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Abstract      i 

Abstract	

The development of distributed systems, parallel computation technology, and 

Peer-to-Peer systems facilitates the realization of a distributed interactive world model. 

Thereby, we can implement a worldwide distributed simulation and virtual 

community, e.g., city traffic simulation and Massively Multiuser Virtual 

Environments (MMVE). 

In this thesis, we present Content-Addressable Network for Simulations (CANS), 

which is based on CAN. Thus, it incorporates all the advantages of CAN, such as 

self-organization, scalability, and fault-tolerance. The peers in CANS carry out the 

simulation for the zone assigned to them, and the zones are allocated in such a way 

that there is as little communication between the peers as possible. We propose two 

approaches for reorganizing zone-assignments after peers churn. These approaches 

are based on the distributed tree structure and prefix code. In comparison to existing 

approaches, our proposed approaches are more efficient and reliable. 

Since CANS is used to simulate “city traffic” and MMVE, it requires a 

low-dimensional key space, i.e., a two-dimensional or three-dimensional key space. 

Thus, we propose CAN tree routing and zone code routing, both of which adopt long 

links. CAN tree routing has a hierarchical design that is based on the CAN tree. Each 

peer equips two long links on average. Zone code routing is based on B*-tree. Each 

peer equips n2log  long links and shares the load evenly. Both of these routing 

solutions achieve ( )nO log  routing hops on average. 

Consequently, the existing CAN can be optimized to perform simulations efficiently 

and reliably. 
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1 Introduction 

Chapter 1 

Introduction 

Advances in distributed systems and parallel computation technology enable us to 

realize distributed interactive world models. Using distributed world models, we can 

implement worldwide distributed simulations and virtual communities, e.g., city 

traffic simulation and Massively Multiuser Virtual Environments (MMVE) [1]. The 

distributed world model uses a Peer-to-Peer architecture to eliminate the need for 

fixed, expensive hosting infrastructure [2]. In the Peer-to-Peer architecture, any user 

who wants to join has to provide his/her share of bandwidth, CPU, and disk space [3]. 

It is an alternative to the older central server or server cluster. A computer cluster 

consists of a set of stable and efficient connected computers that work together. 

However, in order to establish large-scale models using computers distributed 

worldwide, an appropriate infrastructure is needed. 

Users expect these virtual environments to react to their actions instantaneously. Thus, 

state updates must be propagated with very little delay. Recently, the public network 

infrastructure has rapidly developed to the point where optical fiber communication, 

in particular, is widely available. Public networks are increasingly providing more 

high quality services. As a result, worldwide distributed interactive world models are 

able to fulfill the highest requirements with respect to scalability and consistency. 

In contrast to server clusters, peers are highly dynamic in the distributed interactive 

world model, especially when the peers are personal computers. Each peer may join, 

leave, or crash at any time. Thus, an appropriate Peer-to-Peer protocol is needed to 

implement self-organizing peers. Each peer is responsible for partial computation; all 

peers comprise complete functionality. When a peer crashes, other peers must extend 
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their responsibility to take over the functionality of the crashed peer. In doing so, the 

distributed interactive world model provides functionality that is intact to all users. 

We first address the fundamental problems of the distributed world model. We then 

show how to split and merge the virtual world to maintain efficient simulation, and 

explain the routing mechanisms that allow efficient routing in low-dimensional virtual 

space, such as two-dimensional and three-dimensional space. 

1.1 The CANS Idea 

Our underlying idea is a Peer-to-Peer based distributed world model. In this model, in 

contrast to the classic heavyweight server-based infrastructure, computing overhead is 

distributed over all participating peers using Peer-to-Peer technology. We assume that 

each peer uses the same Peer-to-Peer protocol, such as Gnutella, Chord [4], Pasty [5] 

or Content-Addressable Network (CAN) [6, 7], to combine and cooperate. Structured 

approaches to Peer-to-Peer architectures have been proposed in order to improve 

efficiency, scalability, and fault-tolerance. Thus, a structured Peer-to-Peer protocol is 

an ideal infrastructure for a distributed interactive world model. The approaches are 

based on similar designs, while their search and management strategies differ. 

Ring-based approaches such as Pastry, and Chord all use similar search algorithms 

such as binary ordered B*-tree. CAN is based on Geometry [8]. We chose CAN as the 

basis for our Content-Addressable Network for Distributed Simulation (CANS). Since 

CANS is based on CAN, it is designed to adapt to a changing number of peers and it 

can scale well, i.e., simulation speed improves as new peers join CANS. 

1.1.1 Managing a Content-Addressable Network for Distributed 

Simulations 

CANS is an improvement over conventional CAN for simulations. CANS is designed 

to handle simulations such as city traffic and MMVE. For example, Figure 1.1 shows 

how CANS with five peers simulates city traffic. Zones are then assigned to peers 
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using one-to-one mapping. In this small example, CANS divides the entire area into 

five zones. To a high degree, peers can run the simulation of their zone independently. 

Peers only need to communicate to synchronize their simulation efforts, or hand over 

players or cars crossing zone boundaries. In order to improve efficiency, we must 

reduce communication between peers.  

 

Figure 1.1 City traffic simulation 

When peers leave or crash, we must ensure that their zones are handled by another 

existing peer. After taking over the zone of another peer, a peer may have to handle 

multiple zones or a polygon zone. In CAN-like file sharing, peers hardly ever 

communicate with each other, and so these polygon zones are acceptable. However, 

constant communication in CANS generates extra load; and the extra load will never 

disappear until these zones are merged. For example, CANS has 16 peers, and every 

peer handles only one zone. When some peers leave (the departing peers are shaded in 

Figure 1.2(a)), their neighbors take over their zones. If zones are arbitrarily merged 

with the zones of departed peers, the result may be a concave polygon (see Figure 

1.2(c)). Otherwise, every peer handles multiple zones (see Figure 1.2(b)). Concave 

polygon and multiple zones increase the communication between peers and generate 

extra cost. In city traffic simulations, when a car drives across the border, peers must 

communicate with each other. If a car drives from location A to location B, it crosses 
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the boundaries four times in a polygon zone or multiple zones. If zones are convex 

(see Figure 1.2(d)), the car crosses the boundary only once.  

1
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(a) Departing peers shaded 

 

(b) Peers handle multiple zones 

 

(c) Peers handle concave polygon zones 
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(d) Peers handle convex zones 

Figure 1.2 CANS with 16 peers 

In another case, cars will often cross the boundaries because of slim zones (see Figure 

1.3). The aforementioned two problems are termed the “concave and slim” problems. 

  

Figure 1.3 Slim zones 

We try to keep CANS running with a simple structure and high efficiency; therefore, 

our peers must have neither multiple zones nor a polygon zone. We enforce the rule 

that every peer handles exactly one hyper-rectangular zone, whose edges are in 

proportion. 
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1.1.2 Routing Mechanisms for Content-Addressable Network for 

Distributed Simulations 

The original routing mechanism in CAN has the lowest efficiency among structured 

Peer-to-Peer routing mechanism. The routing hops of Chord are ( )nlogΟ  on average 

for a Chord circle with n participating peers. In Pastry with n peers, the target is 

reached in )(log2 nb  hops where b is typically chosen to be 4. CAN can only forward 

messages to immediate neighbors which are closer to the destination coordinates 

(greedy routing). Hence, greedy routing is not very efficient, particularly in 

large-scale dynamic CAN. Because CAN has a d-dimensional key space, routing 

efficiency and d are correlated. CAN routing complexity is ( )dnd /1⋅Ο  in a 

d-dimensional key space.  

We know the average routing path length, i.e., the number of peers traversed during 

routing, from the CAN simulator. Figure 1.4 [6] illustrates the average routing path 

length in each case for dimensions two to five. The results indicate that more 

dimensions result in lower average routing hops. In order to reduce the routing hops 

in CAN, researchers have proposed increasing the number of immediate neighbors per 

peer by enhancing dimensions. In higher dimensional CAN, each peer has more 

immediate neighbors..  
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Figure 1.4 Effect of dimensions on path length 

People also proposed long link solution. The routing is not limited between immediate 

neighbors (Figure 1.5). The message could forward to a further distant neighbor via 

long link. Then long link routing reduces routing hops.  

 

Figure 1.5 Long links and distant neighbors 

Higher dimensions solution and long link solution need to append more links to 

reduce routing hops. Because our CANS is utilized to simulate “city traffic” and 

MMVE, which are two-dimensional or three-dimensional spaces, we need efficient 



1.Introduction      7 

routing solutions for low dimensions. Therefore, the long link solution is suitable for 

CANS. 

1.2 Contributions 

In this thesis we present two algorithms to manage key space reorganization after peer 

departure. Using these algorithms, CAN is adapted for distributed simulation systems 

from distributed file-sharing system[9]. We also propose two routing solutions that 

perform efficiently in low dimensions 

More specifically, the main contributions of this thesis are as follows: 

 We derive and analyze the requirements for setting up a Peer-to-Peer distributed 

simulation system and uncover the “concave and slim” problem that limits 

simulation efficiency. 

 We derive and analyze the requirements for CANS routing. Routing improvement 

schemes that are based on the enhancing of dimensions are unsuitable for CANS. 

Hence, we need efficient routing solutions in low dimensions. 

 We propose the CAN tree to solve the “concave and slim” problem. Using the 

distributed CAN tree, our system maintains low overhead and automatically 

adapts to network changes. 

 The zone code is another solution to the “concave and slim” problem. After peers 

churn, CAN tree adapts to the changes in CAN via peer communication. However, 

the zone code solution does not need the update communication. It further reduces 

the overhead of CANS. 

 CAN tree routing is designed to efficiently send messages in low-dimension CAN. 

Therefore, it is an appropriate solution for CANS. Since each peer maintains only 

two extra long links, the extra overhead is very cheap. 
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 Since CAN tree routing is based on tree infrastructure, the peers have unfair 

routing overhead. However, zone code routing overcomes this drawback, and 

achieves ( )nO log  on average. 

We complement these contributions with a detailed performance evaluation of our 

algorithms. 

1.3 Thesis Organization 

The central focus of this thesis lies on the design and evaluation of a CAN for 

distributed simulation and routing. This thesis has demonstrated that existing 

Peer-to-Peer technologies can be optimized to interesting application domains which 

are not at all related to file sharing. Accordingly, the remainder of the thesis is 

structured as follows: 

Chapter 2: State-of-the-Art and Related Work 

This chapter introduces the technologies used in this thesis and related works. We 

thereby give an overview of existing Peer-to-Peer technologies and different solutions 

from other researchers.  

Chapter 3: Using CAN Tree to Manage a CANS  

In this chapter we present an efficient implementation, the so-called CAN tree. In 

order to solve “concave and slim” problem, we need CAN splitting history. The idea 

of this implementation is to use a distributed tree structure to record CAN splitting 

history. When peer leaves or crashes, we recover system using CAN tree. 

Chapter 4: Using Zone Code to Lookup Mergeable-zones 

After showing how CAN tree records the splitting history and searches 

mergeable-zones efficiently, we would like to decrease communication cause of peers 

churn. We present zone code to do the same work with the CAN tree, with no 
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communication needed among the peers. Consequently, the zone code scheme 

reduces communication overhead. 

Chapter 5: CAN Tree Routing 

This chapter encourages the need for routing in a CANS in chapter 3 and 4. In order 

to reduce the routing latency in CAN, the original CAN proposed to increase the 

number of immediate neighbors per peer by enhancing the dimensions. However, our 

CANS is utilized to simulate “city traffic” and MMVE. They require a 

two-dimensional or three-dimensional space. Hence, we present an efficient tree 

infrastructure routing solution to overcome the weakness of greedy routing. 

Chapter 6: Zone Code Routing 

CAN tree routing in chapter 5 is a tree infrastructure. The routing performance can be 

boosted from ( )dnO /1  to ( )nO log  by equipping each peer with two long links on 

average. However, the tree infrastructure causes unfair overhead. Hence, we map 

d-dimensional zones onto a one-dimensional zone code space and routing in zone 

code space. Zone code routing achieved ( )nO log  routing performance with 

( )nO 2log  routing state per peer. 

Chapter 7: Conclusion 

This chapter closes this thesis with a summary of the most important findings. 

Furthermore, it gives an outlook on interesting future work areas. 
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2 State-of-the-Art and Related Work 

Chapter 2 

State-of-the-Art and Related Work 
Peer-to-Peer (P2P) has demonstrated that it is a powerful paradigm for utilizing 
distributed resources and performance critical functions in a decentralized manner 
[10]. 

2.1 Peer-to-Peer Systems 

Peer-to-peer systems spread computing and data storage to peers. They offer a large 

variety of benefits such as massive scalability and reliability, better resource 

utilization, and fault-tolerance. However, it is difficult to find a generally accepted 

definition for Peer-to-Peer systems. Oram gives a basic definition of the term 

“Peer-to-Peer” that is further refined in [8, 11]:  

“(A Peer-to-Peer system is) a self-organizing system of equal, autonomous entities 

(peers) (which) aims for the shared usage of distributed resources in a networked 

environment avoiding central services” [8]. 

Scalability 

In a centralized system, the number of users is limited by system resources such as 

bandwidth, storage capacity, and the processing power of certain applications. 

Usually peers have many spare resources that can be contributed to the P2P system at 

no cost. Hence each individual runs underutilized most of the time, if a sufficient 

number of peers participate in the system. Vast resources are spread over all users; 

therefore, a Peer-to-Peer system can scale several orders of magnitude without loss of 

efficiency [8]. In contrast, centralized systems are less cost-efficient [12].  

Reliability 
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Reliability is critical for availability. Systems must survive crashing peers and 

network failures. If some peer craches, this should not affect the others. However, the 

system may experience partially failures. The surviving peers could recover the 

system by means of replicating all data across multiple peers.Network failure could 

result in isolated peers. Because every peer runs independently, we must ensure data 

consistency after network recovery. 

Self-organization 

Self-organizing systems must solve all problems by themselves. Even if some peers 

crashed in a system, the system must survive and regain full functionality. A 

Peer-to-Peer system assigns areas of the key space to individual peers in such a way 

that the areas assigned to peers do not overlap and there are no gaps in the key space. 

In order to realize self-organization, a peer-to-peer system needs a protocol to handle 

peer churn. The key space splitting needs to be robust when peers join or leave the 

system [8]. 

2.1.1 Centralized Peer-to-Peer Systems 

Some systems rely on locating a central dedicated server, which stores the locations of 

all data items, and assumes responsibility for mapping “keys” onto “values”[13]. 

After retrieval of the location of a data item via the dedicated server, peers directly 

access and exchange the shared data item. Such systems are also termed centralized 

Peer-to-Peer systems, e.g., Napster (see Figure 2.1)[14, 15]. 
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Figure 2.1 Dedicated server 

Napster[16] is one of the most popular typical representatives. It was originally 

established as a pioneering Peer-to-Peer file sharing Internet service. All users were 

able to not only download files, but also share files with other participating users via a 

central server. The server maintained the IP addresses of participating peers without 

storing the files. It collected information about files being shared and offered an index 

of all files available for sharing [12]. When a peer desired to download, it looked up a 

potential providers list on the server in a query-response fashion. In addition, the peer 

directly downloaded the file from one of the remote providers without the server. 

Napster is invariably susceptible to single points of failure. The central server 

assumed responsibility for the lookup/index. Without it, no files could be exchanged. 

Regardless of server fault, the system offered less bandwidth for each peer as more 

peers joined. The server posed a bottleneck problem [12]. 

2.1.2 Unstructured Peer-to-Peer Systems 

Unstructured Peer-to-Peer systems use a flooding technique whose “lookup” queries 

are sent to all participating peers in the system. The peer, which covers the 

corresponding data item, replies and transfers the data directly (see Figure 2.2)[17]. 

Thus, these systems do not rely on any central server (except a bootstrap server to 

ease joining network). They are decentralized systems and are termed pure 

Peer-to-Peer systems, e.g., Gnutella 0.4[18] and Freenet[19]. 
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Figure 2.2 Pure Peer-to-Peer system 

Gnutella is one of the most popular typical representatives of pure Peer-to-Peer 

systems (see Figure 2.3). In order to detect other active peers, all peers broadcast ping 

messages and reply with pong messages to echo received ping message. The use 

flooding queries to look up a desired file. Every peer sends any incoming query that 

had not been received before to all neighbors except the peer from which the query 

originated [8]. If a query had been received, peer will never forward it to any other 

peer. In this way, queries are further flooded peer by peer, until the Time-to-Live 

(TTL) value reaches zero [12, 20]. 
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Figure 2.3 Gnutella 0.4 

Flooding queries generates potentially huge amounts of network traffic. Large 

network traffic causes packets to collide in dense networks. The Time-to-Live (TTL) 

mechanism improved the pure Peer-to-Peer system, however did not solve all the 
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problems it experienced. Furthermore, TTL reduced the probability of retrieving the 

desired file [12]. 

In order to overcome the drawbacks experienced by pure Peer-to-Peer systems 

(system without dedicated server), a hierarchy system is proposed to avoid 

unnecessary traffic. Super-peers (see Figure 2.4), which store the content available at 

the connected peers together with their IP address [8], were proposed. Super-peers are 

able to immediately answer requests instead of the respective peers, and fewer hops 

are required in the search process. It is a kind of hybrid Peer-to-Peer system. It 

achieves a balance between the perfect index of available files (centralized system) 

and evenly distributing load on all peers (pure Peer-to-Peer system). Hybrid 

Peer-to-Peer systems have a hierarchical structure. Peers that have a more powerful 

processor and more bandwidth are termed super-peers. Peers connect only to 

super-peers instead of each other, and super-peers store information about the peers 

that are connected to them. They perform as centralized servers in interconnection and 

maintain connections with other super-peers. Each peer sends its query to its 

super-peer when searching for a desired file. The super-peer forwards the query to 

other super-peers if it is not in charge of the peer with the desired file [12]. For 

example, Gnutella 0.6 [21] and JXTA [22] are hybrid Peer-to-Peer systems. 

Sp
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p p
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p
p

 

Figure 2.4 Centralized super-peers 

Figure 2.5 illustrates Gnutella 0.6 relaying a Query-Hit message and a file being 
directly transferred between peers. 
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Figure 2.5 Gnutella 0.6 

In some hybrid Peer-to-Peer systems, regular peer and super-peer offer different 

functionality. We differentiate peers in regard to their role. For instance in 

FastTrack[23] (Kazaa's search engine) there are regular peers and super-peers. Those 

super-peers offer different searching functionality than the regular peers do[12]. 

The above schemes do not follow any specific structure, and the content stored on a 

peer is not related to its peer ID. Hence, they are generally termed “unstructured 

Peer-to-Peer” systems.  

2.1.3 Structured Peer-to-Peer Systems 

Structured Peer-to-Peer systems were proposed in an effort to improve efficiency, 

scalability, and fault-tolerance[24]. They manage data via Distributed Hash Tables 

(DHTs) and adopt a routing scheme that allows any user to efficiently look up the 

peer covering a specific data item. Table 2.1 lists the characteristics of the approaches 

presented in terms of state per peer (the number of neighbors), communication 

overhead. Distributed Hash Tables cope best with accurate queries; however, for 

fuzzy or semantic queries, unstructured Peer-to-Peer systems are still the best option. 
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System State per Peer 
Communication 

Overhead 
Fuzzy Queries 

Central Server ( )nO  ( )1O  √ 

Flooding Search ( )1O  ( )EnO +≥  √ 

Distributed Hash Table ( )nO log  ( )nO log  × 

n is the number of peers. E is the number of connections. 

Table 2.1 Characteristics of Peer-to-Peer systems [8]  

DHTs have a lot of variants such as Chord, Pastry, CAN, Tapestry[25], p-Grid[26], 

Viceroy[27], Kademlia[28], or the Continuous-Discrete Approach[29-31]. All these 

Peer-to-Peer systems implement the similar service (DHTs). However, they differ in 

the topology of the overlay network that has an impact on the efficiency of the 

different operations in a DHT. 

Chord 

Chord [4] operates on a one-dimensional key space (l-bit identifiers, i.e., integers in 

the range [ ]12,0 −l ), and creates a circular structure (see Figure 2.6). Each data item 

and peer is assigned an identifier in key space. Each peer stores key-value pairs. The 

key-space is divided among the peers in such a way that each peers is responsible for 

the keys which are equal or less than its peer ID and large than the peer id of the 

predecessor. All distributed key-value pairs form the DHT. 



2.State-of-the-Art and Related Work      17 

 

Figure 2.6 Chord 

To facilitate efficient lookup, each peer needs to build long links to its successor peers 

on the circular key space. When a peer looks up a key, it sends the query to its 

successor peer. If the successor peer determines that the key is not located between 

itself and its predecessor, it forwards the query to its successor peer. Otherwise, the 

key must be stored by the successor peer. Therefore, the successor peer replies and 

transfers the desired file. The linear lookup on the circular key space is inefficient. 

Chord utilizes a finger table (see Figure 2.7) to enhance lookup speed. 

 
Figure 2.7 Finger table of Chord 
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Due to the fact that the circular key space is l-bit identifiers, each peer maintains a 

finger table with l entries. For peer n, the entry of row i is a successor peer that is the 

first successor of ( ) lin 2mod2 1−+ , e.g., Figure 2.7 illustrates the finger table of peer 

12 in 7-bit Chord [4]. By means of the finger table, each hop covers at least half the 

clockwise distance between the current peer and the target peer. Hence, routing 

complexity is ( )nO log  with n participating peers. 

Pastry 

Pastry was proposed by Rowstron and Druschel in [5, 32]. It is similar to Chord. 

Pastry operates a circular ID-space that ranges from 0 to 12 −l , and uses key-value 

pairs to map data items to ID-space. Pastry concentrates not only on reducing routing 

hops, but also on geographical location. 

 
Figure 2.8 State of a Pastry peer with ID 10233102, b = 2, and l = 8 (base 4) [5]  

Pastry routing information comprises routing table, leaf set, and neighborhood set (see 

Figure 2.8). The identifiers of pastry are strings of digits to the base b2  where b is 

typically chosen to be 4. The routing table of peer n is made up of 
b
l  rows with 

12 −b  entries per row, and all entries in row i map to peers whose identifiers share 

i-digit prefix with peer n but differ in digit i+1 [8]. Pastry enhances lookup efficiency 
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via routing table by storing prefix-ID peers. The leaf set L is formed by a set of peers, 

which are the numerically closest peer IDs to the current peer ID, and uniformly 

distribute on both sides, i.e., clockwise and counter-clockwise. The neighborhood set 

M is comprised of M  peers that are geographically near the current peer [33]. 

“Geographically near” is proximity metric and measures the amount of IP hops or the 

ping latency [12]. They directly reflect the distance between peers. The neighborhood 

set does not participate in routing but in maintaining network locality in the routing 

information.  

Routing in pastry consists of two steps. In the first step, a peer checks whether the key 

falls into the range of its leaf set peers. If this is the case, it implies that the peer can 

directly send queries to the peer numerically closet to the key. Thus, the routing 

process is finished. Otherwise, the key is not covered by its leaf set. In this case, the 

query needs to be sent over a longer distance peer. The current peer therefore looks up 

in its routing table a peer that shares longer common prefix with the key than itself. If 

the suitable peer is not reachable, the current peer sends the query to a peer that shares 

at least the same prefix with itself, and whose ID is however numerically nearer to the 

key [33]. 

If the key falls into a leaf set, it always needs one hop to deliver the query to the target 

peer. If the key is forwarded via the routing table, the number of peers with longer 

prefixes is reduced by the factor b2  in each hop. Thus, the routing needs ⎡ ⎤nb2
log  

hops. Given that the routing table might not offer a peer with a longer prefix, this case 

leads only to one additional routing hop. Hence, the expected number of pastry 

routing steps is ⎡ ⎤nb2
log  [12]. 

2.2 Bootstrapping 

To join an overlay network, a new peer must discover at least one of the participating 

peers as entry because the new peer does not have a global view of the overlay 



2.State-of-the-Art and Related Work      20 

network. This means that it does not even know whether the overlay network 

exists[34]. The search for an overlay network is a critical problem that is termed 

bootstrapping[35]. 

Peers may join it at any time, thereby becoming a part of the overlay network and 

taking responsibility. Analogously, any peer might leave the overlay network at any 

time without announcement. Therefore, the size of a Peer-to-Peer network 

dynamically varies from zero to all potential peers in the network [36]. Furthermore, 

the process of bootstrapping has to be performed via minimal bandwidth consumption. 

In addition, the following four properties should be simultaneously achieved [8]: 

1. Availability: Availability is one of the most important properties of bootstrapping. 

A probabilistic approach is not sufficient. Thus, the bootstrapping mechanism 

must perform well at any time, i.e., whenever a new peer needs network entry, it 

can retrieve one. Additionally, the system should be realized by decentralized 

infrastructure to avoid a single point of failure [36]. 

2. Self-organization: During the bootstrapping process, it must perform 

automatically and without any manual interaction [36]. 

3. Efficiency: In order for the bootstrapping mechanism to perform efficiently, the 

mechanism accepts a new peer within a reasonable amount of time and minimal 

bandwidth consumption [12]. 

4. Scalability: The system has to make sure that system overhead does not increase 

as an increasing number of peers join [12]. 

Bootstrapping is distinguished between two classes: peer-based approaches and 

mediator-based approaches [37]. 

Peer-based Approaches 
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Peer-based approaches try to detect peers in the overlay by contacting other peers 

directly. Peer-cache is one of the most popular typical representatives. A peer-cache 

contains a list of previously known peers that are potentially participating peers[38]. 

By trying to contact peers in its peer-cache, a peer possibly discovers existing peers in 

the overlay. Any peer that replies can be used as an entry point into the overlay. This 

approach is straightforward and efficient. However, it cannot guarantee one hundred 

percent success, e.g., all peers in its cache may have left the overlay. 

Mediator-based Approaches 

Mediator-based approaches use a well-known entry point as the mediator to provide 

assistance. In contrast to peer-based approaches, a peer (or some peers) maintains a 

participating peers list and determines which peer in the list should be offered to the 

new peer as the entry point. Mediator-based approaches easily balance load between 

peers. However, updating the available peers list consumes significant bandwidth.  

2.3 Two-dimensional Peer-to-Peer Systems 

The decentralized Peer-to-Peer systems have been proposed for storage ensuring 

reliability, such as Chord [4] or Pastry [5]. Recent research has shown that one can 

use such networks to build two-dimensional Peer-to-Peer system[39]. In order to 

assign a Chord or Pastry peer corresponding to the two-dimensional space, the space 

is divided into equally-sized zones (see Figure 2.9). Each zone may contain at most 

one peer. The more zones, the more peers can be supported[40]. After a peer has 

booted and chosen a location[41] in the space, it could join the Chord or Pastry ring. 

Since Georg Cantor demonstrated that any two finite-dimensional smooth manifolds 

regardless their dimensions have the same cardinality[12], Peer-to-Peer system could 

map from two-dimensional space into one-dimensional DHT space depending on a 

suitable space-filling curve[42] solution[43, 44]. For example, Mirko Knoll proposed 

Geostry[12] that is a Peer-to-Peer System for location-based[45, 46] Information. 
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Figure 2.9 Divide space into equally-sized zones[47] 

There are some solutions to implement space-filling curves. The simplest one is 

s-shaped that map an index curve onto an area is to superimpose the curve (see Figure 

2.10)[48]. Since the geographically close peers may have a large discrepancy in their 

IDs, s-shaped curve is not very promising. For example, the first peer of the first two 

rows in Figure 2.10 are geographically close, however their IDs are far apart[49]. 

 
Figure 2.10 S-shaped space-filling curves[49] 

Lebesgue Space-Filling Curve 

Peano presented the space-filling curve that depends on further partitioning. On each 

partitioning step, each zone is divided into nine equal-sized sub-zones. And the curve 
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follows the initial mapping (see Figure 2.11). The distances between two adjacent 

zones on the curve is homogeneous[49]. 

 

Figure 2.11 Peano curve[49] 

Hilbert Space-Filling Curve 

David Hilbert[50] proposed another curve which has better geometric locality 

properties in the worst case[51]. Hilbert space-filling curve starts with the basic 

“u”-form (see Figure 2.12)[52]. The order-two curve comprises four shrunken copies 

that are placed on the grid. While the position of the upper two curves matches their 

final orientation, the lower curves have to be rotated according to their position on the 

unit square (see Figure 2.12). The ends of curves which are facing each other are 

connected to form a continuous curve. In order to generate further-orders curve, the 

previous procedure is applied recursively[49]. 

 

Figure 2.12 Hilbert Curve[49] 

Such networks heavily rely on the Distributed Hash Tables (DHT). Since hashing 

destroys the locality of data[53], they hardly support efficient range queries[54]. 
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However, our distributed simulation or MMVEs usually need retrieving all objects 

which are in a certain area[55]. Thus, we need two-dimensional Peer-to-Peer 

networks that use topologies defined in geometric space[6, 8], such as VoroStore [55] 

or CAN. They allow efficient range queries. VoroStore is based on the Voronoi 

diagram (see Figure 2.13) that is a special decomposition of key space. It is a 

complete solution for convex polygon zone partitioning depending on the locality of 

peers. Using replication, VoroStore can offer availability and ensure integrity of data. 

 

Figure 2.13 VoroStore: two-dimensional Peer-to-Peer network 

Dominic Heutelbeck presented a distributed data structure for dynamic geometrical 

objects in [56]. It provided an abstract data structure called distributed space 

partitioning tree (DSPT). A DSPT is a general use distributed data structure, similar to 

distributed hash tables (DHTs), that allows publishing, updating of, and searching for 

geometrical objects (RectNet[57] is an implementation of DSPT, see Figure 2.14.). 

However, DSPTs allow the keys of the objects and queries to have a spatial extension 

with arbitrary boundaries.[57] 
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Figure 2.14 The network topology of RectNet[56] 

When peer B distributes a message to all peers of zones intersecting area K, it reached 

that intersects with the target area K. Starting at B, each peer of a zone intersecting K 

forwards the message to all neighbors also intersecting K, except the neighbor from 

which it received the message itself. In addition, each peer caches the geographical 

messages it already distributed to its neighbors and does not send the same message to 

its neighbors twice. Since K is a connected subset of the context space, all peers 

intersecting K receive the message. [57] 

 

Figure 2.15 Flooding in concave area[57] 

CAN uses a similar flooding scheme, described in [7], to provide application level 

multicasting. The directed flooding scheme described there reduces the number of 
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duplicated messages generated by the flooding. This approach can be used for peers 

that only contain convex zones. It is not suitable for concave zones[57] 

However, DSPT allows the concave zones that generate extra communication 

overhead (see “concave and slim” problem in section 3.2). Hence, our system is based 

on CAN. 

2.4 CAN 

Content-Addressable Networks (CAN) is a well-known representative of Distributed 

Hash Tables (DHTs). CAN is used in large scale storage management systems such as 

OceanStore[9, 58] , Farsite[59] , and Publius[60]. Our Content-Addressable Network 

for Simulations (CANS) is derived from CAN. In this section, we describe in detail 

the functionality of CAN. 

In 2001, Ratnasamy et al. [7, 61] proposed a novel DHT, Content-Addressable 

Network, which has a distributed, decentralized Peer-to-Peer infrastructure and 

provides DHT functionality on an Internet-like scale. CAN is scalable, fault-tolerant, 

and self-organizing.  

2.4.1 Virtual Space 

The design of CAN is based on a virtual d-dimensional Cartesian coordinate space 

(see Figure 2.16). The d-dimensional space is used to store key-value pairs. A key k is 

definitely mapped onto a point p, which is in the key space. As typical key-value pairs 

in DHTs, CAN keys are derived from the value by applying its hash function [8]. 

Points in the virtual space are identified with coordinates. Therefore, the peer, whose 

zone owns the point k, exclusively stores the corresponding (k, v). In order to retrieve 

the value v corresponding to key k, the requesting peer lookups in CAN. If the point p 

is located at the requesting peer, it retrieves the corresponding value v immediately. If 

this is not the case, the query is forwarded to the peer whose zone covers point p via 

the CAN infrastructure[6]. 
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Figure 2.16 Two-dimensional Cartesian coordinate space 

2.4.2 Peer 

CAN is a highly distributed system, which built from thousands or even millions of 

typically non-dedicated peers through the Internet that might flexibly join or leave the 

system at any time [8]. Each peer performs a part of the functionality. 

Zone 

All peers in a CAN Peer-to-Peer overly network dynamically divide the entire key 

space into a number of non-overlapping hyper-rectangular zones. Each peer is 

assigned at least one distinct zone within the key space. When a new peer joins CAN, 

it is allocated its own portion of the key space. This is done by an existing peer 

splitting its allocated zone in half, retaining half and handing the other half to the new 

peer [6]. When sharing half a zone, the split peer splits its zone in accordance with the 

“split rule.”  

Split rule: The split rule is a protocol. When sharing half a zone, the split peer splits 

its zone as a certain ordering of the dimensions [8]. 

For example, in a two-dimensional CAN, the zone is first split along its y-axis, then 

along its x-axis, and so on (see Figure 2.17). 
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Figure 2.17 Split rule in a two-dimensional CAN 

Coordinate routing table 

During runtime, each peer maintains a coordinate routing table that consists of the IP 

address and zone boundaries of each of its immediate neighbors in the key space [6].  

Neighbor: If two zones have overlapped coordinate spanning along d-1 dimensions 

and abutting along one dimension, they are neighbors in d-dimensional key space [6]. 

For example, Figure 2.17 illustrates that zone 1 is a neighbor of zone 4. As the 

definition of neighbor, zone 1 and 4 overlap along the x-axis and abut along the y-axis. 

In the other scenario, zone 4 is not a neighbor of zone 2 because two zones abut along 

both the x-axis and y-axis. Using the purely local neighbor state, the message can be 

transferred between two arbitrary points in the key space.  

2.4.3 Peer Operation 

As a new peer joins the system, it must be allocated its own portion of the key space. 

As a peer leaves, other peers have to take over its functionality immediately.  

Joining 
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After retrieving a participating peer’s IP address from the bootstrap peer, the new peer 

randomly chooses a point p in the key space and forwards a JOIN request to point p. 

The message is forwarded by peers according to the routing mechanism. 

When the JOIN request arrives at the occupant peer (whose zone covers point p), the 

occupant peer splits its allocated zone in half, retains half and hands the other half to 

the new peer in accordance with the split rule [6]. Thus, the new peer obtains its own 

zone. 

In order to join routing, the new peer copies the neighbor set from the previous 

occupant peer, and updates the neighbor set, i.e., adds the previous occupant peer and 

eliminates some peers that are no longer neighbors. Simultaneously, the previous 

occupant also updates its neighbor set. Finally, all neighbors are informed and asked 

to update their routing information. 

During a new peer joining process, only the peers around the previous occupant is 

involved. In other words, the overhead when a new peer joins only depends on the 

number of neighbors and is independent of the size of the CAN. The average number 

of neighbors depends on the dimensionality of the key space. Hence, the overhead of 

a new peer joining will not scale up as the number of peers increase. The complexity 

is ( )litydimensionaO . 

Departure 

When a peer leaves a CAN, it must ensure that its zone and the associated key-value 

database is taken over by the remaining peers. Therefore, the departing peer has to 

choose an occupant from its zone among its neighbors. If its neighbor peer n’s zone 

can merge with departing peer m’s zone and the merged zone is a valid 

hyper-rectangular zone, peer m should hand its zone over to peer n. Peer n eventually 

then extends its responsibility to take over m’s functionality and informs all neighbors 

to update their routing states. If any neighbor’s zone cannot merge with the departing 

peer’s zone, it has to hand its zone over to a neighbor that presently assumes the 
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smallest load. Simultaneously, the neighbor temporarily maintains two zones, i.e., the 

peer in CAN is allowed to handle more than one zone. For robustness and to avoid 

fragments, the peer with the multi-zone will try to hand over and merge its zone with 

its neighbor’s zone. The process uses a zone-reassignment algorithm, and it is 

described in next section. 

The CAN also needs a solution to peer or network failures. If a peer suddenly 

discovers that one or more peers are unreachable, the takeover mechanism is 

immediately triggered. Because it is possible that multiple adjacent peers are 

simultaneously involved in the failure region, first of all, it searches the region 

surrounding the failure region to ensure that more than half of the failed peer’s 

neighbors are still reachable. If there are sufficient neighbors to initiate a takeover 

safely, each neighbor of the failed peer produces a TAKEOVER message conveying 

its own volume (e.g., load and quality of connectivity). Prior to sending the 

TAKEOVER message, they initialize a timer independently and wait for timer 

expiration. Once a peer receives a TAKEOVER message with a bigger volume than 

its own volume, it replies with its own TAKEOVER message. Otherwise, it cancels 

its timers and scrubs the TAKEOVER message. Eventually, an adjacent peer with the 

smallest volume is efficiently elected. 

Second, the elected peer extends its responsibility to maintain the failed peer’s zone, 

i.e., it temporarily handles a multi-zone. After a period of maintaining multiple zones, 

all peers eventually only handle one zone by means of the zone-reassignment 

algorithm. 

In order to avoid stale key-value pairs as well as to recover lost key-value pairs, data 

holders periodically refresh their key-value pairs [6]. Thus, the peer or network failure 

causes the key-value pairs held by the crashed peer to be lost until the next refresh. 

Zone-reassignment Algorithm 
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The departure procedure described in the foregoing section introduces the case of a 

single peer being assigned multiple zones. Consequently, CAN needs a 

zone-reassignment algorithm to retain the one-to-one peer to zone. 

When a new peer joins CAN, the zone splits into two sub-zones. The zone is parent of 

the sub-zones into which it was split, and is termed the “partition tree” (see Figure 

2.18). The partition tree records all splitting details from the beginning to the present. 

The leaf peers represent zones that presently exist in CAN (unshaded peers in Figure 

2.18). The other peers represent zones that no longer exist, but had existed in the past 

(shaded peers in Figure 2.18) [62]. 
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Figure 2.18 Partition tree 

We utilize the same name for the peer in the partition tree corresponding to the zone. 

The partition tree is a binary tree. Only zones of sibling peers can merge with each 

other. If a peer p wants to hand its zone off, and p’s sibling peer q is not a leaf in the 

partition tree, p will depth-first search in the subtree of the partition tree rooted at q 

until it finds two sibling leaves (peers m and n): m extends its responsibility to merge 

with n’s zone, and then n occupies p.  

However, to build a partition tree needs global view and space splitting history. It is 

almost impossible for a Peer-to-Peer system. We proposed our solutions in section 3 

and section 4. 
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2.4.4 Routing 

Each peer in CAN only stores the state of its immediate neighbors. Hence, each peer 

can only forward messages to its neighbor. CAN does not have any long links to send 

messages further over its neighbors. The routing algorithm is termed greedy routing. 

Greedy routing is a common algorithm in Peer-to-Peer systems. It is simple, but 

routing is not fast. Therefore Peer-to-Peer systems have some improved algorithms 

(finger table in Chord). 

2.4.5 Design Improvements 

The basic design of CAN provides ( )dO  per-peer state in even zones CAN. In the 

worst case, a peer has 
2
n  neighbors (n peers in CANS). The routing complexity of 

d-dimensional CAN is ( )dndO /1⋅  (n peers in CANS) [6]. The number of hops is not 

IP level but application level hops. Therefore, the distance between adjacent peers 

might be many miles and many IP hops. The average total number of hops is as 

follows: 

hopCANeachoflatencyaveragehopsCANofnumberaveragetotal LnL _________ ×=  

Design improvements are used to achieve smaller potential IP path latencies between 

the requester peer and the target peer. 

Multi-dimensioned coordinate spaces 

Each peer has ( )dO  neighbors in d-dimensional CAN. If the number of neighbors 

per peer are increased by increasing the dimensions of the CAN key space, the 

average path length ( ( )dndO /1⋅ ) is shorter [6]. Simultaneously, each peer’s routing 

table slightly increases. Figure 2.19 illustrates the effect of multi-dimensioned key 
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space. The simulations are based on Transit-Stub (TS) topologies and the GT-ITM 

topology generator [6, 63]. 

 

Figure 2.19 Effect of dimensions on path length [6]  

Because each peer has more neighbors, the routing has more fault tolerance. Even 

though some adjacent peers have crashed, the current peer has more potential next 

hop peers to forward. 

Realities: Multiple coordinate spaces 

CAN maintains multiple key spaces independently. Each key space is termed a 

“reality.” Each single peer in CAN is assigned multiple zones that are on distinct 

realities, i.e., each reality assigns one zone to each single peer. Simultaneously, each 

peer handles multiple independent neighbor sets in distinct realities. 

For a key-value pair, we retrieve r coordinates ( ( ) ( ) ( ) ( ){ }rr yxyxyxyx ,,,,,, 21 L= ) in 

r realities by means of a hash function. It implies that there are r independent 

replications in CAN. The replications improve the peer’s tolerance to failure. If peers 

crashed, other peers could recover system via crashed peers’ replications. However, a 
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crashed peer cannot be recovered in a multiple crashes in which all replications are 

crashed too. 

To forward a message, a peer checks its neighbors on each reality and forwards to the 

neighbor closest to the target. Thus, CAN reduces the path length using multiple 

realities [6] (see Figure 2.20). 

 

Figure 2.20 Effect of multiple realities on path length [6]  

2.5 Routing improvement 

Recently there are several works aimed at improving lookup efficiency in CAN  

2.5.1 eCAN 

eCAN is a mechanism proposed to enhance routing performance in “Building 

Low-maintenance Expressways for Peer-to-Peer Systems” [64]. The objective of 

eCAN is to establish a hierarchical scheme that maintains neighbor pointers at 

different levels of the logical space. eCAN operates similar to a real-world 

expressway. It improves CAN’s routing capacity by increasing the span of hops. 
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To establish expressways, the entire key space is divided into zones (see Figure 2.21). 

A set of zones assemble a bigger zone, which is termed “expressway zone.”. The span 

of the expressway zone k is a priori. A set of expressway zones assemble a 

higher-level expressway zone. Thus, the expressway zones have a hierarchical 

architecture. Figure 2.21 illustrates a two-dimensional space with k = 4. The region 

marked with dark shade is the zone, the region marked with green shade is a level-2 

expressway zone, and the region marked with red shade is a level-1 expressway zone. 

Each zone in eCAN is a resident of the different level expressway zones, which 

enclose this zone. 

Short link

level-2 expressway link

level-1 expressway link
 

Figure 2.21 Expressways for CAN 

Each expressway zone maintains links to other adjacent expressway zones at the same 

level. Consequently, the routing table of eCAN consists of not only the short links that 

link only to immediate neighbors, but also the long links that link to one peer in each 

of its adjacent expressway zones at different levels (different level links are marked 

with different colors). 

Figure 2.22 is a snapshot of eCAN with k = 4. The expressway has established a 

binary tree, which is independent of the dimension of the key space. Consequently, 
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eCAN possibly achieves ( )nO log  routing performance by means of maintaining 

logarithmic routing entries at each peer in a CAN overlay 

...

Level-1 expressway zone

Level 2 expressway zone

Level-1 expressway zone Level 1 expressway zone Level 1 expressway zone

 

Figure 2.22 Snapshot of eCAN with k = 4 

When peer leaves, its neighbor will take over its responsible zone. There are two 

scenarios. If the departure peer does not handle expressway zone, nothing extra needs 

to be done as conventional CAN. If this is not the case, the expressway is broken. 

There are two steps to repair a broken expressway in a demand-driven manner. First, 

when peer s forwards message to departure peer d via expressway, the routing request 

will time-out. Since eCAN is only an auxiliary system, the message can be forwarded 

using CAN greedy routing. Then, the recovery procedure is triggered. Peer s picks up 

a point in the zone of peer d and routes to it. Since peer d’s neighbor definitely took 

over its zone (CAN recovery operation), the routing will always succeed at peer n 

whose zone contains the point. Peer n must be a descendent of peer d and inherits peer 

d’s routing capability. Peer n replaces peer d to repair expressway. 

2.5.2 LDPs 

Each peer equips Long Distance Pointers (LDPs) [65] to add distant neighbors. 

Instead of greedy CAN routing, a peer considers both its short links and LDPs. A peer 

chooses the immediate/distant neighbor whose zone is closest to the target as the next 

hop. CAN with LDPs has a priori fixed routing state per peer, e.g., each peer keeps k 

LDPs. There are two different schemes for selecting LDPs: 
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Random Pointers 

In this scheme, a peer sends k discover-messages to k random points in key space via 

greedy CAN routing. The peers, which cover those points, have the responsibility of 

replying with their IP addresses and zone information. The initiator establishes LDPs 

according to the replies. Figure 2.23 illustrates a peer p maintaining LDPs (k = 4). 

 

Figure 2.23 Random pointers 

Distant neighbors in random pointers scheme might not be evenly distributed in key 

space. The example in Figure 2.23 has no pointer to the bottom right. In order to 

provide better coverage, subspace pointers are proposed. 

Subspace Pointers 

In contrast to random pointers, the subspace pointers scheme divides the key space 

into k equal-sized sub-zones, and each peer selects a random point from each 

sub-zone. The peers, whose zone covers the random point, are distant neighbors, and 

establish LDPs pointing to these distant neighbors. 
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Figure 2.24 Subspace pointers 

2.5.3 RCAN 

“Multi-ring Infrastructure for Content-Addressable Networks” [66] was proposed as a 

novel topology to improve the routing efficiency of CAN overlays. In conventional 

CAN, a peer knows only about its immediate neighborhood. The greedy routing using 

only neighboring peers is not efficient and is more vulnerable to network failures. The 

key idea of RCAN is to equip each peer with long links towards some distant peer 

(called distant neighbors). Long links are established as follows: 

“A node selects distant neighbors situated at distances inverse to powers of 2 on the 

coordinate space. The set of long links in each peer is partitioned into small sub-sets, 

each of which is established along one dimension. Long links are clockwise directed 

and wrapped around the key space.”[67] The architecture of RCAN is a virtual 

multi-dimensional Cartesian space on a torus. (see Figure 2.25). 
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Figure 2.25 Torus model of a 2D multi-ring topology [66]  

Each zone in RCAN associates with a set of positive integers ( )10 ,,, −di lll L  that keeps 

track of the evolution of the key space—termed the region’s level. il  is the i-th 

sub-level of the zone. Its value implies the number of splits that the zone has 

undertaken along the i-th dimension. In order to eliminate inefficiency and 

vulnerability, each peer equips d sets of long links in d-dimensional space. Each set of 

long links points to distant neighbor peers located at distances inverse of the power of 

two from itself along one dimension. Consequently, a peer has ( )1−il  long links on 

the i-th dimension. The distance between a peer p and its j-th neighbor on the i-th 

dimension is  

( ) i
jj

i wp ⋅= 2  

( iw is the width of p’s zone along the i-th dimension, and 1,,1 −= ilj L ). Since the 

link for 0=j  is a short link pointing to an immediate neighbor (see Figure 2.26) 

[66]. 
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Figure 2.26 Long links in RCAN 

Figure 2.27 illustrates the long links mode in two-dimensional RCAN. 

x dimension

y dimension

21•wx 22•wx 23•wx

21•wy

22•wy

 
Figure 2.27 Long links model 

RCAN adopts a “maintain-on-use” approach to update routing tables after peer 

activities. Instead of propagating the update to all affected peers, RCAN does nothing 

until a peer detects a link broken during routing. The peer can perform the routing 

task via other good links. Meanwhile, a process is triggered to fix the broken link. 

Hence, RCAN gets rid of high traffic overhead to inform all affected peers after peers 

churn [66]. 
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RCAN provides a completely decentralized mechanism and self-scaling routing state. 

The number of long links per peer is ( )nO log  and maintenance overhead during 

peer churn is also ( )nO log . 
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3 Using CAN Tree to Manage a CANS 

Chapter 3 

Using CAN Tree to Manage a CANS 
In order to manage a CANS, we need the splitting history of CANS. CAN tree is a 
kind of data structure to record the splitting history. 

3.1 Introduction 

Content-Addressable Network for Distributed Simulations (CANS) is designed to 

handle the simulation of city traffic [68] or a Massively Multiuser Virtual 

Environment (MMVE). It is an improvement over normal CAN according to the 

purpose of the simulations. The two-dimensional simulation area is divided amongst 

the peers in CANS. Every peer handles exactly one zone. To a high degree, peers can 

run the simulation of their zone independently. When players or cars cross zone 

boundaries, a peer has to synchronize and hand them over to its neighbors. In order to 

improve efficiency, communication between peers must be reduced. 

In simulations, we found that frequent communication between peers greatly reduces 

system efficiency. Since crossing of boundaries results in communication and 

concave zones causes a large number of unnecessary boundary crossings, concave 

zones are a problem. If a zone is concave, a car passing it may cross the boundary 

more than two times. In another scenario, when zones are slim, cars will cross the 

boundaries often. We call these two problems the “concave and slim” problem. We 

propose a new approach to solve them. All zones are convex and their length-width 

ratios will be limited to an acceptable range. 

To eliminate concave and slim zones in CANS raises another problem. After a peer 

leaves, a left-recursion algorithm can be used to handle the zone released by the 
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departed peer. The number of recursive steps is unpredictable. In the worst case, all 

peers are involved. This will seriously affect the system’s scalability and stability. We 

designed a “shortcut” algorithm that utilizes the “CAN tree” to solve this problem. 

Using our approach, recovery can be achieved in two steps, which is a significant 

speed up. 

3.2 Requirements 

When peers leave or crash, we must make sure that their zones are handled by other 

existing peers. After taking over the zones of other peers, a peer may have to handle 

multiple zones or handle a polygon zone. Since CAN is designed for file-sharing [6], 

these polygon zones are acceptable. 

In contrast, CANS is designed for simulation. Although peers handling multiple zones 

are easy to realize, it generates extra load; and the extra load will never disappear until 

these zones can be merged. For example, CANS includes 16 peers, and every peer 

handles only one zone (see Figure 3.1(a)). When some peers leave (the departing 

peers are shaded in Figure 3.1(a)), the neighbors take over their zones. Eventually, 

every peer handles four zones (see Figure 3.1(b)). When a peer handles an increasing 

number of zones, the management of zones will become increasingly complex. 

Complex systems reduce efficiency and robustness, so CANS does not allow a peer to 

handle multiple zones.  
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(a) CANS with 16 peers 

 
(b) Peers handle multiple zones 

 
(c) Peers handle concave polygon zones 
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(d) Peers handle convex zones 

Figure 3.1 Concave and convex zone 

If zones are arbitrarily merged with zones that have been released by departing peers, 

a concave polygon may result. Figure 3.1(c) depicts a CANS after merging. Because 

the concave polygon zones increase the communication between peers, they incur 

extra costs. For example, we simulated city traffic with CANS. In the simulation, a 

car drove from location A to location B. In concave polygon zones (see Figure 3.1(c)), 

it crosses the boundaries four times. If the zones are convex (see Figure 3.1(d)), the 

car crosses the boundary only once. We try to keep CANS running with a simple 

structure and high efficiency; therefore, our peers must have neither multiple zones 

nor a polygon zone. We therefore enforce the rule that every peer handles exactly one 

rectangular zone. Zones cannot be arbitrarily merged. After merging, CANS must 

ensure that all zones are rectangles and their length-width ratios limited to an 

acceptable range. 

3.3 Peer Churn 

Peer joining and departure have to follow the protocols. The protocols make CANS 
stably run. 
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3.3.1 Peer joining 

Because peer joining does not generate concave zone, joining a CANS network is 

done the same way as in CAN. At the beginning of CANS, only one peer handles the 

entire coordinate space. When a new peer joins CANS, it is allocated its own portion 

of the key space. This is done by an existing peer splitting its allocated zone in half, 

retaining half and handing the other half to the new peer [6]. In sharing a zone, the 

split peer splits its zone according to the “split rule”, which is same with original 

CAN. 

3.3.2 Peer Departure 

When peers leave or crash, CAN must ensure that all zones are rectangles and their 

length-width ratios are limited to an acceptable range. We call this “acceptable.” 

Sometimes, all zones are rectangles, but the layout of the zones is nevertheless 

unacceptable. For example, Figure 3.2(a), Figure 3.2(b), and Figure 3.2(c) show two 

layouts after peer 5 leaves. Here, the resulting state (i.e., zone split) cannot always be 

reached from the initial state according to the split rule. 

1

43

25

6
 

(a) Peer 5 is leaving 
 

(b) Acceptable zones 
  

(c) Unacceptable zone 
Figure 3.2 Acceptable and unacceptable zones 

For example, zone 1 merges with zone 5 (see Figure 3.2(b)): this layout can be 

formed by splitting the entire key space according to the split rule. We call this layout 

“acceptable.” If peer 6 merges with zone 5, the CAN becomes as shown in Figure 

3.2(c). Although all zones are rectangular, this layout will never be formed by 

splitting the entire space according to the split rule. Therefore, we call this 

“unacceptable.” 



3.Using CAN Tree to Manage a CANS      46 

Definition 3.1: “Acceptable” is a state that is reached by splitting the entire space 

according to the split rule. 

Definition 3.2: “Merge” is a zone action. When a zone of a peer merges with another, 

it extends its responsibility to take over the zone. After merging, CANS must be 

acceptable (see Figure 3.3). 

Definition 3.3: (“Mergeable-zone,” “mergeable-sibling-zone,” and “mergeable-zone- 

pair”). When two zones can merge with each other, they are mergeable-zones: One is 

the other’s mergeable-sibling-zone. Both of them are a mergeable-zone-pair. 

 
Figure 3.3 Merging 

 
Figure 3.4 Occupying 

Definition 3.4: “Occupy” is a zone action. A mergeable-zone peer releases its own 

zone and takes over the zone of another peer. The released zone will be merged by its 

mergeable-sibling-zone (see Figure 3.4). Only mergeable-zone peer can occupies 

others. Because occupier is mergeable-zone peer, the released zone of occupier 

definitely can merge with its mergeable-sibling- zone peer. 

When a crashed zone cannot merge with its neighbor, we use “occupy” to handle the 

crashed zone[68]. A neighbor occupies a crashed zone and releases its own zone. 

Subsequently, other peers try to merge with the released zone, and so on. It is 

recursive. The recursion process will not be terminated until a mergeable-zone peer is 

found. 

In CAN, all peers are independent and do not have a global view. The smallest 

neighbors of crashed peer[6] must occupy the crashed peer. Depending on the 

different neighbor to occupy, we get a different result and hence a different step count. 
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Therefore, the number of recursion steps is indeterminate. Figure 3.5 and Figure 3.6 

show examples. The solution in Figure 3.5 uses five steps (four occupying and one 

merging), but the solution in Figure 3.6 uses only three steps (two occupying and one 

merging). 

 
Figure 3.5 Long process of peer departure

 
Figure 3.6 Short process of peer departure 

The number of recursion steps is unpredictable. In the best-case scenario, a neighbor’s 

zone can merge with the released zone. Here, only one step is required. However, in 

the worst-case scenario, we traverse almost all the peers. Here, we need as many steps 

as there are peers. This will seriously affect the system’s scalability and stability.  

In order to improve the worst case bound, we introduced an improvement scheme 

“shortcut.” Our design does not restrict which peers can take part in the release-zone 

process. When a peer cannot find a mergeable-zone peer among its neighbors, it can 

directly ask a non-neighbor mergeable-zone peer to handle it. In this scenarios, CANS 

needs additional links. We call it “CAN tree” and introduce it later. 

Because a mergeable-zone can merge with its mergeable-silbing-zone, the process 

uses only two steps. In the best-case scenario (merge with a neighbor), we 

nevertheless need one step. However, in the worst-case scenario (merge with a 

non-neighbor), we need only two steps. Figure 3.7 shows the path of 

“shortcut-release-zone.” Peer detects the states of its neighbors by means of periodical 

heartbeat messages [66]. When a neighbor of peer 1 detected peer 1 crashed, it 

informs all neighbors of the crashed peer[6]. It will be in charge of recovery. It found 

a mergeable-zone-pair peer 5 and 6, and asks peer 5 to occupy the zone of peer 1. 

Peer 6’s zone then merges with the zone released by peer 5. 
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Figure 3.7 Shortcut peer departure 

In the “shortcut release zone,” the key is to find a mergeable-zone in CAN. We 

designed the “CAN tree” to search mergeable-zone. CAN tree is a data structure that 

records the splitting history. Figure 3.8 shows a CAN and its CAN tree. The shaded 

zones are mergeable-zones. Every peer represents a zone. Using the CAN tree, we can 

easily find these mergeable-zones. 

  

Figure 3.8 CAN and its CAN tree 

3.4 CAN Tree 

In order to find mergeable-zones, we need the splitting history of the key space. We 

use tree structure to record splitting history, it’s termed “CAN tree.”  

3.4.1 Building a CAN Tree 

When peers join CAN, an existing peer split its zone in accordance with the split rule. 

At the same time, the “parent-child” (long link) relation between peers is 

established[68]. If new peer p got half a zone from peer q, q becomes the parent of p. 

All “parent-child” relations comprise a tree[68].  
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In the beginning, there is only one peer in CAN to handle the entire coordinate space. 

The peer is the root of the tree. As new peers join CAN, the CAN tree grows. Figure 

3.9 shows how a CAN tree is built. The shade zones are mergeable-zones. 

NO. layout of zones CAN tree NO. layout of zones CAN tree 
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Figure 3.9 Building a CAN tree 

The CAN tree looks similar to partition tree. However, they are different. In partition 
tree, the leaf peers exist in CAN. The other peers no longer exist, but have existed in 
the past[56]. Thus, global view and space splitting history are necessary to build a 
partition tree. In contrast, every peer in CAN tree exists in CANS. Peers only need to 
know their parents and children. The global view is not necessary. 

3.4.2 Storing the CAN Tree 

There are multiple options for storing the CAN tree. The most straightforward 

solution is to store the CAN tree on a dedicated server or to select a peer (or set of 
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peers) that is responsible for storing the tree. This CAN tree server records all 

relationship between peers. It is simple. But it has bottle neck problem. It also 

becomes the weakness of CANS. If this server crashed, CANS cannot work anymore. 

The second option is to build a distributed CAN tree: Every peer records a set of 

pointers that build connections between parent peer and child peer (see Figure 3.10). 

When peers join or leave (actively) CANS, we only modify the pointers on the 

affected peers. When a peer crashed (passively), one of its neighbors will lead 

recovery (introduce later in section 3.4.3). It also inform the involved peers to modify 

the pointers. The peer churn then affects only a small number of peers. Because 

updating pointers is independent of the number of peers in the system, the cost of the 

operation is constant. Therefore, the cost of the CAN tree is very cheap and CAN can 

scale well. Traversing the tree becomes more costly when the tree is distributed 

instead of centralized. However, with a decentralized storage there is no risk of losing 

the tree if the dedicated tree server peers crash all together. 
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8

 

(a) CANS 

 

(b) CAN tree 

Figure 3.10 Distributed CAN tree 

3.4.3 Finding Mergeable-Zones 

If a zone is split into two sub-zones and the sub-zones are not split any more, the two 

sub-zones are a mergeable-zone-pair. According to this rule, we could judge whether 

two zones are a mergeable-zone-pair. 

Because the order of sibling nodes (from left to right) is the order in which a zone is 

gained from the parent, the youngest node in the sibling nodes is the rightmost node. 

For example, Figure 3.8 shows node 5 having two child nodes. Node 8 is the 
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rightmost leaf node. Therefore, the last split of zone 5 splits half of its zone to create 

zone 8. Zones 5 and 8 are then not split anymore.  

Consequently, zones 5 and 8 are mergeable-zone-pair. We call this the 

“mergeable-zone-pair rule.” We deduced that two zones that map to the rightmost leaf 

node and its parent node in a CAN tree, are a mergeable-zone-pair. 

Peers use heartbeat message to test whether its neighbors crash. When a peer finds its 

neighbor crashed, it will inform all the neighbors of crashed peer. And it takes 

responsibility to lookup mergeable-zone-pair. We call it “leading peer”. It checks 

whether the crashed peer is mergeable-zone. If it is, the leading peer send message to 

the mergeable-sibling-zone to merge with the crashed peer. Otherwise, the leading 

peer is in charge of search mergeable-zone-pair in CAN tree. 

If the leading peer has children in CAN tree, it sends the message to its rightmost 

child (the youngest child) in CAN tree. For example in Figure 3.11, peer 1 is leading 

peer. It will send message to peer 5. Every peer received the message will send this 

message to its rightmost child until find a rightmost leaf peer. The leaf peer and its 

parent are mergeable-zone-pair. The rightmost leaf peer will take over the zone of 

crashed peer and release its own zone (it will be merged by its 

mergeable-sibling-zone.). The other neighbors of the crashed peer will not take part in 

the search. 
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Figure 3.11 Traveling in CAN tree 
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If the leading peer has no child, it must send message to its parent peer in CAN tree. 

For example in Figure 3.11, the leading peer 3 sent a message to peer 1. Peer 1 sent a 

message to its rightmost child. 

In multiple crashes, we maybe find a crashed peer in traveling path. For example in 

Figure 3.11, peer 3 is leading peer. It sent a message to peer 1. But peer 1 crashed too. 

In this case, peer 3 will find out the replication of peer 1(Original CAN reality 

solution in section 2.4.5). According to the replication of peer 1, peer 3 directly sent a 

message to the rightmost child of peer 1. In other word, traveling could jump over 

crashed peer via peer replication. Therefore, the crashed peers could be merged or 

occupied one by one. 

By repeatedly traversing the rightmost child, we find the rightmost leaf node in any 

case. Using the CAN tree, we only need to traverse a small portion of peers to find a 

mergeable-zone. Therefore, our algorithm will always succeed and it significantly 

speeds up the process of reallocating zones. 

3.4.4 Complexity of Searching Mergeable-Zones 

We know that we can find a mergeable-zone by traversing the rightmost. Therefore, 

the complexity of searching a mergeable-zone depends on the peers count and the 

structure of the CAN tree. 

The worst-case scenario 

In the worst-case scenario, the CAN tree degenerates into a list structure, i.e., there is 

only one associated child node for each parent node. This means that in a performance 

measurement the CAN tree will essentially behave like a linked list data structure. 

Therefore, the complexity in the worst-case scenario is ( )nO ; and we plot the 

average length of the traversing path for an increasing number of nodes (the 

curve )(nfworst  in Figure 3.12).  
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Figure 3.12 Effect of CAN tree searching 

The best-case scenario 

All zones are mergeable-zones (see Figure 3.13). Therefore, the length of the 

traversing path is 1)( =nfbest  (the curve )(nfbest  in Figure 3.12). The complexity in 

the best-case scenario is ( )1O . 

1

1211109

625

4 8

16151413

73

  
Figure 3.13 The best case 

Average case scenario 

In the previous cases, the length of the traversing path can be directly inferred from 

the algorithm; in the average case, we resorted to simulation. In simulation, we 

randomly generated 100 CAN trees. The number of peers ranged from 1 to 100. The 

simulation randomly makes a zone crash and calculated the length of the traversing 

path in every CAN tree. After running the simulation 1000 times, we got the average 
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length of the traversing path in CAN trees with different number of peers. We plot it 

for an increasing number of peers (the curve )(nfaverage  in Figure 3.12). 

The inefficient recursive algorithm searches mergeable-zones via the layout of CANS 

(i.e., it does not use the CAN tree), so it must visit all peers—resulting in a 

complexity of ( )nO . Even if the CAN tree is in the worst-case scenario, it does not 

need to visit all peers. It only needs a depth-wise search to find the mergeable-zone, 

and does not care about nodes above the current node in the CAN tree. Although the 

inefficient algorithm and CAN tree searching in the worst-case scenario have the 

same complexity ( ( )nO ). The inefficient algorithm is by a constant factor slower than 

the CAN tree in the worst-case scenario. (The curve )(nf tinefficien  in Figure 3.12.)  

From Figure 3.12, it can be seen that our algorithm greatly reduced the path length. 

Furthermore, )(nfaverage  is almost independent of node number. Therefore, we can 

avoid unnecessary hops via CAN tree, and CANS becomes more efficient. 

3.4.5 CAN Tree Modification on Peer Departure 

When a peer crashes or leaves, other peers will merge with or take over its zone, as 

discussed in section 3.3.2. We must modify the CAN tree according to the CANS 

modification. The CAN tree records the splitting history of the updated CANS; for 

example, as follows: 

 Merging: At the beginning, the key space and CAN tree is as shown in Figure 
3.14. Peer 6 is leaving. Because peer 6 is a mergeable-zone, it can be merged with 
its neighbor’s zone. After peer 6 has left, peer 2’s zone is merged with peer 6’s 
zone (see Figure 3.15). In the CAN tree, node 6 is deleted. 

  

Figure 3.14 CANS and CAN tree before departure 
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Figure 3.15 CANS and CAN tree after merging 

 Taking over: When peer 4 is leaving (see Figure 3.14), its zone cannot be merged 
with its neighbor’s zone. Peer 8 merged its zone with peer 5’s zone. Peer 5 took 
over peer 4’s zone (Figure 3.16). In the CAN tree, node 5 is transferred to the 
position of node 4 and node 8 is transferred to the position of node 5. 

  

Figure 3.16 CANS and CAN tree after occupation 

3.5 Conclusion 

In this chapter, we presented CANS, a Peer-to-Peer network for conducting traffic 

simulations or MMVE games. CANS is based on CAN, but it features several 

optimizations that make it more useful in our simulation scenarios. CAN has some 

issues that are related to the shape of its zones: specifically, they can become arbitrary 

polygons. For file sharing, this is not a drawback, but for simulations, the 

communication overhead is lowest for quadratic zones. 

Therefore, CANS uses a new algorithm to reallocate zones, such that they are neither 

concave nor slim. We have shown that a simple and straightforward solution can 

achieve the desired zone splitting, but too many peers are involved in swaps. 

As a result, we introduced the CAN tree. This tree structure allows us to find 

mergeable-zones very efficiently. This greatly reduces the number of zone swaps 

between peers when compared to the simple approach. We showed that we can give a 

constant boundary for the number of swapping steps.
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Chapter 4 

Using Zone Code to Lookup Mergeable-zones 

A CAN tree records the splitting history and allows to search mergeable-zones 

efficiently. However, peers need to communicate in order to modify the CAN tree 

after peers churn. We introduced the zone code to do the same work with the CAN 

tree, with no communication needed among the peers. Consequently, the zone code 

scheme reduces communication overhead. 

4.1 Partition tree 

When a new peer joins CANS, a zone is split into two sub-zones. If we record that the 

zone is the parent of the two sub-zones, the splitting history is a binary tree (see 

Figure 4.1). People call it “partition tree” (section 2.4.3). The partition tree records all 

the splitting details from the beginning to the present. The leaf nodes represent zones 

that exist in CAN. The other nodes represent zones that no longer exist, but have 

existed in the past[56]. 
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Figure 4.1 Partition tree 

If a zone is split into two sub-zones and the sub-zones are not split any more, the two 

sub-zones are a mergeable-zone-pair. Combining all our insights, we deduced the 

following corollary: 

Corollary 4.1: Two sibling leaf nodes in the partition tree, which share a common 

parent node, are mergeable-zone-pair peers. 

Thus, the partition tree is a solution to search the mergeable-zones. Because the 

internal peers no longer exist (they existed at some previous time),, we can not use 

this tree structure. Instead of the partition tree, we only store the partial useful 

splitting history by zone code. 

4.2 Building Zone Code 

We do not store the entire partition tree in any peer, but rather convert the partition 

tree into bit sequences called the zone code (see Figure 4.2). Each zone stores a zone 

code (a part of partition tree). A zone code is a unique code, and it is fully 
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decentralized. A traversal of the partition tree is performed to obtain the zone code 

(see Figure 4.2). It is analogous with Huffman code [69]. Going left is a “0,” going 

right is a “1.” A zone code is completed when a leaf node is reached. We deduced the 

following corollary: 

Corollary 4.2 The zone code is a binary prefix code. 

 

Figure 4.2 Zone code 

In practice, we do not need the partition tree to generate a zone code. Every bit of the 

zone code signifies a split. The more CAN splits, the longer the zone code becomes. 

The zone code grows with splitting and shrinks with merging. When a peer joins or 

leaves, we only need to append or delete, respectively.  
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4.2.1 Zone code growth as peers join 

When a new peer joins in CAN, an existing zone splits into two sub-zones. It retains 

one and hands the other one to the new peer. We append “0” to the zone code of one 

sub-zone, and append “1” to the other. After each splitting, the zone codes of the 

sub-zones will append 1-bit. Hence, the zone code grows simultaneously with 

splitting. 

Figure 4.3 shows how the zone code grows during the key space splitting. Initially, a 

peer handles the entire key space and its zone code is null. 
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Figure 4.3 New peer joining 
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4.2.2 Zone code decrease as peers’ zones merge 

When a peer leaves or crashes, there are two resulting scenarios. If it has a 

mergeable-zone, its zone can merge with its mergeable-sibling-zone (zones 1 and 5 in 

Figure 4.4(a)). After merging, we delete the last bit of the zone code. For example 

(see Figure 4.4(b)), peer 1’s zone merged with peer 5’s zone, and the zone code 

changed from “000” to “00.”  

 

(a) Before merging 

 

(b) After merging 

Figure 4.4 Peer departure and merging 

In the other scenario, if the departed peer had a non-mergeable-zone, a non-neighbor 

mergeable-zone will occupy it (see Figure 4.5). After occupation, the zone copies the 

zone code of the occupied zone. For example, in Figure 4.5(b), peer 3 has crashed. 

Peer 5 then occupied peer 3, and released its zone. In addition, peer 1’s zone merged 

with the zone released by peer 5, and deleted the last bit of its zone code (changed 

from “000” to “00”). 
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Figure 4.5 Peer departure and occupation 

4.3 How to find Mergeable-zones 

Theoretically speaking, it is easy to search for a mergeable-zone-pair via the partition 

tree. The sibling leaf nodes that share a common parent node are a 

mergeable-zone-pair. Thus, we deduced the following corollary: 

Corollary 4.3 Let ( )nn xxxxx ,, 121 −= L  and ( )nn yyyyy ,, 121 −= L  denote the two 

zone codes of zones X and Y. Then, { } ⇔=⊕∧=⊕−∈∀ 10:11 nnii yxyxni L X 

and Y are a mergeable-zone-pair.  

In other words, if two zone codes differ only in the last bit, they are a 

mergeable-zone-pair. Corollary 4.3 is crucial to our solution. We do not need any 

more data structures to record splitting history, such as partition tree or CAN tree. 

Using logical operation exclusive disjunction, we can know whether two zones are a 

mergeable-zone-pair. For example, peer 1’s zone code is “000” and peer 5’s is “001” 

(see Figure 4.2). Because of 001001000 =⊕ , they are a mergeable-zone-pair. Peer 6 

has zone code “011” and 010001011 =⊕ . Thus, peers 6 and 5 are not a 

mergeable-zone-pair. 
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4.4 Search Algorithm 

By means of the zone code, we can determine whether two zones are a 

mergeable-zone-pair. However, when we need a non-neighbor mergeable-zone, we 

have to search in the distributed system. Therefore, we need an efficient search 

algorithm. 

4.4.1 Area search 

We start to search from a randomly chosen zone, which could be any zone. It is 

termed “starting zone”. First, we search the mergeable-sibling-zone of starting zone. It 

is termed “search area” (see Figure 4.6). If there is only one peer in the 

mergeable-sibling-zone of starting zone, it means that it did not split again. The 

starting zone and search area are mergeable-zone-pair (the starting zone is shaded in 

Figure 4.7(a))..Otherwise, there are two scenarios: 

 Scenario 1: There is more than one zone in the search area and there is a 

mergeable-zone-pair among the neighbors of the starting zone. Because 

every zone directly communicates with its neighbors in CANS, we can get 

the zone codes of the neighbors of the starting zone. Hence, we can 

definitely find the mergeable-zone-pair by zone code (the starting zone is 

shaded in Figure 4.7(b)). 

 Scenario 2: There is more than one zone in the search area and no 

mergeable-zone-pair among the neighbors of the starting zone (the starting 

zone is shaded in Figure 4.7(c)). We need to randomly choose a new starting 

zone in the search area and repeat this process, until we find a 

mergeable-zone-pair. 
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Figure 4.6 Shrinking search area 
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Figure 4.7 Three search scenarios 

Because every zone splitting will generate a new mergeable-zone-pair, even if the 

search area is divided into sub-zones, there is definitely at least one 

mergeable-zone-pair in the search area. Searching is a recursive process to shrink the 

searching area. Therefore, our algorithm is always valid. Every step the search area 

shrinks half space at lest. It’s a kind of binary search. 

4.4.2 Complexity of Searching 

We know that we can find a mergeable-zone by shrinking the search area. Hence, the 

searching complexity depends upon the shrinking rate. 

The worst-case scenario 

There is only one mergeable-zone-pair in CANS. Therefore, the complexity in the 

worst-case scenario is ( )nO . The curve )(nfworst  in Figure 4.8 shows the hop count 

with increasing peers. 
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Figure 4.8 Effect of shrinking search 

The best-case scenario 

All zones are mergeable-zones. Therefore, the hop count is 1)( =nfbest (the curve 

)(nfbest  in Figure 4.8). The complexity in this best case is ( )1O . 

Average case scenario 

In the previous cases, the length of the traversing path can be directly inferred from 

the algorithm; in the average case scenario, we resorted to simulation. In the 

simulation, we randomly generated 100 CANS. The number of zones ranged from 1 

to 100. The simulation then randomly chooses a peer to crash and calculated the 

length of the traversing path in every CANS. After running the simulation 1000 times, 

we got the average length of the traversing path in the CAN trees with different 

numbers of zones. We plotted it for an increasing numbers of peers for coordinate 

spaces: Figure 4.8 shows the curve )(nfaverage . 

The inefficient algorithm searches mergeable-zones via the layout of CANS (i.e., it 

needs global view.), so it needs a system snapshot. Hence, it has a complexity of ( )nO  
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(n is the number of peers in system). When our algorithm is in the worst case scenario, 

it still does not need to visit all zones. Although the inefficient algorithm and our 

algorithm in the worst-case scenario have the same complexity, ( )nO . The inefficient 

algorithm is by a constant factor slower than our algorithm in the worst-case scenario. 

Therefore, the length of traversing with the inefficient algorithm is ( ) nnf tinefficien =  

(Figure 4.8, the curve ( )nf tinefficien ).  

From Figure 4.8, it can be seen that our algorithm greatly reduces the search 

complexity path length. Furthermore, )(nfaverage  is independent of the peer count. 

Therefore, we can avoid unnecessary hops and CANS becomes more efficient. Figure 

4.9 illustrates the search complexity path length distribution of CAN tree with 100 

peers. More than 45 percent only need 1 step to find mergeable-zone-pair. 

 

Figure 4.9 Search complexity path length in shrinking search 

4.5 Multiple Crashes 

After a new peer joins CANS, it and its zone supplier are become a 

“mergeable-zone-pair.” Thus, CANS has at least one “mergeable-zone-pair.” When 

peers crash, we encounter three kinds of scenarios: 
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 Scenario 1: CANS has at least one valid mergeable-zone-pair whose sibling 

zone is not crashed (see Figure 4.10(a)). 

 Scenario 2: CANS has only valid mergeable-zone, whose sibling-zone has 

crashed (see Figure 4.10(b)). There is at least one such mergeable-zone. 

 Scenario 3: CANS has no valid mergeable-zone (see Figure 4.10(c)). All 

mergeable-zones have crashed. 

 

(a) Scenario 1 (b) Scenario 2 

mergeable-zone

2

4
(crashed)

3

1
(crashed)

Merge

(c) Scenario 3 

Figure 4.10 Three scenarios in multiple crashes 

In multiple crashes, our strategy is that a valid zone merges with the crashed zone and 

takes over its responsibility. However, after merging, CANS may change from one 

scenario to another. In this section, we propose different algorithms for different 

scenarios. 

Algorithm for scenario 1 

In this scenario, there are at least two valid mergeable-zones. One occupies the 

crashed zone. Its sibling-zone merges with it. In this step, one crashed zone is 

recovered. Then scenario 1 may change into scenario 1, 2, or 3 (see Figure 4.11, 

Figure 4.12, and Figure 4.13). 
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(a) Before occupation 

 

(b) After occupation 

Figure 4.11 Scenario 1 to scenario 1 
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(b) After occupation 

Figure 4.12 Scenario 1 to scenario 2 
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Figure 4.13 Scenario 1 to scenario 3 

Algorithm for scenario 2 

In this scenario, there is only one valid mergeable-zone, and its sibling-zone has 

crashed. The valid zone merges with its crashed sibling-zone. In this step, one crashed 

zone is recovered. Scenario 2 may then change into scenario 1, 2, or 3 (see Figure 

4.14, Figure 4.15, and Figure 4.16). 
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(a) Before merging 
 

(b) After merging 

Figure 4.14 Scenario 2 to scenario 1 

 

(a) Before merging 

 

(b) After merging 

Figure 4.15 Scenario 2 to scenario 2 

 

(a) Before merging 
 

(b) After merging 

Figure 4.16 Scenario 2 to scenario 3 

Algorithm for scenario 3 

In this scenario, CANS has no valid mergeable-zone. All mergeable-zone-pairs have 

crashed. We must find the crashed mergeable-zone-pair and merge them. After 

merging, we have a new bigger crashed zone. Although no crash zone is recovered in 

this step, CANS may change into scenario 2 or 3 (see Figure 4.17 and Figure 4.18). If 

CANS changes into scenario 2, one crashed zone will be recovered in the next step. 
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Figure 4.17 Scenario 3 to scenario 2 
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(b) After merging 

Figure 4.18 Scenario 3 to scenario 3 

By combining the above three algorithms, additional insight can be deduced. Every 

merging recovers one crashed zone except in scenario 3. However, scenario 3 changes 

into scenario 2 via merging. Table 4.1 and Figure 4.19 show what happens after 

merging. During merging, the system’s scenario keeps changing until all crashed 

zones are recovered.  

Current scenario Next scenario Crashed zone recovered 
1 1/ 2/ 3 Yes 
2 1/ 2/ 3 Yes 
3 2/ 3 No 

Table 4.1 Transformation between scenarios 
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Figure 4.19 Transformation between scenarios 

If peers can retrieve any replications, CANS can recover from any multiple crashes as 

long as one peer survives. However, the replications store in peers (see section 2.4.5). 

When a peer crashed, the replications on it will crash simultaneously. Therefore, 

anti-crash capability also depends on replication solution. 

4.6 Reliability of the algorithm 

In general, as long as one zone survives, the system can recover from multiple crashes. 

The surviving zone takes over all responsibility. However, CANS must be acceptable 

at any time. This means that zones cannot arbitrarily merge. Only a 

mergeable-zone-pair can merge with each other. In this section, we will prove that 

CANS can recover from any crash. In other words, even if only mergeable-zone-pair 

merging is allowed, all crashes can be recovered. 

We assume that there are enough redundant replicas. All zones can get replicas of 

crashed zones any time (In this thesis we use the replica solution in [6]). First, we 

prove that our multiple-crash recovery algorithm can guarantee that CANS always 

remains acceptable. In our multiple-crash recovery algorithm, we discussed three 

scenarios in the last section. In the three scenarios, there are only three kinds of 

merging: valid-zone merging (see Figure 4.10(a)), valid-crashed-zone merging (see 
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Figure 4.10(b)) and crashed-zone merging (see Figure 4.10(c)). They are all 

mergeable-zone-pair merging. Hence, CANS always remains acceptable. 

Second, we must prove that CANS can recover from any crash via our multiple-crash 

recovery algorithm. Different kinds of merging have different results, as follows: 

 Valid-zone merging: Two valid zones merge with each other. The new zone is 

valid. 

 Valid-crashed-zone merging: A valid zone merges with a crashed zone. The 

valid zone extends its responsibility to take over the crashed zone. Thus, the 

new zone is still valid. 

 Crashed-zone merging: Two crashed zones merge with each other. The new 

zone is crashed. 

If we let valid zone denote “1” (“true”) and crashed zone denote “0” (“false”), we get 

Table 4.2. Table 4.2 is the same as the truth table of disjunction. Via calculation, we 

can determine the situation after multiple mergings.  

 zone 1 zone 2 new zone 

Valid-merging 1 1 1 

Valid-crash-merging  1 0 1 

Valid-crash-merging  0 1 1 

Crash-merging 0 0 0 

valid: 1, crashed: 0    

Table 4.2 Merging results 

Let iz denote the situation of zone i with { }1,0∈iz  and { }ni L2,1∈ . 

Let { }
48476
L

n

zzS ,, 211 =  denote the situation of CANS before merging, and there is at 

least one valid peer ( 1: 1 =∧∈∃ zSzz ). 
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Let { }
}1

2

−

=
n

S L  denote situation of CANS after mergings. 

According to Table 4.2, a crashed zone will disappear after once merging, thus 

{ }0|\ 112 =∧∈∈= eSeezSS .  

Subsequently, 

{ }0|\1 =∧∈∈=+ eSeezSS iii . 

Let endS  denote situation of CANS after multiple-crash recovery. 

The merging process will end up with 1: =∧∈∀ zSzz end . All zones in endS  are 

valid. CANS has recovered from multiple-crash. 

Subsequently, 1:1: 1 =∧∈∀⇒=∧∈∃ zSzzzSzz end   

We have shown that the algorithm converges and gains a situation endS  where all 

endSz∈  are “1,” i.e., they are valid. Thus, CANS reaches an acceptable state after 

finite steps. 

4.7 Conclusion 

In Chapter 3, CANS uses the CAN tree to reallocate zones, such that they are not 

concave and slim. It shows that a simple and straightforward solution can achieve the 

desired zone splitting, but the CAN tree needs to be updated after peer churn. Thus, 

the system uses extra communication to modify the CAN tree 

In order to overcome the drawbacks of the CAN tree, we introduced the zone code 

and mergeable-zone searching algorithm. They have a similar efficiency and lower 

communication cost.  
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5 CAN Tree Routing 

Chapter 5 

CAN Tree Routing 
We talked about routing improvement in section 1.1.2. We need a novel long link 
routing solution which could improve routing efficiency in low dimensional CAN. 

5.1 Introduction 

Long links have been extensively utilized by many other Peer-to-Peer protocols, such 

as Chord [4] and Pastry [5], to improve routing performance. Moreover, we use 

eCAN [64], LDP [65], SCAN [70], and RCAN [66], which have also adopted long 

links for the same purpose of improving routing functionality, but in different ways 

[66]. They are built on top of the conventional CAN overlay. 

Our scheme is also based on long links. However, we concentrate on a novel approach 

to establishing a search tree infrastructure in CAN in order to improve its routing 

performance and enhance fault-tolerance. Meanwhile, both long links and peer churn 

maintenance overhead should be minimized. 

5.2 Zone Code and CAN Tree 

Instead of greedy routing, we route in a tree network. The key idea is to establish a 

Peer-to-Peer tree (CAN tree)[68] via long links. Each peer of CAN is a node of the 

CAN tree. Because CAN tree is not a binary tree, peers do not know what is next hop. 

They need more information to choose the routing target peer. We use the zone code. 

We proposed the zone code in chapter 4. It is a binary string that records the splitting 

history of its corresponding zone. In theory, we can obtain the zone code by traversing 

the partition tree (see Figure 5.1(b)). The partition tree is a binary tree that records the 
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reassignment process. In order to obtain a zone code, we perform a traversal from root 

to leaf in the partition tree. This is analogous to Huffman code [69]. Going left is a 

“0,” going right is a “1.” A zone code is only completed when a leaf node is reached 

[62]. Figure 5.1(b) illustrates how zone codes are established via the partition tree. 

 
(a) CAN 

 
(b) Partition tree 

Figure 5.1 CAN and partition tree 

In practice, we do not need the partition tree to generate a zone code. When a peer p 

shares its half zone with a new peer c, peer c copies p’s zone code. Peer p and c then 

append “0” and “1,” respectively. Let pδ denote the zone code of peer p. After peer c 

joining, the new zone code of peer p is ( )0,pδ and the zone code of c is ( )1,pδ . Hence, 

zone code grows simultaneously with zone splitting. The more splits, the longer the 

zone code becomes[62]. Combining all our insights, we deduced the following 

corollary: 

Corollary 5.1: In a partition tree, the zone code of peer p is the prefix of the zone 

codes of all peers in the subtree rooted at peer p. 

For example, the shaded peer in Figure 5.1(b) has zone code (0, 1). Thus, the zone 

codes of peers in the subtree have a common prefix (0, 1). 
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By Corollary 5.1, we can route in the partition tree. Because the internal peers in the 

partition tree no longer exist (they existed at some previous time), we cannot establish 

a distributed partition tree via long links in practice. We need the CAN tree to realize 

the long links. 

CAN tree is a variation of the partition tree. Both of them are representations of the 

zone splitting process. There are some duplicate peers that have the same name but 

different zone codes in the partition tree (see Figure 5.1(b)). If we merge duplicate 

peers into one peer and it inherits duplicate peers’ children, it becomes a CAN tree 

(see Figure 5.2). A CAN tree is not a binary tree, but all peers exist in the CAN tree. 

Thus, we can implement highly efficient routing in the CAN tree. 

 
Figure 5.2 CAN tree 

We build the CAN tree via parent-child long links. When a new peer c forwards a 

JOIN request and peer p shares half its zone with peer c, peer c becomes the child of 

peer p. All “parent-child” relations constitute a distributed CAN tree. In order to route, 

each peer must store its original zone code *δ and current zone codeδ . Therefore, 

when a new peer c joins in CAN and obtains its zone from peer p, peers p and c must 

act as follows (see Figure 5.3):  
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1. Peer p splits its allocated zone in half, retaining half and handing the other half to 

peer c. 

2. Peer p becomes the parent of peer c. Both of them augment long links to establish 

a “parent-child” relation in the CAN tree. 

3. Peer c copies p’s current zone code ( δδ =p ). Peers p and c then append “0” and 

“1,” respectively, i.e., new ( )0,δδ =p and ( )1,δδ =c . 

4. Peer c sets ( )1,* δδ =c (original zone code c), Peer p is not a new peer, therefore 

*pδ (original zone code p)does not change. 

 
(a) Before joining 

Long link

c
δc*=(δ,1)

δc=(δ,1)

p
δp*=δ

δp=(δ,0)

 
(b) After joining 

Figure 5.3 New peer c joins CAN 

Let *pδ denote the original zone code of peer p. *pδ is the first zone code of peer p, 

and *pδ is constant. If peer p shares its zone with a new peer, pp δδ ≠* . For example, 

in Figure 5.2, ( )0,0,1,03 =δ and ( )1,0*3 =δ . *pδ is the prefix of pδ . Consequently, 

*pδ is also the prefix of the zone code of the children of peer p. Combining all our 

insights, we deduced the following corollary:  

Corollary 5.2: In a CAN tree, peer p has the original zone code *pδ . *pδ  is the 

prefix of the zone codes of the peers in the subtree rooted at peer p.  

For example, in Figure 5.2, *3δ is the prefix of the zone code of all the peers in the 

subtree rooted at peer 3. *1δ is null, it is the prefix of any zone code of peers in the 
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CAN tree. Since a new peer obtains its zone code via copying and extending the zone 

code of its parent, we deduce the following corollary: 

Corollary 5.3: If *pδ of peer p is the prefix of the cδ of peer c, peer c is in the subtree 

rooted at peer p. 

Let *pδ denote the original zone code of the current peer p and dδ  the zone code of 

the target peer d. Consequently, our routing scheme is that peer p checks whether its 

*pδ is the prefix of dδ . If it is, peer p forwards the message to its child, which shares 

the longest common prefix with dδ . If not, peer d is not in the subtree rooted at peer 

p and so peer p forwards the message to its parent peer.  

 

Figure 5.4 Flow diagram 

Figure 5.2 illustrates the routing from peer 5 to peer 7. If the target peer is not in the 

subtree rooted at the current peer, we expand the searching subtree until it covers the 

target peer. Afterwards, we shrink the searching subtree until the current peer is the 
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target. During shrinking, the target peer is always in the subtree rooted at the current 

peer. Therefore, the routing must eventually terminate successfully.  

5.3 Routing table 

The routing table consists of the short links toward the neighbors and the long links 

toward the parent and child peers in the CAN tree, and the original zone code *δ (see 

Figure 5.5). In this section, we present the details of how to establish and maintain the 

routing table. The routing procedure is addressed in the next section. 

CAN maintains short links by exchanging heartbeat messages between immediate 

neighbors. For d-dimensional CAN, a peer maintains ( )dO neighbors on average. This 

is analogous to the original CAN. 

Long links are a part of the CAN tree; this is central to our scheme. They are 

established during the joining of new peers. In the beginning, there is only one peer in 

CAN. This peer is the root of the CAN tree. When a new peer joins in CAN, an 

existing peer splits its zone into two sub-zones, retaining one and handing the other to 

the new peer. The two peers are parent and child in the CAN tree. Meanwhile, we 

establish long links between them, i.e., they augment a long link set in its routing 

table. They are distant neighbors. The entry in the routing table comprises distant 

neighbor information, e.g., peer ID, IP address, and zone codeδ  (Figure 5.5) [71]. 

(a) Peer 1 (b) Peer 2 (c) Peer 3 (d) Peer 4 

(e) Peer 5 (f) Peer 6 (j) Peer 7 

Node ID:8     δ8=(001)  δ8*=(001)

000

Distant Neighbor
Zone code

1
Node ID

1
2

Node ID

4

Parent

Short Link

 (h) Peer 8 

Figure 5.5 Routing tables 
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5.4 Routing Mechanism 

If a peer has the zone code dδ of a target peer, it can choose precisely the next hop via 

its routing table. Otherwise, we need the algorithm described in 5.4.3 to compute the 

zone code dδ  based on a target point coordinate. 

5.4.1 Routing to a Peer via CAN Tree 

Figure 5.4 illustrates the routing flow diagram. If current peer c is not the target peer, 

it checks whether its original zone code *cδ is a prefix of dδ . If it is, it forwards the 

message to the distant peer that shares the longest common prefix zone code with dδ . 

If not, it forwards the message to its parent peer. Since the root peer has no parent in 

the CAN tree, it always forwards the message to its child, which shares the longest 

prefix with dδ . As expressed in section 5.2, the routing must eventually terminate 

successfully. 

For example, peer 5 ( ( )1,15 =δ  and ( )1,15 =δ ) in Figure 5.2 forwards a message to 

peer 7 ( ( )1,0,1,07 =δ ). The routing table is in Figure 5.5. The routing process is as 

follows: 

1. Peer 5 is not the target. Since ( )1,1*5 =δ is not the prefix of ( )1,0,1,07 =δ , peer 5 

forwards the message to its parent peer 2. 

2. Peer 2 is not the target. Since ( )1*2 =δ is not the prefix of ( )1,0,1,07 =δ , peer 2 

forwards the message to its parent peer 1. 

3. Peer 1 is not the target. Since it is root peer, it forwards the message to the child 

peer 3 whose ( )0,0,1,03 =δ  shares the longest common prefix zone code 

with ( )1,0,1,07 =δ  
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4. Peer 3 is not the target. Since ( )1,0*3 =δ is the prefix of the ( )1,0,1,07 =δ , peer 3 

forwards the message to child peer 7, which is the target. Thus, routing is 

finished. 

If a peer forwards a message to a point in key space, it has no idea about the target 

peer. In order to route according to our routing table, it needs to calculate the target 

zone code. We describe how to do this below. 

5.4.2 Get Zone Point Set via Zone-Code 

By definition, all zones with the same zone code length are the same size. The zone 

code of peer p ( ( )Lpppp ccc 321 ,,=δ ) is divided into d parts. The sub-set of the zone 

code ( )Lp
j

p
j

p
j

p
i ccc

321
,,=δ  ( idjn =mod ) records the splitting process along the i-th 

axis [71]. 

Given that the zones are halved along one dimension during split, this implies that 

their sizes are also proportional to the inverse of powers of 2. p
iδ  is the length of 

p
iδ , and the proportion of p’s width to space’s width on the i-th dimension is p

iδ2

1
. 

Let ( )10
p

iδ denote the decimal representation for p
iδ  and iw denote CAN’s key 

space width on the i-th dimension. Then, 
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Figure 5.6 Zone boundaries in one dimension 
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For example, two-dimensional CAN has the width w and height h. The zone code of p 

is divided into the partial zone codes p
xδ and p

yδ , which record the x-axis and y-axis 

splitting process, respectively. The zones are defined as a set of points p
yxZ , : 
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Equation 5.1 Zone point set in two-dimensional key space 

Therefore, if peer 6 has zone code ( )1,0,16 =δ  in CAN (w = 800 and h = 600, shown 

in Figure 5.7), it follows that: 
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Figure 5.7 CAN (width = 800 and height = 600) 

5.4.3 Routing to a Point via Routing Table 

The current peer c sends a message to a point p in the key space, and we assume the 

target is peer e whose zone covers point p. In CAN tree routing, we also need the zone 
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code eδ of peer e. However, the current peer c does not have any information about 

peer e. We can calculate the zone code by reversing the aforementioned derivation in 

section 4.2, and then, forwarding the message to the next peer. Routing is as follows: 

1. Calculate eδ : We calculate eδ by reversing the aforementioned derivation in 

section 5.2, e.g., in two-dimensional key space, which is deduced from Equation 

5.1. However, Equation 5.1 depends on the length eδ of the zone code of peer e, 

which is an unknown factor. We assume that peers c and e have the same length 

zone codes, i.e., ce δδ = . Consequently, eδ can be deduced from Equation 5.1. 

2. Choose next peer: The current peer c checks its routing table whether its *cδ is 

the prefix of eδ . If it is, it forwards the message to its child peer that shares the 

longest common prefix with eδ . If not, it forwards the message to its parent peer. 

This step is the same as in section 4.1. 

For example, peer 5 in Equation 5.1 has ( )1,1*5 =δ and ( )1,15 =δ , and forwards a 

message to point (100, 500). The routing procedure is as follows: 

1. Peer 5 assumes that peer e is the target. Since 25 =δ , set 2=eδ . Thus, 

calculate eδ as follows: 
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Since ( )1,1*5 =δ is not the prefix, it forwards the message to its parent peer 2. 

2. Peer 2 calculates and obtains ( )0,1,0=eδ dependent on 32 =δ  (same as the first 

step). Since ( )1*2 =δ is not the prefix of ( )0,1,0=eδ , it forwards the message to its 

parent peer 1. 

3. Peer 1 calculates and obtains ( )0,1,0=eδ dependent on 31 =δ . Since it is root 

peer, it forwards the message to child peer 3 whose ( )0,0,1,03 =δ shares the 

longest common prefix with eδ . 

4. Peer 3 calculates and obtains ( )1,0,1,0=eδ dependent on 43 =δ . 

Since ( )1,0*3 =δ is the prefix of eδ , it forwards the message to child peer 7, 

which is the target. Thus, routing is finished. 

Calculating the target zone code is the only difference between routing to a peer and a 

point. 

5.4.4 Distant neighbor failure 

Peer failure causes potential long link routing failure. If long link routing fails[72], the 

peer forwards this message in accordance with the original CAN greedy routing. 

When a peer detects a crash, the recovery procedure is triggered. We describe the 

process in detail in the next section. 
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5.5 Peer departure and recovery of CAN Tree 

In our scheme, only sibling peers in the partition tree are allowed to merge with each 

other; they are called mergeable-zone peers, i.e., zones of two peers can merge with 

each other, which share common zone code prefix and only the last bits are different 

(peers 2 and 6 in Figure 5.8(b)). In a CAN tree, they are parent and child (see Figure 

5.8(c))[68]. When a peer p leaves the system and q takes over its zone, either of two 

scenarios may happen: 

Case 1 (p and q are mergeable-zone peers): This case is very straightforward. Peer 

q inherited the long links of p, and then peer q checks and removes unavailable long 

links. The zone-code of q deletes the last bit of zone code. The original zone code of q 

is the short one between *pδ and *qδ . After a short stabilization period, inform all 

affected peers to update their routing table. For example, once peer 2 crashes, peer 6 

will extend its responsibility to take over the zone of peer 2, and peer 6 modifies its 

zone code from (1,0,1) to (1,0)(see Figure 5.8(a)). Since *6*2 δδ < , we set new *6δ to 

be *2δ . 

(a) CAN (b) Partition tree (c) CAN tree 

Figure 5.8 Merging 

Case 2 (p and q are not mergeable-zone peers): In this case, q takes on the role of p. 

Peer q also abandons its routing table, and copies p’s. The situation turns into the first 
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case. For example, we need a non-neighbor mergeable-zone peer to deal with peer 5 

crash (see Figure 5.9(a)). If we use peer 7 to occupy peer 5, peer 3 will merge with the 

zone, which is released by peer 7 (see Figure 5.9(b) and Figure 5.9(c)). 

(a) CAN (b) Partition tree (c) CAN tree 

Figure 5.9 Occupation 

5.6 Evaluation 

Our solution does not redesign CAN routing, but extends it. Via long links, several 

routing features are optimized simultaneously: small routing path, more routing 

flexibility, and fault-tolerance. The routing procedure always converges, since each 

step forwards the message to a peer that shares a longer prefix than the last step, each 

step moves closer to the target. 

CAN tree routing is based on a tree. Hence, the complexity depends on the tree 

structure. In order to demonstrate the effectiveness of our design in terms of routing 

performance, we implemented a CAN tree routing scheme in C# and conducted a set 

of experiments via distinct schemes on networks with up to 16000 peers. We ran 

CAN tree routing against the original CAN greedy routing to offer comparative 

measurements. These measures include essentially: path length to cope with different 

network size, path length distribution, and number of long links per peer. 

Figure 5.10(a) and Figure 5.10(b) show plots of the average and the maximum path 

length, respectively, with respect to network size. The path length is measured by the 
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number of hops traversed during each lookup request. Figure 5.10 illustrates that both 

the average and maximum path length in CAN tree routing are better than other 

routing, and both of them are perfectly asymptotic to the logarithm of the peers. The 

path length of greedy routing (see Figure 5.10) increases much faster. 

 
(a) Average path length 

 

 
(b) Maximum path length 

Figure 5.10 Path length with increasing network size 
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Figure 5.11 illustrates the path lengths distribution of routing in CAN with 16000 
peers. The path length distribution of CAN tree routing is much better than in other 
routing.  

 

Figure 5.11 Path length distribution 

Except for the first peer, every new peer needs two long links to join in the CAN tree. 

Each parent peer needs one long link pointing to its child; and child peers need one 

long link pointing to its parent. Hence, the number of long links is ( ) 21 ×−n , and the 

average long links can be calculated as follows: 

( )
n

nLaverage
21 ×−

=  

22)1(limlim
=

×−
∞→

=
∞→ n

n
n

L
n average  

Thus, each peer maintains two long links on average.  

5.7 Conclusion 

CAN tree routing is a novel routing scheme based on the CAN tree to overcome the 

weakness of greedy routing in CAN. CAN with CAN tree routing is a completely 
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decentralized system. The CAN tree infrastructure gracefully adapts itself to cope 

with any changes in the network. As a pure Peer-to-Peer system, peers assume equal 

responsibility. The system maintains peers’ routing states while minimizing cost even 

in the presence of high rate of churn. The critical contribution is the equipping of each 

peer with long links that significantly enhance routing efficiency. Every peer 

connected with its parent and children. The number of long links per peer is 

independent of the network size (dependent on the number of children). Thus, the 

system can scale by several orders of magnitude without loss of efficiency. 

Our routing scheme has more links than the original CAN, which incurs a tiny 

overhead to maintain long links. It has been proved that the number of long links per 

peer is two on average. However, it has also been shown that the small extension 

leads to significant improvements in routing performance.  
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6 Zone Code Routing 

Chapter 6 

Zone Code Routing 

We proposed CAN tree routing in chapter 5. A CAN tree is a tree structure. The 

routing performance can easily be boosted from ( )dnO /1  to ( )nO log  by equipping 

each peer with two long links on average. The small extension leads to significant 

improvements in routing performance. However, the tree infrastructure causes unfair 

overhead. For example, Figure 6.1 illustrates that a long link between peers 1 and 2 is 

a bridge that connects left and right peers (Figure 6.1(b)). They are bottlenecks and 

cause imbalanced routing overhead. Then we proposed zone code routing. 

 
(a) CAN tree (b) CAN and its long links 

Figure 6.1 CAN tree routing 

The key idea of zone code routing is zone code match. The message is forwarded to a 

peer which has more common prefix with target. For example in Figure 6.2, A has no 

common prefix with target T. After first hop, B has 1 bit common prefix with T. After 

second hop, C has 2 bits common prefix with T. The length of zone code is limited. 

Therefore, the message could arrive at target anyhow. 
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Figure 6.2 Zone code routing 

In order to realize zone code routing, every peer needs long links to distant neighbors 
which have special zone codes.  

6.1 Routing Table 

In order to route, each peer in CAN maintains a routing table, whose entries include 

information about its adjacent peers’ network address, distant neighbor’s network 

address, zone code, etc. Using the routing table, the current peer can directly 

communicate with its immediate/distant neighbors. In this section, we present the 

details of how a routing table is established and maintained. The routing mechanism is 

addressed in the next section. 

CAN maintains short links by exchanging heartbeat messages between immediate 

neighboring peers. For d-dimensional CAN, a peer maintains ( )dO  neighbors on 

average. This is analogous to original CAN. 

In order to enhance hop span, peers need long links. The long links connected with 

some distant neighbors which have special zone codes. First distant neighbor zone 

code has no common prefix with current peer. Second distant neighbor zone code has 

1-bit common prefix, and so on. A peer with k bits zone code has k long links. The kth 

long link forwards to distant neighbor which has k-1 common prefix. 

A peer p with k bits zone code partitions the key space into k sub-regions. The size of 

the sub-region ranges between the size of p’s zone and half the key space and they 

cover the entire key space (see Figure 6.3). 
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Figure 6.3 Sub-regions and long links for peer 3 

6.1.1 Sub-regions 

Since the zone code might define the boundaries of the zone, it can also define the 

boundaries of the sub-region. The sub-regions of peer p ( ( )p
k

pppp cccc ,,, 321 L=δ ) are 

represented as follows: 

 sub-region 1: ( )pp
regionsub c11 =−δ  

 sub-region 2: ( )ppp
regionsub cc 212 ,=−δ  

 sub-region 3: ( )pppp
regionsub ccc 3213 ,,=−δ  

… 

 sub-region k: ( )p
k

pppp
kregionsub cccc ,,, 321_ L=−δ  

The zone code of the sub-region is deduced as follow: 

( )p
n

ppp
nregionsub ccc ,,, 21_ L=−δ  

Equation 6.1 Zone code of sub-region 

Consequently, the sub-regions for peer 3 ( ( )0,0,1,03 =δ ) in Figure 6.3 are defined as 

follows: 
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1. sub-region 1: ( ) ( ) ( )103
1

3
1 ===− cregionsubδ , then 

Equation 5.1 ( ){ }1015.0(,3
1 <≤<≤=⇒ − yxyxZ regionsub  

2. sub-region 2: ( ) ( ) ( )0,01,0, 21
3

2 ===−
pp

regionsub ccδ , then 

Equation 5.1 ( ){ }5.005.00(,3
2 <≤<≤=⇒ − yxyxZ regionsub  

3. sub-region 3: ( ) ( ) ( )1,1,00,1,0,, 3
3

3
2

3
1

3
3 ===− cccregionsubδ , then 

Equation 5.1 ( ){ }15.05.025.0(,3
3 <≤<≤=⇒ − yxyxZ regionsub  

4. sub-region 4: ( ) ( ) ( )1,0,1,00,0,1,0,,, 3
4

3
3

3
2

3
1

3
4 ===− ccccregionsubδ , then 

Equation 5.1 ( ){ }175.025.00(,3
4 <≤<≤=⇒ − yxyxZ regionsub  

A sub-region consists of one or more zones. Zone code is prefix code. If a zone is a 

resident of a sub-region, the sub-region’s zone code is the prefix of the zone’s zone 

code. For example, zone 2 is a resident of sub-region 3. ( )1,1,03
3 =−regionsubδ  is the 

prefix of ( )0,0,1,1,02 =δ .Combining all our insights, we deduced the following 

corollary: 

Corollary 6.1: If peer p and peer s are located in the same sub-region and peer d is 

out of the sub-region, the common zone code prefix between peers p and s is 

inevitably longer than the common prefix between peers p and d. 

In other words, peers in sub-region 1 have no common prefix with current peer. Peers 

in sub-region 2 have 1-bit common prefix, and so on. A peer with k bits zone code has 

k sub-regions. Peers in sub-region k has k-1 common prefix. 

6.1.2 Establishing the Long Links 

Peer p selects a random point from each sub-region, and then it routes DISCOVER 

messages to the random points in key space. The corresponding peers, of which the 

zones cover those points, will be distant neighbors of peer p. In the aforementioned 

example, peer 3 has the distant neighbors listed in Table 6.1. 
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Sub-region Random point Distant neighbor 

3
1regionsubZ −  (0.87,0.13) Peer 5 

3
2regionsubZ −  (0.13,0.32) Peer 15 

3
3regionsubZ −  (0.38,0.55) Peer 9 

3
4regionsubZ −  (0.13,0.84) Peer 10 

Table 6.1 Distant neighbors 

Hence, the routing table for peer 3 (see Figure 6.4) contains four long links toward its 

distant neighbors. 

( ){ }1015.0(,3
1 <≤<≤=− yxyxZ regionsub

( ){ }5.005.00(,3
2 <≤<≤=− yxyxZ regionsub

( ){ }15.05.025.0(,3
3 <≤<≤=− yxyxZ regionsub

( ){ }175.025.00(,3
4 <≤<≤=− yxyxZ regionsub

 
Figure 6.4 Routing table for peer 3 

6.2 Routing Mechanism 

In this section, we describe a routing scheme that relies on the routing table 

mentioned above. 

6.2.1 Forward a Message to a Peer 

When the current peer knows the zone code of the target peer, it checks its 

immediate/distant neighbor first. If the target is its neighbor, the peer can directly 



6.Zone Code Routing      95 

forward the message to the target peer. Otherwise, it selects the next hop dependent 

on the zone code of its neighbors. It then forwards the message to its distant neighbor, 

for which the zone code shares the longest common prefix with the zone code of the 

target peer. For example, peer 3 forwards a message to peer 8 ( ( )1,0,1,18 =δ ) in Figure 

6.3. In the routing table for peer 3 (see Figure 6.4), peer 5’s zone code ( )0,0,1,0,15 =δ  

shares 1-bit common prefix with ( )1,0,1,18 =δ . The other distant neighbors share 0-bit 

common prefix. Thus, peer 3 forwards the message to peer 5. The target peer 8 is the 

distant neighbor of peer 5 (see Figure 6.5). The routing is finished. 

( ){ }105.00(,5
1 <≤<≤=− yxyxZ regionsub

( ){ }15.015.0(,5
2 <≤<≤=− yxyxZ regionsub

( ){ }5.025.0175.0(,5
4 <≤<≤=− yxyxZ regionsub

( ){ }5.0075.05.0(,5
3 <≤<≤=− yxyxZ regionsub

( ){ }25.0.01875.0(,5
5 <≤<≤=− yxyxZ regionsub

c 
Figure 6.5 Routing table for peer 5 

6.2.2 Forward a Message to a Point 

When a peer needs to forward a message to a point in the key space and does not have 

any information about the target peer, the routing procedure is divided into two steps. 

First, the peer checks whether the target point is covered by one of its 

immediate/distant neighbors. If this is the case, the peer can directly forward the 

message to the target peer. The routing then finishes. For example, peer 3 in Figure 

6.3 forwards a message to the point (0.82, 0.21). Since the distant neighbor peer 5 
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takes responsibility for the zone ( ){ }25.00875.075.0(,5
, <≤<≤= yxyxZ yx  that 

covers the point (0.82, 0.21), the message is forwarded to peer 5 via long link. 

If the target is not an immediate/distant neighbor, the current peer looks up the 

corresponding sub-regions, which covers the target point, and forwards the message 

to the corresponding distant neighbor. For example, peer 3 in Figure 6.3 forwards a 

message to the target point (0.56, 0.87). Since sub-region 1 covers the target point 

(0.56, 0.87), it forwards the message to peer 5. Peer 5 has five long links (see Figure 

6.6) and its routing table is shown as Figure 6.5. Consequently, peer 5 has a distant 

neighbor peer 8 whose zone covers the target point (0.56, 0.87). Hence, peer 5 

directly forwards the message to peer 8. The routing then finishes. 
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Figure 6.6 Sub-regions and long links for peer 5 

In the two aforementioned long-link-routings, the message is forwarded to the distant 

neighbor located in the same sub-region as the target. Since Corollary 6.1 in Section 

6.2.2.1, the next peer shares longer common zone code prefix with the target peer. 

The length of the zone code is finite. Hence, the routing must eventually terminate 

successfully. 

6.3 Peer Churn 

.After new peers joining CAN, they need to establish long links according to section 

6.1.2. We have introduced a method of generating the zone code by partition tree in 
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section 3.2. Although zone codes can be generated by different approaches, the zones 

are all exactly mapped onto zone code space via their zone codes (see Figure 6.7). 

 

Figure 6.7 CAN (width = 1 and height = 1) 

When peers leave or crash, CAN must ensure that all zones are rectangles. In CANS, 

only sibling peers in a partition tree are allowed to merge with each other (peers 1 and 

8, peers 3 and 7, and peers 2 and 6 in Figure 6.8). They are termed mergeable-zone 

peers[68]. Since the zone code is prefix code (Corollary 4.2 in Section 4.2), we 

deduced the following corollary: 

Corollary 6.2: The mergeable-zone peers share common zone code prefix and only 

last bits are different.  

If a peer actively leaves, it will forward a message to its smallest neighbor. This 

neighbor is in charge of recovery. Otherwise, the crashed peer (passive leaving) will 

be detected via heartbeat messages by its neighbors. When a peer finds its neighbor 

crashed, it takes responsibility of recovery. The difference between active leaving and 

passive leaving is who will be in charge of recovery. In active leaving the leaving peer 

has the chance to choose a neighbor to recover the system. In passive leaving the first 

peer detecting that a neighbor crashed has the responsibility to fix the peer-to-peer 

structure. 
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When a peer p leaves the system and q takes over its zone, either of two scenarios 

may occur: 

 Case 1 (p and q are mergeable-zone peers): This case is very straightforward. 

Peer q inherits the long links of p, and then peer q checks and removes 

unavailable long links. From Corollary 6.2, the zone code of q deletes the last 

digit of the zone code after merging. After a short stabilization period, it informs 

all affected peers to update their routing tables. For example, once peer 2 in 

Figure 6.8 crashes, peer 6 extends its responsibility to take over the zone of peer 2, 

and peer 6 modifies its zone code from (1,0,1) to (1,0). 

 
(a) CAN 

 
(b) Partition tree 

Figure 6.8 Merging 

 Case 2 (p and q are not mergeable-zone peers): In this case, q takes the role of p. 

Peer q abandons its routing table and zone code and copies p’s routing table and 

zone code from p’s replication. Consequently, the scenario becomes similar to the 

first case. For example, we need non-neighbor mergeable-zone peers to deal with 

peer 5 in the Figure 6.9 crash. If peer 7 occupies peer 5, peer 3 will merge with 

the zone, which is released by peer 7. 
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(a) CAN 

 
(b) Partition tree 

Figure 6.9 Occupation 

Peer departures and crashes cause potential long link routing failures. If long link 

routing fails, the peer forwards this message according to the original CAN greedy 

routing. When a peer detects a crash, a recovery procedure is triggered. The peer 

selects a random point in the sub-region, in which the long link failed and forwards 

DISCOVER messages to the random point. The corresponding peer for which the 

zone covers those points becomes the new distant neighbor. The broken long links are 

recovered. 

6.4 Evaluation 

6.4.1 Reliability 

By means of long links, the routing is optimized with more flexibility and 

fault-tolerance. Since the message is always forwarded to a peer that shares a longer 

common prefix with the target peer, the routing procedure eventually converges. Zone 

code routing does not abandon CAN greedy routing, but extends it. After equipping 

long links, peers have more degrees of freedom and more choices for routing. When a 

long link fails, a peer can forward the message via greedy routing. Furthermore, a 

peer might forward a message across crashed peers in the partitioning (see Figure 

6.10). In the same scenario, the greedy routing cannot forward the message to the 

target. Therefore, our scheme has more fault-tolerance and is more reliable. 



6.Zone Code Routing      100 

 
Figure 6.10 Network partition 

6.4.2 Routing Evaluation and Cost of Long Link 

In our scheme, d-dimensional zones are mapped onto one-dimensional zone code 

space. If we array all zone-codes of a CANS in ascending order, they are distributed 

in one-dimensional space which is called zone code space. The zone code realizes the 

mapping between d-dimensional key space and one-dimensional zone code space. 

The zone codes map the d-dimensional key space onto the one-dimensional zone code 

space. Since zone codes are prefix codes (see Corollary 4.2 in Section 4.2), the order 

of zone code arrangement in zone code space is the same as the leaf-nodes pre-order 

traversal (see Figure 6.11). Without the partition tree, we nevertheless have an easy 

approach to determining the relative positions between two zone codes in zone code 

space. Let prefixcommon_δ  denote the length of the common prefix between them, and 

the bigger zone code, of which the ( )thprefixcommon 1_ +δ  digit is “1.” The other one is 

smaller. For example, let pδ denote the zone code of peer p. Then, the zone of peer 3 

is mapped onto the zone code ( )0,0,1,03 =δ  and the zone of peer 7 is mapped onto 

the zone code ( )1,0,1,07 =δ . They have the common prefix ( )0,1,07|3
_ =prefixcommonδ  and 

37|3
_ =prefixcommonδ . The fourth digitals of 7δ and 3δ  are “1” and “0,” respectively. 

Thus, 7δ is bigger and 7δ is located to the right of 3δ (see Figure 6.11). 
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Figure 6.11 Zone code space 

When the key space is divided into k sub-regions, the zone code space is also divided 

into k intervals. Figure 6.12 illustrates the mapping between two spaces in the 

aforementioned example. Each sub-region is mapped onto the corresponding interval. 

Thus, the long links in the zone code space is similar to Chord’s finger table. 
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Figure 6.12 Sub-regions in zone code space 

Our zone code routing realizes big interval hops in the zone code space to enhance 

routing efficiency. Given the power-of-two intervals in zone code space, each hop 
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covers at least half of the remaining distance in the zone code space between the 

current peer and the target peer. This results in an average of ( )nO log  routing hops 

for a CAN with n participating peers. 

In order to demonstrate the effectiveness of our design in terms of routing 

performance, we implemented a zone code routing scheme in C# and conducted a set 

of experiments via distinct schemes on networks with up to 16000 peers. We ran 

CAN tree routing against the original CAN greedy routing, CAN tree routing, and 

RCAN routing to offer comparative measurements. These measures included hop 

count per routing path, and number of long links per peer. 

Figure 6.13(a) and Figure 6.13(b) are respective plots of the average and the 

maximum path length with respect to the network size. The path length is measured in 

terms of the number of hops traversed during each lookup request. Figure 6.13 

illustrates that both the average and maximum path length in zone code routing are 

better than other routings, and both of them are perfectly asymptotic to the logarithm 

of peer number. The path length of other routings increases much faster. 
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(a) Average path length 

 

(b) Maximum path length 

Figure 6.13 Path length with increasing network size 

Figure 6.14 illustrates the path lengths distribution of routing in CAN with 16000 

peers. The path length distribution of zone code routing is much better than others. 
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Figure 6.14 Path length distribution 

In addition, CAN maintains dynamic long links that scale up to correspond to the 

network size. Figure 6.15 illustrates that each peer maintains a number of long links 

on average with respect to the network size. When the CAN has n participating peers, 

each peer maintains n2log  long links. The routing state per peer logarithmically 

scales up to correspond to the number of peers. Hence, the small extension cost leads 

to significant improvements in routing performance. 

 

Figure 6.15 Number of long links per peer with increasing network size 
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6.5 Conclusion 

Our zone code routing is a completely decentralized system. It gracefully adapts itself 

to cope with any changes in the network. As a pure Peer-to-Peer system, peers assume 

equal responsibility. It overcomes the unfair overhead problem in CAN tree routing. 

Using zone code, we map d-dimensional zones onto a one-dimensional zone code 

space. Zone code routing achieved ( )nO log  routing performance with ( )nO 2log  

routing state per peer. Thus, the system can scale by several orders of magnitude with 

high efficiency. Since a zone code is a binary string and it does not need 

synchronization, the system maintains peers’ routing states while minimizing cost 

even in the presence of a high rate of churn. Consequently, zone code routing 

significantly improves routing performance while incurring only a small extra 

overhead. 
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7 Conclusion 

Chapter 7 

Conclusion 

With the development of Peer-to-Peer technology, Peer-to-Peer systems are 

increasingly being utilized in more and more fields. However, new applications must 

overcome its drawbacks and satisfy new requirements. With respect to the properties 

of simulation, we faced two challenges in our work—reorganizing of the 

zone-assignment to solve the “concave and slim problem” and development of novel 

efficient routing solutions for low-dimensional CAN. Our contributions to the field 

enable developers to establish their own Peer-to-Peer MMVE/simulation system with 

a simple structure and high efficiency and maintain the communication overhead as 

low as possible. 

Firstly, we presented a novel approach for reorganizing the zone-assignment in CANS 

(see Section 3). To achieve this, we used a distributed tree infrastructure (CAN tree) 

and introduced a search algorithm to lookup mergeable-zone-pairs. CAN tree is 

highly distributed and thus supplies the required robustness and availability. In 

addition, we developed a peer churn coping strategy. Thereby, our CAN tree offers 

resilience against peers leaving and crashing. 

Secondly, we proposed zone codes for reorganizing the zone-assignment (see Section 

4) of CAN tree lookups mergeable-zones by the tree structure splitting history record. 

In order to maintain the freshness of CAN trees, peers in a CAN tree need to 

communicate to modify the tree infrastructure after peers churn. The extra 

communication increases system overhead. In contrast, the zone code does not need 

update communication, further reducing the overhead of CANS. Furthermore, we 

proved its robustness and availability during multiple simultaneous peers failures 
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We also introduced the CAN tree routing solution (see Section 5). It is designed to 

efficiently forward messages in low-dimension CAN. The routing performance can 

easily be boosted from ( )dnO /1  to ( )nO log  by equipping each peer with two long 

links on average. Thereby, a small extension leads to significant improvements in 

routing performance. 

Finally, we presented a zone code routing solution (see Section 6). Since CAN tree 

routing is based on tree infrastructure, the peers have unfair routing overhead—zone 

code routing overcomes this drawback. It achieves ( )nO log  routing performance 

with ( )nO 2log  routing state per peer. Hence, the system can scale by several orders 

of magnitude with high efficiency. 

Using the results from this work, users can build their own Peer-to-Peer applications. 

The system enhances simulation speed and even provides higher availability via more 

users joining the network. Our work demonstrates that existing Peer-to-Peer 

technologies can be optimized for distributed simulation or MMVE domains and 

fulfills all the requirements in Section 1.1.  
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