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Für meine Töchter.
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Introduction

A classical aim in abelian group theory is the classification of groups with the help of

numerical invariants. The first important result in this area is the famous theorem

by Ulm [U] from 1933. It states that two countable abelian p-groups are isomorphic

if and only if their numerical invariants, the so-called Ulm-Kaplansky invariants,

coincide. For uncountable p-groups the theorem is false, but Hill [H] and Walker

[Wal] proved that it still holds for the class of totally projective p-groups, which

is the greatest natural class of abelian p-groups such that every member is com-

pletely determined by its Ulm-Kaplansky invariants. Passing to torsion-free and

mixed modules it was then Warfield [War] who extended Ulm’s theorem to the class

of Warfield modules introducing new numerical invariants, the so-called Warfield

invariants.

Taking a completely different point of view, 1954 it was Szmielew [S] who first

considered abelian groups using model-theoretical techniques. She gave simple group

theoretic conditions for the case that two abelian groups satisfy the same sentences

of the lower predicate calculus, i.e. Lωω. But although the axioms for abelian

group theory can be formulated in Lωω, the compactness theorem shows that, for

example, torsion groups cannot be characterized in Lωω and a language with infinite

expressions is needed, e.g. Lωαω for α > 0.

In 1970 Barwise and Eklof [BE] took up Szmielew’s approach and proved a model-

theoretic generalization of Ulm’s theorem for torsion groups of any cardinality which

implies the original theorem as a corollary. Their proof makes use of a certain se-

quence of cardinals which is closely related to the classical Ulm-Kaplansky invariants.

As a corollary they also obtain an upward Löwenheim-Skolem theorem for torsion

groups.

The natural question of extending the Barwise-Eklof result to Warfield modules was

considered independently first by Jacoby in her unpublished Ph.D. thesis [J1] and

later, following and building on the diploma thesis of the author, by Göbel, Loth,

Strüngmann and the author [GLLS]. The result of the latter was a classification
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theorem for Z(p)-modules with nice decomposition bases which implies the classical

theorem for countable Warfield modules. Again, additional numerical invariants

were defined, deduced from the original Warfield invariants.

After learning of each other’s works, Jacoby, Loth, Strüngmann and the author

published a joined paper [JLLS] in which they pass to Lδ (= Lδ∞ω) and prove an

analogous global result for modules with partial decomposition bases.

Nearly all the proofs, both of the original classification theorems and the model-

theoretic generalizations, consider sets of height-preserving (partial) isomorphisms,

albeit the isomorphisms in the generalizations are sometimes only required to pre-

serve heights up to a certain limit. These partial isomorphisms then are extended ac-

cording to the well-known back-and-forth property. The isomorphism thus achieved

is called partial isomorphism, which, for countable or countably generated struc-

tures, is equivalent to general isomorphism [B]. Partial isomorphism as introduced

by Barwise is described as “the strongest possible absolute notion of isomorphism”,

and “one of which mathematicians should be aware”. Karp [K] provides the link-

ing result between abelian isomorphism and model-theoretic isomorphism (infinitary

equivalence), namely that two structures for a language L are partially isomorphic

if and only if they are L∞-equivalent, therefore both serve as models for the same

sentences of L∞. This result was later refined for the case that only sentences up

to a certain complexity (quantifier rank) are valid in both models. Modifications of

this refined result were also used in the works of [BE], [J1] and [GLLS].

The second part of this thesis deals with the question how closely related partially

isomorphic structures are in the uncountable case. With the help of L∞-equivalence

we will construct a class of partially isomorphic modules, solely characterized by

their generalized Ulm-Kaplansky invariants. This construction will be realized in

the universe V=L where it is classical to use the Diamond Principle and a Step-

Lemma. Constructions in this fashion have been done before to realize modules

with a prescribed endomorphism ring [DG] and the techniques used in this work

are close to those applied there. However, in this work we take special care of

the fact that at each point in the construction we have complete control over the

Ulm-Kaplansky invariants of the achieved modules. Thus we are able to construct

modules with prescribed sequences of Ulm-Kaplansky invariants. We then receive

large classes of partially isomorphic modules which contain modules which posess a

prescribed endomorphism ring, as well as modules which do not. Thus it is shown

that “the strongest absolute notion of isomorphism” is not so strong as could have

been hoped for in the uncountable case.
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This thesis then is structured as follows:

Chapter 1 contains three sections which provide the necessary tools to investigate

possible invariants of p-groups, Warfield modules and Warfield groups. The classi-

cal, abelian background is given in Section 1.1, the model-theoretic background is

provided in Section 1.2. Section 1.3 gives a short introduction in the set-theoretical

methods which will later be used to construct uncountable modules with prescribed

properties in the universe V=L, i.e. the Diamond Principle.

Chapter 2 collects the model-theoretic generalizations of the original classification

theorems for (countable) p-groups, Warfield modules and Warfield groups. Thus

Section 2.1 contains the results of [GLLS], generalizing the original theorem for

Warfield modules to Z(p)-modules with nice decomposition bases and Section 2.2

contains [JLLS] and receives a result for groups with partial decomposition bases.

Chapter 3 will provide a new tool to realize modules with a prescribed endomorphism

ring in the universe V=L. The introduced new Step-Lemma will allow the construc-

tion of modules with additional control over the Ulm invariants of the achieved

modules.

In Chapter 4 we will at last realize the desired class of partially isomorphic uncount-

able modules by giving a Realization Theorem and calculating the Ulm invariants

of the realized modules. We receive a class of partially isomorphic modules which is

(very) large and contains modules which differ in various regards and are clearly far

from being isomorphic in the classical sense. Furthermore we will give an impres-

sion which sequences of Ulm-Kaplansky invariants can be realized by the achieved

modules.

Acknowledgments. I would like to thank the whole ‘mathematical family’ sur-

rounding and including my former supervisor Rüdiger Göbel for welcoming me into

their circle. Beginning with former research group members like Christian Müller

and Simone Wallutis, including friends from all around the world like Peter Loth,

Jan Trlifaj, Katya Blagoveshchenskaya and Brendan Goldsmith, and ending with

Daniel Herden and Lutz Strüngmann, who adopted me as supervisors during and

after Rüdiger Göbel’s sad illness. This community gave me the feeling of belonging
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right from the start and never questioned my abilities. It was a pleasure working

with and learning from all of you. Especially Daniel and Lutz, without you this

work would never have been accomplished.

I am deeply grateful for my ‘real family’. You are providing logic in all aspects in

which mathematics fail.

Rüdiger Göbel’s enthusiasm and passion for mathematics will always remain a shin-

ing inspiration for me. I am truly sorry that he does not live to see the completion

of this work.
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Chapter 1

Preliminaries

1.1 Group- and module-theory

In our group- and module-theoretical setting we often refer to the ring Z(p) of

integers localized at p, for a prime p. Recall that Z(p) = {m
n
∈ Q : gcd(n, p) = 1}.

Zp denotes the cyclic group of order p.

The classical theorem by Ulm [U] characterizes countable abelian p-groups, that is

groups in which all elements have order a power of p, with the help of numerical

invariants, the so-called Ulm-Kaplansky invariants. These make use of the subgroups

(or Z(p)-submodules) pαG of G, where pG = {px : x ∈ G}, pα+1G = p(pαG) and

pαG =
⋂
β<α p

βG, if α a limit ordinal. p∞G =
⋂
α p

αG is the maximal divisible

subgroup (or Z(p)-submodule) of G, sometimes denoted by Gd. We then write G =

Gd ⊕ Gr, where Gr is reduced (p∞Gr = 0). Gd is also equal to pl(G)G, where

l(G) is the length of G, the smallest ordinal τ such that pτ+1G = pτG. Since

G = Gd⊕Gr, we are often able to restrict our considerations by regarding a reduced

group G = Gr. The (p-)height of an element x ∈ G, |x|, is then defined by |x| = α

if x ∈ pαG \ pα+1G and |x| = ∞ if x ∈ p∞G. If we need to distinguish in which

(sub-)group or (sub-)module the height is computed, we will indicate the relevant

group or module as in |x|G. Consindering the regulations ∞ > ∞ > α for each

ordinal α and |0| =∞, we always have

|x+ y| = min{|x|, |y|}, if |x| 6= |y| and

|x+ y| ≥ |x|, if |x| = |y|.

Notice |nx| ≥ |x| for all n ∈ Z, especially |px| > |x|.
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We will make use of the fact that every abelian p-group is canonically interpretable

as a Z(p)-module. Therefore, we will mostly consider Z(p)-modules or groups which

are either abelian p-groups or, more generally, mixed groups induced by the additive

structure of a Z(p)-module. Abelian groups of this type are called p-local.

To define our desired invariants we now consider the (p-)socle pαG[p] of pαG, which

contains all elements x ∈ pαG with px = 0.

Definition 1.1.1. For a group (or module) G, α an ordinal and p a prime consider

the Zp-vector space pαG[p]/pα+1G[p] and define

up(α,G) = dim(pαG[p]/pα+1G[p])

the α-th Ulm-Kaplansky invariant of G (or Ulm invariant for short) and

up(∞, G) = dim(p∞G[p]).

Example 1.1.2. Let G = Z(α1)
p ⊕Z(α2)

p2 ⊕Z
(α3)

p3 . Then pG ∼= pZ(α2)

p2 ⊕pZ
(α3)

p3
∼= Z(α2)

p ⊕
Z(α3)

p2 and p2G ∼= p2Z(α3)

p3
∼= Z(α3)

p . The socles are pG[p] ∼= Z(α2)
p ⊕pZ(α3)

p2
∼= Z(α2)

p ⊕Z(α3)
p

and p2G[p] ∼= Z(α3)
p . The considered Zp-vector space to calculate up(1, G) then is

isomorphic to (Z(α2)
p ⊕Z(α3)

p )/Z(α3)
p
∼= Z(α2)

p and consequently we have up(1, G) = α2.

Similarly we receive up(0, G) = α1, up(2, G) = α3 and up(β,G) = 0 for all β ≥ 3.

We see, if G is a direct sum of cyclic groups, up(α,G) corresponds with the number

of cyclic summands of order pα+1(α < ω).

For reduced groups, which contain no divisible subgroups (and therefore p∞G = 0),

Ulm’s theorem then states the following

Theorem 1.1.3 (Ulm). For G and H countable, reduced p-groups the following are

equivalent:

(i) G ∼= H;

(ii) up(α,G) = up(α,H) for all ordinals α.

At the end of Section 1.1 we will sketch the proof of Theorem 1.1.3.

For uncountable (abelian) p-groups Ulm’s theorem is false:

Example 1.1.4. Let, for a fixed prime p, G = t(Π∞i=1Zpi), the torsion part of

Π∞i=1Zpi, and H =
⊕∞

i=1 Zpi. Then G is uncountable and H is countable. Moreover,

G is not a direct sum of cyclics, thus G and H are clearly not isomorphic, but the

Ulm-Kaplansky invariants for G and H coincide: up(α,G) = up(α,H) = 1, for all

α < ω, resp. up(α,G) = up(α,H) = 0, for all α ≥ ω.
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A Warfield module is a direct summand of a simply presented Z(p)-module,

that means it can be defined in terms of generators and relations such that the

only relations are of the forms px = 0 or px = y. For example, the Prüfer-group

or -module, Z(p∞) is simply presented, as it is defined to be generated by the ele-

ments x1, x2, ... which fulfill px1 = 0, px2 = x1, ..., pxn = xn−1, .... The group Z(p∞)

is divisible. One may, for example, identify it with the multiplicative group of all

complex pn-th roots of unity. For the Prüfer group we have up(α,Z(p∞)) = 0 for all

α, since pαZ(p∞) = Z(p∞) for all α.

An equivalent definition for a Warfield module can be given with the help of the

concept of a decomposition basis:

Definition 1.1.5. A subset X = {xi}i∈I of a Z(p)-module M is called a decompo-

sition basis for M if

(i) the elements xi are independent;

(ii) the elements xi all have infinite order;

(iii) M/〈X〉 is torsion, where 〈X〉 denotes the Z(p)-submodule of M , generated by

the elements of X, and

(iv) 〈X〉 =
⊕

i∈I〈xi〉 is a valuated coproduct in M ,

which means for x =
∑

i∈I kixi ∈ 〈X〉(ki ∈ Z(p)), |x|M = min{|kixi|M : i ∈ I}.

If only (i), (ii) and (iv) are fulfilled, X is called a decomposition set.

An easy example is the empty set, which is a decomposition basis for any torsion

module. For M =
⊕

i∈IMi, where each Mi has rank 1, we may collect elements

xi ∈Mi of infinite order (if existent). Then {xi}i∈I forms a decomposition basis for

M .

If X and X ′ are two decomposition bases of M and every element of X ′ is a nonzero

multiple of an element of X, then X ′ is called a subordinate of X.

Further recall that a submodule N of M is called nice (in M) if

pα(M/N) = (pαM +N)/N for all ordinals α.

If a torsion module M has a family C of nice submodules which contains the zero

group {0}, is closed under sums (Ci ∈ C, i ∈ I ⇒
∑

i∈I Ci ∈ C) and fulfills that for

C ∈ C and countable X ⊆ M there exists C ′ ∈ C such that C,X ⊆ C ′ and C ′/C
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is countably generated, then M is called totally projective. Hill proved that all

totally projective modules are classified by their Ulm-Kaplansky invariants. Note

also that a reduced p-group is totally projective if and only if it is simply presented.

An element x ∈ M is called proper with respect to N if it has maximal height

among all elements in the coset x+N . Then we have |x+ n| = min{|x|, |n|} for all

n ∈ N . The following can be found in [L]:

Lemma 1.1.6 (Loth). The following are equivalent

(i) N is nice in M ;

(ii) every coset of N in M contains an element which is proper with respect to N .

A decomposition basis X of M , where 〈X〉 is a nice submodule of M is called nice

decomposition basis of M . A subordinate of a nice decomposition basis is again

nice cf. [L].

We are now able to give a more practicable definition of Warfield modules.

Definition 1.1.7. A Z(p)-module M is called Warfield module if it possesses a

nice decomposition basis X such that the quotient M/〈X〉 is simply presented.

For M a Z(p)-module with submodule N and α an ordinal, put

N(α) = pαM [p] ∩ (N + pα+1M).

Considering pαM [p], pα+1M [p] andN(α) as Zp-vector spaces, the α-th Ulm-Kaplansky

invariant of M relative to N is defined by

uNp (α,M) = dim(pαM [p]/N(α)).

If we let uM,N
p (α) = dim(N(α)/pα+1M [p]), we see that

dim(pαM [p]/N(α)) + dim(N(α)/pα+1M [p]) =

dim((pαM [p]/pα+1M [p])/(N(α)/pα+1M [p]) + dim(N(α)/pα+1M [p]) =

dim(pαM [p]/pα+1M [p])

and therefore

up(α,M) = uNp (α,M) + uM,N
p (α). (1.1)
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To define further invariants for Warfield modules, we now need to consider sequences

β = (βi)i<ω, where each βi is an ordinal or the symbol ∞. An Ulm sequence

β = (βi)i<ω is ordered in the sense that βi < βi+1 for all i with the convention

∞ <∞. We put pkβ = (βi+k)i<ω and call two Ulm sequences β and γ equivalent,

β ∼ γ, if there exist k, l < ω with pkβ = plγ. This means that the sequences might

have different starting values but are equal beyond a certain point. [β] denotes the

equivalence class of β. For an element x ∈ M , the Ulm sequence of x, u(x) or

uM(x) is given by {|pix|}i<ω. u(x) has a gap at α, for an ordinal α, if |pix| = α

and |pi+1x| > α + 1 for some i < ω. If there is need to indicate which prime p is

considered, we will also sometimes write up(x) for an Ulm sequence of x.

Given a submodule N of M we now consider submodules of N , defined by

N(β) = {x ∈ N : |pix|M ≥ βi for all i < ω}

and

N(β
∗
) = 〈x ∈ N(β) : |pix|M > βi for infinitely many values of i〉,

if βi 6=∞ for all i < ω and

N(β
∗
) = tN(β),

otherwise.

Note that N(β)/N(β
∗
) is a Zp-vector space in the case βi 6= ∞ for all i, while

M(β)/M(β
∗
) is a Q-vector space in the case βi =∞ for some i.

Definition 1.1.8. The β-th Warfield invariant of M is defined by

wM(β) = dim(M(β)/M(β
∗
)).

The calculation of the more general Warfield invariants uses the concept of the

direct limit which considers for submodules N of M the sequence of modules

N(β)/N(β
∗
), N(pβ)/N(pβ

∗
), N(p2β)/N(p2β

∗
), ..., where the quotients are related

through monomorphisms Φ(i,j) for all i ≤ j. More precisely, we have

Φ(i,j) : N(piβ)/N(piβ
∗
)→ N(pjβ)/N(pjβ

∗
)

with Φ(i,j)(x+N(piβ
∗
)) = pj−ix+N(pjβ

∗
).

{N(piβ)/N(piβ
∗
); Φ(i,j) : i, j ∈ ω, i ≤ j} is a direct system and
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WM
N (β) := lim−→i∈ωN(piβ)/N(piβ

∗
)

= (
⊕

i∈ωN(piβ)/N(piβ
∗
))/〈x+N(piβ

∗
)− (pj−ix+N(pjβ

∗
)) : i ≤ j〉

its direct limit. The dimension of WM
N (β) is the β-th Warfield invariant of

N , denoted by wMN (β). One has wMM (β) = wM(β). For a submodule N of M such

that M/N is torsion, [HRW] showed wMN (β) = wM(β). Thus, for any decomposition

basis X of M :

wM〈X〉(β) = wM(β).

Then we see that wM(β) counts the elements in a decomposition basis which have

an Ulm sequence equivalent to β, since

〈X〉(β)/〈X〉(β∗) ∼=
⊕
x∈X

〈x〉(β)/〈x〉(β∗),

and the following small lemma holds:

Lemma 1.1.9. If M is a Warfield module with decomposition basis X and x ∈ X,

then wM〈x〉(β) = 1 iff uM(x) ∼ β and wM〈x〉(β) = 0 iff uM(x) 6∼ β.

Proof. Evidently, wM〈x〉(β) ∈ {0, 1}.
Let us first assume uM(x) ∼ β. Thus, there exist k, l < ω with uM(pkx) = plβ.

If βi 6= ∞ for all i, we have 〈x〉(plβ) = 〈pkx〉 and 〈x〉(plβ∗) = 〈pk+1x〉. Hence,

wM〈x〉(β) ≥ dim(〈x〉(plβ)/〈x〉(plβ∗)) = dim(〈pkx〉/〈pk+1x〉) = dim(Zp) = 1 and

wM〈x〉(β) = 1 follows. Observe here that x is an element of a decomposition basis

and thus has infinite order.

If βi = ∞ for some i, we have pkx ∈ 〈x〉(plβ) and 〈x〉(plβ∗) = t〈x〉(plβ) = 0, since

〈x〉 is torsion-free. Hence, wM〈x〉(β) ≥ rank(〈x〉(plβ)/〈x〉(plβ∗) > 0 and wM〈x〉(β) = 1

follows.

For the converse direction let us assume that wM〈x〉(β) = 1.

This implies 〈x〉(plβ)/〈x〉(plβ) 6= 0 for some l < ω and we can choose some ele-

ment y ∈ 〈x〉(plβ) \ 〈x〉(plβ∗). We have |piy|M = βl+1 for almost all i < ω, thus

uM(y) ∼ plβ and uM(x) ∼ uM(y) ∼ plβ ∼ β.

If M has a decomposition basis X, we then define

X(β) := {x ∈ X : uM(x) ∼ β}.

and have wM(β) = |X(β)|. Obviously this number is independent from the choice of

X.

The classification theorem by Warfield then states

14



Theorem 1.1.10 (Warfield). For two Warfield modules M and N the following are

equivalent:

(i) M ∼= N ;

(ii) (a) up(α,M) = up(α,N) for all ordinals α;

(b) up(∞,M) = up(∞, N);

(c) wM(β) = wN(β) for all Ulm sequences β.

Since the model-theoretic generalizations of the classification theorems will deal with

Ulm and Warfield invariants coinciding only up to a certain ordinal, it will be useful

to provide some helpful definitions to handle initial segments of Ulm sequences.

Definition 1.1.11. Let α be an ordinal or the symbol∞ and β, η two Ulm sequences.

(i) The α-initial sequence of β, inα(β), is the sequence (γi)i<ω where

γi =

{
βi if βi ≤ α,

∞ if βi > α.

(ii) We call β and η α-initially equivalent, β ∼α η, iff inα(β) ∼ inα(η).

Naturally we have in∞(β) = β and β ∼∞ η exactly if β ∼ η. If, for example,

β = (1, 2, 3, 4, 5, 6, 7, ...), η = (1, 2, 3, 4, 5, 10, 15, 20, ...) then β 6∼ η but β ∼5 η. On

the other hand, equivalent Ulm sequences are always α-initially equivalent for any

ordinal α.

According to X(β) we then define

X(β)
α := {x ∈ X : uM(x) ∼α β}

for a decomposition basis X of M . If βi ≤ α for all i < ω, then inα(β) = β and

therefore uM(x) ∼α β iff inα(uM(x)) ∼ β for any x ∈ X, and this is the case exactly

if uM(x) ∼ β since inα(uM(x)) and uM(x) are the same in all entries up to α.

Would uM(x) have (one and therefore) infinitely many entries > α, then so would

inα(uM(x)) and consequently uM(x) 6∼α β. It follows X(β) = X
(β)
α . If, on the other

hand, βi > α for some i < ω, there are two possibilities regarding uM(x) for an

element x ∈ X. Either |pix|M ≤ α for all i < ω. Then uM(x) 6∼α β, since uM(x) has

no entry ∞, unlike β. If, however, |pix|M > α for some i < ω, then uM(x) ∼α β,

since both, inα(uM(x)) and inα(β) only have entries ∞ beyond a certain point and
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certainly coincide from these points on. Moreover, they might have been equivalent

to start with, which would imply that uM(x) has an entry > α, too. Therefore in

the case βi > α for some i < ω we have X
(β)
α = X(β) ∪ {x ∈ X \X(β) : |pkx|M > α

for some k < ω}, hence X
(β)
α = {x ∈ X : pkx ∈ pα+1M for some k < ω}.

It is possible that X
(β)
α = X

(η)
α , even if β 6∼ η. Namely we have x ∈ X(β)

α ∩X(η)
α if β, η

and uM(x) all have entries > α. Therefore we can say that ∼α describes equivalence

of sequences only up to α.

Nevertheless, the cardinality of the set X
(β)
α , in case that X is a decomposition basis

of a module M , can be identified as another invariant of M :

Definition 1.1.12. Let α be an ordinal or the symbol ∞ and M a module. Let U

be a complete set of representatives of distinct equivalence classes of Ulm sequences

η which fulfill wM(η) 6= 0. Then

wαM(β) =
∑

η∈U,η∼αβ

wM(η).

As indicated, wαM(β) = |X(β)
α |: In the case βi ≤ α for all i < ω, there is no other

Ulm sequence η which is α-initially equivalent to β but was not equivalent to β to

start with. Therefore in this case wαM(β) = wM(β). In the case βi > α for some

i < ω, we consider the set {x ∈ X \X(β) : |pkx|M > α for some k} and see that it

contains the elements x ∈ X with uM(x) 6∼ β but uM(x) ∼ η for some η ∼α β. All,

β, uM(x) and η must have entries > α in this case and therefore it is possible that

later entries of uM(x) and η coincide, where those of uM(x) and β differ and η and

β are equivalent up to α. Then

X(β)
α = X(β) ∪

⋃
η∼αβ,η 6∼β

X(η)

which immediately leads to wαM(β) = |X(β)
α |.

Becoming even more general, Stanton [St] extended the definition of the β-th Warfield

invariants from Z(p)-modules to groups. To do so, sequences of Ulm sequences are

needed. They are collected in a so-called Ulm matrix, a matrix A = [a(p,i)](p,i)∈P×ω

in which each row is an Ulm sequence. (P denotes the set of all primes.) For an

element of the group x ∈ G, U(x) is the Ulm matrix of x, which has up(x) as

its p-th row. For n < ω, nA has a(p,i+|n|p) as its (p, i) entry, where |n|p denotes the

p-height of n in Z. We then have nU(x) = U(nx). For A = [a(p,i)] and B = [b(p,i)],

we set A ≥ B iff a(p,i) ≥ b(p,i) for all (p, i). We call A and B compatible and write
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A ∼ B, if there are n,m < ω such that mB ≥ A and nA ≥ B. Compatible Ulm

matrices form an equivalence class, called compatibility class. The compatibility

class of a matrix A is denoted by [A]. If two Ulm matrices are compatible then their

p-th rows coincide for almost all primes p.

A decomposition basis for a group is defined similar to Definition 1.1.5, where

〈X〉 denotes the generated subgroup and (iv) has to be fulfilled for all primes p

(|x|p = min{|kixi|p : i ∈ I}). Also, a decomposition basis X of G is called nice, if

〈X〉p = 〈X〉⊗Z(p) is a nice Z(p)-submodule of Gp = G⊗Z(p) for every prime p, that

means each coset x + 〈X〉p contains an element of maximal p-height. A Warfield

group G then possesses a nice decomposition basis X such that G/〈X〉 is simply

presented.

Definition 1.1.13. For any abelian group G with decomposition basis X, p a prime,

β an Ulm sequence and A an Ulm matrix set

wG(p, β, A) = |{x ∈ X : U(x) ∼ A and up(x) ∼ β}|

the (global) Warfield invariant of G.

The classification theorem for Warfield groups then states

Theorem 1.1.14 (Hunter/Richman, Stanton). For two Warfield groups G and H

the following are equivalent:

(i) G ∼= H;

(ii) (a) up(α,Gp) = up(α,Hp) for all primes p and ordinals α,

(b) up(∞, Gp) = up(∞, Hp) for all primes p,

(c) wG(p, β, A) = wH(p, β, A) for all primes p, Ulm sequences β and Ulm

matrices A.

Classical proofs regarding the classification of groups or modules, such as the the-

orems by Ulm and Warfield, often make use of height-preserving partial isomor-

phisms between subgroups or -modules M ′ of M and N ′ of N .

Definition 1.1.15. An isomorphism f : M ′ → N ′ is called height-preserving

partial isomorphism of M and N if

|x|M = |f(x)|N

for all x ∈M ′.
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Slightly extending the above definition, we want to be able to preserve heights below

a certain ordinal α and equivalence of Ulm sequences up to ∼α and follow [BE] with

the following

Definition 1.1.16. An isomorphism f : M ′ → N ′ is called α-height-preserving

partial isomorphism of M and N for some ordinal α if for all x ∈M ′:

(i) |x|M < α⇒ |f(x)|N = |x|M ;

(ii) |x|M ≥ α⇒ |f(x)|N ≥ α.

An ∞-height-preserving isomorphism is a height-preserving isomorphism.

Certain sets I of (α-)height-preserving partial isomorphisms of groups or modules

M and N possess the crucial

Back-and-forth property 1.1.17. For any f ∈ I and a ∈M (resp. b ∈ N) there

is g ∈ I such that g extends f and a ∈ dom(g) (resp. b ∈ im(g)).

This property allows the proof of two groups or modules being isomorphic by ex-

tending the domain as well as the range of isomorphisms by one element at a time,

thus jumping ’back and forth’ between the two groups (modules). Therefore the

following definition is natural:

Definition 1.1.18. If for two groups or modules M and N a set I with property

1.1.17 exists, then M and N are called partially isomorphic and we write M ∼=p

N .

Sketch of the proof of Theorem 1.1.3. The proof uses the hypothesis of countability

and constructs the isomorphism between G and H step by step. Thus, at every

stage in the proof, one has to worry only about finite subgroups of G and H. By

numbering off all elements of G and all elements of H, and considering the n-th

element of G in the (2n-1)-th step and the n-th element of H in the 2n-th step of

the proof, one ensures to achieve an isomorphism between G and H and not just

between parts of G and H. This is a method of argumentation which corresponds to

the back-and-forth property mentioned above. Of course, the desired isomorphism

between G and H has to be height-preserving, thus it is essential to begin the proof

with a partial isomorphism which is also height-preserving.

One starts with finite subgroups S and T of G and H, resp. and a height-preserving

isomorphism f between them, e.g. the trivial partial isomorphism f : 0→ 0. Then
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an element x ∈ G is considered, with the following normalizing assumptions: x

is proper with respect to S and |px| is maximal among all those proper elements.

Additionally we may assume that x is not in S, but px is in S. We set |x| = α. All

heights are computed in G and H, resp. We then have to find an element y in H

which is proper with respect to T , has height α and fulfills py = f(px).

In the first case we assume |f(px)| = α+1. Then any element y ∈ pαH which fulfills

py = f(px) meets all requirements and can be chosen to extend f . The first case

makes no use of the equality of the Ulm invariants.

The second case assumes |f(px)| > α + 1. Then px = px′ with x′ ∈ pα+1G. Thus

the element x − x′ is in pαG[p], |x − x′| = α and x − x′ is proper with respect to

S. The existence of such an element, in combination with the equality of the Ulm

invariants, ensures the existence of a certain mapping, which has properties that

allow us to deduce that H contains an element y′ which is proper with respect to

T and which fulfills py′ = 0 and |y′| = α. (See e.g. [Kap] for the whole story.) By

|f(px)| > α+ 1 we are able to write f(px) = py′′ with y′′ ∈ pα+1H. y = y′+ y′′ then

provides the desired element to extend f .

An element of H is added to the range of f similarly by extending f−1.

1.2 Model-theory

We follow the approach of Barwise and Eklof [BE] and define ĝ for cardinal-valued

functions g by

ĝ(x) =

{
g(x) if g(x) < ℵ0,
∞ if g(x) ≥ ℵ0.

and extend this definition to

g̃(x) =

{
g(x) if g(x) ≤ ℵ0,
∞ if g(x) > ℵ0.

Now, the model-theoretic framework of this work is given by an ordinary first order

language L with identity, finitary relation and function symbols and constant sym-

bols. We assume that L has a variable υα for every ordinal α. Examples for atomic

formulas in L are terms like “x = a” or “A(x, a, z)” where x, a, z are constant sym-

bols or variables of L and A is a relation symbol of L. In order to define the language

L∞ (often denoted by L∞ω, the first index indicating that conjunctions and disjunc-

tions of arbitrary length may appear in a formula, the second index indicating that
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only finitely many quantifiers are allowed to appear in a row), which we will refer to

mostly, we define for each ordinal α a collection Lα of formulas as follows: Lα is the

smallest collection F of formulas which contains the atomic formulas and is closed

under the following logical operations:

(L1) If ϕ ∈ F , then ¬ϕ ∈ F .

(L2) If Φ ⊆ F , then
∧

Φ,
∨

Φ ∈ F .

(L3) If ϕ ∈ Lβ for some β < α and υ is a variable, then ∃υ ϕ,∀υ ϕ ∈ F.

In (L2)
∧

Φ (resp.
∨

Φ) denotes the conjunction (resp. disjunction) of an arbitrary

number of elements of the set Φ (possibly all). Notice that Φ can be of any cardinal-

ity. Following [BE], we let L∞ =
⋃
α Lα. The quantifier rank qr(ϕ) of a formula

ϕ ∈ L∞ is defined to be the least ordinal α such that ϕ ∈ Lα. As an example we will

consider the statement x ∈ pαG for a p-group G. Therefore recall that every ordinal

α can be written as α = ωδ + n where δ is a unique ordinal and n < ω. Barwise

and Eklof [BE] pointed out that the statement can be expressed by a formula of

quantifier rank δ (δ+ 1, resp.) if n = 0 (n > 0, resp.), as the statement is equivalent

to the formula ∧
β<ωδ

x ∈ pβG, (n = 0) or

∃y(y ∈ pωδG ∧ pny = x), (n > 0) resp.

We can verify the quantifier rank of “x ∈ pαG” by induction. For n = 0 the

statement x ∈ pωG is a conjunction of all the formulas ∃y(y ∈ G ∧ piy = x),

0 ≤ i < ω. Each of this formulas has quantifier rank 1, since “y ∈ G ∧ piy = x”

has quantifier rank 0. According to (L2) the conjunction then has quantifier rank

1, too. Assuming now that qr(x ∈ pωδG) = δ, the formula x ∈ pω(δ+1)G is similarly

a conjunction of all the formulas ∃y(y ∈ pωδG ∧ piy = x), 0 ≤ i < ω. Each of these

formulas now has quantifier rank δ + 1, the same holds for the conjunction. As the

formula x ∈ pωδ+nG is one of the formulas ∃y(y ∈ pωδG∧piy = x), namely for i = n,

it also has quantifier rank δ + 1.

Note that the quantifier rank of a formula can be seen as a measure of its complexity

because it gives us knowledge about the largest number of nested quantifiers which

occur in the formula. The notion of a sentence is defined, as usual, as a formula

containing no free variables i.e. containing no variables not bound by a quantifier.
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Models for a language are understood to be sets of constants, which, in combination

with the language-specific identity, functions, relations, etc. satisfy the axioms of

the language. Models are denoted by A = 〈A, ...〉, where A is a set of constants. If

ϕ ∈ L∞ is a formula with at most n variables, a1, ..., an ∈ A and ϕ(a1, ..., an) is true,

we write A |= ϕ[a1, ..., an], and accordingly for a sentence ϕ which is true, A |= ϕ.

For example, N = 〈N,+, ·,′ , 0〉 is the standard model for the language of number

theory which satisfies the following sentences:

(P1) ∀x : x′ 6= 0

(P2) ∀x∀y : x′ = y′ ⇒ x = y

(P3) ∀x : x+ 0 = x

(P4) ∀x∀y : x+ y′ = (x+ y)′

(P5) ∀x : x · 0 = 0

(P6) ∀x∀y : x · y′ = x · y + x

and the induction principle

(P7) (N |= ϕ(0) ∧ (∀x : N |= ϕ(x)⇒ N |= ϕ(x′)))⇒ ∀x : N |= ϕ(x).

Let α be an ordinal or the symbol∞. Then two models A = 〈A, ...〉 and B = 〈B, ...〉
for L∞ are called Lα-equivalent, and we write A ≡α B, if for all sentences ϕ ∈ Lα
we have

A |= ϕ if and only if B |= ϕ.

A basic tool to investigate isomorphism under a model-theoretic point of view is a

theorem like the following by Karp [K] which appears in a modified way in most

works dealing with this topic. This one links Lα-equivalence of models to the exis-

tence of a set of partial isomorphisms with the back-and-forth property:

Theorem 1.2.1 (Karp). Let A = 〈A, . . .〉 and B = 〈B, . . .〉 be models for L∞ and

δ an ordinal or the symbol ∞. Then the following are equivalent:

(i) A ≡δ B;

(ii) For each ordinal α ≤ δ there is a non-empty set Iα of isomorphisms on sub-

structures of A into B such that

(a) if α ≤ β, then Iβ ⊆ Iα;

(b) if α + 1 ≤ δ, f ∈ Iα+1 and a ∈ A (b ∈ B, resp.), then f extends to a map

f ′ ∈ Iα such that a ∈ dom(f ′) (b ∈ im(f ′), resp.).
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This leads to

Theorem 1.2.2 (Karp). Let G and H be some structures for the language L, then

G ≡∞ H ⇔ G ∼=p H.

Investigating this relationship, Jon Barwise [B] 1973 proved the following general-

ization of the back and forth part of the original argument by Cantor (that any

two linearly ordered sets without end points which are countable and dense are

isomorphic):

Theorem 1.2.3 (Barwise). If M and N are countable or countably generated, then

M ∼=p N ⇔M ∼= N.

This result, together with Theorem 1.2.2 then provides the relation between general

isomorphism and model-theoretic isomorphism (infinitary equivalence) in the case

of countable (or countably generated) groups, modules or structures, namely that

G ≡∞ H ⇔ G ∼= H.

The link is the partial isomorphism which in the paper by Barwise [B] is considered

“the strongest possible absolute notion of isomorphism”. In Chapter 4 we will inves-

tigate how closely related uncountable structures are if they are partially isomorphic.

If A ≡δ B and there are sets of isomorphisms Iα(α ≤ δ) as in Theorem 1.2.1 which

consist entirely of δ-height-preserving isomorphisms, then we write

A ≡hδ B.

Since a wide range of modules can be described as direct sums of special modules,

in order to study these it is helpful to know that Lα-equivalence is invariant under

this construction:

Lemma 1.2.4 (Barwise-Eklof). The following hold:

(i) If
⊕

i∈I Ai denotes the direct sum of the models Ai, then Ai ≡α Bi for each

i ∈ I implies
⊕

i∈I Ai ≡α
⊕

i∈I Bi.

(ii) If A is a model for L∞ and I and J are infinite index sets, the equality Bi =

A = Cj for each i ∈ I and j ∈ J implies
⊕

i∈I Bi ≡∞
⊕

j∈J Cj.

22



We will now begin by investigating the quantifier rank of classifying sentences of our

groups and modules, as we already did in [GLLS]. Remember α = ωδ + n.

For m < ω, the statements “rank(pαG) ≥ m” and “u(α,G) ≥ m” can be expressed

by sentences ϕα,m and ψα,m of quantifier rank δ + m and δ + m + 1, resp., as the

statements are equivalent to

∃x1...∃xm(
m∧
i=1

xi ∈ pωδG ∧ pnx1, ..., p
nxm are independent)

and

∃x1...∃xm(
m∧
i=1

xi ∈ pωδ+nG ∧ pxi = 0 ∧ x1, ..., xm are

independent modulo pωδ+n+1G)

Note that the expression “x1, ..., xm are independent” is of quantifier rank zero since

it is equivalent to an infinite chain of subjunctions, which itself is equivalent to an

infinite chain of disjunctions and conjunctions of atomic formulas. Then “x1, ..., xm

are independent modulo pωδ+n+1G” is of quantifier rank δ + 1. It is clear that these

results carry over to Z(p)-modules. Similarly, we can express facts about Warfield

invariants: let β = (βi)i<ω be an Ulm sequence. First, assume that βi 6= ∞ for all

i < ω and write βi = ωδi + ni where δi is an ordinal and ni < ω. Define

δ′i =

{
δi if ni = 0

δi + 1 if ni > 0.

Then “x ∈ M(β)” can be expressed by a formula θβ(x) of quantifier rank ξ =

sup{δ′i : i < ω}:

θβ(x) =
∧
i<ω

(pix ∈ pβiM).

The statement x ∈ M(β
∗
) means that x can be expressed as a linear combination

of elements xi ∈M(β) which satisfy |pjxi| > βj for infinitely many j ∈ ω and there-

fore is equivalent to ∃x1 . . . ∃xk(x =
∑k

i=1 λixi for some λ1, . . . , λk ∈ Z ∧
∧k
i=1(xi ∈

M(β)∧ pjxi ∈ pβj+1M for infinitely many j < ω)), for some k < ω, hence it can be

expressed by a formula θβ∗(x) of quantifier rank ξ + ω.

Since the statement

wM(β) ≥ m
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is true if and only if ∃x1...∃xm (x1, . . . , xm ∈ M(β) ∧ x1, ..., xm are independent

modulo M(β
∗
)), it can be expressed by a sentence θβ,m of quantifier rank ξ+ω+m.

Now suppose the module M has a decomposition basis X. If ∞ 6= βi ≤ α for all

i < ω, then wαM(β) = wM(β) and otherwise

wαM(β) = |{x ∈ X : pkx ∈ pα+1M for some k < ω}| = rank(
⊕
x∈X

(〈x〉 ∩ pα+1M))

which coincides with the rank of 〈X〉 ∩ pα+1M and therefore with the torsion-free

rank of pα+1M . Therefore, by consulting θβ,m and ϕα,m, “wαM(β) ≥ m” (where

m < ω) can be expressed by a sentence ψα,β,m whose quantifier rank is

ξ + ω +m if ∞ 6= βi ≤ α for all i < ω

δ +m if βi > α for some i < ω.

Our observations yield one direction of some classifications, of which (i) was already

formulated in [BE]:

Lemma 1.2.5. Let M and N be modules. Suppose M ≡λ N where λ is a limit

ordinal. Then:

(i) (a) û(α,M) = û(α,N) if α < ωλ.

(b) If l(M) < ωλ and l(N) < ωλ, then û(∞,M) = û(∞, N).

(ii) If M and N have decomposition bases and if α < ωλ where λ = ωγ and γ is

a limit ordinal, then ŵαM(β) = ŵαN(β) for all Ulm sequences β.

Proof. Bear in mind that α = ωδ + n < ωλ yields δ + k < λ for all k < ω.

Hence (i)(a) follows since ψα,m, for finite m is an element of Lλ, and with (L1) ¬ψα,m
and also u(α,M) < m + 1 = ¬ψα,m+1, are in Lλ, too. Therefore M ≡λ N yields

M |= ψα,m,¬ψα,m+1 ⇔ N |= ψα,m,¬ψα,m+1 which implies up(α,M) = up(α,N).

Since m < ω we achieve this equation only for the generalized Ulm-Kaplansky

invariant ûp(α,M).

For (b) observe that if l(M) := η < ωλ we have x ∈ p∞M ⇔ x ∈ pηM which is a

formula of quantifier rank < λ and therefore an element of Lλ. Then, “up(∞,M) ≥
m” is a formula similar to ϕα,m and thus in Lλ, too. The assertion then follows as

in (a). In (ii) we write δ = δ′ + n′ and have

ξ + ω +m ≤ δ + ω +m < ωδ′ + ω + ω = ω(δ′ + 2) < ωγ = λ
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and δ + m < λ, hence for any m < ω the formula ψα,β,m is in Lλ and the assertion

follows similar to (i).

The converse direction will be contained in the main result of Section 2.1.

1.3 Set-theory – The Diamond

This section shall introduce the prediction principle known as Jensen’s Diamond

that holds e.g. in Gödel’s universe (V=L).

Let us start with collecting the necessary definitions. We will follow [EM].

Definition 1.3.1. For any limit ordinal α, a subset X of α is called unbounded

or cofinal in α, if sup(X) = α, that means, for every β < α there exists some

γ ∈ X such that γ > β.

Definition 1.3.2. The cofinality of a limit ordinal α, cf(α), is the least cardinal

λ such that there exists a subset X ⊆ α of cardinality λ which is cofinal in α.

Definition 1.3.3. A cardinal λ is called regular, iff cf(λ) = λ. If λ is not regular,

then it is called singular.

Every successor cardinal, ℵα+1, is regular, since ℵα · ℵα = max{ℵα,ℵα} = ℵα. If ℵα
is a limit cardinal and α > 0, then cf(ℵα) = cf(α).

Definition 1.3.4. A closed, unbounded subset of a limit ordinal will be called a cub.

For any limit γ, the set γ itself is always a cub in γ.

We want to give another example for a cub.

Example 1.3.5 (Eklof/Mekler). Suppose that λ is a regular uncountable cardinal.

Let f : λn → λ for some integer n ≥ 1. We set

C = {σ ∈ λ : f(x) ∈ σ for each x ∈ σn}

Clearly, C is closed in λ. To see that it is also unbounded in λ, we have to find

for each α ∈ λ a β > α such that β ∈ C. Therefore define a sequence (αi)i<ω

starting with α0 = α. Now if αm is defined, then the cardinality of αnm is less than

λ, therefore there exists αm < αm+1 < λ with f(x) ∈ αm+1 for all x ∈ αnm. This

provides an increasing sequence (αi)i<ω and if we let β = sup{αi : i < ω}, then

β < λ and β ∈ C.
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Lemma 1.3.6 (Eklof/Mekler). Let λ be a limit ordinal of cofinality > ℵ0. Then the

intersection of less than cf(λ) cubs in λ is again a cub in λ.

Proof. Let (Cν)ν<µ be a collection of cubs in λ, where µ < cf(λ). The intersection

C ′ =
⋂
ν<µCν is evidently closed. To show that it is a cub in λ we have to find for

each α ∈ λ a β ∈ C ′ with β > α. Since cf(λ) is uncountable, µ can be assumed to

be an infinite cardinal. Then, since µ · µ = µ, there exists a function f : µ → µ so

that f−1[δ] is cofinal in µ for all δ ∈ µ.

We define (αν)ν<µ by induction:

αν = min{x ∈ Cf(ν) : x > α + sup{ατ : τ < ν}}

Since Cf(ν) is unbounded and ν < cf(λ), this is possible. Then we set

β = sup{αν : ν < µ}.

Obviously β > α. Since µ < cf(λ), β ∈ λ and also β ∈ Cδ for all δ < µ by choice of

f , since Cδ is closed and β = sup{αν : f(ν) = δ}. Thus β ∈ C ′, too.

Definition 1.3.7. A subset E ⊆ λ is called stationary in λ iff E ∩ C 6= ∅ for all

cubs C ⊆ λ.

We may introduce an equivalence relation ∼ on P(λ) by writing X ∼ Y for

X, Y ∈ P(λ) iff X ∩ C = Y ∩ C for some cub C ∈ λ. With respect to this

equivalence relation a set X ∈ P(λ) is a cub if and only if X ∼ λ, i.e. X is in a

natural sense large, in terms of [EM] “relatively large”. This is why cubs are also

called sets of measure 1. Similarly, X ∈ P(λ) fails to be stationary if and only if

X ∼ ∅. Such sets are called thin in λ or sets of measure 0. Stationary sets are

also called sets of non-zero measure.

Let λ be a regular, uncountable cardinal from now on. For any infinite regular

cardinal ρ < λ, the set of all α ∈ λ with cf(α) = ρ is a stationary subset of

λ. Lemma 1.3.6 provides that the intersection of less than λ cubs is again a cub

(in λ). Therefore cubs cannot be partitioned into cubs, but stationary sets can be

partitioned into stationary sets. The following fact will become useful in Section 4.3:

Lemma 1.3.8 (Solovay). If λ is a regular uncountable cardinal, then any stationary

subset of λ can be partitioned into λ (disjoint) stationary sets.

For the non-trivial proof see [Jech], Theorem 85.
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We are now ready to introduce the Diamond Principle and follow [R2] and [GT].

During his analysis of Gödel’s constructible universe V=L, Jensen discovered an

enumeration principle on the set P(ω), namely

(#) there exists a sequence {Wα ⊆ P(ω) : α < ω1}, such that for every subset

X ⊆ ω1, there exists ω < α < ω1 such that X ∩ α = Wα

and gave it the name of diamond, ♦.

This statement arised from an equivalent formulation of Cantor’s continuum hy-

pothesis (CH, 2ℵ0 = ℵ1) in the context of Zermelo-Fraenkel set theory with the

Axiom of Choice (ZFC).

The Diamond Principle ♦ in the now most popular form results from (#) by con-

sidering stationary sets and can be used to ’predict’ initial segments X ∩ α (α < λ)

of a given subset X ⊆ λ, independent of the choice of X.

Definition 1.3.9. [♦λE] For E a stationary subset of λ we denote by ♦λE the

following axiom:

(♦λE) There exist Wα ⊆ α, (α ∈ E), such that the set {α ∈ E : Wα = X ∩ α} is

stationary in λ for any subset X ⊆ λ.

In [Jen], Jensen proved that ♦λE holds in V=L for all regular uncountable λ and

all stationary E ⊆ λ. The paper also introduces the very first complicated combi-

natorial object constructed with the help of the Diamond Principle: a Souslin tree,

that is a tree of height κ where every branch and every antichain has cardinality

< κ (for κ an infinite cardinal).

There are further versions of the Diamond Principle which are more useful for ap-

plications. One makes use of the concept of λ-filtrations:

Definition 1.3.10. Let M be a set of cardinality ≤ λ. A λ-filtration of M is an

ordered sequence {Mα : α < λ} of subsets of M , such that for all α, β ∈ λ:

(i) |Mα| < λ,

(ii) if α < β then Mα ⊆Mβ,

(iii) for α ∈ λ a limit ordinal, Mα =
⋃
β<αMβ,

(iv) M =
⋃
α<λMα.
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Theorem 1.3.11. Suppose that ♦λE holds. If M is a set of cardinality λ and

{Mα : α < λ} a λ-filtration of M , then there exist subsets Nα ⊆ Mα, α ∈ E such

that for each X ⊆M the set {α ∈ E : Nα = X ∩Mα} is stationary in λ.

The next version is especially useful when realizing endomorphism rings and is the

version we will use in the remaining part of this work. It makes use of the so-called

Jensen functions which are, corresponding to the initial segments Wα in Definition

1.3.9, predicted by the Diamond.

Theorem 1.3.12. Suppose that ♦λE holds. For any two λ-filtrations M =
⋃
α<λMα

and N =
⋃
α<λNα there are Jensen functions

gα : Mα → Nα(α ∈ E)

such that, for any function g : M → N ,

{α ∈ E : gα = g �Mα} is stationary in λ.

The statement ♦λE (for regular uncountable λ and stationary E ⊆ λ) is in-

dependent from ZFC but consistent with it. It was known that V=L is suffi-

cient for the validity of ♦λE. Recently, Shelah proved that the Generalized Con-

tinuum Hypothesis, 2λ = λ+ (GCH), suffices to imply ♦λ+E for all stationary

E ⊆ {δ < λ+ : cf(δ) 6= cf(λ)}. Rinot [R1] gave a (surprisingly) short proof for

Shelah’s observation. He also gave a survey of related prediction principles and the

validity of Jensen’s diamond for successor cardinals [R2].

Assuming only ZFC, results similar to those achieved with the Diamond Princi-

ple can be realized using e.g. (Shelah’s) Black Box. There are several prediction

principles known under this name, as is the case with the Diamond, but we will

not discuss these techniques in detail. It can be said that results achieved using a

Diamond Principle can also be proved in ZFC through use of a Black Box if one

is willing to accept a slightly weaker version of the result. The general strategy of

both, the Diamond Principle and the Black Box, is to predict unwanted objects (e.g.

homomorphisms) that can be “killed” with the help of a Step-Lemma.
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Chapter 2

Infinitary equivalence – extending

the theorem by Ulm

Using infinitary equivalence and α-height preserving isomorphisms, Barwise and

Eklof [BE] proved the following generalization of the classical Ulm theorem for p-

groups of any cardinality:

Theorem 2.0.13 (Barwise/Eklof). Let G and H be p-groups and let δ be an ordinal

such that

(i) ûp(α,G) = ûp(α,H) for all α < ωδ,

(ii) l(G) < ωδ ⇔ ûp(∞, G) = ûp(∞, H),

then G ≡δ H.

If δ is a limit ordinal, the converse direction also holds.

If now G and H are countable reduced groups, up(α,G) = up(α,H) for all α and

thus G ≡∞ H. Thus Theorem 2.0.13 implies Thoerem 1.1.3 via Theorem 1.2.2 and

Theorem 1.2.3.

2.1 Z(p)-modules with nice decomposition bases

We now consider the natural question of extending the Barwise-Eklof theorem 2.0.13

to Warfield modules. The results of this section have already been published in

[GLLS]. There is no reasonable class of modules including the Warfield modules

that is closed under Lωαω- equivalence. However, in analogy to [BE] we are able to

completely classify L-equivalence classes of certain Z(p)-modules if we assume they
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posses a nice decomposition basis. Again, as in the Barwise-Eklof generalization,

we need additional numerical invariants deduced from the original (α-th) Warfield

invariants and obtain the classical lemma for countable Warfield modules as a corol-

lary.

We will start with a fact about possible extensions of α-height-preserving isomor-

phisms.

Lemma 2.1.1. Let S and T be submodules of modules M and N , respectively, and

let f : S → T be an α-height-preserving isomorphism where α is an ordinal or the

symbol ∞. Suppose x ∈ M and y ∈ N such that x has order pr modulo S, y has

order pr modulo T and f(prx) = pry for some positive integer r. If either

(i) r = 1, |x|M = |y|N , x is proper with respect to S and y is proper with respect

to T , or

(ii) |x|M ≥ α and |y|N ≥ α,

then f extends to an α-height-preserving isomorphism

〈S, x〉 → 〈T, y〉

by sending x onto y.

Proof. All heights in this proof are computed in M and N , respectively. It is

clear that for s ∈ S and n ∈ Z, s + nx 7→ f(s) + ny defines an isomorphism

f ′ : 〈S, x〉 → 〈T, y〉.
First, suppose condition (i) of the lemma holds. Assume |s+x| < α. If |s| < α, then

|f(s)| = |s| and therefore min{|f(s)|, |x|} = min{|s|, |x|}, and min{|s|, |x|} = |s+x|
since x is proper with respect to S. If |s| ≥ α, then |s + x| = min{|s|, |x|} < α

implies |s + x| = |x| < α. Also |f(s)| ≥ α (since |s| ≥ α), hence min{|f(s)|, |x|} =

min{|f(s)|, |s+ x|} = |x| = |s+ x|. In either case we have

|f(s) + y| = min{|f(s)|, |y|} = min{|f(s)|, |x|} = |s+ x|.

Now assume |s + x| ≥ α. Since |s + x| = min{|s|, |x|} we have also |x|, |s| ≥ α and

thus |f(s)| ≥ α, too. This implies |f(s) + y| = min{|f(s)|, |y|} = min{|f(s), |x|} ≥
α. Therefore f ′ is α-height-preserving.

Now suppose condition (ii) holds. Then |nx|, |ny| ≥ α, too. If |s + nx| < α,

then |s + nx| = min{|s|, |nx|} implies |s| < α and therefore |f(s)| < α. Then
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|f(s)| = min{|f(s)|, |ny|} = |f(s) + ny| and if |s + nx| ≥ α we have |s| ≥ α, too,

which yields |f(s)| ≥ α and hence |f(s) + ny| ≥ α. This completes the proof.

Notice that in the proof above the condition “r = 1” in case (i) is necessary: for

x = 1 ∈ M = Z/p2Z and y = (1, p) ∈ N = Z/pZ × Z/p3Z we have |x|M = |y|N
but |px|M 6= |py|N , hence f : {0} → {0} cannot be extended to a height-preserving

isomorphism 〈x〉 → 〈y〉.

In the proof of his classification theorem (1.1.10), Warfield uses the following fact

Lemma 2.1.2 (Hunter/Richman/Walker [HRW]). If X and Y are decomposition

bases of modules M and N , respectively and wM(β) = wN(β) for all Ulm sequences

β, then there exist subordinates X ′ of X and Y ′ of Y such that there is a height-

preserving isomorphism from 〈X ′〉 to 〈Y ′〉.

In fact, also the converse direction holds. The proof of Lemma 2.1.2 provides a

bijection φ : X → Y which secures equivalent Ulm sequences u(x) and u(φ(x)). X ′

and Y ′ then can be chosen as the collection of certain p-power multiples of x and

φ(x), respectively.

A consequence of this is that if A ⊆ X ′ and B ⊆ Y ′ are finite sets and f : 〈A〉 → 〈B〉
is a height-preserving isomorphism with f(A) = B, then for every x ∈ X ′ (resp.

y ∈ Y ′) there is y ∈ Y ′ (resp. x ∈ X ′) such that f extends to a height-preserving

isomorphism 〈A, x〉 → 〈B, y〉.
We can generalize this result to the following extension lemma which provides helpful

α-height-preserving isomorphisms with a back-and-forth property in our case:

Lemma 2.1.3. Let α be a fixed ordinal or the symbol ∞. If M and N are modules

with decomposition bases X and Y , respectively, such that w̃αM(β) = w̃αN(β) for all

Ulm sequences β, then there exist subordinates X ′ of X and Y ′ of Y satisfying the

following:

If A ⊆ X ′ and B ⊆ Y ′ are countable sets and f : 〈A〉 → 〈B〉 is an α-height-

preserving isomorphism with f(A) = B, then for every x ∈ X ′ (resp. y ∈ Y ′) there

exists y ∈ Y ′ (resp. x ∈ X ′) such that f extends to

f ′ : 〈A, x〉 → 〈B, y〉

by sending x 7→ y and f ′ is α-height-preserving, too.

Proof. Since X =
⋃̇
βX

(β)
α , Y =

⋃̇
βY

(β)
α and each set X

(β)
α , Y

(β)
α has cardinality

wαM(β), respectively wαN(β), we will define the subordinates X ′ and Y ′ as disjoint
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unions X ′ =
⋃̇
βX
′(β)
α and Y ′ =

⋃̇
βY
′(β)
α . We may therefore assume X = X

(β)
α and

Y = Y
(β)
α for some fixed Ulm sequence β.

Suppose there exists an i < ω such that βi > α. Then X = {x ∈ X : pkx ∈
pα+1M for some k < ω}, so there exist subordinates X ′ ⊆ pα+1M of X and Y ′ ⊆
pα+1N of Y satisfying the required property since |X ′| = |Y ′| or both X ′ and Y ′ are

infinite sets.

Now assume that ∞ 6= βi ≤ α for all i < ω. Then X = X(β) and Y = Y (β). For

some Ulm sequence γ let X[γ] = {x ∈ X : uM(x) = β}.

Case 1: If |X| = |Y | ≤ ℵ0, then we will construct by induction subordinates X ′

and Y ′ and a countable (maybe finite) sequence of Ulm sequences

β1 < β2 < . . . < βn < . . .

which are all equivalent to β such that X ′ =
⋃̇
nX
′[βn] and Y ′ =

⋃̇
nY
′[βn]. More-

over, we will ensure that |X ′[βn]| = |Y ′[βn]| = 1. Assume that we have constructed

X ′ and Y ′ as claimed. Then the unique element xn ∈ X ′[βn] can only be mapped

onto the unique element yn ∈ Y ′[βn] by any α-height-preserving map. Thus, given

an α-height-preserving isomorphism f : 〈A〉 → 〈B〉 such that f induces a bijection

between A and B, and given x ∈ X ′ (resp. y ∈ Y ′) there is a unique y ∈ Y ′ (resp.

x ∈ X ′) such that f can be extended to an α-height-preserving isomorphism by

mapping x onto y (resp. y onto x).

Let X = {x1, x2, x3, . . .} and Y = {y1, y2, y3, . . .} be arbitrary enumerations of X

and Y , respectively. Inductively we choose integers ni and mi such that

uM(pnixi) = uN(pmiyi)

and uM(pnixi) < uM(pni+1xi+1) for all i. The desired subordinates are then given

by X ′ = {pnixi : i = 1, 2, . . .} and Y ′ = {pmiyi : i = 1, 2, . . .}.
If i = 1 then there are n1 and m1 such that uM(pn1x1) = uN(pm1y1) since the Ulm

sequences of x1 and y1 are equivalent to β. Put β1 = uM(pn1x1).

Now assume that n1,m1, n2,m2, . . . , ni,mi and β1, β2, . . . , βi are constructed as claimed.

Choose k such that pkxi+1 and pkyi+1 have Ulm sequences strictly bigger than

uM(pnixi) = uN(pmiyi). Now there are l and s such that uM(pk+lxi+1) = uN(pk+syi+1).

Put ni+1 = k + l and mi+1 = k + s and βi+1 = uM(pni+1xi+1). This finishes Case 1.
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Case 2: Suppose we are not in Case 1. Then without loss of generality, we may

assume |X| ≥ |Y | > ℵ0 since by assumption ωM(β) = ωN(β). The strategy is to

proceed as in Case 1 with minor changes. By induction we will choose subordinates

X ′ and Y ′ and a countably infinite sequence of Ulm sequences

β1 < β2 < . . . < βn < . . .

which are all equivalent to β such that X ′ =
⋃̇
nX
′[βn] and Y ′ =

⋃̇
nY
′[βn]. More-

over, this time, we will ensure that X ′[βn] and Y ′[βn] are both uncountable.

Assume for the moment that we can do this. As in Case 1 any α-height-preserving

isomorphism can map elements from X ′[βn] only to elements from Y ′[βn] and vice

versa (for any n). Thus, given an α-height-preserving isomorphism f : 〈A〉 → 〈B〉
such that f induces a bijection between A and B, the uncountability of X ′[βn] and

Y ′[βn] ensures that X ′[βn]\A and Y ′[βn]\B are still uncountable. Therefore, for any

x ∈ X ′ \ A (resp. y ∈ Y ′ \ B) there is some y ∈ Y ′ \ B (resp. x ∈ X ′ \ A) such

that f can be extended to an α-height-preserving isomorphism by mapping x onto

y (resp. y onto x).

It remains to show that we can carry on the induction. First note that the set

{pnβ : n < ω} is countable. Hence (after replacing X and Y by suitable subordi-

nates) we have

X =
⋃̇

i∈IX
X[ηi] and Y =

⋃̇
i∈IY

Y [µi]

for some IX , IY ⊆ ω and Ulm sequences ηi, µi equivalent to β. Since X and Y are

uncountable there must be ηk and µl such that X[ηk] and Y [µl] are uncountable as

well. Therefore we can write X[ηk] =
⋃̇
i<ωXi where each set Xi is uncountable.

Now let i < ω. For every i ∈ IX there exist ni,mi < ω such that pniηi = pmiηk, and

we define

X∗i = {pnix : x ∈ X[ηi]} ∪ {pmix : x ∈ Xi}

and replace X∗k by the set {pmkx : x ∈ Xk}. If i 6∈ IX we let mi = 0 and set

X∗i = Xi. Then it follows that X∗ =
⋃̇
i<ωX

∗
i is a subordinate of X such that each

X∗i is uncountable and X∗i = X∗i [pmiηk]. Similarly, we obtain a subordinate Y ∗ of

Y so that Y ∗ =
⋃̇
i<ωY

∗
i where each Y ∗i is uncountable and Y ∗i = Y ∗i [priµl] for some

ri. It is then straightforward to see, using similar arguments as in Case 1 that we

may pass to subordinates X ′ =
⋃̇
n<ωX

′[βn] and Y ′ =
⋃̇
n<ωY

′[βn] satisfying

β1 < β2 < . . . < βn < . . . .

This finishes the proof.
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In the above proof we see, that if |X(β)
α | = |Y (β)

α | for all Ulm sequences β, f ′ can be

globally extended to an α-height-preserving isomorphism 〈X ′〉 → 〈Y ′〉. Moreover,

the lemma can be generalized to adding countably infinitely many elements to the

domain or range of f , thus receiving an α-height-preserving isomorphism

f ′ : 〈A, a0, a1, ...〉 → 〈B, b0, b1, ...〉.

Also, the property of f (and f ′) being α-height-preserving can be replaced by δ-

height-preserving for any ordinal δ < α.

As a corollary we receive:

Corollary 2.1.4. Let M and N be modules with decomposition bases X and Y ,

respectively, such that w̃δM(β) = w̃δN(β) for all Ulm sequences β where δ is some

fixed ordinal or the symbol ∞. Then there exist subordinates X ′ and Y ′ of X and

Y such that 〈X ′〉 ≡hδ 〈Y ′〉.

Proof. Let X ′ and Y ′ be the subordinates of X and Y obtained in Lemma 2.1.3.

For every ordinal α, let Iα be the set I of all δ-height-preserving isomorphisms

f : 〈A〉 → 〈B〉

where A and B are finite subsets of X ′ and Y ′ such that f(A) = B. Then Lemma

2.1.3 shows that for Lδ and the modules 〈X ′〉 and 〈Y ′〉, the sets Iα satisfy condition

(ii) from Theorem 1.2.1, hence 〈X ′〉 ≡hδ 〈Y ′〉. To see this, let f : 〈A〉 → 〈B〉 be a

map in I such that A and B are finite subsets of X ′ and Y ′ and f(A) = B, and let

x ∈ 〈X ′〉. Then x =
m∑
i=1

nixi for some xi ∈ X ′ and ni ∈ Z(p). Thus, by Lemma 2.1.3,

there is an extension f ′ ∈ I of f which maps 〈A, x1, . . . , xm〉 onto 〈B, y1, . . . , ym〉 for

some yi ∈ Y ′. Clearly, x ∈ dom(f ′). If y ∈ 〈Y ′〉, then by symmetry f extends to a

map f ∗ ∈ I with y ∈ im(f ∗).

Since from now on we will use α-height-preserving isomorphisms with special prop-

erties, we will need a further

Definition 2.1.5. For α an ordinal or the symbol ∞ and modules M and N with

decomposition bases X, Y , resp., we set

prsX,Yα = {f : E → F :

(i) f is an α-height-preserving isomorphism,

(ii) E,F are finitely generated submodules of M,N , resp.,
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(iii) there exist generators x1, ..., xn of E, y1, ..., yn of F , resp. and a positive integer

k < ω such that x1, ..., xk ∈ X ∪ {0}, y1, ..., yk ∈ Y ∪ {0},

(iv) ∀i = 1, ..., n : f(xi) = yi,

(v) if k < n, then for i = k, ..., n − 1 the submodules Ei = 〈x1, ..., xi〉 and Fi =

〈y1, ..., yi〉 fulfill

(a) |Ei+1/Ei| = |Fi+1/Fi| = p,

(b) if |xi+1|M < α or |yi+1|N < α, then xi+1 is proper with respect to 〈X,Ei〉
and yi+1 is proper with respect to 〈Y, Fi〉}

Notice, that in (v)(b) the fact that |xi+1| < α or |yi+1| < α always implies both

inequalities, since f is α-height-preserving and maps xi+1 onto yi+1 with the conse-

quence that |xi+1|M = |yi+1|N .

It is clear that for two modules M and N with decomposition bases X, Y , resp.

prsX,Yβ ⊆ prsX,Yα , for ordinals α < β.

Also, each prsX,Yα is non-empty since it contains the map 0 7→ 0.

Now, Lemma 2.1.3 can be further extended to

Lemma 2.1.6. Let M and N be modules with decomposition bases X and Y , resp.,

such that w̃αM(β) = w̃αN(β) for all Ulm sequences β where α is some fixed ordinal or

the symbol ∞. Let X ′ and Y ′ be subordinates of X and Y as in Lemma2.1.3 and

assume that f ∈ prsX
′,Y ′

α . Then for every x ∈ X ′ (y ∈ Y ′, resp.) there is y ∈ Y ′

(x ∈ X ′, resp.) such that f extends to a map

f ′ : 〈E, x〉 → 〈F, y〉

with f ′ ∈ prsX
′,Y ′

α by sending x onto y.

Proof. We prove the assertion by induction on m = n − k. The case m = 0 was

shown in Lemma 2.1.3, so we assume that the claim is true for m ≥ 0 and suppose

f : Ek+m+1 = 〈x1, . . . , xk+m+1〉 → Fk+m+1 = 〈y1, . . . , yk+m+1〉

is a map in prsX
′,Y ′

α . Let x ∈ X ′ (y ∈ Y ′, resp.). By induction hypothesis, f �Ek+m :

Ek+m → Fk+m extends to a map

f ∗ : 〈Ek+m, x〉 → 〈Fk+m, y〉
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in prsX
′,Y ′

α with f ∗(x) = y ∈ Y ′ (f ∗−1(y) = x ∈ X ′, resp.). In case |xk+m+1| =

|yk+m+1| < α the element xk+m+1 is proper with respect to 〈Ek+m, x〉 and has order

p modulo 〈Ek+m, x〉, and the same is true for yk+m+1 and 〈Fk+m, y〉. With Lemma

2.1.1 the map f ∗ extends to an α-height-preserving isomorphism

f ′ : 〈Ek+m, x, xk+m+1〉 = 〈Ek+m+1, x〉 → 〈Fk+m, y, yk+m+1〉 = 〈Fk+m+1, y〉

by sending xk+m+1 onto yk+m+1, hence f ′ extends f . It is clear that xi+1 has order p

modulo 〈Ei, x〉 and yi+1 has order p modulo 〈Fi, x〉 for i = k, . . . , k +m. Therefore,

f ′ ∈ prsX
′,Y ′

α and the induction is complete.

Lemma 2.1.7. Let M and N be modules with nice decomposition bases X and Y ,

respectively, such that w̃αM(β) = w̃αN(β) for all Ulm sequences β where α is some

fixed ordinal or the symbol ∞. Let X ′ and Y ′ be subordinates of X and Y as in

Lemma 2.1.3 and assume that f : E → F is in prsX
′,Y ′

α . If x ∈M \ E and px ∈ E,

then f extends to a map f ∗ : E∗ → F ∗ in prsX
′,Y ′

α for which there is an element

x∗ ∈M that is proper with respect to 〈X ′, E∗〉 and has order p modulo E∗ such that

〈E∗, x〉 = 〈E∗, x∗〉 and 〈X ′, E∗〉 = 〈X ′, E〉.

Proof. Since X ′ is a nice decomposition basis for M and finite extensions of nice

submodules are nice, 〈X ′, E〉 is a nice submodule of M and contains therefore an

element a such that x∗ = x+a is proper with respect to 〈X ′, E〉. There are elements

x∗1, . . . , x
∗
s ∈ X ′ such that E∗ = 〈E, x∗1, . . . , x∗s〉 contains both a and px. By Lemma

2.1.6, f has an extension f ∗ : E∗ → F ∗ in prsX
′,Y ′

α . Then 〈E∗, x〉 = 〈E∗, x∗〉,
〈X ′, E∗〉 = 〈X ′, E〉, and x∗ is proper with respect to E∗ and has order p modulo E∗.

The next result establishes a connection between proper elements of a module and

the relative Ulm-Kaplansky invariants:

Lemma 2.1.8. Let N be a submodule of a module M and suppose x ∈M is proper

with respect to N and has height β 6=∞. Then:

(i) If |px| > β + 1, there is an element y ∈ pβ+1M such that x− y ∈ pβM [p] and

x− y /∈ N + pβ+1M .

(ii) If x has order p modulo N , then uNp (β,M) = u
〈N,x〉
p (β,M)+1 and uNp (α,M) =

u
〈N,x〉
p (α,M) if α 6= β.
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Proof. (i): If |px| > β+1, then px = py for some y ∈ pβ+1M , hence x−y ∈ pβM [p].

For any a ∈ N we have

|x− y + a| = min{|x+ a|, |y|} = |x+ a| ≤ β

therefore x− y /∈ N + pβ+1M .

(ii): Let N1 = 〈N, x〉. If the coset x + N contains an element x′ with |x′| = β and

|px′| > β + 1, we replace x by x′.

Case I: |px| > β + 1. By (i), there exists an element y ∈ pβ+1M such that x − y ∈
pβM [p] and x− y 6∈ N + pβ+1M . Then

x− y /∈ N(β) = pβM [p] ∩ (N + pβ+1M)

and therefore N1(β)/N(β) = 〈N, x− y〉(β)/N(β) ∼= Z(p). But then

dim(pβM [p]/N(β)) = dim(
pβM [p]/N(β)

N1(β)/N(β)
) + dim(N1(β)/N(β))

shows that uNp (β,M) = uN1
p (β,M) + 1. If α < β we have x ∈ pβM ⊆ pα+1M which

implies N1(α) = N(α). Now assume that for some α > β there exists an element

in N1(α) \ N(α). Then we can find elements a ∈ N and g ∈ pα+1M such that

a+ kx+ g ∈ pαM [p] for some positive integer k < p. But then there are integers m

and n such that mk + np = 1, hence ma + x− npx ∈ pαM . Since x is proper with

respect to N , this yields

α ≤ |ma+ x− npx| ≤ |x| = β,

a contradiction. It follows that N1(α) = N(α). Therefore uAp (α,M) = uA1
p (α,M) if

α 6= β.

Case II: |px| = β + 1. Assume N1(β) \N(β) is non-empty. As before, we can find a

positive integer k < p and elements a ∈ N and g ∈ pβ+1M such that a + kx + g ∈
pβM [p], so there are integers m and n satisfying ma+ x−npx+mg ∈ pβM [p]. But

then β ≤ |ma+ x| ≤ |x|, thus ma+ x has height β. Moreover,

|p(ma+ x)| = |np2x−mpg| > β + 1,

so we can replace x by ma + x and are in Case I. If α < β or α > β, we conclude

that N1(α) = N(α) as in the previous case, hence we obtain uAp (α,M) = uA1
p (α,M)

if α 6= β.
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Lemma 2.1.9. Let M and N be modules with nice decomposition bases X and

Y , resp., such that w̃αM(β) = w̃αN(β) for all Ulm sequences β where α is some fixed

ordinal or the symbol∞, and let X ′ and Y ′ be subordinates of X and Y as in Lemma

2.1.3. Assume that f : E → F is a map in prsX
′,Y ′

α . Let A = 〈X ′〉 and B = 〈Y ′〉
and suppose γ is an ordinal < α. Then there is m < ω such that

uAp (γ,M) = uA+Ep (γ,M) +m and uBp (γ,N) = uB+F
p (γ,N) +m.

In particular: If ûAp (γ,M) = ûBp (γ,N), then ûA+Ep (γ,M) = ûB+F
p (γ,N).

Proof. If E ⊆ A, then F ⊆ B and there is nothing to show. Now assume

that E 6⊆ A. Then F 6⊆ B and we write E = 〈x1, . . . , xk, xk+1, . . . , xn〉 and

F = 〈y1, . . . , yk, yk+1, . . . , yn〉 according to Definition 2.1.5. Let Ai = 〈A, x1, . . . , xi〉
and Bi = 〈B, y1, . . . , yi〉. Then every coset xi+1 +Ai has an element x′i+1 of maximal

height since Ai is nice in M , so there are a1, . . . , as ∈ X ′ such that

Ei = 〈x1, . . . , xi, a1, . . . , as〉

contains xi+1 − x′i+1 for all i = k, . . . , n − 1. By Lemma 2.1.6, there are elements

b1, . . . , bs ∈ Y ′ such that f extends to a map

f ′ : 〈E, a1, . . . , as〉 → 〈F, b1, . . . , bs〉

in prsX
′,Y ′

α by sending each ai onto bi. Letting Fi = 〈y1, . . . , yi, b1, . . . , bs〉 we have

〈Ei, x′i+1〉 = 〈Ei, xi+1〉 = Ei+1 and 〈Fi, f ′(x′i+1)〉 = 〈Fi, yi+1〉 = Fi+1

and x′i+1 is proper with respect to Ei for all i = k, . . . , n− 1.

Suppose |x′i+1|M ≤ γ. Since γ < α and f ′(Ei+1) = Fi+1, we have |f ′(x′i+1)|N =

|x′i+1|M and f ′(x′i+1) is proper with respect to Fi. If |x′i+1|M > γ, then |f ′(x′i+1)|N > γ

in which case Ei + pγ+1M = 〈Ei, x′i+1〉 + pγ+1M and Fi + pγ+1N = 〈Fi, f ′(x′i+1)〉 +

pγ+1N , therefore

uEip (γ,M) = u
〈Ei,x′i+1〉
p (γ,M) and uFip (γ,N) = u

〈Fi,f ′(x′i+1)〉
p (γ,N).

Now we apply Lemma 2.1.8(ii) repeatedly and obtain uAp (γ,M) = uA+Ep (γ,M) +

m and uBp (γ,N) = uB+F
p (γ,N) +m for some 0 ≤ m ≤ n− k.

Next we prove another generalization of a result by Barwise and Eklof. They showed

for p-groups G and H([BE], Lemma A.3.2.):
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Lemma 2.1.10 (Barwise/Eklof). If ν is an ordinal with ω(ν + 1) ≤ l(G) and

ω(ν + 1) ≤ l(H) and f : S → T , where S and T are finitely generated subgroups of

G and H resp., is in prsG,Hω(ν+1) then the following holds:

For each a ∈ G with |a|G ≥ ων there exists b ∈ H and an extension f ′ of f with

f ′ : 〈S, a〉 → 〈T, b〉 and f ′ ∈ prsG,Hων .

which can be generalized to

Lemma 2.1.11. Let M and N be modules with decomposition bases X and Y ,

respectively, and let ν be an ordinal such that l(tN) ≥ ω(ν+ 1). Let f : E → F be a

map in prsX,Yω(ν+1). If x ∈ M \ E with pr+1x ∈ E for some r < ω and |x| ≥ ων, then

f extends to a map

f ′ : 〈E, x〉 → 〈F, y〉

in prsX,Yων by sending x onto y.

Proof. Let r be the smallest integer ≥ 0 such that pr+1x ∈ E. Then |pr+1x| ≥
ων + r + 1, hence |f(pr+1x)| ≥ ων + r + 1, so we can write f(pr+1x) = pr+1y0

for some y0 ∈ pωνN . If pry0 /∈ F we let y = y0. Now suppose pry0 ∈ F and

let B be a basic subgroup of pων+r(tN) (see [F] Vol. I, p. 139). It is clear that

B[p] ⊆ (pων+rN)[p]. Assume the latter group is finite. Then B[p] is finite, thus B

is finite and we can write pων+r(tN) = B ⊕ D for some divisible group D (see [F]

Theorem 27.5), hence l(tN) < ω(ν + 1), a contradiction. Consequently, (pων+rN)[p]

is an infinite group and therefore pων+rN [p] 6⊆ F [p]. Then there is y1 ∈ pωνN such

that pry1 /∈ F and pr+1y1 = 0. Letting y = y0 + y1 we obtain

|y| ≥ ων, pry /∈ F and pr+1y = f(pr+1x).

By Lemma 2.1.1, f ∈ prsX,Yων extends to an ων-height-preserving isomorphism

f ′ : 〈E, x〉 → 〈F, y〉

by sending x onto y. Since f ′ ∈ prsX,Yων , the proof is complete.

The following result by Warfield will be needed (see [War, Lemma 5.1]).

Lemma 2.1.12 (Warfield). Let M be a module possessing a decomposition basis X.

Then X has a subordinate X ′ such that for every ordinal α, u
M,〈X′〉
p (α) is finite or

up(α,M) = u
〈X′〉
p (α,M).
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According to [War], a subordinate fulfilling the properties stated in Lemma 2.1.12

is called lower decomposition basis. Note that u
M,〈X′〉
p (α) corresponds to the

dimension of Iα([X ′]) in Warfield’s notation.

For the next lemma observe that equation (1.1) also holds for the -̂generalized car-

dinals.

Lemma 2.1.13. Let M and N be modules with nice decomposition bases X and

Y , respectively, and let α be a limit ordinal or the symbol ∞. Suppose ûp(δ,M) =

ûp(δ,N) for all ordinals δ < α and w̃αM(β) = w̃αN(β) for all Ulm sequences β. Then

there exist subordinates X ′ and Y ′ of X and Y , respectively, such that every map

f : E → F in prsX
′,Y ′

α satisfies the following conditions:

(i) If x ∈ M \ E with px ∈ E and ∞ 6= sup{|x + a| : a ∈ 〈X ′, E〉} < α, then f

extends to f ′ ∈ prsX
′,Y ′

α such that x ∈ dom(f ′).

(ii) If y ∈ N \ F with py ∈ F and ∞ 6= sup{|y + b| : b ∈ 〈Y ′, F 〉} < α, then f

extends to f ′ ∈ prsX
′,Y ′

α such that y ∈ im(f ′).

Proof. First, we show that there exist subordinates X ′ and Y ′ of X and Y , respec-

tively, such that 〈X ′〉 ≡hα 〈Y ′〉 and û
〈X′〉
p (δ,M) = û

〈Y ′〉
p (δ,N) for all ordinals δ < α.

Consider the equation

ûp(δ,M) = ûM,〈X〉
p (δ) + û〈X〉p (δ,M)

and note that u
M,〈X〉
p (δ) is the number of elements in X whose Ulm sequences have

a gap at δ ([War] p. 341). By Lemma 2.1.12, we can find subordinates X∗ of X and

Y ∗ of Y such that for every ordinal δ < α the following is true: If both u
M,〈X∗〉
p (δ,M)

and u
N,〈Y ∗〉
p (δ) are infinite, then

û〈X
∗〉

p (δ,M) = û〈Y
∗〉

p (δ,N).

Notice that this statement remains true after replacing X∗ and Y ∗ by subordinates

X ′ and Y ′ as in Lemma 2.1.3 Then for every ordinal δ < α, X ′ and Y ′ have the

same number of elements whose Ulm sequences have a gap at δ whenever u
M,〈X′〉
p (δ)

or u
N,〈Y ′〉
p (δ) is finite. Setting A = 〈X ′〉 and B = 〈Y ′〉, we obtain A ≡hα B and

ûAp (δ,M) = ûBp (δ,N)

for all ordinals δ < α. The modules A + E and B + F are nice in M and N ,

respectively, hence in (i) and (ii) of the lemma, “sup” can be replaced by “max”.
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Let f : E = 〈x1, . . . , xn〉 → F = 〈y1, . . . , yn〉 be a map in prsα = prsX
′,Y ′

α and

suppose x is an element of M \ E with px ∈ E and

∞ 6= β = max{|x+ a| : a ∈ A+ E} < α.

If x ∈ A+E, then Lemma 2.1.6 yields an extension f ′ ∈ prsα of f with x ∈ dom(f ′).

Now suppose x 6∈ A + E. Then x has order p modulo A + E. By Lemma 2.1.7,

f extends to a map f ∗ : E∗ → F ∗ in prsα for which there is an element x∗ ∈ M

such that x∗ is proper with respect to A+E∗ and has order p modulo E∗, 〈E∗, x〉 =

〈E∗, x∗〉 and A + E∗ = A + E. If possible, we choose f ∗ ∈ prsα and x∗ so that

|px∗| > |x∗|+ 1.

To simplify notation we now write x for this element x∗ and f : E → F for the

function f ∗ : E∗ → F ∗. Then ∞ 6= |x| = β < α and px ∈ pβ+1M which implies

f(px) ∈ pβ+1N .

Case I: |px| > β + 1. By Lemma 2.1.8(i), there exists an element x′ ∈ pβ+1M such

that x − x′ ∈ pβM [p] and x − x′ /∈ A + E + pβ+1M , thus ûA+Ep (β,M) 6= 0. Since

β < α, we can apply Lemma 2.1.9 and obtain ûB+F
p (β,N) 6= 0. Then there exists

an element z ∈ pβN [p] with z 6∈ B + F + pβ+1N , hence |z| = β and |z + h| ≤ β for

all h ∈ B + F . Since α is a limit ordinal or α = ∞ we have β + 2 < α, so there is

an element w ∈ pβ+1N such that f(px) = pw. Then

|w + z + h| = min{|w|, |z + h|} ≤ β = |w + z|

for all h ∈ B + F , hence w + z is proper with respect to B + F . Notice that

w + z /∈ B + F , otherwise |w| = |z − (w + z)| ≤ β by the previous observation,

contradicting the fact that |w| ≥ β + 1. By Lemma 2.1.1 we can extend f to an

α-height-preserving isomorphism

f ′ : 〈E, x〉 → 〈F,w + z〉

with f ′(x) = w + z. Clearly, f ′ ∈ prsα.

Case II: |px| = β + 1. Then β + 1 6= ∞, therefore f(px) = pw for some w ∈ N

with |w| = β. Suppose there exists an element z ∈ B + F such that |w + z| ≥
β + 1. Then |z| = β and there are elements yn+1, . . . , ym ∈ Y ′ such that z ∈ F ′ =

〈F, yn+1, . . . , ym〉. By Lemma 2.1.6, there are xn+1, . . . , xm ∈ X ′ so that f extends

to a map

f : E ′ = 〈E, xn+1, . . . , xm〉 → F ′
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in prsα. Letting c = f
−1

(z) we have |x+ c| ≥ β = max{|x+ a| : a ∈ A+E}. Notice

that c ∈ A+E ′ = A+E, therefore x+c is proper with respect to A+E ′. Since x+c

has order p modulo E ′ and |p(w+z)| > β+1 yields |p(x+c)| > β+1 we can replace

x by x + c and are in Case I. Therefore we may assume that |w + z| ≤ β = |w| for

all z ∈ B + F , i.e., w is proper with respect to B + F . By Lemma 2.1.1, f extends

to an α-height-preserving isomorphism

f ′ : 〈E, x〉 → 〈F,w〉

by mapping x to w. Again, f ′ ∈ prsα. The second assertion follows immediately,

hence the proof is complete.

Theorem 2.1.14. Let M and N be reduced modules with nice decomposition bases.

If ûp(δ,M) = ûp(δ,N) for all ordinals δ and w̃M(β) = w̃N(β) for all Ulm sequences

β, then M ≡∞ N .

Proof. Let prsX
′,Y ′
∞ be as in Lemma 2.1.13 and put Iδ = prsX

′,Y ′
∞ for every ordinal

δ. Since M and N are reduced, we can apply Lemma 2.1.13. Then Theorem 1.2.1

shows that M ≡∞ N .

The following fact will be useful:

Lemma 2.1.15. Let M be a module. If l(tM) = α, then l(M) ≤ α + ω.

We are now able to prove our main result of this section:

Theorem 2.1.16. Let M and N be modules with nice decomposition bases and let

δ be an ordinal. Suppose

(i) ûp(α,M) = ûp(α,N) for all ordinals α < ωδ;

(ii) if l(tM) < ωδ, then ûp(∞,M) = ûp(∞, N);

(iii) w̃ωνM (β) = w̃ωνN (β) for all ordinals ν ≤ δ and all Ulm sequences β.

Then M ≡δ N . The converse holds if δ = ωγ where γ is a limit ordinal and if

w̃ωδM (β) = w̃ωδN (β) and (wωνM (β) ≤ ℵ0 ⇔ wωνN (β) ≤ ℵ0) for all ordinals ν < δ and all

Ulm sequences β.

Proof. Let M and N be modules with nice decomposition bases X and Y , respec-

tively, satisfying (i)-(iii).
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Case I: l(tM) < ωδ (this implies l(tN) < ωδ by (i)). We show that in this case

M ≡∞ N . By Lemma 2.1.15, there is ν < δ such that l(M) ≤ ω(ν + 1), hence

wM(β) = w
ω(ν+1)
M (β) for all Ulm sequences β, and a corresponding statement is true

for N . Now write ∞ = (∞,∞, . . .),

X = X∞ ∪̇Xr and Y = Y∞ ∪̇Yr

with X∞ = {x ∈ X : u(x) ∼ ∞} and Y∞ = {y ∈ Y : u(y) ∼ ∞}. Then

wM(∞) = |X∞| and wN(∞) = |Y∞|,

so by our remarks on direct sums in Section 1.2 we obtain

p∞M ∼=
⊕

wM (∞)

Q⊕
⊕

up(∞,M)

Z(p∞) ≡∞
⊕
wN (∞)

Q⊕
⊕

up(∞,N)

Z(p∞) ∼= p∞N.

By [F, Theorem 21.2], there are reduced modules Mr and Nr such that M = p∞M⊕
Mr, N = p∞N ⊕ Nr, 〈Xr〉 ⊆ Mr, and 〈Yr〉 ⊆ Nr. Then Xr and Yr are nice

decomposition bases for Mr and Nr, respectively. We have wMr(β) = 0 = wNr(β)

for any Ulm sequence β ∼ ∞, and

ŵMr(β) = ŵM(β) = ŵN(β) = ŵNr(β)

whenever β 6∼ ∞. Since ûp(α,Mr) = ûp(α,M) = ûp(α,N) = ûp(α,Nr) for all

ordinals α, Theorem 2.1.14 yields Mr ≡∞ Nr. Therefore M ≡∞ N .

Case II: l(tM) ≥ ωδ (which implies l(tN) ≥ ωδ). Let X ′ and Y ′ be subordinates of

X and Y , respectively, as in Lemma 2.1.13 For any ordinal ν ≤ δ we define Iν to be

the set of all maps f : E → F in prsων = prsX
′,Y ′

ων . For ν + 1 ≤ δ let

f : E → F

be a map in Iν+1 and suppose that x is an element of M \ E. We will extend f to

a map f ′ ∈ Iν with x ∈ dom(f ′).

Let A = 〈X ′〉 and let r be the smallest integer ≥ 0 such that pr+1x ∈ A+ E. Then

w̃
ω(ν+1)
M (β) = w̃

ω(ν+1)
N (β) for all Ulm sequences β because ν + 1 ≤ δ. Therefore we

can apply Lemma 2.1.6 to extend f to a map f ∗ : E∗ → F ∗ in prsω(ν+1) such that

pr+1x ∈ E∗. To simplify notation, we write f : E → F for f ∗ : E∗ → F ∗.
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Suppose |x| ≥ ων. Then by Lemma 2.1.11, f extends to some map f ′ : 〈E, x〉 →
〈F, y〉 in Iν . Now assume |x| < ων.

Case IIa: Suppose that for all m = 0, . . . , r we have

max{|pmx+ z| : z ∈ 〈A+ E, pm+1x〉} < ων.

Then we use Lemma 2.1.13 repeatedly to obtain an extension f ′ of f in Iν+1 ⊆ Iν

with x ∈ dom(f ′).

Case IIb: Now assume that there exists 0 ≤ m ≤ r and an element z ∈ 〈A +

E, pm+1x〉 such that |pmx + z| ≥ ων. Let m be the smallest such integer. Using

Lemma 2.1.6 again we extend f to a map

f : E → F

in Iν+1 with z ∈ 〈E, pm+1x〉. By Lemma 2.1.11, f extends to a map f
′ ∈ Iν with

domain 〈E, pmx + z〉. Now write z = e + λpm+1x where e ∈ E and λ ∈ Z(p). Then

(1 + λp)pmx = pmx+ z− e ∈ 〈E, pmx+ z〉. Since 1 + λp is a unit in the ring Z(p), it

follows that 〈E, pmx〉 = 〈E, pmx + z〉. Finally, we use Lemma 2.1.13 repeatedly to

extend f
′
to some map f ′ ∈ Iν whose domain contains the elements pm−1x, . . . , px, x.

In view of Lemma 2.1.13(ii) the conditions of Theorem 1.2.1(ii) are satisfied and we

conclude that M ≡δ N . The last part of the theorem follows from Lemma 1.2.5.

2.2 Groups with partial decomposition bases

The results in this section have already been published in [JLLS].

For a generalized classification theorem for groups, Jacoby [J1] introduced a gener-

alization of the concept of a decomposition basis:

Definition 2.2.1. Let R be an arbitrary principal ideal domain and G an R-module.

A collection C of subsets of G is called partial decomposition basis for G, if

(i) C 6= ∅,

(ii) all elements in C are finite,

(iii) each element X ∈ C is a decomposition set and
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(iv) for X ∈ C and x ∈ G there is Y ∈ C with X ⊆ Y and rx ∈ 〈Y 〉 for some

0 6= r ∈ R.

If X is a decomposition basis for G, then the collection of all finite subsets of X

is a partial decomposition basis for G. For Z(p)-modules, the following is a direct

consequence:

Lemma 2.2.2. Let G be a Z(p)-module with partial decomposition basis. Then G

also possesses a partial decomposition basis C with

(i) X ∈ C, X ′ ⊆ X ⇒ X ′ ∈ C and

(ii) {x1, ..., xn} ∈ C, a1, ..., an ∈ Z(p) \ {0} ⇒ {a1x1, ..., anxn} ∈ C.

Further investigating the idea of α-initially equivalent Ulm sequences as considered

in Section 2.1 we will introduce an equivalent definition of equivalence related to

sequences which start right from the beginning with coinciding entries.

Definition 2.2.3. Let α be an ordinal.

(i) Two Ulm sequences β and η are called equal up to α, β =α η, if min{βi, α} =

min{ηi, α} for all i < ω.

(ii) If β =α η, their equivalence classes [β] and [η] are called α-equivalent, [β] ∼α

[η].

(iii) If [β] ∼α [η], any Ulm sequences β
′ ∈ [β] and η′ ∈ [η] are called α-equivalent,

too, and we also write β
′ ∼α η′.

We have β ∼α η if and only if [β] ∼α [η]. We set

ŵαG(β) = min{
∑
η∼αβ

ŵG(η), ω}

and can achieve a classification of Z(p)-modules with partial decomposition bases,

which is the main result of [JL]:

Theorem 2.2.4 (Jacoby/Loth). Let G and H be Z(p)-modules with partial decom-

position bases and δ an ordinal. If

(i) û(α,G) = û(α,H) for all α < ωδ,

(ii) l(tG) < ωδ implies û(∞, G) = û(∞, H) and
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(iii) ŵ
ω(ν+1)
G (β) = ŵ

ω(ν+1)
H (β) for all Ulm sequences β and ordinals ν < δ,

then G ≡δ H.

For A = [a(p,i)] and B = [b(p,i)] two Ulm matrices and α an ordinal, we call A and B

equal up to α and write A =α B, if min{a(p,i), α} = min{b(p,i), α} for all primes p

and i < ω. We will define a further equivalence relation, this time for compatibility

classes of Ulm matrices. We call two compatibility classes c and c′ of Ulm matrices

α-compatible, c ∼α c′, if there are A ∈ c and B ∈ c′ such that A =α B. Any Ulm

matrices C ∈ c and C ′ ∈ c′ are then also called α-compatible and we write C ∼α C ′,
too. Notice that if any two Ulm matrices are α-compatible, their respective p-rows

are equal up to α for almost all primes p.

For any group G with partial decomposition basis, ordinal α, prime p, Ulm sequence

β and compatibility class c of Ulm matrices we set

ŵαG(p, β, c) = min{
∑

η∼αβ,c′∼αc

ŵG(p, η, c′), ω}.

For a finite decomposition set X of G and 〈X〉0 = {x ∈ G : ∃0 6= r ∈ R : rx ∈ 〈X〉}
we then have

ŵα〈X〉0(p, β, c) =
∑

η∼αβ,c′∼αc

|{x ∈ X : U(x) ∈ c′ and up(x) ∼α η}|

= |{x ∈ X : [U(x)] ∼α c and up(x) ∼α β}|.

We will now establish some facts on the cardinals ŵαG(p, β, c), similar to the results

in [J1].

Lemma 2.2.5. Suppose G is a group with partial decomposition basis C. If X ∈ C,

then we have: ŵαG(p, β, c) ≥ ŵα〈X〉0(p, β, c) for any ordinal α, compatibility class c of

Ulm matrices, prime p and Ulm sequence β.

Proof. The setX is a decomposition basis of 〈X〉0. Since ŵG(p, η, c′)≥ ŵ〈X〉0(p, η, c′)
for all c′, p, η, we obtain ŵαG(p, β, c) ≥ ŵα〈X〉0(p, β, c).

We will need a result from [J1]:

Theorem 2.2.6 (Jacoby). Let G be a group with partial decomposition basis C, p

a prime, β an Ulm sequence and c a compatibility class of Ulm matrices such that

ŵG(p, β, c) ≥ n. For any partial decomposition basis D for G and Y ∈ D there exists

Y ′ ∈ D with Y ⊆ Y ′ and Y ′ contains elements y1, . . . , yn such that up(yi) ∼ β and

U(yi) ∈ c for all i = 1, . . . , n.
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The next result shows that the cardinals ŵαG(p, β, c) are independent of the choice

of the partial decomposition basis:

Theorem 2.2.7. Let G be a group with partial decomposition basis C, α an ordinal

and n a positive integer. If ŵαG(p, β, c) ≥ n and Y ∈ C, then there exists Y ′ ∈ C
such that Y ⊆ Y ′ and Y ′ contains elements y1, . . . , yn such that [U(yi)] ∼α c and

up(yi) ∼α β for all i = 1, . . . , n.

Proof. Letting E = {(η, c′) : ŵG(p, η, c′) 6= 0}, we have

ŵαG(p, β, c) = min{
∑

η∼αβ,c′∼αc,(η,c′)∈E

ŵG(p, η, c′), ω}.

Let (η, c′) ∈ E and suppose ŵG(p, η, c′) ≥ k. By Theorem 2.2.6 there is Y ′ ∈ C such

that Y ⊆ Y ′ and Y ′ has k elements x with U(x) ∈ c′ ∼α c and up(x) ∼α η ∼α β.

Repeat this for all elements in E until at least n such elements have been collected.

Corollary 2.2.8. Let G be a group with partial decomposition basis C, p a prime,

α an ordinal, β an Ulm sequence and c a compatibility class of Ulm matrices. Then

ŵαG(p, β, c) is the largest integer n, if it exists, such that there are X ∈ C and

x1, . . . , xn ∈ X such that [U(xi)] ∼α c and up(xi) ∼α β for all i = 1, . . . , n. If no

such n exists, ŵαG(p, β, c) = ω.

Proof. Suppose there is a largest integer n such that there is X ∈ C containing

n elements x satisfying [U(x)] ∼α c and up(x) ∼α β. Then by Theorem 2.2.7,

ŵαG(p, β, c) ≤ n. On the other hand, ŵαG(p, β, c) ≥ ŵα〈X〉0(p, β, c) = n by Lemma

2.2.5 and Theorem 2.2.7. If no such n exists, ŵαG(p, β, c) = ω by Lemma 2.2.5.

Corollary 2.2.9. Let G and H be groups with partial decomposition bases C and

D, respectively, p a prime, α an ordinal, β an Ulm sequence and c a compatibility

class of Ulm matrices. Suppose ŵαG(p, β, c) = ŵαH(p, β, c), X ∈ C, Y ∈ D and

ŵα〈X〉0(p, β, c) > ŵα〈Y 〉0(p, β, c).

Then there exists Y ′ ∈ D such that Y ⊆ Y ′ and there is y ∈ Y ′ \ Y such that

[U(y)] ∼α c and up(y) ∼α β.

Proof. Let n = ŵα〈Y 〉0(p, β, c). Then

ŵαH(p, β, c) = ŵαG(p, β, c) ≥ ŵα〈X〉0(p, β, c) > ŵα〈Y 〉0(p, β, c) = n.
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By Theorem 2.2.7, there is Y ′ ∈ D such that Y ⊆ Y ′ and Y ′ contains n+1 elements

y such that [U(y)] ∼α c and up(y) ∼α β. Since Y contains only n such elements,

one of them is in Y ′ \ Y .

The following lemma will be needed:

Lemma 2.2.10 (Stanton). Let G be a group with decomposition basis X, p a prime

and x1, x2 ∈ X with α-compatible Ulm matrices. Then there are elements y1, y2 ∈
〈X〉 such that up(y1) =α up(x2), up(y2) =α up(x1) and uq(y1) =α uq(x1), uq(y2) =α

uq(x2) for all primes q 6= p. The set Y = (X \{x1, x2})∪{y1, y2} is a decomposition

basis for G and 〈X〉 = 〈Y 〉.

Stanton proved this for coinciding Ulm sequences, not just for sequences equal up

to α. The proof applies just as well in this case.

The following fact was also proved in [J1]:

Lemma 2.2.11 (Jacoby). Let G be a group with (some) partial decomposition basis.

Then G has a partial decomposition basis C such that

(i) X ∈ C, X ′ ⊆ X ⇒ X ′ ∈ C;

(ii) X ∈ C, 〈X〉 = 〈Y 〉, Y finite decomposition set ⇒ Y ∈ C;

(iii) {x1, . . . , xn} ∈ C, a1, . . . , an ∈ Z⇒ {a1x1, . . . , anxn} ∈ C.

The proof takes the union of a chain of partial decomposition bases for G that

alternately satisfy conditions (i) and (iii) and condition (ii).

Lemma 2.2.12. Let G and H be groups with partial decomposition bases C and D
satisfying conditions (i) and (ii) of Lemma 2.2.11. Suppose α is an ordinal such

that ŵαG(p, β, c) = ŵαH(p, β, c) for every prime p, Ulm sequence β and compatibility

class c of Ulm matrices. Assume X ∪ {x} ∈ C and Y ∈ D such that

ŵα〈X〉0(p, β, c) = ŵα〈Y 〉0(p, β, c)

for all p, β and c. Then there exists an element y ∈ H such that Y ∪ {y} ∈ D and

ŵα〈X∪{x}〉0(p, β, c) = ŵα〈Y ∪{y}〉0(p, β, c)

for all p, β and c. In fact, U(x) ∼α U(y) and up(x) ∼α up(y) for all primes p.
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Proof. Suppose x ∈ G\X and let p0 a prime, β0 an Ulm sequences with up0(x) ∼ β0

and c0 be the compatibility class containing U(x). By Corollary 2.2.8,

ŵα〈X∪{x}〉0(p0, β0, c0) = ŵα〈X〉0(p0, β0, c0) + 1 > ŵα〈Y 〉0(p0, β0, c0).

By Corollary 2.2.9 and condition (i) of Lemma 2.2.11 there is an element z ∈ H \Y
satisfying

(∗) Y ∪ {z} ∈ D, U(z) ∼α c0 and up0(z) ∼α β0.

Then U(x) and U(z) are α-compatible and up(x) and up(z) are α-equivalent for all

but finitely many primes p, say, p1, . . . , pn. We will show by induction on n that z

can be replaced by an element y ∈ H satisfying (∗) such that up(x) and up(y) are

α-equivalent for all primes p. For n = 0 there is nothing to show, so assume the

assertion is true for n − 1 and let βn = upn(x). By our assumption, upn(z) 6∼α βn
and therefore

ŵα〈Y ∪{z}〉0(pn, βn, c0) = ŵα〈Y 〉0(pn, βn, c0) < ŵα〈X∪{x}〉0(pn, βn, c0).

By Corollary 2.2.9, there is z′ ∈ H such that Y ∪ {z, z′} ∈ D, [U(z′)] ∼α c0 and

upn(z′) ∼α βn. Now we apply Lemma 2.2.10 to the group M = 〈Y ∪ {z, z′}〉0

with decomposition basis Y ∪ {z, z′}, elements z, z′ and prime pn. Then there are

elements y, y′ ∈ 〈Y ∪ {z, z′}〉 such that Y ∪ {y, y′} is a decomposition basis for

M , 〈Y, y, y′〉 = 〈Y, z, z′〉 and upn(y) =α upn(z′), upn(y′) =α upn(z) and uq(y) =α

uq(z), uq(y
′) =α uq(z

′) whenever q 6= pn. Notice that condition (∗) holds for y as

Y ∪ {y} ∈ D by conditions (i) and (ii) of Lemma 2.2.11, y and z have α-compatible

Ulm matrices and up0(y) = up0(z) up to α. To complete the induction, we need

to verify that up(x) and up(y) are α-equivalent for all but n − 1 primes p. Indeed,

uq(y) = uq(z) ∼α uq(x) whenever q /∈ {p1, . . . , pn}, and upn(y) = upn(z′) ∼α upn(x).

This completes the proof.

We will need two further results. The first one is again from [J1]:

Lemma 2.2.13 (Jacoby). Let G be a group with decomposition basis X and S a

finitely generated subgroup of G such that S ∩ 〈X〉 = 〈S ∩ X〉. If y ∈ X (y /∈ S),

then there is a positive integer n satisfying |mny + s|p = min{|mny|p, |s|p} for all

m ∈ Z, s ∈ S and primes p.

The second one is Warfield’s local-global lemma [War]:

Lemma 2.2.14 (Warfield). Let A and B be abelian groups, S and T subgroups such

that A/S and B/T are torsion, and f : S → T a homomorphism. Suppose for every
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prime p, the induced map fp : S ⊗ Z(p) → T ⊗ Z(p) extends to a homomorphism

g(p) : A ⊗ Z(p) → B ⊗ Z(p). Then f extends to a homomorphism g : A → B such

that gp = g(p) for all primes p. If each map g(p) is injective (bijective), then g is

injective (bijective).

The main result of this section then is the following generalization of Theorem 2.2.4:

Theorem 2.2.15. Let G and H be groups with partial decomposition bases C and

D, respectively, and let δ be an ordinal. Suppose

(i) ûp(α,G) = ûp(α,H) for all primes p and α < ωδ;

(ii) if l(tGp) < ωδ, then ûp(∞, G) = ûp(∞, H);

(iii) ŵ
ω(ν+1)
G (p, β, c) = ŵ

ω(ν+1)
H (p, β, c) for every prime p, Ulm sequence β, compati-

bility class c of Ulm matrices and ν < δ.

Then G ≡δ H.

Proof. First, let C and D be the partial decomposition bases for G and H as

provided by Lemma 2.2.11. For ν ≤ δ let Iν be the set of all maps f : S → T with

associated sets X ∈ C, Y ∈ D such that f(x) = Y which fulfill

(i) S and T are finitely generated subgroups of G and H, resp.;

(ii) f is an ων-height-preserving isomorphism;

(iii) X ⊆ S ⊆ 〈X〉0 and Y ⊆ T ⊆ 〈Y 〉0;

(iv) for every x ∈ X, U(x) and U(f(x)) are ων-compatible.

To prove that G ≡δ H, we will show that the system {Iν : ν ≤ δ} satisfies condition

(ii) of Karp’s Theorem 1.2.1. Suppose f ∈ Iν+1 where ν < δ, say, f : S → T with

associated X ∈ C, Y ∈ D, and let x ∈ G \ S. To find an extension g ∈ Iν of f with

x ∈ dom(g), we will show

(A) If x has a multiple in S, then there is such a map g ∈ Iν
and

(B) If X∪{x} ∈ C, then there is a map g′ ∈ Iν+1 extending f such that rx ∈ dom(g′)

for some positive integer r.

Then repeated application of (B) followed by an application of (A) yields an exten-

sion g ∈ Iν of f with x ∈ dom(g). To prove (A), suppose rx ∈ S for some positive
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integer r. In order to construct the map g, we will apply Warfield’s Lemma 2.2.15

to the groups A = 〈S, x〉 and B = T 0, so let p be a prime and consider the induced

map f ∗p : S∗p → T ∗p . Since the natural map G→ Gp preserves p-heights, the modules

Gp and Hp have induced partial decomposition bases. Let α < ωδ, ν < δ and β an

Ulm sequence. Then ûp(α,Gp) = ûp(α,Hp) by [F2, Part 2, Lemma 16].

Let C be a set of representatives of the ω(ν + 1)-compatibility classes, one for each

class. Since the natural map G → Gp preserves p-heights, repeated application of

2.2.6 yields ŵGp(β) = min{
∑

c ŵG(p, β, c), ω}, for G a group with partial decompo-

sition basis, p a prime and β an equivalence class of Ulm sequences. The summation

is over all compatibility classes c for which wG(p, β, c) 6= 0. So

ŵ
ω(ν+1)
Gp

(β) = min{
∑

η∼ω(ν+1)β

ŵGp(η), ω}

= min{
∑

η∼ω(ν+1)β

min{
∑
c

ŵG(p, η, c), ω}, ω}

= min{
∑

η∼ω(ν+1)β

∑
c∈C

∑
c′∼ω(ν+1)c

ŵG(p, η, c′), ω}

= min{
∑
c∈C

(
∑

η∼ω(ν+1)β

∑
c′∼ω(ν+1)c

ŵG(p, η, c′)), ω}

= min{
∑
c∈C

ŵ
ω(ν+1)
G (p, β, c), ω}

= min{
∑
c∈C

ŵ
ω(ν+1)
H (p, β, c), ω} = ŵ

ω(ν+1)
Hp

(β).

Now let CGp and CHp be the induced partial decomposition bases of Gp and Hp as in

Theorem 2.2.2 and notice that the map fp with associated sets {x⊗1 : x ∈ X} ∈ CGp
and {y⊗ 1 : y ∈ Y } ∈ CHp can be extended to an ων-height-preserving isomorphism

g(p) with xp ∈ dom(g(p)). (See [JL] for more.) By Lemma 2.2.14 we have a

homomorphism g : A → B where g(x) = y for some y ∈ B and gp = g(p) for

all p. Each map g(p) : Ap → Bp is injective and ων-height-preserving, therefore

g : 〈S, x〉 → 〈T, y〉 is an ων-height-preserving isomorphism. Then g with associated

X and Y satisfies conditions (i)-(iv), hence g ∈ Iν .

To verify (B), assume that X ∪ {x} ∈ C. By condition (iv) we have

ŵ
ω(ν+1)

〈X〉0 (p, β, c) = ŵ
ω(ν+1)

〈Y 〉0 (p, β, c)

for all primes p, Ulm sequences β and compatibility classes c of Ulm matrices. By
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Lemma 2.2.12, there is an element y ∈ H such that Y ∪ {y} ∈ D and

ŵ
ω(ν+1)

〈X∪{x}〉0(p, β, c) = ŵ
ω(ν+1)

〈Y ∪{y}〉0(p, β, c)

for all p, β and c where U(x) ∼ω(ν+1) U(y) and up(x) ∼ω(ν+1) up(y) for all primes

p. Then there are positive integers k and l such that up(kx) =ω(ν+1) up(ly) for all

primes p. Let x′ = kx and y′ = ly. Now proceed as in the proof of the classification

in L∞ω (see [J1, Theorem 14]): Letting X̃ = X ∪ {x′}, we have S ∩ 〈X̃〉 = 〈S ∩ X̃〉,
so we can apply Lemma 2.2.14 to the group 〈S, x′〉0 with decomposition basis X̃ and

the subgroup S, and similarly to 〈T, y′〉0, Y ∪ {y′} and T . Then there is a positive

integer n such that

|mnx′ + s|p = min{|mnx′|p, |s|p} and |mny′ + t|p = min{|mny′|p, |t|p}

for all m ∈ Z, s ∈ S, t ∈ T and primes p. Finally, let S ′ = 〈S, nx′〉 and T ′ = 〈T, ny′〉.
Then f extends to the map

g′ : S ′ → T ′

by sending nx′ onto ny′. It is clear that g′ is ω(ν + 1)-height-preserving. Let X ′ =

X ∪ {nx′}, Y ′ = Y ∪ {ny′}. Then X ′ ⊆ S ′ ⊆ 〈X ′〉0 and Y ′ ⊆ T ′ ⊆ 〈Y ′〉0, therefore

g′ is a map in Iν+1 with associated sets X ′ ∈ C, Y ′ ∈ D such that nx′ ∈ dom(g′).

Consequently, f extends to a map g ∈ Iν with x ∈ dom(g), as desired. By symmetry,

the conditions of Theorem 1.2.1(2) are satisfied and it follows that G ≡δ H.
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Chapter 3

A new Step-Lemma

In order to construct classes of partially isomorphic modules of arbitrary cardinality

in Gödel’s universe, we will follow the classical approach that uses a Step-Lemma and

the Diamond Principle. First, we will prove a new Step-Lemma for abelian p-groups

G which are almost direct sums of cyclic groups and have a prescribed endomorphism

ring SmallG ⊕ A where Small denotes the ideal of all small endomorphisms of G.

The fact that SmallG⊕A is the endomorphism ring of G (resp. that such a p-group

G exists) is equivalent to A being a ring satisfying the Pierce-condition [DG], i. e.

A+ is a p-adic completion of a free Jp-module, Jp being the ring of p-adic integers.

(Prüfer module).

3.1 Characterizing small endomorphisms

Recall that for a p-group G the torsion-completion is defined as G = tĜ with Ĝ

being the p-adic completion of G. An element x ∈ G is a torsion-element which can

be expressed in the form x =
∑

n<ω xn such that xn ∈ G and (xn)n<ω is a sequence

in G which converges to 0 in the p-adic topology. If G is a direct sum of cyclic

p-groups, then we will write G =
⊕

n<ω Gn where Gn is homogeneous of type Zpn , a

direct sum of cyclic groups Zpn , and we define c(G) = {n < ω : Gn 6= 0}. Note that

Gn is only unique up to isomorphism, but in the following we often fix Gn for each

n < ω. Let In, n < ω be disjunct index sets for n 6= m. Set Gn :=
⊕

i∈In(A/pnA)ei.

The A-support of xn ∈ Gn is the finite subset [xn] ⊆ In used for the non-trivial

summands of xn in this direct sum: xn =
∑

i∈[xn] aiei with 0 6= ai ∈ A/pnA. More-

over, [x] =
⋃
n<ω[xn] is the A-support of x. If I ⊆ [x] then xI is the element

x � I =
∑

n<ω xn � I with xn � I =
∑

i∈([xn]∩I) aiei ∈ G. Similarly, if g ∈ G = P ⊕H,

for some decomposition P ⊕ H of G, then we write for its unique components
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g � P = gP ∈ P and g � H = gH ∈ H.

An endomorphism ϕ ∈ EndG is called small, if for any n < ω there is k < ω with

pkG[pn]ϕ = 0. If G is p-separable, then G ⊆ G where G is the p-torsion completion

of G. Clearly, each endomorphism ϕ then has a unique extension ϕ : G −→ G,

which we may also denote by ϕ. We may characterize another class of endomor-

phisms, so-called inessential endomorphisms, by ϕ ∈ InesG iff Gϕ ⊆ G. SmallG

and InesG are ideals of EndG.

We will characterize SmallG in the case, that G is constructed as intended above,

namely we will study generalizations of direct sums of cyclic p-groups which are

separable p-groups and define a category of strongly-κ-direct-groups which is a gen-

eralization of the basic category of direct sums of cyclic p-groups.

Definition 3.1.1. (i) A p-group G of size κ is a κ-direct sum of cyclics if every

subset of size < κ is contained in a pure subgroup U of G, which is a direct

sum of cyclic groups. We will call G κ-direct-c.

(ii) A p-group G of size κ is called strongly-κ-direct if every subset of size < κ

is contained in a subgroup U of G which is a direct sum of cyclics such that

the quotient G/U is κ-direct-c.

A p-pure subgroup of a direct sum of cyclic p-groups is itself a direct sum of cyclics,

as well as the union of such subgroups. Thus any κ-direct-c group G is the union

of a continuous chain G =
⋃
α<κGα of p-pure subgroups Gα of size |Gα| < κ which

are direct sums of cyclics, which we know from Definition 1.3.10 can be identified

as a κ-filtration of G. For example let {gα : α < κ} be a list of all elements of G

and let Gβ be the p-pure subgroup of G generated by the elements gα (α < β). The

modules Gβ then provide the continuous ascending chain of direct sums of cyclics.

We let A be a ring with Pierce-condition and consider a p-group G which is at the

same time an A-module such that G =
⋃
α<κGα is the union of a κ-filtration of

p-pure A-modules Gα which are direct sums of cyclic A-modules of the form A/pnA.

We will also call G κ-direct-c in this case.

For particular p-groups, like those constructed in [CG] we have SmallG = InesG

and we will show that this holds in the category of κ-direct-c p-groups, too.

Theorem 3.1.2. If κ is a regular (uncountable) cardinal and the p-torsion A-module

G is κ-direct-c, then SmallG = InesG.
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Proof. Let G =
⋃
α<κGα be the union of a continuous chain of submodules Gα of

size |Gα| < κ which are direct sums of cyclic (A/pnA)-modules. G is κ-direct-c and

p-torsion.

We will show that SmallG ⊆ InesG and will first reduce the problem to a submodule

Gα of G.

If ϕ ∈ SmallG and x ∈ G, then we must show xϕ ∈ G (hence Gϕ ⊆ G). Let

x =
∑

n<ω xn with xn ∈ G. Then {xn | n < ω} is countable and using that

cf(κ) > ω (κ is regular, uncountable) there is α < κ such that {xn | n < ω} ⊆ Gα.

By a back-and-forth argument ({xnϕ | n < ω} is countable, too) we can assume

that Gαϕ ⊆ Gα. We have x ∈ Gα and Gα is a direct sum of cyclics and Gα ⊆∗ G.

It now remains to show that xϕ ∈ Gα.

Let B ⊆ Gα be a family of the A-cyclic generators of Gα. Thus x =
∑
enan with

en ∈ B, an ∈ A and enan a null-sequence in the p-adic topology. Since x ∈ Gα and

Gα a p-group, there is i < ω with xpi = 0. Using that ϕ is small, we find (for i)

some k < ω with pkGα[pi]ϕ = 0. The null-sequence provides n0 < ω with an ∈ pkA
for all n ≥ n0. Thus

∑
n≥n0

enan ∈ pkGα[pi] and it follows
∑

n≥n0
enanϕ = 0. As a

consequence xϕ = (
∑

n<n0
enan)ϕ ∈ Gα and Gαϕ ⊆ Gα, resp. Gϕ ⊆ Gα follows.

Next we will show the converse inclusion and again first reduce the problem to Gα.

If ϕ ∈ EndG\SmallG, then we must show that ϕ /∈ InesG. By assumption we find

m < ω such that pkG[pm]ϕ 6= 0 for all k < ω. Thus there are elements bk ∈ pkG[pm]

with hk = bkϕ 6= 0 for all k < ω. As above there is α < κ and a submodule Gα of G,

such that bk ∈ Gα for all k < ω and Gαϕ ⊆ Gα. By the choice of Gα also hk ∈ Gα

holds for all k < ω.

Now we can continue working in Gα which is a direct sum of cyclics and choose

a basic set B with Gα =
⊕

b∈B bA. Write hk =
∑

b∈B h
b
kb with respect to this

decomposition. Thus [hk] is a non-empty, but finite subset of B. We want to

select an infinite, strictly increasing subsequence I = {ij | j < ω} ⊆ ω such that

[hij ] ∩ [hik ] = ∅ whenever j 6= k. Moreover, bij (j < ω) will be a null-sequence,

hence b =
∑

j<ω bij ∈ Gα is well-defined (with bpm = 0) and bϕ = (
∑

j<ω bij)ϕ =∑
j<ω(bijϕ) =

∑
j<ω hij has infinite support [bϕ] =

⋃
j<ω[hij ]. Thus, obviously

bϕ ∈ Gα \ Gα (and bϕ /∈ G from Gαϕ ⊆ Gα) will show that ϕ /∈ InesG. We

finally construct I by induction. Suppose that {ij | j < r} is constructed for some

r < ω, and let sr :=
∑

j<r bijϕ ∈ Gα which has finite support [sr] ⊆ B. By a

simple argument on direct sums of cyclic A-modules we can choose ir < ω such

that ir > ir−1 and pirGα ∩
⊕

b∈[sr] bA = 0. Now we select bir ∈ pirGα[pm] and the

non-trivial element hir = birϕ surely must also lie in pirGα[pm]. Hence [sr]∩ [hir ] = ∅
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by the above but [hir ] 6= ∅, and I is as desired.

3.2 The Step-Lemma

If G is as described before, a direct sum of cyclic p-groups, then G is unbounded if

the set c(G) is infinite. In the following G will also be an A-module over a ring A

that satisfies the Pierce-condition and each Gn =
⊕

A/pnA is a direct sum of cyclic

A-modules which are again direct sums of cyclic p-groups Zpn . Clearly, also in the

case of A-modules, G is unbounded if the set c(G) is infinite. We will shortly say in

this case that the p-torsion group G is an unbounded A-module and will in the

following very often assume that

(∗) Gn
∼= (A/pnA)(κn) for some uncountable cardinal κn > |A|

holds whenever Gn 6= 0.

Proposition 3.2.1. Let A be a ring which satisfies the Pierce-condition and G an

unbounded A-module with condition (∗), i.e. G ∼=
⊕

(A/pnA)(κn). If ϕ ∈ EndG \
A⊕ InesG, then there exists a decomposition G = P ⊕H with H,P both unbounded

A-modules and c(G) = c(H) = c(P ) such that the following hold.

There is n < ω such that P [pn](ϕ− a) * G for all a ∈ A (3.1)

and

|P | ≤ |A| with Pϕ ⊆ P. (3.2)

Proof. Let G = P(0) ⊕ H(0) be a first decomposition of G such that P(0), H(0) are

unbounded A-modules with c(G) = c(H(0)) = c(P(0)) and |P(0)| ≤ |A| and let B be

an A-basis of G with respect to this decomposition. To assure Pϕ ⊆ P , we ’close’

P(0) under ϕ as follows: Say B0 ⊆ B is the basis of P(0). Then |B0| ≤ |A| and

〈B0〉 = P(0). We recursively choose for n < ω sets Bn ⊆ Bn+1 ⊆ B with |Bn| ≤ |A|
and 〈Bn, Bnϕ〉 ⊆ P(n+1) := 〈Bn+1〉 as A-modules. The fact that κn is chosen > ℵ0
assures we can do so. Then P :=

⋃
n<ω P(n) = 〈

⋃
n<ω Bn〉 is still a direct summand

of G (with respect to the basis B) and |P | ≤ |A|. If now x ∈ P then there exists n

with x ∈ P(n) and accordingly xϕ ∈ P(n+1) ⊆ P and the claim Pϕ ⊆ P is guaran-

teed. Let H := 〈B \
⋃
n<ω Bn〉 be the complement of P in G, G = P ⊕H. Since the

basis B of G was fixed at the beginning of the proof, H exists. Thus G = P ⊕ H
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and P ,H both look like G above, say P =
⊕

Pi, H =
⊕

Hi, where c(P ) = c(G)

follows from P(0) ⊆ P , while c(H) = c(G) follows from |P | ≤ |A| and (∗).

If we are lucky, P also satisfies the claim (3.1). Then P is as required in the lemma

and we can proceed. Otherwise there are an ∈ A with P [pn](ϕ − an) ⊆ G for

all n < ω. If n ≤ m, then P [pn] ⊆ P [pm], and therefore P [pm](ϕ − am) ⊆ G

implies P [pn](ϕ − am) ⊆ G and in combination with P [pn](ϕ − an) ⊆ G we get

P [pn]((ϕ − am) − (ϕ − an)) = P [pn](an − am) ⊆ G. Now choose t ∈ P [pn] \ P
such that t =

∑
i∈c(P ) ti with 0 6= ti ∈ Pi and (w.l.o.g.) o(ti) = pn for all i (e.g.

elements of the kind
∑

i≥n,i∈c(P ) p
i−nei). Then from P [pn](an − am) ⊆ G follows

t(an − am) = (
∑

i∈c(P ) ti)(an − am) =
∑

i∈c(P )(ti(an − am)) ∈ G. Since each Pi is

an A-module, ti(an − am) ∈ Pi for all i which implies ti(an − am) = 0 for almost

all i ∈ c(P ) (otherwise t(an − am) /∈ G, since the element would possess an infinite

support). Thus, using Ann ti = pnA, we have an − am ∈ pnA which is equivalent to

saying that (an)n<ω is a Cauchy sequence. The ring A is complete (by the Pierce-

condition), and we find a∗ ∈ A such that an − a∗ ∈ pnA for all n < ω. Thus

ϕ− an = (ϕ− a∗) + (a∗ − an) where a∗ − an =: pna′ ∈ pnA. With P [pn](ϕ− an) =

P [pn](ϕ − a∗ + pna′) = P [pn](ϕ − a∗) + P [pn](pna′) = P [pn](ϕ − a∗) + 0 it follows

from above that

P [pn](ϕ− a∗) ⊆ G for all n < ω.

However ϕ−a∗ /∈ InesG by assumption on ϕ, and so we find g∗ ∈ G with g∗(ϕ−a∗) /∈
G. We choose some

⋃
n<ω Bn ⊆ B′ ⊆ B with |B′| ≤ |A| and g∗ ∈ 〈B′〉. Then

P @ 〈B′〉 @ G holds and ’closing’ 〈B′〉 under ϕ we can find a new decomposition

G = P ′ ⊕ H ′ with H ′, P ′ both unbounded A-modules such that c(G) = c(H ′) =

c(P ′), |P ′| ≤ |A| and the following hold.

P @ P ′, P ′ϕ ⊆ P ′, g∗ ∈ P
′

and g∗(ϕ− a∗) /∈ G. (3.3)

If (3.1) does not hold for P ′, then by the argument above there are bn ∈ A with

P
′
[pn](ϕ − bn) ⊆ G for all n < ω and the limit b∗ of the p-adic sequence (bn)n<ω

satisfies

P
′
[pn](ϕ− b∗) ⊆ G for all n < ω. (3.4)

Restricting to P we have P [pn](ϕ − b∗) ⊆ G as well as P [pn](ϕ − a∗) ⊆ G for all

n < ω. It follows P [pn](a∗ − b∗) ⊆ G for all n < ω. Since P is unbounded we can
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choose for all n < ω some element cn of the kind cn :=
∑

i≥n,i∈c(P ) p
i−nei ∈ P [pn].

Then cn has infinite support and cn(a∗ − b∗) ∈ G for all n < ω forces a∗ − b∗ ∈ pnA
for all n < ω and thus a∗ − b∗ ∈

⋂
n<ω p

nA = 0 and a∗ = b∗.

Thus P
′
[pn](ϕ − a∗) ⊆ G for all n < ω from (3.4). Applying this to g∗ ∈ P

′
gives

g∗(ϕ− a∗) ∈ G in contradiction to (3.3). Thus (3.1) is shown.

As a simple result similar to Proposition 3.2.1 we include

Corollary 3.2.1. Let P be an unbounded A-module, ϕ ∈ EndP and a ∈ A \ pkA
for some k > 0. Then

P [pk](pkϕ− a) * P

holds.

Proof. We have P [pk](pkϕ − a) = P [pk]a * P as witnessed by a ∈ A \ pkA and

the choice of some suitable test element of the kind c =
∑

i≥k,i∈c(P ) p
i−kei ∈ P [pk].

Keep in mind that piei = 0 since ei is a basis element of the torsion module Gi =

(A/piA)(κ).

If G is unbounded with condition (∗) and we assume G = P ⊕ H, with P,H un-

bounded A-modules as obtained by Proposition 3.2.1, then G,H and P are of the

following form:
⊕

k<ω Gk (resp. Hk, Pk) where Gk (resp. Hk, Pk) ∼= (A/pikA)(κk)

for suitable cardinals κk > 0. For G and H, κk > |A|, whereas κk ≤ |A| in the

decomposition of P . We will collect all the exponents ik and call i0 < i1 < ... the

chain of G. Obviously c(G) = {ik : k < ω} holds and by c(G) = c(H) = c(P ) the

chain of G is the same as that of H and P . Therefore in the following we will call

i0 < i1 < ... just a/the chain. We fix this chain and set

qk := pik and dk := ik+1 − ik.

Then qkp
dk = qk+1 and dk ≥ 1 for all k < ω.

Definition 3.2.2. Let G be an unbounded A-module as above.

(i) We call (gk)k<ω ⊆ G a dk-chain iff gk − pdkgk+1 ∈ G and qkgk = 0 for all

k < ω.

(ii) We call (gk)k<ω ⊆ G a basic-dk-chain iff gk−pdkgk+1 ∈ B and Ann gk = qkA

for all k < ω, where B is some basis of G (G =
⊕

k<ω Gk).

We will begin our construction with a first
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Lemma 3.2.3. Let G be an unbounded A-module as above. Then the following hold.

(i) There exists a basic-dk-chain (gk)k<ω of elements gk ∈ G \G.

(ii) For every element g ∈ G and every n ∈ ω with qng = 0 there exists a dk-chain

(gk)k<ω with gn = g.

Proof. i) We assume as above that each summand in G =
⊕

k<ω Gk is an A-

module of the form: Gk
∼= (A/pikA)(κk). Now we choose for each k < ω an element

ek ∈ Gk which belongs to a natural basis of Gk. Then we have Ann ek = pikA.

We set gk :=
∑

n≥k
qn
qk
en. Then gk ∈ G with Ann gk = qkA = pikA. We have

gk+1 =
∑

n≥k+1
qn
qk+1

en and

pdkgk+1 =
pik+1

pik
gk+1 =

qk+1

qk
gk+1 =

∑
n≥k+1

qn
qk
en = gk −

qk
qk
ek.

Therefore gk − pdkgk+1 = ek and (gk)k<ω is a basic-dk-chain. Notice that all gk have

infinite support, hence gk ∈ G \G.

ii) Let g ∈ G and n ∈ ω with qng = 0 be given. We need to define a suitable dk-chain

(gk)k<ω with gn = g. For this we set gn = g and extend recursively to k < n by

gk = pdkgk+1

which will guarantee qkgk = 0 via qkp
dk = qk+1. It remains to define gk for k > n.

For this aim let Ann g = pmA and g =
∑

k<ω zk be a representation of g in G. Then,

since qng = 0 and therefore qn ≥ Ann g,

pm ≤ qn, p
mzk = 0 for all k < ω (3.5)

and we let

zk =:
qk
pm
z′k with z′k ∈ G for all k < ω with qk ≥ pm (thus

qk
pm
≥ 1). (3.6)

Keep in mind that (zk)k<ω is a null-sequence in the p-adic topology and each zk is

divisible by qk.

We have Ann zk = pmA and Ann z′k = qkA. We now set for k > n

gk :=
∑

ql≥pm
qk
qn

ql
pm qk

qn

z′l ∈ G. (3.7)

Thus with qkp
dk = qk+1 and therefore pdk ql

pm
qk+1
qn

= ql
pm

qk
qn

we have for k ≥ n:

pdkgk+1 =
∑

ql≥pm
qk+1
qn

ql
pm qk

qn

z′l, implying
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gk − pdkgk+1 =
∑

ql∈[pm
qk
qn
,pm

qk+1
qn

[

ql
pm qk

qn

z′l,

which is a finite sum of elements of G. Thus

gk − pdkgk+1 ∈ G for k > n

by (3.7) while for k = n we have

pdngn+1 =
∑

ql≥pm
qn+1
qn

ql
pm
z′l =

∑
ql≥pm

qn+1
qn

zl

with (3.6). Then with qn+1

qn
= pdn we have

gn − pdngn+1 =
∑
ql≥pm

ql
pm
z′l −

∑
ql≥pm

qn+1
qn

zl =
∑

ql∈[pm,pm+dn [

zl,

a finite sum of elements in G and therefore gn − pdngn+1 ∈ G. Lastly see pm qk
qn
≤ qk

from 3.5 and thus in qkgk =
∑

ql≥pm
qk
qn

qk
ql

pm
qk
qn

z′l, we have qk
pm qn

qk

= pj for some j > 0.

Then gkgk =
∑

ql≥pm
qk
qn

pjqlz
′
l and since qlz

′
l = 0, also pjqlz

′
l = 0 for all l < ω and we

have qkgk = 0 for k > n.

The elements gk from Lemma 3.2.3(a) are so-called branch-elements. Notice that

Definition 3.2.2 and Lemma 3.2.3 carry over to the modules P and H if G = P ⊕H
as constructed above.

Now we can realize a first extension:

Proposition 3.2.2. Let G = P ⊕H be a direct sum of unbounded A-modules with

chain i0 < i1 < ... and B be an A-module basis of G with respect to this decomposi-

tion. Then for any dk-chain (pk)k<ω ⊆ P and any basic-dk-chain (hk)k<ω ⊆ H con-

structed as in Lemma 3.2.3(a) the following hold for G′ := 〈G, (pk + hk)A : k < ω〉.

(i) (pk + hk)k<ω ⊆ G is a dk-chain inside G′.

(ii) B′ := B \ {ek : k < ω} ∪ {pk + hk : k < ω} with ek = hk − pdkhk+1 ∈ B ∩H is

a basis of G′ and G′ is an unbounded A-module with chain i0 < i1 < ... .

(iii) G′ is pure in G.

(iv) G′/G ∼= A(p∞).
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Proof. i): Clearly (pk + hk) − pdk(pk+1 + hk+1) ∈ G′ by definition of G′. Since

qkpk = 0 and qkhk = 0 for all k < ω according to the properties of a (basic-)dk-

chain, also qk(pk + hk) = 0 for all k < ω and a) holds.

ii): We show, that the elements in B′ are independent. Keep in mind that B =

BP ∪ BH , where BP and BH are disjoint, since G = P ⊕ H. Since ek ∈ BH and

furthermore 〈ek〉k<ω = 〈hk〉k<ω according to our assumption and since (hk)k<ω is a

basic-dk-chain, we conclude that B is the disjoint union of BP and BH \ {ek : k <

ω}∪{hk : k < ω}, where BH \{ek : k < ω} and {hk : k < ω} are disjoint, too. Then

we can consider B as the disjoint union of B \ {ek : k < ω} and {hk : k < ω}. With

this decomposition of B in mind we let
∑

el∈B\{ek:k<ω} alel +
∑

k<ω ak(pk + hk) =

(
∑

el∈B\{ek:k<ω} alel+
∑

k<ω akpk)+
∑

k<ω akhk = 0. Since the support of the first sum

belongs to a subset of B \{ek : k < ω} and the support of the last summand belongs

to a subset of {ek : k < ω} resp. {hk : k < ω}, the two sums have disjoint supports

and we can conclude
∑

el∈B\{ek:k<ω} alel +
∑

k<ω akpk = 0 and
∑

k<ω akhk = 0 which

leads to akhk = 0 for all k < ω. Hence ak ∈ Ann(hk) = qkA as (hk)k<ω is a basic-dk-

chain and therefore akpk = a′(qkpk) = 0 as (pk)k<ω is a dk-chain. Thus ak(pk+hk) = 0

for all k < ω, and it remains
∑

el∈B\{ek:k<ω} alel = 0 which implies alel = 0 for all

l, according to the properties for the original basis B. This proves independence.

Furthermore, as ek = hk − pdkhk+1 = (pk + hk)− pdk(pk+1 + hk+1)− (pk − pdkpk+1)

with pk−pdkpk+1 ∈ P ⊆ 〈B\{ek}〉 and (pk+hk)−pdk(pk+1+hk+1) ∈ 〈{hk : k < ω}〉,
we have that B′ generates all elements of B and hence is a generating system of G′.

Therefore B′ is a basis of G′. As a consequence we obtain that G′ is a direct sum of

cyclics and an unbounded A-module with chain i0 < i1 < ... as Ann(pk +hk) = qkA.

iii): We know that G is pure in G. We have to show, that the equation px = g′ ∈ G′

is solvable in G′ whenever it is solvable in G. Consider px = g′ ∈ G′. Then px =

g̃+
∑
ak(pk+hk), where g̃ ∈ G and

∑
ak(pk+hk) =

∑
ak(pk+(ek+pdkhk+1)+0) =∑

ak(pk + (ek +pdkhk+1) + (pdkpk+1−pdkpk+1)) =
∑
pdkak(pk+1 +hk+1) + (

∑
akek +∑

ak(pk − pdkpk+1)), with the latter sum being an element of G according to the

properties of the dk-chain (pk)k<ω and since the ek are basis-elements of B. We set

g̃+(
∑
akek+

∑
ak(pk−pdkpk+1)) =: g̃′ ∈ G and have px = g̃′+

∑
pdkak(pk+1+hk+1).

Now the equation py = g̃′ is solvable in G since it is solvable in G and G is pure

in G. Therefore there exists some g ∈ G with pg = g̃′ and since dk ≥ 1 we

have px = pg +
∑
pdkak(pk+1 + hk+1) = p(g +

∑
pdk−1ak(pk+1 + hk+1)), where now

g +
∑
pdk−1ak(pk+1 + hk+1) is the required solution in G′.

iv): Since G′/G = 〈A(pk + hk) + G : k < ω〉 and pk + hk = pdk(pk+1 + hk+1) (mod

G) we have G′/G is p-divisible of rank 1 and thus G′/G ∼= A(p∞).
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The elements pk + hk from Proposition 3.2.2 are so-called branch-like elements.

For our step lemma we also need the following easy

Lemma 3.2.4. If (zk)k<ω ⊆ G is a dk-chain (not necessarily basic), then qk
qn
zk−zn ∈

G for all k ≥ n.

Proof. We proof the lemma by induction on k.

For k = n trivially qn
qn
zn − zn = 0 ∈ G holds.

For k = n + 1, qn+1

qn
zn+1 − zn = −(zn − pdnzn+1) ∈ G, according to the definition of

a dk-chain.

Now assume

qk−1
qn

zk−1 − zn ∈ G for some k > n. (3.8)

Then we have qk
qn
zk − zn = qk−1

qn

qk
qk−1

zk − zn = qk−1

qn
pdk−1zk − zn. Since (zk)k<ω is a

dk-chain we have pdk−1zk − zk−1 ∈ G. We set pdk−1zk − zk−1 =: gk−1 ∈ G, thus

pdk−1zk = gk−1 + zk−1. Substituting this we get qk
qn
zk− zn = qk−1

qn
(gk−1 + zk−1)− zn =

( qk−1

qn
zk−1 − zn) + qk−1

qn
gk−1, where the first part is in G according to (3.8) and the

rest is naturally in G. Thus the assumption follows.

Next we want to prove a consequence of Proposition 3.2.1.

Corollary 3.2.5. Let A be a ring which satisfies the Pierce-condition and G an

unbounded A-module with basis B, chain i0 < i1 < ... and condition (∗). If ϕ ∈
EndG\A⊕InesG, then there exists a decomposition G = P⊕H with respect to B as

a direct sum of unbounded A-modules, a basic-dk-chain (hk)k<ω ⊆ H and a dk-chain

(pk)k<ω ⊆ P such that for G1 := 〈G, hkA : k < ω〉 and G2 := 〈G, (pk+hk)A : k < ω〉
the following hold.

(a) Gi is an unbounded A-module with Gi ⊆∗ G, Gi/G ∼= A(p∞) and chain i0 <

i1 < ... for i = 1, 2.

(b) There exists either some k < ω with hkϕ /∈ G1 or some k < ω with (pk+hk)ϕ /∈
G2.

Proof. Notice that G1 = 〈G, hkA : k ≥ n〉 and G2 = 〈G, (pk + hk)A : k ≥ n〉 for

any n < ω by the properties of the (basic-) dk-chains (hk)k<ω and (pk)k<ω: Observe,

that recursively, for hk ∈ G1, with hk−1 − pdkhk ∈ G also hk−1 ∈ G1 follows.

Let ϕ ∈ EndG\A⊕InesG be given. Then, according to Proposition 3.2.1 there exists
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some decomposition G = P ⊕ H with respect to B as a direct sum of unbounded

A-modules P,H with chain i0 < i1 < ... and some m < ω with

P [pm](ϕ− c) * G for all c ∈ A. (3.9)

First we try the basic-dk-chain (hk)k<ω as constructed in Lemma 3.2.3(a). For this

choice condition (a) for i = 1 holds trivially by Proposition 3.2.2. If we are lucky

then there exists some k < ω with hkϕ /∈ G1, condition (b) holds and also (a) for

i = 2 is true with the trivial choice pk = 0 for all k < ω.

We therefore assume the bad case

hkϕ ∈ G1 for all k < ω. (3.10)

We fix some n < ω with

pm ≤ qn (3.11)

and consider G1 = 〈G, hkA : k ≥ n〉 with this n, now fixed. Then each element

in G1 is the sum of some g ∈ G and a linear combination of elements hk, k ≥ n.

Without loss of generality, by the properties of the (basic-)dk-chain (hk)k<ω, instead

of a linear combination of elements hk, it suffices to consider only one summand.

So, by (3.10) there exist now some r ≥ n (note that qr
qn

exists), g ∈ G and a ∈ A
with hnϕ = g + ahr, resp.

hnϕ− ahr ∈ G. (3.12)

We now distinguish two cases.

Case 1: a /∈ qr
qn
A.

With (3.2) we have ϕ ∈ EndP and applying Corollary 3.2.1 leads to P [ qr
qn

]( qr
qn
ϕ−a) *

P , which implies

P [
qr
qn

](
qr
qn
ϕ− a) * G (3.13)

as otherwise P [ qr
qn

]( qr
qn
ϕ− a) ⊆ P ∩G = P , a contradiction. Thus P [ qr

qn
]( qr
qn
ϕ− a) ⊆

P \G.

With (3.13) we choose z ∈ P [ qr
qn

] with

z(
qr
qn
ϕ− a) /∈ G. (3.14)

Since qr
qn
z = 0, also qrz = 0 and applying Lemma 3.2.3(b) to z ∈ P there exists some

dk-chain (pk)k<ω with

pr = z. (3.15)
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With this choice condition (a) for i = 2 holds trivially by Proposition 3.2.2 and it

remains to check condition (b). We claim

(pn + hn)ϕ /∈ G2

for the n fixed in (3.11).

Towards a contradition we assume (pn + hn)ϕ ∈ G2 and set G2 = 〈G, (pk + hk)A :

k ≥ r〉 with the r as fixed in (3.12). With the same argument as above, there exist

some s ≥ r ≥ n and a′ ∈ A with

(pn + hn)ϕ− a′(ps + hs) ∈ G.

Combining (3.12) and (3.16) leads to

pnϕ+ ahr − a′(ps + hs) = (pnϕ− a′ps) + (ahr − a′hs) ∈ G.

With Lemma 3.2.4 we can add the summand ( qs
qr
hs − hr)a ∈ G and get

(pnϕ− a′ps) + (
qs
qr
a− a′)hs ∈ G. (3.16)

Now with (3.2) the first summand is an element of P while the second summand is

an element of H. Thus by disjointness of supports follows

pnϕ− a′ps ∈ G and (
qs
qr
a− a′)hs ∈ G.

Since hs has infinite support (as secured by Lemma 3.2.3 (a)the basic-dk-chain is

∈ H \H) and elements in G have finite support, we have qs
qr
a− a′ ∈ Annhs = qsA

by the properties of the basic-dk-chain (hk)k<ω and also qsA ⊆ Ann ps from the

properties of the dk-chain (pk)k<ω. Thus ( qs
qr
a− a′)ps = 0 which implies qs

qr
aps = a′ps

and from pnϕ− a′ps ∈ G follows

pnϕ−
qs
qr
aps ∈ G.

Applying Lemma 3.2.4, adding ( qs
qr
ps − pr)a ∈ G implies pnϕ − apr ∈ G and using

qr
qn
pr − pn ∈ G (also with Lemma 3.2.4) leads to pr(

qr
qn
ϕ − a) ∈ G. With (3.15) we

have z( qr
qn
ϕ− a) ∈ G contradicting (3.14).

Case 2: a ∈ qr
qn
A.

Hence there exists some b ∈ A with

a =
qr
qn
b. (3.17)
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With (3.9) we choose z ∈ P [pm] with

z(ϕ− b) /∈ G (3.18)

and as in (3.11) fix n with pm ≤ qn. Then, since qn is a p-power ≥ pm and z ∈
P [pm], qnz = 0 and applying Lemma 3.2.3(b) there exists some dk-chain (pk)k<ω with

pn = z. (3.19)

With this choice condition (a) for i = 2 holds trivially by Proposition 3.2.2 and it

remains to check condition (b). We claim again

(pn + hn)ϕ /∈ G2.

Assuming (pn+hn)ϕ ∈ G2 towards a contradiction we can follow the same arguments

as in Case 1 up to the point

pnϕ− apr ∈ G.

Now with (3.17) we have pnϕ− qr
qn
bpr ∈ G which implies pnϕ− bpn ∈ G by adding

( qr
qn
pr − pn)b ∈ G with Lemma 3.2.4. Thus with (3.19) follows z(ϕ− b) ∈ G contra-

dicting (3.18).

We can finally formulate the

Step-Lemma 3.2.6. Let A be a ring which satisfies the Pierce-condition. Moreover,

let G be an unbounded A-module and let G =
⋃
l<ω Gl be a chain of unbounded A-

modules such that Gl+1 = Gl ⊕Hl for suitable unbounded A-modules Hl with chain

i0 < i1 < ... and condition (∗) for all l < ω. If ϕ ∈ EndG \ A ⊕ InesG, then there

exists an extension G′ of G such that the following hold.

(i) G′ is a pure A-submodule of G.

(ii) G′ is an unbounded A-module with chain i0 < i1 < ... .

(iii) Gl @ G′ for all l < ω.

(iv) G′/G ∼= A(p∞).

(v) ϕ does not extend to an endomorphism of G′. More precisely there exists some

dk-chain (gk)k<ω ⊆ G inside G′ with gkϕ /∈ G′ for some k < ω.
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Proof. Let B0 be a basis of G0 and Bl+1 be a basis of Hl for l < ω. Then Cl :=⋃
k≤lBk is a basis of Gl and B :=

⋃
k<ω Bk is a basis of G.

As Hl is an unbounded A-module with condition (∗) for all l < ω it is possible

to construct a basic-dk-chain (hk)k<ω like in Lemma 3.2.3(a) by choosing suitable

elements ek ∈ Bk and Corollary 3.2.5 applies to this particular choice of (hk)k<ω

as indicated in the proof of this Corollary. According to Corollary 3.2.5 we now

construct two A-modules G1 and G2 and can choose G′ ∈ {G1, G2} such that all the

properties (i), (ii), (iv) and (v) hold. For the remaining property (iii) just observe

that like in Proposition 3.2.2(a)

C ′l := B \ {ek : l ≤ k < ω} ∪ {hk : l ≤ k < ω} is a basis of G1

and

C ′′l := B \ {ek : l ≤ k < ω} ∪ {pk + hk : l ≤ k < ω} is a basis of G2

for all l < ω and that Cl ⊆ C ′l+1, C
′′
l+1 by our choice of ek ∈ Bk.
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Chapter 4

Realizing classes of partially

isomorphic modules

4.1 The Realization Theorem

Now, assuming the Diamond Principle ♦λE for λ a regular uncountable cardinal and

E a stationary, non-reflecting subset of λ we will realize modules M with End(M)

of the desired structure A⊕ Ines(M).

First, we construct a filtration of modules, satisfying certain useful properties:

Lemma 4.1.1. Let A be a ring with Pierce-condition and i0 < i1 < ... a sequence of

positive integers. If λ > |A|+ and we assume ♦λE for a non-reflecting, stationary

subset E of λ consisting of limit ordinals of cofinality ω, then there exists a λ-

filtration of modules Mν, which fulfill

(0) |Mν | = |ν|+ |A|+ = |Mν+1 \Mν |

(i) Mν is an unbounded A-module with chain i0 < i1 < ....

(ii) If ρ ∈ ν \E, then Mρ @Mν with Mν = Mρ⊕Hνρ, where Hνρ is also unbounded

with chain i0 < i1 < ....

(iii) If ν = ρ + 1 with ρ ∈ E and gρ ∈ End(Mρ) \ A ⊕ Ines(Mρ), then gρ does not

extend to an endomorphism of Mν

for all ν ∈ λ.

Proof. We will carry out the construction of M inductively, defining a module-

structure on a set M of cardinality λ.
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For each α < λ of cofinality ω we can choose a strictly increasing sequence αn ∈
α \ E with supn<ωαn = α. Since E consists of limit ordinals (cofinal to ω), the

αn’s may be chosen as successor ordinals. Also, since E is non-reflecting, for any

α ∈ LORD of cofinality > ω we have E ∩ α is not stationary and thus there is a

cub C ⊆ α with E ∩ C = ∅. Therefore we find a continuous sequence (αν′)ν′<cf(α)

with supν′<cf(α)αν′ = α and αν′ ∈ α \ E.

Now we define an A-module structure on Mν inductively. We begin with setting

M0 :=
⊕
n<ω

(A/pinA)(|A|
+)

and see |M0| = |A|+, according to (0). Also, we already recognize our chain

i0 < i1 < .... Since the filtration will be a continuous chain, the construction is

now reduced to an inductive step passing from Mν to Mν+1. In constructing Mν we

have to consider three possible cases for ν:

Case 1: ν ∈ LORD. In this case

Mν :=
⋃
ρ<ν

Mρ.

Since the modules Mρ form an ascending chain, we have |Mν | = supρ|Mρ| = supρ|ρ|+
|A|+ = |ν| + |A|+. For the cardinality of |Mν+1 \Mν | compare the calculations in

case 2. (0) holds.

As ν ∈ LORD we know, according to E non-reflecting, that there is a continuous

chain (νβ)β<cf(ν) with supβ<cf(ν)νβ = ν and νβ ∈ ν \ E. Then, since the modules

Mβ form an ascending chain, Mν =
⋃
β<νMβ can be also written as

⋃
β<cf(ν)Mνβ .

With (ii) and induction hypothesis for ordinals < ν we have Mνβ = M ′
νβ
⊕Hνβ for

all β < cf(ν). Thus, since Mν is the union of modules Mνβ with νβ /∈ E, Mν can

ultimately be given as M0⊕
⊕

β<cf(ν)Hνβ and since all the summands are unbounded

with chain i0 < i1 < ... by (ii), Mν is, too. Thus (i) holds.

For ρ ∈ ν \ E chose β < cf(ν) with ρ < νβ < ν. Then Mρ @ Mνβ by induction

hypothesis and (ii) since ρ /∈ E. Also we have Mνβ @Mν according to the filtration

and sequence (νβ) and thus Mρ @Mν and (ii) holds.

(iii) is empty in this case.

Case 2: ν = ρ+ 1, where ρ /∈ E. Then

Mν := Mρ ⊕
⊕
n<ω

(A/pinA)(|A|
+),
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where the latter is a module isomorphic to M0. Thus Mν is isomorphic to Mρ⊕M0.

We have |Mν | = |Mρ| · |M0| = (|ρ| + |A|+) · |A|+ = max{|ρ| + |A|+, |A|+} = |ρ| +
|A|+ = |ν| + |A|+, since |ρ| = |ν|, as ν = ρ + 1. On the other hand Mν \Mρ =

{x = xρ ⊕ x0 : xρ ∈ Mρ, x0 ∈ M0, x0 6= 0} (since xρ ⊕ x0 = xρ ∈ Mρ) and thus

|Mν \Mρ| = |Mρ| · |M0 \ {0}|, where |M0 \ {0}| = |M0| = |A|+. So |Mν \Mρ| =

max{|ρ|+ |A|+, |A|+}, too, and the equality required in (0) holds.

By induction hypothesis, Mρ is an unbounded A-module with chain i0 < i1 < ...

and M0 was, too. So, again by collecting basis elements, also Mν is an unbounded

A-module with chain i0 < i1 < ... and (i) holds.

Consider ρ′ < ν, ρ′ /∈ E. If ρ′ = ρ, Mρ′ = Mρ @Mν by construction of Mν . If ρ′ < ρ,

(ii) is already fulfilled for Mρ and thus Mρ′ @ Mρ, which is a summand of Mν by

construction.

(iii) is again empty in case 2.

Case 3: ν = ρ + 1, where ρ ∈ E. Then we check if gρ (the Jensen function) fulfills

gρ /∈ End(Mρ)\A⊕Ines(Mρ). In this case we may proceed as in Case 2. By checking

property (ii) however, the case ρ′ = ρ does not occur in this case.

If now gρ ∈ End(Mρ) \ A⊕ Ines(Mρ), then we may use the Step-Lemma 3.2.6 from

the proceeding chapter to realize a construction for a module which will be chosen

as Mν .

If Mν is constructed with the help of the Step-Lemma 3.2.6, condition (iv) of the

Step-Lemma states Mν/Mρ
∼= A(p∞). Then |ρ| + |A|+ = |Mρ| ≤ |Mν | = |Mν/Mρ| ·

|Mρ| = |A(p∞)| · |Mρ| = max{|A(p∞)|, |Mρ|}. With |A(p∞)| = |A| ≤ |Mρ| we have

|Mν | = |Mρ| = |ρ|+ |A|+ = |ν|+ |A|+.

On the other hand |Mν \Mρ| = |(Mν/Mρ) \ {0}| · |Mρ| = |Mν/Mρ| · |Mρ| = |A(p∞)| ·
|Mρ| = |A| · |Mρ| as above, thus |Mν \Mρ| = |ν|+ |A|+.

Mν is unbounded with chain i0 < i1 < ... by the properties guaranteed in the

Step-Lemma.

We have Mρ′ @ Mρl @ Mν for ρ′ < ρ with ρ′ /∈ E and ρ′ < ρl < ρ. The first

inclusion is guaranteed by (ii) and induction hypothesis, the second holds by (iii) of

the Step-Lemma. Thus (ii) is verified in case 3.

(iii) holds with (v) of the Step-Lemma. This completes the proof of 4.1.1.

After the construction in 4.1.1 we set

M =
⋃
α<λ

Mα

69



for the constructed λ-filtration {Mα : α < λ}. Then,

Mα is unbounded with chain i0 < i1 < ...

for all α and for β < α, β /∈ E

Mβ @Mα,Mα = Mβ ⊕Mαβ (4.1)

where Mαβ is also unbounded with chain i0 < i1 < ....

Next we will prove a second

Lemma 4.1.2. If M is constructed as in 4.1.1, M is strongly-λ-direct with |M | = λ.

Proof. Let S ⊆ M, |S| < λ. The properties of the filtrations tell us that there is

β < λ, β /∈ E with S ⊆ Mβ. We already know Mβ is an unbounded A-module. We

have to show that M/Mβ is λ-direct-c. For M/Mβ we have

M/Mβ =
⋃

β<α<λ

Mα/Mβ

a further filtration. Each Mα/Mβ (for β /∈ E) is an unbounded A-module with 4.1

and thus M/Mβ is λ-direct-c and it follows that M is strongly-λ-direct.

Since |M | = |λ|+ |A|+ = λ, the proof is complete.

Next we will ensure a prescribed structure of EndM with the following

Lemma 4.1.3. If M is as above, M has a prescribed endomorphism ring A⊕InesM .

Proof. We assume the opposite and let ϕ ∈ EndM \ (A⊕ InesM). We set

C := {α < λ : ϕ �Mα ∈ EndMα}

By a familiar back-and-forth argument, C is a closed, unbounded set.

We will prove the following

(?) ∃β < λ : ∀α ∈ C, β < α < λ : ϕ �Mα ∈ EndMα \ (A⊕ InesMα)

Again, we assume the opposite. Then, for every β there is an αβ ∈ C, β < αβ < λ

such that ϕ �Mαβ /∈ EndMαβ \ (A⊕ InesMαβ), which yields ϕ �Mαβ = aαβ + ϕαβ ,

where aαβ ∈ A and ϕαβ ∈ InesMαβ . Since {αβ : β < λ} is unbounded in λ,

|{αβ : β < λ}| = λ > |A|. Therefore we know there exists a ∈ A such that

{αβ : aαβ = a} is unbounded in λ since there are |A| < λ many possibilities for a
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and thus |A| such sets, of which at least one has to be unbounded in order to secure

that the set {αβ : β < λ} is unbounded in λ. But then we have

ϕ =
⋃
aαβ

ϕαβ + aαβ =
⋃
aαβ

ϕαβ + a,

since the ϕαβ + aαβ form an ascending chain of partial maps and we have

ϕ− a =
⋃

aαβ=a

ϕαβ ,

which is an element of InesMαβ .

It remains to show that ϕ−a ∈ InesM . Let g ∈M , which means g ∈Mαβ for some

αβ ∈ C with αβ = a. This holds since C is unbounded and thus M is a limit and

can be replaced by some Mαβ for αβ big enough. We have to show g(ϕ − a) ∈ M .

This is guaranteed by

g(ϕ− a) = gϕαβ ∈M

since ϕαβ ∈ InesMαβ , g ∈ Mαβ , where αβ was big enough, so that ϕ − a =⋃
aαβ=a

ϕαβ . This proves ϕ− a is in InesM and thus (?) holds.

Now chose γ ∈ C ∩ {α < λ : β < α} ∩ E ′ = C ∩ (β, λ) ∩ E ′ where E ′ = {α ∈ E :

gα = ϕ � Mα} with gα the Jensen function, is stationary. Since (β, λ) is a cub and

C is too, so is C ∩ (β, λ).

We will now concentrate on the construction, passing from Mγ to Mγ+1. Since

γ ∈ E ′ ⊆ E this step is similar to case 3 in 4.1.1. We have

γ ∈ E ′ ⇒ gγ = ϕ �Mγ,

γ ∈ C ⇒ gγ = ϕ �Mγ ∈ EndMγ and

γ < β ⇒ gγ = ϕ �Mγ ∈ EndMγ \ (A⊕ InesMγ) with (?).

The Step-Lemma yields that in this case, ϕ �Mγ does not lift to Mγ+1. We therefore

know

∃g ∈Mγ+1 : ϕ(g) /∈Mγ+1. (4.2)

Furthermore the existence of a dk-chain (gk)k<ω with g0 = g and gk ∈ Mγ+1 for all

k < ω (Corollary 3.2.5) is secured by the Step-Lemma and definition 3.2.2. We have

gk − pdkgk+1 ∈Mγ. With Lemma 3.2.4 follows

qk
qn
gk − gn ∈Mγ, for all k ≥ n.
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Thus also qk
q0
gk − g0 ∈Mγ.

On the other hand, obviously ϕ(g), ϕ(gk) ∈ M and there exists γ + 1 < δ with

ϕ(g), ϕ(gk) ∈ Mδ. Consider ϕ(g) + Mγ+1 ∈ Mδ/Mγ+1. The dk-chain tells us gk −
pdkgk+1 ∈Mγ. We chose gn = g. Lemma 3.2.4 then yields

qk
qn
gk − gn =

qk
qn
gk − g ∈Mγ

which implies, since ϕ � Mγ ∈ EndMγ, that qk
qn
ϕ(gk) − ϕ(g) ∈ Mγ ⊆ Mγ+1. Thus

qk
qn

(ϕ(gk) +Mγ+1)− (ϕ(g) +Mγ+1) = 0 and thus

ϕ(g) +Mγ+1 =
qk
qn

(ϕ(gk) +Mγ+1)

where qk
qn

becomes an arbitrary high power of p for k chosen suitable. Thus ϕ(g) +

Mγ+1 ∈Mδ/Mγ+1 is p-divisible. But the Step-Lemma ((ii)) also yields Mγ+1 @Mδ,

since γ ∈ E and thus γ+1 /∈ E, and therefore Mδ/Mγ+1 is an unbounded A-module

and thus contains no elements ( 6= 0) divisible by p (is p-reduced). As a consequence

ϕ(g) +Mγ+1 = 0 which implies

ϕ(g) ∈Mγ+1,

a contradiction to 4.2.Thus ϕ has to be ∈ A⊕ InesM .

Finally, 4.1.1, 4.1.2 and 4.1.3 yield the

Realization Theorem 4.1.4. Let A be a ring with Pierce-condition and i0 <

i1 < ... a sequence of positive integers. If λ > |A|+ and we assume ♦λE for a

non-reflecting, stationary subset E of λ consisting of limit ordinals of cofinality ω,

then there exists a strongly-λ-direct A-module M of cardinality λ with End(M) =

A⊕ Ines(M).

4.2 Calculating Ulm invariants

We consider an unbounded A-module

G =
⊕
n<ω

Z(κn)

pin

with chain i0 < i1 < ... and κi > |A| > ℵ0 for all i.

We will calculate it’s Ulm invariants and prove the following
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Lemma 4.2.1. If G is an unbounded A-module as given above,

up(β,G) =

{
κl, if β < ω and there exists l with β + 1 = il,

0, else.
And consequently

ûp(β,G) =

{
∞, if β < ω and there exists l with β + 1 = il,

0, else.

Proof. We consider pkG =
⊕

n<ω p
kZ(κn)

pin
. The multiplication with pk leads to an

annulment of all summands Z(κn)

pin
with in ≤ k and thus

pkG =
⊕
in>k

pkZ(κn)

pin

which is isomorphic to
⊕

in>k
Z(κn)

pin−k
.

To consider the socle we will use the fact that for all elements a ∈ Zpin , o(a) = pin ,

thus the socle can be given by

pkG[p] =
⊕
in>k

pin−1Z(κn)

pin

and

pk+1G[p] =
⊕

in>k+1

pin−1Z(κn)

pin
.

To calculate the Ulm invariant we have to consider the dimension of the vector space

pkG[p]/pk+1G[p]. We see that in the case of the module G this vector space only

exists iff there is il in the chain with il = k + 1. In this case

pkG[p]/pk+1G[p] ∼= pk+1−1Z(κl)

pk+1 = pkZ(κl)

pk+1
∼= Z(κl)

p .

and we see

up(k,G) = dim(pkG[p]/pk+1G[p]) = κl.

If il = k + 1 does not exist in the chain, we have up(k,G) = 0.

Keep in mind pαG = 0 for α ≥ ω since we have p-cyclic groups. Thus up(β,G) = 0

for β ≥ ω anyway.

We keep in mind that in our case the construction is chosen such that κl > |A| > ℵ0.

Now we want to consider a module G =
⋃
α<λGα as realized with the help of the

Step-Lemma and the Realization Theorem, where all Gα are unbounded A-modules

and have the same chain i0 < i1 < ... . We will show how the Ulm invariants of G

are related to those of the Gα and that the generalized Ulm invariants of all modules

are the same.
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Lemma 4.2.2. Let G =
⋃
α<λGα with a λ-filtration as realized by the Step-Lemma

and the Realization Theorem, then

(i) up(β,G) = supα<λup(β,Gα)

(ii) ûp(β,G) = ûp(β,Gα) =

{
∞, if β < ω and there exists l with β + 1 = il,

0, else.

Proof. It is pkG/pk+1G = (pkG+ pk+1G)/pk+1G = (
⋃
α<λ p

kGα + pk+1G)/pk+1G =⋃
α<λ((p

kGα + pk+1G)/pk+1G). Then the isomorphism theorem by Noether tells us⋃
α<λ

((pkGα + pk+1G)/pk+1G) ∼=
⋃
α<λ

(pkGα/(p
kGα ∩ pk+1G)

and thus

pkG/pk+1G ∼=
⋃
α<λ

(pkGα/p
k+1Gα)

and this holds for the socles, too. Since all the quotiens are Zp-vector spaces, the

dimension of the union is the supremum of the dimension of the quotiens, which

means the supremum of up(k,Gα), α < λ. With 4.2.1 the equation for the generalized

Ulm invariants is immediate.

In the next chapter we will now consider possible classes of partially isomorphic

modules.

4.3 Classes of partially isomorphic modules

In the last chapter we saw that the generalized Ulm invariants of G and all Gα’s co-

incide, that, in other words, all these modules are L∞-equivalent (following Barwise-

Eklof) or, with Karp, partially isomorphic.

For a given, infinite sequence of integers < ω (the given chain), we are therefore able

to construct modules Gα, G with

ûp(β,G) = ûp(β,Gα) =

{
ω, for infinitely many β < ω,

0, for β ≥ ω.

Obviously, by choosing different chains there are at least 2ℵ0 many different modules

which provide the same generalized Ulm invariants and thus are partially isomorphic.

See that Z(κ)
p
∼=p Z(κ′)

p but Z(κ)
p 6∼= Z(κ′)

p for any κ 6= κ′ > ℵ0.
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However, the modules thus collected in the equivalence class of partially isomorphic

modules are unbounded A-modules (in the sense of Section 3.1), where some have

a prescribed endomorphism ring (G) and others don’t (Gα).

With referring to chapter 9 of [GT] we will show how big the classes of partially

isomorphic modules can become, regulated with help of the Diamond.

Obviously, by choosing λ in [GT] 9.1.19 accordingly, modules in the class can be

constructed with arbitrary cardinality. Moreover, one can prove a corresponding

Theorem 4.3.1. Assume ♦λE for a non-reflecting stationary subset E of λ con-

sisting of limit ordinals cofinal to ω. Moreover, let A be a ring with Pierce-condition

and |A+| < λ and let i0 < i1 < .. be a sequence of positive integers.

Then there exist 2λ pairwise non-isomorphic strongly-λ-direct A-modules M of car-

dinality λ with chain i0 < i1 < ... and EndM = A ⊕ InesM which are partially

isomorphic, i. e. L∞-equivalent and have the same Ulm-Kaplansky invariants, also

in the non-generalized case.

Proof. Theorem 9.1.17 of [GT] tells us, that if ♦λE holds, there exists a decompo-

sition E =
⋃
β<λEβ such that ♦λEβ holds for all β < λ. Every Eβ is a stationary

set.

Now, for each non-empty set S ⊆ λ, the set ES :=
⋃
β∈S Eβ is stationary, too. For

S = λ, we just have ES = E. Obviously, there are |P(S)| = 2λ many possibilities

for S. We will, for each set S, construct a module MS which fulfills the desired

properties.

The construction of MS will be similar to the construction of M in Section 4.1, with

only two differences:

1. Instead of E and ♦λE consider ES and ♦λES.

2. By constructing Mν , in the case ν = ρ+1 with ρ ∈ ES and the Jensen function

gρ /∈ EndMρ \A⊕ InesMρ we do not proceed as in the proof of the Realization

Theorem and simply add a summand isomorphic to M0, but will use a different

construction instead.

In detail, in the case ν = ρ + 1, ρ ∈ ES, gρ /∈ EndMρ \ A ⊕ InesMρ we construct

Mρ+1 from Mρ with Proposition 3.2.2 by choosing an arbitrary dk-chain (pk)k<ω, as

well as an arbitrary basic-dk-chain (hk)k<ω as in Lemma 3.2.3 (a).

Then |Mρ+1| = |Mρ| · |Mρ+1/Mρ| = (|ρ| + |A|+) · |A(p∞)|, where |A(p∞)| < |A| and

thus |Mρ+1| = |ρ|+ |A|+ = |ρ+ 1|+ |A|+.
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The resulting MS has all the properties as desired by the Realization Theorem and

also the same Ulm invariants as a module realized with the Realization Theorem

would have. Thus all MSi thus achieved are partially isomorphic. Moreover, one

might prove a Step-Lemma similar to ours in Chapter 3, which will provide a module

fulfilling all properties with exception of (v).

It remains to show that for ∅ 6= S1, S2 ∈ λ, S1 6= S2, MS1 � MS2 . This will be

verified with the help of the Gamma invariant Γ(MS). To define Γ(MS), at first

we set

GS := {ν < λ : MS/Mν is not strongly-λ-direct} ⊆ λ (4.3)

and consider the equivalence relation on P(λ) we already introduced in Section 1.3:

G1 ∼ G2 :⇔ ∃ cub C ⊆ λ : G1 ∩ C = G2 ∩ C. (4.4)

See, that if G1 ∼ G2, G2 ∼ G3, G1 ∩ C1 = G2 ∩ C1 and G2 ∩ C2 = G3 ∩ C2 and

therefore, since C1∩C2 is again a cub, G1∩(C1∩C2) = G2∩(C1∩C2) = G3∩(C1∩C2).

Then

Γ(MS) = [GS]∼ = GS/ ∼ . (4.5)

Since for α ∈ λ \ ES : M/Mα is strongly-λ-direct as secured by our construction

and for α ∈ ES : Mα+1/Mα
∼= A(p∞) and Mα+1/Mα ⊆ M/Mα with M/Mα not

strongly-λ-direct, we have

MS/Mν is not strongly-λ-direct ⇔ ν ∈ ES (4.6)

and thus

Γ(MS) = [ES]∼. (4.7)

But for ∅ 6= S1, S2 and S1 6= S2 we have [ES1 ] 6= [ES2 ]: Would ES1 ∩ C = ES2 ∩ C
for some cub C, then there would be α ∈ S2, α /∈ S1 with Eα ∩ C 6= ∅ and, since

Eα ⊆ ES2 , Eα ∩ C ⊆ ES2 ∩ C = ES1 ∩ C. If follows ES1 ∩ Eα 6= ∅, which is a

contradiction to α /∈ S1. This completes the proof.

To further control the Ulm-Kaplansky invariants up(β,G), resp. up(β,Gα) for β < ω

but with no connection to the chain we now neglect the properties of the modules’ en-

domorphism rings. Then, we can ‘fill up’ the ‘realizable’ sequence of Ulm-Kaplansky

invariants κl as provided by Lemma 4.2.1 as in the following theorem:
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Theorem 4.3.2. Let A be a ring with Pierce-condition. For any sequence of Ulm-

Kaplansky invariants

up(β,G) =


κi, for countably many β < ω,

ki, for finitely many (but different) β < ω,

0, if β ≥ ω,

where κl > |A| > ℵ0 and ki arbitrary, finite or infinite, and assuming ♦λE for λ a

regular uncountable cardinal and E a non-reflecting, stationary subset of λ consisting

of limit ordinals cofinal to ω, there exist (at least) 2λ pairwise non-isomorphic A-

modules realizing this sequence of invariants which are all partially isomorphic and

are unions of ascending chains of direct sums of cyclic p-groups. Assuming λ > κi, ki

for all i and also λ > |A+|, the modules all have cardinality λ.

Proof. At first, for a chosen chain i0 < i1 < ..., starting with the realizable sequence

of Ulm-Kaplansky invariants as in Lemma 4.2.1, the modules are constructed as in

Theorem 4.3.1. Then, for any β < ω where no l with il = β+1 exists, we can secure

up(β,G) (resp. up(β,Gα))= k (k as desired) by replacing G by G⊕Z(k)

pβ+1 (resp. Gα

by Gα⊕Z(k)

pβ+1). The replaced modules remain partially isomorphic (even isomorphic,

if they were so to start with) and the modules Gα still provide a λ-filtration for G.

By adding a suitably chosen sum
⊕

βi
Z(ki)

pβi+1 , finitely many values up(βi, G) (resp.

up(βi, Gα)) can be prearranged as desired.
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[CG] A. L. S. Corner and R. Göbel, Prescribing endomorphism algebras – A unified

treatment, Proc. London Math. Soc. 50(3) (1985), 447 – 479.
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