
Revisiting the IETF Multipath Extensions

on Transport Layer

D I S S E R T A T I O N

to obtain the academic grade
doctor rerum naturalium

(dr. rer. nat.)
in Computer Science

Submitted to the
Faculty of Economics

Institute for Computer Science and Business Information Systems
University of Duisburg-Essen

by
Martin Becke

born on 08.08.1977 in Ankum, Germany

President of the University of Duisburg-Essen:
Prof. Dr. Ulrich Radtke

Dean of the Faculty of Economics:
Prof. Dr. Volker Clausen

Reviewers:

1. Prof. Dr.-Ing. Erwin P. Rathgeb
2. Prof. Dr. Klaus Echtle

Submitted on: September 11, 2014
Date of Disputation: November 12, 2014

ii

Selbständigkeitserklärung

Hiermit erkläre ich, die vorliegende Arbeit selbständig ohne fremde Hilfe verfaßt und nur die
angegebene Literatur und Hilfsmittel verwendet zu haben.
Weiter erkläre ich, dass diesem Promotionsverfahren keine Promotionsversuche in diesem
Fach oder in einem anderen Fach vorausgegangen sind und dass die eingereichte Arbeit oder
wesentliche Teile derselben in keinem anderen Verfahren zur Erlangung eines akademischen
Grades vorgelegt worden sind.

Martin Becke
September 11, 2014

iii

iv

Abstract

Load sharing on the transport layer of the OSI reference model is an important topic in the
IETF standardization. This approach is also supported by the industry to optimize the use of
the resources in a network like the Internet. After many trials, two basic sets of mechanisms
and functionalities on the transport layer have been proposed by the IETF to achieve load
sharing. These basic sets extend the protocol mechanisms that were originally designed for
the use in singlepath dominated networks and represent only a first step to introduce a real
end-to-end multipath transfer on the Internet. These first basic sets must be investigated and
improved for the next steps.

The Transmission Control Protocol (TCP) and the Stream Control Transmission Protocol
(SCTP) provide the basis for the two IETF end-to-end multipath extensions. Both singlepath
transport protocols have a different historical background but similar goals. These can be
characterized by a reliable, connection-oriented and ordered data transport. However, initial
experiments with the IETF multipath extensions in real networks show unexpected and in
some cases clearly inadequate results. It is becoming rather apparent that the singlepath
transport protocol specifications with their singlepath goals have a significant impact on the
effectiveness of the load sharing mechanism and, furthermore, that the severity of the influence
depends on the topology. The new mechanisms for multipath transfer include, in particular,
an extended “path management” and “scheduling” task. The mechanisms addressing the
path management organize the new, alternative paths and the scheduling mechanisms sup-
port their effective use. For both protocol extensions of TCP and SCTP, an interaction can
be identified between the new load sharing mechanisms and the existing specifications for
singlepath transfer. This thesis systematically identifies the impact factors of the singlepath
specifications on the new load sharing mechanisms and demonstrates their effects. In addition
to the focus on the optimal use, the fair distribution of resources across all connections must
be taken into account in the IETF standardization process. This so-called “fairness” discus-
sion is mandatory for a transport protocol in the IETF context and has a direct impact on
the overall system performance. Furthermore, this thesis discusses the currently implemented
load sharing extensions and analyzes their weaknesses. Moreover, in this work new design
approaches are developed to decrease the impact.

Keywords:
Stream Control Transmission Protocol (SCTP), Multipath Transport, Multipath Transmis-
sion Control Protocol (MPTCP), Evaluation, Optimisation

v

vi

Acknowledgements

This thesis is the result of my work as research associate in the Computer Networking Technol-
ogy Group of the Institute for Experimental Mathematics at the University of Duisburg-Essen.

First and foremost, I would like to thank my primary advisor, Prof. Dr.-Ing Erwin P.
Rathgeb, for his support and supervision of this thesis and the invaluable comments related
to my research work. Furthermore, I also thank my secondary advisor Prof. Dr. Klaus Echtle
for his thesis review.

I would like to express my special thanks to my former colleague Dr. Thomas Dreibholz
for his great cooperation in the project, as well as Prof. Dr. Michael Tüxen from the Münster
University of Applied Sciences for his insperation and support, especially in the context of our
IETF standardization work. Furthermore, I would like to express my special thanks to my
colleague Hakim Adhari for his great cooperation with respect to discussions on fairness and
path management and debugging the testbed environments used for this work. I would like
also to thank my former colleague Jobin Pulinthanath for his help with building up the testbed
environment and negotiating the contract details with the ADSL Internet service provider.
For his help with the acquisition of the testbed hardware, I would also like to thank our com-
puter systems technician Nihad Cosic and my student assistant Sebastian Wallat. Clearly, I
would furthermore like to express my special thanks to my colleagues Irfan Simsek, Adnan
Aziz and Sebastian Werner for their input during the discussions about fairness and security.
Also, I would like to thank Dr. Irene Rüngeler and Dr. Robin Seggelmann for the discussions
and continuous support. In addition, I would like to thank the Deutsche Forschungsgemein-
schaft (DFG) and the Bundesministerium für Bildung und Forschung (BMBF) for supporting
parts of this project. Finally, I would like to thank my girlfriend Shima Shayanfar and my
father Paul Becke for the years of encouragement and support.

vii

viii

Contents

Abstract v

Acknowledgements vii

Contents ix

Glossary xiv

1 Introduction 1

1.1 Motivation . 2

1.2 Goals of this thesis . 3

1.3 Organization of this work . 4

2 Basics 5

2.1 Transport protocols in the context of the IETF 6

2.2 Introduction to TCP and SCTP . 8

2.2.1 Services of transport protocols in the Internet 8

2.2.2 Connection management . 11

2.2.3 Reliable and ordered transfer . 13

2.2.4 Congestion and flow control . 15

2.2.4.1 New Reno . 17

2.3 Special network components and relevant aspects 17

2.3.1 Issues with middleboxes . 17

2.3.2 Queueing discipline . 18

2.3.3 Socket concept . 18

3 Basic function set of load sharing for TCP and SCTP 21

3.1 Concurrent multipath transfer and load sharing 21

3.1.1 Goals . 21

3.1.2 Alternative approaches in the context of the IETF 22

3.2 Multipath transfer for TCP and SCTP . 23

3.2.1 Definition of multi-homing, multipath and flow 25

3.2.2 TCP-friendliness . 26

3.2.2.1 Shared bottleneck scenario 27

3.2.2.2 Resource Pooling principle 28

3.2.3 Impact on the transport protocols . 29

3.2.3.1 Impact on connection management 30

ix

3.2.3.2 Impact on reliable and ordered transfer 32

3.2.3.3 Impact on flow control . 33

3.2.3.4 Implementation dependent options 34

3.3 Conclusion . 35

4 Testbeds and tools 37

4.1 Simulation model . 38

4.1.1 OMNeT++ . 38

4.1.2 INET framework . 39

4.1.2.1 Enhancement of the INET TCP model 40

4.1.2.2 MPTCP . 41

4.1.2.3 Enhancement of the INET SCTP model 42

4.1.2.4 Enhancement of other models 43

4.1.3 SimProcTC . 43

4.1.3.1 Basic scenario setup . 43

4.1.3.2 Baseline experiment . 44

4.2 Real world testbed setup . 44

5 Revisiting path management 47

5.1 Path management . 49

5.1.1 Constraints . 50

5.1.1.1 General . 50

5.1.1.2 MPTCP . 53

5.1.1.3 CMT-SCTP . 54

5.1.1.4 Conclusion . 54

5.1.2 Network layer . 54

5.1.2.1 Routing and MPTCP . 55

5.1.2.2 Routing and CMT-SCTP . 59

5.1.2.3 Conclusion . 61

5.2 Path management scenarios . 61

5.2.1 Basic scenario 1: One multi-homed host 61

5.2.2 Basic scenario 2: Two multi-homed hosts 62

5.2.3 Specific scenarios . 63

5.2.3.1 Asymmetric load sharing scenarios 64

5.2.3.2 Poor man’s multi-homing . 65

5.2.4 Conclusion . 66

5.3 Behavior in a real Internet setup . 66

5.3.1 Global multipath testbed . 67

5.3.1.1 The endpoint and access link setup 67

5.3.1.2 Analysis of the Internet environment 68

5.3.2 Valuation of the Internet throughput 72

5.3.3 Analysis of the protocol behavior in the Internet 73

5.4 Conclusion . 75

x

6 Revisiting fairness 77
6.1 Multipath fairness goals . 78

6.1.1 Perspectives on multipath fairness goals 79
6.1.2 Revisiting the IETF multipath fairness goals 79

6.1.2.1 Impact of the IETF multipath fairness goals 79
6.1.3 Revisiting fair resource allocation . 81

6.1.3.1 Revisiting the Resource Pooling idea 83
6.1.3.2 Conclusion . 85

6.2 Variants of coupled congestion controls . 86
6.2.1 Resource Pooling Multipath version 2 (RP-MPv2) 86
6.2.2 Linked Increases Algorithm (LIA) . 88
6.2.3 Opportunistic Linked Increases Algorithm (OLIA) 89
6.2.4 Resume of coupled congestion controls 89

6.3 Evaluation of coupled congestion controls . 90
6.3.1 Scenario 1: Singlepath . 90

6.3.1.1 Simple singlepath model and theoretical discussion 90
6.3.1.2 Evaluation of the singlepath scenario 91

6.3.2 Scenario 2: Shared bottleneck . 94
6.3.2.1 Shared bottleneck model and theoretical discussion 94
6.3.2.2 Evaluation of the shared bottleneck scenario 96
6.3.2.3 Comparable conditions for a fair sharing 103

6.3.3 Scenario 3: Half bottleneck with single- and multipath flow 106
6.3.3.1 Half bottleneck model and theoretical discussion 106
6.3.3.2 Evaluation of half bottleneck with singlepath flow 109
6.3.3.3 Evaluation of half bottleneck with multipath flows 112

6.4 Conclusion . 114

7 Revisiting scheduling 115
7.1 The multipath scheduler . 116

7.1.1 Goals of scheduling . 116
7.1.2 Scheduler setup . 117
7.1.3 Challenges for a multipath scheduler 119

7.1.3.1 Information gaps . 119
7.1.3.2 Interaction with protocol mechanisms 120
7.1.3.3 Sender side buffer blocking 122
7.1.3.4 Receiver side buffer blocking 123

7.2 Architectural aspects . 124
7.2.1 General scheduling decisions . 124
7.2.2 Scheduling subflow to path . 125

7.2.2.1 MPTCP . 126
7.2.2.2 CMT-SCTP . 128

7.2.3 Location of the scheduling process . 129
7.3 Multipath scheduler process chain . 130

7.3.1 Adaptation to network conditions . 130
7.3.2 Mechanisms to avoid buffer blocking 131
7.3.3 Analysis of deployed multipath schedulers 133

7.3.3.1 MPTCP . 134

xi

7.3.3.2 CMT-SCTP . 136
7.3.4 Conclusion . 139

7.4 Optimized scheduling variant for CMT-SCTP 140
7.5 Optimized scheduling variant for MPTCP . 143

7.5.1 Idea behind the confluent sequence numbers approach 143
7.5.2 Confluent sequence numbers (ConSN) 145

7.5.2.1 Example for two subflows . 146
7.5.2.2 Simulation . 153

7.6 Other side effects with RED queues . 156
7.7 Conclusion . 159

8 Consequences for the future 161
8.1 Results relevant for the standardization process 161

8.1.1 Short term . 161
8.1.1.1 Path management . 162
8.1.1.2 Fairness . 162
8.1.1.3 Scheduling . 163

8.1.2 Mid term . 164
8.2 Long term (Future Internet) . 164

9 Conclusion and outlook 167
9.1 Achieved results . 167
9.2 Future work . 169

A Appendix 171
A.1 Evaluation of the singlepath scenario . 171
A.2 Evaluation of the shared bottleneck scenario 173

A.2.1 Capacity share . 173
A.2.2 Delay . 175
A.2.3 Error rate . 176

A.3 Comparable conditions for a fair sharing . 178
A.4 Evaluation of half bottleneck with multipath flows 179

List of Figures 183

List of Tables 187

Bibliography 189

Curriculum Vitae 207

xii

Glossary

ACK Acknowledgment
ADSL Asymmetric Digital Subscriber Line
AIMD Additive Increase Multiplicative Decrease
ARWND Advertised Receiver Window
BDP Bandwidth Delay Product
CC Congestion Control
CCC Coupled Congestion Control
CMT Concurrent Multipath Transfer
CMT− SCTP Concurrent Multipath Transfer extension for SCTP
ConSN Confluent Sequence Numbers
CumAck Cumulative Acknowledgement
CWND Congestion Control Window
DCCP Datagram Congestion Control Protocol
DFG Deutsche Forschungsgemeinschaft
DFN Deutsches Forschungsnetz
DiffServ Differentiated Services
DSL Digital Subscriber Line
DSS Data Sequence Signal
DupACK Duplicate Acknowledgment
ERiCA Encapsulated Responsibility-Centric Architecture Model
FastRTX Fast Retransmission
FIFO First In First Out
FRA Fair Resource Allocation
GUI Graphical User Interface
ID Internet Draft
IDE Integrated Development Environment
IEEE Institute of Electrical and Electronics Engineers
IETF Internet Engineering Task Force
INP Internet Protocol
inp faddr Internet Protocol Foreign Address
inp fport Internet Protocol Foreign Port
inp laddr Internet Protocol Local Address
inp lport Internet Protocol Local Port
IPv4 Internet Protocol Version 4
IPv6 Internet Protocol Version 6
ISDN Integrated Services Digital Network
LIA Linked Increases Algorithm

xiii

MPTCP Multipath TCP
MSS Maximum Segment Size
MTU Maximum Transmission Unit
N/PAT Network/ Port Address Translation
NCA Normalize, Cluster and Aggregate
NED Network Description
NetPerfMeter Network Performance Meter
NR− SACK Non-Renegable Selective Acknowledgement
OLIA Opportunistic Linked Increases Algorithm
OMNeT + + Objective Modular Network Testbed in C++
Opp−Rtx Opportunistic Retransmission
OS Operating System
PCB Protocol Control Block
PDU Protocol Data Unit
PF Protocol Family
PPP Point-to-Point Protocol
PPPoE Point-to-Point Protocol over Ethernet
QoS Quality of Service
RED Random Early Drop
RFC Request for Comments
RP Resource Pooling
RP−MPv2 Resource Pooling Multipath Version 2
RSerPool Reliable Server Pooling
RTO Retransmission Timeout
RTT Round Trip Time
RTTVAR Round Trip Time Variance
RTX Retransmission
SACK Selective Acknowledgment
SCTP Stream Control Transmission Protocol
SIGTRAN Signaling Transport Working Group (IETF)
SimProcTC Simulation Processing Tool-Chain (software package)
so Socket
so pcb Socket Protocol Control Block
so type Socket Type
SQN Sequence Number
sRTT Smoothed Round Trip Time
SSN Stream Sequence Number
ssthresh Slow-Start Threshold
TCB Transmission Control Block
TCP Transmission Control Protocol
TLV Type Length Value
TSN Transmission Sequence Number
TSVWG Transport Services Working Group (IETF)
UDP User Datagram Protocol

xiv

Chapter 1

Introduction

The Internet is more than 30 years old. During this time period, the services in the Internet
have changed a lot. Starting with simple file transfer, the use cases evolved to complex
services, like for example video instant messaging (e.g. Skype or Google Hangout), cloud
services (e.g. Dropbox or Amazon Software-as-a-Service) or social networks (e.g. Facebook or
Twitter).

It might be surprising that although the requirements changed, the core architecture
and the mechanisms to transport data through the Internet stayed quite similar since the
beginning. In the end, all services deployed in the Internet are based on two Internet protocols
(IPv4 [Pos81a] and IPv6 [DH98b]) and a handful of transport protocols. Even if the use cases,
the connected hardware and the provided access media have changed and also their number
has increased over time, the mechanisms deployed in the core Internet does not always reflect
this. This can be observed for different use cases like for example when a mobile telephone
has to decide whether it should connect via 3G or via WiFi – although both is possible.
The original transport protocols just focus on one single “path” between two endpoints and,
therefore, only on one single access medium or destination identifier. Thus, even if the mobile
phone is connected via 3G and WiFi, the transport protocol is not able to use both paths.
Therefore, the currently deployed mechanisms are not optimized to use all provided resources
of today’s Internet.

The main reason for this limitation is the risk that the basic service of the Internet may
be compromised by this new kind of network usage. Even if a simple coupling of resources
is addressed, it changes the current definition from a singlepath end-to-end connection to a
multipath end-to-end connection. This change has a considerable impact on the deployed
mechanisms. Thus, besides the potential benefits also – perhaps unknown – drawbacks exist,
which have the potential to break the Internet and all services on top of it in the worst case.
It is fair to say that even small changes can cause big issues.

Particularly critical is the “indirect” impact of changes as can be observed in the ongoing
bufferbloat discussion [Get11b]. More buffer in routers enables the support of high speed
links in a packet switched network. At first sight, this promises many advantages. However,
more buffer can lead to increased delay, increased delay increases the update cycle time of the
mechanism to calculate the send rate and this, furthermore, causes an inaccurate behavior
of the send rate calculation. The mechanism to control the send rate does not consider
the delay as queueing delay and that gives the basis for wrong assumptions and destructive
behavior. The root cause for this inaccuracy is the fact that the original mechanism for send

1

2 CHAPTER 1. INTRODUCTION

rate calculation was not designed for these conditions with huge buffers. Thus, although at
first sight the increase of buffer to improve the performance in the network seems to be a
good idea, it can cause an erratic behavior at the endpoint that has again a negative impact
on the network performance. Therefore, changes to basic Internet protocols are handled very
conservatively, because the overall impact is not immediately clear.

Anyway, in this thesis, the use of more than one path at a time is discussed as a new
feature with a real chance of wide deployment. Of course, the idea to deploy load sharing in
the Internet is not new and several approaches exist as workarounds on top of the original
architecture (e.g. shim layers) or as approaches for partial network segments, but it is the
first time that real end-to-end solutions as part of the core technology have a real chance to
become standardized for their deployment in the Internet.

Two load sharing extensions for two different transport protocols are in the standard-
ization discussion of the Internet Engineering Task Force (IETF). Both extend the original
architecture of the core transport protocol and support the usage of every connected interface
for the same end-to-end transport connection. This thesis discusses the new tasks of these
extensions of the Transmission Control Protocol (TCP) [Pos81b] and the Stream Control
Transmission Protocol (SCTP) [Ste07]. Until now, it is still open whether the current goals
of load sharing, primarily the improvement of throughput, can even be achieved. During the
analysis, this thesis identifies the need to reconsider the current view on specific load sharing
requirements, as for example the fair sharing of link capacities on flow level and proposes new
approaches to optimize the current design.

Although the standardization process of the load sharing extensions has made some sig-
nificant progress during the past years, there was no analysis done whether both extensions
even have the potential to achieve the goals of the load sharing features under comparable
conditions as they are discussed and proposed in the IETF standardization process.

1.1 Motivation

There is a strong need to revisit the approaches currently discussed in the IETF standardiza-
tion. Although first basic sets to support load sharing on top of existing singlepath protocols
have been provided, it is not known which usability these approaches have for TCP and
SCTP. Furthermore, it is still open whether the current efforts even provide the basis to
achieve the minimum goal of the standardization process [ABD+13, FRHB13] to achieve an
improved performance. Until now, the load sharing extensions for the transport protocols
are designed as very straightforward extensions of singlepath end-to-end protocols and it is
not clear whether this focus on the singlepath protocols has drawbacks for the multipath ser-
vice. Thus, the load sharing extensions come with legacy constraints and requirements whose
influence is still unknown. No real optimization or adaptation has been done for existing
singlepath mechanisms to provide the load sharing feature in an optimal way.

First real world experiments do not show satisfactory results [BAR+13] and provide mo-
tivation for a deeper analysis of this behavior. Even worse, some experiments show that not
even a performance comparable to a singlepath flow on the “strongest” path can be achieved
by both load sharing extensions, even if this is a minimal goal of the IETF standardization
process [DBRT10]. Furthermore, the implementations do not always work in a predictable
and expected way, particularly with regard to the competition with other end-to-end flows.
All these issues will prevent a wide deployment of the load sharing extensions of TCP and

1.2. GOALS OF THIS THESIS 3

SCTP in the Internet and, therefore, require a systematic analysis before the next step of a
wide rollout can proceed.

It becomes clear that the current designs of the load sharing extensions of TCP and SCTP
have deficits. Potential reasons for these deficits can be identified in the design of the new
tasks to support the load sharing feature on an end-to-end level. But it is not clear whether
the poor performance can be addressed by the organization of the additional link resources,
which will be denoted in the following as path management, or the new scheduler task, which
can cause possible performance issues, especially if the mechanism adapts ineffectively to the
network conditions.

However, besides these two new tasks there is another task with potential high impact
on the performance. This task is the fair sharing of the link capacity and is an important
requirement in the context of the IETF. A new approach is discussed and denoted as Resource
Pooling idea [WHB08] to satisfy the requirements of the IETF. Multipath protocols imple-
menting this idea try to perform no more aggressively than a singlepath transport protocol
on the same link. But the impact of this implementation on a multipath transport protocol
has not been investigated systematically. Furthermore, it is not even clear whether the IETF
fairness requirement is achieved in every case.

First tests led to the assumptions that mechanisms based on this approach are not suf-
ficiently well designed to provide the expected results. Thus, either important requirements
are missed, the new functionalities are not well integrated, or limited by the basic singlepath
protocol architecture. Therefore, the current design of the load sharing extensions must be
analyzed. The results of this work will help to prepare the next steps in the standardization
and development process. There is a strong need to restart the design process based on the
results observed to improve the benefit of the load sharing feature or to even achieve the
minimum IETF load sharing goals.

1.2 Goals of this thesis

The existing approaches of load sharing for TCP and SCTP show good results in simula-
tion and in local domain testbeds [DBRT10, RPB+10], but first experiments in the Internet
demonstrate serious weaknesses in the performance [BAR+13]. Until now, it is not clear
whether an end-to-end load sharing solution is even able to work under the conditions of the
Internet. There are known issues caused for example by middleboxes [ADB+11], but they
do not explain that the performance of a connection with deployed load sharing does not
even achieve the performance of a simple singlepath connection deployed via the strongest
alternative path alone [DBRT10].

Therefore, the first main goal of this thesis is to analyze the current behavior and to
identify the reasons for the weak performance under the challenging conditions [FODA14] of
the Internet. Different test models1 and platforms are necessary for the analysis of the two
load sharing extensions to provide a complete picture. Of course, the Internet is the target
platform, but it does not provide the optimal conditions to run controllable and repeatable
performance experiments. Repeatable and controllable experiments should be done in real
controllable testbeds or in a simulation environment. However, the simulation environment
and the controllable local testbed are only as good as the parameterization that represents the
Internet. Therefore, an additional goal is to understand whether the current test models for

1like the disjoint and the cross path setup test models as discussed in Subsection 5.1.2.

4 CHAPTER 1. INTRODUCTION

the load sharing extensions of TCP and SCTP fit to the requirements which are given by the
Internet with its asymmetric, heterogeneous network characteristics. The research community
has not considered the difference between path and network adaptation until now, it is a goal
of this thesis to discuss this in more detail.

The second goal addresses the fair behavior in the Internet. Here, new congestion con-
trol mechanisms have been introduced based on the Resource Pooling idea [WHB08]. The
implementation of the Resource Pooling idea comes with new IETF multipath fairness goals.
These IETF multipath fairness goals describe minimum goals of the Resource Pooling idea,
but allow different interpretations. Until now it is not clear what impact these IETF mul-
tipath fairness goals have on the usability of the implemented mechanisms. This thesis will
demonstrate that these IETF multipath fairness goals detach from the well-known single link
fairness view to a network fairness view and will argue that the fairness view is shifted to a
new calculation basis without always providing benefits. Furthermore, it has not been an-
alyzed whether the congestion control mechanisms implementing the Resource Pooling idea
are even able to achieve the goal of a fair allocation of the resources in an asymmetric and
heterogeneous topology like the Internet.

The third major goal of this thesis is to analyze the load sharing solutions and to propose
optimizations to achieve at least the minimum performance goals. Improvements should
be designed and implemented under the constraints of the IETF and without changing the
characteristics of the core singlepath protocols.

1.3 Organization of this work

Chapter 2 provides a short introduction to the architecture of the Internet and to the transport
service provided in this architecture. Chapter 3 introduces the load sharing terminology and
the corresponding goals and gives an overview of existing load sharing approaches. Further-
more, it explains the motivation according to Voice and Kelly [KV05] to apply load sharing
on the transport layer and discusses the resulting requirements for transport protocols in gen-
eral. The major focus in this chapter is on the design of the load sharing extensions and the
impact of resource coupling on the transport protocol mechanisms. Here, in particular the
buffer management, congestion control, receive and send queue behavior of SCTP and TCP
are in the focus. The simulation models developed for these approaches are described in Chap-
ter 4, as well as the real world testbed and further toolchain components. Chapter 5 analyzes
the two different load sharing alternatives and demonstrates the impact of different design
decisions made for the singlepath protocols. Furthermore, this chapter is concerned with the
deployment of the load sharing protocols in the Internet and upcoming routing questions.
Chapter 6 discusses the impact of the currently deployed congestion control mechanisms and
the fairness aspect. In the following Chapter 7, the achievement of the load sharing goals is
discussed with focus on the ability of the multipath scheduler to adapt to different network
conditions. Chapter 8 relates the results of the technical discussion to the IETF discussion
and goes beyond the OSI reference model to give input for a Future Internet discussion, too.
The conclusion and an outlook on future work are given in Chapter 9.

Chapter 2

Basics

The Internet, as it is known today, is based on a number of basic ideas about networking.
The key concept of exchanging data in a network is described by [Koz05] as:

A network is a set of hardware devices connected together, either physically or logically.
This allows them to exchange information.

However, a network like the Internet has an uncounted number of hardware components,
which are connected together to provide a multitude of services. These services are used by
billions of users day by day.

A common approach in information technology is to separate the responsibilities in a
layered structure to understand complex systems. Different models have been designed to
achieve this goal, the most well-known model to describe the functionalities is the ISO/OSI
reference model, as also discussed in [Tan96] and illustrated in Figure 2.1.

Figure 2.1: OSI reference model

This model structures networks like the Internet by using a layered model of components
called protocols. Each layer is assigned to specific tasks. Of course, this model covers much
more than the Internet protocols, but only these protocols are in the focus of this thesis. The
layers from bottom up are defined as follows:

5

6 CHAPTER 2. BASICS

• The physical layer deals with providing the mechanical and physical specifications to
ensure the transmission across a physical medium. It is also concerned with transforming
digital information to signals which can be transferred via the chosen medium, like for
example a copper cable.

• The major task of the (data) link layer is to make the physical layer appear error-free
to the upper layer (network layer). The link layer protocol data unit (PDU) is denoted
as frame. In this context the Institute of Electrical and Electronics Engineers (IEEE)
provides the most important sets of standards.

• In the Internet of today, the network layer is mainly responsible for the addressing and
forwarding of data via different networks. This layer is partly in the focus of this thesis,
especially the task of forwarding information. The protocol data unit is denoted as
packet.

• The transport layer provides different services in the Internet, which extend the simple
forwarding functionality of the network layer by additional end-to-end services, like
a connection-oriented delivery of in-order user data. The load sharing transport via
multiple end-to-end “paths” through a network is in this thesis provided by this layer,
although the load sharing service can be provided by alternative layers as discussed in
more detail in Subsection 3.1.2. The transport layer PDU is called segment.

• The session layer supports the establishment of a session between end-user applications.

• The presentation layer is also sometimes called the syntax layer and describes the func-
tionality related to formatting of data. Also encryption and compression is assigned to
this layer.

• The application layer represents protocols which are concerned with supporting a spe-
cific service, e.g. the File Transfer Protocol [PR85].

For a complete discussion of load sharing extensions in the Internet nearly the complete OSI
reference model is necessary, even if this thesis focuses clearly on the network and transport
layers. Anyway, if researchers or protocol developers start to implement protocols for the
Internet, they often denote it as protocol stack [BFH03].

Before a discussion of the load sharing approaches on the transport layer is done in Chap-
ter 3, this chapter gives some basic background information about the transport protocols on
the transport layer.

2.1 Transport protocols in the context of the IETF

Different central organization units help to specify common standards for the Internet. The
Internet Engineering Task Force (IETF)1 is one of the most important organization units of
the Internet and provides specifications for different protocols. This applies particularly also
to the protocols on the transport layer. Protocols defined by the IETF have a huge impact
on the Internet because many vendors provide solutions which support the standards defined
by the IETF or at least derive their functionality very closely from the IETF specification.

1IETF http://www.ietf.org/

http://www.ietf.org/

2.1. TRANSPORT PROTOCOLS IN THE CONTEXT OF THE IETF 7

As an example, the IETF adopts mainly two variants of protocols on the network layer.
These variants are the Internet protocol in version 4 (IPv4) [Pos80a] and version 6 (IPv6)
[DH98b]. These protocols describe the way of addressing and forwarding packets in the In-
ternet and are without any alternative. Thus, if someone wants to be part of the Internet he
has to use IP.

The most well-known and widely deployed transport protocol standardized by the IETF
is denoted very straightforward as Transport Control Protocol (TCP) [Pos81b]. Together
with the User Datagram Protocol (UDP) [Pos80b], TCP is the most used transport protocol
and was developed in the early years of the Internet. However, there also exist newer alter-
native approaches of transport protocols in the IETF, like the Stream Control Transmission
Protocol (SCTP) [Ste07] or the Datagram Congestion Control Protocol (DCCP) [KHF06].
Even if they are not as widely deployed as TCP or UDP, they give a good idea of what a
transport protocol in the Internet of today can provide. The design process of these protocols
never really stopped after the first IETF document was adopted. An adopted standard is
also denoted as request for comments (RFC) and can be set as obsoleted or can be extended
by other ideas. Therefore, the development of TCP, UDP, SCTP and DCCP was always
a continuous process in the IETF. Many examples for this can be given, like the replace-
ment of the RFC2960 [SXM+00], with the RFC4960 [Ste07] to describe the core SCTP. But
also new extensions can be mentioned, e.g. the introduction of congestion controls to pro-
tect the network and to achieve a fair behavior with RFC2914 [Flo00], RFC2581 [APS99] or
RFC5681 [APB09].

Although the standardization process is not in the focus of this thesis, an important
specialty of the IETF should be highlighted in this context. Before an Internet standard can
be accepted, a reference implementation must exist. RFC2026 [Bra96] is quite clear in this
point:

A candidate specification must be implemented and tested for correct operation and
interoperability by multiple independent parties and utilized in increasingly demanding
environments, before it can be adopted as an Internet Standard.

The main work of this thesis addresses two different IETF protocol extensions which are
currently in the IETF discussion. Therefore, there exist two reference implementations, too.
The basic idea of both approaches is to deploy a load sharing functionality on top of existing
transport protocols. The currently discussed approaches are the extensions for TCP, called
Multipath TCP (MPTCP) and for SCTP, called Concurrent Multipath Transfer extension
for SCTP (CMT-SCTP). The most important reference implementation for MPTCP can be
installed as a patch for the current Linux kernel2. For CMT-SCTP, it is available in the
current FreeBSD kernel3 without any further efforts. It should be mentioned that at the
beginning of this thesis, no common platform existed to compare both approaches in the
same environment and as far as the author knows there still exists no other platform besides
the solution developed as part of this thesis project4.

2MPTCP patch https://github.com/multipath-tcp/mptcp
3FreeBSD http://www.freebsd.org/
4During the time alternative approaches come up, like the MPTCP implementation for FreeBSD
http://caia.swin.edu.au/urp/newtcp/mptcp/tools.html, but they are in an initial state (or not open).

https://github.com/multipath-tcp/mptcp
http://www.freebsd.org/where.html
http://caia.swin.edu.au/urp/newtcp/mptcp/tools.html

8 CHAPTER 2. BASICS

2.2 Introduction to TCP and SCTP

As mentioned before, this thesis focuses on the load sharing extensions of TCP [Pos81b] and
SCTP [Ste07]. Because both extensions are based on the functionalities of the corresponding
singlepath protocols, some details of a singlepath transport protocol service have to be dis-
cussed in the following. For a discussion of TCP and SCTP it must be mentioned first that
both protocols were developed at different times and for different use cases.

As [Koz05] describes, the first version of TCP was written in 1973 as a core protocol of
the so called ARPAnet, with the main goal to provide basic mechanisms for connection estab-
lishment, management and reliable data transport between two software processes. However,
in the following years, the Internet replaced the original ARPAnet and new ideas came up,
e.g., to bring the telephony service to the Internet. In 1988, the Signaling Transport Working
Group (SIGTRAN5) was formed to discuss alternatives to provide IP-based networks for tele-
phony. One major quality requirement was the support of a reliable data transfer with the
possibility to support network or path redundancy. Thus, a major SIGTRAN use case was to
provide the support of more than one network for system stability. This requirement led to
the support of multi-homing at the endpoints. An outcome of the SIGTRAN working group
was SCTP. Even if TCP and SCTP share a lot of services (as different surveys show, like
e.g. [Dre12a, Seg12]), they are different in the use case they were designed for. The following
subsections discuss basic mechanisms of both protocols.

2.2.1 Services of transport protocols in the Internet

The major task of a transport protocol is to provide the transfer of user data from one
endpoint of the network to another by using the service of the network layer. This is also
called end-to-end connection. Thus, while in the Internet the IP address of the Internet
protocol (IP) identifies the endpoint, the service itself is identified with a port number on the
transport layer.

So, every protocol instance has at least a combination of source/destination address and
the related source/destination port. This information four tuple in combination with the
protocol is used describe a connection as a so-called unique 5-tuple. This 5-tuple of infor-
mation is also used by the de-facto standard interface for the network in most operating
systems. This interface API is known as Berkeley API [Koz05] and is discussed in more detail
in Subsection 2.3.3.

Sending data with TCP or SCTP requires signaling of control information. In networks
like the Internet this information is added to each user data packet. This process is also called
encapsulation and is located on the sender side. The analog decapsulation process is located
on the receiver side. The control information is encoded for TCP and SCTP in a different
way and includes the signaling for the services provided by both transport protocols. TCP
extends the user data by the header information illustrated in Figure 2.2. This information
is 32 bit aligned and defined by [Pos81b]:

• The source port is part of the 5-tuple to address the endpoint service on the sender side.

• The destination port is part of the information needed to address the endpoint service
at the receiver side.

5SIGTRAN charter http://datatracker.ietf.org/wg/sigtran/charter/

http://datatracker.ietf.org/wg/sigtran/charter/

2.2. INTRODUCTION TO TCP AND SCTP 9

0 32

Figure 2.2: TCP header

• The sequence number is assigned in-order to the user data to support a re-ordering
process and reliable transfer. This re-ordering process will become also very important
for the load sharing extension.

• The acknowledgment number is used to support the reliable transfer and is reported by
the receiver.

• The data offset field is used to expand the TCP header. The headers can have different
sizes; in minimum 20 bytes and in maximum 60 bytes, if all option space is used.

• The reserved block is not yet assigned to an official function. In some implementations
a misuse of these elements can be observed for individual features.

• The flags are used to signal different functions. If the flags are important for the thesis
they will be discussed in detail in the relevant context.

• The window is part of the flow control. The flow control is a mechanism used to protect
the receiver and will be discussed in more detail in Subsection 3.2.3.3.

• The checksum is used for error detection.

• The urgent pointer can be used to prioritize specific data.

• The variable option field is used to extend TCP. The possibilities to signal new services
are limited (as will be discussed in Subsection 3.2.3). This will also become very im-
portant for the TCP load sharing extension that needs signaling of control information,
too.

The encapsulation process for SCTP is technically the same. The only difference is
that SCTP encapsulates messages instead of a byte stream. In comparison to the rather
fixed structure of TCP, SCTP allows more flexibility due to an extendable Type-Length-
Value (TLV) design and the use of a fixed common SCTP header structure. The SCTP
common header [Ste07], also illustrated in Figure 2.3, includes only minimum information as
described in the following:

10 CHAPTER 2. BASICS

0 32

Figure 2.3: SCTP Common Header

• As for TCP, the source port is used to address the connection on the sender side and
is used to identify the SCTP connection, which is denoted as association in SCTP
terminology.

• Also the destination port is used to address the receiver side as known from TCP.

• The receiver can use the verification tag to validate the sender.

• The checksum field has the same functionality for SCTP as for TCP, even if another
algorithm is used to check the data integrity.

It is obvious that this common header is not enough to provide a service comparable to TCP.
Additional units of information are needed to support this, which are denoted in SCTP as
“chunks” [Ste07]. SCTP distinguishes two kinds of chunks.

• DATA chunks are used to transport user messages. DATA chunk header information
is used to extend the user data to support a reliable, in-order transfer as discussed in
more detail in Subsection 2.2.3.

• Control chunks are used to signal a specific functionality. Besides using the control
chunks for connection management (see Subsection 2.2.2), they are also used to provide
a heartbeat mechanism. The heartbeat mechanism monitors the reachability of an
endpoint address by sending a heartbeat request. The receiver has to answer this
request with a heartbeat acknowledgment.

The benefit of the architectural concept of SCTP is that new features can easily be integrated
without changing the core of SCTP. A good example for this is the RFC5061 [SXT+07] that
describes a solution to deploy a dynamic address reconfiguration for SCTP [Ste07], which
is not part of default SCTP. SCTP is able to react to dynamic address changes with this
extension by adding and removing IP addresses. To add such a functionality, new protocol
mechanisms have to be defined and new types of Control chunks have to be created. However,
this thesis just focuses on the core SCTP, as specified in RFC4960, and the extensions to
provide a load sharing service, which are discussed in the following.

One segment – including the header structure – has to fit into an IP packet which can
be forwarded through the network. The maximum size of an IP packet is specified to be 64
KiB, but this is not used as Maximum Transmission Unit (MTU) in the network topology of
today’s Internet. The default packet size is currently based on Ethernet which provides 1500
byte sized frames, or if using PPPoE (Point-to-Point Protocol over Ethernet [MLE+99]) over
a Digital Subscriber Line (DSL) access link, it is 1492 byte. However, there exist multiple
variants and so in the end the Maximum Segment Size (MSS) for TCP, i.e. the maximum

2.2. INTRODUCTION TO TCP AND SCTP 11

length of the user data field, is based on the difference of the MTU and the header overhead
of IP. Also, SCTP uses the MTU to calculate the maximum message size for the transfer of
the user data. But SCTP defines user data in a different way compared to TCP. TCP works
on user data as an unstructured byte stream. Thus, the application itself is responsible to
identify the messages in the segments of the byte stream. In contrast, SCTP encapsulates
user messages in a DATA chunk and can bundle several small chunks in an IP packet to fill
the MTU. If the MTU size – reduced by the header size – does not provide enough space to
encapsulate the complete message, a fragmentation is performed by SCTP.

2.2.2 Connection management

TCP and SCTP are both connection-oriented protocols. Thus, data can be allocated to a
specific connection. The receiver and the sender have to provide resources to support this kind
of stateful connection. The connection life cycle for both protocols starts with a handshake
and ends with an abort or controlled tear-down. The signaling used by both protocols differs
and also the timing of the resource allocation. As RFC4960 [Ste07] points out, the SCTP
connection is called “association” and is a broader concept than the TCP connection. A TCP
connection is defined by the unique 5-tuple, whereas an SCTP association is able to span a
data transfer over all known destination addresses on the same port.

Because this is also important for the load sharing extension and the corresponding path
management (see Chapter 5), the handshake and tear-down process will be discussed in the
following.

Sender Receiver

SYN

SYN-ACK

ACK

Figure 2.4: TCP handshake

Sender Receiver

FIN

FIN

ACK

ACK

Figure 2.5: TCP tear-down

TCP uses a so-called three way handshake to establish a connection (see Figure 2.4).
A TCP connection is defined as a combination of source and destination address and the
corresponding ports. Flags of the TCP header are used to signal the handshake. If the port
on the server side is not closed, i.e. the server is waiting to accept new connections, a SYN
flag set in the first message is interpreted as a request to establish a TCP connection. If
the receiver accepts, it allocates resources for the connection and sends an acknowledgment
with the ACK flag set combined with a SYN to establish a bidirectional connection back
to the sender. In this state, the connection is also described as half-open. After the sender
accepts the incoming SYN-ACK, it answers with an additional acknowledgment and once

12 CHAPTER 2. BASICS

this acknowledgment with a set ACK flag arrives at the receiver, the connection is fully
established. A segment with a set FIN flag signals the termination of a TCP connection, as
Figure 2.5 illustrates. The opposite side should acknowledge this FIN request. The receiver
should start the same message exchange, too.

There exists no unique connection identifier for TCP to identify a specific connection.
Thus, for every incoming data segment a table lookup has to be performed over all TCP
connections described by the corresponding 4-tuples. Only if there is a match during this
lookup for the source/destination address and ports, the data can be assigned correctly to
a connection on the endpoint. This will become important, if later a connection with more
than one IP address has to be identified.

However, the three way handshake for TCP comes with some issues, so it is possible
for an attacker to mislead the receiver to allocate unneeded resources by flooding it with
SYN messages [Edd07]. Furthermore, the three way handshake provides an easy target for
man in the middle attacks [Ste07]. The standardization process of SCTP addressed these

Sender Receiver

INIT

COOKIE-ECHO

COOKIE-ACK

INIT-ACK

Figure 2.6: SCTP handshake

Sender Receiver

SHUTDOWN

SHUTDOWN COMPLTE

SHUTDOWN ACK

Figure 2.7: SCTP tear-down

known issues by an extended handshake, also called four-way handshake. As illustrated in
Figure 2.6, SCTP uses an INIT control chunk to request a connection establishment at the
receiver. This control chunk is encapsulated in a common SCTP header. Unlike TCP, the
receiver does not allocate any resources at this time, it just acknowledges this INIT with
an INIT-ACK control chunk. This INIT-ACK includes an encrypted state cookie generated
by the receiver, to identify the connection request in case of an incoming COOKIE-ECHO
control chunk including a copy of the state cookie. A similar mechanism is also known from
a TCP extension, which is called SYN-COOKIE [Edd07]. This procedure forces the sender
also to allocate resources to establish a connection, which avoids an attack similar to SYN
flooding and prevents man-in-the-middle attacks.

During the handshake, further information is exchanged, like the additional IP addresses
to support a feature that is called multi-homing. Multi-homing describes the fact that an
endpoint may be reachable via more than one address. Thus, an SCTP association is not
limited to a 4-tuple to identify a connection, but is rather defined by a list of IP addresses
and one port number.

However, even if there exists more than one alternative path to exchange user data between
two endpoints, SCTP uses only one address combination for data transfer at a time. This

2.2. INTRODUCTION TO TCP AND SCTP 13

combination is denoted in RFC4960 [Ste07] as primary path. The RFC4960 defines the
primary path as follows:

The primary path is the destination and source address that will be put into a packet
outbound to the peer endpoint by default.

To be clear, the definition of the primary path defines the source and destination address
which is used in the IP header to forward the user data through the network. All other
alternative paths are observed by the heartbeat mechanism to be able to use them as fallback
in case of an error on the primary path. The basic idea of multi-homing in SCTP is to support
better network level fault tolerance, not to provide load sharing to increase throughput. This
addresses the SIGTRAN use case.

Another difference to TCP is that SCTP supports the transport of more than one logical
data flow. For this reason, SCTP introduces the stream concept, which is defined in RFC4960
like follows:

The term “stream” is used in SCTP to refer to a sequence of user messages that are to
be delivered to the upper-layer protocol in-order with respect to other messages within
the same stream.

This has impact on the sequence number definition. A stream sequence number (SSN) is
introduced by SCTP to organize the ordered transmission on stream level. But to support
the reliable sending of the complete message flow and to detect duplicate acknowledgments,
another sequence number space, the transmission sequence number (TSN), is introduced.
The TSN sequence number space is also denoted as out-band sequence number and describes
the overall sequence number space of the complete flow used by all mechanisms to support a
reliable transfer.

The tear-down of the complete association is organized by three messages as illustrated
in Figure 2.7.

2.2.3 Reliable and ordered transfer

The basis of the Internet is the Internet protocol (IP in Version 4 and 6). One major charac-
teristic of both IP variants is that they provide only unreliable transfer. Thus, if packets are
sent to the network, it is not sure if they will reach the receiver at all and in the right order.
Even worse, neither the sender nor the receiver will be notified by the network when a loss
occurs.

A TCP connection and an SCTP association provide a reliable, in-order transfer of user
data. TCP and SCTP use similar mechanisms to support this service but work on different
logical units. TCP exchanges a byte stream between sender and receiver, where an unique se-
quence number identifies each byte of the stream. In currently used TCP implementations, the
TCP timestamp option is used to ensure uniqueness and is added to every segment [JBB92].
The sequence number set in the TCP header is assigned to the first byte of the encapsulated
data. The initial sequence number is negotiated during the handshake within the SYN flagged
segment.

The acknowledgment (ACK) confirms the maximum sequence number that arrived in-
order at the receiver by signaling the next sequence number the receiver expects. Because

14 CHAPTER 2. BASICS

the ACKs are used cumulatively here, the signaled sequence number is also often called
cumulative sequence number. In case of out-of-order segments, the byte stream can be re-
ordered by using the sequence numbers. SCTP also uses cumulative acknowledgments, but
with them only the overall flow TSN space is addressed (based on user messages instead of
bytes). Re-ordering is performed on stream level is only possible by using the SSN.

A mechanism to ensure a reliable data transfer is the use of timer-based retransmission.
Simplified, a timer-based retransmission waits for a pre-defined or calculated time, during
which an acknowledgment for a specific byte in case of TCP, or DATA chunk in case of SCTP
is expected. If during this time no acknowledgment occurs, a retransmission of the missing
data will be triggered. This kind of retransmission represents a kind of last resort, which can
be implemented independently on the sender side and can be repeated as often as necessary
to fill the gaps.

The calculation of the timer-based retransmission for SCTP and TCP is based on the
Round Trip Time (RTT) of a packet exchanged between sender and receiver. Thus, the
retransmission timeout (RTO) is computed by using the RTT. Because the RTT can be very
unstable, a smoothed variant is used, the so-called smoothed Round Trip Time (sRTT). A
detailed calculation is given in the currently used version of RFC6298 [PACS11]. On startup,
an initial measurement R0 of the RTT0 occurs. The calculation of R0 requires a time base
for the calculation which is given by the clock granularity (G):

sRTT0 = R0, (2.1)

RTTVAR0 =
R0

2
, (2.2)

RTO0 = sRTT0 + max{G, 4 ∗ RTTVAR0} (2.3)

Each following measurement of the RTT Ri results in an update of the variables:

RTTVARi = (1− β) ∗ RTTVARi−1 + β ∗ |SRTTi−1 −Ri| , (2.4)

SRTTi = (1− α) ∗ SRTTi−1 + α ∗Ri, (2.5)

RTOi = SRTTi + max{G, 4 ∗ RTTVARi}. (2.6)

α and β are smoothing factors and given by the current RFC6298 [PACS11] with α = 1
8

and β = 1
4 .

Anyway, it should be avoided that a timer-based retransmission occurs, because it inter-
rupts the sending process. Missing packets should be detected earlier. Fast retransmission
was introduced to achieve this. The idea behind this fast retransmission mechanism is to
detect loss early by using certain loss indicators and to retransmit the lost segment quickly
to repair the damage. The most common loss indicator for TCP and SCTP is a duplicate
acknowledgment (DupACK). This DupACK is generated by a receiver if an out-of-order seg-
ment arrives, which produces a gap in the received sequence number space, i.e., one or more
segments with lower sequence numbering than the received one are still missing. In case of a
missing segment, the receiver sends a duplicate of the last regular (cumulative) ACK. Since
reordering of segments may occur within a network, a single out-of-order segment might not
always indicate loss. Therefore the sender waits until it receives a certain number of DupACKs
for the same sequence number, defined by a threshold, before it retransmits any seemingly
lost segment.

The selective acknowledgment (SACK) was introduced [MMFR96] to support an addi-
tional mean for loss indication by using so-called “gap” blocks. A gap block defines an

2.2. INTRODUCTION TO TCP AND SCTP 15

in-order sequence number space of already received data. Thus, also messages not delivered
in-order beyond the cumulative sequence number are part of this gap reporting. Duplicate
acknowledged sequence numbers signaled by these gap blocks are interpreted as indication for
loss and will trigger a fast retransmission. SACKs in TCP use flags and a part of the option
space to signal information. SCTP uses the same basic idea but here a specific control chunk
signals a SACK. In any case, a timer-based retransmission will occur if the fast retransmission
also gets lost.

2.2.4 Congestion and flow control

Congestion and flow control are in general complex mechanisms of both transport protocols.
Both are in the main focus of this thesis. In both protocols both mechanisms are based on the
sliding window mechanism and try to keep the overall system in equilibrium. Sliding window
describes a mechanism where the send rate is limited by a dynamic calculation. The result
of this calculation is denoted as window. In general, a window defines the maximum amount
of data that is allowed to be sent unacknowledged. Unacknowledged data that was already
sent is also often denoted as “in flight”. Thus, the data which is allowed to be sent during
one send cycle can be calculated by the given window size reduced by the amount of data
that is still in flight. The send window for TCP and SCTP is in the end the minimum of two
different windows provided by two different mechanisms.

• (Receiver-side) flow control is a mechanism to protect the receiver. It can eventually
happen that the receiver is not able to process all the data sent by the sender. Thus, the
source should limit the amount of new data. The amount of data should be equal to the
amount of free buffer that is provided by the receiver. Thus, at startup, the advertised
receiver window (ARWND) is initialized equal to the receiver buffer size configured at
the receiver side. If the ARWND is decreased down to zero, this state is also denoted
as closed window.

cumulative

recv_base

receiver window size

cumulative

send_base next_seq_num

send window size next packets

Sender

Receiver

Sent but not acknowledged

Sent and in-order acknowledged

Sent and out-of-order acknowledged

Out-of-order received

Expected but not received

To be sent/received (in the window)

Ack has been lost

Figure 2.8: Sliding window example

16 CHAPTER 2. BASICS

• The main goal of the congestion control is to protect the network. Although congestion
control was not part of the first core standard of TCP in RFC793 [Pos81b], the expe-
rience in the first years had shown that the Internet would collapse without [Wel05].
So, the congestion control became a strong requirement for new transport protocols like
SCTP. Besides the network protection also the task of a fair sharing of the network
resources was assigned to this mechanism. For the currently used protocols a window is
calculated that defines the maximum amount of outstanding data in bytes and is called
congestion window (CWND). Different variants exist here, the most used New Reno
algorithm will be discussed in more detail in Subsection 2.2.4.1.

The minimum of the ARWND and the CWND gives the maximum send window. The
Figure 2.8, which is based on an example given in [Wel05], illustrates the most important
identifiers of this mechanism. The queue on the sender side and the queue on the receiver
side are illustrated in this figure. The queues are filled with user data – represented by
rectangles – which are categorized by their assigned status. Because their status is important
for the buffer blocking issues (see Subsection 7.1.3), it is discussed now in more detail:

• Sent but not acknowledged user data are represented by red rectangles. The lowest
sequence number at the sender is stored as send base. This send base is in many imple-
mentations and documentations also called snd una (send-unacknowledged) and, fur-
thermore, often used to calculate the data in flight.

• Sent and in-orderly acknowledged user data completed the send cycle already and is
illustrated by the green rectangles. The situation can exist where the sender has less
sent and in-orderly acknowledged data than the receiver, because the acknowledgment
is on the way or got lost. However, all in-orderly acknowledged data can be removed
from the buffers and queues. This kind of data does not block any resources in a normal
send cycle on a singlepath.

• Sent and out-of-orderly acknowledged data is reported by the SACK mechanism and
can be identified in the Figure 2.8 by the yellow rectangles. Even if they are reported
as delivered, they cannot be removed from the buffer by default, because their state can
be redefined at any time.

• Received out-of-order data causes a decreased ARWND, because this data must be kept
in the receiver queue until the gaps can be closed. The beige colored rectangle represents
this segment in the figure.

• Expected but not received segments are illustrated by the grey rectangles. The sender
should send these segments next. Out-of-order segments or loss mostly causes this kind
of gaps on the receiver side. These segments build the gaps in the gap report of a
SACK. The first segement recv base is often also called rcv nxt in implementations or
their documentation.

• At last there are the packets which are not yet sent or received in-order but fit into the
window size of the sender, which is based on the CWND or ARWND. The next in–order
sequence number (next sequence num) can only be assigned if there is space in the send
window. This sequence number is also often called snd nxt and the rectangles for this
group of segments is colored blue.

2.3. SPECIAL NETWORK COMPONENTS AND RELEVANT ASPECTS 17

Several approaches for the congestion control exist. [Wel05] gives an overall overview of
different congestion controls, for example Cubic, TCP Reno, TCP Vegas, TCP Westwood+
and discusses their pros and cons. However, currently, the two most common congestion
control versions for TCP are New Reno and Cubic. SCTP [Ste07] also applies New Reno as
congestion control that is why this thesis focuses in the following fairness discussion on this
approach defined in [APB09].

2.2.4.1 New Reno

The New Reno congestion control is a loss-based congestion control and is based on the so-
called additive increase/multiplicative decrease (AIMD) [Wel05] approach applied by TCP
[APB09] and SCTP [Ste07]. It builds the base congestion control for the following fairness
discussion. In this approach, the congestion window (CWND) of a path cP will be changed in
case of a congestion indication by using a multiplicative decrease of cP and in case of positive
acknowledgments by using an additive increase of cP . As mentioned, cP limits the number of
outstanding bytes on path P . The additive increase of cP can be split in two different phases:

• Slow start is used once probing for the allowed send rate starts. It results in an
exponential growth of cP . This is achieved by an increase of one message unit for every
new cumulative acknowledgment received.

• Congestion avoidance represents the second phase and leads to a linear growth of cP
when cP exceeds the slow start threshold sP . The partially acknowledged bytes pP are
used to ensure that the complete cP is acknowledged, before the window is increased
again. α represents the acknowledged bytes.

In detail, the algorithm can be described for TCP as follows:

cP = cP +

{
min{α,MSSP } (cP ≤ sP)

MSSP (cP > sP ∧ pP ≥ cP)
.

MSSP denotes the Maximum Segment Size (MSS) on path P . On a retransmission (RTX)
on path P , sP and cP are adapted as follows:

sP = max{cP −
1

2
∗ cP , 4 ∗MSSP },

cP =

{
sP (Fast RTX)

MSSP (Timer-Based RTX)
.

2.3 Special network components and relevant aspects

IETF protocols have to adapt to real network conditions. That means, they have to address
existing constraints given by hardware or interfaces. Over the time a lot of elements were
introduced in the Internet which deal with optimization or limited resources.

2.3.1 Issues with middleboxes

The term middlebox was introduced to address functions in the network which are beyond the
regular standard functions of an IP router [CB02]. In today’s Internet, middleboxes have a

18 CHAPTER 2. BASICS

deep impact on transport protocols like TCP. Some middleboxes are used to integrate security
infrastructure, like firewalls, but most of them are used to provide a specific network service.
A very common middlebox function is the network and port address translation (N/PAT)
[EF94]. This service is used to manipulate the IP addresses and the port number of the
transport protocol to map for example one IP address space to another. An often observed
use case is the masquerading of an entire private IP network behind a single public address.
Other examples are the support of Differentiated Services (DiffServ) [Gro02], which supports
Quality of Service (QoS) in the network or different kinds of packet filters [ZMD+09]. A
packet filter can possibly block packets or replace parts of the content included. [DHB+13]
did some research on this topic and they figured out that only the IP version number and the
protocol number for an encapsulated TCP segment stays untouched in the worst case. This
has a huge impact on the degrees of freedom of a protocol design. If options, for example,
are manipulated, replaced or removed it has a direct impact on the usability of extensions.

2.3.2 Queueing discipline

In a packet switched network like the Internet, resources are shared among different connec-
tions. Thus, a logical arbiter is needed to control the access to these shared resources. This
logical arbiter has to work on the physical buffers represented by the queues at the endpoints
and connecting routers. For these queues, different queue management strategies can be ap-
plied. Different queueing disciplines were introduced to address different network conditions
even if in the Internet the First In, First Out (FIFO) queueing discipline is most widely
used in the routers or endpoints. Nevertheless, studies show that for example the usage of
queues supporting Random Early Drop (RED) can increase the overall network performance
significantly [BCC+98].

The principle of a FIFO queue (queue with applied FIFO queueing discipline) is simple.
The packets are enqueued in the order of their arrival time. The queue will be freed in the
same order as the queue is filled. If the input rate exceeds the output rate, the FIFO queue
will be filled with packets. Because physical memory which provides queues with buffer, is
not unlimited, a queue size gives a maximum limit of bufferable packets. All packets that
arrive once the queue limit is reached will be dropped and lead to packet loss. The RED
queueing discipline [FJ93] extends the idea of the FIFO queues. Queues with applied RED
queueing discipline have a linearly increasing drop probability depending on two threshold
parameters and drop packets before the buffer is full. For the simulation experiments with
RED queues in this thesis, the parameter recommendations of [Flo97] have been used.

2.3.3 Socket concept

In currently used operating systems like Linux, FreeBSD or Microsoft Windows, the trans-
port layer of the ISO/OSI reference model also has a specific task. It represents the border
between an application in user space and the tasks assigned to the kernel. There is only one
implementation for all protocols which is assigned to the kernel, thus there is one protocol
stack. The kernel of the operating system manages all outgoing and incoming TCP or SCTP
connections in one data structure and has to identify them correctly.

Most OSs provide an interface to this functionality which is based on the Berkeley API
[SFR03]. This de-facto standard evolved over time into the Portable Operating System In-

2.3. SPECIAL NETWORK COMPONENTS AND RELEVANT ASPECTS 19

terface (POSIX) socket API, which provides a common interface to standardized structures
of a transport protocol. Core element of this API is the socket structure, which describes a
unique connection entity in an inter-process communication6. A socket request for a TCP or
an SCTP connection requires the choice of the protocol family (PF), which can be mainly
split in the choice of PF INET for IPv4 and PF INET6 for IPv6. Furthermore, the socket
type (so type) and the protocol number of the protocol are required.

A tuple of communicating local and remote sockets is often denoted as socket pair. The
information of a socket is held in a so-called socket protocol control block (so pcb). The
protocol control block (PCB) represents the root of the data structures to identify a transport
protocol connection by its 5-tuple. The PCB is the basis of the discussion in Section 5.1

6Even if a network connects this inter-process communication.

20 CHAPTER 2. BASICS

Chapter 3

Basic function set of load sharing
for TCP and SCTP

This chapter gives a general introduction to the benefits of load sharing, in particular on
the transport layer. There exist many load sharing approaches for the different layers of the
OSI reference model, which all address more or less the same issues, like for example the
out-of-order problem complex. This chapter discusses the reasons to place the coupling of
resources on the transport layer. Furthermore, this chapter introduces the transport protocol
extensions discussed by the IETF to create a concurrent multipath transfer.

3.1 Concurrent multipath transfer and load sharing

The structure of the Internet, as a meshed network, provides most of time more than one
path to reach the destination. So, it should not surprise that the usage of more than one path
has a long history in the Internet protocol development and in particular in the development
on the transport layer. Researchers and developers all around the world worked on this
challenge by using different umbrella terms as for example load sharing [ELZ86], bandwidth
aggregation [MK01a], concurrent multipath transfer [IAS06], inverse multiplexing [Dun94] or
other terms like coupled resources or utilization of multi-homing [Ste07]. Anyway, the main
idea is the same in every case, i.e. using more than one resource to increase the quality of
service. The approaches only differ in the definition of the resource and the defined goals that
should be achieved.

3.1.1 Goals

In the following, the benefits of load sharing are discussed for the endpoints only. This requires
that the endpoint is connected to the network in a multi-homed manner. Therefore, the
endpoint is able to use more than one IP address to access the same destination. The following
goals with respect to load sharing on a multi-homed system can be identified [NUO+07]:

• Redundancy
The connectivity can be guaranteed, if at least one path through the network can be
established by using more than one access to the network.

21

22 CHAPTER 3. BASIC FUNCTION SET OF LOAD SHARING FOR TCP AND SCTP

• Load sharing
The basic idea is to pool all resources and use what is needed to increase the throughput.
Traffic can be distributed among different paths through the networks to improve the
overall service. A scheduling process is required to support load sharing. This scheduling
process has mostly the goal to increase the throughput, although other policies could
be applied like to decrease costs or delay. Even non-technical, e.g., political reasons can
have an impact on the scheduler. This work just focuses on the throughput goal.

• Load balancing
Balancing load is particularly interesting whenever parts of the network are congested.
By shifting load from one path to another, the overall system can be relieved with-
out losing performance for a specific connection. This helps to improve the resource
utilization.

• Bi-casting
Here, the data is be duplicated and sent via different paths redundantly. This has a
benefit e.g. for a delay sensitive communication, like a IP video conference, because
errors or loss can be compensated with the redundantly sent data. Furthermore, if all
paths are able to transport the data, it improves the handover performance in a mobility
scenario.

It is obvious that not all goals can be addressed by one multipath approach and that besides
these major goals also the context of the deployment matters. The same network technology
in different setups leads to different degrees of freedom in the usability. As an example,
compared to a data center, a smart phone user connected via a 3G provider has less or no
control of the access medium, the network behavior, kind of traffic, topology, hardware or
their preferences. But all these characteristics have a huge impact on the performance of a
load sharing approach.

In the related literature it can be distinguished between local domain and Internet so-
lutions. Where the architects of a local domain solution have the possibility to adapt the
network to the load sharing requirements, the architects of the Internet solutions have the
goal to create an approach with the ability to adapt to the conditions of the Internet. The
architects of the standards in the IETF focus on the condition adaptation, as it can be ob-
served in the discussions on the mailing lists of the MPTCP working group or the TSVWG
working group.

3.1.2 Alternative approaches in the context of the IETF

The IETF provides different approaches to couple resources and to improve the quality of
the service almost on every layer below the transport layer of the OSI reference model. The
resource definition itself is mostly based on the definition of the layer. As example, on the
data link layer the multilink Point-to-Point Protocol (multilink PPP) can be mentioned,
which was standardized by the IETF in [SLM+96]. The main goal of this draft is to couple
different PPP [Sim94] connections. Unfortunately, the link layer approaches are only usable
in dedicated segments of the Internet, e.g. on an Integrated Services Digital Network (ISDN)
access link [SLM+96]. These approaches are not suitable for a wide deployment in the Internet.

The network layer keeps the Internet together by providing the logical addressing in IPv4
and IPv6 and by providing the forwarding service that enables the transport through the

3.2. MULTIPATH TRANSFER FOR TCP AND SCTP 23

network. A path through the network is defined on the network layer as a hop-by-hop decision
performed by the routers for every packet. In principle, every packet can be routed through
the network on a packet specific path. Thus, the paths for different packets are depending
on routing decisions and that can be used for a kind of load sharing in the network. The
routing decisions are results of policies based on the routing protocol. A routing approach
that considers more than one path is denoted as multipath-routing [TH04]. This is a useful
way of deploying load sharing, because routers can react quickly to changes. However, it is
nearly impossible to replace the complete infrastructure of the Internet with routers providing
this specific feature, although this replacement can be a real alternative for local domains.

Adding a new shim layer in the layered network model is also an option and provides
an alternative view on coupling resources on the network layer. This shim layer is located
between the network layer and the transport layer. Goal of this shim layer is to support the
split of identifier and locator. At first sight, this approach is more a question of mobility, but
mobility is an extreme scenario for the transport of data via more than one path that needs
to consider dynamic address changes, too. Approaches of protocols which can be used in this
context are the Host Identity Protocol (HIP) [MN06] for IPv4 and the site multi-homing by
IPv6 intermediation (Shim6) [NB09]. These approaches also provide a solution to support
the end-to-end transport via multiple paths, but show negative effects in combination with
TCP or SCTP as discussed in the following subsection.

Besides the IETF and IEEE standardization, the research community developed many
alternative ideas and prototypes. However, to shift this functionality to the transport layer
has significant advantages, which also are discussed in the next section.

3.2 Multipath transfer for TCP and SCTP

The basic mechanisms of TCP and SCTP were introduced in Chapter 2. It is neither provided
by SCTP nor by TCP to use more than one path at same time for data transfer. TCP itself
provides not even a mechanism to use more than the 4-tuple of source/destination addresses
and ports to establish an end-to-end connection. In general there are two alternatives to
realize a connection over multiple paths on the transport layer:

• Multi-homing unaware
The transport protocol itself is not aware of the multi-homing feature. This can be
realized today by running the service over HIP [MN06] or Shim6 [NB09]. The solutions
are easy to deploy, because no changes are required in the transport protocol itself, as
from its view nothing in the connection setup changes. But this straightforward deploy-
ment causes a lot of problems for the transport protocol, because many mechanisms
assume the use of one path, like the RTT measurement, the re-ordering process or the
congestion control. Furthermore, the unaware load sharing approach has an indirect
impact on other mechanisms like timer-based retransmissions, because for example the
RTO calculation is based on the RTT measurement (see Subsection 2.2.3). This is a
possible solution, but it is obviously not a good one.

• Multi-homing aware
Over the years many approaches came up, in particularly as extensions for TCP. In
1995, Christian Huitema proposed the multi-homing feature for TCP in [Hui95]. With
R-MTP [MK01b], pTCP [HS02] or mTCP [ZLK+04] other examples can be added to the

24 CHAPTER 3. BASIC FUNCTION SET OF LOAD SHARING FOR TCP AND SCTP

list. However, none of these approaches had a chance for standardization. SCTP [Ste07]
was at the starting point of this thesis the only protocol on the transport layer which
was standardized by IETF with real multi-homing support. However, this approach had
the goal to increase reliability and, therefore, no load sharing was supported by SCTP.

Even if no load sharing approach on the transport layer finally succeeded in the IETF
standardization process, there are good reasons to spend further efforts to provide load sharing
on the transport layer. Voice and Kelly [KV05] first suggested the placement of mechanisms
to support load sharing in the congestion control of a transport protocol. The reason for
this is trivial. In the current Internet structure only the endpoints have an overview of the
connected networks. Internet service providers (ISP) mostly do not share information across
provider borders and are not aware of this information. The authors of [WHB08] developed
a quite good model to illustrate the benefits, which is represented in Figure 3.1. The figure
describes two scenarios, where endpoint A has a default singlepath connection, e.g., a regular
TCP connection. The endpoints B and C are multi-homed. Therefore, if the congestion
control supports load balancing, B and C can react to congestion across provider borders.
This is illustrated on the right side of the Figure 3.1 by the thicker lines. A provider cannot
achieve this load balancing, because a provider has no knowledge about the other networks.

But if such good reasons speak for the usage at the transport layer, there must be other
reasons which have prevented standardization in the IETF so far. The main reason for this
is the strict requirement to provide TCP-friendliness. The issue with that is discussed after
introducing some terms used in the context of multipath transfer.

Figure 3.1: Load sharing example on the transport layer (is based on [WHB08])

3.2. MULTIPATH TRANSFER FOR TCP AND SCTP 25

Figure 3.2: Network topology example

3.2.1 Definition of multi-homing, multipath and flow

An endpoint is multi-homed for a transport protocol if the system provides more than one
IP address to access the network. A multipath flow can be defined by a flow addressable
via more than one IP address. The terms flow, network, path and subflow are not defined
consistently in the IETF. Definition, scope and functionality can differ with the point of view
and the context in which they are used.

As preparatory work of this thesis, some basic definitions were formally introduced by
[BDAR12b]. Furthermore, [Dre12a] provides a detailed discussion of the terms used in this
context. However, this thesis only uses few entities of this overall definition, therefore only
entities relevant for the discussion are illustrated in the Figure 3.2.

Important for this thesis is the “path” definition. A path on the network layer is a
different entity than the path addressed by an end-to-end connection on the transport layer.
As formally introduced in [Dre12a], the Figure 3.2 uses a finite locator set, node and link
set to describe a network. Every node (see blue circles in Figure 3.2) provides one or more
unique locators (see red hexagons in Figure 3.2) which are for example unique IP addresses
in the Internet. These locators can be allocated to connecting links (see the black lines
connecting the red hexagons in Figure 3.2). Theses links provide specific characteristics like
a capacity, error rate or delay. A sequence of locators identifying a sequence of nodes and
links represents a path through the network on the network layer (see the yellow line in
Figure 3.2). The endpoints of these network layer paths are the locators of the end-to-end
connection endpoints. The locators on the connection endpoints define the end-to-end path
on the transport layer. The bandwidth of the end-to-end path is based on the capacity of
the weakest link in the link chain. Delay and error rate are cumulative. Different paths on
the network layer can be used for the end-to-end path as long as the edge locators at the
endpoints remain the same. An end-to-end connection uses an end-to-end path to transfer
the user data within a flow.

The flow of a singlepath connection, like e.g. a TCP connection, only consists of one
subflow. However, for a multipath transport, e.g. based on CMT-SCTP or MPTCP, one flow
may consist of multiple subflows. A subflow is always assigned to one specific end-to-end

26 CHAPTER 3. BASIC FUNCTION SET OF LOAD SHARING FOR TCP AND SCTP

path. Furthermore, it is not mandatory that locators are in a 1:1 relationship to an interface.
The combinations here are diverse and can be characterized as follows

• Single link, multiple IP addresses
In IPv4 this concept is called IP aliasing. IP aliasing is used to provide different virtual
sites for, e.g., webservers. In IPv6 this relation is more the default than the exception,
like for example to support a global and a link-local unicast address.

• Multiple interfaces, single IP address per interface
This is the most straightforward interpretation of a multi-homing endpoint. Thus, an
endpoint has more than one network interface and every interface has its own IP address.

• Multiple links, single IP address
This concept is used less often and is mostly known from the routing context, where
routing protocols can address different interfaces to forward to the same IP address.

• Multiple links, multiple IP addresses
Load balancers on the link level use this concept to ensure that they are able to use all
possible path combinations, with the goal to utilize the network in an optimal way.

Each of these combinations can occur in the Internet.

3.2.2 TCP-friendliness

As introduced in Chapter 2, TCP and SCTP use a congestion control mechanism to protect
the network and to achieve a fair behavior. Two classes of approaches have been proposed to
achieve a fair distribution of resources in a network: centralized and decentralized. Central-
ized approaches use a global management instance for making decisions on resource distribu-
tion. These decisions may be based on fairness definitions such as max-min fairness [Hah91],
proportional fairness [MMD91] or weighted proportional fairness [Kel97]. In this case, con-
nection endpoints and flow characteristics (e.g. bandwidth, delay, etc.) are supposed to be
fixed. In reality, however, a communication in the Internet may be a highly dynamic process,
where the actors as well as the network characteristics are continuously changing. Therefore,
decentralized approaches – where the decisions about resource allocation are made by the
connection endpoints themselves – have been introduced. With the widespread deployment
of TCP, the discussion about fairness – especially flow rate fairness [Bri07] which is denoted
in the followings chapters as “flow fairness” – has moved towards a discussion about TCP-
friendliness [BCC+98]. The TCP-friendliness term was introduced by [Wel05] and is based
on the TCP-compatible definition of RFC2309 [BCC+98], which can be cited as follows:

A TCP-compatible flow is responsive to congestion notification, and in steady-state it
uses no more bandwidth than a conformant TCP running under comparable conditions.

It should be highlighted that this definition is based on flow level. In this historical con-
text the flow is based on the definition of a TCP connection, which is based on the 4-tuple
introduced in Chapter 2. Therefore, today all multipath transport protocols have to be de-
signed to achieve the goal to allocate no more bandwidth than a TCP flow under comparable
conditions. “Comparable conditions” imply that all relevant parameters are identical. How-
ever, the list of parameters given in the standards is very vague (“drop rate, RTT, MTU,
etc.”) [Flo00, BCC+98].

3.2. MULTIPATH TRANSFER FOR TCP AND SCTP 27

Figure 3.3: Bottleneck scenario

3.2.2.1 Shared bottleneck scenario

The congestion control has a huge impact on the rate control of the sender. If a straightforward
implementation of New Reno on each subflow is used to deploy MPTCP in the network, the
TCP-friendliness cannot be achieved in every case. It is depending on the topology of the
network. Figure 3.3 illustrates two possible scenarios. In the first scenario the multipath
connection uses two independent physical paths (X and Z) through the network. The flows
of A, B and C have to share the resources of these paths, which is represented by the link
capacity of X and Z. On each bottleneck link a fair allocation of the capacity can be expected
if a congestion control like New Reno is deployed on each subflow. However, the second
scenario describes the case where the capacity of only one bottleneck link X is shared among
different connections. Here, the two independent singlepath connections (A and C) have to
share the capacity with a multipath connection B. The TCP-fairness requires a sharing of
the capacity on flow level in three equivalent shares, because every connection represents one
flow. However, by using the uncoupled New Reno congestion control, the TCP-friendliness
on flow level will not be achieved. The multipath connection will allocate twice the capacity
on the shared bottleneck as allowed. The capacity allocation results in 1

2 for the multipath
connection and 1

4 for every singlepath connection. In the IETF, this behavior is defined as
TCP-unfriendly and, therefore, unfair and this scenario is denoted as the shared bottleneck
scenario. Thus, an end-to-end transport protocol in the Internet has to be aware about the
topology used. [Dre12a] provides three alternatives to work against this issue:

• Bottleneck detection
This is a new mechanism with the goal to detect shared resources of a multipath flow.
Mechanisms exist like [YWY08b], [YWY08a] [Wel13] or [RKT02]. But even if these

28 CHAPTER 3. BASIC FUNCTION SET OF LOAD SHARING FOR TCP AND SCTP

mechanisms work in theory, they are based on complex data aggregation, which needs
at least a stable database of measured data, like for example RTT or loss rate.

• A-priori knowledge
This approach is useful in scenarios where the user is aware of the topology or the
network provider aware of the needs of the user. That is true for controlled networks
but usually not for the Internet.

• A topology adapting congestion control
The congestion control adapts on the topology of the network. As long as the congestion
control is not more aggressive than for a singlepath TCP flow, the TCP-friendliness goal
is achieved.

For the current thesis, the progress with respect to the topology adapting congestion control
plays a specific role. This new approach has re-launched the standardization discussion for
multipath TCP and SCTP and is denoted as Resource Pooling.

3.2.2.2 Resource Pooling principle

The idea of Resource Pooling (RP) was presented by [WHB08] and is initially quite simple.
RP couples the congestion control of all paths with the goal of:

making a collection of resources behave like a single pooled resource.

Thus, an approach implementing the Resource Pooling idea couples the per path conges-
tion control mechanisms in order to shift traffic from more congested to less congested paths.
Releasing resources on a congested path decreases the loss rate and improves the stability of
the whole network. However, this Resource Pooling idea has a severe impact on the conges-
tion control, because it extends the congestion control by adding the additional task to adapt
to the topology. So, the goals for a coupled congestion control based on the Resource Pooling
idea can be identified as:

• Protect the network
It is the goal of the multipath transport protocol to keep the system in equilibrium like
the singlepath protocol. Any network can only transport a limited amount of traffic
in a certain period of time. Thus, if senders inject more traffic into the network than
given by its nominal capacity, the network reacts with a congestive collapse. The send
rates have to be adapted to the network capacity but the capacity is not known to the
endpoint. Therefore, algorithms are required to detect and avoid congestion. Solutions
for this are for example discussed in [Ram12].

• Achieve fair behavior
The Resource Pooling idea introduces a new perspective on the multipath fairness goals.
These multipath fairness goals are described by [RWH09] as:

1. Improve throughput : a multipath flow should perform at least as well as a
singlepath flow on the best path.

3.2. MULTIPATH TRANSFER FOR TCP AND SCTP 29

2. Do not harm: a multipath flow should not take more capacity on any one of
its paths than a singlepath flow using only that path.

3. Balance congestion: a multipath flow should move as much traffic as possible
off its most congested paths.

• Adapt to topology
This is an additional task of a multipath congestion control and addresses the need of
topology detection to achieve a TCP-compatible behavior. In the end, Resource Pooling
is just a workaround. It does not solve the TCP-friendliness discussion, it bypasses this
issue by balancing congestion. The discussion of the impact of this suboptimal approach
is a major goal of this thesis (see Chapter 6).

Even if this approach to solve the TCP-friendliness issue is accepted by the IETF, it is not
clear which impact these coupled congestion controls have on the transport protocol behavior.
Therefore, Chapter 4 of this thesis focuses on the impact of their deployment.

In addition, it is important to note that with the new congestion control approach new
fairness goals were introduced which gave the standardization process for MPTCP and CMT-
SCTP a new basis. The impact of these multipath fairness goals has not been discussed
sufficiently so far and is therefore also part of this thesis.

3.2.3 Impact on the transport protocols

One major requirement for an IETF load sharing approach is to provide the services known
from the singlepath protocols in the same way. The basic idea is to be completely transparent
to the application and the network. For CMT-SCTP this raises less issues, because SCTP was
designed to support more than one path, but MPTCP was not. That is why three different
compatibility constraints were defined for multipath TCP (MPTCP) [FRHB13]:

• External Constraints
The protocol must function through the vast majority of existing middleboxes such
as NATs, firewalls, and proxies, and as such must resemble existing TCP as far
as possible on the wire. Furthermore, the protocol must not assume the segments
it sends on the wire arrive unmodified at the destination: they may be split or
coalesced; TCP options may be removed or duplicated.

• Application Constraints
The protocol must be usable with no change to existing applications that use the
common TCP API (although it is reasonable that not all features would be available
to such legacy applications). Furthermore, the protocol must provide the same
service model as regular TCP to the application.

• Fallback :
The protocol should be able to fall back to standard TCP with no interference from
the user, to be able to communicate with legacy hosts.

Clearly, no change in the API should occur and each subflow of an MPTCP connection
should look like a singlepath TCP flow, if it is sent over a link. Thus, an MPTCP subflow has
to open an additional connection with an additional three way handshake and for terminating

30 CHAPTER 3. BASIC FUNCTION SET OF LOAD SHARING FOR TCP AND SCTP

a FIN must be used at subflow level. It is important to retain the well-known singlepath
signaling on path level, because it is important for middleboxes. The risk that a connection
will be blocked, for example by a firewall, is decreased if it looks like a default singlepath
connection. If no multipath connection is possible or the multipath connection will be blocked,
MPTCP falls back to a singlepath connection. The impact of the constraints on the extension
design for MPTCP and CMT-SCTP will be discussed in the following.

3.2.3.1 Impact on connection management

TCP provides – in contrast to SCTP – no mechanism to exchange additional address informa-
tion in an initial handshake. Thus, there is a need to signal to the endpoints that a connection
via more than one address is possible. For MPTCP this signaling is described in [FRHB13]
and introduces additional options for TCP:

• MP CAPABLE
This option signals to the endpoint that an MPTCP connection is requested. If this
option is filtered or replaced by middleboxes, the MPTCP handshake will be proceed
like a singlepath TCP handshake. Key material will be exchanged during the initial
MPTCP handshake which is used to create a unique connection token (see RFC6824
Subsection 2.1). This unique connection token is used to create a start sequence number.
This start sequence number is used for the overall flow reordering process (see RFC6824
Subsection 3.3.1).

• MP JOIN
The MP JOIN option is used for every additional handshake of the multipath connection
if the initial handshake was successful. In principle the additional handshake looks
like a default singlepath TCP handshake. The only difference is that the handshake
segment includes the MP JOIN option. This MP JOIN option includes, furthermore,
the connection token of the multipath connection and a SHA-1 HMAC. The SHA-1
HMAC is used for endpoint authentication. Because the correct HMAC has to be
confirmed, an additional ACK is required. This additional ACK is often used to signal
an additional address if explicit address notification is used.

MPTCP provides two ways to add further addresses to the connection.

• Implicit address addition
This is a straightforward extension of the multipath connection by adding every new
source or destination IP address available. If an endpoint is aware of a new IP address
or a new port, the connection management creates all possible 4-tuples with the local
IP addresses and ports and initiates an MP JOIN handshake for every unknown com-
bination. This approach works fine as long as no middleboxes like Network Address
Translation (NAT) come in and both endpoints are allowed to create new connections.
That both endpoints are allowed to create new connections is not always the case, e.g.,
if one endpoint is behind a firewall. Thus, even if this multipath connection setup al-
ternative is a functional approach, the implicit addition of addresses will not be the
default behavior in the Internet.

• Explicit address addition
This approach is illustrated in Figure 3.4. The process itself is split in two phases repre-
sented in the Figure 3.4 by the red and the green arrow. In the first phase an endpoint

3.2. MULTIPATH TRANSFER FOR TCP AND SCTP 31

4. Handshake S2 H2

Add second address

3. Handshake S1 H2

2. Handshake S2 H1

1. Initial Handshake

 S1 H1

Sender Address S2Sender Address S1 Receiver Address H1

SYN + MP_CAPABLE - KEY (A)

SYN/ACK + MP_CAPABLE (token_B) - Key (B)

ACK + MP_CAPABLE (token_A) + Key (A + B)

SYN + MP_JOIN (token_B)

SYN/ACK + MP_JOIN (HMAC B)

ACK + MP_JOIN (HMAC A)

Receiver Address H2

ACK + ADD_ADDR(H2)

SYN + MP_JOIN (token_b)

SYN/ACK + MP_JOIN (HMAC B)

ACK + MP_JOIN (HMAC A)

SYN + MP_JOIN (token_B)

SYN/ACK + MP_JOIN (HMAC B)

ACK + MP_JOIN (HMAC A)

{}

{}

Figure 3.4: MPTCP handshake

(the sender) tries to perform a handshake for every 4-tuple the endpoint becomes aware
of. Like in the implicit approach the sender uses for the first handshakes, the desti-
nation address that is set by the application socket call (see basics in Section 2). In
the scenario of Figure 3.4 the application uses the destination address H1. For a dual
homed endpoint with the IP addresses S1 and S2 this leads to a handshake for S1↔H1
and S2↔H1 (see handshake 1 and 2 in Figure 3.4). It is not defined in which order these
first handshakes should be performed, therefore, it is also possible that these handshakes
can be reordered (this potential issue is also discussed in Chapter 5). After the first
phase, the passive endpoint has to provide new addresses by using the “ADD ADDR”
option. This is the first message in the phase two. Thus, for every address the other
endpoint is not aware of, the endpoint needs the additional ADD ADDR option. This

32 CHAPTER 3. BASIC FUNCTION SET OF LOAD SHARING FOR TCP AND SCTP

information is sent most of the time during an additional ACK directly after the first
initial handshake, but the RFC is not clear here so it is not a “must”. The sender is
able to build the missing 4-tuples for the address combinations S1↔H2 and S2↔H2 by
getting an additional address. These handshakes (handshake 3 and 4 in Figure 3.4) in
addition to the first two handshakes lead to a fully meshed connection setup between
the endpoints.

Each established subflow also has to be terminated at the end of the session. In singlepath
TCP, both sides send a FIN and the connection will be closed. However, this is not adequate
for an MPTCP connection. Even if a FIN is sent on subflow level, it should potentially not
tear down the whole multipath connection. That is why the Data Fin option on flow level
was introduced. This option can signal a complete multipath connection shutdown with the
same semantic as the default TCP FIN.

The CMT-SCTP handshake is equal to the default SCTP handshake, see Subsection 2.2.2.

Summarized, the handshake and the addresses used by the multipath extensions of TCP
and SCTP differ a lot. Chapter 5 discusses the impact of these differences and compares
both approaches in a real world Internet setup. Furthermore, the IETF has not discussed
the different path management strategies until now. It was not discussed whether this has
an impact on the goals of the multipath transfer. However, to design an effective scheduling,
a reordering process must be provided for both approaches. This requirement is discussed in
the following section.

3.2.3.2 Impact on reliable and ordered transfer

SCTP provides in-order, reliable end-to-end transfer over more than one path, even if it is
not provided concurrently [Ste07]. The authors of [IAS06] have investigated the possibility of
concurrent multipath transfer and denoted their approach as CMT-SCTP. This CMT-SCTP
approach was extended by different mechanisms to ensure a reliable and ordered transfer
via more than one path. The performance of the protocol would suffer a lot without these
mechanisms. As also [Dre12a] pointed out, at least three optimizations are needed to provide
a basic transport service by deploying CMT-SCTP.

• Split fast retransmission
This mechanism forces the SACK mechanism – compare Subsection 2.2.3 – to work on a
specific path. This avoids re-ordering issues in the gap handling. Thus, gap blocks only
increase duplicate ACK counters if the gap block is smaller than the highest successful
acknowledged chunk/message on the path.

• Congestion window update
A congestion control window update should be done independently on each path. That
means, a path should maintain a virtual cumulative sequence number per path. This
virtual cumulative sequence number can be increased by a virtual acknowledgement,
a so-called PseudoCumAck. This PseudoCumAck is caused if gaps of one path are
closed by a new cumulative acknowledgment on another path. Therefore, a new valid
PseudoCumAck leads to a congestion window growth.

• Delayed acknowledgment
Out of order data is a common problem in a multipath connection [Jun05]. This has

3.2. MULTIPATH TRANSFER FOR TCP AND SCTP 33

impact on existing mechanisms like, e.g., the delayed SACK mechanism in SCTP. In
singlepath SCTP, delayed SACKs are used to decrease overhead traffic. In detail, the
acknowledgments will be sent delayed until an additional segment arrives or a timer
exceeds. However, an acknowledgment will be sent immediately if an out-of-order trans-
mission is detected. This helps to detect loss earlier and to trigger a fast retransmission
more early. In CMT-SCTP this delayed ACK mechanism causes unnecessary overhead.
The main idea is to delay all SACKs for CMT-SCTP.

These mechanisms are also part of the individual IETF draft on load sharing for SCTP [ABD+13].
However, CMT-SCTP, as proposed in [IAS06], was not designed for an asymmetric, heteroge-
neous topology as represented by the Internet. The work of [Dre12a] and this thesis address
these issues. In Chapter 5 the deployment in a real world Internet setup will be discussed, in
Chapter 6 the required changes in the congestion control will be analyzed and in Chapter 7
an improvement for the scheduling task will be introduced to achieve the IETF load sharing
goals [Dre12a].

In contrast to the adaption of SCTP mechanisms in case of CMT-SCTP, the design of
the MPTCP extension has to address the complete re-ordering task, with respect to the
constraint that an MPTCP subflow must look like a singlepath TCP connection on the wire.
The MPTCP design has to address this backward compatibility. Particularly important is that
the sequence numbers have to look “normal” on path level. Thus, besides the path assigned
sequence number space another overall sequence number (SQN) is required to organize the
overall flow. The signaling of the additional SQN is done by additional options. These options
organize the so-called data sequence signal (DSS). Every byte gets its own DSS, which is
uncoupled from the singlepath sequence number – which will become important later in the
scheduling discussion of Chapter 7. This overall sequence number cannot be used for the
re-ordering process at path level, but it is necessary for the retransmission process at flow
level.

This has a direct impact on the behavior compared to SCTP. It can be a possible benefit
to try a retransmission of the same data on an alternative path to free buffer space as will be
discussed in Chapter 7. SCTP segments can be retransmitted via an alternative path. There-
fore a retransmission in CMT-SCTP via an alternative path causes no additional overhead,
whereas a retransmission via an alternative path in MPTCP does. The reason is the per path
sequence number of TCP. This sequence number space must be transmitted ordered, even if
it is not necessary for the overall sequence number space. Thus, for MPTCP a retransmis-
sion on an alternative path always uses a copied segment and, therefore, requires additional
resources.

3.2.3.3 Impact on flow control

The receiver side flow control is a good example for a mechanism that should be deployed
as a coupled mechanism. If it is not deployed as a coupled mechanism, the flow control can
cause a potential deadlock.

Figure 3.5 demonstrates a deadlock for a de-coupled flow control caused by a path failure
during a reliable and ordered transfer. In this example, a sender schedules data over different
destination addresses, where the first segment (SQN 1) gets lost. The receiver de-couples the
flow control and assigns a receiver buffer of three segments per subflow. Until the sender
notices the loss, the sender has transmitted as much as the advertised receiver window of the

34 CHAPTER 3. BASIC FUNCTION SET OF LOAD SHARING FOR TCP AND SCTP

time

Send SQN 1

Sender Receiver

Buffer Path 1

Receiver B

Buffer Path 2

E E E

ARWND 3

2 E E

Send SQN 2

ARWND 2

2 3 E

ARWND 1

2 3 4

Send SQN 3

Detect path failure

RTX SQN 1

Packet loss

Keep 2 in buffer, because SQN 1 is delayed

RTX blocked because

ARWND is closed

Path failure

Destination A Destination B

Send SQN 4

Keep 2,3 in buffer, because SQN 1 is delayed

Keep 2,3,4 in buffer, because SQN 1 is delayedARWND 0

Figure 3.5: Illustration of a deadlock based on a decoupled advertised receiver window

second path allows. Thus, the receiver queue on path 2 is filled with 3 segments and the
ARWND is decreased to zero. After the sender detects a failure on path 1 the packet with
SQN 1 should be retransmitted on the path 2, but here is no free space anymore, because the
receiver must hold the data in its buffer as long as the data cannot be delivered in order to
the user. To also use the buffer of path 1 is not possible, because the receiver cannot detect
the link error.

There might exist potential solutions to resolve this deadlock. As an example, the receiver
could reopen the window of path 2 by the free space of path 1. Anyway, even if the receiver
drops all segments from the receiver queue, the receiver cannot be sure that the segment with
SQN 1 is under the first 3 packets, which arrive thereafter. The ultimate solution would be
to reset the window triggered by the sender, but also in this case middleboxes like proxies
can transmit buffered data instead of the missing packet with the SQN 1.

So this situation should be avoided by setting up a coupled ARWND to coordinate the
maximum sequence number, which is sent via all available paths. This requirement is valid for
both the extensions of TCP and SCTP. While this coupling of the ARWND avoids the dead-
lock it creates potential performance issues for the scheduling task (see Subsection 7.1.3.2).

3.2.3.4 Implementation dependent options

A protocol standardized by the IETF leaves the implementation details to the protocol de-
velopers. Thus, it is not mandatory that every protocol mechanism is specified. Therefore,
for every protocol specified in the IETF different implementation variants will exist.

For the load sharing extensions of SCTP and TCP, a scheduler is needed to distribute the
user data over the paths, but there exists neither a standardized specification for CMT-SCTP
nor for MPTCP. Therefore, already today different variants can be observed in the different
implementations. For example, the Linux reference implementation for MPTCP uses an RTT
weighted scheduler to distribute the data among the paths whereas the CMT-SCTP reference
implementation on FreeBSD uses a Round Robin scheduler. In detail, whereas the FreeBSD

3.3. CONCLUSION 35

implementation cycles sequentially over all available paths to fill each path with data up to
the limit of the congestion control window, the MPTCP Linux implementation always choses
the path with the best RTT and sends as much data as the congestion control window allows
to send. If the “best” path provides no more free resources, the path with the next best RTT
will be chosen. Thus, while every path will be used in the FreeBSD implementation, it is
possible in the Linux implementation that only a subgroup of paths is used that allocates and
blocks all coupled resources.

3.3 Conclusion

The proposed multipath extensions for TCP and SCTP are quite straightforward. Besides
security [Bag11] and middlebox problems, the approach of MPTCP is discussed as fully
functional in the IETF. The standardization process for CMT-SCTP is expected to start soon.
However, the detailed implementations of these approaches and their deployment have not
been systematically investigated until now. The behavior in the Internet is not well analyzed.
It is even an open questionif a successful deployment is possible at all is an open question.
Furthermore, the impact of the new multipath mechanisms on the transport protocol service
is not clear yet.

One important challenge is to analyze if the re-ordering issue can be solved in the scenarios
given by the Internet and which impact a limited resource has, like e.g. send or receive buffer.
Furthermore, until now it is not clear which effect the new fairness goals [RWH09] have on
the ability to achieve the goals of the load sharing extensions and if the expected throughput
can be achieved.

In addition, besides the multipath extensions itself the multipath fairness goals must be
discussed, because they are not that precise, so that it is possible to interpret them in different
ways. The impact of a different interpretation has not been discussed sufficiently so far.

36 CHAPTER 3. BASIC FUNCTION SET OF LOAD SHARING FOR TCP AND SCTP

Chapter 4

Testbeds and tools

The development of a protocol starts with an idea to change or improve the way to transfer
data. This idea has to be described, evaluated and tested. That is even more important for
the standardization process in the IETF, where every standardization draft has to provide a
reference implementation that demonstrates the idea in running code. With Multipath TCP
(MPTCP) [FRHB13] and Concurrent Multipath Transfer for SCTP (CMT-SCTP) [ABD+13],
two different protocol extensions are evaluated in this thesis. CMT-SCTP is discussed in the
IETF in the Transport Area Working Group (tsvwg1) and MPTCP in the Multipath TCP
Working Group (mptcp2) of the Internet Engineering Task Force (IETF). This thesis addresses
the new tasks of a load sharing extension with the management of paths (see Chapter 5), the
fair sharing of the resources (see Chapter 6) and their effective usage (see Chapter 7).

As author of this thesis and as co-author of one IETF load sharing approach [ABD+13],
it is important to stay close on the current development state and to work in cooperation
with other researchers to provide toolchains that allow a systematic analysis of the new ideas.
Efforts that are claimed as preparatory work in this thesis are the result of cooperation in
implementation, analysis and evaluation. But even if this preparatory work is not the main
contribution of this thesis, it should be mentioned, because it builds the basis.

Two possible alternatives are in general available to test new ideas, namely simulation and
real implementation. Simulations are suitable to perform a wide range of platform indepen-
dent experiments with low costs compared to a real testbed setup. However, implementations
on real operating systems are necessary to verify the simulation setup, determine relevant
parameters and test for real world side effects. Thus, for this thesis different tools and imple-
mentations were required:

• A simulation model of the load sharing extensions for TCP and SCTP

• A real world testbed with measurement instances for validation of the simulation model

• Monitoring tools to allow a comparison of the new load sharing extensions

It is important to know that for both load sharing extensions a reference implementation
on different operating systems exists. For MPTCP it is Linux and for CMT-SCTP it is
FreeBSD. The main cause for these different implementations is the free platform choice of
the main authors of both extensions. This free choice is also the reason why parts of the

1tsvwg: http://datatracker.ietf.org/wg/tsvwg/charter/
2mptcp: wg http://datatracker.ietf.org/wg/mptcp/charter/

37

http://datatracker.ietf.org/wg/tsvwg/charter/
http://datatracker.ietf.org/wg/mptcp/charter/

38 CHAPTER 4. TESTBEDS AND TOOLS

implementation differ a lot and there is a need for a common platform in order to compare
the results.

However, upon starting this thesis neither a common platform for real systems nor simu-
lations existed for the comparison of load sharing extensions. So, one goal of this thesis was
to provide such a common platform for experiments avoiding platform dependent behavior.
The following sections describe in some detail the different implementations used to create
valid testbeds for protocol evaluation and analysis.

4.1 Simulation model

One major constraint for the simulation environment was the support of SCTP and TCP.
There are not that many network simulation tools which provide this support as [Seg12]
pointed out. Furthermore, the reasons to choose an open source solution to avoid expensive
licensing and to support easier debugging are also true for this thesis as they are for [Seg12].

But the most important reason to choose OMNeT++ [Var12] with its INET framework
[Var11] for this thesis was the detailed knowledge of the existing SCTP model and the long
term experience with the tool. The SCTP model is a result of different successful research
projects with the goal to improve the overall performance of SCTP. Furthermore, the basic
SCTP model was validated with the external interface [TRR08] under real network conditions
and can be used as a basis to evaluate all other mechanisms and protocols.

4.1.1 OMNeT++

OMNeT++ in general is a discrete event simulation tool [Var05]. A strong benefit of OM-
NeT++ is its modular design. Thus, an already existing module can be reused or extended
easily. The modules can be described by a specific network description (NED) semantic, and
stored in a corresponding “NED file”. Mechanisms and functions assigned to this module are
developed using the programming language C++. Each module can be connected to other
modules by “gates”. The connecting medium is called connection. Simple modules can be
combined to new compound modules in a hierarchic way by applying this principle.

The dynamic event is represented in the OMNeT++ simulation by a message, which can
be scheduled to the module itself by “self-messages” or via gates to other connected modules.
This way complex networks can be created. A NED file provides the base for an experiment.
The experiment parameters can be manipulated in an “ini” file. Here, information about
start time, duration or specific module parameters is set.

The output of a simulation can be split into two different result files. The vector files
provide a series of parameterized events and their status over time. The scalar files include
the aggregation of specific information. The version of OMNeT++ used in this thesis is
4.4.1 and can be downloaded from the project page3. But OMNeT++ provides only the core
system. The INET framework is required to use a complete existing IP stack, too.

The development support for the OMNeT++ simulation is provided by an integrated
development environment (IDE). This IDE is based on the Eclipse platform4 but provides an
individual bundle to support the work on NED files or the analysis of the scalar and vector
files. Even if the analysis tools are not suitable to process the results in an adequate manner

3OMNeT++ http://www.omnetpp.org
4Eclipse http://www.eclipse.org

http://www.omnetpp.org
http://www.eclipse.org

4.1. SIMULATION MODEL 39

Figure 4.1: OMNeT++ with its INET framework running an MPTCP simulation

for this thesis, the plugins are important for the first initial development steps. In Figure 4.1,
the IDE is visible in the background of the OMNeT++/INET graphical user interface (GUI)
that is helpful for debugging the experiment setups. Anyway, OMNeT++ should be used
without the GUI in complex simulation setups, because it increases the time required for
a simulation run dramatically. For this use case the OMNeT++ environment provides the
usage from the command line. This command line is also helpful if a distributed simulation
pool is used. A distributed simulation was used in this thesis to provide the high number
of simulation runs that are required for an evaluation of the fairness and the scheduling
mechanisms.

4.1.2 INET framework

OMNeT++ itself provides no model for network communication. There exist different models
to extend OMNeT++ with this missing functionality, even if most models are very specialized,
like for example MixiM [KSW+08] for wireless communication. The INET framework [Var11]
provides a more common model with all layers of the OSI reference model. The existing model
provides protocols like Ethernet or Point-to-Point (PPP) protocols on the link layer, IPv4
and IPv6 on the network layer and SCTP, UDP and TCP on transport layer. Furthermore,
it supports the development of tools on the application layer that are used in this thesis as
interface for the traffic generator.

Figure 4.1 shows an experiment using the INET framework in the OMNeT++ GUI. The
topology figure of the screenshot in Figure 4.1 shows a simple experiment and gives an idea
of the graphical interface. Furthermore, different module windows are shown which are used

40 CHAPTER 4. TESTBEDS AND TOOLS

for parameter configuration or debugging.

The original INET framework comes without any load sharing support. The main work
to extend SCTP with the CMT-SCTP features was done in [Dre12a] and was extended by
additional functionality in this thesis. In Mai 2014, first code segments were committed to
the main developer tree of the INET framework and will be provided in the next official INET
framework version. The MPTCP model as extension was created exclusively for this thesis
on top of the existing TCP model.

4.1.2.1 Enhancement of the INET TCP model

Similar to the SCTP model, a TCP model exists in the INET framework. However, the model
of TCP was rudimentary and error-prone. In a first step, the old TCP model was extended
by a basic SACK mechanism [RDB+10]. These changes are available as new default TCP
model in the original INET codebase. However, a series of basic experiments for this thesis
showed that these changes are not sufficient, and even worse, parts of the TCP module did
not show the expected results. The most important extensions to the core TCP module are
discussed in the following.

Singlepath congestion control
One major challenge was the detection of the issues with the singlepath congestion control
that showed an erratic behavior in an experiment setup with a competing singlepath SCTP
flow. TCP in competition to itself or alone on the link showed an acceptable behavior. But
here only the good case was considered without any problems on the link. Furthermore,
because both TCP flows reacted on network events – like RTT and error rate – in the same
wrong way. This led at first sight to the same “fair” behavior. However, the issues with
the existing implementation in the INET framework get visible when an alternative SCTP
flow comes in that implements the congestion control in an alternative way5. Figure 4.2
demonstrates the TCP flow behavior with the OMNeT++ IDE plot plugin. The TCP flow is
repressed over time by the SCTP flow and prevents the expected fair capacity sharing of the
link. Different issues in the retransmission, fast retransmission and window calculation have
been identified and fixed to get the result as expected and used in the next chapters.

Scaling option
There was also an issue with the scaling option of TCP [JBB92] in the INET version that
was used as basis for this thesis. Even if the scaling factor was exchanged during the TCP
handshake, the factor was not used to calculate the advertised receiver window (ARWND)
as expected. Furthermore, there existed a calculation issue in the retransmission timer setup
that was not in line with the RFC6298 [PACS11].

Send buffer
In the current INET framework, TCP can only be parameterized to send a fixed number of
bytes. Thus, to ensure a saturated sender over time was not possible. Here a mechanism was
needed to ensure that always enough data is stored in the send queue. In the context of the
work of [Seg12], the author implemented a first initial version to support this kind of sending,
even if it was not usable in complex setups, because the send queue size was not configurable

5And this implementation was also tested against a real world implementation.

4.1. SIMULATION MODEL 41

Time in sec

Window

size

in byte

SCTP

TCP

Figure 4.2: Old congestion control window (created with OMNeT++ plot tool)

in this approach. Thus, the mechanism was designed in a way that it did not consider any
limitations of the send buffer. A complete redesign of this functionality was necessary to
support the same send behavior as provided by the SCTP module [Dre12a].

4.1.2.2 MPTCP

The main extension for the TCP model was the development of the MPTCP module in a way
that TCP was affected only to the minimum possible extent. It was a main requirement for the
implementation to allow a strong separation between the core TCP module and the MPTCP
extension. The created code is separated in eight main C++ classes and is comparable in
functionality with the kernel implementation on Linux done as part of the thesis in [Bar11]6.
Even if the MPTCP module was designed independently from the TCP model, the parame-
ters have to be set by the TCP module, because it is a TCP connection, even if the MPTCP
extension is used. Thus, the TCP model provides new parameters in the INET framework
to control the MPTCP extension. Like for SCTP [Dre12a], a parameter cmtCCVariant ex-
ists in the NED file that enables the MPTCP extension with a specific congestion control.
Table 4.1 gives an overview of the available congestion control algorithms. Furthermore,
there exists a parameter that is called multipath Scheduler and controls the factory method
pattern [GHJV95] for the scheduler instance in the MPTCP implementation. The factory
method pattern supports an exchangeable codebase that can be changed dynamically for the
needs of an experiment. Currently implemented are Round Robin and Weighted Queuing (for
more details see also Subsection 3.2.3.4). Furthermore, in the MPTCP extension of the INET
framework elements were implemented that are not part of the IETF specification. Here,
in particular the mechanisms to avoid buffer blocking are addressed. These mechanisms are
explained and discussed in more detail in Subsection 7.1.3.1 and in [RPB+12]. The new OM-
NeT++/INET parameters multipath opportunistic retransmission and multipath penalizing
were introduced to enable the implemented mechanisms. Furthermore, the ConSN approach
is configurable with multipath consn (see Subsection 7.5.2).

Table 4.2 shows a survey that is based on the work of [Ear14] to compare the result of these

6 [Bar11] also created a comparable codebase for the Linux kernel, but described the required functionality in
C under the constraints of the kernel development.

42 CHAPTER 4. TESTBEDS AND TOOLS

Value Description

off Singlepath congestion control is based on the parameter tcpAlgorithmClass

like-mptcp Coupled congestion control LIA (explained in Subsection 6.2.2)

like-olia Coupled congestion control OLIA (explained in Subsection 6.2.3)

cmtrpv2 Coupled congestion control RP-MPv2 (explained in Subsection 6.2.1)

cmt New Reno (see Subsection 2.2.4.1) congestion control for every subflow

Table 4.1: Parameter values for cmtCCVariant

Institution UCLouvain Swinburne Anonymous Citrix Thesis

Platform Linux FreeBSD-10 Commercial NetScaler OMNeT

MP CAPABLE Yes Yes Yes Yes Yes

MP JOIN Yes Yes Yes Yes Yes

#subflows 32 8 no limit 6 232

DSS Yes Yes Yes Yes Yes

DATA ACK 4 bytes 4 or 8 byte 4 or 8 byte 4 or 8 byte 4 bytes

Data seq num 4 bytes 4 or 8 byte 4 or 8 byte 4 or 8 byte 4 bytes

DATA FIN Yes Yes Yes Yes Yes

ADD ADDR Yes No No (never) No (never?) Yes

REMOVE ADDR Yes No Partly Yes No

Sharing shared, RTT shared active/back active/back shared,
RR, RTT

Handover Yes No Yes Yes No

Coupled CC Yes No No No Yes

Other CCC Yes, OLIA No No No Yes, OLIA,
MP-RP-v2

Table 4.2: Implementation overview in comparison to other implementations

implementation efforts with the other existing MPTCP implementations. Most important in
this survey is the open and usable reference implementation of UC Louvain on Linux [Ins13],
which is also discussed in more detail in [Bar11] and provides the Linux reference implemen-
tation of the IETF. It should also be mentioned that there exist official implementations for
productive systems like the NetScaler of Citrix [Man10], even if the access to the implemen-
tation is restricted.

4.1.2.3 Enhancement of the INET SCTP model

This thesis uses the existing SCTP implementation in the INET framework to limit the
implementation work. The SCTP module was introduced by [RTR08] and is up to now the
default SCTP module in the INET framework. However, in cooperation with the author of
[Dre12a], this module was completely redesigned and extended with CMT functionality and
mechanisms to support NR-SACK, Chunk Rescheduling as well as Buffer Splitting. With
respect to the SCTP module, this thesis just focuses on the features which are important for

4.1. SIMULATION MODEL 43

the following chapters and differ from [Dre12a].
The first step was to extend the existing simulation module with the coupled congestion

control OLIA (see Subsection 6.2.3). The SCTP model initially provided the same param-
eters for cmtCCVariant as TCP (see Table 4.1), but only with the support of LIA and
RP-MPv2. In the second step, the scheduler system was redesigned with the goal to support
a parameterization similar to the MPTCP implementation. Thus, there exists a comparable
multipath Scheduler parameter for SCTP.

4.1.2.4 Enhancement of other models

The NetPerfMeter simulation model was created in [Dre12a] and was used in the preparatory
work for evaluation and testing [BRW+13, DBRT10, DBPR10a, ZDB+10, DABR12b]. A first
detailed description was done in preparatory work of [DBPR10b]. As an independent module,
NetPerfMeter can be integrated in the INET stack and can act as an active sender or as passive
receiver, depending on the parameterization. NetPerfMeter is used in this thesis as a traffic
generator to simulate a saturated sender. A more detailed description of the parameters and
design is given by [Dre12a]. For this thesis, the NetPerfMeter module was extended to support
the send process of an MPTCP connection, in particular to create new messages in time before
the send queue runs empty. The MultihomedFlatNetworkConfigurator is used to configure
the endpoints. This configuration tool was also published as preparatory work of this thesis
and is also described in more detail in [Dre12a]. For this thesis some adaptation work was
required to keep it operational on the codebase used for the MPTCP implementation. This
was necessary because the development process on the main branch of the INET framework
proceeded during the thesis work.

4.1.3 SimProcTC

An important tool for this thesis is the simulation processing toolchain (SimProcTC). This
toolchain was initially created by Thomas Dreibholz [Dre12b]. A brief introduction is also
given by [DZR09] and a more detailed one in [Dre12a]. As [Dre12a] describes, this tool chain
provides a framework to organize the modules CMT-SCTP, NetPerfMeter and the Multi-
homedFlatNetworkConfigurator for a quantitative performance analysis. A task during this
thesis was to extend this toolchain with the required functionality for MPTCP.

4.1.3.1 Basic scenario setup

As [Dre12a] points out, a simulation may consist of thousands of individual runs. The SCTP-
based RSerPool [LOTD08] framework [Dre07] is used as part of the SimProcTC to organize
the distribution of such a high number of runs using a pool of distributed servers. Thus, it is
possible to address one service on many different endpoints at the same time. The pool used
in this thesis provide 44 parallel sessions. That means that in total up to 44 simulation runs
were computed at the same time.

The toolchain uses GNU R [R D12] to plot the figures. A point in the graphic represents
the average value of a minimum of 50 simulation runs for every parameter combination.
Furthermore, the confidence interval is plotted around this point. The confidence interval is
set to 95% for all experiments. Furthermore, each of these minimum of 50 runs has a minimum
duration of 120 s (without transient phase) or 400 s (including the transient phase).

44 CHAPTER 4. TESTBEDS AND TOOLS

S0

R1 R2

R3 R4

D0

Figure 4.3: Test scenario under perfect conditions

4.1.3.2 Baseline experiment

A simple multipath connection setup was created to demonstrate the results of the toolchain
and, furthermore, to demonstrate the expected behavior of the implemented extensions of
MPTCP and CMT-SCTP in INET in a simple test case. Figure 4.3 shows two endpoints S0
and D0. Both endpoints are connected via two access links. S0 sends a flow F0 by using the
links α and β. The capacity ρ(α) is constant with 800 Kbit/s, the link capacity ρ(β) varies
from 200 Kbit/s to 9 Mbit/s. Thus, ρ(β) is set to more than 10 times the capacity ρ(α) in
the extreme. Three experiments were configured for this setup by using MPTCP in a first,
CMT-SCTP in a second and singlepath TCP via β in the third experiment. Every connection
used the path β for the initial handshake.

The results of the simulation are shown in Figure 4.4. All three curves are showing the
expected results. Curve #3 illustrates the performance of the singlepath flow depending on
the capacity ρ(β). Curve #1 and #2 show the result curve as a sum of the capacity ρ(α) and
ρ(β)7.

4.2 Real world testbed setup

An evaluation with the simulation environment is not sufficient, as for example the prepara-
tory work in [ADB+11] shows. Especially issues caused by the CPU load are not sufficiently
addressed in the current simulation model. Thus, even if the protocol mechanisms show
perfect results in the simulation setup, the mechanisms also have to be evaluated in a real
world setup. Furthermore, it should be kept in mind that the simulation only represents the
network as good as the parameterization used to set the experiment. Whether this network
represents the complete picture is not ensured as this thesis will demonstrate, too.

The reference implementation of CMT-SCTP was extended in this thesis for example by
the coupled congestion controls (see Section 6.2) to investigate the mechanisms also in real
world setups. Anyway, for the measurement itself, endpoints were configured to run the refer-
ence implementation of MPTCP on Linux and CMT-SCTP on FreeBSD. Thus, all hosts had a
dual boot installation for both Linux (Ubuntu) and FreeBSD. For the endpoints, state-of-the-
art computers were used, in this case Dell Optiplex 760 with 4 GiB RAM and Intel Core™ 2
Duo CPU E8600 3.33 GHz. Measurements in a real world setup are separated in test setups
in the Internet and a local testbed setup. The local testbed setup is mandatory to create
controllable and repeatable experiments, which are not possible in the Internet. The link

7The overall performance is of course reduced by the protocol overhead. Thus, only the goodput is measured.

4.2. REAL WORLD TESTBED SETUP 45

Figure 4.4: Testbed experiment with 0 ms delay

characteristics of the local testbed setup were manipulated by using Dummynet [BDRF11].
The NetPerfMeter toolchain for Linux and FreeBSD was installed on the endpoints. The
NetPerfMeter toolchain for Linux and FreeBSD was introduced as a tool for multipath pro-
tocols as preparatory work in [DBAR11a] and is comparable to the NetPerfMeter module of
the OMNeT++/ INET framework. It also produces vector and scalar files as outcome, which
can be plotted with the existing toolchain of the simulation environment.

46 CHAPTER 4. TESTBEDS AND TOOLS

Chapter 5

Revisiting path management

This thesis is based on an initial situation, where two IETF load sharing extensions —
MPTCP [FRHB13] and CMT-SCTP [ABD+13] — existed for the transport layer. Both
approaches are alike, with similar challenges (see Subsection 3.2.3) and goals (see Subsec-
tion 3.1.1) and for both the path management task is essential. Maximum network resources
can only be used if the path management works as expected. The initial measurement tests
with the currently deployed path management strategies show impressive results. For ex-
ample, the experiment described in [Chr13] demonstrates that it is possible to transfer the
data volume of more than one DVD per second between two endpoints. So far, for the load
sharing connection in this experiment setup is the fastest TCP connection ever established.
Furthermore, the research publications [DBRT10] and [RPB+12] show nearly perfect results
in their simulation models or emulated network setups. Although the authors identified possi-
ble problems in asymmetric, heterogeneous link setups, they also provided potential solutions
to decrease the effects. So far, the research community identified no challenges for the path
management with impact on the performance. This chapter will change this view.

Until now, the path management was not identified as performance limiting factor and
the default test model used in the experiment setups can be identified as reason for this. The
test model consists of 1 to n endpoint pairs, where one endpoint acts as client and the other
one as server. Furthermore, every endpoint pair is connected by 2 to m links. It is important
to note that the test model used always ensures that the transport protocol extensions are
able to use at least one path per endpoint address pair.

Many publications are based on this simple multipath model. One example is the research
paper of [RBP+11]. In this work the authors show a possible improvement in a datacenter by
using the load sharing extension of TCP. In the context of fairness the publications [BDAR12b,
DBPR10a, AWDR14, ADB+11, VBOMT13a, DABR12b] can be mentioned and, furthermore,
in the context of scheduling all research papers, e.g. [SGTG+12, RPB+12, DSTR10], apply
this model.

All results lead to the assumption that the extensions for load sharing of TCP and SCTP
provide the same results under the same conditions in a nearly perfect way. These results
can lead to a statement that it does not matter for an application which protocol – TCP or
SCTP – will be used for load sharing. But, these protocols are not identical and provide a
completely different architecture and philosophy. So far it was not discussed if this difference
has an impact on the ability to achieve the load sharing goals. This chapter, therefore,

47

48 CHAPTER 5. REVISITING PATH MANAGEMENT

addresses this question which is important for the application.
Furthermore, first real world measurements show that the use of more than one link is

not always a straightforward task and needs a more detailed discussion. The efforts spent in
this thesis led in the end to the first intercontinental multi-homing testbed which supports
both IETF extensions on the transport layer in a comparable setup in the Internet. Here a
lot of initial work and topology analysis were necessary to achieve comparable results and to
demonstrate the impact of the design on real Internet topologies.

The ability to support load sharing on the transport layer in every reasonable connection
setup was not discussed so far, because the focus was on the design of the load sharing
extensions themselves. This thesis focuses on further constraints which even have a direct
impact on the ability to support the load sharing feature. The constraints identified in this
thesis are:

• Layered protocol architecture
As discussed in Chapter 2, the currently used network model is a layered model. In
this model the transport protocol is not aware of any topology information. It only
has one interface to the network layer to exchange data. There exists no interface to
exchange link information. The network layer also does not know about the existence
of links or their status. The network layer protocol is only aware of the configured or
assigned addresses. Therefore, for a network layer protocol, e.g. IPv4, the local endpoint
is multi-homed and provides potentially the chance for load sharing if more than one IP
address – with a scope beyond endpoint borders – exists. But so far nothing is defined
about the mapping of the addresses to the available links and, furthermore, nothing is
defined about the way a transport protocol has to use this information to establish an
end-to-end connection.

• Backward compatibility
Subsection 3.2.3 explains that the load sharing extensions MPTCP and CMT-SCTP are
based on existing singlepath protocols. Thus, the extensions provide a design where the
application is not aware of the load sharing feature. All interfaces and descriptions of an
end-to-end connection remain the same from application view, although the protocols
support the multipath extensions. Therefore, the application must be able to address a
multipath and a singlepath connection in the same way. As discussed in Subsection 3.2.3,
TCP uses a so called 4-tuple to identify a connection by setting the source/destination
IP and the source/destination port. SCTP provides a list of alternative address pairs
for a specific port to address an association.

The design of the extensions requires a network transparent behavior, too. The mid-
dleboxes (see Subsection 2.3.1) or any other observer should be unable to identify a
different behavior as for a TCP or SCTP connection.

This chapter discusses the path management as a task with:

• Complex interaction of different protocol layers.

• Challenging mix of specifications, which are optimized for a singlepath network setup.

• The need to develop new mechanisms for multipath support.

• A possible impact on every network component.

5.1. PATH MANAGEMENT 49

Figure 5.1: General setup of a multipath scenario

The behavior of the mechanisms in a real network is discussed by using the components
illustrated in Figure 5.1. In this figure, a simplified multipath topology is illustrated consisting
of the main roles in a multipath connection setup. The endpoints at the network borders
represent the source and the sink of the connection. The next points of interest are the access
links, which are possibly under the control of the sink or the source, even if this is not the
case in most scenarios. The last major component is the connecting network, normally the
Internet for Internet protocols. In the worst case the customer has no control over these
resources and the worst case is the default case.

This and the following chapter focuses only on scenarios with a static topology. Neither
standard SCTP [Ste07] nor CMT-SCTP [ABD+13] provides any mechanism to add or remove
addresses – as described for example in RFC5061 [SXT+07]1. The dynamic path management
aspects are out of scope of the following discussion.

The sections are structured as follows. First, the constraints for the load sharing extensions
of TCP and SCTP are discussed to understand the resulting requirements and the degrees of
freedom for the design. There is the need to understand the impact of the layered protocol
architecture and backward compatibility. In the second step, the impact of the network layer
on the path management is discussed. Altogether, this discussion provides insights which
protocol manages load sharing in the Internet in a better way.

5.1 Path management

Compared to the multipath setup, it is easy to manage a functional connection “path” in a
singlepath environment. Here, only one “path” to the destination exists. For the transport
protocol it does not matter if there are routers in the network or how these routers forward
the data. There is always a strong relationship between the interface, the IP address and
the “path”. This dependency allows the utilization of the resource by the application for
both SCTP and TCP immediately after the initial handshake is done (on the basis of one
destination address). For concurrent multipath transfer this task is much more complex.

The unambiguous assignment of the address, path and link is dissolved. There exists no
common rule how to map a usable “path” of a transport protocol – whatever the definition

1The RFC5061 exists as an extension for SCTP on base of RFC4960 with the goal to support the add/remove
of addresses, but RFC5061 is not an explicit part of the CMT-SCTP approach.

50 CHAPTER 5. REVISITING PATH MANAGEMENT

is – to a physical link. For an observer outside the system this issue might be a surprising
challenge because it seems obvious to use a path per physical link. But it is not obvious
for the transport protocol in the Internet. By using the default Internet protocol (IP) the
network layer only has an abstract view on the network by providing just an addressing and
forwarding functionality. Thus, if more than one network layer address is provided, it is
completely under the control of the network layer to map these addresses to the physical
links. Therefore, this mapping is out of control of the transport layer. The impact on the
design of a multipath protocol and a successful deployment is underestimated.

5.1.1 Constraints

The load sharing extensions of TCP and SCTP were not designed from the scratch. There-
fore, the new mechanisms for connection setup, connection usage and capacity sharing have
to adapt to the existing conditions and requirements. The constraints are based on the spec-
ifications for singlepath TCP and SCTP and their multipath extensions. It should be kept in
mind that the requirements for the singlepath specifications are the IETF consensus. There-
fore, modifications to these existing specifications are not possible, even if it would make sense
considering the new conditions of the multipath goals. However, the existing specifications
are extendable to achieve the new goals.

5.1.1.1 General

For MPTCP the interaction of the relevant specifications is more complex than for CMT-
SCTP. TCP is defined in RFC793 [Pos81b] (see Section 2.1). The general load sharing design
approach for MPTCP is defined in RFC6182 [FRH+11] and addresses the architecture as
an extension of RFC793 with the application and network compatibility discussed in more
detail in RFC6824 [FRHB13] (see Subsection 3.2.3). RFC6824 also includes the general pro-
tocol design and the additional signaling for connection setup and the new sequence number
space (see Subsection 3.2.3.1 and 3.2.3.2). Furthermore, RFC6824 addresses the issues with
middleboxes – for example firewalls [Fre00] – and the need for a new congestion control to
achieve fairness at the bottleneck (see Subsection 3.2.2.1). The RFC6356 [RHW11] addresses
the congestion control issue and provides a very first solution (see Subsection 6.2.2). The
RFC6824 and RFC6356 are dependent on other RFCs, e.g., the RFC5681 [APB09] for the
singlepath congestion control and also on RFC2018 [MMFR96] for selective acknowledgment
(SACK). Furthermore, RFC5681 is an update of RFC2581 [APS99] and RFC2001 [Ste97].
The RFC2001 is based on RFC1122 [Bra89] which itself is root for some more dependencies
e.g. the retransmission timeout calculation in RFC6298 [PACS11]. Also, another branch of
RFCs is based on the backward compatibility defined in RFC6182 and RFC6824. A general
overview of the TCP load sharing extension is provided in RFC6897 [SF13]. The RFC6897
also describes clearly that the multipath design has to manage the data transport via differ-
ent subflows automatically, i.e., without any information from the application or other upper
layers.

As compared to the load sharing extension for MPTCP these dependencies are less com-
plex for CMT-SCTP. The RFC4960 [Ste07], which describes the core transport protocol, is
the base for most of the other specifications.

The RFC4960 is an update of the RFC2960 [SXM+00] that provides the multi-homing
feature (see Subsection 2.2.2) but no load sharing function. The load sharing is addressed

5.1. PATH MANAGEMENT 51

Figure 5.2: Simplified illustration of a TCP TCB list with relation to a socket interface

in an IETF Internet Draft called “Load Sharing for the Stream Control Transmission Proto-
col” [ABD+13].

It should not surprise that the existing protocol specifications establish a frame for the
load sharing extension where the degrees of freedom for an implementation are reduced.
This legacy support is a limitation for MPTCP and CMT-SCTP. It becomes for example
visible in the identification of an MPTCP and CMT-SCTP connection and the paths used
for the multipath transfer. As discussed in Subsection 2.2.1, at least an information 5-tuple
(source/destination address, source/destination port and protocol identification) is required
to address a connection on the transport layer. A query with this information 5-tuple always
provides a unique identifier in a protocol control block (PCB).

Furthermore, as [Koz05] explains, each connection has to maintain data about its status
and unique identifier separately. Therefore, a specific description structure called transmission
control block (TCB) has evolved in different RFCs over time as element of the PCB to describe
a TCP connection. Figure 5.2 gives a simplified illustration of the TCP TCB in the context of
the TCP socket connection, which is also used by the Berkeley Socket API [WS95], the de-facto
standard interface to the transport protocol on most operating systems (see Subsection 2.3.3).

The connection description was introduced in rudimentary form in the first TCP RFC
[Pos81b]. However, it was illustrated first in detail in [WS95] as a doubly linked circular list.
The list has always a fix start point which allows a direct access to the root element of the list,
e.g., as root element for a connection lookup. The TCP TCB is used in a singlepath environ-
ment to allocate singlepath connections to the endpoints with minimum information. This
information structure includes source address (inp laddr), destination address (inp faddr),
source port number (inp lport), destination port number (inp fport) and also other informa-

52 CHAPTER 5. REVISITING PATH MANAGEMENT

Figure 5.3: Simplified illustration of an SCTP TCB list with relation to a socket interface

tion assigned to a connection like the status of the state machine [Pos81b] or the necessary
information for the flow control as described in RFC6582 [HFGN12] for TCP. The variable
names are encoded mostly by inp for Internet protocol, l for local and f for foreign.

It is important to understand that the TCP TCB is a result of discussions done over the
years considering different constraints and goals. The constraint of “backward compatibility”
results in the fact that this structure cannot be changed, only extended. Clearly, a change of
this structure would not lead to an extension of the existing protocol, rather to a specification
of a completely new protocol and is, therefore, not possible.

Figure 5.2 illustrates that for each socket (so) – as handle for the interface in the appli-
cation – a socket protocol control block (so pcb) exists that points to the assigned transport
protocol. This connection entry itself is part of the list that describes the TCB and, therefore,
the complete TCP connection. This relationship is characterized in a generic part assigned to
the general socket layer structure and a protocol specific interpretation by the TCB for TCP.

In SCTP [Ste07] the TCB also exists as a list of SCTP associations, but the structure
is more complex. However, the basic idea is similar to TCP. The RFC4960 [Ste07] defines
a recommended structure of parameters, which is useable as basis and gives the developers
more detailed information about the standard (see Figure 5.3). SCTP provides, in contrast
to TCP, a structure to identify more than one subflow. Thus, the existing structures of SCTP
can be used. This leads to the fact that parts of the path information of SCTP – like the
congestion window (CWND) – are given for each destination address (see entry faddr cwnd
Figure 5.3) as a unique value.

In contrast to SCTP, the TCB for the default TCP provides no room to identify more
than one subflow. Thus, the existing TCB structure has to be extended. Every new entry
must represent a complete TCP connection, because every subflow has to interact on the path

5.1. PATH MANAGEMENT 53

like a “normal” TCP connection (see Subsection 3.2.3). Therefore a subflow entry is similar
to a default TCB TCP connection structure2.

This historical relationship of status variables to addresses has an impact on the behavior
of SCTP and TCP with the additional load sharing extension, as explained in the following
sections.

5.1.1.2 MPTCP

Until now, the general discussion about existing constrains leads to a subflow description as
a copy of a default TCP connection. The relation between the MPTCP connection and a
subflow is defined in RFC6182 Subsection 1.2 [FRH+11].

Subflow: A flow of TCP segments operating over an individual path, which forms part
of a larger Multipath TCP connection.

So it has to be understood that a subflow – organized as a default TCP flow – is defined as
all segments using a specific path between two endpoints identified by a specific source/des-
tination IP address pair. Therefore, a path is only a logical entity defined on the transport
layer and does not imply the usage of a specific access link as this mapping is done by the
routing layer (see Subsection 1.2 of RFC6182 [FRH+11]).

Path: A sequence of links between a sender and a receiver, defined in this context by a
source and destination address pair.

Every individual source/destination address combination in MPTCP identifies a new us-
able path, because every combination is required to ensure the support of the goal defined
in [FRH+11]:

Multipath TCP is primarily concerned with utilizing multiple paths end-to-end, where
one or both of the end hosts are multi-homed.

With this definition a complex requirement is addressed. The TCB describes a multipath
connection created by an application with the normal information 5-tuple. Furthermore, the
TCB includes the list of the subflows. In this subflow list every entry provides the same
information and functionality as a default singlepath TCP entry. An entry to this subflow list
has to be added if the source/destination address pair does not exist so far, even if one address
of this new pair is already a part of an existing subflow. The support of multiple paths to
one destination address – as requested in the scenario with one multi-homed host – requires a
handshake to every destination address or from every source address. Clearly, this definition
is the reason for the full cross table of all address combinations. The cross table is a result of
the singlepath TCP constraints and the multipath goals and these constraints create a pool
of multiple potential paths without any knowledge, whether an address combination is valid
or not. If a new address pair is identified or signaled – for example by an ADD ADDR option
(see Subsection 3.2.3.1) – the resources for this path have to be reserved and the additional
“Join” Handshake (see Subsection 3.2.3.1) has to be performed.

2Subflow information includes information like sequence number, window size, etc..

54 CHAPTER 5. REVISITING PATH MANAGEMENT

5.1.1.3 CMT-SCTP

The multi-homing feature is already available in standard SCTP defined in RFC4960 [Ste07],
and later on provided as basis for CMT-SCTP. Thus, the RFC4960 and the CMT Internet
draft give exact information about how SCTP identifies a specific association and how SCTP
addresses usable paths between two endpoints. For the load sharing extension this path
identification and definition of an association is important and also every detail in this context,
because it describes the usable resources. The definitions are presented in the following to
give more detailed information for the discussion. First, the RFC4960 provides the path
definition:

Path: The route taken by the SCTP packets sent by one SCTP endpoint to a specific
destination transport address of its peer SCTP endpoint.

In this definition the sender is not mentioned. This strict focus on the destination addresses
is visible throughout the entire RFC and is also the reason for the mapping in the SCTP TCB
(see Figure 5.3). It is, therefore, not surprising that there exists a multi-homing definition
with the same intention.

The endpoint is considered as multi-homed if there is more than one transport address
that can be used as a destination address to reach the endpoint.

The authors of the RFC4960 have pointed out their intention in the Subsection 13.1. Here,
they recommend the TCB parameters for a default SCTP implementation. In this proposal
they define one congestion window (CWND) for every destination address. Applying load
sharing based on SCTP, as initially described in the CMT-SCTP approach [ABD+13, IAS06],
is a straightforward extension and, therefore, CMT-SCTP uses the existing SCTP destination
based path management strategy, too. Thus, the association establishment – including the
setup of more than one path – and the path definition are given by the original SCTP.

5.1.1.4 Conclusion

The core protocols of MPTCP and CMT-SCTP have a different history and design philosophy
which leads to different definitions of “path”. CMT-SCTP provides one path per destination
address, whereas MPTCP manages a path per source and destination address pair. This path
definition has a direct impact on how subflows are distributed over the network. So far no
mapping rules exist to assign an address pair to a specific physical link. In the layered model
this is a task of the network layer. The next step is to analyze the ability of the network layer
to support the needs of this mapping and the impact on the deployment of the load sharing
extensions.

5.1.2 Network layer

First of all it should be clear that routing is not a task of the transport layer. The trans-
port protocol is an end-to-end protocol and is not aware of any infrastructure information
except the information which is exchanged, estimated or measured during a connection by
the transport protocol itself (see Chapter 2 or compare with the general fairness discussion in

5.1. PATH MANAGEMENT 55

Subsection 3.2.2). However, the load sharing extensions of TCP and SCTP are unable to use
the resources without any further routing adjustments. The reason is simple: the data has to
reach the destination via different paths on different physical links to exploit the idea behind
load sharing. The transport protocol depends on the network layer information and identifies
a “path” by the IP addresses. However, the IP addresses do not ensure that the paths are
mapped correctly to the logical and/or physical infrastructure. Most operating systems are
not aware of the need to support multiple interfaces at the same time [BS11].

The default operation for protocols on the network layer is based on singlepath behavior
in the Internet. For IPv6 there also exists a standardized way to support multipath, if the
infrastructure is supporting this [CA11], but this support is not the default case. However,
the routing process is based, from a historical point of view, on the assumption that only the
destination address is required to forward a packet through the network [Pos81a].

Clearly, in many operating systems the routing focuses only on the destination address.
The source address is only used to support the bi-directional connection. Thus, every mapping
decision from path to link is made on the basis of the destination address. This is also
denoted as destination-based routing. The rules for the destination-based routing are placed
in a specific routing table. This routing table provides an assigned gateway per endpoint or
network address. This gateway information leads to a physical interface and a usable link.
Thus, a routing table consists of information about at least the reachable network, the metric
and the next hop. If there exists no information for a specific network or endpoint, a specific
kind of routing information is considered denoted as default route. A default route describes
the rule for the routing decision if no other rule exists. In IPv4 the default route entry starts
with the unspecified network address 0.0.0.0. The destination-based routing has a direct
impact on the multipath extensions of TCP and SCTP.

5.1.2.1 Routing and MPTCP

A source/destination address pair defines a path in MPTCP and the paths are organized as
a list in the TCB of TCP. A handshake is required for every subflow to exchange data via
the new subflow. The information used to create the handshake message flow depends on the
implementation and the routing setup in the operating system (see Subsection 3.2.3.1). Thus,
the initial handshake depends on the implementation and configuration of the endpoint. The
handshake variants can differ in the IP addresses or interfaces used.

The default behavior of most operating systems is not supportive for the MPTCP exten-
sion. In this case, without any further work, the goal of better network utilization cannot
be achieved by deploying the load sharing extension. Of course, theoretically MPTCP is
also able to establish more than one subflow in default system setups, but it is necessary to
understand that these subflows are not mapped correctly to the physical paths in every case,
especially if only the default route is used.

If only the default route exists, the routing always uses the same gateway and the same
physical access link. Therefore, no real load sharing will be achieved, because the subflows
are not mapped to different physical links. A routing table setup to differentiate multiple
physical access links is required. This is possible by a manual configuration of appropriate
routing rules on the basis of each destination address. But a manual manipulation is not really
practical, because it creates the requirement for a manual routing entry for every connection
partner.

The IETF Internet draft from the main authors of the MPTCP extension [BPB11b] claims

56 CHAPTER 5. REVISITING PATH MANAGEMENT

the definition of a more general approach. From their point of view a switch to source-based
routing provides a universal implementation approach for MPTCP. The idea of source-based
routing is similar to destination-based routing with the important difference that there exist
additional routing tables per source address. Many OSs support this routing feature – even
if it is not always activated by default or must be compiled into the kernel.

The Internet draft [BPB11b] has proposed an example routing table in its Subsection
4.1.2, which should be used as universal approach for MPTCP routing. First approaches
of automatic multipath configuration tools already exist [Kri13, Ond13]. These tools create
an extra routing table with a single default route entry per source address. The basic idea
behind this is to map traffic of a specific source address to a specific interface to support the
mapping of paths to links. But this approach has a weak point in design that has not been
discussed so far. It is denoted in the following as the MPTCP routing issue. This routing
issue demonstrates that the source routing does not cover all use cases. This thesis will discuss
that these drawbacks prevent a connection setup in the worst case.

The MPTCP routing issue

The Figure 5.4 illustrates a generic multi-homed endpoint connected to the network via two
access links. The endpoint is not aware of the network structure, which is the default case in
the Internet. A default application is used in this setup, which is not aware of the MPTCP
feature. This setup establishes the client side of the base model discussed in the first section
of this chapter. It is addressed by most publications in the context of the SCTP and TCP
load sharing discussion, e.g., [RBP+11, PEK11, BPB11a, DBRT10, BDAR12b, DBAR11b].
This setup gives no further information about the topology used, except that a connection
via the Internet will be established. Non-Internet based setups have not been addressed so
far. However, the scenario described can lead to two different setups which are illustrated in
Figure 5.5a and Figure 5.5b. Both setups are characterized as follows:

• Cross path setup
This is the default Internet setup without any individual configurations. In a meshed

IPେଵ

IPେଶ

Client C
I1

I2

IPୖ ଵ

IPୖ ଶ

Figure 5.4: Simple multipath routing setup

5.1. PATH MANAGEMENT 57

Client C Server R

I2

I1

(a) Cross path setup

Client C Server R

I1

I2

(b) Disjoint/linear path setup

Figure 5.5: Path setup

network always a path from any source to any destination exists. Subfigure 5.5a illus-
trates every possible path which is useable for the initial 3-way handshake in a simple
meshed network model. In this scenario the proposed MPTCP routing approach works
perfectly, because in the end every possible address combination will be used, indepen-
dently of the destination address of the initial handshake.

• Disjoint/linear path setup
Using disjoint paths is typically an intra-domain network setup. Thus, if reliability
is the goal, it is the preferred network setup for example in a data center [RBP+11].
Furthermore, it is a default setup to provide a high performing setup as described
in [Chr13]. However, apart from the intra-domain setup, this disjoint path setup is also
a valid Internet scenario, if paths are blocked by middleboxes – e.g. NAT – or overlay
networks are used – e.g. virtual private networks. This setup is not covered by the
currently discussed routing approaches.

The network access setup illustrated in Figure 5.4 is used as basis for a simple example.
This example uses furthermore a routing table as introduced in [BPB11b] and shown
in Table 5.1. This routing table provides a “Default Table” which is used if no source
address is provided. This “Default Table” provides a default route which is used, if no
other rule fits. Furthermore, it provides three additional routing tables “Table #1”,
“Table #2” and “Policy Table”. “Table #1” is used for IP packets with an assigned
source address C1 and “Table #2” is used for IP packets with source address C2. Both
tables provide a specific default route per source address. The “Policy Table” provides
the corresponding linking from the “Default Table” to the additional tables assigned to
a specific source address.

An application tries to establish a connection to the server just by using a given des-
tination address. The local address is per default set to 0.0.0.0 in case of IPv4 or ::
in case of IPv6. This is interpreted by most operating systems as wildcard and named
INADDR ANY . In case the INADDR ANY is used, the operating system chooses
the source address. Therefore, the setup of the TCB and the chosen path for the con-
nection setup depends on the routing tables and the protocol implementation. The
further details will be explained by using the behavior of the current MPTCP reference
implementation for Linux. Two different scenarios can be discussed for the disjoint path
setup:

In the first scenario everything works fine. If the application tries to connect to the

58 CHAPTER 5. REVISITING PATH MANAGEMENT

Default Table

Dst: 0.0.0.0/0 Via: Gateway-R1 Dev: I1
Dst: Gateway1-Subnet Dev: I1 Src: C1 Scope: Link
Dst: Gateway2-Subnet Dev: I2 Src: C2 Scope: Link

Table 1 (for C1)

Dst: 0.0.0.0/0 Via: Gateway-R1 Dev: I1
Dst: Gateway1-Subnet Dev: I1 Src: C1 Scope: Link

Table 2 (for C2)

Dst: 0.0.0.0/0 Via: Gateway-R2 Dev: I2
Dst: Gateway2-Subnet Dev: I2 Src: C2 Scope: Link

Policy Table

if src == C1, Table 1
if src == C2, Table 2

Table 5.1: Routing and policy table based on the proposal of [BPB11b]

server with the address R1, Linux uses destination-based routing and lookup for this
address in the routing table. Initially, no source address lookup is possible, because the
source address cannot be identified by the INADDR ANY configuration. Therefore,
the system searches in the main routing table, as this is default. Thus, in this example
it will use the Gateway-R1. Via the Gateway-R1 R1 is addressed and this results in
a successful connection setup. It is important to understand that even if source-based
routing is configured, the first lookup is done in the main routing table where only one
default route exists for every destination address.

In the second scenario, the application uses the destination address R2 instead of R1.
In this case the OS routes the handshake via an interface that does not provide a route
to the destination address3. In this case the initial SYN will never reach the destination
and no connection will be established. This is a significant drawback if all possible
address pairs are built without the knowledge whether a real connectivity exists. The
same negative result will occur for the destination address R1 if the default route will
be changed to R2.

The discussion shows that the proposed MPTCP routing approach is not valid in every
scenario. That is the reason why this thesis proposes three different alternative approaches
to work around this issue. The mechanisms and pros and cons are discussed in the following:

• The first option – an alternative to the manual configuration of the routing table – is to
start the connection on every possible source/destination pair and work in a first come
first serve manner on the first fully established 3-way handshake. However, this results
in some resource management drawbacks. The system has to manage n − 1 half-open
TCP connections for every successful initial handshake – where n is the number of all
source/destination address pairs – which then have to be aborted in the worst case. To
reuse the started handshake is not possible because this requires the key material (see
Subsection 3.2.3).

3The source IP address is given by the default routing table for the paths (INADDR ANY ,R2).

5.1. PATH MANAGEMENT 59

• MPTCP can introduce a kind of heartbeat mechanism that has to take place before the
initial handshake starts. MPTCP could check with this heartbeat mechanism whether
the destination address is reachable. This approach requires a completely new message
exchange similar to the heartbeat mechanism of SCTP, where upon request the receiver
has to answer. However, for MPTCP this must be allowed before the connection even
exists. Although this is a feasible approach, it needs an implementation on client and
server side. Currently deployed MPTCP implementations will not understand this
request and will not give any answer, which would prevent a connection setup. As a
consequence, this introduces a completely new MPTCP version.

• As alternative, a multipath SYN retransmission strategy is proposed by this thesis,
which organizes the retransmission of the initial SYN on alternative paths. Today, there
exists a policy to retransmit the SYN if it is lost in a singlepath setup. Until now, this
mechanism was not adapted to the multipath extension of MPTCP. In MPTCP the SYN
retransmission just focuses on the singlepath connection setup, but this retransmission
should be done via all available paths. The timeouts should base on existing suggestions
for IETF singlepath protocols, for example, on the old RFC2988 [PA00] – which suggests
a retransmission timeout of 3 seconds – or the RFC6298 [PACS11] – which leads to 1
second timeout. This approach can be optimized by considering address-scoping and
using a history of known connections. Thus, if the MPTCP implementation is aware of
a functional address combination from history, this combination should be used first.

In summary, the proposed routing approach for MPTCP is not sufficient to enable full
topology support. An equivalent to a singlepath SYN retransmission is proposed to solve
this issue. Even if this timeout approach needs in the worst case the sum of all path RTOs
to notify the application about an error, it provides a generic solution without requiring a
manual editing of the routing table and also provides full application backward compatibility.

5.1.2.2 Routing and CMT-SCTP

The design goals of SCTP must be kept in mind to understand the routing issues of SCTP. The
primary goal of RFC4960 was to support fault tolerance (see Chapter 2). Here, the SIGTRAN
use case (see Section 2.2) has been considered, which means that the SCTP protocol is used
by default for networks which support a failure-tolerant behavior by design. Thus, if there
is no support by the network, there will be no support by SCTP. The architects of SCTP
had primarily the disjoint path setup in mind – illustrated in Figure 5.5b – not a meshed
and uncontrolled Internet scenario. Without this background, application developers would
expect a similar behavior like for MPTCP, but the designs of both approaches are based on
completely different assumptions.
This initial intention has an impact on the routing, because SCTP does not organize paths
depending on source addresses and there exists no information in most SCTP stacks about
these addresses. In FreeBSD an extra feature was developed, which is called the source address
selection. The source address selection mechanism fills in the source address depending on
the outgoing gateway. There are two reasons to do it that way. On one hand, there is no
need to manage the relationship of source addresses to destination addresses in the SCTP
implementation because SCTP has not to be aware of the addresses used locally. This is a
benefit if the transport protocol must be separated from the network layer as, e.g., done for
the RTCWeb stack [BRW+13].

60 CHAPTER 5. REVISITING PATH MANAGEMENT

On the other hand, it has a positive impact on the scalability. In the high speed testbed
setup of [Chr13], MPTCP was used to send 50 Gbit/s using one MPTCP flow. The default
MPTCP connection setup – using a cross table of all possible address pairs – leads to an
quadratic increase of the potential subflows assigned to the path. But investigating the
experiment setup shows that the researchers also noted that building the full cross table was
turned off and only one connection per destination address was established4. Therefore, this
specific MPTCP connection setup leads to the disjoint path setup of Figure 5.5b5 that is used
by CMT-SCTP by default. Scalability can be an important argument. The calculation of
the memory required for the buffer management to support reliable data transfer in this high
speed setup is a good example.

It has a high impact on the buffer resource needed by the sender if the minimum buffer
has to be calculated for the usage of 36 10 Gbit/s paths – even if only six subflows are really
useful in this setup. The system has to preset every source/destination address combination
with the resources required for a normal TCP connection, because during the subflow and
path building process it is not clear which subflow will be usable for the connection. The
base of this resource booking is the calculation of the bandwidth delay product (BDP). The
BDP equals the amount of buffer the sender has to provide to support an ordered, saturated
transmission. Retransmission timeouts also must be considered if reliable transmission is
expected,

That is, the minimum buffer size Bmin – for the sender as well as for the receiver buffer –
in a setup with paths P = {P1, . . . , Pn}, BWi the bandwidth and RTTi the RTT of path Pi
is:

Bmin = 2 ∗ max
1≤i≤n

(RTTi) ∗
n∑
i=1

BWi.

Furthermore, the timer-based retransmissions (see Chapter 2 for more details) must be
considered in case of high congestion (even if they should be rare). To cover a timer-based
retransmission, the minimum buffer size Bmin for the sender and receiver buffers is:

Bmin = (3 ∗ max
1≤i≤n

(RTTi) + max
1≤i≤n

(RTOi)) ∗
n∑
i=1

BWi.

That is, in the worst case it takes 3 times the RTT (first transmission, fast retransmission,
timer-based retransmission) plus the highest path retransmission timeout (RTO). Since the
default minimum RTO is 1s (as described for example in [Ste07] and [PACS11]), the timer-
based retransmission coverage by the buffer space is usually too expensive. Adapted to
the 50 Gbit/s experiment the buffer has to be calculated with n=6, BWi=10000 Mbit/s
and a basic setup with RTO=1s and RTT=110ms. This results in a memory need of 7
GiB for the CMT-SCTP and 45 GiB for the MPTCP end-to-end connection. Of course,
no optimization is considered here and this represents an extreme/worst case scenario. But
nevertheless, it demonstrates the issue with a path definition using all source-destination
address pairs. Furthermore, besides memory usage also the impact on CPU load and the
organization overhead should be considered.

4Not wanted subflows can be blocked for example by firewalls.
5Of course with six paths instead of two.

5.2. PATH MANAGEMENT SCENARIOS 61

Client C Server R

Figure 5.6: Simple multipath scenario

5.1.2.3 Conclusion

Even if the routing of packets is not a task of the transport layer, it has a severe impact on
the ability to support the load sharing extensions. The impact of the network layer leads
to different results, where only in the best case a load sharing feature for both transport
protocols is supported. But it is also true that the mapping of the paths to the links is not
straightforward. Efforts have to be spent here in every case for CMT-SCTP. SCTP requires
by definition a managed network and the correct mapping. For MPTCP, a universal approach
for a meshed network is provided6 even if it lacks to cover every setup scenario as discussed
for the MPTCP routing issue. MPTCP supports – with the proposed improvements – a more
practical and easier way to setup conditions required for a successful load sharing deployment,
particularly with diverse connection partners in a meshed network like the Internet.

5.2 Path management scenarios

The comparison of the two path management approaches of MPTCP and CMT-SCTP requires
comparable scenarios with a real world impact. The first approach for a possible test model
is a design that is as simple as possible, but also close to an expected use case. The simplest
multi-homing setup requires the existence of more than one IP address at at least one endpoint.
This scenario also is addressed in RFC6182 [FRH+11].

5.2.1 Basic scenario 1: One multi-homed host

The most important use case in the Internet is still the application server model [KR02]. That
means, a provider outside the control of the customer provides a service and the customer uses
this service by sending packets to a specific address. This address will be translated during
the path setup to a specific IP address and port number pair. This information defines the
connection in case of TCP and the well-known 5-tuple.

Just extending this scenario with an additional address leads to the simplest multipath
scenario, which is also illustrated in Figure 5.6, by using only one multi-homed endpoint with
one additional address. In the multipath scenario of Figure 5.6, the server provides only one
interface with only one IP address and the client is connected simultaneously by two, e.g.
via a WiFi and a 3G network. Today this setup is a very common use case, e.g., for mobile
devices like smart phones or tablets.

6with existing software tools.

62 CHAPTER 5. REVISITING PATH MANAGEMENT

MPTCP
From the standardization view this setup represents a valid scenario for MPTCP. If the routing
works as expected, the first initial 3-way handshake includes the new TCP MP CAPABLE
option and this option signals an incoming MPTCP connection to the server. After the first
handshake is performed, the client starts an additional handshake to establish the alternative
subflow. As a result, a multipath connection is established through the network using both
possible address pairs. Summarized, in case of MPTCP this simple scenario is useable for
load sharing even if additional routing configuration is necessary.

CMT-SCTP
As explained in Chapter 2, SCTP uses a 4-way handshake to establish a multipath connection.
During this process the client C sends an INIT message including addresses C1 and C2. The
server R answers by sending the INIT-ACK with address R1.

It is important to understand that two different mechanisms are working to support multi-
ple paths, one from the singlepath specification and the other from the multipath specification.
The RFC4960 was designed to increase reliability, but to support the transfer only via one
path.

The load sharing extension uses all existing paths simultaneously. A path in CMT-SCTP
is defined only by the destination address. Therefore, if only one destination address exists,
only one path is useable by the load sharing extension. Thus, no load sharing is supported
in this setup. But this restriction does not mean that the alternative path is not usable. In
a failure scenario, SCTP is able to use the existing resources – based on the definition in
RFC4960 Section 6.4.1 [Ste07]:

When retransmitting data that timed out, if the endpoint is multi-homed, it should
consider each source-destination address pair in its retransmission selection policy.

Thus, SCTP is in case of a timer-based retransmission able to consider also every other
source/destination pair for further transmission. Summarized, in this scenario, the CMT-
SCTP extension provides increased redundancy but does not to achieve the goal of increased
throughput. This is an additional drawback in comparison to MPTCP.

5.2.2 Basic scenario 2: Two multi-homed hosts

The second scenario is defined by a multi-homing support with two addresses on both end-
points. As discussed so far, this setup leads to two possible scenarios, namely the disjoint
path setup (see Figure 5.5b) and the cross path setup (see Figure 5.5a). The disjoint path
scenario represents the simple basic test model used so far. It provides routing challenges,
but it is a suitable scenario for a performance comparison for both multipath extensions. In
contrast, the cross path setup changes the basis for this comparison which was not considered
so far. A local testbed (see Section 4.2) with the topology illustrated in Figure 5.7 is used to
demonstrate the impact of the link configuration. A typical German DSL setup with specific
bandwidth restrictions on every access link was used for the link configuration. The access
links C1 and R1 have been limited to 800 Kbit/s and link R2 has been set to 3 Mbit/s. The
bandwidth of C2 has been varied between 200 Kbit/s and 3 Mbit/s. Delay and error rate were
assumed as homogenous and low. The sender was saturated. The setup shows no bottlenecks

5.2. PATH MANAGEMENT SCENARIOS 63

Figure 5.7: Experiment setup to illustrate the impact of source-based selection

in the network. This experiment setup demonstrates a different behavior for MPTCP and
CMT-SCTP.

MPTCP
The load is shared by MPTCP among all available resources completely using the existing
infrastructure. For the overall system performance it does not matter which path is chosen
for the initial handshake (PC1−R1, PC1−R2, PC2−R1 and PC2−R2). In every case, every path
will be established and used. So, the optimal throughput is achieved, independently of the
initial path.

CMT-SCTP
For CMT-SCTP, the achieved throughput depends on the path chosen for the initial hand-
shake, if there exists an asymmetric configuration of the access links. The results are shown
in Figure 5.8. If the initial path is set up via the low speed link at the sender (C1) and the
high speed link at the receiver (R2), the throughput does not benefit from the faster link
combination (PC2−R2). Therefore, the initial choice of the destination address is crucial for
the possible throughput improvement of CMT-SCTP. The ideal load sharing result is only
achieved if the right routing decision is configured in the routing table to support the strongest
path. A real world issue can be identified, because the configuration of the destination is typ-
ically not known. Thus, even if a user or the application has access to the routing table this
is not fruitful and does not ensure a correct mapping for the topology. An obvious remedy
would be to adopt the mesh-type path management of MPTCP. However, the decision for
the (CMT-)SCTP strategy is based on the IETF working group consensus. The goal was to
keep SCTP and the multi-homing feature scalable. Therefore, the CMT-SCTP feature has
to be designed without any change on the TCB of SCTP.

5.2.3 Specific scenarios

The ability to use every possible path combination also has an impact on other scenarios,
which is discussed in the following subsections.

64 CHAPTER 5. REVISITING PATH MANAGEMENT

✵�✵ ✵�✁ ✶�✵ ✶�✁ ✷�✵ ✷�✁ ✸�✵

✂
✄✂

✂
✄☎

✆
✄✂

✆
✄☎

✝
✄✂

✝
✄☎

✞
✄✂

❉✟✠✟ ✡✟✠☛ ☞✌ ✍✎✌✏ ✑✒ ❬✓✔✕✠✖✗✘

❘
✙
✚
✙
✛✜
✙
❡
✢
✛✣
❘
✤
✣✙
✥✦
✧
✛✣
★✩
✪

P✟✠❛ P

✫✬ ✭✮✯✰✫✱✲✫

✳✬ ✭✮✯✰✫✱✲✳

✴✬ ✭✮✯✰✳✱✲✫

✹✬ ✭✮✯✰✳✱✲✳

Figure 5.8: Impact of initial handshake

5.2.3.1 Asymmetric load sharing scenarios

Before the path management in a real world scenario is investigated, the impact of an asym-
metrical multi-homing setup with more than two IP addresses has to be discussed. The
following discussion is based on the simple example illustrated in Figure 5.9. Two endpoints
are connected via different networks. The client C has two IP addresses and the server S has
three.

As discussed, MPTCP will build all available path combinations. Therefore, MPTCP uses
the same number of subflows for both directions. In the scenario given, three subflows are
used in every direction. However, CMT-SCTP only uses the destination addresses as pointed
out, resulting in an asymmetric number of paths used for each direction. Even if the client
C knows three addresses and uses three different paths, the server R answers just by using
two paths. However, as long as the network is homogenous it makes no difference, because
the congestion control mechanism acts on the bottlenecks in a fair manner among all paths.

The difference will be observed when the bottlenecks are located in the network and can
be bypassed via alternative links. Here MPTCP has a benefit, because it is able to use every
path combination and, thus, more network resources.

Client C Server R

Figure 5.9: Asymmetric multipath scenario example

5.2. PATH MANAGEMENT SCENARIOS 65

5.2.3.2 Poor man’s multi-homing

This scenario demonstrates that the choice of the technology has an impact on the ability
to support load sharing on the transport layer. As discussed in Subsection 2.3.3, with IPv4
and IPv6 there exist two major network protocols. IPv6 introduces a new auto configuration
feature by using link-local addresses. Since IPv6 link-local addresses can only be used in a link
scope, the transport protocol cannot differentiate between the networks. Thus, an endpoint
cannot identify to which network an address is assigned.

Strictly speaking, the “Poor man’s multi-homing” scenario reflects a topology where two
endpoints are connected directly without any routers or middleboxes in a disjoint path setup.
Figure 5.10 illustrates an example and for the following discussion it is assumed, that the
initial handshake is performed on the upper path (IPv6CLL1,IPv6RLL1).

As discussed for CMT-SCTP in Subsection 2.2.2, the IP addresses are exchanged during
the initial handshake. The specific aspect about this example is that only IPv6 link-local
addresses can be exchanged. These exchanged IPv6 link-local addresses are only usable in
the link context and cannot be routed on network layer. Therefore, there exists no routing
information for the link-local IPv6 addresses on the sender side, thus there exists no infor-
mation how to route IPv6RLL2 or IPv6RLL3. The transport protocol is unable to identify
this important information. But a correct assignment of the paths to an outgoing interface
is a strict requirement to support the load sharing idea as discussed in Subsection 5.1.2. In
the example the information about the local interface L2 is needed for IPv6RLL2 and L3
is needed for IPv6RLL3. Thus, instead of the routing information at least the link scope
– here the interface – is necessary to provide a valid IPv6 address pair for an end-to-end
path ((IPv6CLL2,IPv6RLL2),(IPv6CLL3,IPv6RLL3)). CMT-SCTP uses only the destination to
identify a specific path and, furthermore, CMT-SCTP does not manage the source address
which would be needed to distinguish between the interfaces. In CMT-SCTP, the source
address selection identifies the outgoing interface by using the routing information and here
the issue becomes visible, because no information exists for a link-local address. Therefore,
CMT-SCTP is not aware of the correct source address and a clear identification of the outgo-
ing interface is not possible in setups like illustrated in Figure 5.10. As a consequence of this
ambiguity, it was consensus to filter and ignore all link-local IPv6 addresses for SCTP except
the source and destination link-local addresses in the IP packet used by the initial handshake.
Therefore, CMT-SCTP will only be able to use a single path in this scenario. Again, MPTCP

Client C Server R

L1

L2

I2L3

R1

R2

R3

Figure 5.10: Poor man’s multi-homing example

66 CHAPTER 5. REVISITING PATH MANAGEMENT

has a benefit in this scenario, because MPTCP manages the paths by source and destination
address pairs. Therefore, every possible combination can be tried by performing the addi-
tional MPTCP connection handshakes. Of course, not every MPTCP handshake started will
result in an established connection, but it covers every possibility. Therefore, MPTCP is able
to use all valid IPv6 address combinations, i.e. it will use three paths.

5.2.4 Conclusion

Summarized, the success of the path management depends strongly on the routing configura-
tion. Furthermore, the used topology has a high impact on the performance of CMT-SCTP.
For a correct comparison of MPTCP and CMT-SCTP it is important to understand that
both load sharing extensions are based on different assumptions and CMT design goals.
CMT-SCTP argues with a scalability benefit and assumes a network configured for its needs.
MPTCP is more flexible and shows the expected throughput independent from the initial
handshake.

So far, this path management discussion makes one thing clear: the path management
has an impact on the performance of the load sharing extensions. Furthermore, the ability
of the transport protocols to adapt to the topologies must be considered. This leads to two
different views on the performance criteria of a load sharing transport protocol.

• Ability of network adaption
The discussion shows that it is not enough to focus on the simple test model with
two disjoint paths. A network like the Internet provides different topologies. Here the
evaluation practice of multipath protocol mechanisms has to be reconsidered. The path
management has an impact on the overall system performance, and this impact has to
be taken into account.

• Ability of path adaptation
The goal is to investigate the behavior of protocol mechanisms compared to each other
based on the same resources defined by the same number of paths. Thus, the testbed
environment must be identical for both protocols, e.g., with respect to CPU power and
buffer size, but also with respect to the number of useable paths. Only if comparable
conditions can be achieved a fair comparison of the mechanisms of MPTCP and CMT-
SCTP can be achieved.

The next step is to discuss the impact of the path management for a real world scenario by
investigating the behavior in the Internet to demonstrate the practical impact.

5.3 Behavior in a real Internet setup

What should be kept in mind from the discussion above is that path management is only as
good as the ability of the path management strategy to adapt to the network conditions. Until
now only the impact of the path definition, the routing and the mapping to the access links
were discussed. Therefore, the next step is to analyze the ability to adapt to the conditions
of the connecting network. In case of the Internet, this aspect cannot be defined easily. The
Internet is not a homogenous network, it is a complex structure with a wide range of possible
network characteristics. Furthermore, it should be mentioned that it is not an easy task to
create a controllable and repeatable experiment in this context. Anyway, in the end it is

5.3. BEHAVIOR IN A REAL INTERNET SETUP 67

Figure 5.11: Internet scenario

the main target platform and must be investigated. Simulations and testbed setups under
laboratory conditions like in [DBRT10, BDAR12b, ADB+11, DABR12b, DBAR11b, BDB+13,
DBPR10a] are always a good starting point, but it is the behavior under real conditions that
completes the picture. For this picture in particular the extreme scenarios are interesting for
an analysis.

This thesis provides a test case that reflects the common use case to increase the perfor-
mance over a long distance by using a topology that spans the globe. This test case confronts
the load sharing extensions with extremely challenging conditions. The evaluation is divided
into two steps. The first step is to investigate which path management strategies are deploy-
able and the second step is to demonstrate their impact on the performance in a real world
setup. That is why a network access model was chosen as in the initial experiment model
illustrated in Figure 5.1.

5.3.1 Global multipath testbed

It was not possible to use existing research networks like Planet Lab [CCR+03] or G-Lab
[KSc+11], because this kind of platforms allows no manipulation of the network stacks below
the application layer and does not provide multi-homing at the endpoints. However, it is
necessary to deploy the patches of the currently available reference implementations of both
IETF load sharing extensions to get a complete picture of their behavior in the network.
Furthermore, finding an environment that allows manipulation of the initial routing through
the network was also the goal which was provided by two endpoints in Essen/Germany and
in Haikou/China. The setup itself was considered challenging. The biggest issue was that the
topology and the characteristics of the links were not predictable. The next sections describe
the work done to define the baseline for the experiment.

5.3.1.1 The endpoint and access link setup

Figure 5.11 illustrates the testbed with two multi-homed hosts located in Essen/Germany
and in Haikou/China, respectively. High speed links as well as common customer links were
used. That is, the endpoint in Essen was connected via a high-speed fiber optic connection
to the Deutsches Forschungsnetzwerk (DFN)7. The DFN connects most of the universities in

7DFN http://www.dfn.de

http://www.dfn.de

68 CHAPTER 5. REVISITING PATH MANAGEMENT

Germany. The second path connected to the Essen site was an ADSL connection. This was –
compared to the DFN link – a low-performance link with a bottleneck of 800 Kbit/s upstream.
The downstream was usable up to 16000 Kbit/s. On the other side, the endpoint in China was
connected via two high-speed fiber optic connections. One connection was connected to the
China Education and Research Network, also called Cernet8. The alternative access link on
the Chinese side was connected to the China United Telecommunications Corporation Hainan
Province Network, or shortly Unicom9. So, in the following discussion, four different paths
were possible and are denoted as Path #1: DFN-Unicom, Path #2: DFN-Cernet, Path #3:
Versatel-Unicom and Path #4 Versatel-Cernet. At the endpoints the same hardware as
discussed in Section 4.2 and Subsection 5.1.2.1 was used.

5.3.1.2 Analysis of the Internet environment

The main focus of this section is to give an inside view of the path setup and the topology
of the intercontinental Internet testbed. The tools Traceroute [Mal93], Ping [DH98a] and
NetPerfMeter [DABR12a, DBAR11a] were used to get a deeper understanding of the paths
resulting from the Internet topology. The database for the following discussion was built by
using the information gathered during a long term observation of all paths. The important
information about delay, throughput and path building has been traced between 2012-12-07
and 2013-01-01. The interval between the traces was three minutes. This resulted in a total
of around 51,000 usable records of bandwidth, delay and path information.

Topology analysis
Most of the times a user is not interested in the hops which are used to reach the destination
and it is only a matter of throughput and, more and more, also delay [BRW+13]. However,
the first look at the data gave a very confusing picture. There existed more than 100 routers.
These routers built multiple hop-to-hop combinations, which did not look very stable at first
sight.

A big challenge was to identify measurement failures. Measurement failures happen
for example if the path is changing during a Traceroute call interval. In the first analysis
of [BAR+13] this impact was not clear. However, after introducing the new failure detection
the average hop counts could be recalculated as shown in Table 5.2. For DFN-Unicom the
detected hop average was 19, for DFN-Cernet 16, for Versatel-Unicom 19 and for Versatel-
Cernet 23 hops. A high variation existed, for example, for the path DFN-Cernet with a
difference of 20 hops between the minimum and the maximum hop count (see Table 5.2).

Creating a topology picture which is based on this data would be quite confusing. There-
fore, the IP addresses of the routers were just the basis of a second analysis step. The Whois
interface of the RIPE NCC [RIP13] has been used. This database was questioned for every
known router IP address. Aggregating records of the Whois requests results in a quite short
list of 21 different networks (see Table 5.3), and further simplified just 11 different network
providers. Furthermore, if the focus is on the paths which were used more than 99% of
the connection time, just four routes exist, and none of them uses more than four network
providers (see Table 5.4). All identified paths are plotted in Figure 5.12. In the end it is
very surprising that this number of IPs represents a simple setup of four different routes,
with partially non-disjoint networks. An IP localization service [Max13] was used to locate

8Cernet: http://www.edu.cn/english
9Unicom: http://eng.chinaunicom.com/

http://www.edu.cn/english
http://eng.chinaunicom.com/

5.3. BEHAVIOR IN A REAL INTERNET SETUP 69

the geographical position of the routers and, therefore, to give a more detailed picture of
the networks. Figure 5.13 illustrates the geographical setup. The illustration shows that
depending on the Chinese ISP targeted in the destination address, the traffic was routed from
Germany directly to the east or to the west via a transatlantic and a transpacific line. The
path DFN-Cernet can be confirmed by relevant literature: The DFN is directly connected to
the Gigabit European Academic Network backbone (GÉANT) [GÉA13], which is linked to
the Chinese research network10. For the other routes the results had to rely on the IP local-
ization services. All paths either originating or terminating at the same interface obviously
share the first or last hop, respectively. If these are low-capacity links (e.g. the DSL link in
Essen), they should most likely constitute the shared bottleneck for these paths.

DFN- DFN- Versatel- Versatel-
Cernet Unicom Cernet Unicom

Complete Path Records (Total) 14290 14290 11379 11380

Different Routers 76 90 41 84

Min Hop Count 7 14 11 7

Max Hop Count 27 30 30 24

Average Hop Count 16 19 23 19

Table 5.2: Routing statistics for each path

Figure 5.12: Providers used through the Internet

10The link “ORIENTplus link6” connects London and Beijing directly via Siberia (http://www.orientplus.eu)

http://www.orientplus.eu

70 CHAPTER 5. REVISITING PATH MANAGEMENT

Network Name Network Provide

TELIANET Telia Sonera International Carrier

CNCGROUP CNC Group

China Unicom-BACKBONE Backbone of China Unicom

BJCOMP-CN Cernet Super Computer Center

BJREGIONB-CN Cernet Super Computer Center

CER2113-CN Cernet Super Computer Center

GZCOMP-CN Cernet Super Computer Center

DTAG-BB16 Deutsche Telekom AG (DTAG)

DTAG-INT1 Deutsche Telekom AG (DTAG)

DTAG-TRANSIT5 Deutsche Telekom AG (DTAG)

DTAG-TRANSIT12 Deutsche Telekom AG (DTAG)

EUNET-BACKBONE EUnet IP Backbone Network

FRANKFURT-SERIAL5 DE Customer Links

HAINU-CN Cernet Super Computer Center

Sprintlink Sprintlink

TELIA-TIC-NET-1 Telia International Carrier

TELIANET Telia Sonera International Carrier

UEGNET Universitaet Duisburg-Essen

UNICOM-HI China Unicom Hainan province network

VT-TRANSFER-82-140-22 VT-Network Versatel

WIN-IP IP Networking on DFN’s Wissenschaftsnetz

Table 5.3: Identified network providers used by the intercontinental testbed setup

Endpoints Route used (Probability >99%)

DFN-Cernet UEGNET - DFN (WIN-IP) - GEANT - Cernet

DFN-Unicom UEGNET - DFN - TELIA - UNICOM

Versatel-Cernet VERSATEL - TELIA - UNICOM

Versatel-Unicom VERSATEL - DTAG - Cernet

Table 5.4: Route per endpoint combination

Versatel Unicom DFN Unicom DFN CernetVersatel Cernet

Figure 5.13: Paths between Essen/Germany and Haikou/China

5.3. BEHAVIOR IN A REAL INTERNET SETUP 71

0

200

400

600

800

1000

1200

1400

1600

1800

2000

DFN-Cernet DFN-Unicom Versatel-Cernet Versatel-Unicom

R
T

T
 (

m
s
)

Path

Figure 5.14: RTT statistics for each path

DFN- DFN- Versatel- Versatel-
Cernet Unicom Cernet Unicom

Mean Throughput (Kbit/s) 208 255 496 772

Min Throughput (Kbit/s) 94 101 102 463

Max Throughput (Kbit/s) 295 416 800 800

Table 5.5: Throughput statistics for each path

Delay measurement
Delays and round trip times (RTT) were estimated for the four possible address combinations
by sending ICMP packets. A statistical evaluation of the results is shown as a box plot in
Figure 5.14. For this plot box all RTT values observed have been sorted. The vertical red
lines denote the complete range of observations with the endpoints indicating minimum and
maximum. The green colored dash denotes the median dividing this sorted list in the middle.
The black box (best visible for Versatel-Cernet) holds 50% of the observed values with the
upper and lower 25% (upper and lower quantile, UQ, LQ) is outside. It can be observed that
the DFN-Cernet connection has the lowest RTT median of 263 ms, the three other paths are
around 400 ms. The small difference between the LQ and UQ for DFN-Cernet, DFN-Unicom
and Versatel-Unicom indicates that the RTT values are quite stable for these paths. This is
different for Versatel-Cernet where half of the measured values are between LQ=394 ms and
UQ=475 ms. Some delay values are very high, but these values were rarely observed and
can be considered as outliers. The highest RTT measured on DFN-Unicom, e.g. was 7282
ms. However, only 3 of all values on this path were over 1000 ms. Therefore, the maximum
value – shown at 2000 ms – was cropped to enlarge the relevant areas. In conclusion, 200 ms
is a reasonable estimate for the end-to-end delay (half of the RTT) and this delay is fairly
stable. This is surprising on the one hand, if it is compared with the huge variation of the
hop count, but less surprising if keeping in mind that the networks used in the end are always
very similar, even though the routers are changing.

72 CHAPTER 5. REVISITING PATH MANAGEMENT

Bandwidth measurement
Bandwidth estimations by using the test application NetPerfMeter (introduced in Chapter 4)
[DBAR11a] have been performed. NetPerfMeter generated a saturated TCP flow between
pairs of addresses and measured the achievable throughput. TCP was chosen because the
main goal was to investigate the possible maximum bandwidth that can be utilized by a
flow using a default congestion control. The results are summarized in Table 5.5. The first
conclusion is that the average achievable throughput is well below 1 Mbit/s for all paths.
While the Versatel DSL link can be loaded fully in some cases (800 Kbit/s), the high speed
DFN connection performs significantly worse with respect to mean, minimum and maximum.
That was really surprising, because each side was connected with at least one glass fiber optic
connection. It was not possible to identify the reasons for this unexpected behavior, but the
tendency was stable. The best reasons that can be guessed are that there was a constantly
high usage of the Internet backbone, a physical bottleneck that impacts every path or a
kind of traffic shaping occurs for each flow. The first two reasons are less plausible than the
last, because if there was a persistent bottleneck caused by traffic or physical reasons, the
flow performance should be decreased more if an additional flow was established, but this
behavior could not be observed. But even for the traffic shaping no unambiguous proof could
be identified in the network.

5.3.2 Valuation of the Internet throughput

Until now, the picture of a valid experiment in an international testbed is not complete. A
baseline analysis of the protocol implementations is still missing. Measurements done as work
for this thesis demonstrated a significant difference between the theoretical throughput and
the throughput achieved with real world endpoints. As for example the work of [ADB+11]
demonstrates, the CPU load has a high impact on the performance of the load sharing pro-
tocols. So, a further step was to analyze the ability of the testbed and the protocol imple-
mentations to achieve the required performance.

The basis of this analysis were the protocols as they were defined in the initial IETF load
sharing specification, without any extensions or optimizations that have been developed on
top of this initial idea. Based on the parameter setup of Chapter 4 the following experiment
parameters have been used:

• For MPTCP, the MPTCP congestion control mechanism LIA as defined in [RWH09]
has been activated.

• CMT-SCTP used LIA as MPTCP, which was adapted on the basis of [RWH09] to get
an unbiased comparison. The other protocol mechanisms, like e.g. Delayed SACK or
NR-SACK, were deployed as defined in [ABD+13, IAS06].

• The sender has been saturated (i.e. it has tried to transmit as much data as possible).
All messages have been transferred using an ordered, reliable service as provided by the
TCP default service.

• The measurement runtime has been 300 s, preceded by a transient phase of 20 s. Each
run has been repeated at least 10 times in order to ensure a reasonable statistical
accuracy.

5.3. BEHAVIOR IN A REAL INTERNET SETUP 73

• The result plots show the average values and their corresponding 95% confidence inter-
vals.

For this the local testbed was reused and configured for the evaluation (see Figure 5.7 on
page 63). Based on the intercontinental Internet setup, Dummynet has been used on path
(C1↔R1) to limit the bandwidth to 800 Kbit/s which corresponds to the maximum upload
rate available on the DSL link in Essen. The bandwidth on lower path (C2↔R2) has been
varied between 200 Kbit/s and 10 Mbit/s. The parameter range was extended to a scenario
closer to the parameters of the realistic wide area connections. A delay difference of 200 ms
was configured on the access links, the delays represents the strongest and weakest path of
the Internet setup11. The results of this experiment are shown in Figure 5.15 and with focus
on lower bandwidth in Figure 5.16. For a low bandwidth setting on path B the expected
behavior for both multipath extensions can be observed. However, this is not the case when
the paths become more dissimilar12. In fact, the achievable throughput starts to saturate
quickly and drops below the singlepath throughput. This can be attributed to the high CPU
load. Peaks of up to 100% have been observed during the experiment. The reason for this
high CPU load is that the protocols have to maintain lists of missing data (sequence number
gaps) as both use selective acknowledgements (SACK) and lists for re-ordering. These lists
have to be searched and updated for every received packet. The queue management of the
router queues mainly causes these gaps. For example for RED queues (see Subsection 2.3.2),
routers discard packets systematically and the increasing asymmetry between both paths
amplifies the problem resulting in a tremendous growth of the lists and the CPU resources
required to manage them. This effect is more dramatic for CMT-SCTP as this protocol has
to maintain a second list for Non-Revocable SACKs (NR-SACK [NEY+08]) in order to avoid
buffer blocking effects [DBRT10]. However, this is not really relevant as argumentation for
an Internet protocol as both protocol implementations clearly fail to perform as expected for
highly asymmetrical links under real world limitations. It should be mentioned that this CPU
limitation could not be observed in typical event based simulation experiments. In this case,
the high computation requirements only cause a longer simulation time without influencing
the results.

Furthermore, it has to be mentioned that increasing CPU capacities would not be enough
to solve the problem since the costs of maintaining the lists increase in a disproportional way
with the dissimilarity of the links. Therefore, an optimized list management or an alternative
“scheduling” mechanism is required.

However, even though the protocols in the initial definition do not perform as expected,
they are at least able to saturate the observed bandwidth range of the intercontinental testbed
setup. With these insights, it is now possible to design and conduct experiments in the global
testbed to verify whether any of the limitations causes significant issues in a real world
intercontinental Internet connection scenario.

5.3.3 Analysis of the protocol behavior in the Internet

After confirming that the Internet setup provides an environment where the multipath proto-
cols can – in principle – operate as expected and the experiments are feasible, the discussion

11Values observed in the Internet measurements between Essen/Germany and Haikou/China (see Sec-
tion 5.3.1.2).

12bandwidth on the path (C2↔R2) is higher than 2.5 Mbit/s, while the bandwidth on the path (C1↔R1) is
800 Kbit/s.

74 CHAPTER 5. REVISITING PATH MANAGEMENT

Figure 5.15: Testbed experiment with
200 ms delay difference

Figure 5.16: Zoom on the lower band-
width of the testbed experiment with
200 ms delay difference

focuses again on the Internet scenario. As mentioned, first measurements have shown a sig-
nificant difference between MPTCP and CMT-SCTP. As both congestion control and CPU
load can be ruled out as reasons, the different path management strategies can be identified
as predominant factor. As expected, the choice of the strategy has a significant impact in
more complex Internet topologies.

Again, for CMT-SCTP, the selection of the source/destination address pair for the initial
handshake determines the first “primary” path and consequently also the options left for the
additional ones. If unfavorable combinations are chosen, this choice may have a significant
impact on the achievable throughput (see Subsection 5.1.2.2).

A set of measurements was performed to verify and quantify the impact of the path
management, where each of the four possible address pairs has been used to initiate the MP-
TCP and CMT-SCTP connections. The measurements were performed using the parameters
described in Subsection 5.3.2 and repeated 50 times over a period of several weeks to get
representative results independent from the current state of the Internet. But even though a
significant difference in the choice of the initial path as in our routing experiment (see Fig-
ure 5.8) was expected, the results of the testbed show a homogeneous behavior with less than
the expected throughput for CMT-SCTP over all source/destination address variations.

Figure 5.17 shows that the throughput of the MPTCP connection significantly exceeds
the maximum throughput measured for singlepath connections (see Table 5.5) confirming
the benefits of multipath transfer. Furthermore, the throughput is significantly higher in all
cases than for CMT-SCTP, where the throughput for CMT-SCTP is less than for the best
singlepath address pair in the worst case. This demonstrates that the use of the additional
paths by MPTCP actually provides significant advantages.

The measurement confirmed that the MPTCP throughput does not significantly depend

5.4. CONCLUSION 75

❉�✁✂✄☎✆♥☎✝ ❉�✁✂✞♥✟✠✡☛ ❱☎✆❡☞✝☎✌✂✄☎✆♥☎✝ ❱☎✆❡☞✝☎✌✂✞♥✟✠✡☛

✵
✍✵

✵
✍✎

✶
✍✵

✶
✍✎

✷
✍✵

✷
✍✎

■♥✟✝✟☞✌ ✏☞✝❛ ✏☞

❘
✑
✒
✑
✓✔
✑
✕
✖
✓✗
❘
✘
✗✑
✙✚
✛
✓✗
✜✢
✣

✏✆✡✝✡✠✡✌ ✏✆

✤✥ ✦✧★✩✪✫✬✭✩✫✦

✮✥ ✦✧★✪✦✫✩✦

Figure 5.17: Intercontinental testbed scenario

on the address pair used to set up the connection initially and SCTP throughput does. The
performance of MPTCP was not reached at any time with any primary path setup by CMT-
SCTP although this could be expected from the discussion of Subsection 5.2.2. Even more,
the results surprise with respect to the performance of CMT-SCTP, where even the choice
of the initial address pair did not achieve in any case the expected throughput. The reason
can be guessed to be bottlenecks in the network, as they are, e.g., provided by traffic shaping
middleboxes which limit the throughput per flow. Thus, not alone asymmetric access links
have a negative impact on the CMT-SCTP extension, also real world limitations on link level.
Here the network prevents an optimal performance of CMT-SCTP.

Summarized, none of the load sharing protocol extensions are usable with a real benefit on
a challenging Internet setup, like an intercontinental connection that spans the globe. Only
MPTCP has, due to its path definition, the ability to adapt to the resources provided by the
network. Even worse, by choosing the wrong initial path CMT-SCTP performs less than a
default singlepath SCTP connection applied on the strongest link.

5.4 Conclusion

In this chapter, the path management strategies of MPTCP and CMT-SCTP have been
identified and analyzed. Furthermore, they have been discussed in a theoretical analysis and
evaluated in a real world scenario. As an additional challenge in this evaluation, the first ever
intercontinental testbed which supported both IETF load sharing extensions has been set up.
This pioneer work provides a basis for upcoming large scale multipath testbed platforms like
NorNet [Dre13].

During the theoretical analysis, two different test topologies have been identified, depend-
ing on the goal of the evaluation scenario. The research community has not considered this
difference between path and network adaptation so far.

76 CHAPTER 5. REVISITING PATH MANAGEMENT

Also the dependencies of the IETF load sharing extensions with focus on the routing task
have been discussed. Topologies not supported by CMT-SCTP have been identified. Further-
more, for MPTCP it has been demonstrated that the routing approach is not as universal as
expected. Two different approaches have been discussed to avoid this issue. Likewise, it has
been demonstrated that the CMT-SCTP approach – as straightforward extension of SCTP –
lacks the ability to adapt to non-disjoint topologies and does not support asymmetric multi-
homing scenarios in every case as good as MPTCP. A similar problem became apparent in
the evaluation of the real world scenario, where CMT-SCTP was not able to adapt to the
network conditions.

It was shown that both approaches are deployable in the intercontinental setup, but only
MPTCP adapts in a way that addresses the goal of load sharing to increase throughput.
Furthermore, the real world scenario was investigated in detail, so these results build an
excellent base for future testbed and simulation setups.

Chapter 6

Revisiting fairness

The fair allocation of resources among multiple end-to-end connections is an important task
of a transport protocol. In particular in the context of the IETF standardization process this
is a hard requirement for singlepath transport protocols (see also Subsection 3.2.2) and there
is no doubt that this fair allocation is also a hard requirement for the load sharing extensions
of TCP and SCTP. Thus, a load sharing approach on the transport layer cannot be discussed
without this main IETF requirement.

Today, the mechanisms to achieve a fair allocation with a multipath flow are based on the
Resource Pooling (RP) idea (see Subsection 3.2.2.2) and are denoted as coupled congestion
controls (CCC). Currently three different CCCs are in the discussion. Two have been devel-
oped by the Universities of London [RWH09] and Berlin [Ram12] in the context of MPTCP
and one has been co-developed as preparatory work for this thesis [DBPR10a]. In contrast to
the first two solutions, the solution of [DBPR10a] has been developed first for CMT-SCTP
and adapted to MPTCP later. First evaluation studies [RWH09, Ram12, DBPR10a, Dre12a]
had shown that these new multipath mechanisms in principle achieve the goals of the multi-
path fairness in the way the fairness is discussed the IETF. However, it should be mentioned,
that these first individual evaluation studies have been done only in selected scenarios under
incomparable conditions. Until now there exists no systematic evaluation of all CCCs under
uniform framework conditions and no comprehensive evaluation of MPTCP and CMT-SCTP.
These mechanisms are quite new and there exists no common and comparable implementa-
tion for all CCCs up to now. The only exception is the simulation environment created in the
context of this thesis (see Section 4.1). The simulation model provides the first basis for a
real comparison of all available coupled congestion controls implemented in both load sharing
extensions.

However, besides the IETF view also other specific perspectives on the fair allocation
of resources among multiple end-to-end connections exist. As discussed in this chapter, the
alternative perspectives on multipath fairness goals are not always the same as for the IETF.
A major goal of this chapter is to bring more aspects into the IETF fairness discussion and
to discuss the fairness beyond the limits of the IETF multipath fairness goals.

Altogether, the fairness aspect is discussed in this chapter on two levels. First the origin
of the IETF fairness goals is revisited and critically questioned. Second, the proposed CCCs
are evaluated for the first time in comparable simulation scenarios. Significant parts of the
following discussion have been published in [BDAR12b].

77

78 CHAPTER 6. REVISITING FAIRNESS

6.1 Multipath fairness goals

As discussed in Subsection 3.2.2 the initial IETF fairness goal has its root in a TCP-compatible
behavior [Flo00, BCC+98], where no flow1 of a multipath connection is allowed to be more
aggressive than a flow of a singlepath TCP connection under comparable conditions (see
Subsection 3.2.2). However, this fairness definition focuses on flow level and leads to the
requirement that a multipath flow has to be TCP-compatible to a singlepath TCP flow. The
expected share of the link capacity ρ can also be described by this goal. Thus, if a multipath
TCP connection is in competition with a singlepath TCP connection on a shared bottleneck
link, the expected capacity allocation for the multipath link (ρmultipath) must be less than or
equal to ρsinglepath:

ρmultipath ≤ ρsinglepath (6.1)

This is a dilemma for the multipath connection, because the multipath connection wants to
use as much link capacity as possible to increase its throughput. But the goal of increased
throughput sometimes affects the goal to behave TCP-compatible. The issue becomes partic-
ularly obvious in the so-called shared bottleneck scenario as discussed in Subsection 3.2.2.1.

The initial conservative idea to prevent a destructive impact of the load sharing extensions
was to postulate a TCP-compatible behavior on flow level with the intention to prevent that
a multipath flow harms competing singlepath connections or in the worst case even breaks
the stability of the network. In the start phase of the IETF load sharing standardization
process for TCP there was a broad agreement that the deployment of multipath connections
is only acceptable if a backward TCP-compatible behavior can be ensured. The Resource
Pooling idea addresses this initial fairness requirement in particular with respect to the shared
bottleneck scenario (see Subsection 3.2.2.2). The primary goal of TCP-compatible behavior
is described as do not harm goal [FRHB13]. The general principle of the Resource Pooling
idea is to let the overall flow of a complete multipath connection – using multiple disjoint
or joint paths through the network – behave like the flow of a singlepath connection. The
Resource Pooling idea achieves this goal by weighting a multipath connection and a singlepath
connection as equal in the shared bottleneck scenario. But this behavior is only desirable in
specific scenarios where a multipath connection, in contrast to a singlepath connection, uses
multiple paths on a shared bottleneck link.

However, during the introduction of the Resource Pooling idea and the definition of the
initial do not harm goal, two additional goals have been defined to address the character-
istics of the Resource Pooling idea. The initial IETF multipath fairness goal was extended
with the additional improve throughput and balance congestion goals (see Subsection 3.2.2.2
and [FRHB13]). The initial idea behind these two additional goals was to describe limits
for an implementation of the Resource Pooling idea (see Subsection 3.2.2.2). These limits
evolved over time into IETF multipath fairness goals, which today define a fair behavior of a
multipath flow in the network.

The initial idea of the improve throughput goal was to ensure a minimum performance of
the load sharing extensions. This minimum performance was defined by a performance not
less than the performance of a singlepath connection assigned to the strongest path. The
third goal addresses the initial load balancing goal with balance congestion as discussed in
Section 3.2. As RFC6356 [RHW11] points out, the achievement of the balance congestion goal

1A flow describes the sum of all data that is transmitted via one or more paths through the network in the
context of one end-to-end connection.

6.1. MULTIPATH FAIRNESS GOALS 79

should improve the robustness and overall throughput. But besides these IETF multipath
fairness goals there also exist other specific perspectives on a fair allocation of resources which
were not considered in the IETF discussion so far.

6.1.1 Perspectives on multipath fairness goals

Besides the IETF, which provides the rules, also the Internet service providers (ISP) and their
customers should be involved in the fairness discussion, because they provide the hardware
and determine the operation on the network.

The customer of the ISPs, as user of an application, chooses the load sharing extensions of
the transport protocols with the primary goal to increase the throughput as much as possible.
He has no inside view of the network and the mechanisms used. From his point of view, it
is fair to get as much or even more throughput as an alternative user who provides fewer
resources to access the same network.

The ISP is motivated to utilize its networks in an optimal way. Thus, an ISP is not that
much interested to transfer traffic to another provider as the IETF is interested to achieve
a better network utilization across provider borders. It is fair for the ISP to keep as much
traffic in its network as in a singlepath connection scenario.

Even if the IETF proposes the multipath fairness goals, this institution is not able to
control these goals and prevent misuse. Just to define them is not enough, especially if the
user of the multipath connection has no real motivation to achieve these multipath fairness
goals in the shared bottleneck, because it will decrease his share of the available resource. But
it is only under the control of the user to support these goals and only the ISP can control this
behavior, although the ISP is not aware of the allocation of resources among multiple end-to-
end connections in other network domains. Therefore, reasons can be identified that lead to
misuse and no detection can be ensured and the deployment of the load sharing extensions
can fail completely if the ISPs and their customers will be treated unfairly.

6.1.2 Revisiting the IETF multipath fairness goals

Until now all efforts spent to achieve a fair allocation of resources among multiple multipath
and singlepath end-to-end connections had a focus on the shared bottleneck problem (see
Subsection 3.2.2.2). This shared bottleneck problem is rated very important in the IETF.
As consequence, first the Resource Pooling idea was proposed and then the corresponding
fairness goals were defined which reflect the needs of the Resource Pooling idea. However,
this focus on the shared bottleneck problem and the Resource Pooling idea has possible side
effects on the fair allocation of resources in scenarios without a shared bottleneck. A more
detailed discussion is needed to understand the dependencies.

6.1.2.1 Impact of the IETF multipath fairness goals

The IETF multipath fairness goals, i.e., do not harm, improve throughput and balance conges-
tion, are the result of the shared bottleneck discussion and the corresponding requirements
of the Resource Pooling idea. Figure 6.1 illustrates a similar scenario like the one used
by [WHB08] to demonstrate the load balancing goal and the Resource Pooling idea. Fig-
ure 6.1 illustrates a network with three independent senders (S0 to S2) with corresponding
receivers (D0 to D2). Every receiver has the same access link setup as the corresponding

80 CHAPTER 6. REVISITING FAIRNESS

S0

R1

S1

R2

R3 R4

D0

D1

S2 D2

R5 R6

Figure 6.1: Example of balance congestion (is based on [WHB08])

sender, where the access links always provide more capacity than the connecting links be-
tween the routers. The links connecting routers are named α, β and γ. Every sender generates
one flow (F0 to F2) through the network. The flows of the senders S0 and S1 each consist
of two subflows2 routed via disjoint paths, the sender S2 uses a singlepath flow F2. All links
provide the same capacity ρ which is lower than the access link capacity. The path used for
subflow F 0

0 is assigned to the link α. The subflows F 1
0 and F 0

1 are competing for capacity on
link β and subflow F 1

1 and F 0
2 are in competing on link γ. Thus, because the flow of sender

S1 is in competition with the flows of S0 and S2 all paths used in this network setup must
be added to the resource pool to share. Therefore, for this setup the “resource to share” has
to be calculated by taking into account all possible bottlenecks of the network, i.e. links α, β
and γ. Therefore, for the three equivalent flows in this example the sum of all limiting links
provides the “resource to share” such that every flow is allowed to allocate a capacity equal
to ρ. It is important to understand that this shared resource consists of a complete pool of
all paths used by the flow and, furthermore, all other paths – with related links – of all other
competing flows (see [WHB08]).

So in this scenario the mechanism to achieve the balance congestion goal becomes par-
ticularly important, because the singlepath flow F 0

2 of sender S2 must allocate the complete
capacity ρ on link γ to achieve its fair share of the pooled resource. In RFC6356 [RHW11]
it is clearly said that the multipath flow should move as much traffic as possible off its most
congested path to adhere to the Resource Pooling idea. This constraint leads to a specific
behavior of the flows and to a specific capacity allocation on the links.

The flow F1 has to react to the behavior of the singlepath flow F2 on link γ. Thus, only
the sender S1 is able to move traffic from the congested path (link γ) to the alternative link
β. Here a new competition scenario exists with the lower subflow F 1

0 of S0. Because S0 has
the ability to utilize 100% of the capacity of the upper path via link α, S0 is able to move
traffic from the congested path on link β. This leads to the situation where every flow can
use a path exclusively and can achieve a capacity allocation of ρ.

Thus, in the context of the Resource Pooling idea the definition of the “resource to share”
has been extended from a link view to a complete network view in the context of the IETF

2The subflow can be identified by the superscript.

6.1. MULTIPATH FAIRNESS GOALS 81

multipath standardization [KV05, WHB08] without explicitly addressing this in the docu-
ments. The balancing congestion goal was defined to support this, even if was argued for the
support of the load balancing idea.

This example makes clear that the fairness on the single link has to step back behind the
goal of the Resource Pooling idea and the corresponding balance congestion goal. This fairness
interpretation should be not mixed up with the TCP-compatible behavior requirement that
can also be achieved by another resource allocation. An example can be to allow every flow a
capacity proportional to the number of paths it has through the network. Thus, the complete
resource pool can be defined as three times ρ where S0 and S1 with two access links get 2

5 of
the pooled resource each and S0 with one access link gets 1

5 of the pooled resource. Thus, in
this case the singlepath resource gets 3

5 of ρ which is more than 1
2 ρ, the result of a competition

with an alternative singlepath TCP flow.

Although the balance congestion goal is claimed as an important argument to place the
load balancing feature on the transport layer, it should not be interpreted as a straightforward
requirement to share the resources with respect to the Resource Pooling idea. Furthermore,
the fairness definition is somehow misleading, because it does not reflect the effort and cost
spent by each sender to connect to the network and provides no real benefit for the multipath
flows. Therefore, this interpretation does not fit to the expectation of the user, it only
addresses the goal to achieve optimal network utilization from the IETF perspective. But
even this argument is not valid in this scenario, because it is not a real load balancing function.
In the end the system shifts traffic from one path to another until every path is in the same
congestion state – as it also would be without the balance congestion goal. The overall system
performance stays the same, the only difference when using the Resource Pooling approach is
that it privileges the throughput of the singlepath flow as shown in this example by increasing
the allocated capacity from 3

5 ρ to 1ρ without any valid reason.

6.1.3 Revisiting fair resource allocation

If the fair sharing of resources is the goal, the first major step is to identify the “resources to
share”. After this, rules for a fair resource allocation (FRA) can be defined. But even if a rule
is functional in the theory, it must be usable in a real world setup as well. Also a controllable
and predictable behavior in the network must be a goal, otherwise the system has no chance
to identify a misuse.

From the historical view, the “resource to share” was always the link capacity ρ of the
bottleneck link l that is shared by the paths used for the end-to-end connection. There exists
an one-to-one relation between a subflow assigned to a path and the flow transferred for a
singlepath connection. This relation changes for a multipath end-to-end connection. The
entity that occupies resources remains the same – here the flow – but the number a of usable
paths P through the network (see Subsection 3.2.1) is increased. If more than one path (P1,
. . . , Pa; a > 1) is used on the same bottleneck link l, a rule to share the capacity ρ must
exist. In principle there are two alternatives to define the entities m which have a claim for
a fair resource allocation.

• Subflow
Every subflow is defined as independent and has the same claim on the resource. Thus,
m is the number of paths and corresponding subflows assigned to the bottleneck link.

82 CHAPTER 6. REVISITING FAIRNESS

• Flow
Here every flow has the same claim on the resource. Thus, m is equal to the number
of flows using the bottleneck link. Subflows of the same end-to-end connection must be
coupled, because they are used for the same flow.

Therefore, the entity definition of m can in general be based on subflow and flow. This link
centric fairness view with respect to subflow and flow can be used for the current singlepath
Internet [Bri07] and causes no problems in the context of the IETF. The link share is for
a singlepath connection identical for the flow and subflow based fairness, but not in case of
multipath. The TCP-compatibility was also consensus for the multipath flow. The multipath
link centric fairness view on flow level leads to the shared bottleneck issue (see Subsection
3.2.2.1). The sender is responsible to detect the coupled subflows on the shared bottleneck.
However, there was no mechanism identified to achieve this in the Internet, therefore the
Resource Pooling idea was introduced to bypass the shared bottleneck problem. But the
Resource Pooling idea does not address the link centric fairness view on flow level, rather it
addresses a network centric fairness view on flow level. Therefore, the “resource to share”
shifts from a link definition to a network definition. Thus, the link centric fairness view with
respect to subflow and flow level and the network centric fairness view with respect to the
flow level are in the focus of this thesis [BDAR12b].

With this in mind, a first fair resource allocation (FRA) can be calculated for the link
centric fairness view on flow and subflow level by:

FRA =
ρ(l)

m
(6.2)

In contrast to the link centric fairness, the definition of the “resource to share” is much
more complex for the network fairness view. Here, the resource is defined as the sum of the
capacities of all bottleneck links used by subflows of flows competing on at least one of these
bottleneck links. Thus, in an extreme scenario the whole network – like e.g. the Internet –
becomes the “resource to share”. The idea of a fair resource allocation (FRA) can be described
in this case in a first step based on a fully-meshed network with identical link characteristics.
Let there be n flows, all sharing the same paths P1, . . . , Pa. Then, considering the new IETF
multipath fairness goals, a fair resource allocation (FRA) is defined as:

FRA =

(∑
1≤i≤a ρ(Pi)

)
n

. (6.3)

However, besides the question if the fair sharing of the resources should be defined by using
coupled or decoupled subflows, the practical impact of this resource calculation should be
discussed, first. The complexity of the calculations increases in case of different coupled as
well as decoupled subflows competing for a variety of different resources in a heterogeneous
distribution. It cannot be assumed that the ISPs or their customers are able to perform this
calculation. Thus, no monitoring and controlling is possible. In the worst case a user allocates
100% of a bottleneck link capacity and the ISP cannot judge whether this is legitimate or
not. A misuse of this can be expected.

With all the focus on the transport layer, it should not be forgotten that a coupling of
subflows is already possible today without taking into account the IETF fairness goals by
coupling the subflows on the application layer. It might be surprising that the required TCP-
compatible behavior on the transport layer is not required on the application layer. Of course,

6.1. MULTIPATH FAIRNESS GOALS 83

this requires individual implementation efforts, but in the end the application can provide
an individual solution on top of the well-known TCP connections. As an example, if two
senders S0 and S1 are both multi-homed and sharing a bottleneck this leads to an interesting
capacity share. In this pure multi-homed scenario the sender S0 uses an application with
one TCP connection per source/destination address and sender S1 uses MPTCP in a cross
path setup. Thus, the IETF fairness definition identifies 5 equivalent flows in this setup (4 x
singlepath TCP and 1 x MPTCP), where the application of sender S0 gets 4

5 of the available
resources and the application on sender S1 gets only 1

5 . The user of the multipath flow
provides the same access resources but gets only 1

20 bottleneck capacity per provided access
resource instead of 1

8 . The only reason for this share is that the organization of the overall
flow is managed for sender S0 on the application layer and for sender S1 on the transport
layer. This behavior is not transparent for the ISP and the application. The IETF requires
this by the definition of a TCP-compatible behavior on flow level for a transport protocol,
although the impact of this definition is not well-known.

It should be mentioned that only this network centric flow fairness brings the high com-
plexity into the protocol design. Thus, developers are forced to replace the old well-known
singlepath congestion controls with new unknown coupled congestion controls to achieve this
goal.

If the IETF requirement of a TCP-compatible behavior could be defined on subflow level,
the transport protocol would just interact in the same way as a multipath protocol extension
on the application layer. The only question left is, are there other potential benefits that
favor the complex, uncontrollable fairness interpretation of the Resource Pooling idea.

6.1.3.1 Revisiting the Resource Pooling idea

As discussed in Subsection 6.1.2.1, the balance congestion goal prefers a singlepath flow, even
if the benefits of the load sharing feature are not clear for the user and the ISP. It should be
discussed if other universal goals legitimate this hard coupling of the balance congestion goal
with the fairness goal.

The authors of [WRGH11] motivate the added value of the balance congestion goal with
a specific multipath dominated scenario. This scenario is illustrated in Figure 6.2. This
multipath dominated scenario includes three different bottleneck links, where each bottleneck
link provides a capacity of 12 Mbit/s. Furthermore, three different multipath connections –
each multipath connection with two subflows – share this network setup. Every multipath
connection shares every bottleneck link with all other multipath connections, so that in the
end three subflows of three connections share one link.

The balance congestion goal has the intention to shift traffic from a more congested link
to a less congested one. Every multipath connection uses one path with one bottleneck link
and one path with two bottleneck links. Thus, the path with two bottlenecks can be assumed
as path with more congestion. Deploying a mechanism to achieve the balance congestion goal
leads to a specific share of the network resources and improves the network utilization. In
detail, without the balance congestion goal the link capacity is divided into three shares of
4 Mbit/s resulting in a multipath connection throughput of 8 Mbit/s. But mechanisms to
achieve the balance congestion goal bypass the second bottleneck link, so that every multipath
connection is able to utilize one path exclusively and does not share the link capacity anymore.
Thus, by shifting traffic according to the balance congestion goal, a real load balancing benefit
will be achieved. A multipath connection is able to achieve a throughput of around 12 Mbit/s

84 CHAPTER 6. REVISITING FAIRNESS

instead of 8 Mbit/s. Without any question this is a really good argument for the balance
congestion goal and the corresponding Resource Pooling idea.

So it is easy to understand that the authors of the multipath approaches push this ar-
gument to argue in favor of the Resource Pooling idea and the corresponding IETF fairness
goals. Anyway, until now it was ignored in the discussion that this behavior of Resource
Pooling – to adapt to the network topologies – also has negative aspects. Similar to the
example in [WRGH11] an alternative scenario has been created in the context of this thesis
to demonstrate the drawbacks.

Figure 6.2: Resource Pooling idea: Benefit of adapting to topology

Figure 6.3: Resource Pooling idea: Drawback of Resource Pooling

Figure 6.3 shows a similar base scenario as Figure 6.2. Here two multipath connections
and one singlepath connection are sharing the network. The first multipath connection has
two subflows via the upper bottleneck link and the second multipath connection has two
subflows via the lower bottleneck link. Both multipath flows share one path on the middle
bottleneck link. Furthermore, a singlepath connection completes the scenario. The singlepath
connection shares the resources with the first multipath connection on the upper bottleneck
link and with the second multipath connection on the lower bottleneck link.

The drawback of the Resource Pooling idea is discussed in a comparison to the link
centric subflow fairness view. First the resource share in the network centric flow fairness
for the Resource Pooling idea is discussed. The multipath connection and the singlepath
connection each allocate 50% of the link capacity on the upper shared bottleneck. The
same behavior can be observed for the relationship of the second multipath connection and

6.1. MULTIPATH FAIRNESS GOALS 85

the singlepath connection on the lower shared bottleneck. The resource allocation on the
middle bottleneck link is implicitly the result of the share on the upper and lower bottleneck
and no real competition exists. Finally, the singlepath connection gets 6 Mbit/s like the
multipath connections as result of the path coupling and all three connections together achieve
a throughput of 18 Mbit/s (3 * 6 Mbit/s).

For link centric subflow fairness each subflow gets 1
3 of the bottleneck link capacity. Thus,

the singlepath flow gets 4 Mbit/s and the multipath flows each get 8 Mbit/s. Therefore, the
addition leads to a total throughput of 20 Mbit/s (2 * 8 Mbit/s + 1 * 4 Mbit/s). So if the
first scenario of Figure 6.2 gives the argumentation for the Resource Pooling idea, Figure 6.3
provides a comparable argument against the deployment. While the first scenario argues for
a multipath fairness goal to achieve a TCP-compatible behavior on flow level according to
the Resource Pooling idea, the second argues for a fair sharing on subflow level preserving
the simple, well known mechanisms used today.

6.1.3.2 Conclusion

The potential drawbacks of the Resource Pooling idea should not be underestimated, because
with the Resource Pooling idea a completely new type of congestion controls is introduced
without having a solid knowledge of their impact on the network. Furthermore, the Resource
Pooling idea does not reflect the motivation of the users nor the ISPs. Of course the bottleneck
issue exists as long as a multipath connection has to share the capacity on flow level, but it
should be kept in mind that an implementation on the application layer also is possible and
nobody can claim a risk that the network will break under these conditions.

The fair sharing on subflow level in a link centric fairness view is much easier to control
by, e.g., the ISP and is backed by 30 years of experience to ensure a stable network behavior.
Furthermore, the link centric fairness on subflow level also increases the motivation of the users
to provide more hardware. The IETF multipath fairness is hard to calculate and to monitor
and has the potential to decrease the network utilization in certain scenarios. Furthermore,
the IETF multipath fairness prefers a singlepath connection with the balance congestion goal
in different scenarios without any valid reason.

Altogether, the conservative requirement of a TCP-compatible behavior on flow level
causes the Resource Pooling idea with the corresponding new IETF multipath fairness defi-
nition. This new fairness definition requires new, unpredictable, coupled congestion controls.
The existing uncoupled singlepath congestion controls are not able to achieve this new fairness
definition. Thus, because of this conservative IETF requirement, the well-known uncoupled
singlepath congestion controls have to be replaced by new, unpredictable, coupled congestion
controls. Therefore, the initial conservative design goal for the load sharing extensions of
SCTP and TCP mandates the deployment of new, not systematically investigated coupled
congestion control (CCC) proposals with a potentially high impact on the overall system
performance.

Therefore, even if the initial documents have been published as RFCs, a new discussion in
the IETF should be initiated. But as long as there is no rethinking in the IETF community,
the behavior of the coupled congestion controls has to be investigated.

86 CHAPTER 6. REVISITING FAIRNESS

6.2 Variants of coupled congestion controls

Although many good reasons argue for a link centric fairness, the network centric fairness with
the corresponding Resource Pooling idea was defined by the IETF. Therefore, there exists a
strong motivation to systematically investigate the impact of the Resource Pooling idea. Fur-
thermore, it must be evaluated if the corresponding IETF multipath fairness goals [RHW11]
can even be achieved. Currently, three different coupled congestion control (CCC) proposals
on the basis of the Resource Pooling idea exist in IETF. This section investigates their behav-
ior in a first step by step analysis in three very basic scenarios for CMT-SCTP and MPTCP
to demonstrate their pros and cons.

From the historical point of view, the first CCC was introduced by [RWH09]. Today this
CCC is known as Linked Increases Algorithm (LIA) and is used by the MPTCP reference
implementation on Linux. As preparatory work of this thesis, a second CCC [DBAR11b]
was introduced as a very basic and straightforward implementation of the Resource Pooling
idea. Today, an improved version of this first idea is known as Resource Pooling Multipath
Version 2 (RP-MPv2) [BDAR12b]. The newest CCC was introduced as Opportunistic Linked
Increases Algorithm (OLIA) by [Ram12], which was claimed to be an optimized version of
LIA.

Before going into the description of the congestion controls some basic notations have to
be introduced to discuss the details of the congestion window c calculation of the path P .
The path congestion window cP defines the upper limit for the number of outstanding bytes
on path P . The calculation of cP is done differently in a slow start phase and a congestion
avoidance phase. A threshold triggers the transition from slow start to congestion avoidance.
This so-called slow-start threshold sP of the path P controls the growth rate of cP :

• In the slow start phase (cP ≤ sP) the cP increases exponentially.

• The congestion avoidance phase (cP > sP) only allows a linear growth.

This behavior was already discussed for the New Reno congestion control (see Subsection
2.2.4.1). The New Reno congestion control is also deployable for the multipath extensions
of CMT-SCTP and MPTCP on subflow level and is denoted in this context as CMT-Reno.
CMT-Reno represents an uncoupled congestion control according to the link centric fairness
on subflow level. In addition, it should be mentioned that even if SCTP and TCP share
the same basic idea of applying a window based congestion control, the window of SCTP is
maintained in bytes and the window of TCP in MSS. Therefore, the CCCs have to be adapted
to the load sharing approaches of TCP and SCTP.

This thesis provides the first complete adaptation of all three CCCs for both the load
sharing extensions of TCP and SCTP. For LIA this had already be done as cooperation in
the context of [DBPR10a]. The results of the adaptation work for OLIA and RP-MPv2
are discussed exclusively in this thesis. An overview of all variables used in the following
subsections is given in the Table 6.1.

6.2.1 Resource Pooling Multipath version 2 (RP-MPv2)

This variant introduced by [DBAR11b] applies the idea of Resource Pooling – to couple the
congestion controls of the paths – in a very strict manner. The increase factor îP is applied
to increase cP on α acknowledged bytes on path P in a fully utilized congestion window. îP

6.2. VARIANTS OF COUPLED CONGESTION CONTROLS 87

Parameter Description

α Acknowledged bytes

â Aggressiveness factor

c Congestion window

cP Congestion window of path P

d̂P Decrease factor of path P

î Increase factor

îP Increase factor of path P

i Path number

maxi Maximum value of all paths

MSSP Maximum segment size of path P

MTUP Maximum transmission unit of path P

P Path

pP Partially acknowledged bytes of Path P

RTO Retransmission timeout

RTT Round trip time

RTTP Round trip time of path P

sP Slow-start threshold of path P

SEGP Data unit on path P for calculation:
For MPTCP SEG is MSS, for CMT-SCTP SEG is an MTU.

Table 6.1: Overview of parameters used to describe CCC proposals

represents the bandwidth share of path P and is based on the relationship between cP and
the RTTP of the path. The partially acknowledged bytes pP are used to ensure that the
complete congestion window is acknowledged, before the window is increased again.

îP =

cP
RTTP∑n
i

ci
RTTi

. (6.4)

cP = cP +

{
d̂i ∗min{α,SEGP }e (cP ≤ sP)

d̂i ∗ SEGP e (cP > sP ∧ pP ≥ cP)
. (6.5)

The ceiling function ensures a congestion window growth of at least one byte in order to
preserve the AIMD behavior. The decrease factor d̂P is applied to reduce cP on a packet loss
on path P :

d̂P = max

{
1

2
,
1

2
∗
∑n

i
ci

RTTi
cP

RTTP

}
. (6.6)

sP = max
{
cP − dd̂P ∗ cP e,SEGP

}
, (6.7)

cP =

{
sP (Fast retransmission)

SEGP (Timer-based retransmission)
. (6.8)

88 CHAPTER 6. REVISITING FAIRNESS

d̂P represents the factor by which the bandwidth of path P should be reduced in order to
halve the total flow bandwidth. That is, cP may decrease to SEGP . If d̂ would reduce cP to
a smaller value (prevented by the max function), the path P could not be used for further
data transmissions during the time of one RTO on path P [APB09].

6.2.2 Linked Increases Algorithm (LIA)

The LIA congestion control was proposed by [RWH09] to support TCP-fairness for MP-
TCP [FRH+11]. Like RP-MPv2, the ceiling function ensures an increase of at least one byte.
â denotes the per flow aggressiveness factor.

cP calculation for MPTCP:

cP = cP +

{
MSSP , (cP ≤ sP)

min
{⌈

â∗α∗MSSP }∑n
i ci

⌉
, 1
}
, (cP > sP ∧ pP ≥ cP)

. (6.9)

â =

(
n∑
i

ci

)
∗

maxi

{
ci

(RTTi)2

}
(∑n

i
ci

RTTi

)2 . (6.10)

cP calculation for CMT-SCTP:

cP = cP +

min
{⌈

cP ∗â∗min{α,MTUP }∑n
i ci

⌉
,min {α,MTUP }

}
, (cP ≤ sP)

min
{⌈

cP ∗â∗MTUP∑n
i ci

⌉
,MTUP

}
, (cP > sP ∧ pP ≥ cP)

. (6.11)

â =

(
n∑
i

ci

)
∗

maxi

{
ci/MTUi

(RTTi)2

}
(∑n

i
ci/MTUi

RTTi

)2 . (6.12)

Formula 6.11 and 6.12 are based on [RWH09], but have been adapted from a congestion
window given in MSS to a congestion window given in bytes for CMT-SCTP. Furthermore, the
congestion window decrease behavior has been modified slightly. In case of a retransmission
(i.e. fast or timer-based) on path P , sP and cP are reduced as follows:

sP = max

{
cP −

1

2
∗ cP ,SEGP

}
, (6.13)

cP =

{
sP (Fast retransmission)

SEGP (Timer-based retransmission)
. (6.14)

The minimum value of cp in case of a timer-based retransmission in MPTCP is less than for
singlepath TCP as the cP may decrease to MSSP instead of 4 ∗MSSP . The minimum value
decreases to one MTU for CMT-SCTP.

6.2. VARIANTS OF COUPLED CONGESTION CONTROLS 89

6.2.3 Opportunistic Linked Increases Algorithm (OLIA)

This congestion control was introduced by [Ram12]. The aggressiveness factor per flow â in-
cludes an RTT weighting like for RP-MPv2. Furthermore, the approach provides different
modi for the calculation of the aggressiveness factor â. Therefore, â depends on the path
characteristics of the subflows. cP will be re-calculated for each ACK on path P .

cP calculation for MPTCP:

cP = cP +

(cP
RTTP∑n
i

ci
RTTi

+
â

cp

)
∗MSSP ∗ α} (6.15)

cP calculation for CMT-SCTP:

cP = cP +

(cP
RTTP

∗min{α,MTUP }∑n
i

ci
RTTi

+ â ∗min{α,MTUP }
)

(6.16)

The term min{α,MTUP } in equation 6.16 could also be excluded, but this would increase
the risk of rounding errors. The impact of â is very important because it has a significant
influence on the aggressiveness level. The calculation of â depends on the status of the
currently calculated Pi. Different groups for Pi are defined in [KGPB14] with different impact
on the congestion window calculation:

all paths: The set of all the paths established by the MPTCP connection.

max w paths: The set of paths in all paths with largest congestion windows.

collected paths: The set of paths in all paths that are presumably the best paths
but do not have largest congestion window (i.e. the paths within the set of best paths
that are not in max w paths).

This leads to following calculation of â:

• if Pi is in collected paths: â = 1
collected paths∗n

• if Pi is in max w paths and collected paths is not empty: â = â− 1
max w paths∗n

• Otherwise: â = 0

Even if the authors of OLIA have confirmed the observations about LIA - which will be
discussed in the following - and claimed LIA as not pareto-optimal [Ram12], this does not
change the fact that LIA has been standardized as congestion control for CMT. Therefore, if
current standard CMT implementations will be deployed, the LIA approach will be used.

6.2.4 Resume of coupled congestion controls

Summarized, all multipath coupled congestion controls have been developed with the main
goal to solve the shared bottleneck issue by implementing the Resource Pooling idea. But
even if they have been designed for the same goal and all apply the AIMD behavior, they
interpret the increase and decrease (AIMD) in different ways. In the next sections the impact
of this different interpretation will be discussed.

90 CHAPTER 6. REVISITING FAIRNESS

6.3 Evaluation of coupled congestion controls

The quality criteria for the CCC proposals mainly relate to three different aspects:

• The mechanism used by the proposals has to fulfill the IETF fairness goals, in particular
with respect to the shared bottleneck scenario.

• The result of the CCC proposals must be predictable for all involved parties to create
a controllable and comparable basis.

• The mechanisms of the coupled congestion controls have to be accurate. Thus, a mea-
sured value hast to achieve the expected and predicted value.

The congestion control has to achieve the different goals with the additional challenge to
adapt to the different link characteristics. Different straightforward scenarios will be used for
the evaluation to keep the effects easy to predict.

First, the CCC proposals have to work in setups with just one link like the well-known
singlepath congestion controls. Without knowing if multipath transfer is provided or not,
an application has to choose whether a single-homed or a multi-homed endpoint should be
configured during connection setup. There is no dispute that the Internet is still single-
homing dominated, even if multi-homing becomes more and more important. Therefore, a
simple singlepath scenario gives the first basic scenario and allows a first general fairness
discussion.

In a second step the “resource to share” stays the same, but the endpoints switch from
pure single-homed senders to a combination of single-homed and multi-homed. This leads to
the shared bottleneck scenario (see Subsection 3.2.2.1) and is used to analyze whether the
IETF multipath fairness goals can be achieved or not.

The third scenario keeps the endpoint characteristics of the shared bottleneck scenario, but
changes the topology and, therefore, the number of disjoint paths. Thus, the bottleneck does
not consist of one shared bottleneck anymore, it is replaced by two disjoint bottlenecks. This
scenario demonstrates the impact of the topology on the fairness behavior of the multipath
protocol extensions.

In the last step, the impact of an increased number of multipath flows is discussed.
It should be mentioned that all access links for the different setups provide enough band-

width so they will not create bottlenecks. In the simulation setup 1 Gbit/s access links were
used with zero delay and error rate. If this not the case, it will explicitly mentioned. This
setup ensures that the bottleneck is always located in the connecting network.

6.3.1 Scenario 1: Singlepath

Currently single-homed access is still the regular connection case. Thus, multipath congestion
controls have to adapt to the conditions of a singlepath scenario, even if multipath transfer
is configured. The behavior of MPTCP and CMT-SCTP is discussed in this first scenario,
with the secondary goal to introduce the different fairness views and corresponding notation
in more detail.

6.3.1.1 Simple singlepath model and theoretical discussion

The first basic scenario is shown in Figure 6.4. Here, two singlepath connections are used to
transfer data via a shared bottleneck. This is a straightforward scenario to demonstrate how

6.3. EVALUATION OF COUPLED CONGESTION CONTROLS 91

S0

R1

S1

R2

D0

D1

Figure 6.4: Fairness Scenario 1: Singlepath

current congestion controls achieve a fair sharing.
The complete capacity of the bottleneck link α is denoted as ρ(α). The flow between S0

and D0 is denoted as F0 and is composed of only one subflow3 F 0
0 . The capacity allocated

to F0 is denoted as B0 and the capacity allocated to F 0
0 is denoted as B0

0 . It is assumed that
a protocol uses the link capacity as efficiently as possible. Thus, in case of link centric subflow
fairness this leads to the following network capacity allocation according to equation 6.2:

B0 = B0
0 =

ρ(α)

2
; B1 = B0

1 =
ρ(α)

2
. (6.17)

The network centric flow fairness leads to the same result according to equation 6.3. Here,
the network only consists of a single bottleneck link α shared by all flows. The fairness is
obvious to determine and can be visualized in the curve shown in Figure 6.5. This curve has
also been used for example by [Wel05] to illustrate the convergence to a fair sharing. The
line shows that for each link capacity the same throughput (B1 = B0) should be achieved
for both flows. The convergence to this fair allocation is denoted as optimal (fairness) point
and is achieved by the discussed AIMD mechanisms.

6.3.1.2 Evaluation of the singlepath scenario

A simulation setup was configured to evaluate this with ρ(α) varying from 5 Mbit/s to 100
Mbit/s for the singlepath bottleneck. Both senders and all access links were configured to
be able to use the complete bottleneck capacity ρ(α). Every setup was realized with TCP
and SCTP and their multipath extensions with four different competition scenarios, where a
singlepath New Reno flow is in competition with

1. An alternative singlepath New Reno flow
The goal of this experiment was to demonstrate the behavior singlepath congestion
controls used in the Internet today. The results of this experiment give the benchmark
for the link centric flow fairness. However, given the fact that in this scenario the
link centric and the network centric flow fairness are identical, this line is usable as
benchmark for the CCC proposals, too.

2. A multipath flow using the LIA CCC
LIA represents the default congestion control for MPTCP, in particular for Linux. The
results of LIA represent the currently standardized approach.

3F b
a : a describes the flow number and b describes the subflow number.

92 CHAPTER 6. REVISITING FAIRNESS

1 2 3 4 5 6 7

1

2

3

4

5

6

7

AIMD

Data rate [Mbit/s]

D
a

ta
 r

a
te

 [
M

b
it

/s
]

Figure 6.5: Well-known theoretic singlepath fairness curve

3. A multipath flow using the OLIA CCC
This represents the latest CCC developed for MPTCP.

4. A multipath flow using the RP-MPv2 CC
This represents the latest CCC developed for CMT-SCTP.

CMT-Reno is identical to New Reno in the singlepath setup and, therefore, not added as
additional experiment. The flow S1 always used TCP with the New Reno congestion control
(see singlepath TCP congestion control in Subsection 2.2.4.1). S0 varied over singlepath
SCTP und CMT-SCTP in Figure 6.6 and over TCP and MPTCP in Figure 6.6. A complete
configuration overview is given in the Table 6.2 for the Figure 6.6 and in the Table 6.3 for
the Figure 6.7. The curves of both figures always show the difference between the singlepath
TCP flow F1 and the alternative F0 and, therefore, the deviation from the optimal fairness
point. The results with absolute values are also added in the Appendix.

The benchmark Curve #1 in Figure 6.6 and in Figure 6.7 demonstrates impressively how
accurate today’s singlepath congestion controls work. As expected, the results represent the
optimal fairness point for every capacity selection. There is no difference whether a singlepath
TCP flow is in competition with an alternative TCP flow (Curve #1 in Figure 6.6) or with
an SCTP flow (Curve #1 in Figure 6.7). The deviation of both singlepath flows results to
zero.

In contrast to the singlepath congestion control, LIA starts to suffer at around 50 Mbit/s
(Curve #2 in both figures). The reason for this CCC behavior can be identified in the general
design of the CCC proposals, where every flow is allowed to perform only in maximum as
good as a default singlepath TCP flow. Thus, the multipath flow can achieve as much as
a singlepath flow only in the optimal case. Even small rounding errors or a bit of loss can
change this behavior.

OLIA behaves similar to LIA, even if the effect is not that drastic (Curve #3 in both
figures). It is obvious, that with OLIA improvements in the CCC design were achieved, even
if the optimal fairness points in the scenario were not achieved in every case.

6.3. EVALUATION OF COUPLED CONGESTION CONTROLS 93

10 20 30 40 50 60 70 80 90 100

−
1

0
−

5
0

5
1

0

Data rate on link α [Mbit/s]

T
h

ro
u

g
h

p
u

t
D

if
fe

re
n

c
e

 (
F

1
−

F
0

)
[M

b
it
/s

]

CC Variant Γ

1: Γ=Benchmark: New Reno

2: Γ=F0: LIA

3: Γ=F0: OLIA

4: Γ=F0: RP−MPv2

Figure 6.6: Accuracy of fairness in a singlepath setup with SCTP and CMT-SCTP

Experiment F0 protocol F0 CC F0 subflows F1 protocol F1 CC

1 SCTP New Reno 1 TCP New Reno

2 CMT-SCTP LIA 1 TCP New Reno

3 CMT-SCTP OLIA 1 TCP New Reno

4 CMT-SCTP RP-MPv2 1 TCP New Reno

Table 6.2: Configuration for Figure 6.6

10 20 30 40 50 60 70 80 90 100

−
1

0
−

5
0

5
1

0

Data rate on link α [Mbit/s]

T
h

ro
u

g
h

p
u

t
D

if
fe

re
n

c
e

 (
F

1
−

F
0

)
[M

b
it
/s

]

CC Variant Γ

1: Γ=Benchmark: New Reno

2: Γ=F0: LIA

3: Γ=F0: OLIA

4: Γ=F0: RP−MPv2

Figure 6.7: Accuracy of fairness in a singlepath setup with TCP and MPTCP

Experiment F0 protocol F0 CC F0 subflows F1 protocol F1 CC

1 TCP New Reno 1 TCP New Reno

2 CMT-SCTP LIA 1 TCP New Reno

3 CMT-SCTP OLIA 1 TCP New Reno

4 CMT-SCTP RP-MPv2 1 TCP New Reno

Table 6.3: Configuration for Figure 6.7

94 CHAPTER 6. REVISITING FAIRNESS

Anyway, in this setup the RP-MPv2 CCC proposal performed best compared to the OLIA
or LIA proposal (Curve #4 in both figures). The optimal fairness points were achieved up
to 75 Mbit/s.

Summarized, it can be observed that none of the multipath flows achieved a performance
comparable to a singlepath congestion control. All CCCs showed a non optimal behavior
with increasing link rate, even if the impact distinguishes them. Anyway, a deviation of less
than 5% is not very accurate, but acceptable.

6.3.2 Scenario 2: Shared bottleneck

The next step extends the simple singlepath test setup. S0 and D0 are designed as multi-
homed with an additional access link as shown in Figure 6.8. This change leads to the
important shared bottleneck scenario, as discussed in general in Subsection 3.2.2.1. The
challenge in this scenario is clear: both flows share the same bottleneck and the three Resource
Pooling goals4 for the IETF multipath fairness have to be fulfilled.

In this scenario the different number of the subflows per flow has to be considered. As a
result of the discussion in Chapter 5, the routing applied on the network layer may support
two kinds of path management strategies. In Subsection 5.1.2.1 the strategies were defined
as cross path setup and linear path setup. The supported path management strategy has
a direct impact on the useable subflows of the multipath extensions, as pointed out in Sub-
section 5.1.1.2. Therefore, in the optimal case CMT-SCTP can use two different subflows as
demonstrated in the in Figure 6.8, whereas MPTCP is able to establish four subflows.

S1

S0 R1

R3

R4

S1

S0 R1

D1

R3

R4

R5

R6

R2 D0

Figure 6.8: Fairness scenario 2: Shared bottleneck

6.3.2.1 Shared bottleneck model and theoretical discussion

The impact of the link and network centric flow fairness is the same. The multipath flow has
to allocate the same resources as the singlepath flow. Therefore, fairness can be described for
both approaches – like in Subsection 6.3.1 for the singlepath network – as:

B0 =

n∑
i

Bi
0 =

ρ(α)

2
; B1 = B0

1 =
ρ(α)

2
. (6.18)

In the IETF multipath fairness definition all subflows of a connection are only allowed to
allocate as much capacity as a singlepath flow on the shared bottleneck link. Figure 6.5

4“do not harm”, “be fair” and “balance congestion” see Subsection 3.2.2.2

6.3. EVALUATION OF COUPLED CONGESTION CONTROLS 95

Figure 6.9: Simple fairness curve

demonstrates the fairness line on flow level also for this scenario. On subflow level this
becomes more complex, that is in this setup for CMT-SCTP n is in maximum 2 and for
MPTCP n in maximum 4. The “fairness curve” for CMT-SCTP on subflow level is illustrated
in Figure 6.9. Here, the “fairness curve” transforms for CMT-SCTP with two subflows to
a fairness plane for the capacity allocation of F 0

0 , F 1
0 and F 0

1 [BDAR12b]. In addition, the
figure demonstrates an optimal fairness point in a Cartesian coordinate system by using a
low link capacity example. The example is illustrated in Figure 6.9 for a 4 Mbit/s shared
bottleneck link capacity. While F 0

1 is allowed to occupy 2 Mbit/s, the subflows of flow F0 are
allowed to use between 0 Mbit/s and 2 Mbit/s, as long the sum of both capacity allocations
does not exceed 2 Mbit/s. An example of a symmetric share – both subflows of F0 with 1
Mbit/s – is illustrated by the red dotted lines. The overall system works inaccurate or unfair
if the fairness plane is not hit by the congestion control. This also is valid if the path the
subflow is assigned to is limited. If for example the path with the subflow F 1

0 is limited to 2
Mbit/s, the plane is cut off for a shared bottleneck link capacity of 6 Mbit/s (B0

1 = 3 Mbit/s),
like illustrated in the Figure 6.9. Here the fairness plane does not cover every combination of
B0

0 and B1
0 summing up to 3 Mbit/s. The subflows of F0 have to share the 3 Mbit/s left. As

a result, F 0
0 is allowed to take between 1 Mbit/s and 3 Mbit/s and F 1

0 is allowed to allocate
between 0 Mbit/s and 2 Mbit/s5.

The IETF fairness interpretation just focuses on the TCP flow definition, where a TCP
flow is identified by a unique information tuple (see also discussion of TCB in Subsec-
tion 5.1.1.1). The resources provided by the user/endpoint are not reflected in this fairness
definition. Thus, the allocation depends on the number of the flows instead of subflows pro-
vided. In the shared bottleneck there exists no relation between hardware characteristics (like
bandwidth) provided by the user and the achieved performance of the flows. Therefore, it
might be questioned if the sender S0 has a real motivation to spend efforts in the infrastruc-

5Of course, as long the sum of both does not exceed 3 Mbit/s.

96 CHAPTER 6. REVISITING FAIRNESS

10 20 30 40 50 60 70 80 90 100

0
1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

Data rate on link α [Mbit/s]

R
e
c
e
iv

e
d
 B

it
 R

a
te

 [
M

b
it
/s

]

CC Variant Γ / Flow F

1: Γ=F0: LIA, F=0
2: Γ=F0: LIA, F=1
3: Γ=(U) F0: CMT−Reno, F=0
4: Γ=(U) F0: CMT−Reno, F=1

Figure 6.10: Shared bottleneck: Fairness on subflow and flow level

ture. Just to support the load balancing6 without getting any personal benefit might not
provide an adequate motivation.

6.3.2.2 Evaluation of the shared bottleneck scenario

The shared bottleneck scenario provides challenges on different levels. First the impact of
fairness on flow level and on subflow level will be discussed. After that, the impact of different
network characteristics are in the focus of this section, in particular with respect to link
capacity, error rate and delay.

Subflow and flow fairness
Two simple experiments with the shared bottleneck scenario (see Figure 6.8) were carried
out to demonstrate the difference between flow level and subflow level fairness in this setup.
Both experiments used two flows. Flow F1 was a singlepath TCP flow with applied New
Reno congestion control and flow F0 was CMT-SCTP with applied CMT-Reno CCC in the
first experiment and LIA CCC in the second. The capacity of the shared bottleneck was
varied from 5 Mbit/s to 100 Mbit/s. Figure 6.10 presents the results of this experiment.
Curve #1 and Curve #2 represent the outcome of the flow fairness7 achieved by the LIA
CCC. Curve #3 and Curve #4 illustrate the resource allocation for the link centric subflow
fairness view achieved by the CMT-Reno CCC. In case of LIA, both flows allocate the same
fair share (12 ρ(α)). This allocation on flow level is in general expected by the Resource
Pooling idea. Thus, it represents the expected behavior of LIA, OLIA and RP-MPv2. In
contrast, CMT-Reno allocates as much link capacity as the flow provides subflows. Thus,

6It should be always kept in mind that the load balancing goal, with the corresponding balance congestion
goal, is a strong motivation for the load sharing extension in the context of the IETF.

7It does not matter whether it is link or network centric view.

6.3. EVALUATION OF COUPLED CONGESTION CONTROLS 97

in case of CMT-SCTP the singlepath flow (F=1; Curve #4) gets 1
3 of the capacity and the

multipath flow (F=0 ; Curve #3) gets 2
3 .

In this context it should be mentioned that all coupled congestion controls achieved a fair
allocation of the shared bottleneck link capacity in line with the Resource Pooling idea on
flow level8 in corresponding experiments. The next step is to discuss how accurate the goals
of the Resource Pooling idea were achieved in this setup.

Capacity share
Again four experiment setups were created to discuss the accuracy of the CCC proposals
with respect to their ability to achieve the fairness on flow level. Thus, F1 was always a
singlepath TCP flow and F0 varied between TCP/MPTCP and SCTP/CMT-SCTP with
the corresponding congestion controls, in particular New Reno, CMT-Reno, LIA, OLIA and
RP-MPv2. The shared bottleneck resource was defined as one link with ρ(α) that varies
the capacity from 5 Mbit/s to 100 Mbit/s. As mentioned before, all senders used 1 Gbit/s
access links. The links themselves were connected by the routers R1 to R6 configured with
RED queues as defined in Subsection 2.2.3. Detailed configuration overviews are given by the
Table 6.4 for the results in the Figure 6.11 and by the Table 6.5 for the Figure 6.12.

All figures show the throughput difference B1-B0, i.e. the region with negative values on
the y axis defines a sharing which is defined as unfair to TCP. Positive values indicate that
the multipath flow is less aggressive than allowed. While this is still TCP fair, it is inefficient
from the point of view of the multipath flow.

Two additional experiments with the uncoupled CMT-Reno congestion control were added,
one for CMT-SCTP and one for MPTCP. Of course, a flow level fairness cannot be expected
from CMT-Reno, but the outcomes of Curve #5 in both the Figures 6.12 and 6.11 show the
difference between CMT-SCTP and MPTCP. This difference is the result of using two sub-
flows for CMT-SCTP and four subflows for MPTCP. This subflow configuration for MPTCP
and CMT-SCTP is used for all other multipath experiments, too. It should be mentioned
that the observed accuracy of the CCC proposals depends more on the number of subflows
as on the protocol9 used in the setup. Thus, if MPTCP would be used with two subflows the
same results as for CMT-SCTP with two subflows could be expected.

The optimal fairness points on flow level are again represented by two benchmarks with
two competing singlepath flows, where F0 used SCTP in Figure 6.11 and TCP in Figure
6.12. The CCCs are not able to achieve a completely accurate behavior in every case, but
a deviation up to 5% can be defined as acceptable, similar to the results of the singlepath
setup.

LIA is unable to achieve the optimal fairness for higher link rates. Already for a link rate
of 50 Mbit/s a deviation can be observed for CMT-SCTP. This deviation increases for higher
link capacities. Thus, for 100 Mbit/s a deviation of 5% can be observed, which is acceptable.
LIA for MPTCP is always unfair and even more unfair as for CMT-SCTP. Thus, for 100
Mbit/s a deviation of more than 5% can be observed.

Curve #3 shows the behavior of OLIA in the shared bottleneck scenario. The OLIA CCC
works accurate for CMT-SCTP with two subflows (see Figure 6.11). A higher deviation can
be identified in the experiments with MPTCP and four subflows (see Curve #3 and Curve

8The Figures A.3, A.4, A.5 and A.6 in the Appendix represent the results of the comparison with absolute
values for the same experiment setup. They build the base for comparison with Figure 6.10.

9The figures with the absolute values in the Appendix – Figures A.3, A.4, A.5 and A.6 shows here more details

98 CHAPTER 6. REVISITING FAIRNESS

10 20 30 40 50 60 70 80 90 100

−
1

5
−

1
0

−
5

0
5

Data rate on link α [Mbit/s]

T
h

ro
u

g
h

p
u

t
D

if
fe

re
n

c
e

 (
B

1
−

B
0

)
[M

b
it
/s

]

CC Variant Γ

1: Γ=Benchmark: New Reno

2: Γ=F0: LIA

3: Γ=F0: OLIA

4: Γ=F0: RP−MPv2
5: Γ=(U) F0: CMT−Reno

Figure 6.11: Shared bottleneck: SCTP and CMT-SCTP will all CCC proposals

Experiment F0 protocol F0 CC F0 subflows F1 protocol F1 CC

1 TCP New Reno 1 TCP New Reno

2 CMT-SCTP LIA 2 TCP New Reno

3 CMT-SCTP OLIA 2 TCP New Reno

4 CMT-SCTP RP-MPv2 2 TCP New Reno

5 CMT-SCTP CMT-Reno 2 TCP New Reno

Table 6.4: Configuration for Figure 6.11

10 20 30 40 50 60 70 80 90 100

−
1

5
−

1
0

−
5

0
5

Data rate on link α [Mbit/s]

T
h

ro
u

g
h

p
u

t
D

if
fe

re
n

c
e

 (
B

1
−

B
0

)
[M

b
it
/s

]

CC Variant Γ

1: Γ=Benchmark: New Reno

2: Γ=F0: LIA

3: Γ=F0: OLIA

4: Γ=F0: RP−MPv2
5: Γ=(U) F0: CMT−Reno

Figure 6.12: Shared bottleneck: TCP and MPTCP with all CCC proposals

Experiment F0 protocol F0 CC F0 subflows F1 protocol F1 CC

1 TCP New Reno 1 TCP New Reno

2 MPTCP LIA 4 TCP New Reno

3 MPTCP OLIA 4 TCP New Reno

4 MPTCP RP-MPv2 4 TCP New Reno

5 MPTCP CMT-Reno 4 TCP New Reno

Table 6.5: Configuration for Figure 6.12

6.3. EVALUATION OF COUPLED CONGESTION CONTROLS 99

#4 Figure 6.12). OLIA does not perform as aggressive as it is allowed, thus the throughput
is suboptimal for the MPTCP flow.

Curve #4 reflects the behavior of RP-MPv2. Like OLIA, RP-MPv2 works accurate for
CMT-SCTP with two subflows but for MPTCP RP-MPv2 shifts to a too aggressive behavior
like LIA. However, RP-MPv2 is less aggressive than LIA and, therefore, in acceptable borders
(in maximum 2.5%).

This first real comparison on a common and comparable platform showed that all coupled
congestion controls worked in the scenario they were designed for in an acceptable range, even
if there were small deviations. However, this fairness behavior was achieved under nearly
perfect conditions10. The next step is to investigate the behavior of the CCC proposals under
less optimal conditions, by varying the delay and error rate.

Delay
Delay is an important network characteristic for the congestion controls. The delay has a di-
rect impact on the RTT experienced before an acknowledgement can increase the congestion
window. Furthermore, with increased delay there is more time required for fast retransmis-
sions or to detect congestion. This has an impact on the CCC proposals and is, therefore,
an important topic for evaluation. The same shared bottleneck topology as before (see Fig-
ure 6.8) is used to discuss the impact of the delay on the CCC proposals. The only difference
is a variation of the delay on the shared bottleneck link α.

The LIA congestion control was chosen to discuss the general behavior in this scenario.
The behavior of the OLIA CCC is comparable to LIA11. RP-MPv2 shows specific abnormali-
ties with respect to the number of subflows, therefore it is discussed separately after the LIA
results.

Figure 6.13 and Figure 6.14 show the impact of delay δ varying on the bottleneck link from
1 ms to 80 ms. Figure 6.13 shows the results for the LIA CCC in CMT-SCTP and Figure 6.14
in MPTCP. The different path management strategies for CMT-SCTP and MPTCP should
be kept in mind during the discussion.

The impact of delay is for LIA – and also for OLIA – in principle similar for CMT-SCTP
(see Figure 6.13) and for MPTCP (see Figure 6.14). Thus, the number of subflows has no
fundamental impact for varying delays.

Both figures demonstrate an inaccurate behavior over the whole parameter range. While
the experiments show an unfair behavior for LIA in CMT-SCTP and MPTCP with low delay
(Curve #1 and #2 with δ=1 ms and 2 ms), they show a suboptimal multipath performance
for high delays (Curve #4 and #5 with δ=60 ms and 80 ms). But again, the behavior is
within the acceptable range.

One reason for this inaccurate behavior is of course the increased RTT. The longer it takes
to increase the congestion window by an acknowledgment, the longer there is no room for an
additional segment. This is caused by the aggressiveness factors of the CCC proposals (see
in Subsection 6.2.2). Thus, there exists the situation in the sending process, where the data
in flight is equal to the congestion window. Therefore, the sender stops the sending process
in expectation of an acknowledgment to confirm sent data in a first step and to increase
the congestion window in a second. If the calculation of the congestion window leads to

10Relating to delay (2 ms), error rate (0%) and nearly unlimited buffer.
11The corresponding results of the OLIA CCC are placed in the Appendix as Figure A.7 for the CMT-SCTP

and as Figure A.8 for MPTCP.

100 CHAPTER 6. REVISITING FAIRNESS

0 10 20 30 40 50 60 70 80 90 100

−
1

0
−

5
0

5
1

0

Data rate on link α [Mbit/s]

T
h

ro
u

g
h

p
u

t
D

if
fe

re
n

c
e

 (
B

1
−

B
0

)
[M

b
it
/s

]

Delay δ

1: δ=1

2: δ=2

3: δ=10

4: δ=60

5: δ=80

Figure 6.13: Impact of increased common delay for LIA in CMT-SCTP

0 10 20 30 40 50 60 70 80 90 100

−
1

0
−

5
0

5
1

0

Data rate on link α [Mbit/s]

T
h

ro
u

g
h

p
u

t
D

if
fe

re
n

c
e

 (
B

1
−

B
0

)
[M

b
it
/s

]

Delay δ

1: δ=1

2: δ=2

3: δ=10

4: δ=60

5: δ=80

Figure 6.14: Impact of increased common delay for LIA in MPTCP

smaller values as in the optimal case, the window is not increased to the theoretically allowed
maximum. For MPTCP this leads to higher fragmentation of data and in case of CMT-SCTP
even no new segment will be sent until the window is large enough. The system has to wait
for the next acknowledgments until the congestion window is increased enough that there
is free window space for a new message. With low delays this effect is decreased, therefore
behavior comparable to a singlepath connection can be expected. The longer the sender has
to wait for the next acknowledgment, the less aggressive is the multipath flow.

However, the multipath flow can also be more aggressive than the singlepath flow if the cal-
culation of the aggressiveness factor is inaccurate. This inaccurate aggressiveness calculation
can already be caused by small rounding errors.

In contrast to LIA and OLIA, the path management strategy had a severe impact on
the RP-MPv2 CCC. While RP-MPv2 performed in acceptable borders for CMT-SCTP (see
Figure 6.15), the performance suffered a lot for MPTCP (see Figure 6.16). In case of a link
capacity of 100 Mbit/s on link α, a high delay caused a deviation up to 15%. There should

6.3. EVALUATION OF COUPLED CONGESTION CONTROLS 101

0 10 20 30 40 50 60 70 80 90 100

−
1

0
−

5
0

5
1

0

Data rate on link α [Mbit/s]

T
h

ro
u

g
h

p
u

t
D

if
fe

re
n

c
e

 (
B

1
−

B
0

)
[M

b
it
/s

]

Delay δ

1: δ=1

2: δ=2

3: δ=10

4: δ=60

5: δ=80

Figure 6.15: Impact of increased common delay for RP-MPv2 on CMT-SCTP

0 10 20 30 40 50 60 70 80 90 100

−
5

0
5

1
0

1
5

Data rate on link α [Mbit/s]

T
h

ro
u

g
h

p
u

t
D

if
fe

re
n

c
e

 (
B

1
−

B
0

)
[M

b
it
/s

]

Delay δ

1: δ=1

2: δ=2

3: δ=10

4: δ=60

5: δ=80

Figure 6.16: Impact of increased common delay for RP-MPv2 on MPTCP

be a broad agreement that a deviation up of 15% from the perfect fairness point is hard
to accept, even if this less aggressive behavior is TCP-compatible with respect to the IETF
fairness goals. The RP-MPv2 CCC applied to MPTCP preferred the singlepath flow much
more than needed and, therefore, occupied less than a singlepath TCP flow would do in the
same MPTCP scenario. Therefore, this does not fulfill to the improve throughput goal of the
IETF multipath fairness (see Subsection 3.2.2.2).

One reason is the algorithm for the congestion window reduction [BDAR12b]. The RP-
MPv2 CCC always leads to more window reduction than in case of OLIA or LIA. For RP-
MPv2 the decrease and the increase are directly coupled to the congestion window. Chances
are high that a congestion window decrease would lead to a congestion window size below one
MSS which is prevented by the max function (see Subsection 6.2.1). In case of RP-MPv2, a
path will not be used for any new data during a time span of one RTO if a loss occurs. The
other subflow in CMT-SCTP interacts in this period like a singlepath flow and, therefore, as
aggressive. But this behavior can only be observed for the CMT-SCTP scenario with two

102 CHAPTER 6. REVISITING FAIRNESS

subflows. In the MPTCP setup (see Figure 6.16) four subflows are used. Thus, if a loss
occurs only one subflow is blocked during one RTO and the other three subflows are still in
competition. The three subflows cause more congestion and, therefore, a decreased coupled
congestion window. To block more than one path as an adaption of the algorithm is also
not possible, because the endpoint is not aware about the routing and the bottlenecks. An
endpoint cannot detect the cause of an error. If this would be possible this would describe
a bottleneck detection. With a bottleneck detection approach no Resource Pooling would be
needed.

Error rate
The new coupled congestion controls are all loss based congestion controls. Thus, every event
that causes loss in the endpoint or in the network has a direct impact on the congestion control
window. The ability to deal with different loss rates was tested by varying the packet error
rate on the bottleneck from 0% to 0.4%. The same shared bottleneck setup as before was used.
Again two experiments were carried out to demonstrate the impact on CMT-SCTP with two

0 10 20 30 40 50 60 70 80 90 100

−
1

0
−

5
0

5
1

0

Data rate on link α [Mbit/s]

T
h

ro
u

g
h

p
u

t
D

if
fe

re
n

c
e

 (
B

1
−

B
0

)
[M

b
it
/s

]

Common Loss Rate λ [%]

1: λ=0

2: λ=0.01

3: λ=0.02

4: λ=0.04

5: λ=0.08

6: λ=0.1

7: λ=0.2

8: λ=0.4

Figure 6.17: Impact of increasing error rate on LIA and CMT-SCTP

0 10 20 30 40 50 60 70 80 90 100

−
1

0
−

5
0

5
1

0

Data rate on link α [Mbit/s]

T
h

ro
u

g
h

p
u

t
D

if
fe

re
n

c
e

 (
B

1
−

B
0

)
[M

b
it
/s

]

Common Loss Rate λ [%]

1: λ=0

2: λ=0.01

3: λ=0.02

4: λ=0.04

5: λ=0.08

6: λ=0.1

7: λ=0.2

8: λ=0.4

Figure 6.18: Impact of increasing error rate on LIA and MPTCP

6.3. EVALUATION OF COUPLED CONGESTION CONTROLS 103

subflows and MPTCP with four subflows. The flow F1 was a singlepath TCP flow with New
Reno as congestion control and the flow F0 used LIA as CCC. The experiment results for
OLIA and RP-MPv2 are also attached in the Appendix as Figure A.9, A.11, A.12 and A.10,
but they show less impact on the accuracy than LIA. LIA showed a deviation in acceptable
borders with respect to an increased error rate for both multipath protocol extensions (for
CMT-SCTP in Figure 6.17 and for MPTCP in Figure 6.18). It could be observed that the
general tendency was independent of the number of subflows, even if the deviation was more
significant for MPTCP than for CMT-SCTP. Thus, while SCTP showed an unfair deviation
of 3% for a 100 Mbit/s link rate, a deviation of 5% was observed for MPTCP.

The behavior was not perfect for LIA, but can be argued as acceptable in comparison to
other the scenarios discussed in the following. RP-MPv2 and OLIA are more close to the
ideal share of the link capacity.

6.3.2.3 Comparable conditions for a fair sharing

So far, the fairness analysis focused on the shared bottleneck link characteristics, in particular
with respect to error rate, delay and bandwidth. Goal of this analysis was a comparison of
the CCCs and the protocol extensions under “comparable conditions” (see Subsection 3.2.2).

However, the CCC mechanisms are reflecting the Resource Pooling idea. Thus, the perfor-
mance of a multipath flow is the result of the summed up subflow throughputs and it makes
no difference which subflow provides the throughput as long as the multipath flow in sum can
provide it.

Thus, the “comparable conditions” are defined on flow level for the CCCs. The capacity
allocation to each multipath subflow in a shared bottleneck does not have to be equal and,
therefore, also not the bandwidth characteristics of the subflow paths. The goal of this
subsection is to investigate, whether the capacity aggregation can have an impact on the
fairness behavior of the CCCs.

S1

R1S0 R1

D1

R3

R5

R6

R2 D0

R4

Figure 6.19: Fairness scenario 3: Full bottleneck (with limited access links)

The shared bottleneck scenario has two routers (R3,R4) to support the access via different
paths to the network as illustrated in Figure 6.19. The access links were connected via these
routers and were used for the experiment to manipulate the path characteristics for the
subflows of flow F0. The capacities of the links (R3↔R1) and (R4↔R1) were configured to
40% of the capacity of ρ(α) each. The capacity of the bottleneck link in the experiment design

104 CHAPTER 6. REVISITING FAIRNESS

10 20 30 40 50 60 70 80 90 100

−
1

5
−

1
0

−
5

0
5

1
0

1
5

Data rate on link α [Mbit/s]

T
h

ro
u

g
h

p
u

t
D

if
fe

re
n

c
e

 (
B

1
−

B
0

)
[M

b
it
/s

]

CC Variant Γ

1: Γ=F0: LIA

2: Γ=F0: OLIA

3: Γ=F0: RP−MPv2

Figure 6.20: Limited access links for CMT-SCTP

10 20 30 40 50 60 70 80 90 100

−
1

5
−

1
0

−
5

0
5

1
0

1
5

Data rate on link α [Mbit/s]

T
h

ro
u

g
h

p
u

t
D

if
fe

re
n

c
e

 (
B

1
−

B
0

)
[M

b
it
/s

]

CC Variant Γ

1: Γ=F0: LIA

2: Γ=F0: OLIA

3: Γ=F0: RP−MPv2

Figure 6.21: Limited access links for MPTCP

ranged from 5 Mbit/s to 100 Mbit/s. The capacity of one access link of the multipath sender
alone was not able to fill the bottleneck up to 50%, but the complete multipath flow was able
to achieve in theory 80% of the capacity ρ(α). The capacity of the access link between S1
and R1 was decreased to 80% of ρ(α) to achieve the “comparable conditions”. Clearly, both
flows could achieve in sum the same maximum bandwidth on the shared bottleneck. In all
experiment setups RED queues were used in the routers. All CCC proposals were deployed
on CMT-SCTP and MPTCP to demonstrate the effects. Figure 6.20 shows the results of this
experiment for CMT-SCTP and Figure 6.21 for MPTCP.

It must be understood that a transport protocol with a loss-based congestion control has
the tendency to fill the system with as much data as possible, as long as it remains within the
limits of the window mechanism. That means, the transport protocol also has the tendency
to fill the queues in the system in front of a bottleneck link. Therefore, the behavior of the
CCC in general might depend on the limited link configuration as it causes a new potential
bottleneck. Therefore, the routers preceding the bottleneck have to buffer the segments. If

6.3. EVALUATION OF COUPLED CONGESTION CONTROLS 105

this buffer is limited this has a possible impact on the CCCs.

The LIA CCC performed close to the optimal fairness points in case of CMT-SCTP with
two subflows (see Curve #1 in Figure 6.20) and for MPTCP with four subflows (see Curve
#1 in Figure 6.21). LIA always prefers the congestion window of the strongest link based
on the throughput estimation during the aggressiveness factor calculation. Thus, only one
subflow on one path was filled with data, such that the subflow was only able to fill the queue
at either router R3 or R4. As a result, there was no difference if two subflows or four were
used, because only the best one was able to increase the congestion window with the chance
to fill the queues. After the window of the strongest subflow was reduced, the send process
continued with the alternative subflow. Even if the chance was high that an alternative
subflow became the new strongest path, it was again only one subflow that filled the queue.
This led to flapping among all available subflows, but this decreased the aggressiveness only
slightly. The more subflows, the higher the frequency of this flapping was, but in the end the
LIA CCC interacted always like one queue filling subflow.

In principle the behavior of the LIA CCC could also be observed for the OLIA CCC in the
CMT-SCTP setup (Curve #2 in Figure 6.20). OLIA privileges subflows as LIA, but OLIA
prefers groups of subflows instead of one specific subflow (see Subsection 6.2.3). However,
in the CMT-SCTP setup with two subflows this made no difference. Both subflows were
assigned to different groups and, therefore, one subflow was preferred more and the other less
similar to the behavior of the LIA CCC. The send behavior with one preferred subflow was
comparable to a “normal” singlepath subflow.

However, this behavior changed in the MPTCP experiment. Curve #2 in Figure 6.21
shows a deviation of 10% for a bottleneck link capacity of 100 Mbit/s. The performance of
the multipath flow suffered significantly because in the MPTCP setup more than one flow
tried to increase its congestion window. As consequence, one subflow per path was preferred
and, therefore, at least two subflows filled the queues and caused loss in different queues.
More loss caused more cycles with decreased congestion window and that in sum decreased
the aggressiveness.12

RP-MPv2 exhibits an inaccurate behavior beyond 10% in the CMT-SCTP setup (see
Curve#2 in Figure 6.20), which is comparable to the behavior of the OLIA CCC in MPTCP.
Even if RP-MPv2 does not prefer any subflow in contrast to OLIA, this led to the same
result in case of CMT-SCTP because two subflows tried to expand their windows as much
as possible and filled two queues at the same time. Therefore, more loss was observed than
for OLIA in MPTCP. The effect for RP-MPv2 in MPTCP was less significant, because the
strongly coupled congestion window was decreased by every loss. Because for MPTCP the
queues were filled by four subflows the congestion occurred – more or less – at the same
time and this led to a decreased congestion window. It might surprise that this decreased
coupled congestion window had a positive effect on the overall system behavior, but the
increase factor of RP-MPv2 is calculated based on this reduced congestion window. Thus,
the lower the aggressiveness factor is, the lower is the congestion window growth between
the send cycles. Thus, less packets are enqueued in the router queues. Therefore, more time
is provided to send without loss caused by the router queues and in sum this leads to an
increased throughput. A limited congestion window has, therefore, a positive impact on the
overall system. This effect of the scheduling process is discussed in more detail in Section 7.6.

In theory this setup provides “comparable conditions” on the shared bottleneck, but it

12The Figure A.14 for MPTCP and the FigureA.13 for CMT-SCTP can be found in the Appendix.

106 CHAPTER 6. REVISITING FAIRNESS

also shows different results depending on the deployed CCCs. Even if the behavior is fair in
the context of the IETF multipath goals13 it is not very accurate. Thus, even if it fits the
IETF multipath fairness goals, the results show neither a link centric nor a network centric
flow fairness.

6.3.3 Scenario 3: Half bottleneck with single- and multipath flow

In the singlepath and shared bottleneck scenarios, the fairness definition focused on the re-
lationship of flows, subflows and capacity. The link centric and network centric flow fairness
view led to the same capacity share. The fair sharing depended only on the question whether
the fairness is based on the number of flows or subflows. The next scenario, which is denoted
as half bottleneck, is going to demonstrate the ambiguity related to multi-homed configu-
rations with respect to link centric and network centric flow fairness. A new scenario was
created to demonstrate this as shown in Figure 6.22. The senders S0 and S1 and the access
links to the shared network stay the same as in the shared bottleneck scenario, but the con-
necting topology is changed. Now, the sender S0 transfers data to the receiver D0 via two
links (R1↔R2 and R3↔R4). The subflow F1 belongs to the connection between S1 and D1
and shares the network segment R3↔R4 defined as new bottleneck link β. The link α is used
by one subflow of S0 in case of CMT-SCTP and by two subflows in case of MPTCP. The
competition exist on the link β, which in case of CMT-SCTP is used by one subflow of S0
and one subflow of S1 and in case of MPTCP by two subflows of S0 and one subflow of S1.
The subflow distribution for CMT-SCTP is illustrated in Figure 6.22. One major goal of the
following experiments was to identify the impact of the balance congestion goal.

S0

R1

S1

R2

R3 R4

D0

D1

Figure 6.22: Fairness Scenario 3: Half bottleneck for singlepath

6.3.3.1 Half bottleneck model and theoretical discussion

The main challenge of this scenario is a fair sharing of ρ(β) under the constraints of ρ(α)
for the network centric fairness view on flow level. The fairness regarding the bandwidth
distribution can be considered as hard to identify and to monitor, in particular with respect
to the balance congestion goal. Before discussing the results for these mechanisms, the fairness
goals have to be defined. The following definitions are valid as long as a subflow i is an element
of a set of subflows that are routed via link α and a subflow j is an element of the set of

13The CCC achieves in sum more performance than a singlepath flow but also is less aggressive than the
singlepath flow

6.3. EVALUATION OF COUPLED CONGESTION CONTROLS 107

Figure 6.23: Fairness example

subflows routed via β. In the link centric flow fairness, the allocation is:

n∑
i

Bi
0 = ρ(α) ;

n∑
j

Bj
0 = B1 =

ρ(β)

2
. (6.19)

The green plane in Figure 6.23 illustrates the result of this allocation for CMT-SCTP. Here,
the fairness plane is based on the behavior of F0 and F1 with respect to the link capacity of
β. Thus, only the link capacity of β has to be shared among the subflows F 1

0 and F 0
1 . The

behavior of F 0
0 has no impact. The allocation of F 0

0 is always 100% of ρ(α). As Example #1
a specific point is marked with a blue cross in Figure 6.23. This cross represents the fairness
point for a topology setup where ρ(α) is 7 Mbit/s and ρ(β) is 2 Mbit/s. A link centric flow
fairness for flow F0 is achieved when the throughput of the subflow assigned to α (B0

0) is 7
Mbit/s and the throughput of the second subflow (B1

0) – in competition with F1 – is half
of ρ(β) (2*1

2=1). Therefore, the flow F1 gets 1 Mbit/s and the flow F0 gets 8 Mbit/s. The
allocation of the capacity ρ(β) to F 1

0 and to flow F1 remains the same as long as ρ(β) is fixed,
even if ρ(α) will be increased or decreased.

In contrast to the link centric flow fairness, the network centric flow fairness considers the
complete network characteristics in this scenario. Thus, network centric flow fairness must
consider the same plane as in the shared bottleneck scenario. The only difference to the
shared bottleneck scenario is, that the “resource to share” consists of two instead of one link
and, furthermore, the resulting resource distribution depends on the difference between the
capacities ρ(α) and ρ(β). That is, the multi-homed flow between S0 and D0 has to restrain
its resource usage on the bottleneck, when the upper path (which is used exclusively) gets
more capacity. In general three different cases can be distinguished:

• ρ(α) = 0: The flow F0 can then be considered as a singlepath flow with respect to
its behavior; the bandwidth allocation is then identical to the singlepath scenario (see
Subsection 6.3.1.2).

108 CHAPTER 6. REVISITING FAIRNESS

• ρ(α) ≥ ρ(β): In this scenario, the multipath flow can be considered as a singlepath
flow on link α. The capacity allocation for the singlepath flow F1 is ρ(β) and of the
multipath flow F0 is ρ(α).

• 0 < ρ(α) < ρ(β): In this case, the third IETF multipath goal (“balance congestion”,
see Subsection 3.2.2.2) has to be taken into account. Here, the multipath flow should
move as much traffic as possible off its most congested path. With a growing ρ(α),
more and more bandwidth has to be moved from F 1

0 to F 0
0 to fulfill the condition

of F 0
0 +F 1

0 = F1. The fairness can be described in general by the following calculation,
as long as a subflow i is an element of a set of subflows that are routed via link α and
a subflow j is an element of the set of subflows routed via β:

n∑
i

Bi
0 = ρ(α) ;

n∑
j

Bj
0 = max

{
0,
ρ(β)−

∑n
i B

i
0

2

}
; B1 = ρ(β)−

n∑
i

Bi
0. (6.20)

In order to demonstrate the difference between the link centric and the network centric
flow fairness, Example 2 for CMT-SCTP is illustrated in Figure 6.23. This example is based
on the assumption that ρ(β) has 4 Mbit/s and ρ(α) increases from 0 Mbit/s to 7 Mbit/s.
A symmetric share of all subflows on all paths is considered here, in order to simplify the
illustration.

Figure 6.23 shows two lines for Example 2, the green dotted line represents the link centric
flow fairness and the red solid line represents the network centric flow fairness. For the green
dotted line the fair sharing is like in Example 1. The focus is only on the fair sharing of ρ(β)
between B1

0 and B0
1 which results in 2 Mbit/s independent from ρ(α).

However, the ratio for all subflows is different for the network centric flow fairness in the
red line. At ρ(α) = 0 the subflow F 0

0 gets 0 Mbit/s and ρ(β) can be shared for the other
subflows like in the singlepath scenario, thus F 1

0 and F 0
1 get each 2 Mbit/s (see lower red

cross in Figure 6.23). Another example for ρ(α)=1Mbit/s is illustrated by the middle red
cross where F 0

0 gets 1 Mbit/s, F 1
0 gets 1.5 Mbit/s and F 0

1 gets 2.5 Mbit/s. Thus, in sum both
flows get 2.5 Mbit/s. The highest red cross illustrates the point where ρ(α)=ρ(β), from this
point the subflow F 1

0 gets no more additional resources. Thus, the resources allocated to F0
are equal to ρ(α) (for the red cross 4 Mbit/s) and for F1 equal to ρ(β).

To be clear here, the shared bottleneck scenario (see Figure 6.22) and the half bottleneck
scenario do not differ in the resource capacity provided, they only differ with respect to the
calculation. The challenge of the network centric view on flow level in this scenario is not
to adapt to the topology only, it also has to consider the limitations of the usable links.
Therefore, the CCCs implementing the Resource Pooling idea to achieve network centric flow
fairness have to adapt to the network characteristics even in this scenario. This is a much
more complex task as implemented in the singlepath congestion control which addresses a link
centric fairness on subflow level and also a different task compared to the shared bottleneck
scenario.

It should be noted again that the estimation of the available resources of all possible paths
and their combination is much easier in this simple example scenario than in the Internet and
no endpoint or ISP is aware of all the connection details. Thus, a real control of the achieved
results is not possible by any entity of the system. This should be discussed as a real drawback
of the IETF fairness definition. This thesis does not argue that the fairness interpretation is
wrong, it only argues that it is hard to control even if it is deployed correctly. If it is deployed
correctly is discussed in the next subsection.

6.3. EVALUATION OF COUPLED CONGESTION CONTROLS 109

6.3.3.2 Evaluation of half bottleneck with singlepath flow

First it should be discussed which impact the balance congestion goal has on the CCC pro-
posals and what kind of performance can be expected. The topology of Figure 6.22 is used to
demonstrate this in different experiments. For these experiments the capacity of α was static
and set to 20 Mbit/s.

Figure 6.24 demonstrates the expected results for the link centric and network centric flow
fairness. Both fairness views are illustrated by two flows, a singlepath flow (dashed curves)
and a multipath flow (solid curves). The blue colored curves reflect the link centric fairness,
where the capacity sharing of β defines the gradient of both curves. The singlepath flow starts
with 0 Mbit/s and the multipath flow curve starts with an offset of the static ρ(α) on the y
axis.

The green curves illustrate the network centric flow fairness with respect to both cases
where ρ(α) > ρ(β) and ρ(α) ≤ ρ(β). For ρ(α) > ρ(β) the capacity of α is occupied by the
multipath flow (solid line) and the capacity of β by the singlepath flow (dashed line). There-
fore, if both bottlenecks provide in sum a capacity of 30 Mbit/s (ρ(β)=10) the singlepath flow
gets 10 Mbit/s and the multipath flow gets 20 Mbit/s. In contrast, in case of ρ(α) ≤ ρ(β)
both flows have to occupy exactly the same capacity. Thus with, e.g., ρ(β)=60 Mbit/s both
flows have to share the complete capacity (80 Mbit/s) with an allocation of 40 Mbit/s to each
flow.

10 20 30 40 50 60 70

10

20

30

40

50

60

70

Data rate on link [Mbit/s]

R
e

ce
iv

e
d

 B
it

 R
a

te
 [

M
b

it
/s

]

Figure 6.24: Fair sharing example for ρ(α)=20 Mbit/s

Figure 6.25 shows the results for CMT-SCTP and 6.26 for MPTCP by using the same
capacity configuration (α=20 Mbit/s) in the simulation setup. Four experiment setups are
presented in every figure, where the sender S1 always use a singlepath TCP flow F1 and the

110 CHAPTER 6. REVISITING FAIRNESS

sender S0 a multipath flow F0. The sender S0 used different CCC proposals for every exper-
iment. In this discussion for every experiment again two result curves have to be considered
for the multipath flow and the singlepath flow. The dashed curves with the even numbers
represent the multipath flow F0, whereas the solid curves with the odd numbers represent
the singlepath flows F1.

Curve #7 and #8 represent the behavior of the CMT-Reno congestion control which rep-
resents the baseline for the link centric fairness on subflow and flow level, which is comparable
to the blue line in Figure 6.24. The curves illustrate the behavior as it can be expected for
this fairness view.

Curve #1 and #2 represent the behavior of LIA, Curve #3 and #4 of OLIA and Curve #5
und #6 for RP-MPv2. None of the CCC proposals shows the expected behavior for the
network centric flow fairness. Even worse, with increased ρ(β) the fairness behavior shifts more
and more to a reversed link centric fairness behavior, where the singlepath flow connection
gets more of the shared link capacity than the multipath flow (compare with link centric flow
fairness of Curve #7 and #8).

In case of ρ(β) <20 Mbit/s an acceptable behavior can be observed for OLIA and RP-
MPv2 deployed on CMT-SCTP and MPTCP. Both CCC proposals were able to detect the
capacity distribution and allocate the resources as the links α and β provide them. OLIA
and RP-MPv2 are able to balance the congestion and to provide the whole capacity of link
β to the singlepath flow. Here the network centric flow fairness is achieved. The LIA CCC
demonstrates this ideal behavior only in the MPTCP setup (see Curves #1 and #2 in Fig-
ure 6.26). In the CMT-SCTP setup (see Figure 6.25) the multipath flow F0 allocates more
than the 20 Mbit/s.

In case of ρ(β) ≥20 Mbit/s the behavior of all CCC proposals becomes very inaccurate
with respect to the network centric flow fairness view. For every CCC proposal in both
protocols an allocation can be observed where the singlepath and multipath flow cross each
other. But except for this point a fair sharing of the resource is not achieved as illustrated in
Figure 6.24.

Even if the multipath flow can use the additional access link, the singlepath flow is able to
allocate e.g. in case of LIA nearly twice as much capacity of the shared link as the multipath
flow. With this ratio neither the link nor the network centric flow fairness view is addressed,
it only fits the IETF fairness definition to be equal or better than the strongest singlepath
flow and less aggressive than TCP.

And even worse, none of the CCCs – in particular not RP-MPv2 – was able to saturate the
link for an increased ρ(β) like the CMT-Reno congestion control. Figure 6.27 illustrates the
overall throughput of as sum of the MPTCP flows F0 and the TCP F1. While the uncoupled
congestion control CMT-Reno (see Curve #4 in Figure 6.27) is able to utilize the complete
network capacity, the CCC proposals with the additional singlepath flow just achieve an
overall capacity allocation of around 85% for ρ(α)=20 Mbit/s und ρ(β)=80 Mbit/s in case of
RP-MPv2. The insufficient behavior is not as drastic in case of LIA in Curve #1 and in case
of OLIA in Curve #2, but even here hard to accept.

Even if the preference for the singlepath flow and the decreased network utilization fit the
fairness definition of the IETF, the experiments demonstrate an inaccurate and unpredictable
behavior in a competition with a singlepath flow. This behavior might be acceptable from
the IETF perspective, but it decreases the network utilization for the ISP and brings in the
worst case no benefit for the user who provides – and pays – multiple access links.

6.3. EVALUATION OF COUPLED CONGESTION CONTROLS 111

0 10 20 30 40 50 60 70 80 90 100

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0

Data Rate [Mbit/s]

R
e

c
e

iv
e

d
 B

it
 R

a
te

 [
M

b
it
/s

]

CC Variant Γ / Flow F

1: Γ=LIA, F=0

2: Γ=LIA, F=1

3: Γ=OLIA, F=0

4: Γ=OLIA, F=1

5: Γ=RP−MPv2, F=0

6: Γ=RP−MPv2, F=1

7: Γ=(U) CMT−Reno, F=0

8: Γ=(U) CMT−Reno, F=1

Figure 6.25: Scenario 4: TCP vs. CMT-SCTP

0 10 20 30 40 50 60 70 80 90 100

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0

Data Rate [Mbit/s]

R
e

c
e

iv
e

d
 B

it
 R

a
te

 [
M

b
it
/s

]

CC Variant Γ / Flow F

1: Γ=LIA, F=0

2: Γ=LIA, F=1

3: Γ=OLIA, F=0

4: Γ=OLIA, F=1

5: Γ=RP−MPv2, F=0

6: Γ=RP−MPv2, F=1

7: Γ=(U) CMT−Reno, F=0

8: Γ=(U) CMT−Reno, F=1

Figure 6.26: Scenario 4: TCP vs. MPTCP

112 CHAPTER 6. REVISITING FAIRNESS

10 20 30 40 50 60 70 80 90 100

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

Data Rate [Mbit/s]

C
u

m
u

la
ti
ve

 T
h

ro
u

g
h

p
u

t
(B

0
 +

 B
1

)
[M

b
it
/s

]

CC Variant Γ

1: Γ=F0: LIA

2: Γ=F0: OLIA

3: Γ=F0: RP−MPv2
4: Γ=(U) F0: CMT−Reno

Figure 6.27: Overall performance of both flows

S0

R1

S1

R2

R3 R4

D0

D1

Figure 6.28: Fairness Scenario 4: Half Bottleneck for multipath

6.3.3.3 Evaluation of half bottleneck with multipath flows

This evaluation investigates if an important fairness goal is missed in the current IETF fairness
discussion focusing on singlepath TCP connections only. An experiment was designed to make
the open issue visible by replacing the singlepath flow by an additional multipath flow in the
half bottleneck setup. Thus, the setup shifts to a multipath dominated network and the
fairness issue with the singlepath TCP flow does not exist anymore. Figure 6.28 illustrates
the experiment setup connecting two multi-homed endpoint pairs via the same network. Thus,
sender S0 and S1 both transmit one subflow via the network by using independent access links.
Both endpoints support a routing in a way that in every case the same number of subflows is
routed via the bottlenecks between R1↔R2 (bottleneck α) and R3↔R4 (bottleneck β). The
capacity of α is configured static as ρ(α)=20 Mbit/s and the capacity of β is ranging from
5 Mbit/s to 100 Mbit/s. By using the CCC proposals the goal for both protocols and both
fairness views – network or link centric flow fairness – leads to the same expected behavior,
where two flows share the resources in a 50:50 manner. The experiment covers the behavior
in case of ρ(α) 6= ρ(β) and ρ(α) = ρ(β).

Figure 6.29 and Figure 6.30 represent the deviation from the optimal fairness point for the

6.3. EVALUATION OF COUPLED CONGESTION CONTROLS 113

0 10 20 30 40 50 60 70 80 90 100

−
1

5
−

1
0

−
5

0
5

1
0

1
5

Data Rate [Mbit/s]

T
h

ro
u

g
h

p
u

t
D

if
fe

re
n

c
e

 (
B

1
−

 B
0

)
[M

b
it
/s

]

CC Combination Γ

1: Γ=LIA − LIA

2: Γ=LIA − OLIA

3: Γ=LIA − RP−MPv2

Figure 6.29: Multipath fairness depending on ρ(β): LIA in comparison with all CCCs for
CMT-SCTP

0 10 20 30 40 50 60 70 80 90 100

−
2

5
−

2
0

−
1

5
−

1
0

−
5

0
5

Data Rate [Mbit/s]

T
h

ro
u

g
h

p
u

t
D

if
fe

re
n

c
e

 (
B

1
−

 B
0

)
[M

b
it
/s

]

CC Combination Γ

1: Γ=LIA − LIA

2: Γ=LIA − OLIA

3: Γ=LIA − RP−MPv2

Figure 6.30: Multipath fairness depending on ρ(β): LIA in comparison with all CCCs for
MPTCP

example of LIA as basic CCC14. The Curve #1 in Figure 6.29 for CMT-SCTP and Figure 6.30
for MPTCP represents the baseline for this experiment by using LIA in competition with
another LIA flow. Both figures show that the LIA CCC is fair to itself for MPTCP and
CMT-SCTP. Independent of the link rate each multipath flow with the LIA CCC is able to
allocate 1

2 of the provided capacity at the bottlenecks. This behavior is changed drastically
if the congestion control of flow F0 is changed to OLIA or RP-MPv2. While for CMT-SCTP
(see Figure 6.29) the deviation oscillates around the optimal fairness point in a range of ±10%
depending on ρ(β), the deviation for MPTCP (see Figure 6.30) exceeds a deviation of 15%
for RP-MPv2 (Curve #3) and 20% for OLIA(Curve #2). Obviously, the CCC proposals are
unfair to each other. A specific multipath aggressiveness cannot be described just by the
definition of a less aggressive behavior against singlepath flows only. The current fairness

14The Figures with the absolute values are attached in the Appendix as A.15 and Figure A.16.

114 CHAPTER 6. REVISITING FAIRNESS

definition must be redesigned to consider this in the network centric fairness view on flow
level.

The observations for LIA also can be applied to the behavior of OLIA and RP-MPv2.
The CCC proposals are fair to themselves but show an unfair behavior towards other CCC
proposals. The result curves with absolute values can be found in the Appendix.

Altogether, this raises a new question with respect to multipath fairness that is not part
of the IETF fairness definition and was not discussed so far. The question is open how a
multipath flow is supposed to share the resources with another multipath flow using a different
CCC. And the results show that this question matters because all known CCC proposals show
a different aggressiveness on the link, which leads to an unfair use of the resources.

If the Resource Pooling idea is not able to provide a fair multipath behavior, the benefits
of Resource Pooling idea should be questioned in this context.

6.4 Conclusion

The evaluation of the existing coupled congestion controls leads to different conclusions. First
the IETF fairness discussion results in fairness behavior that is, in the worst case, completely
decoupled from the resources provided in the network. All experiments with singlepath flows
show that the singlepath flow will be preferred in the current IETF interpretation mostly
without any valid reason. The cause for this behavior is the hard coupling of the balance
congestion goal with the fairness goal in the Resource Pooling idea.

No entity in the network is able to control the behavior. Even worse, the goal of a better
network utilization cannot be achieved in all scenarios. Even if the Internet community will
accept the interpretation of the ambivalent multipath fairness definition also in the future and
the deviations from the fairness line will be tolerated, the idea of a fair sharing of resources will
not be achieved for multipath flows themselves. A multipath flow fairness is not covered by the
current IETF multipath fairness goals. Here it can be expected that history is repeating itself.
Like the definition of singlepath flow fairness was created with respect to a TCP-compatible
behavior, multipath flow fairness will be defined by an MPTCP-compatible behavior. Thus,
also for CMT-SCTP it can be expected that the discussion shifts to an MPTCP-compatible
behavior, where LIA currently sets the baseline. Even if OLIA, RP-MPv2 or future congestion
controls would perform better, they will not be deployed, because they are unfair to the LIA
CCC. The community has to discuss if this should really be the goal.

The “fair sharing” of the resources is an important task for the load sharing extensions
of SCTP and TCP and will decide about the success of both extensions. But even if it is
assumed that the mechanisms used in the future will be developed based on the Resource
Pooling idea and work in acceptable borders, the motivation for the multi-homed sender is not
always clear. To provide the resources for the own flow but to achieve less than a singlepath
flow is hard to understand. The impact of this motivation is not predictable. In the current
status, the IETF multipath fairness goals are not complete, inconsistent and not user friendly.

Altogether, the mechanisms addressing the Resource Pooling idea do not behave very
accurate and are not easy to predict, to monitor or to control. And in the end, none of
the involved parties in the network will be motivated to interact as required by the IETF
multipath fairness definition, as long as use cases can be defined that result in less performance
for everyone. Furthermore this thesis argues for a link centric subflow fairness, with all its
benefits as an alternative solution.

Chapter 7

Revisiting scheduling

Chapter 5 has discussed the direct impact of the “path” definition on the overall throughput
of MPTCP and CMT-SCTP. Furthermore, Chapter 6 has demonstrated that the ambiguous
fairness definition not always causes a straightforward sharing of the network resources. All
mechanisms addressed by these chapters have a significant impact on the defined resources
and, therefore, on the throughput.

In addition to this, however, a link as basis entity has own specific characteristics with
respect to the usable bandwidth, the error rate and the delay. These link characteristics are
based on physical limits. A transport protocol has to deal with these path characteristics
which are very different in a network such as the Internet and can vary greatly over time.

To support an effective utilization of these path resources, different decisions have to be
taken for a subflow such as:

• Timing of the send process,

• Amount of data to send,

• The resources (path, buffer, window, etc.) to use.

This task is assigned to a so-called scheduler instance [SM11, DSTR10, SGTG+12]. Until now
it has not been methodically investigated which degrees of freedom a multipath scheduler for
MPTCP and CMT-SCTP has. Of course, there exist some exisiting solutions in the reference
implementations of FreeBSD and Linux, but it has not been discussed if they have been
designed for the network requirements like those of the Internet.

The contribution of this chapter is to revisit the way the data of a connection is distributed
over the paths to achieve the goals of the load sharing extensions. This chapter identifies the
weaknesses of the currently used approaches and proposes improvements for the extensions
of TCP and SCTP.

The discussion starts with a detailed look into the challenges of a multipath scheduler
design on the transport layer, in particularly taking into account the requirements of SCTP,
TCP and their extensions. Afterwards the mechanisms of the multipath scheduling design
are adapted to the multipath protocol extensions and evaluated. In addition this chapter
introduces a completely new approach for MPTCP to decrease the effects of buffer block-
ing. This new approach is based on a real-time protocol extension of [BDB+13], which was
done as preparatory work for this thesis. Furthermore, this chapter identifies new blocking
issues for MPTCP and CMT-SCTP and proposes approaches to decrease their impact on the

115

116 CHAPTER 7. REVISITING SCHEDULING

throughput. Before starting with the design, the multipath scheduling process itself has to
be analyzed.

7.1 The multipath scheduler

Although it is an important task, the IETF leaves the scheduler discussion open to the
implementers. Therefore, nothing related is defined in the Internet drafts. Only the cur-
rent reference implementations of MPTCP and CMT-SCTP (see Subsection 3.2.3.4) give a
first implementation guideline and solution approach. This section discusses and analyzes
the reference implementations in FreeBSD and Linux and the related work to demonstrate
the benefits, the drawbacks and the requirements. The reference implementation for MP-
TCP [RPB+12] is in Linux and for CMT-SCTP in FreeBSD [Fre12] (see Subsection 3.2.3.4).

7.1.1 Goals of scheduling

Every application has its specific requirements concerning the transport protocols based on
the services provided. Some applications need a high throughput and other applications
require a low delay. Also many applications have a mix of delay and throughput constraints,
like a live video streaming service.

However, the IETF transport protocols do not address these requirements with such a
fine granularity. The application developer has the choice among different service bundles,
represented by the IETF transport protocols TCP, UDP, SCTP and DCCP (see Section 2.1).
Therefore, the design goals of a multipath scheduler are not a question of application goals
in the first place, rather they are a question of the goals of the service bundle represented by
the core protocols as defined in the RFCs.

As discussed in Subsection 2.2.1, SCTP and TCP provide a connection-oriented, unicast
and congestion-controlled transport service. The main difference is that TCP is based on a
byte stream transfer and SCTP uses a message format to organize user data. In addition,
SCTP provides the possibility to divide the application flow into multiple independent logical
streams, where each stream is a logical unit similar to a TCP flow (see Subsection 2.2.2).

The MPTCP architecture RFC [FRH+11] is also really clear with its goals and defines
improved throughput and improved resilience as primary tasks (see Subsection 5.1.1.1). The
CMT-SCTP Internet draft [ABD+13] describes primarily the improved throughput goal. Nev-
ertheless, an additional goal of CMT-SCTP is to become more effective with respect to the
availability check1. The better availability check goal in case of CMT-SCTP confirms once
more the focus of the SCTP/CMT-SCTP authors on the reliability feature.

Furthermore, a theoretical throughput has to be identified to judge if the currently de-
scribed multipath extensions even achieve the throughput that can be expected and what is
defined as goal. A lot of effort has been spent for TCP and SCTP to create models for theoret-
ical throughput calculation. An often-cited result for TCP is the formula of Mathis [MSM97].
However, there also exist other approaches for TCP like [PFTK98]. A similar approach exists
for SCTP in the work of [Rün09]. All approaches are based on similar assumptions. The
basic idea of all approaches is to calculate the throughput based on a period of time called

1Availability check with real data instead of heartbeat messages.

7.1. THE MULTIPATH SCHEDULER 117

“send cycle” of the connection. A send cycle is typically given by the round trip time of the
singlepath connection “path” in TCP and SCTP.

These approaches work quite well for singlepath transport protocols like SCTP and TCP.
It is important to mention that all the calculation models focus on the congestion avoidance
phase (see Subsection 2.2.4.1). The slow start phase is not in the focus of these calculation
models, because it does not have a relevant impact on the singlepath system behavior, partic-
ularly with focus on the long-term behavior. Therefore, the first straightforward expectation
for the load sharing approaches is a summed throughput calculation over all subflows. Some
experiments, like the high throughput experiment setup in [Chr13], have shown that such
a throughput can be achieved under perfect conditions. This confirms the argumentation
of the authors of [SGTG+12] who claimed that if there are no limiting resources in a setup
with similar links, the scheduling has no relevant impact on the throughput of the multipath
connection. It is only important that the sender is saturated and that the system provides
enough resources to support a continuous send process of data. This leads to a straightfor-
ward calculation of the expected throughput T as sum of the throughputs of all available
paths P .

T =

P∑
i=1

data per cyclei
time per cyclei

(7.1)

However, neither CMT-SCTP nor MPTCP are deployed only in a perfect world scenario.
The Internet is a target network with imperfect conditions, it is highly heterogeneous and
characterized by unpredictable combinations of links and paths. Most impact have dissimilar
path characteristics. In this thesis four kinds of path characteristics are distinguished:

• “Fast” path
This defines a path with a low delay. A subflow using a fast path is denoted as fast
subflow. The “fastest” subflow is assigned to the path with the lowest RTT.

• “Slow” path
A slow path provides a high delay and a subflow using a slow path is characterized as
slow subflow.

• “Strong” path
This identifies a path that supports a high throughput. Therefore, a strong path pro-
vides a combination of high bandwidth, low error rate and low delay. A subflow assigned
to a strong path is denoted as strong subflow and the strongest subflow achieves the
best throughput over a period of time.

• ‘‘Weak” path
A weak path uses links with poor characteristics with respect to bandwidth, error rate
and delay. A subflow which transfers data via this path is called weak subflow.

7.1.2 Scheduler setup

The Internet provides a challenging environment with nearly endless combinations of link
and path characteristics. The resources provided are diverse and cover different media like
for example fiber, satellite link or copper cable. Every network component provides specific
characteristics of its own and has to provide the resources to different flows. In this thesis
the experiments are performed on a 3G-like and a WiFi-like link to demonstrate the effect of

118 CHAPTER 7. REVISITING SCHEDULING

Figure 7.1: Experiment setup

asymmetric, heterogeneous network topologies. This setup was chosen because mobile devices
used already today are mostly connected via these two access links.

The experiment setup becomes even more relevant because such a scenario is also used
by the authors of [RPB+12]. They are also co-authors of the MPTCP standard and, there-
fore [RPB+12] demonstrates their achievements related to load sharing schedulers and buffer
blocking. This allows a direct comparison with respect to related work done by the MPTCP
research community. Figure 7.1 illustrates the experiment setup with the usage of the two
mentioned access technologies. The path via the WiFi link is the fast and the strong path
and the 3G link is the slow and weak path. The characteristics distinguish the subflows using
the paths and require a send behavior at the endpoint that includes mechanisms to adapt to
the path characteristics to use the provided resources in an optimal way. Even if the following
experiment setup is close to the work of [RPB+12] the experiment setup was extended in this
thesis by the results of the Chapter 5. The connecting network was defined in two different
ways with respect to the path management strategy (see Subsection 5.1.2.1):

• Disjoint path setup
With this path management strategy (represented by the red dotted lines in the cloud
of Figure 7.1) a topology and routing is addressed that provides links which are disjoint
and do not share a source or destination address. This model is valid for CMT-SCTP
and MPTCP.

• Cross path setup
This path management strategy is the default in case for MPTCP and provides a cross
table of all path combinations – as illustrated in the Figure 7.1 by the cloud with four
possible paths (red and grey dotted lines) instead of two.

Of course, the capacity of these links is an important characteristic to calculate the
throughput that can be achieved, but also the latency and the error rate of the links have a
direct impact. The resources have to be shared by every flow and corresponding subflow of a
connection. The fair sharing of the path resources in the network was discussed in Chapter 6.

7.1. THE MULTIPATH SCHEDULER 119

In general, if not enough memory or CPU capacity can be provided by the routers or end-
points the continuous send process and, therefore, the overall throughput will suffer. However,
in the following discussion particularly the coupled resources with respect to available memory
in endpoints and routers are in the focus. Memory is represented in networks like the Internet
by different queues and buffers in the endpoints and the routers. A queue has a queue length –
in bytes or packets – and an applied queueing discipline (see Subsection 2.3.2). Furthermore,
these queues are often used as buffer to organize data for the next process step. Different
queues are used for different mechanisms like for the send, receive or routing process. Buffer
space is required for example for SCTP and TCP and the corresponding multipath extensions
to support reliable and ordered data transfer. Therefore, there exists a strong dependency
among the support of reliable and ordered data transfer, the send and receive mechanisms
and the send and receive buffer provided on the endpoints.

7.1.3 Challenges for a multipath scheduler

It is obvious that the path characteristics have a direct impact on a multipath scheduler
instance and, therefore, on the overall protocol performance. In particular the increased
complexity in the re-ordering process and the buffer provided to organize this process must
be addressed by the scheduling instance. Asymmetric, heterogeneous path characteristics
often result in a poor throughput for TCP and SCTP when using the initial multipath exten-
sions without any further improvements. The work of [SGTG+12] gives a detailed overview
about this problem and shows that several publications address this “re-ordering” issue,
like [GTGB11] or [NZNP11]. In addition, preparatory work done for this thesis in [DBRT10]
can be mentioned and also the authors of the MPTCP IETF Internet standard address the
issue in [RPB+12]. Furthermore, [DBRT10] (for CMT-SCTP) and [NZNP11] (for MPTCP)
have demonstrated that the throughput in heterogeneous networks can even be worse when
multiple subflows are used instead of the strongest subflow alone. It is necessary to discuss the
reasons for this behavior in heterogeneous networks in a first step and to develop mechanisms
to avoid this insufficient performance in a second. The following discussion of the reasons for
this behavior is an extract of different discussions done as preparatory work for this thesis
in [DBRT10, DBAR11b, VBOMT13a, ADB+11].

7.1.3.1 Information gaps

As [SGTG+12] pointed out, schedulers adapting to network conditions have a much better
performance than those based on simpler scheduling mechanisms, like e.g., Round Robin.
[SGTG+12] highlights in particular propagation delay and link capacity as aspects with high
impact. Information about the network is relevant for an optimized scheduling process without
any question. Thus, information is required for the scheduler which has to be measured or
estimated. But the measurement of this information leads to another major issue in the
context of multipath scheduler development. The measured – or estimated – data describes
only a previous state of the network and not the current state at send time. The current
state in a dynamic network like the Internet is unpredictable. Furthermore, as a special case,
it should be kept in mind that in the starting phase of a connection only the information
generated during the handshake is available for the first scheduling decision.

Many scheduler approaches assume a stable network behavior in the design process and
take into account only the congestion avoidance phase – like for example the approach

120 CHAPTER 7. REVISITING SCHEDULING

in [SBL+13] –, i.e. they do not address the startup phase. This leads to the expected benefits
but does not cover all the requirements of the deployment in the Internet. The startup phase
has to be considered for example – as will be shown later in Section 7.4 – because it has a
major impact on the flow throughput with limited buffer queues. The lack of consideration
will lead to false assumptions and afterwards the scheduler will not be able to adapt to the
conditions of the network in an optimal way anymore. Only heuristics can help to decrease
the impact of these false assumptions [DBRT10, RPB+12]. However, these heuristics are not
exact and lead to additional transmissions in the worst case, as will be discussed in Subsec-
tion 7.3.2. In particular the heuristics with respect to MPTCP do not have the positive effect
expected and, in the worst case, decrease the throughput as will be discussed later.

Altogether, it can be expected that a scheduler does not achieve the perfect allocation of
the resources all the time in a network like the Internet, because the scheduler process lacks
a correct, up-to-date database for the decisions to make.

7.1.3.2 Interaction with protocol mechanisms

TCP is 30 years old and was subject to continuous changes. In order to achieve throughput
optimization, several new mechanisms were introduced over the years. These mechanisms
have a significant impact on the send and receive process. The interaction of the scheduler
with these mechanisms is an underestimated challenge. A multipath scheduler has to measure
– or to estimate – information about the available resources in a nearly perfect way and has
to adapt to the established and used mechanisms. The dependencies here are complex and
cannot be easily identified.

As an example, a multipath scheduler can have a negative impact on path related mech-
anisms like the fast retransmission mechanism of TCP (see Subsection 2.2.3). A fast retrans-
mission only occurs if a DupAck is reported by an acknowledgment or SACK at least three
times via the same path. This assignment of the DupAck to a path works well in a singlepath
TCP environment (see Subsection 2.2.3). In MPTCP, this assignment remains the same and
the receiver will send a DupAck via the path on which the segment has arrived. A scheduler
behavior is not defined and, therefore, a scheduler is free to choose another path with free
resources for the next segments. If, therefore, the send process will be interrupted on a spe-
cific path after the first or second acknowledgment, a fast retransmission cannot be triggered.
Thus, a timer-based retransmission will occur instead of a fast retransmission. However, this
timer-based retransmission will decrease the congestion window more than necessary (see
Subsection 2.2.4.1) and, of course, the overall system throughput, too.

Figure 7.2 describes this new kind of blocking – caused by mechanism interaction – as a
simplified example for MPTCP by using SACKs (see Subsection 2.2.3). Figure 7.2 illustrates
a multipath connection with two subflows on two disjoint paths. Every subflow has its own
sequence number space maintained independently and a shared flow sequence number space as
coupled resource. While the subflow sequence number space ensures the reliable and ordered
transfer on subflow level, the flow sequence number space provides the same service on flow
level (see Subsection 3.2.3.2). In case the segments arrive without any gaps and ordered, the
data can be delivered to the application and be removed from the receive queue. But an
individual gap on flow level prevents the ordered delivery to the application for both subflows
and, therefore, also the removal from the send and receive queue. Back to the example,
Figure 7.2 shows on the left side an incoming weak subflow that covers the sequence numbers
from #1 to #3 of the flow sequence number space and subflow sequence number space. On

7.1. THE MULTIPATH SCHEDULER 121

Figure 7.2: Scheduler issue

the right side of Figure 7.2 an alternative strong subflow of MPTCP is illustrated. This
strong subflow covers the flow sequence number space from #4 to #8 and uses the subflow
sequence numbers from #1 to #5. The receiver queue of the weak subflow waits for the first
in order-transmitted segment with the flow and subflow sequence number #1. The second
and the third segment of the subflow have been transferred with success and placed in the
subflow receiver queue in the order from #2 to #3. It should be mentioned again that all
queues share the same receive buffer.

Singlepath TCP would trigger a fast retransmission after the transmission of the 4th
segment of the flow sequence number space to close this gap, but in this example the scheduler
prevents this. The multipath scheduler decides to send all further segments via the strong
subflow, until the scheduler recognizes that the advertised receiver window (ARWND) is
closed (see flow control Subsection 3.2.3.3) and the receiver queue is filled. The first segment
(flow sequence number #4 and path sequence number #1) on the strong subflow is transferred
successfully to the flow receiver queue, because it arrived in order. But the second segment
(flow sequence number #5 and path sequence number #2) on the strong subflow gets lost
during the transmission. Therefore two gaps exist which prevent the ordered delivery to the
application, even if the third, the fourth and the fifth segment on path level again arrive on the
strong path as expected. The mechanisms to repeat the lost segments distinguish the gaps.
The receiver sends acknowledgments for the segments delivered on the strong subflow, with
a gap report that identifies the loss three times. This is for the sender a loss indicator that
triggers a fast retransmission of the lost segment on the strong path. However, since nothing
happens on the weak subflow, the send process is still blocked. Only after the retransmission

122 CHAPTER 7. REVISITING SCHEDULING

timer will expire, the weak subflow will retransmit the segment with the missing subflow
sequence number #1 which was assigned to the timer. In this scenario, only an additional
retransmission on the weak subflow helps to avoid this situation.

The potential drawback that the mechanisms cannot interact as expected exists for every
mechanism that expects continuous sending of messages. But this continuous send behavior
on path level is an assumption about the subflow behavior that is not true anymore. And this
assumption is common for many mechanisms, i.e., the delayed acknowledgment feature [Bra89]
or mechanisms like Nagle’s algorithm [Nag84].

7.1.3.3 Sender side buffer blocking

Many reasons for sender side buffer blocking are known from the singlepath world and some
are just trivial. It is obvious that the sender is not able to saturate all available links if
not enough data is available for sending or not enough buffer to support the send process.
Another common reason is that the CPUs provide only insufficient processing power for the
send or routing process. However, the multipath approaches bring in new challenges. First
the new challenges were described for CMT-SCTP in [IAS05] and, later, investigated in more
detail as preparatory work for this thesis in [DBRT10]. [DBRT10] also claims the relevance
for both IETF approaches, which was indirectly confirmed three years later by [RPB+12],
which proposes a mechanism to avoid buffer blocking for MPTCP. The proposed approach
of [RPB+12] is based on the same principles as in [DBRT10], even if the terminology used is
different (see detailed discussion in Subsection 7.3.3). The two challenges identified for sender
side buffer blocking are:

• Transmission induced send buffer blocking
If nothing else is defined, a scheduler tries to send as much data as possible to a path
with free resources. This data has to be stored in a buffer on the sender side to support
reliable transfer, in particular with respect to retransmissions. The mechanism which
is responsible for the buffer management has to decide how much buffer every path is
allowed to occupy. Wrong decisions can have a severe impact, because by allocating
buffer for a subflow causes blocked memory until the transmission is acknowledged
and, furthermore, it is not ensured that this memory is blocked for the most effective
subflow. However, based on wrong assumptions it is possible that memory is blocked
for an ineffective subflow which just fills router queues in the network – like known from
the bufferbloat context [Get11a] – without an added value because this data that blocks
the send buffer does not increase the bytes sent per send cycle. Therefore, in some
cases a potentially weak subflow is able to allocate more buffer than a strong subflow,
even if the strong subflow has more potential to increase the throughput. This leads to
an unbalanced distribution of buffer size over time, where ineffective buffer allocation
decreases the throughput. It should be the goal that the strong subflow always has
enough available buffer and it should be prevented that available buffer is allocated to
the weak subflow if it could be used more effectively. The preparatory work in [DBRT10]
demonstrates that this buffer blocking even occurs during an unordered transfer.

• Gap induced send buffer blocking
Different issues, such as the loss of a fast retransmission, cause this kind of blocking. The
main issue is that sender and receiver do not have the same information in every case and
the sender cannot be sure if buffered segments are still required for the retransmission

7.1. THE MULTIPATH SCHEDULER 123

process or not. Even if buffer can theoretically be freed, because data was already
acknowledged by the gap reports of a SACK, the sender is not allowed to do so, because
the gap reports of a SACK are defined as not reliable [NEY+08, YA13]. Thus, the
receiver is allowed to revoke2 these gap reports any time. This issue exists for both load
sharing approaches. This can lead to a complete buffer blocking, where the transmission
on all paths is suspended until a successful timer-based retransmission of data and the
reception of a new higher cumulative acknowledgment has taken place.

The sender side buffer blocking issues have a huge impact on the throughput because they
cannot be avoided by heuristics in a perfect way. Therefore, a detection system or mechanisms
to decrease the effects of sender side buffer blocking must be applied.

7.1.3.4 Receiver side buffer blocking

The scenario is well-known from a singlepath connection, too. The receiver is able to limit
the sender by means of the advertised receiver window (ARWND). In fact, this mechanism
was designed to protect the receiver if the receiver has limited resources. A closed3 receiver
window is in the singlepath context an indication that the buffer at the receiver side is too
small or the CPU is too slow to process the data. However, the reasoning for a closed ARWND
has to be extended by two additional aspects in the multipath context:

• Reordering induced receiver buffer blocking
This is the most straightforward buffer blocking issue, which is caused by the loss of
packets during the transmission. These gaps are also caused by a weak subflow which
fragments the receiver buffer. A continuous send process cannot be ensured in this case.

• Advertised window induced receiver buffer blocking
The advertised receiver window (ARWND) is a shared resource of all subflows of an
overall multipath flow (see Subsection 3.2.3.3). Thus, receiver queues which are also used
as buffer for reliable and ordered transfer share the buffer size on flow level. Therefore,
if one subflow needs a lot of the receiver buffer size to organize its sending, it increases
the risk that there is not enough buffer space for the alternative subflows. The goal
should be always to support the most effective subflow with the highest throughput per
send cycle, because otherwise the buffer blocking caused by the less effective links will
close the ARWND in the worst case. Every subflow needs an open ARWND to support
a continuous send process. The overall throughput suffers more than necessary, if this
condition is not ensured for the most effective subflow.

The scheduler on the sender side has to implement a receiver side buffer blocking detection
or a mechanism to mitigate the effects of receiver side buffer blocking. The flow control
mechanism has to be considered to detect critical situations and to get the current state
of the receiver buffer on sender side. Thus, an effective mechanism to detect or avoid buffer
blocking at the sender can only operate successfully after the window sizes are (re-)calculated.

2Besides the term of an revokeable SACK sometimes also the term renegable SACK can be found.
3“closed” means here that the allowed amount of data is decreased to zero.

124 CHAPTER 7. REVISITING SCHEDULING

7.2 Architectural aspects

In theory – from top-down – the application schedules a logical ordered data flow to the proto-
col by utilizing the connection interface. Now the scheduler can make its decision depending
on its context and has to map the flow to the paths. It is important to understand how the
architecture of the singlepath transport protocols and their extensions currently support the
scheduling of user data with respect to the IETF multipath goals.

7.2.1 General scheduling decisions

A scheduler implemented on the sender side of a transport protocol works on the data provided
by the application and decides about the sending order and the timing. The flow must be
prepared for a packet switched network (see encapsulation process in Subsection 2.2.1) and
decisions have to be made to organize the shared resources of the sender. Decisions for the
sender also have a direct impact on the receiver, e.g., if the scheduler on the sender side
prefers a specific subflow. This also requires corresponding resources on the receiver side for
this preferred subflow to achieve the expected throughput. This decision process is described
in this thesis as a process in three steps for the IETF load sharing approaches of TCP and
SCTP:

• Identification of usable paths
On every send impulse a multipath scheduler has to identify the paths usable for trans-
mission. The MPTCP specification defines nothing about the identification of usable
subflows, so it must be assumed that in a first step all established subflows could be
used for sending by the scheduler. CMT-SCTP offers more support to identify usable re-
sources by supporting a heartbeat mechanism (see Subsection 2.2.1). As also discussed
in RFC4960 [Ste07], the heartbeat mechanism is used by a default SCTP association to
probe alternative paths.

• Selection of paths
If useable paths have been identified and there exists more than one option, a path
for transmission must be chosen from the pool (see definition of path for CMT-SCTP
and MPTCP in Chapter 5). But again, no detailed procedure is mentioned in the
IETF documentation. Therefore, it is not surprising that there already exist different
interpretations in the different reference implementations of CMT-SCTP and MPTCP.
CMT-SCTP in the FreeBSD kernel uses a mapping of segments to subflows by applying
Round Robin among the subflows. MPTCP in Linux supports a weighted scheduling
based on the smallest RTT (see Subsection 3.2.3.4).

• Allocation of path resources
If a usable path is chosen, the next decision is about the amount of “resources to use”
during one scheduling decision. In the end, the resources in this context are defined by
the amount of data affected by one decision. The amount of data has various impacts,
e.g. on the buffer size or the CPU load. The smallest granularity is byte based, but this
granularity is not very effective and impractical. A byte based granularity increases the
costs for the encapsulation and decapsulation process and makes the ratio of user data
and control information sent by one segment ineffective. It is well known that a use of
partially filled packets decreases the throughput. An effective usage is ensured if the

7.2. ARCHITECTURAL ASPECTS 125

amount of control data is small compared to the amount of user data and the IP packet
can be filled completely. The most effective usage is achieved for a transport protocol
if a completely filled MTU can be achieved.

An effective scheduler has the goal to reduce organization overhead as much as possible.
But besides that there exist transport protocol limitations given by the design which
the scheduler has to consider, too. Thus, for CMT-SCTP a scheduler has to take into
account the SCTP message size [Ste07] – as long as it is smaller than an MTU – and
for MPTCP the scheduler should not use more than the MSS [Pos81b].

In [YAE13] similar decision steps are described, although all three scheduling steps differ
in their interpretation. Just to focus on the congestion control as limiting factor for example
– as described in [YAE13] – to identify usable resources is not enough. Just checking the
window of flow and congestion control, in particular with respect to the open buffer blocking
issues does not characterize a usable subflow.

Furthermore, the scheduler should not be defined by assuming a high degree of freedom in
the selection of the resources. It will be demonstrated in this thesis that it is more a decision
about “to use” or “to ignore” a free resource in particular with respect the support of a
saturated sender4. Thus, if there is no bottleneck in the network or limitation caused by the
window size, the bottleneck is caused at the sender or receiver endpoint by the depletion of
shared resources. A bottleneck can be caused for example by limited buffer space to organize
the user data for the reliable and ordered transfer. Already blocked buffer space can only be
freed by an incoming acknowledgment. Therefore, if a “buffer blocked” state exists and an
acknowledgment arrives, the scheduler can only react on this new trigger and can free the
corresponding buffer space. The scheduler task should focus only on an effective allocation
of the resources, i.e. the buffer space represented by receive and send queues. In contrast to
the claim in [YAE13] a real choice between the alternative free paths at the same time is not
a usual situation in this state. Most of the time, potential alternative resources are blocked
by the sending mechanism itself.

7.2.2 Scheduling subflow to path

It is known from the path definition in Chapter 5 that there exist different levels of mapping
a data flow to a path. If it is assumed that CMT-SCTP has only one stream per flow5,
MPTCP and CMT-SCTP have the same “mapping” challenge. The scheduler instance has
to decide for the data flow of both protocols how the data has to be mapped to the available
resources of the subflows. However, even if it is the same problem statement for MPTCP
and CMT-SCTP, the buffer architecture for both schedulers is different. First, the different
path definition approaches (see Chapter 5) lead to a different number of send queues in the
architecture and second – with more consequences – the protocols use the sequence numbers to
organize the reliable and ordered transfer of user data in different way. Thus, both approaches
have to be analyzed separately.

Furthermore, the focus on the shared resources of the subflows is not enough. The con-
gestion control and receiver side flow control are an important part of the scheduling process
and their impact on the scheduler is often underestimated. In the worst case the scheduler,

4Saturated means in this context that the sender tries to send as much data as possible through the network,
only limited by the capacity of the links and the window sizes of congestion and flow control.

5The stream concept has no specific impact on this issue as discussed in the following for CMT-SCTP.

126 CHAPTER 7. REVISITING SCHEDULING

e.g., enqueues data on a subflow send queue, which will not be dequeued for a long time if
the congestion control prevents it. Furthermore, it can cause buffer blocking on the receiver
side, if the receiver waits for data which is enqueued in the send process but not covered by
the congestion window size. All of these aspects have a significant impact on the MPTCP
and CMT-SCTP scheduler design process as discussed in the following sections.

7.2.2.1 MPTCP

TCP provides a reliable, ordered transfer of user data and so does MPTCP. In case of MPTCP
the flow sequence number – denoted as data sequence signal (DSS, see Subsection 3.2.3.2) by
the IETF – is used to achieve this goal on flow level. The re-ordering of the flow segments is
organized in MPTCP in two steps: first, for the reordering of the subflow sequence number
space and second the reordering of the DSS. Thus, where CMT-SCTP has no path-specific
sequence number space, MPTCP has. This has a potential drawback, since the “data to
send” has to be divided into an unspecified number of different sequence number spaces and
subflow send queues in case of MPTCP. Figure 7.3 illustrates the simplified context of flow
and subflow send queues for MPTCP. The figure shows that the incoming data is first stored
in a general send queue for the complete flow. In this queue the data gets an ordered flow
sequence number – MPTCP DSS – which organizes the data order within the complete flow.
After this sequence number assignment is done, a scheduler decides to which path the data
should be assigned. Each path can be interpreted as one or more subflows which use the
chosen path6.

The one-to-one relationship has a direct impact on the target subflow queue length of
MPTCP. The subflow queue levels should always be equal or less than the minimum of the
congestion window (CWND) and the advertised receiver window (ARWND) reduced by the
outstanding bytes per subflow. Every byte on top of that has the potential to cause a problem
of enqueued segments which cannot be sent. Thus, the MPTCP scheduler has to check the
subflow send queue fill level by the following condition:

Queueablei ≤ max(min(CWNDi, ARWNDi)−Outstandingi, 0) (7.2)

At the time data is enqueued in subflow send queues, the subflow sequence number will be
assigned to the segment. This has consequences, because the enqueued segments will be sent
immediately under the conditions of Equation 7.2. Data entered in a send queue of a subflow
(with a corresponding assignment of a path sequence number) has to be kept in the subflow
send queue until the delivery on subflow level is acknowledged. Thus, a correction of the
scheduling decision or a rescheduling of the same data on flow level is not possible anymore
without copying the segment. The segment has to be delivered on subflow level in every case,
even if it is not required for the overall flow sequence number space anymore. A subflow
has to support reliable transfer on the subflow level to avoid middlebox issues. This is a
potential drawback of the sequence number space per subflow, where the subflow is assigned
to a specific path given by a specific source/destination address pair.

Summarized, the main buffer for MPTCP segments in the protocol stack is the flow send
queue. The sizes of the subflow send queues should be as small as possible, in maximum equal
to the data in flight on a subflow.

6To simplify the setup, it is assumed in this thesis that only one subflow per source/destination address
combination exists, although the MPTCP RFC does not forbid the setup of more than one.

7.2. ARCHITECTURAL ASPECTS 127

MPTCP

Application

Subflow Send

Queue

Path 2 Path 3Path 1 Path 4 Path N

CWND

Set Subflow

Sequence Number

Set DSS

Interface I Interface II Interface III

Router

Bottleneck Link
Link

Subflow Send

Queue

Subflow Send

Queue

Subflow Send

Queue

Flow Send Queue

Subflow

Scheduler

Path I

Path II

Path III

Path VI

per subflow

Subflow Send

Queue

Path IV

Subflow Send

Queue

Path V

Subflow Send

Queue

Path VII

IP Routing

Send Process

Figure 7.3: Send queue MPTCP

Figure 7.4: Send queue (CMT-)SCTP

128 CHAPTER 7. REVISITING SCHEDULING

7.2.2.2 CMT-SCTP

Figure 7.4 illustrates that in case of CMT-SCTP the data will be first enqueued by the
application into a specific stream send queue. Here, the Stream Sequence Number (SSN) will
be assigned to an SCTP DATA chunk. This SSN is not comparable with a subflow sequence
number because it is not assigned to a specific subflow/path. After that, the sequenced DATA
chunk is provided to the “Chunk Scheduler”. The tasks of the Chunk Scheduler are:

1. To create an SCTP common header structure.

2. To check for control chunks and to add existing control chunks to the common header.

3. To control the sequence in which the stream queues are emptied. This step is also often
denoted as “stream scheduler”.

4. To add as much DATA chunks as possible to the existing common header and control
chunks. During this step, SCTP provides the possibility to bundle or to fragment DATA
chunks to achieve the maximum size of one MTU per SCTP segment.

5. To enqueue the new SCTP segment in the general send queue. Here also the TSN as
flow sequence number is assigned.

There exists no specific subflow send queue. Therefore no sequence number is assigned to a
specific path and every chunk can be sent or retransmitted arbitrarily via every path.

It should be mentioned that CMT-SCTP provides the stream concept (see Subsection 2.2.2)
like singlepath SCTP which fills the “general” send queue from different stream send queues.
This might raise the question, if the mapping of the application data to streams and, further-
more, the mapping of the streams to the paths has an impact on the results of this chapter.
These two steps are discussed as follows:

• Application data to stream
A scheduling instance for SCTP exists which is responsible for the assignment of mes-
sages to logical streams. This instance is by default located in the application, because
only the application is aware of the logical structure of the overall flow. Although
this mapping is an interesting topic and researchers spent efforts on this challenge,
like [STR10], this mapping it is not a specific multipath issue. The achievable through-
put for the complete multipath connection will not be increased or decreased as long as
the flow send process will not be interrupted or limited. The overall throughput is the
same as long as the “general” send queue is filled with DATA chunks.

• Stream to path
If there exists more than one stream – which is possible for CMT-SCTP – the ques-
tion should be raised how the streams themselves should be mapped to the available
paths. [DSTR10] investigated this CMT-SCTP issue of mapping streams to paths
and presented some interesting results. They claim that by mapping each stream to a
certain path, the buffer size can be kept small. Furthermore, [DSTR10] showed that
the per-stream message delay can be decreased by an optimized scheduling variant. Al-
though the increased buffer usage or the increased per-stream message delay are very
important for specific SCTP applications, this does not address the general multipath
challenge, i.e., how the data itself should be scheduled to utilize the available resources
in an optimal way.

7.2. ARCHITECTURAL ASPECTS 129

Summarized, a stream scheduler is a scheduler with limited impact on the overall throughput
of a multipath SCTP flow as long as the send process of the complete flow is not interrupted
or limited in functionality.

7.2.3 Location of the scheduling process

So far there exists no well defined location for a multipath scheduler, i.e. it is not an explicit
part of the existing multipath architecture. Furthermore, the scheduler cannot be described
as an instance or module, rather as a process in two steps.

The first step in the scheduling process is the assignment of the overall flow sequence
number. This is necessary for the ordered and reliable transfer of the overall flow. In CMT-
SCTP the first step is done by the chunk scheduler (see Figure 7.4). No hard restrictions can
be identified, as long the sender is able to send saturated. In MPTCP the subflow scheduler
does the first step. The subflow scheduler fills the subflow send queues under the restrictions
identified above (see Figure 7.3).

The second step is done by the instance which organizes the transfer to the network layer.
This instance is denoted as “send process” for both protocol extensions in the following. The
degrees of freedom of the scheduler process at the send process are decreased in case of blocked
resources. The send process instance only has the choice to

• Use free resources immediately.
This is the straightforward behavior to use newly freed resources immediately if there
exists a chance to allocate them. Anyway, it becomes obvious in the buffer blocking
discussion that this strategy alone only leads to a poor performance.

• Delay the use of free resources.
Thus, even if there exist free resources in the system, the scheduler decides not to use
them immediately. It makes sense if the whole system expects a better information base
in the next decision cycle and, furthermore, this delay leads to a pool of free resources.
This pool in turn leads to a real choice of free resources.

• Skip free resources.
At first sight it may seem surprising to skip free resources, but to use free resources for
the wrong subflow leads to decreased throughput. Sometimes it makes more sense to
use just the strongest subflow, rather than all available subflows mapped to the different
paths and links. For example, if an MPTCP connection is used with two subflows –
one via a path with a bandwidth of 10 Gbit/s and 1 ms delay and one via a path of 56
Kbit/s with a delay of 1 minute – it is obvious that it makes no sense to block buffer
resources for the weak subflow, if this prevents a perfect transmission on the strong
subflow. This example might be extreme, but it gives the right idea of the important
points. It is not an optimal solution to allocate every available resource to the send
process on the sender side. However, the sender is not aware of the network conditions
and this is a challenge in particular with respect to the startup phase – until the sender
got feedback from all paths.

The scheduler process is assigned to two different locations in the transport protocol
architecture and has a reduced degree of freedom in case of a saturated sender. It should be

130 CHAPTER 7. REVISITING SCHEDULING

mentioned that the authors of [SGTG+12] have done a similar classification of implementing
a scheduler for MPTCP by defining the possibilities of push data, pull data and hybrid push-
pull data. Push data leads to a direct allocation of a data packet to a subflow. The pull
data approach stores the generated data packets in a send buffer shared by all subflows. The
hybrid push-pull data approach combines the two methods.

However, the push strategy – even if it is a possible scenario for a scheduler with focus on
prioritization – does not consider the possibility of receiver side buffer blocking as discussed
before (see Subsection 7.1.3.4) and does not check the condition of Equation 7.2. Thus, the
push strategy is only in the best case able to fulfill the goal of high throughput. The same
is true for the hybrid push-pull strategy. However, the pull strategy describes a scheduler,
which is able to consider the minimum subflow queue levels.

7.3 Multipath scheduler process chain

It is one major goal to increase the throughput for the load sharing extensions of MPTCP and
CMT-SCTP. This major goal should be extended by an additional task. In the Internet, the
multipath scheduler is facing changing network conditions and information gaps with respect
to the state of the paths. This has to be addressed by the design process. Two steps can
define the tasks with respect to an optimal multipath scheduling mechanism:

• Compensate information gaps
In this step the mechanisms try to adapt the scheduler to the network conditions.
Here mechanisms are addressed which work proactively like the NR-SACK mechanism
discussed in the following Subsection 7.3.2.

• Reduce the impact of information gaps
Here the mechanism accepts the negative side-effects and attempts to decrease their
impact. Typical approaches are chunk rescheduling or opportunistic retransmission as
they will be discussed in Subsection 7.3.3.

Furthermore, until now three decision tasks, namely the identification, the selection and
the allocation of resources have been identified for a multipath scheduler and must be covered
by a process chain. All decisions are based on the resource (e.g. path, buffer, packet size)
specified by the protocol and the conditions given by the existing mechanisms like flow,
congestion control or retransmission mechanisms.

7.3.1 Adaptation to network conditions

A multipath scheduler starts to work after the first successful handshake of the transport
protocol. Thus, the sender is allowed to transfer data by using a subflow. For both protocols
– MPTCP and CMT-SCTP – not all subflows are available after the first handshake. MPTCP
requires additional MP JOIN handshakes (see Subsection 3.2.3) for additional subflows and
CMT-SCTP has to test every alternative path with an initial heartbeat exchange. This
requirement for CMT-SCTP is defined in the singlepath SCTP RFC [Ste07]. Therefore, both
multipath protocols start with the first scheduling decision like a singlepath protocol.

New user data causes the initial trigger to send data. Furthermore, this trigger is valid
as long as no resource limitations occur during the sending process. It is just important
that there is enough data enqueued for a continuous send process. In detail, if the ARWND

7.3. MULTIPATH SCHEDULER PROCESS CHAIN 131

– shared among all paths – is open for new user data, the multipath scheduler is able to
choose a valid path for sending. It is in the responsibility of the chosen scheduler how this
selection is organized. If the system detects a buffer limitation, the send process stops. The
trigger by new user data alone will not lead to further sending events anymore. Only a
new cumulative acknowledgment leads to a new sending cycle. All free resources have been
allocated and the system has to wait until the situation will change. So a newly established
subflow only leads to a new sending cycle if enough sender and receiver buffer is available.
In a “blocked” send process state the scheduler has only limited decision options since it is
restricted to the recently freed resources. The multipath scheduler only decides to send data
immediately/delayed or to skip the send trigger entirely. Wrong decisions in the starting
phase of the connection will lead to throughput degradation, which cannot be detected or
corrected easily in the later phase, where only acknowledgements can be used to start a new
send cycle. This is completely different from the singlepath world experiences, where the
impact of the start phase can be neglected.

Furthermore, asymmetric, heterogeneous paths lead to a high need of buffer and cause,
therefore, buffer blocking [DBRT10]. A mechanism is mandatory to detect and mitigate the
effects of buffer blocking. Clearly, limited buffer becomes more an issue for a multipath than
for singlepath protocol and, therefore, must be discussed as next.

7.3.2 Mechanisms to avoid buffer blocking

The so-called NR-SACK [NEY+08] mechanism is one of the oldest mechanisms used to avoid
buffer blocking. The NR-SACK is an enhancement of the SACK mechanism (see Subsection
2.2.3). NR stands for Non-Renegable and assures the sender that segments acknowledged by
NR-SACK can be removed from the send buffer without any risk. This mechanism decreases
the required send buffer size and is also known from singlepath SCTP. Furthermore, it is an
answer to the gap induced send buffer blocking (see [DBRT10] and Subsection 7.1.3.3). NR-
SACK was also introduced for MPTCP in [YA13]. A detailed discussion about the impact
can be found in [Dre12a].

New mechanisms to minimize buffer blocking for multipath transfer in CMT-SCTP and
MPTCP have also been developed with buffer splitting and chunk-rescheduling as preparatory
work for this thesis in [DBRT10]. In this context only the main functionality will be discussed.
A more detailed analysis was done in [ADB+11, Dre12a].

Buffer splitting was developed to mitigate the effects of transmission induced send buffer
blocking (see Subsection 7.1.3.3) and advertised window induced receiver buffer blocking
(see Subsection 7.1.3.4). The idea behind this mechanism is quite simple and requires the
implementation of a new threshold to control the booking of the buffer. By means of this
threshold a maximum buffer size which can be allocated to one individual subflow is defined.
A similar mechanism was denoted three years later by [RPB+12] as penalizing for MPTCP
with the same goals as CMT-SCTP buffer splitting. The penalizing mechanism has the goal
to decrease the congestion window (CWND) of the blocking subflow once per RTT if a buffer
blocking problem is detected. The basic idea behind this behavior is to prefer the subflows
with the most effective send behavior during the next scheduling cycles. This causes a lower
buffer allocation to the blocking subflow. In contrast to the buffer splitting approach, this
mechanism focuses on the reduction of the effects rather than avoiding them completely. The
buffer splitting mechanism just assigns a fixed amount of buffer to a subflow.

In addition, there is a strong need for a new retransmission mechanism to avoid reordering

132 CHAPTER 7. REVISITING SCHEDULING

induced receiver buffer blocking (see Subsection 7.1.3.4). A first approach was introduced
in [DBRT10] as a preparatory work for this thesis and is called “chunk rescheduling”. The
idea behind this mechanism is rather simple. The sender tries to support continuous ordered
delivery to the receiver by repeating outstanding data on the alternative subflow. Three years
later the main authors of MPTCP confirmed this mechanism independently in [RPB+12]
and denoted their approach for MPTCP as opportunistic retransmission (Opp-Rtx). The
only difference between both approaches is that the chunk rescheduling approach has an own
threshold parameter as trigger for the retransmission process which is depending on the buffer
status. The opportunistic retransmission mechanism is only triggered if the buffer blocking
event occurs which is caused by a closed ARWND. This threshold parameter for MPTCP
makes sense, because every segment which is enqueued in a send queue must be transmitted
via this path, even if it is not necessary anymore. This would cause unnecessary traffic. In
CMT-SCTP this risk does not exist. Anyway, in the end both mechanisms are similar except
for this threshold parameter.

However, the mechanisms to avoid or decrease the effects of buffer blocking can only
be applied after the calculation of the flow control window, because only this value gives an
overview about the receiver buffer status. Anyway, if the buffer blocking avoidance mechanism
shows that the usable subflow has not been chosen properly, this process has to be repeated
for another subflow before the subflow sequence number will be assigned. This can be tried
for all available subflows. If no subflow can be identified with enough free receiver buffer
space and without any buffer blocking evidence no send process should be started. It should
be mentioned that it requires significant effort to identify correct evidences in order to avoid
or decrease the effects of buffer blocking, especially in the starting phase where no or limited
information about the connection is available. The efforts for the alternative approach to
collect the required information by an initial measurement phase would be too high to be
practically usable in a real world implementation.

It is important to mention that besides the idea to decrease the effects of buffer blocking
there also exist other pro-active approaches. These ideas are based on path delay compen-
sation as discussed in [SGTG+12], [SBB10] or [SBL+13]. The basic mechanism for these
pro-active approaches always is the estimation of the path RTT or smoothed RTT (sRTT)
(see Subsection 2.2.3). The measured RTT is used to perform an educated guess on the best
distribution of the segments to the subflows in order to compensate for higher path delay
dissimilarity. The primary goal is to organize the sending in a way that the data arrives
at the receiver at the right time. A major drawback of this approach is that it assumes
a relatively constant network behavior. Furthermore, the RTT difference among the paths
can be too high. In this case, the throughput of a strong subflow is not sufficient to fill the
existing gap caused by the delay. For example, a link delay difference of 2 seconds on a 1
Gbit/s link requires 220 MiB user data and send buffer to keep the data synchronized on the
links. Of course, these mechanisms also introduce an additional delay for packets sent via
otherwise low-latency paths. The compensated path delay makes the handling of multipath
transfer easier, but also increases the overall transmission delay [BDB+13]. In the end the
mechanisms to compensate the path delay are not robust enough to be used in unpredictable
networks like the Internet.

7.3. MULTIPATH SCHEDULER PROCESS CHAIN 133

Figure 7.5: Experiment setup details

7.3.3 Analysis of deployed multipath schedulers

It is known from preparatory work in [DBRT10] and later work of [RPB+12] that a homoge-
nous, symmetric topology has no negative impact on the throughput of a multipath flow.
Furthermore, it was discussed that if there exists no bottleneck in the network, the bottle-
neck is caused by a shared resource on the endpoint, e.g. CPU or memory. Therefore, one
goal should be to optimize the usage of memory, considering the conditions of the network to
avoid buffer blocking issues caused by a heterogeneous, asymmetric topology.

There already exist different approaches to mitigate the effects of the known buffer block-
ing issues for MPTCP and CMT-SCTP. The experiment setup of the scenario of Subsec-
tion 7.1.2 was chosen to demonstrates the effects. Figure 7.5 illustrates the setup with more
details. This thesis uses the same parameter setup as the authors of [RPB+12]:

• WiFi link with 8 Mbit/s capacity and a base RTT of 20 ms. The connecting access
router was configured with a FIFO queue length of 100 packets.

• 3G link with 2 Mbit/s capacity and a base RTT of 150 ms and a configured FIFO queue
size of 35 packets in the connecting access router.

All other links have no relevant impact on the path characteristics. This setup provides with
the WiFi and 3G access links two paths to the network. According to the discussion of
Subsection 7.1.1 it is expected that the maximum throughput of the subflows depends on the
combined resources of the paths.

Therefore, under perfect conditions with lossless paths a combined bandwidth of 10 Mbit/s
can be expected. If furthermore a protocol efficiency of 97% – by using an MTU of 1492 Bytes
– is assumed, the theoretical maximum throughput on application level (goodput) could be
expected around 9.7 Mbit/s. In the context of the IETF a multipath flow should achieve in
minimum the same throughput as the strongest subflow alone. In the experiment setup the
goodput of the strongest subflow alone is 7.7 Mbit/s.

Furthermore a TCP connection requires a minimum receiver buffer size. The receiver
buffer has to be sized for TCP to twice the bandwidth delay product (BDP) of a path. This

134 CHAPTER 7. REVISITING SCHEDULING

provides for the sender an advertised receiver window (ARWND) large enough to ensure a
continuous send process (see Subsection 5.1.2.2). Assuming a 10 ms delay for the strong
path and 75 ms for the weak one a BDP of around 30 Kbytes for both paths in sum can be
calculated. Therefore, already in a perfect world setup without a re-ordering issue a minimum
receiver queue size of 60 Kbytes is required to support a continuous send process in sequential
order.

But as also discussed, the buffer requirements of the multipath extensions are higher to
be able to support the re-ordering process on flow level. Thus also for the strong path the
delay of the weak path must be assumed to calculate the bandwidth delay product of both
coupled path in the worst case (10 Mbit/s * 75ms). This BDP is called “virtual” BDP in the
following discussion. Therefore, a new “virtual” BDP of around 90 Kbytes can be calculated
for both flows and, therefore, a new minimum receiver buffer size of 180 Kbytes is required
for the experiments to support a goodput of 9.7 Mbit/s. It should also be mentioned that
the strongest subflow alone only requires in minimum a receiver buffer size of 20 Kbytes to
achieve a goodput of 7.7 Mbit/s,

7.3.3.1 MPTCP

Figure 7.6 shows the baseline results for MPTCP as described in the IETF documents in the
orange Curve #1. Furthermore, Figure 7.6 shows the results for opportunistic retransmission
mechanism (Opp-Rtx Ω=on) in the red Curve #2 and for the additional penalizing mechanism
(σ=on) in the green Curve #3. These extensions were proposed by the co-authors of the
MPTCP draft in [RPB+12]. The LIA CCC was used for all these experiments as multipath
congestion control mechanism (see Subsection 6.2.2).

Figure 7.6 shows in one graph the same results as [RPB+12] in its Figures 4a, 4b and 4d
for a disjoint path setup and confirms again that the behavior of the OMNeT++/INET imple-
mentation of MPTCP (see Section 4.1) correctly models the behavior of the Linux reference
implementation. The outcome confirms furthermore that MPTCP underperforms if no mech-
anisms to avoid or mitigate the effects of buffer blocking are applied (see Curve #1), and, that
the opportunistic retransmission mechanism alone is not sufficient for a performance better or
even equal the strongest subflow alone in every case (see red Curve #2). The targeted overall
throughput can only be achieved if both mechanisms to mitigate all potential buffer blocking
issues are applied (see green Curve #3). Both mechanisms in combination achieve a goodput
of 7.7 Mbit/s for smaller receiver buffer sizes (< 200 Kbytes) and close to 9.7 Mbit/s goodput
for larger receiver buffer sizes (≥ 200 Kbytes). At first sight, no optimization is needed for this
mechanism bundle to be part of the multipath scheduler. But it is important to know that
the authors tested their mechanism just for the disjoint path setup scenario (see Subsection
7.1.2), i.e. with just two subflows, rather than four as needed for the cross path setup scenario.

Figure 7.7 shows the result of the same experiment setup as for Figure 7.6. The only
difference is that the complete cross table of all possible source/destination address pairs was
used (see Chapter 5). The deployed mechanisms to avoid buffer blocking do not have such
a positive impact anymore, in particular for smaller receiver buffer sizes (smaller than 2000
Kbyte) the throughput suffers a lot. The routing in the cross path setup is defined for 4
subflows on 4 paths, where 2 subflows are routed via the strong WiFi link and 2 via the weak
3G link. Therefore, MPTCP established two strong subflows and two weak subflows. The
problem observed was caused by the second weak subflow routed via the 3G link. As only one

7.3. MULTIPATH SCHEDULER PROCESS CHAIN 135

0 500 1000 1500 2000

0
1

2
3

4
5

6
7

8
9

1
0

Receiver Queue Size ρ [Kbytes]

R
e

c
e

iv
e

d
 B

it
 R

a
te

 [
M

b
it
/s

]

 / Penalizing σ / Opp.−Rtx Ω

1: , σ=off, Ω=off

2: , σ=off, Ω=on

3: , σ=on, Ω=on

Figure 7.6: MPTCP with penalizing and Opp-Rtx in a disjoint path setup

0 500 1000 1500 2000

0
1

2
3

4
5

6
7

8
9

1
0

Receiver Queue Size ρ [Kbytes]

R
e

c
e

iv
e

d
 B

it
 R

a
te

 [
M

b
it
/s

]

 / Penalizing σ / Opp.−Rtx Ω

1: , σ=off, Ω=off

2: , σ=off, Ω=on

3: , σ=on, Ω=on

Figure 7.7: MPTCP with penalizing and Opp-Rtx in a cross path setup

link can cause the buffer blocking and can be penalized, all other subflows which cause similar
problems are not handled by this mechanism. That means, the system was throttled by this
second weak subflow which could not be identified by the MPTCP scheduler. Thus, even for
receiver buffer sizes above 200 Kbytes up to 2000 Kbytes the overall system was not able to
achieve the optimum throughput (see Curve #3 in Figure 7.7). Even worse, for receiver buffer
sizes up to 800 Kbytes both deployed mechanisms to avoid buffer blocking in combination
did not achieve as much throughput as the strongest subflow alone. Only the opportunistic
retransmission without the penalizing mechanisms achieved a throughput comparable to the
scenario with two paths (see Curve #2 in Figure 7.7). This could be expected, because the
strong subflows repeat all segments of the weak subflows. However, these retransmissions
for the opportunistic retransmission cause a lot of overhead7 and are only helpful as long
as the strong link has the free resources to support the opportunistic retransmission for all
subflows with the potential to block the continuous send process. Figure 7.7 shows clearly

7Retransmissions cause copies of user data.

136 CHAPTER 7. REVISITING SCHEDULING

that much more buffer size is needed to ensure a continuous send process if both mechanisms
are deployed on the receiver side to cover the gaps caused by the asymmetric, heterogeneous
paths. In this example the asymmetric topology required up to 10 times more buffer as
needed for the continuous send process in normal case, i.e. in detail 2000 Kbytes instead of
200 Kbytes. It is an option to turn off the cross path setup behavior8 for MPTCP, but this
would also avoid the benefits provided by this cross path setup approach as demonstrated in
Section 5.3 for real world setups. Thus, the cross path setup is an important setup for the
mechanisms currently proposed. Therefore, to deploy MPTCP in an Internet scenario with
a real risk of buffer blocking requires further efforts to support a throughput just as good as
the strongest subflow alone can achieve.

7.3.3.2 CMT-SCTP

The same scenario as before for MPTCP was used to demonstrate the effects for CMT-SCTP.
This scenario was adapted to reflect the behavior of the CMT-SCTP reference implementation
on FreeBSD (see Subsection 3.2.3.4). Thus, instead of the opportunistic retransmission and
penalizing mechanisms, the buffer splitting and chunk rescheduling mechanisms were used.
The scheduler was configured as Round Robin scheduler.

The Figures 7.8 to 7.10 impressively demonstrate the impact of the mechanisms to mitigate
the effects of buffer blocking for CMT-SCTP applying the CCCs LIA, OLIA and RP-MPv2
(see Section 6.2). The Curve #1 of each figure shows the behavior without any mechanism
to decrease the effects of buffer blocking as described in the current Internet draft of the
IETF. The curves demonstrate that the throughput of CMT-SCTP applied on asymmetric,
heterogeneous networks is poor for small receiver buffer sizes. Even worse, the throughput
is less than it can be expected from a singlepath connection via the strong 8 Mbit/s link
alone. Curve #1 in all figures demonstrates that a large receiver buffer size is required to
achieve a throughput beyond 8 Mbit/s. This is in the LIA scenario with 750 Kbytes – similar
to MPTCP – many times higher as 2 * “virtual” BDP9. Furthermore, the Curve #1 in all
figures shows that the choice of the congestion control has a direct impact on the overall
throughput of CMT-SCTP. Whereas OLIA and RP-MPv2 need less receiver buffer size (>
300 Kbytes) to achieve nearly the minimum targeted goodput (> 7.7 Mbit/s), LIA needs
twice as much. Anyway, all coupled congestion controls need more as expected. That leads
to the observation that the CCC and the path configuration leads to different interactions.
With focus on the optimal goodput (close to 9.7 Mbit/s), the OLIA CCC (see Figure 7.12)
and the RP-MPv2 CCC (see Figure 7.13) require around 1000 Kbytes receiver buffer size,
whereas the LIA approach needs 1500 Kbytes (see Figure 7.11).

An optimized chunk rescheduling approach as the buffer blocking avoidance mechanisms10

shows a positive effect for all congestion control mechanisms. The impact is illustrated in the
Figures 7.8 to 7.10 by the Curve #2. At a receiver buffer size ≥ 200 Kbytes a throughput
close to the optimal throughput can be observed for all CCCs. However, the positive effect
of the buffer blocking avoidance mechanisms decreases drastically for smaller receiver buffer
sizes. In comparison to MPTCP, the throughput decreases much more than expected and
achieves a lower throughput compared to the strongest subflow alone (7.7 Mbytes) even
for receiver buffer sizes above 60 Kbytes (which is enough buffer to saturate the strongest

8Like it was done for the high performing experiment in [Chr13].
9Calculation based on highest delay (75 ms) of the 3 G link (180 Kbytes).
10Ψ=on: on represents activation on both endpoints.

7.3. MULTIPATH SCHEDULER PROCESS CHAIN 137

0 250 500 750 1000 1250 1500

0
1

2
3

4
5

6
7

8
9

1
0

Receiver Queue Size ρ [Kbytes]

R
e

c
e

iv
e

d
 B

it
 R

a
te

 [
M

b
it
/s

]

 / Buffer Splitting Π / Chunk Rescheduling Ψ

1: , Π=off, Ψ=none

2: , Π=off, Ψ=on

3: , Π=on, Ψ=on

Figure 7.8: Throughput of CMT-SCTP with LIA

0 250 500 750 1000 1250 1500

0
1

2
3

4
5

6
7

8
9

1
0

Receiver Queue Size ρ [Kbytes]

R
e

c
e

iv
e

d
 B

it
 R

a
te

 [
M

b
it
/s

]

 / Buffer Splitting Π / Chunk Rescheduling Ψ

1: , Π=off, Ψ=none

2: , Π=off, Ψ=on

3: , Π=on, Ψ=on

Figure 7.9: Throughput of CMT-SCTP with OLIA

0 250 500 750 1000 1250 1500

0
1

2
3

4
5

6
7

8
9

1
0

Receiver Queue Size ρ [Kbytes]

R
e

c
e

iv
e

d
 B

it
 R

a
te

 [
M

b
it
/s

]

 / Buffer Splitting Π / Chunk Rescheduling Ψ

1: , Π=off, Ψ=none

2: , Π=off, Ψ=on

3: , Π=on, Ψ=on

Figure 7.10: Throughput of CMT-SCTP with RP-MPv2

138 CHAPTER 7. REVISITING SCHEDULING

50 100 150

0
1

2
3

4
5

6
7

8
9

1
0

Receiver Queue Size ρ [Kbytes]

R
e

c
e

iv
e

d
 B

it
 R

a
te

 [
M

b
it
/s

]

 / Buffer Splitting Π / Chunk Rescheduling Ψ

1: , Π=off, Ψ=none

2: , Π=off, Ψ=on

3: , Π=on, Ψ=on

Figure 7.11: Throughput of CMT-SCTP with LIA for small buffer size

50 100 150

0
1

2
3

4
5

6
7

8
9

1
0

Receiver Queue Size ρ [Kbytes]

R
e

c
e

iv
e

d
 B

it
 R

a
te

 [
M

b
it
/s

]

 / Buffer Splitting Π / Chunk Rescheduling Ψ

1: , Π=off, Ψ=none

2: , Π=off, Ψ=on

3: , Π=on, Ψ=on

Figure 7.12: Throughput of CMT-SCTP with OLIA for small buffer size

50 100 150

0
1

2
3

4
5

6
7

8
9

1
0

Receiver Queue Size ρ [Kbytes]

R
e

c
e

iv
e

d
 B

it
 R

a
te

 [
M

b
it
/s

]

 / Buffer Splitting Π / Chunk Rescheduling Ψ

1: , Π=off, Ψ=none

2: , Π=off, Ψ=on

3: , Π=on, Ψ=on

Figure 7.13: Throughput of CMT-SCTP with RP-MPv2 for small buffer size

7.3. MULTIPATH SCHEDULER PROCESS CHAIN 139

subflow). Therefore, the target throughput cannot be achieved with mechanisms to decrease
the effects of buffer blocking for small receiver buffer sizes in CMT-SCTP. Until now only
experiments with a receiver buffer size large enough to cover twice the “virtual” BDP, like
e.g. in [Dre12a] were designed for CMT-SCTP. The behavior below this limit was not in the
focus so far, even if smaller buffer sizes decrease the positive effect of buffer splitting11 below
the throughput of the strongest subflow alone. However, this buffer size range is important
for the practical use and matters for system administrators to design effective, scalable and
usable systems on base of the straightforward buffer size calculation. Wrong assumptions will
lead to a poor overall system performance, even by activating every known mechanism.

Figures 7.11 to Figure 7.13 give a more detailed look on the usability of the mechanisms
to avoid or decrease the effects of buffer blocking in combination with the LIA, OLIA or RP-
MPv2 congestion control for small buffer sizes. It clearly shows that the Curve #2 – where
only chunk rescheduling was enabled – is in all cases above Curve #3 where all mechanisms
were activated. None of the Curves #3 in all three figures achieves an overall throughput
comparable to the strongest singlepath flow on the strongest path (see Figure 7.6). This
effect is most noticeable if the OLIA congestion control is used (see Figure 7.9 Curve #3).
By using OLIA as congestion control, the throughput decreases for smaller buffer sizes (<
100 Kbytes) by 20% compared to the strongest subflow alone. To be clear here, this load
sharing behavior does not even achieve the goals of the IETF specification. The reason for
this poor behavior can be found in the startup phase of the association. In the startup phase
the CMT-SCTP multipath scheduler allocates buffer for both subflows. This leads to the
situation where there does not exist enough buffer space to saturate the strong subflow. To
fill the gaps between the subflows requires a lot of buffer as explained in the discussion about
receiver side buffer blocking issues (see Subsection 7.1.3.4). Furthermore, the buffer splitting
mechanism makes the situation even worse for small receiver buffer sizes, because in the basic
setup this mechanism reserves parts of the buffer for the weak subflow, even if the buffer
could be used more effectively for this strong subflow.

Furthermore, it is important to mention that the mechanisms to decrease the effect of
buffer blocking in combination with the congestion control RP-MPv2 do not achieve the
optimal goodput of 9.7 Mbit/s at all. The reason is the coupled window behavior as also
observed in Section 6.3. Whenever a buffer blocking issue could be detected, the window
growth for all paths was limited by the mechanisms. This led to a limited window, which led
to a less aggressive increase factor and a smaller congestion window size (see Subsection 6.2.1).

7.3.4 Conclusion

Altogether, the implementation of a multipath scheduler without mechanisms to avoid or
mitigate the effect of buffer blocking makes no sense. However, none of the mechanisms was
able to achieve the expected results for smaller buffer sizes in the disjoint path setup of CMT-
SCTP. Even worse, the buffer splitting mechanism of CMT-SCTP had a negative impact on
the throughput with small receiver buffer sizes. Also, particularly in a cross path setups,
MPTCP did not achieve the same throughput as the strongest subflow alone – which is a
major goal of the multipath approaches. Here alternatives must be developed to improve the
scheduler with mechanisms that are really able to achieve increased throughput.

11Π=on: on represents activation on both endpoints

140 CHAPTER 7. REVISITING SCHEDULING

7.4 Optimized scheduling variant for CMT-SCTP

CMT-SCTP does not perform as expected. A possible solution for this CMT-SCTP issue
is to learn from MPTCP. Therefore, a first step is to deploy a similar weighted scheduling
mechanism for CMT-SCTP as for MPTCP (see Subsection 3.2.3.4) described as a successful
scheduler strategy by [SGTG+12].

This scheduler changes the protocol behavior in two ways. First the scheduler only sched-
ules segments on the fastest subflow, and second even if there exists free send or receive buffer
on an alternative path, the resources are not used as long as the fastest subflow is not limited
by e.g. a falling congestion window or loss. Therefore, the alternative paths are not used as
long as the fastest path provides continuous sending, even if the fastest subflow has the filled
congestion window in flight. Thus, a completely filled congestion window is not defined as a
blocking resource. This provides a real benefit for a scenario with limited buffer size – like
demonstrated in Figure 7.14 – because the resources are allocated to the strongest link and
will not be blocked by alternative subflows. In the worst case this allows the strong subflow
to use the resources completely and the whole system performs like the fastest subflow.

The positive effect will be explained by using Round Robin. If Round Robin is used to
schedule the segments via the subflows, the receiver buffer will be fragmented by the weak
subflow. The weak subflow is not able to provide all messages fast enough for the ordered
delivery to the application layer. Therefore, gaps exist in the receiver queue, which block the
buffer. The strong subflow is not aware of these gaps, therefore the strong subflow sends as
normal and continuously fills the receiver queue until all space is blocked. This fragmentation
should be avoided, therefore the strongest subflow should be preferred until the strongest sub-
flow is blocked. But this is not possible directly after the first handshake, when the resources
are allocated for the first time. No information about the network exists, and therefore it is
unknown which subflow should be preferred. Here a heuristic is required.

0 250 500 750 1000 1250 1500

0
1

2
3

4
5

6
7

8
9

1
0

Receiver Queue Size ρ [Kbytes]

R
e

c
e

iv
e

d
 B

it
 R

a
te

 [
M

b
it
/s

]

 / Buffer Splitting Π / Chunk Rescheduling Ψ

1: , Π=off, Ψ=off

2: , Π=off, Ψ=on

3: , Π=on, Ψ=on

Figure 7.14: Weighted RTT based scheduling with LIA

Experiments with MPTCP show the benefits of a good heuristic by preferring the fastest
subflow. Thus all receiver buffer resources are allocated to the fastest subflow during the
startup phase as long as no other information exists. It is important to note that the focus on

7.4. OPTIMIZED SCHEDULING VARIANT FOR CMT-SCTP 141

the RTT is not always a clever idea, because there exists no reliable relationship between a
low RTT and the overall throughput of the subflow during a send cycle. Thus, the throughput
will suffer if the strongest subflow does not have the lowest RTT. However, with this heuristic
at least the chance exists to achieve an optimal throughput, even if this chance decreases with
the number of alternative paths.

Figures 7.15, 7.16 and 7.17 show the results for all coupled congestion controls mechanisms
– LIA, OLIA and RP-MPv2 – with the focus on small buffer size if a weighted RTT based
scheduler is used. First, using a weighted scheduler had the same positive effect for the
CMT-SCTP in the experiment setup as for MPTCP. Even more, without any buffer blocking
mechanism (see Curve #1 of all figures) the load sharing extension showed at least a better
throughput than for MPTCP also for small buffer sizes.

Second and as expected, no CCC was able to achieve a minimum target throughput with
a receiver buffer size of < 60 Kbyte without further efforts as can be observed looking the first
measurement point of Curve #1 in the figures. The second measurement point of Curve #1
reflects an acceptable behavior by achieving a throughput that can be expected as minimum
for the multipath flow. However, the third measurement point of Curve #1 shows a decrease
again. This was caused because the receiver buffer size provided was larger than needed to
support a continuous sending on the strongest subflow. Therefore, all 100 simulation runs
aggregated in the third measurement point of Curve #1 reflect the impact of the advertised
window induced receiver buffer blocking (see Subsection 7.1.3.4). No equilibrium could be
achieved for smaller receiver buffer sizes in the setup, where the amount of receiver buffer
allocated to the weak subflow prevented a continuous send process during a send cycle. Data
was missing in the re-ordering process during a send cycle of the strong subflow and has not
allowed the needed freeing of receiver buffer. Thus, even if more data was sent at first sight
during the first send cycle, the data on the weak link has decreased the amount of data for
the second send cycle and that had an impact on the throughput in this setup.

The figures demonstrate that there is a strong need for the existing mechanisms to decrease
the effects of buffer blocking, if the resources of the strongest link cannot be saturated (see
Curve #2 and Curve #3). The more data is sent via the weak subflow the more receiver
buffer is needed as known from the Round Robin scheduler (see Curve #1). In this situation
the chunk rescheduling mechanism can help, because this mechanism retransmits the missing
segments on the strongest path and achieves in minimum the throughput of the strongest path
alone (see measurement point 2 in Curve #2 of all figures). But also the chunk rescheduling
mechanism alone is not enough for buffer sizes up to 750 Kbytes as can be seen in Figure 7.14.
The effect becomes particularly obvious by the difference between Curve #2 and Curve#3 in
the receiver buffer range above 250 Kbytes. Only the combination of chunk rescheduling and
buffer splitting is able to achieve an overall throughput close to the optimum.

The third result concerns the negative impact of the mechanisms to decrease the effects
of buffer blocking, in particular with respect to the configuration of the buffer splitting mech-
anism. Again, the strongest path needs in minimum twice its BDP as receiver buffer. But
the buffer splitting mechanism is not aware of this minimum size. Therefore, the buffer is
just allocated in equal parts to the subflows. So two effects come in for the Curve #3 in
Figures 7.15, 7.16 and 7.17 for the receiver buffer range between 20 Kbytes and around 250
Kbytes. First, the strongest subflow is limited by the buffer splitting, because it halves the
usable ARWND for the strong path. Second, the opportunistic retransmission compensates
this limitation by retransmitting segments transmitted first on the weak subflow. Thus, the
buffer splitting mechanisms should be configured very carefully in setups with limited receiver

142 CHAPTER 7. REVISITING SCHEDULING

50 150 250

0
1

2
3

4
5

6
7

8
9

1
0

Receiver Queue Size ρ [Kbytes]

R
e

c
e

iv
e

d
 B

it
 R

a
te

 [
M

b
it
/s

]

 / Buffer Splitting Π / Chunk Rescheduling Ψ

1: , Π=off, Ψ=off

2: , Π=off, Ψ=on

3: , Π=on, Ψ=on

Figure 7.15: Weighted RTT based scheduling with LIA and focus on small buffer size

50 150 250

0
1

2
3

4
5

6
7

8
9

1
0

Receiver Queue Size ρ [Kbytes]

R
e

c
e

iv
e

d
 B

it
 R

a
te

 [
M

b
it
/s

]

 / Buffer Splitting Π / Chunk Rescheduling Ψ

1: , Π=off, Ψ=off

2: , Π=off, Ψ=on

3: , Π=on, Ψ=on

Figure 7.16: Weighted RTT based scheduling with OLIA and focus on small buffer size

50 150 250

0
1

2
3

4
5

6
7

8
9

1
0

Receiver Queue Size ρ [Kbytes]

R
e

c
e

iv
e

d
 B

it
 R

a
te

 [
M

b
it
/s

]

 / Buffer Splitting Π / Chunk Rescheduling Ψ

1: , Π=off, Ψ=off

2: , Π=off, Ψ=on

3: , Π=on, Ψ=on

Figure 7.17: Weighted RTT based scheduling with RP-MPv2 and focus on small buffer size

7.5. OPTIMIZED SCHEDULING VARIANT FOR MPTCP 143

buffer in order not to limit the strongest path.
The fourth result of this analysis is that, the CCC has an impact on the overall system

throughput. It is surprising that for RP-MPv2 and a receiver buffer size between 100 Kbytes to
250 Kbytes the best throughput can be achieved without a mechanisms to decrease the effects
of buffer blocking. The different aggressiveness increase factor of the congestion controls has
an impact here that allows for example for RP-MPv2 a preference of the strongest flow with
respect to the receiver buffer space because it is not limited in growth.

Altogether, the existing bundle of mechanisms to mitigate buffer blocking for CMT-SCTP
is able to achieve a throughput comparable to MPTCP as long as the scheduler gives the
system the chance to avoid buffer blocking at startup time12.

7.5 Optimized scheduling variant for MPTCP

As discussed above, the combination of opportunistic retransmission and penalizing as mech-
anisms to reduce the effects of buffer blocking are not enough in the cross path setup. The
throughput of the MPTCP flow suffers much more as it can be expected from the strongest
subflow alone. This effect is not valid for smaller receiver buffer sizes in a disjoint path setup
and, therefore, not visible in such experiments. However, the cross path setup can be expected
to be important in the Internet (see Chapter 5) and every mechanism has to be evaluated
using the cross path setup for MPTCP, too.

Of course, it is not possible to achieve the maximum throughput in every case, but it should
be possible to achieve a throughput comparable to the strongest subflow alone. In this section
a new approach is introduced for MPTCP that replaces the opportunistic retransmission as
the main mechanism to reduce the effects of buffer blocking. This alternative approach is
denoted in this thesis as number.

7.5.1 Idea behind the confluent sequence numbers approach

Before starting the design process for an alternative mechanism to avoid or to decrease the
effects of buffer blocking, the drawbacks of the current approaches are discussed.

The main problem with the opportunistic retransmission approach is the unknown state
of the network. As discussed before (see Subsection 7.2.2.1) a segment resent via an alter-
native subflow by this mechanism has a potentially high impact. Data retransmitted by the
opportunistic retransmission mechanism has to be transferred on subflow level even if the
transmission is not necessary on flow level anymore. This can happen because a retransmis-
sion via an alternative path always uses a copy of the segment (see Subsection 7.2.2.1). The
scheduler is not free to revise this decision once the data is enqueued in the subflow send
queue and a subflow sequence number was assigned to the segment. Therefore, opportunistic
retransmission for MPTCP can lead to a duplication of packets without any benefit. Thus,
opportunistic retransmission has the potential to fail due to two different reasons:

• Using the wrong path
This can happen easily for small receiver buffer sizes, since an opportunistic retransmis-
sion choses an alternative subflow for retransmission when a specific path is blocked.
But the problem is not avoided if the newly selected subflow for the retransmission also
has the additional potential to block the send process. Even worse, the performance

12In optimal case the application uses the best path for first connection setup.

144 CHAPTER 7. REVISITING SCHEDULING

of the second weak subflow is decreased more than needed, because this weak subflow
retransmits copied segments without a benefit. This problem is caused by the fact that
the subflow with the best statistics not always represents the strongest subflow, i.e. the
strongest subflow can be limited by competition or reduced receive buffer size. Thus,
the measurement or the estimation of the path characteristics provides the basis for
these wrong assumptions.

• Early retransmissions
This occurs if, e.g., the segment that blocks the buffer has actually arrived, but the
sender was not notified yet by a corresponding acknowledgment. Thus, the buffer is
possibly freed on the receiver side if the segments have arrived ordered, but the sender
buffer is still reserved until the cumulative acknowledgment has arrived. Even if there
is no need of a retransmission, the mechanism to avoid buffer blocking will be triggered
as long as the acknowledgment is in transmission. This has two consequences: first
the buffer is not available to send new data and second the blocking segment will be
sent as retransmission via an alternative path (see Subsection 3.2.3.3). This effect can
occur often with small buffer sizes, because all subflows are in competition for the
limited buffer space and try to allocate as much as possible. Clearly, one subflow is
always the sender of the last missing segment and will be penalized if the remaining
available buffer size is too small. That means that the free resources are wasted for
an unnecessary retransmission and a potential strong subflow will be penalized without
any reason. Even worse, this kind of “false positive” retransmission on a weak subflow
can increase the potential buffer blocking even more.

The reason for both shortcomings is the same, i.e. the assumption that all data has to
be transmitted ordered to the receiver. The dissimilar paths reorder the segments anyway,
although they have been kept ordered during the send process on subflow level13. Even if the
network may reorder the segments, the send process is organized with a strictly ascending
order on flow and subflow level. But a useful transport by the paths in strictly ascending order
on flow level cannot be supported without exact knowledge of the network. On subflow level
an ordered transport can be assumed like for the singlepath transfer, but on flow level a re-
ordering is more the default as the exception and causes only problems. A strong requirement
for a strictly ascending order on flow level does not exist and, therefore, this thesis argues for
a send process with a strictly ascending order on subflow level only. The only requirement
is a numbering of the application data in strictly ascending order with flow level sequence
numbers. With this in mind the send process provides unused degrees of freedom.

The main goal of the IETF load sharing approaches is to increase throughput. The efforts
for multipath transfer only make sense if there is more data available than the strongest
subflow alone can process. Thus, there is more data in the flow send queue than can be
assigned to one subflow send queue. Therefore, the scheduler can subdivide the enqueued
data in the subflow send queue into two parts, namely the data that can be queued in the
subflow send queue of the strongest subflow and data that is ready for the send process but
cannot be queued for the strongest path.

For example, if a simple file transfer is the use case, the file size should be bigger than
twice the BDP (see Subsection 2.2.3) of the strongest path to argue for multipath transfer.
If the file is less than this size the use of the load sharing extension makes no sense. Thus,

13No re-ordering of segments sent on the same path.

7.5. OPTIMIZED SCHEDULING VARIANT FOR MPTCP 145

the user data can be divided into at least two ranges for two subflows. The first range has
the size of the bandwidth delay product of the strongest path, the second range consists of
the rest and in maximum the current window size of the congestion and flow control of the
alternative path. It would make sense to schedule the first range via the subflow assigned to
the strongest path and the second via the weak. The benefits are:

• The receiver gets ordered blocks of the transmitted data and that requires less effort in
the reordering process.

• The buffer blocking problem will not occur in this scenario.

• The second range of the data has more time to arrive at the receiver in time, because
the first block has to completely arrive first.

Of course no protocol implementation has unlimited memory to buffer complete files of
arbitrary size and an absolute limit for the sender has to be defined. This limit of data that
can be sent is given with the advertised receiver window (ARWND). The advertised receiver
window (ARWND) is used to report the free receiver buffer space to the sender. Thus, if
the focus is again on the file example, the ARWND and the starting flow sequence number
space (DSS) (see Subsection 3.2.3.2) identify start and end point of a “block” to transfer.
However, because of the information gaps discussed in Subsection 7.1.3.1, the calculation for
splitting the data in such blocks is hard in practice. Anyway, the mechanism introduced
in this thesis enables a natural behavior by using confluent sequence numbers on flow level,
which avoids the need of a bandwidth calculation. The details of this approach are discussed
in the following section.

7.5.2 Confluent sequence numbers (ConSN)

The basic idea of confluent sequence numbers as such is simple, but the integration into the
existing protocol infrastructure introduces a significant complexity.

Figure 7.18: The principle of the ConSN strategy

Figure 7.18 illustrates the principle: instead of sending the flow sequence numbers in
strictly ascending order, the blocks of the send buffer are split up among the n subflows. Two
scenarios are possible:

1. Subflow #1 gets the segments in ascending order and the other n − 1 subflow in de-
scending order, or

2. Subflow #1 to #n−1 get the segments in ascending order and subflow #n in descending
order.

146 CHAPTER 7. REVISITING SCHEDULING

It is obviously advantageous if the strongest subflow is always used to send the first range of
the data enqueued in the flow send queue, but it is not a strict requirement for the scheme.
In the worst case the average delay of the flow will be increased by the average delay of the
chosen subflow. However, the key idea of this strategy is that the flow sequence number is
used confluent (hence the name confluent sequence numbers). Thus, if there exists a problem
– either a jump of the delay or a complete link failure – on a subflow #j (1 ≤ j < n), the
transmitted flow sequence numbers run towards the missing flow sequence number. Thus, no
coordination is needed. Therefore, a successful retransmission of the missing segments on a
strong path can easily solve a blockage caused by a weak subflow.

7.5.2.1 Example for two subflows

Figure 7.19: An example for the usage of ConSN

Figure 7.19 presents an example with only two subflows where both subflows are as-
signed to a specific path to make the algorithm as implemented in the MPTCP module of
OMNeT++/INET more clear. Thus subflow #1 is assigned to path #1 and subflow #2 is

7.5. OPTIMIZED SCHEDULING VARIANT FOR MPTCP 147

assigned to path #2. Segments #40 to #45 are transmitted on subflow #1 and the seg-
ments #46 to #49 are sent – in descending order – on subflow #2. All segments have to be
delivered to the remote application in sequence. A loss of segment #45 (on subflow #1) would
block the segments #46 to #49 (on subflow #2) in the receiver buffer, due to the need for in-
sequence delivery. The successful retransmission of segment #45 on subflow #2 as described
in the following allows to release the whole receiver buffer size allocated to path #2.

ConSN leads to consecutive blocks of missing segments for subflow #1 or subflow #2 as
illustrated by the receiver queues of both subflows in Figure 7.19. This allows an efficient
signaling of missing segments by the receiver, e.g., by providing the first missing flow sequence
number and the length of the block, instead of listing many scattered segment sequence
numbers (see SACK in Subsection 2.2.3). Furthermore, having consecutive blocks instead of
scattered missing segments reduces the buffer blocking issues described in [ADB+11].

In addition, ConSN can improve the handover performance in mobility scenarios by just
having to retransmit some consecutive segment blocks in break-before-make scenarios. How-
ever, dynamic path management – adding and removing subflows during a connection – is
not in the focus of this thesis. It should nevertheless be mentioned in this context that this
approach also provides a potential benefit for this kind of scenarios.

Furthermore, with ConSN it is possible to perform retransmissions preventively, in order
to avoid buffer blocking. Given the example in Figure 7.19, subflow #1 can continue with
segments #46 and higher after having sent segments #40 to #45. In this case, possibly missing
segments higher than #46 are recovered by subflow #1. On the other hand, subflow #2
can continue with segments #45 and lower after having sent segments #49 to #46. These
overlapping – and therefore redundant – segment transmissions on both subflows reduce the
delay14 at the cost of bandwidth usage.

In the worst case, the strongest subflow will retransmit all data of the weak subflows
assigned to paths with poor characteristics with respect to bandwidth, error rate or delay.
This will reduce the effective throughput to the throughput of the strongest subflow alone.
Furthermore, since the sender tries to saturate all subflows at startup in the same way, this
scheduler behavior can be used as a first measurement to identify the strongest link, because
it uses all subflows from the beginning and increases the congestion windows for sending
during this phase. This is the behavior required to support the weighted scheduler approach
of [SGTG+12].

An important aspect of ConSN is an effective usage of the send blocks which are denoted as
ConSN blocks. The first ConSN block depends on the ARWND and the initial flow sequence
number which is calculated during the initial handshake of MPTCP. The first block for the
ConSN can be calculated when there is user data enqueued in the flow send queue for the
first time. The start of the ConSN block is denoted as block snd una and is in the first
step equal to the initial flow sequence number. The end of the ConSN block is denoted
as (block snd max) and is calculated by adding the size of the ARWND to the initial flow
sequence number.

The next step is the assignment of the subflow send windows to data blocks of the overall
ConSN block. There is no information about an adequate assignment after the initial hand-
shake so it can be done very straightforward by considering the RTT. Subflow #1 as fastest
subflow sends the block in ascending order and subflow #2 in descending order.

The next step is to prevent that both subflows send the complete ConSN block. An abort

14By avoiding the need for retransmissions.

148 CHAPTER 7. REVISITING SCHEDULING

criterion denoted as block abort subflow is defined that works as snd max for both subflows.
A subflow must transmit all segments of its send window first before a new send window can be
assigned. It is important in this context to understand that a window can be “be sent” or “be
acknowledged”. In detail, snd una to snd max defines the maximum window of the subflow.
snd una to snd nxt represents the data sent but not acknowledged. Therefore, in the ConSN
a new send window can only be assigned to a subflow if snd nxt is equal to snd max. This is
independent of whether the send window is fully acknowledged (snd una=snd max) or not.
In the initial step, the ConSN block is divided by two to calculate block abort subflow15.
This block building process is denoted in this thesis as major block building process. For
subsequent major block buildings an adaption of the abort criterion should be provided by
a adjustment value. This adjustment value should be calculated with respect to the number
of acknowledged segments sent via the subflows. For this thesis, the adjustment value was
defined as the difference of the acknowledged bytes of both subflows between two major block
building events.

Figure 7.20 illustrates a specific Time A after the first major block building process was
done. In this figure a blue rectangle represents the amount of user data provided by the
application layer. The edge on the left side represents the start of the ConSN block and is
therefore identified by block snd una. The ConSN Block is smaller than the enqueued user
data and, therefore, the other end is defined by block snd max according to the ARWND.
The block abort subflow line reflects the calculation of block snd max−block snd una2 . The sending
order of subflow #1 can be identified by the black arrow and the one of subflow #2 by the
orange. The sequence number space between the start point of subflow #1 and the abort
criterion defines Block 1 and the difference of the abort criterion to the start point of subflow
#2 defines Block 2. The sequence numbers allocated to the blocks also define the send
windows for the respective subflows. Both flows have already sent data, but until Time A
no acknowledgements have arrived via the subflows. It is assumed that the subflow #1 is

block_snd_una block_snd_maxblock_abort_subflow

User data not sent Send order subflow 1 Send order subflow 2

Unacknowledged subflow 1 Unacknowledged subflow 2

ARWND

Block 1 Block 2

Figure 7.20: Time A - After major block building

the strongest subflow. Thus, subflow #1 will fill its block first and, thus, exhausts its send
window. As discussed, it is mandatory to provide a continuous send process for the strongest

15A corresponding calculation is also used if there are more than 2 subflows to define the subflow windows for
all flows.

7.5. OPTIMIZED SCHEDULING VARIANT FOR MPTCP 149

block_snd_una block_snd_maxblock_abort_subflow

User data not sent Send order subflow 1 Send order subflow 2

Unacknowledged subflow 1 Unacknowledged subflow 2

ARWND

Block 1 Block 2

Figure 7.21: Time B-1 - After complete sent Block #1 and no acknowledgments arrived

block_snd_una block_snd_maxblock_abort_subflow

User data not sent Send order subflow 1 Send order subflow 2

Unacknowledged subflow 1 Unacknowledged subflow 2

ARWND

Acknowledged

Block 1 Block 2

Figure 7.22: Time B-2 - After complete sent Block #1 and acknowledgments arrived

subflow. Therefore, a new part of the ConSN block must be assigned to the strongest subflow
#1. Here, two different cases can be distinguished:

• No acknowledgements have arrived via subflow #1 (B-1)
Figure 7.21 illustrates the conditions after the subflow #1 has filled its send window and
no acknowledgments have arrived. Therefore, no buffer has been freed and the remaining
buffer is still allocated to subflow #2. Thus, the subflow #1 has no other alternative as
to work on the block assigned to subflow #2. The only difference is, that the subflow #1
sends this block in ascending order. Subflow #1 only stops this send process either when
the combined acknowledgements of both flows have fully acknowledged the complete
block or after subflow #1 has also successfully transmitted the complete Block 2. In
this case the subflow #1 has sent the complete ARWND like a normal singlepath flow.
The subflow #2 stops sending if the Block 1 is completely acknowledged and Block
2 is completely sent by subflow #2 or if the complete block is acknowledged by both
subflows combined. If the Block 1 is not completely acknowledged subflow #2 starts

150 CHAPTER 7. REVISITING SCHEDULING

to transmit Block 1 in descending order to avoid gaps caused by a connection abort of
subflow #1.

• Acknowledgments have arrived via subflow #1 (B-2)
Figure 7.22 illustrates the situation after subflow #1 has sent the complete Block 1 and
a number of acknowledgments have arrived. These acknowledgements of the strong sub-
flow #1 freed blocked buffer, increased block snd una and, therefore, block snd max.
Thus there is new free buffer space available that is assigned to the subflow #1. This
has the positive effect that more time is provided to subflow #2 to fill its Block 2. The
new additional block of subflow #1 should be sent in ascending order to make a future
major block building process easier. This assignment of freed buffer to subflow #1 can
be repeated until Block 1 is completely acknowledged.

So far a continuous send process for subflow #1 was ensured by the assignment of additional
send windows. If the situation occurs that both blocks are completely sent by subflow #1 and
subflow #2 and no acknowledgments have arrived something is wrong with the system setup.
This situation can only occur if not enough ARWND is provided for the send process or both
subflows are disturbed – normally new acknowledgments can be expected. ConSN uses as
major trigger that all acknowledgments have arrived for Block 1. After that the following two
situations can be distinguished according to the discussion above.

• Subflow #1 re-used buffer equal to the size of Block 1 (C)
Here the allocation of freed buffer to subflow #1 was performed as often as possible
until the complete space of Block 1 has been reused by subflow #1. In this situation
the subflow #1 again has no other alternative as to repeat the send window of subflow
#2 in ascending order. Figure 7.23 reflects the conditions after such a situation. Nearly
the complete ARWND was already sent except the parts of Block 2 assigned to subflow
#2. Subflow #1 and subflow #2 work on this gap until Block 1 and Block 2 are fully
acknowledged or subflow #1 has sent the whole Block 2. After that, a complete new
major block building process can be performed.

• Subflow #1 re-used buffer less than the size of Block 1 (D)
Subflow #1 has sent additional data on top of block 1. The additional send window
was defined as Block 2 (see B-1) or as reused buffer space smaller than the size of Block
1 (see B-2). ConSN uses the free buffer size for a new major block building process,
where the subflow #1 remains the strong subflow. Figure 7.24 reflects the situation
at a specific Time D, where the new block building process has been done after the
Block 1 was completely acknowledged. The only difference to a “normal” major block
building process is, that acknowledged data could be part of the block. But this has
no negative effect, because these segments will not be enqueued in the subflow queue,
if they are already acknowledged on flow level. During the new calculation process
of block abort subflow a adjustment value has been considered to optimize the block
building process.

The case when the subflow #2 sends faster than subflow #1, i.e. the wrong subflow was
selected, was not discussed so far. Here two cases have to be distinguished:

• Block 1 has not been sent completely
This case is similar to the case described in Figure 7.21 with the difference that subflow

7.5. OPTIMIZED SCHEDULING VARIANT FOR MPTCP 151

block_snd_una
block_snd_maxblock_abort_subflow

User data not sent Send order subflow 1 Send order subflow 2

Unacknowledged subflow 1 Unacknowledged subflow 2

ARWND

Acknowledged

Block 1 Block 2

Figure 7.23: Time C - After complete sent Block #1 and no more receiver buffer

block_snd_una block_snd_maxblock_abort_subflow

User data not sent Send order subflow 1 Send order subflow 2

Unacknowledged subflow 1 Unacknowledged subflow 2

ARWND

Acknowledged Correction Factor

Block 1 Block 2

Figure 7.24: Time D - After major block building

#2 works on the send window of subflow #1 in descending order. The major block
building process has to be triggered after the Block 1 is completely acknowledged or
subflow #2 sent the complete Block 1. This is the case if subflow #1 is not the strongest
path or a major problem occurred on path #1.

• Block 1 has been sent but not acknowledged completely
Figure 7.25 describes the situation after the Block 2 was filled by subflow #2. In this
situation the subflow #2 started to repeat the unacknowledged segments of Block 1
in descending order where the start point was defined by block abort subflow. This
overlap is not necessary in every case but ensures continued sending even in case of a
subflow #1 connection abort. An alternative approach would be to deploy a flow level
retransmission mechanism. If it is not the goal to retransmit the Block 1 with subflow

152 CHAPTER 7. REVISITING SCHEDULING

block_snd_una block_snd_maxblock_abort_subflow

User data not sent Send order subflow 1 Send order subflow 2

Unacknowledged subflow 1 Unacknowledged subflow 2

ARWND

Acknowledged

Block 1 Block 2

Overlap

Figure 7.25: Time E - After completely sent Block #2

block_snd_una block_snd_maxblock_abort_subflow

User data not sent Send order subflow 1 Send order subflow 2

Unacknowledged subflow 1 Unacknowledged subflow 2 Correction Factor

ARWND

Block 1 Block 2

Figure 7.26: Time F - After an optimized major block building

#2 a major block building process similar to Figure 7.24 can be performed.

A new major block building process should always be performed by considering the
throughput difference between subflow #1 and subflow #2 in a adjustment value or by con-
sidering indications for connections errors. Figure 7.26 illustrates the situation, where the
subflow #2 achieved in sum more acknowledged segments as subflow #1. Therefore the send
order is reversed compared to the initial major block building process. Furthermore the abort
criterion is shifted to the right, to provide as much time as possible for incoming acknowl-
edgments via subflow #2. This is a self clocking mechanism that demonstrated adequate
behavior for the disjoint and cross path setup in the simulation. However, in the first step it
is also a good heuristic to keep the subflow #1 as strongest subflow, if the subflow #1 was
able to reuse buffer released after incoming acknowledgments.

7.5. OPTIMIZED SCHEDULING VARIANT FOR MPTCP 153

7.5.2.2 Simulation

The ConSN approach was implemented in the simulation environment OMNeT++/INET.
The experiment setup with the WiFi and 3G access links of Subsection 7.1.2 was used for the
experiments. In the disjoint path setup (see Figure 7.27) the implemented ConSN approach
(ε=on) shows positive results for the LIA CCC. The Curve #4 of Figure 7.27 with activated
ConSN shows good throughput without any other mechanisms to avoid buffer blocking. Fur-
thermore, Curve #4 demonstrates better throughput than the opportunistic retransmission
mechanism alone (Opp-Rtx Ω=on, Curve #2) over the whole range. However, even ConSN
shows for the disjoint path setup a great performance, it performes not as good as both ex-
isting mechanism to avoid the effects of buffer blocking. In detail the disjoint path setup the
Curve #3 shows even a small benefit compared to ConSN indicated by the difference to Curve
#4 in the receiver buffer range between 300 to 400 Kbytes. In this receiver buffer range an
overlap of the subflow blocks in the ConSN approach has occurred and had a small negative
impact. The issue here was that the ARWND was not always a multiple of the MSS and there
existed an overlap around the abort criterion during the block building phase. This overlap-
ping segment has an effect if the ARWND is small. If the ARWND becomes larger (in this
example around 400 Kbyte) the throughput of ConSN is comparable to the throughput of the
currently proposed mechanisms for the disjoint path setup. The observation is also true for
OLIA and RP-MPv2. However, this overlapping effect during the send block building process
of ConSN is negligible compared to the benefits in the cross path setup of the experiment,
here the existing mechanism show much weaker behavior.

The cross path setup is a realistic use case in the Internet as discussed in (see Chapter 5)
and the ConSN provides as the only approach a real benefit in this setup. Figures 7.28, 7.29
and 7.30 for the LIA, OLIA and RP-MPv2 CCC show impressively the added value of ConSN
for smaller buffer sizes (≤ 2000 Kbytes). In contrast to enabled opportunistic retransmission
(Opp-Rtx Ω=on) and penalizing (σ=on) in Curve #3, the ConSN approach always achieves
at least the throughput that could be expected from the strongest subflow alone.

Most notable is that the ConSN in the Curve #4 of all figures is also able to provide a

0 500 1000 1500 2000

0
1

2
3

4
5

6
7

8
9

1
0

Receiver Queue Size ρ [Kbytes]

R
e

c
e

iv
e

d
 B

it
 R

a
te

 [
M

b
it
/s

]

ConSN ε / Penalizing σ / Opp.−Rtx Ω

1: ε=off, σ=off, Ω=off

2: ε=off, σ=off, Ω=on

3: ε=off, σ=on, Ω=on

4: ε=on, σ=off, Ω=off

Figure 7.27: ConSN vs penalizing and Opp-Rtx with LIA in a disjoint path setup

154 CHAPTER 7. REVISITING SCHEDULING

0 500 1000 1500 2000

0
1

2
3

4
5

6
7

8
9

1
0

Receiver Queue Size ρ [Kbytes]

R
e

c
e

iv
e

d
 B

it
 R

a
te

 [
M

b
it
/s

]

ConSN ε / Penalizing σ / Opp.−Rtx Ω

1: ε=off, σ=off, Ω=off

2: ε=off, σ=off, Ω=on

3: ε=off, σ=on, Ω=on

4: ε=on, σ=off, Ω=off

Figure 7.28: ConSN vs penalizing and Opp-Rtx with LIA in a cross path setup

0 500 1000 1500 2000

0
1

2
3

4
5

6
7

8
9

1
0

Receiver Queue Size ρ [Kbytes]

R
e

c
e

iv
e

d
 B

it
 R

a
te

 [
M

b
it
/s

]

ConSN ε / Penalizing σ / Opp.−Rtx Ω

1: ε=off, σ=off, Ω=off

2: ε=off, σ=off, Ω=on

3: ε=off, σ=on, Ω=on

4: ε=on, σ=off, Ω=off

Figure 7.29: ConSN vs penalizing and Opp-Rtx with OLIA in a cross path setup

0 500 1000 1500 2000

0
1

2
3

4
5

6
7

8
9

1
0

Receiver Queue Size ρ [Kbytes]

R
e

c
e

iv
e

d
 B

it
 R

a
te

 [
M

b
it
/s

]

ConSN ε / Penalizing σ / Opp.−Rtx Ω

1: ε=off, σ=off, Ω=off

2: ε=off, σ=off, Ω=on

3: ε=off, σ=on, Ω=on

4: ε=on, σ=off, Ω=off

Figure 7.30: ConSN vs penalizing and Opp-Rtx with RP-MPv2 in a cross path setup

7.5. OPTIMIZED SCHEDULING VARIANT FOR MPTCP 155

real added value for relatively small receiver buffer sizes (50 Kbytes to 1000 Kbytes), even if
the benefits are different for the chosen congestion controls. To understand the differences
among the Curve #4 in the Figures 7.28, 7.29 and 7.30 for the receiver buffer range from 50
Kbytes to 1000 Kbytes, it must be understood that there exists a dependency between the
time needed to transfer segments via the weak subflow and the time needed to allocate all
available receiver buffer to the strong subflow. The faster the receiver buffer is allocated by a
specific subflow (ARWND - outstanding bytes = 0), the faster the retransmission phase starts
in the ConSN approach and decreases the effective usage of the ARWND. In the worst case,
this retransmission phase leads to a retransmission of duplicate data that occupies send and
receive buffer but does not increase the throughput. Thus, the more the congestion control
prefers a strong subflow the faster the retransmission phase will start, and the higher is the
potential risk that data will be transferred twice without need.

OLIA always prefers the best subflow as known from the fairness discussion in Chapter 6,
while LIA prefers the subflow with the best congestion window and RP-MPv2 – based on the
initial load sharing idea – searches an equilibrium among all subflows. Thus, in theory the
RP-MPv2 CCC should show the best results compared to LIA and OLIA.

The throughput for LIA in Figure 7.28 with less than 1000 Kbytes receiver buffer can
be divided in 3 regions. Region 1 describes the receiver buffer size between 50 Kbytes and
100 Kbytes, where only the subflow of the path assigned to the strongest link determines the
overall throughput. Beyond that the throughput increases, because the weak subflow had
time to also provide new segments on flow level. In this second phase, the throughput up
to the increased optimum is achieved as long as the receiver buffer size is not high enough
to allow a huge asymmetric window size of the congestion control. Thus, a first share of the
blocks has allowed all subflows to transfer usable segments on flow level and the retransmission
phase of ConSN was not triggered. Anyway, one of the strong subflows starts to suffer, due
to the competition to the alternative strong subflow on the same strong path. Again, in
this experiment setup the routing of the cross path strategy resulted in an assignment of
two subflows to each paths using a WiFi access link and a 3G access link. The resources
are not shared equally anymore between the two strong subflows in the buffer range from
300 Kbytes to 1000 Kbytes, because one subflow was preferred. This leads to the situation
where the subflow with the larger congestion control window finishes its block faster and
allocates more receiver buffer and starts to retransmit segments on the alternative subflows
earlier. This decreases the overall throughput. In case of larger receiver buffer size also the
second strong subflow is able to occupy enough send and receive buffer and this also ensures
a continuous sending for this subflow. Thus, even if one strong subflow will be preferred this
has no negative impact on the other subflows as long enough receiver buffer space for all
subflows can be provided and no overlapping has an impact.

Figure 7.29 shows only the phases 1 and 3 for OLIA, because OLIA prefers groups of
subflows from the start. In this scenario that leads to one preferred subflow per access link.
Thus, the second subflow assigned to the strong path does not get the receiver buffer space
that is necessary to achieve the optimal throughput. Furthermore, the preferred subflow
starts to retransmit the segments of the block assigned to the alternative subflow on the same
strong path.

As expected, RP-MPv2 provides the most positive behavior in the experiment because
RP-MPv2 distributes the data among all subflows in a manner that the retransmission phase
is triggered as late as possible. Therefore, only phase 1 and 2, as described for the LIA
CCC, can be observed in this setup. Here the Curve #4 in Figure 7.30 shows a nearly perfect

156 CHAPTER 7. REVISITING SCHEDULING

throughput comparable to the results of the disjoint path setup. RP-MPv2 provides the same
resource for every subflow16 and no subflow is preferred, therefore both strong subflows are
not limited and perform equal and close to the optimum.

Altogether, the preference for a specific subflow decreases the time until the retransmission
phase for LIA and OLIA starts and shows a suboptimal behavior for smaller receiver buffer
sizes (here smaller than 1000 Kbyte). But ConSN provides in general more throughput than
penalizing and opportunistic retransmission (alone or in combination under every condition)
in the cross path setup. And as only mechanism ConSN achieves the minimal goals even for
small buffer ranges in the cross path setup.

7.6 Other side effects with RED queues

As discussed, a user of an IETF load sharing extension cannot expect the best throughput
in every case for small receiver buffer sizes. Therefore, a strategy of the user can be to set
the buffers as large as possible, because the experiments discussed so far indicate that large
buffers lead to high throughput. However, even if this behavior can be observed for the
experiments used so far, it is not generally valid. The following experiment demonstrates
that larger receiver buffer sizes can decrease the throughput and that small receiver buffer
sizes can increase it.

The Figure 7.31 demonstrates the throughput for the same disjoint path setup as used
in the ConSN experiments on the topology with the WiFi and 3G link as defined in Subsec-
tion 7.1.2. The only difference to Figure 7.27 is that RED queues (see Subsection 2.3.2) are
applied in the routers and not FIFO queues. Applying opportunistic retransmission (Opp-Rtx
Ω=on) and penalizing (σ=on) in Curve #3 or applying ConSN in Curve #4 of Figure 7.27
show bot the same suboptimal throughput for large receiver buffer sizes.

The throughput curves can be divided again – like for Figure 7.28 – in three regions. In
the first region (from 50 Kbytes to 100 Kbytes) Curves #3 (opportunistic retransmission and
penalizing) and #4 (ConSN) are able to achieve a throughput that can be expected from a
singlepath connection established via the strongest path (goodput close to 7.7 Mbit/s). In
the second region the throughput is increased to a maximum (goodput close to 9.7 Mbit/s
at around 500 Kbytes receiver buffer size) that can be expected from a load sharing solution
using the capacity of all links17. However, the overall throughput of the MPTCP flow is in
every case below the optimal throughput curve if the receiver provides more than 500 Kbytes
receiver buffer. Even if all mechanisms to decrease the effects of buffer blocking are enabled
as for Curve #2, #3 and #4, the optimal result cannot be achieved.

The reason for this unexpected behavior is an effect caused by the load sharing mechanism
of the scheduler, which is able to balance the congestion up to certain levels. First some facts
have to be mentioned to explain this behavior, e.g. that packet loss has the potential to
decrease the throughput. A congestion control like OLIA, LIA or RP-MPv2 reacts on loss
by decreasing the send rate. Queues in routers can cause this loss and can, therefore, cause
a limited send rate. If the congestion window allows to fill a link with a high send rate, the
sender will fill the queues in the routers. Therefore, a different queue behavior has a direct
impact on the CCCs, the CCCs have a direct impact on the send rate and the send rate has
a direct impact on the fill level of the router queues. Red queues increase the probability of

16Here two every subflow of paths assigned to the strongest link.
17Using 2 Mbit/s and 8 Mbit/s access links.

7.6. OTHER SIDE EFFECTS WITH RED QUEUES 157

loss depending on their fill level. In the experiment setup of Figure 7.31, the probability for a
packet drop starts at 30% of the queue size which is 100 packets in this experiment. With a
fill level of 30 packets in the queue there possibly exists a risk that a packet drop will occur.
If the fill level is lower than 30 packets no loss caused by the router queues will be observed.
Furthermore, it is not ensured that the packet drop always affects segments sent for the first
time, also the duplicate packets resulting from a fast retransmission will be dropped from the
queues in the routers. A dropped fast retransmission causes a timer-based retransmission in
the worst case. This blocks the transmission until the timer for the retransmission will expire
and leads to a decrease of the congestion control window to a minimum value (here one 1
MSS). Thus, if there exists enough free receiver buffer space, the subflow will fill the link and,
therefore, the queues of the connecting routers. If a subflow starts to fill the queues at the
router, the probability of a packet drop will be increased. Furthermore, the send rate can
also be limited by the ARWND and can prevent a filling of the router queues up to a specific
level. The ARWND is depending on free receiver buffer size.

Figure 7.32 and Figure 7.33 are provided to demonstrate the effect of filled links. Fig-
ure 7.32 shows the congestion control window of the subflow on the path assigned to the
strong link. In this case the subflow is not limited by the receiver buffer size and is able to
increase the congestion control window. With the growth of the congestion control window
the queue of the first router of the strong path18 will also be filled up to a maximum of 100
packets. Thus, the probability of drop will increase to 100% for incoming packets. About
220 seconds after the connection establishment the first timer-based retransmission occurs,
the congestion control window decreases to one MSS and the congestion control restarts with
a slow start phase. During this time the fill level of the router queue on the strong path
decreases to zero.

Here the effect can be observed that the more the queue is filled, the more likely the RED
queue mechanism will drop packets. This effect does not occur throughout the complete
transmission, but often enough to decrease the throughput.

In comparison to this negative router queue overflow scenario, Figure 7.34 and Figure 7.35
illustrate the behavior of the router queue and the corresponding congestion window for the
case when a smaller receiver buffer limits the send rate. The congestion window of the subflow
on the path assigned to the strongest link is not able to increase to more bytes with a receiver
buffer of 500 Kbytes than needed to fill the buffer on the path to a reasonable level (here to
around 30 packets). The risk is low that the sender drops segments and retransmissions occur
in this scenario. If no packets are dropped in the routers, no timer-based retransmissions will
occur, which in sum increases the overall throughput.

This example illustrates that more receiver buffer does not necessarily lead to an increased
throughput or the maximum possible throughput in every case for an end-to-end load sharing
approach. If the user of the system has knowledge about details of the overall system, like
queue management, bandwidth or delay, he is able to optimize the systems for the transport
protocol much more by adapting individual parameters than the end-to-end mechanisms are
able by adaptation, measurement or estimation. A scheduler on transport protocol level is
not able to detect all these details of, e.g. router queue fill level, fast and exactly enough to
use the resources perfectly in every case.

18with the WiFi link.

158 CHAPTER 7. REVISITING SCHEDULING

0 500 1000 1500 2000

0
1

2
3

4
5

6
7

8
9

1
0

Receiver Queue Size ρ [Kbytes]

R
e

c
e

iv
e

d
 B

it
 R

a
te

 [
M

b
it
/s

]

ConSN ε / Penalizing σ / Opp.−Rtx Ω

1: ε=off, σ=off, Ω=off

2: ε=off, σ=off, Ω=on

3: ε=off, σ=on, Ω=on

4: ε=on, σ=off, Ω=off

Figure 7.31: Throughput using RED Queues with queue size of 100

Figure 7.32: Congestion control win-
dow with large receiver buffer size

Figure 7.33: RED Queue with huge
receiver buffer

Figure 7.34: Congestion control with
small receiver buffer size

Figure 7.35: RED Queue with small
receiver buffer size

7.7. CONCLUSION 159

7.7 Conclusion

The development of a high performing multipath scheduler is not an easy task. The discussion
in this chapter identifies different influencing factors such as the flow control, retransmission
mechanisms or the queueing discipline deployed at the router queues in the network. The
discussion of this chapter furthermore clarifies that buffer blocking has a huge impact on a
multipath scheduling system.

One major contribution of this chapter is the identification of further potential buffer
blocking problems, in particular for small buffer scenarios for both IETF load sharing ap-
proaches. The analysis of the scheduler showed that the root cause is the starting phase of a
multipath connection and the sharing of limited resources like the receiver buffer, which was
not considered so far.

Another important contribution of this chapter is the analysis of the scheduling process
which identified the limited degrees of freedom for decisions in case of saturated sending.
Furthermore, issues with existing protocol mechanisms were identified and demonstrated.

A goal of this chapter was to increase throughput in a common (dissimilar) network topol-
ogy typical for the Internet. Optimizations were proposed for CMT-SCTP and, furthermore,
for MPTCP in particular for MPTCP a completely new mechanism to decrease the effects of
buffer blocking has been proposed.

160 CHAPTER 7. REVISITING SCHEDULING

Chapter 8

Consequences for the future

The results of the Chapters 5, 6 and 7 are useful for the current IETF standardization process,
but also for a discussion about a completely redesigned Internet (“Future Internet”). Thus,
the results of the analysis lead to different conclusions depending on the time frame, i.e.,
whether a short, mid or long term time frame is considered. Short and mid term solution
approaches focus on the current network architecture using the IP-based transport protocols.
A new congestion control can be introduced very quickly, e.g., in less than a year, as long
as the community supports the proposal. The replacement of protocols and hardware in the
network cannot be achieved that quickly1. However, short and mid term efforts are interesting
for the standardization process in the IETF.

The Future Internet community focuses on new clean slate approaches to replace the
current Internet technology with new approaches and technologies, which needs much more
time – if it is even possible. Thus, researchers who focus on this topic are taking new and
increasing demands in terms of security, QoS, mobility support, privacy, sustainability and
scalability [Fel07] into account.

Anyway, for every research community – current IETF standardization or Future Internet
– the results of this thesis are relevant, but with different consequences. This chapter gives
some suggestions for the different communities.

8.1 Results relevant for the standardization process

Mid and short term approaches have to be translated to standards if a wide deployment is
the goal. Short term goals address updates or extensions of current drafts, where mid term
goals lead to completely new standardization efforts.

8.1.1 Short term

In particular with respect to the CMT-SCTP draft [ABD+13], the results of this thesis have a
potentially high short term impact, because the draft is not completed so far. In the context
of MPTCP, only updates and extensions to the existing RFC6824 [FRHB13] are possible.

1As example, the introduction of IPv6 required more than 15 years up to now and the goal is still not achieved.

161

162 CHAPTER 8. CONSEQUENCES FOR THE FUTURE

8.1.1.1 Path management

First, the MPTCP routing approach should address the open issues of the initial path choice
(see Subsection 5.1.2.1). The multipath SYN retransmission can be introduced without any
changes to the core MPTCP extension, as a small update for the RFC6824 [FRHB13]. Thus,
it should be included as optional feature, because it is a valid approach to avoid a missing SYN
with MP CAPABLE option caused by middleboxes. Furthermore, SYN retransmission can
be implemented on sender side only. The maximum of number testable destination addresses
should be configurable2. That allows a scalable configuration by the user.

The path definition issue of CMT-SCTP is more complex. The path definition of MPTCP
cannot be adapted to CMT-SCTP, this would be more than a straightforward extension, it
would require a change of the basic protocol definition of SCTP. Even if it seems to be the
straightforward way to improve the CMT feature of SCTP, this change would cause lot of
problems for backward compatibility. Introducing a new path definition would change the
structure of the TCB of SCTP. This has impact on every calculation, condition, order of
events and optimization done so far for the transmission of segments. Therefore, also for the
developer this causes issues, because it is close to a complete redesign and recoding of an
existing SCTP model, resulting in a loss of the protocol layer independency and stability. It
can be expected that these issues would prevent the deployment of the load sharing extension
of SCTP in the worst case instead of supporting it. It is also not possible to introduce the new
path definition as an additional feature, because backward compatibility has to be provided.

It can be expected that most implementations will use CMT-SCTP as straightforward
enhancement to provide the benefit of load sharing in a setup similar to the SIGTRAN use
case (see Section 2.2). Thus, the improvement of the throughput should be supported within
the architectural limitations, but the standardization process should be kept focused on the
other benefits of SCTP (e.g. high reliability). This is also a benefit for the users who, with
this focus on specific tasks, have the choice between two specialized transport protocols which
provide optimized behavior for specific multipath use cases and goals (see Subsection 3.1.1).
The reliability goal for the redundant network setup, which is still the undisputed strength
of SCTP, should be in the main focus of CMT-SCTP. On the other hand, load sharing to
increase the throughput in the Internet should be a main task of MPTCP. This should also
be mentioned in the standardization documents to give an orientation to the users.

8.1.1.2 Fairness

The fairness discussion is still an open issue. As so far only an incomplete fairness definition
is provided that does not consider the fairness to another multipath TCP flow, there is a valid
argument to restart the fairness discussion. The current definition just provides a framework
to support the Resource Pooling idea, not more. Furthermore, the coupled congestion controls,
which are based on this Resource Pooling idea, do not work very accurately in many cases
and prefer a singlepath flow without any specific reason. The Resource Pooling idea gives an
inadequate response to the bottleneck issue and should be reconsidered. In particular, the
shift from the load balancing goal to the balance congestion goal is not straightforward in its
argumentation and leads to an uncontrollable behavior. Scenarios can easily be created that
demonstrate drawbacks of the Resource Pooling idea which question the benefit in general.
The current approaches provide several drawbacks, e.g.:

2For Unix and Linux with a sysctl [SFR03].

8.1. RESULTS RELEVANT FOR THE STANDARDIZATION PROCESS 163

• Hard to control.

• Hard to monitor.

• No motivation to follow this standard.

A return to the original link centric fairness is strongly advised and if a flow level fairness
cannot be achieved only a sublevel fairness is a real practical option. This thesis proposes the
use of the already existing uncoupled congestion controls. There are good reasons to revert
to a link centric subflow fairness which can be summarized as:

• Link centric subflow fairness can be monitored and controlled by a network provider.

• Link centric subflow fairness allows to consider number and costs of access links in the
fairness calculation.

• The existing mechanisms and fairness metrics can be re-used on subflow level (as is not
possible on flow level).

A link centric subflow fairness will not create new risks for the service of the Internet, because
it can already today be emulated easily on the application layer without any problems (see
Subsection 6.3.2.1). Moreover, the deployment of the coupled congestion controls provides a
higher risk for the Internet due to the unpredictable behavior of these mechanisms. Thus,
as long as the congestion control mechanisms are not able to detect the topology – with
functional and practical bottleneck detection – a flow based comparison of a singlepath flow
and a multipath flow is not productive. Furthermore, the IETF community should consider
the impact of the resources, efforts and costs on the fairness rules in their discussion.

8.1.1.3 Scheduling

The discussion of the scheduling issue makes clear that the load sharing extensions for TCP
and SCTP are functional and well designed, but that the current specifications are not able to
achieve the self-set goals of “do not harm”, “balance congestion” and “improve throughput”
without further efforts and in every use case. Additional efforts for the scheduler process
are needed. The IETF load sharing standard documents of MPTCP do not address the
buffer blocking issue and are therefore in the initial version unusable in the Internet. An own
group of standardization documents should address this topic – like done for the fairness issue
(see Section 1.3 of RFC6182 [FRH+11] and Section 6.1 of the CMT-SCTP draft [ABD+13]).
Thus, for the IETF standardization process, it should be a main goal to bring the scheduling
requirements into the next version of the architecture drafts and also to address the need to
support more than two subflows concurrently.

As a result of this discussion, the ConSN approach (see Subsection 7.5.2) can be pro-
vided as alternative algorithm to address the buffer blocking issue. This work can lead to
an additional draft for MPTCP in the same manner as it was done for congestion control
mechanisms. Chunk rescheduling and buffer splitting were already added to the CMT-SCTP
Internet draft [ABD+13]. However, also the negative impact of the known mechanisms to
avoid the impact of the buffer blocking issue should be addressed. It should be noted as an
advice to deactivate e.g. buffer splitting during the first startup phase. Furthermore it should
be added to the MPTCP and CMT-SCTP implementation notes that ConSN for MPTCP
and the RTT-weighted scheduler for the disjoint path setup are identified as best option so
far (see Section 7.4).

164 CHAPTER 8. CONSEQUENCES FOR THE FUTURE

8.1.2 Mid term

The discussion of Chapter 6 demonstrates that the fair sharing of resources has not been solved
adequately. The load sharing feature on the transport layer cannot be discussed isolatedly
from the network layer as shown in Subsection 5.1.2. Thus, if new approaches to solve the
issues are discussed, also the network layer should be considered. This is true for path
management, scheduling and fairness issues.

Anyway, changes in infrastructure protocols, like routing protocols, have a high impact
on the hardware used. However, new technologies come up with, e.g. Open Flow [MAB+08]
that make the network more dynamic and intelligent and allow shifting functionalities to the
network, like for example bottleneck avoidance.

In the context of this thesis, a cooperation with the University of Technology Ilmenau was
done [VBOMT13b] that investigated the possibilities on the transport layer. The main idea
of this cooperation was the usage of the new “hierarchical routing management system” of
Ilmenau [VMT12] to avoid bottleneck issues. An additional goal was the avoidance of high
path dissimilarities with respect to delay or error rate by providing a QoS infrastructure. A
key concept was the combination of existing infrastructure and protocols with new routing
mechanisms in the network. The results are described in [VBOMT13b]. A new cross layer
communication was introduced to allow a transport protocol the exchange of control data
among the network components to support a QoS-oriented routing. This cross layer commu-
nication between transport protocol mechanisms and routing requires meta data. SCTP was
extended in a first version for the proof of concept, even if approaches, e.g., with additional
IPv4 options or IPv6 hop-by-hop extension headers are also possible. As discussed in Sub-
section 2.2.1, an SCTP segment includes a “common header”, and is first filled with Control
chunks and afterwards with DATA chunks. Control chunks are introduced to exchange con-
trol information between connection endpoints. Part of the new approach was an additional
chunk type that was denoted as “network” control chunk. This network control chunk was
designed as extension of the currently used control chunks to signal to all entities along a
route. So, in case an intermediate router supports network control chunks, the router reacts
on the requirements of the sending application instance. This signaling provides a more so-
phisticated routing than implemented by today’s networks. In order to allow a fast parsing
of such extended packets in hardware a hierarchy of messages in CMT-SCTP was introduced
that replaces the current definition [Ste07] and places network control chunks after the SCTP
common header and before any following chunk. The results of using the hierarchical routing
was very straightforward and supported a flow setup without any bottleneck issues.

Thus, for mid term standardization plans for new routing protocols, the support of load
sharing approaches should be considered. The signaling to network components has also
drawbacks with respect to security if these control chunks are encrypted in an end-to-end
connection. However, even here first approaches are in the discussion that allow the operation
on encrypted control data [SBJR13].

8.2 Long term (Future Internet)

This thesis demonstrates that load sharing protocols are designed to support the reliable
and ordered transfer of data. This will also be necessary for future networks. Networks
provide different multipath connectivity characteristics with respect to error rate, delay or
bandwidth. A scheduler has to adapt to the topology also in a Future Internet to address the

8.2. LONG TERM (FUTURE INTERNET) 165

re-ordering issue, because the physical link characteristics cannot be changed, even though
aggregation of equivalent paths, or the reservation of specific resources for specific flows
can help. Just scheduling data via different paths without considering the reordering issue
or the buffer blocking issues will decrease the performance, as it can be observed even for
unordered transfer in [DBRT10]. A first architectural approach was proposed with an En-
capsulated Responsibility Centric Architecture model (ERiCA) [BDAR12a] to demonstrate
the requirements in the Future Internet. This model provides a process to normalize, cluster
and aggregate network (NCA) information to support an optimized load sharing service with
a defined information exchange among all involved network components. Thus, link charac-
teristics have to be provided to the scheduler instance in a normalized form. A correct and
up to date database allows a scheduler instance to use and cluster links that provide usable
characteristics which allows an optimal aggregation of network resources. Just measurement
or estimation of network information on end-to-end level is not exact and complete enough
as, e.g., demonstrated by the RED queue example in Subsection 7.6. However, the complete
information exchange chain needs an ability to exchange data across the complete Internet
with a centralized aggregation point. Therefore, a completely new structure and architecture
have to be introduced.

166 CHAPTER 8. CONSEQUENCES FOR THE FUTURE

Chapter 9

Conclusion and outlook

In this chapter the main results of revisiting the TCP and SCTP load sharing extensions are
recalled. Although the preparatory work for this thesis provides important improvements, too,
this chapter focuses on the results that are provided exclusively by this thesis. Furthermore,
an outlook on further research is given based on the results that will become important for
the current and the Future Internet.

9.1 Achieved results

The analysis in Chapter 5 shows that the currently discussed IETF load sharing extensions
have the same initial intention with the improvement of throughput. However, only the load
sharing extension of MPTCP provides a design that is able to adapt to the conditions of the
Internet on path and network level. The benefits of MPTCP are not caused by a better load
sharing design, they are a result of different design decisions made for singlepath SCTP. These
existing singlepath design decisions prevent an optimal increased throughput for CMT-SCTP
in the Internet (see Subsection 5.1). MPTCP is able to use all possible address combinations
as usable paths and, therefore, to establish subflows. This completely different resource base
can be exploited by an MPTCP scheduler if the buffer blocking problems can be mitigated or
avoided. This thesis demonstrates that the path definition of MPTCP provides a real benefit
when using multiple paths, even if it comes with scaling limitations. Only the cross path
setup strategy can increase the throughput in an Internet setup with asymmetric access links,
which was proven in a real Internet setup.

The proof that the cross setup model matters in the real world is also a contribution of this
thesis. The experiments in this thesis have shown that the current approaches are deployable
in a large scale real Internet experiment and fully functional in challenging long distance
setups (see Section 5.3). But only MPTCP is able to adapt completely to the conditions. The
experiences gained provide an important base for upcoming large scale multipath testbeds,
as they are created for, e.g., in the NorNet project [FODA14].

The real world testbed also changed the view on the relevance of the test and evaluation
models used so far. It was identified as insufficient to evaluate the load sharing extensions
on the transport layer just based on the disjoint path setup model (see Section 5.1.2). Also,
the cross path setup model must be considered. The choice of the test model is in particular
important with respect to a deployment on asymmetric, heterogeneous topologies. Without
considering the cross path setup model, the weaknesses of the existing mechanisms to decrease

167

168 CHAPTER 9. CONCLUSION AND OUTLOOK

the effects of buffer blocking do not become visible. This was demonstrated for MPTCP in
particular with respect to opportunistic retransmission and penalizing.

Another important contribution of this thesis addresses the challenges of the network layer.
By defining different common use cases for the load sharing protocols (see Section 5.2) the
weaknesses of both protocol extensions were identified. In the first step, this thesis discussed
different scenarios with respect to the applicability of MPTCP and CMT-SCTP and in the
second with respect to the support by the network layer. It was pointed out that MPTCP
in combination with the existing routing support provides more supportable use cases than
CMT-SCTP. But also the approach of MPTCP has its drawbacks (see Subsection 5.1.2.1)
as was identified with the MPTCP routing issue. However, also solutions were provided to
address these challenges, like for example the “multipath SYN retransmission” approach for
the MPTCP routing issue.

Furthermore, this thesis analyzed different coupled congestion controls (CCC) in Chap-
ter 6. All CCCs are based on the Resource Pooling idea. This thesis introduced for the
first time a common platform for all CCCs applied to MPTCP and CMT-SCTP. The MP-
TCP model in OMNeT++/INET was designed from scratch to achieve this. This common
platform is for simulation and real systems until now unique.

An additional contribution of Chapter 6 is the first analysis of all congestion controls
– LIA, OLIA and RP-MPv2 for MPTCP and CMT-SCTP – under comparable conditions
(see Section 6.2). The analysis demonstrates that the multipath fairness goals defined by the
IETF cannot be achieved in every case. It is an important observation of this thesis that there
exists also a grey area in the definition of comparable conditions (see Subsection 6.3.2.3).

One of the most important contributions of the Chapter 6 is the fact that the multipath
fairness definition is not complete and exact enough to cover the requirements of a real
world setup (see Subsection 6.3.3.2). The currently used definition does not achieve a fair
behavior among multipath flows themselves. The “resource to share” has to be defined to
provide an exact multipath fairness definition, and here the IETF has to decide whether a
link centric fairness or a network centric fairness is the goal. This thesis argues for a link
centric fairness, because it is, e.g., more predictable and can be monitored and controlled (see
Subsection 6.1.3.1). Furthermore, Chapter 6 demonstrates that – caused by the Resource
Pooling idea – a singlepath flow is preferred compared to the multipath flow even when it
is not necessary (see Subsection 6.1.3 and 6.3.3.1). The argumentation for this is given by
the balance congestion goal that provides benefits for the network utilization. However, this
thesis demonstrates that in the same manner arguments against the Resource Pooling idea
in general can be identified (see Subsection 6.1.3.1). Anyway, in the end, only the IETF
community can decide about the future of the Resource Pooling idea and the corresponding
network flow fairness, but it is a contribution of this thesis to provide new arguments for this
discussion.

The scheduling task evaluated in Chapter 7 was not discussed adequately for the IETF
multipath extensions so far. A main contribution of this chapter is the insight that the
scheduler cannot be defined as freely as expected at the beginning of the standardization pro-
cess. It is strongly advised to adapt the scheduler to different constraints, because otherwise
the achievement of the minimum IETF goals is simply not possible. This thesis has clearly
demonstrated that mechanisms to avoid or to decrease buffer blocking have to be part of
the MPTCP and CMT-SCTP designs. Furthermore, this thesis has demonstrated that the
approaches implemented in FreeBSD and Linux provide a good starting point, but that they
are insufficient if small receiver buffer sizes were used (see Subsection 7.3.3). Furthermore,

9.2. FUTURE WORK 169

this thesis has shown that the complete life cycle of a connection has to be taken into account
for scheduler process. An optimized scheduler behavior right from the start is required to
provide at least the chance for an optimum performance.

Based on these results, the scheduler process for CMT-SCTP and MPTCP was optimized
in a second step (see Section 7.4). This thesis proposes the same weighted scheduler mech-
anism for CMT-SCTP as the reference implementation of Linux provides for MPTCP. But
the analysis has furthermore shown that the mechanisms to avoid or decrease buffer blocking
have to be deactivated until the window of the “fastest” path reaches its maximum during
the first scheduling phase, even if the MPTCP scheduling approach is used.

An important optimization was done for MPTCP. A completely new buffer blocking avoid-
ance mechanism was designed and implemented that redefines the degrees of freedom to sched-
ule data via the subflows of an MPTCP flow (see Section 7.5). The new confluent sequence
numbers (ConSN) scheduling approach decouples the flow sequence number from the subflow
sequence number space (see Subsection 7.5.2). The MPTCP scheduling process uses with this
approach new degrees of freedom in the send process. Only the result of this optimization
work achieved acceptable results for MPTCP in the cross path setup (see Subsection 7.5.2.2).
In addition the interaction of router queues, ARWND, CCC and multipath extensions was
demonstrated. This analysis of the interaction has shown that an end-to-end multipath pro-
tocol will not be able to identify all relevant information of the network fastly and exactly
enough to provide an optimal behavior in the Internet.

Besides the more technical discussion with focus on the protocol extensions themselves
the Chapter 8 discussed the contributions of this thesis in the context of the IETF und the
Future Internet community. Chapter 8 gives a possible roadmap for short and long term goals
and a first initial idea of how they can be achieved. Here, in particular the combination with
new routing mechanisms should be highlighted and the first proof of concept done to support
a cross layer communication.

Last but not least many improvements were done for the TCP simulation model of the
OMNeT++/INET environment and extensions created for different INET modules and the
SimProcTC toolchain.

9.2 Future work

The results of this thesis provide a solid base for future research. The real world behavior of
multipath transport protocols was only tested for relatively small scale network setups until
now. New research networks like NorNet are coming up that provide the possibility to create
multipath experiments via the Internet under more complex conditions. The behavior of the
protocol extensions should also be analyzed under a more dynamic path management. It is
still open whether the current extensions can address those requirements and can provide a
new mobility solution. But there exists a strong need, because already first approaches have
been identified in real products like in Apple’s speech assistant Siri in iOS71.

The open fairness discussion leaves room for further research. The questions concerning
a fair resource sharing raised up in this thesis are part of a new “Deutsche Forschungsge-
meinschaft” (DFG) project in cooperation with the University of Bremen. Besides the goal
to create a new fairness definition proposal for the IETF, the design of new congestion con-
trol mechanisms is addressed. A deeper analysis is necessary of the dependencies of existing

1MPTCP for Siri: http://perso.uclouvain.be/olivier.bonaventure/blog/html/2013/09/18/mptcp.html.

http://perso.uclouvain.be/olivier.bonaventure/blog/html/2013/09/18/mptcp.html

170 CHAPTER 9. CONCLUSION AND OUTLOOK

singlepath mechanisms and new multipath mechanisms to understand the direct and indirect
dependencies. The common simulation model improved by this thesis provides a basis to
compare the load sharing extensions of MPTCP and CMT-SCTP.

And perhaps most important, it is not clear what will happen with a network, if the default
use case switches from singlepath to a more multipath dominated network. The scheduler
instance has to be investigated in more detail, in particular with respect to the use cases with
more than two access links. Even if one or two interfaces per device are currently the most
deployed use case in the Internet, the others are relevant and important as well in particular
for the future.

Appendix A

Appendix

A.1 Evaluation of the singlepath scenario

Absolute values of the singlepath scenario experiment in Subsection 6.3.1.2.

10 20 30 40 50 60 70 80 90 100

0
1
0

2
0

3
0

4
0

5
0

6
0

7
0

Data Rate on Path α [Mbit/s]

R
e
c
e
iv

e
d
 B

it
 R

a
te

 [
M

b
it
/s

]

CC Variant Γ / Flow FM

1: Γ=vs. LIA, FM=0
2: Γ=vs. LIA, FM=1
3: Γ=vs. New Reno, FM=0
4: Γ=vs. New Reno, FM=1

5: Γ=vs. OLIA, FM=0
6: Γ=vs. OLIA, FM=1
7: Γ=vs. RP−MPv2, FM=0
8: Γ=vs. RP−MPv2, FM=1

Figure A.1: Fairness line in a singlepath setup in comparison to SCTP

171

172 APPENDIX A. APPENDIX

10 20 30 40 50 60 70 80 90 100

0
1
0

2
0

3
0

4
0

5
0

6
0

7
0

Data Rate on Path α [Mbit/s]

R
e
c
e
iv

e
d
 B

it
 R

a
te

 [
M

b
it
/s

]

CC Variant Γ / Flow FM

1: Γ=vs. LIA, FM=0
2: Γ=vs. LIA, FM=1
3: Γ=vs. New Reno, FM=0
4: Γ=vs. New Reno, FM=1

5: Γ=vs. OLIA, FM=0
6: Γ=vs. OLIA, FM=1
7: Γ=vs. RP−MPv2, FM=0
8: Γ=vs. RP−MPv2, FM=1

Figure A.2: Fairness line in a singlepath setup in comparison to TCP

A.2. EVALUATION OF THE SHARED BOTTLENECK SCENARIO 173

A.2 Evaluation of the shared bottleneck scenario

A.2.1 Capacity share

Absolute values of the shared bottleneck experiment with focus on the fair share of the link
capacity in Subsection 6.3.2.2.

10 20 30 40 50 60 70 80 90 100

0
1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

Data Rate on Path α [Mbit/s]

R
e
c
e
iv

e
d
 B

it
 R

a
te

 [
M

b
it
/s

]

CC Variant Γ / Flow FM

1: Γ=LIA, FM=0
2: Γ=LIA, FM=1
3: Γ=New Reno, FM=0
4: Γ=New Reno, FM=1

5: Γ=OLIA, FM=0
6: Γ=OLIA, FM=1
7: Γ=RP−MPv2, FM=0
8: Γ=RP−MPv2, FM=1
9: Γ=(U) CMT−Reno, FM=0
10: Γ=(U) CMT−Reno, FM=1

Figure A.3: Full Bottleneck: TCP vs. all MPTCP CCC variants

10 20 30 40 50 60 70 80 90 100

0
1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

Data Rate on Path α [Mbit/s]

R
e
c
e
iv

e
d
 B

it
 R

a
te

 [
M

b
it
/s

]

CC Variant Γ / Flow FM

1: Γ=LIA, FM=0
2: Γ=LIA, FM=1
3: Γ=New Reno, FM=0
4: Γ=New Reno, FM=1

5: Γ=OLIA, FM=0
6: Γ=OLIA, FM=1
7: Γ=RP−MPv2, FM=0
8: Γ=RP−MPv2, FM=1
9: Γ=(U) CMT−Reno, FM=0
10: Γ=(U) CMT−Reno, FM=1

Figure A.4: Full Bottleneck: SCTP vs. all CMT-SCTP CCC variants

174 APPENDIX A. APPENDIX

10 20 30 40 50 60 70 80 90 100

0
1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

Data Rate on Path α [Mbit/s]

R
e
c
e
iv

e
d
 B

it
 R

a
te

 [
M

b
it
/s

]

CC Variant Γ / Flow FM

1: Γ=LIA, FM=0
2: Γ=LIA, FM=1
3: Γ=New Reno, FM=0
4: Γ=New Reno, FM=1

5: Γ=OLIA, FM=0
6: Γ=OLIA, FM=1
7: Γ=RP−MPv2, FM=0
8: Γ=RP−MPv2, FM=1
9: Γ=(U) CMT−Reno, FM=0
10: Γ=(U) CMT−Reno, FM=1

Figure A.5: Full Bottleneck: TCP vs. all CMT-SCTP CCC variants

10 20 30 40 50 60 70 80 90 100

0
1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

Data Rate on Path α [Mbit/s]

R
e
c
e
iv

e
d
 B

it
 R

a
te

 [
M

b
it
/s

]

CC Variant Γ / Flow FM

1: Γ=LIA, FM=0
2: Γ=LIA, FM=1
3: Γ=New Reno, FM=0
4: Γ=New Reno, FM=1

5: Γ=OLIA, FM=0
6: Γ=OLIA, FM=1
7: Γ=RP−MPv2, FM=0
8: Γ=RP−MPv2, FM=1
9: Γ=(U) CMT−Reno, FM=0
10: Γ=(U) CMT−Reno, FM=1

Figure A.6: Full Bottleneck: SCTP vs. all MPTCP variants

A.2. EVALUATION OF THE SHARED BOTTLENECK SCENARIO 175

A.2.2 Delay

Alternative delay measurements of the shared bottleneck experiment 6.3.2.2.

0 10 20 30 40 50 60 70 80 90 100

−
1

0
−

5
0

5
1

0

Data rate on link α [Mbit/s]

T
h

ro
u

g
h

p
u

t
D

if
fe

re
n

c
e

 (
B

1
−

B
0

)
[M

b
it
/s

]

Delay δ

1: δ=1

2: δ=2

3: δ=10

4: δ=60

5: δ=80

Figure A.7: Impact of delay for OLIA on CMT-SCTP

0 10 20 30 40 50 60 70 80 90 100

−
1

0
−

5
0

5
1

0

Data rate on link α [Mbit/s]

T
h

ro
u

g
h

p
u

t
D

if
fe

re
n

c
e

 (
B

1
−

B
0

)
[M

b
it
/s

]

Delay δ

1: δ=1

2: δ=2

3: δ=10

4: δ=60

5: δ=80

Figure A.8: Impact of delay for OLIA on MPTCP

176 APPENDIX A. APPENDIX

A.2.3 Error rate

Alternative error rate measurements of the shared bottleneck experiment for the discussion
in Subsection 6.3.2.2.

0 10 20 30 40 50 60 70 80 90 100

−
1
0

−
5

0
5

1
0

Data rate on link α [Mbit/s]

T
h
ro

u
g
h
p
u
t
D

if
fe

re
n
c
e
 (

B
1
−

B
0
)

[M
b
it
/s

]

Common Loss Rate λ [%]

1: λ=0

2: λ=0.01

3: λ=0.02

4: λ=0.04

5: λ=0.08

6: λ=0.1

7: λ=0.2

8: λ=0.4

Figure A.9: Impact of increasing error rate on OLIA and CMT-SCTP

0 10 20 30 40 50 60 70 80 90 100

−
1
0

−
5

0
5

1
0

Data rate on link α [Mbit/s]

T
h
ro

u
g
h
p
u
t
D

if
fe

re
n
c
e
 (

B
1
−

B
0
)

[M
b
it
/s

]

Common Loss Rate λ [%]

1: λ=0

2: λ=0.01

3: λ=0.02

4: λ=0.04

5: λ=0.08

6: λ=0.1

7: λ=0.2

8: λ=0.4

Figure A.10: Impact of increasing error rate on RP-MPv2 and CMT-SCTP

A.2. EVALUATION OF THE SHARED BOTTLENECK SCENARIO 177

0 10 20 30 40 50 60 70 80 90 100

−
1
0

−
5

0
5

1
0

Data rate on link α [Mbit/s]

T
h
ro

u
g
h
p
u
t
D

if
fe

re
n
c
e
 (

B
1
−

B
0
)

[M
b
it
/s

]

Common Loss Rate λ [%]

1: λ=0

2: λ=0.01

3: λ=0.02

4: λ=0.04

5: λ=0.08

6: λ=0.1

7: λ=0.2

8: λ=0.4

Figure A.11: Impact of increasing error rate on OLIA and MPTCP

0 10 20 30 40 50 60 70 80 90 100

−
1
0

−
5

0
5

1
0

Data rate on link α [Mbit/s]

T
h
ro

u
g
h
p
u
t
D

if
fe

re
n
c
e
 (

B
1
−

B
0
)

[M
b
it
/s

]

Common Loss Rate λ [%]

1: λ=0

2: λ=0.01

3: λ=0.02

4: λ=0.04

5: λ=0.08

6: λ=0.1

7: λ=0.2

8: λ=0.4

Figure A.12: Impact of increasing error rate on RP-MPv2 and MPTCP

178 APPENDIX A. APPENDIX

A.3 Comparable conditions for a fair sharing

Absolute values of the shared bottleneck experiment under comparable conditions in Subsec-
tion 6.3.2.3.

10 20 30 40 50 60 70 80 90 100

0
1
0

2
0

3
0

4
0

5
0

6
0

7
0

Data Rate on Path α [Mbit/s]

R
e
c
e
iv

e
d
 B

it
 R

a
te

 [
M

b
it
/s

]

CC Variant Γ / Flow FM

1: Γ=LIA, FM=0
2: Γ=LIA, FM=1

3: Γ=OLIA, FM=0
4: Γ=OLIA, FM=1
5: Γ=RP−MPv2, FM=0
6: Γ=RP−MPv2, FM=1
7: Γ=(U) CMT−Reno, FM=0
8: Γ=(U) CMT−Reno, FM=1

Figure A.13: Comparable conditions in CMT-SCTP setup

10 20 30 40 50 60 70 80 90 100

0
1
0

2
0

3
0

4
0

5
0

6
0

7
0

Data Rate on Path α [Mbit/s]

R
e
c
e
iv

e
d
 B

it
 R

a
te

 [
M

b
it
/s

]

CC Variant Γ / Flow FM

1: Γ=LIA, FM=0
2: Γ=LIA, FM=1

3: Γ=OLIA, FM=0
4: Γ=OLIA, FM=1
5: Γ=RP−MPv2, FM=0
6: Γ=RP−MPv2, FM=1
7: Γ=(U) CMT−Reno, FM=0
8: Γ=(U) CMT−Reno, FM=1

Figure A.14: Comparable conditions in MPTCP setup

A.4. EVALUATION OF HALF BOTTLENECK WITH MULTIPATH FLOWS 179

A.4 Evaluation of half bottleneck with multipath flows

Alternative multipath fairness measurments for MPTCP and CMT-SCTP discussed in Sub-
section 6.3.3.3.

0 10 20 30 40 50 60 70 80 90 100

1
0

2
0

3
0

4
0

5
0

6
0

Data Rate [Mbit/s]

R
e
c
e
iv

e
d
 B

it
 R

a
te

 [
M

b
it
/s

]

CC Combination Γ / Flow FM

1: Γ=LIA − LIA, FM=0

2: Γ=LIA − LIA, FM=1

3: Γ=LIA − OLIA, FM=0

4: Γ=LIA − OLIA, FM=1

5: Γ=LIA − RP−MPv2, FM=0

6: Γ=LIA − RP−MPv2, FM=1

Figure A.15: LIA in comparison with all CCCs on SCTP

0 10 20 30 40 50 60 70 80 90 100

1
0

2
0

3
0

4
0

5
0

6
0

7
0

Data Rate [Mbit/s]

R
e
c
e
iv

e
d
 B

it
 R

a
te

 [
M

b
it
/s

]

CC Combination Γ / Flow FM

1: Γ=LIA − LIA, FM=0

2: Γ=LIA − LIA, FM=1

3: Γ=LIA − OLIA, FM=0

4: Γ=LIA − OLIA, FM=1

5: Γ=LIA − RP−MPv2, FM=0

6: Γ=LIA − RP−MPv2, FM=1

Figure A.16: LIA in comparison with all CCCs on TCP

180 APPENDIX A. APPENDIX

0 10 20 30 40 50 60 70 80 90 100

1
0

2
0

3
0

4
0

5
0

6
0

Data Rate [Mbit/s]

R
e
c
e
iv

e
d
 B

it
 R

a
te

 [
M

b
it
/s

]

CC Variant Γ / Flow FM

1: Γ=LIA, FM=0

2: Γ=LIA, FM=1

3: Γ=OLIA, FM=0

4: Γ=OLIA, FM=1

5: Γ=RP−MPv2, FM=0

6: Γ=RP−MPv2, FM=1

Figure A.17: OLIA in comparison with all CCCs on SCTP

0 10 20 30 40 50 60 70 80 90 100

1
0

2
0

3
0

4
0

5
0

6
0

Data Rate [Mbit/s]

R
e
c
e
iv

e
d
 B

it
 R

a
te

 [
M

b
it
/s

]

CC Variant Γ / Flow FM

1: Γ=LIA, FM=0

2: Γ=LIA, FM=1

3: Γ=OLIA, FM=0

4: Γ=OLIA, FM=1

5: Γ=RP−MPv2, FM=0

6: Γ=RP−MPv2, FM=1

Figure A.18: OLIA in comparison with all CCCs on TCP

A.4. EVALUATION OF HALF BOTTLENECK WITH MULTIPATH FLOWS 181

0 10 20 30 40 50 60 70 80 90 100

1
0

2
0

3
0

4
0

5
0

6
0

Data Rate [Mbit/s]

R
e
c
e
iv

e
d
 B

it
 R

a
te

 [
M

b
it
/s

]

CC Variant Γ / Flow FM

1: Γ=LIA, FM=0

2: Γ=LIA, FM=1

3: Γ=OLIA, FM=0

4: Γ=OLIA, FM=1

5: Γ=RP−MPv2, FM=0

6: Γ=RP−MPv2, FM=1

Figure A.19: RP-MPv2 in comparison with all CCCs on SCTP

0 10 20 30 40 50 60 70 80 90 100

1
0

2
0

3
0

4
0

5
0

6
0

Data Rate [Mbit/s]

R
e
c
e
iv

e
d
 B

it
 R

a
te

 [
M

b
it
/s

]

CC Variant Γ / Flow FM

1: Γ=LIA, FM=0

2: Γ=LIA, FM=1

3: Γ=OLIA, FM=0

4: Γ=OLIA, FM=1

5: Γ=RP−MPv2, FM=0

6: Γ=RP−MPv2, FM=1

Figure A.20: RP-MPv2 in comparison with all CCCs on TCP

182 APPENDIX A. APPENDIX

List of Figures

2.1 OSI reference model . 5

2.2 TCP header . 9

2.3 SCTP Common Header . 10

2.4 TCP handshake . 11

2.5 TCP tear-down . 11

2.6 SCTP handshake . 12

2.7 SCTP tear-down . 12

2.8 Sliding window example . 15

3.1 Load sharing example on the transport layer (is based on [WHB08]) 24

3.2 Network topology example . 25

3.3 Bottleneck scenario . 27

3.4 MPTCP handshake . 31

3.5 Illustration of a deadlock based on a decoupled advertised receiver window . . 34

4.1 OMNeT++ with its INET framework running an MPTCP simulation 39

4.2 Old congestion control window (created with OMNeT++ plot tool) 41

4.3 Test scenario under perfect conditions . 44

4.4 Testbed experiment with 0 ms delay . 45

5.1 General setup of a multipath scenario . 49

5.2 Simplified illustration of a TCP TCB list with relation to a socket interface . 51

5.3 Simplified illustration of an SCTP TCB list with relation to a socket interface 52

5.4 Simple multipath routing setup . 56

5.5 Path setup . 57

5.6 Simple multipath scenario . 61

5.7 Experiment setup to illustrate the impact of source-based selection 63

5.8 Impact of initial handshake . 64

5.9 Asymmetric multipath scenario example . 64

5.10 Poor man’s multi-homing example . 65

5.11 Internet scenario . 67

5.12 Providers used through the Internet . 69

5.13 Paths between Essen/Germany and Haikou/China 70

5.14 RTT statistics for each path . 71

5.15 Testbed experiment with 200 ms delay difference 74

5.16 Zoom on the lower bandwidth of the testbed experiment with 200 ms delay
difference . 74

183

184 LIST OF FIGURES

5.17 Intercontinental testbed scenario . 75

6.1 Example of balance congestion (is based on [WHB08]) 80

6.2 Resource Pooling idea: Benefit of adapting to topology 84

6.3 Resource Pooling idea: Drawback of Resource Pooling 84

6.4 Fairness Scenario 1: Singlepath . 91

6.5 Well-known theoretic singlepath fairness curve 92

6.6 Accuracy of fairness in a singlepath setup with SCTP and CMT-SCTP 93

6.7 Accuracy of fairness in a singlepath setup with TCP and MPTCP 93

6.8 Fairness scenario 2: Shared bottleneck . 94

6.9 Simple fairness curve . 95

6.10 Shared bottleneck: Fairness on subflow and flow level 96

6.11 Shared bottleneck: SCTP and CMT-SCTP will all CCC proposals 98

6.12 Shared bottleneck: TCP and MPTCP with all CCC proposals 98

6.13 Impact of increased common delay for LIA in CMT-SCTP 100

6.14 Impact of increased common delay for LIA in MPTCP 100

6.15 Impact of increased common delay for RP-MPv2 on CMT-SCTP 101

6.16 Impact of increased common delay for RP-MPv2 on MPTCP 101

6.17 Impact of increasing error rate on LIA and CMT-SCTP 102

6.18 Impact of increasing error rate on LIA and MPTCP 102

6.19 Fairness scenario 3: Full bottleneck (with limited access links) 103

6.20 Limited access links for CMT-SCTP . 104

6.21 Limited access links for MPTCP . 104

6.22 Fairness Scenario 3: Half bottleneck for singlepath 106

6.23 Fairness example . 107

6.24 Fair sharing example for ρ(α)=20 Mbit/s . 109

6.25 Scenario 4: TCP vs. CMT-SCTP . 111

6.26 Scenario 4: TCP vs. MPTCP . 111

6.27 Overall performance of both flows . 112

6.28 Fairness Scenario 4: Half Bottleneck for multipath 112

6.29 Multipath fairness depending on ρ(β): LIA in comparison with all CCCs for
CMT-SCTP . 113

6.30 Multipath fairness depending on ρ(β): LIA in comparison with all CCCs for
MPTCP . 113

7.1 Experiment setup . 118

7.2 Scheduler issue . 121

7.3 Send queue MPTCP . 127

7.4 Send queue (CMT-)SCTP . 127

7.5 Experiment setup details . 133

7.6 MPTCP with penalizing and Opp-Rtx in a disjoint path setup 135

7.7 MPTCP with penalizing and Opp-Rtx in a cross path setup 135

7.8 Throughput of CMT-SCTP with LIA . 137

7.9 Throughput of CMT-SCTP with OLIA . 137

7.10 Throughput of CMT-SCTP with RP-MPv2 137

7.11 Throughput of CMT-SCTP with LIA for small buffer size 138

7.12 Throughput of CMT-SCTP with OLIA for small buffer size 138

LIST OF FIGURES 185

7.13 Throughput of CMT-SCTP with RP-MPv2 for small buffer size 138
7.14 Weighted RTT based scheduling with LIA . 140
7.15 Weighted RTT based scheduling with LIA and focus on small buffer size . . . 142
7.16 Weighted RTT based scheduling with OLIA and focus on small buffer size . . 142
7.17 Weighted RTT based scheduling with RP-MPv2 and focus on small buffer size 142
7.18 The principle of the ConSN strategy . 145
7.19 An example for the usage of ConSN . 146
7.20 Time A - After major block building . 148
7.21 Time B-1 - After complete sent Block #1 and no acknowledgments arrived . 149
7.22 Time B-2 - After complete sent Block #1 and acknowledgments arrived . . . 149
7.23 Time C - After complete sent Block #1 and no more receiver buffer 151
7.24 Time D - After major block building . 151
7.25 Time E - After completely sent Block #2 . 152
7.26 Time F - After an optimized major block building 152
7.27 ConSN vs penalizing and Opp-Rtx with LIA in a disjoint path setup 153
7.28 ConSN vs penalizing and Opp-Rtx with LIA in a cross path setup 154
7.29 ConSN vs penalizing and Opp-Rtx with OLIA in a cross path setup 154
7.30 ConSN vs penalizing and Opp-Rtx with RP-MPv2 in a cross path setup . . . 154
7.31 Throughput using RED Queues with queue size of 100 158
7.32 Congestion control window with large receiver buffer size 158
7.33 RED Queue with huge receiver buffer . 158
7.34 Congestion control with small receiver buffer size 158
7.35 RED Queue with small receiver buffer size . 158

A.1 Fairness line in a singlepath setup in comparison to SCTP 171
A.2 Fairness line in a singlepath setup in comparison to TCP 172
A.3 Full Bottleneck: TCP vs. all MPTCP CCC variants 173
A.4 Full Bottleneck: SCTP vs. all CMT-SCTP CCC variants 173
A.5 Full Bottleneck: TCP vs. all CMT-SCTP CCC variants 174
A.6 Full Bottleneck: SCTP vs. all MPTCP variants 174
A.7 Impact of delay for OLIA on CMT-SCTP . 175
A.8 Impact of delay for OLIA on MPTCP . 175
A.9 Impact of increasing error rate on OLIA and CMT-SCTP 176
A.10 Impact of increasing error rate on RP-MPv2 and CMT-SCTP 176
A.11 Impact of increasing error rate on OLIA and MPTCP 177
A.12 Impact of increasing error rate on RP-MPv2 and MPTCP 177
A.13 Comparable conditions in CMT-SCTP setup 178
A.14 Comparable conditions in MPTCP setup . 178
A.15 LIA in comparison with all CCCs on SCTP 179
A.16 LIA in comparison with all CCCs on TCP . 179
A.17 OLIA in comparison with all CCCs on SCTP 180
A.18 OLIA in comparison with all CCCs on TCP 180
A.19 RP-MPv2 in comparison with all CCCs on SCTP 181
A.20 RP-MPv2 in comparison with all CCCs on TCP 181

186 LIST OF FIGURES

List of Tables

4.1 Parameter values for cmtCCVariant . 42
4.2 Implementation overview in comparison to other implementations 42

5.1 Routing and policy table based on the proposal of [BPB11b] 58
5.2 Routing statistics for each path . 69
5.3 Identified network providers used by the intercontinental testbed setup 70
5.4 Route per endpoint combination . 70
5.5 Throughput statistics for each path . 71

6.1 Overview of parameters used to describe CCC proposals 87
6.2 Configuration for Figure 6.6 . 93
6.3 Configuration for Figure 6.7 . 93
6.4 Configuration for Figure 6.11 . 98
6.5 Configuration for Figure 6.12 . 98

187

188 LIST OF TABLES

Bibliography

[ABD+13] Paul D. Amer, Martin Becke, Thomas Dreibholz, Nasif Ekiz, Janardhan R.
Iyengar, Preethi Natarajan, Randall R. Stewart, and Michael Tüxen. Load
Sharing for the Stream Control Transmission Protocol (SCTP). Internet Draft
Version 08, IETF, Network Working Group, October 2013. draft-tuexen-
tsvwg-sctp-multipath-07.txt, work in progress. URL: https://tools.ietf.org/id/
draft-tuexen-tsvwg-sctp-multipath-08.txt. 1.1, 3.2.3.2, 4, 5, 5, 5.1.1.1, 5.1.1.3,
5.3.2, 7.1.1, 8.1.1, 8.1.1.3

[ADB+11] Hakim Adhari, Thomas Dreibholz, Martin Becke, Erwin Paul Rathgeb, and
Michael Tüxen. Evaluation of Concurrent Multipath Transfer over Dissim-
ilar Paths. In Proceedings of the 1st International Workshop on Protocols
and Applications with Multi-Homing Support (PAMS), pages 708–714, Singa-
pore, March 2011. ISBN 978-0-7695-4338-3. URL: https://www.wiwi.uni-due.
de/fileadmin/fileupload/I-TDR/SCTP/Paper/PAMS2011.pdf, doi:10.1109/
WAINA.2011.92. 1.2, 4.2, 5, 5.3, 5.3.2, 7.1.3, 7.3.2, 7.5.2.1

[APB09] Mark Allman, Vern Paxson, and Ethan Blanton. TCP Congestion Control.
Standards Track RFC 5681, IETF, September 2009. ISSN 2070-1721. URL:
https://www.ietf.org/rfc/rfc5681.txt. 2.1, 2.2.4, 2.2.4.1, 5.1.1.1, 6.2.1

[APS99] Mark Allman, Vern Paxson, and W. Richard Stevens. TCP Congestion Con-
trol. Standards Track RFC 2581, IETF, April 1999. ISSN 2070-1721. URL:
https://www.ietf.org/rfc/rfc2581.txt. 2.1, 5.1.1.1

[AWDR14] Hakim Adhari, Sebastian Werner, Thomas Dreibholz, and Erwin Paul
Rathgeb. LEDBAT-MP – On the Application of Lower-than-Best-Effort for
Concurrent Multipath Transfer. In Proceedings of the 4th International Work-
shop on Protocols and Applications with Multi-Homing Support (PAMS), Vic-
toria, British Columbia/Canada, May 2014. to be published. 5

[Bag11] Marcelo Bagnulo. Threat Analysis for TCP Extensions for Multipath Opera-
tion with Multiple Addresses. RFC 6181 (Informational), March 2011. URL:
http://www.ietf.org/rfc/rfc6181.txt. 3.3

[Bar11] Sébastien Barré. Implementation and assessment of Modern Host-based Mul-
tipath Solutions. PhD thesis, UniversitÈ catholique de Louvain, 2011. 4.1.2.2,
6, 4.1.2.2

189

https://tools.ietf.org/id/draft-tuexen-tsvwg-sctp-multipath-08.txt
https://tools.ietf.org/id/draft-tuexen-tsvwg-sctp-multipath-08.txt
https://www.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/SCTP/Paper/PAMS2011.pdf
https://www.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/SCTP/Paper/PAMS2011.pdf
http://dx.doi.org/10.1109/WAINA.2011.92
http://dx.doi.org/10.1109/WAINA.2011.92
https://www.ietf.org/rfc/rfc5681.txt
https://www.ietf.org/rfc/rfc2581.txt
http://www.ietf.org/rfc/rfc6181.txt

190 BIBLIOGRAPHY

[BAR+13] Martin Becke, Hakim Adhari, Erwin Rathgeb, Fu Fa, Xiong Yang, and
Xing Zhou. Comparison of Multipath TCP and CMT-SCTP based on In-
tercontinental Measurements. In Proceedings of the IEEE Global Commu-
nications Conference (GLOBECOM 2013), Atlanta/USA, December 2013.
URL: https://www.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/Forschung/
GLOBECOM2013.pdf. 1.1, 1.2, 5.3.1.2

[BCC+98] Bob Braden, David D. Clark, Jon Crowcroft, Bruce Davie, Stephen E. Deer-
ing, Deborah Estrin, Sally Floyd, Van Jacobson, Greg Minshall, Craig Par-
tridge, Larry Peterson, K. K. Ramakrishnan, Scott Shenker, John Wroclawski,
and Lixia Zhang. Recommendations on Queue Management and Congestion
Avoidance in the Internet. Informational RFC 2309, IETF, April 1998. ISSN
2070-1721. URL: https://www.ietf.org/rfc/rfc2309.txt. 2.3.2, 3.2.2, 6.1

[BDAR12a] Martin Becke, Thomas Dreibholz, Hakim Adhari, and Erwin P. Rathgeb. A
future internet architecture supporting multipath communication networks. In
Network Operations and Management Symposium (NOMS), 2012 IEEE, pages
639–642, April 2012. doi:10.1109/NOMS.2012.6211975. 8.2

[BDAR12b] Martin Becke, Thomas Dreibholz, Hakim Adhari, and Erwin Paul Rathgeb. On
the Fairness of Transport Protocols in a Multi-Path Environment. In Proceed-
ings of the IEEE International Conference on Communications (ICC), pages
2666–2672, Ottawa, Ontario/Canada, June 2012. URL: https://www.wiwi.
uni-due.de/fileadmin/fileupload/I-TDR/SCTP/Paper/ICC2012.pdf, doi:10.
1109/ICC.2012.6363695. 3.2.1, 5, 5.1.2.1, 5.3, 6, 6.1.3, 6.2, 6.3.2.1, 6.3.2.2

[BDB+13] Martin Becke, Thomas Dreibholz, Andreas Bayer, Markus Packeiser, and Er-
win Paul Rathgeb. Alternative Transmission Strategies for Multipath Trans-
port of Multimedia Streams over Wireless Networks. In Proceedings of the
12th IEEE International Conference on Telecommunications (ConTEL), pages
147–153, Zagreb/Croatia, June 2013. ISBN 978-953-184-175-7. URL: https:
//simula.no/publications/Simula.simula.2000/simula pdf file. 5.3, 7, 7.3.2

[BDRF11] Martin Becke, Thomas Dreibholz, Erwin Paul Rathgeb, and Johannes For-
mann. Link Emulation on the Data Link Layer in a Linux-based Future In-
ternet Testbed Environment. In Proceedings of the 10th International Con-
ference on Networks (ICN), pages 92–98, St. Maarten/Netherlands Antilles,
January 2011. ISBN 978-1-61208-002-4. URL: https://www.wiwi.uni-due.de/
fileadmin/fileupload/I-TDR/SCTP/Paper/ICN2011.pdf. 4.2

[BFH03] Robert Braden, Ted Faber, and Mark Handley. From Protocol Stack
to Protocol Heap – Role-Based Architecture. ACM SIGCOMM Com-
puter Communication Review, 33:17–22, January 2003. ISSN 0146-
4833. URL: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.20.
1741&rep=rep1&type=pdf, doi:10.1145/774763.774765. 2

[BPB11a] Sébastien Barré, Christoph Paasch, and Olivier Bonaventure. MultiPath TCP:
From Theory to Practice. In Proceedings of the 10th International IFIP Net-
working Conference, pages 444–457, Valencia/Spain, May 2011. ISBN 978-

https://www.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/Forschung/GLOBECOM2013.pdf
https://www.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/Forschung/GLOBECOM2013.pdf
https://www.ietf.org/rfc/rfc2309.txt
http://dx.doi.org/10.1109/NOMS.2012.6211975
https://www.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/SCTP/Paper/ICC2012.pdf
https://www.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/SCTP/Paper/ICC2012.pdf
http://dx.doi.org/10.1109/ICC.2012.6363695
http://dx.doi.org/10.1109/ICC.2012.6363695
https://simula.no/publications/Simula.simula.2000/simula_pdf_file
https://simula.no/publications/Simula.simula.2000/simula_pdf_file
https://www.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/SCTP/Paper/ICN2011.pdf
https://www.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/SCTP/Paper/ICN2011.pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.20.1741&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.20.1741&rep=rep1&type=pdf
http://dx.doi.org/10.1145/774763.774765

BIBLIOGRAPHY 191

3-642-20756-3. URL: http://inl.info.ucl.ac.be/system/files/networking-mptcp.
pdf, doi:http://dx.doi.org/10.1109/JPROC.2010.2093850. 5.1.2.1

[BPB11b] Sébastien Barré, Christopher Paasch, and Olivier Bonaventure. MultiPath
TCP - Guidelines for implementers. Internet Draft Version 00, IETF, Network
Working Group, March 2011. draft-barre-mptcp-impl-00.txt, work in progress.
URL: https://tools.ietf.org/id/draft-barre-mptcp-impl-00.txt. 5.1.2.1, 5.1.2.1,
5.1, A.4

[Bra89] Robert Braden. Requirements for Internet Hosts – Communication Layers.
Standards Track RFC 1122, IETF, October 1989. ISSN 2070-1721. URL:
https://www.ietf.org/rfc/rfc1122.txt. 5.1.1.1, 7.1.3.2

[Bra96] Scott Bradner. The Tao of IETF: A Novice’s Guide to the Internet Engineering
Task Force. Informational RFC 2026, IETF, October 1996. ISSN 2070-1721.
URL: https://www.ietf.org/rfc/rfc2026.txt. 2.1

[Bri07] Bob Briscoe. Flow Rate Fairness: Dismantling a Religion. ACM SIG-
COMM Computer Communication Review, 37:63–74, March 2007. ISSN 0146-
4833. URL: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.66.
8436&rep=rep1&type=pdf, doi:10.1145/1232919.1232926. 3.2.2, 6.1.3

[BRW+13] Martin Becke, Erwin P. Rathgeb, Sebastian Werner, Irene Rüngeler, Michael
Tüxen, and Randall R. Stewart. Data channel considerations for RTCWeb.
IEEE Communications Magazine, 51(4):34–41, 2013. URL: http://ieeexplore.
ieee.org/stamp/stamp.jsp?arnumber=06495758&isnumber=. 4.1.2.4, 5.1.2.2,
5.3.1.2

[BS11] Marc Blanchet and Pierrick Seite. Multiple Interfaces and Provisioning Do-
mains Problem Statement. Technical Report 6418, IETF, November 2011.
ISSN 2070-1721. URL: http://www.ietf.org/rfc/rfc6418.txt. 5.1.2

[CA11] Brian Carpenter and Shane Amante. Using the IPv6 Flow Label for Equal
Cost Multipath Routing and Link Aggregation in Tunnels. Technical Report
6438, IETF, November 2011. URL: http://www.ietf.org/rfc/rfc6438.txt. 5.1.2

[CB02] Brian Carpenter and Scott Brim. Middleboxes: Taxonomy and Issues. Techni-
cal Report 3234, IETF, February 2002. URL: http://www.ietf.org/rfc/rfc3234.
txt. 2.3.1

[CCR+03] Brent Chun, David Culler, Timothy Roscoe, Andy Bavier, Larry Peterson,
Mike Wawrzoniak, and Mic Bowman. PlanetLab: An Overlay Testbed for
Broad-Coverage Services. ACM SIGCOMM Computer Communication Re-
view, 33(3), July 2003. ISSN 0146-4833. URL: https://www.planet-lab.org/
files/pdn/PDN-03-009/pdn-03-009.pdf, doi:10.1145/956993.956995. 5.3.1

[Chr13] Christoph Paasch, Gregory Detal, Sébastien Barré, Fabien Duchene, Olivier
Bonaventure. Automatic configuration on Gentoo, 2013. URL: http://
multipath-tcp.org/pmwiki.php?n=Main.50Gbps. 5, 5.1.2.1, 5.1.2.2, 7.1.1, 8

http://inl.info.ucl.ac.be/system/files/networking-mptcp.pdf
http://inl.info.ucl.ac.be/system/files/networking-mptcp.pdf
http://dx.doi.org/http://dx.doi.org/10.1109/JPROC.2010.2093850
https://tools.ietf.org/id/draft-barre-mptcp-impl-00.txt
https://www.ietf.org/rfc/rfc1122.txt
https://www.ietf.org/rfc/rfc2026.txt
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.66.8436&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.66.8436&rep=rep1&type=pdf
http://dx.doi.org/10.1145/1232919.1232926
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=06495758&isnumber=
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=06495758&isnumber=
http://www.ietf.org/rfc/rfc6418.txt
http://www.ietf.org/rfc/rfc6438.txt
http://www.ietf.org/rfc/rfc3234.txt
http://www.ietf.org/rfc/rfc3234.txt
https://www.planet-lab.org/files/pdn/PDN-03-009/pdn-03-009.pdf
https://www.planet-lab.org/files/pdn/PDN-03-009/pdn-03-009.pdf
http://dx.doi.org/10.1145/956993.956995
http://multipath-tcp.org/pmwiki.php?n=Main.50Gbps
http://multipath-tcp.org/pmwiki.php?n=Main.50Gbps

192 BIBLIOGRAPHY

[DABR12a] Thomas Dreibholz, Hakim Adhari, Martin Becke, and Erwin Paul
Rathgeb. NetPerfMeter – A Versatile Tool for Multi-Protocol Net-
work Performance Evaluations. Omnet++ code contribution, Univer-
sity of Duisburg-Essen, Institute for Experimental Mathematics, Febru-
ary 2012. URL: https://www.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/
SCTP/Paper/NetPerfMeterSim2012.pdf. 5.3.1.2

[DABR12b] Thomas Dreibholz, Hakim Adhari, Martin Becke, and Erwin Paul Rathgeb.
Simulation and Experimental Evaluation of Multipath Congestion Control
Strategies. In Proceedings of the 2nd International Workshop on Proto-
cols and Applications with Multi-Homing Support (PAMS), Fukuoka/Japan,
March 2012. ISBN 978-0-7695-4652-0. URL: https://www.wiwi.uni-due.
de/fileadmin/fileupload/I-TDR/SCTP/Paper/PAMS2012.pdf, doi:10.1109/
WAINA.2012.186. 4.1.2.4, 5, 5.3

[DBAR11a] Thomas Dreibholz, Martin Becke, Hakim Adhari, and Erwin Paul Rathgeb.
Evaluation of A New Multipath Congestion Control Scheme using the Net-
PerfMeter Tool-Chain. In Proceedings of the 19th IEEE International Con-
ference on Software, Telecommunications and Computer Networks (Soft-
COM), pages 1–6, Hvar/Croatia, September 2011. ISBN 978-953-290-027-
9. URL: https://www.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/SCTP/
Paper/SoftCOM2011.pdf. 4.2, 5.3.1.2, 5.3.1.2

[DBAR11b] Thomas Dreibholz, Martin Becke, Hakim Adhari, and Erwin Paul Rathgeb.
On the Impact of Congestion Control for Concurrent Multipath Transfer on
the Transport Layer. In Proceedings of the 11th IEEE International Conference
on Telecommunications (ConTEL), pages 397–404, Graz, Steiermark/Austria,
June 2011. ISBN 978-953-184-152-8. URL: https://www.wiwi.uni-due.de/
fileadmin/fileupload/I-TDR/SCTP/Paper/ConTEL2011.pdf. 5.1.2.1, 5.3, 6.2,
6.2.1, 7.1.3

[DBPR10a] Thomas Dreibholz, Martin Becke, Jobin Pulinthanath, and Erwin Paul
Rathgeb. Applying TCP-Friendly Congestion Control to Concurrent Mul-
tipath Transfer. In Proceedings of the 24th IEEE International Con-
ference on Advanced Information Networking and Applications (AINA),
pages 312–319, Perth, Western Australia/Australia, April 2010. ISSN
1550-445X. URL: https://www.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/
SCTP/Paper/AINA2010.pdf, doi:10.1109/AINA.2010.117. 4.1.2.4, 5, 5.3,
6, 6.2

[DBPR10b] Thomas Dreibholz, Martin Becke, Jobin Pulinthanath, and Erwin Paul
Rathgeb. Implementation and Evaluation of Concurrent Multipath Transfer
for SCTP in the INET Framework. In Proceedings of the 3rd ACM/ICST Inter-
national Workshop on OMNeT++, Torremolinos, Málaga/Spain, March 2010.
ISBN 978-963-9799-87-5. URL: https://www.wiwi.uni-due.de/fileadmin/
fileupload/I-TDR/SCTP/Paper/OMNeT Workshop2010-SCTP.pdf,
doi:10.4108/ICST.SIMUTOOLS2010.8673. 4.1.2.4

https://www.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/SCTP/Paper/NetPerfMeterSim2012.pdf
https://www.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/SCTP/Paper/NetPerfMeterSim2012.pdf
https://www.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/SCTP/Paper/PAMS2012.pdf
https://www.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/SCTP/Paper/PAMS2012.pdf
http://dx.doi.org/10.1109/WAINA.2012.186
http://dx.doi.org/10.1109/WAINA.2012.186
https://www.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/SCTP/Paper/SoftCOM2011.pdf
https://www.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/SCTP/Paper/SoftCOM2011.pdf
https://www.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/SCTP/Paper/ConTEL2011.pdf
https://www.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/SCTP/Paper/ConTEL2011.pdf
https://www.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/SCTP/Paper/AINA2010.pdf
https://www.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/SCTP/Paper/AINA2010.pdf
http://dx.doi.org/10.1109/AINA.2010.117
https://www.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/SCTP/Paper/OMNeT__Workshop2010-SCTP.pdf
https://www.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/SCTP/Paper/OMNeT__Workshop2010-SCTP.pdf
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8673

BIBLIOGRAPHY 193

[DBRT10] Thomas Dreibholz, Martin Becke, Erwin Paul Rathgeb, and Michael Tüxen.
On the Use of Concurrent Multipath Transfer over Asymmetric Paths.
In Proceedings of the IEEE Global Communications Conference (GLOBE-
COM), Miami, Florida/U.S.A., December 2010. ISBN 978-1-4244-5637-
6. URL: https://www.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/SCTP/
Paper/Globecom2010.pdf, doi:10.1109/GLOCOM.2010.5683579. 1.1, 1.2,
4.1.2.4, 5, 5.1.2.1, 5.3, 5.3.2, 7.1.3, 7.1.3.1, 7.1.3.3, 7.3.1, 7.3.2, 7.3.3, 8.2

[DH98a] Stephen E. Deering and Robert M. Hinden. Internet Control Message Proto-
col (ICMPv6) for the Internet Protocol Version 6 (IPv6) Specification. Stan-
dards Track RFC 2463, IETF, December 1998. ISSN 2070-1721. URL:
https://www.ietf.org/rfc/rfc2463.txt. 5.3.1.2

[DH98b] Stephen E. Deering and Robert M. Hinden. Internet Protocol, Ver-
sion 6 (IPv6). Standards Track RFC 2460, IETF, December 1998. ISSN
2070-1721. URL: https://www.ietf.org/rfc/rfc2460.txt. 1, 2.1

[DHB+13] Gregory Detal, Benjamin Hesmans, Olivier Bonaventure, Yves Vanaubel, and
Benôıt Donnet. Revealing middlebox interference with tracebox. In Proceedings
of the 2013 ACM SIGCOMM conference on Internet measurement conference.
ACM, October 2013. 2.3.1

[Dre07] Thomas Dreibholz. Reliable Server Pooling – Evaluation, Optimization and
Extension of a Novel IETF Architecture. PhD thesis, University of Duisburg-
Essen, Faculty of Economics, Institute for Computer Science and Business In-
formation Systems, March 2007. URL: http://duepublico.uni-duisburg-essen.
de/servlets/DerivateServlet/Derivate-16326/Dre2006 final.pdf. 4.1.3.1

[Dre12a] Thomas Dreibholz. Evaluation and Optimisation of Multi-Path Trans-
port using the Stream Control Transmission Protocol. Habilitation
treatise, University of Duisburg-Essen, Faculty of Economics, Institute
for Computer Science and Business Information Systems, March 2012.
URL: http://duepublico.uni-duisburg-essen.de/servlets/DerivateServlet/
Derivate-29737/Dre2012 final.pdf. 2.2, 3.2.1, 3.2.2.1, 3.2.3.2, 4.1.2, 4.1.2.1,
4.1.2.2, 4.1.2.3, 4.1.2.4, 4.1.3, 4.1.3.1, 6, 7.3.2, 7.3.3.2

[Dre12b] Thomas Dreibholz. SimProcTC – A Simulation Processing Tool-Chain for
OMNeT++ Simulations, 2012. URL: http://www.iem.uni-due.de/∼dreibh/
omnetpp/. 4.1.3

[Dre13] Thomas Dreibholz. The NorNet Core Testbed – Introduction and Status.
In Proceedings of the 1st International NorNet Users Workshop (NNUW-
1), Fornebu, Akershus/Norway, September 2013. URL: https://simula.no/
publications/Simula.simula.2124/simula pdf file. 5.4

[DSTR10] Thomas Dreibholz, Robin Seggelmann, Michael Tüxen, and Erwin Paul
Rathgeb. Transmission Scheduling Optimizations for Concurrent Multi-
path Transfer. In Proceedings of the 8th International Workshop on Pro-
tocols for Future, Large-Scale and Diverse Network Transports (PFLD-
NeT), volume 8, Lancaster, Pennsylvania/U.S.A., November 2010. ISSN

https://www.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/SCTP/Paper/Globecom2010.pdf
https://www.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/SCTP/Paper/Globecom2010.pdf
http://dx.doi.org/10.1109/GLOCOM.2010.5683579
https://www.ietf.org/rfc/rfc2463.txt
https://www.ietf.org/rfc/rfc2460.txt
http://duepublico.uni-duisburg-essen.de/servlets/DerivateServlet/Derivate-16326/Dre2006_final.pdf
http://duepublico.uni-duisburg-essen.de/servlets/DerivateServlet/Derivate-16326/Dre2006_final.pdf
http://duepublico.uni-duisburg-essen.de/servlets/DerivateServlet/Derivate-29737/Dre2012_final.pdf
http://duepublico.uni-duisburg-essen.de/servlets/DerivateServlet/Derivate-29737/Dre2012_final.pdf
http://www.iem.uni-due.de/~dreibh/omnetpp/
http://www.iem.uni-due.de/~dreibh/omnetpp/
https://simula.no/publications/Simula.simula.2124/simula_pdf_file
https://simula.no/publications/Simula.simula.2124/simula_pdf_file

194 BIBLIOGRAPHY

2074-5168. URL: https://www.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/
SCTP/Paper/PFLDNeT2010.pdf. 5, 7, 7.2.2.2

[Dun94] Jay Duncanson. Inverse multiplexing. Communications Magazine, IEEE,
32(4):34–41, 1994. 3.1

[DZR09] Thomas Dreibholz, Xing Zhou, and Erwin Paul Rathgeb. SimProcTC
– The Design and Realization of a Powerful Tool-Chain for OM-
NeT++ Simulations. In Proceedings of the 2nd ACM/ICST Interna-
tional Workshop on OMNeT++, pages 1–8, Rome/Italy, March 2009.
ISBN 978-963-9799-45-5. URL: https://www.wiwi.uni-due.de/fileadmin/
fileupload/I-TDR/ReliableServer/Publications/OMNeT Workshop2009.pdf,
doi:10.4108/ICST.SIMUTOOLS2009.5517. 4.1.3

[Ear14] Philip Eardley. Survey of MPTCP Implementations. Internet Draft Ver-
sion 2, IETF, Individual Submission, January 2014. draft-eardley-mptcp-
implementations-survey-02.txt, work in progress. URL: https://tools.ietf.org/
id/draft-eardley-mptcp-implementations-survey-02.txt. 4.1.2.2

[Edd07] Wesley M. Eddy. TCP SYN Flooding Attacks and Common Mitigations. In-
formational RFC 4987, IETF, August 2007. ISSN 2070-1721. URL: https:
//www.ietf.org/rfc/rfc4987.txt. 2.2.2, 2.2.2

[EF94] Kjeld Borch Egevang and Paul Francis. The IP Network Address Transla-
tor (NAT). Informational RFC 1631, IETF, May 1994. ISSN 2070-1721. URL:
https://www.ietf.org/rfc/rfc1631.txt. 2.3.1

[ELZ86] Derek L. Eager, Edward D. Lazowska, and John Zahorjan. Adaptive load shar-
ing in homogeneous distributed systems. Software Engineering, IEEE Trans-
actions on, (5):662–675, 1986. 3.1

[Fel07] Anja Feldmann. Internet Clean-Slate Design: What and Why? ACM
SIGCOMM Computer Communication Review, 37:59–64, July 2007. ISSN
0146-4833. URL: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.
98.8874&rep=rep1&type=pdf, doi:10.1145/1273445.1273453. 8

[FJ93] Sally Floyd and Van Jacobson. Random Early Detection Gateways for Con-
gestion Avoidance. IEEE/ACM Transactions on Networking, 1(4):397–413,
1993. ISSN 1063-6692. URL: https://citeseer.ist.psu.edu/viewdoc/download?
doi=10.1.1.128.5092&rep=rep1&type=pdf, doi:10.1109/90.251892. 2.3.2

[Flo97] Sally Floyd. RED: Discussions of Setting Parameters, November 1997. URL:
http://icir.org/floyd/REDparameters.txt. 2.3.2

[Flo00] Sally Floyd. Congestion Control Principles. Technical Report 2914, IETF,
September 2000. Updated by RFC 7141. URL: http://www.ietf.org/rfc/
rfc2914.txt. 2.1, 3.2.2, 6.1

[FODA14] Simone Ferlin-Oliveira, Thomas Dreibholz, and Özgü Alay. Tackling the Chal-
lenge of Bufferbloat in Multi-Path Transport over Heterogeneous Wireless Net-
works. In Proceedings of the IEEE/ACM International Symposium on Quality

https://www.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/SCTP/Paper/PFLDNeT2010.pdf
https://www.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/SCTP/Paper/PFLDNeT2010.pdf
https://www.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/ReliableServer/Publications/OMNeT__Workshop2009.pdf
https://www.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/ReliableServer/Publications/OMNeT__Workshop2009.pdf
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5517
https://tools.ietf.org/id/draft-eardley-mptcp-implementations-survey-02.txt
https://tools.ietf.org/id/draft-eardley-mptcp-implementations-survey-02.txt
https://www.ietf.org/rfc/rfc4987.txt
https://www.ietf.org/rfc/rfc4987.txt
https://www.ietf.org/rfc/rfc1631.txt
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.98.8874&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.98.8874&rep=rep1&type=pdf
http://dx.doi.org/10.1145/1273445.1273453
https://citeseer.ist.psu.edu/viewdoc/download?doi=10.1.1.128.5092&rep=rep1&type=pdf
https://citeseer.ist.psu.edu/viewdoc/download?doi=10.1.1.128.5092&rep=rep1&type=pdf
http://dx.doi.org/10.1109/90.251892
http://icir.org/floyd/REDparameters.txt
http://www.ietf.org/rfc/rfc2914.txt
http://www.ietf.org/rfc/rfc2914.txt

BIBLIOGRAPHY 195

of Service (IWQoS), Hong Kong/People’s Republic of China, May 2014. ISBN
978-1-4799-4852-9. URL: https://www.simula.no/publications/Simula.simula.
2722/simula pdf file. 1.2, 9.1

[Fre00] Ned Freed. Behavior of and Requirements for Internet Firewalls. Technical
Report 2979, IETF, October 2000. URL: http://www.ietf.org/rfc/rfc2979.txt.
5.1.1.1

[Fre12] FreeBSD Documentation Project. FreeBSD Handbook, July 2012. URL: http:
//ftp.freebsd.org/pub/FreeBSD/doc/en/books/handbook/book.pdf.bz2. 7.1

[FRH+11] Alan Ford, Costin Raiciu, Mark Handley, Sébastien Barré, and Janardhan R.
Iyengar. Architectural Guidelines for Multipath TCP Development. Infor-
mational RFC 6182, IETF, March 2011. ISSN 2070-1721. URL: https:
//www.ietf.org/rfc/rfc6128.txt. 5.1.1.1, 5.1.1.2, 5.2, 6.2.2, 7.1.1, 8.1.1.3

[FRHB13] Alan Ford, Costin Raiciu, Mark Handley, and Olivier Bonaventure. TCP
Extensions for Multipath Operation with Multiple Addresses. Standards Track
RFC 6824, IETF, January 2013. ISSN 2070-1721. URL: https://www.ietf.org/
rfc/rfc6824.txt. 1.1, 3.2.3, 3.2.3.1, 4, 5, 5.1.1.1, 6.1, 8.1.1, 8.1.1.1

[GÉA13] GÉANT. GÉANT Project Home, 2013. URL: http://www.geant.net/. 5.3.1.2

[Get11a] Jim Gettys. Bufferbloat – Dark Buffers in the Internet, January 2011. URL:
https://www.bufferbloat.net/attachments/9/BufferBloat11.pdf. 7.1.3.3

[Get11b] Jim Gettys. What is Bufferbloat, Anyway?, 2011. URL: https://gettys.
wordpress.com/what-is-bufferbloat-anyway/. 1

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns. Addison Wesley, Reading, MA, 1995. 4.1.2.2

[Gro02] Dan Grossman. New Terminology and Clarifications for DiffServ. Infor-
mational RFC 3260, IETF, April 2002. ISSN 2070-1721. URL: https:
//www.ietf.org/rfc/rfc3260.txt. 2.3.1

[GTGB11] Carmelita Goerg, A. Timm-Giel, and M. Thomas-Ralf Banniza. Performance
evaluation of multipath tcp linux implementations. In Wuerzburg Workshop on
IP: Joint ITG and Euro-NF Workshop Visions of Future Generation Networks,
2011. 7.1.3

[Hah91] Ellen L. Hahne. Round-Robin Scheduling for Max-Min Fairness in Data Net-
works. IEEE Journal on Selected Areas in Communications, 9:1024–1039,
September 1991. URL: https://citeseer.ist.psu.edu/viewdoc/download?doi=
10.1.1.21.2114&rep=rep1&type=pdf. 3.2.2

[HFGN12] T. Henderson, S. Floyd, A. Gurtov, and Y. Nishida. The NewReno Modifica-
tion to TCP’s Fast Recovery Algorithm. Technical Report 6582, IETF, April
2012. ISSN 2070-1721. URL: http://www.ietf.org/rfc/rfc6582.txt. 5.1.1.1

https://www.simula.no/publications/Simula.simula.2722/simula_pdf_file
https://www.simula.no/publications/Simula.simula.2722/simula_pdf_file
http://www.ietf.org/rfc/rfc2979.txt
http://ftp.freebsd.org/pub/FreeBSD/doc/en/books/handbook/book.pdf.bz2
http://ftp.freebsd.org/pub/FreeBSD/doc/en/books/handbook/book.pdf.bz2
https://www.ietf.org/rfc/rfc6128.txt
https://www.ietf.org/rfc/rfc6128.txt
https://www.ietf.org/rfc/rfc6824.txt
https://www.ietf.org/rfc/rfc6824.txt
http://www.geant.net/
https://www.bufferbloat.net/attachments/9/BufferBloat11.pdf
https://gettys.wordpress.com/what-is-bufferbloat-anyway/
https://gettys.wordpress.com/what-is-bufferbloat-anyway/
https://www.ietf.org/rfc/rfc3260.txt
https://www.ietf.org/rfc/rfc3260.txt
https://citeseer.ist.psu.edu/viewdoc/download?doi=10.1.1.21.2114&rep=rep1&type=pdf
https://citeseer.ist.psu.edu/viewdoc/download?doi=10.1.1.21.2114&rep=rep1&type=pdf
http://www.ietf.org/rfc/rfc6582.txt

196 BIBLIOGRAPHY

[HS02] Hung-Yun Hsieh and Raghupathy Sivakumar. pTCP: An End-to-End Trans-
port Layer Protocol for Striped Connections. In Proceedings of the 10th IEEE
International Conference on Network Protocols, pages 24–33. IEEE Computer
Society, 2002. URL: http://dblp.uni-trier.de/db/conf/icnp/icnp2002.html. 3.2

[Hui95] Christian Huitema. Multi-homed TCP. Internet Draft Version 01, IETF,
Network Working Group, May 1995. draft-huitema-multi-homed-01,.txt, work
in progress. URL: https://tools.ietf.org/id/draft-huitema-multi-homed-01. 3.2

[IAS05] Janardhan R. Iyengar, Paul Amer, and Randall Stewart. Receive Buffer Block-
ing in Concurrent Multipath Transfer. In Proceedings of the IEEE GLOBE-
COM, pages 121–126, St. Louis, Missouri/U.S.A., November 2005. ISBN 978-
1-4244-1707-0. URL: https://citeseerx.ist.psu.edu/viewdoc/download?doi=
10.1.1.145.7496&rep=rep1&type=pdf, doi:10.1109/GLOCOM.2005.1577365.
7.1.3.3

[IAS06] Janardhan R. Iyengar, Paul D. Amer, and Randall Stewart. Concurrent Multi-
path Transfer using SCTP Multihoming over Independent End-to-End Paths.
IEEE/ACM Transactions on Networking, 14(5):951–964, October 2006. ISSN
1063-6692. URL: http://www.fandm.edu/jiyengar/papers/cmt-ton2006.pdf,
doi:10.1109/TNET.2006.882843. 3.1, 3.2.3.2, 5.1.1.3, 5.3.2

[Ins13] Institute of Information and Electronics Communication Technologies and Ap-
plied Mathematics (ICTEAM). MultiPath TCP – Linux Kernel Implementa-
tion, 2013. URL: http://mptcp.info.ucl.ac.be. 4.1.2.2

[JBB92] Van Jacobson, Robert Braden, and David A. Borman. TCP Extensions for
High Performance. Informational RFC 1323, IETF, May 1992. ISSN 2070-
1721. URL: https://www.ietf.org/rfc/rfc1323.txt. 2.2.3, 4.1.2.1

[Jun05] Andreas Jungmaier. Das Transportprotokoll SCTP: Leistungsbewertung und
Optimierung eines neuen Transportprotokolls. PhD thesis, University of
Duisburg-Essen, Institute for Experimental Mathematics, 2005. 3.2.3.2

[Kel97] Frank Kelly. Charging and Rate Control for Elastic Traffic. European Transac-
tions on Telecommunications, 8:33–37, January 1997. URL: https://citeseer.
ist.psu.edu/viewdoc/download?doi=10.1.1.144.6615&rep=rep1&type=pdf.
3.2.2

[KGPB14] Ramin Khalili, Nicolas Gast, Miroslav Popovic, and Jean-Yves Le
Boudec. Coupled Multipath-Aware Congestion Control. Internet Draft
Version 04, IETF, Network Working Group, February 2014. draft-ietf-
mptcp-congestion-07, work in progress. URL: https://tools.ietf.org/id/
draft-khalili-mptcp-congestion-control-04. 6.2.3

[KHF06] Eddie Kohler, Mark Handley, and Sally Floyd. Datagram Congestion Control
Protocol (DCCP). Standards Track RFC 4340, IETF, March 2006. ISSN
2070-1721. URL: https://www.ietf.org/rfc/rfc4340.txt. 2.1

http://dblp.uni-trier.de/db/conf/icnp/icnp2002.html
https://tools.ietf.org/id/draft-huitema-multi-homed-01
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.145.7496&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.145.7496&rep=rep1&type=pdf
http://dx.doi.org/10.1109/GLOCOM.2005.1577365
http://www.fandm.edu/jiyengar/papers/cmt-ton2006.pdf
http://dx.doi.org/10.1109/TNET.2006.882843
http://mptcp.info.ucl.ac.be
https://www.ietf.org/rfc/rfc1323.txt
https://citeseer.ist.psu.edu/viewdoc/download?doi=10.1.1.144.6615&rep=rep1&type=pdf
https://citeseer.ist.psu.edu/viewdoc/download?doi=10.1.1.144.6615&rep=rep1&type=pdf
https://tools.ietf.org/id/draft-khalili-mptcp-congestion-control-04
https://tools.ietf.org/id/draft-khalili-mptcp-congestion-control-04
https://www.ietf.org/rfc/rfc4340.txt

BIBLIOGRAPHY 197

[Koz05] Charles Kozierok. The TCP/IP Guide: A Comprehensive, Illustrated Internet
Protocols Reference. No Starch Press, 2005. ISBN 978-1593270476. URL:
http://www.tcpipguide.com/free/index.htm. 2, 2.2, 2.2.1, 5.1.1.1

[KR02] James F. Kurose and Keith Ross. Computer Networking: A Top-Down Ap-
proach Featuring the Internet. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2nd edition, 2002. 5.2.1

[Kri13] Kristian Evensen. Automatic configuration with MULTI, 2013. URL: https:
//github.com/kristrev/multi. 5.1.2.1

[KSc+11] Michael Kleis, Abbas Siddiqui, Irfan Şimşek, Martin Becke, Dirk Hoffstadt,
Alexander Marold, Christian Henke, Julius Müller, Cristian Varas, Thomas
Magedanz, Paul Müller, and Erwin Rathgeb. Cross-Layer Security and Func-
tional Composition for a Future Internet. In Proceedings of the Joint ITG
and Euro-NF Workshop on Visions of Future Generation Networks (Eu-
roView2011), Würzburg, Bayern/Germany, August 2011. Demo Presentation
at the G-Lab Status Meeting. URL: http://www.euroview2011.com/fileadmin/
content/euroview2011/abstracts/abstract kleis.pdf. 5.3.1

[KSW+08] Andreas Köpke, Michael Swigulski, Karl Wessel, Daniel Willkomm, P.T. Klein
Haneveld, Tom Parker, Otto Visser, Hermann Simon Lichte, and Stefan
Valentin. Simulating wireless and mobile networks in omnet++ – the mixim
vision. In OMNeT++ 2008: Proceedings of the 1st International Workshop
on OMNeT++ (hosted by SIMUTools 2008), ICST, Brussels, Belgium, Bel-
gium, 2008. ICST (Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering). 4.1.2

[KV05] Frank Kelly and Thomas Voice. Stability of End-to-End Algorithms for
Joint Routing and Rate Control. ACM SIGCOMM Computer Communi-
cation Review, 35(2):5–12, April 2005. ISSN 0146-4833. URL: http://
ccr.sigcomm.org/archive/2005/april/SIGCOMM-CCR-V35-N2.pdf, doi:10.

1145/1064413.1064415. 1.3, 3.2, 6.1.2.1

[LOTD08] Peter Lei, Lyndon Ong, Michael Tüxen, and Thomas Dreibholz. An Overview
of Reliable Server Pooling Protocols. Informational RFC 5351, IETF, Septem-
ber 2008. ISSN 2070-1721. URL: https://www.ietf.org/rfc/rfc5351.txt. 4.1.3.1

[MAB+08] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Pe-
terson, Jennifer Rexford, Scott Shenker, and Jonathan Turner. Openflow: En-
abling innovation in campus networks. SIGCOMM Comput. Commun. Rev.,
38(2):69–74, March 2008. URL: http://doi.acm.org/10.1145/1355734.1355746,
doi:10.1145/1355734.1355746. 8.1.2

[Mal93] Gary Scott Malkin. Traceroute Using an IP Option. Standards Track RFC
1393, IETF, January 1993. ISSN 2070-1721. URL: https://www.ietf.org/rfc/
rfc1393.txt. 5.3.1.2

[Man10] William Manning. Basic Administration for Citrix NetScaler 9.0: 1Y0-A11
Exam Certification Exam Preparation Course in a Book for Passing the Basic

http://www.tcpipguide.com/free/index.htm
https://github.com/kristrev/multi
https://github.com/kristrev/multi
http://www.euroview2011.com/fileadmin/content/euroview2011/abstracts/abstract_kleis.pdf
http://www.euroview2011.com/fileadmin/content/euroview2011/abstracts/abstract_kleis.pdf
http://ccr.sigcomm.org/archive/2005/april/SIGCOMM-CCR-V35-N2.pdf
http://ccr.sigcomm.org/archive/2005/april/SIGCOMM-CCR-V35-N2.pdf
http://dx.doi.org/10.1145/1064413.1064415
http://dx.doi.org/10.1145/1064413.1064415
https://www.ietf.org/rfc/rfc5351.txt
http://doi.acm.org/10.1145/1355734.1355746
http://dx.doi.org/10.1145/1355734.1355746
https://www.ietf.org/rfc/rfc1393.txt
https://www.ietf.org/rfc/rfc1393.txt

198 BIBLIOGRAPHY

Administration for Citrix ... On Your First Try Certification Study Guide.
Emereo Pty Ltd, London, UK, UK, 2010. 4.1.2.2

[Max13] MaxMind. IP Geolocation and Online Fraud Prevention, 2013. URL: https:
//www.maxmind.com/. 5.3.1.2

[MK01a] Luiz Magalhaes and Robin Kravets. Transport level mechanisms for bandwidth
aggregation on mobile hosts. In Network Protocols, 2001. Ninth International
Conference on, pages 165–171. IEEE, 2001. 3.1

[MK01b] Luiz Magalhaes and Robin Kravets. Transport Level Mechanisms for Band-
width Aggregation on Mobile Hosts. In Proceedings of the Ninth International
Conference on Network Protocols, pages 165–171. IEEE Computer Society,
2001. 3.2

[MLE+99] Louis Mamakos, Kurt Lidl, Jeff Evarts, David Carrel, Dan Simone, and
Ross Wheeler. A Method for Transmitting PPP Over Ethernet (PPPoE).
Informational RFC 2516, IETF, February 1999. ISSN 2070-1721. URL:
https://www.ietf.org/rfc/rfc2516.txt. 2.2.1

[MMD91] Ravi Mazumdar, Lorne G. Mason, and Christos Douligeris. Fairness in Net-
work Optimal Flow Control: Optimality of Product Forms. IEEE Transactions
on Communications, 39:775–982, May 1991. ISSN 0090-6778. URL: http://
ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=87140&isnumber=, doi:10.

1109/26.87140. 3.2.2

[MMFR96] Matt Mathis, Jamshid Mahdavi, Sally Floyd, and Allyn Romanow. TCP Se-
lective Acknowledgment Options. Standards Track RFC 2018, IETF, Octo-
ber 1996. ISSN 2070-1721. URL: https://www.ietf.org/rfc/rfc2018.txt. 2.2.3,
5.1.1.1

[MN06] Robert Moskowitz and Pekka Nikander. Host Identity Protocol (HIP) Archi-
tecture. Informational RFC 4423, IETF, May 2006. ISSN 2070-1721. URL:
https://www.ietf.org/rfc/rfc4423.txt. 3.1.2, 3.2

[MSM97] Matt Mathis, J. Semke, and Jamshid Mahdavi. The Macroscopic Be-
havior of the TCP Congestion Avoidance Algorithm. ACM SIGCOMM
Computer Communication Review, 27(3):67–82, July 1997. ISSN 0146-
4833. URL: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.25.
3452&rep=rep1&type=pdf, doi:10.1145/263932.264023. 7.1.1

[Nag84] John Nagle. Congestion Control in IP/TCP Internetworks. Informational RFC
896, IETF, January 1984. ISSN 2070-1721. URL: https://www.ietf.org/rfc/
rfc896.txt. 7.1.3.2

[NB09] Erik Nordmark and Marcelo Bagnulo. Shim6: Level 3 Multihoming Shim
Protocol for IPv6. Standards Track RFC 5533, IETF, June 2009. ISSN 2070-
1721. URL: https://www.ietf.org/rfc/rfc5533.txt. 3.1.2, 3.2

[NEY+08] Preethi Natarajan, Nasif Ekiz, Ertuğrul Yilmaz, Paul D. Amer, and Janard-
han R. Iyengar. Non-Renegable Selective Acknowledgments (NR-SACKs) for

https://www.maxmind.com/
https://www.maxmind.com/
https://www.ietf.org/rfc/rfc2516.txt
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=87140&isnumber=
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=87140&isnumber=
http://dx.doi.org/10.1109/26.87140
http://dx.doi.org/10.1109/26.87140
https://www.ietf.org/rfc/rfc2018.txt
https://www.ietf.org/rfc/rfc4423.txt
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.25.3452&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.25.3452&rep=rep1&type=pdf
http://dx.doi.org/10.1145/263932.264023
https://www.ietf.org/rfc/rfc896.txt
https://www.ietf.org/rfc/rfc896.txt
https://www.ietf.org/rfc/rfc5533.txt

BIBLIOGRAPHY 199

SCTP. In Proceedings of the 16th IEEE International Conference on Network
Protocols (ICNP), pages 187–196, Orlando, Florida/U.S.A., October 2008.
ISBN 978-1-4244-2506-8. URL: http://www.eecis.udel.edu/∼amer/PEL/poc/
pdf/ICNP2008-natarajanNonRenegableSacks.pdf, doi:10.1109/ICNP.2008.

4697037. 5.3.2, 7.1.3.3, 7.3.2

[NUO+07] Kenichi Nagami, Satoshi Uda, Nobuo Ogashiwa, Hiroshi Esaki, Ryuji
Wakikawa, and Hiroyuki Ohnishi. Multi-homing for small scale fixed network
Using Mobile IP and NEMO. Technical Report 4908, IETF, June 2007. URL:
http://www.ietf.org/rfc/rfc4908.txt. 3.1.1

[NZNP11] Sinh Chung Nguyen, Xiaofei Zhang, Thi-Mai-Trang Nguyen, and G. Pujolle.
Evaluation of throughput optimization and load sharing of multipath tcp in
heterogeneous networks. In Wireless and Optical Communications Networks
(WOCN), 2011 Eighth International Conference on, pages 1–5, May 2011.
doi:10.1109/WOCN.2011.5872966. 7.1.3

[Ond13] Ondrej Caletka. Automatic configuration on Gentoo, 2013. URL: https://gist.
github.com/oskar456/7264828. 5.1.2.1

[PA00] Vern Paxson and Mark Allman. Computing TCP’s Retransmission Timer.
Standards Track RFC 2988, IETF, November 2000. ISSN 2070-1721. URL:
https://www.ietf.org/rfc/rfc2988.txt. 5.1.2.1

[PACS11] Vern Paxson, Mark Allman, H.K. Jerry Chu, and Matt Sargent. Computing
TCP’s Retransmission Timer. RFC 6298, IETF, June 2011. ISSN 2070-1721.
URL: http://www.ietf.org/rfc/rfc6298.txt. 2.2.3, 2.2.3, 4.1.2.1, 5.1.1.1, 5.1.2.1,
5.1.2.2

[PEK11] Christopher Pluntke, Lars Eggert, and Niko Kiukkonen. Saving Mo-
bile Device Energy with Multipath TCP. In Proceedings of the 6th
ACM International Workshop on MobiArch, pages 1–6, Bethesda, Mary-
land/U.S.A., June 2011. ISBN 978-1-4503-0740-6. URL: http://eggert.
org/papers/2011-mobiarch-mptcp-saving-energy.pdf, doi:10.1145/1999916.
1999918. 5.1.2.1

[PFTK98] Jitendra Padhye, Victor Firoiu, Don Towsley, and Jim Kurose. Model-
ing TCP Throughput: A Simple Model and Its Empirical Validation. In
Proceedings of the ACM SIGCOMM ’98 Conference on Applications, Tech-
nologies, Architectures, and Protocols for Computer Communication, SIG-
COMM 1998, pages 303–314, New York, NY, USA, 1998. ACM. URL: http:
//doi.acm.org/10.1145/285237.285291, doi:10.1145/285237.285291. 7.1.1

[Pos80a] Jon Postel. DoD standard Internet Protocol. Technical Report 760, IETF,
January 1980. Obsoleted by RFC 791, updated by RFC 777. URL: http:
//www.ietf.org/rfc/rfc760.txt. 2.1

[Pos80b] Jonathan Bruce Postel. User Datagram Protocol. Standards Track RFC 768,
IETF, August 1980. ISSN 2070-1721. URL: https://www.ietf.org/rfc/rfc768.
txt. 2.1

http://www.eecis.udel.edu/~amer/PEL/poc/pdf/ICNP2008-natarajanNonRenegableSacks.pdf
http://www.eecis.udel.edu/~amer/PEL/poc/pdf/ICNP2008-natarajanNonRenegableSacks.pdf
http://dx.doi.org/10.1109/ICNP.2008.4697037
http://dx.doi.org/10.1109/ICNP.2008.4697037
http://www.ietf.org/rfc/rfc4908.txt
http://dx.doi.org/10.1109/WOCN.2011.5872966
https://gist.github.com/oskar456/7264828
https://gist.github.com/oskar456/7264828
https://www.ietf.org/rfc/rfc2988.txt
http://www.ietf.org/rfc/rfc6298.txt
http://eggert.org/papers/2011-mobiarch-mptcp-saving-energy.pdf
http://eggert.org/papers/2011-mobiarch-mptcp-saving-energy.pdf
http://dx.doi.org/10.1145/1999916.1999918
http://dx.doi.org/10.1145/1999916.1999918
http://doi.acm.org/10.1145/285237.285291
http://doi.acm.org/10.1145/285237.285291
http://dx.doi.org/10.1145/285237.285291
http://www.ietf.org/rfc/rfc760.txt
http://www.ietf.org/rfc/rfc760.txt
https://www.ietf.org/rfc/rfc768.txt
https://www.ietf.org/rfc/rfc768.txt

200 BIBLIOGRAPHY

[Pos81a] Jonathan Bruce Postel. Internet Protocol. Standards Track RFC 791, IETF,
September 1981. ISSN 2070-1721. URL: https://www.ietf.org/rfc/rfc791.txt.
1, 5.1.2

[Pos81b] Jonathan Bruce Postel. Transmission Control Protocol. Standards Track RFC
793, IETF, September 1981. ISSN 2070-1721. URL: https://www.ietf.org/rfc/
rfc793.txt. 1, 2.1, 2.2, 2.2.1, 2.2.4, 5.1.1.1, 5.1.1.1, 7.2.1

[PR85] Jonathan Bruce Postel and Joyce K. Reynolds. File Transfer Protocol (FTP).
Standards Track RFC 959, IETF, October 1985. ISSN 2070-1721. URL: https:
//www.ietf.org/rfc/rfc959.txt. 2

[R D12] R Development Core Team. R: A Language and Environment for Statistical
Computing. Vienna/Austria, July 2012. URL: http://cran.r-project.org/doc/
manuals/refman.pdf. 4.1.3.1

[Ram12] Ramin Khalili and Nicolas Gast and Miroslav Popovic and Utkarsh Upadhyay
and Jean-Yves Le Boudec. MPTCP is not Pareto-Optimal: Performance Issues
and a Possible Solution. In Proceedings of the 8th International Conference on
Emerging Networking Experiments and Technologies (CoNEXT), pages 1–12,
Nice/France, December 2012. URL: http://conferences.sigcomm.org/co-next/
2012/eproceedings/conext/p1.pdf. 3.2.2.2, 6, 6.2, 6.2.3, 6.2.3

[RBP+11] Costin Raiciu, Sébastien Barré, Christopher Pluntke, Adam Greenhalgh, Da-
mon Wischik, and Mark Handley. Improving Datacenter Performance and
Robustness with Multipath TCP. In Proceedings of the ACM SIGCOMM,
Toronto/Canada, August 2011. URL: http://inl.info.ucl.ac.be/system/files/
mptcp-sigcomm.pdf. 5, 5.1.2.1

[RDB+10] Thomas Reschka, Thomas Dreibholz, Martin Becke, Jobin Pulinthanath,
and Erwin Paul Rathgeb. Enhancement of the TCP Module in the OM-
NeT++/INET Framework. In Proceedings of the 3rd ACM/ICST Interna-
tional Workshop on OMNeT++, Torremolinos, Málaga/Spain, March 2010.
ISBN 978-963-9799-87-5. URL: https://www.wiwi.uni-due.de/fileadmin/
fileupload/I-TDR/SCTP/Paper/OMNeT Workshop2010-TCP.pdf. 4.1.2.1

[RHW11] Costin Raiciu, Mark Handley, and Damon Wischik. Coupled Congestion Con-
trol for Multipath Transport Protocols. Informational RFC 6356, IETF, Octo-
ber 2011. ISSN 2070-1721. URL: http://www.ietf.org/rfc/rfc6356.txt. 5.1.1.1,
6.1, 6.1.2.1, 6.2

[RIP13] RIPE CC. RIPE Network Coordination Centre, 2013. URL: http://www.ripe.
net/. 5.3.1.2

[RKT02] Dan Rubenstein, Jim Kurose, and Don Towsley. Detecting Shared Congestion
of Flows via End-to-End Measurement. IEEE/ACM Transactions on Network-
ing, 10(3):381–395, June 2002. ISSN 1063-6692. URL: https://citeseer.ist.
psu.edu/viewdoc/download?doi=10.1.1.131.6332&rep=rep1&type=pdf, doi:

10.1109/TNET.2002.1012369. 3.2.2.1

https://www.ietf.org/rfc/rfc791.txt
https://www.ietf.org/rfc/rfc793.txt
https://www.ietf.org/rfc/rfc793.txt
https://www.ietf.org/rfc/rfc959.txt
https://www.ietf.org/rfc/rfc959.txt
http://cran.r-project.org/doc/manuals/refman.pdf
http://cran.r-project.org/doc/manuals/refman.pdf
http://conferences.sigcomm.org/co-next/2012/eproceedings/conext/p1.pdf
http://conferences.sigcomm.org/co-next/2012/eproceedings/conext/p1.pdf
http://inl.info.ucl.ac.be/system/files/mptcp-sigcomm.pdf
http://inl.info.ucl.ac.be/system/files/mptcp-sigcomm.pdf
https://www.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/SCTP/Paper/OMNeT__Workshop2010-TCP.pdf
https://www.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/SCTP/Paper/OMNeT__Workshop2010-TCP.pdf
http://www.ietf.org/rfc/rfc6356.txt
http://www.ripe.net/
http://www.ripe.net/
https://citeseer.ist.psu.edu/viewdoc/download?doi=10.1.1.131.6332&rep=rep1&type=pdf
https://citeseer.ist.psu.edu/viewdoc/download?doi=10.1.1.131.6332&rep=rep1&type=pdf
http://dx.doi.org/10.1109/TNET.2002.1012369
http://dx.doi.org/10.1109/TNET.2002.1012369

BIBLIOGRAPHY 201

[RPB+10] Costin Raiciu, Christopher Pluntke, Sébastien Barré, Adam Greenhalgh, Da-
mon Wischik, and Mark Handley. Data Center Networking with Multipath
TCP. In Proceedings of the 9th ACM SIGCOMM Workshop on Hot Topics in
Networks, pages 1–6, Monterey, California/U.S.A., October 2010. ISBN 978-
1-4503-0409-2. URL: http://www.cs.ucl.ac.uk/staff/C.Raiciu/files/mptcp dc.
pdf, doi:10.1145/1868447.1868457. 1.2

[RPB+12] Costin Raiciu, Christoph Paasch, Sébastien Barré, Alan Ford, Michio Honda,
Fabien Duchêne, Olivier Bonaventure, and Mark Handley. How Hard Can It
Be? Designing and Implementing a Deployable Multipath TCP. In Proceedings
of the 9th USENIX conference on Networked Systems Design and Implemen-
tation (NSDI), 2012. URL: https://www.usenix.org/system/files/conference/
nsdi12/nsdi12-final125.pdf. 4.1.2.2, 5, 7.1, 7.1.2, 7.1.3, 7.1.3.1, 7.1.3.3, 7.3.2,
7.3.3, 7.3.3, 7.3.3.1

[RTR08] Irene Rüngeler, Michael Tüxen, and Erwin Paul Rathgeb. Integra-
tion of SCTP in the OMNeT++ Simulation Environment. In Proceed-
ings of the 1st ACM/ICST International Workshop on OMNeT++, Mar-
seille, Bouches-du-Rhône/France, March 2008. ISBN 978-963-9799-20-
2. URL: http://dl.acm.org/ft gateway.cfm?id=1416310&type=pdf, doi:10.

4108/ICST.SIMUTOOLS2008.3027. 4.1.2.3

[Rün09] Irene Rüngeler. SCTP – Evaluating, Improving and Extending the Protocol
for Broader Deployment. PhD thesis, University of Duisburg-Essen, Fac-
ulty of Economics, Institute for Computer Science and Business Informa-
tion Systems, December 2009. URL: http://duepublico.uni-duisburg-essen.
de/servlets/DerivateServlet/Derivate-23465/DissPDF.pdf. 7.1.1

[RWH09] Costin Raiciu, Damon Wischik, and Mark Handley. Practical Congestion
Control for Multipath Transport Protocols. Technical report, University Col-
lege London, London/United Kingdom, 2009. URL: http://nrg.cs.ucl.ac.uk/
mptcp/mptcp-techreport.pdf. 3.2.2.2, 3.3, 5.3.2, 6, 6.2, 6.2.2, 6.2.2

[SBB10] Samar Shailendra, Ratnajit Bhattacharjee, and Sanjay K. Bose. Optimized
Flow Division Modeling for Multi-Path Transport. In Proceedings of the
IEEE International Conference on Communication Systems (ICCS), pages
1–4, Kolkata/India, November 2010. ISBN 978-1-4244-9072-1. URL: http:
//ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5686169&isnumber=, doi:
10.1109/INDCON.2010.5712713. 7.3.2

[SBJR13] Irfan Simsek, Martin Becke, Yves.I. Jerschow, and Erwin. P. Rathgeb. A clean-
slate security vision for future networks: Simultaneously ensuring information
security and establishing smart in-network services using the example of blind
packet forwarding. In Network of the Future (NOF), 2013 Fourth International
Conference on the, pages 1–5, Oct 2013. doi:10.1109/NOF.2013.6724501.
8.1.2

[SBL+13] Golam Sarwar, Roksana Boreli, Emmanuel Lochin, Ahlem Mifdaoui, and Guil-
laume Smith. Mitigating receiver’s buffer blocking by delay aware packet

http://www.cs.ucl.ac.uk/staff/C.Raiciu/files/mptcp_dc.pdf
http://www.cs.ucl.ac.uk/staff/C.Raiciu/files/mptcp_dc.pdf
http://dx.doi.org/10.1145/1868447.1868457
https://www.usenix.org/system/files/conference/nsdi12/nsdi12-final125.pdf
https://www.usenix.org/system/files/conference/nsdi12/nsdi12-final125.pdf
http://dl.acm.org/ft_gateway.cfm?id=1416310&type=pdf
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2008.3027
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2008.3027
http://duepublico.uni-duisburg-essen.de/servlets/DerivateServlet/Derivate-23465/DissPDF.pdf
http://duepublico.uni-duisburg-essen.de/servlets/DerivateServlet/Derivate-23465/DissPDF.pdf
http://nrg.cs.ucl.ac.uk/mptcp/mptcp-techreport.pdf
http://nrg.cs.ucl.ac.uk/mptcp/mptcp-techreport.pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5686169&isnumber=
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5686169&isnumber=
http://dx.doi.org/10.1109/INDCON.2010.5712713
http://dx.doi.org/10.1109/INDCON.2010.5712713
http://dx.doi.org/10.1109/NOF.2013.6724501

202 BIBLIOGRAPHY

scheduling in multipath data transfer. In Advanced Information Networking
and Applications Workshops (WAINA), 2013 27th International Conference
on, pages 1119–1124, March 2013. doi:10.1109/WAINA.2013.80. 7.1.3.1,
7.3.2

[Seg12] Robin Seggelmann. SCTP: strategies to secure end-to-end communication.
PhD thesis, University of Duisburg-Essen, Faculty of Economics, Institute
for Computer Science and Business Information Systems, Duisburg, Es-
sen, 2012. Duisburg, Essen, Univ., Diss., 2012. URL: http://duepublico.
uni-duisburg-essen.de/servlets/DocumentServlet?id=29603. 2.2, 4.1, 4.1.2.1

[SF13] Michael Scharf and Alan Ford. Multipath TCP (MPTCP) Application In-
terface Considerations. Informational RFC 6897, IETF, March 2013. ISSN
2070-1721. URL: https://www.ietf.org/rfc/rfc6897.txt. 5.1.1.1

[SFR03] W. Richard Stevens, Bill Fenner, and Andrew M. Rudoff. Unix Network Pro-
gramming. Addison-Wesley Professional, 2003. ISBN 0-131-41155-1. 2.3.3,
2

[SGTG+12] Amanpreet Singh, Carmelita Goerg, Andreas Timm-Giel, Michael Scharf, and
Thomas-Rolf Banniza. Performance comparison of scheduling algorithms for
multipath transfer. In Global Communications Conference (GLOBECOM),
2012 IEEE, pages 2653–2658, Dec 2012. doi:10.1109/GLOCOM.2012.6503517.
5, 7, 7.1.1, 7.1.3, 7.1.3.1, 7.2.3, 7.3.2, 7.4, 7.5.2.1

[Sim94] William Allen Simpson. The Point-to-Point Protocol (PPP). Standards Track
RFC 1661, IETF, July 1994. ISSN 2070-1721. URL: https://www.ietf.org/
rfc/rfc1661.txt. 3.1.2

[SLM+96] Keith Sklower, Brian Lloyd, Glenn McGregor, Dave Carr, and Tom Coradetti.
The PPP Multilink Protocol (MP). Technical Report 1990, IETF, August
1996. URL: http://www.ietf.org/rfc/rfc1990.txt. 3.1.2

[SM11] M. Subramaniam and D. Manjula. Effective Transport using Concurrent Mul-
tipath Transfer by Redundant Transmission during Path Failure. European
Journal of Scientific Research, 58(2):247–256, August 2011. ISSN 1450-216X.
7

[Ste97] W. Richard Stevens. TCP Slow Start, Congestion Avoidance, Fast Retransmit,
and Fast Recovery Algorithms. Standards Track RFC 2001, IETF, January
1997. ISSN 2070-1721. URL: https://www.ietf.org/rfc/rfc2001.txt. 5.1.1.1

[Ste07] Randall R. Stewart. Stream Control Transmission Protocol. Standards Track
RFC 4960, IETF, September 2007. ISSN 2070-1721. URL: https://www.ietf.
org/rfc/rfc4960.txt. 1, 2.1, 2.2, 2.2.1, 2.2.2, 2.2.2, 2.2.2, 2.2.4, 2.2.4.1, 3.1, 3.2,
3.2.3.2, 5, 5.1.1.1, 5.1.1.1, 5.1.1.3, 5.1.2.2, 5.2.1, 7.2.1, 7.3.1, 8.1.2

[STR10] Robin Seggelmann, Michael Tüxen, and Erwin Paul Rathgeb. Stream
Scheduling Considerations for SCTP. In Proceedings of the 18th IEEE

http://dx.doi.org/10.1109/WAINA.2013.80
http://duepublico.uni-duisburg-essen.de/servlets/DocumentServlet?id=29603
http://duepublico.uni-duisburg-essen.de/servlets/DocumentServlet?id=29603
https://www.ietf.org/rfc/rfc6897.txt
http://dx.doi.org/10.1109/GLOCOM.2012.6503517
https://www.ietf.org/rfc/rfc1661.txt
https://www.ietf.org/rfc/rfc1661.txt
http://www.ietf.org/rfc/rfc1990.txt
https://www.ietf.org/rfc/rfc2001.txt
https://www.ietf.org/rfc/rfc4960.txt
https://www.ietf.org/rfc/rfc4960.txt

BIBLIOGRAPHY 203

International Conference on Software, Telecommunications and Com-
puter Networks (SoftCOM), September 2010. ISBN 978-953-290-004-
0. URL: http://ieeexplore.ieee.org/iel5/5611454/5623609/05623661.pdf?
arnumber=5623661&isnumber=. 7.2.2.2

[SXM+00] Randall R. Stewart, Qiaobing Xie, Ken Morneault, Chip Sharp, Hanns Jürgen
Schwarzbauer, Tom Taylor, Ian Rytina, Malleswar Kalla, Lixia Zhang, and
Vern Paxson. Stream Control Transmission Protocol. Standards Track RFC
2960, IETF, October 2000. ISSN 2070-1721. URL: https://www.ietf.org/rfc/
rfc2960.txt. 2.1, 5.1.1.1

[SXT+07] Randall R. Stewart, Qiaobing Xie, Michael Tüxen, Shin Maruyama, and
Masahiro Kozuka. Stream Control Transmission Protocol (SCTP) Dynamic
Address Reconfiguration. Standards Track RFC 5061, IETF, September 2007.
ISSN 2070-1721. URL: https://www.ietf.org/rfc/rfc5061.txt. 2.2.1, 5

[Tan96] Andrew S. Tanenbaum. Computer Networks. Prentice Hall, Upper Saddle
River, New Jersey/U.S.A., 1996. ISBN 0-13-349945-6. 2

[TH04] Aristotelis Tsirigos and Zygmunt J Haas. Analysis of multipath routing-part
i: The effect on the packet delivery ratio. Wireless Communications, IEEE
Transactions on, 3(1):138–146, 2004. 3.1.2

[TRR08] Michael Tüxen, Irene Rüngeler, and Erwin Paul Rathgeb. Interface Con-
necting the INET Simulation Framework with the Real World. In Pro-
ceedings of the 1st International Conference on Simulation Tools and Tech-
niques for Communications, Networks and Systems (SIMUTools), pages 1–
6, Marseille, Bouches-du-Rhône/France, March 2008. ISBN 978-963-9799-
20-2. URL: http://dl.acm.org/ft gateway.cfm?id=1416267&type=pdf, doi:

10.1145/1416222.1416267. 4.1

[Var05] András Varga. OMNeT++ Discrete Event Simulation System User
Manual – Version 3.2. Technical University of Budapest/Hungary,
March 2005. URL: http://www2.ensc.sfu.ca/∼ljilja/ENSC835/Spring08/
News/Presentations/OMNeT++/usman.pdf. 4.1.1

[Var11] András Varga. INET Framework for OMNeT++, 2011. URL: http://inet.
omnetpp.org/. 4.1, 4.1.2

[Var12] András Varga. OMNeT++ Discrete Event Simulation System User Manual –
Version 4.2, December 2012. URL: http://www.omnetpp.org/doc/omnetpp/
Manual.pdf. 4.1

[VBOMT13a] Thomas Volkert, Martin Becke, Manuel Osdoba, and Andreas Mitschele-
Thiel. Multipath Video Streaming based on Hierarchical Routing Man-
agement. In Proceedings of the 3nd International Workshop on Proto-
cols and Applications with Multi-Homing Support (PAMS), pages 1107–1112,
Barcelona, Catalonia/Spain, March 2013. ISBN 978-0-7695-4952-1. URL: http:
//www.homer-conferencing.com/public/MP HRM.pdf, doi:10.1109/WAINA.
2013.161. 5, 7.1.3

http://ieeexplore.ieee.org/iel5/5611454/5623609/05623661.pdf?arnumber=5623661&isnumber=
http://ieeexplore.ieee.org/iel5/5611454/5623609/05623661.pdf?arnumber=5623661&isnumber=
https://www.ietf.org/rfc/rfc2960.txt
https://www.ietf.org/rfc/rfc2960.txt
https://www.ietf.org/rfc/rfc5061.txt
http://dl.acm.org/ft_gateway.cfm?id=1416267&type=pdf
http://dx.doi.org/10.1145/1416222.1416267
http://dx.doi.org/10.1145/1416222.1416267
http://www2.ensc.sfu.ca/~ljilja/ENSC835/Spring08/News/Presentations/OMNeT++/usman.pdf
http://www2.ensc.sfu.ca/~ljilja/ENSC835/Spring08/News/Presentations/OMNeT++/usman.pdf
http://inet.omnetpp.org/
http://inet.omnetpp.org/
http://www.omnetpp.org/doc/omnetpp/Manual.pdf
http://www.omnetpp.org/doc/omnetpp/Manual.pdf
http://www.homer-conferencing.com/public/MP_HRM.pdf
http://www.homer-conferencing.com/public/MP_HRM.pdf
http://dx.doi.org/10.1109/WAINA.2013.161
http://dx.doi.org/10.1109/WAINA.2013.161

204 BIBLIOGRAPHY

[VBOMT13b] Thomas Volkert, Martin Becke, Manuel Osdoba, and Andreas Mitschele-Thiel.
Multipath video streaming based on hierarchical routing management. In Pro-
ceedings of 27th IEEE International Conference on Advanced Information Net-
working and Applications (AINA), pp. 1107 – 1112, Barcelona, Spain, 03 2013.
8.1.2

[VMT12] Thomas Volkert and Andreas Mitschele-Thiel. Hierarchical routing manage-
ment for improving multimedia transmissions and qoe. In Proceedings of 13th
International Symposium on a World of Wireless, Mobile and Multimedia Net-
works (WoWMoM), San Francisco, California, USA, 06 2012. 8.1.2

[Wel05] Michael Welzl. Network Congestion Control: Managing Internet Traffic. John
Wiley & Sons, Chichester, West Sussex/United Kingdom, 2005. ISBN 978-0-
470-02528-4. 2.2.4, 2.2.4.1, 3.2.2, 6.3.1.1

[Wel13] Michael Welzl. Potential Applications of Shared Bottleneck Detection. In Pro-
ceedings of the 1st International NorNet Users Workshop (NNUW-1), Fornebu,
Akershus/Norway, September 2013. URL: https://simula.no/publications/
Simula.simula.2132/simula pdf file. 3.2.2.1

[WHB08] Damon Wischik, Mark Handley, and Marcelo Bagnulo Braun. The Re-
source Pooling Principle. ACM SIGCOMM Computer Communication Re-
view, 38(5):47–52, October 2008. ISSN 0146-4833. URL: https://citeseerx.ist.
psu.edu/viewdoc/download?doi=10.1.1.161.8858&rep=rep1&type=pdf, doi:

10.1145/1452335.1452342. 1.1, 1.2, 3.2, 3.1, 3.2.2.2, 6.1.2.1, 6.1, A.4

[WRGH11] Damon Wischik, Costin Raiciu, Adam Greenhalgh, and Mark Handley. De-
sign, implementation and evaluation of congestion control for multipath tcp. In
Proceedings of the 8th USENIX Conference on Networked Systems Design and
Implementation, NSDI’11, pages 8–8, Berkeley, CA, USA, 2011. USENIX As-
sociation. URL: http://dl.acm.org/citation.cfm?id=1972457.1972468. 6.1.3.1

[WS95] Gary R. Wright and W. Richard Stevens. TCP/IP Illustrated, Volume 2: The
Implementation. Addison-Wesley Professional, 1995. ISBN 978-0201633542.
5.1.1.1

[YA13] Fan Yang and P. Amer. Non-renegable selective acknowledgments (nr-sacks)
for mptcp. In Advanced Information Networking and Applications Workshops
(WAINA), 2013 27th International Conference on, pages 1113–1118, March
2013. doi:10.1109/WAINA.2013.59. 7.1.3.3, 7.3.2

[YAE13] Fan Yang, P. Amer, and N. Ekiz. A scheduler for multipath tcp. In Computer
Communications and Networks (ICCCN), 2013 22nd International Conference
on, pages 1–7, July 2013. doi:10.1109/ICCCN.2013.6614091. 7.2.1

[YWY08a] Muhammad Murtaza Yousaf, Michael Welzl, and Bülent Yener. Ac-
curate Shared Bottleneck Detection Based On SVD and Outliers De-
tection. Technical Report NSG-DPS-UIBK-01, University of Inns-
bruck, Institute of Computer Science, Innsbruck, Tirol/Austria, August
2008. URL: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.140.
3147&rep=rep1&type=pdf. 3.2.2.1

https://simula.no/publications/Simula.simula.2132/simula_pdf_file
https://simula.no/publications/Simula.simula.2132/simula_pdf_file
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.161.8858&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.161.8858&rep=rep1&type=pdf
http://dx.doi.org/10.1145/1452335.1452342
http://dx.doi.org/10.1145/1452335.1452342
http://dl.acm.org/citation.cfm?id=1972457.1972468
http://dx.doi.org/10.1109/WAINA.2013.59
http://dx.doi.org/10.1109/ICCCN.2013.6614091
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.140.3147&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.140.3147&rep=rep1&type=pdf

BIBLIOGRAPHY 205

[YWY08b] Muhammad Murtaza Yousaf, Michael Welzl, and Bülent Yener. On the Ac-
curate Identification of Network Paths having a Common Bottleneck. In Pro-
ceedings of the ACM SIGCOMM, Seattle, Washington/U.S.A., August 2008.
Poster Presentation. URL: https://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.140.1874&rep=rep1&type=pdf. 3.2.2.1

[ZDB+10] Xing Zhou, Thomas Dreibholz, Martin Becke, Jobin Pulinthanath, Erwin Paul
Rathgeb, and Wencai Du. The Software Modeling and Implementation of Re-
liable Server Pooling and RSPLIB. In Proceedings of the 8th ACIS Conference
on Software Engineering Research, Management and Applications (SERA),
pages 129–136, Montréal, Québec/Canada, May 2010. ISBN 978-0-7695-
4075-7. URL: https://www.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/
ReliableServer/Publications/SERA2010.pdf, doi:10.1109/SERA.2010.26.
4.1.2.4

[ZLK+04] Ming Zhang, Junwen Lai, Arvind Krishnamurthy, Larry Peterson, and Ran-
dolph Wang. A Transport Layer Approach for Improving End-to-end Perfor-
mance and Robustness Using Redundant Paths. In Proceedings of the Annual
Conference on USENIX Annual Technical Conference, pages 8–8, Berkeley,
CA, USA, 2004. USENIX Association. URL: http://dl.acm.org/citation.cfm?
id=1247415.1247423. 3.2

[ZMD+09] Tanja Zseby, Maurizio Molina, Nick Duffield, Saverio Niccolini, and Frederic
Raspall. Sampling and Filtering Techniques for IP Packet Selection. Technical
Report 5475, IETF, March 2009. URL: http://www.ietf.org/rfc/rfc5475.txt.
2.3.1

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.140.1874&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.140.1874&rep=rep1&type=pdf
https://www.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/ReliableServer/Publications/SERA2010.pdf
https://www.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/ReliableServer/Publications/SERA2010.pdf
http://dx.doi.org/10.1109/SERA.2010.26
http://dl.acm.org/citation.cfm?id=1247415.1247423
http://dl.acm.org/citation.cfm?id=1247415.1247423
http://www.ietf.org/rfc/rfc5475.txt

206 BIBLIOGRAPHY

Curriculum Vitae

Der Lebenslauf ist in der Online-Version aus Gründen des Datenschutzes nicht enthalten.

207

	Abstract
	Acknowledgements
	Contents
	Glossary
	Introduction
	Motivation
	Goals of this thesis
	Organization of this work

	Basics
	Transport protocols in the context of the IETF
	Introduction to TCP and SCTP
	Services of transport protocols in the Internet
	Connection management
	Reliable and ordered transfer
	Congestion and flow control
	New Reno

	Special network components and relevant aspects
	Issues with middleboxes
	Queueing discipline
	Socket concept

	Basic function set of load sharing for TCP and SCTP
	Concurrent multipath transfer and load sharing
	Goals
	Alternative approaches in the context of the IETF

	Multipath transfer for TCP and SCTP
	Definition of multi-homing, multipath and flow
	TCP-friendliness
	Shared bottleneck scenario
	Resource Pooling principle

	Impact on the transport protocols
	Impact on connection management
	Impact on reliable and ordered transfer
	Impact on flow control
	Implementation dependent options

	Conclusion

	Testbeds and tools
	Simulation model
	OMNeT++
	INET framework
	Enhancement of the INET TCP model
	MPTCP
	Enhancement of the INET SCTP model
	Enhancement of other models

	SimProcTC
	Basic scenario setup
	Baseline experiment

	Real world testbed setup

	Revisiting path management
	Path management
	Constraints
	General
	MPTCP
	CMT-SCTP
	Conclusion

	Network layer
	Routing and MPTCP
	Routing and CMT-SCTP
	Conclusion

	Path management scenarios
	Basic scenario 1: One multi-homed host
	Basic scenario 2: Two multi-homed hosts
	Specific scenarios
	Asymmetric load sharing scenarios
	Poor man’s multi-homing

	Conclusion

	Behavior in a real Internet setup
	Global multipath testbed
	The endpoint and access link setup
	Analysis of the Internet environment

	Valuation of the Internet throughput
	Analysis of the protocol behavior in the Internet

	Conclusion

	Revisiting fairness
	Multipath fairness goals
	Perspectives on multipath fairness goals
	Revisiting the IETF multipath fairness goals
	Impact of the IETF multipath fairness goals

	Revisiting fair resource allocation
	Revisiting the Resource Pooling idea
	Conclusion

	Variants of coupled congestion controls
	Resource Pooling Multipath version 2 (RP-MPv2)
	Linked Increases Algorithm (LIA)
	Opportunistic Linked Increases Algorithm (OLIA)
	Resume of coupled congestion controls

	Evaluation of coupled congestion controls
	Scenario 1: Singlepath
	Simple singlepath model and theoretical discussion
	Evaluation of the singlepath scenario

	Scenario 2: Shared bottleneck
	Shared bottleneck model and theoretical discussion
	Evaluation of the shared bottleneck scenario
	Comparable conditions for a fair sharing

	Scenario 3: Half bottleneck with single- and multipath flow
	Half bottleneck model and theoretical discussion
	Evaluation of half bottleneck with singlepath flow
	Evaluation of half bottleneck with multipath flows

	Conclusion

	Revisiting scheduling
	The multipath scheduler
	Goals of scheduling
	Scheduler setup
	Challenges for a multipath scheduler
	Information gaps
	Interaction with protocol mechanisms
	Sender side buffer blocking
	Receiver side buffer blocking

	Architectural aspects
	General scheduling decisions
	Scheduling subflow to path
	MPTCP
	CMT-SCTP

	Location of the scheduling process

	Multipath scheduler process chain
	Adaptation to network conditions
	Mechanisms to avoid buffer blocking
	Analysis of deployed multipath schedulers
	MPTCP
	CMT-SCTP

	Conclusion

	Optimized scheduling variant for CMT-SCTP
	Optimized scheduling variant for MPTCP
	Idea behind the confluent sequence numbers approach
	Confluent sequence numbers (ConSN)
	Example for two subflows
	Simulation

	Other side effects with RED queues
	Conclusion

	Consequences for the future
	Results relevant for the standardization process
	Short term
	Path management
	Fairness
	Scheduling

	Mid term

	Long term (Future Internet)

	Conclusion and outlook
	Achieved results
	Future work

	Appendix
	Evaluation of the singlepath scenario
	Evaluation of the shared bottleneck scenario
	Capacity share
	Delay
	Error rate

	Comparable conditions for a fair sharing
	Evaluation of half bottleneck with multipath flows

	List of Figures
	List of Tables
	Bibliography
	Curriculum Vitae

