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ABSTRACT 

 

Aberrant responding in test or questionnaire data violating the principles of Item 

Response Theory is a prevalent phenomenon in psychological and educational sciences. By 

means of person fit statistics aberrant responding is identified that prevents the computation 

of inadequate ability estimates. Simulation-based methods for person fit analysis were 

investigated in simulation studies with regard to Type I error and statistical power to detect 

aberrancy. Real data analyses from psychological and educational sciences further illustrate 

the usefulness of person fit statistics based on the presented approaches.  

In Study 1, a Markov chain Monte Carlo algorithm for sampling data matrices denoted 

as the Rasch Sampler is applied for simulating the null distribution of person fit statistics 

under the Rasch model. Results are compared to standardized statistics and illustrate the new 

approach (1) to correctly recover the nominal Type I error rates (while the standardized 

statistics deviate substantially) and (2) to offer predominantly similar or higher statistical 

power. Results from the application to Rasch-scalability problems of two subscales taken 

from Heller and Perleth’s (2000) multidimensional intelligence test (KFT) confirmed findings 

from the simulation studies.  

In Study 2, the Type I error and power of person fit tests based on weighted maximum 

likelihood ability estimators and parametric bootstrap were evaluated. Results were compared 

to established methods for person fit analysis. Bootstrapping based on robust maximum 

likelihood estimators improves the statistical power but a satisfactory recovery of nominal 

Type I error rates requires strong downweighting of aberrant item responses. Bootstrapping 

based on the Warm’s (1989) estimator applied as scoring method to original and simulated 

data displayed promising results concerning Type I error recovery and statistical power. 

Results from the simulations were matched by findings from the analysis of four samples of 

students with disabilities participating in a state-wide administered large-scale assessment 
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program to investigate whether assessment of competence is invalidated by test modifications 

for these students.  

Both studies provide new insights on the benefits of simulation-based methods for the 

application of person fit tests to detect aberrant response behavior.  

 

Keywords person fit, Item Response Theory, Monte Carlo simulation, weighted maximum 

likelihood scoring  
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ZUSAMMENFASSUNG (in German) 

 

Abweichendes Antwortverhalten in Test- und Fragebogendaten gegenüber den 

Annahmen der Item-Response-Theorie stellt ein häufiges Phänomen in der Psychologie und 

den Bildungswissenschaften dar. Personen-Fit-Statistiken können herangezogen werden, um 

derartiges Antwortverhalten zu identifizieren und die Schätzung inadäquater 

Fähigkeitsausprägungen zu verhindern. Simulations-basierte Methoden zur Personen-Fit-

Analyse werden mit Hilfe von Simulationsstudien in Bezug auf Typ-I-Fehler und statistische 

Power untersucht. Real-Daten aus der Psychologie und Bildungsforschung werden genutzt, 

um die Bedeutung der Ergebnisse beispielhaft zu untermauern.   

In Studie 1 wird der Rasch Sampler, ein Markov-Chain-Monte-Carlo-Algorithmus zur 

Ziehung binärer Datenmatrizen, herangezogen, um die Verteilung von Personen-Fit-

Statistiken für das Rasch-Modell zu simulieren. Die Ergebnisse werden mit standardisierten 

Personen-Fit-Statistiken verglichen und verdeutlichen (1) die Einhaltung des nominalen Typ-

I-Fehlers (im Gegensatz zu deutlichen Abweichungen der standardisierten Statistiken) sowie 

(2) überwiegend vergleichbare oder höhere statistische Power im neuen Ansatz. Die 

Anwendung der Methode auf die Forschungsfrage nach der Rasch-Skalierbarkeit von zwei 

Subskalen von Heller und Perleth’s (2000) multidimensionalem Intelligenztest (KFT) 

unterstreicht Ergebnisse der Simulationsstudien.  

In der zweiten Studie werden Typ-I-Fehler und statistische Power verschiedener 

(parametrischer) Personen-Fit-Statistiken basierend auf gewichteten Maximum-Likelihood-

Fähigkeitsschätzern untersucht und mit etablierten Ansätzen verglichen. Ein parametrischer 

Bootstrap basierend auf robusten Maximum-Likelihood-Schätzern erhöht die statistische 

Power, jedoch fällt die Einhaltung des nominalen Typ-I-Fehlers nur dann zufriedenstellend 

aus, wenn der Einfluss abweichender Item-Antworten bei der Berechnung des Schätzers 

durch Wahl einer geeigneten Gewichtung stark reduziert wird. Ein parametrischer Bootstrap 
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basierend auf Warms (1989) Schätzer, angewendet auf Original- und simulierte Daten, 

verzeichnet vielversprechende Ergebnisse bezüglich der Einhaltung des Typ-I-Fehlers sowie 

der statistischen Power. Ergebnisse der Simulationen werden durch Ergebnisse einer Analyse 

von vier Stichproben von Förderschülern ergänzt, welche Erkenntnisse zur Invarianz 

zwischen konventioneller und angepasster Testadministration bei einem regionalen Large-

Scale Assessment Programm erlauben. 

Die Ergebnisse der beiden vorliegenden Studien erbringen neue Erkenntnisse bezüglich 

der Vorteile simulations-basierter Methoden bei der Anwendung von Person-Fit-Statistiken.  

 

Schlüsselwörter Personen-Fit, Item-Response-Theorie, Monte-Carlo-Simulation, gewichtete 

Maximum-Likelihood-Fähigkeitsschätzer 
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1 PERSON FIT ANALYSIS IN ITEM RESPONSE THEORY 

 

Do teachers differ in their instructional ability? Do religious people and atheists differ 

in educational level and intelligence? Are reading comprehension and listening 

comprehension two different skills or do they collapse to receptive competence? And was 

Obama the most liberal senator to become President of the United States? Measurement 

models are used in various research areas of social sciences to find an individual’s position 

on some type of unobservable (latent) dimension, for example when psychologists are 

interested in personality domains (e.g., Chernyshenko, Stark, Chan, Drasgow, & Williams, 

2001), educational researchers analyze educational skills and competence (e.g., Hartig & 

Höhler, 2008), or when political analysts seek to evaluate positions like liberalness or 

conservativeness of a legislator (e.g., Bafumi, Gelman, Park, & Kaplan, 2005). These 

positions (in the following denoted as latent abilities) have to be uncovered from the analysis 

of the individual’s behavior, in many settings the response behavior under a given stimulus, 

like a question, a task or a decision. In psychological research test theories formulate a 

theoretical and statistical framework for this process and define the relationship of the 

individual’s behavior and the latent ability (e.g., Hambleton, Swaminathan, & Rogers, 1991; 

Embretson & Reise, 2000; Partchev, 2004). Though – according to Rost (1999) – most of all 

(scientifically grounded) testing instruments were developed according to the principles of 

Classical Test Theory (CTT; Allen & Yen, 2002), large-scale assessment programs in 

educational settings like National Assessment of Educational Progress (Pellegrino, 1999; 

Raju, Pellegrino, & Bertental, 2000) or Programme for International Student Assessment 

(PISA; OECD, 2010) strongly rely on Item Response Theory (IRT; e.g., Hambleton, 

Swaminathan, & Rogers, 1991; Embretson & Reise, 2000; Partchev, 2004) and have 

promoted interest in these methods. IRT gives a clear mathematical description for latent 

ability estimation but as various sources of aberrancy occur in social sciences data, it is a 
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matter of discussion whether each type of response behavior is accurately represented by the 

ability estimates and how inaccurately represented behaviors might be identified (e.g., 

Meijer, 1996). 

 

1.1 A short introduction to item response theory  

Following Hambleton, Swaminathan and Rogers (1991), IRT models rely on two 

related assumptions, unidimensionality and local (stochastic) independence. 

 Unidimensionality of the item sample or item homogeneity is assumed when the item 

responses are determined by one single (latent) ability. This is hard to find purely due to 

several “disturbances” in real data analysis like test anxiety, cheating or response styles 

(Meijer, 1996; see below). Therefore, unidimensionality is generally assumed when a single 

trait was found to dominate the responses of the individuals to a particular item set (essential 

unidimensionality; e.g., Stout, 1987).  

Local (stochastic) independence of the item responses means that the probabilities for L 

item responses 𝑥i =  𝑥1, 𝑥2, … , 𝑥𝐿 under an ability θ  are defined by   

𝑃(𝑥1, 𝑥2, … , 𝑥𝐿|θ) = ∏ 𝑃(𝑥𝑖|θ)

𝐿

𝑖=1

. [1.1] 

As a consequence from local (stochastic) independence, the likelihood of the model can be 

computed by building the product over the item responses given θ (see below). This is the 

basis for estimation methods like maximum likelihood, which will be described in more 

detail in the next section. Unidimensionality and local independence are related to the point 

that the second property is always obtained when the first holds while the reverse is not 

generally true (Hambleton, Swaminathan, & Rogers, 1991, Chapter 2).   
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Inferences on the latent ability are valid under these two and a third assumption that the 

model equation holds which defines the item characteristic (item response function; IRF). For 

the Rasch model (Rasch, 1960), which is often interpreted as a special type of IRT model, the 

model equation is given by  

𝑃(𝑥𝑖𝑝 = 1|θp, 𝑏𝑖) =
exp(θp  −  𝑏𝑖)

1 + exp(θp  −  𝑏𝑖)
 [1.2] 

where θp is the latent ability for the individual p and bi is the item difficulty for item i. Rasch-

type models are characterized by a property (e.g., Baker & Kim, 2004, Chapter 5; Molenaar, 

1995) called specific objectivity which addresses comparisons between two items or two 

individuals. Given that specific objectivity holds, comparisons between two items or between 

two individuals no more depend on distributional assumptions of the analyzed population or 

item sample and their metric is only determined by the matrix of item responses (Baker & 

Kim, 2004, Chapter 5). Specific objectivity is a consequence of the data matrix marginals 

serving as sufficient statistics for the latent ability and the item difficulties (i.e., the 

individuals’ raw score contains all information about the latent ability, the number of correct 

responses on a particular item contains all information about the item difficulty). This issue is 

outlined in detail in Chapter 3.  

From the point of item response modeling, the Rasch model is a rather restrictive model 

from a larger class of psychometric models (for a discussion see Andrich, 2004). The first 

relaxation of the Rasch model arises when a discrimination parameter a is introduced which 

converts equation 1.2 into  

𝑃(𝑥𝑖𝑝 = 1|θp, 𝑎𝑖, 𝑏𝑖, ) =
exp[𝑎𝑖(θp  −  𝑏𝑖)]

1 + exp[𝑎𝑖(θp  −  𝑏𝑖)]
. [1.3] 

This model is known as two-parameter logistic latent trait model (2PLM). Even more relaxed 

models arise when the lower (𝑐𝑖) and the upper asymptote (𝑑𝑖) of the IRFs are estimated, 
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which leads to the more flexible three (3PLM; Birnbaum, 1968) and four parameter IRT 

models (4PLM). The four parameter IRT model (Barton & Lord, 1981) is defined by  

𝑃(𝑥𝑖𝑝 = 1|θp, 𝑎𝑖, 𝑏𝑖 , 𝑐𝑖, 𝑑𝑖) = 𝑐𝑖 + (𝑑𝑖 − 𝑐𝑖)
exp[𝑎𝑖(θp  −  𝑏𝑖)]

1 + exp[𝑎𝑖(θp  − 𝑏𝑖)]
. [1.4] 

Note that substituting the logit by the probit link function leads to a second group of IRT 

models (e.g., Embretson & Reise, 2000, Chapter 4), which is mainly constituted by similar 

properties.  

When the typical assumptions underlying standard IRT models (see above) are not met, 

the parameters of any of these common IRT models can be decomposed into additional 

model parameters. Two examples for the decomposition of the latent ability are presented 

here: For example, the assumption of unidimensional abilities is questionable for many 

constructs in psychology. Therefore, a multidimensional IRT model can be formulated (for 

the 2PLM; e.g., Reckase, 2009) according to  

𝑃(𝑥𝑖𝑝 = 1|θph, 𝑎𝑖ℎ, 𝑏𝑖) =
exp(∑ 𝑎𝑖ℎθph − 𝑏𝑖ℎ )

1 + exp(∑ 𝑎𝑖ℎθph − 𝑏𝑖ℎ )
 [1.5] 

with a decomposition of the ability vector in h elements θ1,…, θH and with 𝑎𝑖ℎ as the weight 

(loading) of the particular ability. Another useful extension in educational settings is the 

decomposition of ability dispersion into individual and cluster level ability variance (where 

clusters may be formed by different classes, different schools, different measurement 

occasions etc.) by 

θpg = θ̅.. + (θ̅.g − θ̅..) + (θpg − θ̅.g) [1.6] 

where θ̅.. is the ability grand or overall mean, θ̅.g is the group mean for cluster g, (θ̅.g − θ̅..) is 

the variation of group means (the between-level variation) and (θpg − θ̅.g) is the variation of 

the respondents’ individual ability from her or his particular cluster mean (the within-level 
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variation; see e.g., Höhler, Hartig, & Goldhammer, 2010). Within- and between-level 

variation may also be regressed on covariates. This approach has become known as 

multilevel IRT (e.g., Fox & Glas, 2001; Kamata, 2001). As a main advantage to conventional 

approaches based on multilevel analysis of raw scores in CTT, multilevel IRT incorporates a 

useful method to handle uncertainty in the dependent variable by combining the IRT 

measurement model with a multilevel analysis (Fox & Glas, 2001). Several other forms of 

decompositions of IRT model parameters including item (property) covariates and person 

covariates are possible (e.g., De Boeck & Wilson, 2004).  

Apart from these parametric IRT models, Mokken (1971) has proposed another 

psychometric approach relying on order restrictions and relaxed assumptions, which is 

currently known as nonparametric IRT (Sijtsma & Molenaar, 2002). The Double 

Monotonicity Model (DMM) is the more relevant of the two nonparametric IRT models. 

Unidimensionality, local independence and the property of monotonicity are assumed under 

the DMM (Sijtsma & Molenaar, 2002). The IRFs are also assumed to be non-intersecting but 

may have different forms which are not characterized by a limited number of parameters as it 

is the case in parametric IRT.  

To demonstrate differences between typical IRT models, Figure 1.1 shows IRFs under 

parametric IRT and the DMM. 

 

1.1.1 Estimation of item response functions in parametric IRT 

In parametric item response theory, the item response functions are derived from a 

relatively small number of parameters, most often estimated by variants of maximum 

likelihood methods (e.g., Baker & Kim, 2004). For the Rasch model it is based on solving the 

likelihood equation 
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𝐿(θ, 𝑏|𝑥) = ∏ ∏ 𝑃(𝑥𝑝𝑖|θp, 𝑏𝑖) = ∏ ∏
exp [𝑥𝑝𝑖(θp −  𝑏𝑖)]

1 + exp (θp −  𝑏𝑖)

𝐿

𝑖=1

𝑁

𝑝=1

𝐿

𝑖=1

𝑁

𝑝=1

 [1.10] 

by iterative algorithms like Newton Raphson or expectation maximization (e.g., Tanner, 

1994). The main difficulty arises from the existence of unknown quantities of both abilities 

and item parameters. Therefore, modern maximum likelihood methods divide IRT parameter 

estimation in two steps, an item parameter estimation step where θ is removed from the 

likelihood equation and a subsequent ability estimation step which is operated with the 

estimated item parameters treated as known (Baker & Kim, 2004).  

Figure 1.1. Item response functions under the Rasch model (A), the 2PLM (B), the 

4PLM (C) and Mokkens DMM (D). 
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Several variants of maximum likelihood methods have been developed for item 

parameter estimation but two of these are most prevalent in software packages (for an 

overview on the technical details of each estimation method see, e.g., Baker & Kim, 2004). 

Marginal maximum likelihood (MML) estimation is the more flexible approach but also more 

voluminous to outline. Complete MML algorithms are, for example, given by Baker and Kim 

(2004, Chapter 6), Harwell, Baker and Zwarts (1988) or Thissen (1982). As a basic idea of 

MML, the latent abilities θ are numerically integrated out to estimate the item parameters 

which involves assumptions of a latent marginal population distribution and principles of 

Bayes statistics. A numerical solution is usually found by applying an EM-algorithm (e.g., 

Baker & Kim, 2004, Chapter 6; Tanner, 1994, Chapter 4). In contrast to the MML method, 

conditional maximum likelihood estimation (CML; e.g., Baker & Kim, 2004, Chapter 5; 

Embretson & Reise, 2000, Chapter 8; Mair & Hatzinger, 2007) offers an option for item 

parameter estimation of Rasch-type models. Due to its relative simplicity compared to MML, 

the principle of CML is described here in more detail to illustrate how the likelihood with two 

unknown quantities can be solved. CML estimation for the Rasch model is provided as 

follows (e.g., Baker & Kim, 2004, Chapter 5; Embretson & Reise, 2000, Chapter 8; Mair & 

Hatzinger, 2007): By substituting the ability by ξp = exp (θp) and given the Rasch “easiness“ 

εi = exp(− 𝑏𝑖), the Rasch model is now defined by  

𝑃(𝑥𝑖𝑝 = 1|ξp, εi) =
ξpεi

1+ξpεi
. [1.11] 

The probability of a particular response vector 𝒙𝑝 is then given by multiplying the (predicted) 

probabilities over the L items by  

𝑃(𝒙𝑝|ξp, 𝛆) = ∏
(ξpεi)𝑥𝑖

1+ξpεi

𝐿
𝑖=1  = 

ξp
𝑟𝑝 ∏ εi

𝑥𝑖𝑝𝐿
𝑖=1

∏ (1+ξpεi)𝐿
𝑖=1

, [1.12] 
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and the probability for a given raw score r under any of the response vectors satisfying 

∑ 𝑥𝑖
𝐿
𝑖=1 = 𝑟𝑝 is now  

𝑃(𝑟𝑝|ξp, 𝛆) = ∑ ∏
(ξpεi)

𝑥𝑖

1 + ξpεi

𝐿

𝑖=1

 =  
ξp

𝑟𝑝 ∑ ∏ εi
𝑥𝑖𝑝𝐿

𝑖=1𝑿|𝑟𝑝

∏ (1 + ξpεi)
𝐿
𝑖=1𝒙|𝑟𝑝

 [1.13] 

where Σ𝒙|𝑟𝑝
 describes the sum across all these response vectors with raw score r and where 

γr(εi) =  ∑ ∏ εi
𝑥𝑝𝑖𝐿

𝑖=1𝑿|𝑟𝑝
 [1.14] 

is efficiently estimated by several algorithms (e.g., Gustafsson, 1980; Liou, 1994). The basic 

symmetric function γr gives the combinatoric solution to reaching a score of r by products of 

εi. In case of a complete design, the symmetric functions are given by  

γ0 = 1, 

γ1 =ε1 +ε2 + ⋯ +εL, 

γ2 =ε1ε2 +ε1ε3 + ⋯ +εL−1εL,  

… 

γL =ε1ε2 …εL. 

The probability of an item response vector x under a known raw score r and 𝛆 is defined by 

the ratio of Equation 1.12 and Equation 1.13 (e.g., Embretson & Reise, 2000, pp. 222-225; 

Mair & Hatzinger, 2007). This ratio simplifies as the (scaled) abilities ξ and the common 

denominator vanish to the following formula: 

𝑃(𝒙𝒑|𝒓𝒑, 𝛆) =
∏ εi

𝑥𝑝𝑖𝐿
𝑖=1

γr(εi) 
=

∏ εi
𝑥𝑝𝑖𝐿

𝑖=1

∑ ∏ εi
𝑥𝑝𝑖𝐿

𝑖=1𝑿|𝑟𝑝

 [1.15] 

By computing the product over all persons in the sample X, it follows:    
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𝑃(𝑿|𝒓, 𝛆) = ∏
∏ εi

𝑥𝑝𝑖𝐿
𝑖=1

γr(εi) 
𝑁
𝑝=1 = ∏

∏ εi
𝑥𝑝𝑖𝐿

𝑖=1

∑ ∏ εi
𝑥𝑝𝑖𝐿

𝑖=1𝑿|𝑟𝑝

𝑁
𝑝=1 , [1.16] 

or when returning to the item difficulties bi: 

𝑃(𝑿|𝒓, 𝒃) = ∏
exp (− ∑ 𝑥𝑝𝑖

𝐿
𝑖=1 𝑏𝑖)

∑ exp (− ∑ 𝑥𝑝𝑖
𝐿
𝑖=1 𝑏𝑖𝑿|𝑟 )

𝑁

𝑝=1

. [1.17] 

This is the conditional likelihood for the sample (e.g., Embretson & Reise, 2000, Chapter 8; 

Mair & Hatzinger, 2007). Note that this likelihood needs to be solved iteratively, e.g., by the 

Newton-Raphson algorithm which involves the first (partial) derivative of the basic 

symmetric functions. According to Pfanzagl (1994), CML has preferable statistical properties 

like consistency, asymptotic unbiasedness, asymptotic efficiency and asymptotic normal 

distribution. As a main drawback of CML, this method is only used for Rasch-type IRT 

models (but see Verhelst & Glas, 1995). Under valid distributional assumptions, also MML is 

assumed to have similar properties as CML (e.g., de Leeuw & Verhelst, 1986; Pfanzagl, 

1994).  

Other popular approaches include joint maximum likelihood estimation (Wright & 

Panchepakesan, 1969) and nonparametric approaches based on splines (Woods & Thissen, 

2006) or Ramsay curve smoothing (Ramsay, 1991; Woods, 2006, 2008b). Additionally, 

alternative methods from Bayesian statistics based on the Markov chain Monte Carlo 

approach (MCMC) have grown rapidly in psychometric research in the last two decades 

(Fox, 2010; Jackman, 2009, Chapter 9). MCMC is an umbrella term for several iterative 

sampling algorithms that are based on the construction of a Markov chain (e.g., Meyn & 

Tweedie, 2009). Sampling schemes for MCMC estimation of Bayesian IRT models are given 

by Albert (1992) or Patz and Junker (1999) beside others; Fox (2010) has given an overview 

on Bayesian methods for IRT. There is also a growing number of research papers relying on 

MCMC that offer new options for IRT model estimation in a Bayesian nonparametric 
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framework (e.g., Duncan & MacEachern, 2008; Karabatsos & Walker, 2009; Miyazaki & 

Hoshino, 2009; San Martín, Jara, Rolin, & Mouchart, 2011). While both item parameters and 

abilities are generated in joint maximum likelihood estimation and in Bayesian approaches, 

remember the latent abilities to be estimated separately when the more common MML or 

CML methods are applied.  

 

1.1.2 Latent ability estimation 

In this script, the term “ability” is applied for many different characteristics ranging 

from clinical symptom scores over political positions to cognitive or personality measures. In 

the same way as the item parameters, the latent abilities are computed iteratively under most 

scoring methods (Baker & Kim, 2004, Chapter 3 and 7). Both maximum likelihood and 

Bayesian methods are applied to determine the ability estimates. Common methods are 

(Baker & Kim, 2004, Chapter 3 and 7; Hoijtink & Boomsma, 1995):   

 (Unweighted) maximum likelihood estimation (ML; e.g., Baker & Kim, 2004, 

Chapter 3), 

 Weighted maximum likelihood estimation (WL) by Warm (1989), 

 Robustly weighted maximum likelihood estimation by bisquare weighting (BS; 

Mislevy & Bock, 1982) or Huber-type weighting (HU; Schuster & Yuan, 2011), 

 Expected a posteriori estimation (EAP) and modal a posteriori estimation (also 

empirical Bayes estimates; MAP). 

Methods 1-3 belong to the group of maximum likelihood scoring methods while EAP and 

MAP are Bayesian estimators. A description of some of these methods is given in Chapter 4. 

It is not intended to give a detailed discussion on statistical properties of scoring methods, but 

previous analyses found, for example, that the WL has small bias while EAP / MAP are 

inwards and ML outwards biased (in finite samples; Hoijtink & Boomsma, 1995). With 
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response disturbances being present in the data, also BS and HU are less biased than the ML 

with the BS displaying even lower bias than the HU (Schuster & Yuan, 2011). Due to using 

prior information, the Bayesian estimators EAP / MAP have smaller variance than WL and in 

particular ML (Hoijtink & Boomsma, 1995). The HU was found to have a smaller sampling 

variance than the BS (Schuster & Yuan, 2011). For more details see Hoijtink and Boomsma 

(1995) or Schuster and Yuan (2011).  

Considering the various sources of aberrancy in social sciences data in general and 

educational data in particular, the question arises whether these scoring methods generally 

display the underlying ability in an accurate way. 

 

1.1.3 Inaccuracy of ability estimates  

Results from different fields of psychological research raise some doubt on the 

assumption that latent ability estimates generated by the methods described above are 

generally accurate indicators of a respondents’ true ability: Cognitive and affective factors 

like fatigue, test anxiety or inattention may impair the performance of examinees in a testing 

situation (e.g., Haladyna, 2004, Chapter 10; Meijer, 1996). To stress only one single example, 

imagine a competent examinee suffering from test anxiety while working on an exam. 

Answering the first items the examinee will be unable to concentrate due to cognitive 

interference as a main feature of test anxiety (Tobias, 1992). After some time the examinee 

has adapted to the situation, feels more confident and his responses on the following items 

may therefore reflect his true competence. But when the complete response vector is analyzed 

to estimate the ability, a spuriously low score might be observed for the anxious examinee 

and the true ability might be underestimated.  

Several such types of aberrant response behaviors have been collected by Meijer (1996) 

and Haladyna (2004, Chapter 10). Table 1.1 gives hypothetical vectors for these types of 
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responding and shows the point biserial correlation corbis with the fictitious percentage of 

correct responses to these items. The corbis is positive for model-conform vectors while it 

shows negative values for vectors arising from aberrancy. Hence, corbis is an indicator of 

aberrancy of the respective vector and belongs to the class of person fit statistics to be 

discussed below. 

Though the underlying mechanisms of aberrancy are not always clear, there is some 

evidence that aberrant responses may go along with several problems including biased ability 

estimates (see Chapter 1.2.1). Consequently, much effort has been exerted to develop and 

improve tools for the detection of response aberrancy. This field of research is referred to as 

person fit analysis (Meijer & Sijtsma, 2001).  

 

1.2 Person fit 

In item response theory the adequacy of a measurement model can be analyzed by 

means of statistical indicators and tests (e.g., Embretson & Reise, 2000, Chapter 9; 

Hambleton, Swaminathan, & Rogers, 1991, Chapter 4). The usage of item and person fit 

statistics has spread in typical IRT software packages. Item fit analysis allows identifying 

items which display low conformity with the IRFs (e.g., Reise, 1990); this may, for example, 

be a sign of systematic item misinterpretation by the respondents. Person fit statistics can be 

used to evaluate the consistency of each individual response vector with the applied model 

and have proven to be a useful psychometric tool considering the serious consequences 

related to individual aberrancy (Meijer, 1996; Meijer & Sijtsma, 2001). 

 

1.2.1 Consequences related to individual misfit 

Assessments often involve major implications for the examinee. Inaccurate ability 

estimates may cause unfair decisions when, for example, unqualified individuals are being 
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awarded a degree, qualified individuals are denied a degree or being excluded from academic 

or professional programs (e.g., Schmitt et al., 1999). Disadvantages may also arise in more 

informal educational assessments when curriculum or instructional processes are adjusted by 

teachers based on feedback about the competence of students (Leutner, Fleischer, Spoden, & 

Wirth, 2007). The effects of person misfit have been studied intensively in psychometric 

research. In summary, results indicate that effects of low person fit of an individual’s 

response vector may include inaccurate latent abilities being estimated for misfitting 

individuals (Meijer & Nering, 1997), a decrease in correct diagnostic classification (mastery) 

decisions (Hendrawan, Glas, & Meijer, 2005) and a decrease in the validity of the test 

instrument (Meijer, 1997, 1998; Schmitt, Cortina, & Whitney, 1993; Schmitt et al., 1999).  

 

Table 1.1 

Fictious vectors of Rasch-conform and Rasch-aberrant response behavior 

 Item Item Item Item Item Item Item Item Item corbis 

 1 2 3 4 5 6 7 8 9  

Rasch vectors 1 1 1 0 1 0 0 0 0 0.735 

 1 1 1 0 1 0 1 0 0 0.572 

 
1 0 1 1 0 1 0 1 0 0.245 

 
1 1 1 1 0 1 1 0 0 0.602 

test anxiety 0 0 0 1 1 1 1 1 1 -0.775 

uninformed 

guessing 
0 0 0 1 0 0 1 0 0 -0.097 

cheating 1 1 0 0 0 0 1 1 1 -0.163 

inattention 1 0 1 1 1 1 1 0 0 0.344 

item difficulty .90 .80 .70 .60 .50 .40 .30 .20 .10 
 

Notes. One is a correct item response, zero is an incorrect item response. 
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Inaccurate latent ability estimation: Meijer and Nering (1997) analyzed the effects of 

misfitting response vectors on latent abilities estimated by three scoring methods (ML, EAP, 

BS). Results illustrated that latent ability estimates were indeed biased for misfitting response 

vectors though results differed systematically for the different scoring methods, different 

types of model violations and different levels of true ability (e.g., extreme levels of true θ 

were generally much more biased than medium levels). By applying the robust BS method, 

bias was not only reduced for extreme abilities compared to the scoring methods ML or EAP, 

but also the statistical power of the applied person fit statistic (lz) to detect model violations 

was found to be enhanced (Meijer & Nering, 1997).  

Decrease of correct mastery decisions: Hendrawan, Glas and Meijer (2005) studied the 

interaction of person fit and mastery classification decisions. They found that for fitting 

response vectors and several scoring methods, the classification rates were very much 

comparable to the mastery decisions in groups formed according to the true status. For 

misfitting response vectors, however, serious impact on the classification decision was found 

and especially in one of the simulated conditions, random guessing, classifications were 

found to be random decisions. The authors concluded “... that classification decisions cannot 

be justified if the model does not fit.“ (p. 43) and “…that person-fit statistics can indeed be 

used for identifying a subsample in which the model fits and mastery testing is appropriate.“ 

(p. 43). 

Effects on validity: Effects of person misfit on test validity were studied in both real and 

simulated data. Analyzing four data sets from personnel selection, Schmitt, Cortina and 

Whitney (1993) found an interaction effect with person fit in the analysis of criterion-related 

validity estimated as a regression of supervisory performance ratings on performance test 

scores in a sample of mechanics. Results indicated that applying a person fit statistic to 

identify questionable response vectors might help to improve the validity of test results. In a 



1 PERSON FIT ANALYSIS IN ITEM RESPONSE THEORY ǁ 30 

second study, Schmitt et al. (1999) re-investigated person fit as a moderator in the regression 

of students’ grade-point average on cognitive and personality test scores (as a measure of the 

criterion-related validity) in a sample of undergraduate university students. The validity was 

substantially higher for model-conform respondents compared to misfitting respondents. The 

authors concluded that „…person fit can have a substantial practical impact on the validity of 

tests for subgroups identified by level of fit.“ (p. 49). Meijer (1998) analyzed item responses 

by candidates for a job application in computer occupations (e.g., systems analysts, 

programmers etc.). Compared to respondents with conform vectors, he found persons with 

misfitting responses to be less predictable by results from an intelligence tests with regard to 

behavioral assessment ratings collected over four years. Removing misfitting respondents 

from the data set increased the correlations between predictor and criterion. While most 

studies relied on real data analysis, Meijer (1997) modeled the effect of misfit on test-score 

validity in a simulation study with a systematic (experimental) variation of several factors. In 

the presence of misfitting respondents, validity was indeed deteriorated – but this effect was 

small in magnitude and was only found when a strong correlation between the predictor and 

criterion scores (.3 or .4) existed and a high percentage of misfit (.15 or higher) was present. 

Removing misfitting item-score vectors from a predictor influenced results on criterion-

related validity very modestly. 

In summary, results from person fit analysis indicate that low person fit may indeed be 

related to inaccurately estimated abilities and may impair the validity of test results under 

some conditions. The magnitude of these problems certainly depends on the testing context 

and on the statistical power of the particular person fit statistic applied to identify misfit.  
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1.2.2 Nonparametric, parametric and other types of person fit statistics  

The number of proposed person fit statistics has grown rapidly in the last decades. For 

readers interested in the details of the several statistics, Meijer and Sijtsma (2001) present a 

useful overview including information on similarities between the statistics, and Karabatsos 

(2003) provides a general comparison of correct fit / misfit classifications under 36 statistics 

for the Rasch model. Differences between the two main classes of person fit statistics, 

nonparametric and parametric statistics, are outlined below. 

Group-based nonparametric statistics: Group-based statistics do not include any 

(predominantly iteratively estimated) IRT parameters and are therefore also denoted as 

nonparametric statistics. These statistics are based on the computation of correlations (or 

covariances) between the individual response vectors of two respondents or between an 

individual response vector and some aggregated quantity of the sample, like, e.g., percentages 

of correct responses per item. The estimates of the point-biserial correlation between the 

individual responses and the item difficulties presented in Table 1.1 of the previous chapter, 

and statistic U3 presented in Chapter 3 are examples for group-based nonparametric statistics. 

Karabatsos (2003) found that four out of the best five performing person fit statistics for the 

Rasch model were group-based statistics. Several other studies based on the two- and three-

parameter model found that group-based nonparametric statistics perform about as well as 

parametric statistics (Emons, 2008, 2009; Meijer, 1994). A major problem with 

nonparametric statistics is the absence or inadequacy (Emons, Meijer, & Sijtsma, 2002) of 

standardizations which complicates the definition of cut values to decide on whether a 

response vectors does or does not fit according to the IRT model parameters. This issue is 

addressed in Chapter 3 based on the Rasch model.  

Parametric IRT-based statistics: Parametric statistics either rely on IRT parameters or on the 

(estimated) item response probability (from now on denoted by 𝑃𝑖(θ)) computed based on 
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these parameters. As Snijders (2001) has shown, parametric person fit statistics are often 

based on the form  

𝑉(θ) =  ∑[𝑥𝑖 −  𝑃𝑖(θ)] 𝑣𝑖(θ)

𝐿

𝑖=1

 . 
[1.18] 

where 𝑣𝑖(θ) is a weight specific for the given statistic. The statistics depends on 𝑃𝑖(θ) which 

needs to be computed before 𝑉(θ) can be determined; 𝑃𝑖(θ) depends on the estimated item 

parameters and the estimated ability. In general, person fit statistics implemented in 

conventional software packages most often belong to the group of parametric person fit 

statistics (see Table 1.2). The evaluation of parametric statistics is not clear without 

ambiguity: While Karabatsos (2003) found parametric statistics to underperform compared to 

group-based nonparametric statistics based on the Rasch model (see above), Meijer (2003) 

found them to be more efficient in a real data example than nonparametric statistics.  

 

Table 1.2  

Typical IRT software packages with implemented person fit statistics 

software class statistic scoring method 

ConQuest 3.0 (Adams, 

Wu, & Wilson, 2010) 
parametric infit / outfit  weighted likelihood estimation 

eRm (R-package; Mair, 

Hatzinger, & Maier, 2012) 
parametric infit / outfit 

maximum likelihood (with 

spline interpolation for non-

observed and 0/full responses) 

ltm (R-package; 

Rizopoulos, 2006) 
parametric 

lz (Drasgow, Levine, 

& Williams, 1985) 
empirical Bayes estimates 

RSP (Glas & Ellis, 1993) parametric 
M (Molenaar & 

Hijtink, 1990) 
- 

Winmira (von Davier, 

1997) 
parametric 

extension of M (von 

Davier & Molenaar, 

2003) 

- 

Winsteps (Linacre, 2012) parametric infit / outfit 
(adjusted) joint maximum 

likelihood 

Note. Ability estimates may be substituted by applying the basic symmetric functions of the 

Rasch model in parametric statistics; this is implemented in RSP and Winmira. 
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Much of the research on parametric person fit statistics has focused on the problem of 

biased latent ability estimation (especially for short tests) and its impact on the statistics (see 

Chapter 3 and 4). As each of these statistics depend in some form on the latent ability while 

true abilities are unknown, an ability estimate has to be computed before it can be “plugged 

in” to compute the statistic. Research has shown that due to biased ability estimates and 

improper standardization, “standardized” parametric statistics might not reproduce the 

nominal α-level in a correct way (e.g., Li & Olejnik, 1997; Nering, 1995; Reise, 1995; Reise 

& Due, 1991; van Krimpen-Stoop & Meijer, 1999). Several approaches were developed to 

compensate this effect quite successfully (de la Torre & Deng, 2008; Dimitrov & Smith, 

2006; Molenaar & Hoijtink, 1990; Snijders, 2001). This issue is addressed in Chapter 3 based 

on the Rasch model and in Chapter 4 with focus on IRT models in general.  

Other types of person fit statistics: Beside these two main groups of person fit statistics, 

several variants exist. For example, item-group statistics are a special case of statistics 

determined in item subsamples (e.g., Drasgow, Levine & McLaughlin, 1991; Smith, 1986). 

Uniformly most powerful person fit tests defined by Klauer (1991, 1995) represent another 

subclass of person fit statistics designed to test individual conformity to the estimated (Rasch) 

model against an alternative generalization of this model. Also cumulative sum statistics 

(e.g., Tendeiro & Meijer, 2012) and local misfit analysis with the person response function 

(e.g., Conijn, Emons, van Assen, & Sijtsma, 2011; Emons, Sijtsma, & Meijer, 2004; Reise, 

2000; Sijtsma & Meijer, 2001; Woods, 2008a) have aroused growing interest in the last 

years. Furthermore, there is a substantial number of studies that analyzed person fit in more 

complex models. This includes person fit analysis for polytomous items (e.g., Conijn, Emons, 

& Sijtsma, 2014; Drasgow, Levine, & Williams, 1985), continuous responses (e.g., Ferrando, 

2010), mixture IRT models (von Davier & Molenaar, 2003), latent class models (Emons, 

Glas, Meijer, & Sijtsma, 2003), multiscale or multidimensional data (e.g., Conijn, Emons, & 
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Sijtsma, 2014; Drasgow, Levine, & McLaughlin, 1991), computer adaptive testing (e.g., 

McLeod & Lewis, 1999; Nering, 1997; van Krimpen-Stoop & Meijer, 1999) and cognitive 

diagnosis models (Cui & Leighton, 2009; Liu, Douglas, & Henson, 2009). Additionally, 

differential person functioning is a concept related to person fit. The term “differential person 

functioning” has been suggested by Johanson and Alsmadi (2002) analogously to the well-

established principle of differential item functioning (e.g., Osterlind & Everson, 2009) and is 

related to the person response function, but not intended as a measure of fit (Johanson & 

Alsmadi, 2002). Answer copying indices like those presented by, for example, Sotaridona, 

van der Linden, and Meijer (2006) or van der Linden and Sotaridona (2004) are conceptually 

different from person fit tests but likewise constructed to detect a prevalent type of aberrant 

response behavior in achievement testing and are partly embedded in IRT (Wollack, 1997; 

Wollack & Cohen, 1998). 

The comparison of several person fit statistics has not only demonstrated substantial 

differences in the statistical power between the different statistics (e.g., Karabatsos, 2003) but 

has also uncovered differences between the same statistics depending on test characteristics 

(like test length, percentage of misfit etc.; see Chapter 2), the underlying estimation 

procedure (e.g., de la Torre & Deng, 2008; Meijer & Nering, 1997; Reise, 1995) and                      

the underlying method to determine cut values (e.g., by evaluating p-values or significance 

probabilities; de la Torre & Deng, 2008; van Krimpen-Stoop & Meijer, 1999). Given the 

potential consequences of inaccurately estimated abilities or impairment of the test validity 

outlined in detail in this chapter, the usage of the most powerful variant of each statistic to 

identify misfit is desirable. This is one of the main research aims in person fit research in 

general and in this script in particular: How can person fit analysis be enhanced with regard 

to statistical power while preventing inflation of Type I error rates at the same time?  
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2 RESEARCH AIM, METHODOLOGY AND OVERVIEW OF STUDIES 

 

In the previous chapter, person fit analysis has been introduced as a psychometric tool 

to identify respondents for which the applied IRT model may fail to give accurate 

information on the latent ability. Summarizing several results on misfitting response vectors, 

a decrease in accuracy of the latent ability estimation for those vectors (Meijer & Nering, 

1997), a decrease in the number of correct diagnostic classification (mastery) decisions 

(Hendrawan, Glas, & Meijer, 2005), and a decrease in the validity of the test instrument (e.g., 

Schmitt, Chan, Sacco, McFarland, & Jennings, 1999) has to be expected if the IRT data set is 

not adjusted (e.g., by downweighting or excluding misfitting response vectors). Additionally, 

consequences resulting from inaccurate ability estimation for misfitting response vectors have 

been summed up. Given these consequences of inaccurate representation of abilities, the 

detection of those individuals with inappropriate item responses by means of person fit 

statistics is a reasonable way to improve the assessment process.  

 

2.1 Challenges for person fit analysis and research aim 

Difficulties in the interpretation of the results from person fit statistics are often related 

to problems with the standardization of these statistics. Standardized or normalized person fit 

statistics are usually preferred to unstandardized statistics as these allow diagnostic decisions 

to be made under a given Type I error rate (false alarm rate) and allow comparisons of fit 

across different latent abilities even when the original statistics are not independent from the 

ability level (e.g., Tatsuoka, 1984). But as indicated in Chapter 1, statistics standardized by 

normalization formulas are often inadequate for nonparametric (Emons, Meijer, & Sijtsma, 

2002) as well as for parametric person fit statistics (e.g., Li & Olejnik, 1997; Molenaar & 

Hoijtink, 1990; Nering, 1995; van Krimpen-Stoop & Meijer, 1999). Reise (1995) found the 



2 RESEARCH AIM, METHODOLOGY AND OVERVIEW OF STUDIES ǁ 44 

power of the standardized statistic lz to be influenced by the estimation method: Results were 

best for the true ability levels, but person fit analysis based on the robust scoring method BS 

(Mislevy & Bock, 1982) outperformed person fit analysis based on the ML and EAP scoring 

method (see Chapter 1). Differences between the scoring methods were also related to the 

characteristics of the test information function, the ability level, and the amount of misfit 

(percentage of misfitting responses). Results also uncovered an underestimated variance of 

the statistic for extreme abilities. Meijer and Nering (1997) replicated these results and found 

the advantage of BS to be related to lower bias of robust scoring methods in the presence of 

aberrancy (e.g., Meijer & Nering, 1997; see also Schuster & Yuan, 2011). Similar results 

were also found by Nering (1995) under the 2PLM and 3PLM for statistic lz. Li and Olejnik 

(1997) analyzed the distributions of five standardized parametric person fit statistics for the 

Rasch model and found significant deviations from the standard normal distribution with 

each of these five statistics. Snijders (2001; see Chapter 4) proposed a method which corrects 

the normalization when true abilities are replaced by ability estimates. Béland, Magis, 

Raîche, and Talbot (2010) as well as Magis, Raîche, and Béland (2012) illustrated Snijders’ 

method to improve the approximation of standardized mean square statistics (infit and outfit 

statistics). Molenaar and Hoijtink (1990), Tarnai and Rost (1990), as well as Dimitrov and 

Smith (2006) found the statistical power of parametric person fit statistics to be enhanced if 

the ability estimate was eliminated by making use of the basic symmetric functions of the 

Rasch model (see Chapter 1; see also Baker & Kim, 2004).  

Another option to correct inadequate standardizations and to facilitate the interpretation 

of person fit statistics by reporting p-values (significance probabilities) to practitioners is 

given by computer-intensive Monte Carlo (MC) simulation methods (de la Torre & Deng, 

2008; Rizopoulos, 2013; Seo & Weiss, 2013; van Krimpen-Stoop & Meijer, 1999). A 

reference null distribution is generated by simulating and analyzing new response vectors 



2 RESEARCH AIM, METHODOLOGY AND OVERVIEW OF STUDIES ǁ 45 

under the given IRT parameters (details described in in Chapters 3 and 4). Simulation-based 

methods have been established as the method of choice to facilitate the interpretation of 

person fit statistics by significance probabilities; recently published research articles on 

person fit analysis completely relied on MC simulation to obtain critical values for the 

statistics (Conijn, Emons, & Sijtsma, 2014; Seo & Weiss, 2013). Referring to standardized 

person fit statistics, de la Torre and Deng (2008, p. 176) argued that “…one can no longer 

justify the use of coarse approximation in performing PFA [person fit analysis].“ and that 

„…the use of computer-intensive methods…should be given further attention because of the 

viability and promises of such approaches.“ 

The general research aim of the following studies was to enhance the statistical power 

of person fit analysis (while at the same time controlling for Type I error level inflation) by 

simulation-based methods. In Study 1, an alternative method for person fit analysis in the 

Rasch model is proposed and evaluated based on simulating new data matrices with given 

marginals. In Study 2, parametric bootstrapping for person fit analysis with different 

underlying scoring methods is presented. Recent developments in psychometric methods as 

well as their user-friendly implementation in open-source software like R (R Core 

Development, 2013) facilitate the availability and the analysis of the methods applied in the 

following simulation studies. The methodological approach to evaluate the usefulness of the 

methods is stochastic simulation. 

 

2.2 Evaluating Type I error and statistical power of person fit statistics 

Given the underlying stochastic nature of IRT models, it is impossible to determine 

which response vectors classified as misfitting in real data were truly subject to aberrant 

response behavior. Type I error and statistical power of person fit statistics are therefore 

investigated in simulated data (e.g., Rupp, 2013). For this purpose, data is generated under a 
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specified psychometric model and the Type I error can be found by analyzing the proportion 

of respondents classified as misfitting given an a priori defined cut value. For normalized 

statistics this is the z-score for the most extreme 5 %, z ≈ -1.65 (or the respective z-score for 

other nominal Type I error rates; e.g., Reise, 1995). For non-standardized statistics this cut 

score may be found by rule-of-thumb values defined in previous analyses (e.g., Karabatsos, 

2003), by outlier analysis (Zijlstra, van der Ark, & Sijtsma, 2007) or – and of importance for 

the studies presented here – by simulation of the null distribution (de la Torre & Deng, 2008; 

Rizopoulos, 2013; van Krimpen-Stoop & Meijer, 1999). To investigate the statistical power 

of a person fit statistic, several types of model violations are imputed into model-conform 

response data. Again, classifications using the values of a person fit statistic and the 

respective cut score are compared to the known true classification (e.g., Reise, 1995, pp. 220-

221). As an alternative, receiver operating curve analyses (e.g., Karabatsos, 2003) can be 

applied to analyze the accuracy of fit / misfit classifications and to optimize statistical power 

and Type I error computation.  

Relying on a suggestion by Levine and Rubin (1979) and Drasgow (1982), a common 

distinction is often made between spuriously low and spuriously high scores. Aberrancy will 

be labeled as spuriously low if incorrect responses are given to easy items by high ability 

respondents. Conversely, spuriously high scores will be found if correct responses are given 

to difficult items by low ability respondents. As an example for spuriously high scores, 

cheating on difficult items of a test has been simulated in several studies (de la Torre & Deng, 

2008; Dimitrov & Smith, 2006; Emons, Sijtsma, & Meijer, 2004) by fixing the probability of 

a correct response on these items to Pi = 0.90 or Pi = 1.00 for low ability respondents.  

Note that nominal Type I error rates are arbitrarily defined and that researchers may 

look differently at power and Type I error depending on the research question. Emons, 

Sijtsma, and Meijer (2004) argued that – as long as power still exists – conservative person fit 
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test might be useful to identify the most serious model violations under a certain degree of 

confidence. According to Meijer (2003, p. 81), incorrectly flagging a respondent as aberrant 

only implies a more thorough investigation of response vectors and has usually no serious 

consequences while ignoring misfit might cause biased latent ability estimates and incorrect 

mastery classifications (Hendrawan et al., 2005; Meijer & Nering, 1997). Additionally, 

statistical power of person fit statistics was often found to be critically low for short to 

medium test lengths (e.g., Emons, Glas, Meijer, & Sijtsma, 2003, p. 476). Considering the 

serious consequences of inaccurate ability estimation for misfitting respondents and reports 

on low power for short to medium test lengths, conservative test statistics do not seem useful 

for person fit analysis. 

Though Type I error recovery and statistical power are the most relevant criteria for 

selecting an appropriate person fit statistic, some minor criteria have an impact on the choice 

of a person fit statistics. In first place, availability of the statistics in typical software 

packages (see Chapter 1) may determine which person fit statistic is applied in practice. In 

the studies presented below focus was laid on the recovery of nominal Type I error rates and 

the statistical power influenced by several psychometric characteristics. 

 

2.3 Psychometric characteristics influencing the statistical power of person fit statistics 

Previous studies found the power of person fit statistics to be influenced by several 

characteristics (see the summary by Meijer & Sijtsma, 2001; see also St-Onge, Valois, 

Abdous, & Germain, 2009). Some of these characteristics are usually varied in simulation 

studies to investigate interactions of these design factors with Type I errors and statistical 

power. In the two simulation studies presented in the next chapters, decisions were made 

regarding test characteristics (test length, item discrimination, spread of item difficulties), 

ability levels and the model violations simulated to investigate statistical power (type of 
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model violations, percentage of misfitting response vectors). A short summary of previous 

findings on these characteristics in the context of person fit research is given below to justify 

the choice of settings and design factors of these studies. 

Test characteristics: As demonstrated in several studies (e.g., Cui & Leighton, 2009; Emons, 

Glas, Meijer, & Sijtsma, 2003; Emons, Sijtsma, & Meijer, 2004; Karabatsos, 2003; Li & 

Olejnik, 1997; Meijer, 1994, 1996; Nering & Meijer, 1998; Reise & Due, 1991; Rogers & 

Hattie, 1987; Rudner, 1983), the statistical power of person fit statistics grows with an 

increasing number of items. Emons et al. (2003, p. 476) argued that lack of detection 

accuracy of person fit statistics was mainly related to low item numbers in realistic settings. 

According to Meijer, Molenaar, and Sijtsma (1994) person fit analysis may also be useful for 

short tests with “sufficiently reliable” items (p. 111). They found the statistical power to be 

strongly influenced by the (mean) item discrimination when analyzing a nonparametric 

person fit statistic (U3). The authors argued that “…although it is not desirable to use short 

tests for person-fit analysis, the use of highly reliable (highly discriminating) items may yield 

a detection rate that is approximately the same as for longer tests with weakly discriminating 

items” (Meijer et al., 1994, p. 119). Cui and Leighton (2009) discussed that ”…the best 

detection rates were achieved when the [person fit statistic] HCI was applied to tests that 

consisted of a relatively large number of high discriminating items…” (p. 446). Emons eta al. 

(2003, p. 476) stated that weak (mean) discrimination was one of the main flaws in person fit 

research beside short test length. Beside others, Meijer, Molenaar, and Sijtsma (1994) also 

investigated higher statistical power to detect misfit for larger spreads of item difficulties. 

Reporting similar results, Reise and Due (1991) as well as Reise (1995) also showed that the 

spread of item difficulty relative to the ability determined the statistical power of person fit 

statistics.  
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Respondents’ characteristics (ability levels, type and percentage of misfitting response 

vectors): Latent abilities of the respondents were usually generated by sampling from a 

standard normal distribution (see the summary by Rupp, 2013). Researchers interested in 

person fit for extreme ability levels often simulated response vectors in several intervals of 

the ability distribution with both medium and extreme levels included (e.g., de la Torre & 

Deng, 2008; Reise, 1995; Sijtsma & Meijer, 2001). This is an important variation given that 

standardized person fit statistics often do not recover Type I error levels in an accurate way, 

in particular for extreme abilities (e.g., Emons et al., 2002; Reise, 1995).  

The several types of aberrancies that are simulated to analyze the statistical power of 

person fit statistics represent the many types of disturbances psychologists might think of 

when reflecting a typical testing situation. But there is no agreement in person fit research on 

which types of model violations should be simulated to study the power of person fit statistics 

(though some spuriously high and spuriously low scores are usually differentiated; see below; 

see also Rupp, 2013). Karabatsos (2003) found that the statistical power of person fit 

statistics differed under several types of misfit conditions, but there were few differences in 

the rank ordering of the statistics. In Karabatsos’ (2003) study, smaller rates of misfitting 

respondents (5 %, 10 %, and 25 %) were equally likely to be detected, while misfit was hard 

to detect under a rate of 50 %. Others (e.g., Armstrong & Chi, 2009a, 2009b; Emons, 2009) 

found slight differences in statistical power, mostly a decrease in power with a growing 

percentage of aberrant response vectors.  

These findings on item characteristics and model violations were considered to define 

settings and design factors in the simulation studies described in the following chapters.  
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2.4 Settings and design factors of the simulation studies 

Simulation methods are computer intensive methods mainly applied to inspect the 

characteristics of statistical methods in relation to the “truth” (Burton, Altman, Royston, & 

Holder, 2006). They are designed to imitate reality and should either be based on real data or 

rely on what is typical for real data (Burton et al., 2006; see also Rupp, 2013). The design of 

person fit studies is certainly worth a thorough consideration which cannot be provided here; 

Rupp (2013) has given a critical comment on person fit research in the time period 2001-

2010.  Considering the effects presented above (Chapter 2.3), settings and design factors for 

the studies on person fit statistics in this script (Chapter 3 and 4) are justified as follows:  

The number of items between 20 and 60 items represent low to moderate test lengths. 

For example, the item number of the state-wide administered large-scale assessments of 

competencies typically varied between 20 and 50 (Fleischer, personal communication). Rupp 

(2013) summarized most person fit studies to use item samples of lengths 20 to 60. The 

simulated item parameters and ability levels represent typical choices in previous studies 

(Rupp, 2013). Item difficulties with moderate ranges, for example [-2, 2] or [-2.75, 2.75], 

were selected. A Rasch model was underlying Study 1 (Chapter 3), two discrimination levels 

were analyzed in 2PLM data in Study 2 (Chapter 4). The underlying abilities of the 

respondents were generated following previous studies which relied on the standard normal 

distribution or relevant ability intervals. To investigate the statistical power in Study 1, two 

types of misfit scenarios for low achieving students were simulated following exactly 

Dimitrov and Smith (2006); the number of abilities affected by misfit (1-27
th

 percentile of the 

standard normal distribution) is assumed to yield about maximum detection rates with few 

replications (see Chapter 2.3). In Simulation Study 2 (Chapter 4), ability intervals following 

previous studies by, for example, de la Torre and Deng (2008), Reise (1995) or Sijtsma and 

Meijer (2001), were generated to vary abilities from medium to extreme levels. In line with 
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these studies, item response vectors representing both spuriously high and spuriously low 

scores as suggested by Levine and Rubin (1979) and Drasgow (1982) were simulated to 

investigate the statistical power. Two recognized person fit statistics were analyzed; statistic 

U3 (van der Flier, 1980, 1982; e.g., see studies by Emons et al., 2002; Emons et al., 2004; 

Emons et al., 2005; Meijer et al., 1994) and statistic l0 respectively lz (Levine & Rubin, 1979; 

e.g., see studies by de la Torre & Deng, 2008; Nering, 1995; Reise, 1995; Seo & Weiss, 

2013; van Krimpen-Stoop & Meijer, 1999). For example, Li and Olejnik (1997) found the 

standardized statistic lz to be “as good or better than the alternatives considered” in their 

study (p. 228). When comparing two or more methods, the moderately independent 

simulation design outlined by Burton et al. (2006, pp. 4281/4282) was followed; thus, the 

same data sets were used to compare the methods. These conditions are referred to as factors 

varied within each replication (where parallel simulations are referred to as “replications“ in 

this script). This design mimics a matched-pair design where sampling variability within 

these factors is set to zero (Burton et al., 2006, pp. 4282). All simulations were run in the R 

programming language (R Development Core Team, 2013) using the R default 

(pseudo)random number generator, the “Mersenne-Twister”. 

 

2.5 Application to real data sets  

Several areas of application for IRT models and psychometric tools related to IRT have 

been described in the introduction to Chapter 1. However, the most typical fields of 

application are cognitive performance tests in psychological research and in particular 

intelligence tests (e.g., Schmiedek, 2005), and achievement tests in educational research and 

educational large-scale assessment programs (e.g., Leutner, Fleischer, Spoden, & Wirth, 

2007; Adams, Wu, & Carstensen, 2007).  
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Intelligence is a main research area in psychology overlapping with neuroscience and 

genetics (e.g., Wilhelm & Engle, 2005). Intelligence scores belong to the most influential 

predictors for educational achievement (e.g., Rohde & Thompson, 2007), and are also a 

typical covariate in educational research including experimental designs (e.g., when 

instructional designs factors or training programs are evaluated) as well as large-scale 

assessments where these are applied as covariates in (latent) regression models to correctly 

attribute learning on the variables of interest (as an example from PISA see, e.g., Leutner, 

Fleischer, & Wirth, 2006). Thus, to further validate results from the simulations described in 

Study 1, the presented methods were applied to tests of Rasch-scalability of a recognized 

German intelligence test as a key area of application for IRT models in psychological 

research (Chapter 3.5). 

Educational large-scale assessments have been established as a diagnostic instrument in 

the United States of America since several decades but also its impact on European education 

is currently growing alongside with the ongoing influence of accountability systems in 

education. In a recent summary concerning advantages of IRT modeling for competence 

assessment – a recent development in central European educational research (e.g., Hartig, 

Klieme, & Leutner, 2008) – Hartig and Frey (2013) argue for advantages of IRT models with 

respect to localizing item difficulties and individual abilities on a common scale (which is of 

advantage when competence levels are described or items are selected for CAT 

administration; Hartig, 2007; van der Linden & Pashley, 2000), the modeling of complex data 

structures like Multi-Matrix-Sampling (Frey, Hartig, & Rupp, 2009), the parameterization of 

item characteristics (as it is the case, for example, in the linear-logistic test model; Fischer, 

1996), and the opportunity to take the testing context or different working strategies of the 

respondents into account by applying mixture distribution IRT models (e.g., Rost & von 

Davier, 1995). Given this attractiveness of IRT models for educational achievement tests, 
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results from the simulations in Study 2 were complemented by the application of the 

presented methods to testing data from a state-wide administered educational large-scale 

assessment program administered in the German federal state of North Rhine-Westphalia 

(Chapter 4.6). This real data application contributes to a growing line of research focusing on 

applications of person fit analyses in educational large-scale assessments: De la Torre and 

Deng (2008) argued person fit analysis may complement operational procedures and quality 

control for high-stakes testing in the context of educational programs like K-12, Harnisch and 

Linn (1981) as well as Miller (1986) identified classes with a poor match between test 

content and instructional coverage by person fit statistics, Jacob and Levitt (2003a, 2003b) 

applied statistical indicators including an aggregated person fit statistic to identify and 

validate test score cheating by teachers, Brown and Villareal (2007) corrected aggregated 

score reporting by person fit analysis, and Spoden, Fleischer, and Leutner (2014) investigated 

person fit analysis to identify teacher rater bias by lack of conformity to a coding manual.  

 

2.6 Overview of the next chapters 

The focus of the following chapters lies on the comparative analysis of Type I error and 

statistical power by simulation-based methods of person fit analysis. Simulation is also 

applied as the primary research method as it allows comparing fit / misfit classifications 

based on person fit statistics with (simulated) true classifications (the two studies presented in 

the Chapter 3 and 4 therefore correspond to the design of a “two-stage” simulation study). 

Real data examples exemplify the presented approaches.  

In Chapter 3, a recent statistical approach for the Rasch model (the Rasch Sampler) is 

adopted for person fit analysis. The usefulness of the approach with regard to Type I error 

recovery and statistical power is evaluated under nominal Type I error levels comparing this 
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new approach to conventional methods. The new approach is based on the influential MCMC 

simulation methods in Bayesian statistics (e.g., Fox, 2010; Jackman, 2009).  

In Chapter 4, MC simulation (parametric bootstrap) based on weighted ML estimators 

for parametric person fit analysis is examined. Previous studies found that parametric person 

fit statistics based on Mislevy and Bocks (1982) BS estimator outperformed statistics based 

on other scoring methods (Meijer & Nering, 1997; Reise, 1995) but a new approach by 

Schuster and Yuan (2011) offers an additional option for person fit statistics based on robust 

latent ability estimates. In contrast to previous studies relying on normalization formulas, MC 

simulation may help to recover Type I error rates correctly. Additionally, MC simulation 

based on the WL scoring method by Warm (1989) and designed parallel to the Bayesian 

method by de la Torre and Deng (2008) was evaluated.  

As outlined above, real data examples are presented in both Chapter 3 and 4 to further 

illustrate differences in the methods described above with typical psychological or 

educational outcome variables.  

Chapter 5 gives a discussion of findings, including contributions, limitations and 

practical implications.  
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3 STUDY I - APPLYING THE RASCH SAMPLER FOR PERSON FIT ANALYSIS
1
 

 

3.1 Background 

The quality of individual response vectors is investigated in many fields of testing (e.g., 

Lamprianou, 2010). Person fit statistics (Meijer & Sijtsma, 2001) provide the test 

administrators with information about whether the individual response vector is likely under 

the test model applied. Unlikely or aberrant response vectors should be treated with caution 

as ability estimation may be invalid for those vectors (Meijer & Nering, 1997). For the Rasch 

model (Rasch, 1960) a systematic and extensive comparison of person fit statistics is given 

by Karabatsos (2003). Extending previous research (e.g., Li & Olejnik, 1997; Meijer, 

Molenaar, & Sijtsma, 1994; Reise & Due, 1991), Karabatsos (2003) found the statistical 

power of the person fit statistics to depend on the type of aberrancy and to rise with 

increasing test length and with decreasing percentage of aberrancy. Furthermore, his study 

reveals that four out of the five best performing person fit statistics for the Rasch model were 

nonparametric statistics. A parametric person fit statistic for the Rasch model depends on the 

predicted probability of an item response 𝑃𝑖(θp) given the common Rasch equation (see 

Chapter 1).  

In contrast, nonparametric person fit statistics do not make use of the estimated item 

parameters and ability but compute the statistic from the response vectors and the marginals 

of the data matrix. Karabatsos argued that parametric statistics are “biased to be 

overoptimistic” (Karabatsos, 2003, p. 290) as the data set is used twice, once for the 

estimation of item parameters and abilities to predict the probability of item endorsement, and 

once again to measure the fit of the data to these predictions or to the estimated parameters – 

                                                           
1
 This chapter is based on: 

Spoden, C., Fleischer, J. & Leutner, D. (2014). Applying the Rasch Sampler for person fit analysis under fixed 

nominal alpha level. Journal of Applied Measurement, 15, 276-291. 
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unless item parameters are known as it is the case in computer adaptive testing or with 

previously administered tests.   

Further bias in person fit statistics comes from normalization attempts: For classifying 

an item response vector as misfitting independent from the (estimated) ability, the 

distribution of the statistic under the null hypothesis is needed. With both parametric and 

nonparametric person fit statistics the adequate approximation of a standard normal 

distribution was found to fail when normalization formulas were applied (Emons, Meijer, & 

Sijtsma, 2002; Molenaar & Hoijtink, 1990; Nering, 1995; van Krimpen-Stoop & Meijer, 

1999). As a consequence, the empirical Type I error rate differs from its nominal rate and an 

inadequate number of response vectors is classified as misfitting.   

Several authors have proposed possible adjustments to normalization formulas with 

emphasis on either item response models (e.g., de la Torre & Deng, 2008; Snijders, 2001) or 

the Rasch model (e.g., Bedrick, 1997). These adjustments were found to improve the 

approximation of the nominal α-level but are also restricted to certain (types of) person fit 

statistics (Bedrick, 1997; Snijders, 2001) or certain estimators (de la Torre & Deng, 2008). 

For the Rasch model it has also been recommended to replace the ability estimate by the use 

of basic symmetric functions (Dimitrov & Smith, 2006; Karabatsos, 2000; Molenaar & 

Hoijtink, 1990; Ponocny, 2000; Tarnai & Rost, 1990), which requires the item parameters 

and the score to be computed but not the latent ability (Baker & Kim, 2004). The exact 

probability of a response vector can then be enumerated for shorter test lengths under the 

assumption that the estimated item parameters conform the true item parameters (Molenaar & 

Hoijtink, 1990). Results from simulated data have shown that this approach improves the 

statistical power of the statistics (Dimitrov & Smith, 2006). For longer tests MC simulation 

has been suggested (Molenaar & Hoijtink, 1990; Ponocny, 2000), as the computation of the 

basic symmetric functions and the enumeration of the probability for each response vector 
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under the given item parameters may include extensive computation (Dimitrov & Smith, 

2006, p. 182; Molenaar & Hoijtink, 1990, p. 98).  

MC simulation is a typical approach to solve complex numerical problems and can 

quite easily be implemented to create p-values for person fit statistics (e.g., Rizopoulos, 2013, 

pp. 39-42; see Chapter 4): In a MC simulation m = 1,…, M new response vectors are being 

generated under the estimated model parameters before the p-value of the initial response 

vector is estimated as the proportion of response vectors satisfying (Tm ≤ Tobs) where Tm is the 

value of the person fit statistic for response vector m and Tobs is the value for the original data 

set. The usefulness of the approach depends on the statistical properties of the underlying 

(estimated) parameters. With the EAP estimator of the ability level, for example, de la Torre 

and Deng (2008) developed a shrinkage correction before adjusting the distribution of the 

person fit statistic by MC simulation. They found this approach to approximate the 

distribution of the person fit statistic more adequately than traditional methods.  

A different simulation approach investigated person fit in a Bayesian framework. For 

example, Glas and Meijer (2003) used posterior predictive checks to investigate the power of 

several statistics obtained by MCMC (Gelman, Carlin, Stern, & Rubin, 2004; Jackman, 

2009). With MCMC as a sequential method, a target posterior distribution is first 

approximated by a draw from the current state of a Markov chain and then corrected to 

improve the approximation at the next step of the iterative process. Glas and Meijer (2003) 

sampled the item and ability parameters from the current draw of the posterior distribution in 

a fixed interval of iterations of the Markov chain, generated new model-conform data under 

these parameters and estimated the Bayesian p-value of the statistic for the initial response 

vector from this reference data similar to what was described before. As an advantage to 

frequentist approaches, MCMC takes the uncertainty in the parameter estimation properly 

into account (Glas & Meijer, 2003). However, a statistical test to identify aberrant responding 
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behavior under this Bayesian estimation was found to be conservative (de la Torre & Deng, 

2008; Glas & Meijer, 2003), which is a well-known result with hypothesis tests based on 

posterior predictive checks (e.g., Bayarri & Castellanos, 2001). 

To the knowledge of the authors of the present paper, another approach for simulating 

the distribution of Rasch fit statistics under constant marginals (as sufficient statistics for the 

item and ability parameters in the Rasch model) has been neglected for person fit so far: The 

Rasch Sampler (for a technical description see Verhelst, 2008; Verhelst, Hatzinger, & Mair, 

2007, and the appendix) is a MCMC algorithm to sample binary data matrices with the same 

marginals by binomial transformations of the original data set. If the Rasch model holds, all 

binary data matrices with common marginals have the same probability. As Ponocny (2001) 

points out, Rasch (1960) was already aware of the possibility to create exact nonparametric 

tests for his model by enumerating these matrices, but complete enumeration was ― and still 

is, even under enhanced computational support ― impossible for reasonable matrix sizes. 

However, to approximate the null distribution of any fit statistic, a random sample from the 

collection of equally likely matrices can be simulated. Under this approach, several 

nonparametric fit statistics for the Rasch model that check for local dependence, differential 

item functioning or diverging item discriminations, among others, were developed by 

Ponocny (2001) and are currently implemented in the package eRm (Mair & Hatzinger, 

2007b) for the statistical software R (R Development Core Team, 2011) using the Rasch 

Sampler.  

The rationale for applying the Rasch Sampler for nonparametric tests works 

analogously for person fit analysis, except that each single response vector, as a partition of 

the data matrix, is independently analyzed. As the marginals are sufficient statistics for the 

estimated item parameters and the latent abilities in the Rasch model, a nonparametric 

simulation based on these constant marginals can be applied to build the statistics’ 
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distribution empirically. In case of person fit, complete data matrices are sampled by the 

Rasch Sampler, the probability of each response vector, conditional on the score r and the 

item marginals, are computed and the p-value of the observed response vectors is found as 

the proportion of response vectors in the newly generated matrices with a value of the person 

fit statistic smaller than or equal to the value of the statistic in the observed data (see above). 

For a nonparametric statistic neither item nor ability parameters have to be estimated; in case 

of a parametric statistic the parameters have to be estimated only once on the observed data 

set and can then be used to compute the statistic on the observed and any generated data 

matrix. The accuracy of this simulated reference distribution depends on the number of 

samples and therefore on the time spent on drawing new data matrices. Using a MC 

approach, de la Torre and Deng (2008) found convincing results for M = 1000 samples to 

approximate the distribution of a person fit statistic. The major advantages of the approach 

are that (1) the algorithm is already implemented with a user-friendly interface in R (R 

Development Core Team, 2011), that (2) in contrast to conventional approaches, the 

simulation is not based on estimated parameters, that (3) it can be applied to mostly any kind 

of parametric or nonparametric person fit statistics, and that (4) the same data sets generated 

in one simulation can be used to test person fit as well as further assumptions of the Rasch 

model. Of course, with regard to (4) adjustment of the Type I error rate for each single test is 

necessary (Kubinger & Draxler, 2007). 

 

3.2 Purpose of this study 

The usage of the Rasch Sampler for simulating reference data and generating the 

distribution of person fit statistics in the Rasch model is investigated. In two simulation 

studies, p-values of typical person fit statistics obtained when applying the Rasch Sampler are 

analyzed with regard to Type I error (false alarm rates) and statistical power (detection rates). 
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These quantities are compared to normalization formulas. In Simulation 1, Type I error rates 

are investigated for each score r, as results from several studies indicate that the distributional 

properties of the statistics were differentially affected for different levels of the latent ability 

(Emons et al., 2002; Nering, 1995; van Krimpen-Stoop & Meijer, 1999). In Simulation 2, 

both power and Type I error rates are investigated under different types of model violations 

in a design very similar to the one used by Dimitrov and Smith (2006). A real data example 

completes the analysis and illustrates the results from simulated data. 

 

3.3 Simulation 1: Investigation of Type I error rates 

To gain insights into the benefits of the Rasch Sampler approach, two person fit 

statistics (U3 and l0) with documented problems to approximate the nominal Type I error rate 

accurately by normalization formulas (NOR) were compared in a simulation with regard to 

Type I error rates. The nonparametric statistic U3 (van der Flier, 1980; 1982) was chosen 

because it was found to be one of the five most powerful statistics for the Rasch model by 

Karabatsos (2003), and a normalization formula for U3 was developed by van der Flier 

(1982). Its unstandardized formula is given by:  

𝑈3 =
log(𝑿𝑝

𝑚𝑎𝑥) − log(𝑿𝑝)

log(𝑿𝑝
𝑚𝑎𝑥) − log(𝑿𝑝

𝑚𝑖𝑛)
  , [3.1] 

where 𝑿𝑝 is the response vector of the original data set, 𝑿𝑝
𝑚𝑎𝑥 is the maximum possible value 

resulting from the Guttman vector for score r under test length L and 𝑿𝑝
𝑚𝑖𝑛 is the minimum 

value resulting from the anti-Guttman vector for score r. Van der Flier (1982) derived that:  

𝑈3NOR = 𝑍𝑈3 =
𝑈3 − 𝐸(𝑈3)

[Var (𝑈3)]1/2
  , [3.2] 

was approximately normally distributed with expectation:  
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𝐸(𝑈3) =

∑ log
𝑃𝑖
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 −  ∑ 𝑃𝑖

𝐿
𝑖=1 log
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1 − 𝑃𝑖
+

∑ 𝑃𝑖
𝐿
𝑖=1 (1 − 𝑃𝑖)log

𝑃𝑖

1 − 𝑃𝑖

∑ 𝑃𝑖
𝐿
𝑖=1 (1 − 𝑃𝑖)

 (𝑟 − ∑ 𝑃𝑖
𝐿
𝑖=1 )𝑟

𝑖=1

∑ log
𝑃𝑖

1 − 𝑃𝑖

𝑟
𝑖=1 − ∑ log

𝑃𝑖

1 − 𝑃𝑖

𝐿
𝑖=𝐿−𝑟+1

  , 
[3.3] 

and variance given by:  

Var(𝑈3) =

{∑ 𝑃𝑖
𝐿
𝑖=1 (1 − 𝑃𝑖) (log

𝑃𝑖

1 − 𝑃𝑖
)

2

−
[∑ 𝑃𝑖

𝐿
𝑖=1 (1 − 𝑃𝑖) log

𝑃𝑖

1 − 𝑃𝑖
]

2

∑ 𝑃𝑖
𝐿
𝑖=1 (1 − 𝑃𝑖)

}

1
2

|∑ log
𝑃𝑖

1 − 𝑃𝑖

𝑟
𝑖=1 − ∑ log

𝑃𝑖

1 − 𝑃𝑖

𝐿
𝑖=𝐿−𝑟+1 |

  , 

[3.4] 

The empirical distribution of U3
NOR

 was previously found to deviate from the standard 

normal distribution with larger differences for extreme values of r (Emons et al., 2002). 

The statistic l0 (Levine & Rubin, 1979) is the prominent parametric log-likelihood 

statistic given by 

𝑙0 = ∑ 𝑥𝑖log [𝑃𝑖(θ)] + (1 −

𝐿

𝑖=1

𝑥𝑖)log [1 − 𝑃𝑖(θ)]. [3.5] 

A normalization formula for l was developed by Drasgow, Levine and Williams (1985) as: 

𝑙NOR = 𝑙𝑧 =
𝑙0 − 𝐸(𝑙0)

[Var(𝑙0)]1/2
  , [3.6] 

with  

𝐸(𝑙0) = ∑{𝑃𝑖(θ)log[𝑃𝑖(θ)] + [1 − 𝑃𝑖(θ)]log[1 − 𝑃𝑖(θ)]}  ,

𝐿

𝑖=1

 [3.7] 

and 

Var(𝑙0) = ∑   𝑃𝑖(θ)

𝐿

𝑖=1

[1 − 𝑃𝑖(θ)] [log
𝑃𝑖(θ)

1 − 𝑃𝑖(θ)
]

2

. [3.8] 
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l
NOR

 was regarded to be a very promising person fit statistic for the Rasch model by Li and 

Olejnik (1997) but several studies have found its empirical distribution to deviate from the 

standard normal distribution, especially when estimated instead of true abilities are used 

(Nering, 1995; van Krimpen-Stoop & Meijer, 1999).  

Type I error rates under the method NOR are used as benchmark to evaluate the new 

method, where the distribution of the statistic was built based on new reference data 

simulated by the MCMC approach implemented in the Rasch Sampler (MCMC (RS)). To 

prevent autocorrelations in the process of sequential draws and to make sure that the process 

has reached its uniform posterior target distribution, a number of initial iterations of the 

Markov chain known as burn-in as well as a fixed number of iterations (steps) after each 

simulation had been omitted before a new data matrix was generated (Verhelst et al., 2007). 

Under these assumptions, the simulated data matrices generated by the Rasch Sampler are 

drawn from a truly uniform distribution (Verhelst, 2008), and empirical Type I errors equal to 

the predefined level are expected. In this simulation, the Rasch Sampler was initiated with a 

burn-in of 1000 iterations and a step number of 25. A smaller number of burn-in iterations 

and a lower step number might be chosen to run the sampler, but we wanted to be sure of the 

process’ convergence. For each observed data set, M = 1000 new data sets were generated to 

obtain p-values for the person fit statistic of the observed data. To compare the accuracy of 

the approach with regard to the nominal Type I error rate, the mean absolute difference 

(MAD), 
1

𝐿−1
∑ |α̂r – αr|𝐿−1

𝑟=1 , between empirical and nominal Type I error rate was computed.  

With each of these two methods, item parameters bi for the parametric statistic l0 were 

estimated by conditional maximum likelihood estimation in eRm (Mair & Hatzinger, 2007a, 

2007b). Ability estimates θp were obtained by empirical Bayes estimation (MAPs) from the 

R-package ltm (Rizopoulos, 2013).  

 



3 STUDY I - APPLYING THE RASCH SAMPLER FOR PERSON FIT ANALYSIS ǁ 68 

3.3.1 Data simulation  

To evaluate Type I error rates of the statistics under the Rasch model 100 replications 

of 50 response vectors at each level of r (except 𝑟 = 0 and 𝑟 = 𝐿 for which person fit cannot 

be evaluated meaningfully) were simulated for test lengths of L = 20, L = 40 and L = 60 

items. Overall, the number of simulated response vectors was 95.000, 195.000 and 295.000. 

True item parameters were sampled equidistantly in the interval [−2, 2] for the 20- and in the 

interval [−2.75, 2.75] for the 40- and 60-items sets (Dimitrov & Smith, 2006). An R-Code (R 

Development Core Team, 2011) was written to generate the data, run the Rasch scaling in 

eRm and compute empirical p-values of the person fit statistics. 

 

3.3.2 Evaluation of Type I error rate 

 The Type I error is estimated in data sets which contain no model violations as the 

percentage
2
 of response vectors with a p-value of the person fit statistic smaller than the 

nominal α-level. Because low power of person fit statistics is expected under small Type I 

error rates, results are presented for α = .05 and α = .10.  

 

3.3.3 Results  

Figure 3.1 shows the empirical Type I error rates for statistics U3 and l0 under NOR 

and MCMC (RS) at three test lengths and two alpha levels. Results for NOR demonstrate a 

strong curvilinear dependency of the empirical Type I error rate on the score. With U3 the 

empirical Type I error is deflated for average scores and strongly inflated for extreme scores. 

Note that for some extreme scores Type I error rates were not obtained due to about zero 

probability of this level of r. With l0 the Type I error is quite adequate for average scores but 

                                                           
2
 Subsequently, results are expressed as decimals.   
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deflated for extreme scores. These results replicate previous findings for example by Emons 

et al. (2002), Nering (1995), or Reise (1995). The MCMC (RS) approach adequately 

reproduced the true Type I error rates of both statistics for all values of r and each of the three 

selected test lengths. Differences between nominal and empirical α-level were generally very 

small and very much the same for both statistics. Well-adjusted Type I error rates for MCMC 

(RS) and considerable differences between nominal and empirical Type I error rates found 

for NOR are also reflected by the MAD shown in Table 3.1.  

 

Table 3.1 

Mean absolute difference (MAD) between empirical and nominal Type I error for two 

approaches to generate p-values: Normalization formula (NOR) and Markov chain Monte 

Carlo simulation of the Rasch Sampler (MCMC (RS)).  

 

    

U3 

 

l0 

α 

 

L 

 

NOR MCMC (RS) 

 

NOR MCMC (RS) 

.05 

 

20 

 

.056 .004 

 

.026 .004 

 

40 

 

.093 .002 

 

.025 .002 

 

60 

 

.103 .002 

 

.026 .002 

.10 

 

20 

 

.127 .004 

 

.055 .004 

 

40 

 

.162 .003 

 

.053 .003 

 

60 

 

.168 .003 

 

.053 .003 

 

As a conclusion from Simulation 1, we may state that the estimated p-values based on 

the MCMC (RS) approach are in accordance with the nominal α-level at all test lengths and 

for all scores, while non-ignorable deviations from the expected Type I error rates were found 

for NOR, especially for extreme scores.  
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3.4 Simulation 2: Investigation of statistical power to detect model violations 

In Simulation 2, the selected person fit statistics, the estimation methods and the 

initiation parameters for the Rasch Sampler were the same as in Simulation 1. 

 

3.4.1 Data simulation 

 A 3 × 2 × 2 design was used with three test lengths (20, 40 and 60 items), two types of 

aberrant response behavior (guessing and cheating) and two types of aberrancy levels (20 % 

and 40 %). 36 replications of N = 1000 were simulated under the Rasch model. Again, true 

item parameters were sampled equidistantly in the interval [−2, 2] for the 20-items sets and in 

the interval [−2.75, 2.75] for the 40- and 60-items sets. In this study ability was sampled from 

N (0, 1), which is the common approach in simulation studies (e.g., Dimitrov & Smith, 2006; 

Glas & Meijer, 2003; Li & Olejnik, 1997; Meijer & Nering, 1997; van Krimpen-Stoop & 

Meijer, 1999). Aberrant response vectors were imputed for low ability respondents with θ < 

0.61 (27
th

 percentile) as described in Dimitrov and Smith (2006): Guessing was simulated by 

assigning a probability of .25 for a correct response on either 20 % or 40 % of the most 

difficult items for low ability respondents, simulating multiple-choice items with three wrong 

options and one correct option. Cheating was simulated by assigning a probability of .90 for a 

correct response on either 20 % or 40 % of the most difficult items for low ability 

respondents, as 100 % successful cheating might be unlikely under real testing conditions 

(Dimitrov & Smith, 2006).  
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Figure 3.1. Empirical Type I error rates of two person fit statistics and two approaches 

to generate p-values (normalization formula, NOR; Markov chain Monte Carlo 

simulation of the Rasch Sampler, MCMC (RS)). A: statistic U3, 20 items; B: statistic l0, 

20 items; C: statistic U3, 40 items; D: statistic l0, 40 items; E: statistic U3, 60 items; F: 

statistic l0, 60 items. 
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3.4.2 Evaluation of statistical power and Type I error rate 

 Power and Type I error rate are evaluated under a fixed nominal α-level. Power is 

estimated in the guessing and the cheating conditions as the percentage of aberrant response 

vectors with a p-value of the person fit statistic smaller than α. The Type I error rate is 

estimated as the percentage of non-aberrant response vectors with a p-value of the person fit 

statistic smaller than α. The same α-levels as in Simulation 1 were used (α = .05 and α = .10). 

 

3.4.3 Results 

 Power rates of the statistics are presented in Figures 3.2 and 3.3. For both cheating and 

guessing power increase with increasing item number, percentage of aberrancy and α-level. 

Cheating was generally easier to detect than guessing. In the cheating conditions, power is in 

most conditions highest for MCMC (RS), except for 20 items and an aberrancy rate of 20 %, 

where higher rates are found for U3 under NOR. With the parametric statistic l0, advantages 

of MCMC (RS) are stronger than for the nonparametric statistic U3. Differences between 

both methods also grow with decreasing item number. Over all test lengths, power rates for 

U3 and l0 are very similar under MCMC (RS), while under NOR U3 outperforms l0. These 

differences reflect inflated Type I error rates of U3
NOR

 and deflated Type I error rates of l
NOR

 

(Emons et al., 2002). The highest power in all cheating conditions is found for both U3 and l0 

and in the condition of 60 items, an aberrancy rate of 40 % and α = .10, where the percentage 

of correctly detected vectors is near 100 % with MCMC (RS). The lowest rates are found for 

20 items, an aberrancy rate of 20 % and α = .05, where rates below .35 indicate that model 

violations are generally hard to detect. 
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Figure 3.2. Statistical power of two person fit statistics and two approaches to generate 

p-values (normalization formula, NOR; Markov chain Monte Carlo simulation of the 

Rasch Sampler, MCMC (RS)) in the condition cheating. A: statistic U3, 20 items; B: 

statistic l0, 20 items; C: statistic U3, 40 items; D: statistic l0, 40 items; E: statistic U3, 60 

items; F: statistic l0, 60 items. 
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Figure 3.3. Statistical power of two person fit statistics and two approaches to generate 

p-values (normalization formula, NOR; Markov chain Monte Carlo simulation of the 

Rasch Sampler, MCMC (RS)) in the condition guessing. A: statistic U3, 20 items; B: 

statistic l0, 20 items; C: statistic U3, 40 items; D: statistic l0, 40 items; E: statistic U3, 60 

items; F: statistic l0, 60 items. 
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Figure 3.4. Type I error rates of two person fit statistics and two approaches to generate 

p-values (normalization formula, NOR; Markov chain Monte Carlo simulation of the 

Rasch Sampler, MCMC (RS)) in the condition cheating. A: statistic U3, 20 items; B: 

statistic l0, 20 items; C: statistic U3, 40 items; D: statistic l0, 40 items; E: statistic U3, 60 

items; F: statistic l0, 60 items. 
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Figure 3.5. Type I error rates of two person fit statistics and two approaches to generate 

p-values (normalization formula, NOR; Markov chain Monte Carlo simulation of the 

Rasch Sampler, MCMC (RS)) in the condition guessing. A: statistic U3, 20 items; B: 

statistic l0, 20 items; C: statistic U3, 40 items; D: statistic l0, 40 items; E: statistic U3, 60 

items; F: statistic l0, 60 items. 
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In the guessing conditions, power rates of the three approaches are comparable for the 

U3 statistic, except for higher rates under NOR with an aberrancy rate of 20 % and α = .05. 

Similar to the cheating conditions, for the parametric statistic l0 a general advantage is found 

under MCMC (RS) in comparison to NOR. This result supports the impression that the power 

of statistic l0 is affected by the estimation of θ (Nering, 1995; Reise, 1995). In general, the 

highest statistical power for both statistics in all of the guessing conditions are found in the 

condition 60 items, an aberrancy rate of 40 % and α = .10 with MCMC (RS), the lowest in 

the condition L = 20, an aberrancy rate of 20 % and α = .05. For test lengths L = 20 power is 

generally not outstanding in the guessing condition with at best 40 % of the violations 

detected, and even for longer tests at least more than 30 % of the guessing respondents 

remain undetected.  

Under both types of model violations, Type I error rates (Figures 3.4 and 3.5) are 

considerably lower than the nominal α-level. Type I error rates are found to be higher in the 

guessing conditions, but increase with decreasing item number and decreasing percentage of 

aberrancy under both types of model violations. As the Type I error relates to the Rasch-

conform response vectors, the effect of the aberrancy on these rates is an outcome of biased 

marginals (and therefore biased item parameter estimates) caused by the presence of aberrant 

response vectors in the data set.  

 

3.5 Application to real data: Rasch scalability of the KFT intelligence test?  

To investigate the practical significance of the results obtained by simulated data, the 

Rasch-scalability of Heller and Perleth’s (2000) multidimensional intelligence test 

(“kognitiver Fähigkeitstest”, KFT) was investigated by means of person fit statistics. In 

educational research contexts, the KFT is one of the most often applied testing instruments in 

German language to assess intelligence as a key predictor of educational success (e.g., 
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Fischer, Labudde, Neumann, & Viiri, 2014; Möller & Bonerad, 2005; PISA-Konsortium 

Deutschland, 2006).  

 

3.5.1 Research questions and method related to the real data example 

The KFT is assumed to be Rasch-conform (Heller and Perleth, 2000; see also PISA-

Konsortium Deutschland, 2006) but additional person fit analysis uncovers for which 

students Rasch ability estimates give valid information on intelligence subcomponents. The 

approach based on the Rasch Sampler offers an alternative method to identify misfit under a 

given Type I error rate of α = .05. The research question associated with this KFT data set 

was: Does person fit analysis support the assumption of adequate fit of the response vectors 

to the Rasch model and does the interpretation of this person fit information depend on the 

method of choice?  

The studied sample is given by 382 students from Finland, 1193 students from 

Germany and 560 students from Switzerland participating in the trinational study Quality of 

Instruction in Physics Education (Fischer et al., 2014) funded by the German Federal 

Ministery of Education and Research. The mean age was 15.9 (.66), 45.87 % of students were 

females, 46.3 % were males and 7.9 % declared no information on gender. More detailed 

information on the sample is given in Fischer et al. (2014). The present analysis is limited to 

two dimensions of the KFT: According to Heller and Perleth (2000), subdimension Q2 refers 

to the “quantitative” part of the intelligence test. To correctly answer items from the Q2 

subdimension, respondents need to select one out of five numbers which correctly completes 

a given column of numbers. Subdimension N2 refers to the “nonverbal” part of the 

intelligence test. To correctly answer items from the N2 subdimension, respondents need to 

select one out of five geometrical figures which correctly completes a given geometrical 

figure to a meaningful pairing. As outlined by Heller and Perleth (2000), the classification of 
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these two dimensions to intelligence sub-components depends on the underlying intelligence 

theory but both dimensions are related to what others have described as the measurement of 

reasoning (Wilhelm, 2005). For both dimensions, one out of two parallel forms (A or B) was 

randomly administered to the students. The Q2 parallel forms consist of 20 items each. The 

N2 parallel forms were originally formed by 25 items but previous analyses uncovered 

problems with two items in form B of the test (Möller et al., 2006; Segerer et al., 2012). 

Subsequent to the estimation of Rasch item difficulties, the weighted and unweighted mean 

square item fit statistics were computed to investigate Rasch-conformity of the item sample at 

hand. Table 3.2 gives information on item difficulties and mean square item fit statistics 

(Bond & Fox, 2007, Chapter 12). Referring to these fit statistics, items from all four test 

forms tended to overfit, but the questionable items 29 and 34 reached mean square values 

indicating slight underfit (Table 3.2). This is in line with previous findings by Möller, 

Bonerad, and Pohlmann (2006) and Segerer, Marx, and Marx (2012). The items 29 and 34 

were excluded from the person fit analysis. Response vectors with extreme raw scores (0, 1, 

2, L – 2, L – 1, L) were also excluded due to a questionable interpretation of vectors with 

sparse correct or incorrect answers (e.g., Emons, Sijtsma, & Meijer, 2004) which reduced the 

actual analyzed sample sizes to N = 828 (form A) and N = 898 (form B) for dimension Q2, 

and N = 892 and N = 827 for dimension N2.  

The person fit statistics U3 and l0 were computed with p-values estimated by 

normalization formulas (NOR) or the MCMC simulation based on the Rasch Sampler 

(MCMC(RS)). 
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3.5.2 Results and conclusions from the real data example 

Figure 3.6 and 3.7 show Venn diagrams
3
 indicating the overlap of the number of item 

response vectors identified as misfitting by the two person fit statistics under the methods 

NOR and MCMC(RS). With a maximum of about 11 % of the response vectors identified as 

misfitting, the KFT data set again indicates rather acceptable conformity but not perfect fit to 

the Rasch model in this sample. It is obvious from both figures that non-ignorable differences 

exist between the number of identified response vectors under NOR and MCMC(RS). 

Figure 3.6. Venn diagrams representing the overlap of the number of item response 

vectors identified as misfitting by person fit statistics U3 for the KFT intelligence test 

data for two approaches to generate p-values (normalization formula, NOR; Markov 

chain Monte Carlo simulation of the Rasch Sampler, MCMC(RS)) 

 

For statistic U3, a substantial amount of response vectors was either solely identified as 

misfitting under NOR or solely identified under MCMC(RS) (Figure 3.6). Note, however, 

that U3
NOR

 outperformed the MCMC(RS) method with regard to statistical power only for  

                                                           
3
 The term “Venn diagram” has been used here in reference to a similar application in Emons (2008), p. 241.  
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Table 3.2 

 Item parameters and fit statistics of the KFT Q2 and N2 dimensions 

 item 
item 

difficulty 

unweighted 

MNSQ 

weighted 

MNSQ 
item 

item 

difficulty 

unweighted 

MNSQ 

weighted 

MNSQ 

 form A form B 

d
im

en
si

o
n

 Q
2
 

21 -1.557 .928 .875 21 -1.615 .975 .943 

22 -1.621 .915 .812 22 -1.541 .963 .904 

23 -1.709 .844 .644 23 -1.007 .890 .852 

24 -.580 .989 .940 24 -.386 1.012 1.011 

25 -.796 .873 .775 25 -1.373 .887 .785 

26 -1.198 .910 .912 26 -2.074 .960 .883 

27 -.443 .893 .850 27 -.705 .887 .851 

28 -1.207 .811 .698 28 .073 .907 .876 

29 -.417 .931 .901 29 -.058 .839 .806 

30 -.547 .885 .836 30 -.114 .962 .940 

31 -.007 .829 .791 31 .789 .897 .854 

32 .246 .875 .830 32 .176 .928 .914 

33 .246 .843 .782 33 .269 .881 .861 

34 1.160 .827 .777 34 1.098 .872 .811 

35 1.266 .914 .910 35 .685 .914 .895 

36 .595 .773 .721 36 2.323 1.075 1.252 

37 1.484 .833 .785 37 .568 .965 .935 

38 .730 .838 .807 38 1.178 .919 .914 

39 1.766 1.013 1.073 39 .737 .968 .935 

40 2.588 1.148 1.155 40 .977 .996 .967 

 form A form B 

d
im

en
si

o
n
 N

2
 

26 -.139 1.049 1.049 26 -.984 .848 .806 

27 -.614 .874 .826 27 -1.159 .830 .715 

28 -1.412 .884 .841 28 -1.110 .848 .776 

29 -1.878 .924 .862  29* 2.127 1.247 1.913 

30 -1.308 .956 .959 30 -.635 .961 .958 

31 .017 1.100 1.098 31 -.127 .959 .950 

32 -.534 .932 .874 32 -.550 .917 .863 

33 -.565 1.002 1.044 33 -.480 .851 .808 

34 .220 1.041 1.043  34* .658 1.152 1.239 

35 -.571 .879 .811 35 .003 .973 .955 

36 .706 .978 .964 36 -.822 .821 .748 

37 .510 .941 .911 37 -.602 .848 .814 

38 -.311 .762 .696 38 -.723 .873 .844 

39 .117 .891 .852 39 -1.252 .822 .806 

40 .484 1.022 1.017 40 -.374 .833 .782 

41 .251 .868 .833 41 .220 .914 .889 

42 .434 .901 .871 42 .545 .937 .933 

43 .251 .889 .870 43 .973 .943 .936 

44 .033 .792 .733 44 .102 .771 .729 

45 .741 .846 .828 45 -.266 .808 .759 

46 .138 .875 .826 46 .802 .953 .935 

47 1.394 .940 .913 47 .694 .983 .971 

48 .923 .874 .857 48 .617 .834 .797 

49 .333 .843 .794 49 .756 .986 .991 

50 .781 .852 .835 50 1.589 .907 .830 

Notes. Items indicated with an asterisk were excluded for person fit analysis. 
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short test lengths and mild violations, but also suffered from serious inflation of Type I error 

rates for extreme raw scores. The high number of misfitting response vectors identified under 

NOR in this sample may therefore either represent mild forms of model violations or might 

indicate that many of these response vectors were incorrectly flagged. Interestingly in the 

light of these results, there was also a substantial amount of response vectors in each data set 

identified by U3 under MCMC(RS) but ignored under NOR. 

Results found for statistic l0 (Figure 3.7) differ from those by U3. The majority of 

response vectors classified as misfitting by this statistic was identified when MCMC(RS) was 

applied (about 8 ‒ 10 % of all response vectors) and at maximum one response vector was 

solely identified under NOR. Hence, results for l0 suggest the usage of MCMC(RS) enhances 

the detection of misfitting response vectors without any risk of ignoring questionable vectors. 

Assuming that results with MCMC(RS) are given under a Type I error rate very close to the 

nominal rate, statistic U3 and l0 display similar statistical power for identifying misfit (81, 88, 

73, and 67 response vectors identified by U3 vs. 80, 88, 72, and 65 response vectors 

identified by l0). 

 In summary, results from the KFT intelligence test data set support the assumption of 

rather adequate Rasch-conformity, matched those differences in statistical power found in 

Simulation 2 and illustrated the dependency of the number of identified misfitting response 

vectors on the particular method to determine p-values. Given the results from the simulation 

studies, fit / misfit classifications under the normalizations are assumed to represent either 

incorrectly flagged response vectors by U3 or conservative person fit tests by statistic l0. 

These problems are easily prevented by investigating response vectors in person fit analysis 

by the proposed method based on the Rasch Sampler under an accurately approximated 

nominal Type I error rate. 
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3.6 Remarks on this study 

Hypothesis testing on person fit with known distributional properties of the statistic 

facilitate the interpretation of an individual’s response vector. This strengthens the usefulness 

of person fit statistics to test for violations against the principles of Rasch measurement. 

However, obtaining exact p-values for person fit statistics was found to be a troublesome job 

(de la Torre & Deng, 2008; Emons et al., 2002; Molenaar & Hoijtink, 1990; Nering, 1995; 

van Krimpen-Stoop & Meijer, 1999). Furthermore, most of the developed methods that offer 

adequate p-values have not been implemented in statistical standard software. We have 

presented results for applying the MCMC algorithm of the Rasch Sampler as an alternative to 

conventional approaches. Results of Simulation 1 show that the new approach has well-

adjusted Type I errors in contrast to normalization formulas. Results of Simulation 2 found 

the approach to be as powerful as the normalization formulas or better under most conditions. 

Results from the application to a real data set of item responses from a multidimensional 

intelligence test analyzed by person fit statistics emphasized and further exemplified results 

found in the simulations.  

Beside its usefulness for nonparametric tests of Rasch-homogeneity proposed by 

Ponocny (2001), our results demonstrate further opportunities of the Rasch Sampler to 

generate reference data for person fit analysis of each single response vector when the 

enumeration of the probability for each response vector is complex. In contrast to other 

algorithms for the same objective (like, e.g., the one proposed by Liou & Chang, 1992), the 

Rasch Sampler is already implemented in the statistical software R (R Development Core 

Team, 2011) as one of the major statistical software packages and can easily be applied to 

most kinds of person fit statistics. 
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3.7 Appendix: Technical Aspects of the Rasch Sampler 

The following description is a very concise summary of Verhelst et al. (2007) and gives 

insights to the technical aspects of the Rasch Sampler. For a more detailed description and 

proofs see Verhelst (2008). 

 

Figure 3.7. Venn diagrams representing the overlap of the number of item response 

vectors identified as misfitting by person fit statistics l0 for the KFT intelligence test 

data for two approaches to generate p-values (normalization formula, NOR; Markov 

chain Monte Carlo simulation of the Rasch Sampler, MCMC(RS)) 

 

If the Rasch model is valid, all binary matrices with the same marginals as the observed 

matrix have the same probability, and for a given statistic the null distribution can be found 

by sampling from this collection of data matrices. It is not difficult to generate new matrices 

with constant marginals; the difficulty arises how to sample these with equal probability. The 

method to generate new matrices with constant marginals is based on binomial 
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transformations: For the observed N × L matrix A with row totals given by vector R and 

column totals given by vector C, the sampling space, the number of all binary data matrices 

with these marginals, is denoted as 𝛴𝑹𝑪. Within each N × 2 submatrix of A there are four 

possible row vectors: (0 0), (1 1), (1 0) and (0 1). A binomial transformation can only be 

applied to a column pair where both vectors (1 0) and (0 1) exist. Let (e + f) be the number of 

rows with a row total of one, where e is the frequency of vector (1 0) and f is the frequency of 

vector (0 1) in the column pair (i,j). A binomial operation is an operation where a one is 

assigned to column i and a zero to column j for e of these (e + f) rows, while a 

complementary vector is assigned to the f other rows. If the resulting matrix differs from A it 

will be called a binomial transform. The set of matrices constructed by binomial 

transformation of A it denoted by 𝒜𝐵
(𝑖,𝑗)(𝑨). 

In a MCMC interpretation all of these matrices, generated by binomial transformations, 

are regarded as states in a finite Markov chain: At a current state t, described by the matrix 

At, the process can move to any other state s of a subset of these binary matrices with same 

marginals. This concrete subset will be called the neighborhood of the matrix At ∈ ∑  𝑹𝑪 and it 

is defined as:  

𝒜𝐵  (𝑨𝑡) =  ⋃ 𝒜𝐵
(𝑖,𝑗)

(𝑖,𝑗)

(𝑨𝑡). [3.9] 

Due to the fact that the actual choice for moving from the current state to the next is 

given by a random sampling from its neighborhood, the probability of each matrix to be 

sampled depends on the size of its neighborhood which leads to a stationary distribution that 

is not exactly uniform (Verhelst, 2008). To make sure that all matrices are being sampled 

with equal probability, Verhelst (2008) proposed to apply the Metropolis-Hastings algorithm. 

The resulting Markov chain has a transition matrix Q*= (q*ij) with a defined vector 𝛑 as 
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stationary vector. Its diagonal elements are given by 𝑞𝑡𝑡
∗  = 1- Σj ≠ i 𝑞𝑠𝑡

∗  and its off-diagonal 

elements are defined by:  

𝑞𝑠𝑡
∗ = 𝜏𝑠𝑡 × 𝑞𝑠𝑡  , [3.10] 

with 

𝜏𝑠𝑡 = {
min [(

πs𝑞𝑡𝑠

πt𝑞𝑠𝑡
) , 1]   𝑖𝑓 πt𝑞𝑠𝑡 > 0

 1                             𝑖𝑓 πt𝑞𝑠𝑡 = 0.
 [3.11] 

The probabilities 𝑞𝑠𝑡 can be chosen arbitrarily with the Metropolis-Hastings algorithm. For 

the problem considered here:  

𝑞𝑠𝑡 = 𝑤𝑠𝑡 × [𝑘2(𝑨𝑡)]−1 , [3.12] 

where  

𝑤𝑠𝑡 = {
[(

(𝑒 + 𝑓)𝑖𝑗

𝑒𝑖𝑗
) − 1]

−1

 𝑖𝑓 𝑨𝑠𝜖𝐴𝐵
(𝑖,𝑗)(𝑨𝑡)

0                          𝑖𝑓 𝑨𝑠 ∉ 𝐴𝐵(𝑨𝑡) 

  , [3.13] 

gives the probability of sampling from the binomial neighborhood and [𝑘2(𝐴𝑡)]−1 relates the 

algorithm to the 𝑘2-measure of 𝐴𝑡 ∈ ∑  𝑅𝐶 defined as:  

k2(A) = #{(i, j) : i < j ≤ k, with eij × fij > 0, for (i, j). 

Turning back to Equation 3.10, a uniform distribution is induced with the Metropolis 

Hastings algorithm when πs / πt = 1. Furthermore as weights wst = wts (Verhelst, 2008) and 

because of Equations 3.11 and 3.13 the equation simplifies to:  

𝜏𝑠𝑡 = {
min [(

𝑘2(𝑨𝑡)

𝑘2(𝑨𝑠)
) , 1]   𝑖𝑓 𝑘2(𝑨𝑠) > 0

 1                                 𝑖𝑓 𝑘2(𝑨𝑠) = 0.  

 [3.14] 

This leads to a relatively simple algorithm, in the words of Verhelst et al. (2007, p. 6): 

“Importance Sampling and Metropolis-Hastings: 
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1. Select randomly a pair of columns from the k2(A) regular column pairs of A. 

2. Apply a random binomial operation to the selected pair, yielding A*. 

(a) If A* = A, repeat step 2. 

(b) Otherwise, 

i. If k2(A*) ≤ k2(A), the new state is A*, 

ii. If k2(A*) > k2(A), then the new state remains A with probability           

        1−k2(A)/k2(A*), 

      otherwise the new state is A*.” 
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4 STUDY II – BOOTSTRAP PERSON FIT TESTS WITH WEIGHTED ML SCORING  
 

4.1 Background 

When a test has been analyzed according to IRT modeling, aberrant and unlikely 

response vectors may restrict the validity of test results (e.g., Meijer, 1997; Schmitt, Chan, 

Sacco, McFarland, & Jennings, 1999; Schmitt, Cortina, & Whitley, 1993; Chapter 1). 

Therefore, one goal of test administrators is the identification of aberrant responders by 

means of person fit statistics (Meijer & Sijtsma, 2001). Parametric person fit statistics based 

on estimated item and ability parameters are regularly applied for IRT modeling. These 

models can be used to describe test data with a limited number of parameters which can be 

estimated by using, for example, MML or CML methods (Baker & Kim, 2004). 

Computationally efficient as well as consistent and asymptotically unbiased (see Chapter 1), 

these methods are an intuitive choice for item parameter estimation; for ability estimation, 

weighted ML methods like Warm’s (1989) estimator outperform the conventional ML 

estimator in terms of reducing bias. 

With regard to the expected data matrix, the estimation of parametric IRT models is 

rather vulnerable towards disturbances like cheating, guessing, carelessness or test anxiety 

(see Chapter 1) that may be found in observed test data. Robust weight functions (e.g., 

Heritier, Cantoni, Victoria-Feser, & Copt, 2009; Maronna, Martin, & Yohai, 2006) can be 

applied to handle disturbances and estimate the model parameters, in particular the latent 

abilities (Mislevy & Bock, 1982; Schuster & Yuan, 2011; Wainer & Wright, 1980). Smith 

(1985) compared the usage of person fit statistics and robust scoring methods in few typical 

aberrancy scenarios and warned that robust scoring functions might mask diagnostically 

important information on the response behavior. But both concepts, person fit analysis and 

robust scoring methods, may also be combined: A crucial finding by Reise (1995) on the in 
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Chapter 3 defined parametric person fit statistic lz (Drasgow, Levine, & Williams, 1985; 

Equations 3.6-3.8) reveals that the statistical power of this statistic depends on the scoring 

method for the latent ability θ. He found that compared to ML and EAP (Bock & Mislevy, 

1982; see Chapter 1) person fit statistic lz computed using the robust BS estimator (Mislevy 

& Bock, 1982), a scoring method provided by the IRT software package BILOG-MG 

(Zimowski, Muraki, Mislevy, & Bock, 1996), had higher power to detect aberrancy. In the 

presence of downweighting aberrant responses by the robust BS scoring method also the 

problem of deflated Type I error levels previously determined for lz was less pronounced. As 

outlined in Chapter 2 and Chapter 3, it is a well-known finding that results for the normalized 

person fit statistic lz are often problematic due to an incorrect approximation of the standard 

normal distribution, particularly when true abilities are replaced by scoring methods to 

estimate θ (e.g., de la Torre & Deng, 2008; Li & Olejnik, 1997; Meijer & Nering, 1997; 

Reise, 1995; see Chapters 2 and 3).  

The Basis for the conventional ML scoring is the log likelihood contribution of the 

dichotomous item response 𝑥𝑖  determined by 

𝑙𝑖(θ) =  𝑥𝑖  log[𝑃𝑖(θ)] + (1 − 𝑥𝑖) log [1 − 𝑃𝑖(θ)]. [4.1] 

It is the logarithm of the probability of a single item response 𝑃𝑖(θ)𝑥𝑖[1 − 𝑃𝑖(θ)]1−𝑥𝑖. Given 

the local independence assumption (see Chapter 1) holds, the log likelihood contributions of 

L item responses are added. The ML estimator, θ̂ML, must satisfy the relationship  

∑ (
𝜕𝑙𝑖(θ)

𝜕θ
) = 0

𝐿

𝑖=1

 [4.2] 

where 
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∑ (
𝜕𝑙𝑖(θ)

𝜕θ
) = ∑[𝑥𝑖 −  𝑃𝑖(θ)]

𝐿

𝑖=1

𝑃′
𝑖(θ)

𝑃𝑖(θ)[1 −  𝑃𝑖(θ)]

𝐿

𝑖=1

 [4.3] 

and with 𝑃′
𝑖(θ) denoting the first derivative of 𝑃𝑖(θ) with respect to θ (for details see Baker 

& Kim, 2004). Hence, to obtain θ̂ML the first derivative of the sum of log likelihood item 

contributions is equated to zero (Warm, 1989). ML estimates are substantially biased 

outward. As an alternative to the ML estimator, Warm’s (1989) WL estimator, θ̂WL,  was 

developed to reduce the first order bias term from the ML by satisfying the equation  

∑[𝑥𝑖 − 𝑃𝑖(θ)]

𝐿

𝑖=1

𝑃′
𝑖(θ)

𝑃𝑖(θ)[1 −  𝑃𝑖(θ)]
+ {∑

𝑃′
𝑖(θ) 𝑃′′

𝑖(θ)

𝑃𝑖(θ)[1 −  𝑃𝑖(θ)]

𝐿

𝑖=1

}  
1

2𝐼(θ)
= 0 [4.4] 

with 𝑃′′
𝑖(θ) as the second derivative of 𝑃𝑖(θ) and 𝐼(θ) as the test information at the ability 

location given by 

𝐼(θ) = ∑
𝑃′2

𝑖(θ)

𝑃𝑖(θ)[1 − 𝑃𝑖(θ)]

𝐿

i=1

 . [4.5] 

 (e.g., Baker & Kim, 2004). WL estimates are available for raw scores including r =1 and r = 

L. 

Following Mislevy and Bock (1982, p. 725) who argued that ML is “…overly sensitive 

to measurement disturbances that are common in educational testing…”, Schuster and Yuan 

(2011) recently suggested a different weight function as a new method of robust estimation of 

the latent ability. Reformulating Equation 4.2 to  

∑ 𝑤(𝑢𝑖) (
𝜕𝑙𝑖(θ)

𝜕θ
) = 0

𝐿

𝑖=1

 [4.6] 

offers a weighted computation of the ML estimate. The weight 𝑤(𝑢𝑖) depends on a weighting 

function w, which can be chosen from several functions, and the residual 𝑢𝑖 which defines an 
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outlier from the expected parameter range. As a useful choice (Schuster & Yuan, 2011), 

residuals in the 2PLM (see Chapter 1) with item discrimination ai, item difficulty bi and 

ability θ might be defined as 𝑢𝑖 = 𝑎𝑖(θ − 𝑏𝑖), which is also the definition used in this study. 

The Huber-type weight (HU) is  

𝑤(𝑢) = {
1

𝑇𝐶HU/|𝑢|
      

for |𝑢| ≤ 𝑇𝐶HU

for |𝑢| > 𝑇𝐶HU
 [4.7] 

with 𝑇𝐶HU as a tuning constant for the HU typically chosen to be 1. Figure 4.1 shows the 

Huber-type weight for different values of 𝑇𝐶HU. Schuster and Yuan (2011) compared the 

ML, the BS and the HU in a simulation study. They found that the BS has the lowest bias, but 

the Huber-type estimator has a smaller sampling variability than the BS. In contrast to the 

biweight function, convergence problems are not expected with the Huber-type function 

which suggests the HU as an alternative to BS and also to previous attempts to define robust 

scoring methods. 

Contrary to person fit tests by statistic lz based on the conventional ML, the EAP and 

the BS scoring method (Meijer & Nering, 1997; Reise, 1995) as well as the WL scoring 

method (van Krimpen-Stoop & Meijer, 1999) which illustrated deflated nominal Type I error 

rates when the standard normal distribution was applied as theoretical distribution, the 

distributional properties of person fit scores computed based on HU estimates have not been 

investigated. Hence, this chapter first gives some additional evidence – in form of a short side 

note – on the (in)adequacy of the theoretical null distribution of lz based on the robust HU 

scoring method and compares the results to those obtained based on the conventional 

(unweighted) ML method and based on true abilities. As a consequence from these results, 

two previously suggested adjustment options of person fit tests by lz are revisited: a 

correction of the normalization formula underlying lz (Snijders, 2001) and usage of 

simulation-based methods (Conijn, Emons, & Sijtsma, 2014; de la Torre & Deng, 2008; 
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Rizopoulos, 2013; van Krimpen-Stoop & Meijer, 1999). Subsequently, two variants of 

simulation-based methods for person fit tests based on weighted ML estimates are proposed 

and evaluated in the following with regard to Type I error rate recovery and statistical power. 

 

 

Figure 4.1: Huber weights for different values of 𝑻𝑪𝐇𝐔  

 

4.2 A side note on the distributional properties of person fit statistic lz under robust HU scoring  

As there is strong evidence elsewhere (Nering, 1995; Reise, 1995; van Krimpen-Stoop 

& Meijer, 1999) for deviations of the empirical distribution of lz from the standard normal 

distribution as a theoretical sampling distribution, it was not intended to present a large 

simulation study to further emphasize this result under the robust HU scoring but to provide 

an illustration on the (in)adequacy of the normalization of lz under conventional and robust 
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HU scoring by means of simulated 2PLM data. The empirical sampling distribution of lz was 

computed in four scenarios distinguishing extreme and medium ability levels (θ = -2 and θ = 

0) in short and medium test lengths (20 and 40 items). The item parameters were chosen as 

described in detail in Chapter 4.4. Figure 4.2 and Figure 4.3 present the empirical distribution 

(N = 10,000) of the statistic, the four moments mean, variance, skewness and kurtosis, as 

well as the empirical critical values for α-levels of .01, .05 and .10 based on the ML scoring 

method, the HU scoring method and the true ability levels (TT) to compute lz. Based on the 

ML scoring method the distribution of lz generated from simulated data had a mean and a 

variance different from the expected values derived from the standard normal distribution. 

Instead, a positive mean for θ = 0 and a strongly reduced variance were found, particularly 

for θ = -2 and going along with a positive kurtosis. Additionally, the distribution of lz was 

negatively skewed. The critical values in the simulated distributions were higher than those 

under a standard normal distribution resulting in deflated Type I error rates for extreme θ. 

This finding is in line with previous research on this statistic (Meijer & Nering, 1997; Reise, 

1995; Snijders, 2001). In particular for the extreme ability level (θ = -2), lz based on HU 

approached the standard normal distribution more adequately than lz based on ML. The mean 

of the lz distribution was closer to 0 but the distribution had a variance smaller than 1, 

negative skewness and positive kurtosis. For lz computed based on TT the expected values 

under a standard normal distribution with a mean equal to 0 and a variance equal to 1 were 

well approximated, but the distributions still display negative skewness and positive kurtosis, 

which leads to inflated Type I error rates found in previous analyses (e.g., de la Torre & 

Deng, 2008; Meijer & Nering, 1997; Reise, 1995; van Krimpen-Stoop & Meijer, 1999). 

Deviations of the empirical distribution of lz from the standard normal distribution were 

generally stronger for the shorter test length. Summarizing the results, previous findings by 

Reise (1995) as well as Meijer and Nering (1997) for lz based on the robust BS estimator for 
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the latent ability were similarly found for HU. The distributions of lz under the robust scoring 

methods differed from those under conventional ML scoring and were much closer to the 

standard normal distribution, particularly for extreme abilities. The statistic was still not 

perfectly normalized under the robust HU scoring method (and also TT). Additionally, the 

distribution of lz was not consistent across different ability levels (Reise, 1995). Obviously, 

these problems related to the normalzation do not only affect the identification of response 

vector underfit by lz (for which the statistic is most often applied), but also the identification 

of response vector overfit based on the positive tail of its distribution.  

Consequently, lz may be used as a descriptive measure of person fit but it is not 

advisable to apply hypothesis tests on person fit based on this statistic and the standard 

normal as a null distribution (even though person fit tests with statistic lz based on HU will be 

less conservative than those based on ML). Two general options exist for handling the 

problem of incorrect normalization of lz (and many other person fit statistics).   

The first option is to adjust the normalization formula underlying lz (Bedrick, 1997; 

Snijders, 2001); Snijders (2001) has presented an approach to correct the first two moments 

of many standardized parametric person fit statistics. The second option is to use simulation 

based methods (Conijn et al., 2014; de la Torre & Deng, 2008; Rizopoulos, 2013; van 

Krimpen-Stoop & Meijer, 1999).   

The method by Snijders (2001) – in the following denoted by SNIJ – to correct the 

normalization is defined as follows. Referring to the (centered) general person fit statistic 

defined by Equation 1.18, statistic lz takes the form of 𝑉(θ) by assuming ability estimates and 

selecting a weight
4
 

𝑣𝑖(θ̂) = log
𝑃𝑖(θ̂)

1−𝑃𝑖(θ̂)
. [4.8] 

                                                           
4
 Contrary to the original notations by Snijders (2001), the correction is here defined by referring to Greek 

letters to prevent confusion with formulas previously presented in this script. 
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Figure 4.2: Distributional characteristics of lz based on two scoring methods and true θ for 20 items 

Notes. ML = Maximum likelihood scoring method; HU = Huber-type weighted scoring method; TT = true trait level; 138 response vectors with 

scores r = 0 were excluded for θ = -2. 
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Figure 4.3: Distributional characteristics of lz based on two scoring methods and true θ for 40 items 

Notes. ML = Maximum likelihood scoring method; HU = Huber-type weighted scoring method; TT = true trait level. 
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It is obtained that  

𝑙0 − 𝐸(𝑙0) =  𝑉(θ̂);  𝑉𝑎𝑟(𝑙0) = 𝑉𝑎𝑟[𝑉(θ̂)]   [4.9] 

(Magis, Raîche, & Béland, 2012; Snijders, 2001). Snijders (2001) proposed to use a corrected 

weight  

�̃�𝑖(θ̂) = 𝑣𝑖(θ̂) − 𝜑(θ̂)𝜌𝑖(θ̂) [4.9] 

with  

𝜑(θ̂) =
∑ 𝑃′𝑖(θ̂)𝐿

𝑖=1  𝑣𝑖(θ̂)

∑ 𝑃′𝑖(θ̂)𝐿
𝑖=1  𝜌𝑖(θ̂)

 [4.10] 

and 

𝜌𝑖(θ̂) =
𝑃′𝑖(θ̂)

𝑃𝑖(θ̂)[1 − 𝑃𝑖(θ̂)]
 [4.11] 

where 𝑃′𝑖(θ̂) is defined as before. Snijders (2001) defined his method for any type of 

estimator satisfying  

𝜌0(θ̂) + ∑[𝑋𝑖 − 𝑃𝑖(θ̂)] 𝜌𝑖(θ̂)

𝐿

𝑖=1

= 0 [4.12] 

which is fulfilled by the ML scoring method with 𝜌0(θ̂) = 0 (for the correction depending on 

θ̂𝑀𝐿 and other estimators see Magis, Raîche, & Béland, 2012). The corrected expectation of 

the statistic is then given by  

𝐸 (�̃�(θ̂)) ≈ − 𝜑𝑖(θ̂) 𝜌0(θ̂), [4.13] 

the corrected variance is defined by  

𝑉𝑎𝑟 (�̃�(θ̂)) ≈ ∑ �̃�2
𝑖(θ̂)𝑃𝑖(θ̂)[1 − 𝑃𝑖(θ̂)]𝐿

𝑖=1 . [4.14] 
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This corrected normalization was developed by Snijders (2001) to better approximate the 

normal distribution for lz. Empirical analyses uncovered the
 
variance of lz under SNIJ to be 

closer to the standard normal distribution even though its mean remains to be biased and the 

skewness and kurtosis were similar to the original version of lz
 
(van Krimpen-Stoop & 

Meijer, 1999); for more details on the method, please refer to Snijders (2001) or Magis, 

Raîche, and Béland (2012).  

To facilitate the interpretation of lz, simulation-based methods are an alternative to 

using critical values from the theoretical distribution under a standard normal distribution 

(see Chapter 2). The methods evaluated here, denoted as parametric bootstrap by Conijn et al. 

(2014) or van Krimpen-Stoop and Meijer (1999), can be applied to different types of 

dichotomous and polytomous IRT models (for similar approaches see Conijn et al., 2014; de 

la Torre & Deng, 2008; Rizopoulos, 2013; van Krimpen-Stoop & Meijer, 1999). Van 

Krimpen-Stoop and Meijer (1999) evaluated the usefulness of a parametric bootstrap by 

assuming θ equalled θ̂ estimated by the WL. They found that the simulated distributions of 

significance probabilities for lz did not differ significantly from the uniform distribution for 

paper-and-pencil test designs, but were not in accordance with the uniform distribution for 

CAT which indicates that MC simulation is not useful for person fit analysis in this form of 

test administrations. As a limitation of their study, the authors did not systematically vary the 

underlying abilty level of the respondents but drew true ability levels from a standard normal 

distribution which does not allow studying empirical Type I error rates systematically for 

different θ.  

More recently, de la Torre and Deng (2008) proposed a similar parametric bootstrap 

approach relying on an adjusted, shrinkage-corrected EAP scoring method. Shrinkage 

describes the effect that Bayesian estimators like the EAP regress to the expectation of the a 

priori distribution (Baker & Kim, 2004, Chapter 7). To correct the shrinkage effect and 
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account for test unreliability, de la Torre and Deng (2008) proposed to apply the following 

adjustment to improve Type I error recovery and statistical power of person fit statistics. As 

the amount of shrinkage is inversely related to 𝐼(θ), the authors refer to the reliability 

estimate  

rel(θ) =
1

1 + 1 𝐼(θ)⁄
 [4.15] 

 (for details see also Wainer et al., 2001). To find the shrinkage-adjusted latent ability, θ is 

first estimated by the EAP, θ̂EAP, before it is corrected relative to the (un-)reliability at the 

latent ability by 

θ̂EAPadj
=

θ̂EAP

rel(θ̂EAP)
 [4.16] 

A simulation-based approach is utilized to generate the distribution of this adjusted statistic 

and to address the problem of inaccurate representations of the standard normal distribution 

of the applied person fit statistic lz by normalization formulas described above. For each 

initial response vector from the original data set, new latent ability values θnew were simulated 

and a large number of response vectors were generated according to θ̂ and the item 

parameters (see Chapter 3). For each of these generated response vectors, abilities were again 

estimated according to the adjusted approach described above and an adjusted null 

distribution for the person fit statistic was determined. The p-value of the person fit statistic 

was then found as the proportion of response vectors with a person fit value less than or equal 

to the value of the response vector from the original data. A decision on the fit can be made 

under a given nominal α-level. De la Torre and Deng (2008) figured out that this approach, 

though being computationally intensive, was slightly more exact with regard to p-values than 

person fit analysis under alternative Bayesian estimation methods and SNIJ. Conijn et al. 
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(2014) found the method to be useful for the analysis of multiscale measures with 

polytomous item scoring. 

 

4.3 Purpose of this study 

Referring in particular to the method by de la Torre and Deng (2008), this method is 

based on the idea to first improve scoring estimates to determine a more accurate 

representation of the true ability of the respondent, and then – distrusting the adequacy of 

standardized forms of the statistic – to determine person fit given a likewise adjusted 

simulated distribution under a nominal Type I error rate. As an alternative to the Bayesian 

method proposed by de la Torre and Deng (2008), it is reasonable to assume that the 

combination of bias-reducing weighted ML scoring methods and simulation is also beneficial 

with regard to recovery of nominal Type I error rates and statistical power of lz. The 

conventional ML and the robust HU estimates do not provide finite estimates for scores r = 0 

or r = L, unlike the EAP or the WL. As such response vectors cannot be interpreted 

meaningfully with regard to model fit, this fact may not degrade the usefulness of person fit 

analysis based on ML or HU in general. However, de la Torre and Deng (2008) proposed to 

estimate ability levels for simulated response vectors to determine the reference distribution 

of lz which requires finite ability estimates for all response vectors to compute the person fit 

statistic. Differences between the scoring methods are therefore accommodated in this study 

by applying two methods for simulating the reference distribution of lz. Bootstrap variant I 

(BI) based on the ML or the HU scoring methods is implemented by the following steps 

(compare the descriptions by de la Torre & Deng, 2008, Rizopoulos, 2013, or van Krimpen-

Stoop & Meijer, 1999):  

1. For a fixed examinee, estimate θ by the ML or HU scoring method (θ̂ML or θ̂HU). 
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2. Compute lz for each response vector given θ̂ML, respectively θ̂HU, and the item 

parameters. 

3. Simulate m = 1,…, M new ability values θnew from N(θ̂ML, SE[θ̂ML]), respectively  

N(θ̂HU, SE[θ̂HU]).  

4. Simulate M new response vectors given θnew and the item parameters.  

5. Compute lz for each simulated response vector given θnew and the item parameters 

(lznew
). 

6. Compute the p-value of lz, as the proportion of lznew
 based on the simulated response 

vectors less than or equal to lz based on the original response vector. 

7. Decide on person fit using a fixed nominal α-level. 

For bootstrap variant II (BII) based on the WL, steps 1-4 and 6-7 were the same as for 

variant A but the simulation scheme was varied in the following way: 

4b. Estimate θ̂new by the WL scoring method (θ̂WL) for each simulated response vector 

given the item parameters.  

5. Compute lz for each simulated response vector given θ̂new and the item parameters 

(lznew
). 

Please note that BI is similar to the methods proposed by Rizopoulos (2013) and van 

Krimpen-Stoop and Meijer (1999) while BII is similar to the one proposed by de la Torre and 

Deng (2008). Obviously, estimating θ̂new by the WL scoring method for each simulated 

response vector increases the computational demand of BII. 

To investigate the usefulness of these approaches, Type I error (false alarm rate) under 

model conform data and statistical power to detect aberrancy (detection rates) were explored 

in two simulation studies. Simulation 1 investigated the usefulness of the proposed methods 

for the recovery of nominal Type I error rates. Simulation 2 investigated the statistical power 
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of these methods for misfit detection by lz. A real data large scale assessment example 

illustrates the results from simulated data. 

 

4.4 Simulation 1: Investigation of Type I error rates  

To gain insights into the benefits of the simulation-based approach, person fit analysis 

by lz were compared in a simulation with regard to empirical Type I error rates. Results on 

Type I error under the established BEAPadj

II  and the SNIJ method were used as benchmark to 

evaluate BML
I , BHU

I and BWL
II . Type I error rates for BHU

I  were evaluated given five values of 

the tuning constant: 𝑇𝐶HU = 1.4, 𝑇𝐶HU = 1.2, 𝑇𝐶HU = 1.0, 𝑇𝐶HU = 0.8, and 𝑇𝐶HU = 0.6. 

To compare the accuracy of the several methods with regard to the nominal Type I 

error rates, the MAD between empirical and nominal Type I error rate was again computed.  

 

4.4.1 Data simulation 

Even though the Rasch model is the most typical IRT model and is, for example, often 

applied in large-scale assessments of competencies (see Chapter 4.6), the 2PLM model is a 

more flexible model and displays adequate fit in most empirical data sets. The 3PLM (or the 

4PLM) may often be over-parameterized and, hence, non-convergence or poorly estimated 

parameters of the lower (and upper) asymptote may be obtained (for a discussion see Baker 

& Kim, 2004, Chapter 4). Thus, for the simulation presented here, 2 × 2 × 5 = 20 conditions 

were varied under a 2PLM. Two test lengths, L = 20 and L = 40, were assumed. This 

restriction to short and medium size test lengths was made as person fit analysis in short test 

lengths is the most challenging scenario for person fit statistics, and also considering previous 

findings that lz followed the standard normal distribution rather adequately for longer tests 

(say, 80 items; Drasgow et al., 1985). Item difficulty parameters were selected to be 
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distributed with equal distances in parameter ranges equal to those used in Study 1, [-2, 2] for 

L = 20 and [-2.75, 2.75] for L = 40. As this simulation focused on the influence of scoring 

methods on person fit analysis, these item difficulties were treated as known. Discrimination 

parameters were not randomly sampled as it was done in previous studies. Instead, for a test 

lengths of L = 20 the same sequence of four different values was replicated in the way that a1 

= 1.15, a2 = 0.85, a3 = 1.30, a4 = 0.70, a5 = 1.15, a6 = 0.85, a7 = 1.30, a8 = 0.70,…, a17 = 1.15, 

a18 = 0.85, a19 = 1.30, a20 = 0.70 for a test with low mean discrimination (in the following �̅�𝑖 

= 1.0), and a1 = 1.65, a2 = 1.35, a3 = 1.80, a4 = 1.20, a5 = 1.65, a6 = 1.35, a7 = 1.80, a8 = 

1.20,…, a17 = 1.65, a18 = 1.35, a19 = 1.80, a20 = 1.20 for a test with high mean discrimination 

(�̅�𝑖 = 1.5). For test length L = 40, these sequences were doubled. Please note that the variance 

of the discrimination parameters is thereby very close to the discrimination parameter 

variance randomly sampled from N (1.0, 0.25), respectively N (1.5, 0.25). The selected 

discrimination levels are realistic given that items with lower discrimination, say 𝑎𝑖 = 0.5, are 

usually excluded from IRT-based tests data, and items with higher discrimination, say 𝑎𝑖 = 

2.0, are rarely found in real data. Response data was simulated under the above mentioned 

parameters for five ability levels (θ = -2, θ = -1, θ = 0, θ = 1 and θ = 2). Response vectors 

with r = 0 and r = L were excluded as person fit cannot be evaluated meaningfully for these 

scores. For lz based on the computer intensive MC simulation, the number of new response 

vectors generated in the simulation was M = 600. Due to the high computing time of the MC 

method underlying each scoring method, the number of response vectors generated for each 

test length and ability was restricted to N = 5000.  

The statistical software R (R Development Core Team, 2011) was used for data 

generation and analysis. R-Code snippets from the R-packages irtoys (Partchev, 2011), ltm 

(Rizopoulos, 2013), and the appendices of Schuster and Yuan (2011) as well as Magis et al. 

(2012) were applied to compute ability estimates, the MC methods and the SNIJ correction. 
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4.4.2 Evaluation of Type I error rate 

 Type I error rates of the statistic were obtained as described in Chapter 3. Results are 

presented for Type I error rates of α = .01, α = .05 and α = .10.  

 

4.4.3 Results  

Table 4.1 gives information on the Type I error rate of person fit statistics lz based on 

the different simulation-based methods presented above plus SNIJ on three different α-levels. 

Across all conditions, the empirical Type I error rates of lz under BML
I were substantially 

deflated, in particular for extreme abilities. With a decrease of the tuning constant (increased 

downweigthing of aberrant item responses), empirical Type I error rates for BHU
I  were more 

in accordance with the nominal rates. The best recovery of nominal Type I error rates for BHU
I  

was found when a rather low value for the tuning constant (𝑇𝐶HU= .80 or 𝑇𝐶HU= .60) was 

selected. In line with results by de la Torre and Deng (2008), nominal α-levels for statistic lz 

were well recovered for BEAPadj

II . Across each of the test lengths, discrimination and ability 

levels, results for BWL
II  were very similar to those obtained for BEAPadj

II . Type I error rates for 

method SNIJ (and the ML scoring method) were inflated under a Type I error rate of α = .01, 

slightly inflated under a Type I error rate of α = .05 but slightly deflated under a Type I error 

rate of α = .10. These patterns for SNIJ were similarly found under each discrimination level, 

test length and across each ability level in the simulation. Previously, de la Torre and Deng 

(2008) have presented similar findings on method BEAPadj

II  and SNIJ.  

Figure 4.4 shows the MAD aggregated across two test lengths (L = 20 and L = 40) and 

two discrimination levels (�̅�𝑖 = 1.0 and �̅�𝑖 = 1.5) for each of the presented methods and each 

of the five ability levels. The highest discrepancy between nominal and empirical Type I 

errors measured by the MAD were found for BML
I and for BHU

I  with high values of the tuning  
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Table 4.1 

Type I error rates for person fit statistic lz based on eight bootstrap methods and SNIJ 

L �̅�𝑖 θ N BML
I

 BHU1.4

I
 BHU1.2

I
 BHU1.0

I
 BHU0.8

I
 BHU0.6

I
 BEAPadj

II
 BWL

II
 SNIJ 

α = .01 

20 

1 

-2 4943 .001 .002 .002 .003 .005 .005 .004 .004 .022 

-1 5000 .004 .007 .007 .009 .009 .013 .010 .010 .015 

0 5000 .007 .008 .009 .010 .012 .014 .012 .013 .016 

1 5000 .003 .007 .008 .011 .014 .017 .012 .013 .020 

2 4926 .001 .003 .003 .005 .007 .008 .008 .006 .025 

1.5 

-2 4754 .002 .005 .006 .007 .008 .008 .009 .007 .027 

-1 5000 .005 .009 .011 .011 .013 .016 .011 .012 .021 

0 5000 .007 .008 .009 .011 .011 .013 .012 .012 .017 

1 4999 .004 .008 .010 .011 .013 .013 .012 .011 .018 

2 4749 .000 .003 .004 .005 .007 .008 .009 .007 .028 

40 

1 

-2 5000 .003 .007 .009 .012 .012 .018 .012 .012 .022 

-1 5000 .008 .009 .010 .011 .013 .013 .013 .013 .017 

0 5000 .010 .011 .012 .010 .013 .013 .013 .015 .018 

1 5000 .005 .006 .007 .008 .008 .012 .009 .010 .014 

2 5000 .003 .006 .007 .008 .010 .013 .010 .008 .018 

1.5 

-2 4999 .003 .006 .006 .009 .011 .014 .009 .009 .018 

-1 5000 .006 .007 .008 .009 .009 .009 .010 .009 .015 

0 5000 .008 .008 .009 .009 .010 .011 .010 .011 .017 

1 5000 .005 .006 .008 .008 .008 .010 .009 .009 .015 

2 5000 .005 .008 .010 .012 .013 .016 .011 .011 .020 

α =.05 

20 

1 

-2 4943 .008 .024 .028 .032 .035 .045 .045 .041 .062 

-1 5000 .026 .033 .034 .041 .044 .051 .051 .053 .053 

0 5000 .036 .040 .041 .041 .045 .052 .054 .057 .050 

1 5000 .027 .035 .041 .043 .046 .053 .056 .055 .056 

2 4926 .010 .031 .035 .040 .044 .049 .051 .048 .070 

1.5 

-2 4754 .015 .034 .035 .042 .045 .050 .051 .046 .071 

-1 5000 .029 .043 .044 .047 .051 .054 .055 .055 .056 

0 5000 .037 .042 .042 .045 .048 .052 .053 .054 .054 

1 4999 .028 .039 .041 .041 .048 .053 .051 .052 .053 

2 4749 .013 .034 .035 .042 .047 .050 .047 .042 .063 

40 

1 

-2 5000 .027 .043 .047 .050 .057 .064 .058 .061 .067 

-1 5000 .035 .041 .042 .044 .046 .053 .051 .053 .053 

0 5000 .046 .049 .048 .050 .050 .054 .056 .057 .057 

1 5000 .039 .044 .045 .048 .050 .054 .055 .055 .055 

2 5000 .020 .034 .037 .042 .050 .057 .046 .047 .052 

1.5 

-2 4999 .025 .040 .041 .044 .049 .054 .051 .050 .054 

-1 5000 .034 .038 .040 .040 .043 .047 .048 .047 .048 

0 5000 .042 .043 .044 .045 .047 .050 .052 .053 .053 

1 5000 .037 .042 .042 .041 .044 .046 .048 .050 .049 

2 5000 .027 .040 .045 .047 .053 .056 .053 .053 .057 
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Table 4.1 continued 

α =.10 

20 

1 

-2 4943 .028 .064 .068 .077 .088 .097 .098 .098 .103 

-1 5000 .064 .075 .080 .086 .094 .103 .110 .109 .094 

0 5000 .079 .084 .085 .088 .093 .102 .105 .112 .091 

1 5000 .062 .072 .078 .083 .087 .098 .105 .106 .094 

2 4926 .036 .067 .071 .081 .085 .094 .101 .099 .110 

1.5 

-2 4754 .041 .078 .081 .087 .094 .105 .102 .095 .097 

-1 5000 .069 .081 .085 .088 .092 .099 .104 .107 .090 

0 5000 .081 .086 .089 .091 .095 .102 .107 .108 .093 

1 4999 .066 .079 .086 .088 .094 .100 .104 .103 .087 

2 4749 .037 .079 .085 .092 .098 .105 .106 .101 .108 

40 

1 

-2 5000 .066 .088 .091 .098 .104 .113 .111 .112 .104 

-1 5000 .072 .080 .083 .087 .087 .094 .097 .098 .086 

0 5000 .092 .094 .095 .096 .099 .105 .106 .111 .099 

1 5000 .081 .090 .093 .094 .100 .105 .109 .110 .097 

2 5000 .050 .073 .079 .084 .092 .103 .098 .102 .091 

1.5 

-2 4999 .061 .079 .081 .087 .092 .097 .100 .101 .087 

-1 5000 .078 .085 .082 .089 .088 .093 .098 .099 .088 

0 5000 .086 .087 .090 .089 .091 .093 .105 .105 .094 

1 5000 .076 .078 .082 .085 .087 .091 .096 .098 .084 

2 5000 .063 .083 .087 .092 .099 .104 .103 .102 .091 

 

constant. For BHU
II  with low values of the tuning constant as well as for each of the methods 

BEAPadj

II , BWL
II  and SNIJ, differences between nominal and empirical Type I errors measured 

by the MAD were very small with a slight preference for BEAPadj

II as the best method in terms 

of nominal Type I error rate recovery.  

In summary, the results supported the usage of BHU
I  with substantial downweighting of 

aberrant scores in comparison to BML
I  to prevent deflation of nominal α-levels, even though 

the particular value of 𝑇𝐶HU to achieve the best recovery of nominal Type I error rates 

differed slightly depending on the conditions of the simulation (the test characteristics) and 

the nominal α-levels applied. The results also re-emphasized the ecouraging results for 

BEAPadj

II  presented in de la Torre and Deng (2008) and indicated that nominal α-levels were 

accurately recovered by method BWL
II . As previously described by others (de la Torre & 
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Deng, 2008, Snijders, 2001; van Krimpen-Stoop & Meijer, 1999), SNIJ was found to be a 

well-defined alternative to the usage of MC simulation except for a small α-level. 

 

4.5 Simulation 2: Investigation of statistical power to detect model violations 

In Simulation 2, the statistical power to detect misfit by lz based on the previously 

described simulation-based methods was investigated in a simulation study. The scoring 

methods underlying the computation of lz were the same as in Simulation 1. Again, the 

BEAPadj

II  and the SNIJ method were used as benchmark to evaluate the usefulness of the 

methods BML
I , BHU

I  (with the same tuning constants as selected in Simulation 1) and BWL
II . 

 

4.5.1 Data simulation 

To compare the scoring methods with regard to statistical power, 2PLM item response 

data was simulated for 2 × 2 × 2 × 3 cells in a cross-factorial design. The test lengths were 

again set to either L = 20 or L = 40 which represents small to medium size lengths, the mean 

discrimination levels were again set to �̅�𝑖 = 1.0 and �̅�𝑖 = 1.5 displaying lower and higher 

discriminating power, and the item difficulty and item discrimination parameters as well as 

the parameters for the MC simulation were selected as in Simulation 1. Two types of misfit, 

representing spuriously high and spuriously low response vectors, were simulated: Cheating 

(spuriously high) was simulated by assigning a probability of .90 for a correct response on 20 

% of the most difficult items; test anxiety (spuriously low) was simulated by assigning a 

probability of .25 for a correct response on 20 % of the easiest items. For example, when 20 

items were simulated and cheating was induced on the most difficult items, the item 

parameters from the 17
th

 to the 20
th

 item (b17 = 1.37, b18 = 1.58, b19 = 1.79 and b20 = 2.00) 

were set to P = .90, irrespective of the original item difficulty and the original ability. 
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Figure 4.4: Mean absolute difference (MAD) between empirical and nominal Type I 

error for eight bootstrap methods and SNIJ aggregated across two test lengths (L = 20 

and L = 40) and two mean discrimination levels (�̅�𝒊 = 1.0 and �̅�𝒊 = 1.5) 
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For both aberrancy types and both aberrancy levels, three latent abilities were analyzed. 

As cheating is likely to occur with low ability respondents, the abilities for cheating were θ = 

-2, θ = -1 and θ = 0; as test anxiety is assumed to impair scores of otherwise competent 

respondents, the abilities considered for test anxiety were θ = 0, θ = 1 and θ = 2. 

 

4.5.2 Evaluation of statistical power  

Statistical power in the cheating and test anxiety conditions is evaluated as described in 

Chapter 3. Results are presented for nominal Type I error rates of α = .01, α = .05 and 

α = .10. Please remember that following de la Torre and Deng (2008), the statistical power 

for different methods is not comparable in a strict manner as the methods differ in their 

empirical Type I errors. 

 

4.5.3 Results  

Table 4.2 and Table 4.3 provide information on the statistical power of person fit 

statistic lz based on the methods presented above in the 24 cells of the simulation. In most 

conditions, statistical power was slightly higher compared to, for example, the analysis by de 

la Torre and Deng (2008), which might be attributed to a larger range of item difficulties 

(e.g., Meijer, Molenaar, & Sijtsma, 1994; Reise & Due, 1991), the absence of a 3PLM 

guessing parameter (e.g., Meijer & Nering, 1997; Reise & Due, 1991) and a different number 

of items being affected by misfit. Power generally increased for longer test lengths, higher 

item discrimination and for extreme compared to medium abilities. Cheating (Table 4.2) was 

easier to detect than test anxiety (Table 4.3). In the most favorable conditions for misfit 

detection (higher item number, higher item discrimination and extreme abilities) almost all 

response vectors were identified by each of the presented methods. Hence, lower nominal 
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Type I error rates than in Study 1 may be utilized to identify differences in the detection rates 

of the several methods (which was the reason for including a nominal Type I error rate of α = 

.01 in this study). But for medium ability levels, tests of length L = 20 were too short to reach 

acceptable statistical power, say .70 or .80, to detect misfit, particularly when the 

discrimination level was low.  

The following results were found in comparison of the presented methods: The 

statistical power of BML
I  was lowest in all conditions while for BHU

I  the statistical power 

increased with decreasing tuning constant of the HU estimate and was similar to BML
I  for high 

values of the tuning constant (like 𝑇𝐶HU= 1.20 or 𝑇𝐶HU= 1.40), and close to BEAPadj

II  and 

BWL
II for low values of the tuning constant (like 𝑇𝐶HU= 0.60 or 𝑇𝐶HU= 0.80). Comparing the 

methods BEAPadj

II , BWL
II and SNIJ, it was difficult to evaluate which of the three methods 

performed best across all conditions. Under lower nominal Type I error rates the highest 

power to detect misfit was found for SNIJ while for higher nominal Type I error rates the 

statistical power of SNIJ was outperfomed by BEAPadj

II  and BWL
II , two methods hard to 

differentiate in terms of power. Similar patterns on the statistical power of BEAPadj

II  and SNIJ 

were also found by others (e.g., de la Torre & Deng, 2008) and are expected given that the 

SNIJ method had inflated empirical Type I error rates under a lower nominal α-levels but 

deflated Type I error rates under higher nominal α-levels.  

 

4.6 Application to real data: Conclusions on the validity of educational large-scale 

assessment results for students with disabilities by person fit analysis  

To further demonstrate the usefulness of the methods described in this chapter and to 

investigate implications for the analysis of real data, four samples of students with disabilities 

participating in the North Rhine-Westphalian educational large-scale assessment program 
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lernstand8 (Leutner, Fleischer, Spoden, & Wirth, 2007) were analyzed by means of person fit 

statistics testing for Rasch-conformity of the response vectors. The four data sets included 

samples of English and German language reading comprehension test data from the 2007 

assessment, and two samples of mathematics test data from the 2007 and the 2008 

mathematics assessment of lernstand8. Ignoring some peculiarities of the North Rhine-

Westphalian curriculum at this point, the two reading comprehension tests were constructed 

rather similar to those reading comprehension tests administered in international large-scale 

assessments like Deutsch-Englisch-Schülerleistungen-International (e.g., Beck & Klieme, 

2007) or PISA (OECD, 2009, 2010). The mathematics tests focused on the student’s ability 

to communicate mathematical concepts in the 2007 assessment and on their ability to apply 

mathematical tools such as pocket calculators, circles, ruler and dynamic geometry software 

in the 2008 assessment; information on the design of the mathematics assessments including 

descriptions of the competence scales, sample items and coding manuals are given in 

Heymann and Pallack (2007) or Spoden, Fleischer, and Leutner (2010). 

The students attended special education schools focusing on different types of 

disabilities, impairments and developmental disadvantages including learning and perceptual 

disabilities as well as problems in emotional and affective development (Table 4.4). Each of 

the schools participated voluntarily in the assessment and received comprehensive feedback 

on the competence structure of their students. Please note that due to protection of data 

privacy the individual impairment of each student is strictly unknown to the test 

administrators.  
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Table 4.2 

Statistical power of person fit statistic lz based on eight bootstrap methods and SNIJ to 

detect cheating  

L �̅�𝑖  θ N BML
I

 BHU1.4

I
 BHU1.2

I
 BHU1.0

I
 BHU0.8

I
 BHU0.6

I
 BEAPadj

II  BWL
II

 SNIJ 

α =.01 

20 

1 

-2 5000 .839 .899 .905 .910 .918 .922 .924 .924 .951 

-1 5000 .601 .641 .653 .675 .696 .715 .706 .721 .778 

0 5000 .224 .254 .268 .295 .342 .406 .360 .356 .452 

1.5 

-2 5000 .983 .991 .990 .990 .990 .991 .992 .992 .996 

-1 5000 .908 .922 .936 .935 .942 .947 .935 .936 .964 

0 5000 .456 .501 .521 .551 .584 .610 .587 .591 .706 

40 

1 

-2 5000 .999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

-1 5000 .986 .988 .987 .990 .990 .992 .991 .991 .994 

0 5000 .813 .830 .831 .846 .866 .882 .891 .894 .934 

1.5 

-2 5000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

-1 5000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

0 5000 .984 .986 .987 .987 .989 .991 .991 .991 .997 

α =.05 

20 

1 

-2 5000 .969 .979 .980 .982 .982 .983 .986 .986 .986 

-1 5000 .876 .887 .892 .900 .909 .921 .922 .926 .921 

0 5000 .548 .578 .591 .614 .656 .702 .691 .689 .698 

1.5 

-2 5000 .996 .997 .997 .997 .997 .997 .998 .999 .998 

-1 5000 .981 .985 .987 .987 .989 .988 .987 .989 .988 

0 5000 .785 .803 .810 .830 .850 .857 .873 .874 .880 

40 

1 

-2 5000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

-1 5000 .999 .998 .999 .999 .999 .999 1.000 .999 .999 

0 5000 .966 .966 .967 .970 .973 .976 .984 .984 .984 

1.5 

-2 5000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

-1 5000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

0 5000 .999 .999 .999 .999 .999 .999 .999 .999 .999 

α =.10 

20 

1 

-2 5000 .987 .992 .992 .992 .992 .991 .994 .994 .992 

-1 5000 .947 .949 .952 .953 .958 .961 .963 .964 .956 

0 5000 .715 .735 .747 .763 .790 .821 .835 .832 .810 

1.5 

-2 5000 .999 1.000 .999 .999 .999 .999 1.000 1.000 1.000 

-1 5000 .993 .994 .995 .995 .995 .996 .995 .996 .994 

0 5000 .901 .905 .909 .918 .928 .933 .943 .942 .930 

40 

1 

-2 5000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

-1 5000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

0 5000 .990 .989 .990 .991 .991 .992 .996 .995 .995 

1.5 

-2 5000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

-1 5000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

0 5000 .999 1.000 .999 1.000 1.000 1.000 1.000 1.000 1.000 
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Table 4.3 

Statistical power of person fit statistic lz based on eight bootstrap methods and SNIJ to 

detect test anxiety  

L �̅�𝑖  θ N BML
I

 BHU1.4

I
 BHU1.2

I
 BHU1.0

I
 BHU0.8

I
 BHU0.6

I
 BEAPadj

II  BWL
II

 SNIJ 

α =.01 

20 

1 

0 4999 .166 .187 .198 .215 .241 .278 .261 .264 .330 

1 5000 .457 .501 .512 .529 .541 .568 .566 .573 .629 

2 5000 .622 .720 .730 .745 .751 .756 .785 .772 .847 

1.5 

0 5000 .352 .381 .390 .412 .435 .454 .447 .455 .557 

1 5000 .760 .797 .805 .809 .815 .818 .807 .810 .859 

2 4997 .900 .936 .936 .936 .939 .937 .946 .942 .964 

40 

1 

0 5000 .641 .656 .661 .656 .677 .695 .716 .726 .781 

1 5000 .918 .930 .931 .935 .940 .945 .935 .932 .953 

2 5000 .973 .983 .985 .984 .985 .985 .983 .985 .990 

1.5 

0 5000 .910 .915 .914 .919 .923 .928 .930 .930 .958 

1 5000 .992 .995 .995 .995 .995 .995 .995 .995 .997 

2 5000 .999 .999 .999 .999 .999 .999 .999 .999 .999 

α =.05 

20 

1 

0 4999 .435 .462 .465 .483 .511 .540 .552 .556 .553 

1 5000 .742 .765 .776 .780 .789 .798 .803 .810 .803 

2 5000 .859 .899 .905 .909 .909 .913 .926 .926 .929 

1.5 

0 5000 .665 .679 .683 .687 .702 .717 .742 .748 .744 

1 5000 .913 .925 .927 .928 .932 .934 .936 .936 .936 

2 4997 .964 .976 .977 .977 .977 .977 .982 .981 .984 

40 

1 

0 5000 .879 .878 .878 .878 .884 .886 .909 .911 .912 

1 5000 .980 .982 .983 .984 .985 .986 .984 .985 .984 

2 5000 .996 .998 .998 .998 .998 .997 .998 .998 .998 

1.5 

0 5000 .982 .980 .983 .983 .984 .984 .987 .987 .988 

1 5000 .999 .999 .999 .999 1.000 .999 1.000 .999 1.000 

2 5000 .999 .999 .999 .999 .999 .999 .999 .999 .999 

α =.10 

20 

1 

0 4999 .607 .617 .627 .638 .652 .674 .700 .704 .671 

1 5000 .849 .861 .865 .868 .874 .881 .888 .891 .871 

2 5000 .929 .946 .950 .951 .949 .950 .964 .962 .959 

1.5 

0 5000 .799 .804 .809 .813 .820 .828 .847 .849 .828 

1 5000 .954 .960 .962 .962 .964 .964 .965 .966 .960 

2 4997 .982 .986 .986 .986 .986 .986 .992 .991 .989 

40 

1 

0 5000 .940 .938 .938 .938 .940 .940 .954 .956 .950 

1 5000 .993 .994 .994 .995 .995 .995 .996 .996 .994 

2 5000 .998 .999 .999 .999 .999 .999 .999 .999 .999 

1.5 

0 5000 .993 .994 .994 .994 .994 .994 .995 .996 .995 

1 5000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

2 5000 .999 .999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
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4.6.1 Research questions and method related to the real data example 

As Engelhard (2009) argued the analysis of person fit may be useful in this context to 

provide some insights on whether instructional differences or modifications of test practice 

influences students to complete the test and to evaluate whether valid inferences may be 

drawn on the student abilities in the particular competence area. Engelhard (2009) presented a 

conceptual framework for item equivalence and fit analysis when assessing the competence 

of students with disabilities. The analysis presented here is restricted to the identification of 

individual misfit by person fit statistics as one of the components of this framework.  

Methods obtaining an inaccurate recovery of nominal Type I error rates in Simulation 1 

(like BML
I ) were not included in the following analyses. Thus, person fit analysis under the 

proposed methods – HU scoring (𝑇𝐶HU = 0.8) or WL scoring method in combination with a 

parametric bootstrap – was contrasted to the BEAPadj

II  method under a nominal Type I error 

rate of α = .05. Though several Rasch-specific person fit statistics exist (see Chapter 3), the 

bootstrap variants illustrated in this chapter represent more flexible methods which can be 

applied to various types of IRT models. Additionally, in contrast to the nonparametric 

method for testing hypothesis on person fit based on sampling from marginals of a given data 

matrix presented in Chapter 3, the methods illustrated in this chapter also facilitate person fit 

testing under known item parameters estimated in the sample of students without disabilities. 

Hartig and Frey (2012) emphasized the importance of item difficulties in competence 

assessments to derive criterion-referenced descriptions and interpretations of the competence 

scales and to validate the test scores. Concerning the feedback of test results presented to the 

teachers (e.g., Leutner et al. 2007), qualitative differences in the competence of two students 

may also be illustrated by contrasting the responses of these students on items of diverging 

difficulty and different cognitive demands (Hartig & Frey, 2012). However, these benefits of 

criterion-referenced testing in general and competence assessment in particular are degraded 
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by item bias. Person fit analysis is a method to explore item-invariance by examining whether 

students respond as expected to the test items (Engelhard, 2009). Following Wright (1984, p. 

285) who opposed that item bias might be uniformly present or absent among group members 

and outlined that “…removing the bias … will have to be done on the individual level of the 

much more useful person fit analyses…“, person fit tests were applied to identify unlikely 

response vectors under the estimated item parameters which constitute the competence scale. 

Thus, the research question associated with the data was: Does person fit analysis indicate 

adequate fit of the response vectors of students with disabilities and does the interpretation of 

this person fit information depend on the method of choice?  

Item parameters for the assessments were estimated under the Rasch model with an 

overall sample size of about 190,000 students and, following Leutner et al. (2007), 

sufficiently adequate fit of the model was satisfied according to a weighted mean square item 

fit statistics in the range of 0.8 ‒ 1.2 (see also Bond & Fox, 2007, Chapter 12). In each of the 

four assessments one out of two booklets containing items with lower mean difficulty was 

administered to the subsamples of students with disabilities. The mean WL, HU and EAP 

ability estimates are given in Table 4.4 and illustrate that the present analysis of person fit 

focused on misfit in the lower tail of the ability distributions. Students with extreme raw 

scores (0, 1, 2, L – 2, L – 1, L) were again excluded from the analysis (see Chapter 3). Table 

4.4 also gives the remaining sample size in each of the four assessments.  

 

4.6.2 Results and conclusions from the real data example 

Differences in the number of response vectors classified as misfitting by the person fit 

statistics lz and the methods BWL
II , BHU

I  and BEAPadj

II  are presented by means of Venn diagrams. 

Figure 4.5 (A) shows a Venn diagram of the number of respondents classified as misfitting by 

the person fit statistics lz and the three previously mentioned methods for the 2007 English 
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Table 4.4 

Descriptives on student and item sample information from the state-wide administered 

large-scale assessment data sets for students with disabilities 

focus 
read ENG 2007 read GER 2007 math 2007 math 2008 

schools students schools students schools students schools students 

emotional and behavioral 

development / developmental 

delay 

17 193 18 198 17 192 23 277 

hearing impairment - - - - - - 1 7 

learning disabilities 1 15 2 20 2 21 2 75 

learning disabilities, emotional 

and behavioral development 
1 3 3 50 3 29 1 16 

learning disabilities, speech 

and language impairment 
- - 2 25 2 25 1 5 

learning disabilities, speech 

and language impairment, 

emotional and behavioral 

development 

- - 2 24 2 21 3 65 

physical development / motor 

development 
2 14 2 14 2 15 5 24 

speech and language 

impairment 
7 214 8 240 7 201 9 226 

visual impairment 1 10 1 10 1 10 2 10 

N 376 533 452 525 

θ̂WL -0.64 (1.26) -0.31 (0.62) -1.24 (1.26) -1.33 (1.4) 

θ̂HU -0.70 (1.35) -0.33 (0.67) -1.35 (1.94) -1.75 (3.02) 

θ̂EAP -0.56 (1.02) -0.28 (0.56 ) -0.87 (0.86) -0.97 (0.98) 

L 31 30 20 23 

Notes. read ENG 2007 = reading comprehension (English language) 2007 assessment; read GER 2007 

= reading comprehension (German language) 2007 assessment; math  2007 = mathematics 2007 

assessment; math  2008 = mathematics 2008 assessment; N = remaining sample size after exclusion of 

extreme raw scores (0, 1, 2, L – 2, L – 1, L); θ̂WL = WL ability estimates (mean, sd); θ̂HU = HU 

ability estimates (mean, sd); θ̂EAP = EAP ability estimates (mean, sd); L = item number 

 

 

language reading comprehension assessment. The highest overall number of response vectors 

classified as misfitting by any of the three approaches was about 15 % by BEAPadj

II . Results 

demonstrate most of the response vectors to be identified by each of the three methods. 

However, there was also a substantial amount of response vectors ignored by BHU
I  but 

identified by BWL
II  and BEAPadj

II , and also few response vectors ignored by all methods except 

BEAPadj

II .  
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Figure 4.5 (B) shows a Venn diagram of the number of respondents classified as 

misfitting by the person fit statistics lz and the three previously mentioned methods for the 

2007 German language reading comprehension assessment. The results differed slighty from 

those of the first sample: The overall percentage of response vectors classified as misfitting 

was lower with at most 10 % of the response vectors identified by BEAPadj

II . The percentage of 

response vectors ignored by BHU
I  but identified under BWL

II  and especially by BEAPadj

II  was 

similar to the first example.  

Figure 4.5. Venn diagrams representing the overlap of the number of item response 

vectors of students with disabilities from large-scale assessment data classified as 

misfitting by statistic lz based on three bootstrap methods 
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Figure 4.5 (C) shows a Venn diagram of the number of respondents classified as 

misfitting by the person fit statistics lz and the previously mentioned methods for the 2007 

mathematics assessment. Results illustrate that the number of respondents identified is 

generally low (at most less than 8 %). There were no substantial differences between the 

three methods with 30 response vectors identified as misfitting by each of the three methods 

and at maximum 36 response vectors identified by BEAPadj

II  (with an overlap of 33 response 

vectors with BWL
II ). 

Figure 4.5 (D) shows a Venn diagram of the number of respondents classified as 

misfitting by the person fit statistics lz and the previously mentioned methods for the 2008 

mathematics assessment data set. The maximum percentage of respondents identified as 

misfitting (by method BEAPadj

II ) was clearly below 10 %. Again, most of the response vectors 

were identified by each of the three methods but there were also few response vectors ignored 

by either method BHU
I  or method BWL

II .  

Inspection of the item response vectors of these students by person fit statistics allows 

detecting validity problems underlying their scores in the presence of test modifications and 

accommodations (e.g., Engelhard, 2009). Summarizing the results obtained from real data, 

the response vectors from four samples of students with disabilities displayed – contrary to 

what might be expected given the potential instructional differences and the test modification 

students with disabilities receive – quite adequate fit to the Rasch model parameters 

estimated for the complete sample in the large-scale mathematics assessment (about 190,000 

students), probably with exception of the 2007 English language reading assessment. Given 

that the selected methods all displayed rather accurate recovery of nominal Type I error rates 

in Simulation 1, differences between misfit rates under the three selected methods were 

generally low in this real data application. Slightly more response vectors were classified as 

misfitting by BEAPadj

II  and BWL
II  compared to BHU

I  but independent of the selected simulation 
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method, adequate person fit was diagnosed for more than 90% of the analyzed response 

vectors in the German reading comprehension and the two mathematics assessment data sets. 

As an important implication for teachers and educational administrators, these results suggest 

educational large-scale assessments to provide valid information on the competence of the 

large majority of participating students with disabilities.  

 

4.7 Remarks on this study 

As aberrancy and disturbances in test data are a common finding in psychological and 

educational assessments, person fit statistics offer a psychometric tool to identify aberrant 

responses and initiate further inspection of questionable response vectors. The combination of 

improved trait level estimation – here defined by weighted ML scoring methods – and MC 

simulation was proposed to facilitate the interpretation of lz by accurate statistical tests on 

person fit. Two different variants of simulation-based methods were investigated in simulated 

data and in real data from a state-wide administered large-scale assessment: The first 

bootstrap variant characterized particularly by robust HU scoring displayed deflated 

empirical Type I error rates under weak downweighting of aberrant item responses, and 

rather adequate recovery of nominal Type I error rates under strong downweighting of 

aberrant item responses. The appropriate choice of the tuning constant to achieve best 

recovery of Type I error rates was not the default value for 𝑇𝐶HU proposed by Schuster and 

Yuan (2011) and  probably needs to be uncovered depending on the test characteristics. It is a 

matter of discussion whether item response scoring with strong downweighting of 

unexpected responses (𝑇𝐶HU = 0.8 and 𝑇𝐶HU = 0.6) is generally appropriate. With regard to 

robust scoring methods, the analyses presented here were restricted to HU as other types of 

robust scoring (BS, Mislevy and Bock, 1982; AMT robustified Jackknife estimate and WIM 
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estimation scheme
5
, Wainer & Wright, 1980) demonstrated drawbacks. For example, 

prevention of convergence problems of the BS method by Mislevy and Bock (1982) for 

unexpected response vectors with sparse correct responses is required. Beyond typical IRT 

models, methods to robustify item and ability estimation like the one described by Bafumi, 

Gelman, Park, and Kaplan (2005) based on MCMC may originate more accurate estimates 

underlying the computation of a person fit statistic and may therefore enhance its statistical 

power.  

The second bootstrap variant characterized by Warms (1989) weighted likelihood 

scoring and additionally estimating θ for simulated response vectors confirmed well-

recovered Type I error rates and may serve alternatively to the EAP-based method proposed 

by de la Torre and Deng (2008). In contrast to the latter method which requires some 

autonomous programming to correct the primary EAP measures, the WL is directly available 

from many IRT software packages including ConQuest (Adams, Wu, & Wilson, 2012), 

Winmira (von Davier, 1997) and several R packages like irtoys (Partchev, 2011). 

Alternatively, interpolation methods like spline interpolation included in the eRm package 

(Mair & Hatzinger, 2007) may help to determine finite ability estimates for scores r = 0 and r 

= L which allows this bootstrap variant to be applied based on ML or HU scoring. Limited 

results from additional analyses available from the author upon request indicate that the 

second Bootstrap variant generally outperformed the first in establishing an adequate 

reference distribution (i.e., the distribution of significance probabilities approached the 

expected uniform distribution adequately; for details on this distribution see van Krimpen-

Stoop & Meijer, 1999). In line with previous analyses (e.g., de la Torre & Deng, 2008; van 

Krimpen-Stoop & Meijer, 1999), results from this study also demonstrated the usefulness of 

                                                           
5
 Mislevy and Bock (1982) used the acronym AMT for the Sine M-estimator and the acronym WIM for an 

estimation scheme by Benjamin Wright and Ronald Mead. 
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the correction by Snijders (2001) as an alternative to simulation-based methods considering 

Type I error recovery and statistical power in most of the studied conditions.   

This study focused on scoring methods and followed other studies (e.g., de la Torre & 

Deng, 2008; Reise, 1995) in applying known item parameters which eliminates error from the 

item parameters estimation step (see Chapter 1) and assumes more precision than actually 

exists. This decision was made to concentrate on the effects of scoring methods but results 

might therefore be biased overoptimistic; for example, statistical power is most likely lower 

when estimated item parameters are applied. Additionally, differences between different IRT 

models were ignored and it needs to be further evaluated to which extent aberrant responses 

affect several IRT models disparately and how person fit statistics perform under these 

different models. Meijer and Nering (1997) found that detection of misfitting response 

vectors for low θ levels was higher for 2PLM-conform data compared to 3PLM-conform data 

which indicates that guessing complicates the detection of other types of misfit. But just the 

opposite was found for high θ levels, which complicates the interpretation of these results. 

Please note that person fit tests for the 3PLM (and 4PLM) IRT model were not investigated 

in the simulations for the reasons outlined in Chapter 4.4 and also to facilitate the comparison 

of the several methods as the lower (and upper) asymptote are incorporated by computing 

EAP and WLE estimates but not by computing the robust HU estimates. Also the BILOG-

MG software package (Zimowski et al., 1996) referred to in the beginning of this chapter 

does not incorporate the lower asymptote when computing BS scores (du Toit, 2003). An 

additional simulation study focusing on a direct comparison of the method by de la Torre and 

Deng (2008) and the parallel method based on the WL scoring for the 3PLM is currently 

under way (Spoden, in prep.). 

Bearing each of these aspects in mind, researchers and practioners interested in 

applying person fit statistics will easily identify the main advantage of the presented 
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simulation-based methods; the flexibility of the parametric bootstrap to be applied to many 

types of IRT models, including multiscale tests and polytomous item formats (Conijn et al., 

2014). Restrictions of this flexibility, for example with regard to CAT designs (van Krimpen-

Stoop and Meijer, 1999) or to the computationally demanding analyses of large-scale 

assessment data (see Chapter 5.3), need to be systematically evaluated in future studies. The 

analysis of real data presented in this study has at least given an illustration of the usefulness 

of bootstrap person fit tests to examine the equivalence of student measurement across 

accommodations and test modifications for students with disabilities in a state-wide 

administered large-scale assessment. 
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5 GENERAL DISCUSSION 

 

In the script at hand, simulation-based approaches for person fit analysis were 

evaluated. Before discussing implications of the results from the two studies in detail, some 

consideration concerning the underlying methodological framework is needed. The analyses 

presented in Chapters 3 and 4 rely heavily on the method of stochastic simulation, and its 

validity for the analysis of person fit depends on the simulation scheme. Burton, Altman, 

Royston, and Holder (2006) proposed to apply realistic scenarios and use parameter ranges 

similar to real data when planning a simulation study. The realization of these 

recommendations is facilitated by the fact that person fit has been studied intensively in 

simulated data for several decades (e.g., beginning systematically at the latest with Levine & 

Rubin, 1979). In the meantime, various simulation schemes have been established. The 

manifold nature of aberrant response behaviors in testing situations still cannot be simulated; 

but the analysis of simulated data allows “archetypes” of aberrancy to be studied (e.g., 

Meijer, 1996) and diagnostically useful decisions to be made regarding the application of 

these statistics (e.g., Rupp, 2013). The usage of the presented approaches of person fit 

analysis to psychologically and educationally relevant real data sets completes the analyses 

and underlines the validity of key findings from the simulation studies.  

 

5.1 Summary of findings 

Enhancing the statistical power of person fit analysis (under a given nominal Type I 

error level) is a constant aim for researchers interested in this psychometric tool. The 

inaccurate standardization of person fit statistics (which implies either low statistical power to 

detect misfit or high percentages of incorrectly flagged respondents; e.g., Emons, Meijer, & 

Sijtsma, 2002; Li & Olejnik, 1997; Molenaar & Hoijtink, 1990; Nering, 1995; van Krimpen-
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Stoop & Meijer, 1999) impairs statistical approaches to correctly identify aberrant responding 

and has therefore been identified as a major challenge in this field of research. This challenge 

has been addressed in two studies by simulation-based methods sampling data matrices with 

fixed marginals (Chapter 3) or sampling response vectors under the item parameters and 

weighted ML ability estimates (Chapter 4).   

In Study 1, the Rasch Sampler, an MCMC algorithm for sampling data with given 

marginals, was applied for simulating the distribution of person fit statistics under the Rasch 

model and compared to normalized statistics. The results illustrated advantages of the new 

approach regarding the recovery of nominal Type I error rates and the statistical power 

(similar or higher compared to the normalized statistics). As several other Rasch-specific 

person fit statistics exist, it was concluded that the approach is especially useful due to its 

applicability to determining significance probabilities for about any type of person fit statistic 

or when person fit statistics are combined with other tests performed to check the underlying 

assumptions of the Rasch model (for local dependency, multidimensionality, subgroup-

invariance, item fit etc.; Mair, Hatzinger, & Maier, 2012).   

In Study 2, Type I error and statistical power of person fit statistics based on MC 

simulation (parametric bootstrap) and weighted ML scoring methods were evaluated by 

means of two simulation studies. Previously proposed methods for person fit statistics were 

considered as a benchmark. Results for a first bootstrap variant relying on the robust HU 

scoring method indicated that robust scoring improves the statistical power but a satisfactory 

recovery of nominal Type I error rates requires to have the “right touch“ to select the tuning 

constant in a reasonable way. Results for a second bootstrap variant, designed parallel to the 

Bayesian  method by de la Torre and Deng (2008) but based on the WL scoring method by 

Warm (1989), were promising with regard to Type I error recovery and statistical power. 

Compared to the approach presented in Study 1, each of these methods may serve as a more 
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flexible approach for the facilitated interpretation of person fit results for different types of 

IRT models. 

Real data examples from an intelligence test and educational achievement tests further 

illustrated the usefulness and challenges of person fit statistics based on the Rasch Sampler 

(Chapter 3) and the parametric bootstrap variants in combination with weighted maximum 

likelihood scoring methods (Chapter 4). Different results were obtained to some extent 

depending on whether a conventional or the newly proposed method was used to classify 

response vectors as fitting or misfitting. Note with regard to the validity of our results that the 

data sets used for the analyses at hand are typical examples for IRT-based assessments in 

psychology and educational sciences and that some of the most often applied person fit 

statistics by psychometricians and educational researchers were used in these real data 

examples (see Chapter 2).  

The outcomes from these two studies contribute to the usage of computer-intensive 

methods to facilitate the interpretation of person fit analysis. Subsequently, implications of 

these findings for person fit research and the application of these statistics (primarily in 

psychological and educational contexts) are outlined.    

 

5.2 Contributions 

The results from Studies 1 and 2 (Chapters 3 and 4) presented in this script have 

documented encouraging results with fairly well-recovered Type I error rates and mostly 

similar or even higher statistical power compared to other available methods. These results 

have illustrated MC simulation to improve model fit decisions, even though its application 

may be problematic under some conditions (see Chapter 5.3). The usage of MC simulation 

based on the Rasch Sampler (Chapter 3) has not been analyzed before in their implications 

for person fit analysis. The application of the Rasch Sampler algorithm for this purpose 
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especially widens the options for the interpretation of powerful unstandardized 

(non)parametric person fit statistics identified by Karabatsos (2003), but the approach may 

also be applied to mostly any kind of either parametric or nonparametric person fit statistics 

(see Chapter 3). Additionally, the analysis of person fit with p-values determined based on 

the Rasch Sampler may easily be combined with other statistical tests on Rasch model fit and 

is well-grounded in the theory of Rasch modeling (e.g., Ponocny, 2001), which might be an 

important feature for users interested in obtaining “objective measures”. 

The major advantage of the proposed approaches in Study 2 (Chapter 4) is their 

flexibility to be applied to many types of IRT models. Though previous studies gave some 

indication on results of person fit analysis based on the WL (van Krimpen-Stoop & Meijer, 

1999) as well as the robust BS scoring method (Reise, 1995; Meijer & Nering, 1997) and also 

considered parametric bootstrapping (van Krimpen-Stoop & Meijer, 1999), these studies 

were limited as differences between bootstrap person fit tests depending on the underlying 

scoring method were not investigated and, in addition, the bootstrap approach was analyzed 

in a rather simplified test data design. De la Torre and Deng (2008) had presented a 

promising approach based on Bayesian scoring methods but had excluded ML scoring 

methods; this method was extended to ML methods by the results from Study 2. The study 

also integrates methods from the growing field of robust methods in statistics and 

psychometrics (e.g., Bafumi, Gelman, Park, & Kaplan, 2005; Magis & De Boeck, 2012). 

Finally, the implementation in user-friendly software is a major advantage of the 

approaches presented in Chapters 3 and 4 compared to other recently developed methods. As 

Rupp (2013, p. 27) has noticed, researchers and practitioners are often forced to apply a 

bunch of different isolated programs to perform person fit analyses. This does not apply to 

the proposed methods implemented in the R (R Development Core Team, 2013) software. 
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The approaches presented here may also easily be interpreted and communicated to 

practitioners, at least with regard to basic principles. 

 

5.3 Limitations  

Various factors affect Type I error and statistical power of person fit statistics (see 

Chapter 2); any simulation study therefore needs to focus on a limited number of conditions 

to evaluate the properties of person fit statistics. The simulations in this script were limited to 

model-conform data (to evaluate Type I error rates) and two types of aberrancy (to study 

statistical power to detect misfit). As outlined above, this small number of conditions does 

not reflect the manifold nature of disturbances assumed to be found in psychological and 

especially in educational data (Haladyna, 2004; Meijer, 1996), but both of these misfit types 

were inspired by what was previously assumed to be realistic simulation schemes (e.g., de la 

Torre & Deng, 2008; Levine & Rubin, 1979; Meijer & Nering, 1997) and were studied in a 

large number of different conditions. Thus, a reasonable empirical basis was established to 

derive recommendations on the usage of the proposed methods. Also the concentration on 

few prominent parametric statistics out of a large variety of indices (Karabatsos, 2003) 

belongs to the restrictions imposed to cover typical scenarios for person fit analysis. This 

decision was made in reference to the documented power of the statistics and its prevalence 

in research and software packages (see Chapter 2). Various statistics previously found to be 

extremely powerful suffer from drawbacks. For example, cut values for fit / misfit 

classification by four out of five of the best performing person fit statistics in Rasch-scaled 

data are not clear (Karabatsos, 2003).  

Though the results presented in this script illustrate the usefulness of MC simulation, 

person fit analysis may not always benefit from this method to obtain correct p-values. For 

example, van Krimpen-Stoop and Meijer (1999) did not find MC simulation for person fit 
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analysis to correctly approximate the theoretical (uniform) distribution when being applied to 

CAT data. At the current stage of computational speed, usage of MC simulation may remain 

causing problems in educational large-scale assessments as one of the main areas of 

application for IRT models (e.g., Rudner, Bracey & Skaggs, 1996). Item parameter 

estimation for large-scale assessments is generally computer-intensive due to high sample 

sizes, incomplete designs (multi-matrix designs) or several covariates being included in 

(latent) regression models. The current implementation of the Rasch Sampler is not feasible 

for such samples by reasons of limitation to complete matrices of size 4096 × 128 (Verhelst, 

Hatzinger, & Mair, 2007). The parametric bootstrap based on item parameters and ability 

estimates (Chapter 4) may – depending on the implementation carried out and the size of the 

simulated reference distribution – cause high computation times. Though likewise 

computationally intensive, it needs to be further evaluated whether Bayesian MC simulation 

might be beneficial under some conditions as the relevant parameters are already sampled in 

the MCMC iteration process (e.g., Glas & Meijer, 2003). Conservative tests were found in a 

Bayesian approach to person fit based on MCMC and posterior predictive checks (de la Torre 

& Deng, 2008; Glas & Meijer, 2003). Whether these can be adapted for accurate p-values 

either by “calibration” of posterior predictive checks (Steinbakk & Storvik, 2009) or by other 

types of adjustments like the one proposed by de la Torre and Deng (2008) for Bayesian 

estimators needs to be investigated. 

 

5.4 Recommendations for future research  

Parameter fine-tuning of the MC simulation methods has not been discussed in the two 

simulation studies presented in Chapter 3 and 4. The accuracy and computational burden of 

the presented methods depend on the form and size of the simulated reference distribution. It 

might prove beneficial to investigate the assumptions underlying this simulation (Rizopoulos, 
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2013) and the minimum required sample size as rules-of-thumbs are currently predominant 

(de la Torre & Deng, 2008; Glas & Meijer, 2003). 

Fine-tuning should also be reviewed concerning the robust scoring method presented in 

Simulation Study 2 where a predefined residual measure and a few different values of the 

tuning constant (see Chapter 4) were selected to compute the HU scores as a useful choice 

out of a selection of robust scoring methods (e.g., Mislevy & Bock, 1982; Schuster & Yuan, 

2011; Wainer & Wright, 1980). Future studies may include a more thorough systematic 

experimental variation of these parameters under different robust scoring methods to evaluate 

the influence of the choice of these parameters on the bias of latent ability estimates or the 

statistical power of person fit statistics.  

Referring to large-scale assessments, Brown and Villareal (2007) proposed weighting 

respondents according to a person fit statistic when concentrating on aggregated score reports 

for relevant subgroups like different countries, different school tracks or different gender; 

limited studies had previously demonstrated that misfit may indeed be unequally distributed 

across such groups (e.g., Meijer & de Leeuw, 1993; Meijer & van Krimpen-Stoop, 2001). 

Person fit analysis for this purpose has been ignored with regard to the two large-scale 

assessment data sets presented in this script and it needs to be evaluated whether aggregated 

scores differ substantially depending on which of the scoring methods used in Study 2 is 

selected to compute the person fit statistic. 

As an alternative to simulation-based methods, the Snijders’ (2001) correction has 

given promising results in Study 2. This method can be applied to many parametric person fit 

statistics for dichotomous items satisfying the “general form” described in Equation 1.18. It 

involves a correction of the first two moments of the statistic but the statistic is still skewed 

after correction which has consequences especially for short tests (de la Torre & Deng, 2008; 

van Krimpen-Stoop & Meijer, 1999). Modifications on Snijders’ (2001) method may include 
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a correction of skewness (e.g., von Davier & Molenaar, 2003) and may provide users with 

accurate p-values based on the normal distributions even for short tests and also for smaller 

α-levels. For polytomous items however, it is not possible to write Drasgow, Levine and 

Williams’ (1985) generalization of statistic lz in the form of Equation 1.18 required for the 

Snijders correction (van Krimpen-Stoop & Meijer, 2002, p. 167). MC simulation is certainly 

the method of choice for test administrations containing polytomous item scoring (e.g., 

Conijn, Emons & Sijtsma, 2014).  

Recommendations for future research may also include the application of 

subcomponents of the analyzed methods to other psychometric tools. For example, as person 

fit and item fit analysis only differ by the dimension of the data matrix (either rows or 

columns) being analyzed (e.g., Reise, 1990), it seems likely to discuss implications for item 

fit analysis. Item fit test statistics based on the Rasch Sampler have already been 

implemented in R (Mair et al., 2012) but were – to the knowledge of the author – not been 

intensively evaluated (but see Koller, 2010, for other types of nonparametric tests based on 

the Rasch Sampler). Whether the computation of robust measurement models (e.g., outlined 

in the model by Bafumi et al., 2005, pp. 178-179) or the application of robust scoring 

methods has any substantial impact on item fit needs to be systematically investigated by 

means of simulation.  

 

5.5 Implications for practitioners 

The availability of flexible and free software packages to execute the statistical 

procedures is of special importance for its application. Note that R-packages exist to initiate 

the Rasch Sampler presented in Chapter 3. A parametric bootstrap procedure for person fit 

analysis, similar to the one proposed in Chapter 4 and based on a conventional scoring 

method, is already implemented in the R-package ‘ltm’ (Rizopoulos, 2006). Also WL 
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estimates applied in Chapter 4 are available in several R-packages and software code for the 

robust ability estimates is presented by Schuster and Yuan (2011). When person fit statistics 

are used, practitioners may also take advantage of the flexibility of software like R (R 

Development Core Team, 2013) which allows programming and modification of such 

methods with reasonable effort, thereby enhancing computational speed and receiving 

reliable inferences in shorter time periods. Limitations concerning certain areas of application 

(e.g., CAT or large-scale assessments) have been described above. 

One of the key questions by practitioners related to person fit analysis is not empirically 

tractable, particularly, what to do when misfitting response vectors have been identified (e.g., 

Rupp, 2013). According to the suggestions by Smith (1985, p. 434) test administrators may 

then decide to (1) report different ability estimates for each subtests or subdimensions (which 

probably demonstrate higher model conformity), (2) first eliminate questionable item 

responses (e.g., from unreached items at the end of a booklet) and then adjust the response 

vector before the ability is re-estimated, (3) not report abilities and retest the individual, or (4) 

accept negligible error in the ability estimation process (whether the error really is negligible 

may be indicated according to the standard error associated with θ̂). Smith (1985) also 

offered the usage of robust scoring methods as a fifth option but proposed to combine 

maximum likelihood ability estimation and person fit analysis as using “…a robust estimator 

can mask important information about the person being measured, e.g., a particular content 

area in which the individual is deficient.“ (p. 434).  

It certainly depends on the testing context which of these actions should be realized 

(Meijer & Sijtsma, 2001). Reporting different θ̂s or retesting respondents may go along with 

difficulties in communicating the results to practitioners and respondents not familiar with 

measurement issues; additionally, retesting is not always possible. Eliminating questionable 

item responses needs justification. For example, eliminating responses to items at the end of a 
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booklet is questionable as long as the test is not speeded or long and stressful. It might also 

include numerous scalings to be run until an “appropriate” sample of item responses is 

calibrated. And accepting negligible error in the θ̂ estimation is only adequate in low-stakes 

testing.  

Rupp (2013, pp. 31-32) argued to directly model the influence of aberrancy as part of a 

more flexible mixture IRT model where respondents are assigned into different classes 

according to their response patterns. This approach may reduce the number of aberrant 

response patterns but does not prevent aberrancy from the model predictions as the number of 

different classes is usually low compared to the several types of misfit often found in test or 

questionnaire data. Response vectors may therefore also deviate from the class-specific 

model parameters (von Davier & Molenaar, 2003).   

A comprehensive analysis of person fit goes beyond the simple identification of 

aberrancy but includes specifying the type of misfit and localizing its origin (Emons, Sijtsma, 

& Meijer, 2004, 2005), as well as considering collateral information, either on a qualitative 

basis (Meijer, Egberink, Emons, & Sijtsma, 2008) or by regressing misfit on covariates 

(Conijn, Emons, van Assen, & Sijtsma, 2011; Reise, 2000; Woods, 2008; Woods, Oltmanns, 

& Turkheimer, 2008). Cui and Leighton (2009) argued that  

“To find the actual causes of misfits, additional information about students’ 

response processes, such as students’ verbal reports, eye tracking information, 

and reaction time … is needed. This type of information provides relatively 

detailed pictures of how students actually solve items on tests, which has the 

potential to help understand the reasons for misfits so that the results from 

person-fit statistics can be interpreted substantially and meaningfully." (p. 447).  

Combining person fit with collateral information like those outlined above by Cui and 

Leighton (2009) provides insights which response vectors should be diagnosed in more detail 
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(see also Emons, Glas, Meijer, & Sijtsma, 2003, p. 476; Meijer, 2003, p. 85) and which 

respondents probably need to be retested.  
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