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Abstract: An MPI-parallel Newton-Krylov-FETI-

DP solver based on FEAP is presented together with

applications to nonlinear problems in the quasi-static

biomechanics of soft biological tissues. The for-

mulation is based on highly nonlinear hyperelastic

anisotropic and poly-convex models. High-resolution

computations of the wall stresses in patient-specific

arterial wall structures subjected to an interior nor-

mal pressure in the physiological regime of the blood

pressure (up to 500 [mmHg]) are reported together

with results on strong scalability. The weak scalabil-

ity of Newton-Krylov-FETI-DP is investigated for up

to 140 million degrees of freedom using 4096 proces-

sor cores on a Cray XT6m supercomputer in a series

of simple tension tests. An implementation of a new

FEAP-interface called libfw is presented which al-

lows for the flexible unified integration of FEAP into

other software packages, e.g., into LifeV. The mod-

ifications done to FEAP are dissected and discussed

in detail as a case study in order to illustrate pos-

sible approaches for the integration of different code

components or applications in similar scenarios.





Preface

Software is on the rise in science. The importance of software and modern

software development methods in science is certainly on the rise. In recent years, modern software

engineering techniques have finally become commonplace in the sciences. All of the large research

laboratories employ established techniques and development processes in Software Engineering.

Recently, even new ones have been developed, tailored specifically to master and maintain the

complexity of scientific software packages. Quite a few scientific journals specifically dedicated to

the development of software in the sciences have been founded and their number is increasing. The

state of the art in simulation technology requires more skills in software development than ever

before – in addition to the scientific training in the domain-specific disciplines. On the other hand,

the role of software development in the modern sciences is also subject to active discussion, see

e.g., Bangerth and Heister [15].

There is so much excellent software in science: new software and legacy software – contributions

of excellent quality based on long-term efforts of exceptional minds – and the merits of coupling

established solutions rises with every contribution made. With the limited resources available to

scientists and the exceptional ingenuity of the code produced in research there is much attractive

potential in coupling the Old and the New. However, this can pose a technical challenge and it

can be a worthy contribution to the scientific community. The present work is in part a case study

on modularization based on the example of the excellent F77 legacy software package FEAP.1 We

hope to convince the reader of the merits of its reuse as a software component in entirely new

contexts.

This thesis has its origin in the interdisciplinary research project

Massiv parallele Simulationen von Arterienwänden:

Kontinuumsmechanische Modellbildung und numerische Lösung mittels

FETI-Gebietszerlegungsverfahrena

(KL 2094/1-{1,2}, SCHR 570/7-{1,2})b

aMassively parallel simulations of arterial walls: Continuum mechanical modeling and numerical solution
via FETI domain decomposition methods (title translated by the author).

bThe project was supported by the Deutsche Forschungsgemeinschaft (DFG) in two funding periods;
common grant proposal by PIs Axel Klawonn and Jörg Schröder.

which inspired a whole series of publications [12, 13, 21–23, 25, 52, 73] and dissertations [20, 24, 55].

Said project marked the beginning of a fruitful interdisciplinary scientific collaboration between

multiple research groups continued to this day: the groups led by Axel Klawonn (Universität zu

Köln) and Oliver Rheinbach (Technische Universität Bergakademie Freiberg) do work in numerical

1Fortran 77 (F77) is not a modern programming language and it lacks features essential to modern large-scale
software development.
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mathematics with a focus on domain-decomposition methods and applications in an HPC-setting

(High Performance Computing) – they use PETSc, a mixed C/C++/F77 software package de-

veloped at Argonne National Laboratories [5–7], while the research group led by Jörg Schröder

(Universität Duisburg-Essen), including also Daniel Balzani, works on theoretical and computa-

tional continuum mechanics – they use a customized version of the F77 software package FEAP

developed in Richard L. Taylor’s group at the University of California at Berkeley [130].

The rather ambitious common aim of this collaboration are large-scale simulations of realistically

modelled multi-physics problems in continuum mechanics. Discretization of the corresponding field

equations using appropriate finite element methods easily leads to discretized nonlinear equation

systems with millions, hundreds of millions, or even billions of unknowns. The common vision is

easily distilled: to solve these equations using highly scalable parallel implementations of domain

decomposition-based nonlinear solvers targeted for the current and next generation of massively

parallel supercomputers. A long term effort and the progress is made in small steps. Let us shortly

summarize the original research focus of the first common project.

Anisotropic models for arterial walls and FETI-DP: As reported by the World Health

Organization, cardiovascular diseases are by far the number one cause of death world wide. The

World Health Report (2004) lists a death rate of 29.3% for both sexes for the category of cardio-

vascular diseases which includes arteriosclerosis [106]. Some surgical procedures for atherosclerotic

arteries, e.g., balloon angioplasty, are mechanical processes. This motivated much research on the

simulation of the mechanics of soft biological tissues in this context. Of particular interest are the

stresses in the arterial walls due to mechanical deformation of the wall structure which are corre-

lated to the risk of rupture of plaque components. The latter may cause embolies during surgery.

For the simulation, realistic patient-specific arterial wall geometries are a necessary prerequisite.

Expertise on state of the art modelling, parameter fitting and finite element techniques for soft bi-

ological tissues based on anisotropic polyconvex hyperelastic formulations were contributed to the

present work by the PIs Jörg Schröder and Daniel Balzani. For parallel simulations in HPC, highly

scalable and robust domain-decomposition based linear solvers, in particular a FETI-DP-solver

developed by Oliver Rheinbach in his dissertation [110], were contributed by the PIs Axel Kla-

wonn and Oliver Rheinbach. Based on these, Newton-Krylov-FETI-DP-solvers were implemented

for Brands, Klawonn, Rheinbach, and Schröder [23] and developed in multiple directions, e.g.,

using Augmented Lagrange methods for the incompressibility constraint in Brinkhues, Klawonn,

Rheinbach, and Schröder [25]. The application of FETI-methods to problems in finite continuum

mechanics was a new scenario which was found to pose significant new challenges. Novel tech-

niques had to be developed. First advancements regarding the finite element modelling and the

design of robust parallel scalable preconditioners based on FETI-DP in this context have been

contributed to numerical mathematics, scientific computing, computational structural mechanics

and to medicine.

For the development of the simulations envisaged in the DFG-funded projects “Massively parallel

simulations of arterial walls: Continuum mechanical modeling and numerical solution via FETI

domain decomposition methods (KL 2094/1-{1,2}, SCHR 570/7-{1,2})” it was a fundamental

prerequisite to couple the software frameworks

FEAP [sequential] and the FETI-DP-solver [parallel]

in order to meet the formulated research goals – a typical problem in Software Engineering. This

posed a significant challenge, because FEAP was designed as a standalone application. It was never

intended to be used as a software library providing material models such that they can be flexibly

iiii
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integrated into other programs. It was designed to be the master application reaching out to its

extensions. In a first step, both components were coupled in a semi-parallel scenario where a

sequential instance of FEAP provided the control flow and assembly. The semi-parallel approach

used in [23], although an important, necessary and successful intermediate step, was not parallel

scalable, finally necessitating a true unified integration of the software components. To this end,

previous attempts for a fully parallel solution were undertaken but fell short of expectations with

respect to the long term maintainability, the ease of use and robustness of the solution. In the

context of the present thesis, a fully MPI parallel and scalable solution has finally been achieved,

and more ...

Contributions:

1. We contribute a new MPI parallel software framework unifying the highly parallel scalable

and robust linear FETI-DP-solver presented in the doctoral dissertation of Oliver Rhein-

bach [110] with a modified distribution of FEAP developed by Jörg Schröder and his research

group in a novel Newton-Krylov-FETI-DP solver called mparfeap. A new FEAP interface

called libfw is presented which allows to use FEAP as a flexible software library in other

programs. We also present an analysis of the various plans of attack which have been consid-

ered by the present author, or previously by Oliver Rheinbach, Dominik Brands and Daniel

Balzani, in order to integrate FEAP and the FETI-DP-solver to allow for massively parallel

and highly scalable simulations. Further, we have tried to present the software modifications

made to FEAP in some detail to spark inspiration in other developers in a similar situation,

i.e., trying to couple the Old and the New.

2. New computational results were obtained for massively parallel simulations based on Newton-

Krylov-FETI-DP for structured and unstructured decompositions applied to problems in

the biomechanics of soft tissues. High-resolution computations of arterial wall stresses are

presented together with strong and weak parallel scalability experiments. All computations

were run on the Cray XT6m supercomputer at Universität Duisburg-Essen. Results for

discretized problems with up to 140 million degrees of freedom in the structured case obtained

using a maximum of 4096 CPU cores on the full machine are presented. Alongside, the

combined effects of two simple and computationally cheap but quite effective tuning strategies

for load stepping are presented.

Furthermore, we note that the software component libfw is currently used for f luid-structure

interaction (FSI) in a new joint DFG/SNSF D-A-CH project:

Domain-Decomposition-Based Fluid Structure Interaction Algorithms for
Highly Nonlinear and Anisotropic Elastic Arterial Wall Models in 3Da

aThis project is supported by the Deutsche Forschungsgemeinschaft (DFG) and the Swiss National Fond
(SNF) within a D-A-CH proposal; common grant proposal by PIs Axel Klawonn, Oliver Rheinbach, Alfio
Quarteroni, Simone Deparis, Daniel Balzani, and Jörg Schröder.

In this ongoing project, the FEAP wrapper library libfw presented in Chapter 2 is used as a

bridge component. This module allows to use FEAP for the assembly of the quasi-static part in

the fully time-dependent ALE-based fluid-structure interaction (FSI) simulations of arterial wall

stresses in atherosclerotic arteries in LifeV [91]2.

2LifeV is an actively developed software framework for the life sciences currently developed at:
École Polytechnique Fédérale de Lausanne (CMCS), Switzerland;
Politecnico di Milano (MOX), Italy;

iiiiii
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Note that the finite element discretizations for the St. Venant-Kirchhoff and Neo-Hooke material

models available in both FEAP and LifeV have been verified to be consistent up to numerical

tolerance by Alexander Heinlein during a research stay at École Polytechnique Fédérale de Lau-

sanne [62]. This verification provides also a second and independent cross-validation of new state of

the art expression template-based implementations of these material models due to Paolo Tricerri

in LifeV, used, e.g., by Tricerri, Dedè, Quarteroni, and Sequeira [133]. This is a nice example,

how direct integration of an established high-quality legacy code into a new software framework

can increase the software quality of the new implementation through additional cross-validation.

This text is structured as follows: first, Chapter 1 introduces the physiologically realistic geomet-

rical and mechanical models for arterial wall structures based on the polyconvex soft tissue models

compared in Brands, Klawonn, Rheinbach, and Schröder [23] and non-overlapping domain de-

composition methods, with a focus on the dual primal f inite element tearing and interconnecting

method (FETI-DP). In particular, we shortly discuss the application thereof to nonlinear problems

in mechanics as a Newton-Krylov-FETI-DP algorithm. In this context, we also illuminate some

easily derivable structural properties of the discretization before we illuminate our load stepping

procedures and the tuning thereof. An associated Appendix A is provided to stage, at a gentle

pace, the framework of hyperelasticity, the basis for the employed anisotropic, quasi-incompressible

and polyconvex soft tissue models. In Chapter 2, we present a new contribution, a multi-language

software framework supporting an MPI parallel Newton-Krylov-FETI-DP solver called mparfeap.

This solver uses a modified version of the FEAP distribution developed by Jörg Schröder’s research

group for the local finite element assembly of the soft-tissue models. The second essential com-

ponent is a FETI-DP-solver developed by Oliver Rheinbach in his dissertation [110]. Further,

we present the library interface and aspects of the software engineering and dissect the essential

parts of the architecture of the new FEAP-interface libfw. In the final Chapter 3, we then present

a series of applications of the software framework, i.e., of the Newton-Krylov-FETI-DP solver

mparfeap, to problems in the mechanics of soft biological tissues. More specifically, we present

simulation results for the von Mises equivalent stresses which are incurred in a patient-specific

arterial wall model by an internal normal pressure in the physiological regime (up to 500 [mmHg]),

strong scalability of Newton-Krylov-FETI-DP for these simulations, a series of weak scalability ex-

periments based on simple tension tests and demonstrate the effects of two computationally cheap

but, in some cases, highly effective tuning options for load stepping.

We wish our reader a joyful journey into the fruitful and fresh interdisciplinary realm somewhere

inbetween the disciplines of numerical mathematics, parallel computing, software engineering,

continuum mechanics and the life sciences.

Essen, June 22nd 2014

Andreas Fischle

INRIA (REO, ESTIME), France;
Emory University (Math&CS), U.S.A.
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1.1 Anisotropic Models for Arterial Wall Structures1

Quasi-static three-dimensional simulations of an atherosclerotic artery subject to interior blood

pressure have been computationally analyzed in detail, e.g., in Balzani, Böse, Brands, Erbel, Kla-

wonn, Rheinbach, and Schröder [14], Brands, Klawonn, Rheinbach, and Schröder [23], Brinkhues,

Klawonn, Rheinbach, and Schröder [25], Schröder, Balzani, and Gross [116], Schröder, Klawonn,

Balzani, Rheinbach, and Brands [118]; see also Klawonn and Rheinbach [73] for scalability exper-

iments for the FETI-DP method. Of particular interest for our applications is the work Brands,

Klawonn, Rheinbach, and Schröder [23] where multiple different models for the physiological ma-

terial behavior of arteries were analyzed in a comparative study. The latter work is the most direct

predecessor of the present one. We use the identical setup regarding the mechanical setting and

solution strategy. Moreover, the software framework presented in Chapter 2 reuses the finite im-

plementations in FEAP used in Brands, Klawonn, Rheinbach, and Schröder [23]. Our contribution

is the transition from the semi-parallel framework there described to the new software infrastruc-

ture for massively parallel computations described in Chapter 2. Note that a variety of polyconvex

strain energy densities suitable to describe soft biological tissues was proposed in Balzani, Neff,

Schröder, and Holzapfel [11] and in the dissertation of Balzani [10].

The present work originates in the research project

Massiv parallele Simulationen von Arterienwänden:

Kontinuumsmechanische Modellbildung und numerische Lösung mittels

FETI-Gebietszerlegungsverfahrena

(KL 2094/1-{1,2}, SCHR 570/7-{1,2})b

aMassively parallel simulations of arterial walls: Continuum mechanical modeling and numerical solution
via FETI domain decomposition methods (title translated by the author).

bThe project was supported by the Deutsche Forschungsgemeinschaft (DFG) in two funding periods;
common grant proposal by PIs Axel Klawonn and Jörg Schröder.

One of the principal objectives of said projects was to advance the degree of realism in the mechan-

ical and geometrical modelling of atherosclerotic patient-specific arterial wall structures. The gen-

eration of realistic computational domains from patient-specific intravascular ultrasound (IVUS)

imaging data is, e.g., a major theme of the dissertation of Brands [20]. An important driving

force of research in biomechanics are medical applications. For instance, accurate predictions of

the locations in an atherosclerotic artery, where the risk of plaque rupture is high, are of im-

mense interest for the assessment of the risks involved in a surgical intervention. As a contribution

Balzani, Böse, Brands, Erbel, Klawonn, Rheinbach, and Schröder [14] reconstructed the 3D geom-

etry for simulations from patient-specific intravascular ultrasound virtual histology (IVUS-VH)

data in combination with angiographic X-ray images. The input data were provided by Dirk Böse

and Raimund Erbel; see also Brands, Schröder, Klawonn, Rheinbach, Böse, and Erbel [22] for a

condensed presentation.

Patient-specific models are a necessary prerequisite for calculations of stress localizations, indicat-

ing high plaque rupture probability for the particular patient. Note that the proposed method is

based on in vivo data which is routinely available from the medical diagnosis, which is certainly

advantageous in the long term providing for a smooth workflow during risk analysis prior to an

intervention. High resolution computations for transmural wall stresses in the physiological regime

are presented in Chapter 3 using such patient-specific geometries.

1Parts of this introductory section are derived from a text prepared for a D-A-CH research proposal and also
from Brands, Klawonn, Rheinbach, and Schröder [23].
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The current thesis was written with the focus on scientific software work. We admit, it is outside

of our ambition to present a scientific justification of the particular modelling assumptions made.

Neither do we broadly discuss the limitations of the mechanical modelling, the most important

being that eigenstresses and fluid-structure interaction are not accounted for. Detailed expositions

of the mechanical modelling and the assumptions made are available though, and we refer the in-

terested reader to the dissertations by Balzani [10], Brinkhues [24] where the mechanical modelling

is presented and developed as a major theme and to Brands [20] for the geometrical modelling.

Note also the extensive references provided in said theses. Shorter presentations of the modelling

assumptions including also the choice of realistic material parameters are given in Brands, Kla-

wonn, Rheinbach, and Schröder [23], Brinkhues, Klawonn, Rheinbach, and Schröder [25], Klawonn

and Rheinbach [73]. A discussion of the results from the perspective of medical research was pub-

lished in Balzani, Böse, Brands, Erbel, Klawonn, Rheinbach, and Schröder [14]. The latter work

illuminates how accurate patient-specific simulations may eventually contribute to the decision

making process preceding surgical intervention. Let us stress that the runtime of such simulations

is dominated by the time required to solve linear systems arising from finite element discretization.

In practice, often 80-90% and even more of the total simulation runtime is spent in the linear

solver phases; see also Chapter 3. Thus, fast linear solvers are doubtless a necessity for real-world

applications, e.g., in medicine. Robust parallel scalable domain decomposition methods such as

FETI-DP or BDDC (see §1.3) can be considered as state of the art methods.

Accurate numerical computations of stress states in arterial walls require a realistic description of

the anisotropic nonlinear material behavior of the biological components and also of the problem

geometry. Both aspects represent challenging tasks. The soft biological tissues making up the

arterial wall structure behave almost incompressibly, undergo large strains, and are characterized

by a strong anisotropy. Intensive prior work with respect to the construction and analysis of

polyconvex, anisotropic strain energy densities is given in Schröder and Neff [114], and Schröder,

Neff, and Balzani [117]. Note that polyconvexity is the key concept in the mathematical existence

theory for hyperelasticity formulated by Ball [8, 9]; more specifically, it assures the existence of

minimizers for the internal strain energy potential.

In the following subsections we hope to motivate the present work and to gently introduce the

reader to the basic physiology of healthy and atherosclerotic arteries, to the proposed mechan-

ical modelling thereof and to give an impression of the geometrical arterial wall models used

in Chapter 3. We thus introduce the modelling framework as presented and used in Brands, Kla-

wonn, Rheinbach, and Schröder [23]. An additional, more detailed introduction to the hyperelastic

framework relevant to our applications in Chapter 3 is provided in a separate Appendix A together

with further references.

1.1.1 The Physiology of Human Arteries

We briefly introduce the physiology of a human artery in order to introduce the considered me-

chanically relevant parts, their modelling and some terminology used throughout this text.

The structural composition of a healthy human artery is depicted in Figure 1.1 and a microscopy of

a stained slide of an elastic artery is displayed in Figure 1.2. For the modelling of the mechanical

response of an atheriosclerotic arterial wall, we consider structural models accounting for the

following three mechanically relevant parts of the wall structure:

(i) the media (tunica media),

(ii) the adventitia (tunica adventitia or tunica externa), and

(iii) the atherosclerotic plaque components.
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Figure 1.1: Schematic diagrams of a healthy human artery. Original image from Wikime-
dia Commons, user: BruceBlaus. Blausen Medical - Scientific and Medical Animations http:

//blausen.com

Figure 1.2: A photomicrograph of a slide through an elastic artery. It was stained using Verhoeff’s
stain and eosin to visualize elastic fibers (black), collagen fibers (pink) and the cell structure.
Courtesy of the department of anatomy, Kaohsiung Medical University, Taiwan. Image obtained
from http://anatomy.kmu.edu.tw/BlockHis/Block3/slides/block4_20.html.

The media and adventitia layers of the wall structure are composed of a ground substance made

up of an Elastin fiber network with embedded collagen fibres and smooth muscle cells. The

arrangement of these fibers is characterized by two preferred directions ai, i = 1, 2, winding them-
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selves helically around the artery; see, e.g., Balzani [10], Brands [20] and Brinkhues [24] for more

specific schematic illustrations. In the physiological range of the interior blood pressure, say

p ≥ 100 [mmHg], the media and adventitia layers undergo large deformations. Accordingly, they

are modeled using the framework of finite anisotropic hyperelasticity. In this framework, the fiber

microstructure can be constitutively modeled based on the assumption of a weak interaction be-

tween the two fiber families using superimposed transversely isotropic models, see, e.g, Holzapfel,

Gasser, and Ogden [64].

The plaque architecture is varying significantly from patient to patient. Its basic components are:

1. fibrotic tissues,

2. calcifications, and

3. extracellular lipid pools.

In the present work, the plaque architecture is simplified. It is represented by a single isotropic

constitutive law. More precisely, it is modelled as an isotropic hyperelastic large strain Mooney-

Rivlin material, which seems appropriate due to the rather isotropic general nature. Note that the

composition of fibers in the fibrotic parts of the plaque is still unclear and subject of investigation.

1.1.2 Mechanical and Geometrical Modelling

We shall take the perspective of the Lagrangian formulation of structural mechanics. In this setting

one considers deformation mappings ϕ : Ωref → Ωdef which map a reference body Ω := Ωref into

a deformed body Ωdef. In quasi-static hyperelasticity, one makes the fundamental assumption of

the existence of a functional measuring the internally stored strain energy of a body in a given

configuration

ϕ 7→ Πint(ϕ) .

Equivalently, the displacement field u = ϕ − idΩ may be considered. This is usually preferred in

actual implementations. In hyperelasticity, the internal strain energy potential can be expressed

as an integral over a local strain energy density depending only on x ∈ Ω and the first derivative

of the deformation field ϕ, the so-called deformation gradient F := ∇ϕ ∈ GL+(3,R). Based

on this, we introduce the right Cauchy-Green deformation tensor C(F ) := FTF . A strain

energy density can be considered a constitutive law, since it characterizes the local energetic and

hence mechanical response of a specific material.

Definition 1.1.1 (Local Strain Energy Density). A local strain energy density is a function

Ψ : Ω×GL+(3,R)→ R+
0 .

It is homogeneous, if the dependence on x is only through the deformation gradient F (x).

Note that the polyconvex energies used in Brands, Klawonn, Rheinbach, and Schröder [23] and in

the present work are not homogeneous. They depend on x ∈ Ω through two fiber direction fields

ai : Ω→ R3, or more precisely, on two associated structural tensor fields

M (i) := ai ⊗ ai := aia
T
i , i = 1, 2 .

The fiber direction vector fields ai, i = 1, 2 wind themselves helically around the arterial wall

layers in the reference configuration. They are hence not constant. See, e.g., the expositions in the

dissertation of Balzani [10], and also the dissertation by Brinkhues [24]. For notational convenience,

we shall nonetheless drop the dependence of local stored energy densities on x ∈ Ω and simply

write Ψ(F ) for Ψ(x, F (x)).
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Definition 1.1.2 (Internal Strain Energy). The internal strain energy of a hyperelastic body Ω

in an admissible configuration ϕ ∈ A ⊆ Celas
Ω is obtained by integration of the stored strain energy

density Ψ : GL+(3,R)→ R+
0 over the reference body

Πint : A → R+
0 , Πint(ϕ) :=

∫
Ω

Ψ(F ) dV . (1.1.1)

The term quasi-static refers to the assumption, that the time-derivatives appearing in the dynamic

equations of motion can be neglected. The interior virtual work due to the strain is obtained as

the first variation of the interior strain energy potential

Gint : TA → R, Gint|ϕ(χ) :=
d

dε

∣∣∣∣
ε=0

Πint(ϕ+ εχ) . (1.1.2)

Dirichlet boundary conditions of place are formulated by an appropriate choice of admissible con-

figurations A. Let us introduce the Neumann boundary conditions, i.e., the exterior forces imposed

in our applications. We denote by ∂ΩdefN ⊆ ∂Ωdef the Neumann-boundary in the deformed con-

figuration. A traction field tN : ∂ΩdefN → R3 is to be imposed there. Further, let ρ0 : Ω→ R+

denote the physical density of the body and let g : R3 → R3 be a volume force density.

Definition 1.1.3 (Virtual Work due to Exterior Loadings). We define the external virtual work

functional as

Gext : TA → R,

Gext|ϕ(χ) :=

∫
∂ΩdefN

〈
tN , χ ◦ ϕ−1

〉
dA

︸ ︷︷ ︸
Pressure load

+

∫
Ω

ρ0

〈
g, χ

〉
dV

︸ ︷︷ ︸
Volume force

. (1.1.3)

In order to approximate the effects due to the blood pressure inside the arterial wall structure, a

pressure load is imposed on the fluid-structure interface. We denote this part of the interface by

∂ΩdefN and consider a pressure induced traction field

tN : ∂ΩdefN → R3, tN := −p n , (1.1.4)

which is normal to the fluid-structure interface. The pressure is assumed to be constant p ≥ 0 [kPa].

Note that the reflected outward unit normal field given by −n determines an inward pointing

normal field. Thus, in our applications, a positive blood pressure causes the arterial wall structure

to expand. Pressure loadings are configuration dependent loads, a non-trivial type of boundary

condition which we shortly discuss in Appendix A. It is well-known that configuration-dependent

loads contribute to the finite element stiffness matrix and that this contribution is, depending on

the boundary conditions, possibly non-symmetric; see, e.g., the fine monograph by Wriggers [137].

It is generally agreed that the muscle fibers do not respond energetically to compression. The

justification is that they can be assumed to buckle instantaneously under compression loads. To

incorporate this behavior into the model, we introduce a simple but convenient cut-off function.

Definition 1.1.4 (Macauley Bracket). The Macauley bracket is given by

〈·〉m : R→ R+
0 , 〈 x 〉m := max {0, x} =

{
x for x ≥ 0

0 , for x < 0
. (1.1.5)
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Figure 1.3: Physiological geometry of an artery reconstructed from IVUS imaging data; Image
from Balzani, Böse, Brands, Erbel, Klawonn, Rheinbach, and Schröder [14]; see also the prelimi-
nary work in Brands, Schröder, Klawonn, Rheinbach, Böse, and Erbel [22]. The outer layers show
the geometry of the reconstructed media, intima, and plaque (from left to right).

Figure 1.4: Distribution of the von Mises equivalent stresses σv due to the strain energy function
ΨA (media and adventitia layers) and ΨMR (plaque components). The artery-lumen interface is
displayed in three exemplary cross sections (left) and inside the plaque (right). Both show the
deformed configuration corresponding to 180 [mmHg] with transparently depicted outer layers.
The finite element model has roughly 1.3 million displacement unknowns. Image from Balzani,
Böse, Brands, Erbel, Klawonn, Rheinbach, and Schröder [14].

We consider strain energy densities which satisfy the principle of material frame indifference,

i.e.,

∀Q ∈ SO(3) : Ψ(QF ) = Ψ(F ) .

We introduce the material symmetry group G as the maximal subgroup G < SO(3) satisfying

∀Q ∈ G : Ψ(FQ) = Ψ(F ) .

If G = SO(3), Ψ(F ) is said to be isotropic, otherwise it is an anisotropic strain energy density

An important special case in the present context are transversely isotropic strain energies with

preferred direction a ∈ R3, i.e.,

∃a ∈ R3 : G = SO(3)a := {Q ∈ SO(3) : Qa = a} .
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Next, we introduce a suitable set of anisotropic polyconvex polynomial invariants using the struc-

tural tensors

M (i) := ai ⊗ ai, i = 1, 2 .

These encode two preferred directions for super-imposed transversal isotropy. In the present con-

text they represent the muscle fiber directions for the adventitia and media layers. In the given

setting with two super-imposed preferred directions, we use the following set of polynomial invari-

ants:

Anisotropic Polyconvex Invariants for Two Super-imposed Preferred Directions

Polyconvex Isotropic Invariants:

I1 := tr [C], I2 := tr [cof [C]], and I3 := det [C] . (1.1.6)

Polyconvex Anisotropic Invariants:

J
(i)
4 := tr

[
CM (i)

]
, K

(i)
3 := I1J

(i)
4 − J

(i)
5 , i = 1, 2 . (1.1.7)

Note that the basic mixed anisotropic invariants

J
(i)
5 := tr

[
C2M (i)

]
, i = 1, 2 ,

are not polyconvex; see Merodio and Neff [98]. This is the reason to use K
(i)
3 , i = 1, 2, which is

polyconvex.

In the following, we introduce the polyconvex, incompressible and anisotropic hyperelastic material

models which have been evaluated in Brands, Klawonn, Rheinbach, and Schröder [23]. These are

represented in terms of the previously introduced invariants and composed of three basic building

blocks:

1. an isotropic contribution due to the ground substance matrix,

2. a penalty term for volume change and

3. an anisotropic fiber contribution generated by two-superimposed transversely isotropic parts.

The fiber contributions model the response due to the muscle fibers in the adventitia and media

layers and the volumetric penalty term leads to a quasi-incompressible material behavior. The

material models available in mparfeap are accessed through the FEAP interface libfw-js de-

scribed in Chapter 2. We have compiled the models used for Brands, Klawonn, Rheinbach, and

Schröder [23] in our Table 1.1.

For the numerical applications presented in Chapter 3, we have decided to concentrate our attention

exclusively on two strain energy densities:2

• ΨA is used for high-resolution computations of von Mises equivalent stresses in §3.2 to assess

the strong scalability thereof in §3.3 and to study the effect of two simple load stepping

tuning options in §3.5;

• ΨB is used in a series of simple tension tests and we investigate the weak scalability in §3.4

and the effects of load stepping tuning in §3.5.

2Note that the other three energy densities ΨC ,ΨD and ΨE are available in libfw-js, i.e., they can be flexibly
used without restrictions.

88



CHAPTER 1. INTRODUCTIONCHAPTER 1. INTRODUCTION MECHANICAL AND GEOMETRICAL MODELLINGMECHANICAL AND GEOMETRICAL MODELLING

We have compiled the second Piola-Kirchhoff stress tensors for the strain energies listed in Ta-

ble 1.1 in a separate Table 1.2. Let us emphasize that the software component libfw-js pre-

sented in Chapter 2 allows to reuse the implementations of the material models in FEAP, used,

e.g., in Brands, Klawonn, Rheinbach, and Schröder [23]. To be precise, some minor additional

modifications have been introduced by the present author, in particular a more refined error han-

dling. These modifications support the implementation of a failure-based adaptive load stepping

strategy in mparfeap.

The derivation of the stress tensors compiled in Table 1.2 is based on the relation S2 = 2 DCΨ(C),

the chain rule and formulas for the matrix representations of the derivatives of the invariants; see,

e.g., the appendix to Brinkhues [24] including also the second derivatives of the invariants.

Derivatives of the Polyconvex Invariants

Isotropic principal invariants:

DCI1(C) = 1, DCI2(C) = I1(C) 1−C, and DCI3(C) = I3(C)C−1 . (1.1.8)

Anisotropic main invariants:

DCJ4(C,M) = M, DCJ5(C,M) = CMT +MTC = 2 sym [CM ] . (1.1.9)

Modified polyconvex invariant:

DCK3(C,M) = DC

(
I1(C)J4(C,M)− J5(C,M)

)
(1.1.10)

= J4(C,M) 1 +I1(C)M − 2 sym [CM ] .

As in Brands, Klawonn, Rheinbach, and Schröder [23], we model the plaque components as an

isotropic Mooney-Rivlin solid. We use exactly the same formulation and implementation on which

the comparative studies in Brands, Klawonn, Rheinbach, and Schröder [23] were based. We have

compiled them in Table 1.1.

Isotropic Mooney-Rivlin Model for the Plaque Components (cf. [23])

Stored Energy Density:

ΨMR(C) = β1I1 + η1I2 + δ1I3 − δ2 log(I3) . (1.1.11)

Second Piola Kirchhoff Stress Tensor:

1

2
S2,RM = β1 1 +η1 (I1 1−C) + δ1I3C

−1 − δ2C−1 . (1.1.12)

For the analysis of the transmural stress distribution inside an arterial wall, the Cauchy stresses

for the deformed configuration are computed from the second Piola-Kirchhoff tensor via the Piola

transformation given by

σ = J−1FS2F
T .

From this, the von Mises equivalent stress σv, also called the effective stress, is determined. It is

a scalar stress quantity and is commonly interpreted as a failure indicator. It is quite convenient

for visualization purposes. The main principle on which the derivation of the von Mises equivalent

stresses is based, is that material failure is only caused by shear stresses, i.e., it is not influenced

by dilatatory stress components.
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Polyconvex Soft-Tissue Models for the Media and Adventitia Layers (cf. [23])

Model ΨA: (Balzani, Neff, Schröder, and Holzapfel [11])

ΨA

(
C,M (1),M (2)

)
= c1

(
I1

I
1/3
3

− 3

)
︸ ︷︷ ︸
Ground substance

+ ε1

(
Iε23 +

1

Iε23

− 2

)
︸ ︷︷ ︸

Volume penalty

+

2∑
i=1

α1

〈
K

(i)
3 − 2

〉α2

m︸ ︷︷ ︸
Fiber contributions

.

Model ΨB: (Holzapfel, Gasser, and Ogden [64])

ΨB

(
C,M (1),M (2)

)
= c1

(
I1

I
1/3
3

− 3

)
︸ ︷︷ ︸
Ground substance

+ ε1

(
Iε23 +

1

Iε23

− 2

)α5

︸ ︷︷ ︸
Volume penalty

+

2∑
i=1

k1

2k2

exp

k2

〈
J

(i)
4

I
1/3
3

− 1

〉2

m

− 1

︸ ︷︷ ︸
Fiber contributions

.

Model ΨC: (Balzani, Neff, Schröder, and Holzapfel [11])

ΨC

(
C,M (1),M (2)

)
= c1

(
I1

I
1/3
3

− 3

)
︸ ︷︷ ︸
Ground substance

+ ε1

(
Iε23 +

1

Iε23

− 2

)
︸ ︷︷ ︸

Volume penalty

+

2∑
i=1

α3

〈
J

(i)
4

I
1/3
3

− 1

〉α4

m︸ ︷︷ ︸
Fiber contributions

.

Model ΨD: (Balzani, Neff, Schröder, and Holzapfel [11])

ΨD

(
C,M (1),M (2)

)
= c1

(
I1 − log(I3)

)
︸ ︷︷ ︸
Ground substance

+ ε1

(
Iε23 +

1

Iε23

− 2

)
︸ ︷︷ ︸

Volume penalty

+

2∑
i=1

α3

〈
J

(i)
4 − 1

〉α4

m︸ ︷︷ ︸
Fiber contributions

.

Model ΨE: (Holzapfel, Gasser, and Ogden [65])

ΨE

(
C,M (1),M (2)

)
= c1

(
I1 − log(I3)

)
︸ ︷︷ ︸
Ground substance

+ ε1

(
Iε23 +

1

Iε23

− 2

)
︸ ︷︷ ︸

Volume penalty

+

2∑
i=1

k1

2k2

{
exp

(
k2

〈
J

(i)
4 − 1

〉2

m

)
− 1

}
︸ ︷︷ ︸

Fiber contributions

.

Table 1.1: The polyconvex anisotropic and quasi-incompressible strain energy densities were used
in Brands, Klawonn, Rheinbach, and Schröder [23]. They are available in FEAP-JS and accessible
to mparfeap via the libfw-js wrapper.

Definition 1.1.5 (Von Mises Equivalent Stresses). Let σ denote the Cauchy stress tensor in a

deformed admissible configuration ϕ ∈ A. The von Mises equivalent stresses σv are given by

σ2
v =

3

2
‖dev [σ]‖2 =

3

2

∥∥∥∥σ − 1

3
tr [σ] · 1

∥∥∥∥2

(1.1.13)

=
(σ11 − σ22)2 + (σ22 − σ33)2 + (σ33 − σ11)2 + 6(σ2

12 + σ2
23 + σ2

13)

2
(1.1.14)
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Second Piola Kirchhoff Stress Tensors (cf. [23])

Model ΨA:

1

2
S2,A =

c1

I
1/3
3

(
1−I1

3
C−1

)
︸ ︷︷ ︸

Ground substance

+ ε1ε2

(
Iε23 −

1

Iε23

)
C−1︸ ︷︷ ︸

Volume penalty

+

2∑
i=1

α1α2

〈
K

(i)
3 − 2

〉α2−1

m

(
J

(i)
4 1 +I1M

(i) − 2 sym
[
CM (i)

])
︸ ︷︷ ︸

Fiber contributions

.

Model ΨB:

1

2
S2,B =

c1

I
1/3
3

(
1−I1

3
C−1

)
︸ ︷︷ ︸

Ground substance

+ ε1ε2α5

(
Iε23 +

1

Iε23

− 2

)α5−1(
Iε23 −

1

Iε23

)
C−1︸ ︷︷ ︸

Volume penalty

+

2∑
i=1

k1

I
1/3
3

exp

(
k2

〈
J

(i)
4

I
1/3
3

− 1

〉2

m

)〈
J

(i)
4

I
1/3
3

− 1

〉
m

(
M (i) − 1

3
C−1

)
︸ ︷︷ ︸

Fiber contributions

.

Model ΨC:

1

2
S2,C =

c1

I
1/3
3

(
1−I1

3
C−1

)
︸ ︷︷ ︸

Ground substance

+ ε1ε2

(
Iε23 −

1

Iε23

)
C−1︸ ︷︷ ︸

Volume penalty

+

2∑
i=1

α3α4

I
1/3
3

〈
J

(i)
4

I
1/3
3

− 1

〉α4−1

m

(
M (i) − 1

3
C−1

)
︸ ︷︷ ︸

Fiber contributions

.

Model ΨD:

1

2
S2,D = c1

(
1−C−1

)︸ ︷︷ ︸
Ground substance

+ ε1ε2

(
Iε23 −

1

Iε23

)
C−1︸ ︷︷ ︸

Volume penalty

+

2∑
i=1

α3α4

〈
J

(i)
4 − 1

〉α4−1

m
M (i)

︸ ︷︷ ︸
Fiber contributions

.

Model ΨE:

1

2
S2,E = c1

(
1−C−1

)︸ ︷︷ ︸
Ground substance

+ ε1ε2

(
Iε23 −

1

Iε23

)
C−1︸ ︷︷ ︸

Volume penalty

+

2∑
i=1

k1 exp

(
k2

〈
J

(i)
4 − 1

〉2

m

)〈
J

(i)
4 − 1

〉
m
M (i)

︸ ︷︷ ︸
Fiber contributions

.

Table 1.2: Second Piola-Kirchhoff stress tensors for the polyconvex anisotropic and quasi-
incompressible strain energy densities used in Brands, Klawonn, Rheinbach, and Schröder [23].

1111



CHAPTER 1. INTRODUCTIONCHAPTER 1. INTRODUCTION MATERIAL PARAMETER SETS FITTED TO . . .MATERIAL PARAMETER SETS FITTED TO . . .

= σ2
11 + σ2

22 + σ2
33 − (σ11σ22 + σ22σ33 + σ33σ11) + 3(σ2

12 + σ2
23 + σ2

31) . (1.1.15)

1.1.3 Material Parameter Sets Fitted to Experimental Data

In this subsection, we reproduce and shortly discuss the material parameter sets for the previ-

ously presented stored energy functions ΨX , X = A,B,C,D,E, exactly as they were introduced

in Brands, Klawonn, Rheinbach, and Schröder [23]. Also in Brands, Klawonn, Rheinbach, and

Schröder [23], a description of the fitting to experimentally measured data is given; see also Balzani

[10] for prior work. Further improvements to this process are given in Brinkhues, Klawonn, Rhein-

bach, and Schröder [25] and Brinkhues [24].

The presented simulations in Chapter 3 are based on the material parameter sets compiled in Ta-

ble 1.3.

Material Parameters for the Adventitita and Media Layers (cf. [23])

Set Model Layer c1 ε1 ε2 α1 α2 α3 α4 α5 k1 k2

[kPa] [kPa] [-] [kPa] [-] [kPa] [-] [-] [kPa] [-]

adv. 7.5 100.0 20.0 1.5 · 1010 20.0 – – – – –
1 ΨA med. 17.5 100.0 50.0 5.0 · 105 7.0 – – – – –

adv. 6.6 23.9 10.0 1503.0 6.3 – – – – –
2 ΨA med. 17.5 499.8 2.4 30001.9 5.1 – – – – –

adv. 6.2 101.0 10.0 – – – – 3.0 6.0 20.0
3 ΨB med. 10.7 207.1 9.7 – – – – 10.0 1018.8 20.0

adv. 6.8 52.5 10.0 – – 1005.2 6.3 – – –
4 ΨC med. 11.8 84.2 5.94 – – 49999.1 4.1 – – –

adv. 7.0 50.3 3.0 – – 10010.8 8.2 – – –
5 ΨD med. 10.9 84.4 5.69 – – 10002.1 3.32 – – –

adv. 6.1 49.7 3.1 – – – – – 5.5 20.0
6 ΨE med. 9.7 95.3 3.8 – – – – – 687.6 20.0

Table 1.3: Sets of material parameters for the representation of adventitia (adv.) and media
(med.) layers. Set-1 is taken from Balzani [10]. All other parameter sets were computed using an
optimization strategy based on least squares fittings. The exact procedure is described in Brands,
Klawonn, Rheinbach, and Schröder [23] and was improved in Brinkhues, Klawonn, Rheinbach, and
Schröder [25].

Note that the penalty parameters for the volume penalty term have also been fitted to experimental

data. Further, some principal restrictions on the material parameters apply:

c1 > 0, ε1 > 0, ε2 > 1, α1 > 0, α2 > 2 ,

α3 > 0, α4 > 2, α5 > 2, k1 > 0, k2 > 0 .
(1.1.16)

The penalty weight factor ε1 is intuitively required to be positive. For the volume penalty function

ε2 is restricted so that the penalty function is convex in I3 = det [C]. For α4 > 2 and α5 > 2,

the stored energy densities can be seen to be twice continuously differentiable. This is a necessary

prerequisite for Fréchet differentiability of the strain energy potential.

Remark 1.1.6 (Relaxed Volume Penalty Parameters). For some of our computations presented

in Chapter 3, we have relaxed the volume penalty parameters by setting ε1 = 10 and ε2 = 4. This

alteration to a material parameter set is marked by the keyword relaxed next to the number of the

parameter set, e.g., Set-2 relaxed.
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For similar choices of parameters in the context of Augmented Lagrange methods, see Brinkhues,

Klawonn, Rheinbach, and Schröder [25].

Precisely following the computations presented in Brands, Klawonn, Rheinbach, and Schröder [23],

we use the same set of material parameters for the plaque components in the present work. More

precisely, the plaque architecture is modeled by the strain energy density ΨMR.

Material Parameters for the Plaque Components

β1 = 80 [kPa] η1 = 250 [kPa] , and δ1 = 2000 [kPa] .

In order to obtain a stress-free reference state for the plaque material model ΨMR, the material

parameter δ2 is determined by the equation

0 = β1 + 2η1 + δ1 − δ2 . (1.1.17)

This is implied by the particular form of the presented second Piola Kirchhoff stress tensor S2,MR

for C = 1.

1.2 Aspects of Nonlinear Finite Element Methods

We shall focus on selected aspects of nonlinear finite element methods which are of particular

interest for the present thesis. These are applied to the previously presented anisotropic hypere-

lastic framework. For a detailed exposition of the implementation of the polyconvex, anisotropic

and incompressible material laws considered here, we refer the interested reader to Balzani [10]

and to Brinkhues [24]. In the present context, we have explicitly strived to use libfw-js as a

blackbox material library with a well-defined interface. For a general introduction to nonlinear

finite element methods, see, e.g., Ciarlet [28, 29] or Wriggers [137].

For the introduction of finite element methods, we choose a configuration space for the body given

by the following weakly differentiable Sobolev functions

CΩ = {u ∈ H1(Ω)3 : det [∇u] > 0} .

The admissible configurations are to satisfy prescribed Dirichlet boundary conditions given by

uD ∈ H1/2(∂Ω), i.e.,

A = {u ∈ CΩ : u|∂ΩD = uD} .

Admissible variations are required to leave the Dirichlet boundary conditions fixed, i.e., we have

TϕA = {∆u ∈ H1(Ω)3 : ∆u|∂ΩD = 0} .

Note that TϕA corresponds to the space of Newton corrections in Newton’s method. This implies

that the values on the Dirichlet boundary are never updated in Newton’s algorithm, i.e., we have

∀n ≥ 0 : u(n+1)|ΩD = u(n)|ΩD + ∆u(n)|ΩD︸ ︷︷ ︸
= 0

= u(0)|ΩD = uD .

This sets the stage for the introduction of the discretization and linearization of the balance of

virtual work using nonlinear finite element methods.
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1.2.1 Linearization of the Equilibrium Equations

In the given frame of finite anisotropic hyperelasticity, the problem at hand is to numerically

approximate an admissible configuration of the problem geometry Ω in equilibrium satisfying the

boundary conditions of place and tractions. In what follows, we derive the general form of the

linear problems to be solved using parallel FETI-DP methods. These are introduced in §1.3 and

represent the linear solution strategy for the Newton-Krylov-FETI-DP solver mparfeap presented

in Chapter 2. This solver was used for the numerical applications presented in Chapter 3.

Equilibrium of Forces

A hyperelastic body (Ω, Celas
Ω ,Ψ) in configuration ϕ ∈ A ⊆ Celas

Ω is in equilibrium if

∀δϕ ∈ TϕA : Gint|ϕ(δϕ) − Gext|ϕ(δϕ) = 0 . (1.2.18)

Let us now briefly indicate how this problem is linearized and discretized using finite element

methods for the application of a Newton-Krylov-FETI-DP method. We introduce a finite element

subspace

V h := span
({

(ehi )1≤i≤Nh
})
⊆ TϕA .

It is spanned by basis functions (ehi )1≤i≤Nh and is of dimension dimV h = Nh.

The globally assembled stiffness matrices and load vectors are obtained by inserting the finite

element basis functions into the linearizations of the internal and external virtual work functionals:

K int(ϕh)ij := dϕG
int
∣∣
ϕh

(ehi , e
h
j ) = d2

ϕΠint
∣∣
ϕh

(ehi , e
h
j ) for 1 ≤ i, j ≤ Nh , (1.2.19)

Kext(ϕh)ij := dϕG
ext
∣∣
ϕh

(ehi , e
h
j ) for 1 ≤ i, j ≤ Nh , (1.2.20)

f int(ϕh)i := − Gint
∣∣
ϕh

(ehi ) for 1 ≤ i ≤ Nh , (1.2.21)

f ext(ϕh)i := − Gext
∣∣
ϕh

(ehi ) for 1 ≤ i ≤ Nh . (1.2.22)

For notational convenience, we shall identify finite element functions with their coefficient vectors,

e.g., we identify

[δϕh] ∈ RN
h ∼= δϕh =

Nh∑
i=1

[δϕh]i e
h
i ∈ V h , and (1.2.23)

[∆ϕh] ∈ RN
h ∼= ∆ϕh =

Nh∑
j=1

[∆ϕh]j e
h
j ∈ V h . (1.2.24)

Let us now work towards a first order Taylor expansion of the equilibrium equation based at ϕh

for a given perturbation ∆ϕh. We first expand a virtual work functional in general form to first

order

G|ϕh+∆ϕh (δϕh) = G|ϕh (δϕh) + dϕG|ϕh (δϕh,∆ϕh) + h. o. t. in ∆ϕh (1.2.25)

= −(δϕh)T f(ϕh) + (δϕh)TK(ϕh)∆ϕh + h. o. t. in ∆ϕh (1.2.26)

= (δϕh)T
[
K(ϕh)∆ϕh − f(ϕh)

]
+ h. o. t. in ∆ϕh . (1.2.27)

Applying this to both Gint and Gext separately and dropping the higher order terms, we arrive at

the discretization of the linearized condition for an equilibrium of virtual work

∀δϕh ∈ V h : 0 = (δϕh)T

[(
K int(ϕh)−Kext(ϕh)

)
︸ ︷︷ ︸

=: K(ϕh)

∆ϕh −
(
f int(ϕh)− f ext(ϕh)

)
︸ ︷︷ ︸

=: f(ϕh)

]
. (1.2.28)
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Assuming invertibility, this is satisfied by a Newton-correction ∆ϕh if and only if it solves the

bracketed linear equation systemK int(ϕh)︸ ︷︷ ︸
symmetric

− Kext(ϕh)︸ ︷︷ ︸
possibly

non−symmetric

∆ϕh = f int(ϕh) − f ext(ϕh) . (1.2.29)

Thus, to determine a Newton-correction for ϕ, in general, we have to solve a possibly non-symmetric

linear equation system

K(ϕh)∆ϕh = f(ϕh) (1.2.30)

in every step of Newton’s algorithm. An equivalent formulation written with respect to the dis-

placement u := ϕ− idΩ is straight-forward to derive. In the present work, we shall use a parallel

FETI-DP method for the computation of the Newton corrections. Note that we have used a

symmetric linear solver for all presented computations. To this end, the FETI-DP-solver due

to Rheinbach [110] was initialized from the upper right triangle of K(ϕh). In other words, this

strategy uses the symmetric system matrix with entries

KS(ϕh)ij :=

{
K(ϕh)ij : for i ≤ j
K(ϕh)ji : for i > j .

(1.2.31)

For pressure loads leading to a non-symmetric contribution Kext(ϕh), we have that

K(ϕh) 6= KS(ϕh). For computations without pressure loads (or with conservative pressure loads),

it follows that K(ϕh) = KS(ϕh). The latter is the case for our weak-scalability experiments for

biological soft tissues presented in §3.4. Note that these tension tests are formulated using Dirich-

let boundary data only. In our computations of the von Mises equivalent stresses in §3.2, the

Newton-Krylov-FETI-DP solver computed the Newton corrections determined by the system

KS(ϕh)∆ϕh = f(ϕh) . (1.2.32)

There is a large body of literature on so-called Newton-like methods with modified tangent stiff-

ness matrices. The use of approximate tangents is well-known to affect the convergence rate of

Newton’s method. Although a deterioration is in general to be expected, we have not noticed any

adverse effects, i.e., we have observed a quadratic convergence rate in our numerical experiments

in Chapter 3. This may be due to a mild non-symmetry. In such cases, the use of KS(ϕh) or

sym
[
K(ϕh)

]
= 1

2 (K(ϕh) + K(ϕh)T ) as the system matrix is an attractive approach, often used

in the engineering community. Similar to the present approach, non-symmetric tangent stiffnesses

were symmetrized in Pierson [107, p. 64]. There, probably, the author used system matrices of

the form sym
[
K(ϕh)

]
= 1

2 (K(ϕh) + K(ϕh)T ) for the application of Newton-Krylov-FETI-DP to

co-rotational nonlinear elasticity. Note that, also in Pierson [107, p. 64], a reference is given to the

dissertation by Haugen [61] indicating that the use of a symmetrized tangent has been observed to

not deteriorate the convergence properties of the outer Newton’s method. On a sidenote, we also

want to mention an interesting account given by Simo [121] on the symmetry of second derivatives.

1.2.2 Symmetry and Spectrum of the Finite Element Stiffness Matrix

Let us shortly present what is well-known regarding the symmetry of the discretized stiffness

matrices and on their spectrum. For the construction of suitable preconditioners, it is certainly of

interest under which conditions the finite element stiffness matrices arising from the linearization

of the equilibrium equations of nonlinear hyperelasticity are symmetric for a standard Galerkin-

ansatz. We recall that the finite element matrix in our setting consists of two contributions:

K(ϕh) := K int(ϕh)−Kext(ϕh) .
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It is not hard to see the symmetry of the bilinear form obtained from the linearization of the interior

virtual work functional Gint. Inserting a pair of finite element basis functions ehi , e
h
j ∈ Vh ⊆ TϕA,

we easily infer symmetry of the stiffness matrix

K int(ϕh)ij = d2
ϕΠint|ϕh(ehi , e

h
j ) = d2

ϕΠint|ϕh(ehj , e
h
i ) = K int(ϕh)ji . (1.2.33)

Detailed derivations for the first and second variation of the internal strain energy in a displacement

formulation are given in Appendix A. They are, however, not derived for the F -method which we

have used to reduce volume locking effects and a remark seems in order.

Remark 1.2.1 (Symmetry of K int(ϕ) in F methods). Following the dissertation by Freischläger

[54], it is known that the symmetry of the global finite element tangent stiffness matrix K int(ϕ)

is not affected by the F-method used in Brands, Klawonn, Rheinbach, and Schröder [23]. That

method is based on Simo [122]; see also Nagtegaal and Fox [99]. Note that we have used the same

implementation for the computations presented in the present thesis. This is not necessarily the

case, e.g., Souza and Neto proposed a method which, in general, leads to a non-symmetric stiffness

matrix K int(ϕh).

If the prescribed configuration-dependent loadings are not conservative, the matrix Kext(ϕh) is

not symmetric. Any information on the structure of the spectrum and on positive definiteness

of the contributions to K(ϕh) are certainly of interest. For example, the implementation of finite

element approximations to material laws in hyperelastic formulations is a demanding task and thus

error prone. A possible, very simple sanity check is to verify the symmetry of the interior tangent

stiffness matrix K int(ϕh). Note that for a displacement (or an F-formulation) with dead loads, or

conservative configuration-dependent loadings, the matrix K(ϕh) is also symmetric.

Let us turn towards the spectrum of the stiffness matrices. Knowledge on the spectrum of the finite

element stiffness matrices K int(ϕh) is certainly of interest for the construction of preconditioners.

The study of the spectrum of the finite element stiffness matrix is routine in stability and bifurcation

analysis of structures, see, e.g. the monographs due to Allen and Bulson [2], Bažant and Cedolin

[16], Thompson and Hunt [131]; see also Wriggers [137] for a very nice condensed overview.

Since K int(ϕh) is a real symmetric matrix, it has real spectrum

spec(K int(ϕh)) ⊆ R .

In particular, the spectrum may contain negative eigenvalues. Further, for non-conservative

configuration-dependent loads, i.e., loadingss which do not derive from a potential, the symmetry

of the stiffness matrix K(ϕh) is in general lost, since Kext(ϕh) is not symmetric then. This just

implies the obvious

spec(K(ϕh)) ⊆ C, while spec(KS(ϕh)) ⊆ R

which is, it seems, all that can be expected, in general.

Note that unstable equilibria such as buckling and other types of elastic instability are a physi-

cal reality. In the discretized setting, these appear as negative or zero eigenvalues contained in

spec(K(ϕh)). Polyconvex strain energy densities do allow for unstable equilibria; see Balzani [10,

p. 50]. In other words, indefinite finite element system matrices K int(ϕh) may arise and may

be unexpected for polyconvexity is a generalization of convexity. The possible indefiniteness of

K int(ϕh) has to be seen as a necessary requirement of the framework.

Currently, there is no support for large scale stability analysis in the presented Newton-Krylov-

FETI-DP solver mparfeap. In mparfeap, we have enabled the use of symmetric storage and

solvers in the PETSc-based FETI-DP-solver due to Rheinbach [110]. This reduces the critical
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memory footprint of the linear solution phases. In turn, the parallel scalability of Newton-Krylov-

FETI-DP was improved, as this allows for larger coarse problems. More precisely, it allows for the

Cholesky-factorization thereof.

1.2.3 Load Stepping as a Homotopy Method

In computational structural mechanics, it is common practice to consider homotopy methods

parametrizing the boundary conditions. This is called load-stepping or incremental loading. Typ-

ically the surface loadings or exterior forces to which a given mechanical structure is subjected

cannot be imposed instantaneously since the nonlinear problem at hand is too ill-conditioned for

this to succeed. It is natural to load the structure incrementally, considering the time-dependent

case. In the dynamic equations of motion, the structure is loaded with a loading rate, i.e., the full

load is never instantaneously imposed in reality.

In the previously presented quasi-static setting for hyperelasticity, we have to compute a root

u∗ ∈ V h ⊆ A of the equilibrium equation. For this, we shall use an adaptive load stepping

strategy implemented in mparfeap. The classical load stepping method is a particular homotopy

method. We consider it based on the well-known Newton’s method. Let us introduce the nonlinear

residual for a discrete displacement R : Rn → Rn and the associated root finding problem

R(u∗)
!
= 0 .

IfR is differentiable and meets some standard assumptions (see, e.g., Deuflhard [34]), a root may be

efficiently located using the classical Newton algorithm for a suitable initial guess u(0) := u0 ∈ Rn.

To this end, one iterates Newton’s scheme for n = 0 until convergence:

duR(u)|u(n)

(
∆u(n)

)
= −R(u(n)) (Linear solve)

u(n+1) = u(n) + ∆u(n) (Update)

Convergence only occurs for a suitable initial guess u(0) near a simple root u∗ ∈ Rn. In that case the

convergence rate is quadratic. The quadratic convergence is clearly a local property, i.e., it depends

heavily on a good choice for u(0). Thus, globalized Newton’s methods have been invented in order

to recover convergence in situations where the local Newton’s scheme diverges; see Deuflhard [34]

and references therein.

One possible globalization strategy is the family of homotopy methods for Newton’s method.

The idea is to introduce a sequence of starting values for which the Newton algorithm converges

quadratically to useful intermediate solutions. To this end, one or multiple additional parameters

are introduced. Let us focus on the case of a single homotopy parameter, say t ∈ [0, T ]. This

leads to a family R : Rn × [0, T ]→ Rn which we shall denote by Rt(u) := R(u, t) . Moreover, it is

required that the original residual is recovered for t = T :

RT (u) = R(u, T ) = R(u) .

Thus a root u∗T of

RT (u∗T ) = 0 = R(u∗T )

also solves the original problem. Further, R0 corresponds to a nonlinear or linear problem which

is simple (or at least possible) to solve.

Let us introduce a sequence of intermediate solutions u∗i := u∗ti corresponding to a strictly mono-

tone sequence

0 = t0 < t1 < . . . < ti < . . . < tN = T, 0 ≤ i ≤ N .
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We denote the parameter increments by ∆ti := ti+1− ti > 0, for i ≥ 0 . The Newton algorithm for

the computation of the next solution u∗i+1 = u∗ti+1
is then started with the last converged solution,

i.e.,

u
(0)
i+1 = u∗i .

For the particular case of our mechanical problem, this ensures that it always stays close to its

equilibrium of forces. In our experience, it is necessary to keep the system close to the equilibrium

of forces. The growth of the polyconvex models here considered is extreme and evaluations far

from the equilibrium of forces produce numerical exceptions immediately.

The introduction of a pseudo-time t parametrizing the loading, similar to the time dependent case,

leads to an intuitive homotopy method called load stepping. More explicitly, let us consider the

discrete balance of forces in an elastic body as a residual which we write, slightly abusing notation,

as

R(u, t) = Gint(u;BC(t))−Gext(u;BC(t))

depending on the displacement u and (in part implicitly) on the boundary conditions BC(t) which

are parametrized by a pseudo-time t ∈ [0, T ].3 We set

BCfull := “ fully applied boundary conditions ” ,

BCrest := “ boundary conditions at rest ” ,

BC(0) = BCrest and BC(T ) = BCfull .

In load-stepping, parametrizations of the boundary conditions are used to generate discrete ho-

motopy paths of solutions ti 7→ u∗i through incremental loading. The mapping t 7→ BC(t) is also

called a loading curve.

Although in general quite successful, this strategy may fail in certain cases. For instance, a

continuous path of solutions t 7→ u∗t may lead to bifurcation points, e.g., when the structure

starts to buckle. In such cases, the parallel solver mparfeap usually just breaks down in the

load-stepping procedure due to a nearly singular tangent stiffness matrix. More specifically, we

observe stagnation, i.e., the adaptively computed load step size at the i-th successful solution is

then reduced with every failed step, here indexed by k to yield

lim
k→∞

∆tik → 0 .

Note that an optimal choice for ∆ti is not readily available, even if no singular points are encoun-

tered. One of the strengths of FEAP is that it allows the user to interactively explore the sensitivity

of the simulation, e.g., for bifurcation analysis. It is generelly well-designed for exploration of non-

linear dynamics. In the current version of mparfeap is not capable to continue in such cases.

Automated techniques to control the global nonlinear dynamics for large-scale problems in a more

stable way are known, see, e.g., Wriggers [137], but they are outside the scope of this work. Let

us just note, that such methods are not straight-forward to apply in the large scale.

1.3 Domain Decomposition Methods4

This section provides a highly condensed introduction to the FETI-DP method (Dual Primal

Finite Element Tearing and Interconnecting), a non-overlapping domain decomposition method,

used as a linear solution algorithm in a Newton-Krylov scheme.

3Note that Dirichlet boundary conditions are enforced by At := A(BC(t)), i.e., the space of admissible configu-
rations also depends on the pseudo-time t ∈ [0, T ].

4Parts of this section are based on a text prepared for a joint D-A-CH research proposal.
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Domain decomposition methods constitute a thriving family of iterative solution methods for linear

(or nonlinear) boundary value problems based on a geometric decomposition of the problem domain

Ω into smaller subdomains Ωi, 1 ≤ i ≤ N . By restriction of the global solution function space

V to the subdomains Ωi one obtains induced local solution function spaces V (i) defined on the

subdomains. This allows to formulate solution algorithms for boundary value problems in terms

of the decoupled local solution spaces and certain coupling conditions linking the local solutions

in such a way that a global solution can still be recovered.

Historically, the development of linear geometric domain decomposition methods can be traced back

to the late 19th century, when Hermann A. Schwarz invented a domain decomposition method for

the construction of explicit solutions for the Dirichlet problem [119]. His original method is well-

known today as the alternating overlapping Schwarz method. However, due to the success of the

direct methods in the calculus of variations the general interest in applying domain decomposition

methods as an analytical tool diminished. The interest in domain decomposition methods then

rekindled again in the context of finite element approximations of linear boundary value problems

due to some particularly favorable properties, e.g.:

• the applicability of domain decomposition methods to finite element approximations of

boundary value problems formulated on geometrically complex computational domains and

in arbitrary dimensions,

• the robustness which is often observed for problems in structural mechanics, and

• the fact that domain decomposition methods lend themselves naturally to the construction

of highly scalable parallel solution methods.5

An in-depth introduction to the broad subject of domain decomposition is not our goal here. Ele-

gant and general introductory expositions of domain decomposition methods for partial differential

equations are readily available in the monographs by Quarteroni and Valli [108], Smith, Bjørstad,

and Gropp [124] and Toselli and Widlund [132]. There, detailed and concise account is given to

the fundamental original contributions of the field and a wealth of useful references is provided.

It seems appropriate to mention at least some essential contributions and selected references for

the following important families of domain decomposition methods:

• Overlapping Schwarz methods [119] (further, e.g., [132]),

• FETI-1 [44] (further, e.g., [17, 46, 47, 74, 94]),

• FETI-DP [49] (further, e.g., [48, 69, 71, 73, 75, 77, 79, 80, 95, 107]),

• BDDC [35] (further, e.g., [36, 83, 89, 90, 93, 96, 134, 135]; see also [30, 53]), and

• GDSW [39] (further, e.g., [38, 40, 41]).

Our focus here is only on non-overlapping domain decomposition methods of the FETI-DP type.

5This inspired the development of the parallel PETSc software library.
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Let us first introduce some fundamental vocabulary:

Definition 1.3.1 (Non-Overlapping Domain Decomposition). A family of domains Ωi ⊂ Rn,

i = 1, . . . , N is called a non-overlapping decomposition of a domain Ω ⊂ Rn into subdomains,

if

Ω =

N⋃
i=1

Ωi and vol(Ωi ∩ Ωj) = 0 , ∀ 1 ≤ i 6= j ≤ N ,

where vol denotes the Lebesgue-measure in Rn.

A non-overlapping domain decomposition induces an internal interface separating the interiors of

the subdomains Ωi, 1 ≤ i ≤ N .

Definition 1.3.2 (The Internal Interface). The internal interface associated to a non-

overlapping decomposition of a domain Ω is given by

Γ :=

N⋃
i=1

∂Ωi \ ∂Ω .

The decomposition of a computational domain Ω into a family of computational subdomains Ωi,

i = 1, . . . , N induces an embedding of the original global solution space V defined on Ω into a

cartesian product of local spaces V (i) defined on Ωi:

V ↪→
N∏
i=1

V (i) ∼=
N⊕
i=1

V (i) . (1.3.34)

There are different ways to partition the computational domain. In the present work, we have

chosen to decompose cuboidal domains into cuboidal subdomains. This is a standard approach,

commonly referred to as a structured domain decomposition. This eases the setup for weak scal-

ability testing. For more complex geometries, e.g., arterial wall geometries, the sequential graph

partitioner METIS, see Karypis, Schloegel, and Kumar [67], was used for the generation of the

domain decompositions.

Consider now a computational domain Ω decomposed into N ∈ N nonoverlapping subdomains

Ωi, 1 ≤ i ≤ N . FETI, and also any other geometric domain decomposition method, recovers a

global solution u ∈ V for a boundary value problem from local solutions u(i) ∈ V (i) defined on

the subdomains Ωi. The interconnection of local solution patches along the internal interface Γ

requires that the local solutions u(i) satisfy additional transmission conditions. In our scenario,

we shall work with the Sobolev Hilbert spaces V = H1(Ω)3 and V (i) = H1(Ωi)
3. A first natural

transmission condition between local solution functions u(i) is continuity of u on the internal

interface Γ. Under reasonable and standard assumptions this implies H1-regularity for the global

function u. To also satisfy the partial differential equation, the local solutions u(i) usually have to

satisfy additional conditions on the interface. For example, if we consider a Poisson model problem

and a decomposition into two subdomains, see Toselli and Widlund [132, Section 1.1], the normal

derivatives of the local solutions must also be continuous.

We restrict our attention to finite element discretizations defined on the subdomains Ωi which

match on the subdomain interfaces. The local stiffness matrices K(i) and local load vectors f (i),

i = 1, . . . , N can be independently assembled in parallel. Let us introduce the following notation
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K :=

N⊕
i=1

K(i) =

 K(1)

. . .

K(N)

 ,
u :=

N⊕
i=1

u(i) =

 u(1)

...

u(N)

 ,
f :=

N⊕
i=1

f (i) =

 f (1)

...

f (N)

 .
(1.3.35)

Note that the global degrees of freedom spanning V which are located on the interface Γ are split

into multiple local degrees of freedom in different V (i). Accordingly, the discrete space for the

iteration
⊕N

i=1 V
(i) allows for multiple, arbitrary values of the local degrees of freedom located on

the interface Γ. Thus, the iteration space
⊕N

i=1 V
(i) contains finite element functions which are

discontinuous on Γ. Only on convergence of the GMRES (or CG) algorithm the discrete solution

u is single-valued and satisfies the transmission conditions on Γ. The degrees of freedom can be

partitioned into interface variables Γ and interior variables I. This induces a Schur complement

on every subdomain given by

S(i) := K
(i)
ΓΓ −K

(i)
ΓI

(
K

(i)
II

)−1

K
(i)
IΓ (1.3.36)

and we can form the direct sum to obtain

S :=

N⊕
i=1

S(i) =

 S(1)

. . .

S(N)

 . (1.3.37)

In the following two subsections, we introduce the FETI-1 and FETI-DP methods.

1.3.1 The FETI-1 Method

We begin by introducing the FETI jump operator B = [B(1), . . . , B(N)] which measures how the

local parts u(i), i = 1, . . . , N , of u = [u(1)T , . . . , u(N)T ]T jump over the internal interface Γ. The

entries of B are in {0, 1,−1} and the operator computes differences of local values of u at matching

finite element nodes on the interface Γ. Thus, the linear constraint

Bu = 0

enforces continuity of the displacement u on the interface Γ. It is instructive to consider first the

case of a well-posed linear self-adjoint elliptic boundary value problem discretized by finite elements.

This is the most extensively studied and accessible scenario. After finite element discretization,

this problem can be cast into an unconstrained saddle point problem by introducing Lagrange

multipliers λ as follows

I(u, λ) :=
1

2
uTKu− fTu+ λTBu . (1.3.38)

Under the previously made assumptions K is a symmetric positive semi-definite matrix which can

be shown to be positive definite on the kernel of B. Determination of the critical points leads to

a linear system in saddle point form in the variables (u, λ) which reads:

d(u,λ)I(u, λ) = 0 ⇐⇒ Ku + BTλ = f

Bu = 0

}
. (1.3.39)

2121



CHAPTER 1. INTRODUCTIONCHAPTER 1. INTRODUCTION THE FETI-DP METHODTHE FETI-DP METHOD

This system can be solved by first eliminating the displacement variables u and solving the resulting

Schur complement system by conjugate gradients. Note again that the block diagonal matrix K

is in general only positive semidefinite. The general form for the solution can be written using a

pseudoinverse K+ of the stiffness matrix K and adding a suitable kernel element as follows

u = K+(f −BTλ) +Rα . (1.3.40)

The column space of R spans the kernel of K, i.e., we have range(R) = ker(K) and α parametrizes

the contribution lying in the null space of K. Note that the use of a pseudo-inverse is a typical

feature of the FETI-1 method.

The next construction step in the FETI-1 method introduced in Farhat [43], Farhat and Roux [45]

and Farhat and Roux [44] is then to enforce consistency of the linear system by use of a suitable

projection. This allows a complete solution strategy based on a pseudoinverse K+ of K. For a

choice of symmetric positive definite matrix Q, e.g., Q = I, the projection is constructed as follows:

PTFETI−1 := I −G(GTQG)−1GTQ, G := BR .

This construction enforces orthogonality to the kernel of K which is an essential feature of the

construction. Recall that the column space of R spans the kernel of K, i.e., we have range(R) =

ker(K). This can be considered as a drawback of the FETI-1 method, if the kernel of K is not

explicitly known as it can be difficult to compute it numerically in a robust and reliable way.

The projection PFETI−1 provides FETI-1 with a coarse problem if the K(i) have a nontrivial kernel.

In general, the matrix Q contributing to PFETI−1 is chosen such that the method is robust with

respect to the choice of parameters, i.e., it has to accomodate coefficient jumps. In the FETI-1

method, the following equation has to be solved

PTFETI−1 FFETI−1 λ = PTFETI−1 d , (1.3.41)

with FFETI−1 := BK+BT .

Since we do not use the FETI-1 method in the present text, we refer the interested reader to [132]

for more details.

1.3.2 The FETI-DP Method

The FETI-DP (Dual Primal Finite Element Tearing and Interconnecting) method was first intro-

duced in Farhat, Lesoinne, Le Tallec, Pierson, and Rixen [49]. It partitions the interface degrees

of freedom on Γ into two disjoint sets: primal degrees of freedom and dual degrees of freedom.

By construction the primal variables ũΠ exactly satisfy a prescribed set of primal continuity con-

straints. This can, e.g., be achieved by a partial assembly operation which we denote by tilde

operators. For example, ũ denotes a vector satisfying the primal constraints exactly throughout

iterations. On the dual interface degrees of freedom, the continuity constraint Bu = 0 is enforced

through Lagrange multipliers λ, as in the FETI-1 method. The primal subspace provides FETI-DP

with a coarse problem. The possibility of different choices for the primal coarse space entail a whole

family of FETI-DP algorithms. Good scalability results in three dimensions in general require ad-

equate coarse spaces. Let us introduce some possible strategies to select primal constraints. One

may, e.g., impose vertex constraints, continuity constraints for edge and face averages, or continuity

of higher order moments; see, for instance, Farhat, Lesoinne, and Pierson [48], Klawonn, Widlund,

and Dryja [79], and Klawonn and Widlund [75, 76, 77].

We have used O. Rheinbach’s implementation of FETI-DP presented in Klawonn and Rheinbach

[70] and Rheinbach [110] as a nested linear solver component in a Newton-scheme. A so-called
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transformation of basis approach allows to include the primal constraints on edge averages required

by Algorithm C and Algorithm DE which we shall introduce shortly; see, e.g., Klawonn, Widlund,

and Dryja [79] and Klawonn and Rheinbach [70]. A detailed description of the approach and

its implementation is available in the dissertation of Rheinbach [110]. In [72] the robustness

properties of the transformation of basis approach are studied. For the historical development of

the transformation of basis approach we refer to the introduction of Klawonn, Widlund, and Dryja

[79], Klawonn and Widlund [77] and to Rheinbach [110].

Similar to the FETI-1 method, the FETI-DP method can be written as a saddle point problem6[
K̃ BT

B 0

] [
ũ

λ

]
=

[
f̃

0

]
.

Reflecting the restriction to a subspace satisfying the continuity constraint exactly in the primal

variables uΠ, the matrix K̃ and right hand side f̃ are partially assembled in the primal variables:

K̃ =


K

(1)
BB K̃

(1)T
ΠB

. . .
...

K
(N)
BB K̃

(N)T
ΠB

K̃
(1)
ΠB · · · K̃

(N)
ΠB K̃ΠΠ

 , f̃ =


f

(1)
B
...

f
(N)
B

f̃Π

 .
Let us assume again, that K derives from a self-adjoint and elliptic bilinear form. In contrast

to the previously presented FETI-1 approach, the local problems K
(i)
BB , i = 1, . . . , N can then

be shown to be invertible given a suitable choice of primal variables, i.e., coarse problem. Thus,

the primal variables in FETI-DP can be eliminated without using a pseudoinverse. The coupling

in the primal variables provides a coarse problem for the method. Moreover, the favorable block

structure of K̃ still allows for a completely independent parallel factorizaton of the local problems

K
(i)
BB , i = 1, . . . , N . In particular, the system of equations can be reduced in parallel to an equation

in λ and it finally remains to solve

BK̃−1BT︸ ︷︷ ︸
=:F

λ = d. (1.3.42)

This system is compactly written as

The FETI-DP Master System

Fλ = d . (1.3.43)

It is commonly referred to as the FETI-DP master system. Clearly FETI-DP is a dual method in

the sense that one solves for the Lagrange multipliers λ. We may also write F = BΓS̃−1BTΓ where

S̃ is obtained from K̃ by eliminating all variables interior to the subdomains. BΓ is obtained from

B by discarding all columns corresponding to interior variables. This motivates the definition of

the so-called Dirichlet preconditioner for F given by

The FETI-DP Dirichlet Preconditioner

M−1
D := BD,ΓS̃BTD,Γ. (1.3.44)

The matrices BD and BD,Γ are scaled variants of the jump operator B. In the simplest case, the

contribution from and to each interface degree of freedom is scaled by the inverse of the multiplicity

6Possibly after carrying out a transformation of basis which maps more general linear constraints, such as
continuity of edge or face averages, to nodal constraints.
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of the corresponding node. This is called multiplicity scaling. The multiplicity of a node is the

number of subdomains it is contained in. For strongly heterogeneous problems more elaborate

scalings defined by the coefficients ρi, are necessary; see, e.g., [77, p. 1532,Formula (4.3)] and [72,

p. 1403, Formula (6)]. For our numerical experiments, only multiplicity scaling was considered.

For some model problems, including linear elasticity, the condition number of the FETI-DP method

with the Dirichlet preconditioner MD can be explicitly estimated. Typically, a bound of the form

FETI-DP Condition Number Estimates

κ(M−1
D · F) = κ(BD,ΓS̃BTD,Γ ·BΓS̃−1BTΓ ) ≤ C (1 + log(H/h))2 (1.3.45)

is obtained. Here h denotes the typical finite element diameter and H denotes the typical diameter

of the subdomains Ωi, i = 1, . . . , N . The constant C is independent of h,H, and coefficient jumps.

For the case of a scalar second-order elliptic partial differential equation in two space dimensions,

without coefficient jumps across the interface, a polylogarithmic bound has been shown in early

work by Mandel and Tezaur [95]. The condition number estimate for the three-dimensional case

and scalar second-order elliptic equations with discontinuous coefficients can be found in Klawonn,

Widlund, and Dryja [79]. Using only vertex constraints as primal variables leads to a weaker

bound for dual-primal FETI methods. This theoretical result can also be observed numerically;

see Klawonn, Rheinbach, and Widlund [81] and Farhat, Lesoinne, and Pierson [48]. Theoretical

extensions for linear elasticity can be carried out along the lines of the theory given in Klawonn

and Widlund [77]. If edge averages (see definition below) are chosen as primal variables either

additionally or instead of the primal vertex constraints, a quadratic-logarithmic bound can be

obtained. For a proof in the case of scalar second-order elliptic equations, see Klawonn, Widlund,

and Dryja [79] and for the more elaborate case of linear elasticity Klawonn and Widlund [77].

Note that these bounds can be extended to irregular subdomains such as those obtained from

mesh partitioners. In Klawonn, Rheinbach, and Widlund [84], e.g., condition number bounds for

linear elasticity in two space dimensions were proved for subdomains of quite general shapes, so-

called Jones domains. To this end, the effects due to the wrinkled subdomain interfaces which

are often produced by graph partitioning approaches have been estimated; see also Dohrmann,

Klawonn, and Widlund [39] for related work.

We have already mentioned the attractive scalability properties of domain decomposition methods

of the FETI type. A short description of the term scalability is hence appropriate here. Solution

algorithms for linear equation systems are numerically scalable, if the computational costs of the

solution process up to a prescribed accuracy, e.g., atol = 10−9, grow at most linearly in the number

of unknowns. More specifically, for domain decomposition methods using CG as the Krylov method

this is the case if the condition number of the linear system is independent of the number of

subdomains. If, additionally, the condition number grows only weakly, e.g., polylogarithmically,

considered as a function of the local problem size H/h, we call the domain decomposition method

numerically scalable.

Taking the general perspective of parallel computing, two other, slightly different notions of scal-

ability, are commonly used. A parallel algorithm is parallel scalable if its runtime is inversely

proportional to the number of processors used. For example, doubling the number of processor

cores for a given fixed problem size ideally reduces the runtime by a factor of two. This property

is also referred to as strong scalability. There is a second important notion. Suppose that the

problem size and the number of processors are doubled simultaneously. If the runtime of a parallel

algorithm is not affected, the algorithm is weakly scalable.
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It is intuitive that numerical and parallel scalability are related and we consider the specific case

of FETI methods.

Remark 1.3.3 (On Numerical and Parallel Scalability for FETI-DP methods). The typical poly-

logarithmic bounds for the condition number of the preconditioned FETI-DP operator, e.g.,

κ(M−1
D · F) ≤ C (1 + log(H/h))2

imply numerical scalability. A bound of this type ensures that the condition number is bounded

independently of the number of subdomains. Further, it is only weakly dependent on the number of

degrees of freedom per subdomain which is measured by the quotient H/h. Numerical scalability is,

however, just a necessary condition for parallel scalability. The reverse implication does not hold

in general. Parallel scalability explicitly depends on the specific software implementation and the

hardware infrastructure.

In the context of elliptic problems, both, the numerical scalability and the parallel scalability, can

be shown to depend on a mechanism to transport information between the different subdomains

during the solution process. This global coupling mechanism is represented by a so-called coarse

space or coarse component. In FETI-DP methods this coarse space can, e.g., be induced by a

choice of primal continuity constraints.

FETI-DP methods have been shown to be parallel scalable for up to 65 000 processor cores in Kla-

wonn and Rheinbach [73]. For such parallel scalability, the coarse problem can in general only be

solved inexactly, e.g., due to memory constraints. This approach is referred to as inexact FETI-

DP; see, e.g., Klawonn and Rheinbach [71, 73]. In the context of this thesis, only exact FETI-DP

algorithms are considered.

1.3.3 FETI-DP Coarse Spaces and Algorithms

In FETI-DP, the primal coarse space is induced by the partial assembly operation enforcing conti-

nuity constraints on the primal part of the interior interface Γ. For the computations in hyperelas-

ticity which we present in Chapter 3, we experimented with three FETI-DP selection strategies for

the primal degrees of freedom, i.e., with three different coarse spaces. To describe these in some

more detail, we first introduce the sets of faces F , edges E and vertices V.

In the present work, we use a combinatorial definition of faces F , edges E and vertices V as given,

e.g., in Klawonn and Rheinbach [70, p.1528]. Towards a definition of the notions of faces, edges,

and vertices induced by a domain decomposition Ωi, i = 1, . . . , N , we shall make use of a certain

equivalence relation. Restricting ourselves to the nodes contained in ∂Ω, ∂Ωi, i = 1, . . . ,N and Γ,

we define

Nx := {j ∈ {1, . . . , N} : x ∈ ∂Ωj} (1.3.46)

for any interface nodal point x ∈ Γ. The set Nx collects the indices of all subdomains containing

the node x. We call the number |Nx| the multiplicity of x. The associated nodal graph represents

the nodal adjacency relations. For a node x ∈ Γ, we write Ccon(x) for the connected component

of the nodal subgraph induced by Nx. For two interface points x, y ∈ Γ, we further define the

following equivalence relation

x ∼ y ⇐⇒ Nx = Ny and y ∈ Ccon(x). (1.3.47)

Based on this construction, we can now introduce faces, edges, and vertices combinatorially as

follows:
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Definition 1.3.4 (Faces, Edges and Vertices).

x ∈ F ⇐⇒ |Nx| = 2 . (1.3.48)

x ∈ E ⇐⇒ |Nx| ≥ 3 and ∃y ∈ Γ, y 6= x, such that y ∼ x . (1.3.49)

x ∈ V ⇐⇒ |Nx| ≥ 3 and 6 ∃y ∈ Γ, such that x ∼ y . (1.3.50)

For the case of regular substructures, e.g., structured domain decompositions based on hexahedra

or tetrahedra, this combinatorial definition of faces, edges, and vertices is consistent with our basic

geometric intuition.

When approaching more realistic unstructured problems, the number of edges and potential edge

constraints for some subdomains can sometimes be insufficient. In this case, one may, e.g., add

constraints on some extra edges on ∂Ω, which otherwise would be regarded as part of a face. A

similar problem can appear for flat structures in which case additional constraints might be required

for each subdomain. Let us summarize that the presented selection strategy for the edge nodes

can be inadequate in certain cases. For a more in depth discussion including recovery strategies

and alternative definitions, see Klawonn and Rheinbach [70].

We introduce the additional notations F ij , E ik, Vil to enumerate the faces, edges and vertices local

to the subdomain Ωi. This allows us to present some possible choices for the primal constraints,

the coarse problem in FETI-DP, which are known to be scalable for linear elasticity in two or three

dimensions. We follow the original presentation given in Klawonn, Widlund, and Dryja [79], where

also the nomenclature Algorithm A, Algorithm B, . . . , was coined.

The primal coarse space introduced in the foundational work on FETI-DP due to Farhat, Lesoinne,

Le Tallec, Pierson, and Rixen [49] and analyzed in Mandel and Tezaur [95] is described by the

following algorithm:

Definition 1.3.5 (Algorithm A [49]). The primal coarse space is induced by enforcing

continuity of u on all vertex degrees of freedom defined by V in Γ.

It is well-known that this vertex-based Algorithm A scales well in two, but not in three space

dimensions.7 To improve scalability for three-dimensional problems, the coarse space of Algorithm

A for FETI-DP is to be adapted or enriched, e.g., by adding edge averages, as in:

Definition 1.3.6 (Algorithm C [79]). The primal coarse space is induced by enforcing

continuity of u on all the subdomain vertices V and the continuity of all edge averages uEik

taken over all edges E in Γ.

The next algorithm is a particular variant of the more general Algorithm D introduced in Klawonn,

Widlund, and Dryja [79] for elliptic model problems. It was consequently analyzed in Klawonn and

Widlund [77] for the case of three-dimensional linear elasticity. The specific variant and notation

DE has been introduced in Klawonn and Rheinbach [70]. There, also the parallel scalability for

linear elasticity was illustrated using an implementation of a transformation of basis approach.

Definition 1.3.7 (Algorithm DE [70]). The primal coarse space is generated by continuity

of uEik , i.e., by the continuity of the averages over all edges E in Γ.

7This also shows up in our applications of Newton-Krylov-FETI-DP to three-dimensional hyperelasticity. It
shall suffice here to report that Algorithm A was useful as an intermediate step to test the code.
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1.3.4 Newton-Krylov-FETI-DP for Hyperelasticity

For the solution of problems in nonlinear elasticity, we have chosen to apply FETI-DP to the

linearizations arising in a Newton scheme, i.e.:

Definition 1.3.8 (Newton-Krylov-FETI-DP). A Newton-Krylov-FETI-DP solver is an inex-

act Newton-solver using the FETI-DP method inside a Krylov subspace method for the iterative

solution of the linear systems which determine the Newton corrections ∆u.

An analysis on the influence of iterative solution strategies on a Newton scheme was given

by Dembo, Eisenstat, and Steihaug [32]. The usage of the implementation of the FETI-DP-

solver by O. Rheinbach leads to a Jacobian-free method, i.e., it relies on matrix vector multi-

plications instead of forming an explicit Jacobian, see, e.g., the survey article by Knoll and Keyes

[87].

The equilibrium of forces in our applications on hyperelasticity is governed by equation (1.2.18).

It corresponds to a nonlinear functional G(u) which is first linearized and then approximated by

finite elements. This leads to a symmetric, but posssibly indefinite, tangent stiffness matrix K(u)

for the case of dead loads. For the case of follower loads, we have resorted to a Newton-like

method by approximating the tangent stiffness matrix K(u) with a matrix KS(u) obtained by

reflecting the upper right triangle of K(u) at the main diagonal. A similar strategy was previously

applied by Pierson [107] to obtain a symmetric system matrix. In particular, this allows our FETI-

DP implementation to profit from symmetric matrix storage in PETSc and on an LDLT -type

decomposition in the direct solver phases.

Remark 1.3.9 (FETI-DP for Non-Symmetric Indefinite Problems). Application of Newton’s

method to hyperelasticity requires the solution of linear boundary value problems in order to de-

termine the Newton corrections ∆u. In the presence of follower loads, the discretization of the

equilibrium of forces leads, in general, to an unsymmetric and indefinite tangent stiffness ma-

trix K(u), see, e.g., [137] or our discussion on follower loads in Appendix A. To the best of our

knowledge, there are no established condition number bounds for our scenario; see the chapter

on indefinite and non-symmetric problems in Toselli and Widlund [132, Ch. 11] and references

therein. For other work on the symmetric indefinite case in elasticity, see, e.g., Farhat, Li, and

Avery [50] and Li and Tu [88] for BDDC. Note that the use of GMRES is in general necessary in

the indefinite case.

We have exclusively used GMRES without restart for our applications.

Polylogarithmic condition number estimates for FETI-DP, as previously presented, have been

obtained for model problems including, in particular, linear elasticity in three-dimensions. Linear

elasticity corresponds to a linearization of finite hyperelasticity in the reference configuration and

thus to K(u = 0). Experimental results as presented in Chapter 3 for u 6= 0 are thus of interest

to shed more light on the kind of convergence number bounds that can be expected for finite

strains. The MPI-parallel solver mparfeap presented in Chapter 2 is a Newton-Krylov-FETI-DP

solver based on a slightly modified version of the FETI-DP-solver by O. Rheinbach for the

computation of the Newton corrections. A simple but important improvement is the support of

symmetric matrix storage and LDLT decomposition. This reduces the memory requirements for

the coarse problem, a key to obtain good scalability results which we present in Chapter 3.

As the present thesis is part of a body of work arising from an ongoing research collaboration, we

want to mention some related work and shortly put it into perspective. The hyperelastic mod-

elling presented in Brands, Klawonn, Rheinbach, and Schröder [23] enforces the incompressibility

constraint of soft biological tissues approximatively by a penalty term. We follow this approach
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here. Augmented Lagrangian algorithms have been explored in Brinkhues, Klawonn, Rheinbach,

and Schröder [25] and in the dissertation by Brinkhues [24]. This approach allows the incompress-

ibility constraint to be satisfied up to a prescribed numerical tolerance, which is of interest but

outside of the scope of the present work. The F -approach used in Brands, Klawonn, Rheinbach,

and Schröder [23], Brinkhues, Klawonn, Rheinbach, and Schröder [25], Klawonn and Rheinbach

[73] which is due to Simo [122] reduces volume locking effects. Numerically scalable FETI-DP

algorithms for incompressible and almost incompressible linear elasticity have been proposed, but

are not yet applied here. For an overview and current work on efficient coarse spaces for incom-

pressible and almost incompressible linear elasticity, see, e.g, Gippert [55], Gippert, Klawonn, and

Rheinbach [57] and Gippert, Klawonn, and Rheinbach [56].

A still recent development are nonlinear domain-decomposition based preconditioners acting on

the level of the Newton scheme. Such approaches consequently lead to discontinuous Newton

corrections. Nonlinear FETI-DP and BDDC algorithms have been investigated, e.g., by Klawonn,

Lanser, and Rheinbach [86]; see also Klawonn, Lanser, Radtke, and Rheinbach [85]. Reduced

communication costs are expected to yield algorithms scaling up to the exascale. For related work

on applications of nonlinear domain decomposition methods in structural mechanics, see Gosselet

and Rey [58, 59].

Another highly interesting modern approach to preconditioning is to adaptively compute optimal

coarse spaces. This allows to improve the condition number of the preconditioned FETI-DP system

in situations where not much is known about the operator a priori. Large reductions in the

total number of FETI-DP iterations are possible. For recent work on adaptively computed coarse

spaces in FETI methods, see Klawonn, Radtke, and Rheinbach [78] and references therein; see

also Klawonn, Lanser, Radtke, and Rheinbach [85].

1.4 Tuning Newton-Krylov-FETI-DP in Load Stepping Strategies

In this section, we revisit load stepping as a homotopy method but in some more detail and

with a view on our implementation in mparfeap presented in Chapter 2 and the applications

in biomechanics presented in Chapter 3. In particular, we want to introduce two simple tuning

options for Newton-Krylov-FETI-DP profiting from load stepping: linear extrapolation for the

displacement u, and the choice of λ(n−1) as a dual initial guess for FETI-DP.

In applications in the continuum mechanics of soft biological tissues the arising root finding prob-

lems R(u) = 0 are delicate. We think that it is not bold to say that the presented simulations

of von Mises equivalent stress distributions in different layers of arterial wall structures in §3.2

with boundary conditions in the physiological regime are hopeless to be solved without an effective

globalization method. In the present work, we have chosen to implement a homotopy method for

the boundary conditions, i.e., load stepping, as the basic globalization method in mparfeap. This

is, de facto, a standard approach in the engineering community.

To clarify the presentation, we first introduce two simple conventions:

Definition 1.4.1 (Loading Attempt). A launch of the Newton solver with a given load is called a

loading attempt.

Definition 1.4.2 (Load Step). A load step is a successful loading attempt, i.e., a loading attempt

for which the implementation of the Newton solver signaled convergence.

In particular, the sequence of load steps is obtained from the sequence of all loading attempts by

simply removing all failed loading attempts. Further, we shall denote the index of:

• the loading attempt by a subscript l ∈ N,
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• the Newton step (in loading attempt l) by a superscript (n), n ∈ N0, and

• the GMRES iteration (in Newton step n) by a superscript (n,m), n,m ∈ N0.

To signify a converged quantity of an iterate scheme, we simply drop the corresponding itera-

tion index, e.g., limm→∞ λ
(n,m)
l = λ

(n)
l corresponds to the convergence of the GMRES for the

preconditioned FETI-DP method.

Two interdependent aspects which determine the quality of a load stepping strategy are certainly:

• Robustness – i.e., the completion of the simulation with full loading.

• Performance – i.e., the total runtime which depends for the most part on:

– Reductions and increments of the load step size.

– The initial value for the Newton method.

– The initial value for the Krylov method, i.e., for FETI-DP.

– Fast detection and early abortion of scenarios with a high probability of wasted effort

due to excessively “hard” nonlinear Newton or linear FETI-DP problems resulting from

an overly optimistic loading increment ∆tl, 1 ≤ l ≤ L.

Regarding the last point, we have made a few heuristic observations in our applications which we

have tried to exploit, at least to some degree, in our adaptive load stepping strategy.

Remark 1.4.3 (Reduction of the Loading Increment and FETI-DP/GMRES). Let us consider

the global stiffness matrix

K(tl+∆tl)(u
(n)
l+1) , (1.4.51)

assembled for a given loading attempt at pseudo-time tl+∆tl in Newton step n. The computational

cost of a Newton step is determined by the cost for the solution of the associated preconditioned

FETI-DP system. An intuitive measure for this is given by the number of GMRES iterations re-

quired to achieve convergence. Note that in our applications in biomechanics m ≥ 1000 GMRES

iterations were considered as “too expensive”. The time complexity of a single GMRES orthogonal-

ization step is quadratic in the number of Krylov vectors, hence iterations, i.e., in O(m2). Thus,

speedups can be achieved for a reduced loading increment if it leads to a sequence of global stiffness

matrices

K(tl+β∆tl)(u
(n)
l+1) , 0 < β < 1 , (1.4.52)

inducing a sequence of FETI-DP systems that are faster to solve. In general, getting closer to the

last computed equilibrium of virtual work, i.e., choosing an initial value and boundary conditions

closer to the last converged displacement ul has exactly this effect. Heuristically, there are two

main causes for a high number of GMRES steps: a large initial residual norm in comparison to

the absolute tolerance for convergence, or a preconditioned linear FETI-DP system which is nearly

singular. A small load reduction generally improves both scenarios. A decrease of the number of

Newton steps is also to be expected. However, it can be very expensive to waste a whole loading

attempt due to a single expensive linear problem.

Note that numerically singular systems are expected in the vicinity of bifurcation points. It is out

of the scope of the present work to treat load stepping schemes that are robust in the presence of

nonlinear instabilities such as buckling. Further, there is a possibility to overshoot on instabilities

which selects a somewhat arbitrary bifurcation branch. This is currently not detected.

We consider two general strategies to compute load increments: first, the ∆tl can be prescribed

a priori; second, they can be adaptively computed based on the progress of the simulation. In

general, one strives for a homotopy sequence simultaneously maximizing robustness and minimizing

the computational time. To this end, the pseudo-time increments ∆tl should be large, but only so

2929



CHAPTER 1. INTRODUCTIONCHAPTER 1. INTRODUCTION TUNING NEWTON-KRYLOV-FETI-DP IN LOAD . . .TUNING NEWTON-KRYLOV-FETI-DP IN LOAD . . .

that the started Newton iterations are, ideally, still quadratically convergent. Two load stepping

strategies are currently available in the parallel solver mparfeap presented in Chapter 2.

Load Stepping Strategies in mparfeap

1. Linear strategy:

• User supplied number of load steps N ∈ N.

• ∆tl = 1
N , 1 ≤ l ≤ N .

2. Adaptive strategy:

• Expansion on success of the Newton method:

∆tl+1 = α · ∆tl, α > 1 . (1.4.53)

• Reduction on failure of the Newton method:

∆tl+1 = β · ∆tl, 0 < β < 1 . (1.4.54)

• User supplied estimate of required load steps for linear strategy N ∈ N:

∆t1 =
1

N
. (1.4.55)

• User supplied delay d ∈ N: expansion of ∆tl after d load steps.

Note that a slightly different adaptive load stepping strategy was applied in Brinkhues, Klawonn,

Rheinbach, and Schröder [25] and Brinkhues [24] which is, however, not currently available in

mparfeap.

For the applications to realistic problems in the biomechanics of arterial walls presented in Chap-

ter 3 we have used the adaptive load stepping strategy. The convergence criteria are standard, so

let us focus on the failure criteria. There are multiple heuristic criteria which trigger a reduction

of the load step size in mparfeap.

Adaptive Strategy: Failure Criteria for a Loading Attempt

• Maximal number of Newton iterations exceeded.

• Maximal number of FETI-DP iterations exceeded.

• Numerically singular tangent, i.e., the preconditioned FETI-DP operator satisfies

condest
2

(
M−1
D F

)
> 106 .

A condition number estimate is computed by the GMRES implementation in PETSc.

• Local orientation reversal or degeneration, i.e., the displacement u
(n)
l corresponds to

a deformation mapping ϕ satisfying

det [F ] ≤ 0, F := ∇ϕ

in a cubature node of a finite element T .

• Limit for the initial residual in the Newton method exceeded, i.e.,

||rNewton(u
(0)
l )||2 > 106
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• Limit for the initial residual in the FETI-DP/GMRES method exceeded, i.e.,

||rFETI-DP(λ
(n,0)
l )||2 > 106 .

• Failure to assemble the stiffness matrix or residual. For example, the exceptional

IEEE754 double values ±∞ and NaN are detected in

rNewton(u
(0)
l ), rFETI-DP(λ

(n)
l ) and K(u

(n)
l ) .

There are two reasons to reject loading attempts which signal one of the previously listed events,

either this increases the robustness or it prevents scenarios where a high number of Newton or

FETI-DP iterations is necessary for convergence. The tradeoff are additional loading attempts,

which can be very expensive. Let us shortly mention two implementation details of mparfeap. In

general mparfeap aborts failed loading attempts as soon as they are detected. For example, the

failure criterion for the estimated condition number aborts the loading attempt before the PETSc

GMRES exceeds the maximal number of iterations, i.e., after the iteration for which it was detected.

The check for the initial GMRES residual aborts the linear solver after this residual is available,

i.e., immediately after the first GMRES iteration.

1.4.1 Linear Extrapolation of the Displacement

In our applications in biomechanics, multiple load steps are in general necessary, see Chapter 3. It

is intuitive to take a subsequence of solutions computed in previous load steps uli , 0 < l1 < l2 <

. . . < l to predict the next solution. This estimate u
(0)
l+1 can then be used as an educated initial

guess for Newton’s method in the next load step. A simple but effective possibility is certainly

to linearly extrapolate the last two converged displacements ul−1 and ul. This method which

was kindly communicated to us by Schröder [113] proved to be extremely helpful for our weak

scalability results in §3.4.

This seemingly well-known technique can be derived as follows. Suppose that Taylor’s theorem

is applicable to the quasi-static solution u : [0, T ] → V considered as a function of the homotopy

parameter t. Then, we may expand

ul+1 = u(tl+1) = u(tl + ∆tl) = u(tl) + ∆tl
du(t)

dt

∣∣∣∣
t=tl

+O(∆t2l ) . (1.4.56)

Let us now estimate the derivative by a left sided difference quotient

du(t)

dt

∣∣∣∣
t=tl

≈ (ul − ul−1)

∆tl−1
. (1.4.57)

This leads to a first order extrapolation formula given by

Linear Extrapolation for the Displacement

u
(0)
l+1 := ul + ∆tl

(ul − ul−1)

∆tl−1
, with u

(0)
1 := 0. (1.4.58)

The so-called Euler-Newton method, a simple continuation method, is similar; see, e.g., the mono-

graph by Allgower and Georg [3]. It is also possible to use quadratic or cubic extrapolation, but

higher order extrapolation schemes are currently not implemented in mparfeap.

Although it can be very effective in elasticity, we want to stress that this linear extrapolation

technique is well-known to fail in some important scenarios, most prominently for plasticity; also
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communicated by Schröder [113]. This may be due to the requirement of differentiability of u(t)

w.r.t. the pseudo time t in the given derivation.

1.4.2 A Nonzero Initial Guess for λ in Newton-Krylov-FETI-DP

Similar to the choice of a good initial guess for the Newton scheme itself, it is also interesting to

generate good initial guesses for the nested Krylov subspace solver in the individual Newton steps.

A FETI-DP solver iterates on the variables enforcing the continuity constraint on the dual part of

the interface Γ. It solves a FETI-DP master system for the Lagrange multipliers λ which is of the

general form

Fλ = d .

For a derivation of the FETI-DP master system including also the preconditioner, we refer the

interested reader to §1.3 and further references therein.

We shall denote the index of the loading attempt by l ∈ N, the index of the Newton step by n ∈ N0

and the index of the GMRES iteration by m ∈ N0. Introducing the dependency on u, we thus

have to solve the FETI-DP master system

F|
u

(n)
l

λ
(n)
l = d|

u
(n)
l

. (1.4.59)

Usually, the initial guess for the GMRES iteration is just set to zero λ
(n,0)
l = 0, for all Newton

steps n ∈ N0, but let us try to improve on this.

Suppose that the global finite element tangent stiffness matrices K(u) depend continously on

u ∈ Bε(ul) ⊂ V , i.e., for u sufficiently close to the converged solution ul. Then, upon convergence

of the Newton scheme we have

lim
n→∞

u
(n)
l = ul . (1.4.60)

At the same time the tangent stiffness matrices converge as well

lim
n→∞

K(u
(n)
l ) = K( lim

n→∞
u

(n)
l ) = K(ul) . (1.4.61)

This is consistent with the fact that the Newton corrections converge to zero. Assuming further-

more the continuous invertibility of (1.4.59) as a function of u ∈ Bε(ul) we conclude the convergence

of the Lagrange multipliers, i.e.,

lim
n→∞

λ
(n)
l = λl . (1.4.62)

Under these assumptions, for n large enough, convergence sets in and λ
(n−1)
l and λ

(n)
l must be

close to each other. It is, then, quite intuitive to initialize the GMRES iteration for λ
(n)
l in a given

Newton step n > 1 with the linear solution λ
(n−1)
l obtained in the last Newton step. This is exactly

the strategy we propose here:

Nonzero Initial Guess for λ

λ
(n,0)
l := λ

(n−1)
l , with λ

(0,0)
l := 0 . (1.4.63)

One may expect to see reductions in the initial FETI-DP GMRES residuals during the Newton

iteration and a reduction of the number of GMRES iterations. This is indeed apparent in the

convergence histories produced by our numerical experiments; see §3.5 where also quantitative

gains are reported.
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1.4.3 Some Remarks on Globalization Strategies for Newton Methods

It is a standard result in numerical analysis that Newton’s method is locally quadratically conver-

gent, i.e., for initial guesses near a simple root, see, e.g., Quarteroni, Sacco, and Saleri [109] for

a precise statement. Globalized Newton methods restore or speed up convergence of the Newton

scheme for bad initial guesses far from a root. They may also continue on bad intermediate it-

erates, e.g., singular points. The necessary additional ingredient is global information about the

problem. Note that quadratic convergence is not to be expected for globalized Newton methods;

see, e.g., Deuflhard [34] or Nocedal and Wright [105].

The present work is based on load stepping methods as a globalization strategy. These are homo-

topy methods for the boundary conditions. Another important family of globalization methods is

obtained by appropriate damping or amplification of the Newton corrections ∆u in case of bad

starting values for the Newton scheme. This family of globalization strategies is commonly referred

to as the family of line search techniques, see, e.g., Dennis Jr. and Schnabel [33] or Nocedal and

Wright [105].

We want to make some remarks regarding structural properties of the root finding problems arising

from the considered boundary value problems in mechanics which are of some relevance for the ap-

plication of a nested line search in the Newton solver. For simplicity, let us neglect the implications

of the F-approach which does affect the interpretation of the stiffness matrix as a derivative.

There are then two possible scenarios:

• Only Conservative Loadings: the tangent stiffness matrices K(u) are, possibly indefinite, but

symmetric Hessian matrices of a mechanical potential energy.

• Non-Conservative Loadings: there is no potential energy and the Hessian structure is entirely

lost. This is essentially a root finding problem. One may consider 1
2 ||rNewton(u)||2 as a

pseudo-energy, however, we see no immediate interpretation in mechanics.8

For the case of indefinite Hessians the Newton search direction is not always a descent direction for

the energy. Many standard line search techniques, however, assume this to be the case. Further,

assumptions on the monotonicity of the residual may be invalid. For example our computations

of arterial wall stresses produce increasing residual norms during the initial phase of some Newton

iterations. Thus, e.g., non-monotone Armijo strategies may be of interest, see Grippo, Lampariello,

and Lucidi [60].

Further, for applications presented in Chapter 3 we have found that the growth of the discretized

stored energy is often extreme to the extent that the machine arithmetic is exceeded. This may

even be related to the growth conditions which are typical for polyconvex strain energies. This is

not uncommon. For example Wriggers [137, p.258] report for problems in hyperelasticity that the

quantity

log(det [K(u)]) = ±∞

in IEEE754 double representation. We have also found that the stiffness matrices can only be

assembled for conservative choices of the starting values of the Newton scheme. In short there are

hard limits to what can be done if the load step size is too optimistic and it can be impossible to

recover from that using a line search technique.

The potential gains of optimal embedded line search techniques used in an adaptive load stepping

strategy are still not entirely clear to us. For example, the line search parameters might be coupled

with the adaptive load stepping in intricate ways. Our preliminary experiences with nested line

search approaches were mixed. It turned out to be difficult to optimize robustness and performance

8Note that all line search strategies in FEAP are based on this residual norm, i.e., not on a mechanical potential.
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of an adaptive load stepping method with a nested line search in the Newton solver. We shall not

report on specific results here as they are preliminary. A second well-known family of globalization

strategies which we have not yet considered are so-called trust region strategies, see e.g., Nocedal

and Wright [105].

We summarize that we have based our numerical experiments on a failure-based adaptive load

stepping strategy mainly to increase robustness, but with good performance in mind.

In the next chapter we continue with a description of a parallel scalable Newton-Krylov-FETI-DP

software framework based on FEAP and FETI-DP.
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The aim of this chapter is to present a multi-language MPI parallel software framework

(F77/C/C++) consisting of multiple software components and some of the development method-

ologies which we have applied. This framework is to be considered as a major contribution of this

thesis. The main objective of this new software infrastructure is to close a software gap between

the two previously existing scientific software components

FEAP-JS [sequential] and FETI-DP-solver [parallel]

in a new MPI parallel and scalable Newton-Krylov-FETI-DP solver. By FEAP-JS we denote an

extended version of FEAP which is actively developed by the Institute of Mechanics at Universität

Duisburg-Essen lead by J. Schröder. It provides multiple extensions. In our context the most

important addition are finite element-based implementations of anisotropic and incompressible

material laws which are suitable for the description of the biomechanics of soft biological tissues.

As part of his dissertation, O. Rheinbach developed a highly scalable PETSc-based MPI parallel

FETI-DP implementation; see Rheinbach [110]. In the current thesis this software component will

be referred to as the FETI-DP-solver.

These two components, once integrated, allow for fully MPI parallel simulations and to research

the scalability properties of such simulations in applications to the biomechanics of soft tissues su-

perseding a previously developed semi-parallel framework. Such a Newton-Krylov-FETI-DP solver

has been developed and we shall introduce it here as mparfeap. For applications in biomechanics,

see Chapter 3.

2.1 Component Overview

This short overview of the different scientific software components and their collaboration pattern

is meant to set the stage for the subsequent detailed technical discussion. Furthermore, in passing,

we introduce a glossary of relevant software components.

Nonlinear Solver
(mparfeap)

libfw
[FEAP]

Scalable Linear
FETI-DP-Solver
(PETSc-based)

Linear

Solver

InterfaceO
bj

ec
t

M
an

ag
em

en
t

Assembly
Object

User

Assembly

Callback

Interface

UserSolverCallbackInterface

Command
Interface

Shared Memory
Data Access

System Setup

CommandInterface

Figure 2.1: Schematic component collaboration diagram for a nonlinear Newton-Krylov-FETI-DP-
solver based on FEAP. This example shows how the various interfaces provided by a new FEAP
interface library libfw are used by mparfeap for fully MPI parallel assembly based on FEAP.
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An overview of the developed parallel software framework is displayed in the collaboration diagram

in Figure 2.1. It shows an encapsulated FEAP (or, more precisely, FEAP-JS) instance which

communicates with the other components using direct and callback interfaces. The two callback

interfaces are built on top of the standard user solver extension points of FEAP. More precisely, the

user assembly callback interface is built on the user assembly interface extension point uasble_

and the user solver callback interface is built on the user assembly interface extension point

uasble_.

The Cornerstones – PETSc and FEAP: The developed software framework makes extensive

use of the following established large-scale scientific software projects:

Component Version Language Initiators Institution

PETSc 2.3.3-p{15,16} C/C++/(F77) Satish Balay,

William D. Gropp,

Lois Curfman McInnes,

Barry F. Smith

Argonne National Lab.

FEAP 8.2 F77/C R. L. Taylor et al. UC Berkeley

FEAP is the Finite Element A
¯

nalysis Program: [129, 130]. The FEAP software package is described

in the introduction of the official FEAP user manual [129] as follows:

“The Finite Element Analysis Program (FEAP) is a computer

analysis system designed for:

1. Use in course instruction to illustrate performance of dif-

ferent types of elements and modeling methods;

2. In a research, and/or applications environment which re-

quires frequent modifications to address new problem areas

or analysis requirements.”

PETSc is the Portable, Extensible Toolkit for Scientific Computing: Balay, Gropp, McInnes,

and Smith [5], Balay, Adams, Brown, Brune, Buschelman, Eijkhout, Gropp, Kaushik, Knepley,

McInnes, Rupp, Smith, and Zhang [6, 7].

A succinct description of PETSc written by the developers can be found on the PETSc webpage.

We quote:

“PETSc, pronounced PET-see (the S is silent), is a suite of data

structures and routines for the scalable (parallel) solution of sci-

entific applications modeled by partial differential equations. It

supports MPI, shared memory pthreads, and NVIDIA GPUs, as

well as hybrid MPI-shared memory pthreads or MPI-GPU paral-

lelism.”

Previous Infrastructure – Independently Developed Components: In the research groups

of A. Klawonn and J. Schröder the following two components were independently developed on the

basis of the before-mentioned frameworks PETSc and FEAP. These components were to be coupled

for combined simulations.
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Software Programming Short

Component Language(s) Description

FEAP-JS F77/C
Extended version of FEAP providing, e.g., polyconvex mod-

els for soft biological tissues.

FETI-DP-solver C/C++
Highly scalable MPI-implementation of FETI-DP based on

PETSc.

Previous Infrastructure – Jointly Developed Components: As a first step, a semi-parallel

software framework was developed in the context of DFG project KL 2094/1-1,2, SCHR 570/7-

1,2 to test the algorithmic approaches and to pave the way for the envisaged massively parallel

simulations. This semi-parallel framework was developed in a joint effort and consists of two refined

components, which we shall denote as follows:

Software Programming Short

Component Language(s) Description

FEAP-JS-FETI-DP F77/(C)
An extended version of FEAP-JS which uses the FETI-DP

-server for the parallel solution of the linear systems.

FETI-DP-server C/C++
UNIX sockets based server application launching the par-

allel FETI-DP-solver.

Parallel Infrastructure – Contributed Components: For the realization of massively paral-

lel simulations on a Cray XT6 the following new components were developed for KL 2094/1-{1,2},
SCHR 570/7-{1,2} and in prospect of a followup D-A-CH project on fluid-structure interaction

based on LifeV and FEAP. These components form an integral part of the contributions of the

current thesis:

Software Programming Short

Component Language(s) Description

FEAP-FW F77/C
An extended version of FEAP with interfaces for external

control and data access.

libfw C FEAP wrapper library (uses FEAP-FW extensions).

fddp C++
FEAP domain decomposition data processor command line

application.

libfddp C++ FEAP domain decomposition data processor utility library.

mparfeap C++ Massively parallel FEAP (uses the FETI-DP-solver).

These components were developed by the present author. libfddp was developed by the present

author and in parts by O. Rheinbach.

2.2 Component Integration in Stages: FEAP-JS and the

FETI-DP-solver

The integration of the customized FEAP installation FEAP-JS with the highly scalable parallel

FETI-DP-solver implemented in PETSc proceeded incrementally in multiple stages. Four major

stages can be identified. The work here presented was begun after the two integration stages I/II

were already completed; see Table 2.1.
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Integration Data #FEAP #Solver #Processes
Stage Interface Instances Instances (total)

I Filesystem 1 (sequential) N (parallel) N + 1 (separated)

II UNIX-Sockets 1 (sequential) N (parallel) N + 1 (separated)

Table 2.1: Previously realized integration stages for FEAP and the highly scalable FETI-
DP-solver by O. Rheinbach. Note that FEAP and the FETI-DP-solver were started
as separate UNIX-processes. The finite element stiffnesses were computed sequentially in a
single instance of FEAP and the tangent systems were solved in N additional MPI processes.

In the semi-parallel integration stages I and II, the element stiffness matrices and right hand sides

were copied across UNIX process boundaries from a FEAP master process to the PETSc solver

slave processes which were started in parallel. The slave processes were started and controlled by

a dedicated FETI-DP-server application. In every Newton iteration the linearized system was

sequentially assembled in the FETI-DP-server and then solved in parallel using the FETI-DP-

solver. After the linear solution phase, the FEAP master process received the Newton correction

from the FETI-DP-server and initialized the next iteration.

Since the framework in integration stages I/II was only semi-parallel, the simulations in the tran-

sitional integration stages I and II were – by construction – not parallel scalable. In practice the

sequential assembly phase in FEAP turned out to be a quite severe bottleneck. The simulations

based on that framework were reasonably limited to a small cluster or workgroup server. A full

parallelization of the assembly phase was clearly the next essential milestone towards large-scale

parallel computations.

Remark 2.2.1 (Control Flow in Integration Stages I/II). In the previous semi-parallel framework

FEAP acted as the master application, i.e., the simulations were entirely controlled by FEAP. The

master FEAP process was initalized using FEAP input cards (in the usual way) and passed control to

the FETI-DP-server during the assembly and linear solution phases. Special FEAP user macros

(FETI) provided triggers to communicate with the parallel FETI-DP-server via UNIX sockets.

Contribution – Parallel and unified component integration: For the final phase of the

research project massively parallel computations of physiological arteries were scheduled. The

requirements for the research project demanded a highly scalable software framework. This corre-

sponds to the final integration stage IV:

Integration Data #FEAP #Solver #Processes
Stage Interface Instances Instances (total)

III Filesystem N (parallel) N (parallel) N (unified)
IV Shared-memory N (parallel) N (parallel) N (unified)

Table 2.2: The parallel integration stages. The final integration stage IV corresponds to a
fully MPI parallel scalable unified shared-memory integration of FEAP-JS with the highly
parallely scalable FETI-DP-solver developed by Rheinbach [110].

Although a fully MPI parallel implementation, the transitional integration stage III was not scal-

able due to filesystem-based data sharing. Distributed filesystems and the associated storage
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hardware cannot handle the massive amount of data generated by finite element analysis during

the solution process in a scalable way, but the availability of all system matrices eased debugging

of the integration considerably.

Remark 2.2.2 (Control Flow in Integration Stages III/IV). In contrast to integration stages I

and II, the parallel integration stages III and IV necessitated an external access to the control flow

of FEAP. This possibility to remote control FEAP is the most essential ingredient allowing for the

flexible integration of FEAP as a third party software library into other software packages.

2.3 FEAP: Its Usage, Implementation and Extensibility

Let us now present the software package FEAP in some more detail.

The Software Package: FEAP is an actively developed and well-established software package

for finite element-based simulations. It is used extensively in linear and finite structural mechanics.

The center of the development efforts is the research group of Richard L. Taylor at UC Berkeley,

the original author of FEAP. This group manages the releases, distribution and support of the

official versions of the FEAP software package. In the context of this thesis it is fundamental to

note that the source code is part of the official FEAP distribution. Every licensed user of FEAP

receives a copy of the source code and is free to add extensions. Due to its long development

history, FEAP is certainly one of the most well-tested finite element simulation environments for

structural mechanics applications.

Programming Languages (F77/C): For the largest part, FEAP is written in the F77 program-

ming language. Some particular modules have been realized using the C programming language,

as they need low-level access to the underlying operating system. Let us mention two important

examples, which we shall revisit shortly: the memory management subsystem code and the X11

graphics rendering code.

Documentation: The FEAP software package is very powerful and feature-rich and the devel-

opers provide very detailed documentation on the usage of the program features in the FEAP

User Manual [129] together with extensive documentation of demo examples in the FEAP Example

Manual [126]. Internal implementation details and user extensions are discussed in the FEAP Pro-

grammers Manual [127]. The theoretical foundations of the implemented algorithms are described

in the FEAP Theory Manual [128]. For our discussion, it thus suffices to focus on implementation

aspects relevant to the software framework to be presented here and particular weight is given to

internal aspects of FEAP which are not discussed in the officially distributed manuals.

Interaction Modes: Let us give a short introduction on how FEAP is used. The user interaction

with the command line application FEAP is centered about a so-called FEAP input card which can

also toggle the input stream to interactive input. First, during the startup of a FEAP session, FEAP

parses such a user specified input card. This card is stored as a plain text ASCII-file on disk and

consists of text blocks in FEAP command language syntax, see Figure 2.2 for an example. These

blocks are also called records. FEAP can now work either in batch mode or in interactive mode. In

batch mode the FEAP input is read exclusively from the FEAP input card used for startup. This

is the default mode. In interactive mode1 FEAP provides an interactive shell to the user. Using

this shell the FEAP user can interactively control and analyse a running simulation. This is very

interesting, for example, to carry out manual bifurcation analysis, a task which is quite hard to

1Interactive mode is activated by an INTEractive statement in the FEAP input card.
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automate and directed user intervention may be far superior to any automated approach. In both

modes, it is furthermore possible to execute user script files which are stored in plain text files

with the file suffix .pcd.

Example for a FEAP input card

Listing 2.1:

FEAP * * 4-Element Patch Test
9,4,1,2,2,4

MATErial,1
SOLId
PLANe STRAin
ELAStic ISOTropic 1000.0 0.25

! Blank termination record
COORdinates
1 0 0.0 0.0
2 0 4.0 0.0
3 0 10.0 0.0
4 0 0.0 4.5
5 0 5.5 5.5
6 0 10.0 5.0
7 0 0.0 10.0
8 0 4.2 10.0
9 0 10.0 10.0

! Blank termination record
ELEMents
1 1 1 1 2 5 4
2 1 1 2 3 6 5
3 1 1 4 5 8 7
4 1 1 5 6 9 8

! Blank termination record
BOUNdary restraints
1 0 1 1
4 0 1 0
7 0 1 0

! Blank termination record
FORCes
3 0 2.5 0.0
6 0 5.0 0.0
9 0 2.5 0.0

! Blank termination record
END

BATCh
FORM residual
TANGent
SOLVe
DISPlacement ALL
STREss ALL
PLOT STRE 1
PLOT REACtions

END

STOP

]

Figure 2.2: This example input file Ex1/Ipatch_4el is part of the official FEAP v8.2 examples
package. A detailed explanation can be found in the official FEAP examples manual [126]. Note
the general block-based structure.
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Extensibility and Customized Installations: An inspection of the actual FEAP code or the

FEAP programmer manual [127] makes it obvious that FEAP has been carefully designed from the

ground up with user extensibility in mind. The user base of FEAP consists mostly of research

groups in continuum mechanics, mostly in structural mechanics and closely related disciplines.

Most research groups using FEAP add custom functionality to the official distribution of FEAP. Over

the years a customized user installation of FEAP is created by common efforts. A customized

user installation often extends the base functionality significantly, but typically leaves the core

infrastructure in FEAP untouched. Its extensibility is certainly one of the main advantages of

FEAP and contributes a lot to its popularity.

Extensibility: To ease extensibility FEAP provides some clearly specified and well-documented

mechanisms and interfaces for user extensions. These extension points are documented in the

FEAP programmer manual [127]. Note again that FEAP is distributed as source code and thus

the user is not in a fundamental way limited to use the before-mentioned predefined extension

mechanisms. For the implementation of the FEAP-wrapper library libfw, for example, we use the

available user extension mechanisms as well as other modifications. The libfw library hooks into

the so-called FEAP “user solver”-interface, which is typically used to add a third party direct or

iterative linear solver to FEAP. This is accomplished by implementing the following two standard

FEAP user extension interfaces:

FEAP user extension points used by libfw

• User assembly interface [uasble.f ]

• User solver interface [usolve.f ]

This extension mechanism, as documented in the official FEAP programmers manual [127], is

activated only in “user solver mode”. It allows for the external assembly of element contributions

via uasble_ and to completely externalize the linear solver phases via usolve_. This mode is

selected by setting the internal variable solver = .false. in the program startup code. This

disables the FEAP-internal direct solver and in turn enables usage of the user solver.

After these introductory notes of some fundamental aspects of FEAP, we progress now to the

requirements that our parallel software framework should satisfy. To this end, we illuminate the

development process for the entire framework and describe in passing also the most important

design decisions that were made.

2.4 Requirements Analysis for the Parallel Software Framework

The first step in the planning phase of any larger software project is a detailed and careful analysis

of the requirements for the solution to be developed. In close collaboration with D. Brands (FEAP

-JS) and O. Rheinbach (FETI-DP-solver) the following requirements for the planned parallel

software framework were identified:
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Feature requirements

• Integration of FEAP with the FETI-DP-solver in a massively MPI-

parallel scenario.

• Flexible access to the control flow of FEAP.

• Shared-memory access to data stored in FEAP.

• Unified integration in one UNIX-process per MPI-instance.

• Support for customized FEAP user installations, for example, FEAP-JS.a

• Highly scalable and robust parallel assembly.

• Flexible assembly of multiple subdomains per MPI process.

a FEAP-JS provides implementations of polyconvex, anisotropic and incompressible mod-
els for soft-tissues.

Maintainability requirements

• Minimal changes to FEAP [v8.2].

• Support for future versions of FEAP and customized user installations, in

particular for FEAP-JS.

• Detailed tracking and documentation of all modifications done to FEAP.

Usability requirements

• Support the currently established development and testing workflow of

the FEAP-JS-developers.

• The FEAP component supports inclusion into third-party software, e.g.,

into LifeV.

• Focus on flexible command line tools and software libraries for all devel-

oped components.

Testing requirements

• Support for established testing workflow of FEAP-JS-developers.

• Minimal duplication of testing efforts for functionality available in FEAP

-JS-FW.

Target plattforms

• UNIX platforms:
Cray XT6 (4122 Cores/AMD) [Production]

Hypercube (16 Cores/AMD) [Development/Testing/Processing/Production]

MacBook Pro (2 Cores/INTEL) [Development/Testing]

• Compilers:

– INTEL Compiler Suite

– GNU Compiler Suite
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2.5 Possible Approaches to Parallel Assembly Based on FEAP

In this subsection, we list some possible approaches for the integration of FEAP into an external

client code. The possible approaches are then shortly discussed and analyzed with respect to their

overall potential. Although only one of the considered options was finally identified as feasible,

but most of them were considered as possible starting points at the beginning of the development.

This section also gives due credit to previous related work on FEAP interfaces. We start with a list

of the considered approaches:

Discussed approaches

1. Extraction of the material library with a new interface.

2. Reimplementation of the material library with a new interface (for example in C++).

3. Customization of an existing FEAP interface.

4. Implementation of a new FEAP interface.

2.5.1 Code Extraction: [rejected]

The idea of this approach is to extract the relevant code sections from FEAP-JS which implement

the finite element contribution of the material formulation. At least in principle this code can be

encapsulated in a newly designed F77 interface. This new interface should allow to conveniently

include the code in a parallel nonlinear solver application.

Code extraction: Advantages vs. Disadvantages

Advantages:

• A flexible software inter-

face which allows for conve-

nient integration of the ma-

terial models into external

codes.

• Light-weight and clean due

to elimination of redundant

code from FEAP.

• Users have expertise in

F77 and already know the

code.

Disadvantages:

• The material models use

FEAP-internal global data.

• Requires to replace or sim-

ulate the basic finite ele-

ment framework providing

the FEAP core infrastruc-

ture.

• Testing effort since the

extracted components de-

pend on global data.

• Code duplication.

Access to the history variables is one example for a dependency on global data which cannot be

avoided for history dependent materials. Extensive use of global data in F77 common blocks and

the so-called named fields in FEAP induce a strong coupling between the different parts of FEAP.

To give an example, the displacement field U is a global field and many parts of the FEAP code do

work on it.

This approach has been investigated by O. Rheinbach and D. Balzani previously (in unpublished

work). A specific material model was extracted from FEAP-JS and the extracted code was linked

with the FETI-DP-solver. However, this solution had serious drawbacks. The support of new

material models necessitated repeated effort for extraction and testing. The models using history
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variables for damage were completely unsupported. Thus code extraction was deemed to be not

attractive in the long turn and in that sense an unfeasible approach.

2.5.2 Reimplementation: [rejected]

Over the years, J. Schröder himself and multiple doctoral students have contributed algorithms

and finite element based material model codes to FEAP-JS. The result of these efforts is a quite

impressive code base consisting of highly intricate numerical codes. The main idea of the present

approach is to reimplement the relevant code sections, preferably in C++. This is easiest to interface

with the FETI-DP-solver code.

Reimplementation: Advantages vs. Disadvantages

Advantages:

• Minimal restrictions re-

garding the design for the

interface. Optimal integra-

tion of the material models

into external codes.

• Elimination of redundant

code leads to a light-weight

and clean solution.

• A carefully planned new

design might be superior

and potent than the cur-

rent solution (in the long

term).

Disadvantages:

• Incompatible with the

current workflow based

on FEAP and F77.

• Effort to reimplement the

relevant material models.

• Effort to test the new im-

plementations.

• Additional design and im-

plementation of a basic fi-

nite element framework re-

placing the heavy depen-

dencies on the FEAP core

infrastructure.

• A possible performance

hit.a

• Code duplication.

aImplementation of high-
performance numerical codes in
C++ is more demanding than in
F77. It requires advanced program-
ming techniques such as expression
templates.

finite element assembly of the material library for the planned massively parallel simulations was

discarded early on during the planning phase. The usage of automatically generated finite element

code in C++ could however be of future interest Logg, Olgaard, Rognes, and Wells [92].

2.5.3 Customization of an Available FEAP-Interface: [rejected]

A fundamentally different approach is to provide access to an entire instance of the FEAP appli-

cation and to control it externally. Such software exists and is commonly referred to as a FEAP

interface. All of the solutions mentioned in the following provide interfaces which make the func-

tionality of FEAP available to external codes and, ideally, can be used as a basis for a customized

interface which meets the identified requirements of our software framework.
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Previous FEAP interfaces

Interface Developer Institution

MatFEAP D. Bindel Cornell University

PyFEAP C. Y. Chen Cornell University

pFEAP M. Adams Columbia University

The MatFEAP interface Bindel [18] is developed by D. Bindel, currently at Cornell University. It

allows to control FEAP from within MATLAB. It is implemented using the MATLAB MEX extension

interface. A MATLAB client and a FEAP-server2 run in different UNIX processes, possibly even

on different machines, and use classical UNIX interprocess communication via UNIX sockets or

pipes for communication. Thus, by construction MatFEAP did not meet our requirement of a

unified shared-memory integrated environment. We acknowledge, however, that we have analyzed

MatFEAP during the initial stages of the creation of libfw and that we have drawn some inspira-

tion from its design. For example, the access to variables in FEAP is realized in complete analogy

to the way it is done in MatFEAP.

Chen Yi Chen developed a Python frontend called PyFEAP for his masters thesis under the guidance

of D. Bindel, see Chen [27]. The frontend client is realized in the programming language python.

This is not a unified integration, i.e., the client and the backend do not reside in the same UNIX

process.

Mark Adams et al. used FEAP for assembly in the parallel large-scale finite element solver Athena

Adams, Bayraktar, Keaveny, and Papadopoulos [1]. In Athena the communication with the

sequential instances of FEAP is managed by an interface layer called pFEAP. Presumably pFEAP

is quite similar to what has been realized in libfw. It would be quite interesting to compare

both approaches. Note that during the development of libfw we were unaware of the existence

of pFEAP. Thus, the libfw interface layer was developed completely independently of pFEAP.

We summarize that we have failed to find a previously existing solution which could have served

as a basis for our unified parallel solver framework.

2.5.4 Design and Implementation of a New FEAP-Interface: [accepted]

The main idea of this approach is to design and implement a software adaptor, a so-called wrapper,

in the form of a software library. This means to turn FEAP into a software library such that the

library provides control and data interfaces to an encapsulated FEAP application started in the

same UNIX process as the client code.

A first and distinguished advantage of this approach relates to code quality. Only well-tested codes

can be assumed to be correct, as is well-known in modern software engineering. The code paths

visited by a FEAP wrapper can certainly be expected to be very well-tested, if we assume that

the developed interface only uses the official application interfaces. Thus, no bugs are introduced

because parts of the FEAP infrastructure have to be reproduced by new code.

This observation also carries over to customized user installations such as FEAP-JS. Note that the

testing effort invested by the developers of FEAP-JS into the modeling codes, is applied in a quite

specific way. Since the contributions to FEAP-JS are always written as extensions to FEAP, it is

only natural that the contributions are only tested integrated into the FEAP framework by running

the complete application. The downside of this testing strategy is that there is no dedicated unit

2MatFEAP provides patches to turn a FEAP installation into a server.
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testsuite. A unit testsuite verifies correctness of independent small units of the code, for example,

single functions. This, e.g., renders code extraction extremely delicate. However, this is not a

disadvantage for the currently discussed approach since it also uses FEAP in its entirety. Moreover,

as opposed to the code extraction or reimplementation approaches, in the current scenario, the

FEAP-JS developers can continue to test their own code independently in the setting they are most

familiar with – in standard FEAP. Once their work is tested it can be integrated into FEAP-JS-

FW, a particularly extended version of FEAP providing additional wrapper interfaces, with minimal

testing effort.

We hope that the reader is convinced at this point, that turning FEAP into a library is at least

an interesting option. How can this be realized? On closer inspection, it turns out that the

implementation of such a wrapper interface to the entire application is far from obvious. One

important aspect is, e.g., the FEAP application state, i.e., the state of the global common data,

named fields, open files. All of this should be be properly and consistently managed across multiple

calls to the interface. Thus, the entry and exit of the control flow to the FEAP instance must be

delicately managed. Let us summarize the advantages and disadvantages of the current approach:

Implementation of a new FEAP interface: Advantages vs. Disadvantages

Advantages:

• Relevant material model
implementations are imme-
diately available.

• Interface is consistent with
FEAP.

• Most of the FEAP function-
ality is available includ-
ing finite element support
code.

• Minimal additional test-
ing effort, since the tra-
versed code paths are al-
ready tested in FEAP.

• Seamless integration into
currently established work-
flow based on FEAP and
F77.

• Fast F77 code.

• No code duplication.

Disadvantages:

• Necessary effort is hard to
estimate.

• Possible restrictions due to
the integration of a full se-
quential FEAP instance.

• Need to understand FEAP-
internals in detail.

• Testing effort for the wrap-
per layer.

Conclusion: Our final conclusion on the presented approaches is then as follows: In the given

context, the advantages of a reimplementation of the material model codes in C/C++ are clearly

outweighed by the disadvantages. The same goes for the approach to extract the relevant parts

of the FEAP-JS modelling code. The latter approach was far less realistic than thought of in

the beginning, mostly due to the dependencies on the core FEAP infrastructure. To build on a

previously available FEAP interface and to tailor it to our needs turned out to be impossible.

The options then available to us did not meet our requirements in fundamental ways.The benefits

of reusing the available code base of FEAP-JS in a newly developed FEAP interface are striking

on first glance – assuming that an interface meeting the specified requirements can actually be
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realized. Since the source code of FEAP is distributed to licensed users, a more detailed analysis

was to be carried out.

2.6 The Core Component libfw: A New FEAP-Interface

Based on the preceding analysis, the only promising approach turned out to be the implementation

of a new FEAP interface. This new interface should ideally turn FEAP into a C-software library

complying with the previously formulated requirements for the entire software framemwork. The

C-language was chosen, because it is in general convenient to interface with F77 and most other

general purpose programming languages. For the realization of the Newton-Krylov-FETI-DP-

solver mparfeap, we have implemented such a solution and we shall refer to it as libfw (FEAP-

wrapper library).

This section is devoted to the presentation of the public interface of libfw and provides detailed

discussions of selected aspects of the actual implementation of the libfw software library. We

also try to illustrate software development methodologies which we have found to be valuable

during the process of the conversion of the standalone application FEAP into a flexible software

library libfw. Although, this is a quite particular task, this might still be inspiring in comparable

scenarios.

2.6.1 The Subcomponents: libfw (C) and FEAP-FW (F77)

The software component libfw consists again of two sub-components. The first carries the same

name as the entire library and contains the implementation of the public C-interface. This is ex-

posed to the client software. A second component is the internally encapsulated, slightly modified,

FEAP code to which we shall refer to as FEAP-FW (F77). These two components are packaged

into a single static library called libfw which provides the final adaptor.

The flexible integration of FEAP into possibly quite different parallel simulation frameworks is a

nontrivial task. FEAP is a powerful and complex scientific application which was not originally

designed to be used as a third-party software library. It was designed to be used as a standalone

application. In turn, FEAP does not provide interfaces allowing to modify its control flow or to

access internal global data from exterior applications. We shall detail now, our approach to add

control flow interfaces to a slightly modified version of FEAP to which we refer as FEAP-FW.

A closer look at the control flow of the unmodified original FEAP application is instructive. Similar

to most larger programs, the main routine of FEAP is implemented in the particular form of a so-

called event loop. An event loop is a simple standard programming construct in computer science

which is best illustrated by a short example:

Example 2.6.1. (A C++ Event Loop) The following code snippet shows an event loop realized in

C++. It processes a series of events modelled by an associated Event class. A similar construction

is found in the FEAP program control, implemented in F77, where the events are triggered by the

FEAP language records parsed from the currently active input stream.

We note again, that FEAP is set apart from other finite element analysis solutions by its powerful

FEAP command language. This feature is implemented using an event loop which is located in

the program control routine pcontr_.3 A code which is so flexibly structured that it can be

controlled using a scripting language has to be appropriately designed. In other words, this implies

certain requirements regarding the code structure. For example, there must be a mapping between

command language records to corresponding F77 function calls and parameter sets. Moreover,

3The pcontr_ routine is implemented in the file program/pcontr.f.
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Example for an event loop in C++

Listing 2.2:

int main(int argc, char* argv[])
{
// Initialization of the program context
initContext(&argc, &argv);

// The main event loop
while(true)
{
// Receive next event for processing
Event event = getNextEvent();

// Process event and receive event signals
Signal eventSignal = processEvent(event);

// Check whether the event signals finalization
if(eventSignal.isSignaling(EVENT_SIGNAL_FINALIZE))
break;

}

// Finalization of program context
finalizeContext();

}

Figure 2.3: A C++ event loop. Note that the infinite loop can be terminated by any event signaling
finalization.

certain contracts regarding the pre- and post-conditions for these calls are to be met, since the

ordering of the function calls is determined by the user running his script and is not known in

advance.

Each FEAP statement, for example BATCh or TANG,,1, is parsed from the currently active input

stream and triggers an associated internal event which is resolved as a function call. Only the four

first letters of a command are relevant to identify it. The language is case insensitive. E.g., the

expressions batc, BATC and Batch are all equivalent and trigger the same event. As depicted in

Figure 2.3 the event loop is entered first after the initialization of the FEAP program context. The

entry point of the FEAP event loop is marked by the F77 jump label 1. This makes it directly

accessible from any point in the FEAP program control function pcontr_ using a goto 1 jump

statement. This can be used to control the entry of the control flow to the encapsulated FEAP

instance such that the FEAP program status can be conserved for subsequent calls to pcontr_.

To achieve this, clearly, the initialization code and finalization code sections which clear or at least

alter the program state must only be executed when this is necessary. It is only necessary exactly

once, during initalization and finalization of the encapsulated FEAP instance, respectively.

2.6.2 Wrapper Interface Extensions for FEAP: FEAP-FW

Turning FEAP into a software library required some changes to the FEAP code. This modified code

is referred to as FEAP-FW. We shall now document the most relevant changes made to FEAP.
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Controlled Initialization and Finalization

We now turn towards the modifications that allow to control FEAP externally and describe the

modified entry behavior, i.e., what happens once the control flow of the client enters FEAP-FW as

opposed to what happens in standard FEAP. Note that the input stream is switched to a simulated

input card in FEAP-FW after initialization. This simulated input card is just a memory buffer

which allows to pass FEAP input language records as C-strings to the encapsulated instance. In

the current implementation of libfw the program flow and choice of input stream in FEAP-FW

are controlled by additional control flags. These flags are declared in FEAP-FW common blocks

and can be manipulated from both sides of the C/F77 language barrier and in particular from

the C-side of the adaptor. Before FEAP records from the simulated input card can be passed to

FEAP-FW, it must be initialized. This essentially happens in the same way as in FEAP, by booting

the instance from a FEAP input card on the filesystem.4

It is important to realize that only the first call to pcontr_ executes the initialization code section

in pcontr_ preceding the main event loop in FEAP-FW. On all subsequent calls to pcontr_ the

program control flow must skip immediately to the entry point of the FEAP event loop to prevent

a reset and reallocation of the FEAP internal data structures. This is achieved by an additional

fwjtelflg_ control flag in pcontr_ which is properly set from the libfw C-subcomponent:

FEAP-FW: Controlled entry to the FEAP main event loop

Listing 2.3:

c BEGIN: libfw | Direct jump to ’event loop’.
if(fwjtelflg) then

c WRITE(*,*) ’libfw: Jumping to FEAP event loop.’
goto 1

endif
c END: libfw

c Destroy old output and log files if they exist

inquire(file=fout,exist=initf)
if(initf) then
open (unit=iow,file=fout,status=’old’)
close(unit=iow, status=’delete’)

endif

c Set file for log

call fileset(fout,flog,’O’, ’L’)

c Open files for input, output and log

open(unit=ior,file=finp,status=’old’)
open(unit=iow,file=fout,status=’new’)
open(unit=ilg,file=flog,status=’new’)
call uscreen(1,iow)

Figure 2.4: Code section taken from the start of the pcontr_ function in FEAP-JS-FW. If the
fwjtelflg evaluates to .true. the code jumps right to the start of the main event loop (jump
label 1) skipping the initialization section of the function. For initialization the fwjtelflg is set
to .false. and the initialization code following the if-block is then executed.

4This corresponds to the call to initContext() in the example main event loop.
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As previously discussed the entry and exit to the FEAP main event loop in the program control

must be carefully managed. Let us now dissect the initialization phase of the entire libfw software

library. See also the sequence diagram depicted in Figure 2.5.

• Setup of FEAP-FW launch in fwinit_(...):

– Setup of FEAP-FW control flags for a normal FEAP startup.

– Setup of standard output streams.

• Start of FEAP-FW session in fw_start_cmdl(...):

– Export of command line arguments to FEAP-FW.

– Execution of FEAP-FW application initialization.

– Execution of FEAP-FW main event loop initialization.

– Execution of FEAP-FW main event loop.

– Return from FEAP-FW main event loop (due to a final CNTN in the input card).

To start a FEAP application session, the FEAP executable requires the specification of a valid input

card. There are two possibilities to supply FEAP with a filename for an input card:

• Via an interactive startup dialog:

If started without command line arguments FEAP displays an interactive dialog screen where

the name of the input card can be supplied.

• Via a command line switch:

The command line switch -i allows to pass the name of an input card to FEAP.

For applications on massively parallel remote machines, a non-interactive initialization is certainly

the only viable option and we have chosen to use the -i command line switch.

To stay compliant with the major design goal of a flexible highly scalable unified process integration

of FEAP with the FETI-DP-solver (or other external client codes) must exchange data via shared

memory. To this end both code objects are started in a single UNIX-process. This is possible, but

the program launch of FEAP must be slightly altered. Usually, during startup, the command line

arguments provided to the executable are passed to FEAP by the operating system when the process

is created. This also includes the -i switch which selects the input card to start from in batch

mode. A call to the POSIX-commands fork or exec allows to pass command line arguments

to a newly created UNIX-process. Bypassing the UNIX-program launcher, the command line

arguments can be passed from libfw to FEAP-FW using a shared memory buffer. This is realized

through a modified doargs_ function in FEAP-FW that reads command line arguments from a

shared memory buffer. Realized as a F77 common block, this buffer is initialized by libfw. The

startup routine fw_start_cmdl(argc, argv) passes its command line arguments directly to

the encapsulated FEAP-FW instance. In case that a -i-switch with a filename for a valid input

card is provided, FEAP-FW starts a batch session (non-interactive) from the specified input card.

Let us turn our attention towards the finalization phase. On application finalization libfw es-

sentially executes the same code sequence as FEAP, i.e., the code contained in plstop_. The

FEAP-FW finalization procedure fwexit_ is thus derived from plstop_ and is identical with

only one notable difference: the control is returned to the original caller and not to the operating

system, after finalization. To this end, the final stop statement in plstop_ was simply removed.

To bypass the finalization of the FEAP main event loop, an undocumented CNTN statement is

passed to the main event loop for processing. This returns the control flow to the caller of pcontr_

without any alteration of the FEAP program state.
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libfw: Initialization phase

:main :libfw :FEAP-FW

fw_init(...) “Set flags for de-
fault initialization”

fw_start_cmdl(‘‘-iI0’’)

fw_init_args(argc, argv)

”Export command line arguments
to FEAP-FW ”

fwinit_()

pstart_(...)

filnam_(...)

filargs_(...)

doargs_(...)

“FEAP application
initialization”

pcontr_(...)

“Event loop initialization”

“Enter event loop”

“Execute input card I0 ...”

“FEAP main event loop”

“CNTN returns
control”

Figure 2.5: Initialization sequence diagram for the FEAP-FW instance encapsulated by libfw.
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libfw: Initialization function [fw.c ]

Listing 2.4:

fw_int fw_init(int* argcPtr, char*** argvPtr)
{

LOG_INFO("Initializing libfw");
fw_set_state(FW_STATE_INVALID);
fw_types_print_info();

FW_FORTRAN_SYM(fwcomjtel).fwjtelflg = FW_FORTRAN_FALSE;
LOG_INFO("Initialized shared flag [fwjtelflg = %ld]", \

(long)FW_FORTRAN_SYM(fwcomjtel).fwjtelflg);

FW_FORTRAN_SYM(fwcomcio).fwcioflg = FW_FORTRAN_FALSE;
LOG_INFO("Initialized shared flag [fwcioflg = %ld]", \

(long)FW_FORTRAN_SYM(fwcomcio).fwcioflg);

FW_FORTRAN_SYM(fwcomstate).fwstatesol = 0;
LOG_INFO("Initialized shared variable [fwstatesol = %ld]", \

(long)FW_FORTRAN_SYM(fwcomstate).fwstatesol);

/* Turn off generation of boundary nodes by default */
fw_set_flag_pextnd(FW_FORTRAN_FALSE);

/* Turn off FEAP solver, i.e., activate user solver mode */
fw_set_flag_solver(FW_FORTRAN_FALSE);

/* Rewire the output streams for the user */
fw_io_init();

LOG_DEBUG("Initialization complete");

return FW_RC_SUCCESS;
}

Figure 2.6: The libfw initialization routine. Printed type information allows to verify libfw and
FEAP-FW type compatibility. The setting of fwjtelflg and fwcioflg to .false. effectively
initalizes the FEAP-FW instance from an input card file. By default, the calls to pextnd_ are
intercepted and user solver mode is deactivated by setting solver = .true..

Remark 2.6.2 (File-based vs. Memory-based Initialization). In the current implementation of

the FEAP-wrapper library libfw, the encapsulated FEAP-FW instance can only by initialized from

a FEAP input card file. In the massively parallel setting, this is not ideal. Filesystem usage should

always be minimized in an HPC scenario and it would be preferable to initialize the encapsulated

FEAP instance from a memory buffer. However, the file-based mechanism is closest to FEAP

standard behavior. A full-fledged memory based initialization would also allow to set the FEAP

mesh data using shared memory without the current conversion of the mesh data to ASCII-format.

Modifications for Externalization of FEAP Program Control

We now detail the implementation of the FEAP command interface that allows a libfw client code

to execute FEAP command language records. It is part of the libfw public interface. It allows

the libfw client code to pass FEAP commands to the wrapped FEAP-FW instance as C-strings.

These are then executed by FEAP-FW. For example, a solver might pass the BATCH block shown

in Figure 2.9 to FEAP.
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libfw: Launch code for encapsulated FEAP-FW instance [fw.c ]

Listing 2.5:

fw_int fw_start_cmdl(int argc, char* argv[])
{
LOG_INFO("Launching encapsulated FEAP");

/* Initializes the command line arguments for feap

* and passes them via a shared common block (defined

* in feap/fw/fwcomargs.h).

*/
fw_init_args(argc, argv);

/* Launch FEAP */
fw_io_set_stream_mode(FW_IO_STREAM_MODE_ID_USER);
FW_FORTRAN_SYM(fwinit)();
fw_io_set_stream_mode(FW_IO_STREAM_MODE_ID_INITIAL);

LOG_INFO("Regained control from FEAP event loop");
fw_set_state(FW_STATE_READY);

LOG_INFO("Encapsulated FEAP is now ready");

return FW_RC_SUCCESS;
}

Figure 2.7: The fw_start_cmdl(int argc, char* argv[]) libfw routine launches FEAP
-FW with the given command line arguments which are passed via shared memory. An encapsulated
FEAP-FW instance is launched by fwinit_. Warning: If the input card selected by the
-i-switch does not contain a final CNTN statement the call to fwinit_ does not return.

Example: A FEAP batch command block

Listing 2.7:

BATCh
TANG
FORM
SOLVe
END

Figure 2.9: Example for a FEAP batch block. The displayed block consists of five statements. First,

the keyword BATCH which opens the batch block puts FEAP into batch mode, where it receives

program macros. The first program macro TANG triggers the assembly of the stiffness matrix. The

residual is then updated by FORM. Finally the linear solution phase is triggered by SOLV. The

block is closed by the final END statement.

This allows us to execute arbitrary blocks of valid FEAP syntax. Let us now dissect the imple-

mentation of this mechanism in libfw and FEAP-FW. The necessary control over the FEAP main

event loop was already described previously. In FEAP the input is read from one of the standard

input streams available in FEAP. In contrast to FEAP, in FEAP-FW this loop is fed with FEAP

statements from a simulated memory-resident input card. We have condensed some important
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libfw: Finalization procedure [fw.c ]

Listing 2.6:

fw_int fw_exit(void)
{

LOG_INFO("Shutting down libfw");

/* Set internal default assembly callback */
void* null_ctx_ptr = 0x0;
fw_set_asm_cb(fw_default_asm_cb);
fw_set_asm_cb_ctx(null_ctx_ptr);

/* Set internal default solver callback */
fw_set_solver_cb(fw_default_solver_cb);
fw_set_solver_cb_ctx(null_ctx_ptr);

/* Call the FEAP exit routine to release memory and files */
LOG_INFO("Passing control to FEAP to let it shut down");
fw_io_set_stream_mode(FW_IO_STREAM_MODE_ID_USER);
{
FW_FORTRAN_SYM(fwexit)();

}
fw_io_set_stream_mode(FW_IO_STREAM_MODE_ID_INITIAL);
LOG_INFO("Reobtained control flow from FEAP");

/* Flush and reset output streams to the initial settings */
fw_io_finalize();

fw_set_state(FW_STATE_INVALID);
LOG_INFO("Exiting from libfw");

return FW_RC_SUCCESS;
}

Figure 2.8: The libfw finalization code calls the fwexit_() finalization function in FEAP-FW
which is derived from plstop_. FEAP-FW then executes the usual FEAP finalization code and
flow control returns to the libfw client, not to the operating system via stop_ as in plstop_.

considerations on the externalization of FEAP control flow in Figure 2.10.

Let us revisit the main idea for control flow extraction:

Turn the FEAP main event loop into a repeatedly callable function and provide the argu-

ments to be executed by the event loop using a simulated FEAP input card.

This function will have side effects since it affects the global state of FEAP. This is even intended,

because FEAP state must be preserved across multiple subsequent calls. Via the simulated FEAP

input card the user supplies arguments directly to the FEAP event loop which resolves this into

internal function calls.

For the realization of the input from shared memory in FEAP-FW, the original FEAP input parsing

code in pcontr_ and tinput_() was modified such that it allows to read input from an internal

memory buffer. This buffer is declared in a F77 common block and can be manipulated from

libfw (C) and FEAP-FW (F77).

A verbal description of the sequence of steps executed during execution of a FEAP command in

libfw is given in Figure 2.11. It details how FEAP-FW reads input from the shared text buffer
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Aspects of the externalization of FEAP flow control

• Controlled initialization of FEAP:
→ Need to pass command line arguments.
→ Control flow must return to caller after initialization.

• Transfer FEAP statements to FEAP for execution:
→ Send statements to FEAP.
→ Receive and execute statements in FEAP main event loop.

• Controlled entry of the FEAP main event loop:
→ Controlled execution of initialization code to sustain FEAP-state across calls.

• Controlled exit of the FEAP event loop:
→ Need to control finalization to sustain FEAP-state across calls.

Figure 2.10: A list of considerations regarding the extraction of the FEAP control flow.

(simulated input card) and executes the contents. A sequence diagram for the same process is

displayed in Figure 2.12.

libfw: Verbal description of command execution sequence

1. libfw clears the shared text memory buffer.

2. libfw copies the statements to this buffer.

3. libfw appends a CNTN statement to the buffer:
→ FEAP-FW bypasses finalization and returns control if a CNTN-statement is encoun-
tered.

4. libfw sets the shared flag fwjtelflg = .true.:
→ FEAP-FW skips event loop initialization in pcontr_.

5. libfw sets the shared flag fwcioflg = .true.:
→ FEAP-FW reads input from the libfw text buffer using the fwinput_ function.

6. libfw passes control to FEAP-FW with a call to pcontr_.

7. FEAP-FW skips to the start of the FEAP-FW main event loop.

8. FEAP-FW reads the input statements from the shared text memory buffer and executes
them.a

9. FEAP-FW parses the input from the memory buffer and executes the given input.

10. FEAP-FW executes the appended CNTN command and leaves pcontr returning the
flow control to the caller.

aNote that FEAP-FW is in control and may call its finalization procedure plstop_ in case of errors, thus
terminating the whole application which may be unexpected.

Figure 2.11: Execution steps for the execution of a FEAP command
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Execution of FEAP-FW statements using libfw

:main :libfw :FEAP-FW

fw_run_cmd_seq(...)

“Initialize shared text
buffer”

“Set flow control flags:”
fwcioflg = 1, fwjtelflg = 1

“Copy input section to
shared text buffer”

“Append CNTN-statement
to shared text buffer”

pcontr_(...) “Jump
to event
loop.“



“Read
FEAP-FW
state-
ments via
fwinput_()

and
execute.“

The final CNTN-statement

1. exits the event loop,

2. bypasses finalization, and

3. returns flow control to
libfw.

error code

Figure 2.12: Illustration of the event sequence generated by executing a section of FEAP statements
using libfw. The FEAP command language statements are read line by line from a shared memory
text buffer using a special input function fwinput_. The initialization and finalization code of
the FEAP program control function pcontr_ is bypassed to preserve the state of FEAP across
consecutive calls to fw_run_cmd_seq.

Modifications to the FEAP Directory Structure

Some files were added to FEAP-FW which are not present in FEAP. The modifications to the

directory tree itself are minimal. All files which have been created for FEAP-FW are located in a

new subdirectory ./fw. A listing of the additional files together with a short description of their

contents is given in Table 2.3.

Modifications to the FEAP Graphics Subsystem

The most important target platform for the intended massively parallel simulations is the Cray

XT6 supercomputer at Universität Duisburg-Essen. This and comparable machines are remote

accessed e.g., using secure shell access (SSH) and parallel programs are started as batch jobs by a

queuing system, e.g., the PBS-system. In this scenario support for X11-graphics is not available.

The software library libX11 is not even installed. Consequently, all dependencies on libX11
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List of contributed files in the ./fw subdirectory

File Name Short Description

fw/fwcomm.h Common blocks for data sharing between FEAP-FW and libfw.
fw/fwexit.f Exit function for FEAP-FW (derived from plstop).
fw/fwgetpload.f Function to retreive the proportional loading table.
fw/fwgetvari.f Function to get (a selection of) variables of type Integer
fw/fwgetvarr.f Function to get (a selection of) variables of type Real
fw/fwinit.f FEAP-FW initialization code (derived from feap82.f
fw/fwinput.c Input function fed from memory buffer (C)
fw/fwsetpload.f Function to set the proportional loading table.
fw/fwsetvari.f Function to set (a selection of) variables of type Integer
fw/fwsetvarr.f Function to set (a selection of) variables of type Real
fw/makefile Standard directory local makefile from FEAP

Table 2.3: List of the files which have been added in FEAP-FW.

had to be removed and we chose to implement an alternative dummy graphics driver in FEAP-FW.

This driver provides the same interface as the FEAP-X11-driver but ignores all received graphics

directives.

Using the dummy graphics driver it is possible to use plot commands in libfw also on systems

which do not provide X11, without breaking compatibility with input cards that make use of plot

commands. This can be helpful since plot commands in FEAP may produce side effects relevant

for computations. For testing purposes, we have provided a compile time flag to the libfw build

system which allows to select the standard X11 graphics driver. This eases the comparison of

results with a FEAP-executable from the stock distribution of FEAP v8.2.

FEAP-FW: Available graphics drivers

• X11 (default)

• Dummy (new)

As previously indicated, the graphics driver can be selected at compile time using a compile time

definition in makefile.in, as shown in Figure 2.13.

Modifications to the FEAP Build System

It is instructive to take a closer look at the FEAP build system in order to understand the packaging

of the libfw library. The FEAP build system is based on UNIX-makefiles which are configured

for the user installation using a makefile.in which is included by all UNIX-makefiles in the

FEAP directory tree. When the make tool executes the makefile in the FEAP root directory it

executes the following steps:

1. The F77 and C-source files are compiled to object files (with .o-extension). The source

subdirectories are visited sequentially.

2. Once generated, the object files for a given subdirectory are automatically archived in a static

library named feap82.a (by default) using the UNIX archive tool ar.

3. The FEAP main executable program feap82 is compiled and linked with the static library

feap82.o.
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In the standard distribution of FEAP all external code symbols needed to compile the FEAP main

executable feap82 are archived in and provided by the static library archive feap82.a. The

build system for FEAP-FW is essentially identical to the FEAP build system. Only the contents

of the newly introduced ./fw-subdirectory have to be compiled and archived as well. Similarly,

the configuration of the build system has been left as is. I.e., FEAP-FW is configured using a

corresponding makefile.in-file in the root directory of the FEAP-FW source tree. There are,

however, nonetheless some noteworthy differences between the configuration of FEAP and FEAP-

FW. Let us take a more detailed look at the configuration of a FEAP installation. The configuration

of a FEAP installation is carried out in the following two files.

1. The build system is configured in makefile.in.

2. The main executable is configured in the program launcher code main/feap82.f.

Let us give a short example for a makefile.in for FEAP-FW and libfw used on MacOSX in

Figure 2.13.

FEAP-JS-FW: Configuration in makefile.in (MacOSX/GCC)

Configuration for 64-bit integers. Additional includes for FEAP-JS:

24

25 # FINCLUDE = $(FEAPHOME8_2)/include -I$(FEAPHOME8_2)/include/integer8

Selection of the libfw X11 dummy driver:

37 FF = mpif90 -fPIC -DLIBFW_USE_X11_DUMMY_DRIVER
38 CC = mpicc -fPIC -DLIBFW_USE_X11_DUMMY_DRIVER

Enforce 64-bit width of the INTEGER type (GCC):

58 FFOPTFLAG = -ggdb3
59 CCOPTFLAG = -ggdb3

Selection of the libfw X11 dummy driver:

84 FOPTIONS =
85 COPTIONS = -DLIBFW_USE_X11_DUMMY_DRIVER

X11 dependencies have been eliminated and are commented out:

91 # LDOPTIONS = -lX11 -lm
92 # LDOPTIONS = -L/usr/X11R6/lib -lX11 -lm
93 # LDOPTIONS = -L/usr/X11R6/lib -L/opt/openmpi/lib -lX11 -lm
94 # LDOPTIONS = -L/usr/X11R6/lib64 -lX11 -lm

Figure 2.13: A list of relevant configuration settings in makefile.in for FEAP-JS-FW on MacOSX.

Modifications to the FEAP Dynamic Memory Subsystem

Let us now take a closer look at the memory subsystem of FEAP. It is particular for a F77-code,

since pure F77 codes can only allocate memory statically. FEAP can allocate memory dynamically

through a C memory subsystem contributed by D. Bindel. The so-called named fields in FEAP are

dynamic arrays with metadata which are managed in a global dictionary. They can be retrieved

using the pgetd_ function. Each named field is associated to a dynamically allocated piece of
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libfw-js: Example makefile.in (MacOSX/GCC)

# Location of FEAP-FW archive
FEAP_FW_ARCHIVE=$(PWD)/../feap-fw-js/libfeapfw-dbg.a
FEAP_FW_ARCHIVE_DIR=$(dir $(FEAP_FW_ARCHIVE))
FEAP_FW_LIBRARY_NAME=feapfw-dbg

#Location of FDDP headers
FDDP_INCLUDE_DIR=$(HOME)/workspace/fddp/src

# Compiler setup
CC = mpicc
CXX = mpic++

CFLAGS += -DPIC -DUSE_MPI -std=c99 -pedantic -Wall -ggdb3 -fPIC -I$(
FDDP_INCLUDE_DIR)

#CFLAGS += -std=c99 -O3 -pedantic -Wall -fPIC -DPIC -DLOG_LEVEL=
LOG_LEVEL_INFO -DUSE_MPI -I$(FDDP_INCLUDE_DIR)

# Note that FEAP basically uses 2 integer types:
#
# a.) entries of dynamic integer fields (and pointers).
# (the dynamic integer storage implemented in C.)
#
# b.) standard INTEGER types.
#
# In order to be usable with libfw, FEAP-FW must be
# compiled such that both of these types are of
# the same size, i.e. 4 or 8 bytes.

# 32 bit
#FW_INT_TYPE_WIDTH_IN_BYTES=4

# 64 bit
FW_INT_TYPE_WIDTH_IN_BYTES=8

CFLAGS+=-DFW_INT_TYPE_WIDTH_IN_BYTES=$(FW_INT_TYPE_WIDTH_IN_BYTES)
FFLAGS+=-DFW_INT_TYPE_WIDTH_IN_BYTES=$(FW_INT_TYPE_WIDTH_IN_BYTES)

Figure 2.14: Build configuration for libfw. Very important is the
FW_INT_TYPE_WIDH_IN_BYTES=8 definition. It indicates consistent use of 64-bit inte-
gers in FEAP-FW. For this, FEAP-FW must be compiled, e.g, with the -fdefault-integer-8
compiler switch (MacOSX/GCC).

memory which is allocated by a dynamic memory management subsystem (./unix/cmem.c)

implemented in C.

There is a noteworthy technical detail, which any user of FEAP or FEAP-FW should be aware of

when configuring a new installation and we want to mention this at least shortly. For the correct

computation of memory offsets in name fields FEAP uses a variable called IPR (Integer Per Real).

It is configured in feap82.f. A build using 64-bit integer variables requires IPR = 1 since the

REAL type is 64-bit wide by default and IPR = 2 is suitable for 32-bit integers. The build of

libfw must be configured consistently, see Figure 2.14.
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FEAP-FW: Configuration of the IPR-variable

The IPR-variable is configured in the FEAP-FW launch code ./fw/fwinit.f which is

executed during the libfw initialization. The FEAP-FW launch code is derived from the

original feap executable launcher code in ./program/feap82.f.

We summarize that FEAP uses a dynamic C memory management subsystem. Access to this

memory can be realized in FEAP-FW by changing the symbol visibility of the memory pools.

FEAP: Original declaration of dynamic memory pools [mem.c ]

Listing 2.8:

/* Base address of hr (double) array */
static byte* mem_system_base_r;
/* Base address of mr (integer) array */
static byte* mem_system_base_i;

Figure 2.15: Modificiations to FEAP memory management. The static keyword influences the
visibility of the base pointers to the memory pools which are declared here. As originally defined
they are only visible from inside the same C translation unit, which is a reasonable access protection.
In our context it disallows to reference the memory pool base pointers from other translation units
using an extern declaration.

FEAP-FW: Modified declaration of dynamic memory pools [mem.c ]

Listing 2.9:

/* BEGIN: libfw: | Removed static keyword to render symbols visible. */
/* Base address of hr (double) array */
byte* mem_system_base_r;
/* Base address of mr (integer) array */
byte* mem_system_base_i;
/* END: libfw */

Figure 2.16: After removal of the static keyword the memory pools can be accessed from other
translation units.

We now turn our focus towards the extension of the user solver interface in FEAP-FW and the

corresponding public interfaces in libfw.

2.6.3 Forwarding of User Assembly and User Solver Callback Interfaces

In FEAP and FEAP-FW, the boolean flag solver_ enables or disables FEAP user solver mode. By

default this flag is set to .false. in the main program routine feap82 at program start. If set

to .true., the solution process is delegated by calls to a user solver in multiple phases:

1. The assembly phase: For every element FEAP computes and provides the associated element

stiffness matrix and right hand side to the user solver for assembly by calling the user assembly

function uasble_ hook.
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2. The linear solution phase: FEAP invokes the external user solver at appropriate places in

the Newton-scheme via calls to usolve_. Each call also specifies the event type which is

encoded by a numeric id.

This is a very flexible mechanism. The implementation of the assembly callback mechanism in

libfw is realized based on this as follows: All calls of FEAP-FW to the user solver extension points

uasble_ and usolve_ are directly forwarded to the libfw client application together with the

arguments provided by FEAP-FW. The libfw client can register callback functions which are

invoked whenever FEAP-FW calls uasble_ or usolve_. This is simple, but the additional layer

of indirection is sufficient to meet the requirements for a FEAP library.

Thus, in order to realize, e.g., a Newton-solver based on libfw, the client code needs to implements

an assembly callback in the C programming language and register this client with libfw. Let us

take a look at this mechanism in more detail now.

The libfw Assembly Callback Interface

FEAP assembles elements in an assembly loop. This loop iterates over all elements in the finite

element mesh. For each element the element stiffness matrix and right hand side are computed. In

user solver mode (solver_ = .false.) FEAP provides the individual element stiffness matrices

and right hand sides to the user solver. In particular, the uasble_ function is called for each

visited element for the assembly of the linear system which is to be solved by the user solver.

FEAP-FW: Call site of the libfw assembly callback redirector [uasble.f ]

Listing 2.10:

call fw_uasble_cb_redirector(s,
& p,
& ld,
& elidx,
& elreg,
& afl,
& bfl,
& ns,
& neq,
& b);

Figure 2.17: Call site of the libfw assembly callback redirector in uasble_(). If FEAP is
configured for “user solver mode” (usolve_ = 1) the redirection is invoked for each assembled
element. The arguments are forwarded to the registered user assembly callback in libfw. In the
other mode FEAP-FW uses the FEAP-internal direct solver.
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libfw: Assembly call forwarding to libfw [fw_cb.h ]

void
FW_FORTRAN_SYM(fw_uasble_cb_redirector)(fw_double* K_ptr,

fw_double* f_ptr,
fw_int* l2g_ptr,
fw_int* elmt_idx_ptr,
fw_int* elmt_region_idx_ptr,
fw_bool* K_asm_flag_ptr,
fw_bool* f_asm_flag_ptr,
fw_int* n_elmt_dof_ptr,
fw_int* n_global_dof_ptr,
fw_double* asm_rhs_ptr)

{ ... }

Figure 2.18: The assembly callback redirector in libfw forwards the element assembly events
generated by uasble_(...) to the currently registered libfw user assembly callback.

The assembly callback pointer type

Listing 2.11:

typedef fw_int (*fw_asm_cb_ptr_t)(fw_double* K_ptr,
fw_double* f_ptr,
fw_int* l2g_ptr,
fw_int elmt_idx,
fw_int elmt_region_idx,
fw_bool K_asm_flag_ptr,
fw_bool f_asm_flag_ptr,
fw_int n_elmt_dof,
fw_int n_global_dof,
fw_double* cur_rhs_ptr,
void* user_ctx_ptr);

libfw: Assembly callback manager (fw_cb.h)

Listing 2.12:

static
fw_asm_cb_mgr_t fw_asm_cb_mgr =

{
fw_default_asm_cb, /* register default callback */
(void*) 0, /* no user context */
(size_t) 0 /* zero call counter */

};

Figure 2.19: Definition of the static assembly callback manager. By default it is initialized to
point to the default user assembly callback fw_default_asm_cb. The default callback is a sim-
ple dummy. A call to fw_set_assembly_cb(...) and fw_set_assembly_ctx_ptr(...)
stores the current user callback and context pointer here.
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libfw: Assembly call forwarding [fw_cb.h ]

Listing 2.13:

rc = (*fw_asm_cb_mgr.cb_ptr)(K_ptr,
f_ptr,
l2g_ptr,

*elmt_idx_ptr,

*elmt_region_idx_ptr,

*K_asm_flag_ptr,

*f_asm_flag_ptr,

*n_elmt_dof_ptr,

*n_global_dof_ptr,
asm_rhs_ptr,
fw_asm_cb_mgr.ctx_ptr);

libfw: Public interface for assembly callback registration [fw_cb.h ]

Listing 2.14:

/** \brief Registers an element assembly callback. */
void fw_set_asm_cb(fw_asm_cb_ptr_t user_cb_ptr);

/** \brief Sets the callback context pointer for the assembly callback. */
void fw_set_asm_cb_ctx(void* user_ctx_ptr);

/** \brief Sets the element assembly callback call counter. */
void fw_set_asm_cb_call_count(size_t count);

/** \brief Returns the currently registered assembly callback. */
fw_asm_cb_ptr_t fw_get_asm_cb(void);

/** \brief Returns the current context pointer for the
assembly callback.

*/
void* fw_get_asm_cb_ctx(void);

/** \brief Returns the user solver callback call counter. */
size_t fw_get_asm_cb_call_count(void);

Figure 2.20: Public interface for assembly callback registration [fw_cb.h ].
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Sequence diagram for element assembly during FORM

:main :libfw :FEAP-FW

fw_set_asm_cb(...)

fw_set_asm_cb_ctx(...)

fw_run_cmd_seq(...)

“Initialize command exe-
cution”

pcontr_(...)

pmacr_(...)

pmacr1_(...)

formfe_(...)

pform_(...)

passble_(...)

dasble_(...)

uasble_(...)

fw_uasble_callback
_redirector_(...)

”Execute user assembly
callback”

”CNTN returns control”

“error code”

Figure 2.21: Illustration of the event sequence which is triggered by the call fw_run_cmd_seq
(“BATCH\nFORM\nEND”). The user assembly interface call originitating from FEAP-FW is

forwarded with one additional level of indirection to the assembly callback currently registered
with libfw. A client code can register this callback using the fw_set_asm_cb function.
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The implementation of the forwarding mechanism is realized in a standard way. It follows a simple

pattern which allows to set a callback and an additional callback context pointer. This approach is

commonly found in C-libraries (for example in OpenGL). It offers support, for use from C++. Note

that the context pointer is passed to the callback function on invocation as the last argument.

Remark 2.6.3. (Usage of the C-callback interface from C++) It is impossible to directly register

class methods from C++ as a callback in C. This is a common but small technical obstacle rooting

in the fact that pointers to non-static class methods are not C function pointers. They can only

be resolved relative to the this pointer of an instantiated class instance. Thus, one needs an

additional redirection mechanism using an additional static class. The address of a static class

method is a C function pointer. In this scenario one simply passes the this pointer of the class

instance as the callback context pointer fw_set_asm_cb_ctx(this).

In the following, we give an example how this callback mechanism can be used to register a C++

class method. The user simply supplies the this pointer of the class as the context pointer and

implements a suitable static class method which casts the context pointer back to the appropriate

class type.

mparfeap: The C++ callback forwarding using a static class method

Listing 2.15:

fw_int
Assembly::static_assembly_cb_redirector(fw_double* K_elmt_ptr,

fw_double* f_elmt_ptr,
fw_int* l2g_ptr,
fw_int elmt_idx,
fw_int elmt_region_idx,
fw_bool K_asm_flag,
fw_bool f_asm_flag,
fw_int n_elmt_dof,
fw_int n_global_dof,
fw_double* cur_rhs_ptr,
void* user_ctx_ptr)

{
// Extract this pointer from user_ctx_ptr
Assembly* assemblyInstancePtr = reinterpret_cast<Assembly*>(user_ctx_ptr);
ASSERT(assemblyInstancePtr, "Unexpected null pointer!");

// Redirect the assembly call to the registered instance
return assemblyInstancePtr->assembleFEAPElement(/* forward arguments */;

}

In the context of parallel domain decomposition based linear solvers it is an advantage to have the

flexibility to allocate multiple subdomains to a single MPI-instance. It is possible to do this using

the previously described implementation. This was also one of the requirements for the parallel

framework. To allow for the assembly of multiple subdomain stiffness matrices in a single FEAP

instance, we have slightly modified the uasble_ hook function signature. It passes the so-called

region index of the currently assembled element as an additional argument to the client code.

Thus, for the realization of the sequential assembly of multiple subdomains per MPI process in

mparfeap, every subdomain connectivity is included in a separate FEAP region. This construction

allows to relate a given element contribution to a subdomain via the FEAP region index when

the uasble_-hook is invoked and forwarded to the registered client assembly function. With
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this additional information the element contribution can be assembled into separate subdomain

stiffness matrices.

We summarize, that multiple subdomains can be assembled by a single MPI-instance of libfw by

grouping subdomains in FEAP regions.

The libfw Solver Callback Interface

The realization of the libfw solver callback interface is, for the most part, analogous to the

implementation of the assembly callback interface which we have already described in some detail.

It suffices here to show the signature of the callback which can be registered in libfw using the

fw_set_solver_cb and fw_set_solver_cb_ctx methods. It is important to note that the

user solver callback interface provided by FEAP is a bi-directional interface, i.e., there is data

returned to FEAP-FW.

Contract: The Newton correction computed during the linear solution phase must be returned

to FEAP! Only if this contract is fulfilled, FEAP can internally update all fields correctly.

libfw: The libfw solver callback pointer type [fw_cb.h ]

Listing 2.16:

typedef fw_int (*fw_solver_cb_ptr_t)(fw_double* rhs_ptr,
fw_bool init_flag_ptr,
fw_bool factor_flag_ptr,
fw_bool solver_flag_ptr,
fw_bool asymmetric_stiffness_flag_ptr,
fw_bool purge_flag_ptr,
fw_int n_global_dof,
void* user_ctx_ptr);

Figure 2.22: Public type for the libfw solver callback which can be registered in libfw. Calls
to the uasble_ function are forwarded to the currently registered user solver callback.
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libfw: Public interface for solver callback registration [fw_cb.h ]

Listing 2.17:

/** \brief Sets the current user solver callback */
void fw_set_solver_cb(fw_solver_cb_ptr_t user_cb_ptr);

/** \brief Sets the callback context pointer for the user
solver callback

*/
void fw_set_solver_cb_ctx(void* user_ctx_ptr);

/** \brief Sets the user solver callback call counter */
void fw_set_solver_cb_call_count(size_t count);

/** \brief Returns the currently registered user solver callback. */
fw_solver_cb_ptr_t fw_get_solver_cb(void);

/** \brief Returns the current context pointer for the
user solver callback.

*/
void* fw_get_solver_cb_ctx(void);

/** \brief Returns the user solver callback call counter */
size_t fw_get_solver_cb_call_count(void);

Figure 2.23: Public interface for solver callback registration in [fw_cb.h ].
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2.6.4 The libfw Shared Memory Interface for Data Access

Another set of interface methods in libfw is related to read and write access to global data in

FEAP. The considered global data in FEAP are of the following two types:

Types of global data in FEAP

• F77 common blocks : statically allocated during program initialization.

• Named fields : dynamically allocated via a C-subsystem.

The previously described minor modification to the FEAP memory management code which changes

the visibility of the memory pools is sufficient to implement reliable read and write access to all

named fields in FEAP using field information obtained from FEAP by the pdict_ function.

Access to Named Fields

libfw provides interfaces for read and write access to the named fields which are currently

managed by the encapsulated FEAP-FW instance. The shared data interface is specified in

fw_shared_data.h. All named fields are managed in a global dictionary in FEAP. They can

be retrieved using the pgetd_ function which is used by libfw internally. For the sake of com-

pleteness, we note that FEAP uses the palloc_ and ualloc_ functions to dynamically allocate

memory blocks for named fields internally.

A FEAP named field does not only store data. It also provides the following associated metadata:

FEAP: Metadata for FEAP named fields

Metadata Type Short
Entry Description

Name STRING Dictionary key for the field
ID INTEGER Internal integer ID for the field
Precision INTEGER Enumeration type for stored data:

0 : INVALID (not initialized)
1 : INTEGER
2 : REAL

Size INTEGER Number of stored entries

In what follows, we present the data structures, in particular field handles in Figure 2.25. We have

chosen to use handles to the FEAP named fields, in order to implement transparent updates of

internal data pointers, for the case that a named field is reallocated in FEAP. This is technically

possible and it would lead to stale pointers which might be totally unexpected for the client code.

The access methods for named fields are listed in Figure 2.26.

Access to INTEGER and REAL Variables

Furthermore, libfw provides uniform access to some global variables stored in FEAP common

blocks. This functionality is inspired by the solution for variable access in D. Bindel’s Mat-

feap Bindel [18]. A list of supported variables is given in Figure 2.27 and Figure 2.28.
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Example: Available named fields with metadata

ID Name Length Type

0 START 0 0
21 JP1 127364 1
25 D 401 2
26 DR 382092 2
27 F 254728 2
28 F0 509456 2
29 FPRO 254728 1
30 FTN 509456 2
31 ID 254728 1
32 IE 13 1
33 IX 1474560 1
34 LD 70 1
35 P 30 2
36 S 200 2
38 T 127364 2
39 TL 10 2
40 U 382092 2
41 UL 140 2
43 X 382092 2
44 XL 30 2
45 ANG 127364 2
46 ANGL 10 2
78 EXTND 127364 1
89 NREN 254728 1

100 RIXT 127364 1
111 TEMP1 127364 1
112 TEMP2 655360 1
151 USER1 11 1
181 RBEN 81920 1
190 NDTYP 127364 1
206 NORMV 382092 2
228 USOL4 127364 2
240 IEDOF 10 1

Figure 2.24: Captured list of named fields available during an example run of libfw. The
shared memory interface of libfw provides read and write access to all fields of type INTEGER
(type = 1) or REAL (type = 2).

Access to the Proportional Loadings

The solution of boundary value problems in nonlinear structural mechanics is usually approached

using a load stepping method. FEAP offers extensive flexible built-in facilities for load stepping.

In FEAP, loading curves can be parametrized using a table of so-called proportional loading factors.

This flexible approach allows to model complex loading scenarios. For numerical computations,

external access to the FEAP proportional loading tables is of interest, since it allows to correctly

monitor the loading state of FEAP. In a parallel application this eases to infer the correctness. It

is quite cumbersome in a massively parallel setting on a remote machine to use the FEAP output

files for monitoring. Thus libfw provides access to the FEAP proportional loading tables.
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libfw: The field handle data structure

Listing 2.18:

/* field handle data structure */
typedef struct
{
char name[16];
void* data_ptr;
size_t length;
fw_field_type type;

} fw_field_handle;

Figure 2.25: The libfw shared memory interface does not expose pointers to the memory location
of the data stored in FEAP named fields. Instead libfw uses a field handle data structure. This
allows to check for stale data pointers transparently. If needed, the user can easily extract a pointer
to the current memory location from the data_ptr member.

libfw: Public interface to named fields [fw_shared_data.h ]

Listing 2.19:

/** \brief Initializes a field handle to access a named field in FEAP */
fw_int fw_init_field_handle(fw_field_handle* handle_ptr, const char*

field_name);

/** \brief Internal function to update a field handle if it was relocated
by FEAP in memory */

fw_uint fw_update_field_handle(fw_field_handle* handle_ptr);

/** \brief Read data from FEAP named integer field */
fw_int fw_get_field_i(fw_field_handle* handle_ptr, fw_int* target_ptr, size_t

n);

/** \brief Read data from FEAP named double field */
fw_int fw_get_field_r(fw_field_handle* handle_ptr, fw_double* target_ptr,

size_t n);

/** \brief Write data to FEAP named integer field */
fw_int fw_set_field_i(fw_field_handle* handle_ptr, fw_int* source_ptr, size_t

n);

/** \brief Write data to FEAP named double field */
fw_int fw_set_field_r(fw_field_handle* handle_ptr, fw_double* source_ptr,

size_t n);

Figure 2.26: The libfw shared memory interface relies on a field handle structure which is trans-
parently updated in case of reallocations of the given named field in FEAP-FW.

Use cases for the access to the loading tables

• External control of the loadings internally applied by FEAP.

• External monitoring of FEAP-internally applied loadings.

The public interface functions in libfw which allow access to the proportional loading tables are
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libfw: Available FEAP variables of type INTEGER [fw_shared_data.h ]

Listing 2.20:

/* accessible FEAP integer variables */
typedef enum
{
FW_VAR_I_ID_IOR = 0,
FW_VAR_I_ID_IOW,
FW_VAR_I_ID_IPR,
FW_VAR_I_ID_ITECNO,
FW_VAR_I_ID_MF,
FW_VAR_I_ID_MQ,
FW_VAR_I_ID_NADD,
FW_VAR_I_ID_NDF,
FW_VAR_I_ID_NDL,
FW_VAR_I_ID_NDM,
FW_VAR_I_ID_NEN,
FW_VAR_I_ID_NEN1,
FW_VAR_I_ID_NEQ,
FW_VAR_I_ID_NH1,
FW_VAR_I_ID_NH2,
FW_VAR_I_ID_NH3,
FW_VAR_I_ID_NNEQ,
FW_VAR_I_ID_NNLM,
FW_VAR_I_ID_NST,
FW_VAR_I_ID_NUMEL,
FW_VAR_I_ID_NUMMAT,
FW_VAR_I_ID_NUMNP,
N_FW_VAR_I_IDS

} fw_var_i_id_t;

Figure 2.27: A list of integers variables accessible by the shared data interface.

libfw: Available FEAP variables of type REAL [fw_shared_data.h ]

Listing 2.21:

/* accessible FEAP real variables */
typedef enum
{
FW_VAR_R_ID_DT = 0,
FW_VAR_R_ID_TTIM,
N_FW_VAR_R_IDS

} fw_var_r_id_t;

Figure 2.28: A list of real variables accessible by the shared data interface.

listed in Figure 2.30.

2.6.5 Technical Aspects

There are some noteworthy technical considerations and features of libfw which we have grouped

in this subsection.
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libfw: public interface methods for access to variables

Listing 2.22:

/** \brief Get value of FEAP integer variable */
fw_int
fw_get_var_i(fw_var_i_id_t var_id, fw_int* value_ptr);

/** \brief Get value of FEAP real variable */
fw_int
fw_get_var_r(fw_var_r_id_t var_id, fw_double* value_ptr);

/** \brief Set value of FEAP integer variable */
fw_int
fw_set_var_i(fw_var_i_id_t var_id, fw_int value);

/** \brief Set value of FEAP real variable */
fw_int
fw_set_var_r(fw_var_r_id_t var_id, fw_double value);

Figure 2.29: The libfw shared memory interface relies on a field handle structure which is trans-
parently updated in case of reallocations of the corresponding named field in FEAP-FW.

libfw: Access to proportional loading tables in FEAP [fw_shared_data.h ]

Listing 2.23:

/** \brief Get current proportional loadings */
void fw_get_pload(fw_double* prop_ptr, fw_int* npld, fw_double* prldv);

/** \brief Set current proportional loadings */
void fw_set_pload(fw_double* prop_ptr, fw_int* npld, fw_double* prldv);

Figure 2.30: Public interface for proportional loadings.

I/O Stream Redirection

When used as a library, a user in a massively parallel scenario may want to control the output

of the encapsulated FEAP-instance to the STDOUT and STDERR streams. Note that the original

FEAP mostly writes output into its logfiles.5

To ease debugging and to support custom installations using the standard output streams STDOUT

and STDERR libfw provides an interface which allows a user to redirect these standard streams.

A libfw client application may deactivate all output written by FEAP to the standard output

streams STDOUT and STDERR by redirecteing them to the /dev/null device during scalability

testing. Alternatively, these streams can be routed to dedicated logfiles, for example, indexed by the

process number which can be very helpful when tracing down programming errors or unexpected

program termination.

5This is convenient also for use in massively parallel scenarios. The logfile verbosity can be reduced using the
FEAP NOPRint statement.
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libfw: Standard output stream setters [fw.h ]

Listing 2.24:

/** \brief
Redirect FEAP standard output stream to the given fileno.

*/
fw_int fw_io_set_stream_stdout(int fileno);

/** \brief
Redirect FEAP standard error output stream to the given fileno.

*/
fw_int fw_io_set_stream_stderr(int fileno);

Figure 2.31: Interface to redirect the output streams STDOUT and STDERR to user provided
output streams.

The libfw Build Process and Packaging

The build process of the static library archive file libfw.a proceeds in the following three steps.

These are executed by the make tool.

1. The FEAP static library feap.a is unarchived using the UNIX ar command line tool.

2. The C source files of libfw are compiled to object files.

3. The original FEAP object files and the libfw object files are archived in a single static

library libfw.a.

Thus, we see that the build process of libfw depends on the static FEAP archive, e.g., feap.a.

Clearly, the libfw static archive libfw.a can only be built once that archive is available and so

build order is important. A complete clean rebuild of libfw.a is accomplished by the following

bash-commands:

cd $FEAP_FW_HOME # change to FEAP-FW home directory
make clean && make # clean tree and rebuild
cd $LIBFW_HOME # change to libfw home directory
make clean && make # clean tree and rebuild

This packaging strategy has implications for the symbol name space which we summarize in a short

remark.

The generated static library libfw.a provides, by construction, the full set of FEAP-FW code

symbols. These are visible to any application linked against libfw.

The F77/C Language Border and Type Safety

This section summarizes some of our findings regarding type safety in the given multi-language

setting. Interfacing C and F77 is in general not problematic. Some care, however, should be

taken when exchanging data between C and F77. Type safety is not guaranteed across C and F77

translation units and the language interface is not entirely specified. There are some technical
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subtleties, foremost compiler dependencies, which render it nontrivial to realize a portable multi-

language solution.6

Let us give an example: the memory layout of members of F77 common blocks, which correspond to

C-structs is compiler dependent. More precisely, it may depend on compiler flags, e.g., optimization

flags, and pragmas. F77 common blocks can be accessed from a C translation unit. They are usually

accessed by declaration of a extern struct matching the memory layout. At least in principle,

there is the risk of incompatible memory layouts of the same data structure on the C and F77 side

due to different compiler flags or even default compiler behavior. Thus, since incompatible packing

can – in some cases – lead to erroneous exchange of data between C and F77. To stay on the safe

side, in libfw, we have only used common blocks containing a single variable for data sharing. If

this is not possible, then data is accessed through getters and setters on the F77 side. This seems

to be a robust approach.

Still, type safety stops right at the F77/C-language border. In libfw we have strived for a solution

which allows at least the simple reconfiguration of the base types used on the C-side of the interface

(libfw) so that they can be matched to the types on the F77 side (FEAP-FW). A corresponding

mechanism is realized in fw_types.h. The configuration can be influenced at compile time using

particular switches defined there.

Error Handling and Signaling

This is one of the aspects that has not been treated in a completely satisfying way. The handling

of error conditions is currently only rudimentary. Since FEAP is a standalone application, errors

usually terminate the process with an error message. This is a perfectly reasonable behavior for an

application, but it is quite inconvenient for a software library. Even more so, for a parallel software

library. A software library should pass error states on to its client application which is to decide

how to handle a given error state.

Let us give an example for the currently implemented error handling. The nonlinear solver

mparfeap implements a simple adaptive load-stepping strategy using libfw. It is necessary

to detect invalid deformed configurations. Here, by invalid we mean that the material code fails

to correctly compute the contribution for at least one finite element. Previously, in FEAP-JS, the

code just called plstop_() and terminated the program with an error message, if an error was

detected during element assembly. This is not fault tolerant and did not allow for the implemen-

tation of load-stepping. To overcome this, a simple signal mechanism was implemented to detect,

e.g, invalid tangents. Currently this mechanism is only implemented in a rudimentary way and

allows to pass error codes from FEAP-FW to the client indicating a current status integer-id.

libfw: Signaling mechanism for invalid solution states [fw.h ]

Listing 2.25:

/** \brief Get the status indicator for the last solution. */
fw_int fw_get_state_solution();

/** \brief Get the status indicator for the current solution. */
fw_int fw_set_state_solution(fw_int state);

6Portability (among UNIX platforms) is clearly an important requirement here, since code based on libfw may
be run on different supercomputers, for example, for scalability testing of linear and nonlinear solvers based upon
the library.
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This is specifically tailored to the adaptive load-stepping implemented in mparfeap and for libfw

-js.

The addition of a convenient interface allowing to signal errors in FEAP-FW to a libfw client code

is of interest, but seems not trivial to realize. This might be future work.

Reliable Tracking and Runtime Analysis of Modifications

It was an explicit request of the FEAP-JS developers, and also fixed as part of the requirements

definition, that all modifications done to FEAP (or FEAP-JS) are documented in the source code of

FEAP-JS-FW so that modified code sections can be identified on first glance. This is an error prone

task. To assure this, a Source Control Management (SCM) software was used to track the changes

done to FEAP v8.2.7 The typical advantages of using an SCM tool for software development apply.

Let us single out two particular advantages which are of immediate importance in the current

scenario:

1. All modifications done to the stock distribution of FEAP v8.2 can be retraced (with metainfo

on changesets).

2. A UNIX software patch in diff-format containing all differences between FEAP-FW and the

repository base revision FEAP v8.2 can easily be generated for distribution.

A UNIX patch allows to the migration to newer versions or other custom user installations of FEAP

based on FEAP v8.2. Such management of the code modifications might well prove to be crucial

for the future maintenance of the FEAP wrapper code basis. This is just one of multiple means

to cope with the given scenario trying to implement good software practices, for example, most

importantly to ease maintainability.

Modification tracking using an RCS (Revision Control System): To ease the process of locating

code sections in FEAP-FW (and FEAP-JS-FW) which introduce modifications to the base revision,

the modified code sections were marked. Special code markers bracket these changes using partic-

ular F77 comments. This is very helpful in practice, as it is easy to locate modified code sections

using, for example, grep ’libfw’. A short example for such a modification in FEAP-JS is

depicted in Figure 2.32, where a new header file contributed to FEAP-FW is included and marked

as a change.

FEAP-JS-FW: Modification markers [js_elements/elmt_dobr15.f ]

Listing 2.26:

c.....BEGIN: libfw
include ’../fw/fwcomm.h’

c.....END: libfw

Figure 2.32: Modified code section enclosed by the code markers BEGIN: libfw and END:
libfw. A developer workin on FEAP-JS-FW can easily identify the modified code section and
infer that the include directive was modified or newly introduced in FEAP-JS-FW.

This approach gives the developer the information that the code section framed by modification

markers was modified. However, only the current status of the code modification, i.e., the resulting

7In the beginning the Mercurial SCM tool (hg) was used to keep track of modifications, then we migrated to
git.
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code, is visible to the developer. Additional information is needed to deduce exact source code

modifications. This information can be retrieved from the git-repository in the form of code

differences in the standard diff format. The base revision of the FEAP-FW git-repository FEAP

-FW is the standard distribution of FEAP v8.2. Using git (or mercurial) helps to ascertain

that all modifications done to FEAP v8.2 can be retraced and documented. Clearly, the complete

listing of code differences between FEAP-FW and the standard distribution of FEAP v8.2 renders

it possible to identify modified sections where code markers are missing.

Besides intensive support on FEAP details from the FEAP-JS developers, in particular from D.

Brands, for the analysis of the impact of access to FEAP through the libfw package, we have

applied some runtime code analysis. As FEAP is not a small software package this proved indeed

helpful. It is nontrivial to analyze efficiently how a given part of the FEAP code operates internally

at runtime. Usage of a debugger such as gdb can be inconvenient to understand the generated

application callgraphs, since it only produces a static view. To quickly understand callgraphs of

FEAP triggered by libfw events, the etrace-package was used, see Vanegue, Garnier, Auto,

Roy, and Lesniak [136]. During the initial phase of the development of FEAP-FW this analysis

was very helpful to gain an understanding of the internals of FEAP. etrace uses compile time

instrumentation of the function entry and exit points to record the call stacks produced during

application lifetime. This was also helpful in order to verify that the modifications done to FEAP

in FEAP-FW do produce the expected control flow.

The libfw wrapper library is a new type of FEAP-interface. Its use is not limited to the currently

presented context, i.e., to the assembly of models available in FEAP-JS. It is also not limited to

mparfeap. It has also been independently used for the assembly in fluid-structure simulations in

LifeV.

2.7 The FEAP Domain Decomposition Processor: fddp and libfddp

Any domain decomposition-based approach and in particular FETI-DP requires that the global

computational domain be decomposed into subdomains. In the present framework, the geometry

and the boundary data are decomposed in a sequential preprocessing step. The input data for

this step are FEAP input cards including geometry data by a custom command line application

called fddp (FEAP Domain Decomposition Processor). This application is implemented on top

of an associated utility library called libfddp. A basic, extensible object oriented parser for

the FEAP input card format written in C++ allows to read FEAP problem descriptions. Parts of

the code in libfddp are also directly reused by the parallel solver mparfeap. This eases the

implementation of consistent data handling between the preprocessor fddp and the parallel solver

backend mparfeap.

The fddp tool is capable of computing primal and dual subspaces for FETI-DP for unstructured

as well as for structured domain decompositions after the mesh partioning process.

As part of the input data sets for mparfeap, the fddp command line tool generates ASCII-files

describing the generated FETI-DP primal and dual subspaces. These spaces are characterized by

a list of generators, i.e., a spanning set of the associated subspace. The local primal and dual

spaces are stored in one .lps-file (primal space) and one .lds-file (dual space) per FETI-DP

subdomain. The format is the same for both files. Every line describes a single generator by: a

type id, a local entity index, a component index.

The currently supported entity types are: nodal values, edge averages and face averages. Depending

on the generator type, the associated entity index refers to a node, an edge or a face. Edge and

faces are internally identified with the first node contained in the set. The implementation of
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edge and face averages is based on the transformation of basis approach, see e.g., Rheinbach [110].

Note that the degrees of freedom associated to the components of the displacement vector field

u : Ω → R3 are handled separately. This allows, e.g., to impose the sliding boundary conditions

used by Brands, Klawonn, Rheinbach, and Schröder [23], by Brinkhues, Klawonn, Rheinbach,

and Schröder [25] and also in the high resolution calculations of arterial wall stresses presented

in Chapter 3.

We summarize that the input of the mparfeap solver to be presented in the following section is

generated by the sequential fddp preprocessor.

2.8 The Newton-Krylov-FETI-DP Solver: mparfeap

In this section, we present a Newton-Krylov-FETI-DP solver called mparfeap (Massively Parallel

Finite Element Analysis Program) allowing to run massively parallel simulations based on FEAP

-JS and the FETI-DP-solver due to Oliver Rheinbach. So far, we have only discussed some

underlying software components for this integration.

This is a unified shared-memory integration of FEAP-JS with the FETI-DP-solver (correspond-

ing to integration stage IV) allowing for the simulation of arterial wall structures, which was the

original motivation. The mparfeap solver is implemented in C++ and uses libfw-js (i.e., it

wraps FEAP-JS) for the assembly of the linear systems arising in the Newton algorithm. Once

assembled, these linear systems are transformed into a FETI-DP master system and solved using

the scalable FETI-DP-solver. The Newton correction in each Newton step is thus computed

using FETI-DP. Since a direct application of Newton’s algorithm is in general impossible for hard

mechanical problems as those presented here, mparfeap provides load stepping facilities. Clas-

sical load stepping is a homotopy method for the loadings and is also a globalization strategy for

the Newton’s algorithm.

The input for mparfeap is computed by the previously introduced fddp application. This pre-

processor generates the FEAP input cards from which the libfw-js MPI-instances are initialized.

2.8.1 Input Data

Let us give an example for an input data set for mparfeap. It was generated by the fddp

preprocessor and consists of four worksets allocated to two MPI-processes.

I0
I0_0v
I0_1v
I0c
I1
I1_0v
I1_1v
I1c

Figure 2.33: FEAP input cards generated for a parallel run by the fddp; 2 MPI processes (leading
index); 2 local meshes (second index) per MPI-process; local node coordinates are stored in a
I*c-file; local volume element lists are stored in a I*_*v-file
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0.wbi
0_0.dbc
0_0.lds
0_0.lps

Figure 2.34: The 0.wbi is a workset bundle info. It contains metadata on the global and local
problem size. Dirichlet boundary conditions are stored in the 0_0.dbc file. The local degrees of
freedom in the FETI-DP primal space are encoded in a .lps-file and the local dual space degrees
of freedom in a .lds-file.

local_corner_2_local_nodes_0_0
local_corner_2_local_nodes_0_1
local_edge_2_local_nodes_0_0
local_edge_2_local_nodes_0_1
local_face_2_local_nodes_0_0
local_face_2_local_nodes_0_1
local_node_2_global_domains_0_0
local_node_2_global_domains_0_1
local_node_2_global_node_0_0
local_node_2_global_node_0_1

Figure 2.35: Geometry information used to build the linear systems for the FETI-DP-solver
integrated into mparfeap. The primal space (coarse component) for FETI-DP is read from local
files with a .lps extension. These input files also provide information to compute edge and face
averages in the transformation of basis approach.

FetiDP_Bbr_0_0.mat
FetiDP_Bbr_0_1.mat
FetiDP_Bc_0_0.mat
FetiDP_Bc_0_1.mat
FetiDP_BrT_0_0.mat
FetiDP_BrT_0_1.mat
FetiDP_rho_local_0_0.vec
FetiDP_rho_local_0_1.vec

Figure 2.36: Sparse PETSc-matrices and The FETI-DP jump operators depend only on the con-
nectivity of the subdomain interface. They are precomputed by the fddp in a sequential step.

2.8.2 Parallel Assembly

One of the main requirements and features of the presented developed framework is MPI parallel

assembly of the subdomain stiffness matrices for the FETI-DP solver.

Indexing of Degrees of Freedom in FEAP

Multiple element connectivity lists can be included by a single FEAP input card. The element

connectivity lists correspond to volume or surface meshes. Each mesh can be imported into a

different FEAP region. This is accomplished using the REGION command. Internally, the REGIon
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command simply assigns an integer region number to all elements in a finite element volume

or surface mesh which are contained in the given region. Note that FEAP is restricted to one

coordinate list per input card. This list is shared by all finite element nodes. Let us describe the

degree of freedom mapping used by FEAP in uasble.f as it is stored in memory (and seen from

C). It is node-based, e.g., in three dimensions the 0-based mapping for the degrees of freedom is

given by

dof(i, j) = 3 i+ j .

Here, i denotes a 0-based node index and j a 0-based component index. Since FEAP is a F77 code,

the indexing in the FEAP program code is 1-based, but we access the raw data in shared memory

using 0-based C-indexing.

Sequential Assembly of Multiple Subdomains per MPI Process

Parallel scalability on large machines requires that the domain partitioning is flexible, to some

degree. This allows to optimize the memory profile of the solver application which is essential

in practice. In mparfeap multiple subdomains can be managed in a single MPI-instance. This

is realized using the FEAP region command REGIon in the input data sets to group multiple

subdomains in one input card per rank. All subdomains which are managed by a single MPI-

instance are assembled sequentially.

Finite element meshes can be grouped into FEAP regions. This allows to assemble multiple subdo-

mains in a single FEAP input card. These are assembled sequentially into one subdomain stiffness

matrix per FEAP region.

Let 0 ≤ r ≤ rmax denote the rank of the current MPI process and suppose Nr ∈ N subdomains

are associated to the r-th FEAP-instance via the REGIon command. The FEAP node coordinate

list generated by the fddp is obtained by simply concatenating the subdomain node lists while

enforcing a consecutive node numbering. The element lists are split into one element list per FEAP

region referencing the nodes local to the subdomain.

With these input data FEAP sets up the local-to-global mappings to assemble the subdomain

stiffnesses into a direct sum of the stiffness operators which are assembled by the process, i.e.,

K(r) =

Nr⊕
j=1

K
(r)
j , ∀r = 1, . . . , rmax

by default. Here, we have denoted the stiffness matrix assembled for the j-th FEAP region in the

r-th MPI process by K
(r)
j . The handling of the right hand sides is completely analogous. Note that

internally FEAP uses a 1-based interleaved mapping for the degrees of freedom. Since FEAP passes

the element stiffnesses and right hand sides to the user via the user assembly interface (uasble.f)

the user has full control over the final assembly layout. For example, in mparfeap, we assemble

into separate matrices, i.e., into a cartesian product(
K

(r)
1 , . . . ,K

(r)
Nr

)
, ∀r = 1, . . . , rrmax

and use 0-based indexing for the degrees of freedom.

We conclude with a short example input card for the case of four subdomains generated by the

fddp application, see Figure 2.38. These four regions are assembled using a single sequential

MPI-instance of FEAP in mparfeap.
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mparfeap: Assembly routine for FEAP element data

Listing 2.27:

// Assemble FEAP element contribution
fw_int
Assembly::assembleFEAPElement(fw_double* K_elmt_ptr,

fw_double* f_elmt_ptr,
fw_int* l2g_ptr,
fw_int elmt_idx,
fw_int elmt_region_idx,
fw_bool K_asm_flag,
fw_bool f_asm_flag,
fw_int n_elmt_dof,
fw_int n_global_dof,
fw_double* cur_rhs_ptr,
void* user_ctx_ptr)

{
// SNIP: Check for valid arguments
LOG_DEBUG(std::string("Assembling FEAP element ")

+ "[region = " + to_string(elmt_region_idx) + "]"
+ "[element = " + to_string(elmt_idx) + "]");

int dofOffset = dofOffsets_.at(elmt_region_idx);
if(K_asm_flag)
{
LOG_DEBUG(std::string("Assembling element stiffness matrix ")

+ "[region = " + to_string(elmt_region_idx) + "]"
+ "[element = " + to_string(elmt_idx) + "]");

MapMat<double>& K = stiffnessMatrices_.at(elmt_region_idx);
for(int i = 0; i < n_elmt_dof; ++i)
for(int j = 0; j < n_elmt_dof; ++j)

{
// Subtract region dof offset and convert fortran 1-based index to

0-based
int iA = (l2g_ptr[i] - 1) - dofOffset;
// Range check: If the entry cannot be assembled just continue
if(iA < 0) continue;

// Subtract region dof offset and convert fortran 1-based index to
0-based

int jA = (l2g_ptr[j] - 1) - dofOffset;
// If the entry cannot be assembled just continue
if(jA < 0) continue;

// All idxs in range -> Element can be assembled.
LOG_DEBUG("Assembling K: [" + to_string(i) + "," + to_string(j)

+ "] -> [" + to_string(iA) + "," + to_string(jA) + "]");

// Note: i and j must be interchanged on the RHS due to FORTRAN
// column major address calculation
const double& v = K_elmt_ptr[j * n_elmt_dof + i];
K(iA, jA) += v;

}
}

// SNIP: Assembly of right hand side
return 0;

}

Figure 2.37: The element region index is used to assemble the element contribution into the
corresponding subdomain stiffness matrix. Note also the F77 indexing (1-based) and memory
layout (column-major) conventions.
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fddp: Generated FEAP input card with 4 subdomains

Listing 2.28:

FEAP ! Automatically generated by FDDP
0,12,1,3,3,10

REGI,0
ELEM
INCL,I0_0v

REGI,1
ELEM
INCL,I0_1v

REGI,2
ELEM
INCL,I0_2v

REGI,3
ELEM
INCL,I0_3v

COOR
INCL,I0c

MATErial 1
SOLId
ELAStic STVK 210E9 0.324086

END

CNTN

Figure 2.38: A FEAP input card generated for mparfeap by the fddp preprocessor. 4 subdomains
are allocated to a single MPI-instance. The subdomain meshes are imported into separate FEAP
-regions. Dirichlet boundary conditions are filtered out by the fddp. The final CNTN-statement
returns control from FEAP-FW to libfw.

2.8.3 The Solver Class Hierarchy

In the mparfeap solver, the outermost loop which controls the loadings, i.e., the Dirichlet and

Neumann boundary conditions are implemented in the mparfeap::LoadStepper class. This

class currently supports two different loading strategies: linear and adaptive. A standard New-

ton algorithm is implemented in the mparfeap::NewtonSolver class. Different convergence

criteria can be selected. For the computation of the Newton-corrections in the Newton algo-

rithm the highly scalable FETI-DP-solver by O. Rheinbach is used and integrated using a

mparfeap::LinearSolverFETIDP class. This class extends the abstract base class mparfeap

::LinearSolverAbstractBase which is in the mparfeap framework.

The next chapter presents massively parallel scalable simulations for applications in the biome-

chanics of biological soft tissue models computed with the massively MPI-parallel Newton-Krylov-

FETI-DP solver mparfeap.
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LoadStepper
...

bool run();
bool computeStep(NewtonSolverConvergenceInfo& nsci);
...

NewtonSolver
...

void setInitialSolution(const std::vector<double>& u_0);
bool solve(NewtonSolverConvergenceInfo& nsci);
...

LinearSolverFETIDP
...

bool solve(LinearSolverConvergenceInfo& lsci);
...

MatrixBuilderFETIDP
...

void build(Assembly& assembly);
...

FETI-DP-PETSc-solver
...

Standard invocation via PETSc:
PetscErrorCode KSPSolve(KSP ksp, Vec b, Vec x);
...

Figure 2.39: Nesting of solver classes in mparfeap. The load stepping homotopy method is
implemented in the LoadStepper class. After every load increment a nonlinear problem is solved
by the NewtonSolver class. Newton corrections are computed using FETI-DP by a linear solver
class LinearSolverFETIDP. This class initializes and executes the PETSc-based FETI-DP-
solver developed by O. Rheinbach. The system and preconditioner matrices for the FETI-DP-
solver are set up by the MatrixBuilderFETIDP class.
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mparfeap: Hook for the linear solve action from FEAP-JS-FW

Listing 2.29:

/* Solve the linear system */
void LinearSolverFETIDP::fwInvocationHookSolve(fw_double* rhs_ptr,

fw_int n_dof,
void* user_ctx_ptr)

{
LOG_DEBUG("Invoking tangent solver now [n_dof=" + to_string(n_dof) + "]");

solveCallBack();

if(primalSolutionLocalJoined_.empty())
{
LOG_DEBUG("Primal solution is not available. Passing du = 0 to FEAP");
primalSolutionLocalJoined_.resize(n_dof);

};

size_t sz = primalSolutionLocalJoined_.size();
ASSERT(sz == static_cast<size_t>(n_dof),

"Newton update du has wrong dimension [" + to_string(sz) + "]");

// CONTRACT with FEAP (usolve.f):
// The solution must be copied back to FEAP for the update of the
// solution in FEAP.
LOG_DEBUG("Copying Newton update back to encapsulated FEAP instance");

ASSERT(math::checkArray(primalSolutionLocalJoined_), "Numerical garbage");
memcpy(rhs_ptr, &primalSolutionLocalJoined_[0], n_dof * sizeof(fw_double));

}

Figure 2.40: Implementation of the hook which is invoked when FEAP-JS-FW calls usolve_ for
the solution of the linearized system. The FETI-DP system is built and solved in solveCallBack
and the primal solution is passed back to FEAP-JS-FW in the right hand side using memcpy. This
contract is part of the usolve-interface definition. It is used to update the FEAP-internal copy
of the solution vector and other internal data structures such as the material history after every
Newton-step.
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This final chapter presents a selection of large-scale numerical computations for soft biological

tissues in biomechanics obtained using the Newton-Krylov-FETI-DP solver mparfeap on a Cray

XT6m supercomputer provided by the Center for Computational Sciences and Simulation (CCSS)

at Universität Duisburg-Essen.

3.1 Overview

We shall try here to condense the essential aspects of the present work into a good starting position

for the interpretation of the parallel simulation results presented in the following sections. A more

extensive general introduction can be found in Chapter 1, a description of the parallel software

framework is the theme of Chapter 2. There also the terminology for the software components

used here is defined. Note also the supplementary Appendix A which provides a non-technical

introduction to the framework of anisotropic hyperelasticity.

The text at hand has its origin in the interdisciplinary research project

Massiv parallele Simulationen von Arterienwänden:

Kontinuumsmechanische Modellbildung und numerische Lösung mittels

FETI-Gebietszerlegungsverfahrena

(KL 2094/1-{1,2}, SCHR 570/7-{1,2})b

aMassively parallel simulations of arterial walls: Continuum mechanical modeling and numerical solution
via FETI domain decomposition methods (title translated by the author).

bThe project was supported by the Deutsche Forschungsgemeinschaft (DFG) in two funding periods;
common grant proposal by PIs Axel Klawonn and Jörg Schröder.

A highly fruitful collaboration that spawned an entire series of publications [12, 13, 21–23, 25,

52, 73] and previous dissertations [20, 24, 55] which are foundational to the simulation results here

obtained. We show results for:

§3.2 High-resolution computations of transmural von Mises-stress distributions using patient-

specific atherosclerotic arterial wall models subject to a maximal interior normal pressure

of 500 [mmHg].

§3.3 Strong scalability results for these aforementioned high-resolution computations of transmu-

ral wall stresses.

§3.4 Weak scalability results for the structured decompositions of model problems on cuboidal

domains using up to 4096 CPU cores.

§3.5 Two simple tuning strategies for a Newton-Krylov-FETI-DP solver nested in a load stepping

scheme:

• Initialization of the inner linear FETI-DP solver with the last successful dual linear

solution λ(n−1).

• Linear extrapolation of the displacement u to compute the initial value for the Newton

iteration in the next loading attempt.

We recall from §1.3 that FETI-DP is a non-overlapping domain decomposition method which is

characterized by a choice of a primal coarse space. This coarse space is induced by a selection

of certain continuity constraints. The nested FETI-DP solver in mparfeap is denoted here as

the FETI-DP-solver, a highly scalable and robust implementation of FETI-DP in PETSc de-

veloped by O. Rheinbach as an important contribution of his doctoral thesis Rheinbach [110], see

also Klawonn and Rheinbach [70].
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Regarding the material modelling, the present work exactly ties in with Brands, Klawonn, Rhein-

bach, and Schröder [23] essentially carrying the simulations of arterial wall structures presented

therein over to a massively parallel setting. This is a major leap forward, since the framework

in Brands, Klawonn, Rheinbach, and Schröder [23] was limited by a semi-parallel, hence inher-

ently non-scalable, software framework. Note that the DFG-project work continued at first with

a focus on the interaction of the incompressibility constraint with FETI-DP, see Brinkhues, Kla-

wonn, Rheinbach, and Schröder [25], also Brinkhues [24]. New results on efficient coarse spaces

for incompressible and almost incompressible linear elasticity have been obtained, e.g., in Klawonn

and Rheinbach [73] and Gippert [55] but have not been considered here. Instead, we used scal-

able coarse spaces for linear elasticity in three dimensions, again tying in with the setting used

by Brands, Klawonn, Rheinbach, and Schröder [23].

For convenience, we present again the employed FETI-DP algorithms Algorithm C (Definition

1.3.6) and Algorithm DE (Definition 1.3.7). These are defined in §1.3 where also the development

of these algorithms is discussed.

Algorithm C [79]

The primal subspace ŴΠ is induced by enforcing continuity of u on all the subdomain

vertices V and the continuity of all edge averages uEik taken over all edges E in Γ.

Algorithm DE [70]

The primal coarse space is generated by continuity of uEik , i.e., by the continuity of the

averages over all edges E in Γ.

Regarding the material models, we have decided to restrict our attention to the two stored energy

densities ΨA and ΨB with optimally fitted parameter sets for the media and adventitia layers of

the arterial wall structure. The two aforementionend energy densities are strongly anisotropic,

quasi-incompressible and polyconvex, see, e.g., Balzani, Neff, Schröder, and Holzapfel [11]; see

also Appendix A for an introduction to the anisotropic polyconvex framework and in particular to

the implied existence theory.

More precisely, we consider the following two models for the media and adventitia layers in our

simulations of soft-biological tissues:
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Models for the Media and Adventitia Layers (cf. [23])

Model ΨA: (Balzani, Neff, Schröder, and Holzapfel [11])

ΨA

(
C,M (1),M (2)

)
= c1

(
I1

I
1/3
3

− 3

)
︸ ︷︷ ︸
Ground substance

+ ε1

(
Iε23 +

1

Iε23

− 2

)
︸ ︷︷ ︸

Volume penalty

+

2∑
i=1

α1

〈
K

(i)
3 − 2

〉α2

m︸ ︷︷ ︸
Fiber contributions

.

Model ΨB: (Holzapfel, Gasser, and Ogden [64])

ΨB

(
C,M (1),M (2)

)
= c1

(
I1

I
1/3
3

− 3

)
︸ ︷︷ ︸
Ground substance

+ ε1

(
Iε23 +

1

Iε23

− 2

)α5

︸ ︷︷ ︸
Volume penalty

+

2∑
i=1

k1

2k2

exp

k2

〈
J

(i)
4

I
1/3
3

− 1

〉2

m

− 1

︸ ︷︷ ︸
Fiber contributions

.

It is intuitive that incompressibility is an essential constraint for soft biological tissues since these

consist for the largest part of water. In Brinkhues, Klawonn, Rheinbach, and Schröder [25] the

incompressibility constraint was treated using different Augmented Lagrange approaches which

allows to satisfy the incompressibility constraint up to a prescribed tolerance. This is, however,

outside of the scope of the present work. In mparfeap, we use a standard penalty approach

for incompressibility as is easily inferred from the definition of the considered strain energies.

For the discretization, we apply an F -approach as in Brands, Klawonn, Rheinbach, and Schröder

[23], Klawonn and Rheinbach [73], and Brinkhues, Klawonn, Rheinbach, and Schröder [25]. The

particular technique is due to Simo [122] and reduces volume locking effects. For more in depth

discussions, see, e.g., Appendix A; compare also the presentations in Klawonn and Rheinbach [73]

and Brinkhues [24].

All presented computations are based on two parameter sets from Brands, Klawonn, Rheinbach,

and Schröder [23] which have been fitted to experiments and an additional variant with relaxed

volume penalty weight and exponent; see, e.g., Brinkhues, Klawonn, Rheinbach, and Schröder [25]

for a related approach.

Material Parameters for the Adventitita and Media Layers (cf. [23])

Set Model Layer c1 ε1 ε2 α1 α2 α3 α4 α5 k1 k2

[kPa] [kPa] [-] [kPa] [-] [kPa] [-] [-] [kPa] [-]

adv. 6.6 23.9 10.0 1503.0 6.3 – – – – –
2 ΨA med. 17.5 499.8 2.4 30001.9 5.1 – – – – –

adv. 6.2 101.0 10.0 – – – – 3.0 6.0 20.0
3 ΨB med. 10.7 207.1 9.7 – – – – 10.0 1018.8 20.0

adv. 6.2 10.0 4.0 – – – – 3.0 6.0 20.0
3 (relaxed) ΨB med. 10.7 10.0 4.0 – – – – 10.0 1018.8 20.0

The nonlinear boundary value problems underlying the simulations in the following sections have

been formulated using the variational setting of anisotropic finite hyperelasticity. Essentially, the

task at hand is to find a zero of a nonlinear residual functional which corresponds to an equilibrium

of the interior and exterior virtual work.
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Virtual Work

Interior Strain Energy:

Πint : A → R+
0 , Πint(ϕ) =

∫
Ω

Ψ(F,M (1),M (2)) dV .

Interior Virtual Work (Internal Stresses):

Gint : TA → R, Gint|ϕ(χ) :=
d

dε

∣∣∣∣
ε=0

Πint(ϕ+ εχ) .

External Virtual Work (Boundary Conditions):

Gext : TA → R,

Gext|ϕ(χ) :=

∫
∂ΩdefN

〈
tN , χ ◦ ϕ−1

〉
dA

︸ ︷︷ ︸
Pressure load

+

∫
Ω

ρ0

〈
g, χ

〉
dV

︸ ︷︷ ︸
Volume force

.

Note that this depicts a slight simplification since the F-approach which requires a three-field

formulation is not accounted for. We refer the reader to §A.9 and references therein for more

details. The nonlinear equation for the residual R(u) = 0 is first linearized then approximated by

Tet-10, i.e., quadratic tetrahedral finite elements and solved using the Newton-Krylov-FETI-DP

solver mparfeap. Note again that this corresponds to an equilibrium of interior and exterior

virtual work.

Nonlinear Residual

R(u) := G(u) := Gint(u)−Gext(u)
!
= 0 .

In simulations of finite continuum mechanics the discretized equilibrium equation R(u) = 0 is in

general impossible to solve without an effective homotopy method. More precisely, we have applied

the adaptive failure-based load stepping strategy described in §1.4. This failure-based adaptive

load stepping strategy can lead to complex sequences of failed and successful loading attempts.

To clarify the presentation of the recorded convergence histories, we recall the following simple

conventions from our introductory chapter: a launch of the Newton solver with a given load is

called a loading attempt (see Definition 1.4.1). A load step is a successful loading attempt,

i.e., a loading attempt for which the Newton solver signaled convergence (see Definition 1.4.2).

In particular, the sequence of load steps is obtained from the sequence of all loading attempts by

simply removing all failed loading attempts.

Further, for the sake of completeness we want to document the compiler optimization settings here.

Remark 3.1.1 (Compiler Settings). All mparfeap executables have been built with compiler

optimizations turned on. For code compilation the Intel Compiler Suite 11.1.069 was

used on the Cray XT6m with the optimization flags -O3 -ip -msse3. All software components,

i.e., PETSc, FEAP-FW, libfw, libfddp, and mparfeap have been compiled in this way.

The previously available simulations of arterial wall stress states in the physiological regime ob-

tained, e.g., in Brands, Klawonn, Rheinbach, and Schröder [23] and subsequent works were semi-

parallel, hence inherently non-scalable. In the following sections we shall illustrate that this hurdle
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was finally overcome with a new parallel scalable software framework presented in Chapter 2. Let

us stress that the contributed library libfw was an important key to parallel scalability.
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3.2 High-Resolution Computations of Arterial Wall Stresses – ΨA Set-2

– Algorithm C

We present some high-resolution simulations of wall stresses in atheriosclerotic arteries obtained for

geometries reconstructed from IVUS (Intra Vascular Ultra-Sound) patient specific measurement

data. This leads to large-scale unstructured finite element problems for soft biological tissue

models with loadings in the physiological regime imposed as an interior normal pressure of up to

500 [mmHg]. For this simulation, we have selected ΨA Set-2, i.e., the strain energy ΨA with the

material parameter set 2 which was matched to experimental data in Brands, Klawonn, Rheinbach,

and Schröder [23], see also our Table 1.3.

3.2.1 Physiological Arterial Wall Geometries

A hierarchy of arterial wall models was extracted from IVUS image data recorded at the “West-

deutsches Herzzentrum Essen” as part of the collaboration with Prof. Dr. med. R. Erbel and

Dr. med. D. Böse in a joint DFG project, see [14]. For the present computations, we consider a

simplified wall structure with three structural components: an isotropic plaque component, and

two transversally isotropic incompressible soft tissue layers modelling media and adventitia.

Four levels of different resolutions with said structural components were generated by M. Lanser

using the software package Amira [125].

Level # D.o.f. # Elements zmin zmax Length [mm]

0 370 260 79 711 -0.025465 31.90331 31.928775
1 1 775 577 396 350 -0.038531 31.90550 31.944031
2 13 429 950 3 170 800 -0.038531 31.89918 31.937711
3 104 424 684 25 366 400 -0.038531 31.89918 31.937711

Although not perfectly identical, we shall consider these geometries for arterial segments with a

length of approximately 3.2 [cm] as different resolution levels for the same computational domain.

In turn, we obtain a scale of corresponding numerical finite element approximations to the respec-

tive boundary value problems. The resolution levels 0 and 1 have mainly been used for software

testing purposes and to tune the loading strategy for our target resolution level 2. Level 3 is a

refinement of level 2. It is too large for the Cray XT6m, i.e., the current implementation of our

solver framework cannot solve this problem size on that machine yet. Even in the structured case

which is a lot easier to handle, this problem size is near the limit for our current solver framework.

In the unstructured case, the load balancing is more difficult and the coarse problem is usually

larger. Thus, again, with the memory available on the Cray XT6m compute nodes this problem

size is currently out of reach and we restrict our exposition to resolution level 2 with ca. 13 million

unknows for the displacement vector u.

For the setup of the Dirichlet and Neumann boundary conditions, we followed Brands, Klawonn,

Rheinbach, and Schröder [23]. The interior blood pressure is imposed as a Neumann boundary

condition in the form of an interior normal pressure. This pressure was parametrized linearly in

pseudo time. This is displayed in Table 3.1.

3.2.2 Solver Parameters and Tolerances

We have used the following mparfeap command string for these computations.
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Pseudotime Pressure
[kPa] [mmHg]

0 0 0
1 33.33 250
2 66.66 500

Table 3.1: High resolution wall-stress computations; Model artery 2; 13 million d.o.f.; ΨA Set-2;
Linear parametrization for an internal pressure up to 500 [mmHg] at t = 2.

Command line options for mparfeap

aprun -n 256
mparfeap-js-opt-mumps
-o=../artery_2:256:2013-10-24_09:53:37:1
-nw=512
-nwpp=2
-stamp=artery_2:256:2013-10-24_09:53:37:1
-load_stepper:strategy=adaptive(n=1600:initial=0.0:final=2.0:delay=3:alpha

=1.3)
-load_stepper:use_linear_extrapolation=0
-newton:use_initial_guess_for_correction=1
-load_stepper:tecplot=1
-load_stepper:save_intermediate_solutions=1
-newton:atol=1e-5
-newton:rtol=2e-14
-feti:symmetric=1
-ksp_type gmres
-ksp_gmres_modifiedgramschmidt
-ksp_atol 1e-9
-ksp_rtol 2e-14
-ksp_gmres_restart 888
-ksp_max_it 888
-ksp_monitor_singular_value
-use_rho_local
-use_local_Kcc
-log_summary

Remark 3.2.1 (Tuning Options for Load Stepping). We see that the non-zero initial guess for λ

was activated with

-newton:use_initial_guess_for_correction=1

for this experiment and that linear extrapolation for u was turned off due to the option value

-load_stepper:use_linear_extrapolation=0

Note that this particular simulation failed to converge when the linear extrapolation feature was

activated. A comparison illustrating the effect of the tuning options for the initial loading phase

can be found in §3.5.

The load stepping strategy is the adaptive strategy previously described which is selected by
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-load_stepper:strategy=adaptive(n=1600:initial=0.0:final=2.0:delay=3:alpha=1.3)

This sets the initial guess for the pseudotime increment to 2/1600 = 1/800, the delay parameter to

3, the success multiplier for the load step size to α = 1.3 and the failure multiplier β = 0.5 which

is the default.

The FETI-DP coarse space built by mparfeap is generated from the input data precomputed by

the fddp preprocessor application in a sequential step. To construct a strong scalability sequence

with the coarse space for Algorithm C, we have run the fddp with the following command string:

Command line options for fddp

fddp -j=0
-i=Ias2
-nw=512
-nwpp=1:2:4:8
-d=../artery_2/corners+edges
-splitter=PARMETIS
-primal=ALL_NODES_ON_CORNERS:ALL_AVERAGES_ON_EDGES

This generates multiple input data sets for mparfeap with 1, 2, 4 and 8 FETI-DP subdomains

per MPI-instance while the actual graph partitioning computed by the ParMetis library Karypis,

Schloegel, and Kumar [67] is only carried out once. For the present simulation, the model artery at

resolution level 2 was decomposed into 512 FETI-DP subdomains. Due to the memory requirements

for the coarse problem in Algorithm C, the simulation used only 12 of 24 cores per compute node.

This doubles the available memory per MPI-process at the expense of a larger allocation of CPU

cores.

3.2.3 FETI-DP Coarse Space

This simulation has been based on Algorithm C due to Klawonn, Widlund, and Dryja [79] in order

to define the coarse space in Newton-Krylov-FETI-DP; see §1.3 for an introduction.

Algorithm C [79]

The primal subspace ŴΠ is induced by enforcing continuity of u on all the subdomain

vertices V and the continuity of all edge averages uEik taken over all edges E in Γ.

The edge averages required for Algorithm C have been implemented using a transformation of basis

approach with the FETI-DP-solver due to Rheinbach [110], see also Klawonn and Rheinbach

[70].

3.2.4 Convergence Statistics

On the following pages, we present the recorded convergence history for the computation and some

statistical measurements in a series of plots.
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Figure 3.1: High resolution wall-stress computations; Model artery 2; Loading curve for interior
normal pressure. Final state 500 [mmHg] ≈ 66.66 [kPa]; Load increments are adaptively com-
puted; Two failed loading attempts are depicted in red.
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Figure 3.2: High resolution wall-stress computations; Numerical convergence statistics for the
Newton scheme; Red dots mark failed attempts. Red stippled lines mark abortion criteria. Blue
stippled lines mark convergence criteria. Residual norms for Newton’s method show the first 15
load steps and show quadratic convergence (lower left).
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Figure 3.3: High resolution wall-stress computations; Numerical convergence statistics for FETI-
DP; Red dots mark failed attempts. Red stippled lines mark abortion criteria. Blue stippled lines
mark convergence criteria.
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Figure 3.4: High-resolution wall-stress computations; History of the FETI-DP residual norms
for the first six load steps; Red stippled lines mark abortion criteria. Blue stippled lines mark
convergence criteria. The initial FETI-DP residuals decrease during Newton iteration due to the
non-zero initial guess for FETI-DP given by λ(n−1).
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3.2.5 Von Mises Equivalent Stresses

We have computed the von Mises equivalent stresses depicted in Figure 3.5, Figure 3.6 and Fig-

ure 3.7.

Figure 3.5: Von Mises equivalent stresses displayed on the surface of the plaque component ; Model
artery 2; 13 million d.o.f.; ΨA Set-2; Loadstep 56; Internal normal pressure ≈ 244 [mmHg]; 512
FETI-DP subdomains; 1024 Cray XT6m cores allocated; 12/24 cores per compute node to relax
memory constraints; FETI-DP coarse space Algorithm C [79]; Finite element assembly in FEAP
-JS via libfw-js, see e.g., [20, 23]; Embedded FETI-DP-solver [70, 110] based on PETSc;
Activated non-zero initial guess for the Lagrange multipliers λ in GMRES; Deactivated linear
extrapolation for the displacement u.
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Figure 3.6: Von Mises equivalent stresses displayed on the healthy sections of the interior surface of
the media layer ; Model artery 2; 13 million d.o.f.; ΨA Set-2; Loadstep 56; Internal normal pressure
≈ 244 [mmHg]. Note the stress localizations on the surface of the adventitia layer between closely
neighbouring plaque components and near the boundaries of plaque components. 512 FETI-DP
subdomains; 1024 Cray XT6m cores allocated; 12/24 cores per compute node to relax memory
constraints; FETI-DP coarse space Algorithm C [79]; Finite element assembly in FEAP-JS via
libfw-js, see e.g., [20, 23]; Embedded FETI-DP-solver [70, 110] based on PETSc; Activated
non-zero initial guess for the Lagrange multipliers λ in GMRES; Deactivated linear extrapolation
for the displacement u.
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Figure 3.7: Von Mises equivalent stresses displayed transparently for all material components;
Model artery 2; 13 million d.o.f.; ΨA Set-2; Loadstep 56; Internal normal pressure ≈ 244 [mmHg].
512 FETI-DP subdomains; 1024 Cray XT6m cores allocated; 12/24 cores per compute node to
relax memory constraints; FETI-DP coarse space Algorithm C [79]; Finite element assembly in
FEAP-JS via libfw-js, see e.g., [20, 23]; Embedded FETI-DP-solver [70, 110] based on
PETSc; Activated non-zero initial guess for the Lagrange multipliers λ in GMRES; Deactivated
linear extrapolation for the displacement u.
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Figure 3.8: Model artery 2; 13 million d.o.f.; ΨA Set-2; Von Mises equivalent stresses on the
surface of the plaque component during loadsteps 40 to 67. This corresponds to an internal normal
pressure increasing from 10 [mmHg] to 500 [mmHg].
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Figure 3.9: Model artery 2; 13 million d.o.f.; ΨA Set-2; Von Mises equivalent stresses on the
internal surface of the media component; Loadsteps 40 to 67. This corresponds to an internal
normal pressure increasing from 10 [mmHg] to 500 [mmHg].
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Figure 3.10: Model artery 2; 13 million d.o.f.; ΨA Set-2; Von Mises equivalent stresses displayed
transparently for all material components; Loadsteps 40 to 67; Internal pressure 10− 500 [mmHg].
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3.3 Strong Scalability – Model Artery 2 – ΨA Set-2 – Algorithm C

We now present strong scalability results for the Newton-Krylov-FETI-DP solver mparfeap ob-

tained for the model artery at resolution level 2. Strong parallel scalability is a major strength

of the FETI-DP-solver and this translates perfectly to the nonlinear setting considered here.

To study strong scalability of the Newton-Krylov-FETI-DP solver mparfeap model artery 2 was

decomposed into 512 subdomains. These subdomains were allocated to an increasing number of

processor cores: 128, 256 and 512. The ideal speedups are a factor of 2 for each scaling level and

corresponding efficiencies are presented in Table 3.3. For the generation of the input data sets

from a FEAP problem description, we have used the fddp preprocessor application.

As in the previous section, we consider again the identical problem setup for model artery 2 with

material model ΨA Set-2. The final blood pressure is reduced to 250 [mmHg] in order to reduce

the total computational time.

Pseudotime Pressure

[kPa] [mmHg]

0 0 0

1 33.33 250

Table 3.2: Strong scalability; Model artery resolution level 2; Material ΨA with parameter set 2;

Linear parametrization of the interior pressure loading up to 250 [mmHg] at t = 1.

Command line options for mparfeap

aprun -n 512
mparfeap-js-opt-mumps
-o=../artery_2:512:2013-10-27_10:23:54:1
-nw=512
-nwpp=1
-stamp=artery_2:512:2013-10-27_10:23:54:1
-log_summary
-load_stepper:strategy=adaptive(n=800:initial=0.0:final=1.0:delay=3:alpha=1.3)
-load_stepper:use_linear_extrapolation=0
-newton:use_initial_guess_for_correction=1
-newton:clear_initial_guess_for_correction_on_reset=0
-load_stepper:tecplot=0
-load_stepper:save_intermediate_solutions=0
-newton:atol=1e-5
-newton:rtol=2e-14
-feti:symmetric=1
-ksp_type gmres
-ksp_gmres_modifiedgramschmidt
-ksp_atol 1e-9
-ksp_rtol 2e-14
-ksp_gmres_restart 888
-ksp_max_it 888
-ksp_monitor_singular_valuees
-use_rho_local
-use_local_Kcc

For this simulation we have reused the input data from the simulation presented in §3.2. However,

we note that the simulation is terminated at final pseudotime t = 1 for this strong scalability

experiment. This corresponds to a maximal loading of 250 [mmHg].
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Cores Subdomains Problem Size Time Efficiency
[# d.o.f.] [h:m:s] [s]

128 512 13 429 950 51:38:59 185 939 100.00%
256 512 13 429 950 24:49:40 89 380 104.01%
512 512 13 429 950 12:59:02 46 742 95.61%

Table 3.3: Strong scalability; Model artery 2; 13 million d.o.f.; ΨA Set-2; 12/24 cores per compute
node to relax memory constraints; 512 FETI-DP subdomains; FETI-DP coarse space Algorithm
C [79]; Embedded FETI-DP-solver [70, 110] based on PETSc; Activated non-zero initial guess
for the Lagrange multipliers λ in GMRES; Deactivated linear extrapolation for the displacement
u.

Remark 3.3.1 (Tuning Options for Load Stepping). The non-zero initial guess for λ was activated

for this experiment. The linear extrapolation for u was turned off. Note that the simulation failed

to converge when the linear extrapolation feature was activated. A comparison illustrating the effect

of the tuning options for the initial loading phase can be found in §3.5.

3.3.1 FETI-DP Coarse Space

This simulation was based on Algorithm C due to Klawonn, Widlund, and Dryja [79] in order to

define the coarse space in Newton-Krylov-FETI-DP; see §1.3 for an introduction.

Algorithm C [79]

The primal subspace ŴΠ is induced by enforcing continuity of u on all the subdomain

vertices V and the continuity of all edge averages uEik taken over all edges E in Γ.

The edge averages required for Algorithm C have been implemented using a transformation of

basis approach with the FETI-DP-solver due to Rheinbach [110] and Klawonn and Rheinbach

[70].

For the convergence history of the computations, see section §3.2 which is identical up to the

maximal interior normal pressure of 250 [mmHg] here prescribed.

3.3.2 Tabulated Results

The results collected in Table 3.3 show the reduction of the total application runtime and the

corresponding efficiency ratios for an increasing number of CPU cores while the problem size has

been kept fixed. An efficiency of 100% is perfect in a theoretical setting. Ratios of more than 100%

may seem strange, but they are quite common in practice and caused by variations in disk I/O,

network as well as CPU cache effects.
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3.4 Weak Scalability – ΨB Set-3 Relaxed – Algorithm DE

In this section, we report results on the weak nonlinear scalability of Newton-Krylov-FETI-DP. To

this end a series of simple tension tests is investigated. For the material model, the polyconvex

soft-tissue material model ΨB with parameters from Set-3 Brands, Klawonn, Rheinbach, and

Schröder [23] was used. The simulations were run on the Cray XT6m supercomputer at Universität

Duisburg-Essen and discrete finite element systems with up to 134 million degrees of freedom were

solved on up to 4096 of a total of 4122 CPU cores. All of the weak scalability experiments showed a

peak memory usage of 80% and above measured on the root compute node. The best results were

obtained close to complete saturation of the available random access memory of the fully allocated

machine.

In the following subsections, we present a gallery of four experiments based on simple tension tests.

These are based on the following associated computational domains and structured non-overlapping

domain decomposition sequences thereof:

1. Cuboid (§3.4.4) – The bottom half of a unit cube, n = 2, 3, 4:

H(n)/h(n) = 13 ,

H(n) = 1
2n ,

Ω(n) = [0, 1]2 × [0, 1
2 ] .

2. Plate 2H (§3.4.5) – A sequence of plates of height 2H, n = 3, 4, 5, 6:

H(n)/h(n) = 11 ,

H(n) = 1
64 ,

Ω(n) = [0, 2nH]× [0, 2(n−1)H]× [0, 2H] .

3. Plate 4H (§3.4.6) – A sequence of plates of height 4H, n = 2, 3, 4, 5:

H(n)/h(n) = 13 ,

H(n) = 1
32 ,

Ω(n) = [0, 2nH]× [0, 2(n−1)H]× [0, 4H] .

4. Cube (§3.4.7) – A unit cube, n = 1, 2, 3, 4:

H(n)/h(n) = 11 ,

H(n) = 1
2n ,

Ω(n) = [0, 1]3 .

The corresponding boundary value problems are tension tests for different geometry sequences and

they were set up to be as similar as possible. For FETI-DP methods, it is natural to parametrize

scaling sequences in terms of the H/h quotient. The typical known condition number bounds for

model problems, such as linear elasticity, are formulated in terms of H/h. A larger value of the

H/h ratio corresponds to a larger local problem size per subdomain, i.e., more degrees of freedom

per substructure. Note that this will usually improve parallel scalability in FETI-DP, since the

perfectly scalable local solution phases of the FETI-DP method gain more weight in the simulation.

We report only the best results for each experiment. In all cases this corresponds to the maximal

value of H/h for which the given experiment still fitted into the available memory of the Cray

XT6m, i.e., into 32 GB of shared memory per compute node.

Remark 3.4.1 (Tuning Options for Load Stepping). Both load stepping tuning options which are

available in mparfeap were activated, i.e., linear extrapolation for the displacement u and the
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dual initial guess for λ in FETI-DP for the weak scalability experiments to be presented in this

section. In fact, we could not have hoped to obtain the presented results in a reasonable amount of

time without application of these techniques, as is illustrated in §3.5.

3.4.1 FETI-DP Coarse Space

Due to memory limitations, we consider the FETI-DP coarse space defined by Algorithm DE here.

This algorithm was introduced in Klawonn and Rheinbach [70] and is more conservative than

Algorithm C, since the vertices are removed from the primal space.

Algorithm DE [70]

The primal coarse space is generated by continuity of uEik , i.e., by the continuity of the

averages over all edges E in Γ.

The edge averages required for Algorithm DE have been implemented using a transformation of

basis approach with the FETI-DP-solver due to Rheinbach [110] and Klawonn and Rheinbach

[70].

3.4.2 Setup of Tension Tests

We consider geometry sequences obtained by partitioning cuboidal domains in a structured way,

i.e., they are decomposed into cubic subdomains for FETI-DP. Les us introduce the boundary

conditions. Each tension test is realized by setting Dirichlet boundary conditions on two opposing

faces of the cuboidal computational domain Ω(n), n ∈ N, of the scaling sequence. It is fixed in the

x = 0-plane by prescribing a zero displacement u = 0. On the opposite parallel face, a non-zero

displacement corresponding to 4% length change (relative to the total length of the global domain

in x-direction) is imposed and points in the positive x-direction.

All 4 scaling experiments: the Cuboid, the Plate 2H, the Plate 4H and the Cube were thus set up

in an as comparable as possible way to render them at least remotely comparable. The problem

sizes are, however, different for each weak scalability experiment.

For the following weak scalability experiments we have used the material strain energy ΨB with

parameter Set-3 for the adventitia layer. and relaxed the volume constraint. I.e., we have set the

parameters for the incompressibility penalty to ε1 = 10 and ε2 = 4 while leaving all other material

parameters from Set-3 unchanged, see Table 1.3. This saves some Newton iterations in the first

load steps in comparison to the same problem with ΨA Set-2, hence saving precious compute time

on the fully allocated Cray XT6m supercomputer. For all weak scalability experiments, we have

used the two preferred fiber directions

a1 =

 0.656

−0.755

0.0

 , and a2 =

0.656

0.755

0.0

 .

Both fiber directions lie in the z = 0-plane and enclose an angle of approximately 98◦, which has

been used previously in Brands, Klawonn, Rheinbach, and Schröder [23] for the enclosed fiber angle

in the adventitia layer.

The main focus of our presentation are new results on numerical and parallel weak scalability for

Newton-Krylov-FETI-DP for the described tension tests. However, to put our nonlinear results

into perspective, we prepend a reference benchmark problem using linear elasticity.
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3.4.3 Cuboid – Linear Elasticity – Algorithm DE

In order to illustrate potential numerical and parallel scalability on the Cray XT6m to gauge

expectations for the considered nonlinear problems, we first present some results for linear elas-

ticity obtained using our solver mparfeap, i.e., the software environment described in Chapter 2.

First, we present the problem described in §3.4.4 using linear elasticity for the material model.

The computational domain is a cuboid Ω = [0, 1]× [0, 1]× [0, 1/2] which is decomposed into cubic

subdomains for the FETI-DP method.

The Cuboid tension test is formulated using the following scaling sequence for n = 2, 3, 4:

H(n)/h(n) = 13 ,

H(n) = 1
2n ,

Ω(n) = [0, 1]2 × [0, 1
2 ] .

Figure 3.11: Weak scalability; Cuboid; H/h = 13; Sequence of partitioned meshes for the Cuboid
geometry Ω := [0, 1]2 × [0, 1

2 ].

Cuboid – Solver Parameters and Tolerances

Command line options for mparfeap

aprun -n 2048
mparfeap-js-opt-mumps
-o=edges_Hh13_linear_elasticity_half_nodes:2048:2012-10-09_19:29:25:1
-nw=2048
-nwpp=1
-stamp=edges_Hh13_linear_elasticity_half_nodes:2048:2012-10-09_19:29:25:1
-log_summary
-load_stepper:strategy=linear(n=1:initial=0.0:final=4.0)
-load_stepper:use_linear_extrapolation=1
-newton:use_initial_guess_for_correction=1
-load_stepper:tecplot=0
-load_stepper:save_intermediate_solutions=0
-load_stepper:use_pseudo_time_for_dirichlet_boundary_interpolation=1
-newton:atol=1e-7
-newton:rtol=2e-14
-feti:symmetric=1
-ksp_type gmres
-ksp_gmres_modifiedgramschmidt
-ksp_rtol 1e-7
-ksp_atol 1e-40
-ksp_gmres_restart 888
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-ksp_max_it 888
-ksp_monitor_singular_value
-use_rho_local
-use_local_Kcc

Cuboid – Tabulated Results

Cores Global Problem Local Problem Coarse Problem Dual Problem
[# d.o.f ] [# d.o.f ] [# d.o.f ] [# d.o.f ]

2048 109 028 403 59 049 19 572 11 041 113
256 13 759 515 59 049 2 496 1 262 949
32 1 752 975 59 049 294 128 091

Table 3.4: Weak scalability; Cuboid; H/h = 13; Linear elasticity ; Problem sizes.

Cores FETI-DP Eff. FETI-DP Eff. Time Eff.
Cond.∗ [%] It. [%] [s] [%]

32 11.63 100.0 26 100.0 138.7s 100.0
256 12.70 91.6 28 92.9 153.5s 90.4

2048 13.00 89.5 28 92.9 180.8s 76.7

Table 3.5: Weak scalability; Cuboid; H/h = 13; Linear elasticity ; Numerical and parallel scalabil-
ity; Tolerances atolNewton = 10−7 and rtolFETI-DP = 10−7; 12/24 CPU cores per compute node;
Cray XT6m; FETI-DP coarse space Algorithm DE [70, 110].

From Table 3.5 we see that a satisfactory efficiency of 76.7% is achieved. Note that the Cray XT6m

machine is not equipped with the most recent version of the Cray interconnect but still uses the

older SeaStar2+. The coarse space from Algorithm DE was constructed for compressible linear

elastity. This is reflected in the numerical experiment and we see only a minor increase of the

FETI-DP iterations and a corresponding efficiency of 92.9%.
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3.4.4 Cuboid – ΨB Set-3 Relaxed – Algorithm DE

The Cuboid tension test is formulated using the following scaling sequence for n = 2, 3, 4:

H(n)/h(n) = 13 ,

H(n) = 1
2n ,

Ω(n) = [0, 1]2 × [0, 1
2 ] .

Figure 3.12: Weak scalability; Cuboid; H/h = 13; Sequence of partitioned meshes for the cuboid
geometry [0, 1]2 × [0, 1

2 ].

Cuboid – Solver Parameters and Tolerances

We have used equivalent parameters for all problems in the weak scalability sequence. For the

largest problem in the scaling sequence using 2048 cores, we have used the following command

string for mparfeap:

Command line options for mparfeap

aprun -n 2048
mparfeap-js-opt-mumps
-o=../edges_Hh13_psi_b_relaxed_half_nodes:2048:2012-10-10_09:00:19:1
-nw=2048
-nwpp=1
-stamp=edges_Hh13_psi_b_relaxed_half_nodes:2048:2012-10-10_09:00:19:1
-load_stepper:strategy=adaptive(n=512:initial=0.0:final=4.0:alpha=1.5:delay=2)
-load_stepper:use_linear_extrapolation=1
-newton:use_initial_guess_for_correction=1
-load_stepper:tecplot=0
-load_stepper:save_intermediate_solutions=0
-load_stepper:use_pseudo_time_for_dirichlet_boundary_interpolation=1
-newton:atol=1e-7
-newton:rtol=2e-14
-feti:symmetric=1
-ksp_type gmres
-ksp_gmres_modifiedgramschmidt
-ksp_rtol 2e-14
-ksp_atol 1e-9
-ksp_gmres_restart 444
-ksp_max_it 888
-ksp_monitor_singular_value
-use_rho_local
-use_local_Kcc
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Cores Global Problem Local Problem Coarse Problem Dual Problem
[# d.o.f ] [# d.o.f ] [# d.o.f ] [# d.o.f ]

2048 109 028 403 59 049 19 572 11 041 113
256 13 759 515 59 049 2 496 1 262 949
32 1 752 975 59 049 294 128 091

Table 3.6: Weak scalability; Cuboid; H/h = 13; Problem sizes.

Cuboid – Tabulated Results

Cores Loading Eff. Newton Eff. FETI-DP Eff. FETI-DP Eff. FETI-DP Eff.

Attempts [%] It. (Σ) [%] It. (Σ) [%] It. (�) [%] Cond.∗ (�) [%]

32 24 100 78 100 1 552 100 19.90 100 21.99 100

256 24 100 90 87 1 935 80 21.50 93 26.37 83

2048 24 100 97 80 2 389 65 24.63 81 34.31 64

Cores FETI-DP Eff. FETI-DP Eff. GMRES Eff. GMRES Eff. Run Eff.
(Σ) [s] [%] (�) [s] [%] (Σ) [s] [%] (�) [s] [%] [s] [%]

32 9 380 100 120.25 100 2 148 100 27.54 100 11 095.6 100
256 12 189 77 135.43 89 3 052 70 33.91 81 14 216.9 78

2048 16 453 57 169.62 71 5 264 41 54.27 51 18 825.1 59

Table 3.7: Weak scalability; Cuboid; H/h = 13; Timings and efficiences for parallel scalability;
FETI-DP coarse space Algorithm DE [70, 110]. The lack of scalability is for a large part due to
an increasing number of Newton iterations, see also §3.4.8.
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Cuboid – Newton Iterations
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Figure 3.13: Weak scalability; Cuboid; H/h = 13; Newton iterations; The number of Newton

iterations increases with the number of CPU cores. Thus the total number of FETI-DP systems

to be solved increases and parallel scalability is adversely affected; see also §3.4.8.
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Cuboid – Numerical Scalability and Convergence Statistics
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Figure 3.14: Weak scalability; Cuboid; H/h = 13; FETI-DP iterations and condition number
estimates; FETI-DP coarse space Algorithm DE [70, 110]. Note the increasing number of the total
number of Newton iterations; The lack of scalability is for a large part due to an increasing number
of Newton iterations, see also §3.4.8.

114114



CHAPTER 3. APPLICATIONSCHAPTER 3. APPLICATIONS CUBOID – ΨB SET-3 RELAXED ALGORITHM DECUBOID – ΨB SET-3 RELAXED ALGORITHM DE

Cuboid – Parallel Scalability and Timing Statistics
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Figure 3.15: Weak scalability; Cuboid; H/h = 13; Newton-Krylov-FETI-DP timings; FETI-DP
coarse space Algorithm DE [70, 110]. The lack of scalability is for a large part due to an increasing
number of Newton iterations, see also §3.4.8.
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3.4.5 Plate 2H – ΨB Set-3 Relaxed – Algorithm DE

The Plate 2H tension test is formulated using the following scaling sequence for n = 3, 4, 5, 6:

H(n)/h(n) = 11

H(n) = 1
64

Ω(n) = [0, 2nH]× [0, 2(n−1)H]× [0, 2H] .

Figure 3.16: Weak scalability; Plate 2H; H/h = 11; Sequence of FETI-DP subdomains; Scaling
stages 1 ≤ n ≤ 6.

Plate 2H – Solver Parameters and Tolerances

We have used equivalent parameters for all problems in the weak scalability sequence. For the

largest problem in the scaling sequence using 4096 cores, we have used the following command

string for mparfeap:

Command line options for mparfeap

aprun -n 4096
mparfeap-js-opt-mumps
-o=../edges_Hh11_psi_b_relaxed:4096:2012-10-10_19:16:19:1
-nw=4096
-nwpp=1
-stamp=edges_Hh11_psi_b_relaxed:4096:2012-10-10_19:16:19:1
-log_summary
-load_stepper:strategy=adaptive(n=512:initial=0.0:final=4.0:alpha=1.5:delay=2)
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-load_stepper:use_linear_extrapolation=1
-newton:use_initial_guess_for_correction=1
-load_stepper:tecplot=0
-load_stepper:save_intermediate_solutions=0
-load_stepper:use_pseudo_time_for_dirichlet_boundary_interpolation=1
-newton:atol=1e-7
-newton:rtol=2e-14
-feti:symmetric=1
-ksp_type gmres
-ksp_gmres_modifiedgramschmidt
-ksp_rtol 2e-14
-ksp_atol 1e-9
-ksp_max_it 888
-ksp_gmres_restart 444
-ksp_monitor_singular_value
-use_rho_local
-use_local_Kcc

Plate 2H – Tabulated Results

Cores Global Problem Local Problem Coarse Problem Dual Problem
[# d.o.f ] [# d.o.f ] [# d.o.f ] [# d.o.f ]

4096 134 101 575 36 501 48 102 14 277 717
1024 33 596 775 36 501 11 766 3 507 747
256 8 434 935 36 501 2 814 844 491
64 2 126 655 36 501 642 194 847

Table 3.8: Weak scalability; Plate 2H; H/h = 11; Problem sizes.

Cores Loading Eff. Newton Eff. FETI-DP Eff. FETI-DP Eff. FETI-DP Eff.
Attempts [%] It. (Σ) [%] It. (Σ) [%] It. (�) [%] Cond.∗ (�) [%]

64 24 100 48 100 688 100 14.33 100 22.15 100
256 24 100 61 79 966 71 15.84 91 24.43 91

1024 24 100 78 62 1 423 48 18.24 79 29.05 76
4096 29 83 95 51 1 935 36 20.59 70 33.50 66

Cores FETI-DP Eff. FETI-DP Eff. GMRES Eff. GMRES Eff. Run Eff.
(Σ) [s] [%] (�) [s] [%] (Σ) [s] [%] (�) [s] [%] [s] [%]

64 2 195 100 45.73 100 312 100 6.50 100 2 854 100
256 2 983 74 48.90 94 522 60 8.56 76 3 843 74

1024 4 225 52 54.17 84 1 046 30 13.4 48 5 411 53
4096 7 496 29 78.91 58 3 158 10 33.2 20 10 410 27

Table 3.9: Weak Scalability; Plate 2H; H/h = 11; Timings and efficiencies for parallel scalability;
FETI-DP coarse space Algorithm DE [70, 110]. The lack of scalability is for a large part due to
an increasing number of Newton iterations, see also §3.4.8.
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Plate 2H – Newton Iterations
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Figure 3.17: Weak scalability; Plate 2H; H/h = 11; Newton iterations; The number of Newton

iterations increases with the number of CPU cores. Thus the total number of FETI-DP systems

to be solved increases and parallel scalability is adversely affected; see also §3.4.8.
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Plate 2H – Numerical Scalability and Convergence Statistics
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Figure 3.18: Weak scalability; Plate 2H; H/h = 11; FETI-DP iterations and condition number
estimates; FETI-DP coarse space Algorithm DE [70, 110]. The lack of scalability is for a large
part due to an increasing number of Newton iterations, see also §3.4.8.
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Plate 2H – Parallel Scalability and Timing Statistics
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Figure 3.19: Weak scalability; Plate 2H; H/h = 11; FETI-DP timings; FETI-DP coarse space
Algorithm DE [70, 110]. The lack of scalability is for a large part due to an increasing number of
Newton iterations, see also §3.4.8.
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3.4.6 Plate 4H – ΨB Set-3 Relaxed – Algorithm DE

We consider the following computational domains and FETI-DP domain decompositions for scaling

levels n = 2, 3, 4, 5:

H(n)/h(n) = 13

H(n) = 1
32

Ω(n) = [0, 2nH]× [0, 2(n−1)H]× [0, 4H] .

Figure 3.20: Weak scalability; Plate 4H; H/h = 13; Sequence of partitioned meshes for a plate of
height 4H, H = 1

32 .

Plate 4H – Solver Parameters and Tolerances

We have used equivalent parameters for all problems in the weak scalability sequence. For the

largest problem in the scaling sequence using 2048 cores, we have used the following command

string for mparfeap:

Command line options for mparfeap

aprun -n 2048
mparfeap-js-opt-mumps
-o=../edges_Hh13_psi_b_relaxed_half_nodes:2048:2012-10-10_04:51:28:1
-nw=2048
-nwpp=1
-stamp=edges_Hh13_psi_b_relaxed_half_nodes:2048:2012-10-10_04:51:28:1
-log_summary
-load_stepper:strategy=adaptive(n=512:initial=0.0:final=4.0:alpha=1.5:delay=2)
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-load_stepper:use_linear_extrapolation=1
-newton:use_initial_guess_for_correction=1
-load_stepper:tecplot=0
-load_stepper:save_intermediate_solutions=0
-load_stepper:use_pseudo_time_for_dirichlet_boundary_interpolation=1
-newton:atol=1e-7
-newton:rtol=2e-14
-feti:symmetric=1
-ksp_type gmres
-ksp_gmres_modifiedgramschmidt
-ksp_rtol 2e-14
-ksp_atol 1e-9
-ksp_gmres_restart 444
-ksp_max_it 888
-ksp_monitor_singular_value
-use_rho_local
-use_local_Kcc

Plate 4H – Tabulated Results

Each FETI-DP subdomain is mapped to one CPU core of the Cray XT6. The problem sizes for

the considered scaling levels are:

Cores Global Problem Local Problem Coarse Problem Dual Problem
[# d.o.f ] [# d.o.f ] [# d.o.f ] [# d.o.f ]

2048 109 418 715 59 049 21 168 10 725 237
512 27 453 195 59 049 5 208 2 591 517
128 6 912 675 59 049 1 260 602 865
32 1 752 975 59 049 294 128 091

Table 3.10: Weak scalability; Plate 4H; H/h = 13; Problem sizes.

Cores Loading Eff. Newton Eff. FETI-DP Eff. FETI-DP Eff. FETI-DP Eff.
Attempts [%] It. (Σ) [%] It. (Σ) [%] It. (�) [%] Cond.∗ (�) [%]

32 24 100 45 100 644 100 14.31 100 20.91 100
128 24 100 57 79 822 78 14.42 99 22.64 92
512 24 100 67 67 1108 58 16.54 87 26.05 80

2048 24 100 79 57 1642 39 20.78 69 35.10 60

Cores FETI-DP Eff. FETI-DP Eff. GMRES Eff. GMRES Eff. Run Eff.
(Σ) [s] [%] (�) [s] [%] (Σ) [s] [%] (�) [s] [s] [%]

32 5 121 100 113.8 100 910 100 20.2 100 6 158 100
128 7 033 73 123.4 92 1288 71 22.6 89 8 341 74
512 9 083 56 135.6 84 1922 47 28.7 70 10 667 58

2048 12 950 40 163.9 69 3766 24 47.7 42 14 910 41

Table 3.11: Weak scalability; Plate 4H; H/h = 13; Timings and efficencies for parallel scalability;
FETI-DP coarse space Algorithm DE [70, 110]. The lack of scalability is for a large part due to
an increasing number of Newton iterations, see also §3.4.8.
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Plate 4H – Newton Iterations
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Figure 3.21: Weak scalability; Plate 4H; H/h = 13; Newton iterations; The number of Newton

iterations increases with the number of CPU cores. Thus the total number of FETI-DP systems

to be solved increases and parallel scalability is adversely affected; see also §3.4.8.
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Plate 4H – Numerical Scalability and Convergence Statistics
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Figure 3.22: Weak scalability; Plate 4H; H/h = 13; FETI-DP iterations and condition number
estimates; FETI-DP coarse space Algorithm DE [70, 110]. The lack of scalability is for a large
part due to an increasing number of Newton iterations, see also §3.4.8.
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Plate 4H – Parallel Scalability and Timing Statistics
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Figure 3.23: Weak scalability; Plate 4H; H/h = 13; FETI-DP timings; FETI-DP coarse space
Algorithm DE [70, 110]. The lack of scalability is for a large part due to an increasing number of
Newton iterations, see also §3.4.8.
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3.4.7 Cube – ΨB Set-3 Relaxed – Algorithm DE

We consider the computational domains and FETI-DP domain decompositions for the scaling levels

n = 1, 2, 3, 4:

H(n)/h(n) = 8

H(n) = 1
2n

Ω(n) = [0, 1]3

Figure 3.24: Weak scalability; Cube; H/h = 8; Sequence of partitioned meshes for a unit cube
geometry

Cube – Solver Parameters and Tolerances

We have used equivalent parameters for all problems in the weak scalability sequence. For the

largest problem in the scaling sequence using 4096 cores, we have used the following command

string for mparfeap:

Command line options for mparfeap

aprun -n 4096
mparfeap-js-opt
-o=../edges_Hh8_psi_b_relaxed:le=1:ig=1:4096:2012-09-07_16:43:32:1
-nw=4096
-nwpp=1
-stamp=edges_Hh8_psi_b_relaxed:le=1:ig=1:4096:2012-09-07_16:43:32:1
-load_stepper:strategy=adaptive(n=512:initial=0.0:final=0.4:delay=2:alpha=1.5)
-load_stepper:use_linear_extrapolation=1
-newton:use_initial_guess_for_correction=1
-load_stepper:tecplot=0
-load_stepper:save_intermediate_solutions=0
-load_stepper:use_pseudo_time_for_dirichlet_boundary_interpolation=1
-ksp_type gmres
-ksp_gmres_modifiedgramschmidt
-ksp_rtol 2e-14
-ksp_atol 1e-9
-ksp_gmres_restart 444
-ksp_max_it 888
-ksp_monitor_singular_value
-use_rho_local
-use_local_Kcc

Note that in contrast to the previously presented weak scalability problems, the input data were

prepared to compute a tension test with 10% deformation here. Correspondingly, the Dirichlet

boundary data amount to 10% deformation at pseudo time t = 1.0. As this turned out to be
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unrealistic due to time restrictions for the full Cray XT6m machine, we accomodated for this by

setting the final pseudotime final=0.4 which effectively results in a computation of a tension

test with 4% deformation.

Cube – Tabulated Results

Cores Global Problem Local Problem Coarse Problem Dual Problem
[# d.o.f ] [# d.o.f ] [# d.o.f ] [# d.o.f ]

4096 72 412 707 20 577 37 980 10 611 585
512 9 145 875 20 577 4 788 1 244 985
64 1 167 051 20 577 576 134 901
8 151 959 20 577 54 11 499

Table 3.12: Weak scalability; Cube; H/h = 8; Problem sizes.

Cores Loading Eff. Newton Eff. FETI-DP Eff. FETI-DP Eff. FETI-DP Eff.
Attempts [%] It. (Σ) [%] It. (Σ) [%] It. (�) [%] Cond.∗ (�) [%]

8 24 100 74 100 1 141 100 15.42 100 13.28 100
64 24 100 85 87 1 525 75 17.94 86 18.15 73

512 24 100 103 72 1 839 62 17.85 86 20.36 65
4096 28 86 125 59 2 321 49 18.72 82 22.66 59

Cores FETI-DP Eff. FETI-DP Eff. GMRES Eff. GMRES Eff. Run Eff.
(Σ) [s] [%] (�) [s] [%] (Σ) [s] [%] (�) [s] [%] [s] [%]

8 901 100 12.18 100 135 100 1.82 100 1273 100
64 1 255 72 14.76 83 208 65 2.44 75 1692 75

512 1 745 52 16.94 72 374 36 3.63 50 2309 55
4096 5 267 17 42.13 29 1264 11 10.1 18 6142 21

Table 3.13: Weak scalability; Cube; H/h = 8; Timings and efficiencies for parallel scalability;
FETI-DP coarse space Algorithm DE [70, 110]. The lack of scalability is for a large part due to
an increasing number of Newton iterations, see also §3.4.8.
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Cube – Newton Iterations
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Figure 3.25: Weak scalability; Cube; H/h = 8; Newton iterations; The number of Newton iterations

increases with the number of CPU cores. Thus the total number of FETI-DP systems to be solved

increases and parallel scalability is adversely affected; see also §3.4.8.
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Cube – Numerical Scalability and Convergence Statistics
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Figure 3.26: Weak scalability; Cube; H/h = 8; FETI-DP iterations and condition number es-
timates. FETI-DP coarse space Algorithm DE [70, 110]. Note the increasing total number of
Newton iterations. The lack of scalability is for a large part due to an increasing number of
Newton iterations, see also §3.4.8.
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Cube – Parallel Scalability and Timing Statistics
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Figure 3.27: Weak scalability; Cube; H/h = 8; FETI-DP timings; FETI-DP coarse space Algo-
rithm DE [70, 110]. The lack of scalability is for a large part due to an increasing number of
Newton iterations, see also §3.4.8.
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3.4.8 Discussion

Let us now try to distill some observations and conclusions from the previously presented weak

scalability experiments which we obtained with the Newton-Krylov-FETI-DP solver mparfeap.

Remark 3.4.2 (Numerical Scalability and Condition Number Estimates from GMRES). Numer-

ical scalability of a preconditioning strategy for the weak formulation of a linear partial differential

equation is in general shown by proving a priori eigenvalue bounds for suitable finite element dis-

cretized problems. One is then interested in the implied condition number bounds for the full and

preconditioned discretized linear systems. For numerically scalable algorithms, the a priori condi-

tion number bound for the preconditioned system may only depend weakly, i.e., logarithmically, on

the inverse of the typical finite element diameter 1/h. In domain decomposition methods the weak

dependency is usually on H/h. For example, for FETI-DP with the Dirichlet preconditioner, we

have the typical estimate, c.f. §1.3:

κ(M−1
D · F) = κ(BD,ΓS̃BTD,Γ ·BΓS̃−1BTΓ ) ≤ C (1 + log(H/h))2. (3.4.1)

Such bounds have been obtained only for certain model problems, e.g, linear elasticity with an

appropriate coarse space in three dimensions, see e.g., Klawonn and Widlund [76]. For a conjugate

gradient method (CG) this bound has immediate consequences on the number of iterations until

convergence. For GMRES, however, this relation is not completely understood, see e.g., Klawonn

[68], and Klawonn and Rheinbach [71] for related discussions in the context of FETI-methods.

Moreover, in our applications in biomechanics, no a priori convergence bounds are known for

the linear systems arising from linearization in the Newton-Krylov-FETI-DP algorithm. In our

presented computations, we have recorded the condition number estimates computed by the Arnoldi

process in the PETSc GMRES solver. This is indicated by the column heading Cond.∗ and is not

necessarily an accurate estimate. We summarize that the provided condition number estimates are

a subtle indicator for numerical scalability and have to be interpreted with some care.

Parallel Scalability of the Assembly Phase

A central motivation for the development of the presented solver framework was the sequential

assembly phase in the previously developed semi-parallel framework. This phase was fundamentally

non-scalable. This imposed serious limitations for the global problem sizes. From the timing data

recorded during our weak scalability experiments, we deduce that the assembly phase in mparfeap

is scaling near perfectly. Note that this is expected, as there is no coupling between the assembly

in different subdomains, i.e., finite element assembly is trivially parallel.

Thus, the larger the problem size, the more time is spent in the linear FETI-DP solver while

the share of the runtime spent in the assembly phase decreases accordingly. In the presented

experiments the linear solver consumed up to 86.5% of the total simulation time (plate 4H). This

clearly illustrates the need for highly efficient linear solvers, such as FETI-DP, for Newton-Krylov

approaches. Linear solver performance is obviously the dominating factor and key to push the

limits for the efficient solution of large-scale nonlinear problems based on Newton-Krylov methods.

Weak Nonlinear Scalability and Choice of Convergence Criteria

The lack of scalability is mostly due to an increase of Newton iterations. This is easily observed

by comparing the number of Newton iterations for the different experiments in Table 3.28. We

are by no means the first to observe this phenomenon. E.g., in their award winning paper Adams,

Bayraktar, Keaveny, and Papadopoulos [1] observed a consistent increase of Newton iterations

from 5 to 6 from the coarsest to the finest discretization of their model and remarked “that the

nonlinear problems are becoming more challenging as the mesh is refined”.
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This seems to be expected to a certain degree due to the h-refinement induced by the weak scaling

sequence. If we consider the number of Newton iterations as a function of h, then it is asymptotically

bounded in the framework described in Deuflhard [34, Chapter 8]. The asymptotic bound for the

Newton iterations depends on the nonlinear functional, the starting iterate, the function space

norms and the convergence criteria. Thus, assuming that the balance equation fits the framework

for the analysis in Deuflhard [34, Chapter 8], the number of Newton iterations is to be expected

to change on h-refinement until the asymptotic bound is finally reached. The number of Newton

iterations will then simply change accordingly for the different stages of the scaling ladder used in

a weak scaling sequence.

Since this is influenced by the choice of convergence criteria and the choice of norms considered in

the outer Newton and inner Krylov iterations of a Newton-Krylov-scheme we state our convergence

criteria in some more detail. To formulate the convergence criteria, we have resorted to the

Euclidean norms of the residuals of the coefficient vectors

||rNewton(u)||2 : R#d.o.f. → R+
0 and (3.4.2)

||rFETI−DP(λ)||2 : R#dual d.o.f. → R+
0 . (3.4.3)

We refer to these as the nonlinear and linear residuals norms. This choice is not ideal, as this

family of norms depends on the number of degrees of freedom. On the other hand, these norms

are a standard choice used by default, e.g., in PETSc. We document here, what is the effect on

our weak scalability experiments using absolute convergence criteria.

From a numerical analysis standpoint, it is clear that the use of appropriate function space norms,

such as Sobolev norms, would have been more appropriate for studying convergence for h→ 0. The

norm itself is then independent of h. However, in our particular software context, see Chapter 2, an

implementation of an appropriate function space norm was unfortunately more work than we could

invest. This might have helped, but even for well matched tolerances and function space norms for

the inner and outer iterations, it seems that an increasing total number of Newton iterations would

still to be expected. This is our interpretation of Table 8.2 in Deuflhard [34, Chapter 8,p.388].

Note that the convergence criteria used there are different from ours. It would be interesting to

see how this table would continue for very high resolutions, as presented here. Although it seems

that the number of Newton iterations has already reached the asymptotic limit for some of the

experiments, this is not necessarily the case. The number of Newton iterations might also continue

to grow very slowly.

Let us conclude: The scalability properties of the linear Krylov-solver are not automatically in-

herited by the corresponding nonlinear Newton-Krylov method. Even a perfectly scaling parallel

linear iterative solver will not yield a parallel scalable Newton-Krylov-method unless the number of

load steps and Newton steps stays constant for all levels of the scaling sequence. This is certainly

the case, if and only if an asymptotic limit is reached. We consider it thus rather unrealistic to

achieve efficiencies for the full nonlinear scalability which are comparable to those obtained for

simple linear model problems. These might however be achieved in the average per Newton-step,

if the preconditioner for the linearized systems is working effectively.

Efficiency Measures for Nonlinear Scalability

The increasing number of Newton iterations affects the measures for numerical and parallel scala-

bility.

At multiple places, we have plotted and tabulated quantities in the average per load step or Newton

iteration. Most prominently, we have tabulated efficiencies in the average per Newton iteration

for numerical and parallel scalability. We consider these as convenient measures for the numerical
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and parallel scalability for Newton-Krylov solvers. These measures are more stable with respect to

the increasing number of Newton iterations. These data yield information on the scalability of the

FETI-DP method for all encountered linear systems (averages) and on the nonlinear scalability for

the nonlinear Newton-Krylov-FETI-DP solver (totals).

Let us shortly mention a possible shortcoming of the setup of our scaling sequences. For our

presented experiments, we have strived for equivalent loading curves across the full scaling ladder,

i.e., we applied the same load stepping strategy on each scaling level. This is not ideal for the

smaller problems for which a smaller number of load steps might have been sufficient. Currently,

we avoided the effort to determine the optimal load stepping curve for each scaling level separately.

Note that weak nonlinear scalability could be positively affected by a choice of initial values for the

Newton scheme obtained from mesh sequencing, i.e., by interpolation of solutions obtained using

a coarser mesh. Typically in structural mechanics applications, there is no access to coarser mesh

resolutions and in this situation this strategy is not feasible.

In all presented tables, we note an increase of the number of FETI-DP iterations in the average

per Newton-step. This may be due to the anisotropy or the incompressibility constraint. Note

that in the current algorithm, a coarse space designed for compressible linear elasticity has been

used, i.e., FETI-DP algorithm DE . In the context of linear elasticity, adapted coarse spaces have

been developed, e.g., by Klawonn, Rheinbach, and Wohlmuth [82] and Li and Widlund [89]. See

also Gippert, Klawonn, and Rheinbach [57], the dissertation by Gippert [55] and references therein.

In particular, we want to mention the contribution by Dohrmann and LeHoucq [37].

Certainly, the integration of adapted coarse spaces into the present software framework is the next

step.

Relative and Absolute Convergence Criteria and Robustness

A qualitative observation which we have consistently made during our experiments is that the

usual relative termination criteria, e.g., rtol in PETSc, which use the relative residual norms are

too unreliable for the hard problems here investigated. In general, these criteria lead to corrupted

solutions whenever there is a spike in the sequence of initial residuals. This observation holds for

the linear rFETI−DP(λ) and for the nonlinear residual rNewton(u) as well.

In the convergence history for the weak scalability experiments here presented, each and every

linear FETI-DP solve converged due to an absolute convergence criterion for the coefficient vector

u in the || · ||2. Typically, the weak scaling efficiency ratios are less favorable for the choice of an

absolute tolerance for the convergence criterion. However, in the unstructured case for realistic

problems, relative tolerances have appeared to be of little practical use, since the initial residuals

easily explode if the last load increment was too large. 1 Strong spikes are common to appear in

the sequence of initial FETI-DP residual norms and usually trigger convergence leading to corrupt

Newton corrections ∆u. More precisely, the absolute tolerance of the FETI-DP solver is then so

large, that the Newton correction is not even continuous across the subdomain interface anymore.

Clearly, this is to be avoided and absolute convergence criteria do present a remedy. Let us stress

once more that the parallel scalability is usually negatively impacted by a fixed absolute tolerance

for the convergence of the Krylov-method which were necessary to achieve a reasonable robustness.

1The exceptional floating point numbers INF (infinity) and NaN (not a number) are encountered in practice and
have to be handled appropriately.
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Direct Solver Performance and Memory Requirements

A FETI-DP solver internally uses direct solvers at multiple places to factor process-local matrices

in parallel.2 These factorization phases are commonly referred to as “local solves”. Somewhat

counter-intuitively, choosing a slower direct solver for the local solves usually results in better

efficiency ratios. But clearly, a larger share of the execution runtime is spent in a perfectly parallel

program phase (no communication) and this improves scalability. The trade-off is a longer total

application runtime.

During scalability testing on the Cray XT6m, it was important to minimize the total computation

time by selecting the fastest linear direct solver for the local solves in FETI-DP. Note that the

full machine was only available during special scaling time slots. All running computations were

automatically killed by the job scheduler at the end of that given time slot which is a standard

practice.3

We have found that MUMPS, compiled with compiler optimizations turned on and using the

INTEL Fortran-compiler, is a very efficient and robust choice. As is well-known, direct solvers

are very memory intensive. Exploitation of symmetric matrix storage in the PETSc FETI-DP

implementation was a crucial step to achieve good results. The choice of Algorithm DE for the

weak scalability experiments was also motivated by the small memory footprint for the associated

coarse problem. The use of larger coarse spaces, e.g., of Algorithm C, would be of interest and even

preferred. This is, however, subject to future work since the factorization of the corresponding

coarse problem is currently too memory intensive. For exact FETI-DP methods this could be

improved, e.g., by sharing factorizations common to all processes in the FETI-DP solver on the

compute node level. Another possible approach is to switch to inexact FETI methods, such as

irFETI-DP. In that case the factorizations using direct solvers are replaced by iterative schemes

which reduces the memory footprint enormously but at the same time the robustness.

2This is different for inexact FETI-DP methods and the discussion does not apply to these methods.
3Actually, there was a kind soul who magically kept some important jobs alive.
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3.5 Effectivity of Tuning Newton-Krylov-FETI-DP in Load Stepping

Strategies

For the presented applications, it was unavoidable to tune the simulations with respect to the

memory requirements and with respect to the total application runtime on the Cray XT6m. Only

the latter aspect shall concern us here. In §1.4 we have introduced two strategies implemented by

the software framework presented in Chapter 2: linear extrapolation for the displacement u and

a non-zero initial guess for λ to start FETI-DP/GMRES. In this section we want to illustrate the

gains we have obtained in scenarios comparable to the previously presented parallel simulations.

The linear extrapolation method for the displacement was proposed to us by J. Schroeder [113]

and it is easily seen to be remarkably effective in our weak scalability tests. In fact, all of the

weak scalability experiments presented in §3.4 profit a lot from the linear extrapolation feature.

In the tension tests for cuboidal domains with Dirichlet boundary data, we have achieved a nice

reduction of the number of load steps in conjunction with the adaptive load stepping strategy. For

the exposition of the effects, we have compiled tables which are similar in style to those presented

in Adams, Bayraktar, Keaveny, and Papadopoulos [1].

Let us mention first some related work: P. Gosselet and C. Rey investigated a selective reuse

of Krylov subspaces in [58]. Their approach is related to our choice of a dual initial guess for

FETI-DP. The efficiency of their proposed reusal strategy in our context would have been quite

interesting to include in the presented comparisons that follow. One aspect is, however, easy to

anticipate. The usage of the last dual solution as an initial guess for λ is trivial to implement and

can be quite effective without incurring any cost.

3.5.1 First Level of the Cuboid Tension Test

Let us revisit the experiment for the Cuboid geometry described in §3.4.3. The effect of the

linear extrapolation is extreme for this example to the extent that it was unrealistic to run that

comparison for more than the smallest problem size of the weak scalability sequence before the

feature was implemented. It is immediate to infer from Table 3.14 that the computations are sped

up nearly by a factor of 12 when linear extrapolation for the displacement u is enabled. Note that

this is an extreme example and that the convergence can also be negatively affected in some cases.

For example, model artery 2 failed to converge with the linear extrapolation feature enabled.

#Cores #D.O.F Linear Extra- Initial Guess Newton-It FETI-DP-It (�) Time
polation for u for λ (total/failed)

32 1 752 975 yes yes 78/0 19.90 185 m
32 1 752 975 yes no 78/0 32.44 205 m
32 1 752 975 no yes 677/28 22.34 2 190 m
32 1 752 975 no no 677/28 30.89 2 302 m

Table 3.14: Comparison matrix for the effect of linear extrapolation for u and the nonzero ini-
tial guess λ(n−1) for λ; The tension test for the Cuboid experiment is quite sensitive; Linear
extrapolation speeds up the computation nearly by a factor 12; Adaptive load stepping strategy
α = 1.5, β = 0.5 and delay dstep = 2; Divergent Newton steps failed due to the exceeded limit of
888 GMRES iterations

137137



FIRST LEVEL OF THE CUBOID TENSION TESTFIRST LEVEL OF THE CUBOID TENSION TEST

3
2

X
T

6
C

o
re

s
2
0
4
8

X
T

6
C

o
re

s
(1

.7
5

m
il

li
on

d
.o

.f
.)

(1
0
9

m
il

li
o
n

d
.o

.f
.)

N
e
w

to
n

st
e
p

1
2

3
4

5
6

1
2

3
4

5
6

7

L
o
a
d

st
e
p

1
40

34
19

5
2

5
1

4
7

2
6

L
o
a
d

st
e
p

2
43

31
17

5
3

5
1

4
7

2
7

L
o
a
d

st
e
p

3
45

4
8

L
o
a
d

st
e
p

4
46

5
0

L
o
a
d

st
e
p

5
47

5
1

L
o
a
d

st
e
p

6
48

5
2

L
o
a
d

st
e
p

7
48

23
5
3

2
5

L
o
a
d

st
e
p

8
48

24
5
3

2
6

L
o
a
d

st
e
p

9
47

27
5
4

3
0

L
o
a
d

st
e
p

1
0

45
25

5
4

2
9

L
o
a
d

st
e
p

1
1

41
24

11
5
4

3
2

1
9

L
o
a
d

st
e
p

1
2

38
21

10
5
4

3
2

2
2

L
o
a
d

st
e
p

1
3

34
20

13
4

5
3

3
3

2
9

2
4

1
7

L
o
a
d

st
e
p

1
4

31
18

12
4

5
3

3
2

2
7

2
4

1
9

L
o
a
d

st
e
p

1
5

28
17

12
8

1
5
0

3
2

2
7

2
4

2
0

1
5

6
L

o
a
d

st
e
p

1
6

27
16

11
8

0
4
3

2
6

2
4

2
0

1
6

1
0

L
o
a
d

st
e
p

1
7

26
16

12
9

5
3
2

2
0

1
8

1
7

1
5

1
3

1
0

L
o
a
d

st
e
p

1
8

26
16

11
7

2
2
7

1
7

1
5

1
4

1
2

9
L

o
a
d

st
e
p

1
9

25
16

12
9

5
0

2
6

1
7

1
4

1
3

1
1

8
5

L
o
a
d

st
e
p

2
0

25
16

12
8

4
2
6

1
7

1
3

1
1

8
5

0
L

o
a
d

st
e
p

2
1

26
17

12
8

3
2
7

1
8

1
4

1
2

9
7

3
L

o
a
d

st
e
p

2
2

26
16

11
5

2
7

1
7

1
3

9
6

1
L

o
a
d

st
e
p

2
3

26
16

10
2
8

1
7

1
2

7
1

L
o
a
d

st
e
p

2
4

27
15

6
2
9

1
6

7

T
im

e
1
8
5

m
3
1
1

m

T
ab

le
3.

15
:

M
at

er
ia

l
m

o
d

el
Ψ
B

S
et

-3
re

la
x
ed

;
L

oa
d

st
ep

s
v
s.

N
ew

to
n

st
ep

s
fo

r
th

e
C

u
b

o
id

te
n

si
on

te
st

;
T

h
e

n
u

m
b

er
of

F
E

T
I-

D
P

-i
te

ra
ti

on
s

d
ec

re
a
se

s
in

ev
er

y
N

ew
to

n
st

ep
d

u
e

to
th

e
fa

vo
ra

b
le

in
it

ia
l

gu
es

s
λ

(n
−

1
)
;

C
oa

rs
es

t
an

d
fi

n
es

t
le

ve
ls

o
f

th
e

sc
a
li

n
g

se
q
u

en
ce

;
A

0
in

d
ic

at
es

im
m

ed
ia

te
co

n
ve

rg
en

ce
as

a
re

su
lt

of
a

p
er

fe
ct

d
u
a
l

in
it

ia
l

g
u

es
s.

E
m

p
ty

ce
ll

s
in

d
ic

at
e

p
ri

or
co

n
v
er

ge
n

ce
of

th
e

N
ew

to
n

sc
h

em
e;

C
o
n
ve

rg
en

ce
cr

it
er

ia
:

a
to

l N
e
w

to
n

=
1
0−

7

an
d

at
ol

F
E

T
I−

D
P

=
10
−

9
.

3
2

X
T

6
C

o
re

s
(1

.7
5

m
il

li
o
n

d
.o

.f
.)

1
2

3
4

5
6

4
0

4
1

4
0

4
3

4
3

4
3

4
5

4
6

4
7

4
8

4
8

4
8

4
8

4
8

4
7

4
7

4
5

4
5

4
1

4
2

4
2

3
8

3
8

3
8

3
4

3
4

3
4

3
4

3
1

3
2

3
2

3
2

2
8

2
9

2
9

2
9

2
9

2
7

2
7

2
7

2
7

2
7

2
6

2
7

2
7

2
7

2
7

2
6

2
6

2
6

2
6

2
6

2
5

2
6

2
6

2
6

2
6

2
6

2
5

2
5

2
5

2
5

2
5

2
6

2
6

2
6

2
6

2
6

2
6

2
6

2
6

2
6

2
6

2
6

2
6

2
7

2
7

2
7 2
0
5

m

T
a
b

le
3
.1

6
:

F
o
r

th
e

se
tu

p
co

m
p

a
re

w
it

h
T

a
b

.
3.

1
5
;

N
u

m
b

er
o
f

F
E

T
I-

D
P

it
er

a
ti

o
n

s
u

si
n

g
a

ze
ro

in
it

ia
l

g
u

es
s

fo
r
λ

to
st

a
rt

F
E

T
I-

D
P

/
G

M
R

E
S

.
T

h
e

n
u

m
b

er
o
f

G
M

R
E

S
it

er
a
ti

o
n

s
st

ay
s

n
ea

rl
y

co
n

st
a
n
t.

138138



CHAPTER 3. APPLICATIONSCHAPTER 3. APPLICATIONS MODEL ARTERY 2 ΨB SET-3 RELAXED INITIAL . . .MODEL ARTERY 2 ΨB SET-3 RELAXED INITIAL . . .

3.5.2 Model Artery 2 – ΨB Set-3 Relaxed – Initial Loading

Let us turn our focus now over to model artery 2 with 13 million degrees of freedom to investigate

the effects of the tuning options in a more complex scenario. For this experiment, we have used the

stored energy function ΨB Set-3 relaxed, a formulation with relaxed volume penalty. For model

artery 2, the linear extrapolation feature only converged for the initial loading phase.

Thus, the comparison matrix for the two tuning strategies discussed here only shows the ini-

tial loading phase of the arterial wall structure. In other words, we have not used physiological

boundary conditions. Instead the computation was run with a final 1 [kPa] for the interior normal

pressure and both sidecaps of the arterial wall structure model were clamped in all space directions

using Dirichlet boundary conditions, since the more appropriate sliding boundary conditions were

implemented only later.
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3.5.3 Model Artery 2 – ΨA Set-2 – Physiological Loading

We have run the setup for the strong scalability benchmark for model artery 2 described in §3.3

and compare two runs with the dual initial guess for λ turned on and off, respectively. We have

used 512 processors on the Cray XT6m for this computation. The effect on the FETI-DP residual

norms is displayed in Figure 3.30. Further, we have computed the quantitative computational

savings in the following table:

Initial Guess Total #FETI-DP Solver [s] Runtime [s]

Strategy Iterations

Zero 80 484 110 962 117 152

λ(n−1) 57 204 84 152 89 287

Reduction 28.93% 24.16% 23.78%

Table 3.18: Computation of arterial wall stresses at 500 [mmHg]; Iteration and runtime reductions

due to the choice of λ(n−1) as a non-zero initial guess for FETI-DP in each Newton step.

The last dual solution λ(n−1) is clearly an effective initial guess. It progressively reduces the

number of FETI-DP iterations during Newton iteration. In our experience this particular strategy

has shown good robustness and although counterexamples may exist, we have not encountered any

so far. A 23.78% reduction of the total runtime is definitely a nice gain at no cost.
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(b) Initial guess λ(n−1) for λ(n)

Figure 3.30: Comparison of FETI-DP residual norms for the two different choices of initial guesses
for FETI-DP; Model artery 2; Simulation with physiological boundary conditions; Gains for the
displayed first six load steps; 3741 FETI-DP iterations in (a) vs. 2855 starting from λ(n−1) (b);
Roughly 25% GMRES-iterations are saved at no costs.
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3.6 Outlook

Finally, we want to present some currently ongoing as well as possible future developments and

extensions.

The previously available simulations of arterial wall stress states in the physiological regime, ob-

tained, e.g., in Brands, Klawonn, Rheinbach, and Schröder [23] and subsequent works, were based

on the same semi-parallel framework. They were inherently non-scalable. This hurdle has fi-

nally been overcome using the parallel scalable software framework presented in Chapter 2. This

new stepping stone was essentially reached through the development of libfw, or more precisely

libfw-js, as a key component allowing for massively parallel assembly of the material models

implemented by J. Schröders group in FEAP-JS.

Among, obviously, many possible directions of extensions, we have selected the following for a short

overview over ongoing and possible future developments related to the present work:

Fluid-Structure Interaction (FSI): A very interesting current development is the usage of

the material models available in FEAP-JS encapuslated by the contributed libfw-js for FSI

simulations in the physiological regime and of a new degree of realism regarding the modelling of

the arterial walls. This is the main theme of a joint DFG/SNF D-A-CH project:

Domain-Decomposition-Based Fluid Structure Interaction Algorithms
for Highly Nonlinear and Anisotropic Elastic Arterial Wall Models in 3Da

aThis project is supported by the Deutsche Forschungsgemeinschaft (DFG) and the Swiss National
Fond (SNF) within a D-A-CH proposal; it is a common grant proposal by the PIs Axel Klawonn, Oliver
Rheinbach, Alfio Quarteroni, Simone Deparis, Daniel Balzani, and Jörg Schröder.

Note that this envisaged usage scenario dictated the need for the development of a software library

encapsulating FEAP as an assembly machine right from the start. Our solver mparfeap was in

part developed as a proof of concept. This solver demonstrates both the feasibility of the technical

approach, i.e., componentization of FEAP, and potential scalability of Newton-Krylov-FETI-DP

for hyperelastic wall models. For the applications in FSI, the FEAP wrapper library libfw-js

presented in Chapter 2 is used as a bridge component. It allows to use FEAP for the assembly

in LifeV. More precisely, FEAP-JS assembles the quasi-static part in the fully time-dependent

ALE-based fluid-structure interaction (FSI) simulations of arterial wall stresses in atherosclerotic

arteries.

This invites us to take a look at a particular aspect of the aforementioned project from the point

of view of software engineering:

Cross-Validation: The finite element discretizations for the St. Venant-Kirchhoff and Neo-

Hooke material models available in both FEAP and LifeV have been compared, i.e., they have

been shown to be consistent up to numerical tolerance [62]. This is an example for an independent

direct cross-validation of new state of the art expression template-based implementations of the St.

Venant-Kirchhoff and Neo-Hooke material models contributed to LifeV by P. Tricerri during his

thesis work, see, e.g., Tricerri, Dedè, Quarteroni, and Sequeira [133]. Hence, this is a particularly

reliable and secured basis regarding the correctnes of the modelling codes and in turn a sound

basis for the development of authoritative massively parallel benchmark simulations in FSI. Cross-

validation might be a valuabe quality assurance strategy also for other codes.

Boundary Conditions: Currently, only simple types of boundary conditions can be handled

by mparfeap. The powerful features available to FEAP users for the realization of complex
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loadings are for the most part intrinsically incompatible with our approach.4 Thus, it would be an

interesting addition to extend the fddp and mparfeap applications for the convenient handling of

more complex and realistic boundary conditions for unstructured geometries in a massively parallel

setting. Furthermore, problems in contact mechanics could be considered.

Let us now turn our attention towards future extensions regarding the application of linear and

nonlinear domain decomposition methods in the context of nonlinear structural continuum me-

chanics. An important aspect of the mathematical formulation is the nonlinear, i.e., finite strain,

strategy to incorporate the incompressibility constraint and how it interacts with FETI-DP. There

are two major directions into which the present work could be extended.

Augmented Lagrange: In the present work we have only considered a simple penalty formula-

tion in order to enforce quasi-incompressibility. This has been achieved. A possible improvement

lies in the application Augmented Lagrange methods as presented in Brinkhues, Klawonn, Rhein-

bach, and Schröder [25] and in the dissertation of Brinkhues [24]. These could be integrated

into mparfeap. This would allow to investigate these schemes for unstructured problems on the

large scale, in particular with respect to their parallel scalability.

FETI-DP Coarse Spaces for Incompressible Linear Elasticity: In the context of the

present work, we have used FETI-DP Algorithm C and Algorithm DE . Both algorithms have

been shown to be numerically scalable for linear elasticity without incompressibility constraints

in three dimensions. Numerically scalable FETI-DP algorithms for incompressible and almost

incompressible linear elasticity have previously been proposed and it would be interesting to study

them in the context of finite strain incompressible hyperelasticity and in particular the effectiveness

for soft biological tissue models.

Inexact FETI-DP Methods: We have only presented results for exact FETI-DP algorithms

embedded into a Newton-Krylov-FETI-DP scheme. Exact FETI-DP algorithms are, in general,

more stable but the memory requirements of direct factorization of the coarse problem is a limita-

ton. The next order of scalability requires appropriate iterative solution techniques for the coarse

problem, i.e., inexact FETI-DP methods.

Nonlinear Domain Decomposition: A still recent development are nonlinear domain-

decomposition based preconditioners acting on the level of the Newton scheme. Such approaches

consequently lead to discontinuous Newton corrections. Nonlinear FETI-DP and BDDC algorithms

have been investigated, e.g., by Klawonn, Lanser, and Rheinbach [86]; see also Klawonn, Lanser,

Radtke, and Rheinbach [85]. Reduced communication costs are expected to yield algorithms scaling

up to the exascale. For related work on applications of nonlinear domain decomposition methods

in structural mechanics, see Gosselet and Rey [58, 59].

Adaptive Coarse Spaces: Another highly interesting modern approach to preconditioning is

to adaptively compute optimal coarse spaces. This allows to improve the condition number of

the preconditioned FETI-DP system in situations where not much is known about the operator a

priori. Large reductions in the total number of FETI-DP iterations are possible. For recent work

on adaptively computed coarse spaces in FETI-methods, see Klawonn, Radtke, and Rheinbach [78]

and references therein; see also Klawonn, Lanser, Radtke, and Rheinbach [85].

Further, better analysis and control of the nonlinear dynamics of the solution curves ϕt considered

as a function of the pseudo-time t during load stepping are of interest.

4We have abstained from usage of any FEAP functionality which manipulates the linear systems on the equation
level.
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Globalization: In the present work, we have essentially used load stepping as a globalization

method. Other globalized Newton-schemes might also be useful to accelerate nonlinear solvers

or increase their robustness. Note that conservative exterior loadings yield the structure of a

minimization problem for a total energy of the mechanical system, i.e., leads to a symmetric

Hessian. In general, however, one has to globalize the root finding problem arising from the

contributions to the virtual work balance G(u). Line search methods which reliably reduce work

or increase stability in this context when used inside a load stepping scheme would certainly be of

interest.

Stability Analysis: It would be interesting to extend mparfeap using strategies that allow to

analyze nonlinear instabilities, e.g., buckling, and corresponding continuation methods. This is

less immediate than it may seem at first glance as standard procedures require a robust eigenvalue

analysis for the global tangent stiffness matrix, which can be extremely large and is never formed

in our Newton-Krylov-FETI-DP approach.

A new door to unforeseen integrations fusing FEAP into other software projects is wide open now.

New developments of nonlinear domain decomposition based techniques using well-established

high-quality and high-performance implementations available in FEAP have thus been rendered

possible and are already pursued.

In the hands of a creative and diligent mind a good tool may well show unanticipated worth. Only

future can tell whether we have succeeded in providing such a tool; we do have strived for it; we do

hope to be surprised . . . .
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Legal Disclaimer

This appendix is based on pages 20-41 of Section 2 Notation and Preliminaries of the present

authors Diploma-thesis with the title

– The Planar Cosserat Model –

Minimization of the Shear Energy on SO(2) and Relations to Geometric Function Theory,

Technische Universität Darmstadt, 2007, advised by PD Dr. rer. nat. habil. Patrizio Neff.

In the following, we introduce the quasi-static setting of finite hyperelasticity in R3. We begin with

some notation and introduce isotropic, anisotropic and incompressible structural models. For an

extensive treatment of the subject based on abstract differential geometric principles, see Marsden

and Hughes [97]. A treatment which is directed towards engineering sciences, see Holzapfel [63]

and for a treatment written from the standpoint of functional analysis, we refer to the monograph

by Ciarlet [29]. For a thorough introduction to nonlinear finite element methods for nonlinear

continuum mechanics, see Wriggers [137].

A.1 Notation

N,Z,R Natural, integer and real numbers

Hom(V,W ) Homomorphisms V to W

M(n,R) Square real n× n-matrices

Skew(n,R) ⊂ M(n,R) Skew-symmetric: {A ∈ M(n,R) : AT = −A}
Sym(n,R) ⊂ M(n,R) Symmetric: {S ∈ M(n,R) : ST = S}
PSym(n,R) ⊂ Sym(n,R) Positive definite: {S ∈ Sym(n,R) : x 6= 0 =⇒ xTSx > 0}
GL+(n,R) Identity component of the general linear group

SL(n) Special linear group

SE(n) Special euclidean group (rigid body motions)

SO(n) Special orthogonal group

0n ∈ M(n,R) Zero matrix

1n ∈ M(n,R) Identity matrix

C∞(M,N) Smooth maps between smooth manifolds mapping M to N

TM Tangent bundle of a smooth manifold M

dϕ : TM → TN Derivative of a smooth map ϕ : M → N

∇ϕ : Ω→ M(n,R) Matrix representation of the derivative

A Abstract space of admissible functions

TA Abstract space of variations of admissible functions

Ω = idΩ(Ω) Reference domain in configuration idΩ

Ωdef = ϕ(Ω) Deformed domain in configuration ϕ

T = {Ti} 1≤i≤Nelem
Tetrahedral triangulation of Ω
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Definition A.1.1 (Projections). We denote the alternating, symmetric and deviatoric tensor

projections for mixed second order tensors M(3,R) by

skew : M(3,R)→ Skew(3,R), skew [X] :=
1

2
(X −XT ) ,

sym : M(3,R)→ Sym(3,R), sym [X] :=
1

2
(X +XT ) ,

dev : M(3,R)→ ker tr [·], dev [X] := X − 1

3
tr [X] · 1 ,

respectively.

It is easy to see that skew + sym = idM(3,R) and tr ◦dev = 0. Moreover,

M(3,R) = Sym(3,R)⊕⊥ Skew(3,R) , (A.1.1)

where the orthogonality is relative to the usual matrix inner product〈
X, Y

〉
:= tr

[
XTY

]
=

∑
1≤i,j≤n

XijYij .

This scalar product induces a matrix norm.

Definition A.1.2 (Frobenius Matrix Norm). The Frobenius norm is given by

‖X‖2 :=
〈
X, X

〉
:= tr

[
XTX

]
. (A.1.2)

A.2 Finite Elasticity

Our focus is on simulations of structural mechanics in the elastic regime. The term finite is

the antonym to infinitesimal. It hence implies large deformations of solids as opposed to the

infinitesimal deformations of the reference configuration idΩ which are the subject of the linearized

theory, i.e., of classical linear elasticity. The terms finite and nonlinear are used interchangeably

in the literature. For the introduction, we take an approach to the subject in terms of classical

smooth functions. It is not our goal to prepare a setting to formulate an existence theory.

Definition A.2.1 (Body). A body Ω is a compact smooth three-dimensional manifold Ω ⊂ R3

with piecewise smooth boundary ∂Ω.

For the application of finite element methods for the approximations of solutions to the arising

boundary value problems, one typically considers domains Ω which are polyhedral with Lipschitz-

boundary ∂Ω.

Definition A.2.2 (Deformation Mapping and Deformed Body). An orientation preserving global

C∞-diffeomorphism

ϕ : Ω→ Ωdef ⊂ R3

shall be called a deformation of the body Ω into the deformed body

Ωdef := ϕ(Ω) .

According to these definitions, the image ϕ(Ω) of a body is a body itself, because the global manifold

structure is preserved by the deformation. Note that this choice does not allow a deformed body

to intersect itself. The space of possible states of a mechanical system is commonly referred to as

a configuration space. The configuration space of the elastic body Ω is the set of deformations.
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Definition A.2.3 (Configuration Space of an Elastic Body). Let Ω ⊂ R3 be a body. We define the

configuration space of an elastic body as the set of global orientation preserving C∞-diffeomorphisms

Celas
Ω := {ϕ : Ω→ ϕ(Ω) : ϕ is a global diffeomorphism and det [∇ϕ] > 0} .

This choice of configuration space excludes the possibility of local and global topology changes,

because global diffeomorphisms are global and local homeomorphisms. This is intuitive for purely

elastic processes. For the introduction we shall assume that configurations are classical smooth

mappings, which does not lead to a sequentially complete space. The generalization to weakened

notions of functions, i.e., to Sobolev functions and spaces, is hence essential for an existence theory.

See, e.g., the elegant and rigorous exposition due to Ciarlet [29].

Definition A.2.4 (Elastic Body). We call a pair (Ω, Celas
Ω ) of a body Ω and configuration space

Celas
Ω an elastic body.

Definition A.2.5 (Displacement Field). To any configuration ϕ : Ω→ Ωdef ⊂ R3 we can associate

the displacement field

u : Ω→ R3, u(x) := ϕ(x)− idΩ(x) .

Note that u = 0 is equivalent to ϕ = idΩ. The deformation can be computed from the displacement

field ϕ(x) = idΩ(x) + u(x) and vice versa. One can take both perspectives.

Definition A.2.6 (Reference Configuration of a Body). Let Ω be an elastic body, i.e., a body with

configuration space Celas
Ω . The distinguished undeformed state of the body Ω is represented by the

identity mapping

idΩ ∈ Celas
Ω , idΩ(x) := x , (A.2.3)

Thus, idΩ is called the reference configuration.

By SE(3) we denote the special Euclidean group of isometries of R3. We shall also refer to it

as the group of rigid body motions, since all internal distances in the body are left invariant by

the corresponding group action.

Remark A.2.7 (Rigid Body). A body Ω with configuration space SE(3), i.e.,

Crigid
Ω := SE(3) (A.2.4)

is called a rigid body.

Noting the relation SE(3) ⊂ Celas
Ω , we see that the configuration space of the rigid body is contained

in the larger configuration space of the elastic body.

A first order theory depends on the derivative of the field variable. In the context of elasticity, it

is customary to define the following.

Definition A.2.8 (The Deformation Gradient Field). Let ϕ ∈ Celas
Ω be a deformation of Ω. The

matrix representation ∇ϕ : Ω → GL+(3,R) of the derivative map dϕ : TΩ→ TΩdef is called the

deformation gradient field of ϕ and we denote it by

F := ∇ϕ ∈ GL+(3,R) .
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Remark A.2.9 (On the Type of F ). The deformation gradient tensor is neither a gradient nor

a simple tensor field. To be precise, ϕ : Ω → Ωdef induces a derivative map between the vector

bundles TΩ and TΩdef . Marsden refers to such objects as two-point tensor fields in Marsden and

Hughes [97]. This is natural, since F transforms tensorially under changes of coordinate systems

in the reference and the deformed body. Another way of phrasing this is that the derivative dϕ

transforms as a vector bundle-valued differential one-form taking values in the tangent bundle of

the deformed configuration TΩdef , see, e.g. Kanso, Arroyo, Tong, Yavari, Marsden, and Desbrun

[66]. A gradient is an object ∇f := df ] obtained as the dual of a derivative one-form via a

Riemannian metric g.

Figure A.2.1: The deformation gradient field Find : TΩ → TΩdef , Find := ∇ϕind, induced by an
indented configuration ϕind : Ω → Ωdef of the cuboid Ω. The deformed body is visualized by the
action of Find on a grid of regularly distributed small cubes. Only the green part of the domain
has been deformed.

The action of ϕ on infinitesimal cubes, i.e., on cubes in the tangent space TxΩ, is displayed by

applying the linearization F . This is depicted in Figure A.2.1 for a synthetic example.

Definition A.2.10 (Stretch Tensors). Let ϕ ∈ Celas
Ω with deformation gradient F ∈ GL+(3,R).

We introduce the right Cauchy-Green stretch tensor C and the right stretch tensor or

Biot-stretch tensor U as follows:

C : GL+(3,R)→ PSym(3,R), C(F ) = FTF , (A.2.5)

U : GL+(3,R)→ PSym(3,R), U(F ) =
√
C(F ) =

√
FTF .

Using the right polar decomposition given by F = RU , where R ∈ SO(3) and U ∈ PSym(3,R),

we can refine this intuition by decomposing this infinitesimal deformation into a stretch U along

the principal axes followed by a rotation R. This is illustrated in Figure A.2.2 for the case of planar

simple shear.

Due to certain group invariances it is always possible to characterize the material response of

isotropic materials in terms of three classical isotropic invariants I1, I2 and I3 which depend on the

right Cauchy-Green stretch tensor C. To this end, we introduce the following:
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Definition A.2.11 (Principal Stretches). The three singular values of F ordered by descending

magnitude

σ1 ≥ σ2 ≥ σ3 > 0

are called the principal stretches of U (or F , equivalently).

This allows to introduce the classical principal invariants, which are given by the symmetric poly-

nomials in the squared principial stretches of F , i.e., in the eigenvalues of C.

Definition A.2.12 (The Classical Principal Invariants of Isotropic Elasticity). The principal

invariants are given by

I1 := tr [C] = σ2
1 + σ2

2 + σ2
3 ,

I2 := tr [cof [C]] = σ2
1 σ

2
2 + σ2

2 σ
2
3 + σ2

1 σ
2
3 ,

I3 := det [C] = σ2
1 σ

2
2 σ

2
3.

Here, cof [C] denotes the matrix of cofactors of C.

The following example gives a geometric interpretation of the action of the deformation gradient

F using the polar decomposition F = RU into the associated right stretch tensor U and the right

polar rotation R.

Example A.2.13 (Polar Decomposition of 2D Simple Shear). A simple shear with amount γ ∈ R
of a planar body is given by

Fγ =

(
1 γ

0 1

)
∈ SL(2,R), (A.2.6)

acting via left multiplication on the reference configuration of a body. The singular values of Fγ
are the square roots of the eigenvalues λ1/2 of

C(Fγ) = FTγ Fγ =

(
1 γ

γ 1 + γ2

)
(A.2.7)

and we obtain

σ1/2 =
√
λ1/2 =

√
1

2
(2 + γ2 ± γ

√
4 + γ2) .

An illustration is given in Figure A.2.2.
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e1

e2

e1

e2

e1

e2

e1

e2

F1
2

= RU

U 11
R

Figure A.2.2: The right polar decomposition decomposes the simple shear in e1-direction with
parameter γ = 1

2 into a pure stretch U followed by a rotation R. The dotted lines show the
principal directions of stretch, the stretch ellipse shows how the unit circle is deformed and the
circular arrows illustrate the action of the polar rotation finally aligning the deformed shapes.

A.3 Quasi-static Isotropic Hyperelasticity

In quasi-static hyperelasticity, one assumes existence of a total energy functional for the interior

forces induced by a deformation mapping contained in the space of admissible configurations. We

shall denote this potential by

Πint : A ⊆ Celas
Ω → R+

0 .

The term quasi-static refers to the assumption, that the time-dependent (transient) part of the

equations of movement can be neglected. In the arising static theory, the functional Πint plays

the role of a stored energy potential and its first derivative corresponds to the internally generated

force density due to the strain. We define an interior virtual work functional given by

Gint : TA → R

Gint
∣∣
ϕ

(χ) :=
d

dε

∣∣∣∣
ε=0

Πint(ϕ+ εχ) .

For a classical local first order single field theory it is assumed that the total energy can be expressed

as an integral over a local energy density. The local strain energy density Ψ plays the role of the

constitutive law and characterizes the mechanical response behavior of the material of the body.

Such a theory postulates that the energy depends on the field only through the position x ∈ Ω
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and the first derivative of the field, i.e., on the deformation gradient field F := ∇ϕ.1 We thus

introduce:

Definition A.3.1 (Local Strain Energy Density). We call a function

Ψ : Ω×GL+(3,R)→ R+
0

a local strain energy density Ψ(x, F (x)). It is called homogeneous, if the dependence on x ∈ Ω

is only through the deformation gradient F (x). Thus, a homogeneous strain energy density can be

written as Ψ(F ).

For simplicity of exposition, we shall restrict our attention to the case of homogeneous strain

energy densities Ψ(F ) in what follows.

Definition A.3.2 (Hyperelastic Body). A hyperelastic body (Ω, Celas
Ω ,Ψ) is an elastic body

(Ω, Celas
Ω ) together with a local strain energy density Ψ : Ω×GL+(3,R)→ R+

0 .

A hyperelastic body allows to measure the internally stored strain energy induced by a given

configuration by integration of the local strain energy density over the elastic body.

Definition A.3.3 (Internal Strain Energy). The internal strain energy of a hyperelastic body

Ω in an admissible configuration ϕ ∈ A ⊂ Celas
Ω is given by the integral

Πint : A → R+
0 , Πint(ϕ) =

∫
Ω

Ψ(F ) dV . (A.3.8)

Here, Ψ : GL+(3,R)→ R+
0 is a strain energy density and F := ∇ϕ is the deformation gradient of

the configuration ϕ.

Dirichlet boundary conditions of place are formulated by an appropriate choice of admissible con-

figurations A, satisfying these boundary conditions. Regarding other boundary conditions imposed

in our applications, we consider the following formulation for the exterior contributions. To this

end, we denote by ∂ΩdefN ⊆ ∂Ωdef the Neumann-boundary in the deformed configuration. A trac-

tion field tN : ∂ΩdefN → R3 is to be imposed there. Further, let ρ0 : Ω→ R+ denote the physical

density of the body and let g : R3 → R3 be a volume force density.

Definition A.3.4 (Virtual Work due to Exterior Loadings). We define the external virtual

work functional as

Gext : TA → R,

Gext
∣∣
ϕ

(χ) =

∫
∂ΩdefN

〈
tN , χ ◦ ϕ−1

〉
dA

︸ ︷︷ ︸
Pressure load

+

∫
Ω

ρ0

〈
g, χ

〉
dV

︸ ︷︷ ︸
Volume force

. (A.3.9)

In order to approximate the effects due to the blood pressure inside the arterial wall structure,

a pressure load is imposed on the fluid-structure interface. We denote this part of the interface

by ∂ΩdefN and consider a pressure induced traction field which is normal to the fluid-structure

interface

tN : ∂ΩdefN → R3, tN := −p n . (A.3.10)

1Note that there are also multi-field theories. E.g., to model incompressibility, it is common to use a three-field
Hu-Washizu approach. Cosserat and micromorphic models with rotational degrees of freedom and micromorphic
material models are other noteworthy examples, see e.g. Neff [100] and Neff and Forest [101] and references therein.
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The pressure is assumed to be constant p ≥ 0 [kPa]. Note that the reflected outward unit normal

field given by −n determines an inward pointing normal field. Thus, in our applications, a positive

blood pressure causes the arterial wall structure to expand. Pressure loadings are a non-trivial

type of boundary condition. Let us illuminate some consequences of such boundary conditions:

Remark A.3.5 (On Configuration-Dependent Pressure Loads). Pressure loadings are configura-

tion dependent. Such loads are also referred to as “follower loads”. The virtual work due to such

loads can in general not be derived from a potential function. This is in strong contrast to the

case of dead loads and the effect is not related to dissipation. In general, the first variation of the

functional of the virtual work Gext is non-symmetric which implies a possibly non-symmetric finite

element stiffness matrix K(ϕh). This is well-known (see, e.g.,Wriggers [137]), however, the sym-

metry depends in a non-trivial way on the boundary conditions; cf. Romano [111] and Sewell [120].

For the linearization and implementation of the pressure loadings used in our applications, we refer

to Simo, Taylor, and Wriggers [123]. For the existence of a potential for the surface tractions due

to constant pressure loading and for conditions implying symmetry, see Romano [111]. Further,

note the extensive work due to Bufler and Schweizerhof of which we only want to mention Bufler

[26] and Rumpel and Schweizerhof [112] here. In practice the contribution to the stiffness matrix

due to the pressure loading is often “nearly” symmetric. Consequently, we consider a symmetric

approximation KS(ϕh) ≈ K(ϕh). This implies that we consider a possibly inconsistent tangent

for the sake of memory conservation. The latter is advantageous for parallel scalability.

Given the previously introduced setup, the problem is to compute an admissible configuration in

equilibrium.

Equilibrium of Forces

A hyperelastic body (Ω, Celas
Ω ,Ψ) is in equilibrium in a given admissible configuration

ϕ ∈ A ⊆ Celas
Ω , if and only if

∀χ ∈ TϕA : Gint|ϕ(χ) − Gext|ϕ(χ) = 0 . (A.3.11)

We shall refer to contributions to the exterior work functional which derive from a potential as

conservative loads and denote the corresponding exterior load potential by

Πext
(cons) : A ⊆ Celas

Ω → R+
0 .

Further, we introduce a functional which measures the difference of the internal and external

potentials

Π(ϕ) := Πint(ϕ) − Πext
(cons)(ϕ) .

In our given setting, it is only the contribution due to the volume forces in Gext which is guaranteed

to derive from a potential. So-called dead loads, i.e., surface traction loads which do not follow

the configuration can also be described by a contribution to the potential Πext
(cons).

There are a few fundamental invariance conditions for local strain energy densities and we start

the presentation with a definition.

Definition A.3.6 (Objectivity and Isotropy). Let Ψ : GL+(3,R) → R+
0 denote a local strain

energy density, then Ψ is called

i.) Objective: ∀Q ∈ SO(3) : Ψ(QF ) = Ψ(F ) ,

ii.) Isotropic: ∀Q ∈ SO(3) : Ψ(FQ) = Ψ(F ) ,
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if and only if Ψ(F ) satisfies the respective condition on the right hand side.

The previously introduced notion of objectivity is also referred to as frame indifference. It is

a necessary requirement for any free energy density Ψ. A strain energy density Ψ which is frame

indifferent and isotropic satisfies the relation

∀Q1, Q2 ∈ SO(3) : Ψ(Q1FQ2) = Ψ(F )

which is called orthogonal invariance.

Orthogonally invariant strain energies can always be cast into a particular form depending only on

the classical principal invariants.

Lemma A.3.7 (Representation of Isotropic Strain Energies). An isotropic strain energy density

can always be considered as a function of C or, equivalently, as a function of the principal invariants

of C, i.e., there exist representations

Ψ(F ) = Ψ̂(C) =
̂̂
Ψ(I1(C), I2(C), I3(C)) .

Proof. Standard.

Let us introduce some well-known examples for isotropic strain energies.

Example A.3.8 (Some Classical Strain Energies). The classical Biot, St. Venant-Kirchoff and

Hencky strain energy measures are given by

ΨBiot(F ) = µ ‖U(F )− 1‖2 +
λ

2
tr [U(F )− 1]

2
,

ΨSTVK(F ) =
µ

4
‖C(F )− 1‖2 +

λ

8
tr [C(F )− 1]

2
, (A.3.12)

ΨHencky(F ) = µ ‖log(U(F ))‖2 +
λ

2
tr [log(U(F ))]

2
.

The parameters λ and µ are called the first and second Lamé-parameters, respectively, and their

associated SI-unit is the pascal [Pa] := [ N
m2 ] which is force per square meter and hence a pressure.

The second parameter µ is commonly referred to as the shear modulus.

Let us assume that we may apply Taylor’s theorem to the internal strain energy in the reference

configuration. Considering the displacement u as a small perturbation of ϕ = idΩ +u, we formally

write

Πint(idΩ + u) = Πint(idΩ) + dΠint
ϕ (ϕ)|idΩ

(u) +
1

2
d2
ϕΠint(ϕ)|idΩ

(u, u) + . . . (A.3.13)

=

∫
Ω

Ψ(1)︸ ︷︷ ︸
= 0

+ dFΨ(F )|1(∇u)︸ ︷︷ ︸〈
S1(1),∇u

〉
= 0

+
1

2
d2
FΨ(F )|1(∇u,∇u) + . . . dV . (A.3.14)

Definition A.3.9 (Linearization Equivalence and Linear Elasticity). We call a local strain energy

density Ψ(F ) linearization equivalent to linear elasticity if the truncated Taylor expansion of

Πint(idΩ + u) up to the quadratic terms in u leads to a potential for the strain energy in linear

elasticity.

Linearization equivalence of a finite hyperelastic formulation with classical linear elasticity is gen-

erally considered a basic requirement for any strain energy density Ψ(F ). To give an example,
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we shall now verify the consistency of the St. Venant-Kirchhoff energy with linear elasticity in the

isotropic case. To this end, we note that

C(1 +∇u)− 1 = (1 +∇u)T (1 +∇u)− 1 (A.3.15)

= 1 +∇u+ (∇u)T + (∇u)T∇u− 1 (A.3.16)

= 2 sym [∇u] + (∇u)T∇u . (A.3.17)

Example A.3.10 (Linearization Equivalence of the St. Venant-Kirchhoff with Linear Elastic-

ity). Expanding the strain energy ΨSTVK with respect to the perturbation u in idΩ, we obtain the

linearization of the St. Venant-Kirchhoff strain energy density as follows:

ΨSTVK(1 +∇u) =
µ

4
‖C(1 +∇u)− 1‖2 +

λ

8
tr [C(1 +∇u)− 1]

2
(A.3.18)

=
µ

4

∥∥2 sym [∇u] + (∇u)T (∇u)
∥∥2

+
λ

8
tr
[
2 sym [∇u] + (∇u)T (∇u)

]2
(A.3.19)

= µ ‖sym [∇u]‖2 +
λ

2
tr [∇u]

2
+ . . . . (A.3.20)

Dropping the suppressed higher order terms, we obtain the well-known potential for linear elasticity.

This shows the claim.

The notion of a strain energy density immediately leads to the concept of an associated stress

in the material which is induced from a given deformation and encoded in a stress tensor field

with associated SI-unit [Pa].2 In hyperelasticity the stress tensor fields are obtained as suitable

derivatives of the strain energy density. This corresponds to the principle that conservative forces

arise as derivatives of potentials. To write the stress tensors in matrix form, we introduce the

representation of derivatives of stored energy densities in the matrix inner product

∀X ∈ M(3,R) : dFΨ|F0
(X) =

〈
DFΨ|F0

, X
〉
.

We can now introduce the classical stress tensors in the context of hyperelasticity.3

Definition A.3.11 (Piola and Cauchy Stress Tensors). Let ϕ ∈ Celas
Ω be a deformation with

associated deformation gradient field F := ∇ϕ. The first and second Piola-Kirchhoff stress

tensors S1, S2 and the Cauchy stress tensor σ are given by

S1(F ) := DFΨ(F ), S2(C) := 2 DC Ψ̂(C) = F−1S1(F ) , and (A.3.21)

σ(F ) :=
1

det [F ]
S1(F )FT =

1

det [F ]
FS2(C(F ))FT . (A.3.22)

The relation between the first and second Piola-Kirchhoff stress tensors is also called the Doyle-

Erickson formula.

Lemma A.3.12. The Doyle-Ericksen formula is consistent with the usual transformation rule

S1 = FS2 .

2Due to the choice of material parameters given in [kPa], we however consider the induced unit [kPa] in the
present work.

3In Kanso, Arroyo, Tong, Yavari, Marsden, and Desbrun [66] the Cauchy stress is more geometrically char-
acterized as a covector-valued two-form. Such an object maps an infinitesimal surface element in the deformed
configuration to the traction force it is subjected to.

157157



APPENDIX A. HYPERELASTICITY FOR SOFT . . .APPENDIX A. HYPERELASTICITY FOR SOFT . . . QUASI-STATIC ISOTROPIC HYPERELASTICITYQUASI-STATIC ISOTROPIC HYPERELASTICITY

Proof. Applying the chain rule, we immediately obtain that〈
S1(F0), X

〉
= dFΨ(F )|F0

(X)

= dF Ψ̂(C(F ))|F0
(X)

= dC Ψ̂ |C0 ◦ dFC|F0(X)

=
〈1

2
S2(C0), dFC|F0

(X)
〉

=
〈1

2
S2(C0), 2 sym

[
FT0 X

] 〉
=
〈
S2(C0), sym

[
FT0 X

] 〉
+
〈
S2(C0), skew

[
FT0 X

] 〉︸ ︷︷ ︸
= 0=

〈
S2(C0), FT0 X

〉
=
〈
F0S2(C0), X

〉
.

The equality holds for all pairs (F0, X) which establishes the general relation S1(F ) = F S2(C(F ))

in the context of hyperelasticity.4

In the following we shall always assume that the body is stress-free in the reference configuration

idΩ. This holds also for the simulations presented in Chapter 3 where the pre-stresses, also called

eigenstresses or residual stresses, in the arterial walls have not been modeled. In the case of no

eigenstresses, we have that

σ(1) = S1(1) = S2(1) = 0 .

We note that the condition Ψ(1) = 0 implies that dFΨ(F )|1 = S1(F ) = 0 since Ψ(F ) ≥ 0. Thus,

if a strain energy density satisfies the previous condition, the reference configuration is necessarily

stress-free.

Lemma A.3.13 (Objectivity and Symmetry of Cauchy Stresses). Suppose that

Ψ : GL+(3,R)→ R+
0 is a differentiable, frame indifferent free energy, i.e.,

∀Q ∈ SO(3) : Ψ(QF ) = Ψ(F ) .

Then, the Cauchy stress tensor σ is necessarily symmetric.

The proof illustrates the interaction of the group invariance with the differentiability of Ψ.

Proof. Let Q : (−ε, ε)→ SO(3) be a smooth curve in the matrix Lie-group SO(3), with Q(0) = 1.

Then Q̇(0) = A ∈ so(3)∼= Skew(3,R) and, due to the objectivity of Ψ, we obtain

0 =
dΨ(Q(t)F )

dt

∣∣∣∣
t=0

= dFΨ|Q(t)F |t=0
◦ dQ(t)F

dt

∣∣∣∣
t=0

= dFΨ|F (Q̇(0)F )

= dFΨ|F (1AF ) =
〈
S1(F ), AF

〉
=
〈
S1(F )FT , A

〉
=
〈
det [F ]σ(F ), A

〉
.

Since A is skew-symmetric and det [F ] > 0, it follows that
〈

skew [σ(F )] , A
〉

= 0. Now, choosing

A = skew [σ(F )] =⇒ ‖skew [σ(F )]‖2 = 0 =⇒ σ(F ) ∈ Sym(3,R)

and hence the claim.

4Here, we have inserted the derivative

dFC|F0 (X) =
d

dt

∣∣∣∣
t=0

C(F0 + tX) = 2 sym
[
FT
0 X

]
.
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Thus, in hyperelastic frame-indifferent elasticity theories with simple materials the Cauchy stress

tensor σ, formally defined as in (A.3.22) is always symmetric.5 We note also that S1 is not

symmetric in general and that the symmetry of S2 immediately follows from the symmetry of the

Cauchy stress tensor.

A.4 Anisotropy and Mixed Invariants

We recall that a strain energy density Ψ is called isotropic, if and only if it is invariant with respect

to the right action of SO(3) on GL+(3,R), i.e., it satisfies

∀Q ∈ SO(3) : Ψ(FQ) = Ψ(F ) .

This can be interpreted as a perfect spherical symmetry reflecting that the material produces

the same energetic response in every direction. If this is not the case, the material is said to

be anisotropic. Typical anisotropic materials are crystals which show a material behavior which

is strongly influenced by the symmetry group of the underlying crystal lattice. Another typical

example is transversal isotropy which is characterized by a symmetry axis called the preferred

direction. Fiber reinforced materials are a standard example. In the context of soft biological

tissues the preferred direction is naturally given by muscle fibers.

A symmetry is characterized by an invariance with respect to a group action. For the action of

a group G on an object X, we write symbolically G y X. Further, we denote the corresponding

group orbit of X by

OrbG(X) := {Qy X : Q ∈ G} .

Definition A.4.1 (Anisotropic Strain Energy Density). Let Ψ(F ) be a strain energy density. If

∃Q̂ ∈ SO(3) : Ψ(FQ̂) 6= Ψ(F ) , (A.4.23)

then Ψ(F ) is called an anisotropic strain energy density.

Definition A.4.2 (Material Symmetry Group). Let Ψ be an anisotropic free energy. The maximal

subgroup G < SO(3) satisfying

∀Q ∈ G : Ψ(FQ) = Ψ(F ) (A.4.24)

is called the material symmetry group G of Ψ(F ).

In order to construct invariants for anistropic energy densities the following concept is helpful.

Definition A.4.3 (Structural Tensor). Let G be a material symmetry group. A tensor T is called

a structural tensor for a group action G y T , if it is invariant under the group action

∀Q ∈ G : Qy T = T .

Structural tensors allow to express anisotropic stored energy densities as isotropic ones. Extending

the argument list of the strain energy by a structural tensor, one finds that

Ψ̂(QCQT , QMQT ) = Ψ(FQT , QMQT ) = Ψ(F,M) (A.4.25)

must hold. This is also called the principle of isotropy of space, cf. Ebbing [42]. Note that, in

general, due to the anisotropy

Ψ̂(QCQT ,M) = Ψ(FQT ,M) 6= Ψ(F,M) . (A.4.26)

5Note that in extended continuum theories, e.g., in Cosserat theory, the Cauchy stress tensor need not be
symmetric, even if the theory models an isotropic material Neff, Fischle, and Münch [102] and Fischle, Neff, and
Münch [51].
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Example A.4.4 (Material Symmetry Group for Transversal Isotropy). Let a ∈ TxΩ ∼= R3 denote

a preferred direction. The material symmetry group for transversal isotropy is given by the stabilizer

subgroup

Gti(a) := SO(3)a := {Q ∈ SO(3) : Qa = a} .

Example A.4.5 (A Structural Tensor for Tranversal Isotropy of 2nd-order). Let a ∈ R3 with

‖a‖ = 1 and introduce a matrix (mixed second order-tensor) through the dyadic product

M(a) := a⊗ a := aaT . (A.4.27)

This is a structural tensor relative to the special orthogonal group SO(3), as we shall see now. Let us

shortly investigate how the structural tensor is related to this group. Consider thus the left-action of

the material symmetry group Gti(a) = SO(3)a on R3 through L : G × R3 → R3, LQ(a) = Qa. This

directly induces a group action on M(a), namely

QyM(a) := M(LQ(a)) .

Now, since Qa = a, we find

∀Q ∈ Gti(a) : M(LQ(a)) = M(Qa) = M(a) . (A.4.28)

On the other hand

M(LQ(a)) = (Qa)(Qa)T = Q(aaT )QT = QM(a)QT . (A.4.29)

This implies the relation

∀Q ∈ Gti(a) : QM(a)QT = M(a)

which shows that the 2nd-order structural tensor M(a) is related to the material symmetry group

Gti(a) as follows

SO(3)M(a) = Gti(a) = SO(3)a .

Clearly, the stabilizer on the left hand side is to be understood to be defined relative to the

conjugate group action.

As in the isotropic case, there is a developed invariant theory for anisotropic material densities

formulated in terms of structural tensors; see, e.g., Boehler [19]. Let us consider a preferred

direction a ∈ R3 which satisfies ||a|| = 1. Then, the matrix powers of the structural tensor are

idempotent, i.e.,

M(a)k = M(a), ∀k ≥ 2

Definition A.4.6 (The System of Basic Invariants for Isotropy). The basic invariants

for isotropy are given by

J1 := tr
[
C1
]
, J2 := tr

[
C2
]
, J3 := tr

[
C3
]
. (A.4.30)

There is a one-to-one correspondence between the basic invariants Jk, 1 ≤ k ≤ 3 and the principal

invariants Ik, 1 ≤ k ≤ 3 given by

J1 = I1, J2 = I2
1 − 2I2, J3 = I3

1 − 3I1I2 + 3I3 , (A.4.31)

I1 = J1, 2 I2 = J2
1 − J2, 6 I3 = J3

1 − 3J1J2 + 2J3 . (A.4.32)
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The invariance of the basic invariants with respect to conjugation by SO(3) is easy to see. The

conjugation is induced from the right action RQ(F ) = FQ of Q ∈ SO(3) on F by

C(RQ(F )) = (RQ(F ))T (RQ(F )) = (FQ)TFQ = QTFTFQ = QTCQ .

Definition A.4.7 (Mixed Invariants for Transversal Anisotropy). Let a ∈ R3 denote a

preferred direction, Gti(a) the corresponding transversely isotropic material symmetry group,

and M(a) an associated structural tensor for transversal anistropy. Then the associated

mixed (basic) invariants for transversal isotropy are given by

J4 := tr [CM ] and J5 := tr
[
C2M

]
. (A.4.33)

There is an intuitive geometric interpretation of the mixed invariant J4. Due to

tr [CM ] =
〈
Ca, a

〉
= ‖Fa‖2 = ‖RUa‖2 = ‖Ua‖2 ,

it measures the quadratic length change of the preferred direction a induced by the deformation

ϕ. In principle higher mixed invariants can be constructed. However, they are not independent if

the preferred direction a ∈ R3 satisfies ‖a‖ = 1. This can be seen as follows

J6 := tr
[
CM2

]
= tr

[
M2C

]
= tr [MC] = tr [CM ] = J4 , and

J7 := tr
[
C2M2

]
= tr

[
M2C2

]
= tr

[
MC2

]
= tr

[
C2M

]
= J5 .

The extension to the case of two superimposed preferred directions a1, a2 ∈ R3 is as follows. Using

two associated structural tensors suitable for transversal isotropy given by

M (k) := M(ak) = ak ⊗ ak := aka
T
k , k = 1, 2 ,

we obtain associated mixed basic invariants

J
(k)
4 = tr

[
CM (k)

]
, and J

(k)
5 = tr

[
C2M (k)

]
, k = 1, 2 .

These correspond to the associated transversely isotropic material symmetry groups Gti(ak), for

k = 1, 2. The generalization to an arbitrary number of preferred directions is straight-forward.

Lemma A.4.8 (Invariants for Two Superimposed Preferred Directions). Let ‖ak‖ = 1, k = 1, 2 be

two distinct preferred directions. The following set of independent invariants

Ianiso = {I1, I2, I3, J (k)
4 , J

(k)
5 } , k = 1, 2 . (A.4.34)

is complete.

We shall not give a rigorous definition of a complete system of polynomial invariants here. It shall

suffice to say, that there are no other invariants which have to be considered. As a starting point

on invariant theory with a focus on applications in the context of polyconvex anisotropic energy

densities, we point the interested reader to the dissertation by Ebbing [42].

We follow the exposition in Balzani [10] and consider strain energy densities with two superimposed

preferred directions of the following form

Ψ̂(C,M (1),M (2)) := Ψ̂
igs

(I1, I2, I3) +

2∑
k=1

Ψ̂
(k)

ti (I1, I2, I3, J
(k)
4 , J

(k)
5 ) .
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In our applications on biomechanics, the first part models an isotropic ground substance Ψ̂
igs

and

the terms Ψ̂
(k)

ti in the sum model the energetic response for each of the muscle fiber directions in

an arterial wall layer. The two preferred directions are weakly coupled in the local strain energy

density. For the simulations in the present work we shall only consider energy densities which are

of this type. I.e., energies where each contribution is separately polyconvex, cf. Brands, Klawonn,

Rheinbach, and Schröder [23] and the thesis by Balzani [10].

The material symmetry group for such a model with multiple preferred directions a1, a2 ∈ R3 is

in fact trivial. To see this, we consider the material symmetry groups G(1)
ti and G(2)

ti . Clearly, if

a1 and a2 are linearly independent G(1)
ti does not leave M (2) fixed and vice versa. Thus, the total

strain energy Ψ̂(C,M (1),M (2)) will, in general, only admit a trivial material symmetry group

G = SO(3) ∩ G(1)
ti ∩ G

(2)
ti = {1} .

Let us now turn our focus towards generalized convexity conditions in the calculus of variations.

A.5 Generalized Convexity Conditions

The development of the existence theory in finite elasticity due to Sir John Ball hinges crucially on

a notion called polyconvexity; see Ball [8]). Polyconvexity is one of multiple generalized convexity

conditions. The availability of an existence theory is clearly the main motivation for the use of

polyconvex energy functions. For an introduction to generalized convexity conditions in the calculus

of variations, see Dacorogna [31] and Schröder and Neff [115]. We shall only briefly illuminate the

notion of polyconvexity here.

Definition A.5.1 (Polyconvex Strain Energy Density). A strain energy density function

Ψ(F ) is called polyconvex if there exists a convex function P : M(3,R)×M(3,R)×R→ R
such that

∀F ∈ M(3,R) : Ψ(F ) = P (F, cof [F ],det [F ]) .

A closely related notion are the Legendre-Hadamard conditions. We introduce the following stan-

dard notation for rank-one matrices ξ ⊗ η := ξηT , where ξ, η ∈ R3.

Definition A.5.2 (Legendre-Hadamard Conditions). A bilinear form a : M(3,R) ×M(3,R) → R
is said to satisfy

1. the Legendre-Hadamard condition, if

∀ξ, η ∈ R3 : a(ξ ⊗ η, ξ ⊗ η) ≥ 0 ,

2. the strict Legendre-Hadamard condition, if

∀ξ, η ∈ R3 \ {0} : a(ξ ⊗ η, ξ ⊗ η) > 0 ,

3. the uniform Legendre-Hadamard condition, if

∃c+ > 0, ∀ξ, η ∈ R3 : a(ξ ⊗ η, ξ ⊗ η) ≥ c+||ξ||2||η||2 .

In the context of the calculus of variations, the following relation between generalized notions of

convexity is well-known; cf. Schröder and Neff [115]:

Convexity =⇒ Polyconvexity =⇒ Quasi-convexity =⇒ Rank-one convexity. (A.5.35)
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The reverse implications are in general not satisfied. Note also that convexity of a strain energy

density Ψ(F ) in F implies non-physical growth conditions. It is thus a too strict requirement. This

is not the case for polyconvex energy densities on which we focus our attention. The notion of

polyconvexity was adapted to the anisotropic case in [114] by construction of polyconvex anisotropic

invariants.

A.6 Polyconvex Anisotropic Strain Energy Densities

There are composition rules for polyconvex terms which preserve polyconvexity; polyconvex terms

may be additively super-imposed for example. Using available composition rules, it is possible to

construct classes of polyconvex strain energy densities with specific properties, based on a complete

system of polyconvex anisotropic invariants. The previously introduced system of invariants

Ianiso = {I1, I2, I3, J (k)
4 , J

(k)
5 }

is not satisfactory in this regard. It contains an invariant J
(k)
5 which is not polyconvex; see Merodio

and Neff [98]. For the remedy, one may consider a modified structural tensor

D(a) := 1 +M(a)

relative to the material symmetry group Gti(a). This modification was used in Schröder and Neff

[114] to construct a dependent but polyconvex invariant for a given preferred direction a ∈ R3

which is given by

K3(C,M(a)) := tr [cof [C]D(a)] = tr [cof [C](1−M(a))] = I1J4 − J5 . (A.6.36)

Also in Schröder and Neff [114], the relation

K3(C(F ),M(a)) = ‖cof [F ]‖2 − ‖cof [F ]a‖2

is derived. This allows to give K3 an interpretation as a measure for the change of area in the

plane perpendicular to the preferred direction a. This interpretation is motivated by Nanson’s

formula for the change of the surface area element. It it easy to see that the invariants J5 and K3

are polynomially interdependent

K3 = I1J4 − J5 =⇒ J5 = K3 − I1J4 .

Thus, we may replace J5 by K3 to obtain a complete polyconvex system of invariants for transversal

isotropy with two preferred directions.

Lemma A.6.1 (System of Polyconvex Anisotropic Invariants for Transversal Isotropy).

The set of anisotropic invariants given by

Ipc
aniso = {I1, I2, I3, J (k)

4 , K
(k)
3 }, k = 1, 2 ,

is a complete system of polyconvex anisotropic invariants.

Proof. For a more in-depth exposition, see the dissertations by Balzani [10] and Ebbing [42] and

the extensive references therein.
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A.7 Incompressible Materials

Certain materials, e.g., water or biological tissue containing a high percentage of water are barely

compressible. It is a common approach to model such materials as perfectly incompressible mate-

rials. This amounts to imposing a highly nonlinear and non-convex6 volume constraint. We recall

that a deformation mapping ϕ : Ω → Ωdef is volume preserving if and only if its deformation

gradient field satisfies

det [F ] = det [∇ϕ] = 1 .

We consider constraint functions

Cvol : R+
0 → R+

0 , satisfying Cvol(det [F ]) = 0 ⇐⇒ det [F ] = 1 .

There are multiple standard approaches to incorporate constraints in a variational setting. We

want to mention:

1. Penalty methods [inexact/asymptotically exact]

2. Lagrange multiplier methods [exact][dual]

3. Augmented Lagrange multiplier methods [exact][dual + penalty]

4. Structure preserving methods [exact][primal].

Let us give an example for a volume penalty function. Note that this function is also used for the

arterial wall models on which our computations in Chapter 3 have been based.

Example A.7.1 (A Volume Constraint and Penalty Function). For the penalization of volume

change we introduce the family of functions

P vol
ε : R+ → R+

0 , P vol
ε (x) :=

(
xε +

1

xε
− 2

)
. (A.7.37)

For ε ≥ 1 the constraint function P vol
ε is convex and x = 1 is the unique global minimizier realizing

zero energy. Thus,

P vol
ε (det [F ]) = 0 ⇐⇒ det [F ] = 1 .

The parameter ε allows to tune the steepness of the energy valley.

In what follows we consider constraint functions Cvol : R+
0 → R with the property

Cvol(det [F ]) = 0 ⇐⇒ det [F ] = 1 .

We shall be satisfied to introduce these methods for the setting without configuration-dependent

loads, i.e., we assume that the Euler-Lagrange equations derive from a potential.

The Penalty method: To inexactly enforce the incompressibility constraint the internal strain

potential can be augmented, e.g., by a linearly weighted volume penalty term. This gives then

Πν(ϕ) =

∫
Ω

Ψ(F ) + ν P vol
ε (det [F ]) dV −Πext

(cons)(ϕ). (A.7.38)

6Non-convex in the entries Fij of the deformation gradient F .
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In this approach Cvol ≥ 0 is in general chosen such that it attains a global minimum for det [F ] = 1.

The penalty weight ν ≥ 0 is a parameter for a corresponding family of minimization problems

Πν(ϕmin(ν)) = inf
ϕ∈A

Πν(ϕ) . (A.7.39)

Assuming that the minimizers can be computed as a function of ν, one expects that in the limit

lim
ν→∞

P vol
ε (det [Fmin(ν)]) → 0 ⇐⇒ lim

ν→∞
det [Fmin(ν)] → 1 . (A.7.40)

Thus, the incompressiblity constraint is at best asymptotically satisfied. In most practical appli-

cations, one resorts to some large fixed value for the penalty parameter ν, i.e., one does not study

the limit process. Although, especially in numerical computations, one is in general satisfied once

the discretized penalty is satisfied up to a prescribed numerical tolerance, this can turn out to be

impossible. In general the problem is increasingly ill-conditioned for increasing penalty weights.

The penalty approach is nonetheless a popular approach in practice due to the simplicity of the im-

plementation. Moreover, this approach is well suited for quasi-incompressible materials for which

the volume constraint need not be exactly satisfied. In the latter case it is reasonable and possible

to fit the penalty parameters from experimental data, see e.g. Brands, Klawonn, Rheinbach, and

Schröder [23] and Brinkhues, Klawonn, Rheinbach, and Schröder [25]. In the present thesis, we

shall focus on quasi-incompressible material behavior realized via a penalty approach. The penalty

parameters have been fitted to experimental data in Brands, Klawonn, Rheinbach, and Schröder

[23] by a least squares approach.

The Lagrange multiplier method: As in the finite dimensional setting, the introduction of

a Lagrange multiplier λ allows to reformulate the constrained as an unconstrained optimization

problem. It is then possible to satisfy the incompressibility constraint exactly using a Lagrange

density λ for the volume constraint. Here, λ is considered as a dual quantity in the strain energy

potential. This leads to a two-field formulation

Πint : Aϕ ×Aλ → R, Πint(ϕ, λ) =

∫
Ω

Ψ(F )− λ Cvol(det [F ]) dV. (A.7.41)

This unconstrained variational problem in (ϕ, λ) leads to two Euler-Lagrange equations. Both

have to be satisfied by configurations in equilibrium which leads to a saddle point problem

Π(ϕcrit, λcrit) = inf
ϕ∈Aϕ

sup
λ∈Aλ

{
Πint(ϕ, λ) − Πext

(cons)(ϕ)
}

(A.7.42)

The Augmented Lagrange multiplier method: The so-called augmented Lagrange-method

is a combination of the penalty-method with the Lagrange-multiplier method, which is obtained

by adding an additional penalty term to the Lagrange functional

Πint
ν : Aϕ ×Aλ → R : Πint

ν (ϕ, λ) =

∫
Ω

Ψ(F )− λ Cvol(det [F ]) + ν P vol
ε (det [F ]) dV. (A.7.43)

As in the penalty approach there is a whole family of variational problems and we determine critical

points of the saddle point problem

Πν(ϕcrit(ν), λcrit(ν)) = inf
ϕ∈Aϕ

sup
λ∈Aλ

{
Πint
ν (ϕ, λ) − Πext

(cons)(ϕ)
}
. (A.7.44)

Again, the augmented penalty term vanishes asymptotically once the dual constraint is met. How-

ever, it does still contribute and can be used to update the Lagrange multiplier λ. The augmented
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approach was shown to be very effective for the soft biological tissue material models for arteria

walls which we consider in the present text; see Brinkhues, Klawonn, Rheinbach, and Schröder [25]

and also the dissertation by Brinkhues [24]. More precisely, the augmented approach was compared

with the penalty and the standard Lagrange-multiplier approaches and it has been found to be

a superior approach. This is not implemented in the presented solver mparfeap. The penalty

parameters have been fitted to experimental data in Brinkhues, Klawonn, Rheinbach, and Schröder

[25].

Structure Preserving Methods: In a purely primal approach the volume constraint is exactly

satisfied by an appropriate parametrization of the constraint manifold. In our context, this amounts

to consider the configuration space for a perfectly incompressible elastic body given by

Cvol
Ω := {ϕ ∈ Celas

Ω : det [F ] = 1} .

It is possible to model this exactly on the discrete level using particular structure preserving dis-

cretization methods. See, e.g., the recent approach to incompressible linear elasticity by Angoshtari

and Yavari [4] and references therein.

A.8 First and Second Variation of the Internal Strain Energy

In this section, we derive the symmetry of the bilinear form associated to the second variation of

the total interior strain energy. This was exploited in mparfeap to conserve memory and it may

be of some interest, although this is standard. We have also found that it is helpful to be aware of

this symmetry in order to avoid implementation mistakes.

A second goal is to display the differences in the implementation arising from basing the formulation

of the second variation on the first or second Piola-Kirchhoff stress tensor, respectively. There is in

fact no difference from the point of physics that are modeled, but one obtains different expressions.

We shall restrict ourselves to a formal derivation of the first and second variation of the total

interior strain energy, but do this in a more detailed way than it is usually done in the literature.

In turn, let us suppose that all Fréchet- and Gâteaux-derivatives which appear in the following

do exist and are continuous. For simplicity of exposition, all issues regarding regularity of the

mappings involved shall simply be neglected. Further, we write the equilibrium equations with

respect to the reference configuration Ω and consider variations only on linear spaces of functions.7

We recall that in the hyperelastic framework, the internal strain energy is given by an integral

Πint(ϕ) :=

∫
Ω

Ψ(F ) dV :=

∫
Ω

Ψ(∇ϕ) dV .

Due to objectivity, there is a Ψ̂(C) satisfying

∀F ∈ GL+(3,R) : Ψ(F ) = Ψ̂(C(F )) = Ψ̂(FTF ).

7In particular, it is then sufficient to consider directional derivatives of the potential along linear smooth curves
γϕ0 in the space of admissible configurations, i.e.,

γϕ0 : (−ε, ε)→ A, γϕ0 (t) := ϕ0 + t δϕ , δϕ ∈ Tϕ0A. (A.8.45)
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The matrix representations of the first and second Piola-Kirchhoff stress tensors S1(F ) and S2(C)

are determined as follows:

∀X ∈ M(3,R) :
〈
S1(F0), X

〉
= dFΨ|F0(X) =

3∑
i,j=1

∂Ψ(F )

∂Fij

∣∣∣∣
F0

Xij , (A.8.46)

∀X ∈ M(3,R) :
〈
S2(C0), X

〉
= 2 dC Ψ̂ |C0

(X) = 2

3∑
i,j=1

∂ Ψ̂(C)

∂Cij

∣∣∣∣∣
C0

Xij . (A.8.47)

The second relation is called the Doyle-Erickson formula with respect to the reference configuration.

Next, we compute the first and second variations of the strain energy functional. Due to the Doyle-

Erickson formula, there are two natural equivalent formulations in terms of the first and second

Piola-Kirchhoff stresses. These are associated to variations of the internal strain energy based on

the two equivalent representations of the local strain energy density

Πint(ϕ) :=

∫
Ω

Ψ(F ) dV =

∫
Ω

Ψ̂(C(F )) dV .

Both model the same physics, but they lead to different expressions.

Lemma A.8.1 (First Variation of the Internal Strain Energy). The first variation of the

internal strain energy Πint(ϕ) formulated in terms of Ψ(F ) is given by

dϕΠint|ϕ0
(χ) =

∫
Ω

dFΨ(F )|F0
(∇χ) =

∫
Ω

〈
S1(F0), ∇χ

〉
dV .

The equivalent formulation in terms of Ψ̂(C(F )) is given by

dϕΠint|ϕ0
(χ) =

∫
Ω

dC Ψ̂(C)|C0
◦ dFC(F )|F0

(∇χ)

[
=

∫
Ω

〈
FS2(C0))︸ ︷︷ ︸

=S1(F0)

, ∇χ
〉

dV

]
.

Proof. We compute the first variation for the representation associated to Ψ(F ) to obtain

dϕΠint|ϕ0(χ) :=
d

dt

∣∣∣∣
t=0

Πint(ϕ0 + tχ) (A.8.48)

=

∫
Ω

d

dt

∣∣∣∣
t=0

Ψ(∇(ϕ0 + tχ)) dV (A.8.49)

=

∫
Ω

dFΨ(F )|∇(ϕ0+tχ)|t=0

(
d

dt

∣∣∣∣
t=0

∇ (ϕ0 + tχ)

)
dV (A.8.50)

=

∫
Ω

dFΨ(F )|∇(ϕ0)

(
∇ d

dt

∣∣∣∣
t=0

ϕ0 + tχ

)
dV (A.8.51)

=

∫
Ω

dFΨ(F )|F0
(∇χ) dV (A.8.52)

=

∫
Ω

〈
S1(F0), ∇χ

〉
dV . (A.8.53)

This shows the first part of the claim. Note that the calculation for the second part can be carried

out in complete analogy, with the application of the chain rule carried out as in the proof of Lemma

A.3.12.
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Lemma A.8.2 (Second Variation of the Internal Strain Energy). The second variation of

the internal strain energy Πint(ϕ) formulated in terms of Ψ(F ) is given by

d2
ϕΠint|ϕ0

(χ, η) =

∫
Ω

d2
FΨ|F0

(∇χ,∇η) dV . (A.8.54)

This bilinear form is symmetric for all ϕ0 ∈ A.

Proof. First, we show symmetry of the second derivative of the local strain energy density Ψ(F )

taken with respect to F . Starting from the second derivative of the strain energy density, we note

d2
FΨ|F0

(X,Y ) =

3∑
i,j,k,l=1

∂2Ψ(F )

∂Fij∂Fkl
XijYkl .

Changing the differentiation order and relabeling, we get

d2
FΨ|F0

(X,Y ) =

3∑
i,j,k,l=1

∂2Ψ(F )

∂Fij∂Fkl
XijYkl =

3∑
i,j,k,l=1

∂2Ψ(F )

∂Fkl∂Fij
YklXij =

3∑
i,j,k,l=1

∂2Ψ(F )

∂Fij∂Fkl
YijXkl

(A.8.55)

= d2
FΨ|F0

(Y,X) .

Hence, the second derivative of the local strain energy density is symmetric with respect to X

and Y . The bilinear form associated to the second variation of the strain energy potential is thus

symmetric, since

d2
ϕΠint|ϕ0(χ, η) =

∫
Ω

d2
FΨ|∇ϕ0

(∇χ,∇η) dV =

∫
Ω

d2
FΨ|∇ϕ0

(∇η,∇χ) dV = d2
ϕΠint|ϕ0(η, χ)

(A.8.56)

for all admissible ϕ0 ∈ A.

Note that this immediately implies that the associated finite element stiffness matrix K int(ϕ) will

also be symmetric when using a standard Galerkin-ansatz. It may be confusing on first sight

that the second variation of the strain energy can be equivalently expressed in terms of Ψ(F ) and

Ψ̂(C(F )), i.e., in terms of S1 or FS2 = S1. To render the implications clear, it is instructive to

derive the following identity.

Lemma A.8.3. We have

d2
F Ψ̂(C(F ))|F0(X,Y ) =

〈
S2(C0), sym

[
XTY

] 〉
+ 4 d2

C Ψ̂(C)|C0(sym
[
FT0 X

]
, sym

[
FT0 Y

]
) ,

with F0 := ∇ϕ0 and C0 := C(F0) = ∇ϕT0 ∇ϕ0. Both terms on the right hand side are symmetric

with respect to X and Y .
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Proof. Applying the chain rule multiple times, we obtain

d

dt

∣∣∣∣
t=0

〈
(F0 + tY )S2(C(F0 + tY )), X

〉
=
〈 d

dt

∣∣∣∣
t=0

(F0 + tY )S2(C(F0 + tY )), X
〉

+
〈

(F0 + tY )S2(C(F0 + tY ))|t=0 ,
d

dt

∣∣∣∣
t=0

X
〉

=
〈 [ d

dt

∣∣∣∣
t=0

(F0 + tY )

]
S2(C(F0 + tY ))|t=0 + (F0 + tY )|t=0

[
d

dt

∣∣∣∣
t=0

S2(C(F0 + tY ))

]
, X
〉

=
〈
Y S2(C0) + F0

d

dt

∣∣∣∣
t=0

S2(C(F0 + tY )), X
〉

=
〈
Y S2(C0)), X

〉
+
〈 d

dt

∣∣∣∣
t=0

S2(C(F0 + tY )), FT0 X
〉

=
〈
S2(C0), Y TX

〉
+
〈 d

dt

∣∣∣∣
t=0

S2(C(F0 + tY )), sym
[
FT0 X

] 〉
=
〈
S2(C0), sym

[
XTY

] 〉
+

d

dt

∣∣∣∣
t=0

dC Ψ̂(C)|C(F0+tY )

(
2 sym

[
FT0 X

])
=
〈
S2(C0), sym

[
XTY

] 〉
+ d2

C Ψ̂(C)
∣∣∣
C(F0)

(
2 sym

[
FT0 X

]
,

d

dt

∣∣∣∣
t=0

C(F0 + tY )

)
=
〈
S2(C0), sym

[
XTY

] 〉
+ 4 d2

C Ψ̂(C)
∣∣∣
C0

(
sym

[
FT0 X

]
, sym

[
FT0 Y

])
.

We summarize that there are two equivalent possibilities to write (and implement) the second

variation of the strain energy potential.

Equivalent Representations of the Second Variation Internal Strain Energy

d2
ϕΠint|ϕ0(χ, η) =

∫
Ω

d2
FΨ(F )|F0(∇χ,∇η) dV (A.8.57)

and

d2
ϕΠint|ϕ0(χ, η) =

∫
Ω

d2
F Ψ̂(C(F ))|F0(∇χ,∇η) dV (A.8.58)

=

∫
Ω

〈
S2(C(F0)), sym

[
∇χT∇η

] 〉︸ ︷︷ ︸
geometric part

dV (A.8.59)

+ 4

∫
Ω

d2
C Ψ̂(C)|C(F0)

(
sym

[
FT0 ∇χ

]
, sym

[
FT0 ∇η

])︸ ︷︷ ︸
material part

dV . (A.8.60)

Each of the two integrands is symmetric with respect to the variations χ, ηTϕ0
A. This observation

is independent of the specific deformation mapping ϕ0 where the linearization was carried out.

The material models implemented in the stock distribution of FEAP are implemened using the

second formulation based on Ψ̂(C), i.e., on the second Piola-Kirchhoff tensor S2(C). This can

be inferred from Taylor and the FEAP team [128], where also the naming conventions for the

material and geometric part of the second variation is used. In practice this allows to base the

implementation on the first and second derivatives of the invariants with respect to C.

169169



APPENDIX A. HYPERELASTICITY FOR SOFT . . .APPENDIX A. HYPERELASTICITY FOR SOFT . . . THE F-APPROACH TO INCOMPRESSIBILITYTHE F-APPROACH TO INCOMPRESSIBILITY

Let us shortly discuss some well-known properties of the second variation of the internal strain

energy. These are in part inherited by the finite element systems which are solved in a Newton-

Krylov solver for finite elasticity.

Remark A.8.4 (Some Properties of the Second Variation of Πint). Globally positive definite second

derivatives are a property of convex potentials. The linearization of the equilibrium equations,

i.e., the second variation of the strain energy, is not coercive in general. Global coercivity implies

unphysical behavior, because global convexity of the strain energy functional precludes the possibility

of bifurcations including buckling. This is mentioned, e.g., in the context of polyconvex strain

energy densities in the dissertation of Balzani [10]. We summarize that the finite element stiffness

matrices obtained from the second variation of the internal strain energy potential using a standard

Galerkin-ansatz for the displacement are symmetric, but possibly indefinite.

Finally, let us study the relation to linear elasticity. In the reference configuration, i.e., for ϕ0 = idΩ,

we have C0 = F0 = 1. For this special case one obtains

d2
FΨ(F )

∣∣
1

(X,Y ) =
〈
cX, Y

〉
= d2

C Ψ̂(C)
∣∣∣
1

(X,Y ) . (A.8.61)

Since the body is stress-free in the reference configuration〈
S2(1)︸ ︷︷ ︸

= 0

, sym
[
XTY

] 〉
= 0 . (A.8.62)

Here, c denotes the fourth order elasticity tensor.

A.9 The F-approach to Incompressibility

A naive displacement based approach for incompressible elasticity often leads to numerical problems

due to the so-called “volume locking”-effect. It is often observed that the volume constraint inhibits

the convergence of the numerical finite element solution.

Different methods have been proposed in the literature to improve the numerical approximation

of incompressible material formulations. For the presented computations in Chapter 3, we use

an F-method due to Simo [122, Sec. 45].8 We note that some F-methods are susceptible to the

“hourglassing”-effect. This is not the case for the approach due to Nagtegaal taken here. For

a survey and comparisons of different F-methods, we refer the interested reader to the thesis

of Freischläger [54]. For the approach taken here, we follow the expositions of Brinkhues [24]

and Brands [20]. It shall suffice here to outline the F-approach used in the simulations presented

in Brands, Klawonn, Rheinbach, and Schröder [23] and Brinkhues, Klawonn, Rheinbach, and

Schröder [25]. Note that the F-approach was used for investigations regarding the scalability of

FETI-DP in biomechanics applications by Klawonn and Rheinbach [73].

Consider a multiplicative decomposition of the deformation gradient F := ∇ϕ into a volumetric

and an isochoric part, given by

F = F vol(F ) · F isc(F ) .

In this context it is convenient to introduce J := det [F ]. We introduce the mappings

F vol : GL+(3,R)→ R+
0 ·1 , F vol(F ) := J1/3 1 , (A.9.63)

F isc : GL+(3,R)→ SL(3,R) , F isc(F ) := J−1/3 F . (A.9.64)

Note that both maps are surjective, multiplicative and idempotent functions.

8The F-methods are also referred to as B-methods.
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Definition A.9.1 (F -bar). Let F ∈ GL+(3,R) be a deformation gradient and let Θ > 0 be a

volumetric dilatation factor. Then the modified deformation gradient is defined as

F(F,Θ) := Θ1/3 F isc(F ) . (A.9.65)

The following identity is then immediate

det
[

F
]

= det

[(
Θ

J

)1/3

F

]
=

(
Θ

J

)
J = Θ . (A.9.66)

Definition A.9.2 (F-bar Three-field Hu-Washizu Potential). The three-field Hu-Washizu

functional for the F-bar method is given by

Πint(ϕ,Θ, λ) =

∫
Ω

Ψ(F(F,Θ)) + λ (J −Θ) dV (A.9.67)

For a P0-finite element ansatz in Θ and λ, this is equivalent to the F-approach due to Nagtegaal.

To see this, one departs from the first variation with respect to λ to obtain

dλΠint
∣∣
(ϕ0,Θ0,λ0)

(δλ) =

∫
Ω

δλ (J0 −Θ0) dV . (A.9.68)

Since Θ0 is constant on every element T ∈ T , we have

Θ0 =

∫
T
J0 dV∫

T
1 dV

=
Vol(ϕ0(T ))

Vol(T )
. (A.9.69)

Thus, for any solution of the Euler-Lagrange equation, Θ0 is the average volume distortion per

element in the configuration ϕ0. This is exactly the choice for the ansatz for the volume dilatation

in the approach due to Nagtegaal. In this setting, it is possible to reduce the second variation

via static condensation. In particular, there are no additional degrees of freedom as compared

to the displacement formulation. Although it is not obvious, we repeat that this still leads to a

symmetric second variation of the internal strain energy. Note that the symmetry may be lost for

some F-methods, e.g., the Souza-Neto approach, see again Freischläger [54].

Contributions to Extended Continuum Theories

Although not the subject of the current thesis, we want to shortly mention some contributions of

P. Neff and the present author to the mechanics of generalized continua which were realized prior

and in parallel to this dissertation. Some work on theories with rotational degress of freedom,

in particular Cosserat theory, was published in Fischle, Neff, and Münch [51], Neff, Fischle, and

Münch [102] and Neff, Jeong, and Fischle [103]. In his diploma thesis, the present author computed

energy minimizing Cosserat rotations using certain symmetry reductions. Another contribution is

a generalization thereof to logarithmic strain measures for unitary matrices in Neff, Nakatsukasa,

and Fischle [104].
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vergence in arterial wall simulations using a parallel FETI solution strategy. Comput. Meth.

Biomech. Biomed. Eng., Vol. 11(No. 5):pp. 569–583, October 2008. i, ii, iii, iv, 2, 3, 5, 8, 9,

10, 11, 12, 13, 16, 27, 28, 80, 88, 89, 90, 91, 93, 99, 100, 101, 107, 108, 143, 162, 165, 170

[24] Sarah Brinkhues. Modelling and simulation of arterial walls with focus on damage and resid-

ual stresses. PhD thesis, Fakultät für Ingenieurwissenschaften, Abteilung Bauwissenschaften,

Universität Duisburg-Essen, Essen, Germany, 2013. i, 3, 5, 9, 12, 13, 28, 30, 88, 89, 90, 144,

166, 170

178178

http://dx.doi.org/10.1002/pamm.200700400
http://dx.doi.org/10.1002/pamm.200700400
http://www.cs.cornell.edu/~bindel/sw/matfeap
http://dx.doi.org/10.1002/pamm.200810169
http://dx.doi.org/10.1002/pamm.200810169
http://dx.doi.org/10.1002/pamm.200910020
http://dx.doi.org/10.1002/pamm.200910020


REFERENCESREFERENCES REFERENCESREFERENCES

[25] Sarah Brinkhues, Axel Klawonn, Oliver Rheinbach, and Jörg Schröder. Augmented Lagrange
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