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Abstract

The aim of this thesis is to find a technique that allows for the use of

decomposition methods known from stochastic programming in the frame-

work of linear stochastic bilevel problems. The uncertainty is modeled as

a discrete, finite distribution on some probability space. Two approaches

are made, one using the optimal value function of the lower level, whereas

the second technique uses the Karush-Kuhn-Tucker conditions of the lower

level. Using the latter approach, an integer-programming based algorithm

for the global resolution of these problems is presented and evaluated.
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1

Introduction

Bilevel programming problems are hierarchical mathematical optimization problems

between at least two groups of decision makers. Each group has a decision vector that

can affect the other group’s or groups’ constraints and objective functions. Besides,

every decision vector is chosen optimally to its own groups optimization problem that

can again be influenced by the other decision vectors.

The problem is hierarchical which means that the first group chooses its variables

including the optimal reaction of the other groups. So, the second group receives the

first group’s choice as a parameter and solves its optimization problem. The optimal

decision vector of the second group can be seen as a (multi-)function dependent on the

first groups choice.

If there are more groups, the hierarchy continues analogously with dependence of

the third groups choice on the first and second groups’ decisions, and so on.

Mathematically spoken, bilevel optimization problems are mathematical programs

that have in addition to their normal constraints – whether linear or not – “a subset

of their (decision) variables constrained to be an optimal solution of other programs

parameterized by the remaining variables. When these other programs are pure math-

ematical programs we are dealing with bilevel programming”, see Vicente and Calamai

[89].

They are very closely related to special game theoretical questions, namely Stack-

elberg games which are named after a work of Heinrich von Stackelberg published in

1934 [90]. The players in this strategic game are acting hierarchically and can choose

one strategy out of a finite or infinite pool of strategies defined for each player.

1



1. INTRODUCTION

The player who acts first is called the leader and the player selecting his strategy

second is called the follower. Again, it is important that the leader has the advantage

to move first and the follower can just react to that.

The objective in a Stackelberg game is to find a strategy for the leader that min-

imizes his costs with respect to both, the leader’s strategy and the follower’s optimal

reaction. The latter implicates that the follower, in turn, chooses the cheapest strategy

out of his pool of strategies dependent on the leader’s decision.

It is possible that each group of players can contain more than one member. In this

case, the members are additionally assumed to search for an equilibrium in between

them (e.g. Nash or Stackelberg), see Sherali et al. [82] or Simaan [84].

The difference to bilevel programming lies in the fact that, in bilevel programming,

both (re-)action sets can depend on the decision of the other player and that there

can be more hierarchies than just two. But, a part of the nomenclature in bilevel

programming is adopted from Stackelberg games. So, the first group is also called the

leader and the second is the follower.

The applications for this setting are widely spread. It can be employed every time

two or more players act and react to each other, examples:

• Decision making for a firm that interacts with a market regulator or the market

itself,

• Physical and process design problems,

• Structural optimization problems,

• Optimal control problems, or

• Principal-agency-problems.

The general form of a two-player bilevel program can be described as

min F (x, y)

s.t. G(x, y) ≤ 0 (1.1)

y ∈ Y (x) = arg min
y∗
{f(x, y∗) : g(x, y∗) ≤ 0}

Here, F : Rn × Rm → R and f : Rn × Rm → R are the upper and lower level objective

functions, respectively, as well as G : Rn×Rm → Rr1 and g : Rn×Rm → Rr2 the upper

2



and lower level constraint functions, respectively. Y (x) is called the rational reaction

set of the follower and

IR = {(x, y) ∈ Rn × Rm : G(x, y) ≤ 0 , y ∈ Y (x)}

is called the inducible or induced region, i.e., the set containing all feasible solutions of

that bilevel problem.

It has been shown in many works that this general bilevel problem is in most

cases irregular because many of the well-known constraint qualifications from nonlinear

optimization do not hold here. Further information about this topic will be given in

the corresponding chapters according to its reformulation.

In this thesis, it is assumed that the leader’s constraints are independent of the

follower’s decision, so G(x, y) = G(x). Besides, the problem is assumed to be linear.

That means that every objective function and every constraint is linear (or affine) in

both decision vectors. Thus, the linear (so far deterministic) model can be written as

min c>x+ d>y

s.t. Ax = b , x ≥ 0

y ∈ Y (x) = arg min
y∗
{q>y∗ : Wy∗ +Hx = h , y∗ ≥ 0}

where x ∈ Rn is the decision vector of the leader and y ∈ Rm that of the follower. The

vectors c, d, b, q, and h as well as the matrices A,W, and H are of appropriate sizes.

Now, there can be uncertainties in the follower’s problem, either because the leader

does not have full information about it or because the problem is dependent on future

events that cannot be (easily) predicted. That is when stochasticity comes into play.

The field of stochastic programming provides many approaches and methods on how to

deal with it. Therefore, a short overview is given in chapter 2 where the reader also finds

two decomposition methods that might be useful in stochastic bilevel programming.

The aim of this thesis is to find an algorithm for linear stochastic bilevel problems

that allows for the use of decomposition techniques as it is possible in many stochastic

programming problems. In particular, two basic approaches relying on different char-

acterizations of optimality are considered, via the optimal value function and via the

Karush-Kuhn-Tucker conditions.

In chapter 3, linear bilevel problems are presented as well as some of their properties.

In order to track solutions to these problems computationally, three different approaches

3



1. INTRODUCTION

of reformulation – among others – have been developed and will be discussed along with

their relation to the original problem. Additionally, a linear stochastic bilevel problem

will be built and further assumptions concerning the stochastics are made. The model

of interest has a finite set of outcomes and is formulated such that the upper level has

to decide “here-and-now”, whereas the lower level is able to choose “wait-and-see”.

In the ensuing two chapters, the mentioned reformulation approaches will be exam-

ined in detail for the presented linear stochastic bilevel problem. The first unites both

feasibility sets into one and adds an additional constraint that uses the optimal value

function of the follower. This is done in order to eliminate all those decision variables of

the follower that would not be the optimal choice for the follower. In chapter 4, the dif-

ficulties are illustrated when aiming at a scenariowise decomposition for reformulations

via the optimal value function.

The other significant approach, shown in chapter 5, is to solve the bilevel problem

using the Karush-Kuhn-Tucker (abbr. KKT) conditions for the lower level. After

the transformation, these problems result in mathematical problems with equilibrium

constraints. It is shown that this method is quite advantageous when it comes to

decomposition.

An algorithm, named stolibi, that uses the latter approach is displayed in chapter

6. Stolibi is based on the work of Hu et al. [50] where a cutting plane algorithm is pro-

posed for deterministic linear programs with linear complementarity constraints. The

algorithm is analyzed and adjusted for the optimistic linear stochastic bilevel problem

using the reformulation of the KKT approach, including the use of a decomposition

mehtod. The new pseudo-agorithm is displayed as well as an evaluation of numerical

results.

Finally, there is a conclusions chapter.

Summarizing, the main contribution of this thesis is the algorithm presented in

chapter 6 which allows for the use of a decomposition method. In stochastic program-

ming, especially in two-stage problems, linearity is a well-regarded property that has

been deeply studied and used for fast optimization such as decomposition methods.

Linear stochastic bilevel problems, though, present a harder class of problems, even

in the deterministic case. Therefore, decomposition methods for those problems are

still to be established further. Two common approaches to solve bilevel problems are

examined for their ability to allow for decomposition. While the first only serves as an
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1.1 Linear Two-Stage Problems – A Special Case

example that it might be very hard to find a decomposition method using the optimal

value function, an algorithm is found for the KKT approach.

The algorithm is intensely analyzed and proven to work correct. The implemented

code serves mostly as a proof of concept and is therefore not comparable to commercial

mixed-integer solvers, such as Gurobi [47].

Another contribution can be found in the analysis of linear bilevel problems in

section 3.1.

The remaining part of this chapter is organized as follows. The relationship between

linear two-stage problems (as known from Birge and Louveaux [15] or Kall and Wallace

[57]) and linear stochastic bilevel problems is displayed in section 1.1. It is followed

by a section that exhibits the problems that arise in bilevel programming. Section 1.3

then points out the motivation for this work. The chapter concludes with an outline of

bilevel and especially stochastic bilevel literature.

1.1 Linear Two-Stage Problems – A Special Case

Linear stochastic bilevel problems and linear two-stage problems bear a lot of simi-

larities: two levels or stages according with two different types of decision variables

influencing each other, and both having an important impact on the upper stage or

leader’s objective. In fact, they both belong to the class of hierarchical planning prob-

lems (see Patriksson and Wynter [71]) and so they are very closely related as will be

shown now. But still, there exist distinctions that are very crucial.

A typical two-stage stochastic linear program with fixed recourse as presented in

section 3.1 in the book by Birge and Louveaux [15] and oftentimes applied in the

economic system can be formulated as follows:

min{c>x+Eω
[
min q>(ω)y(ω) : Wy(ω) = h(ω)− T (ω)x , y(ω) ≥ 0 , ∀ω ∈ Ω

]
, x ∈ X }

where X is a nonempty polyhedron (e.g. X = {x ∈ Rn : Ax = b, x ≥ 0}), as well as

x ∈ Rn1 and y(ω) ∈ Rn2 for all ω ∈ Ω are the decision vectors of the first and second

stage, respectively. Let (Ω,A,P) a probability space where Ω is a discrete or continuous

set of outcomes, A a σ-algebra, and P a probability measure. The remaining vectors

and matrices are data of appropriate sizes. If Ω is a continuous set, then the above
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1. INTRODUCTION

equality Wy(ω) = h(ω) − T (ω)x and the inequality y(ω) ≥ 0 should hold P-almost

surely.

In order to get a proper two-stage scheme, nonanticipativity is assumend, i.e., first,

x is chosen, then the outcome of the random vector

ξ(ω) = (q>(ω), h>(ω), T1(ω), . . . , Tk(ω))

is observed where Ti are the rows of the matrix T , and not until then y(x, ω) is chosen

dependent on the preceding values. Moreover, the distribution ξ(ω) must not depend

on x. Instead of the expectation E another risk measure could be picked.

Let Y(x, ω) = arg min
z
{q>(ω)z : Wz = h(ω) − T (ω)x , z ≥ 0}, then, the above

model can be rewritten as

min{c>x+ Eω
[
q>(ω)y(x, ω) : y(x, ω) ∈ Y(x, ω) , ∀ω ∈ Ω

]
, x ∈ X }.

Compared to the linear stochastic bilevel program

min{c>x+ Eω
[
d>(ω)y(x, ω) : y(x, ω) ∈ Y(x, ω) , ∀ω ∈ Ω

]
, x ∈ X }.

the difference seems to be marginal since only the upper level cost vector for the lower

level variable y(x, ω) has changed. But, this small difference has strong impacts on the

complexity and the convexity of the problem. Besides, the question of the uniqueness

of the solutions for the lower level becomes an issue. All this will be shown in the next

section.

1.2 Basic Complexities

As could be seen in the last section, linear stochastic two-stage programs form a sub-

class of linear stochastic bilevel problems and, in addition, the complexity of bilevel

problems rises compared to two-stage problems. For that purpose, it is assumend that

Ω is discrete and finite, that is |Ω| = N . Now that the random parameters are spec-

ified in the form of scenarios, the model of the linear two-stage problem is called the

deterministic equivalent problem and can be displayed as

min c>x+
N∑
k=1

πk d
>
k yk

s.t. Ax = b,

Wyk = hk − Tkx, yk ≥ 0 k = 1, . . . , N

(1.2)

6



1.2 Basic Complexities

with 0 ≤ πk ≤ 1 being the weights of the different scenarios and
∑
πk = 1. This linear,

convex programming problem is polynomially solvable since the input size of the model

is just the size of all parameters (see e.g. Dyer and Stougie [38]).

On the other hand, the deterministic equivalent problem of the linear stochastic

bilevel problem would be a linear bilevel model:

min c>x+
N∑
k=1

πk d
>
k yk(x)

s.t. Ax = b,

yk(x) ∈ Yk(x), k = 1, . . . , N,

(1.3)

with Yk(x) = arg min
z
{q>k z : Wz = hk − Tkx , z ≥ 0}.

Hansen et al. [48] showed in their paper that the linear bilevel problem is a strongly

NP-hard problem. Actually, this property was even tightend by Vicente et al. [88].

They proved (based on a reduction from 3-SAT) that checking strict local optimality

or just local optimality is already NP-hard. That means that even in the deterministic

equivalent case, most likely, there will not exist polymial-time algorithms unless P =

NP.

This subordination of the two problems can also be confirmed when analyzing the

convexity of the problems. On the one hand, problem (1.2) is convex whereas problem

(1.3) is normally neither convex nor differentiable (for more details see chapter 3).

In addition, let q1 = · · · = qN = q and

Qk(x) = min
y
{q>y : Wy = hk − Tkx , y ≥ 0}

the recourse cost function of the deterministic equivalent of the linear two-stage problem

with a fixed cost vector. Two assumptions will be made:

(A1) [Complete Fixed Recourse] The recourse matrix W ∈ Rn2×m2 satisfies

{z ∈ Rm2 : z = Wy , y ≥ 0} = Rm2 .

(A2) [Sufficiently Expensive Recourse] (Also called Dual Feasibility)

{u ∈ Rn2 : W>u ≤ q} 6= ∅.

7



1. INTRODUCTION

It can be shown (see e.g. Birge and Louveaux [15]) that under these two assumptions

the functions Qk, k = 1, . . . , N, are piecewise linear and convex in x. Thus,

QE(x) := c>x+

N∑
k=1

πkQk(x)

is also piecewise linear and convex in x. Here, 0 ≤ πk ≤ 1 represent the weights of each

scenario and
N∑
k=1

πk = 1.

But, under the same assumptions, the bilevel cost function

F (x, y) = c>x+

N∑
k=1

πk d
>
k yk(x)

with yk(x) ∈ Yk(x) = arg min
z
{q>z : Wz = hk − Tkx , z ≥ 0}, k = 1, . . . , N, may be

nonconvex in x. Just assume dk = −q for all k = 1, . . . , N and the bilevel problem

reduces to a max-min-problem.

In contrast to stochastic programming, the uniqueness of the lower level solution

set becomes a crucial issue here. Especially in the linear case, it can’t be taken for

granted that

Yk(x) = arg min
y
{q>y : Wy = hk − Tkx , y ≥ 0}

is a singleton. So, the leader has to decide about his risk attitude in conjunction with

his relation to the follower. If the relation to the follower is friendly or cooperative

(e.g. in some prinicipal-agent settings or when optimizing decision questions arising

in a decentralized company), the optimistic approach would be recommendable. It is

assumed that in case of multiple solutions, the follower chooses that variable that is

best for the leader, i.e., the following vector is chosen for every k = 1, . . . , N

yok(x) = argmin
z
{πk d>k z : z ∈ Yk(x)}.

On the other hand, if the situation is rather competitive, the pessimistic solution

concept would be a good alternative. For the follower’s reaction, the worst case is

assumed, that is

ypk(x) = argmax
z
{πk d>k z : z ∈ Yk(x)}.

8



1.3 Motivation

Figure 1.1: Possible form of a pessimistic bilevel value function, found in Dempe [28].

Both approaches have been developed early in literature but the optimistic is mostly

applied in economics. That is because the pessimistic bilevel problem may not have an

optimal solution due to the fact that the pessimistic upper level value function

F p(x) = c>x+
N∑
k=1

πk d
>
k y

p
k(x)

may not be lower semicontinuous. The absence of this property includes that the

pessimistic bilevel problem may not have an optimal solution. A deterministic example

for this can be seen in figure 1.1 where y represents the upper level variable in this case

and ϕ(y) + d2>y = F p(y).

Besides, most reformulations of bilevel problems – in order to compute solutions –

rely on the optimistic case. So, throughout this thesis, the optimistic approach will be

used.

1.3 Motivation

In spite of the differences, two-stage and bilevel stochastic problems bear a lot of struc-

tural similarities. Still, only few papers were published that make use of decomposition

methods, see e.g. Lin et al. [61] where a Dantzig-Wolfe decomposition method is used

9



1. INTRODUCTION

in a heuristic to solve bilevel dynamic network design problems. But, the structural

resemblance suggests the possibility that those techniques can particularly be used in

order to find global optimal solutions for linear stochastic bilevel problems. More infor-

mations about methods known from stochastic programming will be given in chapter

2.

Due to the growing performance of computers, stochastic bilevel problems become

more and more solvable and, thus, interesting for economical benefit. Amongst oth-

ers, utility companies have supported some practical research in exchange for optimal

offering or pricing strategies. Ruiz and Conejo adress in their paper [78] the problem

of finding the optimal offering strategy for a price-making power producer that trades

electric energy in a day-ahead electricity pool. Besides, uncertainty associated with

demand bids and generating offers – both appearing scenariowise in the second level –

is considered. The problem is linear except for the leader’s objective where a product

of leader and follower variables occur. This term is linearized and the second level is

firstly replaced by its Karush-Kuhn-Tucker conditions. Then, the newly built com-

plementarity conditions are remodelled using binary variables and the big-M method.

The resulting mixed-integer linear one-level problem is then solved using ILOG CPLEX

[53]. As the authors ascertain themselves, the problems of this procedure lies within

the fact that

• the computational time increases dramatically if scenarios are considered (in their

case study, the computational time of eight scenarios compared to the determin-

istic case took about 30 times longer)

• the appropriate selection of the big-M parameters generally requires a “nontrivial

trial-and-error process” and, thus, can also increase the computational time.

The algorithm presented in chapter 6 is in fact based on the reformulation of the

big-M method but does not depend on the calculation of the parameters.

1.4 Literature

Despite their closeness to Stackelberg games which have been known for quite some

time, bilevel programming problems have gained mathematical interest in the early

1980’s, only.

10



1.4 Literature

In rigorous mathematical terms, the problem was introduced by Bracken and McGill

in 1973, see [16]. However, Candler and Norton [18] were the first to name the problems

bilevel and multilevel. Still, there are more recent works from authors that name their

problems two-level instead of bilevel. Nowadays, the term bilevel is established.

Surveys

In the early 80’s, a lot of effort has been spent by the mathematical community in

order to analyze different kinds of bilevel and multilevel problems. A good overview is

given in 1994 by Vicente and Calamai [89]. Linear bilevel problems were reviewed by

Wen and Hsu [91] in the year 1991.

Another survey with numerous references is given in 2003 by Dempe [29]. It includes

a short overview of bilevel programming and mathematical problems with equilibrium

constraints.

The most recent overview of bilevel programming was presented by Colson et al. [26]

in 2007. Beside solution approaches and applications, it focuses on the connection

between bilevel models and mathematical problems with equilibrium constraints.

Monographs

Two books on bilevel programming were published so far: the first was written

by Bard [7] and the next by Dempe [28]. Bard concentrated his research on different

algorithms to solve bilevel problems as well as bilevel applications. Dempe’s book, on

the other hand, is very extensive due to the fact that it is concerned with applications,

linear, discrete and nonlinear bilevel problems, parametric optimization as well as op-

timality conditions and different solution algorithms. Many of the important results

for linear and other bilevel programs can be found in the latter. It is so far the most

recent book in that research area but does not include stochastic bilevel problems. The

remainder of this section will thus focus only on stochastical bilevel publications.

Stochastic Bilevel Articles

The problems considered below are all optimistic if not mentioned otherwise.

Patriksson and Wynter [71] were the first to publish a paper concerning stochas-

tic bilevel problems in 1999. Therein, bilevel, equilibrium constrained, and two-stage

problems with recourse are presented along with their discretely and continuously dis-

tributed stochastic versions. Some relations between these models are presented and

– more importantly – conditions for the existence of solutions, convexity and directional

differentiability are derived. The paper concludes with the presentation of different

11



1. INTRODUCTION

ideas how to solve stochastic mathematical programs with equilibrium constraints al-

gorithmically, including a descent and a penalty algorithm as well as suggestions for

scenario decomposition. The equilibrium constraint in this paper is described by a

variational inequality, but the bilevel problem is presented in its traditional way. In

all models, the lower level or second stage variable just infects the upper level objec-

tive function, but not its constraints. Additionally, there are no approaches made for

the case that the lower level solution is not unique. A forerunner to this report was

the conference presentation “Bilevel stochastic programming for network equilibrium

problems” at the International Symposium on Mathematical Programming (ISMP) in

1997 by Wynter.

Both, Wynter and Patriksson kept a research focus on stochastic bilevel program-

ming and its application in network design problems as well as structural optimization.

Patriksson himself is giving an overview on papers concerning stochastic mathematical

programs with equilibrium constraints (SMPEC) published between 1997 and 2008 in

section 1.3 of his paper [70]. The rest of this article is concerned with continuously

distributed traffic SMPECs and the study of the dependence of optimal solutions on

the probability distribution. Therefore, the author also distinguishes between the cases

where the upper level constraints are joint, that is, simultaneous constraints in both

variables, x and y, and where these constraints are only in x. It is shown there that

under certain strong assumptions and in the absence of joint upper level constraints the

probability distribution are continuous in the optimal design x (upper level variables).

At the end of his work, Patriksson presents two inexact exterior penalty methods,

one regarding the upper level, the other one regarding the lower level constraints.

Besides, two discretizations of the probability space are presented, one based on the

method of mechanical quadratures and the other is an application of sample average

approximation.

The remainder of this section is concerned with publications in the field of stochastic

bilevel problems that are not mentioned in Patriksson [70]. Of course, it gives only an

insight.

The doctor’s thesis [92] by Werner, published in 2005, supervised by Gaivoronski,

was one of the first to deal with stochastic bilevel problems. The thesis mainly consists

of four papers, of which one is published (see Audestad, Gaivoronski, and Werner

[4]). The first paper [4] is concerned with building a stochastic two-stage bilevel model
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1.4 Literature

with a finite number of scenarios for a network operator in the telecommunication

environment. The two stages are realized in the lower level. The leader chooses his

periodic decisions and the follower can just react to the stochastic outcomes and the

decision of the leader. The problems are linear-constrained problems with quadratic,

concave objective functions. A deterministic equivalent formulation is given.

The second paper introduces the uncertainty more thoroughly, necessary optimality

conditions of Fritz-John type are given and an algorithm is presented utilizing a stochas-

tic quasi-gradient method. At first, the uncertainty is modelled as a two-stage problem

in the upper level which also exhibits constraints in the follower’s variables. Thus, the

feasibility region can be disconnected. Assumptions are made such that the leader’s and

follower’s objective functions are convex and differentiable and the follower’s optimal

solution is always uniquely determined. An one-level two-stage reformulation is given

using the activity sets of the lower level constraints and KKT conditions. This prob-

lem is solved by a stochastic quasi-gradient method which works on different segments

of the feasibility region. It is shown that, under certain assumptions, the algorithm

converges.

In a second approach, not only the leader, but also the follower can incorporate a

second stage decision. However, “the follower does not regard the future when she deter-

mines her action [..] in the first stage, i.e., her second stage problem is not interpreted

as recourse problem” (see Werner [92], page 84). Again, under certain assumptions

the problem can be reformulated as the above descripted one-level two-stage problem

and solved with the same algorithm. Numerical studies are given (for two different

step sizes) where the algorithm needs more than 2000 iterations for a small stochastic

problem. In all models, Werner uses the expectation as risk functional.

The third paper is concerned with the utilization of stochastic bilevel programming

and agency problems in economy; and the fourth paper presents conditions under which

the stochastically perturbed function F (z) = Eω[f(z+ω)] becomes strictly convex while

f was only convex. Thus, an alternative to the pessimistic and optimistic approaches

is given that allows for unique lower level solutions when including stochasticity. A

follow-up paper of Gaivoronski and Werner [45] in the framework of agency problems

also deals with modeling questions and solution approaches.

Roghanian et al. [77] consider a bilevel and multiobjective problem with joint chance

constraints for supply chain planning. The joint chance constraints are instantly re-
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1. INTRODUCTION

placed by their deterministic equivalent using Hulsurkar et al. [52]. Several numerical

examples are solved using the algorithm for suchlike deterministic problems proposed

by Osman et al. [68].

Carrión et al. [20] present a (stochastic bilevel) decision-making framework for an

electricity retailer along with computational behavior of the resulting mixed-integer

linear model using a commercial solver. Both levels consist of two-stage problems

resulting in here-and-now decisions for the leader and the follower.

A comparable approach for the gas market has been made by Kalashnikov et al. [56]

and Dempe et al. [34]. Whereas, the former paper presents a mixed-integer problem,

numerical results, as well as a comparison with the perfect information solutions and

the expected value solutions (in order to evaluate the benefit of the introduction of

stochastics). The latter uses an inexact penalization approach in order to formulate

a new algorithm which is shown to converge. The latter algorithm is evaluated and

compared to existing methods.

Fampa et al. [40] present a stochastic bilevel problem for bidding at electricity mar-

kets. The paper also includes a primal-dual heuristic which is evaluated and compared

to other solvers.

A linear mixed-integer bilevel problem with a probabilistic knapsack constraint is

analyzed by Kosuch et al. [59]. The finite sample space allows to reformulate the prob-

lem deterministically. Two reformulations follow and the authors are left with a linear

deterministic single-level problem with complementarity constraints. The remaining

problem is then solved using Lagrangian relaxation for the quadratic terms and an

iterative scheme using upper and lower bounds for the Lagrangian term. Numerical

results are given where the computing time is not dependent on the number of scenarios.

The doctoral thesis by Pisciella [74] discusses different business models for service

providers, two of them being stochastic bilevel problems where the uncertainty lies in

the future demand in the lower level. For both models, two approaches are made.

The first approach uses finitely many scenarios and results in a linear mixed-integer

program, whereas the second works with a continuous distribution which causes the

optimal value function of the lower level to be differentiable under weak assumptions.

The expected value is chosen to evaluate the uncertainty. Both approaches are solved

and numerical results are evaluated.
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1.4 Literature

A paper by Alizadeh et al. [2] deals with a bilevel problem over a transportation

network where both levels are two-stage problems. A discrete distribution is assumed

and the problem is reformulated as a single-level problem. Some properties are analyzed

along with some examples.

Very recently, Ivanov [55] focused on linear stochastic bilevel problems whose ob-

jective is given by a Value-at-Risk (see chapter 2). The uncertainty appears in the

right-hand side of the follower’s problem. Sufficient conditions are given such that

the risk funcitonal is a Lipschitz-continuous function of the upper level decision. The

problem is reformulated into an one-level two-stage problem using the KKT conditions.

Numerical experiments are reported for discretely distributed problems, with up to 25

realizations and decision variables of dimensions two in the upper and three in the lower

level.

Kovacevic and Pflug [60] are concerned with electricity swing option pricing in the

monopolistic and the competitive case. Both cases are modelled as bilinear bilevel

problems with multistage decisions in the lower level while the expectation is used

for the first case. The second uses the Conditional Value-at-Risk. Simple algorithms

are proposed that make use of the special structure, including one algorithm that is

capable to solve a pessimistic instance. Numerical examples are given along with a

concise overview on related algorithms.

Interestingly, most of the previous mentioned papers were motivated by network-

related problems, arising in telecommunications, electricity markets or transportations.

These problems inherit a natural order of successive decision making under uncertainty

and constitute, at the moment, the biggest field of applications for stochastic bilevel

problems.

In the case when the lower level can be replaced by its Karush-Kuhn-Tucker con-

ditions (see chapter 5), the bilevel problem can be reformulated as a mathematical

program with complementarity contraints (MPCC). Therefore, also papers on stochas-

tic MPCCs are of importance here. A state of the art survey of 2009 is given by Lin

and Fukushima [62] containing a few references on papers for stochastic MPCCs.

A paper by Birbil et al. [14] discusses a sample-path method (also known as sample

average approximation) for stochastic MPCCs where some functions are replaced by

the expectation of these functions supplementary dependent on a random event ω. All

decisions are here-and-now decisions since they have to be made before the random
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1. INTRODUCTION

event is realized. Also, other papers by two of the authors – Birbil and Gürkan – were

published in that field but are already mentioned in Patriksson [70].

A stochastic MPCC for the electricity market is given in Zhang et al. [99]. The

authors examine existence and uniqueness of a Nash-Cournot equilibrium, which is

realized as a complementarity constraint, along with other properties of the model.

Liu et al. [63] as well as Xu and Ye [93] consider a two-stage problem where the sec-

ond stage comprises a complementarity constraint along with other constraints. Some

constraint qualifications are examined as well as the stability of the problem in order

to be approximated by “ordinary” two-stage stochastic nonlinear programs. In the

former paper, a sample average approximation is conducted, whereas the latter focuses

on optimality conditions.

None of the presented algorithms for stochastic bilevel problems or stochastic MPCCs

made use of a scenariowise decomposition technique.
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2

Linear Two-Stage Problems

As already stated in the work of Patriksson and Wynter [71] and verified through

the reformulation in section 1.1, linear two-stage problems are a special case of linear

stochastic bilevel problems. Still, the former gained considerably more research interest

than the latter. This chapter will give a very brief discussion. More information can be

found, e.g., in the monographs Birge and Louveaux [15], Censor and Zenios [22], Kall

and Wallace [57], or Prékopa [75]. Also, a broad collection of publications in that field

can be found on the internet, collected by van der Vlerk [86].

Many disciplines, such as economics, mathematics, and statistics, have put time and

effort in analyzing stochastic programs. Therefore, the applications vary from financial

planning over agricultural questions to logistic problems and more. Every time data is

not known for certain but can be approximated by a discrete or continuous probability

distribution, the user can profit from developments in that field. Numerous approaches

and solution methods were developed among which probabilistic constraints, two-stage

problems, and decomposition methods inherit an important role.

Probabilistic constraints, also known as chance constraints, allow the decision maker

to determine to what percentage at least (or at most) a constraint has to hold, depen-

dent on some probability measure. An example is

P ({ω ∈ Ω : g(x, ω) = 0}) ≥ α

where P is a probability measure, ω ∈ Ω a random event, g : X × Ω → R a proper

function, X some Banach space, and 0 < α ≤ 1 a real value that is called probability

level. These individual chance constraints can be part of different kinds of optimization
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2. LINEAR TWO-STAGE PROBLEMS

models where x might be a discrete or continuous variable. If possible, the inverse of

the distribution function or the variance is used in order to reformulate the constraint

into computationally or mathematically simpler ones (see Birge and Louveaux [15]).

However, if the same decision vector x occurs in a system of random constraints,

they are called joint probabilistic constraints. These constraints are much harder to

treat and feasible solutions x are difficult to find because the resulting problems might

be nonconvex and the feasibility domain might not even be connected dependent on

the distribution function. In order to solve suchlike problems, often, piecewise approx-

imations of the inverse of the distribution function are executed.

Another possibility to incorporate uncertainty is via a recourse program in which a

first decision is made before the uncertainty is disclosed and some recourse action can

be taken afterwards. This line of action is also called nonanticipativity. It forces the

first decision variable x to be taken without the anticipation of future events ω. On

the other hand, the recourse action y is dependent on x as well as on ω. Its function is

to compensate the random event.

A linear recourse problem was already presented in section 1.1. This representation

was chosen in order to make the comparison with bilevel problems easier. The same

model can be represented using

φ(t1, t2) = min{t>1 y : Wy = t2 , y ≥ 0} (2.1)

the value function of the inner linear program and

f(x, ω) = c>x+ φ(q(ω), h(ω)− T (ω)x)

the random total cost function. Then, the problem can be stated as

min{Eω(f(x, ω)) : x ∈ X}.

These definitions also allow for different functions than affine or linear ones, e.g. bilin-

ear terms, quadratic random cost, or nonlinear constraints. If φ is unbounded below

or infeasible, the value of the second stage problem is defined to be −∞ or +∞, re-

spectively. Additionally, if Ω is a finite set, the expected value is then the weighted

sum of the functions φk(x) = φ(qk, hk − Tkx), k = 1, . . . , N = |Ω|. For that case, it is

+∞−∞ = +∞ in order to reject any first stage variable that produces an infeasible

solution.
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The problem (2.1) has fixed recourse, i.e., the recourse matrix W is not random.

Elsewise, only few can be said about solutions and their existence (see Gollmer [46] and

Freund [43]).

Taking the expectation in the above model may lead to solutions x∗ whose random

variable f(x∗, ω) takes big values more frequently than wanted by the user. Instead,

other risk functionals can be exerted such as the excess probability (see e.g. Bereanu

[10]), the Value-at-Risk, or the Conditional Value-at-Risk (for both see e.g. Pflug [72],

or for the latter see Rockafellar and Uryasev [76]). These functionals or measures reflect

a rather risk-averse attitude given that they evaluate worst outcomes.

In these cases, the optimization is based on a weighted sum of the expectation and

some other risk measure R, i.e.,

min{Eω(f(x, ω)) + ρ · R(x)︸ ︷︷ ︸
=QMR(x)

: x ∈ X}

where ρ ≥ 0 is some fixed parameter. The above mentioned risk functionals are:

• Excess Probability:

R(x) = Qη(x) := P ({ω ∈ Ω : f(x, ω) > η})

This risk functional describes the probability of exceeding a prescribed threshold

η.

• Value-at-Risk:

R(x) = QαV aR(x) := inf
{
η : P({ω ∈ Ω : f(x, ω) ≤ η}) ≥ α

}
It expresses for a given probability level 0 < α ≤ 1 the best (i.e., smallest) outcome

of the (1−α) ·100% worst. It is also called the α-quantile and can be presented as

the inverse G−1(α) of the distribution function G(u) = P({ω ∈ Ω : f(x, ω) ≤ u}).

• Conditional Value-at-Risk:

R(x) = Qα(x, η) :=
1

α

α∫
0

G−1(u)du

The Conditional Value-at-Risk (CVaR) is the expected value of the costs in the

α · 100% worst cases, for a given probability level 0 < α < 1.
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2. LINEAR TWO-STAGE PROBLEMS

It is also called Average Value-at-Risk or Expected Shortfall because it occurs as

the average of the Value-at-Risks QuV aR for 0 ≤ u ≤ α.

Schultz [81] showed that the excess probability as well as the Conditional Value-at-

Risk possess a binary-linear and linear equivalent formulation, respectively, if a discrete

distribution can be assumed and the uncertainty lies only in the vector on the right-

hand side.

More information about these and other risk functionals can be found in the book

by Pflug and Römisch [73].

2.1 Properties

Unlike in bilevel programming, only the optimal value of the second stage is of interest in

stochastic programming. That gives rise to further study the function φ : Rm×Rr → R.

Theorem 2.1 (Nožička et al. [67])

Let

K1 :=
{
t1 ∈ Rm : {u ∈ Rr : W>u ≤ t1} 6= ∅

}
and

K2 :=
{
t2 ∈ Rr : {y ∈ Rm+ : Wy = t2} 6= ∅

}
.

Then, the following holds:

a) φ(t1, t) is piecewise linear, continuous and concave in t1 ∈ K1 for all fixed t ∈ K2.

b) φ(t, t2) is piecewise linear, continuous and convex in t2 ∈ K2 for all fixed t ∈ K1.

c) φ(t1, t2) is continuous on K = K1×K2 and there exists a finite partition of K into

s cones Kj , j = 1, . . . , s, each of dimension m+ r such that φ(t1, t2) is bilinear on

Kj .

So, under the assumptions of complete fixed recourse and sufficiently expensive

recourse (see page 7 in the previous chapter), the function φ(q, h − Tx) is piecewise

linear and convex in x for any q, h, and T and so is f(x) = c>x+
∑

k φ(qk, hk − Tkx).
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2.2 Decomposition Methods

Figure 2.1: Dual block-angular structure, see Birge and Louveaux [15].

2.2 Decomposition Methods

There are two big classes of solution methods that have been developed for high di-

mensional linear problems with a special structure. The first one was developed by

Dantzig and Wolfe [27] and can be applied to problems with a block structure as in

figure 2.1. It uses a technique of delayed column generation as the problem is split into

a master problem and one or more subproblems. Columns (decision variables) in the

master program are added or replaced during the procedure.

The other one was developed by Benders [9] two years later and can be applied to

the dual form, figure 2.2. This procedure uses a form of row generation. It was applied

and specialized to stochastic problems by Van Slyke and Wets [87].

Dantzig-Wolfe-Decomposition

For illustration, assume that the problem to be solved has the form

min
x

c>x subject to Ax = b, l ≤ x ≤ u

with A being a m×n matrix. The matrix A can then be partitioned into two matrices

A′ and A′′ of dimension m′ × n and m′′ × n, respectively. The above problem is then

equivalent to

min
x

c>x subject to A′x = b′, A′′x = b′′, l ≤ x ≤ u.

For the relaxed feasibility region

P = {x ∈ Rn : A′′x = b′′, l ≤ x ≤ u}
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2. LINEAR TWO-STAGE PROBLEMS

there exists a finite number of basic feasible solutions or extreme points v1, . . . , vM ∈ Rn

as well as a finite number of basic feasible directions (extreme rays) w1, . . . , wN ∈ Rn

such that every x ∈ P can be described as

x =
M∑
k=1

rkvk +
N∑
j=1

sjwj

with rk, sj ≥ 0 and
∑
rk = 1. Now, x can be substituted in the above problem:

min
rk,sj

M∑
k=1

rkc
>vk +

N∑
j=1

sjc
>wj

s.t.
M∑
k=1

rkA
′vk +

N∑
j=1

sjA
′wj = b′,

M∑
k=1

rk = 1,

rk ≥ 0, sj ≥ 0

(2.2)

This is the so-called (complete) master problem. In the algorithm, not all extreme

points and rays will be put into the reduced master problem, thus, there are also less

decision variables. Only those basic feasible solutions and directions are of interest that

produce a better objective value. These vectors can be found using the pricing problem

min
x

(c−A′>y)>x subject to A′′x = b′′, l ≤ x ≤ u

where y is the dual solution of (the reduced) master problem (2.2).

If the problem has the block angular structure as in figure 2.1, A′ corresponds to

the first block of constraints (A>, T>1 , . . . , T
>
K ) and the algorithm will start with finding

a feasible basic solution to A′x = b′ and its dual solution y – in order to then solve

the K subproblems. The master program incorporates one or all of the new columns

generated by the solutions of the subproblems (based on their ability to improve the

original problem’s objective). If the objective of the master program is improved, the

algorithm starts again with finding the dual solution to this program and solving the

subproblems. Otherwise, the algorithm stops since the master program cannot be

improved by any solution of the subproblems.

The notation was taken from Chvátal [24]. Further information can be found in

Bertsimas and Tsitsiklis [11].

L-shaped Decomposition

Generally, this procedure – based on the work by Van Slyke and Wets [87] – can be

applied to the deterministic equivalent model (1.2) since this has the so-called L-shape.
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2.2 Decomposition Methods

Figure 2.2: Block-angular structure, also called L-shaped, see Birge and Louveaux [15].

The idea behind this cutting plane algorithm is to partition the set of decision

variables in two sets of first stage variable x and second stage variables yi, i = 1, . . . ,K,

only solve a problem for the first stage variables (and a reduced number of constraints,

a simpler problem), include the optimal value x̂ to subproblems each concerning one

yi and adding new constraints with information from these subproblems to the simpler

problem.

In particular, the algorithm will start with the reduced problem

min
x

c>x subject to Ax = b, x ≥ 0 (2.3)

which will be extended during the procedure with only one variable θ in order to

represent the objective value of the second stage variables as well as new constraints in

x and θ in order to cut off infeasible or suboptimal solutions.

The K subproblems that will produce the optimality cuts are of the form

min
y

w = q>k y

s.t. Wy = hk − Tkx̂
y ≥ 0

(2.4)

where Tk, hk, and qk, k = 1, . . . ,K are the different values for each scenario. If complete

or relatively complete recourse (hk − Tkx ∈ posW := {t : Wy = t, y ≥ 0} for all k and

x) cannot be assumed, it might happen that one or more of these problems are not

solvable. In that case, a program similar to that of phase 1 of the simplex method can
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2. LINEAR TWO-STAGE PROBLEMS

be used in order to construct feasibility cuts:

min
y,v+,v−

w′ = e>v+ + e>v−

s.t. Wy + Iv+ − Iv− = hk − Tkx̂
y, v+, v− ≥ 0,

(2.5)

where e is a row vector of 1’s and I is the identity matrix of appropriate size. This

problem has always an optimal solution with w′ ≥ 0. If w = 0, the above problem (2.4)

has at least one feasible solution, but if w′ > 0 a feasibility cut has to be induced on x

in order to cut off those x that produce infeasible second stages.

For both problems, the simplex multipliers (or dual solutions) are used in order to

get cuts only in x. For the feasibility cut, the optimal dual solution σ of problem (2.5)

fulfills

minw′ = σ[hk − Tkx̂]
σW ≤ 0
−e ≤ σ ≤ e.

If w′ = σ[hk − Tkx̂] > 0, then {t : σt = 0} is a hyperplane that separates hk − Tkx̂ and

posW . In order to produce feasible second stages, both must be on the same side, thus

σ[hk − Tkx̂] ≤ 0 has to hold. This constraint can be added to problem (2.3).

Now, to explain the optimality cuts, I will rewrite problem (1.2) using the value

function of the inner problem

min
x,θ

c>x+ θ

s.t. Ax = b

θ ≥
K∑
k=1

pkφ(qk, hk − Tkx)

x ≥ 0.

(2.6)

If all problems (2.4) are feasible for x = x̂, then the dual optimal solution πk will fulfill

πk[hk − Tkx̂] = φ(qk, hk − Tkx̂)

and, thus, πk[hk − Tkx] is a support of φ(qk, hk − Tkx) (a complete proof can be found

in Van Slyke and Wets [87]). Consequently, a feasible tuple (x, θ) must meet

θ ≥
K∑
k=1

pk(πkhk − πkTkx) =
K∑
k=1

(pkπkhk)− (pkπkTk)x. (2.7)

The complete algorithm can be found in Van Slyke and Wets [87] or Birge and

Louveaux [15].
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3

Linear Stochastic Bilevel

Problems

Linear bilevel problems bear a lot of difficulty already in their deterministic form.

That is why the deterministic program and its properties will be presented primarily.

Stochastics will first be introduced in section 3.2 on page 40.

If the set Ω of random events is finite (|Ω| = N), the lower level multifunction

Y (x, ω) can be indexed by the random events, with i = 1, . . . , N , and for every such

random event an optimal solution yi(x) can be chosen from Yi(x) to optimize the

leader’s objective. In that case, the constraint set of the bilevel problem consists of

multiple second levels. Defining y(x) = (y1(x), . . . , yN (x)) and Y (x) = Y1(x) × . . . ×

YN (x) shows, then, that all properties to be shown for the deterministic linear bilevel

problems also hold for stochastic linear bilevel problems with finite random sets.

For finite random sets in two-stage programming, similar constructions apply. The

remaining problem is called deterministic equivalent.

3.1 Linear Bilevel Problems

For readability, the considered program is displayed again:

min c>x+ d>y

s.t. Ax = b

y ∈ Y (x) = arg min
y∗
{q>y∗ : Wy∗ +Hx = h , y∗ ≥ 0}.

(3.1)
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3. LINEAR STOCHASTIC BILEVEL PROBLEMS

Figure 3.1: The feasible set of the bilevel problem is only described by the two thick-lined

edges connecting A and E, E and D, respectively, found in Dempe [28].

In order to show the lack of convexity of this kind of problem, an example as shown

in Dempe [28] will be employed.

Example 3.1 (Dempe [28])

The decision vectors are each one-dimensional and the problem is to

min x+ 3y = F (x, y)

s.t. 1 ≤ x ≤ 6

y ∈ Y (x) = arg min
y∗
{−y∗ : x+ y∗ ≤ 8, x+ 4y∗ ≥ 8, x+ 2y∗ ≤ 13}

The optimal solution of the lower level can be described by means of a distinction

of cases of the upper level variable:

y(x) =

{
6, 5− 0, 5x if 1 ≤ x ≤ 3,

8− x if 3 ≤ x ≤ 6

In figure 3.1, M denotes the set of all pairs (x, y) satisfying the constraints of

both levels and f is the lower level cost function f(x, y) = −y. Only the thick line

connecting the points A, E and D represents the set of all feasible solutions of this

bilevel problem. Thus, the global optimal solution is point D = (6, 2) with objective

function value F (6, 2) = 12.
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The displayed example is a very simple one but shows already that the set of feasible

solutions is in general nonconvex, but indicates that the latter might be connected.

This is, in general, true as will be shown in the next theorem. But, if there would be

constraints in the upper level that contain the followers variable y, then, the solution

set might even be disconnected. In example 3.1, the additional upper level constraint

x+ 5
4 y ≤ 9

would cut off point E = (3, 5) and a small neighborhood of it (since 3 + 61
4 = 91

4 > 9),

but not point D = (6, 2) (6 + 21
2 = 81

2 ≤ 9) and also not A = (1, 6) (1 + 71
2 = 81

2 ≤ 9).

Thus, there would be a part in the lower level feasibility and optimality sets that

produces infeasible solutions in the upper level for x around 3. It should be noted that

the feasibility set of the problem would be connected again if the additional constraint

would move into the lower level problem.

Theorem 3.2 (see Parraga [69])

The linear bilevel problem (3.1) is in general nonconvex, nondifferentiable, but con-

nected for all those x for which the lower level is feasible. 2

In the above example, the optimal solution set is unique, i.e.,

Y (x) = arg min
y
{q>y : Wy = h− Tx , y ≥ 0}

is a singleton for all x. In general, especially in higher dimensions, this is not the case,

see for instance:

Example 3.3

The problem now is to

max
x

x1 + x2 + 2y1 + 3y2

s.t. 0 ≤ xi ≤ 2, i = 1, 2

y ∈ Y (x) = arg max
y∗
{y∗1 + y∗2 : y∗1 ≤ x1, y

∗
2 ≤ 2x1, y

∗
1 + y∗2 ≤ x2, y

∗
1, y
∗
2 ≥ 0}

The optimal solution set of the follower can then be characterized as

Y (x) =


y1 = 0, y2 = 0, if x1 = 0 ∨ x2 = 0,

y1 = x1, y2 = 2x1 if x2 ≥ 3x1 > 0,

{y1, y2 ∈ R+ : y2 = x2 − y1, y1 ≤ x1, y2 ≤ 2x1} if 3x1 > x2 > 0
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In the latter case, it is not clear which solution can be chosen by the leader and the

problem is not well-posed. In order to regain this property, the leader has to appraise

the actual reaction of the follower. As already stated in section 1.2, there are two

approaches developed in the literature for this case, the optimistic and the pessimistic.

In the optimistic case, the leader can assume a cooperative relationship between

himself and the follower, and the problem would be to

max
x

max
y

x1 + x2 + 2y1 + 3y2

s.t. 0 ≤ xi ≤ 2, i = 1, 2

y ∈ Y (x)

The overall optimal solution to this problem is x = (2, 2)> and yo = (0, 2)> with the

objective value 10.

In the pessimistic case, the problem is stated as

max
x

min
y

x1 + x2 + 2y1 + 3y2

s.t. 0 ≤ xi ≤ 2, i = 1, 2

y ∈ Y (x)

For this problem, there exist multiple optimal solutions with objective value 8. In the

optimal solution, it always holds x2 = 2 and for 2
3 ≤ x1 ≤ 2, the lower level pessimistic

solution is yp = (x1, 2− x1)>.

This example showed that the pessimistic and optimistic approaches differ consid-

erably.

The pessimistic leader’s objective function F p(x) is in most cases not lower semi-

continuous as can be seen in the figure 3.2.

In the linear case, when the leader’s variable only influences the right-hand side of

the follower’s problem, the pessimistic optimal value function

F p(x) = c>x+

N∑
k=1

pk max
z
{d>k z : z ∈ Yk(x)}

can at least be shown to be upper semicontinuous. In order to show that and the lower

semicontinuity for the optimistic case F o(x), a few definitions and theorems are needed

that can be found in Bank et al. [5].
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3.1 Linear Bilevel Problems

Figure 3.2: Possible form of a pessimistic bilevel value function, found in Dempe [28].

Definition 3.4

A function f : Rn → R is weakly analytic if for all x, u ∈ Rn it holds:

If the function fx,u(α) = f(x+ αu) is constant on an open interval [α, α] ⊂ R

⇒ fx,u(α) = f(x) ∀α ∈ R

Obviously, all linear and affine functions are weakly analytic.

Definition 3.5

A point-to-set mapping (or multi-function) Γ : Rn → 2R
m

(where 2R
m

is the power set

of Rm) is called

1. closed if for all sequences (xn) ⊂ Rn, xn → x0, (yn) ∈ Γ(xn), and yn → y0, it

holds y0 ∈ Γ(x0).

2. upper semicontinuous in the sense of Berge (abbr. u.s.c.-B) at x0 if for all

open sets Ω ⊃ Γ(x0), there exists a δ = δ(Ω) > 0 with Γ(x) ⊂ Ω for all x ∈ Uδ(x0)

(where Uδ(x0) is the open neighborhood of radius δ around x0).

3. lower semicontinuous in the sense of Berge (abbr. l.s.c.-B) at x0 if for all

open sets Ω with Ω ∩ Γ(x0) 6= ∅, there exists a δ = δ(Ω) > 0 with Ω ∩ Γ(x) 6= ∅
for all x ∈ Uδ(x0).

4. upper semicontinuous in the sense of Hausdorff (abbr. u.s.c.-H) at x0 if

for all ε > 0, there exists δ > 0 with Γ(x) ⊂ Uε (Γ(x0)) for all x ∈ Uδ(x0).
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3. LINEAR STOCHASTIC BILEVEL PROBLEMS

5. lower semicontinuous in the sense of Hausdorff (abbr. l.s.c.-H) at x0 if for

all ε > 0, there exists δ > 0 with Γ(x0) ⊂ Uε (Γ(x)) for all x ∈ Uδ(x0).

6. continuous if it is u.s.c.-H and l.s.c.-B.

7. B-continuous if it is u.s.c.-B and l.s.c.-B.

8. H-continuous if it is u.s.c.-H and l.s.c.-H.

It holds that u.s.c.-B is sufficient for u.s.c.-H, as well as l.s.c.-H is sufficient for

l.s.c.-B. Thus, H-continuity and B-continuity are both stronger than the normal conti-

nuity.

Let

M(x) = {y ∈ Rn2
+ : Wy = h− Tx}

the feasibility set of the second level. It is obvious that M is closed and convex for all

x. Let λ = h− Tx and

Λ = {λ ∈ Rm2 : x ∈ Rn1
+ , Ax = b, λ = h− Tx}.

Then, theorem 3.4.1. as well as corollary 3.4.1.1. from Bank et al. [5] can be applied

and it holds that:

If M(λ) 6= ∅ for all λ ∈ Λ, then M is H-continuous on Λ.

Thus, under the assumption of complete (or sufficiently complete) recourse (A1),

the feasibility set is H-continuous in λ = h − Tx as well as in x since this is only an

affine transposition.

With theorem 4.3.3. and 4.3.5.(2) from Bank et al. [5], it follows that Y (x) is

B-continuous:

Lemma 3.6 (can be concluded from Bank et al. [5])

Under the assumptions of (A1) and (A2), Y (x) is B-continuous.

Proof:

Because of (A1), M(x) is H-continuous and thus also l.s.c.-B; it is also convex and

closed for all x. The set Y (x) is nonempty for all x because of (A1) and bounded because

of (A2). All functions are linear, thus continuous, thus lower and upper semicontinuous,

as well as convex. Theorem 4.3.3. in Bank et al. [5] can then be applied to the lower

level problem and it holds that Y (x) is u.s.c.-B.
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3.1 Linear Bilevel Problems

The only additional assumption for theorem 4.3.5.(2) in Bank et al. [5] to be applied

here is that the functions have to be weakly analytic which is also the case here. So, it

follows that Y (x) is l.s.c.-B and corollary 4.3.5.1. in Bank et al. [5] implies that there

exists a continuous function y : Rn1 → Rn2 with y(x) ∈ Y (x).

Both together imply the B-continuity. 2

Therefore, it can be derived from theorem 4.2.2.(2) in Bank et al. [5] that the

optimistic value function

F o(x) = c>x+

N∑
k=1

pk min
z
{d>k z : z ∈ Yk(x)}

is lower semicontinuous in x under the above assumptions. So, under the assumptions

of complete recourse (A1) and dual feasibility (A2) as well as suitable compactness

assumptions, in the optimistic linear bilevel problem, there always exists an optimal

solution.

For the pessimistic case, the value function can be redefined as

F p(x) = c>x+
N∑
k=1

pk max
z
{d>k z : z ∈ Yk(x)}

= c>x−
N∑
k=1

pk min
z
{(−d>k z) : z ∈ Yk(x)}.

This shows that the pessimistic value function is upper semicontinuous in x (due to the

negativity sign).

Annotation: It does not make a difference if the leader’s variable x occurs in an

additive term c>2 x in the followers objective function, i.e.,

Y (x) = arg min
y∗
{q>y∗ + c>2 x : Wy∗ +Hx = h , y∗ ≥ 0}

because the leader’s variable will always be treated as a parameter for the follower’s

problem. Thus, the term c>2 x is a fixed value that the follower has to accept and cannot

change. The only effect is that the value of the follower’s problem rises at the amount

of c>2 x. As a result, it does not have any affect on the follower’s choice – which is only

of interest here – and can hence be dropped. This is not any more the case if x comes

in as a multiplicative term to y. Then, the follower’s problem is bilinear and most of

the above results do not hold any more.

31



3. LINEAR STOCHASTIC BILEVEL PROBLEMS

It is also notable that, in general, there actually exists a difference in the definitions

of the optimistic approach. The formal definition for the optimistic bilevel problem is

min
x
F o(x) subject to x ∈ X (3.2)

which has the same global optimum or optima as

min
x,y

F (x, y) subject to x ∈ X, y ∈ Y (x) (3.3)

It was shown in Dempe et al. [33] that these two definitions may differ concerning

local optima. The authors there used a bilinear problem (i.e., only the value function

of the second stage was bilinear in x and y, the rest was linear) to show that local

optimal solutions of problem (3.2) are also locally optimal for (3.3), but not the other

way around.

In the purely linear case and under the assumptions (A1) and (A2), both problems

coincide due to the B-continuity of Y (x).

Theorem 3.7

Under the assumptions (A1) and (A2), the linear problems (3.2) and (3.3) coincide in

locally optimal solutions as well as in global optima.

Proof:

Let (x∗, y∗) be a local optimal solution to the linear problem (3.3), i.e., there exists

an ε > 0 with F (x∗, y∗) ≤ F (x, y) for all (x, y) ∈ Uε(x∗, y∗), x ∈ X, y ∈ Y (x). In order

to show the assertion, it must hold that there exists an ε∗ > 0 with F o(x∗) ≤ F o(x) for

all x ∈ Uε∗(x∗), x ∈ X. Assume that this does not hold. Then, for all 0 < ε∗ (without

loss of generality ε∗ ≤ ε) there exists a x̄ ∈ Uε∗(x∗), x̄ ∈ X with F o(x∗) > F o(x̄). For

such a x̄ then, there exists a ȳ(x̄) = arg min
z
{d> z : z ∈ Y (x̄)} (again without loss of

generality assume that for readability the number of scenarios is N = 1).

If it holds ȳ(x̄) ∈ Uε∗(y∗) ⊆ Uε(y
∗), this would lead to a contradiction since x̄ ∈

Uε(x
∗) – because ε∗ ≤ ε – and thus F (x̄, ȳ(x̄)) < F (x∗, y∗). Therefore, ȳ(x̄) /∈ Uε∗(y∗)

for every such x̄ ∈ Uε∗(x∗), x̄ ∈ X with F o(x∗) > F o(x̄) and every 0 < ε∗ < ε.

So, for ε∗ → 0 one can construct a sequence (x̄n) of such variables with x̄n → x∗

and lim
n→∞

F o(x̄n) ≤ F o(x∗). Because of the above result, a sequence exists for which

arg min
z
{d> z : z ∈ Y (x̄n)} = ȳ(x̄n) /∈ Uε∗(y∗) for every n but y∗ = arg min

z
{d> z : z ∈

Y (lim x̄n)}. Thus, in the direction of d there exists a jump in Y (·) which contradicts

the B-continuity. 2

32
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Another specialty of bilevel problems is the dependence on irrelevant constraints

which was shown by Macal and Hurter [64]. In standard mathematical programs, it

can normally be taken for granted that constraints which are inactive at any optimal

solution could be dropped (or added) without changing the optimality of the solutions.

But in bilevel programming, this is not the case!

Macal and Hurter employ a quadratic bilevel problem with no constraints and show

that if an additional (nonnegativity) constraint is induced into the lower level which

is not violated by the original optimum, the problem then has a much better optimal

solution. Therefore, every person formulating a bilevel problem has to be very careful

about the exact choice of constraints and variables.

But, again, it can be said that in the linear case, this does not hold. Theorem 1

from the mentioned paper [64] can be used to show that. In that theorem, Macal and

Hurter show that a bilevel problem is independent of irrelevant constraints if and only

if there exists a feasible solution to the “associated single-level problem” – which is the

complete upper level joined with the lower level constraints – that is also feasible for

the original bilevel problem, under the assumption that the KKT conditions for the

lower level are necessary and sufficient for an optimal solution to the bilevel problem.

For linear bilevel problems, the KKT conditions possess this ability. So the theorem

translated to this case would mean that a bilevel problem is independent of irrelevant

constraints if there exist (x∗, y∗) solving

Ax = b,
Wy + Tx = h,

y ≥ 0

that also solve

Ax = b,
y ∈ Y (x) = arg min

y
{q>y : Wy = h− Tx , y ≥ 0}

And this is clearly the case if Y (x) is bounded and nonempty, i.e., under the assumptions

(A1) and (A2).

3.1.1 Existence of Solutions

Altough the definitions might in general be known, the defintions of local and global

optima for bilevel problems will be provided here for completeness.
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3. LINEAR STOCHASTIC BILEVEL PROBLEMS

Definition 3.8

1. A point (x∗, y∗) ∈ Rn × Rm is a local optimistic solution to the optimistic

bilevel problem 3.2 if y∗ ∈ Y (x∗), x ∈ X with

F (x∗, y∗) ≤ F (x∗, y) ∀y ∈ Y (x∗)

and there exists an open neighborhood Uδ(x
∗), δ > 0 with

F o(x∗) ≤ F o(x) ∀x ∈ X ∩ Uδ(x∗)

It is called a global optimistic solution if δ =∞ can be chosen.

2. On the other hand is (x∗, y∗) ∈ Rn × Rm a local pessimistic solution to the

pessimistic bilevel problem

min
x
F p(x) subject to x ∈ X

if y∗ ∈ Y (x∗), x ∈ X with

F (x∗, y∗) ≥ F (x∗, y) ∀y ∈ Y (x∗)

and there exists an open neighborhood Uδ(x
∗), δ > 0 with

F p(x∗) ≤ F p(x) ∀x ∈ X ∩ Uδ(x∗)

It is called a global pessimistic solution if δ =∞ can be chosen.

3. If the lower level solution is uniquely determined for all x, then a local optimal

solution to the general bilevel problem

min
x
F (x, y(x)) subject to x ∈ X

fulfills y∗(x∗) ∈ Y (x∗), x ∈ X and there exists an open neighborhood Uδ(x
∗), δ > 0

with

F (x∗, y∗(x∗)) ≤ F (x, y(x)) ∀x ∈ X ∩ Uδ(x∗) and y(x) ∈ Y (x)

In many works, the authors assume for the general bilevel problem that the lower

level solution is unique for every x and derive optimality conditions for such problems.

For example, Dempe [28] showed that the general bilevel problem (see (1.1) on page 2)

has a global optimal solution under the assumptions that

1. It has a feasible solution,
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2. X is closed,

3. Compactness (C): The feasibility set in both variables according to the constraints

of the lower level {(x, y) ∈ Rn × Rm : g(x, y) ≤ 0, h(x, y) = 0} is nonempty

and compact (here, the constraints are specialized into equality and inequality

constraints), and

4. Mangasarian-Fromovitz Constraint Qualification (MFCQ): For all points (x0, y0) ∈
X × Rm and y0 ∈M(x0) exists a direction d ∈ Rn satisfying

∇ygi(x0, y0)d < 0, for each i ∈ {j : gj(x
0, y0) = 0}

∇yhj(x0, y0)d = 0, for each j = 1, . . . , q

where h : Rn × Rm → Rq and the gradients {∇yhj(x0, y0) : j = 1, . . . , q} are

linearly independent.

A similar statement can be made for the optimistic bilevel problem if (MFCQ) holds

for all y ∈M(x). Moreover, (MFCQ) could be replaced by the claim that Y (x) is upper

semicontinuous.

In the pessimistic case, the assumptions differ a bit. In order to have a global

optimal solution for the pessimistic bilevel problem, there has to hold

1. It has a feasible solution,

2. Y (x) has to be lower semicontinuous for all x ∈ X, and

3. As above, the compactness assumption (C) has to be satisfied.

This was also proven by Dempe [28].

Local optimality conditions including the contingent or Bouligand cone can be found

in Dempe et al. [33]. The cone can be defined as

CX(x) := {v ∈ Rn : lim
y→0

inf
dX(x+ yv)

y
= 0}

where dX(y) denotes the distance from point y to the set X.

The graph of a multifunction will be Grph(Y ) = {(x, y) ∈ Rn×m : y ∈ Y (x)}.

Lemma 3.9 (Dempe et al. [33])

If a point (x̄, ȳ) ∈ Grph(Y ), x̄ ∈ X is a locally optimal solution of the optimistic bilevel

problem, then it holds for all (d, r) ∈ CN (x, y), where N = Grph(Y ) ∩ (X ×Rm), that

∇F (x̄, ȳ)>(d, r) ≥ 0.
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On the other hand, if (x̄, ȳ) ∈ Grph(Y ), x̄ ∈ X and it holds

∇F (x̄, ȳ)>(d, r) > 0

for all (d, r) ∈ CN (x, y), then (x̄, ȳ) is a locally optimal solution of the optimistic bilevel

problem.

Strong regularity assumptions such as the constant rank constraint qualification

(CRCQ), the strong second-order optimality condition (SSOC), and the (MFCQ) will

imply the fulfillment of the assumptions in the previous lemma.

Suchlike conditions also guarantee the uniqueness of the lower level solution as well

as the existence of directional derivatives, see Dempe et al. [33].

An important fact is that the constraint qualifications are dependent on the re-

formulation of the bilevel problem. Certain typical constraint qualifications – such as

Slater or MFCQ – known from nonlinear optimization do not hold for the reformulation

using the optimal value function. Further information about this property will be given

in the corresponding chapters 4 and 5 on the optimal value function approach and the

KKT approach, respectively.

For the linear case, it is enough to assume that the lower level is feasible, bounded,

and that the lower level cost vector q is not the multiple of any row of W in order to

get a unique lower level solution for all x. This is due to the fact that if the lower level

is feasible and bounded, then the optimal solution will be an extreme point of the lower

level feasible set or a convex combination of two (or more) suchlike points. The latter

case – which results in multiple solution vectors – would only occur if the cost vector

q is the multiple of a constraint row of W .

Additionally, it holds for linear bilevel problems that all optimal solutions are con-

tained in the constraint region

M = {(x, y) ∈ Rn × Rm : Ax = b, x ≥ 0, Wy = h− Tx, y ≥ 0}

if it is nonempty and bounded.

Lemma 3.10 (see Bialas and Karwan [12] and Bard [6])

The solution of the linear bilevel problem occurs at a vertex of M , if M is nonempty

and compact.

It follows that the linear bilevel problem always has an optimal solution regardless

whether it is optimistic or pessimistic, if M is nonempty and bounded.
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3.1.2 Reformulations

As traditional solvers widely fail with bilevel problems, a hand full of techniques were

developed in order to be able to solve these kind of problems efficiently. It is worth

mentioning that optimality conditions derived for each approach are not related, in

general. Different optimality conditions hold in different approaches.

Using the Karush Kuhn Tucker conditions (abbr. KKT conditions), in order to

replace the lower optimization problem Y (x) by constraints that are necessary and

sufficient for an optimal solution of such, was maybe the first but is certainly the most

frequent approach. Therefore, the lower level has to be convex in the lower level variable

and some constraint qualification has to be satisfied, e.g.:

• Linearity constraint qualification: the components of the constraint functions are

affine (which is abbreviated LCQ),

• Linear independence constraint qualification: the gradients of the active con-

straints are linearly independent (abbr. LICQ),

• Mangasarian-Fromovitz constraint qualification: the gradients of the active in-

equality constraints and the gradients of the equality constraints are positive-

linearly independent (MFCQ),

• Constant rank constraint qualification: for each subset of the gradients of the

active inequality constraints and the gradients of the equality constraints the

rank at a vicinity of a solution is constant (CRCQ),

• Slater constraint qualification (SCQ): there exists a point such that all equality

constraints are satisfied and all inequality constraints are strictly fulfilled (i.e.,

unequal zero),

among others. In the nonaffine case, it is assumed that the objective and the constraint

functions are continously differentiable.

But, due to the fact that new variables are introduced through the KKT conditions,

the original and the reformulated problem only coincide in global optima. Addition-

ally, the remaining problem is nonconvex due to the complementarity constraints. A

thorough investigation on that matter will be presented in chapter 5.
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Another approach is to use the optimal value function of the lower level. To do so,

the (optimistic) upper level problem is extended by the constraints of the lower level

problem plus an additional constraint that forces the lower level objective costs to be

smaller or equal than that optimum (for the minimization problem). In the linear case,

that would mean

q>y ≤ φ(x) := φ(q, h− Tx)

is added to the problem. The reformulated problem is linear except for that constraint

which contains (at best) a piecewise linear function. More information on that matter

will be given in chapter 4.

A third approach, that has also gained some interest in the last decades, is using

the normal cone of the lower level problem. Since no chapter is devoted to this topic,

it will be presented here in more detail. Dempe and Zemkoho [37] have investigated

this topic and the definitions as well as properties are taken from that paper.

If for the general bilevel problem

min F (x, y)

s.t. G(x) ≤ 0

y ∈ Y (x) = arg min
y∗
{f(x, y∗) : g(x, y∗) ≤ 0}

it is assumed that the lower level problem is convex in y for all x with G(x) ≤ 0, then

the lower level solution set takes the form

Y (x) = {y ∈ Rm : 0 ∈ ∇yf(x, y) +NK(x)(y)} (3.4)

where K(x) = {y∗ ∈ Rm : g(x, y∗) ≤ 0} is the lower level feasibility set, ∇y is the

vector differential operator and

NS(y) = {v ∈ Rm : 〈v, u− y〉 ≤ 0, ∀u ∈ S}

for y ∈ S defines the normal cone to a convex set S ⊆ Rm. The reformulated problem

hence belongs to the class of optimization problems with variational inequality con-

straint(s).

This reformulation may be seen as a compact form of KKT conditions, but has

the advantage that not only global but also local solutions coincide with the original

formulation, see theorem 3.2 in Dempe and Zemkoho [37]. But, this nice property is

lost as soon as the normal cone has to be computed since the local optimality has to
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be checked for all u ∈ K(x); thus, this approach is mostly interesting for theoretical

issues.

Other computational approaches to solve bilevel problems are:

1. Extreme Point Approaches: These are mostly applied to linear versions. In the

linear case, these algorithms use the fact that the relaxed feasible region

R := {x ∈ Rn, y ∈ Rm : G(x) ≤ 0, g(x, y) ≤ 0}

contains the optimal solution if it is nonempty. Thus, bases were scaned on

different criteria by Candler and Townsley [19] as well as Bialas and Karwan [12],

among others.

2. Descent Methods: These methods can only be used in the case when the lower

level solution is unique, thus, y(x) is uniquely determined. Starting from a feasible

point x, a feasible direction d is found such that (x + d, y(x + d)) is bilevel

feasible and decreases the upper level costs. But, in the bilevel case it is not

so straightforward to find such a descent direction. Attempts have been made by

Kolstad and Lasdon [58], Savard and Gauvin [79], and Vicente et al. [88].

3. Penalty Function Methods: Here, the lower level is replaced by a penalty-term

either in the upper level objective function or said constraints. A weighted sum

of the lower level objective function and constraints is used to define the lower

level variable y and an additional scalar (or vector). Normally, it is used for

nonlinear bilevel problems as has been done by Aiyoshi and Shimizu [1], Ishizuka

and Aiyoshi [54], and Case [21].

4. Trust Region Methods: Developed for nonlinear bilevel problems, these methods

again start with a feasible solution (x, y) and solve a subproblem that represents

a linear approximation of the inherent objective and constraint functions at that

point (x, y). The new optimal solution is tested for its ability to be the next

iterate and the radius for which the functions are linearized. This is repeated

until convergence occurs. Examples for that method can be found in Colson et

al. [25] or Dempe and Bard [30].

More detailed information about different methods can be found in Bard [7], Dempe

[28], or Colson et al. [26].
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3.2 Under Uncertainty

Two approaches will be exploited to analyze bilevel problems under uncertainty, the

computational and the theoretical. For the computational perspective, in most cases,

the uncertainty in the model should permit to be discretized or properly evaluated at

certain points in order to compute a solution in finite time. Theoretically, all kinds of

risk functionals and distributions can be expected.

The optimistic stochastic programming extension of a linear bilevel problem reads

as

min Qω[F (x, y(ω))] = Qω[c>x+ d>(ω)y(ω)]

s.t. Ax = b , x ≥ 0

y(ω) ∈ Y (x, ω), for almost all ω ∈ Ω

where Y (x, ω) = arg min
y∗
{q>(ω)y∗ : W (ω)y∗ +H(ω)x = h(ω) , y∗ ≥ 0}.

(3.5)

(Ω,A,P) is a probability space where Ω is a discrete or continuous set of outcomes, A

a σ-algebra, P a probability measure, and Qω some risk functional on that space.

Although this thesis focuses on the computational viewpoint, this section starts with

a brief review of some interesting theoretical facts, i.e., when the set Ω of outcomes is

continuous.

Qω can be any risk functional. Note that every lower level parameter is provided

with randomness. Thus, this presents a general form of a linear stochastic bilevel

problem. Other kind of stochastic problems exist where e.g. the lower level is a two-

stage stochastic problem in itself, but, this is either not linear anymore or may rather

be a multilevel problem instead of bilevel.

If the leader is interested only in the expected best value on average of the above

problem, then, Qω = QE and

QE[F (x, y(ω))] = c>x+

∫
Ω

d>(ω)y(ω) dF (ω)

where F denotes the cummulative distribution function, assumed to be continuously

differentiable with
∫

Ω dF (ω) = 1.
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Corollary 3.11 (Patriksson and Wynter [71])

The graph Grph(Y )1 is closed if

1. For each ω ∈ Ω and each x ∈ X = {x ∈ Rn : Ax = b , x ≥ 0}, it holds that

Y (x, ω) 6= ∅,

2. the follower’s data influenced by randomness, q,W,H and h, are continuous on

Ω.

The expected-value based stochastic linear bilevel problem (3.5) with an infinite set of

outcomes has at least one optimal solution if, additionally to 1. and 2., it holds that

3. there exists an (x, y(ω)) ∈ Z(ω) = {(s, t(ω)) ∈ Grph(Y (ω)) : s ∈ X}2 in every

Z(ω), ω ∈ Ω for some x, and

4. f(x, y(ω), ω) = c>x+ d>(ω)y(ω) has bounded lower level sets on ∪ω∈ΩZ(ω), i.e.,

L−c (f) =
⋃
ω∈Ω

{(x, y(ω)) ∈ Z(ω) : f(x, y(ω), ω) ≤ c}

are bounded for all scalars c ∈ R.

Actually, this corollary was shown for the general (nonlinear) case, but is simplified for

the present linear case.

Equivalently as done for two-stage problems, other risk functionals can be applied

to the above problem (3.5), e.g. the excess probability

Qω = QE[F (x, y(ω))] + P ({ω ∈ Ω : f(x, y(ω), ω) > η}) ,

the Value-at-Risk

Qω = QE[F (x, y(ω))] +QαV aR(x) := inf
{
η : P({ω ∈ Ω : f(x, y(ω), ω) ≤ η}) ≥ α

}
,

or the Conditional Value-at-Risk

Qω = QE[F (x, y(ω))] +Qα(x, η) :=
1

α

α∫
0

G−1(u)du.

Ivanov [55] analyzed continuity properties for the Value-at-Risk.

1Grph(Y ) = {(x, y(ω), ω) ∈ Rn+m × Ω : y(ω) ∈ Y (x, ω)}
2Grph(Y (ω)) = {(x, y(ω)) ∈ Rn+m : y(ω) ∈ Y (x, ω)}
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3. LINEAR STOCHASTIC BILEVEL PROBLEMS

To the author’s knowledge, other existence results for these risk functionals have

not been addressed, yet.

In practice, it is often difficult to evaluate the risk functional in (3.5) for problems

of realistic size due to the difficulty in calculating the multiple integrals. Therefore, it

is convenient to assume that Ω is discrete and finite, i.e., Ω = {1, . . . , N}.
In the case of the expected value, the evaluation function QE then becomes

QE[F (x, y(ω))] = c>x+
N∑
ω=1

π(ω)d(ω)>yω

where
∑
π(ω) = 1 and 0 ≤ π(ω) ≤ 1 for ω = 1, . . . , N . The problem then becomes

min c>x+
N∑
ω=1

π(ω)d(ω)>yω

s.t. Ax = b , x ≥ 0

yω ∈ Y (x, ω), ω = 1, . . . , N

where Y (x, ω) = arg min
y∗
{q>(ω)y∗ : W (ω)y∗ +H(ω)x = h(ω) , y∗ ≥ 0}.

(3.6)

This problem can also be called the deterministic equivalent formulation.

Corollary 3.11 can be similarly applied to problem (3.6). The linear stochastic

bilevel problem referred to in the following chapters correspond to this problem (3.6)

with the adjustment that the lower level matrices are not dependent on the randomness,

i.e., W (ω) ≡W and H(ω) ≡ H.
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4

Optimal Value Function

Approach

In the present chapter, the potential of the optimal-value-function approach for its

expansion to the stochastic case is explored. In particular, the deterministic method for

quasiconcave minimization due to Tuy et al. [85] is examined in more detail, leading to

the outcome that there is no direct way from the deterministic to the stochastic setting

when it comes to investigating possible decomposition techniques.

Under the assumption that the general optimistic bilevel problem 1.1 has a feasible

solution, its reformulation using the optimal value function of the lower level is

min F (x, y)

s.t. G(x) ≤ 0 (4.1)

g(x, y) ≤ 0

f(x, y)− φ(x) ≤ 0

where φ(x) = min
y
{f(x, y) : g(x, y) ≤ 0}. It is φ(x) = +∞ if Y (x) = ∅ for convenience,

as well as X = {x : G(x) ≤ 0}, K(x) = {y ∈ Rm : g(x, y) ≤ 0} the upper, resp. lower

level constraint set.

To ensure that φ(x) is finite for all x, it is assumend here that Y (x) is nonempty

and compact.

It holds that the original optimistic bilevel problem and this reformulation 4.1 have

the same local and global optima. This is due to the fact that any parametric opti-
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4. OPTIMAL VALUE FUNCTION APPROACH

mization program, e.g.

min
y
H(x, y), s.t. C(x, y) ≤ 0

can be rewritten as

H(x, y) ≤ H(x, t), ∀t with C(x, t) ≤ 0, and C(x, y) ≤ 0

and with H(x) = min
t
{H(x, t) : C(x, t) ≤ 0} has the same feasible and optimal solu-

tions as

H(x, y) ≤ H(x), s.t. C(x, y) ≤ 0

But despite that nice property, the drawback here is due to the nature of the optimal

value function itself, which can be nonsmooth. Besides, some constraint qualifications

as the Mangasarian-Fromovitz constraint qualification, the linear independence con-

straint qualification, and the Slater condition do not hold in this case which was shown

by Ye and Zhu [95], [96] in terms of Clarke’s generalized subdifferential. Dempe and

Zemkoho [35] showed that the Mangasarian-Fromovitz constraint qualification does also

not hold if Mordukhovich’s subdifferential is used.

Instead, other constraint qualifications have been shown to work in this case and

have been used to find algorithmic solutions. Especially the concept of partial calmness

has been proven to work very well for bilevel problems. Partial calmness is attained at a

point (x̄, ȳ) of bilevel problem (4.1) if and only if there exist α > 0 and a neighborhood

U of (x̄, ȳ, 0) ∈ Rn × Rm × R, such that:

F (x, y)− F (x̄, ȳ) + α|u| ≥ 0, (4.2)

for all (x, y, u) ∈ U fulfilling f(x, y)− φ(x) + u = 0 and (x, y) ∈ M , where M was the

joint set of lower and upper level constraints. Not surprisingly, partial calmness is a

necessary and sufficient criterion for the exactness of the penalty function approach

minF (x, y) + λ(f(x, y)− φ(x)), s.t. x ∈ X, y ∈ K(x).

The concept was first used on bilevel problems by Ye and Zhu [95] where they derived

necessary optimality conditions for different kinds of bilevel problems. In particular, it

can be shown that purely linear bilevel problems are always partially calm if they are

solvable (using their proposition 5.1 and the work of Burke and Ferris [17]). Dempe and
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Zemkoho strengthened that result to models where the lower level is bilinear, the upper

level cost function F is Lipschitz continuous, the domain of the lower level domY = Rn

is defined everywhere and no upper level constraints are imposed. In fact, the partial

calmness depends strongly on the cost function F , on the upper level constraint set

X and, of course, on the structure of the lower level problem. But, there also exist

models where the special structure of the lower level problem produces a partially calm

problem independent of the upper level functions, as was shown by Dempe et al. [32].

For the more general case of partial calmness, Ye and Zhu [95] proposed the concept

of uniformly weak sharp minima. The family of parametric optimization problems

{Y (x) : x ∈ X} has a uniformly weak sharp minimum if there exists µ > 0 such that

f(x, y)− φ(x) ≥ µ d(y, Y (x)), ∀y ∈ K(x) and x ∈ X

where d(y, Y ) is the euclidean distance of point y to set Y .

The authors then showed that a bilevel problem is partially calm at a local solu-

tion if the upper level cost function F is locally Lipschitz continuous and the family

of parametric optimization problems {Y (x) : x ∈ X} has a uniformly weak sharp

minimum.

Additionally, Henrion and Surowiec [49] found out that the calmness (which can be

related to some Lipschitz-like behaviour) of the set-valued mapping

M(v) = {(x, y) ∈M : f(x, y)− φ(x) ≤ v}

– called value function constraint qualification, short VFCQ – could also be used as a

sufficient condition for partial calmness if F is locally Lipschitz continuous. VFCQ is

necessary for the existence of a uniformly weak sharp minimum. These implications

are not trivial since the authors provide an example that shows that the VFCQ is

strictly weaker than the existence of a uniformly weak sharp minimum. Additionally,

they showed that there are problems where partial calmness does not hold at any local

solution, but constraint qualifications using the KKT approach worked in that case.

Despite that, also other constraint qualification have been found to work for certain

classes of bilevel problems. Ye [94] showed that the nondifferentiable Arrow-Hurwicz-

Uzawa CQ, the generalized Zangwill CQ, the nondifferentiable Kuhn-Tucker CQ, and
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4. OPTIMAL VALUE FUNCTION APPROACH

the nondifferentiable Abadie CQ are all applicable constraint qualifications for non-

linear bilevel problems. She used these qualifications along with the Michel-Penot

subdifferential in order to derive KKT type optimality conditions.

Dempe and Zemkoho [35] used the generalized differentiation theory of Mordukho-

vich, rephrased a dual form of the MFCQ – which was dualized by Ye and Zhu [95] –

and weakened the constraint qualification in order to get a new optimality condition

that holds for a broad class of bilevel problems.

These papers also use the inner semicontinuity and the inner semicompactness of the

optimal solution function Y in order to characterize the behaviour of said multifunction.

Inner semicompactness holds for Y at x̄ if and only if for every sequence xk → x̄ with

Y (xk) 6= ∅, there exists a sequence yk ∈ Y (xk) that contains a convergent subsequence.

Y is inner semicontinuous at (x̄, ȳ) if for every sequence xk → x̄ there is a sequence

yk ∈ Y (xk) that converges to ȳ. Clearly, inner semicontinuity is sufficient for inner

semicompactness. But it is also necessary for the following Aubin (or Lipschitz-like)

property which holds at a point (x̄, ȳ) if there are neighborhoods U of x̄ and V of ȳ as

well as a constant L > 0 such that

d(y, Y (x2)) ≤ L‖x1 − x2‖

for all x1, x2 ∈ U and all y ∈ Y (x1) ∩ V .

The inner semicompactness of Y at x̄ together with K satisfying the Aubin property

at (x̄, y) for all y ∈ Y (x̄) imply the Lipschitz continuity of φ around x̄ (see Mordukhovich

[65]). φ is also Lipschitz continuous if Y is inner semicontinuous (see Mordukhovich and

Nam [66]). For example, Dempe and Zemkoho [35] use this together with the above

mentioned weak MFCQ condition in order to derive KKT-type and other necessary

optimality conditions.

Also, Dempe et al. [32] used the inner semicompactness and inner semicontinuity

of Y together with partial calmness and some regularity assumptions for the lower

and upper level in order to derive KKT-type and Fritz-John-type necessary optimality

conditions. Besides, they provided some cases in which Y is inner semicontinuous, e.g.

if Y (x) is a singleton, if the lower level constraint functions are weakly analytic as in

Definition 3.4, or if the lower level is linear in both variables.
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4.1 A Method for Linear Bilevel Programs

This section will illustrate the difficulties that occur when following this approach.

So, the linear deterministic equivalent of the linear stochastic bilevel problem is, as

presented in section 3.2,

min
x,y

c>x+
N∑
k=1

d>k yk

s.t. Ax = b

Wyk +Hx = hk, k = 1, . . . , N

q>k yk ≤ φk(x), k = 1, . . . , N

x, yk ≥ 0, k = 1, . . . , N

(4.3)

where φk(x) is the optimal value function of the lower level of scenario k and y =

(y1, . . . , yN ). It has inner semicontinuous multifunctions Yk, along with multiple con-

straints that have one variable in common: x.

As stated in section 2.1, these functions φk are piecewise linear and convex. In

particular, there exist δj,k, j = 1, . . . , J – which can be associated with vertices of the

dual problem’s feasible set – such that

φk(x) = max
j=1,...,J

[
δ>j,k(hk −Hx)

]
. (4.4)

The task now is to find a method that allows for decomposition into single scenarios.

The biggest problem lies in the fact that each scenario needs the same leader variable

x in order to give the correct solution to the upper level.

In the following, the method of Tuy et al. [85] will be exploited and enhanced to the

case of multiple scenarios. In their paper, a solution method for linear bilevel problems

is presented that is based on a branch and bound technique. In short summary, the

authors use the optimal value reformulation, which they call a linear program with an

additional reverse convex constraint, and formulate an equivalent quasiconcave mini-

mization problem using the polar of a set C. Since the polar C∗ is hard to compute,

an outer approximation scheme is used in order to subdivide a bigger set K∗ into cones

for which lower and upper bounds are evaluated.

Therefore, denote M the joint set of lower and upper level constraints as well as

Ck :=
{

(x, y) : φk(x) ≤ q>k yk
}

47



4. OPTIMAL VALUE FUNCTION APPROACH

Note that the inequality is stated the other way round compared to model (4.3).

Because of the above observation (4.4), it holds that

Ck = {(x, y) : δ>j,kHx+ q>k yk ≥ δ>j,khk , j = 1, . . . , J}, (4.5)

since φk(x) ≤ q>k yk implies max
j=1,...,J

[
δ>j,k(hk −Hx)

]
≤ q>k yk which is equivalent to the

above representation (4.5). This shows that Ck is a polyhedron whose interior is given

by
int Ck = {(x, y) : δ>j,kHx+ q>k yk > δ>j,khk , j = 1, . . . , J}

= {(x, y) : φk(x) < q>k yk}

If the linear problem

min

{
c>x+

N∑
k=1

d>k yk : (x, y) ∈M

}
(4.6)

has an optimal solution (x̄, ȳ) that is already feasible for problem (4.3), then, the

optimal solution of the original bilevel problem is found. But, if it is not optimal for at

least one second level, i.e., it holds (x̄, ȳ) ∈ int Ck for one k (or more), then, some cuts

would have to be added to problem (4.6) in order to find the optimal bilevel solution.

Now, if

C :=
N⋃
k=1

Ck ,

then
N⋃
k=1

int Ck ⊆ int C because the interior of a set is the union of all open sets

contained in it, int Ck ⊆ C, and int Ck is open for all k.

So, for the above suboptimal point, it holds (x̄, ȳ) ∈ int Ck ⊆ int C. The use of the

Minkowski difference entails that two new sets can be defined:

Ĉ := C − (x̄, ȳ) =
N⋃
k=1

{Ck − (x̄, ȳ)}︸ ︷︷ ︸
=:Ĉk

,

D̂ := D − (x̄, ȳ).

Lemma 4.1

For k = 1, . . . , N it holds that

Kk := {(x, y) : Hx ≤ 0 , q>k yk ≥ 0} ⊆ Ĉk.
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Proof:

It is to show that Kk + (x̄, ȳ) ⊆ Ck. So, if (x, y) ∈ Kk, then the assertion amounts

to verifying that (x̄+ x, ȳ + y) ∈ Ck.
First, due to Farkas’ Lemma, notice that for arbitrary y′ fulfilling

Hx̄+Wy′k ≤ hk , y′k ≥ 0

it holds

H(x̄+ x) +Wy′k ≤ hk , y′k ≥ 0

which yields

φk(x̄+ x) ≤ φk(x).

Thus,

φk(x̄+ x) ≤ φk(x) ≤ q>k ȳk ≤ q>k (ȳk + y)

due to the definition of the points (x̄, ȳ) and (x, y). This provides the assertion. 2

It follows that

K :=

N⋃
k=1

Kk ⊆
N⋃
k=1

Ĉk = Ĉ

where K is a finite union of polyhedral cones.

Using (4.5), the following representation holds true

Ĉk = {(x, y) : δ>j,kH(x+ x̄) + q>k (yk + ȳk) ≥ δ>j,khk , j = 1, . . . , J}
= {(x, y) : δ>j,kHx+ q>k yk ≥ δ

>
j,k(hk −Hx̄)− q>k ȳk︸ ︷︷ ︸

≤0

, j = 1, . . . , J}

Recall the definition of the polar V ∗ to a set V is defined to be

V ∗ := {u : u>v ≤ 1, ∀v ∈ V }

and it holds that

Ĉ∗ =

N⋂
k=1

Ĉ∗k ⊆
N⋂
k=1

K∗k = K∗ (4.7)

According to Schrijver [80], Theorem 9.1(iv), it holds that

K∗k = cone{H>1 , . . . ,H>m2
} × {01} × . . .× {0k−1} × cone{−qk} × {0k+1} × . . .× {0N}

where cone defines the conical hull of the containing vectors and Hi is the i-th row of

H.
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Define

u =

(
x
y

)
, γ>u = c>x+

N∑
k=1

d>k yk

and the function f : K∗ → (−∞,∞] as

f(v) := inf{γ>u : u ∈ D̂, v>u ≥ 1}

with the usual convention inf ∅ =∞.

Next, Tuy et al. [85] prove the following proposition which is crucial for their algo-

rithm, but does not hold here.

Proposition 4.2 (Tuy et al. [85])

Problem

min
u
{γ>u : u ∈ D̂ \ int Ĉ} (4.8)

is equivalent to the original problem (4.3) and to the following

min{f(v) : v ∈ Ĉ∗} (4.9)

in the sense that the optimal values coincide, and, if v̄ solves (4.9), then

ū ∈ argmin {γ>u : u ∈ D̂, v>u ≥ 1}

solves (4.8).

The first equivalence is actually derived in the text on page 246 in Tuy et al. [85].

In their case, it holds true that

int C = {u : φ(x) < q>y}.

But, for linear stochastic bilevel problems with C defined as above, this equivalence

does not hold. To prove that, two cases have to be distinguished. First, assume that

the problem has complete recourse (hk − Tkx ∈ posW := {t : Wy = t, y ≥ 0} for all k

and x ∈ Rn) and, for simplicity, assume that there exist only two scenarios, thus

C = {(x, y1, y2) ∈ Rn+2∗m : q>1 y1 ≥ φ1(x)}︸ ︷︷ ︸
=C1

∪{(x, y1, y2) ∈ Rn+2∗m : q>2 y1 ≥ φ2(x)}︸ ︷︷ ︸
=C2

Because of the complete recourse, there is a vector yi, i = 1, 2 for every x such

that φi(x) = q>i yi or φi(x) = −∞ is unbounded. In both cases, the set C1 (resp. C2)

consists of something like Rn × I1 × Rm (resp. Rn × Rm × I2) where Ii ⊆ Rm, i = 1, 2
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since each set only restricts one of the scenario variables. Thus, C = Rn × R2∗m as it

is the union of both sets. So, it holds that C = Rn × R2∗m = Ĉ = int C (as well as

C∗ = 0) and the set D̂ \ int Ĉ = ∅. This would mean that problem (4.8) is in this case

equal to min{∅} = +∞. Thus, the first equivalence does not hold for linear stochastic

bilevel problems with complete recourse.

For the case of incomplete recourse, the above equality int C = {u : φ(x) < q>y}
does not hold which will be shown by the next example.

Example 4.3

Again, two simple scenarios are assumed. Set

φ1(x) = min{−5y1 : y1 ≤ x, y1 ≥ 2}

and

φ2(x) = min{−5y2 : y2 ≤ x, y2 ≥ 0}.

Then,

φ1(x) =

{
−5x , x ≥ 2

+∞ , x < 2
and φ2(x) =

{
−5x , x ≥ 0

+∞ , x < 0

According to the definition, the set C consists of

C = {(x, y1, y2) : −5y1 ≥ −5x , x ≥ 2} ∪ {(x, y1, y2) : −5y2 ≥ −5x , x ≥ 0}

= {(x, y1, y2) : y1 ≤ x , x ≥ 2} ∪ {(x, y1, y2) : y2 ≤ x , x ≥ 0}

= [2,∞)× R× R ∪ [0,∞)× R× R

= [0,∞)× R2

and int C = (0,∞)× R2, but for x = 1 it is φ1(1) = +∞ 6< −5y1, y1 ∈ R.

Additionally, if no complete recourse can be assumed, the set C may not be convex

in x, if x is a vector of at least two entries (because the union of two convex sets does

not have to be convex).

An important step for the second equivalence in the above theorem is this equality

int Ĉ = {u : u>v < 1,∀v ∈ Ĉ∗}.

But, as C does not have to be convex, it follows that this equivalence does not hold

in the case of incomplete recourse (in the case of complete recourse, this equation does

hold trivially since Ĉ∗ = {0}).
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4.2 Alternatives

The example and discussion showed that the union of the sets Ck does not enable

decomposition as for instance possible in stochastic programming. This is due the fact

that each set Ck uses the vectors x and yk, but does not limit other scenarios. An

opportunity would be to define C differently, for example

C := {x ∈ Rn : Ax = b , x ≥ 0}︸ ︷︷ ︸
=:X

×
N

×
k=1

{
yk ∈ Rm : ∃x ∈ X with φk(x) ≤ q>k yk

}
︸ ︷︷ ︸

=:Ck

But then, the relation with the sets K and Kk would get lost since they depend on

both variables x and y, but the sets Ck only depend on their scenario variable. And the

polar of the sets K and Kk become a crucial instrument in the later branching (the set

K∗ is subdivided in order to find the boundaries of C∗). Additionally, in order to be in

the interior of C, a point (x̄, ȳ) would have to be suboptimal for every single scenario,

thus, cutting off points which are already “partially optimal”.

To the best knowledge of the author, most of the other algorithmic approaches for

linear bilevel problems either use the Karush-Kuhn-Tucker conditions or are somehow

a vertex enumeration approach – due to the fact that an optimal solution of the bilevel

problem occurs at a vertex of the relaxed feasible set M .

To use decomposition methods as presented in chapter 2 directly on the problem

(4.3) would also not work since relevant value functions are concave rather than convex.

Another possibility would be to use the algorithms proposed for nonlinear bilevel

problems and check those for their ability to use them on linear stochastic bilevel

problems (and allowance of decomposition methods). That might be a part of future

research.
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Karush-Kuhn-Tucker Approach

The Karush-Kuhn-Tucker (abbr. KKT) conditions are a very intuitive way to replace

convex lower level problems and have been widely used in the industry to solve bilevel

programs. At first in this chapter, a general introduction will be given on the subject

of KKT conditions and their utilization in bilevel programming. It will be followed

by a section that covers the properties of the reformulated bilevel problems. The next

chapter 6, then, will present an algorithm that is based on this approach.

5.1 Properties in the General Case

For the general optimistic bilevel problem, the KKT approach would be to reformulate

the problem as an one-level problem of the following type

min
x,y

F (x, y)

s.t. G(x, y) ≤ 0 (5.1)

g(x, y) ≤ 0

u ≥ 0

∇yf(x, y) + u>∇yg(x, y) = 0

u>g(x, y) = 0

where ∇ is the gradient operator. Beside the convexity, the lower level problem has to

fulfill some regularity condition, such as one of those stated in section 3.1.2, in order to

be reformulated as above. Due to the last constraint in (5.1), these problems are also

called mathematical problems with complementarity constraint (MPCC).
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If the lower level is nonconvex, the above problem (5.1) would describe a feasible set

that is larger than the solution set of the original bilevel problem and, thus, could just

be used as a (vague) bound. On the other hand, if regularity conditions were missing,

the MPCC might not even have a global optimal solution although the bilevel problem

has and even if the feasible set M is not empty and bounded – this was shown through

a quadratic example by Dempe and Dutta [31].

Also for this approach, several constraint qualifications do not hold. Flegel [41]

showed in his dissertation that for MPCCs the constraint qualification (MFCQ) does

not hold (at any feasible point). From this, it follows that also the (LICQ) does not

hold since it is sufficient for (MFCQ). Additionally, it can be easily verified that the

Slater constraint qualification does not hold because there is no point such that

u > 0, g(x, y) < 0 and u>g(x, y) = 0.

Instead, he showed that the Guignard constraint qualification can be applied directly

to the above problem deriving M(ordukhovich)-stationary points.

This constraint qualification was pursued by Dempe and Zemkoho [36]. They

showed that a local optimal solution of a KKT reformulated bilevel problem satisfying

the Guignard CQ also fulfills S(trong)-stationary conditions. But more important, they

considered the so called basic constraint qualification, which is a generalization of the

dual form of the MFCQ using Mordukhovich’s normal cone and subdifferential. The

authors use this basic CQ on an optimization problem with operator constraint, i.e.,

the constraint is of the form z ∈ Ω∩φ−1(Λ) for some locally Lipschitz-continuous multi-

function φ and closed sets Ω ⊆ Rl and Λ ⊆ Rm. They show that local optimal solutions

correspond for certain representations in order to derive M- and S-type stationarity

conditions for local optimal solutions of the KKT reformulation. Maybe interesting is

the fact that the parameters of the stationarity conditions are all bounded.

In addition to hold for the original bilevel problem, some regularity assumption

has to be fulfilled by the lower level and the basic CQ has to hold for all Lagrangian

multipliers at a point (x̄, ȳ). The authors also use the concept of partial calmness,

normally used for the optimal value function approach, see (4.2) on page 44, in order

to derive the S-type optimality conditions. Here, the concept is used to penalize the

term σ(x, y, u) = −u>g(x, y) and, thus, gaining stronger conditions. Interesting for the

54



5.1 Properties in the General Case

linear case is that they also showed that a problem with a convex upper level function

G and affine linear functions f and g already has a partially calm function σ.

Chen and Florian [23] showed that the Arrow-Hurwicz-Uzawa constraint qualifi-

cation (see Arrow et al. [3]) does not hold for the KKT-reformulation of a quadratic

bilevel problem, accessorily to the fact that also (MFCQ) is not valid. The latter was

also shown by Ye et al. [98].

Ye and Zhu combined in their recent work [97] both, the KKT and the optimal value

function approach, in one model and derived new and weaker constraint qualifications

(called weakly calm) for which S- and B-stationary points exists. But, their motivation

here was clearly nonconvex models for which neither the KKT approach nor the optimal

value function approach itself fulfill the above mentioned optimality conditions.

Dempe and Dutta [31] employed a linear bilevel example in order to show that at

global solutions the lower level problem may violate the (LICQ) (because it is degen-

erated), although the joint feasible set M is not degenerated. Along with an quadratic

example – that shows that only for some x, the general lower level problem might vio-

late the Slater condition and, thus, is not equal to its KKT reformulation – and some

other observations, they show that bilevel problems are not a special case of MPCCs.

Another specialty of this approach is the observation that the KKT reformulation of

the bilevel problem only coincides with its original in the sense of global optima. Even

if the problem is convex and a usual regularity assumption is fulfilled, local optima may

differ, which was also shown by Dempe and Dutta [31]. This has very strong impact

on the algorithms based on the KKT approach since local optimal solutions found for

reformulation (5.1) may not be locally optimal for the bilevel problems. In addition,

error estmistation is fairly difficult due to the special structure.
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5.2 Properties in the Linear Case

The linear bilevel problem (3.1) does not need any additional regularity assumptions

due to the inherent structure and its (deterministic) KKT reformulation looks like

min
x,y,u,µ

c>x+ d>y (5.2)

s.t. Ax = b (5.3)

Wy = h− Tx (5.4)

W>u+ µ = q (5.5)

µ>y = 0 (5.6)

x, y, u, µ ≥ 0 (5.7)

where µ is a slack varibale that is introduced for readability.

So, as stated in the foregoing section, the linear KKT reformulation does not fulfill

the MFCQ, LICQ, and Slater CQ.

Fortuny-Amat and McCarl [42] rewrote the complementarity slackness condition

(5.6) using the big-M method under the assumption that the problem is bounded.

Therefore, a binary variable z is introduced and the term is replaced by the two con-

straints y ≤ z M and µ ≤ (1 − z) M , where M is a large positive constant. This

transformation is also called Fortuny-Amat transformation and results in a (larger)

mixed-integer programming problem that can be optimized using a MILP solver. But,

the large size of the augmented problem may produce high computation times when

it comes to bigger problem sizes. Additionally, Gabriel and Leuthold [44] showed that

the selection of a particular parameter M is often troublesome and that a solution can

be extremely sensitive to its value. Bialas and Karwan [12] mention that if M is cho-

sen large enough, some integer programming solutions may reduce to an enumeration

scheme of all combinations µ = 0 and y = 0. Nonetheless, this approach is widely

used in the field of applications due to its simplicity and the very well developed MILP

solvers.

But, also different approaches have been made. For example, Bard and Falk [8]

transformed the complementarity constraint µ>y = 0 into the terms∑
i

[min(0, λi) + µi] = 0 and λi − yi + µi = 0, i = 1, . . . ,m
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and then used a branch-and-bound technique proposed by Falk and Soland [39] in order

to find a global optimum. However, limited computational experience is reported.

Bialas et al. [13] presented the parametric complementary pivot (PCP) algorithm

which adds the constraint q>y ≥ α to the problem (5.2) – (5.4), (5.6), as well as (5.7)

and changes (5.5) into −εBx+W>u+µ = q where ε is a suitably small positive scalar

and B can be any negative-definite matrix. This leads to a small perturbation of the

original KKT problem. The value of α is reasonably increased in every step until no

feasible solution exists. The algorithm can be viewed as an implicit enumeration scheme

of the lower-level optimal bases. Assumptions are that the problem is not degenerated

and the lower level does not have multiple optima.

Hu et al. [50] proposed an algorithm for linear programs with linear complementarity

constraints (with the KKT reformulation of bilevel problems in mind). It belongs to the

class of enumerative algorithms which deploys a heuristic to branchen on the solution

faster. It will be extensively exploited in the next chapter.

Rather recently, Siddiqui and Gabriel [83] derived a technique that reformulates

the complementarity conditions using SOS1-type variables and Schur’s Decomposition.

They reformulate the complementarity term into

u− (v+ − v−) = 0,

u = y+µ
2 ,

v+ − v− = y−µ
2 ,

v± ≥ 0.

In order to force each vector v+
i , v

−
i to be as close to zero as possible, a penalty term

L(v+ +v−) is added to the objective. Both problems – with and without penalty term –

are solved with changing penalty parameter L until v+,>v− = 0 and the objective

function value stays the same. The authors developed their algorithm for large-scale

nonlinear MPEC models, but, also adress the case when all but the complementarity

constraints are linear. Their motivation for developing this algorithm was a large-scale

MPEC that refelcted the U.S. natural gas market and, therefore, they also included the

case when the problem consists of finitely many stochastic scenarios in the follower’s

problem.

Introduction of Stochasticity

As stated in section 3.2, there are different approaches to establish stochastics in

the problems. For computational reasons, the scenario set Ω will be discrete and finite
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throughout, i.e., Ω = {1, . . . , N}. The uncertainty will be in the lower level only, which

makes sense because the leader is most probably acquainted with its set of problems, but

might lack in knowledge of the follower’s decision making. Additionally, the nescience

of the leader will only affect the right-hand side vector h and the objective function

vector q of the follower.

The easiest approach is using the expected value function. It results in a risk-neutral

stochastic program and can be represented as

min
x,y

c>x+

N∑
ω=1

π(ω)d(ω)>y(ω) (5.8)

s.t. Ax = b , x ≥ 0 (5.9)

Wy(ω) = h(ω)− Tx , ∀ω = 1, . . . , N (5.10)

y(ω) ≥ 0 , ∀ω = 1, . . . , N (5.11)

W>u(ω) + µ(ω) = q(ω) , ∀ω = 1, . . . , N (5.12)

µ(ω) ≥ 0 , ∀ω = 1, . . . , N (5.13)

µ>(ω)y(ω) = 0 , ∀ω = 1, . . . , N (5.14)

with 0 ≤ π(ω) ≤ 1 being the weight of each scenario ω and
N∑
ω=1

π(ω) = 1. The follower’s

decision vector y is dependent on the scenario ω since the follower will choose differently

dependent on the outcome of the stochastic event. Therefore, also the dual variables

are dependent on ω. The leader has to anticipate any of those outcomes, but can

incorporate the likeliness of the events. That is the reason for the different weights of

the scenarios summing up to one.

Of course, non-anticipativity is assumed which ensures that x is not directly depen-

dent on the stochastic outcome.

Few algorithms were developed that could solve this problem. The problem is

that, due to the stochasticity, the problem size might increase very fast if the number

of scenarios increases. And algorithms that were developed for small-scale problems

might not automatically terminate for larger ones in reasonable time.

As above mentioned, Siddiqui and Gabriel [83] developed an algorithm that could

also solve this problem through reformulating the complementarity constraints (5.14).
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Although, the authors do not show whether the algorithm solves the problem globally

or only locally.

In addition, the algorithms for linear stochastic MPCCs mentioned at the end of

section 1.4 could be used to solve the above problem.
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6

Stolibi – An Algorithm for Linear

Stochastic Bilevel Problems

As presented in the previous chapter, the KKT conditions produce a quadratic model

due to the complementarity constraints. Those constraints are often replaced by con-

straints containing binary variables and a big-M scalar and then optimized using mixed-

integer linear programming solvers such as IBM ILOG CPLEX Optimization Studio

[53], Gurobi Software [47], or SCIP [100]. But, there are two drawbacks of such an

approach. Normally, it is limited to problems with a bounded feasible region only, oth-

erwise no such big-M would exist or, if computed with some constant M , the solution

of the “big-M” problem would not be correct. On the other hand, the computation

of the accurate size of the constant M is not trivial. If M is too large, it can lead to

substantial round-off errors yielding an incorrect optimal solution; and if it is too small,

the solution is not correct.

Below, an algorithm whose deterministic counterpart stems from Hu et al. [50] will

be proposed. It was developed to globally solve linear problems with complementarity

constraints (LPCC) having linear bilevel problems in mind. Still, Hu et al. [50] did

not analyze or take advantage of the special structure that linear bilevel problems

exhibit. A follow-up paper by Hu et al. [51] shows applications and how other problem

classes can be reformulated as LPCCs as well as computational experiences with their

algorithm.

The code presented in section 6.5 was implemented as a research code and is named

stolibi.
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Hu et al. [50] start from the big-M formulation and develop it into a parameter-free

integer-programming-based cutting-plane algorithm. The method terminates with one

out of three mutually exclusive conclusions:

• the KKT problem is infeasible,

• the KKT problem is feasible, but unbounded, or

• the KKT problem is feasible and attains a finite optimal solution.

Apart from the preprocessing and some special recovery procedure, the algorithm works

on subproblems of the dual of the “big-M” model and an integer set Z “in the spirit

of Benders’ decomposition” (see Hu et al. [50]). The set is initialized as Z = {0, 1}m

and collects all satisfiability cuts that are generated during the procedure until the set

is empty or a certificate of unboundedness is found. The branching procedure is aided

by valid upper bounds on the (dual) optimal value.

The algorithm will be specialized to the case of linear stochastic bilevel problems

and a decomposition method will be embeded.

Input data and results will be provided and the chapter will close with an evaluation

of the refined algorithm.

6.1 Preliminaries

Hu et al. [50] start with a linear problem with complementarity constraints (LPCC) of

the form
min c>x + d>y

s.t. Ax+By ≥ f

0 ≤ y ⊥ q +Nx+My ≥ 0,

(6.1)

where a ⊥ b means that the two vectors are orthogonal, i.e., a>b = 0. It is c ∈ Rn, d, q ∈

Rm, f ∈ Rk, A ∈ Rk×n, B ∈ Rk×m,M ∈ Rm×m and N ∈ Rm×n.

Hu et al. [50] then state that “the LPCC (6.1) is equivalent to the minimization of

a large number of linear programs, each defined on one piece of the feasible region of

the LPCC”, namely for each subset α ⊂ {1, . . . ,m} with complement ᾱ the problems
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LP (α):
min c>x + d>y

s.t. Ax+By ≥ f

(q +Nx+My)α ≥ 0 = yα,

(q +Nx+My)ᾱ = 0 ≤ yᾱ

(6.2)

The correspondence is of the following types (see page 447 in Hu et al. [50]):

• The LPCC (6.1) is infeasible if and only if the LP (α) is infeasible for all α ⊂
{1, . . . ,m};

• The LPCC (6.1) is feasible, but unbounded if and only if there exist some α ⊂
{1, . . . ,m} for which LP (α) is feasible and has an unbounded objective;

• The LPCC (6.1) is feasible and has a finite optimal value if and only if there exist

some α ⊂ {1, . . . ,m} for which LP (α) is feasible and every such feasible LP (α)

has a finite optimal objective value. In this case, the optimal objective value of

the LPCC (6.1) (denoted by LPCCmin) is the minimum of the optimal objective

values of all such feasible LP (α).

As stated in the previous chapter, the reformulated linear stochastic and risk-neutral

bilevel problem using the KKT approach is of the form

min

{
c>x +

N∑
ω=1

πω · d>ω y(ω) : Ax = b , x ≥ 0

Wy(ω) +Hx = hω, ∀ω = 1, . . . , N

W>u(ω) ≤ qω, ∀ω = 1, . . . , N

y(ω) ≥ 0, ∀ω = 1, . . . , N

y(ω)>(qω −W>u(ω)) = 0, ∀ω = 1, . . . , N
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or with slack variable µ(ω)

min

{
c>x +

N∑
ω=1

πω · d>ω y(ω) : Ax = b , x ≥ 0

Wy(ω) +Hx = hω, ∀ω = 1, . . . , N

W>u(ω) + µ(ω) = qω, ∀ω = 1, . . . , N

µ(ω), y(ω) ≥ 0, ∀ω = 1, . . . , N

y(ω)>µ(ω) = 0, ∀ω = 1, . . . , N


(6.3)

and it can be translated into LPCC (6.1) form via

x∗ = (x, y(1), . . . , y(N))> , y∗ = (u(1), . . . , u(N), µ(1), . . . , µ(N))> ,

c∗ = (c, π1 · d(1), . . . , πN · d(N))> , d∗ = 0,

A∗ =



A 0 . . . 0
H W

...
. . .

H W
0

. . .

0


, B∗ =



0 . . . 0
0

. . .

0
W> In2

. . .
. . .

W> In2


, f∗ =



b
h1
...
hN
q1
...
qN


and N∗ =

(
0 0
0 IN ·n2

)
, q∗ ≡ 0, M∗ ≡ 0,

where In is the n–dimensional identity matrix. For readability, it is assumed that the

first constraint of the LPCC is an equality constraint, i.e., Ax + By = f . Otherwise,

the above matrices A∗ and B∗ as well as the vector f∗ had to be of double size where

each row occurs twice, once with a positive sign and once with a negative.

Here, it becomes a bit clearer that the already quite complex deterministic linear

bilevel problem grows even bigger when passing to its expected-value-based stochastic

version with a finite set of scenarios Ω. When a different risk functional is used that

does not have a linear programming description and cannot be transposed into one,

this equivalence is lost. This is also the case when Ω is a continuous set leading to a

nonlinear term in the objective function and infinitely many constraints.

Now, following the standard approach would be to introduce a binary vector z ∈
{0, 1}m and a positive scalar θ, replace the complementarity condition

y>(q +Nx+My) = 0

64



6.1 Preliminaries

using the Fortuny-Amat transformation, ending up with the mixed-binary model

min c>x + d>y

s.t. Ax+By ≥ f

θz ≥ q +Nx+My ≥ 0,

θ(1− z) ≥ y ≥ 0,

z ∈ {0, 1}m

(6.4)

and optimizing it with a standard MILP solver (if θ is known to be of appropriate size).

But, following Hu et al. [50], the big-M formulation will just be conceptual as a

means to further analyze the problem. To do so, the authors assumed θ to be given

and z to be a parameter. Thus, the problem

min c>x + d>y

s.t. Ax+By ≥ f (λ),

Nx+My ≥ −q (u−),

−Nx−My ≥ q − θz (u+),

−y ≥ −θ(1− z) (v),

y ≥ 0

(6.5)

denoted by LP(θ, z) is fully linear and can be dualized (the dual variables were given

in the parentheses in the above model):

max f>λ + q>(u+ − u−) − θ[z>u+ + (1− z)>v]

s.t. A>λ−N>(u+ − u−) = c,

B>λ−M>(u+ − u−)− v ≤ d,

λ, u+, u−, v ≥ 0

(6.6)

The dual parametric problem is named DLP(θ, z). The next proposition is crucial.

Proposition 6.1 (Hu et al. [50])

The following three statements hold:
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a) Any feasible solution (x0, y0) of the LPCC (6.1) induces a pair (θ0, z
0), where

θ0 > 0 and z0 ∈ {0, 1}m, such that the triple (x0, y0, z0) is feasible to the mixed-

binary model (6.4) for all θ ≥ θ0. Such z0 has the property that

(q +Nx0 +My0)i > 0 ⇒ z0
i = 1,

y0
i > 0 ⇒ z0

i = 0.

(6.7)

b) On the other hand, if (x0, y0, z0) is feasible to the mixed-binary model (6.4) for

some θ > 0, then (x0, y0) is feasible to the LPCC (6.1).

c) If (x0, y0) is an optimal solution of the LPCC (6.1), then it is optimal to problem

LP(θ, z0) (6.5) for all θ ≥ θ0 (where θ0 is the in a) induced scalar) and every z0

that satisfies (6.7). Moreover, for each θ > θ0, any optimal solution (λ̂, û+, û−, v̂)

of the DLP(θ, z0) (6.6) satisfies

z0>û+ + (1− z0)>v̂ = 0 (6.8)

Especially c) represents an interesting fact that will be very useful. It shows that

for every optimal solution (x0, y0) of the LPCC (6.1), there exists at least one binary

vector z0 such that the term in the dual problem’s objective function

θ[z0>u+ + (1− z0)>v]

can be dropped provided that the following implications hold

z0
i = 1 ⇒ u+

i = 0 and z0
i = 0 ⇒ vi = 0.

Corollary 6.2

Any (x0, y0) that is optimal for the LPCC (6.1) induces a pair (θ0, z0), as described in

Proposition 6.1 a), such that the objective function value of LP(θ0, z0) (6.5) is minimal

among the objective function values of all problems LP(θ0, z), z ∈ {0, 1}m.

Moreover, the same binary vector z0 indicates the problem DLP(θ0, z0) (6.6) which

has the lowest objective function value among all problems DLP(θ0, z) (6.6) z ∈ {0, 1}m.

Proof:

The first assertion is due to the fact that

• both problems, LPCC (6.1) and LP(θ0, z), z ∈ {0, 1}m, have the same objective

function,
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• the feasibility set of LP(θ0, z), z ∈ {0, 1}m is only a subset of the feasibility set of

LPCC (6.1),

and Proposition 6.1 c).

The second assertion is due to the duality of DLP(θ0, z) (6.6) and LP(θ0, z). 2

6.2 Decomposition

In the stochastic case, the dual DLP(θ, z) is of the form

max

{
N∑
ω=1

q>ω λ
ω
A − θ ·

(
N∑
ω=1

z>ω v
ω
1 +

N∑
ω=1

(1− zω)>vω2

)
+ b>λ0

B +
N∑
ω=1

h>ωλ
ω
B :

WλωA = 0 ∀ω

λωA −vω1 ≤ 0 ∀ω

vω1 ≥ 0 ∀ω

A>λ0
B +

N∑
ω=1

H>λωB ≤ c

−vω2 +W>λωB ≤ πωdω ∀ω

vω2 ≥ 0 ∀ω


(6.9)

Please note that, due to the equality conditions in the primal stochastic problem, the

variables λωA, λ
ω
B, and λ0

B are not limited to the nonnegative orthant, but real decision

vectors.

It is remarkable in the stochastic case that if it was not for the term

θ ·

(
N∑
ω=1

z>ω v
ω
1 +

N∑
ω=1

(1− zω)>vω2

)
, (6.10)

the problem would be decomposable into two or more subproblems. But, due to (6.8),

in the feasible and finite case it holds that this term vanishes in the dual problem

DLP(θ, z0) with optimal solution vector z0. This necessary optimality conditions mo-

tivates to define two sets for the stochastic case

I1(zω) := {i : vω1,i = 0} = {i : zω,i = 1}
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and

I2(zω) := {i : vω2,i = 0} = {i : zω,i = 0}

where z = (z1, . . . , zN ) and each of the sets are defined for every component vector of

z.

Then, the term (6.10) can be dropped from the dual objective function in DLP(θ, z)

and the problem can be decomposed into the following.

The first subproblem is of the form

max
{∑

q>ω λ
ω
A : WλωA = 0 , ∀ω = 1, . . . , N

λωA − vω1 ≤ 0 , ∀ω = 1, . . . , N

vω1,i = 0 , i ∈ I1(zω) , ∀ω = 1, . . . , N

vω1 ≥ 0 , ∀ω = 1, . . . , N


(6.11)

The constraint λωA−vω1 ≤ 0 can be redefined since v1 only presents a slack variable here.

If i ∈ I1(zω), then v1,i = 0 and the constraint becomes λωA,i ≤ 0. For i /∈ I1(zω), v1,i

can be chosen to be any positive value and the constraint becomes dispensable since

v1 is also no part of the objective function. Thus, the constraint can be rewritten as

λωA,i ≤ 0 for i ∈ I1(zω) and the remaining constraints containing v1 can be dropped.

Moreover, subproblem (6.11) actually consists of N subproblems because the deci-

sion vectors λωA are not coupled. So, the first subproblem (6.11) decomposes into N

problems

S(zω) := max
{
q>ω λ : Wλ = 0 , λi ≤ 0 , i ∈ Iω1 (zω)

}
∈ {0,∞} (6.12)

These problems are homogeneous, i.e., λ = 0 is always a feasible solution with objective

value 0. As soon as there exists a λ̂ with Wλ̂ = 0, but q>ω λ̂ > 0, the problem is

unbounded and S(zω) =∞.

The second subproblem of DLP(θ, z) (6.9) also possesses a special structure

ψ(z) = max

{
b>λ0

B +
N∑
ω=1

h>ωλ
ω
B : A>λ0

B +
N∑
ω=1

H>λωB ≤ c,

λωB ∈ P (zω), ∀ω = 1, . . . N


(6.13)

where

P (zω) = {λωB ∈ Rm2 : W>λωB − vω2 ≤ πωdω , vω2,i = 0 , i ∈ I2(zω) , vω2 ≥ 0}.
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As done in the first subproblem, the constraint W>λωB − vω2 ≤ πωdω can be rewritten.

For i ∈ I2(zω), it holds vω2,i = 0 and, thus, (W>λωB)i ≤ πωdω,i. On the other hand, if

i /∈ I2(zω), vω2,i can be chosen to be any positive (and −vω2,i to be any negative) value

making the constraint disposable. Summarizing, P possesses the description

P (zω) = {λωB ∈ Rm2 : (W>λωB)i ≤ πωdω,i , i ∈ I2(zω)}.

In addition, the structure of the second subproblem allows for the use of the Dantzig-

Wolfe decomposition. Therefore, assume that the extreme points and extreme rays of

the subproblems P (zω) are known:

P (zω) = conv { pω1 , . . . , pωt } + cone { rω1 , . . . , rωa }

where pωi are the extreme points and rωj represent the extreme rays. The following

equivalence holds

λ ∈ P (zω) ⇔ λ =

t∑
i=1

γωi p
ω
i +

a∑
j=1

φωj r
ω
j

where
t∑
i=1

γωi = 1 and γωi , φ
ω
j ≥ 0.

The complete master problem reads

max

{
b>λ0

B +
N∑
ω=1

(
t∑
i=1

γωi p
ω
i h
>
ω +

a∑
j=1

φωj r
ω
j h
>
ω

)
:

A>λ0
B+

N∑
ω=1

(
t∑
i=1

γωi p
ω
i H
> +

a∑
j=1

φωj r
ω
j H
>

)
≤ c,

t∑
i=1

γωi = 1, ∀ω

γωi , φ
ω
j ≥ 0, ∀ω,∀i,∀j


The extreme points and rays can be computed scenariowise using the pricing problems

max{
(
h>ω − qωH>

)
λωB : (W>λωB)i ≤ πωdω,i , i ∈ I2(zω)}.

The dual form of the KKT reformulated bilevel problem (6.3) and the special prop-

erty of Proposition 6.1 c) opened the opportunity to use different decomposition tech-

niques for the stochastic linear bilevel as was presented in this section. This is a new

approach in the field of stochastic bilevel programming to the author’s knowledge which

will provide the possibility of parallelization and, thus, to find solutions faster.
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6.3 Coverage of all Cases

The subsequent investigation follow Hu et al. [50] with emphazise on those issues that

are relevant in the stochastic case.

If the original KKT reformulated bilevel problem (6.3) is solvable to optimality,

then, the dual problem DLP(θ, z), z ∈ {0, 1}m, with the smallest optimal solution value

provides the binary vector z which also induces the primal problem’s optimal solution,

see Corollary 6.2. Hu et al. [50] provide methods how to check problem (6.3) for

unboundedness and infeasibility that will be presented now.

The following problem is of interest

R ∪ {±∞} 3 ϕ(z) = max
λ,u±,v

f>λ+ q>(u+ − u−)

s.t. A>λ−N>(u+ − u−) = c,

B>λ−M>(u+ − u−)− v ≤ d,

λ, u+, u−, v ≥ 0

z>u+ + (1− z)>v ≤ 0

(6.14)

The above is proposed in section 2.1 of Hu et al. [50]. For linear stochastic bilevel

programs, subproblems ψ(z) and S(zω) (6.12), ω = 1, . . . , N take the role of ϕ(z)1

(6.13). As the former, problem (6.14) was motivated by Proposition 6.1 c).

In addition, the homogenization of ϕ(z) (6.14) is

{0,∞} 3 ϕ0(z) = max
λ,u±,v

f>λ+ q>(u+ − u−)

s.t. A>λ−N>(u+ − u−) = 0,

B>λ−M>(u+ − u−)− v ≤ 0,

λ, u+, u−, v ≥ 0

z>u+ + (1− z)>v ≤ 0

(6.15)

In the stochastic case, this problem corresponds to subproblems S(zω) (6.12), ω =

1, . . . , N and the homogenization of ψ(z) (6.13) which will be named ψ0(z).

1Throughout this thesis, the reference to optimality problems either is made in the standard way

by numbering or as above via reference to the optimal value.
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6.3 Coverage of all Cases

It is known from linear algebra that for any pair (c, d) for which ϕ(z) is feasible, it

holds

ϕ(z) <∞ ⇔ ϕ0(z) = 0.

If ϕ(z) is unbounded, then of course, ϕ0(z) is unbounded, too. If ϕ0(z) is unbounded,

the latter reverse implication only follows if ϕ(z) is feasible; otherwise, ϕ(z) could be

infeasible.

The authors Hu et al. [50] additionally show (Proposition 2.2) that

ϕ0(z) = 0 ⇔ LP (α) (6.2) is feasible where α = supp(z) (6.16)

which also induces that ϕ0(z) = ∞ is responsible for the infeasibility of the primal

problems LP (α) (6.2). Especially, if ϕ(z) is infeasible and ϕ0(z) = 0, then it follows by

(6.16) that the corresponding LP(α) is unbounded. Besides, it holds by Farkas’ Lemma

that LP(α) is infeasible if ϕ(z) is infeasible and ϕ0(z) =∞ for α = supp(z).

The key set, which will be of interest in the algorithm, can now be defined as

Z = {z ∈ {0, 1}m : ϕ0(z) = 0}.

It contains all those z for which the primal problems LP(α) are feasible (unbounded or

bounded) for α = supp(z). If this set is empty, it is known from section 6.1 that the

LPCC (6.1) is infeasible.

Thus, the new optimization problem will be

min ϕ(z) s.t. z ∈ Z (6.17)

and it holds that

Theorem 6.3 (Hu et al. [50], Theorem 2.4)

a) LPCC (6.1) is infeasible if and only if Z = ∅ (i.e., min
z∈Z

ϕ(z) =∞).

b) LPCC (6.1) is feasible, but unbounded, if and only if min
z∈Z

ϕ(z) = −∞.

c) LPCC (6.1) is feasible and bounded if and only if −∞ < min
z∈Z

ϕ(z) <∞.

In all cases coincide the optimal values LPCCmin = min
z∈Z

ϕ(z).

Moreover, it holds for any z ∈ {0, 1}m for which ϕ(z) is feasible that

LPCCmin ≤ ϕ(z).

2
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In the stochastic case, it follows that

Z∗ = {z = (z1, . . . , zN ) ∈ {0, 1}m×N : S(zω) = 0 , ∀ω ∧ ψ0(z) = 0}

where ψ0(z) is the homogenization of ψ(z) (6.13) and the problem is to minimize the

function ψ(z) over this set Z∗. As above, the following cases arise:

a) The KKT reformulated risk-neutral stochastic bilevel problem (6.3) is infeasible

if and only if Z∗ = ∅.

b) Problem (6.3) is feasible, but unbounded, if and only if min
z∈Z∗

ψ(z) = −∞.

c) Problem (6.3) is feasible and bounded if and only if −∞ < min
z∈Z∗

ψ(z) <∞.

In b) and c), S(zω) is not part of the objective function value since its value is zero due

to the constraint z ∈ Z∗.

6.4 Search on the Binary Set

Throughout the algorithm of Hu et al. [50], different cuts will be added to the set

{0, 1}m in order to find a certificate of optimality, infeasibility, or unboundedness. This

section provides the proofs that the generated cuts lead to the correct certificate.

Because of Proposition 6.1, the relationship between the following two feasibility

sets is clear for the optimal, bounded solution, but not for the other cases.

Ξ =


(λ, u±, v) : A>λ−N>(u+ − u−) = c,

B>λ−M>(u+ − u−)− v ≤ d,

λ, u±, v ≥ 0


is the feasibility set of problem DLP(θ, z) (6.6) and

T (z) =



(λ, u±, v) : A>λ−N>(u+ − u−) = c,

B>λ−M>(u+ − u−)− v ≤ d,

λ, u±, v ≥ 0

z>u+ + (1− z)>v ≤ 0


represents the feasibility set of ϕ(z) (6.14).
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The following proposition will express the equivalence between those two sets. It is

also stated in the paper Hu et al. [50] as Proposition 2.3 and its proof will be repeated

here a bit more detailed.

Proposition 6.4

The subsequent holds for any z ∈ {0, 1}m:

1. An extreme point or extreme ray of T (z) is also extreme in Ξ.

2. An extreme point or extreme ray of Ξ is also extreme in T (z) if it is feasible.

Proof:

The assertions will only be shown for extreme points. Those for the rays can be

shown equivalently.

To prove the first statement, assume that (λp, u±,p, vp) is an extreme point of T (z)

(for any z). Then, of course, it is feasible to Ξ since T (z) ⊆ Ξ for all z. To show that

it is extreme, assume that there exist two other vectors in Ξ with
λp

u+,p

u−,p

vp

 = α


λ1

u+,1

u−,1

v1

 + (1− α)


λ2

u+,2

u−,2

v2


where α ∈ (0, 1) is some scalar and T (z) 63 (λi, u±,i, vi) ∈ Ξ, i = 1, 2. Then, it holds

0 ≥ z>u+,p + (1− z)>vp = z>(αu+,1 + (1− α)u+,2) + (1− z)>(αv1 + (1− α)v2).

Since all participating vectors and scalars on the right are nonnegative, it holds

z>αu+,i + (1− z)>αvi ≤ 0 ⇒ z>u+,i + (1− z)>vi ≤ 0

which includes (λi, u±,i, vi) ∈ T (z), a contradiction.

The second assertion holds trivially due to T (z) ⊆ Ξ. 2

Therefore, assume that all extreme points and rays of Ξ are known, i.e., the vec-

tors {(λpi , u±,pi , vpi)}Ki=1 and {(λrj , u±,rj , vrj )}Lj=1 define the K extreme points and L

extreme rays of Ξ, respectively. Having that, the problem (6.18), minϕ(z), z ∈ Z, can
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be rewritten as

min
z∈Z



max
βp,βr

K∑
i=1

βp,i
(
f>λpi + q>(u+,pi − u−,pi)

)
+

L∑
j=1

βr,j
(
f>λrj + q>(u+,rj − u−,rj )

)
s.t.

K∑
i=1

βp,i
(
z>u+,pi + (1− z)>vpi

)
+

L∑
j=1

βr,j
(
z>u+,rj + (1− z)>vrj

)
≤ 0

K∑
i=1

βp,i = 1

βp, βr ≥ 0


(6.18)

as done in section 2.2 with the Dantzig-Wolfe Decomposition.

Two sets can be defined that are of importance here:

L = {j ∈ {1, . . . , L} : f>λrj + q>(u+,rj − u−,rj ) > 0}

which contains all indices of extreme rays with positive objective function value in the

above problem; and

K = {i ∈ {1, . . . ,K} : f>λpi + q>(u+,pi − u−,pi) = ϕ(z) for some z ∈ Z}

which contains all those indices of extreme points that define the optimal solution for

any ϕ(z).

The set Z = {z ∈ {0, 1}m : ϕ0(z) = 0} can be redefined using the set L:

Proposition 6.5 (Hu et al. [50], Proposition 3.1)

Z =

z ∈ {0, 1}m :
∑

l:u
+,rj
l >0

zl +
∑

k:v
rj
k >0

(1− z)k ≥ 1 ∀j ∈ L


2

The above representation of Z is due to the fact that problem ϕ0(z) (6.15) can also be

defined using the extreme rays of Ξ. ϕ0(z) only has a bounded objective function value

if the above inequalities describing Z hold true.

In addition to that, if a set R ⊆ L is found such that

Z ⊆

z ∈ {0, 1}m :
∑

l:u
+,rj
l >0

zl +
∑

k:v
rj
k >0

(1− z)k ≥ 1 ∀j ∈ R

 = ∅
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then the LPCC (6.1) is infeasible, which holds due to Theorem 6.3 a) and the Propo-

sition 6.5. Therefore, problem (6.18), minϕ(z), z ∈ Z, can again be rewritten as

min
z∈Z



max
βp

K∑
i=1

βp,i
(
f>λpi + q>(u+,pi − u−,pi)

)
s.t.

K∑
i=1

βp,i
(
z>u+,pi + (1− z)>vpi

)
≤ 0

K∑
i=1

βp,i = 1

βp ≥ 0


(6.19)

Because of the new definition of Z, it forces βr,j to be zero every time the corresponding

extreme ray produces a positive objective function value, and the fact that if f>λrj +

q>(u+,rj − u−,rj ) < 0, βr,j = 0 would always be a feasible and optimal solution.

Now, the second set, K, will be examined. Clearly, if K 6= ∅, then Z 6= ∅ and LPCC

(6.1) is feasible, but possibly unbounded. Due to Theorem 6.3 and the definition of K,

it holds that

min
i∈K

f>λpi + q>(u+,pi − u−,pi) ≥ LPCCmin.

During the algorithm, different cuts will be generated for the binary set {0, 1}m.

The following set descibes them

Z(P,R) =


z ∈ {0, 1}m :

∑
l:u

+,rj
l >0

zl +
∑

k:v
rj
k >0

(1− z)k ≥ 1 ∀j ∈ R∑
l:u

+,pi
l >0

zl +
∑

k:v
pi
k >0

(1− z)k ≥ 1 ∀i ∈ P


for P × R ⊆ K× L. The first line denotes ray cuts, whereas the second line describes

point cuts.

Lateron, problem ϕ(z) (6.14) will be minimized with respect to the subset Z(P,R) of

binaries with growing sets P ⊆ K, collecting the extreme points, and R ⊆ L, collecting

extreme rays.

Proposition 6.6 (Hu et al. [50], Proposition 3.3)

If there exists P ⊆ K and R ⊆ L such that

min
i∈P

f>λpi + q>(u+,pi − u−,pi) > LPCCmin,

then argminz∈Z ϕ(z) ⊆ Z(P,R). 2
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From this it follows that if upon iterating the minimization problem minz∈Z ϕ(z),

optimality is not reached yet, the current set Z(P,R) always contains the argminz∈Z ϕ(z).

In other words, it cannot happen that optimal solutions get lost on the way.

Additionally,

Proposition 6.7 (Hu et al. [50], Corollary 3.4)

If there exist P ×R ⊆ K× L with P 6= ∅ and Z(P,R) = ∅, then

LPCCmin = min
i∈P

f>λpi + q>(u+,pi − u−,pi) ∈ R

2

Altogether, it can be said that

Theorem 6.8 (Hu et al. [50], Theorem 3.5)

a) LPCC (6.1) is infeasible if and only if a subset R ⊆ L exists such that Z(∅, R) = ∅;

b) LPCC (6.1) is feasible, but unbounded if and only if Z(K,L) 6= ∅;

c) LPCC (6.1) attains a finite value if and only if a pair exists P ×R ⊆ K×L with

P 6= ∅ such that Z(P,R) = ∅.

This theorem is crucial for the algorithm, since the latter searches for sets P × R
such that Z(P,R) = ∅. If in that case P = ∅, the LPCC is infeasible, and if P 6= ∅, the

LPCC can be solved to optimality. The unboundedness can be found as presented in

the previous section through ϕ(z) = −∞ and ϕ0(z) = 0.

According to the stochastic dual model (6.9) on page 67, a ray cut can be defined

similarly
N∑
ω=1

∑
l:vω,∗

1,l >0

zω,l +
N∑
ω=1

∑
k:vω,∗

2,k>0

(1− z)ω,k ≥ 1

if both subproblems, ψ (6.13) and at least one S-model (6.12), are unbounded. vω,∗1 as

well as vω,∗2 are the slack variables of the extreme ray solution vectors (as analyzed in

section 6.2). If only one of the subproblems is unbounded, the above cut simplifies to

either
N∑
ω=1

∑
l:vω,∗

1,l >0

zω,l ≥ 1
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if at least one S-model was unbounded, but ψ was bounded, or

N∑
ω=1

∑
k:vω,∗

2,k>0

(1− z)ω,k ≥ 1

if ψ was unbounded, but all S-models were bounded.

For the point cut, the situation is simpler due to the fact that if all S-models are

bounded, then, S(zω) = 0 → λωA = 0 which also implies that vω1 = 0. So, a point cut

is of the form
N∑
ω=1

∑
k:vω,∗

2,k>0

(1− z)ω,k ≥ 1

where vω,∗2 are the slack variables of the optimal solution of ψ.

The values of the slack variables for the S-models can be easily found by:

λωA,l > 0 ⇔ vω1,l > 0.

But, apart from the discussion in section 6.2, vω2 cannot be substituted from the model

ψ in order to be able to define point and ray cuts. Remember that

P (zω) = {λωB ∈ Rm2 : (W>λωB)i ≤ πωdω,i , i ∈ I2(zω)}

but, only for i /∈ I2(zω), the vectors vω2 can be positive. Additionally, for different

binary vectors zω, the sets P (zω) may differ a lot. This implies that an extreme ray or

point that was found for one P (zω) cannot automatically be used for a different P (z∗ω).

Thus, the Dantzig-Wolfe decomposition discussed on the problem ψ remains theoretical

for now. The subproblem ψ optimized in the next section is

ψ(z) = max

{
b>λ0

B +
N∑
ω=1

h>ωλ
ω
B :

A>λ0
B +

N∑
ω=1

H>λωB ≤ c,

W>λωB − vω2 ≤ πωdω, ∀ω = 1, . . . , N

vω2,i = 0 , i ∈ I2(zω), ∀ω = 1, . . . , N

vω2 ≥ 0, ∀ω = 1, . . . , N


The following section describes the procedure of the algorithm.
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6.5 Pseudo-Code of Stolibi

The algorithm to be presented now consists of three parts: preprocessing, main proce-

dure, and sparsification. While the first two steps are pretty much conventional, the

third is not. Conceptually, sparsification is an optional heuristic to speed up branching

in the main part. Otherwise, the latter could get very close to complete enumeration, in

the worst case. In the following, each of the three parts is inspected closer. In addition,

figures 6.1 -6.3 show the flowchart for each part.

6.5.1 Preprocessing

Preprocessing

Data Input: Two files [name1.lp name2.txt]
If error occurs, STOP with error description.

Else solve relaxed bilevel problem

min{c>x+
N∑
ω=1

d>ω y(ω) : Ax = b , x ≥ 0 ,

Wy(ω) = hω − Tx , ∀ω
y(ω) ≥ 0 , ∀ω
W>u(ω) + µ(ω) = qω , ∀ω
µ(ω) ≥ 0 ∀ω


If this problem is infeasible, STOP

– the original problem is infeasible.

If this is optimal and complementarity conditions are already fulfilled, STOP
– the original problem is already solved to optimality.

Else construct binary set Z = argmin{z : z ∈ {0, 1}m∗N} as well as dual models S
and ψ, set upper bound Popt to infinity and start with the main procedure.

The preprocessing starts with data handling. The algorithm’s input comes in two

files, the first of which (name1.lp) contains the upper level with its constraints Ax =

b, x ≥ 0 and objective function c>x as well as the lower level constraints for one scenario:

min c>x+ d>1 y(1)

s.t. Ax = b , x ≥ 0 ,

Wy(1) = h1 − Tx ,
y(1) ≥ 0.
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The second file (name2.txt) has to contain

1. the total number of scenarios (SCEN),

2. the dimension of the lower-level decision vector (SIZE),

3. a scalar parameter for the main procedure to estimate whether it pays to start

sparsification (EPS),

4. the lower level cost data vectors for the individual scenarios (Q*),

5. the lower level right-hand side data vectors for all but the first scenarios (changeh*),

and

6. the follower’s upper level cost data vectors for the individual scenarios but the

first (D*).

With the information of the two files, the relaxed bilevel problem

min{c>x+
N∑
ω=1

d>ω y(ω) : Ax = b , x ≥ 0 ,

Wy(ω) = hω − Tx , ∀ω
y(ω) ≥ 0 , ∀ω
W>u(ω) + µ(ω) = qω , ∀ω
µ(ω) ≥ 0 ∀ω


(6.20)

is built and is then solved in the second part of the preprocessing. It is relaxed because

it is missing the complementarity constraints µ(ω)>y(ω) = 0, ∀ω = 1, . . . N .

Should this problem be infeasible, then, the original KKT reformulated bilevel prob-

lem is infeasible, too. In this case, the algorithm stops with this output message.

Additionally, if the optimal solution of the relaxed bilevel problem (6.20) already

fulfills the complementarity constraints µ(ω)>y(ω) = 0 for all ω = 1, . . . N , then the

optimal solution for the original KKT reformulated bilevel problem is trivially found.

If neither one is the case, the procedure goes on with constructing the binary set Z,

which is realized through the usage of a minimization problem, initially on the total

number of possibilities (Z = argmin{z : z ∈ {0, 1}m∗N}). Next, the dual problems

S(zω), ω = 1, . . . , N and the dual problem ψ(z) are constructed. The upper bound,

which will be updated every time a feasible and bounded solution is found, is set to

infinity. A graphic representation of the preprocessing can be found in figure 6.1.
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Figure 6.1: Flow chart of the preprocessing.
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6.5.2 Main Procedure

For ease of representation, recall the following problems

ψ(z) = max

{
b>λ0

B +
N∑
ω=1

h>ωλ
ω
B :

A>λ0
B +

N∑
ω=1

H>λωB ≤ c,

W>λωB − vω2 ≤ πωdω, ∀ω = 1, . . . , N

vω2,i = 0 , i ∈ I2(zω), ∀ω = 1, . . . , N

vω2 ≥ 0, ∀ω = 1, . . . , N


and

S(zω) := max
{
q>ω λ : Wλ = 0 , λi ≤ 0 , i ∈ Iω1 (zω)

}
.

Main Procedure

Data Input: Z = argmin{z : z ∈ {0, 1}m∗N}, ψ, and S-models

While Z 6= ∅
Choose z ∈ Z = arg min{1I>z : z ∈ {0, 1}m∗N , z fulfills all generated cuts }.
Solve ψ(z)

If it is unbounded, solve all homogeneous models S(zω), ∀ω = 1, . . . , N ,
add ray cut to Z, and start the sparsification procedure.
If it is infeasible, check if ψ0(z) and all models S(zω) are bounded.

If so, STOP – the primal bilevel problem is unbounded.
If not, add ray cut to Z, and start the sparsification procedure.

If it is bounded, solve all homogeneous models S(zω), ∀ω = 1, . . . , N
If at least one model is unbounded, find one extreme ray in every un-
bounded model, add the corresponding ray cut to Z, and start the spar-
sification procedure.
If all S–models are bounded, add point cut to Z, and

If ψ(z) > Popt + EPS, start sparsification procedure,
Else if ψ(z) < Popt, update the bound Popt, save the solution zopt,

and start while-loop again,
Else start while-loop again.

End

If no point cut has been added to Z (Popt =∞), STOP – the bilevel problem
is infeasible.

Else STOP – optimal solution found with value Popt and binary vector zopt.

It is important to mention that after the sparsification procedure the algorithm

starts over with the while-loop, but possibly with Z having more constraints or the
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bound Popt being tighter. More about this procedure in the next subsection.

So, the main procedure starts with the data that it gets from the preprocessing. At

the first run, Z will have the total binary set {0, 1}m∗N as feasibility set because no

cuts have been added to Z so far. Thus, the origin will be chosen to be the first z.

The authors of Hu et al. [50] did not specialize how to search on the set Z. I chose

to start with binary vectors closer to the origin since these would restrict the dual set

ψ(z) the most, giving the possibility to lead to dual infeasibility (primal unboundedness)

faster than the other way round. But this is just one way of doing it and it is not proven

if one approach is faster than the other.

Having chosen a vector z, the algorithm goes on with solving ψ(z). Of course, only

three cases can be established for ψ(z): unboundedness, infeasibility, or feasibility.

In the first case, also the S-models have to be checked for unboundedness in order

to derive a feasible ray cut of the form

N∑
ω=1

∑
l:vω,∗

1,l >0

zω,l +
N∑
ω=1

∑
k:vω,∗

2,k>0

(1− z)ω,k ≥ 1

– as described at the end of the previous section 6.4 – which is added to Z. Again, if

only problem ψ is unbounded, but all S-models are bounded, the cut simplifies to only

the right sum being greater or equal to one. The sparsification procedure starts with

that cut then.

If the problem is infeasible, it has to be checked if a certificate of unboundedness

for the primal problem is found. Therefore, ψ0(z) and all S-models will be checked. If

at least one of the homogenization models is unbounded, the algorithm goes on with

constructing a new ray cut for Z which will be built from the (extreme ray) solution of

all unbounded homogeneous models. This means that the cut is of the same form as

above
N∑
ω=1

∑
l:vω,∗

1,l >0

zω,l +
N∑
ω=1

∑
k:vω,∗

2,k>0

(1− z)ω,k ≥ 1.

Again, the sparsification procedure will start with that cut.

But, if all models are bounded, the algorithm stops with the display Primal problem

is unbounded given that the homogenization is bounded. Stopped. and the

according binary z-vector.
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If ψ(z) is bounded and feasible, it still has to be checked if all S-models are also

bounded as functions of the same z. So, if at least one of these S(zω) is unbounded, a

ray cut will be built:
N∑
ω=1

∑
l:vω,∗

1,l >0

zω,l ≥ 1.

Since only the S-problems are unbounded in that case, the cut is so short. The sparsi-

fication procedure takes that cut as starting point.

On the other hand, if all S-models are bounded, a feasible solution is found and a

point cut can be added to Z as explained in section 6.4

N∑
ω=1

∑
k:vω,∗

2,k>0

(1− z)ω,k ≥ 1.

Additionally in that case, it has to be checked if the optimal value is better than

the current best solution value. If so, the algorithm updates the bound Popt and saves

the according binary vector as zopt. The algorithm starts again with solving Z.

As proposed by Hu et al. [50], nothing more will be done if the optimal solution of

ψ(z) is only a “little bit” better than the current best bound. The authors argumented

that in this case, the cut would not be promising enough for the sparsification procedure.

In that case then, the algorithm start again with solving Z.

But, if the optimal solution value of ψ(z) is greater than Popt+EPS (which defines

the “little bit”), the cut seems promising for the sparsification procedure. The value of

EPS can be chosen by the user, see the previous subsection.

The algorithm searches on the set Z until it is empty. In that case, the algorithm

stops with either having found an optimal solution Popt and the according binary vec-

tor zopt or having found a certificate of infeasibility for the KKT reformulated bilevel

problem.

Remark 1

If nonpositive extreme rays with positive objective value(s) exist in the above un-

bounded models, the dual problem is unbounded for all z. In such a case, the algorithm

would add the cut ∑
i:z∗i =0

zi +
∑
j:z∗j =1

(1− z)j ≥ 1 (6.21)
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Figure 6.2: Flow chart of the main procedure.
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to Z where z∗ is the binary vector which started the iteration. This would be done until

each and every point in {0, 1}m is analyzed. In order to avoid this kind of enumeration,

the algorithm stops if an unbounded model with negative extreme rays is found.

The same cut (6.21) is added if the solution is degenerated, i.e., it holds v1 = 0 and

v2 = 0.

6.5.3 Sparsification Procedure

In essence, the sparsification procedure is a heuristic to shorten the branching on the

binary variables. The algorithm would terminate without this procedure, but, it would

– in the worst case – be just a bit better than an enumeration algorithm.

The procedure starts with a ray cut or a point cut of the form

N∑
ω=1

∑
l∈J1(ω)

zω,l +

N∑
ω=1

∑
k∈J2(ω)

(1− z)ω,k ≥ 1 (6.22)

and uses the fact that if subsets K1(ω) ⊂ J1(ω) and K2(ω) ⊂ J2(ω) can be found such

that the cut
N∑
ω=1

∑
l∈K1(ω)

zω,l +
N∑
ω=1

∑
k∈K2(ω)

(1− z)ω,k ≥ 1 (6.23)

is also valid, then, the new cut is tighter than the so called root cut (6.22) since there

are less members in the sums so that it is harder to fulfill the greater-or-equal condition.

In that case, the subcut (6.23) can be added to Z instead of (6.22).

A cut (6.22) will be divided into two sparsified cuts of the above type (6.23), with

K1(ω) being the first set of the first cut and K2(ω) being the second set of the first

cut, and J1(ω) \K1(ω) being the first set of the second cut whereas J2(ω) \K2(ω) is

the second set of the second cut. So, J1(ω) and J2(ω) will be partitioned into two

“disjunct” subcuts.

The authors Hu et al. [50] did not specify how to divide the root cut, so I chose to

divide the cut in such a way that every second index will be in the same sparsified cut.

Whereas the main procedure only works on the dual problems DLP(θ, z) (and their

homogeneous counterparts), this procedure works mainly with the relaxed primal prob-

lem with additional constraints and only uses the dual problem to regain feasibility in

certain cases.
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In order to test the new sparsified cut (6.23) for validity, the following linear problem

is solved

min

{
c>x+

N∑
ω=1

d>ω y(ω) : Ax = b , x ≥ 0 ,

Wy(ω) = hω − Tx , ∀ω
y(ω) ≥ 0 , ∀ω
yi(ω) = 0 , i ∈ K2(ω), ∀ω
W>u(ω) + µ(ω) = qω , ∀ω
µ(ω) ≥ 0 ∀ω
µi(ω) = 0 i ∈ K1(ω), ∀ω


(6.24)

This problem is built from the relaxed bilevel problem shown in the section prepro-

cessing 6.5.1 and can also be compared to the model LP(α) (6.2). But, due to the fact

that it only partially treats the missing complementarity constraint, its solution and

solution value do not have to be feasible or a bound for the KKT reformulated bilevel

problem. Additionally, the solution value can also be worse than the best solution be-

cause the sets K1(ω) and K2(ω) fix certain values in the above model. Therefore, if the

solution value of problem (6.24) is (finite, but) greater than the current best bound,

the sparsified cut can be added to Z since it does not produce a better bound nor an

unbounded problem.

If, instead, problem (6.24) is infeasible, the same can be done. If this problem is

infeasible dependent on the sets K1(ω) and K2(ω), it might still be feasible for other

sets (i.e., binary vectors z). The main procedure will find a certificate of infeasibility

at the end.

But, if the problem is bounded with better objective value (including unbounded-

ness), it has to be checked if the complementarity conditions are fulfilled. If so, the

bound Popt can be updated as well as the binary vector zopt with

zopt,i = 0 if yi > 0 and zopt,i = 1 if µi > 0.

If both variables yi and µi are zero, zopt,i can be chosen arbitrarily. If the problem is

unbounded and the complementarity conditions apply, the algorithm stops because a

certificate of unboundedness has been found.

Now, the case when the complementarity conditions are not fulfilled is a bit harder.

Since this cut seems promising to produce a better bound, a feasibility recovery proce-

dure will be started.
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Feasibility Recovery Procedure

In order to create a feasible solution, the procedure takes the values of the leader’s

variable x∗ and solves each lower level Y (x∗, ω), ω = 1, . . . , N . The solution (x∗, y∗)

– if existent – is most likely not optimal, but bilevel feasible. Therefore, its value

c>x∗ +
N∑
ω=1

πω · d(ω)>y∗(ω)

creates an upper bound to the optimal solution if the follower’s problems are all bounded

and feasible. In addition, a feasible binary vector can be created (similar to the above

binary vector zopt) with

z∗i = 0 if y∗i > 0 and z∗i = 1 else.

With this binary vector, ψ(z∗) and S(z∗ω) can be solved and the same cases can be

distinguished and treated as in the main procedure, except for the part where the

sparsification procedure starts.

All this can be done if the follower’s problems are feasible and bounded. It can also

be done if all follower’s problems are feasible and some are unbounded. A representative

of the unbounded ray y∗ can still produce the binary vector z∗ and the dual problem may

then find a certificate of unboundedness. In these cases, the sparsified cut that started

the feasibility recovery procedure will be deleted from the sparsification procedure

without adding it to Z.

The only undesirable case is when one of the follower’s problems is infeasible. In

that case, no new cut can be generated and the old cut cannot be used since it is not a

complete vector to parameterize the dual problems. One option would be to just drop

that constraint and start over with the sparsification procedure. But, some information

were already gathered about that cut, so, the authors Hu et al. [50] proposed to create

a set named Zwait which collects these cuts and the solution value they produced on the

problem (6.24). Every time the upper bound Popt is lowered during the main procedure

or the sparsification procedure, this set is checked on cuts that have a solution value

greater, i.e., worse, than the new bound Popt. These cuts will be “activated” and put

into Z.

Sparsification Procedure

Data Input:
N∑
ω=1

∑
l∈J1(ω)

zω,l +
N∑
ω=1

∑
k∈J2(ω)

(1− z)ω,k ≥ 1 from main procedure

87



6. STOLIBI – AN ALGORITHM FOR LINEAR STOCHASTIC
BILEVEL PROBLEMS

1. Initialization: Partition the cut {J1, J2} into two cuts {K1,K2} and its relative

complement {KC
1 ,K

C
2 }

2. While there are cuts to treat:

Extract one cut and solve the problem (6.24) according to the sets K1(ω) and

K2(ω) defining the cut.

(a) If problem (6.24) is infeasible: Add cut to Z, start again with 2.

(b) Else if problem (6.24) is unbounded: check complementarity constraints

If fulfilled, STOP - bilevel problem is unbounded,

Else start feasibility recovery procedure. If it is successfull, add cut to

Z, start again with 2.

Else (feasibility recovery procedure is not successful) put cut into a

waiting pool, start again with 2.

(c) Else problem (6.24) is bounded:

If solution value LPrlx is Popt ≤ LPrlx < Popt +EPS, add cut to Z, start

again with 2,

Else if solution value LPrlx is LPrlx ≥ Popt+EPS, add cut to Z, sparsify

it in two subcuts, and start again with 2,

Else solution value is better than the current best value: Check if com-

plementarity constraints are fulfilled.

• If so, add cut to Z, update the best bound Popt and the best solution,

start again with 2.

• Else start feasibility recovery procedure.

If it is successfull, add cut to Z, start again with 2.

If not, put cut into a waiting pool, start again with 2.

End

3. Go back to main procedure.

The sparsification procedure terminates after a finite number of steps due to the

fact that it starts with one cut of finite length and in the worst case sparsifies the cut

in every step again until it searches through all indices of it.
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Figure 6.3: Flow chart of the sparsification procedure.
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6.6 Modulations of the Original Algorithm

This section presents the modulations that have been made on the algorithm of Hu et

al. [50] in order to accommodate it for the stochastic bilevel case. I will go through the

algorithm procedural.

For the preprocessing, the authors proposed to use “simple cuts”. These cuts would

combine certain nonbasic values of a solution with those nonbasic variables into one in-

equality. In the stochastic case, this would result in combining several scenario variables

in one inequality, thus, complicating the use of decomposition methods. Therefore, they

were omitted here.

In the main procedure, the selection of z ∈ Z was defined to be min z, z ∈ Z.

Additionally and more important, the problem DLP(θ, z) is decomposed into two sub-

problems of which one itself decomposes scenariowise.

Degenerated solutions, i.e., solutions with v1 = 0 and v2 = 0, are not treated by

Hu et al. [50]. In such cases, their algorithm would not add any cut to Z anymore and

not terminate. Stolibi instead will just add a cut to Z which precisely cuts off that z∗

which started the iteration. The cut would be∑
i:z∗i =0

zi +
∑
j:z∗j =1

(1− z)j ≥ 1.

Adding to Hu et al. [50], the feasibility recovery procedure was rethought from the

very beginning and specialized to the stochastic bilevel structure.

The algorithm was implemented using the programming language C++ on a linux

system (Ubuntu/Linaro 4.6.3-1ubuntu5, g++ version 4.6.3). The optimizer Gu-

robi [47] was used to solve all stated models.

Stolibi was implemented only on the knowledge of the paper by Hu et al. [50].

Therefore, the code and, especially, the computational approach in detail might most

probably differ a lot due to the lack of information.

6.7 Proof of Correctness and Finiteness

Following the paper of Hu et al. [50], it will be shown:

Lemma 6.9

The algorithm terminates after a finite number of iterations.
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Proof:

The finiteness is due to the facts that:

a) The set of binary vectors Z is finite,

b) There are only finitely many cuts, and

c) Each iteration of the algorithm generates a new binary vector that is distinct

from all those previously generated.

Statements a) and b) are obvious. But, compared to the work of Hu et al. [50], state-

ment c) has to be shown a bit different since the authors missed the degenerated case

when no entry of v = (v1, v2) is greater zero. In such a case, no cut would be generated

in their algorithm and the procedure would cycle. Here, the case is covered by the

operation of adding a cut to Z that just cuts off the z-vector that was generated at last

in the first step of the main procedure.

Otherwise, it also holds that in every iteration a new cut is generated that at least

cuts off the previous found z-vector. 2

The proof of this lemma was also provided in the paper of Hu et al. [50] leaving the

mentioned gap regarding c) under degeneracy.

Now, I am in the position to formulate the main result of the present thesis.

Theorem 6.10

The algorithm stolibi finds an optimal solution for the optimistic linear stochastic bilevel

problem.

Proof:

Since the algorithm terminates after a finite number of steps, it has to be shown

that the procedures do not cut off the optimal solution without saving it (as the optimal

solution).

First of all, any z-vector that produces an improved finite solution value is saved.

Thus, if (one of) the optimal z-vector(s) is generated in the first step of the main

procedure, it is also saved as the best solution and would only be overwritten afterwards

by vectors with better solution value.

So, it has to be shown that the cuts generated in the main and sparsification pro-

cedures do not accidentally cut off the best solution. Therefore, it is helpful to list the

times whenever a cut is added and which kind of cut it is.
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The cuts in the main procedure are added if:

1. ψ(z) or at least one S(zω) are unbounded (ray cut),

2. ψ(z) is infeasible and ψhomo(z) or S(zω) is unbounded (ray cut),

3. ψ(z) as well as all S(zω) are bounded (point cut).

The validation of these cuts was already shown at the end of section 6.4. More inter-

esting are the cuts that are produced in the sparsification procedure when:

1. the relaxed primal problem with additional constraints (6.24) is infeasible,

2. the relaxed primal problem with additional constraints (6.24) is bounded and the

solution value is worse than the currently best solution,

3. the relaxed primal problem with additional constraints (6.24) is bounded, the

solution value is better than the currently best solution, and the complementarity

conditions are fulfilled (including the unbounded case),

4. the cut is produced in the feasibility recovery procedure.

For the first three cases, it is important to mention that the relaxed primal problem with

additional constraints (6.24) is equivalent to solving the parameterized linear problem

min

{
c>x+

N∑
ω=1

d>ω y(ω) : Ax = b , x ≥ 0 ,

Wy(ω) = hω − Tx , ∀ω
y(ω) ≥ 0 , ∀ω
W>u(ω) + µ(ω) = qω , ∀ω
µ(ω) ≥ 0 ∀ω
µi(ω) ≤ θz∗ω,i i ∈ K1(ω), ∀ω
yi(ω) ≤ θ(1− z∗ω,i) , i ∈ K2(ω), ∀ω



(6.25)

where z∗ω,i = 0 for i ∈ K1(ω) and z∗ω,i = 1 for i ∈ K2(ω) (and the rest of the binary

vector z∗ can be set arbitrarily to zero or one). Thus, z∗ is exactly the vector violating

N∑
ω=1

∑
l∈K1(ω)

zω,l +

N∑
ω=1

∑
k∈K2(ω)

(1− z)ω,k ≥ 1, (6.26)

the cut that is treated in the sparsification procedure at that moment.
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So, if the relaxed primal problem with additional constraints (6.24) is infeasible, the

cut can be added to Z because only if all binary vectors produce infeasible problems,

the bilevel problem is infeasible. This cut will allow to find such a certificate faster.

In the second case, when the problem is bounded and the solution value is worse,

i.e., greater, than the current best bound Popt, the cut can also be added to Z. The

reason for doing so is that any completion of that vector z∗ would only produce worse

optimal solution values or infeasible problems.

In the third case, the algorithm found a bilevel feasible solution with better solution

value. The latter is saved as Popt and z∗ is complemented according to be saved as zopt.

Therefore, the subcut (6.26) can also be added to Z.

If the feasibility recovery procedure has to start, the solution value of (6.25) was

better than Popt, but the complementarity conditions were not all fulfilled. During that

procedure, a cut is only added to Z if all follower’s problems are feasible for the values

of x∗ set as parameters. If so, the subcut (6.26) is disregarded and a new binary vector

is constructed from the solution y′. If not, the cut is added to Zwait; this will be treated

in the next paragraph. In the former case, the same practice as in the main procedure

is done with the new binary vector. These cuts were already shown to be valid.

At last, a cut is added to Z when Popt is lowered and a cut saved in Zwait had a

solution value now worse than Popt. This is also valid due to the same reason as in the

second case of the sparsification procedure.

Additionally, the certificates for unboundedness and infeasibility were also already

shown to be correct in section 6.3. Therefore, the algorithm works correctly. 2

6.8 Requirements and Input

Actually, there are very few conditions on the problems. The algorithm will find infeasi-

bility or unboundedness. The only restrictions are made by the form of the input data.

The bilevel problem has to be an equality problem, meaning that every constraint (ex-

cept the nonnegativity constraints) has to hold by equality. This can be easily achieved

with slack variables if the problem is actually dependent on inequalities.

The model has to be a minimization problem. This can also be easily accomplished

by taking the negative of the objective function. Additionally, it is intrinsically assumed

that the lower level problem is a minimization problem. This will not be checked by
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the procedure while the leader’s model is checked on that. The algorithm only works

on problems with at least two scenarios.

Important for the usage of the algorithm on other PCs is the installation of the

Optimizer Gurobi [47] and the adjustment of the makefile if the libraries of gurobi are

not put in the standard place. As a research code, it was implemented and checked on

a linux ubuntu distribution, exclusively.

The input has to be done through two files. Details were already given in section

6.5.1 describing the preprocessing. It is important to remember that the stochastics

only influence the follower’s cost vector q, the follower’s right-hand side h, and, conse-

quently, the leader’s cost vector for the follower’s variables. The remaining data (i.e.,

the matrices W and T ) are just copied for every scenario starting with the second.

Finally, the beginning of some of the vectors’ names are set. The variables have to

begin with “X” or “Y”, the upper level (resp. lower level) follower’s cost vector has

to begin with “D” (resp. “Q”) and the right-hand side has to be named “changeh”

beginning with the second scenario.

6.9 Computational Results

In order to check the correctness of stolibi, I also implemented an algorithm in C++

which uses the same data input as stolibi, described in sections 6.8 and 6.5.1. The data

is then merged to the following mixed-integer linear problem

min

{
c>x+

N∑
ω=1

π(ω)d>ω y(ω) : Ax = b, x ≥ 0 ,

Wy(ω) = hω − Tx , ∀ω
y(ω) ≥ 0 , ∀ω
W>u(ω) + µ(ω) = qω , ∀ω
µ(ω) ≥ 0 , ∀ω
µ(ω) ≤Mz(ω) , ∀ω
y(ω) ≤M(1− z(ω)) , ∀ω
z(ω) ∈ {0, 1}m , ∀ω



(6.27)

The algorithm solves the KKT reformulated bilevel problem in the standard approach,

optimizing the above model for one M set to a certain high value (e.g. M = 1000 for

smaller problems is reasonable).
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In most cases, the problem has to be solved for different values of M in order to be

sure that the problem is not unbounded or that an undersized M surpresses the correct

solution. Still, if one can be sure that the lower level problems are bounded and M is

set appropriate, it is safe to assume that the solution of the algorithm is correct.

As for stolibi, the same Optimizer Gurobi [47] was used to solve this problem.

Table 6.1 shows the performance of stolibi for certain artificial examples. Tables 6.2

and 6.3 show the results of two stochastic bilevel problems with 10 scenarios compared

to the solutions when perfect information is available, i.e., when the leader knows which

scenario will be realized.

SCEN SIZE of y Runtime Solution Value Solution found in

3 5 0.07 sec Unbd Main Procedure

4 6 0.4 sec 10.0 Feasibility rec. proc.

10 5 2.4 sec -144.0 Feasibility rec. proc.

10 20 0.03 sec -163.5 Preprocessing

5 5 0.4 sec 100.9 Feasibility rec. proc.

6 5 4.1 sec 124.75 Feasibility rec. proc.

7 5 37.4 sec 157.5 Feasibility rec. proc.

8 5 3 min 7.2 sec 175.25 Feasibility rec. proc.

9 5 3 min 12.0 sec 215.0 Feasibility rec. proc.

10 5 80 min 4.7 sec 232.25 Feasibility rec. proc.

20 5 > 4 h (stopped) (483.75) (Feasibility rec. proc.)

Table 6.1: Performance of stolibi

SCEN represents the number of scenarios in that model and “SIZE of y” indicates

the dimension of each scenario’s lower level decision vector. The first block shows the

results for some arbitrary problems, whereas, the second block represents the same

problem with a growing number of scenarios.

It is pretty interesting that, in most of the cases, the solution was found in the

first iteration of the main procedure when the S-models where unbounded and the

sparsification procedure is started with that ray cut. One can see that the algorithm

works very fast for smaller problems. The correctness of the solutions was verified by

the above alternative.
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However, the second block shows that with a growing number of scenarios, the

algorithm becomes much slower. Still, the solutions for higher numbers of scenarios

were also found the first time the sparsification procedure was started. This could be

used for later research or in the use of a heuristic.

The high running time for comparatively small examples, e.g. with scenario size

10 or greater, can be explained by the size of the binary problem Z and the need to

normally add a high number of cuts until it becomes infeasible. Besides, the addition

of many cuts causes the problem to be solvable even harder, thus, longer.

Scenario Objective Value X values Obj. value with x̄

1 -25.0 (1, 2.0, 3, 4, 5) -25.0

2 -33.6 (1, 1.6, 3, 4, 5) 5

3 -25.0 (1, 2.0, 3, 4, 5) -25.0

4 -35.0 (1, 2.0, 3, 4, 5) -35.0

5 35.0 (1, 2.0, 3, 4, 5) 35.0

6 -5.0 (1, 2.0, 3, 4, 5) -5.0

7 20.0 (0, 2.0, 3, 4, 5) 35

8 -26.3 (1, 1.6, 3, 4, 5) infeasible

9 -35.0 (1, 2.0, 3, 4, 5) -35.0

10 6.3 (1, 1.6, 3, 4, 5) infeasible

E 12.4 x̄ = (1, 2.0, 3, 4, 5) -

stoch -2.0 (0, 2.0, 3, 4, 5) EEV = −

Table 6.2: Comparison of the perfect information solutions and the expected value solu-

tion for example 1.

In addition to that, it might be interesting how much influence the uncertainty

has on the solution and its value. Two examples will provide more insight (see tables

6.2 and 6.3), each with a five-dimensional leader’s variable, ten scenarios, and a five-

dimensional follower’s decision vector for each scenario. All problems are minimization

problems as described in section 6.8. In the stochastic models, each scenario had the

same probability, i.e., πω = 1
10 .

The stochastic problem is solved with stolibi and the solution can be found under the

name “stoch” in the last row. The first ten rows of the tables show the results when each

scenario is solved as an individual deterministic bilevel problem. Thus, these problems
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give the solutions if the leader had perfect information about the follower’s problem.

The remaining row, symbolized with E, depicts the solution if the data exposed to

randomness is each replaced by its expected value.

In the first table 6.2, one can see that the objective values vary a lot between +35

and −35. More importantly, scenarios 8 and 10 would not be feasible if the solution

of the expected value problem was used. This implies that the stochastic approach is

very appropriate at this place.

In addition, the value of the stochastic solution (VSS) and the expected value of

perfect information (EVPI) – see Chapter 4 in Birge and Louveaux [15] – can be

examined.

For table 6.2, the VSS cannot be determined because it depends on the EEV (the

EEV is the expected result of using the expected value solution, i.e., the weighted sum

of the last column), but

EV PI = stoch−WS = −2− (−11.32) = 9.32

where WS is the expectation of the optimal values of all possible scenarios, i.e., WS =

1
10

10∑
i=1

objective value of deterministic version of scenario i. The value shows that the

Scenario Objective Value X values Obj. value with x̄

1 -132 (1, 2, 3, 4, 0) -132

2 6 (1, 0, 3, 0, 5) 68

3 -417 (0, 0, 3, 4, 0) -412

4 -190 (1, 2, 3, 4, 0) -162

5 -262 (1, 0, 3, 4, 0) -262

6 -232 (1, 0, 3, 4, 0) -232

7 -4 (0, 0, 3, 0, 5) 128

8 -140 (1, 2, 3, 4, 0) -72

9 -442 (1, 0, 3, 4, 0) -442

10 -59 (1, 0, 3, 0, 5) 68

E -228.8 x̄ = (1, 0, 3, 4, 0) -

stoch -144 (1, 0, 3, 4, 0) EEV = -144

Table 6.3: Comparison of the perfect information solutions and the expected value solu-

tion for example 2.
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knowledge of future events should not cost more than 9.32.

Table 6.3 instead shows that even though the objective values differ a lot between

−442 and +6, the solution of the stochastic problem and the solution of the expected

value problem E are the same. Still, the evaluation of the stochastic solution can be

done through

V SS = EEV − stoch = −144 + 144 = 0

which is clear since the solutions of E and stoch are the same. But, the expected value

of perfect information

EV PI = stoch−WS = −144− (−214.48) = 70.48

shows that it would be much better to know the future event if possible. In other words,

this problem’s scenariowise solution values have a rather high variability compared to

the stochastic solution.
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Conclusion

This thesis is concerned with linear stochastic bilevel problems and how decomposition

methods known from stochastic programming can be used here. An overview on the

literature in the field of stochastic bilevel problems was given. Two decomposition

methods were reviewed.

Few properties of the (multi-)functions appearing in linear bilevel problems were

examined, as well as their reformulations, and random parameters were introduced.

Two approaches have been made in order to apply decomposition methods, one

using the optimal value function, the other using the KKT conditions. The first ap-

proach via the value function led to the (preliminary) outcome that the reverse convex

constraints it produces defy incorporation into a cutting-plane decomposition scheme

of, say, Benders type. To the author’s knowledge this remains an open problem in the

research literature.

Capturing lower-level optimality via the KKT conditions, however, the problem can

be reformulated following the big-M idea without exercising it numerically. Controlling

the combinatorics behind the complementarity conditions by Boolean entities under-

stood as parameters rather than variables, yields a reformulation of the original problem

as a linear program with integer parameters. In this setting, for fixed parameters, du-

alization becomes feasible which leads to a model that is amenable to decomposition

into single-scenario problems. Embedding into a branch-and-bound scheme over the

Boolean parameters results in a scenario decomposition algorithm for linear stochastic

bilevel programs.
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7. CONCLUSION

The algorithm was analyzed, implemented, and evaluated. As a research code,

its purpose was to provide a proof-of-concept rather than outperforming commercial

general-purpose solvers. Still, it shows some advantages that might be of use in future

research. The structure of the dual problem allowed for decomposition, but only parts

of it were implemented. The Dantzig-Wolfe decomposition of one of the subproblems

was left out and might become a run-time saver for bigger problems if implemented

accordingly. In addition, the implementation was done “my way” and without the

usage of parallelization. The latter might win some time, e.g. when the S-models are

solved simultaneously, or the problems occuring in the Dantzig-Wolfe decomposition

could be solved at the same time.

Therefore, this thesis lays the foundation to further research on decomposition

methods in that direction.
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