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Summary

In this thesis we develop new methods and procedures to complement and improve

current modelling frameworks and to provide a deeper and better understanding of

energy markets. We investigate various aspects of stochastic modelling of energy

markets: we analyse statistical properties of power markets, study pricing methods

for different financial energy-related instruments, design a new storage model and

examine model risk.

In doing so we apply a wide range of methods from different branches of applied

mathematics ranging from statistical and econometric techniques to a partial differ-

ential equations based approach and algorithms from numerical analysis. We modify

and extend these methods to make them applicable to our problem setting.

The study reveals results of both theoretical and practical importance. In particular,

there are the main findings of this thesis:

• A critical comparison of the properties and estimation procedures of three re-

cently proposed and widely used stochastic power price models shows that none

of the models outperforms each other, as all of them have some drawbacks. The

more important issue when modelling power prices is that it is more efficient to

use additive models (due to their analytical tractability) which present a power

price as a sum of various stochastic process responsible for different price fluc-

tuation magnitudes and mean-reversion forces.

• An integro-partial differential equation (integro-PDE) based method is imple-

mented to find the power forward price dynamics for a regime-switching power

price model which is a critical issue for hedging purposes.

• A new approach to storage value modelling is developed to complement current

stochastic optimal control methods on finding an optimal storage policy. The

main novelty is that the storage level process is represented as a bounded diffu-

sion for which we are able to derive the transition probability density formula

which in turn allows for a great variability of further applications to pricing and

value storage.

• A detailed investigation of various sources of risks when modelling power price

is applied to the example of a gas-fired power plant and finds that spike risk is

by far the most important source of model risk.
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Zusammenfassung

In dieser Arbeit entwickeln wir neue Methoden und Verfahren, um aktuelle Model-

lierungsverfahren zu ergänzen und zu verbessern und um so ein tieferes Verständnis

von Energiemärkten zu gewinnen. Wir untersuchen verschiedene Aspekte der sto-

chastischen Modellierung von Energiemärkten: wir analysieren stochastische Eigen-

schaften von Elektrizitätsmärkten, betrachten Bewertungsmethoden für verschiede-

ne Energie-verwandte Finanzinstrumente, entwerfen ein neues Speichermodell und

untersuchen Modellrisiko.

Im Zuge dessen wenden wir Methoden der verschiedenen Bereiche der angewand-

ten Mathematik, von statistischen und ökonometrischen Techniken über einen auf

partielle Differenzialgleichung basierenden Ansatz bis hin zu Algorithmen der nu-

merischen Analysis, an. Wir modifizieren und erweitern diese Methoden, um sie auf

unsere Problemstellung anwenden zu können.

Die Resultate der Arbeit sind theoretischer und praktischer Natur. Folgende Ergeb-

nisse der Arbeit seien besonders hervorgehoben:

• Ein kritischer Vergleich der Eigenschaften und der Schätzverfahren von drei

kürzlich veröffentlichten und weitverbreiteten stochastischen Elektrizitätspreis-

modellen zeigt, dass keines der Modelle eines der anderen übertrifft. Wichtiger

bei der Modellierung von Elektrizitätspreisen ist, dass additive Modelle auf-

grund ihrer analytischen Lenkbarkeit effizienter sind und die Elektrizitätspreise

als Summe verschiedener stochastischer Prozesse verantwortlich für unterschied-

liche Preisschwankungsausschläge und mean-reversion Kräfte darstellen.

• Eine auf integro-partielle Differenzialgleichung (integro-PDE) basierende Me-

thode wird implementiert, um die Dynamiken des Elektrizitätsforwardpreises

für ein regime-switching Elektrizitätspreismodell zu finden, die für Hedging von

grundlegender Bedeutung sind.

• Ein neuer Ansatz der Speicherbewertung wird entwickelt, um aktuelle stochas-

tische Methoden der optimalen Steuerung zu ergänzen und eine optimale Spei-

chersteuerung zu finden. Die Hauptneuheit ist der Speicherstandsprozess, der

als beschränkte Diffusion dargestellt wird. Hierzu können wir Formeln für die

Übergangswahrscheinlichkeitsdichten herleiten, die eine große Variabilität wei-

terer Anwendungen in der Bepreisung und Speicherbewertung erlauben.
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• Wir wenden eine detaillierte Untersuchung der verschiedenen Risikoquellen bei

der Elektrizitätspreismodellierung auf das Beispiel eines Gaskraftwerkes an and

finden, dass das Risiko von Preisspikes bei weitem die wichtigste Quelle des

Modellrisikos ist.
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CHAPTER 1

INTRODUCTION

1.1 Energy markets

Energy markets are classified as commodity markets that operate with various energy-related

products. These commodity products are far different from the classical financial market prod-

ucts. The reason for the difference is the following: in addition to a rich spectrum of factors,

there are some exceptional aspects that have a great impact on the energy markets formation and

activity. Among these are mainly a stable growth of worldwide energy demand [International

Energy Agency, 2013], a global climate policy, regional weather conditions, local balancing in

supply and demand and, finally, storing and shipping difficulties.

To give an overview of energy-related commodities we extend a classification given in Eydeland

& Wolyniec [2003]:

• Fuels: oil, gas, coal, and their derivatives and byproducts;

• Electricity (power);

• Weather, emissions, pulp and paper, and forced outage insurance;

• Renewables: solar, wind, rain, tides, waves, biomass and geothermal heat;

All these products possess original and unique characteristics that make them quite challenging

to model and price. We list some of the most pronounced:

• nonstorability (power);

• limited predictability (weather, wind, rain);

• high costs (biomass);

• scarcity (fossil fuels);
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• seasonality;

• mean-reversion;

• regime switching;

• extraordinary jumps (power);

• high volatility;

• state dependent regulatory constraints (emissions).

As energy markets have recently been deregulated the need for a thorough and careful analysis

of their features remains. In particular, as they are quite young, fast growing and regularly

continue to change and modify, it is very important to proceed with exploring these markets and

providing a deeper insight into the variety of related problems.

1.2 Electricity as a principal component of energy markets

Among all energy-related products, electricity is the principal and most significant one since it is

directly related to any other product and can be viewed as an outcome of a mixture of them. As

stated in Kaminski [2005], this commodity possess some specific properties like extremely high

volatility, mean-reversion, dependence volatility of the price level, strong seasonal behaviour,

the tendency of prices to jump upwards and downwards, and significant differences in the be-

haviour of prices across different geographical markets. They explain this by various demand

patterns, differences in level and structure of installed generation capacity, differences in the de-

velopments of the transmission network and power pool design. Eydeland & Wolyniec [2003]

claim that the most influencing property of power markets is the need for real-time balancing

of supply and demand provided that electricity cannot be stored. The first chapter in Kaminski

[2005] emphasises that nonstorability is crucial, since it regulates the delivery at several points

in time over the period. However, inventories cannot be used to smooth price fluctuations over

time. This implies that the classical approach to storable commodity markets modelling with the

cost-of-carry relationship cannot be helpful. Instead, one has to focus on capturing the stochastic

behaviour of power prices.

Current literature mainly offers three groups of modelling approaches: pure stochastic models,

hybrid models and equilibrium models. Equilibrium models focus on modelling supply and

demand relationship and deriving a power price as a result of optimisation over a range of

production constraints. Supatgiat et al. [2001] suggest an equilibrium model where the market

clearing price is a result of Nash equilibrium. Further, Bessembinder & Lemmon [2002] present

an equilibrium model for power forward prices and studied the equilibrium forward premium.
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The main drawback of this approach is that it does not allow for a dynamical representation of

power prices and, therefore, limits generating hedging strategies.

Hybrid models concentrate on the benefits of pure stochastic and equilibrium approaches. Pir-

rong & Jermakyan [1999] and Eydeland & Geman [1999] offer various underlying drivers when

modelling power prices via transformation of the fundamental factors. Further, Barlow [2002]

proposes a model with only one demand factor and a straightforward transformation of it to

obtain a diffusion model for spot prices which can exhibit price spikes. These models include

more information about the fundamental price drivers. The possible drawback is that it might

require non-trivial estimation algorithms to fit the model to the real data. Another issue would

be possibly difficult to capture non-linear relationship between the drivers and the price.

Finally, pure stochastic models solely centre on power price itself. The main goal here is to

capture possibly all the structural properties of observed power prices. Among the first papers

are Schwartz & Smith [2000] and Lucia & Schwartz [2002], where the authors offer a two-

factor model capturing short-term mean-reversion effect and investigate its properties. Later

Cartea & Figueroa [2005] extend it by adding a jump component, which is a critical point in

power markets that exhibit extremely large jumps due to nonstorability. Geman & Roncoroni

[2006] continue with a modification of this model by adding a state-dependent function in

front of the jump component to allow the price to jump downwards in the case of relatively

high level of power spot prices. These models have a limited ability in analytical derivation of

the electricity derivatives. Next Benth et al. [2007] suggest to model a power price dynamics

as a sum of non-Gaussian Ornstein–Uhlenbeck processes to capture the stylised features. One

of the main advantages of this model is that it allows for analytical expressions for forwards

and options. However, the main drawback of this pure stochastic approach is that it requires

advanced techniques to estimate the model parameters and which entails the model risk.

1.3 Contribution of the thesis

In this thesis we explore various aspects of stochastic power price modelling. We attempt to

fill some of the missing gaps in this research area by introducing new ideas on model risk and

storage and extending previous analysis on model performance and pricing.

The starting point of our investigation is a critical analysis of widely used stochastic models

for electricity spot price process. The first model, called the threshold model, is developed

by Geman & Roncoroni [2006], and is an exponential Ornstein–Uhlenbeck process driven by a

Brownian motion and a state-dependent compound Poisson process. It is designed to capture

both statistical and pathwise properties of electricity spot prices. The second model, called the

factor model, was proposed by Benth et al. [2007]. It is an additive linear model, where the

price dynamics is a superposition of Ornstein–Uhlenbeck processes driven by subordinators to
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ensure positivity of the prices. It separates the modelling of spikes and base components. The

third model, called the jump-diffusion model, is proposed by Cartea & Figueroa [2005], and is

a one-factor mean-reversion jump-diffusion model, adjusted to incorporate the most important

characteristics of electricity prices. We calibrate all three models to German spot price data. We

critically compare the properties and the estimation procedures of three models and discuss sev-

eral shortcomings and possible improvements. Besides analysing the spot price behaviour, we

compute forward prices (analytically for the jump-diffusion and the factor models and numeri-

cally for the threshold model) and risk premia for all three models for various German forward

data and identify the key forward price drivers.

As the threshold model does not allow for an analytical expression for forward prices, the only

way so far was to compute these via Monte Carlo technique. Albanese et al. [2008] also offer

a numerical method for pricing derivatives on electricity prices within this model. The method

is based on approximating the generator of the underlying process. Despite the fact that the

authors claim that the method is accurate even in the case of processes with fast mean-reversion

and jumps of large magnitude, it takes quite significant computational efforts to obtain desired

results. In contrast to it, we suggest a new approach to this: basing on the generator of the

process we obtain a partial-differential equation with an integral term (due to the jump compo-

nent). This term is quite similar to PDE for the jump-diffusion models with one small but crucial

difference: the state-dependent function h which takes either +1 or −1 values. We numerically

solve this PDE with a finite difference method and obtain forward prices dynamics, which are

very important in terms of hedging and managing the risks. When solving this equation numer-

ically, we first have to cut the domain for x such that x ∈ (xmin, xmax). At second we have to

truncate the integral term from (−∞,∞) to (Kmin,Kmax). We are able to estimate these trun-

cation error analytically. We study the influence of the function h on the forward dynamics. For

a fair comparison, we benchmark our PDE-driven forward dynamics to the forward dynamics

obtained for the jump-diffusion model, which is possible to do for some classes of distributions

assumed for the jump size.

We also analyse a storage valuation problem. Power prices are closely related to storage for a

number of reasons. Firstly, the share of hydro-driven generated power is increasing in many

Scandinavian and European countries in terms of a general growth of renewable energy. Sec-

ondly, both fossil(gas)-driven power plant producers and/or storage owners face a problem of

optimal managing the storage reservoir. Therefore, due to random nature of the prices (gas,

power), optimal managing means searching for an optimal (in the sense of value maximisation)

policy to inject (gas), to withdraw (gas or hydro) or to ”do nothing” (if market prices are not

attractive) over a set of constraints (managing costs). This type of problem belongs to a class of

stochastic optimal control problems and is a main focus of present literature ( Ahn et al. [2002],

Chen & Forsyth [2007], Kjaer & Ronn [2008], Thompson et al. [2009], Carmona & Ludkovski

[2010]) on storage value optimisation. We instead look at the problem differently and propose

a new approach to storage problem which directly addresses to value modelling. The novelty
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lies in the representation of the storage process as a bounded diffusion in the finite interval

(l, u). Some specifications allow for an analytical formula for the transition probability density

and, as a consequence, straightforward calculation of the storage value via various payoffs. The

main benefit of this method is that it does not involve sophisticated algorithms of searching an

optimal policy and that it can easily be implemented.

Finally, as was mentioned in the previous section, power price stochastic models are not easy to

calibrate with the historical market prices. And even if there are some methods and procedures

available around, the natural question is how valid and reliable our estimation is. In contrast to

financial markets, energy model risk investigation area has not been discussed in literature at

all to the best of our knowledge. We cover this topic which is of a great interest to practitioners.

We assess the model risk inherent in the valuation procedure of fossil-driven power plants. To

capture model risk we use risk-capturing functionals, a methodology recently established in a

series of papers like Cont [2006] and Bannör & Scherer [2013]. As gas-fired power plants are

seen as flexible and low-carbon sources of electricity which are important building blocks in

terms of the switch to a low-carbon energy generation, we consider the model risk in this asset

class in detail. Our findings reveal that spike risk is by far the most important source of model

risk.

The thesis is based on four papers. The first one Benth et al. [2012] is already published paper.

The second one Bannör et al. [2014] is submitted to Energy Economics. The last two are working

papers and are in preparation to be submitted.

1.4 Structure of the thesis

The thesis is organised as follows. Every chapter starts with introduction and motivation sec-

tions, then proceeds with the research flow and concludes with discussion and perspective out-

look. Since the thesis covers many topics from various areas of Probability and Stochastic Pro-

cesses Theory, Financial Mathematics, Lévy processes and Statistics, additional ”background”

chapter would be excessive. Instead, some of the useful definitions, facts and theorems are

given in Appendices.

Chapter 2 begins with introduction of electricity price models and overview of used algorithms

to calibrate the models to the historical data. Then it goes on with the critical comparison of

the obtained results. Further for all three models assess their ability to pricing derivatives by

computing forward prices and market risk premia.

Chapter 3 continues with pricing forwards prices. It firstly briefly introduces the models and

then continues with numerical implementation of finite difference method. It also reports the

estimates for the domain truncation error and for the integral truncation error. This chapter

finalises with discussion of the resulting forward prices for two models.
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Chapter 4 is focused on a storage value problem. It first of all presents theoretical development

of the bounded stochastic processes. Then it continues with its application to storage mod-

elling and explores various hydro- and gas-driven payoffs to construct the storage value. It also

shows numerical examples to illustrate the resulting values. And eventually it discusses further

application and extension possibilities.

Chapter 5 starts with general overview of the model risk and financial instruments we use to

do so. It further continues with modelling assumptions and estimation algorithms. Next this

chapter demonstrates the resulting model risk values for various risk sources. It then concludes

and offers some outlook.

Finally, Chapter 6 concludes and provides some prospectives for future research.
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CHAPTER 2

ELECTRICITY MODELLING

2.1 Introduction

The modelling of the dynamics of electricity spot prices is a delicate issue. The spot prices

exhibit various characteristics (see Eydeland & Wolyniec [2003]): seasonality, spikes and mean-

reversion. Depending on the market, we can observe daily, weekly, monthly or yearly seasonal-

ity. Sudden big changes in price or so-called spikes can be caused for example by unexpected

weather change or outage of equipment. The intensity of spikes may also demonstrate both

time dependency and randomness. Also, prices are mean-reverting at different speeds. As the

deregulated electricity markets are still developing and fast growing, practitioners as well as

academics have suggested several models to capture some or all of these features. Recently,

three models have attracted considerable attention: a model proposed by Cartea & Figueroa

[2005] (called the jump-diffusion model), a model proposed by Roncoroni [2002] and further

developed by Geman & Roncoroni [2006] (called the threshold model), and a model derived

by Benth et al. [2007] (called the factor model). We will provide a detailed comparison of the

three models in terms of their empirical ability to fit spot price data and to price forwards. In

order to do so we use data from the German Electricity Exchange, EEX, and investigate the

performance of the models.

The jump-diffusion model can be seen as a one-factor mean-reverting jump-diffusion model

close to the classical exponential Ornstein-Uhlenbeck process suggested by Schwartz [1997]

and later applied to electricity markets by Lucia & Schwartz [2002]. As the two latter models

do not incorporate jumps, the model proposed by Cartea & Figueroa [2005] is extended to

account for jumps. The model is easy to calibrate and produces a straightforward formula to

price forward contracts. Due to its simple and parsimonious structure the jump-diffusion model

is quite extensively used among practitioners.

The threshold model can be seen as a one-factor mean-reverting jump-diffusion model close to

the model of Cartea & Figueroa [2005] with two novel twists. Firstly, the authors introduce a

state-dependent sign of the jump component, where high price levels induce negative jumps,
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2. Electricity modelling

whereas in low price regimes the jumps are upwards. This feature prevents several spikes fol-

lowing each other. Secondly, the estimation process makes use of a threshold, which is set

iteratively, so that the estimated parameters are calibrated to the empirical kurtosis. In order

to price forwards with this model numerically, typically Monte Carlo, techniques have to be

used. Albanese et al. [2008] propose a method based on approximating the generator of the

underlying process and illustrate the speed and accuracy of the method by pricing European

and Bermudan options. A lattice-based method for the discretisation of the threshold model

that allows for the pricing of derivatives, including swing options, has been proposed in Geman

& Kourouvakalis [2008].

The factor model is an additive (or linear) multi-factor model that separates the base and spike

signals. By the base signal we mean the daily fluctuations of the price around the mean level

due to small changes in supply and demand in the market; by the spike signal we mean the price

jump of extreme size due to sudden imbalances of demand and supply. This structure allows

for more flexibility in capturing the high speed of mean-reversion observed for spikes and the

more slowly varying base signal. However, the estimation of the parameters in this model

is challenging. Applying techniques from Meyer-Brandis & Tankov [2008] together with the

prediction-based estimating functions technique of Sørensen [2000], we suggest an improved

estimation procedure. Due to its specification, the model provides a simple and straightforward

way to price forwards and options, see Benth et al. [2007] and for the pricing of spark spread

and average options consult Benth & Kufakunesu [2009].

Clearly, a reliable and well-understood spot price model is important for risk management and

pricing purposes. With our study we will provide a comparison of the data-fitting ability and

pricing performance of the models. We discuss and clarify estimation procedures for the models.

In particular, we observe that in the jump-diffusion and threshold models the mean-reversion is

an average of the reversion of spikes and intra-spike behaviour, a property that has earlier been

observed in jump-diffusion models of this kind. Also we demonstrate that parameter estimates

in the threshold model are very sensitive to changes in the spike sizes. Furthermore, the state-

dependent sign change seems to be of little importance for the German market data considered.

However, it might be an issue for other data sets. We also find the ability of the model to capture

the spot price risk questionable.

The factor model, on the other hand, achieves a more reasonable modelling of the spike be-

haviour. However, the base (or intra-spike) dynamics seems to be too regular in the sense that

it produces a less volatile base signal compared to the data. This may be attributed to the use of

subordinators, which are processes that in the most tractable cases are of finite activity.

The three models have been applied in various contexts for pricing purposes. The performance

of the three models leads to the conclusion that they all require careful refinement in both spec-

ification and estimation in order to fully capture the stylised statistical and pathwise properties

of electricity spot and forward price data.
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2.2. The jump-diffusion model

We present our findings as follows. In the next three sections we introduce the models and

discuss their theoretical properties. Further, in Section 2.5, we provide algorithms and estimate

the parameters of the models using German electricity spot price data. In Section 2.6 we assess

the calibration and discuss various possible improvements for modelling noise and jump size

distribution. Section 2.7 is devoted to the computation of forward prices and study of the

market risk premium. The final Section 2.8 in this chapter concludes.

2.2 The jump-diffusion model

Let (Ω,P,F, {Ft}t∈[0,T ]) be a complete filtered probability space with T < ∞ a fixed time hori-

zon. We denote the electricity spot price at time 0 ≤ t ≤ T by S(t), and assume that it takes the

form

S(t) = eµ(t)X(t) , (2.1)

where µ(t) is a deterministic function modelling the seasonal trend, or mean variations, of the

price evolution, and X(t) is some stochastic process modelling the random fluctuations around

this trend. In the three models, X(t) will take very different forms, but the trend function µ(t)

will stay the same.

In electricity markets spot prices may demonstrate various types of seasonality: daily, weekly,

monthly, yearly or a combination of them. Cartea & Figueroa [2005] study historical spot data

from England and Wales and suggest some intra-week seasonality, since the returns show cor-

relation every 7 days. To explain this fact, recall that electricity is traded 7 days per week and

the information contained in Friday prices has an impact on the Saturday, Sunday and Monday

morning prices. In addition to this weekly seasonality effect, spot prices may vary by seasons,

caused by changing supply and demand. In this case, we have to employ some periodic function

to capture such a trend behaviour. For instance, in the Nord Pool market there is no inflow of

water in the hydro reservoirs in the winter, at the same time the demand is high because of

low temperatures, so the winter prices are higher than in summer. To model seasonalities, we

follow Geman & Roncoroni [2006], who analyse three of the major U.S. power markets. The

market conjuncture reveals yearly seasonality on a monthly basis and a combination of an affine

function and two sine functions with a 12 and a 6 month period respectively is used to model

this seasonality. We find that in the German EEX market this is also a reasonable choice. We

therefore choose the following trend model

µ(t) = α+ βt+ γ cos(ε+ 2πt) + δ cos(ζ + 4πt) . (2.2)

Here, the parameters α, β, γ, δ, ε and ζ are all constants. The first term is interpreted as fixed cost

linked to the power production, while the second term drives the long-run linear trend in the

total production cost. The remaining terms give periodicity by adding two maxima per year with
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2. Electricity modelling

possibly different magnitude. The parameters can be estimated by fitting the trend function, for

example by least squares. We continue by specifying the X(t) process for the jump-diffusion

model.

Here the deseasonalized logarithmic spot prices are modelled by

d lnX(t) = −α lnX(t) dt+ σ(t) dW (t) + ln J dq(t) , (2.3)

where α is the speed of mean-reversion, W is a Brownian motion, σ(t) is a time-dependent

volatility, J is a proportional random jump size and dqt is a Poisson process of intensity l

with

dqt =

{
1 with probability l dt

0 with probability (1− l) dt .
(2.4)

A typical assumption on the jump size distribution is ln J ∼ N(µJ , σ
2
J) and E[J ] = 1.

2.3 The threshold model

In this section we introduce the threshold model and provide a detailed discussion of its various

components. Here the deseasonalized logarithmic spot prices are modelled as

d lnX(t) = −θ1 lnX(t) dt+ σ dW (t) + h(ln(X(t−))) dQ(t) , (2.5)

whereW is a Brownian motion,Q is a time-inhomogeneous compound Poisson process, i.e.

Q(t) =

N(t)∑
i=1

Ji . (2.6)

X(t−) denotes the left-limit as usual. N(t) is a Poisson process with time-dependent jump

intensity and counts the spikes up to time t. J1, J2, . . . model the magnitudes of the spikes and

are assumed to be independent and identically distributed random variables. The constants θ1

and σ are both positive. The function h attains two values, ±1, indicating the direction of the

jump. The Brownian component models the normal random variations of the electricity price

around its mean, i.e., the base signal. The discontinuous price spikes are incorporated through

the jump term h(lnX(t−)) dQ(t). The compound Poisson process Q has a time-dependent jump

intensity to account for seasonal variations in the spike occurrence. Note that as in the jump-

diffusion model, the threshold model has only one mean-reversion parameter, namely θ1.

To review the threshold spike modelling approach (along the arguments given in Roncoroni

[2002] and Geman & Roncoroni [2006]), we start with the spike intensity. Since spikes show
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2.3. The threshold model

clustering and periodicity the intensity of N(t), which models the spike intensity, is assumed to

be deterministic function

ι(t) = θ2 × s(t) . (2.7)

Here, θ2 is interpreted as the expected number of spikes per time unit at a spike-clustering time.

The function s(t) represents the normalized and possible periodic jump intensity shape. One

reasonable specification of s(t) can be a sine function

s(t) =

[
2

1 + | sin[π(t− τ)/k]|
− 1

]d
, (2.8)

where the positive constant k is the multiple of the peaking levels, beginning at time τ . For

example, if k is equal to 0.5, then there are 2 peaking times per year, corresponding to two

periods with spikes over the year. The exponent d is introduced to adjust the dispersion of

jumps around the peaking times. In fact, this parameter is responsible for how short the periods

of spike occurrences are. As we shall see in the sequel (see Figure 2.4), the intensity shape

function s(t) may exhibit convex or concave peaks with a given periodicity, and the choice of

this function is motivated by the shape of the power stack function. We remark in passing that

in Benth et al. [2007] the same form of intensity function as Equation (2.7) was used in an

empirical example for Nord Pool electricity spot prices with k = 1. In the Nordic market, spikes

occur in the winter period, thus the periodicity is one.

In their paper Geman & Roncoroni [2006] alternatively suggest a stochastic form of the spike

intensity to increase the probability of spikes in case when prices are above some specified

threshold E(t) different from T(t). The following form is used to capture this effect

ι(t, E(t−)) = θ2 × s(t) × (1 + max{0, E(t−)− E(t)}), (2.9)

where E(t) denotes the logarithm of the price. The authors suggest to set this threshold E(t)

smaller than the threshold T(t) to define the interval for prices where the spike activity will

be higher. As soon as the price level falls below E(t), the stochastic intensity reduces to a

deterministic intensity.

The spike sizes are modelled by the jump size distribution of the compound Poisson process,

that is, by the Ji’s. Geman & Roncoroni [2006] propose a truncated exponential distribution

for the spike sizes Ji with density

p(x; θ3, ψ) =
θ3 exp(−θ3x)

1− exp(−θ3ψ)
, 0 ≤ x ≤ ψ . (2.10)

The average jump size parameter is θ3, and the maximal possible jump size is ψ. The latter

implies an upper bound for the absolute value of price changes. For an empirical analysis of spot
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price data series, such an upper bound corresponds to the implicit assumption that there will be

no bigger price change in the future than that given by the bound. Consequently, as in Geman

& Roncoroni [2006], the model does not generate jumps exceeding historically observed ones.

This is a restrictive assumption in the sense that we limit ourselves to include only the observed

big changes, which may not be adequate in the future. An alternative to this extreme is to allow

potentially unbounded price changes, as proposed in Meyer-Brandis & Tankov [2008], where the

authors use a Pareto distribution to model the spike sizes. In this case one can get outliers which

will result in huge spikes. From the point of view that in most markets there is a maximum

price for the spot which the market cannot exceed in the auction, this approach may also be

questioned. However, the technical limit is typically rather high. Furthermore, Meyer-Brandis &

Tankov [2008] study electricity spot prices on several European markets and defend their use of

this extreme-value distribution based on the empirically observed power-law behaviour in the

tails of the daily returns, along with excess kurtosis and positive skew.

Obviously, the chosen jump-size distribution strongly influences the empirical properties of the

simulated price paths. Looking at the moments of the price paths resulting from these two spec-

ifications, the kurtosis for example will differ dramatically, as we shall see in the next section. It

is quite natural that the specification with a truncated exponential jump size distribution has a

kurtosis reasonably close to the observed one. For a Pareto specification, we predict future price

changes which may be far larger than the historical observed ones, and thus the kurtosis will

increase. This indicates that comparing empirical moments in order to assess the quality of a

model may be misleading. To look beyond these extremes, we shall rely on an empirical analysis

of observed jumps and consider alternative jump size distributions in between the two extreme

choices of truncated exponential and Pareto.

In the threshold model the direction of spikes is given by an indicator function h taking values

+1 and -1 depending on the current spot price level. A threshold is introduced to determine the

sign of the spike, denoted by T. Thus,

h(lnX(t)) =

{
+1, if lnX(t) < T(t),

−1, if lnX(t) ≥ T(t) .
(2.11)

Geman & Roncoroni [2006] introduce the h-function together with the smooth mean-reversion

θ1 to bring the prices to a normal range after being at a high level. They affirm that “a proper

choice of the barrier T coupled with a high jump intensity can generate a sequence of upward

jumps leading to high price levels, after which a discontinuous downward move together with

the smooth mean-reversion brings prices down to a normal range”.

One may believe that h models the mean-reversion of spikes, in the sense that if we first have

an upward-pointing spike, the next jump will be pushed down due to the sign of h. However,

this is not necessarily the case since it may take some time before the next jump actually occurs.

12



2.4. The factor model

Indeed, in the high-spike intensity markets, when we first have a jump, at the next step we

have either one more jump or not. Of course, if the compound Poisson process decides to jump

twice, an upward spike will be followed by a downward jump due to the sign of h and the

mean-reversion speed together. Such a high concentration of jumps in a period will lead to

a rather strange sequence of up- and downward jumps and concentration of noise. To have

a mean-reversion of a spike, the threshold model resorts to the θ1-parameter. On the other

hand, θ1 also accounts for the mean-reversion of the base signal. A spike requires a fast mean-

reversion, whereas the base signal is reverting more slowly. The mean-reversion estimate of θ1 is

higher than expected for a base signal, and somewhat slower than required to dampen a spike.

Our empirical analysis of EEX data supports this view. If there are no consecutive jumps, the

price path will wiggle around the new level, which has been reached after the first spike, due

to the Brownian component and the mean-reversion, unless it is pushed down again. So the

parameter h is not responsible for the mean-reversion of the spike process, but θ1 takes care of

this. Therefore, both cases guarantee that consecutive price values will not exceed the threshold

level. At this point, we claim that h prevents two consecutive price values above the threshold,

i.e. at least one downward price movement lies in between.

2.4 The factor model

Suppose that X(t) is a stochastic process represented as a weighted sum of n independent non-

Gaussian Ornstein-Uhlenbeck processes Yi(t), that is,

X(t) =
n∑
i=1

wiYi(t) , (2.12)

where each Yi(t) is defined as

dYi(t) = −λiYi(t) dt+ dLi(t) , Yi(0) = yi, i = 1, . . . , n . (2.13)

The weight functions wi and the mean-reversion coefficients λi are positive constants. Li(t)

are assumed to be independent càdlàg pure-jump additive processes with increasing paths,

i.e. so-called time-inhomogeneous subordinators (see Definition 6). Corresponding to each

Li(t) we have a time-inhomogeneous Poisson random measure Ni( dt, dz) with a determinis-

tic predictable compensator vi( dt, dz). The compensated Poisson random measure is denoted

by

Ñi( ds, dz) = Ni( ds, dz)− νi( ds, dz) .

We have the representation

Li(t) =

∫ t

0

∫ ∞
0

z Ni( ds, dz) . (2.14)
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2. Electricity modelling

We shall choose compensator measures of the form νi( dt, dz) = dt ν̃i( dz) for a Lévy measure

ν̃i( dz) (see Definition 5). This implies that Li(t) is a Lévy process (see Definition 4), or

νi( dt, dz) = ρi(t) dt fi( dz) ,

where ρi(t) is a deterministic function controlling the possibly time-varying jump intensity and

fi( dz) is a jump size distribution. In many markets spikes have a tendency to occur in certain

periods of the year, and thus it is natural to let the jump intensity for these vary seasonally. Since

the jump process has increasing paths, the jumps are only positive, and thus the Lévy measures

ν̃i(dz) are supported on the positive real line. The spot price will be positive as well, since the

processes Yi(t) will be positive by the definition of these jump processes.

The main idea of the factor model is to decompose the electricity spot price into the base and

spike signals. This flexibility allows one to capture mean-reversion at different scales, but at the

cost of a quite complicated estimation procedure. An example of a possible model specification

using three OU processes is proposed in Benth et al. [2007]. The first OU process is assumed

to have a stationary Gamma distribution and a constant volatility, responsible for small daily

fluctuations around the mean trend. For the second OU process a compound Poisson process

is used to capture larger price movements which revert faster to the mean. The third process

drives the spikes, and has possibly a seasonally varying jump intensity.

In the additive structure of n OU processes one has n mean-reversion parameters λ1, . . . , λn.

The larger λi is, the faster the process Yi(t) comes back to its mean-level. The autocorrelation

function ρ(k) for lag k of X(t) is

ρ(k) = w̃1e−kλ1 + w̃2e−kλ2 + · · ·+ w̃ne−kλn , (2.15)

where w̃i are positive weights summing up to 1. A comparison with the empirical autocorrelation

function thus allows one to find the number of factors required and to estimate the mean-

reversion from each of the factors. This approach was proposed in Barndorff-Nielsen & Shephard

[2001] for their stochastic volatility model, which uses a structure similar to the factor model. A

fast reversion in spikes will be observed as a strongly decaying slope in ρ(h), whereas the more

slowly reverting base signal is found as slower decaying exponentials.

2.5 Algorithms applied and estimation results

For our empirical analysis we use a data set of the Phelix Base electricity price index at the

European Energy Exchange (EEX). The data series range from 13/07/2000 to 7/8/2008, where

the weekends are excluded. In total, we have 2099 daily prices constituting the basis for our

spot-price estimation. The reason for excluding weekends is mainly because Friday price infor-
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2.5. Algorithms applied and estimation results

mation is contained as a basis for Saturday, Sunday and Monday morning prices and thus the

prices over the weekend are not directly comparable to those settled during the week.

2.5.1 Seasonality trend parameters estimation
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Figure 2.1: EEX price path with seasonality trend.

We start by estimating the seasonality function. The choice of this function is a very impor-

tant issue, since the specified trend should explain the average market expectation of the price

course for the next month, quarter or year. Moreover, deseasonalisation is the first step of the

price estimation, so depending on the seasonality estimation, the deseasonalised data set may

vary considerably. Cartea & Figueroa [2005] suggest fitting monthly averages of the historical

data by a Fourier series of order 5. This is a questionable choice, since this function does not

incorporate any trend component, which is necessary to model power dynamics. Also, it is not

completely clear how to define the optimal order for a Fourier series. Moreover, the number of

parameters for a chosen Fourier series fit with order of 5 is 12, which is twice as many as in the

parametric case introduced in Geman & Roncoroni [2006] and Benth et al. [2007]. Here the

authors use a function µ(t) described in the previous section. For a deseasonalisation procedure,

we take the latter approach for all three models.

In order to adjust for the influence of large price outliers (such as spikes) in the seasonality es-

timation, we implemented a simple filtering procedure. This compares smoothed (by averaging
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Figure 2.2: Deseasonalized EEX price.
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Table 2.1: Seasonality function estimated on filtered data. R2 = 0.6961.

Parameter Estimate Std. Error t-value
α 2.9628 0.0092 320.8417
β 0.1354 0.0020 68.1191
γ -0.0737 0.0064 -11.4226
δ 0.0117 0.0064 1.8446
ε 6.8662 0.0875 78.4585
ζ 0.7464 0.5436 1.3389

over sliding windows of 30 data points length) and observed log prices. If the absolute differ-

ence between the smoothed and real log price is bigger than a pre-defined level, here 0.5, we

substitute the log price with the smoothed value. In this way we “filter” out the price outliers

from the original price data series.

On the filtered data series, we estimate the parameters of the seasonality function µ(t) specified

in Equation (5.5) using non-linear least squares method. The results are reported in Table 2.1.

One can see that almost all estimates are significant: α , β , γ , ε are significant with t0.99 = 2.326,

δ with t0.95 = 1.645 and ζ with t0.9 = 1.282. In Figure 2.1 we plot the estimated seasonality

function µ(t) together with the EEX data. During the period of 2000–2006 the price path and

seasonality are matched very well. Due to structural breaks the fit deteriorates between 2006–

2008. The price path amplitude has changed in that period compared to previous years. We

could capture this by splitting the data set into the two periods and then estimate the seasonality

separately. In Figure 2.2 we show the deseasonalized price series.

We continue with the estimation of the three models based on the deseasonalized data, that is,

the data obtained after dividing with the estimated eµ(t)-function. For the factor model, we work

with these data, whereas for the jump-diffusion and threshold models we use the log-data.

2.5.2 Jump-diffusion model calibration

From the historical spot data we estimate the rolling historical volatility σ(t) and its aver-

aged value, the mean-reversion rate α, the frequency l and the standard deviation σj of the

jumps.

Volatility

Cartea & Figueroa [2005] suggest the volatility to be time-dependent. The motivation is that

markets do not show constant volatility, but some volatility structure. However, the authors

do not provide any prescribed function or any stochastic alternative for the volatility. Instead,

they compute a rolling historical volatility suggested in Eydeland & Wolyniec [2003], which in
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2. Electricity modelling

Table 2.2: Estimates for the jump-diffusion model parameters.

Parameter Estimate
α 0.2255

(0.1938, 0.2584)
R2 = 0.6373

[σ(t)] 3.9025
σj 1.0996
l 5.67

fact is a deterministic result given a data path. If we make a plot of such a rolling historical

volatility, we observe in Figure 2.3 that there appears some seasonal pattern as well as some

stochastic element. Obviously, they both need to be incorporated into the model. Otherwise,

such a “substitution” by historical volatility may result in unreasonable estimates.

Mean-reversion rate

To get a daily estimate for the mean-reversion rate α, Cartea & Figueroa [2005] suggest using

linear regression. The idea of such approach is to rewrite the mean-reversion jump-diffusion

process in the discrete version and represent the log price as

xt = at + bxt−1 + ct, (2.16)

where at represents a function of µ(t), b ≡ e−α, ct is the integral of the Brownian motion and

the jump component between times t− 1 and t.

Jump parameters

To estimate jump parameters, we need to identify jumps from the data. We use a simple tech-

nique based on the standard deviation of the returns (see Cartea & Figueroa [2005]). The

iterative procedure filters out returns with absolute values greater than three times the standard

deviation of the returns of the series at the current iteration. The process is repeated until no

further outliers can be found. As a result we obtain a standard deviation of the jumps, σj , and

a cumulative frequency of jumps, l. The latter is defined as the total number of filtered jumps

divided by the annualised number of observations. We report the results in Table 2.2, where

annualised estimates and average (denoted by [·]) volatility are given appropriately with the

95% confidence interval values in the parenthesis.
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Figure 2.3: Time-dependent volatility for the jump-diffusion model.

2.5.3 Threshold model calibration

Geman & Roncoroni [2006] propose to split the calibration procedure in two steps. First, the

so-called structural elements are to be estimated, then in the second step one estimates the model
parameters. The structural elements are the spread ∆, the components of the intensity shape

ι(t) and the maximum jump size ψ. The remaining are the model parameters.

Estimation of structural elements

First, one needs to find the spread ∆, which will limit the jump size of the model. The choice

of ∆ is a result of a balance between two competing effects: the larger ∆, the higher are the

price levels which can be reached during the pressure period and the fewer spikes will occur;

the smaller ∆, the sooner the downward jump effect toward normal levels takes place and more

spikes will occur. Following Geman & Roncoroni [2006], we select ∆ in such a way that the

corresponding calibrated model generates paths whose average maximum values are equivalent

to those observed in the market. In the case of the EEX data on log-scale, this results in a ∆

spread given by 0.7.
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Figure 2.4: Calibrated intensity shape function and real values of detected spikes.
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Figure 2.5: EEX price process together with calibrated seasonality and detected spikes.
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Geman & Roncoroni [2006] suggest choosing the maximum jump size ψ as the observed maxi-

mum daily absolute variation in log-prices, which for our data set takes the value 2.2361. Note

that this parameter can give some non-realistic results in the spike size, since it can be consid-

ered as an upper limit for the spikes. The intensity shape function s(t) is estimated manually

in such a way that the most salient spikes coincide with the intensity shape peaks. In addition,

the intensity shape should capture clusters of spikes. This procedure leads to k = 0.7, d = 0.75

and τ = 0.42. In Figure 2.4 we show the resulting calibrated shape function together with the

most prominent spikes, extracted according to the specified threshold Γ. For comparison with

the non-parametric spike intensity, the empirical spike intensity is plotted in Figure 2.6 based on

all the detected spikes. (The comparable intensity for the factor model is in Figure 2.12.)
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Figure 2.6: Historically based frequency of spike occurrence for the threshold model.

Geman & Roncoroni [2006] analysed the effect of the stochastic spike intensity function in

Equation 2.9 on the ECAR market, and found no statistical evidence that this improved the

fit. A stochastic intensity could potentially model a ”spike reversion” given by a negative jump

following a positive one. Figure 2.5 shows the EEX prices together with the calibrated trend

µ(t) and detected spikes. Figure 2.7 depicts the price values for six typical weeks when spikes

were detected (the spikes in red, the following prices in black). The general picture is that

one can see an upward price spike, followed by a quick reversion back, given by one or more

decreasing prices. One could attribute this to first having a negative spike, and next mean-

reversion is dampening the prices further, or a sequence of negative spikes. In order to get

this, one must have a low level for the stochastic spike intensity in order to create a negative

spike with sufficiently high probability. But we also need the negative spike size to be of certain

magnitude in order to push the prices sufficiently down. To have a sequence of negative spikes,

we must have a very low threshold for the stochastic spike intensity, as well as the threshold

for having negative sign of the jumps. This will most likely be in conflict with the estimation of

positive price spikes that we naturally want to include in the model. The alternative to having

negative spike(s) following a positive price spike is strong mean-reversion. Indeed, the mean-

reversion speed does not have to be increased very much in order to have a decay like we see

in Figure 2.7. This discussion suggests that the maximum-likelihood estimator will put more

emphasis on a mean-reversion adjustment rather than the stochastic spike intensity, since after
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all there are fairly few data for the spikes to rely the estimation on. As the variations in the EEX

data are already quite big for the ”non-spike” regime, coupled with strong reversion, we have

the potential for large price decays without the help of negative spikes.

0

50

100

150

200

250

300

350
1/

6/
03

1/
7/

03
1/

8/
03

1/
9/

03
1/

10
/0

3
7/

14
/0

3
7/

15
/0

3
7/

16
/0

3
7/

17
/0

3
7/

18
/0

3
11

/2
8/

05
11

/2
9/

05
11

/3
0/

05
12

/1
/0

5
12

/2
/0

5
7/

24
/0

6
7/

25
/0

6
7/

26
/0

6
7/

27
/0

6
7/

28
/0

6
11

/6
/0

6
11

/7
/0

6
11

/8
/0

6
11

/9
/0

6
11

/1
0/

06
11

/1
9/

07
11

/2
0/

07
11

/2
1/

07
11

/2
2/

07
11

/2
3/

07

Date

EE
X 

Pr
ic

e

Figure 2.7: EEX price values for six selected weeks when spikes were detected. The spikes are
in red, the following prices are in black.

Estimation of the model parameters

After selecting the structural parameters, we estimate the model parameters. First of all, a jump

threshold Γ is set to filter out ∆Ed and Ec, i.e. the jump and continuous paths, respectively.

Then, based on this, the smooth mean-reversion force θ1, the maximal expected number of

jumps θ2, the reciprocal average jump size θ3 and the Brownian local volatility σ are estimated.

The fourth moment of the fully specified model is then computed, and compared to the empirical

one. If the deviation is too large, the jump threshold Γ is either de- or increased, and the whole

procedure is repeated. Geman & Roncoroni [2006] propose iterating the procedure of choosing

the jump threshold Γ until the estimated model matches the fourth moment of the daily log-price

return distribution.

The parameters Θ = (θ1, θ2, θ3) are to be estimated by approximate maximum likelihood. The

log-likelihood function explicitly depends on Θ and the filtered data set (∆Ed, Ec) and implicitly

on the choice of Γ, which is used to obtain ∆Ed and Ec. The approximate logarithmic likelihood

function is given by Geman & Roncoroni [2006] as

L(Θ | Θ0, E) =
n−1∑
i=0

(µ(ti)− Ei)θ1

σ2
∆Eci −

∆t

2

n−1∑
i=0

((µ− Ei)θ1

σ

)2
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−(θ2 − 1)
n−1∑
i=0

s(ti)∆t+N(t) ln θ2

+

n−1∑
i=0

[
− (θ3 − 1)

∆Edi
h(Ei)

]
+N(t) ln

( 1− e−θ3ψ

θ3(1− e−ψ)

)
. (2.17)

The first part represents a discretized version of the Doléan-Dade exponential for continuous

processes. The remaining parts are responsible for the jump process. The log-likelihood func-

tion explicitly depends on θ1, θ2, θ3 and the ”Γ - filtered” data set. The likelihood function is

maximized with respect to θ1, θ2 and θ3 over a bounded parameter set Θ, taking some economi-

cally sound limiting values into account. The function is constructed in such a way that one can

split it up into three independent parts and maximize them separately

L(Θ | Θ0, E) = F1(θ1) + F2(θ2) + F3(θ3). (2.18)

Such a modification helps to facilitate the optimization algorithm and to increase the estimation

correctness.

The next parameter to be estimated is the volatility of the continuous path. We use

σ =

√√√√ 1

T

n−1∑
i=0

∆Ec(ti)2 . (2.19)

This estimator for the volatility was applied in Roncoroni [2002], and is based on the quadratic

variation of the continuous path; see Genon-Catalot & Jacod [1993] for details. Table 2.3 con-

tains the estimates of the model parameters.

Table 2.3: Estimates of the threshold model parameters.

Element Interpretation EEX
θ1 Smooth mean-reversion force 0.2480
θ2 Max. expected number of jumps 14.5144
θ3 Reciprocal average jump size 1.0584
σ Brownian local volatility 3.8216
Γ Jump threshold 0.6750

An estimate of the expected number of jumps during the period is provided by the integral of the

intensity function over the whole period, resulting in E[N(1)] = 2.6885. The number of filtered

jumps is 39, a number which depends strongly on the selected jump threshold Γ.

To understand the estimated speed of mean-reversion θ1 better, it is worthwhile to find the half-
life of the mean-reversion. The concept of half-life takes its origin from physics and generally

describes a period of time it takes for a substance undergoing decay to decrease by half. The half-

life of an OU process is defined as the average time it takes before a price jump reverts back to

23



2. Electricity modelling

half of its original value (see Clewlow & Strickland [2000]). Mathematically it can be calculated

as (ln 2)/λ, where λ is a decay constant, i.e. the mean-reversion speed. Here the estimated θ1

is yielding a half-life of 2.79 days, that is, it takes the process on average slightly less than 3

days to revert back to its mean. In the factor model, where we separated the spike process from

the base signal, we found that the spikes had a half-life of around 2 days, whereas the base

signal was initially estimated to have a half-life of around 3.5 days. We see that the threshold

model has a half-life approximately the average of these two figures. This clearly demonstrates

that the threshold model is not capable of allowing a mean-reversion which pushes spikes back

fast enough on the one hand, and at the same time is sufficiently slow to push back the lower

variations in the price path in quieter periods. In order to make up for the faster mean-reversion

for the “base signal”, one may expect a upward bias in the volatility estimate.
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Figure 2.8: Top: Sensitivity check for the skewness and the kurtosis, when the parameter ψ
takes various values. Bottom left: Sensitivity check for the skewness and the kurtosis, when
the parameter ν takes various values, while the other parameter is at fixed value α = 12.6785.
Bottom right: Sensitivity check for the skewness and the kurtosis, when the parameter α takes
various values, while the other parameter is at fixed value ν = 0.0787.
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Figure 2.9: Fitted Gamma distribution versus the spike size histogram for the threshold model.

Based on the filtered jumps, one may look for alternative spike-size distributions which are

more realistic than the truncated exponential. As mentioned earlier, by truncating the spike-size

distribution, one essentially introduces an upper limit for possible jumps. By using the historical

price changes future price behaviour will repeat the past. In fact, the estimate on the upper

bound ψ may become very unstable, since the spikes in most electricity price series are of very

different size, even by several magnitudes. In order to see this effect in the data, we based

the estimate of ψ on different price changes. For example, rather than basing our truncation on

ψ = 2.2316, corresponding to the three biggest price changes, we may choose the second biggest

price change instead to obtain ψ = 1.7962. The effect on the moment properties of the path turns

out to be dramatic. In Figure 2.8 we plot the skewness and the kurtosis of the price path as a

function of ψ. The estimates of these two moments are based on a number of simulations. The

simulations have been repeated until the change of the averaged moment value becomes less

than 0.01%. We see that the range of the kurtosis varies dramatically with the choice of ψ. Thus,

using historical price changes to truncate the spikes may lead to a very unreliable model which

may seriously fail to capture the true distribution of spike sizes. We also plot the skewness and

the kurtosis of the price path as a function of α and ν, when using a Gamma law for spikes

sizes. By fixing one parameter and varying another, we can see their influence on the moment

values. It is obvious that the range of the kurtosis and the skewness changes slightly with the

parameters. This leads us to affirm that Gamma-distributed spikes yield more stable moments

than the truncated exponential distribution for spikes. To cope with this defect, we have fitted

a Gamma distribution for the spikes as we did with the factor model. In Figure 2.9 we have

plotted the estimated Gamma distribution together with the empirical density of spikes. The

maximum likelihood parameters were found to be α = 12.6785 and ν = 0.0787. Using a non-

truncated distribution, we include the possibility of observing bigger jumps than the historically

observed ones.
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2.5.4 Factor model calibration

The first step in calibrating the factor model is to assess the number of factors required. We

compare in the L2 norm the empirical autocorrelation function (ACF) with the theoretical au-

tocorrelation functions from Equation (2.15) for different numbers of factors. We obtain n = 2

as the optimal number of factors. The estimated speeds of mean-reversion and weights are

reported in Table 2.4 and the estimated and empirical ACFs are in Figure 2.10.

Table 2.4: The fitted ACF with a sum of two exponentials.

λi w̃i
0.0087 0.3547
0.3333 0.6453

We associate λ2 = 0.3333 to the spikes having the fastest speed of mean-reversion. The base

signal is associated to the factor Y1 with estimated mean-reversion λ1 = 0.0087. We find that

the half-life of the base signal Y1 is 79.6721 and for the spike 2.0794. Thus, on average the

base signal needs nearly 80 days to come back to half its value while a spike needs only 2

days. After filtering out the spikes, we will re-estimate the speed of mean-reversion for the base

signal.
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Figure 2.10: Empirical ACF for EEX series and weighted sum of two exponentials.
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Filtering of spikes

The next step is to filter out the spikes. Meyer-Brandis & Tankov [2008] show that the hard-

thresholding procedure taken from Extreme Value Theory to identify the spikes is a reliable

technique in the context of return-distribution characteristics. In short, it filters out the spike

process using methods from non-parametric statistics and provides as output both the base signal

and the spike process. We refer to Meyer-Brandis & Tankov [2008] and Nazarova [2008] for a

detailed explanation of the approach to the EEX data. In Figure 2.11 one sees the result of the

hard-thresholding procedure: the spikes and the base signal on log-scale.
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Figure 2.11: Detected log spikes and log base signal.

As found in Meyer-Brandis & Tankov [2008] the method of hard-thresholding is insensitive to

the value of λ1 in the range of 0.1 to 0.01 and relatively insensitive to the value of λ2. Recall our

estimate of λ1 = 0.0087, being close to the desired range.
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2. Electricity modelling

Table 2.5: Resulting estimates for OU process.

Element Value
λ1 0.2008
α 13.3009
ν 8.5689

Estimating the base signal

We continue to estimate the parameters of the model for the base signal. The issue here is to

find the right subordinator process L1(t) which fits the observed filtered time series. The usual

way is to propose a stationary distribution that fit the data, and find the so-called background
driving Lévy process L1(t) such that Y1(t) has the same stationary distribution. A typical choice

is the Gamma distribution, which leads to a compound Poisson process L1(t) with exponential

jumps (see Benth et al. [2007] and Barndorff-Nielsen & Shephard [2001]). The reason for the

choice of the Gamma distribution is the availability of an explicit analytical expression for the

moments, otherwise we would need to use some numerical methods.

As suggested by Benth et al. [2007], we apply a method based on prediction-based estimating

functions developed by Sørensen [2000] and Bibby et al. [2010] to calibrate the base signal

model to data. The details of the method can be found in A.2.

Table 2.5 gives the parameter estimates from the implementation of the prediction-based esti-

mating functions technique. The re-estimate of the speed of mean-reversion λ1 implies a half-

life of approximately 3.5 days, much faster than initially estimated by matching autocorrelation

functions. In view of the very noisy behaviour in the base signal, this seems more likely than 80

days as initially found.

The method has its advantages and disadvantages. It is well-grounded from the theoretical point

of view. However, for practical applications we face the problem that the Equation Gn(θ) = 0

has no unique solution. Therefore, the algorithm may find different roots for different initial

parameter values. However, if the initial parameters are close to the true one, the resulting

estimated parameter values are correct in the sense that they match the moments. Bibby et al.
[2010] suggested finding some optimal weights to improve the efficiency of the estimator, but in

the case of multiple solutions this approach does not help significantly. Therefore, our calibration

of the base signal was carried out in two steps: first a calibration “by hand” to identify likely

intervals for the parameters values, then execution of the prediction-based estimating functions

algorithm using these initial values.

28



2.5. Algorithms applied and estimation results

Analysis of the spike process

The final step in our estimation procedure of the factor model is to calibrate the spike process.

Since spikes are rather sparse compared to the total length of the data set there are few data

points available for estimating the intensity and the jump-size distribution. To cope with this

problem we consider various specifications and analyse their consequences.

We shall apply the popular shape function proposed by Geman & Roncoroni [2006], given in

Equation (2.8), and estimate the parameters from the data at hand. An alternative approach

would be to choose an intensity based directly on the observed distribution of spikes over the

year. In Figure 2.12 we have plotted the historical frequency of the spike occurrence. To use

the historical frequency has the advantage of an easy and fast adjustment as new market data

become available. Furthermore, the calibration procedure is very simple compared to parametric

approaches.
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Figure 2.12: Historically based frequency of spike occurrence for the factor model.

Recall the intensity function ι(t, θ) defined in Equation (2.7), where we included a dependency

on the parameter vector θ = (θ2, k, d). The maximum likelihood estimator of θ is given by

(see Meyer-Brandis & Tankov [2008])

θ∗ = arg max
θ

( NT∑
i=1

log ι(τi, θ)−
∫ T

0
ι(t, θ) dt

)
, (2.20)

where τi are spike times. A time-dependent intensity function is the natural choice when there is

some pronounced seasonality in spikes. The US markets analysed in Geman & Roncoroni [2006]

demonstrate evident spike seasonality, while in the EEX market this is not so obvious. Out of

the 30 biggest positive spikes, 16 occurred in summer, 7 in winter, the remaining 7 in spring

and fall. We found a phase τ = 0.42, with d = 1.0359, k = 0.5 and θ = 14.0163 (as θ2 in the

threshold model). Figure 2.13 shows the intensity shape and the largest 30 spikes, detected by

the hard-thresholding procedure. As can be seen from the picture, EEX data do not demonstrate

such a pronounced seasonality in spikes as could be suggested from the intensity shape function.
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Figure 2.13: Calibrated intensity shape function and real values of the largest detected spikes.

The next problem is to estimate a jump-size distribution for the spikes. In Meyer-Brandis &

Tankov [2008], a Pareto distribution was suggested for the spike sizes. The estimation procedure

involves a threshold or scale parameter z0, the smallest value the Pareto random variable may

take, and a parameter α for the tail-fatness. These are estimated by means of fitting a straight

line to the empirical cumulative distribution function (CDF) on log-log scale, i.e. a traditional

Hill estimator, which is efficient when the underlying distribution is Pareto; see Drees et al.
[2000] for details. We show the result in Figure 2.14. We find the estimates z0 = 0.3648 and

α = 2.5406.

The Pareto distribution has very heavy tails, and may give unreasonably high values of the spot

price. An alternative distribution for fitting the spike sizes may be the Gamma distribution. In

Figure 2.15 we compare the fitted Gamma density with the empirical spike-size density. The

maximum-likelihood estimates for the two parameters α and ν of the Gamma distribution are

α = 6.2592 and ν = 0.0942.
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Figure 2.14: Empirical CDF of spike size on log scale.

2.6 Model comparison

In this section we assess our estimated models, and discuss their properties in the context of

the EEX electricity spot price behaviour. In Figure 2.16 we have plotted typical simulated paths

of the models, along with the observed EEX prices series. Visually the performance of all three

models is quite satisfactory. One apparent difference is that the factor model seems to be less

noisy in the intra-spike periods than the data. The jump-diffusion and the threshold models, on

the other hand, are more noisy than the data, at least according to the experience from our sim-

ulation studies. The spike pattern looks better for the factor model in these simulations.

A standard, widely used model check is to compare model-based moments to the empirical ones.

In our particular case it may not be reliable since the threshold model in fact is calibrated using

the fourth moment as a target and thus should match at least the kurtosis almost perfectly. We

report the first four moments of the returns in Table 2.6 for the jump-diffusion, the threshold

and the factor models together with the empirical moments of the EEX data. The descriptive

statistics are computed for the empirical versus simulated logarithmic price variations, i.e. log

returns. The simulations have been repeated until the change of the averaged moment value

becomes less than 0.01%.

Table 2.6: Empirical moments versus jump-diffusion, threshold and factor model moments.

Moment Average Std. Dev Skewness Kurtosis
EEX 0.0006 0.2985 0.4050 6.6179

Jump-diffusion model 0.0007 0.3191 0.8343 10.3935
Threshold model 0.0006 0.2935 0.8336 5.9783

Factor model 0.0006 0.1595 1.6749 10.5308
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Figure 2.15: Fitted Gamma distribution versus the spike size histogram for the factor model.

The figures in the table indicate the best performance for the threshold model. It matches the

first four moments very well, except possibly the skewness, where it overshoots. However, the

close resemblance with the empirical moments is not really a surprise since these have been

used as a measure in the estimation procedure. The jump-diffusion model, on the other hand,

shows two apparent characteristics. It overestimates the skewness and kurtosis, which can be

explained by the use of a Normal distribution for the spike sizes.

The factor model also demonstrates two very apparent characteristics. Firstly, it underestimates

the standard deviation significantly, yielding a simulated volatility of the path only half the size

of the empirical. This can be explained from using the hard-thresholding procedure. Meyer-

Brandis & Tankov [2008] suggest choosing a threshold value for the deseasonalized log-returns

such that the share of returns larger than the chosen threshold value does not exceed 5% of

all returns. Then, the standard deviation of the remaining 95% is computed and called the

target one, according to which we can separate spikes and the base signal. It is obvious that

the total number and size of filtered spikes depend critically on the threshold value. In our case

we obtained the target standard deviation equal to 0.1454, which looks quite consistent with

the calibrated standard deviation. Of course, if we change the criterion in the hard-thresholding

procedure, we will receive different results for the target standard deviation and the filtered

spikes and the base signal, respectively. Decreasing the share of returns above the threshold

to 1.76%, we obtain a larger target standard deviation, which may be more in line with the

observed one. Possibly, one could think of an iterative procedure parallel to finding the Γ in

the threshold model. The kurtosis of the estimated factor model is close to twice as big as the

empirical. This is a result of using a Pareto law for the spike sizes, implying rather extreme jump

sizes which obviously influences the kurtosis. Note that the high positive skewness of the factor

model is a result of the large spikes.
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Figure 2.16: EEX, jump-diffusion, threshold and factor model simulated price paths.
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Table 2.7: Base signal moments matching.

Moment EEX base signal Simulated
Average 1.0262 1.1241
Std. Dev. 0.3198 0.2637
Skewness 1.0177 0.4405
Kurtosis 2.4674 0.6756

The truncated exponential law used in the threshold model prevents the occurrence of any spikes

bigger than the ones we have already observed, which clearly helps in getting a kurtosis close

to the observed one. However, it is not clear whether matching the empirical kurtosis is a useful

fitting criterion. The empirical kurtosis takes only the observed changes into account, and as we

pointed out during the sensitivity analysis with respect to the truncation parameter in the jump

size distribution for the threshold model, it may be very sensitive to changes in the data. For

instance, the occurrence of new spikes bigger than the observed leads to a higher kurtosis. In

practice, one should be careful since the empirical moments are backward looking. The Pareto,

Gamma or Normal distribution may in fact give a much better picture of the true risk in the

future.

As we could see in Figure 2.16, the noise in the intra-spike periods is too low in the factor

model, an observation that is confirmed by the simulated standard deviation of the path. This

may be attributed to the choice of the base signal model. Its relatively slow mean-reversion

combined with a compound Possion process as driving noise will yield paths which may not look

as random as the market. The compound Poisson process will only jump at Poisson distributed

random times, and otherwise the base signal will decay exponentially. Although the stationary

distribution of the model honours the statistical properties of the base signal, we may have paths

which are too regular. A possible modification could be to include a Brownian-driven factor.

This would possibly lead to negative prices, which may be a problem in some applications.

However, in the market, and in particular the EEX market, negative prices occur from time to

time. Alternatively, we may use a subordinator which is not given by a finite-activity process, but

one with infinite activity such as the background driving Lévy process derived from supposing

an inverse Gaussian stationary distribution of the base signal.

To further analyse the base signal properties, we look at the moments of the data after the spikes

have been filtered out. In Table 2.7 we report the first four simulated moments of the factor

model, together with the empirical ones. Note that here we consider the moments of the process,

but not its log-returns, as we do while comparing models’ performance. It is very obvious from

these numbers that the base signal model does not sufficiently explain the variations in the

data. Turning to the jump-diffusion or to the threshold model, we can mimic the base signal by

considering the dynamics without the jump component. Since this is a mean-reverting model on

log-scale, the variance in stationarity is given by σ2/2α or σ2/2θ1, and inserting the estimates

this gives us a stationary standard deviation of 5.8111 or 5.4263 respectively. The figures are far
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above what is reasonable to expect by looking at the empirical standard deviation. Hence, we

see that due to the too fast speed of mean-reversion for the base signal in the jump-diffusion and

the threshold models, it compensates by gearing up the volatility to unrealistic levels. Combined

with a too slow mean-reversion for the spikes, one may question whether the pathwise properties

of the spot price are honoured in the threshold model. We remark that in Oyebanji [2007] an

even higher σ was estimated for EEX data.

To better understand the effect of having a different spike size distribution, we apply the Kolmogorov-

Smirnov test to check the goodness of fit of the different spike size distributions. We test the H0

hypothesis of the suggested distribution with estimated parameters at the 5% confidence level.

The results are reported in Table 2.8.

Table 2.8: Kolmogorov-Smirnov test results for the considered spike distributions.

Distribution Test statistics Decision on H0

Normal (jump-diffusion model) 2.1855 reject H0

Trunc. exp (threshold model) 3.5032 reject H0

Pareto (factor model) 1.7748 reject H0

Gamma (threshold model) 0.9375 no reason to reject H0

Gamma (factor model) 1.1556 no reason to reject H0

From the results we can observe that the data present sufficient evidence to contradict our

hypothesis that the spike sizes follow Normal, truncated exponential or Pareto distributions in

case of the jump-diffusion, the threshold or the factor models respectively. However, there is no

reason to reject the hypothesis on the choice of Gamma law for spike-size distribution for the

threshold and the factor models. Therefore, we can conclude that the results of the Kolmogorov-

Smirnov test support the modification of the spike size distribution. We do not provide the

results of the test for the Gamma distribution for the jump-diffusion model. We analyse the

jump-diffusion model to have a fair comparison of two complex models with one parsimonious

and to check the effect of the model specification on the results it gives. Therefore, we omit the

modifications for the jump-diffusion model here.

Table 2.9: Comparative descriptive statistics results for the log-returns of the jump-diffusion,
threshold and factor models.

Moment Average Std. Dev Skewness Kurtosis
EEX spot 0.0006 0.2985 0.4050 6.6179

Jump-diffusion model (Normal) 0.0007 0.3191 0.8343 10.3935
Threshold model (trunc. exp) 0.0006 0.2935 0.8336 5.9783

Factor model (Pareto) 0.0006 0.1595 1.6749 10.5308
Modified threshold model (gamma) 0.0006 0.2822 0.5566 2.9946

Modified factor model (gamma) 0.0006 0.1465 1.2414 5.7399

Coming back to comparing the simulated moments of the three models with the empirical ones

based on the Gamma distribution for the jump sizes, we report the result in Table 2.9. We ob-
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serve that the kurtosis of the threshold model drops significantly, and is now underestimating the

empirical kurtosis. The reason is that although the Gamma distribution allows for unbounded

jumps, it is concentrated more on the smaller spikes sizes, while the truncated exponential is

more stretched and gives a higher probability to bigger spikes. The factor model is more in line

with the empirical kurtosis when using the Gamma distribution for spike sizes. The standard

deviation is still insufficient for the factor model, whereas the threshold matches very well even

for Gamma-distributed spikes. But in this comparison, which is fairer since we use the same

model for spikes, the factor model seems to be better at capturing the leptokurtic effects of the

model. Of course, being faithful to the estimation procedure of Geman & Roncoroni [2006], the

iterative approach combined with estimating parameters so that the fourth moment is matched

would also yield a perfect fit to the empirical kurtosis for the case of a Gamma distribution.

However, as we can see here, the factor model can obtain a significant improvement by sim-

ply changing the jump distribution if this is desirable, whereas the threshold model requires a

complete re-estimation although we only introduce a new distribution for the identified spikes

being more in line with the observed jump sizes. Re-estimating the complete model as in Ge-

man & Roncoroni [2006] would lead to a different estimation function (see Equation (2.17))

and different parameter estimates, showing that the speed of mean-reversion and volatility, for

instance, are indeed very sensitive to the choice of the spike-size distribution. Therefore, the

model cannot easily be adjusted to new assumptions.

2.7 Application to derivative pricing

In this section we apply the three spot models to pricing of forward contracts. To assess the

performance of the models we compare theoretical prices with the observed ones, and compute

the implied risk premium. We have available analytical forward prices for the jump-diffusion and

factor models, while we use a simulation-based Monte Carlo pricing method for the threshold

model.

The price at time t of the forward contract with maturity T is defined as the expected value of

the spot price at expiry date under an equivalent pricing measure Q

FQ(t, T ) = EQ
t [S(T ) |Ft]. (2.21)

Since the electricity market is an incomplete market, there exist many pricing measures Q. To

pin down a price F (t, T ), one needs to select one such measure, and this would typically be done

in practice by restricting the space of measures Q to a parametric class, for example given by the

Girsanov and Esscher transforms (see Benth et al. [2008a] for the details). Next, by minimizing

the distance between theoretical and observed prices, one could find a pricing measure.

For the three spot models under inquiry, one has different classes of pricing measures Q avail-
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able. The jump-diffusion and threshold models would naturally involve a change of measure for

Brownian motion and compound Poisson processes, whereas the factor model does not involve

any Girsanov transformations, but a change of measure with respect to subordinators. In order

to have a fair comparison of the forward pricing ability of the three spot models, we focus on

the implied risk premium. This does not involve any change of measure Q, and therefore avoids

introducing properties of the models which are depending on the selection of pricing measure.

The empirical risk premium is computed as the difference between the predicted spot price and

the observed market price (see Benth et al. [2008a])

RP (t) = F observed(t, T )− F P(t, T ). (2.22)

Here, F P(t, T ) is the so-called predicted spot price at delivery T , computed as in (2.21) with Q =

P. A careful analysis of the empirical risk premium is not only valuable for understanding the

spot model performance, but it is also the fundament for proposing classes of pricing measures

Q. Moreover, it has obvious applications to risk management.

In electricity markets the forward contracts deliver power (or the money equivalent to power)

over a specified period. These periods may typically be a month, a quarter or a year. In the

empirical studies to come, we shall focus on monthly delivery periods, and the risk premium is

extended in a natural way as simply taking the average of the right-hand side of (2.22) over the

delivery period. That is, the risk premium for a forward contract delivering electricity over the

period [T1, T2] is

RP (t) = F observed(t, T1, T2)− F P(t, T1, T2), (2.23)

where

F P(t, T1, T2) =
1

T2 − T1

∫ T2

T1

F P(t, T ) dT.

2.7.1 Pricing formulas

For the jump-diffusion model, we can compute the predicted spot price semi-analytically

Proposition 1 (Forward price for the jump-diffusion model). The predicted spot price of the
jump-diffusion model is given by

F P(t, T ) = (X(t))e
−α(T−t)

exp

(
µ(T ) +

∫ T

t

1

2
σ2(s)e−2α(T−s) ds

+

∫ T

t

[
e−

σ2J
2
e−α(T−s)+

σ2J
2
e−2α(T−s)]

l ds− l(T − t)
)

(2.24)

Proof. We refer to Cartea & Figueroa [2005] for a detailed proof.

The formula for F P(t, T ) involves the rolling historical volatility σ(s). In our investigations,

we have set this to a constant, defined as the average of the rolling historical volatility over
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the period with data, see Table 2.2. Furthermore, to derive F P(t, T1, T2) for a delivery period

[T1, T2], we take the average of the computed forward prices F P(t, T ) for each day T in the

delivery period.

One of the beneficial properties of the factor model is that it provides us with analytical forward

prices for contracts with a delivery period, F P(t, T1, T2). In the next proposition we state this

price for the case of Y1(t) and Y2(t) identified and being driven by compound Poisson processes

with exponential jump distributions. Note that this means that both are stationary Gamma

distributed. The resulting predicted spot price can be computed following the lines in Benth

et al. [2007].

Proposition 2 (Forward price for the factor model). Suppose for the factor model that Y1(t) is
stationary Gamma distributed Γ(ν, α), and Y2(t) are driven by a compound Poisson process L2(t)

with exponential jump size distribution with parameter γ, and jump intensity l. Then, the predicted
spot price of the factor model is

F P(t, T1, T2) =
1

T2 − T1

[(
Y1(t)− ν

α

) ∫ T2

T1

eµ(u)−λ1(u−t) du

+
(
Y2(t)− l

γ

) ∫ T2

T1

eµ(u)−λ2(u−t) du

+
( ν
α

+
l

γ

) ∫ T2

T1

eµ(u) du
]
.

(2.25)

Proof. The result follows from a straightforward calculation. We start by plugging Formulas 2.1,

2.12 and 2.13 together. Hence, after commuting integration and conditional expectation, and

using the fact that Y1(t) and Y2(t) are Ft-measurable, we find

F P(t, T1, T2) = EP
[ 1

T2 − T1

∫ T2

T1

S(u) du |Ft
]

= EP
t

[ 1

T2 − T1

∫ T2

T1

eµ(u)(Y1(u) + Y2(u)) du |Ft
]

= EP
t

[ 1

T2 − T1

∫ T2

T1

eµ(u)
(
Y1(t)e−λ1(u−t) +

∫ u

t
e−λ1(u−s) dL1(s)

+Y2(t)e−λ2(u−t)
∫ u

t
e−λ2(u−s) dL2(s)

)
du |Ft

]
=

1

T2 − T1

∫ T2

T1

eµ(u)
(
Y1(t)e−λ1(u−t) + EP

t

[ ∫ u

t
e−λ1(u−s) dL1(s) |Ft

]
+Y2(t)e−λ2(u−t) + EP

t

[ ∫ u

t
e−λ2(u−s) dL2(s) |Ft

])
du
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By the independent increment property of Lévy processes, we get

F P(t, T1, T2) =
1

T2 − T1

∫ T2

T1

eµ(u)
(
Y1(t)e−λ1(u−t) +

∫ u

t
φ
′
1(0)e−λ1(u−s) ds

+Y2(t)e−λ2(u−t) +

∫ u

t
φ
′
2(0)e−λ2(u−s) ds

)
du

=
1

T2 − T1

[(
Y1(t)− φ′1(0)

1

λ1

) ∫ T2

T1

eµ(u)−λ1(u−t) du

+
(
Y2(t)− φ′2(0)

1

λ2

) ∫ T2

T1

eµ(u)−λ2(u−t) du

+
(
φ
′
1(0)

1

λ1
+ φ

′
2(0)

1

λ2

) ∫ T2

T1

eµ(u) du
]

=
1

T2 − T1

[
Y1(t)

∫ T2

T1

eµ(u)−λ1(u−t) du+ Y2(t)

∫ T2

T1

eµ(u)−λ2(u−t) du

+

∫ T2

T1

eµ(u)
( ν
α

(1− e−λ1(u−t)) +
l

γ
(1− e−λ2(u−t))

)
du
]

=
1

T2 − T1

[(
Y1(t)− ν

α

) ∫ T2

T1

eµ(u)−λ1(u−t) du

+
(
Y2(t)− l

γ

) ∫ T2

T1

eµ(u)−λ2(u−t) du

+
( ν
α

+
l

γ

) ∫ T2

T1

eµ(u) du
]

. (2.26)

In the derivation procedure we use the fact that E[L] = φ
′
(0), where the latter is the derivative

of the log-moment generating function of the process L, more precisely φ(x) = ln E[exL(1)]. For

the case of our processes, φ
′
1(0) = νλ1

α and φ
′
1(0) = lλ2

γ respectively. Hence, the proposition

follows.

Due to the state-dependent sign function h in the jump term of the threshold model, it does not

allow for any analytical forward prices. Therefore, we apply a Monte Carlo simulation method

to price forwards F P(t, T ). We start with the simulation of the spot process algorithm of which

can be found in the original paper of Geman & Roncoroni [2006]. We further compute a price

F P(t, T ). To define an optimal number of simulations we use the method of control variates

and take the jump-diffusion model as a benchmark. By minimising the total sum of squared dif-

ferences between the simulated and the analytical forward prices for the jump-diffusion model,

we define the necessary number of simulations. The Monte Carlo technique we use is properly

described in Glasserman [2004] and Fusai & Roncoroni [2008]. To obtain F P(t, T1, T2), we

compute the forward prices for every particular day of the delivery period and then average the

obtained results over this period.
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2.7.2 Empirical analysis

We work with the following data sets of daily electricity forward prices collected from the EEX

data sets of the summer and winter terms of different years:

• Forwards with delivery in July of 2004, 2005, 2006, 2007 and 2008, observed in the

preceding month June

• Forwards with delivery in December of 2004, 2005, 2006 and 2007, observed in the pre-

ceding month November

Given the observed forward prices F (t, T1, T2), with the delivery period [T1, T2] being June or

December, and t ranging over the working days in the month prior to delivery, we compute the

implied risk premium based on the predicted spot prices derived according to the algorithms

and formulas described above. In the following discussion, we focus our attention on the results

of June 2007, November 2007 and June 2008. The results of other observation periods can be

found in A.3.

Figures 2.17, 2.18 and 2.19 show the predicted spot price (blue curve) together with the ob-

served forward dynamics (green curve). In addition, we have included the seasonal function

(seasonality trend µ(t), Equation 5.5) over the delivery period as a reference level (red curve).

In general, we observe that the average seasonal function sets the level of forward prices in the

market, except for July 2008 where it seems to be a large deviation in observed prices away

from the seasonal level. The implied risk premia are not converging to zero, which is an obvious

implication from the delivery period feature of the electricity forward contracts. Also, the mar-

ket forward prices are more volatile than the predicted spot prices, except maybe in the period

before delivery starts.

The shape of the risk premia looks very similar for all three models. However, there are big

differences in the values. For the July 2007 contracts, the jump-diffusion and threshold models

assign a negative risk premium (see Figures 2.17a and 2.18a), whereas the factor model implies

a positive premium. In fact, the premium is always positive for the factor model (except of one

instance, see Figure A.-1b), with occasional very large values (see Figure 2.19c ). There is a clear

tendency of a decreasing risk premium for the factor model as time approaches delivery, while

the two other models show evidence of an increasing risk premium for this period. A negative

risk premium is in line with the theory of normal backwardation, where producers accept a

reduction in price in order to reduce their price risk. However, there exist both theoretical and

empirical evidence for a positive premium, explained as the retailers hedging their short-term

spike risk (see Benth et al. [2008b]). Although we consider forward prices in the days prior to

delivery, i.e., being in the short-end of the forward market, the monthly delivery period should

average out this risk. From an economical point of view it seems reasonable to expect a negative

premium even close to start of delivery. With this perspective in mind, the factor model does a
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poor job compared to the two others. This may be attributed to the fact that the factor model

did not capture the variations in the base component of the spot price very well. By using a

compound Poisson process to describe the base variations, we obtain much less variations that

what is obtained by a Brownian component, say, which is present in both of the two other

models. Although the mean-reversion of these two are too slow for the base variations of the

spot, it seemingly gives an advantage for forward pricing purposes.

Inspecting the risk premia for the jump-diffusion and threshold models more carefully, we ob-

serve some unreasonable features as well. For example, the jump-diffusion model has a sign

change in the risk premium for the December 2007 contract. As indicated above, one may ex-

pect a positive premium in the short end of the market, meaning in the days prior to delivery.

For the December 2007 contract, we have a positive premium when we are far from delivery,

which is at stake with this (see Figures in A.3 for other such examples).

Comparing the predicted spot price path with the observed forward prices, it seems that both the

threshold and jump-diffusion models are closer to explaining the market than the factor model.

The difference between the two models are not too big, which is a reflection of the low frequency

of spike occurrences and therefore a similar path behaviour. However, the differences are still

significant, so the impact of the function h is apparent. The function hwill switch the direction of

a jump for exceedingly high or low prices, and thereby increase the variations. Interestingly, the

factor model seems to converge towards the predicted spot price when we approach delivery,

whereas the two others drive apart (this is of course also reflected in a risk premium with

increasing absolute value for the jump-diffusion and threshold models, and whereas decreasing

to zero for the factor model). Let us discuss this in closer detail with a view towards a potential

class of measure changes Q.

Let us simplify the discussion and consider a toy model for the spot price given by a Brownian

motion driven by Ornstein-Uhlenbeck process, i.e.

dS(t) = −αS(t) dt+ σ dB(t).

A natural measure change is a constant Girsanov transform,

dW (t) = − θ
σ

dt+ dB(t)

with θ a constant, called the market price of risk. From the Girsanov theorem it follows that

there exists a probability Q = Qθ such that W is a Brownian motion under this probability. A

direct computation shows that

FQθ(t, T ) = X(t) e−α(T−t) +
θ

α

(
1− e−α(T−t))+ σ

∫ T

t
e−α(T−s) dW (s).
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Therefore, the theoretical risk premium for contracts with delivery over [T1, T2] becomes

R(t, T1, T2) =
θ

α

(
1− α̂(T2 − T1) e−α(T1−t))

with

α̂(u) =
1− e−αu

αu
.

Hence, as T1−t increases, the risk premium increases to θ/α. On the other hand, as we approach

start of delivery, i.e., T1 − t → 0, the risk premium decreases towards θ(1 − α̂(T2 − T1))/α.

Inspecting Figure 2.19, this is exactly the behaviour we observe in the case of the July and

December 2007 contracts for the factor model. In the jump diffusion and threshold models we

do not observe a similar pattern, but a much more complex structure of the pricing measure

Q. Admittedly, the factor model does not have any Brownian component, but we can do the

exact same analysis for Lévy driven Ornstein-Uhlenbeck processes using the Esscher transform

(see Benth et al. [2008a]). Concerning the two other spot models, the mean-reversion feature

will create a similar behaviour when changing measure using a constant market price of risk,

although the models are formulated on an exponential form. From the figures, we observe a

risk premium contradicting this change of measure. In our opinion, it is a sign of quality that a

model allows for an easy explanation of the risk premium, in this case a simple constant change,

explaining the market price of risk easily. Note that the market price of risk will be positive

for the factor model in the cases we discuss. The July 2008 contract has also a decreasing risk

premium towards start of delivery, but a much more complex nature before and does not allow

for this simple explanation.

In Figure 2.20 we plot the descriptive statistics of the log-returns of the predicted spot prices for

the observed periods. One can see that the jump-diffusion and threshold model produce similar

results for the returns that match the observed EEX forward returns quite well. We can also find

that the factor model gives the predicted spot dynamics whose mean of the log-returns is larger

than the observed. This can be explained by the fact that several days before the maturity starts

the predicted spot price becomes more sensitive and starts increasing to capture the volatility

risk. We observe similar but smaller effect for the jump-diffusion model. The second moment of

the observed EEX forwards is more in line with the jump-diffusion and factor models compared

to the threshold model, since the latter produces noisier price dynamics. Also, as earlier stated,

the market prices look more volatile than the predicted spots. However, this is not the case when

considering all the contracts at hand, where we in fact see more variations in predicted spots.

This is observed in the data from the early years 2004 and 2005.

42



2.7. Application to derivative pricing

0 5 10 15 20 25
−12

−11

−10

−9

−8

−7

−6

−5

−4

−3

Observation days, June 2007

M
ar

ke
t r

is
k 

pr
em

iu
m

 v
al

ue

Market risk premium, Maturity in July 2007

0 5 10 15 20 25
38

40

42

44

46

48

50

52

54

Observation days, June 2007

F
or

w
ar

d 
va

lu
e

Predicted spot vs Market forward dynamics, Maturity in July 2007

 

 

Predicted spot
Market forward
Seasonality

(a) The predicted spot vs observed forward dynamics and market risk premium for forwards with maturity in
July 2007.
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(b) The predicted spot vs observed forward dynamics and market risk premium for forwards with maturity in
December 2007.
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(c) The predicted spot vs observed forward dynamics and market risk premium for forwards with maturity in
July 2008.

Figure 2.17: The predicted spot, observed forward dynamics and market risk premium for the
jump-diffusion model.
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(a) The predicted spot vs observed forward dynamics and market risk premium for forwards with maturity in
July 2007.
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(b) The predicted spot vs observed forward dynamics and market risk premium for forwards with maturity in
December 2007.
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(c) The predicted spot vs observed forward dynamics and market risk premium for forwards with maturity in
July 2008.

Figure 2.18: The predicted spot, observed forward dynamics and market risk premium for the
threshold model.
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(a) The predicted spot vs observed forward dynamics and market risk premium for forwards with maturity in
July 2007.
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(b) The predicted spot vs observed forward dynamics and market risk premium for forwards with maturity in
December 2007.

0 5 10 15 20 25
30

32

34

36

38

40

42

44

Observation days, June 2008

M
ar

ke
t r

is
k 

pr
em

iu
m

 v
al

ue

Market risk premium, Maturity in July 2008

0 5 10 15 20 25
40

50

60

70

80

90

100

Observation days, June 2008

F
or

w
ar

d 
va

lu
e

Predicted spot vs Market forward fynamics, Maturity in July 2008

 

 

Predicted spot
Market forward
Seasonality

(c) The predicted spot vs observed forward dynamics and market risk premium for forwards with maturity in
July 2008.

Figure 2.19: The predicted spot, observed forward dynamics and market risk premium for the
factor model.
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Figure 2.20: Comparative descriptive statistics results for the log-returns of the jump-diffusion,
threshold and factor models.

2.8 Conclusion

We have analysed and discussed the empirical performance of three continuous-time electricity

spot price models that have received considerable attention from academics and practitioners

recently. The mean-reversion parameter both for the jump-diffusion and the threshold models

is not able to distinguish between spikes and base signal leading to a too slow mean-reversion

for the spikes and a too fast mean-reversion for the base signal. For the base signal the models

try to compensate for this by a very high volatility. So, the pathwise properties of the EEX price

dynamics are not captured well by the jump-diffusion and the threshold models. We find that

the factor model captures the fast mean-reversion of spikes and the slow mean-reversion of the

base signal very well. It therefore allows for an excellent modelling of the path behaviour of the

mean of the prices. However, the variability of the paths are not captured appropriately. The

factor model underestimates the noise in the base signal, a fact that we attribute to the choice of

an OU process with a subordinator. Such a selection produces too little variation and thus leads

to an underestimation of the standard deviation of the base signal.

One further comment on the performance of the models is their analytical tractability, i.e. for

pricing power derivatives. Here the factor and the jump-diffusion models are advantageous. In

the case of the jump-diffusion model, by assuming that the jumps J are drawn from a Normal

distribution and by requiring that E[J ] = 1 we are able to derive the forward price in closed

form. If we switch to another jump-size distribution, then the model will lose its analytical

tractability and we have to search for a numerical solution. However, in case of the factor model

one may explicitly calculate all the probabilistic properties of the prices in terms of characteristic

functions. Furthermore, due to its additive linear structure, electricity forward contract prices

are obtained analytically. Electricity forward contracts have the distinctive feature of delivering

the underlying commodity, spot power, over a period of time rather than at a fixed time. This

implies that the price is defined as a conditional expectation (possibly risk-adjusted) of the
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integral of the spot. Under the factor model an explicit calculation of this condition expectation

is feasible, and we obtain the implied forward price dynamics. Thus the factor model allows one

to study price determination in the forward market and risk premia; see Benth et al. [2007] for

details. Due to the state-dependent sign of the spike process in the threshold model, we cannot

obtain analytical expressions for the characteristic function of the prices process or calculate

forward prices explicitly (even with fixed maturity and no delivery period). Although efficient

numerical and simulation-based Monte Carlo evaluations are available, we consider the lack

of analytical treatability of the threshold model as a major drawback in valuation and risk-

management applications.
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CHAPTER 3

PRICING POWER FORWARDS IN A

REGIME-SWITCHING MODEL WITH AN

INTEGRO-PDE METHOD

3.1 Motivation and introduction

In Geman & Roncoroni [2006] a Markov model for the spot price dynamics of electricity is

proposed. This model is a standard Ornstein-Uhlenbeck process, with a non-standard jump term.

The jumps are designed to model the spikes frequently observed in electricity spot prices.

This threshold model is a Markov jump-diffusion model, however, not feasible for explicit pricing

of forward contracts due to its specification. A forward contract is an agreement where the buyer

purchases any specified commodity at an agreed time to an agreed price. The agreed price,

commonly known as the forward price is the price such that the current value of the contract

is zero. With a pricing measure it can be viewed as the best predicted spot time at time of

the transaction. Mathematically it is expressed as the conditional expected spot price (possibly

under a risk-neutral probability).

We focus in this chapter on the derivation of the forward price dynamics. Unlike many other

models, the threshold model does not allow for explicit calculation of the forward price, and

numerical methods are called for. Since we want to find the dynamics, the Monte Carlo method

is very cumbersome, and we are going to analyse a PDE-based approach. Since the threshold

model involves jumps, we are led to integro-PDEs, and numerical methods for such. We want to

compare the resulting forward prices with those of similar models.

The chapter is organised as follows. Section 3.2 introduces mathematical preliminaries and

gives an overview of the models we use to compute forward prices. Next, in Section 3.3, we

explain the finite difference scheme method used to solve the integro-PDE. In this section we

also provide estimates for the truncation errors of the domain and of the integral term. Then, in

49



3. Pricing power forwards in a regime-switching model with an integro-PDE method

Section 3.4, we provide results and compare forward prices for the considered models. Finally,

Section 3.5 concludes and gives an outlook for further research.

3.2 Mathematical formulation

3.2.1 Electricity price modelling

Background on Lévy processes and useful theorems is given in Appendix A.1. As in Chapter 2,

we consider a Lévy-type process for modelling the power price. Let (Ω,P,F, {Ft}) be a complete

filtered probability space. Let T defines the time horizon and S(t) be the spot price of electricity

(power) defined as

S(t) = exp(µ(t) + Y (t)), (3.1)

where µ(t) is some deterministic seasonality function and Y (t) is some stochastic process.

The classical jump-diffusion approach to model the process Y (t), as for example considered

in Cartea & Figueroa [2005], is stated as

dY (t) = −αY (t) dt+ σ dWt + dQt, (3.2)

where Wt is a Brownian motion, Qt is a compound Poisson process, α is the speed of mean-

reversion and σ is the volatility. The processes Wt and Qt are assumed to be mutually indepen-

dent.

Alternatively, Geman & Roncoroni [2006] propose to model this stochastic component differ-

ently

dX(t) = −αX(t) dt+ σ dWt + h(X(t)) dQt, (3.3)

where all the notations and assumptions are the same as for the process Y (t), and h(x) is a

state-dependent function which is −1 for large values of X (defined by some threshold T) and

1 otherwise. Despite the ”regime-switching” term h(x), this process holds the Markov property

in a single state variable, for a proof see Roncoroni [2002]. The authors claim that the process

Xt is a special semimartingale. This model is referred here as the threshold model.

The difference of the two models lies in the change of sign of the h-function. This function

ensures that the price may jump downwards in the case of high spot prices. Note that when we
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3.2. Mathematical formulation

use a minus in front of the jumps in the jump-diffusion model, we want to use it in the “high

price” regime for the threshold model. By the “high price” regime we mean here that the price

is far above its mean level, which can happen when a spike or big jump occurred.

We also notice here that the process Lt := σWt+Qt is a Lévy process in a contrast to the process

Lht := σWt + h(Lht )Qt which does not satisfy the properties given in Definition 4.

3.2.2 Forward modelling

We know that the forward price F (t, T ) at time t, for a contract with a delivery at time T ≥ t,

is

F (t, T ) = EQ[S(T ) |Ft], (3.4)

which is a martingale under an equivalent martingale measure Q. So we call the measure Q
a pricing measure, as it is a probability that takes into account all the risks associated with

the change in the price (spikes can, for example, happen due to sudden weather change or

unexpected outage of equipment). The choice of Q can be done via a canonical Girsanov (drift

part) and Esscher (jump part) transformations. Alternatively, one could say that the process St
is already under the measure Q and one could argue that the market will charge an additional

risk premium by changing/adjusting the mean level (for the details see Benth et al. [2012]. This

would mean the Q = P with the latter being the real-world pricing measure. From now on we

apply this assumption.

Denote by f(t, x) := E [eX(T ) |X(t) = x]. By the Markovian property we can write the forward

price explicitly as a function of X(t) as

F (t, T,X(t)) = eµ(T ) E [eX(T ) |X(t)] = eµ(T ) f(t, x).

Our aim here is to derive efficient routines to calculate the function f(t, x) based on the associ-

ated integro-PDE in terms of the threshold model and to study the impact of the function h(x) on

the forward prices. We will also compare obtained forwards with ones from the jump-diffusion

model given in Equation (3.2).

3.2.3 Forward price of the classical jump-diffusion model

This model allows for explicit forward price formula for some class of distributions assumed for

a jump size. Denote by g(t, y) := E [eY (T ) |Y (t) = y]. Then the forward price for the jump-

diffusion model is
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3. Pricing power forwards in a regime-switching model with an integro-PDE method

G(t, T, Y (t)) = eµ(T ) E [eY (T ) |Y (t)] = eµ(T ) g(t, y), (3.5)

One can calculate the function g(t, y) analytically by appealing to the moment generating func-

tion of the compound Poisson process Qt. We start with the dynamics of the logarithm of the

price St

dlnSt = µ′(t) dt− α
(

lnSt − µ(t)
)

dt+ σ dWt + dQt

= α
(
µ̂(t)− lnSt

)
dt+ σ dWt + dQt, (3.6)

where µ̂(t) := 1
αµ
′(t) + µ(t). Let us now apply Ito’s lemma to (eαt lnSt) to obtain

d(eαt lnSt) = αeαtµ̂(t) dt+ eαtσ dWt + eαt dQt. (3.7)

After integrating from t to T and replacing terms, we have

lnST = µ(T ) + Y (t)e−α(T−t) + σ

∫ T

t
e−α(T−s) dWs +

∫ T

t
e−α(T−s) dQs, (3.8)

then the price ST becomes

ST = eµ(T )+Y (T ) = eµ(T )+Y (t)e−α(T−t)+σ
∫ T
t e−α(T−s) dWs+

∫ T
t e−α(T−s) dQs . (3.9)

Now coming back to Equation (3.5) we have that function g(t, y) becomes

g(t, y) := E [exp(Y (T )) |Y (t) = y]

= E [eY (t)e−α(T−t) eσ
∫ T
t e−α(T−s) dWs e

∫ T
t Je−α(T−s) dNs |Y (t) = y]

= eye
−α(T−t)

exp
(σ2

4α

(
1− e−2α(T−t))) exp

(
λ

∫ T

t
(E[eJe

−α(T−s)
]− 1) ds

)
, (3.10)

where for the last equality we use mutual independence ofWt andQt, the fact the σ
∫ T
t e−α(T−s) dWs

is a normally distributed random variable and the Lévy-Khinchin representation for the com-

pound Poisson process Qt.
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3.2. Mathematical formulation

Normal distribution for jumps

Now following Cartea & Figueroa [2005], we assume a Normal distribution for the jump size J ,

i.e. J ∼ N(m1,m2) with mean m1 and standard deviation m2. This allows us to compute

E[eJe
−α(T−s)

] = exp
(
m1e

−α(T−s) +
m2

2

2
e−2α(T−s)

)
. (3.11)

Then the forward price g(t, y) when the jump size J follows Normal distribution is given as

g(t, y) = eye
−α(T−t)

exp
(σ2

4α

(
1− e−2α(T−t))) exp

(
λ

∫ T

t
em1e−α(T−s)+

m2
2

2
e−2α(T−s)

ds− λ(T − t)
)
.

(3.12)

Laplace distribution for jumps

Another option for the jump size distribution is a Laplace distribution. Besides explanatory

advantages such as capturing the heavy tails spike nature, we have the following useful property:

when J ∼ Laplace(m1,m2) with m1 – the location parameter and m2 > 0 – the scale parameter,

then ecJ ∼ LogLaplace(cm1, cm2) with some constant c. A very detailed investigation of the

LogLaplace distribution can be found in a book of Kozubowski & Podgorski [2003]. We can use

their formula for the expected value of a random variable ecJ and obtain

E[ecJ ] =
δ

1− c2m2
2

, (3.13)

where δ := ecm1 . Then this allows us to compute the expected value

E[eJe
−α(T−s)

] =
exp(e−α(T−s)m1)

1− e−2α(T−s)m2
2

. (3.14)

So the the forward price g(t, y) when the jump size J follows Laplace distribution is given

as

g(t, y) = eye
−α(T−t)

exp
(σ2

4α

(
1− e−2α(T−t))) exp

(
λ

∫ T

t

(exp(e−α(T−s)m1)

1− e−2α(T−s)m2
2

)
ds− λ(T − t)

)
.

(3.15)
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3. Pricing power forwards in a regime-switching model with an integro-PDE method

3.2.4 Forward price of the threshold model

Suppose X(t) solves SDE in Equation (3.3). Let

f(t, x) := E [eX(T ) |X(t) = x] = E [Φ(X(T )) |X(t) = x] (3.16)

be the expected value of the payoff Φ(x) = ex at maturity time T > t, given that X(t) = x. Then

f solves

ft + Lf = 0, for t < T, with f(T, x) = Φ(x) at t = T, (3.17)

where L is the generator of the process X(t) given as

Lf = −αxfx +
σ2

2
fxx + λh(x)E

[
f(x+ J, t)− f(x, t)

]
. (3.18)

The proof is the following: for any function φ(t, x), Ito’s formula is

dφ(s,X(s))

= σφx(s,X(s)) dWs +
(
φs(s,X(s))− αxφx(s,X(s)) +

σ2

2
φxx(s,X(s))

)
ds

+ h(x)
[
φ(s,X(s) + J)− φ(s,X(s))

]
dNs

= σφx(s,X(s)) dWs +
(
φs(s,X(s))− αxφx(s,X(s)) +

σ2

2
φxx(s,X(s))

)
ds

+ h(x)
[
φ(s,X(s) + J)− φ(s,X(s))

] (
dÑ s + λ ds

)
= σφx(s,X(s)) dWs + h(x)

[
φ(s,X(s) + J)− φ(s,X(s))

]
dÑ s

+
(
φs(s,X(s))− αxφx(s,X(s)) +

σ2

2
φxx(s,X(s)) + λh(x)

[
φ(s,X(s) + J)− φ(s,X(s))

])
ds,

(3.19)

where we used the fact that the compensated Poisson process Ñt = Nt − λt and Ñt is a martin-

gale. Now when choosing φ = f , the solution of Equation (3.17), we have

f(T,X(T ))− f(t, x) =

∫ T

t
(σfx)(s,X(s)) dWs +

∫ T

t
h(X(s))

[
f(s,X(s) + J)− f(s,X(s))

]
dÑ s

+

∫ T

t

{(
fs − αxfx +

σ2

2
fxx
)
(s,X(s)) + λh(X(s))

[
f(s,X(s) + J)− f(s,X(s))

]}
ds
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3.2. Mathematical formulation

Now taking the expected values from both sides, dividing by T − t and using the fact that Ñt is

a martingale yield

E[f(T,X(T ))]− f(t, x)

T − t

=
E
[ ∫ T

t

{(
fs − αxfx + σ2

2 fxx
)
(s,X(s)) + λh(X(s))

(
f(s,X(s) + J)− f(s,X(s))

)}
ds
]

T − t
,

then taking the limit with T − t→ 0 and using

E[f(T,X(T ))]− f(t, x) = 0

gives

0 = ft − αxfx +
σ2

2
fxx + λh(x)E[f(t, x+ J)− f(t, x)], (3.20)

which is exactly our claim.

In the next section we will implement the numerical scheme that solves this partial differential

equation with an integral term to investigate the property of the function h(x) on the forward

price. Before to continue with the numerical investigation, we do a heuristic calculation for

illustration. Let us approximate the term of the expected jump in Equation (3.18) as with a

1-step Taylor expansion

E[f(t, x+ J)− f(t, x)] =

∫ ∞
−∞

(
f(t, x+ y)− f(t, x)

)
fJ(y) dy

u
∫ ∞
−∞

(
f(t, x+ y)− f(t, x)

)
dx

y fJ(y) dy

= fx

∫ ∞
−∞

y fJ(y) dy︸ ︷︷ ︸
uC

. (3.21)

with fJ(y) is a probability density function of the random jump size J and C := E(J). We mean

here that the integral part in this equation behaves like a gradient term, approximately giving

a rise to a second order differential operator as the right-hand side of Equation (3.22). So then

Equation (3.20) can be re-written as

ft u (−αx+ λh(x)C) fx +
σ2

2
fxx, (3.22)
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3. Pricing power forwards in a regime-switching model with an integro-PDE method

which clearly indicates that the term in front of fx is of discontinuous nature. It also points out

the curvature due to h(x) function. This ”discontinuous” curvature can clearly be seen in Figure

3.1.
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Figure 3.1: Discontinuity due to the function h(x). Parameters: C = 10, α = 0.69 (more than
half a day), σ = 2.59, λ = 13.5 spikes per year, T = 3.5.

3.3 Numerical implementation

This section consists of three parts. Firstly, we discuss the method of finite differences which we

apply to solve the integro-PDE given above to obtain forward prices. When solving this equation

we have to restrict our domain for the values x. It results in the truncation error which we

discuss in the the second part of this section. And finally, we have to cut the integral term and

investigate this truncation error as well.
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3.3. Numerical implementation

3.3.1 Method

In this section we implement the finite difference method to solve equation (3.17). Excellent

overviews of numerical methods in application to finance are given in the books of Cont &

Tankov [2004] and Fusai & Roncoroni [2008].

This scheme is an approximation for this equation and is based on replacing derivatives by finite

differences in the equation. The integral term responsible for the jumps is approximated by

the Riemann sums. Since we have time and space variables we have to discretise the time and

spacial domains.

Let us first rewrite Equation (3.17) for the forward price f(t, x) we are going to numerically

solve

ft = αxfx −
σ2

2
fxx + λh(x)f − λh(x)

∫ ∞
−∞

f(t, x+ y) fY (y) dy, f(T, x) = ex. (3.23)

Then let us make the following replacement: T − t = τ is the time to maturity, which allows

us to move backward in time when solving the equation numerically. Then the integro-PDE

becomes

fτ = −αxfx +
σ2

2
fxx − λh(x)f + λh(x)

∫ ∞
−∞

f(T − τ, x+ y) fY (y) dy, f(τ, x) = ex. (3.24)

Since there is enormous variety of sources on the finite difference method precisely applied to

solving financial mathematics problems, we will not focus on the details. Instead, we provide

the exact scheme we use here to solve Equation (3.24).

We start with a time domain for τ ∈ [0, T ] and discretise it with ∆τ = τ
N with N being the

number of time steps. Then we continue with a space domain [xmin, xmax] and ∆x = xmax−xmin
M

with M being the number of space steps. We define xi = xmin + (i− 1)∆x and τn = N∆τ with

n = 1, . . . , N + 1 and i = 1, . . . ,M + 1. We also introduce some values Kmin < 0 and Kmax > 0

responsible for the interval for the jump size given in the integral term of the equation. Let

{fni } be the solution on our discretised grid on the interval [xmin, xmax]. The time and space

derivatives become
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3. Pricing power forwards in a regime-switching model with an integro-PDE method

∂f

∂τ
u

fn+1 − fn

∆τ
, (3.25)

∂f

∂x
u

fn+1
i+1 − f

n+1
i

∆x
, (3.26)

∂2f

∂x2
u

fn+1
i+1 − 2fn+1

i + fn+1
i−1

(∆x)2
. (3.27)

Here we use a so-called explicit scheme which allows to find the value at time n + 1 knowing

the value at time n. Then we approximate the integral term. We do this via trapezoidal quadra-

ture rule with the same grid resolution ∆x. As it is stated in Cont & Tankov [2004], due to

computational complexity when there is a jump term, it is more convenient to use an implicit

scheme for the integral part which allows to find the value at time n + 1 knowing the value at

n, namely

∫ ∞
−∞

f(T − τ, xi + y) fY (y) dy u lim
Kmin→−∞
Kmax→∞

∫ Kmax

Kmin

f(T − τ, xi + y) fY (y) dy

u
Ku∑
j=Kl

fn(xi + j∆x)

∫ (j+1/2)∆x

(j−1/2)∆x
fY (y) dy

=

Ku∑
j=Kl

fni+j

∫ (j+1/2)∆x

(j−1/2)∆x
fY (y) dy, (3.28)

where [Kmin,Kmax] ∈ [(Kl − 1/2)∆x, (Kl + 1/2)∆x].

So, the total explicit-implicit scheme then becomes

fn+1 − fn

∆t
= Dfn+1 + Jfn, (3.29)

where

(Dfn+1)i = αxi
fn+1
i+1 − f

n+1
i

∆x
− σ2

2

fn+1
i+1 − 2fn+1

i + fn+1
i−1

(∆x)2
, (3.30)

(Jfn)i = −λh(xi)

Ku∑
j=Kl

fni+j

∫ (j+1/2)∆x

(j−1/2)∆x
fY (y) dy. (3.31)

Equation (3.29) can be rewritten as

58



3.3. Numerical implementation

(I −∆τD)fn+1 = (I + ∆τJ)fn, (3.32)

where I is an identity matrix, (I−∆τD) and (I+∆τJ) are tridiagonal matrices. Since we know

the final condition, i.e. f(τ, x) = ex we move backward in time when solving this scheme, i.e.

knowing the value of fn we search for the value of fn+1.

As the reader can see, there are two things we should agree on when solving this equation:

when i = 1 we need to know the term fn+1
i−1 which is out of the domain of x. When i = M + 1

we need to know the term fn+1
i+1 which is also out of the domain of x. There are several possible

solutions to this obstacle. One of them is to represent the second derivative differently as

fn+1
i−2 − 2fn+1

i−1 + fn+1
i

(∆x)2
.

Another optionality is to assume that our final condition at τ = 0 is extended not only for the

domain (xmin, xmax) but for all the values x we need out of the domain.

However, in our case we can go for the third option and find these values explicitly since we

have an exact solution for the forward price for the jump-diffusion model considered above, at

least for some distributions. We mean here the following: when x > xmax it implies that the

function h(x) = −1, which implies that the function f(t, x) is ”almost” equal to g(t, y) for x = y:

the difference is the minus sign in front of the jump component in Equation (3.2). In the next

section we show that if the jump size distribution is symmetric, then f(t, x) is equal to g(t, y) for

x = y. When x < xmin it implies that the function h(x) = 1, which gives forward price f(t, x) is

exactly equal to g(t, y).

We also need to stress the issues linked to the consistence with the continuous equation and

stability (i.e. our obtained solution does not blow up when ∆τ and ∆x goes to 0). The choice

of those should be done carefully. The stability condition stated in Cont & Tankov [2004] and

used here is ∆τ ≤ inf{ 1
λ ,

(∆x)2

σ2 }.

3.3.2 Domain truncation error

When we solve numerically the partial differential equation with an integral part, we have to

define the domain for the x values. Defining this interval for x ∈ (xmin, xmax) means that we

have to specify some boundary conditions at x = xmin and x = xmax. On top of that we have

specify the boundary values for our function for the integral term. In our case we can specify

these boundary values explicitly. When x ≤ xmin, then the function h(x) = 1 and then the

forward price f(t, x) = g(t, y) for x = y. When x ≥ xmax, the function h(x) = −1, then

the forward price f(t, x) = g−(t, y), i.e. with a minus sign in front of the jump component in

Equation (3.2), namely
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3. Pricing power forwards in a regime-switching model with an integro-PDE method

dY −(t) = −αY (t) dt+ σ dWt − dQt. (3.33)

Let us now compute the forward price g−(t, y) associated with this process Y −(t) assuming that

the starting value y is the same as for the function g(t, y)

g−(t, y) = eye
−α(T−t)

exp
(σ2

4α

(
1− e−2α(T−t))) exp

(
λ

∫ T

t
(E[e−Je

−α(T−s)
]− 1) ds

)
. (3.34)

We can see that the only difference between g(t, y) and g−(t, y) lies in the expected values of the

exponent of the jump component, let us compare these terms keeping in mind that e−α(T−s) ∈
(0, 1] for α > 0 and T − s ≥ 0

E[eJe
−α(T−s) − e−Je−α(T−s) ]

=

∫ +∞

−∞

(
exe
−α(T−s) − e−xe−α(T−s)

)
fJ(x) dx

=

∫ 0

−∞

(
exe
−α(T−s) − e−xe−α(T−s)

)
fJ(x) dx+

∫ +∞

0

(
exe
−α(T−s) − e−xe−α(T−s)

)
fJ(x) dx

=

∫ +∞

0

(
e−xe

−α(T−s) − exe−α(T−s)
)
fJ(−x) dx+

∫ +∞

0

(
exe
−α(T−s) − e−xe−α(T−s)

)
fJ(x) dx

=

0, if distribution is symmetric∫ +∞
0

(
exe
−α(T−s) − e−xe−α(T−s)

)
(fJ(x)− fJ(−x)) dx, otherwise

=


0, if fJ(x) = fJ(−x), distribution is symmetric;

C>0, if fJ(x) > fJ(−x), upward jumps are more likely;

C<0, if fJ(x) < fJ(−x), downward jumps are more likely.

(3.35)

So, we observe that


g(t, y) = g−(t, y), distribution is symmetric;

g(t, y) > g−(t, y), upward jumps are more likely;

g(t, y) < g−(t, y), downward jumps are more likely;

Let us then denote the solution to our boundary problem given in Equation (3.17) for x = y

as
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3.3. Numerical implementation

fB(t, x) =


f̂B(t, x), if x ∈ (xmin, xmax)

g(t, y), if x ≤ xmin
g−(t, y), if x ≥ xmax

(3.36)

where f̂B(t, x) solves Equation (3.17) on a bounded domain (xmin, xmax), solution g(t, y) is

given in Equation (3.15) and solution g−(t, y) is given in Equation (3.34). Now we are ready to

calculate the domain truncation error with the following proposition. In the case of absence of

the function h(x) an analogous proposition is given in Cont & Voltchkova [2005].

Proposition 3 (Domain truncation error). Assume that

• ν( dx) is a Lévy measure such that for ε > 0,
∫
|x|>1

(
eε|x| − 1

)
ν( dx) <∞;

• xmin = −xmax.

Let f(t, x) be the solution of our problem in Equation (3.17) on the unbounded region and fB(t, x)

be the solution defined in Equation (3.36). Then for x = y

|f(t, x)− fB(t, x)| ≤ 2C e−ε (xmax−|x|)

g(t, y), if fJ(x) ≥ fJ(−x),

g−(t, y), if fJ(x) < fJ(−x),

where C is some constant which does not depend on xmax, fJ(·) is the probability density of the
jump size distribution.

Proof. For t < T denote by

Z(T ) := σ

∫ T

t
e−α(T−s) dWs +

∫ T

t
e−α(T−s)h(X(s)) dQs,

then X(t, T ) = xe−α(T−t) + Z(T ). Denote also by Mx
T := sup

t≤s≤T
|X(t, s)|, Mx

T := inf
t≤s≤T

X(t, s)

and M
x
T := sup

t≤s≤T
X(t, s). Then we have for x = y and a shorthand notation f(t, x) = f ,

g(t, y) = g and g−(t, y) = g−

|f(t, x)− fB(t, x)|

=
∣∣∣(f − f̂B) 1Mx

T<xmax

∣∣∣
+

∣∣(f − g) 1Mx
T<xmin

∣∣+
∣∣∣(f − g−) 1Mx

T>xmax

∣∣∣
≤

∣∣(f − g) 1Mx
T<xmin

∣∣+
∣∣∣(f − g−) 1Mx

T>xmax

∣∣∣
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3. Pricing power forwards in a regime-switching model with an integro-PDE method

= |f − g| 1Mx
T<xmin

+
∣∣f − g−∣∣ 1Mx

T>xmax

≤
(∣∣g − g−∣∣ 1h(x)=1 +

∣∣g− − g−∣∣ 1h(x)=−1 +
∣∣g− − g∣∣) 1Mx

T<xmin

+
(
|g − g| 1h(x)=1 +

∣∣g− − g∣∣ 1h(x)=−1 +
∣∣g − g−∣∣) 1Mx

T>xmax

≤ 2
∣∣g − g−∣∣ (1Mx

T<xmin
+ 1Mx

T>xmax

)
= 2

∣∣g − g−∣∣ P (Mx
T ≥ xmax)

≤

2 g(t, y)P (Mx
T ≥ xmax) , if fJ(x) ≥ fJ(−x),

2 g−(t, y)P (Mx
T ≥ xmax) , if fJ(x) < fJ(−x).

(3.37)

Since the function h(x) is bounded by −1 and 1, we observe that

Z(T ) = σ

∫ T

t
e−α(T−s) dWs +

∫ T

t
e−α(T−s)h(X(s)) dQs

≤ σ

∫ T

t
e−α(T−s) dWs +

∫ T

t
e−α(T−s) dQ̃s

=: Z̃T , (3.38)

where Q̃t is a compound Poisson process and Z̃T is a Lévy process with a measure ν( dx).

Mx
T = sup

t≤s≤T

∣∣∣xe−α(s−t) + Z(s)
∣∣∣

≤ sup
t≤s≤T

∣∣∣xe−α(s−t)
∣∣∣+ sup

t≤s≤T
|Z(s)|

≤ sup
t≤s≤T

∣∣∣xe−α(s−t)
∣∣∣+ sup

t≤s≤T

∣∣∣Z̃(s)
∣∣∣

≤ |x|+ sup
t≤s≤T

∣∣∣Z̃(s)
∣∣∣

=: M x̃
T . (3.39)

We note that

P (Mx
T ≥ xmax) ≤ P

(
M x̃
T ≥ xmax

)
. (3.40)

Now with the help of Theorem 4 we find that

C := EeεM
0̃
T <∞. (3.41)
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3.3. Numerical implementation

Applying further Chebyshev’s inequality gives

P
(
M 0̃
T ≥ xmax

)
≤ Ce−ε xmax . (3.42)

Now we find that

P
(
M x̃
T ≥ xmax

)
= P

(
|x|+ sup

t≤s≤T

∣∣∣Z̃(s)
∣∣∣ ≥ xmax)

= P

(
sup
t≤s≤T

∣∣∣Z̃(s)
∣∣∣ ≥ xmax − |x|)

= P
(
M 0̃
T ≥ xmax − |x|

)
≤ Ce−ε (xmax−|x|). (3.43)

3.3.3 Jump size domain truncation error

Here we discuss the integral term truncation error which we obtain when we cut the interval

for the jump size as it was done in Equation (3.28). The process Qt, which is responsible for

the jump component in Equation (3.3), is a compound Poisson process with a jump measure

ν( dx) that measures the expected number of jumps per unit time whose size belong to a set

A ∈ B(R).

Now let us introduce a new compound Poisson process QKt with a new jump measure νK :=

ν( dx) 1x∈[Kmin,Kmax]. Then since the function h(x) is bounded by −1 and 1 we observe the

following

X(T ) = xe−α(T−t) + σ

∫ T

t
e−α(T−s) dWs +

∫ T

t
e−α(T−s)h(X(s)) dQs

= xe−α(T−t) + σ

∫ T

t
e−α(T−s) dWs +

∑
t<s≤T

e−α(T−s)h(X(s))∆Q(s)

= xe−α(T−t) + σ

∫ T

t
e−α(T−s) dWs +

∑
t<s≤T

e−α(T−s)h(X(s))

N(s)∑
i=N(t)+1

Ji

≤ xe−α(T−t) + σ

∫ T

t
e−α(T−s) dWs +

∑
t<s≤T

e−α(T−s)
N(s)∑

i=N(t)+1

|Ji|
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3. Pricing power forwards in a regime-switching model with an integro-PDE method

= xe−α(T−t) + σ

∫ T

t
e−α(T−s) dWs +

∑
t<s≤T

e−α(T−s)∆Q̃(s)

= xe−α(T−t) + σ

∫ T

t
e−α(T−s) dWs +

∫ T

t
e−α(T−s) dQ̃s, (3.44)

where in the third equality we used a definition of a compound Poisson process given in Section

11.3.1 in Shreve [2004]. Analogously, the process XK(T ) (with the jump component formed by

the process QKt ) with XK(t) = x at time t is

XK(T ) = xe−α(T−t) + σ

∫ T

t
e−α(T−s) dWs +

∫ T

t
e−α(T−s)h(XK(s)) dQKs

≤ xe−α(T−t) + σ

∫ T

t
e−α(T−s) dWs +

∫ T

t
e−α(T−s) dQ̃

K
s , (3.45)

where JK is a random variable responsible for the jump size and that falls into the interval

I = [Kmin,Kmax].

Let us now introduce a solution fI(t, x) which solves the problem given in Equation (3.17) but

with the truncated jump size domain [Kmin,Kmax] and a solution f(t, x) with an unbounded

jump size domain (−∞,+∞). We give an error estimate associated to this truncation. This

error estimate derivation is similar to the proof of Proposition 4.2 in Cont & Voltchkova [2005].

The main difference here is the presence of function h(x) due to which our process X(t) is not

a Lévy process.

Proposition 4 (Jump size domain truncation error). Assume that a jump measure ν( dx) for a
compound Poisson process satisfies the following

•
∫
R ν( dx) <∞;

• Kmax > 1 and Kmin = −Kmax;

• for ξ1, ξ2 > 0,
∫ −1
−∞ |x| e

ξ1|x| ν( dx) <∞ and
∫∞

1 |x| e
ξ2|x| ν( dx) <∞;

• for ε > 0,
∫
R
(
eε|x| − 1

)
ν( dx) < ∞ (for the details see Cont & Tankov [2004], Proposition

3.8,).

Then
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3.3. Numerical implementation

|f(t, x)− fI(t, x)|

≤ eC
t,T
1 + 1

2
Ct,T1 e

(T−t)
(
C3 e

−β1|Kmin|+C4 e−β2|Kmax|
) (

e
(T−t)

(
C5 e

−β1|Kmin|+C6 e−β2|Kmax|
)
− 1

+ 2
(

1− e−α(T−t)
)(

C7 e
−β1|Kmin| + C8 e

−β2|Kmax|
))

,

(3.46)

whereCt,T1 = xe−α(T−t), Ct,T2 = σ2

2α(1−e−2α(T−t)), and some constants β1, β2, C3, C4, C5, C6, C7, C8 >

0.

Proof. We recall a few useful facts and give some notations:

• |ex − 1| = (ex − 1) + 2 (1− ex)+ ≤ (ex − 1) + 2 |x|;

• by UT := xe−α(T−t) +
∫ T
t σ−α(T−s) dWs we denote a process that follows Gaussian distri-

bution with mean Ct,T1 and variance Ct,T2 ;

• by Q̃t we denote a compound Poisson process with a measure ν̃( dx) := ν( dx) 1|x|;

• by Q̃Kt we denote a compound Poisson process with a measure ν̃K( dx) := ν( dx) 1|x|∈[Kmin,Kmax];

• by DK
t := Q̃t − Q̃Kt we denote a compound Poisson process with a measure ν̂K( dx) =

ν̃( dx)− ν̃K( dx) = ν( dx) 1|x|/∈[Kmin,Kmax];

Then we have

|f(t, x)− fI(t, x)|

=
∣∣∣E [eUT+

∫ T
t e−α(T−s)h(X(s)) dQs − eUT+

∫ T
t e−α(T−s)h(XK(s)) dQKs

]∣∣∣
≤ eC

t,T
1 + 1

2
Ct,T2

∣∣∣E [e∫ Tt e−α(T−s) dQ̃s − e
∫ T
t e−α(T−s) dQ̃

K
s

]∣∣∣
= eC

t,T
1 + 1

2
Ct,T2

∣∣∣E [e∫ Tt e−α(T−s) dQ̃
K
s

(
e
∫ T
t e−α(T−s) dDKs − 1

)]∣∣∣
≤ eC

t,T
1 + 1

2
Ct,T2 E

[
e
∫ T
t e−α(T−s) dQ̃

K
s

]
E
[∣∣∣e∫ Tt e−α(T−s) dDKs − 1

∣∣∣]
≤ eC

t,T
1 + 1

2
Ct,T2 E

[
e
∫ T
t e−α(T−s) dQ̃

K
s

] (
E
[
e
∫ T
t e−α(T−s) dDKs − 1

]
+ 2E

[∣∣∣∣∫ T

t
e−α(T−s) dDK

s

∣∣∣∣]) .
(3.47)

Now let us show that every term is bounded by some constant. Since the first term is easily

computable, we start with the second term
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3. Pricing power forwards in a regime-switching model with an integro-PDE method

E
[
e
∫ T
t e−α(T−s) dQ̃

K
s

]
= e

∫ T
t

∫
R

(
ee
−α(T−s)|x|−1

)
ν̃K( dx) ds

= e
∫ T
t

∫ 0
Kmin

(
ee
−α(T−s)(−x)−1

)
ν( dx) ds+

∫ T
t

∫Kmax
0

(
ee
−α(T−s)x−1

)
ν( dx) ds

≤ e
∫ T
t

∫ 0
Kmin

(e−x−1) ν( dx) ds+
∫ T
t

∫Kmax
0 (ex−1) ν( dx) ds

= e
∫ T
t

∫
R(e|x|−1) ν̃K( dx) ds

= e
(T−t)

(
e−β1|Kmin|

∫ 0
Kmin

(
e|x|+β1|Kmin|−eβ1|Kmin|

)
ν( dx)+e−β2|Kmax|

∫Kmax
0 (e|x|+β2|Kmax|−eβ2|Kmax|) ν( dx)

)
≤ e

(T−t)
(
e−β1|Kmin|

∫ 0
Kmin

(
e|x|+β1|Kmin|−1

)
ν( dx)+e−β2|Kmax|

∫Kmax
0 (e|x|+β2|Kmax|−1) ν( dx)

)
≤ e

(T−t)
(
C3 e

−β1|Kmin|+C4 e−β2|Kmax|
)
.

(3.48)

Analogously, we consider the first term in the sum in the brackets of Equation (3.47)

E
[
e
∫ T
t e−α(T−s) dDKs − 1

]
= e

∫ T
t

∫
R

(
ee
−α(T−s)|x|−1

)
ν̂K( dx) ds − 1

= e
∫ T
t

∫Kmin
−∞

(
ee
−α(T−s)(−x)−1

)
ν( dx) ds+

∫ T
t

∫+∞
Kmax

(
ee
−α(T−s)x−1

)
ν( dx) ds − 1

≤ e
∫ T
t

∫Kmin
−∞ (e−x−1) ν( dx) ds+

∫ T
t

∫+∞
Kmax

(ex−1) ν( dx) ds − 1

= e
∫ T
t

∫
R(e|x|−1) ν̂K( dx) ds − 1

≤ e
(T−t)

(
e−β1|Kmin|

∫Kmin
−∞

(
e|x|+β1|Kmin|−1

)
ν( dx)+e−β2|Kmax|

∫+∞
Kmax

(e|x|+β2|Kmax|−1) ν( dx)
)
− 1

≤ e
(T−t)

(
C5 e

−β1|Kmin|+C6 e−β2|Kmax|
)
− 1.

(3.49)

Finally we compute the boundary for E
[∣∣∣∫ Tt e−α(T−s) dDK

s

∣∣∣]. This process DK
t can be repre-

sented as a sum of two compound Poisson processes: PKt with a measure ν( dx) 1x>Kmax and

NK
t with a measure ν( dx) 1x<Kmin . More precisely, the process PKt ≥ 0 has only positive jumps

not smaller than Kmax > 1 and the process NK
t ≤ 0 has only negative jumps not greater than

Kmin < −1. Then we have

E
[∣∣∣∣∫ T

t
e−α(T−s) dDK

s

∣∣∣∣]
= E

[∣∣∣∣∫ T

t
e−α(T−s) dPKs +

∫ T

t
e−α(T−s) dNK

s

∣∣∣∣]
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≤ E
[∣∣∣∣∫ T

t
e−α(T−s) dPKs

∣∣∣∣]+ E
[∣∣∣∣∫ T

t
e−α(T−s) dNK

s

∣∣∣∣]
= E

[∫ T

t
e−α(T−s) dPKs

]
− E

[∫ T

t
e−α(T−s) dNK

s

]
≤

∫ T

t
e−α(T−s)

∫ Kmin

−∞
|x| ν( dx) ds+

∫ T

t
e−α(T−s)

∫ +∞

Kmax

|x| ν( dx) ds

≤
(

1− e−α(T−t)
)(

e−β1|Kmin|
∫ Kmin

−∞
|x| eβ1|Kmin| ν( dx) + e−β2|Kmax|

∫ +∞

Kmax

|x| eβ2|Kmax| ν( dx)

)
≤

(
1− e−α(T−t)

)(
C7 e

−β1|Kmin| + C8 e
−β2|Kmax|

)
.

(3.50)

3.4 Results and discussion

3.4.1 Resulting forwards

This section demonstrates the results of the two models. We plot the forward prices f(t, x) as

a solution to Equation (3.24) for the threshold model and the forward prices g(t, y) given in

Equation (3.12) for the jump-diffusion model. For both models for the sake of simplicity we

assume that the seasonal component µ(t) = 0. We use the calibrated parameters obtained from

the German spot power market (see Benth et al. [2012] and Chapter 5). Table 3.1 contains all

the estimated parameters we use.

Table 3.1: An overview over the estimated parameter values for the forward price.

Parameter Interpretation Estimated value Measure unit
α mean-reversion force 0.6923 approx. 1 day
σ volatility 2.59
λ jump intensity 13.5 spikes per year
T jump threshold 3 log scale

Kmax jump truncation 8 log scale

We start with an assumption of a Gaussian distribution for the jump size. Figure 3.2 shows

prices f(t, x) and g(t, y). When we are at the maturity, i.e. T − t = 0, we observe our boundary

condition. We also notice that the prices decrease when time to maturity increases. We detect

a rather expected effect that both models produce similar results in terms of the general price

level. However, the threshold model produces slightly lower prices compared to the standard

jump-diffusion approach. This is perfectly in line with the behaviour of the function h.
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Figure 3.2: Normal distribution assumed for jumps with mean m1 = 0.0863 and standard devi-
ation m2 = 0.7653. Time to maturity T − t = 20 days.

We continue with an assumption of a Laplace distribution for the jump size. Figure 3.3 shows

prices f(t, x) and g(t, y). When we are at the maturity, i.e. T − t = 0, we can see that our

boundary condition is fulfilled. We also note that the prices decrease when time to maturity

increases. Again, both models demonstrate similar results in terms of the general price level.

Moreover, different jump size distribution does not provide a significant difference to the price

level. The threshold model produces slightly lower prices compared to the standard jump-

diffusion approach due to the function h.
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(a) Forward function f(t, x), T = 3.
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Figure 3.3: Laplace distribution assumed for jumps with location m1 = 0.3975 and scale m2 =
0.6175. Time to maturity T − t = 20 days.

Now we triple the average jump size parameter value (both Normal and Laplace) and see how

does it effect the forward prices for both models. Figures 3.4 and 3.5 demonstrate that there is

no a pronounced change in the level of the prices.

Table 3.2 illustrates this result in the details. We particularly see that in the case of Normal
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distribution for the jump size f(t, x) decreases when the average jump size increases. We also

note the effect of the function h: when the prices are at the ”high” regime, i.e. x = 4, then

the decrease is more significant. When the prices are at the ”low” regime, i.e. x = 2, then the

decrease is quite small. For the jump-diffusion forward price g(t, y) we notice either a slight

increase in the price when the average jump size increase or no change at all.

For the case of Laplace distribution for the jump size f(t, x) decreases dramatically when the

average jump size increases compared to the Normal distribution case. This effect is coupled

with the impact of the function h when x = 4. However, when x is relatively small we even

observe an increase in the prices. For the jump-diffusion forward price g(t, y) we see the same

effect as for the Normal distribution case.
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Figure 3.4: Normal distribution assumed for jumps with meanm1 = 0.27 and standard deviation
m2 = 0.7653. Time to maturity T − t = 20 days.
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(a) Forward function f(t, x) in the log scale.
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Figure 3.5: Laplace distribution assumed for jumps with location m1 = 1.2 and scale m2 =
0.6175. Time to maturity T − t = 20 days.
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Table 3.2: Comparative forward values for the threshold (T = 3) and jump-diffusion models for
various starting values x and various average jump size parameter m1 values. τ = 20 days to
maturity.

x = y = 4 x = y = 2

f(τ, x), g(τ, y) f(τ, x) g(τ, y)

N
or

m
al m1 = 0.0863 42.0727 44.4889 6.5248 6.5248

m1 = 0.27 42.0345 44.5389 6.5254 6.5248

La
pl

ac
e m1 = 0.3975 40.9618 44.6442 6.6176 6.5248

m1 = 1.2 37.9248 45.1348 6.8678 6.5248

3.5 Conclusion

To summarise our findings we discovered that the Laplace distribution has a remarkable effect on

the forward prices compared with the Normal distribution. We demonstrated that the function h

shows a noticeable impact on the prices when they are above the specified threshold and when

the average jump size is expected to be increasing. This observation is in line with the result of

jump size distribution significance obtained in Chapters 2 and 5.

An interesting point, in contrast to modelling spot prices, is that the effect of function h is minor,

i.e. it does not demonstrate a prominent difference between forward prices when they are below

the threshold.
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CHAPTER 4

STORAGE MODELLING

In this chapter we consider the storage problem and present a new approach to the storage

value modelling. This approach models the storage level process as a mean-reverting stochastic

process within some interval (l, u). To thoroughly describe the problem, we start with the the-

oretical background and investigate some bounded stochastic processes in Section 4.1. Then,

in Section 4.2, we give some application examples. As the main focus of this chapter is on the

storage modelling, we further provide an overview of the current modelling approach to the

storage problem together with the literature review in Section 4.3 and motivate our modelling

approach in Section 4.4. Next, in Section 4.5, we introduce a model for storage process and give

a variety of possible payoffs that help a storage owner (and possibly producer) to hedge their

market position. Section 4.6 provides some illustrative application examples. Finally, Section

4.7 concludes and gives an outlook for further applications.

4.1 Theoretical development

4.1.1 Preliminary definitions and notations

Karlin & Taylor [1981] (Chapter 15, p. 157) define a diffusion process as

Definition 1 (Diffusion process). A continuous time parameter stochastic process which possess
the (strong) Markov property and for which the sample paths X(t) are (almost always, i.e. with
probability 1) continuous functions of t is called a diffusion process.

The authors also claim (p. 191) that a time homogeneous diffusion process X(t)t≥0 on a state

space∞ ≤ l < u ≤ ∞ satisfies:

• the process X(t) is regular in the interior of the interval (l, u), i.e.

P{T (y) <∞|X(0) = x} > 0, l < x, y < u,

where T (y) is the first time, if any, the process reaches the value y;
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4. Storage modelling

• the processX(t) has infinitesimal parameters a(x) and σ2(x) for (l, u) where ∆X = X(h)−
X(0) and

a(x) = lim
h↓0

1

h
E[∆X |X(0) = x],

σ2(x) = lim
h↓0

1

h
E[(∆X)2 |X(0) = x];

• the drift a(x) and the diffusion coefficient σ(x) are assumed to be continuous and σ(x) >

on (l, u).

A scale function S(x) for a diffusion is the unique solution on (l, u) of (up to linear transforma-

tion) the following differential equation

1

2
σ2(x)

d2S(x)

dx2
+ a(x)

dS(x)

dx
= 0. (4.1)

A solution to this equation is given as1

S(x) =

∫ x

x1

exp
{
−
∫ y

x0

2a(z)

σ2(z)
dz
}

dy =

∫ x

x1

s(y) dy,

for x ∈ (l, u), x0, x1 are points in (l, u) and s(x) is the scale density. A speed measure for a

diffusion is denoted byM(x) and determines how fast the process moves through its paths

M(x) =

∫ x

x0

2

σ2(z)
exp

{∫ z 2a(s)

σ2(s)
ds
}

dz =

∫ x

x0

2

σ2(z)s(z)
dz =

∫ x

x0

m(z) dz,

where m(x) = 2
σ2(x)s(x)

is the speed measure density.

The following theorem is known as the Feller’s test for explosion.

Theorem 1 (Diffusion explosiveness). The diffusion X(t) is non-explosive if and only if

lim
x→u

∫ x

x0

(S(x)− S(z)) m(z) dz =∞

and
lim
x→l

∫ x0

x
(S(z)− S(x)) m(z) dz =∞.

Proof. The proof can be found in Theorem 5.5.29 in Karatzas & Shreve [1991].

If S(l) = −∞ and S(u) = ∞, then the boundaries l and u cannot be reached in finite time. If

these values are finite then the boundary is called attracting.
1For a proof see Proposition 16.78, p. 386, ”Probability”, Leo Breiman.
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4.1. Theoretical development

There exists the following boundary point b classification:

• A boundary b is regular, if S(b) < ∞ and M(b) < ∞. This means that the process can

reach and leave the boundary in finite time.

• If S(b) <∞ and M [{b}] = 0 the process reflects back into the interior with a infinite speed

and this is an instantaneously reflecting boundary.

• If S(b) < ∞ and M [{b}] = ∞ the boundary b is absorbing or exit, i.e. after reaching it

the process cannot leave it any more.

• If S(b) < ∞ and M [{b}] ∈ (0,∞) the process reflects back into the interior with an finite

speed. The boundary is called the sticky boundary in Karlin & Taylor [1981], the delayed

reflection boundary in Gihman & Skorokhod [1972] and the slowly reflecting boundary

in Breiman [1968].

• If S(b) = ∞ and M(b) < ∞, the boundary is called an entrance boundary, meaning that

the process cannot reach it from within the interval. Although, the process can start from

there.

• If S(b) =∞ and M [{b}] =∞, the boundary is called natural, i.e. it cannot be reached in

finite time.

4.1.2 Drift and diffusion coefficients

Consider a time-homogeneous process diffusion X(t) with t ≥ 0 on the interval (l, u) with

0 < l < u <∞ with two boundary points l and u satisfying

dX(t) = a(X(t)) dt+ σ(X(t)) dW (t). (4.2)

Coefficients a(x) and σ(x) uniquely determine the boundary behaviour. We specify the coeffi-

cients as follows

σ(x) =
√

2(u− x)(x− l),

a(x) = −a(x−m), (4.3)

where a > 0 and m = u+l
2 .

For our choice of coefficients the scale density is

73



4. Storage modelling

s(x) = exp
{
−
∫ x −a(y −m)

(u− y)(y − l)
dy
}

(4.4)

= exp
{a

2

∫ x ( 1

u− y
− 1

y − l

)
dy
}

= exp {−a
2

ln ((u− x)(x− l))}

= ((u− x)(x− l))−
a
2 ,

and the speed density is

m(x) = ((u− x)(x− l))
a
2
−1 (4.5)

for some parameter a which is responsible for the behaviour at the boundaries. If a = 0, the

boundaries l and u are absorbing points. If a ∈ (0, 2), the process reflects back into the interior

instantaneously. If a ≥ 2 the process never reach the boundaries, although it can start from

there.

Recall now definition of the Bessel process Z(t) given in Chapter 11 in Revuz & Yor [1999]

Definition 2 (Bessel process). For every δ ≥ 0 and x ≥ 0, the unique strong solution of the
equation

dZt = δ dt+ 2
√
Zt dWt, Z0 = x

is called the square of δ-dimensional Bessel process started at x and denoted by BESQδ(x). The
number δ defines the dimension of BESQδ(x).

In Proposition 1.5 (Chapter 11, p. 442) in Revuz & Yor [1999] the authors prove that when

0 < δ < 2 then the process is instantaneously reflecting at the point {0}; when δ ≥ 2 the process

never reaches the point {0}; when δ = 0 the process is absorbed at the point {0}.

We now can see that our process X(t) is the Bessel process of order a and two boundary points

l and u. We recall also that the Bessel process is Markov, for a proof see Theorem 1.9, Chapter 9

in Revuz & Yor [1999].

4.1.3 Infinitesimal operator

For a twice continuously differentiable function f(x) on (l, u) the canonical representation of

the differential infinitesimal operator associated with diffusion process is defined as

Lf(x) =
d

dM

[ df

dS

]
=

1

m(x)

d

dx

[ 1

s(x)

df

dx

]
, (4.6)
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4.1. Theoretical development

since dM = m(x) dx and dS = s(x) dx. This operator can be re-written as

Lf(x) =
σ2(x)

2

∂2f

∂x2
+ a(x)

∂f

∂x
. (4.7)

4.1.4 Transformation to ODE

Theorem 2 (Transition probability density). There exists a continuous map q : (0,∞)× ((l, u))×
((l, u)) → (0,∞) such that for all bounded measurable function φ supported on (l, u)

Φ(t, x) := Ex[φ(X(t))]

=

∫ u

l
φ(y)qt(x, y) dy, (4.8)

where qt(x, y) is the transition probability density function.

Proof. For a proof see § 4.11 in Ito & McKean [1974].

Note also that

Φ(0, x) =

∫ u

l
φ(y)q0(x, y) dy (4.9)

=

∫ u

l
φ(y)δ(y − x) dy

= φ(x),

by the sifting property of the Dirac delta function δ(x).Function Φ(t, x) satisfies the following

backward Kolmogorov partial-differential equation with initial condition in (4.10)

∂

∂t
Φ(t, x) = a(x)

∂

∂x
Φ(t, x) +

1

2
σ2(x)

∂2

∂x2
Φ(t, x) (4.10)

with two boundary conditions which are the result of our diffusion coefficient σ(x) specifica-

tion

 lim
x→l

a(l)Φ′x(t, x) = Φ′t(t, l),

lim
x→u

a(u)Φ′x(t, x) = Φ′t(t, u).
(4.11)
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4. Storage modelling

To find a solution to this problem we start with applying the Laplace transform to the function

Φ(t, x)

yλ(x) =

∫ ∞
0

e−λtΦ(t, x) dt. (4.12)

Then we continue with applying the Laplace transform to Equations (4.10) and (4.11). We

obtain a second-order non-homogeneous ordinary differential equation with variable coeffi-

cients

σ2(x)

2

d2

dx2
yλ(x) + a(x)

d

dx
yλ(x)− λyλ(x) = −Φ(0, x) ≡ −φ(x), (4.13)

with non-homogeneous boundary conditions


lim
x→l

a(l)
d

dx
yλ(x)− λyλ(l) = −Φ(0, l) ≡ −φ(l),

lim
x→u

a(u)
d

dx
yλ(x)− λyλ(u) = −Φ(0, u) ≡ −φ(u).

(4.14)

Due to equivalence of Equations (4.6) to (4.7) we rewrite our equation as

d

dx

[ 1

s(x)

dyλ(x)

dx

]
− λm(x)yλ(x) = −m(x)φ(x),

which we will solve in further section. Before to proceed with this, we discuss some properties

of the solution. With this we follow § 24 in Gihman & Skorokhod [1972].

Lemma 1. Let φ(x) be a bounded, continuous function and yλ(x) a bounded solution of

σ2(x)

2

d2

dx2
yλ(x) + a(x)

d

dx
yλ(x)− λyλ(x) = −φ(x) (4.15)

for l < x < u, satisfying two boundary conditions


a(l)

d

dx
yλ(l+)− λyλ(l) = −φ(l),

a(u)
d

dx
yλ(u−)− λyλ(u) = −φ(u).

(4.16)

and let y′λ(x)σ(x) be also bounded. Then for all t > 0

E[yλ(X(T )) |Ft] = e−λ(T−t)yλ(X(t))−
∫ T

t
e−λzφ(X(z)) dz. (4.17)
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4.1. Theoretical development

Proof. Applying Itô’s formula, we have

d(yλ(X(t))e−λt) =
[
− λyλ(X(t)) +

d

dx
yλ(X(t))a(X(t))

+
1

2
σ2(X(t))

d2

dx2
yλ(X(t))

]
e−λt dt+ y′λ(X(t))σ(X(t))e−λt dW (t)

= −e−λtφ(X(t)) dt+ y′λ(x)(X(t))σ(X(t))e−λt dW (t).

Rewriting the last equation in the integral form and taking the expectation yields the desired

result. Note that when T →∞, then

yλ(X(t)) = eλtE
[ ∫ ∞

t
e−λzφ(X(z)) dz |Ft

]
. (4.18)

4.1.5 Solution to ODE

Sturm-Liouville problem

The problem we want to solve is given in Equations (4.13) and (4.14). This problem belongs to

a class of Sturm-Liouville problems in general given as following

{
Ly(x) = −f(x),

By(x) = 0,
(4.19)

where x ∈ [l, u] and L denotes the Sturm-Liouville differential operator

L =
d

dx

[
p(x)

d

dx

]
+ [q(x) + λr(x)],

B is the boundary condition operator

B =


α1 + α2

d

dx
, atx = l,

β1 + β2
d

dx
, atx = u,

and λ is a parameter. This problem is regular if it satisfies the following properties:

• finite interval [l, u];
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4. Storage modelling

• p(x), p′(x), q(x) and r(x) are continuous functions;

• p(x) and r(x) are strictly positive on [l, u].

If any of these conditions is not fulfilled, then the problem is called singular. Comparing operator

given in 4.6 yields that q(x) = 0, r(x) = m(x), f(x) = m(x)φ(x) and p(x) = 1
s(x) .

Coefficients transformation
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Figure 4.1: Drift a(x) and diffusion σ2(x)/2 coefficients.

In Equation (4.3) we specified the form of the drift and diffusion coefficients for the diffusion

X(t). Figure 4.1 shows these functions for various values of x.

Let us introduce the following notations we use

• m := l+u
2 ;

• ∆ := u− l;
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4.1. Theoretical development

• z := 2
∆ (x− l)− 1.

The last substitution gives that z(x) ∈ [−1, 1], when x ∈ [l, u]. Therefore, y(x) = y (x(z)) =

g(z) and our system of homogeneous Equation (4.13) with Conditions 4.14 transform into the

following equation

(
1− z2

)
g′′zz − azg′z − λg = 0, (4.20)

with boundary conditions

{
ag′(−1)− λg(−1) = 0,

−ag′(1)− λg(1) = 0.
(4.21)

The homogeneous version of this equation is equivalent to the Jacobi differential equation

(1− x2)y′′ + (β − α− (α+ β + 2)x)y′ + n(n+ α+ β + 1)y = 0, (4.22)

when α = β. The Jacobi polynomials are the solution to this equation. An extensive study

of the Jacobi polynomials can be found in the book of Szego [1939]. Let us define Jacobi

polynomials and recall some useful and necessary facts. The classical definition is given by

Rodrigues’ formula

(1− x)α(1 + x)βPα,βn (x) =
(−1)n

2nn!

dn

dxn

{
(1− x)n+α(1 + x)n+β

}
, x ∈ [−1, 1]. (4.23)

For α, β > −1 these polynomials are mutually orthogonal in L2 (see Theorem 4.2.2 in Szego

[1939]), namely

∫ 1

−1
Pα,βn (x)Pα,βm (x) (1− x)α(1− x)β dx =

2α+β+1Γ(n+ α+ 1)Γ(n+ β + 1)

(2n+ α+ β + 1)Γ(n+ 1)Γ(n+ α+ β + 1)
δn,m,

(4.24)

where δn,m is the Kronecker delta function. When

• when α = β, the polynomials are called ultraspherical or the Gegenbauer polynomials;

• when α = β = 0 the polynomials are called the Legendre polynomials;

These polynomials play a key role in the form of the transition probability density of the diffusion

process as it is stated in Cooper et al. [1977]. They are needed to construct the Green function,

the inverse Laplace transform of which is the transition density function.
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4. Storage modelling

Our Equation (4.20) is solved by the Gegenbauer (or ultraspherical) polynomials for α = a
2 − 1,

λ = −n(n+ 2α+ 1) and α = γ − 1
2 which are defined as

P γn (x) =
Γ(γ + 1

2)Γ(n+ 2γ)

Γ(2γ)Γ(n+ γ + 1
2)
P
γ− 1

2
,γ− 1

2
n (x), x ∈ [−1, 1], (4.25)

for α > −1 or γ > −1
2 with a modified Rodrigues’ formula

P γn (x) =
(−2)nΓ(n+ γ)γ(n+ 2γ)

n!Γ(γ)Γ(2n+ 2γ)
(1− x2)−γ+ 1

2

( d

dx

)n
(1− x2)n+γ− 1

2 , x ∈ [−1, 1]. (4.26)

A mutual orthogonally property is given as

∫ 1

−1
P γn (x)P γm(x) (1− x2)γ−

1
2 dx =

π21−2γΓ(n+ 2γ)

n!(n+ γ)Γ2(γ)︸ ︷︷ ︸
:=A(n,γ)

δn,m. (4.27)

So with a
2 − 1 = α = β = γ − 1

2 with α > −1 or γ > −1
2 (to ensure mutual orthogonality) we

define three cases.

Case 1: a ∈ (0, 2) or α = β ∈ (−1, 0) or γ ∈ (−1
2 ,

1
2). With these values of parameters

the behaviour at the boundary l or u is characterised by the instantaneous reflection. The

eigenfunctions to the differential operator in Equation (4.20) in this case are the Gegenbauer

polynomials.

Case 2: a ≥ 2 or α ≥ 0 or γ ≥ 1
2 . With these values of a the process never reaches the boundary l

or u in a finite time. Although, the process can start at one of the boundaries. The eigenfunctions

to the differential operator in Equation (4.20) in this case are the Legendre polynomials.

Case 3: a = 0 or α = −1 or γ = −1
2 . With these values of parameters the process will be

absorbed at the boundary l or u. The eigenfunctions to Equation (4.20) in this case are the

Jacobi polynomials, but in this case the mutual orthogonality condition is lost.

The Green function

Green’s function methods is often used to solve the boundary value problems. There is an

extensive literature on the Green function application given for example in Stakgold [1979].

In general, the Green function G(x, ξ) is defined as a solution to a homogeneous form of the

boundary value problem given as in Equation (4.19)
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LG(x, ξ) = 0, a < x, ξ < b;

BG(x, ξ) = 0;

G(x, ξ) is continuous atx = ξ;

dG

dx


x=ξ+

− dG

dx


x=ξ−

=
1

p(x)
.

(4.28)

Also, the differential operator applied to the Green function should be equal to the Dirac delta

function

LG(x, ξ) = −δ(x− ξ), a < x, ξ < b; BG(x, ξ) = 0.

Another important property of the Green function is that at some conditions it can be rep-

resented via the eigenfunctions vn(x) of the linear differential operator L which is known as

bilinear form

Gλ(x, ξ) =
∞∑
n=0

vn(x)vn(ξ)

(λn − λ)
∫ b
a r(x)v2

n(x) dx
,

where λn are the eigenvalues of the operator. If the eigenfunctions are orthonormal then

cn ≡
∫ b
a r(x)v2

n(x) dx = 1, if not then we can normalise them to have this property. From

this representation it can be seen that Green’s function has an infinite number of poles at λn,

these poles are called the point spectrum of the Green function. There is a relation between the

Green function and the poles in the complex λ-plane known as the following formula

1

2πi

∮
C
Gλ(x, ξ) dλ = −δ(x− ξ)

r(x)
. (4.29)

The proof is given in Duffy [2001], Chapter 2, p. 49. After finding the Green function, the

unique solution to the non-homogeneous equation with homogeneous boundary conditions as

in Equation (4.19) is given as

y(x) =

∫ b

a
G(x, ξ) f(ξ) d(ξ).

This form of the solution is approved by the sifting property of the delta function, meaning

that

Ly =

∫ b

a
LG(x, ξ) f(ξ) d(ξ) = −

∫ b

a
δ(x− ξ) f(ξ) d(ξ) = −f(x).
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Now coming back to our problem which we transformed to the Gegenbauer polynomials with

α = β, we can write down the solution to 4.13 via Green’s function with normalised eigenfunc-

tions un(z) for Equation (4.20)

un(z) =
1√

A(n, γ)
P γn (z) =

1√
A(n, γ)

P γn (z(x)) =
1√

A(n, γ)
P γn

( 2

∆
(x− l)− 1

)
= vn(x), (4.30)

which are the eigenfunctions for our differential operator L = d
dx

[
1
s(x)

d
dx

]
− λm(x) with the

eigenvalues λn = −n(n+ 2γ + 1), and

yλ(x) =

∫ u

l
Gλ(x, ξ)φ(ξ)m(ξ) dξ =

∫ u

l

∞∑
n=0

vn(x) vn(ξ)

(λ− λn)
φ(ξ)m(ξ) dξ. (4.31)

4.1.6 Transition density formula

This is the last step in getting the transition density formula qt(x, y). Recall again Equation

(4.8)

Φ(t, x) =

∫ u

l
φ(y)P (t, x, dy), (4.32)

with the transition probability P (t, x, dy). By Fubini’s theorem we have

yλ(x) =

∫ ∞
0

e−λtΦ(t, x) dt

=

∫ ∞
0

e−λt
∫ u

l
φ(y)P (t, x, dy) dt

=

∫ u

l
φ(y)

∫ ∞
0

e−λtqt(x, y) dt dy

=

∫ u

l
Kλ(x, y)φ(y) dy

(4.33)

where Kλ(x, y) is the Laplace transform of the transition density function qt(x, y). Comparing

this expression to the solution given in Equation (4.31) gives

Kλ(x, y)
∣∣∣
(l,u)

= Gλ(x, y)m(y). (4.34)
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Now taking the inverse Laplace transform of Equation (4.34) results in the spectral representa-

tion of the transition density function of the process in a bounded region

qt(x, y) |(l,u) = L−1
(
Kλ(x, y)

)
= L−1

(
m(y)Gλ(x, y)

)
= L−1

(
m(y)

∞∑
n=0

un(x)un(y)

(λ− λn)

)
= m(y)

∞∑
n=0

vn(x)vn(y) e−n(n+2γ)t

= m(y)
∞∑
n=0

P γn
(

2
∆(x− l)− 1

)
P γn
(

2
∆(y − l)− 1

)
A(n, γ)

e−n(n+2γ)t

= (1− y2)γ−
1
2

∞∑
n=0

P γn
(

2
∆(x− l)− 1

)
P γn
(

2
∆(y − l)− 1

)
A(n, γ)

e−n(n+2γ)t

(4.35)

4.1.7 Numerical investigation

Numerical examples

Here we demonstrate the transition probability density for various parameters values.

1. Absorption at the boundary: Coefficients a = 0 or α = −1 or γ = −1/2 ensure that the

boundaries absorb the process, but in this case there is no mutual orthogonality. With this

we provide an example of the density with ”almost absorption”, i.e. we take γ = −0.49

and see how does it effects the transition probability density near the boundary values.

This is shown in Figure 4.2.

2. Instantaneous reflection at the boundary: Coefficients a ∈ (0, 2) or α ∈ (−1, 0) or γ ∈
(−1/2, 1/2) ensure that the boundaries reflect the process with an infinite speed. The

behaviour of the transition probability density is shown in Figure 4.3.

3. Boundary is never attainable: Coefficients a ≥ 2 or α ≥ 0 or γ = 1/2 ensure that the

boundary is never reachable. The behaviour of the transition probability density is shown

in Figure 4.4.
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Figure 4.2: Transition probability density function qt(x, y) for a diffusion that is ”almost ab-
sorbed” at the boundaries l and u, n = 10.
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Figure 4.3: Transition probability density function qt(x, y) for a diffusion that is instantaneously
reflected at the boundaries l and u, n = 10.
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Figure 4.4: Transition probability density function qt(x, y) for a diffusion that never reaches
none of the boundaries l and u, n = 10.
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Convergence and computational time

The transition density function is given as an infinite sum of the elements. To numerically

compute it we need to truncate the sum at some number n which makes the computational time

and effort reasonable. In Figures 4.2, 4.3 and 4.4 we use n = 10 which is sufficiently fast. We

tried several possible values n and found out that after n = 5 the difference in the produced

values is insignificant.

4.2 Possible applications of a bounded diffusion to the energy-related

markets

In this section we briefly overview some possible applications of considered diffusion process

X(t) in a bounded region (l, u) to the energy-related markets.

In a contrast to other financial markets, energy markets exhibit very specific behaviour which is

a result of physical and regulatory constraints associated with traded energy commodities. To

model a price process as a bounded diffusion can be very beneficial at the attempts to investigate

and understand market performance.

One of the potential area of a application is a market of European emissions certificates. These

financial instruments are a result of the emissions trading scheme introduced in European coun-

tries in 2005 with a main goal to regulate climate policy and to reduce emissions of CO2 and

greenhouse gas emissions. Every certificate allows a holder to emit 1 tonne of CO2, so the

companies have to buy these allowances at the market to fulfil the commitments. Otherwise,

they have to pay a penalty and on top of that they have to buy missing certificates. To increase

investments in the renewable energy production sector some countries (i.e. United Kingdom)

introduce the so-called floor price for this emission certificate, which mainly can be regarded as

an additional tax that a company has to pay. With these peculiarities, a carbon price as a com-

bination of emissions price together with the tax and the penalty can be viewed as a bounded

stochastic process living between these tax- and penalty-boundaries. The most curious question

is what kind of a boundary behaviour could we model to keep our assumptions as much as re-

alistic as possible? This investigation is beyond the scope of this thesis, but definitely will be a

focus of our future research activity.

Other example of the markets where a price process can exhibit a boundary behaviour is a

storage valuation problem. We study this case in details in a subsequent section.
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4.3 Current setting and literature

The problem of modelling storage is not new, but remains very demanding and challenging due

to its direct purpose of matching the supply and demand in energy markets. The key purposes of

controlling a storage process include keeping the balance in the reservoir, meeting the changing

demand, hedging market positions, insuring against various sudden events, performing market

speculations and others.

To meet the seasonal changes in demand both renewable- and fuel-driven production industries

have storage reservoirs. For example, the hydro-dominated Nordic power market (i.e. Nor-

way and Sweden) represents private and public parties operating hydro reservoirs. As stated

in Kauppi & Liski [2008], this hydro system has some specific features such as a weather-

dependency in spring and fall, many different inflow and outflow technical constraints in hydro

turbines and others. Since inflow is highly seasonal and exhibits some instability, there is a

strong interconnection between the markets in Scandinavian countries. For instance, depending

on the conditions, the necessary amount of hydro power can safely be transported from one re-

gion to another. Moreover, there exists a cumulative hydro storage index, available at the Nord

Pool exchange, that shows current hydro reservoir level across the countries and total maximum

capacity.

Other storage alternatives to have a quick access to are facilities to easily store fuels, mainly

gas. These facilities have some specific properties and characteristics one should keep in mind.

Among them are the reservoir capacity constraint and injection and withdrawal rate constraints.

The latter rate constraint regulates the speed of injection or withdrawal depending on the cur-

rent reservoir level. Other important operating characteristics are the base gas (cushion) level

that ensures the critical pressure in the pipeline and the working gas level which allows one to

operate in the market. Also, there is a cyclability constraint representing a number of cycles of

injection or withdrawal per year. Furthermore gas storage entails various operational and man-

agerial costs. Additional to these costs there are possible pipeline seepage rates which describe

the amount of gas that is lost during injection or withdrawal. On top of that there might be

some regulatory constraints.

Technically, there exist three types of underground gas storage facilities: salt caverns, aquifers

and depleted oil or gas reservoirs [Federal Energy Regulatory Commission and others, 2004].

The first type of facility has relatively high deliverability and injection rates and is often used

for short-term purposes. The second type of facility has high cushion level requirements and a

high deliverability rate. The last one is the most common gas storage provision and is used for

seasonal system supply or for peak-day demands.

We fairly note that hydro storage and gas storage problems have some issues in common. Par-

ticularly, the hydro storage problem addresses the questions of when and how much water to
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release or to save and how much power to produce respectively. The gas storage problem ad-

dresses the questions of when to withdraw and sell and when to buy in the market and inject.

While the former problem has not extensively been discussed in the literature to the best of

our knowledge, the latter problem was under a quite focus for the last decade in the literature.

Papers of Ahn et al. [2002], Chen & Forsyth [2007], Kjaer & Ronn [2008], Thompson et al.
[2009], Carmona & Ludkovski [2010] investigate the working gas storage value problem as a

stochastic optimal control problem.

They consider a control policy which defines the periods of injection, withdrawal or ”doing

nothing” in such a way that the total profit of a storage holder is maximised with respect to

some constraints. Let us describe some details. There is a physical storage at level St which

is limited up to the maximal storage capacity Smax. The market price of gas Pt can either

be considered as a futures price F (t, t) with some respective assumptions on F (t, T ) or can

alternatively be modelled as a stochastic mean-reverting process possibly with jumps. There are

two considered rates: injection ain(St) > 0 and withdrawal aout(St) < 0, not necessarily equal

to each other by their absolute value. There are possibly some costs of injection or withdrawal

together with some other operational and managerial costs of storage. Furthermore, there is

a finite (or infinite) horizon with either continuous (or discrete) time setting. All this sets up

the following optimisation problem of finding an optimal switching policy between injection,

withdrawal or ”doing nothing” regimes. This is a stochastic optimal control problem, since one

seeks for an optimal strategy c from the class Ct of all admissible strategies. Given starting values

at time t one has the following formulation

V (t, Pt, St) = sup
c∈Ct

E
[ ∫ T

t
h(cs, Ps, Ss) ds

]
, (4.36)

where h is a specified payoff that a storage owner receives at time t implementing the strategy

c. Depending on the assumptions and modelling properties, this Hamilton-Jacobi-Bellman type

of problem can be solved with several techniques extensively available in the literature. The

resulting optimal stochastic control policy reveals three regimes: if the current working gas level

in storage is low, then with the gas price increasing one is moving from a strategy of pumping up

to ”doing nothing” with gas. Conversely, if the current working gas level in the storage facility is

high, then with the gas price increasing one has an opportunity of releasing gas from storage to

sell. This control strategy corresponds to the following policy: one sells the gas and it results in

the highest value when the prices are high and the reservoir is full. Respectively, if the prices are

high and the reservoir is empty, then one neither sells or buys. In this paper we will not focus

on solving the stochastic optimal control problem, instead we assume that the optimal policy of

injection or withdrawal is given and investigate a number of important financial products that

an owner can use in order to hedge the market position.
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4.4 Motivation

In a contrast to the approach described above, we look at the problem differently and develop

a method that allows us to study the storage value problem from the stochastic modelling and

statistical points of view. We consider a working storage (gas or hydro) as a mean-reverting

bounded stochastic process, assuming that the control policy to inject or withdraw is already

given.

The motivation for modelling storage level as a random process is the following. Consider a

producer who owns a storage reservoir: she has to regularly decide on injection or withdrawal

or ”doing nothing” policy depending on various external factors. When she deals with the hydro

storage problem, one of the key factors is the power price Pt. A producer tends to release the

water to produce power if the current power price level is relatively high and if the current

water level in the reservoir allows her to do so. Alternatively, if the current price level is low,

one can only opt for a small rate of production. When a producer deals with the gas storage

problem, then one of these factors has been considered in the literature as a gas spot price,

also Pt. 1 However, since the spot price contains information up to time t, we assume that this

producer looks at the futures market and takes a decision respectively. If the market is currently

in contango, meaning that the value Dt = F (t, T )−EQ[PT |Ft] > 0, then a producer can expect

that the market is willing to pay more in the future. The opposite case is the backwardation,

meaning that the value Dt = F (t, T ) − EQ[PT |Ft] < 0, then a producer can expect that the

market is willing to pay less in the future. So this would help to either inject during contango or

withdraw during backwardation. Since one usually observes contango in summer and backwar-

dation in winter, we can think of the value Dt as a process which is reverting around zero. This

would imply that we follow the strategy to inject when the market is in contango the storage

level is below some mean level m. And we follow the strategy to withdraw when the market is

in backwardation the storage level is above the mean level m.

Since demand is highly seasonal, managing inventories plays a big role in various risk hedging

methods. A stochastic model for storage which does not include the stochastic control compo-

nent would shed some light on the storage value dynamics and gives an intuition to hedging

against a price collapse or other unexpected events. Another benefit of such a setup is that it

gives a quick and simple way to estimate the value of owning a storage facility knowing the

current market price.

In the next section the model with all the necessary components for storage dynamics, spot mar-

ket price dynamics and the value process. For the sake of comparison, we also consider several

payoffs for hydro and gas storage problems respectively. Further we give several illustrative

examples and provide a discussion on the results.

1Further in the text we refer Pt as a fuel price which can either be power or gas price respectively.
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4.5 Storage process modelling

4.5.1 Modelling setup

Let (Ω,P,F, {Ft}) be a complete filtered probability space. We specify the model assumptions

and parameters:

• a storage owner can also be an electricity producer;

• continuous time setting;

• finite time horizon t, T ∈ [T1, T2];

• St is the current level of working storable commodity in the reservoir at moment t mea-

sured in MWh;

• reservoir capacity is restricted naturally by 0 < l < u <∞ with l is the minimum reservoir

level, u is the maximum reservoir level, m = u+l
2 is the average level and ∆ = u− l is the

total reservoir capacity;

• a(St) is the rate at which we inject or withdraw;

• Pt is the spot price (gas or power);

• F (t, T ) is the futures price (gas or power) with maturity T ;

• Vt(St, Pt, Ct) is the storage value at time t;

• r(t, T ) is the discount factor over the period of (t, T );

• Ct represents some cumulative (operational, managerial or switching) costs.

We model the storage level dynamics St as a stochastic mean-reverting process which stays

between (l, u) as follows

dSt = −2(St −m) dt+
√

2(St − l)(u− St) dWS
t . (4.37)

This is an example of the diffusion process in a bounded domain with a ”never-reaching bound-

ary” behaviour considered in the previous section. An illustration of such a process is given in

Figure 4.5. This formulation suggests that the injection and withdrawal rates are defined by

dSt. The drift term becomes positive when the reservoir is relatively empty and needs to be

re-filled and the drift term becomes negative when the reservoir is relatively full and needs to be

emptied. The diffusion term ensures the fact that the process St always stays inside the interval

(l, u) and never reaches the boundaries l and u, which is exactly the case for the real storage
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level process due to regulatory constraints on the minimum and maximum reservoir levels l and

u.

Here we focus on the hydro- and gas-driven storage reservoirs. We consider the hydro-driven

reservoir which is naturally filled with melted snow or rain. For some European countries like

Switzerland, Austria, Norway and Sweden such a hydro reservoir is playing a significant in the

electricity production. So the amount of precipitation can be regarded as a random process.

Fleten [2013] presented some data from Norwegian producers operating hydro storage reser-

voirs. His data show the random nature of the inflow process. Another important issue discussed

in his presentation was the so-called target level set by the producer. This target level is given

by a time-dependent component that can be explained by seasonal behavior of the inflow to

the storage facility: due to high power demand in winter and low power demand in summer.

This effect can be captured by incorporating some circular (e.g. trigonometric) function. In

our model for the sake of simplicity we refer to this seasonal component as a constant level m,

namely we assume that m := E[m(t)].
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Figure 4.5: An example of a storage level process with l = 1 and u = 51.

92



4.5. Storage process modelling

The fuel (gas or power) spot price dynamics is described by an exponential Ornstein-Uhlenbeck

process without jumps which ensures the price positivity (here we ignore the fact that sometimes

power can exhibit negative prices), namely

Pt = ef(t)+Xt ,

dXt = −αXt dt+ σ dWX
t ,

dPt = α
(
µ(t)− lnPt

)
Pt dt+ σPt dWX

t , (4.38)

where α is the speed of mean-reversion to the mean level f(t) (possibly capturing the sea-

sonal component), σ is a constant volatility and µ(t) := 1
α(σ

2

2 + f ′t) + f(t). The logarithm of

the price Pt follows a Gaussian process, i.e. for w > t we have that lnPw = (f(w) + Xw) ∼
N(f(w) +Xte

−α(w−t)︸ ︷︷ ︸
=:m1

, σ2(1− e−2α(w−t))/(2α)︸ ︷︷ ︸
=:m2

). By φt(x, y) we denote a probability density func-

tion of this process.

We assume the following correlation structure with

dWX
t dWS

t = ρdt. (4.39)

We also assume a linear consistency on the correlation structure, particularly

if ρ = corr(Xt, St) < 0, then ρ̂ = corr
(
(Xt − x)1Xt>x, (St − s)1St>s

)
< 0. To motivate this as-

sumption, one can think of the following: if the storage facilities are relatively full or increasing

(e.g., extra precipitation) and market is aware of the lack of a storable asset shortage, then the

market power price would be relatively low or decreasing.

We introduce now the value process Vt(Pt, St, Ct) as

Vt(Pt, St, Ct) = E
[ ∫ T

t
e−r(s,t)Hs(Ps, Ss, Cs) ds|Ft

]
, (4.40)

where Ht(Pt, St, Ct) is a payoff including the various costs Ct. Simply speaking, we consider a

value process as a discounted payoff which is a combination of two stochastic processes (fuel

price and storage level). Since we know the statistical properties of these two processes, we aim

to investigate their product process to have some approximation of the storage value.

Before we proceed with the investigation of various payoffs, we need to recall some techni-

cal properties of the process St. We can characterise it by the transition density function

pt−t0(x, y) derived in the previous section. We will use the following notations: cn = ∆
2 ,
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vn(x) :=
√

2n+1
2 Pn

(
2
∆(x−l)−1

)
with Pn(x) being Legendre’s1 series of order n and C(n, x, t) :=

2n+1
∆ Pn

(
2
∆(x− l)− 1

)
e−n(n+1)(t−t0). Then the transition probability density function pt−t0(x, y)

is given as

pt−t0(x, y) |(l,u) =
∞∑
n=0

vn(x)vn(y)

cn
e−n(n+1)(t−t0)

=
∞∑
n=0

2n+ 1

∆
Pn

( 2

∆
(x− l)− 1

)
Pn

( 2

∆
(y − l)− 1

)
e−n(n+1)(t−t0)

=

∞∑
n=0

C(n, x, t)Pn

( 2

∆
(y − l)− 1

)
. (4.41)

We will use the following properties of the Legendre series (for the details see Abramowitz &

Stegun [1970], p. 786 and Bell [2004], pp. 56-58):

• if f(z) is a polynomial with a degree less than Pn(z) then

∫ 1

−1
f(z)Pn(z) dz = 0; (4.42)

• for n ≥ 1

∫ 1

x
Pn(z) dz =

Pn−1(x)− Pn+1(x)

2n+ 1
, (4.43)

we denote this quantity as P ∗n−1,n+1(x) for future calculations;

• for n ≥ 2

∫ 1

x
zPn(z) dz =

n(2n+ 3)Pn−2(x)− (2n+ 1)Pn(x)− (n+ 1)(2n− 1)Pn+2(x)

(4n2 − 1)(2n+ 3)
, (4.44)

we denote this quantity as P ∗n−2,n,n+2(x) for future calculations;

• for n ≥ 3

1There is a variety of literature on the Legendre polynomials available, for instance, Whittaker & Watson [1996]
and Bell [2004]. The first few polynomials are: P0(x) = 1, P1(x) = x, P2(x) = 3

2
x2 − 1

2
, P3(x) = 5

2
x3 − 3

2
x,

P4(x) = 35
8
x4 − 30

8
x2 + 3

8
.
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∫ 1

x
z2Pn(z) dz =

n(n− 1)

(4n2 − 1)(2n− 3)
Pn−3(x)− (n+ 1)(n+ 2)

(2n+ 1)(2n+ 3)(2n+ 5)
Pn+3(x)

− n2 + 3n− 1

(4n2 − 1)(2n+ 5)
Pn+1(x) +

n2 − n− 3

(4n2 − 9)(2n+ 1)
Pn−1(x), (4.45)

we denote this quantity as P ∗n−3,n+3(x) for future calculations;

• for even n

∫ 1

0
z2Pn(z) dz =

(−1)n(n− 1)(3/2)

2(−1)(n+ 5/2)
, (4.46)

we denote this quantity as P ∗2n for future calculations;

• for odd n

∫ 1

0
z2Pn(z) dz =

(−1)n(n− 1/2)(2)

2(n+ 3)(−1/2)
, (4.47)

we denote this quantity as P ∗2n+1 for future calculations;

We will use the following expression and notation for the expected value of the process (St −
m)

E0(t, T ) := E
[
ST −m|Ft

]
= E

[
ST −m|St

]
=

∫ u

l
(ST −m) pT−t(St, ST ) dST

=

∫ u

l
(y −m) pT−t(x, y) dy

=

∫ u

l
(y −m)

( ∞∑
n=0

2n+ 1

∆
Pn

(
2

∆
(y − l)− 1

)
Pn

(
2

∆
(x− l)− 1

)
e−n(n+1)(T−t)

)
dy

=

∞∑
n=0

2n+ 1

∆
Pn

(
2

∆
(x− l)− 1

)
e−n(n+1)(T−t)

∫ u

l
(y −m)Pn

(
2

∆
(y − l)− 1

)
dy

=
∞∑
n=0

2n+ 1

∆
Pn

(
2

∆
(x− l)− 1

)
e−n(n+1)(T−t) ∆2

4

∫ 1

−1
zPn

(
z) dz

=
∆

4

∫ 1

−1
z dz +

3∆

4
P1

(
2

∆
(x− l)− 1

)
e−2(T−t)

∫ 1

−1
z2 dz
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+
∞∑
n=2

2n+ 1

∆
Pn

(
2

∆
(x− l)− 1

)
e−n(n+1)(T−t) ∆2

4

∫ 1

−1
z Pn(z) dz︸ ︷︷ ︸

=0, due to Equation (4.42)

= (St −m)e−2(T−t), (4.48)

where we use a substitution z := 2
∆(y − l)− 1.

We will use the following expression and notation for the variance of the process (St−m)

V0(t, T ) := Var
[
ST −m|Ft

]
= Var

[
ST −m|St

]
= E

[
(ST −m)2|St

]
−
(
E
[
ST −m|St

])2

=

∫ u

l
(ST −m)2 pT−t(St, ST ) dST − (St −m)2e−4(T−t)

=

∫ u

l
(y −m)2 pT−t(x, y) dy − (St −m)2e−4(T−t)

=

∫ u

l
(y −m)2

( ∞∑
n=0

2n+ 1

∆
Pn

(
2

∆
(y − l)− 1

)
Pn

(
2

∆
(x− l)− 1

)
e−n(n+1)(T−t)

)
dy

− (St −m)2e−4(T−t)

=

∞∑
n=0

2n+ 1

∆
Pn

(
2

∆
(x− l)− 1

)
e−n(n+1)(T−t) ∆3

8

∫ 1

−1
z2Pn

(
z) dz

=
∆2

8

∫ 1

−1
z2 dz +

3∆2

8
P1

(
2

∆
(x− l)− 1

)
e−2(T−t)

∫ 1

−1
z3 dz

+
5∆2

32
P2

(
2

∆
(x− l)− 1

)
e−6(T−t)

∫ 1

−1
z2P2(z) dz

+
∞∑
n=3

2n+ 1

∆
Pn

(
2

∆
(x− l)− 1

)
e−n(n+1)(T−t) ∆3

8

∫ 1

−1
z2 Pn(z) dz︸ ︷︷ ︸

=0, due to Equation (4.42)

− (St −m)2e−4(T−t)

=
∆2

12
+ e−6(T−t)

(
(St −m)2 − ∆2

12

)
− (St −m)2e−4(T−t)

= (St −m)2e−4(T−t)
(
e−2(T−t) − 1

)
+

∆2

12

(
1− e−6(T−t)

)
, (4.49)

where we also substitute z := 2
∆(y − l)− 1.

We will use the following expression and notation for the expected value of Pt

96



4.5. Storage process modelling

E1(t, T ) := E
[
PT |Ft

]
= E

[
PT |Pt

]
= exp

(
f(T ) +Xte

−α(T−t) +
σ2

4α
(1− e−2α(T−t))

)
. (4.50)

We will use the following expression and notation for the variance of the process Pt

V1(t, T ) := Var
[
PT |Ft

]
= Var

[
PT |Pt

]
=

(
E
[
PT |Pt

])2(
exp

(σ2

2α

(
1− e−2α(T−t)))− 1

)
= E2

1(t, T )
(
e
σ2

2α

(
1−e−2α(T−t)

)
− 1
)
. (4.51)

Now we are ready to consider various financial instruments associated with the storage level

and the fuel price.

4.5.2 Probability measure

Before we proceed with pricing, we need to clarify some points on a pricing measure. From

mathematical finance theory we know that in a complete market a contingent claim’s price is

the discounted expected value of the future payoff under the equivalent martingale measure

Q different from a real-world pricing measure P. However, the energy-related markets are

incomplete, since due to specific market characteristics many payoffs cannot be replicated by

other trading financial instruments. In our case the ”spot price” is the storage level process

which can be, for instance, considered as an index of current state reservoir level (hydro).

Hence, we cannot think of Q being the martingale measure since the process St does not need

to be a martingale under Q. Instead, we can take any measure Q equivalent to the real-world

measure P, i.e. Q = P, and price derivatives respectively. So then this measure can be called as a

pricing measure which is the probability measure that takes into account all the risk associated

with maintaing the storage. In other words, we assume that the process St is already under

pricing measure Q = P.

4.5.3 Simple financial products

Equipped with the Legendre series properties together with the expression for the transition

probability density pt−t0(x, y) in Equation (4.41), we now study some fundamental financial

products: futures and options on a reservoir level. Since the storage level St at time t is a

random process, these financial instruments gamble that the current reservoir level St rise or
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fall above or below some level. They can also be used by the producer, retailer or market

maker to hedge their risk when maintaining the storage or, for example, to speculate (since

the power price can be quite volatile). There are various risks here associated with the storage

maintenance. Consider, for instance, the case when the power price is high and the water level

is low. Then our producer and/or storage owner does not have an opportunity to produce and

has a potential loss. Another case is when the power price is low and the water level is high,

a producer still bears the costs on maintaining the storage, but it is not profitable to produce

power due to low power price level. Since the high power price volatility is a constant source of

uncertainty and risk, the producer is willing to hedge against it, especially if she has the fixed

price contracts.

Futures on the reservoir level

Under some pricing measure Q = P we can due to Equation (4.48) write the futures prices on

the water (or gas) level with maturity T as

F (t, T,m) = E[ST −m|Ft] = E[ST −m|St] = E0(t, T ),

F (t, T ) = E[ST |Ft] = E[ST |St] = Ste
−2(T−t) +m(1− e−2(T−t)). (4.52)

We can also price futures on the average water level over some period of time by consider-

ing

F (t, T1, T2) =
1

T2 − T1
E
[ ∫ T2

T1

(Su −m) du|Ft
]

=
1

T2 − T1

∫ T2

T1

E
[
Su −m|St

]
du

=
1

T2 − T1

1

2
(St −m)

(
e−2(T1−t) − e−2(T2−t)). (4.53)

European options on the reservoir level

Let us continue with a European Call option and some strike K which can be interpreted as

marginal cost for maintaining the reservoir
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C(t, T ) = EQ[max{ST −K, 0}|Ft]

= EQ[max{ST −K, 0}|St]

=

∫ u

K
(y −K)pT−t(x, y) dy

=

∫ u

K
(y −K)pT−t(x, y) dy

=

∫ u

K
(y −K)

( ∞∑
n=0

2n+ 1

∆
Pn

(
2

∆
(y − l)− 1

)
Pn

(
2

∆
(x− l)− 1

)
e−n(n+1)(T−t)

)
dy

=
∞∑
n=0

2n+ 1

∆
Pn

(
2

∆
(x− l)− 1

)
e−n(n+1)(T−t)

∫ u

K
(y −K)Pn

(
2

∆
(y − l)− 1

)
dy

=

∞∑
n=0

2n+ 1

∆
Pn

(
2

∆
(x− l)− 1

)
e−n(n+1)(T−t)

∫ 1

K̃

∆

2

(∆

2
z + (m−K)

)
Pn(z) dz

=
1

∆

(∆2

4

1− K̃2

2
+

∆

2
(m−K)(1− K̃)

)
+

3

∆
P1

(
2

∆
(St − l)− 1

)
e−2(T−t)

(∆2

4

1− K̃3

3
+

∆

2
(m−K)

1− K̃2

2

)
+

∞∑
n=2

2n+ 1

∆
Pn

(
2

∆
(St − l)− 1

)
e−n(n+1)(T−t)

(∆2

4
P ∗n−2,n,n+2(K̃) +

∆

2
(m−K)P ∗n−1,n+1(K̃)

)
,

(4.54)

where we made the replacements z := 2
∆(y − l) − 1 and K̃ := 2

∆(K − l) − 1. Expressions for

P ∗n−1,n+1(x) and P ∗n−2,n,n+2(x) are given above in Equations (4.43) and (4.44) respectively.

Analogously, a European Put option can be computed.

4.5.4 Hydro-driven power plant

In this section we consider payoffs which can be used to find the value of a hydro-driven power

plant and study its properties in a similar manner as in Chapter 5. In general, we consider a

producer who wants to hedge against some unfavourable situations such as too low a water level

in the reservoir, and too low or high prices. Therefore, such a producer could be interested in

an option with which she can hedge against both water levels and price, as low water does not

necessarily lead to high prices, only if demand is very high at the same time. Our producer might

have contracts that she needs to fulfill with fixed prices, and thereby is concerned with too high

a price or too low a water level. But too low a water level and too low a price may be connected

with above average temperatures, and then the producer does not risk that much since she does

not need to retail much power anyway. Since simple financial products only take into account
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the current level in the storage facility, it is not enough to hedge against various complex cases,

for these one needs to have some advanced financial products with more sophisticated payoffs.

These payoffs are similar to the quanto options considered in Benth et al. [2013].

Payoff 1

Consider a hydro-driven power plant and a payoff that includes an average power price level M

and average storage level m, namely

Ht(Pt, St, Ct) = max{Pt −M, 0} ×max{St −m, 0} − Ct. (4.55)

Since the hydro reservoir depends on the natural inflow and we cannot ”inject” any water addi-

tionally, this payoff has the following interpretation:

• Case 1: Pt > M (power prices are relatively high) and St > m (reservoir is relatively

full). This is the most favourable situation which results in a positive value that an owner

can have by releasing some water, producing power and selling it at the market.

• Case 2: Pt > M (power prices are relatively high) and St < m (reservoir is relatively

empty). Here an owner does not have much water in the reservoir to produce power,

though she has to still keep the storage maintenance.

At time t we find that

Vt(Pt, St, Ct) = E
[ ∫ T

t
e−r(w,t)Hw(Pw, Sw, Cw) dw|Ft

]
=

∫ T

t
e−r(w,t)

(
E
[
Hw(Pw, Sw)|Ft

])
dw

=

∫ T

t
e−r(w,t)

(
E
[

max{Pw −M, 0} ×max{Sw −m, 0}|Ft
]
− Cw

)
dw

=

∫ T

t
e−r(w,t)

(
E
[

max{Pw −M, 0}|Ft
]︸ ︷︷ ︸

=:E3(t,w)

E
[

max{Sw −m, 0}|Ft
]︸ ︷︷ ︸

=:E2(t,w)

+ ρ1

√
Var(max{Pw −M, 0}|Ft)︸ ︷︷ ︸

=:V3(t,w)

Var(max{Sw −m, 0}|Ft)︸ ︷︷ ︸
=:V2(t,w)

− Cw
)

dw

=

∫ T

t
e−r(w,t)

(
E3(t, w) · E2(t, w) + ρ1 ·

√
V3(t, w) · V2(t, w)− Cw

)
dw,

(4.56)

where ρ1 = corr(max{Pw −M, 0},max{Sw −m, 0}).
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Let us now compute the values of E2, E3, V2 and V3. So, we obtain

E3(t, w) := E
[

max{Pw −M, 0}|Ft
]

= E
[

max{ef(w)+Xw −M, 0}|Pt
]

=

∫ ∞
lnM

(ey −M)φt(x, y) dy

= em1+
m2
2 Φ
(m1 +m2 − lnM

√
m2

)
−MΦ

(m1 − lnM
√
m2

)
= em1+

m2
2 Φ(d2)−MΦ(d1),

where d1 := f(w)+Xte−α(w−t)−lnM√
σ2/(2α)(1−e−2α(w−t))

and d2 := d1 +
√
σ2/(2α)(1− e−2α(w−t)).

Further, knowing the transition probability density function pt−t0(x, y) for the process St ∈ (l, u),

we obtain for w > t

E2(t, w) := E
[

max{Sw −m, 0}|Ft
]

= E
[

max{Sw −m, 0}|St
]

=

∫ u

m
(y −m) pw−t(x, y) dy

=

∫ u

m
(y −m)

∞∑
n=0

2n+ 1

∆
Pn

(
2

∆
(x− l)− 1

)
Pn

(
2

∆
(y − l)− 1

)
e−n(n+1)(w−t) dy

=
∞∑
n=0

2n+ 1

∆
Pn

(
2

∆
(x− l)− 1

)
e−n(n+1)(w−t)

∫ u

m
(y −m)Pn

(
2

∆
(y − l)− 1

)
dy

=
∞∑
n=0

2n+ 1

∆
Pn

(
2

∆
(x− l)− 1

)
e−n(n+1)(w−t) ∆2

4

∫ 1

0
zPn(z) dz

=
∆

8
+

∆

4
P1

(
2

∆
(x− l)− 1

)
e−2(w−t)

+

∞∑
n=2

(2n+ 1)∆

4
Pn

(
2

∆
(x− l)− 1

)
e−n(n+1)(w−t) P ∗n−2,n,n+2(0)

=
∆

8
+

∆

4
P1

(
2

∆
(St − l)− 1

)
e−2(w−t)

+

∞∑
n=2

(2n+ 1)∆

4
Pn

(
2

∆
(St − l)− 1

)
e−n(n+1)(w−t) P ∗n−2,n,n+2(0), (4.57)

where the expression for P ∗n−2,n,n+2(0) is given in Equation (4.44). Now we compute the value

of V3
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V3(t, w) := Var(max{Pw −M, 0}|Ft)

= Var(max{ef(w)+Xw −M, 0}|Pt)

=

∫ ∞
lnM

(ey −M)2φt(x, y) dy −
(∫ ∞

lnM
(ey −M)φt(x, y) dy

)2

=

∫ ∞
lnM

e2yφt(x, y) dy − 2M

∫ ∞
lnM

eyφt(x, y) dy

+ M2

∫ ∞
lnM

φt(x, y) dy − E2
3(t, w)

= e2(m1+m2)Φ(d3)− 2Mem1+
m2
2 Φ(d2) +M2Φ(d1)− E2

3(t, w),

(4.58)

where d1 and d2 are given above and d3 := d1 + 2
√
σ2/(2α)(1− e−2α(w−t)).

And finally we compute the value of V2

V2(t, w) := Var(max{Sw −m, 0}|Ft)

=

∫ u

m
(y −m)2pt−w(x, y) dy − E2

2(t, w)

=

∞∑
n=0

2n+ 1

∆
Pn

(
2

∆
(x− l)− 1

)
e−n(n+1)(w−t)

∫ u

m
(y −m)2Pn

(
2

∆
(y − l)− 1

)
dy − E2

2(t, w)

=
∞∑
n=0

2n+ 1

∆
Pn

(
2

∆
(x− l)− 1

)
e−n(n+1)(w−t) ∆3

8

∫ 1

0
z2Pn(z) dz − E2

2(t, w),

=
∞∑
n=0

(2n+ 1)∆2

8
Pn

(
2

∆
(x− l)− 1

)
e−n(n+1)(w−t) {P ∗2n, P ∗2n+1} − E2

2(t, w), (4.59)

where P ∗2n and P ∗2n+1 are given in Equations (4.46) and (4.47) respectively.

Payoff 2

Let us the modify the payoff of the previous section and introduce an extra term responsible for

the power production rate

κ(St) =
1

2
+
St −m
u− l

=
St − l
u− l

,

Ht(Pt, St, Ct) = max{Pt −M, 0} × κ(St)× St − Ct. (4.60)
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The difference to the previous payoff is that in this case we can produce at the rate κ which is

greater than 50% if the St > m. There is the following interpretation for this payoff allowing for

more flexibility in the production rate compared to the previous one:

• Case 1: Pt > M (power prices are relatively high) and St > m (reservoir is relatively

full). This is the most favourable situation which results in a positive value that a storage

owner can realise by releasing some water, producing power at the rate κ(St) and selling

it at the market.

• Case 2: Pt > M (power prices are relatively high) and St < m (reservoir is relatively

empty). There is not much water available in the reservoir to produce intensively, but

since the prices are high a producer would not like to completely stop operating, instead

she has an option to produce at some rate at least.

At time t we find that

Vt(Pt, St, Ct) = E
[ ∫ T

t
e−r(w,t)Hw(Pw, Sw, Ct) dw|Ft

]
=

∫ T

t
e−r(w,t)

(
E
[
Hw(Pw, Sw)|Ft

])
dw

=

∫ T

t
e−r(w,t)

(
E
[

max{Pw −M, 0} × κ(Sw)× Sw|Ft
]
− Cw

)
dw

=

∫ T

t
e−r(w,t)

(
E
[

max{Pw −M, 0} × Sw(Sw − l)
u− l

∣∣Ft]− Cw) dw

=

∫ T

t
e−r(w,t)

(
E
[

max{Pw −M, 0}|Ft
]︸ ︷︷ ︸

=:E3(t,w)

E
[Sw(Sw − l)

u− l
∣∣Ft]︸ ︷︷ ︸

=:E4(t,w)

+ ρ2

√√√√√Var(max{Pw −M, 0}|Ft)︸ ︷︷ ︸
=:V3(t,w)

Var
(Sw(Sw − l)

u− l
∣∣Ft)︸ ︷︷ ︸

=:V4(t,w)

− Cw
)

dw

=

∫ T

t
e−r(w,t)

(
E3(t, w) · E4(t, w) + ρ2 ·

√
V3(t, w) · V4(t, w)− Cw

)
dw,

(4.61)

where ρ2 = corr(max{Pw −M, 0}, Sw(Sw−l)
u−l ).

From above we know the values of E3 and V3. Let us compute the values of E4 and V4. We start

with
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E4(t, w) := E
[Sw(Sw − l)

u− l
∣∣Ft]

=
1

∆
E
[
S2
w|St

]
− l

∆
E
[
Sw|St

]
=

1

∆
E
[
(Sw −m)2|St

]
+
u

∆
E
[
Sw −m|St

]
+
m

2

=
1

∆

∫ u

l
(Sw −m)2pw−t(St, Sw) dSw +

u

∆
E0(t, w) +

m

2

=
1

∆

∫ u

l
(y −m)2pw−t(x, y) dy +

u

∆
E0(t, w) +

m

2

=
1

∆

(∆2

12
+
(
(x−m)2 − ∆2

12

)
e−6(w−t)

)
+

4

∆
(x−m)e−2(w−t) +

m

2

=
((x−m)2

∆
− ∆

12

)
e−6(w−t) +

4

∆
(x−m)e−2(w−t) +

2u− l
6

=
((St −m)2

∆
− ∆

12

)
e−6(w−t) +

4

∆
(St −m)e−2(w−t) +

2u− l
6

. (4.62)

Now we continue with the value of V4

V4(t, w) := Var
(Sw(Sw − l)

u− l
∣∣Ft)

=
1

∆2
V ar(S2

w − lSw
∣∣St)

=
1

∆2

∫ u

l
(S2
w − lSw)2pw−t(St, Sw) dSw − E2

4(t, w)

=
1

∆2

∫ u

l
y4 pw−t(x, y) dy − 2l

∆2

∫ u

l
y3 pw−t(x, y) dy +

l2

∆2

∫ u

l
y2 pw−t(x, y) dy − E2

4(t, w).

(4.63)

The first three terms mainly involve the following expression for some a

y(a, n) :=

∫ u

l
yaPn

( 2

∆
(y − l)− 1

)
dy =

∆

2

∫ 1

−1

(∆

2
(z + 1) + l

)a
Pn(z) dz = 0, (4.64)

when a < n. So we need to compute the following integrals to finish with Equation (4.63)

y(2, 0) :=

∫ u

l
y2P0

( 2

∆
(y − l)− 1

)
dy =

u3 − l3

3
, (4.65)

y(2, 1) :=

∫ u

l
y2P1

( 2

∆
(y − l)− 1

)
dy =

(u− l)2

6
(u+ l), (4.66)
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y(2, 2) :=

∫ u

l
y2P2

( 2

∆
(y − l)− 1

)
dy =

(u− l)3

30
, (4.67)

y(3, 0) :=

∫ u

l
y3P0

( 2

∆
(y − l)− 1

)
dy =

u4 − l4

4
, (4.68)

y(3, 1) :=

∫ u

l
y3P1

( 2

∆
(y − l)− 1

)
dy =

(u− l)2

20
(3u2 + 4lu+ 3l2), (4.69)

y(3, 2) :=

∫ u

l
y3P2

( 2

∆
(y − l)− 1

)
dy =

(u− l)3

20
(u+ l), (4.70)

y(3, 3) :=

∫ u

l
y3P3

( 2

∆
(y − l)− 1

)
dy =

(u− l)4

140
, (4.71)

y(4, 0) :=

∫ u

l
y4P0

( 2

∆
(y − l)− 1

)
dy =

u5 − l5

5
, (4.72)

y(4, 1) :=

∫ u

l
y4P1

( 2

∆
(y − l)− 1

)
dy =

(u− l)2

15
(2u3 + 3lu2 + 3ul2 + 2l3), (4.73)

y(4, 2) :=

∫ u

l
y4P2

( 2

∆
(y − l)− 1

)
dy =

(u− l)3

35
(2u2 + 3lu+ 2l2), (4.74)

y(4, 3) :=

∫ u

l
y4P3

( 2

∆
(y − l)− 1

)
dy =

(u− l)4

70
(u+ l), (4.75)

y(4, 4) :=

∫ u

l
y4P4

( 2

∆
(y − l)− 1

)
dy =

(u− l)5

630
. (4.76)

Then coming back to Equation (4.63) we obtain

. . . =
1

∆2

∫ u

l
y4pw−t(x, y) dy − 2l

∆2

∫ u

l
y3pw−t(x, y) dy +

l2

∆2

∫ u

l
y2pw−t(x, y) dy − E2

4(t, w)

= C(4, w − t, x)
1

∆2
y(4, 4)

+ C(3, w − t, x)
( 1

∆2
y(4, 3)− 2l

∆2
y(3, 3)

)
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+ C(2, w − t, x)
( 1

∆2
y(4, 2)− 2l

∆2
y(3, 2) +

l2

∆2
y(2, 2)

)
+ C(1, w − t, x)

( 1

∆2
y(4, 1)− 2l

∆2
y(3, 1) +

l2

∆2
y(2, 1)

)
+ C(0, w − t, x)

( 1

∆2
y(4, 0)− 2l

∆2
y(3, 0) +

l2

∆2
y(2, 0)

)
− E2

4(t, w)

=
1

∆2
×


C(4, w − t, x)

C(3, w − t, x)

C(2, w − t, x)

C(1, w − t, x)

C(0, w − t, x)



T

×


y(4, 4) 0 0

y(4, 3) y(3, 3) 0

y(4, 2) y(3, 2) y(2, 2)

y(4, 1) y(3, 1) y(2, 1)

y(4, 0) y(3, 0) y(2, 0)

×
 1

−2l

l2

− E2
4(t, w),

(4.77)

where C(n, x,w − t) := 2n+1
∆ Pn

(
2
∆(x− l)− 1

)
e−n(n+1)(w−t).

Figure 4.6: Pumped storage reservoir.
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Payoff 3

Let us now consider the hydro power station with two reservoirs R1 and R2. The scheme of this

pumped storage example is given in Figure 4.61. We make the following assumptions:

• the inflow to R1 is random, since it depends on precipitation and thaw;

• no other water inflow into the reservoirs is possible;

• by injection water from R1 to R2 we produce power and by pumping water up from R2 to

R1 we refill R1 for our future production purposes when needed and possible;

• it takes more energy to pump water up than to produce energy;

• both reservoirs have the same capacity of (l, u);

• our hydro-driven power plant contains water of one full reservoir total capacity;

Our assumptions yield that u− S1
t = S2

t − l. Then for some levels l < K1 ≤ m ≤ K2 < u in R1

and R2 we construct the payoff

Ht(Pt, S
1
t , S

2
t , Ct) = max{Pt −M+, 0}max{S1

t −K1, 0} −max{M− − Pt, 0}max{S2
t −K2, 0} − Ct

= max{Pt −M+, 0}max{S1
t −K1, 0} −max{M− − Pt, 0}max{K1 − S1

t , 0} − Ct
= Ht(Pt, S

1
t , Ct) (4.78)

Due to physical reasons we assume that pumping water up needs more energy than producing

electricity. There exists a quantity ∆P such that with M− = M −∆P and M+ = M + ∆P we

define an interval (M−,M+) such that for Pt ∈ (M−,M+) it is not efficient to generate or to buy

electricity. This ∆P can be computed via an average price M and efficiency rates of pumping

and generating. The details on calculation of the ∆P are given in Connolly et al. [2011].

This payoff has the following interpretation

• Case 1: Pt > M+ (power prices are relatively high) and S1
t > K1 (reservoir R1 is

relatively full which implies that reservoir R2 is relatively empty). This is the most

favourable situation which results in a positive value that an owner realises by releasing

some water into reservoir R2, producing power and selling it at the market.

• Case 2: Pt > M+ (power prices are relatively high) and S1
t < K1 (reservoir R1 is

relatively empty which implies that reservoir R2 is relatively full). This situation is

1This picture has been generated by the master student of our chair Elisabeth Tropp.
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quite unfavourable, since to produce power we first need to pump the water up from R2

to R1. To do so, we need to buy power, but since the prices are high we may want to

suspend the activity for a while.

• Case 3: Pt < M− (power prices are relatively low) and S2
t > K2 (reservoir R1 is

relatively empty which implies that reservoir R2 is relatively full). This is also a quite

favourable situation for an owner, since she can buy power at a relatively low price and

pump water immediately up to get the reservoir R1 full.

• Case 4: Pt < M− (power prices are relatively high) and S2
t < K1 (reservoir R1 is

relatively full which implies that reservoir R2 is relatively empty). Here our producer

is not interested in buying power since despite the price level the reservoir R1 is full.

At time t we find that

Vt(Pt, S
1
t , S

2
t , Ct) = E

[ ∫ T

t
e−r(w,t)Hw(Pw, S

1
w, S

2
t , Cw) dw|Ft

]
=

∫ T

t
e−r(w,t)

(
E
[
Hw(Pw, S

1
w, S

2
w, Cw)|Ft

])
dw

=

∫ T

t
e−r(w,t)

(
E
[

max{Pw −M+, 0} ×max{S1
w −K1, 0}

− max{M− − Pw, 0} ×max{S2
w −K2, 0}|Ft

]
− Cw

)
dw

=

∫ T

t
e−r(w,t)

(
E
[

max{Pw −M+, 0} ×max{S1
w −K1, 0}

− max{M− − Pw, 0} ×max{K1 − S1
w, 0}|Ft

]
− Cw

)
dw

=

∫ T

t
e−r(w,t)

(
E
[

max{Pw −M+, 0}|Ft
]︸ ︷︷ ︸

=:Ẽ3(t,w)

E
[

max{S1
w −K1, 0}|Ft

]︸ ︷︷ ︸
=:E8(t,w)

− E
[

max{M− − Pw, 0}|Ft
]︸ ︷︷ ︸

=:Ẽ5(t,w)

E
[

max{K1 − S1
w, 0}|Ft

]︸ ︷︷ ︸
=:E10(t,w)

+ ρ3

(√√√√Var(max{Pw −M+, 0}|Ft)︸ ︷︷ ︸
=:Ṽ3(t,w)

Var(max{S1
w −K1, 0}|Ft)︸ ︷︷ ︸

=:V8(t,w)

−
√√√√√Var(max{M− − Pw, 0}|Ft)︸ ︷︷ ︸

=:Ṽ5(t,w)

Var(max{K1 − S1
w, 0}|Ft)

)
︸ ︷︷ ︸

=:V10(t,w)

− Cw
)

dw

=

∫ T

t
e−r(w,t)

(
Ẽ3(t, w) · E8(t, w)− Ẽ5(t, w) · E10(t, w)

+ ρ3

(√
Ṽ3(t, w) · V8(t, w)−

√
Ṽ5(t, w) · V10(t, w)

)
− Cw

)
, dw. (4.79)
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where ρ3 = corr(max{Pw −M+, 0},max{S1
w − K1, 0}) = corr(max{M− − Pw, 0},max{S2

w −
K2, 0}).

The expressions for Ẽ3 and Ṽ3 can be obtained from E3 and V3 given above by replacing M by

M+. The same way the expressions for Ẽ5 and Ṽ5 can be obtained from E5 and V5 given below

by replacing M by M−. Now let us compute the values of E8, E10, V8 and V10. We start with

the value of E8 which is analogous to the value in Equation (4.54)

E8(t, w) := E
[

max{S1
w −K1, 0}|Ft

]
=

∫ u

K1

(y −K1)pt−w(y, x) dy

=
1

∆

(∆2

4

1− K̃2
1

2
+

∆

2
(m−K1)(1− K̃)

)
+

3

∆
P1

( 2

∆
(S1
t − l)− 1

)
e−2(T−t)

(∆2

4

1− K̃3
1

3
+

∆

2
(m−K1)

1− K̃2
1

2

)
+

∞∑
n=2

2n+ 1

∆
Pn

(
2

∆
(S1
t − l)− 1

)
e−n(n+1)(T−t)

(∆2

4
P ∗n−2,n,n+2(K̃1)

+
∆

2
(m−K1)P ∗n−1,n+1(K̃)

)
,

(4.80)

where K̃1 := 2
∆(K1 − l)− 1 and expressions for P ∗n−2,n,n+2(x) and P ∗n−1,n+1(x) are given above

in Equations (4.44) and (4.43) respectively. Then

E10(t, w) := E
[

max{S2
w −K2, 0}|Ft

]
= E

[
max{K1 − S1

w, 0}|St
]

= K1 +m− E0(t, w)− E8(t, w). (4.81)

We continue with the values of V8 and V10. When K1 = m the case is identical to V2, but here

we assume that K1 is different from m, then

V8(t, w) := Var
(

max{S1
w −K1, 0}|Ft

)
=

∫ u

K1

(y −K1)2pt−w(x, y) dy − E2
8(t, w)

=

∞∑
n=0

2n+ 1

∆
Pn

(
2

∆
(x− l)− 1

)
e−n(n+1)(w−t)

∫ u

K1

(y −K1)2Pn

(
2

∆
(y − l)− 1

)
dy

109



4. Storage modelling

− E2
8(t, w),

(4.82)

now continue with computing an integral term and substituting z := 2
∆(y − l) − 1 and K̃1 :=

2
∆(K1 − l)− 1 gives

∫ u

K1

(y −K1)2Pn

(
2

∆
(y − l)− 1

)
dy =

∆

2

∫ 1

K̃1

(∆

2
z + (m−K1)

)2
Pn(z) dz

=
∆3

8

∫ 1

K̃1

z2Pn(z) dz +
∆2

2
(m−K1)

∫ 1

K̃1

zPn(z) dz

+
∆

2
(m−K1)2

∫ 1

K̃1

Pn(z) dz

=
∆3

8
P ∗n−3,n+3(K̃1) +

∆2

2
(m−K1)P ∗n−2,n,n+2(K̃1)

+
∆

2
(m−K1)2P ∗n−1,n+1(K̃1) (4.83)

where we use Equations (4.43), (4.44) and (4.45). Now we come back to solving Equation

(4.82)

. . . =
1

∆

(∆3

8

1− K̃3
1

3
+

∆2

2
(m−K1)

1− K̃2
1

2
+

∆

2
(m−K1)2(1− K̃1)

)
+

3

∆
P1

(
2

∆
(x− l)− 1

)
e−2(w−t)

(∆3

8

1− K̃4
1

4
+

∆2

2
(m−K1)

1− K̃3
1

3
+

∆

2
(m−K1)2 1− K̃2

1

2

)
+

5

∆
P2

(
2

∆
(x− l)− 1

)
e−6(w−t)

(∆3

8

−9K̃5
1 + 5K̃3

1 + 4

30
+

∆2

2
(m−K1)

−3K̃4
1 + 2K̃2

1 + 1

8

+
∆

2
(m−K1)2 K̃1 − K̃3

1

2

)
+

∞∑
n=3

2n+ 1

∆
Pn

(
2

∆
(x− l)− 1

)
e−n(n+1)(w−t)

(∆3

8
P ∗n−3,n+3(K̃1)

+
∆2

2
(m−K1)P ∗n−2,n,n+2(K̃1) +

∆

2
(m−K1)2P ∗n−1,n+1(K̃1)

)
− E2

8(t, w).

(4.84)

The last element is the value of V10
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V10(t, w) := Var
(

max{K1 − S1
w, 0}|Ft

)
=

∫ K1

l
(K1 − y)2pt−w(x, y) dy − E2

10(t, w)

=

∫ u

l
(K1 − y)2pt−w(x, y) dy −

∫ u

K1

(K1 − y)2pt−w(x, y) dy − E2
10(t, w)

= V0(k, t) +
(
K1 +m− E0(k, t)

)2 − (V8(t, w) + E2
8(t, w))− E2

10(t, w). (4.85)

4.5.5 Gas-driven storage

In this section we consider one gas-storage-driven payoff which is similar to the hydro-driven

payoffs studied above. Consider a storage owner who regularly sells or buys gas and respectively

fills or empties the storage facility. Assume, that this is her stochastic optimal control policy and

the decision to inject or withdraw is a result of the optimisation problem under some constraints.

The power price and costs on the managing storage facility are the key drivers to find the optimal

policy. If taking the costs as a deterministic function of time, one can think of this policy as solely

dependent of the stochastic gas price. So we can further assume that the resulting storage level

St is indirectly a function of the optimal stochastic control. In this sense we can regard a payoff

that would be hedging the position of this storage owner in case of a low reservoir level and low

prices.

Payoff 4

We consider a gas storage facility and an storage owner who injects and withdraws the necessary

amount of gas into the reservoir. Then with a cost function Ct the payoff is defined as

Ht(Pt, St, Ct) = max{Pt−M, 0}×max{St−m, 0}−max{M−Pt, 0}×max{m−St, 0}−Ct, (4.86)

where M is the average gas price level and all the rest notations are as in the previous section.

This payoff has the following interpretation:

• Case 1: Pt > M (gas prices are relatively high) and St > m (reservoir is relatively

full). This is the most favourable situation which results in a positive value that an owner

can have by withdrawing and selling the storable asset at the market.

• Case 2: Pt > M (gas prices are relatively high) and St < m (reservoir is relatively

empty). This situation corresponds to the ”doing nothing” regime, since the prices are

111



4. Storage modelling

quite high to buy. So, the value a producer receives is negative due to the costs she has to

pay to maintain the storage facility.

• Case 3: Pt < M (gas prices are relatively low) and St > m (reservoir is relatively

full). This situation also corresponds to ”doing nothing” regime, since the prices are quite

low to withdraw and sell despite the fact that the reservoir is full.

• Case 4: Pt < M (gas prices are relatively low) and St < m (reservoir is relatively

empty). This is an auspicious situation for a producer to buy and inject the storable asset,

although the value is negative.

At time t we find that

Vt(Pt, St, Ct) = E
[ ∫ T

t
e−r(w,t)Hw(Pw, Sw, Cw) dw|Ft

]
=

∫ T

t
e−r(w,t)

(
E
[
Hw(Pw, Sw, Cw)|Ft

])
dw

=

∫ T

t
e−r(w,t)

(
E
[

max{Pw −M, 0} ×max{Sw −m, 0}

− max{M − Pw, 0} ×max{m− Sw, 0} − Cw|Ft
])

dw

=

∫ T

t
e−r(w,t)

(
E
[

max{Pw −M, 0}|Ft
]︸ ︷︷ ︸

=:E3(t,w)

E
[

max{Sw −m, 0}|Ft
]︸ ︷︷ ︸

=:E2(t,w)

− E
[

max{M − Pw, 0}|Ft
]︸ ︷︷ ︸

=:E5(t,w)

E
[

max{m− Sw, 0}|Ft
]︸ ︷︷ ︸

=:E6(t,w)

+ ρ4

(√
Var(max{Pw −M, 0}|Ft)︸ ︷︷ ︸

=:V3(t,w)

Var(max{Sw −m, 0}|Ft)︸ ︷︷ ︸
=:V2(t,w)

−
√√√√√Var(max{M − Pw, 0}|Ft)︸ ︷︷ ︸

=:V5(t,w)

Var(max{m− Sw, 0}|Ft)
)

︸ ︷︷ ︸
=:V6(t,w)

− Cw
)

dw

=

∫ T

t
e−r(w,t)

(
E3(t, w) · E2(t, w)− E5(t, w) · E6(t, w)

+ ρ4

(√
V3(t, w) · V2(t, w)−

√
V5(t, w) · V6(t, w)

)
− Cw

)
dw, (4.87)

where ρ4 = corr(max{Pw−M, 0},max{Sw−m, 0}) = corr(max{M−Pw, 0},max{Sw−m, 0}).

We need to compute the values of E5, E6, V5 and V6. But this can easily be done since we

know the values of E2, E3, V2, and V3 from the previous sections. So we start with the value of

E5
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E5(t, w) := E
[

max{M − Pw, 0}|Ft
]

= E
[

max{M − ef(w)+Xw , 0}|Pt
]

=

∫ lnM

−∞
(M − ey)φt(x, y) dy

=

∫ ∞
−∞

(M − ey)φt(x, y) dy + E3(t, w)

= M − em1+
m2
2 + em1+

m2
2 Φ(d2)−MΦ(d1)

= MΦ(−d1)− em1+
m2
2 Φ(−d2), (4.88)

where d1 and d2 are given above and continue with the value of V5

V5(t, w) := Var(max{M − Pw, 0}|Ft)

= Var(max{M − ef(w)+Xw , 0}|Pt)

=

∫ lnM

−∞
(M − ey)2φt(x, y) dy −

(∫ lnM

−∞
(M − ey)φt(x, y) dy

)2

=

∫ ∞
−∞

(M − ey)2φt(x, y) dy −
∫ ∞

lnM
(M − ey)2φt(x, y) dy − E2

5(t, w)

= Var(M − ey) + E2[M − ey]−
∫ ∞

lnM
(ey −M)2φt(x, y) dy − E2

5(t, w)

= Var(ey) + (M − E[ey])2 −
∫ ∞

lnM
(ey −M)2φt(x, y) dy − E2

5(t, w)

= (em2 − 1)e2m1+m2 +
(
M − em1+

m2
2
)2 − (V3(t, w) + E2

3(t, w))− E2
5(t, w).

(4.89)

Then we compute the value of E6

E6(t, w) := E
[

max{m− Sw, 0}|Ft
]

=

∫ m

l
(m− y)pw−t(x, y) dy

= E2(t, w)− E0(t, w). (4.90)

and finally proceed with the value of V6
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V6(t, w) := Var(max{m− Sw, 0}|Ft)

=

∫ m

l
(m− Sw)2p(Sw, k, St, t) dSw − E2

6(t, w)

=

∫ m

l
(m− y)2pw−t(x, y) dy − E2

6(t, w)

=

∫ u

l
(m− y)2pw−t(x, y) dy −

∫ u

m
(m− y)2pw−t(x, y) dy − E2

6(t, w)

= V0(t, w)− V2(t, w) + E2
0(t, w)− E2

2(t, w)− E2
6(t, w). (4.91)

4.6 Numerical examples

4.6.1 Hydro storage

Simple products

In section 4.5.3 we discussed fundamental financial products that can be used for hedging pur-

poses in the storage industry. Those formulas for the futures and options demand negligible

computational efforts.

Hydro-Driven Storage: Payoffs 1, 2, 3

Here we illustrate the hydro storage value problem described above by the payoffs 1, 2, and 3.

For some fixed parameters values we plot the payoff for a range of St and Pt. For all the examples

we consider t = 0.5 and T = 5 in years. For the sake of simplicity we also fix the discount factor

r(t, T ) and the costs of storage maintenance Ct. We take the following parameters values: l = 1,

u = 51, m = 26, α = 1.5, σ = 0.2, M = 30, C = 0 and r = 0.03.

To investigate the role of correlation parameters ρ1, ρ2 and ρ3, we study two cases: zero and

negative correlation. Zero correlation implies that there is no relationship between the current

power price and the storage level. In other words, when the inflow increases, the power price

stays ineffectual. In the markets where various fossil fuels dominate over a hydro-driven elec-

tricity production, zero or negligible correlation can exactly be the case since there are many

other power price drivers apart from the current reservoir level. However, in the markets with a

significant or even dominating share of hydro facilities we can fairly expect an effect of negative

correlation. When the inflow increases and the cumulative reservoir is getting full of water, the

supply uncertainty decreases and all the market participants are aware of this. So since there

is no lack of water in the reservoir, the power price decreases. We investigate how large is the
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effect of the correlation on the price for our financial instruments. This can be considered as a

correlation sensitivity analysis.

Figure 4.7 depicts the value driven by the payoff 1 given in Equation (4.56) for two values of

the correlation parameter ρ1. We notice that a relatively high power price together with a full

water reservoir yield increase possible profit. We also observe that a relatively low power price

together with an empty water reservoir decrease the profit. We further note that with negative

correlation ρ1 = −0.9 producer’s profit lessens in comparison with ρ1 = 0. We interpret this

gap as a premium that a producer has to pay for the market information about current reservoir

level.
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Figure 4.7: Storage value with payoff 1 with power price Pt and storage level St. Parameters: l
= 1, u = 51, m = 26, α = 1.5, σ = 0.2, M = 30, C = 0, r = 0.03.

Figure 4.8 depicts the value driven by the payoff 2 given in Equation (4.61) for two values of

the correlation parameter ρ2. We observe that a relatively high power price together with a full

water reservoir increase possible profit. And a relatively low power price together with an empty

water reservoir decrease the profit. We also see the same negative correlation effect. The main

difference here is that the profit of the payoff 2 is almost three times higher compared to the

profit of the payoff 1. We reason this with the flexibility of the payoff 2 to produce power even

even if the current reservoir level is less than m at some rate κ(St).

Figure 4.9 depicts the value driven by the payoff 3 given in Equation (4.79) for two values of

the correlation parameter ρ3 and the parameter K1. We mainly state two dependencies: the

profit decrease when the correlation coefficient ρ3 together with the coefficient K1 increase.

The reasoning for the first case can be regarded as an information premium for a producer. The

explanation for the second case is intuitively clear: a lower critical production level K1 at which

we are allowed to produce leads to a larger capacity to produce and benefit. A higher critical

production level K1 results in much smaller capacity for electricity production. The value can

even be negative and our producer has losses.
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Figure 4.8: Storage value with payoff 2 with power price Pt and storage level St. Parameters: l
= 1, u = 51, m = 26, α = 1.5, σ = 0.2, M = 30, C = 0, r = 0.03.

4.6.2 Gas storage

Gas-Driven Storage: Payoff 4

In this section we illustrate the gas storage value driven by the payoff 4 given in Equation (4.87).

For some fixed parameters values we plot the payoff for a range of St and Pt. For all the examples

we consider t = 0.5 and T = 5 in years. For the sake of simplicity we also fix the discount factor

r(t, T ) and the costs of storage maintenance Ct. We assume the following parameters values:

l = 1, u = 51, m = 26, α = 1.5, σ = 0.2, M = 30, C = 0 and r = 0.03.

Here we also study two cases: zero and negative correlation coefficient ρ4. However, here we

assume that in the markets where different fossil fuels (coal, gas) dominate over a hydro-driven

power production, negative correlation can exactly be the case, since the market is aware of

the current gas supply level. In the markets with dominating share of hydro facilities we can

fairly expect zero correlation, since the current gas storage level will not be critical for power

production.

Figure 4.10 depicts the value obtained with the payoff 4 for two values of the correlation param-

eter ρ4. This result is consistent with the hydro-storage case considered in the previous section.

Particularly, when a higher gas price together with a relatively full storage facility gives a posi-

tive value to a storage owner, as she withdraws, sells the gas in the market and obtains profit.

A relatively low gas price together with a relatively empty storage facility gives small profit. We

also remark the same effect with the correlation coefficient ρ4: a negative correlation leads to

the lower profit value.
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Figure 4.9: Storage value with payoff 3 with power price Pt and storage level St. Parameters: l
= 1, u = 51, m = 26, α = 1.5, σ = 0.2, M− = 25, M+ = 50, C = 0, r = 0.03.
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Figure 4.10: Storage value with payoff 4 with gas price Pt and storage level St. Parameters: l =
1, u = 51, m = 26, α = 1.5, σ = 0.2, M = 30, C = 0, r = 0.03.

4.7 Discussion and conclusion

In this chapter we have studied storage value problem. We proposed a new stochastic approach

to storage value modelling to complement widely used optimal stochastic control methods. The

main advantage of our approach is its straightforwardness and easy implementation, which is a

result of a closed-form transition probability density formula for a bounded diffusion to model

storage level process.

We scrutinised a number of financial instruments useful for hedging market position of a storage

owner and/or power producer. We reduced our attention mainly to hydro and gas storage

facilities and found out that despite they have some similarities, the associated payoffs should

be treated differently due to physical storage differences.

We may suggest several extensions to continue with this topic. One of the assumptions made

above on the constant mean-reverting level m is not quite realistic due to seasonal inflow. Also

it would be more relevant to include a jump component for a better fit to power price modelling.

Namely,

dSt = −2(St −m(t)) dt+
√

2(St − l)(u− St) dWS
t , (4.92)

where m(t) could be some trigonometric function capturing seasonal behaviour of the storage

level. And
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4.7. Discussion and conclusion

Pt = ef(t)+Xt ,

dXt = −αXt dt+ σ dWX
t ,

dPt = α
(
µ(t)− lnPt

)
Pt dt+ σPt dWX

t + dQt, (4.93)

where Qt is a compound Poisson process with some finite intensity λ. We can also consider

various jump size distributions: Gaussian, exponential, Pareto, Laplace studied in Chapters 2

and 5. Depending on this choice we either can directly compute the payoff value or we need to

simulate the processes Pt and St to get the value of the virtual hydro-driven power plant in the

same manner as we did in Chapter 5.

It would also be interesting to investigate the role of rate κ dependent of the current reservoir

level and responsible for the production rate. In this study we assumed a fixed value for it,

which is a quite simplification, though we still managed to detect its great impact on the storage

value.

One more beneficial thing would be to benchmark our model against a classical stochastic opti-

mal control approach and to investigate the comparative results. This will be the scope of our

future research.
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CHAPTER 5

MODEL RISK

5.1 Introduction

Ever since the financial crisis struck the importance of models has been in the centre of attention.

In particular, it has been realised that risk management is subject to model risk and that model

risk has to be adequately measured. In some cases, one might be able to assign probabilities to

the different models (resp. parameters within a specific model), where one ends up according to

the terminology of Knight [1921] with model or parameter risk. For standard financial markets

the issue has been addressed extensively in recent years. For instance, Avellaneda et al. [1995]

and Cont [2006] consider worst-case scenarios and obtain a range of possible prices for deriva-

tives. Rebonato [2010] addresses model risk issues concerning stress testing, while Glasserman

& Xu [2012] and Ruehlicke [2013] discuss robust approaches to risk management including

model risk.

In contrast, model risk has not been discussed in the context of energy markets. In view of the

recent changes in European energy market, especially the German “Energiewende”, with the in-

creasing impact of volatile renewable energies, it is clear that model risk is of particular interest.

One important aspect is the need for reinvestment (replacement investments and building more

capacity) in the power plant park on Company and European level. The financial streams of such

an investment can be generated on the market for energy derivatives in terms of spread options.

For instance, a gas-fired power plants can be represented as a clean crack spread option, where

the owner of such an option is long electricity and short gas and emission certificates. A positive

investment decision is made in case such a contract is in the money, meaning that we observe a

positive spread on the time interval under consideration.

We will consider the model risk inherent in conventional gas-fired power plants since these are

in particularly affected by the increasing share of renewable. Flexible gas-fired power plants

have been build to address the need in peak hours during the day. So their use is based on short

term demand and this peak demand is highly affected by the uncertain in-feed of renewable

generated by solar or wind power plants.
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5. Model risk

This chapter is organised as follows. In Section 5.2 we review the methodology introduced by

Bannör & Scherer [2013] which we use to access model risk. In Section 5.3 we explain power

plant valuation in terms of spread options and introduce the stochastic models used to fit the

price processes. In Section 5.4 we undertake our empirical investigation. In Section 5.5 we

calculate the relevant risk measures according to techniques introduced in Section 5.2, discuss

our results and put them into context. Section 5.6 finally concludes.

5.2 Incorporating parameter risk

Modelling electricity prices is a considerable task since the electricity market is still develop-

ing and subject to changes in regulation and market design. Nevertheless, there are numerous

attempts trying to model the dynamics of electricity prices, for recent discussions see Culot

[2013], De Jong [2006], Meyer-Brandis & Tankov [2008] or Benth et al. [2012] and for text-

book accounts Eydeland & Wolyniec [2003] or Burger et al. [2008]. Having chosen a specific

model, one still has to determine the model’s correct parameters. In electricity markets, one

typically relies on time series analysis to obtain a model’s parameters due to the lack of liquid

derivatives prices to calibrate to. Thus, the standard procedure is to estimate the parameters

from time series of electricity prices and to plug the point estimate into the desired calculations

afterwards, e.g. the calculation of electricity derivatives prices. But, when simply plugging in

the obtained parameter for price determination, one disregards the whole information which is

contained in the distribution of the estimator. If a parameter may be difficult to estimate (like,

e.g., in presence of a small sample size), one faces tremendous risk that one does not obtain the

right parameter due to the estimator’s bias and/or variance. This risk is not neglectable: when

calculating derivatives prices, taking a slightly different parameter than the right one may result

in considerable different prices (as demonstrated in Schoutens et al. [2004]).

Following the terminology of Knight [1921], the above problem is described as parameter risk:

via the estimator’s distribution, one has an idea about the likelihood of the different parameters,

but one does not know for sure whether the point estimate parameter is the right one. To account

for this, Bannör & Scherer [2013] introduce the framework of parameter risk-captured pricing.

In this chapter several ideas on treating parameter risk or uncertainty suggested in Cont [2006];

Gupta et al. [2010]; Lindström [2010] are generalised and a concise framework to incorporate

parameter and estimation risks into financial prices is provided. We also briefly sum up the

guidelines to parameter risk-captured pricing as described in Bannör & Scherer [2013].

5.2.1 Measuring parameter risk and risk-captured prices

Our methodology to measure parameter risk is based on convex risk measures. The notion of con-

vex and coherent risk measures (see the seminal paper of Artzner et al. [1999]) have emerged
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5.2. Incorporating parameter risk

from the shortcomings of the Value-at-Risk. The Value-at-Risk, simply being some upper quan-

tile, is popular among practitioners and easy to interpret, but there are settings where the diver-

sification of financial instruments is penalized, i.e. a diversified portfolio of financial positions is

regarded more risky than the single positions. Since this property is not desirable, alternative

measures, most notably convex risk measures, have been developed. Convex risk measures have

been treated and extended in many papers like Kusuoka [2001]; Föllmer & Schied [2002]; Frit-

telli & Scandolo [2006] and there are numerous tractable examples for convex risk measures

available like, e.g., the Average-Value-at-Risk (cf. Acerbi & Tasche [2002]).

When considering parameter risk, i.e. there is a distribution R on the parameter space Θ avail-

able (which may be induced, e.g., from an estimator statistics θ̂ = θ̂(X1, . . . , XN ) via using

the pushforward measure), we can define the risk-captured price as a convex risk measure,

evaluated on the price regarded as a function of the parameter θ. A formal definition is as

follows:

Definition 3 (Risk-captured price). Given a parameter space Θ with a distribution R on the

parameters, a parameterised family of valuation measures (Qθ)θ∈Θ and a law-invariant, nor-

malised convex risk measure ρ as a generator (defined on a proper domain of functions on Θ)

we calculate the risk-captured price of a contingent claim X by

Γ(X) := ρ(θ 7→ Eθ[X]).

The risk-captured price of X may be interpreted as an ask price of the contingent claim X.

On the other hand, one can introduce the dual analogue by Γ̄(X) := −Γ(−X) which can be

interpreted as a bid price. A detailed discussion as well as technical details can be found in

Bannör & Scherer [2013]. The idea behind this definition is quite intuitive. If we have different

(potentially correct) parameters available and we know the probability that some parameter is

the correct one (given by the measure R on Θ), then we immediately get a distribution of prices

for X, since each parameter θ can be plugged into the pricing formula Eθ[X]. Then, we apply

the risk measure ρ to weight the different prices according to the probability measure R and

incorporate the parameter risk. This is illustrated in Figure 5.1.

To shed some light on the concept, we consider the parameter risk-captured price generated by

the Average-Value-at-Risk (AVaR)1. We follow Bannör & Scherer [2013] and define the AVaR

w.r.t. the significance level α ∈ (0, 1) of some random variable X as the integrated upper tail of

X, i.e.

AVaRα(X) =
1

α

∫ α

0
qX(1− β) dβ,

denoting by qX(γ) the (lower) γ-quantile of the random variable X.

When applying the regular AVaR to a contingent claim X (instead of taking the expectation

1A detailed discussion on the properties of the Average-Value-at-Risk is provided in Acerbi & Tasche [2002].
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Figure 5.1: Visualisation of the steps of parameter risk-capturing valuation.

w.r.t. an obtained model Qθ), the AVaR measures the risk which may occur according to the

previously specified model Qθ. In contrast, when calculating the parameter risk-captured price

of X being induced by the AVaR, risk-neutral prices (Eθ[X])θ∈Θ w.r.t. different models (Qθ)θ∈Θ

are compared and subsumed by the AVaR risk measure. Hence, the AVaR is used to quantify the

parameter risk we are exposed to when pricing X.

5.2.2 Using asymptotic distributions for determining parameter risk-captured
prices

In [Bannör & Scherer, 2013, Proposition 4.2], it has been shown that the AVaR-induced risk-

captured price is continuous w.r.t. the topology of weak convergence on the parameter distri-

butions when the price evaluation function for the contingent claim θ 7→ Eθ[X] is continuous

and bounded. In particular, if the parameter distribution R is complicated to calculate or even

unknown, one might conveniently replace R by the asymptotic distribution R̃ in case of large

sample size. Due to the continuity, the approximation of risk-captured prices by substituting the

original parameter distribution R with the (more tractable) asymptotic distribution R̃ is feasi-

ble. The advantage of this procedure is that for very wide classes of estimators (e.g. Maximum

Likelihood estimators under mild conditions), the asymptotic distribution is known and follows

a Normal distribution. In these cases, the calculation of the AVaR-induced risk-captured prices is

particularly comfortable, since it can be done in a closed-form. Therefore, the application of the

theory of risk-captured prices for asymptotically normal estimators can be done in a straightfor-

ward manner.
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5.3 Spread options

5.3.1 Spread options and power plant valuation

From a financial point of view we can consider the owner of a (electricity generating) power

plant as long electricity and short the fuels needed for production. With the introduction of

carbon emission certificates traded at the European Emission Trading Scheme (EU ETS) the

price of these certificates, of which the owner is short, has to be considered as well. This leads

naturally to viewing a power plant as a spread option consisting of the difference of these prices.

Typical fuel spread options are the dark spread, i.e. the difference between power and coal and

the spark spread, the difference between power and gas (see Burger et al. [2008] for further

discussion). The variants of these options taking the price of carbon into account are labelled

clean dark resp. spark spread options.

In our investigation we will focus on the clean spark spread to model the value of a gas power

plant. Gas-fired power plants are particular important as they were supposed to replace coal-

fired power plants in the short- to medium term triggered by the introduction of emission certifi-

cates as they are cleaner and more efficient. However, the low carbon price and the huge inflow

of renewables during peak hours made most gas-fired power plants a very costly investment for

utilities. For our analysis we consider the evaluation of power plant dispatch (i.e. the dispatch

of power plant stages) in terms of its financial position.

We will use spot price processes in order to assess the day-by-day risk position of such a position.

Thus, we will model the daily profit (or loss) of the virtual power plant position as

Vt = max{Pt − hGt − ηEt, 0}, (5.1)

where Pt is the power price, Gt is the gas price, Et is the carbon certificate price, h is the heat

rate of the power plant, and η is the CO2 emission rate of the power plant.

5.3.2 Energy price models

In this section we introduce the energy price models. We use models widely used in the litera-

ture, see Benth et al. [2012], where different models are compared and Benth & Koekebakker

[2008], Benth & Kufakunesu [2009], where the models used here are put to work. Let us point

out that the methodology to capture parameter risk also applies to alternative models as, e.g., re-

cently proposed in Culot [2013] or summarised in textbooks such as Burger et al. [2008].

We model the emission price as a geometric Brownian motion
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5. Model risk

dEt = αE Et dt+ σE Et dWE
t , (5.2)

the gas price as a mean-reverting process1

Gt = eg(t)+Zt ,

dZt = −αG Zt dt+ σG dWG
t , (5.3)

and the power price as a sum of two mean-reverting processes2

Pt = ef(t)+Xt+Yt ,

dXt = −αP Xt dt+ σP dWP
t ,

dYt = −β Yt dt+ Jt dNt, (5.4)

where αG, αP , and β are mean-reversion forces for gas and power prices respectively; N is a

Poisson process with intensity λ and Jt are independent identically distributed (i.i.d.) random

variables representing the jump size. For the jump size, we consider two different scenarios:

first, we suggest to use a non-central Laplace distribution to capture the heavy-tail nature of

spikes. Second, for comparison, we employ the Gaussian distribution as has already been done

in Cartea & Figueroa [2005]. Functions g(t) and f(t) are seasonal trend components for gas

and power respectively defined as

f(t) = a1 + a2 t+ a3 cos(a5 + 2πt) + a4 cos(a6 + 4πt),

g(t) = b1 + b2 t+ b3 cos(b5 + 2πt) + b4 cos(b6 + 4πt),

(5.5)

where a1 and b1 are the production expenses, a2 and b2 are the slopes of increase in these costs.

The rest parameters are responsible for two seasonal changes in summer and winter respectively.

In the current setting we also assume that WE , WG, and N are mutually independent processes,

but WP and WG are allowed to be correlated, i.e.,

dWP
t dWG

t = ρ dt. (5.6)
1See Lucia & Schwartz [2002].
2See Hambly et al. [2009].
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5.4. Empirical investigation

Here we introduce two processes to capture the power price movements. The first one Xt is

a zero mean-reverting process, responsible for the so-called base signal, i.e. daily price fluctu-

ations. The second process Yt is a mean-reverting jump process, responsible for price shocks

(which may ocur due to sudden inflow of power from renewable energy, or an outage of signif-

icant capacity). The number of processes used in the modelling approach is one of the critical

choices one has to take when analysing the fine power price structure. This has been discussed

in Chapter 2.4.

One can obtain the following expressions for conditional mean and variance of the logarithmic

prices:



E[lnEt] = lnE0 +
(
αE − (σE)2

2

)
t,

V ar(lnEt) = (σE)2 t,

E[lnGt] = g(t) +
(

lnG0 − g(0)
)
e−α

G t,

V ar(lnGt) =
(σG)2

2αG
(
1− e−2αG t

)
,

E[lnPt] = f(0) +X0 e
αP t + Y0 e

β t +
λ

β
(1− e−β t)E[J ],

V ar(lnPt) =
(σP )2

2αP

(
1− e−2αP t

)
+
λ

β
(1− e−2β t)E[J2].

(5.7)

The total set of parameters includes {αE , σE , g(t), αG, σG, f(t), αP , β, σP , λ,E[J ],E[J2], ρ}.1 Hence,

the hybrid model we have chosen for modelling the clean spark spread is not parsimonious and

allows for several degrees of freedom. Consequently, the risk of determining parameters in a

wrong way is considerable and it will turn out that even the determination of single parameters

may lead to tremendous results for prices obtained in the model.
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Figure 5.2: Evolution of the power (base load), gas, and carbon prices between 25.09.2009 and
08.06.2012.
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Figure 5.3: Evolution of the clean spark spread between 25.09.2009 and 08.06.2012.

5.4 Empirical investigation

5.4.1 Data and estimating procedure

We use the following data sets1: Phelix Day Base2 (EUR/MWh), NCG3 daily price (EUR/MWh),

and emissions daily price4 (EUR/EUA). Figures 5.2 and 5.3 depict the paths of the prices to-

gether with the spark spread path. The period of observations covers three years: 25.09.2009 -

08.06.2012.

We rely on Maximum Likelihood estimators (ML estimators) as far as possible for our estimation

procedure. ML estimators exhibit asymptotic normality and their asymptotic variance is given

1In the parametric form of the Laplace and Gaussian distributions, we do not directly use the second moment
as a parameter, but the standard scaling parameters for Laplace and Gaussian distributions (variance for Gaussian,
mean absolute deviation from median for Laplace). Obviously, using the second moment is only an equivalent
re-parametrisation.

1All the data sets are taken from the European Energy Exchange, www.eex.com.
2It is the average price of the hours 1 to 24 for electricity traded on the spot market. It is calculated for all

calendar days of the year as the simple average of the auction prices for the hours 1 to 24 in the market area
Germany/Austria disregarding power transmission bottlenecks.

3Delivery is possible at the virtual trading hub in the market areas of NetConnect Germany GmbH & Co KG.
4One EU emission allowance confers the right to emit one tonne of carbon dioxide or one tonne of carbon dioxide

equivalent.
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by the inverse Fisher information. These properties are particularly suited for our calculation

procedure to obtain risk-capturing functionals (see section 2). We estimate the parameters for

the emission prices, the joint base signal of power and gas prices, and the jump size distribu-

tion by ML estimators by well-established methods (which can be found together with detailed

Matlab algorithms in Brigo et al. [2007]). The estimation procedure for the parameters of the

power price process includes several steps:

1. Estimation of the seasonal trend and deseasonalisation. This aims to remove the seasonal

pattern from the data. Power prices usually display weekly, monthly, and yearly seasonal-

ities. One of the ways of doing so is to fit the market data to the specified trend function.

There are, of course, many candidates for it, one of which is a class of circular functions.

For a recent discussion on seasonal functions and their fit see Nowotarski [2013] and

Janczura [2013].

2. Separation of the processes. To identify which price variations belong to the jump process

and which ones are driven by the continuous part of the process is a difficult task. There

exists an extensive collection of methods to implement this filtering. One of the simplest

ways is to iteratively fix a reasonable threshold and to filter out the jumps as data points

above the threshold until no such points occur anymore. Cartea & Figueroa [2005] apply

such iterative procedure when filtrating the UK power price. A problem of the method is

that it delivers just jump values, but not a complete jump process path together with a

mean-reverting component.

3. Estimation of the mean-reversion rates. For every component of the power price we have to

estimate the forces that push the process back to its mean levels. If there is only one such

force, like it is in Geman & Roncoroni [2006], then it will do the job for both base and spike

signals and bring some additional noise into the price path as it is justified in Benth et al.
[2012]. Therefore, it is preferable to individually model the mean-reversion parameters

for the base and the spike process. Once we have filtered the Xt process, we can identify

it as a first order autoregressive model in continuous time. Discretising the process (to

an AR(1) time series) and applying the Maximum Likelihood method yields the estimates.

For the details see Knittel & Roberts [2005]. To estimate the mean-reversion rate for

the jump process one can take advantage of the approach based on the autocorrelation

function (ACF) as surgested by Barndorff-Nielsen & Shephard [2001] and implemented

in Meyer-Brandis & Tankov [2008] and Benth et al. [2012].

4. Estimation of the base signal Xt. As the stationary process in our model is Gaussian, we

can estimate the parameters using a ML estimator.1.
1It is more difficult when this process Xt is a Lévy process. Then there are just a few situations in which one can

estimate the parameters. Barndorff-Nielsen & Shephard [2001] discuss some distributions like Gamma and refer to
possible estimation ways. An application to energy price modelling was suggested in Benth et al. [2007] and further
implemented in Chapter 2 with an aid of the prediction-based estimating functions method, which is introduced
in Sørensen [2000].
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5.4. Empirical investigation

5. Estimation of the spike signal Yt. Here we estimate the intensity λ and the spike size pa-

rameters. We take the intensity as a constant (a time-dependent intensity is discussed

in Meyer-Brandis & Tankov [2008]. Then it can be estimated as spikes frequency, i.e. a

number of detected spikes per period. For the spike size distribution we use a parametric

assumptions and use ML estimators for the parameter values. One should note that differ-

ent filtering procedures yield quite different jump process values, mostly large jumps are

detected. Therefore, when estimating the jump size distribution from this data via Maxi-

mum Likelihood estimation, one obtains considerably different location parameters for the

Normal and the Laplace distribution, since the ML estimator for the location parameter of

the Laplace distribution is the median, while the ML estimator for the location parameter

of the Normal distribution is the mean. This methodology might be criticised, but it is still

standard in energy finance, see, e.g., Cartea & Figueroa [2005].

6. Estimation of the correlation. We estimate it jointly with the estimation of multivariate

normal regression estimation for power and gas prices.

Following the above steps, we estimate the set of parameters

{αE , σE , g(t), αG, σG, f(t), αP , β, σP , λ, µs, σs, ρ}.

The result is given in Table 5.1 (estimates for the correlation matrices are in Appendix A) .

5.4.2 Measuring parameter risk

Since the whole parameter distribution is very complex and difficult to obtain (Bunn et al.
[2013]), we reduce the problem here by considering the distributions of the single parameters

separately (e.g. the correlation coefficient, the jump size distribution parameters). Hence, we

scrutinise the parameter risk w.r.t. selected parameters separately, disregarding the remaining

parameter risk. This procedure is described by the following steps.

Each parameter θj is to be estimated by an estimator θ̂j(X1, . . . , XN ) under the real-world mea-

sure and we assume the other parameters θ1, . . . , θj−1, θj+1, θN to be known. Afterwards, we

assume the plug-in estimator as the true value and calculate the asymptotic distribution of the

estimator.

We calculate the parameter risk-captured price generated by the Average-Value-at-Risk (AVaR),

which is a widely used convex risk measure thoroughly discussed in Acerbi & Tasche [2002].

As mentioned in section 5.2.2, the AVaR-induced risk-captured prices are continuous w.r.t. the

weak topology on the parameter distributions, if the price function θ 7→ Eθ[X] is continuous and

bounded in θ.
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Since we used ML estimators we know that our estimators (θn)n∈N form an asymptotically nor-

mal sequence of estimators for the true parameter θ0 ∈ Θ ⊂ Rm with positive definite covariance

matrix Σ. So √
N (θn − θ0)→ Nm (0,Σ) .

Since θ 7→ Eθ(X) is continuously differentiable and ∇Eθ0 6= 0, we can approximate its distribu-

tion by the so-called Delta-method (see Shao [1999], page 45). So

√
N (Eθn(X)− Eθ0(X))→ N

(
0, (∇Eθ0)′Σ∇Eθ0

)
For the risk-capturing functional θn?AV aRα(X) we can thus calculate the AVaR as for a normally

distributed variable

θN ? AV aRα(X) ≈ Eθ0(X) +
ϕ
(
Φ−1(α)

)
α
√
N

√
(∇Eθ0)′Σ∇Eθ0 ,

with ϕ (resp. Φ) density (resp. distribution) function of a standard Normal.

In our application, the evaluation expectation is given by the value of a strip of spread options.

So we consider a time period for which we want to analyse the value of the power plant and our

pricing functional is given as

V PP (t, T ) =

∫ T

t
e−r(s−t) V (s) ds. (5.8)

Using the above, we can employ the asymptotic distribution of our estimators to quantify pa-

rameter risk and employ the closed-form formula for the normal AVaR to compute risk-captured

prices efficiently. We use the risk-captured prices induced by the AVaR w.r.t.. different signifi-

cance levels α ∈ (0, 1).

The general procedure reads as follows:

1. After we estimated all parameters of our price processes, we simulate the processes for the

future time period we consider and compute the spark spread value V (t) given in Equation

(5.1) for every day t in the period. For our illustration we will consider a three year period

starting immediately after the observation period.

2. Then, by fixing all parameters except the one of interest (which we generically denote be

θ) and setting the shift value ξ (e.g. ξ = 1%), we compute shifted up and down spark

spread values, i.e. V up
t (θ + ξ) and V down

t (θ − ξ).

3. Further, we compute the value of the power plant (VPP) by means of Monte Carlo simula-
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tions. For a fixed large number N and a fixed period T = 3 years we have

V PP (t, T ) =
1

N

N∑
i=1

V PPi(t, T ), (5.9)

where from (5.8)

V PPi(t, T ) =

∫ T

t
e−r(s−t) Vi(s) ds,

with i referring to the simulation run. At this step we also compute power plant values

where the parameter θ is shifted by some some value of ξ > 0, i.e. V PP up(t, T ; θ) :=

V PP (t, T ; θ + ξ) and V PP down(t, T ; θ) := V PP (t, T ; θ − ξ) (e.g. w.r.t. shifted spark

spread values at each time point as in the previous step) and estimate the sensitivity (the

derivative) of the VPP with respect to the parameter θ with the central finite difference

∇θV PP :=
∂V PP (θ)

∂θ
≈ V PP up(t, T ; θ)− V PP down(t, T ; θ)

2 · ξ
. (5.10)

4. Finally, we compute the bid and ask prices, i.e. we use a closed-form approximation

formula for the AVaR to get the risk-captured prices by subtracting and adding risk-

adjustment value to V PP (t, T ) respectively. For a specified significance level α ∈ (0, 1)

this risk-adjustment value is computed as follows

ϕ(Φ−1(1− α))

α

√
(∇θV PP )′ · Σθ · ∇θV PP

N
,

denoting by Σθ the asymptotic covariance matrix of the estimator for the parameter θ.1

5.5 Illustrative example

We consider the financial equivalent of a gas fired power plant. Our objective is to analyse the

impact of model risk for a three year valuation period starting immediately after the estimation

period. For this we can simulate the price processes throughout the future period and calculate

the price of the clean spark spread for every day within the period. The value is then given by

Equation (5.9).

1Note that this (normally approximated) risk-adjustment value does only depend on the significance level α w.r.t.
the factor ϕ(Φ−1(1 − α))/α. In particular, the ratio of AVaR-induced risk-captured bid-ask spreads w.r.t. different
significance levels is constant, regardless of the parameter in doubt. This is a crucial property of the AVaR w.r.t. a
Normal distribution.
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5.5.1 Risk values results

In Equations (5.2)-(5.6) we discussed the estimation of the relevant parameters which all are

sources of parameter risk. We study these risks separately since a joint assessment would require

knowledge of the joint estimator’s distributions, which is not available in closed form. Below the

discussion of every source of risk is given together with illustrative figures. In Table 5.2 all final

values of the relative bid-ask spreads for every risk source are given. One can clearly see that

the major and critical source of risk lies in the jump size distribution. Even when we measure

the model risk in all parameters simultaneously, except of the jump size distribution, we see

that still the values are very small compared to those which are from the jump size distribution

alone.

• parameter risk in spike size – Laplace distribution assumed for jumps - The spikes, in many

cases with an upward movement, have a large impact on the option evaluation. In case

of an upward spike, the option usually jumps into the money and the option value rises.

Furthermore, the distribution of the spike size is more difficult to determine due to the

small sample size; the threshold filtering produces only a small sample size of jumps to es-

timate the jump size distribution from. Hence, particularly the scale of the spikes is crucial

for valuation purposes. When incorporating the parameter risk of the spike distribution,

regarding both the location parameter µ as well as the scale parameter σ, one obtains a

relative difference of 49% for a safety level of α = 50%. If one is more risk averse towards

parameter risk in the jump size distribution (e.g. a safety level of α = 10%), one even

obtains a relative width of the bid-ask spread of 107%.

• parameter risk in spike size – Normal distribution assumed for jumps - Again, also in case of

the Normal distribution, the spikes have a large impact, although the impact is a bit smaller

than in the case of Laplacian jumps. For a safety level of 50%, one obtains a relative width

of the parameter risk-implied bid-ask spread of 33%, while this spread widens considerably

with increasing risk aversion (e.g. 73% relative width of the bid-ask spread for a safety

level of 10%).

• parameter risk in correlation - The correlation is a major driver steering the width of the

spread between the gas and the power price. Using the AVaR w.r.t. a security level of

10% employing the Fisher transform of the correlation estimator, the relative difference

between the risk-captured bid and ask prices is 2.17% in case of Laplace distributed jumps

and 4.68% in case of normally distributed jumps.

• parameter risk in gas signal - The gas price process is a minor driver of the bid-ask price

width. Using the AVaR w.r.t. a security level of 10%, the relative difference between the

risk-captured bid and ask prices is approx. 4% in case of normally distributed jumps and

1.92% in case of Laplace distributed jumps.
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• joint parameter risk in gas and base power signal - The joint continuous signal of gas and

electricity prices is also a minor driver of the bid-ask price width. Using the AVaR w.r.t. a

security level of 10%, the relative difference between the risk-captured bid and ask prices

is approx. 4.2% in case of normal distributed jumps and approx. 2% in case of Laplace

distributed jumps.

• joint parameter risk in gas, power, and emissions (all processes, except of jump size parameter)
- As was shown before, the spike size distribution is a major risk factor when modelling the

bid-ask price width. Therefore, it would be interesting to re-check this from the opposite

side by considering the joint risk in every driver except of spike size and intensity. Using

the AVaR w.r.t. a security level of 10%, the relative difference between the risk-captured

bid and ask prices is approx. 5.5% in case of normal distributed jumps and approx. 2.6%

in case of Laplace distributed jumps.

Table 5.2 shows all sources of investigated model risk for various confidence levels α and shift

sizes ξ. Due to the large sample size of M = 790 observations, the estimation of the base signals

in gas and power has high accuracy, provided that the parametric form of the model is correctly

chosen. Hence, parameter risk from the estimation of the parameters in base gas and power

signals is very moderate and the parameter risk-captured bid-ask spreads are relatively narrow.

A completely different picture is shown for the estimation of the spike size. Due to the threshold

filtering technique, the number of spikes is relatively small (M̃ = 41), which naturally enlarges

the variance. Furthermore, the jump size distribution is crucial for ensuring that the real option

representing the gas power plant gets deep into the money: When there is a large upward spike

in the power price process, the payoff of the real option immediately jumps into the money.

Hence, the probability of producing large upward spikes in the power price plays a major role

in determining the future value of a gas power plant.

Besides the considered risk sources, one should also care for other model risk factors. In this

chapter for the sake of simplicity we use models with non-stochastic volatilities, constant mean-

reversion forces, parsimonious filtering procedure, and fixed spike intensity. Therefore, we ig-

nore these risk drivers to identify some sort of a low boundary value for the potential model and

parameters risk in terms of chosen modelling frames.

5.5.2 Absolute and relative bid-ask prices

In this section we illustrate our results. We start by investigating how the confidence level α

influences the bid and ask prices. By taking a large number of simulations N = 5000 and

confidence level α = [0.01, 0.1, 0.5] we can see how the risk-captured bid and ask prices behave.

Together with bid and ask prices, we also investigate the relative width of the bid-ask spread

which is computed as

∆ =
bidPrice− askPrice

midPrice
.
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Furthermore, we want to assess the numerical problems associated with approximating the

sensitivity with the central finite difference as described in Equation (5.10).

• Correlation. We assess the parameter risk in correlation for both cases where the jump

sizes follow either a Normal or a Laplace distribution. Figures 5.4 and 5.5 show that the

parameter-risk implied bid-ask spread w.r.t. the correlation is in the order of few percent-

age points, mainly due to the large sample size.
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Figure 5.4: Parameter-risk implied bid-ask spread w.r.t. the correlation.
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Figure 5.5: Parameter-risk implied bid-ask spread w.r.t. the correlation.

• Jump size distribution parameters. We assess the parameter risk in the jump size distribu-

tions for both cases where the jump sizes follow either a normal or a Laplace distribution.

This effect is depicted in Figures 5.6 and 5.7, we check the robustness of the estimate of

the sensitivity using different central differences. One can see that the parameter-risk im-
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plied bid-ask spread w.r.t. the jump size distribution is crucial – the correct determination

of the jump size distribution is the major driver for the power plant price. Furthermore,

convergence is much slower in the Laplace case and the results become much less stable.
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Figure 5.6: Parameter-risk implied bid-ask spread w.r.t. the jump size distribution.
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Figure 5.7: Parameter-risk implied bid-ask spread w.r.t. the jump size distribution.

Sensitivity impact

• Correlation. The impact of the choice of numerical approximation of the sensitivity is

minor, as can be seen in Figures 5.8 and 5.9;
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5. Model risk

• Jumps size distribution parameters. The choice of numerical approximation of the sensi-

tivity has minor impact which is demonstrated in Figures 5.10 and 5.11. Compared to the

normal case, one sees considerably more problems in estimating the sensitivity w.r.t. the

jump size parameters.
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Figure 5.8: Parameter-risk implied bid-ask spread w.r.t. the sensitivity value (correlation).
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Figure 5.9: Parameter-risk implied bid-ask spread w.r.t. the sensitivity value (correlation).

5.6 Conclusion

We studied the model risk inherent in power plant valuation within a framework of risk-capturing

functionals. Our study reveals that spike risk is the most important source of model risk. While
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5.6. Conclusion
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Figure 5.10: Parameter-risk implied bid-ask spread w.r.t. the sensitivity value (jump size distri-
bution).
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Figure 5.11: Parameter-risk implied bid-ask spread w.r.t. the sensitivity value (jump size distri-
bution).
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5. Model risk

this is not surprising in itself we were able to quantify the magnitude by which spike risk domi-

nates all other sources of model risk.

Given that the increasing impact of renewable energies will make power prices more volatile and

jumpy we see the importance of addressing the spike behaviour for valuation purposes.

We plan to apply our methodology for further applications in the energy markets such as gener-

ation of an hourly power forward curve and valuation procedures for storages.
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CHAPTER 6

CONCLUSIONS

In this study we explored various aspects of stochastic modelling energy-related markets.We

now summarise all the findings of our work and state the importance of them to practical appli-

cations.

We investigated statistical properties of power price modelling on the example of critical com-

parison of widely used three continuous-time electricity spot price models. We found that power

price dynamics exhibits several types of behaviour: small/average daily fluctuations and spikes.

Modelling power price as a jump-diffusion is not the best option due to the only one mean-

reversion force, since it leads to a too slow mean-reversion for the spikes and a too fast mean-

reversion for the base signal. The result of this is higher volatility. The better way to capture this

mean-reverting nature is to introduce two mean-reversion speeds: one for the base and one for

the spike signals as does the factor model, which in turn results in better modelling of the path

behaviour in terms of the descriptive statistics. For the modelling of daily fluctuations Brownian

component is rather satisfactory than an OU process with a background driving Lévy process

such that OU process has the same stationary distribution. The latter one does not capture the

variability of the paths appropriately and underestimates the noise in the base signal.

We also studied analytical tractability for all three models on the example of pricing forward

prices. The factor model outperforms the jump-diffusion and the threshold models, since it

allows for a straightforward derivatives calculation. The jump-diffusion model has a limited

ability to compute forward prices in closed form, since it is only possible for some classes of

distributions assumed for a jump size. The threshold model does not allow for explicit forward

formula due to the presence of the state-dependent function h. There are quite a few possibilities

to tackle this issue. One of them is to use efficient numerical and simulation-based Monte-

Carlo evaluations. Comparing obtained forward prices for all three models we observe that

the factor model converges towards the predicted spot price when we approach delivery time,

whereas the threshold and the jump-diffusion models drive apart, which is also reflected in a

risk premium with increasing absolute value for the jump-diffusion and threshold models, and

whereas decreasing to zero for the factor model.

To continue our pricing investigation we derived an integro-PDE for the threshold model to pur-
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sue its derivative pricing ability and consequently to allow for further hedging purposes. This

equation gives the desired forward price dynamics important for hedging purposes which we

compare with forwards obtained for the jump-diffusion model. When numerically solving this

integro-PDE we implemented finite difference scheme and derived estimates for the truncation

errors (domain truncation and integral truncation). We also investigated what happens if the x

(log of the price) goes to infinity and how does it effect the forward prices? Having numerical

scheme at hand and assuming some boundary conditions, we observe that the threshold for-

ward price dynamics is insignificantly different from the jump-diffusion forwards dynamics. The

bigger difference arises when we use Laplace distribution compared to Normal distribution for

a jump size. We also found that in contrast to modelling spot prices, the effect of function h is

minor, i.e. it does not demonstrate a prominent difference between forward prices when they

are below the threshold.

We the continued with examining the stochastic modelling of energy markets and proposed a

new storage model to complement existing approach to storage value modelling. The main find-

ing here is that we consider storage level as a bounded stochastic process which lives between

boundary l and u. We mean here a physical storage facility, hydro or gas, which is naturally

bounded by a total capacity. A power producer and/or storage owner regularly takes a decision

to withdraw and produce power, to inject (in case of gas), or to wait for a more favourable

market conditions (higher power prices). Usually, this policy is a result of an optimal stochastic

control problem. In our case, we looked at the problem differently and assumed that this policy

is already given by a dynamics of storage level. With this at hand, we were able to derive a

transition probability density for this storage level process and constructed various payoffs use-

ful for hedging purposes in case of too high or too low prices and too high or too low reservoir

levels. The main benefit of such approach is that it allows for a direct calculation of the storage

value overcoming various numerical difficulties associated with an implementation of searching

for an optimal control policy.

This topic offers a variety of possible further research problems which goes beyond the scope

of this thesis. Among these, for example, would be a modification of the assumption on the

constant mean-reverting level m and its substitution to a time-dependent component m(t) to

capture the seasonality of the precipitation inflow. Our approach also allows for a reservoir-

dependent rate of production. For the sake of simplicity we considered only constant value for

it. It would be beneficial to investigate it role and understand what is its impact on the storage

value. Finally, it would be crucial to benchmark our model against a classical stochastic optimal

control approach and to compare results. This will be the scope of our future research.

The last part of our conclusive chapter overviews results on detection of the model risk of energy

markets. We considered a gas-driven power plant and studied the model risk within a framework

of risk-capturing functionals. Our findings proved a quite natural assumption that spike risk is

the most important source of model risk. We were able to quantify the magnitude by which
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spike risk dominates all other sources of model risk. We also found that the second significant

source of risk belongs to a correlation between energy commodities. Given that the increasing

impact of renewable energies will make power prices more volatile and jumpy we especially

emphasise the significance of addressing the spike behaviour for valuation purposes. A future

research plan is to apply our methodology for further applications in the energy markets such

as generation of an hourly power forward curve and valuation procedures for storages.
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APPENDIX A

ELECTRICITY MODELLING

A.1 Lévy processes

We start with the following definitions given in Chapter 3 in Cont & Tankov [2004].

Definition 4 (Lévy process). A cádlág stochastic process (Lt)t≥0 on (Ω,P,F, {Ft}) with values in
R such that L0 = 0 is called a Lévy process if it satisfies the following properties:

1. Independent increments: for every increasing sequence of times t0, . . . , tn the random variables
Xt0 , Xt1 −Xt0 , . . . , Xtn −Xtn−1 are independent;

2. Stationary increments: the law of Xt+h −Xt does not depend on t;

3. Stochastic continuity: ∀ε > 0, lim
h→0

P (|Xt+h −Xt| ≥ 0) = 0.

A Lévy process is associated with its Lévy measure ν

Definition 5 (Lévy measure). Let (Lt)t≥0 be a Lévy process on R. The measure ν on R defined by:

ν(A) = E [#{t ∈ [0, 1] : ∆Lt 6= 0, ∆Lt ∈ A}] , A ∈ B(R) (A.1)

is called the Lévy measure of Lt: ν(A) is the expected number, per unit time, of jumps whose size
belongs to A.

Every Lévy process is characterised by its characteristic triplet (γ, b, ν), where γ ∈ R is the drift

term, b ∈ R≥0 is the diffusion coefficient and ν is the Lévy measure. Next useful theorem is a

celebrated Lévy-Khinchin decomposition.

Theorem 3 (Lévy triplet). Let (Lt)t≥0 be a Lévy process on R with a characteristic triplet (γ, b, ν).
Then

E
[
eizLt

]
= et ψ(z), z ∈ R, (A.2)

with

ψ(z) = iγz − z2b

2
+

∫
R

(
eizx − 1− izx1|x|<1

)
ν( dx). (A.3)
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Proof. The proof can be found in various sources, for example in Chapter 3 in Cont & Tankov

[2004] and in Chapter 4 in Sato [1999].

According to this theorem a Lévy process can always be decomposed into several processes: a

deterministic linear process (drift) with parameter γ, a Brownian motion with coefficient
√
b, a

compound Poisson process with arrival rate λ := ν (R\(−1, 1)) and jump size distribution given

by its cumulative distribution function F( dx) := ν( dx)
ν(R\(−1,1)) 1|x|≥1, and the last component: pure

jump martingale process.

Now let us recall a few facts about the Lévy measure ν:

• the Lévy measure ν on R satisfies ν({0}) = 0 and
∫
R
(
1 ∧ (|x|)2

)
ν( dx) <∞.

• if ν is a finite measure, i.e. λ = ν (R) =
∫
R ν( dx) < ∞, then F( dx) := ν( dx)

λ is a

probability measure. Then λ is interpreted as the expected number of jumps and F( dx) is

the distribution of the jump size x. It is also said the the Lévy process Lt has finite activity.

(Theorem 21.3 in Sato [1999]).

• if b 6= 0 or
∫
|x|≤1 |x| ν( dx) = ∞, then almost all the paths of the Lévy process Lt have

infinite variation. (Theorem 21.9 in Sato [1999]).

Definition 6 (Subordinator). A Lévy process (Lt)t≥0 on R is said to be increasing if Lt is increasing
as a function of t, a.s. An increasing Lévy process is called a subordinator.
Proposition 5 (Characteristic triplet of a subordinator). Let (Lt)t≥0 be a Lévy process on R. The
following conditions are equivalent:

1. Lt ≥ 0 a.s. for some t > 0.

2. Lt ≥ 0 a.s. for every t > 0.

3. Sample paths of Lt are a.s. nondecreasing: t ≥ s ⇒ Lt ≥ Ls a.s..

4. The characteristic triplet of Lt satisfies γ = 0, ν((−∞, 0]) = 0,
∫∞

0 (x ∧ 1) ν( dx) < ∞ and
b ≥ 0, Lt has only positive jumps of finite variation and positive drift.

Proof. Proposition 3.10 in Cont & Tankov [2004].

As example, Poisson process is a subordinator.

Proposition 6 (Exponential moments of a Lévy process). Let (Lt)t≥0 be a Lévy process on R with
a characteristic triplet (γ, b, ν). Then

1. E[|Lt|p] <∞ if and only if
∫
|x|≥1 |x|

p ν( dx) <∞;

2. E[epLt ] <∞ if and only if
∫
|x|≥1 e

px ν( dx) <∞.
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Proof. Theorem 25.3 in Sato [1999].

We now continue with a few more known facts and properties of a Lévy process and its connec-

tion to the martingale theory.

• a semimartingale is a stochastic process (Xt)0≤t≤T that can be represented as

X = X0 +M +A,

where X0 is finite and F-measurable, M is a local martingale with M0 = 0 and A is a finite

variation process with A0 = 0;

• a semimartingale X is a special semimartingale, if the process A is predictable;

• every Lévy process is a semimartingale due to its Lévy-Khinchin decomposition;

• every Lévy process with its finite first moment (i.e. if and only if
∫
|x|≥1 |x| ν( dx) <∞;) is

also a special semimartingale;

• the following three assertions are equivalent:

1. a Lévy process Lt is a special semimartingale;

2.
∫
R

(
|x| ∧ |x|2

)
ν( dx) <∞,

3.
∫
R
(
|x|1|x|≥1

)
ν( dx) <∞,

this is a consequence of Lemma 2.8 in Kallsen & Shiryaev [2002].

Theorem 4 (g-moments of supremum of a Lévy process). Let (Lt)t≥0 be a Lévy process on R.
Define

L∗t = sup
s∈[0,t]

|Ls| .

Let g(r) be a nonnegative continuous submultiplicative function on [0,∞), increasing to ∞ as
r →∞. Then the following four statements are equivalent:

1. E[g(L∗t )] <∞ for some t > 0;

2. E[g(L∗t )] <∞ for every t > 0;

3. E[g(|L∗t )|] <∞ for some t > 0;

4. E[g(|L∗t )|] <∞ for every t > 0.

Proof. Theorem 25.18 in Sato [1999].
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A.2 Prediction-based estimating functions method

We follow the steps in Sørensen [2000]. We denote by Z1, Z2, . . . Zn the stochastic processes

of the base signal, which we will model by Y1 with a Gamma stationary distribution. There

are three parameters to be estimated, θ = (λ1, α, ν), where the last two are the parameters of

the distribution, and λ1 is the speed of mean-reversion of Y1. Assume that fj , j = 1 . . . N are

one-dimensional functions, defined on the state space of Y1, such that Eθ{fj(Zi)2} < ∞ for all

θ ∈ Θ, the parameter space, and j = 1, . . . N, i = 1, . . . , n. For given θ write expectation as Eθ.
Let Fi be the σ-algebra generated by Z1, Z2, . . . Zi, and Hθ

i the L2-space of square integrable

Fi-measurable one-dimensional random variables given that θ is the true parameter value. We

denote the set of square-integrable predictors of fj(Zi+1) given Z1, Z2, . . . Zi by Pθi,j , j = 1, . . . N .

Observe that this is a closed linear subspaces of Hθ
i . In the case of the factor model we useN = 2,

and f1(y) = y and f2(y) = y2. These will be our prediction-based estimating functions.

Further one needs to choose an appropriate number qij of lags under which the prediction-based

estimating function will be constructed. These numbers represent the available information

“required” to predict the consecutive value, and in the case of a stationary process they do not

need to be too large. We let qij = 4 for all i, j, i.e., four observations are taken to predict

the following one. A space of predictors is specified as U i−1
j = (Zi−1, . . . Zi−4) and U i−1

j =

(Z2
i−1, . . . Z

2
i−4) for j = 1, 2, resp.

Define the estimating function Gn(θ) as

Gn(θ) =
n∑
i=1

N∑
j=1

Πi−1
j (θ){fj(Yi)− π̂(i−1)

j (θ)} , (A.4)

where Π
(i−1)
j (θ) = {π(i−1)

1,j (θ), π
(i−1)
2,j (θ), π

(i−1)
3,j (θ)}T is a stochastic vector of weights, which be-

long to Pθi−1,j . The terms π̂(i−1)
j (θ) are the minimum mean-square error predictors of fj(Zi)

in Pθi−1,j . This predictor π̂(i−1)
j (θ) is the orthogonal projection of fj(Zi) on Pθi−1,j with respect

to the inner product in Hθ
i . This projection exists and is uniquely determined by the normal

equations

Eθ[π{fj(Zi)− π̂
(i−1)
j (θ)}] = 0 , (A.5)

for all π ∈ Pθi−1,j . From Equation (A.5) it follows that Gn(θ) is an unbiased estimating function.

An estimator is obtained by solvingGn(θ) = 0. We remark that the weights in Π
(i−1)
j (θ) serve the

purpose of improving the efficiency of the estimator. The optimal choice of weights is a separate

task considered in Bibby et al. [2010]. In our case these weights did not contribute much and

we did not choose any since the algorithm reached convergence without them.

It is assumed that Pθi−1,j is spanned by U (i−1)
j0

, . . . , U
(i−1)
jq

jk = 1, 2, which are linearly indepen-

dent in Hθ
i . By Equation (A.5) the minimum mean-square error predictor of fj(Zi) in Pθi−1,j is
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given by

π̂
(i−1)
j (θ) = â

(i−1)
j0 (θ) + â

(i−1)
j (θ)TU

(i−1)
j , (A.6)

where

â
(i−1)
j (θ) = Ci−1,j(θ)

−1b
(i−1)
j (θ)

and

â
(i−1)
j0

(θ) = Eθ{fj(Zj)} − â
(i−1)
j (θ)TEθ{U

(i−1)
j } .

Here Ci−1,j(θ) denotes the covariance matrix of U (i−1)
j when θ is the true parameter value,

while

b
(i−1)
j = [Covθ{U

(i−1)
j1

, fj(Zi)}, . . . , U (i−1)
jq

, fj(Zi)}]T .

In conclusion, a prediction-based estimating function can be calculated provided that covari-

ances in Ci−1,j(θ) and b(i−1)
j (θ) can be computed. Since π̂(i−1)

j (θ) depends only on the first- and

the second-order moments of the random vector {fj(Zi), U (i−1)
j1

, . . . , U
(i−1)
jq

}, only parameters

appearing in these moments can be estimated using Equation (A.4). Observe that the character-

istic function of Y1(t) is

E[euY1(t)] = euY1(0)e−λteνt(α−λ)
(α− ue−λt

α− u

)ν
. (A.7)

Therefore the moments can be obtained by taking the respective derivative of the characteristic

function at u = 0. In order to apply the prediction-based estimating functions method based

on the functions f1(y) = y and f2(y) = y2, it is necessary to obtain the four first moments,

which can be computed explicitly for the Gamma stationary OU process. Besides expressions for

moments, one needs to derive the covariance between the two first moments and the covariance

between the two second moments, Cov(Zt, Zt+s) and Cov(Z2
t , Z

2
t+s).
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A.3 Forward dynamics for various data sets

A.3.1 Jump-diffusion model and its forward modelling
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(a) The predicted spot vs observed forward dynamics and market risk premium for forwards with maturity in
July 2004.
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(b) The predicted spot vs observed forward dynamics and market risk premium for forwards with maturity in
December 2004.

Figure A.1: The predicted spot, observed forward dynamics and market risk premium for the
jump-diffusion model.
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(c) The predicted spot vs observed forward dynamics and market risk premium for forwards with maturity in
July 2005.
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(d) The predicted spot vs observed forward dynamics and market risk premium for forwards with maturity in
December 2005.

Figure A.0: The predicted spot, observed forward dynamics and market risk premium for the
jump-diffusion model.
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(e) The predicted spot vs observed forward dynamics and market risk premium for forwards with maturity in
July 2006.
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(f) The predicted spot vs observed forward dynamics and market risk premium for forwards with maturity in
December 2006.

Figure A.-1: The predicted spot, observed forward dynamics and market risk premium for the
jump-diffusion model.
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A.3.2 Threshold model and its forward modelling
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(a) The predicted spot vs observed forward dynamics and market risk premium for forwards with maturity in
July 2004.
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(b) The predicted spot vs observed forward dynamics and market risk premium for forwards with maturity in
December 2004.

Figure A.0: The predicted spot, observed forward dynamics and market risk premium for the
threshold model.
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(c) The predicted spot vs observed forward dynamics and market risk premium for forwards with maturity in
July 2005.
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(d) The predicted spot vs observed forward dynamics and market risk premium for forwards with maturity in
December 2005.

Figure A.-1: The predicted spot, observed forward dynamics and market risk premium for the
threshold model.
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(e) The predicted spot vs observed forward dynamics and market risk premium for forwards with maturity in
July 2006.
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(f) The predicted spot vs observed forward dynamics and market risk premium for forwards with maturity in
December 2006.

Figure A.-2: The predicted spot, observed forward dynamics and market risk premium for the
threshold model.
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A.3.3 Factor model and its forward modelling
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(a) The predicted spot vs observed forward dynamics and market risk premium for forwards with maturity in
July 2004.
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(b) The predicted spot vs observed forward dynamics and market risk premium for forwards with maturity in
December 2004.

Figure A.-1: The predicted spot, observed forward dynamics and market risk premium for the
factor model.
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(c) The predicted spot vs observed forward dynamics and market risk premium for forwards with maturity in
July 2005.
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(d) The predicted spot vs observed forward dynamics and market risk premium for forwards with maturity in
December 2005.

Figure A.-2: The predicted spot, observed forward dynamics and market risk premium for the
factor model.
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(e) The predicted spot vs observed forward dynamics and market risk premium for forwards with maturity in
July 2005.
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(f) The predicted spot vs observed forward dynamics and market risk premium for forwards with maturity in
December 2006.

Figure A.-3: The predicted spot, observed forward dynamics and market risk premium for the
factor model.
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APPENDIX B

MODEL RISK

B.1 Fisher information matrices

We can also compute the Fisher information matrix for the emissions process:

I(αE , σE) =

[
1

(σE)2
0

0 1
2(σE)4

]
=

[
4747.5962 0

0 14259.9278

]
.

Fisher information matrix for correlated power and gas processes:

I(αG, αP , σG, σP , ρ) =


1.7068 −0.2340 0 0 0

−0.2340 11.3785 0 0 0

0 0 1819.22 −1015.81 141.80

0 0 −1015.81 27667.79 −7645.39

0 0 141.80 −7645.39 103051.77

 .

Fisher information matrix for spike size with Laplace distributed jumps (using the usual parametriza-

tion (µ, σ), as in [Kotz et al., 2001, p. 65]):

I(µs, σs) =

[
1
σ2
s

0

0 1
σ2
s

]
=

[
2.6226 0

0 2.6226

]
.

Fisher information matrix for spike size process with normal distributed jumps (using the usual

parametrization (µ, σ2)):

I(µs, σs) =

[
1
σ2
s

0

0 1
2σ4
s

]
=

[
1.7074 0

0 1.4576

]
.

163



B.2 Absolute and relative bid-ask prices for other sources of risk

• Gas signal parameters. We assess the parameter risk in the gas signal for both cases where

the jump sizes follow either a Normal or a Laplace distribution. This effect is depicted in

Figures B.1 and B.2. One observes that the parameter-risk implied bid-ask spread w.r.t. the

gas price process is not too large, mainly due to the large sample size.

• Gas and power base signal parameters. We assess the parameter risk in the joint gas and

power base signals for both cases where the jump sizes follow either a Normal or a Laplace

distribution. This effect is depicted in Figures B.3 and B.4. One can see that the parameter-

risk implied bid-ask spread w.r.t. the gas and power base price process is not too large,

mainly due to the large sample size.

• Everything except of the jump size. We assess the parameter risk in the jump size distribu-

tions for both cases where the jump sizes follow either a Normal or a Laplace distribution.

This effect is depicted in Figures B.5 and B.6.

One can see that the parameter-risk implied bid-ask spread w.r.t. the jump size distribution

is crucial – the correct determination of the jump size distribution is the major driver for

the power plant price. Furthermore, convergence is much slower in the Laplace case and

the results become much less stable.

By doing this risk assessment, we check the hypothesis that the major source of risk comes

from the jump distribution.

B.2.1 Sensitivity impact

The choice of numerical approximation of the sensitivity is of minor importance for all the

cases considered in Figures B.7, B.8, B.9, B.10, B.11 and B.12.
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(a) Risk-captured bid and ask prices for different α lev-
els when changing the gas signal parameter values with
a shift size of 1%, normal jumps.
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(b) Relative width of the risk-captured bid-ask spread
for different α levels when changing the gas signal pa-
rameter values with a shift size of 1%, normal jumps.

Figure B.1: Parameter-risk implied bid-ask spread w.r.t. the gas price process.
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(a) Risk-captured bid and ask prices for different α lev-
els when changing the gas signal parameter values with
a shift size of 1%, Laplace jumps.
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(b) Relative width of the risk-captured bid-ask spread
for different α values when changing the gas signal pa-
rameter values with a shift size of 1%, Laplace jumps.

Figure B.2: Parameter-risk implied bid-ask spread w.r.t. the gas price process.
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(a) Risk-captured bid and ask prices for different α lev-
els when changing the gas and power base signal pa-
rameter values with a shift size of 1%, normal jumps.
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(b) Relative width of the risk-captured bid-ask spread
for different α levels when changing the gas and power
base signal parameter values with a shift size of 1%,
normal jumps.

Figure B.3: Parameter-risk implied bid-ask spread w.r.t. the gas and power base price processes.
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(a) Risk-captured bid and ask prices for different α lev-
els when changing the gas and power base signal pa-
rameter values with a shift size of 1%, Laplace jumps.
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(b) Relative width of the risk-captured bid-ask spread
for different α values when changing the gas and
power base signal parameter values with a shift size
of 1%, Laplace jumps.

Figure B.4: Parameter-risk implied bid-ask spread w.r.t. the gas and power base price processes.
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(a) Risk-captured bid and ask prices for different α lev-
els when changing all the parameters values except of
jump size with a shift size of 1%, normal jumps.
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(b) Relative width of the risk-captured bid-ask spread
for different α levels when changing all the parame-
ters values except of jump size with a shift size of 1%,
normal jumps.

Figure B.5: Parameter-risk implied bid-ask spread w.r.t. all the parameters, except of the jump
size.
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(a) Risk-captured bid and ask prices for different α lev-
els when changing all the parameters values except of
jump size with a shift size of 1%, Laplace jumps.
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(b) Relative width of the risk-captured bid-ask spread
for different α values when changing all the parame-
ters values except of jump size with a shift size of 1%,
Laplace jumps.

Figure B.6: Parameter-risk implied bid-ask spread w.r.t. all the parameters, except of the jump
size.
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(a) Risk-captured bid and ask prices for different shift
sizes when changing the gas signal parameter values
with a significance level α = 10%, normal jumps.
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(b) Relative width of the risk-captured bid-ask spread
for different shift sizes when changing the gas signal
parameter values with a significance level α = 10%,
normal jumps.

Figure B.7: Parameter-risk implied bid-ask spread w.r.t. the sensitivity value (gas price process).
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(a) Risk-captured bid and ask prices for different shift
sizes when changing the gas signal parameter values
with a significance level α = 10%, Laplace jumps.

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0.016

0.0165

0.017

0.0175

0.018

0.0185

0.019

0.0195

Simulations

B
id

−
A

sk
 D

el
ta

 V
al

ue

Relative bid−ask spread width accounting for the parameter risk in gas signals with Laplace jumps

 

 
Shift

0.01
 Bid−Ask Delta

Shift
0.05

 Bid−Ask Delta

Shift
0.15

 Bid−Ask Delta

(b) Relative width of the risk-captured bid-ask spread
for different shift sizes when changing the gas signal
parameter values with a significance level α = 10%,
Laplace jumps.

Figure B.8: Parameter-risk implied bid-ask spread w.r.t. the sensitivity value (gas price process).
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(a) Risk-captured bid and ask prices for different shift
sizes when changing the gas and power base signal
parameter values with a significance level α = 10%,
normal jumps.
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(b) Relative width of the risk-captured bid-ask spread
for different shift sizes when changing the gas and
power base signal parameter values with a significance
level α = 10%, normal jumps.

Figure B.9: Parameter-risk implied bid-ask spread w.r.t. the sensitivity value (gas and power
base price processes).
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Figure B.10: Parameter-risk implied bid-ask spread w.r.t. the sensitivity value (gas and power
base price processes).
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Figure B.11: Parameter-risk implied bid-ask spread w.r.t. the sensitivity value (all parameters,
except of the jump size).
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Figure B.12: Parameter-risk implied bid-ask spread w.r.t. the sensitivity value (all parameters,
except of the jump size).
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