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Summary

In this thesis, quantum transport in nanostructures is studied theoretically by means of
the nonequilibrium Green’s function (NEGF) method. Starting with coherent systems,
we discuss ballistic transport and conductance quantization in homogeneous tight-binding
lattices. We show that disorder gives rise to transmission resonances. A short introduction
to Anderson localization is given and a compact analytical formula for the disorder averaged
resistance is derived by means of generating functions.

Transport in nanostructures generally takes place in an intermediate regime between quan-
tum and classical transport due to decoherence. We study the effects of decoherence on
electron transport by a statistical model. The essential idea of our model is to distribute
spatially over the system decoherence regions, where phase and momentum of the electrons
are randomized completely. The transport in between these regions is assumed as phase
coherent. Afterwards, the transport quantity of interest is ensemble averaged over spatial
decoherence configurations, which are generated according to a given distribution func-
tion. We discuss how homogeneous tight-binding lattices are driven by decoherence from
the quantum-ballistic to the classical-Ohmic regime. We show that the transport through
disordered tight-binding lattices is affected significantly by the spatial distribution of the
decoherence regions. If the decoherence is homogeneously distributed, Ohmic conduction
is found for any finite degree of decoherence. In contrast, for randomly distributed deco-
herence, we find an insulator-metal transition from the localized to the Ohmic regime at
a critical degree of decoherence, which corresponds to a critical phase coherence length.
We also discuss how transport in disordered tight-binding lattices can be enhanced by
decoherence. The decoherence model is extended to obtain pure dephasing. We show that
transmission resonances are suppressed by pure dephasing, but the average transmission is
conserved. The insulator-metal transition is independent of whether phase randomization
goes along with momentum randomization or not.

Magnetotransport in two-dimensional electron systems is considered. We study how elec-
trons, coherently injected at one point on the boundary of a two-dimensional electron gas
(2DEG), are focused by a perpendicular magnetic field onto another point of that bound-
ary. At weak magnetic field, the generalized 4-point Hall resistance shows equidistant
peaks, which can be explained by classical cyclotron motion. When the magnetic field is
increased, we observe anomalous resistance oscillations superimposed upon the quantum
Hall plateaus. We show that all resistance oscillations can be explained by the interference
of the occupied edge channels. The anomalous oscillations are beatings, which appear
when only some few edge channels are occupied. By introducing decoherence and partially
diffusive boundary scattering, we show that this effect is quite robust. The resistance os-
cillations can be observed not only in a nonrelativistic 2DEG, but also in the relativistic
2DEG found in graphene. We also report a finite current at armchair edges of graphene
ribbons, which is not present at zigzag edges. This edge current can be traced back to
the fact that at armchair edges carbon atoms of both graphene sublattices are present,
whereas at zigzag edges only atoms of one sublattice appear. The thesis is concluded with
some notes on Hofstadter’s butterfly shown on the cover page.





Zusammenfassung

In dieser Dissertation wird Quantentransport in Nanostrukturen mit Hilfe der Methode
der Nichtgleichgewichts-Green-Funktionen (NEGF) theoretisch untersucht. Es wird mit
kohärenten Systemen begonnen und ballistischer Transport und Leitwertquantisierung in
homogenen tight-binding Gittern diskutiert. Es wird gezeigt, dass durch Unordnung im
System Transmissionsresonanzen hervorgerufen werden. Nach einer kurzen Einführung in
Anderson-Lokalisierung, wird eine kompakte Formel für den unordnungsgemittelten Wi-
derstand mit Hilfe von erzeugenden Funktionen hergeleitet.

Transport in Nanostrukturen findet auf Grund von Dekohärenz im Allgemeinen in einem
intermediären Regime zwischen Quanten- und klassischem Transport statt. Die Effekte von
Dekohärenz auf den Elektronentransport werden im Rahmen eines statistischen Modells
untersucht. Grundlegende Idee dieses Modells ist es Dekohärenzregionen, an denen voll-
ständige Phasen- und Impulsrandomisierung stattfindet, räumlich über das Nanosystem
zu verteilen. Der Transport zwischen diesen Regionen ist phasenkohärent. Anschließend
wird ein Ensemble-Mittel der untersuchten Transportgröße über räumliche Dekohärenz-
konfigurationen berechnet, die gemäß einer Wahrscheinlichkeitsverteilung erstellt werden.
Es wird diskutiert, wie homogene tight-binding Ketten durch Dekohärenz vom quanten-
ballistischen zum klassisch Ohmschen Regime getrieben werden. Anschließend wird gezeigt,
dass der Transport durch ungeordnete Systeme signifikant von der räumlichen Verteilung
der Dekohärenzregionen beeinflusst wird. Wenn die Dekohärenz homogen verteilt ist, dann
ist der Transport Ohmsch für jeden endlichen Dekohärenzgrad. Wenn im Gegensatz die
Dekohärenz zufällig verteilt ist, dann lässt sich ein Isolator-Metall Übergang vom lokali-
sierten zum Ohmschen Regime bei einem kritischen Dekohärenzgrad beobachten, der einer
kritischen Phasenkohärenzlänge entspricht. Es wird auch diskutiert, wie sich Transport
in ungeordneten Gittern durch Dekohärenz optimieren lässt. Das Dekohärenzmodell wird
um pure Dephasierung erweitert. Es wird gezeigt, dass Resonanzen in der Transmission
durch pure Dephasierung unterdrückt werden, aber die Transmission im Mittel erhalten ist.
Obiger Isolator-Metall Übergang ist unabhängig davon, ob mit der Phasenrandomisierung
auch Impulsrandomisierung einhergeht, oder nicht.

Magnetotransport entlang des Randes zweidimensionaler Elektronensysteme wird studiert.
Es wird untersucht wie Elektronen, kohärent injiziert an einem Punkt auf dem Rand eines
zweidimensionalen Elektronengases (2DEG), durch ein senkrechtes Magnetfeld auf einen
anderen Punkt auf dem Rand fokussiert werden. Im schwachen Magnetfeld zeigt der 4-
Punkt-Hall-Widerstand äquidistante Peaks, die sich durch klassische Zyklotronbahnen er-
klären lassen. Wenn das Magnetfeld verstärkt wird, dann treten anomale Oszillationen
auf, die den Quanten-Hall-Plateaus überlagert sind. Es wird gezeigt, dass sich alle Os-
zillationen im Hall-Widerstand durch die Interferenz der besetzten Randkanäle erklären
lassen. Die anomalen Oszillationen sind Schwebungen, die auftreten, wenn nur einige we-
nige Randkanäle besetzt sind. Die Robustheit dieses Effekts wird demonstriert, indem
Dekohärenz sowie partiell diffusive Streuung am Rand eingeführt wird. Die Widerstands-
oszillationen lassen sich sowohl in einem nichtrelativistischen 2DEG beobachten, wie auch
in dem relativistischen 2DEG von Graphen. Es wird auch gezeigt, dass endlicher Strom
auf armchair-Kanten von Graphenstreifen fließt, wohingegen der Strom auf zigzag-Kanten
verschwindet. Dieser Randstrom lässt sich darauf zurückführen, dass auf armchair-Kanten
Kohlenstoffatome beider Graphenuntergitter auftreten, wohingegen auf zigzag-Kanten nur
Atome eines Untergitters liegen. Die Dissertation endet mit einigen Bemerkungen zu Hof-
stadters Schmetterling, der auf der Titelseite abgebildet ist.





Contents

Summary v

Zusammenfassung vii

1 Introduction and outline 1

2 Basics of quantum transport 3

2.1 Definitions and concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.1 Hamiltonian of the nanosystem . . . . . . . . . . . . . . . . . . . . . 4
2.1.2 Effect of a magnetic field . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.3 The spectral function A . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.4 The Green’s functions G and G+ . . . . . . . . . . . . . . . . . . . . 5
2.1.5 The correlation function Gn . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Open quantum systems: ⌃ and ⌃in . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Current equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Multi-terminal systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.6 Further reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Tight-binding lattices: Electronic properties and coherent transport 13

3.1 Electronic properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1.1 The infinite tight-binding chain . . . . . . . . . . . . . . . . . . . . . 13
3.1.2 The infinite tight-binding ribbon and grid . . . . . . . . . . . . . . . 14
3.1.3 Reservoir models: Semi-infinite lattices, wide-band approximation . . 15

3.2 Coherent transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.1 Tight-binding chains . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.2 Anderson localization in disordered chains . . . . . . . . . . . . . . . 22
3.2.3 Tight-binding ribbons and grids . . . . . . . . . . . . . . . . . . . . . 22

3.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 Effects of decoherence on transport 27

4.1 Decoherence in nanosystems . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Statistical model for the effects of decoherence . . . . . . . . . . . . . . . . . 28
4.3 Application of the statistical decoherence model to tight-binding chains . . . 29

4.3.1 Homogeneous chains: The ballistic-to-Ohmic transition . . . . . . . . 31
4.3.2 Disordered chains: Suppression of transmission resonances . . . . . . 34
4.3.3 Effect of the spatial decoherence distribution and the assumption of

complete phase and momentum randomization . . . . . . . . . . . . 35
4.4 Application of the statistical decoherence model to tight-binding ribbons . . 37
4.5 Effect of decoherence on Anderson localization . . . . . . . . . . . . . . . . 39

4.5.1 Partial phase randomization, tight-binding ribbons and the decohe-
rence averaged transmission . . . . . . . . . . . . . . . . . . . . . . . 42



x Contents

4.6 Pure dephasing: Phase randomization but momentum conservation . . . . . 45
4.6.1 Homogeneous chains: Ballistic conduction survives pure dephasing . 47
4.6.2 Disordered chains: Smoothing of transmission resonances but con-

servation of its average . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.6.3 Anderson model: Pure dephasing enhances always transport . . . . . 50
4.6.4 Outlook: Spin randomizing and spin conserving decoherence . . . . . 51

4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5 Magnetotransport in 2D electron systems 55

5.1 The nonrelativistic 2D electron gas . . . . . . . . . . . . . . . . . . . . . . . 55
5.1.1 Hamiltonian and its finite differences approximation . . . . . . . . . 55
5.1.2 Effect of a magnetic field . . . . . . . . . . . . . . . . . . . . . . . . 56

5.2 Magnetotransport along boundaries: Electron focusing and edge channels . 58
5.2.1 System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.2.2 Cyclotron orbits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.2.3 The quantum Hall effect . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.2.4 Anomalous resistance oscillations . . . . . . . . . . . . . . . . . . . . 66
5.2.5 Effects of decoherence, non-specularity, boundary conditions and

contact geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.2.6 Experimental observability . . . . . . . . . . . . . . . . . . . . . . . 70

5.3 Graphene’s relativistic 2D electron gas . . . . . . . . . . . . . . . . . . . . . 72
5.3.1 The graphene lattice and its electronic structure . . . . . . . . . . . 72
5.3.2 Effect of a magnetic field . . . . . . . . . . . . . . . . . . . . . . . . 75

5.4 Magnetotransport along the boundary of graphene nanoribbons . . . . . . . 76
5.4.1 System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.4.2 Electron focusing, resistance oscillations and the quantum Hall effect 78
5.4.3 Graphene ribbons in a magnetic field: Dirac equation . . . . . . . . . 81
5.4.4 Answers to our questions . . . . . . . . . . . . . . . . . . . . . . . . 82
5.4.5 Experimental observability . . . . . . . . . . . . . . . . . . . . . . . 87

5.5 Tight-binding lattice in a magnetic field: Hofstadter’s butterfly . . . . . . . 89
5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6 Conclusions and outlook 95

A Appendix 97

A.1 Dyson’s equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
A.2 Surface Green’s function of the semi-infinite chain . . . . . . . . . . . . . . . 97
A.3 Coherent transport in tight-binding chains: Exact results . . . . . . . . . . . 98

A.3.1 Recursion formula for the transmission . . . . . . . . . . . . . . . . . 98
A.3.2 Disorder averaged resistance . . . . . . . . . . . . . . . . . . . . . . . 100

A.4 Resistivity of disorder and decoherence averaged tight-binding chains . . . . 102

Bibliography 103

Danksagung 115

Erklärung 117

Curriculum Vitae 119



1 Introduction and outline

In the last 50 years, the development of microprocessors has changed our daily lives. The
computational power, which has been offered years ago by supercomputers of size of a
warehouse, is provided nowadays by a smartphone carried in our pockets. This remarkable
development can be expressed by Moore’s law [125], which says that the number of tran-
sistors, the basic unit of each microprocessor, is doubled every two years. The validity of
Moore’s law is proven in Figure 1.1 (left) for microprocessors offered by the company Intel
since 1970. As depicted in Figure 1.1 (right), this development has been achieved by con-
tinuous miniaturization from the scale of several microns to a few nanometers. However,
it is clear that miniaturization cannot be continued further, when structures of individ-
ual atoms are reached, which is expected around 2030 according to the ITRS roadmap.1
Therefore, novel concepts are necessary in order to increase the computational power of
microprocessors also in the next decades.
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Figure 1.1: Development of the number of transistors (left) and structure size (right) of mi-
croprocessors since 1970. In agreement to Moore’s law the number of transistors
is doubled every second year, which is achieved by continuous miniaturization.
However, as this approach cannot be continued arbitrarily, novel concepts are
necessary. Data are taken from www.intel.com/museum.

One of these new ideas is to build up the transistors not in silicon but in graphene
[13, 129, 159]. However, as such transistors are difficult to realize due to the absence
of a band gap in pristine graphene, it has been suggested to use the negative differential
resistance of graphene and non-Boolean logic circuits for a novel computational architec-
ture [114]. Recently, also the first working microprocessor based on carbon nanotubes
has been reported [162]. Another major issue of today’s microprocessors is their energy
consumption, which is converted to large extend solely into heat. To overcome this issue
topological insulators, in which dissipationless current flow is possible, are considered as

1Further information to the International Roadmap for Semiconductors can be found at: www.itrs.net
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a building block of novel electronic devices [34, 81, 116]. In this thesis, we study theo-
retically quantum transport trough nanostructures. Our aim is to increase the knowledge
of the transport properties of these systems and to contribute at least a tiny part to the
development of future technologies.

The outline of this thesis is as follows: In Chapter 2, we start with a short but self-
contained introduction into the nonequilibrium Green’s function (NEGF) method, which
allows to calculate electron transport in nanostructures on the basis of quantum theory.
In Chapter 3, we apply the NEGF method to study quantum coherent transport through
tight-binding lattices. Ballistic conduction, conductance quantization, resistance oscilla-
tions due to interference, and Anderson localization are discussed. As the transport in
nanosystems takes place in an intermediate regime between classical-Ohmic and quantum-
coherent transport, in Chapter 4 the effects of decoherence on electron transport are studied
by means of a statistical model. In particular, we discuss if Anderson localization can sur-
vive a finite degree of decoherence and show that the spatial distribution of decoherence has
significant effects on the transport. In Chapter 5, magnetotransport in two-dimensional
electron systems is studied. We discuss how electrons, coherently injected at one point
on the boundary of a two-dimensional electron gas (2DEG), can be focused by a perpen-
dicular magnetic field on another point of that boundary. We investigate how the system
properties change, when the magnetic field strength is increased, and report anomalous
resistance oscillations in intermediate fields. We consider a nonrelativistic 2DEG, as it
can be realized in semiconductor heterostructures, as well as a relativistic 2DEG found
in graphene. In Chapter 6, the conclusions and a brief outlook are given. The Appendix
contains some calculation and derivations, which are not included in the main text.



2 Basics of quantum transport

On the long way of transport theory in solid state materials, one of the first milestones
was the Drude-Sommerfeld model [52, 164], which allows to understand electric and ther-
mal conduction in metals. Its main ideas are that the electrons follow the Fermi-Dirac
distribution and only electrons close to the Fermi energy contribute to the conduction.
These conduction electrons are scattered randomly after a given relaxation time. This
gives rise to Ohm’s law in metals. Further significant steps were Bloch’s theorem [20] and
the band structure theory [24, 141, 190, 191], which allow to understand the difference
between metals, semiconductors and insulators.

However, when the system size is reduced to the nanometer scale, several characteristic
lengths have the same order of magnitude:

• Mean free path `
m

: The average distance after which an electron is scattered and
its momentum is randomized. The mean free path is determined by both inelastic
scattering, which goes along with phase randomization, as well as elastic scattering
for which the transport is still coherent.

• Phase coherence length `
�

: The average distance after which the electron phase is
randomized. Phase randomization can go along with momentum randomization if
the electrons are scattered inelastically. However, both processes can also appear
independently from each other.

• Fermi wavelength �
F

: Wavelength of the electrons at the Fermi energy. The Fermi
wavelength gives the length scale at which quantum effects emerge.

• Localization length �: Average spatial extent of the exponentially decaying electron
eigenstates in a disordered quantum system, see Section 3.2.2.

• System size L

This gives rise to novel conduction properties. An electron can propagate ballistically
through a homogeneous nanosystem without any scattering event, which results in a length-
independent resistance caused solely by the contacts [42]. Ballistic transport is found, for
example, in carbon nanotubes [14, 62] and graphene [21, 53]. It has also been utilized, for
example, to build ballistic rectifiers [105, 165]. Moreover, when not only the momentum of
the electrons is preserved but also its phase information, interference effects may influence
the transport drastically, as it can be seen for example in Aharonov-Bohm experiments
[15, 76] and in the coherent electron focusing [6, 169, 181], which will be discussed in detail
in Chapter 5. In contrast, in disordered nanosystems Anderson localization [9, 56, 109] is
found, which is indicated by an exponential increase of the resistance with the system size.
Therefore, in order to describe the transport processes on the nanometer scale correctly,
a completely different approach is necessary, which starts with a microscopic quantum
description of the system.
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In this Chapter, we give a short but self-contained introduction into quantum transport
using the non-equilibrium Green’s function (NEGF) approach. Instead of applying many-
body perturbation theory [97, 102, 117], we follow the textbooks by Datta [42–44] and
motivate physically the required equations. However, the given equations are exact for the
systems studied in this thesis.

"i

tijfS

⌃S

fD

⌃D

fP3

fP2fP1

TDS

Figure 2.1: The transport of electrons from the source S to the drain D through a nanosys-
tem is studied in this thesis. The nanosystem is described by the Hamiltonian
(2.1) and can be visualized by a network of sites "

i

and bonds t
ij

, see the re-
gion enclosed by the dashed ellipse. It is also assumed that additional voltage
probes P

i

are attached to the system. All reservoirs are characterized by energy
distribution functions f

p

with p 2 {S, P1, P2, P3, D}.

2.1 Definitions and concepts

2.1.1 Hamiltonian of the nanosystem

The nanosystem is described by a Hamiltonian H, which in this thesis has the form

H =

X

i

"
i

|ii hi| +

X

j<i

(t
ij

|ii hj| + H.c.) . (2.1)

This Hamiltonian can be visualized by a network of sites and bonds, see the region enclosed
by the dashed ellipse in Figure 2.1. The onsite energy "

i

represents the potential energy,
which is necessary to occupy the state |ii (the ith site) by an electron. The coupling matrix
element t

ij

is proportional to the transition rate of electrons from state |ji to state |ii (from
the jth site to the ith site).

2.1.2 Effect of a magnetic field

The effect of a magnetic field B can be taken into account by

t
ij

(B) = t
ij

(B = 0) e

i e~
R
dl·A, (2.2)

where A is the vector potential of the magnetic field. The path integral is along the straight
connection between the position of sites j and i in space. Citing Feynman’s famous lectures,
this substitution is “a basic statement of quantum mechanics” [58, Chapter 21-1], which
expresses the principle of minimal gauge invariant coupling. In the literature it is also
often referred to as Peierls substitution [87, 142].
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2.1.3 The spectral function A

The spectral function is defined as1

A(E) ⌘ 2⇡�(E � H). (2.3)

In real space the expansion in terms of eigenfunctions  
k

(r) and eigenenergies ✏
k

of the
Hamiltonian H

A(r, r0, E) = 2⇡
X

k

 
k

(r)�(E � ✏
k

) ⇤
k

(r0) (2.4)

shows that the diagonal elements of the spectral function (apart from the factor 2⇡) give
the local density of states D(r, E) (LDOS). The total density of states D(E) (DOS) is
then obtained by integration over space, or more generally, by the trace of (2.3)

D(E) =

1

2⇡
Tr (A(E)) =

X

k

�(E � ✏
k

). (2.5)

2.1.4 The Green’s functions G and G+

The � distribution can be represented by

2⇡�(E � ✏
k

) =

2⌫

(E � ✏
k

)

2
+ ⌫2

= i


1

E � ✏
k

+ i⌫
� 1

E � ✏
k

� i⌫

�
, (2.6)

where ⌫ is an infinitesimal positive number. Using this representation of the � distribution,
the spectral function can be written as

A(E) = 2⇡�(E � H) = i

h
(E � H + i⌫)�1| {z }

retarded

Green’s function G

� (E � H � i⌫)�1| {z }
advanced

Green’s function G

+

i
= �2 Im (G) , (2.7)

where we have introduced the (retarded) Green’s function G and the advanced Green’s
function G+. As the DOS has to be positive, we also learn from (2.7) that the diagonal
matrix elements of the Green’s function fulfill Im (G

ii

) < 0.

2.1.5 The correlation function Gn

Using the language of second quantization, the correlation function Gn is defined as2

Gn

ij

(t, t0) ⌘ hc+
j

(t0)c
i

(t)i , (2.8)

where c+
i

and c
i

are the creation and annihilation operators for an electron at the ith site,
respectively. In the steady state Gn depends only on the time difference and after a Fourier
transform to the energy domain, the above definition shows that Gn is nothing but the

1For clarity we omit unit matrices, which match scalars (energy E) to matrices (Hamiltonian H).
2Instead of the correlation function Gn, the lesser Green’s function G< is also commonly used in the

literature, see e.g. [51]. These functions are connected by G< = iGn.
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energy resolved density matrix (times 2⇡). In the single particle picture, this definition
motivates the substitution rule

|ii hj| ! 1

2⇡
Gn

ij

, (2.9)

which allows to introduce advanced many-particle concepts in a single particle description.

In equilibrium the electron density is determined by the occupation of the density of states
according to the Fermi distribution f(E � µ) with chemical potential µ. Therefore, we
conclude that in equilibrium the correlation function is related to the spectral function by

Gn

eq

(E) = A(E)f(E � µ). (2.10)

2.2 Open quantum systems: ⌃ and ⌃in

In order to study transport of electrons through the nanosystem, we have to connect it to
a source S and a drain D reservoir, see the dark gray rectangles in Figure 2.1. The source
and drain are in equilibrium and characterized by Fermi distributions f

S/D

⌘ f(E �µ
S/D

)

with chemical potentials µ
S/D

. Their difference drives the system out of equilibrium and
causes the current flow. The effect of additional voltage probes, sketched by the light gray
rectangles in Figure 2.1, is discussed in Section 2.4.

The isolated reservoirs are described by the Hamiltonians H
S/D

, which fulfill the Schrödinger
equations

(E � H
S

) |�
S

i = 0, (2.11a)
(E � H

D

) |�
D

i = 0. (2.11b)

These equations can be rewritten in the form

(E � H
S

+ i⌫) |�
S

i = |Q
S

i , (2.12a)
(E � H

D

+ i⌫) |�
D

i = |Q
D

i , (2.12b)

where ⌫ is an infinitesimal positive number. The term i⌫ |�
S/D

i represents the extrac-
tion of electrons from the contact, whereas |Q

S/D

i represents the reinjection of electrons
from external sources. Extraction and reinjection are necessary to maintain the reservoirs
in equilibrium. The Schrödinger equation is mathematically unchanged, if we identify
i⌫ |�

S/D

i = |Q
S/D

i. However, the transition from (2.11) to (2.12) is not only a formal
modification of the Schrödinger equation but a change in the point of view. In the latter,
E is no longer an eigenenergy of the Hamiltonian but an independent variable, which gives
the energy of excitations |Q

S/D

i from external sources. Whereas in (2.11) the |�
S/D

i are
non-zero only for the eigenenergies, in (2.12) the |�

S/D

i are non-zero for any energy and
represent the response of the reservoirs to external excitations.

Now, what happens when the reservoirs are connected to the nanosystem by coupling
matrices ⌧

S/D

? The states |�
S/D

i in the reservoirs spill over and excite states | i in the
nanosystem, which in return also excite states |�

S/D

i in the reservoirs. The Schrödinger
equation of the coupled system reads

0

@
E � H

S

+ i⌫ �⌧+
S

0

�⌧
S

E � H �⌧
D

0 �⌧+
D

E � H
D

+ i⌫

1

A

0

@
�

S

+ �
S

 
�

D

+ �
D

1

A
=

0

@
Q

S

0

Q
D

1

A . (2.13)
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As it can be assumed that the reinjection |Q
S/D

i is unchanged by the coupling, the first
and the last row of (2.13) lead with (2.12) to

|�
S

i = G
S

⌧+
S

| i , (2.14a)
|�

D

i = G
D

⌧+
D

| i , (2.14b)

where

G
S

⌘ (E � H
S

+ i⌫)�1 , (2.15a)

G
D

⌘ (E � H
D

+ i⌫)�1 (2.15b)

are the Green’s functions of the reservoirs. By means of (2.14) the middle row of (2.13)
reads

(E � H � ⌃
S

� ⌃
D

) | i = |Qi , (2.16)

where we defined the so-called self-energies

⌃

S

⌘ ⌧
S

G
S

⌧+
S

, (2.17a)
⌃

D

⌘ ⌧
D

G
D

⌧+
D

(2.17b)

and the total excitation of the nanosystem

|Qi ⌘ ⌧
S

|�
S

i + ⌧
D

|�
D

i . (2.18)

Finally, we can write for its states

| i = G |Qi , (2.19)

where we defined the Green’s function of the nanosystem

G ⌘ (E � H � ⌃
S

� ⌃
D

)

�1 . (2.20)

Therefore, the Schrödinger equation of the coupled system has been transformed to a single
equation for the nanosystem, which is “open” to the environment by self-energies. This
approach simplifies the problem drastically because the dimension of the Fock space of the
nanosystem is much smaller than the dimension of the Fock space of the coupled system.
The self-energies represent a non-Hermitian modification of the Hamiltonian, which shift
its eigenenergies from the real axis into the complex plane. The imaginary part of the
eigenenergies is inversely proportional to the lifetime of the states in the nanosystem and
causes an energy broadening, see Figure 2.2.

With the definition of the broadening matrix

� ⌘ i

�
⌃� ⌃+

�
(2.21)

we obtain3 for the spectral function of the nanosystem

A ⌘ i

�
G � G+

�
= G (�

S

+ �

D

) G+
= A1 + A2. (2.22)

3To obtain (2.22), we use i
�
(G�1)+ �G�1

�
= �

S

+ �
D

and by multiplication with G from the left and
G+ from the right, we arrive at i

�
G�G+

�
= G (�

S

+ �
D

)G+.
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Figure 2.2: Energy resolved density of states (DOS) of a typical nanosystem. The DOS of
the isolated system shows peaks at the (discrete) eigenenergies of the Hamilto-
nian. These peaks are broadened, if the system is opened increasingly (dashed
to solid red curve) to reservoirs.

These spectral functions A1/2 ⌘ G�
S/D

G+ give the density of states for electrons originat-
ing S/D and should not be confused with the spectral functions A

S/D

= i

�
G

S/D

� G+
S/D

�
,

which give the density of states in the reservoirs. In order to calculate the correlation
function, we study the projector

| i h | (2.19)
= G |Qi hQ| G+

(2.18)
= G⌧

S

|�
S

i h�
S

| ⌧+
S

G+
+ G⌧

D

|�
D

i h�
D

| ⌧+
D

G+

+ G⌧
S

|�
S

i h�
D

| ⌧+
D

G+
+ G⌧

D

|�
D

i h�
S

| ⌧+
S

G+

| {z }
=0, because no direct coupling between the reservoirs

. (2.23)

Applying the substitution (2.9) and using (2.10) for the reservoirs, in which equilibrium is
assumed, we obtain for the non-equilibrium correlation function of the nanosystem

Gn

= G ⌧
S

A
S

⌧+
S| {z }

�
S

G+f(E � µ
S

) + G ⌧
D

A
D

⌧+
D| {z }

�
D

G+f(E � µ
D

)

= A1f(E � µ
S

) + A2f(E � µ
D

) (2.24a)

= G⌃inG+, (2.24b)

where we defined the inscattering function

⌃

in ⌘ ⌃

in

S

+ ⌃

in

D

= �

S

f
S

+ �

D

f
D

. (2.25)

As it could be expected for non-interacting electrons, the correlation function of the
nanosystem, which gives the electron density, is the sum of the spectral functions occupied
by the Fermi distributions of the corresponding contacts.
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The equations for the Green’s function (2.20) and for the correlation function (2.24b) are
two essential results of the non-equilibrium Green’s function approach. We have moti-
vated them physically, but arrived essentially at the same result as in Keldysh’s seminal
paper [102, eqs. (75)–(77)], where many-body perturbation theory is applied. In fact the
strength of the non-equilibrium Green’s function approach is more profound because it
allows to include arbitrary interactions in the system by suitable self-energies and inscat-
tering functions, see e.g. [42, 51] for details. These interactions can formally be considered
as additional virtual reservoirs attached to the system.

2.3 Current equations

In order to define the current operator, we start with the isolated nanosystem. By means of
the time-dependent Schrödinger equation, we obtain for the time evolution of the projector

d

dt
| i h | +

i

~
⇥
H, | i h |

⇤
= 0. (2.26)

In the same way as the continuity equation of quantum mechanics,4 this equation reflects
the conservation of probability density. However, when the nanosystem is connected to
reservoirs, electrons can enter and leave it and thus, the probability density in the system
is not conserved. In steady state, the first term of (2.26) vanishes and the remaining
commutator tells us the rate, at which electrons are lost in the system. Therefore, applying
the substitution rule (2.9), the current operator can be defined as

Iop ⌘ ie

h

⇥
H, Gn

⇤
, (2.27)

where e is the electron charge. Its off-diagonal elements

Iop

ij

=

ie

h

�
t
ij

Gn

ji

� t
ji

Gn

ij

�
=

2e

h
Im

�
t⇤
ij

Gn

ij

�
(2.28)

give the local energy resolved current flowing from the ith to the jth site [30, 37], whereas
its diagonal elements correspond to direct tunneling between the reservoirs and the sites.

The total flow of electrons with energy E through the dashed ellipse in Figure 2.1 is then
given by5

I(E) ⌘ Tr (Iop

) =

e

h
Tr

�
⌃

inA � �Gn

�
. (2.30)

As the number of electrons is conserved, the inflow of electrons equals the outflow and
hence, the total flow is exactly zero. Taking into account the invariance of the trace under

4Indeed, when we go to local space by multiplying (2.26) with hr| from left and |ri from right, we obtain
the continuity equation in its common form.

5The current operator can be rewritten by means of

[H,Gn]
(2.24b)

= HG⌃inG+ �G⌃inG+H (2.29a)
(2.20)
= G⌃in � ⌃inG+ +G⌃inG+

| {z }
G

n

⌃+ � ⌃G⌃inG+

| {z }
G

n

. (2.29b)

Using (2.21), (2.22) and the invariance of the trace under cyclic permutations, we obtain (2.30).
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cyclic permutations, this can be seen already by means of the definition of the current
operator (2.27). However, separating the inscattering function and the broadening function
into the individual contributions of each reservoir, we obtain for the non-zero current at
the drain

I
D

(E) =

e

h
Tr

�
⌃

in

D

A � �
D

Gn

�
. (2.31)

This current equation is another key result of the non-equilibrium Green’s function ap-
proach. For non-interacting electrons it can be further simplified by means of (2.24a)
and (2.25). Integrating over energy, we arrive finally at the famous Landauer formula
[110, 111] for the total current through the system6

I
D

=

e

h

Z
dE T

DS

(E)

�
f(E � µ

S

) � f(E � µ
D

)

�
, (2.32)

where we defined the transmission function

T
DS

⌘ Tr

�
�

D

G�
S

G+
�
. (2.33)

The transmission function T
DS

gives the probability that an electron injected by the source
will transmit to the drain. For an isolated system7, the transmission is perfect (T

DS

= 1) at
its eigenenergies, whereas it vanishes elsewhere, see Figure 2.3. These transmission peaks
are broadened, if the system is increasingly opened to reservoirs. Note that for sufficiently
strong coupling to the reservoirs, the transmission in the band center is perfect and nearly
constant. The transmission through various tight-binding lattices is discussed in detail in
Chapter 3.

In the following, we study mostly electron transport in the limit of an infinitesimal bias
voltage µ

S

! µ
D

= µ at zero temperature. In this case the transmission function at the
Fermi energy gives directly the zero-bias conductance

G =

e2

h
T
DS

(E = µ). (2.34)

The prefactor e2/h is the conductance quantum, which may be multiplied by a factor of 2
if spin degeneracy can be assumed. The zero-bias resistance is defined accordingly as
the inverse of the transmission at the Fermi energy

R =

h

e2
1

T
DS

(E = µ)

. (2.35)

2.4 Multi-terminal systems

Now, what happens when more than two reservoirs are attached to the nanosystem? These
additional reservoirs could be real voltage probes as well as virtual reservoirs, which rep-
resent interactions in the system. For such multi-terminal system, the formulae given in
the preceding Sections can still be applied, when we take into account the self-energies

6If not stated otherwise, integration boundaries extend from �1 to +1.
7In order to define the transmission function, the isolated system is still infinitesimally weakly coupled

to reservoirs.
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Figure 2.3: Transmission through the same nanosystem as in Figure 2.2. In the same way
as the DOS, the transmission of the isolated system is perfect (T

DS

= 1) at
its eigenenergies, whereas it vanishes elsewhere. These transmission peaks are
broadened, if the system is opened increasingly (dashed to solid red curve) to
reservoirs.

⌃

i

and inscattering functions ⌃in

i

of all reservoirs, see for example Figure 2.1 where
i 2 {S, P1, P2, P3, D} reservoirs are attached.

For the (energy resolved) current at the ith reservoir, we have to sum up the contributions
of all reservoirs to obtain the Landauer-Büttiker formula [25, 27]

I
i

(E) =

e

h

X

j

T
ij

(f
j

� f
i

) . (2.36)

The energy distribution functions f
S/D

of the source and the drain are Fermi functions
with given chemical potential and bias voltage. The distribution functions of the additional
reservoirs are determined by the condition that the total current at these reservoirs has
to vanish. This condition applies for real voltage probes as well as for virtual reservoirs.
Voltmeters are supposed to have an infinitely high internal resistance, which suppresses the
current flow. Also at virtual reservoirs, which exist only conceptually, no real particle can
be lost and therefore, no current can flow. Applying the Landauer-Büttiker formula (2.36),
we obtain a system of linear equations for the unknown energy distribution functions8

X

j

T
ij

(f
j

� f
D

) = T
iS

(f
S

� f
D

) , (2.38)

8For example, in the case shown in Figure 2.1 this system of linear equations for the unknown distribution
functions f

i

, i 2 {1, 2, 3} reads:
0

@
T1S + T12 + T13 + T1D �T12 �T13

�T21 T2S + T21 + T23 + T2D �T23

�T31 �T32 T3S + T31 + T32 + T3D

1

A

0

@
f1 � f

D

f2 � f

D

f3 � f

D

1

A =

0

@
T1S

T2S

T3S

1

A�
f

S

� f

D

�

(2.37)
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where

T
ij

⌘ R�1
ij

⌘

8
<

:
�T

ij

i 6= j,
P

k 6=i

T
ik

i = j.
(2.39)

The current through the nanosystem is then given by

I
D

(E) =

e

h

h
T
DS

+

P
ij

T
Di

R
ij

T
jS

i
(f

S

� f
D

) . (2.40)

Comparing with (2.32) and (2.34) shows that the term in square brackets gives the zero-
bias conductance. The sums in (2.38) and (2.40) are over the reservoirs with unknown
energy distribution function, whereas the sum in (2.39) is over all reservoirs including the
source and drain. The above equations reflect Kirchhoff’s law for a network of quantum
resistances 1/T

ij

. Applications of (2.40) will be discussed in the following Chapters.

2.5 Units

In order to keep the following discussion as clear and short as possible, we use the natural
units of the system:

• The energy is measured in multiples of a typical coupling matrix element t
ij

of the
tight-binding Hamiltonian (2.1). The energy origin is defined by a typical onsite
energy "

i

. We will study usually systems, for which (in absence of a magnetic field)
the coupling between neighboring sites is homogeneous, i.e. t

ij

= t = constant.

• The conductance is measured in multiples of the conductance quantum e2/h. The
resistance in multiples of h/e2, accordingly.

On occasion, we will indicate the used units also in the following Chapters (in particular
within the figures), in order to increase the accessibility and readability.

2.6 Further reading

In this Chapter, we have motivated physically the essential formulae required to study
quantum transport at the nanoscale. However, to get a deeper understanding, it is in-
dispensable to study the existing literature in detail. From the numerous textbooks, we
would like to recommend a few, which could be helpful to understand this thesis.

Maybe the best starting point are the textbooks by Datta [42–44], who gives a didactically
brilliant introduction into the physics of nanosystems. A mathematically more rigorous
and yet readable introduction can be found in the book by Di Ventra [51]. The usage of
Green’s function in quantum mechanics is nicely explained in the book by Economou [55].
To get started the reader may also find useful the books by Heikkilä [84], Ihn [90] and
Ferry, Goodnick and Bird [57]. We can also recommend the book on molecular electronics
by Cuevas and Scheer [39].



3 Tight-binding lattices: Electronic

properties and coherent transport

In this Chapter, we study tight-binding lattices, like one-dimensional (1D) chains, quasi-
one-dimensional ribbons and two-dimensional (2D) grids. After discussing the band-
structure and density of states (DOS), we show how reservoirs can be modeled by semi-
infinite lattices or by the wide-band approximation. In Section 3.2, we study the coherent
transport in tight-binding lattices. Ballistic conduction and conductance quantization are
discussed. We also show that interference of the coherent electrons can give rise to resis-
tance oscillations. The effect of the reservoir model on the transport is studied. Finally,
Anderson localization of coherent electrons in disordered lattices is introduced and an an-
alytical closed formula for the disorder averaged coherent resistance of 1D chains is given.

3.1 Electronic properties

3.1.1 The infinite tight-binding chain

The infinitely long homogeneous 1D tight-binding chain is described by the Hamiltonian

H =

1X

i=�1
" |ii hi| + t

�
|ii hi + 1| + H.c.

�
. (3.1)

As the onsite energies " and the coupling matrix elements t are constant in a homogeneous
chain, we use them to define the energy origin and the energy scale in our system, i.e.
" = 0 and t = 1. The Schrödinger equation can be solved by a plane wave ansatz for the
eigenfunctions |ki =

P
j

e

ikj |ji, to obtain a cosine energy band

✏(k) = 2 cos(k), (3.2)

see Figure 3.1 (left). The DOS (per site) can be calculated directly from its definition

D(E) =

X

k

� (E � ✏(k)) =

Z
⇡

0

dk

⇡
� (E � 2 cos(k)) =

✓ (1 � |E/2|)

2⇡
q

1 � (E/2)

2
, (3.3)

where ✓(x) is the Heaviside function.1 It has van Hove singularities at E = ±2, which
correspond to the band edges (or the extrema) of the cosine band, see Figure 3.1 (right).
Note that

R
dE D(E) = 1 is fulfilled, as every site can be occupied by a single electron.

1We can also calculate at first the Green’s function of the tight-binding chain [55, Section 5.3.1]

G
ij

(E) =
�i

2
p

1� (E/2)2

⇣
i
p

1� (E/2)2 � E/2
⌘|i�j|

. (3.4)

Calculating the LDOS by D
i

(E) = �Im (G
ii

(E)) /⇡, we arrive at (3.3).
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Figure 3.1: The homogeneous infinite tight-binding chain has a cosine band structure (left)
and thus, band edges at ✏ = ±2. Its DOS (right) shows van Hove singularities
at the band edges.

3.1.2 The infinite tight-binding ribbon and grid

The homogeneous infinitely long quasi-1D tight-binding ribbon of width M is described
by the Hamiltonian

H =

1X

i=�1

MX

j=1

" |i, ji hi, j|+t
�
|i, ji hi + 1, j|+H.c.

�
+

1X

i=�1

M�1X

j=1

t
�
|i, ji hi, j + 1|+H.c.

�
. (3.5)

For simplicity we use again " = 0 and t = 1. By means of a Fourier sine transformation

|i, ji =

r
2

M + 1

MX

j

0=1

sin

✓
⇡jj0

M + 1

◆
|gi, j0i (3.6)

the ribbon can be decoupled into M independent tight-binding chains

H =

1X

i=�1

MX

j

0=1

2 cos

✓
⇡j0

M + 1

◆
|gi, j0i hgi, j0| + t

⇣
|gi, j0i h ^i + 1, j0| + H.c.

⌘
, (3.7)

which are shifted in energy by 2 cos

�
⇡j

0

M+1

�
. Therefore, the ribbon has M shifted cosine

energy bands, and the DOS (per site) reads

D(E) =

1

2⇡M

MX

j=1

✓
⇣
1 �

���E2 � cos

�
⇡j

M+1

����
⌘

r
1 �

⇣
E

2 � cos

�
⇡j

M+1

�⌘2
. (3.8)

The 2D tight-binding grid, which is obtained by taking the limit M ! 1, can be diago-
nalized by the plane wave ansatz |k, qi =

P
l,m

e

i(kl+qm) |l,mi. The band structure

✏(k, q) = 2 (cos(k) + cos(q)) (3.9)

is shown in Figure 3.2 (left). The DOS (per site), which can be calculated by using its
definition or by converting in (3.8) the sum into an integral, is given by

D(E) =

1

2⇡2
K
⇣
1 � (E/4)

2
⌘
✓ (1 � |E/4|) , (3.10)
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where K(x) =

R
⇡/2
0 d�

�
1 � x sin

2
(�)

��1/2 is the complete elliptic integral of first kind [3].2
The DOS of the 2D tight-binding grid as well as the DOS of a ribbon of width M = 7

are shown in Figure 3.2 (right). The DOS of the ribbon shows the characteristic van Hove
singularities of the shifted 1D chains. These singularities can be observed experimentally,
for example, in carbon nanotubes [135] and in narrow graphene ribbons [173]. However,
when the limit to the 2D grid is taken, only the van Hove singularity in the band-center
survives, which corresponds to the saddle points in the energy bands, see the intersection
points of the black lines in Figure 3.2 (left).
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Figure 3.2: The 2D tight-binding grid has a cosine band structure (left). Its saddle points
in the ✏ = 0 plane cause a van Hove singularity in the band-center of the DOS
(right, red). The DOS of a ribbon with width M = 7 (right, blue) shows
2M = 14 van Hove singularities of the isolated 1D chains, see Figure 3.1.

3.1.3 Reservoir models: Semi-infinite lattices, wide-band approximation

When we truncate the chain at an arbitrary site, we obtain the homogeneous semi-infinite
tight-binding chain

H =

1X

i=1

" |ii hi| + t (|ii hi + 1| + H.c.) , (3.11)

which can be diagonalized by the ansatz |ki =

P1
j=1 sin (kj) |ji. It has the same cosine

energy band and the same DOS as the infinite chain, because effectively both systems are
infinitely long. We have truncated the chain, because it can be used as a simple model
for reservoirs, which we have to connect to the nanosystem in order to study transport,
see Figure 3.3. Reservoirs have to provide a continuous DOS, which is occupied with
electrons according to an energy distribution function f(E), see [43, Section 8.4]. These
requirements can be fulfilled with semi-infinite lattices.

The effect of the semi-infinite chain on the nanosystem is taken into account by its self-
energy. Analyzing the matrix product in (2.17), we find that for the calculation of the
self-energy we do not need to know the complete (infinite dimensional) Green’s function of

2We could also calculate at first the Green’s function of the tight-binding grid. However, as the expressions
are quite large, we refer to [55, Section 5.3.2].
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⌃

⌧

Figure 3.3: Semi-infinite tight-binding chains (left) can be used as a simple model for reser-
voirs, which we have to connect to the nanosystem (right) in order to study
transport. For the self-energy of the chain, we have to calculate only the surface
Green’s function, i.e. the G11 matrix element of the Green’s function, which is
connected to the nanosystem by the coupling matrix ⌧ .

the chain but only the matrix elements which are connected by the coupling matrix ⌧ to
the nanosystem. As shown in Figure 3.3, we have to calculate only the G11 matrix element
to obtain the surface Green’s function of the semi-infinite tight-binding chain

G11(E) =

8
>><

>>:

x +

p
x2 � 1 for x  �1

x � i

p
1 � x2 for |x| < 1

x �
p

x2 � 1 for x � 1

9
>>=

>>;
with x =

E

2

. (3.12)

A proof by means of Dyson’s equation can be found in Appendix A.1 and A.2. The LDOS
at the surface of the chain D1(E) = �Im (G11(E)) /⇡ is a semi-circle within the energy
band |E| < 2 and vanishes outside, see the plot of the surface Green’s function in Figure 3.4.
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Figure 3.4: Surface Green’s function G11(E) of the semi-infinite tight-binding chain. The
LDOS at the surface of the chain D1 = �Im (G11(E)) /⇡ is a semi-circle within
the energy band |E| < 2 and vanishes outside.



3.1 Electronic properties 17

The self-energy of the semi-infinite chain reads

⌃

ch

= |⌧11|2 G11, (3.13)

where ⌧11 is the coupling matrix element between the chain and the nanosystem, see
Figure 3.3. This contact model has been introduced by Caroli et al. in 1971 [30] but is
still applied nowadays, see [5, 29, 39, 42, 72, 94, 153] for some recent work.

In the same way, a semi-infinite tight-binding ribbon of width M can be used as a reservoir
model. Reminding us that the ribbon can be decoupled into independent 1D chains (3.7),
we obtain by means of (3.12) for the surface Green’s function of the decoupled ribbon
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⇡k
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◆
. (3.14)

Applying again a Fourier sine transformation, the surface Green’s function of the semi-
infinite tight-binding ribbon of width M reads

G
ij

(E) =

2

M + 1

MX

k=1

sin

✓
⇡ik

M + 1

◆
sin

✓
⇡jk

M + 1

◆
G0

kk

, i, j = 1, 2 . . . M. (3.15)

The surface Green’s function of a ribbon of width M = 7 is shown in Figure 3.5. On the
left, the diagonal matrix elements at the ribbon’s edge G11 (solid curve) and in its center
G44 (dashed curve) are shown as a function of energy. On the right, the imaginary part of
the diagonal matrix elements is shown along the ribbon’s end. Note that the imaginary part
of these matrix elements is the LDOS at the surface of the ribbon (apart from the factor
�1/⇡). From the surface Green’s function of the ribbon, we can calculate the self-energy

⌃

rb

= ⌧G⌧+, (3.16)

where the coupling matrix ⌧ connects the surface of the nanosystem with the surface of
the reservoir.
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Another contact model, which is commonly used [61, 115, 134, 184] and also applied in
this thesis, is the wide-band approximation for the reservoir’s self-energy

⌃

wb

= �i⌘, (3.17)

where ⌘ > 0 is a constant. This self-energy corresponds to a constant LDOS at the surface
of the reservoir, which is in particular a reasonable approximation, when the bias voltage
is infinitesimally small and only energies infinitesimally close to the Fermi energy have to
be taken into account. The advantage of wide-band reservoirs is that they require less
computational effort than semi-infinite lattices, while the results are qualitatively in many
cases the same, as discussed in the following Section.

3.2 Coherent transport

3.2.1 Tight-binding chains

We study the quantum coherent transport through 1D tight-binding chains of length N

H =

NX

i=1

"
i

|ii hi| +

N�1X

i=1

t
�
|ii hi + 1| + H.c.

�
. (3.18)

The first and the last site of the chain are connected to reservoirs (⌃
S

= ⌃

D

= ⌃), which
are modeled either by semi-infinite chains (3.13) or by the wide-band approximation (3.17).
In this case, the transmission function

T
N

(E)

(2.33)
= 4Im (⌃)

2 |G1N |2 (3.19)

is determined by a single matrix element of the Green’s function, which can be calculated
efficiently by a recursion, see Appendix A.3.1.

fDfS
⌃ ⌃

"i

t

Figure 3.6: Tight-binding chain of length N = 5, which is connected to reservoirs. The
inter-site coupling t = 1 is used as the energy unit.

The transmission through homogeneous chains ("
i

= 0) of length N = {5, 10, 15, 40} as
a function of the Fermi energy is shown in Figure 3.7. When homogeneous semi-infinite
chains ("

ch

= 0, t
ch

= ⌧11 = 1) are used as the reservoirs, the transmission T1 is indepen-
dent of the chain length because effectively an infinitely long homogeneous tight-binding
chain is studied. Inside the conduction band |E| < 2 the transmission is perfect, because
no scattering centers or grain boundaries exist, which would give rise to backscattering.
Outside the conduction band the transmission vanishes, because tunneling through an in-
finitely long system is impossible. However, when the wide-band approximation (⌘ = 1)
is used for the reservoirs, the transmission oscillates as a function of energy, because the
reservoirs can be considered as potential barriers, which give rise to backscattering and
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Fabry-Perot-like interference effects [39, Section 11.8]. The transmission shows resonances
whenever the Fermi energy approaches one of the eigenenergies of the system, which are
located approximately at E

i

= 2 cos (⇡i/(N + 1)) for i = 1, 2 . . . N . Therefore, the number
of resonances equals the length of the chain. This can also be seen in Figure 2.3, where the
5-site chain was studied for ⌘ = {0, 0.3, 1.0}. These oscillations, which may be unrealistic
for longer chains, can be suppressed by decoherence, see Chapter 4.
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Figure 3.7: Transmission through homogeneous 1D tight-binding chains ("
i

= 0) of length
N = {5, 10, 15} (top) and N = 40 (bottom). When homogeneous semi-infinite
chains ("

ch

= 0, t
ch

= ⌧11 = 1) are used as the reservoirs, the transmission
T1 is independent of the chain length. Inside the conduction band it is per-
fect, outside it vanishes, because effectively an infinitely long perfect conductor
is studied. When wide-band reservoirs (⌘ = 1) are used, the transmission
shows oscillations due to interference between the chain ends. Transmission
resonances can be observed whenever the energy approaches an eigenenergy
of the chain and thus, their number equals the chain length. The minimal
conductance of homogeneous chains T

min

is a reversed parabola.
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Moreover, we learn from Figure 3.7 that the minimal transmission

T
min

(E) =

8
<

:
1 �

�
E

2

�2 for |E|  2

0 for |E| > 2

(3.20)

is a reversed parabola [201, Section 3.9.2.3]. In the band-center, we have perfect transmis-
sion independent of the chain length and independent of the contact model, because for
the used parameters the self-energies are the same at E = 0. However, when we de-tune
the parameters or leave the band-center 0 < |E| < 2, the transmission (or the resistance)
as a function of the chain length shows oscillations, see Figures 3.8 and 3.9. These oscil-
lations, which have been observed experimentally in molecular wires [163], are caused by
the increasing number of transmission resonances within the conduction band. Anyway,
in contrast to a classical Ohmic conductor for which the resistance increases linearly with
its length, we find that the quantum coherent resistance of a homogeneous tight-binding
chain is length independent, apart from periodic oscillations. For wide-band reservoirs,
the resistance increases exponentially outside the band |E| > 2, because the electrons can
tunnel directly form the source to the drain, see Figure 3.9. For reservoirs modeled by
semi-infinite chains, the resistance outside the band is infinite, because the reservoir’s sur-
face DOS vanishes there or, in other words, tunneling through an infinitely long system is
impossible.
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Figure 3.8: Resistance (inverse transmission) as a function of the chain length. When the
parameters of the reservoirs are de-tuned ⌘ 6= 1, t

ch

6= 1 or when the band-center
is left E 6= 0, the resistance oscillates with the chain length, which is due to
the increasing number of resonances in the conduction band, see Figure 3.7.

Depending on the physical situation both contact models are useful. A constant length in-
dependent resistance is found in ballistic conductors as carbon nanotubes [14, 62], whereas
transmission resonances appear when the current flow through single molecules is stud-
ied [39]. Moreover, the two contact models are not as different as it may appear. The
transmission of a disordered chain in Figure 3.10 shows that both contact models give
qualitatively the same result. The disorder, which is sketched in the inset by red bars, is
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not necessarily random but may represent the electronic structure of the modeled system,
see [39, Chapter 9]. The role of the contact models is discussed in detail in [184].
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Figure 3.9: Resistance as a function of the chain length. Wide-band reservoirs with ⌘ = 1

are used. In the band-center E = 0 the resistance is length independent. Out-
side the band-center 0 < |E| < 2 periodic oscillations are superimposed upon
the constant resistance. Outside the conduction band |E| > 2, the resistance is
increasing exponentially, because electrons can tunnel directly from the source
to the drain.
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Figure 3.10: Transmission through a disordered 10 sites long chain. The onsite disorder
is indicated in the inset by means of the red bars. Both, wide-band reser-
voirs (blue) as well as semi-infinite chains (red) show qualitatively the same
behavior.
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3.2.2 Anderson localization in disordered chains

We study the disorder averaged resistance of coherent tight-binding chains. The onsite
energies "

i

are distributed independently according to a probability distribution w(") with
mean 0 and variance �2. In order to keep the equations clear and simple, we consider only
the band-center E = 0 and use wide-band reservoirs with ⌘ = 1. The disorder averaged
resistance (measured in multiples of h/e2) of the coherent tight-binding chain of length N
is given by the compact analytical formula

hR
N

i ⌘
⌧

1

T
N

�
=

Z
1

T
N

NY

i=1

w("
i

)d"
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=

1

2

⇣
1 + ↵+e

N/⇠

+ ↵�e

�N/⇠

(�1)

N

⌘
, (3.21)

where h·i denotes disorder averaging and

2↵± = 1 ± sech

�
⇠�1
�
, (3.22)

⇠�1 = ln

 
�2

2

+

r
�4

4

+ 1

!
. (3.23)

A proof, which also includes the general case of arbitrary energies and arbitrary self-
energies, can be found in the Appendix A.3.2. We published this proof in [167, 168].

In contrast to a classical disordered conductor, which is described in many cases by Ohm’s
law, we find that the resistance is increasing exponentially with the chain length. The
contributions from a constant term as well as from an exponentially suppressed oscillatory
term are irrelevant for N ! 1. This exponentially increasing resistance is nothing but
Anderson localization [9], which has been awarded by the Nobel prize in 1977. It can be
explained by the destructive interference of the coherent electrons in the disorder potential,
which traps the electrons and suppresses diffusion. Although Anderson localization has
been studied for more than 50 years [56, 109], it is still an active field of research, see
for example its recent experimental realization with ultracold atoms in optical lattices
[12, 124].

The exponent ⇠�1 = lim

N!1 ln hR
N

i/N in (3.21) is the second-order generalized Lya-
punov exponent. When not the resistance is averaged over disorder but its logarithm,
which is the statistically well behaving quantity [10, 171], one also finds an exponentially
increasing resistance, where the exponent ��1 = lim

N!1 hln R
N

i /N is the localization
length. Both quantities characterize the localization of the eigenstates in the disordered
quantum system. They can be related to each other when single parameter scaling holds
[202]. Note that when the disorder is switched off � ! 0, we find the constant length
independent resistance of a ballistic conductor. In the Section 4.5 the effect of decoherence
on Anderson localization is studied.

3.2.3 Tight-binding ribbons and grids

We study the transport through tight-binding ribbons of length N and width M , which
are described by the Hamiltonian

H =

NX

i=1

MX

j=1

"
ij

|i, ji hi, j|+
N�1X

i=1

MX

j=1

t
�
|i, ji hi + 1, j|+H.c.
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+

NX

i=1

M�1X
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t
�
|i, ji hi, j + 1|+H.c.

�
.

(3.24)
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The transmission3 through a homogeneous tight-binding ribbon ("
ij

= 0) of width M = 7

and length N = {5, 10, 40} is shown in Figure 3.11.
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Figure 3.11: Transmission through a homogeneous tight-binding ribbon ("
ij

= 0) of width
M = 7 and length N = {5, 10} (top), N = 40 (bottom). The 5 sites long
ribbon is sketched in the inset, where the gray shaded sites at the edges
are connected to the reservoirs. When homogeneous semi-infinite ribbons
("

ch

= 0, t
ch

= ⌧ = 1) are used as the reservoirs, the transmission T1 is
independent from the ribbon’s length. As a function of energy, T1 changes in
steps, whose number equals 2M . This conductance quantization as well as the
minimal transmission T

min

(of a ribbon with any length N but fixed width M)
can be understood by decoupling the ribbon into independent, energy shifted
1D chains. When wide-band reservoirs (⌘ = 1) are used, the transmission
shows multiple resonances due to interference.

3Note that the transmission through a ribbon is in general not determined by a single matrix element of
the Green’s function, like in the case of 1D chains (3.19), but by a few of them according to (2.33). Also
in this case, it is computationally more efficient to calculate these matrix elements by solving linear
equation systems instead of inverting a whole matrix.
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When homogeneous semi-infinite ribbons ("
ch

= 0, t
ch

= ⌧ = 1) of the same width are
used as the reservoirs, we find a staircase behavior. This conductance quantization can be
understood easily, when we remind ourselves that the ribbon can also be considered as M
independent, energy shifted 1D chains, see (3.7). The transmission T

j

= 1 of each chain is
perfect in its conduction band |E � 2 cos (⇡j/(M + 1))| < 2 and vanishes outside. Thus,
the transmission of the ribbon is given by the number of individual chains for which the
Fermi energy lies in the conduction band

TM

1 (E) =

8
<

:

l
M+1
⇡

arccos

⇣
|E|
2 � 1

⌘m
� 1 for |E|  EM

max

,

0 for |E| > EM

max

,
(3.25)

where EM

max

= 2+ 2 cos (⇡/(M + 1))

M!1����! 4 is the edge of the ribbon’s conduction band.
These staircases have been observed in quantum point contacts [18, 177, 182], in quantum
wires [45, 189] realized in semiconductor heterostructures, in chains of individual atoms
[138] and in graphene ribbons [176]. When wide-band reservoirs are used, the transmission
shows multiple resonances, which are an interference effect as in the 1D case. In the same
way, summing up the minimal transmission (3.20) of each of the independent 1D chains,
gives the minimal transmission of a ribbon with any length N but fixed width M

TM

min

(E) =

MX

j=1

T
min

✓
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✓
⇡j
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◆◆
. (3.26)

Taking the limit M ! 1, the transmission per width of the 2D tight-binding grid reads
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and its minimal transmission per width is given by
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(3.28)

Figure 3.12 shows the maximal and minimal transmission per width of the homogeneous
tight-binding grid, as well as the transmission per width through a ribbon of length N =

600 and width M = 200 connected to wide-band reservoirs. The resonances are much
less pronounced compared to the ribbon with N = 40, M = 7 shown in Figure 3.11
(bottom), because the wide-band reservoirs at the 200 sites long edges of the ribbon add
some energy broadening to the system and thereby, suppress interference. This effect is
used in Chapter 5 to suppress spurious interference by additional virtual reservoirs at the
boundaries of the system.

The resistance of a 7 sites wide ribbon as a function of its length is shown in Figure 3.13.
It confirms that quasi 1D ribbons show essentially the same behavior as 1D chains. For
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homogeneous ribbons (� = 0) connected to wide-band reservoirs (solid curves), the resis-
tance is constant apart from periodic oscillations due to interference. These oscillations
vanish, if semi-infinite ribbons are used as the reservoirs (dashed curve). For disordered
ribbons (� > 0), the resistance shows Anderson localization. Note that also disordered
2D tight-binding grids show Anderson localization, although the localization length can be
quite large at weak disorder, which makes numerical studies demanding [2, 56, 74].
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Figure 3.12: Maximal and minimal transmission per width of the homogeneous 2D tight-
binding grid. The transmission per width through a ribbon of length N = 600

and width M = 200 is also shown. The resonances are suppressed by the
energy broadening of the wide-band reservoirs at the 200 sites wide edges of
the ribbon. The energy resolution is �E = 10

�4.

3.3 Conclusions

In this Chapter, we have studied tight-binding lattices, like 1D chains, quasi-1D ribbons
and 2D grids. Starting with electronic structure calculations, we have shown that these
lattices have cosine energy bands. The critical points in the cosine bands can lead to van
Hove singularities in the DOS, see Figures 3.1 and 3.2. Reservoirs for transport studies
have to provide a continuous DOS, which is occupied according to an energy distribution
function. We have shown that semi-infinite lattices can be used as a reservoir model and
have calculated the self-energy for chains (3.13) and ribbons (3.16). For studies of tight-
binding ribbons, it has been proven to be useful to decouple the ribbon into independent,
energy shifted 1D chains. Also the computationally less expensive wide-band reservoirs
(3.17) have been introduced, which assume an energy independent DOS at the reservoir’s
surface. Both contact models give physically reasonable results for many systems.

In the second part of this Chapter, coherent transport has been studied. We have shown
that the transport through homogeneous lattices is ballistic within the conduction band.
The resistance is length independent, even though periodic oscillations can be superim-
posed, see Figures 3.9 and 3.13. These oscillations are due to interference of the coherent
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Figure 3.13: Disorder averaged resistance of a tight-binding ribbon of width M = 7 as a
function of its length (E = 0). For homogeneous ribbons (� = 0) connected
to wide-band reservoirs (solid curves), periodic oscillations are superimposed
upon the constant resistance. These oscillations vanish, if semi-infinite ribbons
are used as the reservoirs (dashed curve). When disorder (� > 0) is introduced,
Anderson localization is indicated by an exponentially increasing resistance.
Averages were taken over N · 10

4 disorder configurations.

electrons, which also causes resonances in the energy resolved transmission, see Figure 3.7
and 3.11. When infinitely long homogeneous ribbons are studied (by using semi-infinite
homogeneous lattices as the reservoirs), the oscillations and resonances vanish. The energy
resolved transmission shows then quantized plateaus. In disordered lattices the coherent
electrons are Anderson localized, which is indicated by an exponential increase of the re-
sistance with the system length. We have derived a compact analytical formula for the
disorder averaged coherent resistance of a 1D chain (3.21).

All these novel quantum effects – ballistic transport, conductance quantization, transmis-
sion resonances, and Anderson localization – can be observed experimentally. However,
the common Ohm’s law cannot be observed in quantum coherent systems. In the following
Chapter, we study if these novel quantum transport properties are stable under the effect
of decoherence and, if Ohm’s law can be reached.



4 Effects of decoherence on transport

In this Chapter, the effects of decoherence on electron transport in nanosystems are studied.
We start with a short introduction, in which we address the question, why it is necessary
to take into account decoherence in nanosystems. An overview of existing decoherence
approaches is also given. In Section 4.2, we introduce a novel statistical model for the
effects of decoherence. This model is applied in the following Sections to tight-binding
lattices in order to study its properties and advantages. We show that these lattices go
from the quantum to the classical regime, when decoherence is introduced. We also test
some model variations and compare the model with existing approaches. In Section 4.5,
the effects of decoherence on Anderson localization are investigated. We show that the
spatial distribution of decoherence has observable effects on transport. In Section 4.6, we
introduce an extension of the decoherence model, which allows to tune the degree of phase
and momentum randomization independently and hence, to obtain pure dephasing. The
Chapter is closed with an outlook on how our model can be used to study the effects of
decoherence on the transport of spin polarized electrons. We have published partially the
results of this Chapter in [167, 168, 170].

4.1 Decoherence in nanosystems

The transport through nanosystems takes place in an intermediate regime between classical
and quantum transport, because several relevant lengths – mean free path, phase coherence
length, Fermi wavelength, localization length, system size – can have the same order of
magnitude. The essential mechanism for the transition from the quantum to the classical
regime is the decoherence of the conduction electrons, i.e. the randomization of their phase
and momentum. When the phase coherence is lost, the electrons cannot interfere anymore
and behave as classical particles. Therefore, in order to describe the transport through
nanosystems correctly, it is necessary to take into account some degree of decoherence.
Decoherence is caused by interactions of the conduction electrons with the environment.
This could be, for example, a surrounding phonon bath, which causes phase breaking
scattering in the system. From another point of view, the interactions with the environment
can be understood as an increasing entanglement of the conduction electrons. When the
environmental degrees of freedom are traced out in order to obtain a reduced density matrix
for the electron systems, this goes along with a loss of information and the decoherence
of the electrons. A detailed discussion on “decoherence and the appearance of a classical
world in quantum theory” can be found in [95].

There are many decoherence models in the literature. Basically already the nonequilibrium
Green’s function approach, as introduced in Chapter 2, allows to take into account arbitrary
phase breaking interactions by suitable self-energies. Datta proposed, for example, self-
energies for the electron-phonon and electron-electron interaction by using the first-order
self-consistent Born approximation, see [36, 72] and [43, Chapter 10]. Work in this direction
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has also been done in [19, 38, 80]. However, as this approach requires generally high
computational effort, it is limited to relatively small systems.

Büttiker proposed to use virtual reservoirs as a model for the effects of decoherence [26, 28],
where the electrons are absorbed and reinjected after randomization of their phase and
momentum. As the electrons in the decoherence reservoirs are considered as uncorrelated,
they can be characterized by single-particle energy distribution functions f

i

(E). The dis-
tribution functions are determined by the condition that virtual reservoirs cannot provide
a net current flow. Conceptually, these so-called Büttiker probes can be considered as ad-
ditional voltage probes and can be handled by the multi-terminal formula (2.40) derived
in Section 2.4. Note that this apparently phenomenological approach can be justified from
microscopic theories, see [85], [121, Section III.C], and [42, Section 8.7]. In order to model
a continuous loss of the electron phase, D’Amato and Pastawski [40] used Büttiker’s idea
and attached a homogeneous distribution of these decoherence reservoirs to the system,
see Figure 4.1. Roy and Dahr [156] extended this model to a finite bias voltage and fi-
nite temperature bias in order to study current and heat transport under the effect of
decoherence. Homogeneous distributions of attached Büttiker probes are used in several
publications, see e.g. [5, 32, 64, 65, 77, 115, 133, 134, 194]. Büttiker’s original idea is also
used [104, 113, 119, 120, 161, 195]. A drawback of Pastawski’s model is that a coherent
transmission between every pair of the N reservoirs has to be calculated and a N ⇥ N
system of linear equations has to be solved, see (2.40). Thus, the computational effort
increases quadratically with the system size.

Other decoherence models use the Lindblad master equation and take into account the
effects of decoherence by suitable Lindblad operators [51, 95, 145, 151, 205, 206]. Also
stochastic absorption through an attenuating factor [96] or random phase factors [139,
140, 199] are used, which are still controversially discussed [16]. However, a common
feature of all of these decoherence models is that they assume a continuous loss of the
electron phase.

fDfS
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Figure 4.1: In Pastawski’s decoherence model, virtual reservoirs (Büttiker probes) are at-
tached to all sites of a tight-binding chain in order to model a continuous loss
of the electron phase.

4.2 Statistical model for the effects of decoherence

We introduce a novel statistical model for the effects of decoherence on electron transport,
which has been proposed recently by M. Zilly et al. [201–203]. In this thesis, the model is
developed further and applied to various nanosystems. Our aim is a simple phenomeno-
logical model, which on the one hand takes into account decoherence correctly but on the
other hand is computationally less expensive than existing approaches in order to be appli-
cable to realistic systems. We will also see that its simplicity allows to solve some transport
problems analytically and to gain deeper understanding of the system properties.
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The statistical decoherence model is the following:

• Decoherence regions are distributed spatially over the quantum system according to
a given probability distribution function. We focus on random distributions with-
out spatial correlations, which correspond not only to spatially fixed phase breaking
scatterers but also to dynamical decoherence processes like electron-phonon scatter-
ing, see below. In general, we allow for arbitrary spatial decoherence distributions,
depending on the considered microscopic decoherence process.

• The electron phase is randomized completely at these decoherence regions, which
are modeled by Büttiker probes and characterized by energy distribution functions
f
i

. In general, the momentum of the electrons is also randomized, while we assume
that no energy relaxation takes place, which is justified for electron transport at
the Fermi energy. In one-dimensional systems the model can be extended to obtain
pure dephasing [170], i.e. randomization of the phase but conservation of energy and
momentum, see Section 4.6.

• The transport in between these decoherence regions is assumed as quantum coherent.
As virtual Büttiker probes can be handled computationally in the same way as real
voltage probes, for a given decoherence configuration, the current through the system
can be calculated by the multi-terminal formula (2.40).

• Statistical approach: Afterwards, the transport quantity of interest, e.g. the resis-
tance or the conductance, is ensemble averaged over spatial decoherence configura-
tions. According to the ergodic hypothesis, averaging the resistance corresponds to
experiments where the current through the system is fixed and the voltage drop is
measured. When the conductance is ensemble averaged it is vice versa.

• The phase coherence length is determined by the average distance of the decoherence
regions.

In order to make our model more transparent, we apply it in the next Sections to tight-
binding lattices. Its properties and advantages are studied in detail. We also test some
model variations and compare our model with other approaches.

4.3 Application of the statistical decoherence model to
tight-binding chains

The statistical decoherence model is applied to 1D tight-binding chains of length N . As-
suming complete phase and momentum randomization at the decoherence reservoirs, we
replace bonds of the chain by couplings to virtual completely phase and momentum ran-
domizing reservoirs. This limits the coherent transmission to nearest neighbors and sub-
divides the chain into smaller coherent subsystems, see Figure 4.2. Simplifying (2.40)
under this constraint, the resistance of a fixed decoherence configuration is the sum of the
quantum coherent subsystem resistances (measured in multiples of h/e2)

R =

N

dX

i=0

1

T
i+1,i

, (4.1)

where N
d

is the number of decoherence reservoirs. Afterwards, an ensemble average {·}
over the spatial decoherence configurations is calculated.
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Figure 4.2: In our statistical decoherence model, bonds of the tight-binding Hamiltonian
are replaced by couplings to completely phase and momentum randomizing
reservoirs, which limits the coherent transmission to nearest neighbors (green
arrows) and subdivides the chain into smaller coherent subsystems.

For reasons, which will become clear later, let us derive (4.1) also explicitly. As the energy
resolved current is conserved at the N

d

virtual decoherence reservoirs, their distribution
functions f

i

are determined by

T
i,i�1 (f

i�1 � f
i

) � T
i+1,i (fi � f

i+1)
!
= 0. (4.2)

The solution of this system of N
d

linear equations reads

f
i

� f
D

=

P
N

d

k=i

1
T

k+1,kP
N

d

k=0
1

T

k+1,k

(f
S

� f
D

) . (4.3)

Using this result in the Landauer-Büttiker formula (2.32)

I =

e

h

Z
dE T

D,N

d

(f
N

d

� f
D

) =

e

h

Z
dE

f
S

� f
DP

N

d

k=0
1

T

k+1,k

(4.4)

and taking the limit of an infinitesimal bias voltage, we arrive at (4.1).

Focussing on random uncorrelated decoherence distributions, we replace the bonds of the
chain randomly with probability p. However, we also allow for other decoherence distri-
butions under the constraint that on average {N

d

} = (N � 1) p decoherence regions are
introduced in the system. In this way, we will also study the homogeneous distribution of
decoherence reservoirs and random distributions with a cut-off. The degree of decoherence
p can be related to the average subsystem size and thereby, defines the phase coherence
length

`
�

=

N

1 + (N � 1) p

N!1����! 1

p
. (4.5)

Our statistical decoherence model reduces the computational effort compared to other
models, which attach virtual reservoirs to every site of the chain. Instead of calculating the
transmission function between every pair of reservoirs, we have to evaluate it only between
nearest neighbors. Moreover, instead of solving the linear equation system in (2.40), we
can simply sum up the subsystem resistances. The decoherence average increases the
computation time but it can be parallelized efficiently by distributing to each processor a
decoherence configuration. We will also see that in some situations the transport problem
can be solved analytically, which gives deeper insight into the underlying physics.
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4.3.1 Homogeneous chains: The ballistic-to-Ohmic transition

Studying homogeneous chains, the resistance of a given decoherence configuration does
not depend on the positions of the subsystems in the chain but only on their number
of occurrence. From elementary combinatorics, we know that a chain of total length N
remains coherent with probability (1 � p)

N�1. A subsystem of length j < N appears with
probability p(1� p)

j�1 at one of the two chain ends, while inside the chain it appears with
probability p2(1 � p)

j�1 at one of the N � 1 � j possible positions. Hence, the average
number of subsystems with length j in a chain of N sites is given by

uN

j

= e

�(j�1)/`

(
2p + (N � 1 � j) p2 for j < N,

1 for j = N,
(4.6)

where

`�1 = � ln (1 � p) . (4.7)

The decoherence averaged resistance reads

{R} =

(
N

dX

i=0

1

T
i+1,i

)
=

NX

j=1

uN

j

1

T
j

, (4.8)

where T
j

is the coherent transmission through a chain of length j. In the previous
Chapter 3, we found that for reservoirs modeled by homogeneous semi-infinite chains
("

ch

= 0, t
ch

= 1) the transmission is perfect T
j

= 1 inside the conduction band. Also for
wide-band reservoirs with ⌘ = 1, the transmission is perfect in the band-center. In these
cases, we obtain for the decoherence averaged resistance the simple analytical expression

{R} = {1 + N
d

} =

NX

j=1

uN

j

= 1 + (N � 1) p. (4.9)

The resistance increases linearly with the chain length, if a finite degree of decoherence
p > 0 is introduced. Thus, by introducing decoherence, i.e. phase and momentum random-
ization, the system goes from the quantum-ballistic to the classical-Ohmic regime. The
decoherence averaged transmission cannot be calculated analytically that easily. However,
numerical averages over 10

4 decoherence configurations in Figure 4.3 show that this tran-
sition occurs for decoherence averages over the resistance as well as over the transmission.
Note that the numerical averaged resistance agrees with the exact result (4.9). The resis-
tance in the case of averaging the transmission is always less than in the case of averaging
the resistance directly. The reason for this behavior are “rare events”, i.e. improbable
decoherence configurations with high resistance, which have a noticeable effect on the de-
coherence average of the resistance but negligible effect on the decoherence average of its
inverse, the transmission.

We proceed our studies with tight-binding chains, which are connected to wide-band reser-
voirs. By means of the exact expression for the resistivity of coherent chains derived in
Appendix A.3.1 and (4.6), we can calculate for arbitrary self-energies the decoherence
averaged resistance. However, as the expressions are quite large, we restrain ourselves to
numerical evaluations. In Figure 4.4 we show that the resistance oscillations, which are due
to the interference of the coherent electrons (compare also with Figure 3.8), are suppressed
by decoherence and a linearly increasing Ohmic resistance is found.
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Figure 4.3: Resistance of a tight-binding chain in the band-center E = 0 as a function of
its length. The system goes from the quantum-ballistic regime to the classical-
Ohmic regime, if a finite degree of decoherence p > 0 is introduced. This
transition occurs for the decoherence average over the resistance (solid curves,
(4.9)) as well as over the transmission (dashed curves). Numerical averages are
over 10

4 decoherence configurations.
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Figure 4.4: Using wide-band reservoirs, the quantum-coherent resistance oscillates with
the chain length, because of interference (compare with Figure 3.8). These
oscillations are suppressed by decoherence and a classical Ohmic resistance is
found, which increases linearly with the chain length.
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Figure 4.5 shows the decoherence averaged energy distribution function {f
i

} (4.3) along a
20 sites long homogeneous chain. The spatial evolution of {f

i

}, which after averaging over
spatial decoherence configurations can be assigned to every bond, corresponds to the quasi-
Fermi level within the chain. In the coherent chain p = 0,1 the quasi-Fermi level drops
steeply at the interfaces to the source and drain reservoir but it is totally flat inside. As the
electric potential follows the quasi-Fermi level,2 we conclude that the resistance is located
at the interfaces, whereas no voltage drop occurs inside. This is the so-called contact
resistance of ballistic conductors [42, Section 2.1]. When decoherence is introduced p > 0,
the quasi-Fermi level (or electrical potential) drops linearly along the chain, as expected
for an Ohmic conductor.
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Figure 4.5: Decoherence averaged energy distribution function (or quasi-Fermi level) along
a 20 sites long homogeneous chain (E = 0). If the transport is coherent p = 0,
the quasi-Fermi level drops at the interfaces to the reservoirs, whereas it is flat
inside. The resistance of a ballistic conductor is caused solely at the interfaces.
When decoherence is introduced p > 0, the quasi-Fermi level drops linearly, as
expected for an Ohmic conductor. Averages are over those of 10

5 decoherence
configurations, for which the ith bond is replaced by a decoherence reservoir.

The resistivity ⇢ ⌘ lim

N!1R/N as a function of the degree of decoherence p is shown in
Figure 4.6 for various energies E and wide-band parameters ⌘. For ⌘ = 1 and E = 0 the
resistivity increases linearly with p, as expected from (4.9). However, for ⌘ 6= 1 and E 6= 0,
we find that the resistivity can increase non-linearly and even decrease with increasing
degree of decoherence. The resistivity in the band-center as a function of ⌘ is shown in
Figure 4.7. It is minimal at ⌘ = 1, because in this case the reservoirs are equivalent to
homogeneous semi-infinite chains and therefore, match perfectly. For ⌘ 6= 1 the resistivity
increases symmetrically around its minimum, i.e. {⇢(⌘)} = {⇢(1/⌘)}.

1To apply our model, we assume also in the coherent case an infinitesimal degree of decoherence p = 10�3.
2The electric potential is given by the convolution of the Green’s function of the Poisson equation with the

charge density, which in turn is proportional to the quasi-Fermi level. As convolution means averaging,
the electric potential follows the quasi-Fermi level except that it is smoothed out over some screening
length, see for details [42, Section 2.3]. Using the Hartee approximation for the electron-electron
interaction, the self-consistent electric potential in coherent systems is studied in [166].
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Figure 4.6: Decoherence averaged resistivity {⇢} as a function of the degree of decoherence
p for various wide-band parameters ⌘ and energies E. In the band-center and
for ⌘ = 1 the resistivity increases linearly with p. For other parameters the
resistivity can increase non-linearly and even decrease with p.
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Figure 4.7: The decoherence averaged resistivity {⇢} in the band-center E = 0 as a function
of the wide-band parameter ⌘. For ⌘ = 1 the resistivity is minimal, because the
reservoirs match perfectly. For ⌘ 6= 1 the resistivity increases symmetrically
around its minimum, i.e. {⇢(⌘)} = {⇢(1/⌘)}.

4.3.2 Disordered chains: Suppression of transmission resonances

Figure 4.8 shows the effect of decoherence on the transmission through a 10 sites long chain
with the same disorder as in Figure 3.10. The solid curves have been obtained by averaging
the resistance, whereas for the dashed curves the transmission has been averaged. Note
that the results, although qualitatively the same, correspond to different experimental sit-
uations, i.e. measuring the voltage or the current. The real reservoirs and the decoherence
reservoirs are modeled in the wide-band approximation with ⌘ = 1. Averages were taken
over 10

4 decoherence configurations. We observe that the oscillations in the transmission
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are reduced, because interference is suppressed by decoherence. However, also the average
transmission is reduced, which indicates the additional resistance due to momentum ran-
domization at the decoherence regions. A similar behavior can be found in [16, 72, 119]. In
Section 4.6 we show, how momentum conserving decoherence can be obtained in a modified
model.
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Figure 4.8: The effect of decoherence on the energy resolved transmission of a 10 sites long
chain with the same disorder as in Figure 3.10. The solid curves have been
obtained by averaging the resistance, whereas for the dashed curves the trans-
mission has been averaged. 10

4 decoherence configurations have been used for
the averages. When the degree of decoherence p is increased, the oscillations in
the transmission are reduced as the interference of the electrons is suppressed.
Also the average transmission is reduced, which indicates the additional re-
sistance due to momentum randomization at the decoherence reservoirs. All
reservoirs are modeled in the wide-band approximation with ⌘ = 1.

4.3.3 Effect of the spatial decoherence distribution and the assumption of
complete phase and momentum randomization

Let us discuss, how the assumption of complete phase and momentum randomization at
the decoherence reservoirs as well as their spatial distribution changes the behavior of
the system. Figure 4.9 shows the energy resolved transmission through the 10 sites long
disordered chain, which has already been studied in Figures 3.10 and 4.8. Averaging the
resistance over 10

4 decoherence configurations, for the dashed red and black curve the
bonds of the Hamiltonian have been replaced with decoherence reservoirs as discussed
before. Using the same ensemble, for the solid red and black curve we have attached the
decoherence reservoirs only to the chain, see Figure 4.10. As phase and momentum are
randomized only partially at these attached reservoirs, the coherent transmission between
all reservoirs has to be taken into account. In general, this increases the computational
effort and restricts us to numerical calculations by means of the multi-terminal formula
(2.40). The green and purple curve have been obtained by attaching at every site of the
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chain a wide-band reservoir with ⌘0, which corresponds to Pastwaski’s decoherence model,
see Figure 4.1. We find that all decoherence models show qualitatively the same behavior,
i.e. suppression of the transmission resonances and a reduction of the average value.
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Figure 4.9: Effect of decoherence on the energy resolved transmission of the 10 sites long
disordered chain, studied already in Figures 3.10 and 4.8. Averaging the re-
sistance over an ensemble of 10

4 decoherence configurations, for the solid red
and black curve we have attached the decoherence reservoirs (⌘ = 1.0) only to
the chain, whereas for the dashed curves the bonds have been replaced. For
the green and purple curve we have attached to every site a wide-band reser-
voir with ⌘0. All decoherence models show qualitatively the same behavior, i.e.
suppression of the resonances and decrease of the average value.
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Figure 4.10: A variation of our model is to attach the decoherence reservoirs only to the
chain. When the reservoirs are attached to every site, Pastawski’s decoherence
model is obtained, see Figure 4.1.

The effect of these decoherence models on the resistance of a homogeneous tight-binding
chain as a function of its length is shown in Figure 4.11. We observe in all cases a
decoherence-driven transition from the quantum-ballistic to the classical-Ohmic regime,
although the precise value of the resistivity (slope of the curves) depends on the details of
the models, as expected. In Section 4.3.1 we have shown that in some situations the deco-
herence averaged resistance of homogeneous chains can be calculated analytically, see (4.9).
It turns out that in these cases the resistance is independent of the spatial distribution of
the decoherence reservoirs and determined completely by their average number. However,
this is true only for homogeneous chains. In Section 4.5, we show that the decoherence
distribution affects the transport in disorder averaged chains.
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Figure 4.11: Resistance of a homogeneous tight-binding chain as a function of its length
(E = 0). Although the resistivity (slope of the curves) depends on the details
of the decoherence models, we find in all cases a decoherence-driven transition
from the ballistic to the Ohmic regime. The color coding and the parameters
are the same as in Figure 4.9.

4.4 Application of the statistical decoherence model to
tight-binding ribbons

We discuss the application of our statistical decoherence model to tight-binding ribbons
of length N and width M . In the same way as for 1D chains, completely phase and
momentum randomizing regions are distributed spatially over the system by replacing
randomly selected bonds of the tight-binding Hamiltonian with decoherence reservoirs,
see the inset of Figure 4.12. Afterwards, an ensemble average over spatial decoherence
configurations is calculated. In contrast to 1D chains, a subdivision into smaller coherent
subsystems is in general not possible, which restrains us to numerical evaluation of the
multi-terminal formula (2.40). However, our statistical decoherence model can still be
applied more efficiently than models, which attach decoherence reservoirs to every site of
the system. In our model, the decoherence reservoirs are introduced in average only at the
fraction p of all bonds, which reduces the number of transmission functions to be calculated
in (2.40) as well as the dimension of the linear equation system in (2.40). The decoherence
average can be parallelized by distributing to each processor a decoherence configuration.

Figure 4.12 shows the effect of decoherence on a homogeneous tight-binding ribbon of length
N = 25 and width M = 5. Source and drain are modeled by semi-infinite ribbons, whereas
for the decoherence reservoirs the wide-band approximation is used. The transmission
plateaus are suppressed with increasing degree of decoherence p. Its average value is also
reduced, which indicates the additional resistance due to momentum randomization. The
resistance of a homogeneous tight-binding ribbon as a function of its length is shown
in Figure 4.13. As in the case of 1D chains, the ribbon goes from the ballistic to the
Ohmic regime for any finite degree of decoherence. The quasi-Fermi level inside a ribbon,
see Figure 4.14, drops entirely at the interfaces to the reservoirs in the case of coherent
transport. Under the effect of decoherence the linearly decreasing quasi-Fermi level of an
Ohmic conductor is found.
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Figure 4.12: Effect of decoherence on the transmission of a homogeneous tight-binding
ribbon of length N = 25 and width M = 5. Source and drain are modeled by
semi-infinite ribbons ("

rb

= 0, t
rb

= 1), whereas for the decoherence reservoirs
the wide-band approximation (⌘ = 1) is used. 10

4 decoherence configurations
have been used for the numerical average of the resistance (solid curves) as well
as the transmission (dashed curves). The transmission plateaus are suppressed
with increasing degree of decoherence p. Its average value is reduced, which
indicates the additional resistance. As sketched in the inset, a decoherence
configuration is generated by replacing randomly selected bonds (marked in
purple) with decoherence reservoirs.
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Figure 4.13: Resistance of a tight-binding ribbon (M = 5, E = 0) as a function of its length.
The system goes from the ballistic to the Ohmic regime if a finite degree of
decoherence p > 0 is introduced. The color coding and the parameters are
the same as in Figure 4.12.
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Figure 4.14: Quasi-Fermi level inside a ribbon of length N = 20 and width M = 5. In
the coherent case (p = 0, left), the quasi-Fermi level drops entirely at the
interface of the ribbon to the reservoirs. When decoherence is introduced
(p = 0.08, right), the quasi-Fermi level decreases linearly as expected for an
Ohmic conductor. The system parameters are the same as in Figure 4.12.

4.5 Effect of decoherence on Anderson localization

In the previous Sections, we found that decoherence causes in homogeneous systems a tran-
sition from the quantum-ballistic to the classical-Ohmic regime. Decoherence suppresses
transport in these system, as the resistance is no longer constant but increases linearly
with the chain length. This raises the fundamental, but up to now only partially answered
question, if it is possible to enhance the transport in some systems by means of decoher-
ence. In this respect, tight-binding chains [161, 170, 175, 202, 203, 206], molecular wires
[32, 133, 134, 204] and aggregates [63, 99, 145, 151] have been studied. Recently, it has
also been discussed, if Anderson localization, see Section 3.2.2, can be observed in presence
of many-body interactions [17, 75, 136, 205]. As many-body interactions are a source of
decoherence, this corresponds to the question, if localization is possible under the effect
of decoherence. Addressing these questions, we study in this Section transport through
disorder averaged tight-binding chains. In particular, we show that the spatial distribution
of the decoherence has observable effects on the transport. We have published partially
the results of this Section in [167, 168].

In order to keep the discussion clear and simple, we consider here only the band-center
E = 0 and wide-band contacts with ⌘ = 1. However, we stress that the main results of
this Section are still valid outside the band-center and for arbitrary reservoir self-energies.
The resistivity of a tight-binding chain, ensemble averaged over uncorrelated decoherence
{·} and disorder h·i configurations, reads

⇢ ⌘ {hRi}
N

=

1

N

NX

j=1

uN

j

⌧
1

T
j

�
. (4.10)

It can be evaluated by our previous results (3.21) and (4.6). We can directly see from the
products uN

j

h1/T
j

i that the resistivity is determined by the relation of the characteristic
lengths ⇠ and `, see the Appendix A.4 for detailed derivations. When ⇠ > ` the transport



40 4 Effects of decoherence on transport

is Ohmic, i.e. the resistivity is length-independent

⇢
⇠>`

N!1����! p +

�2

4

p

p � �2 1�p2�p
. (4.11)

However, when ⇠ < ` the system is localized, which means that its resistivity diverges
exponentially with the chain length

⇢
⇠<`

/ e

(1/⇠�1/`)N . (4.12)

The root of the exponent ⇠�1 � `�1 = 0 determines the critical degree of decoherence

p⇤ = 1 � e

�1/⇠, (4.13)

where the transition between Ohmic and localized behavior appears. It can be related by
(4.5) to a critical phase coherence length and is a function of the disorder strength �, see
(3.23). In a different way, (4.13) has been obtained already in [202]. Here, its derivation
by the analytical formulae (3.21) and (4.6) allows to understand the statistical origin of
the decoherence induced insulator-metal transition.

Localization is found to survive decoherence, when the exponentially increasing resistance
of the long coherent subsystems (3.21) overcompensates their exponentially decreasing
frequency of occurrence (4.6). Any decoherence distribution, for which the number uN

j

of
coherent subsystems decreases with their length j faster than exponentially will show only
Ohmic behavior. A simple example is to distribute the decoherence reservoirs randomly
under the constraint that at least after j

max

normal bonds a decoherence reservoir has to be
introduced. The corresponding uN

j

has then a cut-off uN

j>j

max

= 0 and thus, decreases faster
than exponentially. In this case the system is Ohmic for any finite degree of decoherence.
Also for a homogeneous decoherence distribution, where all subsystems have the same size
`
�

, the resistivity

⇢
hom

=
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�

*
1

T
`

�

+
(4.14)

is Ohmic for any finite degree of decoherence. If however, uN

j

decreases with j asymp-
totically more slowly than exponentially, the system will always be localized, in spite of
decoherence. This behavior appears for example, if the probability p

j

of having coherent
subsystems of length j (i.e. j � 1 succeeding normal bonds) decreases as p

j

/ j�� with an
arbitrary constant � > 0.

This strong effect of the spatial distribution of decoherence on the transport is one of
the main results of this thesis. It is summarized in Figure 4.15, where the resistivity of
the infinitely long chain is shown as a function of the degree of decoherence. The dashed
curves for homogeneous decoherence clearly show decoherence-assisted transport, and agree
qualitatively well with other studies assuming homogeneous decoherence [32, 63, 99, 134,
145, 151, 161, 175, 206]. The solid curves for random uncorrelated decoherence exhibit
divergencies at the critical degree of decoherence p⇤, which is shown as a function of the
disorder strength � in Figure 4.16 (left). Thus, in contrast to homogeneous decoherence,
where the transport is Ohmic for any p > 0, we find for random uncorrelated decoherence
a metal-insulator transition at p⇤. Moreover, Figure 4.15 shows that in both cases the
resistivity of disordered chains can be reduced by decoherence or, in other words, transport
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can be enhanced by decoherence. The optimal degree of decoherence p
opt

, at which the
resistivity is minimal, is shown in Figure 4.16 (right). It increases until a critical disorder
strength (�⇤ = 1.4 for random decoherence, �⇤ = 1.8 for homogeneous decoherence), from
which on completely incoherent transport p = 1 is optimal.
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Figure 4.15: Resistivity ⇢ of an infinitely long disordered tight-binding chain as a function
of the degree of decoherence p (inverse phase coherence length 1/`

�

). If the
decoherence is distributed homogeneously (dashed curves), ⇢ is Ohmic for
any p > 0. If the decoherence distribution is random and uncorrelated (solid
curves), a minimal degree of decoherence p⇤ is necessary to obtain Ohmic
conduction, whereas below this threshold the system is localized (⇢ ! 1).
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Figure 4.16: Critical degree of decoherence p⇤ (left) and optimal degree of decoherence
p
opt

(right) as a function of the disorder strength �. At p⇤ an insulator-metal
transition can be observed, if the decoherence is distributed randomly. At p

opt

the transport is optimal, i.e. minimal resistivity for the random (solid curve)
and the homogeneous decoherence distribution (dashed curve). The optimal
degree of decoherence increases until a critical disorder strength, from which
on completely incoherent transport p = 1 is optimal.



42 4 Effects of decoherence on transport

Taking many-body interactions explicitly into account, an insulator-metal transition is
found at a critical temperature [17, 75], which is proportional to the degree of decoher-
ence in the system. Experiments on various nanosystems have been performed, see e.g.
[4, 69, 103, 157, 183], where a transition from Ohmic to exponential behavior is observed.
It is found [69] that this transition occurs when the phase coherence length approaches
the localization length3, which agrees with our condition (4.13). However, to our knowl-
edge these experiments have been done only for systems with a fixed length. In order to
learn from an experiment how the decoherence is distributed, we propose to study the
resistivity of linear nanosystems as a function of their length. When the decoherence is
randomly distributed, we expect that below a critical temperature the resistivity increases
exponentially with the chain length. Above the critical temperature the resistivity should
be constant (Ohm’s law). In contrast, for homogeneous decoherence we expect for any
non-zero temperature Ohmic behavior, when the length of the system is increased.

In Section 3.2.1, we found that outside the conduction band the resistance of homogeneous
chains, connected to wide-band reservoirs, increases exponentially with the length, see
Figure 3.9. These chains show outside the conduction band also a decoherence induced
insulator-metal transition, which is caused by the same mechanism. Thus, the critical
degree of decoherence is generally a function of the disorder and the Fermi energy [202].

4.5.1 Partial phase randomization, tight-binding ribbons and the
decoherence averaged transmission

In this Section, we show that our results are not model specific but appear more generally.
We show that the insulator-metal transition also appears, (I) when the phase is randomized
only partially at a virtual reservoir, (II) when tight-binding ribbons instead of chains are
studied and, (III) when the conductance is ensemble averaged instead of the resistance.

In Figure 4.17, we show that the decoherence induced transition appears not only, if bonds
are replaced by decoherence reservoirs (circles). It can also be observed, if the reservoirs are
attached only to the chain (squares), which in general randomizes phase and momentum
only partially at a decoherence reservoir. Contributions from the coherent transmission
between next-nearest neighbors can be observed only for higher degrees of decoherence,
because the transmission between two reservoirs is exponentially suppressed with their
distance. The numerical averages over 10

9 decoherence and disorder configurations agree
well with the analytical result (4.10) for completely phase and momentum randomizing
reservoirs, see the solid curves. Combining this result with (4.14), we can conclude that
attaching a homogeneous distribution of decoherence reservoirs to the chain leads to Ohmic
transport for any finite degree of decoherence.

The decoherence induced transition from localized to Ohmic behavior is not restricted to
1D chains but is also found in quasi-1D ribbons, see Figure 4.18. Note that for these ribbons
the critical degree of decoherence is less compared to chains. This can be understood, by
recalling that localization under the effect of decoherence is caused by the long coherent
subsystems. In a ribbon of length N and width M , the number of bonds is N (2M � 1)�M
and thus, the probability of having a long section in the ribbon, which does not contain
any decoherence reservoir, decreases by a factor 1/(2M � 1) compared to chains.

3Note that our parameter ⇠�1 is the second-order generalized Lyapunov exponent and not the localization
length �, see Section 3.2.2. However, both quantities are a measure for the localization in the system.
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Figure 4.17: Resistivity of the disordered chain as a function of its length. The decoherence
induced transition also appears, when the randomly distributed decoherence
reservoirs are only attached to the chain (⇤). Averages were calculated nu-
merically over 10

9 decoherence and disorder configurations. Also shown is
the average over the same ensemble under the assumption of complete phase
randomization (•), as well as the corresponding analytical result (4.10) (solid
curves).
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Figure 4.18: Resistivity of a tight-binding ribbon of width M = 5 and variable length
N . The decoherence induced transition can also be observed in this quasi-1D
system. The solid lines are fits with an exponential function and a constant,
respectively. Numerical averages were taken over 25N · 10

5 decoherence and
disorder configurations.
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Finally we study, if the transition also occurs, when the decoherence average is not per-
formed over the resistance {hRi} but over the conductance {1/hRi}. In this case, analytical
calculations are demanding but the numerical average over random uncorrelated decoher-
ence configurations clearly confirms that a minimal degree of decoherence is necessary for
Ohmic transport, see Figure 4.19. Below this threshold a power-law divergence is found
in contrast to the exponential increase (4.12) in the case of averaging the resistance. Fig-
ure 4.19 also shows that deep in the Ohmic regime, the resistivity is independent of the
averaging process, see the convergence of the solid curve for p = 0.60 to the dashed hori-
zontal line, which gives the analytically known limit value (4.11) in the case of averaging
the resistance. However, from the numerical data it is not clear, whether this is also true
in the transitional regime and whether the critical degree of decoherence depends on the
averaging process, see the curve for p = 0.55, which should converge to the corresponding
dashed horizontal line representing (4.11), whereas the curve for p = 0.50 should diverge.
Anyway, for our purpose it is more important that the discussed metal-insulator transition
appears independently of the averaging process.
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Figure 4.19: Resistivity of a tight-binding chain as a function of its length after averag-
ing numerically the conductance over 10

4 random uncorrelated decoherence
configurations. A minimal degree of decoherence is necessary for Ohmic con-
duction, whereas below a power-law divergence is found. Deep in the Ohmic
regime, the resistivity is independent of the averaging process, see the con-
vergence of the solid curve for p = 0.60 to the dashed curve, which gives the
resistivity due to (4.11). However, the influence of the averaging process in the
transitional regime is not clear, see the curve for p = 0.55, which should con-
verge to the corresponding dashed horizontal line, and the curve for p = 0.50,
which should diverge.
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4.6 Pure dephasing: Phase randomization but momentum
conservation

In our statistical decoherence model, like in many models using Büttiker probes, phase and
momentum of the conduction electrons are randomized at the decoherence reservoirs. This
assumption is reasonable in many situations, such as the interaction with a phonon bath
or with localized scatterers, which exhibit additional degrees of freedom (e.g. magnetic
impurities). However, in some situations only the phase is randomized but the momentum
is conserved [42, p.129ff]. This pure dephasing can arise from electron-electron interaction,
see [72] and [44, Chapter 19.4]. Also the interaction with longitudinal phonons is considered
as a source of pure dephasing [104]. In this Section, we will show how our statistical
decoherence model can be extended in order to allow to tune the degree of phase and
momentum randomization independently. Only few decoherence models also provide this
flexibility [72, 104, 113, 195, 199]. We have published partially the results of this Section
in [170].

In one-dimensional systems, pure dephasing can be obtained, if we define two energy
distribution functions per decoherence reservoir, see Figure 4.20. The f!

i

and f 
i

allow
to distinguish between the forward moving and backward moving electrons or, in other
words, to attribute to every electron a definite sign of the momentum. The absence of
energy relaxation then ensures momentum conservation at the decoherence reservoirs.
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Figure 4.20: Pure dephasing, i.e. phase randomization but momentum conservation, can
be obtained in 1D chains, if two energy distribution functions are assigned to
each decoherence reservoir. This allows to distinguish between the forward
moving f!

i

and backward moving f 
i

electrons. The absence of energy re-
laxation then ensures momentum conservation at the decoherence reservoirs.
The transmission T

i+1,i between neighboring reservoirs is indicated by green
arrows and the reflection R

i+1,i = 1 � T
i+1,i by red arrows.
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where R
i+1,i = 1�T

i+1,i is the reflection. Solving this system of 2N
d

linear equations, the
energy distribution functions of the decoherence reservoirs read
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By means of the Landauer equation, we obtain for the zero-bias resistance

R =

N

dX

i=0

1

T
i+1,i

� N
d

. (4.17)

Thus, comparing (4.1) with (4.17), for pure dephasing the sum of the subsystem resistances
is reduced by the constant contact resistance R0 = 1 of each of the momentum conserving
decoherence reservoirs.

In general, from the N
d

decoherence reservoirs in a system, N c

d

reservoirs are momentum
conserving and N

d

� N c

d

reservoirs are momentum randomizing. If we set f!
i

= f 
i

= f
i

for the momentum randomizing reservoirs, we can still use (4.15) to calculate the energy
distribution functions of the momentum conserving reservoirs. For the energy distribu-
tion functions of the momentum randomizing reservoirs, we have to use the modified rate
equation T

i,i�1(f
!
i�1 � f

i

) � T
i+1,i(fi � f 

i+1) = 0, which is nothing but the sum of the
two equations in (4.15). Solving this system of linear equations, the zero-bias resistance
R =

P
N

d

i=0
1

T

i+1,i
� N c

d

is reduced only by N c

d

.

Focusing on random uncorrelated distributions of the decoherence reservoirs, the bonds of
a tight-binding chain are selected with probability p as a decoherence bond. These deco-
herence bonds are with probability p

r

momentum randomizing and with probability 1�p
r

momentum conserving, see Figure 4.21. However, we allow also other spatial decoherence
distributions, under the constraint that in a chain of length N in average (N � 1)p deco-
herence reservoirs are introduced from which (N � 1)p(1 � p

r

) are momentum conserving
and (N � 1)pp

r

are momentum randomizing.

normal bond

momentum conserving

momentum randomizing

decoherence bond

p
pr

1 � p

1 � pr

Figure 4.21: Decision tree for generating random uncorrelated decoherence configurations.

The average distance of momentum randomizing decoherence reservoirs

`�
m

=

N

1 + (N � 1)pp
r

N!1����! 1

pp
r

(4.18)

gives in homogeneous systems the mean free path `
m

. In disordered systems the spatial
rates of all momentum randomization processes have to be summed up. In the Anderson
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model, for example, we have to take into account the contributions from phase conserving
scattering ⇠ (3.23) as well as from phase randomizing scattering `�

m

, to obtain for the mean
free path

1

`
m

=

1

⇠
+

1

`�
m

. (4.19)

The decoherence averaged resistance is given by

{R} =

(
N

dX

i=0

1

T
i+1,i

)
� (N � 1)p(1 � p

r

). (4.20)

As the first term is independent from the fact whether the decoherence is momentum
randomizing or conserving, the decoherence averaged resistance can be tuned easily by
the second term between the two regimes. The additional resistance due to momentum
randomizing decoherence

{�R} ⌘ {R(p
r

)} � {R(p
r

= 0)} = (N � 1)pp
r

(4.21)

increases linearly with the chain length and both decoherence probabilities.

4.6.1 Homogeneous chains: Ballistic conduction survives pure dephasing

We have learned in Section 3.2.1 that homogeneous chains show perfect transmission T = 1

inside the conduction band, if semi-infinite chains ("
ch

= 0, t
ch

= 1) are used as the
reservoirs. This can also be observed in the center of the conduction band, if wide band
reservoirs (⌘ = 1) are used. In these cases, the decoherence averaged resistance is given by

{R} = {N
d

+ 1} � (N � 1)p(1 � p
r

) = 1 + (N � 1)pp
r

, (4.22)

which agrees with (4.9) in the limit p
r

= 1. However, in the case of pure dephasing p
r

= 0,
ballistic conduction {R} = 1 is retained for any degree of decoherence p, because phase
randomization of the conduction electrons does not alter the fact that these electrons can
propagate through the homogeneous chain without suffering backscattering. Ohmic behav-
ior {R} / N is found only, if momentum randomization takes place at some decoherence
reservoirs p

r

> 0.

When the reservoirs do not match perfectly the chain, resistance oscillations can be ob-
served, see Figure 3.8. Under the effect of pure dephasing p

r

= 0, interference effects
like these resistance oscillations are suppressed but the transport is still ballistic, see Fig-
ure 4.22. The transport is Ohmic, if momentum randomization is introduced p

r

> 0, as
also shown in Figure 4.4 for the case p

r

= 1. Note that for the decoherence reservoirs,
semi-infinite chains with "

ch

= 0, t
ch

= 1 have to be used, in order to avoid an additional
contact resistance due to mismatching reservoirs.

Figure 4.23 shows the quasi-Fermi level along a 20 sites long homogeneous chain, which
is given by the decoherence averaged energy distribution function {f

i

} = {f!
i

+ f 
i

}/2.
The dashed and the dotted curves give the quasi-Fermi level of the forward moving {f!

i

}
and backward moving {f 

i

} electrons, respectively. Under the effect of pure dephasing,
the quasi-Fermi level is the same as for coherent transport, compare with Figure 4.5. The
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forward moving electrons remain at the Fermi level of the source and the backward moving
electrons at the Fermi level of the drain, as expected for ballistic transport [42, Section 2.1].
If momentum randomization is introduced, the quasi-Fermi level drops linearly, which
indicates Ohmic transport. The same behavior of the quasi-Fermi level under the effect of
pure dephasing is reported in [72].
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Figure 4.22: Resistance of a homogeneous chain as a function of its length (E = 0). For the
real source and drain reservoirs the wide-band approximation with ⌘ = 0.73 is
used, whereas for the virtual decoherence reservoirs semi-infinite chains with
"
ch

= 0, t
ch

= 1 have to be used in order to avoid an additional contact resis-
tance. Pure dephasing p

r

= 0 suppresses interference effects like the resistance
oscillations but ballistic conduction is retained. If momentum randomization
takes place at some decoherence reservoirs p

r

> 0, Ohmic behavior can be
observed. Averages are over N · 10

4 decoherence configurations.

4.6.2 Disordered chains: Smoothing of transmission resonances but
conservation of its average

Figure 4.24 shows the effect of pure dephasing on the energy resolved transmission of
a disordered chain, studied also in Figures 3.10, 4.8, and 4.9. The coherent transmis-
sion shows several resonances due to interference between the disordered sites. When
decoherence is introduced, the interference is suppressed and these oscillations vanish.
For pure dephasing (solid curves), only the oscillations in the transmission are smoothed
out, whereas its average is conserved. For momentum randomizing decoherence (dashed
curves), the transmission itself is reduced indicating additional resistance, as also shown in
Figure 4.8. This behavior of the transmission function agrees with the results reported in
[16, 72, 195, 199]. Note that the curves in Figure 4.8 and Figure 4.24 differ slightly, because
for the former wide-band decoherence reservoirs are used, but for the latter semi-infinite
chains ("

ch

= 0, t
ch

= 1).
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Figure 4.23: Decoherence averaged energy distribution function {f
i

} = {f!
i

+ f 
i

}/2 (or
quasi-Fermi level) along a 20 sites long homogeneous chain (solid curves). The
dashed and the dotted curves give the quasi-Fermi level of the forward moving
{f!

i

} and backward moving {f 
i

} electrons, respectively. Under the effect of
pure dephasing p

r

= 0, the quasi-Fermi level is the same as for coherent
transport, compare with Figure 4.5. The forward moving electrons remain
at the Fermi level of the source and the backward moving electrons at the
Fermi level of the drain, as expected for ballistic conduction. If momentum
randomization is introduced p

r

> 0, the quasi-Fermi level drops linearly, which
indicates Ohmic transport. 10

5 decoherence configurations are used.
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Figure 4.24: Effect of pure dephasing on the energy resolved transmission of the 10 sites
long disordered chain, studied also in Figures 3.10, 4.8, and 4.9. For pure
dephasing, only the transmission resonances are smoothed due to the sup-
pression of interference. For momentum randomizing decoherence, also the
average value of the transmission decreases, which indicates the additional
resistance. Averages are over 10

4 decoherence configurations.
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4.6.3 Anderson model: Pure dephasing enhances always transport

We discuss in this Section, if the decoherence induced insulator-metal transition in the
Anderson model reported in Section 4.5, is changed in the case of pure dephasing. From
(4.20) we know that the degree of momentum randomization changes the decoherence
averaged resistance only by a linear term. As this linear term does not alter the fact
that the resistance is exponentially increasing in the localized regime, the critical degree of
decoherence, at which the transition to the Ohmic regime appears, is independent of the
degree of momentum randomization. However, the Ohmic resistivity (4.11) can be reduced
by pure dephasing

⇢
⇠>`

N!1����! pp
r

+

�2

4

p

p � �2 1�p2�p
. (4.23)

Figure 4.25 shows that the transport is optimal in the complete incoherent case, if only
the phase is randomized at the decoherence reservoirs. The transport is enhanced by pure
dephasing, because the momentum conserving decoherence reservoirs reduce the length of
the localized subsystems but do not introduce any additional resistance.
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Figure 4.25: Resistivity of the infinitely long disordered chain as a function of the de-
gree of decoherence. The critical degree of decoherence p⇤, which separates
the localized-exponential from the Ohmic-linear regime, is independent of p

r

.
However, pure dephasing p

r

= 0 always reduces the Ohmic resistivity of the
chain, because momentum conserving decoherence reservoirs reduce the length
of the localized subsystems but do not introduce any additional resistance.
Thus, the transport is optimal in the complete incoherent case.
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4.6.4 Outlook: Spin randomizing and spin conserving decoherence

In the preceding Sections, we have learned that pure dephasing can be obtained by defining
two energy distribution functions per decoherence reservoir. Obviously, this approach can
be used only in 1D chains, in which the momentum of the electrons has only two possible
directions. It cannot be applied in tight-binding ribbons and grids, where the momentum
is a 2D vector. However, it can be used to study in every tight-binding lattice the effect
of decoherence on the transport of spin polarized electrons. By means of two energy
distribution functions per decoherence reservoir, we can distinguish between the spin-up
and spin-down electrons. This allows to tune the degree of phase and spin randomization
independently.

Spintronics, which aims at utilizing the electron spin for novel electronic devices, has
gained recently further stimulation by the observation of novel topological insulators, see
[81, 116, 160] and references therein. The quantum Hall effect [180], awarded with the
Nobel prize in 1985, as well as the recently observed quantum spin Hall effect [106, 155] are
topological insulating. In both cases, the current is carried in edge channels straight along
the surface of the system, while the interior is insulating. In the quantum Hall effect, all
electrons in an edge channel propagate in the same direction, whereas in the quantum spin
Hall effect the edge channels are helical, which means that the spin-up and the spin-down
electrons propagate in opposite directions. It is also discussed, if a topological insulator can
be realized in graphene under the effect of heavy metal doping [98, 188]. In order to study
the robustness of these novel topological insulators against the effects of spin randomizing
and spin conserving decoherence, our statistical model can be helpful. First work in this
direction can be found in [92, 194]. Although this closing Section is intended only as an
outlook, let us discuss a simple test system.

When spin polarization is taken into account, basically all matrices become twice as large.
The Hamiltonian can be partitioned into four blocks

H =

✓
H" t"#
t#" H#

◆
, (4.24)

where H" and H# are the Hamiltonians for isolated spin-up and spin-down systems, respec-
tively. The coupling between the spin-up and spin-down systems is described by t"# = t+#".
We consider a tight-binding ribbon of length N = 15 and width M = 7, as sketched in
Figure 4.26. The Hamiltonian of the ribbon reads
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(4.25)

The Zeeman spin splitting "
z

, which we have taken into account to give an example for
broken spin degeneracy, as well as the inter-site couplings t are functions of the magnetic
field. For simplicity, we assume the absence of a magnetic field, which implies "

z

= 0

and t = 1. In topological insulators, spin-orbit interaction is also essential, which leads to
non-zero coupling matrices t"#, see e.g. [44, Chapter 22].
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A current of spin-up electrons I" is applied between the source and drain contacts, see
the blue sites in Figure 4.26, which means that the self-energies due to these contacts
act only on H". Additional voltage probes measure the energy distribution functions
f" of spin-up electrons (light blue sites) and f# of spin-down electrons (light red sites).
Figure 4.27 shows that under the effect of decoherence p > 0 the potential of the spin-
up probes (dashed curves) increases approximately from 1/2 to 3/4. This indicates the
transition from the ballistic to the Ohmic regime, which is independent of the degree of
spin randomization p

r

. This transition can also be seen in Figure 4.5 at the 5th site. If the
decoherence is spin conserving p

r

= 0, the potential at the spin-down probes (solid curves)
is exactly zero, because no spin-down electrons exist in the system. If spin randomization
takes place p

r

> 0, the potential tends approximately to 1/4 for p ! 1. This indicates
again the transition from ballistic to Ohmic conduction and can also be seen in Figure 4.5
at the 15th site. However, for 0 < p ⌧ 1 the potential tends to 1/2, which shows that
ballistic transport can sustain a weak degree of decoherence, while the spins are randomized
efficiently.

Note that our results do not depend on which of the two spin-up probes and two spin-down
probes we use. However, this will change in presence of a magnetic field. In the following
Chapter 5, we will use such a multi-terminal geometry to study magnetotransport in 2D
electron systems.

f�

f�

I�

Figure 4.26: Transport of spin polarized electrons through a tight-binding ribbon of length
N = 15 and width M = 7 is studied. A spin-up current I" is applied between
the source and drain reservoirs (attached to the blue sites). Additional voltage
probes measure the energy distribution function f" of spin-up electrons (light
blue sites) and f# of spin-down electrons (light red sites). For clarity, the
wiring is drawn only for two probes but calculations are performed at all of
them.
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Figure 4.27: Normalized potential of the spin-up probes (dashed curves) and the spin-down
probes (solid curves) as a function of the degree of decoherence p. When p
is increased, the potential of the spin-up probes increases approximately from
1/2 to 3/4, which indicates the transition from ballistic to Ohmic conduction,
compare with Figure 4.5. If the decoherence is spin conserving p

r

= 0, the
potential at the spin-down probes vanishes exactly. If spin randomization
takes place p

r

> 0, the potential tends to 1/4 for p ! 1, which again indicates
the ballistic-to-Ohmic transition. However, for 0 < p ⌧ 1 the potential tends
to 1/2, which shows that ballistic transport can sustain a weak degree of
decoherence, while the spins are randomized efficiently.

4.7 Conclusions

In this Chapter, we have studied the effects of decoherence on the transport in tight-binding
lattices by means of a novel statistical model, which can be summarized briefly as follows:

• Decoherence regions are distributed spatially over the quantum system according to
a given probability distribution function.

• The electron phase is randomized completely at these regions, which are modeled by
Büttiker probes and characterized by energy distribution functions. The transport
in between the decoherence regions is assumed as phase coherent.

• Afterwards, the transport quantity of interest is ensemble averaged over spatial de-
coherence configurations.

This model, proposed originally by M. Zilly et al. [201–203], has been generalized and
extended in some aspects. It can be applied now to arbitrary tight-binding lattices using the
multi-terminal formula (2.40). In the case of 1D chains, the multi-terminal formula reduces
to the simple result that the resistance of a decoherence configuration is given by the sum
of the quantum coherent subsystem resistances (4.1). However, a subdivision into smaller
coherent subsystems is possible only in 1D chains. In arbitrary tight-binding lattices,
generally the coherent transmission between every pair of reservoirs has to be calculated.
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How such lattices can be subdivided into smaller coherent subsystems remains as an open
question to be addressed in the future. Nevertheless, as in our model decoherence regions
are introduced in average only at a fraction of all possible places, it is computationally
still more efficient than approaches, which model the decoherence as continuously present
in the system. The ensemble average can be parallelized easily by distributing to each
processor a decoherence configuration.

We have discussed how homogeneous tight-binding lattices are driven by decoherence from
the quantum-ballistic to the classical-Ohmic regime, see Figures 4.3 and 4.13. For 1D chains
this transition has been proven analytically (4.9). We have also shown in Figures 4.5 and
4.14 that the quasi-Fermi level of a ballistic conductor drops entirely at the interfaces to the
reservoirs, whereas under the effect of decoherence the linearly decreasing quasi-Fermi level
of an Ohmic conductor is found. We have discussed some model variations and compared
our model with other approaches, but found in all cases qualitatively the same behavior,
see Figures 4.9 and 4.11.

We have also studied the effect of decoherence on Anderson localization by means of our
model, generalized to arbitrary decoherence configurations. We have shown that the trans-
port through disordered quantum systems is affected significantly by the spatial distribu-
tion of decoherence [167, 168]. When the decoherence is homogeneously distributed, Ohmic
conduction is found for any finite degree of decoherence. In contrast, for random uncorre-
lated decoherence, a minimal degree of decoherence is necessary, whereas below the system
is localized, see Figure 4.15. This insulator-metal transition is caused by the interplay
of the exponentially increasing coherent resistance (3.21) and its exponentially decreasing
importance (4.6). The characteristics of our model, in particular the assumption of com-
pletely phase randomizing reservoirs, are not important for this transition, but make our
model simple and allow to gain insight into the transport problem by analytical calcula-
tions. To summarize in other words, we found that an Anderson insulator can be stable
against decoherence effects, if these are randomly distributed. We have also seen that
transport through disordered tight-binding chains can be enhanced by decoherence up to
a critical disorder strength, from which the completely incoherent transport is optimal, see
Figure 4.16 (right).

Studying in Figures 4.8 and 4.12 the energy resolved transmission, we found that the reso-
nances, caused by interference of the coherent electrons, are suppressed when decoherence
is introduced. However, also the average value of the transmission drops indicating the ad-
ditional resistance due to momentum randomization at the decoherence regions. We have
extended our decoherence model to obtain pure dephasing in 1D chains [170]. We have
shown that in this case the resistance of the system is reduced by the contact resistance of
the virtual decoherence reservoirs (4.17). Under the effect of pure dephasing, resonances
in the transmission are suppressed but its average remains constant, see Figure 4.24. Bal-
listic conduction in homogeneous chains survives pure dephasing, because of the absence
of backscattering during the phase randomization process, see Figure 4.22. In the same
way, the quasi-Fermi level drops entirely at the interfaces, because the electrons remain at
the Fermi energy of the reservoir they are originating from, see Figure 4.23. In disordered
quantum systems pure dephasing always enhances transport, because the length of the
localized subsystems is reduced by the decoherence regions without introducing additional
contact resistance, see Figure 4.25. Our model for pure dephasing can be applied only to
1D systems. However, we have concluded this Chapter with an outlook on how to use this
model to study the transport of spin-polarized electrons in arbitrary tight-binding lattices
under the effect of spin conserving and spin randomizing decoherence.



5 Magnetotransport in 2D electron

systems

In this Chapter, we study magnetotransport in two-dimensional electron systems. We start
with a nonrelativistic two-dimensional electron gas (2DEG), as it can be realized experi-
mentally in semiconductor heterostructures, and discuss in Section 5.1 its basic properties.
In order to apply the nonequilibrium Green’s function method, we also show how such
a 2DEG can be approximated by finite differences. In Section 5.2, we study magneto-
transport along the boundary of a finite 2DEG. In particular, we discuss how the system
properties change, when the magnetic field strength is increased. In weak fields, the coher-
ent electron flow can be described by classical cyclotron orbits. In strong magnetic fields,
the quantum Hall effect can be observed, which is also introduced briefly. In intermediate
fields, we find anomalous resistance oscillations, which are explained by means of a minimal
model. We have published the results of this Section in [169]. Our studies are also applied
to graphene’s relativistic 2DEG. After a short introduction to graphene in Section 5.3,
we study magnetotransport along the boundaries of graphene nanoribbons in Section 5.4.
The effects found in a nonrelativistic 2DEG can also be observed in graphene. We show
that the local magnetotransport is affected by the shape of the edges of the ribbons. The
Chapter is concluded with some notes on Hofstadter’s butterfly shown on the cover page
of this thesis.

5.1 The nonrelativistic 2D electron gas

5.1.1 Hamiltonian and its finite differences approximation

The nonrelativistic two-dimensional electron gas (2DEG) is described by the Hamiltonian

H
2DEG

=

p2

2m
, (5.1)

where p is the momentum operator and m the (effective) electron mass. The Schrödinger
equation can be solved easily by a plane-wave ansatz  k(r) = e

ik·r, which leads to a
parabolic dispersion relation

✏(k) =

~2k2

2m
. (5.2)

The DOS per unit area can be calculated directly from its definition

D(E) =

1
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X

k

� (E � ✏(k)) =

Z
d

2k

4⇡2
�

✓
E � ~2k2

2m

◆
=

m

2⇡~2 ✓(E), (5.3)

where S is the system size.1 It is constant above the band edge at E = 0.
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To study transport through a 2DEG, we evaluate numerically the Green’s function (2.20)
and the transmission function (2.33). To do so, the derivatives in the Hamiltonian are
approximated by finite differences (in first order)

HFDA

2DEG

= 4t 
x,y

� t ( 
x+1,y +  

x�1,y +  
x,y+1 +  

x,y�1) , (5.4)

with the coupling

t ⌘ ~2
2ma2

. (5.5)

 
x,y

denotes the wave function at discrete supporting points on a square lattice with spacing
a, see Figure 5.1. In the finite differences approximation, the Hamiltonian of the 2DEG is
equivalent to the Hamiltonian of a tight-binding ribbon (3.5), apart from the fact that the
energy is shifted by 4t and the coupling has negative sign. The parabolic dispersion of the
2DEG is approximated by a cosine band (compare with (3.9))

✏(k, q) = 4t � 2t (cos(ka) + cos(qa)) . (5.6)

This approximation is justified only if k, q ⌧ 1, which corresponds to energies close to the
band edge. In the same way, the DOS (3.10) is approximately constant only close to the
band edge, see Figures 3.2 (right). We conclude that the finite differences approximation
can be applied, if the discretization a is chosen so small that the Fermi energy (measured
in multiples of t / 1/a2) is close to the band edge.2

5.1.2 Effect of a magnetic field

Under the effect of a homogeneous magnetic field B = �Be
z

perpendicular to the 2DEG,
see Figure 5.1, the Hamiltonian reads

H
2DEG

=

(p � eA)

2

2m
, (5.8)

where A = Bye
x

is the vector potential of the magnetic field. Using the ansatz  
k

(r) =

e

ikx�(y), we obtain for �(y) the Schrödinger equation of a shifted harmonic oscillator

✏ �(y) =


p2
y

2m
+

1

2

m!2
c

(y � y
k

)

2
�
�(y) (5.9)

with !
c

=

eB

m

, y
k

= `2
B

k, and `2
B

=

~
eB

. Note that the momentum k of the plane waves de-
termines the apex y

k

of the parabola. The eigenenergy spectrum of the harmonic oscillator
reads

✏
⌫

= ~!
c

(⌫ + 1/2) , ⌫ � 0 (5.10)
1We can also calculate at first the Green’s function of the 2DEG [55, Section 1.2 and 3.2]

G(r, r0, E) = �i
m

2~2H
(1)
0

�
k
��r � r0��� , (5.7)

where k =
p
2mE/~ and H

(1)
0 is the Hankel function of first kind of zero order [3]. Using Re

�
H

(1)
0 (0)

�
=

1, we can calculate the DOS per unit area by D(E) = �Tr (Im (G(E))) /⇡S and arrive at (5.3).
2We could also go to higher orders in the finite differences approximation, but this would also increases

the computational effort due to next-nearest neighbor interactions.
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and the eigenfunctions

 
k,⌫

(r) = c
⌫

e

ikx D
⌫
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◆
, (5.11)

where

D
⌫

(y) ⌘ D
⌫

(

p
2y)p
⌫!

(5.12)

are rescaled parabolic cylinder functions [3] and c
⌫

is a normalization constant. When
the 2DEG is infinitely extended in the whole xy-plane, the index ⌫ has to be an integer
n = 0, 1, 2 . . ., because the eigenfunctions have to be normalizable. In this case, the
parabolic cylinder functions can be simplified by D

n

(y) = e

�y2/2H
n

(y)/
p

2

nn!, where
H

n

(y) are the Hermite polynomials. The eigenenergy spectrum shows a series of equidistant
Landau levels. The constant DOS of the 2DEG is condensed by the magnetic field onto
these Landau levels, which can be filled with N = 1/2⇡`2

B

electrons (per unit area).
However, when the 2DEG is bounded, also non-integer values of ⌫ are possible, as shown
in Section 5.2.3.
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Figure 5.1: The transport through a two-dimensional electron gas (2DEG) under the ef-
fect of a homogeneous perpendicular magnetic field B = �Be

z

is studied in
this Chapter. To evaluate numerically the Green’s function (2.20) and the
transmission function (2.33), we use a finite differences approximation of the
Hamiltonian.  

x,y

denotes the wave function at discrete supporting points on
a square lattice with spacing a. The magnetic field is taken into account by
complex phase factors in the horizontal couplings.

Applying a finite differences approximation to the Hamiltonian (5.8), we obtain
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The last step is justified, if the magnetic flux through a discretization cell � = Ba2 is
much less than a magnetic flux quantum �0 = h/e. In this case, also under the effect of
a magnetic field, the finite differences approximation of a 2DEG is equivalent to a tight-
binding ribbon, see (3.5) and Section 2.1.2.

To summarize, the finite differences approximation of a 2DEG is feasible, if the discretiza-
tion a is so small that the Fermi energy (measured in multiple of t / 1/a2) is close to the
band edge and the magnetic flux through a discretization cell (/ a2) is much less than a
magnetic flux quantum.
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5.2 Magnetotransport along boundaries: Electron focusing
and edge channels

When electrons are injected coherently at one point on the boundary of a 2DEG, they can
be focused by a perpendicular magnetic field B onto another point of that boundary [178],
see the blue trajectories in Figure 5.2. In the classical regime, resonances are observed
when a multiple of the cyclotron diameter equals the distance between the injecting and
collecting point contacts. For large Fermi wavelength and long phase coherence length,
additional interference effects are observed. This regime of coherent electron focusing has
been studied for the first time by van Houten et al. [181]. Recently, the effects of disorder
[118] and spin-orbit interaction [47, 107, 152, 154, 179] were investigated and focusing
experiments in graphene were performed [174]. It was also discussed to study by coherent
electron focusing the structure of graphene edges [149] as well as Andreev reflections in
normal-superconductor systems [82, 146, 150]. Moreover, a 2DEG in a strong magnetic
field shows the quantum Hall effect, which is explained by the transport through edge
channels straight along the boundary of the system, see the red lines in Figure 5.2.

Although the coherent electron focusing and the quantum Hall effect have been studied
extensively in the last two decades, to our knowledge the two regimes have always been
separated. Here, we intermix the two regimes by suitable system parameters and study
theoretically the properties of the focusing experiment emerging at the transition from the
classical cyclotron motion to the quantum Hall edge channel transport. We have published
the results of this Section in [169].

5.2.1 System

We study a 2DEG with a size of 800 nm ⇥ 500 nm sketched in Figure 5.2. Metallic contact
regions with a width of 10 nm are attached at the boundaries of the system separated by
a distance �x = 500 nm. A finite differences approximation with discretization a = 5 nm

is applied, corresponding to the coupling t = ~2/2ma2 ⇡ 21.8 meV. We assume that the
2DEG is formed at the interface of a GaAs-AlGaAs heterostructure, for which the effective
electron mass is m = 0.07m

e

. The chemical potential is set to µ = 0.5t ⇡ 10.9 meV.
As the corresponding Fermi wavelength �

F

⇡ 45 nm is comparable with the characteristic
dimensions of the system, we can expect to observe quantum effects due to the interference
of the coherent electrons. We assume that experimentally, the influence of the temperature
is negligible and thus, we set the temperature to zero. The Zeeman spin splitting "

z

=

gµ
B

B (with the Bohr magneton µ
B

= e~/2m
e

) is not resolved in this system, because
in GaAs both the effective g-factor and the effective mass (measured in multiples of m

e

)
are ⌧ 1 and thus, the spin splitting is typically one order of magnitude smaller than the
Landau splitting "

L

= ~!
c

.

In order to allow better comparison of the NEGF calculations with a minimal model, we
assume hard-wall boundary conditions. However, this assumption is not essential for our
findings, see Section 5.2.5. We also introduce additional virtual decoherence reservoirs
at those boundaries, which are not essential for the focusing experiment, see the dashed
boundaries in Figure 5.2. By randomizing the electron phase and momentum, see Chap-
ter 4, such diffusive walls mimic an open system and thus suppress finite size effects, like
standing waves between the boundaries of the system. They also greatly reduce spurious
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Figure 5.2: A 2DEG with a size of 800 nm ⇥ 500 nm is studied. Contacts with a width of
10 nm are attached at the boundaries separated by a distance �x = 500 nm.
Electrons are injected by the source S and focused by a perpendicular magnetic
field B onto the voltage probe P1. We calculate the current I

DS

between
source and drain as well as the voltage drop U

P2P1 between the voltage probes
P1 and P2. Using these quantities, we study the generalized Hall resistance
R

xy

= U
P2P1/I

DS

as a function of B. Cyclotron orbits at low magnetic field are
sketched by the blue trajectories. The edge channel transport of the quantum
Hall effect at high magnetic field is indicated by red lines.

focusing resonances arising from reflections at these boundaries. All reservoirs are modeled
in the wide-band approximation with ⌘ = 1.0t.

Before we proceed with our magnetotransport studies, let us check briefly, if the finite
differences approximation is justified for the chosen parameters. The average DOS in the
system, calculated numerically by the NEGF method, is shown in Figure 5.3 by the blue
curve. It agrees well with the DOS of the 2D tight-binding grid (3.10), depicted by the
red curve. The numerous van Hove singularities of finite tight-binding ribbons, compare
with Figure 3.2, cannot be observed, apart from some residual oscillations at the band
edge. They are smoothed out efficiently by the diffusive walls. The DOS from the band
edge up to the Fermi energy (dashed vertical line) is consistent with the constant DOS of
a 2DEG D(E) = 1/2⇡ta2 shown by the black curve. When the DOS is integrated up to
the Fermi energy, a carrier density of n

2D

⇡ 3.3 · 10

11
cm

�2 is provided by all curves. We
will apply magnetic fields up to a strength of B = 5 T corresponding to a magnetic flux
�/�0 = 0.03 ⌧ 1, as required in (5.14). Thus, for the chosen system parameters the finite
differences approximation is justified to model a 2DEG.

We calculate the current I
DS

flowing between source S and drain D due to an infinitesimal
bias voltage, as well as the voltage drop U

P2P1 = (f
P1 � f

P2) /e between the contacts P1

and P2, see Figure 5.2. By means of these two quantities, we study in the following the
generalized 4-point Hall resistance [181]

R
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I
DS
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h

2e2
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�
R
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P2j

�
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jS

T
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+

P
ij

T
Di

R
ij

T
jS

, (5.15)

as a function of the perpendicular magnetic field B. In the last step, we applied the multi-
terminal formula for the potential of the voltage probes (2.38) as well as for the current
between source and drain (2.40).
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Figure 5.3: The average DOS in the magnetotransport device, calculated by the NEGF
method (2.5), (blue curve), agrees well with the DOS in a tight-binding grid
(3.10), (red curve). The DOS from the band edge up to the Fermi energy
µ = 0.5t (dashed vertical line) is consistent with the constant DOS of a 2DEG
(5.3), (black curve). The energy resolution is �E = 10

�3t.

5.2.2 Cyclotron orbits

The focusing spectrum of the 2DEG, defined as the generalized Hall resistance R
xy

as a
function of the magnetic field B, is shown in Figure 5.4. The blue curve gives R

xy

in the
case of specular reflections at the boundary between S and P1, while for the red curve a
diffusive boundary was assumed. This figure is one of the main results of this thesis and it
is discussed in detail in the following. Let us start with a low magnetic field 0 T < B < 2 T,
in which equidistant peaks at

B
n

=

p
8mµ

e�x
n, n = 1, 2, 3 . . . , (5.16)

are found (vertical dashed lines). As sketched by the blue trajectories in Figure 5.2,
electrons injected by the source S are guided on cyclotron orbits and end in P1 after n � 1

reflections at the wall in between, if a multiple of the cyclotron diameter 2 |p| /eB equals
the distance �x. These cyclotron orbits can be clearly seen in Figure 5.5, which shows
the local current and the LDOS of electrons originating from S with energy µ. They can
also be imaged experimentally by means of a scanning probe microscope [6]. Note that the
local current shows caustics due to the injection of the electrons with a broad distribution
of angles. Moreover, the interference of the coherent electrons gives rise to a fine structure
in the focusing spectrum and the local current. These effects, which are also observed
in focusing experiments [18, 181], can be suppressed, if the distribution of the injection
angles is narrowed by reducing the distance of the injector to the left diffusive wall, see
the focusing spectrum and the local current in Figure 5.6. In Figure 5.4, the focusing
peaks cannot be observed when the magnetic field is reversed (B < 0 T), apart from a
single peak at a low magnetic field, which arrises when the cyclotron diameter equals the
distance between S and P2.
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Figure 5.4: The Hall resistance R
xy

= U
P2P1/I

DS

as a function of the magnetic field B. In
weak fields, R

xy

shows equidistant focusing peaks indicated by dashed vertical
lines, when a multiple of the cyclotron diameter equals �x. In intermediate
fields, anomalous oscillations appear, which are neither periodic in 1/B nor in
B. A single Hall plateau is found in large fields, whereas lower Hall plateaus can
only be seen when specular reflections are suppressed by an absorbing diffusive
wall between S and P1 or by reverting the magnetic field.

Figure 5.5: The local current (arrows) and the LDOS (color shading, increasing from white
over blue to red) of the electrons originating from S with energy µ. The cy-
clotron orbits can be clearly seen. Also caustics are evident, which are due to
the injection of electrons with a broad distribution of angles. The fine struc-
ture is caused by the interference of the coherent electrons. Note that only the
relevant part of the system is shown at B = 1.08 T and B = 0.72 T.
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Figure 5.6: Focusing spectrum and local current, when the distribution of the electron
injection angles is narrowed by reducing the distance of the injector to the left
absorbing wall. Fine structure and caustics are suppressed.

5.2.3 The quantum Hall effect

For B < �1 T, we observe instead of focusing peaks a sequence of extended plateaus in
the Hall resistance

R
xy

=

h

2e2
1

n
, n = 1, 2, 3 . . . , (5.17)

which indicates the quantum Hall effect. Although the discovery of the quantum Hall
effect dates back to 1980 [180], it is still a hot topic as shown, for example, by the recent
discovery of the quantum spin Hall effect [106, 127] and the quantum anomalous Hall effect
[33, 137]. Further research is also stimulated by the fact that the quantum Hall regime is
topologically insulating. All current is carried in edge channels along the boundary of the
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system, while the bulk is insulating. This edge channel transport, sketched by the red lines
in Figure 5.2, can be seen clearly in Figure 5.7 (first row), which shows the local current
and the LDOS at the Fermi energy. It can also be seen in the second row of Figure 5.7,
which shows the transverse current (red curve) and the LDOS (blue curve) at the dashed
line in the figures of the first row. The magnetic field in Figure 5.7 corresponds to the
resistance plateaus R

xy

= 1/3 (left column) and R
xy

= 1/2 (right column), respectively.

In order to understand the resistance quantization and the edge channel transport, we
give an elementary introduction into the quantum Hall effect, which is based on [18, 42,
148]. We have learned in Section 5.1.2 that in a magnetic field the constant DOS of a
2DEG is condensed on equidistant Landau levels. This can also be observed in Figure 5.7
(fourth row), where the blue curve gives the numerically calculated average DOS in the
magnetotransport device, while the red horizontal lines indicate the expected positions of
the Landau levels (5.10). For low energies E . µ, the positions of the Landau levels agree
well with the numerical data. For higher energies, deviations can be observed, because the
finite differences approximation of the 2DEG looses its validity, compare with Figure 5.3.

As transport in the quantum Hall regime takes place at the edges of the system, let us
study a minimal model, namely an infinitely extended 2DEG bounded by a single infinite
potential wall along the x-axis. In this case, the index ⌫ in the eigenenergies (5.10) and
the eigenfunctions (5.11) is determined by the hard-wall condition  

k,⌫

(x, 0) = 0. The
eigenenergy spectrum in Figure 5.8 (left) shows that for sufficiently large k the influence of
the infinite wall is negligible and the Landau levels for integer values of ⌫ can be observed.
However, the energy bands are bent upwards, when k is decreased and the apex of the
parabola y

k

= `2
B

k in (5.9) approaches the wall. We calculate the k
n

, which agree with
a given Fermi energy and a given magnetic field, see the marked intersection points in
Figure 5.8 (left). The k

n

as a function of the magnetic field are shown in Figure 5.8
(right). The energy resolved LDOS in Figure 5.9, calculated by means of the k

n

and the
corresponding eigenfunctions (5.11),

D(E, r) =

nX

i=1

| 
k

i

,⌫

(r)|2 , ⌫ =

E

~!
c

� 1

2

(5.18)

shows clearly the bending of the energy bands in vicinity of a boundary. It looks very
similar to the dispersion relation, because of the identity y

k

= `2
B

k. However, the LDOS is
nonzero only for x > 0 (hard wall), whereas for the dispersion all values of k are allowed
(apex of the parabola can be located behind the wall). The same behavior can be seen in
Figure 5.7 (third row), where the NEGF method is applied to calculate the LDOS in the
magnetotransport device. Note that in this case the LDOS is slightly larger than in the
minimal model, because the contacts induce additional states in the system, see the blue
and green curves in Figure 5.7 (second row).

Let us assume that the Fermi energy is in between two Landau levels. In this case, we
learn from the LDOS that the eigenstates are localized close to the edge of the system. As
the slope of the eigenenergy bands in Figure 5.8 is negative at all k

n

, the group velocity of
all these edge states points in the same direction. Thus, all edge states at a boundary of
the system carry the current in the same direction. At the opposite boundary the slope of
the eigenenergy bands is reversed and the current flows in the opposite direction. Inside
the system no allowed states exist, which hence is insulating. This spatial separation of
the states carrying current in one direction from the states carrying current in the opposite
direction makes the quantum Hall effect so exceptional.
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Figure 5.7: Quantum Hall effect at B = �2.3 T (left column) and B = �3.5 T (right

column) corresponding to R
xy

= 1/3 and R
xy

= 1/2, respectively. First row:
Local current and LDOS. Edge channels can be clearly seen. Second row:
Transverse current and LDOS at the dashed line in the figures of the first and
third row. The green curve gives the LDOS due to (5.18). Third row: Energy
resolved LDOS. The Landau levels are bent upwards close to the system edge,
which causes the edge channels. Fourth row: Average DOS (blue curve) and
expected positions of the Landau levels (red horizontal lines).
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Figure 5.8: Left: Eigenenergy bands of an infinitely extended 2DEG bounded by an infinite
potential wall at y = 0. The solid curves give the first four energy bands at
B = 1.3 T, while the dashed and the dotted curves give the fourth energy band
at B = 1.8 T and B = 2.3 T, respectively. The dots indicate the k

n

at the
Fermi energy. The arrow points out the increase of k4, when the corresponding
Landau level approaches µ. Right: The k

n

as a function of the magnetic field.

Figure 5.9: Energy resolved LDOS (color shading) of a 2DEG bounded by an infinite po-
tential wall at y = 0. The LDOS (5.18) is calculated by the k

n

from Figure 5.8
and the corresponding eigenfunctions (5.11). The Landau levels, which can be
observed deep inside the 2DEG, are bent upwards in vicinity of the wall. When
the Fermi energy is in between two Landau levels, as shown, the eigenstates are
localized close to the edge. These edge states are perfect ballistic conductors,
which give rise to the quantized resistance. The LDOS at the Fermi energy is
also shown by the green curve in Figure 5.7 (second row).

In the edge channels backscattering is absent, because to reverse the momentum an electron
has to be scattered to the opposite edge of the system. This is in turn impossible, because
no allowed states exist inside the system and the probability for direct tunneling between
opposite edges is exponentially small. Because of this absence of backscattering, each edge
channel is a perfect ballistic conductor with transmission T = 1. Therefore, for the total
transmission, we just have to count the number of edge channels, or in other words, the
number of Landau levels below the Fermi energy.3 For example, at B = �2.3 T three
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Landau levels are below the Fermi energy, three edge channels are occupied and the Hall
resistance R

xy

= 1/3, see Figure 5.7 (left column). The distance of the Landau levels ~!
c

increases with the magnetic field. However, as long as the Fermi energy is in between two
Landau levels the number of edge channels is constant and thus, the Hall resistance shows
an extended plateau. Only when a Landau level is pushed above the Fermi energy, an edge
channel is depleted and the Hall resistance jumps to the next plateau.

In real experiments the Fermi energy is not constant but the charge density. In an idealized
system, the Fermi energy would be pinned always at a Landau level, because the number
of edge states is much less compared to the number of bulk states condensed onto the
Landau levels. When the Fermi energy lies in a Landau level, allowed states exist also
inside the system and backscattering takes place as in Ohmic conductors. The resistance
plateaus would be shrunk to single points and the conventional Hall line would be observed.
However, in real systems some degree of disorder is always present, which induces additional
localized states [148, Chapter 1 and 3]. These states do not contribute to transport but
help to stabilize the Fermi energy between two Landau levels. In this case the DOS is
broadened as in our magnetotransport device, see Figure 5.7 (fourth row). However, the
origin of these states is different in our case: The Landau levels are broadened due to the
finite lifetime of the states and additional states can be induced by the contacts [73]. Our
device is also relatively small, which makes the number of edge and bulk states comparable.
Thus, the assumption of a constant Fermi energy displaces slightly the transitions between
the Hall plateaus but does not change qualitatively our results, see also [65].

Note that the quantized Hall resistance has the same form as the quantized resistance of
a ballistic conductor, see Figure 3.11. However, in the experiment the quantization in
ballistic conductors is usually not very precise, because the transport takes place in the
whole system and backscattering due to some disorder cannot be avoided. In contrast,
the quantization of the Hall resistance can be extremely precise, because backscattering is
topologically forbidden. Moreover, we have learned that some disorder can help to observe
distinct plateaus. As a result, the quantum Hall effect will be used for the redefinition
of the SI system.4 Figure 5.10 shows the Hall resistance (left) and the DOS (right) as
a function of the magnetic field and the energy. The resistance plateaus as well as the
so-called Landau fan of the spreading energy levels can be clearly seen. The Landau fan
can also be found in the bottom left-hand corner of Hofstadter’s butterfly shown on the
cover page of this thesis.

5.2.4 Anomalous resistance oscillations

In Figure 5.4, the quantum Hall staircase is found at a positive magnetic field only, if
a diffusive wall is introduced in between injector S and collector P1, see the dashed red
curve. If the reflections at the boundary are specular, we observe for B > 2 T an additional
set of resistance oscillations, which cannot be explained by classical trajectories. The
frequency of these oscillations increases rapidly whenever a Landau level is pushed towards
the Fermi energy and a transition between Hall plateaus appears (compare solid blue and
dashed red curves in Figure 5.4). Moreover, when only two edge channels are occupied

3Alternatively, we can simplify at first (5.15) under the constraint that the only non-zero transmission
functions are T

P2S = T
DP2 = T

P1D = T
SP1 = n, where n is the total number of occupied Landau levels.

We obtain then for the Hall resistance R
xy

= 1/n.
4For further information to this ongoing project see: www.bipm.org/en/si/new_si
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Figure 5.10: Left: Hall resistance R
xy

= 1/n as a function of the magnetic field and the
energy. The color shading gives the number n of occupied Landau levels.
At low magnetic field a residual focusing peak appears, when the cyclotron
diameter equals the distance between S and P2. The expected positions of the
Landau levels (5.10) are indicated by dashed lines. Deviations can be observed
at higher energies and higher magnetic fields, because the finite differences
approximation of the 2DEG looses its validity. Right: DOS as a function of
the magnetic field and the energy. The so-called Landau fan of the spreading
energy levels can be clearly seen. This figure can be found also in the bottom
left hand corner of Hofstadter’s butterfly shown on the cover page.

(2.7 T < B < 4.5 T), the oscillations become very clear and regular. Finally, the oscillations
vanish completely, when only a single edge channel is occupied (B > 4.5 T), and the Hall
plateau R

xy

= 1 can be observed.

This suggests that these oscillations are an interference phenomenon between the occupied
edge channels. Let us consider again the minimal model consisting of an infinitely extended
2DEG bounded by an infinite potential wall along the x-axis. The eigenenergy spectrum
of the 2DEG is shown in Figure 5.8 to the left, while the k

n

of the occupied edge channels
as a function of the magnetic field are depicted to the right. We take into account only
the plane wave part of the edge states (5.11), which propagate along the infinite wall, and
calculate the superposition of the different k

n

with equal weights. The normalized absolute
square is given by

| 
coherent

|2 =

1

n2

*�����

nX

i=1

e

ik
i

�x

�����

2+

S,P1

, (5.19)

where h·i
S,P1 means spatial averaging over the finite width of the injector and collector. The

absolute square value of the superimposed plane waves shows remarkable agreement with
the NEGF calculation of the focusing spectrum, see Figure 5.11. Thus, the focusing peaks
in low magnetic fields, which correspond to classical trajectories, can also be explained
by the interference of multiple edge channels [18, 181]. Moreover, this explanation of the
focusing spectrum is valid for every strength of the magnetic field and allows to understand
the anomalous peaks.
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Figure 5.11: Normalized absolute square of the superimposed plane wave part of the occu-
pied edge channels (5.19), (solid red curve). A remarkable agreement with the
NEGF calculation of Figure 5.4 (dashed blue curve) can be observed. Thus,
all resistance oscillations can be understood by the interference of the edge
channels. The anomalous resistance oscillations are beatings, which appear
when only some few edge channels are occupied.

In intermediate fields, the current is carried by only a few edge channels and the focus-
ing spectrum shows beatings due to the superposition of plane waves. In particular, when
only two edge channels are occupied, only two plane waves are superimposed and a beating
appears, whose frequency is determined by the difference of k1 and k2. The frequency of
the oscillations increases rapidly, whenever the highest occupied Landau level approaches
the Fermi energy, because its intersection point and thus, the corresponding k

max

increases
strongly, see solid, dashed and dotted blue curve in Figure 5.8 (left) as well as the diver-
gencies in Figure 5.8 (right). The difference of k

max

to the other, much smaller k
n

leads to
a high frequency beating. Finally, when only a single edge channel is occupied, the beating
and thus, the oscillations in the focusing spectrum vanish. The current then flows along
an edge channel parallel to the wall, see the top of Figure 5.12. This figure also illustrates
that although the focusing peaks in intermediate fields cannot be explained by classical
trajectories, the local current resembles to some extent cyclotron motion along the wall.

The clear and distinct oscillations due to the occupation of only two edge channels can
also be understood as a new commensurability between the magnetic flux enclosed within
the two edge channels and the flux quantum. At the maximum of the oscillations the
two plane waves interfere constructively and thus, the difference of their momenta fulfills
�k = 2⇡/�x. If we relate this momentum difference to the distance between the edge
channels �y

k

= `2
B

�k, we obtain

�x�y
k

B =

h

e
. (5.20)

Thus, between two successive focusing peaks, the magnetic flux within the area enclosed
by the two edge channels increases by one flux quantum. In this way, we can relate the
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focusing spectrum to the distance of the edge channels and the difference of their momenta.
For the experimental observation of such interference effects with a fixed distance between
the edge channels, see e.g. [49] and references therein.

When the electron phase is randomized by diffusive scattering at the walls, we do not have
to sum up the plane waves but their absolute value

| 
incoherent

|2 =

1

n2

*
nX

i=1

���eiki�x

���
2
+

S,P1

=

1

n
, (5.21)

which leads to the quantum Hall staircase. Note that indeed many properties of the
system can be understood by basic quantum calculations. However, this cannot replace
the NEGF approach, which allows to include contacts in a controlled way and to obtain
quantitative results for the Hall resistance. Moreover, the superposition of plane waves
with equal weights is justified only by its good agreement with the NEGF calculation.
The NEGF method can also be used to study the effect of partial diffusive scattering at
the boundary as well as the effect of decoherence. It can also be applied easily to more
complicated geometries. We use this flexibility to study in the next Section the robustness
of the anomalous oscillations.

Figure 5.12: The local current and the LDOS of the electrons originating from S with
energy µ. The transport through the interfering edge channels in the lower
figures resembles to some extent a cyclotron motion, while at B = 5 T the
current is carried through a single edge channel straight along the wall. Only
the relevant part of the system is shown.

5.2.5 Effects of decoherence, non-specularity, boundary conditions and
contact geometry

Let us study the effect of decoherence on the focusing experiment by means of our statistical
model, discussed in Chapter 4. The decoherence averaged focusing spectrum in Figure 5.13
shows that with increasing degree of phase and momentum randomization all oscillations
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are suppressed and the surprisingly robust Hall plateaus appear [64, 65, 194]. The classical
focusing peaks are even stronger suppressed than the anomalous oscillations, because the
latter are located in a much narrower part of the system and thus, are less influenced
by the decoherence reservoirs. The LDOS and the local current of electrons originating
from the source show distinct edge states while the cyclotron orbits are vanishing, because
the interference between the edge channels is annihilated by the decoherence. Note that
the LDOS is also strongly broadened by the decoherence. As expected, when the degree
of decoherence is further increased (p > 0.05) the quantum Hall plateaus vanish and the
classical linear Hall resistance appears.

Our model also allows us to study the effects of partially specular reflections by introducing
between S and P1 a diffusive wall with the broadening parameter ⌘dw. In this way, we can
tune the scattering from specular (⌘dw = 0) to diffusive (⌘dw ⇠ t). Figure 5.14 (left) shows
that the oscillations in the focusing spectrum are suppressed gradually with increasing
degree of non-specularity and increasing number of reflections at the boundary. By means
of the NEGF method, we can also study easily the influence of the contact geometry on the
focusing spectrum. Using contacts with a width of 30 nm, attached via 120 nm long leads,
we observe in Figure 5.14 (right) qualitatively the same focusing spectrum, which clearly
shows classical focusing peaks as well as anomalous oscillations. Moreover, our findings
are not dependent on the chosen boundary conditions (i.e. hard wall). When a parabolic
confining edge potential is used, qualitatively similar results are obtained.

5.2.6 Experimental observability

To our knowledge, in focusing experiments such system parameters have been used that
the regime of coherent electron focusing and the quantum Hall effect are well separated,
see e.g. Figure 10 in [181]. The reason for this separation is that the number of observable
focusing peaks is limited in the experiment, because decoherence and diffusive scattering
at the boundary cannot be completely avoided. In order to observe anomalous resistance
oscillations due to the interference of some few edge channels, the distance �x between
injector and collector as well the Fermi energy µ have to be tuned in such a way that the
maximal number of possible specular reflections fulfills the rule of thumb

n
max

⇠ 1

6

�x

a

r
µ

t
, (5.22)

which can be derived easily by (5.10) and (5.16). Of course, mean free path and phase
coherence length also have to be comparable with �x.

In our calculations we have used parameters (m = 0.07m
e

, µ = 10.9 meV, n2D = 3.3 ·
10

11
cm

�2) of a high quality 2DEG in a GaAs-AlGaAs heterostructure. We expect that
the omission of the spin splitting will not change the results qualitatively. Figure 5.13
shows that the oscillations can be observed up to a degree of decoherence of p = 0.005,
which corresponds to a phase coherence length of approximately 1 µm. Likewise, a distance
between S and P1 of 500 nm is easily achievable with today’s nanolithography techniques.
All this gives us confidence that the predicted oscillations can indeed be observed exper-
imentally. Signs of these anomalous oscillations have already been observed in different
geometries [59, 60].
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Figure 5.13: Influence of an increasing degree of decoherence on the focusing spectrum as
well as the LDOS and local current (B = 2.13 T) for electrons originating
from the source. The oscillations are gradually suppressed and isolated edge
channels remain. Averages are over 75 decoherence configurations.
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Figure 5.14: Left: Focusing spectra for an increasingly diffusive boundary. Oscillations in
the focusing spectrum are suppressed gradually with increasing degree of non-
specularity and increasing number of reflections. Right: Focusing spectrum
in the case of 30 nm wide reservoirs attached via 120 nm long leads. Classical
focusing peaks as well as anomalous oscillations can be observed clearly.
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5.3 Graphene’s relativistic 2D electron gas

In this Section, we extend our studies to the relativistic electron gas in graphene, a two-
dimensional honeycomb lattice of carbon atoms, see Figure 5.15. Actually, much work
discussed in this thesis has been performed with a graphene based device, namely an
ordinary pencil used since ancient times.5 The core of a pencil consists of graphite, which
is a stack of graphene layers coupled weakly by van der Waals forces. When we write
with a pencil, we rub off graphene stacks and somewhere maybe also an individual layer of
graphene. However, a single layer of graphene has not been isolated until 2004 by Novoselov
and Geim [131], who were awarded for their work with the Nobel prize in 2010. Nowadays,
graphene is maybe the most studied material in condensed-matter physics,6 because of
its numerous exceptional properties and their potential technological applications, see [13,
66, 67, 129] and references therein for an overview. In the following, we give a very short
introduction into the physics of graphene and discuss some of its remarkable properties.
Afterwards, the magnetotransport along the boundary of graphene nanoribbons is studied.
As a starting point, we can recommend the review paper by Castro Neto et al. [31] as well
as [41, 71, 84, 100, 143].

5.3.1 The graphene lattice and its electronic structure

In graphene the atomic orbitals of the carbon atoms are sp2 hybridized, which leads to a
trigonal planar structure with a strong � bond between neighboring atoms. The remaining
p
z

orbital is perpendicular to the plane and gives rise to a ⇡ band of delocalized electrons.
Crystallographically, graphene can be described by a triangular lattice with a basis of two
carbon atoms per unit cell, see Figure 5.15. The lattice vectors can be written as

a1 =

a

2

⇣
3,

p
3

⌘
, a2 =

a

2

⇣
3, �

p
3

⌘
, (5.23)

where a = 0.142 nm is the distance of two neighboring carbon atoms. Equivalently, we can
also speak of two interpenetrating triangular sublattices A and B. Note that the lattice
constant of graphene is more than one order of magnitude smaller than the discretization
length used in Section 5.2.1 for the finite differences approximation of a nonrelativistic
2DEG. This increases the computational effort to study theoretically graphene devices.

The tight-binding Hamiltonian of graphene is given by

H = �t
X

hiji

|�A
j

i h�B
i

| + H.c., (5.24)

where hiji means nearest neighbors with coupling t = 2.8 eV. The |�A/B

i

i are the p
z

orbitals of the carbon atoms on sublattice A and B, respectively. In order to solve the
Schrödinger equation, we make the ansatz

| i =

X

j

e

ik·R
j

�
a |�A

j

i + b |�B
j

i
�

(5.25)

5The first known illustration of a pencil dates back to a book by C. Gesner published in 1566 [70, 144].
6The Web of Science database lists almost 40 000 publications on graphene since 2004.
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Figure 5.15: Left: Graphene is a two-dimensional honeycomb lattice of carbon atoms. It
can be described by a triangular lattice with a basis of two carbon atoms,
as indicated by the red and blue dots. The lattice vectors are a1 and a2.
The carbon atoms are coupled to their nearest neighbors at a distance of
a = 0.142 nm by bonds of strength t = 2.8 eV. Right: The first Brillouin zone
of graphene is also hexagonal. The physics of (neutral) graphene takes place
close to the K and K 0 points at the corners of the Brillouin zone.

and obtain by multiplying with h�A/B

m

| from left a linear equation system for the unknown
coefficients a and b
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where
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Using the condition that the coefficient determinant of (5.26) has to vanish, we obtain for
the eigenenergies

✏(k) = ±t
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. (5.28)

The band structure of graphene, reported first in 1947 by Wallace [186], is shown in Fig-
ure 5.16. As in neutral graphene every p

z

orbital is occupied with a single electron, the
lower band is completely occupied, while the upper band is empty. Thus, the Fermi energy
is in between the two bands, i.e. µ = 0. At the Fermi energy the bands show minima,
or valleys, which are located at the corners of the Brillouin zone. Only two valleys at the
Dirac points

K =

2⇡

3a

✓
1,

1p
3

◆
, K 0 =

2⇡

3a

✓
1, � 1p

3

◆
(5.29)

are relevant, because the others can be transformed into the Dirac points by adding a
reciprocal lattice vector. As the physics of graphene takes place near the Dirac points, we
perform a Taylor expansion of (5.27) around K and K 0

h(k) ⇡ �~v
F

(iq
x

± q
y

) , (5.30)
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to obtain the Hamiltonian7
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where

v
F

⌘ 3at

2~ ⇡ 10

6
m/s (5.33)

is the Fermi velocity and q the relative momentum. As this Hamiltonian has the form of
the Dirac Hamiltonian, the electrons in graphene behave as relativistic massless fermions,
apart from the fact that their velocity v

F

is approximately 300 times smaller than the
speed of light. The linear dispersion relation of the Dirac Hamiltonian

✏(q) = ~v
F

|q| (5.34)

can be clearly seen in Figure 5.16. Note that in addition to the real spin, we can assign to
the electrons in graphene two pseudospins. The valley pseudospin, because two points K
and K 0 in momentum space have to be taken into account, as well as the lattice pseudospin,
because we have to deal with two sublattices. The linear dispersion and the presence of
pseudospins result in many exceptional properties, which make graphene so interesting.
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Figure 5.16: Left: Band structure of graphene (5.28). The first Brillouin zone is sketched by
black lines. At the Fermi energy of neutral graphene µ = 0, the energy bands
show minima, or valleys, which are located at the corners of the Brillouin
zone, also called Dirac points. Close to the Dirac points the dispersion has a
conical shape. Right: Dispersion relation along straight lines between �, K,
and K 0, see the inset. The linear dispersion (5.34) close to the Dirac points
is indicated by dashed lines.

7In order to get the Hamiltonian in its most common notation, see e.g. [31, 67, 100, 200], we also applied
a unitary transformation with

U =

✓
1 0
0 i

◆
. (5.31)
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In the following, we return to natural units and measure energies in multiples of t and
lengths in multiples of a. Close to the Dirac points the DOS per unit area can be calculated
directly from (5.34)

D(E) =

Z
d

2q

4⇡2
� (E � ✏(q)) =

8 |E|
9⇡

, (5.35)

where we took into account that each unit cell contains two carbon atoms and assumed
degeneracy of the real spin. An analytic expression for the DOS per unit area can also be
derived for the entire band structure of graphene [86]
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Note that K, the complete elliptic integral of first kind, appeared also in the DOS of a
tight-binding square grid, see (3.10). In Figure 5.18, we compare these analytical results
with the DOS in graphene nanoribbons studied numerically by the NEGF method.

5.3.2 Effect of a magnetic field

Let us study the effect of a homogeneous magnetic field B = �Be
z

on graphene’s relativis-
tic 2DEG. The Dirac Hamiltonian (5.32) at the K valley is transformed from momentum
space into real space by replacing ~q ! p � eA, where A = Bye

x

is the vector potential
of the magnetic field. To solve the Dirac equation, we insert the two linear equations
into each other, keeping in mind that [p

x

, p
y

] = �ieB~, and obtain for sublattice B the
quadratic equation
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By means of the ansatz  
B

(r) = e

ikx�(y), we obtain the Schrödinger equation of a har-
monic oscillator
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which is not only shifted by y
k

as in the nonrelativistic case, see Section 5.1.2, but also
rescaled in energy
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where !
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. Thus, the eigenenergies of a relativistic 2DEG in
a magnetic field are given by
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The eigenstates on sublattice B read  
B

(r) = c
⌫

e

ikxD
⌫

((y � y
k

)/`
B

), as in the nonrel-
ativistic case (5.11). The eigenstates on sublattice A follow directly from  

B

, the Dirac
equation and the recursion relation (@

y

+ y) D
⌫

(y) =

p
2⌫D

⌫�1(y), see [3]. The solution of
the Dirac equation at the K 0 valley can be obtained easily by interchanging the two sublat-
tices, see (5.32). The eigenenergy spectrum is unchanged and hence, twofold degenerated.
The eigenfunctions of a relativistic 2DEG in a magnetic field are given by

 K(r) = c
⌫

e

ikx

 
⌥D

⌫�1(⇠)

iD
⌫

(⇠)

!
,  K0

(r) = c
⌫

e

ikx

 
D

⌫

(⇠)

⌥iD
⌫�1(⇠)

!
, (5.42)

where ⇠ ⌘
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, the c
⌫

are normalization constants and the D
⌫

(⇠) are rescaled
parabolic cylinder functions (5.12) with D

⌫<0 ⌘ 0. The different signs of the eigenstates
correspond to the signs of the eigenenergies. We also applied the unitary transformation
(5.31) in order to get the correct phase between the wavefunctions on the sublattices.
Equivalently, we can choose for the vector potential A = �Bxe
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, to get the eigenstates
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where ⇣ ⌘
�
x + `2

B

k
�
/`

B

. We will use both of these equivalent sets of eigenstates to cal-
culate the eigenenergy spectrum of a relativistic 2DEG in vicinity of boundaries. In an
infinitely extended system, the condition of normalizable eigenstates limits ⌫ to integer
values n = 0, 1, 2 . . .. Thus, the linearly increasing DOS (5.35) of a relativistic 2DEG is
condensed onto discrete Landau levels. However, in contrast to the nonrelativistic case
(5.10), the distance of the Landau levels is no longer increasing linearly with B and inde-
pendent of n, but changes with

p
B n. Moreover, the Landau level to n = 0 stays at E = 0

for every B. This peculiar electronic structure of graphene in a magnetic field becomes
noticeable in the quantum Hall effect, which is discussed in the following Section.

5.4 Magnetotransport along the boundary of graphene
nanoribbons

We study in this Section magnetotransport along the boundaries of graphene nanoribbons.
We show that the resistance oscillations, reported in the previous Section for a nonrelativis-
tic 2DEG, can also be observed in graphene nanoribbons. Also the effect of the different
edge geometries on the magnetotransport is discussed.

5.4.1 System

We consider a graphene nanoribbon with a size of 140 nm ⇥ 90 nm, which corresponds
approximately to a half million carbon atoms. Metallic contacts with a width of 3 nm are
attached at the edges of the ribbon separated by a distance of L = 110 nm, see Figure 5.17.
The wiring of these contacts is the same as in the case of a nonrelativistic 2DEG, see
Figure 5.2. Graphene nanoribbons have two elementary edge structures. The ribbon shown
to the left of Figure 5.17 has a zigzag edge between the contacts S and P1, whereas the
ribbon to the right has an armchair edge between these contacts. In rectangular ribbons
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zigzag and armchair edges appear perpendicular to each other. Other edge reconstructions
are also possible in graphene, see e.g. [54, 83, 91], but are not considered here. The Fermi
energy is set to µ = 0.06t = 168meV. For simplicity, we do not consider the Zeeman spin
splitting, see remarks in Section 5.4.5. We assume that the influence of the temperature is
negligible and thus, set it to zero. Diffusive walls are used at those boundaries, which are
not important for the focusing experiment, see the dashed walls in Figure 5.17.

S P1

DP2

S P1

DP2

L L

Figure 5.17: Graphene nanoribbons studied in this Section. Both ribbons have a size of
140 nm ⇥ 90 nm. Metallic contacts with a width of 3 nm are attached at
the boundaries separated by a distance of L = 110 nm. The wiring of the
contacts is the same as in Figure 5.2. The Fermi energy is set to µ = 0.06t =

168 meV. The ribbon to the left has a zigzag edge in between the contacts
S and P1, whereas the ribbon to the right has an armchair edge in between
these contacts. Note that at a zigzag edge carbon atoms of only one sublattice
appear, while atoms from both sublattices are located at an armchair edge.

The average DOS of the studied graphene nanoribbons, calculated numerically by the
NEGF method, is shown in Figure 5.18. As expected, the DOS of the zigzag ribbon (blue
curve) and the armchair ribbon (red curve) are nearly identical, and agree well with the
DOS of the graphene lattice (5.36) indicated by the black curve. In the region close to the
Dirac points E = 0, which is shown enlarged on the right side of Figure 5.18, the DOS
is increasing linearly in almost perfect agreement with the DOS (5.35) from the Dirac
Hamiltonian (green curve). However, the zigzag ribbon shows a distinct peak at E = 0,
which cannot be observed in the case of an armchair ribbon. This peak can be attributed to
a state on the surface of the ribbon, which is dispersionless and hence, does not contribute
to electron transport.8 A surface state is possible at a zigzag edge, because only carbon
atoms of a single sublattice appear there. Thus, at the edge the wave function has to
vanish only on one sublattice, while the surface state resides on the other sublattice. At
an armchair edge atoms from both sublattices appear and a surface state is not possible,
see [31, 83, 128, 185] for details. However, in Figure 5.18 the DOS of the armchair ribbon
is also nonzero at E = 0. These are states induced by the contacts [73], which contribute
to the observed finite conductivity of graphene at the Dirac points [35, 130, 131, 172, 198].
As a consequence of this, the carrier densities in the zigzag ribbon n

zz

= 3.7 · 10

12
cm

�2

and the armchair ribbon n
ac

= 3.3 · 10

12
cm

�2 are slightly higher than expected from the
linear DOS of the Dirac Hamiltonian n

di

= 2.5 · 10

12
cm

�2. Note that Figure 5.18 also

8We refer to this state as a surface state in order to distinguish it from the edge states, which are also
localized close to surface but current carrying. However, the naming is not consistent in the literature.
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shows that the electrons in graphene can behave as a nonrelativistic 2DEG, if the Fermi
energy is shifted to the band edges E = ±3. In theoretical studies this is feasible, but to
our knowledge this is impossible in the experiment.
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Figure 5.18: Average DOS in the studied graphene nanoribbons. The left figure covers the
complete energy band, whereas the right figure shows the region close to the
Dirac points at E = 0. The blue curve gives the DOS in the zigzag ribbon,
while the red curve gives the DOS in the armchair ribbon, see Figure 5.17. The
DOS of both ribbons agrees almost perfectly with the DOS of the graphene
lattice (5.36) (black curve) and the DOS from the Dirac Hamiltonian (5.35)
(green curve). The peak in the DOS of the zigzag ribbon at E = 0 is caused
by a dispersionless surface state, which does not exist in armchair ribbons.
However, also the armchair ribbon has a nonzero DOS at E = 0, because of
contact induced states. The dashed vertical line indicates the Fermi energy.

5.4.2 Electron focusing, resistance oscillations and the quantum Hall effect

As in the case of a nonrelativistic 2DEG, see Section 5.2, electrons are injected at the
contact S and focused onto the contact P1 by a perpendicular magnetic field B. The
focusing spectrum, defined as the generalized 4-point Hall resistance R

xy

as a function of
B, is shown in Figure 5.19 for the zigzag ribbon (left) and the armchair ribbon (right).
The blue curve gives the focusing spectrum in the case of specular reflections in between
S and P1, whereas for the red curve the scattering at this boundary is diffusive. First
focusing experiments in graphene have been reported recently [174].

At first sight, the focusing spectra of the graphene nanoribbons look very similar to the
focusing spectrum of a nonrelativistic 2DEG, compare with Figure 5.4. They start with
equidistant peaks located approximately at

B
n

=

2µ

ev
F

L
n, n = 1, 2, 3, . . . , (5.44)

see the dashed vertical lines. At these magnetic fields a multiple n of the cyclotron diameter
2 |p| /eB equals the distance L between injector and collector. Note that (5.44) differs from
the nonrelativistic case (5.16), because of different dispersion relations, but the essential
physics remains the same. Cyclotron orbits can be clearly seen in Figure 5.20, which
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shows the local current and the LDOS of electrons originating from S with energy µ.
Note that the shown local current and the LDOS have been averaged over the honeycomb
cells. In a strong magnetic field B > 13 T, we observe anomalous resistance oscillations,
which cannot be explained by classical cyclotron orbits. When the boundary scattering
is diffusive or when the direction of the magnetic field is reversed, the quantum Hall
staircase can be observed clearly. The current is carried through edge channels along the
boundaries, see Figure 5.21. However, at second sight, we find some striking differences to
the nonrelativistic case, compare with Figure 5.4 and Figure 5.7. The hight of the quantum
Hall plateaus differs as well as the shape of the edge channels. Moreover, we observe that
a substantial current flows at an armchair edge, which is not present at a zigzag edge. In
order to understand this behavior, we solve in the following Section the Dirac equation
of a bounded relativistic 2DEG under the effect of a magnetic field. We also discuss the
observed slight displacement of the classical focusing peaks in the armchair ribbon and
show that in graphene all resistance oscillations can be explained by the interference of the
occupied edge channels.
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Figure 5.19: Generalized 4-point Hall resistance R
xy

as a function of the perpendicular
magnetic field B for the zigzag ribbon (left) and the armchair ribbon (right).
The blue curve gives R

xy

in the case of specular reflections at the boundary in
between S and P1, whereas for the red curve the scattering at this boundary
is diffusive. The focusing spectra start with peaks, which can be understood
by classical cyclotron orbits (5.44), see the dashed vertical lines. In a strong
magnetic field B > 13 T, we observe superimposed upon the quantum Hall
plateaus anomalous resistance oscillation, which cannot be explained by cy-
clotron orbits. As in the nonrelativistic case, all resistance oscillations can be
explained by the interference of the occupied edge channels.
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Figure 5.20: Local current (arrows) and LDOS (shading) of electrons originating from S
with energy µ. In the zigzag ribbon (left column) and the armchair ribbon
(right column) cyclotron orbits can be clearly seen. At the armchair edge a
distinct edge current can be observed, which is not present at the zigzag edge.
Note that the shown local current and the LDOS have been averaged over the
honeycomb cells.

Figure 5.21: The edge channel transport of the quantum Hall effect can be observed clearly,
when the direction of the magnetic field is reversed. A finite current flows at
the armchair edge (right), whereas the current vanishes at the zigzag edge
(left). This can also be seen in the transverse current through the dashed
vertical line in Figure 5.24. In the LDOS only a single broadened edge chan-
nel can be recognized, instead of spatially separated edge channels as in the
nonrelativistic 2DEG, see Figure 5.7 (top).
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5.4.3 Graphene ribbons in a magnetic field: Dirac equation

To understand the magnetotransport in graphene nanoribbons, we solve the Dirac equation
of a relativistic 2DEG bounded by an edge under the effect of a magnetic field. In general,
the solution of the Dirac equation is given by a linear combination of the solutions at both
valleys

 (r) = c1 e

iK·r K(r) + c2 e

iK0·r K0
(r), (5.45)

where c1 and c2 are complex constants. At the zigzag edge, we obtain by means of (5.43)9
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where ⇣ =

�
x + `2

B

k
�
/`

B

. As at a zigzag edge only carbon atoms of one sublattice appear,
see Figure 5.17, the wave function has to vanish only on one of the two sublattices. The
condition  

A

(x = 0) = 0 leads to the two solutions

c1 = 1, c2 = 0 : D
⌫�1(`Bk)

!
= 0, (5.47a)

c1 = 0, c2 = 1 : D
⌫

(`
B

k)

!
= 0. (5.47b)

Thus, for given `
B

k =

p
~k2/eB the index ⌫ is determined by the zeros of the rescaled

parabolic cylinder functions. The first set of solutions is located at the K valley, whereas
the second set is located at the K 0 valley. The resulting energy bands (5.41) are depicted
in Figure 5.22 (left). At large k the discrete Landau levels for integer values of ⌫ = n can
be observed. The distance of these Landau levels decreases with

p
n. When the edge is

approached by decreasing k, the energy bands are bent upwards and their degeneracy is
lifted. Also the dispersionless surface state E

⌫=0 = 0 at the K valley can be seen. The
occupied edge states at the Fermi energy (dashed horizontal line) are indicated by dots.

At an armchair edge, we obtain by means of (5.42)
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where ⇠ =

�
y � `2

B

k
�
/`

B

. As at armchair edges both sublattices appear, see Figure 5.17,
the wave function has to vanish on both of them. The condition  

A

(y = 0) =  

B

(y =

0) = 0 requieres that the coefficient determinant of the linear equation system for c1 and
c2 vanishes

D
⌫�1(�`Bk) ⌥ D

⌫

(�`
B

k) = 0 (5.49)

and leads to the solutions

c1 = 1, c2 = ±1. (5.50)

Thus, at an armchair edge both valleys are intermixed. The two eigenenergy bands in
Figure 5.22 (right) show not only that their degeneracy is lifted in vicinity of the edge
but also shallow valleys, which are not present at a zigzag edge. The solution of the
Dirac equation at zigzag and armchair edges in a magnetic field can also be found in
[1, 22, 48, 187].

9Note that the graphene lattice is not rotated. Zigzag boundaries run along the y-axis, whereas armchair
edges are oriented along the x-axis, see Figure 5.15.
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Figure 5.22: Energy bands of graphene bounded by an edge in a magnetic field of B =

15.6 T. At large k we observe discrete Landau levels. When the edge is
approached by decreasing k, the energy bands are bent upwards and their
degeneracy is lifted. In the case of a zigzag edge (left) the red curve indicates
solutions at the K valley, while the blue curve gives solutions at the K 0 valley.
Also the dispersionless surface state can be seen at the K valley. In the case
of an armchair edge (right) the valleys are mixed, which leads to two sets of
solutions indicated by the blue and red curve. The occupied edge states at
the Fermi energy (dashed horizontal line) are marked by blue and red dots.

5.4.4 Answers to our questions

The quantum Hall effect in graphene can be understood easily by the eigenenergy spectra
shown in Figure 5.22. The number of the occupied edge states at the Fermi energy equals
2n + 1, where n is the Landau level index. As every occupied edge state is a ballistic
conductor, which contributes with 2e2/h to the total conductance, the Hall resistance
reads

R
xy

=

h

2e2
1

2n + 1

, n = 0, 1, 2 . . . . (5.51)

This explains the quantum Hall staircase observed in Figure 5.19, which is one of the
definitive fingerprints of a relativistic 2DEG [79, 93, 130, 132, 198], because it differs
significantly from the nonrelativistic case. Note that the width of the Hall plateaus is
proportional to 1/B in both cases. In Figure 5.19 we can also observe that the transitions
between the Hall plateaus differ slightly in the two ribbons. This can be explained by the
shallow valleys in the band structure at an armchair edge, which are not present at a zigzag
edge or when the scattering at all boundaries is diffusive.

The average DOS of the studied ribbons, calculated numerically by the NEGF method, is
depicted in Figure 5.23 (blue curve). It has peaks at the positions of the Landau levels (red
vertical lines). Note that only the dataset of the zigzag ribbon is shown, because the average
DOS of the armchair ribbon is nearly identical. The DOS increases linearly similar to the
case of zero magnetic field, see the green curve, which is due to the decreasing distance of
the broadened Landau levels. The DOS measured in experiments [11, 112, 122] is similar
to our calculations. From Figure 5.23 we can also learn that the gap in between the zeroth
and the first Landau level is quite large (100 meV at 10 T), which makes it possible to
observe the quantum Hall effect in graphene even at room temperature [93, 132].
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Figure 5.23: Average DOS of the studied graphene nanoribbons (blue curve) at B = 15.6 T.
It has peaks at the positions of the Landau levels (5.41) (red vertical lines),
and increases linearly similar to the case of zero magnetic field (5.35) (green
curve), because of the decreasing distance of the broadened Landau levels.
Note that only the dataset of the zigzag ribbon is shown, because the DOS is
almost identical in both ribbons.

In Figure 5.21 we observe that a finite current flows at the armchair edge, whereas the
current vanishes at the zigzag edge. This can be seen clearly in Figure 5.24 (blue curve),
which shows the transverse current through the dashed vertical lines in Figure 5.21. It can
be understood, if we calculate the transverse current by means of the eigenstates of the
Dirac equation [100, 101, 126, 187]
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where c
i

is a normalization constant and the sum is over the occupied edge states, see the
dots in Figure 5.22. At zigzag edges the parabolic cylinder functions have to be zero, see
(5.47), which results in zero edge current. At armchair edges, the sum of the parabolic
cylinder functions has to be zero, see (5.49), which allows for a finite edge current. The
transverse current calculated by means of (5.52) agrees well with the Green’s functions
calculations, see the red curves in Figure 5.24. In the transverse current, we can identify
two spatially separated edge channels. Thus, as in the nonrelativistic case, the number
of spatially separated edge channels in the local current, averaged over the honeycomb
cells, equals the number of occupied Landau levels.10 The lifting of their degeneracy at
the edge is not resolved in the local current. Due to the boundary conditions, in the zigzag
ribbon the two edge channels are more densely packed and harder to separate than in
the armchair ribbon. Note that the total edge current is approximately independent from
the edge geometry. The energy resolved transverse current in Figure 5.25 confirms these
findings. Surprisingly, it also shows counterpropagating currents close to the Landau levels,
10In the case of graphene, the number of occupied Landau levels means the number of Landau levels for

which 0  E  µ holds.
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see the blue shaded regions, in which the current flows in the opposite direction as in the
red shaded regions. These counterpropagating currents are found also in a nonrelativistic
2DEG. At this point, their origin is not understood, but they are also observed by Wang
et al. [187] using the eigenstates of the Dirac equation. Also the dependency of the current
on the edge geometry is reported in their work. Beyond that, we show in Figure 5.20 that
a distinct armchair edge current appears also in the regime of coherent electron focusing.
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Figure 5.24: Transverse current (blue curves) through the dashed lines in Figure 5.21. A
finite current flows at the armchair edge (right), while the current vanishes
at the zigzag edge (left). The current, calculated by the eigenstates of the
Dirac equation (red curve), agrees with the NEGF calculation and allows to
attribute the different edge currents to the different boundary conditions of the
ribbons. We can identify two spatially separated edge channels, which equals
the number of occupied Landau levels (with E � 0). Due to the boundary
conditions, the edge channels are more densely packed in the zigzag ribbon.

Figure 5.25: Energy resolved transverse current through the dashed lines in Figure 5.21.
Warm colors indicate a current from P1 to S while cold colors correspond
to a current in the opposite direction. A distinct current is observed at the
armchair edge (right), which is not present at the zigzag edge (left). The
number of spatially separated edge channels equals the number of occupied
Landau levels (with E � 0), although the two edge channels closest to a zigzag
edge are hardly to separate. Surprisingly, close to the Landau levels regions
of counterpropagating current can be observed (blue shaded regions).
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The LDOS in Figure 5.21, averaged over the six carbon atoms of the honeycomb cells,
shows only a single broadened edge channel. This can be seen clearly in Figure 5.26 (black
curves), which gives the LDOS along the dashed vertical line in Figure 5.21. In order to
make individual edge channels visible in the LDOS, we have to select only a subset of the
carbon atoms, see the blue and red curves for which only the atoms marked in the inset
are taken into account. When every carbon atom is considered individually, the LDOS
oscillates rapidly between the blue and red curves in Figure 5.26. These oscillations have
been reported in several theoretical studies [22, 23, 126, 196], but to our knowledge an
experimental confirmation is missing.

The energy resolved LDOS, calculated numerically by means of the NEGF method, is
depicted in Figure 5.27. Far from the edge the discrete Landau levels can be observed
clearly. If the LDOS is averaged over the honeycomb cells (left column), the bending of
the energy bands can be seen only slightly. It becomes more visible, if only a subset of
the carbon atoms is taken into account (middle and right column). In this way, we can
observe how in the zigzag ribbon (top row) the zeroth Landau level at E = 0 splits into a
dispersive edge state on the sublattice B (right) and a non-dispersive surface state on the
sublattice A (middle). This surface state is not present in the armchair ribbon. Similar
results can also be obtained by means of the eigenstates of the Dirac equation, see [1].
Anyway, in the experiment it is not possible to select a subset of the carbon atoms. Thus,
the measured LDOS looks similar to the figures in the left column [112].
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Figure 5.26: LDOS of the zigzag ribbon (left) and the armchair ribbon (right) along the
dashed vertical lines in Figure 5.21. The LDOS averaged over the six carbon
atoms of the honeycomb cells (black curve) shows a single broadened edge
channel. Individual edge channels become visible, when only a subset of the
atoms is taken into account, see marked atoms in the legend.

Finally, we explain the resistance oscillations in Figure 5.19 by means of the solution of
the Dirac equation. In the zigzag ribbon the edge states are given by (5.46) and (5.47).
As in the nonrelativistic case, see Section 5.2.4, we superimpose the plane wave part of the
occupied edge states
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Figure 5.27: Energy resolved LDOS in the studied zigzag ribbon (top row) and armchair
ribbon (bottom row). In the left column the LDOS has been averaged over
the six carbon atoms of the honeycomb cells. Landau levels can be observed
far from the edges. However, the bending of the energy bands in vicinity of
the edge is seen more clearly, when the LDOS is averaged only over a subset
of the atoms (middle and right column). In the zigzag ribbon it can be seen
how the zeroth Landau level splits into an edge state (top, right) and a non-
dispersive surface state (top, middle). This surface state is not present in the
armchair ribbon.

where h·i
S,P1 means spatial averaging over the finite width of the injector and collector

contacts. The occupied edge states in the K valley are denoted by k
i

and the states in the
K 0 valley by q

i

, see the red and blue dots in Figure 5.22. The normalized absolute square
of these superimposed plane waves agrees almost perfectly with the NEGF calculation, see
Figure 5.28 (left). Hence, also in graphene’s relativistic 2DEG all focusing peaks can be
understood by the interference of the plane wave part of the occupied edge states. The
anomalous resistance oscillations are beatings, which appear when only some few edge
channels are occupied. In the armchair ribbon, the solution of the Dirac equation is more
complicated, see (5.48), (5.49), and (5.50), because the valleys are intermixed. We found
best agreement to our Green’s function calculations, see Figure 5.28 (right), if we use also
for the armchair ribbon (5.53), where the k

i

and q
i

denote the two sets of solutions. The
beatings, which appear in the case of only two occupied Landau levels, can be used to
determine precisely the distance between the injector S and collector P1. In Figure 5.28,
the almost perfect match of the positions of all extrema in the range 13 T < B < 26 T

is obtained only, if L = 110 nm is chosen in (5.53) for the distance between S and P1.
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In order to explain, why in armchair ribbons the classical focusing peaks deviate from
their expected positions, see Figure 5.19 (right), we could assume a slightly larger distance
L = 120 nm between injector and collector. In this case, the classical focusing peaks would
appear exactly at the expected positions, but the beatings would absolutely not fit to
(5.53). Also finite size effects can be ruled out as these deviations are not present in zigzag
ribbons of the same size. One reason for the shift of the classical focusing peaks could be
the distinct edge current observed only at armchair edges.
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Figure 5.28: Normalized absolute square of the superimposed plane wave part of the occu-
pied edge channels (5.53), (red curve) agrees well with the Green’s function
calculation of the focusing spectrum (blue curve). Thus, also in graphene’s
relativistic electron gas all resistance oscillations can be understood by the
interference of the edge channels. The anomalous oscillations are beatings,
which appear when only some few edge channels are occupied.

5.4.5 Experimental observability

In the preceding Sections, we have studied theoretically magnetotransport in graphene
nanoribbons and found anomalous resistance oscillations as well as a distinct effect of
the edge shape on the local current flow. However, due to computational limitations,
the studied ribbons are relatively small (L = 110 nm) and the considered magnetic fields
are quite strong (B

max

= 30 T). In these strong fields, also the Zeeman spin splitting
of the Landau levels can be relevant [78, 93, 197] but we do not expect that the spin
splitting changes qualitatively our findings. Although it is technically possible to realize
such system parameters, this is not essential to observe our findings in an experiment. As
in the nonrelativistic case, the limiting factor is the maximal number of resolvable focusing
peaks n

max

. The distance between injector and collector L as well as the Fermi energy µ
have to be tuned in such a way that this number fulfills the rule of thumb

n
max

⇠ 1

6

L

a

µ

t
, (5.54)

which can be derived easily by (5.41) and (5.44). The effect of the edge shape on the local
current flow could be studied in an experiment by contacting edge channels individually,
as in [50, 193].
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Because of the excellent agreement of the analytical minimal model (5.53) and the Green’s
function calculations, see Figure 5.28, we can use this minimal model to study larger
ribbons, for which NEGF calculations are demanding. We consider ribbons at which
20 nm wide contacts are attached at a distance of 450 nm. This is approximately the
same geometry used in the recent focusing experiment in graphene [174] as well as in a
theoretical study [149]. When the Fermi energy is set to µ = 260 meV corresponding to a
carrier density of n

gr

= 6.0 · 10

12
cm

�2, the system is in the regime of classical equidistant
focusing peaks (n

max

⇠ 49), see Figure 5.29 (right). In agreement to results reported
by Rakyta et al. [149], the focusing peaks of higher order (n > 4) are clearly visible at
armchair edges but are suppressed at zigzag edges. When Fermi energy µ = 80 meV and
carrier density n

gr

= 5.7·10

11
cm

�2 are lowered, we intermix the regime of coherent electron
focusing and the quantum Hall regime (n

max

⇠ 15), see Figure 5.29 (left). The focusing
spectrum starts with equidistant classical peaks, but anomalous oscillations follow when the
strength of the magnetic field is increased. This all gives us confidence that the predicted
resistance oscillations can be observed experimentally not only in a nonrelativistic 2DEG
but also in graphene.
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Figure 5.29: Focusing spectra of larger graphene ribbons calculated by means of (5.53).
Contacts with a width of 20 nm are attached at a distance of 450 nm. Right:
When the Fermi energy is set to µ = 260 meV, corresponding to a carrier
density of n

gr

= 6.0 ·10

�12
cm

�2, only classical equidistant focusing peaks can
be observed. As reported in [149], the classical focusing peaks of higher order
(n > 4) are clearly visible at armchair edges (top) but are suppressed at zigzag
edges (bottom). Left: When Fermi energy µ = 80 meV and carrier density
n

gr

= 5.7 ·10

�11
cm

�2 are lowered, we find classical equidistant focusing peaks
followed by anomalous oscillations.
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5.5 Tight-binding lattice in a magnetic field: Hofstadter’s
butterfly

Finally, in order to discuss the cover picture of this thesis, we study tight-binding lattices
in a perpendicular magnetic field B = �Be

z

with vector potential A = Bye
x

. Applying
the Peierls substitution (2.2), the Hamiltonian of the lattice reads

H =

1X

i=�1

1X

j=�1
|i, ji hi, j + 1| + e

i2⇡↵j |i, ji hi + 1, j| + H.c., (5.55)

where we assumed " = 0 and t = 1 for simplicity. The parameter

↵ =

eBa2

h
=

�

�0
=

a2

2⇡`2
B

(5.56)

gives the number of magnetic flux quanta per unit cell. It can also be written as the ratio
of the intersite distance a and the magnetic length `

B

=

p
~/eB and determines crucially

the properties of the system.11

To solve the Schrödinger equation, we make the ansatz |k, qi =

P
l,m

g
m

e

i(kl+qm) |l,mi and
obtain the linear equation system

1X

i=�1

1X

j=�1

⇥
(2 cos (2⇡↵j + k) � ✏) g

j

+ e

iqg
j+1 + e

�iqg
j�1
⇤

| {z }
D

j

(✏,↵,k,q)

e

i(ki+qj) |i, ji = 0. (5.57)

The eigenenergies ✏ are determined by the condition of a vanishing coefficient determinant

det

�
D(✏,↵, k, q)

� !
= 0. (5.58)

In absence of a magnetic field ↵ = 0, we can choose g
j

= 1 and obtain directly the energy
bands ✏0(k, q) = 2 (cos(k) + cos(q)), discussed already in Section 3.1.2. In presence of a
magnetic field, we assume that ↵ = u/v is a rational number. In this case the coefficient
matrix is periodic D

j

= D
j+v

and the coefficient determinant is a polynomial of degree v
in ✏. Thus, the energy bands split up in v subbands. For ↵ = 1/2, we can choose again
g
j

= 1 and obtain

det

✓
�2 cos(k) � ✏ 2 cos(q)

2 cos(q) 2 cos(k) � ✏

◆
!
= 0, (5.59)

which leads to the two energy bands ✏1/2(k, q) = ±2

p
cos

2
(k) + cos

2
(q). Solving (5.58)

numerically12 for rational ↵, we obtain the eigenenergy spectrum shown in Figure 5.30
(right). This beautiful fractal structure is known as Hofstadter’s butterfly [87] due to its
characteristic shape and its discoverer D. R. Hofstadter.13 Note that the zero-measure
11Note that a nonrelativistic 2DEG can be approximated by a tight-binding Hamiltonian, see (5.13), if

↵ ⌧ 1. However, this constraint does not hold generally.
12In order to solve (5.58) numerically, it is useful to take into account that k and q cause only a periodic

modulation and hence, we can solve equivalently |det(D(✏, u/v,⇡/v, 0))|  4.
13Douglas Richard Hofstadter is also author of the famous book “Gödel, Escher, Bach” [88], for which he

was awarded with the Pulitzer prize. He is the son of the nobel laureate Robert Hofstadter.
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Cantor set of irrational ↵ is irrelevant, because every physical quantity has some uncer-
tainty, which justifies rational ↵. A finite degree of decoherence may also be present, which
smears out the fractal spectrum.

Hofstadter’s butterfly can also be studied by means of the NEGF approach. We consider
a ribbon of length N = 40 and width M = 20 with broad contacts attached to all four
edges. The resulting average DOS of this system is shown on the cover page and is also
given in Figure 5.30 (left) with axis and colorscaling. Note that at the tips of the butterfly
(i.e. the corners of the figure) the discrete Landau levels can be seen clearly, compare with
Figure 5.10. The advantage of the Green’s function method is that we can study easily
the effects of the fractal energy spectrum on transport properties of the system. In this
way, we observe that Hofstadter’s butterfly also settles down in the Hall resistance, see
Figure 5.31.

Since the discovery of Hofstadter’s butterfly in 1976 [87], it has attracted enormous atten-
tion and numerous studies have been performed. However, its experimental observation
is still challenging, because in atomic lattices like graphene the required magnetic field
strengths are in the order of 10

5
T, which is impossible to realize experimentally. There-

fore, superlattices have been studied, which should possess the butterfly at lower magnetic
field strengths. However, to our knowledge only fingerprints of the fractal spectrum have
been found in superlattices realized in semiconductor heterostructures [8, 68, 158]. The first
direct observation of the butterfly has been reported by Kuhl et al. [108] in a microwave
experiment. Very recently, the hunt for Hofstadter’s butterfly made important progress.
The fractal energy spectrum has been observed clearly in superlattices of excellent qual-
ity, which can be obtained by placing graphene on hexagonal boron nitride [46, 89, 147].
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Figure 5.30: Right: Fractal energy spectrum of a tight-binding lattice as a function of the

magnetic flux per unit cell and the energy. For the calculation of Hofstadter’s
butterfly by means of (5.58), we used rational ↵ = u/v with 0 < u, v < 36.
Left: Average DOS (in multiples of 2/ta2) in a tight-binding ribbon of size
40 ⇥ 20, calculated numerically by the NEGF approach. This visualization of
Hofstadter’s butterfly is also shown on the cover page of this thesis.
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The Hofstadter Hamiltonian (5.55) has also been realized with ultracold atoms in optical
lattices [7, 123], which gives good chances to catch the butterfly also in this system.

5.6 Conclusions

In this Chapter, we have studied magnetotransport in two-dimensional electron systems.
After a short introduction to the basic physics of a nonrelativistic two-dimensional electron
gas (2DEG), we have studied magnetotransport along the boundary of a finite 2DEG,
as it can be realized experimentally in semiconductor heterostuctures. In this system
electrons are injected at one point of the boundary and focused by a perpendicular magnetic
field on another point of that boundary, see Figure 5.2. We have calculated the 4-point
generalized Hall resistance as a function of the magnetic field, see Figure 5.4. In weak
fields equidistant focusing peaks appear, which correspond to classical cyclotron orbits
(5.16), see Figure 5.5. When the magnetic field strength is increased, anomalous resistance
oscillations are observed, which cannot be explained by classical cyclotron motion [169].

In order to understand these anomalous resistance oscillations, we have given an elementary
introduction to the quantum Hall effect, which can be observed in the studied system, if
the scattering at the boundary in between the injector and collector is diffusive, or if the
direction of the magnetic field is reversed. We have shown in Figure 5.7 (third row) that

Figure 5.31: Hall resistance R
xy

of a tight-binding ribbon of size 40 ⇥ 20. Hofstadter’s
butterfly is also found in this transport quantity. In the wings of the butterfly
only a single Landau level is occupied and R

xy

= ±1. In the white regions at
the top and bottom zero Landau levels are occupied and R

xy

is infinite.
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the discrete Landau levels, on which the DOS of a 2DEG is condensed by the magnetic
field, are bent upwards close to the system edge. This behavior can also be obtained within
a minimal model, an infinitely extended 2DEG bounded by a single infinite potential wall,
see Figure 5.9. The bending of the Landau levels gives rise to edge channels, which carry
the current ballistically along the boundary of the system, see Figure 5.7 (first and second
row). Backscattering is topologically forbidden, because the group velocity of all edge
channels has the same sign, see Figure 5.8. Thus, for the total resistance (5.17), we just
have to count the number of edge channels at the Fermi energy, which equals the number
of occupied Landau levels.

By means of the minimal model, we have shown that all resistance oscillations can be
understood by the interference of the plane wave part of the occupied edge channels, see
Figure 5.11. The anomalous resistance oscillations are beatings, which appear when only
some few edge channels are occupied and only some few plane waves are superimposed.
Thus, the oscillations are very clear and distinct, if only two Landau levels are occupied.
In this case the oscillations can also be understood as a new commensurability (5.20)
between the magnetic flux enclosed within the two edge channels and the flux quantum.
The frequency of the resistance oscillations increases rapidly, when the magnetic field is
increased and a Landau level is depleted, because the momentum of the corresponding
plane wave is also increasing rapidly, as shown in Figure 5.8. Using the flexibility of
the NEGF method, we have studied the robustness of our findings. We have shown in
Figure 5.13 that a finite degree of decoherence suppresses the classical focusing peaks
even stronger than the anomalous oscillations. We have also demonstrated in Figure 5.14
that the resistance oscillations can be observed, when the boundary scattering is partially
diffusive and another contact geometry is used.

In order to observe resistance oscillations, it is necessary that the occupied edge channels
can interfere. If the edge chanels are not superimposed coherently (5.19) but incoherently
(5.21), the quantum Hall staircase is observed. Thus, mean free path and phase coherence
length should be comparable with the distance between injector and collector. As in the
experiment the scattering at the boundary is always partially diffusive, we have also given
a rule of thumb (5.22) for the required number of specular reflections.

We have also extended our studies to the relativistic 2DEG found in graphene. After a
short introduction to the basic physics of graphene, we have studied magnetotransport
along the boundary of graphene nanoribbons sketched in Figure 5.17. The generalized
Hall resistance of the nanoribbons in Figure 5.19 shows qualitatively the same properties
as in the nonrelativistic case, but the details differ. The position of the classical focusing
peaks (5.44) changes, because of graphene’s linear dispersion relation, but cyclotron orbits
can still be observed in the local current, see Figure 5.20. Also the quantum Hall staircase
differs. We have shown by a minimal model, an infinitely extended relativistic 2DEG
bounded by an edge, that the Hall resistance (5.51) is still determined by the number of
occupied edge states. However, this number differs from the nonrelativistic case, because
the electronic structure is changed, compare Figures 5.8 and 5.22.

Studying the effect of the edge shape of the graphene ribbons on the magnetotransport,
we found that a finite current flows at the armchair edge, whereas the current vanishes at
the zigzag edge, see Figures 5.20 and 5.24. By means of the minimal model, the different
edge currents can be traced back to the fact that at an armchair edge carbon atoms of
both sublattices appear, while at a zigzag edge only atoms of one sublattice are present, see
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Figure 5.17. We have also shown in Figure 5.24 that the number of spatially separated edge
channels in the local current equals the number of occupied Landau levels (with E � 0).
The discrete Landau levels can be seen clearly in the LDOS in Figure 5.27. However, the
bending of the Landau levels in vicinity of the edge as well as spatially separated edge
channels can be hardly recognized, if the LDOS is averaged over the six carbon atoms of
the honeycomb cells. They can be made visible, if the LDOS is averaged only over a subset
of the carbon atoms.

We have shown in Figure 5.28 that also in graphene the resistance oscillations can be
understood by superimposing the plane wave part of the occupied edge channels (5.53).
Due to computational limitations, the studied graphene ribbons have been relatively small
and the magnetic field has been relatively strong. However, due to the good agreement of
the minimal model with the NEGF calculations, we have used this minimal model to show
that our findings are expected to appear also in larger ribbons at lower magnetic fields.
As the resistance oscillations, classical focusing peaks as well as the beatings, are due to
the interference of the edge channels, we have also given a rule of thumb (5.54) for the
required number of specular reflections.

We have concluded this Chapter with some notes on Hofstadter’s butterfly, which is de-
picted on the cover page of this thesis. Using the NEGF method, we have shown that the
butterfly takes place not only in the DOS but also in the Hall resistance, see Figures 5.30
and 5.31.





6 Conclusions and outlook

Quantum transport through nanostructures has been studied in this thesis. In addition to
the detailed conclusions given at the end of each Chapter, here we would like to highlight
our main results.

We have studied the effects of decoherence on electron transport by means of a novel sta-
tistical model. We have demonstrated that homogeneous tight-binding lattices are driven
by decoherence from the quantum-ballistic to the classical-Ohmic regime. It has also been
shown that the quasi-Fermi level of a ballistic conductor drops entirely at the interfaces to
the reservoirs, whereas under the effect of decoherence the linearly decreasing quasi-Fermi
level of an Ohmic conductor is found, see Figure 4.14. One main result, mentioned also
in the subtitle of this thesis, is the effect of decoherence on Anderson localization. We
have shown that Anderson localization can survive up to a critical degree of decoherence,
if the decoherence is distributed randomly over the system, see Figure 4.15. In contrast,
any finite degree of homogeneously distributed decoherence destroys Anderson localization
and leads to Ohmic conduction. We have also discussed how transport in disordered tight-
binding lattices can be enhanced by decoherence. Our model has been extended to obtain
pure dephasing in one-dimensional systems. In this case of pure phase randomization,
only transmission resonances are suppressed but the average transmission is conserved,
see Figure 4.24. The critical degree of decoherence, at which randomly distributed de-
coherence causes an insulator-metal transition in the Anderson model, is independent of
whether phase randomization goes along with momentum randomization or not. We have
also discussed that our model can be applied to study the effect of spin randomizing and
spin conserving decoherence on electron transport in topological insulators.

Another main result, given in the subtitle of this thesis, regards magnetotransport in two-
dimensional electron systems. A finite two-dimensional electrons gas (2DEG) is considered,
where electrons are injected at one point on the boundary and focused by a perpendicular
magnetic field on another point of that boundary, see Figure 5.2. We have studied how the
system properties change with the magnetic field. In a weak magnetic field, the generalized
4-point Hall resistance in Figure 5.4 shows equidistant peaks, which can be explained by
classical cyclotron motion, see Figure 5.5. When the magnetic field is increased, we find
superimposed upon the quantum Hall plateaus anomalous resistance oscillations, which
have been identified as beatings due to the interference of the occupied edge states. These
resistance oscillations can be observed not only in a nonrelativistic 2DEG, as it can be
realized in semiconductor heterostructures, but also in the relativistic 2DEG found in
graphene. As we have proven the robustness of our findings, we are confident that these
resistance oscillations can be observed experimentally. Studying the local current flow in
graphene, we have found a finite current at armchair edges, which is not present at zigzag
edges, see Figure 5.20. This edge current can be traced back to the fact that at an armchair
edge carbon atoms of both graphene sublattices are present, whereas at a zigzag edge only
atoms of one sublattice appear. As to our knowledge, this finite edge current is rarely
discussed in the literature, it deserves definitely further studies.
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We hope that with this thesis, we have contributed a small part to the knowledge on
quantum transport in nanostructures. Nevertheless, research has to be continued further
in order to get a comprehensive understanding of the physics at the nanoscale. In this
way, we consider to extend our model to a finite energy window, which requieres to take
into account at the decoherence regions not only phase randomization but also energy
dissipation. By means of this model, we plan to study how a local nonequilibrium energy
distribution function evolves in space and time to a Fermi distribution. Moreover, the
extension of our model to phonon transport is in preparation, which will allow us to study
the effects of decoherence on heat flow in nanosystems.



A Appendix

A.1 Dyson’s equation

We consider a system for which the Hamiltonian

H = H0 + V (A.1)

is composed of an unperturbed Hamiltonian H0 and a perturbation V . When the Green’s
function of the unperturbed system is known

g = (E + i⌫ � H0)
�1 , (A.2)

we can write for the (inverse) Green’s function of the perturbed system

G�1 = E + i⌫ � H = g�1 � V. (A.3)

By multiplication with G from right and g from left, we obtain Dyson’s equation

G = g + gV G, (A.4)

which relates the Green’s function of the pertubated to the Green’s function of the unper-
turbed system. Dyson’s equation can be very useful for the calculation of Green’s function
in many situations, see for example Appendix A.2. In particular, it can be used recur-
sively to build up Green’s functions in blocks, which allows to save computation time and
memory, see e.g. [192] and references therein.

A.2 Surface Green’s function of the semi-infinite chain

In this Appendix, we calculate the surface Green’s function of the semi-infinite tight-
binding chain described by the Hamiltonian (3.11). Our derivation is based on [39, Sec-
tion 5.3.2] and [201, Section 3.2.1]. In order to apply Dyson’s equation, we decompose
the chain into an unperturbed system and a perturbation. In the unperturbed system the
surface site is decoupled from the rest of the chain and thus, its Green’s function fulfills

g11 = (E � ")�1 , g12 = g21 = 0. (A.5)

The perturbation is the coupling between the two subsystems

V = t (|1i h2| + |2i h1|) , (A.6)

which means that only two matrix elements are nonzero V12 = V21 = t, see Figure A.1.
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By means of Dyson’s equation, we obtain for the Green’s function of the chain

G11 = g11 + g11V12G21, (A.7a)

G21 = g22V21G11. (A.7b)

Taking into account that g22 = G11, because after removing the surface site the remaining
chain is again semi-infinitely long, we get a quadratic equation

t2G2
11 � (E � ") G11 + 1 = 0, (A.8)

with the solution

G11 =

E � "

2t2
± 1

2t2

q
(E � ")2 � 4t2. (A.9)

To lift the ambiguity and to obtain (3.12), we use that Im (G) < 0 and that the Green’s
function is continuous.

V t

Figure A.1: Semi-infinite tight-binding chain. In order to calculate the surface Green’s
function by means of Dyson’s equation, the chain is decomposed in an unper-
turbed system and a perturbation. In the unperturbed system the first site
and the rest of the chain are decoupled. The perturbation V is the coupling
between these subsystems.

A.3 Coherent transport in tight-binding chains: Exact results

In this Appendix, we derive analytically some exact results on the coherent transport in
tight-binding chains. We consider a chain of length N described by the Hamiltonian (3.18),
which is connected to two reservoirs by the self-energy

⌃ = ⌫ + i⌘ (A.10)

acting on the first and last site of the chain. This self-energy includes both, semi-infinite
chains (3.13) as well as wide-band reservoirs (3.17). At first, we show how the transmission
can be calculated recursively. Using this recursion formula, the disorder averaged coherent
resistance is then calculated by means of generating functions.

A.3.1 Recursion formula for the transmission

The coherent transmission through the chain is determined by the matrix element G1N of
the Green’s function, see (3.19). Because of the tridiagonal structure of G�1 this matrix
element can be calculated recursively, as has been shown in a similar way by M. Zilly et
al. [202].
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From the identity G�1G = 1, we infer that the matrix element G1N is given by the first
element of the vector x

j

, which is the solution of the linear equation system
X

j

G�1
ij

x
j

= �
iN

. (A.11)

We apply a LU decomposition on G�1

G�1 =

0

BBBBBBB@

↵1 �1 0 · · · 0

�1 ↵2 �1 0

...

0 �1 ↵3 �1

...
... . . . ...
0 · · · 0 �1 ↵

N

1

CCCCCCCA

(A.12)
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, (A.13)

with

↵
i

= E � "
i

� ⌃ (�
i1 + �

iN

) , l
i

= � 1

u
i

, u
i

= ↵
i

+ l
i�1, u1 = ↵1. (A.14)

The linear equation system (A.11) reads then
X

k,j

L
ik

U
kj

x
j| {z }

y

k

= �
iN

. (A.15)

From the structure of L and U , we obtain by forward substitution y
k

= �
kN

and finally,
by backward substitution

x1 = G1N =

NY

i=1

1

u
i

. (A.16)

Using the definition of the u
i

, the polynom P
N

⌘
Q

N

i=1 u
i

is given by the recursion

P
N

= (E � "
N

� ⌃) P
N�1 � P

N�2,

P
i

= (E � "
i

) P
i�1 � P

i�2,

P1 = E � "1 � ⌃, P0 = 1. (A.17)

Finally, we subdivide P
N

into its real and imaginary part and obtain for the transmission
of the N sites long chain

T
N

(E) = �4Im (⌃)

2 |G1N |2 =

4⌘2
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with the polynomials

r
i

= (E � "
i

) r
i�1 � r

i�2, s
i

= (E � "
i

) s
i�1 � s

i�2,

r0 = 1, s1 = 1,

r�1 = 0, s0 = 0. (A.19)



100 A Appendix

A.3.2 Disorder averaged resistance

We calculate analytically the disorder averaged coherent resistance of a tight-binding chain.
This proof has been performed by O. Ujsághy and we have published it in [168]. Using a
recursive scattering approach, Stone et al. [171] arrived at the same result.

Using the recursion relations (A.18), we obtain for the disorder averaged resistance
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with
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and the initial conditions R0 = 1, R�1 = S0 = U1 = 0.

In order solve this recursion, we calculate the generating functions F
P

(z) =

P1
N=1 P

N

zN�1

of the polynomials P 2 {R, S, U} and with these the generating function
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where
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�
E2

+ �2 � 1

�
z � 1, (A.26)

generalizing [202] beyond the wide-band approximation. We perform a partial fraction
decomposition of Fh1/T

N

i, or for simplicity rather of
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where the z
k

are the roots of the polynomial N1(z), for which Vieta’s formulas hold

z1 + z2 + z3 = E2 � �2 � 1,

z1z2 + z1z3 + z2z3 = E2
+ �2 � 1,

z1z2z3 = 1. (A.28)

In the same way, the ↵
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are determined as
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Using the formal power-series

↵
k

z � z
k

= �↵k

z
k

1X

N=1

✓
z

z
k

◆
N�1

(A.30)

in (A.27), we get finally the analytical formula
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This is the main result of this Appendix. It gives, together with z
k

from (A.28) and ↵
k

from
(A.29), the disorder averaged resistance of the coherent tight-binding chain of length N ,
which is connected at its ends to reservoirs by arbitrary self-energies. To our knowledge
such a compact analytical formula, namely a constant plus a sum of three exponential
functions, has never been reported before in the literature. In the band-center E = 0 the
roots are given by

z1,2 = ��
2

2

±
r
�4

4

+ 1, z3 = �1, (A.32)

and (A.31) simplifies to (3.21).

In the following, we discuss possible values of the roots z
k

of the polynomial N1(z), which
determine the behavior of the exponential functions in (A.31) and thus, the behavior of
the resistance. At first, we note that N1(z) is independent of the reservoir’s self-energy
⌃ and thus, also its roots are independent of the modeling of the reservoirs [202]. From
N1(z = 0) = �1 and N1(z = 1) = 2�2 > 0, we learn that N1(z) has at least one single real
root in the interval ]0, 1[, which is denoted by z1 and leads to the exponential increase of
the resistance. More information on the z

k

can be gained by the discriminant

� = �8 � 2�4
�
E4

+ 10E2 � 2

�
+ E2

�
E2 � 4

�3
. (A.33)

For � < 0, we have the real root z1 and two complex conjugate roots z3 = z⇤2 . From
the third Vieta formula we learn that z2z3 = |z2|2 = 1/z1 > 1. Therefore, the complex
roots cause by their phase an oscillation, which is exponentially suppressed with the chain
length. For � � 0 all three roots are real. Again, we learn from the third Vieta formula
z2z3 = 1/z1 > 1. If z2, z3 > 0, only one of them can be less than 1. However, two roots
in the intervall ]0, 1[ contradict to N1(0) = �1 and N1(1) = 2�2 > 0, which allows only
an odd number of roots in this interval. Therefore both, z2 and z3 are larger than 1. If
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z2, z3 < 0, only one of them can be in the interval ]�1, 0[, which contradicts to N1(0) = �1

and N1(�1) = �2E2 < 0 allowing only an even number of roots in this interval. Therefore
both, z2 and z3 are less than �1. In both cases their contributions to the resistance are
exponentially suppressed.

To summarize, we have only a single real root z1 in the interval ]0, 1[, which dominates the
resistance for N ! 1
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e

N |ln(z1)|. (A.34)

This equation also clarifies that the decoherence induced transition, discussed in Sec-
tion 4.5, appears also in the case of arbitrary energies E and self-energies ⌃.

A.4 Resistivity of disorder and decoherence averaged
tight-binding chains

We calculate analytically the resistivity of infinitely long, disordered tight-binding chains
under the effect of decoherence (4.10). Using (3.21) and (4.6) we obtain
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While the first and third geometric series converge for any finite degree of decoherence
` > 0, the second geometric series converges only if ⇠ > `. In this case by performing the
sums we get
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Substituting (3.23) in (3.22), we can express ↵± as a function of the disorder �

2↵± = 1 ± 1q
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. (A.37)

Using e

�1/`
= 1 � p and e

±1/⇠
= ±�

2

2 +

q
�

4

4 + 1, we obtain after straightforward algebra
(4.11). If ⇠ < `, from the second series in (A.35) follows directly (4.12).
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[196] L. P. Zǎrbo and B. K. Nikolić. Spatial distribution of local currents of massless Dirac
fermions in quantum transport through graphene nanoribbons. EPL, 80:47001, 2007.

[197] Y. Zhang, Z. Jiang, J. P. Small, M. S. Purewal, Y.-W. Tan, M. Fazlollahi, J. D.
Chudow, J. A. Jaszczak, H. L. Stormer, and P. Kim. Landau-level splitting in
graphene in high magnetic fields. Phys. Rev. Lett., 96:136806, 2006.

[198] Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim. Experimental observation of the
quantum Hall effect and Berry’s phase in graphene. Nature, 438:201, 2005.

[199] H. Zheng, Z. Wang, Q. Shi, X. Wang, and J. Chen. Statistical model for analyzing
the dephasing effects in a one-dimensional scattering chain. Phys. Rev. B, 74:155323,
2006.

[200] Y. Zheng and T. Ando. Hall conductivity of a two-dimensional graphite system.
Phys. Rev. B, 65:245420, 2002.

[201] M. Zilly. Electronic conduction in linear quantum systems: Coherent transport and
the effects of decoherence. PhD thesis, Universität Duisburg-Essen, 2010.

[202] M. Zilly, O. Ujsághy, M. Woelki, and D. E. Wolf. Decoherence-induced conductivity
in the discrete one-dimensional Anderson model: A novel approach to even-order
generalized Lyapunov exponents. Phys. Rev. B, 85:075110, 2012.

[203] M. Zilly, O. Ujsághy, and D. E. Wolf. Statistical model for the effects of dephasing
on transport properties of large samples. Eur. Phys. J. B, 68:237, 2009.

[204] M. Zilly, O. Ujsághy, and D. E. Wolf. Conductance of DNA molecules: Effects of
decoherence and bonding. Phys. Rev. B, 82:125125, 2010.

[205] M. Žnidarič. Dephasing-induced diffusive transport in the anisotropic Heisenberg
model. New J. Phys., 12:043001, 2010.

[206] M. Žnidarič and M. Horvat. Transport in a disordered tight-binding chain with
dephasing. Eur. Phys. J. B, 86:1, 2013.



Danksagung

An erster Stelle danke ich Professor Dietrich E. Wolf für die Betreuung meiner Promotion,
für die Möglichkeit auf diesem spannenden Gebiet forschen zu dürfen, für inspirierende und
motivierende Diskussionen, sowie für die Ermöglichung zahlreicher Auslandsaufenthalte
und Konferenzteilnahmen.

Professor Axel Lorke danke ich für unsere gute Zusammenarbeit, für zahlreiche Diskussio-
nen und für alles, was ich von ihm in den letzten Jahren lernen durfte.

Professor Orsolya Ujsághy danke ich für unsere fruchtbare Zusammenarbeit und für ih-
re Gastfreundschaft an der Technischen und Wirtschaftswissenschaftlichen Universität in
Budapest.

Weiterhin danke ich:

Professor Thomas H. Seligman für seine Gastfreundschaft an der Nationalen Autonomen
Universität von Mexiko, für mehrfache Einladungen zu spannenden Workshops in Cuerna-
vaca, sowie für hilfreiche Diskussionen.

Professor Supriyo Datta für seine Gastfreundschaft an der Purdue Universität in West
Lafayette und für inspirierende Diskussionen.

Doktor Matías Zilly für hilfreiche Diskussionen zu Beginn meiner Promotion.

Doktor Nikodem Szpak für unsere Diskussionen zu gekrümmten Graphen.

Professor Markus Winterer für seine Hilfsbereitschaft bei der Organisation meiner Aus-
landsaufenthalte.

Professor Alfred Zawadowski und Mariella Zawadowski für ihre Gastfreundschaft in Buda-
pest.

Meinem Bruder Philipp Stegmann für seine Anmerkungen zum Text.

Doktor Martin Magiera für sein Mathematica-Skript auf dem Rechenserver der AG Wolf.

Doktor Lothar Brendel für physikalische Diskussionen und seine Hilfsbereitschaft bei allen
Problemen mit dem Computer.

Der AG Wolf und der AG Lorke für physikalische und nicht-physikalische Gespräche.





Erklärung

Ich versichere, dass ich die von mir vorgelegte Dissertation selbständig angefertigt, die
benutzten Quellen und Hilfsmittel vollständig angegeben und die Stellen der Arbeit –
einschließlich der Abbildungen –, die anderen Werken im Wortlaut oder dem Sinn nach
entnommen sind, in jedem Einzelfall als Entlehnung kenntlich gemacht habe; dass diese
Dissertation noch keiner anderen Fakultät oder Universität zur Prüfung vorgelegen hat;
dass sie – abgesehen von unten angegebenen Teilpublikationen – noch nicht veröffentlich
worden ist sowie, dass ich eine solche Veröffentlichung vor Abschluss des Promotionsver-
fahrens nicht vornehmen werde. Die Bestimmungen dieser Promotionsordnung sind mir
bekannt. Die von mir vorgelegte Dissertation ist von Herrn Professor Dr. Dietrich E. Wolf
betreut worden.

Duisburg, den 8. Juli 2014

Teilpublikationen

1. T. Stegmann, O. Ujsághy, D. E. Wolf: Localization under the effect of randomly distri-
buted decoherence, Eur. Phys. J. B 87:30 (2014)

2. T. Stegmann, D. E. Wolf, A. Lorke: Magnetotransport along a boundary: from coherent
electron focusing to edge channel transport, New J. Phys. 15:113047 (2013)

3. T. Stegmann, M. Zilly, O. Ujsághy, D. E. Wolf: Statistical model for the effects of phase
and momentum randomization on electron transport, Eur. Phys. J. B 85:264 (2012)

4. T. Stegmann, O. Ujsághy, D. E. Wolf: Decoherence-induced conductivity in the one-
dimensional Anderson model, AIP Conf. Proc. 1610:83 (2014)





Curriculum Vitae

Der Lebenslauf ist in der Online-Version dieser Dissertation aus Gründen des
Datenschutzes nicht enthalten.


