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Introduction

The present thesis is very much influenced by my late teacher Alexandru Lupaş
(Arad, România, 5 January 1942 - Sibiu, România, 14 August 2007) and to subse-
quent work done by my present thesis advisor. To be more specific, the starting
point for our introduction is a very short question at the end of Lupaş’ paper [63].
He drew the reader’s attention to the fact that at least some well-known "Bernstein-
type" operators are compositions of the classical Bernstein operators Bn, and other
operators. According to our knowledge, Lupaş was the first one to observe such a
phenomenon.

It is his merit to have shown that it can be much easier to look at things from
an algebraic point of view and to draw conclusions on the behaviour of a compos-
ite operator from properties of the building blocks. The present thesis follows this
approach and makes an attempt to give explanations which go far beyond Lupaş’
original ambition.

We note that when we talk about Bernstein-type operators we mean certain posi-
tive linear operators defined on a space C[a, b], where [a, b] is a compact interval of
the real axis. When doing so we explicitly exclude mappings such as the Mirakyan-
Favard-Szàsz operators taking care of continuous function on the real semi-axis.

An early attempt to give a survey on operators being defined on such compact
sets X, where X is a subset of Rd, d ≥ 1, was given in three bibliographies [96], [41]
and [42]. There an informal attempt was made to define such operators of Bernstein-
type. What had always been clear is that the classical Bernstein operators introduced
in 1912 (see [12]) play a crucial role in this context and that many of the subsequent
papers dealing with the subject are treating modifications of such operators.

There is a good reason to consider the classical Bn operator as a fundamental
building block. Several attempts have been made to decompose the Bernstein op-
erator into simpler but non-trivial components. A technical report considering this
problem was given by Gonska, Heilmann and Raşa (see [37]). There it is shown that
all seemingly natural decompositions fail. In this sense Bn can be considered as a
kind of "prime" operator.

Following the tracks laid by both my mentors I also became interested in these
so-called Bernstein-type operators, although this notion is so broadly defined that
none of us knows exactly what it means.

By introducing two classes of Bernstein-Euler-Jacobi (BEJ) operators we will first
rediscover and explain many positive linear operators which have been considered
in the literature over the years, but were never explained to be compositions. Thus
we bring clarity and avoid the original definitions and formulae which are lengthy,
confusing and mostly difficult to be handled.

We start our thesis with several auxiliary results which are indispensable for our
considerations in later sections. Many of these are in regard to quantitative approx-
imation theory in connection with shape preservation. Besides of the Bernstein op-
erator an important role will be played by Beta-type operators with Jacobi weights.
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Some of their properties are presented in Section 1.3 following in part the funda-
mental work of Lupaş and Mühlbach.

In the second chapter we discuss the two kinds of BEJ operators and give explicit
representations of their moments up to order two. This is motivated by the fact that
the second moments of a positive linear operator govern the degree of approxima-
tion. The expressions obtained are rather complicated, but for special values of the
parameters involved they all reduce to results known from the literature. In Section
2.3 we give a survey of special cases which we were able to detect in the literature
and which all can be explained as particular instances of BEJ-type operators. In the
next two sections we show how the properties of the building blocks can be used to
derive results for the general case. First we show that the operators from both BEJ
classes have the (strong) variation-diminishing property (SVDP), and then we use
a method developed by Finta to give direct and converse results for some special
cases.

Our central Chapter 3 deals with the particular class of operators U$
n which were

introduced by Păltănea in [75]. With the classical Bernstein operator and so-called
"genuine" Bernstein-Durrmeyer operators they share the property to reproduce lin-
ear functions and this makes them very different from other BEJ-type operators
which do not share this feature.

We begin the chapter by recalling the definition provided by Păltănea and in the
first section we collect some properties of the operators. They are either new or
come from one of the papers of Gonska and Păltănea (see [45], [46]) but for which
we have chosen a different path of proof. We remark that although U$

n coincides
with the genuine Bernstein-Durrmeyer operator for the case $ = 1, when it comes
to studying it, its properties are mostly influenced by the Bernstein operator. This
will become more and more obvious as we walk through this chapter.

In Section 3.2 we give a representation of the images of monomials that shows
exactly how strong this relationship is. Section 3.3 is taken in its entirety from [45]
and the results therein will be used repeatedly throughout this work.

After having noted that the images of the monomials for both U$
n and Bn are quite

similar we came across the article on the eigenstructure of Bn written by Cooper and
Waldron (see [18]) and this motivated us to find a way to develop similar results
for U$

n. Thus each result in Section 3.4 has a correspondent in this paper, and also
enriches the results known for Un.

In Section 3.5 we give a complete and detailed proof of the SVDP using a slightly
different approach than in the general case. At the end we include an observation
on the preservation of convexity.

In Section 3.6 we address the topic of global smoothness preservation, having its
roots in the preservation of some Lipschitz classes.

The next section is dedicated to some kind of ”strong” Voronovskaya-type in-
equality. The reason why we call this inequality "strong" is that in addition to the

convergence of n(U$
n f − f ) towards

($ + 1)
2(n$ + 1)

ϕ2 f ′′ it also expresses the degree of

approximation depending on the smoothness properties of the function. We came
across this result in our attempt to prove a strong converse inequality of type B, as
defined by Ditzian and Ivanov in [22].

In Section 3.8 we look at approximation by powers of U$
n. First we provide quan-

titative results using different types of moduli and then consider the eigenstructure
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as means to develop further results.
In Section 3.9 we consider the difference of two classes of operators and provide

a direct and a constructive approach to estimate it and then in the next section we
tackle the problem of the commutators. Other type of such commutators were al-
ready studied in [44].

In Section 3.11 we study the behaviour of U$
n with respect to Lipschitz classes of

order m.
In Sections 3.12 to 3.14 the focus is on the relation they have to certain Lagrange-

type interpolators associated to them, a well known feature in the theory of Bern-
stein operators. Considerations concerning iterated Boolean sums based on a single
mapping U$

n, $ and n fixed and a relationship between certain divided differences
used in Section 3.12 and the representation of the derivatives (U$

n)(j) are also in-
cluded.

In Section 3.15 we give asymptotic formulae for higher order moments using the
same approach as in Subsection 1.3.5 where we studied the problem for the Beta op-
erator. These add to our series of Voronovskaya-type results, and help put together
an overview on what can be done on the subject.

In the last section we study power series of U$
n. Using the eigenstructure of

the operators we give a non-quantitative convergence result towards the inverse
Voronovskaya operators. We include a quantitative statement via a smoothing ap-
proach.

Much of the material presented in this thesis was submitted for publication and
is presently under consideration or it has already been published.
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Notations and symbols

In this work we shall often make use of the following symbols:

:= is the sign indicating equal by definition".
a:=b" indicates that a is the quantity to be defined or explained,
and b provides the definition or explanation. b=:a" has
the same meaning.

N the set of natural numbers,
N0 the set of natural numbers including zero,
R the set of real numbers,
[a, b] a closed interval,
(a, b) or ]a, b[ an open interval.

Let X be an interval of the real axis.
B(X) the set of all real-valued and bounded functions defined on X.
Lp(X) the class of the Lebesgue p-integrable functions on X, p ≥ 1.
‖ f ‖p is the norm on Lp(X) defined by ‖ f ‖p :=

(∫
X | f (x)|pdx

)1/p , p ≥ 1.
C(X) the set of all real-valued and continuous functions defined on X.
C[a, b] the set of all real-valued and continuous functions defined on the compact

interval [a, b].
For f ∈ B(X) or f ∈ C(X)

‖ f ‖∞ is the Chebyshev norm or sup-norm, namely
‖ f ‖∞ := sup{| f (x)| : x ∈ X}.

W2,∞[0, 1] the set of all real-valued and continuous functions that verify
f ′ absolutely continuous and || f ′′||L∞ < ∞,
where || f ′′||L∞ = vrai sup

x∈[0,1]
| f ′′(x)|.

Cr[a, b] the set of all real-valued, r-times continuously differentiable function,
(r ∈N).

Lipτ M the set of all C[a, b]− functions that verify the Lipschitz condition:
| f (x2)− f (x1)| ≤ M|x2 − x1|τ, ∀x1, x2 ∈ [a, b], 0 < τ ≤ 1, M > 0.

∏n (∏n[a, b], n ∈N0) the linear space of all real polynomials
with the degree at most n.

en denotes the n−th monomial with en : [a, b] 3 x 7→ xn ∈ R, n ∈N0.
For a function f : X → R, X an interval of the real axis we have:

∆k
h f (x) is the finite difference of order k ∈N, step h ∈ R\{0}

and starting point x ∈ X. A computing formula:

∆k
h f (x) =

k
∑

i=0
(−1)k−i(k

i) f (x + ih), x + ih ∈ X, i = 0, . . . , k, h ∈ R, h 6= 0.

Dr or f (r) r−th derivative of the function f ∈ Cr[a, b].
[x0, . . . , xm; f ] m−th divided difference of f ∈ F (X) on the not necessarily distinct

knots x0, . . . , xm ∈ X.
ab are the rising factorials

10



ab :=
b−1
∏
i=0

(a + i), a ∈ R, b ∈N0, where
−1
∏
i=0

:= 1.

ab are the falling factorials

ab :=
b−1
∏
i=0

(a− i), a ∈ R, b ∈N0, where
−1
∏
i=0

:= 1.

y[m,h] the factorial power of step h ∈ R defined by: y[m,h] :=
m−1
∏
i=0

(y− ih),

m ∈N0. As above
−1
∏
i=0

:= 1.
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Chapter 1

Preliminaries and auxiliary results

1.1 Main tools

1.1.1 Positive linear operators

In this section we will introduce some basic definitions and some basic properties
concerning positive linear operators. For more information on this topic see [95].

Definition 1.1.1. Let X, Y be two linear spaces of real functions. The mapping L :
X → Y is called a linear operator if L(α f + βg) = αL( f ) + βL(g), for all f , g ∈ X and
for all α, β ∈ R.
If for all f ≥ 0, f ∈ X we have that L f ≥ 0, then L is a positive linear operator.

Remark 1.1.2. a) The set L(X, Y) := {L : X → Y | L is a linear operator } is a
real vector space.

b) In order to highlight the argument of the function L f ∈ Y we use the notation
L( f ; x) but also in some rare cases (L f )(x).

Some elementary inequalities are recalled in the following:

Property 1.1.3. Let L : X → Y be a positive and linear operator.

(i) If f , g ∈ X with f ≤ g then L f ≤ Lg. (monotonicity)

(ii) ∀ f ∈ X we have |L f | ≤ L| f |.

Definition 1.1.4. Let L : X → Y, where X ⊆ Y are two linear normed spaces of real
functions. To each operator L we can assign a non-negative number ‖L‖ defined by

‖L‖ := sup
f∈X
‖ f ‖=1

‖L f ‖ = sup
f∈X

0<‖ f ‖≤1

‖L f ‖.

By convention, if X is the zero linear space, any operator L which maps X to Y must
be the zero operator and is assigned the zero norm.

It can be easily verified that ‖ · ‖ satisfies all the properties of a norm and hence is
called the operator norm.

Choosing X = Y = C[a, b] the following can be stated regarding the continuity
and the operator norm:

Corollary 1.1.5. If L : C[a, b]→ C[a, b] is linear and positive then L is also continuous
and ‖L‖ = ‖Le0‖.

12



1.1 Main tools

The next result provides a necessary and sufficient condition for the convergence
of a sequence of positive linear operators towards the identity operator. It was in-
dependently discovered and proved by three mathematicians in three consecutive
years: T. Popoviciu [80] in 1951, H. Bohman [13] in 1952 and P. P. Korovkin [61] in
1953.

This classical result of approximation theory is mostly known under the name
of Bohman-Korovkin theorem, because T. Popoviciu’s contribution in [80] remained
unknown for a long time.

Theorem 1.1.6. Let Ln : C[a, b] → C[a, b] be a sequence of positive linear operators. If
lim
n→∞

Lnei = ei, i = 0, 1, 2, uniformly on [a, b], then lim
n→∞

Ln f = f uniformly on [a, b] for

every f ∈ C[a, b].

Remark 1.1.7. Due to the above result the monomials ej, j = 0, 1, 2, play an important
role in the approximation theory of linear and positive operators on spaces of continuous
functions. They are often called Korovkin test-functions.

This elegant and simple result has inspired many mathematicians to extend the last the-
orem in different directions, generalizing the notion of sequence and considering different
spaces. In this way a special branch of approximation theory arose, called Korovkin-type
approximation theory. A complete and comprehensive exposure on this topic can be found in
[6].

1.1.2 Different types of moduli of smoothness

The first modulus of smoothness (continuity) has a long history. It appeared already
in 1911 in the Ph. D. thesis of D. Jackson [53], the work that laid the basis for what
is known today as Quantitative Approximation Theory.

Ditzian and Totik introduced in 1987 what they call a "natural modulus of smooth-
ness" which is considered to be a "better tool to deal with the rate of best approxi-
mation, inverse theorems and embedding theorems" (see [23, p.1-4]).

The Ditzian-Totik modulus of smoothness is given by

ωr
ϕ( f , t)p ≡ sup

0<h≤t
||∆r

hϕ f ||Lp (1.1)

where the function ϕ(x) and the interval in question are related to the problem at
hand.

Remark 1.1.8. A vital feature of (1.1) is that the increment hϕ(x) varies with x. For
ϕ(x) ≡ 1, (1.1) is reduced to the classical modulus.

The main tools to measure the degree of convergence of positive linear operators
towards the identity operator are the moduli of smoothness of first and second order.
For f ∈ C[a, b] and δ ≥ 0 we have

ω1( f ; δ) := sup{| f (x + h)− f (x)| : x, x + h ∈ [a, b], 0 ≤ h ≤ δ};
ω2( f ; δ) := sup{| f (x + h)− 2 f (x) + f (x− h)| : x, x± h ∈ [a, b], 0 ≤ h ≤ δ}.

Most of the error estimates in this work are given in terms of the two moduli
of smoothness, the Ditzian-Totik second order modulus denoted by ω2

ϕ( f , ·) and
sometimes by ω

ϕ
2 ( f , ·) or in term of ω̃1.

ω1 inherits its name from the first part of the following property:

13



Chapter 1 Preliminaries and auxiliary results

Proposition 1.1.9. Let f ∈ C[a, b] and δ > 0.

a) If lim
δ→0+

ω1( f ; δ) = 0, then f is continuous on [a, b].

b) The following equivalence holds: f ∈ Lipτ M i f f ω1( f ; δ) ≤ M · δτ, where 0 < τ ≤
1 and M > 0.

A useful modification is represented by the least concave majorant of ω1( f ; ·) given
by

ω̃( f ; ε) =


sup

0≤x≤ε≤y≤b−a
x 6=y

(ε−x)ω( f ,y)+(y−ε)ω( f ,x)
y−x for 0 ≤ ε ≤ b− a,

ω̃( f , b− a) = ω( f , b− a) if ε > b− a.
(1.2)

The definition of ω̃( f , ·) shows that

ω1( f ; ·) ≤ ω̃1( f ; ·) ≤ 2 ·ω1( f ; ·). (1.3)

For some further properties of ω̃( f ; ·) see, e.g., V.K. Dzjadyk [24, p. 153ff] or [35].
It was shown by N.P. Korneičuk [60, p. 670] that for any ε ≥ 0 and ξ > 0 the

function ω( f ; ·) and its least concave majorant ω̃( f ; ·) are related by the inequality

ω̃( f ; ξ · ε) ≤ (1 + ξ) ·ω( f ; ε), (1.4)

and that this inequality cannot be improved for each ε > 0 and ξ = 1, 2 . . . .

However we also give estimates, where moduli of higher order are involved.
Therefore we give the definition of ωk, k ∈ N, as given in 1981 by L. L. Schumaker
in his book [90]:

Definition 1.1.10. For k ∈ N, δ ∈ R+ and f ∈ C[a, b] the modulus of smoothness of
order k is defined by

ωk( f ; δ) := sup{|∆k
h f (x)| | 0 ≤ h ≤ δ, x, x + kh ∈ [a, b]}. (1.5)

Remark 1.1.11. For clarity sometimes we will write ωk( f ; δ; [a, b]).
It is obvious that for δ ≥ b−a

k one has ωk( f ; δ) = ωk( f ; b−a
k ).

We collect in the following proposition some useful properties of ωk:

Property 1.1.12. (see [95])

1) ωk( f ; 0) = 0.

2) ωk( f ; ·) is a positive, continuous and non-decreasing function on R+.

3) ωk( f ; ·) is sub-addititive, i.e., ω1( f ; δ1 + δ2) ≤ ω1( f ; δ1) + ω1( f ; δ2), δi ≥ 0, i =
1, 2.

4) ∀δ ≥ 0, ωk+1( f ; δ) ≤ 2ωk( f ; δ).

5) If f ∈ C1[a, b] then ωk+1( f ; δ) ≤ δ ·ωk( f ′; δ), δ ≥ 0.

14



1.1 Main tools

6) If f ∈ Cr[a, b] then ωr( f ; δ) ≤ δr sup
δ∈[a,b]

| f (r)(δ)|.

7) ∀δ > 0 and n ∈N, ωk( f ; nδ) ≤ nkωk( f ; δ).

8) ∀δ > 0 and r > 0, ωk( f ; rδ) ≤ (1 + [r])kωk( f ; δ), where [a] is the integer part of
a.

9) If δ ≥ 0 is fixed, then ωk( f ; ·) is a seminorm on C[a, b].

Corollary 1.1.13. (see [95])

1) ∀δ > 0, ωk+r( f ; δ) ≤ 2rωk( f ; δ), k, r ∈N.

2) ∀0 < δ ≤ 1, ωk+1( f ; δk) ≤ ωk( f ; δ).

1.1.3 Žuk’s function and its applications

Some of the estimates in terms of different moduli of smoothness can be elegantly
proven by using as an intermediate a special smoothing function that was con-
structed by V. Žuk in [103]. Therefore we find it instructive to present here its defi-
nition and its relevant properties, see also [38].

Žuk’s approach was the following: For f ∈ C[a, b] he first defined the extension
fh : [a− h, b + h]→ R, with h > 0, by

fh(x) :=


P−(x), a− h ≤ x ≤ a,
f (x), a ≤ x ≤ b,
P+(x), b < x ≤ b + h,

where P−, P+ ∈ ∏1 are the best approximants to f on the indicated intervals.
Then Žuk defined its function Zh f (·) (sometimes also denoted by f2,h(·)) using

the second order Steklov means

Zh f (x) :=
1
h
·
∫ h

−h

(
1− |t|

h

)
fh(x + t)dt, x ∈ [a, b].

It can be shown that Zh f ∈W2,∞[a, b].
The following estimates were proven in [103, Lemma 1] (or [38, Lemma 2.1] )

Lemma 1.1.14. Let f ∈ C[a, b], 0 < h ≤ 1
2 (b− a). Then

‖ f − Zh f ‖∞ ≤ 3
4
·ω2( f ; h),

‖(Zh f )′′‖L∞ ≤ 3
2
· h−2 ·ω2( f ; h).

Supplementary estimates for lower order derivatives of Zh f are given in

Lemma 1.1.15. (see [38, Lemma 2.4]) Let f , h and Zh f be given as in Lemma 1.1.14. Then

‖(Zh f )′‖∞ ≤ 1
h
·
[

2 ·ω1( f ; h) +
3
2
·ω2( f ; h)

]
,

‖Zh f ‖∞ ≤ ‖ f ‖∞ +
3
4
·ω2( f ; h).
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Corollary 1.1.16. As an immediate consequence of the latter lemma, one has the simpler
inequalities

‖(Zh f )′‖∞ ≤
5
h
·ω1( f ; h), and ‖Zh f ‖∞ ≤ 4 · ‖ f ‖∞.

As an application of the upper inequalities the authors proved in [38] the follow-
ing:

Lemma 1.1.17. (see [38, Lemma 4.1]) Let g ∈W2,∞ and the polynomial Bng, where Bn is
the Bernstein operator defined on [a, b] (see Section 1.2 for details). Then for any ε > 0 and
a sufficiently large n the following inequalities hold:

‖g− Bng‖∞ < ε, ‖Bng‖∞ ≤ ‖g‖∞, ‖(Bng)′‖∞ ≤ ‖g′‖∞,

and
‖(Bng)′′‖∞ ≤ ‖g′′‖L∞ .

In other words, the latter lemma affirms that functions in W2,∞[a, b] can be approx-
imated well by functions in C2[a, b], while "retaining important differential charac-
teristics", see [38].

Supplementary results on "smoothing of functions by smoother ones" can be found
in [34, Lemma 3.1]. Having further applications in mind, we shall present this as-
sertion below:

Lemma 1.1.18. Let I = [0, 1] and f ∈ Cr(I), r ∈N0. For any h ∈ (0, 1] and s ∈N there
exists a function fh,r+s ∈ C2r+s(I) with

(i) ‖ f (j) − f (j)
h,r+s‖∞ ≤ c ·ωr+s( f (j); h) for 0 ≤ j ≤ r,

(ii) ‖ f (j)
h,r+s‖∞ ≤ c · h−j ·ωj( f ; h), for 0 ≤ j ≤ r + s,

(iii) ‖ f (j)
h,r+s‖∞ ≤ c · h−(r+s) ·ωr+s( f (j−r−s); h), for r + s ≤ j ≤ 2r + s.

Here the constant c depends only on r and s.

Next we present a partial generalization of a theorem of Brudnyı̌ which will be
used as means to prove some further results.

Theorem 1.1.19. (see [38, Theorem 4.2]) Let (B, || · ||B) be a Banach space, and let H :
C[a, b]→ (B, || · ||B) be an operator, where

(i) ||H( f + g)||B ≤ γ{||H f ||B + ||Hg||B} for all f , g ∈ C[a, b],

(ii) ||H f ||B ≤ α|| f ||C for all f ∈ C[a, b],

(iii) ||Hg||B ≤ β0||g||C + β1||g′||C + β2||g′′||C for all g ∈ C2[a, b].

Then for all f ∈ C[a, b], 0 < h ≤ (b− a)/2 the following inequality holds:

||H f ||B ≤ γ

{
β0|| f ||+

2β1

h
ω1( f ; h) +

3
4

(
α + β0 +

2β1

h
+

2β2

h

)
ω2( f ; h)

}
.

Corollary 1.1.20. (see [38, Corollary 4.3]) In many cases one has γ = 1 and β0 = β1 = 0,
so that the inequality from Theorem 1.1.19 simplifies to

||H f ||B ≤
(

3α

4
+

3β2

2h2

)
ω2( f ; h).
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1.1.4 K-functionals and their relationship to the moduli

In 1968 J. Peetre introduced in [77] a functional, nowadays called Peetre’s K-functional,
for investigation of interpolation spaces between two Banach spaces. As predicted
by Peetre this became another important instrument to measure the smoothness of
a function in terms of how well it can be approximated by smoother functions.

It is possible to define the K-functional in a very general context as is presented
in [23]. This can be used in applications and in particular for polynomials of best
approximation.

Definition 1.1.21. For a positive integer r the K−functional of the pair of spaces
Lp(a, b), 1 ≤ p ≤ ∞, and a corresponding weighted Sobolev space with the weight
function ϕr is given by

Kr,ϕ( f , tr)p = inf
g(r−1)∈A.C.

{|| f − g||p + tr||ϕrg(r)||p}.

where g(r−1) ∈ A.C. means that g is r − 1 differentiable and g(r−1) is absolutely
continuous in every closed finite interval [c, d] such that [c, d] ⊂ (a, b).

Sometimes the notation Kϕ
r is used.

For various K−functionals probably the most important problem is that of char-
acterizing their behavior using structural properties of the functions. Here the char-
acterization will be done using the modulus of smoothness ωr

ϕ( f , t)p. To that end
the following equivalence theorem is given

Theorem 1.1.22. (see [23, p.11]) Suppose r is a positive integer, f ∈ Lp(0, 1), 1 ≤ p ≤ ∞
and ϕ(x) =

√
x(1− x). Then

M−1ωr
ϕ( f , t)p ≤ Kr,ϕ( f , tr)p ≤ Mωr

ϕ( f , t)p, 0 < t ≤ t0

for some constants M > 0 and t0.

Remark 1.1.23. This result is also valid if C[0, 1] replaces L∞(0, 1).

For the applications we have in mind in this general context, it suffices to consider
the case r = 2.

The classical definition of the K-functional is given below.

Definition 1.1.24. For any f ∈ C[a, b], δ ≥ 0 and integer s ≥ 1 we call

Ks( f ; δ)[a,b] := K( f ; δ; C[a, b], Cs[a, b]) (1.6)

:= inf{‖ f − g‖∞ + δ · ‖g(s)‖∞ : g ∈ Cs[a, b]},

Peetre’s K-functional of order s.

Whenever there is no doubt about the interval of definition of f we shall use for
Ks( f ; δ)[a,b] the abbreviation Ks( f ; δ).

It is clear that the quantity in (1.6) reflects some approximation properties of f :
the inequality Ks( f ; δ) < ε, δ > 0 implies that f can be approximated with error
‖ f − g‖∞ < ε in C[a, b] by an element g ∈ Cs[a, b], whose norm is not to large,
‖g(s)‖∞ < ε

δ .
The following lemma collects some of the properties of Ks( f ; ·). They were proven

by P.L. Butzer & H. Berens [14], but they can also be found in more recent work on
approximation theory as in: [90], [21] and [35].
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Lemma 1.1.25. (see Proposition 3.2.3 in [14]) Let Ks( f ; ·) be defined as in (1.6).

1) The mapping Ks( f ; δ) : R+ → R+ is continuous especially at δ = 0, i.e.,

lim
δ→0+

Ks( f ; δ) = 0 = Ks( f ; 0).

2) For each fixed f ∈ C[a, b] the application Ks( f ; ·) : R+ → R+ is monotonically
increasing and concave function.

3) For arbitrary λ, δ ≥ 0, and fixed f ∈ C[a, b], one has the inequality

Ks( f ; λ · δ) ≤ max{1, λ} · Ks( f ; δ).

4) For arbitrary f1, f2 ∈ C[a, b] we have Ks( f1 + f2; δ) ≤ Ks( f1; δ) + Ks( f2; δ), δ ≥ 0.

5) For each δ ≥ 0 fixed, Ks(·; δ) is a seminorm on C[a, b], such that

Ks( f ; δ) ≤ ‖ f ‖∞,

for all f ∈ C[a, b].

The following theorem establishes the close relationship between the K-functional
and the moduli of smoothness. Ks and ωs are related by the following equivalence
relation, see H. Johnen [54]:

Theorem 1.1.26. There exist constants C1 and C2, depending only on s and [a, b] such that

C1 ·ωs( f ; δ) ≤ Ks( f ; δs) ≤ C2 ·ωs( f ; δ), (1.7)

for all f ∈ C[a, b] and δ > 0.

In general there are no sharp constants known in the above (double) inequality.
However, there are two exceptional cases for s = 1, 2. We present them below.

The following lemma known as Brudnyı̌’s representation theorem establishes the
connection between K1( f ; δ)[a,b] and the least concave majorant defined at (1.2).

Lemma 1.1.27. Every function f ∈ C[a, b] satisfies the equality

K1

(
f , δ; C[a, b], C1[a, b]

)
=

1
2
· ω̃1( f ; 2δ), δ ≥ 0. (1.8)

More details and also proofs of the above lemma can be found in many different
sources, as for example: in the article of B. S. Mitjagin & E. M. Semenov [70], or in
the book by R. T. Rockafellar [87], or in the monograph of R. A. DeVore & G. G.
Lorentz [21, p. 175] and more recently in a paper of R. Păltănea [76].

Also for the case s = 2 there is something known about the constants in front of
the moduli of smoothness. Thus, H. Gonska proved in [32, p. 31] the following

Lemma 1.1.28. Let f ∈ C[a, b] and 0 ≤ δ. Then we have

1
4
·ω2( f ; δ) ≤ K2

(
f ,

δ2

2
; C[a, b], C2[a, b]

)
and

K2( f , δ2; C[a, b], C2[a, b]) ≤
(

3
2

+ 2 ·max
{

1,
δ2

(b− a)2

})
·ω2( f ; δ).
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In another context, but also very useful for our next applications is the following:

Lemma 1.1.29. For any f ∈ C[a, b] and δ ≥ 0 the following identity holds,

K( f ; δ; C[a, b], C2[a, b]) = K( f ; δ; C[a, b], W2,∞[a, b]), (1.9)

where the K-functional on the right hand side can be defined in an analogous way to the
other one.

Proof. It is trivial to see that C2[a, b] ⊂W2,∞[a, b] implies K( f ; δ; C[a, b], W2,∞[a, b]) ≤
K( f ; δ; C[a, b], C2[a, b]). In order to prove the inverse inequality let ε > 0 be fixed and
g ∈ W2,∞[a, b]. Obviously we have Bng ∈ C2[a, b] and furthermore ‖(Bng)′′‖∞ ≤
‖g′′‖L∞ , see Lemma 1.1.17. Having this in mind, for a sufficiently large n ∈ N and
0 ≤ δ the following inequality holds:

K( f ; δ; C[a, b], C2[a, b]) ≤ ‖ f − Bng‖∞ + δ · ‖(Bng)′′‖∞

≤ ‖ f − g‖∞ + ‖g− Bng‖∞ + δ · ‖(Bng)′′‖∞

≤ ‖ f − g‖∞ + ε + δ · ‖g′′‖L∞ .

This implies, by passing on the right hand side to the infimum for all functions in
W2,∞[a, b] that

K( f , δ; C[a, b], C2[a, b]) ≤ K( f , δ; C[a, b], W2,∞[a, b]) + ε, ε > 0.

But ε was arbitrarily chosen, so letting ε→ 0 we arrive at the desired inequality. �

1.1.5 The integral remainder of the Taylor expansion

The following lemma proved to be very useful in the proof of some converse in-
equalities and in establishing a strong Voronovskaya-type inequality for U$

n (to be
defined later).

Lemma 1.1.30. Let R2( f , u, x) =
u∫
x
(u − v) f ′′(v)dv be the integral remainder of f in

Taylor expansion. Then for x, y ∈ [0, 1] we have:

|R2( f , u, x)| ≤ |u− x|
ϕ2(x)

∣∣∣∣∣∣
x∫

u

ϕ2(v) f ′′(v)dv

∣∣∣∣∣∣ . (1.10)

Proof. Lemma 1.1.30 results from Lemma 9.6.1 ([23], p.140).

1.1.6 Variation diminution

Shape preservation properties of an approximation method are considered to be of
great importance in both Approximation Theory and Computer Aided Geometric
Design. Among them, we discuss the variation diminution.
We refer to [29], which contains historical remarks clarifying the various meanings
of "variation–diminishing" employed in the past.

Thus, the following scheme is valid:

GVDP⇒ SVDP⇒WVDP

where
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• Geometric Variation Diminishing Property (GVDP): is the verification criteria
introduced by Schoenberg in [89, p. 267] - for an operator to have this property
it must have the SVDP and also preserve linear functions;

• Strong Variation Diminishing Property (SVDP): see description below;

• Weak Variation Diminishing Property (WVDP): is a method which diminishes
the total variation.

Let K be any interval on the real line, and let f : K → R be an arbitrary function.
For an ordered sequence x0 < x1 < ... < xn of points in K, let S[ fk] denote the
number of sign changes in the finite sequence of ordinates f (xk), where zeros are
disregarded. The number of sign changes of f in the interval K is defined by

SK[ f ] = sup S[ f (xk)],

where the supremum is taken over all ordered finite sets {xk}.
Let I and J be two intervals, let U be a subspace of C(I), and suppose that L : U →
C(J) is a linear operator reproducing constant functions.
The operator L is said to be (strongly) variation-diminishing (as an operator from U
into C(J)) if

SJ [L f ] ≤ SI [ f ], for all f ∈ U.

The main result presented in [29] (see Theorem 1 there), which represents a new
approach in proving the SVDP, reads as follows.

Theorem 1.1.31. Let I = (a, b) or I = (a, ∞) with a ≥ 0, let w : I → R+ be a strictly
positive continuous weight function, and [α, β] ⊂ [0, ∞). Consider a linear and positive
definite functional A : C(I) → R having the following properties: there exists a subspace
C[α,β]

w (I) ⊂ C(I) such that for f ∈ C[α,β]
w (I) ⊂ C(I) the function L f : (α, β) → R given

by (L f )(x) := At[tx · w(t) · f (t)] is well–defined. If the function L f has one-sided limits
at the endpoints, then

S[α,β][L f ] ≤ SI [ f ], ∀ f ∈ C[α,β]
w (I),

where, for x ∈ {α, β}, one understands by sgn(L f )(x) the sign of the corresponding one-
sided limit.

1.1.7 Remarks on (de)compositions of positive linear operators

In [36] a representation of the second moments of compositions of positive linear
operators was given. In particular the following general situations were considered:

(i) products of more than two operators;

(ii) the assumption Qei = ei, i = 0, 1 is dropped.

In the first case we have:

Theorem 1.1.32. Suppose that k operators Pi : C[a, b] → C[a, b], 1 ≤ i ≤ k, are given,
satisfying Pie1 = e1, Pie0 = e0 for 2 ≤ i ≤ k. Then(

k

∏
i=1

Pi

)
((e1 − x1)2; x1) =

k

∑
j=1

P1(...Pj((e1 − xj)2; xj; ...); x1).
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In the above the variable xj is related to the operator Pj in the sense that Pj yields
functions of the variable xj (such as Pj((e1 − xj)2; xj)).
The less convenient case in which some of the operators do not reproduce e1 and e0
was also considered. Thus it was shown

Lemma 1.1.33. Let P, Q, R be positive, linear operators with Qe1 6= e1 6= Re1. Then the
second moment of the composition is given by:

(i) for two operators

(P ◦Q))((e1 − xe0)2; x) = Pu(Q((e1 − ue0)2; u); x)−
−P((e1 − xe0)2; x) + 2P((e1 − xe0)′ · (Qe1 − x); x) (1.11)

(ii) for three operators

(P ◦ (Q ◦ R))((e1 − xe0)2; x) = P(Q(R((e1 − se0)2; s); u); x)−
−P(Q((e1 − ue0)2; u); x)− P((e1 − xe0)2; x)+
+2P(Q((e1 − ue0) · (Re1 − ue0); u); x) + 2P((e1 − xe0) · (QRe1 − x); x)

(1.12)

where for clarity a superscript such as in Pu indicates that the operator P is applied to
functions in the variable u.

1.2 The Bernstein operators

Maybe the best-known and celebrated positive operators are the Bernstein operators,
introduced by S. N. Bernstein [12] in 1912 in order to prove Weierstrass’ fundamental
theorem, see [101]. For any f ∈ C[0, 1], n ∈N and x ∈ [0, 1], they are given by

Bn( f ; x) :=
n

∑
k=0

pn,k(x) f
(

k
n

)
, (1.13)

where the polynomials

pn,k(x) =
(

n
k

)
xk(1− x)n−k, 0 ≤ k ≤ n, (1.14)

form the Bernstein basis. To be formally correct we set for k < 0 or k > n that
pn,k := 0. It is not difficult to define the Bernstein operators on an arbitrary compact
interval [a, b], a < b. We shall come back many times to the properties of these
operators and their generalizations. As references we will mainly use [21] and [95].

1.2.1 Basic properties

The operators Bn, n ∈N defined by (1.13) have the following properties:

1. they are linear and positive;

2.
n
∑

k=0
pn,k(x) = 1;
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3. Bn(e0; x) = 1, Bn(e1; x) = x, Bn(e2; x) = x2 +
x(1− x)

n
;

4. ||Bn|| = 1;

5. lim
n→∞

Bn( f ; x) = f (x) uniformly on [0, 1], (∀) f ∈ C[0, 1];

6. |Bn( f ; x)− f (x)| ≤ kω f ( 1√
n ), (∀)x ∈ [0, 1];

7. |Bn( f ; x)− f (x)| ≤ 3
4
√

n
ω f ′( 1√

n ), (∀) f ∈ C1[0, 1], (∀)x ∈ [0, 1].

Remark 1.2.1. (i) The Bernstein operator interpolates at the end points.

Bn( f , 0) = pn,0(0) f (0) = f (0), Bn( f , 1) = pn,n(1) f (1) = f (1);

(ii) The exact value of the constant in property 6. above was found by Sikkema in 1961,
namely k = (4306 + 837

√
6)/5832 ≈ 1, 089. Previous estimations were given in

1935 by T. Popoviciu who found k ≤ 3
2 , and in 1953 by G.G. Lorentz who found

k ≤ 5
4 .

(iii) A finite set of real non-negative functions defined on the interval I, which have the
sum equal to 1 is called a partition of unity on I. The set {pn,k : k = 0, ..., n} is a
blending system of [0, 1] for all n ∈N.

(iv) In 1966 G. Călugăreanu ( see [15]) showed that Bn has n eigenvalues all in the interval
(0, 1), and they have the following representation:

λk =
(

1− 1
n

)(
1− 2

n

)
· ... ·

(
1− k− 1

n

)
, k = 1, ..., n.

The k-th eigenvalue has an infinity of corresponding eigenvectors given by polynomi-
als of degree k.

1.2.2 Derivatives of Bernstein polynomials

With the usual notations the following relationships hold:

(i) p′n,k(x) = n(pn−1,k−1(x)− pn−1,k(x)) =
k− nx

x(1− x)
pn,k(x), k = 0, ..., n for all x ∈

(0, 1). (p0,0 := 1 and ps,−1 = ps,s+1 := 0, s ∈N0).

(ii) B′n( f ; x) = n
n−1
∑

k=0
∆1/n f ( k

n )pn−1,k(x) =
n−1
∑

k=0
pn−1,k(x)

[
k
n

,
k + 1

n
; f
]

.

(iii) B(j)
n ( f ; x) = n(n− 1) · ... · (n− j + 1)

n−j
∑

k=0
pn−j,k(x)∆

j
1/n f ( k

n ), j ≤ n.

With B(j)
n f we denoted the j-th derivative of the polynomial Bn f . In particular

B(j)
n ( f ; 0) = n(n− 1) · ... · (n− j + 1)∆

j
1/n f (0), j = 0, ..., n. This gives the Taylor ex-

pansion:

Bn( f ; x) =
n

∑
k=0

(
n
k

)
∆k

1/n f (0)xk.
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If f is a polynomial of degree n, then ∆k
1/n f (0) = 0 for k > n and ∆n

1/n f (0) 6= 0.
Therefore, the Bernstein polynomial of degree n is itself a polynomial of degree n.
For further information on this topic see [21, p. 305-307] and [95, p. 300-303].

1.2.3 Approximation and shape preserving properties

We begin with the following simple but important fact:

Theorem 1.2.2. (Voronovskaya [100]) If f is bounded on [0, 1], differentiable in some neigh-
borhood of x, and has second derivative f ′′(x) for some x ∈ [0, 1], then

lim
n→∞

n[Bn( f , x)− f (x)] =
x(1− x)

2
f ′′(x). (1.15)

If f ∈ C2[0, 1] the convergence is uniform.

Remark 1.2.3. (see [21, p.307]) Historically, this has been the first example of saturation:
for certain operators, convergence cannot be too fast, even for very smooth functions. The
theorem shows that f (x)− Bn( f ; x) is of order not better than 1/n if f ′′(x) 6= 0.

Theorem 1.2.4. For some constant C > 0, and for all f ∈ C[0, 1],

| f (x)− Bn( f ; x)| ≤ Cω2

(
f ,

√
x(1− x)

n

)
, x ∈ [0, 1]. (1.16)

In particular, if f ∈ C1[0, 1], then

| f (x)− Bn( f ; x)| ≤ C

√
x(1− x)

n
ω2

(
f ′,

√
x(1− x)

n

)
, x ∈ [0, 1]. (1.17)

Inequalities (1.16) and (1.17) show that the Bernstein polynomials have a slow rate
of convergence. This is compensated for by their shape preserving properties.

Theorem 1.2.5. (i) The polynomial Bn f increases on [0, 1] if f is increasing on this
interval;

(ii) For k = 1, 2, ..., Bn f is monotone of order k on [0, 1] if f has this property;

(iii) VarBn f ≤ Var f ;

(iv) one has Z(0,1)Bn f ≤ S(0,1) f where the first term is the number of zeros of Bn f on
(0, 1) and the second term is the number of sign changes of f on (0, 1).

Proof. See ([21], p.309).

Remark 1.2.6. Taking into consideration the theorem above it is clear that the Bernstein
operators have the strong variation diminution property as operators from C[0,1] into itself
(see also [29, p. 97]).
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1.2.4 Bernstein polynomials for convex functions

We begin with a result established by Stancu in 1967 (see [93]), which is sometimes
falsely attributed to B. Averbach (see e.g. [58, p.306]).

Theorem 1.2.7. For n = 1, 2, ..., we have

Bn( f ; x)− Bn+1( f ; x) =
x(1− x)
n(n + 1)

n−1

∑
k=0

[
k
n

,
k + 1
n + 1

,
k + 1

n
; f
]

pn−1,k(x). (1.18)

Proof. We have

Bn+1( f , x) = f (0)(1− x)n+1 + f (1)xn+1 +
n
∑

v=1
f
( v

n+1

)
(n+1

v )xv(1− x)n+1−v,

Bn( f , x) = Bn( f , x)[x + (1− x)]

= f (0)(1− x)n+1 + f (1)xn+1 +
n
∑

v=1
f
( v−1

n

)
( n

v−1)xv(1− x)n+1−v

+
n
∑

v=1
f
( v

n

)
(n

v)xv(1− x)n+1−v.

Subtracting and replacing v− 1 by k in all sums, we obtain

Bn( f , x)− Bn+1( f , x) =
n−1
∑

k=0
xk+1(1− x)n−k×[

(n
k) f
(

k
n

)
− (n+1

k+1) f
(

k+1
n+1

)
+ ( n

k+1) f
(

k+1
n

)]
= x(1−x)

n(n+1)

n−1
∑

k=0
(n−1

k )xk(1− x)n−1−k×[
n2(n+1)

n−k f
(

k
n

)
− n2(n+1)2

(k+1)(n−k) f
(

k+1
n+1

)
+ n2(n+1)

k+1 f
(

k+1
n

)]
= x(1−x)

n(n+1)

n−1
∑

k=0
pn−1,k(x)

{[
k
n , k+1

n+1 , k+1
n ; f

]}

If f is convex, then all the terms in the sum (1.18) are non-negative and we obtain:

Corollary 1.2.8. (W.B. Temple 1954, O. Aramă 1957, I.J. Schoenberg 1959, see [99], [9],
[88]) If f is convex on [0, 1], then for all n ∈N and x ∈ (0, 1)

Bn( f ; x) ≥ Bn+1( f ; x) ≥ f (x). (1.19)

The inequalities are strict if f is strictly convex on [0, 1].

1.2.5 Converse result

In 1994, H.B. Knoop and X.L. Zhou (see [59]) gave a lower estimate for the Bernstein
operators. They proved that:

Theorem 1.2.9. There exists an absolute constant C > 0 such that

C−1ω2
ϕ( f , n−

1
2 ) ≤ || f − Bn f || ≤ Cω2

ϕ( f , n−
1
2 )

holds, for all f ∈ C[0, 1].
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1.3 The (Euler-Jacobi) Beta type operators

A main tool in the proof is the following lemma which is of crucial importance in
the proof of some results in Section 2.5:

Lemma 1.2.10. Let f ∈ C[0, 1]. Then

1
n
||ϕ2B′′n f || ≤ C0||Bn f − f || (1.20)

where C0 > 0 is an absolute constant.

Proof. See the inequality (2.1) in ([59], p.317)

1.3 The (Euler-Jacobi) Beta type operators

Along with the Bernstein operator presented in the previous section we shall also
use as factor operators, in the next chapter, the (Euler-Jacobi) Beta-type operators
Ba,b

r of various kinds which will be further discussed below.
The reason for the name is the fact that the operators contain both Euler’s Beta func-
tion and Jacobi weights.

1.3.1 Definition of operators Ba,b
r

Definition 1.3.1. For f ∈ C[0, 1], r > 0 and x ∈ [0, 1] we define

(i) in case a = b = −1:

B−1,−1
r ( f ; x) =



f (0), x = 0;
1∫

0
trx−1(1− t)r−rx−1 f (t)dt

B(rx, r− rx)
, 0 < x < 1;

f (1), x = 1.

(ii) in case a = −1, b > −1:

B−1,b
r ( f ; x) =


f (0), x = 0;
1∫

0
trx−1(1− t)r−rx+b f (t)dt

B(rx, r− rx + b + 1)
, 0 < x ≤ 1.

(iii) in case a > −1, b = −1:

Ba,−1
r ( f ; x) =


1∫

0
trx+a(1− t)r−rx−1 f (t)dt

B(rx + a + 1, r− rx)
, 0 ≤ x < 1;

f (1), x = 1.
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(iv) in case a, b > −1:

Ba,b
r ( f ; x) =

1∫
0

trx+a(1− t)r−rx+b f (t)dt

B(rx + a + 1, r− rx + b + 1)
, 0 ≤ x ≤ 1.

Remark 1.3.2. We prefer to use the Jacobi notation α, β ≥ −1 for natural r and a, b ≥ −1
for the real r.

Remark 1.3.3. When discussing this class of operators one must refer to the papers of
Mühlbach [71] and Lupaş in [62] where the first special cases were considered.
Case a = b = −1: This case can be traced back to a paper by Mühlbach [71] who used a real
number 1

λ > 0. The same case with a natural n instead of the r was investigated by Lupaş
in [62], where the operator was denoted by Bn (see [62, p.63]).
Case a = b = 0: These were called Beta operators by Lupaş (see [62, p.37]) and denoted by
Bn.

1.3.2 Basic properties

The operators Ba,b
r , r > 0 as given in Definition 1.3.1 have the following properties:

1. they are linear and positive;

2. Ba,b
r (e0; x) = 1,Ba,b

r (e1; x) =
rx + a + 1

r + a + b + 2
,

Ba,b
r (e2; x) =

(rx + a + 1)(rx + a + 2)
(r + a + b + 2)(r + a + b + 3)

;

3. lim
r→∞
Ba,b

r ( f ; x) = f (x) uniformly on [0, 1], (∀) f ∈ C[0, 1];

For the case a = b = −1 we have the following additional properties:

4. the operator B−1,−1
r reproduces linear functions;

5. it interpolates at the end points

B−1,−1
r ( f , 0) = f (0), B−1,−1

r ( f , 1) = f (1);

6. ||B−1,−1
r || = 1.

Lemma 1.3.4. Let f ∈ C[0, 1] convex. If s > r > 0, then

B−1,−1
r ( f ; x) ≥ B−1,−1

s ( f ; x). (1.21)

Remark 1.3.5. Lemma 1.3.4 is a consequence of [5, Theorem 1] and it was proved using
methods specific to probability theory.
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1.3 The (Euler-Jacobi) Beta type operators

1.3.3 Moments and their recursion

We shall focus on the building blocks Bα,β
n for n a natural number, α, β ≥ −1 and

on their moments of all orders. As is well known, knowledge of their behavior is
essential for asymptotic statements as, for example, Voronovskaya-type results.

Definition 1.3.6. Let α, β ≥ −1, n > 1, m ∈ N0 and x ∈ [0, 1], then the moment of
order m is defined by

Tα,β
n,m(x) = Bα,β

n ((e1 − xe0)m; x).

Theorem 1.3.7.

Tα,β
n,0 (x) = 1, Tα,β

n,1 (x) =
α + 1− (α + β + 2)x

n + α + β + 2
(1.22)

and for m ≥ 1 we have the following recursion formula

(n + m + α + β + 2)Tα,β
n,m+1(x) = mXTα,β

n,m−1(x) + (1.23)

+[m + α + 1− (2m + α + β + 2)x]Tα,β
n,m(x)

where X = x(1− x).

Proof. Below we will repeatedly use the function ψ(t) = t(1 − t), t ∈ [0, 1]. Let
f ∈ C1[0, 1], α, β ≥ −1, 0 < x < 1. Then

Bα,β
n (ψ f ′; x) =

1∫
0

tnx+α(1− t)n−nx+βt(1− t) f ′(t)dt

B(nx + α + 1, n− nx + β + 1)
.

Using integration by parts we obtain

Bα,β
n (ψ f ′; x) =

1
B(nx + α + 1, n− nx + β + 1)

[tnx+α+1(1− t)n−nx+β+1 f (t)
∣∣∣∣1
0

−
1∫

0

f (t)[(nx + α + 1)tnx+α(1− t)n−nx+β+1 −

−(n− nx + β + 1)tnx+α+1(1− t)n−nx+β]dt]

=

1∫
0

f (t)tnx+α(1− t)n−nx+β[t(n− nx + β + 1)− (1− t)(nx + α + 1)]dt

B(nx + α + 1, n− nx + β + 1)

=

1∫
0

f (t)tnx+α(1− t)n−nx+β[n(t− x)− (α + 1) + t(α + β + 2)]dt

B(nx + α + 1, n− nx + β + 1)

and taking into consideration the identity

n(t− x)− (α + 1) + t(α + β + 2) =
= ((e1 − xe0)(n + α + β + 2) + [x(α + β + 2)− (α + 1)]e0) (t)
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we can now write

Bα,β
n (ψ f ′; x) = Bα,β

n ([(e1 − xe0)(n + α + β + 2) + (x(α + β + 2)− (α + 1))e0] f ; x).
(1.24)

In (1.24) we choose f = (e1 − xe0)m and use the fact that t(1− t) = (X + X′(e1 −
xe0)− (e1 − xe0)2)(t):

mBα,β
n ([X(e1 − xe0)m−1 + X′(e1 − xe0)m − (e1 − xe0)m+1]; x) =

Bα,β
n ([(n + α + β + 2)(e1 − xe0)m+1 − (α + 1− (α + β + 2)x)(e1 − xe0)m]; x).

The equality above becomes successively:

mXTα,β
n,m−1(x) + mX′Tα,β

n,m(x)−mTα,β
n,m+1(x) = (n + α + β + 2)Tα,β

n,m+1(x)−

−[α + 1− (α + β + 2)x]Tα,β
n,m(x);

(m + n + α + β + 2)Tα,β
n,m+1(x) = mXTα,β

n,m−1(x) +

+[m + α + 1− (α + β + 2 + 2m)x]Tα,β
n,m(x).

So (1.23) is established for 0 < x < 1. Due to the continuity, it is valid also for
x ∈ {0, 1}.

In particular we have:

Corollary 1.3.8. For α = β = 0 we have B0,0
n = Bn (Lupaş notation) with the correspond-

ing recurrence formula for the moments:

(n + m + 2)T0,0
n,m+1(x) = mXT0,0

n,m−1(x) + (m + 1)X′T0,0
n,m(x)

where T0,0
n,0(x) = 1, T0,0

n,1(x) =
X′

n + 2
.

For α = β = −1 we have B−1,−1
n = Bn (Lupaş notation). Then the recurrence formula

becomes
(n + m)T−1,−1

n,m+1(x) = mXT−1,−1
n,m−1(x) + mX′T−1,−1

n,m (x)

where T−1,−1
n,0 (x) = 1, T−1,−1

n,1 (x) = 0.

The next proposition contains another kind of recurrence formula for the mo-
ments.

Proposition 1.3.9. Let i ≥ 0 and j ≥ 0 be integers. Then

Tα+i,β+j
n,m (x) =

(n + α + β + 2)i+j

(nx + α + 1)i(nx + β + 1)j

i+j

∑
k=0

[xi(1− x)j](k)

k!
Tα,β

n,m+k(x). (1.25)

Proof. Using the definition of the Beta operator it is easy to show that

Bα,β
n (ti(1− t)j f (t); x) =

(nx + α + 1)i(nx + β + 1)j

(n + α + β + 2)i+j
Bα+i,β+j

n ( f (t); x). (1.26)
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1.3 The (Euler-Jacobi) Beta type operators

The following equation

ti(1− t)j =
i+j

∑
k=0

[xi(1− x)j](k)

k!
(t− x)k (1.27)

is a consequence of Taylor’s formula. Next using (1.27) and the fact that the Beta
operator is linear we get

Bα,β
n (ti(1− t)j f (t); x) =

i+j

∑
k=0

[xi(1− x)j](k)

k!
Bα,β

n ((t− x)k f (t); x). (1.28)

Combining (1.26) and (1.28) we arrive at

Bα+i,β+j
n ( f (t); x) =

(n + α + β + 2)i+j

(nx + α + 1)i(nx + β + 1)j
×

×
i+j
∑

k=0

[xi(1− x)j](k)

k!
Bα,β

n ((t− x)k f (t); x).

For f (t) = (t− x)m we obtain (1.25).

Remark 1.3.10. Another recurrence formula for the moments of B−1,−1
n can be found in

[71, Satz 3].

1.3.4 The moments of order two

Since the second moment controls to a certain extent the approximation properties
of Bα,β

n , it is useful to have a closer look at it. From Theorem 1.3.7 we obtain

Tα,β
n,2 (x) =

(α + 1)(α + 2) + (n− 2(α + 1)(α + β + 3))x
(n + α + β + 2)(n + α + β + 3)

+ (1.29)

+
(−n + 6 + (α + β)(α + β + 5))x2

(n + α + β + 2)(n + α + β + 3)
.

(I). First, let us remark that

lim
α→∞

Tα,β
n,2 (x) = (1− x)2, uniformly on [0, 1],

and
lim
β→∞

Tα,β
n,2 (x) = x2, uniformly on [0, 1]. (1.30)

Roughly speaking, a large value of α (with a fixed β) suggests a better approximation
near 1, and we draw a similar conclusion from (1.30).

(II). Now let β = α ≥ −1. Consider the sequence sn :=
√

4n + 1− 5
4

, n ≥ 1. In this
case,

Tα,α
n,2 (x) =

(α + 1)(α + 2)− (−n + 6 + 2α(2α + 5))x(1− x)
(n + 2α + 2)(n + 2α + 3)

.

Therefore,

Tα,α
n,2 (0) = Tα,α

n,2 (1) =
(α + 1)(α + 2)

(n + 2α + 2)(n + 2α + 3)
,
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and

Tα,α
n,2

(
1
2

)
=

1
4(n + 2α + 3)

.

(i) If −1 ≤ α < sn, the graph of Tα,α
n,2 has the following form:

-x
0 1

2 1

6
y

q
q q

This suggests a better approximation near the end points.

(ii) If α = sn, Tα,α
n,2 is a constant function, namely

Tsn,sn
n,2 (x) =

(√
4n + 1− 1

4n

)2

, x ∈ [0, 1].

(iii) For α > sn, the graph looks like

-x
0 1

2 1

6
y

q
q q

and indicates a better approximation near 1
2 .

(iv) In the extreme cases, when α = −1, respectively α→ ∞, we have T−1,−1
n,2 (x) =

x(1− x)
n + 1

, respectively lim
α→∞

Tα,α
n,2 (x) =

(
1− 2x

2

)2

.

1.3.5 Asymptotic formulae

Here we present first two asymptotic formulae for higher order moments of Bα,β
n in

order to arrive at Voronovskaya-type results.

Theorem 1.3.11. For α, β ≥ −1 and all l ≥ 1 one has

(Pl) :


lim
n→∞

nlTα,β
n,2l(x) = (2l − 1)!!Xl ,

lim
n→∞

nlTα,β
n,2l−1(x) = Xl−1

[
(l − 1)!2l−1X′

l−1
∑

k=1

(2k− 1)!!
(2k− 2)!!

+

+(2l − 1)!!(α + 1− (α + β + 2)x)] .

(1.31)

30



1.3 The (Euler-Jacobi) Beta type operators

The convergence is uniform on [0, 1].

Proof. We shall prove the proposition by induction on l ≥ 1. Tα,β
n,1 and Tα,β

n,2 are given
by (1.22), respectively (1.29), and it is easy to prove that (P1) is true. Suppose that
(Pl) is true. According to ( 1.23) and (1.31),

lim
n→∞

nl+1Tα,β
n,2l+1(x) = lim

n→∞
nl+1 2lX

n + 2l + α + β + 2
Tα,β

n,2l−1(x)+

+ lim
n→∞

nl+1 2l + α + 1− (4l + α + β + 2)x
n + 2l + α + β + 2

Tα,β
n,2l(x)

= 2lXl
[
(l − 1)!2l−1X′

l−1
∑

k=1

(2k− 1)!!
(2k− 2)!!

+ (2l − 1)!!(α + 1− (α + β + 2)x)
]

+

+[2l + α + 1− (4l + α + β + 2)x](2l − 1)!!Xl

= Xl [2l l!X′
l−1
∑

k=1

(2k− 1)!!
(2k− 2)!!

+(2l − 1)!!(2l(α + 1)− 2l(α + β + 2)x + 2l + α + 1− (4l + α + β + 2)x)]

= Xl [2l l!X′
l

∑
k=1

(2k− 1)!!
(2k− 2)!!

− (2l)!!X′
(2l − 1)!!
(2l − 2)!!

+

+(2l − 1)!!((2l + 1)(α + 1− (α + β + 2)x) + 2l − 4lx]

= Xl
[

2l l!X′
l

∑
k=1

(2k− 1)!!
(2k− 2)!!

+ (2l + 1)!!(α + 1− (α + β + 2)x
]

and this proves the first formula in (1.31) for l + 1 instead of l. Similarly,

lim
n→∞

nl+1Tα,β
n,2l+2(x) = lim

n→∞
nl+1 (2l + 1)X

n + 2l + 1 + α + β + 2
Tα,β

n,2l(x)+

+ lim
n→∞

nl+1 2l + 1 + α + 1− (4l + 2 + α + β + 2)x
n + 2l + 1 + α + β + 2

Tα,β
n,2l+1(x)

= (2l + 1)X(2l − 1)!!Xl = (2l + 1)!!Xl+1,

which is the second formula in (1.31) for l + 1 instead of l. This concludes the proof
by induction.

The following result of Sikkema (see [92, p. 241]) will be used below. Note also
the 1962 result of Mamedov [66] dealing with a similar problem.

Theorem 1.3.12. Let Ln : B[a, b] → C[c, d], [c, d] ⊆ [a, b], be a sequence of positive linear
operators. Let the function f ∈ B[a, b] be q−times differentiable at x ∈ [c, d], where q ≥ 2
is a natural number. Let ϕ : N→ R be a function such that

(i) lim
n→∞

ϕ(n) = ∞,

(ii) Ln((e1 − x)q; x) =
cq(x)
ϕ(n)

+ o
(

1
ϕ(n)

)
, n→ ∞, where cq(x) does not depend on n,

(iii) there exists an even number m > q such that Ln((e1− x)m; x) = o
(

1
ϕ(n)

)
, n→ ∞.

Then

lim
n→∞

ϕ(n)

{
Ln( f ; x)−

q

∑
r=0

Ln((e1 − x)r; x)
r!

f (r)(x)

}
= 0.
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Corollary 1.3.13. (i) Theorem 1.3.12 can be rewritten in the form

lim
n→∞

ϕ(n)

{
Ln( f ; x)−

q−1

∑
r=0

Ln((e1 − x)r; x)
r!

f (r)(x)

}
= cq(x)

f (q)(x)
q!

.

(ii) If in addition to the assumption of Theorem 1.3.12, one assumes that

Ln((e1 − x)r; x) =
cr(x)
ϕ(n)

+ o
(

1
ϕ(n)

)
, n→ ∞, r = 1, 2, ..., q,

where the functions cr are independent of n, then one also has

lim
n→∞

ϕ(n) {Ln( f ; x)− f (x)Ln(e0; x)} =
q

∑
r=1

cr(x)
f (r)(x)

q!
.

That is, all derivatives now appear on the right hand side which is independent of n.

As a consequence of Corollary 1.3.13 (ii) we have the following Voronovskaya-
type relation.

Corollary 1.3.14. Let f ∈ C2[0, 1]. Then

lim
n→∞

n
{
Bα,β

n ( f ; x)− f (x)
}

=
x(1− x)

2
f ′′(x) + [α + 1− (α + β + 2)x] f ′(x),

uniformly on [0, 1].

Proof. For ϕ(n) = n and q = 2 as given in Corollary 1.3.13 (ii),

lim
n→∞

n
{
Bα,β

n ( f ; x)− f (x)
}

=
2

∑
r=1

cr(x)
f (r)(x)

r!
= c1(x)

f ′(x)
1!

+ c2(x)
f ′′(x)

2!

where cr(x) = lim
n→∞

nTα,β
n,r (x). By using Lemma 1.3.11 with l = 1 we get

c1(x) = α + 1− (α + β + 2)x
c2(x) = X,

and this concludes the proof.

Remark 1.3.15. As a consequence of Lemma 1.3.11 and Corollary 1.3.13 (i) we deduce
similarly that for f ∈ C2l [0, 1],

lim
n→∞

nl

{
Bα,β

n ( f (t); x)−
2l−1

∑
k=0

f (k)(x)
k!

Tα,β
n,k (x)

}
=

(2l − 1)!!
(2l)!

Xl f (2l)(x), l ≥ 1. (1.32)

From this we get also

lim
n→∞

nl

{
Bα,β

n ( f (t); x)−
2l−2

∑
k=0

f (k)(x)
k!

Tα,β
n,k (x)

}
=

(2l − 1)!!
(2l)!

Xl f (2l)(x) +

+
Xl−1

(2l − 1)!

[
(l − 1)!2l−1X′

l−1

∑
k=1

(2k− 1)!!
(2k− 2)!!

+ (1.33)

+(2l − 1)!!(α + 1− (α + β + 2)x)
]

f (2l−1)(x).
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Remark 1.3.16. In order to compare the result above with a special previous result for the
case α = β = −1 we manipulate the left hand side of (1.33) for l = 2 by writing

lim
n→∞

n[n(Bα,β
n ( f (t); x)− f (x))− (α + 1− (α + β + 2)x) f ′(x)− X

2
f ′′(x)]

= lim
n→∞

n2
[
(Bα,β

n ( f (t); x)− f (x)− Tα,β
n,1 (x) f ′(x)− Tα,β

n,2 (x)
f ′′(x)

2

]
+

+ lim
n→∞

n[nTα,β
n,1 (x)− (α + 1− (α + β + 2)x)] f ′(x)+

+
1
2

lim
n→∞

n[nTα,β
n,2 (x)− X] f ′′(x).

By using (1.22), (1.31) and (1.33) with l = 2, we get

lim
n→∞

n[n(Bα,β
n ( f (t); x)− f (x))− X

2
f ′′(x)− (α + 1− (α + β + 2)x) f ′(x)]

=
1
8

X2 f IV(x) +
1
6

X(3α + 5− (3α + 3β + 10)x) f ′′′(x)−

−(α + β + 2)(α + 1− (α + β + 2)x) f ′(x) +
1
2

f ′′(x)[(α + 1)(α + 2)−
−(2α2 + 2αβ + 10α + 4β + 11)x + x2((α + β)(α + β + 7) + 11)].

For α = β = −1, this reduces to

lim
n→∞

n[n(B−1,−1
n ( f ; x)− f (x))− X

2
f ′′(x)] =

=
1
24
(
3X2 f IV(x) + 8X(1− 2x) f ′′′(x)− 12X f ′′(x)

)
.

This result can be also deduced from [4, Remark 3].

1.3.6 Iterates of Bα,β
n

1. α = β = −1. In this case B−1,−1
n are positive linear operators preserving linear

functions, and B−1,−1
n e2(x) =

nx(nx + 1)
n(n + 1)

> e2(x), for 0 < x < 1. Consequently

lim
m→∞

(
B−1,−1

n

)m
f (x) = (1− x) f (0) + x f (1), f ∈ C[0, 1],

uniformly on [0, 1] ( see [83]).

2. α > −1, β = −1. Then Bα,−1
n are positive linear operators preserving constant

functions, Bα,−1
n f (1) = f (1) for all f ∈ C[0, 1], and

Bα,−1
n e2(x) =

(nx + α + 1)(nx + α + 2)
(n + α + 1)(n + α + 2)

> e2(x), 0 ≤ x < 1.

Therefore
lim

m→∞

(
Bα,−1

n

)m
f (x) = f (1), f ∈ C[0, 1],

uniformly on [0, 1] (see [83]).

3. α = −1, β > −1. As in the previous case, one proves that

lim
m→∞

(
B−1,β

n

)m
f (x) = f (0), f ∈ C[0, 1].
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4. α > −1, β > −1. In this case we have for all k ≥ 0,

Bα,β
n ek(x) =

(nx + α + 1)k

(n + α + β + 2)k
, x ∈ [0, 1].

From this we get

Bα,β
n ek(x) =

1

(n + α + β + 2)k

k

∑
j=0

sk−j(k, α)njxj, (1.34)

where sk−j(k, α) are elementary symmetric sums of the numbers α + 1, α + 2, ..., α + k;
in particular s0(k, α) = 1 and

s1(k, α) = (α + 1) + ... + (α + k) = kα +
k(k + 1)

2
. (1.35)

It follows that the numbers

λn,k :=
nk

(n + α + β + 2)k
, k ≥ 0,

are eigenvalues of Bα,β
n , and to each of them there corresponds a monic eigenpoly-

nomial qn,k with deg qn,k = k. Let q ∈ Π and d = deg q. Then q has a decomposition

q = an,0(q)qn,0 + an,1(q)qn,1 + ... + an,d(q)qn,d

with some coefficients an,k(q) ∈ R. Since λn,0 = 1 and qn,0 = e0 we get

(Bα,β
n )m p = an,0(q)e0 +

d

∑
k=1

an,k(q)λm
n,kqn,k, m ≥ 1

and so
lim

m→∞
(Bα,β

n )mq = an,0(q)e0, p ∈ Π. (1.36)

Consider the linear functional µn : Π → R, µn(q) = an,0(q), and the linear operator
Pn : Π → Π,

Pnq = µn(q)e0, q ∈ Π.

Then (1.36) becomes
lim

m→∞
(Bα,β

n )mq = Pnq, q ∈ Π. (1.37)

Obviously Pn is positive, and so µn is positive; moreover, ||µn|| = 1 because µn(e0) =
1. By the Hahn-Banach theorem, µn can be extended to a norm-one linear functional
on C[0, 1]. Since Π is dense in C[0, 1], the extension is unique and the extended
functional µn : C[0, 1] → R is also positive. Now Pn can be extended from Π to
C[0, 1] by setting Pn : C[0, 1]→ Π, Pn f = µn( f )e0, f ∈ C[0, 1]. Remark that

||(Bα,β
n )m|| = ||Pn|| = 1, m ≥ 1. (1.38)

Using again the fact that Π is dense in C[0, 1], we get from (1.37) and (1.38)

lim
m→∞

(Bα,β
n )m f = Pn f , f ∈ C[0, 1]. (1.39)
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1.3 The (Euler-Jacobi) Beta type operators

On the other hand, from (1.34) we deduce the following recurrence formula for the
computation of Pnek, k ≥ 1:

(
(n + α + β + 2)k − nk

)
Pnek =

k−1

∑
j=0

sk−j(k, α)njPnej.

Since Pnek = µn(ek)e0, we get for n ≥ 1 and k ≥ 1

µn(ek) =
k−1

∑
j=0

sk−j(k, α)
nj

(n + α + β + 2)k − nk
µn(ej). (1.40)

Using (1.40) it is easy to prove by induction on k that there exists

µ(ek) := lim
n→∞

µn(ek), k ≥ 0, (1.41)

and, moreover,

µ(ek) =
s1(k, α)

(α + β + 2) + ... + (α + β + k + 1)
µ(ek−1),

i.e., taking (1.35) into account,

µ(ek) =
2α + k + 1

2α + 2β + k + 3
µ(ek−1), k ≥ 1.

Since µ(e0) = 1, it follows that

µ(ek) =
(2α + 2)k

(2α + 2β + 4)k
, k ≥ 0.

This can be rewritten as

µ(ek) =
B(2α + k + 2, 2β + 2)

B(2α + 2, 2β + 2)
=

1∫
0

t2α+1(1− t)2β+1ek(t)dt

1∫
0

t2α+1(1− t)2β+1dt
,

so that

µ(q) =

1∫
0

t2α+1(1− t)2β+1q(t)dt

1∫
0

t2α+1(1− t)2β+1dt
, q ∈ Π.

Consider the extension of µ to C[0, 1], i.e.,

µ( f ) =

1∫
0

t2α+1(1− t)2β+1 f (t)dt

1∫
0

t2α+1(1− t)2β+1dt
, f ∈ C[0, 1],
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and the positive linear operator P : C[0, 1]→ Π, P f = µ( f )e0, f ∈ C[0, 1]. According
to (1.41), lim

n→∞
µn(q) = µ(q), q ∈ Π, i.e.,

lim
n→∞

Pnq = Pq, q ∈ Π. (1.42)

Since ||Pn|| = ||P|| = 1, n ≥ 1, we conclude from (1.42) that lim
n→∞

Pn f = P f , f ∈
C[0, 1]. Thus, for the operators Pn described in (1.39) we have proved:

Theorem 1.3.17. Let α > −1, β > −1. Then for each f ∈ C[0, 1] and n ≥ 1,

lim
n→∞

Pn f =

1∫
0

t2α+1(1− t)2β+1 f (t)dt

1∫
0

t2α+1(1− t)2β+1dt
e0.

For α = β = 0, this result was obtained, with different methods, in [11].

1.3.7 Variation diminution

Theorem 1.3.18. The operatorsBa,b
r as given in Definition 1.3.1 have the (strong) variation-

diminishing property, that is,

S[0,1][Ba,b
r f ] ≤ S[0,1][ f ] for all f ∈ C[0, 1].

Proof. (i) in case a = b = −1:

S[0,1][B−1,−1
r f ] = S[0,1]

[∫ 1

0
trx−1(1− t)r−rx−1 f (t) dt

]
.

Substituting
(

t
1− t

)r

= u the above integral becomes

1
r

∞∫
0

ux · u−1

(u
1
r + 1)r

· f

(
u

1
r

u
1
r + 1

)
du.

Obviously, the number of sign changes of f (t), t ∈ [0, 1] equals the number of sign

changes of the function g(u) = f
(

u
1
r

u
1
r +1

)
, u ∈ [0, ∞). Applying Theorem 1.1.31 for

the functional A(g) =
∫ ∞

0 g(u) du with w(u) = u−1

(u
1
r +1)r

we get that the operators

B−1,−1
r have the (strong) variation–diminishing property on C[0, 1]. That means

S[0,1][B−1,−1
r f ] ≤ S[0,1][ f ].

(ii) in case a = −1, b > −1:

S[0,1][Ba,−1
r f ] = S[0,1]

 1∫
0

trx−1(1− t)r(1−x)−1ta+1 f (t)dt


≤ S[0,1]

[
ta+1 f (t)

]
= S[0,1] [ f ] .
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(iii) in case a > −1, b = −1:

S[0,1][B−1,b
r f ] = S[0,1]

 1∫
0

trx−1(1− t)r(1−x)−1(1− t)b+1 f (t)dt


≤ S[0,1]

[
(1− t)b+1 f (t)

]
= S[0,1] [ f ] .

(iv) in case a, b > −1:
In [29] it was shown that

S[0,1][Ba,b
r f ] = S[0,1]

 1∫
0

trx(1− t)r(1−x)ta(1− t)b f (t)dt


≤ S[0,1]

[
ta(1− t)b f (t)

]
= S[0,1] [ f ] .
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Chapter 2

The Bernstein-Euler-Jacobi (BEJ) class of
composition operators

Many operators arising in the theory of positive linear operators are compositions of
other mappings of this type. Many times the classical Bernstein operator Bn is one of
the building blocks. Other frequently used factor operators are Beta-type operators
Ba,b

r of various kinds. Our intention is to use these building blocks to provide an
overview of the various operators that fit into this pattern. This comes to emphasize
the importance of understanding the singular pieces that form the composition. As
one will notice we will refer many times to the properties of the building blocks
presented in the previous chapter.

2.1 BEJ of first kind

2.1.1 Definition

We introduce and study a class of positive linear operators that are given by

Definition 2.1.1. For r > 0, a, b ≥ −1, n, m > 1 we define R(r,a,b)
m,n : C[0, 1] → C[0, 1]

by
R(r,a,b)

m,n = Bm ◦ Ba,b
r ◦ Bn. (2.1)

Here Ba,b
r is the Euler-Jacobi Beta operator defined in the previous chapter and

Bn, Bm are the n-th and m-th Bernstein operators.

The purpose of introducing such an operator is to explain known operators using
decomposition.

Lemma 2.1.2. (Images of the monomials up to degree 2)
R(r,a,b)

m,n (e0, x) = e0

R(r,a,b)
m,n (e1, x) =

re1 + a + 1
r + a + b + 2

R(r,a,b)
m,n (e2, x) =

(n− 1)
(

r2
(

m− 1
m

e2 +
e1

m

)
+ 2are1 + 3re1 + a2 + 3a + 2

)
n(r + a + b + 2)(r + a + b + 3)

+

+
re1 + a + 1

n(r + a + b + 2)

Remark 2.1.3. The BEJ operator of first kind reproduces constants. For special choices of a
and b, namely when a = b = −1 it also reproduces linear functions.
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2.1.2 Moments up to order 2

Definition 2.1.4. Let r > 0, a, b ≥ −1, n, m > 1, s ∈ N0 and x ∈ [0, 1], then the
moment of order s is given by

Ms(x) := R(r,a,b)
m,n ((e1 − xe0)s; x).

Lemma 2.1.5. (Explicit representation of the moments until order 2)

M0(x) := R(r,a,b)
m,n ((e1 − xe0)0; x) = e0,

M1(x) := R(r,a,b)
m,n ((e1 − xe0)1; x) =

a + 1− e1(a + b + 2)
r + a + b + 2

M2(x) =
e2[mn(a2 + b2 + 5a + 5b + 2ab + 6− r) + r2(1−m− n)]

mn(r + a + b + 2)(r + a + b + 3)
−

− e1[mn(2a2 + 2ab + 8a + 2b + 6− r) + r2(1−m− n) + mr(a− b)]
mn(r + a + b + 2)(r + a + b + 3)

+

+
e0[mn(a + 1)(a + 2) + m(r(a + 1) + ab + a + b + 1)]

mn(r + a + b + 2)(r + a + b + 3)

Proof. The proof of the formula for the first moments is straightforward and we shall
omit it.
In order to express the second moments of R(r,a,b)

m,n we shall employ (1.12). Thus we
obtain

M2(x) = (Bm ◦ Ba,b
r ◦ Bn)((e1 − xe0)2; x)

= Bm(Ba,b
r (Bn((e1 − ze0)2; z); y); x)

−Bm(Ba,b
r ((e1 − ye0)2; y); x)−

−Bm((e1 − xe0)2; x)+
+2Bm(Ba,b

r ((e1 − ye0)(Bne1 − ye0); y); x)+
+2Bm((e1 − xe0)(Ba,b

r Bne1 − xe0); x)

(2.2)

Bm(Ba,b
r (Bn((e1 − ze0)2; z); y); x) = Bm

(
Ba,b

r

(
e1 − e2

n
; y
)

; x
)

= Bn

(
re1 + a + 1

n(r + a + b + 2)
− (re1 + a + 1)(re1 + a + 2)

n(r + a + b + 2)(r + a + b + 3)
; x
)

=
rx + a + 1

n(r + a + b + 2)
−

r2 (m−1
m x2 + x

m

)
+ 2arx + 3rx + a2 + 3a + 2

n(r + a + b + 2)(r + a + b + 3)

Bm(Ba,b
r ((e1 − ye0)2; y); x) = Bm

(
a2 + b2 + 2ab + 5a + 5b + 6− r
(r + a + b + 2)(r + a + b + 3)

e2−

− 2ab + 2a2 + 8a + 2b + 6− r
(r + a + b + 2)(r + a + b + 3)

e1 +
a2 + 3a + 2

(r + a + b + 2)(r + a + b + 3)
e0; x

)
=

a2 + b2 + 2ab + 5a + 5b + 6− r
(r + a + b + 2)(r + a + b + 3)

(
m− 1

m
x2 +

x
m

)
−

− 2ab + 2a2 + 8a + 2b + 6− r
(r + a + b + 2)(r + a + b + 3)

x +
a2 + 3a + 2

(r + a + b + 2)(r + a + b + 3)

39



Chapter 2 The Bernstein-Euler-Jacobi (BEJ) class of composition operators

Bm((e1 − xe0)2; x) =
x(1− x)

m

2Bm(Ba,b
r ((e1 − ye0)(Bne1 − ye0); y); x) = 2Bm(Ba,b

r ((e1 − ye0)2; y); x)

2Bm((e1 − xe0)(Ba,b
r Bne1 − xe0); x) = 2Bm((e1 − xe0)(

re1 + a + 1
r + a + b + 2

− xe0); x)

=
2r

r + a + b + 2

(
m− 1

m
x2 +

x
m

)
− 2rx2

r + a + b + 2
.

If we substitute all these equations in (2.2) we obtain the expression for the second
moments given above.

2.2 BEJ of second kind

2.2.1 Definition

The second class of positive linear operators that we consider are given by

Definition 2.2.1. For r, s > 0, a, b, c, d ≥ −1, n, m > 1 we define Rs,c,d;r,a,b
n : C[0, 1] →

C[0, 1] by
Rs,c,d;r,a,b

n = Bc,d
s ◦ Bn ◦ Ba,b

r . (2.3)

Here Ba,b
r and Bc,d

s are Euler-Jacobi Beta operators and Bn the n-th Bernstein operator.

Lemma 2.2.2. (Images of the monomials up to degree 2)
Rs,c,d;r,a,b

n (e0, x) = e0

Rs,c,d;r,a,b
n (e1, x) =

r(se1 + c + 1)
(r + a + b + 2)(s + c + d + 2)

+
a + 1

(r + a + b + 2)

Rs,c,d;r,a,b
n (e2, x) =

r2

n(r + a + b + 2)(r + a + b + 3)

[
(n− 1)(se1 + c + 1)(se1 + c + 2)
(s + c + d + 2)(s + c + d + 3)

+

+
se1 + c + 1

s + c + d + 2

]
+

(se1 + c + 1)(2ar + 3r)
(s + c + d + 2)(r + a + b + 2)(r + a + b + 3)

+
a2 + 3a + 2

(r + a + b + 2)(r + a + b + 3)

Remark 2.2.3. The BEJ operator of second kind reproduces constants. For special choices of
a, b and c, d, namely when a = b = c = d = −1 it also reproduces linear functions.

2.2.2 Moments up to order 2

Definition 2.2.4. Let r > 0, a, b, c, d ≥ −1, n > 1, t ∈ N0 and x ∈ [0, 1], then the
moment of order t is given by

Mt(x) := Rs,c,d;r,a,b
n ((e1 − xe0)t; x).

Lemma 2.2.5. (Explicit representation of the moments until order 2)

M0(x) := Rs,c,d;r,a,b
n ((e1 − xe0)0; x) = e0,
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M1(x) := Rs,c,d;r,a,b
n ((e1 − xe0)1; x) =

−e1[r(c + d + 2) + (a + b + 2)(s + c + d + 2)]
(r + a + b + 2)(s + c + d + 2)

+

+
r(c + 1) + (s + c + d + 2)(a + 1)
(r + a + b + 2)(s + c + d + 2)

M2(x) =
(n− 1)(a2 + b2 + 2ab + 5a + 5b + 6− r)(se1 + c + 1)(se1 + c + 2)

n(r + a + b + 2)(r + a + b + 3)(s + c + d + 2)(s + c + d + 3)
+

+
(a2 + b2 + 2ab + 5a + 5b + 6− r− n(2ab + 2a2 + 8a + 2b + 6− r))(se1 + c + 1)

n(r + a + b + 2)(r + a + b + 3)(s + c + d + 2)
+

+
a2 + 3a + 2

(r + a + b + 2)(r + a + b + 3)
+

(se1 + c + 1)(se1 + c + 2)
n(s + c + d + 2)(s + c + d + 3)

−

− se1 + c + 1
n(s + c + d + 2)

− c2 + d2 + 2cd + 5c + 5d + 6− s
(s + c + d + 2)(s + c + d + 3)

e2+

+
2cd + 2c2 + 8c + 2d + 6− s

(s + c + d + 2)(s + c + d + 3)
e1 −

c2 + 3c + 2
(s + c + d + 2)(s + c + d + 3)

+

+
2r(se1 + c + 1)

n(r + a + b + 2)(s + c + d + 2)
− 2r(se1 + c + 1)(se1 + c + 2)

n(r + a + b + 2)(s + c + d + 2)(s + c + d + 3)
+

+
2r(se1 + c + 1)(se1 + c + 2)

(r + a + b + 2)(s + c + d + 2)(s + c + d + 3)
+

2(a + 1− e1(2r + a + b + 2))(se1 + c + 1)
(r + a + b + 2)(s + c + d + 2)

−

− 2(a + 1)e1

r + a + b + 2
+ 2e2.

Proof. The proof of the formula for the first moments is straightforward and we shall
omit it.
In order to express the second moments of Rs,c,d;r,a,b

n we shall employ once again
(1.12). Thus we obtain

M2(x) = (Bc,d
s ◦ Bn ◦ Ba,b

r )((e1 − xe0)2; x)
= Bc,d

s (Bn(Ba,b
r ((e1 − ze0)2; z); y); x)

−Bc,d
s (Bn((e1 − ye0)2; y); x)−

−Bc,d
s ((e1 − xe0)2; x)+

+2Bc,d
s (Bn((e1 − ye0)(Ba,b

r e1 − ye0); y); x)+
+2Bc,d

s ((e1 − xe0)(BnBa,b
r e1 − xe0); x)

(2.4)

Bc,d
s (Bn(Ba,b

r ((e1 − ze0)2; z); y); x) =
a2 + 3a + 2

(r + a + b + 2)(r + a + b + 3)

+
(a2 + b2 + 2ab + 5a + 5b + 6− r− n(2ab + 2a2 + 8a + 2b + 6− r))(sx + c + 1)

n(r + a + b + 2)(r + a + b + 3)(s + c + d + 2)

+
(n− 1)(a2 + b2 + 2ab + 5a + 5b + 6− r)(sx + c + 1)(sx + c + 2)

n(r + a + b + 2)(r + a + b + 3)(s + c + d + 2)(s + c + d + 3)

Bc,d
s (Bn((e1 − ye0)2; y); x) = Bc,d

s

(
e1(1− e1)

n
; x
)

=
sx + c + 1

n(s + c + d + 2)
− (sx + c + 1)(sx + c + 2)

n(s + c + d + 2)(s + c + d + 3)
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Bc,d
s ((e1 − xe0)2; x) =

c2 + d2 + 2cd + 5c + 5d + 6− s
(s + c + d + 2)(s + c + d + 3)

x2 +

+
2cd + 2c2 + 8c + 2d + 6− s

(s + c + d + 2)(s + c + d + 3)
x +

c2 + 3c + 2
(s + c + d + 2)(s + c + d + 3)

(e1 − y)(Ba,b
r e1 − y) = (e1 − y)

(
re1 + a + 1

r + a + b + 2
− y
)

Bn((e1 − y)(Ba,b
r e1 − y); y) =

r
r + a + b + 2

Bn(e2; y)+

+
[

a + 1
r + a + b + 2

− y− ry
r + a + b + 2

]
Bn(e1; y) +

(
y2 − y

a + 1
r + a + b + 2

)
Bn(e0; y) =

=
r

n(r + a + b + 2)
(y− y2)

2Bc,d
s (Bn((e1 − ye0)(Ba,b

r e1 − ye0); y); x) = 2Bc,d
s

(
r

n(r + a + b + 2)
(e1 − e2); x

)
=

=
2r(sx + c + 1)

n(r + a + b + 2)(s + c + d + 2)
− 2r(sx + c + 1)(sx + c + 2)

n(r + a + b + 2)(s + c + d + 2)(s + c + d + 3)

(e1 − x)(BnBa,b
r e1 − x) = (e1 − x)

(
re1 + a + 1

r + a + b + 2
− x
)

2Bc,d
s ((e1 − x)(BnBa,b

r e1 − x); x) =
2r

r + a + b + 2
Bc,d

s (e2; x)+

+2
(

a + 1
r + a + b + 2

− x− xr
r + a + b + 2

)
Bc,d

s (e1; x) + 2
(

x2 − x(a + 1)
r + a + b + 2

)
Bc,d

s (e0; x) =

=
2r(sx + c + 1)(sx + c + 2)

(r + a + b + 2)(s + c + d + 2)(s + c + d + 3)
+ 2

[a + 1− x(2r + a + b + 2)](sx + c + 1)
(r + a + b + 2)(s + c + d + 2)

−

− 2x(a + 1)
r + a + b + 2

+ 2x2

If we substitute all these equations in (2.4) we obtain the expression for the second
moments given above.

2.3 Particular cases

The general setting can be adapted in such a way that for different values of the
indices we find many known operators. We use the convention B∞ = Ba,b

∞ = Id.
Thus, the first two tables contain all the particular cases of both classes that we were
able to locate in the literature. In the next three we give the general form of the spe-
cific operators, if it exists, and cite the articles where they were first mentioned.
In our opinion it is impossible to get a complete overview because of the great
amount of articles being published every day, but we are confident that most of
the cases are included.
We also include the description of the second moments of these cases and differen-
tiate between operators that reproduce linear functions and those that do not.
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BEJ first kind BEJ second kind
m r a b n Other notation s c d n r a b
n n -1 -1 ∞ Un ∞ - - n n -1 -1
n n 0 0 ∞ Mn ∞ - - n n 0 0
n n α>-1 α>-1 ∞ D<α> ∞ - - n n α>-1 α>-1
n n a>-1 b>-1 ∞ Mab

n ∞ - - n n a>-1 b>-1
n n · $ -1 -1 ∞ U$

n ∞ - - n n · $ -1 -1
n n·c >-1 >-1 ∞ Pn ∞ - - n n · c >-1 >-1
∞ n -1 -1 n L∇n n -1 -1 n ∞ - -
∞ n 0 0 n V0,0

n n 0 0 n ∞ - -
∞ n α >-1 β>-1 n Vα,β

n n α>-1 β>-1 n ∞ - -
∞ 1/α -1 -1 n Sα

n, Qn 1/α -1 -1 n ∞ - -
∞ n · $ c>-1 d>-1 n Q$,c,d

n n · $ c>-1 d>-1 n ∞ - -
- - - - - B

(α,λ)
∞ 1/α -1 -1 ∞ 1/λ -1 -1

- - - - - Fα
n 1/α -1 -1 n n -1 -1

- - - - - B
(α,λ)
n 1/α -1 -1 n 1/λ -1 -1

n ∞ - - n+1 Dn - - - - - - -
m ∞ - - n R∞

m,n - - - - - - -
m n · $ -1 -1 n R$

m,n - - - - - - -
∞ n -1 -1 ∞ n -1 -1 ∞ ∞ - -

Bn,B−1,−1
n ∞ - - ∞ n -1 -1

∞ 1/λ -1 -1 ∞ 1/λ -1 -1 ∞ ∞ - -
B̃λ, Tλ ∞ - - ∞ 1/λ -1 -1

Table 2.3.1: Particular cases overview - part 1

43



C
hapter

2
The

Bernstein-Euler-Jacobi(BEJ)class
ofcom

position
operators

BEJ first kind BEJ second kind
m r a b n Other notation s c d n r a b
∞ n 0 0 ∞ n 0 0 ∞ ∞ - -

Bn, B0,0
n ∞ - - ∞ n 0 0

∞ n -1 β> -1 ∞ n -1 β> -1 ∞ ∞ - -
B−1,β

n ∞ - - ∞ n -1 β> -1
∞ n α> -1 -1 ∞ n α> -1 -1 ∞ ∞ - -

Bα,−1
n ∞ - - ∞ n α> -1 -1

∞ n α> -1 β>-1 ∞ n α> -1 β>-1 ∞ ∞ - -
Bα,β

n ∞ - - ∞ n α> -1 β> -1
n ∞ - - ∞ ∞ - - n ∞ - -
∞ ∞ - - n Bn

Table 2.3.2: Particular cases overview - part 2
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Particular

cases

Name General form References

Bernstein operator Bn( f ; x) :=
n
∑

k=0
pn,k(x) f

(
k
n

)
[12]

Mühlbach Beta type
operator

Tλ[ f ; x] =
1∫

0
f (t)Kλ(t, x)dt, Tλ[ f ; 0] = f (0), Tλ[ f ; 1] = f (1)

Kλ(t, x) = ψ(t; x
λ , 1−x

λ ), ψ(t; p, q) = tp−1(1−t)q−1

B(p,q)
sometimes the following notation is used: B̃λ( f ; x) (see [78])

[71]

Lupaş Beta operator of
the first kind Bn( f ; x) =

1
B(nx + 1, n + 1− nx)

1∫
0

tnx(1− t)n(1−x) f (t)dt [62, p.37]

Lupaş Beta operator of
the second kind

Bn( f ; x) =
1

B(nx, n− nx)

1∫
0

tnx−1(1− t)n−1−nx f (t)dt,

(x ∈ (0, 1), Bn( f ; 0) = f (0), Bn( f ; 1) = f (1))
[62, p.63]

genuine
Bernstein-Durrmeyer
operator

Un( f ; x) =
n−1
∑

k=1
pn,k(x)

1∫
0

pn−2,k−1(t) f (t)dt + f (0)pn,0(x) + f (1)pn,n(x) [16] [31]

classical Durrmeyer Mn( f ; x) = (n + 1)
n
∑

k=0
pn,k(x)

1∫
0

pn,k(t) f (t)dt [25]

Durrmeyer with Jacobi
weights

Mab
n ( f ; x) :=

n
∑

k=0
pn,k(x)

1∫
0

f (t)pn,k(t)ta(1− t)bdt

1∫
0

pn,k(t)ta(1− t)bdt
[73]

Păltănea operator U$
n( f ; x) =

n−1
∑

k=1

(
1∫

0

tk$−1(1− t)(n−k)$−1

B(k$, (n− k)$)
f (t)dt

)
pn,k(x) + f (0)(1− x)n + f (1)xn [75]

a Stancu type operator L∇n ( f ; x) = Cn( f ; x) =
1

nn

n
∑

k=0
(n

k)(nx)k(n− nx)k f
(

k
n

)
[64]

Table 2.3.3: General form of known operators - part 145



C
hapter

2
The

Bernstein-Euler-Jacobi(BEJ)class
ofcom

position
operators

Name General form References
Bernstein-Durrmeyer
with symmetric weight D<α>( f ; x) =

n
∑

k=0
pn,k(x)

(2α + 2)n

(α + 1)k(α + 1)n−k

1∫
0

tk+α(1− t)n+k+α

B(α + 1, α + 1)
f (t)dt [63]

Mache-Zhou operator
Pn( f ; x) =

n
∑

k=0
pn,k(x)

1∫
0

f (t)tck+a(1− t)c(n−k)+bdt

B(ck + a + 1, c(n− k) + b + 1)
, a, b > −1

[65]

Stancu-type operator
with parameters a, b

Q$,a,b
n ( f ; x) =

n
∑

k=0
f
(

k
n

)
(n

k)
B(n$x + a + k + 1, n$(1− x) + n− k + b + 1)

B(n$x + a + 1, n$(1− x) + b + 1)

Gonska
handwrit-
ten notes,
18 March
2009.

Lupaş operator with
Jacobi weights Vα,β

n ( f ; x) =
n
∑

k=0
(n

k) f
(

k
n

) (nx + α + 1)k(n− nx + β + 1)n−k

(n + α + β + 2)n

Raşa hand-
written
notes, 19
August
2008.

Lupaş operator (Bn ◦ Bn)( f ; x) = V0,0
n ( f ; x) =

n
∑

k=0
(n

k) f
(

k
n

) (nx + 1)k(n− nx + 1)n−k

(n + 2)n
[63]

Stancu operator
Sα

n( f ; x) =
n
∑

k=0
f
(

k
n

)
(n

k)

k−1
∏
i=0

(x + iα)
n−k−1

∏
j=0

(1− x + jα)

(1 + α)(1 + 2α) · ... · (1 + (n− 1)α)
[94]

Stancu operator
(Mühlbach notation)

Qn[ f ](x) = Qn[ f ; x, a] =
n
∑

k=0
f (xnk)qnk(x, a),

f (xnk) = f ( k
n ), qnk(x, a) = (n

k)
ϕk(x,a)ϕn−k(1−x,a)

ϕn(1,a) , ϕk(x, a) =
k−1
∏
l=0

(x + la), ϕ0(x, a) := 1
[71]

Table 2.3.4: General form of known operators - part 2
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Name General form References

Finta operator
Fα

n ( f ; x) = f (0)w(α)
n,0 (x) + f (1)w(α)

n,n(x) +
n−1
∑

k=1
w(α)

n,k (x)
1∫

0
(n− 1)pn−2,k−1(t) f (t)dt,

w(α)
n,k (x) := (n

k)
x[k,−α](1−x)[n−k,−α]

1[n,−α]

[27]

general Beta-type
operators B

(α,λ)
n ( f ; x) = (B̃α ◦ Bn ◦ B̃λ)( f ; x) [78]

Piţul Beta operator B
(α,λ)
∞ ( f ; x) = (B̃α ◦ B̃λ)( f ; x) [78]

Dn Dn( f ; x) = (Bn ◦ Bn+1)( f ; x) [43]

Table 2.3.5: General form of known operators - part 3

Notation Second moments

* Un Un((e1 − xe0)2; x) :=
2X

n + 1

Mn Mn((e1 − xe0)2; x) :=
2X(n− 3) + 2
(n + 2)(n + 3)

D<α> D<α>((e1 − xe0)2; x) :=
X(2n− 4a2 − 10a− 6) + (a + 1)(a + 2)

(n + 2a + 2)(n + 2a + 3)

Mab
n

Mab
n ((e1 − xe0)2; x) :=

a2 + b2 + 2ab + 5a + 5b + 6− 2n
(n + a + b + 2)(n + a + b + 3)

· x2 − 2a2 + 2ab + 8a + 2b + 6− 2n
(n + a + b + 2)(n + a + b + 3)

· x +
(a + 1)(a + 2)

(n + a + b + 2)(n + a + b + 3)

* U$
n U$

n((e1 − xe0)2; x) :=
X(1 + $)

n$ + 1

Pn

Pn((e1 − xe0)2; x) :=
a2 + b2 + 2ab + 5a + 5b + 6− nc− nc2

(nc + a + b + 2)(nc + a + b + 3)
· x2 − (2a2 + 2ab + 8a + 2b + 6− nc− nc2) · x + (a + 1)(a + 2)

(nc + a + b + 2)(nc + a + b + 3)
* these operators reproduce linear functions

Table 2.3.6: Second moments - part 147
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Notation Second moments

* L∇n L∇n ((e1 − xe0)2; x) :=
2X

2 + 1

V0,0
n V0,0

n ((e1 − xe0)2; x) :=
X(2n2 − 6n) + 3n + 1

n(n + 2)(n + 3)

Vα,β
n

Vα,β
n ((e1 − xe0)2; x) :=

α2 + β2 + 2αβ + 5α + 5β + 6− 2n
(n + α + β + 2)(n + α + β + 3)

· x2 − 2α2 + 2αβ + 9α + β + 6− 2n
(n + α + β + 2)(n + α + β + 3)

· x +
nα2 + 4nα + αβ + 3n + α + β + 1
n(n + α + β + 2)(n + α + β + 3)

* Sα
n Sα

n((e1 − xe0)2; x) :=
2X

n + 1

Q$,c,d
n

Q$,c,d
n ((e1 − xe0)2; x) :=

c2 + d2 + 2cd + 5c + 5d + 6− n$− n$2

(n$ + c + d + 2)(n$ + c + d + 3)
· x2 − 2c2 + 2cd + 8c + 2d + 6− n$− n$2

(n$ + c + d + 2)(n$ + c + d + 3)
· x +

nc2 + 3nc + nc$ + n$ + 2n + c + d + cd + 1
n(n$ + c + d + 2)(n$ + c + d + 3)

* B
(α,λ)
∞ B

α,λ
∞ ((e1 − xe0)2; x) :=

X(α + λ + αλ)
(1 + α)(1 + λ)

* Fα
n Fα

n ((e1 − xe0)2; x) :=
X(nα + α + 2)
(α + 1)(n + 1)

* B
(α,λ)
n B

(α,λ)
n ((e1 − xe0)2; x) :=

X(nα + nλ + nαλ + 1)
n(1 + α)(1 + λ)

* Dn Dn((e1 − xe0)2; x) :=
2X

n + 1
* R∞

m,n R∞
m,n((e1 − xe0)2; x) :=

X(n + m− 1)
nm

* these operators reproduce linear functions

Table 2.3.7: Second moments - part 2
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Notation Second moments

* R$
m,n R$

m,n((e1 − xe0)2; x) :=
X(n$ + m$− $ + m)

m(n$ + 1)
* Bn,
B−1,−1

n
Bn((e1 − xe0)2; x) :=

X
n + 1

* B̃λ, Tλ B̃λ((e1 − xe0)2; x) :=
λX

1 + λ

Bn, B0,0
n Bn((e1 − xe0)2; x) :=

X(n− 6) + 2
(n + 2)(n + 3)

B−1,β
n B−1,β

n ((e1 − xe0)2; x) :=
nX + (β + 1)(β + 2)x2

(n + β + 1)(n + β + 2)

Bα,−1
n Bα,−1

n ((e1 − xe0)2; x) :=
nX + (α + 1)(α + 2)(x− 1)2

(n + α + 1)(n + α + 2)

Bα,β
n

Bα,β
n ((e1 − xe0)2; x) :=

α2 + β2 + 2αβ + 5α + 5β + 6− n
(n + α + β + 2)(n + α + β + 3)

· x2 − 2α2 + 2αβ + 8α + 2β + 6− n
(n + α + β + 2)(n + α + β + 3)

· x +
(α + 1)(α + 2)

(n + α + β + 2)(n + α + β + 3)

* Bn Bn((e1 − xe0)2; x) :=
X
n

* these operators reproduce linear functions

Table 2.3.8: Second moments - part 3
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2.4 Variation diminution

Theorem 2.4.1. The BEJ operators of first, respectively second kind as given in Definitions
2.1.1 and 2.2.1 have the (strong) variation-diminishing property, that is,

S[0,1][R
(r,a,b)
m,n f ] ≤ S[0,1][ f ] for all f ∈ C[0, 1] (2.5)

S[0,1][R
s,c,d;r,a,b
n f ] ≤ S[0,1][ f ] for all f ∈ C[0, 1]. (2.6)

Proof. It is known that the Bernstein operators satisfy the SVDP. Thus we have

S[0,1][R
(r,a,b)
m,n f ] ≤ S[0,1][(Ba,b

r ◦ Bn) f ].

In Section 1.3.7 we have shown that Ba,b
r also satisfy the SVDP. Thus we have

S[0,1][R
(r,a,b)
m,n f ] ≤ S[0,1][(Ba,b

r ◦ Bn) f ] ≤ S[0,1][Bn f ] ≤ S[0,1][ f ]

for all f ∈ C[0, 1]. Similarly it can be shown that (2.6) holds, but we’ll skip that
proof.

2.5 Direct and converse results

Direct and strong converse inequality of type A, in the terminology of [22], exist for
the Bernstein operators in [59], for "genuine" Bernstein-Durrmeyer operators in [72],
for a special selection of Stancu operators in [26] and for the Finta operator in [28].

Using the method presented by Finta in [26] and [28] we can give such results for
two more cases, that is, for the composition of two different Bernstein operators and
for a particular case of the general composition that reproduces linear functions.

The results presented in this section have been published in [97].

2.5.1 Case I - a composition of two Bernstein operators

We define

R∞
m,n f = (Bm ◦ Bn)( f , x) =

m

∑
k=0

pm,k(x)Bn f
(

k
m

)
,

a positive linear operator that reproduces linear functions, where pm,k are the Bern-
stein basis polynomials with pm,k(x) = (m

k )xk(1− x)m−k, x ∈ [0, 1].
For this first case we need the following result:

Lemma 2.5.1. Let f ∈ C[0, 1]. Then

||R∞
m,n f − Bn f || ≤ 1

m
||ϕ2B′′n f ||. (2.7)

Proof. R∞
m,n f = Bm(Bn f ) =

m
∑

k=0
pm,k(x)Bn f ( k

m ) where pm,k = (m
k )xk(1− x)m−k. Hence

(R∞
m,n f − Bn f )(x) =

m

∑
k=0

pm,k(x)
(

Bn f
(

k
m

)
− Bn f (x)

)
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and by Taylor expansion with integral remainder, namely

Bn f
(

k
m

)
= Bn f (x) +

(
k
m
− x
)

B′n f (x) +

k
m∫

x

(
k
m
− u

)
B′′n f (u)du,

we can write

R∞
m,n f − Bn f =

m

∑
k=0

pm,k(x)

( k
m
− x
)

B′n f (x) +

k
m∫

x

(
k
m
− u

)
B′′n f (u)du

 .

By simple computation we obtain:

m

∑
k=0

pm,k(x)
(

k
m
− x
)

= 0, (2.8)

and
m

∑
k=0

pm,k(x)
(

k
m
− x
)2

=
ϕ2(x)

m
. (2.9)

Then in view of (2.8), (2.9) and Lemma 1.1.30, for x 6= 0, 1, we obtain

||R∞
m,n f − Bn f || ≤

m
∑

k=0
pm,k(x)

∣∣∣∣∣∣
k
m∫
x

(
k
m − u

)
B′′n f (u)du

∣∣∣∣∣∣
≤ ||ϕ2B′′n f ||

ϕ(x)2

m
∑

k=0
pm,k(x)

(
k
m − x

)2

=
1
m
||ϕ2B′′n f ||,

(2.10)

which completes the proof.

Theorem 2.5.2. Let f ∈ C[0, 1]. Then there exists a constant C > 0 such that

||R∞
m,n f − f || ≤ Cω2

ϕ( f , n−1/2)C[0,1]. (2.11)

Proof. We have

||R∞
m,n f − f || ≤ ||R∞

m,n f − Bn f ||+ ||Bn f − f ||. (2.12)

Let g ∈W2
∞(ϕ). In view of Lemma 2.5.1 and [21, Lemma 7.4, p.324] we obtain

||R∞
m,n f − Bn f || ≤ 1

m
||ϕ2B′′n f ||

≤ 1
m
{||ϕ2B′′n ( f − g)||+ ||ϕ2B′′n g||}

≤ 1
m
{2n|| f − g||+ 12||ϕ2g′′||}

≤ 12
n
m
{|| f − g||+ 1

n
||ϕ2g′′||}.
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So
||R∞

m,n f − Bn f || ≤ 12
n
m

inf{|| f − g||+ 1
n
||ϕ2g′′|| : g ∈W2

∞(ϕ)}

= 12
n
m

K2,ϕ( f , n−1)C[0,1].

Because K2,ϕ( f , n−1)C[0,1] is equivalent with ω2
ϕ( f , n−1/2)C[0,1] in view of Theorem

1.1.22 we obtain the existence of a constant C1 6= C1( f , n, m) > 0 such that

||R∞
m,n f − Bn f || ≤ 12

n
m

C1ω2
ϕ( f , n−1/2)C[0,1]. (2.13)

On the other hand it has been shown in [23] that for some constant C2 6= C2( f , n, m) >
0

||Bn f − f || ≤ C2ω2
ϕ( f , n−1/2)C[0,1], (2.14)

for every f ∈ C[0, 1]. Thus, by (2.12), (2.13) and (2.14) we obtain for a constant

C = 12
n
m

C1 + C2 the estimate (2.11).

Corollary 2.5.3. Under the assumption of Theorem 2.5.2 we have

||R∞
m,n f − f || ≤ C||Bn f − f || (2.15)

where C > 0 is constant.

Proof. In view of [59] we have for some absolute constant M > 0

Mω2
ϕ( f , n−1/2)C[0,1] ≤ ||Bn f − f ||. (2.16)

Thus by Theorem 2.5.2 we get (2.15).

Theorem 2.5.4. Let α1 = C0
n
m

< 1, where C0 denotes the absolute constant in Lemma

1.2.10 and the pair (n, m) is chosen accordingly. Then there exists a constant C > 0 such
that for all f ∈ C[0, 1] we have

C−1||Bn f − f || ≤ ||R∞
m,n f − f || ≤ C||Bn f − f || (2.17)

and
C−1ω2

ϕ( f , n−1/2)C[0,1] ≤ ||R∞
m,n f − f || ≤ Cω2

ϕ( f , n−1/2)C[0,1]. (2.18)

Proof. We have

||Bn f − f || ≤ ||R∞
m,n f − f ||+ ||R∞

m,n f − Bn f ||
≤ ||R∞

m,n f − f ||+ C0
n
m
||Bn f − f ||

in view of Lemma 1.2.10 and (2.7). But α1 = C0
n
m

< 1, by assumption, and therefore

||Bn f − f || ≤ ||R∞
m,n f − f ||+ α1||Bn f − f ||.

So
(1− α1)||Bn f − f || ≤ ||R∞

m,n f − f ||.
Hence by Corollary 2.5.3 we obtain (2.17) for some C > 0. The inequalities in (2.18)
are direct consequences of (2.16) and (2.17). Thus the theorem is proved.
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2.5.2 Case II - BEJ of first kind general composition

We define

R$
m,n f (x) = (Bm ◦ B−1,−1

n$ ◦ Bn)( f , x)

=
m
∑

k=0
pm,k(x)

1∫
0

t
n$k
m −1(1− t)n$− n$k

m −1Bn f (t)dt

B( n$k
m , n$− n$k

m )
,

a positive linear operator that reproduces linear functions with $ > 0.

Lemma 2.5.5. Let f ∈ C[0, 1] and $ > 0. Then

||R$
m,n f − Bn f || ≤ n$ + m

m(n$ + 1)
||ϕ2B′′n f ||. (2.19)

Proof.

R$
m,n f (x) =

m

∑
k=0

pm,k(x)

1∫
0

t
n$k
m −1(1− t)n$− n$k

m −1Bn f (t)dt

B( n$k
m , n$− n$k

m )
, x ∈ (0, 1).

Hence

R$
m,n f (x)− Bn f (x) =

m

∑
k=0

pm,k(x)

1∫
0

t
n$k
m −1(1− t)n$− n$k

m −1[Bn f (t)− Bn f (x)]dt

B( n$k
m , n$− n$k

m )

and by Taylor expansion with integral remainder, that is,

Bn f (t) = Bn f (x) + (t− x)B′ f (x) +
t∫

x

(t− u)B′′n f (u)du,

we can write
R$

m,n f (x)− Bn f (x) =

=
m

∑
k=0

pm,k(x)

1∫
0

t
n$k
m −1(1− t)n$− n$k

m −1

[
(t− x)B′ f (x) +

t∫
x
(t− u)B′′n f (u)du

]
dt

B( n$k
m , n$− n$k

m )
.

By simple computations we obtain

m

∑
k=0

pm,k(x)
1

B( n$k
m , n$− n$k

m )

1∫
0

t
n$k
m −1(1− t)n$− n$k

m −1(t− x)dt = 0 (2.20)

and

m

∑
k=0

pm,k(x)
1

B( n$k
m , n$− n$k

m )

1∫
0

t
n$k
m −1(1− t)n$− n$k

m −1(t− x)2dt =
n$ + m

m(n$ + 1)
ϕ2(x),

(2.21)
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Chapter 2 The Bernstein-Euler-Jacobi (BEJ) class of composition operators

respectively. Then in view of (2.20), Lemma 1.1.30 and (2.21), we get

|R$
m,n f (x)− Bn f (x)| ≤

m
∑

k=0
pm,k(x)

1∫
0

t
n$k
m −1(1− t)n$− n$k

m −1

∣∣∣∣∣ t∫
x
(t− u)B′′n f (u)du

∣∣∣∣∣ dt

B( n$k
m , n$− n$k

m )

≤ ||ϕ2B′′n f ||
ϕ2(x)

m
∑

k=0
pm,k(x)

1∫
0

t
n$k
m −1(1− t)n$− n$k

m −1(t− x)2dt

B( n$k
m , n$− n$k

m )

=
n$ + m

m(n$ + 1)
||ϕ2B′′n f ||

which completes the proof.

Theorem 2.5.6. Let f ∈ C[0, 1]. Then there exists a constant C > 0 such that

||R$
m,n f − f || ≤ Cω2

ϕ( f , n−1/2)C[0,1]. (2.22)

Proof. We have

||R$
m,n f − f || ≤ ||R$

m,n f − Bn f ||+ ||Bn f − f ||. (2.23)

Let g ∈W2
∞(ϕ). In view of Lemma 2.5.5 and [21, Lemma 7.4, p.324] we obtain

||R$
m,n f − Bn f || ≤ n$ + m

m(n$ + 1)
||ϕ2B′′n f ||

≤ n$ + m
m(n$ + 1)

{||ϕ2B′′n ( f − g)||+ ||ϕ2B′′n g||}

≤ n$ + m
m(n$ + 1)

{2n|| f − g||+ 12||ϕ2g′′||}

≤ 12
n(n$ + m)
m(n$ + 1)

{|| f − g||+ 1
n
||ϕ2g′′||}.

So

||R$
m,n f − Bn f || ≤ 12

n(n$ + m)
m(n$ + 1)

inf{|| f − g||+ 1
n
||ϕ2g′′|| : g ∈W2

∞(ϕ)}

= 12
n(n$ + m)
m(n$ + 1)

K2,ϕ( f , n−1)C[0,1].

Because K2,ϕ( f , n−1)C[0,1] is equivalent to ω2
ϕ( f , n−1/2)C[0,1] in view of Theorem 1.1.22,

we obtain the existence of a constant C1 6= C1( f , n, m, $) > 0 such that

||R$
m,n f − Bn f || ≤ 12

n(n$ + m)
m(n$ + 1)

C1ω2
ϕ( f , n−1/2)C[0,1]. (2.24)

On the other hand it has been shown in [23] that for some constant C2 6= C2( f , n, m, $) >
0

||Bn f − f || ≤ C2ω2
ϕ( f , n−1/2)C[0,1]. (2.25)

for every f ∈ C[0, 1]. Thus, by (2.23), (2.24) and (2.25) for a constant C = 12
n(n$ + m)
m(n$ + 1)

C1 +

C2 we obtain (2.22).
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2.5 Direct and converse results

Corollary 2.5.7. Under the assumption of Theorem 2.5.6 we have

||R$
m,n f − f || ≤ C||Bn f − f || (2.26)

where C > 0 is constant.

Proof. In view of [59] we have for some absolute constant M > 0

Mω2
ϕ( f , n−1/2)C[0,1] ≤ ||Bn f − f || (2.27)

Thus by Theorem 2.5.6 we get (2.26).

Theorem 2.5.8. Let α2 = C0
n(n$ + m)
m(n$ + 1)

< 1, where C0 denotes the absolute constant in

Lemma 1.2.10, $ ≥ 1 and the triplet (n, m, $) is chosen accordingly. Then there exists a
constant C > 0 such that for all f ∈ C[0, 1] we have

C−1||Bn f − f || ≤ ||R$
m,n f − f || ≤ C||Bn f − f || (2.28)

and
C−1ω2

ϕ( f , n−1/2)C[0,1] ≤ ||R
$
m,n f − f || ≤ Cω2

ϕ( f , n−1/2)C[0,1]. (2.29)

Proof. We have

||Bn f − f || ≤ ||R$
m,n f − f ||+ ||R$

m,n f − Bn f ||

≤ ||R$
m,n f − f ||+ C0

n(n$ + m)
m(n$ + 1)

||Bn f − f ||

in view of Lemma 1.2.10 and (2.19). But α2 = C0
n(n$ + m)
m(n$ + 1)

< 1 by assumption, and

therefore
||Bn f − f || ≤ ||R$

m,n f − f ||+ α2||Bn f − f ||.

So
(1− α2)||Bn f − f || ≤ ||R$

m,n f − f ||.

Hence by Corollary 2.5.7 we obtain (2.28) for some C > 0. The inequalities in (2.29)
are direct consequences of (2.27) and (2.28). Thus the theorem is proved.

Remark 2.5.9. This method can be applied for compositions of linear positive operators that
reproduce linear functions under the assumption that a strong converse inequality as the one
given in Lemma 1.2.10 exists for the operator on the right hand side.
This method does not cover all the cases of the composition as a result of the restrictions
applied to the constants.
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Chapter 3

The class of operators U$
n linking the

Bernstein and the genuine
Bernstein-Durrmeyer operators

Denote by C[0, 1] the space of continuous, real-valued functions on [0, 1] and by Πn
the space of polynomials of degree at most n ∈N0 := {0, 1, 2...}.

Definition 3.0.10. Let $ > 0 and n ∈ N0, n ≥ 1. Define the operator U$
n : C[0, 1] →

Πn by

U$
n( f ; x) :=

n
∑

k=0
F$

n,k( f )pn,k(x)

:=
n−1
∑

k=1

(
1∫

0

tk$−1(1− t)(n−k)$−1

B(k$, (n− k)$)
f (t)dt

)
pn,k(x)+

+ f (0)(1− x)n + f (1)xn,

(3.1)

f ∈ C[0, 1], x ∈ [0, 1] and B(·, ·) is Euler’s Beta function. The fundamental functions
pn,k are defined by

pn,k(x) =
(

n
k

)
xk(1− x)n−k, 0 ≤ k ≤ n, k, n ∈N0, x ∈ [0, 1].

For $ = 1 and f ∈ C[0, 1], we obtain

U1
n( f ; x) = Un( f ; x) = (n− 1)

n−1
∑

k=1

(
1∫

0
f (t)pn−2,k−1(t)dt

)
pn,k(x)

+(1− x)n f (0) + xn f (1),

(3.2)

where Un are the “genuine” Bernstein-Durrmeyer operators (see [16], [31]), while
for $ → ∞, for each f ∈ C[0, 1] the sequence U$

n( f ; x) converges uniformly to the
Bernstein polynomial

Bn( f ; x) =
n

∑
k=0

f
(

k
n

)
pn,k(x). (3.3)

The U$
n were introduced in [75] by R. Păltănea and further investigated in [45] and

[46].

Remark 3.0.11. The “genuine” Bernstein-Durrmeyer operators were studied by many au-
thors. See for example the Habilitationschrift from D. Kacsó which has a whole chapter
dedicated to the operators [55, Chapter 3] and the citations therein for further information.
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3.1 Properties

As a consequence of the extensive investigations that we’ve conducted on the
class of operators U$

n, several articles have been published or find themselves cur-
rently under review. We feel that in this sense an overview is in order. Thus, we
find in [48] Sections 3.2, 3.4 and Subsection 3.8.2, in [57] some properties given in
Section 3.1, but also Sections 3.5, 3.6 and Subsection 3.8.1, in [85] part of Section 3.1
and Sections 3.9, 3.10 and 3.11, in [51] Sections 3.12, 3.13 and 3.14 and in [49] Section
3.16.

3.1 Properties

U$
n share many properties common for the well–known operators Bn, Un,B−1,−1

n ,
such as being positive linear operators preserving linear functions.

Basic properties of the functionals F$
n,k : C[0, 1]→ R are the following

F$
n,k(em) =

(k$)m

(n$)m , 0 ≤ k ≤ n, and em(x) = xm, x ∈ [0, 1], for m ≥ 0. (3.4)

This implies
U$

n(e0) = e0, U$
n(e1) = e1.

Lemma 3.1.1. If f is convex on C[0, 1], then

U$
n( f ; x) ≥ U$

n+1( f ; x) ≥ f (x), 0 < x < 1. (3.5)

The inequalities are strict when f is strictly convex on [0, 1].

Proof. This result is a consequence of Corollary 1.2.8 and Lemma 1.3.4.

We choose s = (n + 1)$ and r = n$ in (1.21) and we compose to the left with the
(n + 1)-st Bernstein operator. We get then

(Bn+1 ◦ B−1,−1
n$ )( f ; x) ≥ (Bn+1 ◦ B−1,−1

(n+1)$
)( f ; x) = U$

n+1( f ; x). (3.6)

Next in the inequality below we compose to the right with B−1,−1
n$ ( f ; x)

Bn( f ; x) ≥ Bn+1( f ; x)

and get
U$

n( f ; x) = (Bn ◦ B−1,−1
n$ )( f ; x) ≥ (Bn+1 ◦ B−1,−1

n$ )( f ; x). (3.7)

Combining (3.6) and (3.7) we get (3.5).

Lemma 3.1.2. If f is convex on C[0, 1], then

U$
n( f ; x) ≥ Bn( f ; x), 0 < x < 1. (3.8)

The inequality is strict if f is strictly convex on [0, 1].

Proof. In [85] it is shown that for f ∈ C[0, 1] convex and 0 < $ < σ,

U$
n( f ; x) ≥ Uσ

n ( f ; x).

Letting σ→ ∞ in the inequality above we get (3.8).
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Chapter 3 The class of operators U$
n

In [45] the authors proved that for each n ≥ 1 and f ∈ C[0, 1],

lim
$→∞

U$
n f = Bn f , uniformly on [0, 1].

Thus, for n fixed and $ ∈ [1, ∞), the operators U$
n constitute a link between the

genuine Bernstein-Durrmeyer operators Un and the Bernstein operators Bn. The
authors of [46] proved that for n ≥ 1 and f ∈ C[0, 1],

lim
$→0+

U$
n f = B1 f , uniformly on [0, 1]. (3.9)

Moreover, they proved

Theorem 3.1.3. For U$
n, 0 < $ < ∞, n ≥ 1, we have

|U$
n f (x)− B1 f (x)| ≤ 9

4
ω2

(
f ;

√
n$− $

n$ + 1
x(1− x)

)
.

In what follows, we give a different proof of (3.9). First of all, we have

F$
n,k(ej) =

k$(k$ + 1) · ... · (k$ + j− 1)
n$(n$ + 1) · ... · (n$ + j− 1)

, j ≥ 0, 0 ≤ k ≤ n,

and consequently,
lim

$→0+
F$

n,k(e0) = 1 (3.10)

and
lim

$→0+
F$

n,k(ej) =
k
n

, j = 1, 2, .... (3.11)

Now let p ∈ Π, p = a0e0 + a1e1 + ... + amem for some a0, a1, ..., am ∈ R. Then, accord-
ing to (3.10) and (3.11),

lim
$→0+

F$
n,k(p) = a0 + (a1 + ... + am)

k
n

= p(0) + (p(1)− p(0))
k
n

.

This leads to

lim
$→0+

U$
n p =

n

∑
k=0

(
p(0) + (p(1)− p(0))

k
n

)
pn,k = p(0)e0 + (p(1)− p(0))e1,

and so
lim

$→0+
U$

n p = B1 p, p ∈ Π. (3.12)

Since Π is dense in C[0, 1], and ||U$
n|| = ||B1|| = 1, (3.9) is a consequence on (3.12).

In the sequel we shall be concerned with shape preserving properties of the oper-
ators U$

n. In [45, Theorem 4.1], the authors proved that for n ≥ 1 and $ > 0, the
operators U$

n transform k-convex functions into k-convex functions. Basically this
means that if f (k) ≥ 0, then (U$

n)(k) f ≥ 0, k ≥ 0; see [45] for the complete terminol-
ogy. Here we shall present briefly another proof of this theorem.
First, let α ≥ −1, β ≥ −1 be real numbers. For r > 0 consider the kernel

(x, y) ∈ [0, 1]×]0, 1[→ Ka,b
r (x, y) :=

yrx+a(1− y)r(1−x)+b

B(rx + a + 1, r(1− x) + b + 1)
,
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3.2 Images of the monomials

and the operator

Ba,b
r f (x) :=

1∫
0

Ka,b
r (x, y) f (y)dy, f ∈ C[0, 1], x ∈ [0, 1].

Let us remark that the kernel Ka,b
r can be represented also as

Ka,b
r (x, y) =

ea log y+(r+b) log(1−y) · erx(log y−log(1−y))

B(rx + a + 1, r(1− x) + b + 1)
.

According to [58, Theorem 1.1, part (a), p. 99], and [58, (1.5), p. 100], Ka,b
r is a totally

positive kernel. Moreover, a direct computation yields

Ba,b
r ek(x) =

(rx + a + 1)(rx + a + 2) · ... · (rx + a + k)
(r + a + b + 2) · ... · (r + a + b + k + 1)

.

Thus, for any k ≥ 0,Ba,b
r ek is a polynomial of degree k with leading coefficient

aa,b
r,k :=

rk

(r + a + b + 2) · ... · (r + a + b + k + 1)
.

By [10, Theorem 2.3 and Remark 2.5], Ba,b
r transforms k-convex functions into k-

convex functions, k ≥ 0. Since the Bernstein operator Bn does the same, we conclude
that Bn ◦ Ba,b

r preserves k-convexity. In particular, Un = Bn ◦ B−1,−1
r preserves k-

convexity, and this is the content of [45, Theorem 4.1].

3.2 Images of the monomials

More generally we have

Theorem 3.2.1. The images of the monomials under U$
n can be written as

U$
n(em) =

1
(n$)m

m

∑
l=0

c(m)
m−l(n$)l Bn(el) (3.13)

where the coefficients c(m)
j , j = 0, 1, ..., m are given by the elementary symmetric sums:

c(m)
0 := 1, c(m)

m := 0,

c(m)
1 = 1 + 2 + ... + (m− 1) =

m(m− 1)
2

,

c(m)
2 = 1 · 2 + 1 · 3 + ... + 1 · (m− 1) + 2 · 3 + ... + (m− 2) · (m− 1),

...
c(m)

m−1 = 1 · 2 · 3 · ... · (m− 1) = (m− 1)!.

(3.14)
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Chapter 3 The class of operators U$
n

Proof.

U$
n(em; x) =

n
∑

k=0
F$

n,k(em)pn,k(x)

=
n
∑

k=0

k$(k$ + 1) · ... · (k$ + m− 1)
n$(n$ + 1) · ... · (n$ + m− 1)

pn,k(x)

=
1

(n$)m

n
∑

k=0
k$(k$ + 1) · ... · (k$ + m− 1)pn,k(x)

=
1

(n$)m

n
∑

k=0
[c(m)

0 (k$)m + c(m)
1 (k$)m−1 + ... + c(m)

m−1k$]pn,k(x)

=
1

(n$)m

{
c(m)

0 $m
n
∑

k=0
km pn,k(x) + c(m)

1 $m−1
n
∑

k=0
km−1 pn,k(x) + ...

... + c(m)
m−1$

n
∑

k=0
kpn,k(x)

}
=

1
(n$)m

{
c(m)

0 $mnm
n
∑

k=0

km

nm pn,k(x) + c(m)
1 $m−1nm−1

n
∑

k=0

km−1

nm−1 pn,k(x) + ...

... + c(m)
m−1n$

n
∑

k=0

k
n

pn,k(x)
}

=
1

(n$)m

{
c(m)

0 $mnmBn(em; x) + c(m)
1 $m−1nm−1Bn(em−1; x) + ...

... + c(m)
m−1n$Bn(e1; x)

}
=

1
(n$)m

m
∑

l=0
c(m)

m−l(n$)l Bn(el ; x).

Remark 3.2.2. This representation of the images of the monomials highlights the close rela-
tionship between Bn and U$

n.

3.3 The moments of U$
n

In [45] the following formulas for the moments of U$
n are proved.

Theorem 3.3.1. For x, y ∈ [0, 1], we have

U$
n(e0; x) = 1, U$

n(e1 − ye0; x) = x− y

and for r ≥ 1 and Ψ(x) = x(1− x)

U$
n((e1 − ye0)r+1; x) =

$Ψ(x)
n$ + r

(U$
n((e1 − ye0)r; x))′x+

+
(1− 2y)r + n$(x− y)

n$ + r
(U$

n((e1 − ye0)r; x)) +
rΨ(y)
n$ + r

(U$
n((e1 − ye0)r−1; x)).

For brevity we set M$
n,r(x) := U$

n((e1 − xe0)r; x), n ≥ 1, r ≥ 0, x ∈ [0, 1]. It is
immediate that

(M$
n,r(x))′ = (U$

n((e1 − ye0)r; x))′x|y=x − rM$
n,r−1(x). (3.15)

Using (3.15) and setting y = x in Theorem 3.3.1, we obtain the following recursion
for the central moments:
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3.4 The eigenstructure of U$
n

Corollary 3.3.2. The following relations are true

M$
n,0(x) = 1, M$

n,1(x) = 0,

and for r ≥ 1

M$
n,r+1(x) =

r($ + 1)Ψ(x)
n$ + r

M$
n,r−1(x) +

(1− 2x)r
n$ + r

M$
n,r(x) +

$Ψ(x)
n$ + r

(M$
n,r(x))′.

(3.16)

In particular

M$
n,2(x) =

($ + 1)Ψ(x)
n$ + 1

, (3.17)

M$
n,3(x) =

($ + 1)($ + 2)Ψ(x)Ψ′(x)
(n$ + 1)(n$ + 2)

,

M$
n,4(x) =

3$($ + 1)2Ψ2(x)n
(n$ + 1)(n$ + 2)(n$ + 3)

+
−6($ + 1)($2 + 3$ + 3)Ψ2(x) + ($ + 1)($ + 2)($ + 3)Ψ(x)

(n$ + 1)(n$ + 2)(n$ + 3)
.

3.4 The eigenstructure of U$
n

There are many applications that arise from having a complete description of the
eigenstructure. Applications of the results presented in this section can be found in
Sections 3.12, 3.13, 3.16 and Subsection 3.8.2.

3.4.1 Diagonalisation and description of the eigenfunctions

We shall use the Stirling numbers of second kind S(k, j) defined by

xk =
k

∑
j=0

S(k, j)x(x− 1)...(x− j + 1).

The following identity holds (see [17], Theorem A [1b], p.204):

S(k, j) =
1
j!

j

∑
i=0

(
j
i

)
(−1)j−iik, 0 ≤ j ≤ k. (3.18)

Consider the eigenfunction equation

U$
n p(n)

$,k = λ
(n)
$,k p(n)

$,k (3.19)

with respect to the basis of monomials {e0, e1, ..., en}. Since U$
n is degree reducing,

we have to solve an upper triangular system. This will be done in the proof of the
next theorem.

Remark 3.4.1. The operator U$
n reproduces linear polynomials, which are therefore eigen-

functions corresponding to the eigenvalue 1.
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Chapter 3 The class of operators U$
n

Theorem 3.4.2. The operator U$
n can be represented in diagonal form

U$
n f =

n

∑
k=0

λ
(n)
$,k p(n)

$,k µ
(n)
$,k ( f ), for all f ∈ C[0, 1], (3.20)

with λ
(n)
$,k and p(n)

$,k its eigenvalues and eigenfunctions and µ
(n)
$,k the dual functionals of p(n)

$,k .
The eigenvalues are given by

λ
(n)
$,k = $k−1 (n− 1)(n− 2)...(n− k + 1)

(n$ + 1)(n$ + 2)...(n$ + k− 1)
=

$kn!

(n$)k(n− k)!
(3.21)

and they satisfy

1 = λ
(n)
$,0 = λ

(n)
$,1 > λ

(n)
$,2 > λ

(n)
$,3 > ... > λ

(n)
$,n > 0.

The eigenfunction for λ
(n)
$,k is a polynomial of degree k given by

p(n)
$,k (x) =

k

∑
j=0

c$(j, k, n)xj = xk − k
2

xk−1 + lower order terms, (3.22)

where the coefficients can be computed using the recurrence formula

c$(k, k, n) := 1,

c$(k− 1, k, n) := − k
2

,

c$(k− j, k, n) :=
(n$)k

$k−j[$j(n− k + 1)j − (n$ + k− j)j]
×

j−1
∑

i=0

k−i
∑

l=k−j

c$(k− i, k, n)
(n$)k−i

c(k−i)
k−i−l$

lS(l, k− j), j = 2, ..., k.

(3.23)

Proof. The eigenvalues of U$
n are determined from the upper triangular system of

equations (3.19). They can be found on the diagonal and are equal to the coefficients
of the terms with the highest degree of U$

n(em). As we have seen before, we can
write

U$
n(em; x) =

1
(n$)m

{
c(m)

0 $m
n
∑

k=0
km pn,k(x) + c(m)

1 $m−1
n
∑

k=0
km−1 pn,k(x) + ...

... + c(m)
m−1$

n
∑

k=0
kpn,k(x)

}
and because

n

∑
k=0

km pn,k(x) = n(n− 1)(n− 2) · ... · (n−m + 1)xm + terms of lower degree

the eigenvalues are given by

λ
(n)
$,m =

1
(n$)m $mn(n− 1)(n− 2) · ... · (n−m + 1)

=
$m · n!

(n$)m(n−m)!
.
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3.4 The eigenstructure of U$
n

The linear polynomials are eigenfunctions for the eigenvalues λ
(n)
$,0 = λ

(n)
$,1 = 1, for

which p(n)
$,0 (x) = 1, p(n)

$,1 (x) = x − 1
2 are clearly a basis which satisfies (3.22) and

(3.23).
It remains to consider the 1-dimensional λ

(n)
$,k - eigenspace of polynomials of exact

degree k = 2, 3, ..., n.
We shall plug into (3.13)

Bn(em; x) =
m

∑
j=0

a(j, m, n)xj,

where

a(j, m, n) =
S(m, j)n!

nm(n− j)!
, 0 ≤ j ≤ m ≤ n,

as it was considered in [18] and we obtain

U$
n(em; x) =

1
(n$)m

m

∑
l=0

c(m)
m−l(n$)l

l

∑
r=0

a(r, l, n)xr.

Express the eigenfunctions in the form

p(n)
$,k (x) =

k

∑
s=0

c$(s, k, n)xs, c$(k, k, n) := 1. (3.24)

Then the eigenfunction equation (3.19) gives:

λ
(n)
$,k

k
∑

r=0
c$(r, k, n)xr =

k
∑

s=0

c$(s, k, n)
(n$)s

s
∑

l=0
c(s)

s−l(n$)l
l

∑
r=0

a(r, l, n)xr

=
k
∑

s=0

c$(s, k, n)
(n$)s

s
∑

r=0

s
∑

l=r
c(s)

s−l(n$)la(r, l, n)xr

=
k
∑

r=0

k
∑

s=r

c$(s, k, n)
(n$)s

s
∑

l=r
c(s)

s−l(n$)la(r, l, n)xr.

Equating the coefficients of xr above gives for 0 ≤ r ≤ k:

λ
(n)
$,k c$(r, k, n) =

k

∑
s=r

c$(s, k, n)
(n$)s

s

∑
l=r

c(s)
s−l(n$)la(r, l, n).

Into this we make first the substitution s = k− i and subsequently r = k− j to obtain

λ
(n)
$,k c$(k− j, k, n) =

j

∑
i=0

c$(k− i, k, n)
(n$)k−i

k−i

∑
l=k−j

c(k−i)
k−i−l(n$)la(k− j, l, n).
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which, for k > 1, can be solved for c$(k− j, k, n) to give

c$(k− j, k, n) =

(
λ

(n)
$,k −

(n$)k−j

(n$)k−j
a(k− j, k− j, n)

)−1 j−1
∑

i=0

c$(k− i, k, n)
(n$)k−i

×

k−i
∑

l=k−j
c(k−i)

k−i−l(n$)la(k− j, l, n)

=

(
$k · n!

(n$)k(n− k)!
− (n$)k−j

(n$)k−j

S(k− j, k− j) · n!
nk−j(n− k + j)!

)−1

×

j−1
∑

i=0

c$(k− i, k, n)
(n$)k−i

k−i
∑

l=k−j
c(k−i)

k−i−l(n$)l S(l, k− j)n!
nl(n− k + j)!

=

(
$k−j

[
$j

(n$)k(n− k)!
− 1

(n$)k−j(n− k + j)!

])−1

×

j−1
∑

i=0

c$(k− i, k, n)
(n$)k−i

k−i
∑

l=k−j
c(k−i)

k−i−l$
l S(l, k− j)
(n− k + j)!

=
(n− k + j)!(n$)k

$k−j[$j(n− k + 1)j − (n$ + k− j)j]
×

j−1
∑

i=0

c$(k− i, k, n)
(n$)k−i

k−i
∑

l=k−j
c(k−i)

k−i−l$
l S(l, k− j)
(n− k + j)!

.

From here we get easily the equations (3.23). In particular, for j = 1 we get

c$(k− 1, k, n) =
c(k)

1 + c(k)
0 $ k(k−1)

2
(n− k + 1)$− (n$ + k− 1)

= − k
2

(3.25)

because c(k)
0 = 1 and c(k)

1 = 1 + 2 + ... + (k − 1) = k(k−1)
2 and S(k − 1, k − 1) =

1, S(k, k− 1) = k(k−1)
2 .

Theorem 3.4.3. The dual functional µ
(n)
$,k ∈ span{ f → F$

n,j( f ); j = 0, 1, ..., n} defined on
C[0, 1] satisfies

µ
(n)
$,k (p(n)

$,i ) = δi,k; i, k = 0, 1, ..., n,

and is given by

µ
(n)
$,k ( f ) =

n

∑
j=0

v$(j, k, n)F$
n,j( f ); k = 0, 1, ..., n, (3.26)

where the (n + 1)× (n + 1) matrix of coefficients V := [v$(j, k, n)]nj,k=0 is the inverse of

P := [F$
n,j(p(n)

$,i )]ni,j=0.

Proof. The biorthogonality condition µ
(n)
$,k (p(n)

$,i ) = δi,k follows easily from (3.19) and
(3.20). Using (3.26) it can be written as

n

∑
j=0

F$
n,j(p(n)

$,i )v$(j, k, n) = δi,k,
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i.e., PV = I, and so V = P−1.

Theorem 3.4.4. The eigenfunctions and the dual functionals satisfy the equations

p(n)
$,k (x) = (−1)k p(n)

$,k (1− x), µ
(n)
$,k ( f ) = (−1)k( f ◦ R), (3.27)

where R(x) = 1− x is reflection about the point 1
2 . The eigenfunctions of degree ≥ 2 can

be factored as follows:

p(n)
$,2j(x) = x(x− 1)q(x− 1/2),

p(n)
$,2j+1(x) = x(x− 1/2)(x− 1)q(x− 1/2), j = 1, 2, ....

(3.28)

In each case q is an even monic polynomial.

Proof. From (3.1) it follows that

U$
n( f ◦ R) = (U$

n f ) ◦ R, (3.29)

so that

U$
n(p(n)

$,k ◦ R) = (U$
n p(n)

$,k ) ◦ R = λ
(n)
$,k (p(n)

$,k ◦ R),

and p(n)
$,k ◦ R is a λ

(n)
$,k - eigenfunction. For k = 0, 1 the property (3.27) of p(n)

$,k is obvi-

ous, and for k ≥ 2 the eigenfunction p(n)
$,k ◦ R must be a scalar multiple of p(n)

$,k (the

eigenspace is 1- dimensional). By equating the coefficients of xk yields

p(n)
$,k = (−1)k p(n)

$,k ◦ R.

So p(n)
$,k is even (odd) about the point 1/2 when k is even (odd). In particular, the

zeros of p(n)
$,k are symmetric about 1/2. Moreover, (3.29) implies that

λ
(n)
$,k p(n)

$,k µ
(n)
$,k ( f ◦ R) = λ

(n)
$,k (p(n)

$,k ◦ R)µ
(n)
$,k ( f )

= λ
(n)
$,k (−1)k p(n)

$,k µ
(n)
$,k ( f ),

and equating the coefficients of p(n)
$,k in the preceding relation we get

µ
(n)
$,k ( f ) = (−1)kµ

(n)
$,k ( f ◦ R).

Taking j = k in (3.23) and using S(m, 0) = 0, m ≥ 1, we obtain c$(0, k, n) = 0, k ≥ 2.
Thus, for k ≥ 2, x = 0 is a zero of p(n)

$,k , and by the symmetry property so is x = 1.
Further, when k is odd the symmetry property of the zeros implies that x = 1/2
must be a zero of p(n)

$,k , which proves (3.28). This completes the proof.
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3.4.2 Asymptotics of the eigenfunctions

We show that for each $ > 0 and k ≥ 0 the sequence (p(n)
$,k )n≥1 is convergent.

Theorem 3.4.5. For 0 ≤ j ≤ k,

lim
n→∞

c$(j, k, n) = c∗(j, k),

where

c∗(0, 1) = −1
2

, c∗(j, k) :=
k−j

∏
i=1

(k + 1− i)(k− i)
i(i− 2k + 1)

, (j, k) 6= (0, 1). (3.30)

This means that, p(n)
$,k converges uniformly on [0, 1] to p∗k ∈ Πk as n→ ∞, where

p∗k (x) :=
k

∑
j=0

c∗(j, k)xj = xk − k
2

xk−1 +
k(k− 1)(k− 2)

4(2k− 3)
xk−2 − ....

Proof. Noticing that p(n)
$,0 (x) = 1 = p∗0(x), p(n)

$,1 (x) = x− 1/2 = p∗1(x), it is sufficient
to prove the result for k ≥ 2. This will be done using induction on j in order to
prove that lim

n→∞
c$(k− j, k, n) exists and is given by (3.30). Since c$(k, k, n) = 1, this

result holds for j = 0. Suppose it is true for lim
n→∞

c$(k− i, k, n), i = 0, ..., j− 1, where
0 < j ≤ k. Since for all j > 0,

$k−j[$j(n− k + 1)j − (n$ + k− j)j] = −$k−1($ + 1)
j(2k− j− 1)

2
nj−1+

+lower order powers of n,

taking the limit as n→ ∞ on both sides of

c$(k− j, k, n) :=
(n$)k

$k−j[$j(n− k + 1)j − (n$ + k− j)j]
×

j−1
∑

i=0

k−i
∑

l=k−j

c$(k− i, k, n)
(n$)k−i

c(k−i)
k−i−l$

lS(l, k− j)

and using the induction hypothesis gives

lim
n→∞

c$(k− j, k, n) = − $k

$k−1($ + 1)
j(2k− j− 1)

2
$k−j+1

×

[c∗(k− j + 1, k)c(k−j+1)
1 $k−jS(k− j, k− j)

+c∗(k− j + 1, k)c(k−j+1)
0 $k−j+1S(k− j + 1, k− j)].

But c(k−j+1)
0 = 1, c(k−j+1)

1 = 1 + 2 + ... + (k− j) = 1
2 (k− j)(k− j + 1), S(k− j, k− j) =
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1 and S(k− j + 1, k− j) = (k−j+1
2 ) = 1

2 (k− j)(k− j + 1); so we get

lim
n→∞

c$(k− j, k, n) =
2$

($ + 1)$k−j+1 j(j− 2k + 1)
×[

(k− j)(k− j + 1)
2

c∗(k− j + 1, k)$k−j

+
(k− j)(k− j + 1)

2
c∗(k− j + 1, k)$k−j+1

]
=

2$k−j($ + 1)(k− j)(k− j + 1)
2$k−j($ + 1)j(j− 2k + 1)

c∗(k− j + 1, k)

=
(k− j)(k− j + 1)

j(j− 2k + 1)
c∗(k− j + 1, k)

=
(k− j)(k− j + 1)

j(j− 2k + 1)

j−1
∏
i=1

(k− i)(k− i + 1)
i(i− 2k + 1)

=
j

∏
i=1

(k− i)(k− i + 1)
i(i− 2k + 1)

,

which completes the induction.

3.4.3 The structure of the dual functionals

In the first part of this subsection we provide a recurrence relation for calculating
the coefficients v$(j, k, n) of the dual functional µ

(n)
$,k , i.e.,

µ
(n)
$,k ( f ) =

n

∑
j=0

v$(j, k, n)F$
n,j( f ), k = 0, 1, ..., n.

Let n ≥ 1 be fixed. For each j ∈ {0, 1, ..., n} there exists a unique polynomial l(n)
$,j of

degree ≤ n satisfying
F$

n,i(l(n)
$,j ) = δi,j. (3.31)

Its coefficients can be determined from a system of linear equations with non-zero
determinant. Indeed, consider the positive linear functionals F$

n,i : C[0, 1]→ R, $ >

0, and search the polynomials l(n)
$,j ∈ Πn of the form l(n)

$,j = cj0e0 + cj1e1 + ... + cjnen

so that F$
n,i(l(n)

$,j ) = δi,j. For a fixed j we have F$
n,i(l(n)

$,j ) = cj0F$
n,i(e0) + cj1F$

n,i(e1) + ... +
cjnF$

n,i(en) = δi,j which can be written as a system of linear equations:
cj0F$

n,0(e0) + cj1F$
n,0(e1) + ... + cjnF$

n,0(en) = δ0,j

cj0F$
n,1(e0) + cj1F$

n,1(e1) + ... + cjnF$
n,1(en) = δ1,j

...
cj0F$

n,n(e0) + cj1F$
n,n(e1) + ... + cjnF$

n,n(en) = δn,j.

We claim that

A :=

∣∣∣∣∣∣∣∣
F$

n,0(e0) F$
n,0(e1) ... F$

n,0(en)
F$

n,1(e0) F$
n,1(e1) ... F$

n,1(en)
... ... ... ...

F$
n,n(e0) F$

n,n(e1) ... F$
n,n(en)

∣∣∣∣∣∣∣∣ 6= 0.
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We have seen that F$
n,i(em) =

(i$)m

(n$)m , so the determinant becomes

A =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
(0$)1

(n$)1

(0$)2

(n$)2
...

(0$)n

(n$)n

1
(1$)1

(n$)1

(1$)2

(n$)2
...

(1$)n

(n$)n

... ... ... ... ...

1
(n$)1

(n$)1

(n$)2

(n$)2
...

(n$)n

(n$)n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Elementary manipulations of the determinant yield that

A =
1

(n$)1(n$)2...(n$)n

∣∣∣∣∣∣∣∣
1 0 · $ (0 · $)2 ... (0 · $)n

1 $ ($)2 ... ($)n

... ... ... ... ...
1 n$ (n$)2 ... (n$)n

∣∣∣∣∣∣∣∣ =

=
1

(n$)1(n$)2...(n$)n ∏
0≤i<j≤n

(j · $− i · $) 6= 0,

which means that l(n)
$,j is uniquely determined. We have by (3.1),

U$
n(l(n)

$,j ) =
n

∑
k=0

F$
n,k(l(n)

$,j )pn,k

and by (3.20) and (3.26),

U$
n(l(n)

$,j ) =
n

∑
k=0

λ
(n)
$,k p(n)

$,k

n

∑
i=0

v$(i, k, n)F$
n,i(l(n)

$,j ).

By using (3.31) and (3.24) we get successively

pn,j(x) =
n
∑

k=0
λ

(n)
$,k p(n)

$,k (x)v$(j, k, n), j = 0, 1, ..., n,

(n
j)xj(1− x)n−j =

n
∑

k=0
λ

(n)
$,k

k
∑

s=0
c$(s, k, n)xsv$(j, k, n),

(n
j)xj

n−j
∑

i=0
(−1)i(n−j

i )xi =
n
∑

s=0

n
∑

l=s
λ

(n)
$,l c$(s, l, n)v$(j, l, n)xs.

For i = n− j− k, equating the coefficients of xn−k we get

(−1)n−j−k
(

n
j

)(
n− j

k

)
=

n

∑
l=n−k

λ
(n)
$,l c$(n− k, l, n)v$(j, l, n).

Setting now s = n− l, we get

(−1)n−j−k(n
j)(

n−j
k ) =

k−1
∑

s=0
λ

(n)
$,n−sv$(j, n− s, n)c$(n− k, n− s, n)+

λ
(n)
$,n−kv$(j, n− k, n).
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For k = 0 this reduces to

v$(j, n, n) = (−1)n−j (n$)n

$n j!(n− j)!
, (3.32)

while for k = 1, ..., n we get

v$(j, n− k, n) =
(−1)n−j−k(n$)n−k

$n−k j!(n− j− k)!
−

−
k−1
∑

s=0

k!
s! $

k−s (n$)n−k

(n$)n−s
v$(j, n− s, n)c$(n− k, n− s, n).

(3.33)

Now (3.32) and (3.33) constitute the required recurrence.

In the sequel we shall study the limits of the dual functionals, acting on polynomials,
as n→ ∞. Consider the linear functionals µ∗k : C[0, 1]→ R defined by

µ∗0( f ) :=
f (0) + f (1)

2
, µ∗1( f ) := f (1)− f (0),

µ∗k ( f ) :=
1
2
(2k

k )

(
(−1)k f (0) + f (1)− k

1∫
0

f (x)P(1,1)
k−2 (2x− 1)dx

)
, k ≥ 2,

where (P(1,1)
j (x))j≥0 are the Jacobi polynomials, orthogonal with respect to the weight

(1− t)(1 + t) on the interval [−1, 1].
These functionals were introduced in [18], where it was proved that they are limits
of the dual functionals in the setting of Bernstein operators. We shall obtain a similar
result for the operators U$

n.

Theorem 3.4.6. Let k ≥ 0 and $ > 0 be fixed. For every f ∈ Π,

lim
n→∞

µ
(n)
$,k ( f ) = µ∗k ( f ). (3.34)

Proof. First we prove that for each j ≥ 0,

lim
n→∞

µ
(n)
$,j ( f ) = µ∗j ( f ), f ∈ Πj. (3.35)

So, let f ∈ Πj. Because U$
n is degree reducing and lim

n→∞
U$

n f = f (see [45], [46]), we
have

U$
n f =

j

∑
i=0

λ
(n)
$,i p(n)

$,i µ
(n)
$,i ( f )→ f =

j

∑
i=0

p∗i µ∗i ( f ), n→ ∞.

The last equality is a consequence of [18, (4.18) ]. Since the above convergence takes
place in the finite dimensional space Πj, we may consider the coefficients of xj in
order to obtain

λ
(n)
$,j µ

(n)
$,j ( f )→ µ∗j ( f ).

Together with λ
(n)
$,j → 1, this leads to (3.35).

We shall prove by induction on r ≥ 0 that

lim
n→∞

µ
(n)
$,k ( f ) = µ∗k ( f ), for all k ≥ 0, f ∈ Πk+r, (3.36)
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and this will complete the proof of (3.34).
For r = 0, (3.36) is a consequence of (3.35). Suppose that (3.36) is also true for
1, ..., r− 1, and let f ∈ Πk+r. As before, we have

U$
n f =

k+r

∑
i=0

λ
(n)
$,i p(n)

$,i µ
(n)
$,i ( f )→ f =

k+r

∑
i=0

p∗i µ∗i ( f ).

By considering the coefficients of xk as n→ ∞ we get

λ
(n)
$,k µ

(n)
$,k ( f ) +

r

∑
i=1

λ
(n)
$,k+ic

$(k, k + i, n)µ
(n)
$,k+i( f )→ µ∗k ( f ) +

r

∑
i=1

c∗(k, k + i)µ∗k+i( f ).

(3.37)
We know that for all i = 1, ..., r,

λ
(n)
$,k+i → 1, c$(k, k + i, n)→ c∗(k, k + i).

By the induction hypothesis, µ
(n)
$,k+i( f )→ µ∗k+i( f ), i = 1, ..., r. Now (3.37) implies

λ
(n)
$,k µ

(n)
$,k ( f )→ µ∗k ( f ),

and so µ
(n)
$,k ( f )→ µ∗k ( f ). This concludes the induction.

Remark 3.4.7. For $ → ∞, each result of this section has a corresponding one in [18],
concerning the Bernstein operators Bn.
For $ = 1 we cover some results concerning the eigenstructure of the genuine Bernstein-
Durrmeyer operators, scattered in the literature; see, e.g., [31], [39], [40] and the references
therein.

3.5 Variation diminution

In Chapter 2 we have proved that all the operators that belong to the BEJ classes
have this property. In particular, for Bn and Un the proof can be found in [88] and
[30], respectively.
In what follows we present the detailed proof for U$

n.

Theorem 3.5.1. The operators U$
n have the (strong) variation-diminishing property, that

is,
S[0,1][U

$
n f ] ≤ S[0,1][ f ] for all f ∈ C[0, 1].

Proof. We use the fact that U$
n = Bn(B−1,−1

n$ ) and that the Bernstein operators Bn are
(strongly) variation–diminishing. Thus we have

S[0,1][U
$
n f ] ≤ S[0,1][B−1,−1

n$ f ] = S[0,1][
[∫ 1

0
tn$x−1(1− t)n$−n$x−1 f (t) dt

]
.

Substituting
(

t
1− t

)n$

= u the above integral becomes

1
n$

∫ ∞

0
ux · u

1
n$−2

(u
1

n$ + 1)n$
· f

(
u

1
n$

u
1

n$ + 1

)
du.
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Obviously, the number of sign changes of f (t), t ∈ [0, 1] equals the number of sign

changes of the function g(u) = f

(
u

1
n$

u
1

n$ + 1

)
, u ∈ [0, ∞). Applying Theorem 1.1.31

for the functional A(g) =
∫ ∞

0
g(u) du with w(u) =

u
1

n$−2

(u
1

n$ + 1)n$
we get that the

operators U$
n have the (strong) variation–diminishing property on C[0, 1].

Remark 3.5.2. As degree U$
nei = i, i = 0, 1, . . . , n (with ei(x) = xi, see [45, Lemma 3.5])

and U$
n have the (strong) variation–diminishing property, it follows from [29, Theorem 7 ]

that U$
n, n ∈ N, preserve the convexity of order i, for i = 0, 1, . . . , n (i.e., U$

n f is convex
of order i, provided that f is convex of order i). This preservation of convexity by U$

n was
proved first by H. Gonska and R. Păltănea (see [45, Theorem 4.1], where also more details
about the terminology and historical references can be found) and also at the end of Section
3.1, both using different methods.

3.6 Global smoothness preservation

Over the last decades there has been considerable interest in the preservation of
global smoothness in various contexts. This intensive research culminated in the
book by G. Anastassiou and S. Gal [8].
The results in this section generalize the corresponding statements available in the
literature for both Bernstein (see [19]) and genuine Bernstein–Durrmeyer operators
(see [55, S.3.3.2]) and they supplement results on the behavior of the operators U$

n
with respect to Lipschitz classes very recently given in [85].
To that end, we use first the following result given earlier by C. Cottin and H. Gon-
ska [19, Theorem 2.2].

Lemma 3.6.1. Let k ≥ 0 and s ≥ 1 be integers, and let I = [a, b] and I ′ = [c, d] ⊂ [a, b]
be compact intervals with non-empty interior. Furthermore, let L : Ck(I) → Ck(I′) be a
linear operator having the following properties:

(i) L is convex of orders k− 1 and k + s− 1,

(ii) L maps Ck+s(I) into Ck+s(I′),

(iii) L(Πk−1) ⊆ Πk−1 and L(Πk+s−1) ⊆ Πk+s−1

(iv) L(Ck(I)) 6⊂ Πk−1

Then for all f ∈ Ck(I) and all δ ≥ 0 we have

Ks(DkL f ; δ)I′ ≤
1
k!
||DkLek|| · Ks

(
f (k);

1
(k + s)s

||Dk+sLek+s||
||DkLek||

δ

)
. (3.38)

First we provide the corresponding quantitative statement regarding the smooth-
ing effect of the operators U$

n.
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Chapter 3 The class of operators U$
n

Theorem 3.6.2. Let k ≥ 0 and s ≥ 1 be fixed integers. Then for all n ≥ k + s, all
f ∈ Ck[0, 1] and all δ ≥ 0 the following inequality holds

Ks(DkU$
n f ; δ)[0,1] ≤ $k nk

(n$)k
Ks

(
f (k); $s (n− k)s(n$)k

(n$)k+s
δ

)
[0,1]

. (3.39)

Proof. We verify each statement of Lemma 3.6.1.
i) According to [45, Theorem 4.1]: The operators U$

n, $ > 0, n ≥ 1, are convex of
order r− 1 for all 0 ≤ r ≤ n.
ii) U$

n is a polynomial operator so the general assumption and condition (ii) is satis-
fied.
iii) According to [45, Corollary 4.2]: U$

n(Πk−1) ⊆ Πk−1 for $ > 0, 0 ≤ k ≤ n.
iv) Consider the k-th monomial ek ∈ Ck[0, 1]. From the assumption that n ≥ k + s it
follows that U$

nek ∈ Πk \Πk−1, so that condition (iv) is also verified.
The images of the monomials under U$

n can be written in the form given in (3.13).
Since (see [33, p.429] )

Dl Bnel =
nl

nl l!

then
DmU$

nem = m!$m nm

(n$)m , m ∈ {k, k + s}.

Plugging these expressions into inequality (3.38) we get (3.39).

We now consider two special cases of s ≥ 1 which are of particular interest. The
first is the case s = 1 leading to

Proposition 3.6.3. Let k ≥ 0 be a fixed integer. Then for all n ≥ k + 1, f ∈ Ck[0, 1] and
δ ≥ 0 we have

ω1(DkU$
n f ; δ) ≤ $k nk

(n$)k
ω̃1

(
f (k);

$(n− k)
n$ + k

δ

)
≤ 1 · ω̃1( f (k); δ) ≤ 2 ·ω1( f (k); δ).

where ω̃1( f , ·) denotes the least concave majorant of ω1( f , ·) and is given by

ω̃1( f , t) :=


sup

0≤x≤t≤y≤1
x 6=y

(t− x)ω1( f , y) + (y− t)ω1( f ; x)
y− x

, for 0 ≤ t ≤ 1,

ω1( f , t), for t > 1.

The leftmost inequality is best possible in the sense that for ek+1 both sides are equal and do
not vanish.

Proof. Theorem 3.6.2 gives in this particular case

K1(DkU$
n f ; δ)[0,1] ≤ $k nk

(n$)k
K1

(
f (k);

$(n− k)
(n$ + k)

δ

)
[0,1]

.

For the K-functional K1 it is known from Brudnyı̌’s representation theorem (see, e.g.

[70, p.1258]) that K1( f , δ) =
1
2

ω̃1( f , 2δ). Using this representation on both sides of
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3.6 Global smoothness preservation

the inequality involving K1 and (1.3) leads to our first assertion.
Furthermore, for the function ek+1(x) = xk+1 it can be easily verified by using the
property ω(c · e1 + d · e0 : δ) = |c| · δ, c, d ∈ R (the same for ω̃1). Thus, for n ≥ k + 1
and δ > 0, both sides in the leftmost inequality above equal

(k + 1)! · $k nk

(n$)k
· $(n− k)

n$ + k
· δ > 0.

Thus it follows

Corollary 3.6.4. For a fixed integer k ≥ 0 the following assertion holds for all n ∈ N. If
f (k) ∈ LipM(τ; [0, 1]) for some M ≥ 0 and some 0 < τ ≤ 1, then DkU$

n f is in the same
Lipschitz class.

The second case we discuss in more detail is s = 2. Here we get

Proposition 3.6.5. Let k ≥ 0 be a fixed integer. Then for all n ≥ k + 2, f ∈ Ck[0, 1] and
δ ≥ 0 we have

ω2(DkU$
n f ; δ) ≤ 3 · $k nk

(n$)k

[
1 + $2 (n− k)(n− k− 1)

2(n$ + k)(n$ + k + 1)

]
ω2

(
f (k); δ

)
≤ 9

2
ω2( f (k); δ).

Proof. From Theorem 3.6.2 with s = 2 we arrive at

K2(DkU$
n f ; δ)[0,1] ≤ $k nk

(n$)k
K2

(
f (k); $2 (n− k)(n− k− 1)

(n$ + k)(n$ + k + 1)
δ

)
[0,1]

≤ K2( f (k); δ)[0,1].

In our further argumentation we shall employ Žuk’s function Zh f defined in Section
1.1.3. Thus we avoid using the statement of Theorem 3.6.2 and the equivalence be-
tween the K-functional and the modulus ω2, which would deteriorate the constants.
First recall the identity

K2( f ; δ) = K( f ; δ; C[0, 1], C2[0, 1]) = K( f ; δ; C[0, 1], W2,∞[0, 1]).

Let now f ∈ Ck[0, 1], 0 < δ < 1
2 be arbitrary given, and let |h| ≤ δ. Then for a typical

difference figuring in the definition of ω2(DkU$
n f ; δ) we have

|DkU$
n f (x− h)− 2DkU$

n f (x) + DkU$
n f (x + h)| =

|{DkU$
n( f − g; x− h)− 2DkU$

n( f − g; x) + DkU$
n( f − g; x + h)}+

{DkU$
n(g; x− h)− 2DkU$

n(g; x) + DkU$
n(g; x + h)}|

where g ∈ Ck[0, 1] with g(k) ∈W2,∞[0, 1] arbitrarily chosen.
The absolute value of the first term in braces can be estimated from above by

4||DkU$
n( f − g)||∞ ≤ 4$k nk

(n$)k
||( f − g)(k)||∞.
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For the modulus of the second expression in braces we have

|DkU$
n(g; x− h)− 2DkU$

n(g; x) + DkU$
n(g; x + h)|

= |Dk+2U$
n(g; ξ)| · h2 (for some ξ between x− h and x + h)

≤ |Dk+2U$
ng| · h2 ≤ $k+2 nk+2

(n$)k+2
· h2 · ||g(k+2)||L∞ .

We substitute now the function g(k) ∈W2,∞[0, 1] by Žuk’s function Zh( f (k)), yielding

||( f − g)(k)|| = || f (k) − Zh( f )|| ≤ 3
4
·ω2( f (k); h)

and

||g(k+2)||L∞ = ||Z′′h ( f )||L∞ ≤
3
2
· 1

h2 ·ω2( f (k); h).

Combining these estimates and taking into account the preceding steps we obtain

ω2(DkU$
n f ; δ) ≤ 4 · 3

4
$k nk

(n$)k
ω2( f (k); δ) +

3
2
· $k+2 nk+2

(n$)k+2
·ω2( f (k); h)

= 3 · $k nk

(n$)k

[
1 + $2 (n− k)(n− k− 1)

2(n$ + k)(n$ + k + 1)

]
ω2

(
f (k); δ

)
≤ 9

2
ω2( f (k); δ).

Defining Lipschitz classes with respect to the second order modulus by

Lip∗M(τ, [0, 1]) :=
{

f ∈ C[0, 1] : ω2( f ; δ) ≤ M · δτ, 0 ≤ δ ≤ 1
2

}
, 0 < τ ≤ 2,

we get

Corollary 3.6.6. For a fixed integer k ≥ 0 the following assertion holds for all
n ∈N. If f (k) ∈ Lip∗M(τ; [0, 1]) for some M ≥ 0 and some 0 < τ ≤ 2, then

DkU$
n f ∈ Lip∗4.5M(τ; [0, 1]).

3.7 Strong Voronovskaya-type inequality

In the attempt to prove a strong converse inequality of type B, as defined by Z.
Ditzian and K.G. Ivanov in [22] we came across the following strong Voronovskaya-
type inequality which is of interest by itself. The reason why we call this inequality

"strong" is that in addition to the convergence of U$
n f − f towards

($ + 1)
2(n$ + 1)

ϕ2 f ′′ it

also expresses the degree of approximation depending on the smoothness properties
of the function.
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3.7 Strong Voronovskaya-type inequality

Theorem 3.7.1. For f ∈ C3[0, 1], 1 < p ≤ ∞ and U$
n given by (3.1), we have∣∣∣∣∣∣∣∣U$

n f − f − ($ + 1)
2(n$ + 1)

ϕ2 f ′′
∣∣∣∣∣∣∣∣

p
≤ C(p)C($)

{
||ϕ3 f ′′′||p

(n$ + 1)
√

$[(n− 1)$ + 1]
+

+
$[(n− 1)$ + 1]

(n$ + 1)4 || f ′′′||p
} (3.40)

where ϕ(x) =
√

x(1− x) and C($) = $2d$ + $($ + 1)√c$ with c$ =
5$2 + 13$ + 12

$2 ,

d$ = 6 +
($ + 1)($ + 2)

$2 .

Proof. We expand f (t) by the Taylor formula

f (t) = f (x) + f ′(x)(t− x) +
1
2

f ′′(x)(t− x)2 +
1
2

t∫
x

(t− v)2 f ′′′(v)dv. (3.41)

Taking into account that

U$
n(t− x; x) = 0 and U$

n((t− x)2; x) =
$ + 1

n$ + 1
ϕ2(x)

we get from (3.41)

U$
n f − f − ($ + 1)

2(n$ + 1)
ϕ2 f ′′ =

1
2

U$
n

 t∫
x

(t− v)2 f ′′′(v)dv; x

 := In( f ; x).

We define ϕn(x) = max

{
ϕ(x), E :=

√
$[(n− 1)$ + 1]

(n$ + 1)2

}
and observe that, for v be-

tween t and x,

|t− v|
ϕ2

n(v)
≤ |t− v|

ϕ2(v)
≤ |t− x|

ϕ2(x)
and

|t− v|
ϕ2

n(v)
≤ |t− x|

E2

and hence
|t− v|
ϕ2

n(v)
≤ |t− x|

ϕ2
n(x)

.

Therefore,

|In( f ; x)| =

∣∣∣∣∣∣12U$
n

 t∫
x

(t− v)2 f ′′′(v)dv; x

∣∣∣∣∣∣
≤ 1

2
U$

n

∣∣∣∣∣∣
t∫

x

(t− v)2 f ′′′(v)dv

∣∣∣∣∣∣ ; x


Using inequality (9.6.1) in [23],

|In( f ; x)| ≤ U$
n

 |t− x|3
ϕ3

n(x)

∣∣∣∣∣∣ 1
t− x

t∫
x

|ϕ3
n(v) f ′′′(v)|dv

∣∣∣∣∣∣ ; x

 .
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n

We write g(v) := |ϕ3
n(v) f ′′′(v)| and M(g, x) := sup

0≤t≤1

∣∣∣∣∣ 1
t− x

t∫
x

g(v)dv

∣∣∣∣∣ (see e.g. [98,

Chapter 2]).

|In( f ; x)| ≤ U$
n

(
|t− x|3
ϕ3

n(x)
M(g, x); x

)
=

M(g, x)
ϕ3

n(x)
U$

n(|t− x|3; x). (3.42)

To evaluate the expression
U$

n(|t− x|3; x)
ϕ3

n(x)
we split the interval [0, 1] as suggested in

the proof of Theorem 4.2 in [46]. Thus we have

(i) for x ∈
[

0,
$

n$ + 1

]
∪
[

1− $

n$ + 1
, 1
]
⇔ ϕn(x) = E ≥ ϕ(x),

U$
n(|t− x|3; x)

ϕ3
n(x)

≤
$2d$

(n$ + 1)
√

$[(n− 1)$ + 1]
.

(ii) for x ∈
[

$

n$ + 1
, 1− $

n$ + 1

]
⇔ ϕn(x) = ϕ(x) ≥ E,

U$
n(|t− x|3; x)

ϕ3
n(x)

≤
($ + 1)√$c$

(n$ + 1)3/2 .

In general

U$
n(|t− x|3; x)

ϕ3
n(x)

≤
$2d$

(n$ + 1)
√

$[(n− 1)$ + 1]
+

$($ + 1)√c$

(n$ + 1)
√

$(n$ + 1)

≤
$2d$ + $($ + 1)√c$

(n$ + 1)
√

$[(n− 1)$ + 1]
=

C($)
(n$ + 1)

√
$[(n− 1)$ + 1]

.

Returning to (3.42) we can write

|In( f ; x)| ≤ C($)
(n$ + 1)

√
$[(n− 1)$ + 1]

M(g, x).

We now recall an inequality about maximal functions given in [98, Theorem 1 (c)]

||M(g, ·)||p ≤ C(p)||g||p, for 1 < p ≤ ∞.

Therefore

||In( f ; x)||p ≤ C(p)
C($)

(n$ + 1)
√

$[(n− 1)$ + 1]
||ϕ3

n f ′′′||p

≤ C(p)C($)

{
||ϕ3 f ′′′||p

(n$ + 1)
√

$[(n− 1)$ + 1]
+

$[(n− 1)$ + 1]
(n$ + 1)4 || f ′′′||p

}
.
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3.8 Approximation by powers of U$
n

Remark 3.7.2. For the particular case $ → ∞, namely for the Bernstein operator (3.40)
becomes:∣∣∣∣∣∣∣∣Bn f − f − 1

2n
ϕ2 f ′′

∣∣∣∣∣∣∣∣
p
≤ C(p)(7 +

√
5)
{

1
n
√

n− 1
||ϕ3 f ′′′||p +

n− 1
n4 || f

′′′||p
}

.

A similar result was proved by Ditzian and Ivanov in [22, Lemma 8.3], namely:∣∣∣∣∣∣∣∣Bn f − f − 1
2n

ϕ2 f ′′
∣∣∣∣∣∣∣∣

∞
≤ n−3/2||ϕ3 f ′′′||∞.

If we compare the two inequalities we notice that what we gained through generality we lost
in precision, but still we can see that in both cases the order of approximation is the same:
O(n−3/2).

Remark 3.7.3. For the particular case $ = 1, namely for the genuine Bernstein-Durrmeyer
operator (3.40) becomes:∣∣∣∣∣∣∣∣Un f − f − 1

n + 1
ϕ2 f ′′

∣∣∣∣∣∣∣∣
p
≤ C(p)(12 + 2

√
30)

{
1

(n + 1)
√

n
||ϕ3 f ′′′||p +

n
(n + 1)4 || f

′′′||p
}

.

We have not found a similar inequality to compare this with. The closest we got is a result
of Parvanov and Popov [72]∣∣∣∣∣∣∣∣Un f − f − 1

n
ϕ2 f ′′

∣∣∣∣∣∣∣∣
∞
≤ 1

2n2 ||ϕ
2(ϕ2 f ′′)′′||∞.

We notice that in this case the function must admit a derivative of order four.

3.8 Approximation by powers of U$
n

3.8.1 Upper and lower inequalities

The operators U$
n are of the form given in [56] for certain general positive linear

operators preserving linear functions, so that we can apply the general results pro-
vided there for iterates of such operators. We have namely

U$
n(e2; x) =

(
1− $ + 1

n$ + 1

)
x2 +

$ + 1
n$ + 1

x,

Hence an application of Theorem 6 as well as of Corollaries 7, 8 and 10 in [56] (with
the coefficient of x2 in the above an = 1− $+1

n$+1 ) yields the following statements.

Corollary 3.8.1. Let ϕ(x) =
√

x(1− x) and let Φ : [0, 1]→ R be a function such that Φ2

is concave. Then for n, k ∈ N, f ∈ C[0, 1] and x ∈ [0, 1] the following pointwise estimate
holds for the iterates of U$

n

|[U$
n]k( f ; x)− f (x)| ≤ 2 · KΦ

2

 f ;
ϕ2(x)
Φ2(x)

·
1− (1− $+1

n$+1 )k

2

 .
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n

Corollary 3.8.2. Let Φ : [0, 1]→ R be an admissible step–weight function of the Ditzian–
Totik modulus and such that Φ2 is concave. Then for all n, k ∈ N, f ∈ C[0, 1] and
x ∈ [0, 1], we have

|[U$
n]k( f ; x)− f (x)| ≤ c ·ωΦ

2

 f ;
ϕ(x)
Φ(x)

·

√
1− (1− $+1

n$+1 )k

2

 ,

where the constant c depends only on the function Φ.
In particular, for Φ = ϕλ, λ ∈ [0, 1], x ∈ [0, 1] we get

|[U$
n]k( f ; x)− f (x)| ≤ c ·ωϕλ

2

 f ; ϕ1−λ(x) ·

√
1− (1− $+1

n$+1 )k

2

 .

In terms of the classical modulus of smoothness we have

Corollary 3.8.3. For all f ∈ C[0, 1], n, k ∈ N, x ∈ [0, 1], and each h > 0 we have the
following pointwise estimate

|[U$
n]k( f ; x)− f (x)| ≤

[
1 +

1
2h2 ·

(
1− (1− $ + 1

n$ + 1
)k
)
· x(1− x)

]
·ω2( f ; h).

Taking, in particular, h =
√(

1− (1− $+1
n$+1 )k

)
· x(1− x), and h =

√
1− (1− $+1

n$+1 )k,

yields

|[U$
n]k( f ; x)− f (x)| ≤ 3

2
·ω2

(
f ;

√(
1− (1− $ + 1

n$ + 1
)k
)
· x(1− x)

)
, and

‖[U$
n]k f − f ‖ ≤ 9

8
·ω2

(
f ;

√
1− (1− $ + 1

n$ + 1
)k

)
,

respectively.

Furthermore, in terms of the second order Ditzian–Totik modulus we get

Corollary 3.8.4. For all f ∈ C[0, 1], n, k ∈ N, and h ∈
(
0, 1

2

]
there holds the uniform

estimate

‖[U$
n]k f − f ‖ ≤

[
1 +

3
2h2 ·

(
1− (1− $ + 1

n$ + 1
)k
)]
·ωϕ

2 ( f ; h).

For the particular choice h =
√

1− (1− $+1
n$+1 )k, this gives

‖[U$
n]k f − f ‖ ≤ 5

2
·ωϕ

2

(
f ;

√
1− (1− $ + 1

n$ + 1
)k

)
.

Remark 3.8.5. Note that for n ∈ N, and 0 < $ < ∞, one has 0 ≤ 1− $ + 1
n$ + 1

< 1

and 1− $ + 1
n$ + 1

→ 1, for n → ∞, so, for k fixed the results in the above imply uniform

convergence as n→ ∞. For n fixed and k→ ∞ one has [U$
n]k → B1 f (see [46]).
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3.8 Approximation by powers of U$
n

Applying the general results given above for k = 1 (no iterates) we get the fol-
lowing direct estimates, which supplement the corresponding results given by R.
Păltănea [75, Theorem 2.3].

Corollary 3.8.6. Let ϕ(x) =
√

x(1− x) and let Φ : [0, 1] → R be an admissible step–
weight function of the Ditzian–Totik modulus such that Φ2 is concave. Then for f ∈ C[0, 1]
and x ∈ [0, 1] the following estimates hold for U$

n:

|U$
n( f ; x)− f (x)| ≤ 2 · KΦ

2

(
f ;

ϕ2(x)
Φ2(x)

· $ + 1
2(n$ + 1)

)
and

|U$
n( f ; x)− f (x)| ≤ c ·ωΦ

2

(
f ;

ϕ(x)
Φ(x)

·
√

$ + 1
2(n$ + 1)

)
,

where the constant c depends only on the function Φ.
In particular, for Φ = ϕλ, λ ∈ [0, 1], x ∈ [0, 1] we get

|U$
n( f ; x)− f (x)| ≤ c ·ωϕλ

2

(
f ; ϕ1−λ(x) ·

√
$ + 1

2(n$ + 1)

)
.

Furthermore, in terms of the second order Ditzian–Totik modulus with h =
√

$+1
n$+1 respec-

tively h =
√

1
n$+1 , one has the uniform estimates

||U$
n( f ; x)− f (x)|| ≤ 5

2
·ωϕλ

2

(
f ;

√
$ + 1

n$ + 1

)
,

||U$
n( f ; x)− f (x)|| ≤ 5 + 3$

2
·ωϕλ

2

(
f ;

√
1

n$ + 1

)
.

In terms of the classical modulus of smoothness we get for the particular choices h =√
$+1

n$+1 x(1− x) respectively h =
√

x(1−x)
n$+1 the local estimates

|U$
n( f ; x)− f (x)| ≤ 3

2
·ω2

(
f ;

√
$ + 1

n$ + 1
x(1− x)

)
,

|U$
n( f ; x)− f (x)| ≤ 3 + $

2
·ω2

(
f ;

√
x(1− x)
n$ + 1

)
,

and for h =
√

$+1
n$+1 respectively h =

√
1

n$+1 the global estimates

|U$
n( f ; x)− f (x)| ≤ 9

8
·ω2

(
f ;

√
$ + 1

n$ + 1

)
, (3.43)

|U$
n( f ; x)− f (x)| ≤ 9 + $

8
·ω2

(
f ;

√
1

n$ + 1

)
. (3.44)
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Remark 3.8.7. The reason we choose two different representations for h is that one case is
better suited for the instance when $ → ∞, and the other for small values of $. However
these are not the only choices available. One can manipulate h in order to get the best possible
estimate.

Concerning the magnitude of the constants appearing in inequalities like (3.44),
we show

Theorem 3.8.8. The best possible constant c in the uniform estimate

|U$
n( f ; x)− f (x)| ≤ c ·ω2

(
f ;

√
1

n$ + 1

)
. (3.45)

cannot be smaller than 1 for 1 ≤ $ < ∞.

Proof. Recall that for convex functions f ∈ C[0, 1] one has U$
n ≥ f and Bn f ≥ f .

Moreover, according to Lemma 3.1.2, it holds U$
n f ≥ Bn f , thus

0 ≤ Bn f (x)− f (x) ≤ U$
n f (x)− f (x), x ∈ [0, 1],

implying
||Bn f − f || ≤ ||U$

n f − f ||.

Let now n and $ be fixed, 0 < ε < 1
n$ , and consider the convex function

fε(x) =
{

0, 0 ≤ x ≤ 1− ε,
1
ε x + 1− 1

ε , 1− ε < x ≤ ε.

We have

Bn fε(x) =
n−1

∑
k=0

pn,k(x) fε

(
k
n

)
+ xn · fε(1) = xn,

thus

||Bn fε − fε|| = max
x∈[0,1]

(Bn fε(x)− fε(x)) = Bn fε(1− ε)− fε(1− ε) = (1− ε)n.

Next we compute

ω2

(
fε;

1√
n$ + 1

)
= sup

|h|≤ 1√
n$+1

x±h∈[0,1]

| fε(x− h)− 2 fε(x) + fε(x + h)| = fε(1) = 1,

since the largest possible value for the second order difference is obtained for x =
1− ε, h = ε(< 1

n$ ≤
1√

n$+1
). Hence, there holds

||Bn fε − fε||

ω2

(
fε;

1√
n$ + 1

) ≤ (1− ε)n.
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n

Assume that there exists a constant a such that
||Bn fε − fε||

ω2

(
fε;

1√
n$ + 1

) ≤ a < 1.

This gives (1− ε)n ≤ a < 1. With n fixed, we let ε → 0, and obtain a contradiction
(lim
ε→0

(1− ε)n < 1). Thus

‖Bn fε − fε‖ ≤ c1 ·ω2

(
fε;

√
1

n$ + 1

)
with c1 ≥ 1.

Since
||Bn fε − fε|| ≤ ||U$

n fε − fε||,
it follows that

||U$
n fε − fε|| ≤ c ·ω2

(
fε;

√
1

n$ + 1

)
, with c ≥ 1,

so for the best constant in (3.45) it also holds c ≥ 1.

We apply now the results of Corollaries 13 – 16 in [56] for iterates of U$
n. This

shows that lower inequalities in terms of the classical moduli, corresponding to the
upper ones in the above, are not possible. More precisely, for k ∈N fixed, we have

Corollary 3.8.9. Lower inequalities of the form

C( f )ω2

(
f ;

√
1− (1− $ + 1

n$ + 1
)k

)
≤ ‖[U$

n]k( f )− f ‖ for all f ∈ C[0, 1]

do not hold.

Corollary 3.8.10. The lower pointwise estimates

C( f )ω2

(
f ;

√(
1− (1− $ + 1

n$ + 1
)k
)

x(1− x)

)
≤ |[U$

n]k( f ; x)− f (x)| for f ∈ C[0, 1]

do not hold.

Corollary 3.8.11. Let 0 < λ ≤ 1 be fixed. The lower pointwise estimates

C( f )ω2

 f ; ϕ1−λ(x)

√
1− (1− $+1

n$+1 )k

2

 ≤ |[U$
n]k( f ; x)− f (x)|, f ∈ C[0, 1],

do not hold.

Moreover, we have

Corollary 3.8.12. For l ≥ 3 it is not possible to have an inequality of the type

C( f ) ·ωl

(
f ; l

√
1− (1− $ + 1

n$ + 1
)k

)
≤ ‖[U$

n]k( f )− f ‖

for all f ∈ C[0, 1] and all n ∈N.
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3.8.2 Applications using the eigenstructure

By Theorem 3.4.2,

(U$
n)i f =

n

∑
k=0

(λ
(n)
$,k )i p(n)

$,k µ
(n)
$,k ( f ), f ∈ C[0, 1], i = 1, 2, .... (3.46)

The linear function B1( f ; x) = f (0)(1− x) + f (1)x is the uniform limit of the overit-
erated operator images (U$

n)i f , as i → ∞ according to [46, Remark 3.2]. More gen-
erally we have

Corollary 3.8.13. Suppose (gj)j≥1 is a sequence of polynomials with gj(0) = 0 and

lim
j→∞

gj(λ
(n)
$,k ) = G($, k, n), k = 0, 1, ..., n.

Then

lim
j→∞

(gj(U$
n)) f =

n

∑
k=0

G($, k, n)p(n)
$,k µ

(n)
$,k ( f ), (3.47)

the convergence being uniform.

Proof. By using (3.46) we get

(gj(U$
n)) f =

n

∑
k=0

gj(λ
(n)
$,k )p(n)

$,k µ
(n)
$,k ( f ), f ∈ C[0, 1], j = 1, 2, ....

Letting j→ ∞ yields (3.47).

Lemma 3.8.14. Suppose that jn is a sequence of positive integers with

lim
n→∞

jn
n

= t,

then
lim
n→∞

(λ
(n)
$,k )jn = e−

k(k−1)
2 ( 1

$ +1)t, for all k, 0 ≤ t < ∞, (3.48)

and
lim
n→∞

(λ
(n)
$,k )jn = 0, for all k ≥ 2, t = ∞. (3.49)

Proof. Let

yn = (λ
(n)
$,k )jn−nt =

[(
1 + 1

n$

)−1
...
(

1 + k−1
n$

)−1 (
1− 1

n

)
...
(

1− k−1
n

)]jn−nt

.

Then

log yn = (jn − nt)

[
log
(

1 +
1

n$

)−1

+ ... + log
(

1 +
k− 1

n$

)−1

+

+ log
(

1− 1
n

)
+ ... + log

(
1− k− 1

n

)]
=

(
jn
n
− t
)(
− k(k− 1)

2
$ + 1

$
+ O

(
1
n

))
→ 0, n→ ∞.
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Therefore
lim
n→∞

(λ
(n)
$,k )jn−nt = lim

n→∞
yn = 1. (3.50)

But

lim
n→∞

(λ
(n)
$,k )nt = lim

n→∞

(
1 + 1

n$

)−nt
...
(

1 + k−1
n$

)−nt (
1− 1

n

)nt
...
(

1− k−1
n

)nt

= e−
k(k−1)

2 ( 1
$ +1)t.

(3.51)

Combining (3.50) and (3.51) gives (3.48). For t→ ∞ we obtain (3.49).

Corollary 3.8.15. Suppose that

lim
n→∞

jn
n

= t.

Then for 0 ≤ t < ∞,

lim
n→∞

(U$
n)jn f =

s
∑

k=0
e−

k(k−1)
2 ( 1

$ +1)t p∗k µ∗k ( f )

=
∞
∑

k=0
e−

k(k−1)
2 ( 1

$ +1)t p∗k µ∗k ( f ), for all f ∈ Πs,
(3.52)

and for t = ∞,

lim
n→∞

(U$
n)jn f = B1 f =

1

∑
k=0

p∗k µ∗k ( f ), for all f ∈ Π. (3.53)

The convergence in (3.52) and (3.53) is uniform.

Proof. Suppose that f ∈ Πs. Since U$
n is degree reducing, (3.46) gives

(U$
n)jn f =

s

∑
k=0

(λ
(n)
$,k )jn p(n)

$,k µ
(n)
$,k ( f ), n ≥ s.

Take the limit as n → ∞ in the above and use Lemma 3.8.14, Theorem 3.4.5 and
Theorem 3.4.6 to obtain (3.53) and the first equality in (3.52). The second equality in
(3.52) follows from (4.19) in [18].

3.9 The difference U$
n −Uσ

n

A first approach in order to study this difference is based on a method presented in
[43]. We need the following result from that paper :

Theorem 3.9.1. Let A, B : C[0, 1]→ C[0, 1] be positive linear operators such that

(A− B)((e1 − x)i)(x) = 0 for i = 0, 1, . . . , n and x ∈ [0, 1],

also satisfying Ae0 = Be0 = e0. Then for all f ∈ C[0, 1], x ∈ [0, 1] we have

|(A− B)( f )(x)| ≤ c1 ·ωn+1

(
f ;

√
1
2
(A + B)(|e1 − x|n+1)(x)

)
.

Here c1 is an absolute constant independent of f , x and A and B, and ωn+1( f , ·) denotes
the (n + 1)-st order modulus of smoothness.
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We choose A = U$
n and B = Uσ

n . Both operators reproduce linear functions so we
have

(U$
n −Uσ

n )((e1 − x)i)(x) = 0 for i = 0, 1, x ∈ [0, 1].

We recall equation (3.17), which states that the second moments for U$
n and Uσ

n are
given by

Mt
n,2(x) =

(t + 1)x(1− x)
nt + 1

where t = $, σ. As a consequence of Theorem 3.9.1 the following statement holds:

Proposition 3.9.2.

|(U$
n −Uσ

n )( f )(x)| ≤ c1 ·ω2

(
f ;

√
1
2
(U$

n + Uσ
n )(|e1 − x|2)(x)

)

≤ c1 ·ω2

(
f ;

√
1
2

2n$σ + (n + 1)($ + σ) + 2
(n$ + 1)(nσ + 1)

x(1− x)

)
.

Another approach is described in the sequel. Consider the Beta-type operator
B−1,−1

r as given in Definition 1.3.1. It is not difficult to see that

U$
n = Bn ◦ B−1,−1

n$ , (3.54)

where Bn : C[0, 1] → Πn is the classical Bernstein operator. Taking into considera-
tion Lemma 1.3.4 we are in a position to state

Theorem 3.9.3. Let f ∈ C[0, 1], n ≥ 1, $ > 0, σ > 0. Then

|(U$
n −Uσ

n ) f (x)| ≤ 9
4

ω2

(
f ;

√
(n− 1)|σ− $|

(n$ + 1)(nσ + 1)
x(1− x)

)
,

where ω2 is the second order modulus of smoothness.

Proof. Suppose that 0 < $ < σ and set r := n$, s := nσ. According to (1.21), we have
for each convex function g ∈ C[0, 1],

B−1,−1
n$ g ≥ B−1,−1

nσ g.

This entails
Bn(B−1,−1

n$ g) ≥ Bn(B−1,−1
nσ g). (3.55)

Now (3.54) and (3.55) yield

U$
ng ≥ Uσ

n g, g ∈ C[0, 1] convex. (3.56)

Let x ∈ [0, 1] be fixed. Consider the functional Φ : C[0, 1]→ R,

Φ( f ) := U$
n f (x)−Uσ

n f (x), f ∈ C[0, 1].

The linear functional Φ is bounded on C[0, 1] endowed with the uniform norm;
moreover, Φ is different from 0, and according to (3.56),

Φ(g) ≥ 0, g ∈ C[0, 1] convex.
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3.10 The commutators [U$
n; Uσ

n ] and [U$
m; U$

n]

By a result of T. Popoviciu [79] (see also [82]) it follows that for each f ∈ C[0, 1] there
exist distinct points t0, t1, t2 in [0, 1] such that

Φ( f ) = Φ(e2)[t0, t1, t2; f ], (3.57)

where [t0, t1, t2; f ] is the divided difference of the function f on the nodes t0, t1, t2.
According to [45],

U$
ne2(x) = x2 +

$ + 1
n$ + 1

x(1− x),

so that

Φ(e2) = U$
ne2(x)−Uσ

n e2(x) =
(n− 1)(σ− $)

(n$ + 1)(nσ + 1)
x(1− x).

On the other hand, if g ∈ C2[0, 1], then

[t0, t1, t2; g] =
1
2

g′′(ξ)

for some ξ ∈ [0, 1]. Thus (3.57) leads to

U$
ng(x)−Uσ

n g(x) =
(n− 1)(σ− $)

(n$ + 1)(nσ + 1)
x(1− x)

g′′(ξ)
2

, g ∈ C2[0, 1].

This entails

|U$
ng(x)−Uσ

n g(x)| ≤ (n− 1)(σ− $)
2(n$ + 1)(nσ + 1)

x(1− x)||g′′||∞, g ∈ C2[0, 1].

As a consequence of Theorem 1.1.19 and Corollary 1.1.20,

for h2 =
(n− 1)(σ− $)

(n$ + 1)(nσ + 1)
x(1− x), α = 2 and β2 =

h2

2
we obtain

|(U$
n −Uσ

n )( f )(x)| ≤
(

2 · 3
4

+
1
2
· 3

2

)
ω2

(
f ;

√
(n− 1)|σ− $|

(n$ + 1)(nσ + 1)
x(1− x)

)

≤ 9
4

ω2

(
f ;

√
(n− 1)|σ− $|

(n$ + 1)(nσ + 1)
x(1− x)

)
.

Remark 3.9.4. The presence on the difference |σ − $| in Theorem 3.9.3 allows us to state
that the estimation given there is much better then the one given in Proposition 3.9.2.

3.10 The commutators [U$
n; Uσ

n ] and [U$
m; U$

n]

The problem of studying the commutator [A; B] := AB− BA of two positive linear
operators A and B was raised by A. Lupaş in [63]. Some answers to Lupaş’s problem
can be found in [44]. Here we shall study the commutators [U$

n; Uσ
n ] and [U$

m; U$
n].

First of all, we need information about the moments of the investigated operators.
Let M$

n,j(x) := U$
n(e1 − xe0)j(x), be the j-th moment of U$

n.
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By using the recurrence formula for the moments given by (3.16) it is not difficult to
prove by induction on j that

M$
n,j(x) = O

(
n−[ j+1

2 ]
)

(3.58)

uniformly with respect to x ∈ [0, 1]. Now let

M$,σ
n,r (x) := U$

nUσ
n (e1 − xe0)r(x)

be the r-th moment of U$
nUσ

n . According to [47, Theorem 4],

M$,σ
n,r (x) = ∑

i,k≥0
i+k=r

r

∑
j=k

(
r
k

)
1

(j− k)!
M$

n,j(x)(Mσ
n,i(x))(j−k). (3.59)

Combining (3.58) and (3.59) (see also [47, Corollary 1]), we get

M$,σ
n,r (x) = O

(
n−[ r+1

2 ]
)

uniformly with respect to x ∈ [0, 1]. Now by a result of P.C. Sikkema [91] we have

U$
nUσ

n f (x) =
6

∑
r=0

f (r)(x)
r!

M$,σ
n,r (x) + o(n−3)

uniformly with respect to x ∈ [0, 1], for each f ∈ C6[0, 1]. It follows that for f ∈
C6[0, 1],

(U$
nUσ

n −Uσ
n U$

n) f (x) =
6

∑
r=0

f (r)(x)
r!

(M$,σ
n,r (x)−Mσ,$

n,r (x)) + o(n−3). (3.60)

A combination of hand calculations and MAPLE shows that

M$,σ
n,r (x)−Mσ,$

n,r (x) = 0, r = 0, 1, 2, 3, (3.61)

lim
n→∞

n3(M$,σ
n,4(x)−Mσ,$

n,4(x)) =
(σ− $)($ + 1)(σ + 1)

$2σ2 x(1− x), (3.62)

lim
n→∞

n3(M$,σ
n,r (x)−Mσ,$

n,r (x)) = 0, r = 5, 6, (3.63)

uniformly with respect to x ∈ [0, 1]. From (3.60)-(3.63) we derive

Theorem 3.10.1. For each f ∈ C6[0, 1] one has

lim
n→∞

n3(U$
nUσ

n −Uσ
n U$

n) f (x) =
(σ− $)($ + 1)(σ + 1)

$2σ2 x(1− x) f (4)(x),

uniformly with respect to x ∈ [0, 1].

In particular, we see that U$
n and Uσ

n do not commute if $ 6= σ. On the other hand
it is well known (see [31]) that U1

n and U1
m (i.e., the genuine Bernstein-Durrmeyer

operators) do commute. A combination of hand calculations and MAPLE shows
that

(U$
mU$

n −U$
nU$

m)er(x) = 0, r = 0, 1, 2, 3,

and

(U$
mU$

n −U$
nU$

m)e4(x) =
$3($− 1)($ + 1)2(m− 1)(n− 1)(n−m)

(m$ + 1)(m$ + 2)(m$ + 3)(n$ + 1)(n$ + 2)(n$ + 3)
.

We see that U$
m and U$

n do not commute if $ 6= 1, m 6= 1, n 6= 1 and m 6= n.

86



3.11 The behavior of U$
n with respect to Lipschitz classes of order m

3.11 The behavior of U$
n with respect to Lipschitz classes of

order m

Fix an integer m ≥ 0 and M > 0. We say that a function f ∈ C[0, 1] belongs to the
Lipschitz class Lipm(M) if

|∆m
h f (x)| ≤ Mhm

for all x ∈ [0, 1] and h > 0 such that x + mh ∈ [0, 1]; ∆m
h f (x) stands for the m-th order

difference of f with step h at x. According to [10, Proposition 2.1], f ∈ Lipm(M) if

and only if
M
m!

em ± f are m- convex functions.

Theorem 3.11.1. If f ∈ Lipm(M), then for all n ≥ 1, $ > 0,

U$
n f ∈ Lipm

(
M$mn(n− 1) · ... · (n−m + 1)

m!(n$)(n$ + 1) · ... · (n$ + m− 1)

)
.

Proof. Let f ∈ Lipm(M). Then
M
m!

em ± f are m-convex functions, so that

M
m!

U$
nem ±U$

n f

are m-convex functions. Since

U$
nem(x) =

$mn(n− 1) · ... · (n−m + 1)
(n$)(n$ + 1) · ... · (n$ + m− 1)

xm + terms of lower degree,

we deduce that

M
m!
· $mn(n− 1) · ... · (n−m + 1)
(n$)(n$ + 1) · ... · (n$ + m− 1)

em ±U$
n f

are m-convex functions.
This means that U$

n f belongs to the class

Lipm

(
M$mn(n− 1) · ... · (n−m + 1)

m!(n$)(n$ + 1) · ... · (n$ + m− 1)

)
.

Let now M > 0 and 0 < γ ≤ 1. Define

Lip(γ, M) := { f ∈ C[0, 1] : | f (x)− f (y)| ≤ M|x− y|γ, x, y ∈ [0, 1]},

and remark that Lip(1, M) = Lip1(M). Let ω be the usual modulus of continuity.

Theorem 3.11.2. For all n ≥ 1 and $ > 0,

a) ω(U$
n f , δ) ≤ 2ω( f , δ), f ∈ C[0, 1], δ > 0;

b) U$
n(Lip(γ, M)) ⊂ Lip(γ, M).

Proof. According to Theorem 3.11.1, U$
n(Lip1(M)) ⊂ Lip1(M), hence

U$
n(Lip(1, M)) ⊂ Lip(1, M). Now the statements a) and b) follow from [7, Corollary

6 and 7].
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3.12 Lagrange-type operators associated with U$
n

We will present the relationship between the U$
n operators and some Lagrange-type

operators, using their eigenstructure, thus extending in a natural way results known
for Lagrange interpolation (see [95, p.116-126]).

3.12.1 A first description of L$
n

Let $ > 0 and n ≥ 1 be fixed. Consider the functionals F$
n,k : C[0, 1] → R, k =

0, 1, ..., n, defined by

F$
n,0( f ) = f (0), F$

n,n−1( f ) = f (1),

F$
n,k( f ) =

1∫
0

tk$−1(1− t)(n−k)$−1

B(k$, (n− k)$)
f (t)dt, k = 1, ..., n− 1.

Remember that the operator U$
n : C[0, 1]→ Πn is given by

U$
n( f ; x) :=

n

∑
k=0

F$
n,k( f )pn,k(x), f ∈ C[0, 1],

where pn,k(x) = (n
k)xk(1− x)n−k, x ∈ [0, 1]. With a slight abuse of notation consider

also the operator U$
n : Πn → Πn. Its eigenvalues λ

(n)
n,k and eigenfunctions p(n)

n,k , k =
0, 1, ..., n, are described in Section 3.4; in particular,

1 = λ
(n)
$,0 = λ

(n)
$,1 > λ

(n)
$,2 > λ

(n)
$,3 > ... > λ

(n)
$,n > 0,

which means that U$
n : Πn → Πn is invertible. Consider the inverse operator

(U$
n)−1 : Πn → Πn (note the domain of definition here!) and define L$

n : C[0, 1] →
Πn by

L$
n = (U$

n)−1 ◦U$
n. (3.64)

Then U$
n(L$

n f ) = U$
n( f ), f ∈ C[0, 1], which leads to

F$
n,k(L$

n f ) = F$
n,k( f ), f ∈ C[0, 1], k = 0, 1, ..., n. (3.65)

(3.65) expresses an interpolatory property with respect to the functionals
F$

n,0, ..., F$
n,n; more precisely, given f ∈ C[0, 1], L$

n f is the unique polynomial in Πn

satisfying (3.65). In particular, L$
n p = p, ∀p ∈ Πn. It is known (see [45]) that

lim
$→∞

F$
n,k( f ) = f

(
k
n

)
, f ∈ C[0, 1], k = 0, 1, ..., n. (3.66)

This entails
lim
$→∞

U$
n( f ) = Bn f , uniformly on [0, 1], (3.67)

for all f ∈ C[0, 1]; here Bn denotes the classical Bernstein operator on C[0, 1]. Let Ln
be the Lagrange operator on C[0, 1] based on the nodes 0, 1

n , ..., n−1
n , 1. It is easy to

see that
Ln = B−1

n ◦ Bn, (3.68)
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where

C[0, 1] Bn−−−→ Πn
(Bn)−1

−−−→ Πn.

We will see that
lim
$→∞

L$
n( f ) = Ln f , uniformly on [0, 1], (3.69)

for all f ∈ C[0, 1]. If we interpret (3.67) by saying that U∞
n = Bn, then (3.69) can be

interpreted as L∞
n = Ln. On the other hand, one has according to (3.20)

U$
n f =

n

∑
k=0

λ
(n)
$,k p(n)

$,k µ
(n)
$,k ( f ), f ∈ C[0, 1],

where µ
(n)
$,k are the dual functionals of p(n)

$,k . This leads to

L$
n( f ) = (U$

n)−1(U$
n f ) =

n

∑
k=0

λ
(n)
$,k

1

λ
(n)
$,k

p(n)
$,k µ

(n)
$,k ( f ),

i.e.,

L$
n( f ) =

n

∑
k=0

p(n)
$,k µ

(n)
$,k ( f ), f ∈ C[0, 1]. (3.70)

So the relationship between U$
n and L$

n, expressed by (3.20) and (3.70), is similar to
the relationship between Bn = U∞

n and Ln = L∞
n , described in [18, Section 6].

To conclude this section let us recall that

U$
n = Bn ◦ B−1,−1

n$ .

From (3.64) and (3.68) it follows that

L$
n = (B−1,−1

n$ )−1 ◦ Ln ◦ B−1,−1
n$ , $ > 0, (3.71)

i.e., the operators L$
n and Ln are similar.

3.12.2 A concrete approach to L$
n

In order to obtain other representations of the operators L$
n we shall use a classical

method described, for example, in [81, Section 1.2], [20], [67, Section 1.3]. Let n ≥
1, $ > 0 and f ∈ C[0, 1] be fixed. Then L$

n f ∈ Πn has the form L$
n f = c0e0 + c1e1 +

... + cnen, where ej(x) = xj, x ∈ [0, 1], j ≥ 0, and cj ∈ R. According to (3.65), the
coefficients c0, ..., cn satisfy the system of equations

L$
n f = c0e0 + c1e1 + ... + cnen

F$
n,0( f ) = c0F$

n,0(e0) + c1F$
n,0(e1) + ... + cnF$

n,0(en)
...
F$

n,n( f ) = c0F$
n,n(e0) + c1F$

n,n(e1) + ... + cnF$
n,n(en).

By eliminating c0, ..., cn, we get∣∣∣∣∣∣∣∣
L$

n f e0 e1 ... en
F$

n,0( f ) F$
n,0(e0) F$

n,0(e1) ... F$
n,0(en)

... .... ... ... ...
F$

n,n( f ) F$
n,n(e0) F$

n,n(e1) ... F$
n,n(en)

∣∣∣∣∣∣∣∣ = 0. (3.72)
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Since F$
n,i(em) =

(i$)m

(n$)m , from (3.72) we get after elementary computations:

L$
n f = −V(0,

1
n

, ...,
n− 1

n
, 1)−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 e0
(n$)1

(n$)
e1 ...

(n$)n

(n$)n en

F$
n,0( f ) 1

(0$)1

(n$)
...

(0$)n

(n$)n

F$
n,1( f ) 1

(1$)1

(n$)
...

(1$)n

(n$)n

... .... ... ... ...

F$
n,n( f ) 1

(n$)1

(n$)
...

(n$)n

(n$)n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(3.73)

where V is the Vandermonde determinant. Now we are in the position to prove
(3.69).

Theorem 3.12.1. For each f ∈ C[0, 1] we have

lim
$→∞

L$
n f = Ln f , uniformly on [0, 1].

Proof. Let us remark that

lim
$→∞

(j$)k

(n$)k =
(

j
n

)k

. (3.74)

From (3.66), (3.73), and (3.74) we deduce

lim
$→∞

L$
n f = −V

(
0,

1
n

, ...,
n− 1

n
, 1
)−1

∣∣∣∣∣∣∣∣∣∣∣∣

0 e0 e1 ... en
f (0) 1 0 ... 0
f ( 1

n ) 1 1
n ... ( 1

n )n

... .... ... ... ...
f ( n−1

n ) 1 n−1
n ... ( n−1

n )n

f (1) 1 1 ... 1

∣∣∣∣∣∣∣∣∣∣∣∣
. (3.75)

Since the right hand-side of (3.75) is Ln f (see, e.g., [95, Section 3.1], [67, Section 1.3].),
the proof is complete.

3.12.3 The associated divided difference

The coefficient of en in the expression of Ln f is the divided difference of f at the
nodes 0, 1

n , ...., n−1
n , 1, and is given by (see e.g. [95, Section 2.6]):[

0,
1
n

, ...,
n− 1

n
, 1; f

]
= V

(
0,

1
n

, ...,
n− 1

n
, 1
)−1

× (3.76)

×

∣∣∣∣∣∣∣∣∣∣

1 0 0 ... 0 f (0)
1 1

n ( 1
n )2 ... ( 1

n )n−1 f ( 1
n )

... .... ... ... ... ...
1 n−1

n ( n−1
n )2 ... ( n−1

n )n−1 f ( n−1
n )

1 1 1 ... 1 f (1)

∣∣∣∣∣∣∣∣∣∣
.

Let us denote by [F$
n,0, F$

n,1, ..., F$
n,n; f ] the coefficient of en in L$

n f .
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Theorem 3.12.2. For each f ∈ C[0, 1] we have

[F$
n,0, F$

n,1, ..., F$
n,n; f ] =

(n$)n

(n$)n V
(

0,
1
n

, ...,
n− 1

n
, 1
)−1

× (3.77)

×

∣∣∣∣∣∣∣∣∣∣∣

1 0 0 ... 0 F$
n,0( f )

1 1
n ( 1

n )2 ... ( 1
n )n−1 F$

n,1( f )
... .... ... ... ... ...
1 n−1

n ( n−1
n )2 ... ( n−1

n )n−1 F$
n,n−1( f )

1 1 1 ... 1 F$
n,n( f )

∣∣∣∣∣∣∣∣∣∣∣
.

Proof. From (3.73) we get immediately

[F$
n,0, F$

n,1, ..., F$
n,n; f ] =

(n$)n

(n$)n V
(
0, 1

n , ..., n−1
n , 1

)−1×

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
(0$)1

n$
...

(0$)n−1

(n$)n−1 F$
n,0( f )

1
(1$)1

n$
...

(1$)n−1

(n$)n−1 F$
n,1( f )

... ... ... ... ...

1
(n$)1

n$
...

(n$)n−1

(n$)n−1 F$
n,n( f )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

=
(n$)n/(n$)n

(n$)
n(n−1)

2 V
(
0, 1

n , ..., n−1
n , 1

)
∣∣∣∣∣∣∣∣∣

1 (0$)1 ... (0$)n−1 F$
n,0( f )

1 (1$)1 ... (1$)n−1 F$
n,1( f )

... ... ... ... ...
1 (n$)1 ... (n$)n−1 F$

n,n( f )

∣∣∣∣∣∣∣∣∣ =

=
(n$)n/(n$)n

(n$)
n(n−1)

2 V
(
0, 1

n , ..., n−1
n , 1

)
∣∣∣∣∣∣∣∣

1 0 ... 0 F$
n,0( f )

1 $ ... $n−1 F$
n,1( f )

... ... ... ... ...
1 n$ ... (n$)n−1 F$

n,n( f )

∣∣∣∣∣∣∣∣
and this leads us to (3.77).

Remark 3.12.3. From (3.66), (3.76) and (3.77) we derive

lim
$→∞

[F$
n,0, F$

n,1, ..., F$
n,n; f ] =

[
0,

1
n

, ...,
n− 1

n
, 1; f

]
for all f ∈ C[0, 1]. Moreover, let f ∈ C[0, 1] and Φn a (Lagrange-type) polynomial with
Φn ∈ Πn, Φn(

j
n ) = F$

n,j( f ), j = 0, ..., n. From (3.76) and (3.77) it is easy to deduce

[F$
n,0, F$

n,1, ..., F$
n,n; f ] =

(n$)n

(n$)n

[
0,

1
n

, ...,
n− 1

n
, 1; Φn

]
.

The last (classical) divided difference can be computed by recurrence; see [95].

Remark 3.12.4. Using (3.70), we see that

µ
(n)
$,n = [F$

n,0, F$
n,1, ..., F$

n,n; ·]. (3.78)

For the Bernstein operator (i.e., for $→ ∞), (3.78) can be found in [18, p.164] .
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Remark 3.12.5. u$
n+1 := en+1− L$

nen+1 is the unique monic polynomial in Πn+1 such that
L$

nu$
n+1 = 0. For example, u∞

n+1 = x(x− 1)(x− 1
n ) · ... · (x− n−1

n ). Moreover, u1
n+1(x) =

x(x − 1)Jn−1(x), where J0(x), J1(x), ... are the monic Jacobi polynomials, orthogonal on
[0, 1] with respect to the weight function x(1− x). Indeed, F1

n,0(u1
n+1) = F1

n,n(u1
n+1) =

0, and
1∫

0
tk−1(1− t)n−k−1u1

n+1(t)dt =
1∫

0
tk−1(1− t)n−k−1t(t − 1)Jn−1(t)dt = 0 (since

for all k = 1, ..., n − 1, tk−1(1− t)n−k−1 is a polynomial of degree n − 2). This implies
F1

n,k(u1
n+1) = 0, k = 1, ..., n− 1, and so L1

n(u1
n+1) = 0.

Now we shall prove a general result.

Theorem 3.12.6. The polynomial u$
n+1 has n + 1 distinct roots in [0, 1].

Proof. By using Remark 3.12.5 and (3.71) we get ((B−1,−1
n$ )−1 ◦ Ln ◦ B−1,−1

n$ )(u$
n+1) =

0, which entails Ln(B−1,−1
n$ u$

n+1) = 0. Now the same Remark 3.12.5 yields

B−1,−1
n$ u$

n+1 =
(n$)n+1

(n$)n+1
u∞

n+1.

So B−1,−1
n$ u$

n+1 has n + 1 distinct roots in [0, 1]. According to [57], u$
n+1 has at least

n + 1 distinct roots in [0, 1]; to finish the proof, it suffices to remark that u$
n+1 is a

polynomial of degree n + 1.

Now let us recall the representation of Ln in terms of the fundamental Lagrange
polynomials:

Ln f (x) =
n

∑
k=0

ln,k(x) f
(

k
n

)
, f ∈ C[0, 1], x ∈ [0, 1].

Using (3.71) we infer that L$
n has a similar representation, namely

L$
n f (x) =

n

∑
k=0

l$
n,k(x)F$

n,k( f ),

where
l$
n,k := (B−1,−1

n$ )−1(ln,k), k = 0, 1, ..., n. (3.79)

Theorem 3.12.7. For each k = 0, 1, ..., n, the polynomial l$
n,k has n distinct roots in [0,1].

Proof. Since, according to (3.79), B−1,−1
n$ (l$

n,k) = ln,k, the proof is similar to that of
Theorem 3.12.6 and we omit it.

In what follows we shall establish mean value theorems for the generalized di-
vided difference and for the remainder R$

n f := f − L$
n.

Theorem 3.12.8. Let n ≥ 1, $ > 0 and f ∈ C[0, 1] be given. Then there exist 0 = t0 <
t1 < .... < tn = 1 such that

R$
n f (ti) = 0, i = 0, 1, ..., n. (3.80)
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Proof. According to (3.65), F$
n,k(R$

n f ) = 0, k = 0, 1, ..., n, i.e.

R$
n f (0) = R$

n f (1) = 0, (3.81)

1∫
0

tk$−1(1− t)(n−k)$−1R$
n f (t)dt = 0, k = 1, ..., n− 1. (3.82)

Set x :=
(

t
1− t

)$

, j := k − 1, and h(x) := R$
n f
(

x1/$

1 + x1/$

)
, x ≥ 0. Then (3.82)

becomes
∞∫

0

(1 + x1/$)−n$xjh(x)dx = 0, j = 0, 1, ..., n− 2. (3.83)

Suppose that the number of the roots of h in (0, +∞) is at most n − 2, i.e. {x ∈
(0, +∞) : h(x) = 0} = {x1, ..., xr}, r ≤ n − 2. Then there exists a polynomial p ∈
Πn−2 such that {x ∈ (0, +∞) : p(x) = 0} ⊂ {x1, ..., xr} and, moreover,

∞∫
0

(1 + x1/$)−n$ p(x)h(x)dx > 0. (3.84)

Obviously (3.84) contradicts (3.83), which means that h has at least n − 1 roots in
(0, +∞). It follows that R$

n f has at least n− 1 roots in (0, 1). Together with (3.81),
this proves the theorem.

Corollary 3.12.9. Let n ≥ 1, $ > 0 and f ∈ Cn[0, 1] be given. Then there exists ξ ∈ (0, 1)
such that

[F$
n,0, F$

n,1, ..., F$
n,n; f ] =

f (n)(ξ)
n!

.

Proof. According to Theorem 3.12.8, R$
n f has at least n + 1 roots in [0, 1]. It follows

that (R$
n f )(n) has at least a root ξ ∈ (0, 1). Thus

0 = (R$
n f )(n)(ξ) = f (n)(ξ)− n![F$

n,0, F$
n,1, ..., F$

n,n; f ],

and the proof is finished.

Let now n ≥ 1, $ > 0 and f ∈ Cn+1[0, 1] be given. Consider the points t0, t1, ..., tn
satisfying (3.80), and let ω(t) = (t− t0) · ... · (t− tn).

Corollary 3.12.10. Let x ∈ [0, 1] \ {t0, t1, ..., tn}. Under the above assumption there exists
ηx ∈ (0, 1) such that

R$
n f (x) = ω(x)

f (n+1)(ηx)
(n + 1)!

.

Proof. Consider the function w(t) = ω(x)R$
n f (t) − ω(t)R$

n f (x), t ∈ [0, 1]. Then
x, t0, ..., tn are roots of w, which means that there exists ηx ∈ (0, 1) such that w(n+1)(ηx) =
0. Now it suffices to remark that w(n+1)(t) = ω(x) f (n+1)(t)− (n + 1)!R$

n f (x).

Corollaries 3.12.9 and 3.12.10 generalize the mean value theorems for the divided
difference and the remainder in classical Lagrange interpolation; see [95, Section
3.1], [67, Section 1.4].
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3.13 Iterated Boolean sums of the operators U$
n

The eigenstructure of U$
n helps describe the convergence behavior of iterated Boolean

sums based on a single mapping U$
n, with $ and n fixed.

For M ≥ 1, let
⊕MU$

n = I − (I −U$
n)M.

be the iterated Boolean sum of U$
n; here I stands for the identity operator on C[0, 1].

Iterated Boolean sums of the classical Bernstein operator and modifications thereof
were investigated by numerous authors in the past, among them G. Mastroianni and
M.R. Occorsio (see [68],[69]). Some historical information on this method which may
be traced to I.P. Natanson can be found in [52]. From a general result of H.J. Wenz
[102, Theorem 2] it follows that lim

M→∞
⊕MU$

n f = L$
n f , f ∈ C[0, 1], n ≥ 1. With the

notation from the preceding sections, we can say more, namely

Theorem 3.13.1. Let n ≥ 2 and f ∈ C[0, 1] be given. Then

lim
M→∞

(1− λ
(n)
$,n )−M(⊕MU$

n f − L$
n f ) = −[F$

n,0, F$
n,1, ..., F$

n,n; f ]p(n)
$,n , (3.85)

uniformly on [0, 1].

Proof. We have, according to (3.20)

⊕MU$
n f = (I − (I −U$

n)M) f =
M

∑
i=1

(−1)i+1
(

M
i

)
(U$

n)i f

=
M

∑
i=1

(−1)i+1
(

M
i

) n

∑
k=0

(λ
(n)
$,k )i p(n)

$,k µ
(n)
$,k ( f )

=
n

∑
k=0

p(n)
$,k µ

(n)
$,k ( f )

M

∑
i=1

(−1)i+1
(

M
i

)
(λ

(n)
$,k )i

=
n

∑
k=0

p(n)
$,k µ

(n)
$,k ( f )(1− (1− (λ

(n)
$,k )M).

Combined with (3.70) this yields

⊕MU$
n f − L$

n f = −
n

∑
k=0

p(n)
$,k µ

(n)
$,k ( f )(1− λ

(n)
$,k )M,

i.e.

(1 − λ
(n)
$,n )−M(⊕MU$

n f − L$
n f ) = −p(n)

$,n µ
(n)
$,n ( f ) −

n−1
∑

k=0
µ

(n)
$,k ( f )µ

(n)
$,k ( f )

1− λ
(n)
$,k

1− λ
(n)
$,n

M

.

Since 0 <
1− λ

(n)
$,k

1− λ
(n)
$,n

< 1, k = 0, ..., n− 1, we get

lim
M→∞

(1− λ
(n)
$,n )−M(⊕MU$

n f − L$
n f ) = −µ

(n)
$,n ( f )p(n)

$,n .

To conclude the proof it suffices to use (3.78).

Remark 3.13.2. For $→ ∞, (3.85) was obtained in [86, Theorem 26.7].
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3.14 The derivatives of U$
n

In this section we show that there is a natural relationship between the derivatives
of the operator images and the divided differences [...; Φn] which we introduced in
Remark 3.12.3.

Theorem 3.14.1. With the usual notation the following relationships hold:

(i) (U$
n( f ; x))′ = n

n−1
∑

k=0
pn−1,k(x)∆1F$

n,k( f ) =
n−1
∑

k=0
pn−1,k(x)

[
k
n

,
k + 1

n
; Φn

]
;

(ii) (U$
n( f ; x))(j) = n(n− 1) · ... · (n− j + 1)

n−j
∑

k=0
pn−j,k(x)∆jF$

n,k( f )

= n(n− 1) · ... · (n− j + 1)
n−j
∑

k=0
pn−j,k(x)

j!
nj

[
k
n

, ...,
k + j

n
; Φn

]
;

(iii) U$
n( f ; x) =

n
∑

k=0
(n

k)∆kF$
n,0( f )ek(x) =

n
∑

k=0
(n

k)
k!
nk

[
0,

1
n

, ...,
k
n

; Φn

]
ek(x);

where as before Φn

(
k
n

)
= F$

n,k( f ).

Proof. (i) The forward difference was defined in [45, p. 792] by:

∆jF$
n,k( f ) =

j

∑
i=0

(
j
i

)
(−1)i+jF$

n,k+i( f ).

Thus we have[
k
n

,
k + 1

n
; Φn

]
=

Φn( k+1
n )−Φn( k

n )
k+1

n −
k
n

= n[F$
n,k+1( f )− F$

n,k( f )] = n∆1F$
n,k( f );

(ii) The first equality can be found in [45, p. 792]. It remains to show that

∆jF$
n,k( f ) =

j!
nj

[
k
n

, ...,
k + j

n
; Φn

]
.

We have that ∆j+1F$
n,k( f ) = ∆(∆jF$

n,k( f )) = ∆jF$
n,k+1( f ) − ∆jF$

n,k( f ). By using the
recurrence formula for divided differences (see e.g. [95, p.104]) we get:

∆jF$
n,k+1( f )−∆jF$

n,k( f ) =
j!
nj ·

j + 1
n
·

[
k+1

n , ..., k+j+1
n ; Φn

]
−
[

k
n , ..., k+j

n ; Φn

]
k+j+1

n − k
n

=
(j + 1)!

nj+1

[
k
n

, ...,
k + j + 1

n
; Φn

]
= ∆j+1F$

n,k( f ).

(iii) We apply Taylor’s formula to U$
n of degree n

U$
n( f ; x) =

n

∑
j=0

(U$
n f )(j)(0)

j!
xk

and show that (U$
n( f ; x))(j) = n(n− 1) · ... · (n− j + 1)∆jF$

n,0( f ). To this end we take

x = 0 in (ii); because pn−j,0(0) = 1 and for all k ≥ 1, pn−j,k(0) = 0, from
n−j
∑

k=0
only the

first term remains, which concludes the proof.
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Remark 3.14.2. In the case $ → ∞ we can find the analogues of the above relationships in
[95, p. 300-302].

3.15 Asymptotic formula

Here we present first two asymptotic formulae for higher order moments of U$
n in

order to arrive at Voronovskaya-type results.

Theorem 3.15.1. The following proposition

(Pl) :


lim
n→∞

nl M$
n,2l(x) = (2l − 1)!!

(
$ + 1

$

)l

Xl

lim
n→∞

nl M$
n,2l−1(x) = Xl−1X′(l − 1)!2l−2 ($ + 1)l−1

$l ($ + 2)
l−1
∑

k=1

(2k− 1)!!
(2k− 2)!!

(3.86)
holds true for all l ≥ 1. The convergence is uniform on [0, 1].

Proof. We shall prove the proposition by induction on l ≥ 1. M$
n,1 and M$

n,2 are
given Corollary 3.3.2, and it is easy to prove that (P1) is true. Suppose that (Pl) is
true. According to (3.16) and (3.86)

lim
n→∞

nl+1M$
n,2l+1(x) = lim

n→∞
nl+1 2l($ + 1)X

n$ + 2l
M$

n,2l−1(x) + lim
n→∞

nl+1 2lX′

n$ + 2l
M$

n,2l(x)

+ lim
n→∞

nl+1 $X
n$ + 2l

(M$
n,2l(x))′

=
2l($ + 1)X

$
Xl−1X′(l − 1)!2l−2 ($ + 1)l−1

$l ($ + 2)
l−1

∑
k=1

(2k− 1)!!
(2k− 2)!!

+

+
2lX′

$
(2l − 1)!!

(
$ + 1

$

)l

Xl + X(2l − 1)!!
(

$ + 1
$

)l

Xl−1X′l

= XlX′l!2l−1 ($ + 1)l

$l+1 ($ + 2)
l

∑
k=1

(2k− 1)!!
(2k− 2)!!

and this proves the second formula in (3.86) for l + 1. Similarly,

lim
n→∞

nl+1M$
n,2l+2(x) = lim

n→∞
nl+1 (2l + 1)($ + 1)X

n$ + 2l + 1
M$

n,2l(x) +

+ lim
n→∞

nl+1 (2l + 1)X′

n$ + 2l + 1
M$

n,2l+1(x) + lim
n→∞

nl+1 $X
n$ + 2l + 1

(M$
n,2l+1(x))′

=
(2l + 1)($ + 1)X

$
(2l − 1)!!

(
$ + 1

$

)l

Xl =
(

$ + 1
$

)l+1

(2l + 1)!!Xl+1,

which is the first formula in (3.86) for l + 1. This concludes the proof by induction
on l.

Remark 3.15.2. In the proof above we have used the fact that M$
n,2l ∈ Π2l for all n ≥ 1.

Together with the first formula in (3.86) this means that

lim
n→∞

nl(M$
n,2l(x))′ = (2l − 1)!!

(
$ + 1

$

)l

(Xl)′.
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As a consequence of Corollary 1.3.13 (ii) we have the following Voronovskaya-
type relation which can also be found in [46, Theorem 5.2].

Corollary 3.15.3. Let f ∈ C2[0, 1]. Then

lim
n→∞

n
{

U$
n( f ; x)− f (x)

}
=

$ + 1
2$

x(1− x) f ′′(x),

uniformly on [0, 1].

Proof. For ϕ(n) = n and q = 2 as given in Corollary 1.3.13 (ii),

lim
n→∞

n
{

U$
n( f ; x)− f (x)

}
=

2

∑
r=1

cr(x)
f (r)(x)

r!
= c1(x)

f ′(x)
1!

+ c2(x)
f ′′(x)

2!

where cr(x) = lim
n→∞

nM$
n,r(x). By using Lemma 3.15.1 with l = 1 we get

c1(x) = 0

c2(x) =
$ + 1

$
X,

and this concludes the proof.

Remark 3.15.4. As a consequence of Theorem 3.15.1 and Corollary 1.3.13 (ii) we deduce
similarly that for f ∈ C2l [0, 1],

lim
n→∞

nl

{
U$

n( f (t); x)−
2l−1

∑
k=0

f (k)(x)
k!

M$
n,k(x)

}
=

(2l − 1)!!
(2l)!

(
$ + 1

$

)l

Xl f (2l)(x), l ≥ 1.

From this we get also

lim
n→∞

nl

{
U$

n( f (t); x)−
2l−2

∑
k=0

f (k)(x)
k!

M$
n,k(x)

}
=

(2l − 1)!!
(2l)!

(
$ + 1

$

)l

Xl f (2l)(x) +

+Xl−1X′
(l − 1)!
(2l − 1)!

2l−2 ($ + 1)l−1

$l ($ + 2)
l−1

∑
k=1

(2k− 1)!!
(2k− 2)!!

f (2l−1)(x) (3.87)

= Xl−1 ($ + 1)l−1

$l(2l)!
×

×
[
($ + 1)X(2l − 1)!! f (2l)(x) + l($ + 2)X′(2l − 2)!!

l−1

∑
k=1

(2k− 1)!!
(2k− 2)!!

f (2l−1)(x)

]
.

Remark 3.15.5. Another Voronovskaya-type result for U$
n can be determined from:

lim
n→∞

n
[

n(U$
n( f (t); x)− f (x))− $ + 1

2$
X f ′′(x)

]
=

= lim
n→∞

n2
[

U$
n( f (t); x) f (x)−M$

n,2(x)
f ′′(x)

2

]
+

1
2

lim
n→∞

n
[

nM$
n,2(x)− $ + 1

$
X
]

f ′′(x).

Thus by using (3.87) with l = 2 we get

lim
n→∞

n
[

n(U$
n( f (t); x)− f (x))− $ + 1

2$
X f ′′(x)

]
=

= X
$ + 1
8$2

[
($ + 1)X f IV(x) +

2
3
($ + 2)X′ f ′′′(x)− 4 f ′′(x)

]
.
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3.16 Power series of the operators U$
n

In [74] R. Păltănea defined power series of Bernstein operators (with n fixed) and
studied their approximation behavior for functions defined on the space C0[0, 1] :=
{ f | f (x) = x(1− x)h(x), h ∈ C[0, 1]} to some extent. This article motivated a num-
ber of authors to study similar problems or give different proofs of Păltănea’s main
result. See [1], [2], [3], [84]. In this section we study power (geometric) series of the
operators U$

n, thus bridging the gap between power series of Bernstein operators
and such of the genuine operators Un.

Our main results will concern the convergence of the series as n (the degree of the
polynomials inside the series) tends to infinity. The first non-quantitative theorem
will essentially use the eigenstructure of the U$

n presented in detail in Section 3.4.
The second result describes the degree of convergence to the "inverse
Voronovskaya operators" −A−1

$ using a smoothing (K- functional) approach and
makes use of exact representations of the moments.

The quantitative statement also holds in the limiting case of Bernstein operators,
thus supplementing the original work of R. Păltănea.

As already shown in Section 3.4 the numbers

λ
(n)
$,j :=

$jn!

(n$)j(n− j)!
, j = 0, 1, ..., n, (3.88)

are eigenvalues of U$
n. To each of them there corresponds a monic eigenpolynomial

p(n)
$,j such that deg p(n)

$,j = j, j = 0, 1, ..., n. In particular,

p(n)
$,0 (x) = 1, p(n)

$,1 (x) = x− 1
2

, x ∈ [0, 1]. (3.89)

From (3.28) we get

p(n)
$,j (0) = p(n)

$,j (1) = 0, j = 2, ..., n. (3.90)

Obviously U$
n f can be decomposed with respect to the basis {p(n)

$,0 , p(n)
$,1 , ..., p(n)

$,n} of

Πn; this allows us to introduce the dual functionals µ
(n)
$,j : C[0, 1] → R, j = 0, 1, ..., n,

by means of the formula

U$
n f =

n

∑
j=0

λ
(n)
$,j µ

(n)
$,j ( f )p(n)

$,j , f ∈ C[0, 1]. (3.91)

In particular, since U$
n restricted to Πn is bijective, we have

p =
n

∑
j=0

µ
(n)
$,j (p)p(n)

$,j , p ∈ Πn. (3.92)

Now consider the numbers

λ$,j := −$ + 1
2$

(j− 1)j, j = 0, 1, ... (3.93)
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and the monic polynomials

p∗0(x) = 1, p∗1(x) = x− 1
2

, p∗j (x) = x(x− 1)P(1,1)
j−2 (2x− 1), j ≥ 2, (3.94)

where P(1,1)
i (x) are Jacobi polynomials, orthogonal with respect to the weight (1−

x)(1 + x) on [−1, 1], i ≥ 0. Moreover, consider the linear functionals µ∗j : C[0, 1] →
R, defined as

µ∗0( f ) =
f (0) + f (1)

2
, µ∗1( f ) = f (1)− f (0), (3.95)

µ∗j ( f ) =
1
2

(
2j
j

)
[(−1)j f (0) + f (1)− j

1∫
0

f (x)P(1,1)
j−2 (2x− 1)dx], j ≥ 2. (3.96)

It is easy to verify that
lim
n→∞

n(λ
(n)
$,j − 1) = λ$,j, j ≥ 0. (3.97)

The following result can be found in [48].

Theorem 3.16.1. ([48]) For each j ≥ 0 we have

lim
n→∞

p(n)
$,j = p∗j , uniformly on [0, 1], (3.98)

lim
n→∞

µ
(n)
$,j (p) = µ∗j (p), p ∈ Π. (3.99)

3.16.1 The power series A$
n

Consider the space

C0[0, 1] := { f | f (x) = x(1− x)h(x), h ∈ C[0, 1]}.

For f ∈ C0[0, 1], f (x) = x(1− x)h(x), define the norm

|| f ||0 := ||h||∞.

Endowed with the norm || · ||0, C0[0, 1] is a Banach space. Obviously,

|| f ||∞ ≤
1
4
|| f ||0, f ∈ C0[0, 1]. (3.100)

Lemma 3.16.2. As a linear operator on (C0[0, 1], || · ||0), U$
n has the norm

||U$
n||0 =

(n− 1)$

n$ + 1
< 1. (3.101)

Proof. Let f ∈ C0[0, 1], f (x) = x(1− x)h(x), h ∈ C[0, 1]. By straightforward compu-
tation we get U$

n f (x) = x(1− x)u(x), where

u(x) = n(n− 1)
n−1

∑
k=1

1∫
0

tk$(1− t)(n−k)$h(t)dt

k(n− k)B(k$, (n− k)$)
pn−2,k−1(x).
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It follows immediately that U$
n f ∈ C0[0, 1] and

||U$
n f ||0 = ||u||∞ ≤

(n− 1)$

n$ + 1
||h||∞ =

(n− 1)$

n$ + 1
|| f ||0.

Thus

||U$
n||0 ≤

(n− 1)$

n$ + 1
. (3.102)

On the other hand, let g(x) = x(1− x), x ∈ [0, 1]. Then ||g||0 = 1 and U$
ng(x) =

x(1− x)
(n− 1)$

n$ + 1
, which entails ||U$

ng||0 =
(n− 1)$

n$ + 1
and so

||U$
n||0 ≥

(n− 1)$

n$ + 1
. (3.103)

Now (3.101) is a consequence of (3.102) and (3.103).

According to Lemma 3.16.2, it is possible to consider the operator A$
n : C0[0, 1]→

C0[0, 1],

A$
n :=

$

n$ + 1

∞

∑
k=0

(U$
n)k, n ≥ 1. (3.104)

For later purposes we also introduce the notation

A∞
n :=

1
n

∞

∑
k=0

(Bn)k, n ≥ 1,

in order to have Păltănea’s power series included.

By using (3.101) we get ||A$
n||0 ≤

$

$ + 1
, and with the same function g(x) = x(1− x)

we find
||A$

n||0 =
$

$ + 1
, n ≥ 1. (3.105)

Let p ∈ Πm ∩ C0[0, 1], i.e., p(0) = p(1) = 0. Then m ≥ 2. Let n ≥ m. From (3.89),
(3.90) and (3.92) we derive

p =
m

∑
j=2

µ
(n)
$,j (p)p(n)

$,j

and, moreover,

(U$
n)k p =

m

∑
j=2

(λ
(n)
$,j )kµ

(n)
$,j (p)p(n)

$,j , k ≥ 0, for all n ≥ m.

According to (3.104), for all p ∈ Πm ∩ C0[0, 1] and n ≥ m,

A$
n p =

$

n$ + 1

m

∑
j=2

1

1− λ
(n)
$,j

µ
(n)
$,j (p)p(n)

$,j .

By using (3.97), (3.98) and (3.99) we get

lim
n→∞

A$
n p =

$

$ + 1

m

∑
j=2

2
j(j− 1)

µ∗j (p)p∗j , (3.106)

uniformly on [0, 1], for all p ∈ Πm ∩ C0[0, 1].
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3.16.2 The Voronovskaya operator A$

It was proved in [46, p. 918] that

lim
n→∞

n(U$
ng(x)− g(x)) =

$ + 1
2$

x(1− x)g′′(x), g ∈ C2[0, 1],

uniformly on [0, 1]. We need the following result.

Theorem 3.16.3. The operator {y ∈ C2[0, 1]| y(0) = y(1) = 0} → C0[0, 1] defined by

A$y(x) :=
$ + 1

2$
x(1− x)y′′(x), x ∈ [0, 1],

is bijective, and

||A−1
$ f ||∞ ≤

$

4($ + 1)
|| f ||0, f ∈ C0[0, 1]. (3.107)

Proof. Obviously A$ is injective. To prove the surjectivity, let f ∈ C0[0, 1], f (x) =
x(1− x)h(x), h ∈ C[0, 1]. It is a matter of calculus to verify that the function

− 2$

$ + 1
F∞(h; x) = y(x) := − 2$

$ + 1

(1− x)
x∫

0

th(t)dt + x
1∫

x

(1− t)h(t)dt

 , x ∈ [0, 1],

is in C2[0, 1], y(0) = y(1) = 0, and A$y = f . Therefore A$ is bijective. Moreover, for

x ∈ [0, 1], y = A−1
$ ( f )⇒ −y(x) = −A−1

$ ( f ; x) = +
2$

$ + 1
F∞(h; x)

|A−1
$ f (x)| ≤ 2$

$ + 1

(1− x)
x∫

0

tdt + x
1∫

x

(1− t)dt

 ||h||∞
=

$

$ + 1
x(1− x)||h||∞ ≤

$

4($ + 1)
|| f ||0,

and this leads to (3.107).

Remark 3.16.4. Further below we will use the notations Ψ(x) = x(1− x), and

−A−1
∞ (Ψh) := 2 · F∞(h), h ∈ C[0, 1],

in order to also cover the Bernstein case.

Another useful result reads as follows.

Lemma 3.16.5. For all p ∈ Π ∩ C0[0, 1] we have

lim
n→∞

A$
n p = −A−1

$ p, (3.108)

uniformly on [0, 1].
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Proof. The polynomials p∗j from (3.94) satisfy

x(1− x)(p∗j )
′′(x) = −j(j− 1)p∗j (x), x ∈ [0, 1], j ≥ 0

(see, e.g., [18, p.155]). This yields A$ p∗j = −$ + 1
2$

j(j− 1)p∗j , j ≥ 0, and, moreover,

A$

(
m

∑
j=2

2
j(j− 1)

µ∗j (p)p∗j

)
= −$ + 1

$

m

∑
j=2

µ∗j (p)p∗j (3.109)

for all p ∈ Πm ∩ C0[0, 1]. According to ([18, (4.18)]),
m
∑

j=2
µ∗j (p)p∗j = p, so that (3.109)

yields
$

$ + 1

m

∑
j=2

2
j(j− 1)

µ∗j (p)p∗j = −A−1
$ p, (3.110)

for all p ∈ Πm ∩ C0[0, 1]. Now (3.108) is a consequence of (3.106) and (3.110).

3.16.3 The convergence of A$
n on C0[0, 1]

The main result of the section is contained in

Theorem 3.16.6. For all f ∈ C0[0, 1],

lim
n→∞

A$
n f = −A−1

$ f ,

uniformly on [0, 1].

Proof. Let f ∈ C0[0, 1], f (x) = x(1− x)h(x), h ∈ C[0, 1]. Consider the polynomials
pi(x) := x(1− x)Bih(x), where Bi are the classical Bernstein operators, i ≥ 1. Then
pi ∈ C0[0, 1], i ≥ 1, and lim

i→∞
||pi − f ||0 = lim

i→∞
||Bih− h||∞ = 0. Let ε > 0 and fix i ≥ 1

such that
||pi − f ||0 ≤

2$ + 2
3$ + 2

ε. (3.111)

Then, according to Lemma 3.16.5, there exists nε such that

||A$
n pi + A−1

$ pi||∞ ≤
2$ + 2
3$ + 2

ε, n ≥ nε. (3.112)

Now using (3.100) and (3.105) we infer

||A$
n f − A$

n pi||∞ ≤
1
4
||A$

n f − A$
n pi||0 ≤

1
4
||A$

n||0|| f − pi||0 ≤
$

4($ + 1)
2$ + 2
3$ + 2

ε,

so that
||A$

n f − A$
n pi||∞ ≤

$

2(3$ + 2)
ε. (3.113)

On the other hand, (3.107) and (3.111) yield

||A−1
$ f − A−1

$ pi||∞ ≤
$

4($ + 1)
|| f − pi||0 ≤

$

2(3$ + 2)
ε. (3.114)
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Finally, using (3.112), (3.113) and (3.114) we obtain, for all n ≥ nε,

||A$
n f + A−1

$ f ||∞ ≤ ||A$
n f − A$

n pi||∞ + ||A$
n pi + A−1

$ pi||∞ + ||A−1
$ f − A−1

$ pi||∞ ≤ ε,

and this concludes the proof.

On (C[0, 1], || · ||∞) consider the linear operator H$
n := A$

n − (−A−1
$ ) given by

C[0, 1] 3 h 7→ A$
n(Ψh; x) =

$

n$ + 1

∞

∑
k=0

(U$
n)k(Ψh; x) ∈ C0[0, 1]

C[0, 1] 3 h 7→ −A−1
$ (Ψh; x) =

2$

$ + 1

(1− x)
x∫

0

th(t)dt + x
1∫

x

(1− t)h(t)dt


=

2$

$ + 1
F∞(h; x) ∈ C0[0, 1]

Theorem 3.16.7. Let h ∈ C[0, 1], $ > 0, n ≥ 4$+6
$ , ε =

√
$+2

n$+2 ≤
1
2 and Ψ(x) =

x(1− x). Then

|H$
n(h; x)| ≤ Ψ(x)

[
2$

3($ + 1)

√
$ + 2

n$ + 2
ω1(h; ε)+ (3.115)

+
3
4

(
2$

$ + 1
+

2$

3($ + 1)

√
$ + 2

n$ + 2
+

7($ + 3)
6($ + 1)

)
ω2(h; ε)

]
.

Proof. Let h ∈ C[0, 1] be fixed, and g ∈ C2[0, 1] be arbitrary.

Then |H$
n(h; x)| ≤ |H$

n(h− g; x)|+ |H$
n(g; x)| = |E1|+ |E2|. Here

|E1| = |A$
n(Ψ(h− g); x)− (−A−1

$ (Ψ(h− g); x))|

= |A$
n(Ψ(h− g); x)− 2$

$ + 1
F∞(h− g; x)|

≤ ||h− g||∞ A$
n(Ψ; x) +

2$

$ + 1
|F∞(h− g; x)|

= ||h− g||∞
$

$ + 1
Ψ(x) +

2$

$ + 1
||h− g||∞

1
2

Ψ(x)

=
2$

$ + 1
Ψ(x)|h− g||∞

and
|E2| = |A$

n(Ψg; x)− (−A−1
$ (Ψg; x))|.

For g ∈ C2[0, 1] one has F∞ := F∞(g) ∈ C4[0, 1], F′′∞ = −g, F′′′∞ = −g′, F(4)
∞ = −g′′.

Moreover, by Taylor’s formula we obtain for any points y, t ∈ [0, 1]:

F∞(t) = F∞(y) + F′∞(y)(t− y) +
1
2

F′′∞(y)(t− y)2 +
1
6

F′′′∞ (y)(t− y)3 + Θy(t) (3.116)

where

Θy(t) :=
1
6

t∫
y

(t− u)3F(4)
∞ (u)du.
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Fix y and consider (3.116) as an equality between two functions in the variable t.
Applying to this equality the operator U$

n(·, y) one arrives at

U$
n(F∞, y) = F∞(y) +

1
2

F′′∞(y)U$
n((t− y)2; y) +

1
6

F′′′∞ (y)U$
n((t− y)3; y) + U$

n(Θy; y)

= F∞(y)− 1
2

g(y)U$
n((t− y)2; y)− 1

6
g′(y)(y)U$

n((t− y)3; y) + U$
n(Θy; y).

This implies

1
2

g(y)U$
n((e1 − y)2; y)− F∞(y) + U$

n(F∞, y) = −1
6

g′(y)U$
n((e1 − y)3; y) + U$

n(Θy; y).

In the above equality we rewrite the left hand side as 1
2 g(y)U$

n((e1 − y)2; y)− (I −
U$

n)(F∞, y). Thus we have

g(y)U$
n((e1− y)2; y)− 2(I−U$

n)(F∞, y) = −1
3

g′(y)(y)U$
n((e1− y)3; y) + 2U$

n(Θy; y).

Application of A$
n yields

A$
n(g(·)U$

n((e1 − ·)2; ·); x)− 2A$
n ◦ (I −U$

n)(F∞, x) = (3.117)

−1
3

A$
n(g′(·)U$

n((e1 − ·)3; ·); x) + 2A$
n(Q; x)

where Q(y) := U$
n(Θy; y). Note that the first five moments are given by Corollary

3.3.2. In the above expression we have 2A$
n ◦ (I − U$

n)(F∞, x) =
2$

n$ + 1
F∞(x) =

2$

n$ + 1
F∞(g; x).

Also A$
n(g(·)U$

n((e1 − ·)2; ·); x) = A$
n(g(·) $ + 1

n$ + 1
Ψ(·); x) =

$ + 1
n$ + 1

A$
n(Ψg; x).

Hence (3.117) can be written as∣∣∣∣ $ + 1
n$ + 1

A$
n(Ψg; x)− 2$

n$ + 1
F∞(g; x)

∣∣∣∣
=
∣∣∣∣−1

3
g′(·)U$

n(((e1 − ·)3; ·); x)− 2A$
n(Q; x)

∣∣∣∣
≤ 1

3

∣∣∣∣A$
n

(
($ + 1)($ + 2)

(n$ + 1)(n$ + 2)
Ψ′(·)Ψ(·); x

)∣∣∣∣+ |2A$
n(Q; x)|

≤ 1
3

($ + 1)($ + 2)
(n$ + 1)(n$ + 2)

||g′||∞
$

$ + 1
Ψ(x) + |2A$

n(Q; x)|.

Multiplying the outermost sides of the latter inequality by n$+1
$+1 gives

|E2| =
∣∣∣∣A$

n(Ψg; x)− 2$

$ + 1
F∞(g; x)

∣∣∣∣
≤ $($ + 2)

3(n$ + 2)($ + 1)
Ψ(x)||g′||∞ + 2

n$ + 1
$ + 1

|A$
n(Q; x)|.
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In the last summand we have Q(y) = U$
n(Θy; y) thus

|U$
n(Θy; y)| ≤ 1

6
U$

n((e1 − y)4; y)||g′′||∞

≤ 1
6
· 7

4
· ($ + 1)($ + 2)($ + 3)

$(n$ + 1)(n$ + 2)
Ψ(y)||g′′||∞.

Hence
2(n$ + 1)

$ + 1
|A$

n(Q; x)| ≤ 2(n$ + 1)
$ + 1

· 7
24
· ($ + 1)($ + 2)($ + 3)

$(n$ + 1)(n$ + 2)
A$

n(Ψ; x)||g′′||∞

=
7
12
· ($ + 2)($ + 3)
($ + 1)(n$ + 2)

Ψ(x)||g′′||∞.

This leads to

|E2| ≤
$($ + 2)

3(n$ + 2)($ + 1)
Ψ(x)||g′||∞ +

7
12
· ($ + 2)($ + 3)
($ + 1)(n$ + 2)

Ψ(x)||g′′||∞

=
($ + 2)

3(n$ + 2)($ + 1)
Ψ(x)

{
$||g′||∞ +

7
4
($ + 3)||g′′||∞

}
.

Hence for h ∈ C[0, 1] fixed, g ∈ C2[0, 1] arbitrary we have

|H$
n(h; x)| = |E1|+ |E2|

≤ 2$

$ + 1
Ψ(x)||h− g||∞ +

($ + 2)
3(n$ + 2)($ + 1)

Ψ(x)
{

$||g′||∞ +
7
4
($ + 3)||g′′||∞

}

Next we choose g = hε, 0 < ε =
√

$+2
n$+2 ≤

1
2 and by applying Lemmas 1.1.14 and

1.1.15 we obtain

||h− g||∞ ≤
3
4

ω2(h; ε)

||g′|| ≤ 1
ε
[2ω1(h; ε) +

3
2

ω2(h; ε)]

||g′′|| ≤ 3
2ε2 ω2(h; ε).

Thus

|H$
n(h; x)| ≤ Ψ(x)

[
2$

3($ + 1)

√
$ + 2

n$ + 2
ω1(h; ε)+

+
3
4

(
2$

$ + 1
+

2$

3($ + 1)

√
$ + 2

n$ + 2
+

7($ + 3)
6($ + 1)

)
ω2(h; ε)

]
.

Remark 3.16.8. If we let 1 ≤ $→ ∞, then for all n ≥ 10

lim
$→∞
|H$

n(h; x)| = lim
$→∞
|A$

n(Ψh; x)− (−A−1
$ )(Ψh; x)|

= |A∞
n (Ψh; x)− (−A−1

∞ )(Ψh; x)|

≤ 3Ψ(x)
[

1√
n

ω1

(
h;

1√
n

)
+ ω2

(
h;

1√
n

)]
.

This is a quantitative form of Păltănea’s convergence result in [74, Theorem 3.2].
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[39] H. Gonska, D. Kacsó, I. Raşa: On genuine Bernstein-Durrmeyer operators, Re-
sult. Math. 50 (2007), 213-225.
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[62] A. Lupaş: Die Folge der Betaoperatoren, Ph.D. Thesis, Stuttgart: Universität
Stuttgart 1972.

109



Bibliography
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