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Kurzfassung

Diese Dissertation leistet einen Beitrag auf dem Gebiet der ultrabreitbandi-

gen Radartechnologie. Insbesondere handelt es sich hierbei um die Entwick-

lung eines Systems zur Objekterkennung anhand eines bi-statischen Breit-

bandradars von teilweise polygonen Objekten, welche im Abstand von 1 m

umrundet und vermessen werden. Geometrische, texturbasierte und mo-

mentenbasierte Merkmale werden aus den Radardaten extrahiert, die an-

schließend als Metrik für die Klassifizierung der Objekterkennung dienen.

Der genaue zeitliche Verlauf eines UWB Radarsignals, der aufgrund der

gebotenen zeitlichen Auflösung zur Verfügung steht, wird massiv von In-

terferenzen und transienten Effekten der Apparatur verzerrt.

Daher wurden Algorithmen entwickelt, die eine zeitlich-örtliche Präzision

des Radars gewährleisten, welche das durch die Bandbreite bedingte Auflö-

sungsvermögen übertreffen: (i) Ein innovativer Algorithmus zur Wellenfron-

textraktion unter Einsatz von polarimetrischem Diversitätsgewinn, um auch

massiv überlappte Pulse zu separieren; (ii) ein Algorithmus, der anschließend

hoch aufgelöste Mikrowellenbilder erzeugt und mittels der Wellenfronten die

Positionen der signifikanten Streuzentren ermittelt; (iii) ein Algorithmus zur

Objekterkennung, der die Mikrowellenbilder klassifiziert und abschließend

unterscheidet.

Herausragende Erkennungsraten bei voller Umrundung der Objekte wur-

den anhand des geringsten mittleren quadratischen Fehlers erzielt. Eine

auf der Bayes Theorie basierende Klassifizierung erhöht die Zuverlässigkeit

der Erkennung nochmals deutlich, was insbesondere bei Teilumrundungen

zutrifft.

Als zusätzliche wissenschaftliche Errungenschaft wurde ein Algorithmus ent-

wickelt, der stereoskopische 3D Bilder mithilfe einer räumlich verteilten syn-

thetischen Apertur eines bi-statischen Radars ermittelt.

Um die Leistungsfähigkeit der entwickelten Algorithmen und Systeme in der

Realität zu verifizieren, wurden alle in dieser Arbeit entwickelten Algorith-

men experimentell validiert und insbesondere das Objekterkennungssystem

im Rahmen einer umfangreichen Messkampagne untersucht.





Abstract

This thesis contributes to the field of short-range ultra-wideband (UWB)

Radar. In particular, an object recognition approach performed by a bi-static

UWB Radar has been investigated in this thesis. The investigated objects

consist of simple canonical and some polygonal complex objects which are

scanned on a circular track at about 1 m distance. Geometrical features, tex-

ture features and moment based features are extracted from the Radar data

to carry out the recognition. Yet, the precise temporal evolution is subject

to massive distortions, mainly caused by severe interference conditions and

transient effects of the hardware.

Thus, super-resolution algorithms have been developed which go far beyond

the classical bandwidth given resolution and asked for research on various

fields: (i) An innovative wavefront extraction algorithm with polarimetric

diversity exploitation has been developed to separate pulses which overlap

almost the whole pulse duration; (ii) a highly precise feature extraction al-

gorithm has been developed which localises significant scattering centres by

processing the previously extracted wavefronts; (iii) a novel UWB object

recognition algorithm has been developed to classify and discriminate the

resulting microwave images.

When scanning objects from all sides, exceptional recognition of objects was

achieved by a minimum mean squared error classifier. Further improvement

in recognition was obtained, especially at severly restricted tracks, by the ap-

plication of Bayes theory which constitutes a superior classifier to the above.

In addition to the main field of research, a novel stereoscopic 3D UWB imag-

ing algorithm, based on a spatially spanned synthetic aperture in conjunction

with ellipsoidal shaped wavefronts, has been developed.

The ultimate test of any model and system is an experimental validation.

Consequently in this thesis, all developed algorithms and the object recog-

nition as a whole system are experimentally validated within an elaborate

measurement campaign.
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Notation

In the following lists the main Latin and Greek symbols, abbreviations and

constants are listed. All are sorted in an alphabetic order in separated lists,

while Greek symbols are listed directly after the corresponding Latin sym-

bols. Symbols with the same initial letter are ordered according to the first

appearance in the text. The page number of the first appearance is provided

in the last column.

Scalar quantities are written in italic letters (a,A), vector valued and matrix

valued quantities are written in bold straight letters. Vectors differ from ma-

trices by having an arrow ~A above whilst matrices A do not. Time domain

quantities are denoted with small letters and frequency domain quantities

with capital letters.

The bibiliography is itemised in alphabetic order of the first authors name.

This thesis is written in British english notation.
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RxMUT

85
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first Chapter

Introduction

Inspired by Maxwell’s work, Heinrich Hertz was the first radio pioneer who

experimentally proved the existence of EM waves with his famous spark gap

experiments in 1887. By the turn of the century, innovative research in wire-

less radio transmission was driven foremost by Guglielmo Marconi, Alexan-

der Stepanovich Popov and Nikola Tesla which resulted in the first wireless

transatlantic transmission in 1901. The beginning of radio detection and

ranging (Radar) technology, to which this doctoral thesis shall contribute to,

can be dated back to 1904 when Christian Hülsmeyer applied for a patent en-

titled “Verfahren, um entfernte metallische Gegenstände mittels elektrischer

Wellen einem Beobachter zu melden”. For the first time in history the re-

ception of scattered EM waves was employed to detect a target which was a

ship in this particular case.

From a signal and system theory point of view it can be summarised that

the beginning of wireless propagation started with ultra-wideband (UWB)

signals since all aforementioned radio pioneers used spark-gap transmitters

and coherer-detectors. The generated sparks comply with very short pulses

which correspond to a huge occupied frequency spectrum. Afterwards, for

more than one century UWB just existed as a niche technology mainly driven

by military needs and restricted to a small community of experts. With the

first official regulation in 2002 for an unlicensed usage in the range of 3.1 and

10.6 GHz by the US Federal Communications Commission (FCC) a vast on-

going interest was triggered in academia as well as in the civil industry. With

regard to the allocated spectrum UWB systems are designed as an overlay
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system since a large number of classical radio systems are already established

in the intended frequency bands. Hence, the emission of UWB systems is

restricted to a power spectral density of −41.3 dBm/MHz EIRP to provide

a (i) coexistence with classical narrowband systems without severe interfe-

rence effects. Consequently, the restriction in terms of radiation power pre-

destines UWB systems to short-range operations. As a matter of principle,

short-range communication, sensor networks and short-range Radar systems

benefit from abundant absolute bandwidths offered by UWB technology. In

the field of communications (ii) higher data-rates can be obtained since the

channel capacity is increasing proportionally with the bandwith. For Radar

and sensor applications UWB technology provides novel and innovative po-

tentials and has various superior advantages in contrast to classical sensing

techniques. Increased bandwidth as the key feature results in (iii) higher

down-range resolution (i.e. the capability of separating two point scatterers

along the main lobe). This provides provides enhanced multipath immunity,

precise ranging and localisation capabilities and super-resolution imaging in

delay time domain (temporal dimension within one measured signal due to

the huge bandwidth, also known as fast time domain). When the large range

of operational frequencies are set in the lower microwave region which starts

at 300 MHz (iv) super-resolution UWB Radar systems penetrate dielectric

materials to perform subsurface, in- and through-wall sensing. Recently,

small and cost effective devices enter the market and due to its (v) non-

ionizing nature and low-power emission attributes the admission of UWB

to daily life routines with commercial and consumer applications is actually

being accelarated.

In summary, due to the huge bandwidth UWB Radar complements the clas-

sical Radar technology (applied for air traffic control, weather forecasting,

navigation of ships, speed limit enforcement, remote sensing, military utility

et cetera) in a revolutionising progression for a wider and less homogenous
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audience. From now on, Radar applications not only increase the quantity

of information but rather the quality of information which enables new un-

foreseen dimensions in the field of sensing [60] [112].

1.1 Goal of the Thesis

The extremely huge bandwidth that is provided by UWB systems require

completely new approaches and methodologies and faces engineers with new

challenges with respect to the system design. The classical characterisation

of RF systems is based on power-related spectral quantities, e.g. gain, radia-

tion and directivity patterns which are well adapted to narrowband systems

and large transmission distances. Basically, these quantities are also rele-

vant for UWB systems, too. However, in contrast to simple power receivers

of classical narrowband Radar systems UWB sensors record the actual time

evolution of the pulse and directly provide a time of flight (TOF) by evalu-

ating a previously defined reference feature (e.g. the peak point of a pulse).

Thus, the actual pulse shape and its degree of distortion has a direct influ-

ence on the possible range resolution. Because of this, power quantities as a

unique feature are absolutely not sufficient any more and will consequently

lead to information losses and restrict the actual potential of UWB techno-

logy.

With regard to this paradigm shift, one of the goals of this thesis is to in-

troduce spatio-temporal performance quantities and methodologies in order

to analyse the exact temporal shape and quantify the distortion of UWB

pulses after linear interactions like transmission and reception by an antenna

or scattering with material. Based on these theoretic considerations ensuing

research has to be performed to design, evaluate and optimise the actual

super-resolution algorithms.

In particular, this thesis at hand focuses on the precise extraction and efficient

processing of 2D target surface information in the short-range up to a couple
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of metres by means of super-resolution UWB-Radar. A subsequent classifi-

cation and object recognition (OR) from a finite alphabet shall conclude the

multi-variate contemplation of objects with utmost complex contour struc-

ture. The quantification of the term ‘utmost complex contour structure’

always has to be treated with regard to the resolution capability of the sen-

sing system under test. Thus, the objects have a complex edged structure

with variations in the range of sub-wavelengths. Consequently, this causes

interference and resonance effects resulting in pulses which overlap almost

over the whole pulse width. Hence, super-resolution algorithms have to be

developed which separate the pulses robustly even under these circumstances

and have to go far beyond the classical resolution quantity specified by the

bandwidth. Once the pulses are precisely extracted they afterwards have to

be processed for a representation in a suitable image or feature map. The

obtained patterns have to satisfy an extraordinary accuracy and exploit ob-

ject discrepancies to the highest level to enable real-time capable OR. Thus,

support vector machines, neural networks and other OR algorithms with vast

computational loads shall strictly be avoided.

1.2 State of the Art

On March 11, 2011 a 9.0 earthquake and subsequent tsunami hit the nuclear

power plant in Fukushima (Japan) and caused the world’s most fatal nu-

clear disaster since Chernobyl. 150.000 people had to be displaced because

of radiation contamination. More than 5 weeks passed away before the first

remote controlled security robot could enter the reactor building to inspect

the interior! Throughout the inspections all robots were equipped with spot-

lights to enable optical sensors. The scope indicated by this tragic example

is: There is an unsatisfied need of civil research for UWB technology in the

field of emergency and security scenarios to combine super-resolution as well

as medium penetrating systems. These systems overtop, or at least comple-

ment, the classical sensors like optics, infrared, ultrasound and narrowband
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Radars. Moreover, upcoming strategies and solutions in the field of future

UWB Radar research offer significant humanitarian and social relevance.

There is a wide variety of applications and a notable progress in manifold

scenarios which are aimed at by the ongoing UWB research. Among the

most popular areas are biomedical diagnostics and imaging [46] [47] [49],

archeological inspections [87], non-destructive inspection of internal struc-

tures (partially full polarimetric) [62] [113] [130] [141], out-door surveillance

up to 150 m [82], food quality monitoring [148], trapped people detection [94],

through-wall inspections [80] [154], ranging and localisation [153] [171], am-

bient assisted living [50], UWB Radar equipped mobile security robots for

environmental imaging [133] [143], short-range super-resolution imaging and

feature extraction (partially full polarimetric and 3D) [45] [48] [117] [132]

[134] [140] [141] [142] [146] [174].

Below, a general review of the state of the art shall be performed solely for

the research fields which associate with the goals of this thesis. A particular

review of specific methods and distinct algorithms which are improved and

overtopped by this thesis are provided later in chapter 1.3 in detail.

Wavefront extraction

The fundamental question behind all super-resolution applications is the pre-

cise extraction of the TOF of UWB pulses. The easiest strategy to determine

the TOF is to evaluate the measured data with respect to a predefined feature

which is mostly the peak point of a pulse [70] [91] [92] [116]. An extended

method considers a set of peak points and extracts the relevant ones deter-

mined by an additional threshold operator and specific evaluation functions

to separate from false TOFs caused by noise, antenna ringing and multiple

scattering [2] [74] [115] [118]. A more sophisticated method to extract mul-

tiple reflections especially under severe interference conditions is based on
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iterative correlation approaches with an a priori taken reference pulse. The

main idea of these methods can be interpreted as a successive estimation of

channel parameters with a subsequent cancellation. At every iteration the

method is applied again to the remaining channel until a termination con-

dition is fulfilled. The beginning of this strategy can be dated back to the

seventies when J. A. Högbom introduced his so-called CLEAN algorithm to

enhance images of passive Radars in the field of radio astronomy [51]. As

this design was based on passive non-coherent radiation derived from inde-

pendently distributed point sources (stars) an adaption to active coherent

Radar applications was introduced as Coherent-CLEAN in [165] and an ex-

tension to contiguous and non-isolated targets as Sequence-CLEAN in [17].

An extension to antenna arrays and beamforming utilisation was published

in [22] and evaluated for UWB in [61]. SAGE is another representative of this

strategy with an application in frequency domain [32] which was adapted to

UWB conditions for the first time in [37] with experimental validations in [38]

and [144]. Of particular importance with regard to the scope of the thesis at

hand is the application of such methods under short-range super-resolution

conditions conducted first time with an experimental validation in [41] and

utilised with a genetic optimisation approach in [40].

Feature Extraction and Imaging

The reconstruction of a target shape by means of received Radar data bases

on the solution of an inverse problem to gather information about the scenario

under test and to perform a back projection. First imaging algorithms were

performed in the field of geophysics and seismic engineering in the late six-

ties [103] [149] [155]. Later, ground penetrating Radar applications [58] [104]

and spaceborne as well as airborne remote sensing [27] [30] [31] incorporated

the technique of migration for their issues. Since more than one decade imag-

ing has been transferred to short-range applications in combination with

UWB. So far, all mentioned migration applications and scenarios have in
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common that they directly operate on the whole temporal evolution of the

Radar data in a summation sense to perform a focusing operation. For

this purpose finite difference or boundary integral techniques based on the

Helmholtz-Kirchhoff theorem are performed for every pixel with regard to

relevant sensor positions of the real or synthetic apperture [90] [150]. Slight

modifications were performed mostly to reduce the computational load by

performing the summation in the frequency domain [162], by evaluating a

cross-correlation with reference measurements from different positions to re-

duce ambiguities [172] or by an adaption to MIMO-Radar systems [175]. A

comprehensive review and comparison about the various migration methods

with regard to short-range UWB sensing is provided in [43] [44] [174]. In

contrast, wavefront based imaging methods derive target surface points by

relating the TOFs of resolved scatterers to the sensor position. Hence, the

computational load reduces immensely which enables high-speed accurate

imaging. However, these methods basically assume a smooth surface or at

least just a gently curved surface because the image quality highly depends

on the precise wavefront estimation of each scattering centre. The boundary

scattering transform (BST) and its inverse BST (IBST) calculation was first

mentioned in 1992 [36] in the field of seismic engineering but yet applied to

short-range UWB sensing in 2004 by Sakamoto et al [115]. Up to now, signifi-

cant research effort has been spent on IBST inspired algorithms based on the

evaluation of TOF changes to conduct more robust images with less artifacts

even for very complex targets including many edges [48] [73] [74] [75] [117].

Polarimetry

The spatial distribution of scattered energy depends on the target geometry,

the operating frequency, the material composition and on the polarisation of

the incident wave. Thus, fully polarimetric Radar systems exhibit increased

information content of an EM wave. Although polarimetric techniques have

proven themselves as one of the most powerful tools in the field of remote
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sensing the vast majority of publications in the community of UWB Radar

deals with mono-polarised systems. Therewith, the vector nature of an EM

wave which can only be described as a vector summation in two orthogonal

dimensions is simply ignored and performance degradations result as a con-

sequence.

Object Recognition

The science about OR and the academic contributions in this field cover

a quasi immeasurable amount of quantity over several decades. Despite of

this, real OR research on short-range super-resolution UWB Radar with a

set of complex edged objects cannot be found in the literature. These appli-

cations go far beyond classical detection and classification applications and

exploit target discrepancies to the highest level of accuracy in the case of

utmost complex objects. In the broadest sense, similar approaches can be

found in the field of mine detection by ground penetrating Radar to sepa-

rate mines from clutter in a sense of classification and reduced false alarm

rates [77] [145]. In [76] a so-called OR for UWB is performed but actually the

paper presents a classification system for planes in long-range (∼ 100 km).

A vague system design for an OR Radar application is introduced with a

high degree of abstraction in [7] but neither with any concrete OR algorithm

nor defined object shapes. The same applies to [9] [10] [108]. A promising

OR method is introduced in [69] for buried objects. However, the introduced

objects consist of a simple contour which provoke just single reflections and

the processed Radar data is obtained by Finite-Difference-Time-Domain si-

mulations with minor practical relevance. In [54] a recognition is performed

with respect to the material composition (plastic pipe against metal pipe)

which is not comparable to OR performed onto the geometry of the object

contour.
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1.3 Novelty of the Thesis

The results and technological advancements of this thesis contribute to im-

prove the performance of UWB Radar systems especially in the field of super-

resolution imaging, image enhancement, target detection, target clasification

as well as target tracking and UWB OR. This progress is established due

to the development of sophisticated algorithms and smart signal processing

which are well matched to the novel conditions given by the wide occupied

frequency band. It is obvious “[...] that signal processing and data mining

will become a key point in future development of UWB sensing in order to be

able to explore and exploit the wanted information hidden in the captured

data. Data processing will gain much more importance than it has in nar-

rowband sensing.” [112]

This assumption by J. Sachs who is a senior lecturer with more than three

decades experience in the field of Radar sensing technology could be fully

confirmed within the research for the thesis at hand.

The synthesis of full polarimetry to the UWB system design further im-

proves the efficiency as well as the performance immensely. Research in this

field has been driven significantly by R. S. Thomä who is a distinguished

german scientist with more than 3 decades experience in the field of sen-

sing [3] [33] [88] [141] [163]. In the context of OR, the adaptation of the

Pauli scattering matrix decomposition into a short-range UWB Radar sys-

tem is a pioneering issue [3] [33] [134] [137] [139] [140] since up to now this

method was only applied in the field of narrowband remote sensing.

Traditionally, high frequency wireless systems are considered and evaluated

in the frequency domain with power related quantities. However, with re-

spect to the huge given bandwidth transient effects of devices, components

and the scattering processes are not negligible any more. There is an urgent

need of so far unusual temporal quality measures and quantification method-

ologies instead of power related spectral quantities for the evaluation of high

frequency systems. Thus, time domain considerations have to be taken into
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account to quantify and evaluate UWB systems properly and enable a clearer

insight into the dispersive and distortive behavior of UWB devices and sys-

tems [99].

In particular, the novelties achieved with this thesis are as follows:

• A superior wavefront extraction algorithm which is able to determine

pulses under massive interference effects due to utmost complex ob-

jects is presented in chapter 4. The main idea of the algorithm is

the design of a set of synthetic waveforms which consists of a super-

position of differently delayed overlapping pulses. This set of synthetic

waveforms serves as a reference pattern for a correlation based search

of wavefronts. Further improvement could be achieved by applying a

Pauli scattering matrix decomposition onto the Radar data to separate

even from odd numbered reflections. The application of the wave-

front extraction algorithm on the therewith disjoined Radar data and

a subsequent fusion promises for exceptional performance. Weak dif-

fuse scattering responses caused by edges are not masked any more

by strong specular reflections from dihedral structures. Finally, a con-

clusive wavefront optimisation algorithm compensates remaining erro-

neous wavefronts by means of a signal evolution analysis to an outstan-

ding degree.

• A feature extraction algorithm is developed which performs on an ar-

bitrary scanning trajectory to span an embracing synthetic aperture.

This is indispensable to cover the whole target surface as well as to

increase the cross-range resolution. However, as soon as the target size

drops below the system given resolution an adequate image is actually

not possible any more. An alternative Radar system with higher resolu-

tion capability would be an option. However, even though an adequate

image is not possible due to resolution deficiencies, a feature extraction

is very well possible. In this context, edges and corners are defined as
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features. In the literature no algorithm for short-range UWB Radar

can be found for this case. In chapter 5 the developed algorithm that

satisfies this requirement to a high degree is presented wich is based on

the work in [74].

• A distinguished stereoscopic 3D (S3D) imaging algorithm will be intro-

duced in chapter 6. A mathematical exact S3D imaging of a bi-static

UWB Radar system requires the exact intersection point of 3 arbitrar-

ily distributed and arbitrarily oriented ellipsoids. The solution of this

mathematical question is non-trivial and an active topic of research

in mathematics and geodesy [53]. Since the equation of the intersec-

tion point of 3 arbitrarily distributed and arbitrarily oriented ellipsoids

in particular or quadric surfaces in general is non-linear, it cannot be

solved directly. An iterative solution will be presented which utilises

the Gauss-Newton method to obtain a fast converging estimation with

negligible error in the least-square sense. This algorithm does actually

not contribute to the OR. However, it is the successor of the award-

winning S3D algorithm [132] which was developed within the research

for this thesis at hand. The fact that it overtops [132] in various aspects

qualifies it to be presented here.

• The final OR algorithm which utilises the data of the previously men-

tioned algorithms is presented in chapter 7. The OR algorithm based

on UWB Radar was developed and experimentally verified with 12 ob-

jects. They range from simple square objects to complex objects with

an echelon form causing multiple interfering single and double bounce

reflections. Excellent recognition rates of more than 90% for a full cir-

cular track around the object was achieved for all objects except one

with a simple minimum mean squared error (MMSE) classifier. For

further investigations under severe conditions the track was restricted

to 270◦ and 180◦, respectively. As expected, the recognition rate de-
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creased but, partially, the decrement is plausible since several objects

are similar or even equal under certain restricted viewing angles. How-

ever, a Bayesian theory based superior classifier is applied which takes

the statistical distribution of the Radar signature of each object into

account. Thus, the recognition rates for the evaluations with restricted

trajectories could considerably be increased once more compared to the

MMSE classifier.

1.4 Organisation and Framework of the Thesis

In order to achieve the stated goals the thesis is organised in 8 chapters:

In chapter 2 the relevant theoretical foundations from a physical point of

view shall be discussed as an entry. Starting the discussion with a brief

review of the Maxwell theory and its relevant consequences on Radar utili-

sation the chapter concludes with a talk about polarisation and the theory

of polarimetric scattering decompositions.

The main characteristics of wideband signals are presented in chapter 3

as well as the consequential differences of those signals with regard to clas-

sical narrowband signals. A model of a UWB Link including a scattering

at an arbitrary scatterer serves as a theoretical basis from signal and system

point of view for the further developments in the course of the thesis at hand.

A description of the measurement scenario and the hardware setup for the

ultimate experimental validations conclude this chapter.

Based on these theoretical principles the special requirements of a superior

wavefront extraction algorithm for super-resolution systems will be discussed

and the weaknesses of existing algorithms will be pointed out in chapter 4.

According to the resulting specifications a novel polarimetric wavefront ex-

traction algorithm was developed and performance evaluations were carried
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out.

Chapter 5 introduces a robust feature extraction algorithm for arbitrary

trajectories. Complex shaped objects with contour variations in the sub

wavelength range cause massive interference effects. These inducing scatter-

ing centres need to be detected and extracted precisely. Thus, a synthetic

aperture Radar (SAR) focusing algorithm is introduced and a feature ex-

traction algorithm was developed which serves as a basic pattern for the OR

algorithm. Numerical evaluations were carried out for a proper analysis of

the performance.

A novel S3D imaging algorithm for arbitrary trajectories with a mathemati-

cal precise evaluation of the scattering centres will be introduced in chapter

6.

In chapter 7 the actual OR algorithm will be introduced. In this algo-

rithm each object is measured with a circular scanning trajectory. Within

the subsequent signal processing a feature tuple which consists of moment

based features, geometrical features and texture features is evaluated from

the Radar data. The reference alphabet is generated as a set R which con-

sists of 12 feature tuples, each for one object. The objective of the OR is to

evaluate a feature tuple of an arbitrary a priori unknown measurement un-

der test (MUT) and to perform a recognition by comparing the tuple of the

MUT against each tuple of R. The recognition is carried out for full circular

tracks, 270◦ and 180◦ restricted tracks with a simple MMSE classifier as well

as with a superior Bayesian classifier based on statistical considerations to

achieve highest possible recognition rates.

Chapter 8 concludes the thesis by summarising the obtained main results

and a final discussion on the achievements.
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The ultimate test of any model and system is an experimental validation.

Consequently in this thesis, algorithm performances as well as the OR as a

whole system are verified experimentally to prove real-world capability and

authenticity under genuine conditions.

The research for the doctoral thesis at hand was part of the ‘Cooperative

Localisation and Object Recognition in Autonomous UWB Sensor Networks

(CoLOR)’ project within the nation-wide priority program SPP1202 called

‘Ultra Wideband Radio Technologies for Communications, Localization and

Sensor Applications (UKoLoS)’. 16 research partners, german universities on

the majority, were involved in the research program for 6 years and have

conducted 25 projects in this period funded by the German Research Foun-

dation (Deutsche Forschungsgemeinschaft, DFG). The final report with the

results achieved in UKoLoS is available as an open source book in [163].

Several Students of the university Duisburg-Essen have contributed in the

framework of a bachelor or master thesis to the research results of this doc-

toral thesis at hand. Especially, D. Damjanov has provided valuable contri-

butions [24].
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second Chapter

Theoretical Background

In this chapter the basic theoretical knowledge shall be discussed to equip

the reader with the necessary fundamental insight as a preparation for the

forthcoming chapters. The discussion shall start with a brief physical review

based on the Maxwell theory with the derivation of solely the relevant quan-

tities for the sequel of the thesis. Based on the section about polarisation the

theory of polarimetric scattering decompositions shall conclude this chapter.

2.1 Fundamentals from a Physical Point of View

UWB systems exploit EM wave propagation to conduct information about

manifold possible processes, i.e. in the scope of this thesis the outer contour

and geometry, respectively, of an object. Hence, EM waves are the car-

rier of the Radarinformation which finally shall be extracted by the system.

The chain of sensing essentially consists of (i) radiation of EM waves by ap-

propriate antennas, (ii) interaction with the object in the propagation path

and subsequent scattering or reflection at the boundary and possibly interior

parts in case of non-metallic materials and (iii) a concluding receiving by the

antennas of the system. The interaction of the wave within the whole chain

can be described mathematically with the Maxwell equations and the corre-

sponding boundary conditions. A very wide variety of literature is available

for this field of expertise which is investigated since several decades. Because

of this and in order to focus on the scope of this thesis a brief review shall be

provided in the following solely for the content which is thematically relevant.

Under the assumption of a homogeneous, isotropic, linear propagation medium



16 Theoretical Background

free of sources (charges and currents) the Maxwell equations for free space

satisfy the following conditions [5]:

∇× ~E = −∂
~B

∂t
= −µ∂

~H

∂t
(2.1)

∇× ~H =
∂ ~D

∂t
= ǫ

∂~E

∂t
(2.2)

∇ · ~D = ∇ · (ǫ~E) = 0 (2.3)

∇ · ~B = ∇ · (µ~H) = 0 (2.4)

With parameter definitions as follows

• ~E := Electric field strength

• ~H := Magnetic field strength

• ~B := Magnetic flux density

• ~D := Electric flux density

• ǫ := Permittivity

• µ := Permeability

• t := Time

and applying the rotator operator on both sides of (2.1) it yields

∇× (∇× ~E) = −µ ∂
∂t

(∇× ~H). (2.5)

With the vector calculus identity ∇×(∇× ~V) = ∇(∇· ~V)−∇2~V which works

for any vector ~V together with (2.2) and under the assumption of charge and

current free medium (see (2.3)) the equation (2.5) can be simplified to

−∇2~E = −µǫ∂
2~E

∂t2
. (2.6)

According to the Fourier theorem (2.6) can be expressed with the angular

frequency ω as

∇2~E + ω2µǫ~E = 0 (2.7)

which is known as the Helmholtz wave equation [98]. Among the infinite

number of solutions to the Helmholtz equation (2.7) the most trivial solution
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is the one of a constant amplitude monochromatic plane wave which can be

described for an arbitrary direction ~r as

~E(~r, t, ω) = ~A · exp
(
j(ωt− ~k ·~r)

)
, (2.8)

where ~A is the complex vector of the amplitude and ~k is the wave vector,

both defined in a global Cartesian coordinate system with ~ex, ~ey and ~ez as

basis unit vectors. Consequently, a unique point in space can be defined

with ~r = [x y z] as the position vector. The natural exponential operator

is expressed as exp (·) and j as the imaginary number, respectively. In an

isotropic medium the direction of the wave vector equals the propagation

direction and it holds ~E · ~k = 0, i.e. the electric field has just components

which are orthogonal to the propagation direction. Without any loss of

generality, the propagation direction can be set as the positive z-direction.

In that case equation (2.8) can be expressed as

~E(z, t, ω) = ~A · exp (j(ωt− kz)) , (2.9)

with the wavenumber k = 2π/λ and the wavelength λ of the corresponding

angular frequency ω. Since the electric field ~E and the magnetic field ~H

are always related to each other by the Maxwell equations, an analytical

expression for the magnetic field yields

~H =
~k × ~E

kZF

(2.10)

with the wave impedance ZF = |~E|/|~H| [89]. In summary, from equation

(2.10) it follows that ~H and ~E are orthogonal to each other and therewith

both field vectors are orthogonal to the propagation direction which is the

definition of a transverse electromagnetic (TEM) mode. The phase velocity

vph of the plane wave can be calculated from the argument of equation (2.9)

under the assumption of a constant phase front, i.e. ω ·t−k ·z = const. Hence,

the phase velocity is vph = dz/dt = ω/k = 1/
√
ǫµ = cmed which equals
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the velocity of light in a particular medium with the particular material

parameters ǫ and µ. The expression
√
ǫµ simplifies to the physical constants

of vacuum
√
ǫ0µ0 in case of free space which resembles pretty well to the

conditions of air under daily routine. In case of a propagation medium which

is free of dispersion the phase velocity equals the group velocity or the velocity

of the signal, respectively. Thus, it can be concluded that a wave propagates

through air with the velocity of light

c0 =
1√
ǫ0µ0

= 2.997925 · 108 m/s. (2.11)

So far, the main consequences which are relevant to the scope of this thesis

shall be briefly summed up in the following. An EM wave always consists of

an electric and magnetic field. In the particular case of a TEM wave, both

fields are perpendicular to each other and, due to the transversality, both are

perpendicular to the direction of propagation. The propagation takes place

as an oscillation both in time and space. The propagation speed is finite

which equals c0 in free space.

2.2 Polarisation

The vector nature of an EM wave is clearly pointed out in (2.9) and (2.10).

Thus, both fields are directional quantities with a particular alignment which

can be precisely defined. Usually, the issue of polarisation is covered in the

literature by means of solely the electric field. This is feasible, because the

magnetic field is both perpendicular and proportional to the electric field.

Polarisation is a property of an electromagnetic (EM) wave which is defined

by the orientation of the electric field. As in the previous section mentioned,

a TEM wave which propagates in z-direction just has electric field compo-

nents in the xy-plane. The trajectory of the tip of the electric field in the

xy-plane over one period of oscillation precisely specifies the polarisation of

the wave in the context of Radar investigations [34].

A mathematical description in the following will rather enhance the com-
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prehensibility: The plane wave solution (2.8) of the the Helmholtz equation

(2.7) is complex. By taking the real part of the solution the real valued wave

components in dependence of time and space can be calculated as

Re(Ex(z, t)) = Ax · cos(ωt− kz + ϕx), (2.12)

Re(Ey(z, t)) = Ay · cos(ωt− kz + ϕy), (2.13)

Re(Ez(z, t)) = 0 (2.14)

where Ax, Ay are arbitrary amplitudes and ϕx, ϕy are arbitrary phase shifts.

Without loss of generality, solely the temporal oscillation shall be conside-

red further by assuming z = 0. Hence, both equations (2.12) and (2.13)

determine a parametric description of an ellipse on the xy-plane which is

determined by the phase difference

ϕxy = ϕy − ϕx. (2.15)

Hence, the decomposition of the electric field into 2 orthogonal sinusoidal

waves defines a polarisation state in dependence of their amplitudes and the

relative phase difference. 3 different states of polarisation are possible, which

are defined as follows [166]:

•linear polarisation, ϕxy = 0 If both orthogonal components are in phase

the vector sum is constant and the tip of the vector traces out a line

in the xy-plane. An illustration is shown on the left side of Figure 2.1.

circular polarisation, Ax = Ay ∧ϕxy =
π

2
+ kπ with k ∈ N If both or-

thogonal components have exactly the same amplitude and are exactly

ninety degrees modulo π out of phase the vector sum traces out a circle

in the xy-plane. An illustration is shown on the right side of Figure

2.1.

elliptic polarisation, otherwise In every other case the tip of the vector

traces out a helical trajectory in the xy-plane. An illustration is shown

in the middle of Figure 2.1.
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Figure 2.1: Spatial evolution of a linear (left), elliptic (middle) and circular

(right) polarised TEM wave illustrated in green. The projection of both de-

composed orthogonal components are plotted in blue and red, respectively.

The trajectory of the temporal oscillation is plotted at the end of each ab-

scissa z in black.

Commonly, in the field of Radar technology the polarisation state is elliptic

which can degenerate to a circular or a linear state, respectively. Because of

their simplicity, plane waves are frequently used to describe wave consider-

ations although they are physically not feasible in a strong sense. However,

in practice any wave can be considered, at least locally restricted, as a plane

wave with negligible errors if it is regarded over a sufficiently large distance

from the source which is well known as the far field condition.

To conclude the recapitulation at the end of the last section, a TEM wave can

be decomposed into 2 orthogonal components. The linear algebraic relation

between both components determines the polarisation of the wave. Thus,

an EM wave is not a scalar field which is a negligent assumption of mono-

polarised Radar systems. Rather, an EM wave is a vector field where both

the direction of propagation and the direction of the field forces have to be

captured by a full polarimetric Radar system. Thereby, the entire potential
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of EM radiation as a carrier of the Radarinformation is fully tapped because

the spatial distribution of scattered EM energy depends on:

• Target geometry

• Material composition

• Operating frequency

• Polarisation of the incident wave

In classical Radar technology and particularly in the field of remote sensing

the terminology refers to the geological horizon. Horizontal polarisation (H)

is obtained when the electric field vector is aligned parallel to the geological

horizon and consequently the vertical polarisation (V) is perpendicular to it.

In this thesis the terminology is adopted if it is not explicitly mentioned oth-

erwise. To cover the full polarimetric Radar signature of a target 4 channels

have to be processed by the Radar device, i.e. HH, VV which are denoted as

co-polarisation and HV, VH denoted as cross-polarisation. In this notation

the first index refers to the transmitter (Tx) and the second index to the

receiver (Rx).

Let ~Ei(f, θ, ψ) be the incident electric field with elevation angle θ and azimuth

angle ψ on a target and ~Es(f, θ, ψ) the scattered field from the target captured

at a distance r from the target. A polarization scattering matrix S(f, θ, ψ)

can be defined [34] which describes the full polarimetric transformation of

the incident field to the scattered field as

~Es(f, θ, ψ) = S(f, θ, ψ)~Ei(f, θ, ψ). (2.16)
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By normalising the scattering matrix with the distance r a more object ori-

ented approach was introduced by G.W. Sinclair in the late 1940’s as

~Es(f, θ, ψ) =
1√
4πr

SSc(f, θ, ψ)~Ei(f, θ, ψ)

[
Es(f, θ, ψ)

H

Es(f, θ, ψ)
V

]
=

1√
4πr

[
SSc(f, θ, ψ)

HH SSc(f, θ, ψ)
HV

SSc(f, θ, ψ)
VH SSc(f, θ, ψ)

VV

][
Ei(f, θ, ψ)

H

Ei(f, θ, ψ)
V

]
.

(2.17)

The expression (2.17) fully covers the polarimetric scattering behaviour of a

target. A power related expression which can be derived from the Sinclair

scattering matrix SSc(f) is the Radar cross section [111] (RCS)

σ(f, θ, ψ) =

[
σHH(f, θ, ψ) σHV(f, θ, ψ)

σVH(f, θ, ψ) σVV(f, θ, ψ)

]
= 4π |SSc(f, θ, ψ)|2

= 4π

[∣∣SHH
Sc (f, θ, ψ)

∣∣2 ∣∣SHV
Sc (f, θ, ψ)

∣∣2
∣∣SVH

Sc (f, θ, ψ)
∣∣2 ∣∣SVV

Sc (f, θ, ψ)
∣∣2

]
(2.18)

which is widely used in the classical Radar technology to quantify the echo

characteristic of targets. As the components of the Sinclair scattering matrix

SSc(f, θ, ψ) are in accordance with the spatially dependent frequency domain

transfer function H(f, θ, ψ) of the classical signal and system theory [99], the

RCS σ(f, θ, ψ) is proportional to the power distribution of a Radar link in

the frequency domain.

2.3 Pauli Scattering Matrix Decomposition

The theory of Radar polarimetry started its evolution in the late 1940’s

when G.W. Sinclair proved that the polarisation state of a scattered wave

can be altered in reference to the polarisation state of the incident wave [156].

The 2x2 Sinclair matrix SSc(f, θ, ψ) describes the transformation from the

incident wave vector to the scattered wave vector and gathers entire infor-

mation about the scattering process as well as the scatterer itself. Immense
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research effort was spent on Radar polarimetry in the following decades in

which the fundamental basics were investigated [21] [26] [67] [68]. In 1970

J.R. Huynen published his groundbreaking doctoral thesis [59] in which he

utilises Kennaugh’s optimal polarisation concept [68] and conducts nine phys-

ical parameters extracted from the Kennaugh matrix. Thereby, the relation

between Radar applications and physical parameters of the backsscattering

of targets was established and can be regarded as the beginning of scat-

tering matrix decomposition theorems in the Radar community. In recent

decades and until now the major contributions are those of W.M. Boerner

who initiated a critical analysis of Kennaugh’s and Huynen’s work and ex-

tended Kennaugh’s optimal polarisation theory [12]. His studies on Radar

polarimetry have an essential and irreplaceable role in the remote sensing

community [13] [14] [15] [16]. Ordinarily, decomposition theorems can be

categorised into two major groups [20] [81]:

Coherent Decomposition Models This group consists of decompositions

performed directly on the Sinclair scattering matrix SSc(f, θ, ψ). The

full polarimetric raw Radar data is decomposed into a superposition

of even, odd and diffuse scattering contributions. These decomposed

signatures can be associated with particular geometries in the surveyed

scenario, e.g. buildings with double bounce scattering, sea surface and

flat landscapes with single bounce scattering and vegetation canopies

with diffuse scattering. The most popular example is the Pauli scat-

tering matrix decomposition.

Non-Coherent Decomposition Models This group of decompositions are

based on the decomposition of second order scattering matrices, e.g. co-

herency or covariance matrices. They are well suited for the use with

conventional statistical concepts and were developed for the surveil-

lance of heterogeneous landscapes where e.g. diffuse scattering vegeta-

tion is spread close to specular scattering of man-made buildings. In
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this case a soft decision in terms of statistical distributions on the scat-

tering properties is rather appropriate than hard decisions on types of

scattering contributions in a particular resolution cell.

For the objective of short-range super-resolution OR the Pauli scattering

matrix decomposition was adapted in this thesis to Radar systems which

offer a huge spectral band occupation with the consequence of a fine temporal

resolution. According to the Pauli theorem the Sinclair scattering matrix can

be represented as the following linear combination [81]:

SSc(f, θ, ψ) = kP,1(f, θ, ψ)SOdd + kP,2(f, θ, ψ)SEven + kP,3(f, θ, ψ)SDiffuse

= kP,1(f, θ, ψ)

[
1 0

0 1

]
+ kP,2(f, θ, ψ)

[
1 0

0 −1

]
+ kP,3(f, θ, ψ)

[
0 1

1 0

]

(2.19)

with kP,1(f, θ, ψ), kP,2(f, θ, ψ) and kP,3(f, θ, ψ) as the weighting factors for

single bounce (odd), double bounce (even) and diffuse scattering contribu-

tions, respectively, with their corresponding basis matrices SOdd, SEven and

SDiffuse, respectively. Hence, the Pauli vector can be defined as [81]

~kP(f, θ, ψ) =
1√
2



kP,1(f, θ, ψ)

kP,2(f, θ, ψ)

kP,3(f, θ, ψ)


 =

1√
2



SSc(f, θ, ψ)

HH + SSc(f, θ, ψ)
VV

SSc(f, θ, ψ)
HH − SSc(f, θ, ψ)

VV

SSc(f, θ, ψ)
HV + SSc(f, θ, ψ)

VH


 .

(2.20)

The exploitation of full polarimetric systems in the field of short-range sen-

sing ensures a diversity gain. W. Wiesbeck, a distinguished german researcher

with more than four decades of experience in Radar technology had already

remarked in 1989 that “The best information source for fixed target aspect

angles is the wide-band polarimetric behavior of the RCS.” [111]

For example, a horizontally oriented wire concealed under clothes and not

visible by optics just induces HH returns. The same applies for vertically ori-

ented wires for VV polarisation state. A tilt of the wire will induce stronger
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echoes in both cross polarised states. Hence, significant features of a target

may be invisible for mono polarised systems in worst case. The integration

of decomposition techniques into UWB systems enhance the superior poten-

tials of wideband Radar further more. Actually, the particular preferences

are twofold:

Firstly, polarimetric techniques can be performed in delay time domain.

UWB systems can resolve multiple scattering centres within one measure-

ment and evaluate each centre with regard to their polarimetric signature,

whereas narrowband systems classify one measurement as a whole due to the

lack of resolution.

Secondly, by decomposing the Radar data into odd bounce reflections and

even bounce reflections super-resolution wavefront extraction algorithms could

be immensely improved. In mono polarised systems specular as well as diffuse

scattering contributions superimpose in interfering scenarios. The extraction

of weak diffuse odd scattering centres (e.g. edges) which are masked by strong

specular reflections from dihedral structures is a tremendous challenge.

Within the framework of the research for the thesis at hand comprehensive

investigations were performed [133] [137] [139] [140] [141] [142] including ex-

perimental validations. These validations were performed for the first time

in the field of wideband sensing and shall be discussed later in the chapter 4.
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third Chapter

Ultra-Wideband Precautionary
Measures

In this chapter the particularity of an impulse-based wide occupation of band-

width and the resulting consequences shall be discussed. The crucial differ-

ences between narrowband and wideband systems will be pointed out and

the consequential paradigm shift with regard to the description and evalu-

ation of wideband systems will be highlighted. Indispensable time domain

quality measures and quantification methodologies, respectively, shall be de-

rived from a full polarimetric spatio-temporal bi-static model of a UWB

Radar Link. This model serves as a theoretical basis from a signal and sys-

tem point of view for the further developments in the course of the thesis at

hand. A description of the measurement scenario and the hardware setup

for the ultimate experimental validations conclude this chapter.

3.1 The Paradigm Shift of Impulse based UWB

Systems

In the field of classical signal and system theory the actual scientific practice

is more or less ‘narrowband’. The majority of publications and educational

books in this field deals with sinusoidal signals and waves. The basic reason-

ing is straightforward; in the linear time-invariant (LTI) theory any system

that exhibits the properties of linearity and time invariance can be described

entirely by the system’s impulse response h(t). The output of an LTI system

can be calculated via the convolutional operator applied onto any type of
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time domain input signal and h(t). Any LTI system exhibits eigenfunctions

or basis functions, respectively, that equal complex exponentials [102]. Thus,

if the input is a complex exponential then the output preserves the input’s

shape as well as the frequency. Only the amplitude and a time delay which

is mostly expressed in terms of a phase shift may change. Ab initio, the aca-

demic research on civil radio propagation analysed almost all narrowband

systems with sinusoidals at the carrier frequency of the system. This is feasi-

ble, since the occupied bandwidth is commonly just a few percentages of the

carrier frequency (e.g. 20 MHz @ 5.5 GHz, IEEE 802.11a; 20 MHz @ 2.45

GHz, IEEE 802.11b, g; 1 MHz @ 2.4 GHz, IEEE 802.15.1; 300 MHz @ 9.65

GHz, TerraSAR-X). System design, hardware architecture, implementation

as well as algorithms were entirely matched to the carrier frequency. In the

early days of radio development this strategy was efficient, e.g. with regard

to feasible interference mitigation, modulation- and access schemes.

In the field of narrowband Radar systems it is not only the antennas which

exhibit a nearly negligible transient influence. Also the fact that in most cases

the dimensions of the surveyed objects are smaller than the envelope of the

sounding signal prevents a significant distortion and shape variation [112].

Considering the discussed signal shape preservation capabilities of narrow-

band systems, it is feasible to quantify the transmission specifications in the

frequency domain [158]. This is a very well established ‘narrowband’ strat-

egy; significant transmission properties are characterised by power related

spectral quantities, e.g. antenna gain, radiation pattern, efficiency, effective

area, RCS etc.

For wider bandwidths, the frequency dependent propagation characteristics

are not negligible any more and the straightforward evaluation of wider band-

widths with narrowband methods is not sufficient since transient effects are

not taken into account [66] [161]. For UWB super-resolution applications the

above discussed paradigms and convenient properties which are well matched
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to narrowband conditions drastically change or, at least, exhibit a large er-

ror potential. The pulse width in pulsed systems or the coherence length

in M-sequence devices, respectively, may usually be in the sub nanosecond

range which is finally determined by the operating bandwidth. Meanwhile,

low cost (in comparison with a vector network analyser) devices occupy the

spectrum from 1 GHz up to 15 GHz [55] which equals a theoretical pulse

width of slightly more than 2 cm in free space. Consequently, common tar-

get dimensions are approximately in the same size as the coherence length

of the sounding signal or even larger. “Since the geometric structure of a

body strongly influences the electromagnetic fields, every action - transmis-

sion/scattering/reception - leads to signal deformation [...].” [112]

Additionally, with the provided temporal resolution also the antenna be-

haviour has to be considered from a different point of view than in classical

narrowband systems [6] [168] [169]:

• In contrast to the narrowband case where the transient influence of the

antenna is nearly negligible, in UWB systems the temporal evolution of

sub nanosecond pulses are very well distorted by the antenna’s transient

response. For robust super-resolution applications these distortions

have to be quantified to enable efficient compensation algorithms.

• The term ‘distance’ has to be adapted qualitatively for UWB systems.

Mathematically, an unambiguous distance can be measured between

two points. With the side condition of ‘shortest distance’ it is also

possible to determine the distance unambiguously between a point and

a curve or a flat plane.

As a consequence of both aspects, UWB systems unquestionably require a

consideration of the transient behaviour, which can be satisfied with the

spatio-temporal polarimetric impulse response hη(t, θ, ψ) where the polari-

sation state is indicated with η and the angular behaviour with both the

elevation angle θ and the azimuth angle ψ. Therewith, a time domain anal-
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ysis of the Radar link can be obtained which is more appropriate to cover

the pulse distortion than merely with power related spectral quantities. This

aspect is also officially emphasized in the ‘IEEE Standard for Ultrawideband

Radar Definitions Std 1672-2006’ [1] where it says:

“3.16 time-domain radar: An early term for UWB radar. It was so

named because the analysis required a time-domain approach to ac-

count for transient effects, as opposed to the frequency-domain analy-

sis assuming constant steady-state sinusoidal signal. Had a brief period

of use in the 1980s before the term ultrawideband came into common

use.”

Moreover, a reference (peak point or centre of gravity) for precise TOF mea-

surements can be recovered directly from hη(t, θ, ψ). This provides resolution

capabilities with antennas of finite dimension and significantly larger than

the range resolution.

Unsurprisingly, the conventional way to analyse and operate narrowband

Radar systems is based on power related quantities. “Although technology

has been significantly improved, state of the art Radars for most applications

are mostly still what they have always been in terms of their RF system de-

sign since the past 30 to 50 years.” [167]

Actually, classical Radar receivers still consist more or less of simple power

receivers which are basically made of low noise amplifiers, down converters,

filters and analogue digital converters with a subsequent digital processing

unit. Hence, the received radiation energy is successively recorded and eval-

uated depending on a power related threshold. The main objective is to de-

cide whether there is an echo or not. For this purpose, it is even a common

procedure in narrowband Radar systems to consciously violate the Nyquist

theorem to reduce cost and complexity [86]. A lower sampling frequency will

foremost distort the shape of the signal which is irrelevant for narrowband

cases.
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The absolute opposite applies for UWB Radar receivers. Here, the exact

temporal shape of the cumulated waves has to be captured and rendered

with a subsequent classification which is carried out in the time domain and

goes far beyond formerly detection operations.

The initially mentioned paradigm shift does not mean that classical power

related quantities are unnecessary in the field of UWB systems, but rather it

indicates that time domain transient behaviour quantities definitely have to

be considered as an urgent supplement. As T. Zwick stated in the foreword

of [99] “[...] that for such extremely wideband systems a frequency domain

analysis is absolutely insufficient.”

3.2 The Bi-Static Ultra-Wideband Radar Link

As in the previous section mentioned, a time domain evaluation is indispens-

able for UWB systems to treat physical processes as transient excitations of

finite duration. A full polarimetric spatio-temporal analytic description of a

UWB-Radar link shall be derived in this section from a signal and system

theory point of view. It should be noted that it is essential to consider the

spatial behaviour of the description since (i) full polarimetry shall be coped

with, (ii) the spatial filtering characteristic of the antennas shall be taken

into account and (iii) a close practical relevance shall be provided since in

practical scenarios an ideal mutual alignment between the target and the

antenna main beam cannot be guaranteed in any case. Especially the spatial

filtering characterisic induces that a signal is weighted with the antenna’s

stereoscopic pattern and is radiated in different directions with a different

temporal evolution.

Assume a bi-static configuration of directive antennas which is illustrated in

Figure 3.1. The polarised incident electric field ~Ei(f, θ, ψ) is radiated from

the Tx towards an arbitrary scatterer which reradiates the wave, due to its

composition and geometry, isotropically. The fraction of the scattered field
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Figure 3.1: Illustration of a target scattering in a bi-static UWB Radar link.

~Es(f, θ, ψ) which is aligned with the orientation of the Rx will be recorded.

The cross-talk between both antennas shall not be considered further. In a

practical scenario, this stationary content can be faded out to some degree

within calibration routines. A global three dimensional Cartesian coordinate

system shall be located with its origin in the scatterer. ~Ei(f, θ, ψ) illuminates

the scatterer with the elevation angle θTx and with ψTx azimuthal coordinate.

Analogously, the scattered field ~Es(f, θ, ψ) is received with an elevation an-

gle θRx and azimuthal coordinate ψRx. Further, it shall be assumed that the

antennas are utilised in the far field and, consequently, the TEM waves can

be assumed to be planar waves with negligible deviation from planarity.

Hence, the transmitting local orthogonal basis is formed by three spherical

unit vectors ~eθ,Tx, ~eψ,Tx and ~er,Tx which define a left-handed vector triplet.
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Thus, the incident electric field can be expressed as a vectorial sum

~Ei(f, θTx, ψTx) = Eψ,Tx
i (f, θTx, ψTx)~eψ,Tx + Eθ,Tx

i (f, θTx, ψTx)~eθ,Tx (3.1)

where Eψ,Tx
i is the component in the direction of the unit vector ~eψ,Tx and

Eθ,Tx
i is the component in the direction of the unit vector ~eθ,Tx. Analogously,

the scattered electric field shall be expressed by means of the local orthog-

onal basis formed by the three spherical unit vectors ~eθ,Rx, ~eψ,Rx and ~er,Rx

which define a left-handed vector triplet. Hence, the scattered field may be

expressed as

~Es(f, θRx, ψRx) = Eψ,Rx
s (f, θRx, ψRx)~eψ,Rx + Eθ,Rx

s (f, θRx, ψRx)~eθ,Rx (3.2)

where Eψ,Rx
s is the component in the direction of the unit vector ~eψ,Rx and

Eθ,Rx
s is the component in the direction of the unit vector ~eθ,Rx. Since the

wave is a TEM wave by assumption, there is a lack on components with

regard to the radial direction. For the sake of clarity, the relations of both

local coordinate systems shall be summarized as

〈~eθ,Tx,~eθ,Rx〉 = 1,

〈~eψ,Tx,~eψ,Rx〉 = −1,

〈~eθ,i,~eψ,j〉 = 0 and 〈~eψ,i,~er,j〉 = 0 with i, j = Tx or Rx

where 〈·, ·〉 is the scalar product operator between two vectors.

Under the assumption that the targets do not move too fast with regard

to the hardware given recording time the antennas as well as the scatterer

may be considered as LTI systems in the Radar link [112]. In this case, the

electrodynamics of transmission, scattering and reception can be formally de-

scribed by impulse response functions or, by means of the Fourier theorem, as

transfer functions, respectively. On this basis, time-domain quantities shall

be introduced which serve more appropriate as quality criteria than classical
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frequency dependent quantities to gather pulse shape distortions.

In practical applications polarimetry is established by the antennas. Hence,

for a full polarimetric system both antennas are designed with two ports

which radiate or receive simultaneously in two orthogonal planes (a descrip-

tion of the employed antennas follows in the corresponding chapter). Hence,

the vector valued transfer function ~HTx(f, θTx, ψTx) of the Tx with particu-

lar orientation θTx and ψTx according to the propagation path illustrated in

Figure 3.1 can be denoted as

~HTx(f, θTx, ψTx) = Hθ,Tx
Tx (f, θTx, ψTx)~eθ,Tx +Hψ,Tx

Tx (f, θTx, ψTx)~eψ,Tx (3.3)

where Hθ,Tx
Tx = 〈~HTx,~eθ,Tx〉 and Hψ,Tx

Tx = 〈~HTx,~eψ,Tx〉 are the components of
~HTx(f, θTx, ψTx) in the ~eθ,Tx and ~eψ,Tx direction, respectively. Analogously,

the vector valued transfer function of the Rx with θRx and ψRx orientation

can be expressed as

~HRx(f, θRx, ψRx) = Hθ,Rx
Rx (f, θRx, ψRx)~eθ,Rx +Hψ,Rx

Rx (f, θRx, ψRx)~eψ,Rx (3.4)

with Hθ,Rx
Rx = 〈~HRx,~eθ,Rx〉 and Hψ,Rx

Rx = 〈~HRx,~eψ,Rx〉 as the components of
~HRx(f, θRx, ψRx) in the ~eθ,Rx and ~eψ,Rx direction, respectively. The transfer

function of the scatterer which converts the transmit signal into the receive

signal can be modelled as a matrix valued transfer funtion which coincides

with the Sinclair scattering matrix and can be expressed in this particular

scenario as

HSc(f, θSc, ψSc) =

[
HSc(f, θSc, ψSc)

θ,Tx θ,Rx HSc(f, θSc, ψSc)
θ,Tx ψ,Rx

HSc(f, θSc, ψSc)
ψ,Tx θ,Rx HSc(f, θSc, ψSc)

ψ,Tx ψ,Rx

]
.

(3.5)

Let UTx(f) be the UWB signal generated by the Radar device which stimu-

lates the Tx, then the incident electric field at a certain distance r is [168]

~Ei(f, θTx, ψTx, r)√
Z0

=
e−j2πfr/c0

2πrc0
~HTx(f, θTx, ψTx) j2πf

UTx(f)√
ZTx

(3.6)
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where ZTx is the real and frequency independent characteristic impedance

of the Tx antenna and Z0 = 120πΩ denotes the characteristic free-space

impedance. By means of the Fourier theorem (3.6) can be indicated in the

time domain as

~ei(t, θTx, ψTx, r)√
Z0

=
1

2πrc0
δ

(
t− r

c0

)
∗ ~hTx(t, θTx, ψTx)

∂

∂t

uTx(t)√
ZTx

(3.7)

where ~ei(t, θTx, ψTx, r) is the incident electric field in the time domain, ~hTx(t, θTx, ψTx)

is the polarimetric spatio-temporal transient response of the Tx, uTx(t) is the

Tx stimulating UWB signal in the time domain and ∗ is the convolution ope-

rator. The convolution with the Dirac function δ (t− r/c0) respects the time

delay due to the finite velocity of light c0 and the distance r. The overall full

polarimetric spatio-temporal description of a bi-static UWB Radar scatter-

ing process which fully covers the input-output relationship is hence given

by [161]

URx(f)√
ZRx

=
e−j2πfr0/c0

2πr0c0
~HRx(f, θRx, ψRx)

T

(
HSc(f, θSc, ψSc) ~HTx(f, θTx, ψTx)

)
j2πf

UTx(f)√
ZTx

(3.8)

where URx(f) is the UWB signal in the frequency domain induced in the Rx,

ZRx is the real and frequency independent characteristic impedance of the

Rx, r0 is the distance from the Tx antenna to the Rx by way of the scatterer

and (·)T denotes the transpose operator. The polarisation states and the

depolarisation effects are included in the transfer functions of the Tx, Rx

and the scatterer, respectively. In the time domain (3.8) yields to

uRx(t)√
ZRx

=
1

2πr0c0
δ

(
t− r0

c0

)
∗ ~hRx(t, θRx, ψRx)

T

∗
(
hSc(t, θSc, ψSc) ∗ ~hTx(t, θTx, ψTx) ∗

∂

∂t

uTx(t)√
ZTx

)
. (3.9)
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with ~hRx(t, θRx, ψRx) and hSc(t, θSc, ψSc) as the polarimetric spatio-temporal

transient response of the Rx and the full polarimetric spatio-temporal scat-

tering matrix of the scatterer, respectively. The transmission coefficient S21

is finally the parameter which is measured according to the whole propaga-

tion path in practical analysis. From signal and system point of view the

transmission coefficient comprises

S21(f, θTx, ψTx, θSc, ψSc, θRx, ψRx) =
URx(f)

UTx(f)
. (3.10)

With the common assumption of most practical devices that ZTx = ZRx =

50Ω equation (3.8) can be reformulated in vectorial notation as

~S21(f, θTx, ψTx, θSc, ψSc, θRx, ψRx) = ~HRx(f, θRx, ψRx)◦
(
HSc(f, θSc, ψSc) ~HTx(f, θTx, ψTx)

) jf
r0c0

e−j2πfr0/c0 (3.11)

where the ◦ operator is the Hadamard product. As previously mentioned,

the polarisation states of the Tx and Rx are included in the corresponding

transfer functions and the scatterer is described by its scattering transfer

matrix.

A polarimetric analysis of the Radar link according to the whole propagation

path can be utilised as follows: Let the transmit antenna Tx be the reference

antenna (REF) whose parameters are known and the receive antenna Rx be

the antenna under test (AUT) which is subjected to analysis. Under these

assumptions the transfer function of the AUT can be expressed as

~HAUT(f, θRx, ψRx) =
r0c0
jf

~S21(f, θTx, ψTx, θSc, ψSc, θRx, ψRx)

◦−1
(
HSc(f, θSc, ψSc) ~HREF(f, θTx, ψTx)

)
ej2πfr0/c0 (3.12)

where ~HREF(f, θTx, ψTx) is the transfer function of the REF and the ◦−1 ope-

rator which expresses the inverse Hadamard product.
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For the case of a deterministic scatterer, e.g. a conductive sphere the scat-

tering matrix equals an identity matrix with a specific reflection weight [158]

which can be compensated within the calibration procedure. A sphere has no

depolarization characteristic and its Radar signature is independent of the

orientation. Hence, in this particular case the transfer function of the AUT

can be recovered as

~HAUT(f, θRx, ψRx) =
r0c0
jf

~S21(f, θTx, ψTx, θRx, ψRx)

◦−1 ~HREF(f, θTx, ψTx) ej2πfr0/c0 (3.13)

which equals a two antenna measurement with mutual alignment towards

each other. For the particular case that both antennas AUT and REF are

identical, the transfer function of the AUT simplifies to

~HAUT(f, θRx, ψRx) =

√
r0c0
jf

~S21(f, θTx, ψTx, θRx, ψRx)ej2πfr0/c0 (3.14)

where the square root operator is performed elementwise. In literature, this

method is referred to as the two-antenna method for the extraction of the

antenna transfer function [160].

3.3 Transient Behaviour Analysis

It is not too well known that UWB antenna radiation is strongly dependent

on the angular direction of the radiation. In particular, for impulse based

systems where the pulse width (or the coherence time, respectively) is minor

or similar to the antenna dimension this effect is even more emphasised. In

frequency domain this effect does not attract much significance and is mostly

omitted. However, in time domain this effect is not negligible [79] and espe-

cially in super-resolution applications this effect decreases the performance

significantly.
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Figure 3.2: Time domain characterisation of a transient response with eligible

parameters

Without loss of generality, the derived transfer function from equation (3.14)

shall be notated simplified for the sake of clarity as Hη
AUT(f, θ, ψ) where

the polarisation state is expressed by the parameter η which equals θ or ψ.

Consequently, Hθ
AUT = 〈~HAUT,~eθ,AUT〉 and Hψ

AUT = 〈~HAUT,~eψ,AUT〉 are the

components of ~HAUT in the ~eθ,AUT and ~eψ,AUT direction, respectively. With

the inverse Fourier transformation the time domain transient response can

be determined as

hηAUT(t, θ, ψ) (3.15)

and the analytic transient response as

hη+AUT(t, θ, ψ) = (hηAUT(t, θ, ψ) + jH{hηAUT(t, θ, ψ)}) (3.16)
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with H as the Hilbert transformation operator [105]. Hence, the envelope

of the transient response can be determined as
∣∣hη+AUT(t, θ, ψ)

∣∣ which implies

the square root of signal energy distribution versus delay time and is thus a

direct indication for the dispersion of the signal. In the following, three time

domain quality measures shall be discussed which can be extracted directly

from the transient signal or its envelope, respectively. An illustration of these

quality measures are shown with an example pulse in Figure 3.2.

Peak Amplitude P η(θ, ψ) of the envelope
∣∣hη+AUT(t, θ, ψ)

∣∣ is a quantity for

the maximum value of the strongest peak which can be expressed math-

ematically as

P η(θ, ψ) = max
t

∣∣hη+AUT(t, θ, ψ)
∣∣ . (3.17)

The peak amplitude is an indicator for the peak power which can be

achieved in maximum. A high peak amplitude value is desirable.

Full Width at Half Maximum τ ηFWHM(θ, ψ) is determined as the full width

at half maximum of the envelope and can be expressed as

τ ηFWHM(θ, ψ) =t1||hη+AUT
(t1,θ,ψ)|=P η(θ,ψ)/2

− t2|t2<t1 ∧ |hη+AUT
(t2,θ,ψ)|=P η(θ,ψ)/2. (3.18)

It describes the system’s dispersive character which consequently leads

to a broadening of the pulse. A low τ ηFWHM(θ, ψ) is desirable.

Ringing is defined as the time duration τ ηr,α(θ, ψ) until the envelope has

decreased from the peak amplitude P η(θ, ψ) below a fraction α of the

peak amplitude and remains consistently below it:

τ ηr,α(θ, ψ) =t1||hη+AUT
(t1,θ,ψ)|=αP η(θ,ψ)

− t2|t2<t1 ∧ |hη+AUT
(t2,θ,ψ)|=P η(θ,ψ) (3.19)
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The ringing is a quantity for undesired oscillations in the pulse after

the peak point and is usually caused by resonance effects due to energy

storage or multiple reflections within the antenna [168]. A low τ ηr,α(θ, ψ)

is desirable.

These time domain quality measures provide a more appropriate quantifica-

tion of the signal’s temporal evolution than classsical power related spectral

quantities [99]. As opposed to common frequency dependent parameters

which are functions over frequency, these time domain quantities are scalar

features which just exhibit one single scalar to cover relevant information

about signal distortions. However, time domain quantities shall serve as

a complementary rather than a replacement to classical frequency domain

quantities. These theoretically derived quantities serve as a basis for the

development of the wavefront extraction algorithm, imaging and feature ex-

traction algorithms in particular. In fact, the impact should also be of high

significance for prospective optimisation and weakness compensation strate-

gies of any super-resolution UWB system in general.

However, to fully capture the shape distortion of UWB pulses also the impact

of the spatial domain has to be quantified and provided for subsequent al-

gorithm developments. The angular impact has been considered throughout

the analysis since the azimuth and the elevation dependency were respected

in the transfer function (3.14), in the transient response (3.15) and in the

derived quantities (3.17), (3.18) and (3.19), respectively. In the following,

this consideration shall be confirmed with a quality measure for practical

evaluations.

The spatial quantification of the signal shape distortion is performed by

means of a fidelity analysis [107]. In the field of wideband operating anten-

nas the fidelity expresses the degree of the angular dependent pulse distortion

by means of a correlation operation with the mainbeam reference pulse. In
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practical systems the alignment of the Radar system with regard to the tar-

get cannot be assumed ideal in any case. However, with an a priori fidelity

evaluation hardware caused distortions can be separated from the echo and

systematic errors can be compensated. This is essential for super-resolution

systems since the variation of the received signal contains the target signa-

ture.

The fidelity analysis is performed on signals which are normalised and com-

pensated with regard to their temporal shifts. Thus, a parameter that ex-

presses the variation between two signals is the distortion parameter

∆ab = min
τ

∫
(an (t+ τ)− bn (t))

2 dt (3.20)

with the arbitrary signals

an (t) =
a (t)

‖a (t)‖2
, bn (t) =

b (t)

‖b (t)‖2
which are normalised to unitary signal energy with the Euclidean norm. The

integral can be expanded by factoring out the square operator and omitting

the terms which do not influence the minimum which yields

∆ab = 2min
τ

(
1−

∣∣∣∣
∫
an (t+ τ) bn (t) dt

∣∣∣∣
)
. (3.21)

The maximum of the integral term is the so-called fidelity Fba, i.e. the fidelity

of b (t) with regard to a (t). Actually, the fidelity function coincides with the

normalised cross correlation function (CCF) whose absolute value ranges

between zero and one. For identical shapes (but not inevitably the same

amplitude and same temporal position) the maximum of the CCF equals

one and, consequently, the minimum distortion ∆ab equals zero. Hence, it

can be concluded that the more the CCF increases the more the distortion

decreases.

As a quality measure the fidelity is applied onto the spatially varying incident

electric field (3.7) with η polarisation induced by the Tx

eηi (t, θ, ψ, r) =
C
r
δ

(
t− r

c0

)
∗ hηTx(t, θ, ψ)

∂

∂t
uTx(t) (3.22)
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with regard to the η polarised boresight (B) incident electric field

eηi,B (t, θB, ψB, r) =
C
r
δ

(
t− r

c0

)
∗ hηTx (t, θB, ψB)

∂

∂t
uTx (t) (3.23)

of the Tx. For the sake of clarity, the constant terms are comprised in C =
√
Z0/

√
ZTx · 1/2πc0 since constants do not influence the fidelity

Feη
i
(t,θ,ψ,r) eη

i,B
(t,θB,ψB,r)(θ, ψ)

= max
τ

∣∣∣∣
∫
eηi,B (t+ τ, θB, ψB, r) e

η
i (t, θ, ψ, r)dt

∣∣∣∣ (3.24)

anyway. A high fidelity close to one over a large radiation and reception area

is desirable.

3.4 Hardware and Measurement Setup

The ultimate test of any model is experimental validation. To highly meet

the demands of practical systems and to closely match real world conditions

all developed algorithms and methods described in this thesis were experi-

mentally evaluated. The transfer from purely theoretical considerations to

an executable system with at least adequate performance appeared to be

enormously challenging within the research for the thesis at hand. Model

based results of simulated Radar data degraded massively after compiling the

developed algorithms in a real UWB Radar system. Systematic errors, non-

linearities of the devices, non-ideal behaviour of the components and other

unforeseen issues asked for advanced re-designs and sophisticated adaption

of the algorithms.

3.4.1 Hardware and Transient Behaviour Evaluation

The operational absolute bandwidth for the development of the algorithms

is 9 GHz. Starting from 4.5 GHz until the cut-off frequency 13.5 GHz results

in a centre frenquency of 9 GHz with a corresponding relative bandwidth of

100%. Mostly, the algorithms are evaluated with an M-Sequence Radar. The
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main idea of M-sequence technology is the utilisation of the same pseudo-

random binary code as transmit signal as well as for a matched filter in

the receive chain. The system clock triggers each code element by a cir-

cular shift register and thus directly synthesizes the sub-nanosecond UWB

pulse. In contrast to the classical impulse radiation the M-sequence Radar

equally distributes its radiation energy over the code length. Thus, high

peaks are avoided which are a challenging issue from hardware design point

of view [112] [114].

Partly, the algorithms were also validated with a standard laboratory vector

network analyser. As expected, neither performance differences nor other

noteworthy deviations compared with an M-sequence device occured. Since

the focus of the thesis is the algorithm development the interested reader

may be refered to the vast existing literature for detailed hardware informa-

tion [112] [113] [114].

Calibration, or more precisely system error correction is at least as mature

as Radar technology itself. No RF system can be operated without a proper

calibration process. In order not to exceed the framework of this thesis,

solely the main ideas and strategies of a calibration procedure shall be de-

picted in the following. The research on UWB calibration techniques are well

exploited and documented in the literature and can be reviewed in detail e.g.

in [42] [99] [100] [101]. As opposed to classical narrowband Radar systems

the calibration for UWB systems can be carried out in the time domain with

a couple of targets with well known reflectivity signatures (e.g. flat plates,

dihedrals, spheres). The reason for a proper calibration is that substantial

information is exhibited in the amplitude as well as in the phase ratio dif-

ferences between both co- and cross-polarized channels. Antenna crosstalk,

hardware given gain imbalances and phase delays have to be compensated

to ensure that the recorded Radar data mostly consist of solely the target
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signature itself.

The antenna used in this thesis exhibits a polarisation purity of 20 dB. Thus,

the crosstalk between both channels of a single antenna can be neglected. The

antenna crosstalk as well as phase differences between the Tx and Rx can

be compensated by means of a reference measurement with a flat plate at

a certain distance. Gain imbalances per channel are normalised by utilis-

ing a dihedral measurement with well known reflectivity signature. Hence,

the amount of attenuation and amplification, respectively, can be assessed

and a subsequent equalisation performed. Basically, if an imbalance can be

quantified precisely, in most cases it can be largely corrected by a calibration

procedure and misleading interpretation of the data can be avoided.

As discussed in the previous section, one of the most crucial components of a

Radar system with deep impact potential are the antennas. A pair of novel

dual-polarised Vivaldi based antennas are utilised for the experiments [109].

To highly meet the demands on accuracy the antennas have been exclusively

developed and matched to the hardware given operational bandwith, namely

from 4.5 GHz to 13.5 GHz. An illustration of the used antenna is given in

Figure 3.3. To cover this huge bandwidth two tapered slot line antennas

were designed on a single substrate which is completely embedded in a coned

teflon body. The rod shape is designed to maintain a smoother transition of

the guided wave into free space. The chosen dielectric material provides an

increased gain while reducing the beam width. To gather both polarisations

two substrates were integrated perpendicular to one element. The main

features of the antenna which are well usable for super-resolution applications

are:

• A high gain with more than 10 dBi in the main beam.

• A polarisation purity (gain difference between co and cross polarisation)
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Antenna element for

azimuth dimension

Antenna element for elevation dimension

Figure 3.3: Teflon embedded dual polarised UWB antennas utilised for the

validations. (The antenna was designed and developed at the Institut für

Hochfrequenztechnik und Elektronik of the Karlsruher Institut für Technolo-

gie)

with more than 20 dB.

• An impedance matching of the antenna ports S11 and S22 with less

than −10 dB.

• A decoupling of both ports with S12 and S21 less than −25 dB.

• A narrow 3 dB beam width of 30◦ with relatively constant gain.

A more detailed description including plots of the mentioned quantities which

are omitted here for the sake of brevity can be reviewed in [139] [140]. How-

ever, as mentioned in the previous section, these classical power related pa-

rameters are not sufficient to fully assess the antenna ability and impact on

wideband super-resolution operations. In fact, none of the listed quantities

reveal directly (i) information about spatially dependent pulse preserving ca-

pabilities, (ii) pulse distorting antenna oscillations or (iii) favourable angular

operation directions. An experimental evaluation was performed to gather



3.4 Hardware and Measurement Setup 45

35 cm

50 cm

50 cm

2 cm

2 cm

Tx

Rx0

Rx2

Rx1

ψ2

θ2

θ1
ψ1

θ0ψ0

θ0 = 0◦

ψ0 = 0◦
θ1 < 0◦

ψ1 < 0◦
θ2 > 0◦

ψ2 > 0◦

Notation

Figure 3.4: Time domain quality measure evaluation experiment.

the previously introduced time domain quality measures. For this purpose

the experiment was carried out according to Figure 3.4. Both the Tx and

the Rx antenna were placed in front of each other with a distance of 0.35

m. The Tx was fixed at this position and the Rx was moved at a 0.02 m

intervall while both antennas keep their horizontal alignment. For the sake

of brevity, at every grid point one measurement was carried out solely in the

HH channel and evaluated with regard to previously introduced time domain

quality measures. The results are presented in Figure 3.5 to 3.8 as colour

coded images subject to the azimuth dimension ψ and the elevation dimen-

sion θ.

The antenna exhibits its best performance for −15◦ < θ < 15◦ and −15◦ <

ψ < 15◦ where the fidelity leads to values of F (θ, ψ) > 90% between the

signal under test and the signal in boresight, i.e θ = 0◦ and ψ = 0◦.
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Figure 3.9: Example Radar data successively aligned (left) and colour coded

as a radargram (right)

Simultaneously, in the same spatial region the normalised peak amplitude

decreases approximately by 20% compared to the boresight link. Actually,

both parameters the fidelity and the peak amplitude have to be analysed

exclusively in conjunction; a high fidelity of a low energy signal is just as

well challenging as a heavily distorted high energy signal.

In the favourable spatial region for −15◦ < θ < 15◦ and −15◦ < ψ < 15◦

the full width at half maximum τFWHM is approximately 200 ps. The ringing

is evaluated for a pretty severe case of α = 6% to satisfy the demands of

super-resolution applications. Thus, the region for this requirement τr,0.06
slightly shrinks for an appropriate value of τr,0.06 < 600 ps compared with

the region indicated by the previous parameters.

3.4.2 Measurement Setup of the Object Recognition Va-

lidation

The experimental validations have been carried out within a vast measure-

ment campaign at the chair of communications systems of the university

Duisburg-Essen. The principle framework of the measurements are circular

tracks with a radius of 1 m using a 0.5◦ measurement grid. Such Radar data
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Figure 3.10: Illustration of the measurement setup for the OR validations.

can be visualised successively ordered in a three dimensional plot as shown

on the left side of Figure 3.9. In this plot, the TOF corresponding distance

is plotted on the ordinate, the angle in degree on the abscissa and the am-

plitude in the 3rd dimension. An alternative representation is shown on the

right side of Figure 3.9 where the amplitude is RGB coded which provides

an image in the form of a so-called radargram. The latter approach will be

used throughout the thesis at hand.

A bi-static antenna configuration is utilised with an antenna axis length of

0.3 m. For the sake of clarity, an illustration of the measurement setup

is provided in Figure 3.10 including all relevant specifications. To provide

more practical relevance and to avoid too idealised specifications, the mea-

surements for the OR validations are not performed with ideally positioned

objects with a proper alignment in the centre of the track. This is just re-

served for the reference measurements.
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Actually, the measurements under test are subject to a random translative

offset δr up to 0.2 m from the centre of the circular track. Additionally, the

orientation of the object is subject to an arbitrary offset δα up to 360◦.

o1 o2 o3 o4

o5 o6 o7 o8

o9 o10 o11 o12

6 cm

6 cm

Figure 3.12: Objects under test.
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Therewith, the performance of all algorithms including wavefront extraction,

feature extraction and OR are subject to a non-ideal illumination due to an

improper sensor track. For the sake of completeness, the probability density

function of both parameters δr and δα are presented in Figure 3.11. A more

or less uniform distribution of both offset parameters allow a high degree

of translative and rotational diversity within the measurements. The OR is

investigated with the objects depicted in Figure 3.12. They consist of simple

canonical as well as polygonal complex objects in the form of beams with

no variance in the 3rd dimension. To provide strong echoes the objects are

composed of conductive material.

As a basic principle, a reference alphabet may be synthesised from a priori

known information. The OR can hence be applied onto an object under test

or a sample of the object to identify an element of the reference alphabet

which maximises the likelihood of a correct recognition. The adoption of this

principle on a UWB-Radar system and 12 uniquely defined objects results

in a reference alphabet with 12 elements according to Figure 3.12. For each

element data are obtained on a full circular track with the object placed

in the centre. The specifications of the OR measurement campaign are as

follows:

• Every object is measured 80 times fully polarimetric following a com-

plete 360◦ track.

• Every measurement is subject to an arbitrary translative as well as an

arbitrary rotational offset δr and δα, respectively.

• The reference feature set obtained from the objects explained later in

detail consists of one full 360◦ track per object with neither a translative

nor a rotational offset. Thus, the reference set consists of 12 elements.

• In order to investigate the OR under more severe conditions a 2nd series
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of 80 measurements were performed with the sensor track restricted to

270◦.

• To further handicap the conditions and enable a system investigation

under extreme conditions a 3rd series of 80 measurements were per-

formed with the sensor track restricted to 180◦.

• Both restricted track measurements equal, except the premature stop

of the track, the 80 full track measurements, particularly with equal δr
and δα, respectively. This enables a fair comparison and evaluation of

the whole OR system depending solely on the influence of a restriction

of the sensor track.

In order to reduce the hardware effort all motions are provided by rotatable

platforms and linear rails which are driven by highly accurate step motors.
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forth Chapter

Wavefront Extraction

The current state of research in the theory of wavefront extraction of wide-

band signals has been reviewed in chapter 1.2. The discussion has revealed

that the application of two algorithms have become apparent, namely

• the genetic algorithmic extraction and

• the correlation based extraction.

The former mentioned genetic algorithm for the extraction of wavefronts in

UWB signals has been first published in [40] by Hantscher et al and further

investigated by himself in [39]. The main idea to recover wavefronts with

the genetic algorithm is to resemble the MUT as a superposition of mod-

ified reference pulses. The modification consists of (i) the estimated TOF

of the wavefront and (ii) the estimated amplitude of the wavefront in terms

of a weight value. Hence, 2 parameters per wavefront per MUT have to

be recovered which is solved as an evolutionary optimisation task. The ge-

netic algorithm belongs to the group of heuristic techniques which means

that the search for the best parameters are performed in a ‘trial and error’

iterative sense. Thus, in every iteration a set of possible parameters are

considered and the MUT is reassembled with reference pulses modified with

the parameters. Subsequently, the set is evaluated to minimise the diffe-

rence between the MUT and every reassembly of the set in the least square

sense. Afterwards, the reassemblies with the highest deviation are rejected

while the others are slightly modified, recombined and investigated with the

same strategy in the next iteration. The wavefront extraction is terminated
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as soon as the difference between the reassembly with the highest deviation

and the reassembly with the lowest deviation is below an empirically chosen

constant. Within the research for the thesis at hand the genetic algorithm

for the extraction of wavefronts proposed by Hantscher has been investigated

extensively [131] [135]. It has been established that the genetic algorithm is

suboptimal for the real-time extraction of wavefronts for the following rea-

sons:

• Hantscher investigated solely one well defined scenario with 2 water

filled plastic pipes in a gas concrete wall. Thus, the number of wave-

fronts was assumed to be 3 - one for each pipe and the last for the

surrounding wall. Hantscher used this essential a priori information to

tune his genetic algorithm for a fixed search of exclusively 3 wavefronts.

However, in Radar applications the number of scatterers is not known

and, in principle, this nescience is the actual motivation for Radar

applications. This means that one has to either estimate previously

the number of scatterers or assume to exhibit this information a priori

to finally set the parameters in the forefront. Irrespective of whether

there are so many scatterers or not, the reassembly will definitely con-

sist of the previously defined number of wavefronts. In the latter case

phantom wavefronts are extracted in unwanted clutter or in the ringing

range. Thus, for a blind search of wavefronts, which is the usual case

for Radar applications, the algorithm is not suitable.

• In the theory of genetic algorithms the effect of getting stuck in a

local minimum is well known [8] [23] [64]. In the field of the genetic

optimisation for wavefront extraction this is relatively often the case

because of the multimodality of interference effects. This means, a

pulse can be reassembled by either one similar pulse or by two or more

destructively interfering pulses. This ambiguity cannot be resolved

robustly by the genetic algorithm in any case.
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• The vast computational load due to the iterative ‘trial and error’ strat-

egy with a high number of reassemblies exclude any real-time potential.

The latter mentioned correlation based algorithm has proven to perform su-

perior. However, in this thesis at hand the correlation based algorithm is

drastically improved to resolve scattering centres of complex edged objects

which provoke pulses that overlap almost the whole pulse width. These

novel algorithms are still based on the matched filtering correlation princi-

ple. Hence, the classical correlation algorithm shall be introduced first in

the next section followed by two versions developed in the framework of this

thesis.

4.1 Classical Correlation Method

The beginning of wavefront extraction in the field of Radar by means of

correlation dates back to the field of radio astronomy in the seventies [51].

However, the transfer and adaption of these methods to separate interfering

pulses in UWB signals was first proposed in [41]. The basic idea of this

algorithm is to locate echoes iteratively by evaluating the normalised cross-

correlation function of the MUT with a reference pulse. A reference pulse can

either be obtained with a two antenna measurement where the antennas are

aligned towards each other or with a reflection on a flat conductive surface.

For the sake of a precise TOF evaluation a reference has to be determined

due to the finite narrowness of a pulse (see the discussion in chapter 3.1).

Most commonly, the peak point of the pulse serves as the reference feature

for the indication of a scattering effect. Let mref(t) be the a priori measured

reference pulse. The point in time at which the peak amplitude is exhibited

can be obtained as

tref,max = argmax
t

(|mref(t)|) . (4.1)
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For further processing the reference pulse is shifted circularly until the peak

point is located in the origin of the time-axis which yields

mref,shift(t) = mref(t+ tref,max). (4.2)

Irrelevant parts of the signal are removed by means of a time domain window

which results in

mw
ref,shift(t) = mref,shift(t) rect

(
t

Tw

)
. (4.3)

Here, Tw is the width of the rectangular window which equals 1.5λc where

λc is the wavelength that corresponds to the centre frequency in free space.

This window ensures to compensate the ringing range in the further process-

ing. Let mMUT(t) be the measurement under test to be investigated. The

normalised cross-correlation function R(τ) between mMUT and mw
ref,shift(t) is

carried out as

RmMUTm
w
ref,shift

(τ) =

∞∫
−∞

mMUT(t)m
w
ref,shift(t− τ)dt

‖mMUT(t)‖2
∥∥mw

ref,shift(t)
∥∥
2

(4.4)

where τ is the time delay parameter and ‖·‖2 is the Euclidean norm operator.

The point in delay time

τmax = argmax
τ

(
RmMUTm

w
ref,shift

(τ)
)

(4.5)

where the maximum of the cross-correlation function is reached indicates the

temporal shift at which mw
ref,shift(t) has the highest similarity within mMUT(t).

A scaling factor

s = max
t

|mMUT(t)| /max
t

∣∣mw
ref,shift(t)

∣∣ (4.6)

is determined which is the relation of the maximum of the MUT and the

maximum of the reference pulse. Subsequently, this scaling factor is applied

onto the reference pulse which is shifted by τmax to exhibit highest similarity
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Figure 4.1: Extracted wavefronts by the classical correlation method for

object o5

with the MUT. A substraction operation provides the remaining part of the

MUT as

m̄MUT(t) = mMUT(t)− s ·mref,shift(t− τmax) (4.7)

after removing the extracted wavefront. Note here, that the whole temporal

signature shall be removed from the MUT. A termination condition can be

evaluated either with a signal energy comparison in the least squares sense

and a certain threshold or by evaluating the absolute value of the normalised

correlation coefficient. In the event of a negative termination evaluation the

search for a further wavefront is carried out in the next iteration by applying

the equation (4.4) and the adjacent ones onto m̄MUT(t).

In Figure 4.1 the result of the classical correlation method applied on the

object o5 is shown. The object is not subject to an offset, i.e. δr = δα = 0.

The correlation coefficient is evaluated as a termination condition. In this

particular case, as long as the coefficient exhibits a value more than 0.5
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another iteration is carried out according to the proposed strategy in [41].

4.2 Improvement I - Dynamic Correlation Method

The classical correlation method performs most robust in the case of smooth

curved simple objects where just a single reflection is induced, e.g. objects

o1 to o4 or convex and concave shaped objects. Alternatively, it performs

adequate when at least the number of scatterers are known a priori.

The main drawbacks of the classical correlation method are twofold:

• The classical correlation method searches for wavefronts with a fixed

temporal evolution of a single reference pulse. However, a MUT might

be composed of an echo with a superposition of several reradiated pulses

depending on the contour of the object and the scattering centres, res-

pectively. In that case, the resulting MUT exhibits a temporal evo-

lution which has actually less in common with the reference pulse.

This undertaking is the more handicaped (i) the more wavefronts are

composed of in the MUT and (ii) the more the nearby pulses overlap.

Hence, under severe interference circumstances the classical correlation

method cannot resolve multiple wavefronts.

• The fixed termination threshold does not adapt to scenarios which ex-

hibit various energy levels. Within the progress of the classical corre-

lation method the signal energy decreases due to the substraction ope-

rator but the threshold value keeps constant. Both the evaluation of

the energy comparator and the evaluation of the correlation coefficient

need to be adapted since both features vary for multiple wavefronts

in one MUT. The reason is that the substraction of one shifted and

weighted reference pulse from a superposition of several pulses also re-

moves contents of other wavefronts which have to be extracted in the

further iterations.
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One of the thesis goals is to perform super-resolution applications applied

on utmost complex objects whose echoes consist of pulses which overlap

almost the whole pulse width. Due to the lack of satisfying algorithms a

novel wavefront extraction algorithm has been developed [135] within the

research for the thesis at hand. In the following, the dynamic correlation

method (DCM) shall be introduced. Starting with the same reference pulse

of equation (4.3) which is windowed and shifted to the origin of the time

scale a design of a synthetic waveform yields

mref,syn(t, τsyn) = mw
ref,shift(t) +mw

ref,shift(t− τsyn) (4.8)

where τsyn equals a time retardation. Hence, the new synthetic waveform

consists of a set of synthetic reference pulses which are designed by a super-

position of a former reference pulse and a delayed duplicate. One synthetic

reference pulse is distinguished from the others by exhibiting a different de-

lay τsyn. Thus, interference effects are respected by taking into account the

consequential interference patterns. Hence, the correlation based similarity

search is extended to a 2 dimensional normalised cross correlation operation

RmMUTmref,syn
(τ, τsyn) =

∞∫
−∞

mMUT(t)mref,syn(t− τ, τsyn)dt

‖mMUT(t)‖2 ‖mref,syn(t, τsyn)‖2
(4.9)

which depends both on the classical delay parameter τ of the cross correla-

tion and the delay time τsyn of the synthetic waveform itself. In other words,

one cross correlation is carried out for each synthetic reference pulse. Conse-

quently, the highest degree of similarity is obtained in the global maximum

of the correlation result which depends on 2 parameters, namely

τmax, τsynmax
= argmax

τ,τsyn

(
RmMUTmref,syn

(τ, τsyn)
)
. (4.10)

Both parameters indicate up to 2 wavefronts with the following quantifica-

tion:
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Figure 4.2: Two extracted wavefronts with the synthetic reference waveform

• 1st wavefront at τmax

• 2nd wavefront at τmax + τsynmax

In the case that 0 . τsynmax
. Tpw/2 with the pulsewidth Tpw ≈ 1/B solely a

single extracted wavefront located at τmax can be assumed and the algorithm

can be terminated.

In Figure 4.2 the result of this processing is depicted with the MUT and a

synthetic reference pulse synthesised with τmax and τmax + τsynmax
.

For further wavefronts in the next iteration a window is defined as follows:

w(t) =




1, for mref,syn(t− τmax, τsynmax

) 6= 0

0, for mref,syn(t− τmax, τsynmax
) = 0.

(4.11)

This window equals 1 in the time samples at the extracted wavefronts and 0

else. For the sake of a better overview, the MUT of Figure 4.2 is shown with
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Figure 4.3: Windowing operation at the extracted wavefronts

the particularly designed window in Figure 4.3. As opposed to the classical

correlation method an improved termination condition needs to be adapted

to the actually processed MUT in every iteration. Thus, in order to avoid a

static condition an adaptive energy comparison shall be performed. For this

purpose, a synthetic MUT

mMUT,syn(t) = mref,shift(t− τmax) +mref,shift(t− τmax − τsynmax
) (4.12)

is synthesised out of reference pulses at the time instances of the extracted

pulses. Note here, that the non-windowed mref,shift(t) reference pulses are

utilised to assimilate the real signature as a whole.

A normalisation and an adaption of the synthetic MUT is performed accor-

ding to the power level of the MUT at the time instances of the windowed

and extracted pulses as

mnorm
MUT,syn(t) = mMUT,syn(t)

‖mMUT(t) · w(t)‖2
‖mMUT,syn(t) · w(t)‖2

. (4.13)
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Figure 4.4: The synthetic MUT waveform with equalised power level

This step provides that mnorm
MUT,syn(t) shows the same peak levels as mMUT(t)

after applying the window w(t). An illustration of the MUT and the cor-

responding mnorm
MUT,syn(t) is depicted in Figure 4.4. Depending on the energy

comparison between mMUT(t) and mnorm
MUT,syn(t) according to

‖mMUT(t)‖2 &
∥∥mnorm

MUT,syn(t)
∥∥
2

(4.14)

further wavefronts have to be extracted and the wavefront extraction algo-

rithm is repeated for the remaining parts of the signal.

Therefore,mMUT,syn(t) can be windowed with the inverted window winvert(t) =

1 − w(t) to extract the remaining parts of the signal which is illustrated in

Figure 4.5. Thus, m̄MUT(t) = mMUT(t) · winvert(t) can be investigated for

further wavefronts in the next iteration by applying the equation (4.9) and

the adjacent ones onto m̄MUT(t). In this particular case a 3rd wavefront is

extracted and finally the algorithm is terminated for the MUT.
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Figure 4.5: Application of the inverted window

The corresponding result can be reviewed in Figure 4.6. In comparison with

the classical correlation method, the main differences of the DCM are:

• The iterative search with a synthetic waveform which respects the inter-

ference pattern. Hence, severely overlapping pulses are separated more

robustly since the resulting superposed time evolution is synthesised as

a whole.

• A substraction operation of extracted wavefronts is avoided since a

substraction always removes non associated parts of other wavefronts.

Instead, the time samples of already extracted wavefronts are marked

and avoided in the subsequent iterations.

• A termination condition is carried out with a synthetic MUT which

is adapted to the MUT of the actual iteration in terms of an energy

adaption. The adaptive termination of the DCM outperforms the fixed
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Figure 4.6: 3rd extracted wavefront in the iterative search

termination condition of the classical correlation method in a way, that

even weaker wavefronts are extracted in subsequent iterations.

For the sake of a meaningful comparison, the same measurement of Figure

4.1 is processed with the DCM. The result is shown in Figure 4.7.

4.3 Improvement II - Polarimetric Dynamic Cor-

relation Method

The objects under test except the first four ones consist of corner as well as

dihedral structures which shall be precisely extracted for the long-term ob-

jective of an OR. It is well known, that edges induce weak diffuse scattering

with an omni radiation characteristic. Whereas, dihedral corner structures

cause, due to the mutual orthogonality of the surfaces, an internal specular

reflection and a strong output radiation. Depending on the length of the
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Figure 4.7: Extracted wavefronts by the dynamic correlation method for

object o5

edge and the operational frequencies the difference may be more than 10 dB.

An approximation of the RCS for both geometries can be found in the liter-

ature [158]. The RCS of a dihedral approximates 4πA2
eff/λ

2 where Aeff is the

“[...] effective area contributing to multiple internal reflections.” The RCS of

a straight edge can be estimated as l2/π with the edge length l. It is obvious

that the RCS of a dihedral may be larger the more extended the geometry is

(due to increased Aeff) and the higher the frequencies are. In fact, “[...] the

RCS of a corner reflector seen along its axis of symmetry is identically that

of a flat plate whose physical area matches the effective area of the corner

reflector.” [158]

Thus, effectively the echoes of the complex objects are composed of weak dif-

fuse scattering contributions which are masked by strong specular reflections.

In chapter 2.3 the Pauli scattering matrix decomposition has been introduced
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Polarimetric Radar data

Pauli scattering

matrix decomposition

Double

bounce

Single

bounce

DCMDCM

Fusion

Extracted wavefronts

Figure 4.8: Flow chart of the polarimetric dynamic correlation method.

which allows to break down the fully polarimetric backscattering signature

into a sum of elementary scattering contributions. For the sake of an im-

provement of the DCM the first two elements of the Pauli vector ~kP which

correspond to single bounce and double bounce, respectively, are computed

for the MUT. Consequently, the amount of the Radar data is doubled com-

pared with a mono-polarised system. The preferences of the joint polarimet-

ric decomposition theorem and the DCM for the sake of wavefront extraction

are in particular:

• By means of the decomposition weak scattering contributions are iso-

lated and not masked any more by strong specular reflections. Espe-

cially with regard to the synthetic waveform in (4.8) an improvement

can be achieved. By means of a decomposition energetic unbalanced

contributions are disjoined and can be processed independently.

• In the case of a mono-polarised system a dihedral return exhibits a
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Figure 4.9: Extracted wavefronts by the polarimetric dynamic correlation

method for object o5 - Double bounce

change of sign compared with a single bounce return [99]. This means,

scattering may occur at positive peaks as well as negative peaks. This

bi-polarity feature is not exclusively covered with the DCM because

the DCM utilises a pair of peaks with same peak polarity. By means

of a decomposition this bi-polarity feature reduces to a simple mono-

polarity issue and creates processing conditions for enhanced accuracy.

The precise processing of the polarimetric dynamic correlation method (PDCM)

is given in the flowchart illustrated in Figure 4.8. In contrast to the DCM the

PDCM imperatively requires polarimetric Radar data. However, the PDCM

is based on the DCM and hence the similarities are large. After applying

the Pauli scattering matrix decomposition onto the Radar data a couple

of decomposed data sets is provided, each for single bounce contributions

and double bounce contributions, respectively. Afterwards, the DCM is per-
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Figure 4.10: Extracted wavefronts by the polarimetric dynamic correlation

method for object o5 - Single bounce

formed on both data sets separately which results in a couple of wavefront

sets. In conclusion, the final set of extracted wavefronts of the MUT is pro-

vided by the fusion of both partial sets. The fusion is carried out by taking

the wavefront distance information of both (if existent) the single bounce

contribution and the double bounce contributions for a single measurement

point and apply an or-operator on both to relate them jointly to that mea-

surement point. Subsequently, the Radar system exhibits both wavefronts for

a single antenna track. This is performed successively for each measurement

point. For the sake of comparison, the wavefronts of the same object in the

previous sections are processed with the PDCM. The result for the double

bounce decomposition is shown in Figure 4.9 and the corresponding result

for the single bounce decomposition is shown in Figure 4.10, respectively.
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4.4 Improvement III - Optimisation in the Slow

Time Dimension

In the field of UWB the term ‘time’ needs to be quantified more precisely. Due

to the fine time resolution two time evolutions have to be taken into account.

In the literature the terminology fast time and slow time are established.

Fast time is called the actual time progress within a single measurement.

Hence, the temporal elaboration of the EM wave from the Tx to the Rx by a

possible scatterer is referred to as the fast time. This effect takes place with

the velocity of light c0 which finally contributes to the terminology fast time.

On the contrary, slow time represents the time variance of the scenario or the

channel, respectively. In the particular case of short-range UWB-Radar this

time variance is caused by the motion of the antennas and hence different

measurement points. The scenario under test can be considered stationary

over the fast time while the measured target physically interacts with the

wave. Due to the equiangular grid of the circular track the slow time is ex-

pressed as the angle of the covered track in this thesis.

So far, the optimisation of the classical wavefront extraction with the DCM

and the PDCM is restricted to the fast time; one or multiple wavefronts have

to be recovered within one measurement as precise as possible. However, an

optimisation by means of wavefront history evaluation or an optimisation in

the slow time dimension is feasible and shall be introduced in the following.

The scanning grid which equals a spatial sampling has to fulfill certain re-

quirements, namely the Nyquist theorem. In [85] the spatial sampling criteria

of a versatile Radar system is investigated in detail and the required sam-

pling steps to satisfy the Nyquist theorem are given. In order to not exceed

the framework, the interested reader may be referred to the reference. Up

to now, under the assumption of a fine measurement grid it can be seen in

the radargrams that the change of the signal and radiation signature occurs
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smoothly. Hence, the history of the Radar data provides information which

contributes to enhanced processing potential.

The optimisation in the slow time dimension is applied separately on both

chains of the PDCM after the DCM operation and before the fusion. In

particular the optimisation algorithm consists of the following steps:

1. Nearby wavefronts are clustered. Every wavefront is consecutively pro-

cessed and merged to a cluster if the distance to the cluster is less than

half of the pulsewidth Tpw ≈ 1/B. Otherwise, if the distance is larger

the wavefront under test starts a new cluster.

2. Due to the successive fine grid of the measurement points a cluster

exhibits a smoothly curved shapes. Hence, every cluster is resembled

with a polynomial curve fitting algorithm of the degree 4. For this

purpose the MATLAB functions polyfit and polyval are used.

3. Gaps in the wavefront are detected by the comparison of the wavefront

and the polynomial fitted curve. Gaps are substituted with interim

wavefronts.

Spikes are isolated wavefronts which exhibit a larger distance than half

of the pulsewidth to the wavefront and the polynomial fitted curve.

Spikes are shifted to the wavefront or removed if they exhibit unrealistic

distances to the wavefront or the polynomial fitted curve.

4. Finally, every cluster with less than a minimum number of wavefront

points are removed. In this work this minimum number was chosen to

be 15.

Due to the antennas finite polarisation purity of approximately 20 dB also

very weak scattering centres are located outside dihedral structures in the

double bounce chain (see Figure 4.9). However, the signal energy of those

phantom wavefronts are slightly above the noise floor. An energy evaluating

filter which removes phantom wavefronts which are attenuated 15 dB or more
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than the peak wavefront is applied onto the double bounce wavefront set as

well as onto the single bounce wavefront set.

The results for the optimised single bounce chain, the optimised double

bounce chain and the final fusioned PDCM result with the slow time op-

timisation are depicted in Figure 4.11, 4.12 and 4.13, respectively. For the

sake of clarity, the results for the classical correlation method and the PDCM

result with the slow time optimisation for the more complex object o11 is

depicted in 4.14 and 4.15, respectively. The degree of the 3 levels of im-

provement can also be regarded clearly by comparing Figure 4.1 to Figure

4.13.
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Figure 4.11: Optimised wavefronts for object o5 - Single bounce
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Figure 4.12: Optimised wavefronts for object o5 - Double bounce
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Figure 4.13: Optimised and fusioned wavefronts for object o5
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Figure 4.14: Extracted wavefronts by the classical correlation method for

object o11
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Figure 4.15: Optimised and fusioned wavefronts for object o11

4.5 Evaluation

With regard to the objective of super-resolution OR an evaluation of the

wavefront extraction algorithms shall be provided which coincides with the

requirements of the used OR. The OR processes the extracted features of the

objects, i.e. significant scattering centres which are the edges and corners of

the objects. The features in turn are computed from the wavefronts with a

super-resolution feature extraction algorithm introduced in the next chapter.

Thus, a joint efficiency and performance evaluation of the various wavefront

extraction algorithms shall be performed as a feature map whose feature ex-

traction capability are directly depending on the accuracy of the processed

wavefronts.

Therewith, a qualitative comparison of each algorithm shall be provided. In

Figure 4.16, 4.17, 4.18 and 4.19 the extracted features of object o11 for the

classical correlation method, the DCM, the PDCM and the PDCM with the
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slow time optimisation, respectively, is provided. Note here, every improve-

ment not only enhances the extraction accuracy of each feature but also the

number of correct target points (which equals the number of wavefronts) is

significantly higher. For the sake of an extended evaluation overview the

corresponding results of object o5 are depicted in Figure 4.20, 4.21, 4.22 and

4.23.

In addition to a visual evaluation also a numerical accuracy evaluation of the

wavefront extraction algorithms shall be provided. An artefact quantity [75]

ãn = min
Ttrue

|Ttrue − T n
estimated| with n = 1, . . . , N (4.15)

is defined where N is the total number of target points which equals the num-

ber of extracted wavefronts. Ttrue and Testimated are the sets of true scattering

centres (i.e. the a priori known coordinates of the edges and the corners)

and the estimated target points, respectively. The cumulative distribution

function Fã(ã) of the artefact quantity for the same objects of the visual

evaluation o11 and o5 are plotted in Figure 4.24 and 4.25, respectively. An

iso-artefact level of ã = 0.4λc ≈ 0.0133 m where λc equals the wavelength of

the centre frequency of 9 GHz is marked.

It can be seen that in the case of the object o11 the PDCM with the slow

time optimisation exhibits 99% of all target points with less than a transla-

tive error of ã = 0.4λc whereas this value degenerates for the PDCM to 94%,

for the classical correlation to 83% and for the DCM to 77%.

In the case of the object o5 the PDCM with the slow time optimisation the

percentage of the target points which exhibit a translative error less than

ã = 0.4λc is 98%, for the PDCM 96%, for the DCM 91% and for the classical

correlation 87%.

To conclude, the PDCM with slow time optimisation represents a novel wave-

front extraction algorithm with super-resolution capability which is by far
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superior than the state of the art algorithms found in the literature. It not

only extracts wavefronts which exhibit an enhanced precision under severe

interference influence but also the amount of wavefronts and consequently

the amount of target points are higher. Until now, polarimetric techniques

and a robust optimisation which exhibits the slow time signal ‘history’ was

not considered. The resulting wavefronts are the input data for the feature

extraction algorithm introduced in the next chapter.
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Figure 4.16: Classical correlation
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Figure 4.17: DCM
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Figure 4.18: PDCM
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Figure 4.19: PDCM with slow time opti-

misation
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fifth Chapter

Feature Extraction and Imaging

All imaging or feature extraction algorithms that are based on EM scattering

perform a kind of back projection for image reconstruction. In chapter 1.2

a review about Radar imaging and feature extraction algorithms with focus

and relevance on the thesis goals has already been provided. Two grand

strategies are apparent, namely

• migration based imaging,

• wavefront based imaging and feature extraction,

respectively. In principle, both methods have much in common and basically

the wavefront based methods are akin to migration based ones; while the mi-

gration based algorithms process the whole temporal evolution of the Radar

data in a summation sense to compose a focusing, the wavefront based algo-

rithms just exploit a unique time sample which coincides with the wavefront.

Evidently, the type of resulting Radar images becomes obvious:

The migration based algorithms compute a matrix output where all coor-

dinates are assigned with amplitudes, whether they belong to the target or

not. In contrast, the wavefront based algorithm calculates single coordinates

which coincide with the scattering centres of the target. In the ideal case,

the migrated image exhibits a high peak in the area of the scatterer while

the remaining part of the image is of low energy and the wavefront based

algorithm exhibits negligible translative errors between the true target points

and the estimated ones. Obviously, a migrated image always needs some kind

of post-processing to extract the true und unambiguous coordinates of the
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target (contour), whereas the wavefront based algorithms directly compute

the coordinates ready to process from a subsequent system.

Since a migrated image is as well processed in the final OR system the basics

of the migration based imaging shall be introduced in a subsequent section.

Firstly, a novel feature extraction algorithm shall be introduced in the fol-

lowing.

For the sake of a highly performing OR system the objects are abstracted to

their significant scattering centres, namely edges and corners.

The scattering signature of a flat surface is restricted most. According to

Snell’s law the scattered angle equals the angle of incident which requires

a perfect alignment of the antennas. Hence, a serious handicap can result

when sharp focusing directive antennas are used and nearby flat surfaces are

simply not recognisable because they reradiate all the energy away from the

Rx.

Thus, both edges and corners are suitable as features as they are ‘visible’

from a wide range of orientation from an EM scattering point of view. In the

last chapter a super-resolution capable algorithm to extract the wavefronts

provoked of these features has been introduced. In this chapter, the super-

resolution capable processing of those wavefronts shall be discussed to map

the wavefronts into coordinates.

5.1 Super-Resolution capable Feature Extrac-

tion

For the sake of clarity and simplicity, the discussion starts with a simple

bi-static configuration according to the illustration provided in Figure 5.1.

Under the assumption of a 2 dimensional Euclidean space with the unit

normal vectors ~ex and ~ey the omni-directional Tx and Rx are unambigiously

defined with the position vectors ~Tx and ~Rx. A single MUT provides the
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Point scatterer
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Rxl1

l2

2e

α

Figure 5.1: Illustration of a scattering process at a point scatterer observed

by a bi-static antenna configuration.

TOF (l1+l2)/c0 or the travelling path l1+l2, respectively, where l1 equals the

path from the Tx to the scatterer and l2 equals the path from the scatterer

to the Rx. Due to the lack of a priori information the exact coordinates of

the point scatterer are not known and the only information gathered by a

Radar system is the precise TOF due to the wide occupied frequency band.

Thus, in the case of a bi-static antenna configuration the point scatterer

may be located anywhere on an ellipse of identical TOF (circle of identical

TOF in a mono-static configuration). The focal points of the ellipse coincide

with the Tx and Rx and in accordance to the mathematical habitus the

distance between both focal points, the antenna axis, shall equal 2e with e

the half offset between both antennas. Hence, the ellipse may be defined

unambigiously as

E(x, y) = x2

a2
+
y2

b2
− 1 = 0 (5.1)
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with the major axis a = (l1 + l2)/2 and the minor axis b =
√
a2 − e2. In the

particular case of directive antennas, the ellipse may be trivially restricted

to an arc since the boresight of an antenna is of finite extension. However,

even in that case the challenge is to estimate the angle α between l2 and the

antenna axis to subsequently provide the localisation of the point scatterer

as the ultimate objective of the feature extraction algorithm.

Apparently, a set of measurements is a prerequisite to solve the ambiguity.

Thus, a larger aperture is synthesised by an antenna motion with a single

measurement on every sample of the track. The following discussion is in ac-

cordance to Figure 5.2. Again, a two dimensional Euclidean space with the

unit normal vectors ~ex and ~ey shall be assumed. As an example the object

o11 is sensed by the MUT with the same bi-static configuration of the pre-

vious discussion. The location of the TxMUT and RxMUT are unambigiously

determined by the position vectors ~TxMUT and ~RxMUT, respectively. For the

sake of clarity and simplicity, let the MUT exhibit solely a single wavefront

which determines unambigiously the ellipse EMUT or an arc as a part of the

ellipse in the case of directive antennas.

Additionally, the n-th neighbouring measurement mn(t) with n = 1, . . . , N

and N = 2 in this particular case is performed. In the n-th measurement

position i = 1, . . . , I wavefronts are detected. Thus, the i-th ellipse created

at the n-th measurement point is denoted as E in which intersects with EMUT

in the location determined by the position vector ~P
i

n. The determination of

intersection points of two arbitrary ellipses is well documented in the mathe-

matical literature. Within this thesis the algorithm in [29] is used. Thus, the

outward and backward travelling distances between the antennas of the MUT

and the corresponding intersection points can be computed unambigiously
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Figure 5.2: Illustration of the measurement setup with relevant quantities.

Not true to scale
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as

li1,n =
∣∣∣ ~TxMUT − ~P

i

n

∣∣∣ with i = 1, . . . , I;n = 1, . . . , N (5.2)

li2,n =
∣∣∣ ~RxMUT − ~P

i

n

∣∣∣ with i = 1, . . . , I;n = 1, . . . , N (5.3)

where li1,n is the distance between TxMUT and the intersection point deter-

mined by EMUT and E in. Analogously, li2,n is the distance between RxMUT and

the intersection point determined by EMUT and E in.

By means of the ‘Law of Cosines’ [65] an unambigious angle between the

antenna axis of the MUT and the intersection point ~P
i

n can be computed as

αin = arccos

((
li2,n
)2

+ (2e)2 −
(
li1,n
)2

2 li2,n (2e)

)
(5.4)

with i = 1, . . . , I;n = 1, . . . , N

Hence, αin is a function defined uniquely with the Rx position of the MUT
~RxMUT and the intersection points ~P

i

n. So far, a set of angles αin induced

by neighbouring measurement locations is obtained. An explicit target point

can be determined by computing an unique optimal angle αopt

(
~RxMUT

)

which assigns every RxMUT an angle towards the scattering centre.

By exploiting the previously discussed spatially wide reradiating signature

of the features a so-called convergence evaluation function [74] depending on

the angular variable ξ for the i-th ellipse of the n-th measurement point can

be performed as

qin

(
ξ, ~RxMUT, ~P

i

n

)
= exp


−

(
ξ − αin

(
~RxMUT, ~P

i

n

))2

2σ2
α


 (5.5)

with i = 1, . . . , I;n = 1, . . . , N
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where the quantity σα is a hardware dependent constant. Obviously, with

equation (5.5) the set of angles αin are represented as Gaussian functions with

the standard deviation σα. The Gaussian shape of the evaluation functions

qin

(
ξ, ~RxMUT, ~P

i

n

)
are directly influenced by the standard deviation. As a

crucial quantity the focusing capability of the algorithm strongly depends on

the quantification of the standard deviation. However, a numerical determi-

nation will be discussed in the subsequent evaluation section.

In order to obtain a single quantity for the prospected αopt the superposition

of the weighted evaluation functions is carried out which yields [74]

Q
(
ξ, ~RxMUT

)
=

∣∣∣∣∣

N∑

n=1

I∑

i=1

mn

(
(li1,n+li2,n)/c0

)
qin

(
ξ, ~RxMUT, ~P

i

n

)∣∣∣∣∣ . (5.6)

Here, the weight mn

(
(li1,n+li2,n)/c0

)
consists of the signal amplitude of the

MUT in the time sample when the wavefront is extracted or the EM wave

hits the object, respectively. An optimal αopt can be estimated by evaluating

equation (5.6) for the maximum:

αopt

(
~RxMUT

)
= argmax

ξ

(
Q
(
ξ, ~RxMUT

))
. (5.7)

Thus, a target point can be determined with the available information,

namely the known antenna positions, the measured TOF and the resulting

unique ellipse of identical TOF and the optimal angle towards the scattering

centre obtained by equation (5.7). An illustration of the convergence evalu-

ation function q as well as the superposition Q is provided in Figure 5.3 and

5.4.

The distance between the estimated target point and ~RxMUT can be calcu-

lated by means of the ‘Law of Cosines’ as

rMUT =
(2e)2 − (l1,MUT + l2,MUT)

2

(2e) · 2 cos (αopt)− 2 (l1,MUT + l2,MUT)
. (5.8)
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Figure 5.3: Set of convergence evaluation functions q(ξ) and accumulation

Q(ξ) for an example MUT.
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Finally, the ultimate target point of the scatterer can be expressed by com-

bining the distance from equation (5.8) and the orientation from equation

(5.7) as

~Ptp = ~RxMUT + rMUT · exp
(
j
(
π − αopt

(
~RxMUT

)))
. (5.9)

5.2 Numerical Evaluation

The focusing capability of the discussed algorithm and hence the performance

are crucially depending on both parameters:

• The standard deviation σα from equation (5.5)

• The number of neighbouring measurement positions N .

The determination of both parameters shall be derived in the following for a

fully compact feature extraction algorithm. The graphical result is shown in

Figure 5.5.

The artefact quantity from equation (4.15) is again evaluated for object

o11. However, to quantify the influence of both above mentioned parame-

ters on the accuracy the cumulative distribution function of the artefact

quantity Fã(ã) is evaluated for an iso-artefact level of ã = 0.45λc ≈ 0.015

m. This quantity is classified for the parameters under test in the range of

0.25λc ≤ σα ≤ 2.5λc and 1 ≤ N ≤ 100. The parameter N expresses the

symmetric coverage of all neighbouring measurement points to the left as

well as to the right of the MUT. The standard deviation is normalised with

λc ≈ 0.033 m where λc equals the wavelength of the centre frequency.

Obviously, the best performance where the vast majority

Fã(ã = 0.45λc)|0.25λc≤σα≤2.5λc ∧ 1≤N≤100 ≥ 90% of target points exhibit a

translative error less than ã = 0.45λc is for 80 ≤ N ≤ 100 and σα ≤ 0.5λc.

Moreover, the percentage values are still higher than 70% as long as N is

more than 60 whereas this value rapidly drops below 40% for σα > 1.5λc.
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Figure 5.5: Accuracy evaluation in dependence of σα and N .

In summary, for super-resolution capable mapping of the wavefronts into

unique highly precise coordinates (i) the number of neighbouring measure-

ment points has to be large whereas (ii) the standard deviation of the con-

vergence evaluation function from equation (5.5) has to minimise. Note here,

that a too small standard deviation is not recommended since narrow evalu-

ation functions handicap the accumulation operation.

Actually, these evaluation results are plausible and also conform with the

literature.

A small standard deviation ensures the Gaussian function in equation (5.5)

to be ‘sharp’ whilst a larger standard deviation blurs the coverage and dis-
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torts the accuracy.

Furthermore, it is well known that the down-range resolution is inverse pro-

portional to the hardware given bandwidth. Two scatterers aligned in the

boresight of the Radar are the more precise separable as the pulses are the

more narrow resulting in less interference. But it is not too well known that

the cross-range resolution which expresses the capability to separate 2 scat-

terers perpendicular aligned to the boresight is differently quantified. “While

range resolution depends on the bandwidth, cross range resolution is mainly

dependent on the ratio between aperture and wavelength. In UWB systems

resolution is estimated with an average wavelength.” [52]

To be more specific, the cross-range resolution is inverse proportional to the

aperture, i.e. the larger the aperture is, the more capable is the Radar sys-

tem to separate nearby scatterers perpendicular to the boresight. This is e.g.

the reason why narrowband air-borne and space-borne Radars provide high-

resoluted images of landscape but do not obtain precise depth information.

However, by increasing the quantity N the synthetic aperture of the system

is increased and the more capable is the system to apply focusing. This

well-known specification of the narrowband Radar community is herewith

quantified for the field of short-range UWB Radar.

The feature extraction algorithm dicussed so far is applied on the reference

measurements as well as on the validation measurements to carry out the

OR. A second pattern is obtained from the same measurements in the form

of a migrated image. In the following, the specifications of the therewith

obtained references are discussed.

5.3 Wavefront based Reference Alphabet

The first set of the reference alphabet consists of the feature extraction al-

gorithm results shown in Figure 5.6. Within the reference measurements the
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objects are not subject to a translative or a rotational offset. The wavefronts

are extracted by the PDCM with slow time optimisation and the parameters

of the feature extraction algorithm are set to N = 100 and σα = 0.25λc. For

the sake of clarity colorbars are avoided and therefore the target points are

subject to a grayscale coding. White assigns minimal values whereas black

assigns maximum amplitudes. The amplitudes equal the absolute value of

the peak amplitudes in the corresponding scattering momentum expressed

as |mMUT ((l1,MUT + l2,MUT) /c0)|.
However, in the OR algorithm the set of target points are not directly pro-

cessed but they are subject to a clustering with a subsequent extraction of

the gravity of mass of each cluster. The centres of gravity are marked in red.

5.4 Imaging based Reference Alphabet

A second set of the reference alphabet obtained by the Kirchhoff migration

(KM) is provided from the same reference measurement that also serves for

the first set. Thus, not an additional hardware effort but rather a different

processing of the Radar data supplies diverse input data for the final OR

system. The second reference set is shown in Figure 5.7.

In the following, the KM shall be introduced just briefly because the the-

ory on migration based imaging is extensively analysed in the literature for

over 3 decades mainly in the fields of geophysics, seismic exploration and

radioastronomy. Moreover, the adaption to UWB has been established to

a satisfying level from the beginning of the UWB activities [83] [173] [175].

Finally, the KM is a tool which supports the OR performance but is not the

essential core and innovation of the thesis at hand.

Like all other EM imaging algorithms the KM assumes a priori known radi-

ation velocity. Within these investigations this requirement is fulfilled since

the measurements are carried out in ambient air with the velocity of light c0.

Let an area be scanned on a known track while measurements are taken suc-

cessively. The strategy of the KM now is a back projection of the radiation
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signature mMUT(t) which is performed by a coherent summation.

More specifically, under the assumption of a bi-static configuration the radi-

ation occurs with an elliptic shape. Hence, every time sample of the time-

dependent MUT assigns an unique ellipse; the more delayed a sample is, the

larger is the ellipse due to the longer covered distance. Afterwards, every el-

lipse ‘floats’ over the area to be imaged and assigns each pixel the amplitude

of the corresponding time sample which is crossed by the spreading ellipse.

Every time sample of each MUT is processed in the same way and the image

is finally build up sequentially. Mathematically this can be formulated as

o(x, y) =
1

N

N∑

n=1

mn
MUT

(
ln1,MUT(x, y) + ln2,MUT(x, y)

c0

)
(5.10)

where o(x, y) is the pixel of the discretised image, ln1,MUT(x, y) is the distance

between the Tx of the n-th MUT and o(x, y), ln2,MUT(x, y) is the distance bet-

ween o(x, y) and the Rx of the n-th MUT. In the case that an object feature

causes a scattering the peak points in the MUT arise and the ellipses super-

pose to hot spots of higher energy. Consequently, the image contrast is the

higher the more measurements are performed. However, the summation also

provokes artefacts because the ellipses or even the arcs, respectively, also

intersect apart real scattering centres. The spatial resolution is decreased

by this ambiguity of erroneous ellipse intersection points. Additionally, the

noise level is increased just by the elippses themselves which degenerates the

dynamic range.

The Reference Alphabet II and hence the images in Figure 5.7 consist of the

KM applied onto the Pauli matrix decomposed Radar data for single bounce

contribution. Double bounce is not considered here since objects o1 to o4 do

not exhibit any double bounce scattering.

In chapter 7 it will be shown how these two alphabets are used to recognise

the objects.
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o1, 360 points o2, 360 points o3, 360 points

o4, 360 points o5, 1342 points o6, 1197 points

o7, 1064 points o8, 2100 points o9, 2348 points

o10, 2227 points o11, 2588 points o12, 1250 points

Figure 5.6: Reference alphabet I
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Figure 5.7: Reference alphabet II
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sixth Chapter

Stereoscopic 3D Imaging

In recent years, several 3D UWB imaging algorithms have been published [70]

[71] [72] [74] [92] [119] [147] [159]. All algorithms have in common that they

utilise only a planar scanning surface. Hence, solely a limited perspective is

used and the coverage of the lateral region of the object is rarely provided

or would require extensive scan distances. As a matter of course, the back

region and other shadowed areas are not imaged due to the lack of sensor

illumination. To be entirely accurate, although the previously mentioned

references claim to be 3D imaging they are actually not 3D or at least not

stereoscopic 3D.

An S3D imaging algorithm provides all stereoscopically distributed scattering

centres in a three dimensional Euclidean space. Thus, the planar aperture

has to be substituted with an extended spatial aperture including the com-

plete three dimensional Euclidean space. In [48] an imaging algorithm for

biomedical diagnostics with a spatial scanning track is presented. However,

the algorithm is based on inverse scattering algorithms and utilises a deriva-

tive operation onto the TOF. It is well known, that such algorithms exhibit

weak performance with complex objects which cause multiple scattering ef-

fects. The resulting wavefronts are not continuous and a direct derivation is

therefore not applicable.

In this chapter a mathematically exact S3D imaging of a bi-static UWB

Radar system will be discussed that exhibits the required intersection point

of 3 arbitrarily distributed and arbitrarily oriented ellipsoids. Actually, this
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S3D algorithm is based on the 2D feature extraction algorithm discussed

in chapter 5. The extension to a further dimension is basically straightfor-

ward except for the determination of the intersection point of 3 ellipsoids.

In contrast to the well documented computation of the intersection point of

2 ellipses in the 2D imaging case, there is a lack on a numerical solution for

the 3D case. Accordingly, this chapter focuses on the mathematical solution

for the estimation of the intersection point of 3 ellipsoids. The incorporation

of this solution into an imaging algorithm will be briefly discussed at the end

of this chapter since it is very similar to the algorithm in chapter 5.

The innovative S3D method introduced here does actually not contribute

to the OR algorithm. However, the scientific contribution to the field of

UWB imaging is highly significant. Moreover, the exhibited novelty in the

algorithm should be a fundamental basis for future research on 3D Radar

imaging and entail more relevant research. On account of this, the S3D

algorithm is covered on this occasion.

6.1 Intersection Point of Three Ellipsoids

Within the research for this thesis an award winning S3D algorithm has been

published in [132]. In that publication the determination of a target point

was simplified to a pair of two dimensional estimations. Thus, the elevation

as well as the azimuth dimension was separately computed for the MUT.

A crossed aperture both in horizontal and vertical direction with respect to

the sensor location of the MUT was proposed and the 2D algorithm was

carried out two times. However, an exact determination of stereoscopically

distributed target points strictly requires an embracing aperture at different

heights which also covers inclined neighbouring sensor positions. Hence, the

spanned aperture of the novel algorithm is rather a mesh than two line aper-

tures.
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From a mathematical point of view, the set of identical TOFs of a bi-static

antenna configuration shapes an ellipsoid in a three dimensional Euclidean

space with the Tx and Rx at its foci. As an analogy to the 2D case it can

be assumed that the scattering centre lies on the intersection point of the

ellipsoid under test Ē1 with a second and third neighbouring ellipsoid Ē2 and

Ē3, respectively. For the further processing this intersection point has to be

computed with a negligible deviation.

The three dimensional equation system

fi(x, y, z) =
(x cos (αi) + y sin (αi)− xi)

2

a2i

+
(x sin (αi) + y cos (αi)− yi)

2

b2i
(6.1)

+
(z − zi)

2

c2i
− 1 = 0.

describes the three ellipsoids Ēi with i = 1, 2, 3 where ai, bi and ci denote

the semi-axis lengths of the ellipsoid Ēi. The coordinates of the ellipsoid

centre are xi, yi, zi and αi is the rotation angle of ellipsoid in the xy-plane

(azimuthal dimension).

Ellipsoids intersection particularly or quadric surface intersection in general

is a demanding problem and continues to be an active topic of research in

the field of geodesy and mathematics [53]. A. Norrdine who is an geodesy

expert with particular expertise in the field of indoor positioning has con-

tributed highly valuable to this issue [96] [97]. Since equation (6.1) is non

linear and cannot be solved directly, a simple solution approach is to find a

best estimate according to the Gauss-Newton (GN) method.

Let Ptp = (x, y, z) denote the spatial coordinates of the target point or the

intersection point, respectively. The GN algorithm iteratively finds the min-
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imum of the sum of squares formulated as

P̂tp = argmin
Ptp

3∑

i=1

fi(Ptp) (6.2)

with P̂tp as the best estimate.

The solution procedure is to choose a start estimate, linearise the equations

about that estimate, and solve iteratively the linearised equations in a least-

squares sense. From a mathematical point of view, the algorithm starts with

an initial guess Ptp,0. In order to find the minimum in equation (6.2) the

method proceeds by the iterations [11] [95]

Ptp,k+1 = Ptp,k −
(
JT
~f
J~f
)−1

JT
~f
~f(Ptp,k) (6.3)

where J~f is the Jacobian matrix of the vector~f(Ptp,k) = [f1(Ptp,k) f2(Ptp,k) f3(Ptp,k)]
T

at Ptp,k and (·)−1 and (·)T are the inverse and transverse operator, respec-

tively. The iteration process stops when the estimation error becomes negli-

gibly small.

The application of the GN algorithm ensures to find the local minimum.

However, this does not always coincide with the absolute minimum. Tests

reveal that the GN-method could reliably solve equation (6.1) but only if the

start estimate is ‘close’ to the solution. The determination of a reliable start

is therefore a fundamental step.

A straightforward technique to find a reasonable start estimate would be to

solve equation (6.1) analytically. However, in the literature closed formulas

are restricted to two dimensional cases (intersection of ellipses) [29]. Another

approach restricts itself to the existence of ellipsoid intersection; it is based

on extending the problem to four dimensions and then determining the eigen-

values which yield a degenerate quadric surface [19]. Thus, a quantitative
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solution with regard to the existence of an intersection point is given and not

a qualitative solution with regard to the coordinates of the intersection point.

The proposal for an efficient start estimate investigated within this thesis is

based on two steps:

1. Every ellipsoid in equation (6.1) has to be approximated with its equiv-

alent sphere. An equivalent sphere has the same center as the ellipsoid

and its radius is an average of the three ellipsoid axis lengths.

2. Determination of the intersection of the three equivalent spheres.

From a geometrical point of view the start estimate is determined by the

intersection of three spheres (referred to as trilateration in geometry). In

general the three spheres intersect in two points as possible solutions. The

uniqueness can either be enforced by using a fourth sphere or an additional

constraint. The constraint in the case of an UWB Radar system with direc-

tive antennas is that the intersection point is in front of the UWB Antennas.

In the literature different approaches exist for the coordinates calculation

of the intersection point based on the trilateration principle. As an exam-

ple, in [4] several methods are discussed and an algebraic method using the

Groebner bases are presented. The approach in [157] is based on the calcula-

tion of the height of the tetrahedron, using its volume and the triangle plain,

spanned by three sphere centers.

An alternative method for solving nonlinear problems on the example of tri-

lateration is presented in [97] which will be used in the following. In contrast

to the other methods, this method can easily be extended to the multilatera-

tion case and exhibits real-time capability. In the proposed method, the non-

linear elements of the equations system are treated as additional unknowns,

which represent simultaneously a constraint. Thus a new equation system is
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created, which is solved by means of linear algebra methods. The basic idea

of the algorithm for the solution of intersection of three sphere is as following:

Given are the three reference points P1(x1, y1, z1), P2(x2, y2, z2) and P3(x3, y3, z3)

and the corresponding range measurements s1, s2 and s3 to the intersection

point N . The determination of the coordinates (xN , yN , zN ) of the point N

is equivalent to finding the solutions of the quadratic equations

(x− x1)
2 + (y − y1)

2 + (z − z1)
2 = s21,

(x− x2)
2 + (y − y2)

2 + (z − z2)
2 = s22, (6.4)

(x− x3)
2 + (y − y3)

2 + (z − z3)
2 = s23.

Expanding and regrouping equation (6.4) yields

(x2 + y2 + z2)− 2x1x− 2y1y − 2z1z = s21 − x21 − y21 − z21 ,

(x2 + y2 + z2)− 2x2x− 2y2y − 2z2z = s22 − x22 − y22 − z22 , (6.5)

(x2 + y2 + z2)− 2x3x− 2y3y − 2z3z = s23 − x23 − y23 − z23 .

Or in matrix representation:



1 −2x1 −2y1 −2z1

1 −2x2 −2y2 −2z2

1 −2x3 −2y3 −2z3







x2 + y2 + z2

x

y

z



=



s21 − x21 − y21 − z21

s22 − x22 − y22 − z22

s23 − x23 − y23 − z23


 . (6.6)

Thus, equation (6.6) is represented in the form

A0 ~x = ~b0 (6.7)

with the constraint

~x ∈ E where E =
{
(x0, x1, x2, x3)

T ∈ R
4|x0 = x21 + x22 + x23

}
. (6.8)

Note that the span of the columns of A0 does depend only on the choice of

the reference points. In the usual case, where the points P1, P2 and P3 do
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not lie on a straight line, it applies that rank(A0) = 3 and dim(ker(A0)) = 1.

The rank(A0) is the subset of R3 comprised of all vectors in R
4.

The general solution of equation (6.7) can be expressed as

~x = ~xp + t · ~xh, (6.9)

Where ~xp is the particular solution, ~xh is the solution of the homogeneous

system A0 ~x = 0 (~xh is a Basis of ker(A0)) and t is a real parameter. The

vectors ~xp and ~xh can be computed using the Gaussian elimination method.

The particular solution ~xp could be alternatively determined using the pseudo

inverse of the matrix A0.

The determination of the parameter t shall be discussed in the following:

Let ~xp = [xp0 xp1 xp2 xp3]
T, ~xh = [xh0 xh1 xh2 xh3]

T and ~x = [x0 x1 x2 x3]
T.

By substituting ~xp, ~xh and ~x in equation (6.9) it yields

x0 = xp0 + t · xh0,

x1 = xp1 + t · xh1,

x2 = xp2 + t · xh2, (6.10)

x3 = xp3 + t · xh3.

By applying the constraint in equation (6.8) it yields

xp0 + t · xh0 = (xp1 + t · xh1)
2 + (xp2 + t · xh2)

2 + (xp3 + t · xh3)
2 (6.11)

and thus
(
x2h1 + x2h2 + x2h3

)
t2 + 2

(
xp1xh1 + xp2xh2 + xp3xh3 −

1

2
xh0

)
t

+ x2p1 + x2p2 + x2p3 − xp0 = 0. (6.12)

Equation (6.12) describes a quadratic equation in the form

at2 + bt+ c = 0 with the solution

t1/2 =
−b±

√
b2 − 4ac

2a
. (6.13)



6.2 S3D Image Evaluation 101

Finally, the solution of the equation (6.7) reveals

~x1 = ~xp + t1 · ~xh,

~x2 = ~xp + t2 · ~xh. (6.14)

Both solutions of equation (6.14) express the coordinates of the initial point

N which equals the sphere intersection. Due to the directivity of the anten-

nas the solution behind the antennas is discarded. By reason of the definition

in equation (6.8) the last 3 coordinates x1, x2, x3 of the solution ~x are the

actual coordinates which are used in equation (6.3) as the start estimation

for the actual iterative ellipsoid intersection algorithm.

If the trilateration problem cannot be solved because e.g. the measured

distances are too short, there are no real valued solutions. In this case,

the real part is used as an start estimate. However, with this estimate,

the constraint in equation (6.8) is not met anymore. Thus the difference

d = x0 − (x21 + x22 + x23) is a measure of the solvability of the trilateration

problem.

6.2 S3D Image Evaluation

With the ellipsoid intersection algorithm in the previous section the 2D fea-

ture extraction algorithm discussed in chapter 5 can be extended by another

dimension to obtain S3D images.

In equation (5.4) of the 2D algorithm a set of angles has been uniquely de-

fined by ~RxMUT and the intersection points ~P
i

n induced by neighbouring

measurement locations.

The similar applies for the S3D case; every MUT for which a target point

shall be estimated provides an ellipsoid intersection point with a pair of

neighbouring sensor points of the aperture. This is iteratively performed for

every pair of the aperture mesh spanned around the sensors of the MUT.
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Hence, a set of intersection points in the three dimensional Euclidean space

is provided. The position of each intersection point as well as the Rx position

of the MUT are known which provides an azimuth and elevation angle and

a distance between the Rx and the intersection point in spherical coordinates.

Analogously to the 2D case the set of azimuth and elevation angles are repre-

sented by the convergence evaluation functions in equation (5.5) separately.

An unambigious azimuth and elevation angle is hence obtained by the su-

perposition of the convergence evaluation functions as performed for the 2D

case in equation (5.6). A maximum operator (equation (5.7)) finally yields

the azimuth and elevation angles of the target point.

So far, the sensor positions of the MUT, the TOF and thus the resulting ellip-

soid from equation (6.1) are known. Together with the previously estimated

azimuth and elevation angle the only unknown parameter to determine an

unique target point is the distance between the Rx and the surface of the

ellipsoid. By means of simple optimisation methods this is highly accurately

solvable [95] [11].

Experimental validations are shown in Figure 6.1 to Figure 6.6.

The antennas are fixed using horizontal alignment and move on a circu-

lar track at different heights. However, a hemispherical alignment of the

antennas which covers more spatial degrees of freedom would immensely

enhance the imaging results. Because of this and due to the lack of finer

cross-resolution the fine structures in the middle of the target in Figure 6.5

and 6.6 are not completely resolved.
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seventh Chapter

Object Recognition

The discussion in the chapter 1.2 shows that up to now an experimentally

validated OR algorithm with complex structured objects in the field of UWB

Radar is not investigated in the literature except the publications acquired

within the research for the thesis at hand [124] [129] [131] [163]. Even the-

oretical considerations with simulated Radar data have not been published

by other groups yet.

The vast majority of the investigations in the long history of the OR research

is based on data gathered by optics or computationally generated patterns,

i.e. data wich are visually well interpretable with cognitive abilities of hu-

mans. Thus, image processing algorithms have always been an essential part

of OR systems for the sake of pre- and post-processing of the data. Although

the fundamental physics behind both optical and UWB systems are similar,

i.e. EM scattering, there are still fundamental differences between images

obtained by optics and EM radiation based UWB images:

• Optical sensors are in most cases passive sensors. This means that an

external source has to illuminate the area of interest with visible or

non-visible (infrared) light while the optical Rx records the fraction of

the light scattered towards it. Visible light occupies wavelengths from

380 nm (blue light) to 780 nm (red light). Thus, optical systems poten-

tially resolve geometries from everyday life highly accurate. The final

optical image is created by a single lens or an array of lenses wich are

generally in the range of a couple of mm. Compared with the wave-

length of visible light this is pretty large and finally determines the
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ultra fine cross-resolution of optical images.

However, apart from special 3D cameras the sensor is not synchro-

nised to the light source and consequentially the captured data is non-

coherent. As a result, direct range information are not provided and

estimations have to be performed by means of assisting systems, e.g. a

stereo camera or a pair of eyes in the case of human beings.

• A Radar system based on EM scattering is an active system which

works in a synchronous way and records the scattered waves coher-

ently. Thus, by evaluating the travelling time of the waves a precise

range information is provided at once which can be by far more pre-

cise than the estimations in the optics. A microwave image needs an

aperture in any case, whether real or synthetic. The cross-resolution of

the used UWB system is by far less than in the field of optics because

the allocated wavelengths in this thesis occupy the range from 5 cm to

15 cm. A comparable cross resolution like in the optics would require

an aperture of more than 600 m. Thus, short-range UWB Radar mi-

crowave images may be difficult to interpret with cognitive abilities of

humans compared with optical images.

In this sense, approved methods and algorithms of the classical OR research

could be adapted to the UWB OR to some extent while other parts (e.g.

the OR evaluation of restricted tracks with an illumination beamwidth of

non-ideal extension) required a complete rethinking and new strategies.

With regard to these circumstances, this chapter introduces the theory as

well as experimentally validated results of a short-range super-resolution OR

algorithm by means of UWB Radar.

7.1 Object Features

“To identify a target by a scalar RCS is like identifying people by their

weight.” [111]
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This statement has been made by distinguished Radar engineers in 1989 at

a time when UWB Radar of several GHz in the lower microwave region has

not yet been considered, even not theoretically in the civil Radar research.

However, the core objective of increased ambiguities in the field of UWB

Radar data still remains the case today; due to the lack of precise direction

information and due to the hardware given non-ideal beamwidth a radargram

or a part of a radargram may be composed of by various similar objects. In

this case an unique recognition with a very low ambiguity is not a trivial task.

The acquisition as well as the preparation of the received raw data needs

sophisticated super-resolution algorithms as the previously introduced wave-

front extraction algorithm in chapter 4 and the imaging and feature extrac-

tion algorithms in chapter 5. Thus, the MUTs are processed and provided in

the same way as the reference feature map in Figure 5.6 and reference KM

image in Figure 5.7.

From these representations a set of features has to be extracted from which

conclusions may be drawn on the object under test (OUT) .

In order to exploit the full potential the features have to satisfy following

demands:

For an efficient computation the feature extraction processing provides a re-

duction of the whole data volume to a subset which, in the ideal case, entirely

contains the relevant information with regard to the application. Addition-

ally, redundancy as well as non-relevant information shall be vanished as far

as possible. The features have to provide a large discrepancy among each

other which allows a characterisation and classification of the OUT on the

highest possible level. The features shall be independent among each other,

i.e. the covariance should converge to zero. Finally, these demands and re-

quirements shall be preserved under translation and rotation of the OUT,

i.e. the features shall provide invariances against linear transformation. In
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this particular case, a scale invariance is not desired since object o1 and o2

shall be recognized as individual objects.

From both the feature map and the KM image the following features are

extracted:

Moment based features

• Moment invariant ~̃FMI

Geometrical features

• Eccentricity F̃EC

• Fitting circle F̃FC

• Form factor F̃FF

• Inertia F̃IN

Texture Features

• Fourier descriptors ~̃FFD

• Curvature scale ~̃FCS

In the following, the acquisition of the features shall be discussed in detail

and vividly by means of the OUT o11 which is subject to a translative offset

of δr = 0.162 m and a rotational offset of δα = 325◦. The obtained feature

map and the KM image are shown in Figure 7.1 and 7.2, respectively.

7.1.1 Moment based Features

The theory of moment invariance for pattern recognition was first introduced

by Hu in the early sixties [56] [57] and later discussed in more detail with

regard to shape analysis by Reiss [110]. Hu adapted the classical algebraic

theory of invariances of the previous century to the field of pattern recognition
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Figure 7.1: Feature Map of the OUT
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Figure 7.2: KM image of the OUT

of a two dimensional image. Based on the well known regular and central

moments from statistics and the classical mechanics 7 moments are obtained

which are invariant against translation, rotation and scaling.

Let f(x, y) be a discretised grayscale image, then the regular moment mpq of

the order p+ q can be defined as

mpq =
∑

x

∑

y

xpyqf(x, y) with p, q = 0, 1, 2 . . . (7.1)

Obviously, m00 denotes the total image weight, i.e. cumulative amplitude

sum of entirely all pixels. In analogy to classical mechanics the centre of

gravity of the image yields

x =
m10

m00

and y =
m01

m00

(7.2)

for the x and y dimension, respectively. By relating the regular moments

with the centres of gravity, the central moments can be obtained as

µpq =
∑

x

∑

y

(x− x)p(y − y)qf(x, y) with p, q = 0, 1, 2 . . . (7.3)

Hence, by the shift of (x, y) an object adapted coordinate system is provided

which makes the central moments invariant against translation. In the orig-

inal theorem [57] a normalisation factor depending on the regarded order
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is introduced to achieve invariance against object scaling. However, due to

direct TOF evaluations scaling does not appear in Radar images. Moreover,

objects o1 and o2 have both a square cross section of different size. The final

rotation invariance is therefore obtained by the 7 Hu moments which are a

non-linear combination of the central moments:

h1 = µ20 + µ02

h2 = (µ20 − µ02)
2 + 4µ2

11

h3 = (µ30 − 3µ12)
2 + (3µ21 + µ03)

2

h4 = (µ30 − µ12)
2 + (µ21 + µ03)

2

h5 = (µ30 − 3µ12)(µ30 + µ12)
[
(µ30 − µ12)

2 − 3(µ21 − µ03)
2
]
+

(3µ21 − µ03)(µ21 + µ03)
[
3(µ30 + µ12)

2 − (µ21 + µ03)
2
]

h6 = (µ20 − µ02)
[
(µ30 + µ12)

2 − (µ21 + µ03)
2
]
+

4µ11(µ30 + µ12)(µ21 + µ03)

h7 = (3µ21 − µ30)(µ30 + µ12)
[
(µ30 + µ12)

2 − 3(µ21 + µ03)
2
]
+

(3µ21 − µ03)(µ21 + µ03)
[
3(µ30 − µ12)

2 − (µ21 + µ03)
2
]
. (7.4)

It is well known in the field of image processing that the moments perform

more robust on grayscale images [63]. Because of this, the KM images (also

shown in Figure 5.7 for the second reference alphabet) serve as the basis for

all moment based features, i.e. the eccentricity feature F̃EC discussed later

and the moment based feature ~̃FMI which is determined as

~̃
FMI = [h1 h2 h3 h4 h5 h6 h7] . (7.5)

7.1.2 Geometrical Features

For the processing of the geometrical features the target points of the feature

map are clustered. The i-th and j-th target point are merged to one cluster

if the condition
∣∣∣~Pi

tp − ~Pj
tp

∣∣∣ ≤ 0.01 m with i = j = 1, 2, 3 . . . N holds true for

a total number of N target points. Subsequently, every cluster is substituted
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Figure 7.3: Cluster Map of the OUT

by its individual centre of gravity (x, y). Finally, the cluster map consists

of the obtained centres of gravity. In both Figures 7.1 and 7.3 the centres

of gravity for the OUT are depicted in red. For the further processing the

cluster map consists of a binary image with pixels of the value 1 for a member

of the cluster and pixels of the value 0 otherwise. Thus, additonal redun-

dancy is removed and the relevant information with regard to the purpose is

reduced to a minimum which significantly decreases the computational load.

Eccentricity

The eccentricity ǫ̃ quantifies the degree of elongation versus circularity of an

object and ranges from 0 to 1. It equals 0 for an object of circular cross

section and 1 for a straight line. In particular, the eccentricity denotes the

relation of the major object axis to the minor object axis. The major object

axis is the longest straight line through the object and the minor axis is the

longest straight line through the object subject to be perpendicular to the



112 Object Recognition

major axis [63]. The eccentricity is based on the second-order moments and

the exact calculation yields

ǫ̃ =
(µ20 − µ02)

2 + 4µ2
11

(µ20 + µ02)
2 . (7.6)

As the moments are invariant against translation and rotation the same ap-

plies for the eccentricity feature which finally yields F̃EC = ǫ̃.

Fitting Circle

The fitting circle feature is a simple measure for the radial extension of an

object. In contrast to a bounding box the fitting circle is rotation invari-

ant. The radius of the fitting circle equals the distance between the centre

of gravity (x, y) of the cluster map and the cluster member which is furthest

away. Mathematically this can be formulated as

rmax = max
c

∣∣∣∣∣

(
x

y

)
− ~P

c

cl

∣∣∣∣∣ with c = 1, . . . , C (7.7)

where ~P
c

cl is the position vector to the c-th member of the cluster and a

total number of C cluster members. For the sake of illustration, the fitting

circle of the OUT is plotted with its relevant quantities in Figure 7.4. The

fitting circle feature is invariant against translation and rotation and yields

F̃FC = 2πrmax.

Form Factor

The form factor denotes the compactness of the object by relating the radial

extension and the total image weight of the cluster map m00 to each other.

Thus, it is an efficient feature to discriminate objects of similar dimensions

though they exhibit a diverse contour which induces a different cluster map.

The form factor feature is defined as

F̃FF =
r2max

4 πm00

(7.8)
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Figure 7.4: Fitting circle illustration of the OUT

and is invariant against translation and rotation.

Inertia

The moment of inertia is a measure from classical mechanics which quantifies

the inertia of a rotating object with respect to its mass distribution. The

object is split into k small pieces with the mass m1,m2, . . . mk which exhibit

the distances r1, r2, . . . rk from the axis of rotation. The moment of inertia

of the object is I = m1r
2
1 +m2r

2
2 + . . . +mkr

2
k. By the evaluation of I with

respect to the axis of rotation the classical moment of inertia is invariant

against translation and rotation [164].

The adaption of the inertia calculation to the cluster map presumes a se-

quence of successive boundary pixels derived from the set of cluster mem-

bers. At first, the object is shifted by its centre of gravity (x, y) so that it

is placed around the origin of axis. With this locality a polar coordinates

description of the cluster members with monotonously increasing angle is
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Figure 7.5: Angular sampled contour of the OUT for inertia calculations

feasible. Afterwards, the cluster members are connected with sequential an-

gles in ascending order. Finally, the resulting curve is sampled equiangular

at a 1◦ grid which results in 360 discrete samples with the polar coordinates

rn · exp(jπ n
360

) with n = 0 . . . N and N = 359. Here, rn is the n-th distance

from the origin to the regarded sample with the corresponding angle n. An

illustration of this processing for the OUT is shown in Figure 7.5. For the

sake of clarity, every second sample is removed in the plot. The final inertia

feature is hence determined by

F̃IN =
N∑

n=0

r2n (7.9)

and is invariant against translation and rotation.
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7.1.3 Texture Features

The texture features consist of the Fourier descriptors and the curvature

scale to describe the structural composition and distribution of pixels of

the OUT. Similar to the previous determination of the inertia both features

presume a sequence of successive boundary pixels derived from the set of

cluster members. However, in contrast to the inertia the boundary for the

texture analysis is obtained by an equidistant sampling with a pixelwise

sample period explained in the following.
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Figure 7.6: Equidistant sampled contour of the OUT for the texture analysis

Fourier Descriptors

The Fourier transformation representation of curves as the boundary of pat-

terns is well known and has been popular over several decades [35] [63] [84].

Due to the Fourier theorem the transformation of the coordinates of an

equidistantly sampled curve provides a set of complex values, i.e. the Fourier

descriptors. These descriptors represent the curve in the frequency domain.
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Let the boundary curve of the OUT of Figure 7.6 consist of P samples which

can be described by a complex value as z(p) = x(p)+jy(p) with p = 0, . . . P−1

as the parameter. Then the Fourier descriptors yield

Z(k) =
P−1∑

p=0

z(p) exp

(
−j2π

pk

P

)
with k = 0, . . . , P − 1. (7.10)

Because z(p) is complex the Fourier descriptors Z(k) of the first half are not

the complex conjugate of the latter half and thus exhibit individual informa-

tion. For the sake of not to exceed the framework of this thesis the Fourier

transformation shall not be explained further. Interested readers may refer

to the vast existing literature on this topic, e.g. [102] [106].

Due to the summation over a periodic function in equation (7.10), a transla-

tive shift of the curve just influences the DC Z(0). However, translation

invariance is already maintained by using a coordinate system whose origin

is aligned to the centre of gravity.

Due to the Fourier theorem a rotation of the curve solely induces a constant

phase shift of every descriptor. However, within this thesis the orientation

invariance is provided by using the absolute value of all descriptors.

A scale invariance is not desired within this OR algorithm. However, the

scaling effects shall be explained for the sake of completeness: a scaling of

the curve causes a scaling of the descriptors with the same factor. Thus a

normalisation with the absolute value of the first descriptor would provide

scale invariance.

The lower frequencies provide information about the general shape and di-

mension of the area bounded by the curve whereas the higher frequencies

contain information about the fine structures and small details of the curve

evolution. Because of this, a small subset of the descriptors is sufficient

to cover the discrepancy of the objects while reducing the computational

load. The absolute value of the descriptors converges to zero after a couple
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of indexes anyway. Within this thesis the Fourier descriptor feature yields
~̃
FFD = (|Z(1)| |Z(2)| . . . |Z(20)|).

Curvature Scale

The curvature of a curve expresses the offset of the curve evolution from a

straight line. Thus, it is defined as

κ(p) = lim
h→0

ϕ

h
(7.11)

where ϕ is the angle between both tangent vectors ~t(p) and ~t(p + h) with

the curve parameter p. Let the equidistant samples of a curve be described

by a parametric vector equation as ~z(p) = [x(p) y(p)] with p = 0, . . . P − 1.

The curvature of the curve ~z(p) can be expressed [18] as

κ(p) =
ẋ(p)ÿ(p)− ẍ(p)ẏ(p)

(ẋ2(p) + ẏ2(p))3/2
(7.12)

where a single and double dot about a variable denotes the first and second

derivative with respect to the parameter p, respectively. In contrast to the

Fourier theorem the curvature scale of a curve contains local information.

This means, that the p-th sample of the curvature contains the geometric

information of the p-th sample of the curve.

However, the equidistant sampled contour of the OUT in Figure 7.6 consists

of straight segments. Thus, the resulting curve exhibits a change of orien-

tation just in the sample which connects two segments. In this case, the

corresponding curvature is a function which equals zero except the sample of

each segment connection where κ(p) equals a Dirac delta.

The classification and discrimination of a pair of objects which exhibit such

curvature scale is challenging and extremely error-prone; a single pixel off-

set of the connection sample (due to noise e.g.) shifts the Dirac delta and

highly complicates the comparison. To overcome this issue the raw curve is
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Figure 7.7: Equidistant sampled contour of the OUT before and after the

application of a Gaussian filter

pre-processed by means of the Gaussian filter [93]

g(p) =
1

σcs

√
2π

exp
(
−p2/2σ2

cs

)
(7.13)

where σcs is the standard deviation of the filter. In this thesis σcs = λc where

λc is the wavelength which corresponds to the centre frequency.

An illustration of the raw curve before and after the application of a Gaussian

filter is shown in Figure 7.7. As a consequence, the shape of κ(p) is blurred

from a Delta dirac to a Gaussian shape which is shown in Figure 7.8. Thus,

after the Gaussian filtering the change of orientation in the evolution of the

curve as well as the correponding κ(p) takes place leisurely. The degree of

bluring is determined by σcs. The exact quantification must satisfy a mini-

mum expansion of the Dirac deltas while ensuring a robust discrimination of

meaningful orientation changes without an overlapping.

Due to the alignment of the coordinate system to the centre of gravity the



7.2 Object Discrimination and Classification - Full Track 119

 

 

PSfrag

κ(p) of the Gauss filtered curve
κ(p) of the raw curve

κ
(p
)

p

0 3000 6000 9000

×10−3

−6

−3

0

3

6
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Gaussian filter

curvature scale analysis is invariant against translation. However, a rotation

of the OUT would circularly shift κ(p). Thus, the curvature scale analysis

is not invariant against rotation which must be taken into account in the

classification step of the OR. The final curvature scale feature is defined as
~̃
FCS = κ(p) with the curvature of the Gaussian filtered curve ~z(p) ∗ g(p),
where ∗ is the convolution operator.

7.2 Object Discrimination and Classification -

Full Track

The final step of the OR is the comparison of the OUT with each of the

twelve reference objects by means of the previously derived features. Thus,

the level of discrimination between the OUT and every possible reference

object can be quantified. A subsequent classification and the determination
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of a final choice is performed by the OR algorithm.

As previously discussed, UWB Radar technology is especially a promising

sensing technique for emergency scenarios. In such situations the demands

on real-time processing and measurement time of the systems are strictly

severe. Hence, to highly satisfy real-time capability the OR was designed

from the outset with a simple classification algorithm. Thus, the support of

vector machines, neural networks and other OR algorithms with vast com-

putational loads were excluded completely. The following discussion refers

to the description of the measurement campaign in the section 3.4.2 which

was performed for the sake of an experimental validation.

Previously, in this chapter the determination of the features has been dis-

cussed. A set of reference quantities will be assigned to each of the twelve

reference objects:

Rj =

〈
~̃
F
j
MI, F̃

j
EC, F̃

j
FC, F̃

j
FF, F̃

j
IN,

~̃
F
j
FD,

~̃
F
j
CS

〉
with j = 1, . . . , 12. (7.14)

The i-th MUT for the OR evaluation is assigned to the i-th feature set as

Mi =

〈
~̃
Fi

MI, F̃
i
EC, F̃

i
FC, F̃

i
FF, F̃

i
IN,

~̃
Fi

FD,
~̃
Fi

CS

〉
with i = 1, . . . , 80 (7.15)

which contains the same feature evaluation as the reference evaluation. The

variable i ranges until 80 because, as explained in the chapter 3.4.2, the OR

validation setup consists of 80 MUTs per OUT.

With a simple MMSE classifier the i-th MUT Mi gets a MMSE value for

the j-th reference object Rj as

MMSEi (j) =

1

7

[
K=6∑

k=1

(
Mi (k)−Rj (k)

)2
+
(
1−max

τ

(
RMi(7)Rj(7)(τ)

))2
]

(7.16)
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where the normalised cross-correlation RMi(7)Rj(7)(τ) expresses the similar-

ity between the i-th MUT and the j-th reference object with regard to the

curvature scale feature. This operation is necessary because the curvature

scale is not invariant against rotation. A rotational offset of the OUT causes

a circular shift of the curvature scale feature. However, this mismatch can

be compensated with a correlation evaluation. The range of the normalised

correlation varies between 0 for orthogonal signals and 1 for equal signals.

The recognition for the i-th MUT is finally performed by evaluating the

MMSE classifier with a minimum operator with regard to the j-th reference

object. Hence, the i-th MUT is recognised as the ôiMMSE reference object

which can be mathematically formulated as

ôiMMSE = argmin
j

(
MMSEi(j)

)
. (7.17)

As previously mentioned in the section 3.4.2, the investigated OR algorithm

is experimentally validated within an immense measurement campaign. In

order to avoid too ideal circumstances, every OUT has been measured 80

times subject to a translative as well as a rotational offset from the centre

of the circular track. The correct recognition rate for each object as the

ultimate result of the OR algorithm is provided in Figure 7.9.

7.3 Object Discrimination and Classification -

Restricted Track

As can be seen in Figure 7.9 the OR algorithm provides excellent recognition

rates for all objects without exception.

Further performance evaluations of the OR algorithm shall be carried out un-

der severe restrictions of the antenna track. To maintain a realistic relevance

and to keep close to real world conditions the sensor tracks are restricted to
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Figure 7.9: Results of the experimental OR validation for 80 arbitrary full

track measurements

270◦ and 180◦, respectively. For the sake of a fair validation of exclusively the

OR algorithm the acquisition and processing of the data remains unchanged

except one necessary issue:

• Due to the restricted track the obtained cluster map of the OUT is

incomplete. Hence, the seven features have to be extracted from in-

complete data. Due to the restriction of the track, the centre of gravity

does not coincide anymore with the centre of gravity of the full track

cluster map. Thus, the classification and discrimination by means of

the existing full track reference set is not feasible any more.

All object features except the moment based ones ~̃FMI and F̃EC are

strongly depending on the geometrical relationship between the centre

of gravity and the cluster members and thus the curves determined by

them.

However, to counteract the limitations of a restricted track a mesh of pseudo

centres of gravity which define possible deviations from the exact centre of
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gravity are taken into account as follows:

First, the exact centre of gravity of the obtained cluster map is calculated.

The more the track is restricted the more the position of the centre of gravity

deviates from the one of the full track.

Secondly, a mesh of pseudo centres of gravity are spanned around the calcu-

lated centre of gravity. The mesh consists of pseudo centres of gravity both

in horizontal and vertical dimension with a 5 mm grid and a mesh dimension

of 30 × 30 cm2 around the calculated centre of gravity.
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Figure 7.10: Results of the experimental OR validation for 80 arbitrary re-

stricted 270◦ track measurements

Let the resulting total number of pseudo centres of gravity plus the exact

one be Nsub for the sub cluster map. Hence, the i-th MUT set Mi from

equation (7.15) consists of Nsub possible evaluations. Each evaluation is

performed for one of the Nsub centres of gravity. Consequently, the MMSE

classification in equation (7.16) for the i-th MUT is carried out Nsub times

for every reference object. Note here, that the second term in equation (7.16)

for the correlation based evaluation is performed in parallel and the overall
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best match is chosen. The final evaluation of the OR is performed with a

similar minimum operation as equation (7.17). The only difference is that

the global minimum is carried out which means that first the minimum of the

Nsub subsets are evaluated per reference object. Subsequently, the minimum

is evaluated for each reference object. The results for the OR with a 270◦

track and a MMSE classifier are shown in Figure 7.10.

7.4 Improved Object Recognition with a Bayes

Classifier

As expected and can be seen in Figure 7.10, the restriction of the track to

270◦ decreases the recognition rate partly minimally and partly drastically

depending on the OUT.

One reason is that sections of the objects are similar or even equal to other

objects, e.g. this holds for o1, o3, o6, o7 and o12. These objects exhibit one

or more edges with 30 cm flat surfaces to the left and to the right. Hence, the

Radar signature of these parts will increase the ambiguity which downgrades

the recognition rate.

Another reason is that the features of the reference set Rj for the j-th object

oj are extracted from the full track reference measurement. Thus, restricted

MUTs are compared with non-restricted references.

A promising strategy for the evaluation of restricted tracks is the partial

consideration of the object features for a new set of a more appropriate

reference alphabet. Thus, a training sequence which provides the Radar sig-

nature statistics of every object is generated from the reference full track

measurement by splitting it into several 270◦ segments. A segment starts at

0◦, 12◦, 24◦... and so forth in multiples of 12◦ until 360◦ which results in 30

segments. Thereby, a training sequence of 30 segments is generated that cov-
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ers the whole Radar signature as a compilation. Note here, that the training

sequence is still gathered from the single full track reference measurement

without increasing the experimental workload or any other hardware effort.

A superior classification shall be discussed in the following where the train-

ing sequence provides a priori information. Thus, a more robust and reliable

decision shall be reached by exploiting the Radar signature statistics of each

object by means of the training sequence. The probability model for the

decision on the object as a result of the OR algorithm is based on the pro-

bability

P (oj|Mi
270) (7.18)

which denotes the conditional probability of the j-th object given the i-th

restricted MUT feature set. The output of the statistical classifier to be de-

signed is hence the j-th object that maximises the conditional probability

in equation (7.18). This results in a minimisation of the average erroneous

recognition probability.

Due to the Bayes’ theorem [28] the conditional probability in (7.18) can be

expressed as

P
(
oj|Mi

270

)
=
P (Mi

270|oj) P (oj)
P (Mi

270)
. (7.19)

The first term P (Mi
270|oj) in the numerator is called the likelihood of oj

with respect to Mi
270 and expresses the conditional probability of the MUT

feature set assigned with the j-th object. The second term P (oj) denotes the

prior probability of the j-th object. The term P (Mi
270) in the denominator

is called the evidence and yields in the particular case of 12 objects for the

i-th restricted MUT feature set

P
(
Mi

270

)
=

12∑

j=1

P
(
Mi

270|oj
)
P (oj) . (7.20)
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The evidence can be regarded as a normalisation factor which guarantees

that the posterior probability P (oj|Mi
270) ranges between 0 and 1, as can

be seen when the equation (7.20) is inserted into (7.19). For the sake of

clarity, a linguistic notation of the Bayesian classifier in the equation (7.19)

shall be denoted which yields

posterior =
likelihood · prior

evidence
.

In practical evaluations for a decision making process the evidence is of mi-

nor importance as it has a scaling character. The numerator is evaluated for

each object in order to determine the j-th object that maximises the pos-

terior probability P (oj|Mi
270) in equation (7.19). Hence, this results in the

solution for the initial objective of the discussion in equation (7.18), i.e. the

probability of the object oj given the i-th measured restricted set Mi
270.

In the field of Bayesian methods the prior and the likelihood in the numerator

are rarely, if ever, completely known. Typically, vague information or design

parameters and general kowledge is available in the best case [28]. However,

in the particular case of restricted tracks the previously discussed training

sequence fully provides the necessary information.

The prior term expresses the appearance probability of the j−th object

within the OR process. Due to the setting of the OR task, the prior probabi-

lity P (oj) can be assumed uniformly distributed. This means, that no object

is prioritised. Hence, it exhibits a scaling character and can be neglected for

a decision making process.

The quantification of the likelihood term is based on the estimation of the sta-

tistical distribution of the object features within a training sequence. Hence,

the probability density functions (PDF) which are assumed to be Gaussian

distributions have to be modelled with the information provided by the train-

ing sequence. Since the 7 features discussed in the section 7.1 consist of

vectors as well as scalars the estimation of the PDFs slightly differ:
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Scalar features The geometrical features i.e. eccentricity F̃EC, fitting circle

F̃FC, form factor F̃FF and inertia F̃IN are single scalar quantities. Thus,

each distribution of every feature resembles an univariate Gaussian

distribution

fx(x) =
1

σ
√
2π

exp

(
−(x− µ)2

2σ2

)
(7.21)

for the random variable x with the expectation parameter µ and the

standard deviation σ. The univariate Gaussian distribution is entirely

determined by these two parameters. The estimation of both parame-

ters by means of the 30 segments per training sequence yields

µ =
1

30

30∑

k=1

xk and σ =

√√√√ 1

30

30∑

k=1

(xk − µ)2.

Trivially, the random variable x in this example is substituted with the

feature values provided by the training sequence. Overall, the distri-

bution of each of the four features is performed for every object.

Vector valued features The moment invariant feature ~̃
FMI, the Fourier

descriptors ~̃FFD and the curvature scale ~̃FCS are vector valued features.

The Gaussian distribution is expressed by a multivariate Gaussian dis-

tribution

f~x(~x) =
1√

(2π)k|Σ|
exp

(
−1

2
(~x − ~µ)TΣ−1(~x − ~µ)

)
(7.22)

for the random vector ~x with k components. The parameter Σ de-

notes the symmetric covariance matrix, ~µ is the mean vector with k

components, (·)−1 is the inverse operator and (·)T is the transpose ope-

rator, respectively. Analogously to the univariate case the multivariate

Gaussian distribution is entirely determined with both the parameters

Σ and ~µ. Hence, to express the vector valued features as a Gaussian
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distribution, the parameter estimation based on the training sequence

which consits of 30 segments yields

~µ =
1

30

30∑

k=1

~x and Σ =
1

30

30∑

k=1

(~x − ~µ) (~x − ~µ)T.

Once again the mean quantity as well as the deviation is again esti-

mated by the arithmetic mean of the samples. This strategy meets the

demands to a satisfying degree.

The crucial step for a robust Bayes estimation is the quantification of the

the likelihood P (Mi
270|oj) which shall be described in the following:

Let Mi
270 =

〈
~̃
Fi

MI, F̃
i
EC, F̃

i
FC, F̃

i
FF, F̃

i
IN,

~̃
Fi

FD,
~̃
Fi

CS

〉
be the feature set of the

i-th MUT with i = 1, . . . , 80. Further, let the reference set Rj for the j-th

object with j = 1, . . . , 12 consist of the univariate Gaussian distributions

fF̃ j

EC
(F̃ j

EC), fF̃ j

FC
(F̃ j

FC), fF̃ j

FF
(F̃ j

FF), fF̃ j

IN
(F̃ j

IN) as well as the multivariate Gaus-

sian distributions f~̃
F

j

MI

(
~̃
F
j
MI), f~̃Fj

FD

(
~̃
F
j
FD), f~̃Fj

CS

(
~̃
F
j
CS), extracted from the a

priori processed training sequence.

Under the assumption of conditional independence the likelihood P (Mi
270|oj)

for the i-th MUT can be computed as the product of the probability quan-

tities extracted from the reference densities for the feature quantities of the

i-th MUT:

P
(
Mi

270|oj
)
= f~̃

F
j

MI

(
~̃
Fi

MI) · fF̃ j

EC
(F̃ i

EC) · fF̃ j

FC
(F̃ i

FC) ·

fF̃ j

FF
(F̃ i

FF) · fF̃ j

IN
(F̃ i

IN) · f~̃
F

j

FD

(
~̃
Fi

FD) ·

f~̃
F

j

CS

(
~̃
Fi

CS) with j = 1, . . . , 12. (7.23)

Finally, a recognition in terms of a Bayesian decision theory can be performed

for the i-th MUT by evaluating a maximum operator on the equation (7.23)
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with regard to the j-th reference object. Hence, the i-th MUT is recognised

as the ôiBayes reference object which can be mathematically formulated as

ôiBayes = argmax
j

(
P
(
Mi

270|oj
))

with j = 1, . . . , 12. (7.24)

As previously mentioned in the section 3.4.2, the investigated OR algorithm

has been experimentally validated within an immense measurement cam-

paign. To provide a fair classification of the influence of the track restriction,

the same measurement campaign except a premature stop of the track has

been carried out. Thus, every OUT has been measured 80 times subject

to the same translative as well as rotational offset from the centre of the

circular track. The recognition rate for each object as the result of the OR

algorithm for restricted tracks with a Bayes classifier is provided in Figure

7.11 for a 270◦ circular track. As a proof of plausibility the track is restricted

more severely to 180◦ with the results shown in Figure 7.12. For the sake of

comparison the MMSE results are plotted as well in the diagrams.

As can be seen in Figure 7.11 9 of 12 recognition rates could be increased

remarkably with the Bayes classifier. The most considerable improvements

are exhibited by the objects o5 and o6 with an increase of more than 60%

compared to the MMSE classifier. However, object o3, o7 and o9 are recog-

nised more reliable with the MMSE.

Most of the ambiguity is caused by objects which are similar or partly even

equal, i.e. o1, o3, o6, o7 and o12. These objects exhibit one or more edges

with 30 cm flat surfaces to the left and to the right which downgrades plau-

sibly the recognition rate.

The main reason for the outstanding performance of the Bayes classifier is

that it exhibits more reliable and capable information by splitting the refer-

ence set into 270◦ and 180◦ segments, respectively.
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In contrast, the MMSE classifier exhibits a reference set extracted from the

full track reference measurement. Thus, the restricted MUTs are compared

with non-restricted references.

That is e.g. the reason why the MMSE classifier fails for objects o1, o2 and

o4 with the 180◦ track in Figure 7.12. With half of the full track the objects

o1, o2 and o4 always exhibit a cluster map with only 3 cluster members due

to the severly restricted track. Consequently in all cases object o3 is chosen

most probably because the object o3 exhibits exactly 3 cluster members in

the full track reference.

This is a decision which is wrong for o1, o2 and o4 but is true for o3; that

is why the MMSE classifier has a pretty good matching with object o3 with

the 180◦ track.
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Figure 7.11: Results of the experimental OR validation with a Bayes classifier

for 80 arbitrary 270◦ track measurements
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Figure 7.12: Results of the experimental OR validation with a Bayes classifier

for 80 arbitrary 180◦ track measurements
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eighth Chapter

Conclusion

Due to the huge bandwidth of usually several GHz UWB signals obtain reso-

lution in the cm and sub cm range. By locating the operational frequencies

in the lower microwave region the super-resolution potential is established

jointly with significant medium penetrating capabilities. With regard to

these features, UWB offers novel technological applications and exhibits su-

perior preferences compared with classical sensor technologies, e.g. infrared,

optics, ultrasound and narrowband Radar.

As a consequence of the huge bandwidth, the envelope of the sounding UWB

pulse is in the range of typical antenna and target dimensions. Thus, in con-

trast to narrowband systems, pulse distortion due to the involved geometries

and transient effects of the hardware are non-negligible. Since these influ-

ences distort the pulse shape and yet the pulse shape determines directly the

resolution capability, transient behaviour considerations are a prerequisite

for any UWB Radar system. The evaluation of solely power related spectral

quantities, which is the classical habitus in the narrowband case, are abso-

lutely insufficient. In this respect, four time domain quality measures have

been introduced which cover the pulse preserving quantification conveniently.

High-resolution methods resolve fine structures as long as two or more pulses

do not or only slightly interfere. However, in the field of super-resolution the

processing of even massively overlapped pulses is feasible. The most popu-

lar method to extract pulses is the matched filter based correlation method

using a reference pulse. However, under more severely interfered conditions
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this method deteriorates significantly. A crucial improvement could be con-

ducted within this thesis. This progress is foremost due to the adaption

of the Pauli scattering matrix decomposition to UWB Radar. Therewith,

weak diffuse scattering contributions could be disjoint from strong dihedral

reflections and are not masked anymore. Moreover, the correlation search is

performed with a more appropriate synthetic reference pattern. This consists

of a pair of reference pulses which exhibit a successively increasing delay. A

final optimisation is applied which exploits the evolution of the signal history

in the radargram. The resulting algorithm enables new levels of imaging and

OR precision in the field of super-resolution UWB Radar and satisfies high-

est demands on accuracy.

For cases where the contour of the image is not well resolved due to reso-

lution deficiencies or improper antenna alignment an algorithm for feature

extraction is developed. Features are significant scattering or reflection cen-

tres which either provoke strong echoes or exhibit an almost omni reradiation

pattern, i.e. edges, corners and alike geometries. The scattering centres of

an object with a complex polygon contour (e.g. object o11 which partly pro-

vokes a massively distorted interference pattern of up to 3 diffuse scattering

and 2 specular reflection contributions) can precisely be resolved by means

of the proposed synthetic aperture focusing method.

An object recognition algorithm has been developed which evaluates both

the previously determined object features and the migrated images obtained

from the same measurements. Geometrical features, moment based features

and texture based features are acquired and characterise each reference ob-

ject as well as each measurement under test. An extraordinary accuracy can

be achieved by the above mentioned pre-processing of the Radar data. Due

to that, a simple minimum mean squared error classifier exhibits satisfying

recognition rates for a full circular track around the objects. Additionally, a
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Bayesian based classifier has been developed to entirely gather the radiation

statistics of each reference object. By the exploitation of this probabilistic

approach the recognition rates could significantly be increased over earlier

publications. This benefit is most notably, when the full track is restricted

and the object discrepancies suffer from minor relevance due to similar ob-

jects.

As a supplementary, a mathematically precise determination of a stereoscopic

3D image by means of a bi-static antenna configuration is developed. In this

particular case, the wavefronts exhibit ellipsoidal shapes. Thus, for exact

calculations the intersection point of 3 arbitrarily distributed ellipsoids in

the three dimensional Euclidean space has to be determined. A mathemat-

ical approach for coordinate estimations with negligible deviations from the

exact intersection point has been provided in this thesis.

All algorithms, methods and results in this thesis are experimentally vali-

dated. In particular, a vast measurement campaign has been carried out to

prove the real-world capability of the object recognition as a whole system.

Future research should expand the investigations to dispersive dielectric ma-

terial, for example, in the field of ground penetrating UWB Radar for land-

mine detection. There has always been a lack of focusing capability to sat-

isfy the extremely high demands. Further, the adaption to new technological

achievements e.g. sophisticated antenna arrays or increased bandwidths at

higher centre frequencies should be performed.
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