkennen (Denecke *et al.*, 2013).

2.2.1.9. Kultivierung von Stromazellen

Primäre humane Stromazellen (MSZ, ECFC, HUVEC) sowie Zellen humaner/muriner Stromazelllinien (HEK293T, AFT024, OP9, MS5) wurden in den jeweiligen Zelltypspezifischen Medien (siehe 2.1.6.1) bis zu einer Konfluenz von 80-90 % kultiviert. Zur Ernte der Zellen wurde das Medium vollständig entfernt, die Zellen mit Trypsin-EDTA überschichtet und für 5 min bei RT inkubiert. Zum Abstoppen der Reaktion wurde die Zellsuspension in geeignete Spitzbodengefäße mit frischem Medium überführt und für 5 min bei 900 x g zentrifugiert. Pelletierte Zellen wurden anschließend erneut in geeigneten Zellkulturgefäßen mit frischem Medium ausplattiert. Primäre Stromazellen wurden maximal im Verhältnis 1:5 gesplittet, wohingegen Zellen humane und murine Stromazelllinien 1:8 bis 1:10 gesplittet wurden.

2.2.1. Funktionelle Analysen hämatopoetischer Zellen

2.2.1.1. "*Colony-forming cell*" (CFC) Ansatz

Der CFC (colony forming cell) Ansatzes ermöglicht die Quantifizierung des Koloniebildungspotentials von HSVZ mit myeloischem und/oder erythrozytärem Differenzierungspotential (Pike und Robinson, 1970; Moore et al., 1973). Damit zu analysierende Zellen in dem Ansatz Kolonien bilden können, wurden sie in semisolides Methylcellulose-haltiges H4434-Medium (StemCell Technologies) ausgebracht, welches die Bewegung der sich teilenden und ausdifferenzierenden Zellen einschränkt. Die Aussaat der zu analysierenden Zellen erfolgte zudem in sehr geringer Dichte, was eine klonale Analyse der Ausgangszellen ermöglichte. Zur Induktion der Proliferation und Differenzierung in Granulozyten (Neutrophile, Eosinophile, Basophile), Makrophagen sowie erythrozytäre Zellen enthielt das H4434-Medium die Zytokine SCF, GM-CSF, IL-3 und Epo. Entsprechend des Differenzierungspotentials der Ausgangszellen konnten nach 14 Tagen unterschiedliche Kolonietypen (CFU: colony forming unit) diskriminiert werden (Abb. 7): CFU-E (colony forming unit erythrocyte), BFU-E (burst forming unit-erythrocyte), CFU-GM (colony forming unit granulocyte-macrophage), CFU-G (colony forming unit granulocyte), CFU-M (colony forming unit macrophage) und CFU-MIX (colony forming unit granulocyte-erythrocytemacrophage-megakaryocyte).

Zur Analyse wurde eine definierte Zellzahl (entsprechend der Versuchsanordnung 100-300 Zellen) mittels durchflusszytometrischer Zellsortierung in 1 ml semisolidem Methylzellulosemedium (Methocult H4434 Classic, StemCell Technologies) abgelegt, für 10-20 Sekunden gründlich gemischt und jeweils zur Hälfte in zwei Vertiefung einer 24er Flachbodenplatte ausplattiert. Übrige Vertiefungen wurden mit PBS gefüllt, um die Austrocknung der Methylzellulose zu verhindern. Die Flachbodenplatten wurden bei 37°C, 5 % CO₂ inkubiert und entstandene Kolonien nach 14 Tagen am Mikroskop ausgewertet.

2.2.1.2. "Long-term culture-initiating cell" (LTC-IC) Ansatz

In dieser Arbeit wurde der LTC-IC (*Long-Term Culture-Initiating Cell*) Ansatz nach Punzel *et al.* verwendet (Punzel *et al.*, 1999b), der auf den ursprünglichen Vorarbeiten von Sutherland *et al.* beruht (Sutherland *et al.*, 1990). Dabei wurde von Sutherland *et al.* angenommen, dass primitive hämatopoetische Zellen ihre Fähigkeit zur Koloniebildung *in vitro* über einen Zeitraum von fünf Wochen erhalten können. Bereits determinierte Progenitorzellen ohne Stammzelleigenschaften hingegen differenzieren terminal innerhalb kurzer Zeit und können nach fünf Wochen keine Kolonien mehr bilden. Um den Erhalt der primitiven Zellen über fünf Wochen zu ermöglichen, wurden die zu analysierenden Zellen mit

undefinierten primären humanen Stromazellen aus dem Knochenmark kokultiviert (Sutherland *et al.*, 1990). Eine deutliche Verbesserung des Erhalts von Zellen mit LTC-IC Potential stellte die in unseren Versuchen für die Kokultivierung verwendete murinen Stromazelllinie AFT024 dar (Moore *et al.*, 1997; Punzel *et al.*, 1999a).

Innerhalb der ersten fünf Wochen des LTC-IC Ansatzes treten Kopfsteinpflaster-ähnliche Kolonien auf (CAFC; engl. *cobble-stone area forming cells*), die Ende der 80er Jahren und teilweise auch noch heute zur Quantifizierung primitiver Vorläuferzellen mit Langzeitpotential herangezogen werden (Ploemacher *et al.*, 1989). Da jedoch nicht zwangsläufig alle CAFC Kolonien primitive Vorläuferzellen enthalten, wurde nach den fünf Wochen das Koloniebildungspotential der CAFC-Zellen im CFC Ansatz ermittelt. Dabei brachten Zellen mit LTC-IC Potential im CFC Ansatz (sekundäre) myeloische/granulozytäre Kolonien hervor, die mikroskopisch quantifiziert wurden (Hao *et al.*, 1996).

Für die Durchführung des LTC-IC Ansatzes wurden 11 von 12 Reihen einer 96er Flachbodenplatte mit 0,1 % Gelatine beschichtet. Anschließend wurden jeweils $1,5x10^4$ AFT024-Zellen je Vertiefung ausplattiert und bis zur vollständigen Konfluenz bei 33° C, 5 % CO₂ kultiviert. Um weiteres Wachstum der Zellen zu verhindern, wurden die Zellen mit 35 Gy bestrahlt und frühestens nach 24 Stunden für den LTC-IC verwendet.

Zur Quantifizierung der Zellen mit LTC-IC Potential wurden die zu analysierenden Zellen in vier verschiedene Verdünnungen und je 22 Replikaten angesetzt. Ausgehend von initial 6000 Zellen befinden sich somit absteigend 180, 61, 22 bzw. 7 Zellen je Vertiefung. Der Ansatz wurde für 5 Wochen bei 37°C, 5 % CO₂ kultiviert und das Medium wöchentlich gewechselt. Hierzu wurden 80 µl Medium je Vertiefung abgenommen und um die beständigen Verdunstung auszugleichen durch 100 µl frisches Medium ersetzt. Nach der fünfwöchigen Kokultur wurde das Medium nahezu vollständig abgenommen, die Zellen mit 100 µl GEMM-Medium (siehe 2.1.6.2) je Vertiefung überschichtet und weitere 14 Tage bei 37°C, 5 % CO2 inkubiert. Nach Ablauf der zwei Wochen wurden die Anzahl der Vertiefungen mit sekundären myeloischen Kolonien bestimmt und die Frequenz der LTC-IC fähigen Zellen anhand der zuvor definierten Verdünnungsreihe mittels Poisson-Statistik (Software L-Calc, Stemcell Technologies) ermittelt.

2.2.1.3. "Natural killer cell-initiating cell" (NK-IC) Ansatz

Zur Quantifizierung primitiver HSVZ mit NK-Zell Differenzierungspotential wurde der NK-IC Ansatz nach Punzel *et al.* verwendet (Punzel *et al.*, 1999b), welcher an den abgewandelten LTC-IC Ansatz von Miller *et al.* angelehnt wurde (Miller *et al.*, 1992). Die Induktion der NK-Zell Differenzierung erfolgte in der ersten Woche mit Hilfe der

Wachstumsfaktoren IL-2 (Interleukin-2), IL-7, IL-15, SCF und Flt3-L sowie dem Zusatz von humanem AB-Serum. Die Wachstumsfaktoren SCF sowie Flt3-L wirken proliferationsfördernd wohingegen IL-2, IL-7 sowie IL-15 die Reifung von NK-, T- und B-Zellen sowie Monozyten und Makrophagen stimulieren. Die restlichen vier Wochen fand die Reifung der NK-Zellen nur durch die Zugabe des Zytokins IL-2 statt.

In Analogie zum LTC-IC Ansatz wurden bestrahlte AFT024-Zellen auf 96er Flachbodenplatten vorbereitet, zu analysierende Zellen durchflusszytometrisch sortiert (maximal 6000 Zellen je Ansatz) und in vier verschiedenen Verdünnungen für 5 Wochen bei 37°C und 5 % CO₂ kokultiviert. Das Medium wurde wöchentlich gewechselt. Ab der zweiten Woche wurde dem Medium nur noch IL-2 zugesetzt. Es wurden 80 µl Medium je Vertiefung abgenommen und aufgrund der beständigen Verdunstung durch 100 µl frisches Medium ersetzt. Nach Ablauf der fünf Wochen wurden die Anzahl der Vertiefungen mit NK-Zell Kolonien bestimmt und die Frequenz der NK-IC fähigen Zellen wie zuvor beim LTC-IC bestimmt. NK-Zellen wurden zudem geerntet und durchflusszytometrisch auf die Expression der Oberflächenantigene CD16 und CD56 untersucht.

Zytotoxizitäts-Test und Aktivierung von NK-Zellen

Für den Zytotoxizitätstest und den Aktivierungstest wurden die Zellen aus dem NK-IC Ansatz geerntet und hieraus CD45⁺CD56⁺ NK-Zellen durchflusszytometrisch sortiert. K562 Zielzellen wurden mit dem grün fluoreszierenden Zellmembranfarbstoff PKH67 (Sigma-Aldrich, Taufenkirchen) nach den Vorgaben des Herstellers markiert und in unterschiedlichen Verhältnissen (1:2, 1:5, 1:10) mit den sortierten NK-Zellen kokultiviert. Zur Ermittlung des Aktivierungszustandes wurde der Kokultur zusätzlich der fluoreszenzmarkierte Antikörper CD107a im Verhältnis 1:25 zugesetzt. Nach 4 Stunden Inkubation bei 37°C und 5 % CO₂ wurden die Zellen geerntet und der Anteil toter Zielzellen (PKH67⁺PI⁺) und aktivierter NK-Zellen (CD56⁺CD107a⁺) durchflusszytometrisch bestimmt.

2.2.1.4. Megakaryozytärer-Flüssigkultur Differenzierungsansatz

Der Megakaryozyten-Flüssigkulturansatz ist vom MegaCult Ansatz der Firma StemCell Technologies abgeleitet, welcher auf den Protokollen zur *in vitro* Generierung von Megakaryozyten und Thrombozyten basiert (Bruno *et al.*, 1988; Teramura *et al.*, 1992; Banu *et al.*, 1995; Boyer *et al.*, 2008). Der MegaCult[®] Ansatz wurde in Analogie zum CFC Ansatz in semisolidem Medium mit Collagen durchgeführt und ermöglicht die Quantifizierung und klonale Analyse koloniebildender Zellen mit Megakaryozytenpotential. Der von uns

Material und Methoden

abgewandelte Megakaryozytenansatz fand in Flüssigkultur statt und ermöglichte nach der Differenzierung die durchflusszytometrische Analyse und Quantifizierung der Zellen.

Die Induktion der megakaryozytären Differenzierung erfolgte durch den Zusatz der Zytokine TPO, IL-3 und IL-6 sowie dem Hormon Insulin und dem Glykoprotein Transferrin (Bruno *et al.*, 2003). Neben der proliferationsfördernden Wirkung der Zytokine TPO, IL-3 und IL-6 auf HSVZ (Kollet *et al.*, 1999) wird TPO als wichtigster Faktor zur megakaryozytären Differenzierung und anschließenden Abschnürung von Thrombozyten beschrieben (Bruno *et al.*, 1988; Banu *et al.*, 1995)

Für den Differenzierungsansatz wurden zu analysierenden Zellen durchflusszytometrisch sortiert und im Doppelansatz in vier Verdünnungen (1000, 2000, 4000, 8000 Zellen je Vertiefung) auf eine 96er Flachbodenplatte in Megakaryozyten Differenzierungsmedium (siehe 2.1.6.2) ausplattiert. Das Medium wurde alle 3-4 Tage zu 50 % ausgetauscht. Megakaryozytäre Zellen wurden nach 14 Tagen durchflusszytometrisch auf die Expression der Oberflächenantigene CD41 und CD61 analysiert und quantifiziert (Flow-Count *Fluorospheres*, Beckman Coulter).

2.2.1.5. Erythrozytärer Flüssigkultur Differenzierungsansatz

Die Durchführung des erythrozytären Flüssigkultur Differenzierungsansatzes erfolgte in Analogie zu dem Zwei-Phasen Flüssigkultur Differenzierungsansatz nach Dorn *et al.* (Dorn *et al.*, 2008). In der ersten Phase (7 Tage) wurde die Proliferation der Zellen durch die Zugabe der Zytokine SCF, IGF-I und EPO, dem Glykoprotein Transferrin sowie dem Hormon Insulin induziert. SCF und Transferrin unterstützen die Proliferation erythrozytärer Vorläuferzellen, wobei sie die terminale Differenzierung der Zellen blockieren. Epo hingegen wirkt stimulierend auf die Hämoglobinsynthese, unterdrückt die Apoptose und leitet die terminale Differenzierung der Zellen ein. Die terminale Differenzierung wird zudem durch Insulin in Kombination mit IGF-1 unterstützt, das die Kondensation der DNA und die Enukleation einleitet (Muta *et al.*, 1994; von Lindern *et al.*, 1999; Miyagawa *et al.*, 2000; Dolznig *et al.*, 2002). In der zweiten Phase (7 Tage) des Ansatzes wurde auf die Zugabe von SCF, IGF-1 sowie Insulin verzichtet.

Zu analysierenden Zellen wurden durchflusszytometrisch sortiert und in Analogie zum megakaryozytären Differenzierungsansatz in einer Verdünnungsreihe in Erythrozyten Differenzierungsmedium (siehe 2.1.6.2) ausplattiert. Das Medium wurde alle 3-4 Tage zu 50 % ausgetauscht. Die Auswertung des Differenzierungsansatzes und die Quantifizierung

der differenzierten Zellen erfolgte durchflusszytometrisch anhand der Oberflächenantigen CD45, CD71 und GPA.

2.2.1.6. T-Zell Differenzierungsansatz

Die Differenzierung von HSVZ in T-Zellen erfolgte in Analogie zu den Arbeiten von Schmitt *et al.* (Schmitt und Zuniga-Pflucker, 2002) und La Motte-Mohs *et al.* (La Motte-Mohs *et al.*, 2005). Hierzu wurden zu analysierenden HSVZ für 4-7 Wochen mit Zellen der murinen Stromazelllinie OP9, die ektop den Notch-Liganden Delta-like 1 exprimieren (OP9-DL1), kokultiviert. Der Notch-Ligand wird *in vivo* von den Zellen des Thymus (Thymozyten) exprimiert, dem Ort der finalen T-Zell Reifung. Die Aktivierung des Notch-Signalweges spielt bei der initialen Entscheidung zwischen B- oder T-Zell Differenzierung (Radtke *et al.*, 2002; Pear und Radtke, 2003) sowie der späteren Entwicklung zu regulatorischen (CD4⁺) oder zytotoxischen (CD8⁺) T-Zellen (Robey *et al.*, 1996) eine entscheidende Rolle. Die *in vitro* Differenzierung der Zellen wurde zusätzlich durch die Zugabe der Zytokine SCF, Flt3-L sowie IL-7 unterstützt (Wang *et al.*, 2006). Dabei stimulierten SCF und Flt3-L synergistisch die Proliferation primitiver Vorläuferzellen, wohingegen IL-7, das von Thymozyten gebildet wird, die Differenzierung der HSVZ zu B- bzw. T-Zellen fördert (Chazen *et al.*, 1989).

Für die Analysen wurden zuvor 1×10^5 OP9-DL1 Zellen auf 24er Flachbodenplatten ausgesät und bis zur vollständigen Konfluenz kultiviert. Die zu analysierenden Zellen (4×10^3 bis 1×10^4 Zellen je Vertiefung) wurden durchflusszytometrisch sortiert und für 3-5 Wochen im T-Zell Differenzierungsmedium (siehe 2.1.6.2) kokultiviert. Das Medium wurde alle 3-4 Tage zu 50 % ausgetauscht. Der Verlauf der *in vitro* T-Zell Differenzierung wurde durchflusszytometrisch anhand der Oberflächen-Expression unterschiedlicher Lymphozyten-Vorläufermarker (CD5, CD7, etc.) sowie der T-Zell-spezifischen Oberflächenantigene CD3, CD4 und CD8 verfolgt (Awong *et al.*, 2009). Aus der Zellsuspension wurden zudem mittels durchflusszytometrischer Zellsortierung CD3 und CD8 exprimierende Zellen für PCR-Analysen des VDJ-*Rearrangements* isoliert.

2.2.1.7. B-Zell Differenzierungsansatz

Die B-Zell Differenzierung von HSVZ erfolgte in Analogie zu den Arbeiten von Sanchez-Dominguez et al. (Sanchez-Dominguez *et al.*, 2012). Die zu analysierenden HSVZ wurden für 3 Wochen mit OP9 Stromazellen, die die B-Zell Differenzierung unterstützen, kokultiviert (Hozumi *et al.*, 2003; Lagergren *et al.*, 2007). Die Induktion der B-Zell Differenzierung erfolgte zusätzlich durch die Zugabe der Zytokine SCF, Flt3-L, TPO sowie IL-7, wobei nach der ersten Woche auf TPO verzichtet wurde. Wie bereits zuvor für den T-Zell Ansatz beschrieben (siehe 3.11.3), fördern SCF und Flt3-L synergistisch die Proliferation der HSVZ, wohingegen IL-7 die Differenzierung der Zellen in B- bzw. T-Zellen stimuliert (Chazen *et al.*, 1989).

Für die Differenzierung wurden 1×10^5 OP9 Zellen auf einer 24er Flachbodenplatte ausgesät und bis zur vollständigen Konfluenz bei 37 °C und 5 % CO₂ kultiviert. Jeweils 1×10^4 hämatopoetische Zellen wurden je Vertiefung durchflusszytometrisch sortiert und im B-Zell Differenzierungsmedium (siehe 2.1.6.2) kokultiviert. Das Medium wurde wöchentlich zu 50 % ausgetauscht. Die Quantifizierung und Charakterisierung der B-Zellen erfolgte nach drei Wochen durchflusszytometrisch anhand der Expression B-Zell-spezifischer Oberflächenantigene und Lymphozyten-Vorläufermarker wie z.B. CD7, CD10, CD19 etc. (LeBien und Tedder, 2008).

2.2.1.8. Qualitative Analyse von Zellen im Zytospin

Für die qualitative Analyse einzelner Kolonien aus dem CFC Ansatz wurden die Zellen unter dem Mikroskop mit Hilfe einer Pipette aus der Methylcellulose entnommen. Die Zellen wurden in PBS resuspendiert und residuale Methylcellulose durch zweimaliges Waschen mit EDTA-haltigem (2 mM) PBS herausgewaschen. Für die Analyse von Zellen aus dem LTC-IC, NK-IC, Erythrozyten und Megakaryozyten Ansatz wurden die Suspensionszellen aus den Flachbodenplatten geerntet und mit PBS gewaschen. Die Zellen wurden anschließend mittels Zytospin auf Objektträger aufgebracht und mit Eosin-Methylenblau nach Wright gefärbt (Hematek 2000 Slide Stainer mit Hematek Stain Pak, Modified Wright's Stain, Baver Healthcare). Die Färbetechnik ermöglicht die Unterscheidung verschiedener hämatopoetischer Zellqualitäten durch die spezifische Anfärbung von Kerndetails und zytoplasmatischen Strukturen. So binden z.B. die Granula der eosinophilen Granulozyten den Farbstoff Eosin und erscheinen orange-rötlich wohingegen basophile Granula den Farbstoff Methylenblau binden und bläulich-violett gefärbt werden. Die Granula der neutrophilen Granulozyten binden keinen der beiden Farbstoffe.

2.2.2. Funktionelle Analysen endothelialer Vorläuferzellen

In der Literatur beschriebene Charakteristika endothelialer Vorläuferzellen sind die Internalisierung von acetyliertem low-density Lipoprotein (AcLDL) (Havekes *et al.*, 1985) sowie die Bildung tubulärer Strukturen im Matrigel (Ponce, 2009).

Aufnahme von AcLDL

Endotheliale Vorläuferzellen wurden mit 10 μ g/ml fluoreszenzmarkiertem lipophilem DiI (1,1'-Dioctadecyl1-3,3,33',3'-Tetramethylindocarbocyanin) acLDL in EGM-2 für 1 Stunden bei 37°C und 5 % CO2 inkubiert. Überschüssiges DiI acLDL wurde durch zweifaches Waschen mit Medium von den Zellen entfernt und die Aufnahme des DiI acLDL mikroskopisch dokumentiert.

Bildung tubulärer Strukturen im Matrigel

Für die Bildung tubulärer Strukturen endothelialer Vorläuferzellen wurde BD MatrigelTM verwendet. Es enthält neben Matrigel aus einem mit extrazellulären Matrixproteinen angereicherten Tumor, dem Engelbreth-Holm-Swarm (EHS) Maussarkom, (Kleinman *et al.*, 1982) die Matrixproteine Laminin, Kollagen IV, Entactin und Heparansulfat-Proteoglykane sowie die Wachstumsfaktoren bFGF (0-0,1 pg/ml), EGF (0,5-1,3 ng/ml), IFG-1 (15 pg/ml), PDGF (12 pg/ml) und TGF- β (2,3 ng/ml). Für die Analysen wurden je Vertiefung einer 96er Flachbodenplatte 90 µl Matrigel luftblasenfrei vorgelegt, für 30 min bei 37°C zur vollständigen Aushärtung inkubiert und anschließend mit 4x10⁴ endothelialen Vorläuferzellen in 90 µl EGM-2 Medium überschichtet. Der Ansatz wurde für 15 Stunden bei 37°C und 5 % CO₂ über Nacht inkubiert und die tubulären Strukturen mikroskopisch dokumentiert.

2.2.3. Funktionelle Analysen mesenchymaler Stamm-/Stromazellen

In der Literatur beschriebene Charakteristika mesenchymaler Stamm-/Stromazellen sind u.a. die Fähigkeit zur Differenzierung in Osteoblasten, Adipozyten und Chondrozyten (Pittenger *et al.*, 1999). Nachfolgende Differenzierungsprotokolle für mesenchymale Stamm-/Stromazellen wurden entsprechend unserer Publikation Hemeda *et al.* durchgeführt (Hemeda *et al.*, 2010).

Osteogene Differenzierung von MSZ

Für die osteogene Differenzierung wurden $4x10^4$ MSZ je Vertiefung einer 12er Flachbodenplatte ausgesät und bis zu einer Konfluenz von 70-80 % bei 37°C und 5 % CO₂ in MSZ-Medium (siehe 2.1.6.1) kultiviert. Zur Induktion der Differenzierung wurde das MSZ-Medium durch Osteogenese-induzierendes Medium (siehe 2.1.6.3) ersetzt und alle 3-4 Tage zu 50 % ausgetauscht. Nach 14 Tagen wurden das Medium vollständig entfernt und die Zellen mit einer 4 %igen (v/v) Para-Formaldehyd (PFA) Lösung für 5 min bei RT fixiert. Die Calcium-haltige Knochenmatrix wurde anschließend mit 1 ml einer 2 %igen (w/v) Alizarin Rot Färbelösung (pH 4,1-4,3) für 2 min bei RT angefärbt. Überschüssige Färbelösung wurde durch 2-3faches Waschen mit PBS entfernt.

Adipogene Differenzierung von MSZ

Die adipogene Differenzierung von MSZ fand in Analogie zur osteogenen Differenzierung (siehe 0) statt. Für die adipogene Differenzierung der MSZ wurde innerhalb der ersten 4 Tage Adipogenese-induzierendes Medium (siehe 2.1.6.3) verwendet und anschließend gegen Adipogenese-erhaltendes Medium (siehe 2.1.6.3) ausgetauscht. Zum Nachweis der Triglyceride in den Vesikeln der Adipozyten wurde eine 0,5 %ige Ölrot O Isopropanol Färbelösung hergestellt, im Verhältnis 1:5 mit H₂O gemischt und Präzipitate über einen Faltenfilter aus der verdünnten Gebrauchslösung entfernt. Differenzierungsansätze wurden mit je 1 ml Färbelösung für 2 min bei RT angefärbt. Überschüssige Färbelösung wurde durch 2-3faches Waschen mit PBS entfernt.

Chondrogene Differenzierung von MSZ

Für die chondrogene Differenzierung wurden 2.5×10^5 MSZ in 2 ml Medium in einem 15 ml Spitzbodenröhrchen für 5 min bei 1000 rpm zentrifugiert. Der Überstand wurde vollständig abgenommen und ohne Resuspendieren der Zellen durch 2 ml Chondrogenese-induzierendes Medium (siehe 2.1.6.3) ersetzt. Zur ausreichenden Belüftung wurde der Deckel des 15 ml Spitzbodenröhrchens durch den Deckel einer 25 cm² Zellkulturflasche mit Filter ersetzt. Das Medium wurde alle 3-4 Tage zu 50 % ausgetauscht. Nach 3 Wochen wurde das Zellpelett in Tissue-Tek Medium (Sakura Finetek, Torrance, USA) überführt, auf Trockeneis eingefroren, mit Hilfe eines Cryostat (CM 1950 UV, Leica, Wetzlar, Deutschland) in 12 µm dicke Scheiben geschnitten und auf Glasobjektträger überführt. Die Anfertigung der Kryoschnitte erfolgte in Kooperation mit der Arbeitsgruppe von PD. Dr. med. Thorsten Döppner aus der Neurologie. Die Kryoschnitte wurden für 30 min mit einer 4 %igen (v/v) PFA Lösung bei RT fixiert und sulfatierte Proteoglykane in der Knorpelmatrix mit einer 1 %igen Alcian Blue Färbelösung in 0,1 N HCl für 30 min bei RT angefärbt. Überschüssige Färbelösung wurden durch 3faches Waschen mit 0,1 N HCL Lösung entfernt, Präparate mit 50 µl Vectashield H-1000 (Vector Laboratories, Burlingame, USA) überschichtet, mit einem Deckgläschen bedeckt und mikroskopisch dokumentiert.

2.2.4. Immunzytochemische Analysen

Extrazelluläre Markierung mit Fluorchrom-markierten Antikörpern

Die extrazelluläre Markierung von Zellen mit fluorochrommarkierten Antikörpern erfolgte in Anwesenheit von 5 % (v/v) Eselserum. Alle verwendeten Antikörper (siehe Tab. 9) wurden bei einer Verdünnung von 1:25 (Stocklösung 1 μ g/ml) für 20 min bei 4°C in Dunkelheit inkubiert. Überschüssiger Antikörper wurde durch Waschen mit PBS aus dem Färbeansatz entfernt. Zum Ausschluss toter Zellen wurde für durchflusszytometrische Messungen am FC500 (Beckman Coulter) Propidium Jodid (PI) im Verhältnis 1:25 während der Antikörperinkubation eingesetzt. Für die durchflusszytometrische Zellsortierung wurde der Zellsuspension der Farbstoff 4',6-diamidino-2-phenylindole (DAPI) mit einer Endkonzentration von 0,1 μ g/ml kurz vor der Messung zugesetzt. Beide Farbstoffe interkalieren in die DNA nekrotischer Zellen und ermöglichen den Ausschluss der Zellen bei der durchflusszytometrischen Messung.

Intrazelluläre Markierung mit unkonjugierten Antikörpern

Für die intrazelluläre Markierung von Zellen (hier endothelialen Vorläuferzellen) mit unkonjugierten und konjugierten Antikörpern wurden adhärent wachsende Zellen zuvor auf geeigneten Kammer-Objektträgern (Thermo Electron LED GmbH; Lab-Tek, Langenselbold, Deutschland) bis zu einer Konfluenz von 50-80 % kultiviert. Die Zellen wurden mit 4 % (v/v) PFA für 20 min bei RT fixiert und nach 2 bis 3-fachem Waschen mit PBS für 30-45 min auf dem Taumler mit 0,1 % (v/v) Triton X-100 (Sigma-Aldrich) permeabilisiert. Zur Absättigung unspezifischer Bindestellen wurden die Zellen mit 5 % Eselserum in PBS für 10 min inkubiert, der primäre unkonjugierte bzw. konjugierte Antikkörper (Tab. 10 und Tab. 11) zugegeben und für 30-60 min bei RT auf dem Taumler inkubiert. Überschüssiger Antiköper wurde mit 0,01 % Triton X-100 in PBS (Waschtriton) entfernt und falls ein unkonjugierter Primärantikörper verwendet wurde der sekundäre, fluorochromkonjugierte Antikörper in Waschtriton für 1 h bei RT auf dem Taumler inkubiert. Überschüssiger Sekundärantikörper wurden durch 2 bis 3-faches Waschen mit Waschtriton ausgewaschen, die Kammern mit einem Skalpell vom Objektträger gelöst und die zuvor getrockneten Zellen mit 25 µl DAPI-haltigem Eindeckelmedium (ProLong Antifade Gold, Invitrogen, Life Technologies GmbH, Darmstadt, Deutschland) und einem Glasdeckglas für die Mikroskopie bedeckt.

2.2.5. Kokultivierung von HSVZ mit Stromazellen

Für die Kokulturen wurden $2,4x10^3$ primäre humane Stromazellen je Vertiefung (800 Zellen / cm²) einer 12er Flachbodenplatte in dem Zelltyp-spezifischem Medium (siehe 2.1.6.1) ausgesät und bei 37°C und 5 % CO₂ kultiviert. Bei einer Konfluenz der Stromazellen von 40-50 % wurde das Kulturmedium vollständig abgenommen und je Vertiefung 1000 durchflusszytometrisch sortierte CD133⁺CD34⁺ Zellen in 1 ml des entsprechenden Kokulturmediums (siehe 2.1.6.1) ausgesät. Nach sieben Tagen wurden 500µl des Kulturüberstandes abgenommen, verworfen und 1 ml frisches Kokulturmedium zugesetzt. Nach weiteren sieben Tagen wurden die hämatopoetischen Zellen geerntet. Die Kokulturproben wurden mit PBS auf das gleiche Volumen eingestellt, 50 µl der Zellsuspension entnommen und die hämatopoetischen Zellen hinsichtlich der Expression der

Oberflächenantigene CD34, CD38, CD45RA und CD133 durchflusszytometrisch analysiert inklusive Quantifizierung. Aus der verbleibenden Zellsuspension wurde mit Hilfe der CD133⁺CD34⁺ CD133^{low}CD34⁺ durchflusszytometrischen Zellsortierung die und in Zellpopulationen angereichert und funktionelle Analysen überführt. Die durchflusszytometrisch sortierte Zellzahl hängt im Einzelfall von der funktionellen Analyse sowie von der Anzahl verfügbarer Zellen ab und beträgt z.B. beim CFC Ansatz maximal 200-400 und beim LTC-IC und NK-IC Ansatz maximal 6000 Zellen.

2.2.6. Durchflusszytometrie

2.2.6.1. Prinzip der Durchflusszytometrie

Die Durchflusszytometrie ermöglicht die Analyse und Zählung von Zellen hinsichtlich ihrer molekularen und physikalischen Eigenschaften auf Einzelzellebene. Hierzu werden die Zellen durch eine Kapillare in das Gerät aufgesogen, in einem Flüssigkeitsstrom durch hydrodynamische Fokussierung vereinzelt und in eine Messkammer geleitet (Göhde, 1986). Innerhalb der Messkammer passieren die Einzelzellen einen durch eine Fokuslinse gebündelten Laserstrahl und erzeugen Streulicht, welches von Photoelektronenvervielfachern ("*Photomultiplier tube*" = PMT) detektiert und verstärkt wird. Das in der ursprünglichen Bahn des Laserstrahls gebeugte Licht (Vorwärtsstreulicht, "forward scatter" = FSC) dient als Maß für die Größe der Zelle, wohingegen das seitliche Streulicht ("*side scatter"* = SSC) als Maß für die Granularität einer Zelle dient. Zudem können mit Hilfe des Laserlichts verschiedene Fluoreszenzfarbstoffe wie z. B. GFP (green fluorescence protein) oder Fluorochrom-markierte Antikörper angeregt und gemessen werden. Dabei wird die Energie des Laserstrahls von dem Fluorochrom absorbiert und spezifische Elektronen werden kurzzeitig auf ein höheres Energieniveau angehoben. Die spontane Einnahme des Ausgangszustandes führt zu Emission von Fluoreszenzlicht einer höheren Wellenlänge, das mit Hilfe verschiedener optischer Filter und Spiegel aufgetrennt und von PMTs detektiert, verstärkt und quantifiziert wird. Zur Auftrennung des Fluoreszenzlichtes werden drei verschiedene Filtertypen verwendet. Der Langpass-Filter lässt langwelliges Licht bis zu einer definierten Wellenlänge passieren, wohingegen der Kurzpass-Filter langwelliges Licht reflektiert und kurzwelliges Licht passieren lässt. Eine Kombination aus beiden Filtern stellt der Bandpass-Filter dar, der nur Licht eines definierten Spektrums passieren lässt. Die Kombination verschiedener Laser mit unterschiedlichen Wellenlängen, sowie die Verwendung spezifischer Filter ermöglicht die gleichzeitig Auftrennung und Messung mehrere Fluoreszenzsignale. Das für Standardmessungen verwendete Durchflusszytometer FC500 der Firma Beckman Coulter ist mit einem blauen 488 nm Argon Laser sowie einem

33

roten 638 nm HeNe Laser ausgestattet und ermöglicht die gleichzeitige Messung von 5 unterschiedlichen Fluoreszenzen. Der für die durchflusszytometrische Sortierung verwendetet FACSAria I der Firma BD Biosciences ist mit einem zusätzlichen ultravioletten 405 nm Laser ausgestattet und ermöglicht in der vorliegenden Konfiguration die Messung von bis zu 9 verschiedenen Fluoreszenzen. Die simultane Messung mehrerer Fluoreszenzen erfordert die computergestützte Korrektur sich überlagernder Fluoreszenzspektren, was als Kompensation bezeichnet wird. Für die Kompensation wurden Zellen verwendet, die nur jeweils mit einem Fluorochrom gefärbt wurden (Traganos, 1984a, b; Alexander *et al.*, 2009; Pierzchalski *et al.*, 2011).

2.2.6.2. Durchflusszytometrische Zellsortierung

Mit Hilfe der durchflusszytometrischen Zellsortierung können spezifische Zellen unmittelbar nach der Messung physikalisch aufgetrennt und in separaten Gefäßen aufgefangen werden (Fulwyler, 1965; Hulett *et al.*, 1969). Hierzu wird der Flüssigkeitsstrahl hinter der Messeinheit piezoelektrisch bei einer definierten Frequenz (abhängig vom Durchmesser des Flüssigkeitsstrahls, hier 14 kHz) und Amplitude zum Schwingen angeregt, was am sogenannten Tropfenabrisspunkt (*last attached drop*) die Bildung von einzelnen Tropfen bewirkt. Erreicht eine zu separierende Zellen den Tropfenabrisspunkt, wird der gesamte Flüssigkeitsstrahl für kurze Zeit elektrisch geladen, so dass der abgelöste Tropfen mit der enthaltenden Zelle elektrisch geladen ist. Die Deflexion des Tropfens und somit die Separation der einzelnen Zelle findet anschließend im elektrischen Feld zwischen zwei Kondensorplatten (*deflection plates*) statt (Ibrahim und van den Engh, 2007). Die zu separierenden Zellen wurden in Polypropylen-Probenröhrchen mit 500 µl Zellkulturmedium gesammelt. Einzelne Zellen wurden in 96er Flachbodenplatten mit jeweils 150 µl vorgelegtem Zellkulturmedium pro Vertiefung abgelegt.

Die Grundeinstellungen des verwendeten Durchflusszytometers sind in Tab. 18 aufgelistet. Als Trägerflüssigkeit wurde steriles PBS (PAA) eingesetzt. Die Kalibrierung des optischen Systems, des Tropfenabrisspunktes und des *Drop delays* wurden mittels standardisierten Kalibrierungsbeads (BD FACS Accudrop Beads und BD Cytometer Setup & Tracking Beads, BD Biosciences) durchgeführt. Zur Vermeidung von Zellaggregaten und Verstopfungen im Gerät wurden alle Zellen vor der Messung durch ein steriles Zellsieb mit einer Porengröße von 35 µm filtriert. Der Erfolg und die Reinheit der Sortierung wurden durch erneutes Messen der sortierten Zellen überprüft und dokumentiert (Re-Analyse). Reanalysierte Zellen mit einer Reinheit unter 99 % wurden erneut sortiert. Die erhobenen Daten der Zellseparationsprozedur wurden computergestützt gespeichert und mit Hilfe der zugehörigen Software Diva 6.1.2 (BD) ausgewertet.

8								
Parameter	Justierung							
Nozzle-Öffnung	130 µm							
Probenflüssigkeitsdruck (psi)	10							
Transducer Frequenz (kHz)	14							
Gap	12							

Tab. 18 : Verwendete Geräteeinstellungen des Durchflusszytometers Aria I

2.2.7. Molekularbiologische Methoden

Falls nicht gesondert aufgeführt wurden alle angewendeten molekularbiologischen Methoden nach den Angaben aus Sambrook und Russel durchgeführt (Sambrook und Russell, 2001).

2.2.7.1. Bakterienkultur

Die Kultur von *E. Coli* erfolgte in Flüssigkulturmedium (LB-Broth, Roth) und auf Agar-Kulturplatten (LB-Agar, Roth). Die Bakterien wurden bei 37°C inkubiert. Den Medien bzw. Platten wurden für die Selektion mit verschiedenen Antibiotika (Ampicillin 100 μ g/ml, Kanamycin 50 μ g/ml) versetzt.

2.2.7.2. Herstellung chemokompetenter *E. coli*

Für die Herstellung chemokompetenter *E. coli* wurden 100 ml LB-Medium mit 1,5 ml einer Übernachtkultur angeimpft und bis zu einer OD_{600nm} von 0,4-0,5 bei 37°C auf dem Schüttler inkubiert. Die Zellen wurden für 10 min auf Eis gekühlt, bei 5000 x g und 4°C abzentrifugiert, der Überstand verworfen und die pelletierten Zellen in 40 ml TFB1-Puffer (30 mM Kalium-Accetat, 100 mM Rubidiumchlorid, 10 mM Calciumchlorid, 50 mM Manganchlorid, 15 % (v/v) Glycerin, pH 6,1) resuspendiert (Dagert und Ehrlich, 1979). Die Suspension wurde für 10-30 min auf Eis inkubiert, bei 5000 x g und 4°C für 5 min zentrifugiert, der Überstand verworfen und die Bakterien in 4 ml TFB2-Puffer (75 mM Calciumchlorid, 10 mM Rubidiumchlorid, 10 mM MOPS, 15 % (v/v) Glycerin, pH 6,5) auf Eis resuspendiert. Die Bakterien wurden zu je 100 µl aliquotiert, in flüssigem Stickstoff schockgefroren und bis zur Verwendung bei -80°C gelagert. Zur Ermittlung der Kompetenz der Bakterien wurden diese mit 1, 10 und 100 pg pUC19 Plasmid transformiert, die Anzahl der Kolonien nach 24-stündiger Inkubation auf den LB-Agarplatten gezählt und anschließend die Chemokompetenz der *E. coli* berechnet.

2.2.7.3. Transformation chemokompetenter *E. coli*

Für die Transformation chemokompetenter *E. coli* wurde ein Aliquot der Bakterien für 10 min auf Eis aufgetaut, mit 1-10 pg Plasmid versetzt und für 10 min auf Eis inkubiert. Die Zellen wurden anschließend für 1,5 min einem Hitzeschock bei 42°C ausgesetzt, erneut für 10 min auf Eis inkubiert, mit 500 µl vorgewärmten LB-Medium versetzt und für maximal 1 h bei 37°C auf dem Schüttler inkubiert (Chung *et al.*, 1989). 100-200 µl der vorinkubierten transformierten Bakterien wurden auf eine LB-Agar-Platte überführt, mit dem Drigalskispatel verteilt und die Platten ü. N. bei 37°C inkubiert.

2.2.7.4. Extraktion von Plasmid-DNA

Für die Extraktion von Plasmid-DNA im Mini-Maßstab wurden 4 ml LB-Medium angeimpft und bei 37°C ü.N. inkubiert. Am Folgetag wurde 1,5 ml der Kultur in 1,5 ml Reaktionsgefäße überführt und die Bakterien für 1 min bei 10.000 x g pelletiert. Das Pellet wurde in 200 µl TELT-Puffer (1 M Tris pH 8.0, 0.5 M EDTA pH 8.0, 10 % Triton X-100, 3.2 M LiCl), welcher zuvor mit 50 mg/ml Lysozym und 20 mg/ml RNAse A versetzt wurde, resuspendiert, 5 min bei RT, 30 Sekunden bei 100°C und 5 min auf Eis inkubiert. Die Zelltrümmer wurden für 10 min bei 10.000 x g pelletiert und der Überstand in ein neues 1,5 ml Reaktionsgefäß überführt. Zur Fällung der DNA wurde die Suspension mit 200 µl Isopropanol (0,7 v/v) versetzt, durchmischt, für 15 min bei 15.000 x g die DNA pelletiert und der Überstand vorsichtig abgenommen und verworfen. Das DNA Pellet wurde mit 800 µl 70 %igem Ethanol gewaschen, für 5 min bei 15.000 x g zentrifugiert und der Überstand verworfen. Überschüssiger Ethanol wurde bei geöffnetem Gefäß für 2-3 min verdunsten gelassen und die DNA in 50 µl Wasser gelöst.

Zur Präparation von DNA im Maxi-Maßstab wurde das Endofree Plasmid Maxi Kit (Qiagen) nach Angaben des Herstellers verwendet.

2.2.7.5. Extraktion von Gesamt-RNA

Für die Extraktion von Gesamt-RNA wurde das RNeasy Mini Kit (Qiagen) gemäß den Angaben des Herstellers verwendet. Für die RNA-Extraktion wurden Zellen durchflusszytometrisch sortiert und in 1,5 ml Reaktionsgefäße überführt. Die Zellen wurden bei 10.000 x g für 1 min pelletiert, in 75 µl RLT-Puffer lysiert und auf eine Säule mit Siliziumdioxid-Membran überführt. Auf der Säule findet eine selektive Bindung der freigesetzten RNA an die Membran statt, wohingegen Zellfragmente die Säule in den nachfolgenden Waschvorgängen passieren. DNA-Moleküle wurden durch Behandlung der Säule mit DNAse nach Herstellerangaben eliminiert. Die RNA wurde mit 40 µl nukleasefreiem Wasser von der Säule eluiert, Konzentration und Reinheit photometrisch mit Hilfe des Spektralphotometers NanoDrop 1000 (PeqLab) bei OD280 bestimmt und bis zur weiteren Verwendung bei -80°C gelagert.

2.2.7.6. Reverse Transkription-Reaktion zur Synthese von cDNA

Die Synthese von cDNA aus einzelsträngiger RNA erfolgte mit Hilfe von reverser Transkriptase (RT) nach Anleitung des Herstellers (High Capacity cDNA Reverse Transcription Kit, Applied Biosystems) (Baltimore, 1970; Temin und Mizutani, 1970). Für die Synthese wurden zufällige Hexamernukleotide verwendet. Jeweils 10 µl RNA-Probe wurden mit dem 10 µl RT-Mastermix (2 µl 10x RT Puffer, 0.8µl 100 nM dNTP Mix, 2 µl 10x RT Random Primer, 1 l MultiScribe Reverse Transkriptase und 4.2 µl nukleasefreies Wasser) gemischt und nacheinander im Thermocycler für 10 min bei 25°C, 2 h bei 37°C und 5 min bei 85°C inkubiert. Die fertige cDNA Probe wurde mit 150 µl DNAse freiem Wasser (Sigma) verdünnt, damit residuale Reaktionsbestandteile nachfolgende Versuchsabläufe nicht beeinträchtigen.

2.2.7.7. Polymerase-Kettenreaktion (PCR)

Zur spezifische Amplifikation von DNA-Abschnitten aus cDNA oder Plasmid-DNA wurden 2 μ l 10x PCR-Puffer (enthält 15 mM MgCl₂, Qiagen), 0,5 μ l dNTP-Mix (je 5 mM, Fermentas), jeweils 0,5 μ l Primer (10 μ M), 1 U Taq Polymerase (Qiagen), 1 μ l Template (cDNA, Plasmid-DNA) gemischt und mit Wasser auf 20 μ l aufgefüllt. Je nach verwendetem Primersatz wurde die *Annealing*-Temperatur (58-61°C) der PCR-Reaktion angepasst. Die PCR-Reaktion wurde in einem Thermocycler (PCR System 9700) der Firma Applied Biosystems (Darmstadt) durchgeführt (Mullis *et al.*, 1986).

2.2.8. Lentivirale Transduktion von humanen Stromazellen

Für die lentivirale Transduktion von humanen Stromazellen wurde ein Vektorsystem der Arbeitsgruppe um Prof. Dr. Helmut Hanenberg (HNO, Universitätsklinikum Düsseldorf) verwendet.

2.2.8.1. Das lentivirale Plasmid-System

Für die Herstellung virushaltiger Zellkulturüberstände wurde ein Drei-Plasmid-System bestehend aus dem Vektor, einem Helferplasmid und einem Hüllplasmid verwendet. Die Vektoren pCL12 und pCL6 gehören zur Familie der Retroviren zählenden Lentiviren (humanes Immundefizienzvirus), wobei die Strukturgene (z. B. *gag, pol, env*) entfernt wurden und durch das separate Hüll- und Helferplasmid kodiert werden. Die Vektoren enthalten eine multiple Klonierungsstelle (*multiple cloning site*, MCS) sowie den SFFV-Promotor

(spleen focus-forming virus). Zudem kodiert der Vektor für ein Verpackungssignal Ψ , welches die Inkorporation viraler mRNA in neu gebildete virale Partikel ermöglicht, sowie LTRs (long terminal repeats), die die Integration in das Genom der Wirtszelle vermittelt. Eine Deletion in der U3-Region im 3'-LTR-Bereich der viralen Expressionskassette stellt zudem sicher, dass produzierte virale Partikel replikationsinkompetent sind, wodurch der Vektor zu den selbst-inaktivierenden (self-inactivating/SIN) Vektoren gehört (Leurs et al., 2003).

Das verwendete Helferplasmid pCD/NL-BH codiert für die lentiviralen Strukturgene *gag* (strukturellen Komponenten des Virus: Matrix-, Kapsid- und Nukleokapsidproteine) und *pol* (Enzyme des Virus: Protease, Integrase und reverse Transkriptase) sowie regulatorische Gene wie *vif, vpr, vpu, rev* und *tat* unter der Kontrolle des humanen CMV (Cytomegalie-Virus)-Promotors (Mochizuki *et al.*, 1998).

Als Hüllplasmid wurde der Vektor pcoPE01 verwendet, der für das foamyvirale (protypisches Foamyvirus) Hüllprotein unter der Kontrolle des CMV-Promotors kodiert (Heinkelein *et al.*, 1998). Der Einsatz eines foamyviralen Hüllproteins zur Pseudotypisierung der Viruspartikel bietet im Gegensatz zu den klassisch verwendeten Hüllproteinen, wie z. B. dem G-Protein des *Vesicular Stomatitis Virus* (VSV-G), vielfältige Vorteile. Das Hüllplasmid bietet einen breiten Wirts- und Gewebetropismus (Meiering und Linial, 2001). Zudem ermöglicht es aufgrund der Größe des Foamyvirus-Genoms von 13 kb große heterologe Gensequenzen zu verpacken und ohne eine Pathogenität bei Menschen zu verursachen (Yee *et al.*, 1994; Linial, 2000).

2.2.8.2. Verwendete Expressionsplasmide

In dieser Arbeit wurden die Expressionsplasmide pCL1-SVT sowie pCL6-tTRKRABcoIPwo, tTRKRABcoIHwo und tTRKRABcoINwo verwendet. Alle Plasmide wurden uns aus der Arbeitsgruppe von Prof. Dr. Helmut Hanenberg (HNO, Universitätsklinikum Düsseldorf) zur Verfügung gestellt.

In das pCL1-Plasmid wurde die kodierende Region des T-Antigens (TAg) des wildtypischen Simian Vacuolating Virus (SV40 large T) und dessen verkürzten Isoform small T über die Restriktionsschnittstellen BamHI in die MCS ligiert (Ahuja *et al.*, 2005). Vor den SFFV Promotor wurde zudem ein Tetrazyklin-Operator (TetO) ligiert, der die Expression des SV40 *large T* und *small T* regulierbar macht (Deuschle *et al.*, 1995).

Für das Plasmid pCL6-tTRKRABcoIPwo wurde der pCL6 Ausgangsvektor wie folgt modifiziert: Ein Fusionsprotein bestehend aus der Repressordomäne eines transkriptionellen Transrepressors (tTR), der Krüppel associated box (KRAB)-Domäne und dem TetrazyklinRepressor (TetR) wurde über die Restriktionsschnittstellen XhoI und BamHI in die MCS ligiert. Das Fusionsprotein wird zudem über eine IRES-Domäne mit der kodierenden Region für die Puromycin(P)/Hygromycin(H)/Neomycin(N)-Resistenz verbunden. Die Resistenz-Kassette wurde über die Restriktionsschnittstellen BamHI und BsrGI in die MCS des Vektors einligiert.

2.2.1. Herstellung virushaltiger Überstände

Zur Herstellung virushaltiger Überstände wurden jeweils 6x10⁶ HEK293T-Zellen auf zwei 175 cm² Zellkulturflaschen ausgesät und für zwei Tage bei 37°C und 5 % CO₂ inkubiert. Zur Transfektion der HEK293T-Zellen mit allen drei zuvor beschriebenen Plasmiden wurde die Transfektionsagenz Polyethylenimin (PEI, hochmolekular, Sigma Aldrich) verwendet, ein kationisches Polymer, welches Nukleinsäuren bindet, deren negative Ladung überdeckt und eine effizient Aufnahme der DNA-Polykationen-Komplexe in die Zielzellen ermöglicht (Boussif et al., 1995; Goula et al., 1998). Für die Transfektion wurden je Zellkulturflasche 135 µl PEI-Lösung (1 mg/ml) mit 12 ml serumfreiem Zellkulturmedium vermischt, die drei Plasmide zugegeben (40 µg Hüll- und Transferplasmid, 8 µg Hüllplasmid), erneut gut vermischt und anschließend bei RT für 30 min in Dunkelheit inkubiert. Die Transfektionslösung wurde in die Zellkulturflaschen überführt, mit 6 ml serumhaltigem Zellkulturmedium versetzt und ü. N. bei 37°C und 5 % CO2 inkubiert. Nach 12-18 Stunden wurde das Medium entfernt und durch 20 ml Natriumbutyrat-haltiges (Buttersäure Natriumsalz, Merck) Medium (DMEM 1,5 g/l Glucose, 10 % FBS, 10 mM Natriumbutyrat) ersetzt. Durch das Natriumbutyrat wird der CMV-Promoter der Plasmide induziert, wodurch ein bis zu zwölffach höherer Virustiter erreicht werden kann (Radsak et al., 1989; Tanaka et al., 1991; Leurs et al., 2003). Nach 6-8 Stunden wurde das Medium vollständig gegen 20 ml frisches Medium ausgetauscht. Die Ernte der virushaltigen Zellkulturüberstände erfolgte nach weiteren 18-22 Stunden Inkubation. Hierzu wurde der Überstand abgenommen, gesammelt, residuale Zellen durch einen 0,45 µm Filter (Minisart Filter 0,45 µm, Sartorius) entfernt und in aerosoldichten Polycarbonat-Zentrifigationsröhrchen (40 ml Oak Ridge tube, Nalgene) für 90 min bei 26.000 x g und 4°C zentrifugiert. Der Überstand wurde vorsichtig abgenommen, verworfen, die angereicherten Viruspartikel in 2 ml HEPES-gepuffertem Medium (20 % FBS in IMDM) resuspendiert, aliquotiert und bis zur Verwendung bei -80°C gelagert.

2.2.1.1. Transduktion humaner Stromazellen

Für die Transduktion humaner Stromazellen wurden $1-2x10^5$ Zellen je Vertiefung einer 6er Flachbodenplatte im entsprechenden Zellkulturmedium ausplattiert und ü. N. bei 37°C und 5 % CO₂ inkubiert. Die Zellen wurden mit angereichertem virushaltigem Überstand versetzt, für 24 h bei 37°C und 5 % CO₂ inkubiert und anschließend das Medium vollständig durch frisches Medium ersetz. Die verwendeten Volumina virushaltigem Überstand wurden anhand zuvor durchgeführten Titrationen so gewählt, dass die Transduktionseffizienz bei 30-50 % liegt.

2.2.2. Statistische Analysen

Alle aufgeführten Daten sind, sofern nicht anders angegeben, als arithmetisches Mittel mit Standardabweichung (*"standard deviation"* = SD) oder Standardfehler (*"standard error of the mean"* = SEM) angegeben. Die Signifikanzniveaus wurden über den zweiseitig gepaarten *student* t-Test mit Hilfe des Programms Microsoft Excel 2007 und GraphPad Prism 5 berechnet. Statistisch signifikante Unterschiede wurden wie folgt in den Abbildungen gekennzeichnet: *: p<0,05; **: p<0,01; ***: p<0,001. Die Berechnung der Korrelation erfolgte mit Hilfe des Programms GraphPad Prism 5 unter Verwendung des Spearman Korrelationskoeffizienten. Berechnete Koeffizienten mit r²>0,500 bzw. r²<-0,500 wurden per Definition als korrelierend bewertet.

3. Ergebnisse

Wie in der Einleitung ausführlich beschrieben, wurde durch die Beschreibung neuer Vorläuferzelltypen, die lymphatisches und partielles myeloisches aber kein erythrozytäres und megakaryozytäres Differenzierungspotential aufweisen, das klassische Modell der humanen Hämatopoese in Frage gestellt (Kawamoto *et al.*, 1998; Adolfsson *et al.*, 2005; Giebel *et al.*, 2006). Um die genauen Linienverwandtschaften insbesondere in der lympho-myeloischen und erythro-myeloischen Linie genauer zu untersuchen, sollte im Rahmen dieser Arbeit ein *in vitro* Nachweisverfahren zur Analyse humaner hämatopoetischer Stamm- und Vorläuferzellen auf Einzelzellebene etabliert werden. Als Grundlage hierfür sollte der klassische ML-IC Ansatz verwendet werden, der die retrospektive Analyse des Entwicklungspotentials einzelner HSVZ mit myeloischem Langzeit- (LTC-IC) sowie lymphatischem Langzeit- (NK-IC) Potential ermöglicht.

In Analogie zum klassischen ML-IC Ansatz setzt die retrospektive Analyse einzelner Zellen in mehreren voneinander unabhängigen *in vitro* Analyseverfahren eine vorhergehende Expansion der zu analysierender Einzelzellen voraus (Abb. 2A). Dabei müssen die Expansionsbedingungen den Erhalt des initialen Differenzierungspotentials der Einzelzelle in der Nachkommenschaft gewährleisten. Folglich sollten im Rahmen dieser Arbeit *in vitro* Expansionsbedingungen definiert werden, die eine Expansion zu analysierender Zellen ohne Verlust des Differenzierungspotentials in der neu entstehenden Nachkommenschaft ermöglichen.

(A) Einzelne zu analysierende Zellen werden für 14 Tage in Kokultur mit Zellen muriner oder humaner Stromazellen expandiert und die Nachkommenschaft sowohl phänotypisch als auch funktionell analysiert. (B) Der erweiterte ML-IC Ansatz sollte um einen T-Zell, B-Zell, CFC, DC, Erythrozyten und Megakaryozyten Ansatz erweitert werden.

Zur detaillierten Analyse des Differenzierungspotentials der hämatopoetischen Nachkommenschaft werden funktionelle *in vitro* Analysemethoden für alle hämatopoetische

Linien benötigt. Folglich sollte der klassische ML-IC Ansatz (LTC-IC und NK-IC Ansatz) um weitere funktionelle Differenzierungsansätze zur Detektion von Zellen mit T-Zell, B-Zell, Monozyten/Makrophagen, Neutrophilen, Basophilen, Eosinophilen, Erythrozyten, Megakaryozyten und DC Potential erweitert werden (Abb. 2B).

3.1. Verlust des erythrozytären Differenzierungspotentials in Suspensionskultur

Aus Vorarbeiten der Arbeitsgruppe ist bekannt, dass primitive HSVZ mit LTC-IC und NK-IC Potential in der CD133⁺CD34⁺ Fraktion frisch isolierter HSVZ aus dem Nabelschnurrestblut angereichet sind und zudem in der Suspensionskultur CD133^{low}CD34⁺ Zellen hervorbringen können (Beckmann *et al.*, 2007). Aufgrund der Beschreibung neuer Vorläuferzelltypen, die das klassische Modell der humanen Hämatopoese in Frage stellen, wurde zu Beginn der Doktorarbeit in einem Gemeinschaftsprojekt mit André Görgens (AG Giebel) die Proliferationskinetik sowie das Differenzierungspotential der beiden Subpopulationen CD133⁺CD34⁺ und CD133^{low}CD34⁺ genauer analysiert. Die Analysen führten zur Beschreibung bislang unbekannter Linienverwandtschaften sowie einer alternativen Modellvorstellung der humanen Hämatopoese (Görgens *et al.*, 2013a; Görgens *et al.*, 2013b) und stellen eine wichtige Grundlage für die Etablierung des erweiterten ML-IC Ansatzes dar. Folglich werden im nachfolgenden Abschnitt die wesentlichen Ergebnisse und Erkenntnisse dieses Gemeinschaftsprojektes dargestellt und zusammengefasst.

Abb. 3: Durchflusszytometrische Sortierung frisch isolierter HSVZ Subpopulationen *Mit Hilfe der durchflusszytometrischen Zellsortierung wurden aus zuvor MACS-angereicherten CD34*⁺ *Zellen (Vor SORT) definierte Zellzahlen der CD133*⁺*CD34*⁺, *CD133*^{low}*CD34*⁺ *und CD34*⁺ *Population aufgereinigt (Nach Sort).*

Für die Analysen wurden Zellen der beiden Subpopulationen CD133⁺CD34⁺ und CD133^{low}CD34⁺ durchflusszytometrisch sortiert (Abb. 3) und über einen Zeitraum von 6 Tagen kultiviert. An Tag 0, 3 und 6 wurde die hämatopoetische Nachkommenschaft

qualitativ analysiert und Zellen der beiden Fraktionen CD133⁺CD34⁺ und CD133^{low}CD34⁺ für die weitere Kultur durchflusszytometrisch sortiert (Abb. 4 und Abb. 5A). Zellen der CD133⁺CD34⁺ und CD133^{low}CD34⁺ Populationen wurden zudem in allen verfügbaren funktionellen Differenzierungsansätzen (LTC-IC, NK-IC, CFC Ansatz und NOD/SCID Maus) analysiert.

Frisch isolierte und sortierte CD133⁺CD34⁺ Zellen (+) brachten nach drei Tagen in Suspensionskultur CD133^{low}CD34⁺ Zellen (+ -) hervor, wobei der überwiegende Teil der Zellen nach wie vor CD133 exprimierte (+ +, Abb. 4 und Abb. 5A). Ebenso brachten CD133⁺CD34⁺ (+ +) von Tag 3 auf Tag 6 wieder CD133⁺CD34⁺ (+ + +) sowie CD133^{low}CD34⁺ Zellen (+ + -) hervor. Frisch isolierte CD133^{low}CD34⁺ Zellen (-) wiesen nach dreitägiger Kultur keine erneute Expression von CD133 auf. Es wurden nur CD133^{low}CD34⁺ Zellen (- -) detektiert (Abb. 4 und Abb. 5A). Die Nachkommenschaft der CD133^{low}CD34⁺ Zellen (+ - bzw. - -) von Tag 3 auf Tag 6 brachte ausschließlich CD133^{low}CD34⁺ Zellen (+ - - und - - -) hervor (Görgens *et al.*, 2013b).

Abb. 4: Durchflusszytometrisch sortierte und analysierte hämatopoetische Subpopulationen Frisch isolierte CD34⁺ Zellen aus dem Nabelschnurrestblut (Tag 0) wurden durchflusszytometrisch anhand der Expression von CD133 in die beiden Subpopulationen CD133⁺CD34⁺ (+) und CD133^{low}CD34⁺ (-) unterteilt und sortiert. Die Zellfraktionen wurden für drei Tage (Tag 3) in Suspension kultiviert, analysiert, die gekennzeichneten Populationen (+ +), (+ -) und (- -) sortiert und in funktionelle Analysen überführt. Übrige Zellen wurden erneut für weitere drei Tage in Suspension kultiviert (modifiziert nach Görgens et al., 2013).

Die funktionelle Analyse der Zellen im CFC Ansatz ergab, dass im Verlauf der Suspensionskultur die Gesamt-Koloniebildungsrate in allen analysierten Zellfraktionen abnahm (z.B. CD133⁺CD34⁺ d0: 22,8 \pm 9,5 %; d6: 10,5 \pm 4,9 %, Abb. 5B, n=4). Frisch isolierte CD133⁺CD34⁺ (+) Zellen brachten überwiegend CFU-G, CFU-M (16,4 \pm 6,14 %) bzw. CFU-GM (+: 0,94 \pm 0,52 %) und nur wenige BFU-E (3,7 \pm 1,95 %) bzw. CFU-MIX (1,8 \pm 0,85 %) Kolonien hervor (Abb. 5B, n=4). Die Frequenz CD133⁺CD34⁺ (+ +) HSZV mit erythrozytärem (0,88 \pm 1,44 %) und erythro-myeloischem (1,13 \pm 0,48 %) Koloniebildungspotential nahm im Verlauf der Kultur ab, bis hin zum nahezu vollständigen Verlust des erythrozytären Potentials an Tag 6 (+ + +, 0,05 \pm 0,11 %, Abb. 5B, n=4). Das Potential zur Ausbildung von CFU-G/M (d3: 18,38 \pm 8,8 %; d6: 8,5 \pm 3,6 %) bzw. CFU-GM (d3: 3,5 \pm 2,46 %; d6: 1,9 \pm 1,16 %) Kolonien blieb hingegen über die gesamte Kulturdauer in den CD133⁺CD34⁺ Zellen (+ + / + + +) erhalten (Abb. 5B, n=4).

Frisch isolierte CD133^{low}CD34⁺ (-) Zellen realisierten fast ausschließlich erythrozytäre (13,2 ± 5,61 %) und erythro-myeloische (8,6 ± 4,98 %) Kolonien und wiesen weniger Potential zur Bildung von CFU-G/M Kolonien (6,06 ± 3,13 %) auf als die CD133⁺CD34⁺ Fraktion (Abb. 37B, Abb. 5B, n=4). Wurden die frisch isolierten CD133^{low}CD34⁺ (-) Zellen für weitere 3 Tage kultiviert (- -), sank die Gesamt-Koloniebildungsrate und der Anteil erythrozytärer (10,4 ± 6,5 %), erythro-myeloischer (1,38 ± 0,66 %) und CFU-G/M (3,31 ± 4,51 %) Kolonien nahm ab (Abb. 5B, n=4). An Tag 6 konnten keine Zellen mit Koloniebildungspotential mehr in der CD133^{low}CD34⁺ (- -) Fraktion detektiert werden.

Zellen der CD133⁺CD34⁺ Fraktion brachten von Tag 0 (+) und Tag 3 (+ +) CD133^{low}CD34⁺ Population hervor (Tag 3: + -; Tag 6: + + -, Abb. 5A). Diese Zellen wiesen im Vergleich zur CD133 exprimierenden Ursprungspopulation einen höheren Anteil erythrozytärer und erythro-myeloischer Kolonien auf. Zudem wurden in der CD133^{low}CD34⁺ Fraktion (+ -) Zellen mit CFU-GM Potential detektiert (d3: 1,13 \pm 1,44 %; d6: 0,84 \pm 0,62 %, Abb. 5B, n=4).

Abb. 5: Sequenzielle Analyse hämatopoetischer Subfraktionen im CFC Ansatz

(A) Schematischer Versuchsablauf und Darstellung der durchflusszytometrisch isolierten Subpopulationen. (B) Funktionelle Analyse der isolierten Subfraktionen im CFC Ansatz (n=4). CFU-G und CFU-M sowie BFU-E und CFU-E Kolonien wurden für die Darstellung zusammengefasst. (veröffentlicht in Görgens et al., 2013b).

Um das myeloische und lymphatische Langzeitpotential sowie SRC Potential der Nachkommenschaft zu analysieren, wurden Zellen der CD133⁺CD34⁺ und CD133^{low}CD34⁺ Fraktion an Tag 3 durchflusszytometrisch sortiert und in den LTC-IC und NK-IC Ansatz überführt bzw. in die NOD/SCID Maus transplantiert (Abb. 6, veröffentlicht in Görgens *et al.*, 2013b). Die Transplantation der Subpopulationen in die NOD/SCID Maus wurde im Rahmen der Doktorarbeit von André Görgens durchgeführt. Zellen mit LTC-IC und NK-IC Potential waren nahezu ausschließlich in CD133⁺CD34⁺ Fraktion enthalten (Abb. 6A). Zudem konnten nur Zellen der CD133⁺CD34⁺ Population 8 Wochen nach intravenöser Transplantation in NOD/SCID Mäuse in das Knochenmark einwandern und Aspekte eines humanen hämatopoetischen Systems ausbilden (Abb. 6B).

Abb. 6: Funktionelle Analyse hämatopoetischer Subfraktionen im LTC-IC, NK-IC Ansatz sowie in der NOD/SCID Maus

(A) LTC-IC und NK-IC Frequenz in der CD34⁺, CD133⁺CD34⁺ und CD133^{low}CD34⁺ Fraktion nach 3-tägiger in vitro Kultivierung (B) Quantifizierung humaner CD45⁺ Zellen im Knochenmark von NOD/SCID Mäusen 8 Wochen nach intravenöser Transplantation von 5x10⁴ durchflusszytometrisch sortierten CD133⁺CD34⁺ (CD133⁺) bzw. CD133^{low}CD34⁺ (CD133^{low}) Zellen. Identische Symbole markieren Tiere mit Zellen aus dem gleichen Nabelschnurrestblut (veröffentlicht in Görgens et al., 2013b).

In den Experimenten konnten wir zeigen, dass Zellen der CD133⁺CD34⁺ Fraktion erneut CD133^{low}CD34⁺ Zellen hervorbringen, wohingegen CD133^{low} Zellen nicht in der Lage waren CD133 zu re-exprimieren. Zellen mit LTC-IC, NK-IC sowie SRC-Potential sind in der CD133⁺CD34⁺ Fraktion angereichert und bleiben in der Suspensionskultur erhalten (Görgens *et al.*, 2013b). HSVZ mit erythrozytärem und erythro-myeloischem Koloniebildungspotential sind überwiegend in der CD133^{low}CD34⁺ Population enthalten und gehen in der Suspensionskultur innerhalb von 6 Tagen nahezu vollständig verloren (Görgens *et al.*, 2013b).

3.2. Etablierung von *in vitro* Differenzierungsansätzen (Teil 1)

In Analogie zum klassischen ML-IC Ansatz sieht die initiale *in vitro* Expansion zu analysierender Einzelzellen im erweiterten ML-IC eine Kulturdauer von 14 Tagen ohne den Verlust der initialen Differenzierungspotentiale in der Nachkommenschaft vor. Da insbesondere der Erhalt von Zellen mit erythrozytärem und/oder erythro-myeloischem Differenzierungspotential in der Suspensionskultur einen kritischen Faktor darstellt, wurde der klassische ML-IC (LTC-IC und NK-IC Ansatz) für den nachfolgenden systematischen Vergleich alternativer *in vitro* Kultur/Expansionsbedingungen um den CFC Ansatz erweitert.

Der CFC Ansatz wurde maßgeblich von André Görgens im Rahmen seiner Doktorarbeit optimiert. Die Ergebnisse dieser Optimierung sowie die daraus resultierende alternative Modellvorstellung der humanen Hämatopoese stellen eine wichtige Grundlage für die weiterführende Arbeit dar und werden nachfolgend kurz zusammengefasst. Aufgrund der Beschreibung neuer Linienverwandtschaften in der alternativen Modellvorstellung der humanen Hämatopoese, wurde im Rahmen dieser Arbeit die Qualität der Zellen im LTC-IC und NK-IC Ansatz genauer untersucht. Die Ergebnisse der Analysen sind in den nachfolgenden Abschnitt 3.2.2 und 3.2.3 dargestellt.

3.2.1. Der "colony-forming cell" (CFC) Ansatz

Der CFC Ansatz ermöglicht eine klonale Analyse und Quantifizierung von Zellen mit erythrozytärem (CFU-E, BFU-E), monozytärem (CFU-M) und granulozytärem (CFU-G) Koloniebildungspotential sowie gemeinsamen Vorläufern mit gemischtem Granulozyten-Makrophagen (CFU-GM) und Granulozyten-Makrophagen-Erythrozyten (CFU-MIX) Potential. (Abb. 7) (Pike und Robinson, 1970; Moore *et al.*, 1973). Zu analysierende Zellen werden hierzu in geringer Dichte in semisolides Methylcellulose-haltiges Medium eingebracht, das die Bewegung der Zellen einschränkt und somit die Koloniebildung ermöglicht. Für die Induktion der Differenzierung ist das kommerziell erworbene Medium (H4434 von StemCell Technologies) mit den Zytokinen SCF, GM-CSF, IL-3 sowie Epo versetzt. Entsprechend des Differenzierungspotentials der zu analysierenden Zellen können nach 14 Tagen unterschiedliche Kolonietypen (CFU: *colony forming unit*) optisch anhand der Größe der Zellen sowie der Form und der Farbe der Kolonien diskriminiert und quantifiziert werden (Abb. 7).

Abb. 7: Mikroskopische Aufnahme von Kolonien im CFC Ansatz

Diskriminierbare Kolonietypen im CFC Ansatz (Maßstabsbalken = 20 μ m; BFU-E: burst-forming unit erythrocyte; CFU-M: colony-forming unit macrophage; CFU-G: colony-forming unit granulocyte; CFU-GM: colony-forming unit granulocyte macrophage; CFU-MIIX: colony-forming unit erythrocyte macrophage granulocyte) (Görgens et al., 2013b)

Aufgrund der Befunde, dass sowohl frisch isolierte Zellen der CD133⁺CD34⁺ als auch der CD133^{low}CD34⁺ Fraktion myeloisches und erythro-myeloisches Koloniebildungspotential aufweisen (vgl. Abb. 5B), wurde insbesondere die Qualität der Granulozyten in den unterschiedlichen Kolonien näher untersucht. Hierzu wurden frisch isolierte Zellen der

CD133^{low}CD34⁺ CD133⁺CD34⁺ und Fraktion aus dem Nabelschnurrestblut durchflusszytometrisch sortiert, in den CFC Ansatz eingebracht und nach 14-Tagen die **Oualität** der Nachkommenschaft mit Hilfe unterschiedlicher Techniken (Durchflusszytometrie, Zytospin sowie PCR) umfangreich analysiert.

Eine wesentliche Erkenntnis dieser Untersuchungen war, dass neutrophile Granulozyten in CFU-G, CFU-GM sowie CFU-MIX Kolonien ausschließlich von Zellen der CD133⁺CD34⁺ Fraktion gebildet werden. Die Zellen der CFU-MIX Kolonien aus der CD133⁺CD34⁺ Fraktion bringen zudem nach erneuter Replatierung in den CFC Ansatz Eosinophile sowie Basophile hervor. Zellen der CD133^{low}CD34⁺ Population bringen ebenfalls CFU-G und CFU-MIX Kolonien hervor, die jedoch eosinophile und basophile Granulozyten enthalten (Görgens *et al.*, 2013b). Folglich können in der CD34⁺ Population anhand der Expression des Oberflächenantigen CD133 zwei unterschiedliche Subpopulationen mit CFU-G sowie CFU-MIX Potential unterschieden werden.

Der Befund, dass primitive HSVZ mit LTC-IC, NK-IC sowie NOD/SCID Repopulierungspotential zudem fast ausschließlich in der CD133⁺CD34⁺ Fraktion angereichert sind (vgl. Abb. 6), führte zu einer alternativen Modellvorstellung der humanen Hämatopoese, wonach eine frühe Aufspaltung in die lympho-myeloische (CD133⁺) und erythro-myeloische (CD133^{low}) Linie stattfindet (Görgens et al., 2013b). Eosinophile sowie Basophile werden demnach von erythro-myeloischen Progenitoren (EMP) gebildet, spezifizierte Vorläuferzellen wohingegen lympho-myeloisch (LMPP) Neutrophile hervorbringen. Dieser alternativen Modellvorstellung zufolge stellen multipotente HSVZ die einzigen hämatopoetischen Zellen dar, die gleichzeitig das Oberflächenantigen CD133 exprimieren und im CFC Ansatz CFU-MIX-Kolonien hervorbringen können (Görgens et al., 2013a; Görgens et al., 2013b).

Der CFC Ansatz stellt somit in den nachfolgenden Versuchen zur Etablierung der *in vitro* Expansionsbedingungen zusätzlich zur Detektion von Zellen mit erythrozytärem, myeloischem und erythro-myeloischem Koloniebildungspotential eine einfache Möglichkeit zur Quantifizierung multipotenter HSVZ in der CD133⁺CD34⁺ Zellpopulation dar.

3.2.2. Qualifizierung des LTC-IC Ansatzes

Ein bereits im klassischen ML-IC Ansatz verwendeter Ansatz zur Quantifizierung von unreifen Progenitoren mit "Stammzelleigenschaften" ist der *Long-Term Culture-Initiating Cell* (LTC-IC) Ansatz (Sutherland *et al.*, 1989; Sutherland *et al.*, 1990; Moore *et al.*, 1997; Punzel *et al.*, 1999a). Zu analysierende Zellen werden in diesem Ansatz für fünf Wochen mit Zellen der murinen Stromazelllinie AFT024 kokultiviert, die der Differenzierung von Zellen

mit myeloischem Langzeitpotential entgegenwirken, wohingegen liniendeterminierte Zellen in diesem Zeitraum terminal differenzieren. Zellen mit sogenanntem LTC-IC Potential bringen im anschließenden 2-wöchigen Differenzierungsphase sekundäre myeloische/ granulozytäre Kolonien hervor (Abb. 8A), die üblicherweise mikroskopisch quantifiziert werden (Hao *et al.*, 1996).

Aus den vorhergehenden Versuchen ist bekannt, dass Zellen mit LTC-IC Potential in der CD133⁺CD34⁺ Fraktion angereichert sind und diese Zellen im CFC Ansatz neutrophile Granulozyten hervorbringen (Görgens *et al.*, 2013b). Da beim LTC-IC Ansatz üblicherweise keine Unterscheidung der Granulozytensubtypen in den sekundären myeloischen/ granulozytären Kolonien stattfindet, wurde die Qualität der entstehenden Zellen im LTC-IC Ansatz insbesondere der Granulozyten genauer analysiert. Zur Charakterisierung der hämatopoetischen Nachkommenschaft in primären Kolonien (Woche 5) sowie sekundären Kolonien (Woche 7) wurden CD133⁺CD34⁺ Zellen durchflusszytometrisch sortiert und in den LTC-IC Ansatz eingebracht, kultiviert und nach 5 bzw. 7 Wochen geerntet.

Bei der durchflusszytometrischen Analyse der hämatopoetischen Nachkommenschaft nach Woche 5 und 7 wurden Granulozyten (CD15⁺), Monozyten/Makrophagen (CD14⁺CD15^{low}), NK-Zellen (CD56⁺), B-Zellen (CD19⁺) sowie unreifen Progenitoren (CD34⁺CD133^{+/low}) unterschieden (Abb. 8B). Nach fünf Wochen enthielten die Nachkommenschaft sowohl Granulozyten (ca. 68,2 ± 2,5 %, n=2), Monozyten/Makrophagen (7,5 ± 4,3 %, n=2) als auch geringfügig CD133⁺CD34⁺ (1,47 ± 0,28 %, nicht dargestellt, n=3) und CD133^{low}CD34⁺ (0,83 ± 0,3 %, nicht dargestellt, n=3) Progenitorzellen. Sekundäre myeloische Kolonien nach sieben Wochen enthielten sowohl Granulozyten (42,1 ± 23,4 %, n=2) als auch Monozyten (45 ± 19,2 %, n=2), jedoch keine CD34⁺ und CD133⁺CD34⁺ Zellen. B-Zellen (2,6 ± 0,2 %, n=2) und NK-Zellen (1,9 ± 2,3 %, n=2) wurden nur vereinzelt detektiert.

Da die durchflusszytometrische Analyse der Oberflächenmarker CD15 und CD66b keine Diskriminierung der unterschiedlichen Granulozytensubtypen (Neutrophile, Basophile, Eosinophile) ermöglicht, wurden die Zellen zudem im Zytospin untersucht (Abb. 8C). Die CAFC-Kolonien enthielten sowohl neutrophile Granulozyten (36,9 ± 22,8 %, n=2) als auch Makrophagen (10,3 ± 6,1 %, n=2) sowie Zellen, die keinem spezialisiertem Zelltypen zugeordnet werden konnten (52,8 ± 17,1 %, n=2). Auch in den sekundären myeloischen Kolonien wurden neben neutrophilen Granulozyten (39,5 ± 10,5 %, n=2) und Makrophagen (37,0 ± 12,5 %, n=2) weiterhin 17,3 ± 12,5 % blastoide, wahrscheinlich undifferenzierte Zellen detektiert. Weder nach Woche 5 noch nach Woche 7 fanden sich im LTC-IC Ansatz erythrozytäre Zellen noch basophile/eosinophile Granulozyten. Zusammenfassend konnte sowohl durchflusszytometrisch als auch histologisch nachgewiesen werden, dass im LTC-IC Ansatz Makrophagen/Monozyten sowie ausschließlich neutrophile Granulozyten entstehen. Obwohl nach 5-wöchiger Kultur geringfügig CD133^{low}CD34⁺ Zellen, die im klassischen CFC Ansatz ausschließlich basophile und eosinophile Granulozyten hervorbringen, in der Nachkommenschaft enthalten waren, wurden keine Basophilen und Eosinophilen detektiert. Der LTC-IC Ansatz ermöglicht bei der nachfolgenden Etablierung der in vitro Kulturbedingungen sowie im erweiterten ML-IC den Nachweis mit in vitro Ansatz von Zellen Langzeitpotential und dem Differenzierungspotential in neutrophile Granulozyten. Zusätzlich unterstützt der Ansatz die Ausreifung und den Nachweis von Zellen mit Makrophagen/Monozyten Differenzierungspotential.

Abb. 8: Qualifizierung des LTC-IC Ansatzes

(A) Kolonietypen im LTC-IC Ansatz nach 5 bzw. 7 Wochen Kultur (Maßstabsbalken links = 5 μ m; rechts = 20 μ m). (B) Durchflusszytometrische Charakterisierung der Zellen aus dem LTC-IC Ansatz nach 5 bzw. 7 Wochen Kultur. Nach Ausschluss von Zelltrümmern, Dubletten und Zellklumpen (außerhalb der scatter-Region) wurden Makrophagen/Monozyten (CD14⁺CD15^{dim}), Granulozyten (CD14⁻CD15⁺), B-Zellen (CD19⁺) und NK-Zellen (CD56⁺) diskriminiert. (C) Modifizierte hämatologische Färbung nach Wright von Zellen aus dem LTC-IC Ansatz (Mac: Makrophage; Neutro: Neutrophiler; Maßstabsbalken = 10 μ m).

3.2.3. Qualifizierung des NK-IC Ansatzes

Eine weitere funktionelle Analysemethode, die im klassischen ML-IC Ansatz repräsentativ für den lymphatischen Zweig angewendet wird, ist der NK-Zell Ansatz (Miller *et al.*, 1992; Punzel *et al.*, 1999a; Punzel *et al.*, 1999b). In Analogie zum LTC-IC Ansatz werden zu analysierende Zellen für fünf Wochen mit Zellen der murinen Stromazelllinie AFT024 kokultiviert. Zur Induktion der NK-Zell Differenzierung werden dem Kulturmedium humanes AB-Serum sowie die Wachstumsfaktoren IL-2, IL-7 und IL-15 zugesetzt. Ebenso wie beim LTC-IC Ansatz findet die Auswertung und Quantifizierung der Zellen mit NK-Zell Differenzierungspotential üblicherweise anhand rein morphologischer Kriterien statt (Abb. 9A).

Um den NK-IC Ansatz für den Nachweis von Zellen mit dem Differenzierungspotential zu NK-Zellen in den nachfolgenden Versuchen sowie im erweiterten ML-IC Ansatz besser zu verstehen, wurden die Qualität der Nachkommenschaft, das Reifungsstadium sowie die Funktionalität der *in vitro* generierten NK-Zellen genauer analysiert. Zu diesem Zweck wurde die CD133⁺CD34⁺ Fraktion, welche für Zellen mit NK-Zell Potential angereichert ist (Görgens *et al.*, 2013b), durchflusszytometrisch sortiert und in den NK-IC Ansatz eingebracht. Im NK-IC Ansatz sind sowohl rundliche, blastoide Zellen als auch polarisierte, Komma-förmige NK-Zellen enthalten, deren Morphologie der undifferenzierter, polarisierter CD34⁺ Zellen sehr ähnelt (Giebel *et al.*, 2004). Die morphologisch diverse Nachkommenschaft wurde zur Unterscheidung verschiedener Zellqualitäten geerntet und in Analogie zum LTC-IC Ansatz durchflusszytometrisch charakterisiert (Abb. 9B). Dabei wurden Granulozyten (CD15⁺), Monozyten/Makrophagen (CD133⁺CD34⁺, CD133^{low}CD34⁺) unterschieden.

Neben NK-Zellen (70,4 \pm 5,2 %, n=2) konnten Makrophagen/Monozyten (17,8 \pm 0,2 %, n=2), Granulozyten (4,4 \pm 2,7 %, n=2) sowie in einem von drei Ansätzen residuale CD133^{low}CD34⁺ Progenitorzellen (0,5 %, nicht dargestellt) detektiert werden. CD133⁺CD34⁺ Zellen wurden in keinem der gemessenen Ansätze detektiert. Die NK-Zellen ließen sich anhand der Oberflächenexpression von CD16 in unreife (CD56⁺CD16⁻; 78,7 \pm 17,4 %, n=3) und reife (CD56⁺CD16⁺; 21,3 \pm 17,3 %, n=3) NK-Zellen unterteilen (Beziat *et al.*, 2011). Die B-Zell Differenzierung (2,9 \pm 1,4 %, CD19⁺, n=2) wurde im NK-IC Ansatz nicht unterstützt.

Um die Qualität der durchflusszytometrisch detektierten Granulozyten zu analysieren, wurden die Zellen im Zytospin untersucht (Abb. 9C). Neben den lymphatischen NK-Zellen mit großem Zellkern und geringem Anteil an Zytoplasma ($62,3 \pm 11,5 \%$, n=4), wurden im

Zytospin sowohl neutrophile Granulozyten $(13,3 \pm 10,5 \%, n=4)$ als auch Makrophagen $(5,3 \pm 6,1 \%, n=4)$ detektiert. Etwa 19,1 $\pm 8,1 \%$ (n=4) der Zellen konnten keinem spezifischen Zelltypen zugeordnet werden. Erythrozyten, Eosinophile sowie Basophile wurden nicht detektiert.

Abb. 9: Qualifizierung des NK-IC Ansatzes

(A) Morphologie von Zellen aus dem NK-IC Ansatz (Maßstabsbalken = 50 µm). (B) Modifizierte hämatologische Färbung nach Wright von Zellen aus dem NK-IC Ansatz (Mac: Makrophage; Neutro: Neutrophile; Maßstabsbalken = 5 µm). (C) Durchflusszytometrische Charakterisierung der Zellen aus dem NK-IC Ansatz. Nach Ausschluss von Zelltrümmern, Dubletten und Zellklumpen (außerhalb der scatter-Region) wurden Makrophagen/Monozyten (CD14⁺CD15^{dim}), Granulozyten (CD14⁻CD15⁺), B-Zellen (CD19⁺) und NK-Zellen (CD56⁺) voneinander diskriminiert. NK-Zellen können weiter in die zwei Subpopulationen CD56⁺CD16⁺ und CD56⁺CD16⁻ unterteilt werden. (D) Veränderung der CD107a Expression auf der Oberfläche von Zellen aus dem NK-IC Ansatz nach 4-stündiger Kokultur mit Zellen der Tumorzelllinie K562. (E) Zytotoxizitätstest von Zellen aus dem NK-IC Ansatz. Die Zellmembran von K562-Zellen wurden mit PKH67 angefärbt und nach 4-stündiger Kokultur mit Zellen aus dem NK-IC Ansatz die Rate toter (PI⁺PKH67⁺) Zellen quantifiziert.

Die durchflusszytometrisch Analyse ergab, dass der überwiegende Anteil der phänotypischen NK-Zellen unreif (CD56⁺CD16⁻) ist. Inwiefern der etablierte NK-IC Ansatz auch die Ausreifung funktionell aktiver NK-Zellen ermöglicht, wurde nachfolgend analysiert.

Zwei funktionelle Merkmale von NK-Zellen sind die Induktion der Apoptose von körperfremden Zellen sowie die gesteigerte Präsentation des Oberflächenantigens CD107 (engl. *Lysosomal-associated membrane protein 1*, kurz LAMP1), das vermutlich mit der

Zytokinsekretion der NK-Zellen assoziiert ist (Alter *et al.*, 2004). Um die Fähigkeit der *in vitro* generierten NK-Zellen zur Aktivierung und zur Apoptoseinduktion zu testen, wurden diese in den Zytotoxizitäts Ansatz eingebracht (Abb. 9D und E, n=4). Die Kokultivierung *in vitro* generierter NK-Zellen mit Zellen der Tumorzelllinie K562 führte zur bis zu 20-fach stärkeren Expression des Aktivierungsmarkers CD107 auf den NK-Zellen und somit zu einer erfolgreichen Aktivierung der Zellen (Abb. 9D, n=4). Zudem induzierten die *in vitro* generierten NK-Zellen die Apoptose von K562-Zellen, was an der Zunahme von apoptotischen, PI⁺ K562-Zellen zu erkennen war und den Eigenschaften funktioneller NK-Zellen entspricht (beispielhaft von 3,2 % auf 50 %, Abb. 9E).

Der etablierte NK-IC Ansatz nach Miller *et al.* ermöglicht somit die Generierung und Quantifizierung sowohl phänotypischer als auch funktionell aktiver NK-Zellen. Zudem wurden sowohl durchflusszytometrisch als auch histologisch Makrophagen und neutrophile Granulozyten nachgewiesen. Obwohl nach 5-wöchiger Kultur vereinzelt residuale CD133^{low}CD34⁺ Zellen im NK-IC Ansatz vorhanden waren, wurden keine Erythrozyten, Basophile oder Eosinophile im Zytospin detektiert.

Für den erweiterten ML-IC Ansatz und die nachfolgende Etablierung der *in vitro* Kulturbedingungen stellt der NK-IC Ansatz daher eine valide Nachweismethode zur Detektion und Quantifizierung von Zellen mit NK-Zell Differenzierungspotential dar. Der Ansatz unterstützt zudem die Ausreifung und Differenzierung von Makrophagen/Monozyten sowie neutrophiler Granulozyten.

3.2.4. Funktionelle Analyse frisch isolierter HSVZ im LTC-IC, NK-IC und CFC Ansatz

Um in den nachfolgenden Versuchen zur Optimierung der *in vitro* Kulturbedingungen die Expansion von Zellen mit LTC-IC, NK-IC sowie CFC Potential berechnen zu können, wurde die Frequenz dieser funktionellen Zellen zuvor in frisch isolierten HSVZ ermittelt. Hierzu wurden frisch isolierte Zellen der CD133⁺CD34⁺ und CD133^{low}CD34⁺ Population sowie unfraktionierte CD34⁺ Zellen durchflusszytometrisch sortiert und definierte Zellzahlen in die zuvor etablierten Analysemethoden (LTC-IC, NK-IC, CFC Ansatz) eingebracht (Abb. 3). Die Analyse des Differenzierungspotentials wurde im LTC-IC und NK-IC Ansatz mit 6.000 Zellen und im CFC Ansatz mit 200 Zellen durchgeführt.

Zellen mit LTC-IC sowie NK-IC Potential waren in frisch isolierten Zellen aus dem Nabelschnurrestblut fast ausschließlich in der CD133⁺CD34⁺ (LTC-IC: 14,68 \pm 1,7 %; NK-IC: 8,24 \pm 1,31 %, n=5) und kaum in der CD133^{low}CD34⁺ (LTC-IC: 0,42 \pm 0,23 %;

NK-IC: 0,84 \pm 0,21 %, n=5) Zellfraktion enthalten (Abb. 10A und B, Tab. 19) (Görgens *et al.*, 2013b). Die Analyse der Populationen im CFC Ansatz ergab, dass die CD133⁺CD34⁺ Fraktion sowohl Zellen mit CFU-M, CFU-G, CFU-GM als auch BFU-E und CFU-MIX enthielt (Abb. 10F, n=4, Tab. 19 und Tab. 20). Zellen der CD133^{low}CD34⁺ Fraktion wiesen hingegen überwiegend CUF-G, BFU-E und CFU-MIX Potential auf. Die Gesamtkoloniebildungsrate liegt im Mittel in der CD133⁺CD34⁺ Zellfraktion bei 27,79 \pm 2,51 % und in der CD133^{low}CD34⁺ Population bei 20,9 \pm 0,93 %.

Tab. 19: Quantifizierung des Differenzierungspotentials frisch isolierter HSVZ

LTC-IC	CD133 ⁺ CD34 ⁺	CD133 ^{low} CD34 ⁺	CD34 ⁺	NK-IC	CD133 ⁺ CD34 ⁺	CD133 ^{low} CD34 ⁺	CD34 ⁺
V1	13,78%	1,50%	7,80%	V1	4,08%	0,38%	2,24%
V2	21,10%	0,11%	11,19%	V2	8,00%	0,36%	7,02%
V3	n. v.	n. v.	8,99%	V3	3,32%	0,75%	1,30%
V4	8,96%	0,00%	6,54%	V4	8,55%	1,27%	4,84%
V5	17,35%	0,66%	5,38%	V5	12,91%	0,18%	5,87%
V6	14,45%	0,22%	10,84%	V6	10,21%	1,29%	4,62%
V7	12,41%	0,08%	11,73%	V7	10,64%	1,70%	6,66%
	4.4.0004	0.4004	0.000/		0.0.404	0.0404	4.0.50/
MW	14,68%	0,42%	8,92%	MW	8,24%	0,84%	4,65%
SEM	1,70%	0,23%	0,92%	SEM	1,31%	0,21%	0,81%
p(133 ^{low})	-	0,004	0,024	p(133 ^{low})	-	0,012	0,005
p(34 ⁺)	-	-	0,0009	p (34 ⁺)	-	-	0,034

Alle Messwerte sind in Prozent angegeben. n. v.: nicht verfügbar/ kontaminiert; $p(133^{low}) =$ Signifikanzberechnung im Vergleich zur CD133^{low}CD34⁺ Population; $p(34^+) =$ Signifikanzberechnung im Vergleich zur CD34⁺ Fraktion (t-Test, zweiseitig, gepaart); Signifikanzen p<0,05sind fett gedruckt.

CD133lov

CD34⁺

0,00%

0,00%

0,00%

0,00%

0,00%

0,17%

0,17%

0,080

CD133lov

CD34⁺ 22,25%

21,75%

18.00%

23,00%

19,50%

22,25%

20,90%

0,93%

0,019

CD34⁺

0,75%

0,50%

1,75%

1,50%

0,50%

0.50%

0,92%

0.23%

0,056

CD34⁺

32,25%

35,00%

26.50%

37,00%

19,00%

32,25%

29,95%

3,26%

0,273 **0,025**

Tab. 20: Qualität der CFCs frisch isolierter HSVZ

1 a. 20	· Quan	at uti		1150	II ISOIICI						
CFU- MIX	CD133 ⁺ CD34 ⁺	CD133 ^{low} CD34 ⁺	CD34 ⁺		BFU-E	CD133 ⁺ CD34 ⁺	CD133 ^{low} CD34 ⁺	CD34 ⁺		CFU-M	CD133 ⁺ CD34 ⁺
V1	3,25%	15,00%	5,50%		V1	0,75%	3,00%	3,75%		V1	0,75%
V2	2,25%	11,50%	5,50%		V2	2,20%	8,00%	4,00%		V2	0,50%
V3	1,75%	9,75%	5,50%		V3	1,00%	5,50%	4,00%		V3	1,25%
V4	3,50%	14,00%	6,50%		V4	2,00%	5,50%	7,00%		V4	2,00%
V5	3,00%	13,00%	5,50%		V5	2,00%	4,00%	4,50%		V5	1,00%
V6	1,50%	16,00%	4,00%		V6	0,50%	6,00%	4,50%		V6	0,00%
MW	2,54%	13,21%	5,42%		MW	1,41%	5,33%	4,63%		MW	0,92%
SEM	0,34%	0,94%	0,33%		SEM	0,30%	0,70%	0,49%		SEM	0,28%
p(133 ^{low})	-	0,001	0,001		p(133 ^{low})	-	0,001	0,001		p(133 ^{low})	-
p(34 ⁺)	-	-	0,001		p (34 ⁺)	-	-	0,431		p(34 ⁺)	-
				_					_		
CFU-G	CD133 ⁺ CD34 ⁺	CD133 ^{low} CD34 ⁺	CD34 ⁺		CFU- GM	CD133 ⁺ CD34 ⁺	CD133 ^{low} CD34 ⁺	CD34 ⁺		Gesamt	CD133 ⁺ CD34 ⁺
V1	18,25%	2,75%	18,0%		V1	7,25%	0,50%	4,25%		V1	30,25%
V2	15,50%	2,25%	19,5%		V2	6,50%	0,00%	5,50%		V2	26,95%
V3	15,25%	2,75%	11,5%		V3	5,00%	0,00%	3,75%		V3	24,25%
V4	22,50%	3,50%	17,5%		V4	6,00%	0,00%	4,50%		V4	36,00%
V5	10,00%	2,50%	7,5%		V5	5,50%	0,00%	1,00%		V5	21,50%
V6	12,50%	2,00%	13,0%		V6	3,50%	0,00%	3,50%		V6	30,25%
MW	15,67%	2,63%	14,5%		MW	5,63%	0,08%	3,75%		MW	27,79%
SEM	1,79%	0,21%	1,88%		SEM	0,53%	0,08%	0,62%		SEM	2,51%
p(133 ^{low})	-	0,001	0,001		p(133 ^{low})	-	0,001	0,001		p(133 ^{low})	-
p(34 ⁺)	-	-	0,422		p (34 ⁺)	-	-	0,036		p(34 ⁺)	-
7 11	1 05			-	•		1 7			r • •	

Zellen der CD133⁺CD34⁺ Fraktion waren in der Lage alle Linienpotentiale in den zuvor etablierten *in vitro* Analyseverfahren (LTC-IC, NK-IC und CFC Ansatz) zu realisieren. CD133^{low}CD34⁺ Zellen hingegen wiesen überwiegend myeloisches, erythrozytäres und erythro-myeloisches Koloniebildungspotential im CFC Ansatz auf. Zellen mit NOD/SCID Repopulierungspotential sind ausschließlich in CD133⁺CD34⁺ Zellpopulation enthalten (Daten nicht dargestellt) (Görgens *et al.*, 2013b).

Abb. 10: Differenzierungspotential frisch isolierter HSVZ-Subpopulationen

Graphische Darstellung der Werte aus Tab. 19 und Tab. 20 (**A-C**) Frisch isolierte $CD133^+CD34^+$, $CD133^{low}CD34^+$ und $CD34^+$ Zellen aus dem Nabelschnurrestblut wurden durchflusszytometrisch sortiert und das Differenzierungspotential im (**A**) LTC-IC, (**B**) NK-IC und (**C**) CFC Ansatz ermittelt (Mittelwerte ± SEM).

Da die CD133⁺CD34⁺ Fraktion Zellen mit dem Potential zur Differenzierung in alle getesteten hämatopoetischen Linien enthält, wurden CD133⁺CD34⁺ HSVZ für die nachfolgende Etablierung der *in vitro* Expansionsbedingungen verwendet. Die ermittelten LTC-IC, NK-IC und CFC Frequenzen frisch isolierter CD133⁺CD34⁺ und CD133^{low}CD34⁺ Zellen dienen zudem in den nachfolgenden Versuchen der Berechnung der Expansion und somit der Beurteilung der Kulturbedingungen.

3.3. Expansion von HSVZ in Kokultur mit Zellen muriner Stromazelllinien Alternativ zur Suspensionskultur werden zur Expansion multipotenter hämatopoetischer Zellen häufig stromazellbasierte Kokultursysteme angewendet. So werden z.B. im klassischen ML-IC Ansatz Zellen der murinen Zelllinie AFT024 verwendet, die nachweislich den Erhalt und die Expansion von HSVZ mit NK-Zell sowie LTC-IC Potential über den Zeitraum von 14 Tagen unterstützt (Punzel *et al.*, 1999a; Giebel *et al.*, 2006). Weitere murine Stromazelllinien, die in der Literatur bereits für die *in vitro* Expansion von humanen HSVZ verwendet wurden sind die Zelllinien OP9 sowie MS-5 (Itoh *et al.*, 1989; Suzuki *et al.*, 1992; Issaad *et al.*, 1993; Moore *et al.*, 1997; Nolta *et al.*, 2002; Feugier *et al.*, 2005; Weisel *et al.*, 2006; Chung *et al.*, 2010; Fernandez-Sanchez *et al.*, 2011; Tiwari *et al.*, 2012). In einigen Veröffentlichungen wurde zudem die gentechnisch modifizierte Zelllinie OP9-DL1 verwendet, die ektop den Notch-Liganden Delta-like 1 (DL1) exprimiert. DL1 spielt bei der Selbsterneuerung von HSVZ in der *in vivo* Nische eine essentielle Rolle und wird als möglicher Faktor zum *in vitro* Erhalt und zur Expansion von HSVZ diskutiert (Varnum-Finney *et al.*, 2003; Dahlberg *et al.*, 2011).

Inwiefern die murinen Stromazelllinien-Zellen eine Expansion oder einen Erhalt von Zellen mit LTC-IC, NK-IC und CFC Potential sowie CD133⁺CD34⁺ Zellen mit erythro-myeloischem Differenzierungspotential über den Zeitraum von 14 Tagen ermöglichen, sollte nachfolgend analysiert werden. Hierzu wurde CD133⁺CD34⁺ Zellen für 14 Tage in Suspensionskultur bzw. mit Zellen der Zelllinien AFT024, OP9, OP9-DL1 und MS-5 kokultiviert. Allen Kulturbedingungen wurde über den gesamten Zeitraum die Wachstumsfaktoren SCF, TPO sowie Flt3-L zugesetzt. Der zeitliche Ablauf der durchgeführten Kokulturversuche sowie der nachfolgenden funktionellen Analysen der hämatopoetischen Nachkommenschaft ist schematisch in Abb. 11 dargestellt.

(A) Cryokonservierte Stromazellen wurden aufgetaut (d-7), für vier Tage kultiviert und 800 Zellen/cm² ausgesäht (d -3). Nach drei Tagen wurden 200 durchflusszytometrisch sortierte CD133⁺CD34⁺ Zellen pro cm² auf die Stromazellen ausgebracht (d0) und für 14 Tage bei 37°C und 5 % CO₂ kokultiviert.
(B) An Tag 14 (d14) erfolgte die durchflusszytometrische Quantifizierung und die Initiierung der funktionellen Analyse der Subpopulationen CD133⁺CD34⁺ und CD133^{low}CD34⁺. Die Auswertung des CFC Ansatzes erfolgte nach 14 Tagen und des NK-IC Ansatzes nach 35 Tagen. An Tag 35 wurde im LTC-IC Ansatz die Differenzierung induziert und 14 Tagen später der LTC-IC Ansatz ausgewertet.

Für die Versuche wurden CD133⁺CD34⁺ Zellen (200/cm²) für 14 Tage in Suspensionskultur bzw. mit den murinen Stromazellen kokultiviert und die entstehende Nachkommenschaft anschließend durchflusszytometrisch analysiert (Abb. 12A). Nach Ausschluss toter Zellen (PI⁺), Zelltrümmer und Dubletten sowie nicht hämatopoetischer Stroma-/Zellen bzw. reifen Erythrozyten (CD45⁻) wurde die Expression der Oberflächenantigene CD34 und CD133 auf den expandierten Zellen untersucht. Dabei wurden die Populationen CD133⁺CD34⁺ (+/+, CD133^{low}CD34⁺ (+/-) und CD133⁺CD34⁻ (-/+) für die Quantifizierung unterschieden (Abb. 12A, Tab. 21).

Abb. 12: Strategie für die durchlusszytometrische Quantifizierung und Sortierung von HSVZ in Kokultur

Die durchflusszytometrische Analyse ergab, dass der überwiegende Anteil der hämatopoetischen Nachkommenschaft nach 14-tägiger *in vitro* Kultivierung (etwa 40 – 80 % der Zellen) weder CD133 noch CD34 exprimierte (Abb. 12B, Tab. 21, n=3). In der Suspensionskultur waren in der CD34⁺ Population sowohl CD133⁺CD34⁺ als auch CD133^{low}CD34⁺ Zellen enthalten (n=3). Die Frequenz der CD133⁺CD34⁺ Zellen lag tendenziell in der Kokultur mit AFT024, OP9 sowie MS-5 Stromazellen über den Frequenzen in Suspensionskultur.

In Kokultur mit Zellen murinen Stromazelllinien ist die Frequenz der CD133^{low}CD34⁺ Zellen etwa 2 bis 3-fach höher als die der CD133⁺CD34⁺ Fraktion (n=3). Eine signifikant höhere Frequenz der CD133^{low}CD34⁺ Zellfraktion konnte im Vergleich zur Suspensionskultur in Kokultur mit allen murinen Stromazellen beobachtet werden.

⁽A) Strategie für die durchflusszytometrische Analyse und Quantifizierung der CD45⁺, CD133⁺CD34⁺ und CD133^{low}CD34⁺ Zellpopulationen. (**B**) Durchflusszytometrische Analyse der Nachkommenschaft von CD133⁺CD34⁺ Zellen nach 14-tägiger Kokultur mit murinen Stromazelllinien-Zellen. Darstellung repräsentativer Analysen aus unabhängigen Vorversuchen. (**C**) Strategie und Reanalyse der durchflusszytometrischen Sortierung für die funktionelle Analyse der Subpopulationen nach 14 tägiger Kokultur.

CD133⁺CD34⁻ Zellen (-/+) wurden ausschließlich in der Suspensionskultur detektiert, die bereits von Gallacher *et al.* mit sehr geringer Frequenz in frischem Nabelschnurrestblut in der lin⁻CD34⁻CD38⁻CD7⁻ Fraktion beschrieben wurden (Gallacher *et al.*, 2000). Die funktionelle Analyse der Zellen in der CD133⁺CD34⁻ Population ist in Abschnitt 3.5.1 aufgeführt, da diese Zellfraktion insbesondere in der Kokultur von HSVZ mit primären endothelialen Stromazellen detektiert wurde.

Tab. 21: Frequenz der CD133⁺CD34⁺ und CD133^{low}CD34⁺ Zellen in Kokultur mit murinen Stromazellen

CD 133 ⁺	Sus	AFT 024	OP9	OP9 DL1	MS-5	CD 133 ^{low}	Sus	AFT 024	OP9	OP9 DL1	MS-5
V1	6,56%	12,0%	11,2%	15,9%	3,72%	V1	3,86%	20,8%	21,9%	34,9%	14,3%
V2	4,92%	12,1%	27,2%	24,5%	8,80%	V2	1,18%	20,9%	32,0%	31,2%	17,8%
V3	6,10%	5,98%	19,9%	30,3%	5,68%	V3	2,23%	11,7%	29,6%	33,7%	19,4%
MW	5,86%	10,0%	19,4%	23,6%	6,07%	MW	2,43%	17,8%	27,8%	33,3%	17,2%
SEM	0,49%	2,05%	4,60%	4,18%	1,48%	SEM	0,78%	3,04%	3,04%	1,09%	1,51%
p (S)	-	0,199	0,115	0,056	0,925	p (S)	-	0,037	0,022	0,001	0,021
p (A)	-	-	0,206	0,150	0,229	p (A)	-	-	0,175	0,046	0,899
p (O)	-	-	-	0,390	0,051	p (O)	-	-	-	0,312	0,030
p (D)	-	-	-	-	0,042	p (D)	-	-	-	-	0,019

Abkürzungen: Sus = Suspension; MW = Mittelwert; n. v. = nicht verfügbar/kontaminiert; p (S) = Signifikanzberechnung im Vergleich zur Suspension; p (A) = Signifikanzberechnung im Vergleich zur AFT024 (t-Test, zweiseitig, gepaart)

Zusätzlich zur qualitativen Analyse der hämatopoetischen Nachkommenschaft wurde die Expansion der Subpopulationen im Vergleich zur initial eingesetzten Zellzahl berechnet (Tab. 22 und Abb. 13A). In der Suspensionskultur sowie in der Kokultur mit Zellen der Linie OP9-DL1 wurde die geringste Expansion von CD45⁺ Zellen ermittelt (Sus: $280 \pm 72,5$ -fach; OP9-DL1: 215 ± 66 -fach, n=3). Die Anwesenheit der AFT024, OP9 und MS-5 Stromazellen führt im Vergleich zur Suspensionskultur in 8 von 9 Einzelansätzen zu einer 3 bis 10-fach stärkeren Expansion von CD45⁺ Zellen (AFT024: 1376 ± 487-fach; OP9: 966 ± 593-fach; MS-5: 1054 ± 308-fach, Abb. 13A, n=3).

Die Quantifizierung der CD34⁺ Zellpopulation ergab, dass in zwei von drei Versuchen mit Zellen der AFT024 (403 \pm 185-fach) und der OP9 (369 \pm 176-fach) die stärkste Expansion CD34⁺ Zellen stattfand. In der Suspensionskultur wurde reproduzierbar die geringste Expansion CD34⁺ Zellen ermittelt (16,3 \pm 6,3-fach, Abb. 13A, n=3).

Die weitere Unterteilung der CD34⁺ Fraktion in CD133⁺CD34⁺ und CD133^{low}CD34⁺ Zellen zeigte, dass in allen Kokulturen mit Zellen muriner Stromazelllinie der überwiegende Teil der Zellen kein CD133 exprimierte. Die stärkste Expansion wiesen CD133⁺CD34⁺ sowie CD133^{low}CD34⁺ Zellen in zwei von drei Versuchen in Kokultur mit den Zellen der AFT024 auf (133⁺: 146 ± 69-fach; 133^{low}: 257 ± 116-fach, Abb. 13A, n=3).
0									1			
CD 45 ⁺	Sus	AFT 024	OP9	OP9 DL1	MS-5		CD 34 ⁺	Sus	AFT 024	OP9	OP9 DL1	MS-5
V1	190,32	2345,9	2136,5	347,41	814,17		V1	19,83	771,26	710,64	176,86	147,07
V2	227,07	799,77	202,42	151,70	681,78		V2	13,85	264,73	119,89	84,55	181,90
V3	423,80	983,25	562,00	147,45	1666,0		V3	35,32	174,40	278,55	94,48	418,53
MW	280,40	1376,3	966,99	215,52	1054,0		MW	23,00	403,46	369,69	118,63	249,17
SEM	72,48	487,71	593,92	65,96	308,41		SEM	6,40	185,74	176,52	29,25	85,28
p (S)	-	0,175	0,391	0,656	0,084		p (S)	-	0,181	0,189	0,090	0,104
p (A)	-	-	0,068	0,111	0,668		p (A)	-	-	0,690	0,212	0,604
p (O)	-	-	-	0,292	0,916		p (O)	-	-	-	0,231	0,643
p (D)	-	-	-	-	0,133		p (D)	-	-	-	-	0,334
				1	1	-		-				1
CD 133 ⁺	Sus	AFT 024	OP9	OP9 DL1	MS-5]	CD 133 ^{low}	Sus	AFT 024	OP9	OP9 DL1	MS-5
CD 133 ⁺ V1	Sus 12,48	AFT 024 282,87	OP9 241,08	OP9 DL1 55,44	MS-5 30,31		CD 133 ^{low} V1	Sus 7,35	AFT 024 488,39	OP9 469,56	OP9 DL1 121,42	MS-5 116,76
CD 133 ⁺ V1 V2	Sus 12,48 11,17	AFT 024 282,87 97,40	OP9 241,08 55,05	OP9 DL1 55,44 37,17	MS-5 30,31 59,97		CD 133 ^{low} V1 V2	Sus 7,35 2,68	AFT 024 488,39 167,33	OP9 469,56 64,84	OP9 DL1 121,42 47,38	MS-5 116,76 121,93
CD 133 ⁺ V1 V2 V3	Sus 12,48 11,17 25,85	AFT 024 282,87 97,40 58,83	OP9 241,08 55,05 111,83	OP9 DL1 55,44 37,17 44,75	MS-5 30,31 59,97 94,67		CD 133 ^{low} V1 V2 V3	Sus 7,35 2,68 9,47	AFT 024 488,39 167,33 115,57	OP9 469,56 64,84 166,72	OP9 DL1 121,42 47,38 49,73	MS-5 116,76 121,93 323,87
CD 133 ⁺ V1 V2 V3 MW	Sus 12,48 11,17 25,85 16,50	AFT 024 282,87 97,40 58,83 146,37	OP9 241,08 55,05 111,83 135,99	OP9 DL1 55,44 37,17 44,75 45,79	MS-5 30,31 59,97 94,67 61,65		CD 133 ^{low} V1 V2 V3 MW	Sus 7,35 2,68 9,47 6,50	AFT 024 488,39 167,33 115,57 257,10	OP9 469,56 64,84 166,72 233,71	OP9 DL1 121,42 47,38 49,73 72,84	MS-5 116,76 121,93 323,87 187,52
CD 133 ⁺ V1 V2 V3 MW SEM	Sus 12,48 11,17 25,85 16,50 4,69	AFT 024 282,87 97,40 58,83 146,37 69,15	OP9 241,08 55,05 111,83 135,99 55,04	OP9 DL1 55,44 37,17 44,75 45,79 5,30	MS-5 30,31 59,97 94,67 61,65 18,60		CD 133 ^{low} V1 V2 V3 MW SEM	Sus 7,35 2,68 9,47 6,50 2,00	AFT 024 488,39 167,33 115,57 257,10 116,61	OP9 469,56 64,84 166,72 233,71 121,54	OP9 DL1 121,42 47,38 49,73 72,84 24,30	MS-5 116,76 121,93 323,87 187,52 68,19
CD 133 ⁺ V1 V2 V3 MW SEM p (S)	Sus 12,48 11,17 25,85 16,50 4,69	AFT 024 282,87 97,40 58,83 146,37 69,15 0,213	OP9 241,08 55,05 111,83 135,99 55,04 0,166	OP9 DL1 55,44 37,17 44,75 45,79 5,30 0,055	MS-5 30,31 59,97 94,67 61,65 18,60 0,093		CD 133 ^{low} V1 V2 V3 MW SEM p (S)	Sus 7,35 2,68 9,47 6,50 2,00	AFT 024 488,39 167,33 115,57 257,10 116,61 0,164	OP9 469,56 64,84 166,72 233,71 121,54 0,200	OP9 DL1 121,42 47,38 49,73 72,84 24,30 0,109	MS-5 116,76 121,93 323,87 187,52 68,19 0,113
CD 133 ⁺ V1 V2 V3 MW SEM p (S) p (A)	Sus 12,48 11,17 25,85 16,50 4,69	AFT 024 282,87 97,40 58,83 146,37 69,15 0,213	OP9 241,08 55,05 111,83 135,99 55,04 0,166 0,774	OP9 DL1 55,44 37,17 44,75 45,79 5,30 0,055 0,261	MS-5 30,31 59,97 94,67 61,65 18,60 0,093 0,431		CD 133 ^{low} V1 V2 V3 MW SEM p (S) p (A)	Sus 7,35 2,68 9,47 6,50 2,00 -	AFT 024 488,39 167,33 115,57 257,10 116,61 0,164	OP9 469,56 64,84 166,72 233,71 121,54 0,200 0,651	OP9 DL1 121,42 47,38 49,73 72,84 24,30 0,109 0,185	MS-5 116,76 121,93 323,87 187,52 68,19 0,113 0,719
CD 133 ⁺ V1 V2 V3 MW SEM p (S) p (A) p (O)	Sus 12,48 11,17 25,85 16,50 4,69 - - -	AFT 024 282,87 97,40 58,83 146,37 69,15 0,213 -	OP9 241,08 55,05 111,83 135,99 55,04 0,166 0,774	OP9 DL1 55,44 37,17 44,75 45,79 5,30 0,055 0,261 0,212	MS-5 30,31 59,97 94,67 61,65 18,60 0,093 0,431 0,391		CD 133 ^{low} V1 V2 V3 MW SEM p (S) p (A) p (O)	Sus 7,35 2,68 9,47 6,50 2,00 - - -	AFT 024 488,39 167,33 115,57 257,10 116,61 0,164 -	OP9 469,56 64,84 166,72 233,71 121,54 0,200 0,651	OP9 DL1 121,42 47,38 49,73 72,84 24,30 0,109 0,185 0,242	MS-5 116,76 121,93 323,87 187,52 68,19 0,113 0,719 0,795

Tab. 22: Expansion von CD45⁺, CD34⁺, CD133⁺CD34⁺ und CD133^{low}CD34⁺ Zellen in Kokultur mit Zellen muriner Stromazelllinien

Alle Werte sind als x-fache Expansion angegeben. Abkürzungen: Sus = Suspension; MW = Mittelwert; n. v. = nicht verfügbar/kontaminiert; p(S) = Signifikanzberechnung im Vergleich zur Suspension; p(A) = Signifikanzberechnung im Vergleich zur AFT024; <math>p(O) = Signifikanzberechnung im Vergleichzur OP9; p(D) = Signifikanzberechnung im Vergleich zur OP9-DL1 (t-Test, zweiseitig, gepaart)

Um die funktioneller HSVZ bzw. den Erhalt Expansion der initialen Differenzierungspotentiale zu analysieren, wurden CD133⁺CD34⁺ sowie CD133^{low}CD34⁺ Zellen der hämatopoetischen Nachkommenschaft durchflusszytometrisch sortiert und in CFC, LTC-IC und NK-IC Ansätze eingebracht (Abb. 12C, Abb. 13B, Tab. 23, Tab. 24). Die Berechnung der Expansion von Zellen mit LTC-IC, NK-IC und CFC Potential erfolgte im Vergleich zur LTC-IC, NK-IC und CFC Frequenzen frisch isolierter CD133⁺CD34⁺ bzw. CD133^{low}CD34⁺ Zellen (siehe Abschnitt 3.2.4).

Beispielrechnung für die Expansion von Zellen mit LTC-IC Potential in Kokultur mit Zellen der murinen Stromazelllinie AFT024 (Tab. 24, Versuch 1, Expansion 5,23-fach):

Die mittlere LTC-IC Frequenz (LTC-IC_{Frisch}) frisch isolierter CD133⁺CD34⁺ HSVZ betrug 14,68 \pm 1,70 % (vgl. Abschnitt 3.2.4). Die experimentell ermittelte LTC-IC Frequenz (LTC-IC_{Experiment}) der Nachkommenschaft an Tag 14 lag bei 0,27 % (Tab. 23). Die CD133⁺CD34⁺ Fraktion (Exp₁₃₃₊) wurde in der Nachkommenschaft 282,87-fach expandiert (Tab. 22). Folglich wurde die Gesamtexpansion der LTC-ICs anhand folgender Formel berechnet:

$$(Exp_{133+} x LTC-IC_{Experiment}) / LTC-IC_{Frisch} = LTC-IC_{Expansion}$$

(282,87-fach x 0,27%) / 14,6% = 5,23-fach

Die funktionelle Analyse CD133⁺CD34⁺ Zellen ergab, dass in Kokultur mit allen murinen Stromazellen die Expansion von Progenitoren mit LTC-IC und NK-IC Potential gesteigert war (Abb. 13B, Tab. 24). Die stärkste Amplifikation der LTC-ICs (7,41 ± 3,43-fach) wurde in zwei von drei Versuchen in der Kokultur mit OP9-DL1 Stromazellen ermittelt (n=3). Die im Mittel stärkste Expansion von Zellen mit NK-IC Potential wurde mit Zellen der AFT024 gefunden (20,5 ± 11,18-fach, n=3). In der Suspensionskultur war in einem von drei bzw. allen Versuchen ein Verlust der Zellen mit LTC-IC (0,87 ± 0,28-fach) bzw. NK-IC Potential (0,32 ± 0,32-fach) zu beobachten (Abb. 13B, Tab. 24, n=3).

LTC- IC	Sus	AFT 024	OP9	OP9 DL1	MS-5	NK-IC	Sus	AFT 024	OP9	OP9 DL1	MS-5
V1	0,38%	0,27%	1,09%	0,73%	0,19%	V1	0,42%	1,16%	1,93%	1,17%	n. v.%
V2	1,31%	1,01%	0,30%	3,26%	0,61%	V2	n. v.	1,70%	0,94%	0,24%	0,27%
V3	0,72%	0,46%	0,40%	1,13%	0,53%	V3	0,00%	0,18%	0,46%	0,73%	0,61%
MW	0,80	0,58	0,60	1,71	0,44	MW	0,21	1,01	1,11	0,71	0,44
SEM	0,27	0,22	0,25	0,79	0,13	SEM	0,21	0,44	0,43	0,27	0,17
p (S)	-	0,061	0,719	0,227	0,168	p (S)	-	0,348	0,312	0,009	n. v.
p (A)	-	-	0,973	0,184	0,428	p (A)	-	-	0,850	0,667	0,686
p (O)	-	-	-	0,374	0,210	p (O)	-	-	-	0,357	0,017*
p (D)	-	-	-	-	0.210	p (D)	-	-	-	-	0.656

Tab. 23: LTC-IC und NK-IC Frequenz in Kokultur mit Zellen muriner Stromazelllinien

r	Гаb. 24	: Expan	sion vor	n LTC-I	Cs, NK-	ICs und	l CF	Cs in F	Kokultu	r mit m	urinen S	Stromaz	elllinien
	LTC-		AFT		OP9				a	AFT		OP9	

LTC- IC	Sus	AFT 024	OP9	OP9 DL1	MS-5
V1	0,32	5,23	18,00	1,52	0,72
V2	1,00	6,74	1,13	13,39	1,55
V3	1,27	1,85	3,06	7,33	1,62
MW	0,87	4,61	7,40	7,41	1,30
SEM	0,28	1,44	5,33	3,43	0,29
p (S)	-	0,144	0,363	0,181	0,019
p (A)	-	-	0,655	0,482	0,167
p (O)	-	-	-	0,999	0,391
p (D)	-	-	-	-	0,196

CFC CD133 ⁺	Sus	AFT 024	OP9	OP9 DL1	MS-5
V1	n. v.	10,02	29,49	9,27	0,17
V2	3,07	14,89	19,19	4,58	2,27
V3	1,78	3,37	23,08	5,43	1,03
MW	2,43	9,43	23,92	6,43	1,16
SEM	0,65	3,34	3,00	1,44	0,61
p (S)	-	0,415	0,088	0,250	0,020
p (A)	-	-	0,105	0,507	0,114
p (O)	-	-	-	0,008*	0,024*
p (D)	-	-	-	-	0,120
				-	

NK-IC	Sus	024	OP9	DL1	MS-5
V1	0,64	40,02	56,74	4,32	n. v.
V2	n. v.	20,19	6,31	1,76	1,22
V3	0,00	1,29	6,27	8,43	3,33
		~~ ~~			
MW	0,32	20,50	23,11	4,84	2,28
SEM	0,32	11,18	16,82	1,94	1,05
p (S)	-	0,479	0,429	0,238	n. v.
p (A)	-	-	0,797	0,335	0,568
p (O)	-	-	-	0,399	0,166
p (D)	-	-	-	-	0.434

CFC CD133 ^{low}	Sus	AFT 024	OP9	OP9 DL1	MS-5
V1	n. v.	0,00	184,47	2,89	29,19
V2	0,16	63,75	19,30	6,20	29,03
V3	1,27	26,83	22,33	4,88	26,03
MW	0,71	30,19	75,37	4,66	28,08
SEM	0,55	18,48	54,56	0,96	1,03
p (S)	-	0,257	0,030	0,157	0,049
p (A)	-	-	0,588	0,283	0,919
p (O)	-	-	-	0,330	0,474
p (D)	-	-	-	-	0,004

Alle Werte sind als x-fache Expansion angegeben. Abkürzungen: Sus = Suspension; MW = Mittelwert; n. v. = nicht verfügbar/kontaminiert; p(S) = Signifikanzberechnung im Vergleich zur Suspension;p(A) = Signifikanzberechnung im Vergleich zur AFT024; p(O) = Signifikanzberechnung im Vergleich zur OP9; p(D) = Signifikanzberechnung im Vergleich zur OP9-DL1 (t-Test, zweiseitig, gepaart)

Die Frequenz koloniebildender Zellen sowohl in der CD133⁺CD34⁺ (min: 0,63 \pm 0,28 %; max: 3,19 \pm 1,31 %) als auch in der CD133^{low}CD34⁺ (min: 1,77 \pm 0,86 %; max: 5,77 \pm 2,44 %) Fraktion war nach der Kokultur in allen Versuchen im Vergleich zu frisch isolierten HSVZ (CD133⁺: 27,79 \pm 2,51; CD133^{low}: 20,9 \pm 0,93 %, Tab. 20) geringer (Tab. 56 und Tab. 57).

Die stärkste Expansion CD133⁺CD34⁺ Zellen mit Koloniebildungspotential wurde in Anwesenheit der OP9 Stromazellen ermittelt (23,92 \pm 3,0-fach). Mit Zellen der Zelllinie AFT024 wurde in zwei von drei Versuchen die beste Expansion von CD133^{low}CD34⁺ Zellen mit CFC Potential gefunden (30,19 \pm 18,48-fach).

Die morphologische Analyse der unterschiedlichen Kolonietypen im CFC Ansatz ergab, dass in der CD133⁺CD34⁺ Population nahezu ausschließlich Zellen mit CFU-G, CFU-M und CFU-GM Potential enthalten waren (Tab. 56 und Tab. 57). Multipotente HSVZ, die zuvor als CD133 exprimierende Zellen mit erythrozytärem Koloniebildungspotential definiert wurden (siehe Abschnitt 3.2.1), wurden in 3 von 15 individuellen Experimenten detektiert. In der CD133^{low}CD34⁺ Zellfraktion waren Zellen mit BFU-E, CFU-MIX, CFU-G, CFU-M und CFU-GM Potential enthalten, wie es bereits zuvor für die Suspensionskultur beschrieben wurde (Abschnitt 3.1).

Aufgrund der Ergebnisse lässt sich sagten, dass die verwendeten murinen Stromazelllinien-Zellen AFT024, OP9 sowie MS-5 eine Expansion von CD133⁺CD34⁺ Zellen mit LTC-IC, NK-IC und CFC Potential ermöglichten. Die CD133⁺CD34⁺ Fraktion wies zudem in einzelnen Versuchen Zellen BFU-E Potential auf. Die initiale CD133⁺CD34⁺ Zellpopulation brachte nach der 14-tägigen Kokultur mit den murinen Stromazelllinien-Zellen CD133^{low}CD34⁺ Zellen hervor, die sowohl erythrozytäres, erythro-myeloisches als auch myeloisches Koloniebildungspotential aufwiesen.

Von den getesteten murinen Stromazelllinien-Zellen unterstützen sowohl die AFT024 als auch die OP9 die stärkste Expansion sowohl phänotypischer als auch primitiver HSVZ mit LTC-IC, NK-IC und CFC-Potential. Für die Etablierung der *in vitro* Expansionsbedingungen in den nachfolgenden Versuchen wird die Kokultur mit Zellen der murinen Stromazelllinie AFT024 als Referenzwert mitgeführt.

Abb. 13: Expansion von HSVZ in Kokultur mit murinen Stromazelllinien-Zellen

Graphische Darstellung der Werte aus Tab. 22, Tab. 23, Tab. 24, Tab. 56 und Tab. 57 (A) Nach 14-tägiger Kokultur mit den etablierten Stromazelllinien-Zellen AFT024, OP9, OP9DL1 und MS5 bzw. ohne Stroma (Sus = Suspension) wurde die Expansion hämatopoetischer Subpopulationen durchflusszytometrisch quantifiziert. Expandierte CD133⁺CD34⁺ und CD133^{low}CD34⁺ Zellen wurden an Tag 14 durchflusszytometrisch isoliert und in den LTC-IC, NK-IC und CFC Ansatz eingebracht. (**B**) Berechnete Expansion von Zellen mit LTC-IC und NK-IC Potential in der CD133⁺CD34⁺ Population. (**C**) Berechnete Expansion koloniebildender Zellen und Frequenz der unterschiedlichen Kolonietypen in der CD133⁺CD34⁺ und CD133^{low}CD34⁻ Population. Es wurden 5 verschiedene Kolonietypen morphologisch unterschieden: CFU-MIX, BFU-E, CFU-G, CFU-GM und CFU-M. (Mittelwerte \pm SEM). Die Zahlen über den Balken repräsentieren die Anzahl der CFC Ansätze mit erythrozytären und/oder erythro-myeloischen Kolonien. (Signifikanzen: * gegen Suspension, # gegen AFT024, p<0,05)

3.4. Expansion von HSVZ in Kokultur mit primären humanen MSZ

Die im vorherigen Abschnitt beschriebenen Kokulturversuche haben gezeigt, dass die verwendeten murinen Stromazelllinien-Zellen über einen Zeitraum von 14 Tagen keinen zuverlässigen und reproduzierbaren Erhalt multipotenter hämatopoetischer Zellen unterstützen. Dies liegt vermutlich daran, dass einige von murinen Stromazellen produzierte Wachstumsfaktoren nicht spezies-übergreifend funktionell aktiv sind (Chen *et al.*, 2009). Es wurde beschrieben, dass murines IL-2, IL-3, IL-4, IL-6 und IL-15 (Mosmann *et al.*, 1987; Stevenson und Jones, 1994; Eisenman *et al.*, 2002; Kalberer *et al.*, 2003) sowie M-CSF und GM-CSF (Metcalf, 1986; Fixe und Praloran, 1997) keine oder eine schlechtere Wirkung auf humanen hämatopoetische Zellen haben. Folglich wurde untersucht, ob mit primären humanen Stromazellen eine stärkere Expansion und einen besseren Erhalt aller Differenzierungspotentiale oder sogar multipotenter HSVZ für den erweiterten ML-IC Ansatz ermöglichen wird.

Bereits seit mehreren Jahren werden humane mesenchymalen Stamm-/Stromazellen (MSZ) aus dem Knochenmark zur *in vitro* Expansion humaner hämatopoetischer Zellen verwendet (Koller *et al.*, 1995; Khoury *et al.*, 2011; Hammoud *et al.*, 2012). Inwiefern humane MSZ einen Erhalt bzw. eine Expansion multipotenter HSVZ ermöglichen, sollte im nachfolgenden Abschnitt analysiert werden. Hierzu wurden im Rahmen dieser Arbeit humane mesenchymale Stromazellen aus unterschiedlichen Geweben, die mit der adulten Hämatopoese assoziiert sind (Knochenmark, Vene, Arterie), isoliert und charakterisiert. Für die Anzucht von MSZ aus dem Knochenmark (MNZ und Fett) wurden Rückstellproben aus dem Klinikum für Knochenmarktransplantation (Prof. Dr. Dietrich W. Beelen) und der Klinik für Angiologie (Dr. med. E. Brock) verwendet (siehe 2.2.1.4). Die Anzucht venöser und arterieller MSZ erfolgte aus der Nabelschnurvene und Arterie (siehe 2.2.1.5).

3.4.1. Charakterisierung der MSZ

Die primären Zellen waren bei vollständiger Konfluenz morphologisch sehr heterogen bzgl. der Größe, der Ausprägung/Länge von Ausläufern und der Anordnung der Zellen zueinander (Abb. 15). Einige Stromazellen waren bipolar, spindelförmig und parallel angeordnet (KM MNZ B und 1.4). Arterielle, venöse, KM Fett (7/5 und 7/11) MSZ hingegen wuchsen in Form von Kolonien (Abb. 15). Die Stromazellen KM MNZ A und KM Fett 8/5 wiesen teilweise übereinander liegenden Ausläufer auf (Abb. 15).

Um die Qualität der Zellen genauer zu analysieren, wurde die Expression von als mesenchymal-typische beschriebenen Oberflächenantigene auf den isolierten Stromazellen durchflusszytometrisch ermittelt. Mesenchymale Zellen exprimieren entsprechend der Literatur unter anderem die Oberflächenantigene CD44, CD73, CD90, CD105 sowie CD146 (Wegmeyer *et al.*, 2013). Sie zeigen keine Expression der Antigene CD14 (Monozyten), CD31 (endotheliale Zellen), CD34 (HSVZ) sowie CD45 (hämatopoetische Zellen) (Wegmeyer *et al.*, 2013).

Abb. 14: Durchflusszytometrische Charakterisierung mesenchymaler Stromazellen Durchflusszytometrische Charakterisierung primärer humaner mesenchymalen Stromazellen aus dem Knochenmark (MNZ und Fett), der Arterie und der Vene ($P = Passage; wei\beta = Isotyp$ -Kontrolle; schwarz = Fluoreszenzintensität; MFI: mittlere Fluoreszenzintensität).

Alle für diese Arbeit isolierten MSZ aus dem Knochenmark, der Vene und der Arterie exprimierten die in der Literatur beschriebenen Oberflächenantigene CD44, CD73, CD90,

CD105 und CD146. Endotheliale (CD31) oder hämatopoetische (CD14, CD34, CD45) Oberflächenmarker wurden durchflusszytometrisch nicht detektiert (Abb. 14).

Die Oberflächenantigene CD90 und CD146 wurden unabhängig von der Quelle der MSZ unterschiedliche stark exprimiert. Die Spannbreite der Expressionsstärke von CD146 reichte von MFI 0,7 bei den KM MNZ A bis zu einem Maximum von MFI 21,5 bei den Stromazellen aus der Arterie 9. Das Integrin CD49f, welches bereits im hämatopoetischen System als Stammzellmarker beschrieben wurde (Notta *et al.*, 2011) und mutmaßlich auch auf primitiveren mesenchymalen Stramm-/Stromazellen exprimiert wird (Yu *et al.*, 2012), fand sich auf allen Zellen außer der KM MNZ A und B (MFI 0,77 und 0,66, Abb. 14).

Zur weiteren Charakterisierung wurden funktionelle Tests durchgeführt und die Fähigkeit der MSZ zur Differenzierung in Osteoblasten, Adipozyten und Chondrozyten untersucht (Abb. 15) (Pittenger *et al.*, 1999). Der Anteil der analysierten MSZ die sich in Osteoblasten, Adipozyten und Chondrozyten differenzierten war sehr unterschiedlich.

Mesenchymale Stromazellen, die in Osteoblasten differenzieren können, sekretieren nach der Induktion Calciumphosphat, welches mit Alizarinrot angefärbt werden kann (Abb. 15, Osteo). In fas allen MSZ Linien wurde eine intensive Rotfärbung der Differenzierungsansätze beobachte, was auch eine hohe Frequenz osteogen differenzierte MSZ schließen lässt. Die geringste Frequenz an Zellen mit osteogenem Differenzierungspotential wurde in den Stromazelllinien KM MNZ 1.4 und der Arterie 9 detektiert.

Zellen mit adipogenem Differenzierungspotential lagern Triglycerid-Vesikel ein, welche mit Oil-Red-O angefärbt werden können (Kutt und Tsaltas, 1959). Die höchste Frequenz an MSZ mit adipogenem Differenzierungspotential konnte bei der Linie MSZ Arterie 8 detektiert werden (Abb. 15, Adipo). Bei den Stromazellen KM MNZ B und KM Fett 8/5 waren 70-80 % der Zellen in der Lage Fett-Vesikel einzulagern (Abb. 15, Adipo). Bei den übrigen Stromazellen lagerten nur vereinzelt (KM MNZ A, KM MNZ 1.4, KM Fett 7/5, Vene 8) oder gar keine (Arterie 9, Vene 5) Zellen Triglycerid-Vesikeln ein (Abb. 15, Adipo).

Für die chondrogene Differenzierung wurden zu analysierende MSZ in einem Spitzbodengefäß pelletiert, für 14 Tage kultiviert und formten nach der Induktion der Differenzierung sogenannte Chondrosphären. Zur Chondrogenese induzierte MSZ sekretieren sulfatierte Proteoglykane in die Extrazellulärmatrix, welche mit dem Farbstoff Alzian Blue angefärbt werden können (Kindblom und Karlsson, 1977). Bei der Differenzierung der MSZ zeigten sich Unterschiede in der Größe der Sphären, der Zelldichte in den Sphären und dem Grad der Färbung. Die Chondrosphären der MSZ KM MNZ 1.4, Arterie (8 und 9) und Vene (5 und 8) waren im Durchmesser 200-400 µm groß und wiesen Regionen mit sehr hoher

Zelldichte und starker Färbung auf (Abb. 15, Chondro). Zellen der MSZ KM Fett (7/5 und 7/11) bildeten bei gleicher Zellzahl Chondrosphären von etwa 100-200 μ m Durchmesser. Die Zelldichte in den Chondrosphären der MSZ KM MNZ (A und B) und KM Fett 8/5 war stellenweise sehr gering, was zur Fragmentierung der Sphären beim Einfrier- und Schneidevorgang führte (Abb. 15, Chondro). Die MSZ aus der Arterie 10 bildeten die kleinesten Chondrosphären mit einem Durchmesser von 50-100 μ m (Abb. 15, Chondro).

Phase: Phasenkontrastaufnahme von konfluent gewachsenen humanen MSZ. **Osteo:** Calciumnachweis mit Alizarinrot bei osteogen differenzierten MSZ. **Adipo:** Einlagerung des lipophilen, rot färbenden Azofarbstoffs Oil Red O in die Triglycerid-Vesikel bei adipogen differenzierten MSZ. **Chondro:** Nachweis von Glykosaminoglykanen mit dem Farbstoff Alcianblau nach chondrogener Differenzierung (Maßstabsbalken = 20 µm).

Alle für diese Arbeit isolierten und charakterisierten MSZ erfüllen die hier untersuchten Kriterien mesenchymaler Stamm-/Stromazellen. Die isolierten mesenchymalen Stromazellen aus den unterschiedlichen Geweben wurden nachfolgend hinsichtlich der Fähigkeit untersucht, die Expansion von HSVZ zu unterstützen (siehe Abschnitt 3.4.2).

3.4.2. Kokultur von HSVZ mit mesenchymalen Stromazellen

Die Kokultivierung von CD133⁺CD34⁺ HSVZ mit primären humanen Stromazellen erfolgte in Analogie zu den Kokulturversuchen mit Zellen muriner Stromazelllinien (siehe Abschnitt 3.3). Nach der 14-tägigen Kokultur wurde die hämatopoetische Nachkommenschaft geerntet und durchflusszytometrisch analysiert (Abb. 16 und Tab. 25).

In Kokultur mit allen humanen mesenchymalen Stromazellen aus dem Knochenmark, der Arterie und der Vene wurde ein Erhalt CD133⁺CD34⁺ sowie CD133^{low}CD34⁺ HSVZ in der hämatopoetischen Nachkommenschaft beobachtet (Abb. 16 und Tab. 25). Im Mittel wiesen nur die Nachkommenschaft in Kulturen mit der MSZ MNZ B (9,76 \pm 2,37 %, n=6) und der MSZ Fett 7/11 (10,2 \pm 1,52, n=4) im Vergleich zum AFT024 Stroma (10,1 \pm 1,78 %) einen annähernd vergleichbaren Anteil CD133⁺CD34⁺ Zellen an der gesamten hämatopoetischen Nachkommenschaft auf (Tab. 25).

Die Frequenz CD133^{low}CD34⁺ Zellen ist in allen Kokulturen mit mesenchymalen Stromazellen um das 5 bis 30-fache niedriger als mit der AFT024 (Tab. 25). Die im Mittel höchste Frequenz CD133^{low}CD34⁺ Zellen wurde in Kokultur mit mesenchymalen Stromazellen MSZ KM MNZ B ermittelt (6,06 \pm 0,56 %, n=6, Tab. 25).

Abb. 16: Durchlusszytometrische Analyse der HSVZ in Kokultur mit primären MSZ Durchflusszytometrische Analyse der Nachkommenschaft von CD133⁺CD34⁺ Zellen nach 14-tägiger Kokultur mit primären humanen mesenchymalen Stromazellen. Darstellung repräsentativer Analysen aus unabhängigen Vorversuchen.

1 ad. 2	5: r rec	juenz C	DI33	UJ34	una CL	133 (JJ34 A	Lenen I	п Коки	litur mi	t MSZ		
CD 133 ⁺	Sus	AFT 024	MNZ A	MNZ B	MNZ 1.4	Fett 7/5	Fett 7/11	Fett 8/5	Vene 5	Vene 8	Art 8	Art 9	Art 10
V1		11,5%	6,13%	9,10%	10,3%	7,48%	8,51%	8,47%	6,34%	4,80%	7,35%	6,49%	6,25%
V2	2,59%	11,5%	11,0%	11,9%	8,71%	8,55%	10,5%	9,09%	4,51%	5,29%	5,71%	6,00%	7,62%
V3	0,41%	2,00%	1,48%	1,92%	1,16%	1,49%	n. v.	1,22%	0,33%	0,38%	0,78%	0,38%	0,38%
V4	1,98%	11,5%	9,43%	9,14%	7,37%	10,4%	n. v.	5,30%	2,51%	4,82%	5,84%	3,86%	5,13%
V5	3,09%	12,5%	15,9%	18,2%	11,8%	13,1%	13,8%	13,6%	4,42%	2,75%	6,18%	0,00%	3,85%
V6	1,13%	11,3%	2,58%	8,25%	8,34%	9,75%	8,07%	7,95%	4,52%	5,07%	6,71%	0,86%	4,65%
MW	1.84%	10.1%	7.78%	9.76%	7.96%	8.47%	10.2%	7.62%	3.77%	3.85%	5.43%	2.93%	4.65%
SEM	0.54%	1.78%	2.45%	2.37%	1.65%	1.75%	1.52%	1.85%	0.93%	0.86%	1.05%	1.30%	1.10%
(0)													
p (S)	-	0,008	0,049	0,021	0,014	0,012	0,017	0,028	0,078	0,098	0,019	0,747	0,056
p (A)	-	-	0,242	0,810	0,014*	0,065	0,253	0,060	0,002*	0,002*	0,002*	0,007*	0,003*
							1					-	
CD 133 ^{low}	Sus	AFT	MNZ	MNZ	MNZ	Fett	Fett	Fett	Vene	Vene	0	1-40	Art 10
		024	Α	В	1.4	7/5	7/11	8/5	5	8	Art 8	Art 9	AIT IU
V1		024 28,3%	A 2,70%	B 6,55%	1.4 5,69%	7/5 5,15%	7/11 5,55%	8/5 3,65%	5 2,11%	8 1,93%	Art 8 2,04%	Art 9 2,92%	2,21%
V1 V2	2,11%	024 28,3% 30,7%	A 2,70% 2,78%	B 6,55% 5,35%	1.4 5,69% 3,31%	7/5 5,15% 3,21%	7/11 5,55% 3,13%	8/5 3,65% 1,68%	5 2,11% 1,09%	8 1,93% 0,93%	Art 8 2,04% 1,17%	2,92% 1,99%	2,21% 1,52%
V1 V2 V3	2,11% 1,41%	024 28,3% 30,7% 27,0%	A 2,70% 2,78% 3,25%	B 6,55% 5,35% 5,72%	1.4 5,69% 3,31% 3,33%	7/5 5,15% 3,21% 3,58%	7/11 5,55% 3,13% n. v.	8/5 3,65% 1,68% 2,72%	5 2,11% 1,09% 1,32%	8 1,93% 0,93% 1,29%	Art 8 2,04% 1,17% 1,18%	2,92% 1,99% 1,76%	2,21% 1,52% 1,42%
V1 V2 V3 V4	2,11% 1,41% 1,00%	024 28,3% 30,7% 27,0% 21,2%	A 2,70% 2,78% 3,25% 3,51%	B 6,55% 5,35% 5,72% 4,54%	1.4 5,69% 3,31% 3,33% 5,01%	7/5 5,15% 3,21% 3,58% 3,08%	7/11 5,55% 3,13% n. v. n. v.	8/5 3,65% 1,68% 2,72% 2,32%	5 2,11% 1,09% 1,32% 1,59%	8 1,93% 0,93% 1,29% 1,23%	Art 8 2,04% 1,17% 1,18% 1,49%	Art 9 2,92% 1,99% 1,76% 1,71%	2,21% 1,52% 1,42% 1,85%
V1 V2 V3 V4 V5	2,11% 1,41% 1,00% 1,85%	024 28,3% 30,7% 27,0% 21,2% 15,0%	A 2,70% 2,78% 3,25% 3,51% 3,86%	B 6,55% 5,35% 5,72% 4,54% 8,25%	1.4 5,69% 3,31% 3,33% 5,01% 4,52%	7/5 5,15% 3,21% 3,58% 3,08% 5,65%	7/11 5,55% 3,13% n. v. n. v. 4,24%	8/5 3,65% 1,68% 2,72% 2,32% 4,96%	5 2,11% 1,09% 1,32% 1,59% 2,00%	8 1,93% 0,93% 1,29% 1,23% 2,69%	Art 8 2,04% 1,17% 1,18% 1,49% 1,85%	2,92% 1,99% 1,76% 1,71% 5,26%	2,21% 1,52% 1,42% 1,85% 2,15%
V1 V2 V3 V4 V5 V6	2,11% 1,41% 1,00% 1,85% 1,35%	024 28,3% 30,7% 27,0% 21,2% 15,0% 35,4%	A 2,70% 2,78% 3,25% 3,51% 3,86% 3,09%	B 6,55% 5,35% 5,72% 4,54% 8,25% 5,99%	1.4 5,69% 3,31% 3,33% 5,01% 4,52% 3,51%	7/5 5,15% 3,21% 3,58% 3,08% 5,65% 3,34%	7/11 5,55% 3,13% n. v. n. v. 4,24% 2,55%	8/5 3,65% 1,68% 2,72% 2,32% 4,96% 4,04%	5 2,11% 1,09% 1,32% 1,59% 2,00% 5,43%	8 1,93% 0,93% 1,29% 1,23% 2,69% 1,52%	Art 8 2,04% 1,17% 1,18% 1,49% 1,85% 2,01%	Art 9 2,92% 1,99% 1,76% 1,71% 5,26% 2,25%	2,21% 1,52% 1,42% 1,85% 2,15% 1,76%
V1 V2 V3 V4 V5 V6 MW	2,11% 1,41% 1,00% 1,85% 1,35%	024 28,3% 30,7% 27,0% 21,2% 15,0% 35,4% 26,3%	A 2,70% 2,78% 3,25% 3,51% 3,86% 3,09%	B 6,55% 5,35% 5,72% 4,54% 8,25% 5,99% 6,06%	1.4 5,69% 3,31% 3,33% 5,01% 4,52% 3,51%	7/5 5,15% 3,21% 3,58% 3,08% 5,65% 3,34%	7/11 5,55% 3,13% n. v. n. v. 4,24% 2,55%	8/5 3,65% 1,68% 2,72% 2,32% 4,96% 4,04%	5 2,11% 1,09% 1,32% 1,59% 2,00% 5,43%	8 1,93% 0,93% 1,29% 1,23% 2,69% 1,52% 1	Art 8 2,04% 1,17% 1,18% 1,49% 1,85% 2,01% 1,63%	Art 9 2,92% 1,99% 1,76% 1,71% 5,26% 2,25%	2,21% 1,52% 1,42% 1,85% 2,15% 1,76%
V1 V2 V3 V4 V5 V6 MW SEM	2,11% 1,41% 1,00% 1,85% 1,35% 1,54%	024 28,3% 30,7% 27,0% 21,2% 15,0% 35,4% 26,3% 26,3%	A 2,70% 2,78% 3,25% 3,51% 3,86% 3,09% 3,20%	B 6,55% 5,35% 5,72% 4,54% 8,25% 5,99% 6,06% 0,56%	1.4 5,69% 3,31% 3,33% 5,01% 4,52% 3,51% 4,23% 0,45%	7/5 5,15% 3,21% 3,58% 3,08% 5,65% 3,34% 4,00%	7/11 5,55% 3,13% n. v. 1,24% 2,55% 3,87% 0,76%	8/5 3,65% 1,68% 2,72% 2,32% 4,96% 4,04% 3,23%	5 2,11% 1,09% 1,32% 1,59% 2,00% 5,43% 2,26% 0,72%	8 1,93% 0,93% 1,29% 1,23% 2,69% 1,52% 1,60% 0,28%	Art 8 2,04% 1,17% 1,18% 1,49% 1,85% 2,01% 1,63% 0,18%	Art 9 2,92% 1,99% 1,76% 1,71% 5,26% 2,25% 2,65% 0,61%	2,21% 1,52% 1,42% 1,85% 2,15% 1,76% 1,82%
V1 V2 V3 V4 V5 V6 MW SEM	2,11% 1,41% 1,00% 1,85% 1,35% 1,54% 0,22%	024 28,3% 30,7% 27,0% 21,2% 15,0% 35,4% 26,3% 3,23%	A 2,70% 2,78% 3,25% 3,51% 3,86% 3,09% 3,20% 0,20%	B 6,55% 5,35% 5,72% 4,54% 8,25% 5,99% 6,06% 0,56%	1.4 5,69% 3,31% 3,33% 5,01% 4,52% 3,51% 4,23% 0,45%	7/5 5,15% 3,21% 3,58% 3,08% 5,65% 3,34% 4,00% 0,49%	7/11 5,55% 3,13% n. v. n. v. 4,24% 2,55% 3,87% 0,76%	8/5 3,65% 1,68% 2,72% 2,32% 4,96% 4,04% 3,23% 0,54%	5 2,11% 1,09% 1,32% 1,59% 2,00% 5,43% 2,26% 0,72%	8 1,93% 0,93% 1,29% 1,23% 2,69% 1,52% 1,60% 0,28%	Art 8 2,04% 1,17% 1,18% 1,49% 1,85% 2,01% 1,63% 0,18%	Art 9 2,92% 1,99% 1,76% 1,71% 5,26% 2,25% 2,65% 0,61%	2,21% 1,52% 1,42% 1,85% 2,15% 1,76% 1,82% 0,14%
V1 V2 V3 V4 V5 V6 MW SEM p (S)	2,11% 1,41% 1,00% 1,85% 1,35% 1,54% 0,22%	024 28,3% 30,7% 27,0% 21,2% 15,0% 35,4% 26,3% 3,23% 0,002	A 2,70% 2,78% 3,25% 3,51% 3,86% 3,09% 3,20% 0,20% 0,004	B 6,55% 5,35% 5,72% 4,54% 8,25% 5,99% 6,06% 0,56% 0,001	1.4 5,69% 3,31% 3,33% 5,01% 4,52% 3,51% 4,23% 0,45% 0,45% 0,007	7/5 5,15% 3,21% 3,58% 3,08% 5,65% 3,34% 4,00% 0,49% 0,007	7/11 5,55% 3,13% n. v. n. v. 4,24% 2,55% 3,87% 0,76%	8/5 3,65% 1,68% 2,72% 2,32% 4,96% 4,04% 3,23% 0,54%	5 2,11% 1,09% 1,32% 1,59% 2,00% 5,43% 2,26% 0,72% 0,444	8 1,93% 0,93% 1,29% 1,23% 2,69% 1,52% 1,60% 0,28% 0,970	Art 8 2,04% 1,17% 1,18% 1,49% 1,85% 2,01% 1,63% 0,18% 0,996	Art 9 2,92% 1,99% 1,76% 1,71% 5,26% 2,25% 2,65% 0,61% 0,163	2,21% 1,52% 1,42% 1,85% 2,15% 1,76% 1,82% 0,14% 0,460

Abkürzungen: Sus = Suspension; MW = Mittelwert; n. v. = nicht verfügbar/kontaminiert; p (S) = Signifikanz-berechnung im Vergleich zur Suspension; p (A) = Signifikanzberechnung im Vergleich zur AFT024 (t-Test, zweiseitig, gepaart); Signifikanzen p<0,05 werden fett gedruckt dargestellt. Sind die Messwerte der Suspension bzw. mit der AFT024 signifikant höher ist der Signifikanzwert mit einem *-Symbol markiert.

Weiterhin wurde die Expansion der CD133⁺CD34⁺, CD133^{low}CD34⁺ und CD45⁺ Zellen in Kokultur mit primären humanen mesenchymalen Stromazellen durchflusszytometrisch quantifiziert (Abb. 17A, Tab. 26, n=6). In Kokultur mit allen getesteten primären mesenchymalen Stromazellen wurde eine Expansion (Faktor > 1) von CD45⁺, CD133⁺CD34⁺ sowie CD133^{low}CD34⁺ Zellen ermittelt (Abb. 17A, Tab. 26, n=6). Eine stärkere Expansion der CD45⁺ Fraktion als mit der AFT024 (2.226 ± 583-fach, n=6) ermöglichten in jeweils vier von sechs Versuchen die Kulturen mit Zellen der MSZ KM MNZ B (2.777 ± 335-fach, n=6) sowie der MSZ KM Fett 8/5 (2649 ± 398-fach, n=6).

Eine nennenswert stärkere Expansion der CD133⁺CD34⁺ Fraktion konnte im Vergleich zur Kontrollbedingung (230 \pm 76,5-fach, n=6) nur in der Kokultur mit den MSZ KM MNZ B (276 \pm 78-fach, n=6, Abb. 17A, Tab. 26) ermittelt werden.

In Anwesenheit der murinen Stromazellen (599,2 \pm 218,2-fach, n=6) wurde in allen durchgeführten Versuchen eine etwa 2 bis 30-fach stärkere Expansion der CD133^{low}CD34⁺ Population ermittelt als in der Kokultur mit primären MSZ. Von den mesenchymalen Stromazellen wies die Kultur mit Zellen der MSZ KM MNZ B (171,7 \pm 29,96-fach, n=6) im Mittel die beste Expansion der CD133^{low}CD34⁺ HSVZ auf (Abb. 17A, Tab. 26).

MOL													
CD 45 ⁺	Sus	AFT 024	MNZ A	MNZ B	MNZ 1.4	Fett 7/5	Fett 7/11	Fett 8/5	Vene 5	Vene 8	Art 8	Art 9	Art 10
V1	0,00	958,7	2127	2118	1046	897,2	862,7	1777	1182	1309	1011	769,1	1126
V2	223,6	732,9	1156	1830	1123	714,8	780,3	1377	1235	2005	1637	1386	1568
V3	142,0	1874	1350	2658	1320	1006	n. v.	2648	1364	1394	1182	910,0	986,0
V4	200,0	2656	1996	2600	1516	1234	n. v.	2670	1254	1630	1472	1168	1404
V5	216,0	2460	1502	3420	1594	1310	1650	3466	1998	2602	1618	76,00	2424
V6	296,0	4676	3296	4040	2738	1676	2354	3960	1842	1842	2086	6036	2044
MW	170.6	2226	1004	0777	1556	1120	1 / 1 /	2640	1470	1707	1501	1704	1502
SEM	179,6	ZZZ0 592.1	217.4	2111	251.9	120.2	270.2	2049	1479	1/9/	1001	001 /	1092
SEM	41,19	565,1	317,4	335,0	201,0	139,3	370,2	390,4	142,0	193,3	134,0	001,4	224,7
p (S)	-	0,014	0,003	0,001	0,002	0,001	0,034	0,001	0,001	0,001	0,001	0,132	0,001
p (A)	-	-	0,442	0,124	0,110	0,060	0,239	0,173	0,194	0,490	0,193	0,416	0,263
												. <u> </u>	1
CD 133⁺	Sus	AFT 024	MNZ A	MNZ B	MNZ 1.4	Fett 7/5	Fett 7/11	Fett 8/5	Vene 5	Vene 8	Art 8	Art 9	Art 10
V1	1.67	111.1	130.3	192.8	108.1	67.13	73.38	150.6	74.93	62.83	74.32	49.90	70.47
V2	5.78	84.37	127.8	217.9	97.87	61.15	82.08	125.1	55.67	106.1	93.55	83.22	119.5
V3	0.59	37.52	19.96	50.96	15.33	14,99	n. v.	32.41	4.49	5.32	9.23	3.43	3.76
V4	3.97	307.5	188.2	237.6	111.7	129.0	n. v.	141.5	31.45	78.63	85.90	45.07	71.97
V5	6,67	308,3	240,0	623,3	188,3	171,6	228,3	473,3	88,33	71,67	100,0	n. v.	93,33
V6	3,33	531,6	85,00	333,3	228,3	163,3	190,0	315,0	83,33	93,33	140,0	51,67	95,00
MXX	2.67	220.0	121.0	276.0	124.0	101.2	142 4	206.2	EC 27	60.66	02.02	16.66	75.67
SEM	0.95	76.49	31 / 2	78.81	30.50	25.60	38.78	65 13	13 / 2	1/ 33	17 / 8	12 73	16.14
SEM	0,35	70,43	51,42	70,01	50,50	20,00	30,70	05,15	10,42	14,00	17,40	12,75	10,14
p (S)	-	0,031	0,009	0,017	0,010	0,012	0,036	0,026	0,010	0,005	0,005	0,022	0,005
p (A)	-	-	0,241	0,552	0,096	0,065	0,231	0,700	0,056	0,073	0,069	0,137	0,083
CD			1017	1017	1017	T 11	T	T			1		<u> </u>
CD 122low	Sus	AF1 024	MNZ	MNZ	MNZ 14	Fett	Fett 7/11	Fett	Vene 5	Vene 8	Art 8	Art 9	Art 10
133	0.00	024	A 57.40	D 400.0	1.4	1/3	//11	0/3	04.00	05.00	00.04	00.40	04.00
VI	2,00	271,5	57,48	138,6	59,52	46,18	47,88	64,82	24,90	25,30	20,64	22,46	24,88
<u>V2</u>	4,72	225,6	32,18	97,86	37,16	22,96	24,42	23,14	13,44	18,60	19,12	27,60	23,82
V3	2,00	506,0	43,82	152,0	44,00	36,00	n. v.	72,00	18,00	18,00	14,00	16,00	14,00
V4 V5	2,00	564,0 270,0	70,00	118,0	76,00	38,00	n. v.	62,00	20,00	20,00	22,00	20,00	26,00
V 5 V 6	4,00	370,0	102.0	202,0	12,00	74,00	60.00	160.0	40,00	28.00	42.00	4,00	32,00
vo	4,00	0001	102,0	242,0	90,00	50,00	60,00	100,0	100,0	28,00	42,00	130,0	30,00
MW	3,12	599,2	60,58	171,7	64,11	45,52	50,58	92,33	36,06	29,98	24,63	37,68	29,45
SEM	0,51	218,3	9,85	29,96	8,89	7,25	9,82	24,36	13,32	8,17	4,07	19,93	5,34
n (S)		0.041	0.002	0.002	0.001	0.002	0.019	0.014	0.054	0.020	0.002	0.141	0.004
p(s)		0,041	0,002	0,002	0.053	0.051	0.186	0.057	0,054	0,020	0,003	0,141	0.04

Tab. 26: Expansion der CD45⁺, CD133⁺CD34⁺ und CD133^{low} CD34⁺ Fraktion in Kokultur mit MSZ

Alle Werte sind als x-fache Expansion angegeben. Abkürzungen: Sus = Suspension; MNZ = Mononukleäre Zellen aus den Knochenmark; Art = Arterie; MW = Mittelwert; n. v. = nichtverfügbar/kontaminiert; p (S) = Signifikanzberechnung im Vergleich zur Suspension;<math>p(A) = Signifikanz-berechnung im Vergleich zur AFT024 (t-Test, zweiseitig, gepaart); Signifikanzen p<0,05 werden fett gedruckt dargestellt. Sind die Messwerte der Suspension bzw. mit der AFT024 signifikant höher ist der Signifikanzwert mit einem *-Symbol markiert.

Um die Expansion von Zellen mit LTC-IC und NK-IC Potential zu analysieren, wurde die CD133⁺CD34⁺ Zellfraktion durchflusszytometrisch sortiert und in den LTC-IC bzw. NK-IC Ansatz eingebracht (Abb. 17B und C, Tab. 27, n=5).

Eine stärkere Amplifikation von Zellen mit LTC-IC Potential wurde gegenüber der Kontrolle in fast allen Kokulturen mit MSZ ermittelt. Eine besonders starke Expansion von LTC-ICs wurde in Kokultur mit MSZ aus dem Knochenmark (KM MNZ A: $10 \pm 3,7$ -fach, KM MNZ B: $26,9 \pm 9,4$ -fach, KM MNZ 1.4: $13,2 \pm 4,3$ -fach und KM Fett 7/5: $13,9 \pm 4,4$ -fach), der Arterie 8 ($20,5 \pm 6,5$ -fach) und der Vene 8 beobachtet ($11,3 \pm 3,7$ -fach, Abb. 17B, Tab. 27, n=5). Die im Mittel sehr starke Expansion von LTC-ICs in Kokultur mit Zellen der MSZ KM Fett 7/11 ist auf einen hohen Einzelwert im Versuch 4 (Tab. 27) sowie die geringere Anzahl von Versuchen (n=3) zurückzuführen. In 8 von 51 Versuchen mit primären Stromazellen wurde ein Verlust (Faktor < 1) von Zellen mit NK-IC Potential ermittelt. Im Vergleich zur AFT024 (9,26 \pm 4,68-fach) wurde nur mit Zellen der MSZ KM MNZ B (6,88 \pm 1,68-fach) in drei von fünf Versuchen eine stärkere Expansion der NK-ICs ermöglicht (Abb. 17C, Tab. 27, n=5).

IC-	Sus	AFT 024	MNZ A	MNZ B	MNZ 1.4	Fett 7/5	Fett 7/11	Fett 8/5	Vene 5	Vene 8	Art 8	Art 9	Art 10
V1	0,00	0,39	4,73	6,42	4,62	6,91	2,70	1,37	10,18	3,20	9,42	13,05	2,62
V2	0,96	6,39	6,89	23,66	3,53	6,77	n. v.	3,86	2,68	9,33	5,81	2,49	5,91
V3	1,33	1,14	9,16	35,65	11,94	16,18	n. v.	8,82	6,03	10,77	24,06	10,28	6,36
V4	3,74	6,77	24,66	58,49	25,67	29,98	74,60	40,20	39,69	25,08	42,47	n. v.	36,82
V5	1,05	1,87	4,60	10,05	20,33	9,73	9,37	8,85	6,45	8,31	20,62	n. v.	10,35
MW	1,42	3,31	10,01	26,85	13,22	13,92	28,89	12,62	13,01	11,34	20,47	8,61	12,41
SEM	0,62	1,36	3,76	9,46	4,33	4,36	22,94	7,05	6,78	3,67	6,46	3,16	6,22
p (S)	-	0,142	0,053	0,046	0,038	0,030	0,338	0,157	0,137	0,031	0,032	0,145	0,122
p (A)	-	-	0,094	0,053	0,077	0,054	0,344	0,215	0,193	0,049	0,050	0,358	0,170
NK- IC	Sus	AFT 024	MNZ A	MNZ B	MNZ 1.4	Fett 7/5	Fett 7/11	Fett 8/5	Vene 5	Vene 8	Art 8	Art 9	Art 10
NK- IC V1	Sus 0,00	AFT 024 0,00	MNZ A 0,78	MNZ B 2,66	MNZ 1.4 0,84	Fett 7/5 0,00	Fett 7/11 0,20	Fett 8/5 0,77	Vene 5 7,06	Vene 8 1,94	Art 8 0,00	Art 9 0,00	Art 10
NK- IC V1 V2	Sus 0,00 0,10	AFT 024 0,00 3,30	MNZ A 0,78 2,63	MNZ B 2,66 4,84	MNZ 1.4 0,84 2,46	Fett 7/5 0,00 4,39	Fett 7/11 0,20 n. v.	Fett 8/5 0,77 9,01	Vene 5 7,06 2,60	Vene 8 1,94 0,35	Art 8 0,00 3,17	Art 9 0,00 1,10	Art 10 1,74 2,04
NK- IC V1 V2 V3	Sus 0,00 0,10 0,45	AFT 024 0,00 3,30 25,88	MNZ A 0,78 2,63 8,77	MNZ B 2,66 4,84 12,76	MNZ 1.4 0,84 2,46 10,22	Fett 7/5 0,00 4,39 8,98	Fett 7/11 0,20 n. v. n. v.	Fett 8/5 0,77 9,01 7,77	Vene 5 7,06 2,60 1,73	Vene 8 1,94 0,35 4,12	Art 8 0,00 3,17 7,54	Art 9 0,00 1,10 3,35	Art 10 1,74 2,04 7,99
NK- IC V1 V2 V3 V4	Sus 0,00 0,10 0,45 0,09	AFT 024 0,00 3,30 25,88 4,14	MNZ A 0,78 2,63 8,77 7,90	MNZ B 2,66 4,84 12,76 6,84	MNZ 1.4 0,84 2,46 10,22 0,70	Fett 7/5 0,00 4,39 8,98 4,61	Fett 7/11 0,20 n. v. n. v. 6,96	Fett 8/5 0,77 9,01 7,77 1,73	Vene 5 7,06 2,60 1,73 1,18	Vene 8 1,94 0,35 4,12 1,84	Art 8 0,00 3,17 7,54 2,07	Art 9 0,00 1,10 3,35 n. v.	Art 10 1,74 2,04 7,99 1,94
NK- IC V1 V2 V3 V4 V5	Sus 0,00 0,10 0,45 0,09 0,17	AFT 024 0,00 3,30 25,88 4,14 12,97	MNZ A 0,78 2,63 8,77 7,90 9,95	MNZ B 2,66 4,84 12,76 6,84 7,32	MNZ 1.4 0,84 2,46 10,22 0,70 14,21	Fett 7/5 0,00 4,39 8,98 4,61 11,35	Fett 7/11 0,20 n. v. n. v. 6,96 12,51	Fett 8/5 0,77 9,01 7,77 1,73 9,61	Vene 5 7,06 2,60 1,73 1,18 2,54	Vene 8 1,94 0,35 4,12 1,84 3,07	Art 8 0,00 3,17 7,54 2,07 7,51	Art 9 0,00 1,10 3,35 n. v. n. v.	Art 10 1,74 2,04 7,99 1,94 6,38
NK- IC V1 V2 V3 V4 V5 MW	Sus 0,00 0,10 0,45 0,09 0,17	AFT 024 0,00 3,30 25,88 4,14 12,97	MNZ A 0,78 2,63 8,77 7,90 9,95	MNZ B 2,66 4,84 12,76 6,84 7,32	MNZ 1.4 0,84 2,46 10,22 0,70 14,21	Fett 7/5 0,00 4,39 8,98 4,61 11,35	Fett 7/11 0,20 n. v. n. v. 6,96 12,51	Fett 8/5 0,77 9,01 7,77 1,73 9,61	Vene 5 7,06 2,60 1,73 1,18 2,54	Vene 8 1,94 0,35 4,12 1,84 3,07	Art 8 0,00 3,17 7,54 2,07 7,51	Art 9 0,00 1,10 3,35 n. v. n. v. 1,48	Art 10 1,74 2,04 7,99 1,94 6,38
NK- IC V1 V2 V3 V4 V5 MW SEM	Sus 0,00 0,10 0,45 0,09 0,17 0,16 0,08	AFT 024 0,00 3,30 25,88 4,14 12,97 9,26 4,68	MNZ A 0,78 2,63 8,77 7,90 9,95 6,01 1,81	MNZ B 2,66 4,84 12,76 6,84 7,32 6,88 1,68	MNZ 1.4 0,84 2,46 10,22 0,70 14,21 5,69 2,76	Fett 7/5 0,00 4,39 8,98 4,61 11,35 5,87 1,97	Fett 7/11 0,20 n. v. 6,96 12,51 6,56 2,56	Fett 8/5 0,77 9,01 7,77 1,73 9,61 5,78	Vene 5 7,06 2,60 1,73 1,18 2,54 3,02 1,04	Vene 8 1,94 0,35 4,12 1,84 3,07 2,27 0,63	Art 8 0,00 3,17 7,54 2,07 7,51 4,06 1,50	Art 9 0,00 1,10 3,35 n. v. n. v. 1,48 0,99	Art 10 1,74 2,04 7,99 1,94 6,38 4,02 1,22
NK- IC V1 V2 V3 V4 V5 MW SEM	Sus 0,00 0,10 0,45 0,09 0,17 0,16 0,08	AFT 024 0,00 3,30 25,88 4,14 12,97 9,26 4,68	MNZ A 0,78 2,63 8,77 7,90 9,95 6,01 1,81	MNZ B 2,66 4,84 12,76 6,84 7,32 6,88 1,68	MNZ 1.4 0,84 2,46 10,22 0,70 14,21 5,69 2,76	Fett 7/5 0,00 4,39 8,98 4,61 11,35 5,87 1,97	Fett 7/11 0,20 n. v. 6,96 12,51 6,56 3,56	Fett 8/5 0,77 9,01 7,77 1,73 9,61 5,78 1,88	Vene 5 7,06 2,60 1,73 1,18 2,54 3,02 1,04	Vene 8 1,94 0,35 4,12 1,84 3,07 2,27 0,63	Art 8 0,00 3,17 7,54 2,07 7,51 4,06 1,50	Art 9 0,00 1,10 3,35 n. v. n. v. 1,48 0,99	Art 10 1,74 2,04 7,99 1,94 6,38 4,02 1,32
NK- IC V1 V2 V3 V4 V5 MW SEM p (S)	Sus 0,00 0,10 0,45 0,09 0,17 0,16 0,08	AFT 024 0,00 3,30 25,88 4,14 12,97 9,26 4,68 0,119	MNZ A 0,78 2,63 8,77 7,90 9,95 6,01 1,81 0,029	MNZ B 2,66 4,84 12,76 6,84 7,32 6,88 1,68 0,014	MNZ 1.4 0,84 2,46 10,22 0,70 14,21 5,69 2,76 0,111	Fett 7/5 0,00 4,39 8,98 4,61 11,35 5,87 1,97 0,041	Fett 7/11 0,20 n. v. 6,96 12,51 6,56 3,56 0,207	Fett 8/5 0,77 9,01 7,77 1,73 9,61 5,78 1,88 0,038	Vene 5 7,06 2,60 1,73 1,18 2,54 3,02 1,04 0,058	Vene 8 1,94 0,35 4,12 1,84 3,07 2,27 0,63 0,022	Art 8 0,00 3,17 7,54 2,07 7,51 4,06 1,50 0,054	Art 9 0,00 1,10 3,35 n. v. n. v. 1,48 0,99 0,266	Art 10 1,74 2,04 7,99 1,94 6,38 4,02 1,32 0,037

Tab. 27: Expansion von LTC-ICs und NK-ICs in Kokultur mit MSZ

Alle Werte sind als x-fache Expansion angegeben. Abkürzungen: Sus = Suspension; MNZ = Mononukleäre Zellen Art = Arterie; MW = Mittelwert; n. v. = nicht verfügbar/kontaminiert; p(S) = Signifikanzberechnung im Vergleich zur Suspension; p(A) = Signifikanzberechnung im Vergleich zur AFT024 (t-Test, zweiseitig, gepaart); Signifikanzen p<0,05 werden fett gedruckt dargestellt.

Zur Quantifizierung von Zellen mit Koloniebildungspotential wurden CD133⁺CD34⁺ und CD133^{low}CD34⁺ Zellen durchflusszytometrisch sortiert, in den CFC Ansatz eingebracht und hinsichtlich ihres erythrozytären, myeloischen und erythro-myeloischen Koloniebildungspotentials analysiert (Abb. 17D, Tab. 28, n=6). Die Expansion koloniebildender Zellen wurde im Vergleich zu frisch isolierten HSVZ berechnet (siehe Abschnitt 3.2.4).

Nach der Kokultur mit mesenchymalen Stromazellen war die Frequenz koloniebildender Zellen in der CD133⁺CD34⁺ (min: 5,85 \pm 0,64 %; max: 11,2 \pm 1,26 %, n=5, Tab. 28) sowie in der CD133^{low}CD34⁺ (min: 2,17 \pm 0,82 %; max: 11,1 \pm 1,88 %, n=5, Tab. 28) Fraktion etwa 2 bis 10-fach geringer als in frisch isolierten HSVZ aus dem Nabelschnurrestblut.

Eine bessere Expansion von CD133⁺CD34⁺ Zellen mit CFC Potential im Vergleich zur Kontrolle fand sich überwiegend in Kokultur mit MSZ aus dem Knochenmark. In der Kultur mit Zellen der MSZ KM MNZ B (140,9 \pm 50,9-fach) wurde in fünf von sechs Versuchen eine

reproduzierbar stärkere Expansion von CFCs in der CD133⁺CD34⁺ Raktion im Vergleich zum AFT024 Stroma nachgewiesen ($42,43 \pm 10,1$ -fach).

Auf der AFT024 wurden im Vergleich zu den MSZ 2 bis 100-fach mehr CD133^{low}CD34⁺ Zellen mit Koloniebildungspotential detektiert. Die im Mittel stärkste Amplifikation koloniebildender CD133^{low}CD34⁺ Zellen wurde in der Kultur mit Zellen der Linie MSZ KM MNZ B (38,46 \pm 16,24-fach) ermittelt.

III KOP	Sultur I	IIIU MIS											
CD 133 ⁺	Sus	AFT 024	MNZ A	MNZ B	MNZ 1.4	Fett 7/5	Fett 7/11	Fett 8/5	Vene 5	Vene 8	Art 8	Art 9	Art 10
V1	7,37%	3,38%	4,80%	6,00%	8,00%	7,20%	6,80%	6,40%	16,8%	8,40%	8,4%	10,0%	5,60%
V2	14,2%	12,4%	10,8%	0,80%	10,8%	10,8%	10,8%	7,20%	11,2%	8,40%	15,6%	14,0%	14,4%
<u>V3</u>	10,0%	1,00%	6,50%	9,00%	5,50%	6,50%	n. v.	4,50%	8,00%	10,0%	9,0%	7,0%	10,0%
V4	11,5%	4,50%	7,50%	14,5%	12,0%	14,5%	n. v.	7,50%	10,5%	14,5%	10,5%	21,5%	15,0%
<u>V5</u>	9,00%	3,00%	9,50%	12,0%	11,5%	12,0%	11,0%	6,00%	12,0%	8,50%	11,5%	n. v.	11,0%
VO	6,00%	3,00%	11,5%	5,50%	7,50%	6,00%	8,50%	3,50%	9,00%	9,00%	11,0%	n. v.	7,50%
MW	9,69%	4,55%	8,43%	7,97%	9,22%	9,50%	9,28%	5,85%	11,2%	9,80%	11,0%	13,1%	10,5%
SEM	1,21%	1,64%	1,06%	2,01%	1,06%	1,41%	1,00%	0,64%	1,26%	0,97%	1,04%	3,14%	1,52%
p (S)	-	0,005*	0,441	0,518	0,698	0,878	0,940	0,008*	0,447	0,939	0,217	0,465	0,288
p (A)	-	-	0,049	0,345	0,023	0,036	0,157	0,386	0,018	0,048	0,001	0,096	0,010
	_					-			_				
CD 133 ⁺	Sus	AFT 024	MNZ A	MNZ B	MNZ 1.4	Fett 7/5	Fett 7/11	Fett 8/5	Vene 5	Vene 8	Art 8	Art 9	Art 10
V1	0,56	17,21	28,71	53,09	39,68	22,17	22,89	44,22	57,75	24,21	28,64	22,89	18,10
V2	3,79	47,99	63,34	8,00	48,48	30,29	40,66	41,33	28,60	40,90	66,94	53,44	78,95
V3	1,62	10,33	35,71	126,2	23,20	26,81	n. v.	40,14	9,89	14,63	22,87	6,60	10,36
V4	2,09	63,48	64,78	231,2	61,50	85,85	n. v.	48,69	15,15	52,30	41,37	44,45	49,52
V5	2,75	42,43	104,5	343,1	99,35	94,50	115,2	130,2	48,62	27,94	52,75	n. v.	47,09
V6	0,92	73,17	44,84	84,10	78,55	44,95	74,08	50,57	34,40	38,53	70,64	n. v.	32,68
MW	1,96	42,43	56,99	140,9	58,46	50,76	63,21	59,20	32,40	33,09	47,20	31,85	39,45
SEM	0,49	10,14	11,21	50,95	11,23	12,89	20,32	14,31	7,59	5,49	8,04	10,58	10,11
p (S)	-	0.010	0,004	0,041	0,004	0,012	0,056	0,010	0,011	0,002	0,002	0,060	0,012
p (A)	-	-	0,283	0,109	0,133	0,513	0,401	0,363	0,484	0,188	0,469	0,651	0,768
							,	,	,	,			
	-							,	,	,			
CD 133 ^{low}	Sus	AFT 024	MNZ A	MNZ B	MNZ 1.4	Fett 7/5	Fett 7/11	Fett 8/5	Vene 5	Vene 8	Art 8	Art 9	Art 10
CD 133 ^{low} V1	Sus 3,33%	AFT 024 4,83%	MNZ A 2,80%	MNZ B 4,80%	MNZ 1.4 2,40%	Fett 7/5 16,8%	Fett 7/11 10,8%	Fett 8/5 1,20%	Vene 5 1,60%	Vene 8 5,60%	Art 8 3,20%	Art 9 8,40%	Art 10 4,40%
CD 133 ^{low} V1 V2	Sus 3,33% 10,4%	AFT 024 4,83% 6,00%	MNZ A 2,80% 0,40%	MNZ B 4,80% 6,40%	MNZ 1.4 2,40% 5,20%	Fett 7/5 16,8% 6,00%	Fett 7/11 10,8% 8,00%	Fett 8/5 1,20% 0,80%	Vene 5 1,60% 0,80%	Vene 8 5,60% 1,60%	Art 8 3,20% 0,80%	Art 9 8,40% 2,40%	Art 10 4,40% 1,60%
CD 133 ^{low} V1 V2 V3	Sus 3,33% 10,4% 1,85%	AFT 024 4,83% 6,00% 4,00%	MNZ A 2,80% 0,40% 4,50%	MNZ B 4,80% 6,40% 1,00%	MNZ 1.4 2,40% 5,20% 3,50%	Fett 7/5 16,8% 6,00% 8,50%	Fett 7/11 10,8% 8,00% n. v.	Fett 8/5 1,20% 0,80% 0,50%	Vene 5 1,60% 0,80% 1,50%	Vene 8 5,60% 1,60% 0,50%	Art 8 3,20% 0,80% 0,50%	Art 9 8,40% 2,40% 1,50%	Art 10 4,40% 1,60% 1,00%
CD 133 ^{low} V1 V2 V3 V4	Sus 3,33% 10,4% 1,85% 0,50%	AFT 024 4,83% 6,00% 4,00% 5,00%	MNZ A 2,80% 0,40% 4,50% 0,50%	MNZ B 4,80% 6,40% 1,00% 0,50%	MNZ 1.4 2,40% 5,20% 3,50% 0,50%	Fett 7/5 16,8% 6,00% 8,50% 7,50%	Fett 7/11 10,8% 8,00% n. v. n. v. n. v.	Fett 8/5 1,20% 0,80% 0,50% 0,50%	Vene 5 1,60% 0,80% 1,50% 0,50%	Vene 8 5,60% 1,60% 0,50% 0,00%	Art 8 3,20% 0,80% 0,50% 0,00%	Art 9 8,40% 2,40% 1,50% 1,00%	Art 10 4,40% 1,60% 1,00% 5,00%
CD 133 ^{low} V1 V2 V3 V4 V5	Sus 3,33% 10,4% 1,85% 0,50% 18,5%	AFT 024 4,83% 6,00% 4,00% 5,00% 12,5%	MNZ A 2,80% 0,40% 4,50% 6,00%	MNZ B 4,80% 6,40% 1,00% 0,50% 9,00%	MNZ 1.4 2,40% 5,20% 3,50% 0,50% 15,0%	Fett 7/5 16,8% 6,00% 8,50% 7,50% 9,50%	Fett 7/11 10,8% 8,00% n. v. n. v. 14,5%	Fett 8/5 1,20% 0,80% 0,50% 4,50%	Vene 5 1,60% 0,80% 1,50% 0,50% 6,00%	Vene 8 5,60% 1,60% 0,50% 0,00% 7,00%	Art 8 3,20% 0,80% 0,50% 0,00% 3,50%	Art 9 8,40% 2,40% 1,50% 1,00% n. v.	Art 10 4,40% 1,60% 1,00% 5,00% 9,50%
CD 133 ^{low} V1 V2 V3 V4 V5 V6	Sus 3,33% 10,4% 1,85% 0,50% 18,5% 12,1%	AFT 024 4,83% 6,00% 4,00% 5,00% 12,5% 2,50%	MNZ A 2,80% 0,40% 4,50% 0,50% 6,00% 7,50%	MNZ B 4,80% 6,40% 1,00% 0,50% 9,00% 10,0%	MNZ 1.4 2,40% 5,20% 3,50% 0,50% 15,0% 10,0%	Fett 7/5 16,8% 6,00% 8,50% 7,50% 9,50% 11,5%	Fett 7/11 10,8% 8,00% n. v. n. v. 14,5% n. v.	Fett 8/5 1,20% 0,80% 0,50% 0,50% 4,50% n. v.	Vene 5 1,60% 0,80% 1,50% 0,50% 6,00% 10,0%	Vene 8 5,60% 1,60% 0,50% 0,00% 7,00% 8,50%	Art 8 3,20% 0,80% 0,50% 0,00% 3,50% 5,00%	Art 9 8,40% 2,40% 1,50% 1,00% n. v. n. v. n. v.	Art 10 4,40% 1,60% 1,00% 5,00% 9,50% 7,50%
CD 133 ^{low} V1 V2 V3 V4 V5 V6 MW	Sus 3,33% 10,4% 1,85% 0,50% 18,5% 12,1% 7,81%	AFT 024 4,83% 6,00% 4,00% 5,00% 12,5% 2,50% 5,81%	MNZ A 2,80% 0,40% 4,50% 0,50% 6,00% 7,50% 3,62%	MNZ B 4,80% 6,40% 1,00% 0,50% 9,00% 10,0% 5,28%	MNZ 1.4 2,40% 5,20% 3,50% 0,50% 15,0% 10,0% 6,10%	Fett 7/5 16,8% 6,00% 8,50% 7,50% 9,50% 11,5% 9,97%	Fett 7/11 10,8% 8,00% n. v. n. v. 14,5% n. v. 11,1%	Fett 8/5 1,20% 0,80% 0,50% 4,50% n. v. 1,50%	Vene 5 1,60% 0,80% 1,50% 0,50% 6,00% 10,0% 3,40%	Vene 8 5,60% 1,60% 0,50% 0,00% 7,00% 8,50% 3,87%	Art 8 3,20% 0,80% 0,50% 0,00% 3,50% 5,00% 2,17%	Art 9 8,40% 2,40% 1,50% 1,00% n. v. n. v. 3,33%	Art 10 4,40% 1,60% 5,00% 9,50% 7,50% 4,83%
CD 133 ^{low} V1 V2 V3 V4 V5 V6 MW SEM	Sus 3,33% 10,4% 1,85% 0,50% 18,5% 12,1% 7,81% 2,89%	AFT 024 4,83% 6,00% 4,00% 5,00% 12,5% 2,50% 5,81% 1,42%	MNZ A 2,80% 0,40% 4,50% 0,50% 6,00% 7,50% 3,62% 1,19%	MNZ B 4,80% 6,40% 1,00% 0,50% 9,00% 10,0% 5,28% 1,62%	MNZ 1.4 2,40% 5,20% 3,50% 0,50% 15,0% 10,0% 6,10% 2,21%	Fett 7/5 16,8% 6,00% 8,50% 7,50% 9,50% 11,5% 9,97% 1,56%	Fett 7/11 10,8% 8,00% n. v. 14,5% n. v. 11,1% 1,88%	Fett 8/5 1,20% 0,80% 0,50% 0,50% 4,50% n. v. 1,50% 0,76%	Vene 5 1,60% 0,80% 1,50% 0,50% 6,00% 10,0% 3,40% 1,55%	Vene 8 5,60% 1,60% 0,50% 0,00% 7,00% 8,50% 3,87% 1,48%	Art 8 3,20% 0,80% 0,50% 0,00% 3,50% 5,00% 2,17% 0,82%	Art 9 8,40% 2,40% 1,50% 1,00% n. v. n. v. 3,33% 1,72%	Art 10 4,40% 1,60% 5,00% 9,50% 7,50% 4,83% 1,34%
CD 133 ^{low} V1 V2 V3 V4 V5 V6 MW SEM P (S)	Sus 3,33% 10,4% 1,85% 0,50% 18,5% 12,1% 7,81% 2,89%	AFT 024 4,83% 6,00% 4,00% 5,00% 12,5% 2,50% 5,81% 1,42% 0,415	MNZ A 2,80% 0,40% 4,50% 0,50% 6,00% 7,50% 3,62% 1,19% 0,149	MNZ B 4,80% 6,40% 1,00% 0,50% 9,00% 10,0% 5,28% 1,62% 0,175	MNZ 1.4 2,40% 5,20% 3,50% 0,50% 15,0% 10,0% 6,10% 2,21% 0,154	Fett 7/5 16,8% 6,00% 8,50% 7,50% 9,50% 11,5% 9,97% 1,56% 0,555	Fett 7/11 10,8% 8,00% n. v. 14,5% n. v. 11,1% 1,88% 0,937	Fett 8/5 1,20% 0,50% 0,50% 4,50% n. v. 1,50% 0,76% 0,117	Vene 5 1,60% 0,80% 1,50% 0,50% 6,00% 10,0% 3,40% 1,55% 0,098	Vene 8 5,60% 1,60% 0,50% 0,00% 7,00% 8,50% 3,87% 1,48% 0,126	Art 8 3,20% 0,80% 0,50% 0,00% 3,50% 5,00% 2,17% 0,82% 0,070	Art 9 8,40% 2,40% 1,50% 1,00% n. v. n. v. 3,33% 1,72% 0,810	Art 10 4,40% 1,60% 1,00% 5,00% 9,50% 7,50% 4,83% 1,34% 0,242
CD 133 ^{low} V1 V2 V3 V4 V5 V6 MW SEM p (S) p (A)	Sus 3,33% 10,4% 1,85% 0,50% 18,5% 12,1% 7,81% 2,89% - - -	AFT 024 4,83% 6,00% 4,00% 5,00% 12,5% 2,50% 5,81% 1,42% 0,415 -	MNZ A 2,80% 0,40% 4,50% 0,50% 6,00% 7,50% 3,62% 1,19% 0,149 0,272	MNZ B 4,80% 6,40% 1,00% 0,50% 9,00% 10,0% 5,28% 1,62% 0,175 0,783	MNZ 1.4 2,40% 5,20% 3,50% 0,50% 15,0% 10,0% 6,10% 2,21% 0,154 0,871	Fett 7/5 16,8% 6,00% 8,50% 7,50% 9,50% 11,5% 9,97% 1,56% 0,555 0,127	Fett 7/11 10,8% 8,00% n. v. 14,5% n. v. 11,1% 1,88% 0,937 0,129	Fett 8/5 1,20% 0,80% 0,50% 4,50% n. v. 1,50% 0,76% 0,117 0,004*	Vene 5 1,60% 0,80% 1,50% 0,50% 6,00% 10,0% 3,40% 1,55% 0,098 0,296	Vene 8 5,60% 1,60% 0,50% 0,00% 7,00% 8,50% 3,87% 1,48% 0,126 0,339	Art 8 3,20% 0,80% 0,50% 0,00% 3,50% 5,00% 2,17% 0,82% 0,070 0,069	Art 9 8,40% 2,40% 1,50% 1,00% n. v. n. v. 3,33% 1,72% 0,810 0,423	Art 10 4,40% 1,60% 1,00% 5,00% 9,50% 7,50% 4,83% 1,34% 0,242 0,512
CD 133 ^{low} V1 V2 V3 V4 V5 V6 MW SEM p (S) p (A)	Sus 3,33% 10,4% 1,85% 0,50% 18,5% 12,1% 7,81% 2,89% - - -	AFT 024 4,83% 6,00% 4,00% 5,00% 12,5% 2,50% 5,81% 1,42% 0,415 -	MNZ A 2,80% 0,40% 4,50% 0,50% 6,00% 7,50% 3,62% 1,19% 0,149 0,272 MNZ	MNZ B 4,80% 6,40% 1,00% 0,50% 9,00% 10,0% 5,28% 1,62% 0,175 0,783 MNZ	MNZ 1.4 2,40% 5,20% 3,50% 0,50% 15,0% 10,0% 6,10% 2,21% 0,154 0,871 MNZ	Fett 7/5 16,8% 6,00% 8,50% 7,50% 9,50% 11,5% 9,97% 1,56% 0,555 0,127 Eptt	Fett 7/11 10,8% 8,00% n. v. 14,5% n. v. 14,5% n. v. 11,1% 1,88% 0,937 0,129	Fett 8/5 1,20% 0,80% 0,50% 4,50% n. v. 1,50% 0,76% 0,117 0,004*	Vene 5 1,60% 0,80% 1,50% 0,50% 6,00% 10,0% 3,40% 1,55% 0,098 0,296	Vene 8 5,60% 1,60% 0,50% 0,00% 7,00% 8,50% 3,87% 1,48% 0,126 0,339 Vone	Art 8 3,20% 0,80% 0,50% 0,00% 3,50% 5,00% 2,17% 0,82% 0,070 0,069	Art 9 8,40% 2,40% 1,50% 1,00% n. v. n. v. 3,33% 1,72% 0,810 0,423	Art 10 4,40% 1,60% 1,00% 5,00% 9,50% 7,50% 4,83% 1,34% 0,242 0,512
CD 133 ^{low} V1 V2 V3 V4 V5 V6 MW SEM p (S) p (A) CD 133 ^{low}	Sus 3,33% 10,4% 1,85% 0,50% 18,5% 12,1% 7,81% 2,89% - - Sus	AFT 024 4,83% 6,00% 4,00% 5,00% 12,5% 2,50% 5,81% 1,42% 0,415 - - AFT 024	MNZ A 2,80% 0,40% 4,50% 0,50% 6,00% 7,50% 3,62% 1,19% 0,149 0,272 MNZ A	MNZ B 4,80% 6,40% 1,00% 0,50% 9,00% 10,0% 5,28% 1,62% 0,175 0,783 MNZ B	MNZ 1.4 2,40% 5,20% 3,50% 0,50% 15,0% 10,0% 6,10% 2,21% 0,154 0,871 MNZ 1.4	Fett 7/5 16,8% 6,00% 8,50% 7,50% 9,50% 11,5% 9,97% 1,56% 0,555 0,127 Fett 7/5	Fett 7/11 10,8% 8,00% n. v. 14,5% n. v. 14,5% n. v. 11,1% 1,88% 0,937 0,129 Fett 7/11	Fett 8/5 1,20% 0,80% 0,50% 4,50% n. v. 1,50% 0,76% 0,117 0,004* Fett 8/5	Vene 5 1,60% 0,80% 1,50% 0,50% 6,00% 10,0% 3,40% 1,55% 0,098 0,296 Vene 5	Vene 8 5,60% 1,60% 0,50% 0,00% 7,00% 8,50% 3,87% 1,48% 0,126 0,339 Vene 8	Art 8 3,20% 0,80% 0,50% 0,00% 3,50% 5,00% 2,17% 0,82% 0,070 0,069 Art 8	Art 9 8,40% 2,40% 1,50% 1,00% n. v. n. v. 3,33% 1,72% 0,810 0,423 Art 9	Art 10 4,40% 1,60% 1,00% 5,00% 9,50% 7,50% 4,83% 1,34% 0,242 0,512 Art 10
CD 133 ^{low} V1 V2 V3 V4 V5 V6 MW SEM p (S) p (A) CD 133 ^{low} V1	Sus 3,33% 10,4% 1,85% 0,50% 18,5% 12,1% 7,81% 2,89% - - Sus 0,20	AFT 024 4,83% 6,00% 4,00% 5,00% 12,5% 2,50% 5,81% 1,42% 0,415 - - AFT 024 46,85	MNZ A 2,80% 0,40% 4,50% 0,50% 6,00% 7,50% 3,62% 1,19% 0,149 0,272 MNZ A 5,75	MNZ B 4,80% 6,40% 1,00% 0,50% 9,00% 10,0% 5,28% 1,62% 0,175 0,783 MNZ B 23,77	MNZ 1.4 2,40% 5,20% 3,50% 0,50% 15,0% 10,0% 6,10% 2,21% 0,154 0,871 MNZ 1.4 5,10	Fett 7/5 16,8% 6,00% 8,50% 7,50% 9,50% 11,5% 9,97% 1,56% 0,555 0,127 Fett 7/5 27,71	Fett 7/11 10,8% 8,00% n. v. 14,5% n. v. 11,1% 1,88% 0,937 0,129 Fett 7/11 18,47	Fett 8/5 1,20% 0,80% 0,50% 4,50% n. v. 1,50% 0,76% 0,76% 0,1177 0,004* Fett 8/5 2,78	Vene 5 1,60% 0,80% 1,50% 0,50% 6,00% 10,0% 3,40% 1,55% 0,098 0,296 Vene 5 1,42	Vene 8 5,60% 1,60% 0,50% 0,00% 7,00% 8,50% 3,87% 1,48% 0,126 0,339 Vene 8 5,06	Art 8 3,20% 0,80% 0,50% 0,00% 3,50% 5,00% 2,17% 0,82% 0,070 0,069 Art 8 2,36	Art 9 8,40% 2,40% 1,50% 1,00% n. v. n. v. 3,33% 1,72% 0,810 0,423 Art 9 6,74	Art 10 4,40% 1,60% 1,00% 5,00% 9,50% 7,50% 4,83% 1,34% 0,242 0,512 Art 10 3,91
CD 133 ^{low} V1 V2 V3 V4 V5 V6 MW SEM p (S) p (A) CD 133 ^{low} V1 V2	Sus 3,33% 10,4% 1,85% 0,50% 18,5% 12,1% 7,81% 2,89% - - Sus 0,20 1,77	AFT 024 4,83% 6,00% 4,00% 5,00% 12,5% 2,50% 5,81% 1,42% 0,415 - - AFT 024 46,85 48,36	MNZ A 2,80% 0,40% 4,50% 0,50% 6,00% 7,50% 3,62% 1,19% 0,149 0,272 MNZ A 5,75 0,46	MNZ B 4,80% 6,40% 1,00% 0,50% 9,00% 10,0% 5,28% 1,62% 0,175 0,783 MNZ B 23,77 22,37	MNZ 1.4 2,40% 5,20% 3,50% 0,50% 15,0% 10,0% 6,10% 2,21% 0,154 0,871 MNZ 1.4 5,10 6,90	Fett 7/5 16,8% 6,00% 8,50% 7,50% 9,50% 11,5% 9,97% 1,56% 0,555 0,127 Fett 7/5 27,71 4,92	Fett 7/11 10,8% 8,00% n. v. 14,5% n. v. 14,5% n. v. 11,1% 1,88% 0,937 0,129 Fett 7/11 18,47 6,98	Fett 8/5 1,20% 0,80% 0,50% 4,50% n. v. 1,50% 0,76% 0,76% 0,117 0,004* Fett 8/5 2,78 0,66	Vene 5 1,60% 0,80% 1,50% 6,00% 10,0% 3,40% 1,55% 0,098 0,296 Vene 5 1,42 0,38	Vene 8 5,60% 1,60% 0,50% 0,00% 7,00% 8,50% 3,87% 1,48% 0,126 0,339 Vene 8 5,06 1,06	Art 8 3,20% 0,80% 0,50% 0,00% 3,50% 5,00% 2,17% 0,82% 0,070 0,069 Art 8 2,36 0,55	Art 9 8,40% 2,40% 1,50% 1,00% n. v. n. v. 3,33% 1,72% 0,810 0,423 Art 9 6,74 2,37	Art 10 4,40% 1,60% 1,00% 5,00% 9,50% 7,50% 4,83% 1,34% 0,242 0,512 Art 10 3,91 1,36
CD 133 ^{low} V1 V2 V3 V4 V5 V6 MW SEM p (S) p (A) CD 133 ^{low} V1 V2 V3	Sus 3,33% 10,4% 1,85% 0,50% 18,5% 12,1% 7,81% 2,89% - - Sus 0,20 1,77 0,13	AFT 024 4,83% 6,00% 4,00% 5,00% 12,5% 2,50% 5,81% 1,42% 0,415 - - AFT 024 46,85 48,36 72,37	MNZ A 2,80% 0,40% 4,50% 0,50% 6,00% 7,50% 3,62% 1,19% 0,149 0,272 MNZ A 5,75 0,46 7,04	MNZ B 4,80% 6,40% 1,00% 0,50% 9,00% 10,0% 5,28% 1,62% 0,175 0,783 MNZ B 23,77 22,37 5,43	MNZ 1.4 2,40% 5,20% 3,50% 0,50% 15,0% 10,0% 6,10% 2,21% 0,154 0,871 MNZ 1.4 5,10 6,90 5,50	Fett 7/5 16,8% 6,00% 8,50% 7,50% 9,50% 11,5% 9,97% 1,56% 0,555 0,127 Fett 7/5 27,71 4,92 10,93	Fett 7/11 10,8% 8,00% n. v. 14,5% n. v. 14,5% n. v. 11,1% 1,88% 0,937 0,129 Fett 7/11 18,47 6,98 n. v.	Fett 8/5 1,20% 0,80% 0,50% 4,50% n. v. 1,50% 0,76% 0,76% 0,117 0,004* Fett 8/5 2,78 0,66 1,29	Vene 5 1,60% 0,80% 1,50% 6,00% 10,0% 3,40% 1,55% 0,098 0,296 Vene 5 1,42 0,38 0,96	Vene 8 5,60% 1,60% 0,50% 0,00% 7,00% 8,50% 3,87% 1,48% 0,126 0,339 Vene 8 5,06 1,06 0,32	Art 8 3,20% 0,80% 0,50% 0,00% 3,50% 5,00% 2,17% 0,82% 0,070 0,069 Art 8 2,36 0,55 0,25	Art 9 8,40% 2,40% 1,50% 1,00% n. v. n. v. 3,33% 1,72% 0,810 0,423 Art 9 6,74 2,37 0,86	Art 10 4,40% 1,60% 1,00% 5,00% 9,50% 7,50% 4,83% 1,34% 0,242 0,512 Art 10 3,91 1,36 0,50
CD 133 ^{low} V1 V2 V3 V4 V5 V6 MW SEM p (S) p (A) CD 133 ^{low} V1 V2 V3 V4	Sus 3,33% 10,4% 1,85% 0,50% 18,5% 12,1% 7,81% 2,89% - - Sus 0,20 1,77 0,13 0,04	AFT 024 4,83% 6,00% 4,00% 5,00% 12,5% 2,50% 5,81% 1,42% 0,415 - - - AFT 024 46,85 48,36 72,37 100,7	MNZ A 2,80% 0,40% 4,50% 0,50% 6,00% 7,50% 3,62% 1,19% 0,149 0,272 MNZ A 5,75 0,46 7,04 1,25	MNZ B 4,80% 6,40% 1,00% 0,50% 9,00% 10,0% 5,28% 1,62% 0,175 0,783 MNZ B 23,77 22,37 5,43 2,11	MNZ 1.4 2,40% 5,20% 3,50% 0,50% 15,0% 10,0% 6,10% 2,21% 0,154 0,154 0,871 MNZ 1.4 5,10 6,90 5,50 1,36	Fett 7/5 16,8% 6,00% 8,50% 7,50% 9,50% 11,5% 9,97% 1,56% 0,555 0,127 Fett 7/5 27,71 4,92 10,93 10,18	Fett 7/11 10,8% 8,00% n. v. 14,5% n. v. 14,5% n. v. 11,1% 1,88% 0,937 0,129 Fett 7/11 18,47 6,98 n. v. n. v.	Fett 8/5 1,20% 0,80% 0,50% 4,50% n. v. 1,50% 0,76% 0,117 0,004* Fett 8/5 2,78 0,66 1,29 1,11	Vene 5 1,60% 0,80% 1,50% 6,00% 10,0% 3,40% 1,55% 0,098 0,296 Vene 5 1,42 0,38 0,96 0,36	Vene 8 5,60% 1,60% 0,50% 0,00% 7,00% 8,50% 3,87% 1,48% 0,126 0,339 Vene 8 5,06 1,06 0,32 0,00	Art 8 3,20% 0,80% 0,50% 0,00% 3,50% 5,00% 2,17% 0,82% 0,070 0,069 Art 8 2,36 0,55 0,25 0,00	Art 9 8,40% 2,40% 1,50% 1,00% n. v. n. v. 3,33% 1,72% 0,810 0,423 Art 9 6,74 2,37 0,86 0,71	Art 10 4,40% 1,60% 1,00% 5,00% 9,50% 7,50% 4,83% 1,34% 0,242 0,512 Art 10 3,91 1,36 0,50 4,64
CD 133 ^{low} V1 V2 V3 V4 V5 V6 MW SEM p (S) p (A) CD 133 ^{low} V1 V2 V3 V4 V5	Sus 3,33% 10,4% 1,85% 0,50% 18,5% 12,1% 7,81% 2,89% - - Sus 0,20 1,77 0,13 0,04 n. v.	AFT 024 4,83% 6,00% 4,00% 5,00% 12,5% 2,50% 5,81% 1,42% 0,415 - - AFT 024 46,85 48,36 72,37 100,7 165,1	MNZ A 2,80% 0,40% 4,50% 0,50% 6,00% 7,50% 3,62% 1,19% 0,149 0,272 MNZ A 5,75 0,46 7,04 1,25 12,43	MNZ B 4,80% 6,40% 1,00% 0,50% 9,00% 10,0% 5,28% 1,62% 0,175 0,783 MNZ B 23,77 22,37 5,43 2,11 90,64	MNZ 1.4 2,40% 5,20% 3,50% 0,50% 15,0% 10,0% 6,10% 2,21% 0,154 0,154 0,871 MNZ 1.4 5,10 6,90 5,50 1,36 38,57	Fett 7/5 16,8% 6,00% 8,50% 7,50% 9,50% 11,5% 9,97% 1,56% 0,555 0,127 Fett 7/5 27,71 4,92 10,93 10,18 25,11	Fett 7/11 10,8% 8,00% n. v. 14,5% n. v. 14,5% n. v. 11,1% 1,88% 0,937 0,129 Fett 7/11 18,47 6,98 n. v. n. v. 36,25	Fett 8/5 1,20% 0,80% 0,50% 4,50% n. v. 1,50% 0,76% 0,76% 0,117 0,004* Fett 8/5 2,78 0,66 1,29 1,11 27,64	Vene 5 1,60% 0,80% 1,50% 6,00% 10,0% 3,40% 1,55% 0,098 0,296 Vene 5 1,42 0,38 0,96 0,36 8,57	Vene 8 5,60% 1,60% 0,50% 0,00% 7,00% 8,50% 3,87% 1,48% 0,126 0,339 Vene 8 5,06 1,06 0,32 0,000 17,50	Art 8 3,20% 0,80% 0,50% 5,00% 2,17% 0,82% 0,070 0,069 Art 8 2,36 0,55 0,25 0,00 3,75	Art 9 8,40% 2,40% 1,50% 1,00% n. v. n. v. 3,33% 1,72% 0,810 0,423 Art 9 6,74 2,37 0,86 0,71 n. v.	Art 10 4,40% 1,60% 1,00% 5,00% 9,50% 7,50% 4,83% 1,34% 0,242 0,512 Art 10 3,91 1,36 0,50 4,64 17,64
CD 133 ^{low} V1 V2 V3 V4 V5 V6 MW SEM p (S) p (A) CD 133 ^{low} V1 V2 V3 V4 V2 V3 V4 V5 V6	Sus 3,33% 10,4% 1,85% 0,50% 18,5% 12,1% 7,81% 2,89% - - - Sus 0,20 1,77 0,13 0,04 n. v. n. v. n. v.	AFT 024 4,83% 6,00% 4,00% 5,00% 12,5% 2,50% 5,81% 1,42% 0,415 - - - - - - - - - - - - - - - - - - -	MNZ A 2,80% 0,40% 4,50% 0,50% 6,00% 7,50% 3,62% 1,19% 0,149 0,272 MNZ A 5,75 0,46 7,04 1,25 12,43 27,32	MNZ B 4,80% 6,40% 1,00% 0,50% 9,00% 10,0% 5,28% 1,62% 0,175 0,783 MNZ B 23,77 22,37 5,43 2,11 90,64 86,43	MNZ 1.4 2,40% 5,20% 3,50% 0,50% 15,0% 10,0% 6,10% 2,21% 0,154 0,154 0,154 0,871 MNZ 1.4 5,10 6,90 5,50 1,36 38,57 34,29	Fett 7/5 16,8% 6,00% 8,50% 7,50% 9,50% 11,5% 9,97% 1,56% 0,555 0,127 Fett 7/5 27,71 4,92 10,93 10,18 25,11 23,00	Fett 7/11 10,8% 8,00% n. v. 14,5% n. v. 14,5% n. v. 11,1% 1,88% 0,937 0,129 Fett 7/11 18,47 6,98 n. v. 18,47 6,98 n. v. 36,25 n. v.	Fett 8/5 1,20% 0,80% 0,50% 0,50% 4,50% n. v. 1,50% 0,76% 0,117 0,004* Fett 8/5 2,78 0,66 1,29 1,11 27,64 n. v.	Vene 5 1,60% 0,80% 1,50% 0,50% 6,00% 10,0% 3,40% 1,55% 0,098 0,296 Vene 5 1,42 0,38 0,96 0,36 8,57 35,71	Vene 8 5,60% 1,60% 0,50% 0,00% 7,00% 8,50% 3,87% 1,48% 0,126 0,339 Vene 8 5,06 1,06 0,32 0,00 17,50 8,50	Art 8 3,20% 0,80% 0,50% 0,00% 3,50% 5,00% 2,17% 0,82% 0,070 0,069 Art 8 2,36 0,55 0,25 0,00 3,75 7,68	Art 9 8,40% 2,40% 1,50% 1,00% n. v. n. v. 3,33% 1,72% 0,810 0,423 Art 9 6,74 2,37 0,86 0,71 n. v. n. v.	Art 10 4,40% 1,60% 1,00% 5,00% 9,50% 7,50% 4,83% 1,34% 0,242 0,512 Art 10 3,91 1,36 0,50 4,64 17,64 9,64
CD 133 ^{low} V1 V2 V3 V4 V5 V6 MW SEM p (S) p (A) CD 133 ^{low} V1 V2 V3 V1 V2 V3 V4 V5 V6 MW	Sus 3,33% 10,4% 1,85% 0,50% 18,5% 12,1% 7,81% 2,89% - - - Sus 0,20 1,77 0,13 0,04 n. v. n. v. 0,53	AFT 024 4,83% 6,00% 4,00% 5,00% 12,5% 2,50% 5,81% 1,42% 0,415 - - - AFT 024 46,85 48,36 72,37 100,7 165,1 148,0 96,92	MNZ A 2,80% 0,40% 4,50% 0,50% 6,00% 7,50% 3,62% 1,19% 0,149 0,272 MNZ A 5,75 0,46 7,04 1,25 12,43 27,32 9,04	MNZ B 4,80% 6,40% 1,00% 0,50% 9,00% 10,0% 5,28% 1,62% 0,175 0,783 MNZ B 23,77 22,37 5,43 2,11 90,64 86,43 38,46	MNZ 1.4 2,40% 5,20% 3,50% 0,50% 15,0% 10,0% 6,10% 2,21% 0,154 0,871 MNZ 1.4 5,10 6,90 5,50 1,36 38,57 34,29 15,29	Fett 7/5 16,8% 6,00% 8,50% 7,50% 9,50% 11,5% 9,97% 1,56% 0,555 0,127 Fett 7/5 27,71 4,92 10,93 10,18 25,11 23,00 16,97	Fett 7/11 10,8% 8,00% n. v. n. v. 14,5% n. v. 14,5% n. v. 11,1% 1,88% 0,937 0,129 Fett 7/11 18,47 6,98 n. v. 18,47 6,98 n. v. 36,25 n. v. 20,57	Fett 8/5 1,20% 0,80% 0,50% 0,50% 4,50% n. v. 1,50% 0,76% 0,117 0,004* Fett 8/5 2,78 0,66 1,29 1,11 27,64 n. v. 6,69	Vene 5 1,60% 0,80% 1,50% 0,50% 6,00% 10,0% 3,40% 1,55% 0,098 0,296 Vene 5 1,42 0,38 0,96 0,36 8,57 35,71 7,90	Vene 8 5,60% 1,60% 0,50% 0,00% 7,00% 8,50% 3,87% 1,48% 0,126 0,339 Vene 8 5,06 1,06 0,32 0,000 17,50 8,50 5,41	Art 8 3,20% 0,80% 0,50% 0,00% 3,50% 5,00% 2,17% 0,82% 0,070 0,069 Art 8 2,36 0,55 0,25 0,00 3,75 7,68 2,43	Art 9 8,40% 2,40% 1,50% 1,00% n. v. n. v. 3,33% 1,72% 0,810 0,423 Art 9 6,74 2,37 0,86 0,71 n. v. n. v. 2,67	Art 10 4,40% 1,60% 1,00% 5,00% 9,50% 7,50% 4,83% 1,34% 0,242 0,512 Art 10 3,91 1,36 0,50 4,64 17,64 9,64 6,28
CD 133 ^{low} V1 V2 V3 V4 V5 V6 MW SEM P (S) p (A) CD 133 ^{low} V1 V2 V3 V1 V2 V3 V4 V5 V6 MW SEM	Sus 3,33% 10,4% 1,85% 0,50% 18,5% 12,1% 7,81% 2,89% - - - Sus 0,20 1,77 0,13 0,04 n. v. n. v. 0,53 0,41	AFT 024 4,83% 6,00% 4,00% 5,00% 12,5% 2,50% 5,81% 1,42% 0,415 - - 0,415 - - AFT 024 46,85 48,36 72,37 100,7 165,1 148,0 96,92 20,62	MNZ A 2,80% 0,40% 4,50% 0,50% 6,00% 7,50% 3,62% 1,19% 0,149 0,272 MNZ A 5,75 0,46 7,04 1,25 12,43 27,32 9,04 4,06	MNZ B 4,80% 6,40% 1,00% 9,00% 10,0% 5,28% 1,62% 0,175 0,783 MNZ B 23,77 22,37 5,43 2,11 90,64 86,43 38,46 16,24	MNZ 1.4 2,40% 5,20% 3,50% 0,50% 15,0% 10,0% 6,10% 2,21% 0,154 0,871 MNZ 1.4 5,10 6,90 5,50 1,36 38,57 34,29 15,29 6,75	Fett 7/5 16,8% 6,00% 8,50% 7,50% 9,50% 11,5% 9,97% 1,56% 0,555 0,127 Fett 7/5 27,71 4,92 10,93 10,18 25,11 23,00 16,97 3,85	Fett 7/11 10,8% 8,00% n. v. 14,5% n. v. 14,5% n. v. 11,1% 1,88% 0,937 0,129 Fett 7/11 18,47 6,98 n. v. 18,47 6,98 n. v. 36,25 n. v. 20,57 8,52	Fett 8/5 1,20% 0,80% 0,50% 4,50% n. v. 1,50% 0,76% 0,117 0,004* Fett 8/5 2,78 0,66 1,29 1,11 27,64 n. v. 6,69 5,25	Vene 5 1,60% 0,80% 1,50% 6,00% 10,0% 3,40% 1,55% 0,098 0,296 Vene 5 1,42 0,38 0,96 0,36 8,57 35,71 7,90 5,71	Vene 8 5,60% 1,60% 0,50% 0,00% 7,00% 8,50% 3,87% 1,48% 0,126 0,339 Vene 8 5,06 1,06 0,32 0,000 17,50 8,50 5,41 2,77	Art 8 3,20% 0,80% 0,50% 0,00% 3,50% 5,00% 2,17% 0,82% 0,070 0,069 Art 8 2,36 0,55 0,25 0,25 0,000 3,75 7,68 2,43 1,20	Art 9 8,40% 2,40% 1,50% 1,00% n. v. n. v. 3,33% 1,72% 0,810 0,423 Art 9 6,74 2,37 0,86 0,71 n. v. n. v. 2,67 1,41	Art 10 4,40% 1,60% 1,00% 5,00% 9,50% 7,50% 4,83% 1,34% 0,242 0,512 Art 10 3,91 1,36 0,50 4,64 17,64 9,64 6,28 2,62
CD 133 ^{low} V1 V2 V3 V4 V5 V6 MW SEM P (S) P (A) CD 133 ^{low} V1 V2 V3 V1 V2 V3 V4 V5 V6 MW SEM MW SEM P (S)	Sus 3,33% 10,4% 1,85% 0,50% 18,5% 12,1% 7,81% 2,89% - - Sus 0,20 1,77 0,13 0,04 n. v. n. v. 0,53 0,41 -	AFT 024 4,83% 6,00% 4,00% 5,00% 12,5% 2,50% 5,81% 1,42% 0,415 - - AFT 024 46,85 48,36 72,37 100,7 165,1 148,0 96,92 20,62 0,014	MNZ A 2,80% 0,40% 4,50% 0,50% 6,00% 7,50% 3,62% 1,19% 0,149 0,272 MNZ A 5,75 0,46 7,04 1,25 12,43 27,32 9,04 4,06 0,203	MNZ B 4,80% 6,40% 1,00% 9,00% 10,0% 5,28% 1,62% 0,175 0,783 0,175 0,783 MNZ B 23,77 22,37 5,43 2,11 90,64 86,43 38,46 16,24 0,097	MNZ 1.4 2,40% 5,20% 3,50% 0,50% 15,0% 10,0% 6,10% 2,21% 0,154 0,871 MNZ 1.4 5,10 6,90 5,50 1,36 38,57 34,29 15,29 6,75 0,022	Fett 7/5 16,8% 6,00% 8,50% 7,50% 9,50% 11,5% 9,97% 1,56% 0,555 0,127 Fett 7/5 27,71 4,92 10,93 10,18 25,11 23,00 16,97 3,85 0,088	Fett 7/11 10,8% 8,00% n. v. 14,5% n. v. 14,5% n. v. 11,1% 1,88% 0,937 0,129 Fett 7/11 18,47 6,98 n. v. 18,47 6,98 n. v. 36,25 n. v. 20,57 8,52 0,323	Fett 8/5 1,20% 0,80% 0,50% 0,50% 4,50% n. v. 1,50% 0,76% 0,117 0,004* Fett 8/5 2,78 0,66 1,29 1,11 27,64 n. v. 6,69 5,25 0,311	Vene 5 1,60% 0,80% 1,50% 6,00% 10,0% 3,40% 1,55% 0,098 0,296 Vene 5 1,42 0,38 0,96 0,36 8,57 35,71 7,90 5,71 0,694	Vene 8 5,60% 1,60% 0,50% 0,00% 7,00% 8,50% 3,87% 1,48% 0,126 0,339 Vene 8 5,06 1,06 0,32 0,000 17,50 8,50 5,41 2,77 0,460	Art 8 3,20% 0,80% 0,50% 0,00% 3,50% 5,00% 2,17% 0,82% 0,070 0,069 Art 8 2,36 0,55 0,25 0,00 3,75 7,68 2,43 1,20 0,740	Art 9 8,40% 2,40% 1,50% 1,00% n. v. n. v. 3,33% 1,72% 0,810 0,423 Art 9 6,74 2,37 0,86 0,71 n. v. n. v. 2,67 1,41 0,242	Art 10 4,40% 1,60% 1,00% 5,00% 9,50% 7,50% 4,83% 1,34% 0,242 0,512 Art 10 3,91 1,36 0,50 4,64 17,64 9,64 6,28 2,62 0,191

Tab. 28: Frequenz und Expansion von CFCs in der CD133⁺CD34⁺ und CD133^{low}CD34⁺ Fraktion in Kokultur mit MSZ

Die Werte sind entweder in % oder als x-fache Expansion angegeben. Abkürzungen: Sus = Suspension; MNZ = Mononukleäre Zellen aus dem Knochenmark; Art = Arterie; MW = Mittelwert; n. v. = nicht verfügbar/kontaminiert; p(S) = Signifikanz-berechnung im Vergleichzur Suspension; p(A) = Signifikanz-berechnung im Vergleich zur AFT024 (t-Test, zweiseitig,gepaart); Signifikanzen p<0,05 werden fett gedruckt dargestellt. Sind die Messwerte der Suspensionbzw. mit der AFT024 signifikant höher ist der Signifikanzwert mit einem *-Symbol markiert.

Die morphologische Diskriminierung der unterschiedlichen Kolonietypen im CFC Ansatz ergab, dass die CD133⁺CD34⁺ Population fast ausschließlich Zellen mit CFU-G, CFU-M und CFU-GM Potential enthielt (Abb. 17E, Tab. 58, n=6). CD133⁺ Zellen mit erythrozytärem bzw. erythro-myeloischem Koloniebildungspotential und somit per Definition multipotente HSVZ wurden nur vereinzelten in Kokultur mit Zellen der MSZ KM Fett 7/5, Vene 5, Arterie 8, Arterie 9 und Arterie 10 detektiert (Abb. 17E, Tab. 58, n=6).

In der CD133^{low}CD34⁺ Fraktion waren nach der Kokultur mit primären MSZ sowohl HSVZ mit erythrozytärem als auch myeloischem Koloniebildungspotential enthalten (Abb. 17F, Tab. 59, n=6). Zellen mit erythrozytärem und/oder erythro-myeloischem Differenzierungspotential wurden nicht in jeder Kokultur detektiert. In der CD133^{low}CD34⁺ Fraktion wurden in zwei von sechs Versuchen erythrozytäre Kolonien in Kokultur mit Zellen der MSZ KM Fett 7/11 und der MSZ Arterie 2 realisiert. Hingegen enthielt die CD133^{low}CD34⁺ Fraktion auf der MSZ KM MNZ B und der MSZ KM Fett 7/5 in fünf von sechs Versuchen Zellen mit erythrozytärem Differenzierungspotential.

Ein Erhalt bzw. eine Expansion von CD133⁺CD34⁺ HSVZ mit LTC-IC, NK-IC sowie myeloischem Koloniebildungspotential wurde in allen Kokulturen mit mesenchymalen Stromazellen aus dem Knochenmark, der Arterie sowie der Vene unterstützt. Multipotente HSVZs wurden hingegen von keiner der Linien in der CD133⁺CD34⁺ Fraktion reproduzierbar erhalten. Zellen mit erythrozytärem Differenzierungspotential waren maßgeblich in der CD133^{low}CD34⁺ Fraktion enthalten.

Im Vergleich zur AFT024 ermöglichten die mesenchymalen Stromazelllinien MSZ KM MNZ B und MSZ KM Fett 7/5 eine stärkere Expansion von CD133⁺CD34⁺ HSVZ mit LTC-IC und CFC Potential sowie einen reproduzierbaren Erhalt CD133^{low}CD34⁺ Zellen mit erythrozytärem Koloniebildungspotential. Die beiden Primärzelllinien stellen somit die besten Kulturbedingungen zur Expansion primitiver HSVZ dar.

72

Abb. 17: Expansion von HSVZ, LTC-ICs, NK-ICs und CFCs in Kokultur mit primären MSZ

Graphische Darstellung der Werte aus Tab. 26, Tab. 27, Tab. 28, Tab. 58 und Tab. 59(A) Nach 14-tägiger Kokultur mit primären humanen mesenchymalen Stromazellen, Zellen der murinen Zelllinie AFT024 und in Suspension wurde die Expansion hämatopoetischer Subpopulationen durchflusszytometrisch quantifiziert. Expandierte $CD133^+CD34^+$ Zellen wurden an Tag 14 durchflusszytometrisch sortiert, in funktionelle Analysen überführt und die Expansion von Zellen mit (B) LTC-IC und (C) NK-IC und (D) CFC Potential ermittelt. Zusätzlich wurde die Frequenz der unterschiedlichen Kolonietypen in der (E) $CD133^+CD34^+$ und (F) $CD133^{low}CD34^+$ Population berechnet. 5 verschiedene Kolonietypen wurden morphologisch unterschieden: CFU-MIX, BFU-E/CFU-E, CFU-G, CFU-GM und CFU-M. (Mittelwerte ± SEM). Die Zahlen über den Balken repräsentieren die Anzahl der CFC Ansätze mit erythrozytären und/oder erythro-myeloischen Kolonien (Signifikanzen: * gegen Suspension, # gegen AFT024, p<0,05).

3.5. Expansion von HSVZ in Kokultur mit primären humanen endothelialen Stromazellen

Der Selbsterhalt und die Expansion multipotenter HSZ ohne Verlust ihrer Multipotenz wird in vivo in der sogenannten Stammzellnische z.B. im Knochenmark ermöglicht. In mehreren Arbeiten wird insbesondere in der Knochenmarknische die Beteiligung von sowohl mesenchymalen als auch endothelialen Stromazellen beschrieben (Calvi et al., 2003; Zhang et al., 2003; Kiel und Morrison, 2008; Nagasawa et al., 2011; Morrison und Scadden, 2014). Jüngsten Ergebnissen von Adam Greenbaum et al. und Lei Ding et al. zufolge sind endotheliale und mesenchymale Stromazellen dabei für die Aufrechterhaltung unterschiedlicher HSVZ Populationen in der Knochenmarknische zuständig (Ding und Morrison, 2013; Greenbaum et al., 2013).

Folglich stellte sich die Frage, inwiefern in Kokultur mit endothelialen Stromazellen aus unterschiedlichen Geweben ein Erhalt bzw. eine Expansion primitiver HSVZ stattfindet. Hierzu wurden endothelialer Stroma-/Vorläuferzellen aus der Nabelschnurvene (engl. *human umbilical vein endothelial cell*; kurz HUVEC) sowie aus dem Nabelschnurrestblut (engl. *endothelial colony forming cell*; kurz ECFC) isoliert und charakterisiert.

3.5.1. Charakterisierung der endothelialen Stromazellen

Die isolierten und kultivierten Zellen aus den unterschiedlichen Geweben waren sehr heterogen bzgl. ihrer Größe und Morphologie (Abb. 19). Vereinzelt konnten große, stark granuläre Zellen mit mehreren Kernen (poly-nukleär) beobachtet werden. Aufgrund von Ergebnissen unserer Arbeitsgruppe werden diese Zellen als seneszent bzw. differenziert beurteilt (Doktorarbeit Liska Horsch).

Neben der Morphologie wurde die Expression von als endothel-spezifisch beschriebenen Oberflächenantigenen durchflusszytometrisch analysiert (Ingram *et al.*, 2004; Yoder *et al.*, 2007). Ingram und Yoder zufolge exprimieren Endothelzellen u.a. die Oberflächenantigene CD31, CD73, CD105, CD144, sowie VEGF-R2. Oberflächenantigene mesenchymaler Stamm-/Stromazellen (CD90) sowie hämatopoetischer Zellen (CD15 und CD45) werden von endothelialen Zellen nicht exprimiert.

Alle in dieser Arbeit verwendeten endothelialen Vorläufer-/Stromazellen (HUVEC und ECFC) exprimierten die Oberflächenantigene CD31, CD73, CD105, CD144 sowie den VEGF-R2 und banden das Lektin Ulex (Abb. 18). Die Expressionsstärke (MFI = *mean fluorescence intensity*) der Oberflächenantigene CD31, CD73 und CD105 wies zwischen den verschiedenen Stromazellen Unterschiede auf. Die stärkste Expression von CD31 wurde auf

den HUVEC A (MFI 98,8) und die geringste auf den HUVEC B Stromazellen (MFI 42,7) gemessen (Abb. 18). Nur geringfügige Unterschiede konnten bei der Expression des VEGF (engl. *vascular endothelial growth factor*)-Rezeptors 2 detektiert werden (Abb. 18). Hier wies die ECFC 1E die niedrigste MFI von 2,29 auf wohingegen der höchste Messwert bei der HUVEC D (MFI 3,33) ermittelt wurde (Abb. 18). Die Oberflächenantigene CD15, CD45 und CD90 wurden nicht auf den endothelialen Stromazellen exprimiert (Abb. 18).

Abb. 18: Durchflusszytometrische Charakterisierung endothelialer Stromazellen

Durchflusszytometrische Charakterisierung primärer humaner endothelialer Stromazellen, die aus der Nabelschnurvene (HUVEC) und dem Nabelschnurrestblut (ECFC) angezogen worden sind. (P = Passage; wei $\beta = Isotyp$ -Kontrolle; schwarz = Fluoreszenzintensität; MFI: mittlere Fluoreszenzintensität).

Des Weiteren wurde die Expression der Antigene CD34 sowie CD44 untersucht (Doktorarbeit von Liska Horsch), die Vorarbeiten unserer Arbeitsgruppe zufolge eine Unterscheidung primitiver CD44⁺⁺CD34⁻, reiferer CD44⁺CD34⁻ sowie differenzierter CD44⁺CD34⁺ endotheliale Zellen ermöglichen. Eine heterogene Verteilung der

Oberflächenexpression von CD44 war in keiner der untersuchten endothelialen Stromazelllinien nachweisbar. CD34 wurde bei allen getesteten endothelialen Zellen von einer Subpopulation von Zellen exprimiert. Die größte Population CD34⁺ Zellen fand sich bei den HUVEC C (19,27 %) und der HUVEC F (20,40 %), wohingegen nur wenige Zellen der ECFC 4D (5,38 %) das Antigen exprimierten. Die expandierten Stromazellen aus den unterschiedlichen Geweben bestehen folglich aus einem heterogenen Gemisch reifer (CD44⁺CD34⁻) sowie primitiver (CD44⁺CD34⁻) endothelialer Vorläuferzellen.

Entsprechend der Literatur nehmen Endothelzellen acetyliertem LDL auf (Voyta *et al.*, 1984), binden das Lektins *Ulex europaeus I agglutinin* (UEA I) (Holthofer *et al.*, 1982) und bilden tubuläre, Gefäß-ähnliche Strukturen im Matrigel aus (Crabtree und Subramanian, 2007). Weiterhin zeichnen sich endotheliale Zellen durch intrazelluläre, stabförmige Weibel-Palade Körperchen aus, in denen das Protein von-Willebrand-Faktor (vWF) eingelagert ist (Weibel und Palade, 1964).

Um die acLDL-Aufnahme der endothelialen Stromazellen zu testen, wurden 20.000 Zellen für eine Stunden mit 10 µg/ml fluoreszenzmarkiertem lipophilem DiI kultiviert und die Endozytose mikroskopisch dokumentiert (Abb. 19, AcLDL Aufnahme). Das Lipoprotein wurde von allen getesteten endothelialen Zellen aufgenommen und war perinukleär und zytoplasmatisch in Vesikeln lokalisiert.

Das Protein von-Willebrand-Faktor (vWF) in den Weibel-Palade Körperchen wurde immunzytochemisch nachgewiesen (Abb. 19, vWF). Die stabförmigen Weibel-Palade Körperchen gefüllt mit vWF wurden in allen isolierten endothelialen Primärzellen mikroskopisch detektiert.

Die Fähigkeit der Endothelzellen zur Ausbildung gefäßähnlicher Strukturen wurde im kommerziell erwerblichen Matrigel Ansatz durchgeführt (Abb. 19, Matrigel). Hierzu wurde das Matrigel mit $4x10^4$ Endothelzellen überschichtet und für 15 Stunden inkubiert. Die mikroskopische Auswertung des Ansatzes ergab, dass alle getesteten endothelialen Primärzellen sowohl tubulärartige Strukturen (*tubes*) mit mehreren Verzweigungspunkten (*branching points*) und Schleifen (*loops*) ausbildeten.

Alle isolierten Stromazellen aus der Nabelschnurvene (HUVECs) und dem Nabelschnurrestblut (ECFC) wiesen sowohl phänotypisch als auch funktionell Eigenschaften von endothelialen Stromazellen auf und wurden nachfolgende für Kokulturversuche mit hämatopoetischen Zellen verwendet (siehe Abschnitt 3.5.3).

76

Ergebnisse

Abb. 19: Morphologische und funktionelle Analyse endothelialer Stromazellen

Phase: Phasenkontrastaufnahme von konfluent gewachsenen primären humanen endothelialen Stromazellen (Maßstabsbalken = 20 µm). **AcLDL Aufnahme:** Endozytose von fluoreszenzmarkiertem lipophilem DiI acLDL (rot, Maßstabsbalken = 10 µm). **vWF:** Intrazelluläre fluorochromkonjugierte Antikörperfärbung des Proteins von-Willebrand-Factor (vWF) in den Weibel-Palade-Körperchen (vWF = grün; Kern = blau; Maßstabsbalken = 10 µm). **Matrigel:** Bildung von tubulären bzw. Gefäßähnliche Strukturen (engl. "tube-formation") im Matrigel Ansatz (Maßstabbalken = 100 µm). **3.5.2.** Medientests für die Kokultur von HSVZ mit endothelialen Stromazellen Für die Isolierung und Kultivierung endothelialer Stromazellen wird ein spezifisches Kulturmedium (EBM-2) benötigt, das die Wachstumsfaktoren EGF, FGF, IGF sowie VEGF sowie 5 % Serum enthält (EBM-2 + Zusätze = EGM-2, Lonza). Da in unabhängigen Versuchen gezeigt werden konnte, dass eine Kultivierung und Expansion CD34⁺ Zellen in EBM-2 Medium nicht möglich ist (Daten nicht dargestellt), wurden nachfolgend Medienbedingungen etabliert, die eine Kokultivierung von HSVZ und endothelialen Stromazellen ermöglichen. Der Medientest wurde zudem mit den zuvor etablierten mesenchymalen Stromazellen durchgeführt, da bereits zu diesem Zeitpunkt Kokulturversuche sowohl mit endothelialen als auch mesenchymalen Stromazellen in einer Tripel-Kultur geplant waren.

Hierzu wurden mesenchymale, endotheliale und hämatopoetische Zellen in verschiedenen Grundmedien (IMDM, aMEM, DMEM, RPMI, EGM), mit unterschiedlichen Serenkonzentrationen (0, 5, 10, 20 %) sowie Zytokinkombinationen (EGF, FGF, IGF, VEGF, SCF, TPO, Flt3-L) kultiviert. Nach 14 Tagen wurden die Zellen mikroskopisch dokumentiert und optisch hinsichtlich ihrer Morphologie, Konfluenz, Adhärenz und Vitalität beurteilt. Anhand der nachfolgend aufgeführten Kriterien wurden die Kulturbedingungen einer der drei Kategorien zugeordnet (Abb. 20A):

- Grün: Alle Zellen adhärent; wenig apoptotische Zellen bzw. Zelltrümmer; mehr als 80 % Konfluenz
- Gelb: Überwiegend adhärente Zellen; teilweise differenzierte, stark granuläre, flächige bzw. große Stromazellen, 40-80 % Konfluenz
- Rot: Kaum/wenig adhärente Zellen; viele differenzierte und apoptotische Zellen sowie Zelltrümmer; weniger als 40 % Konfluenz

In der Kultur mit CD34⁺ HSVZ aus dem Nabelschnurrestblut wurde ausschließlich die Vitalität und Expansion der Zellen beurteilt. Kulturbedingungen, die keine Proliferation unterstützen, wurden rot markiert. Medien, die die Vitalität und Proliferation der hämatopoetischen Zellen nicht beeinflussten, wurden grün markiert.

Die unterschiedlichen Medienbedingungen wurden jeweils mit drei unterschiedlichen endothelialen (ECFC, HUVEC) und mesenchymalen (KM MSZ) Stromazellen sowie CD34⁺ HSVZ aus drei unabhängigen Nabelschnurrestbluten getestet (Abb. 20B). Hierzu wurden 500 Zellen pro cm² ausgesäht und die Morphologie, Konfluenz/Proliferation und

78

Vitalität über 14 Tage hinweg mikroskopisch beurteilt. Dargestellt und nachfolgend beschrieben sind nur die Beurteilungen der Stromazellen an Tag 14, was der Kulturdauer der Expansionsphase vom erweiterten ML-IC Ansatz entspricht.

Sowohl mesenchymale als auch hämatopoetische Zellen konnten in allen getesteten Grundmedien kultiviert und expandiert werden (Abb. 20B). Kulturmedien mit weniger als 10 % tierischem Serum führten zur Apoptose von mesenchymalen und hämatopoetischen Zellen. Die Kultivierung der HUVECs war auch ohne die Wachstumsfaktoren in IMDM mit 10 bzw. 20 % Serum möglich (Abb. 20B). ECFCs hingegen konnten nur in IMDM kultiviert werden, wenn dem Grundmedium erneut zu 50 % das zytokinhaltige Medium EGM-2 zugesetzt wurde (Abb. 20B).

Sowohl EGF, FGF, IGF als auch VEGF weisen ein weitreichendes Wirkungsspektrum auf die Biologie (Proliferation, Migration und Differenzierung) endothelialer und mesenchymaler Zellen auf (Li et al., 2007b; Riekstina et al., 2008; Tamama et al., 2010; Lai et al., 2011; Berendsen und Olsen, 2014). Da die Verwendung einzelner oder mehrerer Wachstumsfaktoren essentiell für die Kultivierung der endothelialen Stromazellen ist und da wir einen Effekt auf mesenchymale Zellen möglichst gering halten wollen, wurden im nachfolgenden Versuch die Wachstumsfaktoren ermittelt, die für die Kultivierung der Endothelzellen (ECFC und HUVEC) über den Zeitraum von 14 Tagen unbedingt erforderlich sind (Abb. 20C). Als Grundmedium für den Versuch wurde IMDM10 verwendet. Da die vier Wachstumsfaktoren separat und einzeln geliefert werden, wurden dem Medium verschiedene Kombinationen der Zytokine EGF, FGF, IGF und VEGF zugesetzt. Die Bewertung der Vitalität und Proliferation der endothelialen Zellen erfolgte in Analogie zu dem vorhergehenden Test der Basalmedien (Abb. 20C).

Die Kultivierung von Endothelzellen aus der Nabelschnurvene war in IMDM10 mit allen Kombinationen und den jeweils einzelnen Wachstumsfaktoren über den Zeitraum von 14 Tagen ohne Einschränkungen möglich (Abb. 20C). ECFCs hingegen konnten in IMDM10 mit IGF bzw. VEGF alleine nicht kultiviert werden und wurden apoptotisch. Die Zugabe von EGF oder FGF alleine ermöglichte zwar einen Erhalt der ECFCs, jedoch waren die Zellen nach 14 Tagen nicht konfluent. Erst die Verwendung von mindestens zwei Wachstumsfaktoren ermöglichte den Erhalt bzw. die Proliferation der ECFCs, wobei alle Kombinationen mit EGF sowie FGF mit IGF zur Kultivierung geeignet waren (Abb. 20C).

79

(A) Bewertung der getesteten Grundmedien, Serenkonzentrationen und Zytokinkombinationen für die unterschiedlichen Zellentitäten. (B) Zusammenstellung der Ergebnisse aus dem Medientest mit mesenchymalen, endothelialen und hämatopoetischen Zellen. (C) Bewertung der endothelialen Zellen kultiviert in IMDM mit 10 % tierischem Serum und unterschiedlichen Kombinationen der Zytokine aus dem EGM-2 Medium.

Aus den Medientests ergibt sich, dass das Basalmedium IMDM mit 10 % tierischem Serum (IMDM10) für die Kultivierung von sowohl mesenchymalen, endothelialen als auch hämatopoetischen Zellen geeignet ist. Dem Grundmedium werden zudem die Zytokine SCF, TPO und Flt3-L zugesetzt, da diese für den Erhalt und die Induktion der Proliferation der HSVZ benötigt werden. Weiterhin werden dem Medium die beiden Wachstumsfaktoren EGF

und FGF zugesetzt, da diese essentiell für die Kultivierung endothelialer Stromazellen insbesondere der ECFCs sind.

3.5.3. Kokultur von HSVZ mit endothelialen Stromazellen

Die Kokultivierung von CD133⁺CD34⁺ HSVZ mit primären humanen endothelialen Stromazellen erfolgte in Analogie zu den vorhergehenden Kokulturversuchen. Entsprechend der vorhergehenden Medienetablierung wurde als Kulturmedium IMDM10 mit den Wachstumsfaktoren EGF und FGF vom EGM-2 Medium verwendet. Nach der 14-tägigen Kokultur wurde die hämatopoetische Nachkommenschaft geerntet und durchflusszytometrisch analysiert (Abb. 21 und Tab. 29). Zudem wurden Zellen der CD133⁺CD34⁺ und CD133^{low}CD34⁺ Fraktion durchflusszytometrisch sortiert und im LTC-IC, NK-IC sowie CFC Ansatz analysiert (Abb. 22, Tab. 30, Tab. 31 und Tab. 32).

In Kokultur mit primären humanen endothelialen wurden nach 14 Tagen in der hämatopoetischen Nachkommenschaft überwiegend CD133⁺CD34⁺ und anteilsmäßig wenige CD133^{low}CD34⁺ Zellen detektiert (Abb. 21). Die Frequenz der CD133⁺CD34⁺ und CD133^{low}CD34⁺ Fraktion lag in allen Kokulturen mit endothelialen Stromazellen unter der AFT024 Referenz (133⁺: 13,2 \pm 1,95 %, n=4; 133^{low}: 18,5 \pm 4,2 %, n=3, Tab. 30). Die im Mittel höchste Frequenz CD133⁺CD34⁺ Zellen wurde in Kokultur mit Zellen der HUVEC F (3,83 \pm 1,01 %, n=4, Tab. 30) und für die CD133^{low}CD34⁺ Fraktion mit Zellen der HUVEC A (3,66 \pm 3,08 %, n=3, Tab. 30) ermittelt.

Abb. 21: Durchlusszytometrische Analyse der HSVZ in Kokultur mit primären humanen endothelialen Stromazellen

Durchflusszytometrische Analyse der Nachkommenschaft von CD133⁺CD34⁺ Zellen nach 14-tägiger Kokultur mit primären humanen endothelialen Stromazellen. Darstellung repräsentativer Analysen aus unabhängigen Vorversuchen.

Tab. 2	29: Freq	uenz Cl	D133 ⁺ Cl	D34+, Cl	D133 ^{low}	C D34 + u	nd CD1	33 ⁺ CD3	^{64⁻} Zelle	n in Ko	kultur n	nit EZ
CD 133 ⁺	Sus	AFT 024	HU A	HU B	HU C	HU D	HU F	ECFC 145	ECFC 1E	ECFC DD1	ECFC 4D	ECFC 4E
V1	0,69%	15,1%	1,70%	2,88%	4,84%	1,62%	2,85%	2,32%	0,25%	2,12%	2,01%	1,35%
V2	6,56%	19,0%	1,44%	3,57%	n. v.	n. v.	n. v.	2,93%	n. v.	n. v.	4,18%	n. v.
V3	3,88%	13,2%	2,58%	3,84%	4,41%	4,39%	5,25%	3,09%	2,12%	4,81%	4,46%	2,97%
V4	1,74%	11,6%	2,41%	1,92%	1,60%	1,48%	1,48%	0,90%	0,50%	1,06%	1,18%	0,94%
V5	7,38%	7,23%	8,99%	6,02%	3,71%	4,00%	5,73%	4,20%	3,13%	3,41%	2,27%	7,21%
MW	4,05%	13,2%	3,42%	3,65%	3,64%	2,87%	3,83%	2,69%	1,50%	2,85%	2,82%	3,12%
SEM	1,30%	1,95%	1,41%	0,68%	0,72%	0,77%	1,01%	0,54%	0,68%	0,81%	0,64%	1,43%
p (S)	-	0,022	0,636	0,665	0,900	0,613	0,666	0,225	0,101	0,671	0,347	0,460
p (A)	-	-	0,038*	0,015*	0,014*	0,025*	0,042*	0,008*	0,020*	0,020*	0,004*	0,063
CD 133 ^{low}	Sus	AFT 024	HU A	HU B	HU C	HU D	HU F	ECFC 145	ECFC 1E	ECFC DD1	ECFC 4D	ECFC 4E
V3	0,49%	26,8%	0,67%	1,88%	0,79%	1,44%	0,95%	0,77%	0,96%	0,88%	0,64%	0,38%
V4	0,10%	14,9%	0,48%	1,05%	0,69%	0,59%	0,28%	0,48%	0,41%	0,29%	0,35%	0,30%
V5	7,38%	13,7%	9,82%	2,05%	3,23%	2,10%	3,47%	3,99%	5,44%	4,23%	1,72%	5,47%
MW	2,65%	18,5%	3,66%	1,66%	1,57%	1,38%	1,57%	1,75%	2,27%	1,80%	0,90%	2,05%
SEM	2,36%	4,20%	3,08%	0,31%	0,83%	0,44%	0,97%	1,12%	1,59%	1,23%	0,42%	1,71%
p (S)	-	0,112	0,300	0,692	0,552	0,589	0,521	0,540	0,669	0,535	0,464	0,455
p (A)	-	-	0,147	0,055	0,069	0,056	0,068	0,075	0,088	0,075	0,057	0,091
		1		I		I						I
133 ⁺ 34 ⁻	Sus	AFT 024	HU A	HU B	HU C	HU D	HU F	ECFC 145	ECFC 1E	ECFC DD1	ECFC 4D	ECFC 4E
V1	2,21%	1,53%	5,37%	7,21%	9,57%	3,78%	4,37%	4,75%	1,03%	10,1%	4,98%	2,53%
V2	3,81%	3,30%	2,26%	3,47%	n. v.	n. v.	n. v.	3,19%	n. v.	n. v.	8,56%	n. v.
V3	3,59%	0,72%	4,19%	14,1%	8,87%	9,83%	9,09%	6,10%	3,84%	8,44%	7,56%	4,57%
V4	2,15%	1,00%	5,69%	7,84%	4,77%	6,59%	5,18%	4,34%	2,72%	3,77%	6,62%	3,15%
V5	2,23%	1,40%	4,43%	6,90%	6,01%	9,22%	5,85%	7,62%	5,24%	5,53%	4,78%	6,59%
MW	2,80%	1,59%	4,39%	7,92%	7,31%	7,36%	6,12%	5,20%	3,21%	6,98%	6,50%	4,21%
SEM	0,37%	0,45%	0,60%	1,74%	1,14%	1,38%	1,03%	0,76%	0,89%	1,44%	0,73%	0,90%
p (S)	-	0,047*	0,165	0,042	0,019	0,028	0,015	0,065	0,502	0,046	0,001	0,166
p (A)	-	-	0,049	0,041	0,012	0,026	0,025	0,030	0,121	0,026	0,002	0,046

Abkürzungen: Sus = Suspension; HU = HUVEC; MW = Mittelwert; n. v. = nicht verfügbar/ kontaminiert; p (S) = Signifikanz-berechnung im Vergleich zur Suspension; p (A) = Signifikanzberechnung im Vergleich zur AFT024 (t-Test, zweiseitig, gepaart); Signifikanzen p<0,05 werden fett gedruckt dargestellt. Sind die Messwerte der Suspension bzw. mit der AFT024 signifikant höher ist der Signifikanzwert mit einem *-Symbol markiert.

Wie bereits zuvor bei der durchflusszytometrischen Analyse der hämatopoetischen Nachkommenschaft in der Suspensionskultur beschrieben konnten nach der Kokultur mit endothelialen Stromazellen CD133⁺CD34⁻ Zellen detektiert werden (Abb. 21 und Tab. 30). Diese Zellpopulation ist in Kokultur mit Zellen der murinen Stromazelllinie AFT024 anteilsmäßig gering vorhanden (1,59 \pm 0,45 %) und eine Expansion dieser Zellen fand sich überwiegend in der Kokultur mit endothelialen Stromazellen.

In allen Kokulturen mit endothelialen Stromazellen wurde eine Expansion (Faktor > 1) der CD45⁺, CD133⁺CD34⁺ und CD133^{low}CD34⁺ Population nachgewiesen (Abb. 22A, Tab. 30). Eine statistisch signifikante Steigerung der Expansion von CD45⁺ Zellen wurde im Vergleich zur Kontrolle (571 \pm 140-fach, n=5) auf Zellen der HUVEC A (747 \pm 148-fach, n=5), HUVEC D (1.042 \pm 229-fach, n=4) und HUVEC F (993 \pm 160-fach, n=4) ermittelt (Tab. 30).

Im Vergleich zur Kontrolle (68,46 \pm 16,05-fach, n=5, Tab. 30) fand in allen Kokulturen mit Kokultur mit endothelialen Stromazellen eine geringere Expansion der CD133⁺CD34⁺ Population statt. Die im Mittel stärkste Expansion CD133⁺CD34⁺ HSVZ wurde auf Zellen der HUVEC F gefunden (41,61 \pm 15,47-fach, n=4, Tab. 30).

Tab. 30: Expansion von CD45⁺, CD133⁺CD34⁺, CD133^{low}CD34⁺ und CD133⁺CD34⁻ Zellen in Kokultur mit EZ

CD 45 ⁺	Sus	AFT 024	HU A	HU B	HU C	HU D	HU F	ECFC	ECFC	ECFC	ECFC	ECFC
45	07.50	024	200 05	404.47	400.40	550.07	570.00	145	1E	004.40	4D	4E
VI V2	97,50	245,90	300,05	424,17	469,48	552,07	573,66	546,49 420 70	399,81	234,49	458,80	761,36
V2 V2	190,32	229,33	1210 4	1405.2	1576 1	1647.6	11. V. 1252 0	439,79	11. V. 952 72	091 24	442,90	1061.2
V3 V4	192,04	700.69	927.62	676.99	11/0,1	1047,0	010.92	742.29	540.40	901,24 661.99	572.29	042.29
V4 V5	290.96	679 38	820.62	661.98	801.08	886.68	1236.7	934.06	786.48	1032.0	1829.3	1284.8
15	200,00	075,50	020,02	001,00	001,00	000,00	1200,7	554,00	700,40	1002,0	1023,5	1204,0
MW	182,22	571,63	747,52	754,81	997,70	1042,4	993,56	732,58	645,10	952,65	869,36	1012,4
SEM	32,41	140,93	148,22	168,72	236,94	229,61	160,63	107,86	105,93	360,81	263,66	109,75
p (S)	-	0,044	0,015	0,025	0,039	0,030	0,008	0,004	0,009	0,094	0,043	0,001
p (A)	-	-	0,029	0,192	0,065	0,050	0,035	0,066	0,905	0,427	0,262	0,059
CD	Sus	AFT	HΠΔ	HUB	HUC	HUD	HUF	ECFC	ECFC	ECFC	ECFC	ECFC
133+	Dub	024	шен	ne b	nee	ne b	ner	145	1E	DD1	4D	4 E
V1	0,68	37,25	6,21	12,23	22,74	8,93	16,32	12,71	0,98	4,98	9,21	10,27
<u>V2</u>	12,48	43,67	7,26	21,64	n. v.	n. v.	n. v.	12,89	n. v.	n. v.	18,53	n. v.
<u>V3</u>	7,48	119,32	31,50	53,94	69,46	72,40	65,82	30,92	18,06	47,18	46,58	31,56
V4	2,42	92,96	19,92	12,98	18,28	16,04	13,44	6,70	2,68	7,02	6,78	8,82
V5	21,46	49,12	73,74	39,88	29,72	35,48	70,84	39,24	24,60	65,88	41,60	92,68
MW	8,90	68,46	27,73	28,13	35,05	33,21	41,61	20,49	11,58	31,27	24,54	35,83
SEM	3,76	16,05	12,40	8,15	11,71	14,22	15,47	6,20	5,80	15,08	8,26	19,65
p (S)	-	0.020	0.163	0.049	0.144	0.150	0.152	0.123	0.433	0.220	0.087	0.307
p (A)	-	-	0,139	0,202	0,344	0,373	0,447	0,107	0,116	0,321	0,172	0,362
				•	•					•	•	
CD	Sue	AFT	HUA	HUR	HUC	нир	HUF	ECFC	ECFC	ECFC	ECFC	ECFC
133 ^{low}	543	024	поя	пов	nee	no b	пот	145	1E	DD1	4D	4 E
V1	0,94	242,86	8,20	26,46	12,44	23,72	11,92	7,68	8,16	8,68	6,66	4,08
V2	0,14	119,20	3,96	7,14	7,88	6,38	2,54	3,58	2,22	1,92	1,98	2,80
V3	21,46	93,36	80,56	13,56	25,88	18,64	42,92	37,24	42,80	81,70	31,46	70,22
MW	7.51	151.81	30.91	15.72	15.40	16.25	19.13	16.17	17.73	30.77	13.37	25.70
SEM	6,98	46,13	24,86	5,68	5,40	5,15	12,20	10,60	12,65	25,54	9,15	22,26
n (S)	_	0 104	0 321	0.485	0.061	0.364	0 170	0 144	0.218	0 337	0 131	0 356
$\mathbf{p}(\mathbf{S})$ $\mathbf{n}(\mathbf{A})$	-	-	0,321	0,403	0,001	0,004	0,170	0,144	0,210	0,337	0,131	0,330
P (1 1)			0,200	0,001	0,101	0,000	0,120	0,120	0,100	0,200	0,110	0,101
34	S	AFT	TTTT A	IIII D	IIIIC	IIIID	IIIIE	ECFC	ECFC	ECFC	ECFC	ECFC
133	Sus	024	HU A	HU B	HUC	HUD	HUF	145	1E	DD1	4D	4 E
V1	2,16	3,76	19,67	30,59	44,92	20,87	25,07	25,98	4,12	23,87	22,83	19,27
V2	7,26	7,56	11,39	21,04	n. v.	n. v.	n. v.	14,02	n. v.	n. v.	37,93	n. v.
V3	6,92	6,52	51,10	199,20	139,82	161,90	113,88	61,00	32,82	82,78	78,84	48,46
V4	3,00	7,96	47,06	53,08	54,62	71,44	47,20	32,20	14,70	24,92	37,90	29,64
V5	6,50	9,52	36,32	45,70	48,16	81,78	72,38	71,16	41,20	106,94	87,38	84,62
MW	5,17	7,06	33,11	69,92	71,88	84,00	64,63	40,87	23,21	59,63	52,98	45,50
SEM	1,07	0,96	7,68	32,80	22,74	29,18	19,05	10,82	8,43	20,93	12,68	14,37
n (S)	-	0 120	0.023	0 117	0.055	0.067	0.044	0.027	0.084	0.069	0.016	0.055
p (S) p (A)	-	-	0,025	0,128	0,066	0,075	0,053	0,032	0,120	0,080	0,019	0,064

Alle Werte sind als x-fache Expansion angegeben. Abkürzungen: Sus = Suspension; HU = HUVEC; MW = Mittelwert; n. v. = nicht verfügbar/kontaminiert; p (S) = Signifikanzberechnung im Vergleich zur Suspension; p (A) = Signifikanzberechnung im Vergleich zur AFT024 (t-Test, zweiseitig, gepaart); Signifikanzen p<0,05 werden fett gedruckt dargestellt.

In Kokultur mit der AFT024 wurde in allen Versuchen eine bessere Expansion der $CD133^{low}CD34^+$ Population als auf endothelialen Stromazellen ermittelt. Die stärkste Amplifikation $CD133^{low}CD34^+$ HSVZ wies die Kokultur mit Zellen der HUVEC A auf $(30,91 \pm 24,86$ -fach, n=3, Tab. 30).

Im Vergleich zur AFT024 Referenz (7,06 \pm 0,96-fach, n=5, Tab. 30) wurde im Mittel eine 3 bis 12-fach stärkere Amplifikation der CD133⁺CD34⁻ Population beobachtet. Die meisten CD133⁺CD34⁻Zellen wurden nach der Kokultur mit Zellen der HUVEC D detektiert (84,0 \pm 29,18-fach, n=4, Tab. 30).

Um die Expansion von Zellen mit LTC-IC und NK-IC Potential in Kokultur mit den primären endothelialen Stromazellen zu ermitteln, wurden CD133⁺CD34⁺ Zellen durchflusszytometrisch sortiert und in den LTC-IC bzw. NK-IC Ansatz eingebracht (Abb. 22B und C, Tab. 31, n=5). Die Berechnung der Expansion erfolgte im Vergleich zur LTC-IC und NK-IC Frequenz frisch isolierter CD133⁺CD34⁺ HSVZ. Zudem wurden CD133⁺CD34⁻ Zellen nach der Kokultur mit Stromazellen der HUVEC B und ECFC 4D im LTC-IC und NK-IC Ansatz analysiert.

Ein Verlust (Faktor < 1) von LTC-ICs wurde in zwei von fünf (AFT024) bzw. 24 von 62 (Endothel) Versuchsansätzen wurde ermittelt (Tab. 31). Eine im Mittel bessere bzw. vergleichbare Expansion von Zellen mit LTC-IC Potential gegenüber der Referenz $(3,26 \pm 2,01$ -fach, n=5) wurde in Kokultur mit Zellen der Linien HUVEC C $(5,04 \pm 3,24$ -fach, n=4), ECFC 4D $(3,28 \pm 1,73$ -fach, n=5) und ECFC 4E $(3,25 \pm 1,62$ -fach, n=5) festgestellt (Abb. 22B, Tab. 31).

Zellen mit NK-IC Potential wiesen in vier von fünf (AFT024) bzw. 24 von 55 (Endothel) Experimenten keine Amplifikation (Faktor < 1) auf (Tab. 31). Im Vergleich zur AFT024 Kokultur (0,47 \pm 0,23-fach, n=5) wurde eine stärkere Expansion von Zellen mit NK-IC Potential mit Stromazellen der Linien HUVEC F (1,5 \pm 0,51-fach, n=4), ECFC 4D (1,46 \pm 0,49-fach, n=5) sowie ECFC 4E (1,06 \pm 0,6-fach, n=4) gefunden (Abb. 22C, Tab. 31).

Die funktionelle Analyse der CD133⁺CD34⁻ Zellen im LTC-IC sowie NK-IC Ansatz ergab, dass diese Zellpopulation geringfügig (<0,05 %, n=1) Zellen mit LTC-IC Potential enthält. Zellen mit NK-Zell Differenzierungspotential wurden nicht detektiert.

LTC-	Sus	AFT	HU A	HU B	HU C	HU D	HU F	ECFC	ECFC	ECFC	ECFC	ECFC
IC		024						145	IE	DDI	4D	4E
V1	0,15	0,67	0,23	0,80	0,40	0,52	0,55	0,15	0,17	0,19	0,49	0,44
V2	0,18	0,11	n. v.	0,36	n. v.	0,13	n. v.	0,11	0,11	0,07	0,20	0,30
V3	1,84	11,11	2,24	6,54	14,65	7,84	5,82	5,17	4,89	9,50	9,57	5,94
V4	0,32	2,10	0,00	1,29	2,57	1,78	1,22	0,45	0,23	0,61	1,86	1,33
V5	2,85	2,32	8,49	3,63	2,53	1,63	13,83	4,81	4,84	11,01	4,30	8,25
										4.00		
MW	1,07	3,26	2,74	2,53	5,04	2,38	5,35	2,14	2,04	4,28	3,28	3,25
SEM	0,55	2,01	1,98	1,15	3,24	1,40	3,06	1,17	1,15	2,45	1,73	1,62
		0.407	0.070	0.404	0.040	0.050	0.404	0.400	0.000	0 4 7 4	0.450	0.440
p (S)	-	0,167	0,378	0,104	0,310	0,352	0,194	0,189	0,208	0,171	0,156	0,113
p (A)	-	-	0,700	0,276	0,336	0,221	0,741	0,462	0,445	0,630	0,373	0,996
								-				
NK-	Suc	AFT	нца	HUB	HUC	HUD	HUF	ECFC	ECFC	ECFC	ECFC	ECFC
NK- IC	Sus	AFT 024	HU A	HU B	HU C	HU D	HU F	ECFC 145	ECFC 1E	ECFC DD1	ECFC 4D	ECFC 4E
NK- IC V1	Sus	AFT 024 0,09	HU A 0,18	HU B 0,41	HU C	HU D 0,38	HU F 1,16	ECFC 145 0,48	ECFC 1E n. v.	ECFC DD1 0,04	ECFC 4D 0,22	ECFC 4E 0,33
NK- IC V1 V2	Sus n. v. 1,28	AFT 024 0,09 1,28	HU A 0,18 n. v.	HU B 0,41 0,95	HU C n. v. n. v.	HU D 0,38 n. v.	HU F 1,16 n. v.	ECFC 145 0,48 n. v.	ECFC 1E n. v. n. v.	ECFC DD1 0,04 n. v.	ECFC 4D 0,22 2,12	ECFC 4E 0,33 n. v.
NK- IC V1 V2 V3	Sus n. v. 1,28 0,39	AFT 024 0,09 1,28 0,59	HU A 0,18 n. v. 0,34	HU B 0,41 0,95 1,71	HU C n. v. n. v. 3,22	HU D 0,38 n. v. 2,12	HU F 1,16 n. v. 2,80	ECFC 145 0,48 n. v. 2,11	ECFC 1E n. v. n. v. 1,26	ECFC DD1 0,04 n. v. 2,54	ECFC 4D 0,22 2,12 2,67	ECFC 4E 0,33 n. v. 2,85
NK- IC V1 V2 V3 V4	Sus n. v. 1,28 0,39 0,00	AFT 024 0,09 1,28 0,59 0,00	HU A 0,18 n. v. 0,34 0,59	HU B 0,41 0,95 1,71 0,35	HU C n. v. n. v. 3,22 0,45	HU D 0,38 n. v. 2,12 0,45	HU F 1,16 n. v. 2,80 0,38	ECFC 145 0,48 n. v. 2,11 0,18	ECFC 1E n. v. n. v. 1,26 0,17	ECFC DD1 0,04 n. v. 2,54 0,44	ECFC 4D 0,22 2,12 2,67 0,39	ECFC 4E 0,33 n. v. 2,85 0,37
NK- IC V1 V2 V3 V4 V5	Sus n. v. 1,28 0,39 0,00 1,07	AFT 024 0,09 1,28 0,59 0,00 0,41	HU A 0,18 n. v. 0,34 0,59 2,16	HU B 0,41 0,95 1,71 0,35 3,01	HU C n. v. 3,22 0,45 0,18	HU D 0,38 n. v. 2,12 0,45 0,00	HU F 1,16 n. v. 2,80 0,38 1,65	ECFC 145 0,48 n. v. 2,11 0,18 0,33	ECFC 1E n. v. 1,26 0,17 0,93	ECFC DD1 0,04 n. v. 2,54 0,44 1,05	ECFC 4D 0,22 2,12 2,67 0,39 1,88	ECFC 4E 0,33 n. v. 2,85 0,37 0,68
NK- IC V1 V2 V3 V4 V5	Sus n. v. 1,28 0,39 0,00 1,07	AFT 024 0,09 1,28 0,59 0,00 0,41	HU A 0,18 n. v. 0,34 0,59 2,16	HU B 0,41 0,95 1,71 0,35 3,01	HU C n. v. n. v. 3,22 0,45 0,18	HU D 0,38 n. v. 2,12 0,45 0,00	HU F 1,16 n. v. 2,80 0,38 1,65	ECFC 145 0,48 n. v. 2,11 0,18 0,33	ECFC 1E n. v. n. v. 1,26 0,17 0,93	ECFC DD1 0,04 n. v. 2,54 0,44 1,05	ECFC 4D 0,22 2,12 2,67 0,39 1,88	ECFC 4E 0,33 n. v. 2,85 0,37 0,68
NK- IC V1 V2 V3 V4 V5 MW	Sus n. v. 1,28 0,39 0,00 1,07 0,69	AFT 024 0,09 1,28 0,59 0,00 0,41 0,47	HU A 0,18 n. v. 0,34 0,59 2,16 0,82	HU B 0,41 0,95 1,71 0,35 3,01 1,29	HU C n. v. n. v. 3,22 0,45 0,18 1,28	HU D 0,38 n. v. 2,12 0,45 0,00 0,74	HU F 1,16 n. v. 2,80 0,38 1,65 1,50	ECFC 145 0,48 n. v. 2,11 0,18 0,33 0,77	ECFC 1E n. v. n. v. 1,26 0,17 0,93 0,78	ECFC DD1 0,04 n. v. 2,54 0,44 1,05 1,02	ECFC 4D 0,22 2,12 2,67 0,39 1,88 1,46	ECFC 4E 0,33 n. v. 2,85 0,37 0,68 1,06
NK- IC V1 V2 V3 V4 V5 MW SEM	Sus n. v. 1,28 0,39 0,00 1,07 0,69 0,30	AFT 024 0,09 1,28 0,59 0,00 0,41 0,47 0,23	HU A 0,18 n. v. 0,34 0,59 2,16 0,82 0,45	HU B 0,41 0,95 1,71 0,35 3,01 1,29 0,49	HU C n. v. 3,22 0,45 0,18 1,28 0,97	HU D 0,38 n. v. 2,12 0,45 0,00 0,74 0,47	HU F 1,16 n. v. 2,80 0,38 1,65 1,50 0,51	ECFC 145 0,48 n. v. 2,11 0,18 0,33 0,77 0,45	ECFC 1E n. v. 1,26 0,17 0,93 0,78 0,32	ECFC DD1 0,04 n. v. 2,54 0,44 1,05 1,02 0,55	ECFC 4D 0,22 2,12 2,67 0,39 1,88 1,46 0,49	ECFC 4E 0,33 n. v. 2,85 0,37 0,68 1,06 0,60
NK- IC V1 V2 V3 V4 V5 MW SEM	Sus n. v. 1,28 0,39 0,00 1,07 0,69 0,30	AFT 024 0,09 1,28 0,59 0,00 0,41 0,47 0,23	HU A 0,18 n. v. 0,34 0,59 2,16 0,82 0,45	HU B 0,41 0,95 1,71 0,35 3,01 1,29 0,49	HU C n. v. n. v. 3,22 0,45 0,18 1,28 0,97	HU D 0,38 n. v. 2,12 0,45 0,00 0,74 0,47	HU F 1,16 n. v. 2,80 0,38 1,65 1,50 0,51	ECFC 145 0,48 n. v. 2,11 0,18 0,33 0,77 0,45	ECFC 1E n. v. n. v. 1,26 0,17 0,93 0,78 0,32	ECFC DD1 0,04 n. v. 2,54 0,44 1,05 1,02 0,55	ECFC 4D 0,22 2,12 2,67 0,39 1,88 1,46 0,49	ECFC 4E 0,33 n. v. 2,85 0,37 0,68 1,06 0,60
NK- IC V1 V2 V3 V4 V5 MW SEM p (S)	Sus n. v. 1,28 0,39 0,00 1,07 0,69 0,30 -	AFT 024 0,09 1,28 0,59 0,00 0,41 0,47 0,23 0,579	HU A 0,18 n. v. 0,34 0,59 2,16 0,82 0,45 0,241	HU B 0,41 0,95 1,71 0,35 3,01 1,29 0,49 0,202	HU C n. v. 3,22 0,45 0,18 1,28 0,97 0,540	HU D 0,38 n. v. 2,12 0,45 0,00 0,74 0,47 0,693	HU F 1,16 n. v. 2,80 0,38 1,65 1,50 0,51 0,226	ECFC 145 0,48 n. v. 2,11 0,18 0,33 0,77 0,45 0,645	ECFC 1E n. v. 1,26 0,17 0,93 0,78 0,32 0,425	ECFC DD1 0,04 n. v. 2,54 0,44 1,05 1,02 0,55 0,325	ECFC 4D 0,22 2,12 2,67 0,39 1,88 1,46 0,49 0,080	ECFC 4E 0,33 n. v. 2,85 0,37 0,68 1,06 0,60 0,441

Tab. 31: Expansion von LTC-ICs und NK-ICs in Kokultur mit EZ

Alle Werte sind als x-fache Expansion angegeben. Abkürzungen: Sus = Suspension; HU = HUVEC; MW = Mittelwert; n. v. = nicht verfügbar/kontaminiert; p (S) = Signifikanzberechnung im Vergleich zur Suspension; p (A) = Signifikanzberechnung im Vergleich zur AFT024 (t-Test, zweiseitig, gepaart); Signifikanzen p<0,05 werden fett gedruckt dargestellt.

Zur Quantifizierung von Zellen mit CFC Potential wurden CD133⁺CD34⁺ und CD133^{low}CD34⁺ HSVZ durchflusszytometrisch sortiert, in CFC Ansätze eingebracht, hinsichtlich ihres erythrozytären, myeloischen und erythro-myeloischen Koloniebildungspotentials analysiert und die Expansion koloniebildender Zellen im Vergleich zu frisch isolierten HSVZ berechnet (Abb. 22D, Tab. 32). Zusätzlich wurden in dieser Versuchsreihe Zellen der CD133⁺CD34⁺ Population mit einbezogen (Daten nicht dargestellt).

Die Frequenz koloniebildender Zellen in der CD133⁺CD34⁺ Fraktion nach Kokultur mit endothelialen Stromazellen war im Vergleich zu frisch isolierten HSVZ im Mittel etwa 2 bis 3-fach geringer (min: 7,04 \pm 1,07 %; max: 10,7 \pm 1,33 %, n=4, Tab. 32). In der CD133^{low}CD34⁺ Fraktion waren anteilsmäßige wenige koloniebildende Zellen enthalten (min: 0,11 \pm 0,11 %; max: 0,97 \pm 0,19 %, n=3, Tab. 32).

Die im Mittel stärkere Expansion von Zellen mit Koloniebildungspotential in der $CD133^{+}CD34^{+}$ Fraktion wurde im Vergleich zur Kontrolle (13 ± 2,4-fach, n=4, Tab. 32) in der Kokultur mit Zellen der HUVEC C (14,40 \pm 2,61-fach, n=4), HUVEC D (13,50 \pm 5,41n=4). HUVEC F (14, 93)n=4) fach. ± 6,03-fach, und ECFC 4E $(13,4 \pm 7,89$ -fach, n=4) ermittelt. In der Kokultur mit Zellen der HUVEC C wurde in drei von Versuchen CD133⁺CD34⁺ Zellen vier eine stärkere Expansion von mit Koloniebildungspotential nachgewiesen als mit der AFT024 (Tab. 32).

Eine Expansion (Faktor>1) koloniebildender CD133^{low}CD34⁺ HSVZ wurde nur in 8 von 48 Experimenten in Kokultur mit primären endothelialen Zellen unterstützt (Tab. 32). In Kokultur mit murinen Stromazellen konnte in sieben von acht Versuchen eine reproduzierbar stärkere Expansion von CFCs detektiert werden (10,04 \pm 5,19-fach, n=3, Tab. 32).

Tab. 32: Frequenz und Expansion von CFCs in der CD133⁺CD34⁺ und CD133^{low}CD34⁺ Fraktion in Kokultur mit EZ

CD	Sus	AFT	ΗU Δ	HUB	HUC	HUD	HUF	ECFC	ECFC	ECFC	ECFC	ECFC
133+	543	024	пол	пов	nee	пов	nor	145	1E	DD1	4D	4 E
V1	5,67%	7,00%	9,67%	13,3%	13,0%	6,67%	11,3%	4,00%	8,00%	9,00%	13,0%	17,6%
V2	4,67%	2,83%	5,50%	7,33%	6,83%	8,00%	6,00%	7,50%	7,17%	7,33%	6,50%	3,83%
V3	5,50%	4,17%	7,00%	9,35%	11,3%	9,26%	4,50%	7,67%	11,0%	8,33%	7,67%	7,17%
V4	8,00%	3,00%	8,67%	13,0%	9,33%	11,0%	9,33%	9,00%	10,6%	10,0%	10,0%	8,67%
MW	5,96%	4,25%	7,71%	10,7%	10,1%	8,73%	7,79%	7,04%	9,22%	8,67%	9,29%	9.33%
SEM	0,71%	0,96%	0,92%	1,45%	1,33%	0,92%	1,55%	1,07%	0,97%	0,56%	1,43%	2,96%
$\mathbf{n}(\mathbf{S})$		0.280	0.109	0.021	0.063	0.020	0.270	0.255	0.024	0.002	0.088	0 333
p(s)	-	0,200	0,108	0,021	0,003	0.020	0,279	0,333	0,024	0,002	0,000	0,332
p (A)			0,010	0,013	0,005	0,002	0,000	0,201	0,045	0,023	0,010	0,000
CD	_	AFT						ECFC	ECFC	ECFC	ECFC	ECEC
133+	Sus	024	HU A	HU B	HU C	HU D	HU F	145	1E	DD1	4D	4E
V1	0.18	11.96	2.75	7.48	13.56	2.73	8.49	2.33	0.36	2.06	5.52	8.32
V2	1,60	15,51	7,95	16,38	21,77	26,57	18,12	10,64	5,94	1,41	17,85	5,55
V3	0,61	17,77	6,40	18,14	9,53	6,81	2,77	2,36	1,85	2,68	13,89	2,90
V4	7,88	6,76	29,32	5,57	12,72	17,90	30,33	0,00	12,04	30,22	2,38	36,85
MXX	2.57	12.00	11.60	11.00	14.40	12 50	14.02	2.02	E 0E	0.00	0.01	12.40
SEM	2,37	2.40	6.00	3 1/	2.61	5 /1	6.03	234	2,05	9,09	3.50	7 80
SEN	1,79	2,40	0,00	3,14	2,01	5,41	0,03	2,34	2,01	7,05	3,39	7,09
p (S)	-	0,080	0,122	0,126	0,037	0,113	0,070	0,740	0,098	0,306	0,228	0,177
p (A)	-	-	0.873	0.427	0.707	0,940	0.827	0,028*	0,183	0,699	0.201	0.971
r ()			- /	- /	-, -	,	- / -		,	,		- / -
r ()				- 1			- 7 -					
		АЕТ			-, -		- , -	ECEC	ECEC	ECEC	ECEC	ECEC
CD 133 ^{low}	Sus	AFT 024	HU A	HU B	HU C	HU D	HU F	ECFC 145	ECFC 1E	ECFC DD1	ECFC 4D	ECFC 4E
CD 133 ^{low} V1	Sus	AFT 024 2.00%	HU A	HU B	HU C	HU D	HU F	ECFC 145 0.33%	ECFC 1E 0 17%	ECFC DD1 0.33%	ECFC 4D	ECFC 4E 3 83%
CD 133 ^{low} V1 V2	Sus 3,83% 4,17%	AFT 024 2,00% 3.00%	HU A 0,17% 0.17%	HU B 1,33% 0.90%	HU C 0,33% 0.25%	HU D 0,67% 0.00%	HU F 0,33% 0.33%	ECFC 145 0,33% 0.00%	ECFC 1E 0,17% 1.50%	ECFC DD1 0,33% 0.00%	ECFC 4D 0,33% 0.00%	ECFC 4E 3,83% 4,17%
CD 133 ^{low} V1 V2 V3	Sus 3,83% 4,17% 1,33%	AFT 024 2,00% 3,00% 0,00%	HU A 0,17% 0,17% 0,00%	HU B 1,33% 0,90% 0,68%	HU C 0,33% 0,25% 0,33%	HU D 0,67% 0,00% 1,74%	HU F 0,33% 0,33% 2,08%	ECFC 145 0,33% 0,00% 0,42%	ECFC 1E 0,17% 1,50% 0,00%	ECFC DD1 0,33% 0,00% 0,67%	ECFC 4D 0,33% 0,00%	ECFC 4E 3,83% 4,17% 1,33%
CD 133 ^{low} V1 V2 V3	Sus 3,83% 4,17% 1,33%	AFT 024 2,00% 3,00% 0,00%	HU A 0,17% 0,00%	HU B 1,33% 0,90% 0,68%	HU C 0,33% 0,25% 0,33%	HU D 0,67% 0,00% 1,74%	HU F 0,33% 0,33% 2,08%	ECFC 145 0,33% 0,00% 0,42%	ECFC 1E 0,17% 1,50% 0,00%	ECFC DD1 0,33% 0,00% 0,67%	ECFC 4D 0,33% 0,00% 0,00%	ECFC 4E 3,83% 4,17% 1,33%
CD 133 ^{low} V1 V2 V3 MW	Sus 3,83% 4,17% 1,33% 3,11%	AFT 024 2,00% 3,00% 0,00% 1,67%	HU A 0,17% 0,17% 0,00% 0,11%	HU B 1,33% 0,90% 0,68%	HU C 0,33% 0,25% 0,33%	HU D 0,67% 0,00% 1,74% 0,80%	HU F 0,33% 0,33% 2,08% 0,92%	ECFC 145 0,33% 0,00% 0,42%	ECFC 1E 0,17% 1,50% 0,00%	ECFC DD1 0,33% 0,00% 0,67%	ECFC 4D 0,33% 0,00% 0,00%	ECFC 4E 3,83% 4,17% 1,33% 3,11%
CD 133 ^{low} V1 V2 V3 MW SEM	Sus 3,83% 4,17% 1,33% 3,11% 0,89%	AFT 024 2,00% 3,00% 0,00% 1,67% 0,88%	HU A 0,17% 0,17% 0,00% 0,11% 0,06%	HU B 1,33% 0,90% 0,68% 0,97% 0,19%	HU C 0,33% 0,25% 0,33% 0,30% 0,03%	HU D 0,67% 0,00% 1,74% 0,80% 0,51%	HU F 0,33% 0,33% 2,08% 0,92% 0,58%	ECFC 145 0,33% 0,00% 0,42% 0,25% 0,13%	ECFC 1E 0,17% 1,50% 0,00% 0,56% 0,48%	ECFC DD1 0,33% 0,00% 0,67% 0,33% 0,19%	ECFC 4D 0,33% 0,00% 0,00% 0,11% 0,11%	ECFC 4E 3,83% 4,17% 1,33% 3,11% 0,89%
CD 133 ^{low} V1 V2 V3 MW SEM p (S)	Sus 3,83% 4,17% 1,33% 3,11% 0,89%	AFT 024 2,00% 3,00% 0,00% 1,67% 0,88% 0,019	HU A 0,17% 0,17% 0,00% 0,11% 0,06% 0,070	HU B 1,33% 0,90% 0,68% 0,97% 0,19% 0,110	HU C 0,33% 0,25% 0,33% 0,30% 0,03% 0,091	HU D 0,67% 0,00% 1,74% 0,80% 0,51% 0,239	HU F 0,33% 0,33% 2,08% 0,92% 0,58% 0,275	ECFC 145 0,33% 0,00% 0,42% 0,25% 0,13% 0,103	ECFC 1E 0,17% 1,50% 0,00% 0,56% 0,48% 0,063	ECFC DD1 0,33% 0,00% 0,67% 0,33% 0,19% 0,122	ECFC 4D 0,33% 0,00% 0,00% 0,11% 0,11% 0,073	ECFC 4E 3,83% 4,17% 1,33% 3,11% 0,89% 0,074
CD 133 ^{low} V1 V2 V3 MW SEM p (S) p (A)	Sus 3,83% 4,17% 1,33% 3,11% 0,89% -	AFT 024 2,00% 3,00% 0,00% 1,67% 0,88% 0,019	HU A 0,17% 0,17% 0,00% 0,11% 0,06% 0,070 0,202	HU B 1,33% 0,90% 0,68% 0,97% 0,19% 0,110 0,476	HU C 0,33% 0,25% 0,33% 0,30% 0,03% 0,091 0,271	HU D 0,67% 0,00% 1,74% 0,80% 0,51% 0,239 0,598	HU F 0,33% 0,33% 2,08% 0,92% 0,58% 0,275 0,656	ECFC 145 0,33% 0,00% 0,42% 0,25% 0,13% 0,103 0,292	ECFC 1E 0,17% 1,50% 0,00% 0,56% 0,48% 0,063 0,188	ECFC DD1 0,33% 0,00% 0,67% 0,33% 0,19% 0,122 0,339	ECFC 4D 0,33% 0,00% 0,00% 0,11% 0,11% 0,073 0,215	ECFC 4E 3,83% 4,17% 1,33% 3,11% 0,89% 0,074 0,199
CD 133 ^{low} V1 V2 V3 MW SEM p (S) p (A)	Sus 3,83% 4,17% 1,33% 3,11% 0,89% - -	AFT 024 2,00% 3,00% 0,00% 1,67% 0,88% 0,019 -	HU A 0,17% 0,17% 0,00% 0,11% 0,06% 0,070 0,202	HU B 1,33% 0,90% 0,68% 0,97% 0,19% 0,110 0,476	HU C 0,33% 0,25% 0,33% 0,30% 0,03% 0,091 0,271	HU D 0,67% 0,00% 1,74% 0,80% 0,51% 0,239 0,598	HU F 0,33% 0,33% 2,08% 0,92% 0,58% 0,275 0,656	ECFC 145 0,33% 0,00% 0,42% 0,25% 0,13% 0,103 0,292	ECFC 1E 0,17% 1,50% 0,00% 0,56% 0,48% 0,063 0,188	ECFC DD1 0,33% 0,00% 0,67% 0,33% 0,19% 0,122 0,339	ECFC 4D 0,33% 0,00% 0,00% 0,11% 0,11% 0,073 0,215	ECFC 4E 3,83% 4,17% 1,33% 3,11% 0,89% 0,074 0,199
CD 133 ^{low} V1 V2 V3 MW SEM p (S) p (A)	Sus 3,83% 4,17% 1,33% 3,11% 0,89% - - - Sus	AFT 024 2,00% 3,00% 0,00% 1,67% 0,88% 0,019 -	HU A 0,17% 0,17% 0,00% 0,11% 0,06% 0,070 0,202 HU A	HU B 1,33% 0,90% 0,68% 0,97% 0,19% 0,110 0,476 HU B	HU C 0,33% 0,25% 0,33% 0,30% 0,03% 0,091 0,271 HU C	HU D 0,67% 0,00% 1,74% 0,80% 0,51% 0,239 0,598 HU D	HU F 0,33% 0,33% 2,08% 0,92% 0,58% 0,275 0,656 HU F	ECFC 145 0,33% 0,00% 0,42% 0,25% 0,13% 0,103 0,292 ECFC	ECFC 1E 0,17% 1,50% 0,00% 0,56% 0,48% 0,063 0,188 ECFC	ECFC DD1 0,33% 0,00% 0,67% 0,33% 0,19% 0,122 0,339 ECFC	ECFC 4D 0,33% 0,00% 0,00% 0,11% 0,11% 0,073 0,215 ECFC	ECFC 4E 3,83% 4,17% 1,33% 3,11% 0,89% 0,074 0,199 ECFC
CD 133 ^{low} V1 V2 V3 MW SEM p (S) p (A) CD 133 ^{low}	Sus 3,83% 4,17% 1,33% 3,11% 0,89% - - - Sus	AFT 024 2,00% 3,00% 0,00% 1,67% 0,88% 0,019 - - AFT 024	HU A 0,17% 0,17% 0,00% 0,11% 0,06% 0,070 0,202 HU A	HU B 1,33% 0,90% 0,68% 0,97% 0,19% 0,110 0,476 HU B	HU C 0,33% 0,25% 0,33% 0,30% 0,03% 0,091 0,271 HU C	HU D 0,67% 0,00% 1,74% 0,80% 0,51% 0,239 0,598 HU D	HU F 0,33% 0,33% 2,08% 0,92% 0,58% 0,275 0,656 HU F	ECFC 145 0,33% 0,00% 0,42% 0,25% 0,13% 0,103 0,292 ECFC 145	ECFC 1E 0,17% 1,50% 0,00% 0,56% 0,48% 0,063 0,188 ECFC 1E	ECFC DD1 0,33% 0,00% 0,67% 0,33% 0,19% 0,122 0,339 ECFC DD1	ECFC 4D 0,33% 0,00% 0,00% 0,11% 0,073 0,215 ECFC 4D	ECFC 4E 3,83% 4,17% 1,33% 3,11% 0,89% 0,074 0,199 ECFC 4E
CD 133 ^{low} V1 V2 V3 MW SEM p (S) p (A) CD 133 ^{low} V1	Sus 3,83% 4,17% 1,33% 3,11% 0,89% - - - Sus 0,13	AFT 024 2,00% 3,00% 0,00% 1,67% 0,88% 0,019 - - AFT 024 17,35	HU A 0,17% 0,17% 0,00% 0,11% 0,06% 0,070 0,202 HU A 0,05	HU B 1,33% 0,90% 0,68% 0,97% 0,19% 0,110 0,476 HU B 1,26	HU C 0,33% 0,25% 0,33% 0,30% 0,03% 0,091 0,271 HU C 0,15	HU D 0,67% 0,00% 1,74% 0,80% 0,51% 0,239 0,598 HU D 0,56	HU F 0,33% 0,33% 2,08% 0,92% 0,58% 0,275 0,656 HU F 0,14	ECFC 145 0,33% 0,00% 0,42% 0,25% 0,13% 0,103 0,292 ECFC 145 0,09	ECFC 1E 0,17% 1,50% 0,00% 0,56% 0,48% 0,063 0,188 ECFC 1E 0,12	ECFC DD1 0,33% 0,00% 0,67% 0,33% 0,19% 0,122 0,339 ECFC DD1 0,10	ECFC 4D 0,33% 0,00% 0,00% 0,11% 0,01% 0,073 0,215 ECFC 4D 0,05	ECFC 4E 3,83% 4,17% 1,33% 3,11% 0,89% 0,074 0,199 ECFC 4E 0,15
CD 133 ^{low} V1 V2 V3 MW SEM p (S) p (A) CD 133 ^{low} V1 V2 V1 V2	Sus 3,83% 4,17% 1,33% 3,11% 0,89% - - Sus 0,13 0,02 	AFT 024 2,00% 3,00% 0,00% 1,67% 0,88% 0,019 - - AFT 024 17,35 12,77	HU A 0,17% 0,17% 0,00% 0,11% 0,06% 0,070 0,202 HU A 0,05 0,02	HU B 1,33% 0,90% 0,68% 0,97% 0,19% 0,110 0,476 HU B 1,26 0,23	HU C 0,33% 0,25% 0,33% 0,30% 0,03% 0,03% 0,091 0,271 HU C 0,15 0,07	HU D 0,67% 0,00% 1,74% 0,80% 0,51% 0,239 0,598 HU D 0,56 0,00	HU F 0,33% 0,33% 2,08% 0,92% 0,58% 0,275 0,656 HU F 0,14 0,03	ECFC 145 0,33% 0,00% 0,42% 0,25% 0,13% 0,103 0,292 ECFC 145 0,09 0,00	ECFC 1E 0,17% 1,50% 0,00% 0,56% 0,48% 0,063 0,188 ECFC 1E 0,12 0,00	ECFC DD1 0,33% 0,00% 0,67% 0,33% 0,19% 0,122 0,339 ECFC DD1 0,10 0,00	ECFC 4D 0,33% 0,00% 0,00% 0,11% 0,011% 0,073 0,215 ECFC 4D 0,05 0,08 0,02	ECFC 4E 3,83% 4,17% 1,33% 3,11% 0,89% 0,074 0,199 ECFC 4E 0,15 0,00
CD 133 ^{low} V1 V2 V3 MW SEM p (S) p (A) CD 133 ^{low} V1 V2 V3 V1 V2 V3	Sus 3,83% 4,17% 1,33% 3,11% 0,89% - - Sus 0,13 0,02 1,02	AFT 024 2,00% 3,00% 0,00% 1,67% 0,88% 0,019 - - AFT 024 17,35 12,77 0,00	HU A 0,17% 0,17% 0,00% 0,11% 0,06% 0,070 0,202 HU A 0,05 0,02 0,00	HU B 1,33% 0,90% 0,68% 0,97% 0,110 0,476 HU B 1,26 0,23 0,30	HU C 0,33% 0,25% 0,33% 0,30% 0,03% 0,03% 0,091 0,271 HU C 0,15 0,07 0,31	HU D 0,67% 0,00% 1,74% 0,80% 0,51% 0,239 0,598 HU D 0,56 0,00 1,16	HU F 0,33% 0,33% 2,08% 0,92% 0,58% 0,275 0,656 HU F 0,14 0,03 3,19	ECFC 145 0,33% 0,00% 0,42% 0,25% 0,13% 0,103 0,292 ECFC 145 0,09 0,00 0,56	ECFC 1E 0,17% 1,50% 0,00% 0,56% 0,48% 0,063 0,188 ECFC 1E 0,12 0,00 0,00	ECFC DD1 0,33% 0,00% 0,67% 0,33% 0,19% 0,122 0,339 ECFC DD1 0,10 0,00 1,95	ECFC 4D 0,33% 0,00% 0,00% 0,11% 0,01% 0,073 0,215 ECFC 4D 0,05 0,08 0,00	ECFC 4E 3,83% 4,17% 1,33% 3,11% 0,89% 0,074 0,199 ECFC 4E 0,15 0,00 1,17
CD 133 ^{low} V1 V2 V3 MW SEM p (S) p (A) CD 133 ^{low} V1 V2 V3 V1 V2 V3 MW	Sus 3,83% 4,17% 1,33% 3,11% 0,89% - - Sus 0,13 0,02 1,02 0,39	AFT 024 2,00% 3,00% 0,00% 1,67% 0,88% 0,019 - - AFT 024 17,35 12,77 0,00 10,04	HU A 0,17% 0,17% 0,00% 0,11% 0,06% 0,070 0,202 HU A 0,05 0,02 0,00 0,02	HU B 1,33% 0,90% 0,68% 0,97% 0,110 0,476 HU B 1,26 0,23 0,30 0,45	HU C 0,33% 0,25% 0,33% 0,30% 0,03% 0,03% 0,091 0,271 HU C 0,15 0,07 0,31 0,18	HU D 0,67% 0,00% 1,74% 0,80% 0,51% 0,239 0,598 HU D 0,56 0,00 1,16 0,58	HU F 0,33% 0,33% 2,08% 0,92% 0,58% 0,275 0,656 HU F 0,14 0,03 3,19 1,12	ECFC 145 0,33% 0,00% 0,42% 0,25% 0,13% 0,103 0,292 ECFC 145 0,09 0,00 0,56 0,22	ECFC 1E 0,17% 1,50% 0,00% 0,56% 0,48% 0,063 0,188 ECFC 1E 0,12 0,00 0,00 0,00	ECFC DD1 0,33% 0,00% 0,67% 0,33% 0,19% 0,122 0,339 ECFC DD1 0,10 0,00 1,95 0,68	ECFC 4D 0,33% 0,00% 0,00% 0,11% 0,01% 0,073 0,215 ECFC 4D 0,05 0,08 0,00 0,04	ECFC 4E 3,83% 4,17% 1,33% 3,11% 0,89% 0,074 0,199 ECFC 4E 0,15 0,00 1,17 0,44
CD 133 ^{low} V1 V2 V3 MW SEM P (S) p (A) CD 133 ^{low} V1 V2 V3 V1 V2 V3 MW SEM	Sus 3,83% 4,17% 1,33% 3,11% 0,89% - - Sus 0,13 0,02 1,02 0,39 0,55	AFT 024 2,00% 3,00% 0,00% 1,67% 0,88% 0,019 - - AFT 024 17,35 12,77 0,00 10,04 5,19	HU A 0,17% 0,17% 0,00% 0,11% 0,06% 0,070 0,202 HU A 0,05 0,02 0,00 0,02 0,02	HU B 1,33% 0,90% 0,68% 0,97% 0,110 0,476 HU B 1,26 0,23 0,30 0,45 0,56	HU C 0,33% 0,25% 0,33% 0,30% 0,03% 0,03% 0,091 0,271 HU C 0,15 0,07 0,31 0,18 0,12	HU D 0,67% 0,00% 1,74% 0,80% 0,51% 0,239 0,598 HU D 0,56 0,00 1,16 0,58 0,58	HU F 0,33% 0,33% 2,08% 0,92% 0,58% 0,275 0,656 HU F 0,14 0,03 3,19 1,12 1,79	ECFC 145 0,33% 0,00% 0,42% 0,25% 0,13% 0,103 0,292 ECFC 145 0,09 0,00 0,56 0,22 0,30	ECFC 1E 0,17% 1,50% 0,00% 0,56% 0,48% 0,063 0,188 ECFC 1E 0,12 0,00 0,00 0,00 0,04 0,06	ECFC DD1 0,33% 0,00% 0,67% 0,33% 0,19% 0,122 0,339 ECFC DD1 0,10 0,00 1,95 0,68 1,09	ECFC 4D 0,33% 0,00% 0,00% 0,11% 0,01% 0,073 0,215 ECFC 4D 0,05 0,08 0,00 0,04 0,04	ECFC 4E 3,83% 4,17% 1,33% 3,11% 0,89% 0,074 0,199 ECFC 4E 0,15 0,00 1,17 0,44 0,64
CD 133 ^{low} V1 V2 V3 MW SEM p (S) p (A) CD 133 ^{low} V1 V2 V3 V1 V2 V3 MW SEM	Sus 3,83% 4,17% 1,33% 3,11% 0,89% - - Sus 0,13 0,02 1,02 0,39 0,55	AFT 024 2,00% 3,00% 0,00% 1,67% 0,88% 0,019 - - AFT 024 17,35 12,77 0,00 10,04 5,19	HU A 0,17% 0,00% 0,11% 0,06% 0,070 0,202 HU A 0,05 0,02 0,00 0,02 0,02	HU B 1,33% 0,90% 0,68% 0,97% 0,110 0,476 HU B 1,26 0,23 0,30 0,45 0,56	HU C 0,33% 0,25% 0,33% 0,30% 0,03% 0,03% 0,091 0,271 HU C 0,15 0,07 0,31 0,18 0,12	HU D 0,67% 0,00% 1,74% 0,80% 0,51% 0,239 0,598 HU D 0,56 0,00 1,16 0,58 0,58	HU F 0,33% 0,33% 2,08% 0,92% 0,58% 0,275 0,656 HU F 0,14 0,03 3,19 1,12 1,79	ECFC 145 0,33% 0,00% 0,42% 0,25% 0,13% 0,103 0,292 ECFC 145 0,09 0,00 0,56 0,22 0,30	ECFC 1E 0,17% 1,50% 0,00% 0,56% 0,48% 0,063 0,188 ECFC 1E 0,12 0,00 0,00 0,00 0,00 0,04 0,06	ECFC DD1 0,33% 0,00% 0,67% 0,33% 0,19% 0,122 0,339 ECFC DD1 0,10 0,00 1,95 0,68 1,09	ECFC 4D 0,33% 0,00% 0,00% 0,11% 0,011% 0,073 0,215 ECFC 4D 0,05 0,08 0,00 0,04 0,04 0,04	ECFC 4E 3,83% 4,17% 1,33% 3,11% 0,89% 0,074 0,199 ECFC 4E 0,15 0,00 1,17 0,44 0,64 0,446
CD 133 ^{low} V1 V2 V3 MW SEM p (S) p (A) CD 133 ^{low} V1 V2 V3 V1 V2 V3 MW SEM P (S) p (A)	Sus 3,83% 4,17% 1,33% 3,11% 0,89% - - Sus 0,13 0,02 1,02 0,39 0,55 - -	AFT 024 2,00% 3,00% 0,00% 1,67% 0,88% 0,019 - - AFT 024 17,35 12,77 0,00 10,04 5,19	HU A 0,17% 0,00% 0,11% 0,06% 0,070 0,202 HU A 0,05 0,02 0,00 0,02 0,02 0,02 0,381 0,193	HU B 1,33% 0,90% 0,68% 0,97% 0,110 0,476 HU B 1,26 0,23 0,30 0,45 0,56 0,437 0,198	HU C 0,33% 0,25% 0,33% 0,30% 0,03% 0,091 0,271 HU C 0,15 0,07 0,31 0,18 0,12 0,479 0,201	HU D 0,67% 0,00% 1,74% 0,80% 0,51% 0,239 0,598 HU D 0,56 0,00 1,16 0,58 0,58 0,58 0,301 0,224	HU F 0,33% 0,33% 2,08% 0,92% 0,58% 0,275 0,656 HU F 0,14 0,03 3,19 1,12 1,79 0,417 0,286	ECFC 145 0,33% 0,00% 0,42% 0,25% 0,13% 0,103 0,292 ECFC 145 0,09 0,00 0,56 0,22 0,30 0,352 0,208	ECFC 1E 0,17% 1,50% 0,00% 0,56% 0,48% 0,063 0,188 ECFC 1E 0,12 0,00 0,00 0,00 0,00 0,04 0,06 0,330 0,192	ECFC DD1 0,33% 0,00% 0,67% 0,33% 0,19% 0,122 0,339 ECFC DD1 0,10 0,00 1,95 0,68 1,09 0,452 0,248	ECFC 4D 0,33% 0,00% 0,00% 0,11% 0,073 0,215 ECFC 4D 0,05 0,08 0,00 0,04 0,04 0,04 0,415 0,193	ECFC 4E 3,83% 4,17% 1,33% 3,11% 0,89% 0,074 0,199 ECFC 4E 0,15 0,00 1,17 0,44 0,64 0,225

Alle Werte sind als x-fache Expansion angegeben. Abkürzungen: Sus = Suspension; HU = HUVEC; MW = Mittelwert; n. v. = nicht verfügbar/kontaminiert; p (S) = Signifikanzberechnung im Vergleich zur Suspension; p (A) = Signifikanzberechnung im Vergleich zur AFT024 (t-Test, zweiseitig, gepaart); Signifikanzen p<0,05 werden fett gedruckt dargestellt.

Die morphologische Diskriminierung der unterschiedlichen Kolonietypen im CFC Ansatz ergab, dass in allen getesteten Bedingungen die CD133⁺CD34⁺ Fraktion Zellen mit CFU-G, CFU-M sowie CFU-GM Potential aufwies (Abb. 22E, Tab. 60, n=4). CD133⁺ Zellen mit erythrozytärem (BFU-E) oder erythro-myeloischem (CFU-MIX) Differenzierungspotential wurden in 14 von 48 Experimenten detektiert.

Koloniebildende CD133^{low}CD34⁺ Zellen brachten sowohl nach Kultur mit murinen als auch mit primären humanen Stromazellen CFU-G sowie BFU-E Kolonien hervor (Abb. 22F, Tab. 60, n=3). Zellen mit erythrozytärem und/oder erythro-myeloischem Differenzierungspotential wurden nicht in jedem Versuch detektiert. In der Kokultur mit Zellen der HUVEC A, C und D wurden in einem von drei Versuchen erythrozytäre Kolonien gebildet. Hingegen enthielt die CD133^{low}CD34⁺ Fraktion mit der HUVEC B in 3 von 3 Versuchen Zellen mit erythrozytärem Koloniebildungspotential (Abb. 22F, Tab. 60, n=3).

Die Analyse der CD133⁺CD34⁻ Fraktion im CFC Ansatz ergab, dass die Zellen CFU-G, CFU-M sowie CFU-GM Kolonien hervorbringen können und somit vom Koloniebildungspotential den CD133⁺CD34⁺ Zellen sehr ähnlich sind. Zellen mit erythrozytärem (BFU-E) oder erythro-myeloischem (CFU-MIX) Koloniebildungspotential wurden in der CD133⁺CD34⁻ Population nicht detektiert.

In Analogie zu den Expansionsversuchen mit Zellen muriner und humaner mesenchymaler Stromazelllinien sind HSVZ mit LTC-IC, NK-IC und myeloischem CFC Potential in der CD133⁺CD34⁺ Population enthalten. Zellen mit erythrozytärem Koloniebildungspotential sind nahezu exklusiv in der CD133^{low}CD34⁺ Population enthalten. In der CD133⁺CD34⁻ Fraktion wurden geringfügig Zellen mit LTC-IC, CFU-G, CFU-M sowie CFU-GM Potential detektiert. Der Erhalt oder die Expansion multipotenter HSVZ wurden von keiner der getesteten endothelialen Stromazelllinien unterstützt.

Aufgrund der Ergebnisse gehen wir davon aus, dass einzelne primäre humane endotheliale Stromazelllinien einen besseren Erhalt bzw. eine geringfügig stärkere Expansion der getesteten Linienpotentiale in der gesamten hämatopoetischen Nachkommenschaft unterstützen als Zellen der murinen Stromazelllinie AFT024. Hier besonders guten Erhalt bzw. Expansion primitiver HSVZs ermöglichten die Zellen der HUVEC C, HUVEC F, ECFC 4D und ECFC 4E.

Abb. 22: Expansion von HSVZ, LTC-ICs, NK-ICs und CFCs in Kokultur mit primären humanen endothelialen Stromazellen

Graphische Darstellung der Werte aus Tab. 29, Tab. 30, Tab. 31, Tab. 32 und Tab. 60 (A) Nach 14-tägiger Kokultur mit Zellen primärer humaner endothelialer Stromazellen, Zellen der murinen Zelllinie AFT024 und in Suspension wurde die Expansion hämatopoetischer Subpopulationen durchflusszytometrisch quantifiziert. (**B- D**) Expandierte CD133⁺CD34⁺ wurden an Tag 14 durchflusszytometrisch isoliert, in funktionelle Analysen überführt und die Expansion von Zellen mit LTC-IC, NK-IC und CFC Potential experimentell ermittelt Es wurden 5 verschiedene Kolonietypen morphologisch unterschieden: CFU-MIX, BFU-E, CFU-G, CFU-GM und CFU-M. (Mittelwerte \pm SEM). Die Zahlen über den Balken repräsentieren die Anzahl der CFC Ansätze mit erythrozytären und/oder erythro-myeloischen Kolonien (Signifikanzen: * gegen Suspension, # gegen AFT024, p<0,05)

3.6. Einfluss von EGF und FGF auf HSVZ

In der vorhergehenden Kokultur mit endothelialen Stromazellen wurde im Vergleich zu den Versuchen mit mesenchymalen Stromazellen eine vielfach geringere Expansion der CD45⁺ und CD133⁺CD34⁺ Fraktion sowie funktioneller HSVZ mit NK-IC und CFC Potential ermittelt. Da dieser Unterschied auch bei der AFT024 Referenz zu beobachten war, lag die Vermutung nahe, dass der Effekt nicht ausschließlich auf die endothelialen Stromazellen zurückzuführen ist sondern die Zugabe von EGF und FGF möglicherweise einen Einfluss auf die Expansion und den Erhalt primitiver HSVZ hat.

Literaturangaben zufolge unterstützt FGF den Erhalt primitiver muriner HSVZ mit NOD/SCID Repopulierungs Potential *in vitro* (Yeoh *et al.*, 2006) und die Proliferation sowie die Mobilisierung von HSVZ *in vivo* (Zhao *et al.*, 2012). Zudem soll EGF die Zellteilung von HSVZ (Shibuya *et al.*, 1992) stimulieren und die Mobilisierung sowie die Einwanderung von blutbildenden Stammzellen in das Knochenmark von Mäusen unterstützen (Doan *et al.*, 2013). Der synergistische Effekt von EGF und FGF auf die humane Hämatopoese wurde 1995 von Douglas *et al.* beschrieben (Dooley *et al.*, 1995). Dabei sollen beide Wachstumsfaktoren in der Suspensionskultur proliferationsfördernd wirken (Dooley *et al.*, 1995). In Anwesenheit von undefinierten Knochenmark-Stromazellen hingegen wird berichtet, dass die Proliferation der HSVZ (Apherese, CD34⁺) dosisabhängig abnimmt und die Koloniebildungsrate (nur CFU-GM analysiert) der Zellen zurückgeht (Dooley *et al.*, 1995).

Für die vorhergehende Kokultur mit endothelialen Stromazellen wurden die beiden Wachstumsfaktoren vom EGM-2 Medium verwendet. Die Konzentration dieser beiden Wachstumsfaktoren ist nicht bekannt. Aus nicht näher dokumentierten Vorversuchen ist zudem bekannt, dass eine Kultivierung endothelialer Stromazellen über den Zeitraum von 14 Tagen auch durch Zugabe von 10 ng/ml EGF sowie FGF in IMDM10 möglich ist. Folglich sollte der Einfluss unterschiedlicher Wachstumsfaktorkonzentrationen auf die *in vitro* Expansion phänotypischer (CD45⁺ und CD133⁺CD34⁺) sowie funktioneller (LTC-ICs, NK-ICs, CFCs) Zellen in Kokultur mit Stromazellen genauer untersucht.

Da die murine Stromazelllinie AFT024 in den vorhergehenden Kokulturversuchen mit humanen Stromazellen bereits als Referenz verwendet wurde, wurde der Einfluss unterschiedlicher Wachstumsfaktorkonzentrationen auf die HSVZ in Kokultur mit den AFT024 getestet. In Analogie zu den vorhergehenden Kokulturen wurden CD133⁺CD34⁺ Zellen für 14 Tagen mit den Stromazellen kokultiviert und dem Medium entweder die Wachstumsfaktoren aus dem EGM-2 Medium, 10 ng/ml beider Zytokine oder keine Wachstumsfaktoren zugesetzt. Die hämatopoetische Nachkommenschaft wurde nach 14 Tagen vollständig geerntet, durchflusszytometrisch analysiert, CD133⁺CD34⁺ sowie CD133^{low}CD34⁺ Zellen sortiert und in den LTC-IC, NK-IC sowie CFC Ansatz überführt (Abb. 23). Die für diesen Versuch ermittelten und gegenübergestellten Daten wurden in unterschiedlichen Versuchsreihen und Vorversuchen unabhängig voneinander gewonnen. Die Signifikanzen wurde folglich mit Hilfe des ungepaarten, zweiseitigen t-Tests berechnet.

Die Expansion der CD45⁺ Fraktion war durch die Zugabe von EGF und FGF (10 ng/ml oder EGM-2 Zusätze) um das 3 bis 4-fache von im Mittel 2.226 \pm 583-fach auf 654 \pm 95-fach reduziert (Abb. 23A, n=5/7). Eine 4 bis 5-fach stärkere Expansion der CD133⁺CD34⁺ Subpopulation wurden ohne Zugabe von EGF und FGF ermittelt (230 \pm 187-fach zu 47,5 \pm 11,5-fach, n=6/8, Abb. 23B).

Keinen messbaren Einfluss hatte die Zugabe von EGF und FGF auf die LTC-IC Expansion (Min: 2,2 \pm 0,45-fach; Max: 4,9 \pm 2,2-fach; Abb. 23 C; n=10/7/8). Die Wachstumsfaktoren aus dem EGM-2 Medium wirkten zudem hemmend auf die Expansion von NK-ICs (0,4 \pm 0,2-fach), wohingegen 10 ng/ml EGF und FGF keinen signifikanten Einfluss hatten (im Mittel: 7,7 \pm 2,3-fach, n=10/5; Abb. 23D). Nachteilig wirkt sich die Zugabe von EGF und FGF (10 ng/ml und EGM-2 Zusätze) auf die Expansion von Zellen mit CFC sowohl in der CD133⁺CD34⁺ (von 42,4 \pm 24,8-fach auf im Mittel 14,2 \pm 3,8-fach) als auch in der CD133^{low}CD34⁺ Zellfraktion aus (von 96,9 \pm 50,5-fach auf im Mittel 13 \pm 4,5-fach, n=6/5; Abb. 23E).

Die Wachstumsfaktoren EGF und FGF mit einer Konzentration von 10 ng/ml haben den Daten zufolge einen Einfluss auf die Expansion von hämatopoetischen Zellen (CD45⁺) und HSVZ (CD133⁺CD34⁺) sowie das Koloniebildungspotential nach 14-tägiger Kokultur mit Zellen der Stromazelllinie AFT024. Die Zugabe der Wachstumsfaktoren vom EGM-2 Medium führte zusätzlich zu einer starken Reduktion von Zellen mit NK-Zell Potential, wohingegen die Expansion von Zellen mit LTC-IC Potential unbeeinträchtigt ist.

Da für die Kultivierung endothelialer Stromazellen eine Zugabe der Wachstumsfaktoren EGF und FGF unerlässlich ist (vgl. Medientest Abschnitt 3.5.2), wurden dem Kokulturmedium in den nachfolgenden Versuchen 10 ng/ml EGF sowie FGF zugesetzt. Von einer Wiederholung der vorhergehenden Kokulturversuche mit endothelialen Stromazellen wurde aus Zeit und Kostengründen abgesehen, da die Selektion besserer Kulturbedingungen zur Expansion primitiver HSVZ im direkten Vergleich zur AFT024 Kontrolle durchgeführt wurde und eine Beurteilung relativ zur Referenz ermöglicht.

(A) Nach 14-tägiger Kokultur mit der murine Stromazelllinie AFT024 wurde die Expansion der $CD45^+$ und (B) $CD133^+CD34^+$ Zellen durchflusszytometrisch quantifiziert. (C – E) Expandierte $CD133^+CD34^+$ und $CD133^{low}CD34^+$ Zellen wurde an Tag 14 durchflusszytometrisch isoliert und in den LTC-IC, NK-IC und CFC Ansatz eingebracht. Berechnete Expansion von Zellen mit LTC-IC und NK-IC Potential in der $CD133^+CD34^+$ Population. Berechnete Expansion koloniebildender Zellen in der $CD133^+CD34^+$ und $CD133^{low}CD34^+$ Population. (Mittelwerte \pm SEM; Die Zahlen über den Balken geben die Anzahl unabhängiger Versuche an; Signifikanzen: t-Test, zweiseitig, ungepaart)

3.7. Expansion von HSVZ in Kokultur mit plazentalen und AGM Stromazellen

Sowohl die mesenchymalen als auch endothelialen humane Stromazellen für die vorhergehenden Versuche wurden aus adultem oder postnatalem Gewebe angezogen. Während der embryonalen Entwicklung werden weitere Gewebe beschrieben, die eine Neubildung (*de novo*) bzw. eine starke Expansion hämatopoetischer Stammzellen unterstützen und bei denen eine Beteiligung sowohl endothelialer als auch mesenchymaler Stromazellen diskutiert wird. Hier besonders zu nennen sind die AGM-Region (nur *de novo*) sowie das vaskuläre System in der Plazenta (*de novo* und Expansion) (Morrison *et al.*, 1995; Medvinsky und Dzierzak, 1996; Sanchez *et al.*, 1996; Ottersbach und Dzierzak, 2005). Inwiefern humane Stromazellen aus der Plazenta oder AGM einen Erhalt bzw. eine Expansion multipotenter HSVZ ermöglichen, sollte im nachfolgenden Abschnitt analysiert werden. Hierzu wurden plazentale endotheliale (engl. *placental-derived vein endothelial cell*; kurz PLVEC) sowie mesenchymale Stromazellen gemeinsam in Kooperation mit dem Institut für Medizinische Biotechnologie unter der Leitung von Prof. Dr. E. Winterhager angezogen (siehe 2.2.1.6). Stromazellen aus der humanen AGM Region wurden von Dr. Bing Liu aus dem Institut für "Basic Medical Science" in Peking, China, zur Verfügung gestellt.

3.7.1. Charakterisierung von plazentalen und AGM Stromazellen

Die durchflusszytometrische und funktionelle Charakterisierung der plazentalen und AGM Stromazellen erfolgte in Analogie zu den vorhergehenden Versuchen in Abschnitt 3.4.1 und 3.5.1.

Die primären Stromazellen aus der Plazenta und AGM waren bei vollständiger Konfluenz morphologisch sehr heterogen bzgl. der Größe, der Ausprägung/Länge von Ausläufern und der Anordnung der Zellen zueinander (Abb. 25, Phase). Einige Stromazellen waren bipolar, spindelförmig und parallel angeordnet (Planzenta 2 und 3). Stromazellen aus der AGM (Klon 8 und 24) wuchsen hingegen in Form von Kolonien (Abb. 25, Phase). Die Zellen aus der AGM (Klon 25) wiesen nur kurze Filopodien auf und wuchsen Kopfsteinpflaster-ähnlich angeordnete, wie es häufig bei endothelialen Zellen zu beobachten ist (Abb. 25, Phase).

Stromazellen aus der Plazenta sowie der AGM exprimierten weder die Oberflächenmarker CD14, CD31, CD34 noch CD45 (Abb. 24). Ebenso exprimierten alle plazentalen Stromazellen die in der Literatur für MSZ beschriebenen Oberflächenantigene CD44, CD73, CD90, CD105 und CD146, was darauf schließen lässt, dass es sich um mesenchymale Stromazellen handelt (Abb. 24). Alle AGM Stromazellen präsentierten die Oberflächenantigene CD44, CD73, CD105 sowie CD146. Das in unserer Arbeitsgruppe zur

92

Diskriminierung mesenchymaler und endothelialer Stromazellen verwendete Oberflächenantigen CD90 wurde von dem AGM-Stromazellklon 25 nicht exprimiert (Abb. 24). Bei den beiden AGM-Stromazellklonen 8 und 23 wies nur eine kleine Subpopulation der Zellen die Expression des Antigens CD90 auf (Abb. 24). Das Integrin CD49f, das mutmaßlich auf primitiveren mesenchymalen Stramm-/Stromazellen exprimiert wird (Yu *et al.*, 2012) wurde im Vergleich zu mesenchymalen Stromazellen aus dem Knochenmark (KM MNZ A: MFI 0,77; KM MNZ B: MFI 0,66; siehe Abb. 14) auf plazentalen MSZ und AGM Stromazellen etwa 18 bis 42-fach stärker exprimiert (MFI 11,7 bis 27,4; Abb. 24).

Abb. 24: Durchflusszytometrische Charakterisierung mesenchymaler Stromazellen Durchflusszytometrische Charakterisierung primärer humaner mesenchymalen Stromazellen aus der Plazenta und AGM (P = Passage; wei $\beta = Isotyp$ -Kontrolle; schwarz = Fluoreszenzintensität; MFI: mittlere Fluoreszenzintensität).

Die Frequenz analysierter MSZ mit dem Potential zur Differenzierung in Osteoblasten, Adipozyten und Chondrozyten war sehr unterschiedlich. Stromazellen aus der AGM (Klon 8 und 24) wiesen keine Zellen mit osteogenem Differenzierungspotential auf (Abb. 25, Osteo). Bei den plazentalen MSZ sowie Stromazellen der AGM Klon 25 hingegen wurde eine intensive Alizarinrot Färbung mikroskopisch beobachtet, was auf eine hohe Frequenz mesenchymaler Zellen mit osteogenem Differenzierungspotential schließen lässt (Abb. 25, Osteo). Zellen mit adipogenem Differenzierungspotential wurden bei allen Stromazelllinien bis auf der Plazenta 3 ermittelt (Abb. 25, Adipo). Die niedrigste Frequenz (5-10 %) mesenchymaler Zellen mit Triglycerid-Vesikeln, die mit Oil-Red-O rot angefärbt wurden, wurde bei der Plazenta 4 gefunden (Abb. 25, Adipo).

Die Chondrosphären der Plazenta 3 sowie der AGM Klon 25 waren im Durchmesser 200-400 µm groß und wiesen Regionen mit sehr hoher Zelldichte und intensiver Alzian Blau auf hohen Anteil Zellen Färbung auf, was einen von mit chondrogenem Differenzierungspotential zurück zu führen ist (Abb. 25, Chondro). Die Stromazellen der AGM Klon 8 und Klon 24 bildeten bei gleicher Zellzahl Chondrosphären von etwa 100-200 µm Durchmesser und waren in manchen Regionen stark blau angefärbt. Die Zelldichte in den Chondrosphären der Plazenta 2 war stellenweise sehr gering, was zur Fragmentierung der Sphären beim Einfrier- und Schneidevorgang führte. Die MSZ aus der Plazenta 4 bildeten die kleinesten Chondrosphären mit einem Durchmesser von 50-100 µm (Abb. 25, Chondro).

Phase: Phasenkontrastaufnahme von konfluent gewachsenen primären humanen mesenchymalen Stromazellen. **Osteo:** Calciumnachweis mit Alizarinrot bei osteogen differenzierten mesenchymalen Stromazellen. **Adipo:** Einlagerung des lipophilen, rot färbenden Azofarbstoffs Oil Red O in die Triglycerid-Vesikel bei adipogen differenzierten MSZ. **Chondro:** Nachweis von Glykosaminoglykanen mit dem Farbstoff Alcianblau nach chondrogener Differenzierung (Maßstabsbalken = 20 µm).
Die isolierten und kultivierten endothelialen Zellen aus der Plazenta waren sehr homogen bzgl. ihrer Größe und Morphologie (Abb. 27). Große, stark granuläre Zellen mit mehreren Kernen (poly-nukleär), die aufgrund von Ergebnissen unserer Arbeitsgruppe als seneszent bzw. differenziert angesehen werden (Doktorarbeit Liska Horsch), wurden kaum beobachtet.

Alle plazentalen Endothelzellen exprimierten die Oberflächenantigene CD31, CD73, CD105, CD144 sowie den VEGF-R2 und banden das Lektin Ulex (Abb. 26). Die Expressionsstärke (MFI = *mean fluorescence intensity*) der Oberflächenantigene CD31, CD73 und CD105 wies im Vergleich zu den HUVEC und ECFC (vgl. Abb. 18) vergleichsweise geringfügige Unterschiede auf. Die stärkste Expression von CD31 wurde auf den Zellen der PLVEC 4 (MFI 64,5) und die geringste auf Zellen der PLVEC 1.4 (MFI 36,6) gemessen (Abb. 26). Die Oberflächenantigene CD15, CD45 und CD90 wurden nicht auf den endothelialen Stromazellen exprimiert (Abb. 26).

Abb. 26: Durchflusszytometrische Charakterisierung endothelialer Stromazellen Durchflusszytometrische Charakterisierung primärer humaner endothelialer Stromazellen, die aus der Plazenta angezogen worden sind. (P = Passage; wei $\beta = Isotyp$ -Kontrolle; schwarz = Fluoreszenzintensität; MFI: mittlere Fluoreszenzintensität).

Des Weiteren wurde zur Unterscheidung primitiver CD44⁺⁺CD34⁻, reiferer CD44⁺CD34⁻ sowie differenzierter CD44⁺CD34⁺ plazentaler Endothelzellen die Expression der Antigene CD34 sowie CD44 analysiert. Eine heterogene Verteilung der Oberflächenexpression von CD44 war in keiner der untersuchten endothelialen Stromazelllinien nachweisbar (Abb. 26). CD34 wurde bei allen getesteten endothelialen Zellen von einer Subpopulation von Zellen exprimiert. Die größte Population CD34⁺ Zellen fand sich bei den PLVEC 1.4 (4,78 %), wohingegen nur wenige Zellen der PLVEC 3 (1,19 %) das Antigen exprimierten (Abb. 26). Die expandierten Stromazellen aus den unterschiedlichen Geweben bestehen überwiegend aus primitiven (CD44⁺CD34⁻) endothelialer Vorläuferzellen. Die Analyse weiterer endothelspezifischer Eigenschaften ergab, dass alle angezogenen plazentalen endothelialen Stromazellen das Lipoprotein acLDL aufnehmen können, welches nach Endozytose perinukleär und zytoplasmatisch in Vesikeln lokalisiert ist (Abb. 27, AcLDL Aufnahme). Zudem wurde in allen Stromazellen das Protein vWF in den stabförmigen Weibel-Palade Körperchen mikroskopisch detektiert (Abb. 27, vWF). Weiterhin bildeten die plazentalen Endothelzellen im Matrigel Ansatz tubulärartige Strukturen (*tubes*) mit mehreren Verzweigungspunkten (*branching points*) und Schleifen (*loops*) aus (Abb. 27, Matrigel).

Abb. 27: Morphologische und funktionelle Analyse endothelialer Stromazellen

Phase: Phasenkontrastaufnahme von konfluent gewachsenen primären humanen endothelialen Stromazellen (Maßstabsbalken = 20 μ m).

AcLDL Aufnahme: Endozytose von fluoreszenzmarkiertem lipophilem DiI acLDL (rot, Ma β stabsbalken = 10 μ m).

vWF: Intrazelluläre fluorochromkonjugierte Antikörperfärbung des Proteins von-Willebrand-Faktor (vWF) in den Weibel-Palade-Körperchen (vWF = grün; Kern = blau; Maßstabsbalken = 10 µm).

Matrigel: Bildung von tubulären bzw. Gefäß-ähnliche Strukturen (engl. "tube-formation") im Matrigel Ansatz (Maßstabbalken = $100 \mu m$).

Alle isolierten Stromazellen aus der Plazenta wiesen sowohl phänotypisch als auch funktionell Eigenschaften endothelialer bzw. mesenchymaler Stromazellen auf und wurden nachfolgende für Kokulturversuche mit hämatopoetischen Zellen verwendet (siehe Abschnitt 3.7.2). Die genaue Qualität der AGM Stromazellen ist weiterhin unklar, da sie nicht den Oberflächenmarker CD31 (Endothel) exprimieren und nur auf einer Subpopulation CD90 (MSZ) detektiert wurde. Alle AGM Linien wiesen Zellen mit der Fähigkeit zur Adipogenese und Chondrogenese auf, wohingegen Zellen mit osteogenem Differenzierungspotential nur beim Klon 25 detektiert wurden.

3.7.2. Kokultur von HSVZ mit plazentalen und AGM Stromazellen

Die Kokultivierung von CD133⁺CD34⁺ HSVZ mit primären humanen endothelialen und mesenchymalen Stromazellen aus der Plazenta und Zellen aus der AGM erfolgte in Analogie zu den vorhergehenden Kokulturversuchen. Entsprechend der vorhergehenden Befunde (siehe Abschnitte 3.5.2 und 3.6) wurde als Kokulturmedium IMDM10 mit den Wachstumsfaktoren EGF und FGF mit einer Konzentration von 10 μ g/ml verwendet. Nach der 14-tägigen Kokultur wurde die hämatopoetische Nachkommenschaft geerntet und durchflusszytometrisch analysiert (Abb. 28, Tab. 33).

In Kokultur mit primären humanen endothelialen und mesenchymalen Stromazellen aus der Plazenta und Zellen aus der AGM konnten nach 14 Tagen in der hämatopoetischen Nachkommenschaft überwiegend CD133⁺CD34⁺ und anteilsmäßig wenige CD133^{low}CD34⁺ Zellen detektiert werden (Abb. 28). Die Frequenz sowohl der CD133⁺CD34⁺ als auch der CD133^{low}CD34⁺ Population lag in allen Kokulturen mit den humanen Stromazellen signifikant unter der AFT024 Referenz (133⁺: 17,6 ± 1,65%, n=5; 133^{low}: 18,0 ± 2,43%, n=5, Tab. 33). Die höchste Frequenz CD133⁺CD34⁺ Zellen wurde in Kokultur mit Zellen der PLVEC 4 (3,89 ± 0,47%, n=5, Tab. 33) und für die CD133^{low}CD34⁺ Fraktion mit Zellen der PLVEC 2.3 (4,64 ± 0,97%, n=5, Tab. 33) ermittelt. Bis zu 20% der gesamten hämatopoetischen Nachkommenschaft in Kokultur mit endothelialen Stromazellen aus der Plazenta waren Zellen der CD133⁺CD34⁻ Fraktion, die aufgrund der vorhergehenden funktionellen Analysen nicht von Relevanz waren und weiter untersucht wurden (Abb. 28).

Abb. 28: Durchlusszytometrische Analyse der HSVZ in Kokultur mit plazentalen und AGM Stromazellen

Durchflusszytometrische Analyse der Nachkommenschaft von CD133⁺CD34⁺ Zellen nach 14-tägiger Kokultur mit primären humanen plazentalen und AGM Stromazellen. Darstellung repräsentativer Analysen aus unabhängigen Vorversuchen.

CD 133 ⁺	Sus	AFT 024	PL 1.4	PL 2.3	PL 4	Pla 2	Pla 3	Pla 4	AGM 8	AGM 24	AGM 25
V1	2,92%	19,6%	3,83%	3,12%	4,33%	1,11%	2,58%	0,56%	2,87%	4,01%	4,97%
V2	1,86%	21,4%	2,52%	2,16%	3,20%	0,86%	2,62%	0,64%	1,78%	2,41%	2,58%
V3	2,74%	12,2%	2,26%	1,47%	2,53%	2,47%	1,40%	0,78%	2,37%	2,46%	1,81%
V4	2,83%	15,7%	3,36%	3,49%	4,20%	0,68%	3,06%	0,66%	3,74%	3,56%	4,04%
V5	3,28%	19,2%	3,92%	4,45%	5,20%	0,83%	2,41%	0,90%	5,98%	2,36%	4,90%
MW	2,73%	17,6%	3,18%	2,94%	3,89%	1,19%	2,41%	0,71%	3,35%	2,96%	3,66%
SEM	0,23%	1,65%	0,34%	0,52%	0,47%	0,33%	0,28%	0,06%	0,73%	0,35%	0,63%
n (f)		0.001	0 1 2 2	0.627	0.022	0.019	0.450	0.001	0.221	0.560	0.144
$\mathbf{p}(\mathbf{s})$	-	0,001	0,133	0,037	0,032	0,018	0,450	0,001	0,331	0,500	0,144
p (A)	-	-	0,001	0,001	0,001	0,001	0,001	0,001	0,001	0,001	0,001
CD		AFT							ACM	ACM	ACM
CD 133 ^{low}	Sus	AFT 024	PL 1.4	PL 2.3	PL 4	Pla 2	Pla 3	Pla 4	AGM 8	AGM 24	AGM 25
CD 133 ^{low} V1	Sus 0,72%	AFT 024 18,3%	PL 1.4 3,83%	PL 2.3 8,47%	PL 4 1,49%	Pla 2 1,70%	Pla 3 0,69%	Pla 4 3,48%	AGM 8 2,87%	AGM 24 1,55%	AGM 25 0,89%
CD 133 ^{low} V1 V2	Sus 0,72% 0,69%	AFT 024 18,3% 15,3%	PL 1.4 3,83% 1,80%	PL 2.3 8,47% 4,10%	PL 4 1,49% 1,54%	Pla 2 1,70% 2,06%	Pla 3 0,69% 0,69%	Pla 4 3,48% 1,24%	AGM 8 2,87% 2,66%	AGM 24 1,55% 0,92%	AGM 25 0,89% 0,99%
CD 133 ^{low} V1 V2 V3	Sus 0,72% 0,69% 0,60%	AFT 024 18,3% 15,3% 10,6%	PL 1.4 3,83% 1,80% 2,11%	PL 2.3 8,47% 4,10% 3,81%	PL 4 1,49% 1,54% 2,11%	Pla 2 1,70% 2,06% 2,36%	Pla 3 0,69% 0,69% 0,72%	Pla 4 3,48% 1,24% 1,60%	AGM 8 2,87% 2,66% 2,97%	AGM 24 1,55% 0,92% 1,75%	AGM 25 0,89% 0,99% 1,18%
CD 133 ^{low} V1 V2 V3 V4	Sus 0,72% 0,69% 0,60% 1,30%	AFT 024 18,3% 15,3% 10,6% 24,9%	PL 1.4 3,83% 1,80% 2,11% 2,04%	PL 2.3 8,47% 4,10% 3,81% 3,31%	PL 4 1,49% 1,54% 2,11% 2,05%	Pla 2 1,70% 2,06% 2,36% 2,31%	Pla 3 0,69% 0,69% 0,72% 1,99%	Pla 4 3,48% 1,24% 1,60% 2,06%	AGM 8 2,87% 2,66% 2,97% 1,84%	AGM 24 1,55% 0,92% 1,75% 2,34%	AGM 25 0,89% 0,99% 1,18% 1,60%
CD 133 ^{low} V1 V2 V3 V4 V5	Sus 0,72% 0,69% 0,60% 1,30% 0,70%	AFT 024 18,3% 15,3% 10,6% 24,9% 20,9%	PL 1.4 3,83% 1,80% 2,11% 2,04% 2,49%	PL 2.3 8,47% 4,10% 3,81% 3,31% 3,53%	PL 4 1,49% 1,54% 2,11% 2,05% 2,07%	Pla 2 1,70% 2,06% 2,36% 2,31% 2,50%	Pla 3 0,69% 0,69% 0,72% 1,99% 1,37%	Pla 4 3,48% 1,24% 1,60% 2,06% 3,34%	AGM 8 2,87% 2,66% 2,97% 1,84% 4,10%	AGM 24 1,55% 0,92% 1,75% 2,34% 3,05%	AGM 25 0,89% 0,99% 1,18% 1,60% 3,04%
CD 133 ^{low} V1 V2 V3 V4 V5 MW	Sus 0,72% 0,69% 0,60% 1,30% 0,70%	AFT 024 18,3% 15,3% 10,6% 24,9% 20,9% 18,0%	PL 1.4 3,83% 1,80% 2,11% 2,04% 2,49% 2,45%	PL 2.3 8,47% 4,10% 3,81% 3,31% 3,53% 4,64%	PL 4 1,49% 1,54% 2,11% 2,05% 2,07% 1,85%	Pla 2 1,70% 2,06% 2,36% 2,31% 2,50% 2,19%	Pla 3 0,69% 0,69% 0,72% 1,99% 1,37%	Pla 4 3,48% 1,24% 1,60% 2,06% 3,34% 2,34%	AGM 8 2,87% 2,66% 2,97% 1,84% 4,10% 2,89%	AGM 24 1,55% 0,92% 1,75% 2,34% 3,05% 1,92%	AGM 25 0,89% 0,99% 1,18% 1,60% 3,04% 1,54%
CD 133 ^{low} V1 V2 V3 V4 V5 MW SEM	Sus 0,72% 0,69% 0,60% 1,30% 0,70% 0,80% 0,13%	AFT 024 18,3% 15,3% 10,6% 24,9% 20,9% 18,0% 2,43%	PL 1.4 3,83% 1,80% 2,11% 2,04% 2,49% 2,49% 2,45% 0,36%	PL 2.3 8,47% 4,10% 3,81% 3,31% 3,53% 4,64% 0,97%	PL 4 1,49% 1,54% 2,11% 2,05% 2,07% 1,85% 0,14%	Pla 2 1,70% 2,06% 2,36% 2,31% 2,50% 2,19% 0,14%	Pla 3 0,69% 0,69% 0,72% 1,99% 1,37% 1,09% 0,26%	Pla 4 3,48% 1,24% 1,60% 2,06% 3,34% 2,34% 0,46%	AGM 8 2,87% 2,66% 2,97% 1,84% 4,10% 2,89% 0,36%	AGM 24 1,55% 0,92% 1,75% 2,34% 3,05% 1,92% 0,36%	AGM 25 0,89% 0,99% 1,18% 1,60% 3,04% 1,54% 0,39%
CD 133 ^{low} V1 V2 V3 V4 V5 MW SEM p (S)	Sus 0,72% 0,69% 0,60% 1,30% 0,70% 0,80% 0,13%	AFT 024 18,3% 15,3% 10,6% 24,9% 20,9% 18,0% 2,43% 0,002	PL 1.4 3,83% 1,80% 2,11% 2,04% 2,49% 2,45% 0,36% 0,015	PL 2.3 8,47% 4,10% 3,81% 3,31% 3,53% 4,64% 0,97% 0,019	PL 4 1,49% 1,54% 2,11% 2,05% 2,07% 1,85% 0,14% 0,003	Pla 2 1,70% 2,06% 2,36% 2,31% 2,50% 2,19% 0,14% 0,001	Pla 3 0,69% 0,69% 0,72% 1,99% 1,37% 1,09% 0,26% 0,150	Pla 4 3,48% 1,24% 1,60% 2,06% 3,34% 2,34% 0,46% 0,032	AGM 8 2,87% 2,66% 2,97% 1,84% 4,10% 2,89% 0,36% 0,011	AGM 24 1,55% 0,92% 1,75% 2,34% 3,05% 1,92% 0,36% 0,032	AGM 25 0,89% 0,99% 1,18% 1,60% 3,04% 1,54% 0,39% 0,143

Tab. 33: Frequenz CD133⁺CD34⁺ und CD133^{low}CD34⁺ Zellen in Kokultur mit plazentalen und AGM Stromazellen

Abkürzungen: Sus = Suspension; PL = PLVEC; Pla = MSZ aus der Plazenta; MW = Mittelwert; p(S) = Signifikanz-berechnung im Vergleich zur Suspension; <math>p(A) = Signifikanz-berechnung imVergleich zur AFT024 (t-Test, zweiseitig, gepaart); Signifikanzen p<0,05 werden fett gedruckt dargestellt. Sind die Messwerte der Suspension bzw. mit der AFT024 signifikant höher ist der Signifikanzwert mit einem *-Symbol markiert.

In allen Kokulturen wurde eine Expansion (Faktor > 1) der CD45⁺, CD133⁺CD34⁺ und CD133^{low}CD34⁺ Population nachgewiesen (Abb. 22A, Tab. 30). Eine statistisch signifikante Steigerung der Expansion von CD45⁺ Zellen wurde im Vergleich zur Kontrolle (410,43 \pm 74,9-fach, n=5) in Anwesenheit von Zellen der PLVEC 1.4 (799,84 \pm 179,78-fach, n=5) ermittelt (Abb. 29A, Tab. 34).

Eine gegenüber der AFT024 (72,07 \pm 16,50-fach, n=5, Tab. 34) stärkere oder vergleichbare Expansion der CD133⁺CD34⁺ Population wurde in Kokultur mit keiner der plazentalen oder AGM Stromazellen detektiert. Die im Mittel stärkste Amplifikation CD133⁺CD34⁺ HSVZ wies bei den humanen Stromazellen die Kultur mit Zellen der PLVEC 4 auf (34,56 \pm 9,40-fach, n=5, Tab. 34).

Die CD133^{low}CD34⁺ Fraktion expandierte im Vergleich zu den humanen Linien in allen Versuchsreihen immer stärker auf Zellen der murinen Stromazelllinie AFT024 (71,26 \pm 13,96, n=5, Tab. 34). Die im Mittel stärkste Expansion von CD133^{low}CD34⁺ HSVZ in Kokultur mit Primärzellen wurde mit der PLVEC 2.3 ermittelt (38,13 \pm 11,18, n=5, Tab. 34).

CD 45 ⁺	Sus	AFT 024	PL 1.4	PL 2.3	PL 4	Pla 2	Pla 3	Pla 4	AGM 8	AGM24	AGM25
V1	40,06	242,71	364,69	319,48	428,17	159,03	405,00	659,27	163,18	117,36	125,31
V2	257,57	631,74	1373,3	1955,3	1183,3	2146,6	764,99	1906,7	433,97	502,69	349,26
V3	133,37	484,46	769,29	966,41	784,69	1482,1	371,58	957,63	238,14	339,75	318,97
V4	169,14	450,20	992,40	983,82	1657,5	892,60	1282,4	2427,1	506,76	430,80	490,50
V5	92,08	243,02	499,50	398,34	518,90	810,90	781,04	809,94	279,48	400,66	237,78
MW	138.44	410.43	799.84	924.68	914.53	1098.2	721.01	1352.1	324.31	358.25	304.36
SEM	36,73	74,90	179,78	292,48	227,40	335,68	164,73	345,90	63,53	65,69	60,57
p (S)	-	0.003	0.010	0.038	0.018	0.034	0.019	0.019	0.011	0.005	0.018
p (A)	-	-	0,025	0,081	0,054	0,063	0,136	0,035*	0,229	0,412	0,139
CD 133 ⁺	Sus	AFT 024	PL 1.4	PL 2.3	PL 4	Pla 2	Pla 3	Pla 4	AGM 8	AGM24	AGM25
V1	1,17	47,67	13,98	9,96	18,54	1,76	10,44	3,69	4,69	4,71	6,23
V2	4,80	135,72	34,66	42,17	37,86	18,41	20,04	12,19	7,73	12,09	9,02
V3	3,66	59,36	17,41	14,17	19,83	36,66	5,19	7,43	5,65	8,35	5,78
V4	4,78	70,76	33,38	34,32	69,56	6,08	39,20	16,14	18,94	15,34	19,84
V5	3,02	46,82	19,60	17,72	27,00	6,76	18,86	7,32	16,70	9,46	11,64
MW	3,49	72,07	23,81	23,67	34,56	13,93	18,75	9,35	10,74	9,99	10,50
SEM	0,67	16,50	4,27	6,20	9,40	6,32	5,80	2,17	2,95	1,79	2,56
p (S)	-	0.036	0.023	0.051	0.053	0.162	0.049	0.021	0.057	0.006	0.036
p (A)	-	-	0,113	0,137	0,246	0,023*	0,030*	0,015*	0,023*	0,017*	0,021*
CD 133 ^{low}	Sus	AFT 024	PL 1.4	PL 2.3	PL 4	Pla 2	Pla 3	Pla 4	AGM 8	AGM24	AGM25
V1	0,29	44,41	13,98	27,06	6,38	2,71	2,78	22,95	4,69	1,82	1,12
V2	1,77	97,16	24,66	80,15	18,27	44,16	5,28	23,57	11,56	4,63	3,46
V3	0,80	51,49	16,21	36,81	16,52	35,05	2,66	15,31	7,07	5,93	3,76
V4	2,20	112,44	20,26	32,56	33,94	20,64	25,56	49,96	9,30	10,06	7,86
V5	0,64	50,82	12,44	14,08	10,74	20,26	10,70	27,02	11,46	12,22	7,22
MW	1,14	71,26	17,51	38,13	17,17	24,56	9,40	27,76	8,82	6,93	4,68
SEM	0,36	13,96	2,22	11,18	4,69	7,09	4,30	5,87	1,32	1,87	1,26
p (S)	-	0,007	0,001	0,028	0,021	0,028	0,111	0,009	0,003	0,032	0,034
p (A)	-	-	0,011*	0,055	0,006*	0,022*	0,006*	0,014*	0,009*	0,009*	0,008*

Tab. 34: Expansion der CD45⁺, CD133⁺CD34⁺ und CD133^{low} CD34⁺ Fraktion in Kokultur mit plazentalen und AGM Stromazellen

Alle Werte sind als x-fache Expansion angegeben. Abkürzungen: Sus = Suspension; PL = PLVEC; Pla = MSZ aus der Plazenta; MW = Mittelwert; p(S) = Signifikanzberechnung im Vergleich zurSuspension; p(A) = Signifikanzberechnung im Vergleich zur AFT024 (t-Test, zweiseitig, gepaart);Signifikanzen p<0,05 werden fett gedruckt dargestellt. Sind die Messwerte der Suspension bzw. mit der AFT024 signifikant höher, ist der Signifikanzwert mit einem *-Symbol markiert.

Die funktionelle Analyse CD133⁺CD34⁺ Zellen im LTC-IC Ansatz ergab, dass in 28 von 50 Ansätzen kein Erhalt (Faktor < 1) von Zellen mit LTC-IC Potential ermöglicht wurde. In Kokultur mit den PLVEC wurde eine reproduzierbare Expansion von LTC-ICs detektiert. Die im Mittel stärkste Expansion von CD133⁺CD34⁺ Zellen mit LTC-IC Potential wurde auf Zellen der PLVEC 1.4 nachgewiesen (4,25 \pm 2,51-fach, n=5, Abb. 29B, Tab. 35).

Eine Expansion von Zellen mit NK-IC Potential fand in Kokultur mit allen getesteten Stromazellen sowie der Kontrolle statt. Mehr bzw. annähernd gleich viele CD133⁺CD34⁺ Zellen mit NK-IC Potential konnten im Vergleich zur AFT024 (11,46 \pm 5,20-fach, n=5, Tab. 35) in Kokultur mit endothelialen Zellen aus der Plazenta ermittelt werden (PLVEC 1.4: 8,41 \pm 2,94-fach; PLVEC 3: 10,19 \pm 2,65-fach; PLVEC 4: 12,26 \pm 2,79-fach; n=5, Abb. 29C, Tab. 35).

~~~~											
LTC- IC	Sus	AFT024	PL 1.4	PL 2.3	PL 4	Pla 2	Pla 3	Pla 4	AGM 8	AGM 24	AGM 25
V1	0,02	0,00	0,08	0,50	0,00	0,00	0,09	0,00	0,00	0,00	0,03
V2	0,16	2,90	1,59	3,61	2,31	1,21	0,45	0,37	0,17	0,13	1,12
V3	0,39	3,52	1,22	1,99	2,39	3,04	0,29	1,22	0,00	0,35	0,65
V4	0,13	0,97	13,88	4,79	10,86	2,12	1,66	5,91	0,84	0,62	2,69
V5	0,00	0,71	4,51	1,12	2,57	0,40	1,08	1,09	0,88	0,17	0,59
MW	0,14	1,62	4,25	2,40	3,63	1,35	0,71	1,72	0,38	0,26	1,02
SEM	0,07	0,68	2,51	0,79	1,87	0,56	0,29	1,07	0,20	0,11	0,45
p (S)	-	0,074	0,179	0,044	0,135	0,070	0,142	0,215	0,376	0,323	0,123
<b>p</b> (A)	-	-	0,395	0,414	0,380	0,591	0,324	0,945	0,188	0,109	0,490
NK- IC	Sus	AFT024	PL 1.4	PL 2.3	PL 4	Pla 2	Pla 3	Pla 4	AGM 8	AGM 24	AGM 25
NK- IC V1	<b>Sus</b> 0,26	<b>AFT024</b> 1,37	PL 1.4 5,09	<b>PL 2.3</b> 5,18	PL 4	<b>Pla 2</b> 1,33	<b>Pla 3</b> 4,23	<b>Pla 4</b> 1,15	AGM 8 0,98	AGM 24 1,61	AGM 25 1,70
NK- IC V1 V2	Sus 0,26 4,32	AFT024 1,37 28,05	PL 1.4 5,09 20,04	PL 2.3 5,18 20,46	PL 4 12,16 22,99	<b>Pla 2</b> 1,33 10,04	<b>Pla 3</b> 4,23 5,35	<b>Pla 4</b> 1,15 10,50	AGM 8 0,98 4,88	AGM 24 1,61 5,34	AGM 25 1,70 2,40
NK- IC V1 V2 V3	Sus 0,26 4,32 0,95	AFT024 1,37 28,05 19,29	PL 1.4 5,09 20,04 6,37	PL 2.3 5,18 20,46 8,16	PL 4 12,16 22,99 9,79	Pla 2 1,33 10,04 19,05	Pla 3 4,23 5,35 2,41	Pla 4 1,15 10,50 6,95	AGM 8 0,98 4,88 2,52	AGM 24 1,61 5,34 2,26	AGM 25 1,70 2,40 1,88
NK- IC V1 V2 V3 V4	Sus 0,26 4,32 0,95 1,01	AFT024 1,37 28,05 19,29 4,62	PL 1.4 5,09 20,04 6,37 6,59	PL 2.3 5,18 20,46 8,16 8,79	PL 4 12,16 22,99 9,79 8,73	Pla 2 1,33 10,04 19,05 0,58	Pla 3 4,23 5,35 2,41 4,92	Pla 4 1,15 10,50 6,95 3,65	AGM 8 0,98 4,88 2,52 1,68	AGM 24 1,61 5,34 2,26 1,29	AGM 25 1,70 2,40 1,88 2,09
NK- IC V1 V2 V3 V4 V5	Sus 0,26 4,32 0,95 1,01 0,80	AFT024 1,37 28,05 19,29 4,62 3,97	PL 1.4 5,09 20,04 6,37 6,59 3,99	PL 2.3 5,18 20,46 8,16 8,79 8,34	PL 4 12,16 22,99 9,79 8,73 7,61	Pla 2 1,33 10,04 19,05 0,58 4,62	Pla 3 4,23 5,35 2,41 4,92 6,10	Pla 4 1,15 10,50 6,95 3,65 5,59	AGM 8 0,98 4,88 2,52 1,68 4,60	AGM 24 1,61 5,34 2,26 1,29 3,26	AGM 25 1,70 2,40 1,88 2,09 2,00
NK- IC V1 V2 V3 V4 V5 MW	Sus 0,26 4,32 0,95 1,01 0,80 1,47	AFT024 1,37 28,05 19,29 4,62 3,97 11,46	PL 1.4 5,09 20,04 6,37 6,59 3,99 8,41	PL 2.3 5,18 20,46 8,16 8,79 8,34 10,19	PL 4 12,16 22,99 9,79 8,73 7,61 12,26	Pla 2 1,33 10,04 19,05 0,58 4,62 7,12	Pla 3 4,23 5,35 2,41 4,92 6,10 4,60	Pla 4 1,15 10,50 6,95 3,65 5,59 5,57	AGM 8 0,98 4,88 2,52 1,68 4,60 2,93	AGM 24 1,61 5,34 2,26 1,29 3,26 2,75	AGM 25 1,70 2,40 1,88 2,09 2,00 2,01
NK- IC V1 V2 V3 V4 V5 MW SEM	Sus 0,26 4,32 0,95 1,01 0,80 1,47 0,72	AFT024 1,37 28,05 19,29 4,62 3,97 11,46 5,20	PL 1.4 5,09 20,04 6,37 6,59 3,99 8,41 2,94	PL 2.3 5,18 20,46 8,16 8,79 8,34 10,19 2,65	PL 4 12,16 22,99 9,79 8,73 7,61 12,26 2,79	Pla 2 1,33 10,04 19,05 0,58 4,62 7,12 3,42	Pla 3 4,23 5,35 2,41 4,92 6,10 4,60 0,63	Pla 4 1,15 10,50 6,95 3,65 5,59 5,57 1,57	AGM 8 0,98 4,88 2,52 1,68 4,60 2,93 0,78	AGM 24 1,61 5,34 2,26 1,29 3,26 2,75 0,73	AGM 25 1,70 2,40 1,88 2,09 2,00 2,00 2,01 0,12
NK- IC V1 V2 V3 V4 V5 MW SEM p (S)	Sus 0,26 4,32 0,95 1,01 0,80 1,47 0,72	AFT024 1,37 28,05 19,29 4,62 3,97 11,46 5,20 0,096	PL 1.4 5,09 20,04 6,37 6,59 3,99 8,41 2,94 <b>0,036</b>	PL 2.3 5,18 20,46 8,16 8,79 8,34 10,19 2,65 <b>0,011</b>	PL 4 12,16 22,99 9,79 8,73 7,61 12,26 2,79 0,007	Pla 2 1,33 10,04 19,05 0,58 4,62 7,12 3,42 0,161	Pla 3 4,23 5,35 2,41 4,92 6,10 4,60 0,63 <b>0,018</b>	Pla 4 1,15 10,50 6,95 3,65 5,59 5,57 1,57 0,016	AGM 8 0,98 4,88 2,52 1,68 4,60 2,93 0,78 0,075	AGM 24 1,61 5,34 2,26 1,29 3,26 2,75 0,73 0,021	AGM 25 1,70 2,40 1,88 2,09 2,00 2,01 0,12 0,431

Tab. 35: Expansion von LTC-ICs und NK-ICs in Kokultur mit plazentalen und AGM Stromazellen

Alle Werte sind als x-fache Expansion angegeben. Abkürzungen: Sus = Suspension; PL = PLVEC; Pla = MSZ aus der Plazenta; MW = Mittelwert; p(S) = Signifikanzberechnung im Vergleich zurSuspension; p(A) = Signifikanzberechnung im Vergleich zur AFT024 (t-Test, zweiseitig, gepaart); Signifikanzen p<0,05 werden fett gedruckt dargestellt.

Die Quantifizierung von Zellen mit CFC Potential wurden sowohl für die CD133⁺CD34⁺ als auch für die CD133^{low}CD34⁺ Fraktion durchgeführt (Abb. 29D, Tab. 36). Die Frequenz koloniebildender Zellen in der CD133⁺CD34⁺ Fraktion nach Kokultur mit plazentalen und AGM Stromazellen war in allen Versuchen im Vergleich zu frisch isolierten HSVZ bis zu 2-fach geringer (min: 10,50  $\pm$  1,07%; max: 14,5  $\pm$  0,67%, n=5, Tab. 36). In der CD133^{low}CD34⁺ Fraktion ist die Frequenz koloniebildende Zellen in Kokultur mit den verschiedenen humanen Stromazellen sehr unterschiedlich. In Kokultur mit plazentalen Endothelzellen wiesen 1,01  $\pm$  0,16 % bis 1,66  $\pm$ 0,86 % CD133^{low}CD34⁺ Zellen CFC Potential auf (n=5, Tab. 36). Hingegen lag die Frequenz koloniebildender auf Zellen der AGM bei 5,07  $\pm$  1,59 % bis 13,37  $\pm$  2,99 % (n=5, Tab. 36).

Die stärkere Expansion von CD133⁺CD34⁺ Zellen mit Koloniebildungspotential als mit AFT024 Referenz (17,92  $\pm$  3,53-fach, n=5, Abb. 29D, Tab. 36) wurde in der Kulturen mit plazentalen Endothelzellen bestimmt. Im Vergleich zur Kontrolle wurde sowohl mit Zellen der PLVEC 1.4 (12,31  $\pm$  1,66-fach, n=5, Abb. 29D, Tab. 36) als auch der PLVEC 4 (23,50  $\pm$  7,24-fach, n=5, Abb. 29D, Tab. 36) in zwei von fünf Versuchen eine stärker Expansion CD133⁺CD34⁺ Zellen mit CFC Potential detektiert.

Eine Expansion (Faktor > 1)  $CD133^{low}CD34^+$  Zellen mit CFC Potential wurde in 24 von 45 Ansätzen, überwiegend mit plazentalen MSZ sowie AGM Stromazellen, nachgewiesen. Die mittlere Expansion koloniebildender CD133^{low}CD34⁺ HSVZ in Kokultur mit den humanen Stromazellen lag 3 bis 10-fach unter der ermittelten Expansion für die AFT024 (11,14  $\pm$  2,44-fach, n=5, Abb. 29D, Tab. 36). Die im Mittel stärkste Expansion wurde die Kokultur mit Zellen der Plazenta 4 gefunden (4,32  $\pm$  1,61-fach, n=5, Abb. 29D, Tab. 36).

Tab. 36: Frequenz und Expansion von CFCs in der CD133⁺CD34⁺ und CD133^{low}CD34⁺ Fraktion in Kokultur mit plazentalen und AGM Stromazellen

CD 133 ⁺	Sus	AFT024	PL 1.4	PL 2.3	PL 4	Pla 2	Pla 3	Pla 4	AGM 8	AGM 24	AGM 25
V1	10,5%	9,75%	14,5%	14,0%	15,0%	16,85%	12,50%	14,50%	13,00%	17,50%	16,00%
V2	13,0%	4,50%	9,00	12,0%	14,5%	9,50%	11,00%	13,00%	9,50%	12,50%	13,00%
V3	16,5%	7,25%	13,5%	15,5%	15,0%	13,50%	13,00%	15,00%	18,00%	16,00%	15,00%
V4	9,67%	4,00%	11,6%	11,0%	16,0%	19,69%	8,00%	21,00%	16,33%	13,00%	16,00%
V5	10,0%	3,50%	10,3%	9,00%	12,0%	9,50%	8,00%	6,33%	8,33%	6,00%	9,67%
MAX	11 00/	E 000/	11 00/	10 20/	14 50/	12 010/	10 500/	12 070/	12 020/	12 000/	12 020/
SEM	1 29%	0,00%	1,0%	1 1 1 10/	14,5%	2 01%	10,30%	2 25%	1 97%	1 0 2 %	1 20%
SEW	1,2070	1,1070	1,00 %	1,1470	0,07 /0	2,0170	1,0776	2,3370	1,07 /0	1,9070	1,2076
p (S)	-	0,015	0,933	0,706	0,128	0,524	0,192	0,484	0,566	0,601	0,285
<b>p</b> (A)	-	-	0,001	0,001	0,002	0,015	0,002	0,028	0,016	0,004	0,002
010	1						1			1.014	1016
CD 133 ⁺	Sus	AFT024	PL 1.4	PL 2.3	PL 4	Pla 2	Pla 3	Pla 4	AGM 8	AGM 24	AGM 25
V1	0,00%	3,25%	4,30%	3,16%	1,00%	0,00%	4,00%	2,70%	2,08%	15,38%	19,35%
V2	0,00%	2,50%	1,00%	0,00%	1,50%	3,08%	3,00%	2,00%	2,50%	0,50%	6,50%
V3	4,00%	8,50%	3,00%	1,00%	1,22%	7,14%	3,00%	5,50%	9,22%	16,95%	8,00%
V4	1,67%	4,50%	0,00%	1,00%	0,67%	0,90%	9,00%	5,91%	8,67%	4,00%	21,33%
V5	7,67%	4,50%	0,00%	0,00%	0,68%	0,00%	3,67%	4,30%	2,86%	7,00%	11,65%
MW	2 67%	4 65%	1 66%	1.03%	1 01%	2 22%	4 53%	4 08%	5.07%	8 77%	13.37%
SEM	1.45%	1.04%	0.86%	0.58%	0.16%	1.35%	1,13%	0.76%	1.59%	3.20%	2.99%
(0)	.,	.,				.,	.,		.,	0,2070	_,
<b>p</b> (S)	-	0,211	0,635	0,415	0,342	0,833	0,399	0,331	0,300	0,143	0,042
p (A)	-	-	0,069	0,041*	0,026*	0,056	0,946	0,466	0,706	0,200	0,062
CD										ACM	ACM
133 ⁺	Sus	AFT024	PL 1.4	PL 2.3	PL 4	Pla 2	Pla 3	Pla 4	AGM 8	24	25
V1	0,56	21,32	9,30	6,40	12,76	1,36	5,99	2,45	2,80	3,78	4,57
V2	2,86	28,02	14,31	23,21	25,18	8,02	10,11	7,27	3,37	6,93	5,38
V3	2,77	19,74	10,78	0,00	13,64	22,70	3,09	5,11	4,67	6,13	3,98
V4	2,12	12,98	17,86	0,00	51,05	5,49	14,39	15,55	14,19	9,15	14,56
V5	1,39	7,52	9,29	7,32	14,86	2,95	6,92	2,13	6,38	2,60	5,16
MW	1.94	17.92	12.31	7.38	23.50	8.10	8.10	6.50	6.28	5.72	6.73
SEM	0.43	3.53	1.66	4.25	7.24	3.82	1.93	2.45	2.07	1.16	1.97
(0)	-1 -	0.000	0.000	0.004	0.000	0.455	0.000	0.440	0.400	0.040	0.070
<b>p</b> ( <b>S</b> )	-	0,009	0,002	0,261	0,039	0,155	0,032	0,118	0,103	0,016	0,073
<b>p</b> (A)	-	-	0,210	0,041"	0,550	0,094	0,080	0,060	0,081	0,023"	0,072
CD 122low	Sus	AFT024	PL 1.4	PL 2.3	PL 4	Pla 2	Pla 3	Pla 4	AGM 8	AGM	AGM
155	0.00	F 4 F	0.45	0.05	0.00	0.00	0.40	0.00	0.05	44	43
VI	0,00	5,15	2,15	3,05	0,23	0,00	0,40	2,22	0,35	1,00	0,77
V2 V2	0,00	8,68	0,88	0,00	0,98	4,85	0,57	1,68	1,03	0,08	0,80
V 5	0,11	10,03	1,74	1,31	0,72	8,94 0.66	0,29	3,01	2,33	3,59	1,07
V4 V5	0,13	10,07 9.17	0,00	1,10	0.26	0,00	0,22	10,54	∠,00 1 17	1,44	3,99
v 3	0,10	0,17	0,00	0,00	0,20	0,00	1,40	4,15	1,17	3,00	3,00
MW	0,08	11,14	0,95	1,11	0,60	2,89	2,17	4,32	1,55	1,83	2,33
SEM	0,04	2,44	0,44	0,56	0,15	1,76	1,52	1,61	0,46	0,65	1,00
p (S)	-	0.010	0.134	0.151	0.033	0.187	0.239	0.056	0.029	0.049	0.084
p (A)	-	-	0.018*	0,018*	0,011*	0,026*	0,008*	0,016*	0,008*	0,016*	0.011*

Alle Werte sind in % und als x-fache Expansion angegeben. Abkürzungen: Sus = Suspension; PL = PLVEC; Pla = MSZ aus der Plazenta; MW = Mittelwert; p(S) = Signifikanzberechnung im Vergleich zur Suspension; p(A) = Signifikanzberechnung im Vergleich zur AFT024 (t-Test, zweiseitig,gepaart); Signifikanzen p<0,05 werden fett gedruckt dargestellt. Sind die Messwerte der Suspension<math>bzw. mit der AFT024 signifikant höher, ist der Signifikanzwert mit einem *-Symbol markiert. Sowohl mit den plazentalen als auch den AGM Stromazellen brachten CD133⁺CD34⁺ HSVZ im CFC Ansatz CFU-G, CFU-M sowie CFU-GM Kolonien hervor (Abb. 29E, Tab. 62, n=5). CD133⁺ Zellen mit erythrozytärem (BFU-E) oder erythro-myeloischem (CFU-MIX) Differenzierungspotential wurden in 13 von 55 Ansätzen detektiert. In der Kokultur mit mesenchymalen Stromazellen der Plazenta 2 wurden in drei von fünf Experimenten Zellen mit erythrozytärem Koloniebildungspotential in der CD133⁺CD34⁺ Fraktion detektiert (Abb. 29E, Tab. 62, n=5). Die im Mittel auffällig hohe Frequenz CD133⁺ Zellen mit erythrozytärem Potential ist maßgeblich auf einen Einzelwert zurückzuführen (Versuch 3), der im Vergleich zu allen anderen Experimenten nicht reproduzierbar war (Tab. 62, n=5). Koloniebildende CD133^{low}CD34⁺ Zellen wiesen BFU-E, CFU-G, CFU-GM und CFU-M Potential auf (Abb. 29F, Tab. 63, n=5). Zellen mit erythrozytärem und/oder erythromyeloischem Differenzierungspotential wurden auch hier nicht reproduzierbar detektiert

(Abb. 29F, Tab. 63, n=5).

Den Daten zufolge ermöglichte die Kokultur plazentaler und AGM Stromazellen einen Erhalt von Zellen mit LTC-IC, NK-IC und myeloischem CFC Potential in der CD133⁺CD34⁺ Population. Zellen mit erythrozytärem Koloniebildungspotential sind nahezu exklusiv in der CD133^{low}CD34⁺ Population enthalten. Ein reproduzierbarer Erhalt multipotenter HSVZ wurde in Kokultur mit keiner der plazentalen oder AGM Stromazelllinien unterstützt.

Einen reproduzierbaren Erhalt bzw. eine stärkere Expansion von Zellen mit LTC-IC, NK-IC und CFC Potential als die AFT024 ermöglichten insbesondere Zellen der Stromazelllinien PLVEC 1.4 und PLVEC 4. Mit der mesenchymalen Stromazelllinie aus der Plazenta 2 wurde nicht weiter gearbeitet, da die vergleichsweise hohen Mittelwerte bei der Expansion primitiver HSVZs maßgeblich auf einen einzelnen Versuch zurückzuführen sind und nicht reproduzierbar waren.

102



Abb. 29: Expansion von HSVZ, LTC-ICs, NK-ICs und CFCs in Kokultur mit plazentalen und AGM Stromazellen

Graphische Darstellung der Werte aus Tab. 34, Tab. 35, Tab. 36, Tab. 62 und Tab. 63 (A) Nach 14-tägiger Kokultur mit Zellen primärer humaner plazentaler und AGM Stromazellen, Zellen der murinen Zelllinie AFT024 und in Suspension wurde die Expansion hämatopoetischer Subpopulationen durchflusszytometrisch quantifiziert. (**B** - **D**) Expandierte CD133⁺CD34⁺ wurden an Tag 14 durchflusszytometrisch isoliert, in funktionelle Analysen überführt und die Expansion von Zellen mit LTC-IC, NK-IC und CFC Potential experimentell ermittelt Im CFC-Ansatz wurden 5 verschiedene Kolonietypen morphologisch unterschieden: CFU-MIX, BFU-E, CFU-G, CFU-GM und CFU-M. (Mittelwerte ± SEM). Die Zahlen über den Balken repräsentieren die Anzahl der CFC Ansätze mit erythrozytären und/oder erythro-myeloischen Kolonien (Signifikanzen: * gegen Suspension, # gegen AFT024, p<0,05)

### 3.8. Kokultur von HSVZ mit endothelialen und mesenchymalen Stromazellen

Die *in vivo* Stammzellnische im Knochenmark ist aus unterschiedlichen Zellentitäten wie z.B. endothelialen/sinosoidalen Zellen, MSZ, Makrophagen, Osteoblasten etc. aufgebaut, die synergistisch und wechselseitig ein Mikromilieu zum Erhalt bzw. Bedarf zur Expansion der HSVZ bereitstellen (Calvi *et al.*, 2003; Zhang *et al.*, 2003). Folglich stellte sich die Frage, ob die Verwendung von MSC in Kombination mit endothelialen Stromazellen in einer sogenannten Tripel-Kultur, eine Expansion bzw. einen Erhalt multipotenter HSVZ ermöglicht.

Für die Tripel-Kultur wurden jeweils zwei endotheliale und mesenchymale humane Stromazelllinien ausgewählt, die in den Vorversuchen im Vergleich zur AFT024 eine stärkere bzw. vergleichbare Expansion oder einen Erhalt primitiver HSVZ unterstützten. Bei den mesenchymalen Stromazelllinien wurde die Linie MSZ KM MNZ B sowie die MSZ KM Fett 7/5 ausgewählt. Von den endothelialen Stromazelllinien wurde die Linie HUVEC F und ECFC 4D selektioniert. Die Stromazellen wurden jeweils einzeln (Kokultur) sowie in Kombination (Tripel-Kultur) für die nachfolgenden Versuche verwendet.

Aufgrund der Verwendung primärer endothelialer Stromazellen für die Tripel-Kultur, wurden dem Kokulturmedium die Wachstumsfaktoren EGF und FGF (10 ng/ml) zugesetzt. Da die mesenchymalen Zellen gegenüber den Endothelzellen im Kokulturmedium IMDM10 mit EGF und FGF eine gesteigerte Proliferation aufweisen (Daten nicht dargestellt) und um das Verhältnis der beiden Zellentitäten möglichst im Gleichgewicht zu halten, wurden die endothelialen Stromazellen zu Beginn der Kokultur in einer 4-fach höheren Dichte als die MSZ ausgesäht. Die Kokultur bzw. Tripel-Kultur wurde anschließend in Analogie zu den vorhergehenden Versuchen durchgeführt.

Nach der 14-tägigen Kokultur wurden die adhärenten Stromazellen gemeinsam mit der hämatopoetischen Nachkommenschaft geerntet und durchflusszytometrisch analysiert. In den Tripel-Kulturansätzen wurde zusätzlich zur Quantifizierung der hämatopoetischen Subpopulationen das Verhältnis der mesenchymalen und endothelialen Stromazellen zueinander durchflusszytometrisch ermittelt (Abb. 30A, Abb. 31A, Tab. 37, n=5). Bei der durchflusszytometrischen Analyse der CD45⁻ Fraktion wurden neben mesenchymalen (CD90⁺CD31⁻CD45⁻) und endothelialen (CD90⁻CD31⁺CD45⁻) Stromazellen auch CD45⁻CD90⁻CD31⁻ Zellen detektiert, die keinem spezifischen Zelltyp zugeordnet werden konnten und für die Berechnung des Verhältnisses von MSZ zu EZ ausgeschlossen wurden.

In 11 von 20 Versuchen war der Anteil mesenchymaler Stromazellen höher (>55 %) als der Anteil endothelialer Zellen. In weiteren 5 von 20 Ansätzen war die Verteilung der beiden Zellentitäten ausgeglichen und in den übrigen 4 von 20 Experimenten wurden mehr endotheliale (>55 %) als mesenchymale Stromazellen detektiert. Das ausgewogenste und konstanteste Verhältnis von mesenchymalen und endothelialen Zellen wurde in der Tripel-Kultur mit den MSZ KM Fett 7/5 (53,7  $\pm$  7,3 %) und der HUVEC F (46,3  $\pm$  6,1 %) ermittelt.

% in	MSZ N	INC B +	MSZ M	INC B +	MSZ F	ett 7/5 +	MSZ F	ett 7/5 +
CD43	EZ	MSZ	EZ	MSZ	EZ	MSZ	EZ	MSZ
V1	18,9%	81,1%	30,6%	69,4%	71,4%	28,6%	53,1%	46,9%
V2	11,7%	88,3%	15,2%	84,8%	42,3%	57,7%	28,3%	71,7%
V3	11,3%	88,8%	7,1%	92,9%	31,2%	68,8%	39,1%	60,9%
V4	50,6%	49,4%	70,3%	29,7%	55,2%	44,8%	64,9%	35,1%
V5	52,8%	47,2%	81,0%	19,0%	62,5%	37,5%	47,6%	52,4%
N.4337	20.20/	71.00/	40.40/	E7 00/	FO 00/	47.00/	46.00/	E0 70/
NIW	20,2%	/1,8%	42,1%	57,9%	32,2%	47,8%	40,3%	53,7%

Tab. 37: Berechnete Verhältnisse mesenchymaler und endothelialer Zellen nach Triple-Kultur

Die dargestellten Werte entsprechen dem berechneten prozentualen Anteil mesenchymaler (MSZ) und endothelialer (EZ) Stromazellen in der CD45⁻ Zellfraktion (=100 %).

Sowohl in der Kokultur als auch in der Tripel-Kultur wurden CD133⁺CD34⁺ sowie CD133^{low}CD34⁺ HSVZ in der hämatopoetischen Nachkommenschaft detektiert (Abb. 30B und C, Tab. 38). Die Frequenz der beiden Subpopulation lag anteilsmäßig deutlich unter den Werten der Kontrolle (133⁺: 18,54  $\pm$  2,00 %; 133^{low}: 25,10  $\pm$  1,31 %; n=5, Tab. 38). Der im Mittel größte Anteil CD133⁺CD34⁺ Zellen an der gesamten hämatopoetischen Nachkommenschaft wurde in der Kokultur mit der MSZ KM MNZ B ermittelt (6,41  $\pm$  0,91 %, n=5, Tab. 38). Die höchste Frequenz CD133^{low}CD34⁺ Zellen wurde mit den MSZ KM Fett 7/5 ermittelt (4,20  $\pm$  1,15 %, n=5, Tab. 38).

CD 133 ⁺	Sus	AFT024	ECFC 4D	HUVEC F	MSZ MNZ B	MSZ Fett 7/5	ECFC 4D + MSZ B	HUVEC F + MSZ B	ECFC 4D + MSZ 7/5	HUVEC F + MSZ 7/5
V1	2,22%	21,68%	1,07%	2,37%	7,58%	2,43%	2,75%	3,72%	1,62%	3,07%
V2	1,11%	12,17%	0,56%	0,49%	2,89%	1,48%	1,39%	1,83%	0,77%	1,69%
V3	6,16%	16,54%	1,48%	1,85%	7,58%	3,51%	3,40%	3,80%	1,71%	2,48%
V4	2,47%	23,57%	2,74%	3,66%	7,68%	4,60%	4,95%	5,43%	5,12%	5,45%
V5	2,55%	18,72%	2,62%	3,25%	6,31%	8,78%	5,36%	6,50%	6,01%	3,91%
MW	2,90%	18,54%	1,70%	2,32%	6,41%	4,16%	3,57%	4,26%	3,05%	3,32%
SEM	0,85%	2,00%	0,43%	0,56%	0,91%	1,27%	0,73%	0,80%	1,05%	0,64%
p (S)	-	0,002	0,253	0,588	0,013	0,437	0,537	0,280	0,923	0,723
<b>p</b> (A)	-	-	0,001*	0,001*	0,001*	0,002*	0,001*	0,001*	0,001*	0,001*

Tab. 38: Frequenz CD133⁺CD34⁺ und CD133^{low}CD34⁺ HSVZ in Kokultur und Tripel-Kultur

CD 133 ^{low}	Sus	AFT024	ECFC 4D	HUVEC F	MSZ MNZ B	MSZ Fett 7/5	ECFC 4D + MSZ B	HUVEC F + MSZ B	ECFC 4D + MSZ 7/5	HUVEC F + MSZ 7/5
V1	0,70%	28,89%	0,17%	0,19%	1,24%	2,65%	5,95%	4,58%	1,42%	1,77%
V2	0,64%	23,54%	0,73%	0,31%	2,89%	3,47%	4,64%	3,72%	1,29%	3,20%
V3	1,44%	22,01%	0,26%	0,26%	1,53%	2,55%	3,67%	4,87%	0,78%	0,91%
V4	0,77%	23,57%	0,63%	0,70%	1,56%	3,56%	2,16%	1,98%	1,40%	2,08%
V5	0,82%	27,50%	0,65%	0,80%	2,80%	8,74%	2,31%	3,97%	1,16%	2,60%
MAN	0.070/	25 100/	0.400/	0.450/	2.000/	4 200/	2 750/	2.020/	1 010/	0.110/
IVI W	0,87%	25,10%	0,49%	0,45%	2,00%	4,20%	3,75%	3,82%	1,21%	Z,11%
SEM	0,15%	1,31%	0,11%	0,12%	0,35%	1,15%	0,72%	0,50%	0,12%	0,39%
p (S)	-	0,001	0,013	0,114	0,055	0,049	0,019	0,003	0,262	0,073
<b>p</b> (A)	-	-	0,001*	0,001*	0,001*	0,001*	0,001*	0,001*	0,001*	0,001*

Abkürzungen: Sus = Suspension; MNZ = Mononukleäre Zellen aus den Knochenmark; MW = Mittelwert; p (S) = Signifikanzberechnung im Vergleich zur Suspension; p (A) = Signifikanzberechnung im Vergleich zur AFT024 (t-Test, zweiseitig, gepaart); Signifikanzen<math>p<0,05 werden fett gedruckt dargestellt. Sind die Messwerte der Suspension bzw. mit der AFT024 signifikant höher ist der Signifikanzwert mit einem *-Symbol markiert.



Abb. 30: Durchflusszytometrische Analyse der Stromazellen und hämatopoetischen Nachkommenschaft in der Tripel-Kultur

(A) Gating-Strategie für die durchflusszytometrische Analyse endothelialer (CD45⁻CD90⁻CD31⁺) und mesenchymaler (CD45⁻CD90⁺CD31⁻) Stromazellen in der Tripel-Kultur nach 14 Tagen.
(B+C) Durchflusszytometrische Analyse der Nachkommenschaft von CD133⁺CD34⁺ Zellen nach 14-tägigerKokultur bzw. Tripel-Kultur mit mesenchymalen und endothelialen Stromazellen. Darstellung repräsentativer Analysen aus unabhängigen Vorversuchen.

In allen Kokulturen und Tripel-Kulturen wurde eine Expansion (Faktor > 1) der CD45⁺, CD133⁺CD34⁺ sowie CD133^{low}CD34⁺ Fraktion nachgewiesen (Abb. 31B, Tab. 39, n=5). Eine signifikant höhere Expansion der CD45⁺ Fraktion im Vergleich zur AFT024 (243,1 ± 42,8-fach, n=5, Tab. 39) wurde mit Zellen der HUVEC F (389,64 ± 73,0-fach, n=5, Tab. 39), der MSZ KM MNZ B (558,0 ± 67,86-fach, n=5, Tab. 39) sowie der Kombination aus HUVEC F und MSZ KM Fett 7/5 ermittelt (375,64 ± 48,17-fach, n=5, Tab. 39).

Die Expansion CD133⁺CD34⁺ Zellen war im Vergleich zur Kokultur und Tripel-Kultur auf Zellen der AFT024 signifikant stärker (47,35  $\pm$  12,16-fach, n=5, Tab. 39). Die meisten CD133^{low}CD34⁺ HSVZ in Kultur mit humanen Primärzellen wies die Kokultur mit Zellen der MSZ KM MNZ B auf (36,58  $\pm$  7,90-fach, n=5, Tab. 39).

Die AFT024 Referenz (61,01  $\pm$  10,89-fach, n=5, Tab. 39) enthielt signifikant mehr CD133^{low}CD34⁺ HSVZ im Vergleich zu allen Kokulturen mit humanen Stromazellen. Die im Mittel stärkste Expansion CD133^{low}CD34⁺ HSVZ wurde in der Kokultur mit humane Primärzellen auf der MSZ KM Fett 7/5 (13,79  $\pm$  2,47fach, n=5, Tab. 39) und in der Tripel-Kultur aus der HUVEC F und MSZ KM MSZ B (13,67  $\pm$  0,93-fach, n=5, Tab. 39) ermittelt. In keine der Tripel-Kulturen wurde im Vergleich zu den korrespondierenden Kokulturen eine stärkere Expansion von CD45⁺, CD133⁺CD34⁺ sowie CD133^{low}CD34⁺ Zellen gefunden.

Tripel-k	Kultur									
CD 45 ⁺	Sus	AFT024	ECFC 4D	HUVEC F	MSZ KM MNZ B	MSZ KM Fett 7/5	ECFC 4D + MSZ B	HUVEC F + MSZ B	ECFC 4D + MSZ 7/5	HUVEC F + MSZ 7/5
V1	285,60	178,60	212,20	201,00	734,74	394,00	281,40	316,00	208,00	278,00
V2	97,00	154,60	192,00	314,00	532,00	359,20	265,80	302,00	164,00	258,00
V3	45,80	195,80	260,00	465,40	641,80	292,80	289,40	305,40	289,00	441,40
V4	239,80	377,52	359,20	628,40	554,00	603,00	620,80	811,00	488,60	511,74
V5	131,98	309,00	194,80	339,40	327,44	195,40	300,54	295,82	300,82	389,06
MW	160,04	243,10	243,64	389,64	558,00	368,88	351,59	406,04	290,08	375,64
SEM	44,69	42,80	31,35	73,00	67,86	67,61	67,54	101,29	55,75	48,17
(0)										
p (S)	-	0.182	0.148	0.063	0.004	0.019	0.037	0.052	0.102	0.033

0,031

0,121

0,054

0,091

0,116

0,011

0,987

-

**p** (A)

0,049

Tab. 39: Expansion der CD45⁺, CD133⁺CD34⁺ und CD133^{low}CD34⁺ Fraktion in Kokultur und Tripel-Kultur

CD 133 ⁺	Sus	AFT024	ECFC 4D	HUVEC F	MSZ KM MNZ B	MSZ KM Fett 7/5	ECFC 4D + MSZ B	HUVEC F + MSZ B	ECFC 4D + MSZ 7/5	HUVEC F + MSZ 7/5
V1	6,34	38,72	2,28	4,76	55,72	9,56	7,74	11,76	3,36	8,54
V2	1,08	18,82	1,08	1,54	15,38	5,32	3,70	5,52	1,26	4,36
V3	2,82	32,38	3,86	8,62	48,62	10,28	9,84	11,60	4,94	10,96
V4	5,92	89,00	9,86	23,00	42,52	27,76	30,74	44,06	25,04	27,88
V5	3,36	57,84	5,10	11,04	20,66	17,16	16,12	19,24	18,08	15,22
MW	3,90	47,35	4,44	9,79	36,58	14,02	13,63	18,44	10,54	13,39
SEM	0,99	12,16	1,52	3,68	7,90	3,93	4,73	6,77	4,67	4,03
p (S)	-	0,020	0,707	0,146	0,011	0,043	0,085	0,080	0,201	0,056
p (A)	-	-	0,016*	0,012*	0,463	0,016*	0,011*	0,007*	0,009*	0,015*

CD 133 ^{low}	Sus	AFT024	ECFC 4D	HUVEC F	MSZ KM MNZ B	MSZ KM Fett 7/5	ECFC 4D + MSZ B	HUVEC F + MSZ B	ECFC 4D + MSZ 7/5	HUVEC F + MSZ 7/5
V1	2,00	51,60	0,36	0,38	9,08	10,46	16,74	14,46	2,96	4,92
V2	0,62	36,40	1,40	0,96	15,38	12,48	12,34	11,24	2,12	8,26
V3	0,66	43,10	0,68	1,20	9,80	7,48	10,62	14,86	2,24	4,00
V4	1,84	88,98	2,28	4,38	8,62	21,46	13,44	16,06	6,84	10,64
V5	1,08	84,96	1,26	2,72	9,18	17,08	6,94	11,74	3,50	10,12
MW	1,24	61,01	1,20	1,93	10,41	13,79	12,02	13,67	3,53	7,59
SEM	0,29	10,89	0,33	0,72	1,26	2,47	1,61	0,93	0,86	1,34
<b>n</b> ( <b>S</b> )		0.005	0.021	0.201	0.002	0.006	0.002	0.001	0.022	0.000
$\mathbf{p}(\mathbf{S})$	-	0,005	0,921	0,301	0,003	0,006	0,002	0,001	0,033	0,009
p (A)	-	-	U,UU5^	U,UU5^	0,013^	U,UU6^	0,013^	U,U11^	0,005^	0,006^

Alle Werte sind als x-fache Expansion angegeben. Abkürzungen: Sus = Suspension; MNZ = Mononukleäre Zellen aus den Knochenmark: MW= *Mittelwert:* p(S) = Signifikanzberechnung im Vergleich zur Suspension; <math>p(A) = Signifikanzberechnung imVergleich zur AFT024 (t-Test, zweiseitig, gepaart); Signifikanzen p<0,05 werden fett gedruckt dargestellt. Sind die Messwerte der Suspension bzw. mit der AFT024 signifikant höher ist der Signifikanzwert mit einem *-Symbol markiert.

Um die Expansion von Zellen mit LTC-IC bzw. NK-IC Potential zu quantifizieren, wurden CD133⁺CD34⁺ Zellen nach der Kokultur durchflusszytometrisch sortiert und in den LTC-IC und NK-IC Ansatz überführt (Abb. 31C und D, Tab. 40, n=5).

Eine reproduzierbar stärkere Expansion von CD133⁺CD34⁺ Zellen mit LTC-IC Potential als mit der AFT024 (1,97  $\pm$  0,42-fach, Abb. 31C, Tab. 40, n=5) wurden in vier von fünf Versuchen mit Zellen der Linie MSZ KM MNZ B (2,65  $\pm$  0,71-fach, Tab. 40, n=5) detektiert.

In Anwesenheit der Stromazellen MSZ KM MNZ B (8,49  $\pm$  1,18-fach, Abb. 31D, Tab. 40, n=5) sowie in der Tripel-Kultur mit Zellen der HUVEC F (7,04  $\pm$  1,31-fach und 7,62  $\pm$  1,85-fach, Abb. 31D, Tab. 40, n=5) wurde im Vergleich zur Kontrolle (8,61  $\pm$  1,92-fach, Abb. 31D, Tab. 40, n=5) in drei von fünf Versuchen eine stärkere Amplifikation von NK-ICs nachgewiesen. Der hohe Mittelwert in der Tripel-Kultur mit Zellen der ECFC 4D und MSZ KM MNZ B ist auf die geringere Anzahl an Versuchen (n=3) zurück zu führen, wobei in 2 von 3 Versuchen mehr NK-ICs detektiert wurden als in Kokultur mit den MSZ KM MNZ B.

Eine reproduzierbare und stärkere Expansion von HSVZ mit LTC-IC und NK-IC Potential gegenüber den korrespondierenden Kokulturen konnte in keiner der Tripel-Kulturen ermittelt werden.

LTC-IC	Sus	AFT024	ECFC 4D	HUVEC F	MSZ KM MNZ B	MSZ KM Fett 7/5	ECFC 4D + MSZ B	HUVEC F + MSZ B	ECFC 4D + MSZ 7/5	HUVEC F + MSZ 7/5
V1	0,40	1,49	0,17	1,51	0,27	1,52	3,50	1,37	0,51	1,21
V2	0,00	0,84	0,55	0,49	1,40	0,55	0,68	0,77	0,17	0,38
V3	0,20	1,75	0,40	2,60	1,77	3,18	n. v.	2,75	1,04	0,90
V4	1,56	3,29	1,88	6,18	4,51	2,26	4,53	12,25	3,86	n. v.
V5	1,50	2,50	1,34	2,45	2,77	2,02	2,16	4,69	5,93	1,69
MW	0,73	1,97	0,87	2,65	2,15	1,91	2,72	4,37	2,30	1,05
SEM	0,33	0,42	0,32	0,96	0,71	0,43	0,83	2,08	1,12	0,28
p (S)	-	0,002	0,400	0,062	0,045	0,065	0,073	0,117	0,126	0,036
<b>p</b> (A)	-	-	0,006*	0,316	0,690	0,881	0,307	0,231	0,708	0,023*
NK-IC	Sus	AFT024	ECFC 4D	HUVEC F	MSZ KM MNZ B	MSZ KM Fett 7/5	ECFC 4D + MSZ B	HUVEC F + MSZ B	ECFC 4D + MSZ 7/5	HUVEC F + MSZ 7/5
V1	1,74	9,78	1,45	4,11	11,28	6,61	n. v.	9,72	2,33	2,73
V2	0,45	5,00	0,66	1,21	4,52	1,49	n. v.	2,90	0,62	5,67
V3	0,78	6,63	2,66	13,67	10,09	8,72	18,85	9,84	6,76	10,70
V4	2,15	6,07	8,07	10,01	9,23	4,74	18,44	7,15	10,38	12,99
V5	1,02	15,59	2,93	4,30	7,33	10,21	4,94	5,61	8,38	6,01
MW	1,23	8,61	3,15	6,66	8,49	6,35	14,08	7,04	5,69	7,62
SEM	0,31	1,92	1,30	2,26	1,18	1,53	4,57	1,31	1,83	1,85
<b>p</b> ( <b>S</b> )	-	0,019	0,153	0,070	0,002	0,029	0,103	<b>0,008</b>	0,059	0,024

Tab. 40: Expansion der LTC-ICs und NK-ICs in Kokultur und Tripel-Kultur

Alle Werte sind als *x*-fache Expansion angegeben. Abkürzungen: Sus Suspension; =MNZ den = Mononukleäre Zellen aus Knochenmark; MW=*Mittelwert;* p(S) = Signifikanzberechnung im Vergleich zur Suspension; <math>p(A) = Signifikanzberechnung imVergleich zur AFT024 (t-Test, zweiseitig, gepaart); Signifikanzen p < 0.05 werden fett gedruckt dargestellt.

Das Koloniebildungspotential der CD133⁺CD34⁺ und CD133^{low}CD34⁺ HSVZ wurde nachfolgend im CFC Ansatz untersucht (Abb. 31E, Tab. 41, n=5). Die Frequenz koloniebildender Zellen in der CD133⁺CD34⁺ bzw. in der CD133^{low}CD34⁺ Fraktion war etwa 2 bis 3-fach (min: 8,30  $\pm$  2,29 %; max: 14,40  $\pm$  2,03 %, n=5) bzw. 3 bis 20-fach (min: 1,20  $\pm$  0,20 %; max: 8,44  $\pm$  3,91 %, n=5, Tab. 41, n=5) geringer als in frisch isolierten HSVZ.

Eine stärkere Expansion koloniebildender HSVZ in der CD133⁺CD34⁺ und CD133^{low}CD34⁺ Fraktion als in der Kontrolle (133⁺: 15,27  $\pm$  5,09-fach; 133^{low}: 9,15  $\pm$  2,37-fach; Abb. 31E, Tab. 41, n=5) wurde in keiner Kokultur oder Tripel-Kultur ermittelt. Die meisten CD133⁺CD34⁺ HSVZ mit Koloniebildungspotential wurden mit Zellen der MSZ KM MNZ B (12,03  $\pm$  6,19-fach; Abb. 31E, Tab. 41, n=5) sowie in der Tripel-Kultur mit der HUVEC F und MSZ KM MNZ B ermittelt (13,19  $\pm$  6,01-fach; Abb. 31E, Tab. 41, n=5). Der hohe Mittelwert in der Tripel-Kultur mit Zellen der HUVEC F und MSZ KM MNZ B ist maßgeblich auf einen Einzelwert in Versuch 4 zurückzuführen.

In 31 von 40 Versuchen wurde ein Verlust (Faktor < 1) von CD133^{low}CD34⁺ Zellen mit CFC Potential ermittelt (Tab. 41, n=5). Nur in der Kokultur mit Zellen der MSZ KM Fett 7/5 wurde reproduzierbar eine Expansion von koloniebildenden CD133^{low}CD34⁺ HSVZ nachgewiesen (3,46  $\pm$  1,44-fach; Abb. 31E, Tab. 41, n=5). Gegenüber der Kokultur wurde in keiner der Tripel-Kulturen eine stärkere Expansion von Zellen mit CFC Potential in der CD133⁺CD34⁺ oder CD133^{low}CD34⁺ Fraktion gefunden.

Tab. 41: Frequenz und Expansion der CFCs in der CD133⁺CD34⁺ und CD133^{low}CD34⁺ Fraktion in Kokultur und Tripel-Kultur

III IXONU	itur una	I I Iper IX				1		1		1
CD			ECEC	HUVEC	MSZ	MSZ	ECFC	HUVEC	ECFC	HUVEC
133+	Sus	AFT024	4D	F	KM	KM Fett	4D +	<b>F</b> +	4D +	<b>F</b> +
155			чD	ľ	MNZ B	7/5	MSZ B	MSZ B	MSZ 7/5	MSZ 7/5
V1	19,12%	4,50%	8,49%	7,00%	3,50%	13,00%	11,50%	8,00%	7,00%	9,00%
V2	16.67%	6.00%	10.50%	10.00%	6.50%	10.50%	10.00%	13.50%	9.00%	8.00%
V3	14 19%	7.00%	12 50%	8.00%	8,00%	8.50%	9.09%	19,50%	10,99%	6.50%
V4	8.00%	4 80%	11 00%	14 50%	6 50%	8 50%	15.00%	18,00%	14 00%	11 00%
V5	23.94%	12 50%	17 50%	16 50%	17.00%	10.00%	23 50%	13,00%	14,00%	14.00%
13	20,0470	12,0070	17,0070	10,0070	17,0070	10,0070	20,0070	10,0070	14,5070	14,0070
MW	16,38%	6,96%	12,00%	11,20%	8,30%	10,10%	13,82%	14,40%	11,10%	9,70%
SEM	2,64%	1,45%	1,52%	1,85%	2,29%	0,83%	2,62%	2,03%	1,44%	1,30%
n (S)	_	0 000*	0 132	0 170	0.026*	0.052	0 394	0.665	0 171	0.053
$\mathbf{p}(\mathbf{S})$	_	0,000	0,102	0,170	0.213	0,002	0,004	0,000	0,171	0,000
<b>p</b> (A)			0,001	0,040	0,210	0,107	0,010	0,040	0,034	0,000
					MSZ	MSZ	FCFC	HUVEC	FCFC	HIVEC
CD	Sus	<b>AFT024</b>	ECFC	HUVEC	KM	KM Fett	4D +	F +	4D +	F+
133+	Bus	AF 1024	4D	F	MNZ B	7/5	MSZ B	MSZ B	4D + MSZ 7/5	MSZ 7/5
\$71	F	7.00	0.90	1 50	0.0F	5.70	4.09	4.22	1.09	2.52
VI V2	5,56	7,99	0,89	1,53	6,95	5,70	4,08	4,32	1,08	3,53
<u>V2</u>	0,83	5,16	0,52	0,71	4,59	2,30	1,70	3,42	0,52	1,60
<u>V3</u>	1,84	10,40	2,21	3,16	17,84	4,01	4,10	10,38	2,49	3,27
V4	2,17	19,60	4,98	15,30	12,68	10,82	21,15	36,38	16,08	14,07
V5	3,69	33,17	4,09	8,30	16,11	7,87	17,38	11,47	12,03	9,77
MW	2,82	15,27	2,54	5,81	12,03	6,19	9,68	13,19	6,44	6,45
SEM	0,83	5,09	0,87	2,72	2,41	1,46	3,98	6,01	3,19	2,36
n (S)		0.067	0.830	0.250	0.020	0.083	0 161	0 171	0.224	0.212
$\mathbf{p}(3)$		0,007	0,030	0,033	0,020	0,005	0,101	0,171	0,334	0,212
<b>p</b> (A)			0,040	0,071	0,475	0,000	0,122	0,702	0,000	0,075
					MSZ	MSZ	ECEC	HUVEC	ECEC	HUVEC
CD	Sus	AFT024	ECFC	HUVEC	MSZ KM	MSZ KM Fett	ECFC 4D +	HUVEC F +	ECFC 4D +	HUVEC F +
CD 133 ^{low}	Sus	AFT024	ECFC 4D	HUVEC F	MSZ KM MNZ B	MSZ KM Fett 7/5	ECFC 4D + MSZ B	HUVEC F + MSZ B	ECFC 4D + MSZ 7/5	HUVEC F + MSZ 7/5
CD 133 ^{low}	Sus	AFT024	ECFC 4D	HUVEC F	MSZ KM MNZ B	MSZ KM Fett 7/5	ECFC 4D + MSZ B	HUVEC F + MSZ B	ECFC 4D + MSZ 7/5	HUVEC F + MSZ 7/5
CD 133 ^{low} V1	Sus 8,00%	AFT024 6,00%	ECFC 4D 4,00%	HUVEC F 6,00%	MSZ KM MNZ B 0,50%	MSZ KM Fett 7/5 0,00%	ECFC 4D + MSZ B 5,00%	HUVEC F + MSZ B 0,00%	ECFC 4D + MSZ 7/5 1,00%	HUVEC F + MSZ 7/5 0,50%
CD 133 ^{low} V1 V2	Sus 8,00% 5,88%	AFT024 6,00% 8,50%	ECFC 4D 4,00% 1,00%	HUVEC F 6,00% 7,00%	MSZ KM MNZ B 0,50% 1,18%	MSZ KM Fett 7/5 0,00% 19,05%	ECFC 4D + MSZ B 5,00% 3,70%	HUVEC F + MSZ B 0,00% 4,35%	ECFC 4D + MSZ 7/5 1,00% 2,50%	HUVEC F + MSZ 7/5 0,50% 1,00%
CD 133 ^{low} V1 V2 V3	Sus 8,00% 5,88% 3,51%	AFT024 6,00% 8,50% 6,50%	ECFC 4D 4,00% 1,00% 1,00%	HUVEC F 6,00% 7,00% 4,00%	MSZ KM MNZ B 0,50% 1,18% 7,02%	MSZ KM Fett 7/5 0,00% 19,05% 16,67%	ECFC 4D + MSZ B 5,00% 3,70% 0,00%	HUVEC F + MSZ B 0,00% 4,35% 2,00%	ECFC 4D + MSZ 7/5 1,00% 2,50% 1,00%	HUVEC F + MSZ 7/5 0,50% 1,00% 1,50%
CD 133 ^{low} V1 V2 V3 V4 V5	Sus 8,00% 5,88% 3,51% 5,00%	AFT024 6,00% 8,50% 6,50% 4,29%	ECFC 4D 4,00% 1,00% 1,00% 2,00%	HUVEC F 6,00% 7,00% 4,00% 0,50% 2,00%	MSZ KM MNZ B 0,50% 1,18% 7,02% 2,00%	MSZ KM Fett 7/5 0,00% 19,05% 16,67% 2,50%	ECFC 4D + MSZ B 5,00% 3,70% 0,00% 1,00%	HUVEC F + MSZ B 0,00% 4,35% 2,00% 0,00%	ECFC 4D + MSZ 7/5 1,00% 2,50% 1,00% 0,00%	HUVEC F + MSZ 7/5 0,50% 1,00% 1,50% 1,50%
CD 133 ^{low} V1 V2 V3 V4 V5	Sus 8,00% 5,88% 3,51% 5,00% 9,00%	AFT024 6,00% 8,50% 6,50% 4,29% 0,00%	ECFC 4D 4,00% 1,00% 2,00% 4,50%	HUVEC F 6,00% 7,00% 4,00% 0,50% 2,00%	MSZ KM 0,50% 1,18% 7,02% 2,00% 3,00%	MSZ KM Fett 7/5 0,00% 19,05% 16,67% 2,50% 4,00%	ECFC 4D + MSZ B 5,00% 3,70% 0,00% 1,00% 3,00%	HUVEC F + MSZ B 0,00% 4,35% 2,00% 0,00% 1,50%	ECFC 4D + MSZ 7/5 1,00% 2,50% 1,00% 0,00% 2,00%	HUVEC F + MSZ 7/5 0,50% 1,00% 1,50% 1,50% 1,50%
CD 133 ^{low} V1 V2 V3 V4 V5 MW	Sus 8,00% 5,88% 3,51% 5,00% 9,00% 6,28%	AFT024 6,00% 8,50% 6,50% 4,29% 0,00% 5,06%	ECFC 4D 4,00% 1,00% 1,00% 2,00% 4,50% 2,50%	HUVEC F 6,00% 7,00% 4,00% 0,50% 2,00% 3,90%	MSZ KM MNZ B 0,50% 1,18% 7,02% 2,00% 3,00% 2,74%	MSZ KM Fett 7/5 0,00% 19,05% 16,67% 2,50% 4,00% 8,44%	ECFC 4D + MSZ B 5,00% 3,70% 0,00% 1,00% 3,00% 2,54%	HUVEC F + MSZ B 0,00% 4,35% 2,00% 0,00% 1,50% 1,57%	ECFC 4D + MSZ 7/5 1,00% 2,50% 1,00% 0,00% 2,00% 1,30%	HUVEC F + MSZ 7/5 0,50% 1,00% 1,50% 1,50% 1,50%
CD 133 ^{low} V1 V2 V3 V4 V5 MW SEM	Sus 8,00% 5,88% 3,51% 5,00% 9,00% 6,28% 1,00%	AFT024 6,00% 8,50% 6,50% 4,29% 0,00% 5,06% 1,43%	ECFC 4D 4,00% 1,00% 1,00% 2,00% 4,50% 2,50% 0,74%	HUVEC F 6,00% 7,00% 4,00% 0,50% 2,00% 3,90% 1,21%	MSZ KM MNZ B 0,50% 1,18% 7,02% 2,00% 3,00% 2,74% 1,15%	MSZ KM Fett 7/5 0,00% 19,05% 16,67% 2,50% 4,00% 8,44% 3,91%	ECFC 4D + MSZ B 5,00% 3,70% 0,00% 1,00% 3,00% 2,54% 0,91%	HUVEC F + MSZ B 0,00% 4,35% 2,00% 0,00% 1,50% 1,50% 1,57% 0,80%	ECFC 4D + MSZ 7/5 1,00% 2,50% 1,00% 2,00% 1,30% 0,44%	HUVEC F + MSZ 7/5 0,50% 1,00% 1,50% 1,50% 1,50% 1,20% 0,20%
CD 133 ^{low} V1 V2 V3 V4 V5 MW SEM D (S)	Sus 8,00% 5,88% 3,51% 5,00% 9,00% 6,28% 1,00%	AFT024 6,00% 8,50% 6,50% 4,29% 0,00% 5,06% 1,43% 0,604	ECFC 4D 4,00% 1,00% 2,00% 4,50% 2,50% 0,74% 0.001*	HUVEC F 6,00% 7,00% 4,00% 0,50% 2,00% 3,90% 1,21% 0,194	MSZ KM MNZ B 0,50% 1,18% 7,02% 2,00% 3,00% 2,74% 1,15% 0,138	MSZ KM Fett 7/5 0,00% 19,05% 16,67% 2,50% 4,00% 8,44% 3,91% 0,661	ECFC 4D + MSZ B 5,00% 3,70% 0,00% 1,00% 3,00% 2,54% 0,91% 0.004*	HUVEC F + MSZ B 0,00% 4,35% 2,00% 0,00% 1,50% 1,57% 0,80% 0,028*	ECFC 4D + MSZ 7/5 1,00% 2,50% 1,00% 2,00% 1,30% 0,44% 0,006*	HUVEC F + MSZ 7/5 0,50% 1,00% 1,50% 1,50% 1,50% 1,20% 0,20%
CD 133 ^{low} V1 V2 V3 V4 V5 MW SEM P (S) p (A)	Sus 8,00% 5,88% 3,51% 5,00% 9,00% 6,28% 1,00% -	AFT024 6,00% 8,50% 6,50% 4,29% 0,00% 5,06% 1,43% 0,604	ECFC 4D 4,00% 1,00% 2,00% 4,50% 2,50% 0,74% 0,001* 0,278	HUVEC F 6,00% 7,00% 4,00% 0,50% 2,00% 3,90% 1,21% 0,194 0,313	MSZ KM MNZ B 0,50% 1,18% 7,02% 2,00% 3,00% 2,74% 1,15% 0,138 0,287	MSZ KM Fett 7/5 0,00% 19,05% 16,67% 2,50% 4,00% 8,44% 3,91% 0,661 0,358	ECFC 4D + MSZ B 5,00% 3,70% 0,00% 1,00% 3,00% 2,54% 0,91% 0,004* 0,202	HUVEC F + MSZ B 0,00% 4,35% 2,00% 0,00% 1,50% 1,57% 0,80% 0,028* 0,054	ECFC 4D + MSZ 7/5 1,00% 2,50% 1,00% 2,00% 1,30% 0,44% 0,006* 0,062	HUVEC F + MSZ 7/5 0,50% 1,50% 1,50% 1,50% 1,50% 1,20% 0,20% 0,010* 0,066
CD 133 ^{low} V1 V2 V3 V4 V5 MW SEM p (S) p (A)	Sus 8,00% 5,88% 3,51% 5,00% 9,00% 6,28% 1,00% - -	AFT024 6,00% 8,50% 6,50% 4,29% 0,00% 5,06% 1,43% 0,604 -	ECFC 4D 4,00% 1,00% 2,00% 4,50% 2,50% 0,74% 0,001* 0,278	HUVEC F 6,00% 7,00% 4,00% 2,00% 3,90% 1,21% 0,194 0,313	MSZ KM MNZ B 0,50% 1,18% 7,02% 2,00% 3,00% 2,74% 1,15% 0,138 0,287	MSZ KM Fett 7/5 0,00% 19,05% 16,67% 2,50% 4,00% 8,44% 3,91% 0,661 0,358	ECFC 4D + MSZ B 5,00% 3,70% 0,00% 1,00% 3,00% 2,54% 0,91% 0,004* 0,202	HUVEC F + MSZ B 0,00% 4,35% 2,00% 0,00% 1,50% 1,50% 1,57% 0,80% 0,028* 0,054	ECFC 4D + MSZ 7/5 1,00% 2,50% 1,00% 2,00% 1,30% 0,44% 0,006* 0,062	HUVEC F + MSZ 7/5 0,50% 1,00% 1,50% 1,50% 1,50% 1,20% 0,20% 0,010* 0,066
CD 133 ^{low} V1 V2 V3 V4 V5 MW SEM p (S) p (A)	Sus 8,00% 5,88% 3,51% 5,00% 9,00% 6,28% 1,00% - -	AFT024 6,00% 8,50% 6,50% 4,29% 0,00% 5,06% 1,43% 0,604 -	ECFC 4D 4,00% 1,00% 2,00% 4,50% 2,50% 0,74% 0,001* 0,278	HUVEC F 6,00% 7,00% 4,00% 2,00% 3,90% 1,21% 0,194 0,313	MSZ KM MNZ B 0,50% 1,18% 7,02% 2,00% 3,00% 2,74% 1,15% 0,138 0,287 MSZ	MSZ KM Fett 7/5 0,00% 19,05% 16,67% 2,50% 4,00% 8,44% 3,91% 0,661 0,358 MSZ	ECFC 4D + MSZ B 5,00% 3,70% 0,00% 1,00% 3,00% 2,54% 0,91% 0,004* 0,202 ECFC	HUVEC F + MSZ B 0,00% 4,35% 2,00% 0,00% 1,50% 1,50% 1,57% 0,80% 0,028* 0,054 HUVEC	ECFC 4D + MSZ 7/5 1,00% 2,50% 1,00% 2,00% 1,30% 0,44% 0,006* 0,062 ECFC	HUVEC F + MSZ 7/5 0,50% 1,00% 1,50% 1,50% 1,50% 1,20% 0,20% 0,010* 0,066 HUVEC
CD 133 ^{low} V1 V2 V3 V4 V5 MW SEM p (S) p (A)	Sus 8,00% 5,88% 3,51% 5,00% 9,00% 6,28% 1,00% - - Sus	AFT024 6,00% 8,50% 6,50% 4,29% 0,00% 5,06% 1,43% 0,604 -	ECFC 4D 4,00% 1,00% 2,00% 4,50% 2,50% 0,74% 0,001* 0,278 ECFC	HUVEC F 6,00% 7,00% 4,00% 0,50% 2,00% 3,90% 1,21% 0,194 0,313 HUVEC	MSZ KM MNZ B 0,50% 1,18% 7,02% 2,00% 3,00% 2,74% 1,15% 0,138 0,287 MSZ KM	MSZ KM Fett 7/5 0,00% 19,05% 16,67% 2,50% 4,00% 8,44% 3,91% 0,661 0,358 MSZ KM Fett	ECFC 4D + MSZ B 5,00% 3,70% 0,00% 1,00% 3,00% 2,54% 0,91% 0,004* 0,202 ECFC 4D +	HUVEC F + MSZ B 0,00% 4,35% 2,00% 0,00% 1,50% 1,50% 1,57% 0,80% 0,028* 0,054 HUVEC F +	ECFC 4D + MSZ 7/5 1,00% 2,50% 1,00% 2,00% 1,30% 0,40% 0,44% 0,062 ECFC 4D +	HUVEC F + MSZ 7/5 0,50% 1,00% 1,50% 1,50% 1,50% 1,50% 1,20% 0,20% 0,010* 0,066 HUVEC F +
CD 133 ^{low} V1 V2 V3 V4 V5 MW SEM p (S) p (A) CD 133 ^{low}	Sus 8,00% 5,88% 3,51% 5,00% 9,00% 6,28% 1,00% - - Sus	AFT024 6,00% 8,50% 6,50% 4,29% 0,00% 5,06% 1,43% 0,604 - - AFT024	ECFC 4D 4,00% 1,00% 2,00% 4,50% 2,50% 0,74% 0,001* 0,278 ECFC 4D	HUVEC F 6,00% 7,00% 4,00% 0,50% 2,00% 1,21% 0,194 0,313 HUVEC F	MSZ KM MNZ B 0,50% 1,18% 7,02% 2,00% 3,00% 2,74% 1,15% 0,138 0,287 MSZ KM MNZ B	MSZ KM Fett 7/5 0,00% 19,05% 16,67% 2,50% 4,00% 8,44% 3,91% 0,661 0,358 MSZ KM Fett 7/5	ECFC 4D + MSZ B 5,00% 3,70% 0,00% 1,00% 3,00% 2,54% 0,91% 0,004* 0,202 ECFC 4D + MSZ B	HUVEC F + MSZ B 0,00% 4,35% 2,00% 0,00% 1,50% 1,50% 1,57% 0,80% 0,028* 0,054 HUVEC F + MSZ B	ECFC 4D + MSZ 7/5 1,00% 2,50% 1,00% 2,00% 1,30% 0,40% 0,006* 0,062 ECFC 4D + MSZ 7/5	HUVEC F + MSZ 7/5 0,50% 1,00% 1,50% 1,50% 1,50% 1,20% 0,20% 0,010* 0,066 HUVEC F + MSZ 7/5
CD 133 ^{low} V1 V2 V3 V4 V5 MW SEM P (S) p (A) CD 133 ^{low} V1	Sus 8,00% 5,88% 3,51% 5,00% 9,00% 6,28% 1,00% - - Sus 0,57	AFT024 6,00% 8,50% 6,50% 4,29% 0,00% 5,06% 1,43% 0,604 - - AFT024 11.06	ECFC 4D 4,00% 1,00% 2,00% 4,50% 2,50% 0,74% 0,001* 0,278 ECFC 4D 0,05	HUVEC F 6,00% 7,00% 4,00% 0,50% 2,00% 1,21% 0,194 0,313 HUVEC F 0,08	MSZ KM MNZ B 0,50% 1,18% 7,02% 2,00% 3,00% 2,74% 1,15% 0,138 0,287 MSZ KM MNZ B 0,16	MSZ KM Fett 7/5 0,00% 19,05% 16,67% 2,50% 4,00% 8,44% 3,91% 0,661 0,358 MSZ KM Fett 7/5 0,00	ECFC 4D + MSZ B 5,00% 3,70% 0,00% 1,00% 3,00% 2,54% 0,91% 0,004* 0,004* 0,202 ECFC 4D + MSZ B 2 99	HUVEC F + MSZ B 0,00% 4,35% 2,00% 0,00% 1,50% 1,50% 1,57% 0,80% 0,028* 0,054 HUVEC F + MSZ B 0,00	ECFC 4D + MSZ 7/5 1,00% 2,50% 1,00% 2,00% 1,30% 0,40% 0,006* 0,062 ECFC 4D + MSZ 7/5 0,11	HUVEC F + MSZ 7/5 0,50% 1,00% 1,50% 1,50% 1,50% 1,20% 0,20% 0,010* 0,066 HUVEC F + MSZ 7/5 0,09
CD 133 ^{low} V1 V2 V3 V4 V5 MW SEM p (S) p (A) CD 133 ^{low} V1 V2	Sus 8,00% 5,88% 3,51% 5,00% 9,00% 6,28% 1,00% - - Sus 0,57 0,13	AFT024 6,00% 8,50% 6,50% 4,29% 0,00% 5,06% 1,43% 0,604 - - AFT024 11,06 11,05	ECFC 4D 4,00% 1,00% 2,00% 4,50% 2,50% 0,74% 0,074% 0,001* 0,278 ECFC 4D 0,05 0,05	HUVEC F 6,00% 7,00% 4,00% 0,50% 2,00% 1,21% 0,194 0,313 HUVEC F 0,08 0,24	MSZ KM MNZ B 0,50% 1,18% 7,02% 2,00% 3,00% 2,74% 1,15% 0,138 0,287 MSZ KM MNZ B 0,16 0,65	MSZ KM Fett 7/5 0,00% 19,05% 16,67% 2,50% 4,00% 8,44% 3,91% 0,661 0,358 MSZ KM Fett 7/5 0,00 8,49	ECFC 4D + MSZ B 5,00% 3,70% 0,00% 1,00% 3,00% 2,54% 0,91% 0,004* 0,202 ECFC 4D + MSZ B 2,99 1,63	HUVEC F + MSZ B 0,00% 4,35% 2,00% 0,00% 1,50% 1,57% 0,80% 0,028* 0,054 HUVEC F + MSZ B 0,00 1,75	ECFC 4D + MSZ 7/5 1,00% 2,50% 1,00% 2,00% 1,30% 0,044% 0,062 ECFC 4D + MSZ 7/5 0,11 0,19	HUVEC F + MSZ 7/5 0,50% 1,00% 1,50% 1,50% 1,50% 0,20% 0,20% 0,010* 0,066 HUVEC F + MSZ 7/5 0,09 0 30
CD 133 ^{low} V1 V2 V3 V4 V5 MW SEM P (S) p (A) CD 133 ^{low} V1 V2 V3	Sus 8,00% 5,88% 3,51% 5,00% 9,00% 6,28% 1,00% - - Sus 0,57 0,13 0,08	AFT024 6,00% 8,50% 6,50% 4,29% 0,00% 5,06% 1,43% 0,604 - - AFT024 11,06 11,05 10,01	ECFC 4D 4,00% 1,00% 2,00% 4,50% 2,50% 0,74% 0,074% 0,001* 0,278 ECFC 4D 0,05 0,05 0,02	HUVEC F 6,00% 7,00% 4,00% 0,50% 2,00% 3,90% 1,21% 0,194 0,313 HUVEC F 0,08 0,24 0,17	MSZ KM MNZ B 0,50% 1,18% 7,02% 2,00% 3,00% 2,74% 1,15% 0,138 0,287 MSZ KM MNZ B 0,16 0,65 2,46	MSZ KM Fett 7/5 0,00% 19,05% 16,67% 2,50% 4,00% 8,44% 3,91% 0,661 0,358 MSZ KM Fett 7/5 0,00 8,49 4,45	ECFC 4D + MSZ B 5,00% 3,70% 0,00% 1,00% 3,00% 2,54% 0,91% 0,91% 0,004* 0,202 ECFC 4D + MSZ B 2,99 1,63 0,00	HUVEC F + MSZ B 0,00% 4,35% 2,00% 0,00% 1,50% 1,57% 0,80% 0,028* 0,054 HUVEC F + MSZ B 0,00 1,75 1,06	ECFC 4D + MSZ 7/5 1,00% 2,50% 1,00% 2,00% 1,30% 0,00% 0,44% 0,062 ECFC 4D + MSZ 7/5 0,11 0,19 0,08	HUVEC F + MSZ 7/5 0,50% 1,00% 1,50% 1,50% 1,50% 1,20% 0,20% 0,010* 0,066 HUVEC F + MSZ 7/5 0,09 0,30 0,21
CD 133 ^{low} V1 V2 V3 V4 V5 MW SEM P (S) p (A) CD 133 ^{low} V1 V2 V3 V4	Sus 8,00% 5,88% 3,51% 5,00% 9,00% 6,28% 1,00% - - Sus 0,57 0,13 0,08 0,19	AFT024 6,00% 8,50% 6,50% 4,29% 0,00% 5,06% 1,43% 0,604 - - AFT024 11,06 11,05 10,01 13,65	ECFC 4D 4,00% 1,00% 2,00% 4,50% 2,50% 0,74% 0,074% 0,001* 0,278 ECFC 4D 0,05 0,05 0,02 0,16	HUVEC F 6,00% 7,00% 4,00% 0,50% 2,00% 3,90% 1,21% 0,194 0,313 HUVEC F 0,08 0,24 0,17 0,08	MSZ KM MNZ B 0,50% 1,18% 7,02% 2,00% 3,00% 2,74% 1,15% 0,138 0,287 MSZ KM MNZ B 0,16 0,65 2,46 0,62	MSZ KM Fett 7/5 0,00% 19,05% 16,67% 2,50% 4,00% 8,44% 3,91% 0,661 0,358 MSZ KM Fett 7/5 0,00 8,49 4,45 1 92	ECFC 4D + MSZ B 5,00% 3,70% 0,00% 1,00% 3,00% 2,54% 0,91% 0,91% 0,004* 0,202 ECFC 4D + MSZ B 2,99 1,63 0,00 0,48	HUVEC F + MSZ B 0,00% 4,35% 2,00% 0,00% 1,50% 1,57% 0,80% 0,80% 0,028* 0,054 HUVEC F + MSZ B 0,00 1,75 1,06 0,00	ECFC 4D + MSZ 7/5 1,00% 2,50% 1,00% 2,00% 2,00% 1,30% 0,44% 0,062 ECFC 4D + MSZ 7/5 0,11 0,19 0,08 0,00	HUVEC F + MSZ 7/5 0,50% 1,00% 1,50% 1,50% 1,50% 1,20% 0,20% 0,010* 0,066 HUVEC F + MSZ 7/5 0,09 0,30 0,21 0,57
CD 133 ^{low} V1 V2 V3 V4 V5 MW SEM P (S) p (A) CD 133 ^{low} V1 V2 V3 V4 V5	Sus 8,00% 5,88% 3,51% 5,00% 9,00% 6,28% 1,00% - - Sus 0,57 0,13 0,08 0,19 0,35	AFT024 6,00% 8,50% 6,50% 4,29% 0,00% 5,06% 1,43% 0,604 - - AFT024 11,06 11,05 10,01 13,65 0,00	ECFC 4D 4,00% 1,00% 2,00% 4,50% 2,50% 0,74% 0,074% 0,001* 0,278 ECFC 4D 0,05 0,05 0,05 0,02 0,16 0,20	HUVEC F 6,00% 7,00% 4,00% 0,50% 2,00% 3,90% 1,21% 0,194 0,313 HUVEC F 0,08 0,24 0,17 0,08 0,19	MSZ KM MNZ B 0,50% 1,18% 7,02% 2,00% 3,00% 2,74% 1,15% 0,138 0,287 MSZ KM MNZ B 0,16 0,65 2,46 0,62 0,98	MSZ KM Fett 7/5 0,00% 19,05% 16,67% 2,50% 4,00% 8,44% 3,91% 0,661 0,358 MSZ KM Fett 7/5 0,00 8,49 4,45 1,92 2,244	ECFC 4D + MSZ B 5,00% 3,70% 0,00% 1,00% 3,00% 2,54% 0,91% 0,91% 0,004* 0,202 ECFC 4D + MSZ B 2,99 1,63 0,00 0,48 0,74	HUVEC F + MSZ B 0,00% 4,35% 2,00% 0,00% 1,50% 1,57% 0,80% 0,80% 0,028* 0,054 HUVEC F + MSZ B 0,00 1,75 1,06 0,00 0,63	ECFC 4D + MSZ 7/5 1,00% 2,50% 1,00% 2,00% 2,00% 1,30% 0,44% 0,062 ECFC 4D + MSZ 7/5 0,11 0,19 0,08 0,00 0,25	HUVEC F + MSZ 7/5 0,50% 1,00% 1,50% 1,50% 1,50% 0,20% 0,20% 0,010* 0,066 HUVEC F + MSZ 7/5 0,09 0,30 0,21 0,57 0,54
CD 133 ^{low} V1 V2 V3 V4 V5 MW SEM P (S) p (A) CD 133 ^{low} V1 V2 V3 V4 V5 V4 V5	Sus 8,00% 5,88% 3,51% 5,00% 9,00% 6,28% 1,00% - - - Sus 0,57 0,13 0,08 0,19 0,35 - -	AFT024 6,00% 8,50% 6,50% 4,29% 0,00% 5,06% 1,43% 0,604 - - AFT024 11,06 11,05 10,01 13,65 0,00	ECFC 4D 4,00% 1,00% 2,00% 4,50% 2,50% 0,74% 0,074% 0,001* 0,278 ECFC 4D 0,05 0,05 0,05 0,02 0,16 0,20	HUVEC F 6,00% 7,00% 4,00% 0,50% 2,00% 1,21% 0,194 0,313 HUVEC F 0,08 0,24 0,17 0,08 0,08 0,24	MSZ KM MNZ B 0,50% 1,18% 7,02% 2,00% 3,00% 2,74% 1,15% 0,138 0,287 MSZ KM MNZ B 0,16 0,65 2,46 0,62 0,98	MSZ KM Fett 7/5 0,00% 19,05% 16,67% 2,50% 4,00% 8,44% 3,91% 0,661 0,358 MSZ KM Fett 7/5 0,00 8,49 4,45 1,92 2,44	ECFC 4D + MSZ B 5,00% 3,70% 0,00% 1,00% 3,00% 2,54% 0,91% 0,004* 0,202 ECFC 4D + MSZ B 2,99 1,63 0,00 0,48 0,074	HUVEC F + MSZ B 0,00% 4,35% 2,00% 0,00% 1,50% 1,57% 0,80% 0,80% 0,028* 0,054 HUVEC F + MSZ B 0,00 1,75 1,06 0,00 0,63	ECFC 4D + MSZ 7/5 1,00% 2,50% 1,00% 2,00% 1,30% 0,00% 0,44% 0,062 ECFC 4D + MSZ 7/5 0,11 0,19 0,08 0,00 0,025	HUVEC F + MSZ 7/5 0,50% 1,00% 1,50% 1,50% 1,20% 0,20% 0,20% 0,010* 0,066 HUVEC F + MSZ 7/5 0,09 0,30 0,21 0,57 0,54
CD 133 ^{low} V1 V2 V3 V4 V5 MW SEM P (S) P (A) CD 133 ^{low} V1 V2 V3 V4 V5 V4 V5 SEM	Sus 8,00% 5,88% 3,51% 5,00% 9,00% 6,28% 1,00% - - - Sus 0,57 0,13 0,08 0,19 0,35 0,27	AFT024 6,00% 8,50% 6,50% 4,29% 0,00% 5,06% 1,43% 0,604 - AFT024 11,06 11,05 10,01 13,65 0,00 9,15	ECFC 4D 4,00% 1,00% 2,00% 4,50% 2,50% 0,74% 0,001* 0,278 ECFC 4D 0,05 0,05 0,05 0,05 0,02 0,16 0,20	HUVEC F 6,00% 7,00% 4,00% 0,50% 2,00% 1,21% 0,194 0,313 HUVEC F 0,08 0,24 0,17 0,08 0,19 0,15 0,15	MSZ KM MNZ B 0,50% 1,18% 7,02% 2,00% 3,00% 2,74% 1,15% 0,138 0,287 MSZ KM MNZ B 0,16 0,65 2,46 0,62 0,98 0,97	MSZ KM Fett 7/5 0,00% 19,05% 16,67% 2,50% 4,00% 8,44% 3,91% 0,661 0,358 MSZ KM Fett 7/5 0,00 8,49 4,45 1,92 2,44 3,46 3,46	ECFC 4D + MSZ B 5,00% 3,70% 0,00% 1,00% 3,00% 2,54% 0,91% 0,004* 0,202 ECFC 4D + MSZ B 2,99 1,63 0,00 0,48 0,74 1,17 1,17	HUVEC F + MSZ B 0,00% 4,35% 2,00% 0,00% 1,50% 1,57% 0,80% 0,80% 0,028* 0,054 HUVEC F + MSZ B 0,00 1,75 1,06 0,00 0,63 0,69 0,69	ECFC 4D + MSZ 7/5 1,00% 2,50% 1,00% 2,00% 2,00% 1,30% 0,44% 0,062 ECFC 4D + MSZ 7/5 0,11 0,19 0,08 0,00 0,25 0,13	HUVEC F + MSZ 7/5 0,50% 1,00% 1,50% 1,50% 1,20% 0,20% 0,20% 0,010* 0,066 HUVEC F + MSZ 7/5 0,09 0,30 0,21 0,57 0,54 0,34 0,34
CD 133 ^{low} V1 V2 V3 V4 V5 MW SEM P (S) p (A) CD 133 ^{low} V1 V2 V3 V4 V5 V4 V5 MW SEM	Sus 8,00% 5,88% 3,51% 5,00% 9,00% 6,28% 1,00% - - - Sus 0,57 0,13 0,08 0,19 0,35 0,27 0,09	AFT024 6,00% 8,50% 6,50% 4,29% 0,00% 5,06% 1,43% 0,604 - AFT024 11,06 11,05 10,01 13,65 0,00 9,15 2,37	ECFC 4D 4,00% 1,00% 2,00% 4,50% 2,50% 0,74% 0,001* 0,278 ECFC 4D 0,05 0,05 0,05 0,05 0,02 0,16 0,20 0,10 0,04	HUVEC F 6,00% 7,00% 4,00% 0,50% 2,00% 3,90% 1,21% 0,194 0,313 HUVEC F 0,08 0,24 0,17 0,08 0,19 0,15 0,03	MSZ KM MNZ B 0,50% 1,18% 7,02% 2,00% 3,00% 2,74% 1,15% 0,138 0,287 MSZ KM MNZ B 0,16 0,65 2,46 0,62 0,98 0,97 0,39	MSZ KM Fett 7/5 0,00% 19,05% 16,67% 2,50% 4,00% 8,44% 3,91% 0,661 0,358 MSZ KM Fett 7/5 0,00 8,49 4,45 1,92 2,44 3,46 1,44	ECFC 4D + MSZ B 5,00% 3,70% 0,00% 1,00% 3,00% 2,54% 0,91% 0,91% 0,004* 0,202 ECFC 4D + MSZ B 2,99 1,63 0,00 0,48 0,74 1,17 0,53	HUVEC F + MSZ B 0,00% 4,35% 2,00% 0,00% 1,50% 1,57% 0,80% 0,80% 0,028* 0,054 HUVEC F + MSZ B 0,00 1,75 1,06 0,00 0,63 0,69 0,33	ECFC 4D + MSZ 7/5 1,00% 2,50% 1,00% 2,00% 2,00% 1,30% 0,44% 0,062 ECFC 4D + MSZ 7/5 0,11 0,19 0,08 0,00 0,25 0,13 0,04	HUVEC F + MSZ 7/5 0,50% 1,00% 1,50% 1,50% 1,20% 0,20% 0,20% 0,010* 0,066 HUVEC F + MSZ 7/5 0,09 0,30 0,21 0,57 0,54 0,34 0,09
CD 133 ^{low} V1 V2 V3 V4 V5 MW SEM P (S) p (A) CD 133 ^{low} V1 V2 V3 V4 V5 V4 V5 V4 V5 V4 V5 V4 V5 V4 V5 V3 V4 V2 V3 V4 V2 V3 V4 V5 V3 V4 V5 V3 V4 V5 V5 V5 V3 V4 V5 V5 V3 V4 V5 V5 V5 V5 V5 V5 V5 V5 V5 V5 V5 V5 V5	Sus 8,00% 5,88% 3,51% 5,00% 9,00% 6,28% 1,00% - - - Sus 0,57 0,13 0,08 0,19 0,35 0,27 0,09 -	AFT024 6,00% 8,50% 6,50% 4,29% 0,00% 5,06% 1,43% 0,604 - AFT024 11,06 11,05 10,01 13,65 0,00 9,15 2,37 0,020	ECFC 4D 4,00% 1,00% 2,00% 4,50% 2,50% 0,74% 0,01* 0,278 ECFC 4D 0,05 0,05 0,05 0,05 0,02 0,16 0,20 0,10 0,04 0,138	HUVEC F 6,00% 7,00% 4,00% 0,50% 2,00% 3,90% 1,21% 0,194 0,313 HUVEC F 0,08 0,24 0,17 0,08 0,24 0,17 0,08 0,19 0,15 0,03 0,359	MSZ KM MNZ B 0,50% 1,18% 7,02% 2,00% 3,00% 2,74% 1,15% 0,138 0,287 MSZ KM MNZ B 0,138 0,287 MSZ KM MNZ B 0,165 2,46 0,62 0,98 0,97 0,39 0,195	MSZ KM Fett 7/5 0,00% 19,05% 16,67% 2,50% 4,00% 8,44% 3,91% 0,661 0,358 MSZ KM Fett 7/5 0,00 8,49 4,45 1,92 2,44 3,46 1,44 1,44 0,102	ECFC 4D + MSZ B 5,00% 3,70% 0,00% 1,00% 3,00% 2,54% 0,91% 0,004* 0,202 ECFC 4D + MSZ B 2,99 1,63 0,00 0,48 0,74 1,17 0,53 0,122	HUVEC F + MSZ B 0,00% 4,35% 2,00% 0,00% 1,50% 1,57% 0,80% 0,80% 0,028* 0,054 HUVEC F + MSZ B 0,00 1,75 1,06 0,00 0,63 0,69 0,33 0,345	ECFC 4D + MSZ 7/5 1,00% 2,50% 1,00% 2,00% 2,00% 1,30% 0,44% 0,062 ECFC 4D + MSZ 7/5 0,11 0,19 0,08 0,00 0,25 0,13 0,04 0,203	HUVEC F + MSZ 7/5 0,50% 1,00% 1,50% 1,50% 1,20% 0,20% 0,20% 0,010* 0,066 HUVEC F + MSZ 7/5 0,09 0,30 0,21 0,57 0,54 0,34 0,09 0,627
CD 133 ^{low} V1 V2 V3 V4 V5 MW SEM P (S) p (A) CD 133 ^{low} V1 V2 V3 V4 V5 V3 V4 V5 MW SEM P (S) P (S) P (A)	Sus 8,00% 5,88% 3,51% 5,00% 9,00% 6,28% 1,00% - - - Sus 0,57 0,13 0,08 0,19 0,35 0,27 0,09 - - -	AFT024 6,00% 8,50% 6,50% 4,29% 0,00% 5,06% 1,43% 0,604 - AFT024 11,06 11,05 10,01 13,65 0,00 9,15 2,37 0,020 -	ECFC 4D 4,00% 1,00% 2,00% 4,50% 2,50% 0,74% 0,01* 0,278 ECFC 4D 0,05 0,05 0,05 0,05 0,02 0,16 0,20 0,10 0,20 0,10 0,04 0,138 0,019*	HUVEC F 6,00% 7,00% 4,00% 0,50% 2,00% 3,90% 1,21% 0,194 0,313 HUVEC F 0,08 0,24 0,17 0,08 0,24 0,17 0,08 0,19 0,15 0,03 0,359 0,019*	MSZ KM MNZ B 0,50% 1,18% 7,02% 2,00% 3,00% 2,74% 1,15% 0,138 0,287 MSZ KM MNZ B 0,138 0,287 MSZ KM MNZ B 0,165 2,46 0,65 2,46 0,62 0,98 0,97 0,39 0,195 0,029*	MSZ KM Fett 7/5 0,00% 19,05% 16,67% 2,50% 4,00% 8,44% 3,91% 0,661 0,358 MSZ KM Fett 7/5 0,00 8,49 4,45 1,92 2,44 3,46 1,92 2,44 3,46 1,44 0,102 0,099	ECFC 4D + MSZ B 5,00% 3,70% 0,00% 1,00% 3,00% 2,54% 0,91% 0,004* 0,202 ECFC 4D + MSZ B 2,99 1,63 0,00 0,48 0,74 1,17 0,53 0,122 0,027*	HUVEC F + MSZ B 0,00% 4,35% 2,00% 0,00% 1,50% 1,57% 0,80% 0,80% 0,028* 0,054 HUVEC F + MSZ B 0,00 1,75 1,06 0,00 0,63 0,69 0,33 0,345 0,025*	ECFC 4D + MSZ 7/5 1,00% 2,50% 1,00% 2,00% 2,00% 1,30% 0,44% 0,062 ECFC 4D + MSZ 7/5 0,11 0,19 0,08 0,00 0,25 0,13 0,04 0,203 0,020*	HUVEC F + MSZ 7/5 0,50% 1,00% 1,50% 1,50% 1,20% 0,20% 0,20% 0,010* 0,066 HUVEC F + MSZ 7/5 0,09 0,30 0,21 0,57 0,54 0,34 0,09 0,627 0,021*

Alle Werte sind als x-fache Expansion angegeben. Abkürzungen: Sus = Suspension; MNZ = Mononukleäre Zellen aus den Knochenmark; MW = Mittelwert; p(S) = Signifikanzberechnung im Vergleich zur Suspension; p(A) = Signifikanzberechnung im Vergleich zur AFT024 (t-Test, zweiseitig, gepaart); Signifikanzen p<0,05 werden fett gedruckt dargestellt.

CD133⁺CD34⁺ Zellen mit CFC Potential brachten CFU-G, CFU-M sowie CFU-GM Kolonien hervor (Abb. 31F, Tab. 64, n=5). CD133⁺CD34⁺ Zellen mit erythrozytärem Differenzierungspotential wurden in einzelnen Kokulturen mit Zellen der ECFC 4D (1x), MSZ KM MNZ B (2x), der AFT024 (2x) und der Kombination aus ECFC 4D und MSZ KM MNZ B (1x) detektiert (Abb. 31F, Tab. 64, n=5).

Koloniebildende Zellen in der CD133^{low}CD34⁺ Fraktion brachte fast ausschließlich CFU-G Kolonien hervor (Abb. 31F, Tab. 64, n=5). Nur in der Suspensionskultur (1x) der Kokultur mit der AFT024 (4x), ECFC 4D (1x), HUVEC F (2x) sowie der Tripel-Kultur mit Zellen der HUVEC F und MSZ KM MNZ B (2x) wurden BFU-E Kolonien in einzelnen Versuchen detektiert (Abb. 31G, Tab. 65, n=5).

Wie bereits in den vorhergehenden Kokulturversuchen wurden in der CD133⁺CD34⁺ Fraktion Zellen mit LTC-IC, NK-IC und myeloischem CFC Potential detektiert. In der CD133^{low}CD34⁺ Fraktion wurden Zellen mit CFU-G sowie vereinzelt BFU-E Potential gefunden. Einen reproduzierbaren Erhalt multipotenter CD133⁺CD34⁺ Zellen ermöglichte weder die Kokultur noch die Tripel-Kultur.

Die Kombination der beiden Stromazellentitäten führte im direkten Vergleich zu der Kokultur zu keiner reproduzierbar stärkeren Expansion primitiver HSVZ mit LTC-IC, NK-IC oder CFC Potential. Die Verwendung der Wachstumsfaktoren EGF und FGF im Kokulturmedium führte zudem zu einem nahezu vollständigen Verlust von CD133^{low}CD34⁺ HSVZ mit erythrozytärem Koloniebildungspotential, die in vorhergehenden Versuchen von den MSZ KM MNZ B und den MSZ KM Fett 7/5 in 5 von 5 Versuchen erhalten wurden (vgl. Abb. 17).

# 3.9. Identifizierung prädiktiver Marker auf Stromazellen für die Expansion von HSVZ

Wie in den vorhergehenden Abschnitten gezeigt, sind die im Rahmen diese Arbeit isolierten und charakterisierten primären humanen Stromazellen sehr heterogen hinsichtlich der Expression Zelltyp-spezifischer Oberflächenantigene, ihrer funktionellen Eigenschaften sowie ihrer Unterstützung zur *in vitro* Expansion von HSVZ (siehe Abschnitte 3.4, 3.5 und 3.7). Für die beiden getesteten Zellentitäten (Endothel und MSZ) existieren bislang keine Oberflächenmarker oder Analysemethoden, die eine umfangreiche und zeitintensive Testung der Stromazellen für die *in vitro* Expansion primitiver HSVZ ersetzten bzw. vereinfachen können.





Graphische Darstellung der Werte aus Tab. 39, Tab. 40, Tab. 41, Tab. 64 und Tab. 65 (A) Nach 14-tägiger Kokultur wurde das Verhältnis von CD90⁺ (MSZ) und CD31⁺ (Endothel) Stromazellen durchflusszytometrisch ermittelt. (B) Die Expansion hämatopoetischer Subpopulationen wurde durchflusszytometrisch quantifiziert. (C-E) Expandierte CD133⁺CD34⁺ wurden durchflusszytometrisch isoliert, in funktionelle Analysen überführt und die Expansion von Zellen mit LTC-IC, NK-IC und CFC Potential experimentell ermittelt (F und G) Im CFC Ansatz wurden 5 Kolonietypen unterschieden: CFU-MIX, BFU-E, CFU-G, CFU-GM und CFU-M. (Mittelwerte ± SEM). Die Zahlen über den Balken repräsentieren die Anzahl der CFC Ansätze mit erythrozytären und/oder erythromyeloischen Kolonien (Signifikanzen: * gegen Suspension, # gegen AFT024, p<0,05) Um mögliche prädiktive Marker für eine Vorauswahl primärer humaner mesenchymaler und endothelialer Stromazellen zu identifizieren, wurden alle in den vorhergehenden Abschnitten ermittelten Messwerte miteinander korreliert (Abb. 32). Der Fokus dieser Korrelationsanalyse lag dabei auf dem Vergleich der mittleren Fluoreszenzintensität (MFI) durchflusszytometrisch analysierter Oberflächenantigene auf den isolierten Primärzellen mit den experimentell ermittelten Expansionen phänotypischer und funktioneller HSVZ Subpopulationen nach der Kokultur (Abb. 32, eingerahmte Werte). Die Korrelation der unterschiedlichen Parameter zueinander wurde nach Spearman berechnet. Korrelationskoeffizienten (r²) größer 0,5 mit einer statistischen Signifikanz von p < 0,05 wurden als stark korrelierend und mit r² größer 0,7 als sehr stark korrelierend angenommen.

Bei den primären endothelialen Stromazellen konnten mit Hilfe der Spearman Rangkorrelation nur wenige signifikante Zusammenhänge ermittelt werden. Endotheliale Stromazellen mit einer hohen MFI der Oberflächenantigene CD105 sowie CD144 wiesen einen geringen Anteil CD34⁺ Zellen auf und ermöglichten eine stärkere Expansion von Zellen mit NK-IC Potential (CD105:  $r^2$ =0,605 und CD144:  $r^2$ =0,889). Ebenso unterstützten endotheliale Stromazellen mit einer höheren MFI des Oberflächenrezeptors VEGF-R2 eine stärkere Expansion von CD133⁺CD34⁺ Zellen sowie CD133⁺CD34⁺ Zellen mit CFC Potential (133⁺:  $r^2$ =0,582 und CFC:  $r^2$ =0,819).

Bei den MSZ waren insbesondere die beiden Oberflächenantigene CD49f und CD146 auffällig. MSZ mit einer hohen Expression des Integrins CD49f wiesen gleichzeitig eine stärkere Expression von CD146 auf ( $r^2=0,698$ ). Eine stärkere Expression des Integrins CD49f korrelierte mit einer geringeren Expansion von CD45⁺ ( $r^2=-0,735$ ) und CD133⁺CD34⁺ Zellen ( $r^2=-0,697$ ) sowie Zellen mit CFC Potential in der CD133⁺CD34⁺ und CD133^{low}CD34⁺ Population (CD133⁺:  $r^2=-0,755$ ; CD133^{low}:  $r^2=-0,539$ ). Eine geringere Expansion von Zellen mit LTC-IC (CD49f:  $r^2=-0,755$ ; CD146:  $r^2=-0,501$ ) war mit einer starken Expression der Oberflächenantigene CD49f und CD146 assoziiert. Weniger NK-ICs wurden bei stärkere Expression von CD146 beobachtet (CD146:  $r^2=-0,531$ ).

Mit Hilfe der Spearman Rangkorrelation konnten bei den endothelialen Stromazellen die Oberflächenantigene CD105, CD144 sowie VEGF-R2 und bei den MSZ CD49f sowie CD146 identifiziert werden, die ggf. als prädiktive Marker für die Expansion sowohl phänotypischer als auch funktioneller HSVZ Subpopulationen verwendet werden können.

Abb. 32: Korrelation der Expression von Oberflächenantigene auf primären Stromazellen mit der Expansion phänotypischer und funktioneller HSVZ

Nach Spearman berechnete Korrelationskoeffizienten und Signifikanzniveaus für (A) endothelialen sowie (B) mesenchymale Primärzellen. Die Korrelationen ( $r^2$ ) sind in der rechten oberen Hälfte der Tabellen und die korrespondierenden Signifikanzniveaus (p) in der linken unteren Hälfte angegeben. Statistisch signifikante Korrelationen (p<0,05) sind fett gedruckt. Signifikante Korrelationskoeffizienten sind rot hinterlegt.

#### 3.10. Zusammenfassung

Ein wesentlicher Befund der vorhergehenden Kokulturexperimente mit murinen und primären humaner Stromazellen ist, dass in keinem der Versuche eine reproduzierbare Expansion oder ein Erhalt multipotenter HSVZ in der CD133⁺CD34⁺ Fraktion nachgewiesen werden konnte. Zudem fand in fast allen Kulturbedingungen eine starke Expansion CD45⁺ sowie CD133⁺CD34⁺ Zellen statt, die weder LTC-IC, NK-IC noch CFC Potential aufwiesen. Die phänotypische Analyse der Nachkommenschaft stellt folglich keine geeignete Möglichkeit zur Quantifizierung primitiver HSVZ und somit zur Beurteilung der Kulturbedingungen dar. Die starke Proliferation CD133⁺CD34⁺ Zellen mit unbekanntem Differenzierungspotential führte zudem nachweislich zu einer Ausdünnung bzw. sehr geringen Frequenz von LTC-ICs, NK-ICs sowie CFCs (siehe Tab. 23, Tab. 28, Tab. 32, Tab. 36 und im Anhang Tab. 66 und Tab. 67) und somit mutmaßlich auch multipotenter HSVZ. Eine Detektion bzw. Quantifizierung dieser niedrigfrequenten CD133⁺CD34⁺ Zellen mit erythrozytärem Koloniebildungspotential ist folglich im CFC Ansatz aufgrund des hohen Detektionslimits von 0,25 % bei einer standardmäßigen Analyse von 400 Zellen nicht zuverlässig möglich. Der LTC-IC sowie NK-IC Ansatz ermöglichen hingegen eine zuverlässige Quantifizierung primitiver HSVZ, da für diese Analysen bis zu 6.000 Zellen eingesetzt werden, was auch eine Quantifizierung von Zellen mit einer sehr geringen Frequenz erlaubt.

Um bei einer Wiederholung der Experimente eine zuverlässige Detektion und Quantifizierung multipotenter CD133⁺CD34⁺ HSVZ zu ermöglichen, sollte nachfolgend ein Erythrozyten-Ansatz mit einem Detektionslimit für Zellen mit erythrozytärem Differenzierungspotential von unter 0,25 % etabliert werden (siehe Abschnitt 3.11.1). Da unklar ist, ob bei der *in vitro* Expansion weitere Linienpotentiale in der Nachkommenschaft ausgedünnt werden oder verloren gehen, sollten zeitgleich zusätzliche Nachweismethoden für Zellen mit Megakaryozyten, T-Zell, B-Zell sowie DC Potential etabliert werden (siehe Abschnitt 3.11.3).

Da die zuvor verwendeten humanen Primärzellen in ihrer Proliferation limitiert sind und folglich nur für eine begrenzte Anzahl an Versuchen zur Verfügung stehen, sollten humane Stromazellen, die eine starke Expansion primitiver HSVZ mit LTC-IC, NK-IC sowie CFC Potential unterstützten, immortalisiert und konserviert werden (siehe Abschnitt 3.12).

#### 3.11. Etablierung von *in vitro* Differenzierungsansätzen (Teil 2)

In den nachfolgenden Abschnitten wird die Qualifizierung von *in vitro* Analysemethoden zum Nachweis und zur Quantifizierung von Zellen mit erythrozytärem (siehe Abschnitt 3.11.1), megakaryozytärem (siehe Abschnitt 3.11.2) sowie T-Zell (siehe Abschnitt 3.11.3) Potential dargestellt. Die Etablierung von Differenzierungsansätzen für HSVZ mit B-Zell und DC Potential konnte aufgrund von Zeitmangel nicht bis zum Ende der Arbeit fertiggestellt werden.

#### 3.11.1. Qualifizierung des Erythrozyten-Flüssigkultur Ansatzes

CD133⁺ Zum **Nachweis** multipotenter HSZ/MPP mit erythrozytärem Differenzierungspotential wurde der Erythrozyten-Flüssigkulturansatz etabliert. Als Grundlage hierfür diente der Erythrozytendifferenzierungsansatz nach Dorn et al. (Dorn et al., 2008). Im Gegensatz zum CFC Ansatz werden im Flüssigkultur Ansatz in Analogie zum LTC-IC und NK-IC Ansatz mehrere tausend Zellen analysiert, was zu einem deutlich niedrigeren Detektionslimit führt. Die Induktion der erythrozytären Differenzierung erfolgt im Erythrozyten Ansatz in zwei Phasen. In der ersten Phase (7 Tage) werden dem Kulturmedium die Zytokine SCF, IGF-1, Epo, das Glykoprotein Transferrin und das Hormon Insulin zugesetzt. Die nachfolgenden 7 Tage (zweite Phase) wird auf die Zugabe von Epo, Transferrin und Insulin verzichtet. Die Quantifizierung erythrozytärer Zellen erfolgt im Gegensatz zum CFC Ansatz ausschließlich durchflusszytometrisch, da die Flüssigkultur keine Koloniebildung ermöglicht.

Um die Qualität der Zellen in der Nachkommenschaft zu charakterisieren und die Effektivität der Differenzierung zu bestimmen, wurde die CD133^{low}CD34⁺ Zellpopulation, die für Zellen mit erythrozytärem Potential angereichert ist (Görgens *et al.*, 2013b), durchflusszytometrisch sortiert und in den Erythrozyten Ansatz eingebracht. Die Zellen wurden nach 14 Tagen geerntet und durchflusszytometrisch hinsichtlich der Expression der Oberflächenantigene CD45, CD71 sowie CD235a/GlycophorinA (GPA) analysiert (Abb. 33B). Mehr als 95,4  $\pm$  4,3 % der Zellen (n=5) exprimierten das Erythrozyten-spezifische Oberflächenantigen GPA. Wie zuvor von Dorn *et al.* beschrieben war das Oberflächenantigen CD45 auf den GPA⁺ Zellen nicht detektierbar und CD71 entsprechend dem Differenzierungsstadium der Zellen heterogen exprimiert (Abb. 33B).

Die heterogene Expression des Oberflächenmarkers CD71 auf den erythrozytären CD45⁻ GPA⁺ Zellen weist auf ein Gemisch unterschiedlicher erythrozytärer Entwicklungsstufen hin. Welche Qualität die nicht-erythrozytären Zellen aufweisen und inwiefern der Flüssigkulturansatz die vollständige Reifung von Erythrozyten unterstützt, sollte anhand morphologischer Untersuchungen im Zytospin untersucht werden (Abb. 33C). Die histologische Analyse ergab, dass sowohl enukleierte, reife Erythrozyten (14,4  $\pm$  10,3 %, n=2) und verschiedene Vorstufen erythrozytärer Zellen (basophile Erythroblasten und polychromatische Erythroblasten etc.; 69,8  $\pm$  17,0 %, n=2) in der Nachkommenschaft enthalten waren. Megakaryozyten, Makrophagen oder Granulozyten wurden im Zytospin nicht detektiert (Abb. 33C).



Abb. 33: Qualifizierung des Erythrozyten Ansatzes

(A) Morphologische Veränderung der Zellen nach 14-tägiger Kultur im Erythrozyten Ansatz (d7: Tag7; d14: Tag14) (Maßstabsbalken =  $25\mu m$ ). (B) Durchflusszytometrische Charakterisierung von Zellen aus dem Erythrozyten Ansatz an Tag 14. Für die Diskriminierung und Quantifizierung erythroider (Erys: GPA/GPA⁺CD45^{low/-}) und nicht-erythroider Zellen (GPA/GPA⁻CD45⁺) wurden tote Zellen (PI⁺) sowie Zelltrümmer, Dubletten und Zellklumpen ausgeschlossen. (C) Modifizierte hämatologische Färbung nach Wright von Zellen aus dem Erythrozyten Ansatz an Tag 14 (Ret: Reticulozyt/Erythrozyt; Poly: polychromatischer Erythroblast; Baso: basophiler Erythroblast).

Der etablierte Erythrozyten-Flüssigkultur Ansatz ermöglicht eine sehr effiziente und zuverlässige Differenzierung zu untersuchender HSVZ ausschließlich in erythrozytäre Vorläufer sowie reife enukleierte Erythrozyten. Die nicht-erythrozytären Zellen konnten morphologisch keinem spezifischen Zelltypen der myeloischen oder lymphatischen Linie zugeordnet werden. Als Ergänzung zum CFC Ansatz ermöglicht der Erythrozyten-Flüssigkulturansatz somit eine zuverlässige Detektion und Quantifizierung von Progenitoren mit erythrozytärem Differenzierungspotential unterhalb einer Frequenz von 0,25 %.

#### 3.11.2. Qualifizierung des Megakaryozyten-Flüssigkultur Ansatzes

Kommerziell ist ein Megakaryozytendifferenzierungs Ansatz (MegaCult[®] von StemCell Technologies) erhältlich, der in Analogie zum CFC Ansatz die Ausbildung von Kolonien in einem semisoliden Medium unterstützt. Der MegaCult[®] Ansatz ist auf die Analyse von etwa 1.000 CD34⁺ Zellen limitiert, was einem Detektionslimit von 0,1 % entspricht. Um auch geringere Frequenzen von Zellen mit megakaryozytärem Differenzierungspotential detektierten zu können, wurde ein Megakaryozyten-Flüssigkulturansatz etabliert, der die Analyse mehrerer Tausend Zellen ermöglicht.

Die Induktion der megakaryozytären Differenzierung erfolgt in Analogie zu dem kommerziellen Ansatz durch die Zugabe der Zytokine TPO, IL-3 und IL-6 sowie dem Hormon Insulin und dem Glykoprotein Transferrin. Die Differenzierung der zu analysierenden Zellen wird in Suspension durchgeführt. Da die Flüssigkultur keine Koloniebildung unterstützt, findet die Charakterisierung und Quantifizierung megakaryozytärer Zellen ausschließlich durchflusszytometrisch statt.

Dieser abgewandelte megakaryozytäre Differenzierungsansatz wurde bislang in der Literatur nicht beschrieben und die Effizienz der Differenzierung sowie die zelluläre Komposition und Qualität der hämatopoetischen Nachkommenschaft sind unbekannt. Zur Etablierung des Differenzierungsansatzes und Analyse der hämatopoetische Nachkommenschaft wurden CD133⁺CD34⁺ Zellen im Megakaryozyten-Flüssigkulturansatz eingebracht und 14 Tage kultiviert. Dabei zeigte sich in sieben unabhängigen Experimenten, dass die Nachkommenschaft morphologisch sehr heterogen ist und sowohl wenig granuläre, blastoide Zellen mit ca. 5-10 µm Durchmesser als auch ca. 50-100 µm große, stark granuläre Zellen enthielt (Abb. 34A).

Um die Effizienz des Megakaryozyten-Flüssigkulturansatzes zu bestimmen, wurde die gesamte hämatopoetische Nachkommenschaft geerntet und durchflusszytometrisch analysiert. Der Fokus der Messungen lag hierbei maßgeblich auf der Analyse der Oberflächenantigene CD41 (Integrin alpha 2b) und CD61 (Integrin beta 3), die auf megakaryozytären Zellen exprimiert werden (Abb. 34B). Die beiden Integrine bilden ein Heterodimer und werden sowohl auf frühen megakaryozytären Vorläufer als auch reifen Megakaryozyten sowie Thrombozyten exprimiert. Etwa dreiviertel der Zellen (74,8  $\pm$  10,1 %, n=7) im Megakaryozyten-Flüssigkulturansatz exprimierten beide Oberflächenantigene CD61 und waren demnach reife oder unreife megakaryozytäre Zellen. Im Mittel etwa ein Viertel der Zellen konnte anhand der durchflusszytometrischen Analyse keinem spezifischen Zelltyp zugeordnet werden.

Um die Qualität der nicht-megakaryozytären (CD41⁻CD61⁻) Zellen genauer zu bestimmen, wurde die Nachkommenschaft im Zytospin analysiert (Abb. 34C). Neben reifen, polyploiden Megakaryozyten mit einem Durchmesser von 50-100  $\mu$ m (7,8 ± 11,6 %, n=2) wurden vereinzelt erythrozytäre Zellen (ca. 12,4 ± 12,6 %, n=2), Makrophagen (16 ± 15 %, n=2) sowie basophile und eosinophile Granulozyten (10,2 ± 23,9 % n=2) in der Kultur detektiert. Der überwiegende Anteil der Zellen (53,6 ± 21 %, n=2) konnte morphologisch keinem spezifischen Zelltyp zugeordnet werden. Neutrophile Granulozyten waren in der Nachkommenschaft nicht enthalten.

Um zu ermitteln, inwiefern der neu etablierte Megakaryozyten-Flüssigkulturansatz auch die Entstehung reifer Megakaryozyten unterstützt, wurde die Nachkommenschaft auf Zellen mit vervielfachtem Chromosomensatz untersucht. Reife Megakaryozyten besitzen nicht mehr die Fähigkeit sich zu teilen, jedoch ihre DNA zu verdoppeln (Polyploidie). Auf diesem Wege können bis zu 64 vollständige Chromosomensätze innerhalb einer Zelle generiert werden (Kratz-Albers *et al.*, 2000; Guerriero *et al.*, 2001; Bruno *et al.*, 2003; Emmrich *et al.*, 2012). Eine Beurteilung des Ploidiegrades der megakaryozytären Zellen war mikroskopisch an lebenden Zellen sowie im Zytospin nicht möglich. Aufgrund dessen wurden der Ploidiegrad der Zellen durchflusszytometrisch ermittelt (Abb. 34D). Hierzu wurde die hämatopoetische Nachkommenschaft geerntet, mit eiskaltem Methanol fixiert sowie permeabilisiert und anschließend mit Propidiumiodid, welches in die DNA der Zellen interkaliert, gefärbt. Etwa ein Viertel der Zellen wies einen vervielfältigten Chromosomensatz auf. Es wurden reife megakaryozytäre Zellen mit einem Ploidiegrad von 4n (20,3 %), 8n (5,2 %), 16n (1,8 %) sowie 32n und mehr (1,3 %) detektiert.

Der im Rahmen dieser Arbeit etablierte Megakaryozyten-Flüssigkultur Ansatz ermöglicht die einfache und effektive Differenzierung von CD133⁺CD34⁺ HSVZ in megakaryozytäre Zellen. Die megakaryozytären Zellen entsprechen sowohl morphologisch, phänotypisch als auch hinsichtlich Plodiegrades reifen Megakaryozyten. ihres Die hämatopoetische Nachkommenschaft ist sehr heterogen und der überwiegende Anteil der Zellen sind unreife megakaryozytäre Vorläuferzellen mit noch diploidem Chromosomensatz. Neben den Megakaryozyten wird zudem die Differenzierung von Monozyten/Makrophagen, erythrozytären Zellen sowie basophilen und eosinophilen Granulozyten unterstützt. Ein Vorteil des Megakaryozyten-Flüssigkultur Ansatzes ist das niedrige Detektionslimit von Zellen mit megakaryozytärem Differenzierungspotential aufgrund der Analyse mehrerer Tausend Zellen in Analogie zum Erythrozyten-Flüssigkultur Ansatz.

119



Abb. 34: Qualifizierung des Megakaryozyten-Flüssigkultur Ansatzes

(A) Morphologie der Zellen aus dem Megakaryozyten Ansatz in Suspensionskultur (Maßstabsbalken links =  $100\mu m$ ; rechts =  $20 \mu m$ ). (B) Modifizierte hämatologische Färbung nach Wright von Zellen nach 14-tägiger Suspensionskultur im Megakaryozyten Ansatz (Maßstabsbalken =  $5 \mu m$ ). (C) Durchflusszytometrische Charakterisierung von Zellen aus dem Megakaryozyten Ansatz. Für die Diskriminierung und Quantifizierung megakaryozytärer Zellen (CD41⁺CD61⁺) wurden tote Zellen (PI⁺) sowie Zelltrümmer, Dubletten und Zellklumpen ausgeschlossen. (D) Durchflusszytometrische Analyse der Polyploidie von Zellen aus dem Megakaryozyten Ansatz.

#### 3.11.3. Qualifizierung des T-Zell Ansatzes

Zum Nachweis von Zellen mit lymphatischem Differenzierungspotential wurde neben dem bereits erwähnten NK-IC Ansatz eine weitere funktionelle Nachweismethode für lymphatische Vorläuferzellen etabliert. Die Differenzierung von HSVZ zu T-Zellen erfolgte entsprechend der Veröffentlichung nach La Motte-Mohs *et al.* (La Motte-Mohs *et al.*, 2005). Hierzu wurden CD133⁺CD34⁺ Zellen, die für Zellen mit T-Zell Differenzierungspotential angereichert sind, für 3-5 Wochen mit Zellen der murinen Stromazelllinie OP9, die ektop den Notch-Liganden Delta-like 1 exprimieren (OP9-DL1), kokultiviert. Dem Kulturmedium wurden zusätzlich zur Induktion der T-Zell Differenzierung die Wachstumsfaktoren SCF, Flt3-L sowie IL-7 zugesetzt.

In dem fünf-wöchigen Differenzierungsansatz waren wenig granuläre, im Durchmesser etwa 5-7  $\mu$ m große, rundliche und teilweise polarisierte Suspensionszellen auf den murinen OP9-DL1 Stromazellen zu erkennen. Die Zellen wiesen, wie es für T und B Lymphozyten

charakteristisch ist, wenig Zytoplasma auf und waren morphologisch kultivierten CD34⁺ Zellen sehr ähnlich (Abb. 35A) (Giebel *et al.*, 2004).

Um die Qualität sowie den genauen Differenzierungsstatus insbesondere der T-Zellen zu bestimmen, wurden die hämatopoetische Nachkommenschaft geerntet und durchflusszytometrisch hinsichtlich der Expression unterschiedlicher T-Zell-spezifischer Oberflächenantigene wie z.B. CD3, CD4, CD5, CD7 und CD8 analysiert (Awong et al., 2009). Die durchflusszytometrische Analyse der Zellen nach fünf Wochen ergab, dass 82,1 ± 12,1 % der Zellen auf ihrer Oberfläche die frühen T-Zell-Vorläufermarker CD7 sowie CD5 (22,2 ± 11 %, n=5) exprimierten (Haynes et al., 1988; Haddad et al., 2006). Die spezifischen Oberflächenantigene für Effektor (CD4) und zytotoxische (CD8) T-Zellen wurden von 5,7  $\pm$  6,6 % bzw. 3,2  $\pm$  2,5 % der Suspensionszellen präsentiert (n=5). Der sowohl auf Effektor als auch auf zytotoxischen T-Zellen befindliche T-Zell-Rezeptor (CD3) war auf  $1,2 \pm 0,6$  % der Zellen detektierbar (n=5).

Ein Charakteristikum von T-Zellen während der Differenzierung, welches nicht anhand von Oberflächenmarkern nachverfolgt werden kann, ist die Rekombination der V, D und J-Gene die für den T-Zell-Rezeptor kodieren (engl. VDJ-rearrangement) (Brack et al., 1978). Diese randomisierte Rekombination der einzelnen Teilabschnitte des T-Zell Rezeptors ermöglicht die Generierung einer Vielzahl von Antigen-spezifischen T-Zellen für die adaptive Immunabwehr. Als Vorlage für den Nachweis der VDJ-Rekombination diente die Arbeit des BIOMED-2 Konsortiums, das die Standarisierung der PCR-basierten T-Zell-Rekombinationsanalyse initiiert hat (van Dongen et al., 2003). Die nicht-rekombinierten VDJ-Geneabschnitte erstrecken sich über mehr als 10 kb auf dem Genom und ermöglichen keine Amplifikation mittels PCR. Erst nach erfolgter Rekombination der VDJ-Gene kann ein PCR-Produkt der Fragmentlänge 80-255 bp nachgewiesen werden (Abb. 35C).

Zum Nachweis der VDJ-Rekombination in den *in vitro* generierten T-Zellen wurden die Zellen geerntet, CD3 exprimierende T-Zellen durchflusszytometrisch sortiert und mittels PCR-Analyse die Rekombination der T-Zell-Rezeptor Gamma-Kette (TCRG), die bereits sehr früh in der T-Zell-Entwicklung rekombiniert wird, nachgewiesen (Abb. 35C). Als Kontrolle wurden repräsentativ polyklonale CD8⁺ Effektor T-Zellen aus dem peripheren Blut eines adulten Spenders durchflusszytometrisch sortiert. Die adulten Effektor T-Zellen wiesen unterschiedliche Rekombinationsprodukte im TCRG-Lokus auf, die sich in einer Vielzahl nicht voneinander diskriminierbarer Banden zwischen 100 und 300 bp manifestierten. Die

PCR-Analyse ergab zudem, dass auch der TCRG-Lokus *in vitro* generierter CD3⁺ T-Zellen erfolgreich rekombiniert war (Abb. 35C).





(A) Morphologie der Zellen aus dem T-Zell Ansatz nach 4 Wochen Kokultur mit der murinen *Stromazelllinie* OP9-DL1 (Maßstabsbalken links = 20  $\mu m$ ; rechts = 5 μm). (B) Durchflusszytometrische Charakterisierung der Zellen nach Differenzierung im T-Zell Ansatz. Nach Ausschluss von toten Zellen ( $PI^+$ ) und Zelltrümmern, Dubletten und Zellklumpen (außerhalb der scatter Region) wurde die Expression der Oberflächenmarker CD3, CD4, CD5, CD7 und, CD8 auf der entstehenden Zellfraktion analysiert. Für die Quantifizierung der T-Zellen wurden die drei verschiedene Subpopulationen  $CD4^+$ ,  $CD8^+$  und  $CD4^+CD8^+$  diskriminiert. (C) Für den Nachweis der T/B-Zell-spezifischen Rekombination der V-, D- und J-Gene wurden CD3⁺ Zellen aus dem T-Zell Ansatz durchflusszytometrisch sortiert und zur Extraktion genomischer DNA herangezogen. Der Nachweis der VDJ-Rekombination erfolgte mittels PCR. Die erfolgte Rekombination wurde durch ein PCR-Produkt der Fragmentlänge 110-255 bp im Agarosegel nachgewiesen.

Der etablierte T-Zell Ansatz ermöglicht die einfache Detektion und Quantifizierung von Zellen mit lymphatischem T-Zell Differenzierungspotential. Dabei können T-Zellen, die immunphänotypisch sowie auf genomischer Ebene mit T-Zellen *in vivo* vergleichbar sind, generiert werden. Die Effizienz der Entstehung reifer T-Zellen in dem etablierten Ansatz ist sehr gering, da 3-5 % der Zellen die Expression T-Zell spezifischer Oberflächenantigen (CD3, CD4 und CD8) aufwiesen. Über 80 % der Zellen waren bereits lymphatisch determiniert und präsentierten die Oberflächenantigen CD5 und CD7, die auf lymphatischen Vorläuferzellen der T-Zelllinien exprimiert werden.

## 3.11.4. Funktionelle Analyse frisch isolierter HSVZ im T-Zell, Erythrozyten und Megakarvozyten Ansatz

Wie bereits zu Beginn erläutert (siehe Abschnitt 3.1 und 3.2.1) konnten wir mit Hilfe des Oberflächenmarkers CD133 sowie dem LTC-IC, NK-IC und CFC Ansatz neue Linienverwandtschaften und daraus resultierend eine alternative Modellvorstellung der humanen Hämatopoese beschreiben (Görgens *et al.*, 2013b). Der Modellvorstellung zufolge weisen CD133⁺CD34⁺ Zellen lympho-myeloisches Differenzierungspotential auf und können T-Zellen, B-Zellen, NK-Zellen, Neutrophile und Makrophagen/Monozyten hervorbringen. CD133^{low}CD34⁺ HSVZ hingegen können in Erythrozyten, Megakaryozyten, Basophile, Eosinophile sowie Makrophagen/Monozyten differenzieren.

Ob T-Zellen, wie in der Modellvorstellung beschrieben von CD133⁺CD34⁺ und Megakaryozyten von CD133^{low}CD34⁺ Zellen gebildet werden, wurde bislang noch nicht untersucht. Zur Beantwortung dieser Fragen wurden frisch isolierte Zellen der CD133⁺CD34⁺ und CD133^{low}CD34⁺ Population sowie unfraktionierte CD34⁺ Zellen durchflusszytometrisch sortiert und definierte Zellzahlen in die zuvor etablierten Analysemethoden (Erythrozyten, Megakaryozyten, T-Zell Ansatz) eingebracht (Abb. 36, Tab. 42). Die nachfolgend angegebenen Messwerte entsprechen der absoluten Anzahl reifer T-Zellen (sowohl CD4⁺, CD8⁺ als auch CD4⁺CD8⁺), Erythrozyten (GPA⁺CD45⁻) bzw. Megakaryozyten (CD41⁺CD61⁺) generiert aus 100 Zellen der entsprechend eingesetzten Fraktion hämatopoetischer Zellen.

Zellen mit T-Zell Potential waren in beiden Populationen enthalten, jedoch in der CD133⁺CD34⁺ Population stark angereichert (133⁺: 67,5  $\pm$  36,29; 133^{low}: 15,82  $\pm$  3,36; Abb. 36A, n=5). In Analogie zu den Daten aus dem CFC Ansatz (siehe Abschnitt 3.2.1) wurden Zellen mit erythrozytärem Differenzierungspotential im Erythrozyten-Flüssigkulturansatz fast ausschließlich in der CD133^{low}CD34⁺ Population detektiert (133⁺: 2.288  $\pm$  1.368; 133^{low}: 29.001  $\pm$  3.199; Abb. 36B, n=5). Nahezu gleichmäßig viele Zellen mit megakaryozytärem Differenzierungspotential konnten in der CD133⁺CD34⁺ (4.971  $\pm$  1.201) und CD133^{low}CD34⁺ (3.657  $\pm$  522) Zellpopulation detektiert werden (Abb. 36E, n=7).

123

T-Zellen	CD133 ⁺ CD34 ⁺	CD133 ^{low} CD34 ⁺	<b>CD34</b> ⁺	Erythr.	CD133 ⁺ CD34 ⁺	CD133 ^{low} CD34 ⁺	<b>CD34</b> ⁺
V1	55,1	12,	31,5	V1	342	21107	5118
V2	171,4	26,2	141,5	V2	390	27100	7068
V3	32,1	6,8	28,7	V3	1550	39000	11661
V4	34,4	20,2	46,6	V4	7660	33300	10993
V5	44,5	13,9	40,4	V5	1500	24500	6100
MW	67,50	15,82	57,74	MW	2288	29001	8188
SEM	26,29	3,36	21,18	SEM	1368	3199	1322
p(133 ^{low} )	-	0,096	0,267	p(133 ^{low} )	-	0,0007	0,0075
p(34 ⁺ )	-	-	0,085	p(34 ⁺ )	-	-	0,0004

Tab. 42: Quantifizierung des Differenzierungspotentials frisch isolierter HSVZ

Megak.	CD133 ⁺ CD34 ⁺	CD133 ^{low} CD34 ⁺	<b>CD34</b> ⁺			
V1	5000	3400	4728			
V2	7100	5000	6512			
V3	7500	1700	6166			
V4	1800	5400	2664			
V5	200	2100	650			
V6	90000	3800	8324			
V7	4200	4200	4200			
MW	4971	3657	4749			
SEM	1201	522,7	967,9			
p(133 ^{low} )	-	0,357	0,455			
p(34 ⁺ )	-	-	0,336			

Absolute Anzahl generierter T-Zellen/Erythrozyten/Megakaryozyten aus 100 eingesetzten Zellen.  $p(133^{low})$ Vergleich zur *CD133^{low}CD34*⁺ = Signifikanzberechnung im *Population*;  $p(34^+) = Signifikanzberechnung im Vergleich zur CD34^+$  Fraktion (t-Test, zweiseitig, gepaart), *Signifikanzen p<0,05 sind fett gedruckt.* 



Abb. 36: Differenzierungspotential frisch isolierter HSVZ-Subpopulationen Graphische Darstellung der Werte aus Tab. 42. (A - C) Frisch isolierte CD133⁺CD34⁺, CD133^{low}CD34⁺ und CD34⁺ Zellen aus dem Nabelschnurrestblut wurden durchflusszytometrisch sortiert und das Differenzierungspotential im T-Zell-, Erythrozyten und Megakaryozyten Ansatz ermittelt (Mittelwerte ± SEM).

Zellen der CD133⁺CD34⁺ Fraktion konnten in den neu etablierten Differenzierungsansätzen sowohl T-Zellen, Megakaryozyten und nur vergleichsweise geringfügig erythrozytäre Zellen realisieren. CD133^{low}CD34⁺ HSZVs wiesen erythrozytäres und megakaryozytäres Differenzierungspotential sowie vergleichsweise geringfügig T-Zell Potential auf.

Zellen Aufgrund der Beobachtung, dass mit T-Zell und megakaryozytärem Differenzierungspotential bei frisch isolierten sowohl in der CD133⁺CD34⁺ als auch CD133^{low}CD34⁺ Fraktion enthalten sind, wurde die Analyse der hämatopoetischen Nachkommenschaft im T-Zell und Megakaryozyten Ansatz in den nachfolgenden Kokulturexperimenten mit beiden Subpopulationen durchgeführt.

### 3.11.5. Verlust erythrozytärer und megakaryozytärer Vorläufer in Suspensionskultur

Wie bereits in Abschnitt 3.1 beschrieben ermöglicht die Kultivierung von CD34⁺ Zellen in Suspensionskultur keinen Erhalt multipotenter HSVZ in der CD133⁺CD34⁺ Fraktion über einen Zeitraum von mehr als sechs Tagen (Görgens *et al.*, 2013b). Diese Beobachtung ist maßgeblich auf Daten zurückzuführen, die bei der Analyse von CD133⁺CD34⁺ Zelle im CFC Ansatz gewonnen wurden. Da die Frequenz multipotenter HSVZ mit fortschreitender Kultivierung mutmaßlich geringer wird und das Detektionslimit des CFC Ansatzes bei 0,25 % liegt, wurde die Analyse CD133⁺CD34⁺ HSVZ an verschiedenen Tagen der Suspensionskultur erneut mit dem zuvor etablierten Erythrozyten-Flüssigkultur Ansatz wiederholt (veröffentlicht in Görgens *et al.*, 2013b).

In Analogie zu den Versuchen in Abschnitt 3.1 wurden Zellen der beiden Subfraktionen  $CD133^{+}CD34^{+}$  und  $CD133^{low}CD34^{+}$ an d0, d3 und d6 in den Erythrozyten-Flüssigkulturansatz eingebracht und nach 14 Tagen die Anzahl erythrozytärer GPA⁺ Zellen ermittelt (Abb. 37A). Die frisch isolierte CD133^{low}CD34⁺ (-) Population wies im Vergleich zur CD133⁺CD34⁺ (+) Fraktion mehr Zellen mit dem Potential zur Bildung erythrozytärer Zellen auf (290.150 ± 31.929 zu 22.726 ± 13.483, Abb. 37A, n=5). Im Verlauf der Kultur nahm die Frequenz von Zellen mit der Fähigkeit zur erythrozytären Differenzierung in allen analysierten Zellpopulationen kontinuierlich ab. Dabei fand eine Segregation von Zellen mit erythrozytärem Differenzierungspotential von der CD133⁺CD34⁺ in die CD133^{low}CD34⁺ Zellepopulation statt. Innerhalb der CD133⁺CD34⁺ Fraktion an Tag 3 (+ +) und Tag 6 (+ + +) waren nur geringfügig erythrozytäre Zellen (d3:  $1.273 \pm 1.140$ ; d6:  $12 \pm 4$ , Abb. 37A, n=6) detektierbar. Die weiter kultivierten CD133^{low}CD34⁺ Zellen an Tag 3 (- -) wiesen nach der Differenzierung dreifach weiniger reife erythrozytäre Zellen auf als die frisch isolierten Zellen (d0: 290.150  $\pm$  31.929; d3: 80380  $\pm$  27.495), das bis Tag 6 fast vollständig verloren ging (d6: 918, n=1). Die neu entstehenden CD133^{low}CD34⁺ (+ -) Zellen brachten im Erythrozyten-Flüssigkulturansatz mehr erythrozytäre Zellen hervor als frisch isolierte CD133⁺CD34⁺ Zellen (d0 +: 22.726 ± 13.483; d3 + -: 39.688 ± 15387, n=6), jedoch gingen diese Zellen nach weiteren drei Tagen fast vollständig verloren (d6 + + -:1.118  $\pm$  911; + - -: 6.137  $\pm$  4.937, Abb. 37A, n=4).

Mit Hilfe des Erythrozyten-Flüssigkulturansatzes konnte der zuvor mit dem CFC Ansatz ermittelte Verlust des erythrozytären Potentials insbesondere in der CD133⁺CD34⁺ Zellpopulation bestätigt werden (Görgens *et al.*, 2013a; Görgens *et al.*, 2013b). Zudem konnte die zuvor beschriebene Segregation von Zellen mit erythrozytärem Differenzierungspotential

125

von der CD133⁺CD34⁺ Fraktion in die neu entstehende CD133^{low}CD34⁺ Population reproduziert werden.

Dem allgemeinen Verständnis der humanen Hämatopoese zufolge stammen Erythrozyten und Megakaryozyten von einem gemeinsamen Vorläufer (engl. *common megakaryocyte/ erythrocyte progenitor*; kurz MEP) ab. Folglich haben wir untersucht, ob auch das megakaryozytäre Differenzierungspotential in der CD133⁺CD34⁺ Zellpopulation in der Suspensionskultur verloren geht. Hierzu wurden Zellen der CD133⁺CD34⁺ und CD133^{low}CD34⁺ Subpopulationen an Tag 0, 3 und 6 in den Megakaryozyten-Flüssigkulturansatz eingebracht und die Anzahl an megakaryozytären Zellen (CD41⁺CD61⁺) durchflusszytometrisch quantifiziert (Abb. 37B)

Im Gegensatz zur erythrozytären Linien wiesen die beiden Subpopulationen CD133⁺CD34⁺ und CD133^{low}CD34⁺ aus frisch isolierten CD34⁺ Zellen (+ und -) ein in etwa vergleichbares megakaryozytäres Differenzierungspotential auf (+: 49.773  $\pm$  12.055; -: 36.543  $\pm$  5.231, Abb. 37B, n=7). Innerhalb der nachfolgenden 6 Tage nahm in allen analysierten Zellpopulationen die Zellzahl megakaryozytärer Zellen nach Differenzierung kontinuierlich ab. Die CD133⁺CD34⁺ Populationen an Tag 3 (+ +) sowie Tag 6 (+ + +) wiesen nur noch geringfügiges Differenzierungspotential auf (d3: 2613  $\pm$  1.041, n=8; d6: 364  $\pm$  159, Abb. 37B n=6). Ebenso verhielt es sich in der CD133^{low}CD34⁺ Fraktion an Tag 3 (- -) und Tag 6 (- - -) (d3: 7.363  $\pm$  2.855, n=8; d6: 410  $\pm$  317, n=3). Im Gegensatz zum erythrozytären Potential blieb in den neu entstehenden Zellpopulationen an Tag 3 (+ -: 26.966  $\pm$  9.109, n=6) sowie an Tag 6 (+ + -: 7.820  $\pm$  4.502; + - -: 14.040  $\pm$  10.644, Abb. 37B n=5) die Fähigkeit zur Realisierung von Megakaryozyten erhalten.

Zellen mit megakaryozytärem Differenzierungspotential blieben im Vergleich zu Zellen mit erythrozytärem Potential länger in den neu entstehenden Nachkommenschaften erhalten. Die verwendeten Suspensionskulturbedingungen sind jedoch nicht dazu geeignet, Zellen mit megakaryozytärem Differenzierungspotential über einen Zeitraum von mehr als sechs Tagen in der CD133⁺CD34⁺ Population zu erhalten, welche für multipotente Zellen angereichert ist. Zudem konnte bei der Analyse eine Segregation von Zellen mit megakaryozytärem Differenzierungspotential aus der CD133⁺CD34⁺ in die neu entstehende CD133^{low}CD34⁺ Fraktion beobachtet werden.

In guter Übereinstimmung mit den vorhergehenden Daten konnte der beschriebene Verlust von CD133⁺CD34⁺Zellen mit erythrozytärem Koloniebildungspotential in der Suspensionskultur im neu etablierten Erythrozyten-Flüssigkulturansatz reproduziert werden. Die zusätzliche Anwendung des Megakaryozyten-Flüssigkulturansatzes führte zudem zu der Beobachtung, dass auch Zellen mit megakaryozytärem Differenzierungspotential mit fortschreitender Kultivierung in der Suspensionskultur in der CD133⁺CD34⁺ Fraktion verloren gehen. Auch hier wird der Erhalt von CD133⁺CD34⁺ HSZV mit Megakaryozyten Potential nicht länger als sechs Tage unterstützt.



Abb. 37: Sequenzielle Analyse hämatopoetischer Subfraktionen im Erythrozyten und Megakaryozyten Ansatz

(A) Quantifizierung erythrozytärer und (B) megakaryozytärer Zellen nach Differenzierung normalisiert auf 1.000 eingebrachte Zellen der jeweiligen Subpopulation. Die Zahlen über den Balken repräsentieren die Anzahl der durchgeführten Versuche (veröffentlicht in Görgens et al., 2013b).

#### 3.12. Konservierung primärer humaner Stromazellen

Derzeitige Kulturbedingungen sind nicht zur unbegrenzten Expansion primärer humaner Stromazellen ohne Verlust der Proliferationskapazität und Eintritt spontaner Differenzierung bzw. Seneszenz geeignet (Hayflick und Moorhead, 1961; Schellenberg *et al.*, 2013). Folglich stellen zuvor verwendete primäre endotheliale und mesenchymale Stromazellen für weiterführende Versuche und eine erneute Wiederholung der Kokulturen unter Verwendung der neu etablierten funktionellen Analysemethoden eine endliche Zellquelle dar.

#### 3.12.1. Strategie der konditionellen Immortalisierung

Um primäre Stromazellen, die eine stärkere Expansion bzw. einen besseren Erhalt primitiver HSVZ mit LTC-IC, NK-IC und CFC Potential unterstützen, langfristig zu konservieren, sollten die Primärzellen immortalisiert werden (Abb. 40, Vektorkarte siehe Anhang). Hierzu sollte das Proto-Onkogen SV40 TAg (*Simian Vaculating Virus 40 large T antigen*), welches

unter anderem den Tumorsupressor p53 inhibiert (Ahuja *et al.*, 2005), in den zuvor selektionierten primären Stromazellen ektop exprimiert werden.

Laut der Literatur hat die ektope Expression des Proto-Onkogens neben Veränderung in der Morphologie und der Teilungsrate auch einen weitreichenden Einfluss auf die gesamte Genexpression der Zellen (May *et al.*, 2004a; May *et al.*, 2004b). Um einen möglichen Einfluss der SV40-Expression auf die Fähigkeit der immortalisierten Primärzellen zum *in vitro* Erhalt bzw. zur Expansion primitiver HSVZ zu reduzieren, sollte ein System verwendet werden, das wie zuvor von May *et al.* beschrieben die kontrollierte Repression der SV40 TAg Expression ermöglicht. Es wird berichtet, dass durch die Repression der SV40 TAg Expression das Genexpressionsprofil "re-mortalisierter" Zellen erneut in einen primärzellähnlichen Zustand versetzt wird (May *et al.*, 2004a; May *et al.*, 2004b).

Diese konditionelle Immortalisierung sieht eine erneute Transduktion immortalisierter Zellen mit dem Fusionsprotein tTRKRAB, das aus der Repressordomäne eines transkriptionellen Transrepressors (tTR), der *Krüppel associated box* (KRAB)-Domäne sowie dem Tetrazyklin-Repressor (TetR) (Deuschle *et al.*, 1995) besteht, vor (Abb. 40, Vektorkarte siehe Anhang). Der Repressor tTR-KRAB bindet über die TetR-Domäne an den Tet-Operator, welcher sich vor der codierenden Region für das Proto-Onkogen befindet. Die Repression der Expression z.B. zur Expansion der Zellen kann durch die Zugabe des Tetrazyklin-Analogons Doxyzyklin, das die Dimerisierung und Inaktivierung des tTRKRAB Repressors induziert, reguliert werden.

Bereits die eingangs durchgeführte Charakterisierung der humanen Stromazellen hat gezeigt, dass die primären Stromazelllinien aus einem heterogenen Gemisch von Zellen mit unterschiedlichem Differenzierungspotential bestehen, die zudem durch die *in vitro* Kultivierung einer fortwährenden Selektion und Veränderung unterliegen (Walenda *et al.*, 2010). Weiterhin findet die Integration der codierenden Region für die ektope Expression der beiden Proteine SV40 TAg sowie tTRKRAB in das Genom der Primärzellen bzw. immortalisierten Zellen zufällig statt, was zur Insertionsmutagene und in manchen Fällen z.B. zur Entartung oder zu einer verringerten Vitalität der Zellen führen kann. Folglich bestehen auch konditionell immortalisierte Stromazelllinien aus einem heterogenen Gemisch von Zellen, die wie die initialen Primärzellen einer fortlaufenden Dynamik und Kultur-Selektionierung unterliegen. Um langfristig reproduzierbare Kulturbedingungen für weiterführende Experimente gewährleisten zu können, sollen von den polyklonalen konditionell immortalisierten Stromazelllinien Einzelzellklon-Zelllinien generiert werden (Abb. 40), die mutmaßlich homogen sind und keiner oder einer weniger stark ausgeprägten Dynamik unterliegen.



**Abb. 38: Strategie der konditionellen Immortalisierung** Strategie der konditionellen Immortalisierung primärer humaner Stromazellen (P = Passage).

Um den Einfluss der Immortalisierung auf die Fähigkeit der Stromazellen zum Erhalt bzw. zur Expansion primitiver HSVZ zu untersuchen, sollen anschließend sowohl die immortalisierten als auch die re-mortalisierten Stromazellen mit CD133⁺CD34⁺ Zellen kokultiviert und die Qualität der hämatopoetischen Nachkommenschaft analysiert werden (Abb. 40). Da wie bereits zuvor erwähnt die Quantifizierung CD133⁺CD34⁺ und CD133^{low}CD34⁺ Zellen keine Aussage über den Erhalt bzw. die Expansion primitiver HSVZ mit LTC-IC, NK-IC sowie CFC Potential ermöglicht, sollte in den nachfolgenden Versuchen eine weitere Subpopulation durchflusszytometrisch quantifiziert, in der multipotente HSZ/MPP angereichert sind. Die Möglichkeit der phänotypischen Quantifizierung dieser Zellpopulation wurde gemeinsam mit André Görgens (AG Giebel) etabliert und stand zu Beginn der Arbeit für die vorhergehenden Analyse nicht zur Verfügung.

Um die Frequenz der HSZ/MPP angereicherten Population zu ermitteln, wurde die durchflusszytometrische Analyse der hämatopoetischen Nachkommenschaft um die beiden Oberflächenmarker CD38 (Terstappen *et al.*, 1991; Larochelle *et al.*, 1996) und CD45RA (Manz *et al.*, 2002) erweitert. Diese Markerkombination ermöglicht nach Vorarbeiten aus unserer Arbeitsgruppe die phänotypische Unterscheidung folgender Subpopulationen (Görgens *et al.*, 2013b):

GMP:	Granulozyten-Makrophagen Progenitor					
	CD38 ⁺ CD34 ⁺ CD133 ⁺ CD45RA ⁺					
EMP:	Erythro-Myeloischer Progenitor					
	CD38 ⁺ CD34 ⁺ CD133 ⁻ CD45RA ⁻					
HSZ/MPP:	Hämatopoetische Stammzelle / Multipotenter Progenitor					
	CD38 ⁻ CD34 ⁺ CD133 ⁺ CD45RA ⁻					
LMPP:	Lymphatisch determinierter MPP					
	CD38 ⁻ CD34 ⁺ CD133 ⁺ CD45RA ⁺					
MLP:	Multi-lymphatischer Progenitor					
	CD38 ⁻ CD34 ⁺ CD133 ⁺ CD45RA ⁺					

129

Die zuvor beschriebenen Zellpopulationen sowie deren Oberflächenmarker sind nachfolgend schematisch dargestellt (modifiziert nach Görgens *et al.* 2013b, Abb. 39).



Abb. 39: Alternative Modellvorstellung der humanen Hämatopoese mit den Oberflächenmarker CD38, CD133 und CD45RA

Alternative Modellvorstellung der humanen Hämatopoese modifiziert nach Görgens et al. 2013b. Alle dargestellten Zellpopulationen exprimieren das Oberflächenantigen CD34. Sie können anhand der Oberflächenmarker CD38, CD133 sowie CD45RA in unterschiedliche Subpopulationen unterteilt werden.

#### 3.12.2. Konditionelle Immortalisierung von primären humanen Stromazellen

Für die konditionelle Immortalisierung wurden die endothelialen Stromazelllinien HUVEC C, HUVEC F, ECFC 1E, ECFC 4D, PLVEC 1.4 sowie PLVEC 4 verwendet. Bei den mesenchymalen Stromazellen wurden die Zelllinien MSZ KM MNZ B, MSZ KM Fett 7/5 sowie MSZ KM Fett 7/11 konditionell immortalisiert.

Um die kritische Expressionsstärke des Proto-Onkogens SV40 TAg für eine erfolgreiche Immortalisierung der Primärzellen zu gewährleisten, wurden unterschiedliche Volumina (10, 15, 20, 30 oder 40 µl) virushaltiger Überstände für die Transduktion der primären Stromazellen verwendet. Die Selektion erfolgreich immortalisierter Stromazellen erfolgte anschließend anhand der Morphologie sowie der gesteigerten Proliferation gegenüber den primären Stromazellen (Abb. 40, Abb. 40) (May *et al.*, 2004a; May *et al.*, 2004b).

Transduzierte Zellen z.B. HUVEC F und MSZ Fett 7/5 waren morphologisch kleiner als die korrespondierenden Primärzellen (Abb. 40A). Die Berechnung der Gesamtverdopplungen sowie der Verdopplungsrate über 5 Passagen bzw. 18 Tage ergab, dass die transduzierten Zellen schneller proliferierten als die Primärzellen (Abb. 40B). Transduzierte Zellen der HUVEC F teilten sich etwa alle 20 Stunden (22 Teilungen / 18 Tage = 19,6 Stunden), wohingegen primäre Zellen eine Generationszeit von etwa 43 Stunden (10 Teilungen / 18 Tage = 43,2 Stunden) aufwiesen. Das verwendete Volumen an virushaltigem Überstand
zur Transduktion der primären Zellen hatte keinen Einfluss auf die ermittelten kumulativen Gesamtverdopplungen der Zellen auf (Abb. 40B).

Stromazellen, die wie bereits zuvor beschrieben eine Veränderung der Morphologie sowie eine höhere Zellteilungsrate als die Primärzellen aufwiesen und den Kriterien entsprechend als immortalisiert galten, wurden zur ektopen Expression des Repressors tTRKRAB mit 10 bzw. 20  $\mu$ l virushaltigem Überstand transduziert. Für die zweite Transduktion und ektope Expression des Repressors tTR-KRAB wurden ausschließlich Zellen verwendet, die mit 10  $\mu$ l virushaltiger Überstand (SV40 TAg) transduziert wurden, da dieses Volumen bereits ausreichend war für eine erfolgreiche Immortalisierung sowohl endothelialer als auch mesenchymaler Stromazellen. Das Kulturmedium wurde zur Aufrechterhaltung der Proliferation umgehend mit 2  $\mu$ g/ml Doxyzyklin versetzt, was zur Dimerisierung des Repressors tTRKRAB führt und die Repression der SV40 TAg Expression inhibiert.

Der Vektor für den Repressor kodiert für eine Puromycinresistenz-Kassette, die eine Selektion erfolgreich transduzierter bzw. konditionell immortalisierte Zellen ermöglicht. Zur Selektion wurden tTR-KRAB exprimierende Zellen mit 1 bzw. 3 µg/ml Puromycin für 24 bis 48 Stunden behandelt. Immortalisierte Zellen sind Puromycin-sensitiv und werden in Anwesenheit von Puromycin nekrotisch. Doppelt-transduzierte, konditionell immortalisierte Zellen hingegen sind Puromycin resistent.

Immortalisierte endotheliale sowie mesenchymale Stromazellen (- Virus) wurden in Anwesenheit von 1  $\mu$ g /ml Puromycin nekrotisch (Abb. 41A, HUVEC F und MSZ Fett 7/5). In der mit 10  $\mu$ l virushaltigem Überstand (tTRKRAB) transduzierten Stromazellkultur wurden vitale Zellen detektiert und die Konfluenz lag bei etwa 20-40 % (Abb. 41A, hier HUVEC F und MSZ Fett 7/5). Die Detektion Puromycin-resistenter Zellen in der Kultur mit 10  $\mu$ l virushaltigem Überstand lässt auf eine erfolgreiche Transduktion sowohl der immortalisierten Endothelzellen als auch MSZ schließen.

131



Abb. 40: Veränderungen der Morpholgie und Proliferation immortalisierter Zellen (A) Primäre humane endotheliale (HUVEC, links) und mesenchymale (MSZ aus dem Knochenmark, rechts) Stromazellen nach Transduktion mit 10  $\mu$ l virushaltigem Zellkulturüberstand und ektoper Expression des Onkogens SV40 TAg. (Maßstab: 20  $\mu$ m) (B) Gesamtexpansion unbehandelter primärer humaner Stromazellen im Vergleich zu immortalisierten Zellen über einen Zeitraum von 18 Tagen. Die primären Zellen wurden mit 10, 15, 20, 30 oder 40  $\mu$ l virushaltigem Zellkulturüberstand behandelt.

Um die Funktionalität des Repressors tTR-KRAB in Puromycin-resistenten immortalisierten Stromazellen zu analysieren, wurden doppelt transduzierte Zellen in geringer Dichte (20 % Konfluenz) ausgebracht und mit (+Dox) bzw. ohne Doxyzyklin (-Dox) kultiviert. Nach 48-72 Stunden wurde die Morphologie sowie die Konfluenz der Zellen mikroskopisch beurteilt (Abb. 41B).

In Abwesenheit von Doxyzyklin wurde eine Konfluenz der Zellen von etwa 10-40% ermittelt. Unter Zugabe von Doxyzyklin waren die Zellen nach 48-72 Stunden zu 80-90 % konfluent. Weiterhin waren die Zellen in der Kultur ohne Doxyzyklin flächiger und größer als in Anwesenheit von Doxyzyklin (Abb. 41B).

Die Abnahme der Proliferation sowie die Veränderung der Morphologie in Abwesenheit von Doxyzyklin lassen auf eine Repression der SV40 Expression schließen. Die Repression der SV40 Expression erfolgt durch den Repressor tTRKRAB, der nur in Abwesenheit von Doxyzyklin als Monomer vorliegt und an den Tet-Operator binden kann. In den doppelt transduzierten Zellen wird folglich das Fusionsprotein tTRKRAB exprimiert und die Regulation der Dimerisierung bzw. die Aktivität des Repressors kann über die Gabe von Doxyzyklin gesteuert werden. Demnach wurden die selektionierten primären Stromazellen erfolgreich konditionell immortalisiert.



Abb. 41: Antibiotikaselektion und Re-mortalisierung kondtionell immortalisierter Zellen (A) Immortalisierte Zellen wurden mit 10  $\mu$ l virushaltigem Zellkulturüberstand (tTR-KRAB; + Virus) behandelt. Die Selektion doppelt-transduzierter Zellen erfolgte mit 1  $\mu$ g/ml Puromycin. (Maßstab = 100 $\mu$ m) (B) Morphologische Veränderung der konditionell immortalisierten Zellen nach 5 Tagen in Anwesenheit (+Dox) und Abwesenheit (- Dox) des Antibiotikums Doxyzyklin. (Maßstab = 100 $\mu$ m)

Mit Hilfe der durchflusszytometrischen Zellsortierung wurden zur Generierung von Einzelzellklon-Zelllinien von jeder der neun konditionell immortalisierten Primärzelllinien 96 Einzelzellen in Vertiefungen einer 96er Flachbodenplatte abgelegt. Von den 96 abgelegten Einzelzellen wurden jeweils 6 Einzelzellklon-Zelllinien bei einer Konfluenz von 70-80 % auf 6er Flachbodenplatten und anschließend auf Zellkulturflaschen mit einer Oberfläche von 75 cm² überführt und expandiert. Während der Expansion wiesen einige Einzelzellklon-Zelllinien der Primärzelllinien HUVEC C, ECFC 1E, MSZ KM MNZ B und MSZ KM Fett 7/11 keine Proliferation, eine hohe Rate nekrotischer Zellen oder nicht adhärenter Zellen auf. Diese Einzelzellklon-Zelllinien wurden für weiterführende Versuche ausgeschlossen. Die Anzahl erfolgreich generierter Einzelzellklon-Zelllinien für die individuellen konditionell immortalisierten Primärzelllinien ist in der Tab. 43 aufgeführt.

HUVEC ECFC MSZ KM PLVEC **Stroma** С F 1E 4D 1.4 3 В 7/5 7/11**# Klone** 3 6 0 6 6 3 4 2 5

Tab. 43: Anzahl der konditionell immortalisierten Einzelzellklon-Zelllinien

Im Rahmen dieser Arbeit wurden mit Hilfe der konditionellen Immortalisierung insgesamt neun (6 endotheliale und 3 mesenchymale) polyklonale konditionell immortalisierte Primärzelllinien generiert. Mit Hilfe der durchflusszytometrischen Einzelzellablage konnten von allen polyklonalen konditionellen immortalisierten Primärzelllinien bis auf die ECFC 1E Einzelzellklon-Zelllinien kultiviert und expandiert werden. Die Immortalisierung der Primärzellen ist reversibel und ihre Proliferation kann durch die Zugabe oder das Entfernen des Tetrazyklin Analogons Doxyzyklin reguliert werden. Die selektionierten primären Stromazellen wurden somit für weiterführende Versuche erfolgreich konserviert und stellen keine endliche Zellquelle mehr dar.

## 3.13. Selektion konditionell immortalisierter Einzelzellklon-Zelllinien

Im folgenden Teil der Arbeit wurden die Zellen der Einzelzellklon-Zelllinien hinsichtlich ihrer Fähigkeit zur Expansion bzw. zum Erhalt primitiver HSVZ getestet. Um den Einfluss der konditionellen Immortalisierung auf die HSVZ zu untersuchen, wurden die Stromazellen sowohl im immortalisierten (+ Dox) als auch im re-mortalisierten (-Dox) Zustand verwendet. Zum Vergleich mit vorhergehenden Versuchen wurden zusätzlich Kokulturansätze mit den korrespondierenden primären Stromazellen durchgeführt.

Aufgrund des großen Probenumfangs sowie aus Kostengründen, wurde die hämatopoetische Nachkommenschaft nur durchflusszytometrisch analysiert. Da, wie bereits an entsprechender Stelle erwähnt, die Quantifizierung der Expansion CD133⁺CD34⁺ und CD133^{low}CD34⁺ Zellen keine Aussage über den Erhalt bzw. eine Expansion primitiver HSVZ ermöglicht, erfolgte die Selektion der Einzelzellklon-Zelllinien ausschließlich anhand der Expansion der HSZ/MPP angereicherten CD133⁺CD34⁺CD38⁻CD45RA⁻ Fraktion. Die zusätzlich erhobenen Frequenzen und berechneten Expansion der CD45⁺, CD133⁺CD34⁺ und CD133^{low}CD34⁺ Populationen sind im Anhang aufgeführt (Tab. 68, Tab. 69, Tab. 70, Tab. 71, Tab. 72, Tab. 73, Tab. 74, Tab. 75, Tab. 76 und Tab. 77).

Einzelzellklon-Zelllinien, die eine Expansion der CD133⁺CD34⁺CD38⁻CD45RA⁻ HSZ/MPP Fraktion unterstützten, sollten anschließend in weiterführenden Kokulturversuchen erneut als Stromazellen verwendet und die hämatopoetische Nachkommenschaft mit Hilfe aller verfügbaren funktionellen Analysemethoden umfangreiche analysiert werden.

Die Kokultur wurde in Analogie zu den vorhergehenden Versuchen durchgeführt. Endotheliale (Screen A) und mesenchymale (Screen B) Stromazellen wurden in unterschiedlichen Versuchsreihen für die Kokultur verwendet. Das Kokulturmedium enthielt in allen Versuchsreihen unabhängig von der Zellentität 10 ng/ml EGF und FGF sowie  $2 \mu g/ml$  Doxyzyklin (+Dox) bei den konditionell immortalisiert gehaltenen Stromazellen.

Die Frequenz der HSZ/MPP angereicherten CD38⁻CD34⁺CD133⁺CD45RA⁻ Population wurde durchflusszytometrisch ermittelt (Abb. 42) und die Expansion anschließend im Vergleich zur eingesetzten Zellezahl berechnet. Im Mittel lag der Anteil der HSZ/MPP Fraktion in frisch aufgearbeiteten und durchflusszytometrisch sortierten CD133⁺CD34⁺ Zellen bei 61,2  $\pm$  7,2 % (Min: 40,3 %; Max: 97,6 %, n=7). Die initiale Zellzahl der HSZ/MPP angereicherten Fraktion wurde individuell für jeden Kokulturansatz und jedes Nabelschnurrestblut ermittelt und anschließend die Expansion für die unterschiedlichen Kulturbedingungen berechnet (Abb. 43, Tab. 44, Tab. 45, n=3/4).

Nach der 14-tägigen Kokultur wurden in den Ansätzen mit Zellen der Linien HUVEC C (Klon 2 und 3), ECFC 4E (Klon 3 und 4), PLVEC 1.4 (Klon 2 und 4), MSZ KM MNZ B (Klon 1), MSZ KM Fett 7/11 (Klon 1 und 2) sowie MSZ KM Fett 7/5 (Klon 1 und 2) mikroskopisch keine adhärenten Stromazellen detektiert (Abb. 43: mit einem Kreuz markiert, Tab. 44 und Tab. 45: Messwerte durchgestrichen). Diese Kulturbedingungen wurden bei der Auswertung der Daten nicht weiter berücksichtigt.

Eine Expansion (Faktor > 1) der HSZ/MPP angereicherten Fraktion wurde in allen Versuchsreihen in Anwesenheit von Zellen der murinen Stromazelllinie AFT024 gefunden (Tab. 44, Tab. 45). In Kokultur mit den Primärzellen, den immortalisierten sowie remortalisierten Stromazellen fand sich in den überwiegenden Ansätzen ein Verlust (Faktor < 1) der HSZ/MPP Fraktion. Ein reproduzierbarer Erhalt bzw. eine Expansion der HSZ/MPP Population in mindestens zwei von drei (MSZ) bzw. drei von vier (Endothel) Experimenten wurde mit re-mortalisierten Zellen der Einzelzellklon-Zelllinien ECFC 4E (Klon 2 und 4), PLVEC 4 (Klon 1, 3 und 5), MSZ KM MNZ B (Klon 2 und 3) und MSZ KM Fett 7/11 (Klon 4 und 5) ermittelt (Tab. 44, Tab. 45).

Im Vergleich zu den Primärzellen wurde mit Zellen der Stromazelllinien ECFC 4E Klon 4 (+Dox) sowie MSZ KM Fett 7/11 Klon 4 (+Dox) eine signifikant stärkere Expansion der HSZ/MPP ermittelt (Abb. 43). Die im Mittel stärkste Expansion der HSZ/MPP angereicherten Fraktion wurde in Kokultur mit den re-mortalisierten Stromazellen der Linien ECFC 4E Klon 2 (4,92  $\pm$  1,88-fach, n=4), PLVEC 4 Klon 3 (3,23  $\pm$  1,96-fach, n=4) sowie die MSZ KM MNZ B Klon 2 gefunden (2,36  $\pm$  0,06-fach, n=3, Abb. 43, Tab. 44, Tab. 45).

In der Kokultur mit re-mortalisierten Stromazellen (-Dox) wurden zudem signifikant mehr HSZ/MPPs im Vergleich zu den Kulturen mit immortalisierten Stromazellen (+Dox) detektiert (p<0,001, n=131, Tab. 44, Tab. 45).



(B) Durchflusszytometrische Quantifizierung von HSZMPP nach 14-tägiger Kultur in Suspensionskultur (Sus), mit Zellen der AFT024, den primären Stromazellen HUVEC C und MSZ KM Fett 7/11 sowie den jeweiligen Zellen konditionell immortalisierter Einzelzellklonlinien. Die Kokulturansätze mit Zellen der Einzelzellklonlinien wurden entweder in Anwesenheit (+Dox) oder Abwesenheit (-Dox) von Doxyzyklin durchgeführt.  $(\mathbf{A})$ 

Tab. 4	14: Exp	ansion	der HS	Z/MPP	' Frakti	ion in l	Kokultur	[•] mit in	nmorta	alisiertei	n Endo	othelzel	len
6					HU	C Klon	HU C Klon	HU C	Klon	HU C Klon	HU C	Klon I	IU C Klon
Screen	Sus	A	FT024	HU C		1	1	2		2	3		3
A					-	Dox	+ Dox	- D	ox	+ Dox	- De	0X	+ Dox
V1	0.00	1	7.20	0.38	2	2.60	1.81	0.0	0	0.00	2.7	8	0.00
V2	0.00		1.30	0.10	C	.90	0.00	0.1	6	0.00	0.3	0	0.28
V3	0.79		6.91	1.51	2	97	0.12	5.4	1	0.37	7.0	8	3.11
V4	1 15		5 83	0.40	5	5.39	0.41	4.2	20	0.32	10.4	45	4.57
	1,10		0,00	0,10	Ŭ	,,00	0,11	1,2	.0	0,02	10,		1,07
MW	0,48		7,81	0,60	2	2,97	0,59	<del>2,</del> 4	4	<del>0,17</del>	<del>5,1</del>	5	<del>1,99</del>
SEM	0,29		3,36	0,31	C	),93	0,42	1,3	9	<del>0,10</del>	2,2	5	<del>1,11</del>
			100	0 7 4 0		007	0.074	0.4	00	0.014	0.00	20	0.405
<b>p</b> (S)	-	(	0,123	0,743	0	,037	0,874	0,1	<del>82</del>	0,214	0,0	<del>)9</del>	0,165
<b>p</b> (A)	-		-	0,120	0,	,244	0,092	0,2	<del>0/</del>	0,109	0,50	<del>33</del>	0,227
p (Pr)	-		-	-	0,	,082	0,987	0,2	<del>H-</del>	0,184	<del>0,1</del>	4	<del>0,264</del>
				THEF					IIIIE			IIIIE	
Screen	IIIE	HUF Klop 1	HUF Vlan 1	HUF Vlop 2	HUF Klon 2	HUF Vlan 2	HUF Klan 2	HUF Vlan 4	HUF Vlan 4	HUF Vlan 5	HUF Klop 5	HUF Vlon 6	HUF Klon 6
Α	HUF	Kion I Dev	KIOD I	Kion 2	KION 2	Kion 5	Kion 5	KIOD 4	KIOD 4	Kion 5	KIOD 5	Kion o Dov	Kion o
		- Dox	+ D0x	- Dox	+ D0x	- Dox	+ D0X	- Dox	+ D0X	- Dox	+ Dox	- Dox	+ Dox
V1	0,83	0,99	0,14	0,42	0,00	0,29	0,00	0,45	0,00	0,00	0,47	0,00	0,00
V2	0,00	0,00	0,00	0,00	0,00	0,39	0,00	0,00	0,05	0,00	0,00	0,00	0,13
V3	0,66	2,92	0,12	2,48	0,09	1,53	0,36	0,95	0,00	2,66	0,05	0,82	0,00
V4	0,33	2,05	0,09	2,95	0,33	1,42	0,08	0,34	0,04	2,54	0,30	0,68	0,00
MW	0.46	1/10	0.00	1.46	0.11	0.90	0.11	044	0.02	1 30	0.21	0.37	0.03
SEM	0.18	0.63	0,03	0.73	0,11	0,30	0.08	0.20	0,02	0.75	0,21	0.37	0,03
O LAVI	0,10	0,05	0,05	0,75	0,00	0,55	0,00	0,20	0,01	0,75	0,11	0,22	0,03
p (S)	0,943	0,105	0,256	0,120	0,184	0,030	0,234	0,868	0,207	0,188	0,438	0,425	0,239
<b>p</b> (A)	0,105	0,156	0,103	0,170	0,107	0,141	0,106	0,111	0,104	0,170	0,102	0,118	0,105
p (Pr)	-	0,164	0,097	0,259	0,193	0,305	0,141	0,884	0,115	0,342	0,181	0,771	0,139
-													
		ECFC	ECFC	ECFC	ECFC	ECFC	ECFC	ECFC	ECFC	ECFC	ECFC	ECFC	ECFC
Screen	ECFC	<b>4</b> E	<b>4</b> E	4E	<b>4</b> E	<b>4</b> E	4E	<b>4</b> E	<b>4</b> E	4E	4E	4E	<b>4</b> E
Α	<b>4</b> E	Klon 1	Klon 1	Klon 2	Klon 2	Klon 3	Klon 3	Klon 4	Klon 4	Klon 5	Klon 5	Klon 6	Klon 6
		- Dox	+ Dox	- Dox	+ Dox	- Dox	+ Dox	- Dox	+ Dox	- Dox	+ Dox	- Dox	+ Dox
V1	0.51	0.00	0.00	9.26	0.28	4.00	1.85	2 60	4 63	0.00	0.00	0.38	0.15
V2	0.06	0.20	0.09	1.57	0.00	1.15	0.00	0.08	1 20	0,00	0.00	0.00	1.31
V3	1.09	1 43	0.17	1,07	0,00	3.70	0.84	3.87	2.65	3 37	0.31	0,50	0.10
V4	0.46	2.37	0.15	6.86	2 27	1.64	2.50	5 15	3 15	3.70	0.18	3.51	0,00
	0,10	2,01	0,10	0,00	2,21	1,01	2,00	0,10	0,10	0,10	0,10	0,01	0,00
MW	0,53	1,00	0,10	4,92	0,86	<del>2,65</del>	<del>1,30</del>	2,93	2,91	<del>1,79</del>	<del>0,12</del>	1,10	0,39
SEM	0,21	0,56	0,04	1,88	0,51	<del>0,73</del>	<del>0,55</del>	1,08	0,71	<del>1,01</del>	<del>0,07</del>	0,81	0,31
n (S)	0.872	0 153	0.235	0.103	0.236	0.076	0.179	0.062	0 0 / 0	0.170	0.216	0.376	0.871
$\mathbf{p}(3)$	0,072	0,153	0,200	0,103	0,230	0.162	0,173	0,002	0,043	0.207	0,210	0,570	0,071
$\mathbf{p}(\mathbf{A})$	0,115	0,133	0,107	0,209	0,130	0,103	0.250	0,233	0,100	0.252	0.076	0,133	0,127
<b>p</b> ( <b>r</b> 1)	-	0,424	0,117	0,105	0,540	0,001	0,200	0,009	0,000	0,202	0,070	0,540	0,790
		PL 1	4 PL	14 P	L 1 4	PL 14	PL 14	PL 14	PL	14 PI	14	PL 14	PL 14
Screen	PL	Klon	1 Klo	n1 K	lon 2	Klon 2	Klon 4	Klon 4	Klo	n.5 Kk	on 5	Klon 6	Klon 6
Α	1.4	- Dox	+ 1	ox -	Dox	+ Dox	- Dox	+ Dox	- D	lox +	Dox	- Dox	+ Dox
V1	0.54	0.99	0.	15 (	1.60	0.42	2.00	0.22	0	57 0	00	0.00	0.00
V1 V2	0,04	0,00	0,4	36	133	0,72	2,09	2.01	0,	10 0	15	0.00	1.02
V2	2 1 2	2 2 2 2	1,	36	3 20	1.08	0.45	0.00	<del>0,</del> 1	10 0	07	2 10	0.63
VJ VA	0.52	2,33	0,0	16	1 0/	1 3 2	1.42	0,00			00	1.96	0,03
v 4	0,00	3,38	1,4	10 4	7,34	1,00	1,42	0,00	<del>3,</del>	<del></del>	.00	1,90	0,72
MW	0,84	1,68	1,0	03	2,27	<del>0,71</del>	0,99	1,04	1,	20 0.	,13	1,01	0,82
SEM	0,43	0,73	0,2	23	1,10	0,30	0,47	0,96	0,0	64 0,	,11	0,59	0,40
(m)	0.115	0.07		45	440	0.007	0.110	0.00-		70		0.402	0.570
<b>p</b> (S)	0,445	0,078	s 0,1	45 0	<del>,116</del>	0,085	0,419	0,665	0,1	<del>12</del> 0,	393	0,199	0,578
<b>p</b> (A)	0,130	0,175	5 0,1	53 0	<del>,235</del>	0,125	0,104	0,190	<del>0,1</del>	<del>53</del> 0,	111	0,151	0,157
p (Pr)	-	0,303	8 0,7	50 0	<del>,256</del>	<del>0,753</del>	0,844	0,884	0,6	64 0,	239	0,712	0,979
Screen		PL 4	PL 4	PL 4	PL 4	PL 4	PL 4	PL 4	PL 4	PL 4	PL 4	PL 4	PL 4
A	PL 4	Klon 1	Klon 1	Klon 2	Klon 2	Klon 3	Klon 3	Klon 4	Klon 4	Klon 5	Klon 5	Klon 6	Klon 6
		- Dox	+ Dox	- Dox	+ Dox	- Dox	+ Dox	- Dox	+ Dox	- Dox	+ Dox	- Dox	+ Dox
V1	0,36	1,17	0,00	4,66	1,70	1,01	0,74	0,66	0,12	2,75	0,84	0,41	0,00
V2	0,04	0,17	0,26	0,41	0,00	0,07	0,76	0,21	0,60	0,18	0,23	0,00	0,00
V3	1,04	1,35	2,35	2,46	0,63	8,73	0,28	3,79	3,07	3,55	1,44	2,03	0,00
V4	0,13	2,82	2,65	4,03	0,31	3,14	0,23	6,01	4,89	6,00	3,09	2,03	0,12
MXX	0.20	1.20	1 2 2	2 00	0.66	3.00	0.50	267	2 17	2 1 2	1.40	1 1 2	0.02
SEM	0,39	0.55	0.60	2,09	0,00	3,23	0,50	2,07	2,17	1.20	0.62	1,12	0,03
SEM	0,23	0,55	0,69	0,95	0,37	1,96	0,14	1,37	1,11	1,20	0,62	0,53	0,03
p (S)	0,789	0.074	0,134	0.076	0,763	0.223	0.968	0,137	0,135	0.071	0.087	0,102	0.187
<b>p</b> (A)	0.111	0.148	0.172	0.160	0.097	0.334	0,115	0.275	0.242	0,254	0,159	0.147	0.104
p (Pr)	-	0.191	0.241	0.079	0.526	0,205	0,749	0.188	0.204	0,104	0,220	0.209	0.228
/		- ,	.,	.,	.,	-,00	.,	-,•	-, <b>-</b> •••	,. <b>.</b> .		-,00	

Alle Werte sind als x-fache Expansion angegeben. Abkürzungen: Sus = Suspension; HU = HUVEC; PL = PLVEC; Dox = Doxyzyklin; MW = Mittelwert; n. v. = nicht verfügbar/kontaminiert; p(S) = Signifikanzberechnung im Vergleich zur Suspension; <math>p(A) = Signifikanzberechnung imVergleich zur AFT024; p (Pr) = Signifikanzberechnung im Vergleich zu Zellen der primären Stromazelllinien (t-Test, zweiseitig, gepaart); Signifikanzen p<0,05 sind fett gedruckt dargestellt. Durchgestrichene Werte: keine adhärenten Stromazellen detektierbar.

Screen B	Sus	AFT024	MSZ MNZ B	MNZ B Klon 1 - Dox	MNZ B Klon 1 + Dox	MNZ B Klon 2 - Dox	MNZ B Klon 2 + Dox	MNZ B Klon 3 - Dox	MNZ B Klon 3 + Dox
V1	0,37	6,31	1,52	<del>5,35</del>	<del>2,39</del>	2,47	2,25	3,70	1,87
V2	0,11	1,24	1,18	<del>7,90</del>	<del>1,41</del>	2,29	1,35	3,48	0,81
V3	0,18	3,16	0,00	<del>4,26</del>	<del>1,70</del>	2,32	1,12	0,44	2,66
MW	0.22	3.57	0.90	5.84	1.83	2.36	1.57	2.54	1.78
SEM	0,08	1,48	0,46	<del>1,08</del>	0,29	0,06	0,34	1,05	0,53
p (S)	-	0,139	0,253	<del>0,037</del>	<del>0,017</del>	0,001	0,039	0,152	0,093
<b>p</b> (A)	-	-	0,194	<del>0,424</del>	<del>0,281</del>	0,486	0,239	0,593	0,310
p (Pr)	-	-	-	<del>0,032</del>	<del>0,160</del>	0,077	0,134	0,112	0,436
Screen B	MSZ Fett 7/11	Fett 7/11 Klon 1 - Dox	Fett 7/11 Klon 1 + Dox	Fett 7/11 Klon 2 - Dox	Fett 7/11 Klon 2 + Dox	Fett 7/11 Klon 4 - Dox	Fett 7/11 Klon 4 + Dox	Fett 7/11 Klon 5 - Dox	Fett 7/11 Klon 5 + Dox
V1	4,35	<del>9,43</del>	<del>2,41</del>	<del>4,03</del>	<del>6,08</del>	0,27	6,48	1,05	1,88
V2	0,56	<del>0,92</del>	<del>0,58</del>	<del>1,06</del>	<del>2,16</del>	0,00	9,09	0,34	0,41
V3	1,99	<del>1,84</del>	<del>1,08</del>	<del>1,76</del>	<del>3,46</del>	0,17	0,94	1,42	1,66
MW	2,30	4 <del>,06</del>	<del>1,35</del>	<del>2,28</del>	<del>3,90</del>	0,15	5,50	0,94	1,31
SEM	1,11	<del>2,70</del>	<del>0,55</del>	<del>0,90</del>	<del>1,15</del>	0,08	2,40	0,32	0,46
p (S)	0,180	0,280	<del>0,135</del>	<del>0,128</del>	<del>0,075</del>	0,179	0,160	0,132	0,110
p (A) p (Pr)	0,076	<del>0,748</del> <del>0,400</del>	<del>0,142</del> <del>0,238</del>	<del>0,169</del> <del>0,957</del>	0,429 0,002	0,135 0,172	0,590 0,374	0,188 0,298	0,178 0,318

Tab. 45: Expansion der HSZ/MP	P Fraktion in Kok	ultur mit immortalisier	ten MSZ
-------------------------------	-------------------	-------------------------	---------

Screen B	MSZ Fett 7/5	Fett 7/5 Klon 1 - Dox	Fett 7/5 Klon 1 + Dox	Fett 7/5 Klon 2 - Dox	Fett 7/5 Klon 2 + Dox
V1	5,68	<del>2,81</del>	<del>2,02</del>	<del>3,99</del>	<del>1,95</del>
V2	1,03	<del>1,19</del>	<del>0,00</del>	<del>0,58</del>	<del>0,45</del>
V3	1,84	<del>2,8</del> 4	<del>0,35</del>	<del>1,31</del>	<del>1,24</del>
MW	2,85	<del>2,28</del>	<del>0,79</del>	<del>1,96</del>	<del>1,21</del>
SEM	1,43	<del>0,54</del>	<del>0,62</del>	<del>1,04</del>	<del>0,43</del>
p (S)	0,192	<del>0,053</del>	<del>0,403</del>	<del>0,210</del>	<del>0,109</del>
<b>p</b> (A)	0,157	<del>0,365</del>	<del>0,088</del>	<del>0,084</del>	<del>0,155</del>
p (Pr)	-	<del>0,676</del>	<del>0,127</del>	<del>0,157</del>	<del>0,258</del>

Alle Werte sind als x-fache Expansion angegeben. Abkürzungen: Sus = Suspension; MNZ = MononukleäreZellen aus den Knochenmark; Dox = Doxyzyklin; MW = Mittelwert; n. v. = nicht verfügbar/kontaminiert; p(S) = Signifikanzberechnung im Vergleich zur Suspension; p(A) = Signifikanzberechnung im Vergleich zur AFT024; p(Pr) = Signifikanzberechnung im Vergleich zu Zellen derprimären Stromazelllinien (t-Test, zweiseitig, gepaart); Signifikanzen p<0.05 sind fett gedruckt dargestellt. Durchgestrichene Werte: keine adhärenten Stromazellen detektierbar.

Aus den Versuchen wird deutlich, dass Zellen humaner Einzelzellklon-Zelllinien einen Erhalt bzw. eine Expansion der HSZ/MPP angereicherten CD38⁻CD34⁺CD133⁺CD45RA⁻ Population unterstützen. Bei den humanen Stromazellen wurde eine stärkere Expansion dieser Fraktion in Abwesenheit von Doxyzyklin bzw. in Kokultur mit re-mortalisierten Stromazellen gefunden. Für weiterführende Versuche und die umfangreiche funktionelle Analyse der hämatopoetischen Nachkommenschaft wurden die Einzelzellklon-Zelllinien ECFC 4E Klon 2 und Klon 4, PLVEC 4 Klon 3, MSZ KM MNZ B Klon 2 und Klon 3 sowie MSZ KM Fett 7/11 Klon 5 selektioniert.



Abb. 43: Expansion von HSZ/MPP in Kokultur mit Zellen konditionell immortalisierter Einzelzellklon-Zelllinien

Graphische Darstellung der Werte aus Tab. 44. (A - B) Berechnete Expansion HSZ/MPP angereicherte Fraktion nach 14-tägiger Kokultur. Neben den Kontrollen (Suspension, AFT024) wurden Zellen konditionell immortalisierter Einzelzellklon-Zelllinien sowie die korrespondierenden Primärzellen (K = Kontrolle) verwendet. Die Kokultur mit den Zellen konditionell immortalisierter Einzelzellklon-Zelllinien wurde sowohl in Anwesenheit (+) als auch in Abwesenheit (-) von Doxyzyklin (Dox) durchgeführt. (Mittelwerte ± SEM; Kreuz: keine adhärenten Stromazellen detektierbar)

#### 3.13.1. Kokultur von HSVZ mit selektionierten Einzelzellklon-Zelllinien

Um das Differenzierungspotential der hämatopoetischen Nachkommenschaft und die Quantität primitiver HSVZ in Kokultur mit Zellen der konditionell immortalisierten Einzelzellklon-Zelllinien genauer zu analysieren, wurden erneut Kokulturen mit Zellen der zuvor selektionierten Einzelzellklon-Zelllinien durchgeführt. Aufgrund der vorhergehenden Befunde, wurden die Stromazellen für die Kokulturexperimente nur im re-mortalisierten Zustand (-Dox) verwendet. Da re-mortalisierte Stromazellen nur geringfügige Proliferation aufweisen, wurden die Zellen der Einzelzellklon-Zelllinien vor Beginn der Kokultur mit einer Dichte von 2500 Zellen/cm² (70-80 % Konfluenz) ausgebracht. Weiterhin haben unabhängige Versuche (nicht näher dokumentiert) gezeigt, dass re-mortalisierte endotheliale Stromazellen über den Zeitraum von 14 Tagen im Kokulturmedium IMDM10 mit SCF, TPO und Flt3-L einen konfluenten Stroma mit vitalen Zellen ausbilden. Folglich wurde dem Kokulturmedium weder EGF noch FGF zugesetzt.

Die Analyse der hämatopoetischen Nachkommenschaft und Quantifizierung primitiver HSVZ erfolgte mit Hilfe der zuvor etablierten *in vitro* Analysemethoden. Die Ergebnisse der durchflusszytometrischen Analyse sowie die berechnete Expansion der CD45⁺, CD133⁺CD34⁺, CD133^{low}CD34⁺ und HSZ/MPP Fraktion wurden zusätzlich dokumentiert (Abb. 44, Abb. 45A und B, Tab. 78, Tab. 79). Die Ergebnisse der phänotypischen Quantifizierung werden hier aufgrund der vorhergehenden Erkenntnisse nicht weiter ausgeführt und auch nicht zur Beurteilung der Kulturbedingungen herangezogen.



# Abb. 44: Durchflusszytometrische Charakterisierung der HSVZ in Kokultur mit Zellen immortalisierter Stromazelllinien

Durchflusszytometrische Analyse der CD133⁺CD34⁺ und CD133^{low}CD34⁺ sowie der HSZ/MPP angereicherten CD133⁺CD34⁺CD38⁻CD45RA⁻ Fraktionen nach 14-tägiger Kokultur mit Zellen konditionell immortalisierter Einzelzellklon-Zelllinien.

Die Kokultur CD133⁺CD34⁺ HSVZ mit Zellen der konditionell immortalisierten Einzelzellklon-Zelllinien wurde in Analogie zu den vorhergehenden Versuchen durchgeführt. Nach 14 Tagen wurde die hämatopoetische Nachkommenschaft geerntet und Zellen der hämatopoetischen Subpopulationen CD133⁺CD34⁺ und CD133^{low}CD34⁺ in die zuvor etablierten *in vitro* Differenzierungsansätze (LTC-IC, NK-IC, CFC, Erythrozyten, Megakaryozyten und T-Zell Ansatz) eingebracht.

Die Frequenz von Zellen mit LTC-IC Potential in der CD133⁺CD34⁺ Fraktion liegt in allen Kulturen im Mittel unter 1 % (Tab. 46, n=5). Die mittlere Expansion von LTC-ICs war in Kokultur mit allen Zellen re-mortalisierten Stromazellen höher als in der Referenz. Ein stärker Expansion von Zellen mit LTC-IC Potential als in der AFT024 Kontrolle (3,85  $\pm$  1,39-fach; Abb. 45, Tab. 46C, n=5) in allen Versuchen wurde mit Zellen der MSZ KM MNZ B Klon 2 ermittelt (6,84  $\pm$  1,97-fach, Abb. 45C, Tab. 46, n=5).

Der Anteil CD133⁺CD34⁺ mit NK-IC Potential an der gesamten Nachkommenschaft liegt zwischen 1,74  $\pm$  0,42 % (ECFC 4E Klon 2) und maximal 4,61  $\pm$  1,03 % (MSZ KM Fett 7/11). Die im Mittel höchste Amplifikation von NK-ICs wurde im Vergleich zur AFT024 (56,59  $\pm$  16,06-fach, Abb. 45D, Tab. 46, n=5) in der Ko-Kultur mit Zellen der MSZ KM MNZ B Klon 2 gefunden (76,43  $\pm$  23,51-fach, Abb. 45D, Tab. 46, n=5).

Tab. 46: Expansion der LTC-ICs und NK-ICs in Kokultur mit Zellen konditionell immortalisierter Einzelzellklon-Zelllinien

LTC-	Sug	A ET024	MSZ MNZ B	MSZ MNZ B	MSZ Fett 7/11	ECFC 4E	ECFC 4E	PLVEC 4
IC %	Sus	AF 1024	Klon 2	Klon 3	Klon 5	Klon 2	Klon 4	Klon 3
V1	1,83%	0,16%	0,36%	2,38%	0,85%	1,30%	0,31%	0,53%
V2	4,22%	0,60%	1,24%	0,13%	0,14%	0,21%	0,16%	0,19%
V3	0,44%	0,35%	0,31%	0,41%	1,76%	0,47%	0,40%	0,53%
V4	0,94%	0,00%	0,06%	0,00%	0,55%	0,03%	0,04%	0,13%
V5	1,96%	0,46%	0,55%	0,16%	1,34%	0,34%	0,00%	0,26%
	4.000/	0.040/	0.500/	0.000/	0.000/	0.470/	0.400/	0.000/
MW	1,88%	0,31%	0,50%	0,62%	0,93%	0,47%	0,18%	0,33%
SEM	0,65%	0,11%	0,20%	0,45%	0,29%	0,22%	0,08%	0,08%
(6)		0.050	0.040	0.400	0.044	0.447	0.005	0.000
p (S)	-	0,056	0,043	0,196	0,341	0,117	0,065	0,088
p (A)	-	-	0,191	0,569	0,116	0,582	0,361	0,920
					-			
LTC-	Suc	AET024	MSZ MNZ B	MSZ MNZ B	MSZ Fett 7/11	ECFC 4E	ECFC 4E	PLVEC 4
IC	505	AF 1024	Klon 2	Klon 3	Klon 5	Klon 2	Klon 4	Klon 3
V1	1,97	1,43	4,05	23,97	11,32	20,50	6,26	9,88
V2	2,88	4,82	12,27	1,34	1,05	2,38	2,96	2,75
V3	0,65	5,31	6,27	5,12	13,65	13,23	14,65	11,84
V4	2,27	0,00	1,42	0,00	5,27	0,84	1,19	3,70
V5	2,16	7,69	10,17	2,39	16,25	5,95	0,00	6,17
MW	1,99	3,85	6,84	6,56	9,51	8,58	5,01	6,87
SEM	0,37	1,39	1,97	4,43	2,79	3,67	2,63	1,75
n (S)		0.079	0.062	0.269	0.069	0.164	0.264	0.070
p (S)		0,278	0,062	0,308	0,068	0,164	0,364	0,079
$\mathbf{n}(\mathbf{A})$	-	-	0.061	0.620	0,084	0,305	0,709	0.225

NK-IC %	Sus	AFT024	MSZ MNZ B Klon 2	MSZ MNZ B Klon 3	MSZ Fett 7/11 Klon 5	ECFC 4E Klon 2	ECFC 4E Klon 4	PLVEC 4 Klon 3
V1	4,12%	8,69%	6,59%	10,09%	8,17%	2,81%	5,37%	5,83%
V2	8,20%	1,93%	2,09%	2,86%	3,59%	2,30%	1,86%	1,71%
V3	1,61%	7,11%	7,87%	5,54%	5,55%	2,03%	2,63%	3,60%
V4	1,29%	2,07%	3,31%	1,49%	2,29%	1,05%	1,09%	1,38%
V5	4,20%	2,76%	2,46%	0,91%	3,46%	0,51%	0,79%	0,67%
MW	3,88%	4,51%	4,46%	4,18%	4,61%	1,74%	2,35%	2,64%
SEM	1,24%	1,4170	1,10%	1,00%	1,03%	0,42%	0,02%	0,93%
p (S)	-	0,785	0,796	0,896	0,675	0,141	0,352	0,489
<b>p</b> (A)	-	-	0,942	0,639	0,858	0,080	0,052	0,041
-								
NK-IC	Sue	AFT024	MSZ MNZ B	MSZ MNZ B	MSZ Fett 7/11	ECFC 4E	ECFC 4E	PLVEC 4
NK-IC	Sus	AFT024	MSZ MNZ B Klon 2	MSZ MNZ B Klon 3	MSZ Fett 7/11 Klon 5	ECFC 4E Klon 2	ECFC 4E Klon 4	PLVEC 4 Klon 3
NK-IC V1	Sus 4,45	AFT024 78,28	MSZ MNZ B Klon 2 74,24	MSZ MNZ B Klon 3 101,70	MSZ Fett 7/11 Klon 5 108,76	ECFC 4E Klon 2 44,45	ECFC 4E Klon 4 109,32	PLVEC 4 Klon 3 107,84
NK-IC V1 V2	Sus 4,45 5,60	AFT024 78,28 15,50	MSZ MNZ B Klon 2 74,24 20,68	MSZ MNZ B Klon 3 101,70 28,76	MSZ Fett 7/11 Klon 5 108,76 28,04	ECFC 4E Klon 2 44,45 26,66	ECFC 4E Klon 4 109,32 35,09	PLVEC 4 Klon 3 107,84 24,26
NK-IC V1 V2 V3	Sus 4,45 5,60 2,37	AFT024 78,28 15,50 106,49	MSZ MNZ B Klon 2 74,24 20,68 159,91	MSZ MNZ B Klon 3 101,70 28,76 68,37	MSZ Fett 7/11 Klon 5 108,76 28,04 42,93	ECFC 4E Klon 2 44,45 26,66 56,61	ECFC 4E Klon 4 109,32 35,09 97,44	PLVEC 4 Klon 3 107,84 24,26 80,68
NK-IC V1 V2 V3 V4	Sus 4,45 5,60 2,37 3,12	AFT024 78,28 15,50 106,49 36,65	MSZ MNZ B Klon 2 74,24 20,68 159,91 82,12	MSZ MNZ B Klon 3 101,70 28,76 68,37 25,55	MSZ Fett 7/11 Klon 5 108,76 28,04 42,93 21,98	ECFC 4E Klon 2 44,45 26,66 56,61 26,99	ECFC 4E Klon 4 109,32 35,09 97,44 32,84	PLVEC 4 Klon 3 107,84 24,26 80,68 37,96
NK-IC V1 V2 V3 V4 V5	Sus 4,45 5,60 2,37 3,12 4,65	AFT024 78,28 15,50 106,49 36,65 46,04	MSZ MNZ B Klon 2 74,24 20,68 159,91 82,12 45,76	MSZ MNZ B Klon 3 101,70 28,76 68,37 25,55 13,43	MSZ Fett 7/11 Klon 5 108,76 28,04 42,93 21,98 41,88	ECFC 4E Klon 2 44,45 26,66 56,61 26,99 8,90	ECFC 4E Klon 4 109,32 35,09 97,44 32,84 26,21	PLVEC 4 Klon 3 107,84 24,26 80,68 37,96 16,09
NK-IC V1 V2 V3 V4 V5	Sus 4,45 5,60 2,37 3,12 4,65	AFT024 78,28 15,50 106,49 36,65 46,04	MSZ MNZ B Klon 2 74,24 20,68 159,91 82,12 45,76	MSZ MNZ B Klon 3 101,70 28,76 68,37 25,55 13,43	MSZ Fett 7/11 Klon 5 108,76 28,04 42,93 21,98 41,88	ECFC 4E Klon 2 44,45 26,66 56,61 26,99 8,90	ECFC 4E Klon 4 109,32 35,09 97,44 32,84 26,21	PLVEC 4 Klon 3 107,84 24,26 80,68 37,96 16,09
NK-IC           V1           V2           V3           V4           V5	Sus 4,45 5,60 2,37 3,12 4,65 4,04	AFT024 78,28 15,50 106,49 36,65 46,04 56,59	MSZ MNZ B Klon 2 74,24 20,68 159,91 82,12 45,76 76,54	MSZ MNZ B Klon 3 101,70 28,76 68,37 25,55 13,43 47,56	MSZ Fett 7/11 Klon 5 108,76 28,04 42,93 21,98 41,88 48,71	ECFC 4E Klon 2 44,45 26,66 56,61 26,99 8,90 32,72 32,72	ECFC 4E Klon 4 109,32 35,09 97,44 32,84 26,21 60,18	PLVEC 4 Klon 3 107,84 24,26 80,68 37,96 16,09 53,37
NK-IC           V1           V2           V3           V4           V5           MW           SEM	Sus 4,45 5,60 2,37 3,12 4,65 4,04 0,57	AFT024 78,28 15,50 106,49 36,65 46,04 56,59 16,06	MSZ MNZ B Klon 2 74,24 20,68 159,91 82,12 45,76 76,54 23,51	MSZ MNZ B Klon 3 101,70 28,76 68,37 25,55 13,43 47,56 16,38	MSZ Fett 7/11 Klon 5 108,76 28,04 42,93 21,98 41,88 48,71 15,54	ECFC 4E Klon 2 44,45 26,66 56,61 26,99 8,90 32,72 8,20	ECFC 4E Klon 4 109,32 35,09 97,44 32,84 26,21 60,18 17,80	PLVEC 4 Klon 3 107,84 24,26 80,68 37,96 16,09 53,37 17,59
NK-IC V1 V2 V3 V4 V5 MW SEM P (S)	Sus 4,45 5,60 2,37 3,12 4,65 4,04 0,57	AFT024 78,28 15,50 106,49 36,65 46,04 56,59 16,06 0,033	MSZ MNZ B Klon 2 74,24 20,68 159,91 82,12 45,76 76,54 23,51 0,039	MSZ MNZ B Klon 3 101,70 28,76 68,37 25,55 13,43 47,56 16,38 0,058	MSZ Fett 7/11 Klon 5 108,76 28,04 42,93 21,98 41,88 48,71 15,54 0,045	ECFC 4E Klon 2 44,45 26,66 56,61 26,99 8,90 32,72 8,20 0,028	ECFC 4E Klon 4 109,32 35,09 97,44 32,84 26,21 60,18 17,80 0,036	PLVEC 4 Klon 3 107,84 24,26 80,68 37,96 16,09 53,37 17,59 0,050

Alle Werte sind in % und als x-fache Expansion angegeben. Abkürzungen: Sus = Suspension; MNZ = Mononukleäre Zellen aus den Knochenmark; MW = Mittelwert; p(S) = Signifikanzberechnung im Vergleich zur Suspension; p(A) = Signifikanzberechnung imVergleich zur AFT024; (t-Test, zweiseitig, gepaart); Signifikanzen p<0,05 sind fett gedrucktdargestellt. Sind die Messwerte der Suspension bzw. mit der AFT024 signifikant höher, ist derSignifikanzwert mit einem *-Symbol markiert.

Für die Analyse des Koloniebildungspotentials wurden CD133⁺CD34⁺ und CD133^{low}CD34⁺ HSVZ durchflusszytometrisch sortiert und in den CFC Ansatz eingebracht (Abb. 45, Tab. 47, n=5). Die Frequenz koloniebildender Zellen in der CD133⁺CD34⁺ Fraktion nach Kokultur mit re-mortalisierten humanen Stromazellen war in allen Versuchen im Vergleich zu frisch isolierten HSVZ etwa 3 bis 4-fach geringer (min: 6,12  $\pm$  0,42 %; max: 8,67  $\pm$  0,60 %, n=5, Tab. 47). In der CD133^{low}CD34⁺ Fraktion waren anteilsmäßig weniger koloniebildende Zellen enthalten (min: 0,53  $\pm$  0,08 %; max: 2,95  $\pm$  1,52 %, n=5, Tab. 47).

Eine signifikant stärkere Expansion CD133⁺CD34⁺ Zellen mit CFC Potential wurde gegenüber den Zellen der AFT024 (24,31  $\pm$  3,75-fach, Abb. 45E, Tab. 47, n=5) in der Kokultur mit Zellen der MSZ KM MNZ B Klon 2 (36,01  $\pm$  4,23-fach, Abb. 45E, Tab. 47, n=5) ermittelt.

Zellen mit CFC Potential in der CD133^{low}CD34⁺ Fraktion expandierten hingegen in der Kokultur mit den murinen Stromazellen besser als mit Zellen der humanen Stromazelllinien. Die im Mittel stärkste Amplifikation von CFCs in der CD133^{low}CD34⁺ Fraktion wurde bei den humanen re-mortalisierten Stromazellen in der Kokultur mit Zellen der MSZ KM MNZ B Klon 2 (5,98  $\pm$  3,89-fach, Abb. 45E, Tab. 47, n=5) gefunden.

III IIO	Ruitui init L	Jenen Ronal	uonen mini	of tunisfer ter	Linzeizein	lon Zemm	UII	
CD	G	1 57001	MSZ MNZ B	MSZ MNZ B	MSZ Fett 7/11	ECFC 4E	ECFC 4E	PLVEC 4
133+	Sus	AF 1024	Klon 2	Klon 3	Klon 5	Klon 2	Klon 4	Klon 3
V1	15 96%	7 33%	9 33%	6.67%	8.00%	6 95%	6.67%	9.67%
V2	4.08%	4 33%	5 33%	7.00%	6.67%	7 33%	6.00%	7.00%
V3	12 90%	2.67%	6.00%	6.33%	7.00%	8 26%	4 67%	8 33%
V3 V4	13 16%	2,67%	6.67%	9.33%	10.89%	9.30%	6 11%	7 97%
V5	14 29%	4 00%	4 33%	5,00%	6.67%	6.25%	7 14%	10.36%
	11,2070	1,0070	1,0070	0,0070	0,0170	0,2070	7,1170	10,0070
MW	12,08%	4,20%	6,33%	6,87%	7,85%	7,62%	6,12%	8,67%
SEM	2,07%	0,85%	0,84%	0,70%	0,80%	0,53%	0,42%	0,60%
n (S)		0.010	0.027*	0.083	0.100	0.109	0.041*	0.105
$\mathbf{p}(\mathbf{s})$		0,019	0,037	0,003	0,100	0,100	0,041	0,105
<b>p</b> (A)			0,030	0,090	0,047	0,032	0,030	0,000
CD			MS7 MN7 P	MS7 MN7 P	MS7 Fott 7/11	ECEC 4E	ECEC 4E	DI VEC 4
133 ⁺	Sus	AFT024	Klon 2	Klon 3	Klon 5	Klon 2	Klon 4	Klon 3
133	0.40	00.40	45.47	00.40	04.00	7.00	Rion 4	20.00
V1 V2	3,40	33,42	45,17	26,10	21,96	7,80	23,90	32,33
V2 V2	0,81	19,14	22,83	24,03	10,12	0,00	21,03	16,09
V 3	3,37	27,89	45,00	30,00	23,79	20,93	25,30	20,32
V4	3,08	12,40	30,32	30,83	13,34	0,85	10,13	14,42
V 3	2,95	28,02	31,73	24,29	32,11	5,40	28,31	20,89
MW	2,72	24,31	36,01	28,16	21,87	9,98	21,89	22,01
SEM	0,49	3,75	4,23	2,21	3,13	2,79	3,15	3,31
(0)		0.004	0.004	0.004	0.000	0.057	0.004	0.000
<b>p</b> ( <b>S</b> )	-	0,004	0,001	0,001	0,003	0,057	0,004	0,003
<b>p</b> (A)	-	-	0,038	0,447	0,396	0,027	0,294	0,221
CD			MCZ MNZ D	MCZ MNZ D	M67 E-44 7/11	ECEC 4E	ECEC 4E	DI VEC 4
CD 122low	Sus	AFT024	MSZ MNZ B	MSZ MNZ B	MSZ Fett 7/11	ECFC 4E	ECFC 4E	PLVEC 4
135			KI0II 2	KIOII 3	KI0II 5	KIOII 2	KI0II 4	KI0II 5
V1	4,89%	3,67%	1,33%	0,67%	1,33%	0,67%	0,67%	1,44%
V2	3,51%	4,67%	1,33%	1,33%	2,00%	0,67%	0,67%	0,83%
V3	3,59%	7,00%	1,21%	0,67%	1,13%	0,33%	0,33%	8,33%
V4	6,67%	7,00%	7,46%	4,67%	2,20%	0,67%	0,67%	4,17%
V5	1,01%	2,00%	0,33%	0,33%	1,23%	0,33%	0,33%	0,00%
MW	3 93%	4 87%	2 33%	1 53%	1.58%	0.53%	0.53%	2 95%
SEM	0.93%	0.97%	1.30%	0.80%	0.22%	0.08%	0.08%	1.52%
	,							
p (S)		0,280	0,101	0,015*	0,045*	0,018*	0,018*	0,545
<b>p</b> (A)			0,069	0,014	0,023	0,011	0,011	0,093
~~								
CD	Sus	AFT024	MSZ MNZ B	MSZ MNZ B	MSZ Fett 7/11	ECFC 4E	ECFC 4E	PLVEC 4
133.0%			Klon 2	Klon 3	Klon 5	Klon 2	Klon 4	Klon 3
V1	0,42	43,61	2,45	0,92	2,85	0,21	1,38	1,75
V2	0,49	48,25	3,99	3,55	5,57	0,43	1,75	1,25
V3	0,15	78,38	1,49	0,48	0,81	0,01	0,38	4,96
V4	1,07	81,00	21,39	10,93	2,14	0,36	1,38	3,44
V5	0,04	25,07	0,58	0,68	1,98	0,12	0,93	0,00
MW	0 44	55.26	5.98	3.31	2.67	0.22	1 16	2.28
SEM	0.18	10 71	3 89	1.98	0.80	0.08	0.23	0.87
	3,10	,,,,	3,00	.,00	0,00	0,00	3,20	3,07
p (S)	-	0,007	0,211	0,188	0,045	0,192	0,021	0,093
<b>p</b> (A)	-	-	0,005*	0,006*	0,009*	0,007*	0,007*	0,006*

Tab. 47: Frequenz und Expansion der CFCs in der CD133⁺CD34⁺ und CD133^{low}CD34⁺ Fraktion in Kokultur mit Zellen konditionell immortalisierter Einzelzellklon-Zelllinien

Alle Werte sind in % und als x-fache Expansion angegeben. Abkürzungen: Sus = Suspension; MNZ = Mononukleäre Zellen aus den Knochenmark; MW = Mittelwert; p(S) = Signifikanzberechnung im Vergleich zur Suspension; <math>p(A) = Signifikanzberechnung im Vergleich zur AFT024; (t-Test, zweiseitig, gepaart); Signifikanzen p<0,05 sind fett gedruckt dargestellt. Sind die Messwerte der Suspension bzw. mit der AFT024 signifikant höher, ist der Signifikanzwert mit einem *-Symbol markiert.

Die Diskriminierung erythrozytärer, myeloischer sowie erythro-myeloischer Kolonien im CFC Ansatz ergab, dass CD133⁺CD34⁺ Zellen CFU-G, CFU-M sowie CFU-GM Kolonien hervorbrachten (Abb. 45F, Tab. 80, n=5). CD133⁺ Zellen mit erythrozytärem bzw. erythro-myeloischem Koloniebildungspotential wurden in 6 von 40 Ansätzen detektiert (Abb. 45F, Tab. 80, n=5). Koloniebildende CD133^{low}CD34⁺ Zellen realisierten CFU-G, BFU-E und CFU-MIX sowie geringfügig CFU-GM Kolonien (Abb. 45G, Tab. 81, n=5).



Abb. 45: Expansion von HSVZ mit LTC-IC, NK-IC und CFC Potential in Kokultur mit Zellen konditionell immortalisierter Einzelzellklon-Zelllinien

Graphische Darstellung der Werte aus Tab. 46, Tab. 47, Tab. 79, Tab. 80 und Tab. 81. (A) Nach 14-tägiger Kokultur mit re-mortalisierten humanen Stromazellen, der AFT024 oder in Suspension wurde die Expansion hämatopoetischer Subpopulationen durchflusszytometrisch quantifiziert. ( $\mathbf{B} - \mathbf{E}$ ) Expandierte CD133⁺CD34⁺ und CD133^{low}CD34⁺ Zellen wurde an Tag 14 durchflusszytometrisch isoliert und die Expansion von Zellen mit LTC-IC, NK-IC und CFC Potential ermittelt. ( $\mathbf{F} - \mathbf{G}$ ) Im CFC Ansatz wurden morphologisch 5 verschiedene Kolonietypen unterschieden: CFU-MIX, BFU-E/CFU-E, CFU-G, CFU-GM und CFU-M. (Mittelwerte ± SEM). Die Zahlen über den Balken repräsentieren die Anzahl der CFC Ansätze mit erythrozytären und/oder erythromyeloischen Kolonien. (Signifikanzen: * gegen Suspension, # gegen AFT024, p<0,05)

Zusätzlich zur Quantifizierung von Zellen mit LTC-IC, NK-IC und CFC Potential wurden Zellen der CD133⁺CD34⁺ und CD133^{low}CD34⁺ Fraktion durchflusszytometrisch sortiert und im Erythrozyten, Megakaryozyten und T-Zell Ansatz analysiert (Abb. 46, Tab. 48, Tab. 49 und Tab. 50). Die Quantifizierung reifer Erythrozyten (GPA⁺CD45⁻), Megakaryozyten (CD41⁺CD61⁺) und T-Zellen (CD8⁺/CD4⁺/CD8⁺CD4⁺) erfolgte durchflusszytometrisch. Da alle drei Differenzierungsansätze keinen klonale Analysemethode darstellen, ermöglicht die durchflusszytometrisch ermittelte Anzahl reifer Erythrozyten, Megakaryozyten und T-Zellen keinen direkten Rückschluss auf die absolute Anzahl primitiver HSVZ mit Erythrozyten, Megakaryozyten bzw. T-Zell Potential. Um eine objektive Beurteilung der gewonnen Daten und einen Vergleich der Kulturbedingungen zu ermöglichen, wurde die zuvor ermittelte Expansion der beiden analysierten Subpopulationen CD133⁺CD34⁺ und CD133^{low}CD34⁺ in die Auswertung mit einbezogen. Die Berechnung der Werte ist exemplarisch für die Differenzierung CD133⁺CD34⁺ Zellen in Kokultur mit Zellen der MSZ KM MNZ B Klon 2 (Versuch 2) im Erythrozytenansatz dargestellt:

Initial wurden 1.000 CD133⁺CD34⁺ HSVZ (Start_{d0} = 1.000 Zellen) in die Kokultur mit Zellen eingebracht und expandierten in Kokultur mit Zellen der MSZ KM MNZ B Klon 2 93,3-fach (Exp_{d14} = 93,3-fach, Tab. 79). Für die Analyse wurden 2.111 CD133⁺CD34⁺ Zellen durchflusszytometrisch sortiert (Sort_{d14} = 2.111 Zellen) und brachten 2.171 CD45⁻GPA⁺ Zellen (Ery_{d14} = 2.171 Zellen) im Erythrozyten Ansatz hervor. Die Berechnung der absoluten Anzahl von Erythrozyten auf die CD133⁺CD34⁺ Gesamtpopulation (Ery_{Gesamt}) erfolgte mit folgender Formel:

$$((Sort_{d14} * Stard_{d0}) / * Exp_{d14}) * Ery_{d14} / = Ery_{Gesamt}$$
  
 $((93,3-fach * 1.000 Zellen) / 2.111 Zellen) * 2.171 Zellen = 95.951 Erythrozyten$ 

Die funktionelle Analyse der beiden Subpopulationen im Erythrozyten-Flüssigkulturansatz ergab, dass CD133⁺CD34⁺ HSVZ mit erythrozytärem Differenzierungspotential in einzelnen Versuchen nachgewiesen werden konnten (Abb. 46A, Tab. 48, n=4). In der Kokultur mit Zellen der MSZ KM MNZ B Klon 2 sowie der PLVEC 4 Klon 3 fanden sich in zwei von vier Versuchen CD133⁺CD34⁺ Zellen mit erythrozytärem Potential (Abb. 46A, Tab. 48, n=4). CD133^{low}CD34⁺ Zellen mit erythrozytärem Differenzierungspotential wurden in Anwesenheit der AFT024 in allen Versuchen detektiert. In der Kokultur mit Zellen der MSZ KM MNZ B Klon 2 wurden nach der Differenzierung CD45⁻GPA⁺ Zellen in vier von fünf Versuchen bei der Analyse CD133^{low}CD34⁺ Zellen gefunden.

CD 133 ⁺	Sus	AFT024	MSZ MNZ B Klon 2	MSZ MNZ B Klon 3	MSZ Fett 7/11 Klon 5	ECFC 4E Klon 2	ECFC 4E Klon 4	PLVEC 4 Klon 3
V1	n. v.	n. v.	n. v.	n. v.	n. v.	n. v.	n. v.	n. v.
V2	0	475	95951	172552	246502	1092	126799	489766
V3	0	0	547	0	0	0	0	0
V4	0	0	0	0	0	0	0	0
V5	0	0	0	0	0	0	0	325
MW	0	119	24132	43138	61625	273	31700	122523
SEM	0	119	23950	43138	61625	273	31700	122414
p (S)	-	0.391	0.388	0.391	0.391	0.391	0.391	0.391
p (A)	-	-	0,388	0,391	0,391	0,391	0,391	0,391
CD	Sue	A FT024	MSZ MNZ B	MSZ MNZ B	MSZ Fett 7/11	ECFC 4E	ECFC 4E	PLVEC 4
133 ^{low}	Sus	AF 1024	Klon 2	Klon 3	Klon 5	Klon 2	Klon 4	Klon 3
V1	309	1605644	114943	15506	165032	6	74800	46035
V2	24713	1335131	210804	271	109242	145	12849	131394
V3	0	184962	0	161	0	31	0	0
V4	0	284865	4465	16285	123	0	0	0
V5	68	61432	101	0	0	0	242	419
MW	5018	694407	66063	6445	54879	36	17578	35570
SEM	4924	321621	42337	3860	34721	28	14518	25552
p (S)	-	0,097	0,185	0,856	0,206	0,367	0,467	0,219
<b>p</b> (A)	-	-	0,092	0,098	0,090	0,097	0,094	0,095

Tab. 48: Quantifizierung von Zellen mit erythrozytärem Potential in der CD133⁺CD34⁺ und CD133^{low}CD34⁺ Fraktion in Kokultur mit Zellen konditionell immortalisierter Stromazelllinien

Alle Werte repräsentieren die berechnete absolute Anzahl CD45 GPA⁺ Zellen der gesamten hämatopoetischen Subpopulation. Abkürzungen: Sus = Suspension; MNZ = Mononukleäre Zellen aus den Knochenmark; MW = Mittelwert; p(S) = Signifikanzberechnung im Vergleich zur Suspension;p(A) = Signifikanzberechnung im Vergleich zur AFT024; (t-Test, zweiseitig, gepaart); Signifikanzen<math>p<0,05 sind fett gedruckt dargestellt. Sind die Messwerte der Suspension bzw. mit der AFT024 signifikant höher, ist der Signifikanzwert mit einem *-Symbol markiert.

Die Analyse der CD133⁺CD34⁺ Fraktion im Megakaryozyten-Flüssigkulturansatz ergab, dass die hämatopoetische Nachkommenschaft in Kokultur mit Zellen der AFT024 in zwei von fünf Versuchen CD133⁺CD34⁺ Zellen mit megakaryozytärem Differenzierungspotential aufwies (Abb. 46B, Tab. 49, n=5). In der Kokultur mit Zellen der Stromazelllinien MSZ KM MNZ B Klon 2 und 3 wurden in vier von fünf Versuchen CD133⁺CD34⁺ Zellen mit megakaryozytärem Differenzierungspotential detektiert (Abb. 46B, Tab. 49, n=5).

CD41⁺CD61⁺ Zellen wurden auf der AFT024 nach Differenzierung CD133^{low}CD34⁺ Zellen im Megakaryozyten Ansatz in drei von fünf Versuchen detektiert (Abb. 46B, Tab. 49, n=5). In der Kokultur mit humanen re-mortalisierten Stromazellen wurden nur in einzelnen Versuchen und nicht reproduzierbar CD133^{low}CD34⁺ HSVZ mit megakaryozytärem Differenzierungspotential ermittelt (Abb. 46B, Tab. 49, n=5).

Tab. 49: Quantifizierung von Zellen mit megakaryozytärem Potential in der CD133⁺CD34⁺ und CD133^{low}CD34⁺ Fraktion in Kokultur mit Zellen konditionell immortalisierter Einzelzellklon-Zelllinien

CD	Sus	AFT024	MSZ MNZ B	MSZ MNZ B	MSZ Fett 7/11	ECFC 4E	ECFC 4E	PLVEC 4
133			Klon 2	Klon 3	Klon 5	Klon 2	Klon 4	Klon 3
V1	0	0	5311	17674	16566	0	0	0
V2	0	11050	0	0	0	0	0	0
V3	0	0	12369	7845	162	0	6659	892
V4	0	0	12022	1370	0	0	0	0
V5	0	1288	2428	1658	637	2022	0	0
MW	0	2468	6426	5709	3473	404	1332	178
SEM	0	2160	2502	3283	3275	404	1332	178
p (S)	-	0,317	0,062	0,157	0,349	0,374	0,374	0,374
<b>p</b> (A)	-	-	0,410	0,530	0,831	0,411	0,710	0,360
CD	C.		MSZ MNZ B	MSZ MNZ B	MSZ Fett 7/11	ECFC 4E	ECFC 4E	PLVEC 4
	<b>NIIG</b>	A ETO24						
133 ^{low}	Sus	AFT024	Klon 2	Klon 3	Klon 5	Klon 2	Klon 4	Klon 3
133 ^{low} V1	0 Sus	AFT024 0	Klon 2 0	Klon 3 0	Klon 5 295	Klon 2 17	Klon 4 258	Klon 3 584
133 ^{low} V1 V2	0 0	AFT024 0 3078	Klon 2 0 0	Klon 3 0 0	Klon 5 295 0	Klon 2 17 0	Klon 4 258 0	Klon 3 584 0
133 ^{low} V1 V2 V3	0 0 10	AFT024 0 3078 1085	Klon 2 0 0 0	Klon 3 0 0 0	Klon 5 295 0 0	Klon 2 17 0 0	Klon 4 258 0 0	Klon 3 584 0 0
133 ^{low} V1 V2 V3 V4	0 0 10 87	AFT024 0 3078 1085 13652	Klon 2 0 0 0 0	Klon 3 0 0 0 1029	Klon 5 295 0 0 0	Klon 2 17 0 0 0	Klon 4 258 0 0 0	Klon 3 584 0 0 0
133 ^{low} V1 V2 V3 V4 V5	0 0 10 87 0	AFT024 0 3078 1085 13652 0	Klon 2 0 0 0 0 0	Klon 3 0 0 1029 0	Klon 5 295 0 0 0 0 0	Klon 2 17 0 0 0 54	Klon 4 258 0 0 0 0 0	Klon 3 584 0 0 0 0 0
133 ^{low} V1           V2           V3           V4           V5	Sus           0           10           87           0	AFT024 0 3078 1085 13652 0	Klon 2 0 0 0 0 0	Klon 3 0 0 1029 0	Klon 5 295 0 0 0 0 0	Klon 2 17 0 0 0 54	Klon 4 258 0 0 0 0 0	Klon 3 584 0 0 0 0 0
133 ^{low} V1 V2 V3 V4 V5 MW	Sus           0           0           10           87           0           19	AFT024 0 3078 1085 13652 0 3563	Klon 2 0 0 0 0 0 0	Klon 3 0 0 1029 0 206	Klon 5 295 0 0 0 0 0 59	Klon 2 17 0 0 0 54 14	Klon 4 258 0 0 0 0 0 52	Klon 3 584 0 0 0 0 0 117
133 ^{low} V1 V2 V3 V4 V5 MW SEM	Sus           0           0           10           87           0           19           17	AFT024 0 3078 1085 13652 0 3563 2584	Klon 2 0 0 0 0 0 0 0 0	Klon 3 0 0 1029 0 206 206	Klon 5 295 0 0 0 0 0 59 59	Klon 2 17 0 0 54 14 10	Klon 4 258 0 0 0 0 0 52 52 52	Klon 3 584 0 0 0 0 0 117 117
133 ^{low} V1 V2 V3 V4 V5 MW SEM	Sus           0           10           87           0           119           117	AFT024 0 3078 1085 13652 0 3563 2584 0 040	Klon 2 0 0 0 0 0 0 0 0 0	Klon 3 0 0 1029 0 206 206 206	Klon 5 295 0 0 0 0 59 59	Klon 2 17 0 0 54 14 10 0 0 0 0 0 0 0 0 0 0 0 0 0	Klon 4 258 0 0 0 0 0 52 52 52	Klon 3 584 0 0 0 0 0 117 117
133 ^{low} V1 V2 V3 V4 V5 MW SEM p (S)	Sus           0           0           10           87           0           19           17	AFT024 0 3078 1085 13652 0 3563 2584 0,240	Klon 2 0 0 0 0 0 0 0 0 0 0 0 0,319	Klon 3 0 0 1029 0 206 206 0,379	Klon 5 295 0 0 0 0 59 59 59 0,579	Klon 2 17 0 0 54 14 10 0,838	Klon 4 258 0 0 0 0 52 52 52 0,611	Klon 3 584 0 0 0 0 117 117 0,471

Alle Werte repräsentieren die berechnete absolute Anzahl  $CD41^+CD61^+$  Zellen der gesamten hämatopoetischen Subpopulation. Abkürzungen: Sus = Suspension; MNZ = Mononukleäre Zellen aus den Knochenmark; MW = Mittelwert; p (S) = Signifikanzberechnung im Vergleich zur Suspension; p (A) = Signifikanzberechnung im Vergleich zur AFT024; (t-Test, zweiseitig, gepaart); Signifikanzen p<0,05 sind fett gedruckt dargestellt. Sind die Messwerte der Suspension bzw. mit der AFT024 signifikant höher, ist der Signifikanzwert mit einem *-Symbol markiert.

Zellen mit T-Zell Differenzierungspotential wurden in Kokultur mit Zellen humaner Stromazelllinien verstärkt in der CD133⁺CD34⁺ Zellpopulation detektiert (Abb. 46C, Tab. 50, n=5). Dabei exprimierte der überwiegende Anteil der *in vitro* generierten T-Zellen das Oberflächenantigen CD8, welches auf der Zelloberfläche von zytotoxischen T-Zellen präsentiert wird. CD133⁺CD34⁺ HSVZ wurden sowohl mit der AFT024 als auch mit den humanen re-mortalisierten Stromazellen in allen Versuchsreihen gefunden (Abb. 46C, Tab. 50, n=5). CD133⁺CD34⁺ HSVZ in der Kokultur mit Zellen der murinen Stromazelllinie AFT024 generierten 2 bis 3-fache mehr T-Zellen (330.354 ± 122.168 T-Zellen) im Vergleich zu der Kokultur mit Zellen humaner Stromazelllinien (im Mittel 113.922 ± 72.760 T-Zellen). CD133^{low}CD34⁺ Zellen mit T-Zell Differenzierungspotential wurden in Kokultur mit Zellen der murinen Stromazelllinie und Zellen der Stromazelllinie MSZ KM MNZ B Klon 2 in fünf von fünf Versuchen detektiert (Abb. 46C, Tab. 51, n=5). In den Kokulturansätzen mit Zellen der übrigen humanen Stromazelllinien nur vereinzelt CD133^{low}CD34⁺ Zellen mit T-Zell Differenzierungspotential im T-Zell Ansatz detektiert werden (Abb. 46C, Tab. 51, n=5).

CD0 ⁺			MCZ MNZ D	MCZ MNZ D	MC7 E-44	ECEC 4E	ECEC 4E	DI VEC 4
CD8 CD122 ⁺	Sus	AFT024	MSZ MINZ B	MSZ MINZ B	MSZ Fett	ECFC 4E	ECFC 4E	PLVEC 4
CD133			Klon 2	Kion 3	7/11 Kion 5	Klon 2	Klon 4	Kion 3
V1	93750	441009	346747	321757	128209	274330	60981	444295
V2	4073	36188	4728	4683	2271	9884	7142	36484
V3	4029	210435	9971	39162	47722	51905	35758	19725
V4	5684	439326	32698	11843	30641	7999	5240	27085
V5	10468	166789	5298	10191	40878	16152	17726	18345
MW	23601	258740	70880	77527	10011	72054	25360	100187
SFM	17577	79/20	66011	613/0	21045	51103	10/21	83830
SEM	11311	13420	00911	01343	21045	51135	10421	00009
p (S)	-	0,029	0,319	0,288	0,026	0,228	0,872	0,267
<b>p</b> (A)	-	-	0,049*	0,052	0,036*	0,048*	0,037*	0,122
CD4 ⁺	Suc	A ET024	MSZ MNZ B	MSZ MNZ B	MSZ Fett	ECFC 4E	ECFC 4E	PLVEC 4
CD133 ⁺	Sus	AF 1024	Klon 2	Klon 3	7/11 Klon 5	Klon 2	Klon 4	Klon 3
V1	12750	32069	45730	88906	58039	56678	126025	232652
V2	2223	12869	3469	6350	1700	3125	8565	25304
V3	3139	16769	34499	24660	71894	13318	8948	14925
V4	18200	178340	39631	21512	17077	7309	2396	55638
V5	2270	23313	6347	5321	61132	14085	33695	1331
MW	7716	E0670	25025	20250	41069	19002	25026	65070
MW CEM	7710	32072	20930	29350	41908	18903	33920	65970
SEM	3287	31262	6//6	15390	13715	9000	23100	42019
p (S)	-	0,194	0,052	0,199	0,082	0,288	0,279	0,228
p (A)	-	-	0,405	0,550	0,798	0,388	0,722	0,812
CD8 ⁺ CD4 ⁺			MSZ MNZ B	MSZ MNZ B	MSZ Fett	ECFC 4E	ECFC 4E	PLVEC 4
CD8+CD4+ CD133+	Sus	AFT024	MSZ MNZ B Klon 2	MSZ MNZ B Klon 3	MSZ Fett 7/11 Klon 5	ECFC 4E Klon 2	ECFC 4E Klon 4	PLVEC 4 Klon 3
CD8+CD4+ CD133+ V1	Sus 1974	AFT024	MSZ MNZ B Klon 2 16978	MSZ MNZ B Klon 3 20875	MSZ Fett 7/11 Klon 5 8070	ECFC 4E Klon 2 16813	ECFC 4E Klon 4 15743	PLVEC 4 Klon 3 79189
CD8+CD4+ CD133+ V1 V2	Sus 1974 248	AFT024 14413 6166	MSZ MNZ B Klon 2 16978 1569	MSZ MNZ B Klon 3 20875 5002	MSZ Fett 7/11 Klon 5 8070 1128	ECFC 4E Klon 2 16813 781	ECFC 4E Klon 4 15743 1423	PLVEC 4 Klon 3 79189 5599
CD8+CD4+ CD133+ V1 V2 V3	Sus 1974 248 953	AFT024 14413 6166 5002	MSZ MNZ B Klon 2 16978 1569 6774	MSZ MNZ B Klon 3 20875 5002 5345	MSZ Fett 7/11 Klon 5 8070 1128 8613	ECFC 4E Klon 2 16813 781 4809	ECFC 4E Klon 4 15743 1423 6867	PLVEC 4 Klon 3 79189 5599 2277
CD8+CD4+ CD133+ V1 V2 V3 V4	Sus 1974 248 953 1129	AFT024 14413 6166 5002 63071	MSZ MNZ B Klon 2 16978 1569 6774 8801	MSZ MNZ B Klon 3 20875 5002 5345 3528	MSZ Fett 7/11 Klon 5 8070 1128 8613 7029	ECFC 4E Klon 2 16813 781 4809 1007	ECFC 4E Klon 4 15743 1423 6867 0	PLVEC 4 Klon 3 79189 5599 2277 5433
CD8+CD4+ CD133+ V1 V2 V3 V4 V5	Sus 1974 248 953 1129 1729	AFT024 14413 6166 5002 63071 6012	MSZ MNZ B Klon 2 16978 1569 6774 8801 2097	MSZ MNZ B Klon 3 20875 5002 5345 3528 3111	MSZ Fett 7/11 Klon 5 8070 1128 8613 7029 6491	ECFC 4E Klon 2 16813 781 4809 1007 1303	ECFC 4E Klon 4 15743 1423 6867 0 9262	PLVEC 4 Klon 3 79189 5599 2277 5433 1656
CD8+CD4+ CD133+ V1 V2 V3 V4 V5	Sus 1974 248 953 1129 1729	AFT024 14413 6166 5002 63071 6012	MSZ MNZ B Klon 2 16978 1569 6774 8801 2097	MSZ MNZ B Klon 3 20875 5002 5345 3528 3111	MSZ Fett 7/11 Klon 5 8070 1128 8613 7029 6491	ECFC 4E Klon 2 16813 781 4809 1007 1303	ECFC 4E Klon 4 15743 1423 6867 0 9262	PLVEC 4 Klon 3 79189 5599 2277 5433 1656
CD8*CD4 ⁺ CD133 ⁺ V1 V2 V3 V4 V5 MW	Sus 1974 248 953 1129 1729 1207	AFT024 14413 6166 5002 63071 6012 18933 18933	MSZ MNZ B Klon 2 16978 1569 6774 8801 2097 7244	MSZ MNZ B Klon 3 20875 5002 5345 3528 3111 7572	MSZ Fett 7/11 Klon 5 8070 1128 8613 7029 6491 6266 6260	ECFC 4E Klon 2 16813 781 4809 1007 1303 4943	ECFC 4E Klon 4 15743 1423 6867 0 9262 6659	PLVEC 4 Klon 3 79189 5599 2277 5433 1656 18831
CD8*CD4 ⁺ CD133 ⁺ V1 V2 V3 V4 V5 MW SEM	Sus 1974 248 953 1129 1729 1207 304	AFT024 14413 6166 5002 63071 6012 18933 11164	MSZ MNZ B Klon 2 16978 1569 6774 8801 2097 7244 2794	MSZ MNZ B Klon 3 20875 5002 5345 3528 3111 7572 3353	MSZ Fett 7/11 Klon 5 8070 1128 8613 7029 6491 6266 1338	ECFC 4E Klon 2 16813 781 4809 1007 1303 4943 3058	ECFC 4E Klon 4 15743 1423 6867 0 9262 6659 2838	PLVEC 4 Klon 3 79189 5599 2277 5433 1656 18831 15111
CD8*CD4 ⁺ CD133 ⁺ V1 V2 V3 V4 V5 MW SEM P (S)	Sus 1974 248 953 1129 1729 1207 304	AFT024 14413 6166 5002 63071 6012 18933 11164 0.187	MSZ MNZ B Klon 2 16978 1569 6774 8801 2097 7244 2794 0.083	MSZ MNZ B Klon 3 20875 5002 5345 3528 3111 7572 3353 0.117	MSZ Fett 7/11 Klon 5 8070 1128 8613 7029 6491 6266 1338 0.011	ECFC 4E Klon 2 16813 781 4809 1007 1303 4943 3058 0.264	ECFC 4E Klon 4 15743 1423 6867 0 9262 6659 2838 0.104	PLVEC 4 Klon 3 79189 5599 2277 5433 1656 18831 15111 0.303
CD8*CD4 ⁺ CD133 ⁺ V1 V2 V3 V4 V5 MW SEM p (S) p (A)	Sus 1974 248 953 1129 1729 1207 304 -	AFT024 14413 6166 5002 63071 6012 18933 11164 0,187	MSZ MNZ B Klon 2 16978 1569 6774 8801 2097 7244 2794 0,083 0,338	MSZ MNZ B Klon 3 20875 5002 5345 3528 3111 7572 3353 0,117 0,403	MSZ Fett 7/11 Klon 5 8070 1128 8613 7029 6491 6266 1338 0,011 0.313	ECFC 4E Klon 2 16813 781 4809 1007 1303 4943 3058 0,264 0,312	ECFC 4E Klon 4 15743 1423 6867 0 9262 6659 2838 0,104 0,391	PLVEC 4 Klon 3 79189 5599 2277 5433 1656 18831 15111 0,303 0,996
CD8*CD4 ⁺ CD133 ⁺ V1 V2 V3 V4 V5 MW SEM p (S) p (A)	Sus 1974 248 953 1129 1729 1207 304 -	AFT024 14413 6166 5002 63071 6012 18933 11164 -	MSZ MNZ B Klon 2 16978 1569 6774 8801 2097 7244 2794 0,083 0,338	MSZ MNZ B Klon 3 20875 5002 5345 3528 3111 7572 3353 0,117 0,403	MSZ Fett 7/11 Klon 5 8070 1128 8613 7029 6491 6266 1338 0,011 0,313	ECFC 4E Klon 2 16813 781 4809 1007 1303 4943 3058 0,264 0,312	ECFC 4E Klon 4 15743 1423 6867 0 9262 6659 2838 0,104 0,391	PLVEC 4 Klon 3 79189 5599 2277 5433 1656 18831 15111 0,303 0,996
CD8*CD4 ⁺ CD133 ⁺ V1 V2 V3 V4 V5 MW SEM p (S) p (A)	Sus 1974 248 953 1129 1729 1207 304	AFT024 14413 6166 5002 63071 6012 18933 11164 0,187 -	MSZ MNZ B Klon 2 16978 1569 6774 8801 2097 7244 2794 0,083 0,338 MSZ MNZ B	MSZ MNZ B Klon 3 20875 5002 5345 3528 3111 7572 3353 0,117 0,403 MSZ MNZ B	MSZ Fett 7/11 Klon 5 8070 1128 8613 7029 6491 6266 1338 0,011 0,313 MSZ Fett	ECFC 4E Klon 2 16813 781 4809 1007 1303 4943 3058 0,264 0,312 ECFC 4E	ECFC 4E Klon 4 15743 1423 6867 0 9262 6659 2838 0,104 0,391 ECFC 4E	PLVEC 4 Klon 3 79189 5599 2277 5433 1656 18831 15111 0,303 0,996 PLVEC 4
CD8*CD4 ⁺ CD133 ⁺ V1 V2 V3 V4 V5 MW SEM p (S) p (A) Gesamt	Sus 1974 248 953 1129 1729 1207 304 Sus	AFT024 14413 6166 5002 63071 6012 18933 11164 0,187 - AFT024	MSZ MNZ B Klon 2 16978 1569 6774 8801 2097 7244 2794 0,083 0,338 MSZ MNZ B Klon 2	MSZ MNZ B Klon 3 20875 5002 5345 3528 3111 7572 3353 0,117 0,403 MSZ MNZ B Klon 3	MSZ Fett 7/11 Klon 5 8070 1128 8613 7029 6491 6266 1338 0,011 0,313 MSZ Fett 7/11 Klon 5	ECFC 4E Klon 2 16813 781 4809 1007 1303 4943 3058 0,264 0,312 ECFC 4E Klon 2	ECFC 4E Klon 4 15743 1423 6867 0 9262 6659 2838 0,104 0,391 ECFC 4E Klon 4	PLVEC 4 Klon 3 79189 5599 2277 5433 1656 18831 15111 0,303 0,996 PLVEC 4 Klon 3
CD8*CD4 ⁺ CD133 ⁺ V1 V2 V3 V4 V5 MW SEM P (S) p (A) Gesamt V1	Sus 1974 248 953 1129 1729 1207 304 - Sus 108474	AFT024 14413 6166 5002 63071 6012 18933 11164 0,187 - AFT024 487491	MSZ MNZ B Klon 2 16978 1569 6774 8801 2097 7244 2794 0,083 0,338 MSZ MNZ B Klon 2 409455	MSZ MNZ B Klon 3 20875 5002 5345 3528 3111 7572 3353 0,117 0,403 MSZ MNZ B Klon 3 431538	MSZ Fett 7/11 Klon 5 8070 1128 8613 7029 6491 6266 1338 0,011 0,313 MSZ Fett 7/11 Klon 5 194319	ECFC 4E Klon 2 16813 781 4809 1007 1303 4943 3058 0,264 0,312 ECFC 4E Klon 2 347821	ECFC 4E Klon 4 15743 1423 6867 0 9262 6659 2838 0,104 0,391 ECFC 4E Klon 4 202749	PLVEC 4 Klon 3 79189 5599 2277 5433 1656 18831 15111 0,303 0,996 PLVEC 4 Klon 3 756137
CD8*CD4 ⁺ CD133 ⁺ V1 V2 V3 V4 V5 MW SEM p (S) p (A) Gesamt V1 V2	Sus 1974 248 953 1129 1207 304 - Sus 108474 6544	AFT024 14413 6166 5002 63071 6012 18933 11164 0,187 - AFT024 487491 55223	MSZ MNZ B Klon 2 16978 1569 6774 8801 2097 7244 2794 0,083 0,338 MSZ MNZ B Klon 2 409455 9766	MSZ MNZ B Klon 3 20875 5002 5345 3528 3111 7572 3353 0,117 0,403 MSZ MNZ B Klon 3 431538 16035	MSZ Fett 7/11 Klon 5 8070 1128 8613 7029 6491 6266 1338 0,011 0,313 MSZ Fett 7/11 Klon 5 194319 5099	ECFC 4E Klon 2 16813 781 4809 1007 1303 4943 3058 0,264 0,312 ECFC 4E Klon 2 347821 13790	ECFC 4E Klon 4 15743 1423 6867 0 9262 6659 2838 0,104 0,391 ECFC 4E Klon 4 202749 17131	PLVEC 4 Klon 3 79189 5599 2277 5433 1656 18831 15111 0,303 0,996 PLVEC 4 Klon 3 756137 67388
CD8*CD4 ⁺ CD133 ⁺ V1 V2 V3 V4 V5 MW SEM p (S) p (A) Gesamt V1 V2 V3	Sus 1974 248 953 1129 1207 304 - - Sus 108474 6544 8122	AFT024 14413 6166 5002 63071 6012 18933 11164 0,187 - AFT024 487491 55223 232206	MSZ MNZ B Klon 2 16978 1569 6774 8801 2097 7244 2794 0,083 0,338 MSZ MNZ B Klon 2 409455 9766 51244	MSZ MNZ B Klon 3 20875 5002 5345 3528 3111 7572 3353 0,117 0,403 MSZ MNZ B Klon 3 431538 16035 69167	MSZ Fett 7/11 Klon 5 8070 1128 8613 7029 6491 6266 1338 0,011 0,313 MSZ Fett 7/11 Klon 5 194319 5099 128230	ECFC 4E Klon 2 16813 781 4809 1007 1303 	ECFC 4E Klon 4 15743 1423 6867 0 9262 2838 0,104 0,391 ECFC 4E Klon 4 202749 17131 51574	PLVEC 4 Klon 3 79189 5599 2277 5433 1656 
CD8*CD4 ⁺ CD133 ⁺ V1 V2 V3 V4 V5 <u>MW</u> SEM <u>p (S)</u> p (A) Gesamt V1 V2 V3 V4	Sus 1974 248 953 1129 1729 1207 304 - - Sus 108474 6544 8122 25013	AFT024 14413 6166 5002 63071 6012 18933 11164 0,187 - AFT024 487491 55223 232206 680737	MSZ MNZ B Klon 2 16978 1569 6774 8801 2097 7244 2794 0,083 0,338 MSZ MNZ B Klon 2 409455 9766 51244 81130	MSZ MNZ B Klon 3 20875 5002 5345 3528 3111 7572 3353 0,117 0,403 MSZ MNZ B Klon 3 431538 16035 69167 36882	MSZ Fett 7/11 Klon 5 8070 1128 8613 7029 6491 6266 1338 0,011 0,313 MSZ Fett 7/11 Klon 5 194319 5099 128230 54746	ECFC 4E Klon 2 16813 781 4809 1007 1303 4943 3058 0,264 0,312 ECFC 4E Klon 2 347821 13790 70032 16315	ECFC 4E Klon 4 15743 1423 6867 0 9262 6659 2838 0,104 0,391 ECFC 4E Klon 4 202749 17131 51574 7636	PLVEC 4 Klon 3 79189 5599 2277 5433 1656 18831 15111 0,303 0,996 PLVEC 4 Klon 3 756137 67388 36927 88156
CD8*CD4 ⁺ CD133 ⁺ V1 V2 V3 V4 V5 MW SEM <u>p (S)</u> p (A) Gesamt V1 V2 V3 V4 V5	Sus 1974 248 953 1129 1729 1207 304 - - Sus 108474 6544 8122 25013 14467	AFT024 14413 6166 5002 63071 6012 18933 11164 0,187 - AFT024 487491 55223 232206 680737 196115	MSZ MNZ B Klon 2 16978 1569 6774 8801 2097 7244 2794 0,083 0,338 MSZ MNZ B Klon 2 409455 9766 51244 81130 13743	MSZ MNZ B Klon 3 20875 5002 5345 3528 3111 7572 3353 0,117 0,403 MSZ MNZ B Klon 3 431538 16035 69167 36882 18623	MSZ Fett 7/11 Klon 5 8070 1128 8613 7029 6491 6266 1338 0,011 0,313 MSZ Fett 7/11 Klon 5 194319 5099 128230 54746 108500	ECFC 4E Klon 2 16813 781 4809 1007 1303 4943 3058 0,264 0,312 ECFC 4E Klon 2 347821 13790 70032 16315 31540	ECFC 4E Klon 4 15743 1423 6867 0 9262 6659 2838 0,104 0,391 ECFC 4E Klon 4 202749 17131 51574 7636 60683	PLVEC 4 Klon 3 79189 5599 2277 5433 1656 18831 15111 0,303 0,996 PLVEC 4 Klon 3 756137 67388 36927 88156 21332
CD8*CD4 ⁺ CD133 ⁺ V1 V2 V3 V4 V5 MW SEM p (S) p (A) Gesamt V1 V2 V3 V4 V2 V3 V4 V5	Sus 1974 248 953 1129 1729 1207 304 - - Sus 108474 6544 8122 25013 14467 - - - - - - - - -	AFT024 14413 6166 5002 63071 6012 18933 11164 0,187 - AFT024 487491 55223 232206 680737 196115	MSZ MNZ B Klon 2 16978 1569 6774 8801 2097 7244 2794 0,083 0,338 MSZ MNZ B Klon 2 409455 9766 51244 81130 13743	MSZ MNZ B Klon 3 20875 5002 5345 3528 3111 7572 3353 0,117 0,403 MSZ MNZ B Klon 3 431538 16035 69167 36882 18623	MSZ Fett 7/11 Klon 5 8070 1128 8613 7029 6491 6266 1338 0,011 0,313 MSZ Fett 7/11 Klon 5 194319 5099 128230 54746 108500	ECFC 4E Klon 2 16813 781 4809 1007 1303 4943 3058 0,264 0,312 ECFC 4E Klon 2 347821 13790 70032 16315 31540	ECFC 4E Klon 4 15743 1423 6867 0 9262 6659 2838 0,104 0,391 ECFC 4E Klon 4 202749 17131 51574 7636 60683	PLVEC 4 Klon 3 79189 5599 2277 5433 1656 18831 15111 0,303 0,996 PLVEC 4 Klon 3 756137 67388 36927 88156 21332
CD8*CD4 ⁺ CD133 ⁺ V1 V2 V3 V4 V5 <u>MW</u> SEM <u>p (8)</u> p (8) p (A) Gesamt V1 V2 V3 V4 V5 <u>V4</u> V5 MW	Sus 1974 248 953 1129 1729 1207 304 - - Sus 108474 6544 8122 25013 14467 32524	AFT024 14413 6166 5002 63071 6012 18933 11164 0,187 - AFT024 487491 55223 232206 680737 196115 330354	MSZ MNZ B Klon 2 16978 1569 6774 8801 2097 7244 2794 0,083 0,338 MSZ MNZ B Klon 2 409455 9766 51244 81130 13743 113068	MSZ MNZ B Klon 3 20875 5002 5345 3528 3111 7572 3353 0,117 0,403 MSZ MNZ B Klon 3 431538 16035 69167 36882 18623 114449	MSZ Fett 7/11 Klon 5 8070 1128 8613 7029 6491 6266 1338 0,011 0,313 MSZ Fett 7/11 Klon 5 194319 5099 128230 54746 108500 98179	ECFC 4E Klon 2 16813 781 4809 1007 1303 4943 3058 0,264 0,312 ECFC 4E Klon 2 347821 13790 70032 16315 31540 95900	ECFC 4E Klon 4 15743 1423 6867 0 9262 6659 2838 0,104 0,391 ECFC 4E Klon 4 202749 17131 51574 7636 60683 67954	PLVEC 4 Klon 3 79189 5599 2277 5433 1656 18831 15111 0,303 0,996 PLVEC 4 Klon 3 756137 67388 36927 88156 21332 193988
CD8*CD4 ⁺ CD133 ⁺ V1 V2 V3 V4 V5 MW SEM Gesamt V1 V2 V3 V4 V2 V3 V4 V5 MW SEM	Sus 1974 248 953 1129 1729 1207 304 - - Sus 108474 6544 8122 25013 14467 32524 19263	AFT024 14413 6166 5002 63071 6012 18933 11164 0,187 - AFT024 487491 55223 232206 680737 196115 330354 111985	MSZ MNZ B Klon 2 16978 1569 6774 8801 2097 7244 2794 0,083 0,338 MSZ MNZ B Klon 2 409455 9766 51244 81130 13743 113068 75241	MSZ MNZ B Klon 3 20875 5002 5345 3528 3111 7572 3353 0,117 0,403 MSZ MNZ B Klon 3 431538 16035 69167 36882 18623 114449 79838	MSZ Fett 7/11 Klon 5 8070 1128 8613 7029 6491 6266 1338 0,011 0,313 MSZ Fett 7/11 Klon 5 194319 5099 128230 54746 108500 98179 32251	ECFC 4E Klon 2 16813 781 4809 1007 1303 4943 3058 0,264 0,312 ECFC 4E Klon 2 347821 13790 70032 16315 31540 95900 63778	ECFC 4E Klon 4 15743 1423 6867 0 9262 6659 2838 0,104 0,391 ECFC 4E Klon 4 202749 17131 51574 7636 60683 67954 35151	PLVEC 4 Klon 3 79189 5599 2277 5433 1656 18831 15111 0,303 0,996 PLVEC 4 Klon 3 756137 67388 36927 88156 21332 193988 141017
CD8*CD4 ⁺ CD133 ⁺ V1 V2 V3 V4 V5 MW SEM P (S) p (A) Gesamt V1 V2 V3 V4 V2 V3 V4 V5 SEM SEM SEM	Sus 1974 248 953 1129 1729 1207 304 - - Sus 108474 6544 8122 25013 14467 32524 19263	AFT024 14413 6166 5002 63071 6012 18933 11164 0,187 - AFT024 487491 55223 232206 680737 196115 330354 111985 0,046	MSZ MNZ B Klon 2 16978 1569 6774 8801 2097 7244 2794 0,083 0,338 MSZ MNZ B Klon 2 409455 9766 51244 81130 13743 113068 75241 0 225	MSZ MNZ B Klon 3 20875 5002 5345 3528 3111 7572 3353 0,117 0,403 MSZ MNZ B Klon 3 431538 16035 69167 36882 18623 114449 79838 0,251	MSZ Fett 7/11 Klon 5 8070 1128 8613 7029 6491 6266 1338 0,011 0,313 MSZ Fett 7/11 Klon 5 194319 5099 128230 54746 108500 98179 32251 0 042	ECFC 4E Klon 2 16813 781 4809 1007 1303 4943 3058 0,264 0,312 ECFC 4E Klon 2 347821 13790 70032 16315 31540 95900 63778 0,236	ECFC 4E Klon 4 15743 1423 6867 0 9262 6659 2838 0,104 0,391 ECFC 4E Klon 4 202749 17131 51574 7636 60683 67954 35151 0 132	PLVEC 4 Klon 3 79189 5599 2277 5433 1656 18831 15111 0,303 0,996 PLVEC 4 Klon 3 756137 67388 36927 88156 21332 193988 141017 0,256
CD8*CD4 ⁺ CD133 ⁺ V1 V2 V3 V4 V5 MW SEM P (S) P (A) Gesamt V1 V2 V3 V4 V5 V3 V4 V5 MW SEM P (S) P (A)	Sus 1974 248 953 1129 1729 1207 304 - - Sus 108474 6544 8122 25013 14467 32524 19263 -	AFT024 14413 6166 5002 63071 6012 18933 11164 0,187 - AFT024 487491 55223 232206 680737 196115 330354 111985 0,046	MSZ MNZ B Klon 2 16978 1569 6774 8801 2097 7244 2794 0,083 0,338 MSZ MNZ B Klon 2 409455 9766 51244 81130 13743 113068 75241 0,225 0,094	MSZ MNZ B Klon 3 20875 5002 5345 3528 3111 7572 3353 0,117 0,403 MSZ MNZ B Klon 3 431538 16035 69167 36882 18623 114449 79838 0,251 0,122	MSZ Fett 7/11 Klon 5 8070 1128 8613 7029 6491 6266 1338 0,011 0,313 MSZ Fett 7/11 Klon 5 194319 5099 128230 54746 108500 98179 32251 0,042 0,096	ECFC 4E Klon 2 16813 781 4809 1007 1303 4943 3058 0,264 0,312 ECFC 4E Klon 2 347821 13790 70032 16315 31540 95900 63778 0,236 0,100	ECFC 4E Klon 4 15743 1423 6867 0 9262 6659 2838 0,104 0,391 ECFC 4E Klon 4 202749 17131 51574 7636 60683 67954 35151 0,132 0,076	PLVEC 4 Klon 3 79189 5599 2277 5433 1656 18831 15111 0,303 0,996 PLVEC 4 Klon 3 756137 67388 36927 88156 21332 193988 141017 0,256 0,389

Tab. 50: Quantifizierung von Zellen mit T-Zell Potential in der CD133⁺CD34⁺ Fraktion in Kokultur mit Zellen konditionell immortalisierter Einzelzellklon-Zelllinien

Alle Werte repräsentieren die berechnete absolute Anzahl reifer T-Zellen der gesamten  $CD133^+CD34^+$  Population. Abkürzungen: Sus = Suspension; MNZ = Mononukleäre Zellen aus den Knochenmark; MW = Mittelwert; p (S) = Signifikanzberechnung im Vergleich zur Suspension; p (A) = Signifikanzberechnung im Vergleich zur AFT024; (t-Test, zweiseitig, gepaart); Signifikanzen p<0,05 sind fett gedruckt dargestellt. Sind die Messwerte der Suspension bzw. mit der AFT024 signifikant höher, ist der Signifikanzwert mit einem *-Symbol markiert.

CD8 ⁺	Sus	AFT024	MSZ MNZ B	MSZ MNZ B	MSZ Fett	ECFC 4E	ECFC 4E	PLVEC 4
CD135	0	0705	K1011 2	KIOII 3	//11 Kioli 5	KIOII 2	KIOII 4	KIOII 3
V1 V2	0	2735	210	0	681	11	0	0
V2 V2	0	427	606	0	0	220	800	0
V S VA	0	16292	803	0	0	20	402	702
V4 V5	15	0	222	0	0	0	495	793
• 5	15	0		0	0	0	0	0
MW	4	3909	386	0	136	53	259	159
SEM	3	3159	160	0	136	44	166	159
n (S)	-	0.284	0.076	0.228	0.391	0.341	0.200	0.388
<b>p</b> (8)	-	-	0.311	0.284	0,300	0.291	0.306	0.280
<b>r</b> ( /			- / -	-, -	- /		- /	
CD4 ⁺	<b>S</b> ma	A ET024	MSZ MNZ B	MSZ MNZ B	MSZ Fett	ECFC 4E	ECFC 4E	PLVEC 4
CD133 ^{low}	Sus	AF 1024	Klon 2	Klon 3	7/11 Klon 5	Klon 2	Klon 4	Klon 3
V1	0	633	105	80	167	11	0	0
V2	0	2907	0	0	0	0	360	0
V3	0	422	193	0	0	108	0	0
V4	0	2093	2679	0	147	0	329	1658
V5	0	0	0	0	0	32	0	0
MW	0	1211	595	16	63	30	138	332
SEM	0	551	522	16	39	20	85	332
(7)	-		0.010	0.071	0.470			0.071
<b>p</b> (S)	-	0,093	0,318	0,374	0,179	0,212	0,178	0,374
<b>p</b> (A)	-	-	0,364	0,098	0,105	0,104	0,084	0,164
CD8+CD4+			MS7 MN7 B	MS7 MN7 B	MSZ Fatt	FCFC 4F	FCFC 4F	PLVEC 4
CD8 ⁺ CD4 ⁺ CD133 ^{low}	Sus	AFT024	MSZ MNZ B Klon 2	MSZ MNZ B Klon 3	MSZ Fett 7/11 Klon 5	ECFC 4E Klon 2	ECFC 4E Klon 4	PLVEC 4 Klon 3
CD8 ⁺ CD4 ⁺ CD133 ^{low} V1	Sus	AFT024	MSZ MNZ B Klon 2	MSZ MNZ B Klon 3	MSZ Fett 7/11 Klon 5	ECFC 4E Klon 2	ECFC 4E Klon 4	PLVEC 4 Klon 3
CD8 ⁺ CD4 ⁺ CD133 ^{low} V1 V2	Sus 0 0	AFT024 0 826	MSZ MNZ B Klon 2 0	MSZ MNZ B Klon 3 0	MSZ Fett 7/11 Klon 5 0	ECFC 4E Klon 2 0	ECFC 4E Klon 4 0	PLVEC 4 Klon 3 0
CD8 ⁺ CD4 ⁺ CD133 ^{low} V1 V2 V3	Sus 0 0 0	AFT024 0 826 0	MSZ MNZ B Klon 2 0 0 0	MSZ MNZ B Klon 3 0 0 0	MSZ Fett 7/11 Klon 5 0 0 0	ECFC 4E Klon 2 0 0 26	ECFC 4E Klon 4 0 0 0	PLVEC 4 Klon 3 0 0
CD8+CD4+ CD133 ^{low} V1 V2 V3 V4	Sus 0 0 0 0 0 0 0	AFT024 0 826 0 6189	MSZ MNZ B Klon 2 0 0 0 0	MSZ MNZ B Klon 3 0 0 263	MSZ Fett 7/11 Klon 5 0 0 0 0	ECFC 4E Klon 2 0 26 27	ECFC 4E Klon 4 0 0 0 0	PLVEC 4 Klon 3 0 0 0 0
CD8+CD4+ CD133 ^{low} V1 V2 V3 V4 V5	Sus 0 0 0 0 0	AFT024 0 826 0 6189 607	MSZ MNZ B Klon 2 0 0 0 0 0 0	MSZ MNZ B Klon 3 0 0 0 263 0	MSZ Fett 7/11 Klon 5 0 0 0 0 0	ECFC 4E Klon 2 0 26 27 0	ECFC 4E Klon 4 0 0 0 0 0 0	PLVEC 4 Klon 3 0 0 0 0 0 0
CD8+CD4+ CD133 ^{low} V1 V2 V3 V4 V5 MW	Sus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	AFT024 0 826 0 6189 607	MSZ MNZ B Klon 2 0 0 0 0 0 0	MSZ MNZ B Klon 3 0 0 263 0 52	MSZ Fett 7/11 Klon 5 0 0 0 0 0	ECFC 4E Klon 2 0 26 27 0	ECFC 4E Klon 4 0 0 0 0 0 0	PLVEC 4 Klon 3 0 0 0 0 0 0
CD8+CD4+ CD133 ^{low} V1 V2 V3 V4 V5 MW	Sus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	AFT024 0 826 0 6189 607 1524 1178	MSZ MNZ B Klon 2 0 0 0 0 0 0 0 0 0	MSZ MNZ B Klon 3 0 0 263 0 53 53	MSZ Fett 7/11 Klon 5 0 0 0 0 0 0	ECFC 4E Klon 2 0 26 27 0 11 6	ECFC 4E Klon 4 0 0 0 0 0 0	PLVEC 4 Klon 3 0 0 0 0 0 0 0 0 0
CD8*CD4 ⁺ CD133 ^{low} V1 V2 V3 V4 V5 MW SEM	Sus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	AFT024 0 826 0 6189 607 1524 1178	MSZ MNZ B Klon 2 0 0 0 0 0 0 0 0 0 0 0	MSZ MNZ B Klon 3 0 0 263 0 53 53	MSZ Fett 7/11 Klon 5 0 0 0 0 0 0 0 0 0	ECFC 4E Klon 2 0 26 27 0 11 6	ECFC 4E Klon 4 0 0 0 0 0 0 0	PLVEC 4 Klon 3 0 0 0 0 0 0 0 0 0 0
CD8+CD4+ CD133 ^{low} V1 V2 V3 V4 V5 MW SEM p (S)	Sus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	AFT024 0 826 0 6189 607 1524 1178 0,265	MSZ MNZ B Klon 2 0 0 0 0 0 0 0 0 0 0 0 0 0	MSZ MNZ B Klon 3 0 0 263 0 53 53 53 0,374	MSZ Fett 7/11 Klon 5 0 0 0 0 0 0 0 0 0 0	ECFC 4E Klon 2 0 26 27 0 11 6 0,178	ECFC 4E Klon 4 0 0 0 0 0 0 0 0 0 0 0 0	PLVEC 4 Klon 3 0 0 0 0 0 0 0 0 0 0 0 0 0
CD8+CD4+ CD133 ^{low} V1 V2 V3 V4 V5 MW SEM P (S) p (A)	Sus 0 0 0 0 0 0 - -	AFT024 0 826 0 6189 607 1524 1178 0,265 -	MSZ MNZ B Klon 2 0 0 0 0 0 0 0 0 0 0 0 0 0	MSZ MNZ B Klon 3 0 0 263 0 53 53 0,374 0,261	MSZ Fett 7/11 Klon 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ECFC 4E Klon 2 0 26 27 0 11 6 0,178 0,267	ECFC 4E Klon 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PLVEC 4 Klon 3 0 0 0 0 0 0 0 0 0 0 0 0 0
CD8*CD4 ⁺ CD133 ^{low} V1 V2 V3 V4 V5 MW SEM p (S) p (A)	Sus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	AFT024 0 826 0 6189 607 1524 1178 0,265 -	MSZ MNZ B Klon 2 0 0 0 0 0 0 0 0 0 0 0 0 0	MSZ MNZ B Klon 3 0 0 263 0 53 53 0,374 0,261	MSZ Fett 7/11 Klon 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ECFC 4E Klon 2 0 26 27 0 11 6 0,178 0,267	ECFC 4E Klon 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PLVEC 4 Klon 3 0 0 0 0 0 0 0 0 0 0 0 0 0
CD8+CD4+ CD133 ^{low} V1 V2 V3 V4 V5 MW SEM p (S) p (A) Gesamt	Sus 0 0 0 0 0 - Sus	AFT024 0 826 0 6189 607 1524 1178 0,265 - AFT024	MSZ MNZ B Klon 2 0 0 0 0 0 0 0 0 0 0 0 0 0	MSZ MNZ B Klon 3 0 0 263 0 53 53 53 0,374 0,261 MSZ MNZ B Klon 3	MSZ Fett 7/11 Klon 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ECFC 4E Klon 2 0 26 27 0 11 6 0,178 0,267 ECFC 4E Klon 2	ECFC 4E Klon 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PLVEC 4 Klon 3 0 0 0 0 0 0 0 0 0 0 0 0 0
CD8+CD4+ CD133 ^{low} V1 V2 V3 V4 V5 MW SEM P (S) p (A) Gesamt V1	Sus 0 0 0 0 0 - - Sus 0	AFT024 0 826 0 6189 607 1524 1178 0,265 - AFT024 3368	MSZ MNZ B Klon 2 0 0 0 0 0 0 0 0 0 0 0 0 0	MSZ MNZ B Klon 3 0 0 263 0 53 53 53 0,374 0,261 MSZ MNZ B Klon 3 80	MSZ Fett 7/11 Klon 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ECFC 4E Klon 2 0 26 27 0 11 6 0,178 0,267 ECFC 4E Klon 2 21	ECFC 4E Klon 4 0 0 0 0 0 0 0 0 0 0 0 0 0	PLVEC 4 Klon 3 0 0 0 0 0 0 0 0 0 0 0 0 0
CD8+CD4+ CD133 ^{low} V1 V2 V3 V4 V5 MW SEM p (S) p (A) Gesamt V1 V2	Sus 0 0 0 0 0 - - Sus 0 0 0 0 0 0 0 0 0	AFT024 0 826 0 6189 607 1524 1178 0,265 - AFT024 3368 4161	MSZ MNZ B Klon 2 0 0 0 0 0 0 0 0 0 0 0 0 0	MSZ MNZ B Klon 3 0 0 263 0 53 53 0,374 0,261 MSZ MNZ B Klon 3 80 0	MSZ Fett 7/11 Klon 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ECFC 4E Klon 2 0 26 27 0 11 6 0,178 0,267 ECFC 4E Klon 2 21 228	ECFC 4E Klon 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PLVEC 4 Klon 3 0 0 0 0 0 0 0 0 0 0 0 0 0
CD8*CD4 ⁺ CD133 ^{low} V1 V2 V3 V4 V5 MW SEM p (S) p (A) Gesamt V1 V2 V3	Sus 0 0 0 0 0 - Sus 0 0 6	AFT024 0 826 0 6189 607 1524 1178 0,265 - AFT024 3368 4161 422	MSZ MNZ B Klon 2 0 0 0 0 0 0 0 0 0 0 0 0 0	MSZ MNZ B Klon 3 0 0 263 0 53 53 0,374 0,261 MSZ MNZ B Klon 3 80 0 0 0	MSZ Fett 7/11 Klon 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 5 7/11 Klon 5 0 0 0 0 0	ECFC 4E Klon 2 0 26 27 0 11 6 0,178 0,267 ECFC 4E Klon 2 21 228 160	ECFC 4E Klon 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PLVEC 4 Klon 3 0 0 0 0 0 0 0 0 0 0 0 0 0
CD8+CD4+ CD133 ^{low} V1 V2 V3 V4 V5 MW SEM p (S) p (A) Gesamt V1 V2 V3 V4	Sus 0 0 0 0 0 - - Sus 0 0 6 0 0 0 0 0 0 0	AFT024 0 826 0 6189 607 1524 1178 0,265 - AFT024 3368 4161 422 24664	MSZ MNZ B Klon 2 0 0 0 0 0 0 0 0 0 0 0 0 0	MSZ MNZ B Klon 3 0 0 263 0 53 53 0,374 0,261 MSZ MNZ B Klon 3 80 0 0 263	MSZ Fett 7/11 Klon 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 848 848 0 0 0 147	ECFC 4E Klon 2 0 26 27 0 11 6 0,178 0,267 ECFC 4E Klon 2 21 228 160 27	ECFC 4E Klon 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PLVEC 4 Klon 3 0 0 0 0 0 0 0 0 0 0 0 0 0
CD8*CD4 ⁺ CD133 ^{low} V1 V2 V3 V4 V5 <u>MW</u> SEM <u>p (S)</u> p (A) Gesamt V1 V2 V3 V4 V5	Sus 0 0 0 0 0 - - Sus 0 0 6 0 15	AFT024 0 826 0 6189 607 1524 1178 0,265 - AFT024 3368 4161 422 24664 607	MSZ MNZ B Klon 2 0 0 0 0 0 0 0 0 0 0 0 0 0	MSZ MNZ B Klon 3 0 0 263 0 53 53 0,374 0,261 MSZ MNZ B Klon 3 80 0 0 263 0 0	MSZ Fett 7/11 Klon 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 848 0 0 0 147 0	ECFC 4E Klon 2 0 26 27 0 11 6 0,178 0,267 ECFC 4E Klon 2 21 228 160 27 32	ECFC 4E Klon 4 0 0 0 0 0 0 0 0 0 0 0 0 0	PLVEC 4 Klon 3 0 0 0 0 0 0 0 0 0 0 0 0 0
CD8+CD4+ CD133 ^{low} V1 V2 V3 V4 V5 <u>MW</u> SEM <u>p (S)</u> p (A) Gesamt V1 V2 V3 V4 V5 V4 V5 MW	Sus 0 0 0 0 0 - - Sus 0 0 6 0 15 4 - - - - - - - - -	AFT024 0 826 0 6189 607 1524 1178 0,265 - AFT024 3368 4161 422 24664 607 6644	MSZ MNZ B Klon 2 0 0 0 0 0 0 0 0 0 0 0 0 0	MSZ MNZ B Klon 3 0 0 263 0 53 53 0,374 0,261 MSZ MNZ B Klon 3 80 0 0 263 0 0 60	MSZ Fett 7/11 Klon 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 848 0 0 0 147 0 0	ECFC 4E Klon 2 0 26 27 0 11 6 0,178 0,267 ECFC 4E Klon 2 21 228 160 27 32 94	ECFC 4E Klon 4 0 0 0 0 0 0 0 0 0 0 0 0 0	PLVEC 4 Klon 3 0 0 0 0 0 0 0 0 0 0 0 0 0
CD8+CD4+ CD133 ^{low} V1 V2 V3 V4 V5 SEM <u>P (S)</u> p (A) Gesamt V1 V2 V3 V4 V5 V3 V4 V5 SEM	Sus 0 0 0 0 0 - - Sus 0 0 0 0 - - - - - -	AFT024 0 826 0 6189 607 1524 1178 0,265 - AFT024 3368 4161 422 24664 607 6644 4565	MSZ MNZ B Klon 2 0 0 0 0 0 0 0 0 0 0 0 0 0	MSZ MNZ B Klon 3 0 0 263 0 53 53 0,374 0,261 MSZ MNZ B Klon 3 80 0 0 263 0 0 51	MSZ Fett 7/11 Klon 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ECFC 4E Klon 2 0 0 26 27 0 11 6 0,178 0,267 ECFC 4E Klon 2 21 228 160 27 32 94 42	ECFC 4E Klon 4 0 0 0 0 0 0 0 0 0 0 0 0 0	PLVEC 4 Klon 3 0 0 0 0 0 0 0 0 0 0 0 0 0
CD8+CD4+ CD133 ^{low} V1 V2 V3 V4 V5 MW SEM Gesamt V1 V2 V3 V4 V2 V3 V4 V5 MW SEM	Sus 0 0 0 0 - Sus 0 0 0 - - - - - - -	AFT024 0 826 0 6189 607 1524 1178 0,265 - AFT024 3368 4161 422 24664 607 6644 4565	MSZ MNZ B Klon 2 0 0 0 0 0 0 0 0 0 0 0 0 0	MSZ MNZ B Klon 3 0 0 263 0 53 53 0,374 0,261 MSZ MNZ B Klon 3 80 0 0 263 0 0 69 51	MSZ Fett 7/11 Klon 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 848 0 0 0 147 0 0 199 165	ECFC 4E Klon 2 0 0 26 27 0 11 6 0,178 0,267 ECFC 4E Klon 2 21 228 160 27 32 94 42	ECFC 4E Klon 4 0 0 0 0 0 0 0 0 0 0 0 0 0	PLVEC 4 Klon 3 0 0 0 0 0 0 0 0 0 0 0 0 0
CD8+CD4+ CD133 ^{low} V1 V2 V3 V4 V5 MW SEM Gesamt V1 V2 V3 V4 V2 V3 V4 V5 SEM SEM SEM SEM	Sus 0 0 0 0 0 - - Sus 0 0 0 0 - - - - - -	AFT024 0 826 0 6189 607 1524 1178 0,265 - AFT024 3368 4161 422 24664 607 6644 4565 0,220	MSZ MNZ B Klon 2 0 0 0 0 0 0 0 0 0 0 0 0 0	MSZ MNZ B Klon 3 0 0 263 0 53 53 0,374 0,261 MSZ MNZ B Klon 3 80 0 0 263 0 0 263 0 0 263 0 0 263 0 0 0 263 0 0 0 263 0 0 0 0 0 0 0 0 0 0 0 0 0	MSZ Fett 7/11 Klon 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 848 0 0 0 147 0 0 199 165 0,305	ECFC 4E Klon 2 0 26 27 0 11 6 0,178 0,267 ECFC 4E Klon 2 21 228 160 27 32 94 42 0,107	ECFC 4E Klon 4 0 0 0 0 0 0 0 0 0 0 0 0 0	PLVEC 4 Klon 3 0 0 0 0 0 0 0 0 0 0 0 0 0

Tab. 51: Quantifizierung von Zellen mit T-Zell Potential in der CD133^{low}CD34⁺ Fraktion in Kokultur mit Zellen konditionell immortalisierter Einzelzellklon-Zelllinien

Alle Werte repräsentieren die berechnete absolute Anzahl reifer T-Zellen der gesamten  $CD133^{low}CD34^+$  Population. Abkürzungen: Sus = Suspension; MNZ = Mononukleäre Zellen aus den Knochenmark; MW = Mittelwert; p (S) = Signifikanzberechnung im Vergleich zur Suspension; p (A) = Signifikanzberechnung im Vergleich zur AFT024; (t-Test, zweiseitig, gepaart); Signifikanzen p<0,05 sind fett gedruckt dargestellt.



Abb. 46: Quantifizierung von Zellen mit Erythrozyten, Megakaryozyten und T-Zell Differenzierungspotential nach Kokultur mit Zellen konditionell immortalisierter Einzelzellklon-Zelllinien

Graphische Darstellung der Werte aus Tab. 48, Tab. 49, Tab. 50 und Tab. 51. (A - C) CD133⁺CD34⁺ und CD133^{low}CD34⁺ wurden nach 14-tägiger Kokultur mit Zellen konditionell immortalisierter Einzelzellklon-Zelllinien durchflusszytometrisch sortiert und in den Erythrozyten, Megakaryozyten und T-Zell Ansatz eingebracht. Berechnete Expansion von Zellen mit Erythrozyten, Megakaryozyten und T-Zell Differenzierungspotential. (Mittelwerte ± SEM). Die Zahlen über den Balken repräsentieren die Anzahl der Differenzierungsansätze mit entsprechenden reifen Blutzellen. Die Ergebnisse der zuvor durchgeführten funktionellen Analysen sind in der Tab. 52 zusammengefasst. Die einzelnen Zahlenwerte in der Tabelle geben an, in wie vielen Kokulturexperimenten HSVZ mit LTC-IC, NK-IC, BFU-E, CFU-G/M/GM, Erythrozyten und Megakaryozyten Differenzierungspotential in der CD133⁺CD34⁺ und CD133^{low}CD34⁺ Zellpopulation in Kokultur mit Zellen konditionell immortalisierter humaner Stromazelllinien detektiert werden konnten. Die CD34⁺ Fraktion wurde nicht eigenständig untersucht und stellt eine Integration der Ergebnisse aus der CD133⁺CD34⁺ und CD133^{low}CD34⁺ Population dar. Zellen der Einzelzellklon-Zelllinien MSZ KM MNZ B Klon 2 und Klon 3 (in 27/25 von 34 Analysen), MSZ KM Fett 7/11 Klon 5 (in 24 von 34 Analysen) und PLVEC 4 Klon 3 (in 24 von 34 Analysen) unterstützen im Vergleich zu Zellen der murinen Stromazelllinie

häufiger den Erhalt bzw. die Expansion primitiver CD133⁺CD34⁺ Zellen. CD133^{low}CD34⁺ Zellen mit erythrozytärem, erythro-myeloischem und myeloischem Koloniebildungspotential sowie Megakaryozyten und T-Zellpotential hingegen wurden in Kokultur mit Zellen der murinen Stromazelllinie AFT024 besser erhalten (in 21 von 25 Analysen). Bei der Betrachtung der gesamten CD34⁺ Population, die sowohl CD133⁺CD34⁺ als auch CD133^{low}CD34⁺ Zellen umfasst, wurde verglichen mit Zellen der murinen Stromazelllinie (in 31 von 35 Analysen) in der Kokultur mit Zellen der MSZ KM MNZ B Klon 2 (in 34 von 35 Analysen) der Erhalt bzw. die Expansion aller analysierten Linienpotentiale häufiger bzw. nahezu in jedem Versuch ermöglicht. Folglich stellt die *in vitro* Expansion von HSVZ in Kokultur mit Zellen der MSZ KM MNZ B Klon 2 die geeignetsten Kulturbedingungen zum Erhalt aller hämatopoetischen Linienpotentiale in der gesamten hämatopoetischen Nachkommenschaft dar

		Sus	AFT024	KM MNZ B Klon 2	KM MNZ B Klon 3	KM Fett 7/11 Klon 5	ECFC 4E Klon 2	ECFC 4E Klon 4	PLVEC 4 Klon 3	n
	LTC-IC	4	4	5	4	5	4	4	5	5
	NK-IC	5	5	5	5	5	5	5	5	5
33+	BFU-E/CFU-Mix	0	1	1	1	0	2	0	1	5
13	CFU-G/M/GM	5	5	5	5	5	5	5	5	5
U	Erythrozyten	0	1	2	1	1	1	1	2	4
_	Megakaryozyten	0	2	4	4	3	1	1	1	5
	T-Zellen	5	5	5	5	5	5	5	5	5
	(max: 34)	19	23	27	25	24	23	21	24	Σ
A	BFU-E/CFU-Mix	3	3	4	2	4	2	3	1	5
3 lo	CFU-G/M/GM	5	5	4	4	5	4	4	4	5
13	Erythrozyten	3	5	4	4	3	3	3	3	5
8	Megakaryozyten	2	3	0	1	1	2	1	1	5
<u> </u>	T-Zellen	2	5	4	2	2	5	2	1	5
	(max: 25)	20	21	16	13	15	16	13	10	Σ
	LTC-IC	4	4	5	4	5	4	4	5	5
	NK-IC	5	5	5	5	5	5	5	5	5
+ <b>+</b>	BFU-E/CFU-Mix	3	3	5	3	4	2	3	1	5
D3	CFU-G/M/GM	5	5	5	5	5	5	5	5	5
C	Erythrozyten	3	5	5	4	3	3	3	3	5
	Megakaryozyten	2	4	4	4	3	2	1	2	5
	T-Zellen	5	5	5	5	5	5	5	5	5
	(max: 35)	27	31	34	30	30	26	26	26	Σ

 Tab. 52: Erhalt der getesteten Differenzierungspotentiale

## 4. Diskussion

Das primäre Ziel dieser Arbeit bestand darin ein in vitro Verfahren zu etablieren, das die Analyse des Entwicklungspotentials von HSVZ auf Einzelzellebene ermöglicht. Als Grundlage hierfür wurde der ML-IC (engl. myeloid-lymphoid-initiating-cells) Ansatz verwendet, der die Analyse von Einzelzellen mit Langzeit-NK-Zell- (NK-IC) sowie Langzeit-GMP-Potential (LTC-IC) ermöglicht (Punzel et al., 1999b; Giebel et al., 2006). HSVZ, deren Nachkommenschaft nach 14-tägiger Expansion sowohl Zellen mit NK-IC als auch LTC-IC Potential aufweist, werden dem klassischen Modell der humanen Hämatopoese nach retrospektiv als multipotente HSVZ angesehen (Punzel et al., 1999b; Giebel et al., 2006). Die Detektion multipotenter HSVZ anhand des allein lympho-myeloischen Differenzierungspotentials wird durch die Beschreibung linienspezifizierter Vorläuferzellen, die lymphatisches sowie partielles myeloisches Potential aufweisen aber keine Erythrozyten Megakaryozyten bilden können, derzeit als nicht ausreichend angesehen oder (siehe Einleitung 1.2) (Kawamoto et al., 1998; Adolfsson et al., 2005; Giebel et al., 2006). Um vorbehaltslos und unabhängig von den derzeit diskutierten Modellvorstellungen der humanen Hämatopoese (siehe Einleitung 1.2) eine Aussage über das genaue Differenzierungspotential einzelner HSVZ zu ermöglichen, sollte der ursprüngliche ML-IC Ansatz um weitere linienspezifische in vitro Analyseverfahren erweitert werden. Die retrospektive Analyse des Differenzierungspotentials einzelner HSVZ in mehreren unabhängigen linienspezifischen in vitro Analysen setzt in Analogie zum klassischen ML-IC Ansatz eine vorhergehende Expansion einzelner zu testender Zellen voraus. Folglich sollten für den erweiterten ML-IC Ansatz im Rahmen dieser Arbeit zunächst in vitro Kulturbedingungen qualifiziert werden, die eine Expansion primitiver HSVZ bzw. einen Erhalt sämtlicher initialen Linienpotentiale in der Nachkommenschaft ermöglichen.

#### 4.1. Verlust des erythrozytären Differenzierungspotentials

Zu Beginn der Arbeit wurde in einem Gemeinschaftsprojekt mit André Görgens (AG Giebel) die Proliferationskinetik und das Differenzierungspotential CD34⁺ Zellen sowie der beiden Subpopulationen CD133⁺CD34⁺ und CD133^{low}CD34⁺ in der Suspensionskultur analysiert (veröffentlicht in Görgens *et al.*, 2013b). Die Versuche ergaben, dass HSVZ mit LTC-IC, NK-IC sowie SRC Potential, die vor dem klassischen Modell der humanen Hämatopoese als multipotent angesehen werden, über den Zeitraum von sechs Tagen in der CD133⁺CD34⁺ Fraktion erhalten bleiben. Überraschenderweise gingen Zellen mit erythrozytärem und megakaryozytärem Differenzierungspotential mit fortschreitender Kultivierung in der CD133⁺CD34⁺ Population verloren und wurden bis Tag 6 ausschließlich in der neu entstehenden CD133^{low}CD34⁺ Fraktion detektiert. Die beobachtete Segregation des erythrozytären und megakaryozytären Differenzierungspotentials in die CD133^{low}CD34⁺ Fraktion sowie weitere Erkenntnisse zur Linienverwandtschaft der unterschiedlichen Granulozyten-Subtypen (Doktorarbeit von André Görgens) konnten zu diesem Zeitpunkt vor dem klassischen Modell der Hämatopoese nicht erklärt werden. Aufgrund dieser Befunde postulieren wir ein alternatives Modell der humanen Hämatopoese, das ausgehend von der multipotenten HSZ/MPP eine Aufspaltung in den lympho-myeloischen CD133⁺CD34⁺ und erythro-myeloischen CD133^{low}CD34⁺ Zweig beschreibt (Görgens et al., 2013b). Zudem erythro-myeloische CD133^{low}CD34⁺ Vorläuferzellen (EMP) ausschließlich bringen eosinophile sowie basophile Granulozyten hervor, wohingegen neutrophile Granulozyten von lympho-myeloisch spezifizierten Vorläuferzellen (LMPP) gebildet werden (Görgens et al., 2013b). Weiterhin sind dieser alternativen Modellvorstellung zufolge multipotente HSVZ die einzigen CD133⁺CD34⁺ Zellen, die gleichzeitig erythrozytäres und megakaryozytäres Differenzierungspotential aufweisen (Görgens et al., 2013a).

Sowohl die Beschreibung Linienverwandtschaften der neuer in alternativen Modellvorstellung der humanen Hämatopoese als auch der beobachtete Verlust des erythrozytären Differenzierungspotentials nach 6-tägiger Suspensionskultur haben den Fokus dieser Arbeit maßgeblich beeinflusst. Da die Analyse des Differenzierungspotentials einzelner HSVZ im erweiterten ML-IC Ansatz den Erhalt aller initialen Linienpotentiale in der Expansionsphase voraussetzt, wurde im Rahmen dieser Arbeit ein Schwerpunkt auf die Qualifizierung von Kulturbedingungen gesetzt, die einen Erhalt insbesondere von Zellen mit erythrozytärem Differenzierungspotential ermöglichen. Als Folge hiervon konnte die Etablierung funktioneller in vitro Differenzierungsansätze zum Nachweis aller hämatopoetischen Linienpotentiale im erweiterten ML-IC Ansatz nicht vollständig abgeschlossen werden.

153

## 4.2. In vitro Expansion multipotenter HSVZ

Aufgrund der Beobachtung, dass in der Suspensionskultur Zellen mit erythrozytärem Differenzierungspotential und somit auch multipotente HSVZ innerhalb von 6 Tagen nahezu vollständig verloren gehen, wurden bereits zuvor in der Literatur beschriebene Expansionsbedingungen hinsichtlich des Erhalts erythrozytärer Differenzierungspotentiale getestet. In zahlreichen Veröffentlichungen wird die erfolgreiche in vitro Expansion multipotenter HSVZ in Kokultur mit Zellen muriner Stromazelllinien beschrieben (Itoh et al., 1989; Suzuki et al., 1992; Issaad et al., 1993; Moore et al., 1997; Nolta et al., 2002; Feugier et al., 2005; Weisel et al., 2006; Chung et al., 2010; Fernandez-Sanchez et al., 2011; Tiwari et al., 2012). Folglich wurden CD133⁺CD34⁺ HSVZ mit Zellen der murinen Stromazelllinien AFT024, OP9, OP9-DL1 und MS5 kokultiviert und die hämatopoetische Nachkommenschaft anschließend phänotypisch sowie funktionell analysiert. In guter Übereinstimmung mit den in Tab. 53 aufgeführten Veröffentlichungen unterstützten Zellen der getesteten murinen HSVZ LTC-IC Stromazelllinien die Expansion von mit sowie myeloischem Koloniebildungspotential. Die im Rahmen dieser Arbeit ermittelte Expansion CD34⁺ Zellen sowie HSVZ mit LTC-IC und CFC Potential übertrifft die meisten Literaturwerte um ein Vielfaches. Nur in der Arbeit von Kanai et al. wird eine stärkere Expansion CD34⁺ HSVZ mit CFC Potential berichtet (Kanai et al., 2000). Primitive HSVZ mit LTC-IC, NK-IC sowie myeloischem Koloniebildungspotential waren wie bereits zuvor in der Suspensionskultur in CD133⁺CD34⁺ der Fraktion angereichert. HSVZ mit erythrozytärem Differenzierungspotential konnten hingegen nahezu ausschließlich in der CD133^{low}CD34⁺ CD133⁺CD34⁺ Fraktion detektiert werden. HSVZ mit erythrozytärem Koloniebildungspotential konnten in der Kokultur mit Zellen der murinen Stromazelllinien mit Hilfe des CFC Ansatzes nur unregelmäßig und mit sehr geringer Frequenz detektiert werden, was wir zu diesem Zeitpunkt der Arbeit als einen Verlust multipotenter HSVZ gedeutet haben.

Hingegen wurde in den Arbeiten von Feugier *et al.* und Fernandez-Sanchez *et al.* eine Expansion von Zellen mit erythrozytärem Differenzierungspotential beschrieben (Feugier *et al.*, 2005; Fernandez-Sanchez *et al.*, 2011). Da für die Analyse des Koloniebildungspotentials in den Arbeiten die gesamte hämatopoetische Nachkommenschaft verwendet wurde, ist unklar, inwiefern Zellen mit erythrozytärem Differenzierungspotential der EMP Linie angehören oder von Vorläufern der EMP-Linien bzw. direkt von multipotenten HSZ/MPP abstammen.

154

	Stroma	Expansion	CFC	Erythr.	LTC-IC
dieser Arbeit	AFT024	CD45 ⁺ (TNC): 869x	-	-	-
durchgeführte		CD34 ⁺ : 277x	39x	Ja	-
Kokulturen		CD133 ⁺ CD34 ⁺ : 90x	11,2x	Nein	3,3x
	OP9	CD45 ⁺ (TNC): 836x	-	-	-
		CD34 ⁺ : 301x	87x	Ja	-
		CD133 ⁺ CD34 ⁺ : 119x	23x	Nein	5,7x
	MS-5	CD45 ⁺ (TNC): 790x	-	-	-
		CD34 ⁺ : 186x	42x	Ja	-
		CD133 ⁺ CD34 ⁺ : 46x	16x	Nein	2x
(Chung et al., 2010)	AFT024	TNC: 155x	-	Ja	-
		CD34 ⁺ lin ⁻ : 31x	-	-	1,5x
(Kanai <i>et al.</i> , 2000) *	MS-5	TNC: ~1500x	311x	-	13.6x
		CD34 ⁺ : 672x	-	_	-
		CD34 ⁺ CD38 ⁻ : 872x	-	-	-
(Tiwari <i>et al.</i> , 2012)	MS-5	CD34 ⁺ : 80x	-	-	-
(Feugier <i>et al.</i> , 2005)	MS-5	TNC: 120x	16,5x	Ja	-
	OP9	TNC: 115x	28x	Ja	-
	0.7.0			-	
(Fernandez-Sanchez <i>et al.</i> ,	OP-9	CD45 ⁺ : ~75x	~15x	Ja	-
2011)		CD34 ⁺ CD38 ⁻ : ~58x	-	-	-

Tab. 53: Expansion von HSVZ in Ko-Kultur mit Zellen muriner Stromazelllinien

TNC: total nucleated cells; Erythr.: Detektion von HSVZ mit erythrozytärem Differenzierungspotential im CFC-Ansatz *: NOD/SCID-Repopulierungsexperimente durchgeführt

Aufgrund von Arbeiten, die beschreiben, dass einige murine Wachstumsfaktoren (z.B. IL-2, IL-3, IL-4, IL-6, IL-15, M-CSF und GCSF) nicht spezies-übergreifend funktionell aktiv sind (Metcalf, 1986; Mosmann *et al.*, 1987; Stevenson und Jones, 1994; Fixe und Praloran, 1997; Eisenman *et al.*, 2002; Kalberer *et al.*, 2003), war unsere erste Vermutung, dass der Erhalt multipotenter HSVZ von muriner Stromazellen nicht gewährleistet werden kann. Folglich stellt sich die Frage, inwiefern humane Stromazellen eine *in vitro* Expansion oder einen Erhalt multipotenter HSVZ ermöglichen.

Bereits seit den 80er Jahren werden humane Stromazellen aus dem Knochenmark, die überwiegend einen fibroblastoiden Phänotyp aufweisen und von ihren Eigenschaften mesenchymalen Stamm-/Stromazellen (MSZ) entsprechen, zur in vitro Expansion humaner hämatopoetischer Zellen verwendet (siehe Tab. 54). Dementsprechend wurden im Rahmen dieser Arbeit humane mesenchymale Stromazellen aus unterschiedlichen Geweben, die mit der embryonalen oder adulten Hämatopoese assoziiert sind (Knochenmark, Vene, Arterie, Plazenta und AGM), isoliert, charakterisiert und mit CD133⁺CD34⁺ HSVZ kokultiviert. Die anschließend phänotypische und funktionelle Analyse der hämatopoetischen Nachkommenschaft ergab in guter Übereinstimmung mit der Literatur, dass primitive HSVZ mit LTC-IC und myeloischem Koloniebildungspotential expandiert bzw. erhalten werden. Die Literaturwerte für die Expansion CD34⁺ Zellen (min: 4-fach; max: 110-fach) sowie Zellen mit CFC (min: 5-fach; max: 230-fach) und LTC-IC Potential (min: 3-fach; max: 7,7-fach) sind sehr weit gestreut, was einen Vergleich mit den hier ermittelten Werten erschwert. Tendenziell übertreffen die im Rahmen dieser Arbeit ermittelten Expansionen insbesondere für die Kokultur mit mesenchymalen Stromazellen aus dem Knochenmark die berichteten Literaturwerte.

Wie bereits zuvor in der Kokultur mit Zellen muriner Stromazelllinien beobachtet, sind primitive HSVZ (LTC-ICs, NK-ICs und CFCs) nahezu vollständig in der CD133⁺CD34⁺ Fraktion angereichert. HSVZ mit erythrozytärem Differenzierungspotential hingegen wurden wie auf für die murinen Stromazellen fast ausschließlich in der CD133^{low}CD34⁺ Fraktion detektiert. Den Ergebnissen und den angewendeten Analysemethoden zufolge würden auch primäre humane MSZ keine Expansion bzw. keinen reproduzierbaren Erhalt multipotenter CD133⁺CD34⁺ HSVZ unterstützen, die erythrozytäres Differenzierungspotential aufweisen. Der Nachweis von Zellen mit erythrozytären Differenzierungspotential wurde erneut in allen aufgeführten Veröffentlichungen mit der gesamten hämatopoetischen Nachkommenschaft (CD45⁺, TNC) durchgeführt, was keine Unterscheidung spezifizierter EMP und multipotenter HSZ/MPP mit erythrozytärem Potential und einen Vergleich zu unseren Daten ermöglicht (Yamaguchi *et al.*, 2001; Zhang *et al.*, 2006; Magin *et al.*, 2008; Mishima *et al.*, 2009; Bramono *et al.*, 2011; Fernandez-Sanchez *et al.*, 2011; Hammoud *et al.*, 2012).

In mehreren Arbeiten wird beschrieben, dass sowohl mesenchymale als auch endotheliale Stromazellen in den embryonalen und adulten Stammzellnischen den Selbsterhalt und die Expansion von HSZ ohne Verlust ihrer Multipotenz unterstützen (Morrison *et al.*, 1995; Medvinsky und Dzierzak, 1996; Sanchez *et al.*, 1996; Ottersbach und Dzierzak, 2005). Jüngsten Ergebnissen von Adam Greenbaum *et al.* und Lei Ding *et al.* zufolge sind sowohl endotheliale als auch mesenchymale Stromazellen für die Aufrechterhaltung unterschiedlicher HSVZ Populationen in der Knochenmarknische erforderlich (Ding und Morrison, 2013; Greenbaum *et al.*, 2013). Demnach führt die selektive Deletion des *cxcl12* Gens (SDF-1) in endothelialen oder perivaskulären mesenchymalen Zellen des Knochenmarks zur Mobilisierung multipotenter HSZ sowie lymphatischer Progenitoren. Hingegen kommt es bei der Deletion des Gens in Osteoblasten nur zum Verlust früher lymphatischer Vorläufer (Ding und Morrison, 2013; Greenbaum *et al.*, 2013).

 Tab. 54: Expansion von HSVZ in Ko-Kultur mit primären humanen mesenchymalen Zellen

	Stromo	Evnoncion		Fnythn	
	Stroma		CFC	Eryun.	LICIC
Im Rahmen	KM	CD45 ⁺ (TNC): 1556-2777x	-	-	-
dieser Arbeit	MNZ	CD34 ⁺ : 189-44 ⁺ /x	67-179x	Ja	-
isolierte und		CD133 CD34 : 124-276x	57-141x	Nein	10-27x
charakterisierte	KM	$CD45^{+}$ (TNC): 1139-2649x	-	- T	-
Stromazellen	Fett	CD34 : 151-298x	66-84x	Ja	-
~		CD133 CD34 : 101-206x	51-63x	Nein	12-29x
	Vene	CD45 (TNC): $14/9 - 1/9/x$	-	-	-
		CD34 : 92-99x	38-40x	Ja	-
		CD133 CD34 : 50-09X	32-33X	Nein	11-13X
	Arterie	CD45 (INC): $1501-1724x$	-	- T.	-
		CD34:84-108X	34-49x	Ja	-
	Diamate	CD133 CD34 : 40-83X	32-4/X	Nein	8,6-21X
	Plazenta	$CD45^{+}$ (INC): 721-1352x	-	- T.	-
		CD34:28-38X $CD122^{+}CD24^{+}, 0, 18-$	10-11X	Ja	-
		CD155 CD34 : 9-18X	0,3-8,1X	Nein	0,7-1,5x
	AGM	CD45 (INC): $304-358X$	-	- Ta	-
		CD34 : 15-19X $CD122^{+}CD24^{+}, 10, 11-$	7,5-9X	Ja	-
	TA C	CD155 CD54 : 10-11X	5,/-0,/X	Nein	0,3-1x
(Koller <i>et al.</i> , 1995)	КМ	INC: 3x	Эх	-	3X
(Yamaguchi <i>et al.</i> , 2001)*	KM	TNC: ~224x	~140x	Ja	-
		CD34 ⁺ : ~89x	-	-	-
		CD34 ⁺ CD38 ⁻ : ~ 1300x	-	-	-
(Kadereit <i>et al.</i> , 2002)	KM	CD34 ⁺ CD38 ⁻ : 3,8x	-	-	7,7x
(McNiece <i>et al.</i> , 2004)	KM	TNC: 56x	-	-	-
<pre></pre>		CD34 ⁺ : 4x	37x-	-	-
(Zhang <i>et al.</i> , 2006)	KM	TNC: 891x	230x	Ja	-
		CD34 ⁺ : 96x	-	_	_
		$CD34^{+}CD38^{-}$ ~290x			
$(\mathbf{I}; at al. 2007a)$	VM	TNC: 242#	126.	-	6.2
(Li et ul., 2007a)	<b>NIVI</b>	$CD34^{+}$ , $Q2x$	120X	-	0,5X
(Madkaikar <i>et al.</i> 2007)	KM	TNC: 21x	- 		
	IXIVI	$CD24^{+}, 22\pi$	~21X	-	-
	IZM (	CD34 : ~22X	-	- T.	-
(Magin <i>et al.</i> , 2008)	KM	TNC: ~5x	~6X	Ja	-
(Mishima <i>et al.</i> , 2009)	KM	TNC: ~40x	-	Ja	-
		CD34 ⁺ CD38 ⁻ : ~ 29x	-	-	-
(Khoury et al., 2011) *	KM	TNC: ~1100x	-	-	-
		CD133 ⁺ CD34 ⁺ : 160x	-	-	-
(Bramono <i>et al.</i> , 2011)	KM	TNC: 92x	-	Ja	-
(Fernandez-Sanchez et al.,	KM	CD34 ⁺ : 58x	-	-	-
2011)		$CD34^{+}CD38^{-}$ : ~120x (d7)	~22x	Ja	_
(de Lima <i>et al</i> 2012)	КМ	$CD34^+$ : 30x	17.5x	-	_
(Hermond <i>et al.</i> 2012) *	KM	TNC: = 250x		Ia	
(Hammoud <i>et al.</i> , 2012)	KIVI	$CD34^+$ : -55x	~52X	Ja	-
		$CD133^{+}CD34^{+} \sim 11x$			
(Fan <i>et al</i> 2013) *	КМ	$CD34^{+}CD38^{-}CD90^{+} \cdot 8.3x$	14x	-	_
(Takor at al 2013)	KM	$CD34^+$ : 110x	172v		
(Zaker et ul., 2013)		TNC: 106:	1/2A	-	-
(Znang <i>et al.</i> , 2004)	Piazenta	1NC: 100X $CD24^+, 14.0$	30,/X	-	/,4X
		CD34 : 14,9X	-	-	-
(Luan et al., 2013)	Plazenta	TNC: ~100x	36,8x	-	-
		CD34 ⁺ : 12,5x	-	-	-

TNC: total nucleated cells; KM: Knochenmark; Erythr.: Detektion von HSVZ mit erythrozytärem Differenzierungspotential im CFC-Ansatz *: NOD/SCID-Repopulierungsexperimente durchgeführt Entsprechend wurde im Rahmen dieser Arbeit untersucht, inwiefern humane endotheliale oder eine Kombination mesenchymaler und endothelialer Stromazellen (Tripel-Kultur) eine *in vitro* Expansion oder einen Erhalt multipotenter HSVZ ermöglichen. Hierzu wurden humane endotheliale Stromazellen aus unterschiedlichen Geweben (Nabelschnurvene, Nabelschnurrestblut und Plazenta) isoliert, charakterisiert und einzeln sowie in Kombination mit mesenchymalen Stromazellen mit CD133⁺CD34⁺ HSVZ kokultiviert.

In Analogie zu den vorhergehenden Kokulturversuchen mit murinen und humanen mesenchymalen Stromazellen und in Übereinstimmung mit der Literatur (Tab. 55) wurde durch die Kokultur mit endothelialen Stromazellen die Expansion von Zellen mit LTC-IC, NK-IC sowie myeloischem Koloniebildungspotential ermöglicht. Multipotenter HSVZ wurde mit den angewendeten Methoden sporadisch detektiert, was auf eine sehr geringe Frequenz der Zellen schließen lässt. Zellen mit erythrozytärem Differenzierungspotential wurden fast ausschließlich in der CD133^{low}CD34⁺ Population detektiert.

Auch die gleichzeitige Verwendung primärer humaner mesenchymaler und endothelialer Stromazellen in der Triple-Kultur ermöglichte keine reproduzierbare Expansion oder einen Erhalt CD133⁺CD34⁺ HSVZ mit erythrozytärem Koloniebildungspotential. Zellen mit LTC-IC, NK-IC sowie myeloischem Koloniebildungspotential waren erneut in der CD133⁺CD34⁺ Fraktion und HSVZ mit erythrozytärem Differenzierungspotential überwiegend in der CD133^{low}CD34⁺ Fraktion enthalten.

	Stroma	Expansion	CFC	Erythr.	LTC-IC
Im Rahmen	HUVEC	CD45 ⁺ (TNC): 643-902x	-	-	-
dieser Arbeit		CD34 ⁺ : 37-49x	11,6-16x	Ja	-
isolierte und		CD133 ⁺ CD34 ⁺ : 18-26x	11,6-15x	Nein	2,3-5,3x
charakterisierte	ECFC	CD45 ⁺ (TNC): 533-927x	-	-	-
Stromozollon		CD34 ⁺ : 26-51x	4,1-14x	Ja	-
Stromazenen		CD133 ⁺ CD34 ⁺ : 8-25x	3,8-13,4x	Nein	2,0-4,2x
	PLVEC	CD45 ⁺ (TNC): 799-924x	-	-	-
		CD34 ⁺ : 41-61x	8,5-24,1x	Ja	-
		CD133 ⁺ CD34 ⁺ : 23-35x	7,4-23,5x	Nein	2,4-4,2x
(Yildirim et al., 2005)	HUVEC	TNC: 77x	32x	Ja	2,3x
		CD34 ⁺ : 23x	-	-	-
(Chute et al., 2005) *	HUBEC	TNC: ~40x	-	-	-
		CD34 ⁺ : ~30x	-	-	-
		CD34 ⁺ CD38 ⁻ : 13,1x	10,5x	-	-
(Li et al., 2006)	HUVEC	TNC: 110x	56x	-	-
(Magin et al., 2009)	HUVEC	TNC: 30-60x	24-40x	-	-

Tab. 55: Expansion von HSVZ mit primären humanen endothelialen Zellen

TNC: total nucleated cells; HUVEC: human umbilical vein endothelial cells; HUBEC: human brain endothelial cells; Erythr.: Detektion von HSVZ mit erythrozytärem Differenzierungspotential im CFC-Ansatz *: NOD/SCID-Repopulierungsexperimente durchgeführt

Ein wesentlicher Befund der vorhergehenden Versuche war, dass in allen getesteten Kulturbedingungen mit den angewendeten Analysemethoden multipotente HSVZ in der CD133⁺CD34⁺ Fraktion vereinzelt bzw. in sehr geringer Frequenz nachgewiesen werden konnte. Zudem wurde in allen Kokulturversuchen eine starke Expansion CD133⁺CD34⁺ Zellen ermittelt, die weder LTC-IC, NK-IC noch CFC Potential aufwiesen. Entsprechend gingen wird davon aus, dass multipotente HSVZ in der gesamten Nachkommenschaft stark ausgedünnt werden und der CFC Ansatz aufgrund des hohen Detektionslimits von 0,25 % keine zuverlässige Aussage über den Erhalt oder den Verlust CD133⁺CD34⁺ HSVZ mit erythrozytärem Differenzierungspotential ermöglicht.

Um bei einer Wiederholung der Experimente eine zuverlässige Detektion und Quantifizierung multipotenter CD133⁺CD34⁺ HSVZ zu ermöglichen, wurde ein zusätzlicher Erythrozyten Ansatz etabliert, der ein Detektion von Zellen mit erythrozytärem Differenzierungspotential mit einer Frequenz von unter 0,25 % ermöglicht. Da die zuvor verwendeten Primärzellen eine endliche Zellquelle darstellen (Hayflick und Moorhead, 1961; Schellenberg *et al.*, 2013) und um eine Wiederholung der vorhergehenden Versuche zu ermöglichen, wurde im Rahmen dieser Arbeit eine Methode zur konditionellen Immortalisierung und somit zur Konservierung primärer Stromazellen etabliert. Erfolgreich immortalisierte Stromazellen wurden anschließend erneut für Kokulturexperimente verwendet und die hämatopoetische Nachkommenschaft funktionell analysiert.

In Analogie zu den vorhergehenden Kokulturversuchen mit primären Stromazellen wurde eine Expansion primitiver HSVZ mit LTC-IC, NK-IC sowie myeloischem Koloniebildungspotential in der CD133⁺CD34⁺ Fraktion gefunden. Weiterhin konnten in der CD133⁺CD34⁺ Population Zellen mit megakaryozytäre sowie T-Zell Potential ermittelt werden. Ein reproduzierbarer Erhalt multipotenter HSVZ bei der Analyse von bis zu 10.000 CD133⁺CD34⁺ im neu etablierten Erythrozyten-Ansatz wurde weder in der Kokultur mit Zellen der AFT024 noch mit Zellen der konditionell immortalisierten humanen Stromazellen unterstützt.

Der zuvor beschriebene Verlust multipotenter HSVZ steht scheinbar im Widerspruch zu einer Vielzahl von Veröffentlichungen, die eine erfolgreiche Expansion multipotenter HSVZ aus dem Nabelschnurrestblut, dem Knochenmark bzw. Apharesat in Kokultur sowohl mit murinen als auch humanen Stromazellen beschreiben (siehe Tab. 53, Tab. 54 und Tab. 55). Der Nachweis multipotenter HSVZ in der hämatopoetischen Nachkommenschaft erfolgte dabei in den überwiegenden Veröffentlichungen mit Hilfe des LTC-IC Ansatzes, der lange Zeit als Surrogat für den Nachweis multipotenter hämatopoetischer Zellen angesehen wurde

(Collins und Dorshkind, 1987; Issaad et al., 1993; Ye et al., 1994; Koller et al., 1995; Yamaguchi et al., 1996; Gan et al., 1997; Breems et al., 1998; Bennaceur-Griscelli et al., 1999; Nolta et al., 2002; Zhang et al., 2004; Feugier et al., 2005; Yildirim et al., 2005; Li et al., 2006; Li et al., 2007a; Madkaikar et al., 2007; De Angeli et al., 2009; Mishima et al., 2009; Chung et al., 2010; Bramono et al., 2011; Fernandez-Sanchez et al., 2011; Luan et al., 2013; Rodriguez-Pardo und Vernot, 2013; Zaker et al., 2013). Aufgrund der Beschreibung liniendeterminierter LMPP, die ebenfalls LTC-IC Potential aber kein erythrozytäres und megakaryozytäres Differenzierungspotential aufweisen (Görgens et al., 2013b), sowie vor dem Hintergrund der alternativen Modellvorstellung der humanen Hämatopoese ermöglicht der LTC-IC Ansatz wie unsere Daten ganz klar zeigen keinen zuverlässigen Nachweis multipotenter HSVZ.

In einigen der aufgeführten Veröffentlichungen wurde zudem das Koloniebildungspotential der hämatopoetischen Nachkommenschaft im CFC Ansatz analysiert (Koller et al., 1995; Kanai et al., 2000; Chute et al., 2005; Feugier et al., 2005; Yildirim et al., 2005; Li et al., 2006; Zhang et al., 2006; Li et al., 2007a; Madkaikar et al., 2007; Magin et al., 2008; Fernandez-Sanchez et al., 2011; de Lima et al., 2012; Hammoud et al., 2012; Luan et al., 2013; Zaker et al., 2013). Dabei wurden in etwa der Hälfte der Arbeiten keine erythrozytären, erythro-myeloischen und myeloischen Kolonien unterschieden (Tab. 53, Tab. 54 und Tab. 55). Zudem wurde die Quantifizierung Zellen mit erythrozytärem von Differenzierungspotential in fast allen Veröffentlichungen mit Zellen der gesamten Nachkommenschaft durchgeführt. Da unseren Daten zufolge sowohl multipotente HSZ/MPP (CD133⁺CD34⁺) als auch EMP (CD133^{low}CD34⁺) erythrozytäre Kolonien im CFC Ansatz realisieren können (Görgens et al., 2013b), bleibt unklar, ob in den Veröffentlichungen eine Expansion oder ein Erhalt multipotenter CD133⁺CD34⁺ HSVZ ermöglicht wurde.

Derzeit stellt das NOD/SCID bzw. NSG Mausmodell den allgemein anerkannten Gold-Standard zum Nachweis multipotenter humaner HSZ/MPP dar (Shultz *et al.*, 1995; Shultz *et al.*, 2005). HSVZ mit SRC-Potential bringen demnach humane T-Zellen, B-Zellen, NK-Zellen, Monozyten/Makrophagen und Granulozyten in letal bestrahlten Mäusen hervor. Der Nachweis primitiver HSVZ mit SRC-Potential in der hämatopoetischen Nachkommenschaft nach Kokultur mit murinen und humanen Stromazellen wird bereits seit Ende der 90er Jahre zur Detektion und Quantifizierung multipotenter HSZ/MPP angewendet (Gan *et al.*, 1997; Kanai *et al.*, 2000; Yamaguchi *et al.*, 2001; Chute *et al.*, 2002; Nolta *et al.*, 2002; Li *et al.*, 2004; Chute *et al.*, 2005; Zhang *et al.*, 2006; Khoury *et al.*, 2011; Nishino *et al.*, 2011; Ferreira *et al.*, 2012; Hammoud *et al.*, 2012; Fan *et al.*, 2013). Da der Arbeit von Mazurier *et*  *al.* zufolge keine langfristige Entwicklung humaner erythrozytärer und megakaryozytärer Zellen in der NOD/SCID Maus unterstützt (Mazurier *et al.*, 2003) und der Subtyp der humanen Granulozyten (CD15⁺CD66b⁺) üblicherweise nicht genauer untersucht wird, kann in den meisten Arbeiten nicht mit Sicherheit auf eine Rekonstitution durch multipotente HSVZ geschlossen werden (Görgens *et al.*, 2013a). Daten aus der Arbeitsgruppe zufolge führt auch die Transplantation kulturexpandierter CD133⁺CD34⁺ LMPP, die kein erythrozytäres Differenzierungspotential mehr aufweisen, zu einer Rekonstitution (Kohn *et al.*, 2012; Görgens *et al.*, 2013b). Die Interpretation des SRC-Potentials als Surrogat für multipotente HSZ/MPP ist folglich nicht ausreichend um multipotente HSVZ nachweisen zu können (Görgens *et al.*, 2013a).

Die Fähigkeit zur seriellen Transplantation und Rekonstitution immundefizienter Mäuse wird bislang als eine exklusive Eigenschaft multipotenter humaner HSZ/MPP angesehen. Die sekundäre Transplantation ex vivo expandierter HSVZ in Kokultur mit humanen Stromazellen wurde bisher nur von Khoury et al. beschrieben (Khoury et al., 2011). In der Arbeit wurden humane CD133⁺CD34⁺ Zellen mit Angiopoietin-like-5 ektop exprimierenden humanen MSZ über einen Zeitraum von 11 Tagen kokultiviert, was zu einer 60-fachen Expansion von Zellen mit SRC-Potential führte (Khoury et al., 2011). Die humanen CD133⁺CD34⁺ Zellen aus dem Knochenmark primärer Mäuse (Woche 14) ermöglichten zudem nach sekundärer Transplantation eine erneute Rekonstitution immundefizienter Mäuse (Woche 12) (Khoury et al., 2011). Auffällig ist, dass der Anteil humaner hämatopoetischer Zellen in den primären Mäusen im Mittel über 40% beträgt, wohingegen nach sekundärer Transplantation lediglich 11 von 14 Mäusen 0,1-2% Chimerismus im Knochenmark aufweisen. Da in der Veröffentlichung nicht das erythrozytäre oder megakaryozytäre Differenzierungspotential der humanen CD133⁺CD34⁺ Zellen aus dem Knochenmark der primären Mäuse analysiert wurde, bleibt unklar, inwiefern diese sekundäre Rekonstitution auch durch LMPP ermöglicht wurde (Görgens et al., 2013a).

Erste Hinweise, dass auch linienspezifizierte Vorläuferzellen mit SRC-Potential existieren und sogar sekundär transplantierbar sind, wurden kürzlich von Yamamoto *et al.* in der Maus beschrieben (Yamamoto *et al.*, 2013). Myeloisch spezifizierte Progenitoren mit Megakaryozyten, Megakaryozyten-Erythrozyten oder allen myeloischen Differenzierungspotentialen ermöglichten eine Rekonstitution primärer Mäuse und konnten zudem sekundär transplantiert werden (Yamamoto *et al.*, 2013). Ob vergleichbare Zellen auch in der humanen Hämatopoese existieren ist bisher jedoch noch unklar. Da insbesondere die humane Langzeit Erythropoese und Megakaryopoese in der NOD/SCID sowie NSG Maus

nicht unterstützt wird, ist der Nachweis dieser Zellen derzeit nicht möglich (Mazurier *et al.*, 2003).

Die Interpretation der Literaturdaten vor dem Hintergrund der eingangs beschriebenen Ergebnisse sowie der daraus resultierenden alternativen Modellvorstellung der humanen Hämatopoese lässt offen, ob in den aufgeführten Veröffentlichungen wohlmöglich eine Expansion bzw. ein Erhalt multipotenter HSVZ unterstützt wurde. Die Expression des Oberflächenmarkers CD133, der unseren Daten zufolge eine einfache und zuverlässige Unterscheidung lympho-myeloischer/multipotenter (CD133⁺CD34⁺) und erythro-myeloischer HSVZ (CD133^{low}CD34⁺) ermöglicht (Görgens *et al.*, 2013a; Görgens *et al.*, 2013b), wurde in den bisherigen Veröffentlichungen meist nicht bestimmt. Der in dieser Arbeit beschriebene Verlust multipotenter CD133⁺CD34⁺ HSVZ sowohl in Kokultur mit murinen als auch humanen Stromazellen steht daher in keinem unmittelbaren Widerspruch zu vorhergehenden Arbeiten, die möglicherweise fälschlich auf eine Expansion multipotenter HSZ/MPP schließen.

## 4.3. Alternative Ansätze zur in vitro Expansion multipotenter HSVZ

Der Notch-Signalweg ist ein wichtiger Regulator bei der Entwicklung und Spezifikation von Geweben und Zellen und steuert eine Vielzahl verschiedener Differenzierungsprozesse (Artavanis-Tsakonas et al., 1999; Bigas et al., 2012). In der Hämatopoese wird die Beteiligung des Signalweges an der Regulation des Selbsterhalts und der Differenzierung hämatopoetischer Stamm- und Vorläuferzellen beschrieben (Ohishi et al., 2002; Ohishi et al., 2003; Bigas und Espinosa, 2012). Endotheliale Zellen in der vaskulären Stammzellnische im Knochenmark exprimieren den Veröffentlichungen von Butler et al. sowie Poulos et al. zufolge die Notch-Liganden Jagged-1, Jagged-2, Dll1 und Dll4 (Butler et al., 2010; Poulos et al., 2013). Die konditionelle Deletion des Jagged-1 Gens in Endothelzellen führte laut Poulos et al. zu einem fast vollständigen Verlust hämatopoetischer Stammzellen sowie einer starken Proliferation der residualen HSZ im Knochenmark der Mäuse (Poulos et al., 2013). In der Arbeit von Varnum-Finney et al. wurde weiterhin berichtet, dass eine ektope Expression des Notch-1-Rezeptors in murinen HSZ zur Immortalisierung und starken Expansion hämatopoetischer Stammzellen im Knochenmark führte (Varnum-Finney et al., 2000). Die ektope Expression von Notch-Liganden (Jagged-1, Jagged-2, Dll1, Dll3 oder Dll4) in Stromazellen stellt demnach einen vielversprechenden Ansatz zur in vitro Expansion multipotenter HSVZ dar (Dahlberg et al., 2011; Varnum-Finney et al., 2011; Benveniste et al., 2013)

162

Entsprechend wurden im Rahmen dieser Arbeit CD133⁺CD34⁺ HSVZ mit Zellen der murinen Stromazelllinie OP9, die den Notch-Liganden Dll1 ektop exprimieren (OP9-Dl1), kokultiviert und die hämatopoetische Nachkommenschaft analysiert. Wie bereits in der Kokultur mit Zellen muriner Stromazelllinien und humanen Primärzellen konnten primitiver HSVZ mit LTC-IC, NK-IC und myeloischem CFC Potential in der CD133⁺CD34⁺ Fraktion detektiert werden. CD133⁺CD34⁺ HSVZ mit erythrozytärem Koloniebildungspotential wurde in der Kokultur mit Zellen der OP9-Dl1 in zwei von drei Versuchen mit sehr geringer Frequenz detektiert, was möglicherweise erneut auf einen Verlust bzw. eine Ausdünnung multipotenter Zellen hinweist.

Eine in vitro Expansion humaner HSVZ in Kokultur mit Zellen der murinen Stromazelllinie OP9, die ektop den Notch-Liganden Delta-like-4 (Dl4) exprimieren, und gleichzeitig hochauflösende durchflusszytometrische Analyse der hämatopoetischen Nachkommenschaft wurde kürzlich von Benveniste et al. beschrieben (Benveniste et al., 2013). Zellen der HSZ/MPP-angereicherten CD38⁻CD133⁺CD34⁺CD7⁻CD10⁻CD45RA⁻CD90^{low} (HSC) Population wurden hierzu durchflusszytometrisch sortiert und mit Zellen der OP9-Dl4 kokultiviert. In der hämatopoetischen Nachkommenschaft wurden nach 14-tägiger Kokultur neben den ursprünglich ausgebrachten Zellen der HSC Population auch CD38⁻ CD133⁺CD34⁺CD7⁻CD10⁻CD45RA⁻CD90⁻ (CD90⁻) sowie CD38⁻CD133⁺CD34⁺CD7⁻CD10⁻ CD45RA^{int} (CD45RA^{int}) Zellen detektiert (Benveniste et al., 2013). Die Zellen der drei Subpopulationen wiesen laut der Arbeit von Benveniste et al. eine unterschiedlich starke Expansion von etwa 2-fach (HSC), 6-fach (CD90⁻) und 10 bis 12-fach (CD45RA^{int}) auf, was einer Ausdünnung der HSC Fraktion auf etwa 15 - 25 % in der hier analysierten CD38⁻ CD133⁺CD34⁺CD7⁻CD10⁻CD45RA^{-/int} Population entspricht (Benveniste et al., 2013). Die funktionellen Analyse der CD38⁻CD133⁺CD34⁺CD7⁻CD10⁻CD45RA^{-/int} Fraktion im CFC Ansatz ergab, dass etwa 20-25 % der Zellen erythrozytäres Differenzierungspotential aufwiesen, was in etwa deckungsgleich mit der zuvor beschriebenen HSC Frequenz ist.

Die Arbeit von Benveniste *et al.* zeigt entsprechend unserer Annahme, dass multipotente HSVZ in der gesamten Nachkommenschaft sehr stark ausgedünnt werden und zudem nur eine geringfügige Expansion aufweisen. Für eine zuverlässige Detektion und Quantifizierung multipotenter HSVZ ist in weiterführenden Arbeiten zu empfehlen die HSZ/MPP angereicherte Fraktion mit Hilfe weiterer Oberflächenmarker anzureichern sowie eine Analysemethode mit einem niedrigen Detektionslimit für Zellen mit erythrozytärem Differenzierungspotential zu wählen. Weiterhin wird deutlich, dass auch die Verwendung von Notch-Liganden, die *in vivo* in Knochenmarknische eine wichtige Rolle bei der

Aufrechterhaltung des Stammzellpools spiele, *in vitro* nur eine vergleichsweise geringe Expansion multipotenten HSVZ ermöglichten.

## 4.1. Asymmetrische Zellteilung und Verlust multipotenter HSVZ

Ein Mechanismus, der möglicherweise dem Verlust bzw. der geringfügigen Expansion multipotenter HSVZ zugrunde liegt, stellt die asymmetrische Zellteilung dar. Bereits zu Beginn dieser Arbeit gingen wir davon aus, dass multipotente HSVZ bei der Zellteilung eine Tochterzelle hervorbringen und die zweite Zelle das initiale spezifizierte Differenzierungspotential beibehält. Diese Annahme geht maßgeblich auf Befunde der Arbeitsgruppe zurück, in denen primitive HSVZ mit LTC-IC und NK-IC Potential, sogenannte ML-IC, in 80 % der Zellteilungen Tochterzellen mit unterschiedlichem Differenzierungspotential hervorbringen, wobei eine Zelle das initiale ML-IC Potential beibehält (Giebel et al., 2006). Vor dem Hintergrund unserer alternativen Modellvorstellung der humanen Hämatopoese weisen sowohl HSZ/MPP als auch LMPP LTC-IC und NK-IC Potential auf, was erneut die Frage aufwarf, ob und mit welcher Frequenz sich multipotente HSVZ asymmetrisch teilen.

Aufgrund fehlender Oberflächenmarker war es bislang nicht möglich, die asymmetrische Zellteilung vitaler, genetisch nicht manipulierter primitiver HSVZ, mikroskopisch über die Zeit hinweg zu untersuchen und zu quantifizieren. Um die Frequenz der asymmetrischen Zellteilung unterschiedlicher HSVZ Subpopulation zu ermitteln, wurde in einem aktuellen Projekt von André Görgens (zur Veröffentlichung eingereicht) ein neuer Antikörper (HC7) Oberflächenantigen CD133 verwendet. Zellen der HSZ/MPP gegen das (CD133⁺CD34⁺CD45RA⁻CD38^{low}CD10⁻), LMPP (CD133⁺CD34⁺CD45RA⁺CD38^{low}CD10⁻) und GMP (CD133⁺CD34⁺CD45RA⁺ CD38⁺CD10⁻) angereicherten Fraktion wurden hierzu durchflusszytometrisch sortiert. Die Zellen der Subpopulationen wurden für 50-72 Stunden in Suspensionskultur kultiviert, mit dem Antikörper HC7-PE gefärbt und anschließend für 5 Stunden mikroskopisch dokumentiert. Den Ergebnissen zufolge wird das Oberflächenantigen CD133 bei etwa 70 % der multipotenten HSZ/MPP, 30 % der LMPP und 15 % der GMPs in der Zellteilung asymmetrisch auf die beiden Tochterzellen verteilt.

Diese hohe asymmetrische Zellteilungsrate von Zellen aus der HSZ/MPP angereicherten Zellfraktion in der Suspensionskultur stellt eine mögliche Erklärung für die geringe Frequenz multipotenter HSVZ in den durchgeführten Kokulturen dar. Inwiefern die verwendeten Stromazellen oder andere Faktoren *in vitro* eine Verschiebung der asymmetrischen zur symmetrischen Zellteilung und somit eine Expansion multipotenter HSVZ begünstigen

können, ist fraglich. Eine Veränderung der asymmetrischen Zellteilungsrate insbesondere primitiver bzw. multipotenter Stammzellen kann wie klinische Befunde zeigen *in vivo* gravierende Konsequenzen für das Gewebe und den gesamten Organismus haben kann. In der Neurogenese im Modellorganismus *Drosophila melanogaster* wurde beschrieben, dass Mutation in Genen, die mit der asymmetrischen Zellteilung assoziiert sind, zur Dysregulation in der asymmetrischen Zellteilungsrate und Tumorbildung führen können (Chang *et al.*, 2012; Homem und Knoblich, 2012). Ebenso kann in Säugetieren eine Verschiebung von der asymmetrischen zur symmetrischen Zellteilung zur Tumorbildung führen, wie es z.B. für das Oligodendrogliom, beim Mammakarzinom oder bei einer Leukämie berichtet wird (Wu *et al.*, 2007; Cicalese *et al.*, 2009; Sugiarto *et al.*, 2011). Demnach stellt die asymmetrische Zellteilung möglicherweise eine Art Tumor-Supressormechanismus dar, der die Entscheidung zur Selbsterneuerung oder Differenzierung von HSVZ reguliert und auch bei der *in vitro* Kultivierung ein sehr geringe Frequenz multipotenter HSVZ in der Nachkommenschaft zur Folge hätte.

Eine andere mögliche Erklärung für den Verlust bzw. die geringe Frequenz multipotenter HSVZ in den vorhergehenden Kokulturversuchen stellt die spezifizierende asymmetrische Zellteilung dar, bei der es zum Verlust der initialen Multipotenz und zur Differenzierung bzw. Spezifizierung beider Tochterzellen kommt. Ein klassisches Beispiel hierfür stellt die Entwicklung der mechanosensorischen Borsten der Fliege dar, bei der die vier spezialisierten Zellen durch zwei asymmetrische Zellteilungen aus einer einzelnen Sinnesorgan-Progenitorzelle (SOP; sensory organ precursor) hervorgehen (Hartenstein und Posakony, 1989; Rhyu et al., 1994). Eine genetische Manipulation und Veränderung der asymmetrischen zu einer symmetrischen Zellteilung führt dabei nicht zu einem Erhalt der initialen Progenitorzellen. Die Beobachtung, dass in allen im Rahmen dieser Arbeit getesteten in vitro CD133⁺CD34⁺ Kulturbedingungen multipotente HSZ/MPP mit erythrozytärem Differenzierungspotential nahezu vollständig verloren gehen und zudem immer CD133⁺CD34⁺ LMPP als auch CD133^{low}CD34⁺ EMP entstehen, spricht möglicherweise für eine spezifizierende asymmetrische Zellteilung der multipotenten HSVZ. Ob extrinsische Faktoren wie Wachstumsfaktoren, Sauerstoffgehalt oder Stromazellen diesen Prozess bei hämatopoetischen Stramm- und Vorläuferzellen beeinflussen können, ist noch nicht geklärt.

Inwiefern multipotente hämatopoetische Zellen überhaupt in den gewählten *in vitro* Kulturbedingungen z.B. der Suspensionskultur mit den Wachstumsfaktoren SCF, TPO und FLT-3 zur Zellteilung angeregt werden, wird derzeit von André Görgens untersucht. Hierzu

165

werden frisch isolierte HSVZ mit dem fluoreszenten Farbstoff CFSE (5,6-Carboxyfluorescein-diacetatsuccinimidylester) gefärbt, welcher in die Zellen diffundiert, intrazellulär über die Succinimidyl-Gruppe kovalent an freie Lysine und Amine bindet und bei der Zellteilung gleichmäßig auf beide Tochterzellen verteilt wird. Der Gehalt des Fluoreszenzfarbstoffes in den Zellen wird anschließend durchflusszytometrisch über einen Zeitraum von 5-6 Tagen verfolgt und die Anzahl der Zellteilungen für unterschiedliche hämatopoetische Subpopulationen ermittelt.

# 4.2. In vitro Kulturbedingungen für den erweiterten ML-IC Ansatz

Da der erweiterte ML-IC Ansatz eine retrospektive Analyse des Differenzierungspotentials einzelner HSVZ vorsieht, müssen die *in vitro* Expansionsbedingungen nur einen Erhalt des initialen Differenzierungspotentials in der gesamten Nachkommenschaft ermöglichen. Eine Expansion oder ein Erhalt multipotenter HSVZ ist somit keine Grundvoraussetzung für die zukünftig angestrebte Einzelzellanalyse im erweiterten ML-IC Ansatz.

In der aufgeführten Literatur und in guter Übereinstimmung mit den Befunden dieser Arbeit wurde die stärkste stromazellbasierte in vitro Expansion und der beste Erhalt primitiver humaner HSVZ mit LTC-IC und CFC Potential in der Kokultur mit mesenchymalen Stromazellen aus dem Knochenmark beschrieben (vgl. Tab. 53, Tab. 54 und Tab. 55). Der Zellen lymphatischem T-Zell Nachweis von mit NK-Zell, und **B-Zell** Differenzierungspotential wurde in einigen Veröffentlichungen durch Transplantation humaner Zellen in NOD/SCID oder NSG Mäuse erbracht (vgl. Tab. 53, Tab. 54 und Tab. 55, entsprechende Veröffentlichungen sind mit einem * markiert). Eine Quantifizierung von Zellen mit erythrozytärem Differenzierungspotential wird nur in wenigen Arbeit durchgeführt und zumeist mit der gesamten hämatopoetischen Nachkommenschaft durchgeführt (vgl. Tab. 53, Tab. 54 und Tab. 55) Der Erhalt oder die Expansion von Zellen mit megakaryozytärem und DC Potential hingegen wurde in allen aufgeführten Arbeiten vernachlässigt. Zudem fand keine Unterscheidung der Granulozytensubtypen im CFC Ansatz oder der rekonstituierten Maus statt. Stromazellbasierte in vitro Kulturbedingungen, die nachweislich einen Erhalt aller hämatopoetischen Linienpotentiale ermöglichen und für den erweiterten ML-IC Ansatz in Frage kommen sind der aufgeführten Literatur zufolge bislang nicht beschrieben worden.

Die stärkste Expansion bzw. den besten Erhalt von Zellen mit LTC-IC, NK-IC, T-Zell, CFC, Megakaryozyten und Erythrozyten Potential in der CD34⁺ Nachkommenschaft unterstützten Zellen der konditionell immortalisierten mesenchymalen humanen Stromazelllinie KM MNZ B Klon 2. Die Kokultur humaner HSVZ mit Zellen dieser Stromazelllinie stellt
somit für die initiale Expansionsphase im erweiterten ML-IC Ansatz bislang die besten im Rahmen dieser Arbeit ermittelten Kulturbedingungen dar. Inwiefern die Stromazellen auch eine Expansion von Einzelzellen ermöglichen und den Erhalt von Zellen mit B-Zell und DC Potential unterstützen, ist bisher noch nicht geklärt und soll in weiterführenden Versuchen untersucht werden.

#### 4.3. Ausblick

Vor dem Hintergrund unserer alternativen Modellvorstellung der humanen Hämatopoese werden neue Fragen zu den genauen Linienverwandtschaften und Abstammungsverhältnissen reifer Blutzellen aufgeworfen. Der Nachweis von sowohl CD133⁺CD34⁺ als auch CD133^{low}CD34⁺ Zellen mit Monozyten/Makrophagen Potential lässt vermuten, dass es sich hier um unterschiedliche Typen von Zellen handelt. Weiterhin ist durch die Beschreibung des LMPP die hierarchische Organisation im lympho-myeloischem Zweig weitgehend ungeklärt. Die Beobachtung, dass CD133⁺CD34⁺ HSVZ nach *in vitro* Expansion mit humanen Stromazellen megakaryozytäres jedoch keine erythrozytäres Differenzierungspotential aufweisen, stellt zudem die Linienaufspaltung in der erythro-megakaryozytären Linien und die Existenz des MegE Vorläufers in Frage.

Weiterhin stellt sich die Frage, ob bereits bestehende Kulturbedingungen für die *in vitro* Expansion oder den Erhalt multipotenter HSVZ optimiert oder verbessert werden können. Die Konservierung einer humanen mesenchymalen Stromazelllinie, die nachweislich den Erhalt hämatopoetischer Zellen mit unterschiedlichen Linienpotentialen unterstützt, ermöglicht unterschiedliche Parameter (Wachstumsfaktoren, Sauerstoffgehalt, 3D-Kultur, etc.) der Kulturbedingungen systematisch zu variieren und für den Erhalt bzw. die Expansion multipotenter HSVZ zu optimieren.

Da der Hauptfokus der Arbeit auf der Etablierung der *in vitro* Kulturbedingungen lag, wurde der ursprünglich angestrebte erweiterte ML-IC Ansatz nicht vollständig etabliert. Um den erweiterten ML-IC Ansatzes zu vervollständigen und den Nachweis aller hämatopoetischen Linienpotentiale zu ermöglichen, sollten in weiterführenden Arbeiten zusätzliche Analysemethoden zur Detektion von Zellen mit B-Zell und DC Potential etabliert werden. Vorhergehende Kokulturversuche zur Etablierung der Kulturbedingungen wurden zudem nicht auf Einzelzellebene durchgeführt. Folglich ist unklar, ob für die angestrebte Analyse im erweiterten ML-IC Ansatz Zellen der konditionell immortalisierten Stromazelllinie MSZ KM MNZ B Klon2 eine Expansion von Einzelzellen ermöglichen.

# 5. Zusammenfassung

Hämatopoetische Stammzellen (HSZ) stellen das derzeit bestuntersuchte Stammzellsystem im Menschen dar. Dennoch sind die hierarchische Organisation der Stamm- und Vorläuferzellen sowie die genauen Linienverwandtschaft reifer Blutzellen noch immer nicht vollständig aufgeklärt. Nach dem klassischen Modell der Hämatopoese bringen HSZ multipotente Progenitoren hervor (MPP), die im weiteren Verlauf der Differenzierung entweder lymphatisch oder myeloisch spezifiziert werden. Durch die Beschreibung von Vorläuferzellen, die lymphatisches sowie partielles myeloisches aber kein erythrozytäres und megakaryozytäres Differenzierungspotential aufweisen, wurde das klassische Modell mit der Aufspaltung in den lymphatischen und myeloischen Zweig von mehreren Arbeitsgruppen falsifiziert.

Das Ziel dieser Arbeit war folglich die Entwicklung einer in vitro Analysemethode, die eine Beschreibung der genauen Abstammungsverhältnisse in der humanen Hämatopoese sowie die primitiver hämatopoetischer Stammund Vorläuferzellen (HSVZ) Detektion auf Einzelzellebene ermöglicht. Als Grundlage hierzu wurde der klassische ML-IC (myeloidlymphoid initiating cell) Ansatz verwendet, der eine retrospektive Analyse von Zellen mit lympho-myeloischem Differenzierungspotential ermöglicht. Zu untersuchende Einzelzellen werden hierzu in Kokultur mit murinen Stromazellen expandiert und das myeloische (LTC-IC) und lymphatische (NK-IC) Differenzierungspotential der Nachkommenschaft analysiert. Eine wesentliche Voraussetzung für den erweiterten ML-IC Ansatz stellen somit Kulturbedingungen dar, die eine Expansion von Einzelzellen ohne den Verlust des initialen Differenzierungspotentials in der neu entstehenden Nachkommenschaft ermöglichen. Weiterhin werden für die Analyse des Differenzierungspotentials der Nachkommenschaft funktionelle in vitro Differenzierungsansätze für den Nachweis aller hämatopoetischen Linien benötigt.

Zu Beginn der Arbeit wurde das Entwicklungspotential expandierter HSVZ in der Suspensionskultur genauer analysiert. Primitive HSVZ mit LTC-IC, NK-IC, SRC sowie myeloischem Koloniebildungspotential konnten in der CD133⁺CD34⁺ Fraktion erhalten werden, wohingegen CD133⁺CD34⁺ HSVZ mit erythrozytärem innerhalb von 6 Tagen vollständig verloren gingen. Zellen mit erythrozytärem Differenzierungspotential wurden exklusiv in der neu entstehenden CD133^{low}CD34⁺ Fraktion detektiert. Diese Beobachtung gemeinsam mit weiteren Ergebnissen aus der Arbeitsgruppe führte zur Beschreibung neuer Linienverwandtschaften und eine alternativen Modellvorstellung der humanen Hämatopoese. Demnach findet eine frühe Aufspaltung in den lympho-myeloischen (CD133⁺CD34⁺) und erythro-myeloischen (CD133^{low}CD34⁺) Zweig statt, wobei Eosinophile und Basophile von CD133^{low} erythro-myeloischen Progenitoren (EMP) und Neutrophile von CD133⁺ lymphatisch-spezifizierten multipotenten Progenitoren (LMPP) gebildet werden.

Da insbesondere das erythrozytäre Differenzierungspotential in der Suspensionskultur verloren ging, wurden der Erhalt multipotenter HSVZ in Kokultur mit Zellen muriner Stromazelllinien sowie primären humanen mesenchymalen und endothelialen Stromazellen analysiert, die laut der Literatur eine Expansion multipotenter HSVZ ermöglichen. Überraschenderweise ermöglichten weder die murinen noch die humanen Stromazellen einen reproduzierbaren und zuverlässigen Erhalt multipotenter CD133⁺CD34⁺ HSVZ. In allen getesteten Bedingungen ging das erythrozytäre Differenzierungspotential in der CD133⁺CD34⁺ Fraktion über die Zeit nahezu vollständig verloren. Ein Erhalt aller initialen Differenzierungspotentiale in der gesamten Nachkommenschaft wurde hingegen von einzelnen mesenchymalen sowie endothelialen Stromazellen unterstützt.

Derzeitige in vitro Kulturbedingungen ermöglichen keine unlimitierte Expansion primärer humaner Stromazellen. Um humane Primärzellen, die einen Erhalt aller initialen Differenzierungspotentiale ermöglichen, für die weiterführende Analysen sowie die initiale Expansionsphase im erweiterten ML-IC Ansatz zu konservieren, wurden ein System zur konditionellen Immortalisierung selektionierter Stromazellen etabliert. Von den immortalisierten humanen Primärzellen unterstützten insbesondere Zellen der mesenchymalen Stromazelllinie KM MNZ B Klon 2 einen reproduzierbaren Erhalt von HSVZ mit T-Zell, NK-Zell, Makrophagen/Monozyten, Granulozyten (Neutrophile, Basophile, Eosinophile), Megakaryozyten sowie Erythrozyten Potential. Diese Stromazellen ermöglichen folglich geeignete Kulturbedingungen für die initiale Expansionsphase im erweiterten ML-IC Ansatz.

Auch wenn der erweiterte ML-IC Ansatz bislang nicht vollständig etabliert ist, konnte diese Arbeit wesentliche Ergebnisse zur Beschreibung neuer Linienverwandtschaften sowie einer alternativen Modellvorstellung der humanen Hämatopoese beitragen. Der Befund, dass multipotente HSVZ die einzigen CD133⁺CD34⁺ Zellen mit erythrozytärem Differenzierungspotential darstellen, ermöglicht zudem eine einfache Detektion und Quantifizierung multipotenter HSZ/MPP in weiterführenden Versuchen.

Weiterhin wurden im Rahmen dieser Arbeit zusätzliche linienspezifische *in vitro* Differenzierungsansätze zur Detektion von Zellen mit CFC, T-Zell, Erythrozyten sowie Megakaryozyten Potential erfolgreich etabliert. Gemeinsam mit der Qualifizierung einer humanen mesenchymalen Stromazelllinie, die den Erhalt aller getesteten Linienpotentiale in der hämatopoetischen Nachkommenschaft ermöglicht, stellen diese Vorarbeiten eine wichtige Grundlage für die zukünftige Analyse einzelner HSVZ im erweiterten ML-IC Ansatz dar.

### Summary

Hematopoietic stem cells (HSCs) represent the best studied somatic stem cell entity in humans so far. Nevertheless, there are many unresolved questions regarding the hierarchical organization within the stem and progenitor cell compartment as well as the precise lineage relationships of mature blood cells. According to the classical model of human hematopoiesis, HSC give rise to multipotent hematopoietic progenitor cells (HPCs) and become restricted either to the lymphoid or myeloid lineage. Recent discoveries of lymphoid progenitors which retain partial myeloid but lack erythroid potential, e.g. the lymphoid primed multipotent progenitor cells (LMPP), have challenged this model.

Consequently, the major aim of this thesis was to develop a read out system allowing the unravelling of the precise hierarchical relationships and the detection of the most primitive human hematopoietic stem and progenitor cells (HSPCs) at a single cell level. To this end, we decided to extend the clonal myeloid/lymphoid-initiating cell (ML-IC) assay in which individual hematopoietic cells are expanded on murine stromal cells before progeny is transferred into myeloid (LTC-IC) and lymphoid (NK-IC) read-outs. By combining the results of the different lineage read outs, the developmental potential of the initially deposited cell can be determined retrospectively. A major prerequisite for the extended ML-IC (eML-IC) assay are *in vitro* culture conditions allowing the expansion of single cells while maintaining all initial lineage potentials within the arising daughter cell fraction. Furthermore, functional lineage read-outs to detect and analyze all hematopoietic cell fates are required.

Monoculture of human HSPCs in suspension resulted in the maintenance of cells with LTC-IC, NK-IC, SRC and myeloid colony-formation potential in the CD133⁺CD34⁺ cell fractions. HSPCs with erythroid potentials were rapidly lost from this fraction and were exclusively found within the newly arising CD133^{low}CD34⁺ population. These observations and further results of our group led to a revision of the current model of hematopoiesis. The new model predicts a very first segregation of lympho-myeloid (CD133^{low}CD34⁺) and erythromyeloid (CD133^{low}CD34⁺) potentials, with eosinophils and basophils developing from CD133^{low} erythro-myeloid progenitors (EMPs), while neutrophils develop from CD133⁺ lymphoid-primed multipotent progenitors (LMPPs).

Due to the loss of erythroid potentials in suspension culture we studied the ability of established murine stromal cell line cells as well as primary human mesenchymal and endothelial stromal cells to maintain multipotent CD133⁺CD34⁺ HSPCs with erythroid potential. None of the tested cells allowed a consistent maintenance of multipotent CD133⁺CD34⁺ cells. In all conditions CD133⁺CD34⁺ HSPC with erythroid potentials were lost over time. However, on certain mesenchymal and endothelial stromal cells, all initial lineage potentials could be maintained in the entire offspring.

In order to conserve human stromal cells supporting the maintenance of all initial lineage potentials, we established a strategy to conditionally immortalize these cells. Within coculture experiments, cells of the mesenchymal cell line KM MNZ B Clone 2 supported the maintenance of cells with T cell, NK cell, macrophage, granulocyte (neutrophil, basophil and eosinophil), megakaryocyte and erythrocyte potential displaying a promising candidate for the initial expansion of single cells in the enhanced ML-IC assay.

Although the enhanced ML-IC assay could not completely be established, this thesis helped to unravel new hematopoietic lineage relationships which led to a new model of human hematopoiesis providing a simple possibility to detect multipotent stem and progenitor cells. According to the new model, multipotent HSPCs are the only human hematopoietic cells that express CD133 and reveal erythroid potentials which can easily be detected and enumerated within conventional colony-forming cell (CFC) assays.

Additionally, various lineage read outs allowing the detection of cells with CFC, T cell, erythrocyte and megakaryocyte potential as well as a human mesenchymal stroma cell line supporting the expansion and maintenance of various hematopoietic lineage potential have successfully been established. Taken together, these tools provide the basic requirements to further establish the enhanced ML-IC assay and analyze the developmental potential of human hematopoietic stem and progenitor cells at a single cell level.

# 6. Anhang



### Vektoren für die konditionelle Immortalisierung

BFU-	C .	AFT	0.00	OP9	MG 5	CFU-	C .	AFT	0.00	OP9	MG 5
Ε	Sus	024	OP9	DL1	M8-5	Μ	Sus	024	OPy	DL1	M9-2
V1	n. v.	0,00%	0,00%	0,00%	0,00%	V1	n. v.	1,25%	0,67%	0,00%	1,00%
V2	0,00%	0,00%	0,00%	0,33%	0,00%	V2	3,00%	1,33%	3,67%	0,00%	1,00%
V3	0,00%	0,00%	0,25%	0,25%	0,00%	V3	0,50%	1,25%	1,00%	0,00%	0,00%
MW	0,00%	0,00%	0,08%	0,19%	0,00%	MW	1,75%	1,28%	1,78%	0,00%	0,67%
SEM	0,00%	0,00%	0,08%	0,10%	0,00%	SEM	1,25%	0,03%	0,95%	0,00%	0,33%
p (S)	-	n. v.	0,500	0,090	n. v.	p (S)	-	0,769	0,090	0,395	0,344
<b>p</b> (A)	-	-	0,423	0,192	n. v.	<b>p</b> (A)	-	-	0,642	0,001	0,197
<b>p</b> ( <b>O</b> )	-	-	-	0,423	0,423	<b>p</b> ( <b>O</b> )	-	-	-	0,202	0,329
p (D)	-	-	-	-	0,192	<b>p</b> ( <b>D</b> )	-	-	-	-	0,184
CEU		AFT		OD0		CEU		A ET		OP0	
G G	Sus	024	OP9	DL1	MS-5	GM	Sus	024	OP9	DL1	MS-5
V1	n. v.	0,75%	1,67%	0,67%	1,67%	V1	n. v.	0,00%	0,33%	0,00%	4,00%
V2	2,33%	1,00%	1,33%	0,67%	0,33%	V2	0,67%	1,00%	1,33%	0,33%	0,33%
V3	0,25%	0,00%	1,75%	0,25%	0,75%	V3	0,75%	0,00%	0,25%	0,00%	0,50%
MW	1,29%	0,58%	1,58%	0,53%	0,92%	MW	0,71%	0,33%	0,64%	0,11%	1,61%
SEM	1,04%	0,30%	0,13%	0,14%	0,39%	SEM	0,04%	0,33%	0,35%	0,11%	1,20%
<b>p</b> (S)	-	0,382	0,874	0,500	0,656	<b>p</b> ( <b>S</b> )	-	0,766	0,910	0,234	0,090
<b>p</b> (A)	-	-	0,135	0,774	0,575	<b>p</b> (A)	-	-	0,008	0,423	0,458
<b>p</b> ( <b>O</b> )	-	-	-	0,049	0,184	<b>p</b> ( <b>O</b> )	-	-	-	0,156	0,558
<b>p</b> ( <b>D</b> )	-	-	-	-	0,423	<b>p</b> ( <b>D</b> )	-	-	-	-	0,355
CFU-	Sug	AFT	OP0	OP9	MS 5	%	Sug	AFT	OP0	OP9	MS 5
MIX	Sus	024	019	DL1	W15-5	CFC	Sus	024	019	DL1	WI3-3
V1	n. v.	0,00%	0,00%	0,00%	0,00%	V1		2,00%	2,67%	0,67%	6,67%
V2	0,00%	0,00%	0,00%	0,00%	0,00%	V2	0,00%	0,00%	0,00%	0,00%	0,00%
V3	0,00%	0,00%	0,50%	0,00%	0,00%	V3	1,50%	1,25%	3,75%	0,50%	1,25%
MW	0,00%	0,00%	0,17%	0,00%	0,00%	MW	2,50%	1,65%	3,19%	0,63%	2,40%
SEM	0,00%	0,00%	0,17%	0,00%	0,00%	SEM	1,80%	0,70%	1,31%	0,28%	1,47%
<b>p</b> ( <b>S</b> )	-	n. v.	0,500	n. v.	n. v.	<b>p</b> ( <b>S</b> )	-	0,371	0,344	0,314	0,390
<b>p</b> (A)	-	-	0,423	n. v.	n. v.	<b>p</b> ( <b>A</b> )	-	-	0,121	0,096	0,621
<b>p</b> ( <b>O</b> )	-	-	-	0,423	0,423	p (O)	-	-	-	0,093	0,699
<b>p</b> ( <b>D</b> )	-	-	-	-	n. v.	<b>p</b> ( <b>D</b> )	-	-	-	-	0,300

Tab. 56: Qualität der CFCs in der CD133⁺CD34⁺ Fraktion in Kokultur mit Zellen muriner Stromazelllinien

Abkürzungen: Sus = Suspension; MW = Mittelwert; n. v. = nicht verfügbar/kontaminiert; p(S) = Signifikanzberechnung im Vergleich zur Suspension; p(A) = Signifikanzberechnung im Vergleich zur AFT024; p(O) = Signifikanz-berechnung im Vergleich zur OP9; p(D) = Signifikanzberechnung im Vergleich zur OP9-DL1 (t-Test, zweiseitig, gepaart)

BFU-	Sus	AFT	OP9	OP9	MS-5	•	CFU-	Sus	AFT	OP9	OP9	MS-5
E	~	024		DL1		_	Μ	~~~	024		DL1	
V1	n. v.	0,00%	1,33%	0,00%	0,00%		V1	n. v.	0,00%	3,00%	0,00%	2,67%
V2	0,67%	2,33%	0,67%	0,33%	1,00%		V2	0,33%	1,67%	1,67%	0,67%	0,67%
V3	0,00%	0,75%	0,25%	0,50%	0,00%	_	V3	0,00%	1,00%	1,00%	0,50%	0,25%
MW	0,33%	1,03%	0,75%	0,28%	0,33%		MW	0,17%	0,89%	1,89%	0,39%	1,19%
SEM	0,33%	0,69%	0,32%	0,15%	0,33%		SEM	0,17%	0,48%	0,59%	0,20%	0,75%
<b>p</b> ( <b>S</b> )	-	0,231	0,500	0,874	0,500		p (S)	-	0,090	0,090	0,126	0,090
<b>p</b> (A)	-	-	0,781	0,355	0,214		<b>p</b> (A)	-	-	0,423	0,225	0,820
<b>p</b> ( <b>O</b> )	-	-	-	0,414	0,483		<b>p</b> ( <b>O</b> )	-	-	-	0,188	0,070
<b>p</b> ( <b>D</b> )	-	-	-	-	0,885		<b>p</b> ( <b>D</b> )	-	-	-	-	0,479
CEU	-	4 17/17	1	0.00	-		OFU	L			0.00	
G G	Sus	AF 1 024	OP9	DL1	MS-5		GM	Sus	AF 1 024	OP9	DL1	MS-5
V1	n. v.	0,00%	5,33%	0,67%	2,33%		V1	n. v.	0,00%	0,67%	0,00%	1,67%
V2	0,67%	5,00%	4,33%	2,67%	5,00%		V2	0,00%	0,33%	1,33%	0,00%	0,00%
V3	0,50%	3,00%	1,75%	1,25%	2,00%		V3	3,00%	0,50%	0,25%	0,25%	0,00%
MW	0,58%	2,67%	3,81%	1,53%	3,11%		MW	1,50%	0,28%	0,75%	0,08%	0,56%
SEM	0,08%	1,45%	1,07%	0,59%	0,95%		SEM	1,50%	0,15%	0,32%	0,08%	0,56%
p (S)	-	0,167	0,291	0,272	0,288		p (S)	-	0,584	0,787	0,500	0,500
<b>p</b> (A)	-	-	0,643	0,341	0,697		<b>p</b> (A)	-	-	0,334	0,192	0,728
<b>p</b> ( <b>O</b> )	-	-	-	0,208	0,610		<b>p</b> ( <b>O</b> )	-	-	-	0,225	0,800
<b>p</b> ( <b>D</b> )	-	-	-	-	0,075		p (D)	-	-	-	-	0,515
OF				0.00			0/	1	4 777		0.00	1
MIX	Sus	AF1 024	OP9	DL1	MS-5		% CFC	Sus	AFT 024	OP9	DL1	MS-5
V1	n. v.	0,00%	0,67%	0,00%	0,33%		V1	n. v.	0,00%	11,00%	0,67%	7,00%
V2	0,00%	1,33%	0,33%	0,00%	0,00%		V2	1,67%	10,67%	8,33%	3,67%	6,67%
V3	0,25%	1,25%	0,50%	0,25%	0,00%		V3	3,75%	6,50%	3,75%	2,75%	2,25%
MW	0,13%	0,86%	0,50%	0,08%	0,11%		MW	1,81%	4,29%	5,77%	1,77%	3,98%
SEM	0,13%	0,43%	0,10%	0,08%	0,11%		SEM	1,08%	2,62%	2,44%	0,86%	1,71%
p (S)	-	0,090	0,090	n. v.	0,500		p (S)	-	0,279	0,247	0,119	0,314
<b>p</b> (A)	-	-	0,558	0,192	0,301		p (A)	-	-	0,678	0,089	0,131
<b>p</b> ( <b>O</b> )	-	-	-	0,082	0,020		p (O)	-	-	-	0,186	0,088
<b>p</b> ( <b>D</b> )	-	-	-	-	0,885		p (D)	-	-	-	-	0,256

Tab. 57: Qualität der CFCs in der CD133^{low}CD34⁺ Fraktion in Kokultur mit Zellen muriner Stromazelllinien

Abkürzungen: Sus = Suspension; MW = Mittelwert; n. v. = nicht verfügbar/kontaminiert; p(S) = Signifikanzberechnung im Vergleich zur Suspension; p(A) = Signifikanzberechnung im Vergleich zur AFT024; p(O) = Signifikanz-berechnung im Vergleich zur OP9; p(D) = Signifikanzberechnung im Vergleich zur OP9-DL1 (t-Test, zweiseitig, gepaart)

Tab. 5	8: Qua	lität de	r CFCs	in der	CD133	⁺ CD34	+ Frakt	ion in I	Kokultu	ır mit N	ASZ		
BFU- E	Sus	AFT 024	MNZ A	MNZ B	MNZ 1.4	Fett 7/5	Fett 7/11	Fett 8/5	Vene 5	Vene 8	Art 8	Art 9	Art 10
V1	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%
V2	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%
V3	0,50%	0,00%	0,00%	0,00%	0,00%	0,00%	n. v.	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%
V4 V5	0,00%	1,00%	0,00%	0,00%	0,00%	0,00%	n. v.	0,00%	0,50%	0,00%	0,00%	0,00%	0,00%
V 5 V 6	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	n. v.	0,00%
	0,0070	0,0070	0,0078	0,0078	0,0078	0,0070	0,0078	0,0070	0,0070	0,0070	0,0070	11. V.	0,0070
MW	0,08%	0,17%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,08%	0,00%	0,00%	0,00%	0,00%
SEM	0,08%	0,17%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,08%	0,00%	0,00%	0,00%	0,00%
<b>p</b> (S)	-	0,695	0,363	0,363	0,363	0,363	n. v.	0,363	1,000	0,363	0,363	0,391	0,363
<b>p</b> (A)	-	-	0,363	0,363	0,363	0,363	n. v.	0,363	0,363	0,363	0,363	0,391	0,363
CEU		АГТ	MNZ	MNZ	MNZ	Fott	Fott	Fott	Vono	Vone			1
M	Sus	024	A	B	1.4	7/5	7/11	8/5	5	8	Art 8	Art 9	Art 10
V1	3.68%	1.27%	0.80%	2.40%	1.60%	1.60%	0.80%	1.20%	4.40%	4.40%	3.60%	1.60%	1.20%
V2	8,70%	7,60%	5,20%	0,40%	6,00%	6,40%	4,00%	5,20%	5,20%	5,20%	8,80%	4,40%	6,40%
V3	0,50%	0,00%	0,50%	3,00%	0,50%	2,00%	n. v.	0,00%	1,00%	0,00%	1,50%	1,00%	0,50%
V4	2,50%	1,00%	2,50%	4,50%	5,00%	5,00%	n. v.	2,50%	4,50%	5,00%	2,50%	6,00%	5,00%
V5	1,50%	1,00%	1,50%	2,50%	3,00%	2,00%	3,50%	3,00%	2,50%	2,00%	2,50%	n. v.	5,50%
V6	1,00%	0,00%	1,00%	1,00%	0,50%	1,00%	3,50%	2,00%	2,00%	1,00%	1,00%	n. v.	1,00%
MW	2,98%	1,81%	1,92%	2,30%	2,77%	3,00%	2,95%	2,32%	3,27%	2,93%	3,32%	3,25%	3,27%
SEM	1,23%	1,18%	0,72%	0,60%	0,95%	0,89%	0,73%	0,72%	0,68%	0,91%	1,16%	1,18%	1,08%
p (S)	-	0.011*	0.177	0.692	0.805	0.981	0.695	0.445	0.730	0.956	0.172	0.747	0.796
<b>p</b> (A)	-	-	0,860	0,771	0,268	0,154	0,782	0,499	0,153	0,282	0,001	0,673	0,180
CFU-	Sus	AFT	MNZ	MNZ	MNZ	Fett	Fett	Fett	Vene	Vene	Art 8	Art 9	Art 10
G		024	Α	В	1.4	115	7/11	8/5	5	8			
V1 V2	3,16%	1,69%	4,00%	3,60%	5,20%	3,60%	5,60%	4,40%	8,00%	2,80%	2,40%	5,20%	2,80%
V2 V2	0,62%	1,20%	2,80%	0,40%	2,80%	2,40%	3,20%	1,20%	2,00%	2,40%	2,80%	4,00%	4,00%
V3 V4	4,50%	0.50%	3,00%	5,00%	3,00%	2,50%	n. v.	3,50%	1,00%	3 50%	3,00%	2,00%	2,00%
V5	4,50%	2,00%	5,50%	6,00%	5,00%	7,50%	4,00%	0,50%	6,00%	4,00%	5,50%	n. v.	2,00%
V6	3,50%	2,00%	9,50%	4,50%	5,50%	3,00%	3,50%	0,50%	3,00%	5,50%	5,00%	n. v.	4,50%
MW	3 /6%	1 /0%	1 179/	2 9 2 9/	4.00%	3 5 8%	1 0 9 %	2 10%	3 50%	1 1 2 %	2.05%	4 20%	2 / 7%
SEM	0.62%	0.25%	1.12%	0.83%	4,00%	0.80%	4,08%	0.67%	1.18%	0.65%	0.55%	0.87%	0.49%
(0)	-,/-		.,,.						.,				
p(s)	-	0,028^	0,449	0,443	0,516	0,890	0,254	0,162	0,979	0,309	0,430	0,447	0,997
<b>p</b> (A)	-	-	0,022	0,031	0,001	0,024	0,022	0,420	0,094	0,010	0,004	0,041	0,015
CFU- GM	Sus	AFT 024	MNZ A	MNZ B	MNZ 1.4	Fett 7/5	Fett 7/11	Fett 8/5	Vene 5	Vene 8	Art 8	Art 9	Art 10
V1	0,53%	0,42%	0,00%	0,00%	1,20%	1,60%	0,40%	0,80%	3,60%	1,20%	2,00%	3,20%	1,20%
V2	4,97%	3,60%	2,80%	0,00%	2,00%	2,00%	3,60%	0,80%	4,00%	0,80%	4,00%	5,20%	3,60%
V3	4,50%	0,00%	3,00%	3,00%	2,00%	2,00%	n. v.	1,00%	6,00%	3,50%	2,50%	4,00%	4,50%
V4 V5	4,50%	2,00%	3,00%	4,50%	4,50%	7,00%	n. v.	2,50%	4,00%	6,00%	5,00%	9,50%	7,50%
V5 V6	3,00%	1.00%	2,30%	0.00%	3,50%	2,30%	1 50%	2,30%	4 00%	2,50%	5.00%	n.v.	2,00%
	1,0070	1,0070	1,0070	0,0070	1,0070	2,0070	1,0070	1,0070	1,0070	2,0070	0,0070		2,0070
MW	3,17%	1,17%	2,05%	1,83%	2,45%	2,85%	2,25%	1,43%	4,18%	2,75%	3,67%	5,48%	3,63%
SEM	0,74%	0,58%	0,51%	0,84%	0,52%	0,84%	0,78%	0,34%	0,37%	0,76%	0,51%	1,40%	0,91%
p (S)	-	0,032*	0,012*	0,155	0,321	0,729	0,575	0,065	0,185	0,643	0,550	0,235	0,461
<b>p</b> (A)	-	-	0,230	0,586	0,141	0,115	0,324	0,726	0,010	0,176	0,006	0,053	0,042
CEU		AFT	MNZ	MN/7	MNZ	Fatt	Fatt	Fatt	Vono	Vana			1
MIX	Sus	024	A	B	1.4	7/5	7/11	8/5	5	8	Art 8	Art 9	Art 10
V1	0.00%	0.00%	0.00%	0.00%	0.00%	0.40%	0.00%	0.00%	0.80%	0.00%	0.40%	0.00%	0.40%
V2	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,40%	0,40%
V3	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	n. v.	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%
V4	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	n. v.	0,00%	0,50%	0,00%	0,00%	0,00%	0,00%
V5	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	n. v.	0,50%
V6	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	n. v.	0,00%
MW	0,00%	0,00%	0,00%	0,00%	0,00%	0,07%	0,00%	0,00%	0,22%	0,00%	0,07%	0,10%	0,22%
SEM	0,00%	0,00%	0,00%	0,00%	0,00%	0,07%	0,00%	0,00%	0,14%	0,00%	0,07%	0,10%	0,10%
p (S)	-	n. v	n. v	n. v	n. v	0.363	n. v	n. v	0.189	n. v	0.363	0.391	0.078
<b>p</b> (A)	-	-	n. v.	n. v.	n. v.	0,363	n. v.	n. v.	0,189	n. v.	0,363	0,391	0,078

Tab. 5	9: Qua	lität de	r CFCs	in der	<b>CD133</b>	lowCD3	4 ⁺ Frak	ction in	Kokul	tur mit	MSZ		
BFU- E	Sus	AFT 024	MNZ A	MNZ B	MNZ 1.4	Fett 7/5	Fett 7/11	Fett 8/5	Vene 5	Vene 8	Art 8	Art 9	Art 10
V1	0,00%	0,72%	0,00%	0,00%	0,00%	0,40%	0,00%	0,00%	0,00%	0,40%	0,00%	1,60%	1,60%
V2	0,00%	0,40%	0,00%	0,00%	0,80%	0,00%	1,60%	0,00%	0,00%	0,00%	0,00%	0,40%	0,00%
V3 V4	0,00%	0,00%	2,00%	0,50%	0,50%	0,50%	n. v.	0,00%	0,50%	0,50%	0,00%	0,00%	0,50%
V4 V5	0,00%	0,00%	0,00%	0,50%	0,00%	2,00%	n. v.	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%
V6	0.00%	0.50%	0.00%	0.50%	0.00%	0,50%	n. v.	n. v.	1,50%	0.50%	0.00%	n. v.	0.50%
NAXX7	0,000/	0,0070	0,0070	0,000/	0,000/	0.050/	4.0004	0.000/	0.500/	0,000	0,000/	0.500/	0,000
SFM	0,62%	0,44%	0,42%	0,33%	0,30%	0,65%	1,03%	0,30%	0,50%	0,48%	0,00%	0,50%	0,43%
SEM	0,02 /0	0,10%	0,3376	0,1176	0,1470	0,2076	0,3276	0,30 %	0,2076	0,2270	0,0078	0,3076	0,2376
$\mathbf{p}(\mathbf{S})$	-	0,743	0,781	0,652	0,616	0,965	0,872	0,374	0,845	0,765	0,363	0,278	0,814
<b>p</b> (A)	-	-	0,962	0,647	0,542	0,607	0,622	0,579	0,814	0,784	0,043	0,391	0,988
CFU- M	Sus	AFT 024	MNZ A	MNZ B	MNZ	Fett 7/5	Fett 7/11	Fett 8/5	Vene 5	Vene 8	Art 8	Art 9	Art 10
V1	0.56%	0.00%	0.80%	0.00%	0.00%	2.80%	0.40%	0.00%	0.00%	0.00%	0.40%	0.40%	0.80%
V2	0,00%	0,40%	0,40%	0,80%	0,80%	0,80%	0,40%	0,00%	0,00%	0,00%	0,00%	0,00%	0,40%
V3	0,00%	0,00%	0,00%	0,00%	0,00%	0,50%	n. v.	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%
V4	0,00%	1,00%	0,00%	0,00%	0,00%	0,00%	n. v.	0,00%	0,00%	0,00%	0,00%	0,00%	1,00%
V5 V6	1,85%	0,50%	0,00%	0,50%	1,00%	1,50%	1,00%	0,00%	0,50%	0,50%	1,00%	n. v.	1,00%
10	0,00%	0,00%	0,50%	0,00%	2,30%	1,50%	11. V.	11. V.	1,00%	1,00%	0,30%	11. V.	0,00%
MW	0,40%	0,32%	0,28%	0,22%	0,72%	1,18%	0,60%	0,00%	0,25%	0,25%	0,32%	0,10%	0,53%
SEM	0,30%	0,16%	0,14%	0,14%	0,40%	0,40%	0,20%	0,00%	0,17%	0,17%	0,16%	0,10%	0,19%
<b>p</b> (S)	-	0,808	0,754	0,556	0,551	0,103	0,632	0,251	0,653	0,653	0,656	0,391	0,617
<b>p</b> (A)	-	-	0,905	0,624	0,436	0,154	0,188	0,110	0,813	0,813	1,000	0,464	0,189
CFU- G	Sus	AFT 024	MNZ A	MNZ B	MNZ	Fett 7/5	Fett 7/11	Fett 8/5	Vene 5	Vene 8	Art 8	Art 9	Art 10
V1	1.67%	3.62%	2.00%	4.80%	2.40%	9.60%	10.4%	1.20%	1.60%	5.20%	2.80%	6.00%	2.00%
V2	10,4%	3,60%	0,00%	4,40%	2,80%	4,40%	4,00%	0,80%	0,80%	1,60%	0,40%	1,60%	0,40%
V3	1,85%	2,00%	1,00%	0,50%	1,50%	4,50%	n. v.	0,50%	1,00%	0,00%	0,00%	1,00%	0,00%
V4	0,50%	4,00%	0,50%	0,00%	0,50%	4,00%	n. v.	0,50%	0,50%	0,00%	0,00%	1,00%	4,00%
V5 V6	9,26%	8,00%	4,50%	6,50%	12,5%	5,00%	9,00%	3,00%	4,00%	5,00%	2,00%	n. v.	6,50%
10	12,170	1,5070	5,5078	3,0070	0,0070	3,3070	11. V.	11. V.	7,0070	0,0070	4,0070	11. V.	0,0070
MW	5,99%	3,79%	2,25%	4,20%	4,37%	6,17%	7,80%	1,20%	2,57%	2,97%	1,53%	2,40%	3,23%
SEM	2,1270	0,94%	0,92%	1,41%	1,03%	1,00%	1,94%	0,47 %	1,1170	1,1270	0,00%	1,21%	1,10%
<b>p</b> ( <b>S</b> )	-	0,370	0,088	0,214	0,383	0,939	0,894	0,134	0,081	0,153	0,065	0,689	0,213
<b>p</b> (A)	-	-	0,255	0,808	0,694	0,209	0,312	0,007*	0,455	0,559	0,117	0,495	0,660
CFU- GM	Sus	AFT 024	MNZ A	MNZ B	MNZ 1.4	Fett 7/5	Fett 7/11	Fett 8/5	Vene 5	Vene 8	Art 8	Art 9	Art 10
V1	0,56%	0,00%	0,00%	0,00%	0,00%	4,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,40%	0,00%
V2	0,00%	1,20%	0,00%	0,80%	0,40%	0,40%	1,60%	0,00%	0,00%	0,00%	0,40%	0,00%	0,80%
V3 V4	0,00%	1,00%	0,50%	0,00%	1,50%	3,00%	n. v.	0,00%	0,00%	0,00%	0,50%	0,50%	0,50%
V4 V5	0,00%	2.00%	1.00%	0,00%	0,00%	2.00%	0. v.	0,00%	0,00%	0,00%	0,00%	0,00%	2.00%
V6	0,00%	0,50%	1,50%	0,50%	1,00%	0,00%	n. v.	n. v.	0,00%	1,00%	0,00%	n. v.	0,50%
MW	0.409/	0.799/	0.50%	0 479/	0.65%	1 720/	1 209/	0.00%	0.000/	0.179/	0.159/	0.220/	0.629/
SEM	0,40%	0,70%	0,30%	0,25%	0,05%	0,64%	0,61%	0,00%	0,08%	0,17%	0,10%	0,13%	0,30%
n (S)		0.212	0 702	0.766	0.520	0.092	0 505	0.251	0.210	0.567	0.510	0.590	0.280
p (3) p (A)	-	- 0,212	0,785	0,766	0,530	0,083	0,595	0,251	0,218 0.042*	0,567	0,010	0,589	0,289
<b>F</b> ()			•, •=•	•,••=	-,	-,	0,	0,000	-,-	-,	-,	-,	•,•••
CFU- MIX	Sus	AFT 024	MNZ A	MNZ B	MNZ 1.4	Fett 7/5	Fett 7/11	Fett 8/5	Vene 5	Vene 8	Art 8	Art 9	Art 10
V1	0,56%	0,48%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%
V2 V2	0,00%	0,40%	0,00%	0,40%	0,40%	0,40%	0,40%	0,00%	0,00%	0,00%	0,00%	0,40%	0,00%
V3 V4	0,00%	0.00%	0.00%	0,00%	0,00%	0,00%	n v	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%
V5	1,85%	1,00%	0,00%	0,00%	0,00%	0,50%	1,00%	0,00%	0,00%	0,00%	0,50%	n. v.	0,00%
V6	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	n. v.	n. v.	0,00%	0,00%	0,50%	n. v.	0,00%
MW	0.40%	0.48%	0.17%	0.07%	0.07%	0.23%	0.47%	0.00%	0.00%	0.00%	0.17%	0.10%	0.00%
SEM	0,30%	0,18%	0,17%	0,07%	0,07%	0,11%	0,29%	0,00%	0,00%	0,00%	0,11%	0,10%	0,00%
n (S)	_	0.763	0.567	0 354	0 354	0 577	0.468	0 251	0.244	0.244	0 411	0.856	0.244
<b>p</b> (A)	-	-	0,113	0,094	0,094	0,299	0,423	0,039*	0,047*	0,047*	0,192	0,218	0,047*

Tab. 6	60: Qual	lität der	CFCs i	n der C	D133 ⁺ C	<b>D34</b> ⁺ Fr	aktion i	n Koku	ltur mit	EZ		
BFU-	Suc	AFT		LIII D	шс	шир	UUF	ECFC	ECFC	ECFC	ECFC	ECFC
Ε	Sus	024	IIU A	пов	nuc	IIU D	пог	145	1E	DD1	4D	4E
V1	0,00%	0,33%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%
V2	0,00%	0,17%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%
<u>V3</u>	0,00%	0,00%	0,17%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%
V4	0,00%	0,00%	0,00%	0,67%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%
MW	0,00%	0,13%	0,04%	0,17%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%
SEM	0,00%	0,08%	0,04%	0,17%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%
p (S)	-	0,215	0,391	0,391	n. v.	n. v.	n. v.	n. v.	n. v.	n. v.	n. v.	n. v.
<b>p</b> (A)	-	-	0,495	0,861	0,215	0,215	0,215	0,215	0,215	0,215	0,215	0,215
CFU-	Sus	AFT	HU A	HU B	HU C	HU D	HU F	ECFC	ECFC	ECFC	ECFC	ECFC
M	0.000/	024	0.000/			0.070/		145	IE	DDI	4D	4E
V1	2,00%	1,00%	6,00%	5,33%	5,67%	3,67%	7,00%	1,00%	2,67%	2,00%	7,33%	3,00%
V2 V2	1,17%	1,17%	1,83%	3,83%	2,67%	3,50%	3,00%	3,17%	1,83%	4,00%	2,83%	1,67%
V3 V4	2,07%	0.67%	2,33%	0,24%	3,31%	2 33%	2,00%	3,07%	3,00%	3,17%	3,30%	3,00%
**	4,0070	0,0770	2,5570	4,07 /0	3,3370	2,3370	2,0770	3,3370	3,00 %	5,07 /0	3,3370	3,0070
MW	2,46%	1,04%	3,13%	5,02%	3,74%	3,76%	3,67%	2,79%	3,47%	3,21%	4,25%	2,67%
SEM	0,60%	0,14%	0,97%	0,51%	0,66%	0,67%	1,13%	0,61%	1,00%	0,44%	1,04%	0,33%
p (S)	-	0,136	0,620	0,030	0,253	0,291	0,462	0,670	0,379	0,371	0,255	0,659
<b>p</b> (A)	-	-	0,127	0,004	0,030	0,015	0,109	0,061	0,081	0,019	0,057	0,027
				1	1							
CFU-	Sus	AFT 024	HU A	HU B	HU C	HU D	HU F	ECFC	ECFC 1E	ECFC DD1	ECFC 4D	ECFC
G	0.070/	024	2.000/	0.000/	7.000/	2.000/	0.070/	145	1E	DD1	4D	4E
VI V2	3,67%	5,67%	3,00%	6,00%	7,33%	3,00%	3,07%	2,00%	3,33%	5,00%	5,33%	12,3%
V2 V3	1.83%	2 50%	2,17%	2,30%	6 20%	2 22%	1,03%	2,00%	2 98%	2,00%	2,17 //	2 50%
V4	2.00%	2,00%	3.33%	3.67%	3.33%	3.67%	3.67%	1.67%	3.00%	4.67%	3.67%	5.33%
2 4 1 1 2	0.400/	0.000/	0.000/	0.000/	4.700/	0.040/	0.500/	4.000/	0.000/	0.700/	0.500/	5,000/
MW SEM	2,42%	2,88%	2,63%	3,38%	4,76%	3,01%	2,58%	1,92%	3,08%	3,79%	3,50%	5,33%
SEN	0,4270	0,3078	0,3270	1,0070	1,2170	0,3070	0,0470	0,0078	0,0378	0,0078	0,0070	2,4370
<b>p</b> ( <b>S</b> )	-	0,500	0,651	0,230	0,104	0,315	0,769	0,302	0,145	0,101	0,071	0,262
<b>p</b> (A)	-	-	0,798	0,478	0,058	0,903	0,751	0,382	0,832	0,273	0,235	0,226
CEU		АГТ				1		FCFC	FCFC	FCFC	FCFC	FCFC
GM	Sus	024	HU A	HU B	HU C	HU D	HU F	145	1E	DD1	4D	4E
V1	0.00%	0.00%	0.67%	2.00%	0.00%	0.00%	0.67%	1.00%	2.00%	2.00%	0.33%	2.33%
V2	1,33%	0,17%	1,33%	1,00%	1,83%	1,17%	1,17%	2,33%	2,33%	1,33%	1,50%	1,00%
V3	1,00%	0,33%	2,33%	1,56%	1,65%	1,48%	1,33%	1,83%	1,70%	1,67%	1,17%	1,67%
V4	2,00%	0,33%	2,33%	3,33%	2,67%	5,00%	2,67%	4,00%	4,67%	1,33%	3,00%	0,33%
MW	1.08%	0.21%	1 67%	1.97%	1 54%	1 91%	1 46%	2 29%	2 68%	1.58%	1.50%	1.33%
SEM	0.42%	0.08%	0.41%	0.50%	0.56%	1.08%	0.43%	0.63%	0.68%	0.16%	0.56%	0.43%
~ (1)	•, ·= / •	0.004	0,400	0.475	0,000	0.040	0.450	0,000	0,000	0.444	0.407	0.700
p(S)	-	0,091	0,133	0,175	0,062	0,343	0,153	0,020	0,039	0,444	0,127	0,786
<b>p</b> (A)	-	-	0,021	0,034	0,073	0,195	0,043	0,037	0,032	0,000	0,002	0,104
CFU-	<b>C</b>	AFT	TTTTA	IIIIB	III.C	IIIID	IIIIE	ECFC	ECFC	ECFC	ECFC	ECFC
MIX	Sus	024	HU A	HU B	HUC	HUD	HUF	145	1E	DD1	4D	<b>4</b> E
V1	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%
V2	0,00%	0,00%	0,17%	0,00%	0,17%	0,17%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%
<u>V3</u>	0,00%	0,00%	0,17%	0,22%	0,21%	0,00%	0,00%	0,17%	0,00%	0,00%	0,17%	0,00%
V4	0,00%	0,00%	0,67%	0,67%	0,00%	0,00%	0,33%	0,00%	0,00%	0,33%	0,00%	0,00%
MW	0,00%	0,00%	0,25%	0,22%	0,09%	0,04%	0,08%	0,04%	0,00%	0,08%	0,04%	0,00%
SEM	0,00%	0,00%	0,14%	0,16%	0,05%	0,04%	0,08%	0,04%	0,00%	0,08%	0,04%	0,00%
p (S)	-	n. v.	0,182	0,252	0,185	0,391	0,391	0,391	n. v.	0,391	0,391	n. v.
<b>p</b> (A)	-	-	0,182	0,252	0,185	0,391	0,391	0,391	n. v.	0,391	0,391	n. v.

Alle Werte sind in % angegeben. Abkürzungen: Sus = Suspension; HU = HUVEC; MW = Mittelwert; n. v. = nicht verfügbar/kontaminiert; p(S) = Signifikanzberechnung im Vergleich zur Suspension; p(A) = Signifikanzberechnung im Vergleich zur AFT024 (t-Test, zweiseitig, gepaart); Signifikanzen<math>p<0,05 werden fett gedruckt dargestellt.

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
V3      0,00%      0,00%      0,68%      0,00%      1,16%      1,56%      0,42%      0,00%      0,67%      0,00%      0        MW      0,28%      0,44%      0,06%      0,58%      0,06%      0,39%      0,58%      0,20%      0,00%      0,28%      0,00%      0,00%      0        SEM      0,28%      0,22%      0,06%      0,39%      0,58%      0,20%      0,00%      0,28%      0,00%      0      0        p (S)      -      0,580      0,547      0,599      0,423      0,867      0,696      0,822      0,423      1,000      0,423      0        p (A)      -      -      0,192      0,729      0,192      0,934      0,871      0,541      0,184      0,729      0,184      0        CFU- M      Sus      AFT 024      HU A      HU B      HU C      HU D      HU F      ECFC 145      ECFC 145      ECFC DD1      ACFC        W1      0.43%      0.00%      0.00%      0.00%      0.00%      0.00%      0.00%      0.00%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
SEM      0,28%      0,22%      0,06%      0,22%      0,06%      0,39%      0,50%      0,12%      0,00%      0,20%      0,00%      0        p (S)      -      0,580      0,547      0,599      0,423      0,867      0,696      0,822      0,423      1,000      0,423      0        p (A)      -      -      0,192      0,729      0,192      0,934      0,871      0,541      0,184      0,729      0,184      0        CFU- M      Sus      AFT 024      HU A      HU B      HU C      HU D      HU F      ECFC 145      ECFC
p (S)      -      0,580      0,547      0,599      0,423      0,867      0,696      0,822      0,423      1,000      0,423      0        p (A)      -      -      0,192      0,729      0,192      0,934      0,871      0,541      0,184      0,729      0,184      0        CFU- M      Sus      AFT 024      HU A      HU B      HU C      HU D      HU F      ECFC 145      ECFC
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
CFU- M  Sus  AFT 024  HU A  HU B  HU C  HU D  HU F  ECFC  ECFC  ECFC  ECFC  ECFC  I    M  0.47%  0.00%  0.00%  0.00%  0.00%  0.00%  0.00%  0.00%  0.00%  0.00%  0.00%  0.00%  0.00%  0.00%  0.00%  0.00%  0.00%  0.00%  0.00%  0.00%  0.00%  0.00%  0.00%  0.00%  0.00%  0.00%  0.00%  0.00%  0.00%  0.00%  0.00%  0.00%  0.00%  0.00%  0.00%  0.00%  0.00%  0.00%  0.00%  0.00%  0.00%  0.00%  0.00%  0.00%  0.00%  0.00%  0.00%  0.00%  0.00%  0.00%  0.00%  0.00%  0.00%  0.00%  0.00%  0.00%  0.00%  0.00%  0.00%  0.00%  0.00%  0.00%  0.00%  0.00%  0.00%  0.00%  0.00%  0.00%  0.00%  0.00%  0.00%  0.00%  0.00%  0.00%  0.00%  0.00%  0.00%  0.00%  0.00%  0.00%  0.00%  0.00%  0.00%  0.00%  0.00%  0.00%  0.00%  0.00%  0.00%  0.00%  0.00%  0.00% <t< th=""></t<>
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
▼1   0,17%   0,00%   0,00%   0,00%   0,00%   0,00%   0,00%   0,00%   0,00%   0,17%   0
V2 0,17% 0,33% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,55% 0,00% 0,00% 0
V3 0,33% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0
MW 0.22% 0.11% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.18% 0.00% 0.06% (
SEM      0,06%      0,11%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0
$\mathbf{p}(3)$ - 0,229 0,037 0,037 0,037 0,037 0,037 0,037 0,037 0,037 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223 0,223
CFU- G  Sus  AFT 024  HUA  HUB  HUC  HUD  HUF  ECFC  ECFC  ECFC  ECFC  ECFC  HUD
V1 2,50% 1,33% 0,17% 1,17% 0,17% 0,67% 0,17% 0,17% 0,00% 0,17% 0,17% 0
V2 4,00% 1,67% 0,00% 0,00% 0,25% 0,00% 0,33% 0,00% 0,70% 0,00% 0,00% 0
V3 1,00% 0,00% 0,00% 0,33% 0,58% 0,52% 0,00% 0,00% 0,00% 0,00% 0
MW 2,50% 1,00% 0,06% 0,39% 0,25% 0,42% 0,34% 0,06% 0,23% 0,06% 0,06% 0
SEM      0,87%      0,51%      0,06%      0,39%      0,05%      0,21%      0,10%      0,06%      0,23%      0,06%      0,06%      0,06%      0,06%      0,06%      0,06%      0,06%      0,06%      0,06%      0,06%      0,06%      0,06%      0,06%      0,06%      0,06%      0,06%      0,06%      0,06%      0,06%      0,06%      0,06%      0,06%      0,06%      0,06%      0,06%      0,06%      0,06%      0,06%      0,06%      0,06%      0,06%      0,06%      0,06%      0,06%      0,06%      0,06%      0,06%      0,06%      0,06%      0,06%      0,06%      0,06%      0,06%      0,06%      0,06%      0,06%      0,06%      0,06%      0,06%      0,06%      0,06%      0,06%      0,06%      0,06%      0,06%      0,06%      0,06%      0,06%      0,06%      0,06%      0,06%      0,06%      0,06%      0,06%      0,06%      0,06%      0,06%      0,06%      0,06%      0,06%      0,06%      0,06%      0,06%      0,06%      0,06%      0,06%      0,06%      0,06%      0
$\mathbf{p}(\mathbf{S})$ - 0.070 0.106 0.156 0.128 0.183 0.144 0.106 0.078 0.106 0.106 (
$\mathbf{p}(\mathbf{A})$ - 0.196 0.368 0.303 0.464 0.381 0.196 0.194 0.196 0.196 0.196
CFU- CM Sus AFT HUA HUB HUC HUD HUF ECFC ECFC ECFC FC I
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
V1 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%
V3 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
MW 0,00% 0,11% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0
SENI 0,00% 0,11% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%
p (S) - 0,423 n.v. n.v. n.v. n.v. n.v. n.v. 0,423 n.v. n.v.
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
CFU- MIX  Sus  AFT 024  HU A  HU B  HU C  HU D  HU F  ECFC  ECFC  ECFC  ECFC  HU D
V1 0,33% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,17% 0,00% 0,00% 0
V2 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%
V2      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,
V2      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,
V2      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,
V2      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,00%      0,

Alle Werte sind in % angegeben. Abkürzungen: Sus = Suspension; HU = HUVEC; MW = Mittelwert; n. v. = nicht verfügbar/kontaminiert; p(S) = Signifikanzberechnung im Vergleich zur Suspension; p(A) = Signifikanzberechnung im Vergleich zur AFT024 (t-Test, zweiseitig, gepaart); Signifikanzen<math>p<0,05 werden fett gedruckt dargestellt.

AGM	Subina	Lenen							-		
BFU- E	Sus	AFT024	PL 1.4	PL 2.3	PL 4	Pla 2	Pla 3	Pla 4	AGM 8	AGM 24	AGM 25
V1	0,00%	0,00%	0,00%	0,00%	0,00%	0,56%	0,00%	0,50%	0,00%	0,00%	0,50%
V2	0,50%	0,25%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%
V3	0,00%	0,25%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%
V4	0,00%	0,00%	0,00%	0,00%	0,33%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%
V5	0,00%	0,00%	0,00%	0,33%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%
MW	0.10%	0.10%	0.00%	0.07%	0.07%	0 11%	0.00%	0.10%	0.00%	0.00%	0.10%
SEM	0,10%	0,10%	0,00%	0,07%	0,07%	0,11%	0,00%	0,10%	0,00%	0,00%	0,10%
SEM	0,1076	0,0078	0,00 %	0,0778	0,0778	0,1176	0,0078	0,1078	0,0078	0,0078	0,1076
p (S)	-	1,000	0,374	0,815	0,815	0,945	0,374	1,000	0,374	0,374	1,000
p (A)	-	-	0,178	0,772	0,772	0,938	0,178	1,000	0,178	0,178	1,000
CFU- M	Sus	AFT024	PL 1.4	PL 2.3	PL 4	Pla 2	Pla 3	Pla 4	AGM 8	AGM 24	AGM 25
V1	6,00%	5,00%	8,00%	8,50%	9,00%	7,87%	7,50%	8,00%	8,00%	8,00%	5,50%
V2	5,00%	3,50%	6,50%	8,00%	7,50%	4,50%	6,00%	6,00%	5,00%	5,50%	5,50%
V3	7,50%	5,50%	6,50%	7,50%	7,00%	1,00%	8,50%	4,50%	8,00%	6,00%	8,00%
V4	1,00%	2,00%	3,67%	4,00%	4,67%	4,66%	2,67%	1,33%	2,00%	6,33%	2,33%
V5	1,00%	0,67%	1,33%	3,00%	3,33%	2,07%	1,00%	2,00%	1,33%	2,00%	3,67%
MXX	4 100/	2 220/	F 200/	6 200/	6 200/	4.000/	E 100/	4 270/	1 070/	E E 70/	E 000/
SEM	4,10%	3,33%	5,20%	0,20%	0,30%	4,02%	0,13%	4,3/%	4,07%	0,00%	0.06%
SEN	1,33%	0,91%	1,19%	1,1∠%	1,02%	1,19%	1,43%	1,24%	1,42%	0,99%	0,90%
p (S)	-	0,215	0,012	0,005	0,003	0,965	0,024	0,772	0,092	0,261	0,164
p (A)	-	-	0,019	0,005	0,003	0,637	0,029	0,271	0,051	0,028	0,036
	-										
CFU-	Sus	AFT024	PL 1.4	PL 2.3	PL 4	Pla 2	Pla 3	Pla 4	AGM 8	AGM	AGM
G	~~~									24	25
V1	0,50%	3,75%	1,50%	2,50%	2,50%	4,49%	0,50%	3,50%	0,50%	3,50%	6,50%
V2	4,00%	0,25%	0,00%	2,00%	3,00%	1,00%	2,00%	4,50%	2,50%	2,00%	2,50%
V3	4,50%	1,00%	4,50%	3,00%	5,50%	6,50%	1,00%	4,50%	5,50%	3,50%	4,50%
V4	7,67%	1,67%	4,67%	4,00%	8,33%	8,81%	2,33%	16,6%	10,0%	3,33%	10,0%
V5	8,67%	2,33%	8,67%	4,67%	6,67%	7,44%	7,00%	3,33%	6,00%	4,00%	4,33%
MW	5.07%	1.80%	3.87%	3.23%	5.20%	5.65%	2.57%	6.50%	4.90%	3.27%	5.57%
SEM	1.45%	0.60%	1.49%	0.49%	1.10%	1.36%	1.16%	2.55%	1.62%	0.34%	1.28%
		0.404	0.004	0.400	0.000	0.000	0.050	0.574	0.000	0.004	0 700
p (S)	-	0,131	0,284	0,162	0,862	0,660	0,050	0,571	0,860	0,264	0,789
p (A)	-	-	0,241	0,103	0,061	0,043	0,582	0,157	0,175	0,033	0,032
CFU-	ľ									AGM	AGM
GM	Sus	AFT024	PL 1.4	PL 2.3	PL 4	Pla 2	Pla 3	Pla 4	AGM 8	24	25
V1	4 00%	1.00%	5 00%	3.00%	3 50%	3 03%	4 50%	2 00%	4 50%	6.00%	3 50%
V2	3 50%	0.50%	2 50%	2,00%	4.00%	4 00%	3,00%	2,00%	2,00%	5,00%	5,00%
V3	4 00%	0,50%	2,00%	5.00%	2 50%	2 50%	3 50%	6.00%	4 50%	6 50%	2 50%
V4	1,00%	0.33%	3 33%	3.00%	2,67%	5 18%	3.00%	3.00%	3.67%	3 33%	3.67%
V5	0.00%	0.33%	0.33%	1 00%	2,00%	0.00%	0.00%	1 00%	1 00%	0.00%	1 67%
	0,0070	0,0070	0,0070	1,0070	2,0070	0,0070	0,0070	1,0070	1,0070	0,0070	1,0170
MW	2,50%	0,53%	2,73%	2,80%	2,93%	3,12%	2,80%	2,90%	3,13%	4,17%	3,27%
SEM	0,84%	0,12%	0,75%	0,66%	0,36%	0,89%	0,75%	0,84%	0,70%	1,17%	0,56%
p (S)	-	0.060	0.752	0.675	0.545	0.548	0.553	0.648	0.395	0.021	0.373
<b>p</b> (A)	-	-	0,029	0,025	0,001	0,040	0,028	0,051	0,016	0,030	0,008
CFU-	Sue	AFT024	PL 14	PL 23	PI 4	Pla 2	Pla 3	Pla 4	AGM 8	AGM	AGM
MIX	Bus	AF 1024	11/1.4	1 L 2.3	11.4	1 la 2	1 la 3	1 la 4	AGM 0	24	25
V1	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,50%	0,00%	0,00%	0,00%
V2	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%
V3	0,50%	0,00%	0,00%	0,00%	0,00%	3,50%	0,00%	0,00%	0,00%	0,00%	0,00%
V4	0,00%	0,00%	0,00%	0,00%	0,00%	1,04%	0,00%	0,00%	0,67%	0,00%	0,00%
V5	0,33%	0,17%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%
MW	0 179/	0.029/	0.00%	0.009/	0.00%	0.019/	0.009/	0.109/	0 1 2 9/	0.00%	0.009/
SEM	0,17%	0,03%	0,00%	0,00%	0,00%	0,91%	0,00%	0,10%	0,13%	0,00%	0,00%
SEW	0,1170	0,03%	0,00%	0,00%	0,00%	0,00%	0,00%	0,10%	0,1370	0,00%	0,00%
p (S)		0,242	0,189	0,189	0,189	0,292	0,189	0,717	0,876	0,189	0,189
p (A)	-	-	0,374	0,374	0,374	0,274	0,374	0,587	0,529	0,374	0,374

Tab. 62: Qualität der CFCs in der CD133⁺CD34⁺ Fraktion in Kokultur mit plazentalen und AGM Stromazellen

Abkürzungen: Sus = Suspension; PL = PLVEC; Pla = MSZ aus der Plazenta; MW = Mittelwert; p(S) = Signifikanzberechnung im Vergleich zur Suspension; <math>p(A) = Signifikanzberechnung im Vergleich zur AFT024 (t-Test, zweiseitig, gepaart); Signifikanzen <math>p<0,05 werden fett gedruckt dargestellt.

AGM	Stroma	zenen									
BFU- E	Sus	AFT024	PL 1.4	PL 2.3	PL 4	Pla 2	Pla 3	Pla 4	AGM 8	AGM 24	AGM 25
V1	0,00%	1,75%	4,30%	2,11%	0,00%	0,00%	2,00%	0,00%	0,00%	15,3%	0,00%
V2	0,00%	0,75%	1,00%	0,00%	1,50%	1,54%	2,50%	0,50%	2,00%	0,00%	5,00%
V3	0,00%	0,00%	1,00%	0,00%	0,00%	2,86%	0,00%	1,00%	0,00%	3,39%	0,00%
V4	0,00%	1,33%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,67%	0,00%	0,00%
V5	0,00%	1,00%	0,00%	0,00%	0,00%	0,00%	0,67%	2,15%	0,00%	0,33%	0,00%
3 4337	0.000/	0.070/	4.000/	0.400/	0.000/	0.000/	4.000/	0.700/	0.50%	0.000/	4.000/
MW	0,00%	0,97%	1,26%	0,42%	0,30%	0,88%	1,03%	0,73%	0,53%	3,82%	1,00%
SEM	0,00%	0,29%	0,79%	0,42%	0,30%	0,58%	0,52%	0,40%	0,39%	2,96%	1,00%
p (S)	-	0,030	0,187	0,374	0,374	0,202	0,117	0,142	0,242	0,266	0,374
p (A)	-	-	0.698	0.158	0.219	0.923	0.900	0.709	0.440	0.369	0.977
			,		,	,	,		,		,
CFU- M	Sus	AFT024	PL 1.4	PL 2.3	PL 4	Pla 2	Pla 3	Pla 4	AGM 8	AGM 24	AGM 25
V1	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	1,04%	0,00%	9,68%
V2	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0.00%	0,00%
V3	0,00%	1,50%	0,00%	0,00%	0,00%	1,43%	0,00%	0,50%	0,00%	1,69%	1,50%
V4	0,00%	0,33%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,67%
V5	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%
1 /11/	0.0001	0.070/	0.000/	0.0001	0.000/	0.000/	0.000/	0.400/	0.040/	0.040/	0.070/
MW	0,00%	0,37%	0,00%	0,00%	0,00%	0,29%	0,00%	0,10%	0,21%	0,34%	2,37%
SEM	0,00%	0,29%	0,00%	0,00%	0,00%	0,29%	0,00%	0,10%	0,21%	0,34%	1,85%
p (S)	-	0,276	n. v.	n. v.	n. v.	0,374	n. v.	0,374	0,374	0,374	0,269
p (A)	-	-	0,276	0,276	0,276	0,278	0,276	0,242	0,717	0,762	0,356
_ <b>.</b>	•									`	
CFU-	Sug	A ET024	DI 14	DI 22	DI A	Dia 2	Dia 2	Dla 4	ACM 9	AGM	AGM
G	Sus	AF 1024	FL 1.4	FL 2.5	rL4	ria 2	Fla 5	F1a 4	AGM 0	24	25
V1	0,00%	1,50%	0,00%	1,05%	1,00%	0,00%	0,50%	2,70%	1,04%	0,00%	6,45%
V2	0,00%	1,25%	0,00%	0,00%	0,00%	1,54%	0,50%	1,00%	0,50%	0,50%	1,50%
V3	4,00%	5,75%	2,00%	0,50%	0,00%	1,43%	3,00%	3,00%	7,09%	10,1%	3,50%
V4	1,67%	2,83%	0.00%	1,00%	0.67%	0,90%	7,00%	5,06%	7,67%	4,00%	20,0%
V5	7,67%	3,17%	0,00%	0,00%	0,68%	0.00%	3,00%	2,15%	2,86%	6,67%	11,6%
	0.070/	0.000/	0.400/	0.540/	0.470/	0.770/	0.000/	0.700/	0.000/	4.070/	0.000/
MW	2,67%	2,90%	0,40%	0,51%	0,47%	0,77%	2,80%	2,78%	3,83%	4,27%	8,62%
SEM	1,45%	0,80%	0,40%	0,23%	0,20%	0,33%	1,19%	0,66%	1,50%	1,91%	3,32%
p (S)	-	0,854	0,184	0,242	0,207	0,299	0,938	0,945	0,548	0,274	0,146
p (A)	-	-	0,007*	0,047*	0,054	0,053	0,935	0,899	0,422	0,301	0,169
CFU- GM	Sus	AFT024	PL 1.4	PL 2.3	PL 4	Pla 2	Pla 3	Pla 4	AGM 8	AGM 24	AGM 25
V1	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	1 50%	0.00%	0.00%	0.00%	3 23%
V2	0.00%	0.25%	0.00%	0.00%	0.00%	0.00%	0.00%	0.50%	0.00%	0.00%	0.00%
V3	0.00%	1.00%	0.00%	0.50%	1.22%	1.43%	0.00%	1.00%	2,13%	1,69%	3.00%
V4	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	2.00%	0.84%	0.33%	0.00%	0.00%
V5	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
MW	0,00%	0,25%	0,00%	0,10%	0,24%	0,29%	0,70%	0,47%	0,49%	0,34%	1,25%
SEM	0,00%	0,19%	0,00%	0,10%	0,24%	0,29%	0,44%	0,21%	0,41%	0,34%	0,76%
p (S)	-	0.266	n. v.	0.374	0.374	0.374	0.184	0.087	0.300	0.374	0.178
<b>p</b> (A)	-	-	0.266	0.208	0.939	0.761	0.468	0.252	0.370	0.606	0.223
/			,		,	, -	, ,				, -
CFU-	G	4 57024	DI 14	DI A A	DI 4		DI 2	DI. 4		AGM	AGM
MIX	Sus	AF 1024	PL 1.4	PL 2.3	PL 4	Pla 2	Pla 3	Pla 4	AGM 8	24	25
V1	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0,00%
V2	0.00%	0.25%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
V3	0,00%	0,25%	0,00%	0,00%	0,00%	0.00%	0,00%	0,00%	0,00%	0.00%	0,00%
V4	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.67%
V5	0.00%	0.33%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0,00%
	0.0004	0.4=04	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.4004
MW	0,00%	0,17%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,13%
SEM	0,00%	0,07%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,13%
p (S)	-	0,075	n. v.	0,374							
p (A)	· ·	-	0,075	0,075	0.075	0,075	0.075	0,075	0.075	0.075	0,865
L F X 7		1	-,	,	-,,	-,,	-,,	,	-,,	, >	-,

Tab. 63: Qualität der CFCs in der CD133^{low}CD34⁺ Fraktion in Kokultur mit plazentalen und AGM Stromazellen

Abkürzungen: Sus = Suspension; PL = PLVEC; Pla = MSZ aus der Plazenta; MW = Mittelwert; p(S) = Signifikanzberechnung im Vergleich zur Suspension; <math>p(A) = Signifikanzberechnung im Vergleich zur AFT024 (t-Test, zweiseitig, gepaart); Signifikanzen <math>p<0,05 werden fett gedruckt dargestellt.

BFU-E	Sus	AFT024	ECFC 4D	HUVEC F	MSZ MNZ B	MSZ Fett 7/5	ECFC 4D + MSZ B	HUVEC F + MSZ B	ECFC 4D + MSZ 7/5	HUVEC F + MSZ 7/5
V1	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%
V2	0,00%	0,00%	0,00%	0,00%	0,50%	0,00%	0,00%	0,00%	0,00%	0,00%
V3	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%
V4 V5	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%
V 3	0,00 /8	1,00 /6	0,30 %	0,00 %	0,00 %	0,00 /8	0,00 %	0,00 /8	0,00 /8	0,00%
MW	0,00%	0,20%	0,10%	0,00%	0,10%	0,00%	0,00%	0,00%	0,00%	0,00%
SEM	0,00%	0,20%	0,10%	0,00%	0,10%	0,00%	0,00%	0,00%	0,00%	0,00%
<b>p</b> ( <b>S</b> )	-	0,374	0,374	n. v.	0,374	n. v.	n. v.	n. v.	n. v.	n. v.
<b>p</b> (A)	-	-	0,374	0,374	0,704	0,374	0,374	0,374	0,374	0,374
							ECFC	HUVEC	ECFC	HUVEC
CFU-M	Sus	AFT024	ECFC 4D	HUVEC F	MSZ MNZ B	MSZ Fett 7/5	4D +	<b>F</b> +	<b>4D</b> +	<b>F</b> +
			ЧР	ľ		rea #5	MSZ B	MSZ B	MSZ 7/5	MSZ 7/5
V1	4,41%	1,50%	1,89%	1,50%	1,50%	3,00%	5,50%	2,50%	1,50%	2,00%
V2 V3	0,00%	3,50%	1,50%	2,00%	3.50%	2,00%	2,50%	3,50%	3,50%	3,00%
V3 V4	1.50%	2.00%	4.50%	4.50%	2.00%	0.50%	2.50%	7.00%	6.50%	4.50%
V5	9,86%	4,00%	5,50%	8,00%	9,50%	5,50%	9,50%	5,50%	4,00%	3,00%
MW	3.96%	2.50%	2.68%	3.52%	3.50%	2.90%	4.61%	4.90%	3.54%	2.90%
SEM	1,68%	0,52%	1,01%	1,25%	1,56%	0,83%	1,34%	0,83%	0,86%	0,46%
n (S)	-	0 330	0 438	0 735	0.528	0 354	0 356	0.630	0.844	0 598
<b>p</b> (3) <b>p</b> (A)	-	-	0,870	0,375	0,426	0,512	0,136	0,030	0,363	0,621
• • /										
CTTL C	a		ECFC	HUVEC	MSZ	MSZ	ECFC	HUVEC	ECFC	HUVEC
CFU-G	Sus	AF 1024	4D	F	MNZ B	Fett 7/5	4D + MSZ B	F + MSZ B	4D + MSZ 7/5	F + MSZ 7/5
V1	8 82%	2.00%	6.60%	4 50%	1 50%	5 50%	3 50%	5 00%	3 50%	4 50%
V1 V2	16,67%	4,00%	9,00%	7,00%	4,50%	6,00%	5,00%	7,50%	5,50%	4,00%
V3	6,08%	3,50%	12,50%	4,80%	3,50%	4,50%	4,55%	7,50%	7,69%	2,50%
V4	4,50%	2,00%	4,00%	10,00%	4,00%	4,50%	8,00%	6,50%	5,00%	4,00%
V5	10,56%	5,00%	8,50%	3,50%	5,00%	3,50%	7,00%	4,50%	6,50%	6,50%
MW	9,33%	3,30%	8,12%	5,96%	3,70%	4,80%	5,61%	6,20%	5,64%	4,30%
SEM	2,12%	0,58%	1,40%	1,16%	0,60%	0,44%	0,82%	0,62%	0,71%	0,64%
p (S)	-	0,032*	0,622	0,268	0,049*	0,079	0,208	0,220	0,182	0,068
<b>p</b> (A)	-	-	0,014	0,160	0,405	0,153	0,070	0,031	0,013	0,200
							ECEC	HUVEC	ECEC	HUVEC
CFU-	Sus	AFT024	ECFC 4D	HUVEC	MSZ MNZ P	MSZ Fott 7/5	4D +	F +	4D +	F+
GWI			40	Г	WINZ D	reu //5	MSZ B	MSZ B	MSZ 7/5	MSZ 7/5
V1	5,88%	0,50%	0,00%	1,00%	0,50%	4,50%	2,50%	0,50%	2,00%	2,50%
V2 V3	0,00%	0,00%	0,00%	1,00%	0,50%	2,50%	2,50%	2,50%	0,00%	1,00%
V3 V4	2.00%	0.80%	2.50%	0.00%	0.50%	3.50%	4.50%	4.50%	2.50%	2,00%
V5	2,82%	2,00%	3,00%	5,00%	2,50%	1,00%	6,50%	3,00%	4,00%	4,50%
MW	2.95%	0.66%	1.10%	1.72%	1.00%	2.40%	3.50%	3.30%	1.92%	2.50%
SEM	0,99%	0,37%	0,68%	0,86%	0,39%	0,75%	0,89%	0,93%	0,67%	0,57%
n (S)	-	0.091	0.230	0.386	0 136	0.647	0 724	0.827	0.362	0.666
<b>p</b> (5) <b>p</b> (A)	-	-	0,331	0,166	0,205	0,121	0,007	0,066	0,022	0,002
CFU-	G		ECFC	HUVEC	MSZ	MSZ	ECFC	HUVEC	ECFC	HUVEC
MIX	Sus	AF 1024	4D	F	MNZ B	Fett 7/5	4D + MSZ B	F + MSZ B	4D + MSZ 7/5	F + MSZ 7/5
V1	0.00%	0.50%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
V2	0,00%	0,50%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%
V3	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%
V4	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%
V5	0,70%	0,50%	0,00%	0,00%	0,00%	0,00%	0,50%	0,00%	0,00%	0,00%
MW	0,14%	0,30%	0,00%	0,00%	0,00%	0,00%	0,10%	0,00%	0,00%	0,00%
SEM	0,14%	0,12%	0,00%	0,00%	0,00%	0,00%	0,10%	0,00%	0,00%	0,00%
p (S)	-	0,331	0,374	0,374	0,374	0,374	0,374	0,374	0,374	0,374
<b>p</b> (A)	-	-	0,070	0,070	0,070	0,070	0,178	0,070	0,070	0,070

Tab. 64: Qualität der CFCs in der CD133 ⁺ CD34 ⁺ Fraktion in Kokul ⁺	tur und Tripel-Kultur
-------------------------------------------------------------------------------------------------------	-----------------------

BFU-E	Sus	AFT024	ECFC 4D	HUVEC F	MSZ MNZ B	MSZ Fett 7/5	ECFC 4D + MSZ B	HUVEC F + MSZ B	ECFC 4D + MSZ 7/5	HUVEC F + MSZ 7/5
V1	1,00%	2,00%	0,50%	2,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%
V2	0,00%	3,50%	0,00%	3,50%	0,00%	0,00%	0,00%	1,09%	0,00%	0,00%
V3	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,50%	0,00%	0,00%
V4 V5	0,00%	2,45%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%
V 3	0,0078	0,0070	0,0070	0,0070	0,0070	0,0076	0,0078	0,0078	0,0078	0,0078
MW	0,20%	1,59%	0,10%	1,10%	0,00%	0,00%	0,00%	0,32%	0,00%	0,00%
SEM	0,20%	0,09%	0,10%	0,7170	0,00%	0,00%	0,00%	0,2270	0,00%	0,00%
<b>p</b> (S)	-	0,115	0,374	0,255	0,374	0,374	0,374	0,750	0,374	0,374
<b>p</b> (A)	-	-	0,095	0,374	0,084	0,084	0,084	0,114	0,084	0,084
CFU-M	Sus	AFT024	ECFC 4D	HUVEC F	MSZ MNZ B	MSZ Fett 7/5	ECFC 4D +	HUVEC F +	ECFC 4D +	HUVEC F +
	0.000/	0.000/		-	0.000/	0.000/	MSZ B	MSZ B	MSZ 7/5	MSZ 7/5
V1 V2	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%
V2 V3	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%
V4	0,00%	0,61%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%
V5	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%
MW	0,00%	0,12%	0,00%	0,10%	0,00%	0,00%	0,00%	0,10%	0,00%	0,00%
SEM	0,00%	0,12%	0,00%	0,10%	0,00%	0,00%	0,00%	0,10%	0,00%	0,00%
p (S)	-	0,374	n. v.	0,374	n. v.	n. v.	n. v.	0,374	n. v.	n. v.
<b>p</b> (A)	-	-	0,374	0,904	0,374	0,374	0,374	0,904	0,374	0,374
		1		1	1		FORG		FORG	
CFU-G	Sus	AFT024	ECFC 4D	HUVEC F	MSZ MNZ B	MSZ Fett 7/5	ECFC 4D + MSZ P	HUVEC F +	ECFC 4D +	HUVEC F+
V1	7 00%	4.00%	3 50%	4.00%	0.50%	0.00%	5 00%	0.00%	1 00%	0.50%
V1 V2	5.88%	4,00%	1.00%	3,50%	1,18%	19.05%	3,70%	3.26%	2.50%	1.00%
V3	3,51%	6,50%	1,00%	3,50%	7,02%	16,67%	0,00%	1,00%	1,00%	1,50%
V4	5,00%	1,23%	2,00%	0,50%	2,00%	2,50%	1,00%	0,00%	0,00%	1,50%
V5	9,00%	0,00%	4,50%	2,00%	3,00%	4,00%	3,00%	1,50%	2,00%	1,50%
MW	6,08%	3,05%	2,40%	2,70%	2,74%	8,44%	2,54%	1,15%	1,30%	1,20%
SEM	0,93%	1,13%	0,70%	0,64%	1,15%	3,91%	0,91%	0,60%	0,44%	0,20%
p (S)	-	0,187	0,001*	0,043*	0,140	0,624	0,008*	0,009*	0,004*	0,008*
<b>p</b> (A)	-	-	0,718	0,690	0,805	0,189	0,768	0,210	0,231	0,199
CFU- GM	Sus	AFT024	ECFC 4D	HUVEC F	MSZ MNZ B	MSZ Fett 7/5	ECFC 4D +	HUVEC F +	ECFC 4D +	HUVEC F +
T 74	0.000/	0.000/	0.000/	0.000/	0.000/	0.000/	MSZ B	MSZ B	MSZ 7/5	MSZ 7/5
V1 V2	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%
V2 V3	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
V4	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%
V5	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%
MW	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%
SEM	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%
p (S)	-	n. v.	n. v.	n. v.	n. v.	n. v.	n. v.	n. v.	n. v.	n. v.
<b>p</b> (A)	-	-	n. v.	n. v.	n. v.	n. v.	n. v.	n. v.	n. v.	n. v.
		1		1			FCFC	HUVEC	FCFC	HUVEC
CFU- MIX	Sus	AFT024	ECFC 4D	HUVEC F	MSZ MNZ B	MSZ Fett 7/5	4D + MSZ B	F + MSZ B	4D + MSZ 7/5	F + MSZ 7/5
V1	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%
V2	0,00%	1,50%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%
V3 V4	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%
V4 V5	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
MW	0.00%	0.20%	0.00%	0.00%	0.00%	0.000/	0.00%	0.000/	0.00%	0.00%
SEM	0.00%	0,30%	0.00%	0,00%	0,00%	0.00%	0.00%	0.00%	0,00%	0.00%
r (6)	,	0.274	n. v.	n. v.	n v	n v	р. у.	n v	n. v	n 1
p (8) n (A)	-	0,374	0.374	0.374	0.374	0.374	0.374	0.374	0.374	0.374
h (u)		_	0,014	0,014	0,014	0,014	0,014	0,014	0,014	0,014

1 a.D.	D. LIC		equen		in uci	CDI	55	UD.		1 a	NUOL	1						
LTC-	Suc	AFT	MNZ	Μ	NZ	MNZ	F	ett	Fet	tt	Fet	t	Vene	Ve	ne 🔥	rt 8	Art Q	Art 10
IC	Sus	024	Α		B	1.4	7	/5	7/1	1	8/5	;	5	8		110	Alt 9	AIT IU
V1	n. v.	0.04%	0.22%	0.3	30%	0.44%	0.7	7%	0.31	%	0.08	%	0.86%	0.2	4% 0.9	93%	1.70%	0.23%
V2	0.43%	0.87%	0.60%	1.2	29%	0.31%	0.9	95%	0.00	%	0.28	%	0.22%	0.4	7% 0.3	35%	0.18%	0.38%
V3	0.94%	0.06%	0.68%	1.3	34%	0.90%	1.6	51%	n \	/	0.33	%	0.44%	0.7	7% 20	04%	1 13%	0.64%
V4	1.87%	0.25%	1 24%	22	25%	1 69%	24	13%	n v	/	1.51	%	3 17%	1.5	1% 2	88%	n v	2 62%
V5	0.49%	0.08%	0.31%	0.2	29%	1 28%	0.7	74%	0.57	···	0.26	%	0.32%	0.3	2% 1 ⁴	27%	n.v.	0.43%
V6	0, <del>4</del> 070	0.04%	0,0170	0,2	30%	0.44%	0,7	7%	0,31	%	0,20	/0 %	0,86%	0,0	1% 0.0	23%	1 70%	0,43%
	11. V.	0,0470	0,2270	0,0	5078	0,4470	0,7	1 /0	0,01	70	0,00	70	0,007	0,2	+70 0,	5570	1,7070	0,2378
MW	0,93%	0,26%	0,61%	1,1	10%	0,93%	1,3	30%	0,29	%	0,49	%	1,00%	0,6	7% 1,	50%	1,00%	0,86%
SEM	0,33%	0,16%	0,18%	0,3	37%	0,26%	0,3	32%	0,16	\$%	0,26	%	0,55%	0,2	4% 0,4	44%	0,44%	0,45%
		0.040	0.000		404	0.040			0.04		0.04	^	0.000	0.4		070	0.004	0.700
<b>p</b> ( <b>S</b> )	-	0,249	0,262	0,	191	0,642	0,0	J11	0,6	18	0,04	3	0,809	0,1	29 0,	078	0,921	0,728
<b>p</b> (A)	-	-	0,179	0,0	074	0,132	0,0	J48	0,94	10	0,48	3	0,280	0,2	23 0,	081	0,438	0,277
LTC						1					1	E	CEC	ECEC	ECI		ECEC	ECEC
LIC-	Sus	AF 1 024	HU	4	HU B	HU	С	HU	U D	HU	JF	E	CFC 1.45	ECFC 1F			AD	ECFC 4E
IC III		024									<b>a</b> a <i>i</i>		145	IL		1	4D	4E
V1	0,15%	0,27%	0,06	%	0,19%	0,09	1%	0,0	9%	0,1	0%	0,	03%	0,04%	0,08	%	0,11%	0,06%
V2	0,10%	0,05%	n. v.		0,06%	n. v	<i>'</i> .	n.	۷.	<u>n.</u>	۷.	0,	03%	n. v.	n. v	<i>'</i> .	0,04%	n. v.
V3	0,96%	1,23%	0,18	%	0,47%	0,93	%	0,4	8%	0,4	6%	0,	52%	0,57%	0,97	%	0,92%	0,56%
V4	0,23%	0,26%	0,00	%	0,19%	0,22	%	0,1	6%	0,1	3%	0,	06%	0,04%	0,09	%	0,33%	0,14%
V5	0,98%	0,34%	1,03	%	0,55%	0,32	2%	0,1	8%	1,1	2%	0,	51%	0,61%	0,57	%	0,24%	0,64%
MW	0.48%	0 43%	0.32	%	0.29%	0.39	%	0.2	3%	04	5%	0	23%	0.32%	0.43	%	0.33%	0.35%
SEM	0.20%	0.21%	0.24	%	0.09%	0.19	%	0.0	8%	0.2	4%	0,	12%	0.16%	0.21	%	0.16%	0.15%
<b>DEM</b>	0,2070	0,2170	0,21	/0	0,0070	0,10	70	0,0	070	0,2	170	υ,	1270	0,107	, 0,21	70	0,1070	0,1070
p (S)	-	0,756	0,24	6	0,159	0,31	15	0,1	45	0,4	-09	0,	,038	0,030	0,19	95	0,352	0,065
<b>p</b> (A)	-	-	0,60	2	0,441	0,12	25	0,1	48	0,8	333	0,	,243	0,353	0,43	38	0,181	0,441
															0			•
LTC-	Sus	AFTO	24 PI	1.4	PL 3	2.3	PL.	4	Pla	2	Р	la 3	F	la 4	AGM	8	AGM	AGM
IC	~ ~~							-									24	25
V1	0,05%	0,00	% 0,0	)2%	0,16	5%	0,00	%	0,00	)%	0,0	)2%	ώ Ο,	00%	0,00%	•	0,00%	0,03%
V2	0,06%	0,46	% 0,1	2%	0,18	3%	0,20	%	0,06	5%	0,0	)6%	ώ Ο,	02%	0,04%	•	0,03%	0,32%
V3	0,29%	0,73	% 0,1	6%	0,21	%	0,30	%	0,21	1%	0,0	)8%	ώ Ο,	13%	0,00%	)	0,10%	0,20%
V4	0,08%	0,22	% 1,4	10%	0,49	9%	0,66	%	0,24	1%	0,1	13%	ώ Ο,	24%	0,17%	)	0,14%	0,55%
V5	0,00%	0,29	% 0,9	90%	0,28	3%	0,49	%	0,05	5%	0,1	14%	ώ Ο,	13%	0,32%	)	0,04%	0,25%
MW	0.10%	0.34	% O4	52%	0.26	\$%	0 33	%	0.1	1%	0.0	າດ%	6 0	10%	0 10%		0.06%	0.27%
SFM	0.05%	0,34		27%	0,20	5%	0,00	%	0,1	5%	0,0	12%	6 0, 6 0	04%	0,10%	,	0,0070	0,2170
BEN	0,0070	0,12	/0 0,2	.7 70	0,00	770	0,11	70	0,00	<b>J</b> /0	0,0	JZ /(	0 0,	0470	0,0070	,	0,0070	0,0070
p (S)	-	0,05	4 0,	220	0,12	21	0,14	13	0,7	86	0,	850	) 0	904	0,943		0,499	0,166
<b>p</b> (A)	-	-	0,	602	0,62	29	0,96	60	0,1	00	0,	104	0	132	0,187		0,075	0,647
				-														
				FC	FC	HUVE	C	м	57		MSZ	ſ	ECF	CI	IUVEC	E	CFC	HUVEC
LTC-I	C Su	is A	FT024	4	ID I	F		MN	JZ R	F	'ett 7/4	5	4D -	-	<b>F</b> +	4	4D +	<b>F</b> +
										1		~	MSZ	<b>B</b> ]	MSZ B	Μ	SZ 7/5	MSZ 7/5
V1	0,14	4%	0,83%	0,0	08%	0,759	6	0,0	)4%	(	),39%	,	1,249	6	0,43%	0	,25%	0,44%
V2	0,00	0%	),54%	0,2	29%	0,15%	6	0,2	26%	(	),15%	,	0,26	6	0,25%	0	,10%	0,15%
V3	0,43	3%	0,90%	0,1	16%	0,56%	6	0,2	28%	1	I,09%	,	n. v.		0,90%	0	,36%	0,20%
V4	0,65	5%	0,87%	0,5	52%	0,989	6	0,8	81%	(	),37%	,	0,739	6	1,51%	0	,79%	n. v.
V5	1,14	4%	0,81%	0,6	69%	0,729	6	0,8	35%	1	I, <del>03</del> %	,	0,729	6	1,59%	1	,97%	0,43%

Tab. 66: LTC-IC	Frequenzen in de	er CD133 ⁺	CD34+ F	raktion

MW

SEM

p (S)

**p** (A)

0,47%

0,20%

-

-

0,79%

0,06%

0,150

-

0,35%

0,11%

0,364 0,026 0,63%

0,14%

0,390 0,164 0,45%

0,16%

0,823 0,100 0,74%

0,20%

0,478 0,878 0,94%

0,27%

0,012 0,572 0,69%

0,34%

0,231 0,786 0,31%

0,08%

0,622 0,009

0,61%

0,19%

0,445 0,320

140.0			quenzei	i m uci		50			unt	ion							
NK-	Sus	AFT	MNZ	MNZ	MNZ	F	'ett	Fet	tt	Fett	t	Vene	Ve	ne 🔥	• <b>t</b> 8	Art Q	Art 10
IC	Jus	024	Α	B	1.4	7	7/5	7/1	1	8/5		5	8	A		AIL	AIT 10
V1	n. v.	0,00%	0,04%	0,13%	0,08%	0,0	00%	0,02	%	0,04%	%	0,60%	0,15	5% 0,0	0%	0,00%	0,15%
V2	0,04%	0,45%	0,23%	0,26%	0,22%	0,6	61%	0,00	)%	0,65%	%	0,21%	0,02	2% 0,1	9%	0,08%	0,13%
V3	0,32%	1,38%	0,65%	0,48%	0,77%	0,8	89%	n. \	1.	0,29%	%	0,13%	0,30	0,6	64%	0,37%	0,81%
V4	0,04%	0,16%	0,40%	0,26%	0,05%	0,3	37%	n. \	1.	0,06%	%	0,09%	0,11	1% 0,1	4%	n. v.	0,14%
V5	0,08%	0,53%	0,66%	0,21%	0,89%	0,8	87%	0,76	5%	0,28%	%	0,13%	0,12	2% 0,4	-6%	n. v.	0,26%
V6	n. v.	0,00%	0,04%	0,13%	0,08%	0,0	00%	0,02	%	0,04%	%	0,60%	0,15	5% 0,0	0%	0,00%	0,15%
MX	0.400/	0.500/	0.200/	0.070/	0.400/	0.1	===0/	0.00	·0/	0.070	×	0.000/	0.1	10/ 0.6	00/	0.450/	0.200/
SEM	0,12%	0,30%	0,39%	0,27%	0,40%	0,:	170/	0,20	070	0,277	/0	0,23%	0,12	10/ 0.1	20/	0,13%	0,30%
SEM	0,07%	0,24%	0,12%	0,00%	0,10%	0,	1770	0,25	070	0,117	/0	0,09%	0,02	+70 U,	Z 70	0,11%	0,13%
<b>p</b> (S)	-	0,085	0,022	0,003	0,134	0,	009	0,54	11	0,259	9	0,823	0,5	69 0,0	)40	0,111	0,111
p (A)	-	-	0,567	0,280	0,567	0,	763	0,77	76	0,354	4	0,414	0,1	60 0, ⁻	98	0,259	0,180
			-	-			-										
NK-	Sus	AFT	HUA	HUI	з ні	IC	н	D	н	F	E	CFC	ECFC	ECF	С	ECFC	ECFC
IC	545	024	men	nei			me		me		1	45	1E	DD	1	4D	<b>4</b> E
V1	n. v.	0,03%	0,05%	0,109	% 0,0	0%	0,0	7%	0,20	0%	0,0	09%	0,00%	0,02	%	0,05%	0,04%
V2	0,67%	0,56%	n. v.	0,169	% n.	v.	n.	v.	n.	v.	0,0	00%	n. v.	n. v		0,48%	n. v.
V3	0,20%	0,06%	0,03%	0,129	% 0,2	0%	0,1	3%	0,22	2%	0,2	21%	0,15%	0,26	%	0,26%	0,27%
V4	0,00%	0,00%	0,07%	0,05%	% 0,0	4%	0,0	4%	0,04	4%	0,0	02%	0,03%	0,07	%	0,07%	0,04%
V5	0,37%	0,06%	0,26%	0,469	% 0,0	2%	0,0	0%	0,13	3%	0,0	04%	0,12%	0,05	%	0,10%	0,05%
MW	0.31%	0 14%	0.10%	0.189	6 00	7%	0.0	6%	0.14	5%	0 (	07%	0.07%	0.10	%	0 19%	0.10%
SEM	0.14%	0,1470	0.05%	0,102	× 0,0	7 /0 5%	0,0	3%	0,1	4%	0,0	04%	0.03%	0,10	%	0.08%	0,10%
<b>DLM</b>	0,1470	0,1070	0,0070	0,017	.0 0,0	070	0,0	070	0,0	+70	0,1	0470	0,0070	0,00	/0	0,0070	0,0070
p (S)	-	0,115	0,440	0,469	9 0,4	95	0,3	89	0,5	85	0,	237	0,388	0,66	0	0,395	0,626
<b>p</b> (A)	-	-	0,308	0,80	8 0,5	570	0,5	29	0,0	39	0,	594	0,269	0,31	7	0,344	0,300
																	1
NK-	Sus	AFT02	24 PL	I.4 PI	L 2.3	PL	4	Pla	2	Pl	a 3	Р	la 4	AGM 8		AGM	AGM
IC																24	25
V1	0,66%	0,56%	6 1,39	9% 1,	62%	2,84	1%	0,84	1%	1,0	)4%	o 0,	17%	0,60%		1,37%	1,35%
V2	1,68%	4,44%	6 1,46	5% 1,	05%	1,94	1%	0,47	7%	0,7	0%	o 0,	55%	1,12%		1,06%	0,69%
<u>V3</u>	0,71%	3,98%	6 0,83	<u>8%</u> 0,	84%	1,25	5%	1,29	9%	0,6	5%	o 0,	73%	1,06%		0,66%	0,59%
V4	0,60%	1,03%	6 0,66	<u>6%</u> 0,	89%	0,53	3%	0,06	5%	0,3	8%	o 0,	15%	0,33%		0,30%	0,43%
V5	0,87%	1,63%	6 0,80	<u>)%</u> 2,	09%	1,47	%	0,57	/%	0,7	8%	o 0,	69%	1,65%	_	0,81%	0,84%
MW	0,90%	2,33%	6 1,03	3% 1,	30%	1,60	)%	0,64	1%	0,7	'1%	0,	46%	0,95%		0,84%	0,78%
SEM	0,20%	0,79%	6 0,17	'% 0,	24%	0,38	3%	0,20	)%	0,1	1%	0,	12%	0,23%		0,18%	0,16%
n (C)		0.100	0.49	0 0	202	0.1	15	0.4	12	0.4	100	0	001	0 0 1 0		0 701	0.664
$\mathbf{p}(\mathbf{S})$	-	0,100	0,40		,292	0,14	+5 74	0,4	43 06	0,4	110	0,	061	0,040		0,791	0,004
<b>p</b> (A)	-	-	0,10	0	,332	0,47	1	0,0	00	0,1	119	0,	000	0,131		0,142	0,150
	1											FCF		INEC	Б	CEC	HIVEC
NK-IC	S.		FT024	ECFC	HUV	EC	Μ	SZ	]	MSZ				E +	E	ID ±	E +
111-10	, Bu	a A	r 1024	4D	F		MN	NZ B	F	ett 7/5	5	MSZ	B M	ISZ B	M	57.7/5	MSZ 7/5
¥71	0.64	10/. E	199/	0.68%	2.04	0/	1 -	10/	4	690/	+	11102	- 1	2 0.99%	4	120/	0.08%
V1 V2	0,0	7% 3	23%	0.34%	2,04	· /0	0.8	25%		,00 %		n. v.		1 96%		38%	2 20%
V2 V3	1 70	)% 3	39%	1 02%	2 0/	%	1 5	57%	2	98%	╉	6 519	6	3 22%	2	34%	2 42%
VJ VA	0.00	)% 1	61%	2 25%	2,94	%	1,0	37%		70%	╉	2 979	6 0	) 88%	2	12%	2 54%
V-	0,90	20/ E	,0170	1 50%	1,38	'0/.	2.2	0/0/	5	0.00/	-	1 6 4 9		1 00%	2	700/	1 550/

Tab. 67: NK-IC Frequenzen in der CD133⁺CD34⁺ Fraktion

MW

SEM

**p** (S)

**p** (A)

0,89%

0,22%

-

-

3,75%

0,69%

0,021

-

1,16%

0,33%

0,486

0,046

1,65%

0,42%

0,049

0,054

1,57%

0,22%

0,063 0,030 2,22%

0,87%

0,185 0,113 3,71%

1,45%

0,157

0,870

2,01%

0,50%

0,059 0,035 1,75%

0,44%

0,073

0,072

1,94%

0,29%

0,018 0,135



Abb. 47: Berechnete Expansion von hämatopoetischen Subpopulationen in Kokultur mit Zellen konditionell immortalisierter Einzelzellklon-Zelllinien

Graphische Darstellung der Werte aus Tab. 72, Tab. 73, Tab. 74, Tab. 75, Tab. 76 und Tab. 77. Berechnete Expansion von  $CD45^+$ ,  $CD133^+CD34^+$  und  $CD133^{low}CD34^+$  Zellen nach 14-tägiger Kokultur. Neben den Kontrollen (Suspension, AFT024) wurden Zellen konditionell immortalisierter Einzelzellklonlinien sowie die ursprünglichen primären humanen endothelialen und mesenchymalen Stromazellen (K = Kontrolle) verwendet. Die Kokultur mit den Zellen konditionell immortalisierter Einzelzellklonlinien wurde sowohl in Anwesenheit (+) als auch in Abwesenheit (-) von Doxyzyklin (Dox) durchgeführt. (Mittelwerte  $\pm$  SEM; Kreuz: keine bzw. apoptotische Stromazellen)

Tab. 6	58: Free	quenz d	ler CD1	133 ⁺ CD	34 ⁺ Fra	aktion	in Kokul	tur mi	t Einz	elzellklo	n-Zellli	inien (l	()
Screen A	Sus	А	FT024	HU C	HU 1	C Klon - Dox	HU C Klon 1 + Dox	HU C 2 - I	Klon Dox	HU C Klon 2 + Dox	HU C 1 3 - D	Klon H lox	IU C Klon 3 + Dox
V1	3,53%	1	4,51%	1,66%	0,	,27%	5,10%	n.	v.	n. v.	n. v	1.	n. v.
V2 V3	5,21%	1	3,78% 4 73%	1.08%	4,	,51% 83%	1,59%	n. 1	V.	n. v. 0.13%	n. v 0.31	/. %	n. v.
V3 V4	3,33%	2	2,51%	2,98%	1.	,18%	0,05%	2,10	)%	0,13%	1,18	%	5,33%
V5	7,46%	1	8,51%	3,64%	1.	,52%	0,36%	2,45	5%	0,92%	3,25	%	4,61%
V6	6,39%	1	5,70%	3,07%	1,	,14%	0,65%	1,19	9%	0,98%	2,34	%	4,28%
MW	4,62%	1	5,79%	3,32%	1,	,58%	1,50%	1,51	1%	0,60%	1,77	%	3,58%
SEM	0,86%	1	1,87%	0,92%	0,	,61%	0,76%	0,48	3%	0,21%	0,64	%	1,19%
p (S)	-		0,003	0,213	0	,019	0,063	0,0	58	0,033	0,02	22	0,357
<b>p</b> (A)	-		-	0,004*	0,	,002*	0,002*	0,00	)1*	0,002*	0,00	3*	0,001*
p (Pr)	-		-	-	0,	,005*	0,225	0,01	8*	0,014*	0,05	56	0,295
Screen	HUF	HU F Klop 1	HUF Klop 1	HUF Klop 2	HUF Klop 2	HUF Klop 3	HUF Klop 3	HU F Klon 4	HUF Klon 4	HUF Klop 5	HUF Klop 5	HU F	HU F Klop 6
Α	nor	- Dox	+ Dox	- Dox	+ Dox	- Dox	+ Dox	- Dox	+ Dox	- Dox	+ Dox	- Dox	+ Dox
V1	1,29%	8,78%	12,21%	0,22%	0,24%	0,09%	0,29%	2,63%	16,60%	n. v.	n. v.	n. v.	n. v.
V2	5,59%	5,98%	7,59%	0,85%	0,81%	0,77%	0,84%	1,67%	3,05%	n. v.	n. v.	n. v.	n. v.
V3 V4	1,33%	1,49%	1,16%	0,13%	0,03%	0,12%	0,07%	0,14%	1,50%	0,13%	0,09%	0,10%	1,46%
V4 V5	4.25%	1.69%	3,49%	0,45%	0,05%	1,03%	0.07%	0.29%	15.38%	2.09%	0,05%	1.40%	4,62%
V6	2,65%	2,24%	2,31%	0,56%	0,18%	1,24%	0,15%	0,29%	0,00%	0,87%	0,48%	0,82%	6,41%
MW	2,95%	3,49%	5,40%	0,53%	0,24%	0,79%	0,27%	0,86%	6,09%	1,11%	0,42%	0,74%	3,12%
SEM	0,69%	1,30%	1,66%	0,13%	0,12%	0,24%	0,12%	0,43%	3,17%	0,41%	0,12%	0,27%	1,46%
p (S)	0.056	0.513	0.708	0.003	0.004	0.002	0.004	0.013	0.650	0.039	0.041	0.033	0.152
<b>p</b> ( <b>b</b> ) <b>p</b> ( <b>A</b> )	0,000	0,008*	0,014*	0,000*	0,001*	0,001*	0,001*	0,001*	0,047*	0,002*	0,002*	0,002*	0,132
<b>p</b> ( <b>Pr</b> )	-	0,731	0,232	0,008*	0,007*	0,014*	0,007*	0,049*	0,381	0,006*	0,024*	0,010*	0,774
		ECEC	ECEC	ECEC	ECEC	ECEC	ECEC	ECEC	ECEC	ECEC	ECEC	ECEC	ECEC
Screen	ECEC	4E	4E	4E	4E	4E	4E	4E	ECFC 4E	4E	ECFC 4E	4E	4E
Α	4E	Klon 1	Klon 1	Klon 2	Klon 2	Klon 3	Klon 3	Klon 4	Klon 4	Klon 5	Klon 5	Klon 6	Klon 6
		- Dox	+ Dox	- Dox	+ Dox	- Dox	+ Dox	- Dox	+ Dox	- Dox	+ Dox	- Dox	+ Dox
V1	0,73%	n. v.	n. v.	0,31%	0,25%	0,05%	0,07%	n. v.	n. v.	n. v.	n. v.	n. v.	n. v.
V2 V3	4,24%	n. v.	n. v.	1,36%	1,13%	0,90%	0,70%	n. v.	n. v.	n. v.	n. v.	n. v.	n. v.
V3 V4	1,13%	0,12%	0,03%	0,70%	0,02%	1,67%	0,78%	1,67%	1,55%	0,23%	0,44%	1,25%	0,03%
V5	1,94%	0,44%	0,24%	1,23%	0,14%	1,44%	2,70%	2,16%	2,40%	2,28%	1,83%	1,94%	0,12%
V6	1,95%	0,47%	0,41%	1,68%	0,43%	1,59%	1,58%	1,71%	1,62%	0,98%	1,44%	0,96%	0,35%
MW	1,76%	0,32%	0,22%	1,00%	0,36%	1,03%	1,03%	1,47%	1,50%	1,05%	1,10%	1,11%	0,25%
SEM	0,55%	0,08%	0,07%	0,21%	0,16%	0,26%	0,39%	0,39%	0,40%	0,44%	0,32%	0,34%	0,09%
p (S)	0,011	0,037	0,036	0,004	0,004	0,005	0,001	0,046	0,044	0,030	0,035	0,042	0,042
<b>p</b> (A)	0,002	0,002*	0,002*	0,001*	0,001*	0,001*	0,001*	0,002*	0,002*	0,002*	0,003*	0,002*	0,002*
p (Pr)	-	0,023*	0,023*	0,145	0,018*	0,245	0,274	0,/18	0,623	0,287	0,000	0,338	0,040*
Screen	PI	PL 1.	4 PL	1.4 F	PL 1.4	PL 1.4	PL 1.4	PL 1.4	PL	1.4 PL	. 1.4	PL 1.4	PL 1.4
A	1.4	Klon	1 Klo	on 1 F	Clon 2	Klon 2	Klon 4	Klon 4	Kle	on 5 Kl	on 5 Dox	Klon 6	Klon 6
V1	1.61%	0.25%	A + I	3%	n v	+ DOX	- Dox	+ <b>D</b> 0X	• 1	v n	V	- DOX	+ DOX
V1 V2	5,26%	0,237	6 0,6	9%	n. v.	n. v.	n. v.	n. v.	n.	v. n	. v.	n. v.	n. v.
V3	0,92%	0,229	6 0,0	6% (	),28%	0,15%	0,56%	0,35%	0,1	.6% 0,0	)6%	0,36%	0,14%
V4	4,81%	0,269	6 0,0	5% (	0,50%	0,43%	0,87%	0,00%	0,6	0,0 00% 0,0	)8%	1,05%	10,00%
V 5 V 6	2.42%	0.599	6 0,0 6 0.2	4% 1	.,41%	0,47%	1.04%	0,00%	0,3	51% 0,1	21%	1,89%	1,60%
MAN	2.0.40/	0.470	4 0.2	0%	100/	0.450	0.970/	0.000/	0,0	120/	1204	1 170/	2 400/
SEM	3,04% 0.71%	0,479	6 0,2 6 0,1	0%	,19%	0,45%	0,87%	0.09%	0,4	.0% 0.0	)3%	0,32%	2,23%
n (S)	0.146	0.00	2 0.0	003	0.024	0.020	0.040	0.042	.,.	0/13 0	037	0.038	0.662
p (S) p (A)	0,140	0,001	* 0.0	01* 0	,003*	0,002*	0,049	0.002*	0.0	02* 0.0	002*	0,002*	0,003
p (Pr)	-	0,015	5 <b>0,0</b>	08*	0,161	0,055	0,081	0,053	0,0	44* 0,0	)44*	0,103	0,740
Screen	PI 4	PL 4 Klon 1	PL 4 Klon 1	PL 4 Klon 2	PL 4 Klon 2	PL 4 Klon 3	PL 4 Klon 3	PL 4 Klon 4	PL 4 Klon 4	PL 4 Klon 5	PL 4 Klon 5	PL 4 Klon 6	PL 4 Klon 6
A		- Dox	+ Dox	- Dox	+ Dox	- Dox	+ Dox	- Dox	+ Dox	- Dox	+ Dox	- Dox	+ Dox
V1	2,95%	n. v.	n. v.	n. v.	n. v.	2,07%	2,74%	n. v.	n. v.	n. v.	n. v.	n. v.	n. v.
V2	7,31%	n. v.	n. v.	n. v.	n. v.	5,99%	3,78%	n. v.	n. v.	n. v.	n. v.	n. v.	n. v.
V3 V4	2,07%	0,68%	1.04%	0,49%	1,02%	0,55%	0,22%	1 28%	0,30%	1,03%	0,30%	0,19%	0.00%
V5	3,86%	1,60%	0,99%	0,86%	1,30%	2,41%	0,59%	4,82%	0,87%	3,27%	1,29%	1,93%	0,00%
V6	2,43%	1,28%	0,78%	0,93%	1,24%	1,21%	0,37%	2,05%	0,31%	2,65%	1,32%	1,68%	0,00%
MW	3,70%	1,17%	0,74%	0,96%	1,03%	2,35%	1,40%	2,11%	0,42%	2,08%	0,83%	1,25%	0,00%
SEM	0,77%	0,19%	0,20%	0,22%	0,17%	0,78%	0,61%	0,98%	0,15%	0,53%	0,28%	0,38%	0,00%
p (S)	0,388	0,051	0,044	0,064	0,054	0,064	0,028	0,023	0,037	0,043	0,033	0,035	0,036
<b>p</b> ( <b>A</b> )	0,004	0,002*	0,002*	0,002*	0,003*	0,003*	0,002*	0,003*	0,002*	0,003*	0,003*	0,002*	0,002*
p (Pr)	-	0,011*	0,004*	0,010*	0,029*	0,001*	0,006*	0,318	0,007*	0,174	0,018*	0,016*	0,006*

Tab. 69: Frequenz der CD133 ⁺ CD34 ⁺ Fraktion in Kokultur mit Einzelzellklon-Zelllinien (II)												
Screen B	Sus	AFT024	MSZ MNZ B	MNZ B Klon 1 -Dox	MNZ B Klon 1 + Dox	MNZ B Klon 2 - Dox	MNZ B Klon 2 + Dox	MNZ B Klon 3 - Dox	MNZ B Klon 3 + Dox			
V1	4,83%	1,70%	6,17%	24,97%	18,61%	20,62%	20,23%	26,95%	16,53%			
V2	3,39%	23,32%	5,13%	5,79%	5,49%	3,54%	3,75%	3,51%	1,97%			
V3	2,58%	27,41%	10,05%	4,97%	6,60%	6,06%	1,96%	2,83%	4,97%			
MW	3,60%	17,48%	7,11%	11,91%	10,24%	10,07%	8,65%	11,10%	7,82%			
SEM	0,66%	7,98%	1,50%	6,53%	4,20%	5,32%	5,81%	7,93%	4,44%			
p (S)	-	0,249	0,218	0,295	0,208	0,307	0,433	0,413	0,392			
<b>p</b> (A)	-	-	0,297	0,738	0,611	0,631	0,587	0,727	0,513			
p (Pr)	-	-	-	0,574	0,581	0,660	0,837	0,687	0,897			
Screen B	MSZ Fett 7/11	Fett 7/11 Klon 1 - Dox	Fett 7/11 Klon 1 + Dox	Fett 7/11 Klon 2 - Dox	Fett 7/11 Klon 2 + Dox	Fett 7/11 Klon 4 - Dox	Fett 7/11 Klon 4 + Dox	Fett 7/11 Klon 5 - Dox	Fett 7/11 Klon 5 + Dox			
Screen B V1	MSZ Fett 7/11 22,95%	Fett 7/11 Klon 1 - Dox 4,31%	Fett 7/11 Klon 1 + Dox 5,33%	Fett 7/11 Klon 2 - Dox 23,28%	Fett 7/11 Klon 2 + Dox 14,50%	Fett 7/11 Klon 4 - Dox 8,73%	Fett 7/11 Klon 4 + Dox 26,87%	Fett 7/11 Klon 5 - Dox 13,57%	Fett 7/11 Klon 5 + Dox 14,01%			
Screen B V1 V2	MSZ Fett 7/11 22,95% 5,84%	Fett 7/11 Klon 1 - Dox 4,31% 3,57%	Fett 7/11 Klon 1 + Dox 5,33% 4,15%	Fett 7/11 Klon 2 - Dox 23,28% 3,65%	Fett 7/11 Klon 2 + Dox 14,50% 5,59%	Fett 7/11 Klon 4 - Dox 8,73% 0,69%	Fett 7/11 Klon 4 + Dox 26,87% 5,67%	Fett 7/11 Klon 5 - Dox 13,57% 5,31%	Fett 7/11 Klon 5 + Dox 14,01% 7,25%			
Screen B V1 V2 V3	MSZ Fett 7/11 22,95% 5,84% 8,13%	Fett 7/11 Klon 1 - Dox 4,31% 3,57% 5,38%	Fett 7/11 Klon 1 + Dox 5,33% 4,15% 4,17%	Fett 7/11 Klon 2 - Dox 23,28% 3,65% 2,46%	Fett 7/11 Klon 2 + Dox 14,50% 5,59% 6,28%	Fett 7/11 Klon 4 - Dox 8,73% 0,69% 1,00%	Fett 7/11 Klon 4 + Dox 26,87% 5,67% 4,60%	Fett 7/11 Klon 5 - Dox 13,57% 5,31% 2,46%	Fett 7/11 Klon 5 + Dox 14,01% 7,25% 5,28%			
Screen B V1 V2 V3 MW	MSZ Fett 7/11 22,95% 5,84% 8,13% 12,31%	Fett 7/11 Klon 1 - Dox 4,31% 3,57% 5,38% 4,42%	Fett 7/11 Klon 1 + Dox 5,33% 4,15% 4,17% 4,55%	Fett 7/11 Klon 2 - Dox 23,28% 3,65% 2,46% 9,80%	Fett 7/11 Klon 2 + Dox 14,50% 5,59% 6,28% 8,79%	Fett 7/11 Klon 4 - Dox 8,73% 0,69% 1,00% 	Fett 7/11 Klon 4 + Dox 26,87% 5,67% 4,60% 12,38%	Fett 7/11 Klon 5 - Dox 13,57% 5,31% 2,46% 7,11%	Fett 7/11 Klon 5 + Dox 14,01% 7,25% 5,28% 8,85%			
Screen B V1 V2 V3 MW SEM	MSZ Fett 7/11 22,95% 5,84% 8,13% 12,31% 5,36%	Fett 7/11 Klon 1 - Dox 4,31% 3,57% 5,38% 4,42% 0,53%	Fett 7/11 Klon 1 + Dox 5,33% 4,15% 4,17% 4,55% 0,39%	Fett 7/11 Klon 2 - Dox 23,28% 3,65% 2,46% 9,80% 6,75%	Fett 7/11 Klon 2 + Dox 14,50% 5,59% 6,28% 8,79% 2,86%	Fett 7/11 Klon 4 - Dox 8,73% 0,69% 1,00% 3,47% 2,63%	Fett 7/11 Klon 4 + Dox 26,87% 5,67% 4,60% 12,38% 7,25%	Fett 7/11 Klon 5 - Dox 13,57% 5,31% 2,46% 7,11% 3,33%	Fett 7/11 Klon 5 + Dox 14,01% 7,25% 5,28% 8,85% 2,64%			
Screen B V1 V2 V3 MW SEM p (S)	MSZ Fett 7/11 22,95% 5,84% 8,13% 12,31% 5,36% 0,194	Fett 7/11 Klon 1 - Dox 4,31% 3,57% 5,38% 4,42% 0,53% 0,481	Fett 7/11 Klon 1 + Dox 5,33% 4,15% 4,17% 4,55% 0,39% 0,189	Fett 7/11 Klon 2 - Dox 23,28% 3,65% 2,46% 9,80% 6,75% 0,389	Fett 7/11 Klon 2 + Dox 14,50% 5,59% 6,28% 8,79% 2,86% 0,129	Fett 7/11 Klon 4 - Dox 8,73% 0,69% 1,00% 3,47% 2,63% 0,930	Fett 7/11 Klon 4 + Dox 26,87% 5,67% 4,60% 12,38% 7,25% 0,295	Fett 7/11 Klon 5 - Dox 13,57% 5,31% 2,46% 7,11% 3,33% 0,262	Fett 7/11 Klon 5 + Dox 14,01% 7,25% 5,28% 8,85% 2,64% 0,091			
Screen B V1 V2 V3 MW SEM P (S) p (A)	MSZ Fett 7/11 22,95% 5,84% 8,13% 12,31% 5,36% 0,194 0,993	Fett 7/11 Klon 1 - Dox 4,31% 3,57% 5,38% 4,42% 0,53% 0,481 0,343	Fett 7/11 Klon 1 + Dox 5,33% 4,15% 4,17% 4,55% 0,39% 0,189 0,355	Fett 7/11 Klon 2 - Dox 23,28% 3,65% 2,46% 9,80% 6,75% 0,389 0,853	Fett 7/11 Klon 2 + Dox 14,50% 5,59% 6,28% 8,79% 2,86% 0,129 0,723	Fett 7/11 Klon 4 - Dox 8,73% 0,69% 1,00% 3,47% 2,63% 0,930 0,409	Fett 7/11 Klon 4 + Dox 26,87% 5,67% 4,60% 12,38% 7,25% 0,295 0,998	Fett 7/11 Klon 5 - Dox 13,57% 5,31% 2,46% 7,11% 3,33% 0,262 0,612	Fett 7/11 Klon 5 + Dox 14,01% 7,25% 5,28% 8,85% 2,64% 0,091 0,711			
Screen B V1 V2 V3 MW SEM p (S) p (A) p (Pr)	MSZ Fett 7/11 22,95% 5,84% 8,13% 12,31% 5,36% 0,194 0,993	Fett 7/11 Klon 1 - Dox 4,31% 3,57% 5,38% 4,42% 0,53% 0,481 0,343 0,280	Fett 7/11        Klon 1        + Dox        5,33%        4,15%        4,17%        4,55%        0,39%        0,189        0,355        0,259	Fett 7/11 Klon 2 - Dox 23,28% 3,65% 2,46% 9,80% 6,75% 0,389 0,853 0,287	Fett 7/11 Klon 2 + Dox 14,50% 5,59% 6,28% 8,79% 2,86% 0,129 0,723 0,296	Fett 7/11 Klon 4 - Dox 8,73% 0,69% 1,00% 3,47% 2,63% 0,930 0,409 0,085	Fett 7/11 Klon 4 + Dox 26,87% 5,67% 4,60% 12,38% 7,25% 0,295 0,998 0,975	Fett 7/11 Klon 5 - Dox 13,57% 5,31% 2,46% 7,11% 3,33% 0,262 0,612 0,180	Fett 7/11 Klon 5 + Dox 14.01% 7.25% 5.28% 8.85% 2.64% 0.091 0.711 0.369			

Screen B	MSZ Fett 7/5	Fett 7/5 Klon 1 - Dox	Fett 7/5 Klon 1 + Dox	Fett 7/5 Klon 2 - Dox	Fett 7/5 Klon 2 + Dox
V1	19,21%	12,30%	10,11%	12,50%	10,06%
V2	11,08%	5,03%	13,29%	6,28%	3,77%
V3	5,21%	5,45%	4,95%	4,94%	3,53%
MW	11,83%	7,59%	9,45%	7,91%	5,79%
SEM	4,06%	2,36%	2,43%	2,33%	2,14%
p (S)	0,113	0,127	0,087	0,094	0,222
p (A)	0,955	0,624	0,657	0,636	0,500
p (Pr)	-	0,200	0,559	0,176	0,115

Abkürzungen: Sus = Suspension; MNZ = MononukleäreZellen aus den Knochenmark; HU = HUVEC; PL =PLVEC; Dox = Doxyzyklin; MW = Mittelwert; n. v. = nichtverfügbar/kontaminiert; <math>p(S) = Signifikanzberechnung im Vergleich zur Suspension; p(A) = Signifikanzberechnung im Vergleich zur AFT024; p(Pr) = Signifikanzberechnung im Vergleich zu Zellen der primären Stromazellen (t-Test, zweiseitig, gepaart); Signifikanzen p<0,05 sind fett gedruckt dargestellt. Sind die Messwerte der Suspension bzw. mit der AFT024 signifikant höher ist der Signifikanzwert mit einem *-Symbol markiert.

Tab. 7	0: Free	quenz d	ler CD1	$[33^{10W}C]$	<b>D34</b> ⁺ <b>F</b> 1	raktior	ı in Kokı	ıltur m	nit Ein	zelzellk	on-Zel	llinien	(I)
Screen A	Sus	A	FT024	HU C	HU 1	C Klon • Dox	HU C Klon 1 + Dox	HU C 2 - I	Klon Dox	HU C Klon 2 + Dox	HU C 3 - I	Klon l Dox l	HU C Klon 3 + Dox
V1	5,29%	2	9,45%	2,63%	6,	61%	3,22%	n. 1	v.	n. v.	n. 1	v.	n. v.
V2 V2	3,66%	3	6,22%	3,05%	16	,87%	9,50%	n. 7	V.	n. v.	n. 9	V. 04	n. v.
V3 V4	1.67%	2	5.44%	1.09%	0,	80%	1.14%	0,34	+ 70 5%	1.69%	0,11	5%	0.00%
V5	3,03%	3	1,79%	1,12%	0,	40%	1,38%	0,66	5%	0,71%	0,95	5%	1,04%
V6	2,07%	2	3,11%	0,93%	0,	46%	1,14%	1,35	5%	1,35%	0,58	3%	0,75%
MW	2,62%	2	7,80%	1,55%	4,	22%	2,87%	0,78	3%	1,05%	0,55	5%	0,62%
SEM	0,74%	2	2,35%	0,42%	2,	72%	1,37%	0,21	%	0,28%	0,17	1%	0,22%
p (S)	-	(	0,001	0,063	0	,532	0,844	0,1	98	0,371	0,08	89	0,175
p (A)	-		-	0,001	0,	305	0.255	0,00	02*	0,002*	0,00	0*	0,002*
<b>p</b> ( <b>II</b> )			_		0	,505	0,235	0,5	01	0,555	0,01		0,400
Screen		HU F	HU F	HU F	HU F	HU F	HU F	HU F	HU F	HU F	HU F	HU F	HU F
Α	HU F	Klon 1 - Dox	Klon 1 + Dox	Klon 2 - Dox	Klon 2 + Dox	- Dox	Klon 3 + Dox	Klon 4 - Dox	Klon 4 + Dox	Klon 5 - Dox	Klon 5 + Dox	Klon 6	Klon 6 + Dox
V1	1,31%	6,08%	15,38%	1,85%	1,73%	3,20%	5,64%	5,84%	17,02%	n. v.	n. v.	n. v.	n. v.
V2	2,54%	6,10%	4,61%	3,87%	4,06%	7,16%	6,60%	5,83%	5,02%	n. v.	n. v.	n. v.	n. v.
V3	0,54%	0,21%	0,88%	0,15%	0,12%	0,26%	0,57%	0,14%	0,00%	0,20%	0,70%	0,38%	1,69%
V4 V5	1,00%	0,04%	3,15%	0,33%	0,08%	0,51%	2,73%	1,71%	7,69%	0,66%	2,13%	0,00%	5,38%
V6	0,88%	0,33%	2,55%	0,76%	1,02%	0,69%	3,75%	2,65%	0,00%	0,66%	2,17%	0,85%	6,41%
MW	1,12%	2,34%	4,83%	1,25%	1,35%	2,05%	3,65%	3,00%	4,96%	0,64%	1,62%	0,69%	3,37%
SEM	0,31%	1,19%	2,17%	0,58%	0,59%	1,11%	0,90%	0,96%	2,75%	0,17%	0,35%	0,12%	1,51%
p (S)	0,055	0,718	0,222	0,072	0,097	0,558	0,082	0,441	0,322	0,149	0,834	0,147	0,272
<b>p</b> (A)	0,001	0,001*	0,001*	0,001*	0,001*	0,001*	0,001*	0,001*	0,001*	0,002	0,002	0,002	0,003
p(rr)	-	0,231	0,150	0,031	0,474	0,505	0,012	0,040	0,207	0,735	0,037	0,731	0,131
		ECFC	ECFC	ECFC	ECFC	ECFC	ECFC	ECFC	ECFC	ECFC	ECFC	ECFC	ECFC
Screen	ECFC 4F	4E Klop 1	4E Klop 1	4E Klop 2	4E Klop 2	4E Klop 3	4E Klop 3	4E Klop 4	4E Klop 4	4E Klop 5	4E Klop 5	4E Klop 6	4E Klop 6
A	412	- Dox	+ Dox	- Dox	+ Dox	- Dox	+ Dox	- Dox	+ Dox	- Dox	+ Dox	- Dox	+ Dox
V1	2,16%	n. v.	n. v.	1,29%	1,50%	1,74%	1,51%	n. v.	n. v.	n. v.	n. v.	n. v.	n. v.
V2	2,32%	n. v.	n. v.	5,94%	4,16%	6,06%	4,76%	n. v.	n. v.	n. v.	n. v.	n. v.	n. v.
V3 V4	0,30%	0,17%	1,28%	0,18%	0,22%	0,10%	0,11%	0,13%	0,18%	0,17%	0,21%	0,19%	1,79%
V5	0,74%	1,11%	1,49%	0,45%	0,48%	0,58%	0,44%	1,00%	0,74%	0,30%	0,38%	0,46%	1,66%
V6	0,75%	1,51%	1,87%	0,79%	1,39%	0,24%	0,34%	0,36%	0,30%	0,22%	0,26%	0,49%	1,87%
MW	1,20%	0,93%	1,25%	1,49%	1,35%	1,49%	1,24%	0,45%	0,36%	0,23%	0,46%	0,40%	1,45%
SEM	0,33%	0,28%	0,32%	0,90%	0,60%	0,95%	0,73%	0,19%	0,13%	0,03%	0,18%	0,07%	0,33%
<b>p</b> (S)	0,037	0,177	0,349	0,261	0,120	0,246	0,115	0,082	0,085	0,095	0,144	0,110	0,589
p (Pr)	-	0,340	0,118	0,680	0,696	0,695	0,933	0,262	0,064	0,002*	0,277	0,002	0,063
		DY 4	4	4.4		<b>NY</b> 4.4	<b>DY</b> 4.4		- DY	4.4		<b>DY</b> 4.4	DY 4.4
Screen	PL	PL 1. Klon	4 PL 1 Klo	1.4 P n 1 K	L 1.4 Jon 2	PL 1.4 Klon 2	PL 1.4 Klon 4	PL 1.4 Klon 4	PL Kle	1.4 PI on 5 K	on 5	PL 1.4 Klon 6	PL 1.4 Klon 6
Α	1.4	- Doy	x + D	ox -	Dox	+ Dox	- Dox	+ Dox	- I	)ox +	Dox	- Dox	+ Dox
V1	3,00%	2,14%	6 2,5	8%	n. v.	n. v.	n. v.	n. v.	n.	v. n	. v.	n. v.	n. v.
V2 V3	1,08%	4,92%	• 5,0 6 0.2	1% 5% 0	n. v. .25%	n. v. 0.29%	n. v. 0.14%	n. v. 1.84%	n. 0 1	v. n 3% 0	. v. 20%	n. v. 0.34%	n. v. 1.04%
V4	1,30%	0,08%	6 0,3	4% 0	,36%	0,57%	0,21%	0,00%	0,4	5% 0,	61%	0,17%	15,00%
V5	1,45%	0,25%	6 0,3	6% 0	,41%	1,35%	0,48%	0,00%	0,2	3% 0,	31%	0,40%	1,15%
VO	1,36%	0,33%	0,5	970 0	,34%	0,01%	0,52%	0,00%	0,2	.1 % 0,	+270	0,21%	0,21%
MW	3,38%	1,31%	6 1,5	2% 0	,34%	0,75%	0,34%	0,46%	0,2	6% 0,	38%	0,28%	4,35%
	1,5070	0,79%		50	,5570	0,22/0	0,1070	0,4070	0,0	101 ^	100	0.110	0.715
p(S) p(A)	0,624	0,118	s 0,1 * 0,0	58 ( 01* 0	.002*	0,117	0,092	0,329	0,1	02* 0	122 002*	0,110	0,516
<b>p</b> ( <b>Pr</b> )	-	0,054	4 0,0	82 <b>0</b>	,002*	0,079	0,002	0,054	0,0	06* 0,0	)11*	0,001*	0,497
Screen	PL 4	PL 4 Klon 1	PL 4 Klon 1	PL 4 Klon 2	PL 4 Klon 2	PL 4 Klon 3	PL 4 Klon 3	PL 4 Klon 4	PL 4 Klon 4	PL 4 Klon 5	PL 4 Klon 5	PL 4 Klon 6	PL 4 Klon 6
Α		- Dox	+ Dox	- Dox	+ Dox	- Dox	+ Dox	- Dox	+ Dox	- Dox	+ Dox	- Dox	+ Dox
V1	4,72%	n. v.	n. v.	n. v.	n. v.	2,95%	7,70%	n. v.	n. v.	n. v.	n. v.	n. v.	n. v.
V2 V3	1,42%	n. v. 0.20%	n. v. 0.41%	n. v. 0.23%	n. v. 1.02%	4,51%	3,33%	n. v. 0.15%	n. v. 0.30%	n. v.	n. v.	n. v.	n. v. 0.00%
V4	2,30%	0,20%	0,87%	0,17%	0,51%	0,40%	0,92%	0,40%	2,25%	0,30%	0,56%	0,28%	0,00%
V5	1,56%	0,33%	0,80%	0,83%	0,63%	0,57%	1,44%	0,79%	2,61%	0,87%	0,68%	0,46%	0,00%
VO	1,65%	0,21%	0,78%	0,42%	0,56%	0,16%	1,15%	0,36%	2,48%	0,40%	0,58%	0,25%	0,00%
MW	3,17%	0,23%	0,72%	0,41%	0,68%	1,48%	2,63%	0,43%	1,91%	0,44%	0,58%	0,32%	0,00%
SEW	0,99%	0,05%	0,10%	0,13%	0,12%	0,74%	1,00%	0,15%	0,54%	0,15%	0,04%	0,05%	0,00%
p (S)	0,503	0,096	0,175	0,094	0,257	0,101	0,994	0,091	0,398	0,089	0,159	0,109	0,075
	0,001	0.006*	0.007*	0.021*	0.040*	0.002*	0,586	0,012*	0,714	0,012*	0,002	0,002*	0,002*

Tab. 71: Frequenz der CD133 ^{low} CD34 ⁺ Fraktion in Kokultur mit Einzelzellklon-Zelllinien (II)											
Screen B	Sus	AFT024	MSZ MNZ B	MNZ B Klon 1 - Dox	MNZ B Klon 1 + Dox	MNZ B Klon 2 - Dox	MNZ B Klon 2 + Dox	MNZ B Klon 3 - Dox	MNZ B Klon 3 + Dox		
V1	0,31%	20,29%	0,44%	2,23%	1,19%	3,24%	1,08%	3,05%	0,99%		
V2	1,87%	36,24%	1,77%	1,69%	2,19%	2,55%	2,32%	1,62%	1,18%		
V3	0,88%	30,56%	1,12%	2,00%	0,99%	5,96%	1,63%	1,56%	0,91%		
MW	1,02%	29,03%	1,11%	1,97%	1,46%	3,92%	1,68%	2,08%	1,03%		
SEM	0,46%	4,67%	0,38%	0,15%	0,37%	1,04%	0,36%	0,49%	0,08%		
p (S)	-	0,022	0,449	0,259	0,197	0,151	0,026	0,355	0,984		
<b>p</b> (A)	-	-	0,023*	0,030*	0,025*	0,035*	0,024*	0,034*	0,026*		
p (Pr)	-	-	-	0,250	0,307	0,140	0,004	0,370	0,825		
Screen B	MSZ Fett 7/11	Fett 7/11 Klon 1 - Dox	Fett 7/11 Klon 1 + Dox	Fett 7/11 Klon 2 - Dox	Fett 7/11 Klon 2 + Dox	Fett 7/11 Klon 4 - Dox	Fett 7/11 Klon 4 + Dox	Fett 7/11 Klon 5 - Dox	Fett 7/11 Klon 5 + Dox		
Screen B V1	MSZ Fett 7/11 0,97%	Fett 7/11 Klon 1 - Dox 0,94%	Fett 7/11 Klon 1 + Dox 1,55%	Fett 7/11 Klon 2 - Dox 2,87%	Fett 7/11 Klon 2 + Dox 0,70%	Fett 7/11 Klon 4 - Dox 3,17%	Fett 7/11 Klon 4 + Dox 2,36%	Fett 7/11 Klon 5 - Dox 2,67%	Fett 7/11 Klon 5 + Dox 1,03%		
Screen B V1 V2	MSZ Fett 7/11 0,97% 0,98%	Fett 7/11 Klon 1 - Dox 0,94% 1,06%	Fett 7/11 Klon 1 + Dox 1,55% 0,53%	Fett 7/11 Klon 2 - Dox 2,87% 2,90%	Fett 7/11 Klon 2 + Dox 0,70% 1,95%	Fett 7/11 Klon 4 - Dox 3,17% 1,84%	Fett 7/11 Klon 4 + Dox 2,36% 2,50%	Fett 7/11 Klon 5 - Dox 2,67% 3,41%	Fett 7/11 Klon 5 + Dox 1,03% 2,11%		
Screen B V1 V2 V3	MSZ Fett 7/11 0,97% 0,98% 0,91%	Fett 7/11 Klon 1 - Dox 0,94% 1,06% 0,51%	Fett 7/11 Klon 1 + Dox 1,55% 0,53% 1,78%	Fett 7/11 Klon 2 - Dox 2,87% 2,90% 1,26%	Fett 7/11 Klon 2 + Dox 0,70% 1,95% 0,93%	Fett 7/11 Klon 4 - Dox 3,17% 1,84% 4,66%	Fett 7/11 Klon 4 + Dox 2,36% 2,50% 1,31%	Fett 7/11 Klon 5 - Dox 2,67% 3,41% 3,12%	Fett 7/11 Klon 5 + Dox 1,03% 2,11% 0,70%		
Screen B V1 V2 V3 MW	MSZ Fett 7/11 0,97% 0,98% 0,91% 0,95%	Fett 7/11 Klon 1 - Dox 0,94% 1,06% 0,51% 	Fett 7/11 Klon 1 + Dox 1,55% 0,53% 1,78% 1,29%	Fett 7/11 Klon 2 - Dox 2,87% 2,90% 1,26% 2,34%	Fett 7/11 Klon 2 + Dox 0,70% 1,95% 0,93% 1,19%	Fett 7/11 Klon 4 - Dox 3,17% 1,84% 4,66% 3,23%	Fett 7/11 Klon 4 + Dox 2,36% 2,50% 1,31% 	Fett 7/11 Klon 5 - Dox 2,67% 3,41% 3,12% 3,07%	Fett 7/11 Klon 5 + Dox 1,03% 2,11% 0,70% 1,28%		
Screen B V1 V2 V3 MW SEM	MSZ Fett 7/11 0,97% 0,98% 0,91% 0,95% 0,02%	Fett 7/11 Klon 1 - Dox 0.94% 1.06% 0.51% 0.84% 0.17%	Fett 7/11 Klon 1 + Dox 1,55% 0,53% 1,78% 1,29% 0,39%	Fett 7/11 Klon 2 - Dox 2,87% 2,90% 1,26% 2,34% 0,54%	Fett 7/11 Klon 2 + Dox 0,70% 1,95% 0,93% 1,19% 0,38%	Fett 7/11 Klon 4 - Dox 3,17% 1,84% 4,66% 3,23% 0,81%	Fett 7/11 Klon 4 + Dox 2,36% 2,50% 1,31% 2,06% 0,38%	Fett 7/11 Klon 5 - Dox 2,67% 3,41% 3,12% 3,07% 0,21%	Fett 7/11 Klon 5 + Dox 1,03% 2,11% 0,70% 1,28% 0,43%		
Screen B V1 V2 V3 MW SEM p (S)	MSZ Fett 7/11 0,97% 0,98% 0,91% 0,95% 0,02% 0,932	Fett 7/11 Klon 1 - Dox 0.94% 1.06% 0.51% 0.84% 0.17% 0.876	Fett 7/11 Klon 1 + Dox 1,55% 0,53% 1,78% 1,29% 0,39% 0,704	Fett 7/11 Klon 2 - Dox 2,87% 2,90% 1,26% 2,34% 0,54% 0,129	Fett 7/11 Klon 2 + Dox 0,70% 1,95% 0,93% 1,19% 0,38% 0,114	Fett 7/11 Klon 4 - Dox 3,17% 1,84% 4,66% 3,23% 0,81% 0,200	Fett 7/11 Klon 4 + Dox 2,36% 2,50% 1,31% 2,06% 0,38% 0,128	Fett 7/11 Klon 5 - Dox 2,67% 3,41% 3,12% 3,07% 0,21% 0,021	Fett 7/11 Klon 5 + Dox 1,03% 2,11% 0,70% 1,28% 0,43% 0,173		
Screen B V1 V2 V3 MW SEM p (S) p (A)	MSZ Fett 7/11 0,97% 0,98% 0,91% 0,95% 0,02% 0,932 0,079	Fett 7/11 Klon 1 - Dox 0.94% 1.06% 0.51% 0.84% 0.17% 0.876 0.075	Fett 7/11        Klon 1        + Dox        1,55%        0,53%        1,78%        1,29%        0,39%        0,704        0,089	Fett 7/11 Klon 2 - Dox 2,87% 2,90% 1,26% 2,34% 0,54% 0,129 0,079	Fett 7/11 Klon 2 + Dox 0,70% 1,95% 0,93% 1,19% 0,38% 0,114 0,073	Fett 7/11 Klon 4 - Dox 3,17% 1,84% 4,66% 3,23% 0,81% 0,200 0,115	Fett 7/11 Klon 4 + Dox 2,36% 2,50% 1,31% 2,06% 0,38% 0,128 0,080	Fett 7/11 Klon 5 - Dox 2,67% 3,41% 3,12% 3,07% 0,21% 0,021 0,091	Fett 7/11 Klon 5 + Dox 1,03% 2,11% 0,70% 1,28% 0,43% 0,173 0,072		
Screen B V1 V2 V3 MW SEM p (S) p (A) p (Pr)	MSZ Fett 7/11 0,97% 0,98% 0,91% 0,95% 0,02% 0,932 0,079	Fett 7/11 Klon 1 - Dox 0,94% 1,06% 0,51% 0,84% 0,17% 0,876 0,075 0,500	Fett 7/11 Klon 1 + Dox 1,55% 0,53% 1,78% 1,29% 0,39% 0,39% 0,704 0,089 0,496	Fett 7/11 Klon 2 - Dox 2,87% 2,90% 1,26% 2,34% 0,54% 0,129 0,079 0,116	Fett 7/11 Klon 2 + Dox 0,70% 1,95% 0,93% 1,19% 0,38% 0,114 0,073 0,587	Fett 7/11 Klon 4 - Dox 3,17% 1,84% 4,66% 3,23% 0,81% 0,200 0,115 0,113	Fett 7/11 Klon 4 + Dox 2,36% 2,50% 1,31% 2,06% 0,38% 0,128 0,080 0,090	Fett 7/11 Klon 5 - Dox 2,67% 3,41% 3,12% 0,21% 0,021 0,091 0,010	Fett 7/11 Klon 5 + Dox 1,03% 2,11% 0,70% 1,28% 0,43% 0,173 0,072 0,511		

p(r1)	-	0,300		190	0,110	
Screen B	MSZ Fett 7/5	Fett 7/5 Klon 1 - Dox	Fett 7/5 Klon 1 + Dox	Fett 7/5 Klon 2 - Dox	5 Fett 7/5 Klon 2 + Dox	
V1	0,53%	0,55%	0,66%	0,40%	0,82%	
V2	1,81%	1,65%	6,43%	1,40%	2,12%	
V3	0,34%	0,63%	1,06%	0,54%	1,25%	
MW	0,90%	0,95%	2,72%	0,78%	1,40%	
SEM	0,46%	0,35%	1,86%	0,31%	0,38%	
p (S)	0,929	0,820	0,319	0,541	0,066	-
p (A)	0,069	0,072	0,054	0,072	0,075	
p (Pr)	-	0,745	0,326	0,582	0,132	

Abkürzungen: Sus = Suspension; MNZ = Mononukleäre Zellen aus den Knochenmark; HU = HUVEC; PL = PLVEC; Dox = Doxyzyklin; MW = Mittelwert; p(S) =Signifikanzberechnung im Vergleich zur Suspension; p(A) =Signifikanzberechnung im Vergleich zur AFT024; p(Pr) =Signifikanzberechnung im Vergleich zu Zellen der primären Stromazellen (t-Test, zweiseitig, gepaart); Signifikanzen p<0,05 sind fett gedruckt dargestellt. Sind die Messwerte der Suspension bzw. mit der AFT024 signifikant höher, ist der Signifikanzwert mit einem *-Symbol markiert.

Tab. 7	72: Exp	ansion	der CE	)45⁺ Fr	aktion	in Kok	ultur mi	t Einze	lzellkl	on-Zell	l <b>inien</b> (l	[)	
Screen	Sus	A	FT024	HU C	HU	C Klon	HU C Klon	HUC	Klon	HUC Klon	HUC	Klon I	IU C Klon
A V1	3 23	8	32 57	340 15	5 7	- Dox 79 13	1 + Dox 405 12	2-1 n	V	2 + Dox n v	3-L n v	V	3 + Dox n v
V2	62,21	2	36,06	1166,4	8 18	19,34	1511,20	n.	v.	n. v.	n. v	v.	n. v.
V3	17,27	1	00,32	394,68	3 19	97,10	127,78	764	,98	547,58	1773	8,16	908,17
V4 V5	6,60 114 15	5 3	61 70	73,32 981 34	6 ⁷ 23	18,75	236,84	169	,29	118,30 830.24	1413	03	14,63
V5 V6	123,20	) 2	99.95	594,70	) 21	30,89	1150,28	779	,45	577,08	896.	,94	368,23
MW	54.44	2	04.26	501 79	2 13	10.76	806.05	686	61	518 30	1040	12	101 01
SEM	22,10	7	74,72	168,62	2 36	62,87	252,94	183	,07	147,65	367,	,96	194,44
n (S)			0.008	0.018	0	014	0.024	0.0	31	0.037	0.0	74	0.112
p (3) p (A)	-		-	0,010	0	,016	0,024	0,0	34	0,037	0,09	97	0,222
p (Pr)	-		-	-	0	,039	0,135	0,0	89	0,916	0,1	73	0,932
r		IIIIE	IIIIE	IIIIE	IIIE	IIIIE	IIIE	IIIE	IIIIE	IIIIE	IIIIE	IIIIE	IIIIE
Screen	HU F	Klon 1	Klon 1	Klon 2	Klon 2	Klon 3	Klon 3	Klon 4	Klon 4	Klon 5	Klon 5	Klon 6	Klon 6
A		- Dox	+ Dox	- Dox	+ Dox	- Dox	+ Dox	- Dox	+ Dox	- Dox	+ Dox	- Dox	+ Dox
V1	635,9	41,44	46,80	1532	655,2	1838	2342	189,6	1,97	n. v.	n. v.	n. v.	n. v.
V2 V3	1661 290 3	444,5 850.5	468,3	2498	1970	394.9	2897	1148	9.04	n. v. 540 9	n. v. 440.4	n. v. 826 7	n. v. 38 73
V3 V4	160,3	203,2	60,50	273,1	751,7	223,8	453,8	683,7	0,00	161,1	164,8	185,4	0,00
V5	791,9	869,7	382,8	1715	2670	962,5	1350	1660	0,39	851,4	535,8	951,4	1,72
V6	741,3	954,2	164,7	1942	1840	840,7	1213	1040	0,22	896,5	340,5	614,4	0,99
MW	713,5	560,6	233,8	1443	1596	965,5	1715	1054	4,33	612,5	370,4	644,5	10,36
SEM	215,7	157,6	70,50	334,9	314,2	256,6	359,1	228,2	2,44	169,9	79,28	168,1	9,46
p (S)	0,025	0,016	0,036	0,008	0,003	0,016	0,006	0,006	0,078	0,031	0,021	0,033	0,229
<b>p</b> (A)	0,042	0,033	0,463	0,009	0,003	0,028	0,008	0,008	0,017*	0,031	0,081	0,046	0,092
p (Pr)	-	0,585	0,039^	0,006	0,027	0,252	0,013	0,300	0,021*	0,124	0,387	0,372	0,058
		ECFC	ECFC	ECFC	ECFC	ECFC	ECFC	ECFC	ECFC	ECFC	ECFC	ECFC	ECFC
Screen	ECFC	<b>4</b> E	4E	4E	<b>4</b> E	<b>4</b> E	<b>4</b> E	<b>4</b> E	<b>4</b> E	4E	4E	4E	<b>4</b> E
Α	<b>4</b> E	Klon 1	Klon 1 + Dox	Klon 2	Klon 2 + Dox	Klon 3	Klon 3 + Dox	Klon 4	Klon 4	Klon 5	Klon 5	Klon 6	Klon 6 + Dox
V1	927 1	n v	n v	2318	1608	2174	3333	n v	n v	n v	n v	n v	n v
V2	1611	n. v.	n. v.	2261	2404	3092	2496	n. v.	n. v.	n. v.	n. v.	n. v.	n. v.
V3	450,7	986,7	1306	1411	1452	1242	865,0	862,5	2859	641,2	345,4	737,7	1659
V4 V5	189,8	665,2	308,2	578,6	873,3	864,3	196,0	560,9 2281	648,3	191,9	125,1	765,0	517,1
V 3 V 6	1035	1715	888.3	1438	1020	2357	898.1	2559	1993	725.9	797.9	887.1	1772
MW	805.2	12/2	992.2	1567	1521	1029	1506	1501	1950	607.2	611 7	808.5	1462
SEM	207,9	250,9	210,2	264,2	225,4	326,7	478,9	512,7	455,2	146,3	235,1	106,9	319,1
n (S)	0.008	0.013	0.028	0.002	0.001	0.002	0.030	0.051	0.020	0.022	0.079	0.002	0.018
p (3)	0,000	0,010	0,020	0,002	0,002	0,002	0,030	0,051	0,023	0,022	0,078	0,002	0,018
p (Pr)	-	0,002	0,513	0,013	0,007	0,001	0,177	0,056	0,077	0,463	0,171	0,310	0,025
		DI 1	4 DI	14	DI 14	DI 14	DI 1 /	DI 14	DI	14 D	[ 1.4	DI 14	DI 1 /
Screen	PL	Klon	4 FL 1 Klo	n1 1	Klon 2	Klon 2	Klon 4	Klon 4		on 5 K	lon 5	Klon 6	Klon 6
A	1.4	- Dox	× + I	Dox	- Dox	+ Dox	- Dox	+ Dox	- I	Dox +	Dox	- Dox	+ Dox
V1	261,23	2656,	8 148	36,3	n. v.	n. v.	n. v.	n. v.	n.	. v. r	n. v.	n. v.	n. v.
V2 V3	1010,4	2558,	5 230 1 132	26.1	n. v. 867.03	n. v.	n. v.	n. v.	n.	.V. r	1. V.	n. v.	n. v. /16.98
V4	54,21	298.6	8 106	65,6 4	461,63	502,83	510,30	0,00	486	6,40 27	1,95	222,74	0,68
V5	1122,8	1349,	4 191	2,2	1743,0	735,30	1493,6	0,40	162	26,8 92	20,19	895,38	29,64
V6	623,88	2699,	2 171	4,2	194,1	1069,9	1464,4	0,38	164	47,2 96	6,44	924,82	17,86
MW	563,28	1728,	7 163	34,1 ⁻	1066,4	799,69	1027,5	35,25	119	91,5 78	34,34	620,77	116,29
SEM	176,33	429,1	6 179	9,58	270,75	120,28	262,15	34,99	278	8,21 17	/1,26	172,94	100,41
p (S)	0,024	0,011	I 0,0	001	0,026	0,006	0,025	0,637	0,0	020 0	,019	0,030	0,695
<b>p</b> (A)	0,036	0,013	3 0,0	001	0,023	0,012	0,022	0,177	0,0	018 0	,025	0,027	0,594
p (Pr)	-	0,032	2 0,0	001	0,001	0,308	0,023	0,137	0,0	015 0	,250	0,468	0,231
G		PL 4	PL 4	PL 4	PL 4	PL 4	PL 4	PL 4	PL 4	PL 4	PL 4	PL 4	PL 4
A	PL 4	Klon 1	Klon 1	Klon 2	Klon 2	Klon 3	Klon 3	Klon 4	Klon 4	Klon 5	Klon 5	Klon 6	Klon 6
<b>X</b> 74	1000	- Dox	+ Dox	- Dox	+ Dox	- Dox	+ Dox	- Dox	+ Dox	- Dox	+ Dox	- Dox	+ Dox
V1 V2	1089 629.4	n. v.	n.v.	n.v.	n.v.	788,2	2336,0	n.v. n.v	n.v.	n.v.	n.v.	n.v.	n.v.
V3	145,9	416,3	823,3	2398	1526	1053,	839,7	555,3	450,5	652,1	1124	1314	0,00
V4	95,60	189,3	291,0	624,4	600,9	234,7	368,6	202,0	99,62	439,0	662,8	416,0	0,00
V5	940,1	1226	1188	2323	1325	942,3	972,4	922,6	452,3	1313	1796	1240	0,00
V6	321,2	834,1	1132	2366	14/3	1139	641,4	848,0	298,5	1152	1012	1253	0,00
MW	537,0	666,4	859,0	1928	1231	954,6	915,8	632,0	325,2	889,3	1149	1056	0,00
SEM	170,4	229,4	205,6	434,8	214,4	179,6	302,1	163,7	83,40	205,7	237,1	214,0	0,00
p (S)	0,035	0,059	0,021	0,021	0,010	0,003	0,034	0,025	0,043	0,018	0,016	0,015	0,125
p (A) p (Pr)	0,084	0,060	0,019	0,022	0,012	0,005	0,052	0.137	0,222	0,014	0,015	0.053	0,072

	<b>1</b>							( )	
Screen B	Sus	AFT024	MSZ MNZ B	MNZ B Klon 1 - Dox	MNZ B Klon 1 + Dox	MNZ B Klon 2 - Dox	MNZ B Klon 2 + Dox	MNZ B Klon 3 - Dox	MNZ B Klon 3 + Dox
V1	235,80	795,21	1459,63	911,76	1037,96	752,55	1053,00	645,54	575,40
V2	189,84	1010,22	1039,34	886,20	754,87	1216,75	375,60	939,18	389,88
V3	119,19	450,86	831,43	622,70	654,21	289,71	403,92	338,25	1440,72
MW	181.61	752.10	1110.13	806.89	815.68	753.00	610.84	640.99	802.00
SEM	33,91	162,90	184,77	92,39	114,88	267,61	221,23	173,49	323,82
p (S)	-	0,056	0,026	0,009	0,017	0,148	0,160	0,098	0,221
p (A)	-	-	0,191	0,608	0,729	0,994	0,644	0,039*	0,927
p (Pr)	-	-	-	0,133	0,053	0,319	0,026	0,151	0,575
Screen B	MSZ Fett 7/11	Fett 7/11 Klon 1 - Dox	Fett 7/11 Klon 1 + Dox	Fett 7/11 Klon 2 - Dox	Fett 7/11 Klon 2 + Dox	Fett 7/11 Klon 4 - Dox	Fett 7/11 Klon 4 + Dox	Fett 7/11 Klon 5 - Dox	Fett 7/11 Klon 5 + Dox
V1	629,30	976,32	432,24	287,75	818,75	75,60	718,74	827,12	855,80
V2	411,48	1083,60	779,40	879,34	614,12	112,84	642,96	619,68	463,40
V3	349,45	1058,46	986,58	1195,22	780,25	64,17	787,68	937,20	1003,00
MW	463,41	1039,46	732,74	787,44	737,71	84,20	716,46	794,67	774,07
SEM	84,86	32,39	161,72	265,96	62,78	14,69	41,79	93,09	161,04
p (S)	0,066	0,003	0,096	0,173	0,010	0,038*	0,007	0,023	0,069
<b>p</b> (A)	0,093	0,132	0,173	0,529	0,241	0,006*	0,118	0,375	0,482
<b>p</b> ( <b>Pr</b> )	-	0,038	0,388	0,453	0,073	0,049*	0,130	0,123	0,224

1 ab. 75. Expansion act CD+5 TTaknon in Kokultar nint Emizeizenkion-Zeminien (11
----------------------------------------------------------------------------------

Screen B	MSZ Fett 7/5	Fett 7/5 Klon 1 - Dox	Fett 7/5 Klon 1 + Dox	Fett 7/5 Klon 2 - Dox	Fett 7/5 Klon 2 + Dox
V1	815,19	657,28	348,22	658,56	295,11
V2	595,80	612,48	178,75	553,00	203,76
V3	488,60	629,64	294,06	425,25	184,38
MW	633,20	633,13	273,68	545,60	227,75
SEM	96,11	13,05	49,97	67,45	34,14
p (S)	0,035	0,001	0,228	0,025	0,360
<b>p</b> ( <b>A</b> )	0,206	0,068	0,028	0,098	0,021*
p (Pr)	-	0,999	0,050	0,130	0,023*

Alle Werte sind als x-fache Expansion angegeben. Abkürzungen: Sus = Suspension; MNZ = MononukleäreZellen aus den Knochenmark; HU = HUVEC; PL = PLVEC; Dox = Doxyzyklin; MW = Mittelwert; n. v. = nichtverfügbar/kontaminiert; p(S) = Signifikanzberechnung im Vergleich zur Suspension; p(A) = Signifikanzberechnung im Vergleich zur AFT024; p(Pr) = Signifikanzberechnung im Vergleich zu Zellen der primären Stromazellen (t-Test, zweiseitig, gepaart); Signifikanzen p<0,05 sind fett gedruckt dargestellt. Sind die Messwerte der Suspension bzw. mit der AFT024 signifikant höher, ist der Signifikanzwert mit einem *-Symbol markiert.

Tab. 7	/4: Exp	ansion	der CE	0133 ⁺ Cl	D34 ⁺ Fi	raktion	ı in Koku	ıltur m	it Ein	zelzellk	lon-Zel	llinien (	<b>I</b> )
Screen	Sus	A	FT024	HU C	HU	C Klon	HU C Klon	HUC	Klon	HU C Klon	HUC	Klon H	U C Klon
A			4.00	=	1.	- Dox	1 + Dox	2 - 1	Dox	2 + Dox	3-1	Dox	3 + Dox
V1 V2	0,11	1	11,98	5,66	2	2,14	20,65	n. v	V.	n.v.	n. 1	V	n. v.
V2 V3	0.31		4.78	4.26	1	.64	1.60	2.3	4	0.72	5.4	9	0.70
V4	0,22	1	12,40	2,18	7	7,29	0,12	3,5	6	0,46	0,9	)1	0,78
V5	8,51	6	6,96	35,72	3	5,18	5,02	25,	29	7,64	45,	90	31,57
V6	7,88	4	17,10	18,24	2	4,32	7,49	9,3	51	5,67	20,	99	15,77
MW	3,38	3	35,31	25,60	2	5,45	9,81	10,	13	3,62	18,	32	12,20
SEM	1,60	1	13,19	13,41	1.	2,58	4,12	5,2	8	1,80	10,	15	7,36
p (S)	-	(	0,022	0,147	0	,126	0,216	0,20	05	0,386	0,1	83	0,231
<b>p</b> (A)	-		-	0,827	0	,804	0,141	0,0	59	0,069	0,02	23*	0,031*
p (Pr)	-		-	-	0	,939	0,221	0,1	75	0,152	0,2	82	0,018*
		HILE	HILE	HILE	HILE	HILE	LIII E	HILE	UUF	HILE	UUE	HILE	<b>UII F</b>
Screen	HU F	Klon 1	Klon 1	Klon 2	Klon 2	Klon 3	Klon 3	Klon 4	Klon 4	Klon 5	Klon 5	Klon 6	Klon 6
A		- Dox	+ Dox	- Dox	+ Dox	- Dox	+ Dox	- Dox	+ Dox	- Dox	+ Dox	- Dox	+ Dox
V1	8,20	3,64	5,71	3,41	1,60	1,68	6,71	4,98	0,33	n. v.	n. v.	n. v.	n. v.
V2 V2	92,93	26,58	35,53	21,19	16,02	11,75	24,39	19,14	0,44	n. v.	n. v.	n. v.	n. v.
V3 V4	4 20	1.54	3 43	1.23	0,30	2 31	0.97	0.90	0,14	2 15	1.07	1 17	0.00
V5	33,67	14,68	13,36	16,47	1,41	14,38	0,91	4,85	0,06	17,79	2,49	13,35	0,08
V6	19,61	21,36	3,81	10,93	3,28	10,41	1,81	3,04	0,00	7,84	1,62	5,06	0,06
MW	27.08	13.41	10.85	9.03	3.94	6.84	6.02	5.86	0.16	7.12	1.40	5.10	0.18
SEM	13,97	3,98	5,18	3,49	2,45	2,46	3,78	2,73	0,10	3,88	0,44	2,91	0,13
n (S)	0 1/2	0.029	0.207	0.080	0.848	0.042	0.562	0.454	0 105	0.276	0.235	0.618	0 18/
p(3) p(A)	0.907	0.126	0.141	0.052	0.052	0.031*	0.090	0,454	0.027*	0.059	0.235	0.063	0.077
<b>p</b> ( <b>Pr</b> )	-	0,276	0,128	0,161	0,104	0,165	0,107	0,121	0,111	0,092	0,129	0,099	0,126
								B (22 -			-		
Samoon	FCFC	ECFC 4F	ECFC 4F	ECFC 4E	ECFC 4F	ECFC 4F	ECFC 4F	ECFC 4F	ECFC	ECFC 4F	ECFC	ECFC 4F	ECFC 4F
A	4E	HD Klon 1	Klon 1	Klon 2	4E Klon 2	Klon 3	Klon 3	4E Klon 4	HE Klon 4	Klon 5	Klon 5	Klon 6	HD Klon 6
		- Dox	+ Dox	- Dox	+ Dox	- Dox	+ Dox	- Dox	+ Dox	- Dox	+ Dox	- Dox	+ Dox
V1	6,79	n. v.	n. v.	7,20	4,03	1,08	2,18	n. v.	n. v.	n. v.	n. v.	n. v.	n. v.
V2	68,32	n. v.	n. v.	30,86	27,20	27,89	17,52	n. v.	n. v.	n. v.	n. v.	n. v.	n. v.
<u>V3</u>	2,59	1,19	0,63	9,81	0,36	6,86	2,92	2,93	12,96	1,58	1,53	2,29	1,34
V4 V5	2,14	1,64	0,58	4,31	1,80	14,47	1,53	9,38	10,02	1,34	0,85	9,55	2,34
V3 V6	20.17	8.14	3.61	24.12	4.38	37.43	14.22	43.85	30.78	7.13	11.51	8.51	6.29
MXX	20.40	4.50	1.00	16 69	6 71	10.19	12.02	26.01	25.20	7.46	0.07	10.02	2.07
SEM	20,40	4,52	0.74	4 24	4 14	5 71	5 15	12 16	25,36	4.32	4 89	4 43	1 10
(0)	0.4.4.4	0.070	0,005	0.047	0,404	0.040	0,075	,	0,050	0.004	.,00	0.407	0.575
p(S) n(A)	0,144	0,672	0,235	0.173	0,481	0 199	0,075	0,106	0,050	0,321	0,206	0,137	0,575
p (Pr)	-	0,145	0,129	0,506	0,085	0,891	0,387	0,112	0,042	0,232	0,219	0,834	0,173
									_				
Screen	PL	PL 1.	4 PL	1.4 H	PL 1.4	PL 1.4	PL 1.4	PL 1.4	PI	L 1.4 P	L 1.4	PL 1.4	PL 1.4
Α	1.4	- Doy		on I F	Dox	+ Dox	- Dox	+ Dox		Dox +	Dox	- Dox	+ Dox
V1	4.21	6.75	1.	92	n. v.	n. v.	n. v.	n. v.	n	. V.	1. V.	n. v.	n. v.
V2	53,10	10,48	3 15	,95	n. v.	n. v.	n. v.	n. v.	n	. V.	n. v.	n. v.	n. v.
V3	2,81	1,77	0,	75	2,42	1,37	3,60	0,49	1	,58	0,58	1,59	0,60
V4	2,61	0,77	0,	54	2,31	2,15	4,44	0,00	3	,15	J,22	2,33	0,07
V 5 V 6	15.10	15.9	1 4	18	8.72	3,40 8,19	15,17	0,00	0 8	.32	2.00	12,89	0.29
	40.00	0.40	,		10.00	0.70	,	0,00		,	4.00	0.40	0.00
MW SFM	18,96	8,43	4,	45	9 39	3,79	9,60	0,12	4	53	1,03	3,43	0,38
DENI	0,00	2,00	<u> </u>		0,00	1,00	0,20	0,12	-	,00	5,40	0,00	0,12
p(S)	0,105	0,012	2 0,8	326 (	0,200	0,799	0,011	0,181	0,	589 0	,198	0,080	0,188
p(A) p(Pr)	- 0,341	0,037	0,0	)81 (	0.250	0.263	0,088	0,077	0,	275 0	.184	0.293	0,076
<b>F</b> ()		-,	,-		,	0,200	•, •••	-,	-,		,	-,	•,•••
Screen		PL 4	PL 4	PL 4	PL 4	PL 4	PL 4	PL 4	PL 4	PL 4	PL 4	PL 4	PL 4
A	PL 4	Klon 1 Dov	Klon 1	Klon 2	Klon 2	Klon 3	Klon 3	Klon 4	Klon 4	Klon 5	Klon 5	Klon 6	Klon 6
V1	22.15	- Dox		- D0X		- D0X	+ D0X	- D0X	+ D0x	- DOX	+ DOX	- Dox	
V1 V2	46,04	n. v.	n. v.	n. v.	n. v.	93.96	88,31	n. v.	n. v.	n. v.	n. v.	n. v.	n. v.
V3	3,01	2,82	1,28	11,66	15,55	5,83	1,88	1,52	1,36	6,71	3,34	2,47	0,00
V4	3,44	2,14	3,04	9,80	3,35	4,35	2,52	2,59	0,20	6,08	2,72	4,93	0,00
V5	36,31	19,67	11,76	19,95	17,28	22,76	5,70	44,51	3,95	42,94	23,10	23,91	0,00
V O	1,19	10,71	0,82	22,02	10,32	13,82	2,38	17,30	0,93	30,60	13,41	21,09	0,00
MW	21,46	8,83	6,23	15,86	13,62	26,17	18,33	16,49	1,61	21,58	10,64	13,10	0,00
SEM	1,13	4,10	2,45	3,01	3,47	13,84	14,04	10,01	0,82	9,12	4,82	5,48	0,00
p (S)	0,061	0,127	0,046	0,001	0,033	0,158	0,340	0,228	0,259	0,087	0,106	0,070	0,162
$\mathbf{p}(\mathbf{A})$	0,511	0,063	0,074	0,163	0,148	0,874	0,583	0,025*	0,075	0,044*	0,061	0,069	0,075
p (Pr)	-	0,448	0,368	0,665	0,900	0,637	0,775	0,279	0,223	0,153	0,651	0,936	0,211

Tab. 7	Tab. 75: Expansion der CD133 ⁺ CD34 ⁺ Fraktion in Kokultur mit Einzelzellklon-Zelllinien (II)												
Screen B	Sus	AFT024	MSZ MNZ B	MNZ B Klon 1 - Dox	MNZ B Klon 1 + Dox	MNZ B Klon 2 - Dox	MNZ B Klon 2 + Dox	MNZ B Klon 3 - Dox	MNZ B Klon 3 + Dox				
V1	11,40	13,51	90,00	227,65	193,20	155,15	213,03	174,00	95,10				
V2	6,44	235,63	53,29	51,30	41,47	43,09	14,10	33,00	7,67				
V3	3,07	123,58	83,52	30,94	43,20	17,55	7,92	9,57	71,63				
MW SEM	6,97 2,42	124,24 64,12	75,60 11,31	103,30 62,45	92,62 50,29	71,93 42,26	78,35 67,36	72,19 51,35	58,13 26,13				
p (S)	-	0,216	0,024	0,251	0,217	0,245	0,387	0,315	0,181				
<b>p</b> (A)	-		0,582	0,878	0,802	0,654	0,751	0,681	0,538				
p (Pr)	-			0,674	0,735	0,932	0,968	0,948	0,362				
			-		-								
Screen B	MSZ Fett 7/11	Fett 7/11 Klon 1 - Dox	Fett 7/11 Klon 1 + Dox	Fett 7/11 Klon 2 - Dox	Fett 7/11 Klon 2 + Dox	Fett 7/11 Klon 4 - Dox	Fett 7/11 Klon 4 + Dox	Fett 7/11 Klon 5 - Dox	Fett 7/11 Klon 5 + Dox				
V1	144,42	42,12	23,04	67,00	118,75	6,60	193,16	112,28	119,90				
V2	24,03	38,64	32,34	32,12	34,32	0,78	36,48	32,88	33,60				
V3	28,42	56,94	41,15	29,38	49,00	0,64	36,24	23,04	53,00				
MW	65,62	45,90	32,18	42,83	67,36	2,67	88,63	56,07	68,83				
SEM	39,42	5,61	5,23	12,11	26,04	1,90	52,27	28,25	20,14				
p (S)	0,256	0,035	0,081	0,068	0,129	0,047*	0,244	0,199	0,125				
<b>p</b> ( <b>A</b> )	0,619	0,354	0,274	0,388	0,588	0,206	0,781	0,522	0,598				
p (Pr)		0,681	0,526	0,493	0,913	0,235	0,217	0,510	0,846				

Screen B	MSZ Fett 7/5	Fett 7/5 Klon 1 - Dox	Fett 7/5 Klon 1 + Dox	Fett 7/5 Klon 2 - Dox	Fett 7/5 Klon 2 + Dox
V1	156,60	80,86	35,19	82,32	29,70
V2	66,00	30,80	23,75	34,75	7,68
V3	25,48	34,32	14,56	21,00	6,51
MW	82,69	48,66	24,50	46,02	14,63
SEM	38,76	16,13	5,97	18,58	7,54
p (S)	0,173	0,097	0,039	0,138	0,289
<b>p</b> ( <b>A</b> )	0,703	0,439	0,278	0,426	0,261
p (Pr)		0,298	0,219	0,213	0,164

Alle Werte sind als x-fache Expansion angegeben. Abkürzungen: Sus = Suspension; MNZ = Mononukleäre Zellen aus den Knochenmark; HU = HUVEC; PL = PLVEC; Dox = Doxyzyklin; MW = Mittelwert; n. v. = nicht verfügbar/kontaminiert; p(S) = Signifikanzberechnung im Vergleich zur Suspension; p(A) = Signifikanzberechnung im Vergleich zur AFT024; p(Pr) = Signifikanzberechnung im Vergleich zu Zellen der primären Stromazellen (t-Test, zweiseitig, gepaart); Signifikanzen p<0,05 sind fett gedruckt dargestellt. Sind die Messwerte der Suspension bzw. mit der AFT024 signifikant höher, ist der Signifikanzwert mit einem *-Symbol markiert.

Tab. 7	Tab. 76: Expansion der CD133 ^{10W} CD34 ⁺ Fraktion in Kokultur mit Einzelzellklon-Zelllinien (I)												
Screen	Sus	А	FT024	HU C	HU	C Klon	HU C Klon	HU C	Klon	HU C Klon	HUCI	Klon I	IU C Klon
A V1	0.17		04 32	0.04	1-	1 / 8	1 + D0x	2-1	JUX	2 + D0X	3 - D	/UX	3 + D0X
VI V2	2.28		35.50	35.56	30	6.85	143.52	n. '	v. v.	n. v.	n. v	/. /.	n. v.
V3	0,00	2	20,88	1,83	0	,42	1,06	2,5	68	2,53	1,8	8	6,31
V4	0,11		14,02	0,80	4	,95	2,70	1,2	28	2,00	0,4	2	0,00
V5 V6	3,46	1	14,99	10,96	9	,21	19,36	6,8	50	5,87	13,4	15	7,14
	2,50		59,51	5,55	3	,03	13,07	10,-	50	1,10	5,2		2,70
MW SFM	1,43		54,80	10,61	63	3,79	32,13	5,3	0	4,54	5,2	4	4,06
SEM	0,02		20,04	3,24		5,15	22,40	2,1	0	1,50	2,3		1,00
p(S) n(A)	-		J,022	0,126	0,	260 854	0,226	0,0	82 11	0,028	0,18	33	0,196
p (Pr)	-		-	-	0,	282	0,270	0,8	01	0,892	0,55	55	0,720
Screen	HU F	HUF Klon 1	HUF Klon 1	Klon 2	HUF Klon 2	HUF Klon 3	HUF Klon 3	HUF Klon 4	HUF Klon 4	HUF Klon 5	Klon 5	Klon 6	HUF Klon 6
A		- Dox	+ Dox	- Dox	+ Dox	- Dox	+ Dox	- Dox	+ Dox	- Dox	+ Dox	- Dox	+ Dox
V1	8,32	2,52	7,20	28,33	11,35	58,93	132,2	11,07	0,34	n. v.	n. v.	n. v.	n. v.
V2 V3	42,12	27,11	21,59	96,59	79,96	109,7	191,2	2 28	0,72	n. v.	n. v. 3.08	n. v.	n. v.
V3 V4	0,70	1,02	1,45	1,02	5,10	1,13	12,39	12,66	0,00	1,64	2,42	1,12	0,00
V5	7,90	6,17	12,04	6,45	12,80	4,91	35,53	28,32	0,03	5,64	11,43	8,70	0,09
V6	6,53	3,15	4,20	14,79	18,70	5,83	45,50	27,59	0,00	5,89	7,39	5,22	0,06
MW	11,19	7,01	8,16	24,77	21,66	30,26	71,43	24,82	0,18	3,57	6,08	4,55	0,20
SEM	6,33	4,08	3,11	14,96	11,90	18,33	30,04	9,39	0,12	1,28	2,10	1,62	0,15
p (S)	0,171	0,208	0,061	0,176	0,143	0,176	0,067	0,048	0,099	0,025	0,036	0,040	0,258
<b>p</b> (A)	0,033*	0,025*	0,026*	0,161	0,082	0,320	0,611	0,062	0,023*	0,106	0,108	0,106	0,104
<b>P</b> ( <b>rr</b> )	-	0,139	0,440	0,104	0,120	0,190	0,059	0,022	0,137	0,425	0,045	0,560	0,121
		ECFC	ECFC	ECFC	ECFC	ECFC	ECFC	ECFC	ECFC	ECFC	ECFC	ECFC	ECFC
Screen	ECFC 4F	4E Klop 1	4E Klop 1	4E Klop 2	4E Klop 2	4E Klop 3	4E Klop 3	4E Klop 4	4E Klop 4	4E Klop 5	4E	4E Klop 6	4E Klop 6
A	4L	- Dox	+ Dox	- Dox	+ Dox	- Dox	+ Dox	- Dox	+ Dox	- Dox	+ Dox	- Dox	+ Dox
V1	20,02	n. v.	n. v.	29,92	24,09	37,81	50,34	n. v.	n. v.	n. v.	n. v.	n. v.	n. v.
V2	37,36	n. v.	n. v.	134,4	100,0	187,4	118,8	n. v.	n. v.	n. v.	n. v.	n. v.	n. v.
V3 V4	2,26	1,63	4,70	2,47	3,26	1,97	0,99	1,29	4,50	1,07	0,74	1,43	7,97
V4 V5	8.52	17.88	15.33	6.33	8.42	11.11	5.46	23.86	14.72	2.61	4.43	5.55	31.59
V6	7,75	25,82	16,62	11,40	14,23	5,70	3,02	9,25	5,76	1,60	2,09	4,37	33,12
MW	12,88	12,91	10,15	31,05	25,55	40,85	29,87	8,99	6,62	1,43	2,12	3,73	20,49
SEM	5,60	5,49	3,38	21,10	15,23	29,84	19,45	5,29	2,84	0,46	0,82	0,87	6,86
p (S)	0,091	0,097	0,043	0,217	0,170	0,242	0,202	0,196	0,099	0,844	0,201	0,015	0,051
<b>p</b> (A)	0,044*	0,125	0,119	0,331	0,168	0,647	0,315	0,088	0,104	0,104	0,104	0,111	0,147
p (Pr)	-	0,138	0,047*	0,304	0,263	0,307	0,279	0,369	0,415	0,090	0,106	0,400	0,055
Samoon	DI	PL 1.	4 PL	1.4 P	L 1.4	PL 1.4	PL 1.4	PL 1.4	PL	1.4 PI	. 1.4	PL 1.4	PL 1.4
A	1.4	Klon	1 Klo	on 1 K	lon 2	Klon 2	Klon 4	Klon 4	Kle	on 5 Kl	on 5	Klon 6	Klon 6
V1	7 92	- Do	K + 1 7 29	24 -	Dox	+ Dox	- Dox	+ Dox	-1	Jox +	Dox	- Dox	+ Dox
V1 V2	111.91	125.8	1 115	5,36	n. v.	n. v.	n. v.	n. v.	n.	v. n	. V.	n. v.	n. v.
V3	5,78	1,10	3,	33	2,13	2,62	0,87	2,57	1,	27 2	,00	1,48	4,33
V4	0,70	0,23	3,	60	1,67	2,85	1,05	0,00	2,	20 1	,67	0,37	0,10
V5 V6	9,74	8.79	0, 10	,12	4,10	8,68	7,68	0,00	3,	48 4	,03	1,92	0,34
MW	25.29	22.7	1 20	59	3 76	6.01	1.20	0.64		68 0	63	1.8/	1.20
SEM	17,43	20,6	1 17	,98	1,24	1,91	1,87	0,64	0.	58 0	,53	0,67	1,04
p (S)	0 223	0.19	3 01	76	021	0 023	0.086	0.550	0.0	)55 0	161	0.534	0.859
p (3) p (A)	0,158	0,38	B 0.2	.78 C	,106	0,110	0,104	0,108	0,0	109 0,	110	0,104	0,000
p (Pr)	-	0,45	7 0,4	186 C	,131	0,323	0,149	0,122	0,*	156 0,	165	0,097	0,154
		PI 4	PI 4	PL 4	PL 4	PL 4	PI 4	PL 4	PI 4	PI 4	PL 4	PI 4	PI 4
Screen	PL 4	Klon 1	Klon 1	Klon 2	Klon 2	Klon 3	Klon 3	Klon 4	Klon 4	Klon 5	Klon 5	Klon 6	Klon 6
A		- Dox	+ Dox	- Dox	+ Dox	- Dox	+ Dox	- Dox	+ Dox	- Dox	+ Dox	- Dox	+ Dox
V1 V2	51,44 46 70	n. v.	n. v.	n.v.	n.v.	23,23	25,87	n.v.	n. v.	n. v.	n. v.	n.v.	n. v.
V3	1,99	0,83	3,41	5,62	15,55	2,87	10,14	0,86	1,36	1,17	5,63	3,88	0,00
V4	2,20	0,37	2,55	1,09	3,04	0,93	3,38	0,81	2,24	1,33	3,68	1,15	0,00
V5	14,66	3,99	9,50	19,19	8,39	5,37	14,02	7,29	11,80	11,40	12,18	5,75	0,00
VO	ə,29	1,73	8,82	9,99	0,∠3	1,81	7,39	ა,08	7,40	4,56	5,90	3,15	0,00
MW	20,38	1,73	6,07	8,97	8,80	17,50	23,11	3,01	5,70	4,61	6,85	3,48	0,00
SEM	9,∠0	0,80	1,80	3,00	2,57	11,19	11,39	1,52	2,43	2,39	1,84	0,95	0,00
<b>p</b> ( <b>S</b> )	0,097	0,622	0,018	0,095	0,082	0,207	0,112	0,156	0,077	0,155	0,024	0,077	0,177
p (A) p (Pr)	-	0,102	0,112	0.122	0.548	0.694	0,114	0,100	0.766	0.104	0.567	0.345	0.135
/		,	,	. ,	. ,	.,	.,	, -=	,		,	,	,

Tab. 7	Tab. 77: Expansion der CD133 ^{low} CD34 ⁺ Fraktion in Kokultur mit Einzelzellklon-Zelllinien (II)												
Screen B	Sus	AFT024	MSZ MNZ B	MNZ B Klon 1 - Dox	MNZ B Klon 1 + Dox	MNZ B Klon 2 - Dox	MNZ B Klon 2 + Dox	MNZ B Klon 3 - Dox	MNZ B Klon 3 + Dox				
V1	0,72	161,36	6,48	20,30	12,32	24,36	11,34	19,72	5,70				
V2	3,56	366,13	18,45	15,00	16,53	31,00	8,70	15,18	4,59				
V3	1,04	137,78	9,28	12,48	6,48	17,28	6,60	5,28	13,17				
MW	1,77	221,75	11,40	15,93	11,78	24,21	8,88	13,39	7,82				
SEM	0,90	72,51	3,61	2,30	2,91	3,96	1,37	4,26	2,69				
p (S)	-	0,092	0,072	0,035	0,050	0,021	0,056	0,112	0,203				
p (A)	-	-	0,093	0,106	0,095	0,103	0,099	0,100	0,103				
p (Pr)	-	-	-	0,463	0,904	0,046	0,610	0,757	0,569				
		-											
Screen B	MSZ Fett 7/11	Fett 7/11 Klon 1 - Dox	Fett 7/11 Klon 1 + Dox	Fett 7/11 Klon 2 - Dox	Fett 7/11 Klon 2 + Dox	Fett 7/11 Klon 4 - Dox	Fett 7/11 Klon 4 + Dox	Fett 7/11 Klon 5 - Dox	Fett 7/11 Klon 5 + Dox				
V1	6,09	9,18	6,72	8,25	5,75	2,40	16,94	22,12	8,80				
V2	4,05	11,48	4,11	25,52	11,96	2,08	16,08	21,12	9,80				
V3	3,19	5,36	17,55	15,08	7,25	2,99	10,32	29,28	7,00				
MW	4,44	8,67	9,46	16,28	8,32	2,49	14,45	24,17	8,53				
SEM	0,86	1,79	4,11	5,02	1,87	0,27	2,08	2,57	0,82				
p (S)	0,203	0,034	0,242	0,074	0,022	0,581	0,024	0,019	0,010				
<b>p</b> (A)	0,096	0,095	0,107	0,095	0,095	0,095	0,101	0,117	0,097				
p (Pr)	-	0,121	0,395	0,168	0,245	0,192	0,021	0,025	0,044				

4,44	8,67		9,46			16,28	8,32	2,49	14,45
0,86	1,79		4,11		5,02		1,87	0,27	2,08
0,203	0,034		0,242		0,074		0,022	0,581	0,024
0,096	0,095		0,107			0,095	0,095	0,095	0,101
-	0,121		0,3	95		0,168	0,245	0,192	0,021
							_		
MSZ Fett 7/5	Fett 7/5 Klon 1 - Dox	Fe K +	ett 7/5 Ilon 1 · Dox	Fett 7 Klon - Do	7/5 2 x	Fett 7/5 Klon 2 + Dox	Alle Wer Abkürzung	rte sind als gen: Sus = S	s x-fache Suspension
4,35	3,64	2	2,30	2,64	4	2,43	Zellen au	s aen Knoch	nenmark;
10,80	10,12	1	1,50	7,7	5	4,32	PLVEC; I	Dox = Doxyzy	klin; p(S)
1,68	3.96		3.12	2.3	1	2.31	🗌 im Verglei	ich zur Suspen	ision; p (A)

3,02

0,65

0,045

0,093

0,339

4,23

1,76

0,109

0,091

0,329

Screen

B

V1

V2

**V3** 

MW

SEM

p (S)

**p** (A)

p (Pr)

5,61

2,71

<u>0,1</u>82

0,090

5,91

2,11

0,077

0,092

0,793

5,64

2,94

0,199

0,090

0,980

; MNZ = Mononukleäre HU = HUVEC; PL == Signifikanzberechnung ) = Signifikanzberechnung im Vergleich zur AFT024; p(Pr) = Signifikanzberechnungim Vergleich zu Zellen der primären Stromazellen (t-Test, zweiseitig, gepaart); Signifikanzen p<0,05 sind fett gedruckt dargestellt. Sind die Messwerte der Suspension bzw. mit der AFT024 signifikant höher, ist der Signifikanzwert mit einem *-Symbol markiert.

Expansion angegeben.

Tab. 78: Frequenz der CD133⁺CD34⁺ und CD133^{low}CD34⁺ Fraktion in Kokultur mit **Einzelzellklon-Zelllinien** 

CD	Sus	AFT024	MSZ MNZ B	MSZ MNZ B	MSZ Fett 7/11	ECFC 4E	ECFC 4E	PLVEC 4
133+	Bus	AF 1024	Klon 2	Klon 3	Klon 5	Klon 2	Klon 4	Klon 3
V1	4,31%	11,03%	9,37%	8,47%	4,50%	1,55%	3,84%	3,94%
V2	6,37%	11,98%	9,42%	7,44%	7,60%	2,27%	4,16%	3,54%
V3	3,88%	15,22%	8,04%	9,93%	9,57%	1,98%	3,19%	3,07%
V4	2,11%	5,74%	4,65%	4,21%	2,79%	0,62%	1,20%	1,44%
V5	4,07%	9,34%	8,60%	7,20%	8,66%	1,09%	2,63%	1,83%
N.//XX7	4 4 5 0 /	10.000/	0.000/	7 450/	C C 00/	1 500/	2.000/	0.700/
SEM	4,15%	10,00%	0,02%	7,45%	0,02%	1,50%	3,00%	2,76%
SEM	0,00%	1,30%	0,00%	0,94%	1,29%	0,30%	0,52%	0,49%
p (S)	-	0,008	0,001	0,018	0,091	0,004*	0,022*	0,046*
<b>p</b> (A)	-	-	0,087	0,011*	0,018*	0,002*	0,003*	0,003*
CD	Suc	A ET024	MSZ MNZ B	MSZ MNZ B	MSZ Fett 7/11	ECFC 4E	ECFC 4E	PLVEC 4
133 ^{low}	Sus	AF 1024	Klon 2	Klon 3	Klon 5	Klon 2	Klon 4	Klon 3
V1	2,22%	36,96%	4,57%	3,84%	4,50%	0,56%	2,84%	1,83%
V2	5,71%	36,01%	8,47%	7,41%	10,00%	1,54%	3,88%	2,97%
V3	0,82%	20,92%	1,70%	1,63%	2,60%	0,40%	0,87%	0,74%
V4	1,86%	18,26%	3,23%	3,83%	2,83%	0,58%	1,93%	0,84%
V5	1,08%	21,01%	2,64%	3,87%	3,71%	0,57%	2,35%	1,06%
MXX	2 2 4 0/	26 620/	4 1 20/	1 1 1 0/	4 720/	0 729/	2 270/	1 409/
SEM	2,34%	20,03%	4,12%	4,11%	4,73%	0,73%	2,37%	1,49%
SEM	0,88%	4,06%	1,18%	0,93%	1,36%	0,20%	0,50%	0,42%
p (S)	-	0,002	0,006	0,005	0,012	0,078	0,951	0,168

Abkürzungen: Sus = Suspension; MNZ = Mononukleäre Zellen aus den Knochenmark; MW = Mittelwert; p (S) = Signifikanzberechnung im Vergleich zurSuspension; p (A) = Signifikanzberechnung im Vergleich zur AFT024; (t-Test, zweiseitig, gepaart); Signifikanzen p<0,05 sind fett gedruckt dargestellt. Sind die Messwerte der Suspension bzw. mit der AFT024 signifikant höher, ist der Signifikanzwert mit einem *-Symbol markiert.

CD	Suc	A ET024	MSZ MNZ B	MSZ MNZ B	MSZ Fett 7/11	ECFC 4E	ECFC 4E	PLVEC 4
45 ⁺	Sus	AF 1024	Klon 2	Klon 3	Klon 5	Klon 2	Klon 4	Klon 3
V1	108,00	901,05	1126,50	1008,00	1330,50	1579,50	2035,50	1851,00
V2	68,25	804,00	990,00	1006,50	780,00	1161,00	1890,00	1416,00
V3	147,00	1498,50	2032,50	1233,00	774,00	2787,00	3706,50	2239,50
V4	241,50	1774,50	2482,50	1711,50	958,50	2578,50	3004,50	2748,00
V5	110,70	1671,00	1857,00	1470,00	1212,00	1741,50	3313,50	2407,50
MW	135 09	1329.81	1697 70	1285 80	1011 00	1969 50	2790.00	2132 40
SEM	65.69	448.03	628.59	305.42	252.37	688.65	796.76	514.42
<b>p</b> (S)	-	0,003	0,004	0,001	0,002	0,003	0,002	0,001
<b>p</b> (A)	-	-	0,026	0,646	0,242	0,036	0,002	0,001
CD 133 ⁺	Sus	AFT024	MSZ MNZ B Klon 2	MSZ MNZ B Klon 3	MSZ Fett 7/11 Klon 5	ECFC 4E Klon 2	ECFC 4E Klon 4	PLVEC 4 Klon 3
V1	4 65	99.36	105 51	85.35	59.85	24 45	78 15	72 90
V2	4,35	96.30	93.30	74.85	59,25	26,40	78,60	50,10
V3	5.70	228.00	163.50	122.40	74.10	55.20	118.20	68.85
V4	5,10	101,85	115,50	72,00	26,70	16,05	36,15	39,45
V5	4,50	156,00	159,65	105,90	105,00	19,05	87,00	43,95
MW	4.86	136.30	127.49	92.10	64.98	28.23	79.62	55.05
SEM	0,24	25,44	14,36	9,63	12,67	6,99	13,11	6,71
n ( <b>C</b> )		0.007	0.001	0.001	0.000	0.027	0.005	0.002
p(s)	-	0,007	0,001	0,001	0,009	0,027	0,005	0,002
<b>p</b> (A)	-	-	0,500	0,035	0,030	0,000	0,029	0,020
CD			MSZ MNZ B	MSZ MNZ B	MSZ Fett 7/11	ECFC 4E	ECFC 4E	PLVEC 4
133 ^{low}	Sus	AFT024	Klon 2	Klon 3	Klon 5	Klon 2	Klon 4	Klon 3
V1	2.40	333.00	51.45	38.70	59.85	8.82	57.75	33.90
V2	3,90	289,50	83,85	74,55	78,00	17,85	73,35	42,02
V3	1,20	313,50	34,50	20,10	20,10	11,10	32,25	16,65
V4	4,50	324,00	80,25	65,55	27,15	15,00	58,05	23,10
V5	1,20	351,00	49,05	56,85	45,00	9,90	77,85	25,50
MW	2.64	322.20	50.82	51 15	46.02	12 53	50.85	28.23
SEM	0.68	10.23	9.54	9.76	10.59	1.69	7.99	4.42
(0)		0.001	0.000	0.000	0.014	0.001	0.000	
$\mathbf{p}(\mathbf{S})$	-	0,001	0,003	0,006	0,014	0,001	0,002	0,004
<b>p</b> (A)	-	-	0,001	0,001	0,001	0,001	0,001	0,001
HSZ/							I	DI VEC 4
MDD	_		MSZ MNZ B	MSZ MNZ B	MSZ Fett 7/11	ECFC 4E	ECFC 4E	PLVEU 4
IVIT T	Sus	AFT024	MSZ MNZ B Klon 2	MSZ MNZ B Klon 3	MSZ Fett 7/11 Klon 5	ECFC 4E Klon 2	ECFC 4E Klon 4	Klon 3
V1	Sus 0,36	AFT024	MSZ MNZ B Klon 2 3,40	MSZ MNZ B Klon 3 1,85	MSZ Fett 7/11 Klon 5 2,80	ECFC 4E Klon 2 0,40	ECFC 4E Klon 4 7,66	FLVEC 4 Klon 3 1,23
V1 V2	Sus 0,36 1,15	AFT024 10,14 13,13	MSZ MNZ B Klon 2 3,40 9,89	MSZ MNZ B Klon 3 1,85 19,93	MSZ Fett 7/11 Klon 5 2,80 17,20	ECFC 4E Klon 2 0,40 2,14	ECFC 4E Klon 4 7,66 20,46	1,23 7,62
V1 V2 V3	Sus 0,36 1,15 2,84	AFT024 10,14 13,13 58,40	MSZ MNZ B Klon 2 3,40 9,89 31,59	MSZ MNZ B Klon 3 1,85 19,93 41,95	MSZ Fett 7/11 Klon 5 2,80 17,20 43,56	ECFC 4E Klon 2 0,40 2,14 13,12	ECFC 4E Klon 4 7,66 20,46 50,46	FLVEC 4        Klon 3        1,23        7,62        27,68
V1        V2        V3        V4	Sus 0,36 1,15 2,84 0,52	AFT024 10,14 13,13 58,40 9,12	MSZ MNZ B Klon 2 3,40 9,89 31,59 2,10	MSZ MNZ B Klon 3 1,85 19,93 41,95 5,96	MSZ Fett 7/11 Klon 5 2,80 17,20 43,56 6,27	ECFC 4E Klon 2 0,40 2,14 13,12 0,98	ECFC 4E Klon 4 7,66 20,46 50,46 4,82	Klon 3        1,23        7,62        27,68        2,32
WFF        V1        V2        V3        V4        V5	Sus 0,36 1,15 2,84 0,52 0,33	AFT024 10,14 13,13 58,40 9,12 15,61	MSZ MNZ B Klon 2 3,40 9,89 31,59 2,10 2,77	MSZ MNZ B Klon 3 1,85 19,93 41,95 5,96 8,40	MSZ Fett 7/11 Klon 5 2,80 17,20 43,56 6,27 8,43	ECFC 4E Klon 2 0,40 2,14 13,12 0,98 2,54	ECFC 4E Klon 4 7,66 20,46 50,46 4,82 6,94	FLVEC 4        Klon 3        1,23        7,62        27,68        2,32        2,78
WFF        V1        V2        V3        V4        V5        MW	Sus 0,36 1,15 2,84 0,52 0,33 1,04	AFT024 10,14 13,13 58,40 9,12 15,61 21,28	MSZ MNZ B Klon 2 3,40 9,89 31,59 2,10 2,77 9,95	MSZ MNZ B Klon 3 1,85 19,93 41,95 5,96 8,40 15.62	MSZ Fett 7/11 Klon 5 2,80 17,20 43,56 6,27 8,43 15.65	ECFC 4E Klon 2 0,40 2,14 13,12 0,98 2,54 3,84	ECFC 4E Klon 4 7,66 20,46 50,46 4,82 6,94 18.07	FLVEC 4        Klon 3        1,23        7,62        27,68        2,32        2,78        8,33
MFF        V1        V2        V3        V4        V5        MW        SEM	Sus 0,36 1,15 2,84 0,52 0,33 1,04 0,47	AFT024 10,14 13,13 58,40 9,12 15,61 21,28 9,35	MSZ MNZ B Klon 2 3,40 9,89 31,59 2,10 2,77 9,95 5,59	MSZ MNZ B Klon 3 1,85 19,93 41,95 5,96 8,40 15,62 7,23	MSZ Fett 7/11 Klon 5 2,80 17,20 43,56 6,27 8,43 15,65 7,37	ECFC 4E Klon 2 0,40 2,14 13,12 0,98 2,54 3,84 2,35	ECFC 4E Klon 4 7,66 20,46 50,46 4,82 6,94 18,07 8,55	FLVEC 4        Klon 3        1,23        7,62        27,68        2,32        2,78        8,33        4,96
MFF V1 V2 V3 V4 V5 MW SEM P (S)	Sus 0,36 1,15 2,84 0,52 0,33 1,04 0,47	AFT024 10,14 13,13 58,40 9,12 15,61 21,28 9,35 0.085	MSZ MNZ B Klon 2 3,40 9,89 31,59 2,10 2,77 9,95 5,59 0,157	MSZ MNZ B Klon 3 1,85 19,93 41,95 5,96 8,40 15,62 7,23 0,098	MSZ Fett 7/11 Klon 5 2,80 17,20 43,56 6,27 8,43 15,65 7,37 0,102	ECFC 4E Klon 2 0,40 2,14 13,12 0,98 2,54 3,84 2,35 0,216	ECFC 4E Klon 4 7,66 20,46 50,46 4,82 6,94 18,07 8,55	FLVEC 4        Klon 3        1,23        7,62        27,68        2,32        2,78        8,33        4,96        0,180
MFF V1 V2 V3 V4 V5 MW SEM p (S) p (A)	Sus 0,36 1,15 2,84 0,52 0,33 1,04 0,47 -	AFT024 10,14 13,13 58,40 9,12 15,61 21,28 9,35 0,085	MSZ MNZ B Klon 2 3,40 9,89 31,59 2,10 2,77 9,95 5,59 0,157 0,053	MSZ MNZ B Klon 3 1,85 19,93 41,95 5,96 8,40 15,62 7,23 0,098 0,209	MSZ Fett 7/11 Klon 5 2,80 17,20 43,56 6,27 8,43 15,65 7,37 0,102 0,143	ECFC 4E Klon 2 0,40 2,14 13,12 0,98 2,54 3,84 2,35 0,216 0,067	ECFC 4E Klon 4 7,66 20,46 50,46 4,82 6,94 18,07 8,55 0,103 0,326	PLVEC 4        Klon 3        1,23        7,62        27,68        2,32        2,78        8,33        4,96        0,180        0,048*
MFF V1 V2 V3 V4 V5 MW SEM p (S) p (A) A 112	Sus 0,36 1,15 2,84 0,52 0,33 1,04 0,47 - Warta size	AFT024 10,14 13,13 58,40 9,12 15,61 21,28 9,35 0,085 	MSZ MNZ B Klon 2 3,40 9,89 31,59 2,10 2,77 9,95 5,59 0,157 0,053 (cha Expand	MSZ MNZ B Klon 3 1,85 19,93 41,95 5,96 8,40 15,62 7,23 0,098 0,209 sion analysis	MSZ Fett 7/11 Klon 5 2,80 17,20 43,56 6,27 8,43 15,65 7,37 0,102 0,143 2,80 0,143	ECFC 4E Klon 2 0,40 2,14 13,12 0,98 2,54 3,84 2,35 0,216 0,067 ürzung an	ECFC 4E Klon 4 7,66 20,46 50,46 4,82 6,94 18,07 8,55 0,103 0,326 546 - 55	PLVEC 4        Klon 3        1,23        7,62        27,68        2,32        2,78        8,33        4,96        0,180        0,048*

Tab. 79: Expansion der CD45⁺, CD133⁺CD34⁺, CD133^{low}CD34⁺ und HSZ/MPP Fraktion in Kokultur mit Einzelzellklon-Zelllinien

Alle Werte sind als x-fache Expansion angegeben. Abkürzungen: Sus = Suspension; MNZ = Mononukleäre Zellen aus den Knochenmark; MW = Mittelwert; p(S) = Signifikanzberechnung im Vergleich zur Suspension; <math>p(A) = Signifikanzberechnung im Vergleich zur AFT024; (t-Test, zweiseitig, gepaart); Signifikanzen p<0,05 sind fett gedruckt dargestellt. Sind die Messwerte der Suspension bzw. mit der AFT024 signifikant höher, ist der Signifikanzwert mit einem *-Symbol markiert.

Zenni	nen			-			1	
BELLE	Sus	AFT024	MSZ MNZ B	MSZ MNZ B	MSZ Fett 7/11	ECFC 4E	ECFC 4E	PLVEC 4
DI C-L	505	AF 1024	Klon 2	Klon 3	Klon 5	Klon 2	Klon 4	Klon 3
V1	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
V2	0.00%	0.33%	0.00%	0.33%	0.00%	0.00%	0.00%	0.00%
V2 V2	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,0070
V3	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,07%
<u>V4</u>	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%
V5	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%
MXX	0.009/	0.079/	0.009/	0.079/	0.009/	0.009/	0.00%	0.120/
	0,00%	0,07%	0,00%	0,07%	0,00%	0,00%	0,00%	0,13%
SEM	0,00%	0,07%	0,00%	0,07%	0,00%	0,00%	0,00%	0,13%
n (S)	-	0 374	n v	0 374	n v	n v	n v	0 374
$\mathbf{p}(\mathbf{S})$		0,074	0.274	0,014	0.274	0.274	0.274	0,074
<b>p</b> (A)	-	-	0,374	11. V.	0,374	0,374	0,374	0,704
OFU		1	MCZ MNZ D	MOZ MNIZ D	M07 E 44 E/11	ECEC 4E	ECEC 4E	DI LIEC 4
CFU-	Sus	AFT024	MSZ MNZ B	MSZ MNZ B	MSZ Fett 7/11	ECFC 4E	ECFC 4E	PLVEC 4
M			KION 2	KIOD 3	KION 5	KION 2	KION 4	KIOD 3
V1	3,19%	5,00%	3,33%	3,67%	5,33%	3,21%	3,67%	5,33%
V2	0,68%	0,33%	1,67%	2,33%	1,67%	2,67%	1,67%	2,67%
V3	1,61%	1,00%	2,33%	2,67%	1,67%	2,07%	2,33%	2,00%
V4	3.95%	1.33%	1.67%	6.67%	5.84%	5.81%	2.29%	5.07%
V5	3 90%	1.33%	2 00%	2 67%	2 33%	2 34%	4 55%	6.22%
	-,,-	.,	_,	_,	_,	_,	.,,	-,/0
MW	2,67%	1,80%	2,20%	3,60%	3,37%	3,22%	2,90%	4,26%
SEM	0,65%	0,82%	0,31%	0,80%	0,92%	0,68%	0,52%	0,82%
		0.070	0.501	0.000	0.077	0.440	0.070	0.010
p (S)	-	0,350	0,531	0,228	0,357	0,443	0,650	0,012
<b>p</b> (A)	-	-	0,509	0,165	0,106	0,236	0,204	0,043
		-			-	-		
CEUC	Sma	A ET024	MSZ MNZ B	MSZ MNZ B	MSZ Fett 7/11	ECFC 4E	ECFC 4E	PLVEC 4
CFU-G	Sus	AF 1024	Klon 2	Klon 3	Klon 5	Klon 2	Klon 4	Klon 3
V1	7 45%	0.67%	1 67%	1 67%	1 67%	1 60%	0.33%	1 00%
V2	2 04%	2.67%	1 33%	1 33%	2.67%	2 33%	2 33%	3,00%
V2 V2	5 65%	0.67%	2.00%	1,33%	2,01%	1 65%	1,00%	3,00%
V3 V4	3,05%	1,00%	2,00%	1,00%	2,00%	2 2 2 2 0	2 9 2 9/	3,00%
V4 V5	3,95%	1,00%	2,00%	1,00%	1,1770	2,3370	3,02 /0	2,90 %
V5	3,90%	1,00%	1,33%	2,00%	3,33%	3,13%	1,30%	2,59%
MW	4 60%	1 20%	1 67%	1 47%	2 17%	2 21%	1 76%	2 50%
SEM	0.91%	0.37%	0.15%	0.17%	0.38%	0.28%	0.61%	0.38%
<b>DEN</b>	0,0170	0,0170	0,1070	0,1170	0,0070	0,2070	0,0170	0,0070
p (S)	-	0,052	0,027*	0,025*	0,099	0,099	0,111	0,164
<b>p</b> (A)	-	-	0,385	0,577	0,084	0,064	0,394	0,034
CFU-	a		MSZ MNZ B	MSZ MNZ B	MSZ Fett 7/11	ECFC 4E	ECFC 4E	PLVEC 4
GM	Sus	AF 1024	Klon 2	Klon 3	Klon 5	Klon 2	Klon 4	Klon 3
V1	5 32%	1.67%	4 33%	1 33%	1.00%	2 14%	2.67%	3 33%
V1 V2	1 26%	1,07%	2,00%	2.67%	2 2 2 2 %	1 67%	2,01%	1 22%
<u>V2</u> <u>V2</u>	T,30 /6	1,00%	2,00%	2,07 /0	2,3370	1,07 /0	2,00%	1,3370
V3	5,65%	1,00%	1,07%	2,33%	3,33%	4,13%	1,33%	2,07%
<u>V4</u>	5,26%	0,33%	3,00%	1,67%	3,89%	1,16%	0,00%	0,00%
V5	6,49%	1,67%	1,00%	0,33%	1,00%	0,78%	1,30%	1,55%
MXX	1 9 20/	1 1 20/	2 40%	1 67%	2 210/	1 0.9%	1 /6%	1 790/
SEM	-,02 /0	0.25%	0.599/	0.449/	0.50%	0.50%	0.4.49/	0.590/
SEM	0,09%	0,23%	0,58%	0,41%	0,59%	0,59%	0,44%	0,38%
p (S)	-	0,013*	0,089	0,061	0,091	0,052	0,038*	0,035*
$\mathbf{n}(\mathbf{A})$	-	-	0 117	0.412	0.229	0.263	0.341	0.209
<b>P</b> (12)			0,111	0,112	0,220	0,200	0,011	0,200
CEU			MSZ MNZ P	MSZ MNZ P	MSZ Fett 7/11	ECEC 4E	ECEC 4F	PLVFC 4
MIX	Sus	AFT024	Klon 2	Klon 3	Klon 5	Klop 2	Klop 4	Klon 3
NH2X	0.000/	0.000/	A 0.000/	0.000/	0.000/	A 0.000/	0.000/	0.000/
V1	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%
V2	0,00%	0,00%	0,33%	0,33%	0,00%	0,67%	0,00%	0,00%
V3	0,00%	0,00%	0,00%	0,00%	0,00%	0,41%	0,00%	0,00%
V4	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%
V5	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%
	0.000/	0.000/	0.070/	0.070/	0.000/	0.000/	0.000/	0.000
MW	0,00%	0,00%	0,07%	0,07%	0,00%	0,22%	0,00%	0,00%
SEM	0,00%	0,00%	0,07%	0,07%	0,00%	0,14%	0,00%	0,00%
n (6)		n.v.	0.274	0.274	n 1/	0.102	n. v	<b>D</b> 14
p (8)	-	11. V.	0,374	0,374	11. V.	0,193	11. V.	11. V.
p (A)	-	-	0,374	0,374	n. v.	0,193	n. v.	n. v.
		a			· · · · · · ·	-	** *	1 1 1 1 1 1 1

Tab. 80: Qualität der CFCs in der CD133⁺CD34⁺ Fraktion in Kokultur mit Einzelzellklon-Zelllinien

Abkürzungen: Sus = Suspension; MNZ = Mononukleäre Zellen aus den Knochenmark; MW = Mittelwert; p (S) = Signifikanzberechnung im Vergleich zur Suspension; p (A) = Signifikanzberechnung im Vergleich zur AFT024; (t-Test, zweiseitig, gepaart); Signifikanzen p<0,05 sind fett gedruckt dargestellt. Sind die Messwerte der Suspension bzw. mit der AFT024 signifikant höher, ist der Signifikanzwert mit einem *-Symbol markiert.

Zemm			MSZ MNZ D	MSZ MNZ D	MS7 Eatt 7/11	ECEC 4E	ECEC 4E	DI VEC 4
BFU-E	Sus	AFT024	Klon 2	Klon 3	Klon 5	Klon 2	Klon 4	Klon 3
V1	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
V2	0,00%	0,00%	0,00%	0,00%	0,33%	0,33%	0,00%	0,00%
V3	0,60%	1,67%	0,00%	0,33%	0,00%	0,00%	0,00%	0,67%
V4	0,74%	0,67%	0,00%	0,33%	0,00%	0,00%	0,67%	0,00%
V5	0,00%	0,00%	0,33%	0,00%	0,00%	0,00%	0,00%	0,00%
MW	0.27%	0.47%	0.07%	0.13%	0.07%	0.07%	0.13%	0.13%
SEM	0.17%	0.33%	0.07%	0.08%	0.07%	0.07%	0.13%	0.13%
<u>Juin</u>	0,1170	0,0070	0,0170	0,0070	0,0170	0,0170	0,1070	0,1070
<b>p</b> (S)	-	0,413	0,375	0,190	0,375	0,375	0,314	0,426
p (A)	-	-	0,324	0,266	0,324	0,324	0,374	0,189
CFU-	Sus	AFT024	MSZ MNZ B	MSZ MNZ B	MSZ Fett 7/11	ECFC 4E	ECFC 4E	PLVEC 4
NI V1	0.000/	1.000/	<b>Kion</b> 2	Kion 3	Kion 5	Kion 2	Kion 4	<b>KIOH 3</b>
V1 V2	0,00%	0.67%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%
V2 V3	0,00%	0,07 %	0,00%	0,00%	0,00%	0,00%	0,00%	2,00%
V3 V4	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0.00%
V5	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
MX	0.00%	0.40%	0.07%	0.12%	0.00%	0.00%	0.07%	0.19%
SEM	0,00%	0,19%	0,07%	0,13%	0,00%	0,00%	0,07%	0,39%
n (S)	_	0 109	0.374	0.374	n v	n v	0.374	0.281
<b>p</b> (S) <b>p</b> (A)	-	-	0,142	0,338	0,109	0,109	0,142	0,878
CFU-G	Sus	AFT024	MSZ MNZ B Klon 2	MSZ MNZ B Klon 3	MSZ Fett 7/11 Klon 5	ECFC 4E Klon 2	ECFC 4E Klon 4	PLVEC 4 Klon 3
V1	2 72%	2 33%	0.67%	0.67%	1 00%	0.67%	0.33%	1 44%
V2	3.51%	3.33%	0.67%	1.33%	1,67%	0.33%	0.33%	0.41%
V3	2.40%	4.00%	0.61%	0.00%	1.13%	0.00%	0.00%	3.00%
V4	5,93%	4,33%	5,97%	2,00%	1,76%	0,67%	0,00%	4,17%
V5	1,01%	1,67%	0,00%	0,33%	0,82%	0,33%	0,33%	0,00%
MW	3.11%	3.13%	1.58%	0.87%	1.28%	0.40%	0.20%	1.80%
SEM	0,81%	0,50%	1,10%	0,36%	0,19%	0,12%	0,08%	0,79%
n (S)		0.060	0.036*	0.012*	0.049*	0.023*	0.027*	0.004
<b>p</b> (B) <b>p</b> (A)	-	-	0,146	0,008*	0,008*	0,007*	0,007*	0,046*
		•	- / -		,	,		
CFU- GM	Sus	AFT024	MSZ MNZ B Klon 2	MSZ MNZ B Klon 3	MSZ Fett 7/11 Klon 5	ECFC 4E Klon 2	ECFC 4E Klon 4	PLVEC 4 Klon 3
V1	0,00%	0,33%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%
V2	0,00%	0,33%	0,33%	0,00%	0,00%	0,00%	0,00%	0,00%
V3	0,00%	0,33%	0,00%	0,00%	0,00%	0,00%	0,33%	2,67%
V4	0,00%	0,67%	0,75%	0,33%	0,00%	0,00%	0,00%	0,00%
V5	0,00%	0,33%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%
MW	0,00%	0,40%	0,22%	0,07%	0,00%	0,00%	0,07%	0,53%
SEM	0,00%	0,07%	0,15%	0,07%	0,00%	0,00%	0,07%	0,53%
p (S)	-	0,004	0,217	0,374	n. v.	n. v.	0,374	0,374
p (A)	-	-	0,117	n. v.	0,004*	0,004*	0,034*	0,822
CFU-	a		MSZ MNZ B	MSZ MNZ B	MSZ Fett 7/11	ECFC 4E	ECFC 4E	PLVEC 4
MIX	Sus	AF'1024	Klon 2	Klon 3	Klon 5	Klon 2	Klon 4	Klon 3
V1	2,17%	0,00%	0,67%	0,00%	0,33%	0,00%	0,33%	0,00%
V2	0,00%	0,33%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%
V3	0,60%	1,00%	0,61%	0,33%	0,00%	0,33%	0,00%	0,00%
V4	0,00%	1,00%	0,75%	1,33%	0,44%	0,00%	0,00%	0,00%
V5	0,00%	0,00%	0,00%	0,00%	0,41%	0,00%	0,00%	0,00%
MW	0,55%	0,47%	0,40%	0,33%	0,24%	0,07%	0,07%	0,00%
SEM	0,42%	0,23%	0,17%	0,26%	0,10%	0,07%	0,07%	0,00%
n (S)	-	0.880	0.703	0.714	0.496	0.315	0.244	0.258
<b>p</b> (A)	-	-	0,763	0,477	0,441	0,109	0,208	0,108
/				16 1	1 7 .11	2,700	17 1	1 1 1 1 1 1 1

Tab. 81: Qualität der CFCs in der CD133^{low}CD34⁺ Fraktion in Kokultur mit Einzelzellklon-Zelllinien

Abkürzungen: Sus = Suspension; MNZ = Mononukleäre Zellen aus den Knochenmark; MW = Mittelwert; p (S) = Signifikanzberechnung im Vergleich zur Suspension; p (A) = Signifikanzberechnung im Vergleich zur AFT024; (t-Test, zweiseitig, gepaart); Signifikanzen p<0,05 sind fett gedruckt dargestellt. Sind die Messwerte der Suspension bzw. mit der AFT024 signifikant höher, ist der Signifikanzwert mit einem *-Symbol markiert.

#### 7. Literaturverzeichnis

- Adolfsson, J., Mansson, R., Buza-Vidas, N., Hultquist, A., Liuba, K., Jensen, C.T., Bryder, D., Yang, L., Borge, O.J., Thoren, L.A., *et al.* (2005). Identification of Flt3+ lympho-myeloid stem cells lacking erythro-megakaryocytic potential a revised road map for adult blood lineage commitment. Cell *121*, 295-306.
- Ahuja, D., Saenz-Robles, M.T., and Pipas, J.M. (2005). SV40 large T antigen targets multiple cellular pathways to elicit cellular transformation. Oncogene 24, 7729-7745.
- Alexander, C.M., Puchalski, J., Klos, K.S., Badders, N., Ailles, L., Kim, C.F., Dirks, P., and Smalley, M.J. (2009). Separating stem cells by flow cytometry: reducing variability for solid tissues. Cell Stem Cell 5, 579-583.
- Alter, G., Malenfant, J.M., and Altfeld, M. (2004). CD107a as a functional marker for the identification of natural killer cell activity. Journal of immunological methods 294, 15-22.
- Artavanis-Tsakonas, S., Rand, M.D., and Lake, R.J. (1999). Notch signaling: cell fate control and signal integration in development. Science 284, 770-776.
- Awong, G., Herer, E., Surh, C.D., Dick, J.E., La Motte-Mohs, R.N., and Zuniga-Pflucker, J.C. (2009). Characterization in vitro and engraftment potential in vivo of human progenitor T cells generated from hematopoietic stem cells. Blood 114, 972-982.
- Baltimore, D. (1970). RNA-dependent DNA polymerase in virions of RNA tumour viruses. Nature 226, 1209-1211.
- Banu, N., Wang, J.F., Deng, B., Groopman, J.E., and Avraham, H. (1995). Modulation of megakaryocytopoiesis by thrombopoietin: the c-Mpl ligand. Blood *86*, 1331-1338.
- Beckmann, J., Scheitza, S., Wernet, P., Fischer, J.C., and Giebel, B. (2007). Asymmetric cell division within the human hematopoietic stem and progenitor cell compartment: identification of asymmetrically segregating proteins. Blood *109*, 5494-5501.
- Bell, J.J., and Bhandoola, A. (2008). The earliest thymic progenitors for T cells possess myeloid lineage potential. Nature 452, 764-767.
- Bennaceur-Griscelli, A., Tourino, C., Izac, B., Vainchenker, W., and Coulombel, L. (1999). Murine stromal cells counteract the loss of long-term culture-initiating cell potential induced by cytokines in CD34(+)CD38(low/neg) human bone marrow cells. Blood 94, 529-538.
- Benveniste, P., Serra, P., Dervovic, D., Herer, E., Knowles, G., Mohtashami, M., and Zuniga-Pflucker, J.C. (2013). Notch signals are required for in vitro but not in vivo maintenance of human hematopoietic stem cells and delay the appearance of multipotent progenitors. Blood.
- Berardi, A.C., Meffre, E., Pflumio, F., Katz, A., Vainchenker, W., Schiff, C., and Coulombel, L. (1997). Individual CD34+CD38lowCD19-CD10- progenitor cells from human cord blood generate B lymphocytes and granulocytes. Blood 89, 3554-3564.
- Berendsen, A.D., and Olsen, B.R. (2014). How Vascular Endothelial Growth Factor-A (VEGF) Regulates Differentiation of Mesenchymal Stem Cells. The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.
- Beziat, V., Duffy, D., Quoc, S.N., Le Garff-Tavernier, M., Decocq, J., Combadiere, B., Debre, P., and Vieillard, V. (2011). CD56brightCD16+ NK cells: a functional intermediate stage of NK cell differentiation. J Immunol 186, 6753-6761.
- Bigas, A., D'Altri, T., and Espinosa, L. (2012). The Notch pathway in hematopoietic stem cells. Current topics in microbiology and immunology *360*, 1-18.
- Bigas, A., and Espinosa, L. (2012). Hematopoietic stem cells: to be or Notch to be. Blood 119, 3226-3235.
- Boussif, O., Lezoualc'h, F., Zanta, M.A., Mergny, M.D., Scherman, D., Demeneix, B., and Behr, J.P. (1995). A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci U S A 92, 7297-7301.
- Boyer, L., Robert, A., Proulx, C., and Pineault, N. (2008). Increased production of megakaryocytes near purity from cord blood CD34+ cells using a short two-phase culture system. Journal of immunological methods *332*, 82-91.
- Brack, C., Hirama, M., Lenhard-Schuller, R., and Tonegawa, S. (1978). A complete immunoglobulin gene is created by somatic recombination. Cell 15, 1-14.
- Bradley, T.R., and Metcalf, D. (1966). The growth of mouse bone marrow cells in vitro. The Australian journal of experimental biology and medical science 44, 287-299.
- Bramono, D.S., Rider, D.A., Murali, S., Nurcombe, V., and Cool, S.M. (2011). The effect of human bone marrow stromaderived heparan sulfate on the ex vivo expansion of human cord blood hematopoietic stem cells. Pharmaceutical research 28, 1385-1394.
- Breems, D.A., Blokland, E.A., Siebel, K.E., Mayen, A.E., Engels, L.J., and Ploemacher, R.E. (1998). Stroma-contact prevents loss of hematopoietic stem cell quality during ex vivo expansion of CD34+ mobilized peripheral blood stem cells. Blood 91, 111-117.
- Bruno, E., Briddell, R., and Hoffman, R. (1988). Effect of recombinant and purified hematopoietic growth factors on human megakaryocyte colony formation. Exp Hematol *16*, 371-377.
- Bruno, S., Gunetti, M., Gammaitoni, L., Dane, A., Cavalloni, G., Sanavio, F., Fagioli, F., Aglietta, M., and Piacibello, W. (2003). In vitro and in vivo megakaryocyte differentiation of fresh and ex-vivo expanded cord blood cells: rapid and transient megakaryocyte reconstitution. Haematologica 88, 379-387.
- Butler, J.M., Nolan, D.J., Vertes, E.L., Varnum-Finney, B., Kobayashi, H., Hooper, A.T., Seandel, M., Shido, K., White, I.A., Kobayashi, M., *et al.* (2010). Endothelial cells are essential for the self-renewal and repopulation of Notchdependent hematopoietic stem cells. Cell Stem Cell 6, 251-264.
- Calvi, L.M., Adams, G.B., Weibrecht, K.W., Weber, J.M., Olson, D.P., Knight, M.C., Martin, R.P., Schipani, E., Divieti, P., Bringhurst, F.R., *et al.* (2003). Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425, 841-846.

- Chang, K.C., Wang, C., and Wang, H. (2012). Balancing self-renewal and differentiation by asymmetric division: insights from brain tumor suppressors in Drosophila neural stem cells. BioEssays : news and reviews in molecular, cellular and developmental biology 34, 301-310.
- Chazen, G.D., Pereira, G.M., LeGros, G., Gillis, S., and Shevach, E.M. (1989). Interleukin 7 is a T-cell growth factor. Proc Natl Acad Sci U S A 86, 5923-5927.
- Chen, Q., Khoury, M., and Chen, J. (2009). Expression of human cytokines dramatically improves reconstitution of specific human-blood lineage cells in humanized mice. Proc Natl Acad Sci U S A *106*, 21783-21788.
- Chung, C.T., Niemela, S.L., and Miller, R.H. (1989). One-step preparation of competent Escherichia coli: transformation and storage of bacterial cells in the same solution. Proc Natl Acad Sci U S A *86*, 2172-2175.
- Chung, Y.S., Choi, B., Kwon, C.H., Joh, J.W., and Kim, S.J. (2010). AFT024 cell line in co-culture system using high pore density insert (HPDI) maintains hematopoietic stem/progenitor cells (HSCs/HPCs) as more primitive state through histone modification. Transplantation proceedings 42, 4611-4618.
- Chute, J.P., Muramoto, G.G., Fung, J., and Oxford, C. (2005). Soluble factors elaborated by human brain endothelial cells induce the concomitant expansion of purified human BM CD34+CD38- cells and SCID-repopulating cells. Blood *105*, 576-583.
- Chute, J.P., Saini, A.A., Chute, D.J., Wells, M.R., Clark, W.B., Harlan, D.M., Park, J., Stull, M.K., Civin, C., and Davis, T.A. (2002). Ex vivo culture with human brain endothelial cells increases the SCID-repopulating capacity of adult human bone marrow. Blood *100*, 4433-4439.
- Cicalese, A., Bonizzi, G., Pasi, C.E., Faretta, M., Ronzoni, S., Giulini, B., Brisken, C., Minucci, S., Di Fiore, P.P., and Pelicci, P.G. (2009). The tumor suppressor p53 regulates polarity of self-renewing divisions in mammary stem cells. Cell *138*, 1083-1095.
- Civin, C.I., Strauss, L.C., Brovall, C., Fackler, M.J., Schwartz, J.F., and Shaper, J.H. (1984). Antigenic analysis of hematopoiesis. III. A hematopoietic progenitor cell surface antigen defined by a monoclonal antibody raised against KG-1a cells. J Immunol 133, 157-165.
- Collins, L.S., and Dorshkind, K. (1987). A stromal cell line from myeloid long-term bone marrow cultures can support myelopoiesis and B lymphopoiesis. J Immunol *138*, 1082-1087.
- Crabtree, B., and Subramanian, V. (2007). Behavior of endothelial cells on Matrigel and development of a method for a rapid and reproducible in vitro angiogenesis assay. In vitro cellular & developmental biology Animal 43, 87-94.
- Dagert, M., and Ehrlich, S.D. (1979). Prolonged incubation in calcium chloride improves the competence of Escherichia coli cells. Gene *6*, 23-28.
- Dahlberg, A., Delaney, C., and Bernstein, I.D. (2011). Ex vivo expansion of human hematopoietic stem and progenitor cells. Blood 117, 6083-6090.
- De Angeli, S., Baiguera, S., Del Pup, L., Pavan, E., Gajo, G.B., Di Liddo, R., Conconi, M.T., Grandi, C., Schiavon, O., and Parnigotto, P.P. (2009). Middle-term expansion of hematopoietic cord blood cells with new human stromal cell line feeder-layers and different cytokine cocktails. International journal of molecular medicine 24, 837-845.
- de Lima, M., McNiece, I., Robinson, S.N., Munsell, M., Eapen, M., Horowitz, M., Alousi, A., Saliba, R., McMannis, J.D., Kaur, I., *et al.* (2012). Cord-blood engraftment with ex vivo mesenchymal-cell coculture. N Engl J Med *367*, 2305-2315.
- Denecke, B., Horsch, L.D., Radtke, S., Fischer, J.C., Horn, P.A., and Giebel, B. (2013). Human endothelial colony-forming cells expanded with an improved protocol are a useful endothelial cell source for scaffold-based tissue engineering. Journal of tissue engineering and regenerative medicine.
- Deuschle, U., Meyer, W.K., and Thiesen, H.J. (1995). Tetracycline-reversible silencing of eukaryotic promoters. Molecular and cellular biology 15, 1907-1914.
- Ding, L., and Morrison, S.J. (2013). Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. Nature 495, 231-235.
- Doan, P.L., Himburg, H.A., Helms, K., Russell, J.L., Fixsen, E., Quarmyne, M., Harris, J.R., Deoliviera, D., Sullivan, J.M., Chao, N.J., *et al.* (2013). Epidermal growth factor regulates hematopoietic regeneration after radiation injury. Nat Med 19, 295-304.
- Dolznig, H., Habermann, B., Stangl, K., Deiner, E.M., Moriggl, R., Beug, H., and Mullner, E.W. (2002). Apoptosis protection by the Epo target Bcl-X(L) allows factor-independent differentiation of primary erythroblasts. Current biology : CB *12*, 1076-1085.
- Dooley, D.C., Oppenlander, B.K., Spurgin, P., Mead, J.H., Novak, F.P., Plunkett, M., Beckstead, J., and Heinrich, M.C. (1995). Basic fibroblast growth factor and epidermal growth factor downmodulate the growth of hematopoietic cells in long-term stromal cultures. J Cell Physiol 165, 386-397.
- Dorn, I., Lazar-Karsten, P., Boie, S., Ribbat, J., Hartwig, D., Driller, B., Kirchner, H., and Schlenke, P. (2008). In vitro proliferation and differentiation of human CD34+ cells from peripheral blood into mature red blood cells with two different cell culture systems. Transfusion 48, 1122-1132.
- Doulatov, S., Notta, F., Eppert, K., Nguyen, L.T., Ohashi, P.S., and Dick, J.E. (2010). Revised map of the human progenitor hierarchy shows the origin of macrophages and dendritic cells in early lymphoid development. Nat Immunol 11, 585-593.
- DuBridge, R.B., Tang, P., Hsia, H.C., Leong, P.M., Miller, J.H., and Calos, M.P. (1987). Analysis of mutation in human cells by using an Epstein-Barr virus shuttle system. Molecular and cellular biology *7*, 379-387.
- Eisenman, J., Ahdieh, M., Beers, C., Brasel, K., Kennedy, M.K., Le, T., Bonnert, T.P., Paxton, R.J., and Park, L.S. (2002). Interleukin-15 interactions with interleukin-15 receptor complexes: characterization and species specificity. Cytokine 20, 121-129.
- Emmrich, S., Henke, K., Hegermann, J., Ochs, M., Reinhardt, D., and Klusmann, J.H. (2012). miRNAs can increase the efficiency of ex vivo platelet generation. Ann Hematol *91*, 1673-1684.

- Fan, X., Gay, F.P., Ong, S.Y., Ang, J.M., Chu, P.P., Bari, S., Lim, T.K., and Hwang, W.Y. (2013). Mesenchymal stromal cell supported umbilical cord blood ex vivo expansion enhances regulatory T cells and reduces graft versus host disease. Cytotherapy 15, 610-619.
- Fernandez-Sanchez, V., Pelayo, R., Flores-Guzman, P., Flores-Figueroa, E., Villanueva-Toledo, J., Garrido, E., Ruiz-Sanchez, E., Alvarez-Sanchez, E., and Mayani, H. (2011). In vitro effects of stromal cells expressing different levels of Jagged-1 and Delta-1 on the growth of primitive and intermediate CD34(+) cell subsets from human cord blood. Blood Cells Mol Dis 47, 205-213.
- Ferreira, M.S., Jahnen-Dechent, W., Labude, N., Bovi, M., Hieronymus, T., Zenke, M., Schneider, R.K., and Neuss, S. (2012). Cord blood-hematopoietic stem cell expansion in 3D fibrin scaffolds with stromal support. Biomaterials 33, 6987-6997.
- Feugier, P., Li, N., Jo, D.Y., Shieh, J.H., MacKenzie, K.L., Lesesve, J.F., Latger-Cannard, V., Bensoussan, D., Crystal, R.G., Rafii, S., *et al.* (2005). Osteopetrotic mouse stroma with thrombopoietin, c-kit ligand, and flk-2 ligand supports long-term mobilized CD34+ hematopoiesis in vitro. Stem Cells Dev 14, 505-516.
- Fixe, P., and Praloran, V. (1997). Macrophage colony-stimulating-factor (M-CSF or CSF-1) and its receptor: structurefunction relationships. European cytokine network *8*, 125-136.
- Fulwyler, M.J. (1965). Electronic separation of biological cells by volume. Science 150, 910-911.
- Gallacher, L., Murdoch, B., Wu, D.M., Karanu, F.N., Keeney, M., and Bhatia, M. (2000). Isolation and characterization of human CD34(-)Lin(-) and CD34(+)Lin(-) hematopoietic stem cells using cell surface markers AC133 and CD7. Blood 95, 2813-2820.
- Galy, A., Travis, M., Cen, D., and Chen, B. (1995). Human T, B, natural killer, and dendritic cells arise from a common bone marrow progenitor cell subset. Immunity *3*, 459-473.
- Gan, O.I., Murdoch, B., Larochelle, A., and Dick, J.E. (1997). Differential maintenance of primitive human SCIDrepopulating cells, clonogenic progenitors, and long-term culture-initiating cells after incubation on human bone marrow stromal cells. Blood 90, 641-650.
- Giebel, B., Corbeil, D., Beckmann, J., Hohn, J., Freund, D., Giesen, K., Fischer, J., Kogler, G., and Wernet, P. (2004). Segregation of lipid raft markers including CD133 in polarized human hematopoietic stem and progenitor cells. Blood 104, 2332-2338.
- Giebel, B., Zhang, T., Beckmann, J., Spanholtz, J., Wernet, P., Ho, A.D., and Punzel, M. (2006). Primitive human hematopoietic cells give rise to differentially specified daughter cells upon their initial cell division. Blood 107, 2146-2152.
- Görgens, A., Radtke, S., Horn, P.A., and Giebel, B. (2013a). New relationships of human hematopoietic lineages facilitate detection of multipotent hematopoietic stem and progenitor cells. Cell Cycle *12*.
- Görgens, A., Radtke, S., Mollmann, M., Cross, M., Durig, J., Horn, P.A., and Giebel, B. (2013b). Revision of the human hematopoietic tree: granulocyte subtypes derive from distinct hematopoietic lineages. Cell reports *3*, 1539-1552.
- Goula, D., Remy, J.S., Erbacher, P., Wasowicz, M., Levi, G., Abdallah, B., and Demeneix, B.A. (1998). Size, diffusibility and transfection performance of linear PEI/DNA complexes in the mouse central nervous system. Gene Ther 5, 712-717.
- Graham, F.L., Smiley, J., Russell, W.C., and Nairn, R. (1977). Characteristics of a human cell line transformed by DNA from human adenovirus type 5. The Journal of general virology *36*, 59-74.
- Greenbaum, A., Hsu, Y.M., Day, R.B., Schuettpelz, L.G., Christopher, M.J., Borgerding, J.N., Nagasawa, T., and Link, D.C. (2013). CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance. Nature 495, 227-230.
- Guerriero, R., Mattia, G., Testa, U., Chelucci, C., Macioce, G., Casella, I., Samoggia, P., Peschle, C., and Hassan, H.J. (2001). Stromal cell-derived factor 1alpha increases polyploidization of megakaryocytes generated by human hematopoietic progenitor cells. Blood 97, 2587-2595.
- Haddad, R., Guimiot, F., Six, E., Jourquin, F., Setterblad, N., Kahn, E., Yagello, M., Schiffer, C., Andre-Schmutz, I., Cavazzana-Calvo, M., *et al.* (2006). Dynamics of thymus-colonizing cells during human development. Immunity 24, 217-230.
- Hammoud, M., Vlaski, M., Duchez, P., Chevaleyre, J., Lafarge, X., Boiron, J.M., Praloran, V., Brunet de la Grange, P., and Ivanovic, Z. (2012). Combination of low O(2) concentration and mesenchymal stromal cells during culture of cord blood CD34(+) cells improves the maintenance and proliferative capacity of hematopoietic stem cells. J Cell Physiol 227, 2750-2758.
- Hao, Q.L., Thiemann, F.T., Petersen, D., Smogorzewska, E.M., and Crooks, G.M. (1996). Extended long-term culture reveals a highly quiescent and primitive human hematopoietic progenitor population. Blood 88, 3306-3313.
- Hartenstein, V., and Posakony, J.W. (1989). Development of adult sensilla on the wing and notum of Drosophila melanogaster. Development 107, 389-405.
- Havekes, L., Mommaas-Kienhuis, A.M., Schouten, D., De Wit, E., Scheffer, M., and Van Hinsbergh, V.W. (1985). Highaffinity uptake and degradation of acetylated low density lipoprotein by confluent human vascular endothelial cells. Atherosclerosis 56, 81-92.
- Hayflick, L., and Moorhead, P.S. (1961). The serial cultivation of human diploid cell strains. Experimental cell research 25, 585-621.
- Haynes, B.F., Martin, M.E., Kay, H.H., and Kurtzberg, J. (1988). Early events in human T cell ontogeny. Phenotypic characterization and immunohistologic localization of T cell precursors in early human fetal tissues. J Exp Med *168*, 1061-1080.
- Heinkelein, M., Schmidt, M., Fischer, N., Moebes, A., Lindemann, D., Enssle, J., and Rethwilm, A. (1998). Characterization of a cis-acting sequence in the Pol region required to transfer human foamy virus vectors. J Virol 72, 6307-6314.
- Hemeda, H., Jakob, M., Ludwig, A., Giebel, B., Lang, S., and Brandau, S. (2010). Interferon-gamma and Tumor Necrosis Factor-alpha Differentially Affect Cytokine Expression and Migration Properties of Mesenchymal Stem Cells. Stem Cells Dev.

- Hirose, Y., Kiyoi, H., Itoh, K., Kato, K., Saito, H., and Naoe, T. (2001). B-cell precursors differentiated from cord blood CD34+ cells are more immature than those derived from granulocyte colony-stimulating factor-mobilized peripheral blood CD34+ cells. Immunology 104, 410-417.
- Holthofer, H., Virtanen, I., Kariniemi, A.L., Hormia, M., Linder, E., and Miettinen, A. (1982). Ulex europaeus I lectin as a marker for vascular endothelium in human tissues. Laboratory investigation; a journal of technical methods and pathology 47, 60-66.
- Homem, C.C., and Knoblich, J.A. (2012). Drosophila neuroblasts: a model for stem cell biology. Development 139, 4297-4310.
- Hozumi, K., Abe, N., Chiba, S., Hirai, H., and Habu, S. (2003). Active form of Notch members can enforce T lymphopoiesis on lymphoid progenitors in the monolayer culture specific for B cell development. J Immunol *170*, 4973-4979.
- Hulett, H.R., Bonner, W.A., Barrett, J., and Herzenberg, L.A. (1969). Cell sorting: automated separation of mammalian cells as a function of intracellular fluorescence. Science *166*, 747-749.
- Ibrahim, S.F., and van den Engh, G. (2007). Flow cytometry and cell sorting. Advances in biochemical engineering/biotechnology *106*, 19-39.
- Ingram, D.A., Mead, L.E., Tanaka, H., Meade, V., Fenoglio, A., Mortell, K., Pollok, K., Ferkowicz, M.J., Gilley, D., and Yoder, M.C. (2004). Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood 104, 2752-2760.
- Issaad, C., Croisille, L., Katz, A., Vainchenker, W., and Coulombel, L. (1993). A murine stromal cell line allows the proliferation of very primitive human CD34++/CD38- progenitor cells in long-term cultures and semisolid assays. Blood *81*, 2916-2924.
- Itoh, K., Tezuka, H., Sakoda, H., Konno, M., Nagata, K., Uchiyama, T., Uchino, H., and Mori, K.J. (1989). Reproducible establishment of hemopoietic supportive stromal cell lines from murine bone marrow. Exp Hematol 17, 145-153.
- IUIS-WHO (1984). Nomenclature for clusters of differentiation (CD) of antigens defined on human leukocyte populations. IUIS-WHO Nomenclature Subcommittee. Bulletin of the World Health Organization 62, 809-815.
- Jacobson, L.O., Simmons, E.L., Marks, E.K., and Eldredge, J.H. (1951). Recovery from radiation injury. Science 113, 510-511.
- Kadereit, S., Deeds, L.S., Haynesworth, S.E., Koc, O.N., Kozik, M.M., Szekely, E., Daum-Woods, K., Goetchius, G.W., Fu, P., Welniak, L.A., *et al.* (2002). Expansion of LTC-ICs and maintenance of p21 and BCL-2 expression in cord blood CD34(+)/CD38(-) early progenitors cultured over human MSCs as a feeder layer. Stem Cells 20, 573-582.
- Kalberer, C.P., Siegler, U., and Wodnar-Filipowicz, A. (2003). Human NK cell development in NOD/SCID mice receiving grafts of cord blood CD34+ cells. Blood *102*, 127-135.
- Kamel-Reid, S., and Dick, J.E. (1988). Engraftment of immune-deficient mice with human hematopoietic stem cells. Science 242, 1706-1709.
- Kanai, M., Hirayama, F., Yamaguchi, M., Ohkawara, J., Sato, N., Fukazawa, K., Yamashita, K., Kuwabara, M., Ikeda, H., and Ikebuchi, K. (2000). Stromal cell-dependent ex vivo expansion of human cord blood progenitors and augmentation of transplantable stem cell activity. Bone Marrow Transplant 26, 837-844.
- Katsura, Y., and Kawamoto, H. (2001). Stepwise lineage restriction of progenitors in lympho-myelopoiesis. International reviews of immunology 20, 1-20.
- Katz, F.E., Tindle, R., Sutherland, D.R., and Greaves, M.F. (1985). Identification of a membrane glycoprotein associated with haemopoietic progenitor cells. Leukemia research 9, 191-198.
- Kawamoto, H., Ohmura, K., and Katsura, Y. (1998). Presence of progenitors restricted to T, B, or myeloid lineage, but absence of multipotent stem cells, in the murine fetal thymus. J Immunol *161*, 3799-3802.
- Khoury, M., Drake, A., Chen, Q., Dong, D., Leskov, I., Fragoso, M.F., Li, Y., Iliopoulou, B.P., Hwang, W., Lodish, H.F., *et al.* (2011). Mesenchymal stem cells secreting angiopoietin-like-5 support efficient expansion of human hematopoietic stem cells without compromising their repopulating potential. Stem Cells Dev 20, 1371-1381.
- Kiel, M.J., and Morrison, S.J. (2008). Uncertainty in the niches that maintain haematopoietic stem cells. Nat Rev Immunol 8, 290-301.
- Kindblom, L.G., and Karlsson, K. (1977). Differential staining of glycosaminoglycans, utilizing bacterial chondroitinase and chondrosulphatase. Acta pathologica et microbiologica Scandinavica Section A, Pathology 85, 665-670.
- Kleinman, H.K., McGarvey, M.L., Liotta, L.A., Robey, P.G., Tryggvason, K., and Martin, G.R. (1982). Isolation and characterization of type IV procollagen, laminin, and heparan sulfate proteoglycan from the EHS sarcoma. Biochemistry 21, 6188-6193.
- Kodama, H., Nose, M., Niida, S., and Nishikawa, S. (1994). Involvement of the c-kit receptor in the adhesion of hematopoietic stem cells to stromal cells. Exp Hematol 22, 979-984.
- Kohn, L.A., Hao, Q.L., Sasidharan, R., Parekh, C., Ge, S., Zhu, Y., Mikkola, H.K., and Crooks, G.M. (2012). Lymphoid priming in human bone marrow begins before expression of CD10 with upregulation of L-selectin. Nat Immunol 13, 963-971.
- Koller, M.R., Palsson, M.A., Manchel, I., and Palsson, B.O. (1995). Long-term culture-initiating cell expansion is dependent on frequent medium exchange combined with stromal and other accessory cell effects. Blood *86*, 1784-1793.
- Kollet, O., Aviram, R., Chebath, J., ben-Hur, H., Nagler, A., Shultz, L., Revel, M., and Lapidot, T. (1999). The soluble interleukin-6 (IL-6) receptor/IL-6 fusion protein enhances in vitro maintenance and proliferation of human CD34(+)CD38(-/low) cells capable of repopulating severe combined immunodeficiency mice. Blood 94, 923-931.
- Kratz-Albers, K., Scheding, S., Mohle, R., Buhring, H.J., Baum, C.M., Mc Kearn, J.P., Buchner, T., Kanz, L., and Brugger,
  W. (2000). Effective ex vivo generation of megakaryocytic cells from mobilized peripheral blood CD34(+) cells with stem cell factor and promegapoietin. Exp Hematol 28, 335-346.
- Krause, D.S., Fackler, M.J., Civin, C.I., and May, W.S. (1996). CD34: structure, biology, and clinical utility. Blood 87, 1-13.
- Kutt, H., and Tsaltas, T.T. (1959). Staining properties of oil red O and a method of partial purification of the commercial product. Clinical chemistry *5*, 149-160.
- La Motte-Mohs, R.N., Herer, E., and Zuniga-Pflucker, J.C. (2005). Induction of T-cell development from human cord blood hematopoietic stem cells by Delta-like 1 in vitro. Blood *105*, 1431-1439.
- Lagergren, A., Mansson, R., Zetterblad, J., Smith, E., Basta, B., Bryder, D., Akerblad, P., and Sigvardsson, M. (2007). The Cxcl12, periostin, and Ccl9 genes are direct targets for early B-cell factor in OP-9 stroma cells. The Journal of biological chemistry 282, 14454-14462.
- Lai, W.T., Krishnappa, V., and Phinney, D.G. (2011). Fibroblast growth factor 2 (Fgf2) inhibits differentiation of mesenchymal stem cells by inducing Twist2 and Spry4, blocking extracellular regulated kinase activation, and altering Fgf receptor expression levels. Stem Cells 29, 1102-1111.
- Lansdorp, P.M., Sutherland, H.J., and Eaves, C.J. (1990). Selective expression of CD45 isoforms on functional subpopulations of CD34+ hemopoietic cells from human bone marrow. J Exp Med *172*, 363-366.
- Larochelle, A., Vormoor, J., Hanenberg, H., Wang, J.C., Bhatia, M., Lapidot, T., Moritz, T., Murdoch, B., Xiao, X.L., Kato, I., *et al.* (1996). Identification of primitive human hematopoietic cells capable of repopulating NOD/SCID mouse bone marrow: implications for gene therapy. Nat Med 2, 1329-1337.
- LeBien, T.W., and Tedder, T.F. (2008). B lymphocytes: how they develop and function. Blood 112, 1570-1580.
- Leurs, C., Jansen, M., Pollok, K.E., Heinkelein, M., Schmidt, M., Wissler, M., Lindemann, D., Von Kalle, C., Rethwilm, A., Williams, D.A., *et al.* (2003). Comparison of three retroviral vector systems for transduction of nonobese diabetic/severe combined immunodeficiency mice repopulating human CD34+ cord blood cells. Human gene therapy 14, 509-519.
- Li, N., Eljaafari, A., Bensoussan, D., Wang, Y., Latger-Cannard, V., Serrurier, B., Boura, C., Kennel, A., Stoltz, J., and Feugier, P. (2006). Human umbilical vein endothelial cells increase ex vivo expansion of human CD34(+) PBPC through IL-6 secretion. Cytotherapy *8*, 335-342.
- Li, N., Feugier, P., Serrurrier, B., Latger-Cannard, V., Lesesve, J.F., Stoltz, J.F., and Eljaafari, A. (2007a). Human mesenchymal stem cells improve ex vivo expansion of adult human CD34+ peripheral blood progenitor cells and decrease their allostimulatory capacity. Exp Hematol *35*, 507-515.
- Li, W., Johnson, S.A., Shelley, W.C., and Yoder, M.C. (2004). Hematopoietic stem cell repopulating ability can be maintained in vitro by some primary endothelial cells. Exp Hematol *32*, 1226-1237.
- Li, Y., Yu, X., Lin, S., Li, X., Zhang, S., and Song, Y.H. (2007b). Insulin-like growth factor 1 enhances the migratory capacity of mesenchymal stem cells. Biochemical and biophysical research communications *356*, 780-784.
- Linial, M. (2000). Why aren't foamy viruses pathogenic? Trends Microbiol 8, 284-289.
- Lorenz, E., Uphoff, D., Reid, T.R., and Shelton, E. (1951). Modification of irradiation injury in mice and guinea pigs by bone marrow injections. Journal of the National Cancer Institute *12*, 197-201.
- Lovelock, J.E., and Bishop, M.W. (1959). Prevention of freezing damage to living cells by dimethyl sulphoxide. Nature 183, 1394-1395.
- Lu, M., Kawamoto, H., Katsube, Y., Ikawa, T., and Katsura, Y. (2002). The common myelolymphoid progenitor: a key intermediate stage in hemopoiesis generating T and B cells. J Immunol *169*, 3519-3525.
- Luan, X., Li, G., Wang, G., Wang, F., and Lin, Y. (2013). Human placenta-derived mesenchymal stem cells suppress T cell proliferation and support the culture expansion of cord blood CD34(+) cells: a comparison with human bone marrow-derived mesenchymal stem cells. Tissue & cell 45, 32-38.
- Madkaikar, M., Ghosh, K., Gupta, M., Swaminathan, S., and Mohanty, D. (2007). Ex vivo expansion of umbilical cord blood stem cells using different combinations of cytokines and stromal cells. Acta Haematol 118, 153-159.
- Magin, A.S., Koerfer, N.R., Partenheimer, H., Lange, C., Zander, A., and Noll, T. (2008). Primary Cells As Feeder Cells For Coculture Expansion Of Human Hematopoietic Stem Cells From Umbilical Cord Blood A Comparative Study. Stem Cells Dev.
- Magin, A.S., Korfer, N.R., Partenheimer, H., Lange, C., Zander, A., and Noll, T. (2009). Primary cells as feeder cells for coculture expansion of human hematopoietic stem cells from umbilical cord blood--a comparative study. Stem Cells Dev 18, 173-186.
- Majeti, R., Park, C.Y., and Weissman, I.L. (2007). Identification of a hierarchy of multipotent hematopoietic progenitors in human cord blood. Cell Stem Cell *1*, 635-645.
- Manz, M.G., Miyamoto, T., Akashi, K., and Weissman, I.L. (2002). Prospective isolation of human clonogenic common myeloid progenitors. Proc Natl Acad Sci U S A 99, 11872-11877.
- May, T., Hauser, H., and Wirth, D. (2004a). Transcriptional control of SV40 T-antigen expression allows a complete reversion of immortalization. Nucleic acids research *32*, 5529-5538.
- May, T., Lindenmaier, W., Wirth, D., and Mueller, P.P. (2004b). Application of a reversible immortalization system for the generation of proliferation-controlled cell lines. Cytotechnology *46*, 69-78.
- Mazurier, F., Doedens, M., Gan, O.I., and Dick, J.E. (2003). Rapid myeloerythroid repopulation after intrafemoral transplantation of NOD-SCID mice reveals a new class of human stem cells. Nat Med *9*, 959-963.
- McCulloch, E.A., and Till, J.E. (1960). The radiation sensitivity of normal mouse bone marrow cells, determined by quantitative marrow transplantation into irradiated mice. Radiat Res 13, 115-125.
- McNiece, I., Harrington, J., Turney, J., Kellner, J., and Shpall, E.J. (2004). Ex vivo expansion of cord blood mononuclear cells on mesenchymal stem cells. Cytotherapy *6*, 311-317.
- McNiece, I.K., Kriegler, A.B., and Quesenberry, P.J. (1989). Studies on the myeloid synergistic factor from 5637: comparison with interleukin-1 alpha. Blood 73, 919-923.
- Medvinsky, A., and Dzierzak, E. (1996). Definitive hematopoiesis is autonomously initiated by the AGM region. Cell *86*, 897-906.
- Meiering, C.D., and Linial, M.L. (2001). Historical perspective of foamy virus epidemiology and infection. Clin Microbiol Rev 14, 165-176.
- Metcalf, D. (1986). The molecular biology and functions of the granulocyte-macrophage colony-stimulating factors. Blood 67, 257-267.

- Miller, J.S., Verfaillie, C., and McGlave, P. (1992). The generation of human natural killer cells from CD34+/DR- primitive progenitors in long-term bone marrow culture. Blood *80*, 2182-2187.
- Miltenyi, S., Muller, W., Weichel, W., and Radbruch, A. (1990). High gradient magnetic cell separation with MACS. Cytometry 11, 231-238.
- Mishima, S., Nagai, A., Abdullah, S., Matsuda, C., Taketani, T., Kumakura, S., Shibata, H., Ishikura, H., Kim, S.U., and Masuda, J. (2009). Effective ex vivo expansion of hematopoietic stem cells using osteoblast-differentiated mesenchymal stem cells is CXCL12 dependent. Eur J Haematol 84, 538-546.
- Miyagawa, S., Kobayashi, M., Konishi, N., Sato, T., and Ueda, K. (2000). Insulin and insulin-like growth factor I support the proliferation of erythroid progenitor cells in bone marrow through the sharing of receptors. British journal of haematology *109*, 555-562.
- Mochizuki, H., Schwartz, J.P., Tanaka, K., Brady, R.O., and Reiser, J. (1998). High-titer human immunodeficiency virus type 1-based vector systems for gene delivery into nondividing cells. J Virol 72, 8873-8883.
- Moore, K.A., Ema, H., and Lemischka, I.R. (1997). In vitro maintenance of highly purified, transplantable hematopoietic stem cells. Blood 89, 4337-4347.
- Moore, M.A., Williams, N., and Metcalf, D. (1973). In vitro colony formation by normal and leukemic human hematopoietic cells: characterization of the colony-forming cells. Journal of the National Cancer Institute *50*, 603-623.
- Morrison, S.J., Hemmati, H.D., Wandycz, A.M., and Weissman, I.L. (1995). The purification and characterization of fetal liver hematopoietic stem cells. Proc Natl Acad Sci U S A 92, 10302-10306.
- Morrison, S.J., and Scadden, D.T. (2014). The bone marrow niche for haematopoietic stem cells. Nature 505, 327-334.
- Mosmann, T.R., Yokota, T., Kastelein, R., Zurawski, S.M., Arai, N., and Takebe, Y. (1987). Species-specificity of T cell stimulating activities of IL 2 and BSF-1 (IL 4): comparison of normal and recombinant, mouse and human IL 2 and BSF-1 (IL 4). J Immunol 138, 1813-1816.
- Mullis, K., Faloona, F., Scharf, S., Saiki, R., Horn, G., and Erlich, H. (1986). Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harbor symposia on quantitative biology *51 Pt 1*, 263-273.
- Muta, K., Krantz, S.B., Bondurant, M.C., and Wickrema, A. (1994). Distinct roles of erythropoietin, insulin-like growth factor I, and stem cell factor in the development of erythroid progenitor cells. The Journal of clinical investigation *94*, 34-43.
- Myers, C.D., Katz, F.E., Joshi, G., and Millar, J.L. (1984). A cell line secreting stimulating factors for CFU-GEMM culture. Blood 64, 152-155.
- Nagasawa, T., Omatsu, Y., and Sugiyama, T. (2011). Control of hematopoietic stem cells by the bone marrow stromal niche: the role of reticular cells. Trends Immunol *32*, 315-320.
- Nishino, T., Wang, C., Mochizuki-Kashio, M., Osawa, M., Nakauchi, H., and Iwama, A. (2011). Ex vivo expansion of human hematopoietic stem cells by garcinol, a potent inhibitor of histone acetyltransferase. PLoS One *6*, e24298.
- Nissen-Druey, C., Tichelli, A., and Meyer-Monard, S. (2005). Human hematopoietic colonies in health and disease. Acta Haematol 113, 5-96.
- Nolta, J.A., Thiemann, F.T., Arakawa-Hoyt, J., Dao, M.A., Barsky, L.W., Moore, K.A., Lemischka, I.R., and Crooks, G.M. (2002). The AFT024 stromal cell line supports long-term ex vivo maintenance of engrafting multipotent human hematopoietic progenitors. Leukemia 16, 352-361.
- Notta, F., Doulatov, S., Laurenti, E., Poeppl, A., Jurisica, I., and Dick, J.E. (2011). Isolation of single human hematopoietic stem cells capable of long-term multilineage engraftment. Science *333*, 218-221.
- Ohishi, K., Katayama, N., Shiku, H., Varnum-Finney, B., and Bernstein, I.D. (2003). Notch signalling in hematopoiesis. Seminars in cell & developmental biology 14, 143-150.
- Ohishi, K., Varnum-Finney, B., and Bernstein, I.D. (2002). The notch pathway: modulation of cell fate decisions in hematopoiesis. Int J Hematol 75, 449-459.
- Ottersbach, K., and Dzierzak, E. (2005). The murine placenta contains hematopoietic stem cells within the vascular labyrinth region. Developmental cell *8*, 377-387.
- Pear, W.S., and Radtke, F. (2003). Notch signaling in lymphopoiesis. Seminars in immunology 15, 69-79.
- Pierzchalski, A., Mittag, A., and Tarnok, A. (2011). Introduction A: recent advances in cytometry instrumentation, probes, and methods--review. Methods in cell biology 102, 1-21.
- Pike, B.L., and Robinson, W.A. (1970). Human bone marrow colony growth in agar-gel. J Cell Physiol 76, 77-84.
- Pittenger, M.F., Mackay, A.M., Beck, S.C., Jaiswal, R.K., Douglas, R., Mosca, J.D., Moorman, M.A., Simonetti, D.W., Craig, S., and Marshak, D.R. (1999). Multilineage potential of adult human mesenchymal stem cells. Science 284, 143-147.
- Ploemacher, R.E., van der Sluijs, J.P., Voerman, J.S., and Brons, N.H. (1989). An in vitro limiting-dilution assay of long-term repopulating hematopoietic stem cells in the mouse. Blood 74, 2755-2763.
- Ponce, M.L. (2009). Tube formation: an in vitro matrigel angiogenesis assay. Methods Mol Biol 467, 183-188.
- Poulos, M.G., Guo, P., Kofler, N.M., Pinho, S., Gutkin, M.C., Tikhonova, A., Aifantis, I., Frenette, P.S., Kitajewski, J., Rafii, S., *et al.* (2013). Endothelial Jagged-1 is necessary for homeostatic and regenerative hematopoiesis. Cell reports 4, 1022-1034.
- Punzel, M., Moore, K.A., Lemischka, I.R., and Verfaillie, C.M. (1999a). The type of stromal feeder used in limiting dilution assays influences frequency and maintenance assessment of human long-term culture initiating cells. Leukemia 13, 92-97.
- Punzel, M., Wissink, S.D., Miller, J.S., Moore, K.A., Lemischka, I.R., and Verfaillie, C.M. (1999b). The myeloid-lymphoid initiating cell (ML-IC) assay assesses the fate of multipotent human progenitors in vitro. Blood 93, 3750-3756.
- Radsak, K., Fuhrmann, R., Franke, R.P., Schneider, D., Kollert, A., Brucher, K.H., and Drenckhahn, D. (1989). Induction by sodium butyrate of cytomegalovirus replication in human endothelial cells. Arch Virol 107, 151-158.
- Radtke, F., Wilson, A., Ernst, B., and MacDonald, H.R. (2002). The role of Notch signaling during hematopoietic lineage commitment. Immunological reviews 187, 65-74.

- Reinisch, A., and Strunk, D. (2009). Isolation and animal serum free expansion of human umbilical cord derived mesenchymal stromal cells (MSCs) and endothelial colony forming progenitor cells (ECFCs). J Vis Exp.
- Rhyu, M.S., Jan, L.Y., and Jan, Y.N. (1994). Asymmetric distribution of numb protein during division of the sensory organ precursor cell confers distinct fates to daughter cells. Cell *76*, 477-491.
- Riekstina, U., Muceniece, R., Cakstina, I., Muiznieks, I., and Ancans, J. (2008). Characterization of human skin-derived mesenchymal stem cell proliferation rate in different growth conditions. Cytotechnology *58*, 153-162.
- Robey, E., Chang, D., Itano, A., Cado, D., Alexander, H., Lans, D., Weinmaster, G., and Salmon, P. (1996). An activated form of Notch influences the choice between CD4 and CD8 T cell lineages. Cell 87, 483-492.
- Rodriguez-Pardo, V.M., and Vernot, J.P. (2013). Mesenchymal stem cells promote a primitive phenotype CD34+c-kit+ in human cord blood-derived hematopoietic stem cells during ex vivo expansion. Cellular & molecular biology letters *18*, 11-33.
- Sanchez-Dominguez, R., Pereira-Mendez, S., Gomez, A., Torrabadella, M., Azqueta, C., Querol, S., Barquinero, J., and Gimeno, R. (2012). Notch signals contribute to preserve the multipotentiality of human CD34(+)CD38(-)CD45RA(-)CD90(+) hematopoietic progenitors by maintaining T cell lineage differentiation potential. Exp Hematol 40, 983-993 e984.
- Sanchez, M.J., Holmes, A., Miles, C., and Dzierzak, E. (1996). Characterization of the first definitive hematopoietic stem cells in the AGM and liver of the mouse embryo. Immunity 5, 513-525.
- Schellenberg, A., Hemeda, H., and Wagner, W. (2013). Tracking of replicative senescence in mesenchymal stem cells by colony-forming unit frequency. Methods Mol Biol 976, 143-154.
- Schmitt, T.M., and Zuniga-Pflucker, J.C. (2002). Induction of T cell development from hematopoietic progenitor cells by delta-like-1 in vitro. Immunity 17, 749-756.
- Shibuya, H., Yoneyama, M., Ninomiya-Tsuji, J., Matsumoto, K., and Taniguchi, T. (1992). IL-2 and EGF receptors stimulate the hematopoietic cell cycle via different signaling pathways: demonstration of a novel role for c-myc. Cell 70, 57-67.
- Shih, D.T., Chen, J.C., Chen, W.Y., Kuo, Y.P., Su, C.Y., and Burnouf, T. (2011). Expansion of adipose tissue mesenchymal stromal progenitors in serum-free medium supplemented with virally inactivated allogeneic human platelet lysate. Transfusion 51, 770-778.
- Shultz, L.D., Lyons, B.L., Burzenski, L.M., Gott, B., Chen, X., Chaleff, S., Kotb, M., Gillies, S.D., King, M., Mangada, J., et al. (2005). Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells. J Immunol 174, 6477-6489.
- Shultz, L.D., Schweitzer, P.A., Christianson, S.W., Gott, B., Schweitzer, I.B., Tennent, B., McKenna, S., Mobraaten, L., Rajan, T.V., Greiner, D.L., *et al.* (1995). Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice. J Immunol 154, 180-191.
- Six, E.M., Bonhomme, D., Monteiro, M., Beldjord, K., Jurkowska, M., Cordier-Garcia, C., Garrigue, A., Dal Cortivo, L., Rocha, B., Fischer, A., *et al.* (2007). A human postnatal lymphoid progenitor capable of circulating and seeding the thymus. J Exp Med 204, 3085-3093.
- Stevenson, L.M., and Jones, D.G. (1994). Cross-reactivity amongst recombinant haematopoietic cytokines from different species for sheep bone-marrow eosinophils. Journal of comparative pathology *111*, 99-106.
- Sugiarto, S., Persson, A.I., Munoz, E.G., Waldhuber, M., Lamagna, C., Andor, N., Hanecker, P., Ayers-Ringler, J., Phillips, J., Siu, J., et al. (2011). Asymmetry-defective oligodendrocyte progenitors are glioma precursors. Cancer cell 20, 328-340.
- Sutherland, H.J., Eaves, C.J., Eaves, A.C., Dragowska, W., and Lansdorp, P.M. (1989). Characterization and partial purification of human marrow cells capable of initiating long-term hematopoiesis in vitro. Blood 74, 1563-1570.
- Sutherland, H.J., Lansdorp, P.M., Henkelman, D.H., Eaves, A.C., and Eaves, C.J. (1990). Functional characterization of individual human hematopoietic stem cells cultured at limiting dilution on supportive marrow stromal layers. Proc Natl Acad Sci U S A 87, 3584-3588.
- Suzuki, J., Fujita, J., Taniguchi, S., Sugimoto, K., and Mori, K.J. (1992). Characterization of murine hemopoietic-supportive (MS-1 and MS-5) and non-supportive (MS-K) cell lines. Leukemia *6*, 452-458.
- Tamama, K., Kawasaki, H., and Wells, A. (2010). Epidermal growth factor (EGF) treatment on multipotential stromal cells (MSCs). Possible enhancement of therapeutic potential of MSC. Journal of biomedicine & biotechnology 2010, 795385.
- Tanaka, J., Sadanari, H., Sato, H., and Fukuda, S. (1991). Sodium butyrate-inducible replication of human cytomegalovirus in a human epithelial cell line. Virology *185*, 271-280.
- Temin, H.M., and Mizutani, S. (1970). RNA-dependent DNA polymerase in virions of Rous sarcoma virus. Nature 226, 1211-1213.
- Teramura, M., Kobayashi, S., Hoshino, S., Oshimi, K., and Mizoguchi, H. (1992). Interleukin-11 enhances human megakaryocytopoiesis in vitro. Blood 79, 327-331.
- Terstappen, L.W., Huang, S., Safford, M., Lansdorp, P.M., and Loken, M.R. (1991). Sequential generations of hematopoietic colonies derived from single nonlineage-committed CD34+CD38- progenitor cells. Blood 77, 1218-1227.
- Tiwari, A., Tursky, M.L., Mushahary, D., Wasnik, S., Collier, F.M., Suma, K., Kirkland, M.A., and Pande, G. (2012). Ex vivo expansion of haematopoietic stem/progenitor cells from human umbilical cord blood on acellular scaffolds prepared from MS-5 stromal cell line. Journal of tissue engineering and regenerative medicine.
- Traganos, F. (1984a). Flow cytometry: principles and applications. I. Cancer Invest 2, 149-163.
- Traganos, F. (1984b). Flow cytometry: principles and applications. II. Cancer investigation 2, 239-258.
- van Dongen, J.J., Langerak, A.W., Bruggemann, M., Evans, P.A., Hummel, M., Lavender, F.L., Delabesse, E., Davi, F., Schuuring, E., Garcia-Sanz, R., *et al.* (2003). Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia 17, 2257-2317.

- Varnum-Finney, B., Brashem-Stein, C., and Bernstein, I.D. (2003). Combined effects of Notch signaling and cytokines induce a multiple log increase in precursors with lymphoid and myeloid reconstituting ability. Blood 101, 1784-1789.
- Varnum-Finney, B., Halasz, L.M., Sun, M., Gridley, T., Radtke, F., and Bernstein, I.D. (2011). Notch2 governs the rate of generation of mouse long- and short-term repopulating stem cells. The Journal of clinical investigation 121, 1207-1216.
- Varnum-Finney, B., Xu, L., Brashem-Stein, C., Nourigat, C., Flowers, D., Bakkour, S., Pear, W.S., and Bernstein, I.D. (2000). Pluripotent, cytokine-dependent, hematopoietic stem cells are immortalized by constitutive Notch1 signaling. Nat Med 6, 1278-1281.
- von Lindern, M., Zauner, W., Mellitzer, G., Steinlein, P., Fritsch, G., Huber, K., Lowenberg, B., and Beug, H. (1999). The glucocorticoid receptor cooperates with the erythropoietin receptor and c-Kit to enhance and sustain proliferation of erythroid progenitors in vitro. Blood *94*, 550-559.
- Voyta, J.C., Via, D.P., Butterfield, C.E., and Zetter, B.R. (1984). Identification and isolation of endothelial cells based on their increased uptake of acetylated-low density lipoprotein. The Journal of cell biology *99*, 2034-2040.
- Wada, H., Masuda, K., Satoh, R., Kakugawa, K., Ikawa, T., Katsura, Y., and Kawamoto, H. (2008). Adult T-cell progenitors retain myeloid potential. Nature 452, 768-772.
- Walenda, T., Bork, S., Horn, P., Wein, F., Saffrich, R., Diehlmann, A., Eckstein, V., Ho, A.D., and Wagner, W. (2010). Coculture with mesenchymal stromal cells increases proliferation and maintenance of haematopoietic progenitor cells. Journal of cellular and molecular medicine 14, 337-350.
- Wang, H., Pierce, L.J., and Spangrude, G.J. (2006). Distinct roles of IL-7 and stem cell factor in the OP9-DL1 T-cell differentiation culture system. Exp Hematol *34*, 1730-1740.
- Wegmeyer, H., Broske, A.M., Leddin, M., Kuentzer, K., Nisslbeck, A.K., Hupfeld, J., Wiechmann, K., Kuhlen, J., von Schwerin, C., Stein, C., *et al.* (2013). Mesenchymal Stromal Cell Characteristics Vary Depending on Their Origin. Stem Cells Dev.
- Weibel, E.R., and Palade, G.E. (1964). New Cytoplasmic Components in Arterial Endothelia. The Journal of cell biology 23, 101-112.
- Weisel, K.C., Gao, Y., Shieh, J.H., and Moore, M.A. (2006). Stromal cell lines from the aorta-gonado-mesonephros region are potent supporters of murine and human hematopoiesis. Exp Hematol *34*, 1505-1516.
- Worton, R.G., McCulloch, E.A., and Till, J.E. (1969). Physical separation of hemopoietic stem cells differing in their capacity for self-renewal. J Exp Med 130, 91-103.
- Wu, M., Kwon, H.Y., Rattis, F., Blum, J., Zhao, C., Ashkenazi, R., Jackson, T.L., Gaiano, N., Oliver, T., and Reya, T. (2007). Imaging hematopoietic precursor division in real time. Cell Stem Cell 1, 541-554.
- Yamaguchi, H., Ishii, E., Saito, S., Tashiro, K., Fujita, I., Yoshidomi, S., Ohtubo, M., Akazawa, K., and Miyazaki, S. (1996). Umbilical vein endothelial cells are an important source of c-kit and stem cell factor which regulate the proliferation of haemopoietic progenitor cells. British journal of haematology 94, 606-611.
- Yamaguchi, M., Hirayama, F., Kanai, M., Sato, N., Fukazawa, K., Yamashita, K., Sawada, K., Koike, T., Kuwabara, M., Ikeda, H., *et al.* (2001). Serum-free coculture system for ex vivo expansion of human cord blood primitive progenitors and SCID mouse-reconstituting cells using human bone marrow primary stromal cells. Exp Hematol 29, 174-182.
- Yamamoto, R., Morita, Y., Ooehara, J., Hamanaka, S., Onodera, M., Rudolph, K.L., Ema, H., and Nakauchi, H. (2013). Clonal analysis unveils self-renewing lineage-restricted progenitors generated directly from hematopoietic stem cells. Cell 154, 1112-1126.
- Ye, Z.Q., Burkholder, J.K., Qiu, P., Schultz, J.C., Shahidi, N.T., and Yang, N.S. (1994). Establishment of an adherent cell feeder layer from human umbilical cord blood for support of long-term hematopoietic progenitor cell growth. Proc Natl Acad Sci U S A 91, 12140-12144.
- Yee, J.K., Friedmann, T., and Burns, J.C. (1994). Generation of high-titer pseudotyped retroviral vectors with very broad host range. Methods Cell Biol *43 Pt A*, 99-112.
- Yeoh, J.S., van Os, R., Weersing, E., Ausema, A., Dontje, B., Vellenga, E., and de Haan, G. (2006). Fibroblast growth factor-1 and -2 preserve long-term repopulating ability of hematopoietic stem cells in serum-free cultures. Stem Cells 24, 1564-1572.
- Yildirim, S., Boehmler, A.M., Kanz, L., and Mohle, R. (2005). Expansion of cord blood CD34+ hematopoietic progenitor cells in coculture with autologous umbilical vein endothelial cells (HUVEC) is superior to cytokine-supplemented liquid culture. Bone Marrow Transplant 36, 71-79.
- Yin, A.H., Miraglia, S., Zanjani, E.D., Almeida-Porada, G., Ogawa, M., Leary, A.G., Olweus, J., Kearney, J., and Buck, D.W. (1997). AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood 90, 5002-5012.
- Yoder, M.C., Mead, L.E., Prater, D., Krier, T.R., Mroueh, K.N., Li, F., Krasich, R., Temm, C.J., Prchal, J.T., and Ingram, D.A. (2007). Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood 109, 1801-1809.
- Yoshikawa, Y., Hirayama, F., Kanai, M., Nakajo, S., Ohkawara, J., Fujihara, M., Yamaguchi, M., Sato, N., Kasai, M., Sekiguchi, S., *et al.* (2000). Stromal cell-independent differentiation of human cord blood CD34+CD38lymphohematopoietic progenitors toward B cell lineage. Leukemia 14, 727-734.
- Yu, K.R., Yang, S.R., Jung, J.W., Kim, H., Ko, K., Han, D.W., Park, S.B., Choi, S.W., Kang, S.K., Scholer, H., et al. (2012). CD49f enhances multipotency and maintains stemness through the direct regulation of OCT4 and SOX2. Stem Cells 30, 876-887.
- Zaker, F., Nasiri, N., Oodi, A., and Amirizadeh, N. (2013). Evaluation of umbilical cord blood CD34 (+) hematopoietic stem cell expansion in co-culture with bone marrow mesenchymal stem cells in the presence of TEPA. Hematology 18, 39-45.
- Zhang, J., Niu, C., Ye, L., Huang, H., He, X., Tong, W.G., Ross, J., Haug, J., Johnson, T., Feng, J.Q., *et al.* (2003). Identification of the haematopoietic stem cell niche and control of the niche size. Nature *425*, 836-841.

- Zhang, Y., Chai, C., Jiang, X.S., Teoh, S.H., and Leong, K.W. (2006). Co-culture of umbilical cord blood CD34+ cells with human mesenchymal stem cells. Tissue Eng *12*, 2161-2170.
- Zhang, Y., Li, C., Jiang, X., Zhang, S., Wu, Y., Liu, B., Tang, P., and Mao, N. (2004). Human placenta-derived mesenchymal progenitor cells support culture expansion of long-term culture-initiating cells from cord blood CD34+ cells. Exp Hematol *32*, 657-664.
- Zhao, M., Ross, J.T., Itkin, T., Perry, J.M., Venkatraman, A., Haug, J.S., Hembree, M.J., Deng, C.X., Lapidot, T., He, X.C., *et al.* (2012). FGF signaling facilitates postinjury recovery of mouse hematopoietic system. Blood *120*, 1831-1842.
  Zhong, J.F., Zhao, Y., Sutton, S., Su, A., Zhan, Y., Zhu, L., Yan, C., Gallaher, T., Johnston, P.B., Anderson, W.F., *et al.*
- Zhong, J.F., Zhao, Y., Sutton, S., Su, A., Zhan, Y., Zhu, L., Yan, C., Gallaher, T., Johnston, P.B., Anderson, W.F., *et al.* (2005). Gene expression profile of murine long-term reconstituting vs. short-term reconstituting hematopoietic stem cells. Proc Natl Acad Sci U S A 102, 2448-2453.

#### Danksagung

An dieser Stelle möchte ich mich bei allen Personen bedanken, die mich bei der Durchführung und Anfertigung dieser Arbeit unterstützt haben.

Zu Beginn möchte ich mich bei Herrn Prof. Peter A. Horn für die Möglichkeit bedanken, dieses interessante und vor allem auch kostspielige Projekt im Institut für Transfusionsmedizin bearbeiten zu können. Insbesondere die technische Ausstattung des Institutes hat dieses Projekt erst möglich gemacht.

Vielen Dank an Prof. Rainier Kimmig, die Oberärzte, Schwestern und Hebammen aus der Frauenklinik für die hervorragende Versorgung mit Nabelschnurrestbluten, Nabelschnüren und so manche Tasse Kaffee früh am Morgen. Vielen Dank auch an Prof. Elke Winterhager und ihre Mitarbeiter für die sehr gute Kollaboration und Unterstützung mit plazentalem Gewebe. Mein Dank geht auch an Prof. Dietrich W. Beelen und seine Mitarbeiter in der KMT für die Versorgung mit den heiß begehrten und seltenen Knochenmark-Rückstellproben.

Weiterhin möchte ich mich bei Herrn PD Dr. rer. nat. Bernd Giebel bedanken, der mir in seiner Arbeitsgruppe die Möglichkeit gab dieses überaus interessante und umfangreiche Thema bearbeiten zu können. Vielen Dank insbesondere für die intensive Unterstützung, persönliche Beratung und konstruktiven Diskussion bei der Bearbeitung dieses komplexen Themas und der finalen Anfertigung dieser Doktorarbeit.

Einen herzlichen Dank an alle Mitarbeiter und Kollegen im Institut für Transfusionsmedizin im Robert-Koch-Haus sowie im OPZII. Es war mir immer eine große Freude mit euch in der vollkommen überfüllten 4m² Küche ein koffeinhaltiges Heißgetränk zu trinken und den neuesten Klatsch und Tratsch zu teilen ;-)

Ein ganz ganz großer Dank geht an die supertolle Arbeitsgruppe (+ Tina und Antje), die sowohl innerhalb als auch außerhalb des Institutes die gesamte Doktorarbeitszeit aufgehellt hat. Danke André für dein Korrekturlesen, die anregenden Diskussionen und ausufernden Abende im Biergarten. Danke Liska für die gute Versorgung mit (Marken)Süßigkeiten in unserer Schokoschublade und die gemeinsame Zeit im "Außenseiter-Büro" im Erdgeschoss (PS: Ich glaube der Ficus ist kaputt. Sorry). Danke an Sören für die coolen Sprüche und Späße im Labor. Vielen Dank an Anna für die super Unterstützung bei den Mikroskopen und die Grillabende bei dir auf dem Balkon. Danke auch an Tina und Antje für die super-coole Zeit und die freundschaftliche Unterstützung in der nicht-so-super-coolen Zeit. Vielen Dank auch an meine Medizindoktoranden Friederike Albrecht, Nadine Knapp, Elham Zamani und Corinna Papaspyrou für euer Vertrauen in meine Fähigkeiten als Betreuer. Danke auch an Thorsten Döppner für das super Teamwork im Labor.

Ein ganz besonderer Dank geht selbstverständlich an meine Familie. Vielen Dank für eure Unterstützung, euer uneingeschränktes Vertrauen, euren Rückhalt und euer Interesse an meiner Arbeit (auch wenn es manchmal ein wenig zu abstrakt war). DANKE

Herzlichsten Dank auch an meine Freunde aus Bochum und der Studentenzeit. Ich hoffe wir werden den Kontakt nie verlieren.

Abschließend danke ich allen Personen, die hier nicht namentlich erwähnt werden, aber in kleinen, mittleren oder großen Teilen ihren Beitrag zu dieser Arbeit oder der gesamten Zeit beigetragen haben.

# Lebenslauf

Der Lebenslauf ist in der Online-Version aus Gründen des Datenschutzes nicht enthalten

## Artikel

**Radtke, S.** and Horn, P. A. (2011). "Cells, niche, fate: meeting report on the 6th International Meeting of the Stem Cell Network North Rhine Westphalia." Cell Reprogram 13(5): 381-384.

Denecke, B., Horsch, L. D., **Radtke, S.**, Fischer, J. C., Horn, P. A. and Giebel, B. (2013). "Human endothelial colony-forming cells expanded with an improved protocol are a useful endothelial cell source for scaffold-based tissue engineering." J Tissue Eng Regen Med.

Görgens, A., **Radtke, S.**, Mollmann, M., Cross, M., Durig, J., Horn, P. A. and Giebel, B. (2013). "Revision of the human hematopoietic tree: granulocyte subtypes derive from distinct hematopoietic lineages." Cell Rep 3(5): 1539-1552.

**Radtke, S.** and Horn, P. A. (2013). "Pluripotent and Somatic Stem Cells: From Basic Science to Utilization in Disease Modeling and Therapeutic Application Meeting Report on the 7th International Meeting of the Stem Cell Network North Rhine Westphalia." Cell Reprogram. 15(5):394-6.

Görgens, A., **Radtke, S.**, Horn, P. A., Giebel, B. (2013). "New relationships of human hematopoietic lineages facilitate detection of multipotent hematopoietic stem and progenitor cells." Cell Cycle: 12(22):3478-82.

**Radtke, S.**, Giebel, B., Wagner, W., Horn, P. A. (2014). "Platelet Lysate and their Role in Cell Therapy" (Review) ISBT Science Series.

Kordelas, L.*, Rebmann, V.*, Ludwig, A. K., **Radtke, S.**, Ruesing, J., Doeppner, T. R., Epple, M., Horn, P. A., Beelen, D. and Giebel, B. (2014). "Treatment of Therapy-Refractory Graft-versus-Host Disease with MSC-Derived Exosomes" Leukemia: angenommen am 10.01.2014.

Malyar, N. M.*, **Radtke, S.***; Malyar, K., Arjumand, J., Horn, P. A., Kröger, K., Freisinger, E., Reinecke, H., Giebel, B. and Brock, F. E.. "Autologous Bone Marrow Mononuclear Cell Therapy Improves Symptoms in Patients with End-Stage Peripheral Arterial Disease and Reduces Inflammation Associated Parameters" (*geteilte Erstautorenschaft, in Revision)

### Kongressbeiträge

**Radtke, S.**, Lendemanns, S., Tager, G., Hussmann, B., Peine, S., Horn, P. A. and Giebel, B. Mobilization of primitive CD34⁺ HSPCs during traumatic events. Hum Gene Ther. 2009; 20(11): 1464-1465

**Radtke, S.**, Görgens, A., Punzel, M., Horn, P.A., Giebel, B.: Establishment of an extended *in vitro* assay to detect the most primitive human hematopoietic cells at a clonal level. 5th Annual Meeting of the German Society for Stem Cell Research, Oktober 2010, Lübeck.

Arjumand, J., Malya, K., **Radtke, S.**, Giebel, B., Horn, P. A., Kröger, K. and Brock, F. E.: Autologous Stem Cell Therapy Reduces the Inflammation Burden in Patients with End-Stage Peripheral Arterial Disease. 11. Jahrestagung der Union Schweizerischer Gesellschaften für Gefässkrankheiten, September 2010, Basel (Posterpreis)

Malya, K., Arjumand, J., **Radtke, S.**, Giebel, B., Horn, P. A., Kröger, K. and Brock, F. E.: Autologous Bone-Marrow Mononuclear Cells Ameliorate Symptomes by Enhancing Perfusion Indices in Patients with End-Stage Peripheral Arterial Disease. 11. Jahrestagung der Union Schweizerischer Gesselschaften für Gefässkrankheiten, September 2010, Basel (Posterpreis)

**Radtke, S.**, Görgens, A., Punzel, M., Horn, P.A., Giebel, B.: Establishment of an extended *in vitro* assay to detect the most primitive human hematopoietic cells at a clonal level. 6th International Meeting of the Stem Cell Network NRW, April 2011, Essen.

**Radtke, S.**, Görgens, A., Punzel, M., Horn, P.A., Giebel, B.: Establishment of an extended *in vitro* assay to detect the most primitive human hematopoietic cells at a clonal level. 44th Annual Congress of the German Society for Transfusion Medicine and Immunohematology, September 2011, Hannover.

Görgens, A., **Radtke, S.**, Möllmann, M., Schmidt, M., Dürig, J., Horn, P.A., Giebel, B.: Functional Analyses of human CD133⁺CD34⁺ and CD133^{low/-}CD34⁺ cells challenge the existence of human common myeloid progenitor cells. Stem Cells in Development and Disease, September 2011, Berlin.

Görgens, A., **Radtke, S.**, Möllmann, M., Dürig, J., Horn, P.A., Giebel, B.: Functional Analyses of human CD133⁺CD34⁺ and CD133^{low/-}CD34⁺ cells challenge the existence of human common myeloid progenitor cells. Joint CSH Asia/ISSCR Conference on Cellular Programs & Reprogramming, Oktober 2011, Suzhou, China.

Görgens, A., **Radtke, S.**, Möllmann, M., Dürig, J., Horn, P.A., Giebel, B.: Functional Analyses of human CD133⁺CD34⁺ and CD133^{low/-}CD34⁺ cells challenge the existence of human common myeloid progenitor cells. XIX. Wilsede Meeting "Modern Trends in Human Leukemia and Cancer", Juni 2012, Wilsede.

**Radtke, S.**, Görgens, A., Horn, P. A., Giebel, B.: Establishment of an extended *in vitro* assay to analyse the developmental potential of the most primitive human hematopoietic cells at a clonal level. XIX. Wilsede Meeting "Modern Trends in Human Leukemia and Cancer", Juni 2012, Wilsede.

Görgens, A., **Radtke, S.**, Möllmann, M., Dürig, J., Horn, P. A., Giebel, B.: Functional Analyses of human CD133⁺CD34⁺ and CD133^{low/-}CD34⁺ cells challenge the existence of human common myeloid progenitor cells. 41st Annual Scientific Meeting of the ISEH, August 2012, Amsterdam, Niederlande.

Liu, H., Horsch, L. D., **Radtke, S.**, Giebel, B., Winterhager, E. and Gellhaus A.: CCN3, a potential angiogenic factor involved in endothelial dysfunction observed in the pregnancy disease preeclamsia, 17th International Vascular Biology Meeting, Juni 2012, Wiesbaden

Görgens, A., **Radtke, S.**, Möllmann, M., Dürig, J., Horn, P. A., Giebel, B.: Functional Analyses of human CD133⁺CD34⁺ and CD133^{low/-}CD34⁺ cells challenge the existence of human common myeloid progenitor cells. 45th Annual Congress of the German Society for Transfusion Medicine and Immunohematology (DGTI), September 2012, Graz.

**Radtke, S.**, Görgens, A., Punzel, M., Horn, P.A., Giebel, B.: Establishment of an extended *in vitro* assay to detect the most primitive human hematopoietic cells at a clonal level. 7th International Meeting of the Stem Cell Network NRW, März 2013, Köln.

Görgens, A., **Radtke, S.**, Möllmann, M., Cross, M., Dürig, J., Horn, P. A., Giebel, B.: Revision of the human hematopoietic tree: Granulocyte subtypes derive from distinct hematopoietic lineages. 7th International Meeting of the Stem Cell Network NRW, März 2013, Köln.

Wagner, B., Albrecht, F., **Radtke, S.**, Giebel, B., Horn, P. A., Dürig, J., Volbracht, A., Nückel, H., May, T., Opalka, B., Dührsen, U. and Rebmann, V.: The two sides of NKG2D ligand expression in AML: The peripheral blood and the bone marrow microenvironment, 6th Mildred Scheel Cancer Conference, Juni 2013, Petersberg

**Radtke, S.**, Görgens, A., Horn, P.A., Giebel, B.: Establishment of an extended *in vitro* assay to detect the most primitive human hematopoietic cells at a clonal level. 4th International Conference on Stem Cells and Tissue Formation, July 2013, Dresden

Görgens, A., **Radtke, S.**, Möllmann, M., Cross, M., Dürig, J., Horn, P. A., Giebel, B.: Revision of the human hematopoietic tree: Granulocyte subtypes derive from distinct hematopoietic lineages. 46th Annual Congress of the German Society for Transfusion Medicine and Immunohematology (DGTI), September 2013, Münster. (Oral presentation von A. Görgens)

**Radtke, S.**, Görgens, A., Punzel, M., Horn, P.A., Giebel, B.: Establishment of an extended *in vitro* assay to detect the most primitive human hematopoietic cells at a clonal level. 46. Jahrestagung der Deutschen Gesellschaft für Transfusionsmedizin und Immunhämatologie e.V., September 2013, Münster.

Kordelas, L.*, Rebmann, V.*, Ludwig, A. K., **Radtke, S.**, Ruesing, J., Doeppner, T. R., Epple, M., Horn, P. A., Beelen, D. and Giebel, B.: Successful Treatment of Therapy-Refractory Acute Graft-versus-Host Disease with Mesenchymal Stem Cell-Derived Exosomes. 46. Jahrestagung der Deutschen Gesellschaft für Transfusionsmedizin und Immunhämatologie e.V., September 2013, Münster.

Görgens, A., **Radtke, S.**, Mollmann, M., Cross, M., Durig, J., Horn, P. A. and Giebel, B.: Revision of the human hematopoietic tree: granulocyte subtypes derive from distinct hematopoietic lineages. 24th Regional Congress of the ISBT, Dezember 2013, Kuala Lumpur. Kordelas, L.*, Rebmann, V.*, Ludwig, A. K., **Radtke, S.**, Ruesing, J., Doeppner, T. R., Epple, M., Horn, P. A., Beelen, D. and Giebel, B.: Successful Treatment of Therapy-Refractory Acute Graft-versus-Host Disease with Mesenchymal Stem Cell-Derived Exosomes. 24th Regional Congress of the ISBT, Dezember 2013, Kuala Lumpur.

Giebel, B., Ludwig, A. K., de Miroschedji, K., **Radtke, S.**, Görgens, A., Rebmann, V., Horn, P. A., Kordelas, L., Beelen, D. W., Döppner, T., Herz, J., Hermann, D., Drommelschmidt, K., Bendix, I., Felderhoff-Müser, U., Opheders, D., Kramer, B. W., Landgreber, S., Rüsing, J., Epple, M., Singer, B. B., Jastrow, H., Brandau, S.: Mesenchymal stem cell-enriched exosomes mediate beneficial effects in a GvHD patient and in animal models for different inflammation related diseases. International Society for Extracellular Vesicles (ISEV), April 2014, Rotterdam.

## Zeitungsbeiträge

**Radtke, S.** und Giebel, B.: Meeting report from the 14th meeting of the IGLD (Interdisziplinäre Gruppe Labormedizin & Durchflusszytometrie) in Bad-Sooden Allendorf. Trillium-Report 2010 8(1): 61

**Radtke, S.** und Giebel, B.: Risiken und Erfolge der Zelltherapie; Highlights von der IGLD-Tagung 2011 in Hamburg. Trillium-Report 2011 9(2): 92

### **Eidesstattliche Erklärung**

#### **Erklärung:**

Hiermit erkläre ich, gem. § 6 Abs. 2, f der Promotionsordnung der Math.-Nat. Fakultäten zur Erlangung des Dr. rer. nat., dass ich das Arbeitsgebiet, dem das Thema "Entwicklung eines *in vitro* Nachweisverfahrens zur Analyse des Entwicklungspotentials humaner hämatopoetischer Stamm- und Vorläuferzellen" zuzuordnen ist, in Forschung und Lehre vertrete und den Antrag von Stefan Radtke befürworte.

Essen, den	
(PD Dr. rer. nat. Bernd Giebel)	

#### **Erklärung:**

Hiermit erkläre ich, gem. § 7 Abs. 2, c und e der Promotionsordnung der Math.-Nat. Fakultäten zur Erlangung des Dr. rer. nat., dass ich die vorliegende Dissertation selbstständig verfasst und mich keiner anderen als der angegebenen Hilfsmittel bedient habe und alle wörtlich oder inhaltlich übernommenen Stellen als solche gekennzeichnet habe.

Essen, den _____

(Stefan Radtke)

#### **Erklärung:**

Hiermit erkläre ich, gem. § 7 Abs. 2, d und f der Promotionsordnung der Math.-Nat. Fakultäten zur Erlangung des Dr. rer. nat., dass ich keine anderen Promotionen bzw. Promotionsversuche in der Vergangenheit durchgeführt habe, dass diese Arbeit von keiner anderen Fakultät abgelehnt worden ist, und dass ich die Dissertation nur in diesem Verfahren einreiche.

Essen, den _____

(Stefan Radtke)