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Abstract 

Groundwater can be contaminated when e.g. gasoline tanks leak. The analysis 

for gasoline related compounds in groundwater is generally done on lab using 

standard methods. Due to sampling and lab analysis, groundwater monitoring is 

time consuming and expensive. It is very important to develop methods to fast 

monitor before lab analysis. Although the technologies developed for rapid on-

site analysis of gasoline contaminated groundwater exist in commercial market, 

they still face the technical limitation to distinguish the gasoline from complex 

matrices.  

Different ion mobility spectrometry (DMS) can separate different gasoline 

related compounds dependent on the mobilities of chemical compounds at high 

and low electric fields. Coupled to micro gas chromatography column, DMS can 

distinguish the target gasoline compounds from the complicated gasoline matrix 

and the surrounding environment in short time. In this work, a fast method based 

on GC-DMS for the detection of gasoline related compounds in groundwater has 

been developed. 

The gasoline related compounds benzene, toluene, ethylbenzene and xylene 

(BTEX) were selected as fingerprint substances. A short column MXT-5 was 

utilized for separating the target compounds (BTEX) in groundwater. The 

analysis time is less than 2 min.  

In order to improve the detection limits and the sensitivity, a krypton UV lamp 

is utilized as ionization source instead of 63Ni. After optimizing the operation 

condition, The detection limits of BTEX determined by GC-UV-DMS are 0,15 

mg/L for toluene, 0,12 mg/L for ethylbenzene, 0,15 mg/L for m-xylene, 0,16 

mg/L for p-xylene, 0,16 mg/L for o-xylene, respectively, which are 30 to 330 

fold lower than those obtained by GC-63Ni-DMS. However, the detection limit 

of benzene is 0,08 mg/L, which is above the MCL recommended by WHO. 

Finally, the GC-UV-DMS is used to analyze the concentrations of BTEX in 17 

real groundwater samples collected from contaminated sites. In comparison with 



 
 

the reference method, the results of EXT obtained by this GC-UV-DMS are in 

good agreement with those obtained by reference method. To simulate the on 

field condition, a simulation system is built up. Temperature and matrix 

components influence the diffusion of BTEX in groundwater. 

The results reveal that the method based on GC-UV-DMS is feasible to be 

applied as a fast system to monitor the groundwater. 
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1. Introduction 

1.1Groundwater contamination by gasoline 

Groundwater is the most abundant source of readily available freshwater in the 

world, excluding polar caps and glaciers, making up 97% of all freshwater. 

Groundwater fulfills different functions and is widely used for food production, 

irrigation and industrial cooling. The groundwater is one of the most important 

resources for drinking water. In European Union (EU), about 75% of EU 

residents are depending on groundwater for their water supply [1]. Besides use 

to support human activity, groundwater also plays a significant role in 

supporting and enabling ecosystem functions.  It is well known that groundwater 

supports surface water flows and their dependent aquatic and terrestrial 

ecosystem. 

In early times, it was thought that groundwater have sufficient protection by 

soils and rocks which overlay groundwater.  However, through natural and 

human activity, the groundwater source is at risk of contamination from a 

variety of pollutants such as physical, chemical, and biological contaminants. 

One of contamination of groundwater is hydrocarbons, which enter the 

environment through improper use, waste disposal and leaking storage facilities. 

Petroleum based fuels such as gasoline and diesel are one of the best known 

classes of groundwater contaminants. In 1971, a gasoline pipeline in 

Pennsylvania, United States broke and several hundred gallons of gasoline 

released into the groundwater. From then, contaminant of groundwater by 

petroleum products has appeared as a new environmental challenge. Until 2012, 

over 470,000 confirmed releases of petroleum based fuels from leaking 

underground storage tanks have been recorded in USA[2].  In Europe, as shown 

in Figure 1.1, main pollutants for soil and groundwater are mineral oil, aromatic 

hydrocarbons (mainly BTEX) and polycyclic aromatic hydrocarbons (PAH) 

(total about 53%), higher than the heavy metals pollution 37,3%. Furthermore, 

in some European countries, the percentages of mineral oil contaminations are 
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higher to 67,9% in Czech Republic, 52% in Italy and 45% in Luxembourg, 

respectively[1]. For the purposes of assessing groundwater chemical status, the 

groundwater quality standards have been established in Directive 2000/60/EC 

[3]. Contamination of groundwater with gasoline occurs at many sites, 

particularly those associated with petrochemical industry such as former 

gaswork sites, landfills and petroleum stations. 

 

Figure 1.1: Overview of contaminants affecting soil and groundwater in Europe [1] 

 

1.2 Emerging sensor technologies for monitoring VOCs in 

groundwater 

The groundwater monitoring is important for characterization, assessment and 

remediation of contaminated groundwater. For example, during a remedial 

investigation, groundwater samples are collected and analyzed to determine the 

types of contaminants present and the horizontal and vertical extent of those 

contaminants. The resulting data provide much of the information necessary to 

determine an effective remedial approach. Once a remedy is selected and 

operational, ground water monitoring is used to determine the progress of 

remediation and to ensure the remedy is operating effectively.   

It is still a big challenge to monitor groundwater. In many countries, 

groundwater quality monitoring has been a neglected point in overall 
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environmental surveillance, even in European Community and other 

industrialized countries. The capital costs and monitoring techniques associated 

with dedicated, customer-built, monitoring networks are the significant 

challenges to overcome. 

EC Water Framework Directive (2000/60/EC) and its associated daughter 

Groundwater Pollution Protection Directive (2006/118/EC) enforce the need for 

systematic monitoring and periodic assessment of groundwater quality, for 

management and protection measurements, and for evaluation of their 

effectiveness to further appropriate monitoring. In order to evaluate the current 

technologies, it is very important to establish the currently used procedures for 

sampling and analysis of groundwater. 

VOC is one major of organic pollutants in groundwater. Analysis is generally 

lab basis done using gas chromatography (GC) coupled with mass spectrometry 

(MS) or other detectors like photoionization detector (PID) and an electrolytic 

conductivity detector (ECD). EPA 8260b and 8021b are more widely used [4, 5]. 

These lab methods are capable of detecting the more prevalent VOCs such as 

BTEX (benzene, toluene, ethylbenzene, and xylenes), trichloroethylene and 

halogenated hydrocarbons, when coupled with special methods to extract the 

substances from the water. The detection limits of GC methods are low to ppt[6].  

However, the costs of these methods 8260b and 8021b are high and the analysis 

time is long (in the range of week). For example, based on the analytical costs 

$120 per sample for VOCs testing, the cost of testing samples from 30 wells 

with traditional lab methods is approximately $3600 [7]. The whole monitor 

procedure of 30 wells by traditional sampling and measurement at one site will 

cost approximately $10,000 to $15,000. 

The development of method that can be used to monitor and characterize VOCs 

in water, which can provide cheap and reliable information about contamination, 

is required. Therefore, the effective sensor based instruments for groundwater 

monitoring are very useful to achieve this target. These sensor technologies can 
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distinguish the target analytes from other background chemicals, semi or 

quantify the concentration of analytes, and easy operation by user. Several main 

characteristics of sensor based technologies are: sensitivity, reliability, 

selectivity and speed[8]. All sensors should have been sensitive enough to detect 

VOCs in groundwater. Ideally, the detection limit for a particular compound 

should be lower than the legal maximum contaminant levels (MCLs). Practically, 

the sensors with detection limit higher than the MCL still provide meaningful 

results. Furthermore, the concentrations at a site may vary in a large range from 

ppt level to the high level. The results of these sensors should be reliable. The 

concentration determination from a particular sample or from samples with the 

same actual concentrations should be consistent with minimal variation. 

Additionally, the concentrations monitored by the technique should be closed to 

the actual concentrations of the sample being measured. A variety of 

contaminants may be contained in groundwater at hazardous waste sites. The 

sensor should be able to distinguish the target analytes from the other 

contaminants. Speed is also considered as one important factor for sensor to 

monitor groundwater. The instruments should be able to spend appropriate time 

to work. For long term monitoring, the time can be long if the device is fixed in 

place. Otherwise, if the device is moved from one well to another in a single 

sampling event, the analysis would be more frequent and the analysis time is 

required in the order of seconds or minutes. 

Even though a number of technologies are currently being developed for in-situ 

sampling and analysis of VOCs in groundwater, each technology faces the 

technical problems such as distinguishing the target analyte from other 

substances in the surrounding environment and then accurately quantifying the 

amount. The following technologies partly overcome these technical problems 

but are still in various stages of development. A brief description and current 

efforts on techniques such as chemiresistor, surface acoustic wave sensors, and 

fiber optic sensor and quartz crystal microbalances will be present as follows. 
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Chemiresistors are comprised of a conductive polymer film applied to a micro-

fabricated circuit[9]. When the analyte contacts with the polymer, it swells and 

changes the resistance leading to an electrical response. Each sensor includes an 

array of these resistors with different polymers. Mathematical analysis of the 

signals from each resistor is used to determine the concentrations of components 

within the sample. Because the vapor is used to be analyzed, the vapor phase 

concentration must be converted into an aqueous or liquid phase concentration 

using Henry’s Law. In laboratory conditions, the sensor detection limit is 

approximately 0.1% of the saturated vapor pressure. For example, the detection 

limit for trichloroethylene translates to an aqueous concentration of 

approximately 1.000µg/L (compared to the MCL of 5 µg/L) and the detection 

limit of xylene is approximately 2.000 µg/L(compared to MCL of 10.000 µg/L) 

[10]. 

Chemiresistor has several advantages such as small size, low power usage and 

good sensitivity to various chemicals. In comparison with other standard 

electrochemical sensors, another advantage of chemiresistor is that it can work 

properly without liquid. A big drawback for chemiresistor is that it may not be 

able to discriminate the target compounds from the unknown complicated 

mixtures of chemicals. Durability of polymers in subsurface environments is 

uncertain when polymers react strongly to water vapor [11].  

Surface Acoustic Wave Sensors (SAWS) utilize the piezoelectric effect to 

translate an electric signal into a mechanical wave [12]. The mechanical wave 

propagates through the material to another transducer which converts the wave 

back to an electrical signal. Surface acoustic wave devices specifically use the 

Rayleigh wave transverse and surface wave in operation. Normally, SAWS 

consist of an input and output transducer, a chemical adsorbent film on a quartz 

piezoelectric substrate. An acoustic wave launched by input transducer travels 

through the chemical film and is detected by an output transducer at a very high 

frequency 100 MHz. The velocity and attenuation of the signal are sensitive to 
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the viscoelasticity as well as the mass of the thin film, which can allow for the 

identification of the contaminant. After analysis, the chemical film can release 

chemicals from the device by heating. SAWS can detect chlorinated 

hydrocarbons, ketones, saturated hydrocarbons, aromatic hydrocarbons, 

organophosphates, and water. As well as chemiresistor, SAWS have a lot of 

advantage like good sensitivity to various chemicals, small size, low power 

consumptions, low detection limits for various chemicals. However, SAWS may 

not be able to discriminate target analytes among unknown mixtures of 

chemicals. The durability is very sensitive for water vapor. 

Fiber Optic Sensors are a class of sensors that use optical fibers to detect 

chemical pollutants [13]. A light source generates light. Then the light is sent 

through an optical fiber. After scanning the sample, the light returns through the 

optical fiber and is captured by a photo detector.  There are three general classes 

of fiber optic sensors. The first class of fiber optic sensors consist of an optic 

sensor coupled with a chemically interaction thin film attached to the tip. When 

the contaminant binds to the film, the concentration will be reflected by the 

color of the film, the refractive index, or the fluorescing intensity of film. The 

second type is completely passive. The light, which is reflected or emitted by the 

contaminant, is analyzed. The refractive index of the material at the tip of the 

optical fiber can be used to determine the phases. The third type of fiber optic 

sensors involves injection a reagent near the sensor. This reagent can react either 

chemically or biologically with the pollutants. Based on the amount of reaction 

products, the concentration of a contaminant can be obtained.  

Detection limits of different type fiber optic sensors vary largely. As an example, 

the detection limits are 0,38 ppm for benzene, 0,30 ppm for toluene, 0,10 ppm 

for ethylbenzene and 0,13 ppm for xylenes [13]. Furthermore, a fiber optic probe 

based on lasers has been developed with detection in approximately 1 µg/L 

range for BTEX. Currently, the technology based on mid-infrared fiberoptic 

sensors can analyse concentrations of 5 to 10 various VOCs(including TCE, 
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tetrachloroethylene, and BTEX) in a single sample with detection limits of 

approximately 100 µg/L. Efforts with various lasers and membranes are focused 

on increasing the sensitivity to allow for detection in the 1 to 10 µg/L range. 

Another sensor has been developed with detection capability low to 

approximately 50 to 100 µg/L[13]. 

The advantages of fiber optic sensor are low power consumption; low detection 

limits for detecting various chemicals, a variable of spectroscopies can be used 

like Fourier transform infrared spectrometer, UV induced fluorescence 

spectroscopy. The drawbacks involve: limited ability to transmit light through 

the optical fiber over long distances; concentration range sensitivity may be 

limited; some organic contaminants are not easily differentiated using UV-

visible spectroscopy or IR; the chemically sensitive coatings of sensors will 

degrade with time. 

Quartz Crystal Microbalances (QCMs) coated with various polymers that 

selectively absorb the chemicals of interest are used in sensor technology [14]. 

The mass at the surface of the QCM changes, when the chemicals adsorb to the 

polymer.  The resonant frequency can be measured electronically affecting by 

the mass on the QCM. In order to detect different compounds, different 

polymers can be developed. Like the chemiresistor technology, a single sensor 

includes multiple QCMs and chemometrics of the resulting signals is used to 

determine the concentrations and constituents of the sample. After calibration 

with specific standards, a variety of VOCs can be detected. 

The vapors of target contaminants are selected and isolated from the 

surrounding groundwater by permeable membrane. For example, chlorinated 

compounds in vapor phase enter the chamber and adsorb to the polymers, and 

therefore, create a QCM response. The concentration of chlorinated pollutants is 

correlated to the aqueous or liquid phase concentration. If the device is moved to 

a different location, the time for equilibration is needed[15]. 
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Ueyama et al. developed a water monitoring system based on polymer coated 

QCM chemical sensor, which can detect the oil in contaminated river water with 

threshold odor number less than three [14]. The detecting time was less than 5 

min depending on the oil kindness and the sensitivity was kept steady for longer 

than 6 months with 400 detections of diesel and heavy oil. Dickert reported that 

the xylene isomers could be detected with an accuracy of about 1% in the range 

of 0-200 ppm by QCM [16]. They nearly eliminated the residual water cross-

sensitivity of the sensor coatings, which allows effective work place or 

environmental monitoring of toxic compounds with fast response levels. A 

VOCs detecting sensor based on QCM was developed for the detection of 

toluene and p-xylene by Matsuguchi[15].  

Bourgeois et al. demonstrated that a chemical sensor array can rapidly identify 

the presence of organic compounds (such as diesel) in a wastewater matrix [17]. 

Another advantage of QCMs is that it may be possible to discriminate the kind 

of pollutants. As reported by Ueyama, the response curve shape depends on the 

kinds of oil, which means the analysis of response curves might lead to the 

estimation of the kind of oil [14]. The data for the first several minutes are 

necessary for effective discrimination. The long-term performance is one of the 

key properties of a water monitoring system. The QCMs have a long life time. 

The development of a combined system, such as QCM and surface-plasma 

resonance (SPR) or other electrochemical measurement system would lead to 

next generation of sensing devices capable of providing a lot of additionally 

useful information in comparison to an individual technique [18, 19]. 

There are still several technical problems of QCMs to overcome. In many cases, 

the changes in temperature and humidity will lead to variation in the organic 

content of wastewater, which is detected. This shows the difficulty of 

establishing an independent relationship between the response of signal and 

pollutants content in samples. The calibration of the instrument using data 

acquired under wide ranging conditions is needed.  
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Differential ion mobility spectrometer (DMS) is a technique to identify and to 

detect ions at the ambient pressure. The ions have field dependent mobility in 

strong electric fields above 10.000 V/cm. Based on the nonlinear field 

dependence of the coefficient of mobility in high electric fields, DMS is 

fundamentally different from conventional low field techniques such as time of 

flight ion mobility spectrometry (IMS). It was found to be one of the most viable 

candidates for fast monitoring groundwater because of its simplicity and 

portability. DMS has been developed in the past for applications in a lot of fields. 

The historical development, principles and theory of DMS and the main 

applications of DMS on environmental monitoring will be presented in the 

following part. 

1.3 History of differential ion mobility spectrometry development 

In 1973, Mason and Daniel first described the phenomenon about ions nonlinear 

mobility in strong electric fields [20]. In the 1980’s, M Gorshkov first proposed 

the method to use the differential mobility approach for ion separation in Soviet 

Union. Several years later, Buryakov et al. developed practical implementation 

of DMS [21]. 

There are two geometry types of the separation cell used for DMS: 1) a pair of 

cylindrical (or curved) electrodes and 2) a pair of flat planar electrodes.  

The main milestones of development on cylindrical version are listed as follows: 

In 1995, Carnahan et al. reported the first commercial prototype of cylindrical 

design of DMS at Proceeding of an Fourth International Workshop on IMS, 

Cambridge, UK [22]. In 1999, Purves succeed to use DMS as an ion pre-filter 

for atmospheric pressure ionization mass spectrometry and called this system as 

FAIMS [23]. In 2000, Ionalytics company commercialized FAIMS and 

Thermofisher purchased Ionalytics in 2005. 

Another type of DMS with planar electrode was developed in Soviet Union in 

the late 1980’s[24]. In 2000, Miller et al. developed the first prototype of a 

micromachined DMS sensor (Figure 1.2) [25]. In 2005, Sacks et al. reported a 



13 
1.Introduction 

silicon microfabricated column with microfabricated differential mobility 

spectrometer for GC analysis of VOCs[26]. The prototypes of DMS coupled 

with GC were designed and built up. In 2006, MicroAnalyzer, a GC-DMS 

system combining sophisticated pre-concentration, flash thermal desorption, GC 

temperature ramping, and DMS separation and detection in a compact, portable 

and field deployable package, was commercialized by Sionex. In 2009, 

Shvartsburg utilized a multichannel (47 channels) microchip with 35 µm gaps in 

FAIMS (Figure 1.3)[27]. 

From the beginning of DMS, this technology made huge progress and 

applications of DMS/FAIMS grow rapidly[24]. At the early stage, the separation 

of ion species at a strong electrical field was observed and considered as 

interesting physical phenomena. Later, this method was exploited to a powerful 

and useful analytical device with varied application. Particularly, miniaturization 

and easy operation of DMS resulted in the attraction of more and more interest. 

The amount of publications increases each year, and the scientific community of 

ion mobility spectrometry broadens largely.  

 

Figure 1.2: Photograph of a micromachined field asymmetric ion mobility spectrometer [25] 
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Figure 1.3: Photograph of the FAIMS microchip (a), its face exhibiting the serpentine channel (b), 

and electron micrograph showing detail of the gap entrance (c) [27]. 

1.4 Ion behavior in high electric field  

In a low electric field (<10kV/cm) and under standard conditions of a pressure 

101,3kPa and temperature 273 K, the mobility coefficient (K, m2/(V*s)) of a 

singularly charged ions is principally governed by its reduced mass µ (kg) and 

the collision cross section Ω (m2). As shown in Mason-Shramp equation 

(eq.1.1)[20], K can be described with relation to µ and Ω, where e, is the 

elementary charge constant, kb is the Boltzmann constant (J/K), Teff is effective 

temperature of the ion and is approximated to gas temperature and N is the 

molecular density of neutrals in the gas (the drift gas) supporting the ion 

(2,69×1025 m-3). 

ܭ ൌ
ଷ௘

ଵ଺ே
∗ ሺ
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        (eq. 1.1) 

In higher electrical field (> 10 kV/cm), the effective temperature Teff of the ion 

increase and can no longer be approximated to the gas temperature. With the 

increase of temperature, the cluster ion is modified, expand or contract, which 

result in a change in the collision cross-section parameter (Ω). The Mason-

Shramp equation can be modified as follows:  
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   (eq. 1.2) 

In eq. 1.2, Ω is replaced by the effective ion temperature dependent collision 

cross section parameter (Ω(Teff)). 
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Therefore, the mobility coefficient K is field dependent by virtue of the 

influence of the filed on the effective ion temperature and K is molecular 

specific on the basis of its dependence on Ω. Over a narrow field range, K is 

approximately proportional to 1/Ω. K is dependent on the size of the analyte 

molecule, from which the cluster ion is produced. In a fixed applied electric 

field, ion may be separated on their specific fixed mobility coefficient K[28]. 

When an ion passes through the gap between a pair of electrodes over which an 

oscillating asymmetric electric field is applied, the mobility of the ion will 

oscillate between a low field mobility (K0), which is usually approximated to be 

representative of the zero field mobility and a high field mobility K(E). The 

FAIMS or DMS separates ions on the basis of differential mobility of ions in an 

oscillating asymmetric field. 

As described by eq. 1.3, the filed dependency of K(E) is related to K0, whereby 

α is the function of the K(E)/K0 versus E curve 

ሻܧሺܭ ൌ ଴ሾ1ܭ ൅  ሻሿ (eq. 1.3) [28]ܧሺߙ

To an approximation over a narrow electric field range (0-30000V/cm), the α-

function is closed to a polynomial expandable in even powers over E (eq. 1.4), 

where the coefficients α1, α2, …, αn are specific to the ion, and more importantly 

the parent molecule forming the ion. 

ሻܧሺܭ ൌ ଴ሾ1ܭ ൅ ሻଶܧଵሺߙ ൅ ሻସܧଶሺߙ ൅ ⋯൅  ሻଶ௡ሿ  (eq. 1.4)ܧ௡ሺߙ

The change in ion mobility under the influence of the high electric field intensity 

is also related to the gas density N. the eq. 1.4 can be modified to eq. 1.5 as 

follows: 
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The variation range of K with the electric field is defined by E/N, in which E is 

the electric field intensity and N is the gas density, namely the number of the gas 

molecule in unit volume. The unit of E/N is Townsend (Td). It is presumed that 

the electric field intensity is 1kV/cm, under standard conditions ( pressure 101.3 

kPa and temperature 273 K), the gas density N will be 2,7×1019 , The value of 

E/N is about 3,7×10-17 V/cm2. It is defined that 1 Td is equal to 1×10-17 V/cm2, 

then the value of E/N is about 3,7 Td under standard conditions [29]. 

When E/N is about 40 Td, the ion mobility begins to change when the electrical 

field intensity increase. When the electrical filed intensity is over a certain value 

(>10kV/cm), the mobility of the ion will change nonlinearly with the electric 

field. Depending on the change of mobility, the ions can be sorted to three types 

A, B and C.  With an increase of the electric field, the mobility of ion A will also 

increase. Otherwise, the mobility of ion C will decline when the electric field 

increases. The mobility of ion B will primarily increase and then decrease with 

the electric field increasing above 10 kV/cm. Generally, most of the ions with 

small mass to charge ratio (m/z <300) have A type mobility and the large 

molecular will have a behavior of mobility change as type C. However, the 

change in mobility is very complicated and will be related with the size of the 

ion, the structural rigidity and interaction between ion and molecule. Even today, 

due to technical difficulties, alpha parameters for atmosphere pressure 

conditions are available for only a few substances such as amines, chloride, 

kentones and positive and negative amino acids ions [24],[30],[31],[32]. 

1.5 Principle of differential ion mobility spectrometry 

General principle for planar DMS/FAIMS for the separation of ions with 

different α is shown on Figure 1.3. When the high electric filed asymmetric 

waveform is applied to the narrow planar electric plates and the ion is brought 

into this electrical field by carrier gas, it will undergo oscillations between the 

two plate electrodes.  For example, an ion into the electrical field, the oscillation 

routes with different α(E/N) values are shown in Figure 1.3. In t1 of one 
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vibration period, corresponding with the electric field intensity E1, these three 

type ions will move towards the upper plate of the electrode; while within t2 of 

the vibration period, corresponding to the low electric field intensity E2 (Figure 

1.4), these three different species of ions will move towards the lower plate 

electrode; the vibration direction is vertical to the plate electrode.  

During the t1 and t2, the ion can be approximated as a uniform motion.  The 

velocities of the ion during t1 and t2 are supposed to v1 and v2 respectively. The 

time can be described as eq. 1.6 [24].  

 

 

Figure 1.3: schematic of a differential ion mobility spectrometry and motion track of the ions with 

different α [33] 

 

 

Figure 1.4: electric field of asymmetric rectangular waveform [24] 

 

ݐ∆ ൌ
ଶ௠௩భ
௤ாభ

ൌ
ଶ௠௄

௤
              (eq. 1.6) 
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Where, q is the charge of the ion, K is the mobility of the ion and m is the mass 

of the ion. Compared with the radio frequency asymmetry waveform voltage 

period, Δt can be ignored.  

As shown in Figure 1.4, the field is designed to satisfy the condition E1t1=E2t2, 

which means the integral peak above and below the time axis are equal.  

If the α(E/N)=0 (K(E1)=K(E2)), displacement of ions during the high and low 

portions of the applied field will be equal and opposite as described follows: 

v1t1=v2t2=K(E1)E1t1=K(E2)E2t2        (eq. 1.7) 

The sum in displacement of the ions during on period of the separation field will 

be zero. 

If ion mobility significantly depends on electric filed strength (α(E/N)≠0), the 

displacement of ions during a period of the separation field will be not zero.  

K(E1)E1t1≠K(E2)E2t2              (eq. 1.8) 

If α(E/N) > 0, then the ions will be displaced towards the upper electrode at a 

distance ΔKE1t1.  The extent of displacement depends on field waveform (ratio 

t1/t2), field amplitude (E1), and ion mobility dependence (α1). If α(E/N) < 0, then 

the ions will be displaced towards the lower electrode. 

When the net displacement per period of asymmetric filed is zero, the ions of 

analyte can pass through the gap between the electrodes. A displaced ion can be 

restored to the center of the gap by adding a low strength DC electric field (the 

compensation field, C) on the asymmetric waveform. Different ions with 

differing displacement, which depend on mobility in the high field condition, 

can pass through the gap at different compensation fields. Each particular ion 

can be characterized by using various strengths of C.  Therefore, a scan of C will 

allow a complete measurement of ion species and the resultant scan of C with 

time will be referred as mobility scan due to C related with mobility. 

From above, it can be concluded that the ion drift spectrometer can function as 

continuous ion filter. When the compensation voltage is set for a specific ion, 

only this ion can pass through the gap of electrodes, while others will be 
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neutralized by the electrode and remain in drift region. The DMS spectrogram of 

the ion can characterize all ions in the drift region when C is swept through a 

certain range.  

Mathematical description of the DMS method is briefly presented below. The 

DMS field must satisfy the following conditions [34]: 

Zero offset 

ଵ

்
׬ ݂ܵሺݐሻ݀ݐ ≡ ܵ〈݂ሺݐሻ〉
்
଴ ൌ 0            (eq. 1.9) 

Asymmetry 

〈݂ଷ〉 ൌ ׬ ݂ଷ
்
଴

ሺݐሻ݀ݐ ് 0            (eq. 1.10) 

High frequency 

ܨ ≫
〈|௙|〉ௌ௄

ଶௗ
            (eq. 1.11) 

High strength 

ாಳವ
ଶ
൏ ܵ ൏  ஻஽                  (eq. 1.12)ܧ

Where f(t) is a periodic normalized ሼ݉ܽݔሾ݂ሺݐሻሿ ൌ 1ሽ function describing the 

separation waveform, S is the separation filed peak amplitude, EBD is the break 

down electric field strength, T and F are separation field period and frequency, d 

is the distance between DMS electrodes, K is the approximate ion mobility 

coefficient for the analyte, and triangular brackets denote averaging over one 

period of separation field. 

The net displacement per period of asymmetric field is zero after inputting a low 

strength DC electric field C, which can be present as follows, 

݈ ൌ ׬ ሻݐሺݒ
்
଴ ݐ݀ ൌ ׬ ሺܭ

ா

ே
ሻሺ݂ܵሺݐሻ ൅ ሻܥ

்
଴ ݐ݀ ൌ 0        (eq. 1.13) 

To solve for C, eq. 1.5 is substituted into eq. 1.13  

׬ ଴ܭ
்
଴ ሺ1 ൅ ߙ ቀ

ா

ே
ቁሻሺ݂ܵሺݐሻ ൅ ݐሻ݀ܥ ൌ 0       (eq. 1.14) 

it can be transformed to eq. 15 

〈ሺ1 ൅ ߙ ቀ
ா

ே
ቁሻሺ݂ܵሺݐሻ ൅ 〈ሻܥ ൌ 0         (eq. 1.15) 
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Expanding alpha function by Taylor’s theorem in terms of the small parameter 

C/S yields a first order approximation for the compensation field C. 

ܥ ൌ
ௌ〈ఈ௙〉

ଵା〈ఈ〉ାௌ〈ఈᇱ௙〉
              (eq. 1.16) 

The value of this compensation electric field can be predicated precisely when 

the alpha parameter for the ion species, the waveform f(t), and the amplitude of 

the asymmetric waveform S are known. α is the alpha dependence and α’ is the 

derivative with respect to E/N. triangular brackets mean the average over a 

period of the separation field. Dependent on this theory, the alpha function will 

be calculated as follows. 

1.6 Alpha function calculation 
According to Krylov et al, the method is described to represent the function of 

α(E/N) [32]. This method could be used for different asymmetric waveforms of 

different designs of IMS drift tubes whether linear, cylindrical, or planar FAIMS. 

The function of α(E/N) can be given as a polynomial expansion into a series of 

electric field strength E degrees as shown in following equation: 

ሻܧሺߙ ൌ ∑ ଶ௡ஶߙ
௡ୀଵ  ଶ௡  (eq. 1.17)ܧ

Substituting this equation to eq.1.16, the eq. 1.17 can be obtained, where an 

uneven polynomial function is divided by an even polynomial function. 

Therefore, an odd degree polynomial is placed after the sign to approximate 

experimental results: 

ܥ ൌ
∑ ఈమ೙ௌమ೙శభழ௙మ೙శభሺ௧ሻவ
ಮ
೙సభ

ଵା∑ ሺଶ௡ାଵሻఈమ೙ಮ
೙సభ ௌమ೙ழ௙మ೙ሺ௧ሻவ

≡ ∑ ܿଶ௡ାଵஶ
௡ୀଵ ܵଶ௡ାଵ ൏ ݂ଶሺ௡ି௞ሻ ൐  (eq. 1.18) 

This allows the comparison of the expected coefficient (approximated) and 

values of alpha parameter as shown as follows: 

ܿଶ௡ାଵ ൌ ଶ௡ߙ ൏ ݂ଶ௡ାଵ ൐ െ∑ ሺ2ሺ݊ െ ݇ሻ ൅ 1ሻܿଶ௞ାଵ
௡ିଵ
௞ୀଵ ଶሺ௡ି௞ሻߙ ൏ ݂ଶሺ௡ି௞ሻ ൐  (eq. 

1.19) 

Alternatively, alpha parameters can be calculated by inverting the formula using 

an approximation of the experimental results: 
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ଵ
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൛ܿଶ௡ାଵ ൅ ∑ ሺ2ሺ݊ െ ݇ሻ ൅ 1ሻܿଶ௞ାଵߙଶሺ௡ି௞ሻ〈݂ଶሺ௡ି௞ሻ〉

௡ିଵ
௞ୀଵ ൟ  (eq. 1.20) 
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Principally, any number of polynomial terms (e.g. 2n) can be determined from 

the above eq. 1.20. However, a practical limit exists. The number of polynomial 

terms in the experimental results of the approximation c2n+1 should be higher 

than the expected number of alpha coefficients α2n. Since the size of n depends 

on the experimental error, the power of the approximation of the experimental 

curves C(S) cannot be increased without limit. Usually N experimental points of 

Ci(Si) exist for the same ion species and experimental data can be approximated 

by the polynomial using a conventional least square’s method. Finally, 

increasing the number of series terms above the point where the fitted curves are 

located within the experimental error bars is unreasonable. Practically, two or 

three terms are sufficient to provide a good approximation as shown in prior 

literature[30]. 

The error in measurements must be determined in order to measure the order of 

a polynomial for alpha. The sources of error in these experiments (with known 

or estimated error) are 

1. Error associated with measurement and modeling of the separation field 

amplitude (about 5%) 

2. Error in C(S) from a first order approximation of eq. 1.9 and 1.10 (about 

3%) 

3. Error in measuring the compensation voltage (about 2%). The 

approximate combined error may be 10% and there is therefore no gain 

with approximations beyond two polynomial terms; thus, alpha can be 

expressed as ߙ ቀ
ா

ே
ቁ ൌ ଶߙ ቀ

ா

ே
ቁ
ଶ
൅ ସߙ ቀ

ா

ே
ቁ
ସ
with a level of accuracy as good 

as permitted by the measurements. 

Modern software usually provided the possibility to approximate experimental 

data by polynomial function C=c3S
3+c5S

5 according to eq. 1.18. A standard least 

squares method (regression analysis) was used to approximate or model the 

experimental findings. For N experimental points with Ci(Si) and for 
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C=c3S
3+c5S

5 a function y=c3+c5x can be defined where y=C/S3; x=S2 so c5 and 

c3 are given as follows: 
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మ
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  (eq.1.21) 

ܿଷ ൌ
ଵ

ே
൫∑ ௜ݕ

ே
௜ୀଵ െ ܿହ ∑ ௜ݔ

ே
௜ୀଵ ൯  (eq. 1.22) 

Through substituting experimental values for c3 and c5, the derived values for α2 

and α4 can be found as follows: 

ଶߙ ൌ
௖య
〈௙య〉

  (eq. 1.23) 

ସߙ ൌ
௖ఱାଷ௖యఈమ〈௙మ〉

〈௙ఱ〉
  (eq. 1.24) 

This formula is valid for any waveform and may be described by form factors 

<f2(t)><f3(t)><f5(t)>; these can be calculated analytically or numerically.  

1.7 Ionization theory for DMS (63Ni and UV) 

In this thesis, two ionization techniques are used by DMS. One is the radioactive 

source and another is UV lamp. The efficiency of targets ions ionized by these 

two techniques are different due to the different mechanisms. The theories of 

these two ionization ways are detailed as follows. 

1.7.1 Radioactive ionization theory (63Ni) 

When a β ray, an electron of modestly high energy, passes through a gas at an 

atmospheric pressure, its energy is dissipated primarily by inelastic collisions 

with the orbital electrons of the gas molecules. The decelerating primary 

electron leaves a track of slow positive ions and secondary electrons via direct 

and indirect ionization processes, some of which have sufficient energy to leave 

small tracks of their own[35].  In the absence of a strong electric field, secondary 

electrons are thermalized after a few collisions of the ions. The room 

temperature’s chemistry of ion-molecule reactions and electron attachment 

becomes the most interestin aspect of the entire process. While the physical 

period of ionization and thermalization is over in 10-9 s, the chemical period may 
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continue to evolve for a second or more, until the charge cloud is finally 

destroyed by the following three ways[35]. 

1. the recombination of positively and negatively charged species 

2. diffusion of charged species to the walls 

3. physical removal by bulk flow of the gas 
63Ni emits β particles of energies forming a continuous distribution from 0 to 67 

MeV[36]. The β particles lose energy during collision with the drift gas. For 

instance, the average energy loss per ion pair formed in N2 is 35 eV, with 

ionization occurring as long as the energy of the β particle remains above the 

ionization potential of N2 (IE 15,58 eV).  The process is summarized as follows: 

ଶܰ ൅ ߚ → ଶܰ
ା ൅ ᇱߚ ൅ ݁ି   (eq. 1.25) 

β’ is a β particle of reduced energy following the reaction, and e- is the electron 

produced upon ionization of the N2. The N2
+ initiates a series of reactions, 

subsequently leading to the formation of three positive reactant ion species, 

(H2O)nH
+, (H2O)nNO+, and (H2O)nNH4

+.  

The formation of (H2O)nH
+ was studied by Good et al[37] and is shown as 

follows: 

ଶܰ
ା ൅ 2 ଶܰ → ସܰ

ା ൅ ଶܰ  (eq. 1.26) 

ସܰ
ା ൅ ଶܱܪ → 2 ଶܰ ൅  ଶܱା  (eq.1.27)ܪ

ଶܱାܪ ൅ ଶܱܪ → ଷܱାܪ ൅  (eq. 1.28)  ܪܱ

ଷܱାܪ ൅ ଶܱܪ ൅ ଶܰ → ሺܪଶܱሻଶܪା ൅ ଶܰ  (eq. 1.29) 

ሺܪଶܱሻଶܪା ൅ ଶܱܪ ൅ ଶܰ ↔ ሺܪଶܱሻଷܪା ൅ ଶܰ  (eq. 1.30) 

ሺܪଶܱሻଷܪା ൅ ଶܱܪ ൅ ଶܰ ↔ ሺܪଶܱሻସܪା ൅ ଶܰ (eq. 1.31) 

⋯⋯ 

The number of cluster waters, n, in (H2O)nH
+ is a function of the temperature 

and the partial pressure of water in the gas. At source pressures of 0,5 to 3,5 torr, 

with trace water concentrations of 0,3 to 10 mtorr, n=2,3 or 4 predonmiated. 

Sumner et al presented the cluster contained 5 to 8 water molecules at 298 

Kelvin degrees, 700 torr, and 5 torr partial  water pressure [38]. Carroll et al 
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reported that the (H2O)nH
+ ion peak contained n=2 or 3 water molecules in a 

ratio of approximately 7:3 at 433 Kelvin degrees, ambient pressure, and 5×10-3 

torr partial water pressure[39]. 

The mechanism for the formation of the (H2O)nNO+ reactant ion has been 

hypothesized based on processer known to occur in the atmosphere[40]. As 

described above, N2
+ and OH are produced and they initiated the following 

reactions leading to the hydrated nitric oxide ions: 

ଶܰ
ା ൅ ܪܱ → ାܪܱ ൅ ଶܰ (eq. 1.32) 

ାܪܱ ൅ ଶܱܪ → ଷܱାܪ ൅ ܱ (eq. 1.33) 

ଶܰ
ା ൅ ܱ → ܱܰା ൅ ܰ  (eq. 1.34) 

ܱܰା ൅ ଶܱܪ ൅ ଶܰ → ሺܪଶܱሻܱܰା ൅ ଶܰ  (eq. 1.35) 

Carroll et al observed NO+ and (H2O)NO+ as the predominant species[39]. 

The final reactant ion, (H2O)nNH4
+, n=0 or 1[39], is probably obtained via proton 

transfer from the (H2O)nH
+ reactant ion to NH3 contaminants from the 

atmosphere. 

ଷܪܰ ൅ ሺܪଶܱሻ௡ܪା → ସܪܰ
ା ൅  ଶܱ  (eq. 1.36)ܪ݊

ସܪܰ
ା ൅ ଶܱܪ ൅ ଶܰ → ሺܪଶܱሻܰܪସ

ା ൅ ଶܰ  (eq. 1.37) 

There are four basic ion-molecule reactions to the formation of positive product 

ions: 1) proton transfer reaction, 2) charge transfer reactions, 3) electrophilic 

addition, 4) hydride transfer[41]. The reactions are described as following 

equations: 

1) Proton transfer reactions (when the proton affinity (PA) of the sample 

molecule is greater than that of the reactant ions.) 

ሺܪଶܱሻ௡ܪା ൅ܯ → ାܪܯ ൅  ଶܱ  (eq. 1.38)ܪ݊

ሺܪଶܱሻ௡ܰܪସ
ା ൅ ܯ → ାܪܯ ൅ ଷܪܰ ൅  ଶܱ  (eq. 1.39)ܪ݊

2) Charge transfer reactions: 

ሺܪଶܱሻ௡ܱܰା ൅ܯ → ାܯ ൅ ܱܰ ൅  ଶܱ  (eq. 1.40)ܪ݊

3) Electrophilic addition: 

ሺܪଶܱሻ௡ܱܰା ൅ܯ → ାܱܰܯ ൅  ଶܱ  (eq. 1.41)ܪ݊
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4) Hydride transfer: 

ሺܪଶܱሻ௡ܱܰା ൅ܯ → ሾܯ െ ሿାܪ ൅ ܱܰܪ ൅  ଶܱ  (eq. 1.42)ܪ݊

The major negative reactive ions (H2O)nO2
-, and thermal electrons selectively 

ionize molecular species of high electron affinity by one of three ways: 1) 

Associative electron capture, 2) Dissociative electron capture, 3) Proton 

abstraction[42]. 

1) Associative electron capture 

ܤܣ ൅ ݁ି →  (eq. 1.43)  ିܤܣ

2) Dissociative electron capture 

ܤܣ ൅ ݁ି → ܣ ൅  (eq. 1.44)  ିܤ

3) Proton abstraction 

ܪܤܣ ൅ ݁ି → ିܤܣ ൅  ା݁ି  (eq. 1.45)ܪ

1.7.2 Atmosphere pressure photo ionization (APPI) theory 
Photoionization occurs when the interaction of a photon beam produced by a 

discharge lamp with the vapors of analytes of interest. There are several steps of 

this progress [43]. First, an electronically excited molecule (M*) is formed when 

the molecule (M) absorbs a photon (E=hv): 

ܯ ൅ ݒ݄ →  (eq.1.46)  ∗ܯ

If ݄ݒ ൐ ܧܫ (IE is the ionization energy), the molecule releases an energetic 

electron with energy Ee-
(max)=hv-IEM and the corresponding odd-electron cation 

M.+ yields (a phenomenon typically occurring with molecules with conjugated 

double bonds, such as aromatic compounds[44]). 

∗ܯ → ା∙ܯ ൅ ݁ି  (eq.1.47) 

At atmospheric pressure, the ion’s free pathway is 65 nm[44]. Therefore, M.+ 

with an unpaired electron has a tendency to react in collisional environments[45]. 

Moreover, molecules with low IE and/or high proton affinity will dominate the 

positive ion spectra due to their high collision frequency[46]. 
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However, when the IE>hv, M* may undergo a de-excitation process, such as 

photodissociation [47], photon emission[48], or collisional quenching[49] with a 

non-excited molecule (C): 

∗ܯ → ܣ ൅  (eq. 1.48)  ܤ

∗ܯ → ܯ ൅  (eq. 1.49)  ݒ݄

∗ܯ ൅ ܥ → ܯ ൅  (eq. 1.50)  ∗ܥ

In such cases, the use of a preferentially ionized substance, called a dopant (D), 

has been proposed to promote the ionization of M: 

ܦ ൅ ݒ݄ →  ା  (eq. 1.51).ܦ

The dopant is added to large quantities compared to the analytes, and it acts as 

an intermediate between the photons and the analytes. The dopant must 

therefore produce ions with high recombination energy and/or a low proton 

affinity. The ionization mechanism depends on the PA values of the involved 

molecules (dopant, solvent, analyte) and on their capacity to capture an electron 

in the gas phase, called electron affinity (EA) [50]. Two mechanisms can occur, 

namely charge transfer [51]and proton transfer [52]: 

If EAD>EAM , 

ା.ܦ ൅ ܯ → ܦ ൅ܯ.ା  (eq. 1.52) 

If PAM>PA[D-H]*, 

ା.ܦ ൅ ܯ → ሾܦ െ .ሿܪ ൅ ሾܯ ൅  ሿା  (eq. 1.53)ܪ

However, a dopant molecule can react only once. The dopant can also be used to 

improve the ionization yield of the analyte because photons cannot penetrate 

deeply into the dense mixture of gases[53](the photon beam produced by a 

krypton lamp loses 50% of its intensity each 1,5mm[54]). Therefore, the 

probability for direct ionization of analytes, present in small proportion 

compared to solvent molecules, is very low. 
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1.8 Environmental applications of differential ion mobility 

spectrometry 

There are a large number of applications of DMS in different fields, including 

chemical weapons detection, explosive tracing, biologically active molecules 

separation, pharmaceutical inspection and pollutants monitoring. In the 

following section, based on the literatures, the applications of DMS on the 

environmental monitoring, including gas, water, bacteria and toxic chemicals 

monitoring will be overviewed. 

In 2005, Sacks and co-worker exploited a microfabricated silicon chip coated 

with a dimethyl polysiloxane stationary phase being used as GC separation[26]. 

They coupled this chip to a microfabricated differential ion mobility 

spectrometer by a heated transfer line. A unique feature of this device is that 

both positive and negative ions are detected from a single experiment. The 

combined microfabricated column and detector is evaluated for the analysis of 

VOCs with a variety of functionalities. The DMS can detect the compounds 

which are not resolved by GC.  

Limero et al reported that Sionex MicroAnalyzerTM is used to analyze the 

common trace VOCs in the International Space Station [55]. The Sionex 

microAnalyzer™ is an ideal replacement for the Volatile Organic Analyzer 

(VOA). The MicroAnalyzer has a volume of less than one-tenth of a cubic foot 

and it relies on GC and DMS for accurate analysis of atmospheric contaminants. 

Moreover, MicroAnalyzer retains or exceeds the VOA's capability for detecting 

trace levels of air contaminants. It is small, low cost, and uses minimal 

spacecraft resources. 

Shellie et al introduced a portable, fast gas chromatographic approach that 

employs a standard capillary column and DMS detection to analyze sulfur free 

odorants. This approach is based on a resistively heated, temperature 

programmable silicon micromachined GC. A complete analysis can be 

conducted in less than 70s. In the range from 0,5 to 5 ppm, the repeatability is 
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less than 3% RSD(n=20) and the detection limits for the target compounds are 

low to 50 ppb (v/v) [56].  

Daniele Evers et al detected and quantified the natural contaminants of wine by 

portable GC-DMS (Microanalyzer, Sionex). They identified and quantified 

some natural and volatile contaminants of wine such as geosmin, 2-

methylisoborneol, 1-octen-3-ol, 1-octen-3-one, and pyrazine through a very fast 

run cycle in less than 10 min. The detection of all target compounds at 

concentrations is below 5 ng/L (except 1-octen-3-ol), which is below the human 

olfactory threshold [57]. 

Eiceman et al applied DMS equipped with a photo discharge lamp at 10,6 eV 

continuously to monitor VOCs in ambient air inside a building and in an open 

space near the union of I-10 and I-25 at Las Cruces, New Mexico [58]. Air was 

drawn directly and analyzed by DMS without enrichment or preparation. The 

DMS results were consistent with VOCs from traffic on major city thoroughfare 

adjacent to the building. In-field studies near two interstate highways 

demonstrated that DMS response could be correlated to traffic patterns and 

exhibited diurnal trends. These findings demonstrated the concept and practice 

of DMS as continuous monitors for VOCs as airborne vapors in buildings and 

on site.  

Moreover, the GC-DMS device was also evaluated as a smart smoke alarm by 

Eiceman[59]. In this work, chemical composition of vapors from different fuel 

sources such as cotton, paper, grass and engine were identified by both GC-MS 

and GC-DMS. The orthogonal separation provided by DMS combined with the 

separation capabilities of GC yields maps of retention time vs. compensation 

voltage. Topographic plots from GC-DMS analysis of all samples demonstrated 

that information in the mobility scan provides distinctiveness for each sample. 

Incompletely combusted hydrocarbons from the internal combustion engine 

appeared in a narrow band of CV from -2 to 2 V, as well as cotton exhibited 

unique peaks in the 3D. These findings suggested that a GC-DMS instrument 
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operating at ambient pressure in air might result in a compact and convenient 

fuel specific smoke alarm at a reasonable cost. 

Shnayderman et al applied differential ion mobility spectrometry to identify 

bacteria at the species level [60]. The VOCs released from bacterial culture were 

identified both by solid phase microextraction/conventional headspace GC 

methods and by GC-DMS. The orthogonal separation capacities of the DMS 

permitted better discrimination of the markers and simplification of the spectra.  

Eiceman reported that DMS was used with pyrolysis GC to chemically 

characterize bacteria through three-dimensional plot ion intensity, compensation 

voltage from differential mobility spectra, and chromatographic retention time 

[61]. They identified more than 70 chemicals in the headspace above the 

bacterial colonies and distinguished spores from viable bacterial production by 

the release of crotonic acid. The other chemicals like lipid A and lipoteichoic 

acid permitted a particular discrimination between a Gram negative (E.coli) 

bacterium and a Gram positive (M. Luteus) bacterium. They improved the 

method to characterize eight viable bacterial strains and two spores in further 

work [62]. 

DMS was used to detect chemical warfare agents like nitro-organic explosive 

and related compounds as a smart portable device[33]. The CVs of 1,2,3-

propanetriol trinitrate, 1,3-dinitrobenzene, 2,6-dinitrotoluene, 2,4,6-

trinitrotoluene and pentaerythritol tetranitrate in purified air and in air doped 

with 1000ppm methylene chloride were scanned. Except for 1,2,3-propanetroil 

trinitrate and pentaerythritol tetranitrate, other explosives are well separated 

from CV. Moreover, 2,4,6-trintrotoluene exhibits multiple peaks, as a result of 

isomers or multimer formation. These results suggested that the DMS could be 

used for the separation and detection of explosives. 

Zalewska et al compared two handheld trace explosive detector types: MO-2M 

and SABRE 4000. MO-2M is a FAIMS equipped with a ß emitter, tritium, as an 

ionization source, whereas SABRE 4000 is a conventional detector based on 



30 
1.Introduction 

IMS equipped with radioactive nickel as the ionization source [63]. The 

detection limits of trinitrotoluene and hexadydro-1,3,5-trinitro-1,3,5-triazine 

with the MO-2M are 10 and 100 fold lower than with the SABRE detector. 

FAIMS combined with multicapillary column (MCC) has been used to detect 

explosives by Buryakov [64]. Speed of response of this detection with the MCC-

FAIMS was 0,7 s. Other similar studies included different mononitrotoluenes 

and nitrobenzenes effect, the effect of ambient temperature and humidity to the 

ionization efficiency of explosives were also done [65]. 

Krylova et al presented the electric field dependence of the mobilities of gas 

phase protonated monomers [MH+(H2O)n] and proton bound dimers 

[M2H
+(H2O)n] of organophosphorus compounds at E/N values between 0 and 

140. At moisture values between 1000 and 10000ppm, the value of α(E/N) 

increases more than 2 fold. This work clearly showed that the concentration of 

water in the carrier gas stream could cause water bound cluster formation. The 

process of ion declustering at high E/N values was consistent with the kinetics 

of ion-neutral collisional periods, and the duty cycle of the waveform applied to 

the drift tube [66]. 

Rainsber et al used a thermal desorption solid phase microextraction (SPME) 

inlet introduction for DMS to determine hydrocarbons in water [67]. The 

introduction system consists of an SPME holder, aluminum heating block, bare 

GC capillary and T-union fitting. The hydrocarbons of interest in water are 

extracted ion the fiber and then the fiber is placed into the inlet. After heating, 

the analytes are carried into the DMS with air. The detection limits of benzene, 

toluene and m-xylene were 75, 25 and 5 µg/mL, respectively.  

Kanu and Thomas detected benzene in water in the presence of phenol with an 

active membrane UV photo ionization differential mobility spectrometer [68]. 

The presence of benzene was identified through the presence of a peak 

corresponding to a benzene response (CV=-9V and FWHM=1V). These 

encouraging results indicated that VOCs dissolved in water at low 
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concentrations (sub ppm) may be reliably determined and identified using DMS 

with UV photo ionization fitted with an active membrane. The whole procedure 

to analyze requires less than 180s. The further evaluation of this approach for its 

suitability of applications relating to: drinking water screening, process 

validation, contaminated land and water monitoring, are the next steps.  

Telgheder et al analyzed BTEX compounds from surface waters using GC-DMS 

combined with SPME[69]. The method was sensitive to the separation and the 

detection of benzene, toluene, ethylbenzene, and m-, o- and p-xylenes. The 

detection limits for these five compounds were in the range from 0,01-1,19 µg/L. 

Kuklya et al developed an electrospray 63Ni-differential ion mobility 

spectrometer for the analysis of aqueous samples[70]. With adjusted 

experimental setup, the detection of model substances (2-hxanone, 

fluoroactamide, L-nicotine and 1-phenyl-2-thiourea) in the water solutions, in 

the range of 0,1-50 mg/L, was performed. 

Kanu and Thomas used DMS as a potential field deployable device for detect 

1,2,4-trichlorobenzene in surface water[71]. Furthermore, they compared SPME-

GC-DMS with SPME-DMS. The results suggested that the use of SPME result 

in a lot of variations. The GC-DMS system was demonstrated to be fit for 

purpose in that it detected the contaminant at the maximum contaminant level in 

the surface water. It was cheaper, easier to use and smaller than a typical GC-

MS. It is feasible to use this device for routinely water contaminant monitoring. 
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1.9 The aim of this work  

The goal of this work is to develop a fast cheap method based on DMS to on-

field detect gasoline related compounds in contaminated groundwater. To 

achieve this goal, several problems should be overcome. Firstly, gasoline or 

other petroleum products consist of a number of organic compounds. When the 

groundwater contaminated by gasoline, it is very difficult to identify and to 

analyze all organic components of gasoline. Thus, to select some compounds, 

which have a response for DMS detector, from the complex matrix as makers, is 

the first step. Secondly, it should be as fast as possible to use the DMS as an on-

field device. Normally, the typical lab based method like GC equipped with a 

conventional capillary column needs more than 10 min to analyze gasoline 

related compounds. How to shorten the time of separating target compounds by 

chromatography is one of the key points for developing a fast method. Thirdly, 

the detection limits for target compounds by DMS should be below or close to 

the regulated maximum contaminant levels.  One way to improve the sensitivity 

of DMS is to select the ionization source, in which condition the target 

compounds have high ionization efficiencies. Finally, the optimized new method 

should be applied to detect the real samples in a simulation on-site condition to 

prove the feasibility. 

Firstly, the main aim is to find some target compounds as markers for gasoline. 

These fingerprint compounds can be detected by DMS and represent in 

groundwater contaminated by gasoline. In chapter 2, groundwater spiked with 5 

different sorts of gasoline will be analyzed by GC-MS. A NIST formula 

gasoline containing 22 compounds will be utilized as standard to identify and 

select the target compounds. 

Secondly, the total analysis time for BTEX in groundwater spiked with gasoline 

is long by conventional GC coupled to DMS. To shorten the analysis time, a 

short capillary GC column MXT-5 will be used to analyze the target compounds 

BTEX. Then, this short GC column will be connected into DMS equipped with 



33 
1.Introduction 

a homemade interface. After optimization of the operation condition, the 

calibration curves and detection limits obtained by GC-63Ni-DMS system will be 

discussed (chapter 3). 

In order to improve the sensitivity of DMS for analyzing BTEX, photo 

ionization (krypton lamp) will be utilized as an ionization source for DMS 

instead of radioactive 63Ni. The relation between separation voltage and 

compensation voltage for 63Ni-DMS and UV-DMS to analyze different ions will 

be systematically studied. The calibration curves and detection limits of BTEX 

detected by GC-UV-DMS and GC-63Ni-DMS system will be compared (chapter 

4). 

Then, the concentrations of BTEX in 17 contaminated groundwater samples 

from Rotenburg (Wümme) will be analyzed by GC-UV-DMS. The results will 

be compared with those obtained by the reference method (chapter 5). 

Finally, in order to simulate the on-field conditions, the diffusion from BTEX in 

groundwater to air will be systematically studied by GC-UV-DMS(chapter 6). 

The influence of various factors (temperature, matrix effect) on diffusion will be 

evaluated.  
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2. Fingerprint identification of gasoline related 
compounds in contaminated groundwater by GC-
DMS and MS 
 

2.1 Introduction 
Gasoline is a light non-aqueous phase liquid and accumulates as a free phase 

floating layer on top of the groundwater´s phreatic surface[1]. It is a mixture 

composed of basically alkanes, C5–C14 olefins, cycloparaffins, aromatics and 

other additives used as oxygenates to raise the octane number. Although the 

amount of gasoline that dissolves in water is generally small, most of the water 

soluble fraction of gasoline will induce harmful effect to the environment and 

public health. The water soluble fraction of gasoline is a complex mixture 

ranging from pentane to PAHs, phenols, and nitrogen- and sulfur-containing 

heterocyclic compounds [2]. 

Until now, the identification of all gasoline related components in contaminated 

groundwater is still a great challenging task, due to the complex composition 

and low concentration. Ted and Held identified and analyzed approximately 50 

gasoline range hydrocarbons consisting of paraffin, isoparaffin, (mono-) 

aromatic, naphthene, and olefin compounds in groundwater by GC-MS [3].  

Few gasoline-related compounds were reported to be detected in water by DMS. 

Kanu and Thomas detected benzene in water in the presence of phenol with an 

active membrane UV photo ionization DMS [4]. BTEX compounds from 

surface waters were analyzed using GC-DMS combined with SPME[5, 6]. The 

method was sensitive to the separation and the detection of benzene, toluene, 

ethylbenzene, and m-, o- and p-xylenes. The detection limits for these five 

compounds were in the range from 0,01-1,19 µg/L. Therefore, some challenges 

should be overcome for application of DMS to detect gasoline contaminated 

groundwater. First challenge of application of DMS to monitor gasoline 

contaminated groundwater is how to distinguish the compounds from the 

complex background. Another challenge is that it is impossible for DMS to 
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response to all gasoline compounds in groundwater. However, as a fast on-field 

device, it is unnecessary to detect all gasoline compounds in contaminated 

groundwater. It is enough to give an alarm to report whether groundwater is 

contaminated by gasoline or not.  

In this chapter, the main aim is to find target compounds as markers for gasoline. 

These target compounds are sensitive for DMS and represent in groundwater 

contaminated by gasoline. Firstly, clean groundwater were spiked with 5 

different sorts of gasoline and analysed by conventional GC-MS. A NIST 

formula gasoline containing 22 compounds was used as standard to identify the 

compounds in gasoline contaminated groundwater. Then, in comparison with 

the GC-DMS, the organic compounds would be selected from the identified 

components as fingerprint. Finally, the feasibility of GC-DMS for the 

monitoring gasoline contamination in groundwater will be discussed. 

2.2 Experimental section 

2.2.1 Preparation of the samples for GC-DMS and GC-MS 
analysis 
10 ml of the gasoline solution with a concentration of 70 mg/L (otherwise noted) 

was transferred to a 20 mL headspace-vial and hold for 30 min at 25 ℃. After 

that, 10 µl from the headspace of the vial was taken with a gas-tide syringe for 

the GC-DMS or GC-MS analysis. 

2.2.2 Identification of the compounds in gasoline by GC- DMS  
A Shimadzu GC-2014 gas chromatograph (Shimadzu, Duisburg, Germany) was 

equipped with a split/splitless injector, a 5% diphenyl-/95% dimethyl-

polysiloxane GC column (60 meter, 0,25 mm i.d., 0,25 µm film thicknesses, 

Restek, Bad Homburg, Germany). The GC oven temperature was held at 35 ℃ 

for 11 minutes, then ramped to 120℃ with a rate of 5 ℃/min and then ramped 

to 160 ℃  with 10 ℃ /min, and finally held at 160 ℃  for 3 minutes. The 

temperature for the GC injection port was set to 250 ℃. The 0,5 mL of the 
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sample was injected from the headspace in the split mode at a splitting ratio of 

1:10. Helium was used as carrier gas with a constant flow rate of 1 mL/min.  

For the DMS analysis, a SIONEX SVAC spectrometer (Sionex Corporation, 

Bedford, MA, USA) equipped with a 63Ni ion source of 5 mCi, was used. The 

sensor temperature was set to 60 ℃ . Nitrogen (99,999 %, Air Liquide, 

Oberhausen, Germany) was used as carrier gas with a flow rate of 300 mL/min. 

All data were recorded by microDMxTM Expert version 2.4.0 software. The 

home-made interface between GC and DMS was kept at 80 ℃. 

2.2.3 Identification of the compounds in gasoline by GC-MS 

The gasoline samples were analyzed using Trace GC Ultra (S+H Analytik, 

Mönchengladbach, Germany) equipped with a split/splitless injector coupled to 

a DSQ II single quadrupole mass spectrometer (S+H Analytik) equipped with 

electron impact ionization source. The temperature programme was as described 

above. The GC-MS interface temperature was set to 250 ℃ and the ion source 

temperature was set to 220 ℃. The ionization energy of the ion source was set to 

70 eV and the quadrupole was set to scan mode (m/z) of 49-180, 6,5 scans/s. 

Xcalibur 1,4 data system (S+H Analytik) was used for instrument control, data 

acquisition, and performance evaluation. 

2.2.4 Chemicals and sampling 

For the identification of fingerprint compounds in gasoline, a reformulated 

gasoline standard reference material 2294 was purchased from National Institute 

of Standards and Technology (NIST) (Gaithersburg, USA). The other gasoline 

samples were collected from local petrol stations. In all experiments the 

concentration of gasoline in water was 70 mg/L, otherwise noted. 

Chemicals in this work such as o-xylene(≥99,0%, Fluka Analytical, Steinheim, 

Germany), p-xylene(≥99,0%, Fluka analytical, Steinheim, Germany), m-

xylene(≥99,0%, Fluka, Steinheim, Germany), benzene(99%, AppliChem, 

Darmstadt, Germany), ethylbenzene (≥99,0%, Fluka, Steinheim, Germany), 
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toluene(99,9%, J.T.Baker, Netherland), MTBE (≥99,5%,Merck, Germany), 

1,2,4-trimethylbenzene(98%,Aldrich, Germany) and methanol (99,99%, Fisher 

Scientific, Germany) were used without further purification. 

2.2.5 Data analysis 

A series of different volumes of saturated analyte vapors (at constant 

temperature of 25 °C and 1 atmosphere pressure) were analyzed. The amount of 

analyte was calculated by using of following equation: 

݉ ൌ
௣ೌ∗௩ೌ∗ெ

ሺ௣ೌ೟೘ା௣ೌሻ∗௏೘
      (eq. 2.1) 

Where pa is saturated vapor pressure of analyte , va the injection volume, patm the 

atmosphere pressure, M the molar mass of analyte, Vm the molar volume (24,465 

L/mol at 25 ℃, 1 atm).  

All data were analyzed by Origin Lab 9.0G.  

2.3 Results and Discussion 

2.3.1 Selection of fingerprint compounds in gasoline for DMS 
analysis 
The results from the GC-MS measurements of groundwater spiked with 

different sorts of gasoline are shown in Figure 2.1. By comparison of a gasoline 

standard from the NIST (SRM 2294) and mass spectrometric data, 22 

compounds were satisfactorily identified (Table 2.1). Gasoline is a refined 

product of crude oil and some additives. It consists of a mixture of n-alkanes, 

isoalkanes, cycloalkanes, mono- and di-aromatics, olefins and fuel oxygenates 

with a boiling point in the range of 30 to 200 °C. It is extremely difficult to 

identify all the compounds in gasoline. Typical compounds of gasoline, which 

are of interest in the environmental monitoring, are benzene, toluene, xylene, 

methane, ethane, propane, and gasoline additives like MTBE[7]. The identified 

22 standard compounds cover a wide range of hydrocarbons that are present in 

gasoline. As shown in Figure 2.1, all of 22 compounds except of MTBE were 

found in the analyzed groundwater samples spiked with gasoline. In addition, by 
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comparison of gasoline components in SRM 2294 with the real gasoline samples 

collected from petroleum stations, several of these 21 components (ethylbenzene, 

m/p-xylene, o-xylene, 1,3,5-trimethylbenzene, 1,2,4-trimethylbenzene) were 

found in all three gasolines with high relative abundances, whereas the other 

standard compounds were found with lower relative abundances. Though, 

several peaks with high relative abundance appear during the initial 15 min in 

the chromatogram of all three real gasolines. The identification of these peaks 

was not possible due to limit of standards. Moreover, the peaks appearing during 

the first 15 min indicate the compounds with relatively high volatility, which 

may not stay in groundwater for a long period of time after the water 

contamination.Therefore, it is not necessary to identify these peaks because they 

cannot be used as an indicator of gasoline. In view of this, it should be feasible 

to use the moderately volatile compounds with high relative abundances, e.g. 

ethylbenzene, m/p-xylene, o-xylene, 1,3,5-trimethylbenzene, 1,2,4-

trimethylbenzene, as a fingerprint to monitor gasoline in groundwater by DMS.  

In order to check the feasibility to use the moderatedly volatile compounds as 

fingerprint to monitor gasoline in groundwater by DMS, the groundwater spiked 

with gasoline were analysed by both GC-MS and GC-DMS. The GC-DMS / 

GC-MS combined chromatogram of groundwater, spiked with a gasoline sample 

(Super 95, ARAL), is shown in Figure 2.2. During this measurement it was 

observed that with the increase of retention time, the compensation voltage for 

the compound detection is approximate to 0 V. This phenomenon can be 

explained by the fact that the large molecules with a longer retention time have 

lower differential mobility and hence, need lower compensation voltage[8].  

A DMS with a radioactive 63Ni ionization source was used for the ions 

generation. The positive analyte ions, detected in the positive mode, are mainly 

ionized by the reactant ions (RIP) such as H+(H2O)n produced in the presence of 

water traces[9, 10]. If the proton affinities of the analytes are above that of water, 

then these compounds are able to form the analyte ions, otherwise no significant 
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formation of analyte ions can be expected. Compounds, investigated in this 

work (toluene, ethylbenzene, xylene and trimethlybenzene) have electron-

donating methyl- or ethyl-groups providing these compounds with high proton 

affinities[5]. For this reason, the selected alkyl-substituted aromatic compounds 

are very likely to form the product ions by proton-transfer ionization pathway 

and therefore, should be good detectable with the DMS.  
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Figure 2.1 GC-MS chromatograms of groundwater spiked with: (a) NIST gasoline (SRM 2294), 

(b) Aral gasoline, (c) Shell gasoline, (d) Star gasoline and (e) Gasoline without additives 

  

a 

b 

c 

d 

e 
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Table 2.1 Molecular weight(MW), retention times of the compounds identified in a 

groundwater sample spiked with NIST SRM 2294 standard 

Peak No. Substance MW (g/mol) Rt[min] 

1 1-penten 70,13 4,12 

2 n-pentane 72,15 4,99 

3 MTBE 88,15 5,08 

4 n-hexane 86,18 6,13 

5 2,4-dimethylpentane 100,20 6,87 

6 2,3-dimethyl-2-butene 84,20 7,84 

7 benzene 78,11 7,91 

8 cyclohexane 84,16 9,32 

9 2,2,4-trimethylpentane 114,23 9,41 

10 1-heptene 98,19 10,90 

11 n-heptane 100,21 11,08 

12 toluene 92,14 11,72 

13 octane 114,22 16,03 

14 ethylbenzene 106,17 18,14 

15 m-xylene 106,16 21,30 

16 p-xylene 106,16 21,76 

17 o-xylene 106,16 21,83 

18 1,3,5-trimethylbenzene 120,20 22,84 

19 1,2,4-trimethylbenzene 120,20 26,21 

20 n-decane 142,29 27,20 

21 1,2,4,5-tetramethylbenzene 134,22 27,39 

22 naphthalene 128,17 31,21 
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Figure 2.2 Groundwater spiked with gasoline (Super, Aral) by GC DMS(left) and MS(right). 

The DMS parameters were: sensor temperature of 60°C, flow rate of 300 ml/min, RF-voltage 

of 1000 V (20 kV/cm) 

 

As shown in Figure 2.2, the peaks of m- and p-xylene are not completely 

resolved from each other during the gas chromatography step. As it was 

mentioned above, the DMS is able to separate compounds in a very short period 

of time based on a difference in the mobility coefficients in high and low electric 

fields. This ability gives an opportunity to achieve a separation of the 
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compounds, which were not resolved during the gas chromatography step. 

Hence, the identification of these compounds on the basis of the retention time 

and the compensation voltage could be achieved. 

2.3.2 Optimization of DMS parameters for the detection of 
selected fingerprint compounds  
To optimize the DMS parameters, a group of compounds (ethylbenzene, m-/p-

xylene, o-xylene) with close retention times was selected. The electric field, the 

carrier gas flow rate and the sensor temperature were chosen as optimisation 

parameters. 

The electric field, created by the asymmetrical RF-voltage, is the most important 

parameter for the DMS selectivity and sensitivity. In a high electric field, the ion 

clusters formation is reduced and the ions get a higher mobility[11]. This leads 

to the dispersion of the analysed compounds along the electric field that results 

in reduction in signal intensities (see Figure 2.3b). There are two reasons which 

may explain this phenomenon. Firstly, when at higher voltage field, both 

reactant and pronated ions are much easier to decluster. Another reason is that 

less target ions can pass through the electrical plates when a higher separation 

voltage is used. For example, protonated ethylbenzene decluster when the 

separation voltage increases. The equation for declustering is as shown in 

equation 2.2: 

 

Figure 2.3 Dependences of the compensation voltage (a) and normalized signal intensities (b) 

of ethylbenzene, o-xylene and m/p-xylene on the RF-voltage 
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[ethylbenzene]H+→ethylbenzene+H+   (eq. 2.2) 

As shown in Figure 2.3a, the separation of the ethylbenzene signal from xylene 

signals increases with the increase of the RF-voltage. On the other hand, the 

separation between xylene isomers achieves the maxima at the field of 20 

kV/cm (1000 V) and then decreases with the increase of the electric field. Based 

on these observations, the electric field of 20 kV/cm (1000 V), providing the 

highest resolution and intensive signals, was chosen for the following 

experiments. The relation between RF and CV will be discussed in detail in 

chapter 4. 

The flow rate of the carrier gas through the detector influences the residence 

time of the analytes in the ion-filter region, and hence influences the signal 

intensity and its area. However, no significant influence of the flow rate on the 

compensation voltage of the monomers was observed (Figure 2.4a) what is 

predicted by the theory of DMS [12]. 

The second signal was observed for ethylbenzene and toluene at flow rates of 

200 and 250 mL/min. It can be assumed that these signals are related to the 

dimer formation, since at the lower flow rates the analyte is less diluted with the 

carrier gas and the higher concentration of the analyte makes the formation of 

the dimer more probable. The signal with a higher shift (from zero) in the 

compensation voltage is usually associated with the monomer, whereas the 

signal with the compensation voltage closer to zero is related to the dimer [13]. 

The signal of the dimer disappeared at flow rates higher than 250 mL/min. At 

flow rates above 300 mL/min, the compensation voltages for the analyzed 

organic compounds are almost constant. Thus, the effect of the flow rate on the 

compensation voltage is not significant in the range of 300 mL/min to 500 

mL/min. A flow rate of 300 mL/min is adopted in the following measurements. 

Generally, the detector temperature can have an effect on the intensity of the 

signal, but should not influence the compensation voltage needed for the ions 

detection. Furthermore, the compensation voltage is dependent on the 
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temperature of the drift tube[14] . Sacks et al. have demonstrated on the example 

of alcohols (C4-C7) that for the miniaturized DMS device the temperature of the 

sensor has an influence on the compensation voltage[15]. This effect was 

examined by Krylov et al. and algorithm for the prediction of compensation 

voltage depending on temperature was proposed[14]. The shift of the 

compensation voltage can be explained by influence of the temperature on gas 

density (N), and hence on the value of E/N. In addition the distribution of ion-

neutral collision energy, and therefore the ion mobility, is changed[14]. The 

similar effect, as shown in Figure 2.4b, was observed in this study. The values of 

compensation voltage versus detector temperature give linear correlation for the 

analyzed compounds in the range from 80 to 120 ℃. 

As already discussed the compounds with higher molecular weights have a 

smaller shift in the compensation voltages compared to those compounds with 

lower molecular weights. This observation is valid within the temperature range 

(80-120 ℃). Moreover, it was found that at lower sensor temperatures the signal 

resolution of the analyzed compounds is higher than those at higher 

temperatures (Figure 2.4b).  
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Figure 2.4 Effect of the flow rate (a1 and a2) and sensor temperature (b) on the compensation 

voltages of the analyts 

 

Hence, the following measurements were performed at the electric field of 20 

kV/cm (1000V) with a carrier gas flow rate of 300 mL/min and a sensor 

temperature of 80 ℃. 

2.3.3 Quantitative relationships between fingerprint compounds 
and gasoline in groundwater 
The relationship between the DMS signal intensity of the target compounds and 

the concentration of gasoline in groundwater is shown in Figure 2.5. The signal 

intensities of seven compounds are plotted versus the concentration of gasoline 

in groundwater in the range from 29,08 to 72,70 mg/L. In cases of gasoline leaks, 
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the contaminant concentrations of gasoline in groundwater are usually in this 

range what allow a fast monitoring of gasoline contaminated groundwater by the 

described method. Mononuclear aromatic constitute are the main class of 

hydrocarbons found in water soluble fraction. The total mononuclear aromatics 

constitute about 89% of the total water soluble fraction of crude oil. BTEX 

represented 87,6% of the water soluble fraction[16]. 

 

 
Figure 2.5 Relationship between signal intensities of the fingerprint compounds (toluene, 
ethylbenzene, m/p-xylene, o-xylene, 1,3,5-trimethylbenzene and 1,2,4-trimethylbenzene) and the 
concentration of gasoline in groundwater 
 

2.4 Summary 
In this work, the feasibility of fingerprint identification of volatile organic 

compounds in gasoline contaminated groundwater by differential mobility 

spectrometry was demonstrated.  

The method is based on the detection of organic compounds (BTEX) which 

were found in all analyzed groundwater samples spiked with gasoline. These 
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compounds give high responses of the DMS detector. Coupling of GC with 

DMS, which has an own separation ability based on differences in the ion 

mobilities in the low and high electric fields, gives an advantage by analysis in 

the presence of a complex matrix. The optimization of the DMS parameters e.g. 

RF-voltage, carrier gas flow rate and sensor temperature resulted in a further 

improvement of the compounds separation. The results of this study show the 

feasibility of GC-DMS for monitoring of gasoline contamination in groundwater.  



53 
2.Fingerprint identification of gasoline related compounds in contaminated groundwater by GC‐DMS and MS 

2.5 References 
1. Haest, P.J., et al., Containment of groundwater pollution (methyl tertiary butyl ether 

and benzene) to protect a drinking-water production site in Belgium. Hydrogeology 
Journal, 2010. 18(8): p. 1917-1925. 

2. Anderson, J.W., et al., Characteristics of Dispersions and Water-Soluble Extracts of 
Crude and Refined Oils and Their Toxicity to Estuarine Crustaceans and Fish. Marine 
Biology, 1974. 27(1): p. 75-88. 

3. Sauer, T.C. and H.J. Costa, Fingerprinting of gasoline and coal tar NAPL volatile 
hydrocarbons dissolved in groundwater. Environmental Forensics, 2003. 4(4): p. 319-
329. 

4. Kanu, A.B. and C.L.P. Thomas, The presumptive detection of benzene in water in the 
presence of phenol with an active membrane-UV photo-ionisation differential mobility 
spectrometer. Analyst, 2006. 131(9): p. 990-999. 

5. U Telgheder, M.M., MA Jochmann,, Determination of volatile organic compounds by 
solid-phase microextraction-gas chromatography-differential mobility spectrometry. 
International Journal for Ion Mobility Spectrometry, 2009. 12: p. 123-130. 

6. Baumbach, J.I., et al., Detection of the gasoline components methyl tert-butyl ether, 
benzene, toluene, and m-xylene using ion mobility spectrometers with a radioactive 
and UV ionization source. Analytical Chemistry, 2003. 75(6): p. 1483-1490. 

7. Schmidt, T.C., et al., Analysis of fuel oxygenates in the environment. Analyst, 2001. 
126(3): p. 405-413. 

8. Eiceman, G.A. and Y. Feng, Limits of separation of a multi-capillary column with 
mixtures of volatile organic compounds for a flame ionization detector and a 
differential mobility detector. Journal of Chromatography A, 2009. 1216(6): p. 985-
993. 

9. Creaser, C.S., et al., Ion mobility spectrometry: a review. Part 1. Structural analysis 
by mobility measurement. Analyst, 2004. 129(11): p. 984-994. 

10. Eiceman, G.A., et al., Micro-machined planar field asymmetric ion mobility 
spectrometer as a gas chromatographic detector. Analyst, 2002. 127(4): p. 466-471. 

11. GA Eiceman, Z.K., Ion Mobility Spectrometry, second edition. 2005: American 
Chemical Society, CRC press. 

12. Buryakov, I.A., et al., A New Method of Separation of Multi-Atomic Ions by Mobility 
at Atmospheric-Pressure Using a High-Frequency Amplitude-Asymmetric Strong 
Electric-Field. International Journal of Mass Spectrometry and Ion Processes, 1993. 
128(3): p. 143-148. 

13. Miller, R.A., et al., A novel micromachined high-field asymmetric waveform-ion 
mobility spectrometer. Sensors and Actuators B-Chemical, 2000. 67(3): p. 300-306. 

14. Krylov, E.V., S.L. Coy, and E.G. Nazarov, Temperature effects in differential mobility 
spectrometry. International Journal of Mass Spectrometry, 2009. 279(2-3): p. 119-125. 

15. Lambertus, G.R., et al., Silicon microfabricated column with microfabricated 
differential mobility spectrometer for GC analysis of volatile organic compounds. 
Analytical Chemistry, 2005. 77(23): p. 7563-7571. 

16. Carls, M.G. and S.D. Rice, Abnormal-Development and Growth Reductions of Pollock 
Theragra-Chalcogramma Embryos Exposed to Water-Soluble Fractions of Oil. 
Fishery Bulletin, 1990. 88(1): p. 29-37. 

 
 

  



54 
3.Rapid separation of BTEX in groundwater by fast gas chromatography 

3. Rapid separation of BTEX in groundwater by fast gas 

chromatography  

 

3.1 Introduction 

For speciation and quantification of volatile and semivolatile organic 

compounds, gas chromatography is the most frequently used method. The GC 

analytical procedures consist essentially of 4 separate steps: sample preparation 

and injection, separation and detection, GC oven cooling time and re-

equilibration, and the data elaboration. The first two steps have generally greater 

impact on analytical time cost, selectivity, sensitivity, ruggedness, precision, and 

accuracy. For this reason, both have been subjected to a great deal of 

development. The reductions in analysis time for these two steps will have 

economic advantages for application GC on-field -portable instruments. 

Considering the GC separation step, a high number of methods have been 

introduced in the last decades. High-speed gas chromatography (HSGC) has 

become one of more highly developed techniques to shorten the analysis time of 

GC in the past few years.  At the beginning of the 1960’s, Desty presented the 

potential of small diameter column to be used in separation [1]. Unfortunately, at 

the beginning, due to the lack of injection systems, a narrow sample band was 

manually injected onto the capillary column with a good full width at half 

maximum (FWHM). Other techniques, which include multicapillary columns 

(MCC)[2], wide-bore columns [3]and short capillary columns [4]were developed 

and introduced following the primordial narrow internal diameter column 

experiment. Korytar and Janssen gave an overview of the various methods 

available for fast GC [5]. 

HSGC allows rapid, highly selective analysis of a wide range samples. In 1988, 

van Es separated 4 n-alkane (C6- C9) and 5 other organic components mixture 

in 0,7 s with high speed narrow bore capillary gas chromatography [6]. With 
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little loss of resolution, the analysis time for mixtures of VOCs by HSGC is 10 

to 60 folds faster than those of traditional GC techniques [7, 8]. The separation 

of 114 VOCs in water in 8 min is achieved by HSGC-MS[9]. Davis et al 

detected 6 PAHs in drinking water in 3 min with HSGC, which equipped a 10m 

length short column and at a high flow rate (5 mL/min) [10]. Hada et al reported 

determination of 17 pesticides in water in 8,5 min with a fast temperature 

program by a short microbore column [11]. In other literature reported, the time 

for separation 17 trizine pesticides and 10 organic phosphate pesticides in water 

is low to 5 min by a short column with 5m length and 0,1 mm ID [12].  

The focus on DMS is to develop a “laboratory-in-the-field” capability to 

conduct general environmental assessments [13]and a “rapid response monitor” 

to quickly and accurately detect toxic compounds, such as chemical agents, 

resulting from leaks or releases. HSGC were utilized for field applications in 

near real time or “lab in the field”. Current et al used HSGC to monitor and 

assess the performance of a trickle-bed bioreactor designed for the removal of 

VOCs from air [14]. Bruker company offers a portable GC/MS (Spectra-Trak) as 

a “real-time” monitor for toxic air, water, and soil pollutants; however, its 

portability is limited by weight and the need to attach a mechanical pump 

separately [15, 16]. Baumbach et al introduced a method to on field monitor 

BTEX in water in 300 sec by multicapillary GC coupled with IMS [17]. The 

described tool may be advantageously used for emergency field investigations, 

because it can be operated on-site at relatively small expenditure, and because it 

provides results within a short time. 

As mentioned in chapter 2, the total analysis time for BTEX in groundwater 

spiked with gasoline is closed to 20 min by conventional GC (60m length 

column) coupled to DMS. To shorten the analysis time, a short capillary GC 

column was selected to analyze the target compounds BTEX by GC-MS. Then, 

this short GC column will be connected into DMS with a homemade interface. 
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After optimization the operation condition, the detection of BTEX by this GC-

DMS system is done. 

3.2 Experimental section 

3.2.1 GC-MS setup 

To shorten the analysis time, a MXT-5 column (12 meter length × 0,28 mm 

I.D.× 0,25 df) from RESTEK, USA was used. The parameters of the GC column 

are listed in Table 3.1. A Trace GC Ultra (S+H Analytik, Mönchengladbach, 

Germany) equipped with a split/splitless injector is coupled to a DSQ II single 

quadrupole mass spectrometer (S+H Analytik) equipped with electron impact 

ionization source. The GC-MS interface temperature was set to 250 ℃ and the 

ion source temperature was set to 220 ℃. The ionization energy of the ion 

source was set to 70 eV and the quadrupole was set to scan mode (m/z) of 49-

180, 6,5 scans/s. Xcalibur 1.4 data system (S+H Analytik) was used for 

instrument control, data acquisition, and performance evaluation. The 

temperature program was used in an isotherm mode. 

3.2.2 GC-DMS System Setup 

Figure 3.1 shows the schematic setup of GC-DMS system. 

The SIONEX SVAC DMS (Sionex Corporation, Bedford, MA, USA) equipped 

with a 63Ni ion source of 5 mCi, was used. The sensor temperature was set to 

80 °C. Nitrogen (99.999 %, Air Liquide, Oberhausen, Germany) was used as 

carrier gas with a flow rate of 300 mL/min. All data were recorded by 

microDMx Expert version 2.4.0 software.  
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Table 3.1: the details of MXT-5 GC column 

Type: MXT-5 

Company RESTEK, USA 

Serial-No: 70221 

Material: Siltek® treated stainless steel 

Stationary 

phase: 

low polarity phase; crossbond 5% Diphenyl 

95% Dimethylpolysiloxane 

Length: 12m 

Inner 

diameter(ID): 

0,28mm 

df 0,25 μm 

Temp.-Range: -60 °C to 430 °C 

A Shimadzu GC-2014 GC system was used for all analyses. The split/splitless 

injector operated at 150 Ԩ. Nitrogen (>99,999% pure) was used as the carrier 

gas. Separation was performed on a 12m × 0,28mm ID× 0,25 μm df MXT-5 GC 

column. The temperature of GC oven was kept at 80 ℃. A homemade 10-cm-

long interface was used to connect the GC and DMS. The temperature of 

interface was setup at 80 ℃. 

 

Figure 3.1: schematic setup of GC-DMS 
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3.2.3 Chemicals 

In this work o-xylene(≥99,0%, Fluka Analytical, Steinheim, Germany), p-

xylene(≥99,0%, Fluka analytical, Steinheim, Germany), m-xylene(≥99,0%, 

Fluka, Steinheim, Germany), benzene(99%, AppliChem, Darmstadt, Germany), 

ethylbenzene (≥99,0%, Fluka, Steinheim, Germany), toluene(99,9%, J.T.Baker, 

Netherland), MTBE (≥99,5%,Merck, Germany), 1,2,4-trimethylbenzene(98%, 

Aldrich, Germany) and methanol (99,99%, Fisher Scientific, Germany) were 

used without further purification. 

3.2.4 Data Analysis 

OriginLab 9.0 was used to analyze the data recorded by microDMx Expert 

version 2.4.0 software. Firstly, a 2D diagram was produced (one dimension as 

retention time of GC; another dimension as compensation voltage detected by 

DMS) by OriginLab. For quantifying the peak area of target compound, the data 

at constant compensation voltage dimension was used to generate a 

chromatogram. Based on the chromatogram, the retention time, peak area, and 

FWHM are obtained and calculated according to Gauss function by OriginLab 

9.0. 

According to DIN 32645, the detection limit is defined as the concentration or 

amount of analyte which can be ascribed to the critical value of a measurement. 

At the critical value, the content of the analyte can be ascribed to the sample or 

to the blank. The detection limits are calculated for this method, with the values 

derived from the calibration curves incorporated in following equation: 
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ொೣೣ
     (eq. 3.1) 

Where n and m are the number of calibration points and measurements, 

respectively; Qxx and x are the sum of squared deviations and the mean value of 

the working range; tf,a is the Student’s value (at f degrees of freedom and 

confidence level α=0,05%, f=N-2, P=95%). 
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The resolution factor (Rs) was calculated using the recommended IUPAC 

expression [18]: 

ܴ௦ ൌ
ଶൈሺ௧ೝమି௧ೝభሻ

௪್భା௪್మ
     (eq. 3.2) 

Where tr1 and tr2 are the retention times of two analytes and Wb1 and Wb2 are the 

respective widths of each adjacent peak at its base. 

3.3 Results and discussion 

3.3.1 Choice of MXT-5 GC column 

The separation efficiencies of multicapillary column (MCC) and MXT-5 column 

have been compared. It was found that the separation efficiency of the MCC 

column was much lower than that of the MXT column, which was able to 

separate a five substance mixture containing compounds with varying vapor 

pressures and different retention times. In contrast, the MCC was not able to 

even completely separate a four substance mixture. Therefore, MXT-5 GC 

column is used in the following experiment. 

General operating requirements for HSGC are easily described from eq. 3.3. 

This equation gives the retention time tR of the last component of interest. In this 

equation, L is the column length, µ is the average carrier gas velocity in the 

column, and kn is the retention factor of the last component of interest. Short 

columns, higher-than-usual carrier gas velocities, and relatively small retention 

factors can reduce separation times by 1 to 2 orders of magnitude [19]. 

ோݐ ൌ
௅

௨
ሺ݇௡ ൅ 1ሻ    (eq. 3.3) 

As shown in Figure 3.1, BTEX can be baseline resolved by MXT-5 column. 

Dependent on the retention times of these 5 compounds, the peaks are identified 

by mass spectrometry: 1, benzene, 2, toluene, 3, ethylbenzene, 4, m/p-xylene 

and 5, o-xylene. The boiling points are 80 °C for benzene, 111 °C for toluene, 

136 °C for ethylbenzene, 139 °C for m-xylene, 138 °C for p-xylene and 144 °C 

for o-xylene, respectively. From the results achieved by using MXT-5 column, 

the retention times of these target compounds are also positive related to their 
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boiling points. This result suggests the compounds with lower boiling point will 

remain less time in GC column, resulting in shorter retention time in 

chromatogram. Because of the close boiling points and similar physical 

chemical property of m-xylene and p-xylene, the separation of these two isomers 

by MXT-5 column was not achieved. According to regulation on water of US 

EPA and WHO[20], the three xylene isomers being taken account into together, 

separation is unnecessary.  

 

Figure 3.1: BTEX separation by MXT-5 GC column (12m length) detected by MS. Compound 

identification numbers: 1, benzene, 2, toluene, 3, ethylbenzene, 4,m/p-xylene, 5, o-xylene 

 

As shown in Table 3.2, separation of BTEX in less than 1 min can be achieved 

by MXT-5 GC column. The retention times are 20,3 sec for benzene, 22,7 sec 

for toluene, 26,3 sec for ethylbenzene, 32,1 sec for m/p-xylene and 34,5 sec for 

o-xylene, respectively. Meanwhile, the FWHMs for each peaks are 0,43 sec for 

benzene, 0,40 sec for toluene, 0,49 sec for ethylbenzene, 0,87 sec for m/p-xylene 

and 0,74 sec for o-xylene, respectively. There are often discussions as to what 

can truly be considered “high-speed”, “fast GC”, “ultra-fast GC”. This 

classification is not academic and still controversial. Dagan and Amira 

suggested that the speed enhancement factor (SEF) be used to provide 

definitions for the terms normal (conventional), fast, very fast and ultra-fast GC 

[21]. The SEF is the increase in speed that can be obtained by using a shorter 
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column and a higher carrier gas velocity in comparison to the same analysis on a 

conventional GC column under optimum carrier gas velocity conditions. 

Otherwise, Van Deursen et al proposed a classification based on the peak widths 

(2,354σ) and total analysis times[22]. High Speed GC can then be classified as: 

 Fast GC: separation in the minutes range; peak-width, several seconds 

(FWHM 200-1000ms). 

 Very fast GC: separation in the range of seconds; peak width, 30-200ms 

(FWHM 30-200ms). 

 Ultra-fast GC: separation in the sub-second range; peak width, 5-30ms 

(FWHM 5-30ms). 

According to the classification by van Deursen, the method based on MXT-5 

GC column can be called as fast GC. The MXT-5 GC column will be used in the 

following work. 

Table 3.2: Retention time (RT) and FWHM of BTEX in chromatogram by MXT-5 GC column  

 MXT-5 GC 

FWHM(sec) RT (sec) 

benzene 0,43 20,3 

toluene 0,40 22,7 

ethylbenzene 0,49 26,3 

m/p-xylene 0,87 32,1 

o-xylene 0,74 34,5 

 

3.3.2 Temperature effect on separation by MXT-5 column coupled 

to MS 

The main parameters that govern gas chromatography, in addition to the column 

material used are the GC temperature and carrier gas linear velocity. As shown 

in eq. 3.3, the retention factor kn will influence the retention time. To shorten the 

retention time, kn can decrease through increasing column temperature. The GC 
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oven temperature has a dramatic exponential effect on the speed of analysis. 

Increasing of the column temperature results in a reduction of the elution time 

by a factor of about two for each 10 ℃ [23]. 

Because oven cooling down and equilibration are time-consuming, the time for 

whole measurement will increase. Moreover, if a fast temperature program is 

used, the initial oven temperature affects the cool down time more than the final 

temperature because it usually takes longer for an oven to cool from 100 to 50 Ԩ 

than 300 to 100 Ԩ. For a field portable device, it is better to cut off the time for 

cooling down and equilibration. The easiest way to achieve the required 

conditions for a more rapid elution would be to perform the analysis 

isothermally. Therefore, if without any special mentioned, the following 

methods are all used isothermal mode for GC. 

 

Figure 3.2: effect of temperature on separation by fast GC-MS. Compound identification numbers: 
1, MTBE, 2, benzene, 3, toluene, 4, ethylbenzene, 5,m/p-xylene, 6, o-xylene, 7, 1,2,4-
trimethylbenzene 
The temperature effects on fast GC are shown in Figure 3.2. As shown on 

chromatogram(left in Figure 3.2), the first and last peaks are MTBE and 1,2,4-

trimethylbenzene. The retention times for all compounds decrease with the 

increasing oven temperature. The compounds with high boiling point are 

influenced largely by temperature. For instance, the retention time for o-xylene 

declines rapidly from 130,1 to 48,6 sec when the column temperature increases 

from 75 to 145 Ԩ (in Figure 3.2 right). Due to low boiling points, benzene and 

toluene eluted from the column very quickly and the retention times did not 

change largely when the oven temperature changed. 
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Blumberg et al found that high elution temperature will decrease separation 

efficiency and will cause greater thermal breakdown of susceptible analytes [24]. 

In Figure 3.2, when the temperature was above 95 Ԩ, it failed to separate the 

three compounds (ethylbenzene, m/p-xylene, o-xylene), resulting in the peaks 

overlapping. 

3.3.3 GC coupled to DMS 

3.3.3.1Optimization of flow rate for GC-DMS 
As shown in eq. 3.3, the variable µ in the equation is inversely proportional to tR. 

Therefore, µ can be increased to cause a decrease in time of analysis. In Figure 

3.3, the effect of the column flow rate on the separation of BTEX mixture is 

demonstrated. As the GC column flow increases, the elution time proportionally 

reduces. The total analysis time is from closed to 200 sec at low flow rate of 2 

mL/min to less than 60 sec at high flow rate of 10 mL/min. As shown in Figure 

3.4, it should be noted that as the flow rate increases, the peak areas of BTEX 

detected by DMS also intensify. This can be explained by the fact that the 

compounds, which eluted from the GC column, are mixed with DMS carrier gas 

N2 and then are introduced into the DMS detector. When the flow rate of DMS 

carrier gas is constant, at the same time, the amount of analytes will be 

introduced into DMS at a higher GC flow rate. Therefore, the signal detected by 

DMS will intensify at higher GC flow rate. 

 

Figure 3.3: the effect of flow rate of GC carrier gas on retention time 
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Figure 3.3 shows the relation between retention time and flow rate. As the flow 

rate increases, the retention time declines. However, as shown in Table 3.3, to 

shorten the time of analysis, the separation efficiencies will be sacrificed. The 

resolutions of ethylbenzene and m/p-xylene at flow rate above 6 mL/min are low. 

This can be explained by that use of high carrier gas flow rate reduces column 

elution temperature and partition time between gas and stationary phase [21, 25, 

26]leading to loss of separation efficiencies. Ethylbenzene and m/p-xylene 

formed almost a single peak in chromatogram. Blumberg et al estimated that 

operation at µ= 2µopt causes a 25% loss in separation efficiency and 12% loss in 

Rs [27]. 

 

Figure 3.4: the effect of flow rate of GC carrier gas on peak area of BTEX 

 

Table 3.3: resolution at different flow rate 

GC Flow Rate(mL/min) Rs (ethylbenzene and m/p-xylene) Rs(m/p-xylene and o-xylene) 

2 1,20 4,26 

4 1,19 3,46 

6 1,10 3,02 

8 1,00 2,21 

10 0,65 1,92 
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3.3.3.2 Optimization of parameters of detector 63Ni-DMS 

The compensation voltage (CV) is employed to compensate for ion drift under 

different electric field. As a result, a subset of ions can pass through the device. 

Therefore, the CV value reflects ion properties under varying electric field and 

thus it is orthogonal unique to each ion. When 63Ni is used as ionization source, 

reactant ions are very important for formation of product ions. Thus, in the 

following part, associated with the intensity of reactant ion peak (RIP), CV 

value of reactant ions described as the position of RIP is used to evaluate the 

condition of the device. 

 

 

Figure 3.5: effect of flow rate on compensation voltage of RIP at 80 °C and 1000 V (RF) 

Theoretically, the flow rate of DMS carrier gas will lead to the shifts in intensity 

of RIP, but slightly change the RIP position [28]. As shown in Figure 3.5, the 

principal RIP was observed at -12,2 V. Additionally, when carefully observing 

the peak shape of different flow rates, it is found that the right tailing part of the 

peak moves more largely than the left half part, but the entire peak shifts not 
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very significantly to less negative in compensation voltage. This can be 

explained that with flow rate increasing, the displacement of ions in ion filter 

region reduces and hence the absolute value of the compensation voltage needed 

to correct the trajectory of the ion reduces [29]. 

The flow rate of the carrier gas affects both peak intensity described as peak 

height and peak area. As the flow rate increases from 200 to 500 mL/min, the 

peak height of RIP intensifies from 0,073 to 0,309V. These findings suggest that 

the high flow rate of the carrier gas will strengthen the signal of RIP. Under a 

certain range of flow rate, the diffusion, ion neutralization and annihilation 

processes play key roles to loss of ions. Thus, the increasing flow rate will 

shorten the residence time of ions in ion filter electrodes, which enhances the 

number of ions survived through the ion filter region. As a result, the intensity of 

ions will increase. Miller reported that the curve of peak intensity is as a 

function of flow rate below the flow rate of 3 L/min and then saturates or begins 

to decrease at high flow rate [29]. In this case, since the range of the flow rate of 

DMS adjusted is from 200 to 500 mL/min, the effect of high flow rate above 

500 mL/min on RIP cannot be studied. Otherwise, the peak width (described as 

full width at half maximum, FWHM) increases from 0,199 to 0,508V as the 

increase of the carrier gas flow from 200 to 500 mL/min. In addition, both 

curves of FWHM are as proportional function to flow rate (as shown in Figure 

3.5) in the range of 200 to 500 mL/min. In literature [30], six target compounds 

used for testing the effect of flow rate on DMS detector, it was found that at 

flow rates above 300 mL/min, the values of CVs for the analyzed organic 

compounds are almost constant and the effect of the flow rate on the CVs for the 

target compounds is not significant in the range of 300 mL/min to 500 mL/min. 

Consequently, taking account to results related to effect of flow rate on RIP in 

this work and on target compounds in previous work together, a flow rate of 300 

mL/min was also adopted in the following experiment. 
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There are two distinct ways of temperature influencing the ion mobility in 

electric fields. First, the drift gas density will be influenced by temperature, 

leading to change field contribution to ion kinetic energy. Moreover, gas 

temperature changes the ion and neutral kinetic energy distributions and hence 

changes the distribution of ion neutral collision energies and the ion mobility 

[31]. The effect of the temperature on compensation voltage of target organic 

compounds was studied in chapter 2. In this section, the sensor temperature 

influencing the compensation voltage and intensity of the RIP was studied.  As 

shown in Figure 3.6, the plots of temperature and compensation voltage of the 

RIP were recorded at 5 temperature points (80 ℃, 90 ℃, 100 ℃, 110 ℃, 120 ℃) 

at a fixed RF voltage of 1000 V. The CV shifts into more negative region 

obviously and the intensities of RIP decline when increasing temperature from 

80 ℃ to 120 ℃.  

 

 

Figure 3.6: sensor temperatures of DMS influences the RIP at 1000 V (RF) and flow rate of 

300 mL/min 
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As shown in Figure 3.7, the CV of RIP shifts to more negative value when RF 

voltage increases. Moreover, the intensity of RIP decreases as the increasing of 

RF voltage obviously. At the RF value of 1200 V, the RIP disappeared. This 

phenomenon can be explained as follows. When at a high RF voltage field, the 

ions of RIP drift largely toward one of the electrode plate, leading to large 

displacement of ions in the ion filter region. As a result, a large magnitude of 

CV needs to offset the drift trajectory, allowing the ions to remain in equilibrium 

inside the filter gap and eventually to pass the ion filter region. Meanwhile, the 

number of ions that survive through the ion filter region decreases at a high RF 

field. 

 

 

Figure 3.7: the effect of RF voltage on the RIP at 300 mL/min and 80 Ԩ	

When the elution of the compounds, the intensity of a product ion peak grows 

with a corresponding decrease in intensity of the RIP until a maximum for the 

GC elution profile is reached. After this, the intensity of the product ions 

decreases, leading to an increase of RIP until eventually reaching the original 
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intensity. To balance the intensity and CV, 1000 V was used as RF voltage in 

the following experiment. 

3.3.3.3 Characterization of GC-63Ni-DMS 

After optimization of the temperature and the flow rate for GC and DMS, the 

characterization of GC-63Ni-DMS system including calibration curves and 

detection limits of target compounds were shown in Figure 3.8 and Table 3.4.  

Table 3.4: Characterization of GC-63Ni-DMS 
Compounds Retention time 

(sec) 
Compensation 

voltage (V) 
Detection limits 

(mg/L) 

Benzene 44,1 -6,2 201,8 

Toluene 55,2 -3,6 50,3 

Ethylbenzene 74,4 -2,7 9,5 

m-Xylene 77,4 -2,2 6,2 

p-Xylene 77,4 -2,2 8,5 

o-Xylene 86,5 -2,3 4,8 

 

According to DIN 32645, the detection limits of target compounds in 

groundwater are shown in Table 3.4. The detection limits achieved by this 

method are higher than those of the lab based standardized methods by GC-MS 

and GC-FID. However, the concentrations of most contaminant cases are in the 

range of mg/L [17]. Additionally, to improve the sensitivity of this system, UV 

lamp will be used in the following chapter. 
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Figure 3.8: calibration curves of GC-63Ni-DMS system for target compounds 

3.4 Summary 

A short column MXT-5 was selected and utilized for separating the target 

compounds (BTEX) in groundwater. The analysis time is less than 2 min. After 

being coupled to DMS equipped with 63Ni, The detection limits of target 

compounds in groundwater are 201,8 mg/L for benzene, 9,53 mg/L for 

ethylbenzene, 50,31 mg/L for toluene, 6,20 mg/L for m-xylene, 8,53 mg/L for p-

xylene, and 4,76 mg/L for o-xylene, respectively, by GC-63Ni-DMS. The 

detection limits are higher than the MCLs regulated by WHO (0,01 mg/L for 

benzene, 0,7 mg/L for toluene, 0,3 mg/L for ethylbenzene and 0,5 mg/L for total 

xylene). 
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The next chapter, in order to improve the sensitive, the 63Ni ionization source 

will be replaced by krypton lamp. The performance of GC-UV-DMS will be 

discussed.  
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4. Comparative determination of BTEX by GC coupled to 
DMS equipped with radioactive 63Ni and UV lamp 
 

4.1 Introduction 

Radioactive ionization sources, corona or partial discharge ionization, 

photoionization, laser ionization, surface ionization, electrospray ionization and 

some other techniques are commonly used as ionization methods [1, 2]. For IMS, 

the radioactive 63Ni is the usual source of ionizing electrons, due to high 

efficiency for many analytes and no power requirement [3]. Polar and nonpolar 

compounds can be ionized and be detected by 63Ni-IMS or 63Ni-DMS. The 

efficiency of detection for many analytes is largely depending on chemical 

ionization reactions of one or more molecular properties, such as ionization 

potential, electron affinity, proton transformation. Unfortunately, the detection 

limits of 63Ni-DMS for BTEX are high and linear working ranges are limited. 

Additionally, there are very strict regulatory on the use of radioactive material. 

For obvious reasons it would be highly advantageous to replace the radioactive 

source with other ionization ways like atmospheric pressure photoionization 

(APPI). 

In 1983, Baim used photoionization at atmospheric pressure equipped to ion 

mobility spectrometry[4]. After that, in 1980s, Eiceman reported a series of 

pioneer works on photoionization IMS[5-7]. The applications have been recently 

published [8-12]. Baumbach et al detected ethanol and 1- propanol in the 

concentration range between 1 and 100 ppmv by UV-IMS[8]. Borsdorf et al 

analyzed sets of structural isomeric and stereoisomeric non-polar hydrocarbons 

(saturated and unsaturated cyclic hydrocarbons and aromatic hydrocarbons) 

using a novel miniature DMS equipped with APPI[9]. A comparative study of 

analysis of halogenated compounds by APPI-IMS-MS and APPI-DMS was also 

done by Borsdorf [10]. Real time monitoring of MTBE, BTX in water and 

nitrogen is achieved by MCCs coupled to IMS equipped with UV ionization 
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source[11]. Cheng et al developed a dopant-assisted negative photoionization 

source for IMS equipped with commercial VUV krypton lamp and evaluated its 

capabilities for detection of common explosives like trinitrotoluene (TNT) [12].  

Noble gas resonance lamps have long been used as standard equipment in GC 

photoionization detectors operating at atmospheric pressure[13]. The normal 

carrier gases like N2 and He, having ionization energies much higher than the 

lamp photon energies, provide no ions in competition with target analytes. The 

greater part of the studies operated in APPI were performed with a krypton lamp. 

It can produce photons of 10,03 and 10,64 eV in a 4:1 ratio[14]. Because most 

analytes have lower ionization energy (IE) values than the photon’s energy but 

commonly used solvents and carrier gases present in the source (He, N2, etc.) 

have higher IE, krypton was selected to be ionization source. Besides krypton, 

xenon and argon were also used[15]. In the early years of photoionization, Locke 

et al used xenon as ionization source [16]. It penetrates deeply but lower energy 

of produced photons. Argon produces more energetic photons than krypton, 

leading to produce more abundant molecular ions than krypton [15]. Krypton 

lamp produces a better signal to noise ratio at a low flow rate, whereas argon are 

better at high flow rates. The gas phase IE and proton affinity (PA) values of 

target compounds are listed in Table 4.1. 

Table 4.1: gas phase IE and PA values of BTEX and carrier gas [17, 18] 

 IE(eV) PA(kJ/mol) Argon (eV) Krypton (eV) Xenon (eV) 

Nitrogen 15,58 493,8 11,7 10,03 

10,64 

(4:1) 

8,4 

Water 12,62 691,0 

Oxygen 12,07 421,0 

Benzene 9,24 750,4 

Toluene 8,83 784,0 

Ethylbenzene 8,77 789,9 

m-Xylene 8,55 812,1 

p-Xylene 8,44 794,4 

o-Xylene 8,56 796,0 
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In this section, the ionization behaviors of BTEX in DMS equipped with two 

differential ionization sources 63Ni and krypton lamp will be discussed. After 

coupling to GC, the calibration curves and detection limits of BTEX detected by 

GC-UV-DMS were done. 

4.2 Experimental section 

4.2.1 Chemicals and sample preparation 

The chemicals such as o-xylene(≥99,0%, Fluka Analytical, Steinheim, 

Germany), p-xylene(≥99,0%, Fluka analytical, Steinheim, Germany), m-

xylene(≥99,0%, Fluka, Steinheim, Germany), benzene(99%, AppliChem, 

Darmstadt, Germany), ethylbenzene (≥99,0%, Fluka, Steinheim, Germany), 

toluene(99,9%, J.T.Baker, Netherland), and methanol (≥99,99%, Fisher 

Scientific, Germany) were used without further purification. 

In order to obtain the calibration curves and detection limits, clean groundwater 

spiked with different concentrations of the pure chemicals was used. 

4.2.2 DMS description 

A set-up of the DMS (SIONEX, SVAC) with the photoionization source is 

shown in Figure 4.1. The dimensions of the electrodes are as follows: length 

15,0 mm; width 3,0 mm; and distance apart 0,50 mm. The volume between the 

plates is 22,5 mm3. The residence time of an ion in the analytical section is about 

0,405 ms at a gas flow rate of 300 mL/min. Positive and negative ions formed in 

the source are carried together by N2 between two parallel electrodes and then 

detected by Faraday plates. 
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Figure 4.1: Differential mobility spectrometer with a krypton resonance UV lamp as ionization 
source. For RF and CV measurement, the analyte was directly introduced into DMS without any 

dopant [19] 
 

The ions pass in the gas stream through the small gap between the two filter 

electrodes. A strong asymmetric waveform RF electric field of 1,18 MHz is 

applied on the separating plates perpendicular to the direction of gas flow. As 

shown in Figure 4.2, the profile of the waveform has equal integral above, high 

field, and below, low filed, the zero line. Asymmetric field (Ehigh=30000 V/cm 

and Elow=-7200 V/cm) can be generated when the maximum difference between 

the filter plates (spaced 0,5mm apart) is +1500 V[19]. 

For APPI method, a miniature krypton discharge lamp with a MgF2 window 

(CPI, Santa Rosa, CA) provides photons with energies of 10,03 eV and 10,64 

eV with a ratio of 4:1. The light is directed down through a tube with inner 

diameter (4mm). The analytes are ionized and transported into the separation 

regions by carrier gas (N2). For radioactive method, a 63Ni radioactive source 

was used. 
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Figure 4.2: Asymmetric waveform of SIONEX SVAC electric field. The integrals above and 

below the 0 line are equal [19] 
 

4.2.3 Data acquisition and processing 

Combinations of separation voltage (SV) and compensation voltage (CV) fields 

allow the target ion trajectory to pass straight through the analytical region 

without colliding with the electrodes. Consequently, by scanning or fixing SV 

and CV, DMS can be operated in the following modes. Firstly, a particular SV 

and CV combination can be selected, which can continuous filtrate particular ion 

species. Secondly, when SV is fixed and CV scanned, linear DMS spectra can 

be recorded. Thirdly, a full differential mobility scan can be recorded when the 

SV and CV are both synchronized and scanned. 

To know the ion species of BTEX ionized by different ionization sources (63Ni 

and UV lamp), the third mode was used; the SV from 500 to 1500 V and CV are 

both synchronized and scanned. A full differential mobility scan can be obtained. 

The topographic plots with compensation voltage vs. separation voltages can 

disclose ion transformations with changes in RF voltage. The compensation 

voltage was scanned from -20 to 5V for 63Ni-DMS and from -10 to 4,5 V for 

UV-DMS.  

When DMS coupled to GC, the second mode is used, the SV being fixed and 

CV being scanned. Under this mode, chromatogram at different CV can be 
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obtained. In order to do the calibration curves, the peak areas of BTEX in 

chromatogram are obtained by integration. 

In DMS, ion separation occurs through the field dependence of ion mobility, 

represented by the α(E/N). In K(E/N)=K0(1+α(E/N)), where K0 is the ion 

mobility at low of standard conditions and K(E/N) is the ion mobility for 

particular ion species as a function of electric field amplitude. The α(E/N) can 

also be described as α(E/N)=ΔK/K0. It is determined by the relative change in 

ion mobility between low and high electric field conditions. It is very important 

for ion species identification dependent on the magnitude and sign of alpha 

function. The alpha function can be calculated by the RF waveform and the 

compensation voltage. The detail about alpha function calculation is described 

in chapter 1. In this work, for the actual waveform shown in Figure 4.2, the real 

field form factors were determined as <f2(t)>=0,236,<f3(t)>=0,111, 

<f5(t)>=0,103 by literatures [20, 21]. 

All data are recorded and stored for positive ions simultaneously as excel format 

by commercial software provided by Sionex SVAC and are analyzed by 

OriginLab 9.0. 

4.3 Results and discussion 

4.3.1 Generation of ions by UV and 63Ni 

4.3.1.1 Positive ions generated by UV ionization  

In UV-DMS, in the absence of analytes, the DMS spectrum represented a flat 

baseline. This can be explained that all the main components of the carrier gas 

N2 with trace water or other gases, have ionization energies higher than the 

maximum photon energy of the krypton lamp, no ions were produced. As shown 

in Figure 4.3, when introduction of a constant flow of analytes, at low RF field 

below 600 V, as expected, the CVs for all compounds are very close to 0 V. The 

CVs move to more negative positon with increasing amplitude of RF voltage 

from 600 to 1200 V. 
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The signal intensity at peak maximum decreased as the RF increased from 500 

to 1500 V. Nazarov et al observed the signal intensity at peak maximum initially 

increased slightly as the amplitude of RF increased from 0 to 400 V[19]. Then 

the values of RF increase from 500 to 1500 V, the signal intensity at peak 

maximum declined. Above results are in consistent with those reported by 

Nazarov et al.  

 

 

 

Figure 4.3: plots of compensation voltage versus RF voltage for BTEX by UV-DMS 

 

As shown in Figure 4.3, except benzene, all other aromatic hydrocarbons 

analyzed have single peaks. This can probably be attributed to ions related to 
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monomer ion (M+). The plots of compounds (toluene, ethylbenzene, xylene) are 

not found the dimer cation, hydrated proton or hydrated combiner. This findings 

are in a good agreement with those reported by Borsdorf [9].  

The plot of benzene is the only one, which has three peaks at high RF voltage. 

This indicates that a series of reactions occur after benzene ionized by UV. 

There are at least three ions formed. The peak in the middle is the benzene 

cation (C6H6
+) as described mechanism in eq. 4.1. 

଺ܪ଺ܥ ൅ ݒ݄ → ଺ܪ଺ܥ
ା ൅ ݁ି  (eq. 4.1) 

There are several possibilities for the formation of ions after benzene ionized by 

UV. The first possibility of formation of the peak with the most negative CV is 

benzene-water cation by the reaction of the benzene cation with water vapor as 

described in eq. 4.2. The water vapor may be from the carrier gas. 

଺ܪ଺ܥ
ା ൅ ଶܱܪ݊ → ଺ܪ଺ܥ

ାሺܪଶܱሻ௡  (eq. 4.2) 

The thermodynamics of the stepwise hydration of the benzene cation has been 

studied by Ibarhim et al[22]. The standard enthalpy and entropy changes of 

clustering reactions with the first two water molecules are, respectively, -9,0 

kcal/mol and -19,5 kcal/mol for one water clustering and -8,0 kcal/mol and -18,9 

kcal/mol for two water clustering. Solca et al[23] estimated the binding energy 

of the first water molecule with benzene+ as 59±13 kJ/mol, which is in good 

agreement with other literature [22]. The calculated ratio of the benzene cation 

and its monohydrate at 350 K in the presence of 1 ppmv of water is 1:2×10-5. 

The ratios of the di and trihydrate of the benzene cation at 350 K for 1ppmv of 

water vapor are 1: 2×10-10 and 1:7×10-16.  

At a high water concentration of 1300 ppmv, the estimated ratio of the bare, 

mono, di, and trihydrated of the benzene cation is 1:3×10-2: 3×10-4: 2×10-6. The 

formation of the hydrated proton may occur through the following eq. 4.3: 

଺ܪ଺ܥ
ାሺܪଶܱሻ௡ → ହܪ଺ܥ ൅ ሺܪଶܱሻ௡ܪା  (eq. 4.3) 



82 
4.Comparative determination of BTEX by GC coupled to DMS equipped with radioactive 

63
Ni and UV lamp 

Although with the higher concentration of water vapor the equilibrium ratio of 

the trihydrate is very small, its reaction to form the hydrated proton occurs with 

high efficiency.  

However, at a low water concentration (n≤3), the formation of the hydrated 

proton derived from the hydrated benzene cation may be not possible [22]. 

Therefore, in Fiugure 4.3, the peak with most negative CV may be C6H6
+(H2O)n 

not the hydrate proton or other protonated species via the hydrated proton.  

Once a benzene monomer cation is produced, charge resonance (CR) interaction 

with a neighboring neutral molecule produces a stable dimer, (C6H6)2
+. 

଺ܪ଺ܥ ൅ ଺ܪ଺ܥ
ା → ሺܥ଺ܪ଺ሻଶ

ା  (eq. 4.4) 

Generally, the bonding in van der Waals complexes arises from electrostatic, 

polarization, dispersion, charge transfer and short-range repulsion interactions. 

The binding energy of the dimer cation is nearly one order of magnitude larger 

than that of the neutral dimer. This was attributed to a strong charge transfer 

resonance interaction in the dimer ion, i.e. the charge is delocalized over both 

benzene rings [24]. 

Rusyniak et al reported that isomerization of the benzene radical cation occurs to 

generate the fulvene cations[25]. Assuming a usual factor of 1014 s-1, an 

activation energy Ea(fulvene+→benzene+) >24,3 kcal/mol was calculated. 

Considering the 12,2 kcal/mol difference between ΔHo
f (benzene+) and ΔHo

f 

(fulvene+), Ea(benzene+ → fulvene+)>36,5 kcal/mol. Assuming the factors 

between 1013 and 1015 s-1, the lower limit of Ea is between 34,4 and 38,6 

kcal/mol. The fulvene+ is formed during the electron impact ionization of 

benzene in the electron impact ion source rather than by collisions with helium 

atoms during ion injection. The electron impact ionization source is at a fixed 

electron energy ranging from 300 to 100 eV. Therefore, although fulvene having 

a lower ionization energy (8,36 eV), the isomeric fulvene ion cannot be formed 

since the isomerization barrier is larger than 1,6 eV and there are no possible 
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fragment ions by UV lamp. Therefore, the peak with less compensation voltage 

is belong to benzene dimer cation (C6H6)2
+ not fulvene cations. 

4.3.1.2 Positive ion spectra by 63Ni ionization  

As described in Table 4.1, the PAs for BTEX are 750,4 kJ/mol for benzene, 

784,0 kJ/mol for toluene, 789,9 kJ/mol for ethylbenzene, 812,1 kJ/mol for m-

xylene, 794,4 kJ/mol for p-xylene and 796,0 kJ/mol for o-xylene, respectively. 

The PAs for BTEX are larger than water, which has a PA value of 691,0 kJ/mol. 

This means the following reaction can occur: 

ܯ ൅ ሺܪଶܱሻ௡ܪା → ାܪܯ ൅  ଶܱ  (eq. 4.5)ܪ݊

The mechanism on formation of (H2O)nH
+ is described by [26-28]. The n is 

governed by temperature and moisture level. The plots of compensation voltage 

and RF voltage in 63Ni radioactive ionization mode are shown in Figure 4.4. At 

RF = 500 V, there is only one peak in the spectrum at each compound since this 

voltage is insufficient for ion separation. As RF increases, the peak of (H2O)nH
+ 

is separated and moves to more negative position in CV axis. After that, it 

disappears when RF voltage is larger than 1100 V. All protonated monomers 

MH+ except (C6H6)H
+ and protonated toluene begin to be separated from the 

reactant ions at RF=600 V. The protonated benzene and toluene can be 

separated from RIP at 700 V. As the RF increases from 600 to 1100 V, the 

separation resolution of protonated molecules and reactant ions increase. Both 

compensation voltages for reactant ions and product ions move to more negative. 

Meanwhile, the intensity of both reactant ions and product ions decline when the 

RF increases. This is understood to be a loss in transmission efficiency, for 

differential mobility spectrometers with planar configurations, through 

neutralization by collisions of ions on walls of the analyzer. Increases in 

separation voltage lead to increases in collisions for ions not in the center of the 

flow channel of the analyzer. The decrease in intensity is generally less for 

heavier, less mobile ions [29].  
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Figure 4.4: plots of compensation voltage versus RF voltage for BTEX by 63Ni-DMS 

 

Another possible reason is that the activated MH+ decomposes due to the 

combination of thermal energy and the energy acquired from the separation field. 

Ion decomposition in the separation field is brought about by the conversion of 

translational energy acquired from acceleration in the field into internal energy. 

The high separation field will cause the decompositions of MH+ [29]. When RF 

voltage increases from 1100 to 1400 V, the compensation voltages for product 

ions move back to less negative and close to zero.  
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Eiceman et al described the ion chemistry of 1,4-dimethylpyridine (DMP) that 

occurs in 63Ni ionization mode, which is operated at atmospheric pressure[30]. 

The protonated molecule (DMP)H+ is first formed by proton transfer from the 

reactant ion (H2O)nH
+ and subsequently the proton bound dimer (DMP)2H

+ may 

form by association of (DMP)H+ with DMP at sufficiently elevated vapor 

concentrations. However, in Figure 4.4, no protonated dimers of BTEX can be 

found. This may be explained that the concentrations of BTEX analyzed are 

lower than those required to form protonated dimers. It is suitable to use the 

protonated product ions to quantify the concentrations of target compounds. 

4.3.2 Alpha functions for BTEX detected by UV-DMS and 63Ni-

DMS 

Due to the different ionization mechanism of UV and 63Ni, different ions will be 

produced by UV and 63Ni. Normally, mass spectrometry was used to be coupled 

with DMS to identify the ions[31]. However, the ions may be lost and transform 

to other ions due to reduced pressure. Therefore, mathematical calculation like 

alpha function was introduced to provide another way to investigate ions in 

DMS. 

At a fixed temperature and gas density N, the ion mobility and the average drift 

velocity can be approximated as follows: 

K(E/N)=K0(1+α(E/N))  (eq. 1.5) 

Alphas are reported in units of Td-2n (1 Td = 1×10-17 V/cm2) and have no further 

physical meaning. The nonlinear dependence of K, determined by alpha values, 

is used to classify ions in three group (A,B,C) [32, 33]. For A-type ions, mobility 

increases monotonically over small regions with E/N and α2 and α4 are >0. For 

C-type ions, both α2 and α4 are <0, in this case the ion mobility decreases 

monotonically with E/N. B-type ions exhibit a maximum since α2>0 and α4 <0. 

The actual values for alpha coefficients are shown in Table 4.2. All ions of 

BTEX including protonated monomers and monomers exhibited α2>0 and α4 <0. 

These ions can be classified as B-type.  
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Table 4.2: values for Alpha parameters for ions of BTEX by 63Ni and krypton UV lamp 

 63Ni-DMS UV-DMS 

α2 (1/Td2) α4 (1/Td4) α2 (1/Td2) α4 (1/Td4) 

Benzene 1,39E-04 -1,64E-08 8,26E-05 -7,10E-09 

Toluene 8,87E-05 -7,94E-09 8,43E-05 -7,20E-09 

Ethylbenzene 4,93E-05 -5,15E-09 6,05E-05 -4,38E-09 

m-xylene 4,05E-05 -2,90E-09 4,46E-05 -2,91E-09 

p-xylene 4,35E-05 -3,33E-09 6,10E-05 -4,43E-09 

o-xylene 4,06E-05 -2,99E-09 5,73E-05 -4,00E-09 

 

The plots of alpha function for BTEX ionized by 63Ni with the electric fields are 

shown in Figure 4.5.  When E/N < 60 Td, the alpha values of protonated 

monomers for benzene and ethylbenzene increase as the E/N increases. When 

the E/N > 60 Td, the alpha values decline as the E/N increases. The protonated 

monomers like benzene, toluene and ethylbenzene exhibited a significantly B 

type alpha curves. 

The trend of increase for alpha values of protonated monomers as the increase of 

E/N is negative related to molecular mass. As shown in Figure 4.5, the alpha 

value of protonated benzene increase fastest with the increase of E/N , followed 

by toluene, then ethylbenzene and xylene, which having the same molecular 

mass. Krylov et al reported the similar trend for protonated monomer for 

ketones. Interestingly, the alpha curves for three xylene isomers are quite similar 

[31]. This may be explained that the compounds with the same functional group, 

protonated monomers of a single type, have the similar dependence of 

coefficients of mobility on electric fields.  

The plots for alpha function for BTEX ions detected by UV-DMS with the 

electric fields are shown in Figure 4.6. The ions of BTEX ionized by UV are 

different from these ionized by 63Ni. As mentioned above, benzene monomer, 

dimer and C6H6
+(H2O)n were found in the experiment. In order to compare the 

behavior of ions with other compounds, only the alpha values of monomers are 

calculated. Slope of alpha versus E/N were monotonic from 0 to 90 Td for 
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ethylbenzene, m-xylene, p-xylene, o-xylene. Benzene and toluene showed plots 

with an inversion of slope above 75 V. Interestingly, the alpha plot for [m-

xylene]+ is significantly distinct from the other two xylenes, with α2=4,46E-05 

and α4=-2,91E-09. This means that the behavior of [m-xylene]+ in the asymmetric 

high electrical field will be different with [p-xylene]+ and [o-xylene]+. However, 

the overlapping peak between m-xylene and p-xylene was still found. As 

mentioned in section 1.6, three main errors were introduced in measurements for 

alpha function. The approximate combined error may be 10 %. Practically, alpha 

was expressed as tow polynomial terms. However, this approximation algorithm 

may lose more information of the behavior of ions in DMS. Therefore, the 

investigation of alpha function calculation is still needed. 

 

Figure 4.5: plots of α(E/N) for BTEX (protonated monomers) vs. electric field, ionization source 
63Ni, 1, [benzene]H+ 2, [toluene]H+, 3, [ethylbenzene]H+, 4, [m-xylene]H+, 5, [p-xylene]H+, 6, [o-

xylene]H+, temperature 80 Ԩ, flow rate 300 ml/min 
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Figure 4.6: plots of α(E/N) for BTEX (monomer ion) vs. electric field, ionization source UV lamp, 

1, [benzene]+ 2, [toluene]+, 3, [ethylbenzene]+, 4, [m-xylene]+, 5, [p-xylene]+, 6, [o-xylene]+, 

temperature 80 Ԩ, flow rate 300 mL/min 

4.3.3 Comparison of GC-63Ni-DMS and GC-UV-DMS 

Eiceman and Vandiver quantified response curves of aromatic hydrocarbons by 

photoionization and compared these events to radioactive ionization [6]. As 

discussed in chapter 3, increased product ion intensity was accompanied by 

decreased reactant ion intensity in a regular even fashion for each aromatic 

hydrocarbon in 63Ni mode. The chemical ionization response for target 

compounds was limited by available reactant ions. 

Table 4.3: Characterization of GC-63Ni-DMS and GC-UV-DMS 
Compounds Retention 

time (sec) 
Compensation 

voltage (V) 
Detection limits 

(mg/L) 
MCLs by 

WHO(mg/L) 
UV 63Ni UV 63Ni 

Benzene 44,1 -5,9 -6,2 0,08 201,80 0,01 
Toluene 55,2 -3,2 -3,6 0,15 50,31 0,7 

Ethylbenzene 74,4 -2,1 -2,7 0,12 9,53 0,3 
m-Xylene 77,4 -1,3 -2,2 0,15 6,20 0,5 

(total xylene) p-Xylene 77,4 -2,1 -2,2 0,16 8,53 
o-Xylene 86,5 -1,7 -2,3 0,16 4,76 

 

The calibration curves of BTEX in groundwater detected by GC-63Ni-DMS are 

shown in chapter 3. R2 for benzene and toluene are 0,77 and 0,86, respectively. 

This means that the signals of [benzene]H+ and [toluene]H+ are not stable. 
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However, the R2 for calibration curves of other compounds like ethylbenzene, 

xylene isomers are above 0,93, which is acceptable. This can be explained that 

the benzene and toluene are very sensitive for the concentration of water vapor. 

As shown in Table 4.1, the PAs of benzene and toluene are 750,4 eV and 784,0 

eV, respectively, which are lower than other compounds. In Figure 4.7, the R2 

for calibration curves of benzene and toluene obtained by GC-UV-DMS are 0,99 

and 0,97, respectively, which are quite linear correlations. Due to the different 

ionization mechanisms on benzene and toluene induced by 63Ni and UV, the 

ions without proton may be more stable at a certain water vapor. In 63Ni mode, 

the kinetics of ion cluster formation are fast enough for changes in water 

concentration to exert a significant effect on the differential mobility of ions[34]. 

Kanu and Thomas obtained quantitative responses to benzene in water over the 

concentration range 6 to 177 µg/cm3 with linear correlations with R2 values 

ranging from 0,97 to 0,99 by UV photoionization differential mobility 

spectrometer [35]. 

Detection limits of BTEX in groundwater by GC-63Ni-DMS and GC-UV-DMS 

are listed in Table 4.3. The detection limits of BTEX detected by GC-63Ni-DMS 

are in the range from 4,8 to 201,8 mg/L. The detection limits of TEX detected 

by GC-UV-DMS are 0,15 mg/L for toluene, 0,12 mg/L for ethylbenzene, 0,15 

mg/L for m-xylene, 0,16 mg/L for p-xylene, 0,16mg/L for o-xylene, respectively, 

which are 30 to 330 fold lower than those obtained by 63Ni-DMS. The detection 

limit for benzene obtained by GC-UV-DMS is 0,08 mg/L, which is more than 

2500 folds improved over GC-63Ni-DMS. The detection limits for all target 

compounds except benzene by GC-UV-DMS are below the maximum 

contamination levels (MCLs) recommended by WHO. The detection limit for 

benzene by GC-UV-DMS is also acceptable, which is closed to the MCL of 

benzene in drinking water by WHO. Moreover, the concentrations of most 

contaminant cases are in the range of mg/L[36]. 
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Figure 4.7: calibration curves of GC-UV-DMS system for target compounds 

4.4 Summary 

In this chapter, firstly, the behaviors of BTEX ionized by two different 

ionization ways were studied by DMS. The pronated monomer of target 

compounds are predominated ions produced through chemical reaction with 

reactant ions via 63Ni. Otherwise, all compounds are directly ionized to 

monomer ions by UV photoionization. Besides [C6H6]
+, [C6H6]2

+ and 

C6H6
+(H2O)n were found and separated by DMS by using UV ionization source.  

In order to characterize the ions produced by 63Ni and UV, alpha functions for 

the protonated monomers and monomers ions of target compounds were 
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calculated. Depending on the α2 and α4 values, all the ions (both protonated 

monomers and monomers ions) can be classified as B-type ions. 

The calibration curves and detection limits for BTEX detected by GC-UV-DMS 

were calculated, respectively. The detection limits of BTEX detected by GC-

UV-DMS are low to 0,08 mg/L. Except benzene, the detection limits of other 

compounds TEX are below the MCLs regulated by WHO. However, all data 

obtained in this chapter by using clean groundwater spiked with pure 

compounds. The matrix effect of the complicated real groundwater 

contaminated by gasoline is unknown. 
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5. Determination of BTEX in real contaminated 
groundwater samples by GC-UV-DMS  
 

5.1 Introduction 

In many countries, the groundwater is always used as drinking water source in 

which the allowable amounts of the BTEX is very low due to their serious 

adverse impact on human health. European Union (EU) legislated the strictest 

maximum contamination level for benzene in drinking water as 0,001 mg/L, 

which is lower than that (0,01 mg/L) recommended by World Health 

Organization (WHO). Meanwhile, US EPA presented a medium level (0,005 

mg/L for benzene) between WHO and EU. For the other compounds (toluene, 

ethylbenzene, xylene-total), there is no regulation in EU. Otherwise, US EPA 

regulated 1,0 mg/L for toluene, 0,7 mg/L for ethylbenzene, and 10 mg/L for 

total-xylene, respectively. In comparison with US EPA, WHO recommended a 

more strict regulation on TEX, 0,7 mg/L for toluene, 0,3 mg/L for ethylbenzene 

and 0,5 mg/L for total xylene[1-3]. 

Uncontrolled release of gasoline into aquatic environment will result in 

contamination groundwater, particularly the underground storage tank leak. A 

slow leak from a 10.000 gallon gasoline storage tank virtually undetectable to 

station operator is still quite hazardous to groundwater supplies. For instance, 

according to water quality guideline of WHO, a spill of 10 gallons of gasoline 

(only 0,1 % of the 10.000 gallon tank) will contaminate approximately 230 

million liters drinking water [2]. 

There are two ways to analyze the BTEX in groundwater. One is on site method 

and another is on lab method. Analyses of BTEX in water are usually carried out 

by gas chromatography using a flame ionization detector (GC-FID) or 

electrolytic conductivity detectors (GC-ECD)[4-6]. Ji et al evaluated a portable 

gas chromatography–microflame ionization detection (portable GC-FID) 

coupled to headspace solid-phase microextraction (HS-SPME) for the field 

analysis of BTEX in water samples [6].The detection limits found were lower 
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than 1,5 µg/L, which was enough sensitive to detect the BTEX in water samples. 

The optimized method was applied to the field analysis of BTEX in wastewater 

samples. Recent decade, gas chromatography mass spectrometry (GC-MS) is 

becoming increasingly common [7-9]. Laaks et al presented a novel in-tube 

extraction device (ITEX) for headspace sampling coupled to GC/MS analysis of 

BTEX in aqueous samples [7]. The detection limits of 1 to10 ng/L were 

achieved for volatile organic compounds (VOCs), which is much lower than 

demands by regulatory limit values. Kamal and Klein estimated BTEX in 

groundwater sample by using GC-MS, after standardization of this technique for 

advancement towards purification check of water samples in the petro-polluted 

regions of the soil [8]. Jia et al analyzed BTEX in water by using SPME-GC-MS. 

The detection limits of BTEX are in the range of 0,001 to 0,009 mg/L [9]. In 

addition, other methods are reported to detect BTEX in water [10, 11]. Karlowatz 

et al detected and quantified simultaneous the environmentally relevant analytes 

benzene, toluene, and the three xylene isomers in water by reflection mid-

infrared spectroscopy [10]. Wittkamp and Tilotta described a new method for 

determining BTEX in water combining SPME and spontaneous Raman 

spectroscopy. The detection limits using the most intense Raman bands are in 

the 1-4 ppm range and produce relative standard deviations of 3-9% [11]. 

However, the methods mentioned above are time consuming. As described in 

chapter 3 and chapter 4, the analysis time by GC-DMS is less than 2 min and the 

detection limits are low to ppb. However, until now, it is still unclear whether 

the concentrations of BTEX detected by GC-UV-DMS are closed to the actual 

concentrations in the sample. 

In this chapter, 17 groundwater samples are collected in a natural gas field in 

Rotenburg an der Wümme, northen Germany. These samples are analyzed by 

the developed method (GC-UV-DMS) and reference lab method, respectively. 

The results obtained by GC-UV-DMS were evaluated. 
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5.2 Experimental section 

5.2.1 Groundwater sampling 

The groundwater samples are collected from a natural gas field in Rotenburg an 

der Wümme, northern Germany. The volume of each sample is 250 mL. There 

is a variety of these samples. The natural gas is fed continuously throughout the 

whole year. The groundwater located in 5000 meters. The groundwater samples 

contain a number of ingredients as follows: strongly fluctuating high salinity, 

iron and manganese, oxygen, petroleum hydrocarbons, heavy metals such as 

mercury, sediment, and microorganisms. The composition of the water of a 

reservoir varies over the year. This water is stored for short period under 

anaerobic, usually covering natural gas to the respective bore. When the 

containers are full, bring a tanker off the water and drive it to the repressing in 

an old disused bore. However, the sediment prior to repress, hydrocarbons, iron 

and manganese must be removed from the water. The samples are supplied 

either from such a plant influent raw water or they are according to the different 

steps of the plant was taken. There are as follows:  

1, deposition of sediments and free phase in a lamella occurs a coagulation of 

fine droplets of hydrocarbons to phase. 

2, for the separation of sediment, precipitated iron and manganese. Here also 

occurs a coagulation of fine droplets of hydrocarbons to phase. 

3, coagulation disperses fine droplets of hydrocarbons to free phase by high 

performance membranes called coalescing. 

5.2.2 Chemicals 

Chemicals like o-xylene(≥99,0%, Fluka Analytical, Steinheim, Germany), p-

xylene(≥99,0%, Fluka analytical, Steinheim, Germany), m-xylene(≥99,0%, 

Fluka, Steinheim, Germany), benzene(99%, AppliChem, Darmstadt, Germany), 

ethylbenzene (≥99,0%, Fluka, Steinheim, Germany), toluene(99,9%, J.T.Baker, 

Netherland), methanol (≥99,99%, Fisher Scientific, Germany) were used 

without further purification. 
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5.2.3 Determination of BTEX in groundwater by reference 

method 

ITEX GC-MS Instruments and Parameters: All analyses were performed using a 

Trace GC Ultra (S+H Analytik, Mönchengladbach, Germany) coupled to a DSQ 

II single quadrupole mass spectrometer (S+H Analytik). The GC was equipped 

with a split/splitless injector (SSL), and a Combi-PAL autosampler (Axel 

Semrau, Sprockhövel, Germany). Compound separation was performed on a 

Restek Rtx-V MS column (medium polar, proprietary modified phase) with 60 

m length, 0,32 mm i.d., and 1,8 μm film thickness (Restek,Bad Homburg, 

Germany).  

The MS was set to electron ionization (EI) with an ionization energy of 70 eV in 

scan mode (m/z) 49 to 180, 6,5 scans/s. The MS transfer line was set to 250 ℃; 

the ion source temperature was 220 ℃. 

For the GC measurement, the injector temperature of the Optic 3 was set to 280 ℃ 

in splitless mode. The temperature program for oven was set up as follows. 

Firstly, the oven temperature was set to 40 ℃ for 1 min, then heated up to 130 ℃ 

with 4 ℃/min and to 200 °C with 10 ℃/min, then holding at 200 ℃ for 10 min. 

The flow rates for column and injector were set up as follows. The column flow 

was raised to a constant flow of 1,5 mL/min, the split was opened at 20 mL/s, 

and the trap was heated to 250 °C with a heating rate of 30 ℃/s. 

The parameters and conditions of ITEX are described in detail by [7]. 

Instrument control, data acquisition, and evaluation were performed by the 

Xcalibur 1.4 data system (S+H Analytik). 

The real groundwater samples are diluted to 10.000 times for analysis of 

ethylbenzene and xylene by ITEX-GC-MS. Meanwhile, the real samples are 

diluted to 1000.000 times for analysis of benzene and 100.000 times for analysis 

of toluene. The calibration solutions are prepared by spiking clean groundwater 
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with BTEX standard solutions, which are prepared through dissolving BTEX 

chemical into methanol. 

5.2.4 GC-UV-DMS measurement 

The instrument of GC-UV-DMS was described in chapter 4. To analyze the 

groundwater, the real samples were diluted to 100 times for analysis of 

ethylbenzene and xylene, 500 times for quantifying toluene, as well as 1000 

times for analysis of benzene. 500 µl headspace air was directly injected into 

GC-UV-DMS system. In order to eliminate the matrix effect, the calibration 

curves were obtained by spiking clean and contaminated groundwater samples 

with standard solution of BTEX. 

5.2.5 Data analysis 

OriginLab 9.0 was used to analyse the data recorded by microDMx Expert 

version 2.4.0. Firstly, a 2D diagram was produced (one dimension as retention 

time of GC; another dimension as compensation voltage detected by DMS) by 

OriginLab. For quantifying the peak area of target compound, the data at fix 

compensation voltage dimension was used to generate a chromatogram. The 

details are described in chapter 4. 

To compare the results obtained by GC-UV-DMS and reference method, F-test, 

one of statistical models of analysis of variance (ANOVA), was used by 

OriginLab 9.0. 

5.3 Results and Discussion 

5.3.1 Characterization of GC-UV-DMS 

Figure 5.1 shows five chromatographs at different characterized compensation 

voltages for BTEX. The order of the peaks is as follows: 1, benzene, 2, toluene, 

3, ethylbenzene, 4, m/p-xylene, 5, o-xylene (from left to right). 
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Figure 5.1: Chromatograph of BTEX in real sample: 1, benzene, 2, toluene, 3, ethylbenzene, 4, m/p-
xylene, 5, o-xylene 

 

Figure 5.2: slopes of BTEX for calibration curves obtained from clean groundwater and three real 

samples spiked with different concentrations of BTEX 

Methods for monitoring BTEX levels in real groundwater samples are relatively 

complicated due to strong matrix effect. In order to eliminate the matrix effect, 

three real groundwater samples spiked with the standard solutions were prepared 

and analyzed by GC-UV-DMS. The calibration curves and the slopes of 

calibration curves are shown in Figure 5.2 and Figure 5.3. The slopes of three 

calibration curves are in good agreement with that obtained from clean 

groundwater in chapter 4. Therefore, the calibration curves obtained in chapter 4 

can be used to quantify the real samples without considering the matrix effect. 
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It should be clarified that the slopes for calibration curves of m and p-xylene are 

combined together, because the two peaks are not separated (as shown in Figure 

5.1). Otherwise, in chapter 4, the calibration curves of these two compounds are 

obtained separately, because the standard solutions used to calibrate were 

prepared by single compound instead of mixture. The slope of calibration curve 

of p-xylene obtained in chapter 4 was listed as m/p-xylene in Figure 5.2. 

 

 

 

Figure 5.3: calibration curves for BTEX in real contaminated groundwater spiked with standards 

by GC-UV-DMS 
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5.3.2 Application to groundwater studies 

The analysis results of 17 groundwater samples collected from a natural gas 

field in Rotenburg an der Wümme, northern Germany are shown in Figure 5.4 to 

5.8. These results revealed that BTEX concentrations are within the range from 

2,0 to 616,9 mg/L. The concentrations were in general much higher than the 

MCLs of BTEX regulated by WHO[2]. 

In Figure 5.4, the concentrations of benzene were in the range from 133,8 to 

616,9 mg/L. These concentrations were much higher than the MCLs regulated 

by EU, US and WHO [1-3]. All data points were used to do F-test (Table 5.1). 

At the 0,05 level, the mean concentrations of quantified by the two different 

analytical procedures are significantly different. The F value is 5,31, larger than 

the critical value of 4,17. This may be explained by the fact that the 

concentrations of benzene vary largely in different real groundwater samples. 

 

Figure 5.4: concentrations of benzene in groundwater contaminated by gasoline obtained by the 

application of two distinct analytical methods (GC-UV-DMS and reference method).  
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Table 5.1: ANOVA results of the comparison for the concentrations of benzene detected by GC-

UV-DMS and reference method 

 Degree of 

freedom(f) 

Sum of 

Squares 

Mean 

Square 

F Value Prob>F Critical of 

F Value 

Between 

groups 

1 37182,71 37182,71 5,31 0,027 4,17 

Within 

groups 

32 223736,56 6991,77 

Total 33 260919,27  

 

In Figure 5.5, the concentrations of toluene were within the range from 29,9 to 

116,3 mg/L, which are much higher than the MCLs regulated by US and WHO 

[1, 2]. The concentrations of toluene quantified by GC-UV-DMS are in a good 

agreement as that obtained by reference method. The F value is 0,044, below the 

critical value of 4,17 (Table 5.2). 

 

 

Figure 5.5: concentrations of toluene in groundwater contaminated by gasoline obtained by the 

application of two distinct analytical methods (GC-UV-DMS and reference method).  
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Table 5.2: ANOVA results of the comparison for concentrations of toluene detected by GC-UV-

DMS and reference method 

 Degree of 

freedom(f) 

Sum of 

Squares 

Mean 

Square 

F Value Prob>F Critical of 

F Value 

Between 

groups 

1 20,71 20,71 0,044 0,835 4,17 

Within 

groups 

32 15069,41 470,92 

Total 33 15090,12  

 

In Figure 5.6, the concentrations of ethylbenzene were in the range from 2,0 to 

9,8 mg/L. The measured concentrations were much higher than the MCLs 

regulated by US and WHO [1, 2].As shown in Table 5.3, the concentrations of 

ethylbenzene quantified by the two different analytical procedures are in good 

agreement. The F value is 0,85, below the critical value of 4,17. 

 

Figure 5.6: concentrations of ethylbenzene in groundwater contaminated by gasoline obtained by 

the application of two distinct analytical methods (GC-UV-DMS and reference method).  
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Table 5.3: ANOVA results of the comparison for concentration of ethylbenzene detected by GC-

UV-DMS and reference method 

 Degree of 

freedom(f) 

Sum of 

Squares 

Mean 

Square 

F Value Prob>F Critical of 

F Value 

Between 

groups 

1 4,67 4,67 0,85 0,36 4,17 

Within 

groups 

32 175,46 5,48 

Total 33 180,14  

 

In Figure 5.7 and 5.8, the concentrations of xylene were in the range from 2,4 to 

26,5 mg/L. Meanwhile, the concentrations of xylene quantified by the two 

distinct methods(GC-UV-DMS and reference method) are within good 

agreement. As shown in Table 5.4 and Table 5.5, the F values for m/p-xylene 

and o-xylene are 0,024 and 0,082, respectively. Both F values are below the 

critical value of 4,17. 

 

Figure 5.7: concentrations of m/p-xylene in groundwater contaminated by gasoline obtained by 

the application of two distinct analytical methods ( GC-UV-DMS and reference method).  
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Figure 5.8: concentrations of o-xylene in groundwater contaminated by gasoline obtained by the 

application of two distinct analytical methods (GC-UV-DMS and reference method).  

Table 5.4: ANOVA results of the comparison for concentrations of m/p-xylene detected by GC-

UV-DMS and reference method 

 Degree of 

freedom(f) 

Sum of 

Squares 

Mean 

Square 

F Value Prob>F Critical of 

F Value 

Between 

groups 

1 0,97 0,97 0,024 0,88 4,17 

Within 

groups 

32 1269,37 39,67 

Total 33 1270,33  

 

 

 

 

 



106 
5.Determination of BTEX in real contaminated groundwater samples by GC‐UV‐DMS 

Table 5.5: ANOVA results of the comparison for concentrations of o-xylene detected by GC-UV-

DMS and reference method 

 Degree of 

freedom(f) 

Sum of 

Squares 

Mean 

Square 

F Value Prob>F Critical of 

F Value 

Between 

groups 

1 1,62 1,62 0,082 0,78 4,17 

Within 

groups 

32 633,73 19,80 

Total 33 635,35  

  

5.3.3 Concentrations of BTEX in groundwater by GC-UV-DMS 

Total dissolved BTEX concentrations (sum concentration of benzene, toluene, 

ethylbenzene, and the xylene isomers) in 17 groundwater samples collected at 

the monitoring wells are shown in Figure 5.9. The lowest concentration in 

sample 6 is 216,5 mg/L and the sample 13 presents the highest concentration of 

439,9 mg/L. In all samples, benzene exhibits the highest concentration, followed 

by toluene. The ethylbenzene and xylene exhibit the lowest concentration. This 

can be explained by the fact that the difference in solubility and degradation for 

these six compounds. In comparison with other compounds, benzene has high 

water solubility as 1700 mg/L (25 ), followed by toluene with 515 mg/L, 

ethylbenzene with 152 mg/L and xylene with 172 mg/L[12]. Some literatures 

[13-15] reported that toluene is the easiest BTEX compound to degrade, followed 

by the xylenes. Benzene and ethylbenzene are the most difficult to degrade. If 

degradation were occurring, toluene concentrations would be the first to 

decrease. 
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Figure 5.9: Total concentrations of BTEX in real groundwater samples detected by GC-UV-DMS 

A high correlation was observed between the concentration of ethylbenzene, 

m/p-xylene and o-xylene (as shown in Figure 5.10). These results indicate that 

these pollutants exhibit similar behavior in the field. Keer et al also reported the 

similar phenomenon found in the groundwater obtained from a contaminated 

site located in the industrial area of Belgium [16].  

 

Figure 5.10: correlation between concentrations of ethylbenzene, m/p-xylene and o-xylene 

In order to know more details about the contamination detected by GC-UV-

DMS, the statistical properties of BTEX concentrations in the 17 groundwater 

samples are calculated in Figure 5.11. In one chart, the left part is the data and a 

lognormal distribution and the right part is the box chart including the mean 

value, median value, maximum and minimum value and standard deviation (SD). 
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According to WHO’s regulation, the concentrations of total xylene were put 

together. The mean values for 17 real samples are 204,4 mg/L for benzene, 58,2 

mg/L for toluene, 4,5 mg/L for ethylbenzene and 15,9 mg/L for total xylene, 

respectively. Additionally, the median values are 188,7 mg/L for benzene, 54,8 

mg/L for toluene, 2,8 mg/L for ethylbenzene and 10,7 mg/L for total xylene, 

respectively. All concentrations of BTEX are higher than the guidelines of 

drinking water recommended by WHO. Interestingly, among the BTEX 

compounds, benzene had the widest distribution and a high degree of variability. 

The arithmetic mean value for benzene is greater than the median value. The 

levels of toluene, ethylbenzene, and xylene compounds in the real samples also 

exhibited the similar results. The lognormal distribution of BTEX shows that 

there are more samples with lower values than these with high concentrations. 

This finding is quite good agreement with others [17]. 

 

Figure 5.11: The statistical properties of individual BTEX concentration in contaminated 

groundwater (arithmetic mean, median) 

In order to obtain more information from the environmental viewpoint, the 

results were compared with others reported in different regions. The data is 

shown in Table 5.6. The results for benzene in real groundwater samples are 
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higher than that reported by other literatures [12, 16, 18]. The concentrations of 

toluene are in the range reported in Belgium, but higher than that reported in 

Brazil and Jordan. The similar results for xylene are obtained. Note that in 

literature [16], they combined ethylbenzene and m/p-xylene together. However, 

in these results for 17 groundwater samples, only xylene was put together. In 

order to compare the results, the concentrations of ethylbenzene and xylene were 

summed together. These results for ethybenzene and total xylene are in good 

agreement with that reported in literature [16]. Therefore, the results for BTEX 

obtained by this method are in good agreement with that reported in Belgium, 

but significant different in comparison with other regions like Brazil and Jordan. 

Therefore, the results obtained by GC-UV-DMS can also provide the geological 

meanings.  

Table 5.6: comparison of the concentrations of BTEX in different sites  

 these samples 

mean 

values(mg/L) 

Brazil, Pires do 

Rego et al 

[18](mg/L) 

maximum values 

Jordan, Kuisi 

et 

al[12](mg/L) 

mean values  

Belgium, Van Keer 

et al [16](mg/L) 

range 

benzene 204,4 8,12 0,0017 0,06-11,6 

toluene 58,2 3,03 0,0021 0,007-62,0 

ethylbenzene 4,5 9,09 0,0016 0,011-

22,8(ethylbenzene + 

m/p-xyelene) 

Total xylene 15,9 3,60 0,0012 0,003-4,5 (o-xylene) 

 

5.4 Summary 

Seventeen real groundwater samples contaminated by gasoline were analyzed by 

GC-UV-DMS and the concentrations of BTEX were quantified. In comparison 
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with reference method, the results except benzene obtained by GC-UV-DMS are 

in good agreement with those by reference method. 

The concentrations of BTEX in real groundwater samples differ largely. In this 

case, the groundwater samples collected are high contaminated by gasoline. In 

comparison with the results by other literatures, the groundwater contamination 

is largely depending on the behavior of BTEX in groundwater and the region. 

The data obtained by GC-UV-DMS can provide more information on 

contamination. Thus, further investigations are necessary to extend the 

knowledge on site by GC-UV-DMS.  
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6. Simulation of on-site conditions for determination of 
BTEX in groundwater  
 

6.1 Introduction 

Rapid, reliable and on site systems to monitor groundwater are needed to test on 

field and validate the function in a complicated working environment. However, 

it is difficult for us to find a workplace, which is contaminated by gasoline, to do 

this. Therefore, a simulation system on lab is used to test the developed method. 

The availability of fast on-field systems in polluted regions is needed to detect 

diffusion of BTEX in contaminated groundwater[1]. Therefore, the study of spill 

of BTEX in groundwater has to be carried out to evaluate. Due to the fact that 

only headspace sample of real groundwater  is introduced and analyzed by GC-

UV-DMS, the diffusion rates of BTEX from water to air are very important to 

know for monitoring the contaminated groundwater.  

Several contaminant transport models were introduced[2]. Dilling et al 

simulated the natural environmental desorption process in the laboratory to 

estimate the persistence of low molecular weight chlorinated hydrocarbons in 

natural water [3]. Theoretically, the flux of exchange of VOCs between air and 

water is based on two factors. One factor is the degree of disequilibrium 

between the air and water concentration. Another factor is a mass transfer 

coefficient [4].There are three theoretical models to estimate the mass transfer 

coefficient : 1) two film model [5, 6] 2) the penetration model [7], 3) the surface 

renewal model [8]. One of the basic theories of mass transfer will be described 

in section 6.2. 

In this chapter, on field conditions to monitor the behavior of BTEX diffusion 

from water to air were simulated. Several factors such as temperature, tube 

length, and matrix effect affecting the diffusion were studied by GC-UV-DMS. 
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6.2 Mass transfer Theory 

Based on the classical two-film mass transfer model[9], an expression for the 

volatilization rate of a chemical C from water is 

െ
ௗሾ஼ሿ

ௗ௧
ൌ ݇௩ ሾܥሿ  (eq. 6.1) 

Where kv is the volatilization rate constant of chemical C. The volatilization rate 

constant kv is expressed in terms of the mass transfer rates of the substance 

across liquid- and gas-phase boundary layers. The general expression for kv is  
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  (eq. 6.2) 

Where kv is the volatilization rate constant (s-1); L is the length of tube; kl is the 

liquid-film mass transfer coefficient (cm/h); R is the gas constant (8,314472(15) 

J K-1mol−1); T is the temperature; Hc is the Henry’s law constant (atm L mol-1); 

and kg is the gas film mass transfer coefficient (cm/h). 

The relative importance of the liquid and gas phase resistances can be assessed 

as follows: 

ோ೗
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ൌ ቀ

ு

ோ்
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௞೒
௞೗

  (eq. 6.3) 

where Rl and Rg are mass transfer resistances from liquid phase and gas phase, 

respectively. According to Mackay and Leinonen’s recommendation [10], when 

Rl/Rg ≥20, corresponding to the Hc > 4,8 [atm L mol-1], the liquid phase 

resistance dominates. As shown in Table 6.1, all the compounds studied in this 

work satisfy this definition of liquid-phase control.  

6.3 Experimental section 

6.3.1 Temperature effect experiment 

The glass tube with an inner diameter 10 cm and length 0,5 m was kept at a 

constant temperature of 25 Ԩ. After putting the 10mL groundwater spiked with 

BTEX standard solution in the tube, the tube was closed with Parafilm and 
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aluminum foil. Every 30 min, 200 µl air at the top of tube was analyzed by GC-

UV-DMS. 

As shown in Figure 6.1, a homemade Liebig condenser with an inner diameter 

2,4 cm and length 0,5 m was used to study the diffusion of BTEX at 10 Ԩ. The 

tap water flushed from the inlet of condenser and constantly to keep the 

temperature of the condenser at 10 Ԩ. After putting the 10mL groundwater 

spiked with BTEX inside of condenser, the condenser was closed with Parafilm 

on both sides. Every 30 min, 200 µL air at the top of condenser was analyzed by 

GC-UV-DMS.  

 

Figure 6.1: Simulation system 0,5 m glass tube used to keep a constant temperature of 10 Ԩ 

Table 6.1: properties of BTEX[11] 

 Henry’s 

constant 

(atm 

L/mole, 

25 Ԩ) 

Vapor 

pressure 

(Torr,25Ԩ)

Air conversion 

factor at 25 Ԩ 

1ppm(v/v)=mg/m3

Solubility 

in water 

(mg/L, 

25Ԩ) 

Molecular 

weight 

(g/mol) 

benzene 5,56 95,2 3,19 1800 78,11 

toluene 6,63 28,4 3,77 470 92,14 

ethylbenzene 7,88 9,6 4,34 150 106,17 

m-xylene 7,34 8,3 4,34 160 106,16 

p-xylene 7,66 8,84 4,34 180 106,16 

o-xylene 5,20 6,6 4,34 175 106,16 
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6.3.2 Matrix effect experiment 

The real contaminated groundwater samples are very complicated. These 

samples contain a number of ingredients like sediment and dissolved salinity. 

The matrix will influence the diffusion of BTEX in groundwater. Therefore, to 

simulate the matrix effect, three grams soil or sand were added to the 

groundwater spiked targets compounds. Then the samples were put at the 

bottom of the simulation tube. Every 30 minutes, 200 µl headspace at the top of 

simulation tube was injected into the GC-UV-DMS. 

6.3.3 Chemicals and sample preparation 

In this work, o-xylene(≥99,0%, Fluka Analytical, Steinheim, Germany), p-

xylene(≥99,0%, Fluka analytical, Steinheim, Germany), m-xylene(≥99,0%, 

Fluka, Steinheim, Germany), benzene(99%, AppliChem, Darmstadt, Germany), 

ethylbenzene (≥99,0%, Fluka, Steinheim, Germany), toluene(99,9%, J.T.Baker, 

Netherland), and methanol (≥99,99%, Fisher Scientific, Germany) were used 

without further purification. 

To detect the mass transfer rate of BTEX, the clean groundwater was spiked 

with pure chemicals in constant concentrations (438 mg/L for benzene, 261 

mg/L for toluene, 130 mg/L for ethylbenzene, 129 mg/L for m/p-xylene and 132 

mg/L o-xylene).  

To observe the diffusion of BTEX in real contaminated groundwater samples, 

the real contaminated groundwater samples from a natural gas field in 

Rotenburg an der Wümme were used.  

6.3.4 GC-DMS analysis 

A Shimadzu GC-2014 GC system was used for all analysis. The split/splitless 

injector operated at 150 Ԩ. Nitrogen (>99,999% pure) was used as the carrier 

gas at a 3 mL/min flow rate. Separation was performed on a 12m × 0,28mm × 

0,25 μm MXT-5 GC column. The GC oven was kept at 120 Ԩ. 
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A DMS equipped with krypton UV lamp was coupled to GC with a homemade 

interface, which can be kept at 80 Ԩ. The sensor temperature of DMS was setup 

at 80 Ԩ. Nitrogen was used as carrier gas for DMS with a constant flow rate of 

300 mL/min. 

6.4 Results and discussion 

According to the methods recommend by Roberts and Dändllker[12], values of 

the mass transfer rate constant, kv, were determined as follows: 

െ݈݊ ቂ
஼ಽሺ௧ሻ

஼ಽሺ଴ሻ
ቃ ൌ ݇௩ ሺݐ െ  ଴ሻ  (eq. 6.4)ݐ

This equation is changed to the function of the signal intensity (I) with time (t): 

ሻݐሺܫ ൌ ܽ݁௞ೡ௧ ൅ ܾ   (eq. 6.5) 

where a and b are constants, the I(t) is signal intensity and t is time.  

The signal intensity is calculated from the peak area of target compounds in the 

chromatogram obtained by GC-UV-DMS. 

6.4.1 Tube length selection 

The tube length is one of the important factors to monitor the diffusion of BTEX 

from groundwater to gas. Two type glass tubes with same inner diameter 10 cm 

and with different length (0,5m, 1,0m) were used. The kinetic curves and kv 

values are shown in Figure 6.2 and Table 6.2, respectively. These values are 

larger than these of 1m tube. To simplify the simulation condition and save the 

analysis time, the 0,5 m length tube was used as a simulation system in the 

following experiment. 

Table 6.2: the kv of BTEX at different tube length(25 ℃) 

 kv,(s
-1),1m tube length kv,(s

-1), 0,5m tube length 

benzene 2,50E-04±0,34E-04 3,69E-04±0,65E-04 

toluene 2,31E-04±0,38E-04 4,93E-04±0,56E-04 

ethylbenzene 2,27E-04±0,42E-04 4,67E-04±0,18E-04 

m/p-xylene 2,74E-04±0,36E-04 4,97E-04±0,15E-04 

o-xylene 2,46E-04±0,39E-04 4,71E-04±0,47E-04 
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Figure 6.2: diffusion of BTEX in simulation tubes with different lengths 

6.4.2 Temperature effect on diffusions of BTEX 

As shown in eq. 6.2, temperature influences the mass transfer factor. Therefore, 

the effect of temperature (10 Ԩ and 25 Ԩ) on the diffusion of BTEX was 

studied. The results are shown in Figure 6.3. The results show that the 

equilibrium time for BTEX at 25 Ԩ is about 1,75 hours, shorter than that at 

10 Ԩ, which are more than 2,5 hours. This result indicates that the higher 

temperature can speed up the mass transfer of BTEX from water to gas phase. 
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The mass transfer coefficients are also calculated and shown in Table 6.3.  As 

expected, the values of kv are larger at higher temperature than those obtained at 

lower temperature. 

From eq. 6.2, if assuming that the Hc is fixed, the kv decrease as the temperature 

increases. However, the change of T can lead to the change of Hc. Thus, from 

this equation, it is difficult to explain the result that kv decreases when the 

temperature decreases. Therefore, another explanation based on the two film 

model will be introduced as follows. 

Based on the classical two film theory, the transfer through a boundary layer is 

by molecular diffusion, because the fluid in the boundary layer is stagnant. Then 

the diffusion process can be described by Fick’s law in one dimension, where 

the flux of the chemical N(g cm-2 h-1) is  

ܰ ൌ െܦ
డ஼

డ௭
  (eq. 6.6) 

Where D is the diffusion coefficient and z is the vertical distance. If the 

concentration gradient ∂C/∂z is constant within the boundary layer, the equation 

can be changed as 

ܰ ൌ ݇௩∆ܥ   (eq. 6.7) 

The mass transport coefficient kv has the units of velocity and is  

݇௩ ൌ  (eq. 6.8)  ߜ/ܦ

where ߜ is the boundary layer thickness.  

The diffusion coefficient is dependent on the temperature and the viscosity of 

the solution [13]. The thickness of the stagnant film at gas-liquid interface 

decreases and the diffusion coefficient increase as viscosity decrease, when the 

temperature increases. Both effects lead to an increase of kv [14] . 

The signal intensity of BTEX at 10 Ԩ is larger than that at 25 Ԩ. Because the 

volume of simulation tube used at 10 Ԩ is smaller than that used at 25 Ԩ. In 

order to keep the temperature of 10 Ԩ, a homemade Liebig condenser with an 

inner diameter 2,4 cm and length 0,5 m was used. Otherwise, the glass tube with 

an inner diameter 10 cm and length 0,5 m was used at 25 Ԩ. As shown in eq. 6.2, 
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the kv is only related with the length of tube. Therefore, the kv will not be 

influenced by the tube inner diameter. 

Table 6.3: the kv of BTEX at different temperatures 

 kv,(s
-1),10 Ԩ kv,(s

-1),25 Ԩ 

benzene 2,23E-04±0,44E-04 3,69E-04±0,65E-04 

toluene 2,49E-04±0,48E-04 4,93E-04±0,56E-04 

ethylbenzene 2,73E-04±0,20E-04 4,67E-04±0,18E-04 

m/p-xylene 2,51E-04±0,30E-04 4,97E-04±0,15E-04 

o-xylene 3,07E-04±0,35E-04 4,71E-04±0,47E-04 

 

 

 

 

Figure 6.3: Temperature effect on diffusion of BTEX (10 Ԩ and 25 Ԩ) 
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6.4.3 Matrix effect on diffusion of BTEX 

Principally, the diffusion of BTEX from groundwater will be influenced by the 

matrix. In this work, the effects of soil and sand on diffusion of BTEX were 

done at 25 Ԩ and the results are shown in Figure 6.4. The times for BTX 

reaching the equilibration are between 1,5 to 2,5 hours when the solutions are 

mixed with soil or sand, respectively. In comparison with Figure 6.3, the 

equilibration time for ethylbenzene is about 1,75 hours without soil and sand at 

25 Ԩ. The equilibrium time of BTEX in groundwater with soil or sand is longer 

than that in groundwater. This finding reveals that the soil and sand can slow 

down the diffusion and mass transfer of BTEX from water to gas.  

Ferreira et al [14] reported the solid particles can increase or decrease kv, 

depending on the solids loading, size and their surface properties. The solid 

particles can increase kv by enhancing turbulence at the gas-liquid interface and 

inducing surface renewal. Otherwise, the solid particles can limit the diffusion 

path, blocking the available area for mass transfer and decrease kv [15, 16].  

The kv of BTEX from water to gas with soil or sand are calculated and the 

results are shown in Table 6.4. The kv of BTEX decreases when the solution 

containing soil or sand. The values of kv of BTEX are quite similar for soil and 

sand.  This means that the soil and sand may have the similar effect on the mass 

transfer of BTEX in groundwater. This phenomenon will be explained as 

follows. 

The transfer between the atmosphere and bodies of water plays a key role on the 

transport of many organic compounds in environment. Henry’s law constant (Hc) 

describes the equilibrium partitioning between gaseous and aqueous phases. As 

shown in eq. 6.2, the mass transfer rate will be influenced by Henry’s law 

constant (Hc). Principally, the kv declines as the Hc decreases.   

Theoretically, in water containing sand or soil, VOCs are adsorbed on the 

surface of these solids (S) and the partition coefficient (Ks, L/mg) of the VOCs 
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between the solids and the aqueous phase can be expressed, respectively, as 

follows [17]:  

௚ܥ
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  (eq. 6.10) 

where Cs and S are the solid-bound VOC and solid concentrations, both based 

on the liquid phase volume. The total VOC concentration CT in the water 

containing S is 

்ܥ ൌ ௪ܥ ൅  ௦  (eq. 6.11)ܥ

In this system, the sorption phenomenon for the specific VOCs can be described 

as follows: 

௚ܥ
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↔  (eq. 6.12)  ்ܥ

And the Hc‘ can be expressed as follows: 
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Jin and Chou found that the high mixed liquor suspended solid concentrations 

should result in a lower Hc for hydrophobic VOCs such as toluene and p-xylene, 

while higher mixed liquor suspended solid concentrations in a higher Hc for 

hydrophilic VOCs such as methanol and isopropanol [18]. In this result, the soil 

and sand can reduce the Hc of hydrophobic BTEX, resulting in the kv declines. 

This means that the equilibrium time of BTEX in solution mixed with soil or 

sand will be longer than that without matrix. 

Table 6.4: kv of BTEX in different matrix (soil and sand) 

 kv,(s
-1),soil kv,(s

-1),sand kv,(s
-1) 

benzene 2,21E-04±0,33E-04 2,65E-04±0,24E-04 3,69E-04±0,35E-04 

toluene 2,30E-04±0,37E-04 3,00E-04±0,50E-04 4,93E-04±0,56E-04 

ethylbenzene 1,91E-04±0,51E-04 2,45E-04±0,34E-04 4,67E-04±0,18E-04 

m/p-xylene 2,92E-04±0,29E-04 3,21E-04±0,28E-04 4,97E-04±0,15E-04 

o-xylene 2,46E-04±0,39E-04 1,96E-04±0,46E-04 4,71E-04±0,47E-04 
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Figure 6.4: the matrix (sand and soil) effect on diffusion of BTEX in water 

6.4.4 BTEX diffusion in real samples 

The clean groundwater spiked with BTEX was used in the above experiment. As 

mentioned in chapter 4, the real contaminated groundwater samples are very 

complicated, which contain a number of ingredients eg. strongly fluctuating high 

salinity, iron and manganese, oxygen, petroleum hydrocarbons, heavy metals 

such as mercury, sediment, and microorganisms. Compared with the real 

samples, the solution used in simulation experiment is much simpler. The 

diffusion of BTEX may be influenced by other matrix compounds not only soil 

or sand. Therefore, it is very necessary to check the diffusion of BTEX in real 
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groundwater samples. The results of diffusion of BTEX in the real groundwater 

samples detected by GC-UV-DMS were shown in Figure 6.5, 6.6, 6.7. The 

values of kv (in Table 6.5) and equilibration time of BTEX in real groundwater 

are closed to the results in simulation condition of soil and sand. 

Table 6.5: kv of BTEX in different real samples 

 kv (s
-1), in sample 1 kv (s

-1), in sample 2 kv (s
-1), in sample 3 

benzene 2,18E-04±0,63E-04 3,27E-04±0,23E-04 3,43E-04±0,62E-04 

toluene 2,97E-04±0,54E-04 2,34E-04±0,34E-04 1,74E-04±0,56E-04 

ethylbenzene 2,07E-04±0,51E-04 2,12E-04±0,63E-04 2,32E-04±0,35E-04 

m/p-xylene 3,04E-04±0,16E-04 2,51E-04±0,56E-04 3,03E-04±0,57E-04 

o-xylene 2,10E-04±0,34E-04 2,22E-04±0,45E-04 1,87E-04±0,35E-04 
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Figure 6.5: diffusion of BTEX in real groundwater (sample 1) collected from northern 

Germany 

 

 

 

Figure 6.6: diffusion of BTEX in real groundwater (sample2) collected from northern 

Germany 
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Figure 6.7: diffusion of BTEX in real groundwater (sample3) collected from northern 

Germany 

6.5 Summary 

In this chapter, the results of diffusion of BTEX in groundwater were studied by 

GC-UV-DMS. To simulate the on field condition, simulation tube length was 

selected and the temperature influencing the diffusion was investigated. In a 0,5 

m simulation system, as expected, the values of kv for target compounds 

increase as the temperature increases.  
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Meanwhile, another factor matrix such as sand and soil influencing the 

diffusions of BTEX were also studied. The kv of BTEX decline when the 

solution mixed with sand or soil, which is in a good agreement with that 

reported in literature. Finally, the real gasoline contaminated groundwater 

samples were studied by GC-UV-DMS. The equilibration times of BTEX in real 

groundwater samples are closed to those simulated, about 1,5 to 2,0 hours.  

These results reveal that this method based on GC-UV-DMS is feasible to be 

applied as a system to on-site monitor the groundwater in future. 
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7. Conclusion and outlook 
 

7.1 General conclusion 
Traditional methods for detecting gasoline related compounds in groundwater 

are expensive and time consuming. A few monitoring systems exist, but they do 

not attempt to quantify or characterize the contaminants. This work presents the 

development of a fast monitoring system based on differential ion mobility 

spectrometry that can be used to monitor gasoline related compounds in 

groundwater.  

Firstly, BTEX were selected as fingerprint substances. These compounds give a 

high response on the DMS detector. Therefore, even low concentrations of the 

gasoline in the groundwater can be detected. After the optimization, it is 

possible to detect the selected compounds in the range of the usual contaminant 

concentrations of gasoline in groundwater.  

Secondly, a short column MXT-5 was utilized for separating the target 

compounds (BTEX) in groundwater. The analysis time is less than 2 min. After 

being coupled to DMS equipped with 63Ni, the detection limits of target 

compounds in groundwater are 201,80 mg/L for benzene, 9,53 mg/L for 

ethylbenzene, 50,31 mg/L for toluene, 6,20 mg/L for m-xylene, 8,53 mg/L for p-

xylene, and 4,76 mg/L for o-xylene, respectively. The detection limits are higher 

than that the MCLs regulated by WHO (0,01 mg/L for benzene, 0,7 mg/L for 

toluene, 0,3 mg/L for ethylbenzene and 0,5 mg/L for total xylene). 

Thirdly, in order to improve the detection limits and the sensitivity, a krypton 

UV lamp is utilized as ionization source instead of 63Ni. The detection limits of 

BTEX determined by GC-UV-DMS are 0,15 mg/L for toluene, 0,12 mg/L for 

ethylbenzene, 0,15 mg/L for m-xylene, 0,16 mg/L for p-xylene, 0,16 mg/L for o-

xylene, respectively, which are 30 to 330 folds lower than those for 63Ni-DMS. 

However, the detection limit of benzene is 0,08 mg/L, which is above the MCL 

recommended by WHO. 
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Finally, the GC-UV-DMS is used to analyze the concentrations of BTEX in 17 

real groundwater samples collected from contaminated sites. In comparison with 

the reference method, the results of EXT obtained by GC-UV-DMS are in good 

agreement with those obtained by reference method. However, the mean 

concentration of benzene obtained by GC-UV-DMS is lower than that obtained 

by reference method. To simulate the on field condition, the factors influencing 

the diffusion such as temperature, matrix component are discussed. In a 0,5 m 

simulation system, the mass transfer kv of target compounds increase as the 

temperature increase. Meanwhile, the kv of BTEX decline when groundwater 

containing sand or soil. Additionally, the results of diffusion of BTEX in real 

contaminated groundwater samples were presented by GC-UV-DMS.   

The results reveal that the method based on GC-UV-DMS is feasible to be 

applied as a fast system to monitor the groundwater. The whole analysis time is 

less than 2 min. Moreover, the detection limits for ETX are lower than the 

MCLs of WHO. However, there are still several problems to overcome. The 

dynamic ranges of the determination of BTEX are limited. The detection limit 

for benzene is higher than that regulated by WHO. The mean concentration of 

benzene in real groundwater detected by GC-UV-DMS is lower than that 

obtained by reference method.  

7.2 Outlook 
The present study on GC-UV-DMS could be applied as a fast device for 

monitoring groundwater routinely. However, there are still some problems to 

overcome in future, which are listed as follows: 

1, the ionization sources for DMS is one of the key factors influencing the 

sensitivity of target compounds such as BTEX. For example, the device 

equipped with krypton lamp has lower detection limit than that with 63Ni, but 

high energy consumption. For portable device, the balance between the 

sensitivity and power consumption should be achieved. 
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2, the dynamic ranges of BTEX are limited. Furthermore, the detection limit of 

benzene is 0,08 mg/L, higher than the MCL recommended by WHO. In order to 

implement this technique as portable device, the dynamic ranges and detection 

limit for benzene should be improved.  

3, all results in this thesis are obtained in lab without any on site analysis. To 

evaluate the feasibility of DMS to be used as on field system. The on-site test 

should be done in future. 
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