

Content-Addressable Network for
Distributed Simulations

Der Fakultät für Ingenieurwissenschaften der

Universität Duisburg-Essen

Abteilung Informatik und Angewandte Kognitionswissenschaft

zur Erlangung des akademischen Grades eines

Doktor der Ingenieurwissenschaften

genehmigte Dissertation

von

Zhongtao Li

aus

Shandong, VR China

Referent: Prof. Dr.-Ing. Torben Weis

Koreferent: Prof. Dr. Arno Wacker

Datum der mündlichen Prüfung: 27.10.2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Duisburg-Essen Publications Online

https://core.ac.uk/display/33797293?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract i

Abstract	

The development of distributed systems, parallel computation technology, and

Peer-to-Peer systems facilitates the realization of a distributed interactive world model.

Thereby, we can implement a worldwide distributed simulation and virtual

community, e.g., city traffic simulation and Massively Multiuser Virtual

Environments (MMVE).

In this thesis, we present Content-Addressable Network for Simulations (CANS),

which is based on CAN. Thus, it incorporates all the advantages of CAN, such as

self-organization, scalability, and fault-tolerance. The peers in CANS carry out the

simulation for the zone assigned to them, and the zones are allocated in such a way

that there is as little communication between the peers as possible. We propose two

approaches for reorganizing zone-assignments after peers churn. These approaches

are based on the distributed tree structure and prefix code. In comparison to existing

approaches, our proposed approaches are more efficient and reliable.

Since CANS is used to simulate “city traffic” and MMVE, it requires a

low-dimensional key space, i.e., a two-dimensional or three-dimensional key space.

Thus, we propose CAN tree routing and zone code routing, both of which adopt long

links. CAN tree routing has a hierarchical design that is based on the CAN tree. Each

peer equips two long links on average. Zone code routing is based on B*-tree. Each

peer equips n2log long links and shares the load evenly. Both of these routing

solutions achieve ()nO log routing hops on average.

Consequently, the existing CAN can be optimized to perform simulations efficiently

and reliably.

Acknowledgment ii

Acknowledgment	

I would like to take the opportunity to thank everybody who aided and fostered me.

Without their aid, it would have been much more burdensome to complete this thesis.

First of all, I would like to thank Prof. Dr.-Ing. Torben Weis for giving me the

opportunity to work on this thesis and for the freedom to explore my own ideas in the

execution of my research. His inspiration and support made my time at academia a

very pleasant one. Without his guidance and encouragement, I would not have

succeeded in finishing this thesis.

My gratitude is extended to my colleagues and friends in Duisburg-Essen University

who accompanied me throughout the long and winding journey until the completion

of this work. Special thanks Bernd Holzke and Marianne Appelt for organizing

everything we needed.

Last but not least, I am deeply grateful to my family and my friends. They gave me

the loving care and emotional support, shared their inspiring experiences and were

always there for me.

Zhongtao Li

Duisburg, August 2013

Content iii

Content	
Abstract ...i
Acknowledgment ...ii
Content... iii
List of Figures ..v
List of Tables ... viii
1 Introduction...1

1.1 The CANS Idea...2
1.1.1 Managing a Content-Addressable Network for Distributed
Simulations ..2
1.1.2 Routing Mechanisms for Content-Addressable Network for
Distributed Simulations ...5

1.2 Contributions...7
1.3 Thesis Organization ..8

2 State-of-the-Art and Related Work...10
2.1 Peer-to-Peer Systems ..10

2.1.1 Centralized Peer-to-Peer Systems..11
2.1.2 Unstructured Peer-to-Peer Systems ...12
2.1.3 Structured Peer-to-Peer Systems..15

2.2 Bootstrapping..19
2.3 Two-dimensional Peer-to-Peer Systems ...21
2.4 CAN ..26

2.4.1 Virtual Space..26
2.4.2 Peer ..27
2.4.3 Peer Operation ...28
2.4.4 Routing...32
2.4.5 Design Improvements ..32

2.5 Routing improvement ...34
2.5.1 eCAN ...34
2.5.2 LDPs ..36
2.5.3 RCAN ..38

3 Using CAN Tree to Manage a CANS...42
3.1 Introduction...42
3.2 Requirements ..43
3.3 Peer Churn ..44

3.3.1 Peer joining ..45
3.3.2 Peer Departure ...45

3.4 CAN Tree..48
3.4.1 Building a CAN Tree ...48
3.4.2 Storing the CAN Tree ..49
3.4.3 Finding Mergeable-Zones..50

Content iv

3.4.4 Complexity of Searching Mergeable-Zones52
3.4.5 CAN Tree Modification on Peer Departure.....................................54

3.5 Conclusion ..55
4 Using Zone Code to Lookup Mergeable-zones ..56

4.1 Partition tree..56
4.2 Building Zone Code..57

4.2.1 Zone code growth as peers join ...59
4.2.2 Zone code decrease as peers’ zones merge......................................61

4.3 How to find Mergeable-zones...62
4.4 Search Algorithm..63

4.4.1 Area search...63
4.4.2 Complexity of Searching ...64

4.5 Multiple Crashes ...66
4.6 Reliability of the algorithm...71
4.7 Conclusion ..73

5 CAN Tree Routing..74
5.1 Introduction...74
5.2 Zone Code and CAN Tree ..74
5.3 Routing table...79
5.4 Routing Mechanism..80

5.4.1 Routing to a Peer via CAN Tree ..80
5.4.2 Get Zone Point Set via Zone-Code ..81
5.4.3 Routing to a Point via Routing Table ..82
5.4.4 Distant neighbor failure ...84

5.5 Peer departure and recovery of CAN Tree ...85
5.6 Evaluation ...86
5.7 Conclusion ..88

6 Zone Code Routing ...90
6.1 Routing Table..91

6.1.1 Sub-regions ..92
6.1.2 Establishing the Long Links ..93

6.2 Routing Mechanism..94
6.2.1 Forward a Message to a Peer ...94
6.2.2 Forward a Message to a Point..95

6.3 Peer Churn ..96
6.4 Evaluation ...99

6.4.1 Reliability...99
6.4.2 Routing Evaluation and Cost of Long Link...................................100

6.5 Conclusion ..105
7 Conclusion ..106
Bibliography ..110
Curriculum Vitae ...115
Index ..116

List of Figures v

List	of	Figures	
Figure 1.1 City traffic simulation...3
Figure 1.2 CANS with 16 peers...4
Figure 1.3 Slim zones ..4
Figure 1.4 Effect of dimensions on path length...6
Figure 1.5 Long links and distant neighbors..6
Figure 2.1 Dedicated server ...12
Figure 2.2 Pure Peer-to-Peer system..13
Figure 2.3 Gnutella 0.4 ..13
Figure 2.4 Centralized super-peers ..14
Figure 2.5 Gnutella 0.6 ..15
Figure 2.6 Chord ..17
Figure 2.7 Finger table of Chord..17
Figure 2.8 State of a Pastry peer with ID 10233102, b = 2, and l = 8 (base 4) [5]

..18
Figure 2.9 Divide space into equally-sized zones[47] ...22
Figure 2.10 S-shaped space-filling curves[49] ..22
Figure 2.11 Peano curve[49]..23
Figure 2.12 Hilbert Curve[49] ...23
Figure 2.13 VoroStore: two-dimensional Peer-to-Peer network24
Figure 2.14 The network topology of RectNet[56] ...25
Figure 2.15 Flooding in concave area[57] ...25
Figure 2.16 Two-dimensional Cartesian coordinate space27
Figure 2.17 Split rule in a two-dimensional CAN ...28
Figure 2.18 Partition tree ...31
Figure 2.19 Effect of dimensions on path length [6] ...33
Figure 2.20 Effect of multiple realities on path length [6]34
Figure 2.21 Expressways for CAN ..35
Figure 2.22 Snapshot of eCAN with k = 4 ..36
Figure 2.23 Random pointers...37
Figure 2.24 Subspace pointers ...38
Figure 2.25 Torus model of a 2D multi-ring topology [66].................................39
Figure 2.26 Long links in RCAN...40
Figure 2.27 Long links model..40
Figure 3.1 Concave and convex zone ..44
Figure 3.2 Acceptable and unacceptable zones ...45
Figure 3.3 Merging ..46
Figure 3.4 Occupying...46
Figure 3.5 Long process of peer departure ..47
Figure 3.6 Short process of peer departure ..47
Figure 3.7 Shortcut peer departure...48

List of Figures vi

Figure 3.8 CAN and its CAN tree..48
Figure 3.9 Building a CAN tree...49
Figure 3.10 Distributed CAN tree..50
Figure 3.11 Traveling in CAN tree ..51
Figure 3.12 Effect of CAN tree searching ...53
Figure 3.13 The best case...53
Figure 3.14 CANS and CAN tree before departure...54
Figure 3.15 CANS and CAN tree after merging..55
Figure 3.16 CANS and CAN tree after occupation ...55
Figure 4.1 Partition tree ...57
Figure 4.2 Zone code ...58
Figure 4.3 New peer joining ..60
Figure 4.4 Peer departure and merging..61
Figure 4.5 Peer departure and occupation..62
Figure 4.6 Shrinking search area ...64
Figure 4.7 Three search scenarios..64
Figure 4.8 Effect of shrinking search...65
Figure 4.9 Search complexity path length in shrinking search............................66
Figure 4.10 Three scenarios in multiple crashes..67
Figure 4.11 Scenario 1 to scenario 1..68
Figure 4.12 Scenario 1 to scenario 2..68
Figure 4.13 Scenario 1 to scenario 3..68
Figure 4.14 Scenario 2 to scenario 1..69
Figure 4.15 Scenario 2 to scenario 2..69
Figure 4.16 Scenario 2 to scenario 3..69
Figure 4.17 Scenario 3 to scenario 2..70
Figure 4.18 Scenario 3 to scenario 3..70
Figure 4.19 Transformation between scenarios ...71
Figure 5.1 CAN and partition tree ...75
Figure 5.2 CAN tree...76
Figure 5.3 New peer c joins CAN..77
Figure 5.4 Flow diagram..78
Figure 5.5 Routing tables...79
Figure 5.6 Zone boundaries in one dimension...81
Figure 5.7 CAN (width = 800 and height = 600)...82
Figure 5.8 Merging ..85
Figure 5.9 Occupation..86
Figure 5.10 Path length with increasing network size ...87
Figure 5.11 Path length distribution...88
Figure 6.1 CAN tree routing ..90
Figure 6.2 Zone code routing...91
Figure 6.3 Sub-regions and long links for peer 3...92
Figure 6.4 Routing table for peer 3..94
Figure 6.5 Routing table for peer 5..95

List of Figures vii

Figure 6.6 Sub-regions and long links for peer 5...96
Figure 6.7 CAN (width = 1 and height = 1)...97
Figure 6.8 Merging ..98
Figure 6.9 Occupation..99
Figure 6.10 Network partition..100
Figure 6.11 Zone code space ...101
Figure 6.12 Sub-regions in zone code space..101
Figure 6.13 Path length with increasing network size103
Figure 6.14 Path length distribution...104
Figure 6.15 Number of long links per peer with increasing network size.........104

List of Tables viii

List	of	Tables	
Table 2.1 Characteristics of Peer-to-Peer systems [8] ...16
Table 4.1 Transformation between scenarios ..70
Table 4.2 Merging results ..72
Table 6.1 Distant neighbors ...94

1.Introduction 1

1 Introduction

Chapter 1

Introduction

Advances in distributed systems and parallel computation technology enable us to

realize distributed interactive world models. Using distributed world models, we can

implement worldwide distributed simulations and virtual communities, e.g., city

traffic simulation and Massively Multiuser Virtual Environments (MMVE) [1]. The

distributed world model uses a Peer-to-Peer architecture to eliminate the need for

fixed, expensive hosting infrastructure [2]. In the Peer-to-Peer architecture, any user

who wants to join has to provide his/her share of bandwidth, CPU, and disk space [3].

It is an alternative to the older central server or server cluster. A computer cluster

consists of a set of stable and efficient connected computers that work together.

However, in order to establish large-scale models using computers distributed

worldwide, an appropriate infrastructure is needed.

Users expect these virtual environments to react to their actions instantaneously. Thus,

state updates must be propagated with very little delay. Recently, the public network

infrastructure has rapidly developed to the point where optical fiber communication,

in particular, is widely available. Public networks are increasingly providing more

high quality services. As a result, worldwide distributed interactive world models are

able to fulfill the highest requirements with respect to scalability and consistency.

In contrast to server clusters, peers are highly dynamic in the distributed interactive

world model, especially when the peers are personal computers. Each peer may join,

leave, or crash at any time. Thus, an appropriate Peer-to-Peer protocol is needed to

implement self-organizing peers. Each peer is responsible for partial computation; all

peers comprise complete functionality. When a peer crashes, other peers must extend

1.Introduction 2

their responsibility to take over the functionality of the crashed peer. In doing so, the

distributed interactive world model provides functionality that is intact to all users.

We first address the fundamental problems of the distributed world model. We then

show how to split and merge the virtual world to maintain efficient simulation, and

explain the routing mechanisms that allow efficient routing in low-dimensional virtual

space, such as two-dimensional and three-dimensional space.

1.1 The CANS Idea

Our underlying idea is a Peer-to-Peer based distributed world model. In this model, in

contrast to the classic heavyweight server-based infrastructure, computing overhead is

distributed over all participating peers using Peer-to-Peer technology. We assume that

each peer uses the same Peer-to-Peer protocol, such as Gnutella, Chord [4], Pasty [5]

or Content-Addressable Network (CAN) [6, 7], to combine and cooperate. Structured

approaches to Peer-to-Peer architectures have been proposed in order to improve

efficiency, scalability, and fault-tolerance. Thus, a structured Peer-to-Peer protocol is

an ideal infrastructure for a distributed interactive world model. The approaches are

based on similar designs, while their search and management strategies differ.

Ring-based approaches such as Pastry, and Chord all use similar search algorithms

such as binary ordered B*-tree. CAN is based on Geometry [8]. We chose CAN as the

basis for our Content-Addressable Network for Distributed Simulation (CANS). Since

CANS is based on CAN, it is designed to adapt to a changing number of peers and it

can scale well, i.e., simulation speed improves as new peers join CANS.

1.1.1 Managing a Content-Addressable Network for Distributed

Simulations

CANS is an improvement over conventional CAN for simulations. CANS is designed

to handle simulations such as city traffic and MMVE. For example, Figure 1.1 shows

how CANS with five peers simulates city traffic. Zones are then assigned to peers

1.Introduction 3

using one-to-one mapping. In this small example, CANS divides the entire area into

five zones. To a high degree, peers can run the simulation of their zone independently.

Peers only need to communicate to synchronize their simulation efforts, or hand over

players or cars crossing zone boundaries. In order to improve efficiency, we must

reduce communication between peers.

Figure 1.1 City traffic simulation

When peers leave or crash, we must ensure that their zones are handled by another

existing peer. After taking over the zone of another peer, a peer may have to handle

multiple zones or a polygon zone. In CAN-like file sharing, peers hardly ever

communicate with each other, and so these polygon zones are acceptable. However,

constant communication in CANS generates extra load; and the extra load will never

disappear until these zones are merged. For example, CANS has 16 peers, and every

peer handles only one zone. When some peers leave (the departing peers are shaded in

Figure 1.2(a)), their neighbors take over their zones. If zones are arbitrarily merged

with the zones of departed peers, the result may be a concave polygon (see Figure

1.2(c)). Otherwise, every peer handles multiple zones (see Figure 1.2(b)). Concave

polygon and multiple zones increase the communication between peers and generate

extra cost. In city traffic simulations, when a car drives across the border, peers must

communicate with each other. If a car drives from location A to location B, it crosses

1.Introduction 4

the boundaries four times in a polygon zone or multiple zones. If zones are convex

(see Figure 1.2(d)), the car crosses the boundary only once.

1

8

161215

47

141013

625

11

3

9

(a) Departing peers shaded

(b) Peers handle multiple zones

(c) Peers handle concave polygon zones

1

15

10

8

A

B

(d) Peers handle convex zones

Figure 1.2 CANS with 16 peers

In another case, cars will often cross the boundaries because of slim zones (see Figure

1.3). The aforementioned two problems are termed the “concave and slim” problems.

Figure 1.3 Slim zones

We try to keep CANS running with a simple structure and high efficiency; therefore,

our peers must have neither multiple zones nor a polygon zone. We enforce the rule

that every peer handles exactly one hyper-rectangular zone, whose edges are in

proportion.

1.Introduction 5

1.1.2 Routing Mechanisms for Content-Addressable Network for

Distributed Simulations

The original routing mechanism in CAN has the lowest efficiency among structured

Peer-to-Peer routing mechanism. The routing hops of Chord are ()nlogΟ on average

for a Chord circle with n participating peers. In Pastry with n peers, the target is

reached in)(log2 nb hops where b is typically chosen to be 4. CAN can only forward

messages to immediate neighbors which are closer to the destination coordinates

(greedy routing). Hence, greedy routing is not very efficient, particularly in

large-scale dynamic CAN. Because CAN has a d-dimensional key space, routing

efficiency and d are correlated. CAN routing complexity is ()dnd /1⋅Ο in a

d-dimensional key space.

We know the average routing path length, i.e., the number of peers traversed during

routing, from the CAN simulator. Figure 1.4 [6] illustrates the average routing path

length in each case for dimensions two to five. The results indicate that more

dimensions result in lower average routing hops. In order to reduce the routing hops

in CAN, researchers have proposed increasing the number of immediate neighbors per

peer by enhancing dimensions. In higher dimensional CAN, each peer has more

immediate neighbors..

1.Introduction 6

Figure 1.4 Effect of dimensions on path length

People also proposed long link solution. The routing is not limited between immediate

neighbors (Figure 1.5). The message could forward to a further distant neighbor via

long link. Then long link routing reduces routing hops.

Figure 1.5 Long links and distant neighbors

Higher dimensions solution and long link solution need to append more links to

reduce routing hops. Because our CANS is utilized to simulate “city traffic” and

MMVE, which are two-dimensional or three-dimensional spaces, we need efficient

1.Introduction 7

routing solutions for low dimensions. Therefore, the long link solution is suitable for

CANS.

1.2 Contributions

In this thesis we present two algorithms to manage key space reorganization after peer

departure. Using these algorithms, CAN is adapted for distributed simulation systems

from distributed file-sharing system[9]. We also propose two routing solutions that

perform efficiently in low dimensions

More specifically, the main contributions of this thesis are as follows:

 We derive and analyze the requirements for setting up a Peer-to-Peer distributed

simulation system and uncover the “concave and slim” problem that limits

simulation efficiency.

 We derive and analyze the requirements for CANS routing. Routing improvement

schemes that are based on the enhancing of dimensions are unsuitable for CANS.

Hence, we need efficient routing solutions in low dimensions.

 We propose the CAN tree to solve the “concave and slim” problem. Using the

distributed CAN tree, our system maintains low overhead and automatically

adapts to network changes.

 The zone code is another solution to the “concave and slim” problem. After peers

churn, CAN tree adapts to the changes in CAN via peer communication. However,

the zone code solution does not need the update communication. It further reduces

the overhead of CANS.

 CAN tree routing is designed to efficiently send messages in low-dimension CAN.

Therefore, it is an appropriate solution for CANS. Since each peer maintains only

two extra long links, the extra overhead is very cheap.

1.Introduction 8

 Since CAN tree routing is based on tree infrastructure, the peers have unfair

routing overhead. However, zone code routing overcomes this drawback, and

achieves ()nO log on average.

We complement these contributions with a detailed performance evaluation of our

algorithms.

1.3 Thesis Organization

The central focus of this thesis lies on the design and evaluation of a CAN for

distributed simulation and routing. This thesis has demonstrated that existing

Peer-to-Peer technologies can be optimized to interesting application domains which

are not at all related to file sharing. Accordingly, the remainder of the thesis is

structured as follows:

Chapter 2: State-of-the-Art and Related Work

This chapter introduces the technologies used in this thesis and related works. We

thereby give an overview of existing Peer-to-Peer technologies and different solutions

from other researchers.

Chapter 3: Using CAN Tree to Manage a CANS

In this chapter we present an efficient implementation, the so-called CAN tree. In

order to solve “concave and slim” problem, we need CAN splitting history. The idea

of this implementation is to use a distributed tree structure to record CAN splitting

history. When peer leaves or crashes, we recover system using CAN tree.

Chapter 4: Using Zone Code to Lookup Mergeable-zones

After showing how CAN tree records the splitting history and searches

mergeable-zones efficiently, we would like to decrease communication cause of peers

churn. We present zone code to do the same work with the CAN tree, with no

1.Introduction 9

communication needed among the peers. Consequently, the zone code scheme

reduces communication overhead.

Chapter 5: CAN Tree Routing

This chapter encourages the need for routing in a CANS in chapter 3 and 4. In order

to reduce the routing latency in CAN, the original CAN proposed to increase the

number of immediate neighbors per peer by enhancing the dimensions. However, our

CANS is utilized to simulate “city traffic” and MMVE. They require a

two-dimensional or three-dimensional space. Hence, we present an efficient tree

infrastructure routing solution to overcome the weakness of greedy routing.

Chapter 6: Zone Code Routing

CAN tree routing in chapter 5 is a tree infrastructure. The routing performance can be

boosted from ()dnO /1 to ()nO log by equipping each peer with two long links on

average. However, the tree infrastructure causes unfair overhead. Hence, we map

d-dimensional zones onto a one-dimensional zone code space and routing in zone

code space. Zone code routing achieved ()nO log routing performance with

()nO 2log routing state per peer.

Chapter 7: Conclusion

This chapter closes this thesis with a summary of the most important findings.

Furthermore, it gives an outlook on interesting future work areas.

2.State-of-the-Art and Related Work 10

2 State-of-the-Art and Related Work

Chapter 2

State-of-the-Art and Related Work
Peer-to-Peer (P2P) has demonstrated that it is a powerful paradigm for utilizing
distributed resources and performance critical functions in a decentralized manner
[10].

2.1 Peer-to-Peer Systems

Peer-to-peer systems spread computing and data storage to peers. They offer a large

variety of benefits such as massive scalability and reliability, better resource

utilization, and fault-tolerance. However, it is difficult to find a generally accepted

definition for Peer-to-Peer systems. Oram gives a basic definition of the term

“Peer-to-Peer” that is further refined in [8, 11]:

“(A Peer-to-Peer system is) a self-organizing system of equal, autonomous entities

(peers) (which) aims for the shared usage of distributed resources in a networked

environment avoiding central services” [8].

Scalability

In a centralized system, the number of users is limited by system resources such as

bandwidth, storage capacity, and the processing power of certain applications.

Usually peers have many spare resources that can be contributed to the P2P system at

no cost. Hence each individual runs underutilized most of the time, if a sufficient

number of peers participate in the system. Vast resources are spread over all users;

therefore, a Peer-to-Peer system can scale several orders of magnitude without loss of

efficiency [8]. In contrast, centralized systems are less cost-efficient [12].

Reliability

2.State-of-the-Art and Related Work 11

Reliability is critical for availability. Systems must survive crashing peers and

network failures. If some peer craches, this should not affect the others. However, the

system may experience partially failures. The surviving peers could recover the

system by means of replicating all data across multiple peers.Network failure could

result in isolated peers. Because every peer runs independently, we must ensure data

consistency after network recovery.

Self-organization

Self-organizing systems must solve all problems by themselves. Even if some peers

crashed in a system, the system must survive and regain full functionality. A

Peer-to-Peer system assigns areas of the key space to individual peers in such a way

that the areas assigned to peers do not overlap and there are no gaps in the key space.

In order to realize self-organization, a peer-to-peer system needs a protocol to handle

peer churn. The key space splitting needs to be robust when peers join or leave the

system [8].

2.1.1 Centralized Peer-to-Peer Systems

Some systems rely on locating a central dedicated server, which stores the locations of

all data items, and assumes responsibility for mapping “keys” onto “values”[13].

After retrieval of the location of a data item via the dedicated server, peers directly

access and exchange the shared data item. Such systems are also termed centralized

Peer-to-Peer systems, e.g., Napster (see Figure 2.1)[14, 15].

2.State-of-the-Art and Related Work 12

Figure 2.1 Dedicated server

Napster[16] is one of the most popular typical representatives. It was originally

established as a pioneering Peer-to-Peer file sharing Internet service. All users were

able to not only download files, but also share files with other participating users via a

central server. The server maintained the IP addresses of participating peers without

storing the files. It collected information about files being shared and offered an index

of all files available for sharing [12]. When a peer desired to download, it looked up a

potential providers list on the server in a query-response fashion. In addition, the peer

directly downloaded the file from one of the remote providers without the server.

Napster is invariably susceptible to single points of failure. The central server

assumed responsibility for the lookup/index. Without it, no files could be exchanged.

Regardless of server fault, the system offered less bandwidth for each peer as more

peers joined. The server posed a bottleneck problem [12].

2.1.2 Unstructured Peer-to-Peer Systems

Unstructured Peer-to-Peer systems use a flooding technique whose “lookup” queries

are sent to all participating peers in the system. The peer, which covers the

corresponding data item, replies and transfers the data directly (see Figure 2.2)[17].

Thus, these systems do not rely on any central server (except a bootstrap server to

ease joining network). They are decentralized systems and are termed pure

Peer-to-Peer systems, e.g., Gnutella 0.4[18] and Freenet[19].

2.State-of-the-Art and Related Work 13

p

p

p

p p

p

p

Figure 2.2 Pure Peer-to-Peer system

Gnutella is one of the most popular typical representatives of pure Peer-to-Peer

systems (see Figure 2.3). In order to detect other active peers, all peers broadcast ping

messages and reply with pong messages to echo received ping message. The use

flooding queries to look up a desired file. Every peer sends any incoming query that

had not been received before to all neighbors except the peer from which the query

originated [8]. If a query had been received, peer will never forward it to any other

peer. In this way, queries are further flooded peer by peer, until the Time-to-Live

(TTL) value reaches zero [12, 20].

7

6

10

4

8

2

3

1

9

5

transfer

query

query

query

query

query

query

query

reply

reply

reply

TTL 3

Figure 2.3 Gnutella 0.4

Flooding queries generates potentially huge amounts of network traffic. Large

network traffic causes packets to collide in dense networks. The Time-to-Live (TTL)

mechanism improved the pure Peer-to-Peer system, however did not solve all the

2.State-of-the-Art and Related Work 14

problems it experienced. Furthermore, TTL reduced the probability of retrieving the

desired file [12].

In order to overcome the drawbacks experienced by pure Peer-to-Peer systems

(system without dedicated server), a hierarchy system is proposed to avoid

unnecessary traffic. Super-peers (see Figure 2.4), which store the content available at

the connected peers together with their IP address [8], were proposed. Super-peers are

able to immediately answer requests instead of the respective peers, and fewer hops

are required in the search process. It is a kind of hybrid Peer-to-Peer system. It

achieves a balance between the perfect index of available files (centralized system)

and evenly distributing load on all peers (pure Peer-to-Peer system). Hybrid

Peer-to-Peer systems have a hierarchical structure. Peers that have a more powerful

processor and more bandwidth are termed super-peers. Peers connect only to

super-peers instead of each other, and super-peers store information about the peers

that are connected to them. They perform as centralized servers in interconnection and

maintain connections with other super-peers. Each peer sends its query to its

super-peer when searching for a desired file. The super-peer forwards the query to

other super-peers if it is not in charge of the peer with the desired file [12]. For

example, Gnutella 0.6 [21] and JXTA [22] are hybrid Peer-to-Peer systems.

Sp
Sp

Sp
p

p

p

p p
p

p

p
p

Figure 2.4 Centralized super-peers

Figure 2.5 illustrates Gnutella 0.6 relaying a Query-Hit message and a file being
directly transferred between peers.

2.State-of-the-Art and Related Work 15

Figure 2.5 Gnutella 0.6

In some hybrid Peer-to-Peer systems, regular peer and super-peer offer different

functionality. We differentiate peers in regard to their role. For instance in

FastTrack[23] (Kazaa's search engine) there are regular peers and super-peers. Those

super-peers offer different searching functionality than the regular peers do[12].

The above schemes do not follow any specific structure, and the content stored on a

peer is not related to its peer ID. Hence, they are generally termed “unstructured

Peer-to-Peer” systems.

2.1.3 Structured Peer-to-Peer Systems

Structured Peer-to-Peer systems were proposed in an effort to improve efficiency,

scalability, and fault-tolerance[24]. They manage data via Distributed Hash Tables

(DHTs) and adopt a routing scheme that allows any user to efficiently look up the

peer covering a specific data item. Table 2.1 lists the characteristics of the approaches

presented in terms of state per peer (the number of neighbors), communication

overhead. Distributed Hash Tables cope best with accurate queries; however, for

fuzzy or semantic queries, unstructured Peer-to-Peer systems are still the best option.

2.State-of-the-Art and Related Work 16

System State per Peer
Communication

Overhead
Fuzzy Queries

Central Server ()nO ()1O √

Flooding Search ()1O ()EnO +≥ √

Distributed Hash Table ()nO log ()nO log ×

n is the number of peers. E is the number of connections.

Table 2.1 Characteristics of Peer-to-Peer systems [8]

DHTs have a lot of variants such as Chord, Pastry, CAN, Tapestry[25], p-Grid[26],

Viceroy[27], Kademlia[28], or the Continuous-Discrete Approach[29-31]. All these

Peer-to-Peer systems implement the similar service (DHTs). However, they differ in

the topology of the overlay network that has an impact on the efficiency of the

different operations in a DHT.

Chord

Chord [4] operates on a one-dimensional key space (l-bit identifiers, i.e., integers in

the range []12,0 −l), and creates a circular structure (see Figure 2.6). Each data item

and peer is assigned an identifier in key space. Each peer stores key-value pairs. The

key-space is divided among the peers in such a way that each peers is responsible for

the keys which are equal or less than its peer ID and large than the peer id of the

predecessor. All distributed key-value pairs form the DHT.

2.State-of-the-Art and Related Work 17

Figure 2.6 Chord

To facilitate efficient lookup, each peer needs to build long links to its successor peers

on the circular key space. When a peer looks up a key, it sends the query to its

successor peer. If the successor peer determines that the key is not located between

itself and its predecessor, it forwards the query to its successor peer. Otherwise, the

key must be stored by the successor peer. Therefore, the successor peer replies and

transfers the desired file. The linear lookup on the circular key space is inefficient.

Chord utilizes a finger table (see Figure 2.7) to enhance lookup speed.

Figure 2.7 Finger table of Chord

2.State-of-the-Art and Related Work 18

Due to the fact that the circular key space is l-bit identifiers, each peer maintains a

finger table with l entries. For peer n, the entry of row i is a successor peer that is the

first successor of () lin 2mod2 1−+ , e.g., Figure 2.7 illustrates the finger table of peer

12 in 7-bit Chord [4]. By means of the finger table, each hop covers at least half the

clockwise distance between the current peer and the target peer. Hence, routing

complexity is ()nO log with n participating peers.

Pastry

Pastry was proposed by Rowstron and Druschel in [5, 32]. It is similar to Chord.

Pastry operates a circular ID-space that ranges from 0 to 12 −l , and uses key-value

pairs to map data items to ID-space. Pastry concentrates not only on reducing routing

hops, but also on geographical location.

Figure 2.8 State of a Pastry peer with ID 10233102, b = 2, and l = 8 (base 4) [5]

Pastry routing information comprises routing table, leaf set, and neighborhood set (see

Figure 2.8). The identifiers of pastry are strings of digits to the base b2 where b is

typically chosen to be 4. The routing table of peer n is made up of
b
l rows with

12 −b entries per row, and all entries in row i map to peers whose identifiers share

i-digit prefix with peer n but differ in digit i+1 [8]. Pastry enhances lookup efficiency

2.State-of-the-Art and Related Work 19

via routing table by storing prefix-ID peers. The leaf set L is formed by a set of peers,

which are the numerically closest peer IDs to the current peer ID, and uniformly

distribute on both sides, i.e., clockwise and counter-clockwise. The neighborhood set

M is comprised of M peers that are geographically near the current peer [33].

“Geographically near” is proximity metric and measures the amount of IP hops or the

ping latency [12]. They directly reflect the distance between peers. The neighborhood

set does not participate in routing but in maintaining network locality in the routing

information.

Routing in pastry consists of two steps. In the first step, a peer checks whether the key

falls into the range of its leaf set peers. If this is the case, it implies that the peer can

directly send queries to the peer numerically closet to the key. Thus, the routing

process is finished. Otherwise, the key is not covered by its leaf set. In this case, the

query needs to be sent over a longer distance peer. The current peer therefore looks up

in its routing table a peer that shares longer common prefix with the key than itself. If

the suitable peer is not reachable, the current peer sends the query to a peer that shares

at least the same prefix with itself, and whose ID is however numerically nearer to the

key [33].

If the key falls into a leaf set, it always needs one hop to deliver the query to the target

peer. If the key is forwarded via the routing table, the number of peers with longer

prefixes is reduced by the factor b2 in each hop. Thus, the routing needs ⎡ ⎤nb2
log

hops. Given that the routing table might not offer a peer with a longer prefix, this case

leads only to one additional routing hop. Hence, the expected number of pastry

routing steps is ⎡ ⎤nb2
log [12].

2.2 Bootstrapping

To join an overlay network, a new peer must discover at least one of the participating

peers as entry because the new peer does not have a global view of the overlay

2.State-of-the-Art and Related Work 20

network. This means that it does not even know whether the overlay network

exists[34]. The search for an overlay network is a critical problem that is termed

bootstrapping[35].

Peers may join it at any time, thereby becoming a part of the overlay network and

taking responsibility. Analogously, any peer might leave the overlay network at any

time without announcement. Therefore, the size of a Peer-to-Peer network

dynamically varies from zero to all potential peers in the network [36]. Furthermore,

the process of bootstrapping has to be performed via minimal bandwidth consumption.

In addition, the following four properties should be simultaneously achieved [8]:

1. Availability: Availability is one of the most important properties of bootstrapping.

A probabilistic approach is not sufficient. Thus, the bootstrapping mechanism

must perform well at any time, i.e., whenever a new peer needs network entry, it

can retrieve one. Additionally, the system should be realized by decentralized

infrastructure to avoid a single point of failure [36].

2. Self-organization: During the bootstrapping process, it must perform

automatically and without any manual interaction [36].

3. Efficiency: In order for the bootstrapping mechanism to perform efficiently, the

mechanism accepts a new peer within a reasonable amount of time and minimal

bandwidth consumption [12].

4. Scalability: The system has to make sure that system overhead does not increase

as an increasing number of peers join [12].

Bootstrapping is distinguished between two classes: peer-based approaches and

mediator-based approaches [37].

Peer-based Approaches

2.State-of-the-Art and Related Work 21

Peer-based approaches try to detect peers in the overlay by contacting other peers

directly. Peer-cache is one of the most popular typical representatives. A peer-cache

contains a list of previously known peers that are potentially participating peers[38].

By trying to contact peers in its peer-cache, a peer possibly discovers existing peers in

the overlay. Any peer that replies can be used as an entry point into the overlay. This

approach is straightforward and efficient. However, it cannot guarantee one hundred

percent success, e.g., all peers in its cache may have left the overlay.

Mediator-based Approaches

Mediator-based approaches use a well-known entry point as the mediator to provide

assistance. In contrast to peer-based approaches, a peer (or some peers) maintains a

participating peers list and determines which peer in the list should be offered to the

new peer as the entry point. Mediator-based approaches easily balance load between

peers. However, updating the available peers list consumes significant bandwidth.

2.3 Two-dimensional Peer-to-Peer Systems

The decentralized Peer-to-Peer systems have been proposed for storage ensuring

reliability, such as Chord [4] or Pastry [5]. Recent research has shown that one can

use such networks to build two-dimensional Peer-to-Peer system[39]. In order to

assign a Chord or Pastry peer corresponding to the two-dimensional space, the space

is divided into equally-sized zones (see Figure 2.9). Each zone may contain at most

one peer. The more zones, the more peers can be supported[40]. After a peer has

booted and chosen a location[41] in the space, it could join the Chord or Pastry ring.

Since Georg Cantor demonstrated that any two finite-dimensional smooth manifolds

regardless their dimensions have the same cardinality[12], Peer-to-Peer system could

map from two-dimensional space into one-dimensional DHT space depending on a

suitable space-filling curve[42] solution[43, 44]. For example, Mirko Knoll proposed

Geostry[12] that is a Peer-to-Peer System for location-based[45, 46] Information.

2.State-of-the-Art and Related Work 22

Figure 2.9 Divide space into equally-sized zones[47]

There are some solutions to implement space-filling curves. The simplest one is

s-shaped that map an index curve onto an area is to superimpose the curve (see Figure

2.10)[48]. Since the geographically close peers may have a large discrepancy in their

IDs, s-shaped curve is not very promising. For example, the first peer of the first two

rows in Figure 2.10 are geographically close, however their IDs are far apart[49].

Figure 2.10 S-shaped space-filling curves[49]

Lebesgue Space-Filling Curve

Peano presented the space-filling curve that depends on further partitioning. On each

partitioning step, each zone is divided into nine equal-sized sub-zones. And the curve

2.State-of-the-Art and Related Work 23

follows the initial mapping (see Figure 2.11). The distances between two adjacent

zones on the curve is homogeneous[49].

Figure 2.11 Peano curve[49]

Hilbert Space-Filling Curve

David Hilbert[50] proposed another curve which has better geometric locality

properties in the worst case[51]. Hilbert space-filling curve starts with the basic

“u”-form (see Figure 2.12)[52]. The order-two curve comprises four shrunken copies

that are placed on the grid. While the position of the upper two curves matches their

final orientation, the lower curves have to be rotated according to their position on the

unit square (see Figure 2.12). The ends of curves which are facing each other are

connected to form a continuous curve. In order to generate further-orders curve, the

previous procedure is applied recursively[49].

Figure 2.12 Hilbert Curve[49]

Such networks heavily rely on the Distributed Hash Tables (DHT). Since hashing

destroys the locality of data[53], they hardly support efficient range queries[54].

2.State-of-the-Art and Related Work 24

However, our distributed simulation or MMVEs usually need retrieving all objects

which are in a certain area[55]. Thus, we need two-dimensional Peer-to-Peer

networks that use topologies defined in geometric space[6, 8], such as VoroStore [55]

or CAN. They allow efficient range queries. VoroStore is based on the Voronoi

diagram (see Figure 2.13) that is a special decomposition of key space. It is a

complete solution for convex polygon zone partitioning depending on the locality of

peers. Using replication, VoroStore can offer availability and ensure integrity of data.

Figure 2.13 VoroStore: two-dimensional Peer-to-Peer network

Dominic Heutelbeck presented a distributed data structure for dynamic geometrical

objects in [56]. It provided an abstract data structure called distributed space

partitioning tree (DSPT). A DSPT is a general use distributed data structure, similar to

distributed hash tables (DHTs), that allows publishing, updating of, and searching for

geometrical objects (RectNet[57] is an implementation of DSPT, see Figure 2.14.).

However, DSPTs allow the keys of the objects and queries to have a spatial extension

with arbitrary boundaries.[57]

2.State-of-the-Art and Related Work 25

Figure 2.14 The network topology of RectNet[56]

When peer B distributes a message to all peers of zones intersecting area K, it reached

that intersects with the target area K. Starting at B, each peer of a zone intersecting K

forwards the message to all neighbors also intersecting K, except the neighbor from

which it received the message itself. In addition, each peer caches the geographical

messages it already distributed to its neighbors and does not send the same message to

its neighbors twice. Since K is a connected subset of the context space, all peers

intersecting K receive the message. [57]

Figure 2.15 Flooding in concave area[57]

CAN uses a similar flooding scheme, described in [7], to provide application level

multicasting. The directed flooding scheme described there reduces the number of

2.State-of-the-Art and Related Work 26

duplicated messages generated by the flooding. This approach can be used for peers

that only contain convex zones. It is not suitable for concave zones[57]

However, DSPT allows the concave zones that generate extra communication

overhead (see “concave and slim” problem in section 3.2). Hence, our system is based

on CAN.

2.4 CAN

Content-Addressable Networks (CAN) is a well-known representative of Distributed

Hash Tables (DHTs). CAN is used in large scale storage management systems such as

OceanStore[9, 58] , Farsite[59] , and Publius[60]. Our Content-Addressable Network

for Simulations (CANS) is derived from CAN. In this section, we describe in detail

the functionality of CAN.

In 2001, Ratnasamy et al. [7, 61] proposed a novel DHT, Content-Addressable

Network, which has a distributed, decentralized Peer-to-Peer infrastructure and

provides DHT functionality on an Internet-like scale. CAN is scalable, fault-tolerant,

and self-organizing.

2.4.1 Virtual Space

The design of CAN is based on a virtual d-dimensional Cartesian coordinate space

(see Figure 2.16). The d-dimensional space is used to store key-value pairs. A key k is

definitely mapped onto a point p, which is in the key space. As typical key-value pairs

in DHTs, CAN keys are derived from the value by applying its hash function [8].

Points in the virtual space are identified with coordinates. Therefore, the peer, whose

zone owns the point k, exclusively stores the corresponding (k, v). In order to retrieve

the value v corresponding to key k, the requesting peer lookups in CAN. If the point p

is located at the requesting peer, it retrieves the corresponding value v immediately. If

this is not the case, the query is forwarded to the peer whose zone covers point p via

the CAN infrastructure[6].

2.State-of-the-Art and Related Work 27

11 10

1 2

5 3

7 6 4 8

9

Figure 2.16 Two-dimensional Cartesian coordinate space

2.4.2 Peer

CAN is a highly distributed system, which built from thousands or even millions of

typically non-dedicated peers through the Internet that might flexibly join or leave the

system at any time [8]. Each peer performs a part of the functionality.

Zone

All peers in a CAN Peer-to-Peer overly network dynamically divide the entire key

space into a number of non-overlapping hyper-rectangular zones. Each peer is

assigned at least one distinct zone within the key space. When a new peer joins CAN,

it is allocated its own portion of the key space. This is done by an existing peer

splitting its allocated zone in half, retaining half and handing the other half to the new

peer [6]. When sharing half a zone, the split peer splits its zone in accordance with the

“split rule.”

Split rule: The split rule is a protocol. When sharing half a zone, the split peer splits

its zone as a certain ordering of the dimensions [8].

For example, in a two-dimensional CAN, the zone is first split along its y-axis, then

along its x-axis, and so on (see Figure 2.17).

2.State-of-the-Art and Related Work 28

Figure 2.17 Split rule in a two-dimensional CAN

Coordinate routing table

During runtime, each peer maintains a coordinate routing table that consists of the IP

address and zone boundaries of each of its immediate neighbors in the key space [6].

Neighbor: If two zones have overlapped coordinate spanning along d-1 dimensions

and abutting along one dimension, they are neighbors in d-dimensional key space [6].

For example, Figure 2.17 illustrates that zone 1 is a neighbor of zone 4. As the

definition of neighbor, zone 1 and 4 overlap along the x-axis and abut along the y-axis.

In the other scenario, zone 4 is not a neighbor of zone 2 because two zones abut along

both the x-axis and y-axis. Using the purely local neighbor state, the message can be

transferred between two arbitrary points in the key space.

2.4.3 Peer Operation

As a new peer joins the system, it must be allocated its own portion of the key space.

As a peer leaves, other peers have to take over its functionality immediately.

Joining

2.State-of-the-Art and Related Work 29

After retrieving a participating peer’s IP address from the bootstrap peer, the new peer

randomly chooses a point p in the key space and forwards a JOIN request to point p.

The message is forwarded by peers according to the routing mechanism.

When the JOIN request arrives at the occupant peer (whose zone covers point p), the

occupant peer splits its allocated zone in half, retains half and hands the other half to

the new peer in accordance with the split rule [6]. Thus, the new peer obtains its own

zone.

In order to join routing, the new peer copies the neighbor set from the previous

occupant peer, and updates the neighbor set, i.e., adds the previous occupant peer and

eliminates some peers that are no longer neighbors. Simultaneously, the previous

occupant also updates its neighbor set. Finally, all neighbors are informed and asked

to update their routing information.

During a new peer joining process, only the peers around the previous occupant is

involved. In other words, the overhead when a new peer joins only depends on the

number of neighbors and is independent of the size of the CAN. The average number

of neighbors depends on the dimensionality of the key space. Hence, the overhead of

a new peer joining will not scale up as the number of peers increase. The complexity

is ()litydimensionaO .

Departure

When a peer leaves a CAN, it must ensure that its zone and the associated key-value

database is taken over by the remaining peers. Therefore, the departing peer has to

choose an occupant from its zone among its neighbors. If its neighbor peer n’s zone

can merge with departing peer m’s zone and the merged zone is a valid

hyper-rectangular zone, peer m should hand its zone over to peer n. Peer n eventually

then extends its responsibility to take over m’s functionality and informs all neighbors

to update their routing states. If any neighbor’s zone cannot merge with the departing

peer’s zone, it has to hand its zone over to a neighbor that presently assumes the

2.State-of-the-Art and Related Work 30

smallest load. Simultaneously, the neighbor temporarily maintains two zones, i.e., the

peer in CAN is allowed to handle more than one zone. For robustness and to avoid

fragments, the peer with the multi-zone will try to hand over and merge its zone with

its neighbor’s zone. The process uses a zone-reassignment algorithm, and it is

described in next section.

The CAN also needs a solution to peer or network failures. If a peer suddenly

discovers that one or more peers are unreachable, the takeover mechanism is

immediately triggered. Because it is possible that multiple adjacent peers are

simultaneously involved in the failure region, first of all, it searches the region

surrounding the failure region to ensure that more than half of the failed peer’s

neighbors are still reachable. If there are sufficient neighbors to initiate a takeover

safely, each neighbor of the failed peer produces a TAKEOVER message conveying

its own volume (e.g., load and quality of connectivity). Prior to sending the

TAKEOVER message, they initialize a timer independently and wait for timer

expiration. Once a peer receives a TAKEOVER message with a bigger volume than

its own volume, it replies with its own TAKEOVER message. Otherwise, it cancels

its timers and scrubs the TAKEOVER message. Eventually, an adjacent peer with the

smallest volume is efficiently elected.

Second, the elected peer extends its responsibility to maintain the failed peer’s zone,

i.e., it temporarily handles a multi-zone. After a period of maintaining multiple zones,

all peers eventually only handle one zone by means of the zone-reassignment

algorithm.

In order to avoid stale key-value pairs as well as to recover lost key-value pairs, data

holders periodically refresh their key-value pairs [6]. Thus, the peer or network failure

causes the key-value pairs held by the crashed peer to be lost until the next refresh.

Zone-reassignment Algorithm

2.State-of-the-Art and Related Work 31

The departure procedure described in the foregoing section introduces the case of a

single peer being assigned multiple zones. Consequently, CAN needs a

zone-reassignment algorithm to retain the one-to-one peer to zone.

When a new peer joins CAN, the zone splits into two sub-zones. The zone is parent of

the sub-zones into which it was split, and is termed the “partition tree” (see Figure

2.18). The partition tree records all splitting details from the beginning to the present.

The leaf peers represent zones that presently exist in CAN (unshaded peers in Figure

2.18). The other peers represent zones that no longer exist, but had existed in the past

(shaded peers in Figure 2.18) [62].

1

2

9

6

4 7

3 5

8 10

3

6

4 8

4

7 10

7

2 9

2

1 4 2

1 2

1

53

Figure 2.18 Partition tree

We utilize the same name for the peer in the partition tree corresponding to the zone.

The partition tree is a binary tree. Only zones of sibling peers can merge with each

other. If a peer p wants to hand its zone off, and p’s sibling peer q is not a leaf in the

partition tree, p will depth-first search in the subtree of the partition tree rooted at q

until it finds two sibling leaves (peers m and n): m extends its responsibility to merge

with n’s zone, and then n occupies p.

However, to build a partition tree needs global view and space splitting history. It is

almost impossible for a Peer-to-Peer system. We proposed our solutions in section 3

and section 4.

2.State-of-the-Art and Related Work 32

2.4.4 Routing

Each peer in CAN only stores the state of its immediate neighbors. Hence, each peer

can only forward messages to its neighbor. CAN does not have any long links to send

messages further over its neighbors. The routing algorithm is termed greedy routing.

Greedy routing is a common algorithm in Peer-to-Peer systems. It is simple, but

routing is not fast. Therefore Peer-to-Peer systems have some improved algorithms

(finger table in Chord).

2.4.5 Design Improvements

The basic design of CAN provides ()dO per-peer state in even zones CAN. In the

worst case, a peer has
2
n neighbors (n peers in CANS). The routing complexity of

d-dimensional CAN is ()dndO /1⋅ (n peers in CANS) [6]. The number of hops is not

IP level but application level hops. Therefore, the distance between adjacent peers

might be many miles and many IP hops. The average total number of hops is as

follows:

hopCANeachoflatencyaveragehopsCANofnumberaveragetotal LnL _________ ×=

Design improvements are used to achieve smaller potential IP path latencies between

the requester peer and the target peer.

Multi-dimensioned coordinate spaces

Each peer has ()dO neighbors in d-dimensional CAN. If the number of neighbors

per peer are increased by increasing the dimensions of the CAN key space, the

average path length (()dndO /1⋅) is shorter [6]. Simultaneously, each peer’s routing

table slightly increases. Figure 2.19 illustrates the effect of multi-dimensioned key

2.State-of-the-Art and Related Work 33

space. The simulations are based on Transit-Stub (TS) topologies and the GT-ITM

topology generator [6, 63].

Figure 2.19 Effect of dimensions on path length [6]

Because each peer has more neighbors, the routing has more fault tolerance. Even

though some adjacent peers have crashed, the current peer has more potential next

hop peers to forward.

Realities: Multiple coordinate spaces

CAN maintains multiple key spaces independently. Each key space is termed a

“reality.” Each single peer in CAN is assigned multiple zones that are on distinct

realities, i.e., each reality assigns one zone to each single peer. Simultaneously, each

peer handles multiple independent neighbor sets in distinct realities.

For a key-value pair, we retrieve r coordinates (() () () (){ }rr yxyxyxyx ,,,,,, 21 L=) in

r realities by means of a hash function. It implies that there are r independent

replications in CAN. The replications improve the peer’s tolerance to failure. If peers

crashed, other peers could recover system via crashed peers’ replications. However, a

2.State-of-the-Art and Related Work 34

crashed peer cannot be recovered in a multiple crashes in which all replications are

crashed too.

To forward a message, a peer checks its neighbors on each reality and forwards to the

neighbor closest to the target. Thus, CAN reduces the path length using multiple

realities [6] (see Figure 2.20).

Figure 2.20 Effect of multiple realities on path length [6]

2.5 Routing improvement

Recently there are several works aimed at improving lookup efficiency in CAN

2.5.1 eCAN

eCAN is a mechanism proposed to enhance routing performance in “Building

Low-maintenance Expressways for Peer-to-Peer Systems” [64]. The objective of

eCAN is to establish a hierarchical scheme that maintains neighbor pointers at

different levels of the logical space. eCAN operates similar to a real-world

expressway. It improves CAN’s routing capacity by increasing the span of hops.

2.State-of-the-Art and Related Work 35

To establish expressways, the entire key space is divided into zones (see Figure 2.21).

A set of zones assemble a bigger zone, which is termed “expressway zone.”. The span

of the expressway zone k is a priori. A set of expressway zones assemble a

higher-level expressway zone. Thus, the expressway zones have a hierarchical

architecture. Figure 2.21 illustrates a two-dimensional space with k = 4. The region

marked with dark shade is the zone, the region marked with green shade is a level-2

expressway zone, and the region marked with red shade is a level-1 expressway zone.

Each zone in eCAN is a resident of the different level expressway zones, which

enclose this zone.

Short link

level-2 expressway link

level-1 expressway link

Figure 2.21 Expressways for CAN

Each expressway zone maintains links to other adjacent expressway zones at the same

level. Consequently, the routing table of eCAN consists of not only the short links that

link only to immediate neighbors, but also the long links that link to one peer in each

of its adjacent expressway zones at different levels (different level links are marked

with different colors).

Figure 2.22 is a snapshot of eCAN with k = 4. The expressway has established a

binary tree, which is independent of the dimension of the key space. Consequently,

2.State-of-the-Art and Related Work 36

eCAN possibly achieves ()nO log routing performance by means of maintaining

logarithmic routing entries at each peer in a CAN overlay

...

Level-1 expressway zone

Level 2 expressway zone

Level-1 expressway zone Level 1 expressway zone Level 1 expressway zone

Figure 2.22 Snapshot of eCAN with k = 4

When peer leaves, its neighbor will take over its responsible zone. There are two

scenarios. If the departure peer does not handle expressway zone, nothing extra needs

to be done as conventional CAN. If this is not the case, the expressway is broken.

There are two steps to repair a broken expressway in a demand-driven manner. First,

when peer s forwards message to departure peer d via expressway, the routing request

will time-out. Since eCAN is only an auxiliary system, the message can be forwarded

using CAN greedy routing. Then, the recovery procedure is triggered. Peer s picks up

a point in the zone of peer d and routes to it. Since peer d’s neighbor definitely took

over its zone (CAN recovery operation), the routing will always succeed at peer n

whose zone contains the point. Peer n must be a descendent of peer d and inherits peer

d’s routing capability. Peer n replaces peer d to repair expressway.

2.5.2 LDPs

Each peer equips Long Distance Pointers (LDPs) [65] to add distant neighbors.

Instead of greedy CAN routing, a peer considers both its short links and LDPs. A peer

chooses the immediate/distant neighbor whose zone is closest to the target as the next

hop. CAN with LDPs has a priori fixed routing state per peer, e.g., each peer keeps k

LDPs. There are two different schemes for selecting LDPs:

2.State-of-the-Art and Related Work 37

Random Pointers

In this scheme, a peer sends k discover-messages to k random points in key space via

greedy CAN routing. The peers, which cover those points, have the responsibility of

replying with their IP addresses and zone information. The initiator establishes LDPs

according to the replies. Figure 2.23 illustrates a peer p maintaining LDPs (k = 4).

Figure 2.23 Random pointers

Distant neighbors in random pointers scheme might not be evenly distributed in key

space. The example in Figure 2.23 has no pointer to the bottom right. In order to

provide better coverage, subspace pointers are proposed.

Subspace Pointers

In contrast to random pointers, the subspace pointers scheme divides the key space

into k equal-sized sub-zones, and each peer selects a random point from each

sub-zone. The peers, whose zone covers the random point, are distant neighbors, and

establish LDPs pointing to these distant neighbors.

2.State-of-the-Art and Related Work 38

Figure 2.24 Subspace pointers

2.5.3 RCAN

“Multi-ring Infrastructure for Content-Addressable Networks” [66] was proposed as a

novel topology to improve the routing efficiency of CAN overlays. In conventional

CAN, a peer knows only about its immediate neighborhood. The greedy routing using

only neighboring peers is not efficient and is more vulnerable to network failures. The

key idea of RCAN is to equip each peer with long links towards some distant peer

(called distant neighbors). Long links are established as follows:

“A node selects distant neighbors situated at distances inverse to powers of 2 on the

coordinate space. The set of long links in each peer is partitioned into small sub-sets,

each of which is established along one dimension. Long links are clockwise directed

and wrapped around the key space.”[67] The architecture of RCAN is a virtual

multi-dimensional Cartesian space on a torus. (see Figure 2.25).

2.State-of-the-Art and Related Work 39

Figure 2.25 Torus model of a 2D multi-ring topology [66]

Each zone in RCAN associates with a set of positive integers ()10 ,,, −di lll L that keeps

track of the evolution of the key space—termed the region’s level. il is the i-th

sub-level of the zone. Its value implies the number of splits that the zone has

undertaken along the i-th dimension. In order to eliminate inefficiency and

vulnerability, each peer equips d sets of long links in d-dimensional space. Each set of

long links points to distant neighbor peers located at distances inverse of the power of

two from itself along one dimension. Consequently, a peer has ()1−il long links on

the i-th dimension. The distance between a peer p and its j-th neighbor on the i-th

dimension is

() i
jj

i wp ⋅= 2

(iw is the width of p’s zone along the i-th dimension, and 1,,1 −= ilj L). Since the

link for 0=j is a short link pointing to an immediate neighbor (see Figure 2.26)

[66].

2.State-of-the-Art and Related Work 40

i
l wi ⋅−12

Figure 2.26 Long links in RCAN

Figure 2.27 illustrates the long links mode in two-dimensional RCAN.

x dimension

y dimension

21•wx 22•wx 23•wx

21•wy

22•wy

Figure 2.27 Long links model

RCAN adopts a “maintain-on-use” approach to update routing tables after peer

activities. Instead of propagating the update to all affected peers, RCAN does nothing

until a peer detects a link broken during routing. The peer can perform the routing

task via other good links. Meanwhile, a process is triggered to fix the broken link.

Hence, RCAN gets rid of high traffic overhead to inform all affected peers after peers

churn [66].

2.State-of-the-Art and Related Work 41

RCAN provides a completely decentralized mechanism and self-scaling routing state.

The number of long links per peer is ()nO log and maintenance overhead during

peer churn is also ()nO log .

3.Using CAN Tree to Manage a CANS 42

3 Using CAN Tree to Manage a CANS

Chapter 3

Using CAN Tree to Manage a CANS
In order to manage a CANS, we need the splitting history of CANS. CAN tree is a
kind of data structure to record the splitting history.

3.1 Introduction

Content-Addressable Network for Distributed Simulations (CANS) is designed to

handle the simulation of city traffic [68] or a Massively Multiuser Virtual

Environment (MMVE). It is an improvement over normal CAN according to the

purpose of the simulations. The two-dimensional simulation area is divided amongst

the peers in CANS. Every peer handles exactly one zone. To a high degree, peers can

run the simulation of their zone independently. When players or cars cross zone

boundaries, a peer has to synchronize and hand them over to its neighbors. In order to

improve efficiency, communication between peers must be reduced.

In simulations, we found that frequent communication between peers greatly reduces

system efficiency. Since crossing of boundaries results in communication and

concave zones causes a large number of unnecessary boundary crossings, concave

zones are a problem. If a zone is concave, a car passing it may cross the boundary

more than two times. In another scenario, when zones are slim, cars will cross the

boundaries often. We call these two problems the “concave and slim” problem. We

propose a new approach to solve them. All zones are convex and their length-width

ratios will be limited to an acceptable range.

To eliminate concave and slim zones in CANS raises another problem. After a peer

leaves, a left-recursion algorithm can be used to handle the zone released by the

3.Using CAN Tree to Manage a CANS 43

departed peer. The number of recursive steps is unpredictable. In the worst case, all

peers are involved. This will seriously affect the system’s scalability and stability. We

designed a “shortcut” algorithm that utilizes the “CAN tree” to solve this problem.

Using our approach, recovery can be achieved in two steps, which is a significant

speed up.

3.2 Requirements

When peers leave or crash, we must make sure that their zones are handled by other

existing peers. After taking over the zones of other peers, a peer may have to handle

multiple zones or handle a polygon zone. Since CAN is designed for file-sharing [6],

these polygon zones are acceptable.

In contrast, CANS is designed for simulation. Although peers handling multiple zones

are easy to realize, it generates extra load; and the extra load will never disappear until

these zones can be merged. For example, CANS includes 16 peers, and every peer

handles only one zone (see Figure 3.1(a)). When some peers leave (the departing

peers are shaded in Figure 3.1(a)), the neighbors take over their zones. Eventually,

every peer handles four zones (see Figure 3.1(b)). When a peer handles an increasing

number of zones, the management of zones will become increasingly complex.

Complex systems reduce efficiency and robustness, so CANS does not allow a peer to

handle multiple zones.

3.Using CAN Tree to Manage a CANS 44

1

8

161215

47

141013

625

11

3

9

(a) CANS with 16 peers

(b) Peers handle multiple zones

(c) Peers handle concave polygon zones

1

15

10

8

A

B

(d) Peers handle convex zones

Figure 3.1 Concave and convex zone

If zones are arbitrarily merged with zones that have been released by departing peers,

a concave polygon may result. Figure 3.1(c) depicts a CANS after merging. Because

the concave polygon zones increase the communication between peers, they incur

extra costs. For example, we simulated city traffic with CANS. In the simulation, a

car drove from location A to location B. In concave polygon zones (see Figure 3.1(c)),

it crosses the boundaries four times. If the zones are convex (see Figure 3.1(d)), the

car crosses the boundary only once. We try to keep CANS running with a simple

structure and high efficiency; therefore, our peers must have neither multiple zones

nor a polygon zone. We therefore enforce the rule that every peer handles exactly one

rectangular zone. Zones cannot be arbitrarily merged. After merging, CANS must

ensure that all zones are rectangles and their length-width ratios limited to an

acceptable range.

3.3 Peer Churn

Peer joining and departure have to follow the protocols. The protocols make CANS
stably run.

3.Using CAN Tree to Manage a CANS 45

3.3.1 Peer joining

Because peer joining does not generate concave zone, joining a CANS network is

done the same way as in CAN. At the beginning of CANS, only one peer handles the

entire coordinate space. When a new peer joins CANS, it is allocated its own portion

of the key space. This is done by an existing peer splitting its allocated zone in half,

retaining half and handing the other half to the new peer [6]. In sharing a zone, the

split peer splits its zone according to the “split rule”, which is same with original

CAN.

3.3.2 Peer Departure

When peers leave or crash, CAN must ensure that all zones are rectangles and their

length-width ratios are limited to an acceptable range. We call this “acceptable.”

Sometimes, all zones are rectangles, but the layout of the zones is nevertheless

unacceptable. For example, Figure 3.2(a), Figure 3.2(b), and Figure 3.2(c) show two

layouts after peer 5 leaves. Here, the resulting state (i.e., zone split) cannot always be

reached from the initial state according to the split rule.

1

43

25

6

(a) Peer 5 is leaving

(b) Acceptable zones

(c) Unacceptable zone
Figure 3.2 Acceptable and unacceptable zones

For example, zone 1 merges with zone 5 (see Figure 3.2(b)): this layout can be

formed by splitting the entire key space according to the split rule. We call this layout

“acceptable.” If peer 6 merges with zone 5, the CAN becomes as shown in Figure

3.2(c). Although all zones are rectangular, this layout will never be formed by

splitting the entire space according to the split rule. Therefore, we call this

“unacceptable.”

3.Using CAN Tree to Manage a CANS 46

Definition 3.1: “Acceptable” is a state that is reached by splitting the entire space

according to the split rule.

Definition 3.2: “Merge” is a zone action. When a zone of a peer merges with another,

it extends its responsibility to take over the zone. After merging, CANS must be

acceptable (see Figure 3.3).

Definition 3.3: (“Mergeable-zone,” “mergeable-sibling-zone,” and “mergeable-zone-

pair”). When two zones can merge with each other, they are mergeable-zones: One is

the other’s mergeable-sibling-zone. Both of them are a mergeable-zone-pair.

Figure 3.3 Merging

Figure 3.4 Occupying

Definition 3.4: “Occupy” is a zone action. A mergeable-zone peer releases its own

zone and takes over the zone of another peer. The released zone will be merged by its

mergeable-sibling-zone (see Figure 3.4). Only mergeable-zone peer can occupies

others. Because occupier is mergeable-zone peer, the released zone of occupier

definitely can merge with its mergeable-sibling- zone peer.

When a crashed zone cannot merge with its neighbor, we use “occupy” to handle the

crashed zone[68]. A neighbor occupies a crashed zone and releases its own zone.

Subsequently, other peers try to merge with the released zone, and so on. It is

recursive. The recursion process will not be terminated until a mergeable-zone peer is

found.

In CAN, all peers are independent and do not have a global view. The smallest

neighbors of crashed peer[6] must occupy the crashed peer. Depending on the

different neighbor to occupy, we get a different result and hence a different step count.

3.Using CAN Tree to Manage a CANS 47

Therefore, the number of recursion steps is indeterminate. Figure 3.5 and Figure 3.6

show examples. The solution in Figure 3.5 uses five steps (four occupying and one

merging), but the solution in Figure 3.6 uses only three steps (two occupying and one

merging).

Figure 3.5 Long process of peer departure

Figure 3.6 Short process of peer departure

The number of recursion steps is unpredictable. In the best-case scenario, a neighbor’s

zone can merge with the released zone. Here, only one step is required. However, in

the worst-case scenario, we traverse almost all the peers. Here, we need as many steps

as there are peers. This will seriously affect the system’s scalability and stability.

In order to improve the worst case bound, we introduced an improvement scheme

“shortcut.” Our design does not restrict which peers can take part in the release-zone

process. When a peer cannot find a mergeable-zone peer among its neighbors, it can

directly ask a non-neighbor mergeable-zone peer to handle it. In this scenarios, CANS

needs additional links. We call it “CAN tree” and introduce it later.

Because a mergeable-zone can merge with its mergeable-silbing-zone, the process

uses only two steps. In the best-case scenario (merge with a neighbor), we

nevertheless need one step. However, in the worst-case scenario (merge with a

non-neighbor), we need only two steps. Figure 3.7 shows the path of

“shortcut-release-zone.” Peer detects the states of its neighbors by means of periodical

heartbeat messages [66]. When a neighbor of peer 1 detected peer 1 crashed, it

informs all neighbors of the crashed peer[6]. It will be in charge of recovery. It found

a mergeable-zone-pair peer 5 and 6, and asks peer 5 to occupy the zone of peer 1.

Peer 6’s zone then merges with the zone released by peer 5.

3.Using CAN Tree to Manage a CANS 48

3
65

2

1
（departed peer） 4

Step 1

Step 2
Figure 3.7 Shortcut peer departure

In the “shortcut release zone,” the key is to find a mergeable-zone in CAN. We

designed the “CAN tree” to search mergeable-zone. CAN tree is a data structure that

records the splitting history. Figure 3.8 shows a CAN and its CAN tree. The shaded

zones are mergeable-zones. Every peer represents a zone. Using the CAN tree, we can

easily find these mergeable-zones.

Figure 3.8 CAN and its CAN tree

3.4 CAN Tree

In order to find mergeable-zones, we need the splitting history of the key space. We

use tree structure to record splitting history, it’s termed “CAN tree.”

3.4.1 Building a CAN Tree

When peers join CAN, an existing peer split its zone in accordance with the split rule.

At the same time, the “parent-child” (long link) relation between peers is

established[68]. If new peer p got half a zone from peer q, q becomes the parent of p.

All “parent-child” relations comprise a tree[68].

3.Using CAN Tree to Manage a CANS 49

In the beginning, there is only one peer in CAN to handle the entire coordinate space.

The peer is the root of the tree. As new peers join CAN, the CAN tree grows. Figure

3.9 shows how a CAN tree is built. The shade zones are mergeable-zones.

NO. layout of zones CAN tree NO. layout of zones CAN tree

1

 5

2

6

3

7

4

8

Figure 3.9 Building a CAN tree

The CAN tree looks similar to partition tree. However, they are different. In partition
tree, the leaf peers exist in CAN. The other peers no longer exist, but have existed in
the past[56]. Thus, global view and space splitting history are necessary to build a
partition tree. In contrast, every peer in CAN tree exists in CANS. Peers only need to
know their parents and children. The global view is not necessary.

3.4.2 Storing the CAN Tree

There are multiple options for storing the CAN tree. The most straightforward

solution is to store the CAN tree on a dedicated server or to select a peer (or set of

3.Using CAN Tree to Manage a CANS 50

peers) that is responsible for storing the tree. This CAN tree server records all

relationship between peers. It is simple. But it has bottle neck problem. It also

becomes the weakness of CANS. If this server crashed, CANS cannot work anymore.

The second option is to build a distributed CAN tree: Every peer records a set of

pointers that build connections between parent peer and child peer (see Figure 3.10).

When peers join or leave (actively) CANS, we only modify the pointers on the

affected peers. When a peer crashed (passively), one of its neighbors will lead

recovery (introduce later in section 3.4.3). It also inform the involved peers to modify

the pointers. The peer churn then affects only a small number of peers. Because

updating pointers is independent of the number of peers in the system, the cost of the

operation is constant. Therefore, the cost of the CAN tree is very cheap and CAN can

scale well. Traversing the tree becomes more costly when the tree is distributed

instead of centralized. However, with a decentralized storage there is no risk of losing

the tree if the dedicated tree server peers crash all together.

1 2

3 4

5
6

7
8

(a) CANS

(b) CAN tree

Figure 3.10 Distributed CAN tree

3.4.3 Finding Mergeable-Zones

If a zone is split into two sub-zones and the sub-zones are not split any more, the two

sub-zones are a mergeable-zone-pair. According to this rule, we could judge whether

two zones are a mergeable-zone-pair.

Because the order of sibling nodes (from left to right) is the order in which a zone is

gained from the parent, the youngest node in the sibling nodes is the rightmost node.

For example, Figure 3.8 shows node 5 having two child nodes. Node 8 is the

3.Using CAN Tree to Manage a CANS 51

rightmost leaf node. Therefore, the last split of zone 5 splits half of its zone to create

zone 8. Zones 5 and 8 are then not split anymore.

Consequently, zones 5 and 8 are mergeable-zone-pair. We call this the

“mergeable-zone-pair rule.” We deduced that two zones that map to the rightmost leaf

node and its parent node in a CAN tree, are a mergeable-zone-pair.

Peers use heartbeat message to test whether its neighbors crash. When a peer finds its

neighbor crashed, it will inform all the neighbors of crashed peer. And it takes

responsibility to lookup mergeable-zone-pair. We call it “leading peer”. It checks

whether the crashed peer is mergeable-zone. If it is, the leading peer send message to

the mergeable-sibling-zone to merge with the crashed peer. Otherwise, the leading

peer is in charge of search mergeable-zone-pair in CAN tree.

If the leading peer has children in CAN tree, it sends the message to its rightmost

child (the youngest child) in CAN tree. For example in Figure 3.11, peer 1 is leading

peer. It will send message to peer 5. Every peer received the message will send this

message to its rightmost child until find a rightmost leaf peer. The leaf peer and its

parent are mergeable-zone-pair. The rightmost leaf peer will take over the zone of

crashed peer and release its own zone (it will be merged by its

mergeable-sibling-zone.). The other neighbors of the crashed peer will not take part in

the search.

2

1

3

4

5

6 7 8

Traveling path

Figure 3.11 Traveling in CAN tree

3.Using CAN Tree to Manage a CANS 52

If the leading peer has no child, it must send message to its parent peer in CAN tree.

For example in Figure 3.11, the leading peer 3 sent a message to peer 1. Peer 1 sent a

message to its rightmost child.

In multiple crashes, we maybe find a crashed peer in traveling path. For example in

Figure 3.11, peer 3 is leading peer. It sent a message to peer 1. But peer 1 crashed too.

In this case, peer 3 will find out the replication of peer 1(Original CAN reality

solution in section 2.4.5). According to the replication of peer 1, peer 3 directly sent a

message to the rightmost child of peer 1. In other word, traveling could jump over

crashed peer via peer replication. Therefore, the crashed peers could be merged or

occupied one by one.

By repeatedly traversing the rightmost child, we find the rightmost leaf node in any

case. Using the CAN tree, we only need to traverse a small portion of peers to find a

mergeable-zone. Therefore, our algorithm will always succeed and it significantly

speeds up the process of reallocating zones.

3.4.4 Complexity of Searching Mergeable-Zones

We know that we can find a mergeable-zone by traversing the rightmost. Therefore,

the complexity of searching a mergeable-zone depends on the peers count and the

structure of the CAN tree.

The worst-case scenario

In the worst-case scenario, the CAN tree degenerates into a list structure, i.e., there is

only one associated child node for each parent node. This means that in a performance

measurement the CAN tree will essentially behave like a linked list data structure.

Therefore, the complexity in the worst-case scenario is ()nO ; and we plot the

average length of the traversing path for an increasing number of nodes (the

curve)(nfworst in Figure 3.12).

3.Using CAN Tree to Manage a CANS 53

Figure 3.12 Effect of CAN tree searching

The best-case scenario

All zones are mergeable-zones (see Figure 3.13). Therefore, the length of the

traversing path is 1)(=nfbest (the curve)(nfbest in Figure 3.12). The complexity in

the best-case scenario is ()1O .

1

1211109

625

4 8

16151413

73

Figure 3.13 The best case

Average case scenario

In the previous cases, the length of the traversing path can be directly inferred from

the algorithm; in the average case, we resorted to simulation. In simulation, we

randomly generated 100 CAN trees. The number of peers ranged from 1 to 100. The

simulation randomly makes a zone crash and calculated the length of the traversing

path in every CAN tree. After running the simulation 1000 times, we got the average

3.Using CAN Tree to Manage a CANS 54

length of the traversing path in CAN trees with different number of peers. We plot it

for an increasing number of peers (the curve)(nfaverage in Figure 3.12).

The inefficient recursive algorithm searches mergeable-zones via the layout of CANS

(i.e., it does not use the CAN tree), so it must visit all peers—resulting in a

complexity of ()nO . Even if the CAN tree is in the worst-case scenario, it does not

need to visit all peers. It only needs a depth-wise search to find the mergeable-zone,

and does not care about nodes above the current node in the CAN tree. Although the

inefficient algorithm and CAN tree searching in the worst-case scenario have the

same complexity (()nO). The inefficient algorithm is by a constant factor slower than

the CAN tree in the worst-case scenario. (The curve)(nf tinefficien in Figure 3.12.)

From Figure 3.12, it can be seen that our algorithm greatly reduced the path length.

Furthermore,)(nfaverage is almost independent of node number. Therefore, we can

avoid unnecessary hops via CAN tree, and CANS becomes more efficient.

3.4.5 CAN Tree Modification on Peer Departure

When a peer crashes or leaves, other peers will merge with or take over its zone, as

discussed in section 3.3.2. We must modify the CAN tree according to the CANS

modification. The CAN tree records the splitting history of the updated CANS; for

example, as follows:

 Merging: At the beginning, the key space and CAN tree is as shown in Figure
3.14. Peer 6 is leaving. Because peer 6 is a mergeable-zone, it can be merged with
its neighbor’s zone. After peer 6 has left, peer 2’s zone is merged with peer 6’s
zone (see Figure 3.15). In the CAN tree, node 6 is deleted.

Figure 3.14 CANS and CAN tree before departure

3.Using CAN Tree to Manage a CANS 55

1 2

3 4

5
7
8

Figure 3.15 CANS and CAN tree after merging

 Taking over: When peer 4 is leaving (see Figure 3.14), its zone cannot be merged
with its neighbor’s zone. Peer 8 merged its zone with peer 5’s zone. Peer 5 took
over peer 4’s zone (Figure 3.16). In the CAN tree, node 5 is transferred to the
position of node 4 and node 8 is transferred to the position of node 5.

Figure 3.16 CANS and CAN tree after occupation

3.5 Conclusion

In this chapter, we presented CANS, a Peer-to-Peer network for conducting traffic

simulations or MMVE games. CANS is based on CAN, but it features several

optimizations that make it more useful in our simulation scenarios. CAN has some

issues that are related to the shape of its zones: specifically, they can become arbitrary

polygons. For file sharing, this is not a drawback, but for simulations, the

communication overhead is lowest for quadratic zones.

Therefore, CANS uses a new algorithm to reallocate zones, such that they are neither

concave nor slim. We have shown that a simple and straightforward solution can

achieve the desired zone splitting, but too many peers are involved in swaps.

As a result, we introduced the CAN tree. This tree structure allows us to find

mergeable-zones very efficiently. This greatly reduces the number of zone swaps

between peers when compared to the simple approach. We showed that we can give a

constant boundary for the number of swapping steps.

4.Using Zone Code to Lookup Mergeable-zones 56

4 Using Zone Code to Lookup Mergeable-zones

Chapter 4

Using Zone Code to Lookup Mergeable-zones

A CAN tree records the splitting history and allows to search mergeable-zones

efficiently. However, peers need to communicate in order to modify the CAN tree

after peers churn. We introduced the zone code to do the same work with the CAN

tree, with no communication needed among the peers. Consequently, the zone code

scheme reduces communication overhead.

4.1 Partition tree

When a new peer joins CANS, a zone is split into two sub-zones. If we record that the

zone is the parent of the two sub-zones, the splitting history is a binary tree (see

Figure 4.1). People call it “partition tree” (section 2.4.3). The partition tree records all

the splitting details from the beginning to the present. The leaf nodes represent zones

that exist in CAN. The other nodes represent zones that no longer exist, but have

existed in the past[56].

4.Using Zone Code to Lookup Mergeable-zones 57

Figure 4.1 Partition tree

If a zone is split into two sub-zones and the sub-zones are not split any more, the two

sub-zones are a mergeable-zone-pair. Combining all our insights, we deduced the

following corollary:

Corollary 4.1: Two sibling leaf nodes in the partition tree, which share a common

parent node, are mergeable-zone-pair peers.

Thus, the partition tree is a solution to search the mergeable-zones. Because the

internal peers no longer exist (they existed at some previous time),, we can not use

this tree structure. Instead of the partition tree, we only store the partial useful

splitting history by zone code.

4.2 Building Zone Code

We do not store the entire partition tree in any peer, but rather convert the partition

tree into bit sequences called the zone code (see Figure 4.2). Each zone stores a zone

code (a part of partition tree). A zone code is a unique code, and it is fully

4.Using Zone Code to Lookup Mergeable-zones 58

decentralized. A traversal of the partition tree is performed to obtain the zone code

(see Figure 4.2). It is analogous with Huffman code [69]. Going left is a “0,” going

right is a “1.” A zone code is completed when a leaf node is reached. We deduced the

following corollary:

Corollary 4.2 The zone code is a binary prefix code.

Figure 4.2 Zone code

In practice, we do not need the partition tree to generate a zone code. Every bit of the

zone code signifies a split. The more CAN splits, the longer the zone code becomes.

The zone code grows with splitting and shrinks with merging. When a peer joins or

leaves, we only need to append or delete, respectively.

4.Using Zone Code to Lookup Mergeable-zones 59

4.2.1 Zone code growth as peers join

When a new peer joins in CAN, an existing zone splits into two sub-zones. It retains

one and hands the other one to the new peer. We append “0” to the zone code of one

sub-zone, and append “1” to the other. After each splitting, the zone codes of the

sub-zones will append 1-bit. Hence, the zone code grows simultaneously with

splitting.

Figure 4.3 shows how the zone code grows during the key space splitting. Initially, a

peer handles the entire key space and its zone code is null.

4.Using Zone Code to Lookup Mergeable-zones 60

1
(null)

1
(null)

(a)

(b)

1
(00)

3
(01)

2
(1)

1
(null)

1
(0)

2
(1)

1
(00)

3
(01)

0

0 1

1

(c)

1
(null)

1
(0)

2
(1)

1
(00)

3
(01)

2
(10)

4
(11)

0

0 1

1

0 1

1
(00)

3
(01)

2
(10)

4
(11)

(d)

(e)

Figure 4.3 New peer joining

4.Using Zone Code to Lookup Mergeable-zones 61

4.2.2 Zone code decrease as peers’ zones merge

When a peer leaves or crashes, there are two resulting scenarios. If it has a

mergeable-zone, its zone can merge with its mergeable-sibling-zone (zones 1 and 5 in

Figure 4.4(a)). After merging, we delete the last bit of the zone code. For example

(see Figure 4.4(b)), peer 1’s zone merged with peer 5’s zone, and the zone code

changed from “000” to “00.”

(a) Before merging

(b) After merging

Figure 4.4 Peer departure and merging

In the other scenario, if the departed peer had a non-mergeable-zone, a non-neighbor

mergeable-zone will occupy it (see Figure 4.5). After occupation, the zone copies the

zone code of the occupied zone. For example, in Figure 4.5(b), peer 3 has crashed.

Peer 5 then occupied peer 3, and released its zone. In addition, peer 1’s zone merged

with the zone released by peer 5, and deleted the last bit of its zone code (changed

from “000” to “00”).

4.Using Zone Code to Lookup Mergeable-zones 62

1
(null)

1
(0)

2
(1)

1
(00)

3
(01)

2
(10)

4
(11)

1
(000)

5
(001)

0

0 1

0 1

1

0 1

2
(10)

4
(11)

1
(000)

5
(001)

3
(01)

Merge

Merge

Occupy

Occupy

(a) Before occupation

(b) After occupation

Figure 4.5 Peer departure and occupation

4.3 How to find Mergeable-zones

Theoretically speaking, it is easy to search for a mergeable-zone-pair via the partition

tree. The sibling leaf nodes that share a common parent node are a

mergeable-zone-pair. Thus, we deduced the following corollary:

Corollary 4.3 Let ()nn xxxxx ,, 121 −= L and ()nn yyyyy ,, 121 −= L denote the two

zone codes of zones X and Y. Then, { } ⇔=⊕∧=⊕−∈∀ 10:11 nnii yxyxni L X

and Y are a mergeable-zone-pair.

In other words, if two zone codes differ only in the last bit, they are a

mergeable-zone-pair. Corollary 4.3 is crucial to our solution. We do not need any

more data structures to record splitting history, such as partition tree or CAN tree.

Using logical operation exclusive disjunction, we can know whether two zones are a

mergeable-zone-pair. For example, peer 1’s zone code is “000” and peer 5’s is “001”

(see Figure 4.2). Because of 001001000 =⊕ , they are a mergeable-zone-pair. Peer 6

has zone code “011” and 010001011 =⊕ . Thus, peers 6 and 5 are not a

mergeable-zone-pair.

4.Using Zone Code to Lookup Mergeable-zones 63

4.4 Search Algorithm

By means of the zone code, we can determine whether two zones are a

mergeable-zone-pair. However, when we need a non-neighbor mergeable-zone, we

have to search in the distributed system. Therefore, we need an efficient search

algorithm.

4.4.1 Area search

We start to search from a randomly chosen zone, which could be any zone. It is

termed “starting zone”. First, we search the mergeable-sibling-zone of starting zone. It

is termed “search area” (see Figure 4.6). If there is only one peer in the

mergeable-sibling-zone of starting zone, it means that it did not split again. The

starting zone and search area are mergeable-zone-pair (the starting zone is shaded in

Figure 4.7(a))..Otherwise, there are two scenarios:

 Scenario 1: There is more than one zone in the search area and there is a

mergeable-zone-pair among the neighbors of the starting zone. Because

every zone directly communicates with its neighbors in CANS, we can get

the zone codes of the neighbors of the starting zone. Hence, we can

definitely find the mergeable-zone-pair by zone code (the starting zone is

shaded in Figure 4.7(b)).

 Scenario 2: There is more than one zone in the search area and no

mergeable-zone-pair among the neighbors of the starting zone (the starting

zone is shaded in Figure 4.7(c)). We need to randomly choose a new starting

zone in the search area and repeat this process, until we find a

mergeable-zone-pair.

4.Using Zone Code to Lookup Mergeable-zones 64

Figure 4.6 Shrinking search area

(a) One zone in the search

area

2
(10)

Search area

1
(0)

Starting zone

3
(11)

(b) Mergeable-zone-pair in
the search area

(c) No mergeable-zone-pair
in neighbors

Figure 4.7 Three search scenarios

Because every zone splitting will generate a new mergeable-zone-pair, even if the

search area is divided into sub-zones, there is definitely at least one

mergeable-zone-pair in the search area. Searching is a recursive process to shrink the

searching area. Therefore, our algorithm is always valid. Every step the search area

shrinks half space at lest. It’s a kind of binary search.

4.4.2 Complexity of Searching

We know that we can find a mergeable-zone by shrinking the search area. Hence, the

searching complexity depends upon the shrinking rate.

The worst-case scenario

There is only one mergeable-zone-pair in CANS. Therefore, the complexity in the

worst-case scenario is ()nO . The curve)(nfworst in Figure 4.8 shows the hop count

with increasing peers.

4.Using Zone Code to Lookup Mergeable-zones 65

Figure 4.8 Effect of shrinking search

The best-case scenario

All zones are mergeable-zones. Therefore, the hop count is 1)(=nfbest (the curve

)(nfbest in Figure 4.8). The complexity in this best case is ()1O .

Average case scenario

In the previous cases, the length of the traversing path can be directly inferred from

the algorithm; in the average case scenario, we resorted to simulation. In the

simulation, we randomly generated 100 CANS. The number of zones ranged from 1

to 100. The simulation then randomly chooses a peer to crash and calculated the

length of the traversing path in every CANS. After running the simulation 1000 times,

we got the average length of the traversing path in the CAN trees with different

numbers of zones. We plotted it for an increasing numbers of peers for coordinate

spaces: Figure 4.8 shows the curve)(nfaverage .

The inefficient algorithm searches mergeable-zones via the layout of CANS (i.e., it

needs global view.), so it needs a system snapshot. Hence, it has a complexity of ()nO

4.Using Zone Code to Lookup Mergeable-zones 66

(n is the number of peers in system). When our algorithm is in the worst case scenario,

it still does not need to visit all zones. Although the inefficient algorithm and our

algorithm in the worst-case scenario have the same complexity, ()nO . The inefficient

algorithm is by a constant factor slower than our algorithm in the worst-case scenario.

Therefore, the length of traversing with the inefficient algorithm is () nnf tinefficien =

(Figure 4.8, the curve ()nf tinefficien).

From Figure 4.8, it can be seen that our algorithm greatly reduces the search

complexity path length. Furthermore,)(nfaverage is independent of the peer count.

Therefore, we can avoid unnecessary hops and CANS becomes more efficient. Figure

4.9 illustrates the search complexity path length distribution of CAN tree with 100

peers. More than 45 percent only need 1 step to find mergeable-zone-pair.

Figure 4.9 Search complexity path length in shrinking search

4.5 Multiple Crashes

After a new peer joins CANS, it and its zone supplier are become a

“mergeable-zone-pair.” Thus, CANS has at least one “mergeable-zone-pair.” When

peers crash, we encounter three kinds of scenarios:

4.Using Zone Code to Lookup Mergeable-zones 67

 Scenario 1: CANS has at least one valid mergeable-zone-pair whose sibling

zone is not crashed (see Figure 4.10(a)).

 Scenario 2: CANS has only valid mergeable-zone, whose sibling-zone has

crashed (see Figure 4.10(b)). There is at least one such mergeable-zone.

 Scenario 3: CANS has no valid mergeable-zone (see Figure 4.10(c)). All

mergeable-zones have crashed.

(a) Scenario 1 (b) Scenario 2

mergeable-zone

2

4
(crashed)

3

1
(crashed)

Merge

(c) Scenario 3

Figure 4.10 Three scenarios in multiple crashes

In multiple crashes, our strategy is that a valid zone merges with the crashed zone and

takes over its responsibility. However, after merging, CANS may change from one

scenario to another. In this section, we propose different algorithms for different

scenarios.

Algorithm for scenario 1

In this scenario, there are at least two valid mergeable-zones. One occupies the

crashed zone. Its sibling-zone merges with it. In this step, one crashed zone is

recovered. Then scenario 1 may change into scenario 1, 2, or 3 (see Figure 4.11,

Figure 4.12, and Figure 4.13).

4.Using Zone Code to Lookup Mergeable-zones 68

(a) Before occupation

(b) After occupation

Figure 4.11 Scenario 1 to scenario 1

(a) Before occupation

(b) After occupation

Figure 4.12 Scenario 1 to scenario 2

Scenario 1

2
(1)

4
(001)

3
(010)

1
(000)

Occupy

Merge

5
(011)

(a) Before occupation

Scenario 3

4
(1)3

(010)

1
(00)

5
(011)

(b) After occupation

Figure 4.13 Scenario 1 to scenario 3

Algorithm for scenario 2

In this scenario, there is only one valid mergeable-zone, and its sibling-zone has

crashed. The valid zone merges with its crashed sibling-zone. In this step, one crashed

zone is recovered. Scenario 2 may then change into scenario 1, 2, or 3 (see Figure

4.14, Figure 4.15, and Figure 4.16).

4.Using Zone Code to Lookup Mergeable-zones 69

(a) Before merging

(b) After merging

Figure 4.14 Scenario 2 to scenario 1

(a) Before merging

(b) After merging

Figure 4.15 Scenario 2 to scenario 2

(a) Before merging

(b) After merging

Figure 4.16 Scenario 2 to scenario 3

Algorithm for scenario 3

In this scenario, CANS has no valid mergeable-zone. All mergeable-zone-pairs have

crashed. We must find the crashed mergeable-zone-pair and merge them. After

merging, we have a new bigger crashed zone. Although no crash zone is recovered in

this step, CANS may change into scenario 2 or 3 (see Figure 4.17 and Figure 4.18). If

CANS changes into scenario 2, one crashed zone will be recovered in the next step.

4.Using Zone Code to Lookup Mergeable-zones 70

(a) Before merging

2
(1)3

(01)

1
(00)

Sc
en

ar
io

 2

(b) After merging

Figure 4.17 Scenario 3 to scenario 2

(a) Before merging

2
(1)3

(01)

1
(00)

(b) After merging

Figure 4.18 Scenario 3 to scenario 3

By combining the above three algorithms, additional insight can be deduced. Every

merging recovers one crashed zone except in scenario 3. However, scenario 3 changes

into scenario 2 via merging. Table 4.1 and Figure 4.19 show what happens after

merging. During merging, the system’s scenario keeps changing until all crashed

zones are recovered.

Current scenario Next scenario Crashed zone recovered
1 1/ 2/ 3 Yes
2 1/ 2/ 3 Yes
3 2/ 3 No

Table 4.1 Transformation between scenarios

4.Using Zone Code to Lookup Mergeable-zones 71

Figure 4.19 Transformation between scenarios

If peers can retrieve any replications, CANS can recover from any multiple crashes as

long as one peer survives. However, the replications store in peers (see section 2.4.5).

When a peer crashed, the replications on it will crash simultaneously. Therefore,

anti-crash capability also depends on replication solution.

4.6 Reliability of the algorithm

In general, as long as one zone survives, the system can recover from multiple crashes.

The surviving zone takes over all responsibility. However, CANS must be acceptable

at any time. This means that zones cannot arbitrarily merge. Only a

mergeable-zone-pair can merge with each other. In this section, we will prove that

CANS can recover from any crash. In other words, even if only mergeable-zone-pair

merging is allowed, all crashes can be recovered.

We assume that there are enough redundant replicas. All zones can get replicas of

crashed zones any time (In this thesis we use the replica solution in [6]). First, we

prove that our multiple-crash recovery algorithm can guarantee that CANS always

remains acceptable. In our multiple-crash recovery algorithm, we discussed three

scenarios in the last section. In the three scenarios, there are only three kinds of

merging: valid-zone merging (see Figure 4.10(a)), valid-crashed-zone merging (see

4.Using Zone Code to Lookup Mergeable-zones 72

Figure 4.10(b)) and crashed-zone merging (see Figure 4.10(c)). They are all

mergeable-zone-pair merging. Hence, CANS always remains acceptable.

Second, we must prove that CANS can recover from any crash via our multiple-crash

recovery algorithm. Different kinds of merging have different results, as follows:

 Valid-zone merging: Two valid zones merge with each other. The new zone is

valid.

 Valid-crashed-zone merging: A valid zone merges with a crashed zone. The

valid zone extends its responsibility to take over the crashed zone. Thus, the

new zone is still valid.

 Crashed-zone merging: Two crashed zones merge with each other. The new

zone is crashed.

If we let valid zone denote “1” (“true”) and crashed zone denote “0” (“false”), we get

Table 4.2. Table 4.2 is the same as the truth table of disjunction. Via calculation, we

can determine the situation after multiple mergings.

 zone 1 zone 2 new zone

Valid-merging 1 1 1

Valid-crash-merging 1 0 1

Valid-crash-merging 0 1 1

Crash-merging 0 0 0

valid: 1, crashed: 0

Table 4.2 Merging results

Let iz denote the situation of zone i with { }1,0∈iz and { }ni L2,1∈ .

Let { }
48476
L

n

zzS ,, 211 = denote the situation of CANS before merging, and there is at

least one valid peer (1: 1 =∧∈∃ zSzz).

4.Using Zone Code to Lookup Mergeable-zones 73

Let { }
}1

2

−

=
n

S L denote situation of CANS after mergings.

According to Table 4.2, a crashed zone will disappear after once merging, thus

{ }0|\ 112 =∧∈∈= eSeezSS .

Subsequently,

{ }0|\1 =∧∈∈=+ eSeezSS iii .

Let endS denote situation of CANS after multiple-crash recovery.

The merging process will end up with 1: =∧∈∀ zSzz end . All zones in endS are

valid. CANS has recovered from multiple-crash.

Subsequently, 1:1: 1 =∧∈∀⇒=∧∈∃ zSzzzSzz end

We have shown that the algorithm converges and gains a situation endS where all

endSz∈ are “1,” i.e., they are valid. Thus, CANS reaches an acceptable state after

finite steps.

4.7 Conclusion

In Chapter 3, CANS uses the CAN tree to reallocate zones, such that they are not

concave and slim. It shows that a simple and straightforward solution can achieve the

desired zone splitting, but the CAN tree needs to be updated after peer churn. Thus,

the system uses extra communication to modify the CAN tree

In order to overcome the drawbacks of the CAN tree, we introduced the zone code

and mergeable-zone searching algorithm. They have a similar efficiency and lower

communication cost.

5.CAN Tree Routing 74

5 CAN Tree Routing

Chapter 5

CAN Tree Routing
We talked about routing improvement in section 1.1.2. We need a novel long link
routing solution which could improve routing efficiency in low dimensional CAN.

5.1 Introduction

Long links have been extensively utilized by many other Peer-to-Peer protocols, such

as Chord [4] and Pastry [5], to improve routing performance. Moreover, we use

eCAN [64], LDP [65], SCAN [70], and RCAN [66], which have also adopted long

links for the same purpose of improving routing functionality, but in different ways

[66]. They are built on top of the conventional CAN overlay.

Our scheme is also based on long links. However, we concentrate on a novel approach

to establishing a search tree infrastructure in CAN in order to improve its routing

performance and enhance fault-tolerance. Meanwhile, both long links and peer churn

maintenance overhead should be minimized.

5.2 Zone Code and CAN Tree

Instead of greedy routing, we route in a tree network. The key idea is to establish a

Peer-to-Peer tree (CAN tree)[68] via long links. Each peer of CAN is a node of the

CAN tree. Because CAN tree is not a binary tree, peers do not know what is next hop.

They need more information to choose the routing target peer. We use the zone code.

We proposed the zone code in chapter 4. It is a binary string that records the splitting

history of its corresponding zone. In theory, we can obtain the zone code by traversing

the partition tree (see Figure 5.1(b)). The partition tree is a binary tree that records the

5.CAN Tree Routing 75

reassignment process. In order to obtain a zone code, we perform a traversal from root

to leaf in the partition tree. This is analogous to Huffman code [69]. Going left is a

“0,” going right is a “1.” A zone code is only completed when a leaf node is reached

[62]. Figure 5.1(b) illustrates how zone codes are established via the partition tree.

(a) CAN

(b) Partition tree

Figure 5.1 CAN and partition tree

In practice, we do not need the partition tree to generate a zone code. When a peer p

shares its half zone with a new peer c, peer c copies p’s zone code. Peer p and c then

append “0” and “1,” respectively. Let pδ denote the zone code of peer p. After peer c

joining, the new zone code of peer p is ()0,pδ and the zone code of c is ()1,pδ . Hence,

zone code grows simultaneously with zone splitting. The more splits, the longer the

zone code becomes[62]. Combining all our insights, we deduced the following

corollary:

Corollary 5.1: In a partition tree, the zone code of peer p is the prefix of the zone

codes of all peers in the subtree rooted at peer p.

For example, the shaded peer in Figure 5.1(b) has zone code (0, 1). Thus, the zone

codes of peers in the subtree have a common prefix (0, 1).

5.CAN Tree Routing 76

By Corollary 5.1, we can route in the partition tree. Because the internal peers in the

partition tree no longer exist (they existed at some previous time), we cannot establish

a distributed partition tree via long links in practice. We need the CAN tree to realize

the long links.

CAN tree is a variation of the partition tree. Both of them are representations of the

zone splitting process. There are some duplicate peers that have the same name but

different zone codes in the partition tree (see Figure 5.1(b)). If we merge duplicate

peers into one peer and it inherits duplicate peers’ children, it becomes a CAN tree

(see Figure 5.2). A CAN tree is not a binary tree, but all peers exist in the CAN tree.

Thus, we can implement highly efficient routing in the CAN tree.

Figure 5.2 CAN tree

We build the CAN tree via parent-child long links. When a new peer c forwards a

JOIN request and peer p shares half its zone with peer c, peer c becomes the child of

peer p. All “parent-child” relations constitute a distributed CAN tree. In order to route,

each peer must store its original zone code *δ and current zone codeδ . Therefore,

when a new peer c joins in CAN and obtains its zone from peer p, peers p and c must

act as follows (see Figure 5.3):

5.CAN Tree Routing 77

1. Peer p splits its allocated zone in half, retaining half and handing the other half to

peer c.

2. Peer p becomes the parent of peer c. Both of them augment long links to establish

a “parent-child” relation in the CAN tree.

3. Peer c copies p’s current zone code (δδ =p). Peers p and c then append “0” and

“1,” respectively, i.e., new ()0,δδ =p and ()1,δδ =c .

4. Peer c sets ()1,* δδ =c (original zone code c), Peer p is not a new peer, therefore

*pδ (original zone code p)does not change.

(a) Before joining

Long link

c
δc*=(δ,1)

δc=(δ,1)

p
δp*=δ

δp=(δ,0)

(b) After joining

Figure 5.3 New peer c joins CAN

Let *pδ denote the original zone code of peer p. *pδ is the first zone code of peer p,

and *pδ is constant. If peer p shares its zone with a new peer, pp δδ ≠* . For example,

in Figure 5.2, ()0,0,1,03 =δ and ()1,0*3 =δ . *pδ is the prefix of pδ . Consequently,

*pδ is also the prefix of the zone code of the children of peer p. Combining all our

insights, we deduced the following corollary:

Corollary 5.2: In a CAN tree, peer p has the original zone code *pδ . *pδ is the

prefix of the zone codes of the peers in the subtree rooted at peer p.

For example, in Figure 5.2, *3δ is the prefix of the zone code of all the peers in the

subtree rooted at peer 3. *1δ is null, it is the prefix of any zone code of peers in the

5.CAN Tree Routing 78

CAN tree. Since a new peer obtains its zone code via copying and extending the zone

code of its parent, we deduce the following corollary:

Corollary 5.3: If *pδ of peer p is the prefix of the cδ of peer c, peer c is in the subtree

rooted at peer p.

Let *pδ denote the original zone code of the current peer p and dδ the zone code of

the target peer d. Consequently, our routing scheme is that peer p checks whether its

*pδ is the prefix of dδ . If it is, peer p forwards the message to its child, which shares

the longest common prefix with dδ . If not, peer d is not in the subtree rooted at peer

p and so peer p forwards the message to its parent peer.

Figure 5.4 Flow diagram

Figure 5.2 illustrates the routing from peer 5 to peer 7. If the target peer is not in the

subtree rooted at the current peer, we expand the searching subtree until it covers the

target peer. Afterwards, we shrink the searching subtree until the current peer is the

5.CAN Tree Routing 79

target. During shrinking, the target peer is always in the subtree rooted at the current

peer. Therefore, the routing must eventually terminate successfully.

5.3 Routing table

The routing table consists of the short links toward the neighbors and the long links

toward the parent and child peers in the CAN tree, and the original zone code *δ (see

Figure 5.5). In this section, we present the details of how to establish and maintain the

routing table. The routing procedure is addressed in the next section.

CAN maintains short links by exchanging heartbeat messages between immediate

neighbors. For d-dimensional CAN, a peer maintains ()dO neighbors on average. This

is analogous to the original CAN.

Long links are a part of the CAN tree; this is central to our scheme. They are

established during the joining of new peers. In the beginning, there is only one peer in

CAN. This peer is the root of the CAN tree. When a new peer joins in CAN, an

existing peer splits its zone into two sub-zones, retaining one and handing the other to

the new peer. The two peers are parent and child in the CAN tree. Meanwhile, we

establish long links between them, i.e., they augment a long link set in its routing

table. They are distant neighbors. The entry in the routing table comprises distant

neighbor information, e.g., peer ID, IP address, and zone codeδ (Figure 5.5) [71].

(a) Peer 1 (b) Peer 2 (c) Peer 3 (d) Peer 4

(e) Peer 5 (f) Peer 6 (j) Peer 7

Node ID:8 δ8=(001) δ8*=(001)

000

Distant Neighbor
Zone code

1
Node ID

1
2

Node ID

4

Parent

Short Link

 (h) Peer 8

Figure 5.5 Routing tables

5.CAN Tree Routing 80

5.4 Routing Mechanism

If a peer has the zone code dδ of a target peer, it can choose precisely the next hop via

its routing table. Otherwise, we need the algorithm described in 5.4.3 to compute the

zone code dδ based on a target point coordinate.

5.4.1 Routing to a Peer via CAN Tree

Figure 5.4 illustrates the routing flow diagram. If current peer c is not the target peer,

it checks whether its original zone code *cδ is a prefix of dδ . If it is, it forwards the

message to the distant peer that shares the longest common prefix zone code with dδ .

If not, it forwards the message to its parent peer. Since the root peer has no parent in

the CAN tree, it always forwards the message to its child, which shares the longest

prefix with dδ . As expressed in section 5.2, the routing must eventually terminate

successfully.

For example, peer 5 (()1,15 =δ and ()1,15 =δ) in Figure 5.2 forwards a message to

peer 7 (()1,0,1,07 =δ). The routing table is in Figure 5.5. The routing process is as

follows:

1. Peer 5 is not the target. Since ()1,1*5 =δ is not the prefix of ()1,0,1,07 =δ , peer 5

forwards the message to its parent peer 2.

2. Peer 2 is not the target. Since ()1*2 =δ is not the prefix of ()1,0,1,07 =δ , peer 2

forwards the message to its parent peer 1.

3. Peer 1 is not the target. Since it is root peer, it forwards the message to the child

peer 3 whose ()0,0,1,03 =δ shares the longest common prefix zone code

with ()1,0,1,07 =δ

5.CAN Tree Routing 81

4. Peer 3 is not the target. Since ()1,0*3 =δ is the prefix of the ()1,0,1,07 =δ , peer 3

forwards the message to child peer 7, which is the target. Thus, routing is

finished.

If a peer forwards a message to a point in key space, it has no idea about the target

peer. In order to route according to our routing table, it needs to calculate the target

zone code. We describe how to do this below.

5.4.2 Get Zone Point Set via Zone-Code

By definition, all zones with the same zone code length are the same size. The zone

code of peer p (()Lpppp ccc 321 ,,=δ) is divided into d parts. The sub-set of the zone

code ()Lp
j

p
j

p
j

p
i ccc

321
,,=δ (idjn =mod) records the splitting process along the i-th

axis [71].

Given that the zones are halved along one dimension during split, this implies that

their sizes are also proportional to the inverse of powers of 2. p
iδ is the length of

p
iδ , and the proportion of p’s width to space’s width on the i-th dimension is p

iδ2

1
.

Let ()10
p

iδ denote the decimal representation for p
iδ and iw denote CAN’s key

space width on the i-th dimension. Then,
()

p
i

i
p

i w
δ

δ

2
10 ⋅ is p’s low boundary on the i-th

dimension, and
()()

p
i

i
p

i w
δ

δ

2

110 ⋅+
is p’s upper boundary on the i-th dimension (see

Figure 5.6) [71].

i

iw
δ2 i

iw
δ2

2 ()
i

i
p

i w
δ

δ
2

10 ⋅ iw()()
i

i
p

i w
δ

δ
2

110 ⋅+

Figure 5.6 Zone boundaries in one dimension

5.CAN Tree Routing 82

For example, two-dimensional CAN has the width w and height h. The zone code of p

is divided into the partial zone codes p
xδ and p

yδ , which record the x-axis and y-axis

splitting process, respectively. The zones are defined as a set of points p
yxZ , :

()() () () ()
⎭
⎬
⎫

⎩
⎨
⎧

⋅+<≤⋅⋅+<≤⋅=
||10||10||10||10,

2
)1(

22
)1(

2
, p

y
p
y

p
x

p
x

hyhwxwyxZ p
y

p
y

p
x

p
x

p
yx δδδδ

δδδδ

Equation 5.1 Zone point set in two-dimensional key space

Therefore, if peer 6 has zone code ()1,0,16 =δ in CAN (w = 800 and h = 600, shown

in Figure 5.7), it follows that:

()
()⎪⎩

⎪
⎨
⎧

=
=

⇒
⎪⎩

⎪
⎨
⎧

=
=

⇒=
0
3

0
11

101
10

6
10

6

6

6
6

y

x

y

x

xyx δ
δ

δ
δ

δ and
⎪⎩

⎪
⎨
⎧

=
=

1||
2||

6

6

y

x

δ
δ

()() () () ()

()

(){ }3000800600,

2
600)10(

2
6000

2
800)13(

2
8003,

2
)1(

22
)1(

2
,

6
,

1122
6
,

||10
6

||10
6

||10
6

||10
66

, 6666

<≤<≤=
⎭
⎬
⎫

⎩
⎨
⎧

⋅+<≤⋅⋅+<≤⋅=

⎭
⎬
⎫

⎩
⎨
⎧

⋅+<≤⋅⋅+<≤⋅=

yxyxZ

yxyxZ

hyhwxwyxZ

yx

yx

yyxxyx
yyxx δδδδ

δδδδ

Figure 5.7 CAN (width = 800 and height = 600)

5.4.3 Routing to a Point via Routing Table

The current peer c sends a message to a point p in the key space, and we assume the

target is peer e whose zone covers point p. In CAN tree routing, we also need the zone

5.CAN Tree Routing 83

code eδ of peer e. However, the current peer c does not have any information about

peer e. We can calculate the zone code by reversing the aforementioned derivation in

section 4.2, and then, forwarding the message to the next peer. Routing is as follows:

1. Calculate eδ : We calculate eδ by reversing the aforementioned derivation in

section 5.2, e.g., in two-dimensional key space, which is deduced from Equation

5.1. However, Equation 5.1 depends on the length eδ of the zone code of peer e,

which is an unknown factor. We assume that peers c and e have the same length

zone codes, i.e., ce δδ = . Consequently, eδ can be deduced from Equation 5.1.

2. Choose next peer: The current peer c checks its routing table whether its *cδ is

the prefix of eδ . If it is, it forwards the message to its child peer that shares the

longest common prefix with eδ . If not, it forwards the message to its parent peer.

This step is the same as in section 4.1.

For example, peer 5 in Equation 5.1 has ()1,1*5 =δ and ()1,15 =δ , and forwards a

message to point (100, 500). The routing procedure is as follows:

1. Peer 5 assumes that peer e is the target. Since 25 =δ , set 2=eδ . Thus,

calculate eδ as follows:

()() () () ()
⎭
⎬
⎫

⎩
⎨
⎧

⋅+<≤⋅⋅+<≤⋅=
||10||10||10||10,

2
)1(

22
)1(

2
, e

y
e
y

e
x

e
x

hyhwxwyxZ e
y

e
y

e
x

e
x

e
yx δδδδ

δδδδ

⎪⎩

⎪
⎨
⎧

==

==
⇒

⎪⎩

⎪
⎨
⎧

=
=

⇒=
1||
1||

1
1

11 5

5

5

5
5

y
e
y

x
e
x

y

x

yx δδ
δδ

δ
δ

δ
, then

5.CAN Tree Routing 84

() ()() () () ()
() ()

)1,0(

1
0

22

10

2
600)1(

2
600

2
800)1(

2
800,500,100

5

1010

110110110110

=⇒

⎪⎩

⎪
⎨
⎧

=
=

⇒

=⇒=

==⇒
⎭
⎬
⎫

⎩
⎨
⎧

⋅+<≤⋅⋅+<≤⋅∈⇒

e

e
y

e
x

e

e
y

e
x

e
y

e
y

e
x

e
x

and

yxyx

δ

δ
δ

δδ

δδ

δδδδ

Since ()1,1*5 =δ is not the prefix, it forwards the message to its parent peer 2.

2. Peer 2 calculates and obtains ()0,1,0=eδ dependent on 32 =δ (same as the first

step). Since ()1*2 =δ is not the prefix of ()0,1,0=eδ , it forwards the message to its

parent peer 1.

3. Peer 1 calculates and obtains ()0,1,0=eδ dependent on 31 =δ . Since it is root

peer, it forwards the message to child peer 3 whose ()0,0,1,03 =δ shares the

longest common prefix with eδ .

4. Peer 3 calculates and obtains ()1,0,1,0=eδ dependent on 43 =δ .

Since ()1,0*3 =δ is the prefix of eδ , it forwards the message to child peer 7,

which is the target. Thus, routing is finished.

Calculating the target zone code is the only difference between routing to a peer and a

point.

5.4.4 Distant neighbor failure

Peer failure causes potential long link routing failure. If long link routing fails[72], the

peer forwards this message in accordance with the original CAN greedy routing.

When a peer detects a crash, the recovery procedure is triggered. We describe the

process in detail in the next section.

5.CAN Tree Routing 85

5.5 Peer departure and recovery of CAN Tree

In our scheme, only sibling peers in the partition tree are allowed to merge with each

other; they are called mergeable-zone peers, i.e., zones of two peers can merge with

each other, which share common zone code prefix and only the last bits are different

(peers 2 and 6 in Figure 5.8(b)). In a CAN tree, they are parent and child (see Figure

5.8(c))[68]. When a peer p leaves the system and q takes over its zone, either of two

scenarios may happen:

Case 1 (p and q are mergeable-zone peers): This case is very straightforward. Peer

q inherited the long links of p, and then peer q checks and removes unavailable long

links. The zone-code of q deletes the last bit of zone code. The original zone code of q

is the short one between *pδ and *qδ . After a short stabilization period, inform all

affected peers to update their routing table. For example, once peer 2 crashes, peer 6

will extend its responsibility to take over the zone of peer 2, and peer 6 modifies its

zone code from (1,0,1) to (1,0)(see Figure 5.8(a)). Since *6*2 δδ < , we set new *6δ to

be *2δ .

(a) CAN (b) Partition tree (c) CAN tree

Figure 5.8 Merging

Case 2 (p and q are not mergeable-zone peers): In this case, q takes on the role of p.

Peer q also abandons its routing table, and copies p’s. The situation turns into the first

5.CAN Tree Routing 86

case. For example, we need a non-neighbor mergeable-zone peer to deal with peer 5

crash (see Figure 5.9(a)). If we use peer 7 to occupy peer 5, peer 3 will merge with the

zone, which is released by peer 7 (see Figure 5.9(b) and Figure 5.9(c)).

(a) CAN (b) Partition tree (c) CAN tree

Figure 5.9 Occupation

5.6 Evaluation

Our solution does not redesign CAN routing, but extends it. Via long links, several

routing features are optimized simultaneously: small routing path, more routing

flexibility, and fault-tolerance. The routing procedure always converges, since each

step forwards the message to a peer that shares a longer prefix than the last step, each

step moves closer to the target.

CAN tree routing is based on a tree. Hence, the complexity depends on the tree

structure. In order to demonstrate the effectiveness of our design in terms of routing

performance, we implemented a CAN tree routing scheme in C# and conducted a set

of experiments via distinct schemes on networks with up to 16000 peers. We ran

CAN tree routing against the original CAN greedy routing to offer comparative

measurements. These measures include essentially: path length to cope with different

network size, path length distribution, and number of long links per peer.

Figure 5.10(a) and Figure 5.10(b) show plots of the average and the maximum path

length, respectively, with respect to network size. The path length is measured by the

5.CAN Tree Routing 87

number of hops traversed during each lookup request. Figure 5.10 illustrates that both

the average and maximum path length in CAN tree routing are better than other

routing, and both of them are perfectly asymptotic to the logarithm of the peers. The

path length of greedy routing (see Figure 5.10) increases much faster.

(a) Average path length

(b) Maximum path length

Figure 5.10 Path length with increasing network size

5.CAN Tree Routing 88

Figure 5.11 illustrates the path lengths distribution of routing in CAN with 16000
peers. The path length distribution of CAN tree routing is much better than in other
routing.

Figure 5.11 Path length distribution

Except for the first peer, every new peer needs two long links to join in the CAN tree.

Each parent peer needs one long link pointing to its child; and child peers need one

long link pointing to its parent. Hence, the number of long links is () 21 ×−n , and the

average long links can be calculated as follows:

()
n

nLaverage
21 ×−

=

22)1(limlim
=

×−
∞→

=
∞→ n

n
n

L
n average

Thus, each peer maintains two long links on average.

5.7 Conclusion

CAN tree routing is a novel routing scheme based on the CAN tree to overcome the

weakness of greedy routing in CAN. CAN with CAN tree routing is a completely

5.CAN Tree Routing 89

decentralized system. The CAN tree infrastructure gracefully adapts itself to cope

with any changes in the network. As a pure Peer-to-Peer system, peers assume equal

responsibility. The system maintains peers’ routing states while minimizing cost even

in the presence of high rate of churn. The critical contribution is the equipping of each

peer with long links that significantly enhance routing efficiency. Every peer

connected with its parent and children. The number of long links per peer is

independent of the network size (dependent on the number of children). Thus, the

system can scale by several orders of magnitude without loss of efficiency.

Our routing scheme has more links than the original CAN, which incurs a tiny

overhead to maintain long links. It has been proved that the number of long links per

peer is two on average. However, it has also been shown that the small extension

leads to significant improvements in routing performance.

6.Zone Code Routing 90

6 Zone Code Routing

Chapter 6

Zone Code Routing

We proposed CAN tree routing in chapter 5. A CAN tree is a tree structure. The

routing performance can easily be boosted from ()dnO /1 to ()nO log by equipping

each peer with two long links on average. The small extension leads to significant

improvements in routing performance. However, the tree infrastructure causes unfair

overhead. For example, Figure 6.1 illustrates that a long link between peers 1 and 2 is

a bridge that connects left and right peers (Figure 6.1(b)). They are bottlenecks and

cause imbalanced routing overhead. Then we proposed zone code routing.

(a) CAN tree (b) CAN and its long links

Figure 6.1 CAN tree routing

The key idea of zone code routing is zone code match. The message is forwarded to a

peer which has more common prefix with target. For example in Figure 6.2, A has no

common prefix with target T. After first hop, B has 1 bit common prefix with T. After

second hop, C has 2 bits common prefix with T. The length of zone code is limited.

Therefore, the message could arrive at target anyhow.

6.Zone Code Routing 91

Figure 6.2 Zone code routing

In order to realize zone code routing, every peer needs long links to distant neighbors
which have special zone codes.

6.1 Routing Table

In order to route, each peer in CAN maintains a routing table, whose entries include

information about its adjacent peers’ network address, distant neighbor’s network

address, zone code, etc. Using the routing table, the current peer can directly

communicate with its immediate/distant neighbors. In this section, we present the

details of how a routing table is established and maintained. The routing mechanism is

addressed in the next section.

CAN maintains short links by exchanging heartbeat messages between immediate

neighboring peers. For d-dimensional CAN, a peer maintains ()dO neighbors on

average. This is analogous to original CAN.

In order to enhance hop span, peers need long links. The long links connected with

some distant neighbors which have special zone codes. First distant neighbor zone

code has no common prefix with current peer. Second distant neighbor zone code has

1-bit common prefix, and so on. A peer with k bits zone code has k long links. The kth

long link forwards to distant neighbor which has k-1 common prefix.

A peer p with k bits zone code partitions the key space into k sub-regions. The size of

the sub-region ranges between the size of p’s zone and half the key space and they

cover the entire key space (see Figure 6.3).

6.Zone Code Routing 92

3
0100

Sub-region 4

Sub-region 3

Sub-region 1

0 10.50.25 0.75

0.25

0.5

0.75

1

5

9

10

Sub-region 2

15

6
7

2
01100

x-axis

y-axis

8

Sub-region

Zone

Figure 6.3 Sub-regions and long links for peer 3

6.1.1 Sub-regions

Since the zone code might define the boundaries of the zone, it can also define the

boundaries of the sub-region. The sub-regions of peer p (()p
k

pppp cccc ,,, 321 L=δ) are

represented as follows:

 sub-region 1: ()pp
regionsub c11 =−δ

 sub-region 2: ()ppp
regionsub cc 212 ,=−δ

 sub-region 3: ()pppp
regionsub ccc 3213 ,,=−δ

…

 sub-region k: ()p
k

pppp
kregionsub cccc ,,, 321_ L=−δ

The zone code of the sub-region is deduced as follow:

()p
n

ppp
nregionsub ccc ,,, 21_ L=−δ

Equation 6.1 Zone code of sub-region

Consequently, the sub-regions for peer 3 (()0,0,1,03 =δ) in Figure 6.3 are defined as

follows:

6.Zone Code Routing 93

1. sub-region 1: () () ()103
1

3
1 ===− cregionsubδ , then

Equation 5.1 (){ }1015.0(,3
1 <≤<≤=⇒ − yxyxZ regionsub

2. sub-region 2: () () ()0,01,0, 21
3

2 ===−
pp

regionsub ccδ , then

Equation 5.1 (){ }5.005.00(,3
2 <≤<≤=⇒ − yxyxZ regionsub

3. sub-region 3: () () ()1,1,00,1,0,, 3
3

3
2

3
1

3
3 ===− cccregionsubδ , then

Equation 5.1 (){ }15.05.025.0(,3
3 <≤<≤=⇒ − yxyxZ regionsub

4. sub-region 4: () () ()1,0,1,00,0,1,0,,, 3
4

3
3

3
2

3
1

3
4 ===− ccccregionsubδ , then

Equation 5.1 (){ }175.025.00(,3
4 <≤<≤=⇒ − yxyxZ regionsub

A sub-region consists of one or more zones. Zone code is prefix code. If a zone is a

resident of a sub-region, the sub-region’s zone code is the prefix of the zone’s zone

code. For example, zone 2 is a resident of sub-region 3. ()1,1,03
3 =−regionsubδ is the

prefix of ()0,0,1,1,02 =δ .Combining all our insights, we deduced the following

corollary:

Corollary 6.1: If peer p and peer s are located in the same sub-region and peer d is

out of the sub-region, the common zone code prefix between peers p and s is

inevitably longer than the common prefix between peers p and d.

In other words, peers in sub-region 1 have no common prefix with current peer. Peers

in sub-region 2 have 1-bit common prefix, and so on. A peer with k bits zone code has

k sub-regions. Peers in sub-region k has k-1 common prefix.

6.1.2 Establishing the Long Links

Peer p selects a random point from each sub-region, and then it routes DISCOVER

messages to the random points in key space. The corresponding peers, of which the

zones cover those points, will be distant neighbors of peer p. In the aforementioned

example, peer 3 has the distant neighbors listed in Table 6.1.

6.Zone Code Routing 94

Sub-region Random point Distant neighbor

3
1regionsubZ − (0.87,0.13) Peer 5

3
2regionsubZ − (0.13,0.32) Peer 15

3
3regionsubZ − (0.38,0.55) Peer 9

3
4regionsubZ − (0.13,0.84) Peer 10

Table 6.1 Distant neighbors

Hence, the routing table for peer 3 (see Figure 6.4) contains four long links toward its

distant neighbors.

(){ }1015.0(,3
1 <≤<≤=− yxyxZ regionsub

(){ }5.005.00(,3
2 <≤<≤=− yxyxZ regionsub

(){ }15.05.025.0(,3
3 <≤<≤=− yxyxZ regionsub

(){ }175.025.00(,3
4 <≤<≤=− yxyxZ regionsub

Figure 6.4 Routing table for peer 3

6.2 Routing Mechanism

In this section, we describe a routing scheme that relies on the routing table

mentioned above.

6.2.1 Forward a Message to a Peer

When the current peer knows the zone code of the target peer, it checks its

immediate/distant neighbor first. If the target is its neighbor, the peer can directly

6.Zone Code Routing 95

forward the message to the target peer. Otherwise, it selects the next hop dependent

on the zone code of its neighbors. It then forwards the message to its distant neighbor,

for which the zone code shares the longest common prefix with the zone code of the

target peer. For example, peer 3 forwards a message to peer 8 (()1,0,1,18 =δ) in Figure

6.3. In the routing table for peer 3 (see Figure 6.4), peer 5’s zone code ()0,0,1,0,15 =δ

shares 1-bit common prefix with ()1,0,1,18 =δ . The other distant neighbors share 0-bit

common prefix. Thus, peer 3 forwards the message to peer 5. The target peer 8 is the

distant neighbor of peer 5 (see Figure 6.5). The routing is finished.

(){ }105.00(,5
1 <≤<≤=− yxyxZ regionsub

(){ }15.015.0(,5
2 <≤<≤=− yxyxZ regionsub

(){ }5.025.0175.0(,5
4 <≤<≤=− yxyxZ regionsub

(){ }5.0075.05.0(,5
3 <≤<≤=− yxyxZ regionsub

(){ }25.0.01875.0(,5
5 <≤<≤=− yxyxZ regionsub

c
Figure 6.5 Routing table for peer 5

6.2.2 Forward a Message to a Point

When a peer needs to forward a message to a point in the key space and does not have

any information about the target peer, the routing procedure is divided into two steps.

First, the peer checks whether the target point is covered by one of its

immediate/distant neighbors. If this is the case, the peer can directly forward the

message to the target peer. The routing then finishes. For example, peer 3 in Figure

6.3 forwards a message to the point (0.82, 0.21). Since the distant neighbor peer 5

6.Zone Code Routing 96

takes responsibility for the zone (){ }25.00875.075.0(,5
, <≤<≤= yxyxZ yx that

covers the point (0.82, 0.21), the message is forwarded to peer 5 via long link.

If the target is not an immediate/distant neighbor, the current peer looks up the

corresponding sub-regions, which covers the target point, and forwards the message

to the corresponding distant neighbor. For example, peer 3 in Figure 6.3 forwards a

message to the target point (0.56, 0.87). Since sub-region 1 covers the target point

(0.56, 0.87), it forwards the message to peer 5. Peer 5 has five long links (see Figure

6.6) and its routing table is shown as Figure 6.5. Consequently, peer 5 has a distant

neighbor peer 8 whose zone covers the target point (0.56, 0.87). Hence, peer 5

directly forwards the message to peer 8. The routing then finishes.

Sub-region 1

Sub-region 2

Sub-region 3

0

0.25

0.5

0.75

1

5
10100

9
2

12

8

Sub-region 4

11

4 14

19

x-axis

y-axis

Sub-region

Zone

Figure 6.6 Sub-regions and long links for peer 5

In the two aforementioned long-link-routings, the message is forwarded to the distant

neighbor located in the same sub-region as the target. Since Corollary 6.1 in Section

6.2.2.1, the next peer shares longer common zone code prefix with the target peer.

The length of the zone code is finite. Hence, the routing must eventually terminate

successfully.

6.3 Peer Churn

.After new peers joining CAN, they need to establish long links according to section

6.1.2. We have introduced a method of generating the zone code by partition tree in

6.Zone Code Routing 97

section 3.2. Although zone codes can be generated by different approaches, the zones

are all exactly mapped onto zone code space via their zone codes (see Figure 6.7).

Figure 6.7 CAN (width = 1 and height = 1)

When peers leave or crash, CAN must ensure that all zones are rectangles. In CANS,

only sibling peers in a partition tree are allowed to merge with each other (peers 1 and

8, peers 3 and 7, and peers 2 and 6 in Figure 6.8). They are termed mergeable-zone

peers[68]. Since the zone code is prefix code (Corollary 4.2 in Section 4.2), we

deduced the following corollary:

Corollary 6.2: The mergeable-zone peers share common zone code prefix and only

last bits are different.

If a peer actively leaves, it will forward a message to its smallest neighbor. This

neighbor is in charge of recovery. Otherwise, the crashed peer (passive leaving) will

be detected via heartbeat messages by its neighbors. When a peer finds its neighbor

crashed, it takes responsibility of recovery. The difference between active leaving and

passive leaving is who will be in charge of recovery. In active leaving the leaving peer

has the chance to choose a neighbor to recover the system. In passive leaving the first

peer detecting that a neighbor crashed has the responsibility to fix the peer-to-peer

structure.

6.Zone Code Routing 98

When a peer p leaves the system and q takes over its zone, either of two scenarios

may occur:

 Case 1 (p and q are mergeable-zone peers): This case is very straightforward.

Peer q inherits the long links of p, and then peer q checks and removes

unavailable long links. From Corollary 6.2, the zone code of q deletes the last

digit of the zone code after merging. After a short stabilization period, it informs

all affected peers to update their routing tables. For example, once peer 2 in

Figure 6.8 crashes, peer 6 extends its responsibility to take over the zone of peer 2,

and peer 6 modifies its zone code from (1,0,1) to (1,0).

(a) CAN

(b) Partition tree

Figure 6.8 Merging

 Case 2 (p and q are not mergeable-zone peers): In this case, q takes the role of p.

Peer q abandons its routing table and zone code and copies p’s routing table and

zone code from p’s replication. Consequently, the scenario becomes similar to the

first case. For example, we need non-neighbor mergeable-zone peers to deal with

peer 5 in the Figure 6.9 crash. If peer 7 occupies peer 5, peer 3 will merge with

the zone, which is released by peer 7.

6.Zone Code Routing 99

(a) CAN

(b) Partition tree

Figure 6.9 Occupation

Peer departures and crashes cause potential long link routing failures. If long link

routing fails, the peer forwards this message according to the original CAN greedy

routing. When a peer detects a crash, a recovery procedure is triggered. The peer

selects a random point in the sub-region, in which the long link failed and forwards

DISCOVER messages to the random point. The corresponding peer for which the

zone covers those points becomes the new distant neighbor. The broken long links are

recovered.

6.4 Evaluation

6.4.1 Reliability

By means of long links, the routing is optimized with more flexibility and

fault-tolerance. Since the message is always forwarded to a peer that shares a longer

common prefix with the target peer, the routing procedure eventually converges. Zone

code routing does not abandon CAN greedy routing, but extends it. After equipping

long links, peers have more degrees of freedom and more choices for routing. When a

long link fails, a peer can forward the message via greedy routing. Furthermore, a

peer might forward a message across crashed peers in the partitioning (see Figure

6.10). In the same scenario, the greedy routing cannot forward the message to the

target. Therefore, our scheme has more fault-tolerance and is more reliable.

6.Zone Code Routing 100

Figure 6.10 Network partition

6.4.2 Routing Evaluation and Cost of Long Link

In our scheme, d-dimensional zones are mapped onto one-dimensional zone code

space. If we array all zone-codes of a CANS in ascending order, they are distributed

in one-dimensional space which is called zone code space. The zone code realizes the

mapping between d-dimensional key space and one-dimensional zone code space.

The zone codes map the d-dimensional key space onto the one-dimensional zone code

space. Since zone codes are prefix codes (see Corollary 4.2 in Section 4.2), the order

of zone code arrangement in zone code space is the same as the leaf-nodes pre-order

traversal (see Figure 6.11). Without the partition tree, we nevertheless have an easy

approach to determining the relative positions between two zone codes in zone code

space. Let prefixcommon_δ denote the length of the common prefix between them, and

the bigger zone code, of which the ()thprefixcommon 1_ +δ digit is “1.” The other one is

smaller. For example, let pδ denote the zone code of peer p. Then, the zone of peer 3

is mapped onto the zone code ()0,0,1,03 =δ and the zone of peer 7 is mapped onto

the zone code ()1,0,1,07 =δ . They have the common prefix ()0,1,07|3
_ =prefixcommonδ and

37|3
_ =prefixcommonδ . The fourth digitals of 7δ and 3δ are “1” and “0,” respectively.

Thus, 7δ is bigger and 7δ is located to the right of 3δ (see Figure 6.11).

6.Zone Code Routing 101

Figure 6.11 Zone code space

When the key space is divided into k sub-regions, the zone code space is also divided

into k intervals. Figure 6.12 illustrates the mapping between two spaces in the

aforementioned example. Each sub-region is mapped onto the corresponding interval.

Thus, the long links in the zone code space is similar to Chord’s finger table.

Interval 2

0100
Peer 3

00

Interval 4

0110101000110
Peer 15

0101
Peer 10

Interval 3

1011010
Peer 9

10100
Peer 5

Interval 1

3
0100

Sub-region 4

Sub-region 3

Sub-region 1

0 10.50.25 0.75

0.25

0.5

0.75

1

5
10100

9
011010

10
0101

Sub-region 2

15
000110

6

7

2

x-axis

y-axis

Sub-region

Zone

Figure 6.12 Sub-regions in zone code space

Our zone code routing realizes big interval hops in the zone code space to enhance

routing efficiency. Given the power-of-two intervals in zone code space, each hop

6.Zone Code Routing 102

covers at least half of the remaining distance in the zone code space between the

current peer and the target peer. This results in an average of ()nO log routing hops

for a CAN with n participating peers.

In order to demonstrate the effectiveness of our design in terms of routing

performance, we implemented a zone code routing scheme in C# and conducted a set

of experiments via distinct schemes on networks with up to 16000 peers. We ran

CAN tree routing against the original CAN greedy routing, CAN tree routing, and

RCAN routing to offer comparative measurements. These measures included hop

count per routing path, and number of long links per peer.

Figure 6.13(a) and Figure 6.13(b) are respective plots of the average and the

maximum path length with respect to the network size. The path length is measured in

terms of the number of hops traversed during each lookup request. Figure 6.13

illustrates that both the average and maximum path length in zone code routing are

better than other routings, and both of them are perfectly asymptotic to the logarithm

of peer number. The path length of other routings increases much faster.

6.Zone Code Routing 103

(a) Average path length

(b) Maximum path length

Figure 6.13 Path length with increasing network size

Figure 6.14 illustrates the path lengths distribution of routing in CAN with 16000

peers. The path length distribution of zone code routing is much better than others.

6.Zone Code Routing 104

Figure 6.14 Path length distribution

In addition, CAN maintains dynamic long links that scale up to correspond to the

network size. Figure 6.15 illustrates that each peer maintains a number of long links

on average with respect to the network size. When the CAN has n participating peers,

each peer maintains n2log long links. The routing state per peer logarithmically

scales up to correspond to the number of peers. Hence, the small extension cost leads

to significant improvements in routing performance.

Figure 6.15 Number of long links per peer with increasing network size

6.Zone Code Routing 105

6.5 Conclusion

Our zone code routing is a completely decentralized system. It gracefully adapts itself

to cope with any changes in the network. As a pure Peer-to-Peer system, peers assume

equal responsibility. It overcomes the unfair overhead problem in CAN tree routing.

Using zone code, we map d-dimensional zones onto a one-dimensional zone code

space. Zone code routing achieved ()nO log routing performance with ()nO 2log

routing state per peer. Thus, the system can scale by several orders of magnitude with

high efficiency. Since a zone code is a binary string and it does not need

synchronization, the system maintains peers’ routing states while minimizing cost

even in the presence of a high rate of churn. Consequently, zone code routing

significantly improves routing performance while incurring only a small extra

overhead.

7.Conclusion 106

7 Conclusion

Chapter 7

Conclusion

With the development of Peer-to-Peer technology, Peer-to-Peer systems are

increasingly being utilized in more and more fields. However, new applications must

overcome its drawbacks and satisfy new requirements. With respect to the properties

of simulation, we faced two challenges in our work—reorganizing of the

zone-assignment to solve the “concave and slim problem” and development of novel

efficient routing solutions for low-dimensional CAN. Our contributions to the field

enable developers to establish their own Peer-to-Peer MMVE/simulation system with

a simple structure and high efficiency and maintain the communication overhead as

low as possible.

Firstly, we presented a novel approach for reorganizing the zone-assignment in CANS

(see Section 3). To achieve this, we used a distributed tree infrastructure (CAN tree)

and introduced a search algorithm to lookup mergeable-zone-pairs. CAN tree is

highly distributed and thus supplies the required robustness and availability. In

addition, we developed a peer churn coping strategy. Thereby, our CAN tree offers

resilience against peers leaving and crashing.

Secondly, we proposed zone codes for reorganizing the zone-assignment (see Section

4) of CAN tree lookups mergeable-zones by the tree structure splitting history record.

In order to maintain the freshness of CAN trees, peers in a CAN tree need to

communicate to modify the tree infrastructure after peers churn. The extra

communication increases system overhead. In contrast, the zone code does not need

update communication, further reducing the overhead of CANS. Furthermore, we

proved its robustness and availability during multiple simultaneous peers failures

7.Conclusion 107

We also introduced the CAN tree routing solution (see Section 5). It is designed to

efficiently forward messages in low-dimension CAN. The routing performance can

easily be boosted from ()dnO /1 to ()nO log by equipping each peer with two long

links on average. Thereby, a small extension leads to significant improvements in

routing performance.

Finally, we presented a zone code routing solution (see Section 6). Since CAN tree

routing is based on tree infrastructure, the peers have unfair routing overhead—zone

code routing overcomes this drawback. It achieves ()nO log routing performance

with ()nO 2log routing state per peer. Hence, the system can scale by several orders

of magnitude with high efficiency.

Using the results from this work, users can build their own Peer-to-Peer applications.

The system enhances simulation speed and even provides higher availability via more

users joining the network. Our work demonstrates that existing Peer-to-Peer

technologies can be optimized for distributed simulation or MMVE domains and

fulfills all the requirements in Section 1.1.

Bibliography 110

Bibliography

[1] M. Esch, J. Botev, H. Schloss, and I. Scholtes, "Gp3-a distributed grid-based
spatial index infrastructure for massive multiuser virtual environments,"
presented at Parallel and Distributed Systems, 2008. ICPADS'08. 14th IEEE
International Conference on, 2008.

[2] J. Botev, A. Hohfeld, H. Schloss, I. Scholtes, P. Sturm, and M. Esch, "The
HyperVerse: concepts for a federated and Torrent-based'3D Web',"
International Journal of Advanced Media and Communication, vol. 2, pp.
331-350, 2008.

[3] A.-T. Stephanos and S. Diomidis, "A survey of peer-to-peer content
distribution technologies," ACM Comput. Surv., vol. 36, pp. 335-371, 2004.

[4] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan, "Chord:
A scalable peer-to-peer lookup service for internet applications," in
Proceedings of the 2001 conference on Applications, technologies,
architectures, and protocols for computer communications. San Diego,
California, USA: ACM, 2001.

[5] A. Rowstron and P. Druschel, "Pastry: Scalable, decentralized object location,
and routing for large-scale peer-to-peer systems," in Middleware 2001:
Springer, 2001, pp. 329-350.

[6] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, "A scalable
content-addressable network," in Proceedings of the 2001 conference on
Applications, technologies, architectures, and protocols for computer
communications. San Diego, California, USA: ACM, 2001.

[7] S. Ratnasamy, "A Scalable Content-Addressable Network," University of
California at Berkeley, 2002.

[8] R. Steinmetz and K. Wehrle, Peer-to-Peer systems and applications, 1st ed:
Springer, 2005.

[9] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels, R.
Gummadi, S. Rhea, H. Weatherspoon, and W. Weimer, "Oceanstore: An
architecture for global-scale persistent storage," ACM Sigplan Notices, vol. 35,
pp. 190-201, 2000.

[10] A. Oram, "Peer-to-Peer Makes the Internet Interesting Again," 2000.
[11] R. Steinmetz and K. Wehrle, "Peer-to-peer-networking &-computing,"

Informatik-Spektrum, vol. 27, pp. 51-54, 2004.
[12] M. Knoll, Geostry: A Peer-to-Peer System for Location-based Information:

Suedwestdeutscher Verlag fuer Hochschulschriften.
[13] T. S. E. Ng and Z. Hui, "Towards global network positioning," in Proceedings

of the 1st ACM SIGCOMM Workshop on Internet Measurement. San
Francisco, California, USA: ACM, 2001.

[14] S. Saroiu, P. K. Gummadi, and S. D. Gribble, "Measurement study of
peer-to-peer file sharing systems," presented at Electronic Imaging 2002,
2001.

Bibliography 111

[15] OpenNap, "Open Source Napster Server," http://opennap.sourceforge.net/,
2001.

[16] "TheNapsterHomepage", " http://www.napster.com."
[17] R. Matei, A. Iamnitchi, and P. Foster, "Mapping the Gnutella network,"

Internet Computing, IEEE, vol. 6, pp. 50-57, 2002.
[18] Clip2/TheGnutellaDeveloperForum(GDF), "The Annotated Gnutella Protocol

Specification v0.4."
[19] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong, "Freenet: A distributed

anonymous information storage and retrieval system," presented at Designing
Privacy Enhancing Technologies, 2001.

[20] B. Loban, "Between rhizomes and trees: P2P information systems," First
Monday, vol. 9, 2004.

[21] T. Clingberg and R. Manfredi, "Gnutella0.6," 2002.
[22] G. Li, "JXTA: A network programming environment," Internet Computing,

IEEE, vol. 5, pp. 88-95, 2001.
[23] J. Liang, R. Kumar, and K. W. Ross, "The FastTrack overlay: A measurement

study," Computer Networks, vol. 50, pp. 842-858, 2006.
[24] E. K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim, "A survey and

comparison of peer-to-peer overlay network schemes," IEEE Communications
Surveys and Tutorials, vol. 7, pp. 72-93, 2005.

[25] K. Hildrum, J. D. Kubiatowicz, S. Rao, and B. Y. Zhao, "Distributed object
location in a dynamic network," Theory of Computing Systems, vol. 37, pp.
405-440, 2004.

[26] K. Aberer, "P-Grid: A self-organizing access structure for P2P information
systems," presented at Cooperative Information Systems, 2001.

[27] D. Malkhi, M. Naor, and D. Ratajczak, "Viceroy: A scalable and dynamic
emulation of the butterfly," presented at Proceedings of the twenty-first annual
symposium on Principles of distributed computing, 2002.

[28] P. Maymounkov and D. Mazieres, "Kademlia: A peer-to-peer information
system based on the xor metric," in Peer-to-Peer Systems: Springer, 2002, pp.
53-65.

[29] M. Naor and U. Wieder, "Novel architectures for P2P applications: the
continuous-discrete approach," ACM Transactions on Algorithms (TALG), vol.
3, pp. 34, 2007.

[30] M. Naor and U. Wieder, "A simple fault tolerant distributed hash table," in
Peer-to-Peer Systems II: Springer, 2003, pp. 88-97.

[31] M. Naor and U. Wieder, "Scalable and dynamic quorum systems," Distributed
Computing, vol. 17, pp. 311-322, 2005.

[32] M. Castro, P. Druschel, Y. C. Hu, and A. Rowstron, "Topology-aware routing
in structured peer-to-peer overlay networks," in Future directions in
distributed computing: Springer, 2003, pp. 103-107.

[33] A. Rowstron and P. Druschel, "Storage management and caching in PAST, a
large-scale, persistent peer-to-peer storage utility," presented at ACM SIGOPS
Operating Systems Review, 2001.

Bibliography 112

[34] M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron, "One ring to rule
them all: service discovery and binding in structured peer-to-peer overlay
networks," presented at Proceedings of the 10th workshop on ACM SIGOPS
European workshop, 2002.

[35] W. Ding and S. S. Iyengar, "Bootstrapping chord over manets-all roads lead to
rome," presented at Wireless Communications and Networking Conference,
2007. WCNC 2007. IEEE, 2007.

[36] M. Knoll, A. Wacker, G. Schiele, and T. Weis, "Decentralized bootstrapping
in pervasive applications," presented at Pervasive Computing and
Communications Workshops, 2007. PerCom Workshops' 07. Fifth Annual
IEEE International Conference on, 2007.

[37] M. Knoll, A. Wacker, G. Schiele, and T. Weis, "Bootstrapping in peer-to-peer
systems," presented at Parallel and Distributed Systems, 2008. ICPADS'08.
14th IEEE International Conference on, 2008.

[38] C. Cramer, K. Kutzner, and T. Fuhrmann, "Bootstrapping locality-aware P2P
networks," presented at Networks, 2004.(ICON 2004). Proceedings. 12th
IEEE International Conference on, 2004.

[39] Y. Chawathe, S. Ramabhadran, S. Ratnasamy, A. LaMarca, S. Shenker, and J.
Hellerstein, "A case study in building layered DHT applications," presented at
ACM SIGCOMM Computer Communication Review, 2005.

[40] M. Knoll and T. Weis, "A P2P-Framework for Context-based Information," in
1st International Workshop on Requirements and Solutions for Pervasive
Software Infrastructures (RSPSI) at Pervasive: Citeseer, 2006.

[41] S. Domnitcheva, "Location modeling: State of the art and challenges,"
presented at Proceedings of the Workshop on Location Modeling for
Ubiquitous Computing, 2001.

[42] H. Sagan, Space-filling curves, vol. 18: Springer-Verlag New York, 1994.
[43] H. V. Jagadish, "Linear clustering of objects with multiple attributes," in

Proceedings of the 1990 ACM SIGMOD international conference on
Management of data. Atlantic City, New Jersey, USA: ACM, 1990.

[44] J.-M. Wierum, "Logarithmic path-length in space-filling curves," presented at
CCCG, 2002.

[45] G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies, M. Smith, and P. Steggles,
"Towards a better understanding of context and context-awareness," presented
at Handheld and ubiquitous computing, 1999.

[46] A. Dix, T. Rodden, N. Davies, J. Trevor, A. Friday, and K. Palfreyman,
"Exploiting space and location as a design framework for interactive mobile
systems," ACM Transactions on Computer-Human Interaction (TOCHI), vol.
7, pp. 285-321, 2000.

[47] C. A. Furuti, "Map projections," http://www.progonos.com/furuti/MapProj/.
[48] C. Gotsman and M. Lindenbaum, "On the metric properties of discrete

space-filling curves," Image Processing, IEEE Transactions on, vol. 5, pp.
794-797, 1996.

Bibliography 113

[49] M. Knoll and T. Weis, "Optimizing locality for self-organizing context-based
systems," in Self-Organizing Systems: Springer, 2006, pp. 62-73.

[50] H. Sagan, "Hilbert's Space-Filling Curve," in Space-Filling Curves: Springer,
1994, pp. 9-30.

[51] R. Niedermeier, K. Reinhardt, and P. Sanders, "Towards optimal locality in
mesh-indexings," presented at Fundamentals of Computation Theory, 1997.

[52] C. Schmidt and M. Parashar, "Flexible information discovery in decentralized
distributed systems," presented at High Performance Distributed Computing,
2003. Proceedings. 12th IEEE International Symposium on, 2003.

[53] S. Zhou, G. R. Ganger, and P. A. Steenkiste, "Location-based node ids:
Enabling explicit locality in dhts," 2003.

[54] H. Ballani and P. Francis, "Towards a deployable ip anycast service,"
presented at Proceedings of the Workshop on Real, Large Distributed Systems,
2004.

[55] S. Holzapfel, S. Schuster, and T. Weis, "VoroStore--A Secure and Reliable
Data Storage for Peer-to-Peer-Based MMVEs," presented at 2011 IEEE 11th
International Conference on Computer and Information Technology (CIT),
2011.

[56] D. Heutelbeck, "Distributed space partitioning trees and their application in
mobile computing," Fernuniv., Fachbereich Informatik, 2005.

[57] D. Heutelbeck and M. Hemmje, "RectNet-A Distributed Geometrical Data
Structure," presented at Mobile Data Management, 2006. MDM 2006. 7th
International Conference on, 2006.

[58] J. Kubiatowicz, "The OceanStore Project," 2011.
[59] W. J. Bolosky, J. R. Douceur, D. Ely, and M. Theimer, "Feasibility of a

serverless distributed file system deployed on an existing set of desktop PCs,"
presented at ACM SIGMETRICS Performance Evaluation Review, 2000.

[60] M. Waldman, A. D. Rubin, and L. F. Cranor, "Publius: A Robust,
Tamper-Evident Censorship-Resistant Web Publishing System," presented at
9th USENIX Security Symposium, 2000.

[61] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker, "Application-level
multicast using content-addressable networks," in Networked Group
Communication: Springer, 2001, pp. 14-29.

[62] Z. Li and T. Weis, "Using zone code to manage a Content-Addressable
Network for Distributed Simulations," in 2012 IEEE 14th International
Conference on Communication Technology (ICCT): IEEE, 2012, pp.
1350-1357.

[63] E. W. Zegura, K. L. Calvert, and S. Bhattacharjee, "How to model an
internetwork," presented at INFOCOM'96. Fifteenth Annual Joint Conference
of the IEEE Computer Societies. Networking the Next Generation.
Proceedings IEEE, 1996.

[64] Z. Xu and Z. Zhang, "Building low-maintenance expressways for p2p
systems," Hewlett-Packard Labs, Palo Alto, CA, Tech. Rep. HPL-2002-41,
2002.

Bibliography 114

[65] O. D. Sahin, D. Agrawal, and A. El Abbadi, "Techniques for efficient routing
and load balancing in content-addressable networks," presented at
Peer-to-Peer Computing, 2005. P2P 2005. Fifth IEEE International
Conference on, 2005.

[66] D. Boukhelef and H. Kitagawa, "Multi-ring infrastructure for content
addressable Networks," in On the Move to Meaningful Internet Systems: OTM
2008: Springer, 2008, pp. 193-211.

[67] D. Boukhelef and H. Kitagawa, "Dynamic load balancing in RCAN content
addressable network," in Proceedings of the 3rd International Conference on
Ubiquitous Information Management and Communication. Suwon, Korea:
ACM, 2009, pp. 98-106.

[68] Z. Li and T. Weis, "Content-Addressable Network for Distributed
Simulations.," presented at 2013 IEEE International Conference on Computer
Science and Automation Engineering (CSAE 2013), Guangzhou China, 2013.

[69] D. A. Huffman, "A method for the construction of minimum-redundancy
codes," Proceedings of the IRE, vol. 40, pp. 1098-1101, 1952.

[70] X. Sun, "SCAN: a small-world structured P2P overlay for multi-dimensional
queries," presented at Proceedings of the 16th international conference on
World Wide Web, 2007.

[71] Z. Li and T. Weis, "CAN Tree Routing for Content-Addressable Network,"
Sensors & Transducers, vol. 162, pp. 124-130, 2014.

[72] D. Heutelbeck, R. Raeth, and C. Unger, "Fault tolerant geographical
addressing," in Innovative Internet Community Systems: Springer, 2003, pp.
144-155.

Curriculum Vitae 115

Curriculum Vitae

Der Lebenslauf ist in der Online-Version aus Gründen des Datenschutzes nicht
enthalten.

Index 116

Index

Acceptable zone, 45

Area search, 63

Autonomous, 10

Binary space partitioning tree, 55

Binary tree, 56

Bootstrapping, 19

Broadcast, 13

CAN, see Content-Addressable Network

CAN tree, 48, 74

CAN tree routing, 80, 82

Cantor, George, 21

Chord, 16

Cluster, 1

Common prefix zone code, 80

Concave and convex, 44

Concave and slim problem, 4, 42

Content-Addressable Network, 26

Continuous-Discrete Approach, 16

Decentralization, 12, 20

Departure, 45, 61, 85, 99

Distant neighbor, 79

Distributed simulation, 2

eCAN, 34

Expressway zone, 35

Farsite, 26

FastTrack, 15

Fault-tolerance, 74, 99

Finger table, 17

Freenet, 12

Geometric, 23, 24

Geostry, 21

Gnutella, 13, 14

Greedy routing, 5

Hilbert, 23

Huffman code, 58, 75

Join, 28, 59, 96 ,

Kademlia, 16

Kazaa, 15

Key space, 45, 81

LDPs, 36

Leaf Node, 51, 56

Lebesgue, 22

Location-based, 21

Long links, 74, 93

Mediator-based Approach, 21

Merge, 46, 61, 85, 97

Index 117

Mergeable-sibling-zone, 46

Mergeable-zone, 46

Mergeable-zone-pair, 46

Mirko Knoll, 21

MMVEs, 24

Multiple crash, 66

Napster, 12

Neighbor, 28

Neighborhood Set, 18

Occupy, 46

OceanStore, 26

Original zone code, 76

Partition tree, 31, 56, 74

Pastry, 18

Peano, 22

Peer-cache, 21

Peer-based approach, 20

Peer-to-Peer, 1

p-Grid, 16

Prefix code, 58

Publius, 26

Range queries, 23

Ratnasamy, 26

RCAN, 38

RectNet, 24

Related work, 10

Reliability, 10, 71, 99

Routing, 80, 94

Scalability, 10, 20

Search algorithm, 63

Self-organization, 11, 20

Shortcut, 47

Space-filling curve, 22

Split rule, 27

Split, 27

S-shaped curve, 22

Sub-region, 92

Super-peer, 14

Tapestry, 16

Time-to-Live (TTL), 13

Traffic simulation, 3

Unacceptable zone, 45

Viceroy, 16

VoroStore, 24

Zone code, 57, 74

Zone code routing, 90

Zone code space, 97

Zone-reassignment, 30

