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1 Introduction

1.1 Background and motivation of the work

The process industry has always played an important role in the European economy.

Based on the statistics provided by the Germany Trade & Invest agency in 2011 [51],

EU is the world’s largest chemical exporter accounting for about 50 percent share of

the global export market. Increasing global competition is setting even higher demands

for the production safety, the product quality and the overall equipment effectiveness

(OEE). To this end, the complexity and automation degree of industrial processes are

significantly increasing with the technological developments. Today’s production lines

generally contain a great number of control loops with numerous embedded components

like sensors, actuators [28]. However, a very important and complex task in process

management, which is the response to the abnormal events, still remains largely a manual

activity and is performed by the human operators. For difficult abnormal conditions, it

should come as no surprise that human operators tend to make erroneous decisions and

take actions which make matters even worse. Industrial statistics show that

• about 70% of the industrial accidents are caused by human errors [112].

Apart from the industrial accidents/disasters, those less serious abnormal events that

decrease the OEE and lower the product quality can cause great economic losses, as an

example,

• the petro-chemical industry loses 20 billion dollars per year due to process abnor-

malities [85].

From the available case studies provided by the U.S. Chemical Safety Board1, a typical

evolution of industrial accidents can be observed. As depicted in Figure 1.1, with the

development of the abnormal events, the product quality, OEE and safety can be subse-

quently influenced. In practical processes, the performance of the low-level components

degrades continuously along with the process running, e.g. fouling of the pipelines which

1http://www.csb.gov.
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Figure 1.1: A typical evolution of the industrial accidents

reduces the flow rates, accumulation of solids in the chambers that decreases the heat

transfer efficiency. If the decreasing performance is not monitored at an early stage and

no maintenance action is performed, they can probably become component failure, e.g.

cracks in the pipelines or chambers due to different factors of expansion and increased

pressure. Finally, accidents can happen with the development of the failure, e.g. accu-

mulated leaked flammable vapor can be ignited by the external activities.

Motivated by these observations, the concept of key performance indicator (KPI) has

been introduced and the KPI-based process monitoring and fault diagnosis cover a wide

range of requirements from industrial applications [28, 41, 86, 101, 113, 120, 137]. KPI

aims at establishing a quantitative relationship between the performance of the low-level

technical loops/components and the high-level product quality, OEE and process safety.

To keep high enterprise profit, the KPI-based process monitoring and fault diagnosis

tools play a very important role. During the past few decades, process monitoring and

fault diagnosis techniques have received tremendous developments both in the research

and practice, and are becoming an ingredient of modern automatic control system and

often prescribed by authorities [24]. By amending the scope of process monitoring, huge

losses can be averted [85]. In the next section, we attempt to review some of the major

developments and progresses in the control community.

1.2 State of the art of techniques

1.2.1 Basic concept of process monitoring and fault diagnosis

The goal of process monitoring and fault diagnosis is not only to keep the plant operator

and maintenance personnel better informed of the state of the process, but also to assist

2
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Figure 1.2: Representation of the industrial processes

them to make appropriate remedial actions to remove the abnormal behavior from the

process [18]. In the control community, the abnormal behavior is generally defined as a

fault, which is an unpermitted deviation of at least one characteristic property (feature)

of the system from the acceptable, usual, standard condition [53]. In the chemical and

related process industry, process monitoring is widely accepted as a standard term for

observing if any fault happens. In order to incorporate those performance degradation

caused by non-faulty events, we introduce a more general term for the results achieved in

this work, i.e. performance monitoring, which represents the detection of any unexpected

behavior in the process. Once the performance monitoring system raises an alarm, it is

very important to find out the root causes to prevent further losses. For this purpose,

we adopt the traditional term fault diagnosis. In the data-driven framework, the main

objective of a fault diagnosis system is to assist the plant operator and maintenance

personnel to narrow down the investigation scope and thus shorten the downtime. For

the consistency of this work, we use the term process monitoring when reviewing the

existing techniques in the following.

1.2.2 Classification of process monitoring techniques

Figure 1.2 illustrates a typical configuration of the automatic control systems [57]. The

control signal, typically 4-20 mA, needs to be converted to operate the actuators, which

transform the control signal into the actions. Although not always necessary, the final

control elements transmit the actuators’ actions into a proper form to have the expected

influence on the process. The outputs of actuators or final control elements are defined

as the manipulated variables. The process is operated by these manipulated variables

to make the raw materials into the final products. Sensors play a very important role

in the modern automation industry, which not only provide the essential information

for the process controllers but also are indispensable to the process monitoring systems.

3
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Figure 1.3: Classification of the process monitoring techniques

In the reality, all these elements are subject to various disturbances and noise that are

always random. The primary task of process monitoring is to detect possible faults, e.g.

actuator faults, process faults and sensor faults, that occur in the automation processes

under such noisy environment based on the control signals and/or sensor measurements.

Note that using the manipulated variables instead of the (converted) control signals may

be an advantage for some fault detection schemes when the actuators are highly nonlinear,

because then the required system equations do not contain the actuator nonlinearities [33].

A rough classification of the process monitoring techniques is given in Figure 1.3. The

signal processing techniques have been well-established in the mechanical engineering

community and remain very active. They use certain process signals carrying fault infor-

mation of specific components, e.g. rotating machines, and have received great attention

4
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in the practical applications [7, 53, 98, 123]. Differently, the redundancy-based techniques

have been developed mainly in the control community. Based on some redundant knowl-

edge of the process, the input and output signals are fed to the fault detection system

to generate the residual signal that carries the fault information. To reveal the technical

background for process monitoring, some traditional techniques are reviewed in the fol-

lowing.

Signal processing based techniques:

Traditional signal processing techniques include time- and frequency-domain analysis

that are generally valid for linear stationary processes [72]. Those methods aim at extract-

ing fault symptoms from the selected individual signals that carry rich information about

the concerned components. The challenge lies in denoising the signals to recover useful

fault features. Celebrated methods include the synchronous average and Fourier analysis

[56]. Current research activities focus on time-frequency analysis that can be applied to

nonlinear and non-stationary processes. Popular approaches include the wavelet analysis

[99], stochastic resonance [71] and their enhancements [49, 106].

Hardware redundancy based techniques:

Redundancy is the key concept for the systematic process monitoring and has received

great attention in the control community. Hardware redundancy is constructed by using

identical hardware for the important components, especially in the nuclear, aviation and

aerospace area where the safety issue is of the most importance [24, 82]. During the

normal process operation, the system components and the redundant ones are fed with

the same inputs, their outputs are continuously compared. Fault detection and isolation

can be achieved by e.g. the “two out of three” principle. Hardware redundancy is of high

reliability but with the price of the increased economical cost. Along with the developing

technology and increasing automation degree in the processes, hardware redundancy may

attract further interest for the process monitoring and especially for the fault tolerant

control.

Qualitative model based techniques:

The qualitative model based techniques, which are also called knowledge-based meth-

ods, make use of the qualitative knowledge of the considered process (without the first

principles) [35]. Different from the previously discussed approaches, they aim at finding

the most possible root cause(s) by establishing the relationships of the fault symptoms,

process states and measurements. Among them the causal analysis techniques, includ-

ing the signed directed graphs [12, 62, 76, 119] and the fault/symptom tree analysis

[70, 94, 105, 110], have been well established. These methods indicate the root causes

5
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Figure 1.4: Traditional quantitative model based process monitoring scheme

by the logical analysis of all possible fault propagation paths. With the increasing scale

and complexity of the processes, application of the causal analysis could be difficult and

the performance may become unsatisfactory. Another kind of practically effective tech-

nique is the expert system [75, 111] that emulates the decision-making ability of a human

expert. The knowledge base, which is the core of an expert system, is established by

collecting adequate knowledge from the process experts. Expert systems are effective

in the practical applications, especially for those mass-produced processes. In addition,

pattern recognition [31, 96, 109] is receiving increasing research attention in the academic

domain. When applied for the fault diagnosis, pattern recognition first establishes a set

which consists of the features of the popular faults. Once a fault is reported, the fault

feature is extracted online. By matching it with the feature set, the fault can be isolated.

Quantitative model based techniques:

Stimulated by the work of Beard [6] and Jones [59] in the early 70s, the quantitative

model based process monitoring techniques have received tremendous developments in

the control community. Figure 1.4 illustrates the basic idea behind this scheme. Differ-

ent from the hardware redundancy based approaches, the redundancy (i.e. quantitative

model) is generated in a much cheaper way, either based on the first principle dynamical

modelling or data-driven identification/parameter estimation, and thus is defined as the

analytical/software redundancy [24]. By comparing the outputs of the process and the

model, the residual signals are generated. As described in Figure 1.2, real processes are

contaminated by the disturbances, noise and faults. Nevertheless, the quantitative mod-

els only represent the uncontaminated dynamical part. As a result, it is clear that the

residual signals contain all information about the faults. Due to the influence of the dis-

6



1.2 State of the art of techniques

turbances/noise and the complexity of the generated residual signals, no easy decision can

be made about the process status. In general, a residual evaluation function is designed

to deliver a (non-zero) scalar signal. Moreover, a threshold needs to be determined based

on the characteristic of the evaluation function as well as the property of the residual

signals. Finally, if the evaluated residual crosses the threshold, then a fault is monitored;

otherwise, the process is normal. In the academic domain, heavy research effort has been

put on the design of the residual generators for the lumped-parameter processes (LPP)

whose dynamics is governed by the ordinary differential equations (ODEs). These results

are based on the first principle models [5, 10, 14, 24, 36, 40, 53, 89, 127, 133]. Well-known

residual generation methods include the fault detection filter (FDF) [6, 15, 16, 25, 33, 59],

diagnostic observer (DO) [24, 34, 118, 126], parity space (PS) approach [29, 79, 87, 88]

and parameter identification based approaches [52].

In the practical applications, developing first principle models could be costly, time-

consuming or even impossible. Thus data-driven techniques have attracted great atten-

tion both in the academy and industry. As the most popular approach, the subspace

identification method has enjoyed tremendous development in the last 20 years [92] and

been gradually applied in the process monitoring area [26, 74, 83, 124, 129]. Instead of de-

riving a state space model using the first principles, the system order as well as parameter

matrices are directly identified from the noisy process input/output data. The identified

system model is generally different from the real one subject to a regular state transfor-

mation. With this identified redundancy, traditional process monitoring techniques can

be readily applied [67, 108, 134].

In the past 10 years, monitoring of the distributed parameter processes (DPPs), whose

dynamics is described by partial differential equations (PDEs), started attracting some

researchers’ attention [22]. In those processes, the states, manipulated variables and pro-

cess outputs are generally functions of spaces and of infinite dimension. DPPs widely

exist in the industry, however, very little work can be found for the monitoring purpose

and thus it is a quite new research direction. Due to the dimension of the states, tech-

niques developed for the LPPs cannot be applied. To establish analytical redundancy,

the states are decomposed into two subspaces corresponding to the slow and fast modes

using the modal analysis technique. By neglecting the fast modes, a finite dimensional

model is obtained. After lumping the distributed inputs/outputs into the slow subspace

and feeding them to the finite dimensional model, the output error can be considered as

residual signal for the monitoring purpose. The existing deterministic DPP monitoring

approaches can be found in [3, 4, 32].

7
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Statistical model based techniques:

For the large-scale processes, especially the chemistry-related ones, developing the pre-

viously mentioned qualitative- or quantitative model based monitoring techniques is not

feasible mainly due to the complexity and high engineering effort. For these processes,

the statistical monitoring techniques have been established and successfully applied in the

practice [91]. Modern industrial processes are widely equipped with the SCADA (super-

visory control and data acquisition) systems where all possible signals are measured and

stored. The dimension of these measurements is huge and they follow certain statistical

distributions. This observation has motivated the researchers to extract the statistical

models from the huge amount of offline data. To monitor the actual process status, on-

line data are fed into the statistical model to generate the residual signals. The most

crucial challenge for such applications is how to effectively reduce the dimension of the

data. Principal component analysis (PCA), originally developed in [48], is the most suc-

cessful algorithm in the research domains like image processing and statistical process

monitoring [13, 27, 37, 65, 116]. Projection to the latent structures, also known as par-

tial least squares (PLS) in the sense of regression, is another popular statistical model

based monitoring technique. Different from PCA which monitors the whole process vari-

able space, PLS is able to monitor the quality-related and -unrelated process variable

subspaces [64, 73, 78, 122, 136] and serves as an important tool for the online quality pre-

diction [117]. For the residual evaluation, the multivariate control charts, e.g. Hotelling’s

T 2 and SPE, are widely applied. These test statistics are based on the assumption that

the process disturbances/noise is multivariate normal distributed. In addition to PCA

and PLS, the independent component analysis (ICA) is another statistical tool for statis-

tical modelling [50]. ICA algorithm is able to extract the non-Gaussian sources driving

a random process, based on which the test statistics are designed. It has been proven

that ICA has better monitoring performance than PCA when the faults happened in

the sources [43]. Further application of ICA for the process monitoring can be found in

[1, 68, 69, 104, 125].

In addition, the combined data-driven quantitative and statistical redundancy is re-

ceiving growing interest for process monitoring. These approaches integrate both the

information of the quantitative model and the statistical distribution of data thus outper-

form the individual approaches. Well-known approaches, e.g. the canonical correlation

analysis and the dynamical version of the statistical redundancy based methods, can be

sorted into this group [60, 66, 90, 100]. In practice, fault diagnosis of periodic systems is

of great important since an early detection will prevent further damage to the process.

The theory has been well established [130, 132] and special research interest has been

focused on the influence of sampling period [128, 131]. Moreover, the artificial neural

8



1.3 Objective of the work

network based fault diagnosis is another effective data-driven approach of great practical

interest and has received comprehensive research interest [55, 61].

1.3 Objective of the work

The objective of this thesis is, based on the basic idea of the redundancy-based tech-

niques, to design an efficient KPI monitoring and diagnosis system in a unified statistical

framework. As described in the previous section, process monitoring techniques have been

developed independently under different model descriptions, i.e. static model, lumped-

parameter model and distributed-parameter model. However, their performance is quite

restricted in the sense of algorithm efficiency, engineering effort and application scope.

Thus the first task of this thesis is to

• develop improved residual generation schemes for KPI monitoring in static processes

and LPPs with increased performance and lower engineering effort,

• propose novel (model-based and data-driven) residual generation schemes for KPI

monitoring in DPPs with wide application scope and low engineering effort, and

• establish a statistical residual evaluation and decision making scheme.

In practice, since performance degradation is generally caused by multiplicative faults

and its diagnosis is performed by the human experts, the work load is high and the

efficiency is low. As a result, another task of this thesis is to develop an effective data-

driven multiplicative fault diagnosis approach. This approach aims at identifying the root

cause(s) of the performance degradation automatically, only using the process data. The

purpose is to provide valuable information for the human experts to narrow down the

investigation scope and thus to increase the OEE by reducing the downtime.

In addition to the theoretical contributions, the industrial application is another impor-

tant objective of this thesis. The effectiveness of the proposed methods is demonstrated

on three realistic industrial benchmark processes.

1.4 Outline of the thesis

The organization of this thesis is described in Figure 1.5. Following a general introduc-

tion to the process monitoring techniques given in Chapter 1, Chapter 2 first provides

the technical descriptions of different industrial automation processes, i.e. static process,

LPP and DPP. Then, the basic statistical process monitoring techniques like the general-

ized likelihood ratio (GLR) test, PCA and the standard PLS, are briefly summarized. In

9



1 Introduction

addition, lumped parameter model based monitoring techniques are reviewed and their

interconnections are addressed. Finally, a brief summary of the process monitoring tech-

niques for the DPPs is given.

In Chapter 3, an alternative KPI monitoring scheme is proposed. Different from the

standard approaches which provide low monitoring performance and involve complex

computations, the KPI-related test statistic of the alternative scheme only monitors the

process variable subspace that is related to the KPI. Two test statistics are designed

and both the computation cost and the engineering effort are low. The performance

improvement of the alternative scheme is demonstrated using numerical examples.

Chapter 4 presents a data-driven dynamic process monitoring approach using the sub-

space identification method. Based on the process and KPI data, an extended kernel

representation of the process is identified with enhanced denoising performance. Different

from the standard approaches, the covariance matrix of the residual vector is directly

obtained in the identification step. Numerical examples are used to show the monitor-

ing performance. In addition, this chapter plays an essential role for the data-driven

realization of the monitoring techniques developed for the DPPs in the next chapter.

Chapter 5 mainly discusses the monitoring issues related to the DPPs. The concept

of projection in the infinite dimensional space builds the basis of this chapter. Different

from the existing work done in the deterministic framework, we propose a new efficient

monitoring algorithm in the statistical framework. The achieved monitoring system is a

kernel representation of the DPP. To deal with the projection error, a residual evaluation

scheme is established for the stochastic processes with deterministic errors. To realize the

proposed scheme in the data-driven framework, an efficient feature extraction method is

used to identify the optimal basis functions. The effectiveness of the proposed methods

is demonstrated using numerical examples.

In Chapter 6, a novel data-driven multiplicative fault diagnosis method is proposed.

Different from the existing additive fault diagnosis approaches, the proposed method aims

at diagnosing the more common multiplicative faults. Numerical examples are finally used

to show its performance.

In Chapter 7, the algorithms developed in Chapters 3-6 are tested on three realistic

industrial benchmark processes. Typical fault episodes are considered in different case

studies. The test results show that the proposed methods are very suitable for practical

applications.

Chapter 8 concludes the thesis and discusses the future scope.

10



1.4 Outline of the thesis

Chapter 1: 

Introduction and 

Objectives

Chapter 2: 

Basics of Process 

Monitoring Techniques

Chapter 3: 

Key Performance 

Monitoring in Static 

Processes

Chapter 4: 

Key Performance 

Monitoring in LPPs

Chapter 5: 

Key Performance 

Monitoring in DPPs

Chapter 6: 

Key Performance 

Degradation Diagnosis

Chapter 7: 

Application to 

Benchmark Processes

Data-driven generation of the analytical redundancy 

Chapter 8: 

Conclusions

Figure 1.5: Organization of the chapters
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2 Basics of process monitoring

techniques

As discussed in the introduction, residual is the key concept of modern process moni-

toring systems. By comparing the properly evaluated residual signals with a predefined

threshold, the performance/status of the automation processes can be timely reported.

In order to generate the residual signals, redundancy is essential and serves as the core

of a residual generator. The way how the redundancy is achieved greatly determines

the performance of an established residual generator. Depending on the representation

of automation processes, redundancy can be generated using the analytical quantitative

models or the statistical distributions of the process data. Based on the mathematical

descriptions of the automation processes, the objective of the chapter is to provide the ba-

sics of these two types of redundancy generation schemes which serve as the fundamental

of this thesis.

2.1 Mathematical description of automation processes

2.1.1 Representation of static processes

For those (slow) processes which are in steady state, the low-level process variables and

the high-level KPIs are expected to be stationary under normal production condition. As

shown in Figure 2.1, their variations are only subject to the random factors, which can

be represented by an algebraic equation as

θobs(k) = Ψobsyobs(k) + bobs + eθobs(k) (2.1)

where yobs ∈ Rm,θobs ∈ Rl and eθobs ∈ Rl denote the multivariate normally distributed

vectors of the low-level process variables, the high-level KPIs and the zero-mean noise

which is uncorrelated with yobs (i.e. E(eθobs(yobs − E(yobs))
T ) = 0), respectively. The

system parameters Ψobs ∈ Rl×m and bobs ∈ Rl are time-invariant.

During the fault-free operations, denote yobs(k) ∼ N (µyobs
,Σyobs

) and θobs(k) ∼
N (µθobs ,Σθobs), ∀ k = 1, 2, · · · ,∞. The potential faults could influence both yobs and

12
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Figure 2.1: Illustration of static processes

θobs. Before introducing the fault models, the potential faults are divided into two cate-

gories in this study as

• additive faults: the faults that only influence the first order statistics, i.e. µyobs
and

µθobs , and

• multiplicative faults: the faults that change the second order statistics. i.e. Σyobs

and Σθobs .

In the reality, both kinds of faults could occur simultaneously. In the data-driven frame-

work, the additive faults can be modelled as

yobs,f (k) = yobs(k) + fy,obs(k), θobs,f (k) = θobs(k) + fθ,obs(k)

where fy,obs(k) and fθ,obs denote those faults that influence the low-level process variables

and the high-level KPIs, respectively. It is obvious that the former type of faults can

propagate into the KPIs and thus change both yobs and θobs.

In practice, malfunctions in the process often cause changes in the model parameters

Ψobs and bobs, which could influence the second order statistics. These multiplicative

faults can be modelled as

yobs,mf (k) = Fy(yobs(k)− µyobs
) + µyobs

, θobs,mf (k) = Fθ(θobs(k)− µθobs) + µθobs

where Fy and Fθ are full-rank matrices describing the influences of multiplicative fault.

2.1.2 Representation of lumped-parameter processes

For processes exhibiting strong (temporal) dynamics with lumped states (i.e. LPP), ODE

serves as a powerful tool for modelling and design of the monitoring systems. Among

13
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Figure 2.2: Block diagram of lumped-parameter systems

various ODEs, the linear time-invariant (LTI) one is widely used both in the theoretical

study and the industrial applications. As shown in Figure 2.2, the standard form of the

state space representation of a discrete-time LTI system is given by

z(k + 1) = Az(k) +By(k) + η(k), z(0) = z0, (2.2)

θ(k) = Cz(k) +Dy(k) + ξ(k) (2.3)

where z ∈ Rn is called the state vector, z0 is the initial condition of the system, in this

thesis, we assume that yobs ∈ Rm represents the low-level process vector and θobs ∈ Rl

represents the high-level KPI vector, η and ξ are uncorrelated white noise sequences that

are uncorrelated with z0. A,B,C and D are appropriately dimensioned real constant

matrices.

The faults in the LTI systems could be modelled in several ways. One widely adopted

model is achieved by extending the model (2.2-2.3) to

z(k + 1) = Az(k) +By(k) + η(k) + Ef(k), z(0) = z0, (2.4)

θ(k) = Cz(k) +Dy(k) + ξ(k) + Ff(k) (2.5)

where f ∈ Rnf is an unknown vector that represents all possible additive faults. Matrices

E and F are of appropriate dimensions and describe how the faults influence the system.

The model (2.4-2.5) is a general representation of

• the faults in the KPI space by choosing E = 0 & F = I, that is

z(k + 1) = Az(k) +By(k) + η(k), θ(k) = Cz(k) +Dy(k) + ξ(k) + f(k)

14



2.1 Mathematical description of automation processes

• or the faults in the process variable space by choosing E = B & F = D, i.e.

z(k + 1) = Az(k) +B(y(k) + f(k)) + η(k), θ(k) = Cz(k) +D(y(k) + f(k)) + ξ(k)

Although some process faults might be represented by (2.4-2.5) with appropriate E and F,

it is often the case that process faults in practice change the system parameters A,B,C

and D. Systematic description of these process faults is given as

z(k + 1) = (A+∆A)z(k) + (B+∆B)y(k) + η(k), z(0) = z0,

θ(k) = (C+∆C)z(k) + (D+∆D)y(k) + ξ(k)

where ∆A,∆B,∆C and ∆D represent the influences of faults on the system parameters.

Based on our early work in [44], these process faults could influence the second order

statistics of the output data thus belong to multiplicative faults (the faults described by

(2.4-2.5) only changes the first order statistics of the output data [44]).

2.1.3 Representation of distributed-parameter processes

In the large-scale industrial production industry, DPPs widely exist [19, 95]. The dynamics

of the DPPs is related to both the time and the space, which is generally described by

PDEs. Motivated by the description in [135], the general model of an n-th order DPP is

given as

F(y(x, t), x, t, z(x, t),
∂z(x, t)

∂x
,
∂z(x, t)

∂t
,
∂2z(x, t)

∂x2
,
∂2z(x, t)

∂t∂x
,
∂2z(x, t)

∂t2
, · · · ,

∂nz(x, t)

∂xn
, · · · , ∂

nz(x, t)

∂tn
+ η(x, t)) = 0,

θ(x, t) = G
(
z(x, t),

∂z(x, t)

∂x
,
∂z(x, t)

∂t
, · · ·

)
+ ξ(x, t)

where x ∈ [α, β] denotes the spatial variable, t denotes the time, y(x, t) represents the

spatially distributed low-level process variables, z(x, t) represents the spatially distributed

states, η(x, t) is the distributed process noise, θ(x, t) is the KPI measurements and ξ(x, t)

denotes the measurement noise. To provide a rigid description of the DPPs, suitable initial

and boundary conditions need to be supplemented.

The above description is much too complex for the real applications since the non-

linearity, time-varying and high order properties are involved. Considering the fact that

the majority of processes arising in science and engineering can be well described by first
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2 Basics of process monitoring techniques

or second order PDEs [39], the following representation of DPPs is addressed in this thesis

A(x)
∂2z(x, t)

∂t2
+B(x)

∂2z(x, t)

∂t∂x
+C(x)

∂2z(x, t)

∂x2
+D(x)

∂z(x, t)

∂t

+E(x)
∂z(x, t)

∂x
+ F(x)z(x, t) +G(x)y(x, t) + η(x, t) = 0

θ(x, t) =

∫ β

α

H(x, x′)z(x′, t)dx′ +

∫ β

α

I(x, x′)
∂z(x′, t)

∂t
dx′ + ξ(x, t)

where A(x),B(x),C(x),D(x),E(x),F(x),G(x),H(x, x′) and I(x, x′) are model parame-

ter matrices whose elements are space functions. More detailed description and analysis

of the above model can be found in Chapter 5.

Similar to the lumped-parameter cases, two kinds of faults can be modelled. The first

one is additive and changes the mean value of the process and KPI data, which can be

formulated as

yf (x, t) = y(x, t) + fy(x, t)

θf (x, t) = θ(x, t) + fθ(x, t)

where fy(x, t) and fθ(x, t) denote the fault magnitudes. The second one happens in the

distributed parameter matrices and can be modelled as

Qf (x) = Q(x) +∆Q(x)

where Q(x) represents a parameter matrix of the second order PDE and ∆Q(x) denotes

the fault.

2.2 Basic monitoring techniques for static processes

In this section, basic statistical techniques for the monitoring of large-scale static processes

are reviewed. From the statistical viewpoint, the model (2.1) is equivalent to

θ = Ψy + eθ (2.6)

where y and θ are the normalized process variables and the KPIs, respectively

y = diag(std(yT
obs))(yobs − E(yobs)), (2.7)

θ = diag(std(θT
obs))(θobs − E(θobs)) (2.8)
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2.2 Basic monitoring techniques for static processes

with E(·) denoting a column vector of the mean values and std(·) a column vector of the

standard deviation of “ · ”. The parameters of the model (2.1) are connected to the one

from (2.6) as

Ψobs = diag(std(θobs))Ψ diag(std(yobs)),

bobs = E(θobs)−ΨobsE(yobs).

Although everywhere utilized while much less emphasized, the normalization procedure

actually plays a central role for monitoring of those static processes. For applying these

techniques where the process variables and the KPIs are not distinguished, the following

organization of data is adopted

z =

[
y

θ

]
∈ Rnz , nz = m+ l.

In the following subsections, the static model (2.6) instead of (2.1) is used as a starting

point for introducing the monitoring techniques.

2.2.1 Generalized likelihood ratio test

Given the following model

z = z∗ + f

where z∗ ∼ N (0,Σ) represents the statistic feature of the normal process and f denotes a

possible fault. The task is to test the following hypotheses based on the observation data

z [5]

H0, null hypothesis: f = 0, fault-free,

H1, alternative hypothesis: f ̸= 0, faulty.

The probability density functions of z∗ and z are given as

P0(z) =
1√

(2π)nz det(Σ)
e−

1
2
zTΣ−1z, (2.9)

P1(z) =
1√

(2π)nz det(Σ)
e−

1
2
(z−E(z))TΣ−1(z−E(z)) . (2.10)

The log likelihood ratio is defined to be

s(z) = 2 ln
P1(z)

P0(z)
= zTΣ−1z− (z− E(z))TΣ−1(z− E(z)). (2.11)
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2 Basics of process monitoring techniques

Algorithm 2.1. Model-based GLR test

Based on Σ and the online data zk, k = 1, · · · , N ,

S1: Determine χ2
1−α(nz) using the χ2-distribution with nz degrees of freedom

for a significance level α.

S2: Set the threshold: JGLR,th = χ2
1−α(nz).

S3: Build z̄ based on zk, k = 1, · · · , N , as z̄ = 1
N

∑N
k=1 zk.

S4: Construct the test statistic: JGLR = N z̄TΣ−1z̄.

S5: Check the decision logic:JGLR > JGLR,th ⇒ H1 : faulty

JGLR ≤ JGLR,th ⇒ H0 : fault-free.

To increase the confidence of the decision-making procedure, generally more samples

are required. Assume that N samples of data, i.e. zk, k = 1, · · · , N , are available, the

above definition is extended as

SN
1 =

N∑
k=1

2 ln
P1(zk)

P0(zk)

=
N∑
k=1

zTkΣ
−1zk −

N∑
k=1

(zk − E(z))TΣ−1(zk − E(z))

= 2N z̄TΣ−1E(z)−NE(z)TΣ−1E(z), z̄ :=
1

N

N∑
k=1

zk

= N(z̄TΣ−1z̄− (z̄− E(z))TΣ−1(z̄− E(z)))

It is obvious that the maximum of SN
1 is N z̄TΣ−1z̄, which is achieved when z̄ = E(z).

Since E(z) = f is generally unknown, it is always replaced by the maximum likelihood

estimate
∑N

k=1 zk/N , which is known as the GLR test. The maximum likelihood ratio is

used as a test statistic as

JGLR = N z̄TΣ−1z̄.

In the case that Σ is known a priori, since

z̄ ∼ N (0,
1

N
Σ) ⇒ N z̄TΣ−1z̄ ∼ χ2(nz),

the threshold of JGLR is set as

JGLR,th = χ2
1−α(nz)

where α denotes the significance level.
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2.2 Basic monitoring techniques for static processes

The complete procedures of GLR test is summarized in Algorithm 2.1. Since Σ is

known, it is called the model-based GLR test in this study (or LR test in statistics).

In practical applications, the covariance matrix Σ is generally unknown, which needs

to be identified from the data. This brings about the data-driven GLR test. It is straight-

forward that

lim
N→∞

SN−1 = lim
N→∞

1

N − 1

N∑
k=1

(zk − z̄)(zk − z̄)T = E((z− E(z))(z− E(z))T ) = Σ

which delivers an unbiased estimate of the covariance matrix. Thus if there are suffi-

cient training data available (a large enough N), the unknown parameter Σ could be

approximated using the above equation. The next steps for carrying out the GLR test

are the same as the model-based version. However, for non-sufficient test data (N is not

large enough), the test statistic JGLR will deviate from the chi-squared distribution. The

consequence is that the resulting threshold will not match the specified significance level,

which will finally decrease the monitoring performance.

The Hotelling’s T 2 statistic [58, 80] provides one solution to the aforementioned prob-

lem. Its derivation will be addressed in the following.

Suppose two data sets zi, i = 1, · · · , N0, and zi, i = 1, · · · , N1, with the same covariance

matrix Σ are available, then

S0 =
1

N0 − 1

N0∑
k=1

(zk − z̄0)(zk − z̄0)
T , z̄0 =

1

N0

N0∑
i=1

zk, (2.12)

S1 =
1

N1 − 1

N1∑
k=1

(zk − z̄1)(zk − z̄1)
T , z̄1 =

1

N1

N1∑
i=1

zk (2.13)

provide unbiased estimates of Σ, respectively. It is easy to prove that

S =
1

N0 +N1 − 2

(
N0∑
k=1

(zk − z̄0)(zk − z̄0)
T +

N1∑
k=1

(zk − z̄1)(zk − z̄1)
T

)

is an unbiased estimate of Σ as well, i.e. E(S) = Σ.

Since (N0 +N1 − 2)S follows the Wishart distribution [58, 80]

(N0 +N1 − 2)S ∼ Wm(N0 +N1 − 2,Σ)

and √
N0N1

N0 +N1

(z̄1 − z̄0) ∼ N (0,Σ),
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2 Basics of process monitoring techniques

Algorithm 2.2. Hotelling’s T 2 test

Based on the offline data zk, k = 1, · · · , N0,

S1: Compute the estimates z̄0 and S as (2.12).

S2: Determine F1−α(nz, N0 − nz) using the F-distribution with (nz, N0 − nz)

degrees of freedom for a significance level α.

S3: Set the threshold: JT 2
th
=

nz(N2
0−1)

N0(N0−nz)
F1−α(nz, N0 − nz).

Based on the online sample zk,

S4: Construct the test statistic: T 2 = (zk − z̄0)
TS−1

0 (zk − z̄0).

S5: Check the decision logic:T 2 > JT 2
th
⇒ H1 : faulty

T 2 ≤ JT 2
th
⇒ H0 : fault-free.

we have

γ :=
N0N1

N0 +N1

(z̄1 − z̄0)
TΣ−1(z̄1 − z̄0) ∼ χ2(nz), (2.14)

β :=
N0N1

N0+N1
(z̄1 − z̄0)

TΣ−1(z̄1 − z̄0)
N0N1

N0+N1
(z̄1 − z̄0)T ((N0 +N1 − 2)S)−1(z̄1 − z̄0)

∼ χ2((N0 +N1 − 2)− nz + 1).

(2.15)

It follows that

γ/nz

β/(N0 +N1 − nz − 1)
∼ F(nz, N0 +N1 − nz − 1). (2.16)

By substituting (2.14) and (2.15) into (2.16), it gives

N0N1(N0 +N1 − nz − 1)

nz(N0 +N1 − 2)(N0 +N1)
(z̄1 − z̄0)

TS−1(z̄1 − z̄0) ∼ F(nz, N0 +N1 − nz − 1)

⇐⇒ (z̄1 − z̄0)
TS−1(z̄1 − z̄0) ∼

nz(N0 +N1 − 2)(N0 +N1)

N0N1(N0 +N1 − nz − 1)
F(nz, N0 +N1 − nz − 1).

The Hotelling’s T 2 statistic is defined as

T 2
GLR = (z̄1 − z̄0)

TS−1(z̄1 − z̄0)

where S is an unbiased estimate of the covariance matrix.

The corresponding threshold can be determined by the F -distribution as

JT 2
GLR,th

=
nz(N0 +N1 − 2)(N0 +N1)

N0N1(N0 +N1 − nz − 1)
F1−α(nz, N0 +N1 − nz − 1)

where α is a user defined significance level.

20



2.2 Basic monitoring techniques for static processes

Note that in the case of N1 = 1,

S =
1

N0 + 1− 2

(
N0∑
k=1

(zk − z̄0)(zk − z̄0)
T + 0

)
= S0,

i.e. only the offline data is utilized. The test statistic for a single online sample and the

threshold are

T 2 = (zk − z̄0)
TS−1

0 (zk − z̄0),

JT 2
th
=

nz(N
2
0 − 1)

N0(N0 − nz)
F1−α(nz, N0 − nz).

The Hotelling’s T 2 test procedures (for single online sample) are summarized in Algorithm

2.2.

2.2.2 Principal component analysis based technique

In modern automation processes, a great amount of data are available which contain

strongly redundant information. This fact makes the direct application of the GLR-based

algorithms impractical due to numerical reasons, e.g. the reversibility of covariance matrix

or its estimate. As a result, the principal component analysis (PCA) tool [91], which

is originally developed for dimension reduction, is applied to the process monitoring.

Application of PCA to the process monitoring consists of two phases, i.e. the offline

training phase and the online monitoring phase.

Denote the offline training data as

Zobs =
[
z(1) · · · z(N)

]
∈ Rnz×N (2.17)

where z(i) ∈ Rnz , i = 1, · · · , N , denotes a sample vector. By applying the procedure

given in (2.7) and (2.8), the normalized data matrix Z is obtained, i.e.

Z = diag(std(ZT
obs).

−1)(Zobs −mean(ZT
obs)

T1T
N ])

where 1N ∈ RN is a column vector with all elements equal one.

PCA aims at solving the following optimization problem recursively for i = 1, · · · , γ,

pi = argmax
||pi||=1, pT

i pj=0 (i̸=j)

p∗T
i

ZiZ
T
i

N − 1
p∗
i
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Algorithm 2.3. PCA-based process monitoring

Based on the normalized offline data Z ∈ Rnz×N ,

S1: Compute Ppc, Λpc and Λres according to (2.18).

S2: Determine χ2
1−α(γ) using the χ2-distribution with γ degrees of freedom

for a significance level α and cα using the normal distribution

with probability 1− α.

S3: Set the thresholds JT 2,th and JSPE,th according to (2.21) and (2.22).

Based on the normalized online sample zk,

S4: Construct the test statistics: T 2 = zTkPpcΛ
−1
pc P

T
pcz

T
k and SPE = zTk (I −PpcP

T
pc)zk.

S5: Check the decision logic:T 2 > JT 2
th

or SPE > JSPE,th ⇒ H1 : faulty

T 2 ≤ JT 2
th

and SPE ≤ JSPE,th ⇒ H0 : fault-free.

where Zi+1 = (I − pip
T
i )Zi, i = 1, · · · , γ − 1,Z1 = Z, denotes the deflected data matrix

and γ is the number of principal components. PCA extracts those γ orthogonal direc-

tions which contain the most significant variability/useful information. The recursive

optimization problem can be solved by doing an eigenvalue decomposition (EVD) or SVD

as [
Ppc Pres

] [Λpc 0

0 Λres

][
PT

pc

PT
res

]
=

ZZT

N − 1
(2.18)

where Ppc = [p1, · · · ,pγ] ∈ Rnz×γ and Pres = [pγ+1, · · · ,pnz ] ∈ Rnz×(nz−γ) contain the

loading vectors for the principal components and the residual components, respectively;

Λpc = diag(λ1, · · · , λγ) and Λres = diag(λγ+1, · · · , λnz) are the scores of them with λ1 ≥
· · · ≥ λγ >> λγ+1 ≥ · · · ≥ λnz .

For detecting process abnormalities, the Hotelling’s T 2 and the squared prediction error

(SPE) test statistics are defined as

T 2 = zTPpcΛ
−1
pc P

T
pcz, (2.19)

SPE = zT (I−PpcP
T
pc)z. (2.20)

The corresponding thresholds are given as

JT 2,th =
γ(N2 − 1)

N(N − γ)
F1−α(γ,N − γ), (2.21)

JSPE,th = θ1

(
cα
√
2θ2h20
θ1

+ 1 +
θ2h0(h0 − 1)

θ21

)1/h0

, (2.22)

θi =
nz∑

j=γ+1

λij, i = 1, 2, 3, h0 = 1− 2θ1θ3
3θ22

(2.23)
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2.2 Basic monitoring techniques for static processes

where α is the significance level and cα the normal deviate corresponding to the upper

1 − α percentile. The statistical properties of the SPE statistic and its threshold are

given in [54]. The test procedures of PCA-based process monitoring is summarized in

Algorithm 2.3.

2.2.3 Partial least squares regression based technique

Partial least squares (PLS) regression is another multivariate statistical tool applied for

processing redundant information in huge amount of process data. It was originally

developed by H. Wold [115] for solving the co-linearity problem of least squares regression.

The pioneer work on the application of PLS for process monitoring includes the one

reported in [78], which aims at monitoring the quality-related low-level process variable

subspace.

Denote the normalized data matrices for the low-level process variables and the high-

level KPIs as

Y = [y(1), · · · ,y(N)] ∈ Rm×N and Θ = [θ(1), · · · ,θ(N)] ∈ Rl×N ,

the objective of PLS is achieved by solving the following optimization problem recursively

for i = 1, · · · , γ

(w∗
i ,v

∗
i ) = argmax

||wi||=1,||vi||=1

wT
i YiΘ

Tvi (2.24)

ti = YT
i w

∗
i , pi =

Yiti
||ti||2

, qi =
Θti
||ti||2

(2.25)

ri =


w∗

1, i = 1
i−1∏
k=1

(I−w∗
kp

T
k )w

∗
i , i > 1

(2.26)

where Yi+1 = Yi(I− tit
T
i

||ti||2 ),Y1 = Y, and γ is the pre-determined latent variable number.

Note that for each i, w∗
i and v∗

i are selected in such a way that the covariance between

w∗T
i Yi and v∗T

i Θ is maximized. By iteratively solving the above problem, the following

parameter matrices can be obtained:

R =
[
r1 · · · rγ

]
,P =

[
p1 · · · pγ

]
,Q =

[
q1 · · · qγ

]
,T =


tT1
...

tTγ

 = RTY

where T denotes data matrix of the latent variables. In addition, the estimation of process

variables and KPIs based on the latent variables can be established as

Ŷγ = PRTY, Θ̂γ = QRTY.
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2 Basics of process monitoring techniques

Algorithm 2.4. PLS-based process monitoring

Based on the normalized data matrices Y and Θ,

S1: Set Y1 = Y and, for i = 1, · · · , γ, recursively compute

(w∗
i , σmax,v

∗
i ) = svd(YiΘ

T ),

ti = YT
i w

∗
i , pi =

Yiti
||ti||2 , qi =

Θti
||ti||2 , Yi+1 = Yi − pit

T
i

where σmax is the maximal singular value of YiΘ, w∗
i and v∗

i are the

corresponding singular vectors, γ is the pre-determined latent variable number.

S2: Form the matrices P,R and Λγ:

P = [p1, · · · ,pγ] ∈ Rm×γ, R = W(PTW)−1 ∈ Rm×γ, Λγ = diag
(

||t1||2
N−1

, · · · , ||tm||2
N−1

)
.

S3: Determine F1−α(γ,N − γ) and χ2
α(h) using the F- and χ2-distributions.

S4: Set the thresholds JT 2,th and JSPE,th according to (2.31) and (2.32).

Based on the normalized online sample yk,

S5: Construct the test statistics: T 2 = yT
kRΛ−1

γ RTyk and SPE = yT
k (I−PRT )yk.

S6: Check the decision logic:
T 2 > JT 2

th
and SPE ≤ JSPE,th ⇒ fault influences KPI

T 2 ≤ JT 2
th

and SPE > JSPE,th ⇒ fault does not influence KPI

T 2 > JT 2
th

and SPE > JSPE,th ⇒ both kinds of faults happen

T 2 ≤ JT 2
th

and SPE ≤ JSPE,th ⇒ fault-free.

For monitoring the latent variable space whose dimension is significantly lower than m,

Theorem 2.1 plays a key role.

Theorem 2.1. Based on the standard PLS regression method, the following relation holds:

tTi tj = 0, for i ̸= j. (2.27)

The proof is given in Appendix A. Theorem 2.1 concludes that the latent variables are

mutually uncorrelated. It is a very nice property for the process monitoring.

In order to monitor KPI-related low-level process variables, the following test statistics

are established:

T 2 = yTRΛ−1
γ RTy (2.28)

SPE = yT (I−PRT )y (2.29)

where

Λγ = diag

(
||t1||2

N − 1
, · · · , ||tm||

2

N − 1

)
. (2.30)
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2.3 Monitoring techniques for lumped-parameter processes

The corresponding thresholds are given as

JT 2,th =
γ(N2 − 1)

N(N − γ)
F1−α(γ,N − γ), (2.31)

JSPE,th = gχ2
1−α(h) (2.32)

where α is the significance level, g = S̃
2µSPE

is a scaling factor and h =
2µ2

SPE

S̃
is the

degrees of freedom of the χ2-distribution with µSPE and S̃ denoting the sample mean

and covariance of SPE. The complete procedures for PLS-based process monitoring is

summarized in Algorithm 2.4.

2.3 Monitoring techniques for lumped-parameter

processes

Monitoring techniques for the lumped-parameter processes, whose dynamics is governed

by the following ODEs, i.e.

z(k + 1) = Az(k) +By(k) + η(k) + Ef(k), z(0) = z0, (2.33)

θ(k) = Cz(k) +Dy(k) + ξ(k) + Ff(k) (2.34)

as given in (2.4-2.5), have received rapid development during the past 50 years and are

well established. The representational techniques include the FDF, the DO scheme and

the PS approach.

2.3.1 Fault detection filter based residual generation

Considering the process described by (2.33-2.34), in order to monitor its operation con-

dition, a full order state observer [24] could be applied, i.e.

ẑ(k + 1) = Aẑ(k) +By(k) + L(θ(k)−Cẑ(k)−Dy(k))

r(k) = V(θ(k)−Cẑ(k)−Dy(k))

Denote e(k) = z(k)− ẑ(k), we have the dynamics of the FDF [24]

e(k + 1) = (A− LC)e(k) + η(k)− Lξ(k) + (E− LF)f(k)

r(k) = VCe(k) +Vξ(k) +VFf(k)

where L and V are the free design parameters. L should be selected in such a way that

A−LC is stable, i.e. the eigenvalues are inside the unit circle. Note that in the fault- and
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2 Basics of process monitoring techniques

disturbance-free case, lim
k→∞

e(k) = 0 ⇒ lim
k→∞

r(k) = 0, which indicates the healthy/normal

condition of the process. If a fault happens, lim
k→∞

r(k) ̸= 0 indicates the occurrence of the

fault. In industrial automation processes, however, disturbances are inevitable, r(k) ̸= 0

cannot be used to make any decision. Thus the residual signal r(k) should be evaluated

and compared with some threshold, by using its statistical information.

2.3.2 Diagnostic observer based residual generation

Different from the FDF, DO is an output observer based approach [24] described by

zd(k + 1) = Gzd(k) +Hy(k) + Lθ(k)

r(k) = vθ(k)−wzd(k)− qy(k)

where zd(k) = Tz(k) ∈ Rs denotes the state variables. The order of the observer s could

be different from the system order n. The parameters as well as T have to satisfy the

following conditions:

• G is stable,

• TA−GT = LC, H = TB− LD, and

• vC−wT = 0, q = vD.

Denote e(k) = Tz(k)− zd(k), the dynamics of the DO is governed by

e(k + 1) = Ge(k) +Tη(k)− Lξ(k) + (TE− LF)f(k)

r(k) = we(k) + vξ(k) + vFf(k)

Under the aforementioned three conditions, it is obvious that in the disturbance- and

fault-free case, the residual signal r(k) equals zero in the steady state. Any disturbance

or fault could make r(k) diverge from zero. Thus in practice a threshold should be set

based on the statistical property of the disturbances.

2.3.3 Parity space based residual generation

PS-based residual generation [24] belongs to the most straightforward fault detection

methods which has a very clear geometrical meaning. It is assumed that there is no

redundancy in the KPIs, i.e. rank(C) = l. Given the PS order s, the process (2.33-2.34)

could be extended as

θs(k) = Γsz(k − s) +Hy,sys(k) +Hη,sηs(k) +Hξ,sξs(k) +Hf,sfs(k)
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2.3 Monitoring techniques for lumped-parameter processes

where θs(k),ys(k),ηs(k),ξs(k) and fs(k) are constructed as πs(k) with the following data

structure

πs(k) =


π(k − s)

π(k − s+ 1)

· · ·
π(k)

 (2.35)

and

Γs =


C

CA
...

CAs

 ,Hy,s =


D 0 · · · 0

CB D
. . .

...
...

. . .
. . . 0

CAs−1B · · · CB D

 ,Hf,s =


F 0 · · · 0

CE F
. . .

...
...

. . .
. . . 0

CAs−1E · · · CE F

 ,
(2.36)

Hη,s =


0 0 · · · 0

C 0
. . .

...
...

. . .
. . . 0

CAs−1 · · · C 0

 ,Hξ,s = I ∈ R(s+1)l×(s+1)l. (2.37)

The PS-based residual generator can be constructed as

rs(k) = vs (θs(k)−Hy,sys(k)− Γsz(k − s)−Hη,sηs(k)−Hξ,sξs(k)−Hf,sfs(k)) .

(2.38)

Note that in the disturbance- and fault-free case, if vs ∈ R1×(s+1)l is selected from the

orthogonal subspace of the subspace spanned by the columns of Γs, then we have rs(k) =

0. The parity vector vs is expected to be determined in such a way that the disturbances

are completely decoupled while the fault is completely reflected by rs(k). In practice, if a

perfect decoupling of the disturbances is infeasible, then the influence of the disturbances

on rs(k) should be minimized.

2.3.4 PS-based design and DO-based implementation

From the previous subsections, it is clear that the requirements of the PS-based method

on computation cost and memory storage are higher than the DO-based approach while

the design effort is much lower. It has been proven in [24] that the two approaches are

equivalent, which makes the popular “PS-based design and DO-based implementation

scheme” feasible. Algorithm 2.5 provides the basic procedures of this scheme.
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2 Basics of process monitoring techniques

Algorithm 2.5. PS-based design and DO-based implementation scheme

Given the process model (2.4-2.5),

S1: Build Γs and select a parity vector vs := [vs,0,vs,1, · · · ,vs,s−1,vs,s] ∈ R(s+1)l from

the orthogonal subspace of the column subspace of Γs.

S2: Construct T as

T =


vs,1 · · · vs,s−1 vs,s

vs,2 · · · vs,s 0
... . .

.
. .
. ...

vs,s 0 · · · 0




C
...

CAs−2

CAs−1

.
S3: Set

G = [G0,g],G0 =



0 0 · · · 0

1 0 · · · 0
...

. . .
. . .

...

0 · · · 1 0

0 · · · 0 1


∈ Rs×(s−1), g =


g1
...

gs

 ∈ Rs

which should be stable.

S4: Construct

H =


vs,0 + g1vs,s vs,1 · · · · · · vs,s

vs,1 + g2vs,s vs,2 · · · vs,s 0
...

... . .
.

. .
. ...

vs,s−1 + gsvs,s vs,s . .
.

. .
.

0




D

CB
...

CAs−1B

 , L = −


vs,0

vs,1

...

vs,s−1

− gvs,s,

v = vs,s, w = [0, · · · , 0, 1], q = vs,sD.

2.4 Monitoring techniques for distributed-parameter

processes

There are quite a few approaches for monitoring the DPPs. Consider a class of system

represented in an abstract space

ż(t) = Az(t) + By(t)

where A is the system operator and B is the input operator [21]. To reduce the dimension,

the infinite dimensional state is decomposed as

z(t) = zs(t) + zf (t)

where zs represents the state of the finite dimensional slow subsystem and zf denotes the

state of the infinite dimensional fast and stable system. Using it, the original description
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2.5 Concluding remarks

can be written as

żs(t) = Aszs(t) + Bsy(t), żf (t) = Afzf (t) + Bfy(t).

By neglecting the fast subsystem, a detection observer is designed for the slow subsys-

tem. The state prediction error is considered as the residual signal. The random dis-

turbances/noise are/is not considered and the monitoring system is established in the

deterministic framework. Moreover, the threshold is determined analytically using the

knowledge of the deterministic disturbances.

Remarks: A very strong assumption for this approach is the existence of the eigen-

decomposition of the operator A, which is only well-known for some systems [19]. In

the general case, derivation of the eigen-decomposition of an operator is a manual task

and requires great design effort (needs advanced mathematical knowledge). Similar pro-

cess monitoring results based on the slow subsystem include [4, 32].

2.5 Concluding remarks

This chapter summarizes the basics for modern process monitoring system design. De-

pending on the significance of the process dynamics and the application scope, industrial

automation processes can be modelled as static processes, LPPs and DPPs. The multi-

variate statistical techniques are powerful tools for monitoring the large-scale processes.

They are generally applicable for static processes and do not require any first-principle

model. The existing methods are originally developed in the mathematical domain. They

are very complex and not optimal for the process monitoring. Thus the forthcoming

chapter discusses an alternative monitoring approach which provides optimal monitoring

performance.

Another drawback of the traditional multivariate statistical approaches lies in dealing

with process dynamics. Although some dynamical modifications have been made in the

research area, their performance is quite limited. On the other hand, the model-based

process monitoring techniques are efficient in handling dynamic issues. The techniques

have been well established, but they put very high requirements on accurate first-principle

models. Thus it is appealing to have data-driven design schemes for model-based tech-

niques. This issue is further addressed in Chapter 4.

Performance monitoring of DPPs is now basically a blank field in the research. Avail-

able techniques have too strong assumptions on the types of DPPs (e.g. the eigen-

decomposition is known and fulfills certain condition) and they do not consider stochastic

factors. Chapter 5 aims at establishing a stochastic monitoring framework for DPPs

without those restrictions. In addition, its data-driven realization is another import goal.
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3 An alternative data-driven KPI

monitoring scheme for static

processes

For many automation processes, the operating conditions are kept unchanged due to mass

production and the processes are in steady state for most of the time. Thus static key

performance monitoring schemes are widely implemented due to their excellent applicabil-

ity. Among various static monitoring schemes, PLS-based technique is the most popular.

PLS, originally called NIPALS (nonlinear iterative partial least squares), was first devel-

oped by H. Wold [115] in the 1960s in the economic area. It is an effective modelling

approach of general scope for cause-effect inference and prediction where the concept of

latent variable plays a key role in handling collinearity among independent variables [115].

With rapid application of SCADA systems and digital computers, PLS has been applied

in many automation processes [63]. The algorithm given in Chapter 2 is a standard one

and widely used in practice. However, the monitoring performance is not optimal since

the T 2 statistic contains useless information that is unrelated to the KPIs and the SPE

statistic may exhibit large variations where a more accurate statistical distribution can be

obtained. In addition, cross validation, which is a widely-used effective approach to select

the latent variable number, is computationally expensive and requires great engineering

effort. Motivated by these observations, a revised PLS-based scheme is first proposed

for improving the monitoring performance. By analysing the PLS modelling for process

monitoring purpose, an alternative scheme is then proposed to reduce the design effort

while preserving high monitoring performance.

3.1 Preliminaries and problem formulation

Although not always mentioned, the data-driven methods implicitly follow some (statisti-

cal) models. For monitoring static processes, the model given in (2.1) is generally utilized.

As discussed in Chapter 1, statistical redundancy is the core of a residual generator. Here

the redundancy consists of two parts:
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3.2 A revised PLS-based monitoring scheme

• Mean vectors E(yobs), E(θobs) and standard deviation vector λy,std,λθ,std of the pro-

cess variables and the KPI data

E(yobs) ≈
1

N

N∑
k=1

Yobs(:, k), λy,std ≈ diag

(
(Yobs − E(yobs)1N)(Yobs − E(yobs)1N)

T

N − 1

)

E(θobs) ≈
1

N

N∑
k=1

Θobs(:, k), λθ,std ≈ diag

(
(Θobs − E(θobs)1N)(Θobs − E(θobs)1N)

T

N − 1

)
.

• Parameter matrix Ψ of the following normalized process description

θ = Ψy + eθ, E(yeTθ ) = 0. (3.1)

In modern automation processes, a great number of process variables and KPIs are

recorded in the SCADA system. In many cases, KPIs are not online measurable and

the dimension of the process variables y ∈ Rm is much higher than the dimension of the

KPIs θ ∈ Rl, i.e. m >> l. In addition, lots of redundant information exits in the process

variable data which causes strong collinearity. It is practically impossible to apply the

univariate-based techniques to monitor the process especially to identify if the faults are

KPI-related or not. The objective of this chapter is to propose practical KPI monitoring

schemes with the following requirements:

• The monitoring performance is optimized, i.e. the KPI-related test statistic contains

no useless information for the KPIs and more accurate threshold is obtained for the

KPI-unrelated test statistic.

• The design effort is low.

• The amount of test statistics is small.

In the following, we will first revise the standard PLS-based monitoring scheme to partially

fulfil the requirements.

3.2 A revised PLS-based monitoring scheme

By running the standard PLS algorithm in Chapter 2, the latent variables are generated

as

t = RTy.

Based on it, the estimate of the KPIs is achieved as

θ̂γ = QRTy = (QΛ1/2
γ )(Λ−1/2

γ RTy)
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3 An alternative data-driven KPI monitoring scheme for static processes

Algorithm 3.1. A revised PLS-based process monitoring scheme

S1: Run the standard PLS algorithm to get R.

S2: Compute T = RTY,Λγ = TTT/(N − 1),Q = ΘT TΛ−1
γ /(N − 1).

S3: Do an SVD on QΛ(1/2)
γ as (3.2), compute R⊥ and do another SVD as (3.4).

S4: Determine the thresholds as:

Jth,T 2
PLS,R

= χ2
1−α(l), Jth,SPEPLS,R

= d2γ,m−lχ
2
1−α(m− l).

Based on the normalized online process data y(k),

S5: Build the test statistics T 2
PLS,R and SPEPLS,R according to (3.3) and (3.5).

S6: Check the decision logic:

T 2
PLS,R > Jth,T 2

PLS,R
andSPEPLS,R ≤ Jth,SPEPLS,R

⇒ faultinfluencesKPI

T 2
PLS,R ≤ Jth,T 2

PLS,R
andSPEPLS,R > Jth,SPEPLS,R

⇒ faultdoesnotinfluenceKPI

T 2
PLS,R > Jth,T 2

PLS,R
and SPEPLS,R > Jth,SPEPLS,R

⇒ both kinds of faults happen

T 2
PLS,R ≤ Jth,T 2

PLS,R
and SPEPLS,R ≤ Jth,SPEPLS,R

⇒ fault-free.

where Λγ denotes the covariance matrix of the latent variables and is obtained from (2.30).

Do an SVD on QΛ1/2
γ as

QΛ1/2
γ = QPLS

[
RPLS 0

] [ST
PLS,1

ST
PLS,2

]
. (3.2)

In order to monitor the KPI-related part in the process variable space, it is reasonable

to establish the following test statistic:

T 2
PLS,R = yTRΛ−1/2

γ SPLS,1S
T
PLS,1Λ

−1/2
γ RTy. (3.3)

Since we have ST
PLS,1Λ

−1/2
γ RTy ∼ N (0, I), thus the threshold can be determined by the

χ2-distribution with l degrees of freedom.

For monitoring the KPI-unrelated part, it is necessary to obtain R⊥, which has or-

thonormal rows and is orthogonal to R. Then do the following SVD[
R⊥

ST
PLS,2Λ

−1/2
γ RT

]
YYT

N − 1

[
(R⊥)T RΛ−1/2

γ SPLS,2

]
= UγDγU

T
γ (3.4)

where Dγ = diag(d2γ,1, · · · , d2γ,m−l). It is remarkable that the last singular values may be

quite small. In order to improve the numerical conditions, let us define

Ωγ = diag(
d2γ,m−l

d2γ,1
, · · · ,

d2γ,m−l

d2γ,m−l−1

, 1).

It is meaningful to establish the KPI-unrelated test statistic as

SPEPLS,R = yT
[
(R⊥)T RΛ−1/2

γ SPLS,2

]
UγΩγU

T
γ

[
R⊥

ST
PLS,2Λ

−1/2
γ RT

]
y. (3.5)
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The corresponding threshold can be determined using the χ2-distribution as

Jth,SPEPLS,R
= d2γ,m−lχ

2(m− l).

In Algorithm 3.1, procedures of the revised PLS-based monitoring scheme are summarized.

Remark: The revised monitoring scheme is based on the standard PLS algorithm. From

the obtained latent variable data, two test statistics are established. The T 2
PLS,R statistic

contains no useless information for the KPIs and thus is essential for the KPI-based root

cause analysis. In addition, a more accurate statistical distribution for the SPEPLS,R

test statistic is established as well. As a result, the first and third requirements from

problem formulation have been totally fulfilled. Since the standard PLS algorithm is

utilized, the engineering effort is still high mainly due to the determination of the latent

variable number. A numerical example is given at the end of this chapter to show these

improvements. In the following section, by analysing the PLS algorithm, we will propose

an alternative KPI monitoring scheme satisfying all the requirements.

3.3 An alternative KPI monitoring scheme

For static processes, the first part of the redundancy, i.e. the mean vectors and the stan-

dard deviation matrices, can be easily identified from the raw data easily. The challenge

is how to construct the regression matrix in the normalized process description (3.1). One

standard criteria for it is to minimize the total variance of prediction error eθ, i.e.

find Ψ̂ = argmin tr(E(eθe
T
θ )).

By substituting eθ = θ−Ψy, we have

tr(E(eθe
T
θ )) = tr(E(θθT ))− 2 tr(E(θyT )ΨT ) + tr(ΨE(yyT )ΨT ).

Thus the minimum is achieved when
∂ tr(E(eθe

T
θ ))

∂ΨT = 0, which further gives

E(θyT )−ΨE(yyT ) = 0.

Using the normalized process and KPI dataY ∈ Rm×N andΘ ∈ Rl×N , the above solution

can be approximated as

ΘYT

N − 1
≈ Ψ

YYT

N − 1
.
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Figure 3.1: Illustration of the alternative algorithm

Since generally a huge number of process variables are available in reality and YYT

is rank deficient, Ψ cannot directly be identified. PLS algorithm provides one practical

solution for it:

Ψ̂PLS = QRT = ΘYTR(RTYYTR)−1RT . (3.6)

In order to handle the collinearity problem, PLS first transforms the process variables

to the low-dimensional latent variables. Due to (w∗
i ,v

∗
i ) = argmax

||wi||=1,||vi||=1

wT
i YiΘ

Tvi, ti =

YT
i w

∗
i , the covariance (not correlation) between each latent variable and the transformed

KPIs (along v∗
i , i = 1, · · · , γ) is maximized. In the next step, PLS finds the least squares

(LS) solution from latent variables to KPIs. It is remarkable that RTYYTR is a diagonal

matrix, which means that the inversion is computed quite efficiently.

Alternatively, in order to eliminate the problem caused by collinearity, the following
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3.3 An alternative KPI monitoring scheme

SVD is carried out1

YYT

N − 1
=
[
P1 P2

] [Λ1 0

0 Λ2

][
PT

1

PT
2

]
, (3.7)

Λ1 = diag(λ21, · · · , λ2m̄), Λ2 = diag(λ2m̄+1, · · · , λ2m),
λ21 ≥ · · · ≥ λ2m̄ >> λ2m̄+1 ≥ · · · ≥ λ2m,

which is equivalent to PCA for dimension reduction. To better explain the basic idea, a

3-dimensional numerical example is given. The normalized data are plotted in Figure 3.1-

a. There are three process variables, y1 and y2 are multivariate normal distributed, y3 is

a linear combination of them and is contaminated by noise. θ is a linear combination of

these three variables. By performing the SVD (3.7), the directions of data variability,

p1,p2,p3 (define P = [p1,p2,p3]), can be extracted in the descending order. Their

bilateral relationships are shown in Figure 3.1-b (‘o’). We can see that the most significant

variability occurs in the ‘p1−p2’ plane, the variability along p3 is relatively much smaller

and is caused by the process and measurement noise. Thus it is reasonable to represent

the original data with a lower dimension. The red ‘x’s in Figure 3.1-b denote the denoised

data (Note that different from this illustrative example, the variability along p3, which

causes rank deficiency of YYT , is quite close to zero). It can be seen that the two data

sets (original and projected) contain quite similar information.

Similar to the PLS solution (3.6), the coefficient matrixΨ can be alternatively estimated

as

Ψ̂ = Ψ̄Λ
−1/2
1 PT

1 , Ψ̄ =
ΘȲT

N − 1
, Ȳ = Λ

−1/2
1 PT

1Y. (3.8)

The estimation performance is equivalent to the principal component regression, nev-

ertheless, it provides superior monitoring performance to either PCA- or PLS-based ap-

proaches. The process variable space has been divided into two orthogonal subspaces

Sŷ = span{P1} ⊂ Rm̄ and Sỹ = span{P2} ⊂ Rm−m̄ where the former contains informa-

tive part while the latter is the residual part which contains no useful information for the

process variables themselves, thus not useful for the KPIs either. From the monitoring

point of view, the denoised process variable data Ȳ (represented in a reduced order coor-

dinate system) contain both KPI-related and -unrelated information. In order to identify

the KPI-related and -unrelated subspaces in the new coordinate system, the following

1The determination of m̄ plays an important role for an optimal fault detection system design. It

should be selected in such a way that Λ2 contains those “zero” components that are numerically quite

sensitive to the inversion computation.

35



3 An alternative data-driven KPI monitoring scheme for static processes

SVD is done on ΘȲT

N−1

ΘȲT

N − 1
= Qθ

[
R 0

] [ST
1

ST
2

]
.

As a result, Sθ = span{S1} represents the KPI-related subspace while Sθ⊥ = span{S2}
represents the KPI-unrelated subspace in the new coordinate system. As illustrated in

Figure 3.1-c and Figure 3.1-d, S1 denotes the direction of Ȳ that is mostly correlated

with the KPIs (corr(ST
1 ȳ,θ) = 0.9997) while S2 denotes the orthogonal direction that is

not useful for the KPIs (corr(ST
2 ȳ,θ) = −0.0247). Based on these decompositions, the

complete process variable space can be monitored.

As in the revised PLS-based monitoring scheme, to monitor the KPI-related process

variable subspace, it is reasonable to establish the following test statistic

T 2
θ̂
= yTP1Λ

−1/2
1 S1S

T
1Λ

−1/2
1 PT

1 y. (3.9)

Since ST
1Λ

−1/2
1 PT

1 y ∼ N (0, I), thus with sufficient training data, the threshold can be set

as

Jth,T 2
θ̂
= χ2

1−α(l)

For monitoring the KPI-unrelated part, we do the following transformation

θ⊥ =

[
λmS

T
2Λ

−1/2
1 PT

1

Ξ1/2PT
2

]
y

where Ξ = diag( λ2
m

λ2
m̄+1

, · · · , λ2
m

λ2
m−1

, 1) is utilized to increase the numerical robustness regard-

ing to the very small λm.

Since E(θ⊥(θ⊥)T ) = λ2mI(m−l)×(m−l), the following test statistic can be established to

monitor the part of process variables that is useless for the KPIs

T 2
θ⊥

= yT
(
λ2mP1Λ

−1/2
1 S2S

T
2Λ

−1/2
1 PT

1 +P2ΞP
T
2

)
y ∼ λ2mχ

2(m− l). (3.10)

The corresponding threshold Jth,T 2
θ⊥

can be determined using the χ2-distribution for a

given significance level α.

Design procedures of the alternative KPI monitoring scheme is given in Algorithm 3.2.

In addition to the process variables, any change in the matrix Ψ̄ can influence the

KPIs as well. However, this kind of malfunctions cannot be detected either by (3.9) or

(3.10). In order to detect this kind of fault, the online KPI measurement is required.

Since E(θθT ) = E((θ̂ + eθ)(θ̂ + eθ)
T ) = E(θ̂θ̂

T
) + E(eθe

T
θ ), we have eθ = θ − θ̂ ∼

N (0,Σθ −QθR
2QT

θ ) where Σθ ≈ ΘΘT

N−1
. Thus the following test statistic is established

T 2
θe

= (θ− θ̂)TUΩUT (θ− θ̂) ∼ d2l χ
2(l) (3.11)
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Algorithm 3.2. An alternative static KPI monitoring scheme

Based on the normalized data Y ∈ Rm×N and Θ ∈ Rl×N ,

S1: Do an SVD on YYT

N−1
=⇒ P1,Λ1;P2,Ξ, λ

2
m.

S2: Do another SVD on Ψ̄ =
Θ(Λ

−1/2
1 PT

1 Y)T

N−1
=⇒ Qθ,R,S

T
1 ;S

T
2 .

S3: Compute the thresholds Jth,T 2
θ̂
and Jth,T 2

θ⊥
.

Using the normalized online data y(k),

S4: Build the statistics T 2
θ̂
and T 2

θ⊥
according to (3.9) and (3.10).

S5: Check the decision logic:

T 2
θ̂
> Jth,T 2

θ̂
and T 2

θ⊥
≤ Jth,T 2

θ⊥
⇒ fault influences KPI

T 2
θ̂
≤ Jth,T 2

θ̂
and T 2

θ⊥
> Jth,T 2

θ⊥
⇒ fault does not influence KPI

T 2
θ̂
> Jth,T 2

θ̂
and T 2

θ⊥
> Jth,T 2

θ⊥
⇒ both kinds of faults happen

T 2
θ̂
≤ Jth,T 2

θ̂
and T 2

θ⊥
≤ Jth,T 2

θ⊥
⇒ fault-free.

where

Ω = diag(
d2l
d21
, · · · , d

2
l

d2l−1

, 1)

with

Σθ −QθR
2QT

θ = UDUT , D = diag(d21, · · · , λ2dl), d
2
1 ≥ · · · ≥ d2l .

Remark: Among these test statistics, in the case that the KPIs are not online measurable,

• T 2
θ̂
can detect the KPI-related faults in the process variables and contains no useless

information for the KPIs.

• T 2
θ⊥

is able to detect the KPI-unrelated faults in the process variables.

Compared to the PLS-based schemes, the design effort of this alternative method is quite

low. No complicated computations like the cross validation is required. Moreover, two

test statistics are involved and their monitoring and diagnosis performance is improved

over the standard algorithm. In addition, in the case that KPIs are online measurable,

the faults happened in Ψ̄, which cannot be detected by (3.9) or (3.10), can be detected by

the T 2
θe

test statistic. A simulation example is given in the next section to demonstrate

this scheme.

3.4 Numerical examples

In this section, an open-loop synthetic numerical example is considered:

yobs(k) = Wz(k) + η(k)

θobs(k) = Ψobsyobs(k) + bobs + ξ(k)
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Figure 3.2: Comparison of monitoring results from static schemes

where

W = rand(m,n),Ψobs = 1 + rand(l,m),bobs = [1055, 1825]T

are model parameters with n = 3,m = 15 and l = 2 denoting the dimensions of z,yobs

and θobs, respectively. To model the steady state of a process, z is simulated by random

number sequences, i.e. z1 ∼ N (0, 4), z2 ∼ N (0, 1.96) and z3 ∼ N (0, 1.44). In addition,

model uncertainties and measurement noises are simulated by ηi ∼ N (0, 1e − 6), i =

1, · · · ,m, and ξi ∼ N (0, 1e − 8), i = 1, · · · , l, respectively. One hundred samples are

generated to train the model. In addition, a deterministic fault is injected into the process

variable space at the 21st sample.

As depicted in Figure 3.2-a, the fault is selected in such a way that it changes the

latent variables but does not influence any KPI. Monitoring results of the standard PLS-

based scheme is given in Figure 3.2-b. We can see that the T 2 statistic detects the

fault while SPE cannot, which is not as expected (with significance level α = 1%). In

comparison, the monitoring results of the revised PLS-based scheme and the alternative
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3.5 Concluding remarks

Table 3.1: Comparison of offline computation time (‘seconds’)

Standard PLS-based scheme Revised PLS-based scheme The alternative scheme

0.8818 0.8665 0.0056

static scheme are given in Figure 3.2-c and Figure 3.2-d, respectively. As expected, the

T 2
PLS,R and T 2

θ̂
statistics, which are responsible for KPI-related part, have not detected

the fault. The SPEPLS,R and T 2
θ⊥

statistics, which are responsible for KPI-unrelated

part, have successfully detected the fault. These examples demonstrate the performance

improvements of proposed schemes over the standard one. Regarding the engineering

effort, the offline computation time is measured in MATLAB. Due to various hardware and

software configurations, the absolute time makes no sense. But the time consumed under

the same condition is reasonable for comparing different monitoring schemes. Table 3.4

lists the values, from which we can see that the standard and revised PLS-based schemes

(leave-one-out for cross validation) consume comparable computation resources while the

alternative scheme is significantly faster. Moreover, the standard PLS-based scheme uses

a bit more time than the revised PLS-based scheme. The reason it the calculation of the

threshold for the SPE statistic.

3.5 Concluding remarks

This chapter focuses on the data-driven monitoring schemes for static processes. Moti-

vated by the drawbacks of the standard PLS-based process monitoring scheme, a revised

approach based on the PLS algorithm is firstly proposed. It can correctly detect the KPI-

related and -unrelated faults. Although similar modified approaches have been recently

reported by other researchers [93, 136], this approach uses much less test statistics and

thus is more appealing for practical applications. In order to reduce the engineering effort,

an alternative static KPI monitoring scheme is proposed subsequently. This scheme pro-

vides improved monitoring performance (over the standard PLS-based scheme) and fulfils

all the requirements listed in the problem formulation. Nevertheless, the application scope

of these static schemes is limited to static processes. Dynamic monitoring approaches will

be addressed in the next chapter.
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4 Data-driven KPI monitoring

techniques for lumped-parameter

processes

Although KPI monitoring schemes designed for static processes have received great success

in industry, their application scope is restricted. Those methods are simple and suitable

for the periods when the processes are steady, i.e. the mean vectors of the process

variables and the KPIs are quasi-constant. In practice, however, the mean vector of

the process variables could be time-varying e.g. due to continuous supervisory control

actions, especially in large-scale systems. In order to monitor such processes, the inherent

dynamics must be effectively taken into account. As discussed in Chapters 1 and 2,

the PS-based techniques, the FDF, and the DO are powerful dynamic monitoring tools.

A requirement of all these approaches is that a reliable mathematical description of the

process dynamics be available. Derivation of mathematical models based on first principles

can be costly or time-consuming, particularly in the process industry.

Motivated by these observations, data-driven design of model-based process monitoring

systems has attracted much research interest. Strongly stimulated by the development

of system identification techniques, the two-step scheme “system identification + model-

based monitoring system design” has become a standard one and been applied on various

benchmark processes. Nevertheless, according to our recent research activities [28], the

design effort can be largely reduced by the direct identification of the process monitor-

ing system. In this chapter, we will present some new results. The starting point is a

residual generator that we wish to identify. Based on the assumption that the residual,

which is a combination of the process and measurement noise, is uncorrelated with the

process variables and the past KPIs, its covariance matrix, which is essential for residual

evaluation, can be readily extracted from the process I/O data. Then by eliminating the

influences of noise from the process I/O data, residual generators for measurable KPIs

and unmeasurable KPIS can be directly identified.
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4.1 Preliminaries and objective

4.1 Preliminaries and objective

Assuming that the dynamics from the low-level process variables to the high-level KPIs

can be modelled by (2.2-2.3), we want to design the following residual generator

ẑ(k + 1) = Aẑ(k) +By(k) + Lr(k), ẑ(0) = 0, (4.1)

r(k) = θ(k)−Cẑ(k)−Dy(k). (4.2)

Here r(k) denotes a primary residual signal and can be alternatively written as

r = θ− θ̂ = θ−C(pI−A+ LC)−1 (Lθ+ (B− LD)y)−Dy

=
(
−C(pI−A+ LC)−1L+ I

)
θ

−
(
C(pI−A+ LC)−1(B− LD) +D

)
y

:=
[
−N̂(p) M̂(p)

] [y
θ

]
(4.3)

where p denotes the z-transformation operator, M̂(p) = −C(pI −A + LC)−1L + I, and

N̂(p) = C(pI−A+LC)−1(B−LD) +D. The above residual generator is defined as the

kernel representation [23] and builds the basis for KPI monitoring. In the model-based

framework, the core of designing the kernel representation is to select an appropriate

observer gain matrix L because the other parameters are given by first principle models.

Differently, in the data-driven framework, the major objective is to design the whole

dynamic residual generator based on the normal process I/O data. In addition, data-

driven design of a residual evaluation system is another objective.

4.2 Construction of the I/O data model

Before constructing the data-based process model, assume

E(r(k)yT (k − i)) = 0, ∀ i = −s, · · · ,−1, 0, 1, · · · , sp (4.4)

E(r(k)θT (k − j)) = 0, ∀ j = 1, 2, · · · , sp. (4.5)

The first assumption means that the residual vector is uncorrelated with the low-level

process variables, which is quite reasonable in the open-loop configuration. The second

assumption indicates that the residual signals are uncorrelated with the past KPI mea-

surements, which can be generally guaranteed by the feature of residual generators (e.g.

Kalman filter generates white residuals that are uncorrelated with past data).

Based on the residual generator (4.1-4.2), an I/O data model can be constructed as

Θk,k+s = ΓsẐk +Hy,sYk,k+s +Hr,sRk,k+s (4.6)
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4 Data-driven KPI monitoring techniques for lumped-parameter processes

where Θk,k+s is built from θ(k), k = 1, · · · , k + s+Nc − 1 as

Θk,k+s =


θ(k) · · · θ(k +Nc − 1)
...

...
...

θ(k + s) · · · θ(k + s+Nc − 1)

 ∈ R(s+1)l×Nc ,

Yk,k+s ∈ R(s+1)m×Nc and Rk,k+s ∈ R(s+1)l×Nc are built in the same way as Θk,k+s, Ẑk is

built as

Ẑk =
[
ẑ(k) · · · ẑ(k +Nc − 1)

]
∈ Rn×Nc , (4.7)

Γs is represented by C and A as

Γs =


C

CA
...

CAs

 ∈ R(s+1)l×n, (4.8)

Hy,s is represented by (A,B,C,D) as

Hy,s =



D 0 · · · · · · 0

CB D 0 · · · 0

CAB CB D
. . .

...
...

. . .
. . .

. . . 0

CAs−1B · · · CAB CB D


∈ R(s+1)l×(s+1)m, (4.9)

Hr,s ∈ R(s+1)l×(s+1)l is represented by (A,L,C, I) in the same style as Hy,s.

Similarly to (4.6), the I/O data model can be written as[
Yk,k+s

Θk,k+s

]
=

[
I 0

Hy,s Γs

][
Yk,k+s

Ẑk

]
+

[
0

Hr,sRk,k+s

]
. (4.10)

Let Ψs :=

[
I 0

Hy,s Γs

]
∈ R(s+1)(m+l)×((s+1)m+n), if there exists a matrix Ψ⊥

s ∈

R((s+1)l−n)×(s+1)(m+l) such that Ψ⊥
s Ψs = 0, then similar to the kernel representation (4.3),

Rs = Ψ⊥
s

[
Yk,k+s

Θk,k+s

]
= Ψ⊥

s

[
0

Hr,sRk,k+s

]
(4.11)

is a kernel representation of the I/O model (4.10) as well, which maps the process and

KPI data onto multiple residual signals.
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4.3 Identification of the kernel representation

Compared to (4.3) where the dynamic information is embedded in the kernel parameter

functions N̂(p) and M̂(p), in the data-based kernel representation (4.11), the I/O data

are stacked columnwise such that the dynamic information can be numerically extracted.

The data-based kernel Ψ⊥
s is a constant matrix to be identified.

Note that in the fault-free case, the primary residual Rk,k+s consists of the process and

measurement noise. To reveal the basic idea behind identification, let us first consider the

noise-free case, i.e. [
Yk,k+s

Θk,k+s

]
=

[
I 0

Hy,s Γs

][
Yk,k+s

Ẑk

]
. (4.12)

Assume that

[
Yk,k+s

Ẑk

]
has full row rank, then we know that the left null space of

[
Yk,k+s

Θk,k+s

]

is identical to the left null space of

[
I 0

Hy,s Γs

]
. Thus the kernel representation of the data-

based form can be identified from the process and KPI data using e.g. an SVD. However,

in practice noise is inevitable since the process and KPI data sets are contaminated by

noise. Neglecting the noise component will decrease the identification quality and further

the performance of the monitoring system. To lower the influence of noise on identification,

let us build another extended state equation as

Ẑk = (A− LC)spẐk−sp +Φy,spYk−sp,k−1 +Φθ,spΘk−sp,k−1 (4.13)

where

Φy,sp =
[
(A− LC)sp−1(B− LD) · · · (A− LC)(B− LD) (B− LD)

]
∈ Rn×spm,

(4.14)

Φθ,sp =
[
(A− LC)sp−1L · · · (A− LC)L L

]
∈ Rn×spl, (4.15)

Yk−sp,k−1 and Θk−sp,k−1 are built from y(i), i = k − sp, · · · , k + Nc − 2, and θ(i), i =

k − sp, · · · , k +Nc − 2, in the same way as Θk,k+s.

Since the basic requirement for observer design is stability, i.e. all eigenvalues of (A−
LC) are inside the unit circle. As a result for a sufficiently large integer sp, we have

(A− LC)sp ≈ 0, which makes

Ẑk ≈
[
Φy,sp Φθ,sp

] [Yk−sp,k−1

Θk−sp,k−1

]
:= ΦspΩk−sp,k−1 (4.16)
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Substituting (4.16) into (4.6) gives

Θk,k+s ≈ ΓsΦspΩk−sp,k−1 +Hy,sYk,k+s +Hr,sRk,k+s (4.17)

:=
[
ΓsΦsp Hy,s

] [Ωk−sp,k−1

Yk,k+s

]
+Hr,sRk,k+s. (4.18)

In the above representation, Θk,k+s and

[
Ωk−sp,k−1

Yk,k+s

]
are known from the process I/O

data. Hr,sRk,k+s represents the noise component and is unknown. We expect to iden-

tify
[
ΓsΦsp Hy,s

]
using a regular left transformation. By projecting Θk,k+s onto the

orthogonal subspace of the row subspace of

[
Ωk−sp,k−1

Yk,k+s

]
, we have

projΩk−sp,k−1

Yk,k+s


⊥ Θk,k+s

:= Θk,k+s

I−

[
Ωk−sp,k−1

Yk,k+s

]T [Ωk−sp,k−1

Yk,k+s

][
Ωk−sp,k−1

Yk,k+s

]T−1 [
Ωk−sp,k−1

Yk,k+s

]
= Hr,sRk,k+s

I−

[
Ωk−sp,k−1

Yk,k+s

]T [Ωk−sp,k−1

Yk,k+s

][
Ωk−sp,k−1

Yk,k+s

]T−1 [
Ωk−sp,k−1

Yk,k+s

]
= Hr,sRk,k+s (4.19)

where the last step is due to the assumptions made in (4.4-4.5).

Now do the following LQ-decompositionΩk−sp,k−1

Yk,k+s

Θk,k+s

 =

L11 0 0

L21 L22 0

L31 L23 L33


QT

1

QT
2

QT
3

 . (4.20)

Since

[
L11 0

L21 L22

]
is full rank, the null subspace of

[
Ωk−sp,k−1

Yk,k+s

]
is identical to the null

subspace of

[
QT

1

QT
2

] (
note

[
Ωk−sp,k−1

Yk,k+s

]
=

[
L11 0

L21 L22

][
QT

1

QT
2

])
, which is spanned by the

rows of QT
3 . As a result, the projection of Θk,k+s onto the orthogonal subspace of the row

subspace of

[
Ωk−sp,k−1

Yk,k+s

]
is identical to the projection of Θk,k+s onto the row subspace of
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4.3 Identification of the kernel representation

QT
3 , i.e.

projΩk−sp,k−1

Yk,k+s


⊥ Θk,k+s := Θk,k+s

(
Q3(Q

T
3Q3)

−1QT
3

)
= L33Q

T
3

=⇒ Hr,sRk,k+s = L33Q
T
3 . (4.21)

Thus based on the LQ-decomposition (4.20), we have[
Yk,k+s

Θk,k+s

]
=

[
L21 L22

L31 L23

][
QT

2

QT
3

]
+

[
0

Hr,sRk,k+s

]
(4.22)

where

[
L21 L22

L31 L23

][
QT

2

QT
3

]
is the denoised process and KPI data. Further since

[
QT

2

QT
3

]
is of

full row rank, the left null subspace of

[
I 0

Hy,s Γs

]
is identical to the left null subspace of[

L21 L22

L31 L23

]
. By an SVD

[
L21 L22

L31 L23

]
=
[
U1 U2

] [Λ1 0

0 Λ2

][
VT

1

VT
2

]
, (4.23)

we have

Λ2 ≈ 0 =⇒ Ψ⊥
s = PUT

2 ∈ R((s+1)l−n)×(s+1)(m+l) (4.24)

where P ∈ R((s+1)l−n)×((s+1)l−n) denotes the regular transformation matrix. Subsequently,

for simplicity of notation, we assume that P = I. At this stage, the data-based kernel

representation (4.11) has been realized based only on the normal process and KPI data,

i.e.

Res = Ψ⊥
s

[
Yk,k+s

Θk,k+s

]
:=
[
−Ψ⊥

s,y Ψ⊥
s,θ

] [Yk,k+s

Θk,k+s

]
= Ψ⊥

s,θL33Q
T
3 (4.25)

where Ψ⊥
s,y = −Ψ⊥

s (:, 1 : (s+ 1)m) and Ψ⊥
s,θ = Ψ⊥

s (:, (s+ 1)m+ 1 : (s+ 1)(m+ l)). It is

important to mention that except for the parameters of the kernel representation (4.11),

the covariance matrix of the extended form of the primary residual is simultaneously

identified, which is L33L
T
33/(Nc − 1).
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4 Data-driven KPI monitoring techniques for lumped-parameter processes

Algorithm 4.1. Data-driven design of kernel representation based residual generator

S1: Select design parameters s, sp and construct process I/O data matrices Ωk−sp,k−1,

Yk,k+s and Θk,k+s.

S2: Perform an LQ-decomposition (4.20) and then an SVD (4.23).

S3: Extract the kernel representation matrices Ψ⊥
s,y and Ψ⊥

s,θ.

S4: Determine the thresholds from (4.28), (4.30), (4.31).

Based on the stacked online data ys(k) and θs(k),

S5: Build the test statistic T 2 or SPE or T 2
r .

S6: Check the decision logic:test statistic > threshold ⇒ faulty

otherwise ⇒ fault-free.

4.4 Kernel representation based KPI monitoring

4.4.1 Parity space based residual generation

Denote θs(k) = [θT (k), · · · ,θT (k+ s)]T and ys(k) = [yT (k), · · · ,yT (k+ s)]T . A residual

generator can be constructed as follows

r(s+1)l−n(k) = Ψ⊥
s,θθs(k)−Ψ⊥

s,yys(k) ∼ N (0,Σr) (4.26)

where Σr ≈
Ψ⊥

s,θL33LT
33(Ψ

⊥
s,θ)

T

Nc−1
.

For residual evaluation, the T 2 test statistic is

T 2 = rT(s+1)l−nΣ
−1
r r(s+1)l−n, (4.27)

and the corresponding threshold is determined by the χ2-distribution as

Jth,T 2 = χ2
1−α((s+ 1)l − n) (4.28)

where (s+ 1)l − n is the degree of freedom and α is the significance level.

However, in practice Σr could be rank deficient and cause the standard T 2 to fail. To

avoid this problem, we can apply the SPE statistic for residual evaluation:

SPE = rT(s+1)l−nr(s+1)l−n. (4.29)

Its threshold is determined as

Jth,SPE = gχ2
1−α(h) (4.30)
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4.4 Kernel representation based KPI monitoring

where α is the significance level, g = S̃
2µSPE

is a scaling factor and h =
2µ2

SPE

S̃
is the degree

of freedom of the χ2-distribution with µSPE and S̃ being the sample mean and covariance

of the SPE statistic.

Alternatively, we can do the following SVD(
Ψ⊥

s,θL33L
T
33(Ψ

⊥
s,θ)

T

Nc − 1

)
= PΛPT ,

Λ = diag(λ21, · · · , λ2(s+1)l−n), λ
2
1 ≥ · · · ≥ λ2(s+1)l−n.

Then with

Ω =



λ2
(s+1)l−n

λ2
1

0 · · · 0

0
. . .

. . .
...

...
. . .

λ2
(s+1)l−n

λ2
(s+1)l−n−1

0

0 · · · 0
λ2
(s+1)l−n

λ2
(s+1)l−n

(= 1)


,

a revised T 2 statistic can be established as

T 2
r = rT(s+1)l−nΩr(s+1)l−n. (4.31)

The threshold can be determined by Jth,T 2
r
= λ2(s+1)l−nχ

2
1−α((s+ 1)l − n).

Algorithm 4.1 summarizes the proposed kernel representation based residual generation

scheme.

Remark: From the previous section we know that s is selected much larger than the actual

system order n. Based on (4.27) or the other two test statistics, a decision can only be

made with s+ 1 available online samples of the process and KPI data. This might result

in some obstacles for online monitoring since detection delay is an important criterion for

monitoring systems. On the other hand, online computation costs and memory require-

ments are high. As a result, it is desirable to design alternative monitoring schemes to

overcome these difficulties.

4.4.2 Diagnostic observer based residual generation

From Chapter 2, we know that (4.26) is actually a PS-based multiple residual genera-

tor. Based on each single residual generator, an equivalent diagnostic observer can be

constructed. Let

αs = [αs,0,αs,1, · · · ,αs,s], βs = [βs,0,βs,1, · · · ,βs,s] (4.32)
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4 Data-driven KPI monitoring techniques for lumped-parameter processes

where αs ∈ R1×(s+1)l denotes one parity vector that can for instance be set to any row of

Ψ⊥
s,θ, βs ∈ R1×(s+1)m or their linear combination. Correspondingly, βs is obtained from

Ψ⊥
s,y. As described in Chapter 2, we can build an equivalent diagnostic observer from αs

and βs as

zd(k + 1) = Gzd(k) +Hy(k) + Lθ(k) (4.33)

r(k) = vθ(k)−wzd(k)− qy(k) (4.34)

where zd(k) = Tz(k) ∈ Rs, and

• G is stable,

• TA−GT = LC, H = TB− LD, and

• vC−wT = 0, q = vD.

Now define

G =



0 0 · · · 0 0

1 0 · · · 0 0
...

. . .
. . .

...
...

0 · · · 1 0 0

0 · · · 0 1 0


∈ Rs×s, T =


αs,1 · · · αs,s−1 αs,s

αs,2 · · · αs,s 0
... . .

.
. .
. ...

αs,s 0 · · · 0




C
...

CAs−2

CAs−1

 .

It is obvious that the first condition is satisfied since all the eigenvalues of G are zero.

According to TA−GT = LC we can get

L = −


α0

...

αs,s−1

 . (4.35)

Define w = [0, · · · , 0, 1] ∈ R1×s, from vC − wT = 0 we know v = αs,s ∈ R1×l. Based

on T,L,v, H = TB − LD,q = vD and the fact that Ψ⊥
s,y = Ψ⊥

s,θHy,s, H and q can be

constructed from βs as

H =


βs,0

...

βs,s−1

 , q = βs,s. (4.36)

It has been proven in [24] that the parity space based residual generator and the diagnostic

observer are equivalent. Based on this result we have r(k) ∼ N (0,
αsL33LT

33α
T
s

Nc−1
).
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4.4 Kernel representation based KPI monitoring

Algorithm 4.2. Kernel representation based diagnostic observer

S1: Based on the kernel matrices Ψ⊥
s,y and Ψ⊥

s,θ, construct the vectors αs and βs.

S2: Select a proper g = [g1, · · · , gs]T and construct the following matrices:

G =



0 0 · · · 0 g1

1 0 . . . 0 g2

0 1
. . .

...
...

...
. . .

. . . 0 gs−1

0 · · · 0 1 gs


,



q = βs(sm+ 1 : (s+ 1)m),

H =


βs,0

...

βs,s−1

+ gq,

v = αs(sl + 1 : (s+ 1)l),

w = [0, · · · , 0, 1] ∈ R1×s,
L = −


α0

...

αs,s−1

− gv.

S3: Determine the threshold as Jth,T 2 = χ2
1−α(1).

Based on the online data y(k) and θ(k),

S4: Run the residual generator (4.33-4.34) and evaluation the residual using

T 2 = r(k)2/σ2
r .

S5: Check the decision logic:T 2 > Jth,T 2 ⇒ faulty,

otherwise ⇒ fault-free.

Similarly to the previous subsection, a T 2-type test statistic can be designed for residual

evaluation and the corresponding threshold can be determined using its statistical distri-

bution. In addition, as discussed in Chapter 2, more design freedom can be introduced

by adding the last column of G with the design parameter vector g ∈ Rs. Algorithm 4.2

gives the total design procedure for a data-driven DO.

4.4.3 Recursive predictor based residual generation

Both the PS-based residual generator and the DO make use of online KPI measurements.

In industrial applications, there are situations where some KPIs are not online/real-time

measurable. This section will be devoted to the issue of KPI motoring when they are not

measured. We assume the order of the process under consideration is known, and s = n.

In the single KPI case, we know that T is invertible (zd(k) = Tz(k) ∈ Rn) and v ∈ R.

Based on the process description, we can rewrite the DO as

zd(k + 1) = (G+ lcT−1)zd(k) + (H+ lD)y(k) + lr(k) (4.37)

θ̂(k) =
1

v
wzd(k) +

1

v
qy(k). (4.38)
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4 Data-driven KPI monitoring techniques for lumped-parameter processes

Suppose that the parameters of the kernel representation are given as

αn = [αn,0, · · · , αn,n−1, 1] ∈ R1×(n+1), βn = [βn,0,βn,1, · · · ,βn,n] ∈ R1×(n+1)m,

then we have v = 1 and

TA−GT = lc =⇒ TAT−1 = G+ lcT−1 = G+ lw

Based on the defined G and w, it is straightforward to derive that

zd(k + 1) = Azzd(k) +Bzy(k) (4.39)

θ̂(k) = czzd(k) + dzy(k). (4.40)

is in the observability canonical form where Az := G + lw,Bz := (H + lβn,n), cz = w

and dz = βn,n. It is clear that θ̂ can be considered as a “soft” sensor for the KPI.

For monitoring, assume that the process variables are dynamically changing but the

KPI is quasi-steady and denote its reference value as θ̄(k), which can be e.g. obtained

from the SCADA system. During the steady KPI periods we have E(θ̂(k) − θ̄(k)) = 0

and the variance of the estimated KPI is σ̂2 = E((θ̂(k) − θ̄(k))2). For offline training,

variance of the estimated KPI can be obtained as

σ̂2 =
N∑
k=1

(θ̂(k)− θ̄(k))2/(N − 1).

For online monitoring, the T 2 test statistic can be applied as

T 2 =
(θ̂(k)− θ̄(k))2

σ̂2

The corresponding threshold can be determined from the χ2-distribution as Jth,T 2 =

χ2
1−α(1).

4.5 Numerical examples

In this section, the following dynamic system is considered:

z(k + 1) = Az(k) +By(k) + η(k),

θ(k) = cz(k) + ξ(k)

where

A =

0 1 0

0 0 1

0 −0.04 −0.4

 , B =

1 0

0 1

1 1

 , z(0) =
00
0

 , c = [1 1 1
]
.
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(a) Measurements of KPIs and process variables. At the 501st sample, a fault happens in the process. 

It is not caused by low-level process variable changes and influences the KPI 

 

  

(b) Monitoring result with parity space based 

approach 

(c) Monitoring result with diagnostic observer 
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Figure 4.1: Illustration of the kernel representation based process monitoring

η is multivariate normally distributed with a zero-mean vector and covariance matrix

diag(0.1, 0.1, 0.1), ξ is normally distributed with zero mean and variance 0.01, and η and

ξ are mutually uncorrelated. Four hundred samples of fault-free data are generated for

the offline training. A fault affecting the KPI has been introduced at the 501st sample.

As shown in Figure 4.1-a, both process variables are not affected.

To identify the kernel matrices, we select s = 3 and sp = 10. By checking the magni-

tudes of

[
Λ1 0

0 Λ2

]
which is given in (4.23), n is determined to be 4. All parity vectors

are used to build the PS-based residual generator. For constructing the DO, one of those

parity vectors is utilized. Figures 4.1-b and 4.1-c show the monitoring results with the

PS-based approach and the DO, respectively. It can be observed that both charts have

successfully detected the fault. Since the recursive predictor uses only online process
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4 Data-driven KPI monitoring techniques for lumped-parameter processes

variables (without online KPI data), this type of faults cannot be detected.

4.6 Concluding remarks

This chapter discusses some new results for data-driven design of model-based monitoring

techniques for dynamic processes. Different from the standard two-step approach which

relies on the system identification, the new methods are able to directly identify the process

monitoring systems. Among them, PS-based method is the simplest and is directly built

from the kernel matrices. However, it relies on the past data during online phase, which

not only consumes valuable computation resources, but also can cause long detection

delays. A DO can be easily constructed from any parity vector. It does not need the past

data for residual generation and is computationally more efficient. In addition, for the

case that the KPI is not online measurable, the recursive predictor can be used. Since it

uses only the low-level process measurements, the monitoring performance is restricted.

For instance, those faults which do not impact the KPI cannot be detected. Except for

the cases discussed in Chapters 3 and 4, many real processes cannot be described by either

static equations or ODEs. To describe increasingly complex systems, PDEs are frequently

used. The next chapter will focus on the monitoring system design for such processes.

52
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distributed-parameter processes

Except for static processes and LPPs, DPPs are frequently encountered in the industry

as well, especially in continuous manufacturing processes like paper machine or hot strip

mill [19, 20, 28, 45, 95]. For these processes, the KPIs, e.g. moisture or thickness of the

paper, thickness or temperature of the steel strip, are closely related to the enterprise

profit and should be automatically monitored. However, the KPI monitoring techniques

developed for static processes or LPPs cannot be applied. Since the manipulated vari-

ables and the state variables are functions of both the time and the space, their dynamics

is generally described by PDEs that are often derived from the fundamental balance of

mass, momentum and energy. Traditional approaches for handling DPPs are based on

the simplifying assumption that the distributed functions are spatially uniform. How-

ever, with ever increasing global competence, it is difficult to meet strict economic and

environmental requirements with those traditional techniques.

Motivated by these observations, in the present work, a statistical KPI monitoring

framework is proposed for multiple-input and multiple-output (MIMO) DPPs. For the

reason of simplicity and considering the fact that most differential equations arising in

science and engineering are first or second order [39], we will develop KPI monitoring

techniques based on a general description of second order PDEs. The major objective of

this chapter is to obtain a kernel representation of the MIMO DPPs for residual gener-

ation. For this purpose, the concept of projection in infinite dimensional space plays an

essential role. Aiming at reducing the application effort, data-driven realization of the

obtained kernel representation is another objective of this chapter.

5.1 Problem formulation

We consider the DPPs described by the following equations
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5 KPI monitoring techniques for distributed-parameter processes

A(x)
∂2z(x, t)

∂t2
+B(x)

∂2z(x, t)

∂t∂x
+C(x)

∂2z(x, t)

∂x2
+D(x)

∂z(x, t)

∂t

+E(x)
∂z(x, t)

∂x
+ F(x)z(x, t) +G(x)y(x, t) + η(x, t) = 0, (5.1)

θ(x, t) =

∫ β

α

H(x, x′)z(x′, t)dx′ +

∫ β

α

I(x, x′)
∂z(x′, t)

∂t
dx′ + ξ(x, t), (5.2)

α ≤ x ≤ β, t >= 0

which are subject to either the Dirichlet boundary conditions

z(α, t) = zα(t), z(β, t) = zβ(t) (5.3)

or the Neumann boundary conditions

∂jz(x, t)

∂xj
|x=αj

= zαj
(t),

∂jz(x, t)

∂xj
|x=βj

= zβj
(t), j = 1, 2 (5.4)

(or their combinations) and the initial condition

z(x, t) = z0(x) (5.5)

where z(x, t) = [z1(x, t) · · · zn(x, t)]T ∈ Hn denotes a vector of the state vari-

ables in the Hilbert space, y(x, t) = [y1(x, t) · · · ym(x, t)]T ∈ Hm and θ(x, t) =

[θ1(x, t) · · · θl(x, t)]T ∈ Hl denote the manipulated low-level process variables and the

measured KPIs1, receptively (they are called “snapshots” of the corresponding variables),

η(x, t) ∈ Hn and ξ(x, t) ∈ Hm represent random process and measurement noises,

A(x),B(x),C(x),D(x),E(x),F(x),G(x),H(x, x′) and I(x, x′) are matrices of functions

with approximate dimensions, x ∈ [α, β] denotes the spatial coordinate and t denotes the

time.

The objective of this chapter is to establish a statistical KPI monitoring framework for

practical DPPs. To achieve it, the following tasks are formulated:

• establishing a kernel representation of (5.1) in the discrete-time form as

r(x′) =

∫ β

α

[Ψ⊥(p, x, x′)]

[
y(x)

θ(x)

]
dx (5.6)

where the effects of the manipulated variables are eliminated. Here y(x) and θ(x)

are the z-transformations of y(x, t) and θ(x, t) with respect to t, p denotes the

z-transformation operator.

1(5.2) is a general form of sensor measurement functions. Currently, most KPIs are measured

at several fixed locations. However, with the rapid developing sensing technologies, they can

also be measured over the whole spatial range, e.g. using high temperature infrared cameras

(http://www.directindustry.com), the temperature profile of the hot strip can be measured.
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• designing a residual evaluator by

– utilizing a proper GLR test function and

– determining the threshold Jth in the statistical framework with deterministic

projection error

• realizing the kernel representation (5.6) based on the process I/O data and the

equivalent observer-based implementation form.

5.2 The concept of projection in infinite dimensional case

The concept of projection (of functions) in infinite dimensional case plays an essential role

for designing a kernel representation based residual generator for (5.1). To understand

it, let us first review the orthogonal projection of vectors on a known finite dimensional

subspace.

Given an arbitrary vector q ∈ Rn and a full column-rank matrix P =
[
p1 · · · pγ

]
∈

Rn×γ, we want to find an optimal q̂ ∈ Rn that lies in the column space of P satisfying

(q− q̂)T (q− q̂) = min
r∈P

(q− r)T (q− r). (5.7)

Let us denote q̂ =
∑γ

i=1 zipi = Pz, where z = [z1, · · · , zγ]T , zi ∈ R, i = 1, · · · , γ. The

task for projection is actually to find the unknown coefficients zi, i = 1, · · · , γ. According
to Theorem B.1, we know that the optimal q can be found by solving

(q− q̂)Tpi = 0, for i = 1, · · · , γ. (5.8)

Substitute q̂ = Pz into (5.8) we can obtain

z = (PTP)−1PTq ⇒ q̂ = Pz = P(PTP)−1PTq := projP q

where q̂ is the orthogonal projection of q on the subspace P.

Example 5.1. As illustrated in Figure 5.1, let q = [2, 1]T (“raw data”) be an arbitrary

vector in R2 and p1 = [3, 1]T be a given subspace/direction in R2. Based on the above

formula we can get q̂ = [2.1, 0.7]T (“projected data”). It can easily be verified that q̂− q

is perpendicular to p1 thus the best estimate of q using p1 is q̂.

Differently, in the infinite dimensional case the basis of subspace P as well as

the arbitrary function q are in the Hilbert space [39]. Let us denote p(x) =

[p1(x), · · · , pγ(x)]T , pi ∈ H, i = 1, · · · , γ, q ∈ H. Note that here q is no longer some
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Figure 5.1: Orthogonal projection of a vector in finite dimensional space

constant (vector), but a function of x. The task is to approximate q(x) in the subspace

with p(x) as basis functions. The optimal approximation q̂(x) should satisfy∫ β

α

(q(x)− q̂(x))2 dx = min
r(x)∈span{p(x)}

∫ β

α

(q(x)− r(x))2 dx. (5.9)

According to Theorem B.2, the optimal q̂(x) can be found by solving∫ β

α

(q(x)− q̂(x)) pi(x)dx = 0 for i = 1, · · · , γ. (5.10)

By substituting q̂(x) =
∑γ

i=1 zipi(x) into (5.10) we have
z1
...

zγ

 =


∫ β

α
p1(x)p1(x)dx · · ·

∫ β

α
p1(x)pγ(x)dx

...
. . .

...∫ β

α
pγ(x)p1(x)dx · · ·

∫ β

α
pγ(x)pγ(x)dx


−1 

∫ β

α
p1(x)q(x)dx

...∫ β

α
pγ(x)q(x)dx

 ∈ Rγ, (5.11)

⇒ z :=

(∫ β

α

p(x)pT (x)dx

)−1 ∫ β

α

p(x)q(x)dx. (5.12)

Thus the projection of q(x) onto p(x) is given as q̂(x) = pT (x)z := projp(x) q(x) where

z = [z1, · · · , zγ]T ∈ Rγ.

Example 5.2. As depicted in Figure 5.2, q(x) = sin(πx) is an arbitrary function in H
(“raw snapshot”) and pi(x), i = 1, 2, 3, is the given basis function. Using the above formula

we can get z = [0.1148, 1.1584, 0.1148]T . Based on it, q̂ =
∑3

i=1 z(i)pi(x) is calculated and

is plotted in Figure 5.2-b (“projected snapshot”). q̂(x) is the best approximation of q(x)

in span{p(x)} with the error term
∫ 1

0
(q(x)− q̂(x))2dx minimized.
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Figure 5.2: Projection of a function in infinite dimensional space

5.3 Design of KPI monitoring systems for DPPs

5.3.1 Projection-based process lumping

From (5.1) we know that A(x), · · · ,F(x) are model parameter matrices, y(x, t) is a given

manipulated vector and zi(x, t), for i = 1, · · · , n, is the i -th infinite dimensional state

variable. In order to design an implementable monitoring system, the order of state

variables must be reduced to a finite one. For this purpose, the concept of projection

discussed in the previous section plays a central role and forms the basis for an optimal

solution. To simplify notations, let us define the following operations [39]:

(m(x), n(x)) =

∫ β

α

m(x)n(x)dx, ||m(x)||2 =
∫ β

α

m2(x)dx (5.13)

where m(x), n(x) ∈ H.

In addition, a linear operator2 on z(x, t) is defined as

L(z(x, t)) = A(x)
∂2z(x, t)

∂t2
+B(x)

∂2z(x, t)

∂t∂x
+C(x)

∂2z(x, t)

∂x2

+D(x)
∂z(x, t)

∂t
+ E(x)

∂z(x, t)

∂x
+ F(x)z(x, t), x ∈ [α, β]. (5.14)

Based on a given subspace, we want to represent z(x, t) in such a way that the total

approximation error is minimized, i.e.

tr
(
||L(z(x, t))− L(ẑ(x, t))||2

)
= min . (5.15)

2An operator is a function with functions as inputs. It is equivalent to the first “function”.
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where

||L(z(x, t))− L(ẑ(x, t))||2 :=
||L1(z(x, t))− L1(ẑ(x, t))||2 · · · (L1(z(x, t))− L1(ẑ(x, t)),Ln(z(x, t))− Ln(ẑ(x, t)))

...
. . .

...

(Ln(z(x, t))− Ln(ẑ(x, t)),L1(z(x, t))− L1(ẑ(x, t))) · · · ||Ln(z(x, t))− Ln(ẑ(x, t))||2


with

L(·) :=


L1(·)
...

Ln(·)

 ∈ Hn.

In the following, we will apply the concept of projection to solve this optimization problem.

Let V(x) := span{v1(x), · · · , vγ(x), vγ+1(x), · · · } denotes the infinite dimensional function

space that zi(x, t), i = 1, · · · , n, belongs to. Equivalently, we can write

zi(x, t) =
∞∑
j=1

z̄∗j,i(t)vj(x), i = 1, · · · , n (5.16)

where z̄∗j,i(t), for i = 1, · · · , n, j = 1, · · · ,∞, is the weighting coefficient.

Note that the dimension of V(x) is infinite. In order to reduce the order of the problem,

a subspace V̂(x) := span{v1(x), · · · , vγ(x)} ⊂ V(x) is defined a priori. We want to find

the best representation of z(x, t) from V̂(x) in the form of

ẑi(x, t) =

γ∑
j=1

z̄j,i(t)vj(x), i = 1, · · · , n (5.17)

such that (5.15) holds. Here z̄j,i, for i = 1, · · · , n, j = 1, · · · , γ, is the weighting coefficient

that needs to be determined. By applying the concept of projection in infinite dimensional

case, we have the Theorem B.3. Based on it, the solution of (5.15) can be formulated as

(L(z(x, t)− ẑ(x, t)), vi(x)) = 0,∀ i = 1, · · · , γ. (5.18)

ẑ(x, t) satisfying (5.18) is defined as the projection:

ẑ(x, t) = projV̂|L z(x, t). (5.19)

which gives the best estimate of z(x, t) from V̂(x) for the L-norm defined as

|| · ||2L = tr
(
||L(·)||2

)
.
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Different from the standard projection discussed in the previous section, the coefficient

z̄j,i, i = 1, · · · , i, j = 1, · · · , γ, from (5.17) cannot be obtained directly. To this end, the

original PDE system (5.1) needs to be reformulated into its weak form or variational form

as (
L(z(x, t)) +G(x)y(x, t) + η(x, t), v(x)

)
:=∫ β

α

(
L(z(x, t)) +G(x)y(x, t) + η(x, t)

)
v(x)dx = 0,∀ v(x) ∈ V(x) (5.20)

Note that the above equation needs to be held for any function in V(x) and it results in

infinite equations. Using the given subspace V̂(x), we can approximate the weak form by

solving ((
L(ẑ(x, t)) +G(x)y(x, t) + η(x, t)

)
, vi(x)

)
= 0,∀ i = 1, · · · , γ, (5.21)

which is an ODE system with a minimal number of nγ equations.

Subtracting (5.21) from (5.20), we see that

(L(z(x, t))− L(ẑ(x, t)), vi(x)) = 0,∀ i = 1, · · · , γ.

Based on Theorem B.3, we know that the ẑ(x, t) given by (5.21) provides the best ap-

proximation of z(x, t) in the sense of L-norm, i.e. (5.15) is satisfied.

Remark: The solution given by (5.21) is known in mathematics as the Galerkin approxi-

mation of the true solution z(x, t). It serves as the core of finite element method. Basics

about numerical approaches for PDE can be found e.g. in [39] and references therein.

Before giving the final approximation solution, let us define the following notations

Φ(x) =


ϕ11(x) · · · ϕ1n(x)
...

. . .
...

ϕn1(x) · · · ϕnn(x)

 ∈ Hn×n (5.22)

Φ̄ij =


(v1(x), ϕij(x)v1(x)) · · · (v1(x), ϕij(x)vγ(x))

...
. . .

...

(vγ(x), ϕij(x)v1(x)) · · · (vγ(x), ϕij(x)vγ(x))

 ∈ Rγ×γ, (5.23)

Φ̄ =


Φ̄11 · · · Φ̄1n

...
. . .

...

Φ̄n1 · · · Φ̄nn

 ∈ Rnγ×nγ (5.24)

where V̂ = span{v1(x), · · · , vγ(x)} is the given subspace. The lumped model (5.21) can

be reformulated as
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Ā¨̄z+ B̄ ˙̄z+ C̄z̄+ D̄ ˙̄z+ Ēz̄+ F̄z̄+ Ḡȳ + η̄ = 0 (5.25)

where Ā, D̄, Ē, F̄ ∈ Rnγ×nγ are constructed from A(x),D(x),E(x),F(x) ∈ Hn×n respec-

tively in the same way as Φ̄ from Φ(x), B̄ ∈ Rnγ×nγ is constructed from B(x) ∈ Hn×n

similar to (5.22-5.24) except that (5.23) is replaced by

B̄ij =


(v1(x), bij(x)

dv1
dx

(x)) · · · (v1(x), bij(x)
dvγ
dx

(x))
...

. . .
...

(vγ(x), bij(x)
dv1
dx

(x)) · · · (vγ(x), bij(x)
dvγ
dx

(x))

 ∈ Rγ×γ , (5.26)

C̄ ∈ Rnγ×nγ is from C(x) ∈ Hn×n with (5.23) replaced by

C̄ij =


cij(x)v1(x)

dv1(x)
dx

|βα · · · cij(x)v1(x)
dvγ(x)

dx
|βα

...
. . .

...

cij(x)vγ(x)
dv1(x)
dx

|βα · · · cij(x)vγ(x)
dvγ(x)

dx
|βα



−


( d
dx
(cij(x)v1(x)),

dv1(x)
dx

) · · · ( d
dx
(cij(x)v1(x)),

dvγ(x)

dx
)

...
. . .

...

( d
dx
(cij(x)vγ(x)),

dv1(x)
dx

) · · · ( d
dx
(cij(x)vγ(x)),

dvγ(x)

dx
)

 , (5.27)

Ḡ ∈ Rnγ×mγ is from G(x) ∈ Hn×m with (5.23) constructed as

Ḡij =


(v1(x), gij(x)v1(x)) · · · (v1(x), gij(x)vγ(x))

...
. . .

...

(vγ(x), gij(x)v1(x)) · · · (vγ(x), gij(x)vγ(x))

 ∈ Rγ×γ, (5.28)

the lumped state vector z̄ is defined as

z̄ = vec



z̄1,1 · · · z̄1,n
...

. . .
...

z̄γ,1 · · · z̄γ,n


 ∈ Rnγ×1 (5.29)

and the lumped process variable ȳ is

ȳ := (v̂(x),y(x, t)) = vec



(v1(x), y1(x, t)) · · · (v1(x), ym(x, t))

...
. . .

...

(vγ(x), y1(x, t)) · · · (vγ(x), ym(x, t))


 ∈ Rmγ×1 (5.30)
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and

η̄ := (v̂(x),η(x, t)) = vec



(v1(x), η1(x, t)) · · · (v1(x), ηn(x, t))

...
. . .

...

(vγ(x), η1(x, t)) · · · (vγ(x), ηn(x, t))


 ∈ Rnγ×1 (5.31)

with

v̂(x) =
[
v1(x) · · · vγ(x)

]T
∈ Hγ.

Finally, the second order system (5.25) can be arranged as a first order one as

ż = Acz+Bcȳ + Ecη̄ (5.32)

where

Ac =

[
0 I

−Ā−1(C̄+ Ē+ F̄) −Ā−1(B̄+ D̄)

]
∈ R2nγ×2nγ,

Bc =

[
0

−Ā−1Ḡ

]
∈ R2nγ×mγ, Ec =

[
0

−Ā−1

]
∈ R2nγ×nγ z =

[
z̄

˙̄z

]
∈ R2nγ.

Remark: Note that z(t) or z(k) is used to denote the lumped state vector for both

continuous- or discrete-time descriptions. For the simplicity of notations, we drop t or k

in the equations if it is not critical. It is different from z(x, t) which is dependent on the

space.

Similarly, the output equation (5.2) can be represented as

θ(x, t) = Cc(x)z(t) + ξ(x, t) (5.33)

where

Cc(x) =
[
Cc1(x) Cc2(x)

]
, Cc1(x) =


Cc1,1,1(x) · · · Cc1,1,n(x)

... ¨
...

Cc1,l,1(x) · · · Cc1,l,n(x)

 ∈ Hl×nγ,

Cc2(x) =


Cc2,1,1(x) · · · Cc2,1,n(x)

... ¨
...

Cc2,l,1(x) · · · Cc2,l,n(x)

 ∈ Hl×nγ,

Cc1,i,j(x) =
[
(hij(x, x

′), v1(x
′)) · · · (hij(x, x

′), vγ(x
′))
]
∈ H1×γ,

Cc2,i,j(x) =
[
(iij(x, x

′), v1(x
′)) · · · (iij(x, x

′), vγ(x
′))
]
∈ H1×γ.
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with hij(x, x
′) and iij(x, x

′) denoting the elements of H(x, x′) and I(x, x′), respectively.

Since our process monitoring algorithms will be implemented in digital computers, it is

convenient to rewrite (5.32) and (5.33) into time-discrete form as

z(k + 1) = Adz(k) +Bd(v̂(x),y(x, k)) + Ed(v̂(x),η(x, k)) (5.34)

θ(x, k) = Cd(x)z(k) + ξ(x, k), (5.35)

where Ad,Bd and Ed are obtained through temporal discretization and Cd(x) represents

the measurement equation.

5.3.2 Kernel representation based residual generation

Based on the lumped description (5.34-5.35), we propose the following observer

ẑ(k + 1) = Adẑ(k) +Bd(v̂(x),y(x, k)) +
(
L(x),θ(x, k)− θ̂(x, k)

)
(5.36)

θ̂(x, k) = Cd(x)ẑ(k), r(x, k) = θ(x, k)− θ̂(x, k) (5.37)

where

L(x) =


l1,1(x) · · · l1,l(x)
...

. . .
...

l2nγ,1(x) · · · l2nγ,l(x)

 ∈ H2nγ×l (5.38)

is an appropriately chosen observer gain matrix in H-space. The error r(x, k) will serve

as the residual signal used for monitoring. By defining e(k) = z(k) − ẑ(k), the observer

dynamics is given as

e(k + 1) = (Ad − (L(x),Cd(x)) e(k) + Ed(v̂(x),η(x, k))− (L(x),ξ(x, k)) (5.39)

r(x, k) = Cd(x)e(k) + ξ(x, k) (5.40)

where L(x) should be selected in such a way that (Ad − (L(x),Cd(x)) is stable. Since

L(x) is a matrix with elements as functions of x, the standard observer design theory

discussed in Chapter 2 cannot be applied. In the following, we will propose a new design

scheme for L(x).

For convenience, let us assume L(x) can be designed based on v̂(x) which is defined in

the previous section. Denote

li,j(x) =

γ∑
k=1

αi,j,k vk(x), i = 1, · · · , 2nγ, j = 1, · · · , l, (5.41)
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then we can derive

(L(x),Cd(x)) = LLCL (5.42)

where

LL =
[
LL,1 · · · LL,l

]
∈ R2nγ×lγ,CL =


CL,1

...

CL,l

 ∈ Rlγ×2nγ,LL,j =


α1,j,1 · · · α1,j,γ

...
. . .

...

α2nγ,j,1 · · · α2nγ,j,γ

 ,

CL,j =


(v1(x), cd,j,1(x)) · · · (v1(x), cd,j,2nγ(x))

...
. . .

...

(vγ(x), cd,j,1(x)) · · · (vγ(x), cd,j,2nγ(x))

 , j = 1, · · · , l

with

Cd(x) =


cd,j,1(x) · · · cd,j,2nγ(x)

...
. . .

...

cd,j,1(x) · · · cd,j,2nγ(x)

 .
Thus under the assumption that (Ad,CL) is observable, the matrix LL can be designed

using the standard observer theory, e.g. Matlab functions or simply LL = (Ad −AL)C
+
L

where AL is a desired observer dynamic matrix. Note that LL contains the weighting

coefficients for (5.41). Based on it, the observer matrix L(x) can be established as

L(x) =
[
LL,1v̂(x) · · · LL,lv̂(x)

]
. (5.43)

As a result, the implementation form of (5.36-5.37) is

ẑ(k + 1) = Ādẑ(k) +Bd(v̂(x),y(x, k)) + (L(x),θ(x, k)) (5.44)

r(x, k) = θ(x, k)−Cd(x)ẑ(k) (5.45)

where Ād = (Ad − (L(x),Cd(x))). The equivalent kernel representation is written as

r(x′) =

([
−N̂(p, x, x′) M̂(p, x, x′)

] [y(x)
θ(x)

])
(5.46)

= (−N̂(p, x, x′),y(x)) + (M̂(p, x, x′),θ(x))

where

N̂(p, x, x′) = Cd(x
′)(pI− Ād)

−1Bdv̂(x),

M̂(p, x, x′) = I−Cd(x
′)(pI− Ād)

−1L(x).
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Figure 5.3: Kernel representation based residual generator for DPP

As shown in Figure 5.3, the kernel
[
−N̂(p, x, x′) M̂(p, x, x′)

]
represents redundancy

of the DPP. But different from the scheme developed for LPP, the I/O “snapshot” data

are manipulated by integration over space instead of multiplication.

Kernel representation for a common industrial configuration:

Nowadays, in production processes like the paper machine and the hot strip mill, the

process variables are manipulated by lots of low-level components/subsystems while the

state variables are measured at several fixed locations and are considered as technical

KPIs. Under the assumption that KPIs are measured by lnm sensors located at xm =

[xm,1, · · · , xm,nm ]
T ∈ Rnm , the lumped description of these processes can be simplified as

z(k + 1) = Adz(k) +Bd(v̂(x),y(x, k)) + Ed(v̂(x),η(x, k)),

θ(k) = Cd,mz(k) + ξ(k),

where

Cd,m =


v̂xm 0 · · · 0 0 · · · 0

0
. . .

. . .
...

...
. . .

...
...

. . . v̂xm 0 0 · · · 0

0 · · · 0 v̂xm 0 · · · 0

 ∈ Rlnm×2nγ, v̂xm =


v̂(xm,1)

T

...

v̂(xm,nm)
T

 ∈ Rnm×γ

and ξ(k) ∈ Rlnm represents the measurement noise.

Consequently, the observer (5.36-5.37) can be reduced to

ẑ(k + 1) = (Ad − LCd,m)ẑ(k) +Bd(v̂(x),y(x, k)) + Lθ(k) (5.47)

θ̂(k) = Cd,mẑ(k), r(k) = θ(k)− θ̂(k) (5.48)
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Figure 5.4: Statistical distribution of residual signal

where L ∈ R2nγ×lnm is a standard observer gain matrix. In this case, the kernel represen-

tation becomes

r =
[
−N̂(p) M̂(p)

] [(v̂(x),y(x))
θ

]
(5.49)

where

N̂(p) = Cd,m(pI−Ad + LCd,m)
−1Bd,

M̂(p) = I−Cd,m(pI−Ad + LCd,m)
−1L.

5.3.3 Residual evaluation and threshold setting

The residual generated by either (5.36-5.37) or (5.47-5.48) provides a measure of discrep-

ancy between the evolution of the actual DPP and the approximated finite dimensional

description. Due to the projection-based lumping, the residual signal contains not only

the impacts of random factors i.e. process and measurement noise, but also a deter-

ministic part that is representing the projection error. In order to achieve satisfactory

monitoring performance, a residual evaluation scheme will be established for the stochas-

tic system with deterministic error. To this end, the dynamic equations of (5.36-5.37) and
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(5.47-5.48) are reformulated as

e(k + 1) = Āde(k) + Edη̄(k)− ξ̄(k)−∆θ̄(k)

r(x, k) = Cd(x)e(k) + ξ(x, k) +∆θ(x, k),

ξ̄(k) = (L(x),ξ(x, k)),∆θ̄ = (L(x),∆θ(x, k)),

r(k) = ||r(x, k)||

and

e(k + 1) = (Ad − LCd,m)e(k) + Edη̄(k)− Lξ(k)− L∆θ(k)

r(k) = Cd,me(k) + ξ(k) +∆θ(k)

where ∆θ(x, k) and ∆θ(k) represent the deterministic estimation error which is not con-

tained in the reduced process description.

Assume that process and measurement noise is random distributed with zero mean

values, then as shown in Figure 5.4, in the fault-free case, rd(k) is non-zero. It is caused

by projection error. In faulty case we have

E(r(k)) = rd(k) + rf (k), r(k) ∈ Rnr

where rf (k) represents the impacts of faults. In the following, we will apply the GLR

technique introduced in Chapter 2 to establish a residual evaluation scheme. For this

purpose, based on given steady state residual r(k), i = 1, · · · , N , the GLR is computed as

2SN
1 = 2

N∑
k=1

log
Pf (r(k))

Pd(r(k))

=
N∑
k=1

(r(k)− rd)
TΣ−1(r(k)− rd)−

N∑
k=1

(r(k)− rd − rf )
TΣ−1(r(k)− rd − rf )

= 2NrTf Σ
−1r̄− 2NrTf Σ

−1rd −NrTf Σ
−1rf , r̄ =

1

N

N∑
k=1

r(k),

= N r̄TΣ−1r̄−N
(
(r̄− rf )

TΣ−1(r̄− rf ) + 2rTf Σ
−1rd

)
(5.50)

where

Pd(ri) =
1√

(2π)nr det(Σ)
e

1
2 (r(k)−rd)

TΣ−1(r(k)−rd),

Pf(ri) =
1√

(2π)nr det(Σ)
e

1
2 (r(k)−rd−rf )

TΣ−1(r(k)−rd−rf ).
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Algorithm 5.1. Model-based KPI monitoring scheme for DPP

S1: Determine the mesh size and the basis functions which span V̂(x).
S2: Based on the original DPP model (5.1-5.2), derive the finite dimensional

model (5.34-5.35).

S3: Design the residual generator (5.44-5.45) or (5.47-5.48) with properly selected

observer gain matrix L(x) or L.

S4: Based on the residual evaluation function (5.51), determine a threshold

according to the noncentral χ2-distribution as (5.53).

Based on the online data and the obtained parameters,

S5: Generate residual with (5.44-5.45) or (5.47-5.48), and evaluate it with (5.51).

S6: Check the decision logic (5.54).

From the above equation, we can see that the maximal likelihood estimate of fault

is rf = r̄ − rd (by calculating the partial derivative of the second term of (5.50) with

respect to rf and setting it to zero). If a fault happens and a corresponding residual

r(k) is generated, then as shown in Figure 5.4, the likelihood ratio Pf (r(k))/Pd(r(k)) will

generally be greater than one. However, SN
1 is not suitable to be a test statistic since rf

is unknown a prior. For residual evaluation, we adopt the quadratic T 2 test statistic:

T 2 = N

(
1

N

N∑
k=1

r(k)

)T

Σ−1

(
1

N

N∑
k=1

r(k)

)
(5.51)

where Σ represents the covariance matrix of the steady-state residual vector and N is

the length of evaluation window. If we have SN
1 > 0, or equivalently N r̄TΣ−1r̄ > (2r̄ −

rd)
TΣ−1rd, then a decision saying that the process is faulty is likely to be made. In

practice however, noise will make this decision making scheme fail to work due to too

many false alarms.

In the following, we will use a robust decision marking scheme based on the statistical

distribution of T 2. If the covariance matrix of noise is available, then Σ can be obtained

by solving some static Lyapunov equations [44]. Otherwise, sufficient residual data R =[
r(1), · · · , r(Nr)

]
should be generated offline for estimating Σ:

Σ ≈
(R− rd1

T
Nr
)(R− rd1

T
Nr
)T

Nr − 1
, rd ≈

1

Nr

Nr∑
k=1

r(k). (5.52)

Under normal operating condition, we have r(k) ∼ N (rd,Σ). As a result, the T 2 test

statistic is noncentrally χ2-distributed with nr degrees of freedom and the noncentrality

parameter is NrTdΣ
−1rd. The distribution of test statistic is

T 2 ∼ χ2(nr, NrTdΣ
−1rd)
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For a given significance level α, the threshold is determined as

Jth = χ2
1−α(nr, r

T
dΣ

−1rd) (5.53)

and the decision logic is as follows:

If T 2 > Jth, then faulty; otherwise, fault-free. (5.54)

The design steps based on given DPP model is summarized in Algorithm 5.1

5.4 Data-driven realization of KPI monitoring systems

In this section, we will realize the model-based KPI monitoring scheme in a data-driven

manner. Available are following “snapshots” of the manipulated variables and the KPIs:

Y(x) = {y(x, 1), · · · ,y(x,N)},Θ(x) = {θ(x, 1), · · · ,θ(x,N)}.

Our first objective is to realize (5.46) in the time domain, which will serve as an initial

residual generator.

Rewrite (5.36-5.37) as

ẑ(k + 1) = Adẑ(k) +Bd(v̂(x),y(x, k)) + (L(x), r(x, k)) , (5.55)

θ(x, k) = Cd(x)ẑ(k) + r(x, k). (5.56)

The dimension of θ(x, k) can be reduced by projecting it onto the subspace V̂(x), i.e.

θi(x, k) ≈ projV̂(x) θi(x, k) = v̂T (x)¯̄θi,

¯̄θi = (v̂(x), v̂T (x))−1(v̂(x), θi(x, k)) ∈ Rγ, i = 1, · · · , l.

In the given subspace V̂(x), the weighting vector ¯̄θi, i = 1, · · · , l, can be used to represent

the KPI data θ(x, k). Motivated by it, by (row-wise) multiplying both sides of (5.56)

with v̂(x) ∈ Hγ and then integrating over space, we have
(v̂(x), θ1(x, k))

...

(v̂(x), θl(x, k))

 =


(v̂(x), r1(x, k))

...

(v̂(x), rl(x, k))

+


(v̂(x), cd,1(x))

...

(v̂(x), cd,l(x))

 ẑ(k), Cd(x) :=


cd,1(x)
...

cd,l(x)

 .
By introducing θ̄i(k) = (v̂(x), θi(x, k)), r̄i(k) = (v̂(x), ri(x, k)) and C̄d,i = (v̂(x), cd,i(x)),

for i = 1, · · · , l, (5.56) can be alternatively formulated as

θ̄(k) = C̄dẑ(k) + r̄(k)
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5.4 Data-driven realization of KPI monitoring systems

where

θ̄(k) =


θ̄1(k)
...

θ̄l(k)

 , r̄(k) =

r̄1(k)
...

r̄l(k)

 , C̄d =


C̄d,1

...

C̄d,l

 ∈ Rlγ×2nγ.

In addition, according to (5.43), (L(x), r(x, k)) can be written as

(L(x), r(x, k)) =
[
LL,1 · · · LL,l

]
(v̂(x), r1(x, k))

...

(v̂(x), rl(x, k))

 . (5.57)

Based on it, an alternative residual generator in lumped form can be formulated as

ẑ(k + 1) = Adẑ(k) +Bd(v̂(x),y(x, k)) + LLr̄(k) (5.58)

r̄(k) = (v̂(x),θ(x, k))− C̄dẑ(k), (5.59)

where (v̂(x),θ(x, k)) = θ̄(k).

It can be observed from the previous sections that the determination of the subspace

V̂(x) plays an essential role for establishing residual generators. Although the basis of

the subspace can be easily selected by using the piece-wise polynomials with less process

knowledge, the number of basis functions is generally unnecessarily high. In the following

subsection, we will briefly introduce the basic idea of Karhumen-Loève (KL)-expansion,

which is a popular dimension reduction method in the infinite dimensional domain and

delivers a minimal number of basis functions for the subspace V̂(x) based on the I/O

“snapshot” data. The data-driven realization of (5.58-5.59) will be continued afterwards.

5.4.1 KL-expansion for optimal subspace selection

To determine a set of basis functions that span the available data, let us rearrange the

I/O “snapshot” data as

d(x, k) =
[
y1(x, k) · · · ym(x, k), θ1(x, k) · · · θl(x, k)

]
,

Φ(x) =
[
d(x, 1) · · · d(x,N)

]
∈ HNϕ×1, Nϕ = (m+ l)N

and denote

Φ(x) =
[
ϕ1(x) · · · ϕNϕ

(x)
]
∈ HNϕ×1. (5.60)
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(a) Snapshots of process variable (b) Snapshots of KPI 
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Figure 5.5: Illustration of “snapshot” data

Suppose the basis function vi(x) ∈ V̂, i = 1, · · · , γ, can be represented by the “snapshot”

data as

vi(x) =

Nϕ∑
k=1

ψk,iϕk(x) (5.61)

then the task is to determine the coefficient ψk,i, k = 1, · · · , Nϕ. Following the description

of [77], the basis function vi(x) that most closely match the “snapshot” data maximizes

1

Nϕ

Nϕ∑
k=1

||(ϕk(x), vi(x)||2 (5.62)

with ||vi(x)|| = 1. The above optimization problem is not numerically direct solvable,

thus the following function is defined

K(x, x′) =
1

Nϕ

Nϕ∑
k=1

ϕk(x)ϕk(x
′). (5.63)

Based on it, we have
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5.4 Data-driven realization of KPI monitoring systems

((K(x, x′), vi(x
′)) , vi(x)) =

(∫ β

α

K(x, x′)vi(x
′)dx′, vi(x)

)
=

∫ β

α

∫ β

α

K(x, x′)vi(x
′)dx′vi(x)dx

=
1

Nϕ

Nϕ∑
k=1

∫ β

α

∫ β

α

ϕk(x)ϕk(x
′)vi(x

′)vi(x)dx
′dx

=
1

Nϕ

Nϕ∑
k=1

((ϕk(x), vi(x)) (ϕk(x
′), vi(x

′)))

=
1

Nϕ

Nϕ∑
k=1

||(ϕk(x), vi(x)||2.

Then the problem of maximizing (5.62) is equivalent to the following eigenvalue problem

(K(x, x′), vi(x
′)) = λivi(x) (5.64)

subject to ||vi(x)|| = 1, where λi is the i-th eigenvalue. By submitting (5.61) and (5.63)

into the above equation, we get

Nϕ∑
k=1

ϕk(x)

 Nϕ∑
l=1

(
1

Nϕ

∫ β

α

ϕk(x
′)ϕl(x

′)dx′
)
ψl,i

 =

Nϕ∑
k=1

ϕk(x)λiψk,i. (5.65)

The largest eigenvalue λi can be found by solving the following matrix eigenvalue problem
1
Nϕ

∫ β

α
ϕ1(x

′)ϕ1(x
′)dx′ · · · 1

Nϕ

∫ β

α
ϕ1(x

′)ϕNϕ
(x′)dx′

...
. . .

...
1
Nϕ

∫ β

α
ϕNϕ

(x′)ϕ1(x
′)dx′ · · · 1

Nϕ

∫ β

α
ϕNϕ

(x′)ϕNϕ
(x′)dx′



ψ1,i

...

ψNϕ,i

 = λi


ψ1,i

...

ψNϕ,i

 . (5.66)

Denote ψ̄i =
[
ψ1,i · · · ψNϕ,i

]T
as the eigenvector corresponding to the eigenvalue λi,

then the optimal subspace can be determined by the first γ eigenvectors which contain the

most information of the “snapshot” data (e.g.
∑γ

i=1 λi/
∑Nϕ

i=1 λi > 1− α). The identified

basis functions for the finite dimensional subspace is given as

v̂(x) =

 Nϕ∑
j=1

ψj,1ϕj(x), · · · ,
Nϕ∑
i=1

ψj,γϕj(x)

T

= [v1(x), · · · , vγ(x)]T . (5.67)

Example 5.3. In this example, as shown in Figure 5.5, the “snapshot” data for the

process variable are given as y(x) =
[
sin(πx) x2 e−x

]T
and the KPI “snapshot” are
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(a) Ordered eigenvalues (b) Identified basis functions 
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Figure 5.6: KL expansion based subspace identification

given as θ(x) = rand(3, 3) ×
[
sin(πx) x2 e−x

]T
. The data are first rearranged using

(5.60) and based on it, the data matrix from the left side of (5.66) is constructed. By doing

an SVD of it, all eigenvalues and eigenvectors can be identified. As plotted in Figure 5.6-

a, the first three eigenvalues are dominant and contain all the information. Thus we

set γ = 3 and the corresponding basis functions are plotted in Figure 5.6-b. To briefly

demonstrate its performance, we have projected both “snapshot” data onto the identified

subspace. Figure 5.7 shows the projection error for all “snapshot” data. We can see that

the identified subspace can well describe the “snapshot” data.

Remark: Similar to the data-driven design scheme addressed in the previous chapter, the

quality of “snapshot” data plays an important role for optimal subspace selection and

further for performance of the realized monitoring system. In general, these “snapshot”

data should be sufficiently excited and cover the whole normal operation region. Other-

wise, the mesh size and basis functions should be manually determined according to basic

process knowledge.

5.4.2 Data-driven realization of the kernel representation

In this subsection we will continue to discuss the lumped residual generator (5.58-5.59).

In order to realize it in a data-driven way, we will use the following lumped data matrices

Ȳk,k+s =


(v̂(x),y(x, k)) · · · (v̂(x),y(x, k +Nc − 1))

...
. . .

...

(v̂(x),y(x, k + s)) · · · (v̂(x),y(x, k + s+Nc − 1))

 , (5.68)
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Figure 5.7: Projection error based on identified subspace

Θ̄k,k+s =


(v̂(x),θ(x, k)) · · · (v̂(x),θ(x, k +Nc − 1))

...
. . .

...

(v̂(x),θ(x, k + s)) · · · (v̂(x),θ(x, k + s+Nc − 1))

 . (5.69)

By following the procedures given in Chapter 4, the residual generator (5.58-5.59) can

be extended to

Θ̄k,k+s =
[
Γ̄sΦ̄sp H̄y,s

] [Ω̄k−sp,k−1

Ȳk,k+s

]
+ H̄r,sR̄k,k+s (5.70)

where Γ̄s, Φ̄sp , H̄y,s, H̄r,s have the same structure as in (4.18). Moreover, based on the

following LQ-decompositionΩ̄k−sp,k−1

Ȳk,k+s

Θ̄k,k+s

 =

L̄11 0 0

L̄21 L̄22 0

L̄31 L̄23 L̄33


Q̄T

1

Q̄T
2

Q̄T
3

 , (5.71)

Θ̄k,k+s =
[
L̄31 L̄23

] [Q̄T
1

Q̄T
2

]
+ L̄33Q̄

T
3 , (5.72)

we have

projΩ̄k−sp,k−1

Ȳk,k+s


⊥ Θ̄k,k+s = projQ̄T

3
Θ̄k,k+s, (5.73)

⇒ H̄r,sR̄k,k+s(Q̄3Q̄
T
3 ) = L̄33Q̄

T
3 . (5.74)
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Since (Q̄3Q̄
T
3 )

+ = (Q̄3Q̄
T
3 ), we have the following approximation

H̄r,sR̄k,k+s ≈ L̄33Q̄
T
3 (Q̄3Q̄

T
3 ) = L̄33Q̄

T
3 . (5.75)

Thus useful information about the lumped residual generator is mainly included in[
L̄21 L̄22

L̄31 L̄23

]
. By doing the following SVD,

[
L̄21 L̄22

L̄31 L̄23

]
=
[
Ū1 Ū2

] [Λ̄1 0

0 Λ̄2 ≈ 0

] [
V̄T

1 V̄T
2

]
, (5.76)

we have

Ψ̄
⊥
s =

[
−Ψ̄

⊥
s,y Ψ̄

⊥
s,θ

]
= ŪT

2 . (5.77)

As a result, the data-driven version of the kernel representation (5.6) is realized in the

subspace V̂(x) as

rs(k) =
[
−Ψ̄

⊥
s,y Ψ̄

⊥
s,θ

]


(v̂(x),y(x, k))
...

(v̂(x),y(x, k + s))

(v̂(x),θ(x, k))
...

(v̂(x),θ(x, k + s))


(5.78)

=

([
−Ψ̄

⊥
s,y(x) Ψ̄

⊥
s,θ(x)

]
,

[
ys(x, k)

θs(x, k)

])
(5.79)

where

ys(x, k) =
[
yT (x, k), · · · ,yT (x, k + s)

]T
, θs(x, k) =

[
θT (x, k), · · · ,θT (x, k + s)

]T
,

Ψ̄
⊥
s,y(x) =

[
Ψ̄

⊥
s,y,0(x) · · · Ψ̄

⊥
s,y,s(x)

]
, Ψ̄

⊥
s,θ(x) =

[
Ψ̄

⊥
s,θ,0(x) · · · Ψ̄

⊥
s,θ,s(x)

]
, (5.80)

Ψ̄
⊥
s,y,i(x) =

[
Ψ̄

⊥
s,y,i(:, 1 : γ)v̂(x) · · · Ψ̄

⊥
s,y,i(:, (m− 1)γ + 1 : mγ)v̂(x)

]
,

Ψ̄
⊥
s,θ,i(x) =

[
Ψ̄

⊥
s,θ,i(:, 1 : γ)v̂(x) · · · Ψ̄

⊥
s,θ,i(:, (l − 1)γ + 1 : lγ)v̂(x)

]
, i = 0, · · · , s

with

Ψ̄
⊥
s,y,i = Ψ̄

⊥
s,y(:, imγ + 1 : (i+ 1)mγ), Ψ̄

⊥
s,θ,i = Ψ̄

⊥
s,θ(:, ilγ + 1 : (i+ 1)lγ), i = 0, · · · , s.

The above kernel representation serves as a primary residual generator for the original

DPP. For residual evaluation, the following T 2 test statistic is used:

T 2 = rTs Σ
−1
r,srs (5.81)
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5.4 Data-driven realization of KPI monitoring systems

Algorithm 5.2. Data-driven realization of kernel representation of DPPs

Based on the offline “snapshot” data Y(x) and Θ(x),

S1: Determine the basis functions v1(x), · · · , vγ(x) using KL-expansion or manually.

S2: Constructed the lumped data matrices according to (5.68-5.69).

S3: Identify Ψ̄
⊥
s according to (5.77).

S4: Build Ψ̄
⊥
s,y(x) and Ψ̄

⊥
s,θ(x) using (5.80) and determine the threshold using (5.82).

Based on the online “snapshot” data ys(x, k) and θs(x, k),

S5: Construct the residual generator (5.79) and build the test statistic (5.81).

S6: Check the decision logic (5.54).

where Σr,s ≈ Ψ̄
⊥
s,θL̄33L̄

T
33(Ψ̄

⊥
s,θ)

T/(Nc − 1) or can be alternatively estimated using fault-

free residual data. In case that Σr,s is rank deficient, the same technique given in (4.31)

should be used. The threshold can be determined using the noncentral χ2-distribution as

Jth = χ2
1−α(ns, E(r)TΣ−1

r,sE(r)) (5.82)

where ns = size(Ψ̄⊥
s , 1).

The procedures for data-driven design of the kernel representation (5.6) are given in

Algorithm 5.2.

For the common industrial configuration:

As discussed in the previous section, distributed manipulation and lumped KPI mea-

suring is a common industrial configuration. A model-based residual generator has been

designed for it in (5.47-5.48), i.e.

ẑ(k + 1) = (Ad − LCd,m)ẑ(k) +Bd(v̂(x),y(x, k)) + Lr(k),

r(k) = θ(k)−Cd,mẑ(k).

To realize it in the data-driven framework, we need to construct the same lumped process

data as (5.68) and build the KPI data Θ̄k,k+s as

Θ̄k,k+s =


θ(k) · · · θ(k +Nc − 1)
...

...
...

θ(k + s) · · · θ(k + s+Nc − 1)

 ∈ R(s+1)l×Nc , (5.83)

where the original KPI data is denoted as Θ = [θk, · · · ,θ(k +N − 1)], N >> s+Nc.

Based on them, we could identify Ψ̄
⊥
s according to S3 from Algorithm 5.2. Finally the

following residual generator is achieved:

rs(k) = Ψ̄
⊥
s,θθs(k)−

(
Ψ̄

⊥
s,y(x),ys(x, k)

)
(5.84)
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5 KPI monitoring techniques for distributed-parameter processes

Algorithm 5.3. Data-driven realization of kernel representation of DPPs for a

common industrial configuration

Based on the offline “snapshot” data Y(x) and the KPI data Θ,

S1: Determine the basis functions v1(x), · · · , vγ(x) using KL-expansion or manually.

S2: Constructed the lumped process data matrix according to (5.68) and the KPI

data matrix as (5.83).

S3: Identify Ψ̄
⊥
s according to (5.77).

S4: Build Ψ̄
⊥
s,y(x) according to (5.80) and determine the threshold using (5.82).

Based on the online process “snapshot” data ys(x, k) and the KPI measurement θs(k),

S5: Construct the residual generator (5.84) and build the test statistic (5.81).

S6: Check the decision logic (5.54).

where Ψ̄
⊥
s,y(x) is built according to (5.80) and θs(k) = [θT (k), · · · ,θT (k + s)]T .

The whole design procedures for this common configuration is summarized in Algorithm

5.3.

5.4.3 Observer-based implementation scheme

The design procedure of observer-based implementation scheme follows the same proce-

dures as in Chapter 4. Let [αs,βs] be any vector belonging to the row space of Ψ̄
⊥
s and

denote

αs = [αs,0,αs,1, · · · ,αs,s], βs = [βs,0,βs,1, · · · ,βs,s] (5.85)

where αs,i ∈ R1×(s+1)mγ,βs,i ∈ R1×(s+1)lγ, i = 0, · · · , s.
By running S2 of algorithm 4.2, we can obtain the following observer

ẑ(k + 1) = Gẑ(k) +H(v̂(x),y(x, k)) + L(v̂(x),θ(x, k)) (5.86)

r(k) = v(v̂(x),θ(x, k))−wẑ(k)− q(v̂(x),y(x, k)) (5.87)

For residual evaluation, the T 2 statistic is established as

T 2 = r2/σ2
r (5.88)

where σ2
r = 1

N−1

∑N
k=1(r(k)−

1
N

∑N
k=1 r(k))

2.

The threshold is determined using noncentral χ2-distribution as

Jth = χ2
1−α(1, E(r)2/σ2

r). (5.89)

In Algorithm 5.4, the design of observer-based implementation scheme is summarized.
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Figure 5.8: A long thin rod being heated in a multizone furnace [95]

Algorithm 5.4. Data-driven realization of diagnostic observer for DPPs

S1: Run algorithm (5.2) to get Ψ̄⊥
s .

S2: Construct αs,βs and run S2 of Algorithm 4.2 to get the parameters of (5.86-5.87).

S3: Determine the threshold using (5.89).

Based on the online “snapshot” data y(x, k) and θ(x, k),

S4: Compute (v̂(x),y(x, k)) and (v̂(x),θ(x, k))

S5: Generate the residual as (5.86-5.87) and build the T 2 statistic as (5.88).

S6: Check the decision logic (5.54).

For the common industrial configuration:

For the common industrial configuration the observer (5.86-5.87) is simplified as

ẑ(k + 1) = Gẑ(k) +H(v̂(x),y(x, k)) + Lθ(k) (5.90)

r(k) = vθ(k)−wẑ(k)− q(v̂(x),y(x, k)) (5.91)

The design procedures are the same as Algorithm 5.4 except for S4− S5, which are:

Based on the online “snapshot” data y(x, k) and the KPI data θ(k),

S4: Compute (v̂(x),y(x, k)),

S5: Generate residual as (5.90-5.91) · · ·

5.5 Numerical examples

In this section, we consider the example given in [95, p. 149]. As shown in Figure 5.8,

a long, thin rod is heated in a multizone furnace. Its temperature distribution z(x, t) is

controlled by manipulating the heating rate y(x, t). It is assumed that both the manipu-

lated variable and the temperature (considered as the KPI) can be measurable along the
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5 KPI monitoring techniques for distributed-parameter processes

whole x. The (dimensionless) mathematical model of this process is

∂z(x, t)

∂t
=
∂2z(x, t)

∂x2
+ y(x, t) + η(x, t),

θ(x, t) = z(x, t) + ξ(x, t), 0 ≤ x ≤ 1, t ≥ 0

subject to

∂z(x, t)

∂x

∣∣∣∣
x=0,1

= 0.

In this example, the manipulated variable is set to be

y(x, k) =

3sin(πx)(1− e−k) + ϵ(x, k), k = 1, · · · , 200;

3sin(πx)e−k+200 + ϵ(x, k), k = 201, · · · , 2000

where ϵ(x, k) ∼ N (0, 1e− 4). For simulating the DPP, the projection-based model reduc-

tion technique is used where 101 polynomial basis functions are defined. Figure 5.9-a to

Figure 5.9-c show the temperature evolution of the rod. The initial temperature distribu-

tion can be seen from Figure 5.9-a and Figure 5.9-b at sample number 1, where the middle

of the rod is warmer than both sides. With heat flowing into the rod, the temperature

continuously increases. Constrained by the Neumann boundary conditions, both sides

of the rod are perfectly insulated and no heat flows outside them. As can be observed

from both figures, at about the 300th sample, the process arrives at the steady state. To

demonstrate the proposed monitoring algorithms, a fault is introduced during the 1401st-

1700th samples. This fault simulates the malfunctions that make heat flow out of the rod

from the left side. As given in Figure 5.9-a and Figure 5.9-c, the temperature decreases

significantly during that period. Since no further heat flows into the rod afterwards, the

temperature arrives at a new steady state which is lower than the previous one.

In order to test the proposed methods for the common industrial configuration, we

assume four temperature sensors are located at xm = [0.1, 0.4, 0.6, 0.9]T . Then the mea-

surement equation becomes

θ(t) =

∫ 1

0

∆(x− xm)(x, t)dx+ ξ̄(k)

where

∆(x− xm) =


δ(x− 0.1)

δ(x− 0.4)

δ(x− 0.6)

δ(x− 0.9)

 .
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Figure 5.9: Temperature evolution of the long thin rod in a simulation
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Figure 5.10: Model-based KPI monitoring result with measurable KPI snapshot
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Figure 5.11: Model-based KPI monitoring result with 4 KPI sensors
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Figure 5.12: Data-driven KPI monitoring result with measurable KPI snapshot
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Figure 5.13: Data-driven KPI monitoring result with 4 KPI sensors
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Figure 5.9-d to Figure 5.9-g show the KPI measurements given by these four sensors. We

can see that the closer the sensor is to the left side, the more sensitive they are to the

fault.

We first test Algorithm 5.1 with measurable KPI snapshot. Eleven polynomial basis

functions (detailed description can be found in our early publication [45]) are used to

construct the residual generator. By integrating the Neumann boundary conditions, the

order of residual generator becomes 9. We have designed l(x) in such a way that eigenval-

ues of (Ad − (l(x), cd(x))) are all 0.01. Figure 5.10 shows the monitoring result from the

601st sample. The 201st-600th samples are used to construct the test statistic and to de-

termine the threshold during the offline phase. We can see that the heat leakage has been

successfully monitored. Similarly, instead of using KPI snapshot, Figure 5.11 gives KPI

monitoring result based on the four KPI sensors described above. The fault magnitude is

enlarged by 5 times and the heat leakage has been detected as well. By comparing these

results, we can see that the KPI monitoring system based on the snapshot data is more

sensitive. The reason is that the snapshot data contain much more information about the

fault than the four sensors.

Based on I/O snapshot data, we have determined five basis functions based on the

KL-expansion method, which captures more than 99% variability of the data. The online

I/O snapshot data are then lumped on these identified basis functions. For identifying

the kernel representation, we choose s = 3 and sp = 5. Figure 5.12 gives the monitoring

result. We can see that the fault has been detected. For demonstrating the data-driven

KPI monitoring algorithm for the common industrial configuration, we choose s = 4 and

sp = 5. The monitoring result is given in Figure 5.13. It can be observed that the fault can

be successfully detected as well. Nevertheless, the sensitivity based on the KPI snapshot

data is higher.

5.6 Concluding remarks

In this chapter, some novel solutions for performance monitoring in DPPs have been pro-

posed. Based on the concept of projection in infinite dimensional space, a distributed

kernel representation of the original DPP is achieved. It represents the analytical redun-

dancy and serves as an initial residual generator. Then, a GLR-based residual revaluation

scheme is established for alarm generation. Considering the common industrial configu-

ration that the process variables are manipulated by lots of low-level components while

the KPIs are measured at several given locations, an alternative monitoring scheme has

been proposed. Since KPI “snapshot” data contain much richer information than the

distributed KPI sensor data, the monitoring performance is better as well. However, this
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5.6 Concluding remarks

scheme requires the online KPI “snapshots”. Aiming at reducing the design effort for

industrial application, the aforementioned schemes have been realized in a data-driven

way. Based on available I/O “snapshots” data, a set of basis functions with lower dimen-

sion is identified. Then by using the basic idea of the identification technique discussed

in Chapter 4, data-driven design of residual generators from the lumped data has been

realized. All developed schemes have been summarized in the form of algorithms and their

effectiveness is illustrated through numerical examples. In the next chapter, we will study

data-driven diagnosis issue of performance degradation. For those readers who are inter-

ested in process monitoring with varying system parameters and strong nonlinearities,

the early work [42, 84, 121] from our group are recommended.
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6 Data-driven diagnosis of

multiplicative fault

After key performance degradation is detected, it is desirable to diagnose and identify the

source(s) of the fault and apply necessary corrective actions. Diagnosis of multiplicative

fault plays an essential role in automation processes, especially for OEE improvement. The

well-known fault diagnosis methods include fisher discriminant analysis [17], structural

residual based approach [38] and contribution plots [81, 114]. The first two approaches

demand sufficient a priori knowledge about the fault, which is generally difficult to obtain

in large-scale processes. The third approach is very efficient and has been widely applied

in practice, however, misdiagnosis might be caused by the so-called fault “smearing”

effect [91, 114]. Recently, the reconstruction-based contribution (RBC) plots [2] scheme

is proposed as a revised approach for the traditional contribution plots. This scheme

diagnoses the fault by reconstructing the test statistic along each fault direction. It

assists process engineers by identifying the variables that are closely related to the faulty

component thus greatly narrows down the investigation scope.

Fault diagnosis based on RBC plots relies on an additive fault model. As discussed in

Chapter 2, this type of fault does not influence the variance/covariance of process data.

In practice, however, many technical components/loops in large-scale processes may fre-

quently be subject to multiplicative faults. One example is the increased variability of

process variables that are probably caused by wearing and aging of components or de-

creasing (loop) control performance. These faults could either cause direct economical

losses by producing low quality products or shorten components’ service life through very

active movements. Motivated by these observations, a new data-driven multiplicative

fault diagnosis scheme is developed [46]. Using the offline trained parameters and the

online data, the fault features are firstly extracted. Then, the risky component(s) can be

identified by evaluating the impacts of the fault on the test statistic along the correspond-

ing variable direction or subspace. The proposed scheme is suitable for complex processes

where manual investigations are either too costly or time-consuming. The objective is to

increase the OEE by narrowing down the investigation scope.
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6.1 Preliminaries and problem formulation

6.1 Preliminaries and problem formulation

In this section, we will first introduce the basic idea of an alternative scheme to the

RBC-based additive fault diagnosis method. The notations are consistent with Chapter

3. Similar to the RBC-based method, the alternative approach is based on the following

additive fault model

yaf = y + ξif (6.1)

where y ∼ N (0,Σy) denotes the normalized fault-free process vector, ξi = Im(:, i), for i =

1, · · · ,m, denotes the direction of fault, and f ∈ R denotes the fault magnitude. It is

clear that the mean vector of faulty variables is influenced, i.e. yaf ∼ N (ξif,Σy). Once

performance degradation is detected, we want to identify the contribution of each variable

(group) to it. By ranking them, the risky component(s) can be identified.

Available are the normalized process data y(k), for k = 1, · · · , N . For fault estimation,

we establish the following GLR test

SN
1 =

N∑
k=1

ln
Paf (y(k))

P (y(k))
=

1

2

N∑
k=1

(
yT (k)Σ−1

y y(k)− (y(k)− ξif)TΣ−1
y (y(k)− ξif)

)
=

N∑
k=1

yT (k)Σ−1
y ξif − N

2
(ξif)

TΣ−1
y ξif

(6.2)

where

P (y(k)) =
1√

(2π)m|Σy|
e(−

1
2y

T (k)Σ−1
y y(k)),

Paf(y(k)) =
1√

(2π)m|Σy|
e(−

1
2 (y(k)−ξif)

TΣ−1
y (y(k)−ξif)) .

The ξif which maximizes the GLR defined in (6.2) is the ξif which solves the following

linear equation system

∂SN
1

∂(ξif)
=

N∑
k=1

yT (k)Σ−1
y −N(ξif)

TΣ−1
y = 0. (6.3)

As a result, the maximum likelihood estimate (MLE) of ξif is given as

ξif̂ =
1

N

N∑
k=1

y(k) ⇒ f̂ ≈ ξTi
1

N

N∑
k=1

y(k). (6.4)
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6 Data-driven diagnosis of multiplicative fault

For simplicity, here we only consider the T 2 test statistic (3.9) for KPI monitoring.

Define Ωθ̂ = P1Λ
−1/2
1 S1S

T
1Λ

−1/2
1 PT

1 , by substituting (6.4) into (3.9), we have

T 2
θ̂,af

= (y − ξif̂)TΩθ̂(y − ξif̂) + 2yTΩθ̂ξif̂ − (ξif̂)
TΩθ̂ξif̂

where the first term on the right side represents the reconstructed fault-free test statistic

under the assumption that the fault happens along ξi,

T 2
R := (y − ξif̂)TΩθ̂(y − ξif̂)

while the remaining two represent fault contribution and are denoted as

∆T 2
θ̂,af,i

= 2yTΩθ̂ξif̂ − (ξif̂)
TΩθ̂ξif̂ .

As a result, in the faulty case, the test statistic contains information about the normal

process variation and the fault. Based on the estimation of f̂ , the contribution of the

fault to the test statistic can be constructed using the above equation. And it satisfies

∆T 2
θ̂,af,i

= T 2
θ̂,af

− T 2
R.

By plotting the average of ∆T 2
θ̂,af,i

, for i = 1, · · · ,m, i.e.

E(∆T 2
θ̂,af,i

) = ȳT (2I− ξiξTi )Ωθ̂ξiξ
T
i ȳ, ȳ =

1

N

N∑
k=1

y(k),

the variable(s) that is(are) related to the (additive) KPI degradation can be identified.

As discussed previously, multiplicative faults frequently happen in the industrial prac-

tice. Different from the additive faults which change the mean vectors, they generally

influence covariance matrices and thus are much harder to diagnose. The focus of this

chapter is to study the diagnosis issue of the multiplicative fault

ymf = Fy, F ̸= Im (6.5)

which increases the variability of the low-level process variables. According to their im-

pacts, multiplicative faults occurred in the process can be classified into two groups, i.e.

KPI-related faults and KPI-unrelated faults. Those KPI-related faults could cause direct

economic losses due to decreased product quality, production efficiency, etc. Although

the KPI-unrelated faults may not cause direct economic losses, they should be taken into

consideration as well since service life of components might be shortened thus cause losses

indirectly. From the monitoring and especially diagnosis point of view, the KPI-related

faults are further divided into
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6.2 KPI-related multiplicative fault diagnosis

• KPI-related faults in the low-level “process variable space” and

• KPI-related faults in the normalized “coefficient space”.

Based on the reformulated process model

θ ≈ Ψ̄ȳ

where ȳ is obtained with the whitening procedure ȳ = Λ
−1/2
1 PT

1 y ∼ N (0, Im̄) and Ψ̄ is

given in (3.8), a KPI-related multiplicative fault is defined to be in the “process variable

space” if

ȳmf ∼ N
(
0,Σȳmf

(̸= Im̄)
)
& Ψ̄f = Ψ̄

and in the “coefficient space” if

Ψ̄f ̸= Ψ̄ & ȳmf ∼ N (0, Im̄)

where ȳmf = Λ
−1/2
1 PT

1 ymf with ymf denoting the normalized faulty process measure-

ments. Ψ̄f is the faulty coefficient matrix defined as

Ψ̄f =
Θmf ((Λ1Kf1)

−1/2(PT
1 +∆PT

f1
)Ymf )

T

Nf − 1
(6.6)

with [
P1 +∆Pf1 P2 +∆Pf2

] [Λ1Kf1 0

0 Λ2Kf2

]

×

[
PT

1 +∆PT
f1

PT
2 +∆PT

f2

]
=

YmfY
T
mf

Nf − 1
,

Kf1 = diag(κf1 , · · · , κfm̄), Kf2 = diag(κfm̄+1 , · · · , κfm)

be an SVD of
YmfY

T
mf

Nf−1
. Θmf ∈ Rl×Nf and Ymf ∈ Rm×Nf denote the normalized data

matrices in the multiplicative faulty situation.

The objective of this chapter is to identify the most critical KPI-related/-unrelated

process variable(s) that is(are) influenced by the multiplicative faults.

6.2 KPI-related multiplicative fault diagnosis

The aim of this section is to diagnose those KPI-related multiplicative faults in the “pro-

cess variable space”. Suppose that the multiplicative fault has influenced the correlation
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6 Data-driven diagnosis of multiplicative fault

matrices Σy and Σθ. Based on (6.5), the impact of multiplicative fault on the process

variables is characterized as

Σymf
:= E(ymfy

T
mf ) = FΣyF

T (6.7)

where

Σy ≈
YYT

N − 1
, Σymf

≈
YmfY

T
mf

Nf − 1
(6.8)

denote the covariance matrices of the normal and faulty data, respectively. In this study,

we only consider these changes that increase the variabilities of the process variables

as faults and we assume rank(F) = m. Those changes which decrease variabilities are

supposed to have no negative impacts on the system performance. From (6.7) we know

that the covariance matrices of the fault-free and faulty process variables are of the same

rank.

Considering possible redundancies and collinearities, the multiplicative fault F can then

be estimated as

F̂ = V1M
1/2
1 Λ

−1/2
1 PT

1

where [
V1 V2

] [M1 0

0 M2

][
VT

1

VT
2

]
= Σymf

,

M1 = diag(m2
1, · · · ,m2

m̄), M2 = diag(m2
m̄+1, · · · ,m2

n),

m2
1 ≥ · · · ≥ m2

m̄ >> m2
m̄+1 ≥ · · · ≥ m2

m = 0

is an SVD of Σymf
, P1 and Λ1 are given in (3.7).

Although the estimated value F̂ plays an important role for fault analysis, in practice

it is more convenient to directly find out the root cause of the undesired variations. For

this purpose, it is necessary to identify G (instead of F) satisfying G = F+ as

G = P1Λ
1/2
1 M

−1/2
1 VT

1 :=


gT
1

...

gT
m

 ∈ Rm×m. (6.9)

From (6.7), it is clear that

ŷ = Gymf

denotes the fault-free process variables which are reconstructed from all the multiplicative

faults. Nevertheless, our purpose is to calculate the contributions of multiplicative fault

from each component to the test statistic. Denote

Gi =
[
g1 · · · gi−1 ξi gi+1 · · · gm

]T
∈ Rm×m (6.10)
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6.2 KPI-related multiplicative fault diagnosis

where ξi is the i-th column of the identity matrix, then

ŷfi = Giymf

contains the abnormal/undesired variation only in the i-th component. The unexpected

covariances among the remaining variables as well as their variances have been recon-

structed from the fault scenario. If there are multiple measurable variables corresponding

to the same component, then ξi should be extended to a proper matrix as well. The

contribution of the i-th component fault to the T 2
θ̂
statistic is

∆T 2
θ̂,i

= T 2
θ̂,mf

− T 2
θ̂,R

where

T 2
θ̂,mf

= ŷT
fi
P1Λ

−1/2
1 S1S

T
1Λ

−1/2
1 PT

1 ŷfi

is the calculated statistic in faulty scenario and

T 2
θ̂,R

= ŷT
fi
((P1 +∆P1)(Λ1K1)

−1/2S1

× ST
1 (Λ1K1)

−1/2(P1 +∆P1)
T )ŷfi

is the test statistic reconstructed from the i-th component fault with

GiΣymf
GT

i =
[
P1 +∆P1 P2 +∆P2

]
×

[
Λ1K1 0

0 Λ2K2

][
PT

1 +∆PT
1

PT
2 +∆PT

2

]
, (6.11)

K1 = diag(κ1, · · · , κm̄), K2 = diag(κm̄+1, · · · , κm).

As a result, the contribution of the i-th component fault to the T 2
θ̂
statistic is calculated

as

∆T 2
θ̂,i

= yT
mfG

T
i Φθ̂,iGiymf (6.12)

where

Φθ̂,i = −∆P1(Λ1K1)
−1/2S1S

T
1 (Λ1K1)

−1/2(P1 +∆P1)
T

+P1Πy,1S1S
T
1 (Λ1K1)

−1/2(P1 +∆P1)
T

+P1Λ
−1/2
1 S1S

T
1Πy,1(P1 +∆P1)

T

−P1Λ
−1/2
1 S1S

T
1Λ

−1/2
1 ∆PT

1
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6 Data-driven diagnosis of multiplicative fault

with

Πy,1 = diag

(√
κ1 − 1

λ1
√
κ1

, · · · ,
√
κm̄ − 1

λm̄
√
κm̄

)
.

Repeat (6.10), (6.11) and (6.12) for i = 1, · · · , γ where γ ≤ m is number of involved

components, contributions of each component fault to the T 2
θ̂
test statistic are obtained.

By plotting ∆T 2
θ̂,i
, for i = 1, · · · , γ, or its sample average on one chart over a certain time

window, the most critical components causing KPI degradation can be intuitively isolated

by comparing the magnitudes.

6.3 KPI-unrelated multiplicative fault diagnosis

As mentioned in the previous sections, those KPI-unrelated multiplicative faults have a

great influence on the performance of the whole process in the long run, especially for the

components’ service life. In order to find out the fault at an early stage, it is urgent to

establish an automatic diagnosis tool in the residual subspace. The diagnosis procedure

in the residual subspaces is quite similar to the one in the “process variable space” for

KPI-related faults. Based on (6.11), compute the contribution of the i-th component fault

to the T 2
θ⊥ statistic as

∆T 2
θ⊥,i = yT

mfG
T
i Φθ⊥,iGiymf (6.13)

where

Φθ⊥,i =− λ2m∆P1(Λ1K1)
−1/2S2S

T
2 (Λ1K1)

−1/2

× (P1 +∆P1)
T + λ2mP1Πy,1S2S

T
2 (Λ1K1)

−1/2(P1 +∆P1)
T

+ λ2mP1Λ
−1/2
1 S2S

T
2Πy,1(P1 +∆P1)

T

− λ2mP1Λ
−1/2
1 S2S

T
2Λ

−1/2
1 ∆PT

1

−∆P2(Ξ2 −Πy,2)(P2 +∆P2)
T

+P2 Πy,2(P2 +∆P2)
T −P2Ξ∆PT

2

with

Πy,2 = diag

(
λ2m(κm̄+1 − 1)

λ2m̄+1κm̄+1

, · · · , κm − 1

κm

)
, Ξ = diag(

λ2m
λ2m̄+1

, · · · , λ2m
λ2m−1

, 1).

By plotting ∆T 2
θ⊥,i

for i = 1, · · · , γ, on one chart, we can identify the most critical

components suffering KPI-unrelated fault.

90



6.4 Thresholds for multiplicative fault diagnosis

6.4 Thresholds for multiplicative fault diagnosis

Sometimes comparing the magnitudes of ∆T 2
θ̂,i
, for i = 1, · · · , γ, or ∆T 2

θ⊥,i
, for i =

1, · · · , γ, might give misleading results since even in the fault-free case, the contribu-

tions of all the components to the performance indices are uneven. Thus, similar to the

well-established process monitoring techniques, it is necessary to set some threshold to

increase fault diagnosis performance. Many statistical tools exist for this purpose. In the

field of process monitoring and fault diagnosis, Box’s theorems on quadratic forms for

variance analysis [11] and the kernel density estimation [102] (KDE) based technique are

two preferred tools.

Box’s theorems based approach. Under the assumption that y is multivariate normal

distributed, using Box’s theorems given in [11], the threshold for (6.12) can be determined

as

Jth,∆T 2
θ̂,i

= gθ̂,iχ
2
1−α(hθ̂,i), ∀i = 1, · · · , γ (6.14)

where

gθ̂,i =
σ2
θ̂,i

2µθ̂,i

, hθ̂,i =
2µ2

θ̂,i

σ2
θ̂,i

with

µθ̂,i =
1

N

N∑
k=1

∆T 2
θ̂,i
(k), σ2

θ̂,i
=

1

N − 1

N∑
k=1

(
∆T 2

θ̂,i
(k)− µθ̂,i

)2
.

Note that the above thresholds are for an individual sample. In our approach, the features

of multiplicative fault are identified from a piece of online data which are sufficient for

covariance matrix estimation. Thus under the assumption that ∆T 2
θ̂,i
(k), k = 1, · · · , Nf ,

is identically independent distributed with Nf denoting the size of the online data, the

following thresholds are obtained

J
Nf

th,∆T 2
θ̂,i

=
gθ̂,i
Nf

χ2
1−α(Nfhθ̂,i), i = 1, · · · , γ (6.15)

for testing 1
Nf

∑Nf

k=1∆T
2
θ̂,i
, i = 1, · · · , γ.

In the same way, the thresholds for (6.13) are given as

J
Nf

th,∆T 2
θ⊥,i

=
gθ⊥,i

Nf

χ2
1−α(Nfhθ⊥,i), i = 1, · · · , γ (6.16)

where

gθ⊥,i =
σ2
θ⊥,i

2µθ⊥,i

, hθ⊥,i =
2µ2

θ⊥,i

σ2
θ⊥,i

,

µθ⊥,i =
1

N

N∑
k=1

∆T 2
θ⊥,i(k), σ

2
θ⊥,i =

1

N − 1

N∑
k=1

(
∆T 2

θ⊥,i(k)− µθ⊥,i

)2
.
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6 Data-driven diagnosis of multiplicative fault

Algorithm 6.1. KPI-based multiplicative fault diagnosis

S1: Run Algorithm 3.2.

S2 Determine diagnosis thresholds from (6.15), (6.16) or using the KDE method.

Once a multiplicative fault is detected, based on the faulty data Ymf ∈ Rm×Nf ,

S3: Estimate Σymf
from (6.8) and build Gi as (6.9) and (6.10) for i = 1, · · · , γ.

S4 For each i, do an SVD on GiΣymf
GT

i =⇒ ∆P1,K1;∆P2,K2.

S5 Build ∆T 2
θ̂,i

or ∆T 2
θ⊥,i

for i = 1, · · · , γ.
S6 Check the decision logic:

∆T 2
θ̂,i
> J

Nf

th,∆T 2
θ̂,i

⇒ the i-th variable is responsable for KPI-related
performance degradation

∆T 2
θ⊥,i

> J
Nf

th,∆T 2
θ⊥,i

⇒ the i-th variable is responsable for KPI-unrealted
performance degradation.

KDE-based approach. KDE is a non-parametric approach to estimate the probabil-

ity density function of a random variable. It is a fundamental data smoothing prob-

lem where inferences about the population are made from finite data samples. Different

from the previous approach, from application viewpoint, KDE does not require that the

process variables y should be normal distributed. Based on the normal process data,

the ∆T 2
θ̂,i
(k), for i = 1, · · · , γ, and ∆T 2

θ⊥,i
(k), for i = 1, · · · , γ,are firstly computed for

k = 1, · · · , N . Then the empirical density estimates of them are obtained by means of

kernel extraction, whose principle is quite similar to the histogram. At last, the thresh-

olds are determined for given significance level α. In Matlab, for instance, the “ksdensity”

command can be used for it.

It is important to note that the methods for determining the thresholds for fault di-

agnosis in this subsection are different from the one discussed in Chapter 3 for process

monitoring. Box’s theorems based approach is a parametric one, it utilizes the a priori

distribution information, i.e χ2. Since the test statistics ∆T 2
θ̂,i
(k), for i = 1, · · · , γ, and

∆T 2
θ⊥,i

(k), for i = 1, · · · , γ, are not normalized, the impacts of their mean and variance

must be considered. When setting the thresholds, the mean and variance are estimated

from the offline training data of limited size. Thus the quality of training data plays

an important role (should be sufficiently excited). The KDE-based approach however,

requires no a priori distribution knowledge. The distribution structure as well the associ-

ated parameters are estimated from the training data. Thus the quality of training data

plays an even influential role. In this chapter, it is assumed that sufficient informative

data is available thus modelling error is neglected. Nevertheless, to deal with this issue,

adaptive implementation of the proposed method is of great interest.

Remarks on application scope and performance of the proposed scheme: The method
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Figure 6.1: Diagnosis result when fault happens in the “process variable space” with the KPIs

influenced

presented in this chapter is developed for linear (Gaussian) steady processes. It is a

data-driven approach applicable for general automation industrial processes. In practical

applications, process nonlinearity, time-varying parameters and strong dynamics could

decrease the diagnosis performance. Thus multi-mode, adaptive and dynamic diagnosis

approaches of multiplicative fault are of practical interest and demand more research

activities.

The design procedures for the KPI-based multiplicative fault detection and diagnosis

are summarized in Algorithm 6.1.

6.5 Numerical examples

In this section, the same numerical model given in Chapter 3 is considered. In the follow-

ing, we will show two examples for the faults that occur in the “process variable space”

with and without KPIs being influenced, respectively. The first fault is injected into the

3rd variable with F (3, 6) = 5. It influences the variances of both KPIs and has been

detected by the T 2
θ̂
test statistic. Figure 6.1 gives the diagnosis result. We can see that

the contribution of the 3rd variable is the largest and crosses the threshold. It indicates

that the real root cause is identified.

For the next example, we set F (11, 6) = 5, it is injected into the 11th variable. This

fault does not influence any KPI. However, the monitoring results indicate that it is a

KPI-unrelated fault since the T 2
θ⊥ statistic has detected the fault. Figure 6.2 shows the

diagnosis result, from which we can see the 11th variable is correctly identified as the root

cause.
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Figure 6.2: Diagnosis result when fault happens in the “process variable space” with the KPIs

not influenced

In addition, monte-carlo-simulation can be found in our recently work [47].

6.6 Concluding remarks

In this chapter, a new approach for the diagnosis of multiplicative performance degrada-

tion is discussed. It is a data-driven method and requires less engineering effort. Different

from the RBC-based approach which aims at diagnosing mean value change, the pro-

posed approach focuses on diagnosing covariance matrix change, which is quite common

in industry but not yet well addressed. The advantage of this approach is that no a

prior information about the fault is required. It makes use of the parameters extracted

from the fault-free data during the offline training phase and the online faulty data. The

major objective is to increase the OEE by narrowing down the investigation scope for the

operators. In addition, the diagnosis results can provide valuable guidelines for selecting

proper corrective actions.
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7 Application to benchmark processes

In this chapter, we will demonstrate the applications of the proposed methods to realistic

benchmark processes. Depending on the application scope of different methods, three

benchmark processes are used. The methods developed in Chapters 3 and 6, which are

suitable for large-scale, static automation processes, are applied to the Tennessee Eastman

(TE) benchmark process [30]. The continuous stirred tank heater (CSTH) benchmark

[107], which is a common subsystem widely existing in the chemical industry, is used

to test the dynamic methods proposed in Chapter 4. Finally, the methods proposed in

Chapter 5 are applied to the paper drying (PD) benchmark process [8, 9], which consists

of many spatially distributed heating cylinders and is the most important section in a

paper machine.

7.1 Case studies on the TE benchmark process

7.1.1 Process description

The TE benchmark is developed based on an actual industrial process by the corpo-

rate process control group of the Eastman Chemical Company. It is part of a complex

chemical plant where the reactants are provided by other upstream production facilities

and the products are further separated in a downstream refining section. Although some

components like kinetics, process and operating conditions are modified to protect the

proprietary nature of the process, the benchmark is highly realistic and widely used to

test various process control and monitoring schemes. Figure 7.1 shows the diagram of the

process. Four gaseous reactants A,D,E and C are fed to the reactor and the following

reactions take place

A(g) + C(g) +D(g) → G(liq),

A(g) + C(g) + E(g) → H(liq),

A(g) + E(g) → F (liq),

3D(g) → 2F (liq)
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Figure 7.1: The Tennessee Eastman test problem [30]

where G and H are liquid products and F is a byproduct. Since all reactions are exother-

mic, a water-cooling system is used to transfer additional heat in the reactor. The gen-

erated product stream passes through a condenser where liquid products are produced.

Then, the product stream is further fed to a “Vap/liq” separator where the noncondensed

components are recycled back to the reactor and the condensed components move to a

stripper which removes the remaining reactants. Finally, the liquid products exit the

stripper base and are separated in the downstream refining section. The automation de-

gree is very high. As listed in Table 7.1, twenty-two process variables are continuously

measured. There are 12 manipulated variables, which are more than necessary for con-

trolling the process. In addition, three analyzers are available for measuring the amount

of each component for stream 6, 9 and 11. The analyzers for stream 6 and 9 need 6

minutes to complete the analysis and the analyzer for stream 11 takes 15 minutes. As a

result, the minimal sampling time for streams 6 and 9 are 6 minutes and for stream 11

is 15 minutes. In this section, the MATLAB/Simulink programs provided by Ricker is

used, which is available at the website

http://depts.washington.edu/control/LARRY/TE/download.html

and can be downloaded. For our study, the process is running under the mode number 1,

i.e. G/H mass ratio is 50/50 and the production rate for G and H are both 7308 kg h−1
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7.1 Case studies on the TE benchmark process

Table 7.1: TE: Process measurements and manipulated variables

Block Description XMEAS No. XMV No.

Feeds & Reactor

A feed (stream 1) XMEAS(1) XMV(3)

D feed (stream 2) XMEAS(2) XMV(1)

E feed (stream 3) XMEAS(3) XMV(2)

A and C feed (stream 4) XMEAS(4) XMV(4)

Compressor work XMEAS(20)

Compressor recycle valve XMV(5)

Recycle flow (stream 8) XMEAS(5)

Reactor feed rate (stream 6) XMEAS(6)

Reactor pressure XMEAS(7)

Reactor level XMEAS(8)

Reactor temperature XMEAS(9)

Reactor cooling water outlet temperature XMEAS(21)

Reactor cooling water flow XMV(10)

Agitator speed XMV(12)

Condenser & Separator

Separator temperature XMEAS(11)

Separator level XMEAS(12)

Separator pressure XMEAS(13)

Separator underflow (stream 10) XMEAS(14) XMV(7)

Condenser cooling water outlet temperature XMEAS(22)

Condenser cooling water flow XMV(11)

Purge rate (stream 9) XMEAS(10)

Purge valve (stream 9) XMV(6)

Stripper

Stripper level XMEAS(15)

Stripper pressure XMEAS(16)

Stripper underflow (stream 11) XMEAS(17) XMV(8)

Stripper temperature XMEAS(18)

Stripper steam flow XMEAS(19) XMV(9)

[30], with the decentralized control strategy described in [97]. The control method is

able to reject all the 20 disturbance defined in [30] except for the 6th, the 8th and the

13th1, which makes it quite challenging to design a monitoring system. To this end,

we take the 22 process variables and 9 manipulated variables (XMV(5), XMV(9) and

XMV(12) are removed since they are constant under the control strategy and contain no

useful information for monitoring and diagnosis) as the low-level process variables and

the sampling time is set to be 36 seconds. The KPI is defined to be the operation cost as

KPI (operation cost) = purge cost + product stream cost + compressor cost.

Since the price for the components are different and the analysis results for purge flow

(stream 9) and product flow (stream 11) are delayed by 6 and 15 minutes, respectively,

the total operation cost is not always online available. In the following, we will apply the

approaches proposed in Chapters 3 and 6 in such a realistic environment for two fault

episodes.

1The 6th disturbance is “A feed loss”, the process is shut down due to low stripper level; for the 8th

and 13th disturbance, the process is stabilized but the output variation is quite large.
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Figure 7.2: TE: Monitoring results for the additive fault episode

7.1.2 Detection of an additive fault

For the TE process, very little holdup is available for the stream 4, components A and C.

As a result, flow variability of this feed stream is of particular concern. Motivated by it,

we define an additive fault episode by reducing the setpoint for stream 4 by 23.5%. The

Algorithm 3.2 is applied. Figure 7.2 shows the monitoring results for this fault episode.

The total simulation time is 72 hours. The fault is injected from the 50th hour. For offline

training purpose, the data collected for the first 48 hours are used. The significance level

is defined to be 1%. From the plots we can see that both test statistics have detected the

fault. The upper plot indicates that this fault is related to the KPI, i.e. KPI degradation

occurs after the 50th hour. The lower plot shows that this fault causes KPI-unrelated

performance degradation after the 50th hour as well. To validate the monitoring results,

we plot the KPI and some selected process variables in Figure 7.3. We can see that

the operation cost has increased by around 100 dollars in the steady state. The fault

firstly causes a reduction in A/C feed. Under the decentralised control strategy, the

compressor work is then reduced, which brings less recycle flow back to the reactor. To

enhance the reactions, the D and E feeds are increased (A feed is almost unchanged).

The purge rate is creased during the 55-65 hours. Since the D feed is the most expensive

one, the total operation costs have increased. In addition, we can observe from Figure

7.3 that the amount of product H is reduced (H in product is not included in the KPI

definition). It means that this fault causes KPI-unrelated performance degradation, which

is in accordance with the monitoring result.
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Figure 7.3: TE: KPI and selected low-level process variables
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(a) Monitoring result on the KPI-related measurement subspace. At the 60th hour, a multiplicative 

fault happens. 

 

 
(b) Diagnosis result for KPI-related (multiplicative) performance degradation 
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Figure 7.4: TE: Monitoring and diagnosis results related to the KPI
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(a) Monitoring result on the KPI-unrelated measurement subspace. At the 60th hour, a multiplicative 

fault happens. 

 

 

(b) Diagnosis result for KPI-unrelated (multiplicative) performance degradation 
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Figure 7.5: TE: Monitoring and diagnosis results unrelated to the KPI
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Figure 7.6: TE: KPI and selected low-level process variables
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7.2 Case studies on the CSTH benchmark process

7.1.3 Detection and diagnosis of a multiplicative fault

The objective of this case study is to show the effectiveness of Algorithm 6.1 proposed in

Chapter 6. We define a multiplicative fault episode by increasing the noise level of the

reactor’s pressure sensor from the 60th hour (the mean value is unchanged). The other

simulation conditions are kept unchanged. Figure 7.4 shows the KPI-related monitoring

and diagnosis results. We can see from Figure 7.4-a that the test statistic starts to raise

alarms from the 61st hour. These intermittent alarms are much more frequent than

false alarms and reflects the occurrence of a multiplicative fault. Figure 7.4-b gives the

diagnosis result. It shows that “Purge rate” and “Purge value” are responsible for the

KPI degradation. Simultaneously, Figure 7.5-a shows that KPI-unrelated performance

degradation occurs. Its diagnosis result is given in Figure 7.5-b, from which we can see

that “reactor pressure”, “purge rate” and “purge valve” are responsible for it. To validate

the achieved results, we plot the KPI and infected process variables in Figure 7.6. From it

we can see that the variability of the operation cost is increased after the 60th hour. The

noise level of the pressure sensor is significantly increased and its effect cannot be reduced

by the controllers. Since the pressure measurements are used to generate the reference

signal for the “purge rate” control loop, the variabilities of both “purge rate” and “purge

valve” are increased. As “purge flow” is contributing to the total operation cost, it is

directly related to the KPI. On the other hand, the reactor pressure is not included in

the definition of KPI. However, tank pressure is very important for safe operation, which

is a kind of KPI-unrelated performance for this case study.

7.2 Case studies on the CSTH benchmark process

7.2.1 Process description

The CSTH process is a common subsystem widely used in the chemical industry. It can

be used to keep optimal temperature for reactants, water, reactions, etc.. In this section,

we will use the simulation model provided by Thornhill, which is available at the website

http://personal-pages.ps.ic.ac.uk/∼nina/CSTHSimulation/index.htm

and can be downloaded. It is developed based on a pilot plant at the University of Al-

berta using first principles. As shown in Figure 7.7, hot and cold water are mixed first,

where the hot water (HW) boiler is heated by the university campus steam supply. The

mixture is then heated using the steam from the same central campus source through

a heating coil. Finally, the heated water is drained from the tank through a long pipe.

The simulation model is highly realistic. On the one hand, instrument, actuator and

process nonlinearities have been carefully measured and taken into account in the model;
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Figure 7.7: The continuous stirred tank heater [107]

Table 7.2: CSTH: Manipulated variables and process measurements

Block Description Unit

Process measurements

Mixed water temperature ◦C

Water level cm

CW flow rate liter/min

Manipulated variables
Steam valve kJ/sec

CW valve liter/min

on the other hand, measured noise and disturbances are used. The CSTH is an auto-

matic process. As listed in Table 7.2, there are three measurable process variables and

two manipulated variables. The steam and cold water (CW) valves are controlled by

proportional-integral (PI) controllers. Since cold water flow, (tank) water level and tem-

perature are of main concern for a CSTH plant and measured for this configuration, we

consider the three process measurements as KPIs. The utilities of the CSTH are shared

service and subject to disturbances from other users, the mean values of process variables

are therefore continuously changing. As a result, it is not preferable to use the static

methods discussed previously to monitor its performance. In the following, we will apply

the Algorithm 4.2 from Chapter 4 to detect four typical fault episodes.
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7.2 Case studies on the CSTH benchmark process

  

   (a) CW valve stiction (b) CW valve stiction 

  
(c) Heat exchanger fouling (d) Heat exchanger fouling 

  

(e) Leakage in the tank (f) Leakage in the tank 

  
(g) Sensor bias (h) Sensor bias 
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Figure 7.8: CSTH: Description of the fault episodes
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7 Application to benchmark processes

7.2.2 Detection of four typical fault episodes

For our case studies, we set the following operating conditions

• Temperature set point: 42.52 ◦C,

• Level set point: 20.48 cm,

• HW valve: 3.129 liter/min,

• HW temperature: 50 ◦C,

• CW temperature: 24 ◦C,

• Manual outflow valve: 50%.

Four typical fault episodes originally defined in [43] are used:

• CW valve stiction: Valves are the most widely used actuators in the chemical indus-

try. They have direct contact with various reactant and product streams and are

frequently subject to malfunctions. Among them, stiction is a very common one.

Figure 7.8-a shows the actual CW valve position subject to stiction, it is sticked at

7.609 liter/min from the 400th sample. Since the controller’s command is not ex-

ecuted and the sticked position is lower than the average, the water level decreases

from the 400th sample, which can be seen from 7.8-b. Detection of this fault is

urgent, as the water holdup is reduced and the tank will be empty.

• Heat exchanger fouling: In practice, there is chalk in the water and it deposits

gradually on the surface of the heating coil. As a result, the heat transfer efficiency

from the coil to the water is reduced. Here we use a ramp function starting from the

400th sample to simulate this fault episode. As shown in Figure 7.8-c-d, in order

to keep the desired temperature, the controller increases the openness of the steam

valve. Although this fault is not as critical as the previous one, its detection is very

important since the operation cost is increased.

• Leakage in the tank: This kind of fault happens more in old plants. It cannot

only increase the operation cost, but also causes environmental pollution or even

disasters. To show the effectiveness of the proposed methods for it, we simulate a

hole at the bottom of the tank from the 400th sample. It is an abrupt fault. As can

be seen from Figure 7.8-e-f, it first decreases the water level. In order to keep the

desired level, the controller decides to increase openness of the CW valve.
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(a) Monitoring result for cold water valve 

stiction: constant 

(b) Monitoring result for heat exchanger fouling: 

ramp 

  

(c) Monitoring result for leakage in the stirred 

tank: step 

(d) Monitoring result for temperature sensor bias: 

step 
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Figure 7.9: CSTH: KPI monitoring results

• Temperature sensor bias: Badly calibrated sensors exist in the practice. We simulate

a bias of −5 ◦C for the temperature sensor from the 400th sample. Figure 7.8-g

shows the actual and measured temperature of the water. Due to the feedback

control action, the “measured signal” can be kept at the set point. However, the

actual one is 5 ◦C higher. It could be quite dangerous in practice, since the actual

temperature may exceed the upper limit without letting the operator know it. In

addition, to arrive at this unexpected higher temperature, the consumption of steam

is increased, which can be seen from Figure 7.8-h.

To identify the parameters involved in the diagnostic observer, we have run the simula-

tion program in the fault free case and collected 1600 samples of data. The sampling time

is 1 second. The design parameters are chosen as: s = 8 and sp = 10. The significance

level α for determine the threshold is set to be 1%. Figure 7.9 shows the monitoring

results for these four fault episodes. From it we can see that all fault episodes have been

successfully detected.
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Figure 7.10: The principle of paper production
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Figure 7.11: The paper drying section for the case studies

7.3 Case studies on the PD benchmark process

7.3.1 Process description

Paper and paper-based products play an important role in our daily life. Industrial

paper-making is known to have been traced back to China to the year 105 and today

it is a highly competitive and capital-intensive market that is under increasing price

pressure. The principle of paper-making is simple. As shown in Figure 7.10, pulps are

firstly produced from trees or recycled materials. When they enter the forming section,

the water content is around 99% [103]. In the forming section, the pulps are dispensed

through a long slice onto the wire, where the width of wet paper can reach 7 meters.

When the paper leaves the forming section, around 19% water can be removed. The wet

paper sheet then passes through the press section, where around 30% water is squeezed

out by large rolls loaded under high pressure. To further remove the water content, the

paper sheet is fed to a drying section. Among different drying techniques, steam-heated

cylinders are widely used. In modern automatic processes, the number of cylinders can

reach 70. From technical viewpoint, the drying section is the most important section for
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Figure 7.12: The control volume of the paper sheet [8]

the paper quality in a paper machine. By manipulating the temperature of the wet paper

sheet, most of the remaining water is removed through evaporation. When the paper

sheet leaves the drying section, it contains only about 5% water. Afterwards, the paper

sheet passes through the calender section, where the surfaces of the dry paper sheet is

smoothed and thus its brightness is improved. It is important to mention that many

important quality indicators like moisture and basis weight are measured in the calender

section. Finally, the dry paper sheet is rolled by the winders. After trimming both sides,

the paper rolls are shipped to customers.

For the case studies in this section, we will focus on the drying section. The moisture

is defined as a KPI, which is [8]

H =
me

mp

=
m

mp

− 1 [kg water/kg fibers]

whereme denotes the mass of water in a paper section,mp denotes the mass of fibers andm

is the total mass of the paper section. The manipulated variable is the paper temperature

(or the surface pressure of the wet paper sheet), which is continuously distributed along

the machine direction. Thus to model the drying process, the ODE fails. In practice,

multiple steam-heated cylinders are used as actuators for the drying process. As shown

in Figure 7.11, there are 25 steam-heated cylinders divided into three groups. The first

cylinder group is used to warm up the paper sheet where less water is removed. The

other two groups remove most of the water. To model the dynamic relationship between

the manipulated variable and the moisture, we adopt the first principles PDE model for

the paper sheet given in [8, 9], which is also used in our early study [45]. Figure 7.12

shows the mass balance for a paper section of length δx, where x denotes the machine

direction. Due to the movement of the paper sheet to the right, water (in the paper)

flows into the control volume with a mass flow of ṁe(x, t) from the left side and flows out

from the right side with a mass flow of ṁe(x+ δx, t). We assume the mass of fibers is not
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7 Application to benchmark processes

changed. Heated by the hot cylinders, the paper temperature increases and therefore the

water is removed through evaporation. The mass flow is denoted as ṁee(x, t). Meanwhile,

the vapor flows back to the paper through deposition, whose mass flow is denoted as ṁv,

which can be considered as constant. By applying the mass conservation law for the

control volume, we have

ṁe(x, t)− ṁe(x+ δx, t)− ṁee(x, t)δx+ ṁvδx =
∂(m δx)

∂t
. (7.1)

In addition, a description of the relationship between the evaporation rate and water

vapor pressure is required, which is given as

ṁee(x, t) = β(x)(P (x, t)− Pa) (7.2)

where Pa denotes the partial pressure of water in the atmosphere and is given by the

temperature and humidity of the air, β(x) is the mass transfer coefficient, and P (x, t)

denotes the surface pressure of the wet paper sheet and depends on paper temperature.

It is further assumed that ṁe(x, t) = me(x, t)v where v represents the constant machine

speed. By submitting (7.2), me(x, t) = mpH(x, t) and m(x, t) = mp(H(x, t)+1) into (7.1)

we can get

∂H(x, t)

∂t
= −v∂H(x, t)

∂x
+
ṁv

mp

− β(x)

mp

(P (x, t)− Pa).

To determine β(x), let us divide the paper sheet in the drying section into three types of

zones as

• Zone 1: Unfelted zones which are the contact areas of the paper sheet with the

upper cylinders in Figure 7.11,

• Zone 2: Contact with air on both sides zones where the paper sheet is not contacting

any cylinder, and

• Zone 3: Felted zones which are the contact areas of the paper sheet with the lower

cylinders in Figure 7.11.

Based on it, we have

β(x) =


βa, zone 1;

2βa, zone 2;

βh, zone 3
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Figure 7.13: A piece of the cross-section of a drying cylinder [103]

where βa denotes the approximate mass-transfer coefficient between and paper sheet and

air, and βh denotes the approximate mass-transfer coefficient between felt and paper sheet.

In addition, we compute P (x, t) from T (x, t) as

P (x, t) = 50.104× 106e−4892.5/T (x,t)

which is a static equation and T (x, t) denotes the paper temperature. For simulating

the process in this section, we assume the static relationship holds for the whole dryer

section. Thus P (x, t) or T (x, t) can be considered as the manipulated variable. To achieve

an actuator model (heat transfer from steam to the paper sheet), we refer to the first

principles ODE model given in [103]. The heating principle is shown in Figure 7.13. Hot

steam is fed into the cylinder. When it condenses on the inner surface of the cylinder, heat

transfers from the steam to the condensate and further to the metal, which is denoted as

Qm. The water which contains less energy is removed by siphons. Meanwhile, the heat

transfers further from the metal to the paper, which is denoted as Qp. The temperature

of the condensate, the metal shell and the paper is denoted as Ts, Tm and T , respectively.

By applying mass and energy balance laws, the following equations can be derived

hs(p)V
dρs
dp

dp

dt
= qshs(p)− qw(p)hw(p)− αscAcyl(Ts(p)− Tm)

mCp,m
dTm
dt

= αscAcyl(Ts(p)− Tm)− αcpAcylη(Tm − T )

where p denotes the steam pressure, V is the cylinder volume, hs and hw are the steam

and water enthalpy, ρs is the steam density, qs and qw denote mass flow rate of the steam

into the cylinder and the siphon flow rate, αsc and αcp are the heat transfer coefficients

from the steam-condensate to the centre of the cylinder shell and from the centre of the

cylinder shell to the centre of the paper, respectively, Acyl is the inner cylinder area, m

and Cp,m are the mass and specific heat capacity of the shell, and η is the fraction of dryer
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7 Application to benchmark processes

Table 7.3: PD: Numerical values of the parameters used in the case studies [8, 103]

Notation Value Units Notation Value Units

v 8.33 m/s l 25 m

H(0, t) 50% − Dryer roll 25 −
p0 90 kPa Ts(p0) 369.84 K

hs 2670.3 kJ/kg hw 405.2 kJ/kg

αsc 1.80 kW/(m2K) αcp 1.20 kW/(m2K)

η 0.5 − Acyl 37.2 m2

mp 0.192 kg/m2 ṁv 0.0005 kg/(ms)

βa 0.00209 − βh 0.0011 −

surface covered by the paper web. The equilibrium gives the relation

T = Ts(p
0)−

(
1

αsc

+
1

αcpη

)
1

Acyl

(q0shs(p
0)− q0whw(p

0))

where q0s is the input and the other parameters can be obtained from process knowledge.

Since our focus is on the performance monitoring, the above equation is considered as the

actuator model for simplicity. As a result, the mathematical model of the drying paper

can be written as

∂H(x, t)

∂t
= −v∂H(x, t)

∂x
+ y(x, t) + η(x, t), x ∈ [0, l] (7.3)

where η(x, t) represents the process noise, l is the paper length in the drying section, and

y(x, t) =
ṁv

mp

− β(x)

mp

(P (x, t)− Pa)

with the Dirichlet boundary condition H(0, t) = 50% on the wet end.

By putting the spatial variable in dimensionless form, x′ = x/l, we obtain

∂H(x′, t)

∂t
= −v

l

∂H(x′, t)

∂x′
+ y(x′, t) + η(x′, t), x′ ∈ [0, 1]. (7.4)

For notational simplicity, we will neglect the prime symbol in the following.

7.3.2 Detection of two typical fault episodes

Based on the process and actuator models described above, we will apply Algorithm 5.4

(for the common industrial configuration) proposed in Chapter 5 to detect two typical

fault episodes of the drying process. To simulate the drying process, we use the parameters

given in Table 7.32

2The property of saturated steam is obtained from http : //www.efunda.com/Materials/water/steam−
table sat.cfm.
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(a) Evolution of moisture profile (b) Moisture measurement 
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Figure 7.14: Illustration of the drying process

and 101 polynomial basis functions. The sampling time is chosen to be 0.01 . The moisture

is measured at the dry end. Figures 7.14-a-b show the simulation results in the fault-free

case. From the left plot we can see the evolution of the moisture profile of the paper in

the drying section. Initially no heat is transferred from the steam to the paper sheet,

thus the moisture profile is constant. Then the water evaporates from the paper and at

the 320th sample, the moisture profile is in the steady state. Figure 7.14-b shows the

moisture measurement. After about 300 samples, the dry paper with an average moisture

value of 1.17% is produced (Gaussian process and measurement noise is included).

To show the monitoring performance of the data-driven method proposed in Chapter

5, we simulated two typical fault episodes that happen during the drying process, i.e.

• Inner cylinder wall fouling: Similar to the heat exchanger fouling episode discussed

previously, the deposited solid on the inner wall will decrease the heat transfer

efficiency. To this end, the heat transfer coefficient from the condensate to the

cylinder shell is reduced by 0.75 for the 7th cylinder from the 1500th sample. As

shown in Figure 7.15-a, this fault influences the moisture measurement after about

200 samples (around 2 s). This kind of fault is quite common for the drying section.

In industrial applications, the steam consumption will be significantly increased. As

a result, detection of this kind of fault is very important to keep a low operation

cost.

• Increase of the basis weight: Due to reduction of the machine speed and low perfor-

mance of the thickness control, the basis weight of the paper sheet could increase.

To simulate this kind of fault, we increase the basis weight by 0.002 kg/m2 from the
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(a) Fouling of the inner surface of the 7th drying 

cylinder 

(b) Increase of dry basis weight 
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Figure 7.15: PD: Description of the fault episodes

1500th sample. As shown in Figure 7.15-b, the moisture measurement is impacted

as well. This kind of fault not only lowers the paper quality, but also consumes

more raw material.

To apply the proposed method, we first run the process without any fault to collect the

“snapshot” data for the manipulated variable and the KPI measurement. Then a subspace

with 25 basis functions is identified which contains almost 100% of the variability of the

“snapshot” data. For identifying the kernel representation, we choose s = 5 and sp = 7.

Figures 7.16-a-b show the monitoring results where the significance level for the threshold

is 0.01. We can see that both faults have been detected. The detection delay of the first

fault is 210 samples (2.1 s). This is because the fault happens for the 7th cylinder which

is far away from the KPI sensor.

7.4 Concluding remarks

In this chapter, we have used three benchmark processes to demonstrate the performance

of the proposed KPI monitoring approaches. The multivariate statistics based methods

proposed in Chapters 3 and 6 are applied to the TE process for both fault detection and

diagnosis. The signals generated by the TE process are steady and therefore suitable for

the static methods which are based on the assumption that the mean values of process

variables and KPIs are constant. In addition, the CSTH process, which is dynamic and

has varying mean values (depending on the users’ consumption), is used to show the
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(a) Monitoring result for the fouling of the inner 

surface of the 7th drying cylinder 

(b) Monitoring result for the increase of the dry 

basis weight 
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Figure 7.16: PD: KPI monitoring results

effectiveness of the dynamic method given in Chapter 4. Finally, the PD process, whose

dynamical description requires a PDE, is used to test the data-driven method proposed

in 5. The case study results show that all tested data-driven methods can be used in

industrial automation processes.
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8 Conclusions and further work

In this thesis, new data-driven KPI monitoring and diagnosis techniques are developed

for complex automation processes. In Chapter 1, the background, motivation and the

state of the art of the techniques are given. With the increasing global competition, there

appears an urgent industrial requirement for KPI monitoring and diagnosis in automation

processes. Due to the scale and complexity of automation processes, application of model-

or knowledge-based techniques is becoming too expensive or even impossible. As a result,

the main objective of this thesis is to develop data-driven KPI monitoring and diagnosis

techniques.

The basis of this thesis is given in Chapter 2. Following the mathematical descriptions of

the static, lumped-parameter and distributed-parameter processes, basic fault detection

techniques are discussed. Among them are statistical approaches including the GLR-,

PCA- and PLS-based methods for the static processes, model-based FDF, DO and PS for

LPPs, and the eigen-decomposition based method for DPPs. The results achieved in the

following chapters are based on them but have improved performance.

Chapter 3 focuses on the KPI monitoring techniques for the static processes. Based

on the analysis of the traditional PLS-based method which is not optimal for the KPI

monitoring, we first propose a modified approach. This approach is still based on the

PLS algorithm, but the monitoring performance is improved. It is important to mention

that only two test statistics are involved for monitoring the KPI-related and -unrelated

subspaces, respectively. To further reduce the computation cost and engineering effort, an

alternative decomposition-based algorithm is given. This algorithm achieves the benefit

of the modified approach with much less computation costs. As a result, the alternative

algorithm is quite suitable for large-scale automation processes.

Aiming at monitoring dynamic processes where the number of involved variables is

small, Chapter 4 presents a data-driven dynamic monitoring approach using the subspace

identification method. Compared with the standard approaches, this method requires

much less engineering effort. The monitoring system is directly identified from the process

I/O data without identifying a system model.

In Chapter 5, novel model-based and data-driven KPI monitoring techniques are de-

veloped for DPPs. These methods are suitable for processes where the spatial dynamics
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is dominant, e.g. the paper drying process and the hot strip mill. Different from the

existing techniques, the proposed monitoring approaches are developed for random pro-

cesses. They are more realistic and can directly be used in the real processes. Moreover,

the new methods are not based on the eigen-decomposition of the system operators and

thus are easier to understand. If an actual process model is easy to derive, it is advised

to use the model-based version which can achieve better performance. Otherwise, the

data-driven version can be used, which only requires the historical process and KPI data.

It is important to mention that the performance of the data-driven method is depending

on the quality of the data. The more informative the data are, the better the monitor

system performs.

After performance degradation is detected, it is urgent to find out its root cause and

do the corrective actions. Chapter 6 proposes a novel data-driven performance diagnosis

method. Different from the existing approaches, this method is able to diagnose the

multiplicative fault which is more complex and costly (for diagnosis). It is based on

process data and requires no process knowledge. It aims at assisting the process engineers

by narrowing down the investigation scope.

Finally, the algorithms developed in Chapters 3-6 are tested on three realistic industrial

benchmark processes in Chapter 7. The test results show that the proposed methods are

quite suitable for practical applications.

The results achieved in this thesis are based on the linear system descriptions. They

are efficient if the real process is working around the operating point. However, there are

nonlinear systems which are working in a large operation range. Extension of the pro-

posed methods to these processes are of practical importance and requires more research

attention. In addition, integration of the monitoring and diagnosis results into the control

system is a great challenge and can be addressed in future work.
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A Proof of Theorem 2.1

Proof. For i = 1, it holds for

Yj = Yj−i − pj−it
T
j−i = Yj−i

(
I−

tj−it
T
j−i

||tj−i||2

)
, j > i.

Based on it, we can derive

Yjtj−i = Yj−itj−i −Yj−itj−i

tTj−itj−i

||tj−i||2
= 0,

thus

tTj−itj = tTj−iY
T
j w

∗
j = 0,⇒ tTj tj−1 = tTj−1tj = 0.

Assume that for i = k (k > 1), the following statements hold:

tTj tj−k = 0, tTj tj−(k−1) = 0, · · · , tTj tj−2 = 0, j > k.

Then for i = k + 1:

Yj = Yj−1

(
I−

tj−1t
T
j−1

||tj−1||2

)
= · · · = Yj−k−1

1∏
l=k+1

(
I−

tj−lt
T
j−l

||tj−l||2

)

we have

Yjtj−k−1 = Yj−k−1

1∏
l=k+1

(
I−

tj−lt
T
j−l

||tj−l||2

)
tj−k−1

= Yj−k−1

(
I−

tj−k−1t
T
j−k−1

||tj−k−1||2

)(
I−

tj−kt
T
j−k

||tj−k||2

)
· · ·

(
I−

tj−2t
T
j−2

||tj−2||2

)(
I−

tj−1t
T
j−1

||tj−1||2

)
tj−k−1

Since from i = k we have assumed

tTj−1tj−1−k = 0, tTj−2tj−2−(k−1) = 0, · · · , tTj−k+1tj−k+1−2 = 0
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and from i = 1 we have obtained tTj−ktj−k−1 = 0, thus

Yjtj−k−1 = Yj−k−1

(
I−

tj−k−1t
T
j−k−1

||tj−k−1||2

)
tj−k−1

= Yj−k−1tj−k−1 −Yj−k−1tj−k−1

tTj−k−1tj−k−1

||tj−k−1||2
= 0

⇒ tTj−k−1tj = tTj−k−1Y
T
j w

∗
j = 0 = tTj tj−k−1.

which indicates that the assumptions for i = k also holds for i = k + 1,i.e.

tTj tj−k−1 = 0, tTj tj−k = 0, tTj tj−(k−1) = 0, · · · , tTj tj−2 = 0, j > k + 1

Thus for any i = 1, 2, · · · , k, k + 1, · · · ,∞, we have tTj tj−i = 0.
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B Theorems for Chapter 5

Theorem B.1. Given a full column-rank matrix P ∈ Rn×γ and an arbitrary vector

q ∈ Rn, finding a q̂ satisfying (5.7) is equivalent to find a q̂ ∈ P̂ := span{p1, · · · ,pγ}
such that

(q− q̂)Tpi = 0, for i = 1, · · · , γ.

Proof. Suppose that r = q̂ + t∆q where t ∈ R and ∆q ∈ P̂ . The meaning of (5.7) is

that q̂ ∈ P̂ is closest to q if and only if

(q− q̂)T (q− q̂) ≤ (q− (q̂+ t∆q))T (q− (q̂+ t∆q))

= (q− q̂)T (q− q̂)− 2t(q− q̂)T∆q+ t2∆qT∆q, ∀∆q ∈ P̂ & ∀t ∈ R

which is equivalent to −2t(q− q̂)T∆q+ t2∆qT∆q ≥ 0, ∀∆q ∈ P̂ & ∀t ∈ R.
The above equation has two variables. If we consider ∆q as any fixed vector, then the

inequality only holds when

(q− q̂)T∆q = 0,∀∆q ∈ P̂ . (B.1)

The equivalence of (5.7) and (B.1) can be easily revealed as:

• sufficiency: If (B.1) holds, then (5.7) holds as well since pi, i = 1, · · · , γ ∈ P̂

• necessity: If (5.7) holds, then, since {p1, · · · ,pγ} is a basis for P̂ , any ∆q ∈ P̂ can

be represented as ∆q =
∑γ

i=1 z
∗
i pi, z

∗
i ∈ R, i = 1, · · · , γ. (B.1) can be written as

(q− q̂)T∆q = (q− q̂)T
γ∑

i=1

z∗i pi

=

γ∑
i=1

z∗i
(
(q− q̂)Tpi

)
=

γ∑
i=1

z∗i 0 = 0, ∀∆q ∈ P̂ .
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Theorem B.2. Given an arbitrary function q(x) ∈ H and a subspace P(x) spanned by

p(x) = [p1(x), · · · , pγ(x)]T , find a q̂(x) in P(x) satisfying∫ β

α

(q(x)− q̂(x))2 dx = min
r(x)∈span{p(x)}

∫ β

α

(q(x)− r(x))2 dx (B.2)

is equivalent to find a q̂(x) in P(x) such that∫ β

α

(q(x)− q̂(x)) pi(x)dx = 0 for i = 1, · · · , γ. (B.3)

Proof. The basic idea of proof is similar to the proof for Theorem B.1. Suppose that

r(x) = q̂(x) + t∆q(x) where t ∈ R and ∆q(x) ∈ P(x). From (B.2) we have∫ β

α

(q(x)− q̂(x))2dx ≤
∫ β

α

(q(x)− (q̂(x) + t∆q(x)))2dx

=

∫ β

α

(
(q(x)− q̂(x))2 − 2t(q(x)− q̂(x))∆q(x) + t2∆q(x)2

)
dx, ∀∆q(x) ∈ P(x) & ∀t ∈ R

which is equivalent to

−2t

∫ β

α

(q(x)− q̂(x))∆qdx+ t2
∫ β

α

∆q(x)2dx ≥ 0, ∀∆q(x) ∈ P(x) & ∀t ∈ R.

If we consider ∆q(x) as any fixed function, then the above equation is in the quadratic

form and the inequality only holds when

(q(x)− q̂(x)∆q(x) = 0,∀∆q(x) ∈ P(x). (B.4)

The equivalence of (B.3) and (B.4) can be easily revealed as:

• sufficiency: If (B.4) holds, then (B.3) holds as well since pi(x), i = 1, · · · , γ ∈ P(x)

• necessity: If (B.3) holds, then, since {p1(x), · · · , pγ(x)} is a basis for P(x), any

∆q(x) ∈ P(x) can be represented as ∆q(x) =
∑γ

i=1 z
∗
i pi(x), z

∗
i ∈ R, i = 1, · · · , γ.

(B.4) can be written as∫ β

α

(q(x)− q̂(x))∆q(x)dx =

∫ β

α

(q(x)− q̂(x))

γ∑
i=1

z∗i pi(x)dx

=

γ∑
i=1

z∗i

∫ β

α

(q(x)− q̂(x))pi(x)dx

= 0, ∀∆q(x) ∈ P(x).
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B Theorems for Chapter 5

Theorem B.3. Given are an arbitrary vector z(x, t) ∈ Hn (zi(x, t) ∈ V(x), i = 1, · · · , n)
and a known finite dimensional subspace V̂(x) ∈ span{v1(x), · · · , vγ(x)} ⊂ V(x). The

best estimate of z(x, t) from V̂(x) in the sense that

tr (||L(z(x, t))− L(ẑ(x, t))||) = min
ri(x,t)∈V̂,i=1,··· ,n

tr (||L(z(x, t))− L(r(x, t))||)

is equivalent to the solution of

(L(z(x, t)− ẑ(x, t)), vi(x)) , ∀ i = 1, · · · , γ. (B.5)

Proof. The proof is similar to the proof for Theorem B.2.
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